CONTROL DATA

RPORATION

CONTROL DATA®

CYBER 170 SERIES COMPUTER SYSTEMS
CYBER 70 SERIES COMPUTER SYSTEMS
6000 COMPUTER SYSTEMS

7600 COMPUTER SYSTEM

COMPASS VERSION 3
REFERENCE MANUAL

CPU AND PPU INSTRUCTION INDEX

CPU INSTRUCTIONS : CPU INSTRUCTIONS (cont'd) PPU INSTRUCTIONS (cont'd)
Mnemonic Operation Section Mnemonic Operation Section ‘ op.‘num Section
| Code Code (octal) Number —Code Code (octal) Number | Name Code (ootal) = Number
AXi © adk " 214k 8.4.25 | RXI XJ*Xk 414fk 8.4.87 EIM m,d - 6ldm - 9.2, 14
AXi - B}, Xk~ 28%Kkjk 8.4.27 | RX1 X3/Xk 451k 8, 4:42 EJM m,d 67dm ' 9.2.18
BXi Xj 10ij 8.4.16 RXj Xk - 0144k 8.4.8 EOM m,d 65dm 9.2.14
| BXi - Xj*xk 1115k 8.4.17 SAL A§:K 501jK 8.4.45 ERN d 270d" 9.2.8 °
BX1 XXk 12ifk 8.4.18 | SAI B§zK 51)K . 8.4.45 | ESN d 7700 o 9.2,18
BXi Xj-Xk 18ijk 8.4,19 SAL - XJ2K | 52K 8.4.45 ETN d 2604 - 9.2,8
BXl -Xk 14ikk 8,4.20 8A1 Xj+Bk 83ijk - 8.4.48 EXN d . 260d . 9.2.6
BXi -Xk*X) 154k 8.4.20 | SAl. AjBk 54tk 8,445 [FAN a4 7ed 9.2.18
BX1 - -Xk+X) 16k 8.4.22 SAl - Aj-Bk 551jk 8.4.45 FIM m,d 60dm 9.2.14
[BXL. -Xk-Xj 174k 84,28 | SAI Bj+Bk 56ifk 8.4.45 FIM 'm,d 66dm 9.2.13
CXi Xk . 47ikk 8.4.44 | SAL BBk 575k 8.4.45 | FNC m,d 77dm T 92,18
DF Xj,K - 036K 8.4.14 SBi AJsK 60K 8.4.46 FOM m,d &4dm 9.2, 14
| pxi xpxx 3215k 8.4.33 SBi BjzK 61K 8.4.46 IAM m,d 71dm 9.2.16
DXi X)-Xk 83jk 8.4.33 | SBI XjzK _624jK 8.4.46 AN d 70d 9.2,16
DXi Xj*Xk, 42ijk’ 8.4.38 SBi. Xj+Bk 631jk - 8.4.46 | WM myd @é5dm 9.2,18
' EQ - Bi,Bj,K 04iJK 8.4.18 | SBi . Aj+*Bk edifk 8.4.46 IRM m,d 62dm 9.2,14
E8 K . 00000 8.4.2 | SBt Aj-Bk . ebik . 8.4.46 LCN d° 18d 9,2.8
FXi - Xj+Xk " 30k 8.4.32. ' | SBi Bj+Ek 6615k 8.4.46 | LDC ¢ 20dm 9.2.4
FXi . X)Xk S1ijk 8.4.32 SBi Bj-Bk - 874jk .8.4.46 Lpp d 80d: 9.2, 9
L FXI XXk 40ifk 8,4.36 | SXi A=K 701K 8.4.47 | LDI d. . 40d 9.2.10
| FXL . OX3/Xk L 4k 8.4.41 8X1 - Bj#K TIK . 8,447 | LbDM m,d. '50dm 9.2, 11
GE BLB),K ° 064K 8.4.156 | SXi Xj#K = 72K " sed4 4T | LDN A 1480 9.2,8
- GE m.x . O8i0K . ' 8.4.15 | SXI XjBk - 731k 8.4.47 LIM ‘m,d Oldm 9.2.1
GT Bj,BL,K OTYK 8.4.15 | SKi AjBk 74ifk 84,47 | 'LMC c . 23dm 9.2:4
Gr BjK 070K . 8.4.15 | SXi Aj-Bk 76ijk 8.4.47 LMD d 33d- 9.2.9
| By Bk 016§k S 84012 SXi- Bj+Bk, . T6ijk S 8.4.47. | LMI & 48d 9.2.10
D XK " 087jK 8.4,14 Sxi Bj-Bk 7k 8.4,47 | LMM m,d 53dm 9.2.11
IR~ XK 034jk 8.4.14 TBj 0160 8.4,10 LMN d 11d 9.2.3
i XXk 36ifk 8.4.35 UXI Bj,Xk 26ijk 8.4.30 LPC ¢ 22dm 9.2.4
Xt Xj-Xk 37ijk 8.4.35 WE BjK 012§K 8.4.4 LPN d 12d 9.2.3
X Xj*xk | 42ijk 8.4.39 WL BjK 012§K 8.4.5 MAN d 262d 9.2.6
JP BjzK 0210K 8.4,13 WXj Xk I 0155k 8.4.8 MIN . r 07d 9.2.1
LE B},BLK 061JK 8.4.15 XJ BjK 013jK 8.4.6 MXN - d 261d 9.2.6
LT Bi,Bj,K 071K 8.4.15 ZR X},K 030JK 8.4.14 NIM m;d 63dm 9.2.14
LXi %k 2013k 8.4.24. ZR BL,K 04i0K 8418 | NIN r 05d 9.2.1
LX1 B}, Xk 2215k 8.4.26 | 2X Bj,Xk . 25ifk | 8.4,29 NOM 'm,d "~ 67dm 9.2.14
Ml Xj),K 033jK 8.4.14 [CMU INSTRUCTIONS ‘ OAM m,d 73dm 9.2.16
Ml Bi,K 0710K 8.4.15 CC - gk ,c .k, 8.5.4 OAN .4 72d 9.2.15
MJ 01300 8.4.7 cu l.ka,ca ke c.b 8,5.5 “ORM m,d - 66dm 9.2, 14
MJ - BizK 013§K 8.4.7 DM g,k o rkp 8.5.3 PIN. ¢ 06d 9.2.1
MXi %jk . 481k 8.4.40 ™ Bk (fsqx) 8.5.1 PSN 2400 9.2.5
NE = Bi,Bj,K 051jK 8,4.15 MD ke kgcy 8.5.2 |. RAD 4 35d 9,29
NG BL,K 710K 8.4.15 | : , RAI . d 45d. 9.2, 10
NG X},K 033§K 8.4.14 : PPU INSTRUCTIONS - RAM m,d" 55dm . - 9.2.11
'NO m 46n° 8.4.43 | Operation Section RFN 'd 744 . 9.2.17
NXi Bj,Xk 2415k . 8.4:28 Name Code (octal) - Number .| RIM . m,d . 02dm 9.2.1
NZ . Bi,K 0510K 8.4.15 | ACN @ 7ad 9.2.18 ‘RPN 4 270d 9.2.7
‘NZ XK 0313K 8.4.14 .| ADCe . 2idwm 924 - SBD - d s2d 9.2.9
. OB§ . Bk L 0173k 8.4.12 | App d a1d 929 SBI. d - - 42d 9.2,10
OR - Xj},K 035jK 8.4.14 ADI. d 4a 9.2.10 SBM m,d 52dm 9.2.11
PL XK 032jK 8.412 | ApM m,d 51dm 9.2.11 SBN ' d 17d - 9.2.3
PL BiL,X 0610K 8.4.15 ADN. d 16d 9.2.3 SCN d 13d 9.2.3
PS K ©.0000K - - 8.4.1 AJM m,d 64dm 9.2.13" SHN r 104 : 9.2.2
PXi Bf,Xk 274 8.4.31 Aop d 36d. 9.2.9 sop d . 314 ¢ L 9.2.9
RE = BjK 011jK 8.4.4 AOL d 46d 9.2.10 | Sor d 41d 9.2.10
RI Bk Olﬁm(8.4.9 AOM m,d 56dm 9.2.11 SOM m,d 57dm 9,2.11
RJ K 0100K 8.4.3 CRD d 60d 9.2.12 STD d 34d . 9.2.9
RL Bj+K 011jK 8.4.5 | 'CRM m,d 61d 9.2.12 STI. ~d ' 44d T 9.2.10
RO Bk 0170k 8.4.11 |.cwp d 62d ‘g.2.12 - | STM ‘m,d 54dm 9.2.11
"RXi - Xj+Xk 34ijk ' 8.4.34 CWM m,d 63dm J9,2.12 UIN T .03d 9.2, 1 i
| RXi. . Xj-}{k . 351jk ‘ .8.4.34 DCN . d - - 75d ‘9.‘2.18 1 ZIN- 04d 9.2.1 .

CONTROL DATA
[corpPoraTiON]

CORPORATION

CONTROL DATA®

CYBER 170 SERIES COMPUTER SYSTEMS
CYBER 70 SERIES COMPUTER SYSTEMS
6000 COMPUTER SYSTEMS

7600 COMPUTER SYSTEM

COMPASS VERSION 3
REFERENCE MANUAL

New features,

as well as changes, deletions, and additions to information in this manual are

indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD

REVISION DESCRIPTION
A Original Printing
8-71)
B Correct technical and typographical errors on pages vi, vii, ix; 2-1, 2-6 thru 29 2-15 2.18 2-27;
(7-72) 3-3, 3-5, 3-6; 4-2, 4-15, 4-19, 4-22 thru 4-28, 4-31, 4-35, 442, 451, 4-52, 4-62, 4-64. 4-66 thru 4.73
4-75, 4-77, 4-78, 4-80, 4-82; 5-7, 5-8, 59, 5-16, 5-19; 64, 6-9, 6-10; 7-1, 7-2, 7-3; 89, 8-14, 8-33,8-34
8-42, 843, 8-51, 8-54; 9-17, 9-20, 9-21, 9-22; 10-3 thru 10-6, 10-10; 11-1, 11-2, 119 thru 11-14:
B-1 thru B-6; C-1; D-1, D-2, D-3; Index-1 thru 19; Comment Sheet; Back Cover; add pages 8-14.1,
8-34.1; 10-11.
C Updates manual for KRONOS 2.1 and corrects typographic errors, expands a few descriptions, and adds
(6-8-73) descriptions of CHAR and hexadecimal constants. Affected pages: Cover, inside cover, iii thru vi, xi;
1-1,1-3, 14; 2-11, 2-15, 2-23 thru 2-28; 3-5, 3-6, 3-7, 3-13; 4-1, 4-2, 4-16, 425, 4-26, 4-27, 4-30,
431, 4-35, 449, 457, 4-61, 4-81, 4-82, 483, 4-85; 7-2 thru 7-5; 8-6, 8-23, 8-32, 8-33, 843, 8-48,
8-51; 9-15, 9-22; 10-1, 10-2, 10-3, 10-5, 10-6, 10-7; A-1 thru A4; B-1 thru B-6; D-1; Index 1 thru 8,
11 thru 14, 19, 20; Comment Sheet, inside back cover.
D Technical corrections. Affected pages: 1-4;2-15;3-5 thru 3-7, 3-13; 4-19, 4-26, 449, 4-57, 4-61, 4-84;
(7-20-73) 7-3 thru 7-S; 8-23, 8-33, 8-34; 10-1 thru 10-6; B-1 thru B-6.
E This revision reflects Version 3 of the COMPASS assembler for operation under NOS 1.0, SCOPE 3.4,
(10-5-74) KRONOS 2.1 and SCOPE 2.1. Major changes include CYBER 170 Series. Technical changes resulting from|

product development and documentation review are included as well, Affected Pages . Cover, title page,

iii, iv, vi, ix thru xii; 1-1, 1-3; 2-5, 2-24; 3-3, 3-6; 4-3, 4-6 thru 4-12, 4-25, 4-27, 4-48, 4-52, 4-65 thru

4-77, 4-81; 5-30, 5-35; 6-4, 6-10; 8-1, 8-2, 8-5, 86, 8-7, 8-11 thru 8-16, 8-23 thru 8-51, 8-56; 9-10,

9-11, 9-14 thru 9-22; 10-7, 10-11, 10-12; 11-7, 11-10, 11-14; B-1 thru B-5; C-1; E-1, E-2; Comment

Publication No.

Sheet, inside back cover.

60360900
Additional copies of this manual may be Address comments concerning
obtained from the nearest Control Data this manual to:

Corporation sales office.

©

CONTROL DATA CORPORATION

Software Documentation
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

1971, 1972, 1973, 1974

Control Data Corporation or use Comment Sheet in the
Printed in the United States of America back of this manual

PREFACE

This manual is directed at programmers using the CONTROL DATA®COM PASS Assembler Version 3.
This manual describes the principles, features, methods, rules and techniques of producing a
COMPASS language program.

The User is assumed to be familiar with the CONTROL DATA® CYBER 170 Series Computer Systems,
the CONTROL DATA® CYBER 70 Series Computer Systems, the CONTROL DATA® 6000 Series Com-
puter Systems, or the CONTROL DATA® 7600 Computer System, and is assumed to be familiar with
assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their
initial attentions to the following sections of this manual.

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3.1 through 3.3
Chapter 4 Pseudo Instructions, sections 4.1 and 4.2

Chapter 8 or 9 CPU or PPU Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires.

Chapter 10 Program Execution

This publication is not intended as a replacement for the related computer system reference manuals,
which contain detailed information on machine instructions. Information in the related computer system
reference manuals takes precedence over information in this publication should discrepencies arise
between the publications.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lower case letters in
formats depict variables. The examples assume that assembler numeric mode is decimal and that
character mode is display code unless otherwise noted. In examples, statements generated by the
assembler as a result of a call or a substitution are shown in shaded print.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or undefined parameters.

60360900 E iii

Other documents of interest:

iv

CYBER 70/Model 72, 73, 74, and 6000 Series manuals

SCOPE 3.4 Reference Manual

KRONOS 2.1 Reference Manual

LOADER Reference Manual

Record Manager Reference Manual

Record Manager File Organization User's Guide

CDC CYBER 70/Model 72 Systems Description and
Programming Information (vol. 1) (RM)

CDC CYBER 70/Model 73 Systems Description and
Programming Information (vol. 1) (RM)

CDC CYBER 70/Model 74 Systems Description and
Programming Information (vol. 1) (RM)

CDC CYBER 70/Models 72, 73, and 74 Instruction
Descriptions (vol. 2) (RM)

CDC CYBER 70 Computer Systems-7030 Extended
Core Storage (RM)

CDC CYBER 70/Models 72, 73, and 74 and 6000

60307200
60407000
60344200
60307300
60359600
60347000
60347200
60347400
60347300

60347100

Series Computer Systems I/O Specifications (RM) 60352500

CYBER 70/Model 76 and 7600 computer manuals

SCOPE 2 Reference Manual
CYBER 70/Model 76 Reference Manual

CYBER 170 Series Manuals

NOS 1.0 Reference Manual
CDC CYBER 170/Models 172, 173, and 174

Reference Manual

CDC CYBER 170/Model 175 Reference Manual

60342600
60367200

60435400

19981200
60420000

60360900 E

CHAPTER 1

CHAPTER 2

60360900C

CONTENTS

INTRODUCTION

1.1 Operating System Interface

1.2 Configuration

1.3 Assembler Execution

1.4 Relocatable Object Program Execution

LANGUAGE STRUCTURE

2.1

P
o om

2.8

Statement Format

.1, First Column
Location Field
Operation Field
Variable Field
Comments Field
Comments Statement
Statement Continuation
. 1. Coding Conventions
Statement Editing
2.2.1 Concatenation
2.2.2 Micro Substitution

Do NDND NN
b b b b b
0 ~T U h W

2.4.1 Linkage Symbols

2.4.2 Default Symbols

2.4.3 DPreviously Defined Symbols
2.4.4 Undefined Symbols

2.4.5 Qualified Symbols

CPU Registers

Special Elements

Data Notation

1 Data Items

2.7.2 Constants

2.7,3 Literals

2.7.4 Character Data Notation
2.7.5 Numeric Data Notation
2.7.6 Hexadecimal Data Notation

1 Types of Expressions
.8.2 Evaluation of Expressions

1

e e
I R]
DO DN DN e W W W W

1 ' i] 1 1 [] 1
[
e

|
[t
w

)
[\
>

g bed b pd el O 00 OO 00 00 =1 S O U W W N

|
[\
o]

CHAPTER 3 PROGRAM STRUCTURE

3'1

Subprogram Blocks
3.1.1 Absolute Block

3.1.2 Zero Block
3.1.3 Literals Block
3.1.4 User-Established Local Blocks
3.1.5 Labeled Common Blocks
3.1.6 Blank Common Blocks
3.1.7 Redundant Block Names

3.2 Block Control Counters
3.2.1 Origin Counter
3.2.2 Location Counter
3.2.3 Position Counter
3.2.4 Forcing Upper

3.3 Relocatable Program Structure

3.4 Absolute Program Structure
3.4.1 Absolute Overlays
3.4.2 Multiple Entry Point Overlays
3.4.3 Partial Binary

CHAPTER 4 PSEUDO INSTRUCTIONS

4.1 Introduction to Pseudo Instructions
4.1.1 Types of Pseudo Instructions
4,1.2 Required Pseudo Instructions
4,1.3 First Statement Group
4.1.4 Permissible Anywhere Instructions

4.2 Subprogram Identification
4.2.1 IDENT-Subprogram Identification
4.2,2 END-End of Subprogram

4.3 Binary Control
4.3.1 ABS - Absolute CPU Program
4.3.2 MACHINE - Declare Object Processor Type
4,3.3 PPU - CYBER 70/Model 76 or 7600 PPU Program
4.3.4 PERIPH - CYBER 170 Series, CYBER 70/Models

72, 73, 74 or 6000 Series PPU Program

4.3.5 IDENT - Identify and Generate Overlay
4.3.6 SEGMENT - Generate Binary Segment
4.3.7 SEG - Write Partial Binary
4.3.8 STEXT - Generate System. Text Record
4.3.9 COMMENT - Prefix Table Comment
4.3.10 NOLABEL - Delete Header Table
4.3.11 LCC - Loader Directive

4.4 Mode Control

vi

4,4,1 BASE - Declare Numeric Data Mode

4.,4.,2 CHAR - Define Other Character Data Code
4.4.3 CODE - Declare Character Data Code

4.4.4 QUAL - Qualify Symbols

4.4.5 Bl1=1 and B7=1 - Declare that B Register
Contains One

4.4,6 COL - Set Comments Column

[
W W NDND NN -

ularf-»l's ciaoloc;owclnwoamwtfoawwwwmwmw
o= o0 O U1
ol o ©

»hrllknh i
W =IO U DN DNNDNDN M = -

T
ST
[

60360900 E

603609008

4.10

4.11

Block Counter Control
4.5.1 USE - Establish and Use Block

4.5.2 USELCM - Establish and Use ECS/LCM Block
4.5.3 ORG and ORGC - Set Origin Counter

4.5.4 BSS - Block Storage Reservation

4.5.5 LOC - Set Location Counter

4.5.6 POS -~ Set Position Counter

Symbol Definition

EQU or = - Equate Symbol Value
SET - Set or Reset Symbol Value
MAX - Set Symbol to Maximum Value
MIN - Set Symbol to MinimumValue
.66 MICCNT - Set Symbol to Micro Size
4.6.6 SST - System Symbol Table
Subprogram Linkage
4.7.1 ENTRY and ENTRYC - Declare Entry Symbols
4.7.2 EXT - Declare External Symbols
Data Generation
4.8.1 BSSZ and Blank Operation Field - Reserve
Zeroed Storage

2 DATA - Generate Data Words

3 DIS - Generate Words of Character Data

4 LIT - Declare Literal Values
.5 VFD - Variable Field Definition
6

7

8

B

DO DO D
[NV VI

.

NN NN

.
.

CON - Generate Constants
R= - Conditional Increment Instruction
REP, REPC, and REDPI - Generate Loader
Replication Table
Conditional Assembly
4.9.1 ENDIF - End of IF Range
9.2 ELSE - Reverse Lffects of 1T
9.3 IFtype - Test Object Processor Type
.9.4 IFop - Compare Expression Values
9.5 IFPL and IFMI - Test Sign of Expression
9.6 IF - Test Symbol or Expression Attribute
9.7 IFC - Compare Character Strings
4.9.8 SKIP - Unconditionally Skip Code
Error Control
4.10.1 ERR - Unconditionally Set Error Flag
4.10.2 ERRxx - Conditionally Set Error Flag
Listing Control
4,11.1 LIST - Select List Options

4,11.2 EJECT - Eject Page and Begin New Sub-Subtitle
4.11.3 SPACE - Skip Lines and Begin New Sub-Subtitle
4.11.4 TITLE - Assembly Listing Title

4,11.5 TTL - New Assembly Listing Title

4.11.6 NOREF - Omit Symbol References

4,11.7 CTEXT and ENDX - Disable/Enable Listing of

Common Deck Text
4.11.8 XREF - Reference Symbolic Address

e
W LW W
BN DN

el

i

N o

[V V]

=~

=]

=3

o oo

©

|

1
R o R N

[

I S S

oty

1 L N Y (T A T A |
DD ;D
GO 1w O W =0 h WwH

o]

[
® 00 00 00 0 -1 =1 ~3 ~3 ~I -3 -3 -3
R

N o=

%#Qv&v&n&»&p&h»&%ﬂkﬁﬂk%ﬂkﬂkﬁﬁﬂk
W

o

vii

CHAPTER 5

CHAPTER 6

CHAPTER 7

viii

DEFINITION OPERATIONS
5.1 External Text (XTEXT)
5.2 Remote Assembly

5.2.1 RMT - Save Remote Code

5.2,2 HERE - Assemble Remote Code
5.3 Code Duplication
5.3.1 DUP - Simple Duplication
5.3.2 ECHO - Echoed Duplication
5.3.3 STOPDUP - Stop Duplication
5.3.4 ENDD -~ End Duplication Sequence
5.4 Macros and Opdefs
ENDM - End Macro Definition
MACRO - Macro Heading
Macro Calls
MACROE - Equivalenced Macro Header
Equivalenced Macro Call
OPDEF - Define CPU Operation
Opdef Call
LOCAL - Local Symbols
IRP - Indefinitely Repeated Parameter
5.5 System Macro and Opdef Definitions

.
=

B
.

o
.

N N N N N R N N
[NeRo'sIIEN Bl B &1 BT NN JUR V)

OPERATION CODE TABLE MANAGEMENT
6.1 Mnemonically Identified Instructions

6.1.1 PPOP - PPU Operation Code
6.1.2 OPSYN - Synonymous Mnemonic Operation
6.1.3 NIL - Do Nothing Pseudo Instruction
6.1.4 PURGMAC - Purge Macros
6.2 Syntactically Identified Instructions
6.2.1 CPOP - CPU Operation Code
6.2.2 CPSYN - Synonymous CPU Instruction
6.2.3 PURGDEF - Purge CPU QOperation Code
MICROS
7.1 Micro Substitution
7.2 Micro Definition
7.2.1 MICRO - Define Micro
7.2.2 DECMIC - Decimal Micro
7.2.3 OCTMIC - Octal Micro
7.3 Predefined Micro Names
7.3.1 DATE
7.3.2 JDATE
7.3.3 TIME
7.3.4 BASE
7.3.5 CODE
7.3.6 QUAL
7.3.7 SEQUENCE
7.3.8 MODLEVEL
7.3.9 PCOMMENT

1

L N T |
H O 9o o Ww o=

mmmmmmmmwmcpmmmmmmmmmm
=

[

|

@@O}@@?@@Q@
= 00 00 =1 -1 U1 W o

R R
[y

[T T N | i
00 N~ 0 30 OO U DN

9 =1 -3 =1 -3 ~3 =3 ~3 -3 -3 -3 -7 -7 3 -3
|

1

60360900A

CHAPTER 8

60360900 E

CPU SYMBOLIC MACHINE INSTRUCTIONS
Machine Instruction Formats
Instruction Execution

8.1
8.2

8.3

8.4

8.2.1
8.2.2

8.2.3

660076700 and CYBER 70/Model 74 Execution

Models 72 and 73 and 6200/6400/6500 Execution
CYBER 170/Model 175, CYBER 70/Model 76 and
7600 Execution

Operating Registers

8.3.1
8.3.2
8.3.3

X Registers
A Registers
B Registers

Symbolic Notation

8.4.1

8.4.2

8.4.8

8.4.9

8.4.10

8.4.11

g
N
.

e
Do

.
DO DD ke e e
S W10 Ul bk W

B

Q0 00 00 00 0 G 00 0 00
. & e e e & s
[t

]

Program Stop Instruction (CYBER 70/Models
72, 73, 74 or 6000-Series)

Error Exit Instruction (CYBER 70/Model 76

or 7600)

Return Jump Instruction

ECS Instructions (CYBER 70/Models 72, 73, 74
or 6000-Series)

LCM Block Copy Instructions (CYBER 70/Model
76 or 7600)

Exchange Jump Instruction (CYBER 70/Models
72, 73, 74 or 6000-Series)

Exchange Exit Instruction (CYBER 70/Model 76
or 7600)

Direct LCM Transfer Instructions (CYBER 70/
Model 76 or 7600)

Reset Input Channel Buffer Instruction (CYBER
70/Model 76 or 7600)

Set Real-Time Clock Instruction (CYBER 70/
Model 76 or 7600)

Reset Output Channel Buffer Instruction (CYBER
70/Model 76 or 7600)

Read Channel Status Instructions (CYBER 70/
Model 76 or 7600)

Unconditional Jump Instruction

X-Register Conditional Branch Instructions
B-Register Conditional Branch Instructions
Transmit Instruction

Logical Product Instruction

Logical Sum Instruction

Logical Difference Instruction

Complement Instruction

Logical Product and Complement Instruction
Complement and Logical Sum Instruction

8-14

8-14.1

8-16

8-17

8-18

8-19

8-20

8-21

8-22
8-23
8-23
8-26
8-28
8-28
8-29
8-29
8-30
8-30
8-31

ix

CHAPTER 9

8.4.23
8.4.24
8.4.25
8.4.26
8.4.27
8.4.28
8.4.29
8.4.30
8.4.31
8.4.32
8.4.33
8.4.34
8.4.35
8.4.36
8.4.37
8.4.38
8.4.39
8.4.40
8.4.41
8.4.42
8.4.43
8.4.44
8.4.45
8. 4. 46
8.4. 47

8.5

Q
=

.
.

o 00 0 00
0101910101
[VU

.
o

Complement and Logical Difference Instruction
Logical Left Shift jk Places Instruction
Arithmetic Right Shift jk Places Instruction
Logical Left Shift (Bj) Places Instruction
Arithmetic Right Shift (Bj) Places Instruction
Normalize Instruction

Round and Normalize Instruction

Unpack Instruction

Pack Instruction

Unrounded SP Floating Point Add Instructions
DP Floating Point Add Instructions

Rounded SP Floating Point Add Instructions
Long Add (Fixed Point) Instructions

Unrounded SP Floating Point Multiply Instruction
Rounded SP Floating Point Multiply Instruction
DP Floating Point Multiply Instruction

Integer Multiply Instruction

Mask Instruction

Unrounded SP Floating Point Divide Instruction
Rounded SP Floating Point Divide Instruction
Pass Instruction

Population Count Instruction

Set A Register Instructions

Set B Register Instructions

Set X Register Instructions

U Symbolic Machine Instructions

IM - Indirect Move

MD - Move Descriptor Word
DM - Direct Move

CC - Compare Collated

CU - Compare Uncollated

PPU SYMBOLIC MACHINE INSTRUCTIONS

9.1 Machine Instruction Formats
9.2 Symbolic Notation
9.2.1 Branch Instructions
9.2.2 Shift Instructions
9.2.3 No Address Mode Instructions
9.2.4 Constand Mode Instructions
9.2.5 No Operation Instruction
9.2.6 Exchange Jump Instructions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74 and 6000-Series)
9.2.7 Read Program Address Instruction (CYBER 170
Series, CYBER 70/Models 72, 73, 74 and 6000-
Series)
9.2.8 6416 PPU Instructions
9.2.9 Direct Address Mode Instructions
9.2.10 Indirect Address Mode Instructions
9.2.11 Central Read/Write Instructions (CYBER 170
Series, CYBER 70/Models 72, 73, 74 and 6000-
Series)
9.2,12 Central Read/Write Instructions (CYBER 170

Series, CYBER 70/Models 72, 73, 74 and 6000~
Series)

ooooooooooooc%ooocpoooooooooo
B W W W W wwwwwow
=

CWWON~OU hibWNNH-

P
SN
i

U 1

QDQDQOQIOKD@QDQO
W W ow=N0uUu N M=M=

1

9-10

9-15

9-16

60360900E

CHAPTER 10

CHAPTER 11

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

60360900E

9.2.13

9.2.14

9.2.15

9.2.16
9.2.17

9.2.18

9.2.19

1/0 Branch Instructions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74 and 6000-Series)
I/0 Branch Instructions (CYBER 70/Model 76

and 7600)
A Register Input/Output Instructions
Block Input/Output Instructions

Set Output Record Flag Instruction (CYBER

70/Model 76 and 7600)

Channel Function Instructions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74 and 6000-Series)

Error Stop Instruction (CYBER 70/Model
76 and 7600)

PROGRAM EXECUTION
10.1 Control Statements

10.1.1
10.
10.
10.
10.1.
10.
10.

b b b e e
S Ul N

.7

Job Statement

COMPASS Call Statement
LGO Control Statement
Program Call Statement
7/8/9 Card

6/7/8/9 Card

KRONOS Account card

10.2 Sample Decks

LISTING FORMAT
11.1 Page Heading
11.2 Header Information

11.2.1
11.2.2
11.2.3
11.2.4

Binary Control Card Summary
Block Usage Summary

Entry Point List

External Symbol List

11.3 Octal and Source Statement Listing

11.4 Literals

11.5 Default Symbols

11.6 Assembler Statistics

11.7 Error Directory

11.8 Symbolic Reference Table

CHARACTER SETS

ASSEMBLY-TIME 1I/0

BINARY CARD

HINTS ON USING COMPASS

DAYFILE MESSAGES

9-17

9-18
9-20
9-20

9-22

9-22

9-23

10-1
10-1
10-1
10-2
10-6
10-6
10-7
10-7
10-7
10-8

11-1
11-1
11-1
11-1
11-3
11-4
11-5
11-5
11-8
11-9
11-9
11-9
11-13

xi

xii

| UL

HH@&DOOOOOOC:DODOJOJOOCON
1 N WM OO R WND -
[N

-

FIGURES

COMPASS Coding Form

Relocatable Program Structure

Absolute Program Structure

IDENT-Type Overlay Structure
SEGMENT-Type Overlay Structure

SEG-Type Partial Binary

IDENT-Type Paritial Binary

CPU 15-Bit Instruction Format

CPU 30-Bit Instruction Format
Arrangements of Instructions in a 60-Bit CPU Word
PPU 12-Bit Instruction Format

PPU 24-Bit Instruction Format

Format of Octal and Source Statement Listing
Format of Symbolic Reference Table

TABLES

CYBER 70/Model 74 and 6600/6700 Functional Units

CYBER 170/Model 175, CYBER 70/Model 76 and 7600

Functional Units

PPU Instruction Designators
Fatal Errors

Informative Errors

Clﬂw

% e o o e
o = o
-3

I—'QDI@WOOG)

-
S
[|
= o
%M

9-3
11-10
11-12

60360900 E

INTRODUCTION 1

The CONTROL DATA COMPASS Version 3 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor unit (CPU) or
a peripheral processor unit (PPU). The assembler executes on the following computer systems and
operating systems:

CONTROL DATA® CYBER 170 Series Computer Systems under the control of NOS 1.0

CONTROL DATA® CYBER 70 Series Models 72, 73, and 74 Computer Systems ¥ under control of
SCOPE 3.4 or KRONOS 2,1, or NOS 1,0,

CONTROL DATA® CYBER 70 Series Model 76 Computer System under control of SCOPE 2
CONTROL DATA® 6000 Series Computer Systems under control of SCOPE 3.4 or KRONOS 2.1
CONTROL DATA® 7600 Computer System under control of SCOPE 2.

From CPU source language subprograms, the COMPASS assembler generates binary point acceptable

for loading and execution. Subprograms can be compiled independently for subsequent loading and exe-
cution as a single program,

From PPU source language programs, the COMPASS assembler generates absolute code to be loaded
and executed on a peripheral processor unit.

Source statements consist of CPU or PPU symbolic machine instructions and pseudo instructions. The
symbolic machine instructions (chapters 8 and 9) are counterparts of the binary machine instructions;
they provide a means of expressing symbolically all functions of the Computer System.

The pseudo instructions are oriented towards control of the assembler itself; they control the assembler
much the same as machine language instructions control the computer. The ability to control assembly
places COMPASS at a level of sophistication much higher than that of the conventional assembler,

Features inherent to COMPASS include:

o Free-field source Size of source statement fields is largely controlled by user.
statement format

+ References to CYBER 70/Models 72, 73, and T4, with the exception of references to CMU instruc-
tions, apply also to the 6000 Series Computer Systems. References to CYBER 70 Model 76 apply
also to the 7600 Computer System.

60360900 E 1-1

1-2

Control of local
and common blocks

Preloaded data

Data notation

Address arithmetic

Symbol equation and
redefinition

Symbol qualification

Binary control

Selective assembly of
code sequences

Mode control

Listing control

Micro coding

Programmer and system designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas
can be defined in small core memory (CM or SCM) or extended or
large core memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the
source program.

Data can be designated in integer, floating-point, and character
string notation. It can be introduced into the program as a data
item, a constant, or a literal.

Addresses can be specified making extensive use of constants,
symbolic addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameteriza-
tion of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within
a qualified sequence to render the symbol unique to the sequence.
An unqualified symbol is global and can be referred to from within
any sequence without qualification.

The programmer can specify whether binary output is to be absolute
or relocatable. Absolute code can be generated for any PPU or
CPU. Relocatable code can be generated for any CPU. Binary can
be written as overlays or as partial records.

Assembly-time tests allow the user to select or alter code
sequences.

Ability to specify the base to be used for numeric notation not
explicitly defined as octal or decimal, and to specify the code con-
version to be applied to character data as either display code,
ASCII, internal BCD, or external BCD.

Assembly~time control of list content.
Substitution of sequences of characters defined in the program

whenever the micro name is referenced. Several micros are
predefined by the system for user convenience,

60360900A

e Macro coding Assembly of sequences of instructions defined in the program or on
the system library whenever the macro name is referenced. Macro
definitions can be redefined or purged from the operation code table.

e Operation code table The programmer can specify or respecify the syntax of a CPU or
PPU instruction. The assembler generates an entry in the operation
code table for the instruction. No macro or opdef definition is
associated with the entry.

e Operation code Assembly of sequences of instructions defined in the program or on
definition the system library whenever an operation code of the specified
syntax is referenced.

o Code repetition Sequences of code can be repeated during assembly or at load time.

e Remote assembly Defers assembly of defined coding sequence until later in the
assembly.

e Library routine calls Routines can be called from the system library.

e Diagnostics Diagnostics for source program errors are included on output
listing.

1.1 OPERATING SYSTEM INTERFACE

COMPASS executes on the following equipment and operating systems:

a CYBER 70/Model 76 or 7600 CPU under control of the SCOPE 2 operating system,
a CYBER 170 Series computer system under control of NOS 1.0,

a CYBER 70/Model 72, 73, 74 or 6000-series computer system under the control of the
SCOPE 3.4 or KRONOS 2.1 operating systems,

1.2 CONFIGURATION

The hardware requirements for executing COMPASS on a CPU are the minimum required for the
operating system,

60360900 E 1-3

1.3 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control card (chapter 10) or CDC FORTRAN
compilers upon encountering a COMPASS IDENT statement in the source input file, Parameters
on the card specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as

a CPU program.

The operating system allocates the input/output resources as needed and performs all input/output
required during the assembly,

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first
pass, it reads each source language instruction, expands and edits called sequences as needed, inter-
prets the operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol
values and produce the assembly listing and binary output. Finally, it prepares the symbolic refer-
ence table and reinitializes itself preparatory to assembling the next subprogram.

Core requirements for tables used by the assembler are dynamically changed as requirements change
during assembly. If insufficient core is available for the program, the intermediate file and cross-
references are transferred to the system mass storage device and assembly continues. If any ECS/
LCM space is assigned to the job, COMPASS may use it for table storage.

All nested processing of macros and similar definitions is handled in a single recursive push-down
stack. COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a
depth of 400,

1.4 RELOCATABLE OBJECT PROGRAM EXECUTION

When the assembler has completely processed the source deck, a control card (for example, LGO)
can be used to call for loading and execution of a CPU object program from the load-and-go file.
The loader links the newly assembled subprogram to any previously assembled subprograms and sub-
routines referred to by the new program and to programs on any other files specified by the pro-
grammer. After all subprograms are loaded and linked, the operating system begins program exe-
cution at a location specified by one of the subprograms. Data for the object program may be on some
programmer-specified file, Normally, this loading and execution does not take place if the COMPASS
assembler detects fatal errors.

1-4 60360900 D

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines., With the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field. Each field is terminated by
one or more blank characters. However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field. The size of the variable field is re-
stricted by the maximum statement size only. Statement format is essentially free field.

Statements are 80~to-90 column lines. When punched on cards, each card is considered a line. A single
statement may be composed of as many as ten lines. Information beyond column 72 is not interpreted

by COMPASS but does appear on the assembly listing. Thus, columns 73-80 can be used for additional
comrments or sequencing. Column 81-90 are used for sequencing by library maintenance programs; they
are normally not used by the programmer. A line that contains two or more consecutive colons may be
read and printed as two lines because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN
The contents of column one designate the type of line, as follows:

, (comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a
plus sign (+) or a minus sign (-) (section 3,2, 4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60360900B 2-1

Pseudo instruction mnemonic operation code

Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas, The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks. It is blank if there are

no nonblank characters between the operation field and column 30.
A variable subfield contains one of the following:

Data item

Expression

Register designator

Name

Special element

Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column can be
changed through the COL pseudo instruction (Section 4. 4. 5).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29,
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4.9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine continuation lines is permitted
for a statement. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

2-2 60360900A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column Contents
1 Blank, asterisk,or comma
2-9 Location field entry or plus, or minus left justified

10 Blank
11-16 Operation field entry left justified

17 Blank
18-29 Variable field entry left justified

30 Beginning of comments

All examples in this manual abide by this convention.

PROGRAM NAME
ROUTINE DATE | pace oF
LOCATION JOPERAT ION VARIABLE COMMENTS IDENT.
0 ENNNDEGD HDDDND HCRCNCHICNIEE CNNT N Y 0 M e NN N N NSNS INITICEE DIt
A B - B ~
e . P SO
by . A . _ . _
A) A . R . . B
NN S S e L~ _ S
L . T - IS I
P L . R e
- . R . o
NP SIS I R - I —
. il . R R —
5 N i I e ,
S S D T S W S D Y R S W ¢ Ll i A 1s Lol L.l | . L i
TN S I S R . .
TR P SR P B B _
Y U Y N S B S 1 1 P L4 4 1 A%A Loy ST S 1 — - &
RS P EPE s ‘ al
Y U S I N .
N N S S S . .
T FETTEYE P B N o .
TN I F FTIEN - ST .
TEATONEY ST DI SR . -
T P S I
N PR L . L .
ittt tetetstbetatetatat ettt atatatstetatstaatstal e ettt e e e et e e e e
AA2987 REV.8—69 PRINTED N U.

Figure 2-1. COMPASS Coding Form

60360900A

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are
saved for editing and interpretation when the definition is referenced or expanded. Statements within
the range of a conditional (IF type) pseudo instruction are edited even when they are skipped. COMPASS
performs two types of editing: concatenation, and micro substitution.

2.2.1 CONCATENATION

COMPASS examines the statement for the concatenation character — and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the —=is superfluous and is removed by editing before the definition is interpreted.

Each removal of — shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (#) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last card read
is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a non-fatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e., the two micro marks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right

beyond column 30, or could shift comments left into a blank field.

A line that contains two =r more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

o4 60360900A

2.3 NAMES

A name is a sequence of characters that identifies one of the following:

Subprogram or overlay

Block

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)

IF sequence

Micro
A comma or a blank terminates a name. Concatenation marks and pairs of micro marks are removed
before the name is scanned (see section 2,2 Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin
with a letter (A-Z) and is limited to seven characters maximum, Conventions imposed on names by
the operating system could restrict the use of certain characters in names. There is no restriction on
the first character for a PPU subprogram or overlay name. For a CYBER 70/Model 76 or 7600 PPU
assembly, the name can be seven characters but for a CYBER 170 Series or a CYBER 70/Model 72,
73, 74 or a 6000 Series PPU assembly it is limited to three characters maximum, In all cases, the
last character of a subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

60360900 E 2-5

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or = or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters.

+-*/Dblank ,[T or A

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section2,4.1 Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (section 2.2
Statement Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A.x, B.x,
or X.x, because x is assumed to be a data item by the assembler. However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =S or =X (section 2. 4. 2).
Register designators are described further in Section 2.5.

The process of associating a symbol with a value and attributes is known as symbol definition. This
can occur in five major ways.

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter {section
3. 2.2) and having an attribute defined as follows:

a, Absolute for the absolute block

b. Common for labeled or blank common blocks (relocatable assemblies only)
c. Relocatable for local blocks other than absolute during pass one

d. Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (section 4. 6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. TUnless a symbol is redefinable, a second attempt to define it with a different value
produces a duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as
external in the current subprogram or is defined in relation to a symbol declared as external.
In either case it has the attribute of external. Unlike a systems symbol, the true value
definition is not known to the current subprogram.

4, Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMPASS uses
the true definitions but assigns the additional attribute of systems symbol.

2-6 60360900B

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =S and the
symbol is not otherwise defined in the subprogram. This feature is further described

in section 2. 4. 2 Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:
Legal Symbols Tllegal Symbols
P 5A First character numeric
R3 ABCDEFGHI Exceeds eight characters
PROGRAM ABE+15 Contains plus sign

=11 First character equal sign

2.4.1 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last

character must not be a colon.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the
current subprogram can be declared as an external symbol in the current subprogram. Any symbol
declared as an entry point in the current subprogram can be declared as an external symbol in some
other subprogram. The symbol has a zero value and an attribute of external. An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is
preceded by =X, see section 2. 4. 2 Default Symbols),

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. If the value of the expression reduces to an external
symbol + an integer, the location field symbol is defined as having an integer value and external
attribute. Entry point symbols and external symbols are not qualified (section 2.4, 5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S or =X and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as an external symbol, respectively, at the end of
assembly. The =X form is defined by default in relocatable assemblies only.

=Ssymbol If symbol is not defined, COMPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word. A default symbol cannot be used where a

previously defined symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it
again but uses the programmer definition.

=Xsymbol This option permits a programmer to define his symbols in a subroutine or link
to them in another subprogram. If the programmer defines the symbol, the
assembler uses the programmed definition. If the programmer does not define
the symbol, the assembler assumes that the symbol is external as though declared
in an EXT pseudo instruction. A symbol prefixed by =X must conform to the
requirements for external symbols.

603609008

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both

=S and =X, or is prefixed by =X and is not defined conventionally in an absolute assembly. Default
symbols are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4.4. 3) can be referred
to outside of the qualifier sequence in which it was defined through:

/qualifier/symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier

is in effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified
symbol can be referenced as // symbol.

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. These registers are
described more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =S or =X (see section 2.4.2). However, a warning message is issued
when such symbols are defined, The prefix cannot be used in the location field of machine instructions
and symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT,
and SST pseudo instructions.

Register Type Designator
Address Anor A.n
Index Bn or B.n
Operand Xnor X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

9-8 603609008

For the forms A.n, B.n, X.n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols.

Examples:
Al Designates address register 1
A10 Interpreted as a symbol, not a register
Al Designates address register 1
A.NUM If the value of NUM is 6, it designates address register 6
A.10 Designates address register 2; however, it produces a warning flag because the

two was derived from the truncation of 12, the octal value for 10,

The following produce equivalent results. A SET pseudo instruction (section 4. 6. 2) defines SUM and
SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same
result as if the value had been used directly. In this example, the address of ALPHA is 001000.

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
6032001000 <B3 A2+ALPHA !
LOCATION OPERATION VARIABLE COMMENTS
1 n 18 |30
T
3 SUM SET 3 !
2 SuR SET 2 :
6032001000 h SB.SUM|A.SUB+ALPHA |

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in
section 3. 2,

Designator Significance

* or *L The assembler uses the value of the location counter for the block in use.
The element is relocatable unless the counter in use is for the absolute block.

*O The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

$ The assembler uses one less than the absolute value of the position counter
for the block in use.

603609008 2-9

Designator Significance

*Pp The assembler uses the absolute value of the
position counter for the block in use.

*F The assembler uses an absolute value obtained
as follows:

0 COMPASS was called by a COMPASS control
card

1 COMPASS was called by the FORTRAN RUN
compiler (earlier than Version 3.0)

2 COMPASS was called by the FORTRAN FTN
compiler or the FORTRAN RUN compiler
(Version 3.0 and later)

These designators are inherent to COMPASS and cannot be altered by the programmer during an
assembly.

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
Je *+1487 {
‘ |
L] |
ZR X3,*L-1 |
. I
LOC $0-RES+PPR |
. |
. !
VFD *py |
VFD $/45,171 I
: |
IFEQ [*F,2 l

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols,
etc.

The two types of data notation are character and numeric, The assembler allows the user to introduce
data in the program in three basic ways.

As a data item
As a constant in an expression
As a literal

2-10 60360900A

2.7.1 DATA ITEMS

Character and numeric data items can be used in subfields of the DATA (section 4.8.2) and LIT
(section 4, 8, 4) pseudo instructions or as specifications of field lengths on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal,
hexadecimal, or character notation. It resembles a data item but is restricted by its use as an
expression element in two ways:

1. The first character must be numeric, prohibiting the delimited type of character string
(section 2.7.4) and the preradix for numeric values.

2, The field size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers.

2.7.3 LITERALS

A literal is a read-only constant, It is specified as a data item in a subfield of a LIT pseudo instruction
or as an element in an expression,

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DATA (section 4, 8, 2) or a LIT (section 4. 8. 4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

When a literal is used as an element in an expression, the expression is evaluated using the address of

the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3.1.3).

60360900C 2-11

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the

data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations,

The assembly listing includes a list of the literals block when the D list option is selected (section 4.11.1).
Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state-
ment at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101

and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
T
100 6120005555 + se2 =1 '
6130005555 + SB3 =1RA
101 6140005556 + SB4 =1RRA |
5555 L LIT 1,2 |
6120005555 + sB2 L
102 6130005556 + SB3 L+1 |

CONTENT OF LITERALS BLOCK.

005555 0000000P000000900N001 L)
005554 0000000C0N0N00000002 a

2-12 60360900A

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in
the literals block and causes entries to be generated in the literals block:

Location Code Generated

5557

CONTENT C

005555 0NN0O000ONONO000000YL
005556 0N0QNOONNOO00QONON002
005557 000nN0Q0NQOO00N00000001
005561 nooooonNNoooNNEo00003
005561 00000000000000000004
005562 00N000000000000ND0002

LOCATION

OPERATION

VARIABLE COMMENTS

n

18 30

LIT

F LITERALS ELCCK,

WOOPI>

1,2,1RD,2

However, if the literals sequence in the first part of the example had been followed by a LIT that

duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added
to the block. Thus, if the following LIT sequence had been used in place of the LIT 1, 3,1RD, 2, the
first two words of the sequence would match the last two words of the literals block so that only two
additional words would be required to complete the sequence.

Location

oooo
oo
VIIJIN
Vi
D
DN

60360900A

Code Generated

5555

CONTEN
000000000000000N00001
0000000N000V000000002
0Non0o0o00000NRN0ONN0003
000000000N000000N004

LOCATION

OPERATION

VARIABLE COMMENTS

n

18 [30

T

IOP>

LIT

1529394 |

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4. 4. 2,
CODE pseudo instruction), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

Format: Example
Data Item [sig‘nlnl typel stringJ ~3RABC
or

| sign]type[d]string[d| -R*ABC*
Constant ¥ I n ltypel string] 3RABC
Literal | = lsignl nltype I string | =-3RABC

or
| = IsignI typel d lstringl d l =-R*ABC*

= Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element
operator,
+ or omitted The value is positive

- The complemented (negative) value is formed

n Signifies how the string is determined:
omitted The string is delimited by d. n cannot be omitted for a constant.
0 For data item or literal, the string consists of all characters following
type to:
blank or

1

For a constant, string consists of all characters following type to:
+-%*/blank , or A

n For a data item or literal, n is an integer count of the number of
characters in the string not counting guaranteed zeros. It is limited
only by statement size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right
justified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case. A truncation error is flagged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the n characters following type.

Regardless of base, COMPASS assumes that n is decimal.

f Expression element

2-14 60360900A

60360900 D

type

string

Character string justification. The characters formed by the data item
or constant are right or left justified into the destination field as follows:

Type Significance

C Left justified with zero fill. For data item or
literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, the zero bits are not guaranteed;
C is the same as L.

Left justified with blank fill
Right justified with blank fill
Right justified with zero fill
Left justified with zero fill

N = > =

Left justified with zero fill. For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, the bits are not guaranteed; Z is
the same as L.

A delimiting character used only when n is omitted. The characters
between the first occurrence of d and the second occurrence of d
comprise the string. d can be any character other than — or #.

Characters from one of the COMPASS character sets (appendix D),
except for those characters that act as delimiters (see n and d), the
concatenation character (—), and pairs of micro marks #).

Concatenation marks and pairs of micro marks are removed by
editing before a string is examined. A single micro mark can be
used in a string.

An empty or omitted character string is defined under one of the
following conditions.

1. nis 0 and type is immediately followed by a delimiter, for
example, OL
2. nis omitted and the two delimiting characters are adjacent,
for example, H++
Omission of a string in a DATA pseudo instruction is legal and does
not cause generation of a data word.
For a constant, an omission of the string is valid and has a zero value.
An omitted string in a LIT pseudo instruction is legal and does not cause

generation of a literal for that item; however, the LIT must contain at
least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces
an error.

It is not possible to generate empty strings using types C, Z, R or A.

2-15

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code
generated by DATA are printed only if the D or G list option is selected.

Data Items
Location Code Generated lO-CATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
144 0522221722%5111655210 DATA L*ERROR IN PbQ ¥*,Le0910H
145 04215500000000000000
146 5555555555655565555555
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
PPU |
: !
1100 1725 DATA oLouUTPUT :
1101 2420
1102 2524
Constants
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) N 18 [30
4722 7130000047 SX3 1R* :’
4723 7140000060 TAG SXt 1Rr.#+ 1 I
5110031117 SAL 3RCIO |
L724 62060530000 SB8b% X0+1L $ I
1117240155 VFU 30/4HI0IA,6/71RA,2L4/0AX+1
4725 0155555531 |
1725242025 VFD L2/0L0UTPUT, 1871
4726 2400000001 |
0700000000 VFD 15/0LG,15/0L',

Note that the character constant in the expression in the second line consists of a decimal point

(57 in display code) to which 01 is added before the value is stored. Similarly, in the third field
of the first VFD, 1 is added to the display code representation of X right justified with blank fill
(55555530) so that 55555531 is generated.

2-16 60360900A

Literals

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
T
100003765 TAGL LIT RA+=-*¥/(A,6L)%= ,.,0C0,0L
100003770 LIT 20HLITERALS
2652 5110003772 + SA1 =NCTENCHARCTS
5120003774 + SA?2 =H+LEFY JUSTYIFY WITH RLANKS+
2653 5130003767 + <Al =0L0

CONTENT CF LITERALS BLOCK.

003765 000000000045464L75051 +-%/(
003766 525354555657001700000 V8= 4.
003767 33000000008000000000 0

003770 14112405220114235555 LITERALS
003771 555555555555555555%55

003772 240516031010122032423 TENCHARCTS
003773 00000000000080G0N00000

003774 14050624551225232411 LEFT JUSTI
003775 06315527112410550214 FY WITH BL
003776 01161323555555555555 ANKS

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty
string and does not produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variable fields of the SA1l, SA2, and SA3 instructions each consist of a
literal element. The character strings in the SAl and SA2 literals do not duplicate former literals
block entries so COMPASS generates new entries. However, since SA3 references an existing entry,
COMPASS places the address of the entry in the address field of the instruction.

60360900A 2-17

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:

Data Item

Constant

Literal

sign

preradix

value

2-18

lsignk)reradix | value , modifiers]

lvaluel modifiers 1

l :Isignl preradixl value , modifierﬂ

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator,

+ or omitted The value is positive
- The complemented (negative) value is formed

Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.

omitted Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.

BorO Octal notation

D Decimal notation

A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.

A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1.15 x 1018 (fixed point) or 7.9 x 1028 (floating point, ignoring the decimal

point), Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

603609008

modifiers Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error

flag,

postradix

decimal exponent

binary scale

binary point
position

60360900A

Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

Defines a power of 10 scale factor

Emor Enor E Single precision

EE+n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be 0. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.

Defines a power of two scale factor and is specified as follows:
S+n or Sn or S

When the sign is plus or is omitted, the scale factor (n) is positive. When
n is omitted, it is assumed to be 0. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the
n power.

Applies to floating point values only and is specified as follows:
P+n or Pn or P

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit 0. When the sign is -, n
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit,

The exponent is adjusted to a value of - (+n)
For example, a value with P-6 will have a biased exponent of 20068; a

value with P10 will have an exponent of 17658.

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

2-19

Although scale factors can exceed valid ranges, the ranges for numbers are restricted
by the hardware.

Example:

The number 1.0E4000S-1200 yields a number that is approximately 5.8 x 1038
and is in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and
to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardless of the sequence
in which they are specified is:

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

CPU Numeric Data Items

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 |30
S00N 7777777777777 IN2 POOL " | DATA -29 T
5001 17235000000000000000 NUM DATA 1.0EE1
5002 16L30000000000000000 I
5003 20000000000000000012 DATA 1.0F+1PQ |
5004 17760000000000000002 DATA 3.2P1S-5E1
5005 171546517676355L4204 DATA 0.0151E+01 [
5006 17200314631463146314 DATA 0.1P47,-E4,DEES
S0Q7 77T IVIITITIUTVIIUrY? |
5010 00000000000000000000

CPU Numeric Constants

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 I 18]30
T
5001 + | |ALPHA EQu POOL +1 ;
555 VAL £Qu 5558
5012 RSSZ 1008 I
5112 20360 LX3 -14R :
43760 MX7 48
7150400000 SX5 1517 [

2-20 60360900A

CPU Numeric Literals

Location

5113

095151
pos152
005153
005154
005155
005156
005157
0051610
005161

Code Generated

5150005151 +

5130085152 +
5153
5155
5156
5157

CONTENT CF LITERALS ELOCK.

200&46755000234000004
17204314631463146315
17235030008000000000
16%30000000000000000
17200314631463146314
TTT7T777777777777T7754
17154651767635544264
14444840040 AARREAAS
000000D00000000000000

PDA B1 D
oPBLSLILtM
oS/
N8
oPCLsLIL L

Examples of numeric data (assume default radix is decimal):

PPU Data

Location

300
301
302
303
304

60360900A

Items

Code Generated

0005
7766
0013
0030
0002

LOCATION OPERATION | VARIABLE COMMENTS
" 18 I30
SAS =200467550002340000048
SA3 =1.1 1
ARLE LIT 1.0EE1L |
LIT 0.1P47
LIT -019
LIT 0.0151€+01,-E,DEES

LOCATION

OPERATION

VARIABLE COMMENTS

18 [30
f
|
-
. |

|

5,-90,4+B13,148S1,24BE~-1
!

2-21

PPU Constants

Location

385
306
307

310

PPU Literals

Code Generated

0ooo
0011
L4443

7777

Location Code Generated
311 2000 1103
313 2100 1104
315 2000 1108
1103 0012

1104 7776

1105 7777

2-22

31
101

LOCATION

OPERATION

VARIABLE

COMMENTS

n

18

CCNTENT OF LITERALS PBLCCK,.

-e
.o
-e
-e
e
e

-

e
-e we

J
i

|
Ton 0,+11 :
CON |[-3334 |
ARC = 250
N LM SET | o101 |
con 7777 ,
LOCATION OPERATION | VARIABLE COMMENTS
1 N n 18 T30
Loc =100 ;
ADC =-1 -
LOC =7777 |

60360900A

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in

single precision.

Formats:
Data Item
Constant

Literal

sign

preradix

value

modifiers

60360900C

sign|0|preradix|value {modifiers

preradix|value|modifiers

sign | 0 [preradix | value | modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an
element operator.

+ or omitted Value is positive.
- Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for constants,
so the preradix will not be taken as the first character of a symbol.

Must be present to indicate that a hexadecimal value follows. The preradix char-
acter is = or # depending on the printer used.

A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is
either a decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9
and the letters A-F represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

The binary scale (S) modifier is optional and has the same form and meaning as
for octal and decimal data (see section 2.7.5).

The binary point position (P) modifier is permitted but ignored, since it does not
apply to integer values.

2-23

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a
combination of one or more terms. Each term consists of one or more elements joined by operators.
A comma or a blank terminates the expression.

An expression element can be a:

Symbol

Numeric or character constant
Special element

Register designator (CPU only)
Literal

Examples of elements:

ALPHA A7 SHABC
$ X3 =10HOUTPUT
*p 77BS3

A term can be a single element or two or more elements joined by the following element operators:
* Multiplication
/ Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
- Subtraction
A Logical minus (exclusive or)

The exclusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in
the ASCII character set.
Rules:
1. If the last element of a term is omitted, COMPASS provides an element of zero. For example,
if ABLE is a symbol, ABLE*+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that ** is legal because the first
asterisk is interpreted as an element, the second asterisk is interpreted as an operator, and
the blank is interpreted as a null element.

3. A term can contain one relocatable or external element only., Thus, **ABLE, where ABLE is
a relocatable address, is illegal because ABLE and * are both relocatable,

4. The element to the left of a divisor must be absolute,
5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or A) in sequence are interpreted as having a term of
zero value between them.

7. If an expression begins with an additive operator (+ or - or A), COMPASS provides a term with
zero value preceding the operator.

2-24 60360900 E

The operator that immediately precedes a register designator is the register operator, regardless
of the placement of the designator in the expression. The register operator can be:

+ - * or /
Examples of expressions:

ABLF Single term
$-29 Two terms; $ and 29

1+=3,14159FE+6 Two terms; a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

#4+3 Two terms; value of the location counter and numeric constant 3.

ABLE*L=72/NUM Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUM.

1R Single term consisting of a numeric constant.
306 -NUM The components of the expression are register A6 and 3-NUM.
1R=A{R /" The character constants (= and /) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS
Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)
An external symbol + a 21-bit integer

+ relocatable value + a 21-bit integer

Register designators and one of the above

P 1
Register designators CPU assembly only

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable terms, under these two conditions:

1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other., That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

60360900C 2-25

EASY~-FOX+MIKE EASY and FOX cancel each other.

FOoXx-* FOX and the location counter cancel each other.
MIKF+16 The expression contains no relocatable elements.
EASY-FOX¥2+% EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and
absolute terms:

1. The expression does not contain an even number of relocatable elements

2, All the relocatable elements but one must be organized in pairs that cancel each other., That
is, for all but one block, each relocatable element (or multiple thereof) in a block must be
canceled by another element (or multiple thereof) in the same block. The elements that form
a pair need not be contiguous in the expression.

3. The uncanceled relocatable element can have three kinds of relocation:

a. Positive program
b. Negative program
c. Positive common (Negative common relocation is not permitted by the loader).

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EASY and FOX.

LIMA+MIKE~16
FOX-EASY+FOX
3¥FOX=-2%EASY
EASY=*+FOX
FOX-100RB/MIKE
-MIKE®*2+LIMA
=1 0HMESSAGE 33

-%Q

The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated
by the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

2-26 60360900C

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the
following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

1. The expression contains an even number of relocatable terms.

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose

each other. The elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA. MIKE is absolute.

XYZ=-*+FOX-EASY+LIMA The pairs * and LIMA, and FOX and EASY cancel each other.
FOX-3*EASY+2*FOX+XYZ The relocatable elements all cancel.

ABT+1008

XYZ+ABC Illegal; both are external

~ARC+*—| TMA Illegal; ABC is negative

XYZ+¥%Q Nllegal; *O is an unpaired relocatable element

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to symbolic CPU machine
instructions (Sections 8.4 and 8.5). If the register designator is the first element in the expression,
the operator can be omitted and is assumed to be +.

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.
X3+LIMA~10B

LIMA+X3~-108B Produce identical results

-108+LIMA+X3

B1+XYZ

*+A.NUM

2-27
60360900C

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable.

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character
constant is first right or left adjusted in a field the size of the destination field and then extended to
60 bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2
results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a + or - or A operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators. The value of the symbol is added, subtracted,
or differenced from the cumulative sum of the absolute elements, relocatable elements, or external
values. The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field. If it is too large for the field, the system issues an
error flag. The maximum field size for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was defined
within the subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, the system uses the value of a relocatable symbol relative to the block in
which the symbol was defined. For pass two evaluation, the system uses a value relative to program
or common block origin.

The field size for an expression depends upon the instruction and is determined as follows:

1. For a symbol definition pseudo instruction, the expression value (including character
constants) is justified in a 21-bit field.

2. In a VFD pseudo instruction, the expression is placed in a field of the size specified.

3. For a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies).

4. In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values
are assembled into the same field of the same word more than once, as a result of ORGing backward
over the word, or by having more than one subprogram preset a common block. The ORGC pseudo
instruction (see section 4.5.3) can be used to avoid such problems.

2-28 60360900C

PROGRAM STRUCTURE 3

h

This chapter describes the general structure of a program. In some cases, it repeats information
described elsewhere and correlates it so that the programmer will obtain a better understanding of how
the program is assembled, loaded, and executed. Some mention is made of the SCOPE loader, but,

for a complete description of the loader, refer to the reference manual for the operating system in
use.

The first topic considered in this chapter is the subprogram block and how the assembler and the

programmer organize the object code into blocks. Following this is a brief description of the counters
that control the blocks.

Finally, there is a summary of the differences in the structure of absolute and relocatable programs
and the effect of these differences on block usage.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas
called blocks. As assembly of a subprogram proceeds, the assembler or the user designates that
object code be generated or that storage be reserved in specific blocks, By properly assigning code
sequences, data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM,
a programmer can intersperse instructions for the different blocks. The assembler assigns locations
in a block consecutively as it encounters instructions destined for the block. A symbol defined within
a block is not local to the block. That is, it is global and can be referred to from any other block in

the subprogram. To render a symbol local to a sequence of code requires use of the QUAL pseudo
instruction (Section 4. 4. 3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be

user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

All symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and block structuring restarts. For END, the
symbol table is cleared before the next subprogram is assembled. If the group does not contain a
USE instruction or if object code is generated (or storage reserved) before the first USE instruction,
COMPASS places the code in the nominal block (identified as PROGRAM* on the listing). For an
absolute program, the nominal block is the absolute block. For a relocatable program, the nominal
block is the zero block. The user controls use of the nominal block and any user-established blocks
through USE, USELCM, ORG, and ORGC pseudo instructions (Section 4.5). Each occurrence of a

non-redundant literal constant causes an entry in the literals block; otherwise, the user has no control
of this block.

60360900A 3-1

3.1.1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name
PROGRAM* on the listing. All code generated in the block is absolute. Each address symbol is
defined during pass one as an absolute value relative to zero which is block origin., The code generated
must be loaded and executed at the origin specified as the absolute block origin,

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an ab-
solute block is identified on the assembly listing by the name ABSOLUTE*, There is no ECS/LCM

absolute block,

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It
is a local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the
assembler assigns any undefined default symbols at the end of the zero block. The zero block is
identified by the name PROGRAM™* on the assembler listing,

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block.

There is no ECS/LCM zero block.
3.1.3 LITERALS BLOCK
COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals

block is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage
to the literals block immediately following the zero block. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram, At the end of assembly, COMPASS
assigns an origin relative to the nominal block to each user-established local block, in the sequence in
which they are established.

3-2 60360900A

All of the CM/SCM local blocks are concatenated to form a single block, which is treated by the loader
as a CM/SCM block whose name is unique to the subprogram. Similarly, all of the ECS/ LcM?t local
blocks are concatenated to form a single block which is treated by the loader as an ECS/LCM block
whose naime is unique to the subprogram.

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is
1,048,568 words.,

3.1.5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly as being in CM/SCM or
ECS/LCM through the USE and USELCM pseudo instructions respectively, where the name of the block
is the name enclosed by slant bars; that is, /name/, The tables are designed so that the loader can
allocate space in memory for the first subprogram that is loaded that declares the block. Thus, the
first subprogram that names a block sets the maximum size of the block. Each subprogram, as it is
loaded, can link to allocated blocks or can cause new blocks to be allocated. The contents of a labeled
common block can be generated by any of the subprograms having access to it.

If an absolute subprogram attempts to establish a labeled common block by using a USE /name/ or
USELCM /name/ instructions COMPASS treats the block as a local block having the slant-bar
enclosed name,

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not
load information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space
by the loader after all subprograms are loaded, according to the largest block area declared

by any of the subprograms. A CM/SCM blank common block is established through use of the USE
pseudo instruction (section 4.5.1). An ECS/LCM blank common block is established through use of
the USELCM pseudo instruction (section 4.5.2). A blank common block has no name. A USE //
indicates blank common in CM/SCM; A USELCM // indicates blank common in ECS/LCM.

* SCOPE 2 does not currently allow LCM local blocks.

60360900 E 3-3

If no relocatable program declares a blank common block, there is none. If an absolute program
contains a USE // or USELCM // instruction, COMPASS treats the block as a local block named //

and data can be stored in this block.

Only CPU programs can use the USELCM pseudo instruction.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with
the same name and the same block type if they have different memory types (CM/SCM or ECS/LCM).
Thus, altogether, there may be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters, an origin counter, a loca-
tion counter, and a position counter. When a block is first established or its use is resumed,
COMPASS uses the counters for that block. During pass one, the origin and location counters are
initially zero. During pass two, as the assembler constructs the program, it assigns an initial value
to each local block origin counter and location counter. Thus, expressions containing relocatable
symbols are not necessarily evaluated the same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the
block. It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or
BSS pseudo instructions to advance the origin counter; ORG and ORGC also permit the programmer
to reset the counter to some lower location in the block or to change blocks. BSS allows the pro-
grammer to decrement the counter but not to change blocks. The origin counter is incremented by
one for each word assembled or skipped forward and decremented by one for each word skipped in
the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value
of the origin counter for the block in use.

3-4 60360900A

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter is incremented whenever the origin counter
is incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that
it differs from the origin counter. This may be desirable when the code being assembled is to be
loaded at one location and subsequently moved and executed at another location. In this case, the
programmer resets the location counter to reflect the actual location at which execution is to occur.

As another example of its use, the programmer assembling a large table may reset the location counter
to zero so that on the listing, the addresses alongside each word of the table reflect the word's position
in the table rather than in the block. Note that use of this technique does not alter the placement of code
in the block. (For an example of these applications, see the LOC pseudo instruction, section 4.5.5.)
When either of the special elements * or *L is used in an expression, the assembler replaces it by the
current value of the location counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59-00, from left to right within a 60-bit CPU word and numbered 11-00
within a 12-bit PPU word. Then, the position counter is initially 60 and 12, respectively, and indicates
the number of bits remaining in the word. The position counter, which is decremented by one for each
completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally
have values of 60, 45, 30,and 15 reflecting the placement in the word for the next instruction or

data word to be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current
value of the position counter,

When the special element $ is used in an expression, the assembler replaces it with the current value
minus one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining
in a partially completed word with no-operation instructions (section 8.1), sets the position counter to
60, and increments the origin and location counters before it assembles code for the next instruction:

Insufficient room remains in a partially filled word for the next instruction or data to be generated.

The current statement is a machine instruction, or a VFD pseudo instruction, with a location symbol
or + in the location field.

60360900 D 3-5

The current statement is an RE, WE, PS, XJ, CC, CU, DM, or IM instruction for a CYBER 170
Series or CYBER 70/Model 72, 73, 74, or 6000 Series. (The programmer can negate this force
upper by placing a minus sign in the location field of the instruction.)

The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC,
LOC, ORG, or MD pseudo instruction.

The assembler forces upper after it assembles code for one of the following:

Jp

RJ

Unconditional EQ

Unconditional ZR

ES (CYBER 70/Model 76 or 7600)

MJ (CYBER 70/Model 76 or 7600)

PS (CYBER 170 Series, CYBER 70/Model 72, 73, 74 or 6000 Series)
XJ (CYBER 170 Series, CYBER 70/Model 72, 73, 74 or 6000 Series)
IM (CYBER 70/Model 72 and 73)

This post force upper does not occur immediately, but is deferred until the assembler encounters
the next machine instruction or data generating, storage allocating, or binary control pseudo in-
struction in the same USE block. The programmer can negate the force upper following the instruc-
tion by placing a minus sign in the location field of the next instruction. Thus, pseudo instructions
following one of the above machine instructions and referencing the origin, location, or position
counter will use the value before the force upper.

In a PPU assembly, no forcing upper occurs; the assembler ignores a + in the location field on any
instruction other than a VFD, A plus or minus in the location field of a VFD in PPU assemblies forces
the VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately,
either in the same computer run or in independent runs. The subprogram can all be written in
COMPASS source language, or can be written in any other source language available in the product set
of the operating system as long as the compiler or assembler produces relocatable binary output in a
form acceptable to the loader. A COMPASS language subprogram is composed of instructions
beginning with an IDENT pseudo instruction and ending with an END pseudo instruction.

The COMPASS assembler repertoire includes pseudo instructions that facilitate relocatable subprogram
linkage. Through these linkages, subprograms loaded together can transfer control to each other and
can access common storage locations.

Upon completion of assembly of a relocatable subprogram, COMPASS assigns each local block

an origin relative to the zero block (Figure 3-1). Output is in the form of tables for the Relocatable
Loader. Each local block thus becomes an extension of the zero block, The length of the
subprogram given on the assembly listing is the sum of the final values of the origin counters for the
local blocks, including the zero block and literals block, but not the absolute block. Any absolute text
is simply inserted at the absolute location relative to RA (S).

COMPASS binary output for a relocatable subprogram consists of one section for each LCC pseudo

instruction (if any) in the source program, followed by one section containing the subprogram loader
tables.

3-6 60360900 FE

High Core

Low Core
Address

60360900 D

Blank Common

Subprogram n

M__/‘\/\/ 4

I R N N

Subprogram 3

Subprogram 2

Subprogram 1

Core Map of
Loaded Program

Figure 3-1.

}Size determined by
largest block declared
by any subprogram

Subprogram length

Sizes and locations
determined by first
subprogram declaring
them

Ve

Blank Common Block

NP e W Y N

Local Block m

—— . ———
T N— T — Ty

Local Block 1

Literals Block

Zero Block

Labeled Common
Blocks

Organization of
Subprogram 1

Relocatable Program Structure

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific core
locations. Because the absolute loader performs no address manipulation, absolute code can be
loaded more rapidly than relocatable code.

The programmer has the option of constructing his absolute program as a single unit, or of dividing
it into overlays. Each overlay consists of data, information, or instructions that are needed at
different times. Dividing a program into overlays allows several routines to occupy the same core
storage consecutively so that total storage requirements for a program are reduced.

During assembly of an absolute program or overlay, COMPASS creates a core image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute block. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute
block. Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays.

The binary output for the program consists of a section for each overlay. Note that the section for an
absolute program that is not divided into overlays has the same format as the main overlay of a
program divided into overlays. The user has the option of writing part of a binary section at a time

by using either a SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable

field.
An absolute section has three parts:

1. 778 prefix table (PRFX)
2, 508 or 518 overlay table, or a 6000 or 7600 PPU header table

3. Core image of the program
The table formats are described more fully in the Loader Reference Manual.

The amount of binary written as a result of the binary control instruction (IDENT, SEGMENT, SEG, or
END) is subject to whether or not an entire block group is written.

If a complete block group is being written (everything between an IDENT and an END or between
two IDENT instructions), the core image of the program or overlay ends with the maximum origin

counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the core image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete on overlay and write an end of section. SEGMENT
and IDENT write header information for the overlay to follow.

60360900A

IDENT name —

END

Low Core Addresses

v

High Core Addresses

60360900A

or 51 Table
i or PPU Header
Origin—["
Absolute Absolute
Block Block
PROGRAM * PROGRAM *
Default Symbols Default Symbols
Literals Literals
>Optional
Local Local
Blocks Blocks
7/
Program Binary Overlay

Block Structure

Absolute

Default Symbols

Literals

Local Blocks

Core Map of
Loaded Program

Figure 3-2.

Absolute Program Structure

Identification and

Loader Control

+ End-of-section

3.4.1 ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENT } pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a core image of the program as it
is assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits core to be sequentially overlayed by different subroutines
and data during program execution, reducing the maximum core requirements for the program.

For a CPU assembly, the overlay generated is either primary or secondary as determined by the

IDENT or SEGMENT pseudo instruction. The portion of the program following the first IDENT is
normally the main overlay and is identified by the level numbers 0,0, Secondary overlays can be

generated subsequent to the main overlay. A secondary overlay is identified by the level numbers
X,y, where x is nonzero.

Conventionally, the main overlay is the first one loaded and contains calls to the operating system
loader to load one or more overlays as they are required during object time execution. Any overlay
can call the loader to load another overlay. Control transfers to an entry in the overlay or returns
to the calling overlay according to the format of the call. (For detailed information concerning CPU
loader calls, refer to the Loader Reference Manual.)

Because overlays are not all in core concurrently during program execution and because the sequence
in which overlays are loaded and executed is beyond the scope of the assembler, it is the user's
responsibility to assure that an overlay does not refer to symbols, instructions, or data that is not
concurrently in core.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays
generated by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader Reference Manual.

IDENT-Type Overlays

The portions of the program from IDENT to IDENT, and IDENT to END comprise the overlays. IDENT
provides the programmer with the option of specifying the overlay level numbers with each overlay,
including the overlay generated by the first IDENT.

If no level number is provided for a CPU assembly, the first overlay is numbered 0, 0 and any overlay

after that is numbered 1,0. IDENT allows each overlay to be assigned unique numbers. Thus, the
loader has a means of locating a specified overlay when several overlays are written on the same file.

T IDENT instructions described in this section are assumed to have nonblank parameters. The special
case of the blank IDENT is described in Section 3.4. 3.

3-10 60360900A

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction before an END instruc-
tion, COMPASS generates output consisting of a core image of the overlay starting with the overlay
origin specified on the previous IDENT and normally ending with the maximum origin counter value of
the last block declared in the overlay, that is, it normally ends with the last word address. An IDENT
subsequent to a SEG or SEGMENT, however, generates binary that ends at the location specified by
the current origin counter. Following the core image, COMPASS writes an end of section and the
overlay identification information specified by the new IDENT for the overlay to follow.

For an IDENT-type overlay, COMPASS completes all blocks, including the literals block. Block
structuring starts fresh with each overlay. This means that each overlay can use the same block names
used by other overlays, and each overlay can contain a literals block. The USE table and control
counters are all reinitialized. The origin specified for an IDENT-type of overlay can be any place in a
previously generated overlay. This is possible because IDENT causes the assembler to assign an
absolute address to each symbol in the symbol table. It can do this because the sizes of all the blocks
are known.

Figure 3-3 illustrates a CPU program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block and block A. Default symbols and literals cause the assembler to
generate a zero block and the literals block. Following the second nonblank IDENT instruction, the
program overlay origin is set back into the block A. The overlay generates a new literals block

and new blocks A, C, and D.

60360900A 3-11

IDENT, MAIN, X,Y

ABSOLUTE

BETA —

A

ABSOLUTE

A

IDENT, OV1

ABSOLUTE

—

ORG BETA

A'

C

ABSOLUTE'

D

ABSOLUTE'

D

Cc

A’

END

D

Low Core Address

v
High Core Address

3-12

Block Structure

MAIN origin —*

ABSOLUTE

0 (Default)

LITERALS

BETA —

A

—

Section One

——

OV1 origin

ABSOLUTE'

LITERALS'

Al

C

D

Section Two

ABSOLUTE ,
..Control Tabl
0,0 < 0 ABSOLUTE!
LITERALS LITERALS'

A Al J

\

Core Maps of Loaded

Figure 3-3.

Overlays

IDENT-Type Overlay Structure

Identification and
loader control

J> word

S

~ MAIN Overlay
0,0

End-of- section

r Identification
and loader
control information

Overlay OV1

End-of-section

Overlayed portion of 0,0

60360900A

SEGMENT-Type Overlays

The portions of the program from the IDENT that identifies the program to SEGMENT, from SEGMENT
to SEGMENT, and from SEGMENT to END comprise the overlays. SEGMENT provides the programmer
with the option of specifying the overlay level number with each overlay.

If no level number is provided for a CPU overlay, the first overlay is numbered 0,0 and any overlay
after that is numbered 1,0. SEGMENT allows each overlay to be assigned a unique number. Thus,
the loader has a means of locating a specified overlay when several overlays are written on the same
file.

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a core image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or IDENT, for the
first overlay), and ending with the current origin counter value of the block in use at the time the
SEGMENT was encountered. Following this, COMPASS writes an end-of-section and overlay identi-
fication information for the overlay to follow.

For SEGMENT, the last block used in the overlay is incomplete. The literals block is in the overlay that
contains the end of the absolute blo~k. It is the responsibility of the user to assure that all blocks other
than the one in use are complete. The origin of the new overlay can be defined using symbols in the
block in use only. SEGMENT does not clear the symbol table or reinitialize the USE table.

Each new SEGMENT-created overlay must use unique block names because blocks established in
previous overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-4 illustrates a program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block, the literals block, and block A, Default symbols cause the generation
of a zero block. Following the SEGMENT, an ORG instruction sets the overlay origin back into block A,
the block in use when the SEGMENT was encountered. The 1,0 overlay establishes new blocks C

and D.

60360900 D 3-13

IDENT MAIN

ABSOLUTE
TAG™ Block A
ABSOLUTE
Block A
SEGMENTOV1 __ { _ _ ___ _ __ __
ORG TAG
Block C
Block D
END
Block Structure
MAIN Control Table
Origin —
ABSOLUTE
Mai 0
ain Literals
Overlay ﬁ
0,0 Block A
High Core
Addresses

3-14

MAIN
Origin

TAG —=

ABSOLUTE

0 (Default Block)

Literals

Block A

Section One

OoVvi
Origin

Block A

Block C

Block D

Section Two

MAIN Control Table

Origin —

ABSOLUTE

0

Literals

Block A

ov1

Overlay

1,0

Block C

Block D

Core Maps of Loaded Overlays

Figure 3-4.

SEGMENT-Type Overlay Structure

Identification
and Loader
Control
Information

MAIN overlay
0,0

End-of-section

Identification
and Loader
Control
Information

OV1 Overlay
1,0

End-of-section

} Overlayed

Portion of 0,0

60360900A

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called,
it may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 51g overlay

table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 51g table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 51 g table,
refer to the Loader Reference Manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or an overlay contains SEG pseudo instructions or IDENT pseudo
instructions for which the parameters are omitted (blank), COMPASS writes a partial binary section
consisting of the binary generated since the previous IDENT, SEGMENT, or SEG instruction. How-
ever, it does not write an end of section or a new 778 table. A SEGMENT, nonblank IDENT, or END
instruction completes the binary section,

SEG-Type Partial Binary

By writing partial binary using SEG, the programmer can reduce the assembler storage requirements.
A fatal error is issued if the user attempts to store data into a block previously written out or into a
block that will be written out later.

When the SEG is encountered, COMPASS writes binary beginning with the first block established in
that portion of binary and ending with the final count specified by the origin count for the current block.

SEG does not write a complete block group. The portion of the binary that contains the end of the
absolute block contains the literals block, if there is one. The symbol table and USE table are not
reinitialized.

Figure 3-5 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of core required to assemble the program., The resulting absolute section
is loaded and executed as a single program or overlay.

60360900A 3-15

—
IDENT
Program
Identification
and Loader
ABSOLUTE Control
SEG —[——7 77— 7
ABS
(writes partial OLUTE
i ABSOLUTE
binary)
LITERALS
A
SEG] LITERALS
— Absolute
(writes partial B Image
binary) A
Largest partial assembly B
C determines assembler
core requirements
END C
End-of-section
Block Structure Binary Overlay

Figure 3-5. SEG-Type Partial Binary

IDENT-Type Partial Binary

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG,
or SEGMENT to be written out without an end of section or a new 77_ prefix table. The USE table

and the block counters are reinitialized. Each symbol in the symbol table is assigned an absolute
address. The blocks in each partial binary section generated in this manner are allocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local
blocks. This allows portions of a program to be self-contained units even though they are not overlays
but are loaded as a single unit. The origin of an absolute block for a new portion is the last word

address plus one of the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block group, that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current

block.

3-16 60360900A

COM PASS completes all blocks. The literals block is terminated. Block structuring starts fresh
with each IDENT. Each new partial binary section created by a blank IDENT can use the same block
names as are used by the other blank IDENT-created partial binary sections and non-blank IDENT-

created overlays and each IDENT can contain a literals block but the blocks with the same names are
independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written
separately causes a range error.

Figure 3-6 illustrates how the binary for an overlay can be written in three discrete partial binary
sections to reduce the amount of core required to assemble the program and divide the program into
self-contained units. The resulting absolute section is loaded and executed as a single overlay.

IDENT PGM... 1 Program
ABSOLUTE Identification
and Loader
LITERALS Control
ABSOLUTE
Local
Blocks LITERALS
IDENT Local
ABSOLUTE' Blocks
LITERALS' ABSOLUTE'
Local LITERALS'
IDENT Blocks
Local
ABSOLUTE" Blocks
LITERALS" ABSOLUTE"
LITERALS"
Local
IDENT OVLY...| Blocks Local
Blocks End-of-section
Identification
for OVLY
Figure 3-6. IDENT-Type Partial Binary
60360900A 3-17

PSEUDO INSTRUCTIONS 4

4] INTRODUCTION TO PSEUDO INSTRUCTIONS

This chapter and chapters 5, 6, and 7 describe the pseudo instructions available in the COMPASS

language. It is impossible to write a program in the COMPASS language without using some of the
more basic pseudo instructions. The programmer who is new to the language should give special

attention to these instructions.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute
IDENT 4.2.1 X X X
ABS 4.3.1 - X -
PPU or PERIPH 4.3.3 or 4. 3.4 - - X
ORG 4.5.3 - X X
ENTRY 4,7.1 X - -
BSS 4.5.4 X X X
CON 4.8.6 X X X
END 4.2,2 X X X

4.1.1 TYPES OF PSEUDO INSTRUCTIONS
Pseudo instructions discussed in this chapter are classed according to application as follows:

Subprogram identification (IDENT and END)

Binary control (ABS, MACHINE, PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, STEXT,
COMMENT, and NOLABEL)

Mode control (BASE, CHAR, CODE, COL, Bl=1, B7=1, and QUAL)
Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)
Symbol definition (EQU and=, SET, MAX, MIN, MICCNT, and SST)
Subprogram linkage (ENTRY, ENTRYC, and EXT)

Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC,
and REPI)

Assembly control (ELSE, ENDIF, IFtype, IFop, IF, IFC, IFPL, IFMI, and SKIP)

Error control (ERR and ERRxx)

Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)
Later chapters describe pseudo instructions that involve definition operations, alterations to the opera-

tion code table, and micros. In general, pseudo instructions can be summarized according to where
they can be placed in a subprogram.

60360900C 4-1

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, IDENT and END, are required for any assembly. IDENT must be the first
source statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler
with required information. These instructions comprise the first statement group which must precede
any symbol definition, storage allocation, or object code generation. The following instructions, if used,
must be in the first statement group.

ABS
MACHINE
PERIPH
PPU
STEXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere, including in the first statement group.

BASE CPSYN ENDM MICCNT OPSYN SPACE
Bi=1 DECMIC HERE MICRO PPOP SST
B7=1 EJECT IFC NIL PURGDEF TITLE
CHAR ELSE IRP NOLABEL PURGMAC TTL
CODE END LIST NOREF QUAL XREF
COMMENT ENDD MACRO OCTMIC RMT

CPOP ENDIF MACROE OPDEF SKIP

Comments lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the
first statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPROGRAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or
more subprograms are assembled in a single COMPASS run called through COMPASS control state-
ment, the end of the source decks is indicated by a 7/8/9 card.

4.2.1 IDENT — SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized

by the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are
assumed to be comments. However, when COMPASS has been called by some other language processor
such as FORTRAN, the assembler returns control to the processor when the statement following END
is not IDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before
END as an error. For an absolute subprogram, a second form of IDENT described under BINARY
CONTROL is available for overlay generation.

4-2 60360900C

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

CPU Absolute Format:

IDENT name

LOCATION

OPERATION VARIABLE SUBFIELDS

7600 PPU Absolute Format:

IDENT name, origin, entry, 11 N 9

LOCATION

OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

name

origin

60360900 E

IDENT name, origin

Name of the subprogram or overlay. The parameter is required. For a CPU
relocatable or absolute assembly, name can be 1-7 characters, of
which the first must be alphabetic (A-Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1-7 characters.
For a CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000-Series PPU
assembly, name can be 1-3 characters. In either case, there is no restriction
on the first character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or
overlay. The overlay loader table and all code assembled starting at this
address and ending with the next SEGMENT, nonblank IDENT, or END instruc-
tion comprises the overlay. For a single entry point CPU program the load
address for the overlay is origin-1. The word at origin -1 is overlayed by the
50 loader control table. For a multiple entry point CPU program, the load
adaress for the absolute overlay is origin-wc-1, where we is the number of
entry points in the 51 8 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below
origin. The origin subfield does not serve the same function as ORG nor does
it replace ORG for setting the origin counter,

entry

2,8,

ppu

If the origin field is null for an absolute subprogram, the assembler uses
address 000000 RA(S) as the origin for a CPU program and 0000 as the origin
for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader auto-
matically relocates the first subprogram to be loaded starting at RA(S)+100 ,
the second subprogram starting at the first available location following 8
the first subprogram, etc.

For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU
assembly, this subfield contains an expression specifying the subprogram
entry address, which can be symbolic.

Absolute expressions specifying the level numbers of the overlay. £y is the
primary level (0-63) and 22 is the secondary level (0-63). When the first IDENT
identifies the main overlay, ¢; and 22 can be omitted. If 21 is omitted, it is set
to 00. If [PRE omitted, it is set to 00.

Because the first IDENT precedes any use of the BASE pseudo instruction, the
level numbers on this IDENT are evaluated as decimal unless specifically
designated as octal by a post radix.

Absolute expression specifying the number of the PPU on which this program is
to be loaded. On the first IDENT, this number is evaluated as decimal unless
specifically designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control card, IDENT must be in columns 11-15,

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field
entry as the main subprogram title on the assembly listing.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 18 130
T
INDENY |CT,CTONTROL,CONTROL
ARS JARSOLUTE CPU PROGRAM
ORG 1108 |
CONTROL [BSS i} !DEFINFS SYMBROL CONTROL
END

Absolute CPU program CT will be loaded at origin address 001108.

4-4

60360900A

4.2.2 END — END OF SUBPROGRAM

An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and
produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym END trasym
sym Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one,
trasym A symbol specifying the entry point to which control transfers for a reloca-
table subprogram. This symbolmust be declared as an entry point in a
subprogram -- not necessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error, If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.
For an absolute assembly, trasym is ignored.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 EO
$
IDENT |[PROG1 |
ENTRY [BEGIN |
BEGIN S8t 1 ;
END REGIN |

60360900A 4-5

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler
are summarized below and described fully in this section.

ABS Specifies CPU absolute binary output

MACHINE Specifies processor type

PPU Specifies CYBER 70/Model 76 or 7600 PPU binary output

PERIPH Specifies CYBER 170 Series, CYBER 70/Model 72, 73, 74, or 6000 Series
PPU binary output

IDENT Begins absolute overlay or writes partial binary section

SEGMENT Begins absolute overlay

SEG Writes partial binary section

STEXT Generates system text overlay

COMMENT Inserts comments into the 77 8 prefix table

NOLABEL Suppresses header information on binary output

LCC Passes loader control information to the relocatable loader

4.3.1 ABS — ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement
group.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no signifi-
cance because a conventional definition takes precedence (Section 2. 4. 2).

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4-6 60360900 E

Example:

LOCATION OPERATION | VARIABLE COMMENTS

] N 18 T30
TOENT [GT,CONTROL,CIONTROL
ABS ARSOLUTE CPU PROGRAM
NRG 119R |

CONTROL |BSS 0 bEFINES SYMBOL CONTROL
. E] |
FNN |

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program
can be executed successfully and optionally specifies hardware features needed by the object program.,
If used, MACHINE must be in the first statement group.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

MACHINE type,hfl,hfz,hfs, e ,hfn

A location field symbol, if present, is ignored.

type Character string designating object processor type. The subfield can be any length
and may contain any characters other than blank or comma. The first character
identifies processor type, as follows:

6 The object program is restricted to the following computer systems: CYBER I
170 Series, CYBER 70/Model 72, 73, or 74, or 6000 Series. All machine
instructions unique to the CYBER 70/Model 76 or 7600 Computer Systems are
undefined,

60360900E 4-7

hf

4-8

7 The object program is restricted to a CYBER 70/Model 76 Computer System or
to a 7600 Computer System. With the exception of the PS instruction (often used
for subroutine entry points in CPU assemblies), all instructions unique to the
following computer systems are undefined: CYBER 170 Series, CYBER 70/
Models 72, 73, and 74, and 6000 Series.

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6 or 7, then all CPU instructions
are defined, and the target and valid fields of the PRFX table in the object pro-
gram are blanks. If the type subfield is present and its first character is 6 or 7,
the valid field contains 6X or 7X. If the type subfield is at least two characters,
the first character is 6 or 7, and the second character is a digit (0-9), the target
field contains those two characters,

In a PPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6, or 7, then: if the PERIPH
pseudo instruction is present, MACHINE 6 is assumed; if the PPU pseudo in-
struction is present, MACHINE 7 is assumed. The target field of the PRFX
table contains blanks, and the valid field contains 6P or 7P,

Optional subfield, a character string designating an optional hardware feature re-
quired for successful execution of the object program. The subfield may be any
length and may contain any characters other than blank or comma. It has no effect on
assembly of the program. The first character of the subfield is placed in the hard-
ware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

C Compare/Move Unit

D Distributive Data Path

I Integer Multiply Instruction

L ECS/LCM

R Interlock Register

X Central and Monitor Exchange Jumps

Up to nine hfi subfields are processed; any additional subfields are ignored. If the
hfi subfields are omitted, the comma following type can also be omitted.

60360900E

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18]30
1

MACHINE 6,CMU,LGCM,X]
1
{

4.3.3 PPU - CYBER 70/MODEL 76 OR 7600 PPU PROGRAM
A PPU instruction declares a program to be a CYBER 70/Model 76 or 7600 absolute PPU program
rather than a CPU program. If used, PPU must be in the first statement group. For a description

of binary format generated as a result of this instruction, refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USELCM
EXT R=

LCC B1=1

REP B7=1
REPC

REPI

SEG

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.

PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PPU J
J A character string beginning with J supplied in the variable field alters the way

that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

60360900A 4-9

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit (+31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value. If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.

However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the

location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value

that is a true relative address.

A symbol in the location field, if present, is ignored.

Example:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
PPy I
. |
740 TAG ass 208 |
760 0357 UJIN TAG-* |[EXPRESSION < 278
i
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
PPy JUuMP ;
. [
740 TAG RSS 208 l
760 0357 UIN TAG |[EXPRESSION-* < 370

4.3.4 PERIPH - CYBER 170 SERIES OR CYBER 70/MODELS 72, 73,
74 OR 6000 SERIES PPU PROGRAM

A PERIPH instruction declares a program to be a CYBER 170 Series or CYBER 70/Model 72, 73, 74,
or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must be in the
first statement group. For a description of binary output produced as a result of this instruction,

refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY LCC REPI R=
ENTRYC REP SEG Bl=1
EXT REPC USELCM B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

4-10

60360900 E

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable
to PPU assemblies:

OPDEF
CPOP
CPSYN
PURGDEF
Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PERIPH J
J A character string beginning with J supplied in the variable field alters the

way that COMPASS assembles the variable field expression on UJN, ZJN,
MJN, or PJN instructions.

If J is not specified, COMPASS first tests the range of the expression value

against the short jump limit (+31). If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers, Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter

this, however (Section 3.4).

60360900A 4-11

For a CPU assembly, an IDENT with a blank variable field causes a partial binary write. The
output is not terminated by an end of section or a new 77g table. However, the USE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an IDENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the IDENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+l,

The format of the IDENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name, origin, entry, 11 N 9
or
LOCATION OPERATION VARIABLE SUBFIELDS
IDENT

7600 PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

IDENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS
IDENT name,origin
name Name of the overlay. For a CPU program, 1-7 characters, the first of which

must be alphabetic (A-Z); for CYBER 170 Series or a CYBER 70/Model 72, 73,
or 74 or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76
or 7600 PPU program, 1-7 characters. In all cases, the last character must
not be a colon. A name is a loader linkage symbol required for overlays.

4-12 60360900 E

origin An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank IDENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-1. The word at origin-1 is overlayed by the 50_ loader table. For a
multiple entry point CPU program, the load address for the overlay is origin-
we-1, where we is the number of entry points listed in the 51g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
iocations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin counter. The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. When the overlay is
called, control optionally transfers to this address.

!Zl,ﬂz Absolute expressions specifying the level numbers of the overlay for CPU
programs only. f; is the primary level (00-778), 5 is the secondary level

(00-778). If base is M, £ and £, are assumed to be octal. If ¢ and £, are not
specified, £, is set to 01 and f, is set to 00.

ppu An absolute expression specifying the number of the PPU in which the overlay
is to be loaded. If base is M, ppu is assumed to be octal.

A location field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control card. END
dumps the last overlay or completes a partially written section.

60360900A 4-13

Examples:

The following program uses IDENT for overlay creation. Symbols T.OVL, O.DMP1, etc. are
defined on a system text overlay.

DeM

4-14

LOCATION OPERATION | VARIABLE COMMENTS
N 18 Ts0
IDENT [DMP.1,T.OVL0.0MP1
ABS |
BASE |M |
COMMENY 10/07/70.CONTROL CARD CALL.DMP.
LIST |6 |
SsST | OVERLAY
ORG T.OVL DMP1
QUAL |[DMP1 |
DMP SX90 B1 |
QUAL |DMP2 |
IDENT [DMP2,T.0VL,0.DMP2 7
ORG T.OVL | OVERLAYS DMP2
L SX0 B86+1 | THROUGH DMP8
* L] | _J
QUAL |DMP9 | —
IDENT |DMP.9,T.0VL,0.DMP9 OVERLAY
ORG T.0VL [DMP9
SX0 O.DMPZ#F.MDEl
[1] |
END FND OVERLAY DMP9 A

60360900A

The following program uses IDENT instructions having blank variable fields.

1617

455

7116

Origin —

1617

3455

7116

1lwa

603609008

—

LOCATION OPERATION | VARIABLE COMMENTS
h 18 130
T
TOENT | VVV,1108B,ENT ! -
ARS !
oORrG 110R ‘
ENT X0 1 |
L - l
. . | First
LIT 1,2,3 | Partial Binary
TOENT !]
LIy 2453 | Second
. . | Partial Binary
INFENT |
Lt | 1,2 |
’ I Third
* * ' Partial Binary
£NN [i
ABSOLUTE]
LITERALS First

Local Blocks

e

Partial Binary

ABSOLUTE! 1
Second
LITERALS' Partial Binary
— _J
ABSOLUTE"' 'I
LITERALS" Third
Partial Binary
Local Blocks]

Core Map

4-15

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
IDENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG-
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a

CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

name SEGMENT origin,entry,1 1 1 9

name Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon. It is a required loader linkage symbol.

origin A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDENT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 50g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table. Data can be generated in locations
starting with origin and above, but not below origin, The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter. The origin of an overlay can be below the origin specified on
any other IDENT or SEGMENT.

entry An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

1,1 Absolute expressions specifying the level numbers of the overlay for CPU
1’72 - . .
programs only. l1 is the primary level (00—778), 12 is the secondary level

(00—778). If base is M, 11 and 12 are assumed to be octal. If 11 and 12

are not specified, 11 is set to 01 and 12 is set to 00.

4-16 60360900C

Example:

LOCATION OPERATION VARIABLE COMMENTS
1 n 18 [30
I
IDENT [SAM,FENTA !
ARS
0RG 110R |
ENTA nSS 0 IENTRY POINT
L] L] |
ovLOe RSS 9 |OVFRLAY LOAD POINT
. » '
SEG1 SEGMENT STRT,ENTR |
ORG ovLOer
RSS 1 LOADER TAPLE
STRY PSS n JFIRST WORD OF OVERLAY
ENTB RSS 9 EXECUTION BEGINS HERE
END L {END OF OVERLAY
i

SEGI is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC +1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program begiming

at OVLOC,

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous IDENT, SEGMENT, or SEG pseudo instruction. It does not write an end of section or begin
a new PRFX table. A SEGMENT, IDENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

603609004 4-17

Format:

Symbols in the location field and variable field, if present, are ignored.

LOCATION

OPERATION

VARIABLE SUBFIELDS

SEG

Example:
LOCATION OPERATION | VARIABLE COMMENTS
| I 18 T30
T
IDENY | NAME,ORIGIN, ENTRY
ABS
USE A |
L] L] I
. . |
SEG
USE |8 |
* L] '
L - '
SEG |
. . |
. - '
END |

4-18

60360900A

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an STEXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and pseudo instructions), written in overlay
format at the end of pass one. The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control card (chapter 10). Through this feature, information in the system text overlay need
be processed only once for all COMPASS programs using the same system text. System text overlays
cannot be generated and used in the same assembly batch; system text overlays generated by one

COMPASS control card call can be used only by assemblies performed by later COMPASS control card
calls.

The symbols included in the system text overlay written are all symbols defined in the assembly
except those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

The symbol is redefinable (i.e., defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i.e., is a system symbol input to the present system text assembly).l
The symbol is 8 characters beginning with ! |.

All defined micros are included in the system text overlay.

All program-defined opcodes are also included. Machine and pseudo instructions automatically
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

60360900 D 4-19

A system text overlay on the library is an absolute overlay that has the following control table:

59

48 42

36 00

5000 | 01 |

01 I 000000000000 J

Format of Text:

System Symbol
Table
2 words per entry

W > Micro Definitions

A

WA > Macro/opdef Definitions

N\

—V’—\/’_\/ > Operation Table
Entries (2 words per enfry)

!zi= Number of words in each part of overlay

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rname STEXT
rname Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a

letter (A-Z) and the last must not be a colon. It is placed in the prefix table that
precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generate
the system text only. Otherwise, the system text is generated in addition to the re-
locatable or absolute binary and precedes the binary output on the binary file,

An entry in the variable field, if present, is ignored.

4-20

60360900A

Example:

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 [30
IDENT | SYSTEXT |
STEXT |
BASE | MIXED
MPRS EQU 100 | 7]
'svsreu CONSTANTS, SYMBOLS,
|AND COMMUNICATIONS AREAS
TRTS £€QU 7777 | =
IXX/X OPDEF |I,J,K |
. . . ‘SYSTEM—DEFINED MACROS
. . . 'AND OPDEFS
ENDM [
SYSCOM MACRO |N lh
L] . L] I
- L] * I J
ENDM 1
DATE MICRO [1510,%,..%
* L] L] l
. . . [SYSTEM-DEFINED MICROS
END b

4.3.9 COMMENT—PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into

the eighth through fourteenth words of the PRFX table in the object program. The prefix table, and
thus the comment, is ignored by the loader but identifies the section. If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent

binary control card.
is meaningless.

ignored without notification.

Format:

If the subprogram contains a NOLABEL instruction, the COMMENT instruction
COMMENT instructions following SEG and blank IDENT pseudo instructions are

LOCATION

OPERATION

VARIABLE SUBFIELDS

60360900A

COMMENT |string

4-21

string COMPASS searches the columns following the blank that terminates the operation
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters. If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4. 3.5 for an example.

4.3.10 NOLABEL — DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero or for writing Chippewa format
CPU programs.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOLABEL |I
I Optional; if the variable field contains a character string beginning with an I,
COMPASS suppresses all prefix (778) tables, but retains the other program header
tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (77g)

Overlay control tables (50 8)
Multiple entry point tables (518)
PPU header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4-22 60360900B

4.3.11 LCC — LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LCC directive
directive First nonblank character following LCC to the first blank. For directive

formats, refer to the Loader Reference Manual.
A location field symbol, if present, is ignored.
COMPASS writes a directive as a section in packed display code for subsequent interpretation by the

loader. COMPASS does not edit the directive; the loader recognizes illegal forms at load time.

4.4 MODE CONTROL

Mode control pseudo instructions influence the basic operating characteristics of the assembler.
Specifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data BASE pseudo instruction
Generates character data CODE pseudo instruction
Interprets the beginning of comments on statements COL pseudo instruction
Qualifies symbols or does not qualify them QUAL pseudo instruction
Interprets the R= instruction B1=1 or B7=1 pseudo instruction

In each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.4.1 BASE — DECLARE NUMERIC DATA MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base
radix is not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subpro-
gram, COMPASS evaluates unspecified numeric data as decimal.

An alternate application of BASE is to define the previous base as a micro.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname BASE mode
mname Optional 1-8 character micro name by which the previous BASE mode can be referenced

in subsequent BASE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE mode
in effect prior to this BASE instruction.

60360900B 4-23

mode Blank, in which case the base remains unchanged, or 1-8 characters, the
first of which designates the new base as follows:

o Octal assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B prefix or suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 15g; constant 15D is evaluated as 17g. Any
item containing an 8 or 9 without a D radix is flagged as
erroneous. Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.

D Decimal assembly base; any subsequent use of a data item
not specifically identified by an O, D, or B prefix or suffix
is evaluated as decimal.

M Mixed assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal.

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count

B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count

* Use base in effect prior to current base. The assembler records

occurrences of BASE pseudo instructions and maintains a table
of the most recent 50 occurrences. Each BASE * resumes use
of the most recent entry and removes it from the list. When the

subprogram contains more BASE * instructions than there are
entries in the stack, COMPASS uses a decimal base.

other If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag.

4-24 60360900A

Examples:

This example illustrates the affect of BASE on a VFD instruction that defines a 48-bit field
containing 108.

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
DrO BASE | O ;
0000000000000010 VFD 60710 ‘
. . |
OeD BASE D |
0000 VFO 4878 |
000000000010 |
L] [)
'y - l
DM BASE M l
00000000 VFD %8710
00000010 |

The following example illustrates the micro capability of BASE:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
DeM SAVER BASE |M ISAVE BASE IN USE
L] L] *]
. . . |CODE USING BASE M
. | BASE | #SAVEB2 IRESTORE SAVED BASE
MeD || |BASE |D RﬁSTOﬁE SAVED BASE
* L] * ‘
Il . . l

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE O (for Other)
mode is in effect.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
CHAR expl,exp2
expl Evaluatable absolute expression whose value is 00 to 77g. The value of expl
is the display code value of the character to be redefined.
exp2 Evaluatable absolute expression whose value is 00 to 77g8. The value of exp2

is the new code other value of the character designated by expl.

60360900 E 4-25

A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those
characters whose code other values are different from .display code. Characters may be redefined
as many times as desired by subsequent CHAR pseudo instructions.

Example:
LOCATION OPERATION VARIABLE SUBFIELDS
00r63 CHAR 0+638B INTERCHANGE COLON AND
63400 CHAR 63890 PERCENT FOR COOE OTHER

4.4.3 CODE — DECLARE CHARACTER DATA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCII{, display, external BCD, or internal BCD, codes., If no
CODE instruction is used, COMPASS generates display code. Codes are given in appendix D.

An alternative application of CODE is to define the previous code as a micro,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname CODE char
mname Optional 1-8 character micro name by which the previous CODE mode can be referenced
in subsequent CODE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter A, D, E, or I, corresponding to the CODE
mode in effect prior to this CODE instruction.
char The first character of a string indicates the code conversion:

A ASCI six-bit subset
D Display

E External BCD

I Internal BCD

O Other code, defined by CHAR pseudo instructions.

* Use code in effect prior to current code. The assembler records occurrences of
CODE pseudo instructions and maintains a table of the most recent 50 occurrences.
Each CODE * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more CODE * instructions than there are entries in
the stack, COMPASS generates display code.

tAmerican Standard Code for Information Interchange.

4-26 60360900D

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 !30
1725242025240300u003 DATA gLOUTPUTY |
DeA CODE ASCII
5765646036564 000udJ0C DATA OLOUTPUT I
ApE CODE EXTERNAL 8€CD
462423472623 000uu000 DATA aLouTPUT |
Erl CODE INTERNAL B8CD
466463476463 330L00000 DATA gLOUTPUT]
I»D CODE DISPLAY
17252420252400000000 DATA pLOoUTPUT I
eI Cone *]
L664H3L76L063J000UTUD DATA gLOUTPUT |

4.4.4 QUAL — QUALIFY SYMBOLS

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined
in it are either qualified or are unqualified (global). If no QUAL is in a subprogram, all symbols are
defined as global.

An alternative application of QUAL is to define the previous qualifier as a micro.

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualified.
Used outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and
a qualifier become a unique identifier local to the sequence in which the symbol was defined. The
same symbol used with a different qualifier is local to a different QUAL sequence. If a symbol is
defined with no qualifier as well as being defined as qualified, a reference to the symbol within the
QUAL sequence is assumed to be a reference to the qualified symbol rather than to the global symbol.
In this case, a reference to the global symbol must be written as // symbol.

Default symbols and linkage symbols are not qualified.

LOCATION OPERATION VARIABLE SUBFIELDS
mname QUAL qualifier
mname Optional 1-8 character micro name by which the previous qualifier can be

referenced in subsequent QUAL instructions or symbol references. If mname
is present, the value of the micro named mname is (re)defined to be the 0-8
characters comprising the qualifier in effect prior to this QUAL instruction.

60360900E 4-27

4-28

qualifier A symbol qualifier or * or blank, as follows:

qualifier

blank

1-8 character name, the first character of which cannot be $ or =
or numeric. The qualifier cannot contain the characters

+ - */ ,o0or A
A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next
QUAL must be referenced from outside the QUAL sequence as

/qualifier/symbol

The current qualifier appears as the third sub-subtitle on the
assembly listing (section 11.1),

The assembler resumes using the qualifier in use prior to the
current qualifier, The assembler records occurrences of QUAL
pseudo instructions and maintains a table of the most recent 50
occurrences., Each QUAL * resumes use of the most recent entry
and removes if from the list., When the subprogram contains more
QUAL * instructions than there are entries in the stack,

COMPASS uses the null (global) qualifier.

A blank variable field causes any symbols defined up to the next
QUAL to be global. A global symbol does not require a qualifier.

NOTE

The first attempt to redefine a global symbol from
within a QUAL sequence results in A and U errors.
The symbol is defined local to the QUAL sequence
with a zero value. To avoid fatal errors, precede
any redefinition instruction (SET, MAX, MIN, or
MICCNT) within a QUAL sequence with a blank QUAL
and follow it with a QUAL *.

603609008

Examples:

Location Code Generated

10844
19054 777T7TIPITTITATITITITI?E

191855
100965 7T??TTP7ITITRITTITTTTITSG

60360900A

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30
{

QUAL PASS1 [

LenF Xh F |BCNE QUALIFIFED B3Y PASS1
. . I
Fn Loct !
QUAL | PASS? !

aCoE FQU LOG?2 'RCDE QUALIFIEDP BY PASS?2
QuAL |SYMROLS GLOBAL FR0OM NOW ON
. : l
. » |

nLee ass n |6LOR IS GLOBAL
L] - I
EN| /PASS1/BCDF [JUMP YO PASS1 ROUTINF
. |
RJ /PASSP/RCDE! JUMP TO PASS? RQUTINE

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 T30
Trp MACRO |BLOCK,KWAL |
USF ALOCK |
QUAL | XwAL
TAGY RS< 108 '
TrE2 vFn £07-1 :
USE * |
nuAL | =
£NAM :
. |
R |
TaR ONE ,ONF |
uSE ONE
QUAL | ONF |
TAGY 8SS 138 |
TAG2 vFn 607-1 l
USE =
oUAL | |
FNDM |
TAR TWO, THO |
usSE T™O
DUAL | THO |
TAGY R®SS 1088 |
1862 VFD 607-1 |
USE . |
ouAL | *
£NDOM - I

4-29

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
QUAL z 1
71 8SS 0 |Z1 QUALIFIED BY 2
ousL |8 EQUATE SYMBOLS SO THAT
71 = 12771 Z1 IN Z CAN BE REFERRED

[TO AS Z1 IN B

4.4.5 B1 =1 AND B7 = 1 — DECLARE THAT B REGISTER CONTAINS ONE

The Bl=1 and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (Section 4. 8.7) and define the symbol Bl=1

or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
Bl=1
B7=1

A symbol in the location or variable field is ignored.

Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (Section 4. 8.7).

4-30

60360900C

| 44.6 COL— SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATION OPERATION VARIABLE SUBFIELDS
COL n
n An absolute evaluatable expression designating the column number; n> 12.

When base is M, n is assumed to be decimal. If n is less than 12,
COMPASS sets the column at 12. If n is zero or blank, COMPASS sets
the column to 30, the default column.,

A location field symbol, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 0 18 30
L coL 36 [T
USE jRETURN TO BLOCK O
|

i
In this example, subsequent statements for which the variable field is blank cannot have comments
beginning before column 36.

60360900C 4-31

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control
use of all program blocks, and provide the user with a means of changing origin, location, and position
counters.

4.5.1 USE — ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The block in use is the
block into which code is subsequently assembled. A user may establish up to 252 blocks.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
USE block
block Identifies block to be used, as follows:

0 or blank Nominal block (absolute or 0)

// Blank common block; for a relocatable subprogram, this block
cannot contain data. The only storage allocation instructions
that can follow are BSS and ORG. The BSSZ instruction is
illegal because it presets the block to zeros.

/name/ Labeled common block. A name can be a maximum of 7 characters
and cannot include blank or comma. The first and last characters
must not be colons. Conventions imposed by the loader or other
assemblers or compilers could further restrict the use of names.

name Local block. A name can be 1-8 characters, excluding blank or
comma. Use of this name enclosed by brackets does not cause
the block to become a labeled common block. For example,
USE A and USE /A/ are different blocks.

* Block in use prior to current USE, USELCM, ORG, or ORGC.
See discussion following.

A location field symbol, if present, is ignored.

The nominal program block contains the entire program if no USE or USELCM is encountered.

Redundancy between block names is permitted as follows:

A labeled common block designated by /0/ can coexist with the program block designated by 0.
Blank common designated by // can coexist with a labeled common block designated as ////.

4-32 60360900A

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks
with the same name and the same block type if they have different memory types (CM/SCM or
ECS/LCM). Thus, altogether, there may be up to four different blocks with the same name.

When a block is first established, its origin and location counters are zero and its position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for

the origin and position counters. The value of the location counter is not saved. Upon resumption of
the block, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USELCM, ORG, and ORGC pseudo instructions (except
USE * and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and
USELCM * resumes use of the most recent entry and removes it from the table. When the subprogram
contains more USE * or USELCM * instructions than there are entries in the stack, COMPASS uses

the nominal block.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 H 18]30
T
USE |
12 01000000080 GAMMA RrY ALPHA I BLOCK 0 IN USE
USF DATAL IBLOCK DATAY IN USF
35 17204%000000000000000 SAR NATA 1.0 |
USKE * |RESUME USF OF BLOCK 0
14 5130000000 SAZ <SaM |

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the

block.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
T
USE TABLE [USE TABLE LOCAL BLOCK
2615 00 VED [6/0 |
USE | * |RESUME PREVIOUS BLOCK
|
Ld L] | L]
. . I L]
USE | TABLE :RESUME USING TABLE
30002600 + VFD | 6/1RX,18/S
use | * |RESUME PREVIQUS BLOCK

Note how separate blocks can be used to facilitate packing of partial-word bytes into a table residing in
a block other than the one primarily being used.

60360900A 4-33

4.5.2 USELCM - ESTABLISH AND USE ECS/LCM BLOCK

The USELCM pseudo instruction establishes or resumes use of a block assigned t6 extended core
storage (ECS) or large core memory (LCM). For all ECS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatable assembly, data generating instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU
assemblies.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
USELCM block
block: Identifies block to be used, as follows:
0 or blank Iilegal.
// Blank common block. A subprogram can have two blank common

blocks if one of them is in ECS/LCM,

/name/ Labeled common block. The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

name Local block. T The name can be 1-8 characters, excluding blank or
comma. Use of this name enclosed by brackets does not cause the
block to become a labeled common block. For example, A and /A/
are different blocks. All of the local ECS/LCM blocks are con-
catenated to form a single block, which is treated by the loader as
an ECS/LCM common block whose name is unique to the subprogram.

* Block in use prior to current USE, USELCM, ORG, or ORGC.
A location field entry, if present, is ignored.
The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1,048,568

words.

Further rules for USELCM are the same as for USE.

T SCOPE 2 does not currently allow local blocks in LCM.

4-34 60360900A

Examples:

LOCATION OPERATION | VARIABLE COMMENTS
1 0 18 [30
BASE [0 |
t
USELCM| LCM JESTABLISH AND USE LLM BLOCK
LCMC BSS 0 JUEFINE SYMBOL LCMC
BLOCY BSS 100 JRESERVE 100 WORDS
BLOC2 BS 3 200 |RESERVE 200 WORDS
USE * |[RESUME PREVIOUS BLOCUk
. . |
ORG 8LOC1+10008 !
BLOC3 BSS 20 IRESERVE 20 MORE WORDS
USE . IRESUME PREVIOUS BLOLK

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC 1 indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG. In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by

the linking loader if that common block was first declared by a previously loaded subprogram.

T Not supported by SCOPE 2 Loader.

60360900 C 4-35

Formats:

LOCATION

OPERATION

VARIABLE SUBFIELDS

ORG
ORGC

€Xp
exp

exp Expression specifying the address to which the origin and location counters are to be

set.

1.

2.

Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

If the expression contains a symbolic address, COMPASS uses the block in

which the symbol was defined.

COMPASS uses the current block if the value of the expression is *, *L, or
*Q, I the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of *, *L, or *O is to

force the next instruction upper.
the code already assembled into the location is lost,

If a word is partially assembled, however,

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block., All symbols

defined in the absolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a

negative relocatable value.

It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignored.

Once an ORGC pseudo instruction has established the conditional loading indication for a given common
block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

4-36

60360900A

60360900A

LOCATION

OPERATION

VARIABLE

COMMENTS

18

[30
1

ABC

XYz

ALPHA
-

20,100,1000

S0

XYZ+1090

#e 6 ¢ 0 Ho s & Ko o ¢ He o

xe o o

L]

|
| o
l.
|.
|{LOCATED IN ALPHA

|

' L]

I,

I

|LOCATED IN BEVA

»

!'

|SETS ALPHA COUNTERS YO ABC
|AND RESUMES USE OF ALPHA
|c

l

.
|]SEYS ABSOLUTE BLOCK COUNTER
’TO S50 AND BEGINS ITS USE

[SETS BETA COUNTERS TO XYZ+109
|.

I

IRESUMES ABSOLUTE 3LOCK

i.

I

:RESUHES BLOCK ALPHA

lo
‘RESUMES BLOCK BETA
l []

{éESUHES BLOCK ALPHA
|e

.

:RESUHES NOMINAL BLOCK

4-37

4-38

LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
I
Jseg /IATA/ |
DATA 335 0 |
0GC | DATA
DaATA | 1,2,3 IGONOITTIONALLY PRESST DATA
I
use anyaLock |
5ON 3RXYZ IUNCONDITIONAL DJATA
1JSF » '
FOUR DATA | & [RETURN T0 /nATA/ STILL
7ATA | 5,56 SONDITIONALLY SKIPPING
I
0RG FOUR
Z? X1,5R302 | UNGONNITTIONALLY LOADED
2 SURY | INSTRUCTIONS
X [
L] l

60360900A

4.5.4 BSS—BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reserving blank

It can also be used to reserve an area to receive replicated code (see REP, REPC,
and REPI, section 4. 8. 8).

common storage.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym BSS aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs, It is the beginning symbol for the storage area.
aexp Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp connot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS 0 or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
i n 18 [30
T
USE 77 !
COMMON 8ss 10008 lRESERVE 512 WORDS OF BLANK COMMON
USE * |
. . ' .
SA6 COMMONNBOOF?l
E] - I .
TAG BSS] l[)EFINE SYMBOL TAG
d [] l
60360900A 4-39

4.5.5 LOC — SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LOC exp
exp Relocatable expression specifying the address to which the location counter

is to be set. Any symbols in the expression must be already defined in the
assembly and must not result in negative relocation.

A location field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagged with an L on the listing until a LOC *O, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not cause the assembler to switch from the current block to another. LOC
causes the next instruction in the block to be forced upper. The only effect of LOC * or LOC *L is to
force upper. Because COMPASS does not save the value of the location counter when it switches
blocks, a USE, ORG, ORGC, or USELCM for a different block effectively resets the location counter to
the origin counter value. When use of the block is resumed, it is the responsibility of the user to reset
the location counter to produce the desired results.

4-40 60360900A

Example:

In the following example, the first LOC is used to generate PPU code that is to be loaded into one
PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the
program, LOC *O returns the location counter to the value of the origin counter.

LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated | T 18 T30
.
1 T1 €qQu 1 -
0 CH EQU 0 |
7100 ORG 7100 |
7100 RES RSS 0
L 100 LOG 100 |
L 100 2400 PPR PSN 0 |
L 101 2400 PSN 0 |
L 102 2400 PSN 0
L 103 6100 0100 £IM PPR,CH |
L J . L] |
L] L] L] |
L 20% PPRA RSS 0 |
L 0 Loc 0 |
L 0 0100 coN PPR
L 1 0114 CON STM |
L 2 0121 CON P M |
L 3 0122 CON EXR
L 4 0136 CON CHS |
L 5 0147 CON oMP |
L 6 0240 CON END
L 4 1000 CON 1000 |
- - * |
. . . |
L 215 Loc *0-RES+PPR |
L 215 Bss 240-%
L 240 END BSS |
7240 Loc L3 I

603609004 4-a1

4.5.6 POS — SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the block in use to the value
specified by the expression in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
POS aexp
aexp An absolute evaluatable expression having a positive value less than or

equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.

CAUTION

If the POS instruction is used on a word containing re-
locatable or external addresses, undefined results may
occur with no diagnostics.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12).

A POS *P has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the symbolic reference table, a refer-
ence to an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and = cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-42 603609008

4.6.1 EQU OR =-EQUATE SYMBOL VALUE

An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
sym EQU exp
or
sym = exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external. The expression cannot contain symbols
prefixed by =S or =X unless the symbols have also been defined conventionally.
If the expression is erroneous, COMPASS does not define the location symbol
but flags an error.
Examples:

LOCATION OPERATION | VARIABLE COMMENTS
) u 18 [30
20437 OPS = 204378 ‘
74 LINP = 748 |
3 CH EQuU 3 ,
74 PAGESIZ |= LINP |
o4271 LGOPS EQJ *-0PS |

60360900A 4-43

4.6.2 SET — SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines

the symbol to the new value and attributes.

MIN, or MICCNT, only.

SET can be used to redefine symbols defined by SET, MAX,

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym SET exp
sym A location symbol is required. See section 2.4 for symbol requirements.
exp An evaluatable expression.

The expression cannot include symbols as yet

undefined and cannot contain symbols prefixed by =S or =X unless the symbols
are also defined conventionally.

If the expression is erroneous, COMPASS does not define the symbol but

issues a warning flag.

The symbol in the location field cannot be referred to prior to its first definition.

“xamples:

17
T4
22
76

24

20

4-44

LOCATION OPERATION | VARIABLE COMMENTS
n 18 |30
A EQU 15 | A HAS VALUE OF 15
8 SET *p :a HAS VALUE OF POSITION COUNTER
c SET A+3 :c HAS VALUE A+3 OR 18
B = B+2 | ILLEGAL, B IS DOUBLY DEFINED
|
c SET c+2 | LEGAL, C CHANGES FROM 18 T0 20
D SEY F+A | TLLEGAL, F AS YET UNDEFINED
|
8SS AR | ILLEGAL, REFERENCE PRECEDES
IFIPST DEFINITION
AA SET 16 |

60360900A

4.6.3 MAX — SET SYMBOL TO MAXIMUM VALUE

The MAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MAX can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MAX eXP,,eXPys .« 5 €XP
sym A location field symbol is required. See section 2.4 for symbol requirements.
exp

The expressions should have similar attributes. No test is made for attributes.
value is made in pass one.

An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally.

The test for maximum

In testing for the maximum value in pass one, COMPASS uses values for

relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
] N 18 [30
T
5 PT3 EQu 5 {
6 PT31 EQu 6 |
2 PT32 EQU 2 |
6 SYM MAX PT3,PT31,PT%2
60360900A 4-45

4.6.4 MIN — SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MIN €XPq5,€XPgs ..« 5 €XP
sym A location symbol is required (section 2.4).
exp An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally,

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is

used.

The relocatable symbols have been reassigned

values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning

flag.

The symbol in the location field cannot be referred to prior to its first definition.

4-46

60360900A

4.6.5 MICCNT — SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN, -or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to redefine symbols défined by these instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym MICCNT mname
sym A location symbol is required ‘(8ection 2, 4).
mname Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is issued.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [0
MSG [MICRO |1,,*STRING* |DEFINE 6-CHARACTER MICRO
. . l.
s X
6 MSIZE MICCNT|MSG :NSIZE EQUALS 6
. . |‘.
|
23 MSIZE | MICCNT|use les1ze eauaLs 19
60360900A 4-47

4.6.6 SST — SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are defined automatically at the start
of each assembly; however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
SST syml, SyMgseees symn
sym, One or more symbols on the file that are not to be defined.

A location field symbol, if present, is ignored.

Refer to page 10-11 for an example of use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symbols
defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram,

4-48

60360900 E

4.7.1 ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points to
the current subprogram. ENTRY is illegal in PPU assemblies.

The ENTRYC T pseudo instruction conditionally specifies which of the symbolic addresses defined in
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists conditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemblies, In a relocatable assembly, an entry point
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a
common block and that common block was first declared by a previously loaded subprogram.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
ENTRY syml, SyMgy .« s syrnn
T ceos
ENTRYC syml,symz, symn
sym, Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon. The symbol cannot include the following characters:
+=-*/blank , or A

Each symbol must be defined in the subprogram as nonexternal (cannot begin with

=X or be listed on an EXT pseudo instruction). Entry point symbols must be un-

qualified (Section 2.4.5).

A location symbol, if present, is ignored,

A list of all entry points declared in the subprogram precedes the assembly listing., An asterisk
appears to the right of each conditional entry point.

tNot supported by SCOPE 2 Loader.

60360900D 4-49

Example:

Location

119

119

119 5120000100
111 5110000002

Code Generated

73721

4.7.2 EXT — DECLARE EXTERNAL SYMBOLS

LOCATION OPERATION VARIABLE COMMENTS
] N 18 I30
T
IDENT (GT,CONTROL ,CONTROL
ASS |
FNTRY (MODF |
ENTRY |ONSW
ENTRY |OFFSW I
ENTRY [ROLLOUT |
ENTRY [SETPR
ENTRY [SETTL |
FENTRY [SWITCH |
ORG 110R
CONTROL |RSS 0 |
MODE SA? ACTP |
SX7 X2
SA1 ? |
* - I
L] - I
L] - !

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled
or assembled subprograms for which references can appear in the subprogram being assembled.
The EXT pseudo instruction is illegal in an absolute subprogram.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
EXT sym_,Sym,_,...,Sym
y 1’ y 2’ 2 y n
sym

Linkage symbol, 1-7 characters of which the first must be alphabetic (A-Z) and the

last must not be a colon.

+ - * / blank , or A

These symbols must not be defined within the subprogram.

are unqualified,

A location field symbol, if present, is ignored.

The symbol cannot include the following characters;

External symbols

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

4-50

60360900A

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ Generates zeroed words

blank operation field Generates one zeroed word

DATA Generates one or more words of data

DIS Generates one or more words of data

LIT Generates literals block entries

VFD Places expression values in user-defined fields

CON Places expression values in full words

R~ For use in macros; R= assumes that either (Bl)=1 or (B7)=1 and

generates increment instructions accordingly

REP, REPC, or REPI Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4.8.1 BSSZ AND BLANK OPERATION FIELD—RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the same effect as a BSSZ of one word.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym BSSZ aexp
sym If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.
aexp Absolute evaluatable expression specifying the number of zeroed words of

storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

603609008 4-51

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing
shows the word count,

4.8.2 DATA — GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words in the
current block for each item listed in the variable field.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym DATA iteml,itemz, coe ,itemn
sym If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed.
i(:emi Character, octal numeric, or decimal numeric data item, according to

specifications described in section 2.7, Floating point notation is illegal in
PPU assemblies. Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.

Unless the D list option is selected, only item1 appears on the listing.

Examples:
Location Code -Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
552 1&4071790000000000000 oPY8 DATA OLLGO |
553 40000800000000000000 oPT DATA 1B8Ss59 '
554 031715201114050900000 oPTTY DATA DLCOMPILE |
555 17252420252400000000 oPYD DATA 0LOUTPUT L0 |
556 00000000000000000000 |
557 17205146314631463146 orPTY DATA 1. 3E€ |

560 16403146314631463146

4-52

60360900 E

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] Y 18 [30
PERIPH 1
DO BASE [0
I
A N |
1250 7070 hAT DATA [7070,-7,0,1R{
1251 7770 !
1252 0000 l
1253 0034 |
1254 5501 DATA PC A,OLEF
1255 0000 I
1256 0506 |
1257 0123 DATA pL23,-4 l
1260 7773
1261 0401 DATA H*DATA* |
1262 2401

4.8.3 DIS—GENERATE WORDS OF CHARACTER DATA
The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected

only the first word of character data appears on the listing. The instruction has two formats:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS n, string

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

n An absolute evaluatable expression specifying an integer number of words to be

generated. When base is M, COMPASS assumes that n is decimal.

string Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
10 characters per word into n words. TFor a PPU program, COMPASS takes two times n characters from
the string and packs them as they occur two characters per word into n words, If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks,

Ifnis 0, COMPASS assumes the instruction is in format two.

60360900A 4-53

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS ,dstringd

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

d Delimiting character

string Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters.

The comma is required. The characters between

the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them.
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an

additional word for them.

delimiting character, it produces a fatal error,

If COMPASS detects the end of the statement before it detects a second

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 N 18 [30
561 073051605220124055535 ONE DIS 2y GENERATE ?T CPU WORDS
562 558320256562717220423 |
563 087051605220124055535 TWHO DIS y*GENERATE 2| CPU WORDS*
564 55032025552717220423 |
565 00000000000000000000 |
4-54

60360900A

Location Code Generated
1402 0705
1403 1605
1404 2201
1405 2405
14006 5634
1407 3355
1410 2020
1411 5527
1412 1722
1413 0423
1414 0705
1415 1605
1416 2201
1417 2405
1420 5534
1421 3355
1422 2020
1423 5527
1424 1722
1425 0423
1426 0400

LOCATION OPERATION | VARIABLE COMMENTS

w

1 n 8 I 0

F
PPU '
I
DM BASE | M |
B 10,GENERATE 1u PP WORUS
[
[
|
|
!
|
!
{
LIS »¥GENERATE 10 PP wOKDS*

!
|
1

4.8.4 LIT — DECLARE LITERAL VALUES

A LIT pseudo instruction generates data words in the literals block. This instruction and the
= prefix to a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym LIT iteml, itemz, oo ,itemn
sym If present, sym is assigned the value of the literals block location counter
itemi At least one and not more than 100 words of character, octal numeric, or

60360900A

decimal numeric data items. Section 2.7.3 contains specifications. Items
are separated by commas and terminated by a blank. Floating point data
items are illegal in PPU assemblies.

4-55

COMPASS enters data items into the literals block in the order specified.

If the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
A literal item subsequently referred to through an

= prefix is not duplicated. A null item (e.g. H** or OL) does not cause a word to be generated.

the block, the entire sequence is generated.

Examples:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 0 18 [30
611 POOL LIT 3.1,1.59265,2.7182182,57.2957795EE1
CONTENT CF LITERALS BLCCK,
000611 17216146314631463146 OQ(-Y=-Y=-Y-
000612 17206275576L41776271 OP)2.,263%1¢
g000613 17215337351136014426 0Q¥2I3A9Y
00061% 17314363651440663121 OYARtalL5VYQ
000615 16513333033540576566 N(DOC25,pv
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
! N 18 [30
I
7647 N2 LITY 1R1,707047,0
7453 LIT 2C A,LOLEF
7456 LIT H¥ LITERALS* |
CONTENT CF LITERALS EBLOCK. !
7447 003&% 1
7450 7070 22
7451 0007 G
7452 00090
7453 5601 A
7454 0000
7455 0506 EF
7456 1411 tI
T%57 2405 TE
7460 2201 RA
7461 1423 LS

4-56

"~ 60360900A

4.8.5 VFD — VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym VFD iteml/expl, iten12/exp2, oo itemy /expn

sym For a CPU assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

+ Causes a force upper. Data generation begins in a new word.

- COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

blank COMPASS begins the first field at the current value of the position
counter.

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word, If the location field is blank, the first
field begins at the current value of the position counter.

item, An unsigned constant or previously defined symbol having a value specifying a
' positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value), When base is M, itemi
is assumed to be decimal notation.

exp; An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by itemj. The expression is evaluated using
the specified field size. Character constants are right or left adjusted in the
field according to the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Lach field is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, COMPASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no-
operation instructions.

60360900 D 4-57

When a VFD instruction that does not have a location field entry immediately follows another VFD in
the same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as

they are specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the
last word in which data was generated by the VFD.

Examples:
Location Code Generated
31
566 230102000000230005651
S67 00000005665555555555
570 777777774
000000000000
571 11172401550155555531
572 00000015052323010705
573 031117000000033
Location Code Generated
O M
1310 3334
1311 3536
1312 3740
1313 4142
1314 L4344
1315 0010
1316 0011
1317 7765
1320 0707

4.8.6 CON — GENERATE CONSTANTS

LOCATION OPERATION | VARIABLE COMMENTS
" 18 T30
-
ALPHA SET 25 |
TABLE VFD 36/3CTAB,6/19,18/TABLOG
VFD 30/%-1,30/5H sALPHA/ -0
l
VFD *py |
VFD 30/0HIOTA,E/1RA,24L/0AX+]
VFD 60 /0RMESSAGE,30/3LCI0,15/0R0
|
LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
PPU '
BASE | M |
N4 VFD 60/10R01234567 89
|
l
|
ALl VFD 12/710412711,12/7-12,4,12/-7070

The CON pseudo instruction generates one or more full words of binary data in the block in use. It
differs from DATA in that it generates expression values rather than data items and differs from VFD

in that the field size is fixed.

Format:
LOCATION QOPERATION VARIABLE SUBFIELDS
sym CON expl, eXPys - vt exp
sym If present, sym is assigned the value of the location counter after the force
upper occurs.
exp, An absolute, relocatable, or external expression the value of which will be
! inserted into a field having a size of one word. For PPU assembly, floating
point is not allowed; for CPU assembly, double precision is not allowed.
4-58

60360900A

Examples:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
T
1460 0000 MSG1 CAN 0 l
1461 none can 6 i
1462 negn3 (ofa] N 3 l
1463 22n4 CAN FATL
1464 No24 CAN 20 |
1465 nnno MSi2 CNN 0
1464 000k CAN 6]
1467 0003 CnN 3
1470 2172 coN PASS {
147 nn24 CAN 20 |
Location COde Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 130
574 TAD Ass) f
L 1 LOC i} |
L 0 000000000000000000S55 CON iR |00
L 1 00000000000000000062 CON 1R 01
L 2 0000N00000ND00N0N006, CON 1Rz 02
L 3 gop00000000000000060 CON 1R= ‘03
. . l L]
. - I .
L 75 g0000000000000000066 CON 1Rv I75
L 76 0000000N000N00000076 CON 1R [76
L 77 00000000000000000055 CON 1P 177
674 Lor *Q '

4.8.7 R=— CONDITIONAL INCREMENT INSTRUCTION

The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the

variable subfields and on whether or not the subprogram earlier contained a B1=1 or B7=1 pseudo
instruction (Section 4. 4. 4).

Use of R= augments macro definitions and increases optimization of object code.

It is illegal in a
PPU program.

The A list option controls listing of substituted instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sym R= reg, exp
sym Optional, if present, sym is assigned the value of the location counter after
the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.
60360900A

4-59

reg A register designator (A, X, or B) and a digit (0-7) which COMPASS
concatenates with S to form the instruction operafion code.

exp Operand register or value expression.

characters as reg, no instruction is generated.

If the expression value is 0, the variable field is BO.

If the second subfield is the same two

If the B1=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1. the variable field of the instruction is B1,

B1+B1, or -Bl, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7,

B7+B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the

expression,

Examples:

1. R=used with Bl=1

Code Generated

LOCATION

OPERATION

VARIABLE

COMMENTS

n

l30

2. R=used with Bl1#1

Code Generated

4-60

LOCATION

OPERATION

VARIABLE

COMMENTS

18

[30

TAG

X5y-1

|

60360900A

3. Expression is same as register designator:

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
.
RFG MICRO |14 *R5* f
R= 95, #REGE |
R= BS [} BS

No instruction is generated; SB5 B5 would be a no operation instruction.

4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will 1load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun-
tering the table; for REP, the replication takes place at the end of loading. For REPC*the loader
ignores the REPL table if the destination data address is in a common block that was first declared
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon
encountering the tables.

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPC and REPI, data must be inpreviously assembled text.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
REP .
REPC S/saddr, D/daddr, C/rep, B/bsz,1/inc
REPI

A location field symbol, if present, is ignored.
The variable field subfields can be in any order.
S/saddr Relocatable expression specifying first word address of code to be copied.
The S/saddr subfield must be provided. If it is zero, or omitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.
D/daddr Relocatable expression specifying the destination of the first word of the first
copy. If D/daddr is omitted, the assembler sets daddr to zero, and, when

daddr is zero, the loader uses saddr plus bsz for the destination address.

Note that room for the repeated data must be reserved in the destination block.

* Not supported by SCOPE 2 Loader.

60360900 D 4-61

C/rep Absolute expression specifying the number of times code is to be copied. When
base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the assembler sets rep to zero. When rep is zero or one, the loader
makes one copy.

B/bsz Absolute expression specifying the number of words to be copied (block size).
When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one,
the loader copies one word.

1/inc Absolute expression specifying the increment size in words. When base is M,
COMPASS assumes that inc is in decimal.

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr + 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
inc x rep. Storage reservation for replicated code is the responsibility of the user.

Rules for replication:
1. The S subfield cannot be omitted

2. Room must be reserved for the copies in the destination block (for example, through
ORG, ORGC, or BSS)

3. REP, REPC, and REPI can be used in relocatable assemblies only

4. Data to be replicated must not contain any external references or common hlock relocatable
addresses

5. Tor REPC and REPI, data must be in previously loaded text

Example:
LOCATION OPERATION | VARIABLE COMMENTS
Location Code Generated
= =) N 18 T30
. 10 [[ec = 110 Ai o
USE NEWP !
5017 00000000000000000015 BA DATA 1542057070849 195,3.14
50?0 00n0000000000000000290 |
5021 007000000000080007070
5022 00000000000000NGC0001 |
5023 00000000P000COD000005 |
5024 1721630000000000000¢0 |
132 | EQU ¥-BA+S ‘
| USE DBLOCK %
5251 DA RSS RC*T '
USE * !
I REPT S/BA,D/DA,R/I-54,C/RC,I/1

4-62 603609008

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environment (IFtype)

Compare values of two expressions (IFop)

Compare values of two character strings (IFC)

Test the attribute of a single symbol or an expression (IF)
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the tested condition
is true and skipped when the condition is false., Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement count, when used, is decremented for instruction lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4.9.1 ENDIF — END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIF is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Skipped instructions such as macro references are not expanded. Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ENDIF
ifname Name of an IF, SKIP, or ELSE sequence; or blank

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed ENDIF. Any ENDIF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

60360900A 4-63

4.9.2 ELSE — REVERSE EFFECTS OF IF
Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Skipping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname ELSE nct
ifname Name of an IF, SKIP, or ELSE sequence, or blank.
fact Optional absolute evaluatable expression specifying integer number of source

lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that gnct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence

initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFtype mct

4-64 60360900B

ifname Optional 1-8 character name.

type Mnemonic specifying type of object processor.
Type Condition Causing Assembly
CP Any central processor unit
CP6 Neither PERIPH nor PPU nor MACHINE 7 has been specified.

CPU code is assembled for a CYBER 170 Series, CYBER 70/
Model 72, 73, or 74 or 6000 Series Computer System.

CP7 Neither PERIPH nor PPU nor MACHINE 6 has been specified.
That is, CPU code is assembled for a CYBER 70/Model 76
or a 7600 Computer System.

PP Any peripheral processor unit

PP6 One of the following is true:

1. PERIPH has been specified but MACHINE 7 has not
been specified.

2. PPU and MACHINE 6 have both been specified. PPU
code is assembled for a CYBER 170 Series, CYBER
70/Model 72, 73, or 74 or a 6000 Series Computer
System.

PP7 One of the following is true:

1. PPU has been specified but MACHINE 6 has not
been specified.

2. PERIPH and MACHINE 7 have both been specified.

That is, PPU code is assembled for a CYBER 70/
Model 76 or a 7600 Computer System.

60360900 E 4-65

inct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is- M, COMPASS assumes
that gnct is decimal.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2, If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE., An ENDIF or ELSE with a name that
does not match has no effect.

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
INENT |XYZ !
MACHINE 6 |
X |
v BSS 123 !
IFCPe |2 |
173 61330000GC¢C XJ 0 |
ELSE 1
M 0 !
|

4-66 60360900 E

4.9.4 IFOP— COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
ifname 1Fop exp1 »€XDy, nct
ifname Optional 1-8 character name
op Specifies comparative test:

603609008

op
EQ

NE

GT

GE

LT

LE

Condition causing assembly

Equality, the expressions are equal in all respects. That is,they
not only have the same numeric value but have the same attributes
as well. For example, both are names that are common
relocatable, or absolute,or external, etec.

Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.

The first expression is greater in value than the second expression.
No other attributes are tested.

The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

The first expression is less in value than the second expression.
No other attributes are tested.

The first expression is less than or equal in value to the
second expression. No other attributes are tested.

For these tests, positive zero and negative zero are equal.

4-67

exp, An expression. When the value of exp is tested, exp can include only previously

defined symbols and the result can be absolute, relocatable, or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

mct Optional absolute evaluatable expression specifying an integer count of the

number of statements to be skipped. When base is M, COMPASS assumes
that gnct is decimal. When g¢nct is blank, the comma can be omitted.

The ifname and ¢nct parameters are related as follows:

1‘

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first,

If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [0
1F DEF,LO0OP
IFLT *-L00Py408
ZJIN LouPr
ELSE 2
NJN *+3
LuM LocP

This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37_ words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJM are assembled,

4-68

60360900 E

4.9.5 IFPL AND IFMI —-TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFPL exp, ct

ifname IFMI exp, fnct

ifname Optional 1-8 character name

exp An expression. It can include only previously defined symbols and the result
can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

fnct Optional absolute expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPASS assumes that ¢nct is
decimal. When ¢nct is blank, the comma can be omitted.

The ifname and gnct parameters are related as follows:

1

3.

If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first,

If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

60360900 E

4-69

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60,

IFEQ Ay0,3
IFLE VAL,0,1

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30

MXQ OPDEF | REG, VAL |
LOCAL | A |
A SET VAL |
A SET A-A/60D*60D'
IFPL A, 3 |
I
|

SK1IP 1
A SET A+60D |
VFD 6/ 43By 3/REGy6/A
ENDM |
]
|
Example of call:
COde Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
MY E -52 I
7?77712 I+ 000001 SFY -5? |
7777713 ~000G01 SET **00&001-¢+D00001/600‘600
TFPL |+4000001,3 |
TFEN ++000001,0,3
TIFLF -524,0,41 |
SKIP 1
10 ry000N1 SFT +000q001+60D
L3610 veEn A/438B43/6,A/4+000001
ENNM |
|

49.6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

4-70 603609008

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
ifname IF att, exp, fnct

ifname Optional 1-8 character name
att

60360900B

Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition.

att

SET

-SET

ABS

-ABS

REL

-REL

REG

-REG

COM

-COM

EXT

-EXT

LCM
-LCM
LOC
-LOC

Condition causing assembly

The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT

The symbol given in the second subfield was defined other than
by a SET, MAX, MIN, or MICCNT

The expression in the second subfield reduces to a value that is
not relocatable or external

The expression in the second subfield reduces to either a
relocatable or an external address

The expression in the second subfield reduces to a local or
common relocatable address

The expression in the second subfield does not reduce to a local
or common relocatable address

The expression in the second subfield contains one or more
register names

The expression in the second subfield does not contain a register
name

The expression in the second subfield reduces to a common re-
locatable address (any blank or labeled common block)

The expression in the second subfield is not a common relocatable
address (any blank or labeled common block)

The expression in the second subfield contains one or more
external symbols

The expression in the second subfield does not contain an
external symbol

The expression reduces to an LCM address
The expression does not reduce to an LCM address
The expression reduces to a program relocatable address

The expression does not reduce to a program relocatable address

4-71

DEF All the symbols in the expression in the second subfield are

defined

-DEF One or more of the symbols in the expression in the second
subfield is undefined

MIC The name in the second subfield is a micro

-MIC The second subfield does not contain a micro name

SST The second subfield does not contain a system symbol

-SST The second subfield contains a system symbol

exp For SET, SST, -SET, and -SST, exp must be a single defined symbol. For

MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction.

mct Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skippede When base is M, COMPASS assumes
that gnct is decimal. When gnct is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en-
countered, whichever occurs first.

9. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

Examples
LOCATION 6PERATION VARIABLE COMMENTS
} n 18 [0
ABLE BSS 20 H
L] L] L 3 I
S '
YEST IF REL,ABL£+15:
L] : * I
. . . !
TEST ENDIF |
IF COM,DTA,2 ERRONEOUS, DTA AS YET UNDEFINED
. . |
. . |
. . |
USE 17 |
DYA 8ss 1 I
|

4-72 60360900 E

4.9.7 IFC - COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range it the comparison is satisfied.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFC op, dstring, dstringod, gnct

ifname Optional 1-8 character name

d Delimiting character. Characters between the first and second occurrence of this
character constitute the first character string; characters between the second and
third occurrence constitute the second character string.

op Specifies comparative test:
op Condition causing assembly
EQ or -NE string1 has the same value as si:ring2
NE or -EQ stringl does not equal string,
GT or -LE s!:ring1 is greater than sl:ring2
GEor -LT string; is greater than or equal to string,,
LTor -GE string, isless than stringy
LE or -GT string is less than or equal to string,

stringi Character string. When IFC is within a macro definition, each character string
can be a formal parameter,

mcet Optional absolute evaluatable expression specifying an integer count of the number

of statements to be skipped. When base is M, COMPASS assumes that gnct is
decimal. When ¢nct is blank, the comma can be omitted.

The ifname and fnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

60360900 E

4-73

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect

Each character in string1 is compared with the corresponding character in strings progressing from
left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:
LOCATION OPERATION | VARIABLE COMMENTS
) N 18 [30
TFST1 IFC EQ"EABCABC; ABC EQUALS ABC
TEST?2 IFC LT,*AB*ABC* | AB IS LFSS THAN ABC
TFST3 IFC GTyXAXX | A IS GREATER THAN NULL
IFC ~GE ,*7Z%8%,3 | Z IS LESS THAM 8

The IFC in the following example checks for an empty parameter string.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
T
X X MACRQ |[P1,P2 !
IFG TO,x¥0% g |
P FRR : FLAG EPROR
i i
- '
|
ENDM i

I The following example illustrates a character string terminated incorrectly., When COMPASS reaches
end of statement without finding a third asterisk. the asterisk omitted following P1 causes an error flag.

LOCATION OPERATION | VARIABLE COMMENTS
) " 18 [30
1
IFn FQ,*CN*¥P1L,2¢8P2

4-74 60360900E

4.9.8 SKIP — UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format
LOCATION OPERATION VARIABLE SUBFIELDS
ifname SKIP mct
ifname Optional 1-8 character name
fnct Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that ¢nct is
decimal.

The ifname and gnct parameters are related as follows:

1. [If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

410 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4.10.1 ERR — UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
based on an assembly time test. One application is to use a test and ERR to detect illegal macro
parameters.

60360900 E 4-75

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
flag ERR
flag A single alphanumeric character denoting the error type. The flag is placed

in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11.7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
NNN MACRO | P1,P2,P3,P4|
IFEQ | P1,0 |
A ERR

NNN

*

l
l
|
I
|
1

0yA,B4C

4.10.2 ERRxx — CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
flag ERRxx aexp
flag A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11.7,
COMPASS uses P,
4-76

60360900A

XX Defines condition under which aexp value is erroneous.

XX Error Condition
NG or MI Value of expression is negative
NZ Value of expression is nonzero
PL Value of expression is positive
ZR Value of expression is zero
aexp Absolute expression. It cannot contain exfternal symbols or references to blank

common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which
they are defined.

NOTE
ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU

overflow if the PPU program has literals and USE
blocks.

Example:

Test for memory overflow in PPU assembly

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 T30
PERIPH i
7447 LASTTAG [BSS |0 |
7777447 R ERRPL (LASTTAG-7777|
7462 END ,

411 LISTING CONTROL

The instructions described in this section permit extensive control of the assembly listing format.

4.11.1 LIST — SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions
are disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control card (section 10.1. 2) is zero, or

When the list option parameter (LO) on the COMPASS control card is used and is other than LO=0.

60360900 E 4-17

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list
output is according to the L and LO parameters on the COMPASS control card. If the LO parameter
is omitted or LO=0, the list options are as if L, B, N, and R only are selected and the listing contains
heading information, assembly text, assembler statistics, an error directory (upon occurrence of an
error only), and a symbolic reference table. Formats of this output are described in detail in
chapter 11 and brief summaries are given below.

Heading information

Assembly text

Assembler statistics

Error directory

Symbolic reference table

Program length, origin, and length of each block, entry points
and external symbols.

Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by RMT, DUP,
ECHO, XTEXT, or a macro or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce
more than one word of object code, only the first word is listed.
For VFD and CON all words of object code are listed. For R=,
only the pseudo instruction is listed.

Each occurrence of the LIST instruction is listed.

Amount of storage used, counts of assembled statements,
defined symbols, invented symbols, and references to symbols.

Lists fatal and nonfatal errors and summarizes the causes of each.
List of all symbols defined in the program according to symbol

qualifier, if any, followed by an index to every reference to the
symbol in the listed statements.

Formats:
LOCATION OPERATION VARIABLE SUBFIELDS
LIST Py s opz, -e+s0P
or
LIST *

A location field symbol, if present, is ignored.

op;

4-78

A list option represented by a single letter or a letter prefixed
by a minus sign. The unprefixed letter selects the option; the
prefixed letter cancels the option. Options are separated by
commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation

and micro substitution marks is listed with the marks in it
exactly as presented to the assembler. When the A option

is selected, however, the assembler lists the line before and
after the editing takes place. Selecting A also causes the
listing of lines of code resulting from the R= pseudo instruction.

60360900B

B List binary control statements

When B is selected, the listing includes SEG, SEGMENT, IDENT, and
END pseudo instructions.

C List listing control statements

When C is selected, the listing includes EJECT, SPACE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

D Include details

Selection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DATA and DIS

Code assembled remotely when HERE or END causes its assembly
Literals block

Default symbols

E Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

F List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, IFop,
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L. Master list control

This option is normally selected. When L is canceled, the long list contains
error flagged lines, an error directory, and LIST pseudo instructions only,
regardless of selection of any other options on LIST.

M List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

4-79
60360900A

N List nonreferenced symbols
This option is normally selected. Cancellation of this option causes
any non-system symbol for which no reference has been accumulated
(e.g., all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references
This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbolic reference table is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listed.

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated
references.

X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

$ A dollar sign in the variable field selects all options.

An asterisk in the variable field causes selection of the options in effect prior
to the current selection. The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each
LIST * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion causes by an XTEXT within a system macro call

is listed only when both X and S are selected. To obtain a listing showing r’and # marks removed from
external text inside a DUP range requires that A, X, and E all be selected.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30

T
LISTY A !
DATA | 1.30EE ‘
0 17205146314631463146 DATA | 1.3EE '
LIST | D 5
DATA 1.30EE !
2 17205146314631463146 DATA |1.3EE]
3 16403146314631463146 |
LIST | -A,-D |
4 17205146314631463146 UATA | 1.30EE |
LIST | = i
DATA | 1.3eEE2% |

6 17205146314631463146 DATA |1.3EE
7 16403146314631463146 '

4-80 603609008

4.11.2 EJECT—EJECT PAGE AND BEGIN NEW SUB-SUBTITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor-
responding LIST options are not all selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name EJECT
name New program sub-subtitle for the page will be printed in character positions

70-79 of the second line of the page. A blank name clears the sub-subtitle,

An entry in the variable field, if present, is ignored.

4.11.3 SPACE — SKIP LINES AND BEGIN NEW SUB-SUBTITLE

The SPACE pseudo instruction spaces the assembler listing., When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected.

LOCATION OPERATION VARIABLE SUBFIELDS
name SPACE scnt, rent
name New subprogram sub-subtitle will be printed in characters 70-79 on the second

line of the next page heading. A blank name clears the sub-subtitle.

scnt An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If baseis M, scnt is assumed
to be decimal. If scnt is omitted or zero, no line is skipped.

rent An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, recnt is assumed to
be decimal.

If sent + rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards can also be used to space the listing.

60360900 E 4-81

4.11.4 TITLE — ASSEMBLY LISTING TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing,.

A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction

as the title. A TITLE instruction without a character string produces an untitled listing. A name in

the location field introduces a new subprogram sub-subtitle.

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions
(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option L is deselected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name TITLE string
name New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page. A blank name clears the sub-subtitle.
string COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement. Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end of the statement or to
62 characters. Any characters beyond the 62nd are lost. A blank string
produces an untitled listing,
Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 J30
IUENT [MTD N
LIST Cc]
TITLE [MT ORIVER !
]
* |
¢ i
® !
TITLE |I/0 ROUTINES
. |
- |
4-82

60360900C

First page:

Subsequent pages:

MT DRIVER

mMT DRIVER
170 ROUTINES

4.11.5 TTL — NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and
clears the subtitle.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name TTL string
string COMPASS searches the columns following the blank that terminates the operating
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.
A blank string produces an untitled listing.
name

New sub-subtitle to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.

TTL does not cause a page eject.

4.11.6 NOREF — OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
NOREF Sym,, Symy, ..., Sym
sym, One or more symbols defined in the subprogram. If a symbol qualifier is in
i

effect when the NOREF is encountered, the symbols are assumed to be qualified
by the qualifier in use. Alternatively, sym, can be a non-blank qualifier symbol
enclosed by slant bars, /qualifier/, in whidh case all symbols qualified by the
specified qualifier are suppressed from the sumbolic reference table.

A location field symbol, if present, is ignored.

60360900C

4-83

4.11.7 CTEXT AND ENDX — DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

NOTE

When the flag is set, external text is listed only if
the X list option is selected.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name CTEXT string
name If X list option is selected, name (optional) is treated as a sub subtitle;
otherwise it is ignored.
string If the variable field is nonblank and the X list option is selected, the CTEXT

is treated as a subtitle. The CTEXT instruction generates a subtitle and
causes a page eject. If X is not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank character following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost,

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION

OPERATION

VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ignored.

4-84

60360900 D

4.11.8 XREF—REFERENCE SYMBOLIC ADDRESS

The XREF pseudo instruction provides the options of having the symbolic reference table contain

references to symbols according to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section 11. 8.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
XREF string
string

An optional character string, the first character of which indicates how symbols

are
A
B

P

to be referenced.

The symbolic reference table lists addresses only. Flags are not included.

The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

The symbolic reference table lists references to symbols according to
page and line numbers. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XREF encountered in a subprogram
determines the form of the listing for the entire subprogram.

60360900C

4-85

DEFINITION OPERATIONS 5

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF).

Any instructions other than END, including other definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. When the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
innermost definition. The stack allows nesting of definitions to a maximum level of 400. When the
end of a definition is reached, the assembler switches to the preceding entry in the stack. When the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.

A nested definition must he wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows:

A single space is represented by 55g; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
3 spaces replaced by 0002
4 spaces replaced by 0003

8

;)‘4 spaces repla'Lced by 06778
65 spaces replaced by 0077558
66 spaces replaced by 007755558

67 spaces replaced by 007700028’ ete.

Trajling spaces are considered as embedded andare included in the image. The 00 character
(colon) is represented by the 12-bit code 0001. A 12-bit zerobyte marks the end of the statement.,

The listing identifies the source of statements and the recursion level for all definition operations.

60360900A 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition
contains a USE, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DUP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code

in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements froem a fite other than
that being used for input. COMPASS transfers the text from the external source and assembles it

before taking the next statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFY random-access program library
file.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
file XTEXT rmame

5-2 60360900A

file Name of a file containing source statements. If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control card
(Section 10.1.2). If no X parameter was specified, COMPASS assumes OLDPL,

rname If rname is blank, COMPASS assumes that the file is sequential; it rewinds the
file and reads the first section. If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records,f a record indexed file with named records, a random-access program

library file in UPDATE format, or a random=-access program library file in
MODIFY fformat.

Text records may be in any of the following formats.
1. Normal text. If the first line contains rname starting in column 1, it is skipped.

2. A common deck in an UPDATE or MODIFY { random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped.

3. An UPDATE or MODIFY | compressed compile file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction,

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps, A pair of RMT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2.1 RMT — SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname RMT
rmtname Optional 1-8 character name identifying the remote sequence. It is

significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

T MODIFY is not supported by SCOPE 2,

60360900A 5-3

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

5.2.2 HERE — ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is
encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
rmtname HERE
rmtname Optional; the name of a previously saved RMT sequence. Only the named

sequence will be assembled at this time.
A variable field entry, if present, is ignored.
If unlabeled remote sequences still remain to be assembled when the END card signaling the end of

assembly is encountered, COMPASS assembles them before it terminates assembly. However, any

RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost.

Examples:

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

5-4 60360900A

Location

Code Generated

4730

e 1331',:;q
001 aeaaaaaana3zaeb .

. 1332‘, !
jnnauaeaeaneunaaszsu«;"

LOCATION OPERATION

VARIABLE COMMENTS

! n

18

[30

MACRC
IFC
EQU
CoON
ELSE
EQJ
EQU

TNAM
O0.TNAM

TNAM
C.TNAM

RMT
EQU
RMT

LeTNAM

TABLE, TNAM,EQIV
EQ,**EQIV* !
*-0RIGINS |
BUCKETY
2

EQIV
0.EQLVY

TNAM+SIZES

| |anTeR

JLOINTER |

K"LASf@B <

473

60360900A

gg,;¢¢

: ‘4»,2

| EQyvee

| LasTas

*-0RIGINS |
BUCKET

|
!
|
[
|
!
|
l
|
!
I
I
|
!
l
|
4
.
!
l

INTE&%SI!ES

-

-

*-ORIGINS|
g

L
LASTAB#SIZES

£Qy*SLAST

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 [30
RMT j
FLD DECMIC| BUF+BUFL-WSA+ENDS
PRS LIT C*¥2FLD2 DECIMAL REQUIRED.*
RMT |
|
C

5.3 CODE DUPLICATION

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3.1 DUP — SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.

The range of the DUP is specified either by a source statement count on the DUP instruction or by an
ENDD.

5-6 - 603609004

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

dupname

dupname

rep

mct

DUP rep, mct

Optional name of the DUP sequence; 1-8 characters. When supplied, it can be
used in an ENDD. When no name is supplied, the range of the DUP is determined
by a statement count or by any ENDD.

Absolute evaluatable expression specifying the integer number of times state-
ments in the DUP range are to be assembled. If rep is null or zero, the instruc-
tions in the range are not assembled; that is, code is skipped. When base is M,
COMPASS assumes that rep is decimal.

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that fmct is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expanded.

The dupname and (nct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

9. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed

ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unmamed ENDD., An ENDD with a name that does not match does not effect the

range.

5.3.2 ECHO — ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only;

603609008

comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ECHO mct, plz(listl),p2=(list2), EEEY: N =(listn)
dupname Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any ENDD,
mct Optional absolute evaluatable expression specifying an integer count of the number

of source statements to be assembled repeatedly. If base mode is M, the
count is assumed to be decimal. If ¢nct is zero or omitted, the comma must
be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupname and fnct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

2. If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed

ENDD.

3. If a name but no count is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the sequence.

Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored.

The separator between P; and (list;) is conventionally an = but can be any of the
following:

+—*/()$=,OI‘.

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - %/ () $=">blank , . # or

The substitutable parameter name can occur in any field within a definition.

60360900E

(hsti)

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e., with
micro and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (778).

The character —* flags the occurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the + so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
34, 3B, etc. directly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the

name with the flag. (Example 8, Section 5.4. 3 illustrates a similar application
of this technique.)

Actual parameter list in the form CITEPYRRRIE- W where a; is substituted for p;
on the first assembly of the ECHO sequence, ag is substituted on the second
assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before

substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP — STOP DUPLICATION

The STOPDUP instruction allows premature termination of a DUP duplication before the repeat count

is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the
end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Format:

LOCATION

OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

603609008

5-9

5.3.4 ENDD — END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
dupname ENDD
dupname Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO
sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.
An ENDD does not terminate a sequence controlled by a statement count.
The ENDD is included in the count but has no other effect.
An ENDD outside the range of a DUP or ECHO has no effect on assembly.
Examples:

In the following examples, the statements that result from expansion are shown faded. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
898005 oupr 551 J
DATA 1 |

5-10

60360900A

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated
by a STOPDUP,

60360900A

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
160 MACRO
TAG MICRO NOs) s /#ALPHABET#/
IFC EQe/#TAG#/E/,] ASSEMBLE STOPDUP WHEN TAG=E
TOPDUP)
NO SET NO+) NO IS 6 IN LAST ITERATION
GO NDM
ALPHABET MICRO 199 /ABCDEFGHTIJUK/
NO SFT 1
DuP -l UNOBTAINABLE ITERATION COUNT

5-11

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO. The ENDD terminates the first level. Notice how COMPASS assembles each
copy before it begins the next iteration.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
o] n 18 [30
PPU |
STH PPOP |5,54158

r
I
]
LIST |M,D,E :
ECHO |4CM=(X,Y,2) |
ECHO |2,P1=(A,B,C)
LON |CM .
|
b

STM Pt

1505 5415 1524 stH |Ta6 !

5-12 60360900A

5.4 MACROS AND OPDEFS

A macro or opdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in the operation field of a statement. It usually includes parameters to be substituted

for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An opdef call differs from a macro call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of 2 macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading A macro definition is headed by a MACRO or MA CROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

Body The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by * in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other macro and opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter listed in the heading can occur in any field
within the body. A reference to a substitutable parameter is recognized when it
is between two of the following characters in an expression or field:

+ - %/ () $=blank , . # or —

The character— flags the occurrence of a name not bounded by any other special

60360900A 5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the — so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . ():

$ and = in symbols but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls).

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
parameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local

symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM — END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
mname ENDM
mname Name of a macro sequence, syntax of an OPDEF sequence, or blank.

5-14

60360900A

An ENDM specifying a macro by name terminates the named macro definition and any unterminated

macro or opdef definitions within it. An unnamed ENDM terminates all unterminated definitions.
An ENDM outside the range of any macro sequence has no effect other than to be included in statement

counts.
Example:
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30

JAY MACRO | P1,P2,P3 |
. |
. |
" |

KAY MACROE| PK2,PK2,PK3, PK4
. |
: |
. |

JPX/XQ | OPDEF | OP1,0P2,0P3
* |
. |

|

KAY ENDM ! TERMINATES KAY ANO
. | THF OPDEF OEFINITION
. |
ENDM ; TERMINATES JAY

5.4.2 MACRO — MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation

code table.

The MACRO pseudo instruction has two forms:

Format one:

LOCATION

OPERATION

VARIABLE SUBFIELDS

mname

60360900A

MACRO

parameters

5-15

Format two:

LOCATION

OPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname

parameters

5-16

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call. Each
name is 1-8 characters, the first of which must be alphabetic. A name cannot
be END, IRP, LOCAL, ENDD or ENDM. Aname that begins with a number, or
a second or later occurrence of a parameter name in the list is ignored.

Any of the following special characters separate parameters in the list:

+ - %/ () $=, or.

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argumentbecause the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error and
ignore the definition.

The assembler ignores a blank parameter produced by two concurrent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

603609008

Examples of macro instructions:

1.

Legal MACRO instructions:

LOCATION

OPERATION | VARIABLE

COMMENTS

"

18

[30

2.

ABC

MESSAGE

MACRO |P1,P2,P3
MACRO
MACRO |A

T

DEF”LOC"‘ONE"THO*T EN

MA CRO instructions having identical parameter lists.

LOCATION

OPERATION [VARIABLE

COMMENTS

n

18

[30

sSuM
SUM
SUM
SUM:

RAO
RAC

MACRO | X=Y+Z+X
MACRO [X(Y+2)
MACRO | X=Y+2Z

MACRO | X
MACRO | X=X+1

T
'SECOND X PARAMETFR IS IGNORED
f

INULL PARAMETER AND SECOND
:x ARE IGNORED

|SECOND X AND NUMERIC
'PARAMETER ARE IGNORED

3. Illegal use of format two:
LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
MACRO [ABC :NO SUBSTITUTABLE PARAMETER
MACRO |ABC,y,FP { NULL PARAMETER FIELD
MACRO [ABCy16,FP . NUMERIC PARAMETER FIELD
60360900A

5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION QPERATION VARIABLE SUBFIELDS

sym mname P1sP9s e3Py

sym Optional; depends on definition (see discussion following)

Pi Parameter list composed of alphanumeric strings. Parameters are separated

by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MA CRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc. When the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possible parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative parameter when the substitutable parameter has been named in an IRP
pseudo instruction (Section 5. 4. 9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. Embedded parenthetical items must be properly paired. A parenthetical item can contain

blanks and commas.

Example:

LOCATION OPERATION | VARIABLE COMMENTS

1 0 18 T30

T
MESSAGE| (=C*PROGRAMI ABORT.*)
I

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

5-18 60360900A

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACRO
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument., The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used
in the variable field of a macro call line,

Example:

1. An illustration of concatenation

Location Code LOCATION OPERATION | VARIABLE COMMENTS
Generated

n 18

MACK MACRO [Pi,P2
SeP1 P1+1ReP2

30

l
{
!
|
a
* !
t
I
|
[
!
!
|

, ' SeA2 |[A2¢1Ref MACK 1
7763 5022000001 | | SAZ AP+1RA o MACK 1
ENDM MACK 1

603609008 5-19

2. An illustration of nested definitions and calls

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
NAME 1 MACRO ;
L] [] l
. L] [
NAME 2 MACRO :
* i
. I
. |
NAME 2 ENUM |
. |
. !
. IaT THIS 1IME» THIS LINE
NAME2 'IS PART QF A DEFINITION
. IRATHER THAN BEING A CALL.
* I
L]]
. i
NAME 1 ENDM l
. !
. f
. |
NAMEL INAME1 IS CALLEU ANL EXPANUED.
|
. !
. |
|
* |
NAME2 iUALL TO NAME2 IS VALID
1

3. The following example illustrates two calls to a definition headed by a MACRO in format two

The macro is named TABLE; its substitutable arguments are
TABNAM, VALUE1l, and VALUE2, where TABNAM is the location argument.

using the location argument.

Location Code Generated

LOCATION OPERATION | VARIABLE COMMENTS
n 18 [30
IMACRO |TABLEsTABNAMsVALUE1l,» VALUE2
NABNAM VFD 60/VALUEL1,60/VALUE?2
ENDM 1

5-20

60360900A

4. An illustration of embedded parameters:

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
I
X AM MACRO | A,R I
LNM A I
LJM n |
ENOM |
Call:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
T
XAM {SUM,1198), (SAM,IND3)
Expansion:
Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30

5. The following example illustrates use of R= in macros:

60360900A

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30

ONSH MACRO [N ;
R= X1 4N |
Sx2 118 |
RJ =XCPM= |
ENDM |

OFFSW MACRO | N |
R= X1 4N |
Sx2 128 |
RJ =X CPM= ;
ENDM |

5-21

6. The following example illustrates a character in a symbol erroneously being interpreted as a
delimiter for a parameter.
LOCATION OPERATION | VARIABLE COMMENTS
1 " 18 [30
8¢ MACRO [Z,VAL,PS !
4 SET VAL !
SA7 Z.ALPHA :
* -
* - I
|
|
i
"

ILLEGAL SYMBOL.

Y00 LONG

The following example illustrates changing of control blocks and symbol qualifiers through

substitutable parameters in a macro.

change actual parameters.)

5-22

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30

TS | MACRD | BLOCK,KNAL |
USE BLOCK |
QUAL | KWAL |
TAGL B8SS 108 :
TAG2 vFD 60/-1 |
USE. * |
QUAL * l
ENDM |
|
VA }

(The same call could be used by using micros to

60360900A_

The following example illustrates a technique that an experienced programmer may wish to
use to save time in processing of definitions. Remember that the assembler replaces the
first substitutable parameter with 7701, the second with 7702, etc. Note that 7701 is ;A in
display characters, 7702 is ;B, etc. This means that the programmer can use the display
characters directly in place of his substitutable parameter names in the body of the definition
and achieve the same results as if the assembler had made the substitution when it saved the
definition. At the time the definition is assembled, the assembler replaces each 77xx with the

actual parameter whether the code was inserted by the assembler when it saved the definition
or by the programmer when he coded the definition.

LOCATION OPERATION | VARIABLE COMMENTS
) 1 18 |30
CHAR MACRO |ASCII,INTERNAL ,EXTERNAL,BCD
CON $DSC3BYA
ENDM
D0 BASE 0
CHAR

6%,11,11,31

60360900A

5-23

5.4.4 MACROE — EQUIVALENCED MACRO HEADER

A MACROE pseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro

call.

The MACROE pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS
mname MACROE parameters
Format two:
LOCATION OPERATION VARIABLE SUBFIELDS
MACROE mname, parameters

The blank location field identifies the second format.

5-24

60360900A

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It can be

1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds. :

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.
A name cannot be END, ENDD, LOCAL, IRP, or ENDM. A name that begins
with a number, or a second or later occurrence of a parameter name in the list
is ignored. Any of the following special characters separate parameters in the
list:

+—-*/()$:,OI'.

These characters have no meaning other than as separators. A blank terminates
the list of parameters. The total number of unique parameter names and local
symbols must not exceed 63 for any one macro definition. Also, any of these
can be used to separate the mname from parameters in format two.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MA CRO
instruction in format two causes the assembler to issue a warning flag and
ignore the definition,

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the

following format:

LOCATION OPERATION VARIABLE SUBFIELDS
sym mname P1=8;sPy=8g9, - P =2
mname Name of MACROE definition
60360900A 5-25

sym Optional symbol. A symbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter, A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first-
code-generating line in the macro expansion.

p.=a An equivalenced parameter. Each p is the name of a substitutable parameter.
The a; is an actual parameter to be substituted for pj- The parameters need not
be listed in the same order as they are listed on the MA CROE instruction.
Equivalenced parameters in the list are separated by commas and terminated
by a blank.

A null value is substituted for any parameter omitted from the list,

When the first character of an actual parameter is a left parenthesis, the
assembler considers all the characters between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5. 4.9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

After substitution, spacing between fields is the same as it was before substitution. One effect is that

a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as

a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion.

CAUTION

After substitution, spacing between fields is the same
as it was before substitution.

5-26 60360900A

Example:

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30

SAM MACROE [A4B,C |

CON A |

CON 8 |

CON C |

ENDM |

¢ |

° |

|

5.4.6 OPDEF — DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through CPSYN. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
syntax OPDEF parameters
syntax The syntax consists of a mnemonic operator and variable field descriptors.

The mnemonic operator consists of two letters. The first can be any letter.
The second letter can be a register designator: A, B, or X in which case the
operation field of the opdef call is recognized as cAn, cXn, or ¢Bn (cis a
unique character; n is 0-7); or the second letter can be any other letter, in
which case the operation field of the opdef call is recognized simply by a .
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the
syntax.

60360900A 5-27

parameters

void Q

T rQ

-r -rQ
1‘1+r2 ry +r2Q
—r1 +r2 —r1 +r2Q
T Ty TR
-y *r2 —rl*er
Ty /rz ry /r2Q
/Ty 1y /TyQ
rl—r2 rl—er
-r1 —r2 —rl -er

For example, -1 *r o would be written as -X*B to describe -X3*B1 whereas rQ
would be written as BQ to describe B2+ALPHA.

The first descriptor immediately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Parameters can be separated
by any of the characters:

+ - K / () $ = , Oor .
A blank terminates the list.
The assembler ignores a blank parameter produced by two concurrent separators

or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

60360900A

Examples:

1. Listed below are some instructions that could be defined through OPDEF and the syntax entries
that would describe them:

Calling Instruction Opdef
Operation Variable Subfields Syntax

Jpt Kt JPQ
Jpt Bn+K JPBQ
JP Bn+BntK JPB+BQ
JP Bn, K JPB, Q
JP Xn/Xn+K IPX/XQ
NET Bn, Bn,K NEB, B, Q
LJ Bn-Bn, An-Xn, K LJB-B,A-X,Q
BXnt -Xn*Xn BX-X*X
SBnt Xn+Bn SBX+B
LXnt Bn, Xn LXB, X
Jp¥ Bj+K JPBQ
NET Bj, Bk, K NEB, B, Q
BXif - Xk *Xj BX-X*X
SBit Xj+Bk SBX+B
SBif Bj+Xk SBB+X

T Legal COMPASS CPU instructions

i K represents an expression.

60360900A

5-29

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 T30
JPQ OPDEF | P1 |
EQ P1 |
ENDOM |

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
=
10002 0233000005 + Je AZ+ALPHA i

3. The following definition traps all floating point double-precision subtraction instructions
(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and K are substitutable
parameters used within the definition.

LtOCATION OPERATION | VARIABLE COMMENTS
) n 18 130
DXY-¥ NPNEF | T,J.K :
: |
. |
RJ KNy |
ENNM |

4. The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 B
RXQ OPNDEF |P1,P2 !
AX.P1 [P2 |
ENDM i

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

5-30 60360900 E

NOTE

If the Q in a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax Call

JPQ JP K Not combined
JPBQ JP Bn+K Combined
JPB, Q JP Bn,K Not combined
JPX/XQ JP Xn/Xn+K Combined

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the
assembler uses only the register values given in the call. It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. A location
field on the line in the definition that generates code is assigned the same value. If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code-
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.
Examples:

The following opdef defines an instruction having the syntax IXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for P1, P2, and P3, respectively.

Location Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
IXX7X OPDEF | P1,P2,P3
PX.P2 | X. P2
PX.P3 [X.P3

T

t

|

NX.P2 | X.P2,8% {
NX.P3 | X.P3,B%

FX.P1 | X.P2/X.P3 |

UX.P1 | X.P1,B% j

|

|

|

ENDM

IX3 | X8/X.DIV

60360900A 5-31

The following OPDEF selectively traps the SXi Xj+Bk instructions.

Definition:
LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 |30
T
SXx+8 OPDEF |I4JyK |
. |
. |
° {
ENDM |
Statements that call the definition:
LOCATION OPERATION | VARIABLE COMMENTS
: N 18 [30
Sx3 X1+82 |
. |
. J
. |
SYM SXNN | X6+B.XXX J

Statements that do not call the definition:

5.48 LOCAL—LOCAL SYMBOLS

LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 {30
SX5 Xt ENO R DESIGNATOR OR +.
SX6 |B3+xn |REGISTERS INTERCHANGED
SX.Y |83 ENO X DESTGNATOR OR OPERAND
SY X4+8L IMNEMONIC CODE NOT SX.

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,

MACROE, or OPDET pseudo instruction.

from LOCAL are comment lines.

The only lines that can separate the first header statement

Each symbol must begin with an alphabetic character.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
LOCAL symbols
symbols List of local symbols.
Symbols must be separated by and must not include the following characters:
+ -/ () $=, or .
5-32

60360900A

A blank terminates the list. The maximum number of local symbols and
substitutable parameters is 63, COMPASS ignores the use of a substitutable
parameter name in the local symbol list.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known only within the macro
definition. On each expansion of the macro, COMPASS creates a new symbol for each local symbol
and substitutes it for each occurrence of the local symbol in the definition (other than in comment lines
identified by * in column 1). Thus, invented symbols replace LOCAL-named symbols wherever they
appear in a macro difinition in a manner similar to the way substitutable parameters are replaced.

A user passes a local symbol to inner macro definitions or inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is shown as #sym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703, Then, when ABC is called, COMPASS assigns invented symbol
$000001 to C and replaces each occurrence of 7703 in definitions ABC and XYZ.

LOCATION O—I:ERATIVOVNi 7VAR|;871VE> COMMENTS
] n 18 [30
ABC MACRO | A,B |
LOCAL | C |
c B8SS 108 :
. . : | DEFINITION
. . | OF ABC
X YZ | Macro | 0 |
SAL c |DEFINITION
. | OF XYZ
- t
ENDM s
ABC 3,4 y : 1
; EXPANSION
' L, OF ABC
}DEFINITION
oF xYz J
|

60360900A 5-33

2. In the following example, C is local to each level. Note how this example differs from the
preceding one.

LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
T
BCD MACRO | A,B |)
LOCAL | C |
c 8SS 108 l
L] [) l
. . : DEFINITION
. . rOF BCD
YzA MACRO ‘
LOCAL | C ;
sa1 c /DEFINITION
. |OF YZA
. 1
c BSSZ |1 !
ENOM)

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,
000002 including the use of the symbol in the LOCAL instruction for macro XYZ.

LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 [30

PANSION OF B

Finally, on a call to YZA, t000002 is defined as local and the assembler replaces each
+000002 with another invented symbol. Thus, each reference to C in the source code SAl
instruction does not result in a reference to the BSS in the outer macro.

LOCATION OPERATION | VARIABLE COMMENTS

1 n 8 |30

10205 72A EXPANSION OF YZA_

-

5.4.9 IRP — INDEFINITELY REPEATED PARAMETER

An IRP pseudo instruction in a macro definition signals the beginning or end of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

LOCATION OPERATION VARIABLE SUBFIELDS
IRP parameter
IRP

5-34 60360900A

The first form introduces the sequence and names the substitutable parameter; the second form
terminates the repeated sequence. In either form, a location field symbol, if present, is ignored.

The parameter name must be listed as a substitutable parameter on the MACRO or MACROE pseudo
instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter;
the number of copies of the sequence depends on the number of subparameters (none at all when the

actual parameter is null). When the list of subparameters is exhausted, the assembler continues with

the next line in the definition. If the named substitutable parameter does not occur between the two

IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement
counts.

IF-skips of IRP sequences should be controlled by instruction bracket names rather than statement
counts because IRP expansions are done even when an IF-gkip is used and because the number of
statements generated by IRP is variable.

Anything that can be done with an IRP pair can be done with ECHO and ENDD, IRP is faster at assembly
time but ECHO is more flexible (it is not expanded during IF-skips, allows multiple arguments, and

can be nested). IRP should be used when greater speed is desired and the expanded capabilities of
ECHO are not needed.

Examples:

1. Repeat sequence within macro

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
ZAR MACRO | ARG,B |
IRP ARG |
SA1 ARG ! DEFINITION
SX6 X1 46 REPEATED OF ZAR
SA6 ARG SEQUENCE
IRP
ENDM !
10207 zA8 (JyKyL) , CON
. i : IRP Je Kol |
10207 5110010427 + ‘ SA1 J
. 7261010133 + | SX6 |x1+CcON l
10219 5160010127 + SA6 J [
, 5110010131 + SA1 K
10211 7261010133 + SX6 X1 +CON !
: 5160010131 + SA6 K |
10212 5110010832 + SAL L
© 7261010133 + SX6 |X14CON l
10243 5160010132 + SA6 L |
IRP
ENDM I

60360900 E 5-35

2. Assign symbol at every 1008' words of zeroed storage:

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 130
USE STORAGE H
BUF MACRO | P1 {
IRP Pe :
P1 'B8SSZ | 1008 |
IRP |
ENDM |

BUF (P3Q3RyS,T)

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions 6f such general usefulness that they should be available to any program without each
program defining them can be placed on the system ' text file as system macros or can be placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying parameters
for file environment tables, etc. Systems macro definitions are available to COMPASS for each
assembly. The programmer can use a macro call for a system macro at any time in his programs
Descriptions of system macros are given in the operating system reference manual,

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a

system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction(Section 4.11.1) enables: listing of expansions of system definitions.

5-36 60360900A

OPERATION CODE TABLE MANAGEMENT 6

The COMPASS operation code table contains the information that COMPASS requires for interpreting
legal operation field entries for COMPASS instructions.

When assembly begins, the operation code table contains these entries.

Pseudo instructions (except LOCAL)
CPU symbolic instructions (Section 8. 4)
CMU symbolic instructions (Section 8.5)
PPU symbolic instructions (Chapter 9)
System macro and opdef definitions

The MACRO, MACROE, and OPDEF pseudo instructions (Chapter 5) cause entries to be made in this
table. In addition, the programmer has the capability of creating entries through the following
instructions discussed later in this chapter:

CPOP CPU operation

PPOP PPU operation

OPSYN Synonymous PPU or pseudo operation or macro
CPSYN Synonymous CPU operation or opdef

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table canbe reconstructed between assemblies.
COMPASS reconstructs the operation code table using all the original system macros, opdefs, pseudo
instructions, and symbolic machine instructions. No programmer-created entry is preserved from
assembly to assembly. The number of entries in the table is limited to 4123.

The only pseudo instruction that logically removes entries from the operation code table are PURGMAC
and PURGDEF.

Entries in the operation code table are in two distinct formats permitting a logical division of the
table. One type of entry permits identification of an instruction by finding a match for the contents of
the operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only
if the search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS

analyzes the statement to be interpreted, determines the syntax of the operation and variable subfields,
and again searches the table.

60360900A 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions The entry contains addresses to routines that perform
pass one and pass two operations

PPU symbolic instructions The entry describes the format of the instructions to
be assembled

Instructions described through PPOP The entry describes the format of the instruction to
be assembled

Macro instructions The entry directs the assembler to the location of the
saved definition

Instructions described through OPSYN The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction

are as follows:

CPU symbolic instructions The entry describes the format of the CPU instruction
to be assembled

Instructions described through CPOP The entry describes the format of the CPU instruction
to be assembled

Instructions defined through OPDEF The entry directs the assembler to the location of the
definition

Instructions described through CPSYN The entry is a copy of the synonymous instruction

The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction,

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from

being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already

in the table for a different instruction, the new entry takes precedence over the old entry. Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 603609300A

2. System macros, pseudo instructions, PPU symbolic machine instructions, and CMU
instructions other than the IM instruction.

3. Programmer-created entries for syntactically identified instructions
4. CPU symbolic instructions and the CMU IM instruction

Example:

The following example illustrates a special case in which a macro name takes precedence over one
form of a machine instruction, i.e., the form using SB4 as an operation code.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 ‘30
7

SBY MACRO | P1,P2 IDEFINE MACRO NAMED S84
. [
. |
. |
ENDM ;
* I
¢ !
S84 A1+ABLE ICALL T0 MACRO. NOT CPU INSTRUCTION
. |
. |
- |
s83 AL+ABLE IMACHINE INSTRUCTION

|

SR4 OPSYN | NIL :DISABLES MACRO BUT DOES NOT
. |RESTORE NORMAL USE OF SB&4
. |AS AN OPERATION CODE. EVEN IF
. IT WERE REDEFINED WITH OPDEF
. (IT WOULD NOT BE RECOGNIZED.
. ITHF MACRO FORM ALWAYS TAKES
. PRECEDENCE.
PURGMAC SRy ,RESIORES NORMAL USE OF SB4

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGMAC
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6.1.1 PPOP — PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the instruction. COMPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP
instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMPASS to ignore the PPOP and issue

a 7-type error flag.

60360900A

6-3

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
name PPOP ctl, val, type
name Mnemonic name, 1-8 characters
ctl Control of instruction assembly
ctl Significance
0 Illegal; if used, COMPASS ignores the PPOP
1 24-bit instruction with 12-bit address and no indexing
2 12-bit instruction with signed relative address or absolute address
(e.g., UIN)
3 24-bit instruction with 18-bit address (e.g. , LDC)
4 12-bit instruction with 6-bit address (e.g. , LDN)
5 24-bit instruction with 12-bit address and optional indexing
(e.g., LDM)
6 12-bit instruction with signed relative address (e.g., SHN)
7 24-bit instruction with 12-bit address and required second

field (e.g., IAM)

val An evaluatable expression specifying the 4-octal digit operation code value;
usually, only the two leftmost digits are significant. If the assembly base is M,
the field is assumed to be octal.

type An evaluatable expression specifying an integer value that COMPASS interprets
as follows:

6 Restrict the instruction being defined to the CYBER 170 Series,
CYBER 70/Models 72, 73, and 74; COMPASS sets an error
flag if the instruction being defined is used in a CYBER 70/
Model 76 PPU assembly.

7 Restrict the instruction being defined to the CYBER 70/Model 76;
COMPASS sets an error flag if the instruction being defined is
used in a CYBER 170 Series, CYBER 70/Model 72, 73, or 74
PPU assembly.

other or The instruction is not restricted to either machine type.

omitted If the base is M, type is assumed to be octal. If type is omitted,
the comma preceding it can be omitted also.

6-4 60360900 E

Example:

7311

Code Generated

5415 0040

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
PERTPH ;
DO RASE 0 |
: |
. l
156 LA FouU 15 |
40 c Fou |40 |
ST™ PPOP 5,5400+LA |
. [
¢ |
® |
<T™M C |

6.1.2 OPSYN — SYNONYMOUS MNEMONIC OPERATION

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the

macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
name; OPSYN name,

The name in the variable subfield must be previously defined as a standard instruction code.
OPSYN, either name produces equivalent results.
macro or operation code, the new definition takes precedence over the old without notification.
a macro defined by a name that is subsequently used in an OPSYN location field is not called when
the macro name is used in the operation field. The instruction actually called is the instruction

named in the variable subfield of the OPSYN.

60360900A

After an
If the location field specifies a previously defined

Thus,

On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with PURGMAC.

6-5

Example:

1. An operation named CALL is synonymous with RJM.

LOCATION OPERATION | VARIABLE COMMENTS
i " 18 [30
4,15
CALL OPSYN |RJUM |
- |
. |
R 1
CALL =XSUBR= 'PRODUCES SAME RESULTS
|AS IF IT WERE AN RUM

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l30
T
LJM. OPSYN |LJM 'SAVE ORIGINAL DEFINTTION AS LJM.
PURGMAG LJM kuass ORIGINAL DEFINITION
¢ |
* i
LJM MACRO |XX ;
i |
. |
Lom ENDM |
. I
. CODE USING LJM MACRO
. |
LM OPSYN |LJM. RESTORES ORIGINAL LJM
. |
. CONE USING ORIGINAL LUM

6-6 60360900A

6.1.3 NIL — DO NOTHING PSEUDO INSTRUCTION

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the
assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN. The
following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
] I 18 [30

MACK OPSYN |NIL |

. |

|

° [

* |

. |

|

The assembler interprets each call to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGMAC—PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGMAC name,,names,...,name,
name, Names of mnemonic operation codes for macro definitions, pseudo instructions,
i

or PPU instructions.

A location field symbol if present is ignored.

60360900A 6-7

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.1 CPOP — CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COMPASS to ignore
the CPOP and issue an error flag.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sytx CPOP ctl, val, reg, type
sytx The syntax consists of a mnemonic operator and variable field descriptors.

The mnemonic operator consists of two letters. The first can be any letter.
The second letter can be a register designator: A, B, or X, in which case,
the operation field of the instruction is recognized as cAn, c¢Xn, or cBn,

(c is a unique character; n is 0-7); or the second letter can be any other letter,
in which case the operation field of the instruction is recognized simply by a
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
instruction being described. It consists of none, one, two, or three of the
following 22 subfield descriptors. Q represents an expression. An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank
terminates the syntax.

void Q

T rQ

-r -rQ
rl+r2 r1+r2Q
—r1+r2 —r1+r2Q
ry *rz rl *er
-1 *rz T *I‘2Q
rl/r2 rl/er

6-8 60360900A

-rl/r2 —-rl/er
r -r rl—er
-r. -r -r —er

1 72 1

For example, to describe -X3*B1, the descriptor, -y *r2, would be written as -X*B whereas, to
describe B2+ALPHA, the descriptor rQ would be written as BQ.

ctl Control of instruction assembly.
ctl Significance
0 15-bit instruction
1 30-bit instruction
2 15-bit instruction, force upper before assembly
3 30-bit instruction, force upper before assembly
4 15 bit instruction, force upper after assembly
5 30-bit instruction, force upper after assembly
6 15-bit instruction, force upper before and after
assembly
7 30-bit instruction, force upper before and after
assembly
val An evaluatable expression specifying a 9-bit operation code; if the base is M,

val is assumed to be octal.

reg Three octal digits specifying the order from left to right into which register
numbers are to be inserted into the i, j, k portions of a 15-bit instruction, or
into the i and j portions of a 30-bit instruction. If the assembly base is M,
reg is assumed to be octal.

1 Register number obtained from operation field

2 Number of second register or only register in
variable field

3 Number of first of two registers in variable field

0 Set field to 0

60360900B

type An evaluatable expression specifying an integer value that COMPASS interprets
as follows:

6 Restrict the instruction being defined to the 6000 Series, CYBER
170 Series, and CYBER 70/Models 72, 73, and 74; COMPASS sets
an error flag if the instruction being defined is used when
MACHINE 7 has been specified.

7 Restrict the instruction being defined to the 7600 or the CYBER 70/
Model 76; COMPASS sets an error flag if the instruction being
defined is used when MACHINE 6 has been specified.

other The instruction is not restricted to a machine type.
or
omitted

If base is M, type is assumed to be octal, If type is omitted, the comma
preceding it can be omitted also.

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
SAX+B cPop 10,5308,1328 DEFINES SAI XJ+BK
SXXQ CPOP |1,7208,1208 \DEFINES SXI XJ+K
: |
:]
|
53731 Saz7 X3+61 1
722 7231000003 16 SX3 | x1+3 ;

6-10 60360900 E

6.2.2 CPSYN — SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable field. The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table

(4123 entries).

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
sytx1 CPSYN sytx2
Sytx1 Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation code table, the table entry for syt;x2 takes precedence
over the old table entry for sytx1 without notification,
sytx2 Syntax of a CPU instruction for which there must be an entry in the operation

code table. Following the CPSYN, an instruction in either sytx1 or sytxy
produces an octal instruction of the format described by the entry for sytxz.

6.2.3 PURGDEF—PURGE CPU OPERATION CODE

The PURGDEF pseudeo instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:
LOCATION OPERATION VARIABLE SUBFIELDS
PURGDEF |sytx
sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

60360900A

6-11

MICROS 7

#

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string., When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a particular character,
counting characters, concatenation of strings, etc.

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7.1 MICRO SUBSTITUTION

Wherever a micro name between micro marks (#) occurs in a statement other than a comment
line (* in column 1), the assembler substitutes the micro before it interprets the statement. If
column 72 of the last card read is exceeded as a result of micro substitution, the assembler
creates up to a maximum of 9 continuation cards, beyond which it discards excess characters
without notification on the listing, No replacement takes place if the micro name is unknown or if
one of the micro marks has been omitted, If the micro name is unknown, the assembler flags a
nonfatal assembly error. If the micro name is null, (that is, the two micro marks are adjacent),

then

1. Both micro marks are deleted, and

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:

ADDRESS

A reference to NAM is in the variable field of a line:

LOCATION OPERATION { VARIABLE COMMENTS
1 n 18 [30
LOC SA1 |#NAMZ+4

However, before the line is interpreted, COMPASS substitutes the definition for NAM producing the
following line:

LOCATION OPERATION | VARIABLE COMMENTS

1 n 8 |30
T
T

LocC SA1 ADDRESS+4)

NOTE
Unless the A option of the LIST pseudo instruction is

enabled, the listing depicts the instruction as it was
before the substitution took place.

603609008 7-1

7.2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and

QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

7.2.1 MICRO — DEFINE MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

micname MICRO n,,0,, dstringd

micname Name by which definition is called; 1-8 characters

ny Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n1 is decimal.

n2 Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n, is decimal.

dstringd Delimited character string. The delimiter d is a character not used in the

string.

Counting the first character after d as character 1, the assembler forms the string by extracting n,
characters starting with character n. If the second delimiting character occurs before count n, is
exhausted, the defined string terminates at that point. If n, is greater than zero and ny is omitted, zero,

or negative, the defined string includes all the characters from n to the closing delimiter (see second
example).

If ny is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to, That is, n, and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined

originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If n; or np is negative, the assembler generates a T-type error.
Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OPERATION [VARIABLE COMMENTS
] N 18 [0
i -
N AME MICRO | 1,13 ,*ALPHANUMFRIC STRING¥

7-2 60360900C

2. This example illustrates a blank character count.

The defined string begins with A and is

terminated by the closing delimiter.

LOCATION OPERATION | VARIABLE COMMENTS
) N 18 T30
-
MICKY MICRO 15, ¥ALPHANUMERIC STRING*

3. One micro can be defined as a substring of another.
LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
NAM1 MICRO 1,25,*MAJOQ:ALPHANUM€RIC STRING*
. . L] l
. . . |
. L] - [
NAMP?] MICRO | 74,,%2NAMLZ* [SAMF STRING AS IN EXAMPLES 1 AND 2
4., One micro can combine others.
LOCATION OPERATION | VARIABLE COMMENTS
| N 18 [30
T
NAMYL MICRO |1,12,3ALPHANUMERICS
NAMZ MICRO 1974X STRINGX
NAMZ MICRO 19y +ZNAMLZZNAMZ2 2+ CC"MBINES NAML AND NAM?

5. A micro name can be redefined.

LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
T
MSG MICRO [1,6,*STRING¥
. . L] !
. . . |CONE USING FIRST OEFINITION
L] . L] |
MSG MICRO |1,19,%ALPHANUMERLC #MSGz*
!
. 5 . 'CODE USING SEFOND DEFINITICN.
. . . 'FIPST DEFINTTION TS INACCESSIRLE.
|
6. Micro substitution takes place before a line is assembled or examined for syntax.

the following is possible.

60360900 D

LOCATION OPERATION | VARIABLE COMMENTS
| n '8 T30
- T
NAM MICRO (14254% LOC SA1 ADDRESS+*
FNAMZL
LCC SA1L ACOPZSS+1

Thus,

7-3

7.2.2 DECMIC — DECIMAL MICRO

Using a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
string to be saved under the name specified.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

micname DECMIC aexp,n

micname Name by which definition is called; 1-8 characters

aexp Absolute evaluatable expression

n Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n. When base is M, COMPASS assumes that
n is decimal
If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has more than n (or 10) digits, the most significant digits are
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 I30
v DECMIC|R,6 }
|
SYMBL MICRC |1,44¥%¥2V2 STORAGE NEEDED¥*
SYMBL MICPO |1,,¥001024 STORAGE NEEDED*

7.2.3 OCTMIC — OCTAL MICRO

Using an octal conversion, the OCTMIC pseudo instruction converts the value of the expression into a
character string to be saved under the name specified.

7-4

60360900 D

Format:

LOCATION OPERATION VARIABLE SUBFIELDS
micname OCTMIC aexp,n
micname Name by which definition is called; 1-8 characters
aexp Absolute evaluatable expression
n

Optional absolute evaluatable expression specifying number of characters
in the string. The defined string is a maximum of 10 characters regardless
of the magnitude of n. When base is M, COMPASS assumes n as a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 characters.

If the converted expression has more than n (or 10) digits, the most significant digits are truncated.
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
numbers are treated as positive.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
L
Vi OCTMIC [B,46

&

MICRO

MICRO

P —

1,,%¥2V1i¢ ADDITIONAL STORAGE NEEDED*
1,,¥002000 ADOITIONAL STORAGE NEEDED*

7.3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS assembler. They are available for every
assembly. The programmer simply writes the micro reference as desired.

These micros are automatically defined at the beginning of each assembly, and have the default values

specified below until they are redefined by the programmer; thereafter, the programmer's definition
holds until the start of the next assembly.

60360900 D

7-5

7.3.1 DATE

The DATE micro contains the current date in 10 characters in the following form as obtained from the
operating system:

Ayr/mo/dy.

The micro reference is ZDATE#.

7.3.2 JDATE

The automatic value of the JDATE micro is five digits yyddd, where yy is the year and ddd is the day
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

The micro reference is #JDATE#.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system:

Ahr.min. sec.

The micro reference is #TIME#.

Example:
LOCATION OPERATION | VARIABLE COMMENTS
1 I 18 130
TITLE |PROGRAM ASSEMBLED ON #DATEZ AT:TIMEz
7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or O, corresponding to the number
base currently in effect(specified by the most recent BASE pseudo instruction); it is initially D,

The micro reference is #BASE#.

7-6 60360900A

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, or I, corresponding to the
character code currently in effect (specified by the most recent CODE pseudo instruction); it is
initially D.

The micro reference is # CODE#.

7.3.6 QUAL

The automatic value of the QUAL micro is 0 to 8 characters comprising the qualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and
whenever the blank qualifier is in effect.

The micro reference is ZQUAL#,

7.3.7 SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequence field (card
columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement, However, if the current statement is generated
(i.e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most
recently read from the main source input file.

The micro reference is #SEQUENCE#.

7.3.8 MODLEVEL

The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML
parameter on the COMPASS control card. If no ML parameter is present, the automatic value of the
MODLEVEL micro is equal to that of the JDATE micro. When COMPASS is called by a compiler to
process embedded COM PASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler.

The micro reference is #MODLEVEL#,

60360900A 7-7

7.3.9 PCOMMENT

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control card, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. If no PC parameter is present, the
automatic value of the PCOMMENT micro is 30 blanks, When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied
by the calling compiler., The PCOMMENT micro is intended to be used in a COMMENT pseudo in-
struction to specify words 8 - 10 of the PRFX table in the binary output. It may also be used, in
conjunction with the *F special symbol, to determine compiler options (debug mode, rounded arithme-
tic, etc.) in effect at the time of assembly.

The micro reference is #PCOMMENT#.

7-8 60360900A

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolic notation for all CYBER 170 Series Central Processor Unit Instructions,
all CYBER 70 Series Central Processor Unit Instructions, all 7600 Central Processor Unit Instructions
and all 6000 Series Computer Systems Central Processor Unit instructions.

The assembler identifies each symbolic instruction according to its syntax and generates a one parcel
15-bit instruction or a two parcel 30-bit instruction. The object code for an instruction is generated
in the block in use when the instruction is encountered.,

8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

gh |i|j [k |
14 08 05 02 00

Figure 8-1. CPU 15-Bit Instruction Format

gh 1+ i | K |
29 23 20 17 14 00

Figure 8-2. CPU 30-Bit Instruction Format

gh 6-bit instruction code

ghi 9-bit instruction code

i 3-bit code specifying one of eight designated registers (e.g. , Ai)

j 3-bit code specifying one of eight designated registers (e.g. , Bj)

k 3-bit code specifying one of eight designated registers (e.g., Bk)
18-bit integer value used as an operand, address of an operand, or branch destination
address.

jk 6-bit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one and two parcel instructions in a 60-bit CPU
instruction word. Generally, the assembler does not allow a two-parcel instruction to begin in the
fourth parcel of a word. However, the assembler may generate a 30-bit instruction in a fourth

parcel when all of the following are true:

1. The assember is at the fourth parcel (position counter is 15)

60360900 E 8-1

3.

The instruction does not include K. Note that if K is included in the syntax and reduces to zero,
it requires 30 bits because the evaluation of K takes place in the second pass whereas the space
for the instruction is reserved in the first pass.

The instruction does not have a location field symbol or is not otherwise forced upper.

When a two parcel instruction begins in the last parcel of a word, the CYBER 170/Model 175, CYBER 70/
Model 76 or 7600 executes it as if the instruction word had a fifth parcel containing all zeros. On the
CYBER 170/Model 172, 173, or 174, CYBER 70/Model 72 or 73, or 6400, this condition causes an error
exit, On the 6600 or CYBER 70/Model 74, the CPU takes the first parcel of the current instruction.

Before it assembles an instruction that must begin in the first parcel (forced upper) and after it
assembles an instruction that requires the instruction following it to be forced upper, the assembler

completes a word as follows:

Lower 15 bits remain

Lower 30 bits remain

Lower 45 bits remain

They are packed with a one parcel NO (pass) instruction

They are packed with a two parcel SB0O BO+K instruction
They are packed with a NO instruction and an SB0 B0+K instruction

First Second Third Fourth
Parcel Parcel Parcel Parcel
15 15 15 15
59 44 29 14 00
30 15 15
59 29 14 00
15 30 15
59 44 14 00
15 15 30
59 44 29 00
30 30
59 29 00

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

60360900 E

8.2 INSTRUCTION EXECUTION
8.2.1 6600/6700AND CYBER 70/MODEL 74 EXECUTION

After an exchange jump start by a PPU and CPU program, CPU instructions issue automatically in the
original sequence, to an 8-word instruction stack. The stack can hold a program loop consisting of up to
26 15-bit instructions and one 30-bit instruction.

Instructions are read from the stack one at a time and issued to the functional units (table 8-1) for
execution. A scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

Each functional unit executes several instructions, but only one at a time. Some branch instructions
require two units, the second unit receives direction from the branch unit.

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds
(one minor cycle). Sustained issuing at this rate may not be possible because of functional unit and CM
conflict or because of serial rather than simultaneous operation of units. Program run time can be
decreased by efficient use of the units. Instructions that are not dependent on previous steps may be
arranged or nested in program areas where they may be executed concurrently with other operations to
eliminate dead spots in the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

® An instruction is issued to a function unit when:
Specified functional unit is not reserved
Specified result register is not reserved for a previous result

e Instructions are issued to functional units at minor cycle intervals when no reservation conflicts
are present.

® Instruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

® No delay occurs between the end of a first unit and the start of a second unit which is waiting for
the results of the first.

e After a branch instruction no further instructions are issued until instruction has been executed.
In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instructions that branch to K + Bi and branch to Kif Bi ...
Long add unit to perform the instructions that branch to K if Xj ...
Time spent in the long add or increment units is part of total branch time.

Read central memory access time is computed from the end of increment unit time to the time an
operand is available in X operand register. Minimum time is 500 nanoseconds assuming no central
memory bank conflict.

t The 6700 also includes a 6400-type central processor unit

60360900A 8-3

TABLE 8-1. CYBER 70/Model 74 and 6600/6700 FUNCTIONAL UNITS
UNIT GENERAL FUNCTION
Branch Handles all jumps or branches from the program.
Boolean Handles the basic logical operations of transfer, logical product,
logical sum, and logical difference.
Shift Executes operations basic to shifting. This includes left (circular)

Floating Add

TLong Add
Floating Multiply

Floating Divide

Increment

and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask
generator.

Performs single or double precision floating point addition and
subtraction on floating point operands.

Performs addition and subtraction of two 60-bit fixed point operands

Performs single or double precision floating point multiplication on
floating point operands

Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands.

8-4

60360900A

8.2.2 CYBER 170/MODELS 172, 173, 174, CYBER 70/
MODELS 72, 73 AND 6200/6400/6500 EXECUTION

The CYBER 170/Models 172, 173, 174, CYBER 70/Models 72 and 73, and 6200, 6400, and 6500 systems
CPU has a unified arithmetic unit, rather than separate functional units as in the 6600 system. Instruc-
tions in the CPU are executed sequentially.

For efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction word to avoid both
the additional time for RNI (2 minor cycles) and the possibility of a memory bank conflict with

P +1).

Where possible, place load/store instructions in the lower two portions to avoid lengthening
execution times.

Reading the next instruction words of a program from central memory, RNI, is partially concurrent
with instruction execution, RNI is initiated between execution of the first and second instructions of the
word being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI

is parallel in time with execution of the remaining instructions in the word:

P 1 2 3

Initiate \ m

RNI Execution of

l <ﬁl\—instructions —————+—>

2 and 3

0 RNI
| 2 ~+~————minimum of ——— N—p
NSEC 800 NSEC
- Total RNI time -

In calculating execution times, two minor cycles are added to each instruction word in a program to
cover the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the
jump condition is met) when they occupy the upper position of the instruction word. Since the times for
these instructions already include the time required to read the new instruction word at the jump
address, no additional time is consumed (Appendix A).

60360900 E 8-5

Example:

P |Jump to K (met) Pass Pass
K |Add1 Add 2 Load Load
Instruction Minor Cycles Required
Jump 13
Add 1 5
RNI Initiation 2
Add 2 5
Load 12
Store 10
Total Time 47 Minor Cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight
minor cycles elapses before the next instruction word is available for execution. Even if the lower
order positions of the word should require less than eight minor cycles, a minimum of eight minor
cycles is allowed.

Example:

Jump to K

(not met) Pass Pass

P+1

8.23 CYBER 170/MODEL 175, CYBER 70/MODEL 76, AND 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in
the computation section of the CYBER 170/Model 175, CYBER 70/Model 76 or 7600 CPU,. Each is a
specialized unit with algorithms for a portion of the CPU instruction execution. Table 8-2 lists the
general function of each unit, A number of functional units may be in operation at the same time.

8-6 60360900E

TABLE 8-2. CYBER 170/Model 175, CYBER 70/Model 76 and 7600 FUNCTIONAL UNITS

Floating Add

Long Add

Floating Multiply

Floating Divide

Population Count

Increment

UNIT GENERAL FUNCTION
Boolean Handles the basic logical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.
Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.
Normalize Performs the normalize operations.

Performs single or double precision floating point addition or subtraction)
on floating point operands.

Performs integer addition or subtraction of two 60-bit fixed point
operands.

Performs single or double precision floating point multiplication on
floating point operands.

Performs single precision floating point division of floating point
operands.

Counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands.

A functional unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in three-
address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held

in a new set of registers at the end of every clock period. It is therefore possible to start a new set

of operands for unrelated computation into a functional unit each clock period even though the unit may
require more than one clock period to complete the calculation. This process may be compared to a
delay line in which data moves through the unit in segments to arrive at the destination in the proper

order but at a later time.

All functional units perform their algorithms in a fixed amount of time. No

delays are possible once the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit
in any clock period providing there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time.
Program branching within the instruction stack causes no storage references and small program loops
can therefore be precisely timed.

60360900E

8-7

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number
Operand Registers X0 - X7 60 Bits 8
Address Registers A0 - A7 18 Bits 8
Index Registers B0 - B7 18 Bits 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3.1 X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated X0, X1,...,X7 are the
principal data handling registers for computation. Data flows from these registers to the SCM (CM)
and the LCM (not ECS). Data also flows from SCM (CM) and LCM (not ECS) into these registers.,
All 60-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM)
into corresponding address registers.

On the CYBER 70/Model 76 and 7600, the X registers also serve as address registers for referencing
single words from LCM. X0 is used as the LCM relative starting address in a block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as A0, Al,..., A7, are
essentially SCM (CM) operand address registers, With the exception of A0 and X0, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5
causes an immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word
to the corresponding operand register X1 - X5, Similarly, placing a value into address register A6
or A7 causes the word in the corresponding X6 or X7 operand register to be written into that relative
address of SCM (CM).

The A0 and X0 registers operate independently of each other and have no connection with SCM (CM).
A0 is used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results.

8.3.3 B REGISTERS

Eight 18-bit B registers in the computation section of the CPU designated as B0, B1,...,B7 are

primarily indexing registers for controlling program execution. Program loop counts can be incremented
and decremented in these registers.

8-8 60360900A

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel
number for channel status requests.

B0 always contains positive zero; that is, B0 is held clear. Often as a programming convention, Bl
or B7 contains positive 1. See the Bl=1, the B7=1, and the R-= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are
listed according to octal sequence. Instructions unique to a computer system are identified as such.
These instructions can be assembled on any machine but will execute properly on the noted machine only.
For details and special conditions arising during instruction execution, refer to the relevant hardware
system reference manual.

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator.

The variable field contains one, two, or three subfields. For 15-bit instruction, subfields take the
forms:

r
-r } r is a register designator
r,r
ropr . .
t tor + - *
“ropr] op is a register operator /
+k jk is an absolute expression specifying a shift count or mask bit count. If

the expression value is in the range —-60 to -0, inclusive, COMPASS adds 60 to it.
If it is less than -60 or greater than 63, COMPASS sets a warning flag and uses
the low-order 6 bits of the expression value.

For a 30-bit instruction, subfields take the forms:

K The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

r op K The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * /

r,K One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

r,r,K Two subfields contain register designators; a third contains an absolute,

relocatable, or external expression that does not include a register.

603609008 8.9

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass
two:

An absolute address or a word count

An external symbol + an integer value

An address that is relocatable relative to the program origin or common block origin.
An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, +K designates that the evaluation of all non-register elements can
result in a positive or negative value for the expression (see section 2. 8.2 Evaluation of Expressions).
Use of +K to represent the integer portion of the expression does not imply that the first term oper-
ator in the expression is an expression operator. If you consider that a and b are terms in expression
K, then +K indicates that the sum of the values of a and b is positive and -K indicates that the sum of
the values is negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRAY has the value 407_. The first term operator (-) forms the
value 7773708. Subtracting 1 from this results in 7773678 or a -K (—4108).

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
13 7212777367 sx1 X2-XRAY-1 |
1

Unless otherwise noted, subfields can be in any order. COMPASS also allows an added degree of
flexibility by allowing the variable subfields of an instruction to be written in the operation field with
each subfield preceded by a comma, For example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 1 18 30
T
Uxt YT

can be written

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
T
26123 Ux1,82 |Xx3 i

The instructions are identical to the assembler.

8-10 60360900A

Similarly, the following instructions are regarded as identical. Use of this feature is optional.

LOCATION OPERATION | VARIABLE COMMENTS
] n 18 [30
]
G423J10641 £2 82,33,K l
3423014641 E2,82 |B3,K !
0423010641 Ea,az,?s K |
0423010661 £Q,82,83,K :

8.4.1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION
(CYBER 170 SERIES, CYBER 70/MODEL 72, 73, 74, AND 6000 SERIES)

The CEJ/MEJ Panel Switch determines whether this instruction causes the central processor unit to
halt or to execute an exchange jump. The DISABLE position disables the central exchange jump or

the monitor exchange jump. In this case, the instruction is illegal for a CYBER 170/Model 175. For
all other systems, PS halts the central processor unit at the current step in the program. An exchange
jump is necessary to restart the central processor unit. The ENABLE position enables the jump capa-
bilities for all systems. In this case, PS causes an exchange jump to monitor address (MA) in the
exchange package.

The contents of the location field become a sub-subtitle on the assembler listing. The assembler
forces upper before and after assembling a PS instruction.

Formats: CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
Operation Variable | Description Size Octal Code
PS Program stop or exchange jump to (MA) 30 bits 00000 00000
PS K Program stop or exchange jump to (MA) 30 bits 0000K
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30
0000900000 PS i

60360900E 8-11

8.4.2 ERROR EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

ES execution is treated as an error condition and the machine sets the program range condition flag

in the PSD register., The condition flag then generates an error exit request which causes an exchange
jump to address (EEA). All instructions issued prior to this instruction are run to completion. Any
instruction following this instruction in the current instruction word is not executed. When all operands
have arrived at the operating registers as a result of previously issued instructions, an exchange

jump occurs to the exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation section, are set to zero by the
assembler. The program address stored in the exchange package on the terminating exchange jump is
advanced one count from the address of the current instruction word (P=P+1). This is true regardless
of which parcel of the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code. The program range condition
flag is set in the PSD register to indicate that the program has jumped to an area of the SCM field which
may be in range but is not valid program code. This should occur when an incorrectly coded program
jumps into an unused area of the SCM field or into a data field. The program range condition flag is
also set on the condition of a jump to address zero. These conditions can be determined on the basis

of the register contents in the exchange package. The existence of an error exit condition resulting
from execution of this instruction can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

Functional Unit: None

Format:
Operation Variable Description Size Octal Code
ES Error exit to EEA 15 bits 00000
ES K Error exit to EEA 15 bits 00000
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

) 0 18 [30
00000 ES |

60360900A

8.4.3 RETURN JUMP INSTRUCTION

When this instruction is executed, an unconditional jump to the current address plus one [(P)+1)] is
stored in the upper half of relative address K in SCM and control then transfers to K+1 for the next
instruction. The lower half of the stored word is all zeros. The instruction always branches out of
the instruction stack and voids all instructions currently in the instruction stack.

After the instruction is executed the octal word at K is:

Address K o400 | P+1 1 0000000000
59 29 00
Bi=Bj

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jump
instruction in the current instruction are not executed. The called subroutine must exit at address K

in CM (SCM). A jump to address K of the branch routine returns the program to the original sequence.
The assembler sets the unused j designator to zero.

A force upper occurs after the instruction is assembled.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None
Operation Variable Description Size Octal Code
RJ K Return jump to K 30 bits 0100K
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 l 30
0100005250 + RJY HELP i

60360900E 8-13

8.4.4 ECS INSTRUCTIONS (CYBER 170 SERIES, CYBER 70/MODELS 72, 73, 74 OR 6000 SERIES)

These instructions initiate either a read or write operation to transfer (Bj) + K 60-bit words between
extended core storage (ECS) and central memory (CM). The initial ECS address is (X0) + RApcg;
the initial CM address is (A0) + RA cM-

The assembler forces upper before assembling an RE or WE instruction.

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word
containing the RE or WE instructions. These 30 bits should always hold a jump to an error
routine. The conditions are:

1. Parity error(s) when reading ECS. If a parity error is detected, the entire block of data
is transferred before the exit is taken.

2. The ECS bank from/to which data is to be transferred is not available because the bank
is in maintenance mode, or the bank has lost power. If either of these conditions exists
on an attempted read or write, an immediate error exit is taken.

3. An attempt to reference a nonexistent address. On an attempted write operation, no data
transfer occurs and an immediate error exit is taken. If the attempted operation is a
read, and addresses are in range, zeros are transferred to central memory. This is a
convenient high-speed method of clearing blocks of central memory.

For additional information about these instructions, refer to the CONTROL DATA® CYBER 70
Computer System 7030 Extended Core Storage Reference Manual, Publication No. 60347100.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
RE Bj Read extended core storage 30 bits 01130 00000
RE K Read extended core storage 30 bits 0110K

RE Bj+K Read extended core storage 30 bits 011jK

WE Bj Write extended core storage 30 bits 012j0 00000
WE K Write extended core storage 30 bits 0120K

WE Bj+K Write extended core storage 30 bits 012jK

8-14 60360900 E

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement. The result is an 18-bit integer which is truncated
to a 10-bit quantity. Thus, a maximum block size is 17778. (For example, if the result of the add is
0030008, the instruction transfers 10008 words.) No error indications are given when this occurs unless
the field length is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (A0) in the SCM and at the relative LCM address
determined from the lowest order 19 bits of (X0). If (X0) is negative, the 19 bits are treated as a
positive integer. If the sum of (XO1 8—00) and the block count exceeds the (FLL), the copy is not
executed and the LCM block range condition flag is set in the PSD register. Similarly, if the sum of
(A0) and the block exceeds (FLS), the copy is not executed and the SCM block range condition flag is
set in the PSD register.

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD register but does not interrupt the block copy instruction. No further instructions are issued during
block transfer of data. Instructions already issued are completed; all other activity, with the exception
of I/0 word requests, stops.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
RL Bj Block copy (Bj) words from LCM to SCM 30 bits 011j0 00000
RL K Block copy (K) words from LCM to SCM 30 bits 0110K
RL Bj+K Block copy (Bj) + K words from L.CM to
SCM 30 bits 011jK
WL K Block copy (K) words from SCM to LCM 30 bits 0120K
WL Bj Block copy (Bj) words from SCM to LL.CM 30 bits 012j0 00000
WL Bj+tK Block copy (Bj) + K words from SCM to
LCM 30 bits 012jK
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
0115001000 PL 1000P+R5 |
I
n110n0020040 RL 200NR |
|
N124777€77 WL 94 -10308 |

60360900A 8-15

8.4.6 EXCHANGE JUMP INSTRUCTION
(CYBER 170 SERIES, CYBER 70/MODELS 72, 73, 74, AND 6000 SERIES)

This instruction unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is

set or clear.

This instruction is not legal for a CYBER 170/Model 175 if the MEJ/CEJ switch is in the DISABLE
position or if the instruction does not reside in parcel 0 of the instruction word.

Operation is as follows:

1. DMonitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor
Address register. This starting address is an absolute address. During the exchange, the

monitor flag bit is set.

2. Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding
K to the contents of register Bj. This starting address is an absolute address. During the
exchange, the monitor flag bit is cleared.

For additional information, refer to the Standard Option 10104-A/B/C/D Central and Monitor Exchange
Jumps for 6600 Reference Manual, Pub. No. 60203200,

The assembler forces upper before and after assembling an XJ instruction.

Functional Unit: Branch

Formats:
Operation Variable Description Size Octal Code
XJ Exchange jump to MA if in program mode 30 bits 01300 00000
XJ Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000
XJ K Exchange jump to K; flag set 30 bits 0130K
XJ Bj+K Exchange jump to (Bj) + K; flag set 30 bits 013jK
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 |30
0130000000 XJ ;
0130001000 XJ 10008 ‘
|
0135600600 XJ BS+600B |

8-16 60360900 E

8.4.7 EXCHANGE EXIT INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The exit mode flag in the PSD register determines the source of the exchange package.

This instruction has priority over all other types of exchange jump requests. If an I/O interrupt request
or an error exit request occurred prior to execution of this instruction, it is denied and the exchange
jump specified by the MJ is executed. The rejected interrupt request is not lost, however. The
conditions that caused it are reinstated when the exchange package enters its next execution interval.

The MJ instruction voids the instruction word stack. Any instructions remaining in the stack are not
executed.

The system makes no protective tests on the exchange jump address.

Exit Mode Flag Set: When the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) - K. An overflow of the lowest
order 16 bits of this result causes an error condition that is not sensed in the hardware. Should a
program erroneously execute an exchange exit instruction with an overflow condition, the exchange
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

Exit Mode Flag Not Set: When the exit mode flag is not set, the object program terminates the execution
interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the absolute address
of the exchange package. This is an absolute address in SCM and is generally not in the SCM field for
the current program., This form of the MJ instruction has a blank variable field; the assembler sets the
j and k designators to zero.

This instruction is used for calling a system monitor program for input/output, monitor calls, etc.

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the

instruction word containing the exchange exit instruction. The monitor program normally resumes the
object program at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than

16 bits of significance, the upper bits are discarded and the lower 16 bits are used as the absolute
address in SCM for the exchange jump. A force upperoccurs after the instruction is assembled.

60360900A 8-17

Formats: Functional Unit: None

Operation Variable Description Size Octal Code
MJ Exchange exit to NEA if exit flag clear 15 bits 01300
MJ Bj Exchange exit to (Bj) if ‘exit flag set 30 bits 013j0 00000
MJ Bj+K Exchange exit to (Bj) + K if exit flag set 30 bits 013jK
MJ K Exchange exit to K if exit flag set 30 bits 0130K
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 hn 18 |30
01300 MJ f
I
0134000019 MJ RL+500R |
|
0137777677 MJ -330B+R6 l
|
01320000600 My 6£n0R [

8.4.8 DIRECT LCM TRANSFER INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600j

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register
or writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the
requested word already resides in one of the bank operand registers. A read LCM instruction for a
word not currently residing in a bank operand register will require 17 clock periods for delivering a
field of eight 60-bit words to the designated X register. A read LCM instruction for a word already
residing in a LCM bank operand register as a result of a previous instruction will require three clock
periods to deliver the requested word to the designated X register. Thus, although the first 60-bit
word will require 17 clock periods, the second through eighth words in the same LCM word require
three clock perods each., This means that consecutive LCM operands are available, on an average,
every five clock periods as opposed to SCM operands at eight clock periods.

The LCM address is determined from (Xkjg-00). Even if (Xk) is negative, the 19 bits are treated as
a positive integer. If the address exceeds the field length (FLL), the word transfer does not take
place and the L.CM direct range condition flag is set in the PSD register. Xj is either the source or
destination register.

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM
reference is in process. When an RX instruction issues, the LCM busy flag is set and remains set

until the requested word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

8-18 60360900A

Formats: Functional Unit: None

Operation Variable Description Size Octal Code
RXj Xk Read LCM at (Xk) and set Xj 15 bits 014jk
WXj Xk Write (Xj) into LCM at (Xk) 15 bits 0155k
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
] n 18 {30
T
01465 PX6 X5 ;
11571 WX7 X0 1

8.4.9 RESET INPUT CHANNEL BUFFER INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction is exclusively a 7600 instruction, It initiates a new record transmission from a PPU
to SCM. This instruction prepares the input channel (Bk) buffer for a new record transmission from a
PPU to SCM. The instruction clears the input channel buffer address and resets the input channel
assembly counter to the first 12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record
of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode
flag is set in the program status register. If the monitor mode flag is cleared, this instruction
becomes a pass instruction. When this instruction issues, it will execute the required channel functions
without regard to the current status or activity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

60360900A 8-19

Two or more consecutive RI instructions referring to different channels will issue in consecutive

clock periods with no interference resulting in the multiplexer.

If two consecutive instructions refer to

the same channel, they repeatedly perform the same function but do not cause interference in the

multiplexer.

Format: Functional Unit: None
Operation Variable Description Size Octal Code
RI Bk Reset input channel (Bk) buffer 15 bits 0160k

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) 0 18 [30
n{s07 RPI n7 |

8.4.10 SET REAL-TIME CLOCK INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them in

Bf'. The 18-bit clock counter advances one count in two's complement mode for each clock period. The
917

bit is the overflow bit.
is handled, the bit is cleared.

The CPU is interrupted when the overflow bit is set.
It permits measurement of CPU execution,

When the interrupt

Format: Functional Unit: None
Operation Variable Description Size Octal Code
TBj Set Bj to current clock time 15 bits 016j0
TBj K Set Bj to current clock time; K is ignored. 15 bits 01630

Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
! il i8 30
01679 ™7 i
60360900A

8-20

8.4.11 RESET OUTPUT CHANNEL BUFFER INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction initiates a new record transmission from SCM to PPU. It clears the output channel
(Bk) buffer address and disassembly counter, transmits a record pulse over the output channel ‘data
path to the PPU, and initiates an SCM reference for the first word to be transmitted.

This instruction is intended for execution in an output routine to initiate a new record transmission
over an output channel data path. The output channel buffer is normally inactive when this instruction
is executed. The output channel buffer is loaded with the data for the next record, and this instruction
is executed to initiate the transmission. The record pulse is transmitted along with the word pulse as
soon as the first word of data from the SCM is entered in the output channel disassembly register.

This instruction is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruction. When this instruction issues,
it will execute the required channel functions without regard to the current status or activity at the
output channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk), the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end
of record in two ways. First, it can compare the output channel buffer address with a known record
length. The alternative is to obtain a response from the peripheral unit over the corresponding input
channel data path. If data is moving over the output channel data path when an RO is issued, the RO
instruction takes priority, with a resulting loss of data in the previous record. Two or more
consecutive RO instructions referring to different channels will issue in consecutive clock periods with
no interference resulting in the multiplexer. If two consecutive instructions refer to the same channel,
they transmit a record pulse over the output path and restart the buffer repeatedly. A data word may
or may not be transmitted depending on the timing of the instructions and conflicts that occur.

Format: Functional Unit: None
Operation Variable Description Size Octal Code
RO Bk Reset output channel (Bk) buffer 15 bits 0170k
Example:
Code Gene I‘ated LOCATION OPERATION | VARIABLE COMMENTS
1 T 18 [0
01715 PA a5 ’:

60360900A 8-21

8.4.12 READ CHANNEL STATUS INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600)

These instructions copy the contents of the input or output channel buffer address register indicated by
masking (Bk03_00) and enter the value in Bj. The instructions are used for monitoring the progress of
an input channel buffer or an output channel buffer.

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the
buffer area constitutes one field and the last half of the buffer area the other field. An I/O multiplexer
interrupt request is generated by the threshold testing mechanism whenever the channel buffer address
is advanced across a field boundary. This occurs at the center of the buffer area and at the end of the
buffer area.

The IBj instruction is the only vehicle for a program to determine whether an I/O multiplexer interrupt
request was generated by a buffer threshold test or by a record flag. The program must retain the
input channel buffer address from one interrupt period to the next. If the buffer address is in the same
field as for the previous interrupt, the interrupt request was from a record flag. If the buffer address
is in the opposite field from the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored.
If higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) = 0, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multi-
plexer in these situations.

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction
nor may an OBj instruction immediately follow an RO instruction. A delay of one clock period is
sufficient.

Formats: Functional Unit: None
Operation Variable Description Size Octal Code
1Bj Bk Bj «<—Read input channel (BKk) status 15 bits 016jk
OBj Bk Bj «—Read output channel (Bk) status 15 bits 017jk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 1 18 [30
nN1664 InA ay |
I
01756 085 6 !

8-22 60360900A

8.4.13 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the contents of index register Bi to K and branches to the relative CM (SCM)
address specified by the sum. The remaining instructions, if any, in the current instruction word are
not executed. The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On a CYBER 170 Series, a CYBER 70/
Model 72, 73, or 74 or 6000 Series system this instruction voids the stack. On a CYBER 70/Model 76
or 7600, the instruction word stack is not altered by execution of this instruction. The instruction is
intended to allow computed branch point destinations, It is the only CPU instruction in which a computed
parameter can specify a program branch destination address. All other jump instructions have pre-
assigned destination addresses at execution time.

The assembler sets the unused j designator to 0. A force upper occurs after the instruction is assembled.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None
Operation Variable Description Size Octal Code
JP Bi+K Jump to (Bi)+K 30 bits 02iiK
JP Bi Jump to (Bi) 30 bits 02ii0 00000
JP K Jump to K 30 bits 0200K
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30
0255000004 + JP B5+GOTO |
|
0277000000 JP R7 |

8.4.14 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions cause the program sequence to branch to K or to continue with the current program

sequence depending on the contents of operand register Xj.

register is free.

These instructions do not void the stack.

The following rules apply to tests made in this instruction group :

1. The ZR and NZ operations test the full 60-bit word in Xj.
are treated as zero. All other words are non-zero.

test for floating point zero coefficients.

floating point quantities.

2. The PL and NG operations examine only the sign bit (
word is positive; if the sign bit is one, the word is negative.

The decision is not made until the Xj

The words 00.....00 and 77.....77
Thus, these instructions are not a valid

However, they can be used to test for underflow of

999

) of Xj.

fixed point words or for coefficients in floating point words.

60360900 E

If the sign bit is zero, the

Thus, the sign test is valid for

8-23

3. The IR and OR operations examine the upper-order 12 bits of Xj.
On the 7600, the following quantities are detected as being out of range:
3777X. ¢+« « X (positive overflow)
4000%,....x (negative overflow)
1777X. o+« « X (positive indefinite)
6000x,....x (negative indefinite)
All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.
On a 6000-Series computer system, 3777x...x and 4000x...x are out of range; all other words
are in range.

4. The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and

negative indefinite forms are detected:
1777%.....x and 6000x,..... x are indefinite
All other words are definite. The value of the coefficient is ignored in making this test.

5. An error exit occurs on a 6000 series or a CYBER 70/Model 72, 73, or 74 system when an
indefinite or out of range value is used as an operand of an arithmetic instruction. Such error
exits may be avoided by using DF, ID, IR or OR instructions to test for such values before
using them as operands.

On a 7600 or CYBER 70/Model 76 system, an error exit occurs as soon as indefinite or out of
range value is produced as the result of an arithmetic instruction, The DF, ID, IR and OR
instructions are useful only when a MODE control statement is used to suppress such error
exits,
CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch
] Formats: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None
Operation Variable Description Size Octal Code
ZR Xj,K Branch to K if (Xj) = 0 30 bits 030jK
NZ Xj,K Branch to K if (Xj) # 0 30 bits 031jK
PL Xj, K Branch to K if (Xj) sign is plus 30 bits 032jK
NG Xj, K Branch to K if (Xj) sign is minus 30 bits 033jK
MI Xj, K Branch fo K if (Xj) sign is minus 30 bits 033jK
IR Xj,K Branch to K if (Xj) in range 30 bits 034jK
OR Xj, K Branch to K if (Xj) out of range 30 bits 035jK
DF Xj, K Branch to K if (Xj) definite 30 bits 036jK
D Xj, K Branch to K if (Xj) indefinite 30 bits 037jK
8-24 60360900 E

Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18]30

T
0305002363 + ZR X54ZERO

t
0313002364 + NZ X3 yNONZERO

|
0324002365 + PL X4 ,PLUS :
0331002366 + NG X1sNEG

|
0331002366 + MI X1NEG

|
0340002367 + IR X0, INRANGE
0351002370 + OR X1,0UTRNGE

|
0365002371 + UF XS UEFINT
0377002372 + IL X7, INUEFNT |

60360900A 8-25

8.4.15 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions test an 18-bit word from register Bi against an 18-bit word from register Bj for the
condition specified. They branch to address K on a successful test. Otherwise, the program sequence
continues at the next instruction. The decision is not made until both B registers are free. For the
tests against zero (all zeros), the assembler sets either the i or the j designator to 0 indicating BO.

The following rules apply in the tests made by these instructions:

1. DPositive zero is recognized as unequal to negative zero, and

2, Positive zero is recognized as greater than negative zero, and

3. A positive number is recognized as greater than a negative number.
The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in
a 19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous

results caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the
(Bi). The branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instructions do not void the stack.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

Formats: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None
Operation Variable Description Size Octal Code
ZRY K Branch to K 30 bits 0400K

ZR Bi,K Branch to K if (Bi) = 0 30 bits 04i0K
EQ K Branch to K 30 bits 0400K

EQ Bi,K Branch to K if (Bi) = 0 30 bits 04i0K

EQ Bi, Bj,K Branch to K if (Bi) = (Bj) 30 bits 04ijK

NE Bi,K Branch to K if (Bi) # 0 30 bits 05i0K

NE Bi, Bj,K Branch to K if (Bi) # (Bj) 30 bits 05ijK

NZ Bi,K Branch to K if (Bi) # 0 30 bits 05i0K

PL Bi,K Branch to K if (Bi) > 0 30 bits 060K

GE Bi,K Branch to K if (Bi) > 0 30 bits 0610K

GE Bi, Bj, K Branch to K if (Bi) > (BJ) 30 bits 06ijK

LE Bj, Bi,K Branch to K if (Bj) < (Bi) 30 bits 06ijK

LE Bj,K Branch to K if (Bj) < 0 30 bits 060jK

NG Bi,K Branch to K if (Bi)< 0 30 bits 07i0K

MI Bi,K Branch to K if (Bi)< 0 30 bits 07i0K

¥ The assembler forces the position counter upper after assembling the instructions.

8-26 60360900 E

Formats (cont'd):

Operation Variable Description Size Octal Code
GT Bj, Bi, K Branch to K if (Bj) > (Bi) 30 bits 07ijK
GT Bj,K Branch to K if (Bj) >0 30 bits 070jK
LT Bi, K Branch to K if (Bi) <0 30 bits 07i0K
LT Bi, Bj, K Branch to K if (Bi) < (Bj) 30 bits 07ijK
Examples:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 |30

0450005221 + 72 "5, PZEAQ Ar

04N5905222 + £n nc,ns,tOUALi

0453005222 + Fn ag,nz, Jum }

04N00N5222 + Fn SO :

N515005224 + NE nl,ns,mcrrwi

0560005225 + M7 DR, PNQTTR

0620005226 + pL 32,000 1S I

DALSNA5227 + re A nm, 650

1650005239 + GF A5,6FR1 :

N676015231 + LE N6, "7, LTHAN

n770005232 + NG A7, aMEG 1

07210005233 + MT A3,R2L TG

0767005234 + 6T B7,P6,876T {

0705005235 + 6T A5G, NG5G T :

0712005226 + LT F1,92,8LTR |

8-27

60360900A

8.4.16 TRANSMIT INSTRUCTION

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a
copy instruction intended for moving data from X register to X register as quickly as possible. No
logical function occurs. The assembler sets the k designator to the value specified for j.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
| CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj Transmit (Xj) to Xi 15 bits 10ijj

Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
! n 18 [30
1rR22 PXA X2 i

8.4.17 LOGICAL PRODUCT INSTRUCTION

This instruction forms the logical product (AND function) of 60-bit words from operand registers Xj and
Xk and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding
bits of the Xj and Xk registers are 1 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0100

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, the instruction becomes a transmit instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

| Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj*Xk Logical product of (Xj) and (XKk) to Xi 15 bits 11ijk
Example:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 [30
11667 PY5 X5 %X 2 X

8-28 60360900E

8.4.18 LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and
Xk and places the sum in operand register Xi.

(Xj) = 0101
(Xk) = 1100
(Xi) = 1101

A bit of register Xi is set to 1 if the corresponding bit
of the Xj or Xk register is a 1 as in the following example:

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit

instruction.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 " 18 T30
12767 nX? X6+¥Y7 T

8.4.19 LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers
Xj and Xk and places the difference in operand register Xi, A bit in register Xi is set to 1 if the
corresponding bits in the Xj and Xk registers are unlike as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1001

This instruction is intended for comparing bit patterns or for complementing bit patterns during data

processing,
into register Xi.

If the j and k designators have the same value the result will be a word of all zeros written

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 170/Model 175. CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

! n 18 T30
T
12A01 PX6 X0=-X1 i
8-29

60360900E

8.4.20 COMPLEMENT INSTRUCTION

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as possible.

The assembler sets the unused j designator of the instruction to k.
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk
Example:

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 0 18 [30

164311 BX3 =X 1 1

8.4.21 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register

Xj and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the comple-
ment of the Xk register are 1 as in the following example:

(Xj) = 0101
Complemented (Xk) = 0011
(Xi) = 0001

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, a logical product is formed between two complementary quantities.
The result will be a word of all zeros.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

I Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi - Xk *Xj Logical product of (Xj) and complement

of (Xk) to Xi 15 bits 15ijk
Examples:
Code Generated LOCATION OPERATION | VARIABLE COMMENTS
) n 18 [30
15432 BX&4 -X2%X3 i
8-30 60360900E

8.4.22 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register

Xj and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the
corresponding bits of the Xk register is a 0 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value the result is a word of all ones.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk+Xj Logical sum of (Xj) and complement of
(Xk) to Xi 15 bits 16ijk

Example

Code Generated LOCATION OPERATION | VARIABLE COMMENTS

1 n 18 l30
16654 BX6 -X44¥%5 i

8.4.23 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj
and the complement of the 60-bit word from operand register Xk, and places the result in operand

register Xi.
in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0110

Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike as

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean
Operation Variable Description Size Octal Code
BXi -Xk-Xj Logical difference of (Xj) and complement

of Xk) to Xi 15 bits 17ijk

60360900 F

Example:

COde Generated LOCATION OPERATION | VARIABLE COMMENTS
1 n 18 30
T
17731 BX7 -X1-%X3 1

8.4.24 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register
Xi replace those shifted from the right end.

The 6-bit shift count jk allows a complete circular shift of (Xi).

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6
bits on the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result
in the jk fields. Thus, a negative value effectively designates a logical right shift. A positive value
designates a left shift.

If the negative shift count is less than -60, the assembler generates a 7-type error.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

Format: CYBER 17