
(5 2) CONTJ\.OL DATA

COMPASS VERSION 3
REFERENCE MANUAL

coc® OPERATING' SYSTE,MS:
NOS 1
NOS 2
NOS/BE 1
SCOPE 2

60492600 t....

CPU AND PP INSTRUCTION INDEX

CPU INSTRUCTIONS: RXi Xj*Xk 41 ijk 8-40 CRM m,d 6ldm 9-18
RXi Xj/Xk 45ijk 8-43 CWD d 62d 9-18
RXj Xk Ol4jk 8-20 CWM m,d 63dm 9-18

Mnemonic Operation Page SAi Aj+K 50ijK 8-44 DCN d 75d 9-24
Code Code (octal) Number SAi BJ+K 51 ijK 8-44 EIM m,d 6ldm 9-21

SAi Xj+K 52ijK 8-44 EJM m,d 67dm 9-19
AXi +jk 21 ijk 8-32 SAi Xj+Bk 53ijk 8-44 EOM m,d 65dm 9-21
AXi Bj,Xk 23ijk 8-33 SAi Aj+Bk 54ijk 8-44 ERN d 270d 9-14
BXi Xj lOijj 8-27 SAi Aj-Bk 55ij k 8-44 ESN d 7700 9-25
BXi Xj*Xk 11 ijk 8-28 SAi Bj+Bk 56ijk 8-44 ETN d 260d 9-14
BXi Xj+Xk l 2ijk 8-28 SAi Bj-Bk 57 ijk 8-44 EXN d 260d 9-12
BXi Xj-Xk 13ijk 8-29 SBi Aj+K 60ijK 8-46 FAN d 76d 9-24
BXi -Xk l4ikk 8-29 SBi Bj+i< 61 ijK 8-46 FIM m,d 60dm 9-21
BXi -Xk*Xj l5ijk 8-30 SBi Xj+K 62ijK 8-46 FJM m,d 66dm 9-19
BXi -Xk+Xj l6ijk 8-30 SBi Xj+Bk 63ijk 8-46 FNC m,d 77dm 9-24
BXi -Xk-Xj l7ijk 8-31 SBi Aj+Bk 64ijk 8-46 FOM m,d 64dm 9-21
CR Xj ,Xk 660jk 8-46 SBi Aj-Bk 65ijk 8-46 IAM m,d 7ldm 9-22
cw Xj,Xk 670jk 8-46 SBi Bj+Bk 66ijk 8-46 IAN d 70d 9-22
CXi Xk 47ikk 8-43 SBi Bj-Bk 67ijk 8-46 IJM m,d 65dm 9-19
OF Xj,K 036jK 8-24 SXi Aj+K 70ijK 8-48 IRM m,d 62dm 9-21
DXi Xj+Xk 32ijk 8-38 SXi Bj+K 7lijK 8-48 LCN d l5d 9-10
OXi Xj-Xk 33ijk 8-38 SXi Xj+K 72ijK 8-48 LDC c 20dm 9-11
OXi Xj*Xk 42ijk 8-40 SXi Xj+"Bk 73ijk 8-48 LOO d 30d 9-15
EQ Bi ,Bj,K 04ijK 8-26 SXi Aj+Bk 74ijk 8-48 LOI d 40d 9-15
ES K 00000 8-14 SXi Aj-Bk 75ijk 8-48 LDM m,d 50dm 9-16
FXi Xj+Xk 30ijk 8-37 SXi Bj+Bk 76ijk 8-48 LON d l4d 9-10
FXi Xj-Xk 31 ijk 8-37 SXi Bj-Bk 77ijk 8-48 LJM m,d Oldm 9-7
FXi Xi*Xk 40ijk 8-39 TBj Ol6j0 8-21 LMC c 23dm 9-11
FXi Xj/Xk 44ijk 8-42 UXi Bj ,Xk 26ijk 8-35 LMD d 33d 9-15
GE Bi,Bj,K 06ijK 8-26 WE Bj+K Ol2jK 8-15 LMI d 43d 9-15
GE Bi,K 06iOK 8-26 WL BEK Ol2jK 8-16 LMM m,d 53dm 9-16
GT Bj,Bi,K 07ijK 8-26 WXj Xk 015jk 8-19 LMN d lld 9-10
GT Bj ,K 070jK 8-26 XJ Bj+K Ol3jK 8-17 LPC c 22dm 9-11
IBj Bk Ol6jk 8-22 ZR Xj~K 030jK 8-24 LPN d l2d 9-10
ID Xj ,K 037jK 8-24 ZR Bi ,K 04iOK 8-26 LRD d 24d 9-12
IR Xj ,K 034jk 8-24 ZXi Bj,Xk 25ijk 8-35 MAN d 262d 9-12
ix;t Xj+Xk 36ijk 8-39 MJN r Old 9-7
I Xi Xj-Xk 37ijk 8-39 CMU INSTRUCTIONS: MXN d 26ld 9-12
IXi Xj*Xk 42ijk 8-41 NIM m,d 63dm 9-21
JP Bi+K 02iiK 8-23 NJN r 05d 9-7
LE Bj-;Bi ,K 06ijK 8-26 cc .l ,ka,c a'kb,cb 8-53 NOM m,d 67dm 9-21
LT Bi ,Bj,K 07ijK 8-26 OAM m,d 73dm 9-22 I LXi +jk 20ijk 8-31 cu .l ,k",c;;i,kb,cb 8-54 OAN d 72d 9-22
LXi Bj,Xk 22ijk 8-32 OM J.,ks,cs,kd,cd 8-52 ORM m,o 66om 9-21
MI Xj,K 033jK 8-24 PJN r 06d 9-7
MI Bi ,K 07i0K 8-26 IM Bj+K (464jK) 8-51 PSN 2400 9-11
MJ 01300 8-18 MD .f~ks,cs,kd,cd 8-51 RAD d 35d 9-15
MJ Bj+K Ol3jK 8-18 RAI d 45d 9-15
MXi +jk 43ijk 8-42 RAM m,d 55dm 9-16
NE Bi,Bj,K 05ijK 8-26 RFN d 74d 9-23
NG Bi,K 07iOK 8-26 PP INSTRUCTIONS: RJM m,d 02dm 9-7
NG Xj,K 033jK 8-24 RPN d 270d 9-13
NO n 46n 8-43 SBD d 32d 9-15
NXi Bj,Xk 24ijk 8-34 Operation Page SBI d 42d 9-15
NZ Bi ,K 05iOK 8-26 Name Code (octal) Number SBM m,d 52dm 9-16
NZ Xj,K 03ljK 8-24 SBN d l7d 9-10
OBj Bk Ol 7jk 8-22 ACN d 74d 9-24 SCF m,d 644dmtt 9-20
OR Xj,K 035jK 8-24 ADC c 2ldm 9-11 SCN d l3d 9-10
PL Xj ,K 032jK 8-24 ADO d 3ld 9-15 SFM m,d 664dmtt 9-20
PL Bi ,K 06iOK 8-26 ADI d 4ld 9-15 SHN r lO 9-9
PS K OOOOK 8-13 ADM m,d 5ldm 9-16 SOD d 37d 9-15
PXi Bj,Xk 27ijk 8-36 AON d l6d 9-10 SOI d 47d 9-15
RE Bj+K OlljK 8-15 AJM m,d 64dm 9-19 SOM m,d 57dm 9-16
RI Bk- Ol60k 8-21 ADO d 36d 9-15 SRO d 25d 9-12
RJ K OlOOK 8-14 AOI d 46d 9-15 STD d 34d 9-15
RL Bj:!:_K OlljK 8-16 AOM m,d 56dm 9-16 STI d 44d 9-15
RO Bk Ol70k 8-22 CCF m,d 654dmtt 9-20 STM m,d 54dm 9-16
RXi Xj+Xk 34ijk 8-38 CFM m,d 674dmtt 9-20 UJN r 03d 9-7
RXi Xj-Xk 35ijk 8-38 CRD d 60d 9-17 ZJN r 04d 9-7

tThere is also an integ~r divide macro (IXi Xj/Xk).

ttThe operation code occupies 7 bits. The d field occupies 5 bits.

60492600 H

(5 2) CONTR,.OL DATA

COMPASS VERSION 3
REFERENCE MANUAL

coc® OPERATING SYSTEMS:
NOS 1

NOS 2
NOS/BE 1
SCOPE 2

60492600

Revision

A (11/01/75)

B (03/05/76)

c (03/25/77)

D (03/31/78)

E (10/31/78)

F (06/29/79)

G (07/07/80)

H (04/26/82)

J (09/24/82)

K (10/21/83)

L (05/25/84)

REVISION RECORD

Description

Original Release.

Manual revised to reflect a new feature and to clarify existing material. The new
feature is: CP147, LDSET pseudo instruction. See list of effective pages.

This reflects feature F7540, Model 176 support, feature CP154, Weak Externals, and
feature CP161, Fast Dynamic Loader, as well as miscellaneous technical corrections, at
PSR level 446.

This revision documents COMPASS Version 3.5. New features include the DEBUG preset
option and 8 lines/inch density on the load map.

This revision documents COMPASS Version 3.6, PSR level 485. New features include the PD
and PS control statement parameters and common common decks.

This revision reflects the introduction of SEGLOAD common blocks. An error list
parameter is added to the COMPASS call. Numerous minor technical corrections are made to
section 12.

This revision documents support for CYBER 170 Models 720, 730, 740, 750, and 760. An
example program is included. Minor technical corrections are made throughout.

Revised at PSR level 552 to document support of the CYBER 170 models 825, 835, and 855
Computer Systems, and to incorporate minor technical corrections. This is a complete
reprint.

Revised at PSR level 577 to document support of the CYBER 170 models 865 and 875 Computer
Systems and to incorporate minor technical corrections.

Revised at PSR level 599 to document support of the CYBER 170 Model 845 Computer System,
support of PD, PS, and PW listing controls, and to incorporate minor technical
corrections.

Revised at PSR level 599 to document support of the CYBER 170 Model 815 and the CYBER 180
Computer Systems.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

©coPYRIGHT CONTROL DATA CORPORATION
1975, 1976, 1977, 1978, 1979, 1980, 1982, 1983, 1984
All Rights Reserved
Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. BOX 3492
SUNNYVALE, CALIFORNIA 94088-3492

or use Comment Sheet in the back of this manual

60492600 L

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page nUlDber if the entire page is affected. A bar by the page nUllber
indicates pagination rather than content has changed.

Front Cover
Inside Front Cover
Title Page
ii
iii/iv
v
vi
vii/viii
ix
x
xi
x!:l
1-1 thru 1-4
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8 thru 2-10
2-11
2-12
2-13
2-14
2-15 thru 2-18
2-19
2-20
2-21 thru 2-27
3-1
3-2
3-3
3-4
3-5
3-6 thru 3-15
4-1
4-2
4-3
4-4
4-5
4-6 thru 4-8
4-9
4-10
4-11
4-12
4-13 thru 4-19
4-20
4-21 thru 4-53
4-54
4-55 thru 4-60
4-61
4-62 thru 4-80
5-1
5-2
5-3
5-4
5-5
5-6

60492600 L

'Revision

H

L
L
L
L
H
L
L
J
L
G
H
A
A.
D
L
A
c
B
It
H
H
J
H
IC
L
H
G
G
H
L
L
G
G
G
L
G
A
L
A
L
A
L
A
F
H
J
H
L
H
A
c
c
A
A
E

5-7
5-8
5-9
5-10
S-11
5-12
S-13
5-14
5-15
5-16 thru 5-25
5-26
5-27
S-28 thru 5-35
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
8-9
8-10 thru 8-12
8-13
8-14
8-15
8-16 thru 8-22
8-23 thru 8-25
8-26 thru 8-31
8-32
8-33
8-34 thru 8-45
8-46
8-47 thru 8-49
8-50
8-51
8-52 thru 8-54
8-55
9-1
9-2
9-3

'Revision

E
A
c
E
D
A
A
E
r
A
G
B
A
B
A
A
L
A
A
B
A
L
A
A
A
G
D
E
r
A
L
L
A
L
J
J
H
L
L
H
L
H
L
H
L
H
L
L
H
L
H
L
G
K
G
L
L
H

Page 'Revision

9-4 IC
9-5 K
9-6 thru 9-10 H
9-11 L
9-12 L
9-13 H
9-14 L
9-15 H
9-16 L
9-17 H
9-18 H
9-19 L
9-20 H
9-21 H
9-22 L
9-23 L
9-24 H
9-25 H
10-1 thru 10-4 H
10-5 ~

lo-6 H
10-7 thru 10-11 G
11-1 thru 11-4 H
11-5 c
11-6 A
11-7 thru 11-10 G
11-11 L
11-12 B
11-13 G
11-14 D
12-1 B
12-2 r
12-3 thru 12-18 B
12-19 J
12-20 thru 12-34 B
A-1 thru A-4 A
B-1 H
B-2 B
B-3 G
B-4 G
B-5 A
C-1 A
D-1 J
D-2 thru D-8 B
~l L
E-2 thru E-6 B
F-1 thru F-3 H
F-4 K
Index-1 thru -7 H
Index-8 J
Index-9 thru -13 H
Comment Sheet/Mailer L
SUDlllary Card L
Inside Back Cover H
Back Cover

iii/iv

PREFACE

The CONTROL DAT A® CO MP ASS Version 3.6 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor Wlit (CPU) or a
peripheral processor (PP or PPU). The assembler executes on the following computer systems and
operating systems:

NOS 1 for the CDC® CYBER 170 Computer Systems; CYBER 70 Computer System models 71, 72, 73,
and 74; and 6000 Computer Systems

NOS 2 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

NOS/BE 1 for the CDC CYBER 180 Computer Systems; CYBER 170 Computer Systems; CYBER 70
Computer System models 71, 72, 73, and 74; and 6000 Computer Systems

SCOPE 2 for the CDC CYBER 170 Computer System model 176, CYBER 70 Computer System model
76, and 7600 Computer Systems

•

The CYBER 170 Computer Systems include the following 800 Series models: 815, 825, 835, 845, 855, 865, I
and 875. The CYBER 180 Computer Systems include the following 800 Series models: 810, 830, 835, 845,
and 855. The CYBER 170 models 835, 845, and 855 are the same machines as the CYBER 180 models 835,
845, and 855. References in the text to 800 Series models usually ck> not distinguish between CYBER 170
and CYBER 180.

The CDC CYBER 170 Computer System models 720 and 730 have Wlified processors and use the
instructions noted in this publication for computer models with a Compare/Move Unit (CMU) such as the
CYBER 170 Computer System model 172. Models 825, 835, 845, and 855 also support the compare/move
instructions through simulation.

The CDC CYBER 170 Computer System models 740, 750, 760, 865, and 875 have flllctional Wlits and u:;e
instructions noted in this publication for computer models with functional units such as the CYBER 170
Computer System model 175.

The reader is assumed to be familiar with a Control Data computer and operating system, and with
assemblers in general.

NOTE

Avoid continued use of COMPASS in creating application programs when
possible. COMP ASS and other machine-dependent languages can complicate
migration to future hardware and software systems. Software mobility will be
restricted by continued use of COMP ASS for stand-alone programs, COMP ASS
subroutines embedded in programs using higher-level languages, and COMPASS
owncode routines used with CDC standard products.

In this manual, the acronym ECS refers to all forms of extended memory unless otherwise noted, except in
the context of a multimainframe environment or distributive data path (DDP) access, in which case, models
176, 810, 815, 825, 830, 835, 845, 855, 865, and 875 are excluded. I
Extended memory for the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600 is large central
memory (LCM) or large central memory extended (LCME). Extended memory for models 810, 815, 825, I
830, 835, 845, 855, 865, and 875 is Wlified extended memory (UEM). Extended memory for models 865 and

60492600 L v

875 can also include extended core storage (ECS) or extended semiconductor memory (ESM). Extended
memory for all other CYBER 1 70, CYBER 70, and 6000 Series Computer Systems is extended core storage
(ECS) or extended semiconductor memory (ESM).

The CYBER 170 Model 176 supports direct LCM and LCME transfer instructions, as described in chapter 8.
LCM and LCME transfers initiate an error exit, not a half exit, as noted in ECS/UEM Instructions,
chapter 8.

Hardware descriptions and further programming information for the various forms of extended memory can
be found in the appropriate hardware reference manuals.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lowercase letters in formats
depict variables. The examples assume that assembler numeric mode is decimal and that character mode is
display code unless otherwise noted. In examples, statements generated by the assembler as a result of a
call or a substitution are shown in shaded print.

General explanations of COMP ASS concepts have been limited to the initial pages of each chapter or
section, whenever possible. Subsequent material has been presented in a concise manner to aid in rapid
access to reference information. In keeping with this concept, instruction indexes have been included
inside the front and back covers.

Additional information essential to programming in the COMP ASS environment can be found in the
publications listed in this preface. The publications are listed alphabetically within groupings that indicate
their approximate importance to readers of this manual. Applicable operating systems are also indicated.

The applications programmer will need the CYBER Record Manager Basic Access Methods and Advanced
Access Mettx>ds manuals for information about the macros needed to define, access, and manipulate files.
Information necessary to create and manipulate program structures can be found in the appropriate Loader
reference manual (CYBER Loader for the NOS and NOS/BE operating systems, and the SCOPE 2 Loader for
the SCOPE 2 operating system).

In addition to the above, the systems programmer will need the appropriate operating system manual,
either the NOS 1 Reference Manual or the NOS 2 Reference Set, Volume 4, Program Interface, to obtain

I information about system macros.

The Software Publications Release History serves as a guide to the revision level of software
documentation which corresponds to the Programming System Report (PSR) level of installed site software.

The following manuals are of primary interest:

Publication
Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2

vi

COMPASS Version 3 Instant

C YBER Loader Version 1
Reference Manual

CYBER Record Manager
Advanced Access Mettx>ds
Version 2 Reference Manual

CYBER Record Manager
Basic Access Methods
Version 1.5 Reference Manual

NOS Version 1
Reference Manual, Volume 1 of 2

NOS Version 1
Reference Manual, Volume 2 of 2

60492800

60429800

60499300

60495700

60435400

60445300

x x x x

x x

x x x

x x x

x

x

60492600 L

Publication
Publi ca ti on Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2

NOS Version 2 Reference Set,
Volume 4 Program Interface 60459690 x

NOS/BE 1 Reference Manual 60493800 x
SCOPE 2 Loader Version 2
Reference Manual 60454780 x

SCOPE 2 Reference Manual 60342600 x

The following manuals are of secondary interest:

Publication
Publication Number NOS 1 NOS 2 NOS/BE 1 SCOPE 2

CYBER L11teractive Debug Version 1
Reference Manual 60481400 x x x

Modify Version 1 Reference Manual 60450100 x x

NOS Version 1 Diagnotic Index 60455720 x
NOS Version 2 Diagnostic Index 60459390 x

NOS/BE Version 1 Diagnostic Index 60456490 x

NOS Version 1 Manual Abstracts 84000420 x
NOS Version 2 Manual Abstracts 60485500 x

NOS/BE Version 1 Manual Abstracts 84000470 x

Software Publications Release History 60481000 x x x x

Update Version 1 Reference Manual 60449900 x x x

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

60492600 H

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

vii/viii •

CONTENTS

1.1

1.2

l. 3
1.4

2

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8

2.2
2.2.1
2.2.2

2.3

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5

2.5

2.6

2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.7.5
2.7.6

2.8
2.8.1
2.8.2

3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3.1.6
3.1.7

INTRODUCTION 1-1

Configuration 1-3

Assembler Execution 1-3

Relocatable Object Program Execution 1-4
Interactive Program Debugging 1-4

LANGUAGE STRUCTURE 2-1

Statement Format 2-1
First Column 2-1
Location Field 2-1
Operation Field 2-1
Variable Field 2-2
Comments Field 2-2
Comm.ents Statement 2-2
Statement Continuation 2-2
Coding Conventions 2-3

Statement Editing 2-4
Concatenation 2-4
Micro Substitution 2-4

Names

Symbols
Linkage Symbols
Default Symbols
Previously Defined Symbols
Undefined Symbols
Qualified Symbols

CPU Registers

Special Elements

Data Notation
Data Items
Constants
Literals
Character Data Nota.tion
Numeric Data Notation
Hexadecimal Data Notation

Expressions
Types of Expressions
Evaluation of Expressions

PROGRAM STRUCTURE

Subprogram Blocks
Absolute Block
Zero Block
Literals Block
User-Established Local Blocks
Labeled Common Blocks
Blank Common Blocks
Redundant Block Names

2-4

2-5
2-6
2-7
2-7
2-8
2-8

2-8

2-10

2-11
2-11
2-11
2-12
2-l3
2-17
2-22

2-23
2-24
2-27

3-1

3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3

60492600 L

3.2
3.2.1
3.2.2
3.2.3
3.2.4

3.3

3.4
3.4.1
3.4.2
3.4.3

4

4.1
4.1.1
4.1.2
I. 1 "'>
c+ • .l • ...)

4.1.4

4.2
4.2.1
4.2.2

4.3
4.3.1
4.3.2

4.3.3

4.3.4

4.3.5
4.3.6
4.3.7
4.3.8
4. 3.9
4.3.10
4. 3.11
4.3.12

4.4
4.4.l
4.4.2

4.4.3
4.4.4
4.4.5

4.4.6

4.5
4.5.1
4.5.2

4.5.3
4.5.4
4.5.5
4.5.6

Block Control Counters
Origin Counter
Location Counter
Position Counter
Forcing Upper

Relocatable Program Structure

Absolute Program Structure
Absolute Overlays
Multiple Entry Point Overlays
Partial Binary

PSEUDO INSTRUCTIONS

Introduction to Pseudo Instructions
Types of Pseudo Instructions
Required Pseudo Instructions
First Statement Group
Permissible Anywhere Instructions

Subprogram Identification
IDENT - Subprogram Identification
END - End of Subprogram

Binary Control
ABS - Absolute CPU Program
MACHINE - Declare Object Processor

Type
PPU - CYBER 70 Model 76 or 7600

PPU Program
PERIPH - CYBER 180 Series; CYBER 170

Series; CYBER 70 Models 72, 73, 74;
or 6000 Series PPU Program

IDENT - Identify and Generate Overlay
SEGMENT - Generate Binary Segment
SEG - Write Partial Binary
STEXT - Generate System Text Record
COMMENT - Prefix Table Comment
NOLABEL - Delete Header Table
LCC - Loader Directive
LDSET - Generate LDSET Object

Directives

Mode Control
BASE - Declare Numeric Data Mode
CHAR - Define Other Character Data

Code
CODE - Declare Character Data Code
QUAL - Qualify Symbols
Bl=l and B7=1 - Declare that

B Register Contains One
COL - Set Comments Column

Block Counter Control
USE - Establish and Use Block
USELCM - Establish and Use ECS/LCM

Block
ORG and ORGC - Set Origin Counter
BSS - Block Storage Reservation
LOC - Set Location Counter
POS - Set Position Counter

3-3
3-3
3-4
3-4
3-4

3-5

3-6
3-8
3-12
3-12

4-1

4-1
4-1
4-2
4-2
4-2

4-2
4-2
4-4

4-6
4-6

4-7

4-8

4-10
4-11
4-15
4-16
4-17
4-20
4-20
4-21

4-21

4-24
4-24

4-26
4-26
4-28

4-30
4-3.1

4-32
4-32

4-34
4-35
4-37
4-38
4-40

ix

I

4.6
4.6.1
4.6.2
4.6.3
4.6.4
4.6.5
4.6.6

4.7
4.7.1

4.7.2

4.8
4.8.1

4.8.2
4.8.3

4.8.4
4.8.5
4.8.6
4.8.7

4.8.8

4.9
4.9.1
4.9.2
4.9.3
4.9.4
4.9.5

4.9.6

4.9.7
4.9.8

4.10
4.10.1
4.10.2

4.11
4.11.1
4.11.2

4.11.3

4.11.4
4.11.5
4.11.6
4.11.7

4.11.8

5

S.1

s.2
s.2.1
s.2.2

5.3
5.3.1
5.3.2
5.3.3
S.3.4

x

Symbol Definition
EQU or = - Equate Symbol Value
SET - Set or Reset Symbol Value
MAX - Set Symbol to Maximum Value
MIN - Set Symbol to Minimum Value
MICCNT - Set Symbol to Micro Size
SST - System Symbol Table

Subprogram Linkage
ENTRY and ENTRYC - Declare Entry

Symbols
EXT - Declare External Symbols

Data Generation
BSSZ and Blank Operation Field -

Reserve Zeroed Storage
DATA - Generate Data Words
DIS - Generate Wor~s of Character

Data
LIT - Declare Literal Values
VFD - Variable Field Definition
CON - Generate Constants
R= - Conditional Increment

Instruction
REP, REPC, and REP! - Generate Loader

Replication Table

Conditional Assembly
ENDIF - End of IF Range
ELSE - Reverse Effects of IF
IFtype - Test Object Processor Type
!Fop - Compare Expression Values
!FPL and IFKI - Test Sign of

Expression
IF - Test Symbol or Expression

Attribute
IFC - Compare Character Strings
SKIP - Unconditionally Skip Code

Error Control
ERR - Unconditionally Set Error Flag
ERRxx - Conditionally Set Error Flag

Listing Control
LIST - Select List Options
EJECT - Eject Page and Begin New

Sub-Subtitle
SPACE - Skip Lines and Begin New

Sub-Subtitle
TITLE - Assembly Listing Title
TTL - New Assembly Listing Title
NOREF - Omit Symbol References
CTEXT and ENDX - Disable/Enable

Listing of Common Deck Text
XREF - Reference Symbolic Address

DEFINITION OPERATIONS

External Text (XTEXT)

Remote Assembly
RMT - Save-Remote Code
HERE - Assemble Remote Code

Code Duplication
DUP - Simple Duplication
ECHO - Echoed Duplication
STOPDUP - Stop Duplication
ENDD - End Duplication Sequence

4-40
4-41
4-41
4-42
4-43
4-44
4-45

4-45

4-45
4-47

4-47

4-48
4-48

4-49
4-51
4-53
4-54

4-55

4-57

4-59
4-59
4-60
4-60
4-62

4-64

4-65
4-68
4-70

4-71
4-71
4-72

4-73
4-73

4-76

4-76
4-77
4-78
4-78

4-79
4-80

5-1

5-2

5-3
5-3
5-4

5-6
5-6
5-7
5-9
5-10

5.4
S.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9

5.5

6

6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.2
6.2.1
6.2.2
6.2.3

7

7.1

7.2
7.2.1
1.2.2
7.2.3

7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9

8

8.1

8.2
8.2.1

8.2.2

8.2.3

8.3
8.3.1
8.3.2
8.3.3

Macros and Opdef s
ENDM - End Macro Definition
MACRO - Macro Heading
Macro Calls
MACROE - Equivalenced Macro Header
Equivalenced Macro Call
OPDEF - Define CPU Operation
Opdef Call
LOCAL - Local Symbols
!RP - Indefinitely Repeated Parameter

System Macro and Opdef Definitions

OPERATION CODE TABLE MANAGEMENT

Mnemonically Identified Instructions
PPOP - PPU Operation Code
OPSYN - Synonymous Mnemonic Operation
NIL - Do Nothing Pseudo Instruction
PURGMAC - Purge Macros

Syntactically Identified Instructions
CPOP - CPU Operation Code
CPSYN - Synonymous CPU Instruction
PURGDEF - Purge CPU Operation Code

MICROS

Micro Substitution

Micro Definition
MICRO - Define Micro
DECMIC - Decimal Micro
OCTMIC - Octal Micro

Predefined Micro Naaes
DATE
JDATE
TIME
BASE
CODE
QUAL
SEQUENCE
MOD LEVEL
PCOMMENT

CPU SYMBOLIC MACHINE INSTRUCTIONS

Machine Instruction Formats

Instruction Execution
6600/6700 and CYBER 70 Model 74

5-13
S-14
5-15
5-18
5-24
5-25
5-27
5-29
5-31
5-33

5-35

6-1

6-3
6-3
6-5
6-6
6-7

6-7
6-7
6-10
6-10

7-1

7-1

7-2
7-2
7-4
7-4

7-5
7-5
7-6
7-6
7-6
7-6
7-6
7-7
7-7
7-7

8-1

8-1

8-2

Execution 8-2
CYBER 180 Computer Systems; CYBER 170 I

Models 171, 172, 173, 174, 720,
730, 815, 825, 835, 845, and 855;
CYBER 70 Models 71, 72, and 73; and
6200, 6400, 6500 Execution 8-4.

CYBER 170 Models 175, 176, 740,
750, 760, 865, and 875; CYBER 70
Model 76; and 7600 Execution 8-5

Operating Registers
X Registers
A Registers
B Registers

8-7
8-7
8-7
8-7

60492600 L

8.4
8.4.1

8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9
8. 4 .10

8.4.11
8.4.12

8.4.13
8.4.14
8.4.15

8.4.16

8.4.17
8.4.18
8.4.19
8.4.20
8.4.21
8.4.22

8.4.23

8.4.24

8.4.25

8.4.26

8.4.27

8.4.28

8.4.29
8.4.30
8.4.31
8.4.32
8.4.33

8.4.34
8.4.35

8.4.36
8.4.37

8.4.38

8.4.39

8.4.40
8.4.41
8.4.42

8.4.43

8.4.44
8.4.45
8.4.46
8.4.47
8.4.48
8.4.49

8.5
8.5.1
8.5.2

Symbolic Notation
Program Stop or Exchange Jump

Instruction
Error Exit Instruction
Return Jump Instruction
ECS/UEM Instructions
LCM Block Copy Instructions
Exchange Jump Instruction
Exchange Exit Instruction
Direct L<lf Transfer Instructions
Direct UEM Transfer Instructions
Reset Input Channel Buff er

Instruction
Set Real-Time Clock Instruction
Reset Output Channel Buffer

!netruct!on
Read Channel Status Instructions
Unconditional Jump Instruction
X-Register Conditional Branch

Instructions
B-Register Conditional Branch

Instructions
Transmit Instruction
Logical Product Instruction
Logical Sum Instruction
Logical Difference Instruction
Complement Instruction
Logical Product and Complement

Instruction
Complement and Logical Sum

Instruction
Complement and Logical Difference

Instruction
Logical Left Shift jk Places

Instruction
Arithmetic Right Shift jk Places

Instruction
Logical Left Shift (Bj) Places

Instruction
Arithmetic Right Shift (Bj) Places

Instruction
Normalize Instruction
Round and Normalize Instruction
Unpack Instruction
Pack Instruction
Unrounded SP Floating Point Add

Instructions
DP Floating Point Add Instructions
Rounded SP Floating Point Add

Instructions
Long Add (Fixed Point) Instructions
Unrounded SP Floating Point Multiply

Instruction
Rounded SP Floating Point Multiply

Instruction
DP Floating Point Multiply

Instruction
Integer Multiply Instruction
Mask Instruction
Unrounded SP Floating Point Divide

Instruction
Rounded SP Floating Point Divide

Instruction
Pass Instruction
Population Count Instruction
Set A Register Instructions
Direct Read/Write Central Memory
Set B Register Instructions
Set X Register Instructions

CMU Symbolic Machine Instructions
IM - Indirect Move
MD - Indirect Move Descriptor Word

60492600 J

8-8

8-13
8-14
8-14
8-15
8-16
8-17
8-18
8-19
8-20

8-21
8-21

8-22
8-22
8-23

8-24

8-26
8-27
8-28
8-28
8-29
8-29

8-30

8-30

8-31

8-31

8-32

8-32

8-33
8-34
8-35
8-35
8-36

8-37
8-38

8-38
8-39

8-39

8-40

8-40
8-41
8-42

8-42

8-43
8-43
8-43
8-44
8-46
8-46
8-48

8-50
8-51
8-51

8.5.3
8.5.4
8.5.5

9

9.1

9.2
9.2.1
9.2.2
9.2.3
9.2.4
9.2.5
9.2.6

9.2.7
9.2.8
9.2.9
9.2.10
9.2.11
9.2.12

9.2.13
9.2.14
9.2.15

9.2.16
9.2.17
9.2.18
9.2.19
9.2.20
9.2.21

10

10.1
10. 1. 1
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.1. 7

10.2

11

11.1

11.2
ii.2.1
11.2.2
11.2.3
11.2.4

11.3

11.4

11.5

11.6

11. 7

11.8

DM - Direct Move
CC - Compare Collated
CU - Compare Uncollated

PP SYMBOLIC MACHINE INSTRUCTIONS

Machine Instruction Formats

Symbolic Notation
Branch Instructions
Shift Instruction
No Address Mode Instructions
Constant Mode Instructions
No Operation Instruction
Load and Store R Register

Instructions
Exchange Jump Instructions
Read Program Address Instruction
6416 PP Instructions
Direct Address Mode Instructions
Indirect Address Mode Instructions
Indexed Direct Address Mode

Instructions
Central Read/Write Instructions
I/O Branch Instructions
I/O Test and Set Channel Flag

Instructions
I/O Branch Instructions
A Register Input/Output Instructions
Block Input/Output Instructions
Set Output Record Flag Instruction
Channel Function Instructions
Error Stop Instruction

PROGRAM EXECUTION

Control Statements
Job Statement
COMPASS Control Statement
I.GO Control Statement
Program Call Statement
7/8/9 Card
6/7/8/9 Card
USER Control Statement (NOS 1 Only)

Sample Decks

LISTING FORMAT

Page Beading

Header Information
Binary Controi Card Summary
Block Usage Summary
Entry Point List
External Symbol List

Octal and Source Statement Listing

Literals

Default Symbols

Asseabler Statistics

Error Directory

Symbolic Reference Table

8-52
8-53
8-54

9-1

9-1

9-2
9-7
9-9
9-10
9-11
9-11

9-12
9-12
9-13
9-14
9-15
9-15

9-16
9-17
9-19

9-20
9-21
9-22
9-22
9-23
9-24
9-25

10-1

10-1
10-1
10-2
10-6
10-6
10-7
10-7
10-7

10-8

11-1

11-1

11-1
11-1
11-3
11-4
11-4

11-5

11-7

11-8

11-8

11-9

11-12

xi

12.1

12.2

12.2.1
12.2.2

12.2.3

12.2.4
12.2.5

12.2.6

12.2.7

12.2.8

12.2.9

12.2.10
12.2.11
12.2.12
12.2.13
12.2.14
12.2.15
12.2.16

12.2.11

12.2.18
12.2.19
12.2.20
12.2.21

12.2.22
12.2.23
12.2.24
12.2.25
12.2.26

12.2.27
12.2.28
12.2.29
12.2.30

COMMON COMMON DECKS

Access to the Common Common Decks

Description of the Common Common
Decks

COMCARG - Process Arguments
COMCCDD - Convert Integer Constant

to Decimal Display Code
COMCCFD - Convert Constant to

FI0.3 Format
COMCCIO - Process I/O Operation
COMCCOD - Convert Constant to Octal

Display Code
COMCCPT - Extract Connents Field

from PREFIX Table
COMCDXB - Convert Display Code to

Binary
COMCMNS - Move Non-Overlapping

Bit String
COMCMOS - Move Overlapping Bit

String
COMCMTM - Managed Table Macros
COMCMTP - Managed Table Processors
COMCMVE - Move Block of Data
COMCRDC - Read Coded Line, C Format
COMCRDH - Read Coded Line, H Format
COMCRDO - Read One Word
COMCRDS - Read Coded Line to String

Buffer
COMCRDW - Read Words to Working

Buffer
COMCRSR - Restore All Registers
COMCSFN - Space Fill Name
COMCSRT - Set Record Type
COMCSST - Sort Table Using Shell

Sort
COMCSTF - Set Terminal File
COMCSVR - Save All Registers
COMCSYS - Process System Request
COMCUPC - Unpack Control Card
COMCWOD - Convert Word to Octal

Display Code
COMCWTC - Write Coded Line, C Format
COMCWTH - Write Coded Line, H Format
COMCWTO - Write One Word
COMCWTS - Write Coded Line from

12-1

12-1

12-3
12-3

12-4

12-4
12-5

12-5

12-6

12-6

12-7

12-7
12-8
12-9
12-13
12-13
12-14
12-15

12-16

12-16
12-17
12-18
12-18

12-18
12-20
12-20
12-21
12-22

12-23
12-23
12-23
12-24

String Buffer 12-25
12.2.31 COMCWTW - Write Words from Working

Buff er 12-25
12.2.32 COMCXJR - Restore All Registers with

a System XJR Call 12-26
12.2.33 COMCZTB - Convert All 00 Characters

12.3

12.3.1
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.3.8
12.3.9

xii

to Blanks 12-26

Macros That Call the Common Common
Decks

MESSAGE
MOVE
READC
READH
READO
READS
READW
RECALL
SYSTEM

12-27
12-28
12-29
12-29
12-30
12-30
12-30
12-31
12-31
12-32

12.3.10 WRITEC
12.3.11 WRITEH
12.3.12 WRITEO
12.3.13 WRITES
12.3.14 WRITEW

APPENDIXES

A Character Sets
B Assembly-Time I/O
C Binary Card Formats
D Hints on Using COMPASS
E Dayfile Messages
F Glossary

INDEX

FIGURES

2-1 COMPASS Coding Form
3-1 Relocatable Program Structure
3-2 Absolute Program Structure
3-3 Overlay Hierarchy
3-4 !DENT-Type Overlay Structure
3-5 SEGMENT-Type Overlay Structure
3-6 SEG Partial Binary
3-7 !DENT Partial Binary Records
8-1 CPU 15-Bit Instruction Format
8-2 CPU 30-Bit Instruction Format
8-3 Arrangements of Instructions in a 60-Bit

CPU Word
9-1 PP 12-Bit Instruction Format
9-2 PP 24-Bit Instruction Format
9-3 Central Memory Access Instruction

Address Relocation (Models 810, 815,
825, 830, 835, 845, 855, 865, and
875)

11-1 Format of Octal and Source Statement
Listing

11-2 Format of Symbolic Reference Table

TABLES

8-1 CYBER 70 Model 74 and 6000/7600

12-32
12-33
12-33
12-33
12-34

A-1
B-1
C-1
D-1
E-1
F-1

2-3
3-6
3-7
3-9
3-11
3-13
3-14
3-15
8-1
8-1

8-2
9-1
9-2

9-2

11-5
11-13

Functional Units 8-3
8-2 CYBER 170 Model 175, 176, 740, 750, 760,

865, and 875; CYBER 70 Model 76; and
7600 Functional Units 8-6

8-3 CPU Instruction/Machine Model

8-4

9-1

9-2

11-1
11-2
12-1
12-2
12-3

Correspondence
CPU Instruction/Functional Unit

Correspondence
Peripheral Processor Instruction

Designators
PP Instruction/Machine Model

Correspondence
Fatal Errors
Informative Messages
Summary of Common Common Decks
Type Codes Returned by COMCSRT
Macros That Call Common Common Decks

8-8

8-10

9-3

9-4
11-9.
11-12
12-2
12-19
12-27

60492600 L

I

INTRODUCTION

This manual describes the features of the COMPASS Version 3 assembly language processor and the
principles, methods, rules, and techniques of coding a COMPASS program.

The user is assumed to be familiar with a Control Data computer and operating system, and is assumed to
be familiar with assemblers in general

Readers with no previous experience with the COMPASS assembler are encouraged to direct their initial
attention to the following sections of the manual:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 8 or 9

Chapter 10

Appendix D

Introduction

L&.'lgtl8ge Structure

Program Structure, sections 3.1 through 3.3

Pseudo Instructions, sections 4.1 and 4.2

CPU or PP Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires

Program Execution

Hints on Using COMPASS (example program)

COMPASS, like other assemblers, is machine- and operating system-dependent. The user, therefore, should
be aware of restrictions imposed on COMPASS by the programming environment. Specifically, the user
should note:

Differences between CPU and PP program environments

Features of COMP ASS not supported by a particular operating system

Machine and operating system limitations are outlined in the preface of this manual. The applicability of
instruction sets is shown in the .instruction indexes (inside front and back covers), and is addressed as
necessary throughout the manual.

A COMPASS program consists of one or more subprograms. From source language subprograms, the
assembler generates binary output acceptable for loading and execution. The programmer can divide a
subprogram, whether it is assembled as absolute or relocatable, into areas called blocks. Blocks are
assembled independently. Thus, they can be loaded and executed independently or linked by the system
loader preparatory to execution of the program. This capability provides much flexibility in combining,
segmenting, overlaying, and ordering blocks for execution.

Subprogram blocks consist of two types of source statements:

Symbolic machine instructions

Pseudo instructions

Symbolic machine instructions are the counterparts of the binary machine instructions. They provide a
means of expressing symbolically the data manipulation functions of the machine. Each symbolic
instruction typically generates one machine instruction.

60492600 G 1-1

1

Pseudo instructions do not have a one-to-one relationship with binary machine instructions. They are used,
instead, to control aspects of the assembly process, such as:

Storage allocation

Symbol definition

Subprogram linkage

Listing options

Automatic generation of predefined code sequences (macros)

From CPU source language subprograms, COMPASS generates absolute or relocatable binary output
acceptable for loading and execution. From PPU source language subprograms, COMPASS generates
absolute binary output to be loaded and executed on a peripheral processor unit. The operating system
allows only specially privileged jobs to access a peripheral processor unit.

Features inherent to COMP ASS include:

1-2

Free-field source
statement format

Control of local
and common blocks

Preloaded data

Data notation

Address arithmetic

Symbol equation and
redefinition

Symbol qualification

Binary control

Selective assembly of
code sequences

Mode control

Size of source statement fields is largely controlled by user.

Programmer and system can designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas can be
defined in small core memory (CM or SCM) or extended or large core
memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the source
program.

Data can be designated in integer, floating-point, and character string
notation. It can be introduced into the program as a data item, a constant, or
a literal.

Addresses can be specified making extensive use of constants, symbolic
addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameterization
of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within a
qualified sequence to render the symbol unique to the sequence. An
unqualified symbol is global and can be referred to from within any sequence
without qualification.

The programmer can specify whether binary output is to be absolute or
relocatable. Absolute code can be generated for any PPU or CPU.
Relocatable code can be generated for any CPU. Binary can be written as
overlays or as partial records.

Assembly-time tests allow the user to select or alter code sequences.

Ability to specify the base to be used for numeric notation not explicitly
defined as octal or decimal, and to specify the code conversion to be applied
to character data as either display code, ASCII, internal BCD, or
external BCD.

60492600 G

Listing control

Micro coding

Macro coding

Operation code table

Operation code
definition

Code repetition

Remote assembly

Library routine calls

Diagnostics

1.1 CONFIGURATION

Assembly-time control of list content.

Substitution of sequences of characters defined in the program wnenever the
micro name is referenced. Several micros are predefine<] by the system for
user convenience.

Assembly of sequences of instructions defined in the program or on the
system library whenever the macro name is referenced. Macro definitions
can be redefined or purged from the operation code table.

The programmer can specify or respecify the syntax of a CPU or PPU
instruction. The assembler generates an entry in the operation code table for
the instruction. No macro or opdef definition is associated with the entry.

Assembly of sequences of instructions defined in the program or on the
system library whenever an operation code of the specified syntax is
referenced.

Sequences of code can be repeated during assembly or at load time.

Defers assembly of defined coding sequence until later in the assembly.

Routines can be called from the system library.

Diagnostics for source program errors are included on output listing.

The hardware requirements for executing COMPASS on a CPU are the minimum required for the operating
system.

1.2 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control statement (chapter 10) or FORTRAN
compiler upon encountering a COMPASS IDENT statement in the source input file. Parameters on the
control statement specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as a
CPU program.

The operating system allocates the input/output resources as needed and performs all input/output required
during the assemt>ly.

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first pass, it
reads each source language instruction, expands and edits called sequences as needed, interprets the
operation code, and assigns storage.

The function of the second pass is to assign block origins, locate Ii terals, fill in all valid symbol values and
produce the assembly listing and binary output. Finally, it prepares the symbolic reference table and
reinitializes itself preparatory to assembling the next subprogram.

COMPASS alters its field length dynamically, thus ensuring that central memory requirements for tables
used by the assembler are satisfied. The assembler requests additional central memory as needed up to a
threshold field length. (The threshold value is determined by the installation.) When the threshold field
length is reached, the intermediate file and cross-references are transferred to the system mass storage
device. If additional core is needed, the assembler continues to request central memory up to the
maximum available to the job. (COMPASS may use any ECS/LCM space assigned to the job for table
space.) If core requirements are still not satisfied, COMPASS aborts and issues a diagnostic message.

60492600 G 1-3

All nested processing of macros and similar definitions is handled in a single recursive push-down stack.
COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a depth of 400.

1.3 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control statement (for example, LGO) can
be used to call for loading and execution of a CPU object program from the load-and-go file. The loader
links the newly assembled subprogram to any previously assembled subprograms and subroutines ref erred to
by the new program and to programs on any other files specified by the programmer. After all
subprograms are loaded and linked, the operating system begins program execution at a location specified
by one of the subprograms. Data for the object program can be on some programmer-specified file.
Normally, this loading and execution does not take place if the COMPASS assembler detects fatal errors.

1.4 INTERACTIVE PROGRAM DEBUGGING

A COMPASS program that assembles without fatal errors can be executed under control of the CYBER
Interactive Debug (CID) software. CID allows the programmer to correct errors in program logic from a
terminal. Using CID, the COMPASS programmer can:

Suspend program execution at a specific location or upon occurrence of a specific trap condition, such
as execution of a return jump instruction

Alter location content during program suspension

Resume execution at a specified location or at the location where suspension occurred

A complete description of CID features and use is given in the CYBER Interactive Debug Reference
Manual listed in the preface.

1-4 60492600 G

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of a
location field, an operation field, a variable field, and a comments field. Each field is terminated by one or
more blank characters. However, a blank embedded in a character data item, parenthesized macro
parameter, or comments field does not terminate a field. The size of the variable field is restricted by the
maximum statement size only. Statement format is essentially free field.

When punched on cards, each card is considered a line. A single statement may be composed of as many as
ten lines. Information beyond column 72 is not interpreted by COMP ASS but does appear on the assembly
listing. Thus, columr.s 73 tr.rough 80 can be used for additional comments or sequencing. Colum!l.s 81

' through 90 are used for sequencing by library maintenance programs; they are normally not used by the
programmer. A line that contains two or more consecutive colons may be read and printed as two lines
because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN

The contents of column one designate the type of line, as follows:

,(comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the begiming of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional It may contain a symbol or name according to the requirements of the operation field, or a plus
sign(+) or a minus sign(-). (See Block Control Counters, chapter 3.)

2.1 .3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters between
the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60492600 H 2-1

Pseudo instruction mnemonic operation code

Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists of
one or more subfields separated by commas. The variable field begins with the first nonblenk character
following the operation field and is terminated by one ore more blanks. It is blank if there are no nonblank
characters between the operation field and column 30.

A variable sti>field contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely def"med for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column can be changed
through the COL pseudo instruction (chapter 4).

2. 1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with* is not counted in line counts for IF-skipping (Section 4.9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma in
column one and continuing the field in column two. A maximum of nine continuation lines is permitted for
a statement. The break between lines need not coincide with a field or subfield separator; even a symbol
can be split between two lines. Continuation lines beyond the ninth, and continuation lines following a
terminated statement are considered comment lines.

2-2 60492600 A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column Contents

1 Blank, asterisk,or comma

2-9 Location field entry or plus~ or minus left justified

10 Blank

Operation field entry left justified

17

18-29

30

Blank

Variable field entry left justified

Beginning of comments

All examples in this manuai abide by this convention.

- COMPASS CODING FORM
1 mE -
J DATE }PAGE Of

LOCATION joPERATION VARIABLE COMMENTS IDENT
"• 1• n n ;i.o 1t 111o 11··~1· 1•~11-n w., • 1•:::::i:•.,. ,,:::;:: "':" •' !L.!!......!!..!.!.L.ll.~ ,!.....!!.....,. II!-•·''-•' . .!"! , 5 ~ .. _.,_._.l ''-~.'.' '•.._··-~

i-r-..___._,_~__.___.__--+-~~--1---- •.. - .••. - -- ·----·- -·- - - ·-- - - - ~ ..•. - ... - . - .. .

~......_.__.__._~~----·" . ----1----------·---·-··"

~~µ__._ __ -~: ~-~+.~~·-==~= ~: -: :··: ~::::::: :·::::::
~~-'-'--'-'----+-...........C-'--'-~--'----·-·---~-LI__~- ••• -~ -· ···-····•·•·· • •.

----Tl....L......L.I I~-----~--~---·•··•·•••• • •·• • • • •

t-+-'--'--' ~...L.-.-L....L..JL-.... ____ --_~ -=+==~~---=~_:-~ ~ :: •.•.•... :_ --.. -..... -·
____ ..i.._.._~- -~-- --· .• - •· .• -- - . -- ..

I
........L.......-.-~-~~-~---- -~~----·· - ··- ..• - - ~ - . . • --L- I

H-'--'-'_,. ~~J.....LJ~..._,_........._,ytb·~..1....J.c....L...C...L...L...L...J.......t.....L "' L. '.i LL.J LL - . . . - - L •••• ··- ~~- .. -: I
l ___ __._...__,. ___ --L.......__ •• - ..•...•.••••..• -1 _..__ -... I
l '---'---......L.......~--.........__._~.......c......L~--- • ..; L.. - ~ - ~- •.••• -1

;--;--''~'~'~'-'-'-'-'~' .c-;' !-''---'-'~'~'-'-'-'-'~' ''--''~·....!.... .T. ~----~---~- -...... - . -.. ·-. - . I
U~- L ± : . ~~-~ ~=-=-..=~:: ~:: ~~-~-:·:~:~•I~:-:~~:·: II

1-T-'~~~~c.....L...L......._,_....._..._..........._.-L__ 1 --~---.-----...__....__.__.___~-...........-~--- -....... ~__.__....__J.___J,____.__ _~--_..._ - ~ - - -

I . .1....... _~_ _.......__~ _ _J,__..J_~. - ,__,;. ..l..-1..__,!._._.J.._..__:.____._ _

1-+-'~.............._-"--'-....................... ~~.....L...L-L..- f ~ ···~-- . ~:~ ~~-~~ ~~~~~ ~ ~-: :~ : ~ ~~- ~-~: ~~~ ~ . ::~-~-~ ... _ l
......-~~~-'-+-'-'-'-'--'-~.J._J_L...L.J.~...L..L~- j............._~..L..J.__ i . l .l......L-..-.-__...__._-'-J..~ ~~...i_J_.;. __ 4~1.. •• -~- -'--~-- ._J..__.__fl

1 .J-....L.....L.J.... • ...J. - J. ~ L i L.l . .L ·- • ...:. : .:.. • • ,

,.,., •• H 0 < M 0 • 01. tt'.W" U U W H .+..+#.+.+;,+,~~.~~:.:.~ .. ~- ~· .. ~L~~.- .. :,.~~~J
AA2917 UV. I n

, I •• II II u .. u ll n n .. 'H ,. 11'

Figure 2-1. COMPASS Coding Form

60492600 A

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are
saved for editing and interpretatim mn the definition is referenced or expanded. ENDD and ENDM
are part of the definition they terminate and are not edited. Statements within the range of a conditional
(IF type) pseudo instruction are edited even when they are skipped. COMPASS performs two types of
editing: concatenation, and micro substitution.

2.2. l CONCATENATION

COMPASS examines the statement for the concatenation character r- and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r- is superfluous and is removed by editing before the definition is interpreted.

Each removal of r- shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (i) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last statement
read is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a nonfatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e. , the two micro marks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two or more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2.3 NAMES

A name is a sequence of characters that identifies one of the following:

2-4

Subprogram or overlay

Block

()0~92600 J)

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)

IF sequence

Micro

A comma or a blank terminates a name. Concatenation marks and pairs or micro marks are removed
before the name is scanned (see Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin with a
letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by the operating
system could restrict the use of certain characters in names. There is no restriction on the first character
for a PPU subprogram or overlay name. For a CYBER 70 Model 76 or 7600 PPU assembly, the name can be
seven characters, but for a CYBER 180 Series, a CYBER 170 Series, a CYBER 70 Model 72, 73, 74, or 6000 I
Series PPU assembly it is limited to three characters maximum. In all cases, the last character of a
subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or attributes
and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or = or: or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters:

+ - * I blank , r or /\

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters in
symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional restrictions
(see Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (see Statement
Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot normally be An,
Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.x, or X.x, because x is
assumed to be a data item by the assembler. However, symbols resembling register designators can be used
if each use of the symbol is prefixed by =S or =X. Register designators are described further under CPU
registers.

The process of associating a symbol with a value and attributes is known as symbol definition. This can
occur in five major ways.

60492600 L 2-5

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo instructions is
defined as an address havi~ the current value of the location counter (chapter 3) and having an
attribute defined as follows:

Absolute for the absolute block

Common for labeled or blank common blocks (relocatable assemblies only)

Relocatable for local blocks other than absolute during pass one

Absolute for local blocks duri~ pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (see Symbol Definition, chapter 4)
is defined as havi~ the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a symbol.
Unless a symbol is redefinable, a second attempt to define it with a different value produces a
duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as external
in the current subprogram or is defined in relation to a symbol declared as external. In either case it
has the attribute of external. Unlike a systems symbol, the true value definition is not known to the
current subprogram.

4. Definitions of systems symbols that take place outside of the current program can be carried over to
the current program through the SST pseudo instruction. COMPASS uses the true definitions but
assigns the additional attribute of systems symbol.

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =Sand the symbol is
not otherwise defined in the subprogram. This feature is further described under Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:

Legal Symbols

p
R3
PROGRAM

2 . .4.1 LINKAGE SYMBOLS

filegal Symbols

SA
ABCEDEFGlll
ABE+15
=.11

First character numeric
Exceeds eight characters
Contains plus sign
First character equal sign

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types of
linkage symbols are external symbols and entry point symbols. An external or entry point symbol can be a
maximum of seven characters, the first character must be a letter (A-Z), and the last character must not
be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the current
subprogram can be declared as an external symbol in the current subprogram. Any symbol declared as an
entry point in the current subprogram can be declared as an external symbol in some other subprogram.
The symbol has a zero value and an attribute of external. An external symbol can be declared either
through the EXT pseudo instruction or through default (a reference to the symbol is preceded by =X or =Y;
see Default Symbols).

2-6 60492600 A

An external symbol can be strong or weak. A strong external symbol reference causes the loader to try to
find and load a subprogram having a matching entry point symbol. Failure of the loader to satisfy a strong
external in this way is flagged as a non-fatal error by the loader. A weak external does not require the
loader to search for a satisfying subprogram; however if one is loaded for some other reason, the loader
associates the matching linkage symbols in the usual way. At the end of loading, the existence of
unsatisfied weak external symbol references is not an error.

External symbols can be defined in the subprogram relative to any external symbol declared in an. EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value and
attributes of an expression to a symbol. If the value of the expression reduces to an external symbol+ an
integer, the location field symbol is defined as having an integer value and external attribute. Entry point
symbols and external symbols are not qualified (see Qualified Symbols).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S, =X, or =Y and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as a strong or weak external symbol, respectively, at the end
of assembly. The =X and =Y forms are defined by default in relocatable assemblies only.

=Ssymbol

=Xsymbol

=Ysymbol

If symbol is not defined, COMP ASS assigns an address at the end of the zero block.
All subsequent references to the symbol, whether preceded by =Sor not, are to the
location of the word. A default symbol cannot be used where a previously defined
symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it again
but uses the programmer definition.

This option permits a programmer to define his symbols in a subroutine or link to
them in another subprogram. If the programmer defines the symbol, the assembler
uses the programmed definition. If the programmer does not define the symbol, the
assembler assumes that the symbol is a strong external as though declared in an EXT
pseudo instruction. A symbol prefixed by =X must conform to the requirements for
external symbols.

This option permits a programmer to define symbols in a subroutine or to link to them
in another subprogram that need not be loaded. If the programmer defines the
symbol, the assembler uses the programmed definition. If the programmer does not
define the symbol and if it is not referenced elsewhere with an =X or =S prefix, or
declared in an EXT pseudo instruction, the assembler assumes that the symbol is a
weak external. A symbol prefixed by =Y must conform to the requirements for
external symbols.

The system does not define a default symbol and issues an error flag if a symbol is prefixed both by =S and
=X, or is prefixed by =X or =Y, and is not defined conventionally in an absolute assembly. Default symbols
a.re qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

60492600 c 2-7

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (see QUAL pseudo instruction,
chapter 4) can be referred to outside of the qualifier sequence in which it was defined through:

/qualifier /symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
tmqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier is in
effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified symbol
can be referenced as II symbol

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. The registers are described
more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence of
such a symbol is prefixed by =S, =X, or =Y (see Default Symbols). However, a waming message is issued
when such symbols are defined. The prefix cannot be used in the location field of machine instructions and
symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT, and SST
pseudo instructions.

Register Type

Address

Index

Operand

Designator

An or A.n

Bn or B.n

Xn or X.n

For the forms An, Bn, or Xn, n is a single digit from O to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

For the forms A.n, B.n, X.n, n can be a symbol or an integer •. If the value of nor the value of the symbol
exceeds 7, the assembler truncates it to the least significant 3 bits and issues a waming flag.

Registers designated by Al through A5 or A.1 through A.5 are used for addressing to obtain information
from central memory. Registers designated by AS, A7, A.6, or A.7 are used for addressing to place
information into central memory.

2-8 60492600 H

COMP ASS does not recognize registers in PP assemblies; there, the designators are acceptable as ordinary
symbols.

Examples:

Al

AlO

A.1

A.NUM

A.10

Designates address register 1

Interpreted as a symbol, not a register

Designates address register 1

If the value of NUM is 6, it designates address register 6

Designates address register 2; however, it produces a warning flag because the two was
derived from the truncation of 12, the octal value for 10.

The following produce equivalent results. A SET pseudo instruction (chapter 4) defines SUM and SUB as
absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same result as if
the value had been used directly. In this example, the address of ALPHA is 001000.

60492600 H 2-9

Code Generated

6032001000

~

2
6032001000

I

I

..

LOCATION

LOCATION

SUH
SL~

OPERATION

II

~83

OPERATION

II

SET
SET
SB.SUH

VARIABLE COMMENTS

18 1Jo

A2+ALPHA 1

VARIABLE COMMENTS

18 '30
t

3 I
2 I

A. SUR+ ALPHA I

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as reference to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a value
specified by the element in the expression. The control counters are discussed further in chapter 3.

Designator

*or *L

*O

$

*P

*F

Significance

The assembler uses the value of the location counter for the block in use.
The element is relocatable unless the counter in use is for the absolute block.

The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

The assembler uses one less than the absolute value of the position counter
for the block in use.

The assembler uses the absolute value of the position counter for the block
in use.

The assembler uses an absolute value obtained as follows:

0 COMPASS was called by a COMPASS control statement

1 COMPASS was cal1ed by the RUN compiler (no longer supported)

2 COMPASS was called by the FTN4 compiler

3 COMP ASS was called by the FTN5 compiler

*F can be redefined by the COMPASS control statement F parameter
(chapter 10).

These designators are inherent to COMPASS and cannot be altered by the programmer during an assembly.

2-10 60492600 H

Examples:

1
1

1 lOWION

I OPERA iiON I VARIABLE COMMENTS

i'~p 1 1:+1+~7 !30
I

II 1 · t I
• I I I Ii~ lx3,•L .. 1

I • I
I l I .
I I LOC 1•0-~E'>+i>PR

I
i •

. I

I
vs:' I) •p/

I .
l~FJ 1$/0,1/1

I iffQ I
i I

j•F,?.

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values, line
counts, control counter values, text for printing out messages, characters for forming symbols, etc.

The two types of data notation are character and numeric. The assembler allows the user to introduce data
in the program in three basic ways:

As a data item

As a constant in an expression

As a literal

2.7.1. DATA ITEMS

Character and numeric data items can be used in subfields of the DATA and LIT pseudo instructions or as
specifications of field values on VFD pseudo instructions. I

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal, hexadecimal,
or character notation. It resembles a data item but is restricted by its use as an expression element in two
ways:

60492600 K 2-11

1. The first character must be numeric, prohibiting the delimited type of character string (see Character
Data Notation) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum of 60 bits
thus prdlibiting double precision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction or
as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a data
item in a DATA or a LIT pseudo instruction. The primary difference is that the literal is prefixed with an
equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of the
literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a dmcussion of the literals block, see chapter 3.)

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store the
data in the literals block using as many words as are required to hold the data. If the binary pattem of the
prefixed type of literal or of all the literals in a LIT declared sequence matches the binary pattern of words
previously entered in the litenils block, an entry is not generated for the data. This process eliminates
duplication of read-only data.

The LIT pseudo imtruction permits symbols to be associated with literals block entries. Such entries can
be referenced symbolically or through use of a prefixed literal. However, to preseve the integrity of the
literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (see Listing
Control, chapter 4).

Example:

2-12

In the following example, using CPU imtructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the
statement at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101
and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block and
does not cause new entries to be assembled.

60492600 H

Location Code Generated I ! LOCATION I OPERATION VARIABLE

I 11 111 18

100 6120005555 +
I I~:~ ,-1

613000555c; + =1 R.A
101 6140005556 + I j=1Pf1 I I SB4

5SCS5 l
L LIT l 1';? I

6120005555 + I I $02 IL
102 6130005556 + ! I , SB3 I L+1

I l

CONHNl OF LIHRAL S et oo:.

oo?55? oooooooroonaoo1oo~n1
oo?556 ooooooocooo10000000?

a
B

COMM~NTS

30

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in the
literals block and causes entries to be generated in the literals block:

Location Code Generated I I LOCATION I OPERATIOr-~ I VARIABLE

11 18

LIT

CONlfNl CF LITfR~lS ELCCK.
oon.oooooonooooooooo1
nooooonnoooooonoooo2
ooooooonooonoooonoo1
ooooooonooon~o~oooo3
ooooooonooon~oooooo4
o~ooooooooooooryooon?.

a
B
A
r
0
B

COMMENTS

T

I
I

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added to the
block. Thus, if the following LIT sequence had been used in place of the LIT 1,3,lRD,2, the first two words
of the sequence would match the last two words of the literals block so that only two additional words
would be required to complete the sequence.

Location Code Generated LOCATION

I

CONTE~l CF LITERALS BLOCK.

005r;c;.;
00555~
ooc;sc;1
0 015%0

onnuooor.rooononoono1
ooooooonoonoooooooo?
ooo~ooooooo~oonnooo~
oooooonnononon.oonoo4

2.7.4 CHARACTER DATA NOTATION

A
R
r
'1

OPERATION VARIABLE COMMENTS

11 18 T 30

LIT t,?,~,'4
1

I

Character data strings are converted to the code in use at the time the string is evaluated (see CODE
pseudo instruction, chapter 4), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

60492600 H 2-13

I

Fermat:

Data Item

Constant t

Literalt

I sign I n j type j string j

or

I sign I type I d I string I d I
I n I type I string I
I = I sign I nltype I string I

or

Example

-3RABC

-R*ABC*

3RABC

=-3RABC

=-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element operator.

+or omitted The value is positive

The complemented (negative) value is formed

n Signifies how the string is determined:

omitted

0

n

The string is delimited by d. n cannot be omitted for a constant.

For data item or literal, the string consists of all characters following type
to:

blank or,

For a constant, string consists of all characters following type to:

+ - * I blank , or /\

The /\ (caret) is in the CDC character set. In the ASCII character set, use
the &: (ampersand).

For a data item or literal, n is an integer count of the number of characters
in the string not counting guaranteed zeros. It is limited only by statement
size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right justified
constant if the most significant bit exceeds the field. Truncated zeros do
not cause an error in this case. A truncation error is flagged for a left
justified constant if the least significant bit positions are truncated, even if
they are zero.

The string consists of then characters following type.

Regardless of base, COMPASS assumes that n is decimal.

tExpression element

2-14 60492600 J

type

d

string

60492600 H

Character string justification. The characters formed by the data item or constant are right
or left justified into the destination field as follows:

~ Significance

C Left justified with zero fill. For data item or literal, 12 zero bits are
guaranteed at the end of the string even if another word must be
allocated. For a constant, C is the same as L; the 12 zero bits are not
guaranteed.

H Left justified with blank fill

A Right justified with bhu1k fill

R Right justified with zero fill

L Left justified with zero fill

Z Left justified with zero fill. For data item or literal, six zero bits are
guaranteed at the end of the string even if another word must be
allocated. For a constant, Z is the same as L; the six zero bits are not
guaranteed.

A delimiting character used only when n is omitted. The characters between the first
occurrence of d and the second occurrence of d form the string. d can be any character other
than r+or 1.

Characters from one of the COMPASS character sets (appendix A), except for those
characters that act as delimiters (seen and d), the concatenation character (~), and pairs of
micro marks (#).

Concatenation marks and pairs of micro marks are removed by editing before a string is
examined. A single micro mark can be used in a string.

An empty or omitted character string is defined under one of the following conditions:

n is 0 and type is immediately followed by a delimiter, for example, OL.

n is omitted and the two delimiting characters are adjacent, for example, H+ +.

Omission of a string in a DATA pseudo instruction is legal and does not cause generation of a
data word.

For a constant, an omission of the string is valid and has a zero value.

An omitted string in a LIT pseudo instruction is legal and does not cause generation of a
literal for that item; however, the LIT must contain at least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces an error.

It is not possible to generate empty strings using types C, Z, R, or A.

2-15

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code generated
by DATA are printed only if the Dor G list option is selected.

Data Items

Location Code Generated

144 052222172?551116?520
145 0421;sonoooooooonoon
146 5555,5;5555555;55555

Location

1100
1101
1102

Constants

Location

Code Generated

Code Generated

4722 7130000047
4723 7140000060

5110031117
4724 b2&0530000

1111240155
4725 0155555531

1725242025
4726 2400000001

0700000000

I

I

I

LOCATION OPERATION

II

DAU

LOCATION OPERATION

II

PPU .
OITA

LOCATION OPERATION

II

SX3
TAG !:IX4

SA1
SBo
VFU

VFD

I VFJ

VARIABLE COMMENTS

18 T 30

L•ER~ut< IN POQ •,L •• ,lOH

VARIABLE COMMENTS

18 l Jo
I

I

I

OLOUTPUT
I
I

VARIABLE COMMENTS

18 TJo

1~·
T

I
lR,.. + 1 I
JRCIO I
X0+1Li I
30/4H!Uf A,6/1RA,24/0AX+1

I
42/0LOUTPUT,18/1

I
1 5 /a L G ' 15 / a Lj

Note that the character constant in the expression in the second line consists of a decimal point {57 in
display code) to which 01 is added before the value is stored. Similarly, in the third field of the first VFD,
1 is added to the display code representation of X right justified with blank fill {55555530) so that 55555531
is generated.

2-16 60492600 H

Literals

Location Code Generated

100003765
100rJ03770

2652 5110003772 ~

I I LOCATION I OPERATION I VARIABLE COMMENTS

'

LIT ,~~f--•/(A,6L)~= ,.,1':'1,0L
LIT ?QHLITfRAL~

5120003?'?4

I I I . . I I I
I I

l 'A1 1=~CTENCHnPrrs
~A/ -= Y +I p:: f . JU"' T T FY ill ITH f1 LA NI< S +
1~~1 l=1Lo- - ---2653 5130003767 +

CONlfNT OF LITE~aLS !L~C~.

00376? ooonnooooo4s46475os1 +-•/ (
0 0376Fl 525~?~555nS700rJOOOOO) ~= ' .
001767 330000000~0Q10000000 0
0 03771) 1~11?~052?0114~~c;555 LIH"QALc::;
001771 555?5555555?55~555~5

OOJ772 2405100~1no122032423 TfNCHARCTS
00~1n ooonoooooooooo~ooooo

003774 14050624551225232411 LEn JUSTI
00~775 063155?711?~10550214 FV WI TH PL
0 0~77& 0110132~5~555555555? ANI<~

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty string
and does not produce an entry. The second LIT pseudo instruction generates one two-word entry. The
expressions in the variable fields of the SA!, SA2, and SA3 instructions each consist of a literal element.
The character strings in the SA! and SA2 literals do not duplicate former literals block entries so
COMPASS generates new entri~. However, since SA3 references an existing entry, COMPASS places the
address of the entry in the address field of the instruction.

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:

Data Item

Constant

Literal

60492600 H

I sign, pre radix I value l modifiers]

I value I modifiers j

j =J sign I pre radix J value I modifiers j

2-17

sign

pre radix

value

modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+or omitted The value is positive

The complemented (negative) value is formed

Optional for data items and literals; cannot be used for constants. The pre radix
indicates the notation used for the value.

omitted

Bor 0

D

Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.

Octal notation

Decimal notation

A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1. 15 x 1018 (fixed point) or 7 o 9 x 1028 (floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error
flag.

post radix Indicates the notation used for the value. See preraclix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

decimal exponent Defines a power of 10 scale factor

2-18

E+n or En or E Single precision

EE+n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be O. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to n:.ultiply the value by 10 decimal raised
to the n power.

60492600 H

binary scale

binary point
position

Defines a power of two scale factor and is specified as follows:

S+n s

When the sign is plus or is omitted, the scale factor (n) is positive. When n
is omitted, it is assumed to be O. The value of n cannot eKceed 32767 and
is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the n
power.

Applies to floating point values only and is specified as follows:

P+n or Pn or P

When the sign is + or omitted, n indicates the number of bit positions the
point is to be shifted to the left of bit O. When the sign is-, n indicates the
number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit.

The exponent is adjusted to a value of - (~n)

For example, a value with P-6 will have a biased exponent of 20068• a
value with PlO will have an exponent of 1765g. '

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or dotble precision number, the assembler
generates an overflow or underflow error.

Although scale factors can exceed valid ranges, the ranges for numbers are restricted by
the hardware.

Example:

The number 1.0E400S-1200 yields a number that is approximately 5.8 x 1038 and is
in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96 bits for
dotble precision and to 48 bits for single precision floating point numbers and to 60 bits for
integers.

The order in which the assembler acts on the modifiers, regardless of the sequence in which
they are specified, is:

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

60492600 K 2-19

CPU Numeric Data Items

Location Code Generated

5M O 7-.17777 77777777 7774 2
50~1 17!3~0JOOtOCOCOCOOOO
5002 1~41~0000COOO,JCOOOC
5003 2310~0JOJCOOOCOC0012
50~4 1~7~00000G0000000002
5005 l 71 '546517t763554't26't
5 oo,.. 1 "''?on 31ltb3l 't631463H
5007 7??77777777777777777
500P. 001o~oooocooococoooo

CPU Numeric Constants

Location Code Generated

'5 01 z
5112 ?036"

5001 +
555

lt376C
715C4COOOO

CPU Numeric Literals

Location Code Generated

'H 1 3 1; 15 00 0 5 151 +
5130005152 +

5153
5155
5156
5157

I

I

I

I

LOCATION OPERATION

11

POrL DATA
NUf'i OAH

. DAU
DAU
DATA
OAU

LOCATION OP'UATION

II

ALPfof.A eou
VAL EOU

usz·
LX3
"X7
SX5

LOCATION OPERATION

11

SA5
SA3

ABlE l IT
LIT
LIT
LIT

CONTENT OF lITEPAlS BLOCK.

no51'H
005152
OO~H53
00'5154
IJOHl55
OO'Slt;6
'10?157
0051nfl
0051H

•2-20

~004b7550C023~000C04
1..,~a"31"63146 3146315
l723500COOOCOOOOOOOO
1~43000COOOOOOOOOOOC
17?00314~3146314631't
77?77777777777777754
1"'15H1517676355'9426'9
17777777777777777777
lOOOOOOCOOOCOOOOOCOO

POA 81 0
OP8ll ll La M
OS/
NB
0 PC LS LS l S l
;;;;;u;;•
0 .,_ ,..,., 2 ·7~
;;;;;;;;;;

-
VARIABLE COMMENTS

lB T3o

-29
T

l.Cffl
I

I
l.CE+lPO I 3. ZPlS-5 fl
o.c151F.+01 I
O.lP47,-f,OEES

I

VARIABlE COMMENTS

IB 130 --- T POOL +1
I

5558 I

1001\ I
-l'tB !
lt8
lS17 I

VARIABLE COMMENTS

lB T 30

•200467550002340000048
•lel I
le CE fl I o.lPH
-019 I
O.Ol~lE+Cl1-~tOEES

60492600 L

Examples of numeric data (assume default radix is decimal):

PP Data Items

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

300
301
302
303
304

PP Constants

Location

31JS
3!J6
31)1

310

PP LiteraJs

Location

311
313
31c;

1103
1101t
uns;

60492600 H

0005
7766
0013
0030
0002

Code Generated

oono
Qijii

1+41.~

7777

Code Generated

2000 1103
2100 1104
2000 1105

31
101

I

I
I I

I

I

I I

11

LOCATION

I I ft. Pf'

I j Nl~
I -

LOCATION

I

11

I

I

I

11

!PPU

1 • ,.
lo AT A

OPERATION

II

ro"-1

r .. O!
=

OPERATION

II

lOC
AOC
lOC

CONTENT OF LITERALS BLOC~.

ont2
7776
7777

J
••••••••• 1 . ' ' '

•• ' '

I

18 T 30

I

l
•

I
s,-qo,+B13,14BS1,Z48~-1

I

VARIABLE

18

IJ t + 1 1

- "t < ' 3 4

01 '1 !.
1777

VARIABLE

18

=t f}Q

=-1
=7777

COMMENTS

T 30

1
I
I

COMMENTS

130
T
T

I

2-21

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in single
precision.

Formats:

Data Item sign O preradix value modifiers

Constant

Literal = sign 0 preradix value modifiers

=
sign

0

preradix

value

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+or omitted Value is positive.

Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for constants, so the
preradix will not be taken as the first character of a symbol

Must be present to indicate that a hexadecimal value follows. The preradix character is =
or # depending on the printer used.

A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is either a
decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9 and the letters A-F
represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

modifiers The binary scale (S) modifier is optional and has the same form and meaning as for octal
and decimal data (see Numeric Data Notation).

The binary point position (P) modifier is permitted but ignored, since it does not apply to
integer values.

Examples of hexadecimal data:

Location Code Generated

2-22

0 00000000000004435274
1 77777777777777777777
2 77777777777775252525
3 00000000000110640000
4 00000000000053012566
5 7130000006 +

6 77777777777776671353
I

LOCATION

l

I
x
HEX
CONTE
; ; ; ; ;

OPERATI03~-ARl.ABLE COMMENlS -

--11-- is ho -----

----=====~- --------i===----: I DATA i :=123ABC ,-=:,,-O::AAAAA,=:1234512

CON O::A01576
SX3 1 =-::1234552

NT Of LITERALS BLOCK.
;1AK$

60492600 H

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a combination oi
one or more terms. Each term consists of one or more elements joined by operators. A comma or a blank
terminates the expression.

An expression element can be a:

Symbol
Numeric or character constant
Special element

Examples of elements:

ALPHA
$
*P

A.7
X3
77BS3

3HABC
=lOHOUTPUT

Register designator (CPU only)
Literal

A term can be a single element or two or more elements joined by the following element operators:

*
I

Multiplication
Division

An expression can be a single term or two or more terms joined by the fallowing term operators:

+ Addition
Subtraction

i\ Exclusive or

The exclusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in the ASCII
character set.

Rules:

1. If the last element of a term is omitted, COMP ASS provides an element of zero. For example, if
ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first asterisk is
interpreted as an element, the second asterisk is interpreted as an operator, and the blank is
interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is a
relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.

5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of zero
value between them.

7. If an expression begins with an additive operator (+ or - or A), COMPASS provides a term with zero
value preceding the operator.

8. All arithmetic in expression is performed in integer mode, even if an element is a floating point
constant such as 2.3. Results are restricted to 60 bits; that is, if a term or value exceeds 60 bits, the
excess high-order bits are discarded without comment.

60492600 H 2-23

The operator that immediately precedes a register designator is the register operator, regardless of the
placement of the designator in the expression. The register operator can be:

+-*or/

Examples of expressions:

ABLE

$-29

1 +=3.14159EE+6

*+3

ABLE*4-72/NUM

lOB

3+A6-NUM

lR= /\ lR/

Single term

Two terms: $ and 29

Two terms: a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

Two terms: value of the location counter and numeric constant 3.

Two terms, each consisting of two elements: the value of ABLE times 4,
and 72 divided by the value of NUM.

Single term consisting of a numeric constant.

The components of the expression are register A6 and 3-NUM.

The character constants(= and/) are logically differenced.

2.8. 1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression to:

An absolute value (absolute addre$ or an integer value)

An external symbol :!: a 21-bit integer

:!: relocatable value:!: a 21-bit integer

Register designators and one of the above (CPU assembly only)

Register designators (CPU assembly only)

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be absolute,
even though it contains relocatable terms, under two conditions:

2-24

The expression contains an even number of relocatable elements.

The relocatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be canceled by another element (or multiple thereof) in the same block. In
other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression.

60492600 H

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same bioek. MiKE is absolute. The
control counters are for the block that contains EASY and FOX.

EASY-FOX+MIKE EASY and FOX cancel each other.

FOX-* FOX and the location counter cancel each other.

MIKE+16 The expression contains no relocatable elements.

*-EASY-FOX*2 EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under the following two conditions, a combination of relocatable
and absolute terms:

The expression does not contain an even number of relocatable elements

All the relocatable elements but one must be organized in pairs that cancel each other. That is, for all
but one block, each relocatable element {or multiple thereof) in a block must be canceled by another
element (or multiple thereof) in the same block. The elements that form a pair need not be contiguous
in the expression.

The uncanceled relocatable element can have three kinds of relocation:

Positive program

Negative program

Positive common (Negative common relocation is not permitted by the loader.)

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute. LIMA
is relocatable in a different block. The control counters are for the block that contains EASY and
FOX.

LIMA+MIKE-16

FOX-EASY+FOX

3*FOX-2*EASY

EASY-*+ FOX

FOX-lOOB/MIKE

-MIKE*2+UMA

=lOHMESSAGE 33

-*0

The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated by
the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

60492600 H 2-25

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or, under the
following conditions, an external expression may consist of an external term, relocatable terms, and
absolute terms.

The expression contains an even number of relocatable terms.

The relocatable elements must cancel each other. That is, each relocatable element (or multiple
thereof) in a block must be cancelled by another element (or multiple thereof) in the same block. In
other words, pairs of elements in the same block must have signs that oppose each other. The
elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same block.
The control counters are for the block that contains LIMA. MIKE is absolute.

XYZ-*+FOX-EASY+LIMA

FOX-3*EASY+2*FOX+XYZ

ABC+lOOB+MIKE

XYZ+ABC

-ABC+*-LIMA

XYZ+*O

The pairs* and LIMA, and FOX and EASY cancel each other.

The relocatable elements all cancel.

MIKE and lOOB are absolute; no relocatable elements.

Illegal; both are external.

illegal; ABC is negative.

Illegal; *O is an unpaired relocatable element.

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register designators
and an operand. The attributes of the operand can be that of an absolute, external, or relocatable
expression. Use of register expressions is generally restricted to symbolic CPU machine instructions. If
the register designator is the first element in the expression, the operator can be omitted and is assumed to
be+.

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIMA-10B

l LIMA+X3-10B

-10B+LIMA+X3

Produce identical results

Bl+XYZ

*+A.NUM

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable.

2-26 60492600 H

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS repiaces each eiement with a 60-bit value. A character constant
is first right or left adjusted in a field the size of the destination field and then extended to 60 bits. Signs
are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In division, the integral
portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2 results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it reaches
a+ or - or /\operator. It then notes whether or not the newly formed term contains a relocatable or
external symbol or register designators. The value of the symbol is added, subtracted, or differenced irom
the cumulative sum of the absolute elements, relocatable elements, or external values. The assembler
continues evaluating the expression until it is reduced to a symbol and/or a value. An error is flagged if
the expression cannot be reduced. The expression value is truncated, if necessary, and placed in the
destination field. If it is too large for the field, the system issues an error flag. The maximum field size
for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram. It is
the value relative to the external used in defining the symbol if the external symbol was defined within the
stbprogram.

A zero value is used in place of a register designator.

For pass one evaluation, COMPASS uses the value of a relocatable symbol relative to the block in which
the symbol was defined. For pass two evaluation, COMPASS uses a value relative to program or common
block origin.

The field size for an expression depends upon the instruction and is determined as follows:

For a symbol definition pseudo instruction, the expression value (including character constants) is
justified in a 21-bit field.

In a VFD pseudo instruction, the expression is placed in a field of the size specified.

For a CON pseudo instruction, the field size is one word (12 bits for PP 8$emblies, 60 bits for CPU
assemblies).

In a symbolic machine instruction, values of expressions are placed in address fields (18 or 6 bits for
CPU assemblies; 18, 12, or 6 bits for PP assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values are
assembled into the same field of the same word more than once, as a result of ORGing backward over the
word, or by having more than one subprogram preset a common block. The ORGC pseudo instructon (see
Block Counter Control, chapter 4) can be used to avoid such problems.

60492600 H 2-27

PROGRAM STRUCTURE 3

This chapter is designed to give the programmer a better understanding of how a program is assembled,
loaded, and executed. This discussion of program structure is at the machine executable level, the level at
which code is loaded into memory and executed.

A COMPASS subprogram consists of statements beginning with an IDENT pseudo instruction and ending
with an END pseudo instruction. The user can designate a subprogram to be a main program by specifying
a transfer address in its END pseudo instruction.

The programmer can control the assembly of COMPASS source statements so that subprograms are divided
into blocks of binary code. These blocks can be controlled during the loading process. The first section of
the chapter presents subprogram block concepts and how the programmer and the assembler organize
object code into blocks. Following this is a brief description of the counters used to control the blocks.

A suborog:ram loaded into central memorv can be either absolute or relocatable. An absolute subprogram is
loaded at the same fixed address every tfme; a relocatable subprogram can be loaded into different
locations, according to the available central memory at load time. Sections 3.3 and 3.4 discuss the
structure of absolute and relocatable programs, respectively, and show the differences in block usage for
both types.

Limited available central memory occasionally requires the use of overlays and partial binary sections in
lengthy programs. Section 3.4 covers the use of these important programming tools.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas called
blocks. As assembly of a subprogram proceeds, the assembler or the programmer designates that object
code be generated or that storage be reserved in specific blocks. By properly assigning code sequences,
data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM, a programmer
can intersperse instructions for the different blocks. The assembler assigns locations in a block
consecutively as it encounters instructions destined for the block. A symbol defined within a block is not
local to the block. That is, it is global and can be referred to from any other block in the suoprogram. To
render a symbol local to a sequence of code requires use of the QUAL pseudo instruction (section 4.4.3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

In pass two all symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and block structuring restarts. For END, the symbol
table is cleared before the next subprogram is assembled. If the group does not contain a USE instruction
or if object code is generated (or storage reserved) before the first USE instruction, COMPASS places the
code in the nominal block (identified as PROGRAM* on the listing). For an absolute program, the nominal
block is the absolute block. For a relocatable program, the nominal block is the zero block. The user
controls use of the nominal block and any user-established blocks through USE, USELCM, ORG, and ORGC
pseudo instructions (section 4.5). Each occurrence of a non-redundant literal constant causes an entry in
the literals block; otherwise, the user has no control of this block.

60492600 G 3-l

3. 1. 1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name PROGRAM*
on the listing. All code generated in the block is absolute. Each address symbol is defined during pass one
as an absolute value relative to zero which is block origin. The code generated must be loaded and
executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an absolute
block is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name O and is the nominal CM/SCM block for a relocatable assembly. It is a
local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the assembler
assigns any undefined default symbols at the end of the zero block. The zero block is identified by the
name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block. The zero block is also
named PROGRAM*.

There is no ECS/LCM zero block.

3. 1 .3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage to
the literals block immediately following the zero block. There is no ECS/LCM literals block.

3. 1 .4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM stSitements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS assigns
an origin relative to the nominal block to each user-established local block, in the sequence in which they
are established.

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader as
a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/LCM local blocks are
concatenated to form a single block which is treated by the loader as an ECS/LCM block whose name is
unique to the subprogram. (SCOPE 2 does not currently allow LCM local blocks.)

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary, to an
integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568 words.

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or ECS/LCM
through the USE and USELCM pseudo instructions respectively, where the name of the block is the name
enclooed by slashes; that is, /name/. The tables are designed so that the loader can allocate space in
memory for the first subprogram that is loaded that declares the block. Thus, the first subprogram that
names a block sets the maximum size of the block. Each subprogram, as it is loaded, can link to allocated
blocks or can cause new blocks to be allocated. The contents of a labeled common block can be generated
by any of the subprograms having access to it.

3-2 60492600 G

If an absolute s:_i\;n,Jgram attempts to establish a labeled common biock by using a USE /name/ or USELCM
/name/ pseudo instruction, COMPASS treats the biock as a local block having the slash-enclosed name.

3. 1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not load
information into the area before the program is executed.

For a relocatable program, the CMISCM and ECSILCM blank common blocks are allocated space by the
loader after all subprograms are loaded, according to the largest block area declared by any of the
subprograms. A CM/SCM blank common block is established through use of the USE pseudo instruction
(chapter 4). An ECSILCM blank common block is established through use of the USELCM pseudo
instruction (chapter 4). A blank common block has no name. A USE 11 indicates blank common in
CMISCM; A USELCM II indicates blank common in ECSILCM.

If no relocatable program declares a blank common block, there is none. If an absolute program contains a
USE 11 or USELCM 11 pseudo instruction, COMP ASS treats the block as a local block named 11 and data can
be stored in this block.

The USELCM pseudo instruction can occur only in CPU programs.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with the
same name and the same block type if they have different memory types (CM/SCM or ECSILCM). Thus,
altogether, there may be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMP ASS maintains three counters: an origin counter, a location
counter, and a position counter. When a block is first established or its use is resumed, COMPASS uses the
counters for that block. During pass one, the origin and location counters are initially zero. During pass
two, as the assembler constructs the program, it assigns an initial value to each local block origin counter
and location counter. Thus, expressions containing relocatable symbols are not necessarily evaluated the
same in pass one and pass two.

3.2. l ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the block.
It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or BSS pseudo
instructions to advance the origin counter; ORG and ORGC also permit the programmer to reset the
counter to some lower location in the block or to change blocks. BSS allows the programmer to decrement
the counter but not to change blocks. The origin counter is incremented by one for each word assembled or
skipped forward. The origin counter is decremented by one for each word skipped in the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value of the
origin counter for the block in use.

60492600 H 3-3

I

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter is
incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that it
differs from the origin counter. This may be desirable when the code being assembled is to be loaded at
one location and subsequently moved and executed at another location. In this case, the programmer resets
the location counter to reflect the actual location at which execution is to occur. As another example of
its use, the programmer assembling a large table may reset the location counter to zero so that on the
listing, the addresses alongside each word of the table reflect the word's position in the table rather than in
the block. Note that use of this technique does not alter the placement of code in the block. (For an
example of these applications, see the LOC pseudo instruction in chapter 4) When either of the special
elements * or *L is used in an expression, the assembler replaces it by the current value of the location
counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59 through 00, from left to right within a 60-bit CPU word and numbered 11
through 00 within a 12-bit PPU word. Then, the position counter is initially 60 or 12, respectively, and
indicates the number of bits remaining in the word. The position counter, which is decremented by one for
each completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally have
values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruction or data value to
be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current value of
the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value minus
one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining in a
partially completed word with no-operation instructions (section 8.1), sets the position counter to 60, and
increments the origin and location counters before it assembles code for the next instruction:

3-4

Insufficient room remains in a partially filled word for the next instruction or data to be generated.

The current statement is a machine instruction, or a VFD pseudo instruction, with a location symbol or
+ in the location field.

The current statement is en RE, WE, PS, XJ, CC, CU, OM, or IM (or RL or WL on NOS and NOS/BE)
instruction for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72, 73, 74, or 6000
Series. (The programmer can negate this force upper by placing a minuc; sign in the location field of
the instruction.)

The current statement is en END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC, LOC,
ORG, or MD pseudo instruction.

60492600 L

The assembler forces upper after it assembles code for one of the following:

JP
RJ
Unconditional EQ
Unconditional ZR
ES (CYBER 70 Model 76 or 7600)
MJ (CYBER 70 Model 76 or 7600)
PS (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
XJ (CYBER 180 Series, CYBER 170 Series, CYBER 70 Model 71, 72, 73, 74, or 6000 Series)
IM (C YBER 70 Model 72 and 73)

This post force upper does not occur immediately, but is def erred until the assembler encounters the next
machine instruction or data generating, storage allocating, or binary control pseudo instruction in the same
USE block. The programmer can negate the force upper following the instruction by placing a minIB sign in
the location field of the next instruction. ThIB, pseudo instructions following one of the above machine
instructions and referencing the origin, location, or position counter will IBe the value before the force
upper.

In a PPU assemblv. no forcine- uooer occurs: the assembler ie"nores a+ in the location field on anv
instruction other than a VFD:-- A plIB or minus in the location field of a VFD in PPU assemblies forces the
VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately, either
in the same job run or in independent runs. The subprograms can all be written in COMPASS source
language, or can be written in any other source language available in the product set of the operating
system as long as the compiler or assembler produces relocatable binary output in a form acceptable to the
loader. A COMPASS language subprogram is composed of instructions beginning with an !DENT pseudo
instruction and ending with an END pseudo instruction. A subprogram can be either a main program or a
subroutine, depending on how its END pseudo instruction has been written.

When a program is loaded into memory, its subprograms occupy contiguoIB blocks of words. The first word
in the first block is known as the reference address (RA). The total number of words in the blocks is the
job field length.

When a subprogram is relocated, each machine instruction in it that references a specific address mIBt be
adjusted. BecaIBe of this necessity, relocatable subprograms are assembled as though they begin at address
zero; they are not assigned specific origins. In this way the loader can load subprograms independently, yet
contiguously; their origins are relative to RA. Since all addresses within the subprogram are relative to the
first word address of the subprogram, each address in the program effectively becomes a function of RA.

A nonblank !DENT pseudo instruction that does not specify a fixed load address indicates a relocatable
subprogram. Upon completing assembly of a relocatable subprogram, COMP ASS assigns each local block an
origin relative to the zero block. Each block thus becomes an extension of the zero block (figure 3-1).

COMPASS also provides for subprogram linkage. Through (l)eudo instructions such as ENTRY, ENTRYC,
and EXT, subprograms can transfer control to each other and access common storage locations.

The loader is thus able to load subprogram blocks independently, as required. Program execution is not
affected by the relocation process.

The length of the subprogram given on the assembly listing is the sum of the final values of the origin
counters for the local blocks, including the zero block and literals block, but not the ab.solute block. Any
ai::x,01ute text is simply imerted at the ah;olute location relative to RA.

COMPASS binary output for a relocatable subprogram consists of one section for each LCC pseudo
instruction (if any) in the source program, followed by one section containing the subprogram loader tables.

60492600 L 3-5

I

Low IDE NT
Address Sizes and locations

Subprogram 1 determined by first Labeled Common
subprogram declaring Blocks

END them --IDENT
Subprogram 2 Program*

(Zero Block)

SUbprogram 3
LITERALS*

Local Block 1
Subprogram length

Subprogram n

} Size determined by
Blank Common largest block declared

Local Block m
High

by any subprogram

Address END

Map of Organization of
Loaded Program Subprogram 1

Figure 3 1. Relocatable Program Structure

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific memory
locations. Because the loader performs no address manipulation for absolute programs, absolute code can
be loaded more rapidly than relocatable code.

A CPU program can be either relocatable or absolute. PPU programs are always absolute. PPU programs
are parts of the operating system that reside in the peripheral processors; they are normally the concern of
only system analysts. Any user can assemble PPU code, but cannot execute it without special system
access privilege.

The programmer has the option of constructing an absolute program as a single unit, or of dividing it into
overlays. Each overlay consists of data, information, or instructions that are needed at different times.
Dividing a program into overlays allows several routines to occupy the same central memory storage
consecutively so that total storage requirements for a program are reduced. For maximum program
efficiency, the reduction of storage requirements must be weighed against an increase in execution delay
while loading parts of the program.

During assembly of an absolute program or overlay, COMPASS creates a memory image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute olock. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute block.

Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays. The absolute
block is the nominal block for the program (labeled PROGRAM* on the listing). The use of default symbols
and literals causes the generation of the zero block and the literals block, respectively. Local blocks A, B,
and C follow the literals block. The transfer symbol in the END pseudo instruction indicates a main
subprogram. In the binary load module the· prefix (PRFX or 7700g) table and the header table precede
the binary section that is the memory image of the program.

3-6 60492600 G


~~~~~f i=Jw~=~f ~~~~}tJ) Program 

ff "cpii 0

0~
0

ppu·r~~1 and Load~r Control 

iDENTname~.~1 ---------. 

~·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:! ~ , . . • #'. - - .. ! - -

f:·.·.· .. ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.!.:.:.:.1 J ioentn1cauoH 

1t= Header Table:::::: Information 
Origin - r ::::::::::::::::::::::::::::::::::::::::::::::::::1 

( I PROGRAM* I I 
I 

PROGRAM* 

A 
n 

B 

c 

Binary 
Section 

I I l} Zero Block 
j, (Def a ult) 

!-----------! 

LITERALS* I 

- I END tr-asym _ __.. ______ ___; : I 

Low Address 

I 

• High Address 

60492600 G 

Source Program 
Block Structure 

~~~==~=!a~/g~~i~~i=~~~ 
:: Information :::

Origin--...-=:.:.::;::.:.·:;::.:.·:·:.:.:;:;""":;:;,;a;,:;:,:.:·""":·:·""":·:· :·: '.::: :::: ;::.:

PROGRAM*

c

Binary
Load Module

}
Zero Block

1-------------1 (Def a ult)

r

I

LITERALS*

A

B

c

Map of
Loaded Program

Figure 3-2. Absolute Program Structure

3-7

The binary output for the program consists of a section for each overlay .. Note that the binary section for
an absolute program that is not divided into overlays has the same format as the main overlay of a program
divided into overlays. The user has the option of writing part of a binary section at a time by using either a
SEG pseudo instruction or an !DENT (other than the first !DENT) with a blank variable field.

An absolute binary load module usually has three parts: a prefix (PRFX or 7700s) table, a header table,
and the binary image of the program or overlay. A header table can be one of the following:

ASCM or 50009.

EASCM or 51009.

ACPM or 53009.

EACPM or 54009.

Tables are shown on a COMPASS listing by their octal numbers. The table for mats are described in the
Loader reference manual.

The amount of binary written as a result of the binary control instruction (!DENT, SEGMENT, SET, or END)
is subject to whether or not an entire block group is written, as follows:

If a complete block group is being written (everything between an !DENT and an END or between two
IDENT instructions), the memory image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the memory image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank !DENT complete one overlay and write an end of section. SEGMENT and
IDENT write header information for the overlay to follow.

3.4. 1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENTt pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a memory image of the program as it is
assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits memory to be sequentially overlaid by different subroutines and
data during program execution, reducing the maximum memory requirements for the program.

Three levels of overlays can be generated for a CPU assembly: main, primary, and secondary. Each
overlay is identified by a level number specified in the IDENT or SEGMENT pseudo instruction. The level
number consists of an ordered pair of octal numbers, each of which can be 0 through 77 8· The first
number is known as the primary level number; the second is known as the secondary level number. The
level number 0,0 signifies the main overlay (normally the portion of the program following the first
IDENT). A primary overlay is indicated by a nonzero primary number paired with a zero secondary level
number. For a secondary overlay both the primary and the secondary level numbers are nonzero.

Conventionally, the main overlay is loaded first and remains in central memory throughout execution. Only
two other overlays can remain loaded concurrently: these are usually one primary overlay and one of its
associated secondary overlays.

tmENT instructions described in this section are assumed to have nonblank parameters. The special case
of the blank IDENT is described in section 3.4.3.

3-8 60492600 G

The hierarchy of overlay association is depicted by figure 3-3. The primary,overlay i,O has three
associated secondary overlays numbered 1,1; 1,2; and 1,3. A primary overiay and ail of its associated
secondaries have the same primary level number. The next branch of overlays (indicated by level
numbers 77 ,y) shows that the level numbers of the overlays are not required to be consecutive nor to be
indicative of the order in which they were generated .

I i,3 l L____J\

~\·
1,2 ~ \

\

1,1

77 ,2 l
...___~\

~,\
~7_7_, 2_0_____.f \ \

0,0

23,40

23,30

Figure 3-3. Overlay Hierarchy

Secondary
Overlays

Primary
Overlays

Main
Overlay

The main overlay can call both primary and secondary overlays into main memory via the operating system
loader. (For detailed information concerning loader calls, see the Loader reference manual.) Once a
primary overlay is loaded, it can call any of its associated secondary overlays. Overlay 23,0, for example,
can call overlays 23,10; 23,30; and 23,40 in any order.

The main overlay can have multiple entry points: execution can begin at any one of them. Usually,
primary and secondary overlays have a single entry point which provides the transfer address. A secondary
overlay can reference entry points in its primary and in the main overlay. A primary overlay can reference
entry points in the main overlay. The programmer must ensure that the necessary entry points have not
been overwritten.

These conventions concerning the numbering, hierarchy, loading, and execution of overlays are not
enforced by COMPASS. Any overlay can call the operating system loader to load another overlay, and any
overlay can reference addresses in any other overlay. However, overlays are not all in central memory
during program execution and the sequence in which the overlays are loaded and executed is beyond the
scope of the assembler; therefore, it is the user's responsibility to assure that an overlay does not refer to
symbols, instructions, or data not concurrently in central memory.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects. However, a PPU overlay with assembled code in locations 7774a through 7777a may load
incorrectly due to wraparound to location 0000.

Overlays generated by using !DENT pseudo instructions differ in certain respects from overlays generated
by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader reference manual.

60492600 G 3-9

IDENT-Type Overlays

An ID ENT-type overlay consists of the portions of the program from:

One IDENT to (but not including) the next IDENT

The last ID ENT in the overlay to the END

IDENT provides the programmer with the option of specifying the overlay level numbers with each
overlay. The assignment of Wlique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

The first ID ENT causes COMP ASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second ID ENT instruction before an END instruction,
COMPASS generates output consisting of a memory image of the overlay, starting with the overlay origin
specified on the previous IDENT and normally ending with the maximum origin counter value of the last
block declared in the overlay; that is, the overlay normally ends with the last word address of its last
block. An !DENT subsequent to a SEG or SEGMENT, however, generates binary that ends at the location
specified by the current origin counter. Following the memory image, COMPASS writes an end-of-section
(or end-of-record) and the overlay identification information specified by the new IDENT for the overlay to
follow.

For an !DENT-type overlay, COMPASS completes all blocks, including the literals block. Block structuring
starts fresh with each overlay. This means that each overlay can use the same block names used by other
overlays, and each overlay can contain a Ii terals block. The USE table and control counters are all
reinitialized. The origin specified for an IDENT-type overlay can be any place in a previously generated
overlay. This is possible because IDENT causes the assembler to assign an absolute address to each symbol
in the symbol table. It can do this because the sizes of all the blocks are known.

Figure 3-4 illustrates a CPU program in which a second !DENT is used prior to an END pseudo instruction
to generate a main overlay and a primary overlay. Between the two IDENT instructions, block usage
alternates between the absolute block (labeled PROGRAM* on the listing) and block A, as depicted in the
block structure diagram. Note that in the main overlay (the first section of binary generated, labeled
MAIN), the assembler has concatenated the portions of each block. Concatenation also occurs in the
primary overlay, OV 1, for the portions of the absolute block ABSOLUTE' and for those of blocks A', B,
and c.

The occurrence of literals and default symbols causes the assembler to generate a zero block and a literals
block, respectively, in both of these overlays. Following the second nonblank IDENT, the program overlay
origin is set back into block A, as shown in the map of the two loaded overlays. Note that the loader
control table is loaded in memory below the address specified in the ORG pseudo instruction (BETA, in the
figure), as shown in the map of the loaded overlays.

The first !DENT pseudo instruction assigns the level number 0,0 to the first overlay {MAIN). COMPASS
assigns level number 1,0 to overlay OVl by default.

SEGMENT-Type Overlays

A SEGMENT-type overlay consists of the portions of a program from:

The IDENT that identifies the program to a SEGMENT pseudo instruction

One SEGMENT to the next SEGMENT

The last SEGMENT to the END pseudo instruction

3-10 60492600 G

?~~·-::::-:-·~~·:::»:~
:;:::::: Prefix Table ::::~
, ... ·. ·····:··· ·:·;·;·;·:· .. :·.·.·.·.·.·.·.·=·=·~
1~=~ ·Loader· coritroi ::~ '

!DENT MAIN,0,0--. .. ~1-------- - _ _ _ _ _ _ /j{~!8~.~-~!-~~1:}~~f~
BETA ABSOLUTE MAIN origin/! I

A I ABSOLUTE I

i ABSOLUTE

i A
1.

ZERO

IDENT OVl 1-! _A_B_S_O_L_U_T_E_-i...

ORG BETA/I A' I"- - ---

B
I LITERALS

ETA--i-: -------

1

60492600 G

i-· -----------ll "' --- --
! B . "'

A

I ABSOLUTE' " "

I "'

First Binary
Load Module

i c
ABSOLUTE'

B

Source Program
Block Structure

V 1o~d~·~ ·co~ 1~~·i ::~ ······1nr t· J
1::=::::: C?r.rn~. ~~-~ .::::::~

ABSOLUTE l

ABSOLUTE'

ZERO' I I
LITERALS'

I,
A'

-I B
I

c IJ
Map of Loaded

Overlays

Figure 3-4.

ABSOLUTE'

ZERO'
.,

Low ', LITERALS'
Address"· '

',, ' A' I

I
OVl

I 1,0
I
i
I

I
I

• High Address

"' I I

' ',, i B I

"~
Second Binary
Load Module

!DENT-Type Overlay Structure

MAIN overlay
n n v,v

0 V l overlay
1,0

3-11

SEGMENT provides the programmer with the option of specifying the over~ay level numbers with each
overlay. The assignment of unique level numbers enables the loader to locate a specified overlay among
overlays written on the same file. If the programmer does not specify level numbers for a CPU assembly,
COMPASS assigns numbers 0,0 to the first overlay, and numbers 1,0 to all subsequent overlays.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a memory image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the first
overlay), and ending with the current origin counter value of the block in use at the time the SEGMENT
was encountered. Following this, COMPASS writes an end-of-section and overlay identification
information for the overlay to follow.

SEGMENT does not clear the symbol table or reinitialize the USE table. Thus, when a SEGMENT is
encountered, the block in use is incomplete. It is the responsibility of the user to assure that all blocks
other than the one in use are complete at that time. Also, the only symbols that can be used to define the
origin of the new overlay are those valid for the block in use.

Each new SEGMENT-created overlay must use unique block names because blocks established in previous
overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-5 illustrates a program consisting of a main overlay, MAIN, and a primary, OVl. The use of
default symbols causes generation of a zero block. The use of literals causes generation of a literals
block. Both of these blocks occur in the overlay MAIN, because it contains the end of the absolute block.
Block A begins in the main overlay, but is incomplete when COMPASS encounters the SEGMENT. The
ORG pseudo instruction causes the origin of the primary overlay O V 1, to be set at load time to TAG, at a
lower address in block A. (Note that the loader control information is loaded at an address lower than the
origin of the overlay.) 0V1 establishes new blocks C and D.

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called, it
may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 5100s overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 51009 table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 5100s
table, refer to the Loader reference manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or overlay contains SEG pseudo instructions or IDENT pseudo instructions for
which the parameters are omitted (blank), COMPASS writes a partial binary section consisting of the
binary generated since the previous IDENT, SEGMENT, or SEG instruction. However, it does not write an
end-of-section (or end-of-record) or a new prefix table. A SEGMENT, nonblank IDENT, or END instruction
completes the binary section.

SEG Partial Binary Record

By writing partial binary records using SEG, the programmer can reduce the assembler storage
requirements. SEG does not write a complete block group. When the SEG is encountered, COMPASS writes
binary beginning with the first block established in that portion of binary and ending with the final count
specified by the origin count for the current block. A fatal error is issued if the user attempts to store
data into a block not in the current partial binary record.

The portion of the binary that contains the end of the absolute block contains the literals block, if there is
one. The symbol table and USE table are not reinitialized.

3-12 60492600 G

MAIN ~=m.
ID ENT MAIN -••-.-1--A-B_S_O_L_U_T_E----.- - - - Origin ~tt.!;~;~~~~f,~;~:MI

TAG--1 A I ABSOLUTE I
MAIN

I ABSOLUTE ZERO I Overlay
o,o

SEGMENT OVl _j_ ____ ~ ____ -k-I I LITERALS Ill}
ORG TAG i . -- 'Y'AG---i

Low Address

I

l

END

MAIN

High Address

60492600 G

• I "' -- -- -- ~ ·~ ! A I
c "' -- -- ___j . "'___ _____ ~
D

Source Program
Block Structure

First Binary
"' Load Module

"' "' "' " " "' "' """ "' OVl "'
frigin

"' "' "'

1·:·:·:·'.·'.·'.•'.•'.•'.•'.•'.•'.•'.·'.·'.·'.·'.·'.·'.·:·:·:·:·:·:·1
:::::::Prefix Table:;:;:;:;
:=:=:=:·:···:·:·:·:·:·:··-·.·.·.·.·.·.·.·.·.·=·=·=· ::: ioaCier · coiiiroi :::
:;:;:;::Information::::::::
:-:·:·:·.·.·.-.-.-.-.-.. -.-.-.-.-.-.-.-.-.·:·:·:·:

A

c
D

Second Binary
Load Module

==~ I.oacier · con'troi ~=~ { L~~ci·~·r·-c-<>~1rc;t~:
·: Inf m t' n :· MAIN ::::::::Information::::::::

!::::::::·:::::~~-~ Ori~n + :·~::::~·~··

OVl
Overlay

1,0

LITERALS 1 l LITERALS

I ~=h~';;"d~~~~~-1~~1-P - - - - - - · f-- ·1::;:;:::: Information::;) J Overlaid A L ==TAG- = l ~ J ~:::~1~
~--------'~ I

D
~-----~-------

Map of Loaded
Overlays MAIN and 0V1

Figure 3-5. SEGMENT-Type Overlay Structure

OVl
Overlay

1,0

3-13

Figure 3-6 illustrates how the binary for an absolute program can be writte,n in three ~eparate binary .
writes to reduce the amount of memory required to assemble the program. The resultmg absolute section
is loaded and executed as a single pr'!gram or overlay.

IDENT PROG~----------.

ABSOLUTE
SEG

(writes partial~ - - - - - - - - - -
binary) ABSOLUTE

SEG
(writes partial__..

binary)

A

c storage requirements

- - - - ~ - - - - -} Largest partial assembly

determines assembler

END~~~~~~~~~--'

Source Program
Block Structure

~tn~;;1 i;;=;;~~~t~~~~
·:·:·:·;·;·:·;·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:-:-:

~···~-·-·-···-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·-·.·
t::::Loader Control:::
::::::::1nf ormation ::::::::
:·:·:··~··;·;·.·;·.·.·.·.·.·.·.•.•.•.•.·:·:·:·:·'

ABSOLUTE

LITERALS

A

B

c

Binary Load
Module

Figure 3-6. SEG Partial Binary

IDENT Partial Binary

Absolute Binary
Section

End-of ~ection

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG, or
SEGMENT to be written out without an end-of-section (or end-of-record) or a new 7700s prefix table.
The USE table and the block counters are reinitialized. Each symbol in the symbol table is assigned an
absolute address. The blocks in each partial binary section generated in this manner are ailocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local blocks.
This allows portions of a program to be self-contained units even though they are not overlays but are
loaded as a single unit. The origin of an absolute block for new portion is the last word address plus one of
the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group; that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block.

COMPASS completes all blocks. The literals block is terminated. Block structuring starts fresh with each
IDENT. Each new partial binary section created by a blank IDENT can use the same block names as are
used by the other blank IDENT-created partial binary sections and non-blank IDENT-created overlays and
each IDENT can contain a literals block but the blocks with the same names are independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written
separately causes an assembler range error.

3-14 60492600 G

Figure 3-7 illustrates how the binary for an overlay can be written in three <;liscrete partial binary sections
to reduce the amoW1t of central memory required to assemble the program and divide the program into
self-contained wiits. The resulting absolute section is loaded and executed as a single overlay.

IDENT PGM .. ,

ID ENT

ID ENT

IDENT OVLY

60492600 G

ABSOLUTE

LITERALS

Local Blocks

ABSOLUTE'

LITERALS'

Local Blocks

ABSOLUTE"

LITERALS"

Local Blocks

Source Program
Block Structure

I

J
i
I

I

j_

mENT PGM_l!I
I ABSOLUTE

LITERALS

Local Blocks
- - - - - - - -!----------!

I ABSOLUTE'

r LITERALS'

Local Blocks f
l - - - - - - - -----1---------i

I ABSOLUTE"

LITERALS"

Local Blocks
_____ -~------~' End-of-section

j::;:;:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·:·::::::::I}
::::::Prefix Table::::::::
!::;::: ••• ·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.:::::::: • • •
·:·:·:·:·:·:·: -. --...... :·:·:·:·:·:·:·:· Idenhf1cat1on
;;:;·:·:·:·:'.:·Loader·:·:·:·:'.::;:;:;, for 0 V LY
I~ i.•.•.•.•.•.•.•.•,•.•.•.•c.•=•••=•••=•••••s•o•o•e•e••

IDENT OVLY---

Binary Load
Modules

Figure 3-7. ID ENT Partial Binary Records

3-15

PSEUDO INSTRUCTIONS 4

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

The format of the COMPASS pseudo instruction is the same as that of the symbolic machine instruction; it
includes the location field, the operation field, the variable field, and the comments field. The pseudo
instruction differs from the symbolic machine instruction in that it is used to control the actions of the
assembler at assembly time, rather than those of the machine at execution time.

The pseudo instructions available in the COMPASS language are presented in this chapter and in
chapters 5, 6, and 7. Programmers with little COMPASS experience should give special attention to a few
important pseudo instructions, which are listed in the following table. It is not possible to write a
COMPASS program without using some of them. The table indicates the type of assemblies in which the
pseudo instructions can be used.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

ID ENT 4. 2.1 x x x
ABS 4.3.1 x
PPU or PERIPH 4.3.3 or 4.3.4 x
ORG 4.5.3 x x x
ENTRY 4.7.1 x
BSS 4.5.4 x x x
CON 4.8.6 x x :x
END 4.2.2 x x :x

4. 1.1 TYPES OF PSEUDO INSTRUCTIONS

Pseudo instructions discussed in this chapter are classed according to application as follows:

Subprogram identification (IDENT and END)

Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, LDSET, STEXT,
COMMENT, and NOLABEL)

Mode control (BASE, CHAR, CODE, COL, Bl=l, B7=1, and QUAL)

Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)

Symbol definition (EQU and=, SET, MAX, MIN, MICCNT, and SST)

Subprogram linkage (ENTRY, ENTRYC, and EXT)

Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC, and
REPI)

Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)

Error control (ERR and ERRxx)

Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

60496200 G 4-1

Later chapters describe pseudo instructions that involve definition operations, alterations to the operation
code table, and micros. In general, pseudo instructions can be summarized according to where they can be
placed in a subprogram.

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first source
statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler with
required information. These instructions make up the first statement group which must precede any
symbol definition, storage allocation, or object code generation. The following instructions, if used, must
be in the first statement group:

ABS
MACHINE
PERIPH
PPU
ST EXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group:

BASE
Bl=l
B7=1
CHAR
CODE
COMMENT
CPOP

CPSYN
DEC MIC
EJECT
EI.BE
END
ENDD
ENDIF

ENDM
HERE
IFC
IRP
LDSET
LIST
MACRO

MACROE
MICCNT
MICRO
NIL
NO LABEL
NOREF
OCT MIC

OPDEF
OPSYN
PPOP
PURGDEF
PURGMAC
QUAL
RMT

Comment lines and references to macro definitions are also permitted_ anywhere.

SKIP
SPACE
SST
TITLE
TTL
XREF

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the first
statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or more
subprograms are assembled in a single COMPASS run called through the COMPASS control statement, the
end of the source decks is indicated by an end-of-section, such as a 7 /8/9 card.

4.2.1 IDEN 1 - SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized by
the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are assumed to
be comments. However, when COMPASS has been called by some other language processor such as
FORTRAN, the assembler returns control to the processor when the statement following END is not
IDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT Defore END as an
error. For an absolute subprogram, a second form of IDENT described under BINARY CONTROL is
available for overlay generation.

4-2 60492600 G

The format of iDENT varies according to the type of assembly.

CPU Reiocatabie Format:

LOCATION OPERATION 1 VARIABLE SUBFIELDS

ID ENT

CPU Absolute Format:

LOCATION OPERATION VARIABlE SUIFIELDS

ID ENT name, origin, entry, -~ 1, :. 2

7600 PPU Absolute Format:

LOCATION OPERAflON VARIABLE SUBFIELDS

ID ENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

name

origin

60492600 L

OPERATION

I IDENT

I I

VARIABLE SUBFIELDS

name, origin

Name of the subprogram or overlay. The parameter is required. For a CPU relocatable
or absolute assembly, name can be 1 through 7 characters, of which the first must be
alphabetic (A through Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1 through 7 characters.
For CYBER 180 Series or CYBER 170 Series or CYBER 70/Model 72, 73, 7 4 or 6000 I
Series PPU assembly, name can be 1 through 3 characters. In either case, there is no
restriction on the first character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or overlay. The
overlay loader table and all code as>embled starting at this address and ending with the
next SEGMENT, nonblank IDENT, or END instruction make up the overlay. For a single
entry point CPU program, the load address for the overlay is origin-1. The word at
origin-1 is overlaid by the 5000s loader control table. For a multiple entry point CPU
program, the load address for the absolute overlay is origin-wc-1, where wc is the
number of entry points in the 51009 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are overlaid
by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below OI"igin.
The origin sti>field does not serve the same funtion as ORG, nor does it replace ORG
for setting the origin counter.

4-3

entry

ppu

If the origin field is null for an absolute subprogram, the assembler uses address
000000 RA(S) as the origin for a CPU program and 0000 as the origin for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader automatically
relocates the first subprogram to be loaded starting at RA(S)+lOOg, the second
subprogram starting at the first available location following the first subprogram, and so
forth. ·

For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU assembly, this
subfield contains an expression specifying the subprogram entry address, which can be
symbolic.

Absolute expressions specifying the level numbers of the overlay. l1 is the primary
level (0 through 63) and .f2 is the secondary level (0-63). When the first IDENT
identifies the main overlay, 11 and 12 can be omitted. If !1 is omitted, it is set
to 00. If 12 is omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the level
numbers on this IDENT are evaluated as decimal unless specifically designated as octal
by a post radix.

Absolute expression specifying the number of the PPU on which this program is to be
loaded. On the first IDENT, this number is evaluated as decimal unless specifically
designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control statement, IDENT must be in columns 11 through 15.

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field entry
as the main subprogram title on the assembly listing.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 TJo

l'lf.NT r.r,~oNTROL,rONT~OL
A n,c:; jAflSOLUTE rPu PROG~AH
O~G 1t0P

/oHirffS ~Ot-!TROL ASS 0 <;YM"Ol r,QNlPOL
nrn

Absolute CPU program CT will be loaded at origin address OOUOg.

4.2.2 END - END OF SUBPROGRAM

An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

4-4 60492600 G

For a relocatable subprogran1, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and
produces the listing.

E:ND can also be used to sigr..al the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:

LOCATION

syrn

syrn

trasym

Example:

LOCATION

1

I

I
I
I

;Rf"GIN

I
I

60492600 A

OPERATION VARIABLE SUBFIELDS

END trasym

Optional last word address symbol; if present, CO:MPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.

A symbol specifying the entr-1 point to which control transfers for a reloca=
table subprogram. This symbol must be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.

For an absolute assembly, trasyrn is ignored.

OPERATION VARIABLE COMMENTS

11 18 130

IDFNT PROG1 I
PIT~Y qFGHI

!
I :

.
I ~R1

. I .
1 I

I :
.

I . . I ln1~ 'lFGIN

I

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler are
summarized below and described fully in this section.

ABS

MACHINE

PPU

PERIPH

ID ENT

SEGMENT

SEG

STEXT

COMMENT

NO LABEL

LCC

LDSET

Specifies CPU absolute binary output

Specifies processor type

Specifies CYBER 70 Model 76 or 7600 PPU binary output

Specifies CYBER 180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, or 74; or
6000 Series PP binary output

Begins absolute overlay or writes partial binary section

Begins absolute overlay

Writes partial binary section

Generates system text overlay

Inserts comments into the 77009 prefix table

Suppresses header information on binary output

Passes loader control information to the relocatable loader

Generates loader directive LDSET

4.3. 1 ABS - ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement group.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no significance
because a conventional definition takes precedence (see Default Symbols in chapter 2).

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS and
PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4-6 60492600 L

Example:

LOCATION

I

I
I

11

I f ONTROL

! I

OPERATION

II

I TOENT
ft BS

• 1.
O~G

ASS

•

•
FNO

VAllABLE COMMENTS

18 !Jo
r. r 'roN TROL, CONTROL

• 1.
111~n

,~
' •

~"SOLUTE

bf FINES

I
I
I

f.PU PRQG~ A..,

~Yi1BOL CONTQOL

.4.3.2 MACHINE ~ DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program can
be executed successfully and optionally specifies hardware features needed by the object program. When
the loader loads the object program, the required hardware features specified with MACHINE are
reconciled against actual hardware features present; a missing feature causes the loader to issue a fatal
diagnostic message. If used, MACHINE must be in the first statement group.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

A location field symbol, if present, is ignored.

type Character string designating object processor type. The subfield can be any length and
may contain any characters other than blank or comma. The first character identifies
processor type, as follows:

6

7

60492600 L

The object program is restricted to the following computer systems: CYBER I
180 Series; CYBER 170 Series; CYBER 70 Model 71, 72, 73, and 74; and 6000
Series. All machine instructions unique to the CYBER 70 Model 76 or 7600
Computer Systems are undefined.

The object program is restricted to a CYBER 70 Model 76 Computer System or
to a 7600 Computer System. With the exception of the PS instruction (often
used for subroutine entry points in CPU assemblies), all instructions unique to
the following computer systems are undefined: CYBER 180 Series; CYBER I
170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series.

4-7

I

Example:

LOCATION

I

8 The object program is restricted to a model 810, 815, 825, 830, 835, 845, 855,
865, or 875 Computer System. All machine instructions unique to other
computer systems are undefined. This pseudo instruction should not be used
if S=AIDTEXT has been specified on the COMPASS control statement.

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type subfield
is blank, or its first character is not 6, 7, or 8, then all CPU instructions are defined,
and the target and valid fields of the PRFX table in the object program are blanks. If
the type subfield is present and its first character is 6, 7, or 8, the valid field contains
6X, 7X, or 8X. If the type subfield is at least two characters, the first character is 6,
7, or 8, and the second character is a digit (0-9), the target field contains those two
characters.

In a PP assembly, if the MACHINE pseudo instruction is omitted, or the type subfield is
blank, or its first character is not 6, 7, or 8, then: if the PERIPH pseudo instruction is
present, MACHINE 6 is assumed; if the PPU pseudo instruction is present, MACHINE 7
is assumed. The target field of the PRFX table contains blanks, and the valid field
contains 6P, 7P, or SP.

Optional subfield, a character string designating an optional hardware feature required
for successful execution of the object program. The subfield may be any length and
may contain any characters other than blank or comma. It has no effect on assembly of
the program. The first character of the subfield is placed in the
hardware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

C Compare/Move Unit

D Distributive Data Path

I Integer Multiply Imtruction

L ECS/LCM

R Interlock Register

X Central and Monitor Exchange Jumps

Up to nine hfi subfields are processed; any additional subfields are ignored. If the
hfi subfields are omitted, the comma following type can also be omitted.

OPERATION VARIABLE COMMENTS

11 18 '30
H~CHI'JE 6,CMU,LCM,XJ

I

I

4.3.3 PPU - CYBER 70 MODEL 76 OR 7600 PPU PROGRAM

A PPU instruction declares a program to be a CYBER 70 Model 76 or 7600 absolute PPU program rather
than a CPU program. If used, PPU must be in the first statement group. For a description of binary
format generated as a result of this instruction, refer to the Loader reference manual.

4-8 60492600 L

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTitYC
EXT
LCC
REP
REPC
REP!
SEG

SEGMENT
USE LCM
R=
Bl=l
-B7=1

A symbol can be prefixed by = X if it is also defined conventionally.

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.
PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP -
CPSYN
PURGDEF

Format:

LOCATION

J

OPERATION VARIABLE SUBFIELDS

A character string beginning with J supplied in the variable field alters the way
that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit ~31). If the value is in range, COl\IPASS assembles the
jump using the value of the expression. If the value is out of range, COl\IPASS
performs a second test, this time using the expre~sion value minus the
location counter value. If the value is now in range, COl\IPASS assembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is nagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value
that is a true relative address.

A symbol in the location field, if present, is ignored.

60492600 A l-9

Example:

Location

71t0
760

Location

740
760

Code Generated

039

Code Generated

LOCATION

I

TAG

I
LOCATION

I

I !TAG

OPERATION

II

PPU . .
PS~

UJN

OPERATION

II

PPIJ . .
RS<;
UJN

VARIABLE COMMENTS

18 TJo
I

I
I I ?q~ I

f AG-• iEXPRE~SION < 378

VARIABLE COMMENTS

lB TJo

JUMP I

I
I

20~ 1
TAG IEXPRE~SION-• < :Hn

I 4.3.4 PERIPH - CYBER 180 SERIES; CYBER 170 SERIES; CYBER 70
MODELS 72, 73, 74; OR 6000 SERIES PPU PROGRAM

I A PERIPH instruction declares a program to be a CYBER 180 Series or a CYBER 170 Series or CYBER 70
Model 72, 73~ 74, or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must
be in the first statement group. For a descripton of binary output produced as a result of this instruction,
refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU a~embly:

ENTRY
ENTRYC
EXT

LCC
REP
REPC

REPI
SEG
USELCM

R=
Bl=l
B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable to PPU
assemblies:

OP DEF
CPOP
CPSYN
PURGDEF

Format:

LOCATION

J

4-10

OPERATION VARIABLE SUBFIELDS

PERI PH J

A character string beginning with J supplied in the variable field alters the way that
COMPASS assembles the variable field expression on UJN, ZJN, MJN, or PJN
instructions.

60492600 L

If J is not specified, COMPASS first tests the range of the expression value
against the short jump limit (±_31). If the value is in range, COl\I PASS assembles
the jump using the value of the expression. If the value is out of range, COI\I PASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an OHG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference i~
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGl\IENT can alter
this, however (Section 3. 4).

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end-of-section or a new 77 8 table. However, the t·sE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank ID ENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+l.

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABl.E SUBFIELDS

ID ENT name, origin, entry, .e
1

, ,e
2

60492600 A 4-11

I

or

I ,OCATION OFERATION VARIABLE SUBFIELDS

ID ENT

7600 PPU Absolute Format:

lOCATION OPERATION

ID ENT

l VARIABLE SUBFIELDS

l"
I name, origin, entry, ppu
!

6000 Series PPU Absolute Format:

lOCAT!ON

name

origin

entry

4-12

OPERATiON VARIABlE SUBFIELDS

ID ENT name, origin

Name of the overlay. For a CPU program, 1-7 characters, the first of which must be
alphabetic (A-Z); for CYBER 180 Series or CYBER 170 Series or a CYBER 70/Model 72,
73, or 74, or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76 or
7600 PPU program, 1-7 characters. In all cases, the last character must not be a
colon. A name is a loader linkage symbol required for overlays.

An expression specifying the first word address of the overlay. The overlay control
word and all code assembled starting with this address and ending with the next
SEGMENT, nonblank IDENT, or END instruction comprises the overlay. For a single
entry point CPU program, the load address for the overlay is origin-1. The word at
origin-1 is overlayed by the 509 loader table. For a multiple entry point CPU
program, the load address for the overlay is origin-wc-1, where wc is the number of
entry points listed in the 5 ls loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words are
overlayed by the 60-bit loader control table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does not serve
the same function as ORG nor does it replace ORG for setting the origin counter. The
origin of an overlay can be below the origin specified on any other IDENT or SEGMENT.

An expression specifying the overlay entry address. When the overlay is called, control
optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU programs
only. .l1 is the primary level (00-779), 12 is the secondary level (00-779). If
base is M, 11 and 12 are assumed to be octal. If .f 1 and .l2 are not specified,
.l 1 is set to 01 and .e 2 is set to 00.

60492600 L

ppu An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. If base is IvI, ppu is assumed to be octal.

A location field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control statement. END
dumps the last overlay or completes a partially written section.

Examples:

The following program. uses IDENT for overlay creatione Symbols T.OVL, o. DMPl, etc. are
defined on a system text overlay.

LOCATION

I

o

l
HP

~W2

l

11

11

60492600 A

OPERATION VARIABLE COMMENTS

11 18 IJO

IOENT
1: OHP.1,T.OVL,O.nHP1

ABS I
BASE " l I
COMHEN~ 10/07170 .CONTROL CARO CALL.OMP.

I
1
LIST

1
ssr
IORG
10UAL
ISXO

I·
•
•
QUAL
IDE NT
ORG
sxo
•
•
•
OUAL
I DENT
ORG
~XO

•

l~NO

G

IT
I
'• OVL
Dt1P1

181

I·
•
•

I

OHP2 I
OHP2,T.OVL,O.OMP2
T.OVL I
8&+1

•

OHPq I
OHP.9,T.OVL,O.DHP9
T.OVL I

I ?• OHP2+F. MOEi

I: i
~NO OVE~LAY Of4P9
I

OV ERLA'Y
DMP1

J
1

OVERLAYS OMP2
THRIJUGH OHP8

J

-l-13

The following program uses IDENT instructions having blank variable fields.

LOCATION OPERATION VARIABLE

I II 18

llJENT VVV, I 10Ef,ENT
ABS
ORG HOA

HIT ~)(0 1

. .
• . . .

1617 LIT 1,2,~

• • . .
• •
JOENf

• •
• •
• •

34'.;5 LIT 2,3
• .
• • . •
IOf'NT

. .
• . . .

711& LIT 1,2
• •
fNl'l

Origin-
ABSOLUTE

1617 - LITERALS

Local Blocks

ABSOLUTE'

3455 - LITERALS'

ABSOLUTE''

7116 - LITERALS"

lwa
Local Blocks

Core 1\fap

4-14

COMMENTS

TJo
T

I
I
I
l

' I
I

l
First

Partial Binary

J
l

Second
Partial Binary

J
l
Third

Partial Binary

J

l
First

Partial Binary

J
-,

Second
Partial Binary

J

l
Third

Partial Binary

J

60492600 A

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDE NT to be dumped as the main (0, O)

overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a
CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION

name

name

origin

entry

60492600 A

OPERATION VARIABLE SUBFIELDS

SEGMENT origin, entry, 1
1

, 1
2

Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon. It is a required loader linkage symbol.

A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank ID ENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 508 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPC words
are overlayed by the 60-bit loader table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter. The origin of an overlay can be below the origin specified on
any other !DENT or SEGMENT.

An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only • .t

1
is the primary level (00-77

8
), .t

2
is the secondary level

(00-77
8
). If base is M, ~1 and .i

2
are assumed to be octal. If .t

1
and 1

2
are not specified, !

1
is set to 01 and !

2
is set to 00.

4-15

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 ho
IOr:'.NT SAM,ENTA I

Aqs
I O~G UDR

ENTA PSS " ENTRY POINT
I

• •
• . I
• •

OVLOC RS~ I] jOVFRLAY LOAD POINT
• •
• . I
• .

SEG1 SfGHE:N STS?T,ENT~ I ORG OVLOf:
RS5 1 LOADER TAPLE

STRT ess 0 IFI~ST WORD OF OVERLAY

• • I
• • . • I

ENTO ~SS 0 EXECUTION BEGINS HEPE
I

• • I • • . •
IENO f"IO OF OVfRLAV

I ' SEGl is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC + 1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning
at OVLOC.

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction. It does not write an end-of-section or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

4-16 60492600 A

Format:

LOCATION
1oPUATION I VARIABLE SUBFIELDS

SEG

Symbols in the location field and variable field, if present, are ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

I DENT NAME10~IGIN,ENTRY
A~S I
USE A I
• •

t • •
• • I SEG

I I USE 8 I

11
1 •

• I
I • •

I • • I
SEG I • •
• • I
• • I £ND

I

4.3.8 STEXT • GENERA TE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay
format at the end of pass one. The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control statement (chapter 10). Through this feature, information in the system text overlay
need be processed only once for all COMPASS programs using the same system text. System text over
lays cannot be generated and used in the same assembly batch; system text overlays generated by one
COMPASS control statement call can be used only by assemblies performed by later COMPASS control
statement calls.

The symbols included in the system text overlay written are all symbols defined in the assembly P.xcept
those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

60492600 A 4-17

The symbol is redefinable (i.e., defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i.e., is a system symbol input to the present system text assembly).

The symbol is 8 characters beginning with t l .

All defined micros are included in the system text overlay.

All program-defined. opcodes are also included. Machine and pseudo instructions automatically
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a s-ystem text overlay is used as input to an assembly through the G or S option on a COMPASS con
trol statement, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

A system text overlay on the library is an absolute overlay that has the following control table:

59 48 42 36

5000 01 I 01 000000000000

Format of Text:

[
£.=Number of words in each part of overlay

1 .

4-18

00

System Symbol
Table
2 words per entry

Micro Definitions

Macro/opdef Definitions

Operation Table
Entries (2 words per entry)

60492600 A

Format:

I LOCATION

rname

rname

•OPEiiATiON VAiitAi!l.E SU8ftHDS

ST EXT

Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a
letter (A=Z) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generates
the system text only. Otherwise, the system text is generated in addition to the re
locatable or absolute binary and precedes the binary output on the binary file.

An entry in the variable field, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 1 Jo

IOENT SV~TEXT I

I
STEXT

I I RASE I HIXEO
MPRS f OtJ 100 I l

I
. • .

!SYSTEM r1NSTANTS, SYMBOLS,
!ANO CO~MUNICATIONS A~f.AS . . .
!J . . .

TRTS rou 7777
I XX/'IC OPOEF I,J,K 11 • • •

lsvsn.H-OffINfl) . . . Hl\CPO<:; . • • 'ANO OPOEFS
IENOH

;· 1 I
SYSCOH l~~CRO N . .

• • i . . • 1J
ENOH

:1 DATE MICRO 1,10,• ••••
• • .
• • • 1svsTt H-OEF INFO HIC~OS
• • • tj 11 f NO

60492600 A

4.3.9 COMMENT-PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into
the eighth through fourteenth words of the PRFX table in the object program. The prefix table, and
thus the comment, is ignored by the loader but identifies the section. If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent
binary control statement. If the subprogram contains a NOLABEL instruction, the COMMENT instruc
tion is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are
ignored without notification.

Format:

LOCATION

string

OPERATION VARIABLE SUBFIELDS

COMMENT string

COMPASS searches the columns following the blank that terminates the operation
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters. If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4. 3. 5 for an example.

4.3. 10 NOLABEL - DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NOLABEL I

4-20 60492HOO F

Optional; if the variable field contains a character string beginning with an I, COMPASS
suppresses all prefix (77009) tables, but retains the other program header tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (77009)
Overlay control tables (50009)
Multiple entry point tables (51009)
PP header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4.3.11 LCC-LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

LCC directive

directive First nonblank character following LCC to the first blank. For directive formats, refer to
the Loader reference manual.

A location field symbol, if present, is ignored.

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
loader. COMPASS does not edit the directive; the loader recognizes illegal forms at load time.

4.3.12 LDSET-GENERATE LDSET OBJECT DIRECTIVES

The LDSET pseudo instruction generates loader LDSET directives for a relocatable program. A program
may contain any number of LDSET instructions. COMPASS collects all LDSET options and writes a single
LDSET (7000g) table in the relocatable binary output between the PRFX (77003) table and the PIDL
(3400g) tables. The LDSET table is not written if LDSET instructions do not appear in the program.
LDSET is not allowed in a PP or absolute CPU assembly.

Format:

LOCATION

options

LIB

60492600 H

OPERATION VARIABLE SUBFIELDS

LDSET options

One or more options separated by commas. See the Loader reference manual for further
information, including applicability to a particular operating system.

Clear local library set.

4-21

4-22

LIB=libname

MAP

MAP=p

MAP=p/lfn

MAP=/lfn

PS=p

PD=p

PRESET=p

PRESETA=p

Add the specified libraries to the local library set. More than one library can
be specified by separating library names with a slash, in the form:

libname1/libname2/ ••• /libnamen

Write load map to file OUTPUT.

Write load map to file OUTPUT. Map items are selected by p:

NOS and NOS/BE

N No map.
S Statistics.
B Block list.
E Entry point list.

X Cross reference map.

SCOPE 2

Oor 0
s
B
E

x

No map.
Statistics.
Statistics and block list.
Statistics, block list, and entry
point list.
Statistics, block list, entry
point list, and cross reference
map.

For NOS and NOS/BE, p can be written as Nor as any combination of SBEX
in any order.

Write load map to file named lfn. pis as above.

Write load map to file named Ifn. Installation default determines items on
the map.

Select page size for load map by a specification of number of lines. p can be
decimal 10 through 999999. A value outside this range results in the
installation default page size. This option is not supported by SCOPE 2.

Select print density for load map by a specification of decimal number of
lines per inch. This option is not supported by SCOPE 2. p can be:

6 6 lines per inch.

8 8 lines per inch.

other Installation default.

Preset memory to the value specified by p. Under NOS/BE, p can be a 1
through 20 digit octal number with an optional + or - prefix and an optional B
suffix.

p can also be one of the following key words:

NONE

ZERO
ONES
INDEF
INF
NGINDEF
NGINF
ALTZERO
AL TONES
DEBUG

No presetting for ECS (or for LCM and SCM under SCOPE 2);
same as ZERO for CM
0000 0000 0000 0000 0000
7777 7777 7777 7777 7777
1777 0000 0000 0000 0000
3777 0000 0000 0000 0000
6000 0000 0000 0000 0000
4000 0000 0000 0000 0000
2525 2525 2525 2525 2525
5252 5252 5252 5252 5252
6000 0000 0004 0040 0000

p can be as defined for PRESET. The lower 17 bits (CM/SCM) or lower 24
bits (ECS/LCM/LCME) of each word contains its address.

60492600 H

ERR= ALL

ERR=FATAL

ERR=NONE

REWIND

NOREWIN

EPT=eptname

NO EPT=eptname

USEP=pname

USE=eptname

COMMON

COMMON=blkname

SUBST=pair

OMIT=eptname

Select loader abort for any loader errors.

Select loader abort only for fatal loader errors.

Select loader abort only for catastrophic loader errors.

Reset the default REWIND/NOREWIN option for load files to REWIND. The
NR parameter on LOAD and SLOAD directives can override this default for
individual files.

Reset the default REWIND/NOREWIN option for load files to NOREWIN.
The R parameter on LOAD and SLOAD directives can override this default
for individual files.

If the symbol eptname is defined, declare it an entry point of the CAPSULE
or OVCAP binary subsequently generated by the loader. This parameter can
be used to specify more than one entry point; entry point names must be
separated by a slash in the form eptname1/eptname2/ ••• /eptnamen.

Do not declare eptname as a.1 entry point of the CAPSULE or OVCAP binary
subsequently generated by the loader. This parameter can be used to specify
more than one entry point. In this case, entry point names must be separated
by a slash in the form eptname1/eptname2/ ••• /eptnamen.

Cause the designated object modules to be loaded whether or not they are
needed to satisfy external references. More than one module can be
specified by separating module names by a slash in the form pname1/
pname2/ ••• /pnamen.

Cause the load of object modules containing the specified entry points
whether or not they are needed to satisfy external references. More than one
entry point can be specified by separating entry point names by a slash in the
form eptname1/eptname2/ •.• /eptnamen.

Assign all labeled blocks to a segment such that the blocks are available to
all segments that reference them. Valid for segment loads only.

Assign the labeled common block named blkname to a segment such that it is
available to all segments that reference it. Valid for segment loads only.
More than one block name can be specified by separating the individual block
names with a slash in the form blkname1fblkname2/ ••• /blknamen.

Treat external references to eptname1 as though they were references to
eptname2, where the entry point names are specified as a pair in the form
eptname1-eptname2.

More than one pair of entry point names can be specified by separating the
pairs with a slash in the form pair1/pair2/ ••• /pairn.

Omit satisfying external references to the specified externals. More than
one entry point name can be specified by separating the names with a slash in
the form eptname1/eptname2/ ••• /eptname0 •

A location field symbol, if present, is ignored.

60492600 H 4-23

See the Loader reference manual for details of these parameters, including the operating system to which a
given option applies.

4.4 MODE CONTROL

Mode control pseudo instructions influence the basic operating characteristics of the assembler.
Specifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data
Generates character data
Interprets the beginning of comments on statements
Qualifies symbols or does not qualify them
Interprets the R=instruction

BASE pseudo instruction
CODE pseudo instruction
COL pseudo instruction
QUAL pseudo instruction
Bl=l or B7=1 pseudo instruction

In each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.4.1 BASE - DECLARE NUMERIC DAT A MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base radix is
not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subprogram, COMPASS
evaluates unspecified numeric data as decimal.

An alternate application of BASE is to define the previous base as a micro.

In addition, if no program or system micro named BASE has been defined, COMPASS changes the
predefined BASE micro to be a single letter D, M, or 0, corresponding to the new mode established by this
BASE instruction.

Format:

LOCATION

mname

mname

mode

4-24

OPERATION VARIABLE SUBFIELDS

BASE mode

Optional 1 through 8 character micro name by which the previous BASE mode can be
referenced in subsequent BASE instructions. If mname is present, the value of the micro
named mname is (re)defined to be a single letter D, M, or 0, corresponding to the BASE
mode in effect prior to this BASE instruction.

Blank, in which case the base remains unchanged, or 1 through 8 characters, the first of
which designates the new base as follows:

0

D

Octal assembly base; any subsequent use of a data item not specifically
identified by an 0, D, or B prefix or suffix is evaluated as octal. For
example, the constants 15 and 15B are evaluated as 159; constant 150 is
evaluated as 17 8· Any item containing an 8 or 9 without a D radix is
flagged as erroneous. Exceptions are scale factors, character counts, shift
counts (S modifier), and binary point positions, which are always considered
decimal.

Decimal assembly base; any subsequent use of a data item not specifically
identified by an 0, D, or B prefix or suffix is evaluated as decimal.

60492600 H

Examples:

M Mixed assembly base; any subsequent use of a de.ta item not specifically
identified by an O, D, or B is evaluated as decimal if it is one of the
following. Otherwise, it is evaluated as octal.

*

other

V FD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count

B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count

Use base in effect prior to current base. The assembler records occurrences
of BASE pseudo instructions and maintains a table of the most recent 50
occurrences. Each BASE * resumes use of the most recent entry and
removes it from the list. When the subprogram contains more BASE *
imtructions than there are entries in the stack, COMPASS uses a decimal
base.

If the variable field is not blank and does not contain one of the above,
COMP ASS sets an error flag.

This example shows the effect of BASE on a VFD imtruction defining a 48-bit field containing 109.

Code Generated LOCATION OPERATION VARIABLE COMMENTS

'1' '11 '18 j30

o,.o ~ASf 0
I

oooonoonoonooo10 VFO 60/lr) I
I

I ~ASE I
o~o 0 I nooo I VFO 4~/~

DOOOD0000010 I

I~
I

o .. M RASE I
00000000 VFIJ

1 .. ~110 I
00000010 I

60492600 H 4-25

The following example illustrates the micro capability of BASE:

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

0,.M SAVER BASE M ISAVE BASE IN USE
I
1
coDE USING BASE M

BASE

• I : •
•

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE 0 (for Other) mode
is in effect.

Format:

LOCATION IoPERATION VARiABLE SUB~IHDS

expl,exp2

expl Evaluatable absolute expression whose value is 00 to 77 8• The value of expl is the
display code value of the character to be redefined.

exp2 Evaluatable absolute expression whose value is 00 to 77 8• The value of exp2 is the new
code other value of the character designated by expl.

A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those characters
whose code other values are different from display code. Characters may be redefined as many times as
desired by subsequent CHAR pseudo instructions.

Example:

00,.tiJ
63..tOO I

LOCATION OPERATION

CrlAR
CHAR

VARIABLE SUBFIELDS

4.4.3 CODE - DECLARE CHARACTER DAT A CODE

INTtkCHAN~E COLON ANO
Pt:RCEl\J T f UR COUt. 0 THrn

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCII (American Standard code for Information Interchange), display,
external BCD, or internal BCD, codes. If no CODE instruction is used, COMPASS generates display code.
Codes are given in appendix A.

4-26 60492600 H

An alternative application of CODE is to define the previous code as a micro.

In addition, if no program or system micro named CODE has been defined, COMPASS changes the
predefined CODE micro to be a single letter A, D, E, I, or O, corresponding to the new mode established by
thi; CODE instruction.

Format:

I LOCATION loPERATION

lconE
i

I VARIABLE SUBFIELDS

I char
I

mname Optional 1-8 character micro name by which the previous CODE mode can be referenced
in subsequent CODE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter A, D, E, I, or O, corresponding to the CODE
mode in effect prior to this CODE instruction.

char The first character of a string indicates the code conversion:

A

D

E

I

0

ASCII six-bit subset

Display

External BCD

Internal BCD

Other code, defined by CHAR pseudo i~tructions

* Use code in effect prior to current code. The assembler records
occurrences of CODE pseudo instructions and mainta~ a table of the most
recent 50 occurrences. Each CODE * resumes use of the most recent entry
and removes it from the list. When the subprogram contains more CODE *
instructions than there are entries in the stack, COMPASS generates display
code.

Example:

Code Generated

1725242025240000uOOJ
O,.A

576564&~6564JJUuJJOC
A,.E

462423472-2JGuQOOOuO
E,.I

4&6463476463JJ~~~JJU

r .. o
17252~202524uuO~uuilO

o,.r
46646347b463~U~J~~~~

60492600 H

LOCATION

I

'

I
I I

11

OPERATION VARIABLE COMMENTS

II lB bo

!DATA OLOUTPUT I
C'lOE ASCII
OATA OLOUTPUT I
CODE EXTERNAL BCD
DATA OLOUTPUT I
COOE INTERNAL BCD
DATA 0 LOUTPUT I 1 CODE f~ DI5PLAY
DATA 0 l OUTPUT I
I C'J~f 1 · ! OlHA CL0 1JTPUT

4-27

4.4.4 QUAL - QUALIFY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined in it
are either qualified or are unqualified (global). If no QU AL is in a subprogram, all symbols are defined as
global

An alternative application of QUAL is to define the previous qualifier as a micro.

In addition, if no program or system micro named QUAL has been defined, COMPASS changes the
predefined QUAL micro to be the new qualifier name established by this QUAL instruction.

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualified. Used
outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and a qualifier
become a tmique identifier local to the sequence in which the symbol was defined. The same symbol used
with a different qualifier is local to a different QUAL sequence. If a symbol is defined with no qualifier as
well as being defined as qualified, a reference to the symbol within the QUAL sequence is assumed to be a
reference to the qualified symbol rather than to the global symbol. In this case, a reference to the global
symbol must be written as// symbol. However, in a NOREF statement when the unqualified symbol is
previously defined and the qualified symbol is not, COMPASS assumes the reference is to the unqualified
symbol.

Default symbols and linkage symbols are not qualified.

LOCATION

mname

mname

qualifier

4-28

OPERATION VARIABLE SUBFIELDS

QUAL qualifier

Optional 1-8 character micro name by which the previous qualifier can be referenced in
subsequent QUAL instructions or symbol references. If mname is present, the value of
the micro named mname is (re)defined to be the 0-8 characters comprising the qualifier in
effect prior to this QUAL instructions.

A symbol qualifier or • or blank, as follows:

qualifier

*

1-8 character name, the first character of which cannot be $ or = or : or
numeric. The qualifier cannot contain the characters

+-*/,or A

A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next QUAL must be
referenced from outside the QUAL sequence as

/qualifier /symbol

The current qualifier appears as the third sub-subtitle on the assembly
listing (section 11.1).

The assembler resumes using the qualifier in use prior to the current
qualifier. The assember records occurrences of QUAL pseudo instructions
and maintains a table of the most recent 50 occurrences. Each QUAL *
resumes use of the most recent entry and removes it from the list. When the
subprogram contains more QUAL *instructions than there are entries in the
stack, COMP ASS uses the null (global) qualif er.

60492600 H

blank

Examples:

LOCATION

I ·,

eroF
I
I
I

lnroE

GLOR

60492600 H

A blank variable field causes any symbols defined up to the next QUAL to be global.
A global symbol does not require a qualifier.

NOTE

The first attempt to redefine a global symbol from within a
QUAL sequence results in A and U errors. The symbol is
defined local to the QU AL sequence with a zero valuec To
avoid fatal errors, precede any redefinition imtruction (SET,
MAX, MIN, or MICCNT) within a QUAL sequence with a
blank QUAL and follow it with a QUAL*.

OPERATION VARIABLE COMMENTS

II 18 ho

QUAL PASS! I
I <:Xo F IRCnE OUALIFIED :~\' PA5S1

If ~4L
I • I I • I I LOC1

I I PllC)S?
mu LOC2 I r.r, DE OUALIF!rD RY PASS2
OUl\L jSY,..ROLS GLOqAL F 0 0M NOW ON . .

I I
SS~ (' I GLOB IS GLOBAL I
RJ /PnSS1/8CDFiJUMD TG PViS1 ROUTINI=" . . I . .
RJ /P~SS?/PCDf !JU~P TO PAC)S? POUTINE

4-29

Location Code Generated LOCATION OPERATION! V~RIABLE COMMENTS

11 18 30

T ~p 1"4Af"'C>() qLOf'l(,'('WAL
IJ<; F. DL orl<'
OU!\L l<W '1l

Tl\ r, 1 R<::<:: , rt Cl

·r t1C:? vrn C..Q /-1
IJSI=" ..
I;! I Ill ..
[Nr)M

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 ho
QUAl l I

71 ~SS 0 I Z1 QUALIFirn RY 7 . . 1: . .
I ~U~l

. I·
9 !EQUATE SYM!30LS so TH/\T

Z1 I IZIZ1 1 Z 1 IN Z CAN Bf REFE1Hrn
!TO AS Z1 IN 8

4.4.5 Bl = l AND 87 = l - DECLARE THAT B REGISTER CONTAINS ONE

The Bl=l and B7=1 pseudo instructions declare that in this CPr subprogram, the contents of the Dl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (section 4. 8. 7) and define the symbol Bl 1
or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

4-30 60492600 H

Formats:

LOCATION OPERATION

Bl=l

IB7=1

I

VARIABLE SUBFIELDS

A symbol in the location or variable field is ignored.

Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (section 4.8. 7).

4.4.6 COL - SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATION OPERATION I VARIABLE SUBFIELDS

COL

n An absolute evaluatable expression designating the column number; n 12. When base is M, n
is assumed to be decimal. If n is less than 12, COMPASS sets the column at 12. If n is zero
or blank, COMPASS sets the column to 30, the default column.

If the current operation field extends past the current comments column, COMPASS
substitutes a very large number for n in the current instruction only; that is, if n is less than
or equal to the last column of the operation field, a variable field must be present if a
comment is present.

A location field symbol, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T Jo
T COL 36 I

use: :RETURN TO BLOCK 0

In this example, subsequent statements for which the variable field is blank cannot have comments
begiming before column 36.

60492600 H 4-31

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control use of
all program blocks, and provide the user with a means of changing origin, location, and position counters.

4.5. 1 USE - ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The block in use is the block
into which code is subsequently assembled. A user may establish up to 252 blocks in a block group.

Format:

LOCATION

block

OPERATION VARIABLE SUBFIELDS

USE block

Identifies block to be used, as follows:

O or blank

II

/name/

name

*

Nominal block (absolute or 0).

Blank common block; for a relocatable subprogram, this block cannot
contain data. The only storage allocation instructions that can follow are
BSS and ORG. The BSSZ instruction is illegal because it presets the block
to zeros.

Labeled common block. A name can be a maximum of 7 characters and
cannot include blank or comma. The first and last characters must not be
colons. Conventions imposed by the loader or other assemblers or
compilers could further restrict the use of names.

Local block. A name can be 1 through 8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled common
block. For example, USE A and USE/ A/ are different blocks.

Block in use prior to current USE, USELCM, ORG, or ORGC. See
discussion fallowing.

A location field symbol, if present, is ignored.

The nominal program block contains the entire program if no USE or USELCM is encountered.

Redundancy between block names is permitted as follows.

A labeled common block designated by /0/ can coexist with the program block designated by O. Blank
common designated by// can coexist with a labeled common block designated as////.

4-32 60492600 H

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two biocks
with the same name and the same block type if they have different memory types (CM/SCM or
ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name~

When a block is first established, its origin and location counters are zero and its' position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for
the origin and position counters. The value of the location counter is not saved. Upon resumption of
the bl?ck, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
USE * and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and
USELCM * resumes use of the most recent entry and removes it from the table. When the subprogram
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses
the nominal block.

Examples:

Location Code Generated lOCATION OPERATION VARIABlE COMMENTS

1 11 18 130

U5E' I
u 0100000000 G~MMA PJ ALPHA I AL Or.K I') IN USE'

lJ~F DATA! I BLCr::K DATA1 IN us~
35 11zo~oooonooooooooao Sl\P OATI\ 1.0 I

us~ • !RESUME USF OF 8LOCK
14- 5130000000 5A3 <\llM I

Note that the SAS is forced upper because the RJ causes a force upper of the next instruction in the
block.
Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 llo

0

USE TABLE ;use: IABLE LOCAL BLOCK
2&15 00 VFD 6/0 I

USE • 1Rt:SUHE PREVIOUS BLOCK
I • .
I •

• • I • i • • ~RESUH~ I USE TABLE USING TABLE
30002&00 + I VFO 6/1RX,18/S I

I USE • I Rc.~UMl'. i=>REVIOUS BLOG K

Note how separate blocks can be used to facilitate packing cf partial-word bytes into a table residing in
a block other than the one primarily being used.

60492600 H 4-33

4.5.2 USELCM - ESTABLISH AND USE ECS/LCM BLOCK

The USELCM pseudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatable assembly, data generating instructions
(including BsSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG,and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU
assemblies.

Format:

LOCATION

block:

OPERATION VARIABLE SUBFIELDS

USE LCM block

Identifies block to be used, as follows:

0 or blank

II

/name/

name

*

Illegal.

Blank common block. A S1ibprogram can have two blank common
blocks if one of them is in E CS/LCM.

Labeled common block. The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
con;i.pilers could further restrict the use of names.

Local block. t The name can be 1-8 characters, excluding blank or
comma. The first character must not be a colon. Use of this name
enclosed by brackets does not cause the block to become a labeled
common block. For example, A and /A/ are different blocks. All
of the local ECS/LCM blocks are concatenated to form a single block,
which is treated by the loader as an ECS/LCM common block whose
name is unique to the subprogram.

Block in use prior to current USE, USE LCM, ORG, or ORGC.

A location field entry, if present, is ignored.

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048, 568
words.

Further rules for USELCM are the same as for USE.

t SCOPE 2 does not currently allow local blocks in LCM.

4-34 60492800 H

Examples:

r LOCATION

1

I
I ILCHC

01 0"4

I UL. \.I.&.

BLOC2

I

BLOC3

OPERATION 1 v AKiAilf COMMENiS

II

BASE

lu~f.LCH
1ess

I
, SSS
ass

I USE
i.

I
, ~RG
ass

jUSE

18

0

LCH

I ~oo
1200
1·

130

T
I
I
1ES 1 ABLISH ANO USE l~M
1UEFINE SYMBOL LCHC
jRESERVE 1GG WORDS
1RESERVE 200 WORDS
iRESUHE PREVIOUS BLOGk

I •
• I
BLOC1+100DB I
20 IRESERVE 20 HORE
• JRESUHE PKEVIOUS

WORDS
BLOLk

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

BLQt;K

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location count.era are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC t indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG. In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by
the linking loader if that common block was first declared by a previously loaded subprogram. If two
or more programs in a load sequence preset relocatable t.ext within the same common block, the ORGC
must be used; otherwise, multiple relocation of those words can occur.

Formats:

LOCATION OPERATION VARIABLE SUBFIELDS

ORG exp
ORGC exp

I
exp Expression specifying the address to which the origin and location counters are to be

set. Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

t Not supported by SCOPE 2 Loader.

60492600 H 4-35

1. If the expression contains a symbolic address, COMPASS uses the block in
which the symbol was defined.

2. COMPASS uses the current block if the value of the expression is *, *L, or
*O. If the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of*, *L, or *O is to
force the next instruction upper. If a word is partially assembled, however,
the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

3. An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value. It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignored.

Once an ORGC pseudo instruction has established the conditional loading indication for a given common
block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

USE ALPHA
• • • . • .
• • •

ABC DATA 20,100,1000 LOCATED IN ALPHA

• • .
• • •
USE BETA

XY7 BSS 0 LOCUEO IN BET A
• • •
• • •
• • •
ORG ABC SETS ALPHA COUNTERS TO ABC
• • ANO RESUMES USE OF ALPHA
• . .
ess 1000
• • .
• • •

4-36 60492600 H

i i LOCAilON

'1'

11

11

I

11

11

DATA

FOUR

i OPEUiiON i VARIABLE

1
11 '1e

•
USE
•
•
•
USE

•
•
•
USE
•
•
•
•
USE

•
I •

l ~SE
j UiE
B~S
O~GC
DUA

USE
CON
USF
DATA
'UTA

j I ~:G
qJ

I :

t;O

•
•
XYZ+101J

I •

I :
•

• •
•
•
• •
•
•
•
• •
•

I :
I

•
/DATA/

0
DATA
1,2,3

ANYBLOCt<
3RXYZ
•
4
5,6

FOU~

X1,ER~OR
SUB4

COMMENTS

ho

!SETS ABSOlUTE BLOCK COUNTER
,ro 50 ANO BEGINS ITS USE
•

ISETS BETA COUNTERS TO XYZ+100 ,. , .
•

IRESUH£S ABSOLUTE ~LOCK
i• , .
i;ESUHfS
I •
1 • , .
jRESUHES , .
1 • 1:
I RESUMES

I• , .
•

BLOCK ALPHA

BLOCK BETA

BLOCK ALPHA

1RESUHES NOMINAL BLOCK

CONDITIONALLY 0~ES~T DATA

UNCONDITIONAL DAT~

RFTURN TO /OAT4/ 5TTLL
~ONOITIJN~LLY SKIPPING

UNCONOITIONALLY LOAOEQ
INST~UCTIONc::;

4.5.4 BSS- BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reserving blank
common storage. It can also be used to reserve an area to receive replicated code (see REP, REPC,
and REPI, section 4. 8. 8).

60492600 H 4-37

Format:

LOCATION

sym

sym

aexp

Example:

LOCATION

I

COMMON

TAG

OPERATION VARIABLE SUBFIELDS

aexp

H present, sym is defined as the value of the location counter after the force
upper occurs. It is the beginning symbol for the storage area.

Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp cannot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.

OPERATION VARIABLE COMMENTS

II 18 130

USE II I

BSS 10008 I RESERVE 512 WORDS Of BLANK roM MON
USE • I
• • I •
• • •
• • I • SA& COMHON•500BI . . .
• • I •
• • I ~EFINE BSS D SYMBOL TAG

le • I

4.5.5 LOC - SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be .generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined.while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format·

LOCATION OPERATION VARIABLE SUBFIELDS

LOC exp

4-38 60492600 H

Helocatable expression specifying the address to which the location counter
is to be set. Any symbols in the expression must be already defined in the
assembly and must not result in negative relocation.

A location field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagged.with an Lon the listing until a LOC *O, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not affect the origin counter except that it causes the next instruction to be
forced upper. The only effect of LOC * or LOC- *Lis to force upper. Because COMPASS does not
save the value of the location counter when it switches blocks, a USE, ORG, ORGC, or USELCM for
a different biock effecti veiy resets the location counter to the origin counter value. When use of the
block is resumed, it is the responsibility of the user to reset the location counter to produce the desired
results.

Example:

In the foUowing example, the first LOC is used to generate PPU code that is to be loaded into one
PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the
program, LOC *O returns the location counter to the value of the origin counter.

Location

7100
7100

L 100
L 100
L 101
L 102
L 103

L 205
L 0
L 0
L 1
L 2
L J
L 4
L 5
L 6
L .,

L 215
L 215
L 2lt0

72 .. 0

60492600 H

Code Generated

2400
2400
ZltOO
6100 0100

0100
011 ..
0121
0132
0136
011t7
0240
1000

1
0

I

I 10CAT•ON I OPERATION I VARIABLE - .. COMMENTS

11 18 '30

T1 EQU 1 l

CH EQU 0 I
ORG 7100 I

RfS ass 0
I LOC 100

PPR PSN 0 I
PSN 0 I PSN 0
f"IM PP~,CH I

• • • I
• • • I
• • • I IPPRA RSS 0

lOC 0 I
CON PPR I

CON STM I
CON DPH I CON EXR

- CON CHS I
CON OHP I CON END
CON 1000 I

• • • I
• • • I
• • •

~ND
LOC •o-RES+PPR I
RSc; 21tO-•

I BSS
LOC •o I

4-39

4.5.6 POS - SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:

LOCATION OPERATION VARIABLE SUBflELOS

aexp

POS ae.xp

An absolute evaluatable expression having a positive value less than or
equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.

NOTE

If the POS instruction is used on a word containing relocatable or external
addresses, undefined results can occur with no diagnostics.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been
stored into bit O (the rightmost bit) of a word, COMPASS increments the origin counter and the
location cwnter and resets the position counter to 60 (or 12).

A POS *P has no effect whereas a POS $subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the symbolic reference table, a refer
ence t.o an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and= cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-40 60492600 H

4.6.1 EQU OR= -EQUATE SYMBOL VALUE

An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:

LOCATION

sym
or

sym

sym

exp

Examples:

OPERATION VARIABLE SUBFIELDS

EQU exp
I

I=

20 .. 37
7 '+

3
71+

&4271

I

jexp

A location symbol is required. See section 2. 4 for symbol requirements.

An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external. The expressioo. cannot contain symbols
prefixed by =S, =X, or =Y unless the symbols have also been defined conven
tionally. If the expression is erroneous, COMPASS does not define the location
symbol but flags an error.

LOCATION OPERATION VARIABLE COMMENTS

I II IB T3o

OPS = 204378 I

I
LINP : 7'+B I
CH EQU 3 I
PAGESIZ = LINP I
LG OPS EUJ •-OPS I

4.6.2 SET - SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, MAX,
MIN, or MIC CNT, only.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym SET exp

60492600 H 4-41

sym

exp

A location symbol is required. See section 2. 4 for symbol requirements.

An evaluatable expression. The expression cannot include symbols as yet undefined
and cannot contain symbols prefixed by =S, =X, or =Y, unless the symbols are
also defined ccmventionally.

If the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag.

The symbol in the location field cannot be referred to prior to its first definition.

Examples:

LOCATION OPERATION VARIABLE COMMENTS

1 II IB lJo

17 A EQU 15 IA HAS VALUE OF 1~

I HAS VALUE OF POSITION COUNTf 8 SET •P ,s R 11+

c SET A+3 'c HAS VALUE A+3 O~ 1A
I

22

76 0 = 8+2 I ILLEGAL, e IS DOUBLY DEFINED
I

c SET C+2 I LEGAL, C CHANGfS FROM 18 TO 20

0 SET F+A I ILLEGAL, f AS YET UNDEFINED
I

ess AA !ILLEGAL, REFERENCE P~ECEOES

20 AA SET 1&
IFIQST OEFINITION

I

4.6.3 MAX - SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MAX can be used to redefine symbols defined by these instructions.

Format:

LOCATION

sym

sym

4-42

OPERATION VARIABLE SUBFIELDS

MAX

A location field symbol is required. See section 2. 4 for symbol requirements.

An evaluatable expression. Any symbols in the expression must be previously
defined. The expression cannot contain symbols prefixed by =S, or =X, or =Y
unless the symbols are also defined conventionally.

60492600 H

The expressions should have similar attributes. No test is made for attributes. The test for maximun1
value is made in pass one. In testing for the maximum value in pass one; COMPASS uses values for
relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:

5
&
2

I
I
I

iOCAiiON

I

PT3
PT31
PT32

SYH

OFEiAiiON

II

EQU
EQU
EQU

I
IMAX

VA.iiAiiE \..VMMc

18 ho
5

-r
I

6 I

2 I
I
I

PT3,PT31,PT32

4.6.4 MIN - SET SYMBOL TO MINIMUM VALUE

I;)

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:

LOCATION

sym

sym

OPERATION VARIABLE SUBFIELDS

MIN

A location symbol is required (section 2. 4).

An evaluatable expression. Any symbols in the expression must be previously
defined. The expression cannot contain symbols prefixed by =S, =X, or =Y,
unless the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

60492600 H 4-43

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning
flag.

The symbol in the location field cannot be referred to prior to its first definition.

4.6.5 MICCNT - SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symbols defined by these instructions.

Format:

LOCATION

sym

sym

mname

Example:

23

4-44

OPERATION VARIABLE SUBFIELDS

MICCNT mname

A location symbol is required (Section 2. 4).

Name of a prc"tiously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued.

LOCATION OPERATION VARIABLE COMMENTS

MSG

MSIZE

MSG
MS.G

MSIZE

11 18

MICRO 1,, •STRING• I OFF! NE 6-CHARACT F.R MICRO

• , .
1· .

MICCNT HSG
• •

IMSIZ£ EQUALS 6
I.

• I·
• l •

MICRO 1,,•ALPHANU~ERIC tHSG'•
MICRO 1t~·~~eH~NUf1~~t~ STRiNG~

19 CHAR. MICRO
19 CHAR. MICRO

MICCNT HSG !HSIZE EQUALS 19

60492600 H

4.6.6 SST- SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are defined automatically at the start
of each assembly; however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

SST

One or more symbols on the file that are not to be defined.

A location field symbol, if present, is ignored.

Refer to section 10. 2 for an example of SST use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symbols
defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram.

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

. The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiied or assembied independentiy; ENTRY iists entry points to
the current subprogramo ENTRY is illegal in PPU assemblies.

The ENTRYC t pseudo instruction conditionally specifies which of the symbolic addresses defined in
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists conditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemblies. In a relocatable assembly, an entry point
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a
common block and that common block was first declared by a previously loaded subprogram.

t Not supported by SCOPE 2 Loader.

60492600 H 4-45

Formats:

L°'ATION OPERATION

ENTRY
ENTRYC

VAii.ABLE SUBFIELDS

SYJlli,SYIJl2'"""'SYJJln
SYIJll,Synl2, ••• ,syinn

Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the
last must not be a colon. The symbol cannot include the following characters:

+ - * I blank , or /\

Each symbol must be defined in the subprogram as nonextemal (cannot begin with
=X or =Y or be listed on an EXT pseudo instruction). Entry point symbols must be
unqualified (section 2. 4. 5).

A location syinbol, if present, is ignored.

A list of all entry points declared in the subprogram precedes the assembly listing. An asterisk
appears to the right of each conditional entry point.

Example:

Location

110
110

Code Generated

110 5120000100
P720

111 5110000002

LOCATION

I

~Ot<'TROL
~ODE

OPERATION

II

IOJ:NT
ASS
FNTRY
E'NTRY
f NTRY
FNTRY
ENTRY
fNTRY
FNTRY
O~G
~sc;

SA2
SX7
SA1

.
• .

VARIABLE COMMENTS

18 l3o

CT,CONTROL,CTONTqQl

t100f
ONSW
OFF<;W
ROLLf'UT
SETPR
SE TTL
SWITCH
11on
0
ACTP
X2
?

. . .

4-46 60412600 H

4.7.2 EXT- DECLARE EXTERNAL SYMBOLS

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled or
assembled subprograms for which references can appear in the subprogram being assembled. The
EXT pseudo instruction is illegal in an absolute subprogram. In a relocatable subprogram, EXT
defines symbols as strong externals (section 2. 4. 1).

Format:

LOCATION OPERATION

EXT
1 VARIABLE SUBFIELDS

1sy:ml,syin2, ••• ,syinn
I

Linkage symbol, 1-7 characters of which the first must be alphabetic (A-Z) and the
last must not be a colon. The symbol cannot include the follo\ving characters;

+ - * I blank , or A

These symbols must not be defined within the subprogram. External symbols
are unqualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listin~.

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ

blank operation field

DATA

Generates zeroed words

Generates one zeroed word

Generates one or more words of data

Generates one or more words of data

Generates literals block entries

Places expression values in user-defined fields

Places expression values in full words

DIS

LIT

VFD

CON

R= For use in macros; R= assumes that either (Bl)=l or (B7)=1 and
generates increment instructions accordingly

REP, REPC, or REPI

60492600 H

Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4-47

4.8.1 BSSZ .AND BLANK OPERATION FIELD-RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the same effect as a BSSZ of one word.

Format:

LOCATION

sym

sym

aexp

OPERATION VARIABLE SUBFIELDS

BSSZ aexp

If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.

Absolute evaluatable expression specifying the number of zeroed words of
storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing
shows the word count.

4.8.2 DAT A - GENERA TE DAT A WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words in the
current block for each item listed in the variable field.

Format:

LOCATION

sym

sym

4-48

OPERATION VARIABLE SUBFIELDS

DATA

If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed.

60492600 B

item.
l

Character, octal numeric, or decimal numeric data item, according to
specifications described in section 2. 7. floating point notation is illegal in
PPU assemblies. Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.

Uniess the D list option is selected, only item.1 appears on the listing.

Examples:

Location Code Generated

~sz 1'011100000000000000
553 \OOOOOOOOOOUOOOOOOOO
554 03171520111405090900
555 17252 ... 202524UOOOUUOO
556 00000000009000000000
557 172051463146314&311t6
560 16~031,63146314631,&

Location Code Generated

o.-o

I

LOCATION

I

OPTB
OPT
O.,TT
OPTO

OPTY

LOCATION

I

OPERATION VARIABLE

11 IB

DATA OLLGO
DATA 1sss;q
DATA IJLCO"PILE
DATA OLOUTPUT,O

DATA 1.3E£

OPERATION VARIABLE

11 18

~ER I PH

r ~ASE

le

• •

COMMENTS

130
_I

I
I
I
I
I
I

COMMENTS

T3o
I
T

I
I
I

1250
1251
1252
1253
125 ..
12SS
125&
1251
126{)
1261
1262

1070
1110
0000
0034
5501
00-00
0506
0123
7773
Olt01
2 ... 01

~AT PATA l7070,-7,0,1Rf
I
I

PATA 12C A,OLEF
I
I

I I

I
I

ATA 123,-lt I
Ii

4.8.3 DIS-GENERATE WORDS OF CHARACTER DATA

The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected
only the first word of character data appears on the listing. The instruction has two formats:

60492600 H 4-49

Format one:

LOCATION

sym

sym

n

string

OPERATION VARI.AILE SUBFIELDS

DIS n, string

If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

An absolute evaluatable expression specifying an integer number of words to be
generated. When base is M, COMPASS assumes that n is decimal.

Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as th~y occur
10 characters per word into n words. For a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks.
If n is O, COMPASS assumes the instruction is in format two.

Format two:

LOCATION

sym

sym

d

string

OPERATION VARIABLE SUBFIELDS

DIS ,dstringd

If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

Delimiting character

Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters. The comma is required. The characters between
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them.
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an
additional word for them. If COMPASS detects the end of the statement before it detects a second
delimiting character, it produces a fatal error.

4-50 80492600 H

Examples:

Locatidn Code Generated

561
562
563
561t
'56'5

Location

1402
1403
1404
1405
1406
1407
1410
1411
1412
1413
1ft.14
1415
1lt16
1417
1420
1421
1422
1423
1424
11+25
142b

07051&05220121t05S535
550321255527172201t23
07051605220121t055535
sso32a2sssz111zzu-2s
ouaooouoooa100000000

Code Generated

0705
1605
2201
2405
5534
33~5

2020
5527
1722
u'+23
0705
1&05
2201
2405
5534
3355
2020
5527
1722
0&+23
0 IJO 0

0,.M

4.8.4 LIT - DECLARE LITERAL VALUES

LOCATION

I

I ONE

I TWO

11

LOCATION

I

I I
11
1 I I I

i

OPERATION VARIABLE COMMENTS

II 18 '30
DIS 2,GENERATE ?l CPU wo~os

I
DIS 1,•GENE~ATE 21 CPU WORDS•

OPERATION VARIABLE COMMENTS

11

PPJ

BASE
UIS

18 '30
:
I

l
M I
10tl.1ENERAT[lu PP wORU~

I

I
I

I
I

I

l ,•GENt:RATt: 10 ,JP ~OROS•
t

A LIT pseudo instruction generates data words in the literals block. This instruction and the
= prefix to a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym LIT

60492600 H 4-51

sym If present, sym is assigned the value of the literals block location counter.

At least one and not more than 100 words of character, octal numeric, or
decimal numeric data items. Section 2. 7. 3 contains specifications. Items
are separated by commas and terminated by a blank. Floating point data
items are illegal in PPU assemblies.

COMPASS enters data items into the literals block in the order specified.

If ·the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
the block, the entire sequence is generated. A literal item subsequently referred to through an
=prefix is not duplicated. A null item (e.g. H** or OL) does not cause a word to be generated.

Examples:

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II IB TJo

611 POOL lIT J.1,1.59265,2.7182182,57.2957195EE1

009611
000612
00~613
0 Oll611t
000615

Location

7 ,
7 .. 50
71t51
, .. 52
7 .. 53
71t5 ..
71t55
n.s&
7 .. 57
7tt60
7 .. 61

4-52

CONlfNl CF LITEPOLS ELOCk.
1121&11t&31~&314&31'+6 oar-v-v-v-
1120&275576441776211 OPJ~.t6;J•
17215337351136014~26 0Qflt?I1A9V
1731436365141t0663121 OYe•~LSvYQ
16513333033540~76566 N<OOC2S.~v

Code Generated LOCATION OPERATION

I 11

71+1t7
71t53
'7456

N2 LIT
LIT
LIT

CONTENT CF LITF~lLS eLoc~.

8034
7070
0007
0000
5501
oono
0506
11t11
24tU5
2201
1 .. ZJ

1

G

A

f F
LI
TE
RA
LS

VARIABLE COMMENTS

18 ho

1~1,7070,7,tJ
I 2C A, OLEF I

H•LITERALS• I

60492600 H

4.8.5 VFD - VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

I i.OCAiiON

sym

sym

item.
l

VFD

For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym

blank

If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

Causes a force upper. Data generation begins in a new word.

COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

COMPASS begins the first field at the current value of the position
counter.

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word. If the location field is blank, the first
field begins at the current value of the position counter.

An unsigned constant or previously defined symbol having a value specifying a
positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value). When base is M, item.
is assumed to be decimal notation.

1

An absolute, relocatable, or external expression, the value Of which will be
inserted into the field specified by itemi. The expression is evaluated ·using
the specified field size. Character constants are right or left justified in the
field according to the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Each field is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no
operation ~nstructions.

60492600 H 4-53

When a VFD instruction that does not have a location field entry immediately follows another VFD in the
same block, .. no padding with zeros or forcing upper occurs; fields are generated sequentially as they are
specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the last
word in which data was generated by the VFD.

/

Examples:

In the first example, the symbol TABLOC has been defined earlier in the program and associated with
000551.

Location Code Generated

31
566 2~010200000023000551

567 0000000566SSS55SS555
570 777777771+

0000110000000
571 11172401550155555531
572 00000015052323n1070S
573 031117000000033

Location

1310
1311
1312
1313
1314
1315
1316
1311
1320

Code Generated

3331t
3536
37 .. 0
4142
lt3 .. 4
0010
0011
1765
0707

o,.H

4.8.6 CON -GENERATE CONSTANTS

I

I

LOCATION OPERATION

II

ALPHA SfT
TtlRLE VFO

VFn

VFO
VFO
VFD

LOCATION OPERATION

II

PPU
BASE

N4 VFO

A11 VF'l

VARIABLE COMMENTS

IB 130
"T -r

25 I
36/3CTAB,6/1q,1~/TABLOC
301•-t,30/r;H , ALPHA/-0

I
•P/ I
30/0HIOTA,f./1Rtl,24/0AX+1
160/0RMESSAG~,30/JLr.ro,tS/ORO

VARIABLE COMMENTS

18 llo
T

H I
60/10R0123456789

I
I
I

12110,12111,121-12,121-1010
I
I

The CON pseudo instruction generates one or ore full words of binary data in the block in use. It differs
from DATA in that it generates expression values rather than data items and differs from VFD in that the

I field size is fixed. For relocatable or external addresses, CON generates a 60-bit address constant that is
not appropriate for routines built into capsules or overlay capsules.

Format

LOCATION

sym

sym

4-54

OPERATION VARIABLE SUBFIELDS

CON

If present, sym is assigned the value of the location counter after the force upper occurs.

An absolute, relocatable, or external expression the value of which will be inserted into a
field having a size of one word. For PPU assembly, floating point is not allowed; for CPU
assembly, double precision is not allowed.

60492600 J

Examples:

In the first example, the symbols FAIL and PASS have been defined earlier in the program and associated
with 2204 and 2172, respectively.

L
L
L
L
L

L
L
L

Location

1•~"
1461
146~
146~
1464
} 4f,f:\

146~
1467
147('1
h71

Location

571+
!)

n
1
2
3

75
76
77

67 ..

Code Generated

nooo
l')Onf.

no111
?2!l4
00?4
oono
0 0 t\f.
0(11'1

?17?
n n ·.>4

Code Generated

oooooooooonoooooooss
00000000000000000062
ooonooooonooonoono~1+

00000000000000000060

000000000000~0000~66

ooooooonoooooooooo1&
ooooooouoooooouooos~

1

LOCATION

1"1S~l

I

t.ASr.?

LOCATION

fl AO

4.8.7 R =.-CONDITIONAL INCREMENT INSTRUCTION

OPERATION VARIABLE

11 lB

Ir·"'-! I~
~

I~~:: I~~ A II , ,. ·"\!';

! ,.. "f\· 7n

r. "'' 0

r. '"'
,._

r. .," 3 c ,,._ P.4c;S
("°\ ... 2•!

OPERATION VARIABLE

II

pc_;c:;
LO~
roN
f'ON
roN

1
f'ON

I :
I • I CON

I
ro"'
CON
Lor.

18

n
f)

1~

HJ
11~~
I 1~=

I :
I
.
l~Y

I
11r
1 !>

•o

COMMENTS

ho
I

!

I
I
I
I
I

1
I

COMMENTS

I oo
1
1]1

02
loJ
I •
I •
I •
175
I 1&

177

The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the
variable subfields and on whether or not the subprogram earlier contained a Bl=l or B7=1 pseudo
instruction (section 4. 4. 4).

Use of R= augments macro definitions and increases optimization of object code. It is illegal in a
PPU program.

The A list option controls listing of substituted instructions.

Format:

LOCATION

sym

sym.

60492600 H

OPERATION VARIABLE SUBFIELDS

R= reg, exp

Optional, if present, sym is assigned the value of the location counter after
the force upper occurs. This force uvper occurs whether the R= generates an
instruction or not.

4-55

reg

exp

A register designator (A, X, or B) and a digit (0-7) which COMPASS
concatenates with S to form the instruction operation code.

Operand register or value expression. If exp is the same tw-:> characters
as reg, no instruction is generated.

If the expression value is O, the variable field is BO.

If the Bl=l instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field of the instruction is Bl,
Bl+Bl, or -Bl, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7,
B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the
expression.

Examples:

1. R= used with Bl=l

Code Generated LOCATION OPERATION VARIABLE COMMENTS

ll 18 30

P171
P= ;~3.')

2. R= used with Bl;il

Code Generated LOCATION OPERATION' VARIABLE COMMENTS

ll 18 30

T IH~ P- XS,-~

4-56 60492600 H

3. Expression is same as register designator:

LOCATION 1OPERATION
1

VARIABLE COMMENTS

I ln 18 '30
RF'G !°Mii:RO 1,,,,.n.c;• ~

l·:·· .. ·.· ... ·.R····.··.· -.~.: ..•. ·:·. _e:::··· .:::·.:·.l •. : .. ·q···: .. ·· .. :· .. 5.·:······: •. : ... :.· .• ·~· .. •.·.·.··.·t····.·.8 ... •.: .. :•. ·:· ... ·~.·.· .. ·.·.·.•.: .. • .. •.G.·.·· .. :: .. :.•.·.·.··.•.t:.·.· .. ··. ···<le5,&11·

No instruction is generated; SB5 B5 would be a no operation instruction.

.4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun
tering the table; for REP, the replication takes place at the end of loading·. For RE PC+ the loader
ignores the REPL table if the destination data address is in a common block that \\'as first declared
by a previously loaded subprogram; otherwise, the loader generates the copies in'lmediately upon
encountering the tables.

Replication of object code is valid in relocatable assemblies only. It is particulal'ly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPC and REPI, data must be in previously assembled text.

Format:

LOCATION OPERATION

REP
REPCt
REPI

VARIABLE SUBFIELDS

S/saddr, D/daddr, C/rep, B/bsz, I/inc

A location field symbol, if present, is ignored.

The variable field subfields can be in any order.

S/saddr

D/daddr

Relocatable expression specifying first word address of code to be copied.
The S/saddr subfield must be provided. If it is zero, or omitted, the assemblee
flags the instruction as erroneous and does not gener::ite an RE PL loader tablC'.

Relocatable e)qn·ession specifying the destination of the first \rnnl of the first
copy. If D/daddr is omitted, the assembler sets dadd1· to zero, and, \\'hen
daddr is zero, the loader uses sadclr plus bsz for the destination address.

Note that room for the repeated data n1l'st be reserved in the destination block.

+ Not supported by SCOPE 2 Loader.

60492600 H 4-57

C/rep

B/bsz·

I/inc

Absolute expression specifying the number of times code is to be copied. When
base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the assembler sets rep to zero. When rep is zero or one, the loader
makes one copy.

Absolute expression specifying the number of words to be copied (block size).
When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one,
the loader copies one word.

Absolute expression specifying the increment size in words. When base is M,
COMPASS assumes that inc is in decimal.

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
inc x rep. Storage reservation for replicated code is the responsibility of the user.

Rules for replication:

1. The S subfield cannot be omitted

2. Room must be reserved for the copies in the destination block (for example, through
ORG, ORGC, or BBS)

3. REP, REPC, and REPI can be used in relocatable assemblies only

4. Data to be replicated must not contain any external references or common block relocatable
addresses

5. For REPC and REP!, data must be in previously loaded text

Example:

Location

4-58

c;o11
c; O? FJ

c:;o~t

c;on
r;o?3
c; 024

S251

Code Generated

10

ooonooooooo~oo~ooo1r;
nqooooonnrycQOO~Qoo20

000000000000~0007070

ooooooononoa1onoooo1
nooooooronnoooryoooos
17216lOOOOOOOOOOOOOr

1~

LOCATION

I

Pf

Pl\

I

Ot\

OPERATION

II

:

USE
OATA

fOU
USC:
PS~

llCSE
PFPI

VARIABLE COMMENTS

IB T3o

11) r NF.WO
1G,c~,7070P,1,r;,3.14

I
I
I

·- "" +c;
I

fHlLN~I(I
r>f" • T I ..
S/n~,otnA,P/J-S,C/~C,I/T

60492800 H

459 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environment (IFtype)
Com.pare values of two expressions (!Fop)
Compare values of two character strings (IFC)
Test the attribute of a single symbol or an expression (IF)
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the tested condition
is true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement count, when used, is decremented for instruction lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4. 9.1 ENDIF - END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIY. is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

~ipped instructions such as macro references are not expanded. Thus, any END IF that would have
resulted from an expansion is not detected.

Format:

LOCATION

ifname

if name

OPERATION VARIABLE SUBF IElOS

END IF

Name of an IF, SKIP, or ELSE sequence; or blank. ifname can be used as any
other type of symbol elsewhere in the program.

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

60492600 H 4-59

4. 9 .2 ELSE - REVERSE EFFECTS OF IF

Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the E:IBE. An EI8E detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Sdpping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:

LOCATION OPEIATION VARIABLE SUBFIELDS

ifname ELSE .enct _

ifname Name of an IF, SKIP, or ELSE sequence, or blank.

.tnct Optional absolute evaluatable expression specifying integer number of source
lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that _enct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence
initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFtype lnct

4-60 60492600 H

if name Optionai 1-8 character name.

type Mnemonic specifying type of object processor.

~ Condition Causing kmembly

CP Any central processor unit

CPS Neither PERIPH nor PPU nor MACHINE 'l has been specified. CPU code is
assembled for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 11, I
72, 73, or 74, or 6000 Series Computer System.

CP7 Neither PERIPH nor PPU nor MACHINE 6 has been specified. That is, CPU
code is as;embled for a CYBER 70/Model 76 or a 7600 Computer System.

PP Any peripheral processor unit

PPS One of the following is true:

1. PERIPH has been specified but MACHINE 7 has not been specified.

2. PPU and MACHINE 6 have both been specified. PPU code is assembled
for a CYBER 180 Series, a CYBER 170 Series, CYBER 70/Model 71, 72,
73, or 74, or a 6000 Series Computer System.

PP7 One of the following is true:

I. PPU has been specified but MACIIlNE 6 has not been specified.

2. PERIPH and MACHINE 7 have both been specified. That is, PPU code is
as;embled for a CYBER 70/Model 76 or a 7600 Computer System.

lnct Optional absolute evaluatable expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPA&.5 as;umes that .lnct is decimal.

The ifname and lnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only effect of an
END IF in a count controlled sequence is to be included in the count. Skipping terminates when the
count is exhausted or when an ELSE with a matching or blank name is encountered, whichever occurs
first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether named or
unnamed, or by a unnamed ELSE, whichever is encountered first. A named ELSE has no effect.

60492600 L 4-61

I

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or EI.SE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o

T,ENT XYZ I
~ACHI~JE 6 I . I .

0 a~s 123 I
IFCP~ ? i
XJ 0 I
El <;f 1

173 u13DODOOOc;

MJ 0 I
I

4.9.4 IFOP-COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Format:

LOCATION

ifname

ifname

op

4-62

OPERATION VARIABLE SUBFIELDS

I Fop

Optional 1-8 character name

Specifies comparative test:

QI?

EQ

NE

GT

Condition causing assembly

Equality, the expressions are equal in all respects. That is, they
not only have the same numeric value but have the same attributes
as well. For example, both are names that are common
relocatable, or absolute, or external, etc.

Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.

The first expression is greater in value than the second expression.
No other attributes are tested.

60492600 H

.enct

GE

LT

LE

The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

The first expression is less in value than the second expression.
No other attributes are tested.

The first expression is less than or equal in value to the
second expression. No other attributes are tested.

For these tests 7 positive zero and negative zero are equal.

An expression. When the value of exp is tested, exp can include only previously
defined symbols and the result can be absolute 7 relocatable~ or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that .tnct is decimal. When .enct is blank, the comma can be omitted.

The ifname and R.nct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered. first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION VARIABLE COMMENTS

I
.

11 18 flo

lf DEF,LOOP
lFL T •-LOOl',408
lJN LOUP
ELSE 2
t.iJN •+3
L..;t1 LOOP

• . .
Tb.is code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37 words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJ:r•i are assembled.

60492600 H 4-63

4.9 .5 If PL AND IFMI - TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION

ifname
ifname

ifname

exp

.enct

OPERATION

IFPL
IFMI

VARIABLE SUBFIHDS

exp,.fnct
exp,lnct

Optional 1-8 character name

An expression. It can include only previously defined symbols and the result
can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

Optional absolute expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPASS assumes that £net is
decimal. When £net is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an END IF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

4-64 60492600 H

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60.

l LOCATION I OPERATION I VARIABLE COMMENTS

I II

I
ttXi'} OPOEF

LOCAL
A ser

A SET
tFPL
IFEQ
TJ:'I t=' 's<i;

A SET
V~D I E10M

Example of call:

Code Generated

~3&10

7777713

7777713

10

I

I

I

lB 130

REG, VAL I
A I
VAL I
A·A/&JO•&anl
A,3 I
a,J,3 I YAL,0,1
1 I
A+f>OD I
6/ 438, 3/ REG, t;/ A

I

I
I

LOCATION OPERATION

I II

MX6
H000001

I l·HQ00001 I

11 I
IFPL
IFEQ

.IFLE
SKIP

H·000001
VFD
ENDM

VARIABLE COMMENTS

18 T3o

-52 I
SET -52 I

SET t-•000001-••000001/60D*60D
I U000001,3

I 000001 ,0 ,3
-52,0,1
1
SET f'•000001+600
6/438,3/6,61••000001

I

4.9 .6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

60492600 H 4-65

Format:

LOCATION

ifname

ifname

att

4-66

OPHATION VAllAILE SUBFIELDS

IF att, exp, met

Optional 1-8 character name

Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition.

att

SET

-SET

ABS

-ABS

REL

-REL

REG

-REG

COM

-COM

EXT

-EXT

LCM

-LCM

LOC

-LOC

Condition causing assembly

The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT

The symbol given in the second subfield was defined o~r than
by a SET, MAX, MIN, or MICCNT

The expression in the second subfield reduces to a value that is
not relocatable or external

The expression in the second subfield reduces to either a
relocatable or an external address

The expression in the second subfield reduces to a local or
common relocatable address

The expression in the second subfield does not reduce to a local
or common relocatable address ·

The expression in the second subfield contains one or more
register names

The expression in the second subfield does not contain a register
name

The expression in the second subfield reduces to a common re
locatable address (any blank or labeled common block)

The expression in the second subfield is not a common relocatable
address (any blank or labeled common block)

The expression in the second subfield contains one or more
external symbols

The expression in the second subfield does not contain an
external symbol

The expression reduces to an LCM address

The expression does not reduce to an LCM address

The expression reduces to a program relocatable address

The expression does not reduce to a program relocatable address

60492600 H

exp

£net

DEF

'-DEF

MAC

-MAC

MIC

-MIC

SST

-SST

All the symb'.lls in the expression in the second subfield are
defined

One or more of the symbols in the expression in the second
subfield is undefined

The name in the second subfield is an opcode name

The name in the second subfield does not contain an opcode name

The name in the second subfield is a micro

The second subfield does not contain a micro name

The second subfield contains a system symbol

The second subfield does not contain a system symbol

For SET, SST, -SET, and -SST, exp must be a single defined symbol. For
MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction. Note that if
a symbol is never defined conventionally but only by use of =S or =X prefix
(see section 2. 4. 2), COMPASS does not define the symbol until the end of
the assembly, and IF tests will consider the symbol undefined.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that .enct is decimal. When fnct is blank, the comma can be omitted.

The ifnam.e and .en.ct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en
countered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed EI.SE, whichever is encountered first. A named EI.SE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

60492600 H 4-67

Examples

LOCATION OPEIATION VAllABLE COMMENTS

I II 11 T3o
I

ABLE SSS 20 T
I

• • • I
• • • I
• •

REL,ABLE+15 : T£ST IF
• • • I
• • • I
• • • I TEST ENDIF

IF COM,OJA,2 ERRONEOUS, OTA AS YET UNOEFINE D
• • I

• • I
• • I
USE II I Dll 8SS 1

I
I

4.9 .7: IFC - COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is_ satisfied.

Format:

LOCATION

~fname

ifname

d

op

4-68

OPERATION VARIABLE SUBFIELDS

IFC op, dstring1 dstring2d, .enct

Optional 1-8 character name

Delimiting character. Characters between the first and second occurrence of this
character constitute the first character string; characters between the second and
third occurrence constitute the second character string.

Specifies comparative test:

EQ or -NE

NE or -EQ

GT or -LE

Condition causing assembly

string
1

has the same value as string
2

string
1

does not equal string
2

string
1

is greater than string
2

60492600 H

string.
l

tnct

GE or -LT string1 is greater than or equal to string
0 - ~

LT or -GE string1 is less than string2

LE or -GT string1 is less than or equal to string2

Character string. \.Vhen IFC is within a macro definition, each character string
can be a formal parameter.

Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that .enct is
decimal. When met is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blar...k name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an END IF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect

Each character in string1 is compared with the corresponding character in string2 progressing from
left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:

I

LOCATION

TfST1

I
TEST2
T£ST3

OPERATION

II

IFC

I
IFC
IFC
IFC

VARIABlE COMMENtS

18 130

EQ, UBCUBCI~

I
L T, •AB•~BC•
GT,XAXX
-GE,•z•e•,3

ABC EQUALS ABC
AB IS L~SS TH~N 4BC
A IS GREATER THAN NULL
Z IS LES<; THAN 8

The IFC in the following example checks for an empty parameter string.

60492600 H 4-69

LOCATIO~ OPERATION VARIABLE COMMENTS

I II II 130

xx MACRO Pt,P2 I

IFC fQ,••P2•,1 I
p ERR I FLAG EPROR

I • I •
• I

I
£NOH I

The following example illustrates a character string terminated incorrectly~ When COMP ASS reaches
end of statement without finding a third asterisk, the asterisk omitted following Pl causes an error flag.

LOCATION OPERATION VARIABLE COMMENTS

I II 18 bo
IFC jEQ, •oo•P 1, 2 SP2

4.9.8 SKIP- UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format

LOCATION OPERATION VARIABLE SUBFIELDS

ifname SKIP .enct

ifname Optional 1-8 character name

tnct Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that tnct is
decimal.

The ifname and .enct parameters are related as follows:

1.

4-70

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

60492600 H

2. If neither a count nor a name is supplied, the SKIP range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has ho effect.

3. If a name but no count is supplied, the SKIP range is terminated by an ENDIF or EI.SE with
a matching name or by an unnamed END IF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

4.10 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.10.1 ERR - UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
based on an assembly time test. One application is to use a test and ERR to detect illegal macro
parameters.

Format:

LOCATION

ag

flag

OPERATION

ERR
I

VARIABLE SUBFIELDS

A single alphanumeric character denoting the error~- The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11. 7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:

LOCATION OPERATION Y~RIABLE COMMENTS

i ii 11 lio

NNN ttACRO P1,P2,P3,P4T
IFEQ P1,0 I

A ER~ I • •
• • I
• • I ENOM

• • I
I • •

I l I • ! 1,1,e,c

60492600 H 4-71

4.10.2 ERRxx - CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second

pass of the assembler is true.

Format:

LOCATION

flag

flag

xx

aexp

Example:

OPERATION VARIABLE SUBFIELDS

ERRxx aexp

A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11. 7,
COMPASS uses P.

Defines condition under which aexp value is erroneous.

xx Error Condition

NG or MI

NZ

Value of expression is negative

Value of expression is nonzero

Value of expression is positive

Value of expression is zero

PL

ZR

Absolute expression. It cannot contain external symbols or references to blank
common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE

ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU
overflow if the PPU program has literals and USE
blocks.

Test for memory overflow in PPU assembly

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 lJo

PERI PH T

• I

7777447

• I LASTTAG
1

ess ti
R ER~PL LASTTAG-7777j

lrND 71t62

4-72 60492600 H

4.11 LISTING CONTROL

The instructions described in this section permit extensive control of the assembly listing format.

4. 11.1 LIST - SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and for mat of the assembler listing. LIST instructions are
. ~isabled under either of the following conditions:

When the list parameter (L) on the COMPASS control statement (chapter 10) is zero, or

When the list option parameter (LO) on the COMPASS control statement is used and is other tha.11
LO=O.

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list output is
according to the Land LO parameters on the COMPASS control statement. If the LO parameter is omitted
or LO=O, the list options are as if L, B, N, and R only are selected and the listing contains heading
information, assembly text, assembler statistics, an error directory (upon occurrence of an error only), and
a symbolic reference table. Formats of this output are described in detail in chapter 11 and brief
summaries are given below.

Heading Information

Assembly text

Assembler statistics

Error directory

Symbolic reference table

Formats:

LOCATION

60492600 H

OPERATION

LIST
or

LIST

Program length, origin, and length or each block, entry points and
external symbols.

Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by RMT, DUP,
ECHO, XTEXT, or a macro or opdef expansion). For data
generating pseudo instructions DATA, DIS, B$Z that produce more
than one word of object code, only the first word is listed. For
VFD and CON all words of object code are listed. For R=, only the
pseudo instruction listed.

Each occurrence of the LIST instruction is listed.

Amount of storage used, counts of assembled statements, defined
symbols, invented symbols, and references to symbols.

List of fatal and nonfatal errors and summary of the causes of each.

List of all symbols defined in the program according to symbol
qualifier, if any, followed by an index to every reference to the
symbol, whether in explicit or generated (for example, by MACRO
or MICRO calls) statements.

VARIABLE SUBFIELDS

opl' op2, • • • 'opn

4-73

A location field symbol, if present, is ignored.

4-74

A list option represented by a single letter or a letter prefixed by a minus sign.
The unprefixed letter selects the option; the prefixed letter cancels the option.
Options are separated by commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation and micro substi
tution marks is listed with the marks in it exactly as presented to the
assembler. When the A option is selected, however, the assembler lists
the line before and after the editing takes place. Selecting A also causes
the listing of lines of code resulting from the R= pseudo instruction.

B List binary control statements

When B is selected, the listing includes SEG, SEGMENT, IDENT, and
END pseudo instructions.

C List listing control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

D Include details

Selection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DATA and DIS
Code assembled remotely when HERE or END causes its assembly
Literals block
Default symbols

E Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

F List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L Master list control

This option is normally selected. When L is canceled, the long list contains
error flagged lines, an error directory, and LIST and END pseudo instruc
tions only, regardless of selection of any other options on LIST.

M List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

80492600 H

$

N List nonreferenced symbols
This option is normally selected. Cancellation of this option causes
any nonsystem symboi for which no reference has been accumulated
(e.g., all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references
This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbolic reference table is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed.

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated
references.

X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

A dollar sign in the variable field selects all options.

An asterisk in the variable field causes selection of the options in effect prior
to the current selection. The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each
LIST *resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST *instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both Mand E. Similarly, an expansion caused by an XTEXT within a system macro call is
listed only when both X and Sare selected. To obtain a listing showing rand # marks removed from
external text inside a DUP range, A, X, and E must all be selected.

Example:

0 17205146314&314&314&

2 172051463146314&3146
3 1640314&3146314&314&

4 L72051463146314&314&

6 172051463146314&3146
7 !6~03146314631463146

60492600 H

• LOCATION

I

j

I
I
I
I
I

i
I

. OPERATION

11

LIST
DATA
DATA
LIST
UATA
DATA

LIST
OAI A
LIST
DATA
DATA

VARIABLE COMMENTS

18 ho
A 1

1. 3,.EE
1.3EE
0
1. 3,.EE
1.3EE

I -A,-0 I!. 3,.EE

j 1· 3<'EE##
1. 3EE

4-75

4.11.2 EJECT-EJECT PAGE AND BEGIN NEW SUB-SUBTITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor
responding LIST options are not all selected.

Format:

LOCATION

name

name

OPERATION VA Ill ABLE SUBFIELDS

EJECT

New program sub-subtitle for the page will be printed in character positions
70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE - SKIP LINES AND BEGIN NEW SUB-SUB TITLE

The SPACE pseudo instruction spaces the assembler listing. When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected.

LOCATION

name

name

sent

rent

OPERATION V ARIABlE SUBFIELDS

SPACE sent, rent

New subprogram sub-subtitle will be printed in characters 70-79 on the second
line of the next page heading. A blank name clears the sub-subtitle.

An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If base is M, sent is assumed
to be decimal. If sent is omitted or zero, no line is skipped.

An absolute· expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rent is assumed to
be decimal.

If sent+ rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards or statements can also be used to space the listing.

4-76 60492600 H

4.11.4 TITLE - ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing.
A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction
as the title. A TITLE instruction without a character string produces an untitled listing. A name in
the location field introduces a new subprogram sub-subtitle.

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions
(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option L is deselected.

Format:

LOCATION

name

string

Example:

LOCATION

I

I
I

11

60492600 H

OPERATION VARIABLE SUBFIELDS

New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page. A blank name clears the sub-subtitle.

COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement. Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end "of the -statement or to
62 characters. Any characters beyond the 62nd are lost. A blank string
produces an untitled listing.

I OPERA T!ON i VARIABLE COMMENTS

II IB bo

. IUENT HTO ;
LIST c I

TITLE tH DRIVER I

• I
I

• I
• I
TITLE I/O ROUTINES1
•

I
I

• I
•

4-77-

· First page:

Subsequent, pages:

HT DRIVER

"T DRIVER
1/0 ROUTINES

4.11.5 TTL - NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and
clears the subtitle.

Format:

LOCATION

Ina.me

name

string

OPERATION VARIABLE SUBFIELDS

TTL string

New sub-subtitle to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.

COMP ASS searches the columns following the blank that terminates the operating
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.
A blank string produces an untitled listing.

TTL does not cause a page eject.

4.11.6 NOREF - OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:

LOCATION

sym.
1

OPERATION VARIABLE SUBFIELDS

NOREF

One or more symbols defined in the subprogram. If a symbol qualifier is in
effect when the NORE F is encountered, the symbols are assumed to be
qualified by the qualifier in use, unless an unqualified symbol of that name
is defined before the NORE F and the qualified symbol is not defined before
the NOREF. Alternatively, sym. , can be a nonblank qualifier symbol en
closed by slant bars, /qualifier/! in which case all symbols qualified by
the specified qualifier are suppressed from the symbolic reference table.

A location field symbol, if present, is ignored.

4-78 60492600 H

4. i i .7 CTEXT AND ENDX - DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

Format:

LOCATION

name

name

string·

NOTE

When the flag is set~ external text is listed and symbol
references are recorded, only if the X list option is selected.

OPERATION VARIABLE SUBFIELDS

CT EXT string

If X list option is selected, name is treated as a sub-subtitle; other
wise it is ignored.

If the variable field is nonblank and the X list option is selected, ·the CTEXT
is Lreated as a subtitle. The CTEXT instruction generates n subtitle and
causes a page eject. If X is not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank char~ter following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ENDX

I
Entries in the location field or variable field, if present, are ignored.

60492600 H 4-79

4.11.8 XREF-REFERENCE SYMBOLIC ADDRESS

The XREF pseudo instruction provides the options of having the symbolic reference table contain
references ·to symbols according to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 11. 8.

Format:

LOCATION

string

OPERATION VARIABLE SUBFIELDS

XREF string

An optional character string, the first character of whiph indicates bow symbols
are to be referenced.

A The symbolic reference table lists addresses only. Flags are not included.

B The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

P The symbolic reference table lists references to symbols according to
page and line numbers. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according' to page and line numbers and includes flags. The last XREF encountered in a subprogram
determines the form of the listing for the entire subprogram.

4-80 60492600 H

DEFINITION OPERATIONS

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred"to for assembly (MACRO, MACROE or OPDEF).

s

Any instructions other than END, including other definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. \\ben the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of staten1ents is the
innermost definition. The stack allows nesting of definitions to a maximum level of 400. \\'hen the
end of a definition is reached, the assembler switches to the preceding entry in the stack. \\ben the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.
A nested definition must be wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows:

A single space is represented by 558; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
8

3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 0077 8
65 spaces replaced by 0077558
66 spaces replaced by 00775555

8
67 spaces replaced by 00770002

8
, etc.

Trailing spaces are considered as embedded and are included in the image. The 00 character
(colon) is represented by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

60492600 A 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition
contains a USJ, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code
in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements from a file other than
that being used for input. COMP ASS transfers the text from the external source and assembles it
before taking the next statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFYt random-access program library
file.

Format:

LOCATION

file

file

rname

OPERATION VARIABLE SUBFIELDS

XTEXT rname

Name of a file containing source statements. If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control statement
(section 10. 1. 2). If no X parameter was specified, COMPASS assumes OLDPL.

If rname is blank, COMPASS assumes that the file is sequential; it rewinds the
file and reads the first sectiono If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records, a record indexed file with named records, a random-access program
library file in UPDATE format, or a random-access program library file in
MODIFY format.

t MODIFY is not supported by NOS/BE 1 and SCOPE 2.

5-2 60492600 c

Text records may be in any of the following formats:

1. Normai text. If the first Hne contains rname starting in column 1, it is skipped.

2. A common deck in an UPDATE or MODIFYt random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped. If the file is in
MODIFY format, the identification (7700) and modification (7702) tables are skipped. COMPASS
does not recognize UPDATE or MODIFY directives such as *IF in the common deck.

+
3. An UPDATE or MODIFY' compressed compile file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction.

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of R MT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT- SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

rmtname RMT

rmtname Optional 1-8 character name identifying the remote sequence. It is
significant on the beginning RMT only. The field is ignored for a termina~ing
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

t MODIFY is not supported by NOS/BE 1 and SCOPE 2.

60492600 c 5-3

5.2.2 HERE - ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is
encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:

LOCATION

rmtname

rmtname

OPERATION VARIABLE SUBFIELDS

HERE

Optional; the name of a previously saved RMT sequence. Only the named
sequence will be assembled at this time.

A variable field entry, if present, is ignored.

If unlabeled remote sequences still remain to be assembled when the END statement signaling the end of
assembly is encountered, COMPASS assembles them before it terminates assembly. However, any
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost.

Examples:

5-4

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

60492600 A

Location

60492600 A

Code Generated

4€>72
4673
4673

--------------·-----··------- ---- -··

! l()(ATION ! OPERATION VARiABLE COMMENTS

ITNAM

110. TNAM

I I TNAM
jo.TNAM

I
I 'L. TNAM

1n I MACRO
IFC

I mu CON

I
ELSE.
EUU
EQU

RMT
1 Eau

RMT
•
•
•
£NOM

•

HERE
EQu

EQV
Eau

130

--r--=--=--=----=-------
r-t •t:.Ul V T At3LE, TNA1

EOt**EQIV
*-ORIGINS
BUCl\ET
2

I t.QIV
O.EQIV

*

TNAM+SIZES

!NtErH Slz.E$
~A5:l~fd~$JZES

NRTAH••SlZES
I

TAHLE •l
TABLE •l

,.· ;.,; .•. ~ •• ;JJ~,,B.b;§;..;.;(•... 1
TAriL£ •l
TAti\..~ •l
lAi-3CE • l
f;AHb•E:< ._l
TABLE •l

•t<MT*
Rt'1T
'RMT

.)-,)

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION

FLO
PRS

OPERATION VARIABLE COMMENTS

II 18 !Jo

RMT
DECt-.1 IC
LIT

I
~uF~~uFL-WSA+£NUS

C*tfLD~ JECIMAL REQUIRED.*
I

I

....

5.3 CODE DUPLICATION

Thls section describes two pseudo instructions (DCP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code .sequence. The number of re1)etitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer Dt·p or ECHO,
or a fatal E error is flagged.

5.3. l DUP - SIMPLE DU PUCA TION

The DUP pseudo instnlCtion specifies repeated assembly of the statements immediately following.
The range of the DC'P is specified either by a source statement count on the Dl'P instruction or by an
ENDD.

Format:

LOCATION

dupname

dupname

rep

3-<i

OPERATION VARIABLE SU9FIELDS

DCP rep, {net
I

I

Optional name of the Dl'P 8equence; 1-8 chnractcn:. \\.hen :-:upp1ic<l, it c~m be
used in an ENDD. \\'hen no name is supplied, the rang-e of the Dl"P i:-: cletcnnincd
by a statement count orb\· am· unnamed E?'\DD.

Absolute evaluatable expression spedf.ving the integer number of times st;it(.•
ments in the Dl'P range nre to be assen~bled. If rep is null 01· zero, tlw instruc
tions in the range are not assembled; that is, code is skipped. \\'hen b:1se is :\I,
COMPASS assumes that rep is decim;11.

60492600 E

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

.met An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that ..en.ct is decimal. The count is decremented for statements only;
comment lines (identified by *in column one) are not counted. On each
iteration, the assembler copies the source statements a11d then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expanded.

The dupname and fnct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

2. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed
ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the
range.

5.3.2 ECHO - ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate ~efinition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only;
comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:

LOCATION

dupname

dupname

60492600 E

OPERATION VARIABLE SUBFIELDS

ECHO

Optional name of the ECHO sequence; 1-8 char-acters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any unnamed ENDO.

5-7

5-8

.enct Optional absolute evaluatable expression specifying an integer count of the number
of source statements to be assembled repeatedly. If base mode is M, the
count is assumed to be decimal. If .fnct is zero or omitted, the comma must
be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupnarne and ..enct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

2.

3.

If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed
ENDD.

If a name but no count is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the sequence.

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored. The substi
tutable parameter name can occur in any field within a definition.

The separator between pi and (listi) is conventionally an= but can be any of the
following:

+ - * I () $ = , or •

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - * I () $ == blank , . -f or ,...

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e. , with
micro and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (77

8
).

60492600 A

(list.)
1

The character~ flags the occurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the ,..+ so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
;A, ;B, etc. directiy in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the
name with the flag. (Example 8, section 5. 4. 3 illustrates a similar application
of this technique.)

Actual parameter list in the form ~, a2 , ... , an where a1 is substituted for p1
on the first assembly of the ECHO sequence, a2 is substituted on the second
assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before
substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP - STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count
is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the
end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

60492600 c
5-9

5.3.4 ENDO - END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

dupname ENDD

dupname Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO
sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.
An ENDD does not terminate a sequence controlled by a statement count.
The ENDD is included in the count but has no other effect.

An ENDD outside the range of a DUP or ECHO has no effect on assembly.

ENDD is part of the definition it terminates; consequently, it is not edited at ECHO definition time.
The following definition is in error:

T r-1 ECHO
Code

T r- lENDD

In this code, the location field of the edited ECHO statement is Tl, but the location field of the un
edited ENDD statement remains at Tr-1.

Examples:

In the following examples, the statements that result from expansion are shown shadep. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location

5153
5154
5155
5156
5157

5-10

Code Generated

00000~

00000000000000000001
OOOOOOOOOOOOOJOOOOOl
ooooooooononooooooo1
00000000000000000001
oooooonoooooooooooo1

LOCATION

I

OPERATION

II

Ol I~)
DATA
01\TA
DA Th
DAT I\
DAT~

DATA

VARIABLE COMMENTS

IB 30

c,. l
1
1 *OU._,* l
1 *UUP• I
1 '°OlJP• l
l *l)UP* l
l *DlJP* l

60492600 E

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated
by a STOPDUP.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

~o l~~c~~ I ~· I
TAG ' / i:-T

ASSEMHLE STOPDUP WHEN TAG=E

NO IS 6 IN LAST ITERATION

UNOBTAINARLE ITE~ATION COUNT

60492600 D ;)-11

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO The ENDD terminates the first level. Notice how COMPASS assembles each
copy before it begins the next iteration.

Location Code Generated

l4h3 l4f>O
l 4M 54 15 0016
1 466 1 46 0
1 467 54 15 t) 017
1 471 }4 ,_,Ci
147? 54 15 () 04 0

1474 1470
1475 54TC..
1477 1470
1500 5415 {1017
1502 1410
1503 5418 0040

1 so s C)4 1 5 l s ?4

5-12

LOCATION OPERATION VARIABLE

ll

PPU

18

s,5415~

'-1,f),f
,CM-=o:,v,zl ,
z,Pl= (A,H.c>I
er-~

Pl

COMMENTS

30

'°EChO
*ECHO
*[CHO
~·fCHO

*ECHO
*fC.hO
*E.CHO
*ECtlO
*ECHO
*ECHO
*ECHO
*ECHO
*fCHO
~ECHO

~ECHO
*Eftid

l
2
2
2
2
2
2
l
l
l
1
2
2
2
2
2·.•.

>2
1

60492600 A

5.4 MACROS AND OPDEFS

A macro or 9pdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in the operation field of a statement. It usually includes parameters to be substituted
for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An opdef call differs from a macro call in that the assembler interprets the call by exa_-rnining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading

Body

60492600 A

A macro definition is headed by a l\lACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other macro a..11d opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter or local symbol listed in the heading can
occur in any field within the body. A reference to a substitutable parameter or
local symbol is recognized when it is between two of the following characters in
an expression or field:

+ - * I < > $ = blank , . i 01· r-
The characterr- flags the occurrence of a name not bounded by any other special

5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the r--+ so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters • () :
$and =in symbols, but when he does, he must be careful
that fuese characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls). A symbol
should not begin with a colon; if it does, the colon is
ignored and no error message is issued.

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMP ASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local
symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4. 1 ENDM - END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

mname ENDM

mname Name of a macro sequence, syntax of an OPDEF sequence, or blank.

5-14 60492600 E

An ENDM specifying a macro by name terminates the named macro definition and any unterminated
macro or opdef defo1itions within it. An ENDM that does not specify a macro by name terminates all
unterminated definitions. An ENDM outside the range of any macro sequence has no effect other than
to be included in statement counts.

ENDM is part of the definition it terminates; consequently, it is not edited at MACRO definition time.
The following definition is in error:

Tr+l

MACRO
Code
ENDM

In this code, the location field of the edited MACRO statement is Tl, but the location field of the
unedited ENDM statement remains at Tr+l.

Example:

LOCATION

I

JAY

KAY
I

11
I I JPX/XQ

11

KAY

OPERATION VARIABLE COMMENTS

II IB TJo

I ~ACRO P1,P2,P3 I
I

i • I
• I

I I ! HACROfl PKZ,PK2,PK3,PK4
•
•
•
OP DEF
•
•
•
ENOH

i •

•
•
ENOM

I

I

I
I I
I OP1,0P2,0P3 I l - I

i I
I
TE~HINAT~S KAY ANO
THf OPOEF JEFINITICN

TEP.t1INATF.S JAY

5.4.2 MACRO - MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instnictions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation
code table.

The MACRO pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

mname

I
I parameters

I

60492600 F 5-15

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

MACRO lllD.ame,para:nieters

The blank location field identifies the second format.

parameters

5-16

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call.
Each name is 1-8 characters, the first of which must be alphabetic. A name
cannot be END, IRP, LOCAL, ENDD, ENDM, or the same as a local symbol.
A name that begins with a number, or a second or later occurrence of a para
meter name in the list is ignored.

Any of the following special characters separate parameters in the list:

+ - * I () $ = , or .

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This paramete,r is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error and
ignore the definition.

The assembler ignores a blank parameter produced by two adjacent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

60492600 A

Examples of macro instructions:

1. Legal MACRO instructions:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 TJo

ASC MACRO IP1,P2,P3 I
I I !MACRO jDEF•Loc•ONEjTWO•TEN
I 1HESSAGE 1 MACRO 1 A

2. MACRO instructions having identical parameter lists.

LOCATION OPERATION VARIABLE COMMENTS

I II lB TJo

SUH MACRO X=Y+Z+X jsECONO X PARAHETF.R IS IGNORED
SUH MACRO X n+Z)

I SUH MACRO X:Y+Z
SUH· HACRO X,Y,(Z+X) 1NULL PAR~HETER ANO SECOND

RAO MACRO Ix :x ARE IGNORED

RAO MACRO
I
. X=X+l !SECOND X JNO NUMERIC

3. Illegal use of format two:

LOCATION OPERATION VARIABLE COMMENTS

I 11 lB TJo

MACRO ABC : NO SUBSTITUTABLE PARAMETER
MACRO ABC,,FP I NULL PARAHETE.R FIELD
MACRO ABC,16,FP NUMERIC PARAMETER FIELD

60492600 A 5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION

sym

sym

OPERATION VARIABLE SUBFIELDS

mname

Optional; depends on definition (see discussion following)

Parameter list composed of alphanumeric strings. Parameters are separated
by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MACRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc. \Vhen the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null paramet.ers are interspersed with legal parameters, the correct positions must be established
with commas. \\7hen the list terminates before the last possible parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as ail iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (section 5. 4. 9). Otherwise, it is an embedded paramet.er.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. Embedded parenthetical items must be properly paired. A parenthetical item can contain
blanks and commas.

Example:
LOCATION OPERATION VARIABLE COMMENTS

I 11 18 bo

MESS4GF <=C•PROGRAM1ABORT.•>
I

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as
a variable subfield.

5-18
60492600 A

Processing of a location symbol and forcing upper of the first macro instruction depend on the l\IACRO

form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first \\'Ord of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the rnaceo call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, tlrnt is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used
in the variable field of a macro call Line.

Example:

1. An illustration of concatenation

Location Code

Generated -----

60492600 A

LOCATION

1 1~.ACK
I

I I

11

OPERATION VARIABLE

11

1-1ACR0 , ._, l , F- 2
~r+Pl IPl+lkr9P2

I
•

COMMENTS

30

2. An illustration of nested definitions and call8

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

f\JAME 1 MACRO
T

I . .
I . . I . .
I NAME2 MAC RC
I .
I . I . I

NAME2 U~UM I . I . I . lid THIS I I Mt, f!-f Is L I!H_

NAMt.2 ir :::> PART CF /..\ j t: F I N 1 T I 0 I'.

I • :KA I He R I t1A1'l 3UNG A (ALL•

I I
. I . I

I . I

I NAHE1 ENDM I
I . f
I . I !
I . I

I t-.Al1E1 li"4M1E1 1::, CALliU ANL EXPANUEU.
I

i
I

. I
i I

I
. l

!GALL

I
NAME2

I
TO Nt\:-1E2 I:) VAL lJ

3. The following example illustrates two calls to a definition headed by a MACRO in format two
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALCEl, and VALVE2, where TABNAl\I is the location argument.

LOCATION
Code Generated

OPERATION VARIABLE
Location

COMMENTS

11

TAl:3NAM

5-20

MAC~O
VFO
ENDM

•

18 30

TA8LE•TARNAM,VALUEl•VALUE2
60/VALUEl.60/VALUE2

I
I
I

60492600 A

4. An illustration of embedded parameters:

Definition:

LOCATION OPERATION I VARIABLE COMMENTS

I il Tis f 30

x a~ MA8RO T I\' p I

I I LnM I !1\ I

I !
LJM 1 ~

i fNf')M i l

Call:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 r 30

)(1\..., !(<::t1M,t'1n), CC:::A>-',TNn~l

Expansion:

Location Code Generated LOCATION I OPERATION VARIABLE
l

COMMENTS

11 18 30

5. The following example illustrates use of R- in macros:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 T30

ONSW t4ACRO N
T

R= X1,N I

I SX? 11e !
i ! RJ =Xr.P~= I

I 1 ENQM I
! n~~sw MdCPO N IV"

i R= X1,N
I SX2 12R

I ! ; RJ I :)(f'PM=
i I fNOM I

60492600 A

6. The follov.:ing example illustrates a characto· in a symbol erroneou~ly being interpreted as a
delimiter for a parameter.

LOCATION

ABC

OPERATION VARIABLE

11

MACRO
SET
SA7

•

ENOM

18

ZtVAL,PS
VAL
Z.ALPHA

COMMENTS

30

IILLEC,AL SYMBOL. TOO LONG

I

ILLEGAL SYMBOL• TOO LONG
ABC
ABC
ABC

7. The following example illustrates changing of control blocks and symbol qualifiers through
substitutable parameters in a macro. (The same call could be used by using micros to
change actual parameters.)

LOCATION OPERATION

11

TAB MACRO
USE
OUAL

TAGI BSS
TAG2 Vf O

USE
OUAL
ENDM

5-22

VARIABLE

18

BLOCK,r<WAL
BLOCK
t<wAL
108
60/-l
0

0

TWOtTWO
two
TWO
108
E>Ol·l
tt

*

COMMENTS

30

60492600 A

8. The following example illustrate!-' :i tcchnirJUc that an experienced pro~y~1rnrncr rn~l.\ \\ i!-'h lo

use to 8ave tin1e in p1~oce~sing of definition~. nc:rncrnbcr that the ~l.~~en1hlcr rcpl~tcc~ the
first substitutable paran1clc1· ,,1th 7701, the· ~c·cund \Xith 740~, ctce :\"ott.~ that 7701 i:--: ;i.\ in

display characters, 7702 is ;B, etc. This mean!-' lh:1t the progearnmc1· c~lt1 uH_' Lhc di!-'pi:l\
characters directly in place of his suhstituU1blc p:11·:1mt'lel' names in the body of the ddinition
and achieve the same results as if the assembler had made Lhc Htbstitution \rhen it :-0:1vcd the
definition. At the time the definition is assembled, the as~ernbl(_T i·cplace:~ each 77xx \\·ith the
actual parameter whether the code \ras inscrtt'd b>- the :1:-::-:cmbic1· ''hen it ~:l\"l•d the definition
or 'Jy the programmer when he eodcd the definition.

LOCATION

('HAR

o .. o

60492600 A

I OPERATION I VAlllABiE COMMENTS

11 18 30

"'4ACRO ASCIJ .. If\<TfDtJAL .. [XTEP~AL,bCU
CO'-~ ;i);(;;~:t

~Nl)tJ

" ~;

CRAP
CHAR

1
l

5..4..4 MACROE - EQUIVALENCED MACRO HEADER

A MACRO~ pseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro
call.

The MA CROE pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

:mname MACROE parameters

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

MACROE mname, parameters

The blank location field identifies the second format.

mname

parameters

5-24

A legal name other than END, ENDD, IRP, LOCAL, or ENDl\I. It can be
1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds.

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.
A name cannot be END, ENDD, LOCAL, IRP, ENDM, or the same as a local
symbol. A name that begins with a number, or a second or later occurrence of
a parameter name in the list is ignored. Any of the following special characters
separate parameters in the list:

+ * I () $ = , or .

These characters have no meaning other than as separators. A blank terminates
the list of parameters. Also, any of these can be used to separate the mname
from parameters in format two.

The total number of unique parameter names and local symbols must not exceed
63 for any one macro definition.

Format one does not require parameters.

60492600 A

Format two requires at ieast one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error flag and
ignore the definition.

The assembler ignores a blank parameter produced by two adjacent separators
or by a separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the
following format:

LOCATION

sym

mname

sym

p.=a.
1 1

60492600 A

OPERATION VARIABLE SUBFIELDS

mname

Name of :MACROE definition

Optional symbol. A symbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first
code-generating line in the macro expansion.

An equivalenced parameter. Each pis the name of a substitutable parameter.
The ai is an actual parameter to be substituted for pi. The parameters need not
be listed in the same order as they are listed on the l\lACROE instruction.
Equivalenced parameters in the list are separated by commas and terminated
by a blank.

A null value is substituted for any parameter omitted from the list.

When the first character of an actual parameter is a left parenthesis, the
assembler considers all the characters behveen it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5. 4. 9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of p~rentheses, before substituting the enclo~ect
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

5-25

After substitution, spacing bet\\·een fields is the s~m1e as it \\"as before substitution. One effect i8 that
a null actual parameter replacing a formal parameter in a variable field cffectivcl:; rnove8 the c0111 rnent:...:
field to the left. Then, when the line is assembled, the cornnwnt8 could be crroncou8ly inte1·preted ~18
a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the ~IA CHOE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first \rnrcl of generntecl cocle upper. The location field symbol
is assigned the current value of the location counter. A location fielcl (if any) on the line in the
definition that generates the code is assigned the same aclclress. If the location field of the macro call
does not contain a symbol, the location ancl position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the first
parameter is a location argument, the location symbol of the call is substituted for the first parameter or
location argument. The fact that this argument came from the location field rather than the variable field
has no special significance in the macro expansion. After substitution, spacing between fields is the same
as it was before substitution.

Example, format one:

Location

500?
5010
5011

Code Generated

qpo oo.nooqqpqqqonqnu1
no onoo o onooon oo o~mno
(JOQOOOOUOOOOOOOOOOOO

Example, format two:

Location Code Generated

5-26

LOCATION

SAM

LOCATION

--,--
I OPERATION: VARIABLE COMMENTS

ll 11 s 30

MA CR OE
CON
CON
COl\I

SAM
CON
CON
CON
E.NDM

A,B,C
A
B
c

A=t,C=S,8=0
1
0
5

SAM
SAM
SAM
S.AM

OPERATION VARIABLE COMMENTS

11 18

I

.)ti."",~x,~,J,(
::..
,.
r

·-
A=l,0=?1C=3

30

1104!1 ~GOO l_;

5.4.6 OPDEF - DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through PURGDEF. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:

LOCATION

'syntax

syntax

60492600 B

OPERATION VARIABLE SUBFIELDS

10PDEF 'para.mete rs

The syntax consists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two characters. The first can be any
character except biank. The second character can be a register designator:
A, B, or X in which case the operation field of the opdef call is recog
nized as cAn, cXn, or cBn (c is a unique character; n is 0-7); or the second
character can be any other character, in which case the operation field of
the opdef call is recognized simply by a two-character mnemonic, such as
EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the
syntax.

void Q

r rQ

-r -rQ

rl+r2 rl +r2Q

-rl +r2 -rl +r2Q

rl *r2 r 1 *r2Q

-r *r 1 2
-r *r Q

1 2

rl /r2 rl /r2Q

-r/r 2 -rl /r2Q

rl-r2 r 1-r2Q

-r -r -r -r Q
1 2 1 2

5-27

parameters

Examples:

For example, -r 1*r2 would be written as -X*B to describe -X3*Bl whereas rQ
would be written as BQ to describe B2+ALPHA. The first descriptor immedi
ately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Each name is 1-8 characters,
the first of which must be alphabetic. A name cannot be END, ENDD, ENDM,
IRP, LOCAL, or the same as a local symbol. A name that begins with a num
ber, or a second or later occurrence of a parameter name in the list is ignored.
Parameters can be separated by any of the characters:

+ - * I () $ = , or .

These characters have no meaning other than as separators. A blank terminates
the list of parameters.

The total number of unique parameter names and local symbols must not exceed
63 for any one OPDE F definition.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

1. Listed below are some instructions that could be defined through OPDEF:

Calling Instruction

Operation

Jpt

Jpt

JP

JP

JP

NEt

LJ

BXnt

SBnt

Lxnt

Jpt

NEt

BXit

SBit

SBit

t Legal COMPASS CPU instructions
it K represents an expression.

5-28

Variable Subfields

Kit

· Bn+K

Bn+Bn+K

Bn,K

Xn/Xn~K

Bn,Bn,K

Bn-Bn,An-Xn,K

-Xn*Xn

Xn+Bn

Bn,Xn

Bj+K

Bj, Bk, K

-Xk*Xj

Xj+Bk

Bj+Xk

Opdef

Syntax

JPQ

JPBQ

JPB+BQ

JPB,Q

JPX/XQ

NEB,B,Q

LJB-B,A-X,Q

BX-X*X

SBX+B

LXB,X

JPBQ

NEB,B,Q

BX-X*X

SBX+B

SBB+X

60492600 A

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION

I

I IJPQ

I i

OPERATION VARIABLE

II lB

I OPOEF I P1
I EQ P!
I fNOH I

COMMENTS

bo

I

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I

I II lB bo

1oon2 0233000005 +
_1p "~+ALPMI\

I .
I""

3. The following definition traps all floating point double-precision subtraction instructions

1

(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and K are substitutable
parameters used within the definition.

LOCATION OPERATION vAlllAlli.E COMMENTS

11 11 T3o
I

OX'lt-Y OP'lf F t,J.K I

I .
I • . I
I

PJ I f'I(nor I
FNOH I

4. The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

lOCATK>N OPEIATION VARJAILE COMMENTS

I 11 18 bo

RXO OPflEF P1,P~
I

I 4 I I

I

I
1

. AX. P" , P2
I FNOH I

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expreflsions)
must match the syntax described in the OPDEF for the definition to be called.

60492600 A 5-29

NOTE

If the Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax Call

JPQ JP K Not combined

JPBQ ,JP Bn-r-K Combined

JPB,Q JP Bn,K Not combined

JPX/XQ JP Xn/Xn.:_K Combined

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the
assembler uses only the register values given in the call. It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. A location
field on the line in the definition that generates code is assigned the same value •. If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.

Examples:

The following opdef defines an instruction having the syntax IXX;X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for Pl, P2, and P3, respectively.

Location Code Generated LOCATION

lXX/.X

5-30

OPERATION VARIABLE

II

OPOEf
PX.P2
PX.P3
NX.P2
NX.P3
FX.Pl
UX.Pl
U(.Pl
ENOM

•

18

.PJ

.P2,84

.PJ,b4
x.P2/JC..P3

COMMENTS

30

60492600 A

The following OPDEF selectively traps the SXi Xj+Bk instructions.

Definition:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

I SXX+B OP DEF I,J,K I
•

I
j

• I
• I

I I ENOM I
I

Statements that call the definition:

LOCATION OPERATION VARIABLE COMMENTS

I II IB bo
SX3 X1+R2 I

• I

• I . I
I

SY" SX.NN x&+e.xxx I

Statements that do not call the definition:

LOCATION OPERATION 'v'ARIABtE

111 lis

f SX5 1 X4

sxr, I B3+Xl+

sx.v q3

I SY X4+fH+

5.4.8 LOCAL-LOCAL SYMBOLS

COMMENTS

INO ~ or:srGNATOD o~
I

:REr,ISTEP~ INTERCHANGED
I
INO X 0£SIGNATOR O~ OPFRANO
I
IHNfHONIC CODE NOT SX.
I

One or more LOCAL instructions that list symbols local to the definition optionally follows the .MACRO,
MACROE, or OPDEF pseudo instruction. The only lines that can separate the first header statement
from LOCAL are comment lines.

Format:

LOCATION

symbols

60492600 A

OPERATION I VARIABLE SUBFIELDS

LOCAL I symbols

List of local symbols. Each symbol mu est begin with an alphabetic character.
Symbols must be separated by and must not include the following characters:

+ - * I () $ = , or .

5-31

,\blank terminates the list. The assembler ignon·s a null S\llll)()l produced Ii\·
two adjacent separators or h\· ;1 st>p~lrator at the end of the list. CtJ:\I h\SS ignorc•s
the use of a substitutable parameter name, another local s.\·mhol name, or a narnl'
beginning with a number in the local S\ mbol list. i\ local s.\·rnhol eannot he F ':D,
El\'DD, ENO:\T, IRP, or LOCAL. The total number of uniqul' parameter narnes and
local symbols must not exceed G~~ for an.\· one maero or OPDEF definition.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known onl.\· within the macro definition.
On each expansion of the macro, COlVIPASS creates a new snnbol for eaeh local svmbol and substitutes it
for each occurrence of the local symbol in the definition (othl'r than in comment lines identified by '' in
column 1). Thus, invented symbols replace LOCA L-nanwd S\ mbols wherever the.\· appear in a macro
definition in a manner similar to the wa\· suhsti tutable µa rarncters are replaced. The chief difference
between substitutable parameters and local snnbols is that CO:\IPASS automaticall.\· supplies the value C
(character string to be substituted for) a local symbol so that it is unique for each macro call.

A user passes a local symbol to inner macro definitions 01· inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is shown as Hsym, where sym. is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMPASS assigns invented symbol
H000001 to C and replaces each occurrence of 7703 in definitions ABC and XY z.

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

AflC HACRO A,B
LOCAL c

c RSS 10B

I DEFINITION
I OF ABC

XYZ MACRO 0) i DHINITION ~A1 c
I OF XY z
I

ENIJM I

I l EXPANSION
I OF ABC
I DEFINITION J
: OF XY Z
I

5-32 60492600 A

2. In the follmdng example, Ci~ local to ca2h level. .Note ho\\. thi~ example cliffc1·~ from the
preceding one.

i i LOCATION i OPERATION i VARIABLE COMMENTS

L !11 118 30

i MACRO I A' R I I

! I I LOr:AL I c
I I c i gss I tOR
I I • I I
I I • I • [)~FTNITfQ·I

I OF V'C
I 1;7A I

.
I I

MAf';~O

I

i I LOGAL r
SA1 I" 'o~FINITI0N

I I ;o~ vz ri j . i I !

!
I I

I 1c BS<:\Z 1 j
I ! FNf")M)

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,
t*°00002 including the use of the symbol in the LOCAL instruction for macro XYZ.

LOCATION OPERATION VARIABLE

11 18

I
! oCU

........ vo11vo2i
XZAi.········<)·······I ~lACK0

'····· .. · ····.·.·.· ··· .. · ·.· ·.·.··.·.··.···· 1 ... ·.L···O··········.\.....~ ... ····µ.·· .. L··.· ... · ! JSAl

11' "v o o. o.·········•·.v•. ·.·.~•. l 1ENOM

!~.b
Lb&S
I
!1'•000002
11'+000002
1~s~~ i
I

COMMENTS

OF ':>CU

•l
·l
• l
.J
• l
·l

Finally, on a call to Y ZA, t~00002 is defined as local and the assembler replaces each
t*°00002 with another invented symbol. Thus, each reference to C in the source code SAl
instruction does not result in a reference to the BSS in the outer macro.

LOCATION OPERATION VARIABLE COMMENTS

5.4.9 IRP - INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition 8ignals the beginning or encl of a f:equence of code to be
assembled repeatedly \\ ith one parameter varied with each repetition.

It has two formats:

l LOCATION

60492600 A

OPERATION

IRP

IRP

I VAR 1 ABLE SUBFIELDS

!parameter

The first form introducct-' the <.:PquencE" ancl name8 the ~ubHitutable parameter; the ~econd form
terminates the repeated 8equence. In either form, a localion field ~.\·mbol, if prc~cnt, i8 ignored.

The parameter name must be listed a8 a 8ubstitutable parameter on the :'IL.\CHO 01· :'IL-\CHOE JJ'.-'Cudo

instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or mon~ subparametern enclosed
by parentheses and separated by commas. The assemble1· assembles the sequence for each suhparamcter;
the number of copies of the sequence clepencls on the r,_urnber of subparameters mone at all when the
actual parameter is null;. \\11en the list of subparamete1·s is exhausted, the assembler continues with
the next line in the definition. If the named substitutable parameter docs not occtll' between the two
IRP instructions, the assembler repeats the cocle unchanged for each subparameter provided in the call.
An IRP outside of the range of a mac1·0 has no effect on assembl.\- other than to be included in statement
counts.

IF-skips of IRP sequences should be controlled b\ instruction bracket names rather than st:itement
counts because IRP ex1Jansions are clone e\·en when an IF-skip is used and because the number of
statements generated by IRP is variable.

Anything that can be clone with an IRP pair can be clone with ECHO and E;-.TID. IRP is foster at assembl.,
time but ECHO is more flexible (it is not e:\.1Janded during IF-skips, allO\rn multiple arguments, and
can be nested). IRP should be used when greater speed is desired and the e;...1rnnclccl capabilitie~ of
ECHO are not needed.

Examples:

1. Repeat sequence within macro

LOCATION

1

I

5-34

OPERATION~ VARIABLE

11 '18

AQG.B
Ak-G
ARG
Xl+R

!ARG

COMMENTS

'30

kEPEATED
lsEnurncE

DEFINITION
OF ZA'd

60492600 A

2. Assign symbol at every 1008 words of zeroed storage:

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be a\'ailablc lo any pl'OgTan~ \rithout e:1ch
program defining them can be placed on the s.vstem text file as s.\·stem macros or can !Je placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying µa rametc1·s
for file environment tables, etc. Systems macro definitions are available to COMPASS for cac:h
assembly. The programmer can use a macro call for a system macro at any time in his program.
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition. An expansion of a call fo1· a
system definitio11 is not normally included on the assembler listing. Cse of the S option of the LIST
pseudo instruction(Section 4.11. 1) enables listing of expansions of system definitions.

60492600 A .- •) -
) -. , l

OPERATION CODE TABLE MANAGEMENT 6

The COMPASS ooeration code table contains the information that COMPA~ requires for interpreting legal
operation field entries for COMPASS instructions.

When assembly begins, the operation code table contains these entries:

Pseudo instructions (except LOCAL)

CPU symbolic instructions (chapter 8)

CMU symbolic instructions (chapter 8)

PPU symbolic instructions (chapter 9)

System macro and opdef definitions

The MACRO, MACROE, and OPDEF pseudo instructions (chapter 5) cause entries to be made in this table.
In addition, the programmer has the capability of creating entries through the following instructions
discussed later in this chapter:

CPOP

PPOP

OPSYN

CPSYN

CPU operation

PPU operation

Synonymous PPU or pseudo operation or macro

Synonymous CPU operation or opdef

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table can be reconstructed between assemblies. COMP ASS
reconstructs the operation code table using all the original system macros, opdefs, pseudo instructions, and
symbolic machine instructions. No programmer-created entry is preserved from assembly to assembly.
The number of entries in the table is limited to 4123.

The only pseudo instructions that logically remove entries from the operation code table are PURGMAC
and PURGDEF.

Entries in the operation code table are in two distinct formats permitting a logical division of the table.
One type of entry permits identification of an instruction by finding a match for the contents of the
operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only if the
search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS analyzes
the statement to be interpreted, determines the syntax of the operation and variable subfields, and again
searches the table.

60492600 E 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for

each instruction are as follows:

Pseudo instructions

PPU symbolic instructions

Instructions described through PPOP

Macro instructions

Instructions described through OPSYN

The entry contains addresses to routines that perform
pass one and pass two operations

The entry describes the format of the instructions to
be assembled

The entry describes the format of the instruction to
be assembled

The entry directs the assembler to the location of the
saved definition

The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows :

CPU symbolic instructions

Instructions described through CPOP

Instructions defined through OPDEF

Instructions described through CPSYN

The entry describes the format of the CPU instruction
to be assembled

The entry describes the format of the CPV instruction
to be assembled

The entry directs the assembler to the location of the
definition

The entry is a copy of the synonymous instruction
The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction.

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already
in the table for a different instruction, the new entry takes precedence over the old entry. Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 60492600 A

2. System macros, pseudo instructions, PPU Eiymbolic machine instructions, and Cl.VII'
instru.ctions other than the IM instru.ction.

3. Programmer-created entries for syntactically identified instructions

4. CPU symbolic instructions and the CMU IM instruction

Example:

The following exa..-wnple illustrates a special case in which a macro name takes precedence over one
form of a machine instruction, i.e. , the form using SB4 as an operation code.

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

~Bit MACRO I Pl ,P2 1 OEFhlE MACRO NAHF.0 ~84

• I
• I

I • I ENOM
I I I I: I I

I
I I
I

lcALL
,.

I
Al+ABLE TO t-illCPC. NOT (:PU IN<:T~U ISA4 rTION

I ,. I
! .. I

'• I

jS'13 I At +ARLE IHACHINf INSTRUCT !OM

i I !
l I

I

Sn4 !oPSYN ! NIL :fltt:::ABLr:~ MAC~r ~UT OOFS NOT
1. I i RE STORE "IO~M l\L USE CF <;Q4

I· ! 1 AS AN OPEPATION CODE. \.'.vn1 IF

1 • !
I IT WERE ~EOEF!Nt:O WITH OP OFF I . IT WOULD ~tQT RE ~ECOGNilEO.

1: ~THF HAC~O FOR~ ALWAYS TQKF~

I l~u~G"'ta,...:
lPRFCEOENCE.

Sfl4 I RESTORES Nf'lR~-1Al USE OF 5~4 ' ..,

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

l\1nemonically identified instructions include all pseudo instructions, macro instructions, and PPl'
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and Pl'RGl\IAC
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP - PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPl: symbolic mnchine
instruction and creates an operation code table entry for the im:truction. COl\IPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP
instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it i~ redefined.
No error is flagged. Any illegal parameter in PPOP causes COMP ASS to ig110rc the PPOP and i~~uc
a 7-type error flag.

60492600 A {
. ,,
)-,)

Format:

LOCATION

name

name

ctl

val

type

I

I

6-4

OPERATION VARIABLE SUBFIELDS

PPOP ctl, val, type

Mnemonic name, 1 through 8 characters

Control of instruction assembly

ctl Significance

0 IDegal; if used, COMP A$ ignores the PPOP

1 24-bit instruction with 12-bit address and no indexing

2 12-bit instruction with signed relative address or absolute address
(e.g., UJN)

3 24-bit instruction with 18-bit address (e.g., LDC)

4 12-bit instruction with 6-bit address (e.g., LDN)

5 24-bit instruction with 12-bit address and optional indexing (e.g., LDM)

6 12-bit instruction with signed relative address (e.g., SHN)

7 24-bit instruction with 12-bit address and required second field (e.g.,
IAM)

An evaluatable expression specifying the octal 4-digit operation code value; usually,
only the two leftmost digits are significant. If the assembly base is M, the field is
assumed to be octal.

An evaluatable expression specifying an integer value that COMP A$ interprets as
follows:

6

7

other or
omitted

Restrict the instruction being defined to the CYBER 180 Series,
CYBER 170 Series, CYBER 70/Models 71, 72, 73, and 74; COMPASS
sets an error flag if the instruction being defined is used in a CYBER
70/Model 76 PPU assembly.

Restrict the instruction being defined to the CYBER 70/Model 76;
CO MP A~ sets an error flag if the instruction being defined is used in
a CYBER 180 Series, CYBER 170 Series, CYBER 70/Models 71, 72, 73,
and 74 PPU assembly.

The instruction is not restricted to either machine type. If the base is
M, type is assumed to be octal. If type is omitted, the comma
preceding it can be omitted also.

60492600 L

Example:

7311

Code Generat.ed

5415 OOi+O

1c:;
'-" -.u

I

11

11

LOCATION

I ILA
I 1C
I ~, ...
I

I
I

OPERATION VARIABLE

II 18

PF~IDH I
P4CiF "

I •
1· ,.
IF')fJ
l~ou

l:POP
I •

1~T-1

l
i
1
1£)

! '4 ll
c;, 5400+l A

, 6.1.2 OPSYN - SYNONYMOUS MNEMONIC OPERATION

COMMENTS

TJo
T
T

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

OPSYN

The name in the variable subfield must be previously defined as a standard instruction code. After an
OPSYN, either name produces equivalent results. If the location field specifies a previously defined
macro or operation code, the new definition takes precedence over the old without notification. Thus,
a macro defined by a name that is subsequently used in an OPSYN location field is not called when
the macro name is used in the operation field. The instruction actually called is the instruction
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with Pl'RGMAC.

Exampie:

1. An operation named CALL is synonymous with RJM.

LOCATION OPERATION VARIABLE COMMENTS

' " lB T Jo

CALL OPSYN I RJM I . I . I I
I I

I
. !
CALL i =XSUBR= 1PPOOUCES SAHE RESULTS

i I As If IT WE E A H R N RJ

60492600 A 6-5

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

LJM. OPSYN LJM ~AVE ORIGINAL DEFINITION AS LJ
PURGHAC LJH ~URGE ORIGINAL nfFINITION

I • I
• I
• I

~JH MACRO xx
I •

• I

• I

ILJ" £NDM

} [coOE USING
•
• LJH MACRO

•
~JH OPSYN LJH. } if!ESTORES ORIGINAL LJM

• ~O~E USING ORIGINAL LJH •
•

6.1.3 NIL - DO NOTHING PSEUDO INSTRUCTION

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the
assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN. The
following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o

MACK OPSYN NIL I

I
• I . I

I
• I TAG HACK A,B,6,73 I . I

I -

6-6 60492600 A

The assembler interprets each call to MACK as a :~IL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURG~MAC-PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

PURGMAC name1 ,name2 , •.. ,namen

name.
1

Names of mnemonic operation codes for macro definitions, pseudo instructions,
or PPU instructions.

A location field symbol if present is ignored.

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP - CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instnwtion of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COl\IPASS to ignore
the CPOP and issue an error flag.

Format:

LOCATION

sytx

sytx

OPERATION VARIABLE SUBFIELDS

CPOP ctl, val, reg, type

The syntax consists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two characters. The first can be any
character except blank. The second character can be a register designator:
A, B, or X, in which case, the operation field of the instruction is recognized
as cAn, cXn, or cBn, (c is a unique character; n is 0-7); or the second
character can be any other character except blank, in which case the operation
field of the instruction is recognized simply by a two-character mnemonic, such

, as EQ.

60492600 B 6-7

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
instruction being described. It consists of none, one, two, or three of the
following 22 subfield descriptors. Q represents an expression. An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank
terminates the syntax.

void Q

r rQ

-r -rQ

rl+r2 rl+r2Q

-rl+r2 -rl+r2Q

rl*r2 rl *r2Q

-r *r
1 2

-r *r Q
l 2

rl/r2 rl/r2Q

-rl/r2 -rl/r2Q

rl-r2 rl-r2Q

-rl-r2 -r -r Q 1 2

For example, to describe -X3*Bl, the descriptor, -r1 *r2' would be written as -X*B whereas, to
describe B2+ALPHA, the descriptor rQ would be written as BQ.

ctl Control of instruction assembly.

ctl Significance

0 15-bit instruction

1 30-bit instruction

2 15-bit instruction, force upper before assembly

3 30-bit instruction, force upper before assembly

4 15 bit instruction, force upper after assembly

5 30-bit instruction, force upper after assembly

6 15-bit instruction, force upper before and after
assembly

7 30-bit instruction, force upper before and after
assembly

6-8 60492600 A

val

reg

An evaluatable expression specifying a 9-bit operation code; if the base is M, val is
a&C)umed to be octal.

Three octal digits specifying the order from left to right into which register numbers are
to be inserted into the i, j, k portions of a 15-bit instruction, or into the i and j portions
of a 30-bit instruction. If the assembly base is M, reg is assumed to be octal.

1

2

3

0

Register number obtained from operation field

Number of second register or only register in variable
field

Number of first two registers in variable field

Set field to O

type An evaluatable expression specifying an integer value that COMPASS interprets as
follows:

6

7

other
or
omitted

Restrict the instruction being defined to the 6000 Series,
CYBER 180 Series, CYBER 170 Series, and CYBER I
70/Models 71, 72, 73, and 74; COMPASS sets an error
flag if the instruction being defined is used when
MACHINE 7 has been specified.

Restrict the instruction being defined to the 7600 or the
CYBER 70/Model 76; COMPASS sets an error flag if the
instruction being defined is used when MACHINE 6 has
been specified.

The instruction is not restricted to a machine type.

If base is M, type is ~urned to be octal. If type is omitted, the comma preceding it can
be omitted also.

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 111 '30
. ~

~AX+h Ll--C.HJ 0 , '> 3 0 u, l 3 2 !J 1(., L FIN b .) ;\ l X.J+BK

I
lsxx~

I

Ct--UP
I

1 , 12 u 1J, 12 ;Ji; 1u c. F IN l S S XI .(•. J+" . I
I .
1 .
I

':>3731 ':,Af X3•til I
I

/22 7231ll000J3 I AG ~)(3
I

~ 1+ 3 I

60492600 L 6-9

6.2.2 CPSYN - SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable field. The only limit lo

the number of CPU instructions that can be made synonymous is the size of the operation code table
(4123 entries).

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

CPSYN

Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation eode t:thle, the table entry for sytx

2
takes precedence

over the old table entry for sytx
1

without notification.

Syntax of a CPL' instniction for which there rnu~t he an ent1·y in the operation
code table. Following the CPSYN, an instruction in either ~ytx1 or ~ytx2
produces an octal instruction of the format de~crihcd by the t•ntry for ~ytx2 •

6.2.3 PURGDEF-PURGE CPU OPERATION CODE

The PURGDEF pseudo in~truction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

PURGDEF sytx

sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

6-10 60492600 A

MICROS

The COMPASS micro capability enables the programmer to symbolicaiiy refer to a defined character
string. \Vhen used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a particular character,
counting characters, concatenation of strings, etc.

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 MICRO SUBSTITUTION

\Vherever a micro name between micro marks (;i) occurs in a statement other than a comment

7

line (* in column 1), the assembler substitutes the micro before it interprets the statement. If
column 72 of the last statement read is exceeded as a result of micro substitution, the assembler creates
up to a maximum of 9 continuation statements, beyond which it discards excess characters without noti
fication on the listing. No replacement takes place if the micro name is unknown or if one of the micro
marks has been omitted. If the micro name is unknown, the assembler flags a nonfatal assembly error.
If the micro name is null (that is, the two micro marks are adjacent), the,n

1. Both micro marks are deleted, a11d

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:

A reference to NAM is in the variable field of a line:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 '30
I

I I LOC

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the
following line:

LOCATION

I

LOr.

60492600 A

OPERATION VARIABLE COMMENTS

11 18 '30
--

SA1 AOORES<;+4 I
I

NOTE

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
before the substitution took place.

7-1

7 .2 MICRO DEFINITION
Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and
QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

;_ 7.~.1 MICRO - DEFINE MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION

micname

micname

dstringd

OPERATION VARIABLE SUBFIELDS

MICRO Ili , n2 , dstringd

Name by which definition is called; 1-8 characters

Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n

1
is decimal.

Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n

2
is decimal.

Delimited character string. The delimiter d is a character not used in the
string.

Counting the first character after d as character 1, the assembler forms the string by extracting n2
characters starting with character n

1
• If the second delimiting character occurs before count n2 is

exhausted, the defined string terminates at that point. If n1 is greater than zero and n2 is omitted, zero,
or negative, the defined string includes all the characters from n

1
to the closing delimiter (see second

example).

If nl is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, n2 and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined
originally as one character string can he redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If n1 or n2 is negative, the assembler generates a 7-type error.

Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OPERATION VARIABLE COMMENTS

I II IB 130

N ~t4E f'41cqo 1,1q,•ALPHANU~~RIC <;TPING•

7-2 60492600 A

2. This example illustrates a blank characte~· count. The defined .:-:tring bq..;in.:- with A :ind i~

terminated by the closing delimiter.

r LOCATION OPERATION I VARIABLE COMMENTS

11 }is
I r
I IM ICKY

"T

M I c p 0 I 1 ' ' {t AL pH AN u M Et:;? I c s p : ('_ 1; 'I

3. One micro can be defined as a substring of anolhe l'.

I LOCATION OPERATION! VARIABLE COMMENTS

I 11 18 T 30

1,?~,~~~J~~~Al~MANLJMCPJC
----··---

NAM! Mir.~n c:::r-~PJG ..
; I . I . . I . . . I . . . I

NAP.? r-irr. 0 o 1, ,•t"IAl"'tt• ! SA:~~ STOT"JG t.' r i,~ ~)(,'\ ;,• ! L:: <; ! L\

4. One micro can combine other~.

LOCATION COMMENTS ! OPERATIONl VARIABLE
f-+-------+------l---------,~----------------------

iMA~1
I~, ti~12
I ~1AWZ-

i MICPO
MI~RJ

, ,..Ir.P')

30

1 1, t 2, $ n L PH:\~' u".A,.. :;:i l ,... !'

1,7,'I STPit'uX
1 , , + t N A r · 1 t t t--i :l ,...: ? t t-

5. A micro name can be redefined.

r LOCATION OPERATION T VARl.4.BL;--- COMMENTS

r I II i 18 T 30
I -

r t'l c:; r. IMIC~J I 1 , r~ , • c:; P HJ C .\'-;
I

I i ' .
I
I

'r (\ , ,- us r 1 (i:- I p '~ T 1: ~- r T ~I '. f T • I

~~;G
)

1 1 , ~ 'l , ,.. I\ L :-; ·, r, "; l !"" r 0 .. r t '-4 ~ --: t .,.

,CC;"'f USI~G c;-rJ'~'' C1 f~I 1 !"T"Ir·"'·
f I .' ~ I ·~ 'i.:- Tr~ T r I \ r, r" T N !, "'.: • <'.' c::; :1 L ::- •

G. .:\Iic1·0 substitution takes pbc<' before a line is assembled 01· l'\:.:tmincd fut· :-;_\ nt:t>:. Thu:-;,
the following is pos::-dbk.

I

I
I

i i
I I
I !
I i

LOCATION

~/\M

l#INAM#1
!!Loe
I !

OPERATION VARIABLE

!I : 8

'."1 IC R :) 1,25,* LOC
.

S A1 ADl)RFSS+1

COMMENTS

30

s I\ 1
I

AD!JRESS+*

~ " ! -.)

7.2.2 DECMIC - DECIMAL MICRO

l :-ing a decimal conversion, the DECl\IJ C pseudo instruction converts the exprcs~don into a ch:i racte 1·

!-' t ting to be saved under the name specified.

F•>r-mat:

LOCATION

micname

micname

aexp

n

OPERATION VARIABLE SUBFIELDS

DECMIC aexp,n

Name by which definition is called; 1-8 characters

Absolute evaluatable expression

Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n. \\'hen base is ::\I, CO"'.\IPASS assumes that
n is decimal

If n is omitted or has a zero value, the micro contains the number of charade· rs
indicated by the eonversion to a maximum of 10 characters. If the convcetcd
expression has more than n (or 10) digits, the most significant digits arc
truncated. If the value has fewer than n digits, the string is right justific•d :m<I
filled \Vi th leading zeros. All numbers are treated as positive.

B has the value 1024 decimal or 2000 octal before conversion.

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

v DECMIC B,6

7.2.3 OCTMIC - OCTAL MICRO

Csing an octal conversion, the OCT:\IIC pseudo instruction cPnvc'rts the \·:lluc of the ex1n·ession into :1

character string to be saved under the name specified.

7-4 (j(l.4 !)~fi(l() J)

Format:

I LOO.T!ON

lmicname

micname

aexp

n

!oPE?.AT!ON ! VAR:ABlf SUS~lEtOS
I
IOCTlVIIC laexp, n

Name by which definition is called; 1-8 character~

Absolute evaluatable expression

Optional absolute evaluatable expression specif.\·ing numher of eharacters
in the string. The defined string is a maximum ol 1 O characters regardless
of the magnitude of n. \\'hen base is l\I, COMPASS assumes n as a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 characters.

If the converted expression has more than n (or 10) digiti', the most significant digirn are truncated.
If the value has fewer than n digits, the string is right justified and filled with leac.hng zero~. All
numbers are treated as positive.

Example:

B has the value 1024 decimal or 2000 octal before conversion.

LOCATION

I

OPERATION VARIABLE COMMENTS

lJ 18 !Jo

IOCTHICIB,6

I
.1 .. : ... M ... · .. ·.·· ... ····r·.··.·.· c·· ·.·.· .. ·.Q········.·.· •...•• o ·.·.··.:. M!'D.RG

I
I

~, '·~ .. ~Y.tt.AP9JT.L9 .. ~ .. ~ ... ~ sxP.~.~i~r ~ .. ~:~?rR~
~i!~Q·qgqQ9.··~~·Q~~+q~~J? ·~rP~~?s·,!!~sQ~~!

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined b\ the CO:\I PASS ;u-;;semhlt'r. Th<-',. ;1 H' :tv:ti hhle fot· t>\'P''.'

assembly. The programmer simpl.\ wl'ites the micro i·eferenee as desin.•d.

These micros are automatically defined ~1t the beginning of eaeh assembh, ancl h:1n.' the default \':iluc.·s

specified below until they are redefined by the progranH!iL't·; lhe1·ctfter, the pn1grarnrnci''s ddinitiun
holds until the start of the next assembl>·.

7.3.1 DATE

The DATE micro cnntain~ the current d:1te in 10 ch:1r:1l'lcr~ it1 rnH· 11!' the !'Cll1m\ing for:11~ :1~ (llit::irn"!

from the operating s.\·stcm:

The mkro reference is IOATEl=v

60..f92fWO E

7.3.2 JDATE

The automatic value of the JDATE micro is five digits yyddd, where yy is the year and ddd is the day
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

The micro reference is !JDATE#.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system: ,

~hr. min. sec.

The micro reference is ¢TIME¢.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

TITLE PROGRAH ASSEMBLED ON 10ATE# ATtTIHE1

7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D.

The micro reference is !BASE!.

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, 0, or I, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is
initially D.

The micro reference is ICODEI.

7.3.6 QUAL

The automatic value of the QUA L micro is 0 to 8 characters comprising the qualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and
whenever the blank qualifier is in effect.

The micro reference is !QUAL#.

7-6 60492600 F

7.3.7 SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequenl!e field
(columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(i.e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most
recently read from the main source input file.

The micro reference is #SEQUENCE# ..

7 .3.8 MODLEVEL

·The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML pa
rameter on the COMPASS control statement. If no ML parameter !s present, the automatic value of the
MODLEVEL micro is equal to that of the JDATE micro. When COMPASS is caiied by a compiier to
prooess embedded COMPASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler.

The micro reference is #MODLEVEL#.

• 7.3.9 PCOMMENT

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control statement, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. If no PC parameter is present, the auto
matic value of the PCOMMENT micro is 30 blanks. When COMPASS is called by a compiler to process
embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied by the call
ing compiler. The PCOMMENT micro is intended to be used in a COMMENT pseudo instruction to
specify words 8 through 10 of the PRFX table in the binary output. It may also be used, in conjunction
with the *F special symbol, to determine compiler options (debug mode, rounded arithmetic, etc.) in
effect at the time of assembly.

The micro reference is #PCOMMENT,l.

60492600 A 7-7

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolic notation for all central processor unit (CPU) instructions for the CYBER I
180 Series, CYBER 170 Series, CYBER 70 Series, 7600, and 6000 Series. For COMPASS to recognize the
symbolic notation for models 810, 815, 825, 830, 835, 845, 855, 865, and 875 CPU instructions, the
programmer must ensure that SYSTEXT is available to the assembler.

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830, I
835, 845, 855, 865, and 875. To detect these instructions, the programmer can specify S=AIDTEXT in the
COMPASS control statement. COMPASS prints a listing of tha program, flagging the invalidated
instructions with a type 0 error. S=AIDTEXT should not be specified if the 8 option is chosen for the
MACHINE pseudo instruction.

The assembler identifies each symbolic instruction according to its syntax and generates a one-parcel
15-bit instruction or a two-parcel 30-bit instruction. The object code for an instruction is generated in the
block in use when the instruction is encountered.

8. 1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illmtrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

14 8 5 2 0

I I
f m

I I I

Figure 8-1. CPU 15-Bit Instruction Format

29

I I

f m
I I I

23 20

I . I I j
I 1. ..

17

I I

K
I I I I I I I I I I I

Figure 8-2. CPU 30-Bit Instruction Format

f m 6-bi t instruction code

fmi 9-bit instruction code

0

I I

3-bit code (0 through 7) specifying one of eight designated registers (for example, Ai)

3-bit code (0 through 7) specifying one of eight designated registers (for example, Bj)

k 3-bit code (0 through 7) specifying one of eight designated registers (for example, Xk)

K 18-bit integer value med as an operand, address of an operand, or branch destination address

jk 6-bit integer value specifying a shift comt or mask count

Figure 8-3 illustrates possible arrangements of one- and twcrparcel instructions in a 60-bi t CPU instruction
word. Generally, the assembler does not allow a twcrparcel instruction to begin in the fourth parcel of a
word.

60492600 L 8-1

First Second Third Fourth

Parcel (Parcel 0) Parcel (Parcel 1) Parcel (Parcel 2) Parcel (Parcel 3)

I I I
h5 15 15 15 I

I

59 44 29 14 00

30 15 I 15 I
59 29 14 00

15 ~4 30 15
59 14 00

15 I 15 30
59 44 29 00

30 30
59 29 00

Figure 8-3. Arrangements of Instructions in a 60-bit CPL'" Word

When a two-parcel instruction begins in the last pru•cel of a word, the CYBER 170 Models 175, 176, 740,
750, 760, 865, and 875; the CYBER 70 Model 76; and the 7600 execute it as if the instruction word had a

I fifth parcel containing all zeros. On the CYBER 180 Computer Systems; the CYBER 170 Models 171, 172,
173, 174, 720, 730, 815, 825, 835, 845, and 855; and the CYBER 70 Models 71, 72, and 73; and the 6400, this
condition causes an a-ror exit. On the 6600 and the CYBER 70 Model 74, the CPU ta1ces the first parcel of
the current instruction.

Before it assembles an instruction tmt must begin in the first parcel (forced upper) and after it assembles
an instruction that requires the instruction following it to be forced uppa-, the 8$embla- completes a word
as follows:

Lowa- 15 bi ts remain

Lowa- 30 bits remain

They are packed with a one-parcel NO (pass) instruction.

They are packed with a two-parcel SBO BO+K instruction.

Lowa- 45 bits remain They are packed with a NO instruction and an SBO BO+K instruction.

8.2 INSTRUCTION EXECUTION

8.2.1 6600/6700t AND CYBER 70 MODEL 74 EXECUTION

Afte- an exchange jump start by a peripheral processcr (PP) and CPU program, CPU instructions issue
automatically in the original sequence, to an 8-word instruction stack. The stack can hold a program loop
consisting of up to twenty-six 15-bit instructions and one 30-bit instruction.

Instructions are read from the stack, one at a time, and issued to the functional units (table 8-1) for
execution. A scoreboard resa-vation system in CPU control keeps a current log of. which units and
operating registers are rese-ved fer computation results from functional units.

tThe 6700 also includes a 6400-type central processor unit

8-2 60492600 L

TABLE 8-1. CYBER 70 MODEL 74 ANiJ 6000/7600 FUNCTIONAL UNiTS

Unit

Branch

Boolean

Shift

Floating Add

Long Add

Floating Multiply

Floating Divide

Increment

+ General Function

I
Handles aHjumps or branches from the p;~gram.
Handles the basic logical operations of tran~fer, logical product,

I logical sum, and logical difference.

I

Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and normali:w, pack, and
unpack floating point operations. The unit also inciudes a mask
generator.

Performs single or double precision floating point addition and
suhtraction on floating point operands.

Performs addition and subtraction of two 60-bit fixed point operands

Performs single or double precision floating point multiplication on
floating point operands

Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a GO-bit word.

Performs one's complement addition and ~ubtraction of 18-bit operands

......_--------------L-----------·------------

Each functional unit executes several instructions, but only one at a time. Some branch instructions
require two units; the second unit receives direction from the branch unit.

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds (one
minor cycle). Sustained issuing at this rate may not be possible because of functional unit and CM conflict
or because of serial rather than simultaneous operation of units. Program run time can be decreased by
efficient use of the units. Instructions that are not dependent on previous steps may be arranged or nested
in program areas where they may be executed concurrently with other operations to eliminate dead spots in
the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

An instruction is issued to a function unit when:

Specified functional unit is not reserved.

Specified result register is not reserved for a previous result • . ,
Imtructions are issued to functional units at minor cycle intervals when no reservation conflicts are
present.

Imtruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

No delay occurs between the end of a first unit and the start of a second unit which is waiting for the
results of the first.

60492600 A 8-3

After a branch instruction is initiated, no further instructions are issued mtil the branch has been
executed. In the execution of a branch instruction, the branch unit uses:

Increment mit to form the instructions tmt branch to K + Bi and tranch to Kif Bi •..

Long add unit to perform the instructions that branch to K if Xj .••

Time spent in the long add or increment mi ts is part of total branch time.

Read central memcry access time is computed from the end of increment unit time to the time an operand
is available in X operand register. Minimum time is 500 nanoseconds assuming no central memory bank
conflict.

18.2.2 CYBER 180 COMPUTER SYSTEMS; CYBER 170
MODELS 171, 172, 173, 174, 720, 730, 815,825,835,845,AND855;
CYBER 70 MODELS 71, 72, AND 73; AND 6200, 6400, 6500 EXECUTION

I The CYBER 180 Computer Systems; the CYBER 170 Models 172, 173, 174, 720, 730, 815, 825, 835, 845, and
855; the CYBER 70 Models 71, 72, and 73; and the 6200, 6400, and 6500 systems CPU has a unified
arithmetic mit, rather tmn separate fmctional units as in the 6600 system. Instructions in the CPU are
executed sequentially.

I

NOTE

Unless otherwise stated, the remainde- of this section applies to all the models
listed above, except models 810, 815, 825, 830, 835, 845, and 855.

Fer efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction wcrd to avoid both
the additional time for RNI (read next instruction, 2 minor cycles) and the possibility of a memory
bank conflict with (P + 1).

Where possible, place load/store instructions in the lower two portions to avoid lengthening execution
times.

Reading the next instruction words of a program from central memory, RN!, is partially concurrent with
instruction execution. RNI is initiated between execution of the first and second instructions of the word
being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI is parallel in
time with execution of the remaining instructions in the word:

8-4

p .___I _1 ---+l-2______.__ 1_3~1
Initiate\ ___/\
RNI Execution of

+ ~instructions~
, 2 and 3

200
nsec

RNI
~minimum of~

800 nsec

1----------Total RNI time _________ ,

60492600 L

In calculating execution times, two minor cycles are added to each instruction word in a program to cover
the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the jump
condition is met) when they occupy the upper position of the instruction word. Since the times ior these
instructions already include the time required to read the new instruction word at the jump address, no
additional time is consumed.

Example:

Instruction

Jump

Add 1

RNI Initiation

Add 2

Load

Store

Total Time

P I Jump to K (met)

Add 2

Pass

Load

Pass

I

Store I

l\finor Cycles Hequired

13

5

2

5

12

10

47 minor cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight minor
cycles elapses before the next instruction word is available for execution. Even if the lower order positions
of the word should require less than eight minor cycles, a minimum of eight minor cycles is allowed.

Example:

I
Jump to K

p (not met)

P+l

Pass Pass

8.2.3 CYBER 170 MODELS 175, 176, 7 40, 750, 760, 865, AND 875;
CYBER 70 MODEL 76; AND 7600 EXECUTION

I

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in the
computation section of the CYBER 170 Models 175, 176, 740, 750, 760, 865, and 875; the CYBER 70 Model I
76; and the 7600 CPU. Each is a specialized unit with algorithms for a portion of the CPU instruction
execution. Table 8-2 lists the general function of each unit. A number of functional units can be in
operation at the same time.

60492600 J 8-5

I TABLE 8-2. CYBER 170 MODELS 175, 176, 740, 750, 760, 865, AND 875;
CYBER 70 MODEL 76; AND 7600 FUNCTIONAL UNITS

Unit

Boolean

Shift

Normalize

Floating Add

Long Add

Floating Multiply

Floating Divide

Population Count

Increment

General Function

Handles the basic logical operations of transfer, logical protluct, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.

Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.

Performs the normalize operations.

PerforplS single or double precision floating point addition or subtraction
on floating point operands.

Performs integer addition or subtraction of two 60-bit fixed point
operands.

Performs single or double precision floating point multiplication on
floating point operands.

Performs single precision floating point division of floating point
operands.

Counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in
three-addre~ mode with source and destination addre~ing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held in a
new set of registers at the end of every clock l?eriod. It is therefore possible to start a new set of operands
for unrelated computation into a functional umt each clock period even though the unit may require more
than one clock period to complete the calculation. This process may be compared to a delay line in which
data moves through the unit in segments to arrive at the destination in the proper order but at a later
time. All functional units perform their algorithms in a fixed amount of time. No delays are possible once
the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit in
any clock period providing there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time. Program
branching within the instruction stack causes no storage references and small program loops can therefore
be precisely timed.

8-6 60492600 J

8.3 OPERA TING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number l

Operand Registers XO - X7 60 Bits 8 i
I

Address Registers A I\ ,\'7 I 18 Bits I 8 !
.n.v - .n.1

I l i
I

Index Registers BO - B7 18 Bits 8
I

I I

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3. 1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated XO, Xl, .•• , X7 are the principal
data h.;indling registers for computation. Data flows from these registers to the SCM (CM) and the LCM
(not ECS). Data also flows from SCM (CM) and LCM (not ECS) into these registers. All 60-bit operands
involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM) into
corresponding address registers.

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the X registers also serve as address
registers for referencing single words from LCM. XO is used as the LCM relative starting address in a
block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as AO, Al, ... ,A7, are
essentially SCM (CM) operand address registers. With the exception of AO and XO, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5 causes an
immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word to the
corresponding operand register Xl - X5. Similarly, placing a value into address register AS or A7 causes
the word in the corresponding X6 or X7 operand register to be written into that relative address of SCM
(CM).

The AO and XO registers operate independently of each other and have no connection with SCM (CM). AO is
used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results.

8.3.3 B REGISTERS

Eight 18-bit B registers in the computation section of the CPU designated as BO, Bl, ... ,B7 are primarily
indexing registers for controlling program execution. Program loop counts can be incremented and
decremented in these registers.

60492600 H 8-7

I

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel
number for channel status requests.

BO always contains positive zero; that is, BO is held clear. Often as a programming convention, Bl or B7
contains positive 1. See the Bl=l, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are listed
in groups according to function. Instructions unique to a computer system are identified as such in
table 8-3. These instructions can be assembled on any machine but will execute properly on the noted
machine only. Table 8-4 lists the functional unit, if any, in which each instruction executes. For details
and special conditions arising during instruction execution, refer to the relevant hardware system reference
manual.

TABLE 8-3. CPU INSTRUCTION/MACHINE MODEL CORRESPONDENCE

Machine Model Number

Mnemonic
810, 815, 825, 830,

171, 172, 173, 174, 175,
Code 720, 730, 740, 750, and 760;

835, 845, 855, 865, 76 and 7600 71, 72, 73, and 74; and 176
and 875 6000 Series

A Xi x x x x
BXi x
cct

x x x

CR x

cut
cw x
CXi x x x x
DF x x x x

DMt
DXi x x x x
EQ x x x x
ES x

FXi x x x x
GE x x x x
GT x x x x
IBj x x

ID x x x x
IMt
IR x x x x
I Xi x x x x
JP x x x x
LE x x x x
LT x x x x
LXi x x x x

8-8 60492600 L

I
l
I

I

Mnemonic
Code

MDt
MI
MJ
MXi

NE
NG
NO
NXi

NZ
OBj
OR
PL

PS
PXi
RE
RI

RJ
RL
RO
RXi

RXj
SAi
SBi
SXi

TBj
UXi
WE
WL

WXj
XJ
ZR
ZXi

tCMU

I

TABLE 8-3. CPU INSTRUCTION/~.ACHINE MODEL CORRESPONDENCE (Contd)

810, 815, 825, 830,
835, 845, 855, 865,'

and 875

x

x

x
x
x
x

x

x
x

x
x
x

x

x

x
x
x
x

x
x

x
x
x
x

I

I

I

Machine Model Number

76 and 7600

x
x
x

x
x
x
x

x
x
x
x

x

x

x
x
x
x

x
x
x
x

x
x

x

x

x
x

171, 172, 173, 174, 175,
720, 730, 740, 750, and 760;

71, 72, 73, and 74; and
6000 Series

x

x

x
x
x
x

x

x
x

x
x
x

x

x

x
x
x

x
x

x
x
x

I

I

I

instruction: Compare/Move Unit available on CYBER 170 Models 172, 173, 174,
720, and 730. Models 810, 815, 825, 830, 835, 845, and 855 support CMU instruc-
tions through simulation.

60492600 L

j

176 I I
I

x
I x

x

x
x
x
x

x
x
x
x

x I

x I
x I
x
x
x

x
x
x
x

x
x

x

x
x
x
x

I

8-9

8-10

Mnemonic

AXi
BXi
CR
cw

CXi
DF
DXi
DXi

DXi
EQ
ES
FXi

FXi
FXi
FXi
GE

GT
IBj
ID
IR

I Xi
IXi
I Xi
JP

LE
LT
LXi
MI

HJ
MXi
NE
NG

11)

NXi
NZ
OBj

OR
PL
PS
PXi

TABLE 8-4. CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE

Operation
Code

32ijk
33ijk

42ijk

30ijk

3lijk
40ijk
44ijk

36ijk
37ijk
42ijk

74, 6600,
and 6700

Shift
Boolean
None
None

Divide
Branch
FP Add
FP Add

Multiply
Branch
t
FP Add

FP Add
Multiply
Divide
Branch

Branch
t
Branch
Branch

Long Add
Long Add
Multiply
Branch

Branch
Branch
Shift
Branch

t
Shift
Branch
Branch

None
Shift
Branch
t

Branch
Branch
Branch
Shift

Functional Unit

175, 176, 740,
750, and 760;

76; and 7600

Shift
Boolean
None
None

Pop
None
FP Add
FP Add

Multiply
None
None
FP Add

FP Add
Multiply
Divide
None

None
Hone
Hone
None

Long Add
Long Add
Multiply
None

Hone
None
Shift
None

None -
Shift
None
None

None
Normalize
Hone
Hone

Hone
Hone
t
Boolean

60492600 H

l
f
I

I

I
I
l

I
I
t
!

TABLE 8-4. CPU INSTRUCTION/FUNCTIONAL UNIT CORRESPONDENCE (Contd)

I I

Mnemonic
Operation

l
Code

I
RE I RI
RJ I

I I

RL

RO
RXi 34ijk
RXi 35ijk
RXi 4lijk

RXi

I
45ijk

RXj
SAi
SBi I

I SXi I
!

TBj r
~

UXi
WE

WL
WXj OlSjk
XJ 01300
XJ 013jk
ZR
ZXi

tinstruction not supported for this model.

Functional

74, 6600,
and 6700

Branch
t
Branch
t

t
FP Add
FP Add
Multiply

Divide
t
Increment
Increment

Increment
t
Shift
Branch

t
t
None
Branch
Branch
Shift

Unit

175, 176, 740,
750, and 760;

76; and 7600

t
None
None
None

None
FP Add
FP Add
Multiply

Divide
None
Increment
Increment

Increment
None
Boolean
None

None
None
None
t
None
Normalize

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator.

I

I

The variable field contains one, two, or three subfields. For 15-bit instructions, subfields take the for ms:

r
-r
r,r }
r op r }
-r op r

jk

60492600 H

r is a register designator

op is a register operator + - * I

jk is an absolute expression specifying a shift count or mask bit count. If the
expression value is in the range -60 to -0, inclusive, COMPASS adds 60 to it. If
it is less than -60 or greater than 63, COMPASS sets a warning flag and uses the
low-order 6 bits of the expression value.

8-11

For a 30-bit instruction, subfields take the forms:

K

r op K

r,K

r,r,K

The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * I
One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

Two subfields contain register designators; a third contains an absolute,
relocatable, or external expression that does not include a register.

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass two:

An absolute address or a word count

An external symbol.:!:_ an integer value

An address that is relocatable relative to the program origin or common block origin.

An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, + K designates that the evaluation of all nonregister elements can result
in a positive or negative value for fhe expression (see Evaluation of Expressions in chapter 2). Use of+ K
to represent the integer portion of the expression does not imply that the first term operator in the -
expression is an expression operator. If you consider that a and bare terms in expression K, then +K
indicates that the sum of the values of a and bis positive and -K indicates that the sum of the values is
negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRA Y has the value 407 8• The first term operator (-) forms the
value 7773709. Subtracting 1 from this results in 777367 8 or a -K (-4109).

Code Generated
LOCATION OPERATION VARIABLE COMMENTS

I II lB ho

SXl X2-XRAY-1 I
I

7212777367

Unless otherwise noted, subfields can be in any order. COMP~ also allows an added degree of flexibility
by allowing the variable subfields of an instruction to be written in the operation field with each subfield
preceded by a comma. For example:

Code Generated LOCATION OPlRATION VARIABLE COMMENTS

I II 18 TJo

26123 IUX1 B2 X3
T

I

8-12 60492600 H

can be written

Code Generated I i LOCATION i OPERA TIQN I """"

I II 18

26123 !UX1,B2.X3

The instructions are identical to the a~embler.

COMMENTS

'30
I

Similarly, the following in.structiom are regarded as identical. Use of this feature is optional.

0423010641
0423010641
0423010641
042301064,.

1 ! LOCATION

I

;

i

OPERATION T VARIA8tE

11 18

EQ 82,83,K
EQ,82 83,K
EQ,82,83 K
EQ,B2,B3,K

COMMENTS

1 Jo

T

I

I
I
I
I

I
I
I
I

8.4. 1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION

The CEJ/MEJ Panel Switch determines whether this instruction causes the central processor unit to mlt or
to execute an exchange jump. The DISABLE position disables the central exchange jump or the monitor
exchange jump. In this case, the instruction is illegal for a CYBER 170 Model 175. For all other systems,
PS halts the central processcr unit at the current step in the program. An exchange jump is nece~ary to
restart the central processor unit. The ENABLE position enables the jump capabilities for all systems. In
this case, PS causes an exchange jump to monitcr addre~ (MA) in the exchange package. For the CYBER I
180 Computer Systems and the CYBER 1 70 Models 176, 815, 825, 835, 845, and 855, exchange jum~ are
always enabled. Fer 6000 series systems, the CRJ/MEJ switch is ignored; PS always cat.5es the central
processor unit to mlt. The job continues to hold a control point until the time limit is satisfied; at tmt
time the job aborts.

The contents of the location field become a sub-subtitle on the assembler listing. The assembler forces
upper before and after a~embling a PS instruction.

Format:

' Operation
!

Variable Description
!

Size Octal Code

PS Program stop or exchange jump to (MA) 30 bits 00000 00000

PS K

I
Program stop or exchange jump to (MA) 30 bits OOOOK

I I

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I ii 18 '30
--

0000000000
I

PS I

60492600 L 8-13

8.4.2 ERROR EXIT INSTRUCTION

ES execution is treated as an error condition and the machine sets the program range condition flag in the
PSD register. The condition flag then generates an error exit request which causes an exchange jump to
address (EEA). All instructions issued prior to this instruction are run to completion. Any instruction
following this instruction in the current instruction word is not executed. When all operands have arrived
at the operating registers as a result of previously issued instructions, an exchange jump occurs to the
exchange package designated by (EEA). .

The i, j, and k designators, which are ignored by the computation section, are set to zero by the assembler.
The program address stored in the exchange package on the terminating exchange jump is advanced one
count from the address of the current instruction word (P=P+l). This is true regardless of which parcel of
the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code. The program range condition flag is
set in the PSD register to indicate that the program has jumped to an area of the SCM field which may be
in range but is not valid program code. This should occur when an incorrectly coded program jumps into an
unused area of the SCM field or into a data field. The program range condition flag is also set on the
condition of a jump to address zero. These conditions can be determined on the basis of the register
contents in the exchange package. The existence of an error exit condition resulting from execution of this
instruction can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

A force upper occurs after the ES instruction.

Format:

joperation Variable Description Size Octal Code

ES Error exit to EEA 15bits 00000
ES K Error exit to EEA 15 bits 00000

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o
t-i

C<;: I
I 00~00

8.4.3 RETURN JUMP INSTRUCTION

When this instruction is executed, an unconditional jump to the current address plus one (P)+l is stored in
the upper half of relative address Kin SCM and control then transfers to K+l for the next instruction. The
lower half of the stored word is all zeros. The instruction always branches out of the instruction stack and
voids all instructions currently in the instruction stack.

After the instruction i~ executed the octal word at K is:

Address K

8-14

(0 4 0 0

59 "-.rJ
Bi=Bj

p + 1 n o a 0 o a a a o a a I
29 00

60492600 H

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jump
instruction in the current instruction are not executed. The called subroutine must exit at address K in CM
(SCM). A jump to address K of the branch routine retums the program to the original sequence. The
assembler sets the unused j designator to zero.

A force upper occurs after the instruction is assembled.

Format:

Operation Variable Description Size Octal Code

I LR~J~~~~---1-~K~~~~---l.~H_e_t_u_rn~ju __ 1n_p~to~K~~~~~~~~~~~-'--3-0_1_)i_t~ 01_0_0_1~-·~___.

Example:

Code Generated
COMMENTS

0100002374 +

8.4.4 ECS/UEM INSTRUCTIONS

These instructions initiate either a read or write operation to transfer (Bj}+K 60-bit words between
extended memory (ECS or UEM) and central memory (CM). The initial extended memory address is
(XO)+RAe; the initial CM address is (AO)+RAc.

NOTE

For the CYBER 180 Computer Systems and the CYBER 170 Models 815, 825, 835,
845> and 855, these instructions are UEM block copy instructions. For the CYBER
1 70 Models 865 and 875, the selection of the ECS or UEM depend; on the state of
the UEM enable flag. This flag is one bit in the 6-bi t flag register in the exchange
sequence. If the enable flag is set, transfer is between UEM and CM; if the enable
flag is clear, transfer is between ECS and CM.

The assembler forces upper before assembling an RE or WE instruction.

If no error occurs, the next instruction executed is the first instruction in the current address plus one
(P)+l.

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word containing the
RE or WE instructions. These 30 bits should always hold a jump to an error routine. The conditions are:

Parity errors when reading ECS. If a parity error is detected, the entire block of data is transferred
before the exit is taken.

The ECS bank from/to which data is to be transferred is not available because the bank is in
maintenance mode, or the bank has lost power. If either of these conditions exists on an attempted
read or write, an immediate error exit is taken.

An attempt to reference a nonexistent address. On an attempted write operation, no data transfer
occurs and en immediate error exit is taken. If the attempted operation is a read, and addresses are in
range, zeros are transferred to central memory. This is a convenient high-speed method of clearing
blocks of central memory.

60492600 L 8-15

I

On a CYBER 170 Model 176, action in the case of error depends on the operating system being run. Under
SCOPE 2 error processing is just as for the RL and WL instructions (see LCM Block Copy Instructions).
Under NOS, an error causes the job to abort. Under NOS/BE, an error exit to the lower 30 bits of the
instruction word takes place. This action is provided by the operating system, not by the hardware.

For additional information about ECS instructions, refer to the 7030 Extended Core Storage Reference
Manual.

Format:

Operation Variable

RE Bj

RE K

RE Bj~K

WE Bj

WE K

WE Bj~K

Example:

Code Generated

0110002000

0117001000

0125001000

Description

Read extended memory

Read extended memory

Read extended memory

Write extended memory

Write extended memory

Write extended memory

LOCATION OPERATION

I II

IRE

RE

WE

8.4.5 LCM BLOCK COPY INSTRUCTIONS

Size Octal Code

30 bits OlljO 00000

30 bits OllOK

30 bits OlljK

30 bits 012j0 00000

30 bits 0120K

30 bits 012jK

VARIABLE COMMENTS

18 T30
2000B ' I

I
B7+1000B I

1000B+B5 I

Block copy instructions move quantities of data between LCM and SCM as quickly as possible. All activity
in the CPU other than 1/0 word requests is stopped during a block copy operation. All instructions issued
prior to a block copy instruction are executed to completion and no further instructions issue until the
block copy is nearly completed. As a result of these restrictions the data flow between LCM and SCM can
proceed at the rate of one 60-bit word each clock period. When an 1/0 multiplexer word request for SCM
occurs during this transfer, the data flow is interrupted for one clock period. The 1/0 word address is
inserted in the stream of addresses to the SAS, and the addresses for the block copy are resumed with a
minimum of a one clock period delay. An additional delay will occur if the 1/0 reference causes a bank
conflict in SCM.

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement. The result is an 18-bit integer which is truncated to a
10-bit quantity. Thus, a maximum block size is 1777 8· (For example, if the result of the add is
0030008, the instruction transfers 10008 words.) No error indications are given when this occurs unless
the field length is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (AO) in the SCM and at the relative LCM address
determined from the lowest order 19 bits of (XO). If (XO) is negative, the 19 bits are treated as a positive
integer. If the sum of (X018-00) and the block count exceeds the (FLL), the copy is not executed and the

8-16 60492600 H

I

LCM block range condition flag is set in the PSD register. Similarly, if the sum of (AO) and the block
exceeds (FLS), the copy is not executed and the SCM block range condition flag is set in the PSD register.

Under SCOPE 2, COMPASS will truncate a block copy instruction if it begins in the last parcel and its
K field is zero. Under such conditions, a block copy is a 15-bit instruction.

Under NOS and NOS/BE, COMPASS forces upper after assembling an RL or WL instruction.

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD register but does not interrupt the block copy instruction. No further instructions are issued during
block transfer of data. Instructions already issued are completed; all other activity, with the exception of
I/0 word requests, stops.

On a CYBER 170 Model 176, if no error takes place, the next instruction executed is the first instruction
in the current address plus one (P) + 1 . Action in the case of error depends on the operating system being
run. Under SCOPE 2, error processing is just as for any program running on the CYBER 70 Model 76, as
described in the SCOPE 2 Reference Manual listed in the preface. Under NOS, an error causes the job to
abort. Under NOS/BE, an error exit to the lower 30 bits of the instruction word takes place. This action is
provided by the operating system, not by the hardware.

Format:

Operation I Variable Description Size Octal Code

i
RL i Bj Block copy (Bj) words from LCl\1 to SCl\I 30 bits 01 ljO 00000

RL K Block copy (K) words from LC\I to SCl\T 130 bitfi OllOK
!

RL , Bj+K Block co B' + K words from LCM to I PY (J) _
l I

SCM

lwL '.K
I

Block copy (K) words from SCl\I to LCl\I

Block copy (Bj) words from SC:\I to LCl\I

Block copy (Bj) ~ K words from SC:M to
LCM

I :rn bits jOlljK
l
I 30 bits lo120K

WL

WL

I

j Bj

! Bj~K
l

Example:

Code Generated

0115001000

0110002000

0124777677

lOCATION

I

I
I

i

I

i
I

8.4.6 EXCHANGE JUMP INSTRUCTION

30 bits 012j0 00000

30 bits 012jK

OPERATION VARIABLE COMMENTS

II 18 T 30

RL 1000B+B5 I

!RL
I i
:2000B l I
I !

!WL B4-100B I

This instruction unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is set or
clear.

This instruction is not legal for CYBER 170 Models 175, 740, 750, and 760 if the MEJ/CEJ switch is in the
DISABLE position or if the instruction does not reside in parcel 0 of the instruction word.

]

I
I
!

I
I
i

60492600 H 8-17

Operation is as follows:

Monitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor Address
register. This starting address is an absolute address. During the exchange, the monitor flag bit is set.

Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding K to
the contents of register Bj. This starting address is an absolute address. During the exchange, the
monitor flag bit is cleared.

For additional information, refer to the appropriate hardware reference manual.

The assembler forces upper before and after assembling an XJ instruction.

Format:

Operation Variable Description Size Octal Code

XJ Exchange jump to MA if in program mode 30 bits 01300 00000

XJ Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000

XJ K Exchange jump to K; flag set 30 bits 0130K

XJ Bj±K Exchange jump to (Bj) ± K; flag set 30 bits 013jK

Example:

Code Generated

0130000000

0130001000

0135000600

LOCATION

I

OPERATION

II

XJ

XJ

XJ

VARIABLE COMMENTS

18 !Jo
I

I
1000B I

I
B5+600B

8.4.7 EXCHANGE EXIT INSTRUCTION

This instruction is used for calling a system monitor program for input/output, monitor calls, etc. and has
priority over all other types of exchange jump requests. If an 1/0 interrupt request or an error exit request
occurred prior to execution of this instruction, it is denied and the exchange jump specified by the MJ is
executed. The rejected interrupt request is not lost, however. The conditions that caused it are reinstated
when the exchange package enters its next execution interval.

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The MJ instruction voids the instruction word stack. Any instructions remaining in the
stack are not executed. The exit mode flag in the PSD register determines the source of the exchange
package as follows:

8-18

Exit mode flag set: When the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) + K. An overflow of the lowest
order 16 bits of this result causes an error condition that is not senS"ed in the hardware. Should a
program erroneously execute an exchange exit instruction with an overflow condition, the exchange
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

60492600 H

Exit mode flag not set: When the exit mode flag is not set, the object program terminates the
execution interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the
absolute address of the exchange package. This is an absolute address in SCM and is generally not in
the SCM field for the current program. This form of the MJ instruction has a blank variable field; the
assembler sets the j and k designators to zero.

The system makes no protective tests on the exchange jump address.

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the instruction
word containing the exchange exit instruction. The monitor program normally resumes the object program
at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than 16 bits
of significance, the upper bits are discarded and the lower 16 bits are used as the absolute address in SCM
for the exchange jump. A force upper occurs after the instruction is assembled.

Format:

Operation

MJ

MJ

MJ

MJ

Example:

i
I
I

:

Variable

Bj

ff+K J_

K

Code Generated

01300

0134000500

0136777477

0130000600

I
I
I

Description

Exchange exit to NEA if exit flag clear

Exchange exit to (Bj) if exit flag set

Exchan e exit to g B" + K if exit fl.a (J) - g set

Exchange exit to K if exit flag set

LOCATION OPERATION VARIABLE

I II 18

IHJ
I

I HJ B4+500B

I
HJ l-300B+B6

I ' 'MJ '600B

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS

Size Octal Code

15 bits 01300
I

013j0 00000 I 30 bits
I

30 bits I 013"K

30 bits 0130K

COMMENTS

'30
I

I

I
I
I
I
I
I

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register or
writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the requested
word already resides in one of the bank operand registers. A read LCM instruction for a word not currently
residing in a bank operand register will require 17 clock periods for delivering a field of eight 60-bit words
to the designated X register. A read LCM instruction for a word already residing in an LCM bank operand
register as a i-esult of a previous instruction will require three clock periods to deliver the requested word
to the designated X register. Thus, although the first 60-bit word will require 17 clock periods, the second
through eighth words in the same LCM word require three clock periods each. This means that consecutive
LCM operands are available, on an average, every five clock periods as opposed to SCM operands at eight
clock periods.

60492600 H 8-19

The LCM address is determined from the low order 19 bits of Xk. Even if (Xk) is negative, the 19 bits are
treated as a positive integer. If the address exceeds the field length (FLL), the word transfer does not take
place and the LCM direct range condition flag is set in the PSD register. Xj is either the source or
destination register.

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM reference
is in process. When an RX instruction issues, the LCM busy flag is set and remains set until the requested
word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

Format:

Operation Variable

RXj Xk

WXj Xk

Example:

Code Generated

01465

01570

Description

Read LCl\I at (Xk) and set Xj

\\.rite (Xj) into LCl\I at (Xk)

LOCATION OPERATION VARIABLE

I II 18

RX6 X5

WX7 XO

8.4. 9 DIRECT UEM TRANSFER INSTRUCTIONS

Size Octal Code

15 bits 014jk

15 bi ts 015jk

COMMENTS

ho
I

I
I

A single word transfer either reads one 60-bit word from UEM and enters that word into the specified X
register, or writes one word into UEM from the specified X register.

Format:

Operation Variable Description Size Octal Code

RXj Xk Read UEM at (Xk) + RAe to Xj 15 bits 014jk

WXj Xk Write (Xj) to UEM at (Xk) + RAe 15 bits 015jk

Example:

LOCATION OPEIATION VARIABLE COMMENTS

Code Generated I II 18 JO

01412 RX1 X2

01512 WX1 X2

8-20 60492600 H

8.4. 10 RESET INPUT CHANNEL BUFFER INSTRUCTION

This instruction initiates a new record transmission from a PPU to SCM. This instruction prepares the
input channel (Bk) buffer for a new record transmission from a PPU to SCM. The instruction clears the
input channel buffer address and resets the input channel assembly counter to the first 12-bit position in
the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record of
incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode flag
is set in the program status register. If the monitor mode flag is cleared, this instruction becomes a pass
instruction. When this instruction issues, it will execute the required channel functions without regard to
the current status or activity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If higher
order bits are set in (Bk) the lowest order four bits are masked out and used to determine the channel
number. If (Bk) is zero, this instruction becomes a pass instruction.

Two or more consecutive RI instructions referring to different channels will issue in consecutive clock
periods with no interference resulting in the multiplexer. If two consecutive instructions refer to the same
channel, they repeatedly perform the same function but do not cause interference in the multiplexer.

Format:

Operation Variable Description Size Octal Code

RI Bk Reset input channel (Bk) buffer 15 bits 0160k

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

01607 RI B7 I

8.4.11 SET REAL-TIME QOCK INSTRUCTION

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them
in Bj. The 18-bit clock counter advances one count in two's complement mode for each clock period. The
217 bit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt is
handled, the bit is cleared. It permits measurement of CPU execution.

Format:

Operation Variable Description Size I Octal Code

TBj Set Bj to current clock time 15 bits I 016j0
!

TBj K Set Bj to current clock time; K is ignored. 1 15 bits I 016j0
l i

60492600 H 8-21

Example:
LOCATION OPERATION VARIABLE COMMENTS

I II 18 T 30

Code Generated

01670 TB7 T

8.4. 12 RESET OUTPUT CHANNE_L BUFFER INSTRUCTION

This instruction initiates a new record transmission from SCM to PPU. It clears the output channel (Bk)
buffer address and disassembly counter, transmits a record pulse over the output channel data path to the
PPU, and initiates an SCM reference for the first word to be transmitted.

This instruction is intended for execution in an output routine to initiate a new record transmission over an
output channel data path. The output channel buff er is normally inactive when this instruction is
executed. The output channel buffer is loaded with the data for the next record, and this instruction is
executed to initiate the transmission. The record pulse is transmitted along with the word pulse as soon as
the first word of data from the SCM is entered in the output channel disassembly register.

This instruction is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruction. When this instruction issues, it
will execute the required channel functions without regard to the current status or activity at the output
channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If higher
order bits are set in (Bk), the lowest order four bits are masked out and used to determine the channel
number. If (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end of
record in two ways. First, it can compare the output channel buffer address with a known record length.
The alternative is to obtain a response from the peripheral unit over the corresponding input channel data
path. If data is moving over the output channel data path when an RO is issued, the RO instruction takes
priority, with a resulting loss of data in the previous record. Two or more consecutive RO instructions
referring to different channels will issue in consecutive clock periods with no interference resulting in the
multiplexer. If two consecutive instructions refer to the same channel, they transmit a record pulse over
the output path and restart the buffer repeatedly. A data word may or may not be transmitted depending
on the timing of the instructions and conflicts that occur.

Format:

Operation Variable Description Size Octal Code

RO Bk Reset output channel (Bk) buffer 15 bits 0170k

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o
Code Generated

01705 : IRO B5

8.4. 13 READ CHANNEL ST A TUS INSTRUCTIONS

These instructions copy the contents of the input or output channel buffer address register indicated by
masking the low order 4 bits of Bk and enter the value in Bj. The instructions are used for monitoring the
progress of an input channel buffer or an output channel buffer.

8-22 60492600 H

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the buffer
area constitutes one field and the last half of the buffer area the other field. An I/O multiplexer interrupt
request is generated by the threshold testing mechanism v:henever the channel buffer address is advanced
across a field boundary. This occurs at the center of the buffer area and at the end of the buffer area.

The IBj instruction is the only vehicle for a program to determine whether an 1/0 multiplexer interrupt
request was generated by a buffer threshold test or by a record flag. The program must retain the input
channel buffer address from one interrupt period to the next. If the buffer address is in the same field as
for the previous interrupt, the interrupt request was from a record flag. If the buffer address is in the
opposite fieid irom the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk)= O, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multiplexer
in these situations.

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction nor
may an OBj instruction immediately follow an RO instruction. A delay of one clock period is sufficient.

Format:

I Operation
l I Variable Description ---------------- ---TSi~e

j_
Octal Code J

I !Bj I Bk

I Bk I OBj I

Example:

Code Gene rated

01664

01756

Bj -Read input channel (Bk) status

Bj -Read output channel (Bk) :-:tatus

....--.---
LOCATION OPERATION VARIABLE

l ll 18

186 84

l io05 106

8.4. 14 UNCONDITIONAL JUMP INSTRUCTION

15 bits

15 bits

COMMENTS

ho
i

I

I

OlGjk

017jk

This instruction adds the contents of index register Bi to Kand branches to the relative CM (SCM) address
specified by the sum. The remaining instructions, if any, in the current instruction word are not executed.
The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On the CYBER 180 Series, the CYBER 170 I
Series (except Model 176), the CYBER 70 Models 71, 72, 73, and 74, and 6000 Series systems, this
instruction voids the stack. On the C YBER 70 Model 76, the 7600, and the C YBER 170 Model 176, the
instruction word stack is not altered by execution of this instruction. The instruction is intended to allow
computed branch point destinations. It is the only CPU instruction in which a computed parameter can
specify a program branch destination address. All other jump instructions have preassigned destination
addresses at execution time.

The assembler sets the lilused j designator to the same value as the i designator. A force upper occurs
after the instruction is assembled.

60492600 L 8-23

Format:

Operation Variable Description Size Octal Code

JP Bi±K Jump to (Bi)±K 30 bits 02iiK

JP Bi Jump to (Bi) 30 bits 02ii0 00000

JP K Jump to K 30 bits 0200K

Example:

Code Generated

0255002373 +

0277000000

LOCATION

I

OPERATION

II

!JP
JP

VARIABLE COMMENTS

18 '30

1 B5+GOTO
I

I

la1 I

I

8.4. 15 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions cause the program sequence to branch to Kor to continue with the current program
sequence depending on the contents of operand register Xj. The decision is not made until the Xj register
is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group:

The ZR and NZ operations test the full 60-bit word in Xj. The words 00 00 and 77 77 8 are
treated as zero. All other words are non-zero. Thus, these instructions are not a valid test for
floating point zero coefficients. However, they can be used for underflow of floating point quantities.

The PL and NG operations examine only the sign bit (bit 59) of Xj. If the sign bit is zero, the word is
positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for fixed point words
or for coefficients in floating point words.

The IR and OR operations examine the upper-order 12 bits of Xj.

On the CYBER 170 Model 176, the CYBER 70 Model 76, and the 7600, the following octal quantities
are detected as being out of range:

3777x •...• x (positive overflow)
4000x •.••• x (negative overflow)
1777x .•... x (positive indefinite)
6000x •...• x (negative indefinite)

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

I On CYBER 70 Models 71, 72, 73, and 74; CYBER 180 Series; CYBER 170 Series (except Model 176);
and 6000 Series computer systems, the octal quantities 3777x ..• x and 4000x •.• x are out of range· all
other words are in range. '

8-24

The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and negative indefinite
forms are detected:

1777x •••.• x and 6000x ••••. x are indefinite.

All other words are definite. The value of the coefficient is ignored in making this test.

60492600 L

An em:r exit occurs on 6000 Series; CYBER 180 Series; CYBER 170 Series; and CYBER 70 Models 71, I
72, 73 and 74 systems when an indefinite or out of range value is used as an operand of an arithmetic
instruction. Such err-a exits can be avoided by using DF, ID, IR, or OR instructions to test for such
values before using them as operands.

On a 7600 or CYBER 70 Model 76 system, an error exit occurs as soon as an indefinite or out of range
value is produced as the result of an arithmetic illStruction. The DF, ID, IR and OR instructions are
useful only when a MODE control statement is used to suppress such error exits.

Format:

I Operation Variable

ZR Xj,K

NZ Xj,K

PL Xj,K

,NG Xj,K

IMI Xj,K
I

I IR Xj,K

IOR I Xj,K
I I

!DF Xj,K
I
i !ID ! Xj,K

Example:

Code Generated

0305002363 +

0313002364 +

0324002365 +

0331002366 +

0331002366 +

0340002367 +

0351002370 +

0365002371 +

0377002372 +

60492600 L

I Description

J Branch to K if (Xj) =-c 0

I Branch to K if (Xj) f- 0

Branch to K if (Xj) sign is plus

Branch to K if (Xj) sign is minus

Branch to K if (Xj) sign is minus

Branch to K if (Xj) in range

Branch to K if (Xj) out of range

Branch to K if (Xj) definite

Branch to K if (Xj) indefinite
--- ---- -- ----- ~

LOCATION OPERATION VARIABLE

I II 18

ZR X5 ,ZERO

NZ X3,NONZERO
I
I

I I PL X4,PLUS
I

I NG lx1,NEG I
I

lx1 ,NEG
I

i MI
I I

IR :xo,INRANGE

: OR 1x1 ,OUTRNGE
'

I I DF lx5,DEFINT
I

lx1, INDEFNT i l ID

Size Toctal Code

30 bits 030jK

30 bits 031jK

30 bits 032jK

30 bits 033jK

30 bits 033jK

30 bits 034jK

30 bits 035jK

30 bits 036jK

30 bits 037jK

COMMENTS

T3o

I

I
I

I

I
I
:
I

I

I

I

I

I

I

I

i
i

I

8-25

8.4. 16 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

The following rules apply in the tests made by these instructions:

Positive zero is recognized as unequal to negative zero.

Positive zero is recognized as greater than negative zero.

A positive number is recognized as greater than a negative number.

The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in a
19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous results
caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the (Bi). The
branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instructions do not void the instruction stack.

Format:

Operation Variable Description

ZR K Branch to K

ZR Bi,K Branch to K if (Bi) = O

EQ K Branch to K

EQ ,Bi,K Branch to K if (Bi) = O

EQ Bi, Bj, K Branch to K if (Bi) = (Bj)

NE Bi,K Branch to K if (Bi) I- 0

NE Bi, Bj, K Branch to K if (Bi) I- (Bj)

NZ Bi,K Branch to K if (Bi) I- 0

IBi,K i Branch to Kif (Bi)~ 0 PL

GE Bi,K I Branch to K if (Bi) !'.. 0

GE Bi, Bj, K Branch to Kif (Bi) ~ (Bj)

LE Bj, Bi, K Branch to Kif (Bj) ~ (Bi)

LE Bj,K Branch to Kif (Bj) ~ 0

NG ,Bi,K I Branch to K if (Bi) < O

!MI f Bi,K Branch to K if (Bi)< 0

jGT Bj, Bi, K Branch to Kif (Bj) > (Bi)

GT Bj,K Branch to K if (Bj) > 0

LT Bi,K Branch to Kif (Bi) < 0

LT Bi, Bj, K Branch to Kif (Bi) <(Bj)

8-26

Size Octal Code

30 bits 0400K

30 bits 04iOK

30 bits 0400K

30 bits 04iOK

30 bits 04ijK

30 bits 05iOK

30 bits 05ijK

30 bits 05iOK
!

30 bits 06iOK i

30 bits 06iOK

30 bits 06ijK

30 bits 06ijK

30 bits 060jK

30 bits 07iOK

30 bits 07iOK

30 bits 07ijK

30 bits 070jK

30 bits 07iOK

30 bits 07ijK

60492600 H

Example:

Code Generated I I I LOCATION
: OPERATION 1 VARIABtE COMMENTS

,,~R 1 1 ~5, BZERO

30

0450005221 + I I
I I I I I I

0405005222 + I I jEQ I BO,B5,EQUAL I

0453005223 +
I I IEQ I B5,B3,JUMP
11 I

0400005223 + I I IEQ ! JUMP
i I I I

0515005224 + i l JNE i B1 ,B5,NOTEQ

0560005225 + I l I NZ la6,BNOTZR
I i I

0620005226 +
11

I PL la2,BPLUS

!GE
I

l '
I

0645005227 + I IB4.B'l.GEO i - - i , -.--~

! I
la5,GEBO 0650005230 + I 1 GE

I

I LE I 0676005231 i
+ :B6,B7,LTHAN

I NG
I

0770005232 + IB7,BNEG
I
1

0730005233 + I MI jB3,B3LTO

I GT 0767005234 + I iB7,B6,B7GT

I GT
I

0705005235 + I iB5,B5GTO

0712005236 + l LT I B 1, B2, BLTB

8.4. 17 TRANSMIT INSTRUCTION

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a copy
instruction intended for moving data from X register to X register as quickly as possible. No logical
function occurs. The assembler sets the k designator to the value specified for j.

Format:

l~eration I Variab1e I De~cription - - - - -- _. --- -

BXi Xj Transmit (Xj) to Xi 15 bits 1 Oijj

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30
-

10622 BX6 X2 I
I

60492600 H

-

8-27

8.4. 18 LOGICAL PRODUCT INSTRUCTION

This i~truction forms the logical product (AND function) of 60-bit words from operand registers Xj and Xk
and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding bits
of the Xj and Xk registers are 1 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0100

This imtruction is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, the instruction becomes a transmit instruction.

Format:

Operation Variable Description Size Octal Code

BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bits llijk

Example:

Code Generated LOCATION OPERATION VAlilABlE COMMENTS

1 11 18 T3o

11553 BX5 x •x 5 3
I

I

8.4. 19 LOGICAL SUM INSTRUCTION

This imtruction forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and Xk and
places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit of the Xj or
Xk register is a 1, as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1101

This imtruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit
imtruction.

Format:

Operation Variable Description Size Octal Code

BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 '30
-

12767 BX7 X6+X 7 I

8-28 60492600 H

8.4.20 LOGICAL DIFFERENCE INSTRUCTION

This imtruction iorms the logical difference (exclusive OR) of 60-bit words from operand registers Xj a."ld
Xk and places the difference in operand register Xi. A bit in register Xi is set to 1 if the corresponding
bits in the Xj and Xk registers are unlike, as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1001

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, the result wi:µ be a word of all zer~ written
into register Xi.

Format:

Operation Variable Description Size Octal Code

BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 lB !Jo

13601 ! BX6 1xo-x1 i

8.4.21 COMPLEMENT INSTRUCTION

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as p~ible.

The assembler sets the unused j designator of the instruction to k.

Format:

l" ' Operation 1 Variable Description Size I Octal Code

BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II IB TJo

14311 BX3 -X1 I

60492600 H 8-29

8.4.22 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register X
and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the
complement of the Xk register are 1, as in the following example:

(Xj) = 0101
Complemented (Xk) = 0011

(Xi) = 0001

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and k
designators have the same value, a logical product is for med between two complementary quantities. The
result will be a word of all zeros.

Format:

Operation Variable Description Size Octal Code

BXi -Xk*Xj Logical product of (Xj) and complement
of (Xk) to Xi 15 bits 15ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II IB T3o

15432 BX4 -X2*X3 I

8.4.23 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the corresponding bit of the
Xk register is a O, as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the result is a word of all ones.

Format:

Operation Variable Description Size Octal Code

BXi -Xk+Xj Logical sum of (Xj) and complement of
(Xk) to Xi 15 bits 16ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II IB ho
16654 BX6 -X4+X5 I

8-30 60492600 H

8.4.24 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj and
the complement of the 60-bit word from operand register Xk, and places the result in operand register Xi.
Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike, as in the following
example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0110

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and·k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

Format:

Operation Variable Description Size I Octal Code

! -- --,.. - • pp ~ 1-.C ... ~ I Log1cat dnrerence or (XJJ anu comptemem I
17ijk

l
I IBX1

of (Xk) to Xi __J_ 15 bi tf:
~~~~~~~~~~--' 

Example: 

Code Generated I OPERATION I VARIABLE COMMENTS 

30 

17731 I BX7 1-X 1-X3 

8.4.25 LOGICAL LEFT SHIFT ik PLACES INSTRUCTION 

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is 
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register Xi 
replace those shifted from the right end. 

The 6-bit shift count jk allows a complete circular shift of (Xi). 

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS ~laces the.lower 6 bitt of 
the value in the jk fields. If it is negative, COMP ASS adds 60 to jk and places the result in the jk fields. 
Thus, a negative value effectively designates a logical right shift. A positive value designates a left shift. 

If the negative shift count is less than -60, the assembler generates a type 7 error. 

Format: 

Operation Variable Description Size l Octa1 Code 

LXi jk Logical shift (Xi) by ~ jk places 15 bit~ 120ijk 

I 

l 

l 

60492600 H 8-31 



I 

Example: 

Code Generated 

20325 

20362 

LOCATION 

1 

OPERATION 

11 

LX3 

1LX3 

VARIABLE COMMENTS 

18 lJo 

258 
T 

I 
I 

-128 I 

8.4.26 ARITHMETIC RIGHT SHIFT ik PLACES INSTRUCTION 

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive and 
right 60+jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign bit is 
extended. 

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If the 
operand is positive, a positive zero results. If the operand is negative, a negative zero results. 

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6 bits of 
the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result in the jk fields. 
Thus, a negative value effectively designates the number of high order bits of the operand that are to be 
retained. If the negative shift count is less than -60, a type 7 error is generated. 

Format: 

Operation Variable Description Size Octal Code 

A Xi jk Arithmetic shift (Xi) by .:!.:. jk places 15 bits 21ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 1Jo 

21537 AX5 378 
T 

I 

8.4.27 LOGICAL LEFT SHIFT (Bi) PLACES INSTRUCTION 

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the 
quantity in index register Bj and places the result in operand register Xi. 1be drection of the shift 
operation is determined by the sign of Bj, as follows: 

8-32 

If (Bj) is positive (thlt is, bit 17 of Bj=O), the quantity from Xk is shifted left circular. The low crder 6 
bi ts of (Bj) specify the shift count. The highe- order bi ts are ignored. 

If (Bj) is negative (tllit is, bit 17 of Bj=l), the quantity from Xk is shifted right (end off with sign 
extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70 
Series Models 71, 72, 73, and 74; and the 6000 Series, the one's complement of the low order 11 bi ts of 
(Bj) specify the shift count. The highe- order bits are ignored. If the shift count is 59 to 63 (decimal), 
the result stored in the Xi register consists of 60 copies of the operand sign bit. If the shift count is 64 
(decimal) er greater, the result register Xi is cleared to 60 zeros. For the CYBER 170 Model 176, 
CYBER 70 Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj) specifies the 
shift count. The higher order bits are ignored. If the shift count is 59 (decimal) er greater, the result 
stored in the Xi register consists of 60 copies of the operand sign bit. 

60492600 L 



If -Bj is specified, the assembler converts the instruction to an arithmetic right shift. The (Bj) might be 
the result of an unpack instruction, in which case it is the unbiased exponent and (Xi) is the coefficient. 
This instruction is used for shifting a coefficient from a floating point number to the integer position after 
an unpack operation. 

Format: 
-,------- ----

Operation Variable Description f Size Octal Code 

LXi Xk, Bj Logicaliy shift (Xk) by (Bj) places to Xi 15 bits 22ijk 

LXi Bj,Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk 

LXi Xk Transmit (Xk) to Xi 15 bits 22i0k 

LXi Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji 

I LXi -Bj,Xk Arithmetic right shift (Xk) by (Bj) 
places to Xi 15 bits 23ijk 

i LXi Xk,-~ Arithmetic right shift (Xk) by (Bj) 

places to Xi 15 bits 23ijk 

I LXi -Bj Arithmetic right shift (Xi) by (Bj) 1 

places to Xi ! 15 bits 23iji 
.___ ____ _,__ _____ _,__ ______________________ _L _______ I _______ _ 

Example: 

Code Generated 

22675 

22534 

22302 

l tocAr10N I OPERATION I VARIABLE 

1 11 18 

LX6 X5,B7 
I LX5 B3,X4 . j 

I l I I LX3 X2 

8.4.28 ARITHMETIC RIGHT SHIFT (Bi) PLACES INSTRUCTION 

COMMENTS 

T 30 

I 
I 

I 

I 
I 

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by the 
quantity in index register Bj and places the result in operand register Xi. The direction of the shift 
operation is determined by the sign of Bj, as follows: 

If (Bj) is positive (that is, bit 17 of Bj=O), the quantity from register Xk is shifted right (end off with 
sign extension). For the CYBER 180 Series; the CYBER 170 Series (except Model 176); the CYBER 70 I 
Models 71, 72, 73, and 74; and the 6000 Series computer systems, the low ocder 11 bi ts of (Bj) specify 
the shift count. The higher order bi ts are ignored. If the shift count is 59 to 63 (decimal), the Xi 
register contains 60 copies of the (Xk) sign bit. If the shift count is 64 (decimal) or moce, the Xi 
register is zeroed. For the CYBER 170 Model 176, CYBER 70 Model 76, oc 7600 computer systems, 
the low ocder 12 bi ts of (Bj) specify the shift count. The higher ocder bi ts are ignored. If the shift 
count is 59 (decimal) or more, the Xi register contains 60 copies of the sign of the operand. 

If {Bj) is negative {that is, bit 17 of Bj=l), the quantity from register Xk is shifted left circular. The 
com pl em ent of the lower order 6 bi ts of Bj specify the shift count. The higher order bi ts are ignored. 

60492600 L 8-33 



If -B is specified, the assembler converts the instruction to a logical left shift. This instruction is intended 
for use in data processing where the amount of shift is derived in the computation. This instruction is also 
useful for adjusting the coefficient of a floating point number while it is in its unpacked form. 

Format: 

Operation Variable 

AXi Xk, Bj 

AXi Bj,Xk 

AXi Xk 

A Xi Bj 

AXi -Bj, Xk 

A Xi Xk, -Bj 

AXi -Bj 

Example: 

Code Generated 

23764 

23211 

23502 

23424 

Description Size 

Arithmetic shift of (Xk) by (Bj) places to Xi 13 bi ts 

Arithmetic shift of (Xk) by (Bj) places to Xi 15 bi ts 

Transmit (Xk) to Xi 15 bi ts 

Arithmetic shift of (Xi) by (Bj) places to Xi 13 bits 

Logically shift (Xk) by (Bj) places to Xi 15 bits 

Logically shift (Xk) by (Bj) places to Xi 15 hits 

Logically shift (Xi) hy (Bj) places to Xi 15 hits 

LOCATION OPERATION VARIABLE COMMENTS 

l 11 18 130 

AX7 X4,B6 I 

I ~AX2 
I 

1
a1,x1 ! ! ; i I I I 

I 
:AX5 X2 
i I 

I !AX4 82 I I 

8.4.29 NORMALIZE INSTRUCTION 

Oet:d Code 

2:3i,ik 

2~3iik 

2:1i0k 

2:3ij i 

22i,ik 

22ijk 

22iji 

This instruction normalizes the floating point quantity from operand register Xk and places it in operand 
register Xi. Normalizing consists of shifting the coefficient the minimum number of positions required to 
make bit 47 different from bit 59. This places the most significant bit of the coefficient in the highest 
order position of the coefficient portion of the word. The exponent portion of the word is then decreased 
by the number of bit positions shifted. The number of shifts required to normalize the quantity is entered 
in index register Bj. 

Format: 

i 
- ··- - - -- _______ ._ __ ·---

! I 
Operation Variable I Description Size Octal Code 

I 

NXi Xk Normalize (Xk) to Xi 

I 
15 bits I 2.fiOk 

NXi Bj,Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 
I 

2.fijk I 

NXi Xk, Bj Normalize (Xk) to Xi; shift count to l3j 13 bits I 2-!i.ik 
NXi Normalize (Xi) to Xi 15 bits 

I 
~-!iOi 

NXi Bj Normalize (Xi) to Xi; shift count to Bj 15 bits I 2-liji 

8-34 60492600 H 



Example: 

Code Generated 

24575 

24505 

24552 

LOCATION OPERAT!ON 1 VAR!ABLE 

11 118 

NX5 IX5,B7 
! 

NX5 rxs 
I 

8.4.30 ROUND AND NORMALIZE INSTRUCTION 

COMMENTS 

This instruction performs the same operation as the NXi instruction with the exception that the quantity 
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a 1 round 
bit immediately to the right of the least significant coefficient bit. The resulting coefficient is increased 
by one-half the value of the least significant bit. Normalizing a zero coefficient places the round bit in bit 
47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow, infinite, and 
indefinite results. 

If (Xk) is an infinite quantity (3777x •.. x8 or 4000x ..• xg) or an indefinite quantity (l 777x ••• xg or 
6000x ..• x8), no shift takes place. The contents of Xk are copied into Xi, and Bj is set to zero. 

Format: 

-----i 
- ---------i 

Operation Variable 

ZXi Xk 
ZXi Bj,Xk 

ZXi I Xk,Bj 
I 

ZXi j Bj 

ZXi 

Example: 

Code Generated 

25474 

25404 

25361 

I 
I 

I 
Description 

Round and normalize (Xk) to Xi 
Round and normalize (Xk) to Xi; shift 
count to Bj 
Round and normalize (Xk) to Xi; shift 
count. to Bj 
Round and normalize (Xi) to Xi; shift 
count to Bj 
Round and normalize (Xi) to Xi 

LOCATION OPERATION VARIABLE 

11 

[zx4-

lzx4 
I 

18 

jX4, B7 

I 
iZX3,B6 jX1 

8.4.31 UNPACK INSTRUCTION 

I Size Oct:ll Code 

I 
13 bits 25i0k 

15 bits 25ijk 

15 bits 25ijk 

15 bits 25iji 
15 bits 25i0i 

COMMENTS 

30 

This instruction tmpacks the floating point quantity from operand register Xk and sends the 48-bit 
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing is 
removed during unpack so that the quantity in Bj is the true one's complement representation of the 
exponent. The contents of Xk need not be normalized. 

60492600 H 8-35 

I 
I 

j 



The exponent and coefficient are sent to the low-order bits of the respective registers, as shown below: 

Sign Packed Exponent 

Packed Quantity U _._l ____ .a.....I ___ _ 

5958 148 

Exponent Sign 
Extended 

Unpacked 

Ex1Tent 

Unpacked Bj w:..~~~~~.__ ______ __, 
17 10 9 00 

Coefficient 
Sign Extended 

Coefficient 

Special operand formats are treated in the same manner as normal operands. 

Format: 

Operation Variable 

UXi Xk 
UXi Bj,Xk 
UXi Xk, Bj 
UXi 
UXi Bj 

Example: 

Code Generated 

26777 

26342 

26707 

26777 

8.4.32 PACK INSTRUCTION 

Description Size 

Unpack (Xk) to Xi 15 bits 
Unpack (Xk) to Xi and Bj 15 bits 
Unpack (Xk) to Xi and Bj 15 bits 
Unpack (Xi) to Xi 15 bits 
Unpack (Xi) to Xi and Bj 15 bits 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 
l UX7 IX7. B7 I 

UX3,X2 ,B4 I 

luX7 ! I 
I I I 
jux7 js1 I 

I 

Xk 

00 

Octal Code 

26i0k 
26ijk 
26ijk 
26i0i 
26iji 

This instruction packs a floating point number in operand register xi. The coefficient of the number is 
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is 
packed by reversing the setting of bit 10 of the exponent during the pack operation. The pack instruction 
does not normalize the coefficient. 

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and 
packed in reverse order as shown in the illustration for the unpack instruction. Thus, bits 58 through 48 of 
Xk and bits 17 through 11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in 
the PSD register by this instruction. 

8-36 60492600 H 



Note that if (Xk) is positive, the packed exponent occupying bits 58 through 48 of Xi is obtained from bits 
10 through 00 of Bj by complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09 
through 00 are compiemented. 

The j designator can be set to zero in this instruction to pack a fixed point integer into floating point 
format without using one of the active B registers (exponent=O). 

Format: 

I operation Variable 

IPXi Xk 
IPxi Xk, Bj 

IPXi Bj, Xk 
iPXi 
IPxi Bj 

Example: 

Code Generated 

27565 

27671 

27505 

27565 

I Description 

Pack (Xk) to Xi 
Pack (Xk) and (Bj) to Xi 
Pack (Xk) and (Bj) to Xi 
Pack (Xi) to Xi 
Pack (Xi) and (Bj) to Xi 

LOCATION OPERATION VARIABLE 

1 11 18 

PX5 X5,B6 

PX6,B7,X1 
I 

' 
1
PX5 

I 

!PX5 ia6 

8.4.33 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS 

Size Octal Code 

15 bits 27i0k 
15 bits 27ijk 
15 bits 27ijk 
15 bits 27i0i 
15 bits 27iji 

COMMENTS 

T3o 

I 
I 

! 
) 
I 

I 
I 

These instructions form the unrounded sum or difference of the floating point quantities from operand 
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of a 
double precision sum or difference. 

At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponent 
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference of the 
exponents. The other coefficient is then added to or subtracted from the upper half of the accumulator. If 
overflow occurs, the result is right-shifted one place and the exponent of the result increased by one. The 
upper half of the accumulator holds the coefficient of the result, which is not necessarily in normalized 
form. The exponent and upper coefficient are then repacked in operand register Xi. 

Format: 
----- - -----·· 

Operation Variable Description Size Octal Code 

FXi Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk 
I 

FXi Xj-Xk Floating point difference of (Xj) minus I i 
(Xk) to Xi lb bits 31ijk 

I 
I 

___ j 

60492600 H 8-37 



Example: 

Code Generated 

30345 

31213 

I 

LOCATION OPERATION 

II 

FX3 

FX2 

8.4.34 DP FLOATING POINT ADD INSTRUCTIONS 

VARIABLE COMMENTS 

18 ho 

X4+X5 I 

I 

X1-X3 I 

These instructions form the sum or difference of two floating point numbers as in the single precision 
instructions, but pack the lower half of the double precision result with an exponent 48 less than the upper 
sum. The result is not neceimarily normalized. 

Format: 

Operation Variable 

DXi Xj+Xk 

DXi Xj-Xk 

Example: 

Code Generated 

32323 

33414 

Description 

Floating DP sum of (Xj) and (Xk) to Xi 

Floating DP difference of (Xj) and (Xk) 
to Xi 

LOCATION OPERATION VARIABLE 

I II 18 

DX3 X2+X3 

DX4 X1-X4 

8.4.35 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS 

Size Octal Code 

15 bits 32ijk 

15 bits 33ijk 

COMMENTS 

!Jo 
I 

I 
I 
I 

These instructions form the rounded sum or difference of the floating point quantities from operand 
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi. These 
instructions are intended for use in floating point calculations involving single precision accuracy. 

Format: 

jOperation Variable Description Size Octal Code 

RXi Xj+Xk Rounded floating sum of (Xj) and (Xk) 
to Xi 15 bits 34ijk 

IRXi Xj-Xk Rounded floating difference of (Xj) minus 
(Xk) to Xi 15 bits 35ijk 

l 
I 

8-38 60492600 H 



Example: 

Code C-enerated 

34534 

35653 

i i LOCATION 

I 'I 
I ! 
I I 

i OPERATION i VARIABLE 

I" I" IRX5 I X3+X4 

IRX6 I X5-X3 

8.4.36 LONG ADD (FIXED POINT) INSTRUCTIONS 

COMMENTS 

These instructions form the 60-bit one's complement integer sum or integer difference of quantities from 
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is ignored. 

The instructions are intended for addition or subtraction of integers too large for handling in the increment 
unit. They are also useful for merging and comparing data fields during data processing. 

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero (all 
zeros), the result is a positive zero quantity. If both operands are minus zero (all ones), the result is a 
negative zero quantity. 

Format: 

Operation Variable Description Size Octal Code 

IXi Xj+Xk Integer sum of (Xj) and (Xk) to Xi 15 bits 
I 

36ijk 

I Xi Xj-Xk Integer difference of (Xj) minus (Xk) I 
to Xi 15 bits 

I 
37ijk 

----

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

l 11 18 130 

I 

36545 IX5 X4+X5 I 
I 

37631 I I IT - I 
I I 1 X3 X1 

8.4.37 UNROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION 

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier) and 
Xk (multiplicand) and packs the upper product result in operand register Xi. 

In this operation, the exponents of the two operands are unpacked from the floating point format and are 
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied 
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted to 
form the coefficient of the result. The result is a normalized quantity only when both operands are 
n0MT1alized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not 
normalized when either or both operands are not normalized. 

i 
I 

I 

I 
I 
I 

60492600 H 8-39 



Format: 

Operation Variable Description Size Octal Code 

FXi Xj*Xk Floating point product of (Xj) and 

(Xk) to Xi 15 bits 40ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 TJo 
..J._ 

40011 FXO x1•x1 I 
I 
I 

8.4.38 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION 

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the 
floating point number from operand register Xj. The upper product result is packed in operand 
register Xi. (No lower product is available.) The multiply operation is identical to that of the single 
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit product. The upper 
half of the product is then extracted to form the coefficient for the result. An alternate output path is 
provided with a left shift of one bit position to normalize the result coefficient if the original operands 
were normalized and the double precision product has only 95 bits of significance. The exponent for the 
result is decremented by one count in this case. 

Format: 

Operation Variable Description Size Octal Code 

R.Xi Xj*Xk Rounded floating point product of (Xj) 
and (Xk) to Xi 15 bits 41ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 I Jo 
I 

41232 RX2 X3*X2 I 
I 

8.4.39 DP FLOATING POINT MULTIPLY INSTRUCTION 

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk and 
packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together to 
form a 96-bit product. The lower order 48 bits of the product (bits 47 through O) are then packed together 
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is 48 less 
than the exponent resulting from an unrounded single precision instruction using the same operands. 

8-40 60492600 H 



This instruction is intended for use in multiple precision floating point calculations. It may also be used to 
form the product of two integers providing the resulting product does not exceed 48 bits of significance. 
The operands must be packed in floating point format before executing this instruction. The results must 
be unpacked to obtain the integer product. 

Format: 

Operation Variable 

lnxi 
I 

Xj*Xk 

Example: 

Code Generated 

I 

42345 

Description 

F1oating point DP product of (Xj) and 
(Xk) to Xi 

LOCATION OPERATION VARIABLE COMMENTS 

11 18 !Jo 
----~-- - - T 

X4*X5 

8.4.40 INTEGER MULTIPLY INSTRUCTION 

Size Octal Code 

15 bitf-: 42ijk 

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating point 
multiply instruction. Regardless of how it is written in COMPASS, the 42ijk instruction is executed as 
follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the 47-bit integer product 
is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each operand has bit 47 different 
from its sign bit, the result is shifted left one bit position.) Otherwise, a double precision floating point 
multiplication is performed. Thus, there is no need to pack exponents into the operands, and unpack the 
result, for an integer multiply. COMPASS provides the alternate symbolic representations !Xi Xj*Xk and 
DXi Xj*Xk for the 42ijk instruction as an aid to program readability, so the programmer can indicate 
whether or not the instruction is being used for integer multiplication. 

Format: 

I 

[Operation Variable Description Size Octal Cod~ 
f l lIXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits I 42ijk 
! I j_ 

Example: 

Code Generated LOCATION OPERATION I VARIABLE COMMENTS 

, I II lie 130 

4a3i+ I I I '(:? Tx3•x1+ 
I 

604926(}0 H 8-41 



8.4.41 MASK INSTRUCTION 

This instruction clears register Xi and forms a mask in it. A positive value for expression jk defines the 
number of ones in the mask as counted from the highest order bit in Xi. A negative value for expression jk 
defines the number of O bits (unmasked) counted from the low order bit in Xi. The completed masking 
word consists of ones in the high order bit positions of the word and zeros in the remainder of the word. 

The contents of operand register i are zero when jk is zero. The contents of operand register i are all ones 
when jk is 60. 

This instruction is intended for generating masks for logical operations. Used with the shift instruction, 
this instruction creates an arbitrary field mask faster than by reading a previously generated mask from 
storage. 

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it into the jk 
field of the assembled instruction. If the value of absolute expression jk is negative, the assembler adds 60 
to the expression value and places the sum in the jk field of the assembled instruction. 

A negative jk value less than -60 results in a type 7 assembly error. 

Format: 

Operation Variable Description Size Octal Code 
--r- -- --1 

MXi jk Form mask in Xi, ~ jk bits 15 bits 43ijk 
-- - -- -----------~ ------~--- ------- ··-

__ __, _____ - -- --- -- ·--' 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T 30 
Code Generated 

43042 MXO '+tb ; 
I 

433t>O ,_,X3 1-141:1 I 

8.4.42 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION 

This instruction divides two normalized floating point quantities obtained from operand registers Xj 
(dividend) and Xk (divisor) and packs the quotient in operand register Xi. 

Format: 

-
Operation Variable Description Size Octal Code 

------; 

FXi Xj/Xk Floating point divide of (Xj) by (Xk) 
to Xi 15 bits 44ijk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 T3o 

4t.S31 FX6 X ~IX 1 I 
I 

8-42 60492600 H 



8.4.43 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION 

This instruction divides the floating quantity from operand register Xj (dividend) by the t1oating point 
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi. 

Format: 

I 
I !Operation Variable 

fmn 1 Xj/Xk 

i I 
! ! 

Example: 

Code Generated 

45724 

8.4.44 PASS INSTRUCTION 

Description 

Rounded floating point division of {Xj) 

by (Xk) to Xi 

I l I LOO. TION I OPERATION I VARIABLE 

I t 

ll lR 

I RX7 1~2/X4 

Size Odal 

45ijk 

COMMENTS 

30 

The no-operation (pass) instruction is not associated with a functional unit. This instruction is a do-nothing 
instruction used typically to pad the program between steps. An integer value in the variable field 
(optional) is inserted into the lower 8 bits of the instruction. The assembler automatically pads the 
remainder of a word whenever a force upper occurs; in this case, the programmer is not required to insert 
the NO. 

On a machine with a Compare/Move Unit (CMU), a value of n greater than or equal to 4009 causes the 
instruction to be interpreted as a CMU instruction. 

On CYBER 170 Models 175, 740, 750, and 760, a value of n greater than or equal to 4009 is illegal. 

Format: 

Operation Variable Description Size Octal Code 

~o Pass 15 bi ts 46000 

n Pass 15 bits 46n 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I 11 18 T3o 

46000 I NO I 
1 
I 

8.4.45 POPULATION COUNT INSTRUCTION 

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower order 
6 bits of operand register Xi. Bits 59 through 06 are cleared. 

1 
I 
I 

60492600 H 8-43 



If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register. If Xk is a word of all 
zeros, a zero word is delivered to the Xi register. 

The assembler sets the unused j designator to k. 

Format: 

Operation Variable Description Size Octal Code 

CXi Xk Count of number of 1 's in (Xk) to Xi 15 bits 47ikk 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 130 

47700 CX7 XO "T 
I 

8.4.46 SET A REGISTER INSTRUCTIONS 

These instructions are intended for fetching operands from storage for computation and for delivering 
results back into storage. The instructions have two destination registers: the Ai register, which receives 
the address formed from the operands, and either the Xi register or a CM (SCM) storage location. 

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the 
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated 
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored. 

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the resulting 
sum or difference as the relative storage address depending on machine size. The upper bits are ignored. 
The type of storage reference is a function of the i designator value, as follows: 

8-44 

i = O; no storage reference 

i = 1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi 

i = 6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai) 

60492600 H 

I 

l 



Format: 

l0peration Variable 

!SAi Aj+K 
I 

lsAi ! K 
I 

ISAi Bjt-K 

jSA. Xj+K I l 

I 
!SAi Xj 
i 
1SAi Xj+Bk 

lsAi Bk+Xj 
i 

lsAi 
i 

Aj 

iSAi Aj+Bk 
l 
!SAi Bk+Aj 

f sAi Aj-Bk 
i 

jSAi -Bk+Aj 
! 

SAi Bj 

iSAi Bj+Bk 

1SAi -Bk 

iSAi Bj-Bk 

lsAi 
l 

-Bk+Bj 

I 

Example: 

Code Generated 

5010000001 

5100777774 

5121000003 

5231777771 

53411 

54541 

54641 

54540 

55641 

56711 

57721 

60492600 H 

Description 

Set Ai to (Aj) ~ K 

Set Ai to K 

Set Ai to (Bj) ~ K 

Set Ai to (Xj) ~ K 

Set Ai to (Xj) 

Set Ai to (Xj) (Bk) 

Set Ai to (Xj) (Bk) 

Set Ai to (Aj) 

Set Ai to (Aj) + (Bk) 

Set Ai to (Aj) + (Bk) 

Set Ai to (Aj) - (Bk) 

Set Ai to (Aj) - (Bk) 

Set Ai to (Bj) 

Set Ai to (Bj) ! (Bk) 

Set Ai to (BO) - (Bk) 

Set Ai to (Bj) - (Bk) 

Set Ai to (Bj) - (Bk) 

LOCATION OPERATION 

I 11 

I 

l SA 1 
I SAO I 

SA2 

SA3 

\ 
!SA4 
I 

lSA5 
I 
iSA6 
I 

lsA5 
I 
ISA6 
! 

ISA7 

lsA? 

Size Octal Code 

:rn bil:-: 50ijK 

30 bits 51iOK 

30 bits 51ijK 

30 bits 52ijK 

15 bits 53ij0 

15 bits 53ijk 

15 bits 53ijk 

15 bits 54ij0 

15 bits 54ijk 

15 bits 34ijk 

15 bits 55ijk 

15 bits 33ijk 

15 bits 3Gij0 

15 bits 5Gijk 

15 bits :J7i Ok 

15 bits 57ijk 

15 hits 57ijk 

VARIABLF C8MMENTS 

18 130 

A0+1 I 
I 

I 
-3 I 

I 

3+81 I 

X1-6 I 
I 

jX1+81 I 

A4+81 

A4+B1 

A4 

-B1+A4 

81+81 

iB2-B1 

8-45 



8.4.47 DIRECT READ/WRITE CENTRAL MEMORY 

These instructions permit information to be stored into central memory from the specified X register or to 
be loaded from central memory into the X register. The lower 21 bits of Xk specify the central memory 
address relative to RAc. The other bits of Xk are unused. 

Format: 

Operation Variable Description Size Octal Code 

CR Xj,Xk Read CM at (Xk) to Xj 15 bits 660jk 

cw Xj,Xk Write Xj to CM at (Xk) 15 bits 670jk 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

Code Generated I ii 18 30 

66012 CR X 1, X2 

67012 cw X1,X2 

8.4.48 SET B REGISTER INSTRUCTIONS 

These instructions perform one's complement addition and subtraction of 18-bit operands and store an 
18-bit result in index register Bi. Note the result will never be negative zero (all ones) unless negative 
zero is added to negative zero. 

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the 
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the truncated 
lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition is also ignored. 

I If the i designator is a zero, the instruction is a do-nothing instruction, except on the models 810, 815, 825, 
830, 835, 845, 855, 865, and 875 for which two forms of the SBO instruction (SBO Bj+Bk and SBO Bj-Bk) 
are invalid. On models 810, 815, 825, 830, 835, 845, 855, 865, and 875 the octal operation codes 660 and 
670 are interpreted as the CR and CW instructions, respectively. 

8-46 60492600 L 



Format: 

Operation 

SBi 

ISB1 

SBi 

SBi 

SBi 

SBi 

SBi 

Bi 

~
~:: 

Bi 

Bi 

iSBi 
I 
Ism 

Ism 
lsBi 

Bi 

60492600 H 

I 

Variable l 
Aj+K l K 

Bj+K 

Xj+K 

Xj 

Xj+Bk 

Bk+Xj 

Aj 

Aj+Bk 

Bk-!-Aj 

Aj-Bk 

-Bk+Aj 

Bj 

Bj+Bk 

-Bk 

Bj-Bk 

-Bk+Bj 

-, 
Description Size Octal Code 

--· - -· 

Set Bi to (Aj) _: K 30 bits 60ijK 

Set B1 to K 0 3 bits 61iOK 

Set Bi to (Bj) .:::_ K 30 bits 61ijK 

Set Bi to (Xj) .:::_ K 30 bits 62ijK 

Set Bi to (Xj) 15 bits 63ij0 

Set Bi to (Xj) + (Bk) 15 bits 63ijk 

Set Bi to (Xj) + (Bk) 15 bits 63ijk 

Set Bi to (Aj) 15 bits 64ij0 

Set Bi to (Aj) + (Bk) 1 h: h-ac-
.J..tJ U.L"..::J 64ijk 

Set Bi to (Aj) + (Bk) 15 bits 64ijk 

Set Bi to (Aj) - (Bk) 15 bits 65ijk 

Set Bi to (Aj) - (Bk) 15 bits 65ijk 

Set Bi to (Bj) 15 bi ts 66ij0 

Set Bi to (Bj) t- (Bk) 15 bits 66ijk 

Set Bi to (BO) - (Bk) 15 bits 67i0k i 

I Set Bi to (Bj) - (Bk) 15 bits 67ijk I 

I 
Set Bi to (Bj) - (Bk) 15 bits 67ijk 

_J 

8-47 



Example: 

Code Generated 

6011777772 

6110777772 

6121000011 

6231000100 

63!127 

64541 

6!1540 

656!11 

656!13 

66711 

67751 

LOCATION 

I 

8.4.49 SET X REGISTER INSTRUCTIONS 

OPERATION 

II 

S81 

S81 

S82 

S83 

jS84 

!s8s 

S85 

S86 
I 

S86 

S87 

S87 

VARIABLE COMMENTS 

18 TJo 

A1-5 
T 

I 
-5 I 

I 

3+81+6 I 
I 
I 

IX1+1008 I 
IX2+87 I 

I 
IA4+81 I lu I 
1-81+A4 I 
I I 
IA4-83 I 

181+81 I 
I 

85-81 

The SXi instructions perform one's complement addition and subtraction of 18-bit operands and store an 
18-bit result into the lower 18 bits of operand register Xi. The sign of the result is extended to the upper 
42 bits of operand register Xi. An overflow condition is ignored. 

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction 
itself (K = 18-bit operand). Operands obtained from an Xj register are the truncated lower 18 bits of the 
60-bit word. The highest order bits are ignored. 

8-48 60492600 H 



Fermat: 

~ration Variable 

Xi Aj ... K 

SXi K 

SXi Bj+K 

SXi Xj+K 

SXi Xj 

SXi Xj+Bk 

1sx· Bk ... Xj 

sx; Aj 

lsxi Aj+Bk 

IS}G Bk-Aj 

jSXi Aj-Bk 
1
sxi -Bk-'-Aj 

lsx; Bj 
I 

ISXi Bj-'-Bk 

Fi -Bk ri Bj-Bk 

Xi -Bk-'-Bj 

Example: 

Code Generated 

7000005233 ... 

7110775755 

7121000005 

7233777744 

73442 

7tt553 

7lf540 

75604 

75641 

76776 

77751 

60492600 H 

I 
i 
I 

I 
I 
I 
I 
I 
I . i 
I 

I 

Description 

Set Xi to (Aj) .!. K 

Set Xi to K 

Set Xi to (Bj) .!. K 

Set Xi to (Xj) .:_ K 

Set Xi to (Xj) 

Set Xi to (Xj) + (Bk) 

Set Xi to (Xj) + (Bk) 

Set Xi to (Aj) 
-

Set Xi to (Aj) "'" (Bk) 

Set Xi to (Aj) + (Bk) 

Set Xi to (Aj) - (Bk) 

Set Xi to (Aj) - (Bk) 

Set Xi to (Bj) 

Set Xi to (Bj) _,_ (Bk) 

Set Xi to (BO) - (Bk) 

Set Xi to (Bj) - (Bk) 

Set Xi to (Bj) - (Bk) 

LOCATION 

l 

OPERATION 

11 

1
sxo 

jsx1 
SX2 

SX3 

·SX4 

lsxs 
I 

sxs 

SX6 
I 
ISX6 

SX7 

SX7 

VAllAILE 

II 

IBNEG+A0+1 

-2022B 

181+5 

1
X3-33B 

I 

A5+B3 

A4 

AO-Bll 

-B1+A4 

B7+B6 

!BS-Bl 

Size 

30 bits 

30 bits 

30 bits 

30 bits 

15 bits 

15 bits 

15 bits 

15 bits 

15 bits 

15 bit~ 

15 bits 

15 bit~ 

15 bit!" 

15 bits 

15 bit~ 

15 bits 

15 bits 

COMMENTS 

130 

-.-
i 

! 
I 

I 
I 

Octal Code 

70ijK 

7!iOK 

71ijK 

72ijK 

73ij0 

73ijk 

73ijk 

74ij0 

74ijk 

74ijk 

75ijk 

75ijk 

7Gij0 

7Gijk 

77i0k 

77ijk 

77ijk 

8-49 



8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS 

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Models 72 and 
I 73, and the CYBER 170 Models 172, 173, 174, 720, and 730. The models 810, 815, 825, 830, 835, 845, and 

855 support compare/move instructions through simulation. These central processor instructions are used 
for moving and comparing data fields that consist of strings of 6-bit characters. Data fields can span word 
boundaries and can begin and end at any character position within a word. A data field is specified by its 
length in characters and the location of its leftmost character (according to word address and character 
position). Data fields cannot be in the operating registers nor in ECS. 

Each 60-bit word of a data field contains 10 character positions numbered O to 9 from left to right (high 
order to low order). 

COMPASS provides symbolic forms of the four CMU instructions plus a pseudo instruction used to generate 
a descriptor word to be referenced by the indirect move instruction. Of the four instructions, the indirect 
move (IM) instruction is the only one that syntactically resembles other CPU instructions. The other three 
instructions have formats dissimilar to CPU instructions and are generated through COMPASS pseudo 
instructions. All of these instructions must begin at the top of a 60-bit word; COMPASS automatically 
forces upper before each of them unless the location field contains a minus sign. All but IM are 60 bits in 
length. IM is 30 bits, but the hardware requires that the instruction be in the upper half of its word. The 
lower half of the word is not executed. COMPASS automatically forces upper following IM, unless the next 
instruction has a minus sign in its location field. 

8-50 60492600 L 



8.5. i IM - INDIRECT MOVE 

i'he indirect move instruction moves the contents of a data field to another- location. It is a 30-bit 
instruction that specifies the address of a descriptor word which, in turn, contains the length and address of 
the data fields. 

The assembler forces upper before and after the IM instruction. 

The descriptor word is fetched from storage location (Bj)+K. If the data field lengtn is zero, tlle 
instruction is executed as a pass but the execution time is ionger. Otherwise, the contents of the source 
field are moved to the destination field. If the two fields overlap, the results are undefined. The XO 
register is used for intermediate storage during execution of the instruction, and is cleared upon 
completion of the instruction. 

Operation Variable Description Octal Code 

IM K Move data according to word at K 4640K 

IM Bj±K I Move data according to word at (B j)-::_ K 464jK 

IM Bj l lVlove data according to \vord at (Bj) 
I 

464j 000000 

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD 

The MD pseudo instruction generates a descriptor word for use by the indirect move (IM) instruction. 

Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

sym MD 

sym If present, sym is assigned the value of the location counter after the force upper occurs. It 
becomes the symbolic address of the descriptor word. 

P. Absolute address expression specifying the field length in characters (0 through 8191). The 
upper 9 bits C.2) are placed in bits 56 through 48 of the descriptor word; the lower 4 bits (l) are 
placed in bits 29 through 26. 

ks An expression specifying the first word address of the source field in CM. 

c8 An absolute expression (O through 9) specifying the starting character position of the source 
field within the word at location ks· Characters are numbered from left to right. 

kci An expression specifying the first word address of the destination field in CM. 

cd An absolute expression (O through 9) specifying the starting character position of the 
destination field within the word at location ka· 

60492600 G 8-5 l 

l 



Indirect Move Descriptor Word format: 

59 48 30 26 22 18 00 

0 f 12-4 
source Jsrc des destination 
address fJ-~ch jch address 

Example: 

Code Generated 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 ho 

I 
Ou7600SO~L4~05u07uuo 1WORO M) 1DOJ,~UFFA,G,RUFF8,5 . I . I 

• 
4&40010665 I '1 OWO?O I 

I 

BUFF A i; at address 2560; BUFFB i; at address 3584. 

8.5.3 DM - DIRECT MOVE 

I The direct move {OM) symbolic instruction generates a CMU instruction that moves the contents of a data 
field to another data field. The machine instruction occupies one full word. The instruction includes its 
own data field descriptor. 

The assembler forces upper bef .. e a OM instruction. 

If the data field length is zero, the instruction is executed as a pass, but the execution time is longer. 
Otherwise, the contents of the source field are moved to the destination field. If the two fields overlap, 
the results are undefined. The XO register is used for intermediate storage during execution of the 
instruction and is cleared upon completion of the instruction. 

Format: 

sym 

i. 

8-52 

LOCATION OPERATION VARIABLE SUBFIELDS 

sym DM 

If present, sym is assigned the value of the location counter after the force upper occurs. It 
becomes the symbolic address of the instruction word. 

Absolute address expression specifying the field length in characters (0 through 127). 

An expression specifying the first word address of the source field in CM. 

An absolute expression (0 through 9) specifying the starting character position of the source 
field within the word at location kg. 

An expression specifying the first word address of the destination field in CM. 

An absolute expression (0 through 9) specifying the starting character position of the 
destination field within the word at location kcJ. Characters are numbered from left to right. 

60492600 K 



Octal format of instruction: 

59 51 48 30 26 22 18 00 

465 l.6-4 source address 13-0 src des destination 
ch ch address 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 ~30 

46570050007405007000 DM 127,BUFFA,0,BUFFB,5 
I 
I 

8.5.4 CC - COMPARE COLLATED 

The compare collated (CC) symbolic instruction generates a CMU instruction that compares the contents I 
of two data fields, one character at a time, from left to right, until a pair of corresponding characters is 
found to have unequal collating values or until the data fields are exhausted. It is a 60-bit instruction that 
occupies one full word. It cannot be split between two words. The instruction includes its own data field 
descriptor. Register AO contains the first word address of a table in storage that contains the collating 
values to be used in comparing characters. The result of the comparison is placed in register XO. 

The first word address of the collating table is obtained from register AO. The contents of the data fields 
are compared from left to right, one character at a time from each field, until two unequal characters are 
found. The collating value of each character is obtained from the collating table. If these values are 
equal, the compare continues until another character pair is unequal or until all characters have been 
compared. If the collating values are unequal, the two data fields are unequal and the field with a larger 
collating value is the greater of the two fields. The collating values are treated as 6-bit unsigned integers. 
Note that two unequal characters could have the same collating value and would compare equal. 

Upon instruction completion, register XO contains a 60-bit signed integer as follows: 

(Field A)>(Field B) 

(Field A)=(Field B) 

(Field A)<(Field B) 

(XO)=l.-n; (XO)>O 

(XO)=O 

(XO )=n-1.; (XO)< 0 

n is the number of pairs of characters that compared equal. If J. =O, then (XO) is 0. 

The format of the collating table for 6-bit characters is: 

59 53 47 41 35 29 23 1 7 

(AO ) 00 0 1 02 03 04 OS 06 07 

(AO ) +l 10 1 1 12 13 14 15 16 1 7 

~ " ~ ~ ~ 'l 

( AO )+7 70 7 1 72 73 74 75 76 7 7 

60492600 K 

1 1 0 

\\\ll\\l\\l\\\\\\\l\\llll\\\l\ll\\l\\\\lll\\\\\lll\llllll\l 

\\\\\\\\\\l\\\\\\\\\\\\\\I\ltttt\\~ 

111\l\\l\lli\f l\l\\\ll\l\ll\\1\l\ll\ll 

8-53 



Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

sym 

J. 

If present, sym is assigned the value of the location counter after the force upper occurs. It 
becomes the symbolic address of the instruction. 

Absolute address expression specifying the field length in characters (0 through 127). 

An expression specifying the first word address of the first data field in CM. 

An absolute expression specifying the starting character position of the first data field within 
the word at location ka. Characters are numbered from left to right. 

An expression specifying the first word address of the second data field in CM. 

An absolute e~ression (0 through 9) s~ecifying the starting character position of the second 
data field within the word at location Kt>· 

Octal format of instruction: 

59 51 48 

466 1.6-4 first string 
address 

Example: 

Code Generated LOCATION 

5100003120 
46670050007405007000 

1 

8.5.5 CU - COMPARE lf\JCOLLATED 

30 26 

13-0 f s 
ch 

OPERATION 

11 

SAO 
cc 

22 18 00 

SS second string 
ch address 

VARIABLE COMMENTS 

18 _!_30 
I 

I 
TABLE I 

127,BUFFA,O,BUFFB,5 
I 
I 

I The compare uncollated (CU) symbolic instruction generates a CMU instruction that compares the contents 
of two data fields, one character at a time, from left to right, until a pair of corresponding characters are 
found to have unequal values or until the data fields are exhausted. The machine instruction is a 60-bit 
instruction that occupies one full word and cannot be split between two words. It includes its own data 
field descriptor. The result of the comparison is placed in register XO. 

Execution resembles the CC instruction except that AO and the collating table are not used. Instead, the 
characters are compared directly with each character regarded as a 6-bit unsigned binary integer. 
Register XO is set in the same manner as by the CC instruction. 

8-54 60492600 K 



Format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

sym cu 

I I 
I 

sym If present, sym is assigned the value of the location counter after the force upper occurs. It 
becomes the symbolic address of the instruction. 

! Absolute address expression (0 through 127) specifying the field length in characters. 

ka An expression specifying the first word address of the first data field in CM. 

ca An absolute expression (0 through 9) specifying the starting character position of the first data 
field within the word at location ka. Characters are numbered from left to right. 

kb An expression specifying the first word address of the second data field in CM. 

cb An absolute expression (0 through 9) specifying the starting character position of the second 
data field within the word at location kb· 

Octal format of instruction: 

59 51 48 30 26 22 18 00 

467 
l T first string f J f s SS second string 
6-4 address 3-1 ch ch address 

J_ 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

1 11 18 TJo 

4&770050007405007000 cu 127,BUFFA,O~~UFFB,S 

I I 

60492600 G 8-55 





PP SYMBOLIC MACHINE INSTRUCTIONS 9 

The COMPASS assembler recognizes symbolic notation for peripheral processor (PP or PPU) instructions. 
For COMPASS to recognize symbolic logic for models 810, 815, 825, 830, 835, 845, 855, 865, and 875 PP 
instructions, the NOS programmer must ensure that NOSTEXT is available to the assembler. When a PPU 
or PERIPH pseudo instruction is in the first statement group, the assembler identifies each symbolic 
instruction by name and generates a one word (12 bit) or two word (24 bit) object code machine instruction 
under control of the current origin, location, and position counters. All PP code is ~olute. Numeric data 
must be in integer notation. Floating point notation is illegal. 

NOTE 

No special job validation is required to assemble peripheral processor programs, but to be 
executed; such programs require system origin privileges. 

• I 

Some instructions in existing COMPASS programs are not valid for execution on models 810, 815, 825, 830, I 
835, 845, 855, 865, and 875. To detect these instructions, the programmer can specify S=AIDTEXT in the 
COMPASS control statement. COMPASS prints a listing of the program, flagging the invalidated 
instructions with a type 0 error. S=AIDTEXT should not be specified if the 8 option is chosen for the 
MACHINE pseudo instruction. 

9.1 MACHINE INSTRUCTION FORMATS 

An assembled instruction has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code f and 
a 6-bit operand d. A PP accomplishes program indexing and manipulates operands in several modes. The 
12-bit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and 6-bit or 12-bit 
addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit instruction format, 
respectively. 

11 
(P) 

60492600 L 

operation 
code 

f 

5 0 

d 

Direct Mode: 

d = memory address of operand 

Indirect Mode: 

d = memory address of the address of the 
operand 

No Address Mode: 

d = 6-bit operand, shift count, or relative 
address 

Other: 

d = special value; for example, channel 
designator 

Figure 9-1. PP 12-bit Instruction Format 

9-1 



operation 
code 

11 5 4 0 

<P> _( __ r _ ______.;L-....L; __ d_~I 

11 0 

(P+l)-'~------11_1 ________ _ 

Indexed Mode: 

f = operation code (7 bits for 
CCF, CFM, SCF, SFM; 6 bits 
for all others) 

d = address of the index for 
modifying the address of the 
operand 

m = base address of the operand 

(d) + m = address of operand 

Constant Mode: 

dm = 18-bit operand 

Other: 

dm = special values; for 
example, d = channel 
designator and m = 12-bi t 
address of word count on 
IAM and OAM instructions 

Figure 9-2. PP 24-bit Instruction Format 

The 24-bit format uses tt~e 12-bit quantity m, which is the contents of the next program address (P + 1), 
with d or the contents of d to form an 18-bit operand or a 12-bit operand address. 

I The central memory access instructions for models 810, 815, 825, 830, 835, 845, 855, 865, and 875 provide 
the capability of reading and writing central memory words to and from the PP memory. 

I 

The R register is a 22-bit register used to accomplish addres:; relocation during central memory read and 
write instructions. This relocation occurs only if bit 17 of the A register is set to one. 

When relocation is to be done, the absolute central memory address is formed by appending six zeros to the 
lower end of the contents of the R register and adding to the result bits 0 through 16 of the contents of the 
A register. Figure 9-3 illustrates this process. 

21 0 

R I 000000 

16 
A 

0 

Relocation register with 
6 zero bits concatenated 

plus 
Low order 17 bits of A 
register 

Figure 9-3. Central Memory Access Instruction Address Relocation 
(Models 810, 815, 825, 830, 835, 845, 855, 865, and 875) 

9.2 SYMBOLIC NOTATION 

This section describes notation used for coding symbolic PP machine instructions. Instructions are 
described in octal operation code sequence which generally reflects the mode of addressing. Instructions 
unique to a computer system are identified as such. 

9-2 60492600 L 



The location field of a symbolic PP machine instruction optionally contains a location symbol. When the 
symbol is present, it is assigned the value of the location counter. 

The operation field of a symbolic PP machine instruction contains a three-character name. 

The variable field contains one or two subfields. Each subfield contains an absolute or relocatable 
expression that reduces to a 6-bit, 12-bit, or 18-bit value. 

Designators used in this section are listed in table 9-1. 

Designator 

A 

c 

d 

m 

I 
p 

Q 

r 

R 

() 

( ()) 

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS 

Use 

18-bit A register. 

An expression that reduces to an 18-bit operand value. 

A 6-bit operand or operand address expression. This field is 5 
bits long for the SCF, CCF, SFM, and CFM instructions. 

A 12-bit expression value used with d or (d) to form an 18-bit 
operand or 12-bit operand address. 

1 12-bit Program Address register. 

12-bit Q register. 

An expression that reduces to a 6-bit value (-37
8
$r $ 37

8
) 

specifying relative address or shift count. 

22-bit R register. 

Contents of a register or location. 

Refers to indirect addressing. 

Generally, the third character of the instruction mnemonic (N, D, M, C, or I) indicates the mode of 
addressing: 

N No operand address reference 

D Direct operand address: d contains operand 

M Memory address m or m + (d) contains operand 

C 18-bit constant 

Indirect; operand address is (d) 

Some PP instructions can be executed only on specific machine models. Table 9-2 lists each instruction 
and the machine models to which it corresponds. 

60492600 H 9-3 



TABLE 9-2. PP IHSTRUCTIOH/MACHIRE MODEL CORRESPONDENCE 

Machine Model Humber 

I 
Mnemonic 171, 172, 173, 174, 175, 

Code 825, 835, 845, 855, 
76 and 7600 720, 730, 740, 750, and 760; 176 865, and 875 71, 72, 73, and 74; and 

6000 Series 

ACN x x x 
ADC x x x x 
ADD x x x x 
ADI x x x x 
ADM x x x x 
ADM x x x x 

AJM x x x 
AOD x x x x 
AOI x x x x 
AOM x x x x 
ccr x 
CFM x 

CRD x x x 
CRM x x x 
CWD x x x 
CNN x x x 
DCM x x x 
EIM x 

EJM x x x 
EC»I x 
ERRf 
ESH x 
ETNf 
EXR x x x 

FAR x x x 
FIM x 
FJM x x x 
FNC x x x 
FOM x 
IAM x x x x 

IAN x x x x 
!JM x x x 
!RM x 
LCM x x x x 
LDC x x x x 
LDD x x x x 

LDI x x x x 
LDM x x x x 
LDH x x x x 
LJM x x x x 
LMC x x x x 
LMD x x x x 

9-4 60492600 K 



TABLE 9-2. PP INSTRUCTION/MACHINE MODEL CORRESPONDENCE (Contd) 

f Machine Modei Number 
-, 

I Mnemonic 171, 172, 173, 174, 175, 

I Code 825, 835, 845, 855, 76 and 7600 720, 730, 740, 750, and 760; 176 I 865, and 875 71, 72, 73, and 74; and 

I I 6000 Series I I 

I 

f LMI x x x I x l 
I I.MM I x I x x x I 

I.MN x x x x 
LPC x x x x 
LPN x x x x 
LRD x 

MAN x xtt x 

I 
~TN x x x 

I 
x 

I MXN x 
NIM x 
NJN x x x I x I NOM x I 

OAM x x x 

' 
x I 

I OAN x x x I x I 
I ORK I x I I i 
I PJN I x x I x I x I l I 

PSN 
r I I I I I x x I x x 

I RAD I x x I x I x 

RAI x x x x 
RAM x x x x 
RFN x 
RJM x x x x 
RPN x x 
SBD x x x x 

SBI x x x x 
SBM x x x x 
SBN l x x x x 

~ SCF ' x 
" 

I I 
SCN x x x x 
SFM x 

SOD x x x x 
SHH x x x x 
SOI x x x x 
SOM x x x x 
SRD x 
STD x x x x 

STI x x x x 
STM x x x x 
UJN x x x x 
ZJN x x x x 

t6416 only. 
ttNot supported for 6000 Series. 

60492600 K 9-5 



Some of the instructions provide similar functions using different modes of addressing. They can be 
grouped according to function as shown below: 

Function 

Data transmission 

Arithmetic 

Logical 

9-6 

Description 

The following instructions either load data into the A register or store data 
from it. A load instruction loads a 6-bit, 12-bit, or 18-bit value as indicated by 
the imtruction; any remaining upper bits of A are zeroed, except for the LCN 
instruction, for which remaining bits are set to one. 

A store imtruction stores the lower 12 bits of the A register contents into a 
memory location indicated by the instruction. 

The contents of A are not altered. 

Instruction 

LDN 
LCN 
LDC 
LDD 
STD 
LDI 
STI 
LDM 
STM 

Octal Code 

14 
15 
20 
30 
34 
40 
44 
50 
54 

A PP arithmetic imtruction adds or subtracts a 6-bit, 12-bit, or 18-bit quantity 
from the contents of the A register and enters the result in A. 

Instruction 

ADN 
SBN 
ADC 
ADD 
SBD 
ADI 
SBI 
ADM 
SBM 

Octal Code 

16 
17 
21 
31 
32 
41 
42 
51 
52 

A logical instruction for ms a logical value in A using the contents of A as one 
of the operands and a 6-bit, 13-bit, or 18-bit value indicated by the instruction 
as the second operand. When the second operand is fewer than 18 bits, the 
remaining upper bits of A are unaltered, except for the LPN instruction for 
which the upper 12 bits are zeroed. 

Formation of a logical difference is equivalent to setting each bit in A that is 
unlike the corresponding bit in the second operand. For example: 

Initial (A) 
Operand 

Final (A) 

= 0101 
= 1100 

= 1001 

Formation of a logical product is equivalent to setting a bit in A when the 
original setting of the bit in A and the corresponding bit in the second operand 
are both ones. 

60492600 H 



Replace 

For example: 

Initial (A) 
Operand 

Final (A) 

= 0101 
= 1100 

= 0100 

A selective clear sets a bit zero in the A register wherever a bit is set in the 
second operand. For example: 

Initial (A) 
Operand 

Final (A) 

= 0101 
= 1100 

= 0001 

Logical instructions include the following: 

Instruction 

LMN 
LPN 
SCN 
LPC 
LMC 
LMD 
LMI 
LMM 

Octal Code 

11 
12 
13 
22 
23 
33 
43 
53 

A replace instruction performs an arithmetic operation and returns the results 
to the A register and the memory location from which one operand was 
obtained. The lower 12 bits of the result replaces the operand obtained from a 
memory location. Replace instructions include the following: 

Instruction 

RAD 
AOD 
SOD 
RAI 
AOI 
SOI 
RAM 
AOM 
SOM 

Octal Code 

35 
36 
37 
45 
46 
47 
55 
56 
57 

9.2.1 BRANCH INSTRUCTIONS 

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be 
jumped (maximum 31). When r is positive (01 through 37 8), the jump is forward r locations. When r is 
negative (-76s through -409), the jump is backward 77 s-r locations. In the following tests, negative 
zero (777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes 
place. When the condition is not met, execution continues with the next instruction. 

60492600 H 

NOTE 

The jump count must not be 00 or 77. If it is, execution 
loops on the jump instruction. 

9-7 



The J option of the PPU imtruction and the PERIPH imtruction (chapter 4) cause the value of the location 
counter to be subtracted from the value of the symbolic add~ (tag) before it is placed in the d field of 
the object code imtruction. 

Format: 

Operation Variable Description Size Octal Code 

LJM m,d Long jump to m+(d); if d = 0, mis not 
modified 24 bits Oldm 

RJM m,d Return jump to m+(d); Store P+2 at m+(d) 
and jump to m+(d)+l. 24 bits 02dm 

UJN rt Unconditional jump to P.2:_ r locations 12 bits 03d 

UJN tag Unconditional jump to tag 12 bits 03d 

ZJN rt Zero jump; jump to P2:_r locations if 
(A)= 0 12 bits 04d 

ZJN tag Zero jump to tag 12 bits 04d 

NJN rt Nonzero jump; jump to P.2:_ r locations if 
(A) :/: 0 12 bits 05d 

NJN tag Nonzero jump to tag 12 bits 05d 

PJN rt Positive jump; jump to P..::_r locations if 
(A)~O 12 hits OGd 

PJN tag Positive jump to tag 12 bits OGd 

MJN rt Minus jump; jump to P ..::_ r locations if 
(A)< 0 12 bits 07d 

MJN tag Minus jump to tag 12 bits 07cl 

t If PPU J or PERI PH J option has been selected, r is not valid. The contents of the variable 
field must be a symbolic address (tag). 

9-8 60492600 H 



Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

i 'i i" i'' jJO 

l f I LJM 
I 

1J 1 a o U62 !~TART 
I 

0271 0000 
11 

IPJM jo,cro 
I 

11 luJN 
I 

0171 jrAGt-• 

0404 
i i 17 IM I +4 I i 
I I 

I' u•~ I 
0'>25 I I I NJN ITAr;'3 

i i I I 
06f>7 I I I ! 

IPJN TAG?-• 

0726 11 HJN TAG~ 

In the above example, the LJM instruction is at address 0014s. TAGl is address0012s, TAG2 has a 
value of 13s, TAG3 has a value of 258, and TAG4 has a value of 26s. 

Code Generated LOCATION 

11 
0347 I l 

i I 
I 

04P4 

05% 

060?. 

0743 

9.2.2 SHIFT INSTRUCTION 

OPERATION VARIABLE 

" 
IPPU 

I 
luJN 
I 
l7JN 

lNJN 

IPJN 
IHJN 

18 

J 

T1H~?+11 

TAG! 

COMMENTS 

T 

! 
I 
I 
I In this example, the UJN is at 
I address 0040. TAGl is address 
I 0010, TAG2 is 0011, TAG3 is 
I address 0045, and TAG4 is 
I address 0046. 

I 

The SHN instruction shifts the contents of the A register right or left r placese If r is positive +1 to +31), 
the shift is left circular r places; if r is negative (-31 to -1), the shift is end off r places to the right with no 
sign extension. No shift takes place when r is + O. The assembler places the value of the r expression in 
the d field. If -31> r >31, the assembler generates an address error. 

Format: 

Operation Variable Description Size Octal Code J 
SHN r Shift (A) by + (left) or - (right) r bits 12 bits 

l 
lOd l 

J 

60492600 H 9-9 



Example: 

1. Shift contents of A left circular 6 places 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 130 

1006 SHN 6 
T 

I 

2. Shift contents of A right end off 6 places 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I " 18 [Jo 

1071 
6 SCNT SET. 6 T 

SHN -SCNT I 
I 

9.2.3 NO ADDRESS MODE INSTRUCTIONS 

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit positive 
operand. This mode eliminates the need for storing many constants in memory. 

Format: 

Operation Variable 

LMN d 

LPN d 

SCN d 

LDN d 

LCN d 

ADN d 

SBN d 

Example: 

Code Gene rated 

9-10 

1112 

1207 

13?1 

.1'+15 

151_4 

1f>01 

11fl2 

1 '5 

Description Size Octal Code 

Logical difference (A)-d-A 12 bits lld 

Logical product (A) *d -A 12 bits 12d 

Selective clear (A) 12 bits 13d 

Load d-A 12 bits 14d 

Load complement d - A 12 bits 15d 

Add (A)+d-A 12 bits 16d 

Subtract (A)-d-A 12 bits 17d 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 ho 
U4"1 t2R T 

I 
LPN 7 I 

I 
~CN 21n I 

AA SFT p; B I 
L'lN AA 

I 
LCN AA-1 I 
AON t I 

I 
~AN ? I 

60492600 H 



9.2.4 CONSTANT MODE INSTRUCTIONS 

In this mode, during instruction execution, the contents of the d and m fields are taken directly as an 
operand. This mode also eliminates the need for storing many constants. The assembler reduces absolute 
or relocatable expression c to an 18-bit value and stores the upper six bits ind and the lower 12 bits in m. 

Format: 

Operation ·I Variable Descriptibn _Size I Octal Code 
i 

1LDC 1 c Load c-A 24 bits J 20dm 
I I 

ADC c Add (A)+c -A 24 bits 21dm 

LPC c Logical product (A) *c -A 24 bits 22dm 

LMC c Logical difference (A)-c -A L 24bits 23dm 

--·- --

Example: 

Code Generated LOCATION OPERATION VARIAllE COMMENTS 

I II 18 T Jo 

2!J70 7 !)70 Ln~ 7n1n?1111 I 

I I 

I I 
0 

?177 7175 

2?P.7 n 7!l 7 

I" !'L r~~r l Q 
I 
I 

I i '' !\ L-1 I I I 

I I L;J~ I 'J7•,?r7'1 
I 
I 

n707 
2~C7 011)7 

IM·<:~ 
I I "<l I i),",.. 7·l I 

u1c ,.,,~<:"I( I 
I 

9.2.5 NO OPERATION INSTRUCTION 

The PSN instruction specifies that no operation is to be performed. It provides a means of padding a 
program. 

l 
I 
J 

For the models 810, 815, 825, 830, 835, 845, 855, 865, and 875, the variable field of the PSN instruction I 
must be blank. Otherwise it is interpreted as an LRD instruction. 

Format: 
--

Operation Variable Description Size Octal Code 

PSN No operation (Pass) 12 bits 2400 
------'----

Example: 

Code Generated LOCATION OPERATION VARIA8LE COMMENTS 

I 11 18 I Jo 

241JO PSN -;-

60492600 L 9-11 



I 

I 

Other octal operation codes (not generated by COMP ASS) that act as pass instructions are: 

00 
25 
2700 

CYBER180S~~s;CYBER170Seri~; 
CYBER 70 Models 71, 72, 73, and 74; and 6000 Series 

(2500 for Models 810, 815, 825, 830, 835, 845, 855, 865, and 875) 
(Models 810, 815, 825, 830, 835, 845, 855, 865, and 875 only) 

9.2.6 LOAD AND STORE R REGISTER INSTRUCTIONS 

CYBER 70 
Model 76 and 7600 

25 
27 
76 

The LRD instruction loads the R register. Bits 0 through 11 of the R register are loaded from d+l; bits 12 
through 21 of R are loaded from bits 0 through 9 of d. 

SRD stores the contents of the R register into d and d+l. Bits O through 11 of R are stored into d+l; bits 
12 through 21 of R are stored into bits 0 through 9 of d. 

If the variable field is set to zero, LRD and SRD execute as pass instructions. 

Format: 

Operation Variable Description Size Octal Code 

LRD d Load (R) from d and d+l 12 bits 24d 

SRD d Store (R) into d and d+ 1 12 bits 25d 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 130 Code Generated 

T 
2400 LJrn I PA!:iS INSTRUCT ION 

I 
2500 SRD I PASS INSTRUCTION 

I 
2412 LRD 128 I 

I 
2512 SRO 128 I 

I 

9.2.7 EXCHANGE JUMP INSTRUCTIONS 

The EXN instruction transmits an 18-bit (absolute) address from the A register to the CPU with a signal 
notifying the CPU to execute an exchange jump. The address in A is the starting location of the 16-word 
exchange package which contains information about the CPU program to be executed. The 18-bit initial 
address must be entered in A before the EXN instruction is executed. The CPU replaces the file with 
similar information from the interrupted CPU program. The PP is not interrupted. The EXN instruction 
does not affect the monitor flag bit. 

9-12 60492600 L 



The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If the 
monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor flag bit is 
set, this instruction acts as a pass instruction. The starting address for this excha.~ge is the lS~bit addre~ 
in the PP A register. This address must be entered in A before the MXN instruction is executed. 

Execution of MAN resembles MXN. However, the exchange package address is taken from the 18-bit 
Monitor Address (MA) register in CPU d, rather than from the PP A register. 

In a system with dual central processors, d can be 0 or 1 and specifies which CPU the exchange jump will 
interrupt. in singie processor systems, this value is not interpreted. 

Format: 

Operation Variable Description Size Octal Code 

EXN d Exchange jump CPU d to (A) 12 bits 260cl 
MXN d Monitor exchange jump CPU d to (A) 12 bits 26ld 
MAN d Monitor exchange jump CPU d to (MA) 12 bits 262d 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

l II J1a 1 Jo 

2610 

EX~ j 1 I 

I I 
HXM I a I 

2601 

2623 M~N 3 I 

I 
I 
I 

9.2 .. 8 READ PROGRAM ADDRESS INSTRUCTION 

This imtruction transfers the contents of the CPU P register to the PP A register; this allows the PP to 
determine whether the CPU is in execution. In a dual central processor system, the lowest order bit of the 
instruction format specifies which CPU P register is to be examined. This bit is not interpreted for a 
single central processor system. 

Format: 

Operation Variable Description Size Octal Code 

RPN d Read program address CPC d - A 12 bits 270d 

Example: 

Code Generated lOCAHON OPERATION ¥ARfA.slf COMMENTS 

I 11 18 f 30 

27GO RPN I 

60492600 H 9-13 



For the 6000 and CYBER 70 Series, the largest value that (P) can be is 17 bits. An ECS transfer is in 
progress when bit 17 of the A register is set. For the CYBER 170 series, the P register is 18 bits. 

I The RPN imtruction is not valid for the models 810, 815, 825, 830, 835, 845, and 855. The 2700 octal code 
executes es a pass instruction. 

9.2.9 6416 PP INSTRUCTIONS 

COMPASS assembles the following instructions for execution on a 6416 computer system only. The ETN 
instruction initiates memory transfer operations by transmitting an 18-bit address from the PP A register 
to the 6416 16K memory. This address points to a word having the following format: 

59 

XO 

Starting Address 
in ECS 

35 

AO 

Starting Address 
in 16 K Memory 

17 

K 

Word Count 

Expression d of this instruction specifies the transfer to be performed: 

• If dis 0, K words are transferred from ECS to 16K memory. 

• If d is 1, K words are transferred from 16K memory to ECS. 

Note that addresses contained in the word are absolute addresses. Operating systems may require 
relocation (adding RA to an address) and field length testing, e.g., Is address+ RA>FL? The Exchange 
Jump package contains RA and FL values for central memory and for extended memory. The 6416 has no 
hardware for automatic relocation and field length testing; it is therefore incumbent upon the program to 
perform these functions whenever required by an operating system. 

The ERN instruction examines the status of the data trunk between 16K memory and the extended core 
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit 
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d portion of 
this instruction is ignored. 

After execution of this instruction the program would typically test the A register for a sign before 
executing an instruction that initiates an ECS operation. 

Format: 

Operation Variable Description Size Octal Code 

ETN d Extended core transfer 12 bits 260d 

ERN d Read extended core coupler status 12 bits 270d 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T3o 

2600 ETN I 

I 
I 

ERN I 

9-14 60492600 L 



9.2.10 DIRECT ADDRESS MODE INSTRUCTIONS 

In this mode, during instruction execution, the contents of the d field specify the address of the operand. 
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies 
one of the first 1008 addresses in memory (0000 through 0077 a). During instruction execution, (d) is 
treated as a positive 12-bit quantity. 

Format: 

Operation Variable Description Size Octal Code 

LDD d Load (d)-A 12 bi ts :30d 
I 

ADD d Add (A) + (d) -A 12 bi ts 31cl 

SBD d Subtract (A) - (d) -A 12 bit~ 32c1 

LMD d Logical difference (A) and (d) -A 12 bit~ 33d 

STD d Store (A)-<l 12 hits 34d 

RAD d Replace add (d) -1 (A)-d and A 12 bit~ :35cl 

AOD d Replace add (cl) ' I-cl and A ] 2 bit~ 3Gcl 

SOD d Replace subtract one (cl) - 1-d and A 12 bit~ 37cl 

Example; 

Code Generated I LOCATION I OPERATION l VARIABLE COMMENTS 

I II 18 T 30 

LOO TAG 1 
T 
I 301?. 

I 
3103 r. Of) Tl\ r.2-HB I 

I 
3?40 c::;1ri '• l ~ I 
B?7 L:-1n l'\ r, H-1 Sl3 I 

I 
~401 c;rr-1 t I 

I 
t I~ a11 lc;c;n I 

I \ft OD 

I 
IT I\ r.1 I 

I I I 

301? 

11 

9.2.11 INDIRECT ADDRESS MODE INSTRUCTIONS 

In this mode, during instruction execution, d specifies an address, the contents of which specify the address 
of the desired operand. Thus, d specifies the operand address indirectly. 

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that specifies 
one of the first lOOg addresses in memory (0000 through 0077 g). 

On the 7600 (or CYBER 70 Model 76), the addre~ formed permits referencing of memory locations 0000 
through 7776s. Location 7777 8 cannot be referenced. 

60492600 H 9-15 



I On a 6000 Series Computer System (as well as CYBER 180 Series or CYBER 170 Series or CYBER 70 Model 
71, 72, 73, or 74) PP, the address formed in indirect address mode permits referencing of all memory 
locations, including address 7777 8· 

Format: 

Operation Variable I Description Size Octal Code 

LDI d Load ((d))-A 12 bits 40d 

ADI d Add (A) 1 ((d))-A 12 bit:.-; 41<1 

SBI cl Subtract (A) - ((d))-A 12 bitH 42d 

LMI d Logical difference (A) - ((d))-A 12 hit:.-; 43d 

STI d Store (A)-(d) 12 bits 44d 

RAI d Replace add ( (d)) 1 (A)-(d) and A 12 bib;: 45cl 

AOI d Heplace add one ((d)) 1- 1 -(d) and A 12 hits 4Gcl 

SOI d Heplace subtract one ((d)) - 1 -(d) and A 12 biti.;: 47cl 

Example: 

Code Generated LOCATION I OPERATION VARIABLE COMMENTS 

I II 18 1Jo 
.I 

4012 Lnt TA r,1 l 

4103 l!fJT TAC:.?-1~ 

4240 ~ny t.~P 

l._,T •AG!+1l)" 

~TY t 

~ftf c;,c:;~ 

MH TAG1 

t+ 71 3 I SOI Tl\(';:::' 

9.2. 12 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS 

In this mode, during instruction execution, The value formed by m + (d) is used as the address of the 
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that 
specifies one of the first 1009 addresses in memory (0000 through 0077s). The value of absolute or 
relocatable expression m is a 12-bit base address. 

9-16 

NOTE 

The address formed in indexed addressing permits 
referencing of all memory locations but one {0000 
through 7776s). Although m and/or (d) can have a 
value of 7777 s, the computer system does not permit 
m + (d) to reference address 7777 8· 

60492600 L 



When in indexed direct address mode, if d is nonzero the contents of address d are added to m to produce a 
12-bit operand address (indexed addressing). If d is zero, m is taken as t~e operand address. 

Format:. 

Operation. 1 Variable Description l Size I Octal Code 

I T 

I LDM m,d Load (m+(d))-A I 24 bits 50dm 

ADM I m,d Add (A)+ (m+(d))-A I 24 bits 51dm 

I I SBM m,d Subtract (A) - (m+(d)) -A 24 bits 52dm 

LMM m,d Logical difference (A) - (m+(d))-A 

I 
24 bits 53dm 

STM m,d Store (A)·-m+(d) 24 bits 54dm 

RAM m,d Replace add (m+(d)) + (A)-m+(d)and A 24 bits 55dm 

AOM m,d Replace add one (m+(d)) + 1-m+(d) and A 24 bits 56dm 

SOM m,d Replace subtract one (m+(d)) - 1 m+(d) and A 24 bits 57dm 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

Code Generated 
I II 18 T3o 

5077 0203 

510& 0202 
11 

LDP1 TAGb,778 l 
I 

AOl1 IT AG5, b 
I 
I 

5200 0202 
I 

' I ~ tiM I TAG5 I 

5315 7000 I LMM 1oooa,1sa I 
r 

5410 0272 ST :-1 TAG5+70B,TAG1-2 

l 
5500 0 342 I RAM 1l+OS+IAG5,0

1 I 
5bll0 0173 I AOM ; -10B+TAC,b I 

I I 1 

' 5712 0203 I 50M I T AGf>t T AG1 

9.2.13 CENTRAL READ/WRITE INSTRUCTIONS 

The CRD instruction transfers a 60-bit word from central memory to five consecutive PP locations. The 
18-bit address of the central memory location must be loaded into A prior to executing this instruction. 
(Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit words beginning at 
the left. Location d receives the first 12-bit word. The remaining 12-bit words go to successive locations. 
The contents of A are not altered. 

The CRM instruction reads a block of 60-bit words from central memory. The contents of location d give 
the block length. The 18-bit address of the first central word must be loaded into A prior to executing this 
imtruction. (Note that this is an absolute address.) During the execution of the instruction, the contents 
of P go to processor address 0 and P holds m. Also, the block length (from d) goes to the Q register where 

60492600 H 9-17 

J 

l 
I 
I 
I 

I 

i 

J 



it is reduced by one as each central word is processed. The original content of P is restored at the end of 
the instruction. The new contents of P are fetched from word O. If the read operation overwrote the 
contents of word O, ·the restored value of P will be different from the original contents. 

The contents of A are incremented by one to provide the next central memory address after each 60-bit 
word is disassembled and stored. The contents of the Q register are also reduced by one. The block 
transfer is complete when (Q)=O. The block of central memory locations proceeds from address (A) to 
address (A)+(d)-1. The block of processor memory locations proceeds from address m to m+S(d)-1. 

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The first 
word is stored at processor memory location m. The content of P (which is holding m) is advanced by one 
to provide the next address in the processor memory as each 12-bit word is stored. If P overflows, 
operation continues as Pis advanced from 7777g to OOOOg. These locations will be written into as if 
they were consecutive. 

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word in 
central memory. The 18-bit address word designating the central memory location must be in A prior to 
execution of the instruction. (Note that this is an absolute address.) 

Location d holds the first word to be read out of the processor memory. This word appears as the higher 
order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken from 
successive addresses. 

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content 
of location d gives the number of 60-bit words. The content of the A register gives the beginning central 
memory address. (Note that this is an absolute address.) During the execution of this instruction (P) goes 
to processor address O, and P holds m. Also, (d) goes to the Q register, where it is reduced by one as each 
central word is assembled. The original content of P is restored at the end of the instruction. 

The content of P (them portion of the instruction) gives the address of the first word to be read out of the 
processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be stored in 
central memory. 

The content of Pis advanced by one to provide the next address in the processor memory as each 12-bit 
word is read. If P overflows, operation continues as P is advanced from 7777 8 to OOOOg. These 
locations will be read from as if they were consecutive. 

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled. 
Also, Q is reduced by one. The block transfer is complete when (Q)=O. 

Format: 

Operation Variable Description Size Octal Code 

C.RD d Central read from (A) to d 12 bits 60d 

CRM m,dt Central read (d) CM words beginning 
at CM (A)~ PP m 24 bits 61dm 

CWD d Central write from d to (A) 12 bits 62d 

CWM m,dt Central write (d) words begiming 
at PP m~CM (A) 24 bits 63dm 

tE . d. . d xpress1on 1s reqmre • 

9-18 60492600 H 



Example: 

Code Generated 

6125 OOP 

11232 

63t;0 !J012 

I 

11 

11 

11 
i I 
I ! 
I I 

LOCATION 

9.2.14 1/0 BRANCH INSTRUCTIONS 

OPERATION VARIABLE COMMENTS 

II 18 [Jo 

c~n 15P I 

The following instructions are conditional long jump instructions, each of which tests for a condition on 
charu1el d. When the condition is true, the jump to address m takes place. When the condition is not met, 
execution continues with the next instruction. The d expression is required. 

For the FJM instruction, an input channel is full when the input equipment has sent a word to the channel 
register and sets the full flag. The channel remains full until the PP accepts the word and clears the flag. 
An output channel remains full when a PP sends a word to the channel register and sets the full flag. The 
channel is empty when the output equipment accepts the word and notifies the PP. 

On the models 810, 815, 825, 830, 835, 845, 855, 865, and 875, d must be less than 409. 

Format: 

---, 

Operation Variable Description Size Octal Code 

AJM m,d Jump to m if channel cl active 24 bitf; u4dm 

IJM m,d Jump to m if channel cl inactive 24 bi l~ G5dm 

FJM m,d Jump to m if channel d full 24 bit~ GGdm 

EJM m,d Jump to m if channel d empty 24 hiti-: 67clm 

Example: 

---
Code Gene rated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 !Jo 
AJ"-• TAG1,2 T 

I 
bt.+02 001? 

I 
osc2 on~ IJM Tl\G2,CHAN-? I 

I I 
F JM TAC.3,4 I 

I 
fd14 OO?n ~ J"" TAG4,CHAN I 

60492600 L 9-19 

I 



9.2.15 1/0 TEST AND SET CHANNEL FLAG INSTRUCTIONS 

The SCF instruction branches to the location specified by m if the channel d fiag is set; otherwise, it sets 
the channel flag and exits. The programmer can unconditionally set the channel fiag by setting m to P+2. 

The CCF instruction clears the flag in the channel specified by d. The m field is required, but not used. 

The SFM instruction branches to the location specified tlY m if the channel d error flag is set, and clears 
the error fiag. 

The CFM instruction branches to the location specified by m if the channel d error flag is clear; otherwise, 
it clears the error fiag. 

Format: 

Operation Variablet Description Size Octal Codett 

SCF m,d Branch to m if channel d flag set 24 bits 644dm 

CCF m,d Clear channel d flag 24 bits 654dm 

SFM m,d Branch to m if channel d error flag 24 bits 664dm 
set 

CFM m,d Branch to m if channel d error flag 24 bits 674dm 
clear 

JThe variable dis a 5-bit field containing the channel number. 
The operation code occupies 7 bits. 

Example: 

lOCATION OPUATION VAllAllE COMMENIS 
Code Generated 

I II 18 I JO _._ 
I 

6445 0100 SCF 1008,5 

6545 0100 CCF 1008,5 

6645 0100 SFM 1008,5 

6745 0100 CFM 1008,5 

6453 0100 SCF 1008,138 

6553 0100 CCF 1008,138 

6653 0100 SFM 1008,138 

6753 0100 CFM 1008,138 

9-20 60492600 H 



9.2.16 1/0 BRANCH INSTRUCTIONS 

The following instructions are conditional long jump instructions, each of which lBsts a condition on 
channel d. When the condition is true, the jump to address m takes place. When the conditio:1 is not met, 
execution continues with the next instruction. These instructions are exclusively 7600 PPU instructions. 
The d expression is required. 

Format: 

Operation Variable Description Si'.l.l' ( k'l:tl ('ode 

FIM m,d Jump lo m on channel d input \\·orcl i1aµ; ~4 hit~ CiOdm 

EIM m,<;t ,Jump tom if no inpul \\'ot·d flaµ; on channel d 24 hit:-: tildm 

IRl\I m,cl Jump to m on channel cl input record flag- 2-1 hit:-: <i2dm 

NIM m, cl Jump lo m if no input reeoi·d tl:tg- on 
channel cl :2 I Iii t :-: 1;:;<1111 

FOl\I m,d Jump to 111 on channel cl output \nn·cl tlag- :2-1 hit:-: <i-l-dm 

EOl\l m,d Jump to 111 if no oulpul \nn·cl ilaµ; on 
channel cl 21 hit:-: li:idm 

OHM m,d Jump to m on drnnnel cl oulput eeeoi·d tlag- :2-1 hit:-: CHidm 

NOM m,d Jump lo m if no output t'econl 11:1µ; on 
channel d 2-1 hit:-: fi7clm 

Example: 

---------

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 bo 
F-00'5 1 ~f1~ FT'-' Tl\Gt::,r. T 

I 
I 

6102 1~~r; r r·1 Tf\r,r, ,? I 

n?f't 1 ~f,f. {?"" Tft(,F-,1 
I 
I 

4 

6~01+ Pf>f:. 

6l+15 701)0 

Ct-Jtl" SCT 4 
I 

I 1•6i06,CH4111 

I 

f''l~ I 
I 

t:"(l~ l701r.11,t_c:9 I 
I 

I 
ftC:OO 1~?C: f OVI 1 t, " r. + T '\ r, ~ , 'J I 

f,f," 1 12~6 

&1n5 . 1 3')6 
I 

I 
o~·~ - t 11' il + TI\ r; f. , r Ht. II' - .J 

! ,-!\Gf. .. r.Hl\~J+ 1 
I 

I I NO~ I 
I I 

60492600 H 9-21 



9.2.17 A REGISTER INPUT /OUTPUT INSTRUCTIONS 

The following instructions transfer a word to or from channel d and the lower 12 bits of the A register. 

On the CYBER 70 Model 76 and the 7600, the IAN instruction is not executed until the input channel d 
word flag is set. If the flag is not set when the instruction is read, execution halts until an external signal 
sets the flag. The input channel d record flag does not affect the IAN execution. The IAN instruction 
clears the input channel d word flag and record flag and transmits a resume signal over the input cable 
after the word is entered in the A register. 

On the CYBER 70 Model 76 and the 7600, the OAN instruction is not executed while the output channel d 
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag. This 
instruction sets the output channel d word flag and transmits a work pulse over the output channel cable. 

I On a CYBER 180 Series; a CYBER 170 Series; CYBER 70 Model 71, 72, 73, 74; or 6000 Series machine, 
executing either of these instructions when the channel is inactive causes the peripheral processor to 
become inoperative until some other peripheral processor activates the channel or the system is 
deadstarted. 

Format: 

Operation Variable 

IAN d 

OAN d 

Example: 

Code Generated 

700) 

7204 

I 

Description 

Input: channel d to A 

Output: (A) to channel d 

LOCATION OPERATION VARIABLE 

" 18 

I~N ~ 

c n'J I c11r..N 

9.2.18 BLOCK INPUT/OUTPUT INSTRUCTIONS 

Size Octal Code 

12 bits 70d 

12 bits 72d 

COMMENTS 

!Jo 

I 

I 

I 

The following instructions transfer a block of 12-bit words on channel d to or from a starting PP memory 
location specified by m. The number of words transferred is specified by the contents of the A register 
which is reduced by one as each word is transferred. The operation is completed when (A)=O or the channel 
becomes inactive (CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 only). 

I On the CYBER 180 Series; the CYBER 170 Series; CYBER 70 Models 71, 72, 73, and 74; and 6000 Series 
machines, the input operation is complete when the contents of A equal 0 or the data channel becomes 
inactive. If the operation is terminated by the channel becoming inactive, the next location in the 
processor memory is set to all zeros. The word count is not affected by this empty word. Therefore, the 
contents of the A register give the block length minus the number of real data words actually read in. 

During execution of either of these instructons, addre$ 0000 temporarily holds P, while the P register 
holds m. The contents of P advance by one to give the address for the next word as each word is 
transferred. 

If a read operation overwrites word 0 (address 0000), the restored value of P may be different from the 
contents of P before the operation. 

9-22 60492600 L 



NOTE 

If this instruction is executed on a CYBER 180 Series; I 
CYBER 170 Series; a CYBER 70 Model 71, 72, 73, or 74; 
or 6000 Series machine when the data channel is 
inactive, no operation is accomplished and the program 
continues at P + 2. However, the location specified by m 
is set to all zeros for the JAM instruction. 

On a CYBER 70 Model 76 or a 7600, the !AM instruction is not executed until the input channel d word flag 
is set. If the flag is not set when the instruction is read, execution halts until an external signal sets the 
flag. The presence of an input channel d record flag is ignored for the first word of the block but 
terminates the block input a.t any word after the first. In this case, the next location in the PP block input 
storage area contains a noise word; any remaining locations a.re unaitered. Note that the storage location 
can be incremented through location 77769 to 0009 on a 7600 (or C YBER 70 Model 76), or location 
7777 8 through 0000 on a 6000 Series machine (or a CYBER 180 Series; a CYB ER 170 Series; CYB ER 70 I 
Model 71, 72, 73, or 74), which could destroy existing data or a program. 

On a CYBER 70 Model 76 or a 7600, the OAM instruction is not executed until the output channel d word 
flag is cleared. If the flag is set when the instruction is read, execution halts until a resume pulse clears 
the flag. An output channel d record flag does not a.ff ect OAM execution. 

Format: 

Operation Variable Description Size Octal ('oclc 

-
IAM m dt ' . 

Input: (A) words to m from channel cl 24 bit:-: 71clm 

OAM m,dt Output: (A) words to channel cl from m 24 bit8 73clrn 

tExpression d is required. 

Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T3o 
-

710~ 1364 

I 
IM1 UG.3 I 

I 

ont-1 T~r.,4 
I 
I 

9.2.19 SET OUTPUT RECORD FLAG INSTRUCTION 

The RFN instruction sets the output channel d record flag and transmits a record pulse over the cable. The 
instruction ignores the previous status of the channel d flags; the instruction is executed even if the output 
channel d record flag is set. 

Format: 

Operation Vari Rb le Description Size Oct;tl ('odt' 

RFN d Set output record fla!]; on eh:::111cl d 1 ~ hit~ 7ld 

60492600 L 9-23 



Example: 

Code Generated LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T3o 

74 06 f 
I pp,1 6 i 

9.2.20 CHANNEL FUNCTION INSTRUCTIONS 

The ACN instruction activates the channel specified by d. This instruction must precede the IAN, IAM, 
OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the exchange of 
data. Activating an already active channel causes the PP to become inoperative until another PP or an 
external equipment deactivates the channel, or the system is deadstarted. 

The DCN instruction deactivates the channel specified by expression d. It stops the input/output 
equipment and terminates the buffer. Deactivating an already inactive channel causes the PP to become 
inoperative until deadstart or until the channel is activated. Avoid disconnecting the channel before first 
sensing for channel empty, deactivating a channel before stopping the associated processor, or deactivating 
a channel before placing a useful program into the associated processor. After deadstart, PPs wait on an 
input channel. Deactivating a channel after deadstart causes an exit to address 0001 and execution of the 
program. 

The FAN instruction sends the external function code from the lower 12 bits of the A register on channel d. 

The FNC instruction sends the external function code specified by m on channel d. For this instruction, 
expression dis required. 

Execution of a FAN or FNC instruction when the channel is active causes the PP to become inoperative 
until another PP or an external equipment deactivates the channel, or the system is deadstarted. 

Format: 

!Operation Variable Description Size Octal Ccxle 

ACN d Activate channel d 12 bits 7.J.d 

DCN d Disconnect channel d 12 bits 75d 

FAN d Function (A) ori channel d 12 bits 76d 

FNC c,d Function c on channel cl 24 bits 77dm 

Example: 

LOCATION OPERATION VARIABLE COMMENTS 

I II 18 T3o 

7405 flCN 'j 
I 

CCN CHflN I 
I 

76C5 FAN CHllN+l I 
I 

770 5 0020 F NC 2 or , 5 I 

I 

9-24 60492600 H 



9.2.21 ERROR STOP INSTRUCTION 

The ESN imtruction halts execution of the peripheral processor program and indicates a program error 
condition to the monitor control unit. The PPU must be restarted by a deadstart sequence from the MCU, 
only. 

Format: 

Operation Variable 

ESN d 

Example: 

Code Generated 

"7 "7 n n 
f , u u 

60492600 H 

Description 

Error Stop 

LOCATION 

1 

I I 

Size Octal Code 

12 bits 7700 

OPERATION VARIABLE COMMENTS 

11 18 T 30 

&:'"~I T 

9-25 





PROGRAM EXECUTION 10 

COMPASS can be called from the library and placed in execution through a COMP ASS compiler call 
statement or through an IDENT statement (section 4) in a FORTRAN source deck. Ordinarily, when 
COMPASS is called through FORTRAN, the parameters specified on the statement apply also to COMPASS. 

10.1 CONTROL STATEMENTS 

Normally, assembly of COMPASS source programs or the execution of CPU binary object decks is done 
from a job file. A file is usually submitted in the form of card decks or card images. The first section of 
the file must contain the control statements described in this section. Other optional statements are 
described in the operating system reference manual. Following the control statement section are one or 
more sections containing source statements and data. 

A control statement begins with the first nonblank character. A comma or a left parenthesis or blank 
marks the beginning of a parameter string. Parameters in the string are separated by commas. A period or 
right parenthesis terminates a parameter string. Comments optionally follow the terminator. Within the 
parameter strings, blanks are ignored. Ordinarily, a parameter can contain only letters and digits. When a 
parameter is enclosed between dollai· signs, all characters are permitted and blanks are not ignored. Within 
such a dollar-sign delimited parameter, two consecutive dollar signs represent a single dollar sign. 

10.1.1 JOB STATEMENT 

A job statement of the following format must be the first statement in the deck. The parameters following 
name can be in any order or can be omitted. For any omitted field, a default value is supplied which is an 
installation option. 

Format: 

(name, Tt,E Clem. 

name 1 through 7 letters or digits by which the job is identified. 

The first character must be a letter. 

Tt CPU time limit in seconds (NOS/BE 1, SCOPE 2: 1 through 77777g; NOS 1: 1 through 
3276010>· Must be sufficient to process all control statements for the job, including 
assembly and execution. 

EClcm (NOS/BE 1, SCOPE 2 only). Estimate of maximum amount of LCM or ECS in octal 
thousands, required for assembly or execution (1 through 1400g). 

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be decreased 
accordingly. 

60492600 H 10-1 



Examples: 

( JOBl, TlOO~ EC30 .. 

(TESTER. 

10.1.2 COMPASS CONTROL STATEMENT 

The following statement causes the COMPASS assembler to be loaded from the library and executed. 
Parameters specify modes and files. 

Format: 

The optional parameters, p, may be in any order within the parentheses. A parameter can be omitted or 
can be in one of the following forms: 

mode 

mode=O 

mode=lfn 

Mode is one or two characters as described below; lfn is a 1 through 7 character name of a file or a 
character string. 

Mode 

A- Abort mode. 

A 

omitted 

B- Binary output. 

omitted or B 

B=O 

B=lfn 

BL - Burstable listing. 

BL 

omitted or BL=O 

10-2 

Significance 

Abort job step at end of rtm if any assembly errors occurred. 

Do not abort job step for assembly errors. 

Binary on the load-and-go file (LGO ). 

No binary output. 

Binary on the named file. 

Generates output listing easily separable into components: 

• Issues page ejects between listing segments (storage allocation map, 
source code, and cross reference table). 

• Assures an even number of pages (page parity) for each program unit 
listing, issuing a blank page at end if necessary. 

Generates listings in compact format. Page parity and listing segment page 
ejects are suppressed. 

60492600 H 



D - Debug mode. 

D 

omitted 

Binary is generated on the file indicated by B parameter in spite of assembly 
errors and regardless of the abort mode (A parameter). The A parameter is 
ignored when the D parameter is selected. 

D is ignored if B=O. 

Assembly errors inhibit binary output. In abort mode (A parameter present), 
no binary output is written at all for a subprogram containing assembly errors. 
Otherwise (A parameter omitted), the message ERRORS IN ASSEMBLY is 
written to the file indicated by the B parameter for each subprogram 
containing assembly errors. 

E - Error list. Suppressed if full list is directed to the same file or if no assembly errors occur. 
However, if the full list and error list are on different files (for example, the full list is written to 
OUTPUT and the error list is written on the named file), the error list will contain all statements 
having error flags. If an error line was generated by a macro call, the macro call can also appear in 
the error list. Specification of both the E and the 0 parameter results in a control statement error. 

omitted 

E 

E=lfn 

E=O 

Error list on file OUTPUT. 

Error list on file ERRS. 

Error list on named file. 

No error list is generated (equivalent to directing error list to the same file as 
full list). 

F - FORTRAN mode. Establishes value of special element *F. 

omitted or F 

F=number 

F=name 

G - Get system text. 

omitted or G=O 

G 

G=lfn 

G=lfn/ovl 

*F is O. 

*F is number (one decimal digit). 

*Fis a number corresponding to name as follows: 

COMPASS= 0 
RUN= 1 (The RUN compiler is no longer supported.) 
FTN4 = 2 
FTN5 = 3 

Load no system text from a sequential binary file. 

Load the first system text overlay, if any, from file named SYSTEXT. 

Load the first system text overlay, if any, in the specified sequential binary 
file. 

Search the specified sequential binary file for a system text overlay whose 
name is ovl and load the first such overlay. 

I - Source of assembler input. 

omitted 

I 

60492600 H 

Source deck is on INPUT file. 

Source deck is on COMPILE file in either compressed (see the UPDATE 
control statement X option, in the Update reference manual) or expanded 
format. 

10-3 



I=O filegal. 

I=lfn Source deck is on named file. 

L - Full list. 

omitted or L 

L=lfn 

L=O 

List output on OUTPUT file. 

List output on named file. When the full list is on a different file than the 
short list {see 0 option) and the P option is not specified, the listing for each 
subprogram is a separate section beginning with a one-word header consisting 
of an asterisk and the first six characters of the subprogram name. This 
header identifies the subprogram as a convenience for sorting and cataloging. 

No full list will be generated. 

LO - List options. Selects or deselects a maximum of nine of the list options A, B, C, D, E, F, G, L, M, N, 
R, S, T, or X. 

omitted or LO=O 

LO 

LO=$$$$ 

Same as selecting B, L, N, and R only. 

Selects list options C, F, G, and X, and deselects R. 

A list of up to nine characters. Inclusion of B, L, N, or R deselects the 
corresponding option. Otherwise, inclusion of a character selects the option. 
For options, refer to LIST pseudo instruction, chapter 4. 

Selects all list options. 

ML - Initial Value of MODLEVEL Micro. 

omitted or ML 

ML=string 

MODLEVEL is defined equal to JDATE {chapter 7) at the start of each 
assembly. 

MODLEVEL is defined as string {nine characters maximum) at the start of 
each assembly. 

N - No eject. 

omitted Explicit ejects are honored. 

N Explicit ejects (from TITLE or EJECT pseudo instruction) are suppressed. 

0 - Short list. Suppressed if full list is directed to the same file or if no assembly errors occur. 

10-4 

However, if the full list and short list are on different files (for example, the full list is written on 
OUTPUT and the short list is written on the named file), the short list will contain all statements 
having error flags. If an error line was generated by a macro call, the macro call may also be in the 
short list. Specification of both the 0 parameter and the E parameter results in a control statement 
error. 

omitted or 0 

O=lfn 

O=O 

List output on OUTPUT file. 

List output on named file. 

No short list will be generated (equivalent to directing short list to the same 
file as full list). 

60492600 H 



P - Continue page. 

p 

omitted 

Page numbering continues from subprogram to subprogram, creating a single 
continuous listing file. End-of-record is also suppressed between routines on 
the L file. 

Page numbering begins with 1 at the start of each subprogram. 

PC - Initiai Vaiue of PCOMMENT Micro. 

omitted or PC 

PC=string 

PCOMMENT is defined as 30 blanks at the start of each ~embly. 

PCOMMENT is defined as string at the start of each assembiy. Characters are 
truncated from the right or blanks are appended to the right, as necessary, so 
that the length of the micro value is exactly 30 characters. 

I 

PD - Print Density. Job default print density is ~urned upon entry. This option affects only the listing I 
files. 

PD=6 

PD=8 or PD 

PD=other or 
omitted 

PS - Page Size. 

PS=x 

PS=other or 
omitted 

S - System Text Name. 

omitted 

S=O 

s 

S=ovl 

S=lib/ovl 

Print density is six lines per inch. 

Print density is eight lines per inch. 

Print density defaults to job default (an installation parameter, user 
changeable) lines per inch. 

Page size is x lines per page. Acceptable values of x are 4 ~ x::; 99. 

If PD is not specified, page size defaults to job default lines per page. 
If PD is specified, page size defaults to PS=(PD*job default page size)/job 
default print density. 

If there are no G parameters other than G=O, load the overlay named 
SYSTEXT from the job's current global library set. 

Load no system text from a Ii brary. 

Load system text overlay named SYSTEXT from job's current global library set. 

Load the system text overlay named ovl from the job's current global library 
set. 

Load the system text overlay named ovl from the library named lib, which may 
be a user library file or a system library. 

X - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank. 

omitted 

X=lfn 

X=O 

x 

60492600 K 

External text OLDPL file. 

External text on named file. 

Illegal. 

External text on OPL file. 

10-5 

I 

I 



Example: 

( COMPASS(B,D, S=OVI) 

( COMPASS(LO=ASGXD) 

(COMPASS, 

MULTIPLE SYSTEM TEXT OVERLAYS 

Reads source from INPUT, writes the binar_\' output to LGO, 
and the listing to OUTPUT. Assemble in debug mode with 
system text from overlay OVI in the global lihrnr_\' set. 

Disables LIST pseudo instruction and sets LIST options 
A, S, G, X, and D. 

Uses the standard default options. 

COMP ASS allows up to seven system text overlays to be used for an assembler run. They are specified by 
G and S parameters on the COMPASS control statement. Each G parameter (except G=O) specifies loading 
of a system text overlay from a sequential binary file, and each S parameter (except S=O) specifies loading 
of a system text overlay from a user library file or a system library. The G and S parameters can be used 
in any combination and in any order, and can be intermixed freely with other parameters, provided the 
total number of system text overlays specified does not exceed seven. COMPASS loads the system text 
overlays in the order in which the G and S parameters occur on the COMPASS statement. If a system 
macro, micro, or symbol is defined by more than one system text, only the last definition is used. S=O has 
no effect if there are any other S or G parameters. 

Example: 

(coMPASS(I, s, S=PFMTEXT' G=MYTEXT) 

COMPASS(G=FILE/SCPTEXT, S=MYLIB/TEXT) 

10.1.3 LGO CONTROL STATEMENT 

Reads source from file COl\IPILE ancl gets system 
text from overla.vs SYS TEXT ancl P Fl\ITEXT in the 
global library set, nncl from the local file l\IYTEXT. 

Get s.vstem text from overln~· SCPTEXT 
on the file FILE, nnd from overln\· TEXT 
in librar:v l\IYLIB. 

An LGO control statement calls for the loading and execution of CPU binary output produced by the 
assembler unless the B option on the COMPASS control statement is set to O or to some other file name. 
When binary output is on some file other than LGO, the statement is replaced by a program call statement 
for that file. The file is automatically rewound before loading. The LGO file is temporary; it is released 
at job termination. 

NOTE 

A peripheral processor program can be executed only by the operating system. This type of 
program execution requires system origin privileges. 

Format: 

or 
( I LGO. 

10.1..4 PROGRAM CALL STATEMENT 

The program call statement directs the operating system to search for a file or CPU program that has the 
specified name, load it into central memory (CM or SCM), and execute it as a CPU program. 

10-6 60492600 H 



Formats: 

( name(l'i,p2, .. .,pn) 

(name. 

name Program name. 

Parameters in a format acceptable to the program being called. 

When the operating system locates the file, it rewinds and loads the file. When loading is complete, it 
executes the program as a CPU program. 

10.1.5 7 /8/9 CARD 

A card with rows 7, 8, and 9 punched in column one separates sections in the job deck. The level is 
assumed zero wiless columns 2 and 3 contain an octal level number punched in Hollerith code. The 
remaining columns optionally contain comments. 

As an example, a deck consisting of a control statement section and a COMPASS source input section 
would include two 7/8/9 cards. The first terminates the control statements and the second terminates 
COMPASS input. A 7 /8/9 card of level 17 is interpreted by the operating system as a 6/7 /8/9 card . 

. 10.1.6 6/7 /8/9 CARD 

A card with rows 6, 7, 8, and 9 punched in column one signals the end of the job deck. Columns 2 through 
80 optionally contain comments. 

10.1.7 USER CONTROL STATEMENT (NOS 1 ONLY) 

The user control statement format is: 

(USER, usernam, passwrd,famname. 

usernam 

passwrd 

famname 

User number or name 

User password 

Name of user ',Jermanent file de\'ice family name 

The USER statement, required by NOS 1, follows the job control statement and specifies user access 
information. The user name is used in system bookkeeping and defines the user's file catalog area. The 
user can specify a different permanent file catalog during job processing by issuing another USER control 
statement. 

60492600 G 10-7 



10.2 SAMPLE DECKS 

The following job calls for assembly of the source program and execution of the binary object program 
produced by the assembly. The USER control statement (for NOS 1 only) provides required user access 
information. COMPASS reads source statements from file INPUT, writes the listing on OUTPUT, and 
writes a binary object deck on file LGO. Control statement LGO calls for execution of the binary object 
program, which obtaim its data from file INPUT. 

10-8 

Subprogram 
Test 

Control 
Section 

{ 
I 

I 

'· 

6 
7 

Data for f 
8 / 
9 L 

/ 
/ 

Execution t / 
/ 

( 
7 
8 
9 
-(END TEST 

/ 
/ 

/ 
/ 

/ 

(mENT TEST 

7 
8 
9 

L___LGO. 

l_L COMPASS. 

_LcI-TARGE statement. 

('__ USEB statement. 

SAMPLE, TlOO. 

1--

~ 

i-----

1-1 
1-1 

1-1 
1-1 

I-
I-

I-
1-1 

I--' 
1--' 

t----' 

60492600 G 



In the following job, the COMPASS assembler is called twice. During the first assembly, binary object 
decks for subprograms TESTl and TEST2 are written on file LGFILEl. The source decks for these 
subprograms are in the second section of the INPUT file. During the second assembly, COMPASS writes a 
binary object deck for subprogram CDA on file LGFILE2. Each assembler run produces a full listing. 
Following the second assembly, LGFILE2 is repositioned to the beginning of the file. Then, the COPYBR 
program is called to copy the contents of LGFILE2 to a punch file (PUNCHB). The LGFILEl statement 
then calls for the loading and execution of subprograms TESTl and TEST2 from LG FILEl. Following 
successful execution of the subprograms, the file is rewound and copied to the punch file, after which the 
job terminates. 

60492600 G 

• • 
•' 

~111~ 
Jr 

!DENT CDA 

END TEST2 

IDENT TEST2 

END TESTl 

} Data for execution 

} Subprogram CDA 

} Subprogram TEST2 

A~~~~~~~ffilll } Subprogram TESTl 
IDENT TESTl 

i 
9 COPYBR{LGFILEl, PUNCHB) 

REWIND {LG FIL El) 

LGFILEl. 

COPYBR(LG FILE2, PUNCHB) 

( REWIND(LG FILE2) I 
[COMPASS (B=LGFILE2) J_jlJ__J 

[_ COMPASS(B=LGFILEl) 
1 ·SAMPLE, T500, EC50. 

1-

1-

j 
Control 
Section 

10-9 



In the following example, the IDENT statement causes FTN to call COMPASS to process the COMPASS 
source deck. If the COMPASS END statement is not followed by another IDENT statement, then 
COMP ASS returffi control to the compiler that called it. 

IDENT begins in 
column 11-----

7 
8 
9 

6 
7 
8 
9 

The following sample programs illustrate how to assemble and use a system text overlay. 

I DENT MY H. X T 

STf.XT 

1 ONE. E:.UU l CONSTANT ONE 
:it) HALF t.QU JO POS CONSTANT 

S11If-T MACRO ALPHAt~t.TA f-'OSITIONING '4ACRO 

IFC Nf:.t,ALPHASX2Stl 
SAc ALPHA 

IF C 1\JE. '!»BE:. T j.\ SB2S t l 
S82 dUA 

LXb x2.~2 

~.NUM 

E.NO 

10-10 60492600 G 



lDl:.NT TE Sf 
ENT~Y TEST 
SST 

0110000001 Tt:.ST Sbl ONE CONSTANT ONE:. FROM TEXT 

~l2CiOUOoo4 + SA2 INl:WF Plt:K UP VALUE FROM STORAGE 

bl20U000Jb SHIFT X2,HALF POSIT l ON . WORD IN Xo 

51&0000006 + SAb OUT~Uf ~ETURN NE~ WORD TO STORAGE 

r 1E>o2'+ 10,a l::.NO~lJN 

2 INBUF ~SS t. 
1 OUT8UF tjSS l 

END TE.ST 

The deck for this job could be set up as follows: 

6 
7 

111111 

8 ' ' 9 ' ( !DENT TEST 

7 
8 

11111 

9 ' 
t 

' ( !DENT MYTEXT 

7 
8 
9 COMPASS (G=MYTEXT, S) 

( COMPASS(S=O, B=MYTEXT) I I 
TEXT, T17. 

I 
L 

JJ 

60492600 G 10-11 





LISTING FORMAT 11 

This section describes assembly listing format. Control of the contents of the listing is described in 
section 4.11 Listing Control, and in section 10.1.2 COMPASS Control Statement. 

11.1 PAGE HEADING 

Each page of the assembly listing contains a title line and a subtitle line in the following format: 

title 

subtitie 

title 

date 

time 

PAGE x 

subtitle 

sub- subtitle 

block name 

symbol qual 

COMPASS Version date time 1 PAGE x l 
sub-sub 

I 
block ::symLol 

~~ title name qual 

Up to 62 characters taken from the first TITLE pseudo instruction or from a 
TTL pseudo instruction or, in lieu of these, from the IDENT instruction 

Date of assembly 

Time of assembly in hours, minutes and seconds 

Page number of listing. Pagination begins with 1 for each END instruction 
unless the P option is selected on the COMPASS control statement 

Up to 62 characters taken from second and subsequent TITLE pseudo 
instructions or a CTEXT pseudo instruction 

Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or 
TTL pseudo instruction or the location field of an ES or PS machine instruction. 
If the instruction that introduces the new sub-subtitle also causes a page eject, 
the instruction immediately follows the heading (assuming the C list option is 
also selected). 

Name of the block in use at beginning of page 

Qualifier in use (see QUAL pseudo instruction) 

11.2 HEADER INFORMATION 

The first page of the assembly listing for each subprogram contains a summary of binary control cards 
(optional), a list of all the blocks established for the subprogram, and lists of entry points and 
external symbols. 

11.2.1 BINARY CONTROL CARD SUMMARY 

A binary control card summary in the following format is generated for each IDENT instruction when the 

60492600 H 11-1 



COMPASS control statement or the LIST instruction selects the B list option: 

ADDRESS 

addr
1 

addr2 

addrn 

eop 

binary card. 
l 

addr. 
l 

eop 

Jeop 

Examples: 

AOOR~<;S 

101 
~n 

'>&~~ 
707C"; 

1321+2 
~04"2!7 

22011 

BINARY CONTROL CARDS 

binary card1 

binary card
2 

binary cardn 

END card or blank 

The binary card that caused generation of the binary for the overlay, partial 
binary, or subprogram. The list includes SEG, SEGMENT, and IDE NT instruc
tions. 

The central memory or peripheral processor memory origin address for the 
subprogram, overlay, or partial binary written out as a result of the binary 
card. 

The octal length of the subprogram, overlay or partial binary, in central 
memory words for a central processor assembly, or in peripheral processor 
words for a peripheral processor assembly. 

The octal central memory or peripheral processor address for the end of the 
program unit begun by the previous IDENT. 

The octal length in central memory words of a peripheral assembly; not present 
in a listing of a central processor assembly. 

LE'NGT~ 

?71 
'?241 
124? 
4 tr.c; 
r; 17c; 
135? 

RTNAPY rONT~OL rAh-DS. 
rn~NT rOMPft~~,LOVF~,rMP 

~fG 

5'FG 
Sl="G 
~~r, 

~Et; 

nlf) COf1Pl\5S 

AODRE5S LENGTH 
0 7761 

77f. l <I 462) 

~INARY CONTRJL CARDS. 
IOENT DSOtO 

11-2 60492600 H 



11.2.2 BLOCK USAGE SUMMARY 

A block usage summary of the following format is generated in the assembly listing under control of the 
B list option: 

BLOCKS 

name .. 
J. 

name. 
l 

type 

baddr. 
l 

length. 
l 

Examples: 

PRQGqAt-1• 
lITERAL~• 

f'ONTROL 
P<;F'UOn 
SUR<; 
BUFFERS 

60492600 H 

TYPE ADDRESS LENGTH 

TYPl=' 

t"'I 
.I. 

t 
n 

baddr, 
.L 

baddr2 

baddr n bl 
n 

Name of the block used in the subprogram, as follows: 

PROGRAM* For a relocatable assembly, indicates the zero block. For an 
absolute assembly, the first PROGRAM* indicates the absolute 
block, the second indicates the default symbols block. 

ABSOLUTE* Appears in a relocatable assembly only and indicates the use 
of an absolute block. 

LITERALS* Identifies the literals block. 

other Identifies a local, labeled common, or blank common block. 

The type of the block as follows: 

ABSOLUTE All addresses in the block are relative to absolute zero. For 
an absolute asembly, all blocks are ABSOLUTE. 

+LOCAL 

+COMMON 

Addresses in the block are relative to the origin assigned to 
block zero. The + is present for an E CS/LCM block. 

Addresses in the block are relative to the origin of the common 
block. The + is present for an ECS/LCM block. 

Beginning address of the block according to type. 

Number of words in the block. 

LENG TH 

ansounE" 
A~SOLllTF 

A~SOLUTF 

A~SOLUTF" 

ABSOLUTr
A ~SOLlJT S:-

rt 
54tf; 
5f>~3 
707S 

13242 
20437 

54 t'l 
215 

1242 
4145 
r.;17c; 

11140 

11-3 



PLOCKS TY 0 E 

AqSQLUT~• A'lSOLUT E' 
PROGRAM• LOCAL 
IJATA1 L!JCAL 
LCM +L'l~AL 

TABLE +LOCAL 
URLE +C0"1HO~ 

TA~LE LOC4L 
T~BLE ~')~1'10~1 

II C'l~MO~~ 

11.2.3 ENTRY POINT LIST 

AOOR~SS 

IJ 

J 
35 

0 
5 
.j 

36 
~ 
G 

LENGTH 

62 
35 

1 
5 
s 

123 
1 
1 

1 ~ '-' J 

If the subprogram declares entry points, a list of entry point symbols in the following format follows the 
block usage summary. 

ENTRY POINTS. 

sym
1

*+addr
1 

+block
1 

sym2*+addr2+block
2 

symn+ 1 *+addrn+l +blockn+l 

symn+2 *+addrn+2 +blockn+2 

sym2n+l*+addr2n+l+block2n+l 

sym2n+2*+addr20+2+block2n+2 

sym *+addr +block n n n sym2n *+addr 2n +block2n sym3n *+addr 3n +block3n 

Where n is one-third the number of entry points. The asterisk to the right of sym. is present if sym. is a 
conditional entry point (declared by ENTRYC). The+ to the left of addr. is presen~ if block. is an E~S/LCM 
block. The +to the right of addr. is present if addr is relocatable. Blo'ck. is blank or a cohimon block 
name surrounded by slashes. 1 1 

If the symbol is undefined, addr. is *******· 
l 

Example: 

ENTRY POINT!). 

C)NAPl 
SNAP2 
S~AP3 
JUMPVEC 
BEGIN 
AYTESIZ 

.. 
131+5+ 
1352• 
1357+ 

O+IJU..,PVECI 
u+ 
6 

11.2.4 EXTERNAL SYMBOL LIST 

CALL 
GOTO 
IF 
LA9El 
REAO 
RECO~O 

72+ 
156+ 
224+ 
372+ 
435+ 

24+10A TAI 

':lJ:"Q~DEC? 

~PF 
~DH 

LCH 
L~Mq 

+ 
•+ 

?375+ 
~'+;)1+ 

2 4,_ 1+ 
l+ 

10 0 + /l '.~M '11 

If external symbol references are declared in the subprogram, a list of the following format follows the 
list of entry point symbols: 

EXTERNAL SYMBOIB. 

sym3n+l • • • 

11-4 60492600 H 



sytnn sylll2n 

Where n is one-eighth the number of externai symbois. If a symbol is a weak external it is 
followed by an asterisk. 

Example. 

FRt4~G <;Vt-i~Ol ".CGOTO 

11.3 OCTAL AND SOURCE STATEMENT LISTING 

The contents of the octal and source statelllent listing depends on the options selected. 

The list is 130 characters wide with fields assigned as shown in figure 11-1. 

~rror ('lags 

60492600 c 

Location 
Addresses 

Octal 
Code 

Title Line 

Subtitle Line 

Source Lines 

Figure 11-1. Format of Octal and Source Statelllent Listing 

I Sequence 

11-5 



11-6 

Error Flags 

Location 
Addresses 

Octal Code 

Error flags indicating that errors of the typ~ indicated have been detected on the 
source line or in a subsequent statement that is not listed. These flags are 
described more fully under Error Directory. Lines containing errors are always 
listed. 

The value of the location counter with leading zeros suppressed. If no code is 
generated or no location symbol is defined by the statement, this field is blank. 
If at the time the value is assigned, the value of the location counter differs from 
the value of the origin counter, an L precedes the address. 

The actual code generated by this statement. Depending on options selected, the 
listing shows just the first word or all words generated for data generation 
instructions. The field does not include NO instructions (460008) packed for a 
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU 
instruction is shown two words of data per line. 

If the word contains an address, the octal code is flagged as follows: 

Negative relocatable address 
+ Positive relocatable address 
C Common relocatable address 
X External address 

For a statement that does not generate code, this field is normally blank. 
Exceptions are as follows: 

For a LIT instruction the field contains the address of the first word of 
the literals generated. 

For a COL instruction, the field contains the new beginning-of-comments 
column number. 

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT, 
this field contains the octal value of the symbol right justified with leading 
zeros suppressed. 

For an instruction resulting in a change of base, the notation brb2 is right 
justified in the field. bi indicates the old base and b2 indicates the new base. 

For an instruction resulting in a change of code conversion, the notation 
c1 r- c2 is right justified in the field. c1 indicates the old code and c2 
indicates the new code. 

For a DUP instruction, the field contains the repeat count. 

For a BSS or BSSZ instruction, the field contains the octal value of the word 
count right justified with leading zeros suppressed. If the word count is 
zero the field is blank. 

For a DECMIC or OCTMIC instruction, the field contains the octal value of 
the expression right justified with leading zeros suppressed. 

60492600 A 



Source Code Source statement image (columns 1 through 72) 

Sequence Columns 73 through 90 of the card image or an identifier for an expansion of a 
definition operation as follows: 

Macro 
Remote code 
Duplicated code 
Echoed code 
XTEXT 

macro name 
*RMT* 
*DUP* 
*ECHO* 
file name 

OPDEF Operation field of opdef call, such as SBl 

Example: 

The recursion level is indicated in the right half of the field. 

CO"PlSS 3. 71210 - CYB~R 70/ COl"PREHENSIVE A5SEHRLER. 
co""ON AN() UTILITY SUBROUTillES. 

C0'1PAS5 3. 7121,j 
AL(: 

ALC - TAl'ILE PUNA'.;fD A•I~ HLO~&Tfl~, 
••.LOCATOR WtLL MOU• TA"LFS TO AC1UIQr Pon~. AL~O "AY JU~" 
1NTER'1EOIAfE 0" r.015<-;cr:'c•1crs O~HO SC';>ATrH FIL•. 
E•H~Y (A:'.;) HGlf. IW:iF.X. 

0 ll C~•~•GC: ( + r> -I TO TA3L r <;p<. • 
f ~t T ( X21 O:>Jr, Pl O" T n 'LE, 

CX3J NC:W u::r1GTf.4 rF TA'?Lr. 

5<t&& 502tlOtl3<t&Z AL Cl( SA2 O"IGI'IS+ A.; :lfC"LA~~ V ALU~ 5 FOP rx IT "f Pl Y 
5030tl0351& s~ l SIZES+ A; 

51t&7 liJuoaooooo AL': P'i ~rTllPN EYIT 
5<t?i; 6120000031t AL Ct Sl2 !IT A9LfS DD!'."<Tf Pliff'( Q[r, T<;T'f~~ 

502000llo&2 ')~? o~ zr; t•,s+ Aj <:U~i-''f~T c~yr.p1 

5 .. 71 51t322 s.u A2+V ,..UR-?rtH L:::r:·JTM 
51+1t21 s~~ A2•11 'l[XT TA lL:: !"~I~ I!~ 

3&&13 1.<r, X 1+X3 ~,, w ~: 7c-
370"2 IO Xl+-X2 T' "T :r ~10"i F'1~ rv;>.".,~l~T')'l 

5<t72 37~0& IX, xo-xG 
J3300 OS<t71+ N; x" 'nLCZ JU'1" TO ~t-AlLOf./lT~ ~r;.r 

51+&3J SAil A3 )TO~[ ~l :-: i.; ~I Z'. 
51t73 01+110u051+&!'. E1 Al':X r X'IT 

H1\/E Tl!'ILF5. 

5'+71o 512JOJ3172 ALC2 S~? SI Z':O~f 
1r.1o11 !UI+ l(1 

&772'1 S17 02-'11 
5"75 &7771 ALC1 s )7 A7-H 

515711 Q351& s~s SI?';S+il7 
3& .. •5 I<i.. X-. t- :<5 

SH!> 057J005!.+7S ~L! 17,AL'B L0'.1P 

513000 JJ<t~ PA 31 
5"7f 637 JO Xl 

3702lt 
&3'<1+0 

57 

11.4 LITERALS 

C'AGc 

C~H-'ASS 

(' l'<''ASC 
CO'< ·AS" 
COt-:'"'A~ ~ 
CO"'l:->a.f","' 
C1"i:"'l.l( 

c J ~~-I A -
c:i~~ ..... a.~s 
r l "'" ~ ~ s 
rJM"'if<· 
•..:J"'{ ~s--

':1'< A' ' CJ""•·!".:,c-
: t: "1 .. ti . ·~ 

- l" ·n: ; 
i::··· ~' 
C1'1''1\' 
c )'H"'!'-

c ~ .... ; 
~QM• ~. 

... (::}M ,\I..', 

C.~'<·· n:: ., 
~f1M:-lj\t... ·: 
~.1'1·'"·- ~ 

r::o'~ "!\'"~ 
C ~·"".·A ~ 

":'l··· ) ~ ~ c 

;_,.4 ·a~ I"'. 

co ... --.,~("' 
r:1 ... a.'.--
c1w.--:9c ;_; 

M l 

~-
... ,,, 

::-::i-.·:n,-::;c.-
r.-:~ :'I:.:) 

.:''"J~'" AS< 

'2 

"r. 
le 
•? 
13 

1 ,., 

1 
1,. - s 
I 
l" 
1, ~ 
l" ~ 

~ 1 
1 .. 1 1 
1·: 2 
: ... : 3 
I '· 
1 ~ 

1 116 
1 r• 7 

l ? ~A 

17'! 0 

l'.' 
I ''1 
1':':' 
17' .l 
1 ,,,, 
! r:.r. 
! ·-f 

1 ., 7 

1 '~ 

1 7 ~G 

l 7~ 

When the D list option has been selected, the assembly listing includes a listing of the literals block 
following the default symbols listing. Following each literal address are the octal contents of the word and 
a display code conversion of the contents of the word. 

60492600 G 11-7 



Examples: 

0111121 
01012? 
01fJ12"" 
011)12ft 
010 12c; 
01012'l 
010127 
0101 ~'1 
01nn1 

7315 
131,:, 
7317 
732') 
1321 
73?? 
7321 
1'321+ 
732c; 
132f> 
7~27 

CONlENl Of LITERALS BLOC~. 

174~57737?3oqooooooo 
to~sooonoooooooooooo 
150~232,010705553&36 
c;so405n3111so11~ss22 
05212?112?0S04c;7QOOO 
?5??0521??1122oso~on 
ooonooooonoooooooooo 
202217n72?011SS?0102 
17???.4?7nnnooooooooo 

0+.>>)C 
N,. 
Mf S~Ar,E ~3 

f"J:"('!Mf\l R 
EnUTRF11. 
Rf'OUTi;>~n 

PROGRAM AB 
ORT• 

CONHNl OF LITERALS et oc1<. 
on~4 t 
707f'I 1',. 
0007 r; 
onoo 
55fl1 A 
onoo 
0'>06 ff 
1411 LI 
24fl5 Tl=' 
22n1 R~ 
14?3 L~ 

11.5 DEFAULT SYMBOLS 

'When the D list option is selected, a list of default symbols immediately precedes the literals block. 

Example: 

000000 x 
00~461 
ooc;4£>? 
orc;4f,"" 
'(0546S. 

11.6 ASSEMBLER ST A TISTICS 

OEF~UlT SYMBOLS OEFINEO BY COMPASS 

H~G= 

HG 1 
rar,2 
anr 
~Vfol 

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list option 
is selected, following the default symbols. Information includes the following: 

Amount of storage used (octal) 

Number of source statements 

Number of symbols defined 

Number of invented symbols 

Number of symbol references 

CPU type in which COMPASS executed and assembly time 

Number of errors encountered during assembly 

Number of lost references, that is, references to symbols that have been omitted from the symbolic 
reference table 

11-8 60492600 G 



11.7 ERROR DIRECTORY 

The assembly listing includes an error directory if any errors are detected during assembly. The 
directory begins a new page identified with the subtitle ERROR DIRECTORY. Each type of error that 
occurred is called out with a two-line message of the following format: 

x TYPE ERROR description 
OCCURRED ON PAGES 

Types and descriptions are given in Tables 11-1 and 11-2. Errors flagged with an alphabetic character 
are fatai. A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they 
are informative only. 

Type 

A 

60492600 G 

Message 

ADDRESS FIELD 
BAD. 

TABLE 11-1. FATAL ERRORS 

Significance 

An error exists in a variable subfield 
entry. The following is a list of 
possible errors: 

The CODE character is not A, D, E, I, 
o, or *· 
The symbol or name is greater than 8 
characters. 

The expression does not reduce to one 
external term. 

The relocatable terms do not cancel 
properly. 

The instruction requires an absolute 
expression. 

The instruction disallows register 
designators. 

A data error; 8 or 9 is encountered in 
octal data and the modifier is not s, 
P; O, E, D; or B. 

No data is found in the variable field 
of a LIT instruction. 

No symbol is following an =S, =X, or 
=Y prefix. 

The relative jump is out of range 
(-3l>r>31) on a PPU instruction. 

The BASE character is not o, M, D, 
or *· 

Action 

Refer to the 
manual for the 
correct address 
field format 
for the opera
tion code 
specified. 

11-9 



Type 

A 

D 

E 

F 

11-10 

Message 

ADDRESS FIELD 
BAD. (Contd) 

DOUBLY 
DEFINED 
SYMBOL. 
THE FIRST 
DEFINITION 
IDLDS. 

ECHO, DUP, 
RMT, OR 
MACRO 
ILLEGALLY 
NESTED. 

NUMBER OF 
ENTRIES 
EXCEEDS 
PERMISSIBLE 
AMOUNT. 

TABLE 11-1. FATAL ERRORS (Contd) 

Significance 

A register is illegal in a CON 
instruction. 

A synonymous instruction for OPSYN or 
CPSYN cannot be located. 

The micro count is less than zero or 
greater than ten. 

The OOLA.BEL character is not I. 

A negative relocation is specified on 
ORG or ORGC. 

The POS value is less than 0 or 
greater than word size. 

The OPDEF reference is erroneous. 

No conma is following the DIS word 
count. 

An illegal entry is in the variable 
field of IDENT. 

A symbol has been previously defined 
or declared external. 

The definition of ECHO, DUP, RMT, or 
MACRO is not entirely within the next 
outer definition. 

One of the following error conditions 
exists: 

LIT generates more than 100 words. 

Data is missing or erroneous on XTEXT 
file. 

More than 63 formal parameters and 
local names are in a macro definition. 

There are more than 255 blocks. 

There are more than 511 external 
symbols. 

Action 

Rename the 
duplicate 
symbol in the 
program. 

Correct the 
program. 

Correct error 
condition and 
rerun the job. 

60492600 G 



Type 

L 

N 

0 

p 

R 

u 

v 

60492600 L 

Message 

LOCATION 
FIELD BAD. 

NEGATIVE 
RELOCATION ON 
ENTRY POINT. 

OPERATION 
FIELD BAD. 

CONSULT 
LISTING FOR 
REASON BEHIND 
P-ERROR 

DATA ORIGIN 
OUTSIDE BLOCK 
OR IN BLANK 
COMMON. 

UNDEFINED 
SYMBOL. 
VALUE 
ASSUMED O. 

BIT COUNT 
ERROR ON VFD 
(MUST BE 
0 COUNT 60). 

TABLE 11-1. FATAL ERRORS (Contd) 

Significance 

'llle required location field entry is 
erroneous. The format two macro defi
nition has no substitutable parameters. 

An entry point may not be negatively 
relocated. 

One of the following error conditions 
exists in the operation field: 

The instruction is unrecognizable. 

The instruction is out of sequence, 
such as ABS or PPU not in the first 
statement group. 

The instruction is illegal for binary 
mode. 

The relational mnemonic on the IF 
statement is erroneous. 

AIDTEXT has determined that the instruc
tion has changed or is not valid for the 
models 810, 815, 825, 830, 835, 845, 
and 855. 

A user-generated error flag from an 
ERR or ERRxx instruction has been 
encountered. 

An attempt was made to set data into 
blank common or beyond block limits. 

There is a reference to a symbol that 
is not defined; for example, an IF 
statement line count, a DIS word 
count, an unrecognizable attribute on 
an IF statement, or an undefined 
qualifier. 

'lbe VFD field size is erroneous. 

Action 

Correct the 
location field 
entry. 

Change to use 
positive or 
absolute 
relocation for 
entry points. 
Rerun job. 

Correct the 
operation 
field. 

Replace 
instruction. 

Action to be 
taken depends 
upon source of 
error. 

Use labeled 
common or 
increase block 
size and rerun 
job. 

Define the 
symbol. 

Correct the 
size of the VFD 
field. 

11-11 

I 



Type 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Message 

LOCATION SYMBOL 
BAD. SYMBOL NOT 
DEFINED. 

ADDRESS ERROR 
ON SYMBOL 
DEFINITION. 

DUPLICATE MACRO 
DEFINITION. NEW 
ONE OVERRIDES. 

BAD FORMAL 
PARAMETER NAME 
IGNORED. 

CPU OPERATION 
SYNTAX INCOR
RECTLY SPECIFIED. 

LOCATION FIELD 
MEANINGLESS. 

ADDRESS VALUE 
EXCEEDS FIELD 
SIZE, RESULT 
TRUNCATED. 

MISSING OR EXTRA 
ADDRESS SUBFIELD. 

MICRO SUBSTITU
TION ERROR. NO 
SUBSTITUTION. 

TABLE 11-2. INFORMATIVE MESSAGES 

Significance 

The location field is erroneous. The in
struction does not require an entry. 

The variable field entry is erroneous. 
The location field symbol is not defined. 

The macro, opdef, or synonymous operation 
redefines the operation code. 

The macro or ECHO formal parameter name is 
repeated or illegal. 

The OPDEF, CPOP, CPSYN, or PURGDEF speci
fies an illegal syntax. 

The entry in the location field is 
erroneous; it is ignored. 

The value of the address is erroneous; 
one of the following conditions exists: 

The value of the expression exceeds the 
size of the destination field. 

The BSS address expression value is 
negative. 

The MICRO starting character position 
or character count is negative. 

The variable subfield entry is missing 
or superfluous. 

The micro reference is unrecognizable. 

11.8 SYMBOLIC REFERENCE TABLE 

Action 

Define or 
eliminate the 
symbol in the 
location field. 

Correct the sym
bol definition. 

Rename the 
duplicate macro 
name. 

Correct the 
formal pa
rameter name. 

Correct the 
syntax of the 
pseudo 
instruction. 

Correct the 
location field. 

Check the 
possible values 
of the variable 
subfield. 

Correct the 
variable 
subfield. 

Correct the 
micro reference. 

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of 
assembly. The table is not complete if the option was turned off at any time during the assembly. The 
table lists symbols according to the qualifier, if any, under which they were defined. The global symbols 
are listed first. A new heading of the following form introduces each new list of qualified symbols. 

SYMBOL QUALIFIER =qualifier 

11-12 60492600 H 



The qualifiers are in the order declared in the ~ubprogram. Symbols are listed alphabetically. 

When symbol references are lost because table space has been exceeded, the subtitle line includes 
notification in the form n LOST REFERENCES. 

Format 1 reflects the XREF P effect; P is the default for the XREF pseudo instruction. Formats 2 and 3 
reflect the effects of XREF B and XREF A, respectively. 

Format 1 (XREF P): 

symbol value 

Format 2 (XREF B): 

symbol value 

Format 3 (XREF A): 

symbol I value 

symbol 

value 

block 

page/line 

address 

60492600 G 

block 

block 

block 

Title Line 

SYMBOLIC REFERENCE TABLE. 

page/line ~ page/line ~ 
bO 

page/line ~ 

bO I 
page/line ~ address, page/line 

address, address, address, 

Figure 11-2. Format of Symbolic Reference Table 

bO ' bO 
age/line ~ page/line ~ 

I bO 

page/line I «i 
I t:: 

address, address, l 

Alphabetical list of symbols defined under the qualifier. 

Absolute value of the symbol or the address assigned to this symbol relative to 
the block named. 

If the symbol was defined by the SST pseudo instruction, block is the system 
text file or overlay name. Otherwise, this field is blank in an absolute assembly 
or, in a relocatable assembly, it contains the name of the block containing the 
symbol. 

From left to right and from top to bottom, a list of indices sequenced according 
to page number. Each index points to a statement containing references to the 
symbol or defining the symbol. Present when XRE F B or P is in effect. 

The location counter address of the instruction containing the reference. Pres
ent when XREF A or B is in effect. 

11-13 



flag Identifies page/line index to a statement that defines the symbol or uses it in an 
IF statement as follows: 

D Definition statement; EQU, =, SET, MAX, MIN, or MICCNT 

E ENTRY or ENTRYC pseudo instruction 

F Symbol used in conditional test 

I Symbol used for indirect storage (applies only to PPU or PERIPH 
assemblies) 

L Symbol used in location field of the statement 

S Symbol used for storage 

X EXT pseudo instruction 

When XREF A is in effect, the table does not include the flags. 

Example: 

COltPASS l. 71Z10 - r.YllER 101 CO"PO£HEN'HVC A'>SEH!!LEq. r0"4PIS<; J. 71:?lj .,~ .. 11! 1tt.2; ....... P&r.r :.1•i1 
STHBOLIC REFE!tOIC~ TASLE. O~!t•J"i 

SNTEHP 5115 7:UlZ L 71o/51 s 7 .. /5.J 1&17 1'3t:'lt 
SNUflB 51tZl 7Jlltl 71t/w1 71t/1Z 71t/ hilt?. 151 .... 75/5J 151•.lt L 
s...,rte1 5 .. 1& 74/loll l 7~/,J 781% 
SNML IN 51t?J 7l'29 7.'/ltl 1 .. 1.;.s;, 11th2. ·7olZJ NIU l 7'"1•1 
<;NWLINl 51t25 79/l .. l 7<'111<> 
SNMLINZ 51t'.?7 79113 11111 L 
s•uc 5lllt 7:?116 l "!'.'/3<J <; 11t11u 77/llt 711 .... 

72132 <; 7Z/'4Z <; 71./1& 111"!~ 1711'\ 

'iJ't!llOL QU~LIFirR : r•u 

AF 6&75 115139 L !1'>1 .. 6 l:'l/37 t.HI~! • 3!11" 1 °'?I!~ 
ccs 7JZ<, lJYfolt 1 Jl/~ ~ 131/1 .. 1 .. 3131 l3Y1t1t 1~ .. 1:2 1?51r.• l n:.1., 
CCSl 7Jl2 1Js·1r;z 1.Ldt;.'t L 
CCS2 . 7JZJ US/311 l t Jr,1,: 1 
CSA 7:!51t ii1n2 1Z11?J U"l~l L 
csc 7:?57 ll11~1, 12\117 i;;:11u L 
r.SH 7Z5u 117/ZQ 1Zll11t 1!2/lt? l 
CSL 1zr,~ 117117 l.!l/11 l ;J11t:• L 
csq 72(,6 117111 in1.;• 1 H/57 L 
csz 7Z">t 1171.8 1Zlt.i5 1 !?/?1 L 
OC3 7.?Z2 1171.9 llf/1~ 117/lll : t71~1 111r1 1111;;;; 1311:!1 L 
OCSl 7U5 l l1/1t2 L Ul/1,f> 
DL 6671t 11:>/J'l L 1:?"131, 13"12, 
DO 6673 115/.H L 115/ .. 6 11,/37 l'.?1\135 l Jlt/l q 
DV 66SJ 115116 L t~-12'> lZUi.1 1 2'/;6 lZltlU llZI':!" 
'i:f f>t:.f>l 115121 L ll.!12'1 125/l l l~b/H IZ7/~5 <; 
ERlt b715 116/Jv L" 1"1135 1~21~:. l~:<ld 1?61., 1~7/·. 7 131/!;l 13!1.1& 

116/SJ 121151 1Z?lv7 1Z51J'I 1.?6111 ~'!11'1q UZl~ll 

lU/57 1u1.1 12Ulo. 1z;u;~ 1 ~.,, .... 1?11/ltl UZ/11 
E'S &662 115/Z:" L 
ESC 7l1tl 1~2122 12'1/l!lt L 
EV &61',l 115123 L 12Zllo3 1231:: 7 'S 12!/lt? 
FC &&&O 11!>/19 L 12 ;135 'S 12Ulo9 
Fii 6&76 115/'411 L 1 J<;/~ J 13~/1 7 
GCS 727 J UZ/ltq lP/~'I 133121 13.31~ .. 13:!/<o7 131th5 Ult/l'I l 
GCSI 7275 1Jlo/31t l l Jlof37 
GCSZ 7277 131t1J2 lJlt/39 L 
GCS3 73~.; 131tlltl L •llft/ftlt 
GCSlt 7383 !Jft/foil 1J'ollt5 L 
GCS5 73~ .. lJlt/ltll L 11..,'!lt 
GCSf> 730& ll~/53 L 
GCS7 7JJ7 131tl55 L 
GCSI 7316 135/11 135/ti; l 
INT 7135 126155 L 
LRS 671til 117/Zlt 
NCS 23J 1211;;9 121121 13218'5 l 

11-14 60492600 D 



COMMON COMMON DECKS 

The common common decks are a set of COMPASS subroutines which are powerful tools for use by 
COMPASS programmers. The common common decks perform functions such as: 

Data conversion 

Dynamic table management 

Saving/restoring registers 

Providing an input/output interface at the CIO and FET level 

12 

All of the common common decks run under NOS and NOS/BE; a subset of them run under SCOPE 2. 
Table 12-1 shows each deck name, relocatable program name, entry point names, and the decks supported 
under SCOPE 2. 

12.1 ACCESS TO THE COMMON COMMON DECKS 

The common common decks are available in two forms: 

As relocatable subroutines 

In source code form as a set of common decks 

Both methods of accessing the common common decks are illustrated in the sample program in appendix D. 

All the common common decks except the table management decks COMCMTM and COMCMTP are 
available as relocatable subroutines that reside on the system library SYSLIB. In this form the common 
common decks are easy to use; relocatable COMPASS programs need only include external references to 
entry point names in the common common decks. These external references are satisfied from SYSLIB at 
load time. (The CYBER loader searches SYSLIB by default when satisfying external references, but the 
SCOPE 2 Loader does not; under SCOPE 2, SYSLIB must be explicitly included in the library set.) 

Occasionally, the programmer may need to access the source code of the common common decks. That 
source code resides on the COM CPL old program library as a set of common decks (see the Update 
reference manual). The source code of these common decks can be made available to a COMPASS program 
in three ways: 

Update-based procedures can use the COMCPL old program library as a secondary old program library 
(see the Update reference manual). The decks are called just as one would call a common deck from 
one's own old program library. 

Modify-based products can convert the COMCPL old program library to an OPL via the UPMOD 
statement (see the NOS reference manual); the OPL is then used as the source for the common 
common decks. 

The programmer can use the COMPASS XTEXT pseudo-instruction in the program to obtain the source 
code from either an old program library or an OPL (see the X file option of the COMP ASS control 
statement). 

The system texts required to assemble the common common decks residing on the COMCPL old program 
library are IPTEXT and CPU TEXT. These texts can be made available to the program via the S parameter 
on the COMPASS control statement. 

60492600 H 12-1 



TABLE 12-1. SUMMARY OF COMMON COMMON DECKS 

Conmon Conmon Relocatable Entry Points 
Available Under 

Deck Name Program Name SCOPE 2 

COMCARG CPU.ARG ARG= Yes 

COMCCDD CPU.CDD CDD= Yes 

COMCCFD CPU.CFD CFD= Yes 

COMCCIO CPU.CIO CIO= No 

COMCCOD CPU.COD COD= Yes 

COMCCPT CPU.CPT CPT= Yes 

COMCDXB CPU.DXB DXB= Yes 

COMCMNS CPU.MNS MNS= Yes 

COMCMOS CPU.MOS MOS= Yes 

COMCMTM Yes 

COMCMTP Yes 

COMCMVE CPU.MVE MVE= Yes 

COMCRDC CPU.RDC RDC= No 

COMCRDH CPU.RDH RDH= No 

COMCRDO CPU.RDO RDO= No 

COMCRDS CPU.RDS RDS= No 

COMCRDW CPU.RDW RDW= RDX= LCB= No 

COMCRSR CPU.RSR RSR= Yes 

COMCSFN CPU.SFN SFN= Yes 

COMCSRT CPU.SRT SRT= Yes 

COMCSST CPU.SST SST= Yes 

COMCSTF CPU.STF STF= No 

COMCSVR CPU.SVR SVR= Yes 

COMCSYS CPU.SYS SYS= RCL= WNB= MSG= No 

COMCUPC CPU.UPC UPC= Yes 

COM~OD CPU.WOD WOD= Yes 

COMCWTC CPU.WTC WTC= No 

COMCWTH CPU.WTH WTH= No 

COMCWTO CPU.WTO WTO= No 

COMCWTS CPU.WTS WTS= No 

COMCWTW CPU.WTW WTW= WTX= DCB= No 

COMCXJR CPU.XJR XJR= No 

COMCZTB CPU.ZTB ZTB= Yes 

12-2 60492600 F 



12.2 DESCRIPTION OF THE COMMON COMMON DECKS 

A detailed external reierence description of ea.ch c-ommoo common deck follows. The decks are described 
in alphabetical order. Each description lists entry and exit conditions, registers used, and routines 
explicitly called. 

The following rules apply to the use of all common common decks: 

Any input/output buffers, string buffers, exchange package save areas, and so forth, to be used by any 
of the common common decks shouid not be iocated with the iast lOg words oi the iieid iength. 
Some fetch loops, move loops, and so forth, may encounter a hardware fault (out of range address) if 
the above restriction is not adhered to. 

Registers that are not used by the common common decks are not modified. 

Entry and exit conditions are only those listed in the descriptions below. 

12.2.1 COMCARG - PROCESS ARGUMENTS 

COMCARG processes a list of arguments (in the format generated by COMCUPC) by the use of an 
equivalence table. The equivalence table must be terminated by a word of all zeros and must be in the 
following format: 

12/op,18/asv ,12/st,18/addr 

op One or two character keywords (left justified, zero filled) 

asv Address of assumed value 

st Status 

addr Address where argument is placed 

This format is generated by the COMPASS VFD pseudo instruction. ARG= is the only entry point for 
COMCARG. 

Entry conditions: 

(Bl) 1 
(B4) Argument count 
(A4) Address of first argument 
(X4) First argument 
(B5) Address of equivalence table 

Exit conditions: 

(Xl) :f 0 

1 Option not found in table 
2 Single argument equivalenced 
3 filegal re-entry of argument 

Registers used: 

A2, A3, A4, A 7 
B2,B3,B4 
XO,Xl,X2,X3,X4,X6,X7 

60492600 H 12-3 



The following conditions apply to the use of COMCARG: 

If a keyworcl=value form is found in the argument list, addr is set to the upper 42 bits of the argument 
value (in bits 59-18) and the lower 18 bits of asv (in bits 17-0). 

If only a keyword is found in the argument list, addr is set to the full 60 bits of asv. 

If asv 0, the argument cannot be equivalenced. 

If status=4000g, a zero value is retained as a display code zero. Otherwise, a value of zero (full 
word) is stored at addr. 

If asv=addr, only one entry of that argument is allowed and op is set to -0. 

12.2.2 COMCCDD - CONVERT INTEGER CONSTANT TO DECIMAL DISPLAY CODE 

COMCCDD converts an integer constant to decimal display code. Up to ten digits are converted with 
leading zero suppression. The converted integer contains space fill. One register contains the display code 
right justified; another register contains it left justified. CDD= is the only entry point for COMCCDD. 

Entry conditions: 

(Bl) 1 
(Xl) Number to be converted 

Exit conditions: 

(B2) 6*(count of digits converted) 
(X4) Conversion left justified 
(X6) Conversion right justified 

Registers used: 

A2, A3, A4 
B2, B3, B4 
Xl, X2, X3, X4, X6, X7 

12.2.3 COMCCFD - CONVERT CONSTANT TO F10.3 FORMAT 

COMCCFD converts a 30 bit integer to display code in FORTRAN Fl0.3 format. The value returned is 
equal to the input value divided by 1000. The result is returned in two forms: left justified and right 
justified. Leading zeros in the integer portion of the result are suppressed. If the 30-bit input value 
exceeds 999999.999(73465447779), the result is .. uuuu . An input value greater than 30 bits is 
truncated to the lower 30 bits. CFD= is the only entry point for COMCCFD. 

Entry conditions: 

(Bl) 1 
(Xl) Integer to be converted 

Exit conditions: 

(B3) - (number of blank fill bits in result) 
(X4) Conversion left justified 
(X6) Conversion right justified 

Registers used: 

12-4 

Al, A2, A3, A4 
82, B3, B4, BS 
Xl, X2, X3, X4, X6, X7 

60492600 H 



12.2.4 COMCCIO - PROCESS 110 OPERATION 

COMCCIO performs inputioutput operations via the peripherai processor program CiO. An operation is 
performed when the buffer is not busy. If the file-status-word is zero, the operation is not processed and 
IN and OUT are set to FIRST. CIO= is the only entry point for COMCCIO. 

Entry conditions: 

(X2) 24/unused, 18/skip count to CIO, 18/FET address for file 
(X7) Function code; if < 0, X7 is the complement of the request and auto recall is requested 

Exit conditions: 

(X2) FET address 
(X7) 0 

If ERP$ is defined: 

(X2) FET address 
(X7) FET error code: 

0 No error, operation performed, normal exit 
other Error code from FET; operation not performed, exit to ERP$ 

If ERP1$ is defined: 

(X2) FET address 
(X7) FET error code: 

0 No error, operation performed, normal exit 
other Error code from FET; operation not performed, normal exit 

Registers used: 

Al, AS, A7 
Xl, X2, XS, X7 

12.2.5 COMCCOD - CONVERT CONSTANT TO OCTAL DISPLAY CODE 

COMCCOD converts an integer constant to octal display code with leading zero suppression. Up to ten 
digits can be converted. The converted integer contains space fill. One register contains the display code 
right justified, another register contains it left justified. COD= is the only entry point for COMCCOD. 

Entry conditions: 

(Bl) 1 
(Xl) Number to be converted 

Exit conditions: 

(B2) 
(X4) 
(XS) 

S*(count of digits converted) 
Conversioo left justified 
Conversion right justified 

Registers used: 

A4 
B2,B3,B4 
Xl,X2,X3,X4,XS,X7 

S0492600 H 12-5 



12.2.6 COMCCPT - EXTRACT COMMENTS FIELD FROM PREFIX TABLE 

COMCCPT copies the comments field of a prefix (7700s) table to a working storage area. Either the old 
or new forms of the prefix table can be used. COMCCPT differentiates between the forms by checking 
word FWA+3 of the table to see if it looks like a time-of-day word. The copy terminates on end-of-table, 
zero byte, or COPYRIGHT. The working storage area is terminated by a zero word. CPT= is the only 
entry point for COMCCPT. 

Entry conditions: 

(Al) Prefix table address 
(A6) Address of working storage - 1 
(Bl) 1 
(Xl} Control word 

Registers used: 

A2, A3, A4, A6 
B3, B4 
Xl, X2, X3, X4, X6 

12.2.7 COMCDXB - CONVERT DISPLAY CODE TO BINARY 

COMCDXB converts a string of display code digits up to one word in length (left-justified and zero-filled) 
into internal integer format. Either a base 10 or a base 8 string of digits can be converted as specified in 
the call. This specification, however, is overridden if an explicit B (octal) or D (decimal) is the last 
character of the value to be converted. DXB= is the only entry point for COMCDXB. 

The assembly option DXB1$ controls the processing of an 8 or 9 when octal is specified for the display code 
value and no explicit B or D appears in the value. If DXB1$ is not defined, an error occurs. If DXB1$ is 
defined, the value is considered to be decimal. 

F..ntry conditions: 

(Bl} 1 
(B7) Base; if >O, decimal base; if 0, octal base. 
(XS) Word to be converted (left justified, zero filled) 

Exit conditions: 

(X6) Converted digits 
(X4) Error code: 

0 No error 
other Error in assembly 

Registers used: 

B2, B3, B4, B5 
XO,Xl, X2,X3, X4,X5,X6,X7 

The presence of one or more of the following always causes an error: 

12-6 

A non-digit in the word to be converted 

A character after the post radix 

An 8 or 9 with the post radix equal to B 

60492600 H 



12.2.8 COMCMNS - MOVE NON-OVERLAPPING BIT STRING 

COMCMNS moves a specified source string from one location to another in centrai memory. The oniy bits 
disturbed in the destination field are those extracted to accept the source string. The destination field 
must not overlap the source field in any way; results are undefined if overlapping occurs; COMCMOS can 
be used for overlapping moves. MNS= is the only entry point for COMCMNS. 

Entry conditions: 

(Bl) 1 
(B2) Source first bit (0, 1, ••• , 59) 
(B4) Destination first bit (0, 1, ••• , 59) 
(XO) Number of bits to move 
(X2) Source first word address 
(X4) Destination first word address 

Exit conditions: 

(Bl) 1 
(B2) Source next bit (0, 1, ••• , 59) 
(B4) Destination next bit (0, 1, ••• , 59) 
(X2) Source next word address 
(X4) Destination next word address 

Registers used: 

Al, A2, A3, AS, A6 
Bl,B2,B3,B4,B5,B6 
XO,Xl,X2,X3,X4,X5,X6,X7 

12.2.9 COMCMOS - MOVE OVERLAPPING BIT STRING 

COMCMOS moves a specified source string from one location to another in central memory. The only bits 
disturbed in the destination field are those extracted to accept the source string. COMCMOS allows the 
user to move strings where the destination field overlaps (lies partly or completely within) the source 
field. If the move is not an overlap move, COMCMOS calls the faster common common deck COMCMNS to 
do the move. For this reason, COMCMNS should always be called whenever COMCMOS is. MOS= is the 
only entry point for COMCMOS. 

Entry conditions: 

(Bl) 1 
(B2) Source first bit (0, 1, ••• , 59) 
(B4) Destination first bit (0, 1, ••• , 59) 
(XO) Number of bits to move 
(X2) Source first word address 
(X4) Destination first word address 

Exit conditions: 

(Bl) 1 
(B2) Source next bit (0, 1, .•• , 59) 
(B4) Destination next bit (0, 1, ••• , 59) 
(X2) Source next word address 
(X4) Destination next word address 

60492600 H 12-7 



Registers used: 

Al,A2,A3,A5,A6,A7 
Bl,B2,B3,B4,B5,B6 
XO,Xl, X2,X3,X4,X5,X6,X7 

Calls: 

MNS= 

12.2.10 COMCMTM - MANAGED TABLE MACROS 

COMCMTM contains four macros, ADDWRD, ALLOC, SEARCH, and TABLE, for generation, allocation, 
and processing of managed tables. COMCMTM is intended to be used with COMCMTP. 

ADDWRD - ADD WORD TO TABLE 

ADDWRD adds a word to a managed table. ADDWRD calls ADW and uses AO and Xl. 

Format: 

LOCATION OPERATION V AllAILE SUIFIElDS 

ADDWRD table, reg 

table Table number 

reg Register name or expression for word to be added 

ALLOC - ALLOCATE TABLE SPACE 

ALLOC allocates table space. ALLOC calls ATS and uses AO and Xl. 

Format: 

LOCATION OPERATION VARIABLE SUIFIElDS 

ALLOC table, words 

table Table number 

words Word count (+ or-) to be added 

SEARCH-SEARCH MANAGED TABLE 

SEARCH searches for a specified entry. SEARCH calls EQS or MES and uses AO, B7, and X6. 

Format: 

12-8 

LOCATION 

tname 
entry 
mask 

OPERATION VARIABLE SUBFIELDS 

SEARCH tname, entry, mask 

Table name 
Entry to be searched for 
Search mask in XO; if not present, defaults to all bits. 

60492600 H 



TABLE - GENERATED MANAGED TABLE 

TABLE generates a managed table. 

Format: 

r LOCATION OPERATION VARIABLE SUBFIElDS 

r 
I 

TABLE 
I 

tname Table name 

tname, count, equiv 
I 

count Word count per entry (1 if not specified) 

equiv Equivalent table name; allows certain tables to be used by different processors 

After the table is generated: 

F.t.11ame is the name of the word containing the table FWA. 

L. tname is the name of the word containing the table length. 

C.tname is the word count per entry. 

12.2.11 COMCMTP - MANAGED TABLE PROCESSORS 

COMCMTP contaim the following routines for processing managed tables: 

ADW Adds a word to the table. 

AMU Retums the total memory used by the tables. 

A 'IS Allocates table space. 

EQS Searches table for equal entries. 

MES Searches a table for equal entries using a mask. 

MTD Moves the table down. 

MTU Moves the table up. 

Macros for calling these routines and for table generation are contained in COMCMTM. 

The managed table processors allow the partitioning of central memory into variable regions called tables. 
These tables are referenced by pointers that indicate the first word address of the table and the table 
length. Memory is allocated to each table as it is required; the user can delete space from the tables. 
Each table is allowed at least one word of expansion space to allow a dummy word between each table, thus 
ensuring efficient search methods. 

The caller of the table processors is expected to provide certain constants for use by the processors. Other 
data is provided by COMCMTM. 

Data provided by the caller: 

MEML Lowest address of managed memory 

TOV Address of the table overflow processor 

60492600 H 12-9 



Data provided by COMCMTM: 

NTAB Number of managed tables 

FTAB Start of table addresses 

LTAB Start of table lengths 

F.tnam Address pointer for table tnam 

L.tnam Length pointer for table tnam 

Data dynamically changeable: 

TN Number of managed tables. Set to NTAB by COMCMTM. TN must be less than NTAB 
during use. 

TO Table overflow processor. Set to TOV by COMCMTM. 

LM Low memory limit. Set to MEML by COMCMTM. If this value is increased, MTU should be 
called to allow room for change. 

F.TEND High memory limit. F.TEND must be initialized by the user. If this value is decreased, 
MTD should be called to allow room for change. 

TOVT TOV threshold. If the word is defined, it should contain the threshold for calling TOV; ATS 
calls TOV when the tables must be moved and less than TOVT free words remain. If TOVT is 
not defined, an effective value of zero is used. 

ADW - ADD WORD TO TABLE 

ADW adds a word to a managed table. 

Entry conditions: 

(AO) Table number 
(Xl) Word to be added 

Exit conditions: 

(A6) Address of added word 
(Xl) Added word 
(X2) FWA of table 
(X3) Length of table 
(X6) Added word 

Registers used: 

Al,A2,A3,A4,A6,A7 
Xl,X2,X3,X4,X6,X7 

Calls: 

ATS 

AMU-ACCUMULATE MEMORY USED 

AMU returns the amount of memory used by the managed tables or the current length, whichever is the 
largest. The variable MU is set to this value. 

12-10 60492600 H 



Exit conditions: 

MU MAX(memory used, current assigned iength) 

Registers used: 

Al, A2, A6 
B2 
Xl, X2, X3, X6 

A TS - ALLOCATE TABLE SPACE 

ATS allocates table space. The table length can be increased or decreased as specified. 

Entry conditions: 

(AO) Table number 
(Xl) Change(+ or-) to the table size 

Exit conditions: 

(Xl) Change made to the table size 
(X2) FWA of table 
(X3) New length of table 
(X7) Less than 0 if tables moved 

Registers used if tables are not moved. 

A2, A3, A4, A6 
X2, X3, X4, X6, X7 

Registers used if tables are moved: 

Al, A2, A3, A4, A6, A7 
B2,B3,B4,B5,B6,B7 
XO,Xl, X2,X3,X4,X5,X6,X7 

Registers restored: 

B2, B3, B4, B5, B6, B7 (except -0 restored as +O) 
XO, Xl, X5 

Calls: 

AMU, MVE=, TOY 

TOV, the user provided table overflow processor, is described below. 

Entry conditions: 

(Bl) 1 
(B5) Complement of number of words required 
(B6) Retum address to continue processing 

The location TOY must contain executable code. TOY is entered via a JP instruction. 

Exit from TOY via a jp B6 instruction. 

60492600 H 12-11 



Exit conditions: 

Only Bl must be preserved. 

A pointer word must be incremented by the number of words newly available. If TN has not been 
altered during execution, the address of the pointer word is F.TEND. If TN has changed, the address 
of the pointer word is FT AB-1 plus the contents of TN. 

EQS- EQUALITY SEARCH TABLE 

EQS searches for a specified entry. 

Entry conditions: 

(AO) Table number 
(B7) Word count per entry 
(X6) Entry for search 

Exit conditions: 

(X2) = 0 if entry not f otmd 
(X2) = entry, if found 
(A2) = address of entry found 

Registers used: 

Al, A2, A6 
Xl, X2, X3, X7 

MES - MASKED EQUALITY SEARCH TABLE 

MES searches for a specified entry using a mask. 

Entry conditions: 

(AO) Table number 
{B7) Word count per entry 
(XO) Mask 
(XS) Entry for search 

Exit conditions: 

(X2) = O if entry not found 
(X2) = entry, if found 
(A2) = address of entry found 

Registers used: 

Al, A2, AS 
Xl, X2, X3, X4, X7 

MTD - MOVE TABLES DOWN 

MTD moves the tables down (away from RA) to eliminate unused memory. 

Exit conditions: 

(B2) Number of tables 

12-12 60492600 H 



Registers used: 

Al, A2, A3, A 7 
B2,B3 
XO,Xl,X2,X3,X4,X7 

Calls: 

MVE= 

MTU - MOVE TABLES UP 

MTU moves the tables up (toward RA) to eliminate tmused memory. 

Registers used: 

Al, A2, A7 
B3 
XO, Xl, X2, X3, X7 

Calls: 

MVE= 

12.2.12 COMCMVE - MOVE BLOCK OF DATA 

COMCMVE moves a block of data to a specified location. COMCMVE moves the data from the source 
address through the source address plus the word count minus one to the destination address through the 
destination address plus the word count minus one. The move can be in either direction. MVE= is the only 
entry point for COMCMVE. 

Entry conditions: 

(Bl) 1 
(Xl) Word count 
(X2) Source address 
(X3) Destination address 

Registers used: 

A2, A4, A6, A 7 
87 
Xl,X2,X3,X4,X6,X7 

12.2.13 COMCRDC - READ CODED LINE, C FORMAT 

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be 
used to establish the type of read and initialize the type of transfer required. 

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to 
reestablish the type of read/transfer before another data transfer routine is called. 

When en EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be 
called again to continue reading the file. Ref er to the NOS or NOS/BE reference manual for a description 
of the CIO macros. 

COMCRDC reads a coded line terminated by a zero byte from a CIO buffer to a working buffer. RDC= is 
the mly entry point for COMCRDC. 

60492600 H 12-13 



Entry conditions: 

(B6) FW A of working buff er 
(B7) Word count of working buffer 
(X2) Address of FET for file 

If B7 is less than zero, then the complement of B7 is the word count of the working buffer; COMCRDC 
will not read and discard words until an end-of-line for lines longer than the working buff er. 

Exit conditions: 

(Bl) 1 
(B6) Address of last word transferred to working buff er plus one 
(Xl) Status of transfer: 

O Transfer completed 
-1 EOF detected on file 
-2 EOI detected on file 
B6 EOR detected on file before transfer completed 

(X2) Address of FET for file 
(X4) Contents of last data word transferred before EOL guaranteed 
(X7) Level number of EOR 

Registers used: 

Al,A2,A3,A4,A6,A7 
Bl,B2,B3,B4,B5,B6,B7 
Xl,X2,X3,X4,X6,X7 

Calls: 

LCB=, RDX= 

12.2.14 COMCRDH - READ CODED LINE, H FORMAT 

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be 
used to establish the type of read and initialize the type of transfer required. 

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to 
reestablish the type of read/transfer before another data transfer routine is called. 

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be 
called again to continue reading the file. Ref er to the NOS or NOS/BE reference manual for a description 
of the CIO macros. 

COMCRDH reads a coded line terminated by a zero byte from a CIO buffer to a working buffer with 
trailing space fill. RDH= is the only entry point for COMCRDH. 

Entry conditions: 

(B6) FWA of working buffer 
(B7) Word count of working buff er 
(X2) Address of FET for file 

Exit conditions: 

(Bl) 
(BS) 

12-14 

1 
Address of last word transferred to working buffer plus one 

60492600 H 



(Xl) Status of transfer: 
O Transfer completed 

-1 EOF detected on file 
-2 EOI detected on file 
BS EOR detected on file before transfer completed 

(X2) Address of FET for file 
(X7) Level number of EOR 

Registers used: 

Al, A2, A3, A4, AS 
Bl,B2,B3,B4,B5,B6,B7 
X1,X2,X3,X4,X6,X7 

Calls: 

LCB~, RDX= 

12.2.15 COMCRDO - READ ONE WORD 

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be 
used to establish the type of read and initialize the type of transfer required. 

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to 
reestablish the type of read/transfer before another data transfer routine is called. 

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be 
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description 
of the CIO macros. 

COMCRDO reads one word from a CIO buffer into X6. RDO= is the only entry point for COMCRDO. 

Entry conditions: 

(Al) Address of IN pointer 
(Xl) IN 

Exit conditions: 

· (Bl) 1 
(Xl) Status of transfer: 

0 Transfer completed 
1 EOR detected on file 

-1 EOF detected on file 
-2 EOI detected on file 

(X2) Address of FET for file 
(X6) Word read 

Registers used: 

Al,A2,A3,A4,A6,A7 
Bl 
Xl,X2,X3,X4,X6,X7 

Calls: 

CIO= 

60492600 H 12-15 



12.2.16 COMCRDS - READ CODED LINE TO STRING BUFFER 

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be 
used to establish the type of read and initialize the type of transfer required. 

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to 
reestablish the type of read/transfer before another data transfer routine is called. 

When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be 
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description 
of the CIO macros. 

COMCRDS reads a coded line from a CIO buffer to a working buffer. Words in the circular buffer are 
mpacked and stored one character per word in the working buffer. This process is continued until the 
end-of-line byte is detected. If the coded line terminates before the working buffer is filled, the working 
buffer is padded with spaces; the buffer is not padded if the complement of the word count of the buffer is 
used. If the coded line exceeds the size of the working buffer, the excess characters are ignored. RDS= is 
the only entry point for COMCRDS. 

Entry conditions: 

(BS) FWA of working buff er 
(B7) Word count of working buffer 
(X2) Address of FET for file 

If B7 is less than 0, B7 is the complement of the buffer length and the string buffer will not be space 
filled. 

Exit conditions: 

(Bl) 
(BS) 
(Xl) 

(X2) 
(X7) 

1 
Address of the last character from the coded line in the working buffer plus one 
Status of transfer: 

0 Transfer completed 
-1 EOF detected on file 
-2 EOI detected on file 
BS EOR detected on file before transfer completed 

Address of FET for file 
Level number of EOR 

Registers used: 

Al,A2,A3,A4,A6,A7 
Bl,B2,B3,B4,B5,B6,B7 
Xl,X2,X3,X4,X6,X7 

Calls: 

LCB=, RDX= 

12.2.17 COMCRDW - READ WORDS TO WORKING BUFFER 

Before a data transfer routine is called, a CIO read function macro (READ, READW, and so forth) must be 
used to establish the type of read and initialize the type of transfer required. 

If any other type of CIO function is used (REWIND, SKIP, and so forth) on the file, it may be necessary to 
reestablish the type of read/transfer before another data transfer routine is called. 

12-16 60492600 H 



When an EOR or EOF is sensed while performing the data transfer, the CIO read function macro must be 
called again to continue reading the file. Refer to the NOS or NOS/BE reference manual for a description 
of the CIO macros. 

COMCRDW reads a specified number of words from a CIO buffer to a working buffer. COMCRDW also 
contains the load CIO buffer and read exit routines required by COMCRDC, COMCRDH, and COMCRDS. 
RDW=, LCB=, and RDX= are the entry points for COMCRDW. The RDX$ assembly option controls 
read-ahead. The programmer can prevent read-ahead by defining the symbol RDX$. 

Entry conditions: 

(B6) FWA of working buffer 
(B7) Word count of working buffer 
(X2) Address of FET for file 

Exit conditions: 

(Bl) 
(BS) 
(B7) 
(Xl) 

(X2) 
(X7} 

1 
Address of last word transferred to the working buffer plus one 
Word count remaining to be trwasferred 
Status of transfer: 

0 Transfer completed 
-1 EOF detected on file 
-2 EOI detected on file 
-3 CIO= was called to read more data and returned an error status 
BS EOR was detected on file before transfer was completed 

Address of FET for file 
Error status if Xl is -3, otherwise level number of EOR 

Registers used: 

Al, A2, A3, A4, AS, A 7 
Bl, B2, B3, B4, BS, B6, B7 
Xl,X2,X3,X4,X6,X7 

Calls: 

CIO= 

12.2.18 COMCRSR - RESTORE ALL REGISTERS 

COMCR.SR restores the B, A, and X registers from a specified register save area. The format of the 
registers in the save area is BO, Bl, ••. , B7, AO, Al, ••• , A7, XO, Xl, ••. , X7. Each register occupies a full 
word with the B and A register values in bits 17 through O. RSR= is the only entry point for COMCRSR. 

Entry conditions: 

(Xl) Address of register save area 

Exit conditions: 

All registers are set to the content of the register save area. 

Registers used: 

AO,Al,A2,A3,A4,A5,A6,A7 
Bl,B2,B3,B4,B5,B6,B7 
XO, Xl, X2,X3, X4, XS, X6, X7 

60492600 H 12-17 



12.2.19 COMCSFN - SPACE FILL NAME 

COMCSFN converts trailing 00 characters in a word to blanks. SFN= is the only entry point for COMCSFN. 

Entry conditions: 

(Xl) Name left justified, zero fill 
(Bl) 1 

Exit conditions: 

(X6) Name space filled 
(X7) Final character mask 

Registers used: 

A3 
B2 
X3,X6,X7 

12.2.20 COMCSRT - SET RECORD TYPE 

COMCSRT attempts to identify the format of a record, given the initial part of that record (64 words are 
usually sufficient) in a working buffer. The type codes returned are listed in table 12-2. SRT= is the only 
entry point for COMCSRT. 

Entry conditions: 

(Bl) 1 
(Xl) LWA+l of block 
(X2) FWA of current record 

Exit conditions: 

(X6) 42/0L r+name, 12/0, 6/type number 
(X7) Record name in L for mat 

If type number and record name are zero, the record is zero length. 

Registers used: 

Al, A2, A3, A 7 
B2,B3 
XO,Xl,X2,X3,X4,X6,X7 

12.2.21 COMCSST - SORT TABLE USING SHELL SORT 

COMCSST sorts a table of one word entries into ascending order using a shell sort. All of the entries 
should be of the same sign. SST= is the only entry point for COMCSST. 

Entry conditions: 

(Bl) 1 
(B7) Address of table to be sorted 
(Xl} Number of elements in the table 

Exit conditions: 

The table is sorted. 

12-18 60492600 H 



Type 

TEXT 

6PP 

OVCAP 

REL 

OVL 

ULIB 

OPL 

OPLC 

OPLD 

ABS 

7PP 

UPLX 

UCF 

ACF 

CAP 

DATA 

PROC 

SDR 

UPLR 

60492600 J 

TABLE 12-2. TYPE CODES RETURNED BY COMCSRT 

Number 

0 I 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Format 

Text record 

6000-series peripheral processor 
overlay 

Overiay Capsuie 

Relocatable subprogram 

Central processor overlay 

NOS user library 

Modify program library deck 

Modify program library conmon 
deck 

Modify program library directory 

Multiple entry point overlay 

7000-series peripheral processor 
overlay 

Update sequential program 
library with X master control 
character 

Update compressed compile file 

Modify compressed compile file 

Fast dynamic load capsule 

Arbitrary data 

Procedure record 

17 CDC reserved 

18 Special deadstart record 

19 Update random program library 

Determined by 

No 77008 table and first word with 
all zeros in bits 0 through 17 I 

I 77008 tabie with three-character I 
name in header word 

77008 table followed by 60003 I I 
table with bit 18=1 

34008 table 

50005 table, 53005 table with bit 
17=0, or 54005 table with non-(0,0) 
overlays 

76008 table 

700ls table with 0 word count 

70025 table with 0 word count 

70005 table with 0 word count 

51008 table, 53008 table with bit 
17=1, or 54003 table with (0,0) 
overlays 

52005 table 

No 77003 table and characters CHECK 
in bits 30 through 59 (control 
character obtained from bits 0 
through 5) 

77008 table with 0 wor~ count 

Bits 0 through 17 in second word of 
77003 table are non-zero 

77005 table followed by 60005 
table 

Unrecognizable by criteria defined 
in these tables 

PROC followed by delimiter 

NOS/BE 1 deadstart tape position 

77005 table followed by 60005 table 
followed by COMDECK, YANK, or DECK 

12-19 

I 



Registers used: 

Al, A2, A6, A 7 
B2, B3, B4, BS 
Xl,X2,X3,X4,X6,X7 

12.2.22 COMCSTF - SET TERMINAL FILE 

COMCSTF detects if a file is assigned to an interactive terminal. STF= is the only entry point for 
COMCSTF. 

Entry conditions: 

(Bl) 1 
(X2) Address of FET 

The FET must be greater than five words in length. 

Exit conditions: 

(X2) Address of FET 
(X6) 0 if file is assigned to a terminal 

Registers used: 

Al, A4, A6 
Xl, X3, X4, X6 

Calls: 

CIO= 

12.2.23 COMCSVR - SAVE ALL REGISTERS 

COMCSVR saves the B, A, and X registers in a specified register save area. The registers are saved in the 
following order: 

BO, Bl, .•. , B7, AO, Al, ... , A7, XO, Xl, ••• , X7 

Each register occupies a full word with the B and A register values in bits 17 through O. B and A registers 
are sign extended. SVR= is the only entry point for COMCSVR. 

Entry conditions: 

Bits 17 through 0 of the word from which SVR= was called contain the address of the register save 
area. 

Exit conditions: 

(save thru save+7) 
(save+S thru save+15) 
(save+l6 thru save+23) 

Registers used: 

B registers 
A registers 
X registers 

AO, Al, A2, A3, A4,A5,A6,A7 
Bl, B2,B3, B4,B5,B6,B7 
XO, Xl, X2, X3, X4, X5, X6, X7 

12-20 60492600 H 



12.2.24 COMCSYS - PROCESS SYSTEM REQUEST 

COMCSYS issues a system monitor request through RA+1. SYS=, RCL=, WNB=, and MSG= are the entry 
points for COMCSYS. 

SYS= - PROCESS SYSTEM REQUEST 

SYS= waits for RA+l to clear before issuing the desired request. Central exchange jump hardware is used 
if it is available. If the hardware is not available and the auto-recall bit is set, SYS= waits for the monitor 
to process the call before returning. 

Entry conditions: 

(X6) System request 

Exit conditions: 

Request accepted by monitor 

Registers used: 

Al, A6 
X6 (Contents restored upon exit) 

RCL= - PLACE PROGRAM ON RECALL 

RCL= issues a single system request for periodic recall. If RA+l is busy, no request is issued. 

Exit conditions: 

Request processed. 

Registers used: 

Al 
Xl,X6 

WNB= - WAIT NOT BUSY 

WNB= waits for a specified status word, bit O, to be set. If the word is initially 0, WNB= returns. 

Entry conditions: 

(X2) Address of status word 

Exit conditions: 

Returns when bit O of status word is set. 

Registers used: 

Al 
Xl, X6 

MSG= - SEND MESSAGE 

MSG= formats and issues a system request to send a message (80 characters or less) to the job dayfile. The 
message appears in the dayfile as two lines (if necessary) of 40 characters each. Messages exceeding 
80 characters are truncated. 

60492600 H 12-21 



Entry conditions: 

(Xl) Address of first word of data (data must be packed in sequential locations, and should not 
exceed 80 characters) 

(X6) Message options: 
bit 16 - Auto recall if on 
bits 11 through 0 - Message option code (see M~AGE macro in operating system 
reference manual) 

Exit conditions: 

Returns when operation is complete. 

Registers used: 

Al, A6 
Xl, X6 

12.2.25 COMCUPC - UNPACK CONTROL CARD 

COMCUPC Wlpacks a control statement into the keyword and individual parameters. The following 
conditions apply to the use of COMCUPC: 

If B7 is negative on entry, a blank after the keyword is considered to be a separator; otherwise, blanks 
are ignored. 

The characters ) and • are considered as the termination of the control statement. 

Characters with display code values 0 or 60s through 77 8 are illegal before the terminator. 

The parameter must contain 7 or fewer characters. 

The parameters are stored left-justified with zero filL 

The separator character is placed in the lower 18 bits of the parameter tmless it is a *, * in which 
case the lower 18 bits are zero. 

Two successive separators or a separator followed by a terminator results in a parameter of all zeros. 

UPC= is the only entry point for COMCUPC. 

Entry conditions: 

(AS) Address of first word of control statement 
(Bl) 1 
(87) First word address of buff er containing parameter information 
(XS) First word of control statement 

If 87 is negative, 87 contains the complement of the first word address of the parameter buff er. 

Exit conditions: 

(B6) Parameter cotmt 
(XS) O if no error during Wlpacking 

Registers used: 

Al, A2, AS, A6, A 7 
B2,B3,B4,BS,B6 
XO,Xl,X2,X3,X4,XS,X6,X7 

12-22 60492600 H 



12.2.26 COMCWOD - CONVERT WORD TO OCTAL DISPLAY CODE 

COMCWOD converts a word into octai dispiay code. WOD= is the oniy entry point ior COMCWOD. 

Entry conditions: 

(Xl) Word to be converted 

Exit conditions: 

(Bl) 
(X6, X7) 

Registers used: 

1 
Conversion 

A2, A3, A4, A5 
XO,Xl, X2,X3,X4,X5,X6,X7 

12.2.27 COMCWTC - WRITE CODED LINE, C FORMAT 

COMCWTC writes a zero byte delimited line from a working buffer to a CIO buffer. If the CIO buffer 
becomes sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTC 
performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO function that is in 
the FET is reissued. WTC= is the only entry point for COMCWTC. 

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain 
the final contents of (to flush) the working buffer. 

Entry conditions: 

(B6) FWA of working buff er 
(X2) Address of FET for file 

Exit conditions: 

(Bl) 1 
(X2) Address of FET for file 

Registers used: 

Al,A2,A3,A4,A6,A7 
Bl,B2,B3,B4,B5,B6 
Xl,X2,X3,X4,X6,X7 

Calls: 

DCB=, WTX= 

12.2.28 COMCWTH - WRITE CODED LINE, H FORMAT 

COMCWTH writes a coded line in H format from a working buffer to a CIO buffer. Trailing spaces are 
deleted. If the buffer becomes sufficiently full to require writing, or the device type indicates a NOS/BE 
terminal, COMCWTH performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO 
function that is in the FET is reissued. If the line to be written terminates with 6 bits of zero, a word 
containing a blank byte is appended to preserve the 00 character as a colon. If the line terminates on an 
end-of-line, it is written as is. WTH= is the only entry point for COMCWTH. 

60492600 H 12-23 



When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain 
the final contents of (to flush) the working buffer. 

Entry conditions: 

(B6) FWA of working buff er 
(B7) Word count of working buffer 
(X2) Address of FET for file 

If B7 is 0, no transfer is performed. 

Exit conditions: 

(Bl) 1 
(X2) Address of FET for file 

Registers used: 

Al,A2,A3,A4,A6,A7 
Bl, B2, B3, B4, B5, B6, B7 
Xl,X2,X~X4,X6,X7 

Calls: 

DCB=, WTX= 

12.2.29 COMCWTO - WRITE ONE WORD 

COMCWTO writes one word to a CIO buffer from X6. If the buffer becomes sufficiently full to require 
writing, COMCWTO performs a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO 
function that is in the FET is reissued. WTO= is the only entry point for COMCWTO. 

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain 
the final contents of (to flush) the working buffer. 

Entry conditions: 

(Al) Address of IN pointer 
(Xl) IN 
(X6) Word to write 

Exit conditions: 

(Bl) 1 
(X2) Address of FET for file 

Registers used: 

Al, A~A3,A4,A6,A7 
Bl 
Xl, X2,X3,X4,X6,X7 

12-24 60492600 H 



12.2.30 COMCWTS - WRITE CODED LINE FROM STRING BUFFER 

COMCWTS writes a coded line from a working buffer to a CIO buffer with trailing space suppression. 
Characters in the working buffer are packed and stored in the circular buff er. If the buffer becomes 
sufficiently full to require writing or if the device type indicates a NOS/BE terminal, COMCWTS performs 
a WRITE function unless the symbol WRIF$ is defined. In this case, the CIO function that is in the FET is 
reissued. WTS= is the only entry point for COMCWTS. 

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain 
the final contents of (to flush) the working buffer. 

Entry conditions: 

(B6) FWA of working buff er 
(B7) Word count of working buffer 
(X2) Address of FET for file 

If B7 is 0, no transfer is performed. 

Exit conditions: 

(Bl) 1 
(B6) Word count of data written 
(X2) Address of FET for file 

Registers used: 

Al,A2,A3,A4,A6,A7 
Bl, B2,B3,B4,B5,B6,B7 
Xl,X2,X3,X4,X6,X7 

Calls: 

DCB=, WTX= 

12.2.31 COMCWTW - WRITE WORDS FROM WORKING BUFFER 

COMCW1W writes data from a working buffer to a CIO buffer. If the buffer becomes sufficiently full to 
require writing or if the device type indicates a NOS/BE terminal, COMCWfW performs a WRITE function 
unless the symbol WRIF$ is defined. The WfX$ assembly option controls write-behind. The programmer 
can prevent write-behind by defining the symbol WI'X$. In this case, the CIO function that is in the FET is 
reissued. WTW=, DCB=, and WTX= are the entry points for COMCWIW. 

When the data transfer is completed, a call to the WRITER or WRITEF CIO function is necessary to obtain 
the final contents of (to flush) the working buffer. 

Entry conditions: 

(86) FWA working buffer 
(87) Word count of working buff er 
(X2) Address of FET for file 

If 87 is 0, no transfer is performed. 

60492600 H 12-25 



Exit conditions: 

(Bl) l 
(B6) Address of next word to be transferred from working buffer 
(B7) Status of transfer: 

O Transfer completed 
other Remaining word count if CIO= was called to write data and returned an error 

status 
(X2) Address of FET for file 
(X7) Error status if B7 is 0 

Registers used: 

Al, A2, A3, A4, A6, A 7 
Bl,B2, B3,B4,B5,B6,B7 
Xl, X2, X3, X4, X6, X7 

Calls: 

CIO= 

12.2.32 COMCXJR - RESTORE ALL REGISTERS WITH A SYSTEM XJR CALL 

COMCXJR restores all registers from a register save area with a system XJR call. The format of the 
registers in the save area is BO, Bl, ... , B7, AO, Al, ... , A7, XO, Xl, ... , X7. Each register occupies a full 
word with the B and A register values in bits 17-0. XJR= is the only entry point for COMCXJR. 

Entry conditions: 

(Xl) Address of the register save area. 

Exit conditions: 

All registers are set to the contents of the register save area. 

Registers used: 

AO, Al, A2, A3, A4,A5,A6,A7 
BO,Bl,B2,B3,B4,B5,B6,B7 
XO,Xl, X2, X3,X4,X5,X6,X7 

12.2.33 COMCZTB - CONVERT ALL 00 CHARACTERS TO BLANKS 

COMCZTB converts all 00 characters in a word to blanks. ZTB= is the only entry point for COMCZTB. 

Entry conditions: 

(Bl) 1 
(XI) Word to be converted 

Exit conditions: 

(X6) Converted word 
(X7) Final character mask 

Registers used: 

A3 
X3, X6, X7 

12-26 60492600 H 



12.3 MACROS THAT CALL THE COMMON COMMON DECKS 

Entry points in t~e common common decks can be called by using system macros. Table 12-3 shows wfijeh 
macros call entry points in the common common decks. All of the macros are supported under NOS and 
NOS/BE. Only the MOVE macro is supported under SCOPE 2. All macros applicable to a given operating 
system exist in the system text CPUTEXT. Each macro is described in detail in the following paragraphs. 

TABLE 12-3. MACROS THAT CALL COMMON COMMON DECKS 

Macro Entry Points Description 
Called 

l\1ESSAGE MSG= Displays a message on the system 
console and enters it in a dayfile. 

MOVE M:vE= Moves a block of data from one 
address to another. 

RE ADC RDC= I Reads one coded line from the input/output 

I buffer to the working buffer. 

READH RDH= r Reads one coded line with space fill from 
I the input/ output buffer to the working 

I buffer. 

READO I IWO= 1 Reads one word from the input/output I 

1 buffer to X6. 
i 

T 1 READS RDS= Reads a lme image to a character 
b f£ u er. 

READW RDW= Fills the working buffer from an 
input/ output buffer. 

RECALL RCL---= Relinquishes the CPU until a 
WNB= function is completed or the CPU 

recall time has elapsed. 

SYSTEM SYS= Requests the system to process 
any three-character request. 

' 
\VRITEC WTC= Writes a coded line tmage from the working 

I buffer to the input/output buffer. 

WRITEH WTH= Writes a coded line, deleting all 
trailing spaces, from the working 
buffer to the input/ output buffer. 

WRITEO WTO= Writes one word from X6 to the 
input/ output buffer. 

WRITES I WTS= Writes a line image from the 
character buffer. 

WRITEW WTW= Writes data from the wm-king 
buffer to the input/ output buffer. 

60492600 H 12-27 

I 

I 
I 

J 
l 

J 
l 



12.3.1 MESSAGE 

MESSAGE displays a message on the system console display and enters it into a dayfile. If the job is of 
system origin, the message can be flashed on the B display by including a dollar sign as the first character 
of the message. MESSAGE requires the common common deck COMCSYS. 

The maximum length that a message can be is 80 characters; up to 40 characters per line are displayed. 
The message ends with either the first word containing 12 bits of zeros in any byte or at the eightieth 
character. The user must pack the display code message in sequential locations before calling MESSAGE. 

The format of the RA+l call for this macro is: 

5 9 40 35 2 3 1 7 0 

RA~ J _____ M_SG ____ _....~ __ o ___ J ___ x __ __._J_o __ l,__ ___ oo_d_r __ _.I 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

MESSAGE addr,x,r 

addr Beginning address of the message. If the upper 12 bits of the location specified by this 
address are zero, then the next 18 bits (47 thru 30) of this location are asmimed to contain 
the beginning address of the message. 

x Message routing option: 

r 

12-28 

0 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of 
the control point. 

1 Message is displayed at line 1 of the control point. 

2 Message is displayed at line 2 of the control point. 

3 Message is placed in the user dayfile and displayed at line 1 of the control point. 

4 Message is placed in the error log dayfile if the job is a special system job (that is, has 
an SSJ=entry point) or is of system origin; otherwise, the message is placed in the user 
day file. 

5 Message is placed in the account dayfile if the job is a special system job or is of 
system origin; otherwise, the message is placed in the user dayfile. 

6 Message is placed in the system dayfile, the user dayfile, and is displayed at line 1 of 
the control point. 

7 Message is placed in the user dayfile and displayed at line 1 of the control point. 

If x is not specified or is an illegal value, x=O is assumed. If x is not defined, x=l is 
assumed. If x is the character string LOCAL, x=3 is used. 

If r is specified, control is not returned until the operation is complete. 

60492600 H 



The control point message areas (lines 1 and 2) provide the user with the ability to display 
concurrently messages that enter the dayfile and those that require operator action. Line 2 is 
normally used to display information about the current status oi the executing program. 

Only messages that do not refer to the job, such as the control statements processed and compilers 
used, should be placed in the system dayfile (x=O). All messages that refer to the job, such as the 
path taken by the programs and the number of records copied, should be placed only in the user 
dayfile (x=3). All messages placed in the user dayfile (x=O and x=6) are counted by the system. If 
the number of messages issued by the job exceeds the limit for which the user is validated, the error 
message MESSAGE LIMIT; is issued to the user dayfile and the job is aborted. 

12.3.2 MOVE 

MOVE moves a block of data from one address to another. MOVE requires the common common deck 
COMCMVE for absolute assemblies. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

MOVE count, addrl, addr2 

count Number of words in the block to be moved 

addrl Address of the first word of the block to be moved 

addr2 Address of the first word of the destination 

MOVE allows overlap in data moves (addr2 can be less than addrl plus count). 

12.3.3 READC 

READC reads one coded line from the input/output buffer to the working buffer. Data is transferred until 
the end of the line (0000 in bits 11 through O) is sensed or until the specified number of words are 
transferred. READC requires the common common deck COMCRDC. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

IREADC I addr, buf, o 

addr F ET address 

buf Working buff er address 

n Working buff er word count 

60492600 H 12-29 



12.3.4 READH 

READH reads a cod.ed line with space fill from the input/output buffer to the working buffer. Data is 
transferred until the end of the line (0000 in bits 11 through 0) is sensed or until the specified number of 
words are transferred. READH requires the common common deck COMCRDH. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

READH addr,buf,n 

addr FET address 

buf Working buff er address 

n Working buffer word count 

12.3.5 READO 

READO reads one word from the input/output buff er to X6. READO requires the common common deck 
COMCRDO. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

READO addr 

addr FET address 

12.3.6 READS 

READS reads a line image to a character buffer. The words are unpacked and stored in the working buffer 
right justified, one character per word, until the end-of-byte (0000) is detected. If the coded line 
terminates before the specified number of characters are stored, the working buff er is blank filled. 
READS requires the common common deck COMCRDS. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

READS addr, buf, n 

addr FET address 

buf Working buff er address 

n Working buffer word count 

12-30 60492600 H 



12.3.7 READW 

READW fiiis the working buffer from BJi input/output circular buffer. READW reads ahead in the 
input/output buffer. This could cause the program to abort if the last word address of the input/output 
buffer is within four words of the FL. If the word count is greater than the length of the working buffer, 
READW writes beyond the end of the working buffer. READW requires the common common deck 
COMCRDW. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

I 

IREADW 
! I addr, buf, n 

addr F ET address 

buf Working buffer address 

n Working buffer word count 

12.3.8 RECALL 

RECALL enables the user to relinquish the CPU until a function is completed or the CPU recall time has 
elapsed (delay time depends on the operating system and the site). If the stat parameter is included in the 
call, control is not returned to the program until bit O of the word specified by stat is set. If stat is not 
included in the macro call, the program relinquishes the CPU only until the next pass through the recall 
loop. RECALL requires the common common deck COMCSYS. 

The format of the RA+l call for this macro is: 

59 40 17 0 

RA+i ..... 1 __ R_c_L __ ..... ~ ...... 1 ____ o ___ ....... l ___ st_at _ ___.I 

Macro format: 

LOCATION OPERATION I VARIABLE SUBFIELDS 

RECALL 1 stat 

stat If this parameter is present, control is returned to the program when bit 0 of the word specified 
by the address stat is set. 

60492600 H 12-31 



12.3.9 SYSTEM 

SYSTEM processes a three-letter request. The request can be either the functions that MTR performs or a 
pp program. A PP program can be called from a CPU program if the first character of the name is 
alphabetic. SYSTEM requires the common common deck COMCSYS. 

The format of the RA+l call for this macro is: 

59 40 35 17 0 

RA+l p2 pl 

Macro format: 

LOCATION OPERATION V AllABLE SUBFIELDS 

SYSTEM req,r,pl,p2 

req Three-character system request 

r If specified, control is returned only after the request is completed 

pl Bits 17 through 0 of the request 

p2 Bits 35 through 18 of the request 

12.3.10 WRITEC 

WRITEC writes a coded line image from the working buffer to the input/output buffer. Data is transferred 
until the end of the line (0000 in bits 11 through 0) is sensed. WRITEC requires the common common deck 
COMCW'l'C. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

WRITEC addr, buf 

addr PET address 

buf Working buffer address 

12-32 60492600 H 



12.3.11 WRITEH 

WRITEH writes a coded line, deleting all trailing spaces, from the working buffer to the input/output 
buffer. WRITEH requires the common common deck COMCWI'H. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

WRITER addr, buf, n 

addr FET address 

buf Working buff er address 

n Working buffer word count 

12.3.12 WRITEO 

WRITEO writes one word from X6 to the input/output buffer. WRITEO requires the common common deck 
COMCWTO. 

Macro format: 

LOCATION OPERATION I VARIABLE SUBFIELDS 

WRITE 0 I addr 

I 
addr FET address 

12.3.13 WRITES 

WRITES writes a line image from the working buffer. Characters are packed ten characters per word. 
Trailing spaces are deleted before the characters are packed. WRITES requires the common common deck 
COMCWTS. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

I WRITES I addr, buf, n 

addr FET address 

buf Working buff er address 

n Working buffer word count 

60492600 H 12-33 



12.3.1-4 WRITEW 

WRITEW writes data from the working buffer to the input/output circular buffer. WRITEW writes ahead in 
the input/output buffer. This could cause the program to abort if the last word address of the input/output 
buffer is within four words of the FL. If the word count is greater than the length of the working buffer, 
WRITEW reads beyond the end of the working buffer. WRITEW requires the common common deck 
COMCWTW. 

Macro format: 

LOCATION OPERATION VARIABLE SUBFIELDS 

WRITEW addr, buf,n 

addr FET address 

buf Working buff er address 

n Working buffer word count 

12-34 60492600 H 



CHARACTER SETS 

NOTES 

1. The terms upper case and lower case apply only to the case conversions, and 
do not necessarily reflect any true case. 

2. When translating from display code to ASCII/EBCDIC the upper case equivalent 
character is taken. 

3. When translating from ASCII/EBCDIC to display code, the upper case and lower 
case characters fold together to a single display code equivalent character. 

4. All ASCII and EBCDIC codes not listed are translated to display code 55 (space)e 

5. Where two display code graphics are shown for a single octal code, the leftmost 
graphic corresponds to the CDC 64-character set (system assembled with IP CSET 
set to C64. l), and the rightmost graphic corresponds to the CDC 64-character 
ASCII subset (system assembled with IP CSET set to C64. 2). 

6. In a 63-character set system, the display code for the : graphic is 63. The % 
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield 
blank (55

8
). The display code value 00 is undefined in 63-character set systems. 

7. Twelve or more zero bits at the end of a 60-bit word are interpreted as an 
end-of-line mark rather than two colons. An end-of-line mark is converted to 
external BCD 1632 and internal BCD 1672 by operating systems when writing 
7-track magnetic tape in even parity (coded) mode, and converted back to 0000 
when reading. 

8. This code is changed to 12 when written on a 7-track magnetic tape in even 
parity (coded) mode. 

9. 11-0 and 11:-8-2 are equivalent on input. The character will be punched as 
11-0 on rutput. 

10. 12-0 and 12•8-2 are equivalent on input. The character will be punched as 
12-0 on output. 

11. 12-8-7 and 11-0 are equivalent on input. The character will be punched as 
12-8-7 on output. 

12. 12-8-4 and 12-0 are equivalent on input. The character will be punched as 
12-8-4 on output. 

13. CODE pseudo selects 6-bit octal code as follows: 

60492600 A 

A 
D 
E 
I 

ASCII 
Display Code (default) 
External BCD 
Internal BCD 

A 

· A-1 



CODE D (default) 

i 
CODE ECODE I l ! CODE A 

·-----, 

Display Hollerith BCD ASCII EBCDIC 

Code Punch Upper Case Lower Case Upper Lower 
(026) 6-Bit 

Octal Char. Ext. Int. Octal Hex. Char. Punch Hex. Char. Punch Hex. Char. Hex. I Char. 
@ @ @ @ (029) I 

I 

/f) oo® 
-r------1 

00 8-2 12 ' 32 3A : S-2 lA SUB 9-S-7 7A : 3F srn 
01 A 12-1 61 21 41 41 A 12-1 61 a 12-0-1 Cl A 81 a 

02 B 12-2 - 62 22 42 42 B 12-2 62 b 12-0-2 C2 B 82 b 

03 c 12-3 63 23 43 43 c 12-3 63 c 12-0-3 C3 c 83 c 

04 D 12-4 64 24 44 44 D 12-4 64 d 12-0-4 C4 D 84 d 

05 E 12-5 65 25 45 45 E 12-5 65 

I 

e 12-0-5 cs E 85 I 
I e 

06 F 12-6 66 26 46 46 F 12-6 66 f 12-0-6 C6 i F 86 f 

07 G 12-7 67 27 47 47 G 12-7 

I 

67 

I 
g 12-0-7 C7 I G 8'1 g 

10 H 12-S 70 30 50 48 

I 

H 
I 12-s 6S b 12-0-S CB I H S8 h I I 

11 I 12-9 71 31 51 49 I 

I 

12-9 

I 

69 l 12-0-9 C9 i I S9 i 

12 J 11-1 41 41 52 4A J 11-1 6A J 12-11-1 Dl 
I 

J I 91 
I 

1· I j 

13 K 

I 
11-2 42 42 53 4B K 11-2 

I 
6B k 12-11-2 

I 
D2 K 92 k 

14 L 11-3 43 43 54 4C L 11-3 6C 1 12-11-3 D3 L 93 1 

15 M 

I 
11-4 44 I 44 55 4D M 11-4 

I 
6D m 12-11~ D4 lf 94 m 

16 N 11-5 45 I 451 56 4E N 11-5 6E i n 12-11-5 D5 N 95 n 
I I 17 0 I 11-6 46 i 

.. I 
57 4F 0 11-6 I 6F 0 12-11-6 D6 0 96 0 

20 p 11-7 47 47 60 50 p 11-7 70 p 12-11-7 D7 p 97 p 

21 Q 11-8 50 so I 61 51 Q 11-8 71 q 12-11-s D8 Q 98 q 
I 

22 R 11-9 , ., 51 I 62 i 52 R 11-9 72 r 12-11-9 D9 R 99 r 

23 s 0-2 22 
621 

63 53 s 0-2 73 • 11-0-2 E2 s A2 8 

24 T 0-3 23 63 64 54 T 0-3 74 t 11-0-3 

I 
E3 T A3 t 

I 
I I 

25 u 0-4 i 24 64 65 55 u 0-4 75 u 11-0-4 E4 u A4 u 

26 v 0-5 25 65 66 I 56 v 0-5 76 v 11-0-5 ES v A5 v 

27 w 0-6 26 66 67 57 w 0-6 77 w 11-0-6 E6 w A6 w 

30 x 0-7 27 67 70 5S x 0-7 78 x 11-0-7 E7 x A7 x 

31 y o-s 30 70 71 59 y 0-S I 79 y 11-0-8 ES y AS y 

32 z 0-9 31 71 72 SA z 0-9 7A z 11-0-9 E9 

I 
z A9 z 

33 0 0 12 00 20 30 0 0 10 DLE la-11-9-8-1 FO 0 10 DLE 

34 

I 
1 

I 

1 01 01 21 I 31 I 1 

I 
1 11 

I 
DCl. 11-9-1 In I 1 I 11 DCl 

I 35 2 2 02 02 22 

I 
32 2 2 12 DC2 11•9-2 n I 2 I 12 DC2 

36 3 3 03 I 03 23 33 3 I 3 13 I DC3 11•9-3 :n I 3 I 13 TM 

37 4 4 04 04 24 34 4 4 14 DCt 11-9-4 1'4 4 3C DC4 

A-2 60492600 A 



£X?DE D (default) 

Display I Hollerith I BCD ASCII EBCDIC 
Code I Punch I Upper Case Lower Case I Upper Lower 

Char. 

NAK 

I (026) I 6-Bit i I 

L--~-b-l~~-r_·~---~~-L~l-n-L~O-c_b_l~H-e-L~l-~_r_.~_Pu_n_~_~l~_L_!_~ __ • __ Pu_n_~_~i1l-1~1~1 @ ! l @ @ @ I <029> . . 

40 5 5 05 05 25 35 5 5 1- I NAK 9-8-5 I : I : :: I 

: : : : : :: :: : : ~: I ~,: ~::6 ; .., 7 26 ! 

SYN 

ETB 

CAN .. 8 8 10 10 30 38 8 8 18 CAN 11-9-8 I F8 8 18 I 

44 9 9 11 11 31 39 9 9 I9 EM 11-9-8-I I F9 9 19 I EM 

45 + I2 60 20 I3 2B + I2-8-6 OB VT 12-9-8-3 i 4E + OB : VT 

I 
I I 

46 11 40 40 I5 20 11 OD CR 12-9-8-S I 60 OD I CR 

47 • 11-8-4 S4 S4 I2 2A • 11-8-4 j OA LF 0-9-S I SC * 2S I LF 

so I 0-1 21 61 17 2F I 0-1 I OF SI 12-9-8-7 ! 61 / 01'' I SI 
! : 

Sl 0-8-4 34 74 IO 28 12-8-5 08 BS I 11-9-6 

52 ) 12-8-4 74 34 11 29 1 
) 11-8-5 09 HT ; 12-9-S 

: 4D 

I sD 
I 

i SB 53 $ 11-8-3 S3 S3 ' 04 24 $ 11-8-3 04 EOT i 9-7 

54 8-3 13 13 I 3S 3D 8-6 10 Gs l u-9-8-5 

SS space 1 space 20 60 jl

1 
00 

56 I 0-8-3 33 73 I4 

S7 I 
60 • ~© 
61 

62 

63 

64 f II 

65 1-
66 jV I 

f11 IA & 

70 It I 

71 j l ? 

12 I < 

> 

s@ 

12-8-3 73 33 i 16 

o-s-6 I 36 1 76 I 03 

::2 1

1 

;: I :: 1

1 

:: 

::. I ~ :: I:: 
I 11-0® 1 s2 s2 · 01 

' 0-8-7 37 1 77 ' 06 

I 1I 8 s 5s I 55 I 01 
I - - I I I 11-8-6 56 56 I 37 

112-0® 12 · a2 I 34 

I 11-8-7 

I 8-5 

73 

74 

76 

'16 

7'1 

~ ' I 12-8-5 

.., /\ l 12-8-6 
I 

57 

lS 

75 

76 

77 

S7 

15 

35 

36 

37 

36 

40 

74 

76 

33 12-8-7 

60492600 A 

J 7E 

20 , space 1 space 00 I NUL i12-0-9-8-I; 40 

2C 

2E 

23 

SB 

SD 

2S 

22 

SF 

21 

26 

2'1 

3F 

3C 

3E 

40 

5C 

5E 

3B 

f 

J 
% 

& 

? 

< 

> 

0-8-3 

12-8-3 

8-3 

12-8-2 

11-8-2 

0-8-4 

8-7 

6B 
I 

FF I 12-9-8-4 
I 

oc 
OE i SO j 12-9-8-6 4B 

03 I ETX i 12-9-3 7B 

IC I FS 111-9-8-4 4A 

01 I SOH I 12-9-1 SA 

05 ENQ 0-9-8-S 6C 

02 STX 12-9-2 7F 

0-8-S 7 F DEL 12-9-7 6D 

j I2-M@j 7D } 11-0 j 4F 

I 12 I 06 I ACK I 0-9-8-6 : so 

! 8-S I O'I I BEL I 0-9-8-7 !I 7D 

l 0-8-7 I 1F ! u_s I 11-9-8-7 6F 

112-8-4@. 7B J { . 12"".0 j 4C 

'1 0-8-6 lE I RS 11-9-8-6 I 6E 

.@ 8-4 60 1 
' 8-1 7C 

' I 0-8-2 7C I . : 12-11 I EO 

I\ 111-8-7 7E (V 11-0-1 I 5F 

11-8-6 lB ESC 0-9-7 5E 

$ 

I6 

05 

37 

ID 

, space 00 

% 

oc 
OE 

03 

IC 

OI 

20 

02 

07 

DO 

& · 2E 

? 

2F 

IF 

< i co 
> I IE 

@ 179 

'-.. j sA 
I ---, I Al 

I 27 

BS 

HT 

EOT 

IGS 

NUL 

FF 

so 
ETX 

IFS 

SOH 

ENQ 

STX 

DEL 

J 
ACK 

BEL. 

IUS 

IRS 

' 

rv 

ESC 

A-3 



HEXADECIMAL-OCTAL CONVERSION TABLE 

~ 
First Hexadecimal Digit 

2 3 
I 

E F 0 1 4 5 6 7 8 9 A B c D 

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360 

Hexadecimal 

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361 

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362 

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363 

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364 

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365 

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366 

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367 

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370 

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371 

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372 

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373 

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374 

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375 

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376 

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377 

Octal 000- 040- 100- 140- 200- 240- 300- 340-

037 077 137 177 237 277 337 377 

A-4 60492600 A 



ASSEMBLY-TIME 1/0 B 

SCOPE 2 

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its 1/0 operations. Thus, COMPASS 3 can 
read and write files with a variety of external formats. For each of the files used by COMPASS, the 
default format, and the combinations of file format description parameters that may be specified in FILE 
control statements to override the defaults, are given below. 

Main Source Input File 

The main source input file may be a normal source input file or a compressed compile file; COMPASS 
determines which it is by inspecting the data in the file. A normal source input file under SCOPE 2 
comprises the following: 

File Organization (FO) 

Block Type (BT) 

Maximum Block Length (MBL) 

Record Type (RT) 

Maximum Record Length (MRL) 

Conversion Mode (CM) 

Label Type (LT) 

sequential (SQ) 

unblocked 

none 

control word (W) 

160 characters 

NO 

unlabeled (UL) 

The only other formats that may be specified by FILE control statements are as follows (X means allowed): 

Block Record Type 
Type F w 1 z 

unblocked 

I 
x x 

I c x x x 
I x 

File Organization (FO) must be sequential (SQ). 

Maximum Record Length (MRL) must not exceed 160 characters. 

Label Type (LT) may be any value supported by the operating system. 

Although the maximum record length may be as large as 160 characters, only the first 90 characters of 
each record are reproduced in the listing output files. 

60492600 H B-1 



If the file is a compressed compile file (written by UPDATE in X mode or MODIFY in A mode), COMPASS 
sets the file format description parameters to resemble normal input; however, MRL = 5120 characters. 
Modify is not available on SCOPE 2. 

Listing Output Files 

The default format under SCOPE 2 comprises the following: 

File Organization (FO) 

Block Type (BT) 

Maximum Block Length (MBL) 

Record Type (RT) 

Maximum Record Length (MRL) 

Conversion Mode (CM) 

Label Type (LT) 

sequential (SQ) 

tmblocked 

none 

control word (W) 

137 characters 

NO 

Unlabeled (UL) 

The only other for mats that may be specified by FILE control statements are as follows (X means allowed): 

Block Record Type 
Type F w z 

unblocked x x 
c x x x 
I x 

File Organization (FO) must be sequential (SQ). 

Maximum Record Length (MRL) must not exceed 137 characters. 

Label Type (LT) may be any value supported by the operating system. 

Binary Output File 

FILE control statements can be used under SCOPE 2 to specify the for mat of binary output files for any of 
the operating systems, such that a program can be assembled under SCOPE 2 and the object program 
executed under a different system if so desired. 

B-2 60492600 H 



File Characteristics 3COPE 2 NOS and NOS/BE 1 

File Organization (FO) sequential (SQ) sequential (SQ) 

Block Type (BT) unblocked character count (C) 

Maximum Block Length (MBL) none 5120 chars. 

Record Type (RT) controi word (W) system-logical-record (S) 

Maximum Record Length (MRL) 1, 310, 710 chars. none 

Conversion Mode (CM) NO NO 

Label Type (LT) Unlabeled (UL) ANY 

No other formats are allowed, except that the label type (LT) can be any value supported by the operating 
system used for assembly. The format shown above under SCOPE 2 is the default binary output file format 
under that system. 

Scratch Files 

COMPAS.S uses two scratch files named ZZZZZRL and ZZZZZRM, when table storage space overflows. 
Regardless of what is specified by FILE control statements, COMPAS.S sets the file format description 
parameters for these files under SCOPE 2 as follows: 

File Organization (FO) = sequential (SQ). 

Conversion Mode (CM) = NO. 

For file ZZZZZRL: 

Block Type (BT) = unblocked. 

Maximum Block Length = 5120 characters. 

Record Type (RT) = undefined (U) Maximum Record Length = 2550 characters. 

For file ZZZZZRM: 

Block Type (BT) = character count ( C), Maximum Block Length = 5120 characters. 

Record Type (RT) = SCOPE logical (S), no Maximum Record Length. 

ALL OPERATING SYSTEMS 

System Text Input Files 

A user library file designated by an S parameter on the COMPAS.S control statement must have the 
standard library file format for the system on which COMPAS.S is being used.t COMPAS.S uses the 
operating system overlay loader to access these files. 

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control statement, 
the default and permitted formats are the same as those given above for the COMPAS.S binary output file. 

toverlay residence in user libraries is not currently supported by NOS. 

60492600 G B-3 



XTEXT Input Files 

A file read by COMPASS when processing an XTEXT pseudo instruction can have any of several formats. 
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is empty 
and (b) by inspecting the data in the file. 

If the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds the 
file and reads until end of section or a COMPASS END statement is encountered, whichever comes first. 
The default and permitted formats under SCOPE 2 are the same as those given above for the main source 
input file. 

If the XTEXT variable field is non-empty, the file organization can be any of three non-standard types: 

Record indexed with name index (under SCOPE 2 only). 

SCOPE 3.3 style random file with name index (not supported under SCOPE 2). 

Update or Modifyt random program library file. 

In each case, COMPASS sets the file format description parameters to the appropriate values; no FILE 
control statement is needed. 

The record indexed file organization is actually the word addressable (WA) file organization with a set of 
format conventions superimposed on it. Such a file can be created by a FORTRAN program by using the 
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL program 
specifying ORGANIZATION IS WORD-ADDRESS, WORD-ADDRESS IS data-name. When COMPASS detects 
such a file mder SCOPE 2, it sets the file format description parameters as follows (no FILE card is 
needed): 

File Organization (FO) = word addressable (WA). 

Block Type (BT) = mblocked. 

Record Type (RT)= control word (W); Maximum Record Length (MRL) = 160 characters. 

Conversion Mode (CM) = NO. 

COMPASS positions the file at the record pointed to by the index entry containing the name given in 
the XTEXT statement variable field, and then reads records sequentially until end of section or a 
COMPASS END statement is encountered, whichever comes first. 

The SCOPE 3.3 style random file with name index is permitted for compatibility with previous versions of 
COMPASS. When COMPASS detects such a, file, it searches the file index and positions the file at the 
beginning of the specified section, and then reads sequentially until end of section or a COMP ASS END 
statement is encountered, whichever comes first. Such files cannot be used with SCOPE 2. 

An Update or Modifyt random program library file is processed similarly. The name in the variable field of 
the XTEXT statement must be the name of a common deck. When COMPASS detects such a file under 
SCOPE 2, it sets the file format description parameters as follows (no FILE control statement is needed): 

tModify is not available mder SCOPE 2 or NOS/BE 1. 

B-4 60492600 G 



File Organization (FO) = word addressable (WA). 

Block Type (BT)= unbiocked 

Record Type (RT) = control word CN), Maximum Record Length (MR L) = 5120 characters 

Conversion Mode (CM)= NO 

COMPASS positions the file at the first card image of the designated section (common deck). For 
an UPDATE program library, the first active card image (the *COMDECK card) is skipped. 
COMPASS then reads card images sequentially, ignoring inactive card images, until end of section 
or a COMPASS END statement is encountered, whichever comes first. 

50492600 A B-5 





Column 1 

7, 8, 9 levels O to 16 
6,7,9 
6, 7, 8, 9 or 7, 8, 9 level 17 
7,9 
7 and 9 not both in column 1 

1 2 3 4 5 

12 1---1 

11 !----' 

BINARY CARD FORMATS 

End-of-section 
End-of-partition (NOS only} 
End-of-information 
Binary card 
Coded card 

0 Cl 10 --•..--+--+--+--+----Column Binary Information • 'g 

c 

~ ~i---r--r-t---+---------..:_---------l ~ 

1 8 ~ 1---+--+-t--+-------------------~ § M 

2 "01°1 I I l 3 J ~ ~ i--+--+--+--+---------------___j- ~ ~ I 

W,:O 1 - - 1 1JJ~ 4 ~ § I l-------~----1.1 ~ l ~ 
s. C1l , • i o1 53 

l--1i d ::s 
6 Q) "O cc 
~ 0 ~ J1 7. 0 

8 

A binary card can contain up to 15 60-bit CPU words etarting·at column 3. C-Olumn 1 also contains 
a count of 60-bit words in rows O, 1, 2, and 3 plus a check indicator in row 4. If row 4 of column 1 is 
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on 
input. 

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number. If a 
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80, 
which sequences it within the logical record. 

60492600 A C-1 





HINTS ON USING COMPASS 

1. Within a macro definition: 

Use comment statements having* in column one. These are not saved, whereas other types of 
comments are saved. 

Whenever possible, minimize the number of lines of code. 

IRP is faster than either ECHO or DUP. 

Use the substitute parameter flags ;A, ;B, and so forth, for macros, to avoid a second line. 

Within macros, use symbols such as .1, .2, and so forth, instead of local symbols. 

If possible, avoid recursive macro structure to increase assembly speed. 

If a macro call is the cause of an error, direct full list output to a file other than OUTPUT 
(L=filename) to obtain a list of the erroneous macro call with the error listing. 

2. In IF sequences: 

Use line counts rather than ENDIF to terminate sequences. 

Use SKIP rather than IFPP to skip code. 

3. Micros: 

Micro replacement is time-consuming. 

Avoid using local symbols for micros. 

Use# for a null substitution. 

4. Minimize SYSTEXT size. 

5. To reduce core requirements, use SEG statements in absolute programs. 

6. Use NO REF for symbols for which listing is not required. 

7. Use QUAL for all overlays. 

The program EXAMPLE (figures D-1 and D-2) presents fundamental program organization. It also 
demonstrates some COMPASS coding conventions and illustrates efficient coding practice. The program 
obtains numbers from six successive locations, adding the numbers one at a time to the running sum. The 
total is then printed with a label. 

D 

I 

60492600 J D-1 



t? 
N 

Q> 
Q 
~ 
U> 
N 
Q> 
Q 
0 

= 

1 
2 
3 
4 
5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 
18 

19 
20 
21 
22 
23 
24 

25 
26 
27 

28 

29 
30 
31 
32 
33 

34 

0 301 
301 17252420252400000001 
306 6110000001 

66200 
307 6130000006 

43100 

310 5122000321 • 
66ZZ1 

36121 
311 0523000310 + 

OlOOOOOltltl + 
312 5160000331 + 

6160000327 + 
315 7120000301 + 
317 716020021 

321 00000000000000000001 
322 00000000000000000002 
323 00000000000000000003 
324 00000000000000000004 
325 00000000000000000005 
326 00000000000000000006 

327 55241005550116232705 
331 1 

3 

332 
372 
425 
HO 
452 
-...--

' v ,.,,,,, 
Octal Code 
Assembled 

OBUF 
OUTPUT 

BEGIN 

• 
LOOP 

• 

• 
TABLE 

• • 
WORDS 

• 
ANS 
LEN 

ID ENT 
ENTRY 
BSS 
FILEC 
SBl 
SBZ 
S83 
HXl 

SA2 
SBZ 
I Xl 
NE 

EXAMPLE 
BEGIN 
3018 
OBUF, 3018 
1 
80 
6 
0 

UBLE+82 
82+81 
X2+Xl 
ez,93,LOOP 

OUTPUT BUFFER 

INITIALIZE ADDRESS COUNTER TO ZERO 
SET FOR use AS A LOOP LIMIT 
INITIALIZE RUNNING SUM TO ZERO 

GET NEXT MEMORY ADDRESS 
INCREMENT THE ADDRESS COUNTER 
ADO NEW NUMBER TO RUNNING SUM 
LOOP If ADDRESS CNTR - IB3, 

RJ •XCDD CONVERT BINARY NUMBER TO DISPLAY CODE 
SA6 ANS STORE THE DISPLAY COOED NUMBER IN ANS 
WRITEH OUTPUT,WOROS,LEN WRITES TO THE OUTPUT BUFFER 
WRITER OUTPUT PRINTS CONTENTS OF OUTPUT BUFFER 
ENDRUN ENO OF EXECUTABLE CODE 

DUA 
DATA 
DATA 
DATA 
DATA 
DATA 

DATA 
BSS 
EQU 

l 
2 
3 
It 
5 
6 

THESE ARE 
THE NUMBERS 

TO TOTAL. 

H• THE ANSWER IS • 
1 
•-WORDS 

• ACCESS TO EXTERNAL TEXT. 
• 
• RNCPL 
RNCPL 
RNCPL 
RNCPL 

SST 

XTEXT 
XTEXT 
XTEXT 
XTEXT 
END 

C OHC SYS 
COHCWTH 
COMCC IO 
COMCCDO 
BEGIN 

TO DEFINE SYSTEM SYMBOLS 

ENO OF PROGRAM 

Octal Location 
Addresses 

512008 CM STORAGE USED 443 ST4TE"ENTS 78 SYMBOLS 
7600-TYPE CPU 4SSEMBLY 0.21& SECONDS 25 REFERENtES 

THE ANSWER IS 21 

Figure D-1. Example COMPASS Program (NOS and NOS/BE) 



a~ 
0 
~ 
c.o 
!:..:> 
Q'll 
c 
0 

::I! 

~ 
~ 

1 
2 
4 
5 
6 
7 
8 

9 
10 
11 
12 

13 
14 
15 
16 
17 
18 

19 
20 
21 
22 
23 
24 

25 
26 
27 

28 

29 
33 

34 

0 
20 

21 

HlOCC>COOl 
66200 

613000COM 
431CC 

22 5122000031 + 
M221 

~6121 
23 0523(00022 + 

24 
25 
26 
27 
30 

0100000045 + 
5160GOCiC41 + 
01300CC~ClOOOOOOC054 + 
013000CC03CJOOCOG055 + 
Cl300COOC20JU0000060 + 
0130~CC1040JOOOOOOOO 

31 COCOCOOOCOOOOOOOOOOl 
32 rooocooooocooooooooz 
33 ocooccocoooocccocoo3 
34 CCUOCOOOGCOOC0000004 
35 COOOCOOOOOOOOOOOC005 
36 COOOCCOOOOOOOOOOC006 

37 5~24100~550116232705 
41 1 

3 
"'= v #"' 

4? 

ll 
Octal Location 

Addresses 

Octal Code 
Assembled 

Tl-IE ANSWfP IS 

OUTPUT 
BEGIN 

* t OOP 

• 

• TABLE 

• • WORDS 

• 
ANS 
LEN 

tOENT 
ENTPY 
~Jlf 

SBl 
s 82 
s 83 
HXl 

S AZ 
S82 
I Xl 
Nf 

RJ 
SA6 
OPENP1 
PUTW 
CLOSE" 
ENOPUN 

OAU 
DATA 
DATA 
DATA 
DATA 
DATA 

DATA 
BSS 
IEQU 

EXAMPLE 
BEGIN 
LFN•OUTPUT1FO•SQ1BT••RT•W1MRL•l3710~•N1CF•N1PD•OUTPUT 
1 
BO 
6 
0 

TARLE+B2 
BZ+Bl 
)(2+Xl 
821831LOOP 

INITIALIZE AOORESS COUNTER TO ZERO 
SET fOP USE AS A LOOP LIMIT 
IMITIALilE RUNNING SUM TO ZERO 

GET NEXT MEMORY AOORESS 
INCRE~ENT THE ADDRESS COUNTER 
ADO NEW NUMBER TO RUNNING SUM 
LOOP IF ADDRESS C~TR - f83) 

•XCOO CONVEPT BINARY NUMBER TO DISPLAY CODE 
ANS STORE THE DISPLAY COOED NUMBER IN ANS 
OUTPUT 
OUTPUT1WORDS.tEN WRITES TO THE OUTPUT AU~~ER 
OUTPUT PRINTS CONTENTS OF OUTPUT BUFFER 

ENO OF EXECUTABLE CODE 

1 
?. 
3 
4 
5 
& 

THESE APE 
THE NUMBERS 

TO TOTAL. 

H* T~E ANSWER IS * 
1 
•-WORDS 

• • 
ACCESS TC EXTERNAL TEXT, 

SST TO DEFINE SYSTFM SYMBOLS 
• 

XTE XT C OMCC OD 
fNO BEG JN EHD OF HOGRAM 

21. 

Figure D-2. Example COMPASS Program (SCOPE 2) 



One of the main considerations in assembly language programming is the reduction of execution time. The 
instruction repertoire of COMPASS often allows an operation to be coded in several ways. The 
programmer, therefore, should give careful consideration to the instructions used in the program to 
perform specific functions. 

D-4 

Line 1. The !DENT pseudo instruction is always the first instruction in a program. It specifies a 
program name (EXAMPLE, in this case) to identify the program to the a~mbler. 

Line 2. The ENTRY pseudo instruction declares the point in the program at which execution is to 
begin. The main entry point in a program is the control transfer address. 

Line 3. NOS and NOS/BE - figure D-1. The BSS instruction establishes the output buff er OBUF. The 
programmer has allocated 3018 words of storage for the buffer, as shown in the assembled octal 
code listed to the left of the source code. Note that the octal code format for the pseudo instructions 
will differ from the format for the symbolic machine instructions because pseudo instructions do not 
have single machine instruction equivalents. 

Line 4. NOS and NOS/BE - figure D-1. The operating system macro FILEC is called to create a file 
environment table (FET) for the output buffer. Only the first word of the FET is shown in the octal 
code, but examination of the location addresses reveals that the table is actually five words in length 
(the minimum length of a FET). For more information about FETs, see the appropriate operating 
system reference manual. 

SCOPE 2 - figure D-2. The FILE macro is used to establish a file information table (FIT) for the 
output buffer. 

Line 5. The first executable line of code has been designated the main entry point for the program. 
Incrementing by one occurs so often within a program that it has become a COMPASS coding 
convention for register Bl to always be initialized to one, and to remain one throughout the entire 
program. This is particularly important during the use of the common common decks (chapter 12), and 
can be a factor in execution time (see Bl=l pseudo instruction) as well as in assembly time. 

Line 6. A counter is initialized to zero by setting the contents of a B register (chapter 8) equal to the 
contents of the BO register. BO is hard-wired to zero, thereby avoiding the need for repeated 
processing of the literal or constant zero. 

Line 7. Comparing the octal code for lines 6 and 7, the programmer can see the difference between 
two forms of register-setting instructions. The 15-bit form of the instruction is used in line 6, where 
only three bits are required to represent the BO register as the source of an operand. The 30-bit form 
of set B register instruction is required for line 7, where the constant 6 is represented by the lower 18 
bits of the instruction. 

Line 8. The mask instruction is normally used to extract fields from a register. Here, it is used 
instead of the slower set X register instruction to initialize an X register. 

Another important feature of COMPASS is illustrated here. The octal code seems to indicate that the 
lower 15 bits of the current word in memory have been left blank. This is the result of a force upper. 
The next instruction is too large to fit in the remaining 15-bit parcel, so COMPASS packs that parcel 
with a no-operation instruction. The next instruction is placed at the beginning of the next word (see 
section 8.1}. 

Line 9. The use of the set A register instruction to obtain a word of data is demonstrated here. As 
seen in the octal code, the address of the word (3218) is placed in the specified A register. The data 
itself is placed in the corresponding X register (X2 in this instance). (See Set A Register Instructions, 
chapter 8.) 

The plus sign(+) after the octal code indicates that the address or K portion of the instruction (the 
lower 18 bits in this case) is relocatable. 

60492600 H 



Line 10. The 15-bit format of the set B instruction is illustrated here. The first six bits contain the 
ooeration code for the instruction (66g in this instance). The next three bits designate the 
destination register (B2) for the results of the instruction. The next three bits indicate the register 
containing the first source operand (B2). The final three bits indicate the source register for the 
second source operand (Bl). 

Line 11. The number obtained in the previous instruction is added to the running sum kept in Xl. This 
is a 60-bit add instruction, as opposed to the SXi instruction, which adds only 18-bit operands. 

Line 12. The NE instruction shows another use of the B registers in testing for a conditional branch. 
In each iteration of the loop, the source operands are compared. While they are unequal, control is 
transferred from this instruction back to LOOP. When the operands become equal, control passes to 
the next instruction. 

Line 13. The retum jump (RJ) instruction is used here to access a common common deck, 
COMCCDD, as a relocatable subroutine. The programmer has taken advantage of the COMPASS 
default method of defining external symbols. The =X indicates to the assembler that CDD, the entry 
point to the subroutine, is external to EXAMPLE. 

The use of common common decks is important to the programmer. Note that the decks require 
certain entry conditions. Specific arguments are expected to be in certain registers, for example, 
upon entry to the routines. An efficient program will establish these conditions with a minimum of 
data transfers by using the registers judiciously prior to the call. COMCCDD, for example, converts 
an octal word to decimal display code; that word is expected to be in register Xl. For this reason, the 
ruming total has been kept in Xl, avoiding the need for extra data transfers. 

Line 14. The method of storing an operand in memory is illustrated here. Setting register AS or A 7 
to a valid address causes the contents of XS or X'l, respectively, to be stored in the address specified. 
When COMCCDD has converted the word, it places the result in register X6, ready for storage upon 
retum to the calling routine. 

Line 15. NOS and NOS/BE - figure. D-1. Another method of accessing a common common deck is 
shown here. A call is made to a system macro, WRITEH, which utilizes the common common deck 
COMCWTH to write a line from a working buffer to an output buffer. 

SCOPE 2 - figure D-2. The Record Manager macro OPENM is used to open the output buffer in 
preparation for processing. 

Line 16. NOS and NOS/BE - figure D-1. A call is made to the operating system macro WRITER to 
write the contents of the buffer OBUF (with which the system communicates through the FET 
OUTPUT) to the system default output file, also named OUTPUT. (For more information about 
operating system macros, see the appropriate operating system reference manual.) 

SCOPE 2 - figure D-2. The Record Manager macro PUTW is used to transfer data into the output 
buffer. 

Line 17. SCOPE 2 - figure D-2. The Record Manager macro CLOSEM is used to close the output 
buffer and to print its contents. 

Line 18. The operating system macro ENDRUN is called to terminate program execution. 

Lines 19 through 24. DATA pseudo instructions are used here to establish a table comprising six 
consecutive words in memory, starting at location TABLE. The default base mode is base 10 in 
COMPASS (see Mode Control, chapter 4). 

Line 25. DATA is used here to set in memory a display-coded image of the characters specified, for 
use in the output line. Ten 6-bit characters can be stored per word in this fashion. Therefore, more 
than one word is required here, as seen from the location address on the next line. 

60492600 H D-5 



Line 26. One word of memory is reserved for the final sum. This word is labeled ANS. Note that this 
word is not initialized by the B~ instruction. 

Line 27. The symbol LEN is equated with the value of the origin cotmter minus the address of 
WORDS. This yields the length of the output line specified in line 15. 

Line 28. The ~T instruction ensures that symbols from the system texts used by the program are 
defined. 

Lines 29 through 32. These XTEXT pseudo instructions tell COMPASS to search the system-defined 
program library OPL for the common common decks named. Declarations of this type are normally 
grouped together after the end of the executable code for easy reference. 

Line 33. The END instruction signifies the end of the program. Control is released through the 
transfer address at BEGIN. 

The dayfile for the program EXAMPLE as run on NOS is shown in iigure D-3. 

The dayfile for the program EXAMPLE as run on NOS/BE is shown in iigure D-4. 

The dayfile for the program EXAMPLE as run on SCOPE 2 is shown in iigure D-5. 

. D-6 

15.18.00.EXAMPLE. 
15.1a.o,.uccR1 76~1, O.Olt8KCOS. 
15.18. oo. USER statement. 
15.18.0l. CHARGE statement. 
15.18.0l.ATTACH1CO"CPl/UN•xxx. 
15.18.02.COMPASSf StS•IPTEXT•S•CPUTEXT,X•CO"CPL) 
15.18.09. 4SSE~8LY COMPLETE. 5Z3008 C" USED. 
15.18.09. 0.2~' CPU SECONDS ASSE~BlY TI~E. 
15.1e.09.u;o. 
15.18.lt.UEAD, 
l5el8elO.UEPFt 
15.18.10.UE'1St 
15.18.10.UECP, 
15.18.10. 4E SR, 
15.2z.1a.UCLP1 

0.002KUNS. 
u.Ol'tKUNS. 
0.784KUNS. 
u.Z52SECS. 
Z.6ZZUNTS. 

761t51 0.256KLHS. 

The parameter xxx is the site-defined NOS tmer name. 

Figure D-3. Dayfile of EXAMPLE Wlder NOS 

60492600 H 



60492600 H 

09.17.2C.EXA"PZP FPO~ 
C9.l7.zC.iP coeuo320 WORDS - FILE INPUT , ne '14 
09.17.20.EXAMPlE. 
09.17. 2G. ACCOUNT statement. 
09.17.23.ATUCH,COMCPLtIO• yyy. 
09.17. 2!'.PFN IS 
09.17. 23.CO~CPL 
09.17.24.AT CY• COl SN•PFOSFT 
09.lA.34.CC~PASSfStS•JPTEXTtS•CPUTEXT,X•COMCPL) 
09.1a.s1. ASSE"BLY COHPLETF.. ~76008 CM useo. 
09.lP.51. ~.4Q! CPU SfCONns ASSEMRLY TIME. 
09.Jij.5Jol.GO. 
09.18.51.0P CCCtlCZ4 ~OROS - FILE OUTPUT 
09.18.51.MS ~'~4 wrRns ' 7168 ~AX 
G9.l8.52~CPA l.4Q7 SEC. 1.4q7 
09.1~.52.CPA Z.'~l SEC. 2.Zfl 

' DC 4C 
USE OJ 
ADJ• 
Ar.J. 

09.18.52.IO .495 SfC. .4Y5 ADJ. 
09.lB.52.CM l~l.287 K~S. 
oq.16.~2.ss 

09.18.~?.PP 4.849 SEC. 
09.1~.5?.EJ FNO OF J~~. •• 

7.402 AOJ. 
11 -~5~ 

DA TE 02/01-181 

The value yyy is the site-defined ID under which COMCPL has 
been catalogued. 

Figure D-4. Daytile of EXAMPLE under NOS/BE 

D-7 



-ElfA"PLE, STSC z. 
-ACCOUNT istatement. 
-ATTAtH.COMCPL1 ID• zzz. 

Pf053 - lFN IS CO"CPL 

15.5C.3Z 00000.003 ~FZ. 
15.50.32 GOOOG.004 JOA. 
15.50.33 ooooo.03q Joe. 
15.50.33 00000.0~9 "FZ. 
15.50.33 00000.043 "FZ. 
15.50.33 00000.043 LOO. 
15.50.34 00000.~06 usP. 
15.50.34 00000.306 USR. 
15.50.34 GOOO,.!Ob LOO. 
15.50.34 OOOOC.320 Mfl. 
15.5G.34 00000.321 MFZ. 
15.5C.35 COOOC.323 MF?. 
15.50.35 00000.324 ~Fl. 
15.50.35 OO~OC.3?4 MFZ. 
15.50.35 00000.324 MFZ. 
15.50.35 OOG00.324 MFZ. 
15.50.35 C0000.324 MFZ. 
15.50.35 OOC00.325 MFZ. 
15.50.35 GOC0~.325 ~~z. 
t5.5C.35 0000~.32~ ~Fz. 

15.50.35 00000.32~ MFZ. 
15.50.35 00000.325 MFZ. 
15.50.35 00000.325 Mf l. 
15.~0.35 OO~OG.326 M~7. 
15.50.35 OOCOO.~l~ ~FZ. 
15.5C.35 00000.326 MFZ. 
l5e50e35 00000.326 M~l. 
15.50.35 OOC00.32b Mf7. 
15.50.35 COCOC.326 MFZ. 

PF2'1t - CYC~E 1 ATTACHED FROM SN•SYSTE" 
-co~PASS(S1S•IPTEXTtS•CPUTEXT1X•CO"CPL) 

ASSEMBLY COMPLETE. 560008 SCM USED. 
o.21t9 CPU sec. 34100B LC~ useo. 

-LGO. 
LDHO -
LD603 -
JM166 -
JH167 -
JM170 -
RM770 -
Rf1771 -
RM772 -
RP1773 -
IH1771t -
RM775 -
RM776 -
RH777 -
SCH 
lCM 
I/O 
R"S 

FlS REQUIRED TO LOAD - 0007771 
EXECUTION INITIATED OS.EXP 
MAXIMUM USER SCM 705008 
MAXIMUM USER LCM 400008 
MAXIMUM JS+IO LCM 358 
MAXIMUM ACTIVE FJLFS 
OPEN/CLOSE CALLS 
DATA TRANSFER CALLS 
CONTROL/POSITIONING CALLS 
BM DATA TRANSFER CALLS 
B" CONTPOLIPOSITIONING CALLS 
OUEUE MANAGER CALLS 
RECALL CALLS 

7.C48 
3.lt63 
0.004 
0.003 

KWS 
I< ws 

"" "WS 
USER o.1qe SEC 

sec JOB 0.328 
SC050 - 000015 SC/LC SWAPS 

The value zzz is the site-defined ID under which COMCPL has been catalogued. 

Figure D-5. Dayfile of EXAMPLE under SCOPE 2 

OU.COG 

WORDS 
WORDS 
BUFfERS 

2 
1q 

37't 
A 

258 
67 
62 
61 

D-8 60492600 H 



DA YFILE MESSAGES E 

The dayfile messages that can be issued by COMPASS are listed in table E-1. 

The following message, with xxxxxxx denoting the name of the subprogram being assembled, is displayed at 
the system operator's console only; it is not written to the dayfile. COMPASS updates the display when
ever it processes an IDENT statement with a non-blank variable field. 

ASSEMBLING xxxxxxx 

TABLE E-1. DAYFILE MESSAGES 

Message 

ASSEMBLY ABORTED - ECS READ ERROR. 

ASSEMBLY ABORTED - ECS WRITE ERROR. 

Significance 

This message can occur only 
when the job has an ECS field 
length and is used on a CYBER 
180 or a CYBER 170 or CYBER 
70 Model 71, 72, 73, or 74. 
COMPASS may store some of 
its internal tables in ECS. 
When an ECS error persists 
through four attempts to 
read the data, the message 
is issued, and the job is 
aborted. For the CYBER 70 
Model 76, LCM errors are 
handled by the operating 
system. 

AI:.tion 

Rerun job. If 
condition persists, 
contact a system 
analyst. 

This message can occur only Rerun job. If 

I 

when the job has an ECS field condition persists, 
length and is used on a CYBER contact a system 
180 or a CYBER 170 or CYBER I analyst. 
70 Model 71, 72, 73, 74. 
COMPASS may store some of 

II 
its internal tables in ECS. 
When an error occurs in 
writing data to ECS, no retry 
attempt is made. The message 
is issued, and the job is 
aborted. For the CYBER 70 
Model 76, LCM errors are 
handled by the operating 
system. 

60492600 L E-1 



TABLE E-1. DAYFILE MESSAGES (Contd) 

Message 

ASSEMBLY ABORTED - PASS n TABLE 
OVERFLOW ASSEMBLING xxxxxxx 

ASSEMBLY COMPLETE. nnnnnnB { ~~M} USED. 

CPU { SECONDS ASSEMBLY TIME. } 
xxxx. xxx { ECS } 

SEC.nnnnnnB LCM USED. 

E-2 

Significance 

While processing the program 
indicated by xxxxxxx, an 
irrecoverable table overflow 
condition has occurred in 
assembly pass n (1 or 2). 
COMPASS allocates memory 
space dynamically to all of 
its internal tables. If one 
table overflows, they all do. 
When the tables do not fit in 
the available SCM space, 
COMPASS will request addi
tional central memory up to a 
threshold at which time the 
intermediate file and cross
references are dumped to mass 
storage scratch files. If 
table space is still inade
quate, COMPASS will request 
additional central memory up 
to the maximum available to 
the job. When insufficient 
SCM exists after all such 
possibilities have been 
exhausted, COMPASS issues the 
message and aborts the job. 

Action 

Rerun job inserting 
an RFL statement 
specifying suffi
cient field length 
to assemble. 

If COMPASS did not detect any No action required. 
fatal errors during assembly, 
this message is issued at the 
completion of processing of 
all source programs on the 
input file. The minimum 
field length needed to per-
form the assemblies success-
fully is the octal number of 
SCM words, nnnnnn. If this 
number is larger than the 
actual field length, it is 
the minimum field length 
needed to avoid lost refer-
ences. The second line of 
the message can be suppressed 
by an installation parameter; 
xxxx.xxx represents the total 
central processor time, in 
seconds, used by COMPASS. 
If any ECS/LCM space was 
assigned to the job, nnnnnn 
is the octal number of words 
used. 

60492600 H 



TABLE E-1. DAYFiLE MESSAGES (Contd) 

Message 

!ASSEMBLY ERRORS. nnnnnnB ~ ~~M } USED. 
1· 

ixxxx.xxx 
I 
i 

CPU j SECONDS ASSEMBLY TIME. l 
l SEC. nnnnnnB { ~~ } USED. j 

I 
! 
I 

I 

I 
I 
r 
'BAD CONTROL STATEMENT ARGUMENT - xx 

CANT LOAD COMP3$ 

I 

'COMPASS NEEDS AT LEAST nnnnnB SCM. 

60492600 H 

- -

Significance Action 

I If COMPASS detected at least Correct the fatal 
one fatal error durin ass em- errors and g 

I bly, this message is issued reassemble. I at the completion of proces-

1 
sing of all source programs 
on the input file. If the A 
option was specified on the 
COMPASS control statement, 
the job is aborted after this 
message is issued. The mini
mum field length needed to 
perform the assemblies suc
cessfully is the octal number 
of SCM words, nnnnnn. Lne 
second line of the message 
can be suppressed by an 
installation parameter; 

I
-xxxx.xxx represents the total 
central processor time, in 

1 seconds, used by COMPASS. 
j If any ECS/LCM space was 

I assigned to the job, nnnnnn 
1 is the octal number of words 
I used. 

I 
The COMPASS control statement ! Refer to chapter 10 
contains an unrecognized or of this manual to 
invalid argument. The correct the COMPASS 
offending argument is named control statement. 
in the message. 

The operating system loader 
reported a fatal error when 
COMPASS attempted to load its 
primary overlay. This mes-
sage should be preceded by an I explanatory message from the I loader. 

·The SCM field length for the 
job is too small for COMPASS. 
The number of octal words 
needed by COMPASS before it 
can begin processing is 
nnnnnn. This number varies 
depending on the version of 
COMPASS used and the listing 
and binary output options 
specified on the control 
statement. It is an absolute 
minimum number of words; it 
does not include whatever 
space may be required for 
system text, local macro and 
micro definitions, and so 
forth. 

Ref er to the loader 
diagnostics in the 
loader reference 
manual for informa-
tion about the 

I specific loader 
I error. 

I Rerun job inserting 
an RFL statement 
specifying suf fi
cient field length. 

l 

I 

I 
I 
J 

E-3 



TABLE E-1. DAYFILE MESSAGES (Contd) 

Message 

nnnnnnnnn ERRORS IN xxxxxxx 

FILE USE CONTRADICTION. 

!DENT STATEMENT MISSING. 

IMPROPER SYSTEM TEXT FORMAT. 
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz 

INPUT FILE EMPTY OR MISPOSITIONED. 

INPUT FILE RECORD TYPE NOT ALLOWED. 

E-4 

Significance 

COMPASS issues this message 
for each source program in 
which fatal errors are de
tected; nnnnnnnnn is the 
number of errors and xxxxxxx 
is the sub-program name. 

Control statement specifies 
the same file name for two or 
more of the following: 

Source input 
List output (full or short 
list) 
Binary output 
XTEXT source 

COMPASS issues this message 
for each source program in 
which an END statement is 
encountered before an !DENT 
statement is found. This is 
a fatal error. 

A system text overlay does 
not have the internal format 
required by this version of 
COMPASS. This may be caused 
by a system error. COMPASS 
ignores the bad overlay but 
does not abort the job. The 
expression, x=yyyyyyy/ 
zzzzzzz, identifies the 
off ending overlay in the same 
form in which it is specified 
in the COMPASS control state
ment; it may be any of the 
following: 

G=f ilename 
G=filename/overlay 
S=overlay 
S=library/overlay 

When attempting to read the 
first line from the source 
input file, COMPASS encoun
tered end of data and 
aborted. 

The record type of the 
source input file is not 
allowed. COMPASS aborts 
the job step. 

Action 

Correct the fatal 
errors and 
reassemble. 

Correct contra
diction. 

Correct the source 
program to include 
an !DENT and END 
statement for each 
subprogram. 

Correct the internal 
format of the system 
text overlay. 

Correct the name of 
the source input 
file or reposition 
the file. 

Convert source input 
to acceptable record 
type. 

60492600 H 



TABLE E-1. DAYFILE MESSAGES (Contd) 

Message 

INSUFFICIENT STORAGE FOR SYSTEM TEXT. 
I BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz 

I 

nnnnnB LCM NEEDED TO CONTINUE. 

I nnnnnnnnn LOST REFERENCES IN xxxxxxx 

I 
" 

MORE THAN 7 SYSTEM TEXTS SPECIFIED. 

f No CONTROL STATEMENT TERMINATOR. 
I 

l 

60492600 H 

Significance Action 

Increase the SCM When an irrecoverable table 
overflow occurs, COMPASS 
issues this message before 
the first assembly is begun. 
It does not abort the job 

I field length for the I 
job. 

1 step. The expression, 
x=yyyyyyy/zzzzzzz, identifies 
the system text being loaded 
at the time. 

The specified amount of 
memory (nnnnnB) is required 
for the job to complete. The 
job step is aborted. 

The symbolic cross-reference 
table is sorted before it is 
printed. If the table does 
not fit in the job's SCM 
field length for sorting, I 

COMPASS discards some of the I 
references. A message is 

1

1

1 
issued; nnnnnnnnn is the num-

i her of references discarded, I 
I and xxxxxxx is the subprogram , 

name. The job step is not 
aborted. The ASSEMBLY 
COMPLETE message gives the 
field length needed to avoid 
lost references. 

COMPASS issues this message 
and aborts the job step, when 
the G and S parameters on the 
COMPASS control statement 
specify a total of more than 

~ seven system text overlays. 

Before finding a parenthesis 
or period not in a $-delimi
ted string, COMPASS read con
tinuation control statements 
and encountered an end-of
sec tion. This is not a fatal 
error. 

Increase the LCM 
field length for the 
job. 

Increase the SCM 
field length for the 
job. 

Restructure the job 
to reduce the number 
of system text over
lays required. 

Correct the control 
statement. 

E-5 



TABLE E-1. DAYFILE MESSAGES (Contd) 

Message 

RECURSION DEPTH EXCEEDED 400. 

SYSTEM TEXT NOT FOUND. 
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz 

nnnnnnnnn WARNING MESSAGES IN xxxxxxx 

E-6 

Significance 

COMPASS maintains a pushdown 
stack for source input con
trol. This stack has one 
entry for each active DUP, 
ECHO, HERE, XTEXT, or macro 
call. The maximum depth of 
the stack is set by an 
installation parameter; it is 
400 in the released system. 
When this limit is exceeded, 
COMPASS sets a fatal error 
and clears the stack. The 
next statement can then be 
read from the source input 
file. The job step is not 
aborted. This error is usu
ally caused by a source pro
gram in which a macro calls 
itself indefinitely. 

When it cannot load the sys
tem text overlay identified 
by x=yyyyyyy/zzzzzzz, COMPASS 
issues this message. It does 
not abort the job step. For 
an overlay loaded from a 
library file (S parameter), 
this message should be pre
ceded by an explanatory 
message from the operating 
system loader. For an over
lay loaded from a non-library 
file (G parameter), COMPASS 
could not find the overlay on 
the file. 

COMPASS issues this message 
for each source program in 
which nonfatal errors are 
detected; nnnnnnnnn is the 
number of errors, and xxxxxxx 
is the subprogram name. 

Action 

Correct the macro 
call prograa error. 

For an overlay 
loaded from a 
library file, refer 
to the diagnostics 
in the loader ref er
ence manual. For an 
overlay loaded from 
a non-library file, 
check that the over-
1 ay name is speci
fied correctly and 
that the overlay is 
located on the file. 

Correct the non
fatal errors and 
reassemble. 

60492600 H 



GLOSSARY 

Absolute Block -
A block of object code generated in an absolute assembly. The ABS pseudo instruction is used to 
declare a program absolute. 

Assembler -
A computer language that prepares an executable program from a source language program by 
substituting machine operation codes for symbolic operation codes and absolute or relocatable 
addresses for symbolic addresses. 

Blank Common Block -
A common block into which no data is stored at load time. The first declaration of a blank common 
block need not be the largest declaration for the common block. 

Block -
A grouping of words of object code or storage within a subprogram for a specific purpose. 

Capsule -
A relocatable collection of one or more programs bound together in a special format that allows the 
programs to be loaded and tmloaded dynamically to form an executing program by the Fast Dynamic 
Loading facility. 

Central Processor Unit (CPU) -
The high-speed arithmetic unit that performs the addition, subtraction, multiplication, division, 
incrementing, logical operations, and branching instructions needed to execute programs. 

Comment Line -
A statement providing documentary information for a section of code. Comment lines are indicated 
by either an asterisk in column 1 or blanks in columns 1 through 29, and are listed but not otherwise 
processed by the assembler. 

Comments Field -

F 

The field in a COMPASS statement providing documentary information for the statement. It is listed 
but not otherwise processed by the assembler. This field begins with the first nonblank character 
f ollowi~ the variable field, or in column 30 if the variable field is blank. 

Common Block -
An area of memory that can be declared by more than one subprogram and used for storage of shared 
data. 

Constant -
An expression element consisting of a value represented in octal, decimal, hexadecimal, or character 
notation. 

Data Item -
A type of character or numeric value that can be used in subfields of the DATA and LIT instructions, 
and as specifications of field lengths on VFD pseudo instructions. 

Entry Point -
A location within a subprogram that can be referenced from other subprograms. Each entry point has 
a name with which it is associated. 

60492600 H F-1 



External Reference -
A reference in one subprogram to an entry point in another subprogram. 

Force Upper -
To guarantee that an imtruction begim on a word boundary by packing the parcels remaining in a 
partially completed word with no-op instructions and begiming to assemble the specified instruction in 
the next word. The assembler automatically forces upper in some cases, and the user program can 
specify that a given instruction be forced upper. 

Labeled Common Block -
A common block into which data can be stored at load time. The first program declaring a labeled 
common block determines the amount of memory allocated. 

Linking -
The process of matching external references to entry points of the same names and inserting the 
addresses of the entry points into the external references. 

Literal -
A read-only constant. Conventionally, it is the only element in an expression. Literals are stored in 
the program's literals block to avoid duplication of read-only data. 

Literals Block -
A block of literal data entries local to a subprogram. 

Load Sequence -
One or more consecutive control statements processed by the loader as a unit. A load sequence can be 
a single name call statement, or it can consist of loader statements (such as LOAD and LDSET) that 
are terminated by NOGO, EXECUTE, or a name call statement. 

Local Block -
A storage area defined by a USE or USELCM pseudo imtruction. 

Location Counter -
Normally the same as the origin counter. Can be reset by the programmer to relocate code or data 
without affecting relative positions within the block. 

Location Field -
The first field in a COMPASS statement, usually providing a name for the address of the instruction or 
for the entity defined by the statement. The location field begins in column 1 or 2. 

Machine Instruction -
A string of bits capable of being interpreted directly by a central processor or peripheral processor as 
an instruction to perform some operation. 

Macro-
A sequence of source statements that are saved and then assembled whenever needed through a macro 
call. 

Micro -
A character string identified by a symbolic name. Wherever the name is encountered in the program, 
the character string is substituted. 

OPDEF -

F-2 

A sequence of source statements that are saved and then assembled whenever needed through an opdef 
call. Differs from a macro in that the assembler interprets the call by examining the format or syntax 
of the imtruction rather than the contents of the operation field alone. 

60492600 H 



Operation Code -
A mnemonic operator, used in the operator field of a COMPASS statement, to indicate a specific 
machine instruction. 

Operation Field -
The field in a COMPASS statement indicating the operation to be performed. It begins with the first 
nonblank character following the location field; or, if the location field is blank, it begins with the 
first nonblank character after column 2. 

Origin Counter -
A pointer indicating the relative location of the next word to be assembled or reserved in a given block. 

Overlay-
One or more relocatable programs that were relocated and linked together into a single absolute 
program. 

Parcel -
One of the 15-bit sections of a central memory word. A CPU machine instruction occupies one, two, 
or four parcels. 

Peripheral Processor Unit (PP or PPU) -
An individual computer with its own memory, used for high-speed transfer of information (input and 
output) between peripheral devices and central memory. 

Pcsition Counter -
A pointer indicating the bit pa;ition within the word of the next item to be assembled in a given block. 

Program= 
One or more stbprograms capable of being executed as a unit. 

Pseudo Instruction -
An assembler-defined instruction appearing in the operation field of a statement. It normally does not 
specify the assembly of a single machine instruction, but instead specifies some other assembly 
process (such as symbol definition, listing control, and so forth). 

Qualified Symbol -
A symbol defined when a qualifier is in effect during assembly. Through qualification, the same 
symbol can be referred to in different subprograms without conflict. 

Reference Address (RAc) and (RAe) -
RAc is the absolute central memory address that is the starting or zero relative address assigned to 
a program. Addr.esses within the program are relative to RA. RAe is the absolute extended memory 
starting address assigned to a program. 

Register -
A unit within the central processor used to hold operands. The A registers contain the addresses of 
words within central memory; the X registers contain operands used in calculations; the B registers 
are used for incrementing and indexing. 

Relocation -
Placement of object code into central memory in locations that are not predetermined, and adjusting 
the addresses accordingly. 

Remote Assembly-
An operation in which code is assembled, saved, and then inserted into the object code when specified. 

Strong External -
An external reference whose satisfaction is obligatory for program loading. 

60492600 H F-3 



Subprogram -
A group of COMPASS statements beginning with an !DENT pseudo instruction and ending with an END 
pseudo instruction. 

Symbol -
A set of characters that identifies a value and its associated attributes. 

I 
Symbolic Instruction -

An assembler-defined instruction appearing in the operation field of a statement. It provides a means 
of expressing symbolically the data manipulation functions of the machine. Each symbolic instruction 
typically generates one machine instruction. 

System Text -
A set of tables containing symbol, micro, macro, and opdef definitions that can be saved on a file to be 
accessed by other programs. 

Trans! er Address -
The address of the entry point to which the loader jumps to begin program execution. 

Variable Field -
The field in a COMPASS statement identifying operands for the statement. It consists of one or more 
subfields, and begins with the first nonblank character after the operation field. 

Weak External -
An external reference that is ignored by the loader during library searching and cannot cause any other 
program to be loaded. A weak external is linked, however, if the corresponding entry point is loaded 
for any other reason. 

Zero Block-

F-4 

The nominal central memory block for a relocatable assembly. It is local to a sub-program. Also, a 
zero block is created for an absolute assembly if default symbols are used. 

60492600 K 



A abort mode 10-2 
A code op ti on 4-27 
A error 11-9 
A list option 4-7 4 
A reference table option 4-80 
A register 

Description 8-7 
Designators 2-8 
Setting 8-44 
Used for CM relocation 9-2 

ABS attribute 4-66 
ABS pseudo 

Description 4-6 
Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17 
First statement group 4-2 

Absolute block 
Absolute program 3-6 
Description 3-2 
Establishment 4-32 
Relocatable program 3-5 
Using 4-32, 4-33 

Absolute program 
Declaration 4-6 
Structure 3-6 

Absolute text 3-5 
ACN instruction 9-24 
ADC instruction 

Arithmetic function 9-6 
Description 9-11 
Example 2-20, 9-11 

ADD instruction 
Arithmetic function 9-6 
Description 9-15 

Add unit 
Floating point 8-3, 8-6 
Long 8-3 

Address 
Absolute 4-4 
Direct 9-15 
Entry point 4-4, 4-5, 4-45 
External 4-6, 4-9, 4-47 
Indexed direct 9-16 
Indirect 9-15 

Address modes, PP 9-1 
ADI instruction 

Arithmetic function 9-6 
Description 9-15 

ADM instruction 
Arithmetic function 9-6 
Description 9-16 

AON instruction 
Arithmetic function 9-6 
Description 9-10 

AIDTEXT 8-1, 9-1, 11-11 
AJM instruction 9-19 
AOD instruction 

Description 9-15 
Replace function 9-7 

AOI instruction 
Description 9-15 
Replace function 9-7 

AOM instruction 
Description 9-16 
Replace function 9-7 

Arithmetic functions, PP 9-6 
Arithmetic shift 8-33 

60492600 H 

INDEX 

Arrow 
Parameter separator 5-8, 5-13 
Special character 2-4 

ASCII code 
Character set A-1 
Option 4-27 

Assembler 1-1 
Centrai memory requirements 1-3, i0-1 
Statistics 4-73, 11-8 

Assembly environment test 4-60 
Assembly listing 

Detailed description H-1 
General description 4-73 
Generation 1-3 

Assembly, remote code 5-3 
Assembly time 11-8 
Asterisk 

BASE instruction 4-25 
Element operator 2-22 
First column 2-1, 2-2 
Local symbol separator 5-31 
Location counter 2-9, 3-4 
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28 
Special element 2-9, 2-32, 3-4 
USE instruction 4-32 
USELCM instruction 4-34 

Attribute, symbol 2-5 
Attribute test 4-66 
AXi instruction 8-32, 8-34 

B base 2-17, 2-18, 4-22 
B binary mode 10-2 
B list option 4-7 4 
B reference table option 4-80 
B register 

Conditional jumps 8-26 
Contents of 4-30 
Description 8-7 
Designators 2-8 
Setting 8-46 

Base, assembly 4-23 
COL column count 4-31 
DIS word count 4-49 
DUP count 5-6 
ECHO count 5-7 
Line count 4-60, 4-61, 4-63, 4-64, 4-67, 

4-69, 4-70 
Micro count 7-2, 7-4 
Numeric value 2-16 
Overlay level numbers 4-4 
PP number 4-4 
REP counts 4-57 
Setting through BASE 4-24 
SP ACE line count 4-76 
String count 2-13 
VFD count 4-53 

BASE micro 7-6 
BASE pseudo 

Description 4-24 
Example 4-13, 4-19, 4-26, 4-49, 4-51 
Permissible anywhere 4-2 

Binary card formats C-1 
Binary control statements 4-1, 4-74, 11-1 
Binary load module 3-8 
Binary mode 10-2 

Index-1 



Binary output generation 1-3, 3-7, 3-9, 3-11, 
3-13, 10-2 

Binary write 3-8 
Blank 

Compressed 5-1 
Embedded 2-1 
Expression terminator 2-1 
Name terminator 2-5 
Operation field 2-1 
Parameter separator 5-8, 5-13 
Statement terminator 2-1 
String terminator 2-14 
Use in character data 2-14 
Variable field 2-2, 2-3, 3-8 

Blank card 4-76 
Blank common 

CM 4-32 
Description 3-3 
ECS 4-34 
Establishment 4-32, 4-34 
Example 4-38 
LCM 4-34 
SCM 4-32 

Blank fill 2-14 
DIS 4-49 

Blank operatim field 4-47 
Block 

Absolute 3-1, 4-34, 4-38 
Blank commm 3-3, 4-34, 4-36 
Labeled common 3-2, 4-32 
Literals 2-11, 3-2, 3-5 thru 3-15 
Local 3-2, 4-32 
Maximum number 3-1, 4-32 
Origin assigned 1-2, 3-5, 3-7 
Subprogram 3-1 
Used for def"mition operation 5-2 
User established 3-2, 4-32, 4-34 
Zero 3-2, 4-32, 4-34 

Block copy instructim 8-16 
Block grot4> 3-1, 3-12, 3-14 
Block group listing 11-2 
Block name 3-3, 4-32, 4-34 
Block name listed 11-1 
Block origin 1-2, 3-5 
Block usage summary 11-2 
Boolean tmit 

Descriptim 8-3, 8-6 
Instructions 8-27 thru 8-31, 8-35, 8-36 

Branch instructions 
CPU 8-13, 8-14, 8-1 '1, 8-23, 8-24, 8-26 
PP 9-7 

Branch unit 
Description 8-3 
Instructions 8-10, 8-14, 8-17, 8-23, 8-24, 8-26 

BSS Pseudo 
Description 4-37 
Effect on origin counter 3-3 
Example 4-4, 4-7, 4-10, 4-16, 4-30, 4-35, 

4-38, 4-39, 4-42, 4-46, 
5-22, 5-32 

Force upper 3-4 
BSSZ pseudo 

Description 4-48 
Dumped by SEGMENT 4-16 
Example 2-19, 5-33, 5-35 
Force upper 3-4 

BXi instruction 8-27 thru 8-31 
Byte, guaranteed zero 2-14, 4-50 
Bl=l or B7-1 pseudo instruction 

Description 4-30 
Effect on R= 4-55 
Example 4-56 
Illegal for PP 4-9, 4-10 

Index-2 

C hardware feature code 4-8 
C list option 4-7 4 
Con octal listing 11-6 
Call 

Equivalenced macro 5-25 
Macro 5-18 
Opdef 5-29 

CC instruction 8-53 
CCF instruction 9-20 
Central memory 

Read instruction 8-46 
Requirements 1-3, 10-1 
Write instruction 8-46 
Access instructions, PP 9-2 

Central processor unit 
Functional units 8-3, 8-6, 8-8 
Instructions 8-1 
Registers 8-7 

CFM instruction 9-20 
Channel buff er instruction 

Read status 8-22 
Reset input 8-21 
Reset output 8-22 

Channel flag instructions 9-20 
CHAR 

Define other character 4-26 
Character sets A-1 
Character data 2-13 

Code conversion 4-26 
Evaluation 2-27 
Examples 2-12, 2-15 

CMU 8-50 
Code 

CPU operation 6-7, 8-1 
Duplication 5-6 
Code other 4-26 
PP operation 6-3, 9-1 
Remote assembly 5-3 
Replication 4-57 

CODE micro 7-6 
CODE pseudo 

Description 4-26 
Effect on character data 2-13, 4-49 
Example 4-21 
Permissible anywhere 4-2 

Coding form 2-3 
COL pseudo 

Description 4-9 
Octal listing 11-6 

Column one 2-1 
COM attribute 4-66 
Comma 

Character string 2-13 
Column one 2-1 
Continuation 2-1 
Expression terminator 2-21 
Local symbol separator 5-31 
Name terminator 2-5 
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28 
String terminator 2-13 
Subfield delimiter 2-1 

COMMENT pseudo 
Description 4-20 
Example 4-13 
First statement group 4-2 

Comments column control 4-31 
Comments field 2-2, 2-3, 4-31 
Comments, prefix table 4-20 
Comments statement 2-2 

Heading of definition 5-13 
Micros not substituted '1-1 
Not counted 4-59, 5-7, 5-8 
Permissible anywhere 4-2 

60492600 H 



Common common decks 
COMCARG 12-3 
COMCCDD 12-4 
COMCCFD 12-4 
COMCCIO 12-5 
COMCCOD 12-5 
COMCCPT 12-6 
COMCDXB 12-6 
COMCMNS 12-7 
COMCMOS 12-7 
COMCMTM 12-8 
COMCMTP 12-9 
COMCMVE 12-13 
COMCRDC 12-13 
COMCRDH 12-14 
COMCRDO 12-15 
COMCRDS 12-16 
COMCRDW 12-16 
COMCRSR 12-17 
COMCSFN 12-18 
COMCSRT 12-18 
COMCSST 12-18 
COMCSTF 12-20 
COMCSVR 12-20 
COMCSYS 12-21 
COMCUPC 12-22 
COMCWOD 12-23 
COMCWTC 12-23 
COMCWTH 12-23 
COMCWTO 12-24 
COMCWTS 12-25 
COMCW'IW 12-25 
COMCXJR 12-25 
COMCZTB 12-25 

Compare character strings 4-68 
Compare expression values 4-62 
Compare/Move unit 8-50 
COMPASS control statement 

Description 10-2 
Effect on LIST 4-79 

Compile file 10-4 
Complement and logical difference instruction 8-31 
Complement and logical sum instruction 8-30 
Complement instruction 8-29 
Compressed code 5-1 
CON pseudo 

Description 4-54 
Example 2-22, 4-55, 5-5, 5-23, 5-26 
Force upper 3-4 

Concatenation 2-4 
Concatenation mark 2-4 

Example of use 5-19 
In definition 5-1 

Conditional assembly 4-59 
Conditional jump 

B register 8-26 
PP 9-7 
X register 8-24 

Configuration 1-3 
Constant 

Character 2-14 
Description 2-11 
Expression element 2-21, 2-26 
Field size 2-12 
Generated by pseudo 4-54 
Numeric 2-16 
Read only 2-11 

Continuation, statement 2-2 
Generation of lines 2-4, 7-1 

Control statements 
COM PASS 10-2 
Job statement 10-1 

60492600 H 

Counter control 
BSS 4-37 
Forcing upper 3-4 
LOC 4-38 
ORG 4-35 
ORGC 4-35 
POS 4-40 
USE 4-32 
USELCM 4-34 

Counters, block control 3-3, 3-10, 3-12 
CPOP pseudo 6-7 
CPSYN pseudo 

Description 6-10 
Permissible anywhere 4-2 

CPU instructions 
Block copy 8~16 
Boolean 8-27 thru 8-31, 8-35, 8-36 
Branching 8-10, 8-14, 8-17, 8-23, 8-24, 8-26 
Channel buff er 8-21, 8-22 
Cruumel status 8-22 
Complement 8-29, 8-31 
Conditional 8-24, 8-26 
Direct LCM transfer 8-19 
Divide 8-42 
Double precision 8-38, 8-40 
ECS 8-15 
Error exit 8-14 
Excha.-ige exit 8-18 
Exchange jump 8-17 
Fixed point 8-39 
Floating point 8-34 thru 8-40 
Increment 8-44, 8-46, 8-48 
Left shift 8-31, 8-32 
Logical 8-28 thru 8-32 
Long add 8-39 
Mask 8-42 
Multiply 8-39, 8-40, 8-41 
No operation 8-43 
Normalize 8-34 
Pack 8-36 
Pass 8-43 
Population 8-43 
Program stop 8-13 
Real-time eloetc 8-21 
Return jump 8-14 
Right shift 8-32, 8-33 
Set register 8-44, 8-46, 8-48 
Set time 8-21 
Shift 8-31 thru 8-33 
Single precision 8-37 thru 8-40, 8-42, 8-43 
Transmit 8-27 
Unconditional jump 8-23 
Unpack 8-35 

CPU program execution 1-3, 10-1 
CPU register designators 2-8, 8-11 
CRD instruction 9-17 
Created symbol 5-31, 11-8 
CRM instruction 9-18 
Cross reference table 

(see symbolic reference table) 
CTEXT pseudo 4-79 
CR Instruction 8-46 
CU Instruction 8-54 
CW Instruction 8-46 
CWD Instruction 9-18 
CWM Instruction 9-18 
CXi Instruction 8-43 

D base 2-17, 4-24 
D code option 4-26 
D debug mode 10-3 

Index-3 



D definition flag 11-14 
D error 11-10 
D hardware feature code 4-7 
D list option 4-74 
Data generation 4-47 
Data item 

Character format 2-13 
DATA pseudo 4-49 
General description 2-10 
Lrr pseudo 4-51 
Numeric format 2-17 
V FD pseudo 4-53 

Data notation 
Character 2-13 
Constant 2-11, 2-13, 2-16 
Decimal 2-17 
Element 2-10, 2-21 
Fixed point 2-17 
Floating point 2-17 
Hexadecimal 2-22 
Item 2-11, 2-13, 2-16 
Literal 2-12, 2-13, 2-16 
Numeric 2-17 
Octal 2-17 

DATA pseudo 
Description 4-48 
Example 2-15, 2-19, 2-20, 4-27, 4-33, 

4-37, 4-49 
Force upper 3-4 

Data transmission, PP 9-6 
DATE micro 7-5 
Date of listing 11-1 
Dayfile messages E-1 
DCN instruction 9-24 
Debug, interactive 1-4 
Debug mode 10-3 
Decimal exponent 2-17 
Decimal notation 2-17 
DECMIC pseudo 

Description 7-4 
Example 5-6, 7-4 
Permissible anywhere 4-2 

DEF attribute 4-67 
Default symbols 

Definition 2-7 
Listing 11-9 
Unqualified 4-27 
Zero block 3-2 

Deferred symbols 
(see default symbols) 

Definition 
Equivalenced macro 5-24 
Macro 5-13, 5-15, 5-24 
Micro 7-2 
Opdef 5-13, 5-27 
Processing 5-13 
Purging 6-9 
Reference 5-18, 5-25, 5-30 
Symbol 2-6, 4-44 
System 5-35 

Definition operation 
Duplicated code 5-6 
Equivalenced macro 5-13 
External text 5-2 
Macro 5-13 
Operation code 5-13 
Processing 5-14 
Recursion level 5-1 
Remote text 5-3 

Delimiter 
Actual parameter 5-18, 5-26 
Data item 2-15, 2-16 
Expression element 2-21 

Index-4 

Delimiter (Contd) 
Field 2-1, 2-2 
Substitutable parameter 5-8, 5-13, 5-16 
Term 2-22 

Descriptor, variable field 5-27 
Destination field 2-26 
Detailed listing 4-7 4 
DF instruction 8-24 
Direct address mode 9-15 
Directives, loader 4-21 
Directory, error 11-9 
DIS pseudo 

Description 4-47 
Example 4-49, 4-51 
Force upper 3-4 

Display code option 
Character set A-1 
Default mode 2-13 
Option 4-27 

Divide imtructions 8-42, 8-43 
DM instruction 8-52 
Dollar sign 

Local symbol separator 5-31 
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28 
Special element 2-5 

Double precision instructions 8-38, 8-40 
DUP pseudo 

Description 5-6 
Example 5-10, 5-11 
Listing of count 11-6 

Duplication 
Code 5-6 
Echoed 5-7 
Indefinite 5-7, 5-9 

DXi instructions 
Add 8-38 
Multiply 8-40 

E code option 4-27 
E entry point flag 11-14 
E error 11-10 
E list option 4-7 4 
E numeric data modifier 2-17 
ECHO pseudo 

Description 5-7 
Example 5-12 

ECS blocks 4-34 
Editing 2-4 
EE numeric data modifier 2-17 
EIM instruction 9-21 
EJECT pseudo 4-76 

Permissible anywhere 4-2 
Eject suppression 10-4 
EJM imtruction 9-19 
Element 

Absolute 2-24 
Data 2-11 
Expression 2-23, 2-26 
External 2-26 
Operator 2-23 
Register 2-26 
Relocatable 2-9, 2-25 
Special 2-9, 2-23 

ELSE pseudo 
Description 4-60 
Example 5-5 
Permissible anywhere 4-2 

END pseudo 
Assembly of remote code 5-3 
Binary generation 3-6 
Description 4-4 
Effect on blocks 3-1, 3-6, 3-8, 3-10, 3-12 

60492600 H 



END pseudo (Contd) 
Example 4-4, 5-7, 5-13, 5-14, 5-16 
External text use 5-3 
Force upper 3-4 
Illegal definitions 5-1 
Permissible anywhere 4-2 

ENDD pseudo 
Acting as nil 6-8 
Description 5-10 
Example 5-11 
Permissible anywhere 4-2 
Used with DUP 5-7 
Used with ECHO 5-8 

ENDIF pseudo 
Acting as nil 6-6 
Description 4-59 
Permissible anywhere 4-2 

ENDM pseudo . 
Acting as nil 6-6 
Description 5-14 
Example 4-31, 5-11, 5-15, 5-19, 5-20, 5-21 
Permissible anywhere 4-2 

End-of-line mark 5-1 
ENDX pseudo 4-79 
Entry address 

Absolute 4-3 
Declaration 4-45 
Muitipie 3-12 
Relocatable 4-4 

ENTRY pseudo 
Description 4-45 
Example 4-5, 4-46 

Entry point list 11-4 
ENTR YC pseudo 4-45 
Environment test 4-60 
EOM instruction 9-21 
EQ IF operator 4-62 

IFC operator 4-68 
EQ instruction 

Description 8-26 
Example 8-27 
Force upper 3-4 

EQU pseudo 
Description 4-41 
Example 2-19, 2-21, 4-19, 4-39, 4-41, 4-64, 5-6 
Listing 11-6 

Equal sign 
Default symbol prefix 2-7 
Instruction 4-41 
Literals prefix 2-11, 2-13, 2-17 
Local symbol separator 5-31 
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28 

ERN instruction 9-14 
ERR pseudo 

Description 4-71 
Error, assembly 

Fatal 11-9 
Informative 11-12 
Programmer controller 4-71, 4-72 

Error directory 
Detailed description 11-9 
General description 4-73 

Error exit instruction 8-14 
Error flags 

Conditionally set 4-71 
Fatal 11-9 
Informative 11-12 
Unconditionally set 4-72 
Where on listing 11-6 

ERRxx pseudo 4-72 
ES instruction 8-14 
ESN instruction 9-25 
ETN instruction 9-14 
Evaluation of expression 2-26 

60492600 H 

Exchange exit instruction 8-18 
Exchange jump instruction 8-17 
Execution, CPU program 1-3 
EXN instruction 9-12 
Exponent 2-17 
Expression 

Absolute 2-24 
Attribute 4-66 
Comparison 4-62 
CON use 4-54 
Description 2-23 
Evaluatable 2-26 
Evaluation 2-21, 2-27, 3-3 
Examples 2-24, 2-55 
External 2-26 
Maximum size 2-27 
Operators 2-23 
Pass one value 2-27, 3-3 
Pass two value 2-27, 3-3 
Register 2-26, 8-9 
Relocatable 2-25 
Rules 2-22 
Size 2-26 
Types 2-24 
Value 2-23, 2-26, 3-3, 8-5 
VFD 4-53 

EXT attribute 4-66 
EXT pseudo 

Description 4-47 
illegal in absolute code 4-6, 4-9, 4-10 

External BCD 
Character set A-1 
Option 4-27 

External symbol 
Declaration 4-4 7 
Description 2-5 
Strong 2-7 
Weak 2-7 

External symbol list 11-4 
External text 

Assembly 5-2 
File declaration 10-3 
Listing 4-79 

F conditional flag 11-14 
F error 11-10 
F FORTRAN mode 10-3 
F list option 4-74 
FAN instruction 9-24 
Fatal error flag 11-9 
Features of COMPASS 1-2 
Field 

File 

Comments 2-2, 4-31 
Conventional 2-3 
Delimiter 2-1, 2-2 
Destination 2-25, 4-53 
Free 2-1 
Length, threshold 1-3 
Location 2-1 
Operation 2-1 
Size 2-1 
Subfield 2-2 
Terminator 2-1 
Variable 2-2 

COMPILE 10-3 
INPUT 10-3 
LOO 10-2 
List output 10-3 
Load and go 10-2 
OLDPL 10-5 
OPL 10-5 
OUTPUT 10-3 

Index-5 



File (Contd) 
Source 10-3 

Fill 

SYSTEXT 4-17, 10-3, 10-4, 10-5 
System text overlay 10-5 

Blank 2-14 
Zero 2-14 

FIM instruction 9-21 
First column 2-1 
First statement gro~ 4-2 
Fixed point data notation 2-17 
Fixed point instructions 8-39, 8-41 
FJM instruction 9-19 
Flag, errcr 

Listing 11-6 
Setting 4-71 
Type 11-14 

Floating point data notation 2-16 
Floating point lDlit 8-3, 8-6 

Add 8-37, 8-38 
Divide 8-43 
Multiply 8-39, 8-40 

FNC instruction 9-24 
FOM instruction 9-21 
Forcing upper 3-4 

BSS 4-37 
CPU instructions 8-2 
LOC 4-38 
Macro call 5-18, 5-25 
Opdef call 5-27 
ORG 4-35 
ORGC 4-35 
R= 4-55 
USE 4-32 
USELCM 4-34 
VFD 4-53 

Form, COMPASS coding 2-3 
Format 

Control statement 10-1 
CPU instruction 8-1 
Line 2-1 
Listing 11-1 
PP instruction 9-1 

FORTRAN 4-4, 10-3 
Full list 10-3 
Functional units 8-3, 8-6, 8-10 
Functions, PP 

Arithmetic 9-6 
Data transmission 9-6 
Logical 9-6 
Replace 9-7 

FXi instruction 
Add 8-37 
Divide 8-42 
Mui tiply 8-39 

G assembly mode 10-3 
G list option 4-74 
GE IF operator 4-62 

IFC operator 4-68 
GE instructions 8-26 
Generated code listing 4-74 
Generation, data 4-48 
Get text mode 10-3 
Glossary F-1 
GT IF operator 4-69 

IFC operator 4-7 4 
GT instruction 8-26 
Guaranteed zero 2-14, 4-50 

Hardware configuration 1-3 
Hardware feature dependency 4-7 

Index-6 

Heading 
Information 11-1 
Listing 4-73, 11-1 
Macro 5-13 
Opdef 5-13 
Page 11-1 

HERE pseudo 
Description 5-4 
Permissible anywhere 4-2 

Hexadecimal data 2-22 

I code option 4-21 
I hardware feature code 4-8 
I input mode 10-3 
I NOLABEL option 4-21 
IAM instruction 9-22 
IAN instruction 9-22 
mj instruction 8-22 
ID instruction 8-24 
IDENT pseudo 

Binary generation 3-8 thru 3-10 
Blank variable field 3-14, 4-11 
Description 4-2, 4-11 
Example 4-4, 4-7, 4-13, 4-14, 4-16, 4-17, 4-19 
Force upper 3-4 
Overlay generation 3-8, 3-9, 3-10 
Program identification 4-2 

IF pseudo 4-65 
IF skipped lines listed 4-7 4 
IFC pseudo 

Description 4-68 
Example 5-5, 5-11 
Permissible anywhere 4-2 

IFCP pseudos 4-61 
IFOP pseudo 4-62 
IFPP pseudo 4-61 
IFtype pseudo 4-61 
LJM instruction 9-19 
IM instruction 8-51 
Increment unit 8-3, 8-6, 8-44, 8-46, 8-48 
Index register 8-7 
Indexed address, PP 9-16 
Indirect address, PP 9-15 
Input, assembler 10-3 
Instructions 

Coding of 2-1 
CMU 8-50 
CPU 8-1 
Mnemonically identified 6-3 
Nil 6-6 
No-operation 8-43, 9-11 
pp 9-1 
Pseudo 4-1 
Redefinition 5-16, 5-25 
Synonymous 6-5, 6-10 
Syntactically identified 6-7 

Integer add 8-39 
Integer subtract 8-39 
Integer multiply 8-41 
Integer value 2-17 
Interactive debugging 1-4 
Internal BCD 

Character set D-1 
Option 4-27 

Invented symbol 5-32, 11-8 
m instruction 8-24 
ffiM instruction 9-21 
mp pseudo 

Acti~ as nil 6-6 
Description 5-33 
Example 5-34, 5-35 
Permissible anywhere 4-2 

IXi instructions 8-39, 8-41 

60492600 H 



J option 4-9, 4-10, 9-8 
JDATE micro 7-6 
Job statement 10-1 
JP instruction 

Description 8-23 
Force upper 3-5 

L control statement option 
Description 10-3 
Related to LIST 4-74 

L error 11-11 
L hardware feature code 4-8 
L list option 4-74 
L location flag 4-38, 11-14 
Labeled common 

Description 3-2 
Establishment 4-32, 4-34 

LCC pseudo 
Description 4-23 
Illegal if absolute 4-6, 4-9, 4-10 

LCM attribute 4-66 
LCM blocks 3-2, 4-34 
LCM transfer instructions 8-16, 8-19 
LCN instruction 

Data transmission 9-6 
Description 9-10 

LDC iriStruction 
Data transmission 9-6 
Description 9-11 
Example 2-20 

LDD instruction 
Data transmission 9-6 
Description 9-15 

LDI instruction 
Data transmission 9-6 
Description 9-15 

LDM instruction 
Data transmission 9-6 
Description 9-16 
Example 5-21 

LDN instruction 
Data transmission 9-6 
Description 9-10 
Example 5-12, 9-10 

LDSET pseudo 
Description 4-21 
Permissible anywhere 4-2 

LE IF operator 4-62 
IFC operator 4-68 

LE instruction 8-26 
Left shift instruction 8-31, 8-32 
LOO control statement 10-6 
Library maintenance programs 2-1 
Linkage symbols 2-6, 4-45 
List, full 10-3 
List, parameter 

ECHO 5-8 
Equivalenced macro 5-25 
Macro 5-18 

LIST pseudo 
Description 4-73 
Example 4-13, 5-6, 5-12 
Permissible anywhere 4-2 

List, short 10-4 
Listable output 

Assembled code 11-5 
Assembler statistics 11-8 
Binary control ca.rm 11-1 
Block usage 11-2 
Control statement 10-3 
Default symbols 11-8 
Entry point symbols 11-4 

60492600 H 

Listable output (Contd) 
Error directory 11-9 
Error flags 11-9 thru 11-12 
External symbols 11-4 
Header information 11-1 
Literals 11-7 
Octal 11-5 
Source statements 11-5 
Statistics 11-8 
Subtitles 11-1 
Symbolic reference table 11-12 
Titles 11-1 
User control 4-79, 10-3, 10-4 

Listing control 
Control statement 10-3, 10-4 
Pseudo 4-73 

LIT pseudo 
Description 4-51 
Example 2-12, 2-17, 2-21, 4-15, 4-58, 5-6 
Listing 11-6, 11-7 

Literals 
Absolute program 3-6, 3-7, 3-10, 3-11 
Description of block 3-1, 3-2 
IDENT 3-10, 3-14 
Listing 11-7 
Location 1-3, 3-1, 3-2 
Notation 2-12 
Protection 4-35 
SEGMENT overlay 3-10 
SEO partial binary 3-12 
Symbol (default) 2-7 

LJM instruction 
Description 9-6 
Example 5-21 

LMC instruction 
Description 9-11 
Logical function 9-6 

LMD instruction 
Description 9-15 
Logical function 9-6 

LMI instruction 
Description 9-15 
Logical function 9-6 

LMM instruction 
Description 9-16 
Logical function 9-6 

LMN instruction 
Description 9-10 
Logical function 9-6 

LO control statement option 10-4 
Load address 4-3 
Load-and-go file 1-3, 10-2 
Loader control statement 4-21 
LOC attribUte 4-66 
LOC pseudo 

Description 4-38 
Example 4-39, 4-55 
Location counter changed 3-4 

Local blocks 3-2 
Absolute program 3-6 
Description 3-2 
&tablishment 4-32, 4-34 
Relocatable program 3-5 

LOCAL statement 
Description 5-31 
Example 5-32 
Heading 5-13 

Local symbol 
Macro body 5-13 
Subprogram 3-1, 4-29 

Location counter 
BSS 4-37 
Control 4-38 

Index-7 



Location counter (Contd) 
Description 3-4 
Forced upper 3-4 
ORG 4-35 
ORGC 4-35 
Special element 2-9, 3-4 
USE 4-32 
USELCM 4-34 

Location field 
Listing 11-6 
Statement 2-1 

LO control card option 
Description 10-4 
Rela ted to LIST 4-7 3 

Logical difference instruction 8-29 
Logical functions, PP 9-6 
Logical minus 2-22 
Logical product and complement instruction 8-30 
Logical product instruction 8-28 
Logical shift instruction 8-31, 8-32 
Logical sum instruction 8-28 
Loog add tmit 

Description 8-3, 8-4, 8-6 
Instructions 8-39 

LPC instruction 
Description 9-11 
Logical function 9-6 

LPN instruction 
Description 9-10 
Logical function 9-6 

LRD instruction 9-12 
LT IF operator 4-62 

IFC operator 4-66 
LT instruction 8-26 
LXi instruction 

Description 8-31, 8-32 
Example 2-19 

M base option 4-25 
M list option 4-7 4 
MACHINE pseudo 4-7 
Machine test 4-60 
Macro 

Body 5-13 
Call 5-18, 5-25 
Equivalenced 5-24 
Def"mition 5-13 
Header 5-14 
List control 4-74 
Name 2-2, 5-15, 5-18, 5-25, 6-1 
Permissible anywhere 4-2 
Processing 5-1, 5-14 
System defined 4-75, 5-35 
Terminator 5-14 

MACRO pseudo 
Description 5-15 
Example 4-31, 4-76, 5-5, 5-19 thru 5-22, 

5-32 thru 5-34 
IRP related 5-33 
Operation code table entry 6-1 
Permissible anywhere 4-2 

MACROE pseudo 
Description 5-24 
Example 5-26 
IRP related 5-33 
Operation code table entry 6-1 
Permissible anywhere 4-2 

MAN instruction 9-12 
Mask instruction 8-42 
Mass storage, system 1-3 
Master list control 4-73 

• Index-8 

MAX pseudo 
Description 4-42 
Listing 11-6 

MD instruction 8-51 
M~AGE macro 12-25 
MI instruction 8-24, 8-26 
MIC attribute 4-67 
MICCNT pseudo 

Description 4-44 
Example 4-44 
Listing 11-6 
Permissible anywhere 4-2 

Micro 
Decimal 7-4 
Definition 4-24, 4-27, 4-28, 7-2 
Editing 2-4 
Mark 2-4, 5-1 
Octal 7-4 
Predefined names 7-5 
Reference 7-1 
Size 4-44, 7-2 
Substitution 7-1 
System defined 4-17, 7-2, 7-5 
Test for 4-67 

MICRO pseudo 
Description 7-2 
Example 4-44, 5-11, 7-2, 7-3 
Permissible anywhere 4-2 

MIN pseudo 
Description 4-43 
Listing 11-6 

Minus as local symbol separator 5-31 
Minus as parameter separator 5-8, 5-13, 5-16, 

5-24, 5-28 
Minus on listing 11-6 
Minus operator 2-21, 2-22, 8-11, 8-12 
Minus sign in location field 

CPU instruction 3-4, 3-5, 4-53 
PP instruction 3-4, 4-53 
VFD instruction 4-53 

MJ instruction 8-18 
Force upper 3-4 

MJN instruction 
Description 9-6 
Effect of J 4-9, 4-11 

ML control statement option 10-4 
Mnemonic operation code 

Legal operation field entry 2-1 
OPDEF defined 5-27 
Search for 6-1 

Modifiers, numeric data 2-17 
MODIFY common decks 5-2 
MODLEVEL micro 7-7 
MOVE macro 12-28 
Multiple entry point table 

Suppression 4-20 
Used for overlays 3-12 

MXi instruction 
Description 8-42 
Example 2-19, 8-42 

MXN instruction 9-12 

N eject mode 10-4 
N error 11-11 
N list option 4-7 5 
Name 

Block 4-32, 4-34 
Different types 2-4 
Duplicate code 5-7, 5-8 
General description 2-4 
IF sequence 4-59 

60492600 J 



Name {Contd) 
Macro 5-16 
Micro 4-24, 4-27, 4-28, 7-2, 7-4, 7-5 
Mnemonic operation 6-1 
Overlay 4-11, 4-15 
Parameter 5-8 
Remote code 5-3 

NE IF operator 4~62 
IFC operator 4-68 

NE instruction 8-26 
Nesting, level of 1-3 
NG instruction 8-24, 8-26 
NIL pseudo 6-6 

Permissible anvwhere 4-2 
NIM instruction 9~21 
NJN instruction 

Description 9-7 
Effect of J 4-9, 4-10 

NO eject option 10-4 
NO instruction 8-43 
NOLABEL pseudo 

Description 4-20 
Permissible anywhere 4-2 

NOM instruction 9-21 
NOREF pseudo 4-78 

Permissible anywhere 4-2 
Normalize instruction 8-34 
Normalize unit 

Description 8-6 
Instructions 8-34, 8-35 

Not equal sign 
Parameter separator 5-8, 5-13 
Special character 2-4 

Numeric data 2-17 
NXi instruction 8-34 
NZ instruction 8-24, 8-26 

0 base 2-18, 4-24 
0 error 

Description 11-11 
With AIDTEXT 8-1, 9-1 

0 mode 10-4 
OAM instruction 9-22 
OAN instruction 9-22 
OBj instruction 8-22 
Octal listing 11-5 
Octal notation 2-16 
OCTMIC pseudo 7-4 

Permissible anywhere 4-2 
OLDPL file 10-3 
Opdef 

Body 5-13 
Call 5-29 
Definition 5-13 
Heading 5-13 
List control 4-72, 4-73 
Processing 5-14 
System defined 4-17, 4-33 

OPDEF pseudo 
Description 5-27 
Example 5-29 thru 5-32 
Operation code table entry 6-1 
Permissible anywhere 4-2 

Operand register 8-7 
Operation code table 6-1 
Operation code value 

CPU 6-7, 8-1 
PP 6-3, 9-1 

Operation, definition 
Compressed 5-1 
Duplicated text 5-6 
External text 5-2 
General description 5-1 

60492600 H 

Operation, definition (Contd) 
Macro definition 5-13 
Opdef definition 5-13 
Remote text 5-3 
System 5-35 

Operation field 
Blank 4-48 
Description 2-1 
Search 6-1 

Operator 
Element 2-22 
Mnemonic 5-27, 6-3 
Register 2-21, 5-28, 6-7 
Term 2-22 

Operator with constant 2-13, 2-16 
OPL file 5-2, 10-3, 12-1 
OPSYN pseudo 

Description 6-5 
Permissible anywhere 4-2 

OR instruction 8-24 
ORG pseudo 

Description 4-35 
Determine blocks 3-1 
Establish absolute blocks 3-2, 4-35 
Example 4-4, 4-7, 4-13, 4-14, 4-16 
Location counter changed 4-35 
Origin counter changed 3-3, 4-35 

ORGC pseudo 4-35 
Origin 

Multiply entry point 4-3 
Overlay 4-12, 4-15 
Program 4-3 

Origin counter 
BSS 4-37 
Control 3-3, 4-35, 4-37 
Description 3-3 
Final value, absolute 3-6 
Final value, relocatable 3-5 
Forced upper 3-4 
ORO 4-35 
ORGC 4-35 
Special element 2-9, 3-3 
USE 4-32 

ORM instruction 9-21 
Overflow error 2-17 
Overlay 

Absolute 3-8 
Control tables 4-21 
Entry point 4-12, 4-15 
General description 3-6, 3-8 
Level numbers 4-4, 4-12, 4-15 
Multiple entry point 3-12 
Name 4-12, 4-15 
Origin 4-12, 4-15 
pp 3-7, 3-9 
Primary 3-8, 3-9, 3-11, 3-13, 4-12, 4-15 
Secondary 3-6, 3-8, 3-9, 4-12, 4-15 

P error 11-11 
P numeric data modifier 2-17 
P pagination mode 10-4 
Pack instruction 8-36 
Padding of CPU word 3-4, 4-53, 8-2 
Page heading 11-1 
Page number 11-1 
Pagination control 10-4 
Parameter 

Actual 5-7, 5-18, 5-25 
Embedded 5-18, 5-25 
Formal 5-8, 5-13 
Indefinitely repeated 5-34 
Iterative 5-18, 5-25, 5-34 
Substitutable 5-8, 5-13, 5-16, 5-25, 5-28, 5-34 

Index-9 



Parameter mark 5-9, 5-13 
Parameter, null 5-9, 5-18, 5-25 
Parameter separat<r 

Actual 5-18, 5-25 
Formal 5-8, 5-13, 5-16 

Parcel 8-1 
Parentheses 

Local symbol separator 5-31 
Nested 5-9 
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28 

Partial binary 
IDENT type 3-14 
SEG type 3-12 

Pass instruction 
CPU 8-43 
pp 9-9 

Pass one 
Expression evaluation 2-23, 2-26, 2-28, 3-3 
General description 1-3 
Maximum test 4-42 
Minimum test 4-43 
Symbol definition 2-6 

Pass two 
Expression evaluation 2-22, 2-26, 3-3 
General description 1-3 
Symbol definition 2-5 
Value for MAX 4-42 
Value for MIN 4-43 

PC control statement option 10-4 
PCOMMENT micro 7-7 
PD control statement option 10-4 
PERIPH pseudo 

Description 4-10 
Effect on branch instructions 9-8 
Example 4-49, 6-5 
First statement gro~ 4-2 

PJN instruction 
Description 9-7 
Effect of J 4-9, 4-10 

PL instruction 8-24, 8-26 
Plus as local name separator 5-31 
Plus as parameter separator 5-8, 5-13, 5-16, 

5-25, 5-28 
Plus in location field 

CPU instruction 3-4 
PP instruction 3-5 
VFD instruction 4-53 

Plus on listing 11-6, D-2, D-3 
Plus operator 2-21, 2-23, 8-11 
Point 

Binary 2-18, 2-19 
Decimal 2-18, 2-19 
Octal 2-18, 2-19 
Parameter separator 5-8, 5-13, 5-16, 5-25, 5-28 
Register designator 2-8 

Population unit 8-43 
POS pseudo 4-40 
Position counter 

Control 4-40, 4-53 
Description 3-4 
Special element 2-9, 3-4 

Post radix 2-17 
PP instructions 9-1 

A-register 1/0 9-22 
Block 1/0 9-22 
Branch 1/0 9-19, 9-21 
Branch 9-7 
Central read/write 9-18 
Channel function 9-24 
Constant mode 9-11 
Designators 9-3 
Direct address 9-15 
Error stop 9-25 
Exchange jump 9-12 
Format 9-1 

lndex-10 

PP imtructions (Contd) 
Ftmctions 9-6 
Indexed direct address 9-16 
Indirect address 9-15 
No address 9-10 
No operation 9-11 
Output record flag 9-23 
Shift 9-9 

PPOP 
Description 6-3 
Example 5-12, 6-5 
Permissible anywhere 4-2 

PPU pseudo 
Description 4-8 
Effect on branch 9-8 
Example 4-10, 4-54 
First statement group 4-2 

Prefix table 
Comments 4-20 
Generation 3-6 thru 3-8 
Suppression 4-21 

Preradix 2-17 
Program, absolute 3-6, 4-6 
Program example D-1 thru D-8 
Program execution 10-5 
Program identification 4-2 
Program origin 4-3 
Program, relocatable 3-5 
Program stop instruction 8-13 
Program structure 3-1 
PS control statement option 10-4 
PS instruction 

Description 8-13 
Force upper 3-4 

Pseudo instructions 
Binary control 4-6 
Block counter control 4-32 
Conditional assembly 4-59 
Data generation 4-4'1 
Definition operation 5-1 
Error control 4-'11 
First statement group 4-2 
Introduction 4-1 
Listing control 4-'13 
Micro '1-1 
Mode control 4-24 
Operation code table management 6-1 
Operation field entry 2-2 
Permissible anywhere 4-2 
Required 4-2 
Subprogram identification 4-2 
Subprogram linkage 4-45 
Symbol definition 4-40 
Types 4-1 

PSN instruction 9-11 
PURGDEF pseudo 

Description 6-10 
Permissible anywhere 4-2 

PURGMAC pseudo 
Description 6-7 
Example 6-6 
Permissible anywhere 4-2 

Push down stack 1-3 
PXi instruction 8-36 

Q to represent expression 5-27, 6-8 
QUAL micro 7-6 
QUAL pseudo 

Description 4-28 
Example 4-13, 4-30, 5-22 
Permissible anywhere 4-2 

Qualifier, symbol 4-28 
Used for definition operations 5-2 

60492600 H 



R error 11-11 
R hardware feature code 4-8 
R list option 4-75 
R register 9-2, 9-3 
RAD instruction 

Description 9-15 
Replace function 9-7 

Radix 2-17 
RAI instruction 

Description 9-15 
Replace function 9-7 

RAM instruction 
Description 9-16 
Replace function 9-7 

RE instruction 
Description 8-15 
Force upper 3-4 

Read central memory instruction 8-46, 9-17 
Real-time clock set instruction 8-21 
Record name, external text 5-3 
Recursion level 1-4, 5-1 
Recursion stack 1-4, 5-1 
Reference 

Macro 5-18 
Macroe 5-24 
Nested 5-1 
Opdef 5-27 

Reference table, symbolic 11-13 
Register designators 

CPOP 6-7 
Description 2-8, 8-7 
Not symbols 2-5 
OPDEF 5-27 
OPSYN 6-5 
PURGDEF 6-10 

Registers, CPU 2-8, 8-7 
RR.ADC macro 12-28 
READH macro 12-28 
READO macro 12-29 
READS macro 12-29 
READW macro 12-29 
RECALL macro 12-30 
REL attribute 4-66 
Relocatable program structure 3-5 
Relocatable test 4-66 
Relocation, CM access 9-2 
Relocation register 

Description 9-2, 9-3 
Load and store instructions 9-12 

Remote assembly 5-3 
REP pseudo 4-57 
REPC pseudo 4-57 
Repeat count 

DUP 5-7 
Replication 4-57 

REPI pseudo 
Example 4-57 
Description 4-57 
Illegal if absolute 4-6, 4-9, 4-10 

REPL table 
Result of B~Z 4-48 
Result of REP, REPC, or REPI 4-57 
Written by SEGMENT 4-15 

Replace functions, PP 9-7 
Replication of code 4-57 
Return jump, CPU 8-14 
RFN instruction 9-23 
RI instruction 8-21 
Right shift 8-32, 8-33 
RJ instruction 

Description 8-14 
Example 4-33, 5-21, 8-15 
Force upper 3-5 

RJM instruction 9-7 

60492600 H 

RL instruction 8-16 
RMT pseudo 

Description 5-3 
Example 5-5, 5-6 
Permissible anywhere 4-2 

RO instruction 8-22 
Round and normalize instruction 8-35 
RPN instructions 9-13 
RXi instructions 

Add 8-38 
Divide 8-43 
Multiply 8-40 

RXj instruction 8-20 
R= pseudo 

Description 4-55 
Example 4-55, 5-21 
illegal in PP program 4-9, 4-10 

S list option 4-75 
S numeric data modifier 2-18 
S storage flag 11-14 
S system text mode 10-5 
SAi instructions 

Description 8-44 
Example 2-15, 2-16, 2-19, 4-33, 4-38, 5-22, 

33, 8-45 
SBD instruction 

Arithmetic function 9-6 
Description 9-15 

SBI instruction 
Arithmetic function 9-6 
Description 9-15 

SBi instructions 
Description 8-46 
Example 2-9, 2-12, 8-47 

SBM instruction 
Arithmetic function 9-6 
Description 9-16 

SBN instruction 
Arithmetic function 9-6 
Description 9-10 

Scale, binary 2-18 
SCF instruction 9-20 
SCM blank common 3-3 
SCM labeled common 3-2 
SCN instruction 

Description 9-10 
Logical function 9-6 

SEG pseudo 
Binary generation 3-12 
Description 4-15 
Example 4-16 
Force upper 3-4 
illegal in PP program 4-9, 4-10 

SEGMENT pseudo 
Binary generation 3-8 thru 3-10, 3-12 
Description 4-16 
Example 4-17 
Force upper 3-4 
illegal in PP program 4-9, 4-10 
Overlay structlD'e 3-10, 3-12 

Semicolon in definition 5-8, 5-13 
SEQUENCE micro 7-7 
Sequencing 

Listing 11-7 
Statement 2-1 

SET attribute 4-66 
Set regiSfer instructions 8-44 thru 8-49 
SET pseudo 

Description 4-41 
Example 2-9, 2-20, 5-11, 5-22 
Listing 11-6 

SFM instruction 9-20 

lndex-11 



Shift 
Description of unit 8-3, 8-6 
CPU instructions 8-31 thru 8-33 
PP instruction 9-9 

SHN instruction 9-9 
Short jump limit 4-9, 4-11 
Short list 10-4 
Single precision instructions 

Add rounded 8-38 
Add unrounded 8-37 
Divide rounded 8-43 
Di vi de unrounded 8-42 
Multiply rounded 8-40 
Multiply unrounded 8-39 

SKIP pseudo 
Description 4-70 
Permissible anywhere 4-2 

Slant bar 
Local symbol separator 5-31 
Operator 2-22 
Parameter separator 5-8, 5-13, 5-16, 5-24, 5-28 

SOD instruction 
Description 9-15 
Replace function 9-7 

SOI instruction 
Description 9-15 
Replace function 9-7 

SOM instruction 
Description 9-16 
Replace function 9-7 

Space, embedded (see blank) 
SPACE pseudo 

Description 4-76 
Permissible anywhere 4-2 

Special elements 
FORTRAN call 2-9 
General description 2-9 
In variable field 2-2 
Location counter 3-4 
Origin counter 3-3 
Position counter 3-4 

SRD instruction 9-12 
SST attribute 4-67 
SST pseudo 4-45 

Example 4-13 
Permissible anywhere 4-2 

Stack, recursion 1-4, 5-1 
Statement 

Coding conventions 2-3 
Comments 2-2 
Compressed 5-1 
Continuation 2-2 
External source 5-2 
First column 2-1 
First gro~ 4-1 
Format 2-1 
Listing 11-5 
Number assembled 11-8 
Size 2-1 
Source of 5-1, 10-3 

Statistics, assembler 11-8 
STD instruction 

Data transmission function 9-6 
Description 9-15 

STEXT pseudo 
Description 4-17 
Example 4-19 
First statement group 4-2 

STI instruction 
Data transmission function 9-6 
Description 9-15 

STM instruction 
Data transmission function 9-6 
Description 9-16 

Index-12 

STOPDUP pseudo 
Description 5-9 
Example 5-11 

Storage reservation 4-37, 4-48 
String, character 

Comparison 4-68 
Data generation 4-49 
Delimited 2-11, 2-14 
Empty 2-14 
Micro 2-4 
Notation 2-13 

Strong external 2-7 
Subprogram length 3-5 
Substitution, micro 7-1 
Subsubtitle 

CTEXT 4-79 
EJECT 4-76 
Listing of 11-1 
QUAL 4-28 
SPACE 4-76 
TITLE 4-77 
TrL 4-78 

Subtitle 
CTEXT 4-79 
Listing of 11-1 
TITLE 4-77 

SXi instruction 
Description 8-48 
Example 2-15, 2-19, 5-21, 5-31, 8-49 

Symbol 
Attribute 2-6, 4-40, 4-66 
Created 5-32 
Default 2-7 
Definition 2-5, 4-40 
Duplicate 2-6 
Entry point 2-6 
External 2-7 
Invented 5-32, 11-8 
Literals 2-6 
Local to macro 5-13, 5-31 
Local to QUAL 3-1 
Location field 2-6 
Lost 11-8, 11-13 
Number defined 11-8 
Number referenced 11-8 
Previously defined 2-7 
Qualified 2-7' 4-27 
Redefinition 4-29, 4-41 
System-defined 2-6, 4-45 
Undefined 2-7 
Value 2-6, 4-39 

Symbol qualifier listed 11-1 
Symbol table 

Clearing 3-10, 3-12 
System text 4-17 

Symbolic notation 8-1, 9-1 
Symbolic reference table 

Address reference 4-80 
Detailed description 11-12 
General description 4-73 
Generation 1-3 
List control 4-73, 10-3 
Omit symbol 4-78 

Synonymous operation 
CPU 6-10 
Mnemonic 6-5 
pp 6-5 
Syntactic 6-7 

Syntax definition 5-27, 6-7, 6-10 
Syntax search 6-1 
SYSTEM macro 12-30 
System text 4-19 
SYSTEXT option 10-4 

Related to G mode 10-4 
Related to STEXT 4-17 

60492600 H 



T list option 4-73 
Table 

Operation code 6-1 
Symbolic reference 11-12 
USE 4-32 

TBj instruction 8-21 
Term 2-22 
Term operator 2-22 
Terminator, macro 5-13 
Test symbol attribute 4-66 
Time limit 10-1 
TIME micro 7-6 
Time of assembly 11-1 
Title 

~ 8-14 
IDE~1T 4-3 
Listing of 11-1 
PS 8-13 
TITLE 4-77 

TITLE pseudo 4-77 
Permissible anywhere 4-2 

Transfer symbol 4-4 
Transmit instruction 8-27 
Truncation, character data 2-13 

Expression value 2-26 
TTL pseudo 4-78 

Permissible anywhere 4-2 

U error 11-11 
UEM 

Block copy instructiom 8-15 
Direct transfer instructiom 8-20 

U JN instruction 
Effect of J 4-9, 4-10 
Description 9-7 

Unconditional jump 
CPU 8-23 
pp 9-7 

Underfiow error 2-18 
Unpack instruction 8-35 
USE pseudo 

Change blocks 3-1 thru 3- 3, 3-5, 4-32 
Description 4-32 
Establish common blocks 3-2, 3-3, 4-32 
Establish local blocks 3-2, 4-32 
Example 4-17, 4-30, 4-31, 4-33, 4-36, 4-38 

USE table 
Entry 4-32, 4-34, 4-35 
Reinitialization 3-10, 3-12, 4-11 

USELCM pseudo 
Description 4-34 
Establish common blocks 3-2, 3-3 
Example 4-35 
illegal in PP program 4-9, 4-10 

USER control statement 10-7 
UXi instruction 8-35 

V error 11-11 
Value, numeric 2-17 

60492600 H 

Variable field 2-2 
Variable field definition 4-53 
VFD pseudo 

Description 4-53 
Example 2-15, 4-25, 4-30, 4-33, 4-54, 5-22 

WE imtruction 
Description 8-15 
Force upper 3-4 

Weak external 2-7 
WL imtruction 8-16 
Write central memory instruction 8-46 
WRITEC macro 12-31 
WRITER macro 12-31 
WRITEO macro 12-31 
WRITES macro 12-32 
WRITEW macro 12-32 
WX:j imtruction 8-20 

X external flag 4-4 7, 11-6 
X external text mode 10-5 
X file option 

Description 10-5 
XTEXT default 5-3 

X hardware feature code 4-8 
X list option 4-7 5 
X register 

Conditional instructions 8-24 
Description 8-7 
Designator 2-8 
Setting 8-48 

XJ instruction 
Description 8-17 
Foree upper 3-4 

XREF pseudo 
Description 4-80 
Permissible anywhere 4-2 

XTEXT pseudo 5-1 
Related to CTEXT/ENDX 4-79 

XTEXT source 10-5 

Zero block 
Absolute program 3-2, 3-6, 3-7 
Description 3-2 
Relocatable program 3-5 

Zero fill 2-14, 4-53 
Zero guaranteed 

Data item 2-14 
DIS item 4-50 

Zeroed words 4-48 
ZJN instruction 

Description 9-8 
Effect of J 4-9, 4-10 

ZR instruction 
Description 8-24, 8-26 
Force upper 3-4 

ZXi Instruction 8-35 

Index-13 • 





COMMENT SHEET 

MANUAL TITLE: COMPASS Version 3 Reference Manual 

PUBLIC..~TION NOa: 60492600 

REVISION: L 

i 
I 
I 
I 

This form is not intended to be used as an order blank. Control Data Corporation 
welcomes your evaluation of this manual. Please indicate any errors J suggested 
additions or deletions, or general comments on the back (please include page number 
references). 

I 
i 
! 
5 
I 
I 
I 
I 
I 

Please reply No reply necessary 

I 
: FOLD FOLD 

·--------------------------------------------------------------------------------------------------• I 
I • I 

' I 
I 
I 
I 

' I I 
I 

111111 

BUSINESS REPLY MAIL 
FIRST a.ASS PERMIT NO. 8241 MINNEAPOLIS, MINN. 

POST AGE Will Bl PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 

P.O. BOX 3492 

Sunnyvale, California 94088-3492 

NO POSTAGE 
NECESSARY 
IF MAUD 

IN THE 
UNITED STATES 

1----------------------------------------------------------------------------------------------------i FOLD fOtO 
I 
I 
I 
I 
I 
! 
i 
I 
I 

' I I 
' I 1 I NAME: 
I 
i 
l COMPANY: 
I 
f • t STREET ADDRESS: 
t 
t • l CITY/STATE/ZIP: 
J 
r 
f .. 
' ' I 
• I 
I 
I 
I 

l TAPE 
! 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
FOLD ON DOTTED LINES AND TAPE 

TAPE 



UJ 
a: 
I I 
(!) 
z 
0 
..J 
<( 

5 
(,.J 

COMPASS VERSION 3 
SUMMARY 

Pub. No. 60492600 M 1984, 1986 

(52) 
CONTRPL 

DATA 

coc®OPERATING SYSTEMS: NOS 2, NOS/BE 1, SCOPE 2 

A 

B 

BL 

D 

E 

omitted 
A 

omitted or B 
B=O 
B=lfn 

omitted or BL=O 
BL 

omitted 
D 

omitted 
E 
E=lfn 
E=O 

omitted or F 
F=n 
F=name 

Gt omitted or G=O 
G 
G=lfn 
G=lfn/ovl 

omitted 
I 
l=lfn 

omitted or L 
L=lfn 
L=O 

LO omitted or LO=O 
LO 
LO=$$$$ 
LO=c1c2 ••• en 

Bit 50 

CONTROL STATEMENT 
COMPASS (p1 ,p2 , •.• , pn) or COMPASS. 

Do not abort 
Abort on assembly errors 

Binary on LGO 
No binary 
Binary on lfn 

Compact listing format 
Burstable listing format 

No debug mode 
Debug mode 

Error list on OUTPUT 
Error list on ERRS 
Error list on lfn 
No error list 

*F returns 0 
*F returns n (decimal) 
*F returns as follows: 

COMPASS= 0 
RUN = 1 
FTN4 = 2 
FTN5 = 3 

No system text 
System text on SYSTEXT 
Overlay on lfn 
Named overlay on lfn 

Source on INPUT 
Source on COMPILE 
Source on lfn 

Full list on OUTPUT 
List on lfn 

ML omitted or ML 
ML=string 

N omitted or 0 
N 

0 omitted or 0 
O=lfn 
0=0 

omitted 

PC omitted or PC 
PC=string 

PD omitted or other 
PD=6 
PD=8 

PS omitted or other 
PS=x 

st 

x 

omitted 
s 
S=O 
S=ovl 
S=lib/ovl 

omitted 
X=lfn 
x 

MODLEVEL returns JDATE 
MOD LEVEL returns 9-
character string 

Normal ejects 
No ejects 

Short list on OUTPUT 
Short list on lfn 
No short list 

New pagination on END 
Continue pagination 

PCOMMENT is 30 blanks 
PCOMMENT is 30-
character string 

Print density default 
Print density 6 lines/inch 
Print density 8 lines/inch 

Page size default 
Page size is x lines/page, 
where 4~x~99 

SYSTEXT overlay 
SYSTEXT on giobal library 
No system text 
Named overlay on library 
Named overlay on named 
library 

XTEXT on OLDPL 
XTEXT on lfn 
XTEXT on OPL 

No full list I 
Selects B,L,N, and R tseven G and S parameters allowed 
Selects C,F,G,X 
Selects all •ist options 
Deselects it.c1 is B.L.N. or R: II 
selects if c; is other 

MODEL 72, 73, 74 EXIT MODES 

Bit 49 Bit 48 

l INDEFINITE 
OPERAND 

OPERAND 
OUT OF RANGE l ADDRESS 

OUT OF RANGE l j 

MODEL 76 PSD REGISTER 

I 
MODE -, I CONDITION I I 

. [ ExitI Mon I Stepilnd I Ovf t Undfl LPar l SPar l LBlk I SBlk l LDirJ SDirJ Prog i Bkp l Step J Ind I Ovf I Undf 1. 
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

A 
B 

L 
N 
0 
p 

R 

u 
I v 

! 

FATAL ERRORS 
ADDRESS FIELD BAD 
DOUBLY DEFINED SYMBOL. THE FIRST 
DEFINITION HOLDS. 
ECHO, DUP, RMT, OR MACRO ILLEGALLY 
NESTED. 
NUMBER OF ENTRIES EXCEEDS PERMISSIBLE 
AMOUNT. 
LOCATION FIELD BAD. 
NEGATIVE RELOCATION ON ENTRY POINT. 
OPERATION FIELD BAD. 
CONSULT LISTING FOR REASON BEHIND 
P·ERROR 
DATA ORIGIN OUTSIDE BLOCK OR IN 
BLANK COMMON BLOCK. 
UNDEFINED SYMBOL. VALUE ASSUMED 0. 
BIT COUNT ERROR ON VFD {MUST BE 
0 <::; COUNT <::; 601 

8 
9 

INFORMATIVE ERRORS 
LOCATION SYMBOL BAD. SYMBOL NOT 
DEFINED. 
ADDRESS ERROR ON SYMBOL DEFINITIO"I. 
DUPLICATE MACRO DEFINITION. NEW ONE 
OVERRIDES. 
BAD FORMAL PARAMETER NAME IGNORED. 
CPU Of'EFtATtONSYNTAX lf\ICORRECTL Y 
SPECIFIED. 
LOCATION FIELD MEANINGLESS. 
ADDRESS VALUE EXCEEDS FIELD SIZE. 
RESULT TRUNCATED. 
MISSING OR EXTRA ADDRESS SUBFIELD 
MICRO SUBSTITUTION ERROR. NO 
SUBSTITUTION. 

STANDARD CHARACTER SETS 

CDC 

Graphic 

A 

0 

F 

G 

J 

K 

ivi 

N 

0 

Q 

R 

s 
T 

u 
v 
w 

y 

z 

6 

7 

8 
9 

+ 

blank 

(comma) 

{period I 

v 

I ASCII 

I Graphic 

Subset 

N 

0 

Q 

R 

s 
T 

u 
v 
w 
x 
y 

5 

I ~ 
8 
9 

+ 

blank 

(comma) 

lpe,;od) 

I [ 
tquoteJ 

_(underline) 

! 
I\ & 

t '(apostrophe! 

• ? 

< < 
> > 
,;; @ 

:;. \ 
-, A(circumfl~x) 

; (semicolor.) ; (semicolon) 

Display 

Code 

oat 
01 

02 

03 

04 

05 

06 

07 

10 

11 

12 

13 

14 

i5 

16 

17 

20 

21 

22 

23 

24 

25 

26 

27 

30 

31 

32 

33 

34 

35 

36 

37 

40 

41 

42 

43 

44 

45 

46 

47 

50 

51 

52 

53 

54 

55 

56 

57 

I~ 
64 

65 

66 

67 

70 

71 

72 

73 

74 

75 

76 

77 

Hollerith 

Punch 
(026) 

8-2 

12-1 

12-2 

12-3 

12-4 

12-5 

12-6 

12-7 

12-8 

12-9 

11-1 

11-2 

11-3 

11-4 

11-5 

11-6 

11-7 

11-8 

11-9 

0-2 

0-3 

0-4 

0-5 

0-6 

0-7 

0-8 

0-9 

5 

6 

7 

8 

9 

12 

11 

11-8-4 

0-1 

0-8-4 

12-8-4 

11-8-3 

8-3 

no punch 

0-8-3 

12-8-3 

0-8--6 

8-7 

0-8--2 

8-6 
8-4 

0-8-5 

11-0 

0--8-7 

11-8-5 

11-8-6 

12-0 

11-8-7 

8-5 

12-8-5 

12-8-6 

12-8-7 

61 

62 

63 

64 

65 

66 

67 

70 

71 

41 

42 

43 

44 

45 

46 

47 

50 

51 

22 

23 

24 

25 

26 

27 

30 

31 

12 

01 

02 

03 

04 

05 

I 06 

07 

10 

11 

60 
40 

54 

21 

34 

74 

53 

13 

20 

33 

73 

I~ 
14 

35 

52 

37 

55 

56 

72 

57 

15 

75 

76 

77 

ASCII 

Punch 
(029) 

8-2 

12-1 

12-2 

12-3 

12-4 

12-5 

12-6 

12-7 

12-8 

12-9 

11-1 

11-2 

11-3 

11-4 

11--5 

11-6 

11-7 

11-8 

11-9 

0-2 

0-3 

0-4 

0-5 

0-6 

0-7 

0-8 

0-9 

ASCII 

Code 

3A 

41 

42 

43 

44 

45 

46 

47 

48 
49 

4A 

48 

4C 

40 

4E 

4F 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

5A 

30 

31 

32 

33 

34 

35 

36 

37 

38 

9 39 

12-8-6 28 

11 20 

11-8-4 2A 

0-1 2F 

12-8-5 28 

11-8-5 29 

11-8-3 24 

8~6 30 

no punch 20 

0-8-3 2C 

12-8-3 2E 

I 

8-3 

' 

~~:~ 
0-8-4 

8-7 

0-8--5 

12-8-7 

12 

8-5 

0-8-7 

12-8-4 

0-8-6 

I 8-4 

I
' 0-8-2 

11-8-7 

i 11-8-6 

23 

58 

50 

25 

22 

SF 

21 

26 

27 

3F 

3C 

3E 

40 

5C 

5E 

38 

trwelve or more zero bits at the end of a 60-bit word are interpreted 
as end-of-line mark rather than two colons. End-of-line mark is 
converted to external BCD 1632. 

tt1n installations using the CDC 63-graphic set, display code 00 has no 
associated graphic or Hollerith code; display code 63 is the colon 
(8-2 punch). 

LANGUAGE 
ELEMENTS 

SPECIAL CHARACTERS 

Any Field 
..... ,~ ................... , . ...,,. ,.. Concatenation 

First Column 
* Comments line 

Continuation 

Location Field 
... Force Upper 
- Negate Force Upper 

Variable Field 
=:tern Literal 
=Ssym Deferred Symbol 
=Xsvm Strong External Svmbo! 
=Ysym Weak External Symbol 

·o Or ;gin Counter 
• o;p•L Location Counter 

Position Counter 
s Position Counter - 1 
*F Caller COMPASS 0 

RUN 1 
FTN4 2 
FTN5 3 

Subfield Delimiter 
/name/ Symbol Qualifier 

CHARACTER NOTATION 

Data I sign i n I t ! string I Item 

or 

! sign I t Id ] string I d I 

Constant i nit, string l 
Literal i =I sign! n : t ! string I 

f =i sign \ r : a \ string i d I 
t = C Left, 12 zero bits 

H Left, blank Iii I 
A Right, blank fill 
R Right. zero fill 
L Left, zero fill 
Z Left, 6 zero bits 

d = delimiter character 
n = no. of characters 
stnng - Code characters 

NUMERIC NOTATION 

l 

I 
I 
I 
I 

' 
f 
I 
! 

Literal 

r sign T prerx I valueT moas ! 

I value I mods i I 
I = j sign I prerx I value I moos! , 

Mods Spec Default 
Sign +or - + 
Radix 0 or B BASE 

I pre/post) or D Pseudo 
Integer n 0 
Fraction .nor. none 
Pwr 10 sgl E ort:n 

or E±n none 
Pwr 10 dbl EE or EEn 

or EE+r> none 
Pwr 2 Sor Sn 

or S±n none 
Binary pt P or Pn 

or P±n none 

SYSTEM MICROS 

DATE 
JDATE 
TIME 
BASE 
CODE 

OUAL 
SEQUENCE 
MOD LEVEL 
PCOMMENT 

PSEUDO 
INSTRUCTIONS 

PROGRAM DEFINITION 

IDENT name,fwa,eprsvm 
SVrii rrasym 

BINARY CONTROL 

ABS 
MEMSEL 
MACHINE tyµt:!)d

1 
,hf:, , Mn 

type = 6, 7, or 8 hf;= C.D.l,L.X 
PPU J 
PERI PH j 

C!PPU 
!DENT name. org, entry, ' 1 • ~, 
IDENT name, org, entry, ppu 

name SEGMENT fwa,eptsvm 
SET 

record STEXT 
LDSET p, ,p,,. · ·, Pn 
LCC directive 
COMMENTstring 
NOLABEL I 

MODE CONTROL 

mname BASE 0 or 0 or Mor* 
CODE A or Dor E or i or* 
OUAL name or* 
B1°-1 
B7~1 

COL I) 

COUNTER CONTROL 

svm 

USE *or name or //or /name/ 
USELCM *or name or I! or /narne/ 
ORG exp 
ORGC 
BSS 
LOC 
POS 

exp 
exp 
exp 
aexp 

SYMBOL DEFINITION 

sym = exp 
sym EOU exp 
svm SET exp 
sym MAX exp, .exp2,,, ., exp

0 

sym MIN exp, ,f!xp,.. . exp, 
sym MICCNT mname 

SST svm ... 

LINKAGE CONTROL 

ENTRY 
ENTRYC 
EXT 

svm1.svm2 •... ,svmn 
~y"Oii ,Sytni, ... ,symr 

sym 1,sym 2 , • • ,symn 

DATA GENERATION 

svm 
svm 
sym 
sym 
sym 
sym 
sym 
sym 

BSSZ 
DATA 
DIS 
DIS 
LIT 
VFD 
CON 
R= 
REP 
REPC 
REPI 

exp 
item 1, . ,itemn 
n,string 
.dstringd 
item 1 ,. Jtemn 
item 1 /exp 1 , ,exp0 
item, !exp, •... ,exp, 
reg.exp 
Staddr,D/addr,C/rep,B/bsz.l/inc 
S/addr, D/addr,C/rep,B/bsz, I/inc 
Siaddr.D!addr,Cfrf!p,B!bsz,l!inc 

ERROR FLAG 

t ERR 
ERRop aexp 

op~ ZR. NZ, PL, NG. Ml 

l CONDITIONAL ASSEMBLY 

i 
I 

I 
I 
i 
I 
! 

name iFop 
IF Mi 

na1ne IFPL 
name IFCP 
name IFCP6 
name IFCP7 
name !FPP 
name IFPP6 
name IFPP7 
namf! IF 
name IF 

exp 1 ,exo, ,£net 
exp ~nu 
exp,Qncr 
Qncr 
enct 
£net 
2nct 
Qnct 
enct 
att,f!xo,Qnct 

-att,exp,Qncr 

GE 
GT 

lliJ 
name IFC op,dstring 1 dstring, d, Qnct 
namf! IFC -op,dstring 1 dstring2d, £net 
name ENDIF 
namf! ELSE Qnct 
name SKIP Qnct 

LIST CONTROL 

LIST Pt ,P2,. ,Pn or* 
p=A Assembly 

B Binary control 
c Control statements 
D Detail 
E Echoed lines 
F IF -Skipped lines 
G Code genera! ion 
L Reference table only 
M User macros 
N Referenced symbols only 
R No references 
s System macros 
T SST symbols 
x XTEXT lines 

name EJECT 
name SPACE aexp 1 ,aexp"2 
name -:-ITLE string 

NOREF ;ym,, 
name TTt s.rmg 
name CTEXT stnng 

ENDX 
XREF A or B 

DEFINITION OPERATIONS 

file 
name 
name 
name 

name 
name 
n.ame_ 

name 

svtx 
name 

XTEXT 
DUP 
ECHO 
ENDO 
STOPDUP 
RMT 
HERE 
MACRO 
MACRO 
MAC ROE 
MAC ROE 
OP DEF 
ENDM 

record 
rep,Qnct 
Qnct,p 1 =llist1 ),p, =(list2 ), . 

p, .,,, •. -. .,p_ 

name.p, ,p,'' ',,pn 
Pt .P2 •. , .,pn 
name,p 1,p 2 , •• . ,pn 
P1.P2,,, .,pn 

LOCP..L 51.-r·•"l!, ,svmn 
IRP p 

OP CODE MANAGEMENT 

name PPOP 
name1 OPSYN 

N:L 
PURGMA.C 
PURGDEF 

sytx CPOP 
sycx 1 CPSYN 

MICRO 

mname MICRO 
rrname MICRO 
mname DECMIC 
mname OCTMIC 

ct!, vaf, type 
name, 

name 1 ,name:, 
svtx 
ctl,va/Jeg,type 
svtx, 

n 1 ,n 2 .dstringd 
n 1 ,dstrmgd. 
aexp,n 
aexp,n 

COM 
DEF 

'EXT 
LCM 

~LOC MIC 

I REG 

'RELi I SET 
I SST ; 

I 
I 
I 
I 

I 
l 
I 
I 



CPU 
INSTRUCTIONS 

Instruction 

00000 
OOOOK 
OlOOK 
011jK 
OlljK 
012jK 
012jK 
01300 
013jK 
013jK 
014jk 
015ik 
0160k 
016jk 

016j0 
0170k 
017jk 

02iOK 
030jK 
031jK 
032iK 
033jK 
033jK 
034jK 
035jK 
036iK 
037jK 
0400K 
0400K 
04ijK 
04iOK 
05ijK 
OSiOK 
06ijK 
06iOK 
06ijK 
060jK 
06iOK 
07i0K 
07ijK 
07iOK 
07ijK 
070jK 
07i0K 
10iii 
1 lijk 
12ijk 
13ijk 
14ikk 
15ijk 
16ijk 

17ijk 
20ijk 
2lijk 
22iik 
22iji 
22iOK 
22ijk 
23ijk 
23iji 
23i0k 
23ijk 
24ijk 
24i0i 
2<1i11 
2<1i0k 
24ijk 
24iik 
25ijk 
25i0i 
25iji 
25i0k 
25ijk 
25ijk 
26ijk 
26i0i 
26iji 
26i0k 
26ijk 
26iik 

27ijk 
27i0i 
27iji 
27i0k 
27ijk 
30iik 
31ijk 
32ijk 
33ijk 
34ijk 
35iik 
36iik 
37ijk 
40ijk 
41ijk 
42iik 

Operation 

ES CD® 
PS @@) 
RJ 
RL CD@ 

~~ ;1~ WE 4 
MJ 3 
MJ 3@ 
XJ 0@~@ 
RXj G)@4 
WXj G)Ql 4 
RI (!)@@ 
IBi Q)@ 

TBj Q)@ 
RO Q)@@ 
OBj Q)@@ 

JP 
ZR 
NZ 
PL 
Ml 
NG 
IR 
OR 
DF 
ID 
EO 
ZR 
EO 
ZR 
NE 
NZ 
GE 
GE 
LE 
LE 
PL 
LT 
LT 
NG 
GT 
GT 
Ml 
BXi 
BXi 
BXi 
BXi 
BXi 
BXi 
BXi 
BXi 
LXi 
A Xi 
LXi 
LXi 
LXi 
LXi 
A Xi 
A Xi 
AXi 
A Xi 
NXi, Bi 
NXi 
NXi, Bi 
NXi 
NXi 
NXi 
ZXi, Bj 
ZXi 
ZXi. Bj 
ZXi 
ZXi 
ZXi 
UXi, Bj 
UXi 
UXi, Bj 
UXi 
UXi 
UXi 

PXi 
PXi 
PXi 
PXi 
PXi 
FXi 
FXi 
DXi 
DXi 
A Xi 
RXi 
I Xi 
I Xi 
FXi 
A Xi 
I Xi 

@ 
@ 
@ 

CYBER 70 Model 76, and 7600 

CYBER 170 Models 171, 172. 173. 174. 175, 720. 730. 740. 750, and 760; 
CYBER 70 Models 71, 72, 73. and 74; and 6000 Series 
CYBER 170 Model 176 

CYBER 170 Models 815, 825. 835, 845, and 855; and CYBER 180 Series 
Privileged to monitor 

Variable I 
K 
K 
Bj±K 
Bj±K 
Bj±K 
Bj±K 

Bj±K 
BJ±K 
Xk 
Xk 
Bk 
Bk 

Bk 
Bk 

Bi+K 
Xj,K 
Xj,K 
Xj,K 
Xi.K 
Xj,K 
Xj,K 
Xj,K 
Xj,K 
Xj,K 
K 
K 
Bi, Bj, K 
Bi, K 
Bi, Bj, K 
Bi. K 
Bi, Bi. K 
Bi, K 
Bj, Bi, K 
Bj, K 
Bi, K 
Bi, K 
Bi, Bi. K 
Bi, K 
Bj, Bi, K 
Bj, K 
Bi, K 
Xj 

Xi•Xk 
Xj+Xk 
Xj-Xk 
-Xk 
-Xk• Xi 
-Xk+Xj 
-Xk-Xj 
jk 
jk 
Bi. Xk 
Bi 
Xk 
Xk, Bj 
Bj, Xk 
Bj 
Xk 
Xk, Bi 
Xk 

Xk 
Bj, Xk 
Xk, Bi 
Xk 

Xk 
Bi. Xk 
Xk, Bi 
Xk 

Xk 
Bi. Xk 
Xk, Bj 

Bi. Xk 

Bj 
Xk 
Xk, Bi 
Xj+Xk 
Xj-Xk 
Xj+Xk 
Xj-Xk 
Xi+Xk 
Xj-Xk 
Xj+Xk 
Xj-Xk 
Xj *Xk 
Xj*Xk 
Xj*Xk 

Error exit to EEA 
Program stop 
Return jump to K 

Description 

Block-copy K plus (Bj) words from LCM to SCM 
Read extended core storage 
Block-copy K plus (Bj) words from SCM to LCM 
Write extended core storage 
Exchange-exit to NEA if exit flag clear 
Excha119ll-exit to K +(Bil if exit flag set 
Central exchange jump to Bj+K 
Read LCM at (Xkl to Xi 
Write (Xj) into LCM at (Xk) 
Reset channel (Bk) input buffer 
Read channel {Bk) input status to Bi if j * 0; 

otherwise, same as RI 
Set Bj to current clock time 
Reset channel (Bk) output buffer 
Read channel (Bk) output status to Bj if j o# O; otherwise, 

same as RO 
Jump to K plus (Bi) 
Branch to K if (Xj) = 0 
Branch to Kif (Xj) * 0 
Branch to K if (Xj) sign is plus 
Branch to Kif (Xj) sign is minus 
Branch to K if {Xj) sign is minus 
Branch to K if (Xii in raJ19e 
Branch to K if (Xj) not in range 
Branch to K if {Xj) definite 
Branch to Kif (Xj) indefinite 
Branch to K 
Branch to K 
Branch to K if (Bi) =(Bi) 
Branch to K if (Bi) = 0 
Branch to K if (Bi) * (Bj) 
Branch to K if (Bi) i:- 0 
Branch to K if (Bi) ~ (Bj) 
Branch to K if (Bil > 0 
Branch to K if (Bj) ~ (Bi) 
Branch to Kif (Bj) ~ 0 
Branch to K if (Bi) > 0 
Branch to K if (Bi) <'. 0 
Branch to K if (Bi) < {Bj) 
Branch to K if (Bi) < 0 
Branch to K if (Bj) > (Bi) 
Branch to K if (Bjl > 0 
Branch to K if (Bi) < 0 
Copy (Xjl to Xi 
Logical product of (Xj) and (Xk) to Xi 
Logical sum of (Xj) plus (Xkl to Xi 
Logical difference of (Xj) minus (Xk) to Xi 
Copy complement of (Xk) to Xi 

Logical I 
Operators 

* ~~~ ! 
0100 

0100 
1101 
1101 

0100 
1101 
1001 

Logical product of (Xj) and complement of (Xk) to Xi 
Logical sum of (Xj) plus complement of (Xk) to Xi 
Logical difference of (Xj) minus complement of (Xk) to Xi 
Logical-shift (Xi) by t jk 
Arithmetic-shift (Xi) by± jk 
Logical-shift (Xk) by (Bj) to Xi 
Logical-shift (Xi) by IBjl to Xi 
Transmit (Xk) to Xi 
Logical-shift ( Xk) by {Bil to Xi 
Arithmetic-shift (Xk) by (Bj) to Xi 
Arithmetic-shift (Xi) by (Bj) to Xi 
Transmit (Xk) to Xi 
Arithmetic-shift (Xk) by (Bil to Xi 
Normalize (Xk) to Xi and Bi 
Normalize (Xi) to Xi 
Normalize (Xii to Xi and Bj 
Normalize (Xk) to Xi 
Normalize (Xkl to Xi and Bi 
Normalize (Xk) to Xi and Bi 
Round and normalize (Xk) to Xi and Bi 
Round and normalize (Xi) to Xi 
Round and normalize (Xi) to Xi and Bi 
Round and normalize (Xk) to Xi 
Round and normalize (Xkl to Xi and Bi 
Round and normalize (Xkl to Xi and Bj 
Unpack (Xk) to Xi and Bi 
Unpaci< (Xi) to Xi 
Unpack (Xi) to Xi and Bi 
Unpack (Xk) to Xi 
Unpack (Xk) to Xi and Bj 
Unpack (Xk) to Xi and Bi 

Pack (Xk) and (Bj) to Xi 
Pack (Xi) to Xi 
Pack (Xi) and (Bj) to Xi 
Pack (Xkl to Xi 
Pack (Xkl and (Bj) to Xi 
Sum of (Xj) plus (Xk) to Xi 
Difference of (XjJ minus (Xk) to Xi 
Double-precision sum of (Xj) plus (Xk) to Xi 
Double-precision difference of (Xj) minus (Xk) to Xi 
Rounded sum of (Xjl plus (Xk) to Xi 
Rounded difference of IX1l minus (Xk) to Xi 
Integer sum of (XJ) plus (Xkl to Xi 
Integer difference of (Xjl minus (Xkl to Xi 
Product of IXjl times (Xk! to Xi 
Rounded product of IXji times (Xk) to Xi 
Integer product of (Xjl times (Xkl to Xi 

Instruction 

42iJk 
43ijk 
44ijk 
45ijk 
46000 
47ikk 
50ijK 
51ijK 
51i0K 
52ijK 
53ijk 
53ijk 
53ij0 
54ijk 
54ijk 
54ij0 
55ijk 
55ijk 
56ijk 
56ij0 
57ijk 
57i0k 
57ijk 
60ijK 
61ijK 
61i0K 
62ijK 
63ijk 
63i0k 
64ijk 
64ijk 
64ij0 
65ijk 
65ijk 
660jk 
66ijk 
66ij0 
670jk 
67ijk 
67i0k 
67ijk 
70ijK 
71ijK 
71i0K 
72ijK 
73ijk 
73ijk 
73i0k 
74ijk 
74ijk 
74ij0 
75ijk 
75ijk 
76ijk 
76ij0 
77ijk 
77i0k 
77ijk 

Operation 

DXi 
MXi 
FXi 
A Xi 
NO 
CXi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SAi 
SBi 
SBi 
SBi 
SBi 
SBi 
SBi 
SBi 
SBi 
SBi 
SBi 
SBi 
CR@ 
SBi 
SBi 
CW@ 
SBi 
SBi 
SBi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 
SXi 

Variable 

Xi *Xk 
±jk 
Xj/Xk 
Xj/Xk 

Xk 
Aj±K 
Bj±K 
K 
Xj±K 
Xi+ Bk 
Bk+Xj 
Xj 
Aj+Bk 
Bk+Aj 
Ai 
Aj-Bk 
-Bk+Aj 
Bj+Bk 
Bj 
Bj-Bk 
-Bk 
-Bk+Bi 
Aj±K 
Bj±K 
K 
Xj±K 
Bk+Xj 
Xj 
Aj+Bk 
Bk+Aj 
Ai 
Ai-Bk 
-Bk+Aj 
Xj,Xk 
Bj+Bk 
Bj 
Xi,Xk 
Bj-Bk 
-Bk 
-Bk+Bj 
Aj±K 
Bj±K 
K 
Xj+K 
Xj+Bk 
Bk+Xj 
Xj 
Aj+Bk 
Bk+Aj 
Aj 
Ai-Bk 
-Bk+Aj 
Bj+Bk 
Bj 
Bj-Bk 
-Bk 
-Bk+Bj 

Description 

Double-precision product of (XJ) times (Xk) to Xi 
Form mask of ' ik bits in Xi 
Divide !Xjl by !Xkl to Xi 
Rounded divide !Xj) by (Xkl to Xi 
Pass (do-nothing) 
Population count of(Xk) to Xi 
(Aj) plus K to Ai 
(Bj) plus K to Ai 
K plus 0 to Ai 
!Xj) plus K to Ai 
(Xj) plus (Bk) to Ai 
(Bk) plus (Xi) to Ai 
(Xj) plus 0 to Ai 
(Aj) plus (Bk) to Ai 
(Bk) plus (Aj) to Ai 
(Aj) plus 0 to Ai 

FUNCTIONAL UNITS 

(Aj) minus (Bk) to Ai 
(Aj) minus (Bk) to Ai 
(Bj) plus (Bk) to Ai 
(Bj) plus 0 to Ai 
(Bj) minus (Bk) to Ai 
0 minus (Bk) to Ai 
(Bj) minus (Bk) to Ai 
(Aj) plus K to Bi 
(Bj) plus K to Bi 
K plus 0 to Bi 
(Xj) plus K to Bi 
(Bk) plus (Xj) to Bi 
(Xj) plus 0 to Bi 
(Aj) plus (Bk) to Bi 
(Bk) plus (Aj) to Bi 
(Aj) plus 0 to Bi 
(Aj) minus !Bk) to Bi 
(Aj) minus (Bk) to Bi 
Read central memory 
(Bj) plus (Bk) to Bi 
(Bj) plus 0 to Bi 
Write central memory 
(Bj) minus (Bk) to Bi 
0 minus (Bk) to Bi 
(Bj) minus (Bk) to Bi 
(Aj) plus K to Xi 
(Bj) plus K to Xi 
K plusO to Xi 
(Xj) plus K to Xi 
(Xj) plus (Bkl to Xi 
(Bk) plu~ (Xj) to Xi 
(Xj) plus 0 to Xi 
(Aj) plus (Bk) to Xi 
(Bk) plus (Aj) to Xi 
{Aj) p!us 0 to Xi 
(Aj) minus (Bk) to Xi 
(Aj) minus (Bkl to Xi 
(Bj) plus !Bk) to Xi 
(Bj) plus 0 to Xi 
(Bj) minus (Bk) to Xi 
0 minus (Bk) to Xi 
(Bj) minus (Bk) to Xi 

Model 74 
Octal 
Codes 

Boolean 
---r0-11 
Shift 
-W-27 

43 
FP Add 
~5 
Long Add 

36, 37 
FP Multiply 

40-42 
FP Divide 
~47 
Increment 
~ 

Model 76 
Octal 
Codes 

Boolean 
----,a:-;] 

26,27 
Shift 
---W-23 

43 
Normalize 
~ 
FP Add 

30-35 
Long Add 

36, 37 
FP Multiply 

40-42 
FP Divide 
~ 
Population 
--47--

Instruction 

17d 
20d m 
21d m 
22d m 
23d m 
2400 
24d 
25d 
260d 
260d 
261d 
262d 
270d 
270d 
30d 
31d 
32d 
33d 
34d 
35d 
36d 
37d 
40d 
41d 
42d 
43d 
44d 
45d 
46d 
47d 
50d m 
51d m 
52d m 
53d m 
54d m 
55d m 
56d m 
57d m 
60d m 
60d 
61d m 
61d 

62d m 
62d 
63d m 
63d m 
644d m 
64d m 
64d m 
654dm 
65dm 
65dm 
664dm 
66dm 
66d m 
674d m 
67d m 
67d m 

..... ~~~~.-.~~~~~~--~~~~.-.~~~~~~~~~~~~~~~~~~~~~~~~ 70d 

CMU INSTRUCTIONS 

71d m 
72d 
73d m 
74d 
74d 
75d 

1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-1 76d 

Instruction Operation Variable Description 77d m 
7700 

464 Jo K IM K Move data according to word at K 1000d 

464 Ji K IM Bj+K Move data according to word at Bj+K ~~~~ 
464 J! 000000 IM Bj Move data according to word at Bj 1023d 

OJ £u ~ j.L cs\;d kd MD Q ,ks,cs,kd,cd Indirect move descriptor word 1024d m 

!~~]Qu kk'i_ _!_L ~I,d kkd ~~ ~ ·~s·~s·~d·cd ~:pat : 0
;:llated ~g~ 

~· eu 'a Q L Ca-b b L. a• a· b•cb 1031d 
467 lQU ka e L ca'cb , kb CU Q ,ka,ca.kb.cb Compare uncollated 1032d 

1--~--=-~--~~---~--~---~--~~~~---~~~~,.__---~~~~~~~~~~~~~--t 1033d 

pp 

INSTRUCTIONS 

(j) 
@ 

® 
@ 
@ 

CVBER 70 Model 76. and 7fiPO 
CYBER 170 Models 171, 1721 173, 174, 175. 720, 730, 740, 750, and 760; 
CYBER 70 Models 71. 72. 73, and 74; and 6000 Series 
CVBER 170 Model 176 

CYBER 170 Models 825, 835. and 855 
d is required 

1034d 
1035d 
1036d 
1037d 
1040d 
1041d 
1042d 
1043d 
1044d 
1045d 

1--~~~--.~~~~~~...--~~~~--.-~~~~~~~~~~~~~~~~~~~~~--t 1046d 

Instruction Operation Variable Description 1047d 
1050d m 

i--~~~~+-~~~~~-i~~~~~-t-~~~~~~~~~~~~~~~~~~~~~~~~1051dm 

Old m 
02d m 
03d 
04d 
05d 
06d 
07d 
10r 
lld 
12d 
13d 
14d 
15d 
16d 

LJM 
RJM 
UJN 
ZJN 
NJN 
PJN 
MJN 
SHN 
LMN 
LPN 
SCN 
LON 
LCN 
AON 

m,d 
m.d 
r 
r 
r 
r 
r 
r 
d 
d 
d 
d 
d 
d 

Long jump to m + (d) 
Return jump tom+ (d) 
Unconditional jump to p + r 
Zero jump to p + r 
Nonzero jump to p + r 
Positive jump to p + r 
Negative jump to p + r 
Shift (A) left-circular (+r) or right-end off (-r) 
Logical difference, (A)-d-+A 
Logical product; (II.)* d-+ A 
Selective clear; {Al at each d bit set 
Load d -+A 
Load complement d-+ A 
Add d + (A)_. A 

1052d m 
1053d m 
1054d m 
1055d m 
1056d m 
1057d m 

1060d 
1061d m 
1062d 
1063d m 
1064X cm 
1065X cm 
1071X cm 
1073X cm 

Operation 

SBN 
LDC 
ADC 
LPC 
LMC 
PSN 
LAD 
SAD 
EXN 
ETN 
MXN 
MAN 
RPN 
ERN 
LOO 
ADD 
SBD 
LMD 
STD 
RAD 
ADD 
SOD 
LDI 
ADI 
SBI 
LMI 
STI 
RAI 
AOI 
SOI 
LDM 
ADM 
SBM 
tMM 
STM 
RAM 
AOM 
SOM 
FIM 
CAD 
EIM 
CAM 

IRM 
CWD 
NIM 
CWM 
SCF 
FOM 
A.JM 
CCF 
EOM 
IJM 
SFM 
ORM 
FJM 
CFM 
NOM 
EJM 
IAN 
IAM 
OAN 
OAM 
RFN 
ACN 
DCN 
FAN 
FNC 
ESN 
RDSL 
RDCL 
LPDL 
LPIL 
LPML 
INPN 
LDDL 
ADDL 
SBDL 
LMDL 
STOL 
RADL 
AODL 
SODL 
LOIL 
ADIL 
SBIL 
LMIL 
STIL 
RAIL 
AOIL 
SOIL 
LOML 
ADML 
SBML 
LMML 
STML 
RAML 
AOML 
SOML 
CRDL 
CRML 
CWDL 
CWML 
FSJM 
FCJM 
IAPM 
OAPM 

Variable 

d ® 
d ® 
d ~@@ 
d 2 
d (,< 
d ~@ 
d~ 
~ (£, 

d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 1@ 
d - 2 3@ 

~:~ ~~® 
m,d(D@ 

d ~3@ m, d 1 5 
m, d 2 3@ 
m d 4 

m: ~® m,d 2@@ 
m.d 4 

m.d~·~ 
m,d 2 @@ 
m,d 4 

m.d~@ 
m,d 2@@ 
m,d 4 

m,dQ)@ 
m,d@@)@ 
d 
m,d@) 
d 0 
m,d 
d CD 
d 01@ 
d ~3@ d 2 "3@ 
m, d 2 3@ 
d G) 
d 
d 
d 
d 
m, d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 
m,d 

d ®i@ 
m,d$3@ 
d 2 3 © 
m,d 2@@) 
m, c 
m, c 
m, c 
m, c 

Subtract IAl-d --+A 
Load c---+A 
Add (A.I+ c->A 

Description 

Logical product; IA)* c-+ A 
Logical difference; (A)-c-A 
Pass 
Load (R) from d and d+1 
Store (R) into d and d+1 
Exchange jump CPU d unconditionally to (Al 
6416 Extended transfer 
Monitor exchange jump CPU d to (A) 
Monitor exchange jump CPU d to (MA) 
Read program address of CPU d to A 
6416 Extended read status 
Load (dl-A 
Add (A)+ (d)-A 
Subtract (A)-(d)-A 
Logical difference; (Al and (d)-+ A 
Store (A)-+d 
Replace add; (d) + (Al-+ d and A 
Replace add one: (d) + 1 ->d and A 
Replace subtract one; (d)-1- d and A 
Load ((dH-A 
Add (A)+ ((d))-+ A 
Subtract (A)-((d))->A 
Logical differ!!nce; (A)-((d))->A 
Store (A)--+ (d) 
Replace add; (A)+ ((d))- (d) and A 
Replace add one; ((d)) + 1---+ (d) and A 
Replace subtract one; ((d))-1-+ (d) 
Load (m + (d))-+ A 
Add (m + Id}) + (A)-> A 
Subtract (A)-(m +(di)-> A 
Logical difference; (A)-(m + (d))_. A 
Store (A).._. m + (d) 
Replace add; (A) + (m + (d))-+ m + (di and A 
Replace add one; (m + (d)) + 1-+m + (d) and A 
Replace subtract one; (m + (d))-1---+ m + (d) and A 
Jump to m on input word flag on channel d 
Central read from (A) to d 
Jump to m if no input word flag on channel d 
Central read (d) CM words beginning from CM address (A) to beginning PPU address m 

Jump to m on input record flag on channel d 
Central write from d to (A) 
Jump to m if no input record flag on channel d 
Central write (d) CM words beginning from PPU address m to beginning CM address (A) 
Branch to m if d flag set 
Jump to m on output word flag on channel d 
Jump to m if channel d is active 
Clear channel d flag 
Jump to m if no output word flag on channel d 
Jump to m if channel d is inactive 
Branch to m if channel d error flag set 
Jump to m on output record flag on channel d 
Jump tom if channel d is full 
Branch to m if channel d error flag clear 
Jump to m if no output record flag on channel d 
Jump to m if channel d is empty 
Input to A from channel d 
Input (A) words tom from channel d 
Output from A on channel d 
Output (A) words from m on channel d 
Send record flag on channel d 
Activate channel d 
Disconnect channel d 
Function (A) on channel d 
Function m on channel d 
Error stop 
Central read and set lock from d to (A) 
Central read and clear lock from d to (A) 
Logical product (di long 
Logical product ( (d)) long 
Logical product (m + (d)) long 
Interrupt processor 
Load (d)-A 
Add (A)+ (d)-A 
Subtract (A) - (d)-A 
Logical difference (A) and (d)-A 
Store IA)-d 
Replace add (d) + (Al-d and A 
Replace add (di + 1-d and A 
Replace subtract one (d) - 1-d and A 
Load ((d))-A 
Add (A)+ ((dll-A 
Subtract (A) - ((dll-A 
Logical difference (A) - ((d))-A 
Store (A)-(d) 
Replace add ((d)) + (A)-(d) and A 
Replace add one ((d)) + 1-(d) and A 
Replace subtract one ((di) - 1-(d) and A 
Load (m + (dll-A 
Add {A)+ (m + (d))-A 
Subtract (A) - (m + (dll-A 
Logical difference (A) - (m + (d))-A 
Store (A)-m + (d) 
Replace add (m + (d)) + (Al-m + (d) and A 
Replace add one (m + (d)) + 1-m + (d) and A 
Replace subtract one (m + (d)) - 1-m + (d) and A 
Central read from (A) to d 
Central read (d) CM words beginning at CM (A)-PP m 
Central write from d to (A) 
Central write (d) words beginning at PP m-CM (A) 
Jump to m if channel c flag set 
Jump to m if channel c flag clear 
Input A words to m from channel c packed 
Output A words from m on channel c packed 

------'-------"'-----"""""-----------·-------~-~---"~~--~-~--·----~,--·----~-""------""---- ·-· _____________________ .._ ____ _._ _____ __._, _____ _,_ ____________________________ __. 

I 
I 
I 

I 
I 

I 

(") 

c 
-I 

l> 
r-
0 
z 
c;i 

:I: 
m 
:D 
m 

12 
-I 

15 
z 
c;i 

1~ 
:D 

Im 

I 



PSEUDO INSTRUCTION INDEX 

Page Page 
Name Placement Usage Number Name Placement Usage Number --

ABS first group CPA 4-6 LOC normal CP,PP 4-38 
BASE anywhere CP ,PP 4-24 LOCAL macro or opdef CP ,PP 5-33 
BSS normal CP ,PP 4-37 MACHINE first group CP ,PP 4-7 
BSSZ normal CP ,PP 4-48 MACRO anywhere CP,PP 5-15 
Bl=l anywhere CP 4-30 MACROE anywhere CP ,PP 5-24 
B7=1 anywhere CP 4-30 MAX normal CP,PP 4-42 
CHAR anywhere CP ,PP 4-26 MI CC NT anywhere CP ,PP 4-44 
CODE anywhere CP ,PP 4-26 MICRO anywhere CP,PP 7-2 
COL normal CP,PP 4-31 MIN normal CP ,PP 4-43 
COMMENT anywhere CP,PP 4-20 NIL anywhere CP ,PP 6-6 
CON normal CP,PP 4-54 NO LABEL anywhere CPA,PP 4-20 
CPOP anywhere CP 6-7 NOREF anywhere CP,PP 4-78 
CPSYN anywhere CP 6-10 OCTMIC anywhere CP,PP 7-4 
CTEXT normal CP 4-79 OP DEF anywhere CP 5-27 
DATA normal CP,PP 4-48 OP SYN anywhere CP ,PP 6-5 
DECMIC anywhere CP,PP 7-4 ORG normal CP,PP 4-35 
DIS normal CP,PP 4-49 ORGC normal CP,PP 4-35 
DUP normal CP,PP 5-6 PERI PH first group pp 4-10 
ECHO normal CP,PP 5-7 POS normal CP ,PP 4-40 
EJECT anywhere CP,PP 4-76 PPOP anywhere pp 6-3 
ELS Et anywhere CP ,PP 4-60 PPU first group pp 4-8 
ENDt required last CP,PP 4-4 PURGDEF anywhere CP 6-10 
ENDO anywhere CP,PP 5-10 PURGMAC anywhere PP,CP 6-7 
ENDIFt anywhere CP,PP 4-59 QUAL anywhere CP,PP 4-28 
ENDM anywhere CP ,PP 5-14 REP normal CPR 4-57 
ENDX normal CP ,PP 4-79 REPC normal CPR 4-57 
ENTRY normal CP,PP 4-45 REPI normal CPR 4-57 
ENTRYC normal CP,PP 4-45 RMT anywhere CP,PP 5-3 
EQU normal CP,PP 4-41 .R= normal CP 4-55 
ERR normal CP,PP 4-71 SEG normal CPA, PP 4-16 
ERRMI normal CP,PP 4-72 SEGMENT normal CPA,PP 4-15 
ERR NG normal CP ,PP 4-72 SET normal CP ,PP 4-41 
ERR NZ normal CP,PP 4-72 SKIP anywhere CP,PP 4-70 
ERR PL normal CP,PP 4-72 SPACE anywhere CP,PP 4-76 
ERR ZR normal CP,PP 4-72 SST anywhere CP,PP 4-45 
EXT normal CP,PP 4-47 STEXT first group CP,PP 4-17 
HERE anywhere CP,PP 5-4 STOPDUP normal CP,PP 5-9 
ID ENT required first CP ,PP 4-2 TITLE anywhere CP ,PP 4-77 

and 4-11 TTL anywhere CP,PP 4-78 
IF normal CP,PP 4-65 USE normal CP ,PP 4-32 
IFC anywhere CP,PP 4-68 USELCM normal CP 4-34 
IFCP normal CP ,PP 4-60 VFD normal CP,PP 4-53 
IFCP6 normal CP,PP 4-60 XREF anywhere CP ,PP 4-80 
IFCP7 normal CP,PP 4-60 XTEXT normal CP ,PP 5-2 
IFEQ normal CP,PP 4-62 (blank) normal CP ,PP 4-48 
IFGE normal CP ,PP 4-62 = normal CP ,PP 4-41 
IFGT normal CP,PP 4-62 
IFLE normal CP,PP 4-62 
IFLT normal CP,PP 4-62 
IFMI normal CP ,PP 4-64 
IFNE normal CP,PP 4-62 
IFPL normal CP,PP 4-64 tLooked for during IF skipping. 
IFPP normal CP ,PP 4-60 
IFPP6 normal CP ,PP 4-60 
IFPP7 normal CP,PP 4-50 Legend 
IRP anywhere CP ,PP 5-35 
LCC normal CPR 4-21 CP Absolute or relocatable CPU program 
LDSET anywhere CPR 4-21 CPA Absolute CPU program 
LIST anywhere CP ,PP 4-73 CPR Relocatable CPU program 
LIT normal CP,PP 4-51 pp Absolute PPU program 

60492500 H 



CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN 55440 LITHO IN U.S.A. 

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

(§ 2) CONT~OL DATA 


