
CONTROL DATA
CORPORATION

CONTROL DATA®
CYBER 170 SERIES COMPUTER SYSTEMS
CYBER 70 SERIES COMPUTER SYSTEMS
6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

COMPASS VERSION 3
REFERENCE MANUAL

.CPU.AND·PPU INSTRUCTION INDEX
CPU INSTRUCTI01'18 CPU .INSTRUCTIONS (oont•d) PPU IN8TRJ,Tcrto:NS (oont'd)

Mnemonic Operation Section. Mnemonic Operation Section Operatiou Section
Code Code (~tal) Number Code Code (octal) ~ Name Oode (ootal) Nulnber

8.4.25 a.4,'37 - -----AXI =".)k. 21ijk ma XJ~ ~ljk EDI m,.d 61dm 9.2.1,
ili Bj,Xk 23kjk 8.4.'lfl RXl XJ/Xk 46ijk 8,4.42 &TM m,d Mdm 9. 2.13
BXl Xj lOijj 8.4.16 RXj Xk 014Jk 8.4.8 IOM m,d e&dl:n 9.2.14:
BXi XJ*Xk 111Jk 8.4.17 SAi Aj:1:K 501JK 8.4.46 Ea:N. d l"tOd' 9.2 .. 8

:alr:i XJ+Xk 12ijk 8.4.18 SAi BJ:1:K 511JK 8,4.46 EsN d 7700 9. 2.19
BXl XJ-Xk Uijk 8.4.19 SAi XJ.:1:K S21JK 8.4.415 ETN d 1$0d. 9 •. 2. 8
BX1 -Xk 14ikk s.4.20 SAi XJ+Bk 631Jk 8. •.4& EXN d lfJOd 9.2. 6
Bxl -~*XJ 15ijk 8~4. 21 SAi AJ+llt 541Jk 8.4.45 tAN d 78d 9. ~.18
BXI -Xk+XJ 161)k 8,4.22 sAi Aj-Bk 551jk 8.4.46 FIM u1,d CSOdm 9'.8.1.f:

BXI "".Xk,..XJ i'lijk 8~4. 23 SAi Bj+Bk 6·6lJk 8.4~46 FJM m,.d 88dm 9~.2.18

CXi Xk 47fkk' 8.4.44 SAi Bj·Bk 571Jk 8. 4.48 FNC m,d 77dm 9.2.18
DF Xj,K 0361JK 8.4.l.4 SBi Aj:1:K SOfjK 8.4.46 ro?tl m,d &ldm 9.2.14:
DXf Xj+Xk 32ijk 8.4.33 sBi :BJ:1:K 61tjK 8. 4.46 IAM m,cl 71.dm 9. 2.16
DXl XJ-Xk 33ijk 8.4.33 SBi Xj:1:K 621JK 8.4.46 IAN d '10d 9. 2.15
DXi XJ*Xk 42ijk 8.4.38 SBL XJ+llk 63ljk 8 •. 4.46 UM m,d e&dm 9. 2.1,3
EQ Bi,BJ,K 04ijK 8.4.15 sBi AJ+:Bk Hijk 8.4.46 JRM m,d 6Mrn 9.2.14
ES K OGOOO 8.4~ ~ SBi Aj·Sk 861jk 8.4.46 LCN d Ud 9.2. 8
FXi Xj+:xk 30ijk 8.4.32 SBi l3J+Bt 66ljk 8.4.46 LDC c 20dm 9.2.4
FXi XJ-~ Slljk 8.4.32 SBt Bj•Bk ·87Uk 8.4~46 LDD d ,804 e.2. e
FXi Xi~ 40tjk 8.4 •. 36 SXi Aj:J:K '10iJK 8.~·•" tDI d 40d 9. 2.10
FXt Xj~ '' 441Jk 8.4.41 t1lQ Bj.=i:iK 7~ljK. 8.4.47 l-1;* m,d &Odm, 9.2.11
GE Si~BJ,K '~K 8 .• 4.16 $Xl X~:f=I<:' 7~ijK' s.4.47 Ll>N. d l .. ' ' ~~2· ~

. GE J.» .. ~K 06iPK 8.4,.1.5 SX1 Jl:J+Bk 781Jk s •. 4.4T LJ'M •,d Oldm 9~2. l
GT Bj~J3i,K O't~JK 8.4.1~ SXi ,A]+Bt 74ljk s.4.47 ,.·~14c c ~ 9 •• ~4
GT BJ,K O'TOJK 8.4 .• 15 SXi AJ-l3k 76f;Jk ' 8~4~4'1 t., d Sid 9 ... ~. D
IBj a: 016jk 8 .. ~12 SX1 Bj+Bk. 76ijk 8~4.47 L;MI d, ' 4Sd 9.2.10
ID Xj,K 037JK 8.4.14 SXi BJ-Bk 771Jk 8.4.47 LMM m,d 53dm 9.2.11
IR Xj,K 034jk 8.4.14 TBj 016j0 8. 4.10 LMN d Ud 9.2. 3
lXi Xj+Xk 36iJk 8.4.35 UXI Bj,Xk 26ijk 8.4.30 LPC c 22dm 9. 2. 4
lXl Xj-Xk 37ijk 8.4.35 WE Bj+K 012jk 8.4.4 LPN d 12d 9. 2. 3
lXi XJ*Xk 42ijk 8.4.39 WL BJ+K 012jK 8.4.5 MAN d 262d 9.2. 6
JP Bj:l:K 02iOK 8.4.13 WXJ Xk 015jk 8.4.8 MJN r 07d 9.2.1
LE BJ,Bt,K 061JK 8.4.15 XJ Bj:1:K 013JK 8.4.6 1'IXN d 261d 9.2. 6
LT Bi,.Bj,K 071JK 8.4.15 ZR Xj,K OSOjK 8.4.14 NIM m,d 63dm 9.2.14
LXi :!:jk 20ijk 8.4.24 ZR Bi,K 0410K 8.4.15 N~ r 05d 9,2.1
LXi BJ,Xk 221.jk 8.4.26 ZXi B,Jat 251 8.4 •. 29 NOM m,d 67dm 9.'2.14
Ml Xj,K 033jK 8.4.14 CMU INSTRUCTIONS OAM m,d 73dm ~.2.16

Ml Bi,K 07i~K 8.4.15 cc !,ka,ca,~'°b 8. 5.4 OAN d 72d 9.2.15
MJ 01300 8.4.7 cu f,ka,ca'~'°b 8. 5.5 ORM m,d 66dm 9.2.14

MJ Bi:J:K 013jK 8.4.7 DM 1,k ,c ,kd,cfM s.s.s PJN r 06d 9. 2.1

MXi :!:Jk 43iJk 8.4.40 IM BJ+'k
8 ·c JK) 8. 5.1 PSN 2400 9.2. 5

NE Bt,Bj,K 05iJK 8.4.15 MD .e,ks' cs,kd,cd 8. 5.2 RAD d 35d 9. 2.9

NG Bi,K ()710K 8.4.15 RAI d 45d 9.2.10

NG Xj,K OS3JK 8.4.14 PPU INSTRUCTIONS RAM m,d· 55c:bn 9.2 ... 11

NO n 46n. 8.4.43 Operation Section. RFN d 74d 9. 2.17
NXi Bj,Xk 241Jk 8.4.28 Name Code (octal) Number RJM m,d 02dm 9.2~ 1
N.Z B1.,K 05iOK 8.4.15 ACN" d 74d ,9.2 •. ~8 RPN d 270d 9.2~ '1
NZ Xj,K 031jK 8.4.14 ADC c 21dm 9.2.4 SBD d 32d 9.2 .• 9
OBj Bk om~ 9,4,12' ADD d 31d 9.2.9 SBI d 42d 9~ 2.10
OR XJ,.K OS5JK 8.4.14 ADI d 41d 9.2.10 SBM m,d 52dm 9. 2. 11
PL Xj,K 032JK 8.4.12 ADM m,d 51dm 9. 2.11 SBN d l7d 9.2. 3
PL Bi, K 0610K 8.4.15 ADN d 16d 9.2.3 SCN d 13d 9.2. 3
J>S K OOOOK 8.4.1 AJM m,d 64dm 9 •. 2.13 sim r lOd 9. 2. '2
PXi Bj,Xk 27ij 8.4.31 AOD d 36d 9.2.9 SOD d 37d 9.2. 9
RE Bj+K OllJK 8.4.4 AOI d 46d 9. 2.10 SOI d 47d 9.2.1()
RI Bk 0160k 8.4.9 AoM m,d 56dm 9~ 2.11 SOM m,d 57dn;l 9.2. u
RJ K OlOOK 8.4.3 CRD d 60d 9. 2.12 STD d 34d 9.2. 9
RL Bj:1:K OlljK 8.4.5 CRM m,d 6ld 9.2.12 STI d 44d 9.2.10
RO Bk 0170k 8.4~11 CWD d 62d 9~ 2.12 STM: m,d 54dm 9.2.11
RXi XJ+Xk 3~Jk 8.4.34 CWM tn,d 63dm 9.2.12 UJN r 03d 9.2.~

RXi XJ-Xk 35ijk 8.4~34 DCN d 75d 9. 2.18 ZJN r 04d 9.2.1

CONTROL DATA
CORPORATION

CONTROL DATA®
CYBER 170 SERIES COMPUTER SYSTEMS
CYBER 70 SERIES COMPUTER SYSTEMS
6000 COMPUTER SYSTEMS
7600 COMPUTER SYSTEM

COMPASS VERSION 3
REFERENCE MANUAL

New features, as well as changes, deletions, and additions to information in this manual are
indicated by bars in the margins or by a dot near the page number if the entire page is affected.
A bar by the page number indicates pagination rather than content has changed.

REVISION RECORD
REVISION DESCRIPTION

A Original Printing

(8-71)

B Correct technical and t}'Q_Qgr'!Q_hical errors on _Q_~es vi, vii, ix: 2-1 2-6 thru 2-9 2-15_,_ 2-18 .l.:2J...·
(7-72) 3-3, 3-5, 3-6; 4-2, 4-15, 4-19, 4-22 thru 4-28, 4-31, 4-35, 4-42 4-51 4-54.... 4-62_._ 4-64 4-66 thr...:u.A:ll

4-75, 4-77, 4-78, 4-80, 4-82; 5-7, 5-8, 5-9, 5-16, 5-19; 6-4, 6-9, 6-10; 7-1, 7-2, 7-3; 8-9, 8-14 8-33..2.8-34

8-42, 8-43, 8-51, 8-54; 9-17, 9-20, 9-21, 9-22; 10-3 thru 10-6, 10-10; 11-1-.i 11-2...z.. ll-9 thru 11-14·

B-1 thru B-6; C-1; D-1, D-2, D-3; Index-1 thru 19; Comment Sheet; Back Covei:_;_ add__Q~es 8-14.1

8-34.1; 10-11.

c Updates manual for KRONOS 2.1 and corrects typographic errors, expands a few descriI>_tions, and adds

(6-8-73) descriptions of CHAR and hexadecimal constants. Affected pages: Cover, inside cover, iii thru vi, xi_;_

1-1, 1-3, 1-4; 2-11, 2-15, 2-23 thru 2-28; 3-5, 3-6, 3-7, 3-13; 4-1, 4-2, 4-16, 4-25, 4-26, 4-27, 4-30,

4-31, 4-35, 449, 4-57, 4-61, 4-81, 4-82, 4-83, 4-85; 7-2 thru 7-5; 8-6, 8-23, 8-32, 8-33, 8-43, 8-48,

8-51; 9-15, 9-22; 10-1, 10-2, 10-3, 10-5, 10-6, 10-7; A-1 thru A4; B-1 thru B-6; D-1; Index 1 thru 8,

11 thru 14, 19, 20; Comment Sheet, inside back cover.

D Technical corrections. Affected pages: 1-4; 2-15;3-5 thru 3-7, 3-13; 4-19, 4-26, 4-49, 4-57, 4-61, 4-84;

(7-20-73) 7-3 thru 7-5; 8-23, 8-33, 8-34; 10-1 thru 10-6; B-1 thru B-6.

E This revision reflects Version 3 of the COMPASS assembler for operation under NOS 1.0 SCOPE 3.~

(10-5-74) KRONOS 2.1 and SCOPE 2.1. Major changes include CYBER 170 Series. Technical changes resultin__g_ from

product development and documentation review are included as well. Affected Pages Cover, title page,

iii, iv, vi, ix thru xii; 1-1, 1-3; 2-5, 2-24; 3-3, 3-6; 4-3, 4-6 thru 4-12, 4-25, 4-27, 4-48, 4-52, 4-65 thru

4-77, 4-81; 5-30, 5-35; 6-4, 6-10; 8-1, 8-2, 8-5, 8-6, 8-7, 8-11 thru 8-16, 8-23 thru 8-51, 8-56; 9-10,

9-11, 9-14 thru 9-22; 10-7, 10-11, 10-12; 11-7, 11-10, 11-14; B-1 thru B-5; C-1; E-1, E-2; Comment

Publication No. Sheet, inside back cover.

60360900

Additional copies of this manual may be
obtained from the nearest Control Data
Corporation sales office.

© 1971, 1972, 1973, 1974
Control Data Corporation
Printed in the United States of America

Address comments concerning
this manual to:

CONTROL DATA CORPORATION
Software Documentation
215 MOFFETT PARK DRIVE

SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

.....

PREFACE

This manual is directed at programmers using the CONTROL DATA®COMPASS Assembler Version 3.
This manual describes the principles, features, methods, rules and techniques of producing a
COMPASS language program.

The User is assumed to be familiar with the CONTROL DATA® CYBER 170 Series Computer Systems,
the CONTROL DATA® CYBER 70 Series Computer Systems, the CONTROL DATA® 6000 Series Com­
puter Systems, or the CONTROL DATA® 7600 Computer System, and is assumed to be familiar with
assemblers in general.

Readers with no previous experience with the COMPASS assembler are encouraged to direct their
initial attentions to the following sections of this manual.

Chapter 1 Introduction

Chapter 2 Language Structure

Chapter 3 Program Structure, sections 3. 1 through 3. 3

Chapter 4 Pseudo Instructions, sections 4. 1 and 4. 2

Chapter 8 or 9 CPU or PPU Symbolic Machine Instructions, the chapter depending upon the
machine language the user requires.

Chapter 10 Program Execution

This publication is not intended as a replacement for the related computer system reference manuals,
which contain detailed information on machine instructions. Information in the related computer system
reference manuals takes precedence over information in this publication should discrepencies arise
between the publications.

In this manual, numbers occurring in text are decimal unless otherwise noted. Lower case letters in
formats depict variables. The examples assume that assembler numeric mode is decimal and that
character mode is display code unless otherwise noted. In examples, statements generated by the
assembler as a result of a call or a substitution are shown in shaded print.

60360900E

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of
undescribed features or undefined parameters.

iii

Other documents of interest:

• iv

CYBER 70/Model 72, 73, 7 4, and 6000 Series manuals

SCOPE 3. 4 Reference Manual
KRON OS 2. 1 Reference Manual
LOADER Reference Manual

60307200
60407000
60344200

Record Manager Reference Manual 60307300
Record Manager File Organization User's Guide 60359600
CDC CYBER 70/Model 72 Systems Description and

Programming Information (vol. 1) (RM) 6034 7000
CDC CYBER 70/Model 73 Systems Description and

Programming Information (vol. 1) (RM) 6034 7200
CDC CYBER 70/Model 74 Systems Description and

Programming Information (vol. 1) (RM) 6034 7400
CDC CYBER 70/Models 72, 73, and 74 Instruction

Descriptions (vol. 2) (RM) 6034 7300
CDC CYBER 70 Computer Systems-7030 Extended

Core Storage (RM) 60347100
CDC CYB ER 70/Models 72, 73, and 74 and 6000

Series Computer Systems I/O Specifications (RM) 60352500

CYBER 70/Model 76 and 7600 computer manuals

SCOPE 2 Reference Manual
CYBER 70/Model 76 Reference Manual

CYBER 170 Series Manuals

NOS 1. 0 Reference Manual
CDC CYBER 170/Models 172, 173, and 174

Reference Manual
CDC CYBER 170/Model 175 Reference Manual

60342600
60367200

60435400

19981200
60420000

60360900E

CONTENTS

CHAPTER 1 INTRODUCTION 1-1
1.1 Operating System Interface 1-3
1. 2 Configuration 1-3
1. 3 Assembler Execution 1-3
1. 4 Relocatable Object Program Execution 1-3

CHAPTER 2 LANGUAGE STRUCTURE 2-1
2.1 Statement Format 2-1

2.1.1 First Column 2-1
2.1. 2 Location Field 2-1
2.1. 3 Operation Field 2-1
2.1.4 Variable Field 2-2
2.1. 5 Comments Field 2-2
2.1. 6 Comments Statement 2-2
2.1. 7 Statement Continuation 2-2
2.1. 8 Coding Conventions 2-3

2. 2 Statement Edi ting 2-4
2. 2.1 Concatenation 2-4
2.2.2 Micro Substitution 2-4

2.3 Names 2-5
2.4 Symbols 2-6

2.4.1 Linkage Symbols 2-7
2. 4. 2 Default Symbols 2-7
2. 4. 3 Previously Defined Symbols 2-8
2. 4.4 Undefined Symbols 2-8
2. 4. 5 Qualified Symbols 2-8

2.5 CPU Registers 2-8
2.6 Special Elements 2-9
2.7 Data Notation 2-10

2.7.1 Data Items 2-10
2. 7. 2 Constants 2-10
2. 7. 3 Literals 2-11
2.7.4 Character Data Notation 2-14
2.7.5 Numeric Data Notation 2-18
2. 7.6 Hexadecimal Data Notation 2-23

2. 8 Expressions 2-24
2. 8.1 Types of Expressions 2-25
2.8.2 Evaluation of Expressions 2-28

60360900C v

CHAPTER 3 PROGRAM STRUCTURE 3-1
3.1 SubprograIU Blocks 3-1

3.1.1 Absolute Block 3-2
3.1.2 Zero Block 3-2
3.1.3 Literals Block 3-2
3.1.4 User-Established Local Blocks 3-2
3.1.5 Labeled Common Blocks 3-3
3.1. 6 Blank Common Blocks 3-3
3.1. 7 Redundant Block Naines 3-4

3.2 Block Control Counters 3-4
3.2.l Origin Counter 3-4
3.2.2 Location Counter 3-5
3.2.3 Position Counter 3-5
3.2.4 Forcing Upper 3-5

3. 3 Relocatable Program Structure 3-6
3.4 Absolute Program Structure 3-8

3.4.1 Absolute Overlays 3-10
3.4.2 Multiple Entry Point Overlays 3-15
3.4.3 Partial Binary 3-15

CHAPTER 4 PSEUDO INSTRUCTIONS 4-1
4.1 Introduction to Pseudo Instructions 4-1

4.1.1 Types of Pseudo Instructions 4-1
4.1.2 Required Pseudo Instructions 4-2
4.1.3 First Statement Group 4-2
4.1.4 Permissible Anywhere Instructions 4-2

4.2 Subprogram Identification 4-2
4. 2.1 !DENT-Subprogram Identification 4-2
4.2.2 END-End of Subprogram 4-5

4.3 Binary Control 4-6
4.3.1 ABS - Absolute CPU Program 4-6
4.3.2 MACHINE - Declare Object Processor Type 4-7
4.3.3 PPU - CYBER 70/Model 76 or 7600 PPU Program 4-9
4.3.4 PERIPH - CYBER 170 Series, CYBER 70/Models

72, 73, 74 or 6000 Series PPU Program 4-10
4.3.5 IDENT - Identify and Generate Overlay 4-11
4.3.6 SEGMENT - Generate Binary Segment 4-16
4.3.7 SEG - Write Partial Binary 4-17
4.3.8 STEXT - Generate System. Text Record 4-19
4.3.9 COMMENT - Prefix Table Comment 4-21
4. 3.10 NOLABEL - Delete Header Table 4-22
4. 3.11 LCC - Loader Directive 4-23

4.4 Mode Control 4-23
4.4.1 BASE - Declare Numeric Data Mode 4-23
4.4.2 CHAR - Define Other Character Data Code 4-25
4.4.3 CODE - Declare Character Data Code 4-26
4.4.4 QUAL - Qualify Syinbols 4-27
4.4.5 Bl=l and B7=1 - Declare that B Register

Contains One 4-30
4.4.6 COL - Set Comments Column 4-31

vi 60360900 E

4.5 Block Counter Control 4-32
4.5.1 USE - Establish and Use Block 4-32
4.5.2 USELCM - Establish and Use ECS/LCM Block 4-34
4.5.3 ORG and ORGC - Set Origin Counter 4-35
4.5.4 BSS - Block Storage Reservation 4-39
4.5.5 LOC - Set Location Counter 4-40
4.5.6 POS - Set Position Counter 4-42

4.6 Symbol Definition 4-42
4.6.1 EQU or= - Equate Symbol Value 4-43
4.6.2 SET - Set or Reset Symbol Value 4-44
4.6.3 MAX - Set Symbol to Maximum Value 4-45
4.6.4 MIN - Set Symbol to Minimum Value 4-46
4.6.5 MICCNT - Set Symbol to Micro Size 4-47
4.6.6 SST - System Symbol Table 4-48

4.7 Subprogram Linkage 4-48
4.7.1 ENTRY and ENTRYC - Declare Entry Symbols 4-49
4.7.2 EXT - Declare External Symbols 4-50

4.8 Data Generation 4-51
4.8.1 BSSZ and Blank Operation Field - Reserve

Zeroed Storage 4-51
4. 8. 2 DATA - Generate Data Words 4-53
4.8.3 DIS - Generate Words of Character Data 4-54
4.8.4 LIT - Declare Literal Values 4-55
4.8.5 VFD - Variable Field Definition 4-57
4.8.6 CON - Generate Constants 4-58
4. 8. 7 R= - Conditional Increment Instruction 4-59
4.8.8 REP, REPC, and REPI - Generate Loader

Replication Table 4-61
4.9 Conditional Assembly 4-63

4.9.1 ENDIF - End of IF Range 4-63
4.9.2 ELSE - Reverse Effects of IF 4-64
4.9.3 IFtype - Test Object Processor Type 4-64
4.9.4 IFop - Compare Expression Values 4-67
4.9.5 IFPL and IFMI - Test Sign of Expression 4-69
4.9.6 IF - Test Symbol or Expression Attribute 4-70
4.9.7 IFC - Compare Character Strings 4-73
4.9.8 SKIP - Unconditionally Skip Code 4-75

4.10 Error Control 4-75
4.10.1 ERR - Unconditionally Set Error Flag 4-75
4.10. 2 ERRxx - Conditionally Set Error Flag 4-76

4.11 Listing Control 4-77
4.11.1 LIST - Select List Options 4-77
4.11. 2 EJECT - Eject Page and Begin New Sub-Subtitle 4-81
4. 11. 3 SPACE - Skip Lines and Begin New Sub-Subtitle 4-81
4.11. 4 TITLE - Assembly Listing Title 4-82
4. 11. 5 TTL - New Assembly Listing Title 4-83
4.11. 6 NORE F - Omit Symbol References 4-83
4.11. 7 CTEXT and ENDX - Disable/Enable Listing of

Common Deck Text 4-84
4.11. 8 XRE F - Reference Symbolic Address 4-85

60360900B vii

CHAPTER 5 DEFINITION OPERATIONS 5-1
5.1 External Text (XTEXT) 5-2
5.2 Remote Assembly 5-3

5.2.1 RMT - Save Remote Code 5-3
5.2.2 HERE - Assemble Remote Code 5-4

5. 3 Code Duplication 5-6
5.3.1 DUP - Simple Duplication 5-6
5.3.2 ECHO - Echoed Duplication 5-7
5.3.3 STOPDUP - Stop Duplication 5-9
5.3.4 ENDD - End Duplication Sequence 5-10

5.4 Macros and Opdefs 5-13
5.4.1 ENDM - End Macro Definition 5-14
5.4.2 MACRO - Macro Heading 5-15
5.4.3 Macro Calls 5-18
5.4.4 MA CROE - Equivalenced Macro Header 5-24
5.4.5 Equivalenced Macro Call 5-25
5.4.6 OPDEF - Define CPU Operation 5-27
5.4.7 Opdef Call 5-30
5.4.8 LOCAL - Local Symbols 5-32
5.4.9 IRP - Indefinitely Repeated Parameter 5-34

5. 5 System Macro and Opdef Definitions 5-36

CHAPTER 6 OPERATION CODE TABLE MANAGEMENT 6-1
6.1 Mnemonically Identified Instructions 6-3

6.1.1 PPOP - PPU Operation Code 6-3
6.1. 2 OPSYN - Synonymous Mnemonic Operation 6-5
6.1. 3 NIL - Do Nothing Pseudo Instruction 6-7
6.1. 4 PURG MAC - Purge Macros 6-7

6. 2 Syntactically Identified Instructions 6-8
6.2.1 CPOP - CPU Operation Code 6-8
6. 2. 2 CPSYN - Synonymous CPU Instruction 6-11
6.2.3 PURGDE F - Purge CPU Operation Code 6-11

CHAPTER 7 MICROS 7-1
7.1 Micro Substitution 7-1
7. 2 Micro Definition 7-2

7. 2.1 MICRO - Define Micro 7-2
7.2.2 DECMIC - Decimal Micro 7-4
7. 2. 3 OCTMIC - Octal Micro 7-4

7.3 Predefined Micro Names 7-5
7.3.1 DATE 7-6
7.3.2 JDATE 7-6
7. 3. 3 TIME 7-6
7.3.4 BASE 7-6
7.3.5 CODE 7-7
7.3.6 QUAL 7-7
7.3.7 SEQUENCE 7-7
7.3.8 MODLEVEL 7-7
7. 3. 9 PCOMMENT 7-8

viii 60360900A

CHAPTER 8

60360900 E

CPU SYMBOLIC MACIITNE INSTRUCTIONS 8-1
8-1 8.1 Machine Instruction Formats

8. 2 Instruction Execution 8-3

8.3

8.4

8. 2.1 6600/6700 and CYBER 70/Model 74 Execution 8-3
8. 2. 2 CYBER 170/Models 172, 173, and 174, CYBER 70/ 8-3

Models 72 and 73 and 6200/6400/6500 Execution
8. 2. 3 CYBER 170/Model 175, CYBER 70/Model 76 and 8-5

7600 Execution

Operating Registers
8. 3. 1 X Registers
8. 3. 2 A Registers
8. 3. 3 B Registers
Symbolic Notation
8. 4. 1 Program Stop Instruction (CYBER 70/Models

72, 73, 7 4 or 6000-Series)
8. 4. 2 Error Exit Instruction (CYBER 70/Model 76

or 7600)
8. 4. 3
8.4.4

8. 4. 5

8.4.6

8.4.7

8. 4. 8

8.4.9

8.4.10

8.4.11

8.4.12

8.4.13
8.4.14
8.4.15
8.4.16
8.4.17
8.4.18
8.4.19
8.4.20
8.4.21
8.4.22

Return Jump Instruction
ECS Instructions (CYBER 70/Models 72, 73, 74
or 6000-Series)
LCM Block Copy Instructions (CYBER 70/Model
76 or 7600)
Exchange Jump Instruction (CYBER 70/Models
72, 73, 74 or 6000-Series)
Exchange Exit Instruction (CYBER 70/Model 76
or 7600)
Direct LCM Transfer Instructions (CYBER 70/
Model 76 or 7600)
Reset Input Channel Buffer Instruction (CYBER
70/Model 76 or 7600)
Set Real-Time Clock Instruction (CYBER 70/
Model 76 or 7600)
Reset Output Channel Buffer Instruction (CYBER
70/Model 76 or 7600)
Read Channel Status Instructions (CYBER 70/
Model 76 or 7600)
Unconditional Jump Instruction
X-Register Conditional Branch Instructions
B-Register Conditional Branch Instructions
Transmit Instruction
Logical Product Instruction
Logical Sum Instruction
Logical Difference Instruction
Complement Instruction
Logical Product and Complement Instruction
Complement and Logical Sum Instruction

8-8
8-8
8-8
8-8
8-9

8-11

8-12
8-13

8-14

8-14-.1

8-16

8-17

8-18

8-19

8-20

8-21

8-22
8-23
8-23
8-26
8-28
8-28
8-29
8-29
8-30
8-30
8-31

ix

CHAPTER 9

x

8. 5

8.4.23
8.4.24
8.4.25
8.4.26
8.4.27
8.4.28
8.4.29
8.4.30
8.4. 31
8.4.32
8.4.33
8.4.34
8.4.35
8.4.36
8.4.37
8.4.38
8.4.39
8.4.40
8.4.41
8.4.42
8.4.43

Complement and Logical Difference Instruction
Logical Left Shift jk Places Instruction
Arithmetic Right Shift jk Places Instruction
Logical Left Shift (Bj) Places Instruction
Arithmetic Right Shift (Bj) Places Instruction
Normalize Instruction
Round and Normalize Instruction
Unpack Instruction
Pack Instruction
Unrounded SP Floating Point Add Instructions
DP .Floating Point Add Instructions
Rounded SP Floating Point Add Instructions
Long Add (Fixed Point) Instructions
Unrounded SP Floating Point Multiply Instruction
Rounded SP Floating Point Multiply Instruction
DP Floating Point Multiply Instruction
Integer Multiply Instruction
Mask Instruction
Unrounded SP Floating Point Divide Instruction
Rounded SP Floating Point Divide Instruction
Pass Instruction

8. 4. 44 Population Count Instruction
8. 4. 45 Set A Register Instructions
8. 4. 46 Set B Register Instructions
8. 4. 47 Set X Register Instructions
CMU Symbolic Machine Instructions
8. 5. 1 IM - Indirect Move
8. 5. 2
8. 5. 3
8. 5. 4
8.5.5

MD - Move Descriptor Word
DM - Direct Move
CC - Compare Collated
CU - Compare Uncollated

PPU SYMBOLIC MA CHINE INSTRUCTIONS
9.1 Machine Instruction Formats
9. 2 Symbolic Notation

9. 2. 1 Branch Instructions
9. 2. 2 Shift Instructions
9. 2. 3 No Address Mode Instructions
9.2.4
9. 2. 5
9.2.6

9.2.7

9.2.8
9.2.9
9. 2. 10
9. 2. 11

9.2.12

Constand Mode Instructions
No Operation Instruction
Exchange Jump Instructions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74 and 6000-Series)
Read Program Address Instruction (CYBER 170
Series, CYBER 70/Models 72, 73, 74 and 6000-
Series)
6416 PPU Instructions
Direct Address Mode Instructions
Indirect Address Mode Instructions
Central Read/Write Instructions (CYBER 170
Series, CYBER 70/Models 72, 73, 7 4 and 6000-
Series)
Central Read/Write Instructions (CYBER 170
Series, CYBER 70/Models 72, 73, 74 and 6000-
Series)

8-31
8-32
8-32
8-33
8-34
8-34.1
8-35
8-36
8-37
8-37
8-38
8-39
8-39
8-40
8-41
8-41
8-42
8-43
8-44
8-44
8-45
8-45
8-46
8-48
8-49
8-51
8-51
8-52

8-53
8-54
8-56

9-1
9-1
9-2
9-5
9-7
9-8
9-9
9-9

9-10

9-11
9-12
9-13
9-14

9-15

9-16

60360900E

CHAPTER 10

CHAPTER 11

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

60360900E

9.2.13 I/O Branch Instructions (CY BER 170 Series,
CYBER 70/Models 72, 73, 74 and 6000-Series) 9-17

9.2.14 I/O Branch Instructions (CYBER 70/Model 76
and 7600) 9-18

9.2.15

9.2.16
9.2.17

A Register Input/Output Instructions 9-20

Block Input/Output Instructions 9-20
Set Output Record Flag Instruction (CYBER
70/Model 76 and 7600) 9-22

9.2.18 Channel Function Instructions (CYBER 170 Series,
CYBER 70/Models 72, 73, 74 and 6000-Series) 9-22

9.2.19 Error Stop Instruction (CYBER 70/Model
76 and 7600) 9-23

PROGRAM EXECUTION
10.1 Control Statements

10.1.1 Job Statement

10. 2

1 O. 1. 2 COMPASS Call Statement
10. 1. 3 LGO Control Statement
10.1. 4 Program Call Statement
10.1.5 7/8/9 Card
10.1.6 6/7/8/9 Card
10. 1. 7 KRONOS Account card

Sample Decks

LISTING FORMAT
11.1 Page Heading
11. 2 Header Information

11. 2.1 Binary Control Card Summary
11. 2. 2 Block Usage Summary
11. 2. 3 Entry Point List
11. 2. 4 External Symbol List

11. 3 Octal and Source Statement Listing
11. 4 Literals
11. 5 Default Symbols
11. 6 Assembler Statistics
11. 7
11. 8

Error Directory
Symbolic Reference Table

CHARACTER SETS

ASSEMBLY-TIME I/O

BINARY CARD

HINTS ON USING COMPASS

DAYFILE MESSAGES

10-1
10-1
10-1
10-2
10-6
10-6
10-7
10-7
10-7
10-8

11-1
11-1
11-1
11-1
11-3
11-4
11-5
11-5
11-8
11-9
11-9
11-9
11-13

A-1

B-1

C-1

D-1

E-1

xi

FIGURES

2-1 COMPASS Cocling Form 2-3
3-1 Relocatable Program Structure 3-7
3-2 Absolute Program Structure 3-9
3-3 IDENT-Type Overlay Structure 3-12
3-4 SEGMENT-Type Overlay Structure 3-14
3-5 SEG-Type Partial Binary 3-16
3-6 IDENT-Type Paritial Binary 3-17
8-1 CPU 15-Bit Instruction Format 8-1
8-2 CPU 30-Bit Instruction Format 8-1
8-3 Arrangements of Instructions in a 60-Bit CPU Word 8-2
9-1 PPU 12-Bit Instruction Format 9-1
9-2 PPU 24-Bit Instruction Format 9-2
11-1 Format of Octal and Source Statement Listing 11-6
11-2 Format of Symbolic Reference Table 11-13

TABLES

8-1 CYBER 70/Model 74 and 6600/6700 Functional Units 8-4

I 8-2 CYBER 170/Model 175, CYBER 70/Model 76 and 7600 8-7
Functional Units

9-1 PPU Instruction Designators 9-3
11-1 Fatal Errors 11-10
11-2 lnformati ve Errors 11-12

xii 60360900 E

INTRODUCTION 1

The CONTROL DATA COMPASS Version 3 Assembler provides the user with a versatile, extensive
language for generation of object code to be loaded and executed on the central processor unit (CPU) or
a peripheral processor unit (PPU). The assembler executes on the following computer systems and
operating systems:

CONTROL DA TA® CYBER 170 Series Computer Sys terns under the control of NOS 1. 0

CONTROL DATA® CYBER 70 Series Models 72, 73, and 74 Computer Systemstunder control of
SCOPE 3. 4 or KRONOS 2. 1, or NOS 1. O.

CONTROL DATA® CYBER 70 Series Model 76 Computer System under control of SCOPE 2

CONTROL DATA® 6000 Series Computer Systems under control of SCOPE 3.4 or KRONOS 2.1

CONTROL DATA® 7600 Computer System under control of SCOPE 2.

From CPU source language subprograms, the COMPASS assembler generates binary point acceptable
for loading and execution. Subprograms can be compiled independently for subsequent loading and exe­
cution as a single program.

From PPU source language programs, the COMPASS assembler generates absolute code to be loaded
and executed on a peripheral processor unit.

Source statements consist of CPU or PPU symbolic machine instructions and pseudo instructions. The
symbolic machine instructions (chapters 8 and 9) are counterparts of the binary machine instructions;
they provide a means of expressing symbolically all functions of the Computer System.

The pseudo instructions are oriented towards control of the assembler itself; they control the assembler
much the same as machine language instructions control the computer. The ability to control assembly
places COMPASS at a level of sophistication much higher than that of the conventional assembler.

Features inherent to COMPASS include:

• Free-field source
statement format

Size of source statement fields is largely controlled by user.

t References to CYBER 70/Models 72, 73, and 74, with the exception of references to CMU instruc­
tions, apply also to the 6000 Series Computer Systems. References to CYBER 70 Model 76 apply
also to the 7600 Computer System.

60360900 E 1-1

1-2

• Control of local
and common blocks

• Preloaded data

• Data notation

• Address arithmetic

• Symbol equation and
redefinition

• Symbol qualification

• Binary control

• Selective assembly of
code sequences

• Mode control

• Listing control

• Micro coding

Programmer and system designate up to 255 areas to facilitate
interprogram communication. In CPU programs, common areas
can be defined in small core memory (CM or SCM) or extended or
large core memory (ECS or LCM).

Data areas may be specified and loaded in core memory with the
source program.

Data can be designated in integer, floating-point, and character
string notation. It can be introduced into the program as a data
item, a constant, or a literal.

Addresses can be specified making extensive use of constants,
symbolic addresses, and arithmetic expressions.

Equation and redefinition of symbols allow extensive parameteriza­
tion of assembly and linkage of subprograms and subroutines.

Ability to associate a symbol qualifier with a symbol defined within
a qualified sequence to render the symbol unique to the sequence.
An unqualified symbol is global and can be referred to from within
any sequence without qualification.

The programmer can specify whether binary output is to be absolute
or relocatable. Absolute code can be generated for any PPU or
CPU. Relocatable code can be generated for any CPU. Binary can
be written as overlays or as partial records.

Assembly-time tests allow the user to select or alter code
sequences.

Ability to specify the base to be used for numeric notation not
explicitly defined as octal or decimal, and to specify the code con­
version to be applied to character data as either display code,
ASCII, internal BCD, or external BCD.

Assembly-time control of list content.

Substitution of sequences of characters defined in the program
whenever the micro name is referenced. Several micros are
predefined by the system for user convenience.

60360900A

• Macro coding

• Operation code table

• Operation code
definition

• Code repetition

• Remote assembly

• Library routine calls

• Diagnostics

Assembly of sequences of instructions defined in the program or on
the system library whenever the macro name is referenced. Macro
definitions can be redefined or purged from the operation code table.

The programmer can specify or respecify the syntax of a CPU or
PPU instruction. The assembler generates an entry in the operation
code table for the instruction. No macro or opdef definition is
associated with the entry.

Assembly of sequences of instructions defined in the program or on
the system library whenever an operation code of the specified
syntax is referenced.

Sequences of code can be repeated during assembly or at load time.

Defers assembly of defined coding sequence until later in the
assembly.

Routines can be called from the system library.

Diagnostics for source program errors are included on output
listing.

1.1 OPERATING SYSTEM INTERFACE

COMPASS executes on the following equipment and operating systems:

a CYBER 70/Model 76 or 7600 CPU under control of the SCOPE 2 operating system,

a CYBER 170 Series computer system under control of NOS 1. 0,

a CYBER 70/Model 72, 73, 74 or 6000-series computer system under the control of the
SCOPE 3. 4 or KRONOS 2. 1 operating systems.

1.2 CONFIGURATION

The hardware requirements for executing COMP ASS on a CPU are the minimum required for the
operating system.

60360900 E 1-3

1.3 ASSEMBLER EXECUTION

COMPASS is called from the system library by a COMPASS control card (chapter 10) or CDC FORTRAN
compilers upon encountering a COMPASS IDENT statement in the source input file. Parameters
on the card specify files used during the assembler run such as the file containing source statements
and the files to receive listable output and load-and-go output. The COMPASS assembler executes as
a CPU program.

The operating system allocates the input/ output resources as needed and performs all input/ output
required during the assembly o

COMPASS assembles each subprogram on the source file, in turn, in two passes. During the first
pass, it reads each source language instruction, expands and edits called sequences as needed, inter­
prets the operation code, and assigns storage.

The function of the second pass is to assign block origins, locate literals, fill in all valid symbol
values and produce the assembly listing and binary output. Finally, it prepares the symbolic refer­
ence table and reinitializes itself preparatory to assembling the next subprogram.

Core requirements for tables used by the assembler are dynamically changed as requirements change
during assembly. If insufficient core is available for the program, the intermediate file and cross­
references are transferred to the system mass storage device and assembly continues. If any ECS/
LCM space is assigned to the job, COMPASS may use it for table storage.

All nested processing of macros and similar definitions is handled in a single recursive push-down
stack. COMPASS has a maximum recursion level of 400; that is, COMPASS allows nesting to a
depth of 400.

1.4 RELOCATABLE OBJECT PROGRAM EXECUTION

\Vb.en the assembler has completely processed the source deck, a control card (for example, LGO)
can be used to call for loading and execution of a CPU object program from the load-and-go file.
The loader links the newly assembled subprogram to any previously assembled subprograms and sub­
routines referred to by the new program and to programs on any other files specified by the pro­
grammer. After all subprograms are loaded and linked, the operating system begins program exe­
cution at a location specified by one of the subprograms. Data for the object program may be on some
programmer-specified file. Normally, this loading and execution does not take place if the COMPASS
assembler detects fatal errors.

1-4 60360900 D

LANGUAGE STRUCTURE 2

2.1 STATEMENT FORMAT

A COMPASS language source program consists of a sequence of symbolic machine instructions, pseudo
instructions, and comment lines. With the exception of the comment lines, each statement consists of
a location field, an operation field, a variable field, and a comments field. Each field is terminated by
one or more blank characters. However, a blank embedded in a character data item, parenthesized
macro parameter, or comments field does not terminate a field. The size of the variable field is re­
stricted by the maximum statement size only. Statement format is essentially free field.

Statements are 80-to-90 column lines. When punched on cards, each card is considered a line. A single
statement may be composed of as many as ten lines. Information beyond column 72 is not interpreted
by COMPASS but does appear on the assembly listing. Thus, columns 73-80 can be used for additional
comments or sequencing. Column 81-90 are used for sequencing by library maintenance programs; they
are normally not used by the programmer. A line that contains two or more consecutive colons may be
read and printed as two lines because of operating system conventions for delimiting line images.

2.1.1 FIRST COLUMN

The contents of column one designate the type of line, as follows:

, (comma) Designates the line as a continuation of the previous line.

*(asterisk) Designates the line as a comments line.

other Indicates the beginning of a new statement.

2.1.2 LOCATION FIELD

The location field entry begins in column one or two of a new statement line and is terminated by a blank.
If columns one and two are blank, the location field has no entry. A location field entry is usually
optional. It may contain a symbol or name according to the requirements of the operation field, or a
plus sign (+) or a minus sign (-) (section 3. 2. 4).

2.1.3 OPERATION FIELD

If the location field is blank, the operation field can begin in column three. If the location field is
nonblank, the operation field begins with the first nonblank character following the location field and is
terminated by one or more blanks. The operation field is blank if there are no nonblank characters
between the location field and column 30. The following are legal field entries:

Central processor unit mnemonic operation code and, optionally, the variable subfields with each
variable subfield preceded by a comma.

Peripheral processor unit mnemonic operation code

60360900B 2-1

Pseudo instruction mnemonic operation code

Macro name

Blank

2.1.4 VARIABLE FIELD

The contents of the operation field determine if any entry is required in the variable field which consists
of one or more subfields separated by commas. The variable field begins with the first nonblank
character following the operation field and is terminated by one or more blanks. It is blank if there are
no nonblank characters between the operation field and column 30.

A variable subfield contains one of the following:

Data item
Expression
Register designator
Name
Special element
Entry uniquely defined for the instruction

2.1.5 COMMENTS FIELD

Comments are optional and begin with the first nonblank character following the variable field or, if the
variable field is missing, begin no earlier than column 30. The beginning comments column can be
changed through the COL pseudo instruction (Section 4. 4. 5).

2.1.6 COMMENTS STATEMENT

A comments statement is designated either by an asterisk in column 1 or by blanks in columns 1-29.
Comments statements are listed in assembler output but have no other effect on assembly. A statement
beginning with * is not counted in line counts for IF-skipping (Section 4. 9) and definition operations
(chapter 5) and is not included in definitions. A statement having columns 1-29 blank is counted.

2.1.7 STATEMENT CONTINUATION

Normally, column 72 terminates a source statement that has not yet terminated. However, a statement
that cannot be contained in the first 72 characters can be continued on the next line by placing a comma
in column one and continuing the field in column two. A maximum of nine continuation lines is permitted
for a statement. The break between lines need not coincide with a field or subfield separator; even a
symbol can be split between two lines. Continuation lines beyond the ninth, and continuation lines
following a terminated statement are considered comment lines.

2-2 60360900A

2.1.8 CODING CONVENTIONS

Figure 2-1 illustrates a COMPASS coding form that establishes a coding convention as follows:

Column

1

2-9

10

11-16

17

18-29

30

Contents

Blank, asterisk,or comma

Location field entry or plus, or minus left justified

Blank

Operation field entry left justified

Blank

Variable field entry left justified

Beginning of comments

All examples in this manual abide by this convention.

IJm;"''.J.if.I COMPASS CODING FORM
PROGRAM I NAME
ROUTINE }DATE

LOCATION ioPERATION VARIABLE COMMENTS

I PAGE OF
IDENT

' > ' ' > ' ' O O O " " U " " • U O " 0 " n U " U 0 " • =,· " >'' U U U 0'" 0 O • " " " " 0 '" " o " M " U » '• U M " M " ~ • " " " .. " •' " " >O • '' " " ' ' •o " •o ' N

t-f-----"---'--'----L-'-'-4-'~~~~~.=--"--"r -~-~
1--+-L.J._L.J._'-'--'L.L_ji-.--.-'-----.l.--J-l.--~- ~--~r-rl -"---"-~-'--~---__L..o__~-·-_-·=~-------~ --=-~-~=-===-·-_-_-__,.i__ -_ .. _·-

1
+ l

- ~ - -- -- -- ---- - ---.--.L-----

H j~~~-'-f".L-..L..L...L...L...L..J-'--L...-~-'--~-'-f+....J...-.--'--"-~~~-~~~--~--=~~----~~=-=---------_======~-

±

Figure 2-1. COMPASS Coding Form

60360900A 2-3

2.2 STATEMENT EDITING

COMPASS reads statements in sequence from the source file. It immediately edits and interprets each
statement unless (1) it is a comments statement of the type indicated by an asterisk in column one, or
(2) it is part of a definition, that is, it is a statement between a macro or OPDEF header and an ENDM,
between a DUP or ECHO and an ENDD, or between an RMT pair. Statements within definitions are
saved for editing and interpretation when the definition is referenced or expanded. Statements within
the range of a conditional (IF type) pseudo instruction are edited even when they are skipped. COMPASS
performs two types of editing: concatenation, and micro substitution.

2.2. l CONCATENATION

COMPASS examines the statement for the concatenation character r- and removes it from any field of
the statement so that the two adjoining columns are linked. The most common use of the concatenation
character is as a delimiter for a substitutable parameter name in a macro definition when there is no
other type of delimiter already there to set off the parameter name. After the substitution takes
place, the r- is superfluous and is removed by editing before the definition is interpreted.

Each removal of r- shifts the remaining columns in the statement left one character. This could
become significant when comments follow a blank variable field because the comments would be
shifted left and interpreted as a variable field entry rather than comments.

2.2.2 MICRO SUBSTITUTION

COMPASS examines the statement for pairs of micro marks (;i) that delimit references to micro
definitions (chapter 7) and replaces each reference (including the micro marks) with the micro character
string referenced. The string that replaces the reference in the statement can be a different number of
characters than the reference so that after the substitution, remaining characters in the statement are
shifted left or right, accordingly. If, as a result of micro substitution, column 72 of the last card read
is exceeded, the assembler creates up to a maximum of nine continuation cards, beyond which it
discards excess without notification on the listing. No replacement takes place if the micro name is
unknown or if one of the micro marks has been omitted. The micro marks and name remain in the line.
In the first case, the assembler flags a non-fatal assembly error. However, a single micro mark is not
illegal and does not produce an error flag.

If the micro name is null (i.e. , the two micro marks are adjacent) both micro marks are deleted and no
error flag is set.

The columnar displacement caused by a micro replacement could also affect the relationship of fields
to the beginning comments column. For example, it could shift the operation or variable field right
beyond column 30, or could shift comments left into a blank field.

A line that contains two ,--_,_r more consecutive colons after editing may be printed as two lines because
of operating system conventions for delimiting print lines.

2-4 60360900A

2.3 NAMES

A name is a sequence of characters that identifies one of the following:

Subprogram or overlay

Block

Macro definition

Remote definition

Duplicated sequence (DUP or ECHO)

IF sequence

Micro

A comma or a blank terminates a name. Concatenation marks and pairs of micro marks are removed
before the name is scanned (see section 2. 2 Statement Editing).

A CPU subprogram name or overlay name is used for linkage with other subprograms. It must begin
with a letter (A-Z) and is limited to seven characters maximum. Conventions imposed on names by
the operating system could restrict the use of certain characters in names. There is no restriction on
the first character for a PPU subprogram or overlay name. For a CYBER 70/Model 76 or 7600 PPU
assembly, the name can be seven characters but for a CYBER 170 Series or a CYBER 70/Model 72,
73, 74 or a 6000 Series PPU assembly it is limited to three characters maximum. In all cases, the
last character of a subprogram or overlay name cannot be a colon.

Any other type of name can consist of one to eight characters. A name does not have a value or
attributes and cannot be used in an expression.

The different types of names do not conflict with each other. For example, a micro can have the same
name as a macro, or a subprogram can have the same name as a block, etc.

60360900 E 2-5

2.4 SYMBOLS

A symbol is a set of characters that identifies a value and its associated attributes. For an ordinary
symbol, the first character cannot be a $ or = or a number; a symbol can be a maximum of eight
characters. A symbol cannot include the following characters.

+ - * I blank , r or /\

Other special characters must be used with care, especially in ECHO and macro definitions (chapter 5).
Conventions imposed on symbols by the operating system could restrict the use of certain characters
in symbols.

An external or entry point symbol is used for linkage with other subprograms and has additional
restrictions (section 2. 4. 1 Linkage Symbols).

Concatenation marks or pairs of micro marks are removed before a symbol is examined (section 2. 2
Statement Editing). In CPU assemblies, to avoid conflict with register designators, a symbol cannot
normally be An, Bn, Xn, where n is a single digit from zero to seven nor can a symbol be A. x, B. x,
or x.x, because xis assumed to be a data item by the assembler. However, symbols resembling
register designators can be used if each use of the symbol is prefixed by =S or =X (section 2. 4. 2).
Register designators are described further in Section 2. 5.

The process of associating a symbol with a value and attributes is known as symbol definition. This
can occur in five major ways.

1. A symbol used in the location field of a symbolic machine instruction or certain pseudo
instructions is defined as an address having the current value of the location counter (section
3. 2. 2) and having an attribute defined as follows:

a. Absolute for the absolute block

b. Common for labeled or blank common blocks (relocatable assemblies only)

c. Relocatable for local blocks other than absolute during pass one

d. Absolute for local blocks during pass two of an absolute assembly

2. A symbol used in the location field of definition pseudo instructions (section 4. 6) is defined as
having the value and attributes derived from an expression in the variable subfield of the
instruction. Certain of these pseudo instructions assign an attribute of redefinability to a
symbol. Unless a symbol is redefinable, a second attempt to define it with a different value
produces a duplicate definition fatal error flag.

3. An external symbol is defined outside the bounds of the current subprogram and is declared as
external in the current subprogram or is defined in relation to a symbol declared as external.
In either case it has the attribute of external. Unlike a systems symbol, the true value
definition is not known to the current subprogram.

4. Definitions of systems symbols that take place outside of the current program can be
carried over to the current program through the SST pseudo instruction. COMP ASS uses
the true definitions but assigns the additional attribute of systems symbol.

2-6 60360900B

5. COMPASS defines a symbol by default if a reference to a symbol is preceded by =S and the
symbol is not otherwise defined in the subprogram. This feature is further dei;; cribed
in section 2. 4. 2 Default Symbols.

There is no restriction on the number of times that the symbol can be referred to in the subprogram.

Examples:

Legal Symbols

p

R3
PROGRAM

Illegal Symbols

5A
ABCDEFGHI
ABE+l5
=.11

First character numeric
Exceeds eight characters
Contains plus sign
First character equal sign

2.4.1 LINKAGE SYMBOLS

A relocatable subprogram can be linked to other subprograms through linkage symbols. The two types
of linkage symbols are external symbols and entry point symbols. An external or entry point symbol
can be a maximum of seven characters, the first character must be a letter (A-Z), and the last
character must not be a col on.

Any symbol declared as an entry point in a subprogram compiled or assembled independently of the
current subprogram can be declared as an external symbol in the current subprogram. Any symbol
declared as an entry point in the current subprogram can be declared as an external symbol in some
other subprogram. The symbol has a zero value and an attribute of external. An external symbol can
be declared either through the EXT pseudo instruction or through default (a reference to the symbol is
preceded by =X, see section 2. 4. 2 Default Symbols).

External symbols can be defined in the subprogram relative to any external symbol declared in an EXT
pseudo instruction. This is possible through use of symbol definition instructions that assign the value
and attributes of an expression to a symbol. If the value of the expression reduces to an external
symbol ±an integer, the location field symbol is defined as having an integer value and external
attribute. Entry point symbols and external symbols are not qualified (section 2. 4. 5).

2.4.2 DEFAULT SYMBOLS

When a symbol reference is preceded by =S or =X and the symbol is not defined in the subprogram,
COMPASS defines the symbol or declares it as an external symbol, respectively, at the end of
assembly. The =X form is defined by default in relocatable assemblies only.

=Ssymbol

=Xsymbol

60360900B

If symbol is not defined, COMPASS assigns an address at the end of the zero
block. All subsequent references to the symbol, whether preceded by =S or not,
are to the location of the word. A default symbol cannot be used where a
previously defined symbol is required.

If the symbol is defined by a conventional method, COMPASS does not define it
again but uses the programmer definition.

This option permits a programmer to define his symbols in a subroutine or link
to them in another subprogram. If the programmer defines the symbol, the
assembler uses the programmed definition. If the programmer does not define
the symbol, the assembler assumes that the symbol is external as though declared
in an EXT pseudo instruction. A symbol prefixed by =X must conform to the
requirements for external symbols.

2-7

The system does not define a default symbol and issues an error flag if a symbol is prefixed by both
=Sand =X, or is prefixed by =X and is not defined conventionally in an absolute assembly. Default
symbols are qualified by the qualifier in effect at the time of the =S reference.

2.4.3 PREVIOUSLY DEFINED SYMBOLS

Certain pseudo instructions require that a symbol in an expression be previously defined. This simply
means that the symbol, before its use as an expression element, must be defined in a prior instruction.

2.4.4 UNDEFINED SYMBOLS

A reference to a symbol that is never defined (not even by default) causes a U error flag to be placed to
the left of the instruction containing the erroneous reference.

2.4.5 QUALIFIED SYMBOLS

A symbol defined when a symbol qualifier is in effect during assembly (section 4. 4. 3) can be referred
to outside of the qualifier sequence in which it was defined through:

I qualifier I symbol

The feature permits the same symbol to be defined in different subroutines without conflict. An
unqualified symbol is global and does not require a qualifier when it is referenced, unless a qualifier
is in effect, and a symbol qualified by the same qualifier has been defined. In this case, the unqualified
symbol can be referenced as I I symbol.

The combination of qualifier and symbol permits a value to be identified by a unique 16-character
identifier. Linkage symbols are not qualified.

2.5 CPU REGISTERS

Register designators symbolically represent the 24 CPU operating registers. These registers are
described more fully in chapter 8. The designators are inherent to COMPASS and cannot be changed
during assembly.

In a CPU assembly, symbols of the same form as register designators may be used if each occurrence
of such a symbol is prefixed by =S or =X (see section 2. 4. 2). However, a warning message is issued
when such symbols are defined. The prefix cannot be used in the location field of machine instructions
and symbol defining, data generating, BSS pseudo instructions, in the variable field of ENTRY, EXT,
and SST pseudo instructions.

Register Type

Address

Index

Operand

Designator

An or A.n

Bn or B.n

Xn or X.n

For the forms An, Bn, or Xn, n is a single digit from 0 to 7. Any other value for n, for example 8, causes
An, Bn, or Xn to be interpreted as a symbol rather than a register designator.

2-8 60360900B

For the forms A. n, B. n, X. n, n can be a symbol or an integer. If the value of n or the value of the
symbol exceeds 7, the assembler truncates it to the least significant 3 bits and issues a warning flag.

COMPASS does not recognize registers in PPU assemblies; there, the designators are acceptable as
ordinary symbols.

Examples:

Al

AlO

A.1

A.NUM

A.10

Designates address register 1

Interpreted as a symbol, not a register

Designates address register 1

If the value of NUM is 6, it designates address register 6

Designates address register 2; however, it produces a warning flag because the
two was derived from the truncation of 12, the octal value for 10.

The following produce equivalent results. A SET pseudo instruction (section 4. 6. 2) defines SUM and
SUB as absolute values 3 and 2, respectively. A reference to a SET-defined symbol produces the same
result as if the value had been used directly. In this example, the address of ALPHA is 001000.

Code Generated

603200HOO

3
2

6032001000

I

1

LOCATION

LOCATION

SUM
s lJE\

OPERATION

11

~83

OPERATION

II

SET
SET
SB.SUM

VARIABLE COMMENTS

18 130

A2+ALPHA T

VARIABLE COMMENTS

18 130
T

3 !
2 I
A.SUR+ALPHA I

2.6 SPECIAL ELEMENTS

The following designators are reserved for use as references to special elements and cannot be used as
symbols. The use of a special element in an expression causes the assembler to replace it with a
value specified by the element in the expression. The control counters are discussed further in
section 3. 2.

Designator

*or *L

*O

$

60360900B

Significance

The assembler uses the value of the location counter for the block in use.
The element is relocatable unless the counter in use is for the absolute block.

The assembler uses the value of the origin counter for the block in use. The
element is relocatable unless the counter in use is for the absolute block.

The assembler uses one less than the absolute value of the position counter
for the block in use.

2-9

Designator

*P

*F

Significance

The assembler uses the absolute value of the
position counter for the block in use.

The assembler uses an absolute value obtained
as follows:

0 COMPASS was called by a COMPASS control
card

1 COMPASS was called by the FORTRAN RUN
compiler (earlier than Version 3. 0)

2 COMPASS was called by the FORTRAN FTN
compiler or the FORTRAN RUN compiler
(Version 3. 0 and later)

These designators are inherent to COMPASS and cannot be altered by the programmer during an
assembly.

Examples:

LOCATION OPERATION VARIABLE COMMENTS

l 11 18 ho

JP •+ 1+87 l . I . . l
z~ X3,•L-1 I . . I . I LOC •O-~ES+PPR . I . . I
vr:o •P/

I . .
I .

VFO $/u,111 I . . I .
IFEQ •F,2 I

2.7 DATA NOTATION

Data notation provides a means of entering values for calculation, increment counts, operand values,
line counts, control counter values, text for printing out messages, characters for forming symbols,
etc.

The two types of data notation are character and numeric. The assembler allows the user to introduce
data in the program in three basic ways.

2-10

As a data i tern
As a constant in an expression
As a literal

60360900A

2.7. l DA TA ITEMS

Character and numeric data items can be used in subfields of the DAT A (section 4. 8. 2) and LIT
(section 4. 8. 4) pseudo instructions or as specifications of field lengths on VFD pseudo instructions.

2.7.2 CONSTANTS

A data constant is an expression element consisting of a value represented in octal, decimal,
hexadecimal, or character notation. It resembles a data item but is restricted by its use as an
expression element in two ways:

1. The first character must be numeric, prohibiting the delimited type of character string
(section 2. 7. 4) and the preradix for numeric values.

2. The field size is determined by the destination field for an expression and can be a maximum
of 60 bits thus prohibiting double precision floating point numbers.

2 .7 .3 LITERALS

A literal is a read-only constant. It is specified as a data item in a subfield of a LIT pseudo instruction
or as an element in an expression.

The method of specifying a literal in an address expression is nearly identical to that for specifying a
data item in a DATA (section 4. 8. 2) or a LIT (section 4. 8. 4) pseudo instruction. The primary difference
is that the literal is prefixed with an equal sign, which indicates that a literal follows.

\Vhen a literal is used as an element in an expression, the expression is evaluated using the address of
the literal in the literals block rather than the value of the data item. Thus, the literal is considered
relocatable. (For a discussion of the literals block, see section 3.1. 3).

60360900C 2-11

Conventionally, if a literal is used, it is the only element in an expression.

The first use of a literal causes the assembler to assemble the data specified by the literal, and store
the data in the literals block using as many words as are required to hold the data. If the binary pattern
of the prefixed type of literal or of all the literals in a LIT declared sequence matches the binary
pattern of words previously entered in the literals block, an entry is not generated for the
data. This process eliminates duplication of read-only data.

The LIT pseudo instruction permits symbols to be associated with literals block entries. Such entries
can be referenced symbolically or through use of a prefixed literal. However, to preserve the integrity
of the literals block, they should be used as read only locations.

The assembly listing includes a list of the literals block when the D list option is selected (section 4. 11.1).

Example:

In the following example, using CPU instructions, the first statement creates a word in the literals
block having the value 00000000000000000001. The address of that entry (for the purpose of the
example) is 5555 and is used in the address field of the two statements at address 100 and the state­
ment at the lower part of 101.

The literal in the second statement specifies a right justified character, A, which has a display code
value of 1. The SB4 creates a one-word literal block entry having the value 00000000000000000002.
The address of that entry is in the address field of statements at the upper half of addresses 101
and 102. In this example, the LIT sequence duplicates a sequence of entries in the literals block
and does not cause new entries to be assembled.

Location Code Generated

100 6120005555 +
613000555'5 +

101 6140005556 +
55'55

612000555? +
102 6130005556 +

LOCATION

1

L

OPERATION

11

$82
SB3
SB4
LIT
SB2
SB3

VARIABLE

18

=1
=1RA
=1RA
1,2
l
L+1

CONTENT OF LITERALS etOCK.

2-12

00555s ooooaooroonooonoooo1
oosss~ ooaooooooooonoooooo2

COMMENTS

ho

I
I
I
I

60360900A

Continuing the previous example, a LIT sequence as illustrated below, does not duplicate a sequence in
the literals block and causes entries to be generated in the literals block:

Location

0 0555 c:;
0 Qt; 550
o os 557
00556(}
005%t
0 0556?

Code Generated LOCATION OPERATION

1 11

5557 LIT

~ONlfNl CF LITER~l5 ELCCK.
00000000000000000001
oooooonnooooooooooo2
ooonooonoonoooooooo1
oooonoonoooooooooon3
OOOOOOOOOOOOOOOOOOU4
oooooooooooooonogoo2

A
A
A
c
0
B

VARIABLE COMMENTS

18 I Jo

1,3.1~0,2
I

I

However, if the literals sequence in the first part of the example had been followed by a LIT that
duplicates, in part, the most recent entries in the literals block, only the unduplicated part is added
to the block. Thus, if the following LIT sequence had been used in place of the LIT 1, 3, lRD, 2, the
first two words of the sequence would match the last two words of the literals block so that only two
additional words would be required to complete the sequence.

Location

005555
005556
00'5557
0 0556 I)

60360900A

Code Generated LOCATION

1

CON1£Nl OF LITERALS SLOC~.

ooooooonoooononoooo1
OOOOOOO~OOU000000002 ooonooooooonooooooo3
000000000001)0000000~

A
B c
n

OPERATION VARIABLE COMMENTS

11 18 !Jo

LIT 1,2,3, ... T

I

2-13

2.7.4 CHARACTER DATA NOTATION

Character data strings are converted to the code in use at the time the string is evaluated (section 4. 4. 2,
CODE pseudo instruction), and placed in a field indicated by the data type (data item, constant, or
literal). When no CODE instruction has been issued, conversion is to display code representation.

Format:

Data Item

Constant t

Literalt

sign j n j type j string j

or

I sign I type I d I string I d I

I n I type I string I

I =I sign I nltype I string l

or

I =I sign I type Id I stringj d I

Example

-3RABC

-R*ABC*

3RABC

=-3RABC

=-R*ABC*

Applies to literals used as expression elements only; signifies that a literal follows.

sign Optional for data item or literal. A sign with a constant is interpreted as an element
operator.

+or omitted The value is positive

The complemented (negative) value is formed

n Signifies how the string is determined:

omitted

0

n

t Expression element

2-14

The string is delimited by d. n cannot be omitted for a constant.

For data item or literal, the string consists of all characters following
type to:

blank or ,

For a constant, string consists of all characters following type to:

+ - * I blank , or /\

For a data item or literal, n is an integer count of the number of
characters in the string not counting guaranteed zeros. It is limited
only by statement size.

For a constant, n is an integer count of the number of characters in the
string. It cannot exceed 1/ 6 of the number of bits in the field that will
contain the expression. A truncation error is flagged for a right
justified constant if the most significant bit exceeds the field. Truncated
zeros do not cause an error in this case. A truncation error is flagged
for a left justified constant if the least significant bit positions are
truncated, even if they are zero.

The string consists of the n characters following type.

Regardless of base, COMPASS assumes that n is decimal.

60360900A

type

d

string

60360900 D

Character string justification. The characters formed by the data item
or constant are right or left justified into the destination field as follows:

Significance Type

c Left justified with zero fill. For data item or
literal, 12 zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, the zero bi ts are not guaranteed;
C is the same as L.

Left justified with blank fill

Right justified with blank fill

Right justified with zero fill

Left justified with zero fill

H

A

R

L

z Left justified with zero fill. For data item or
literal, six zero bits are guaranteed at the end of
the string even if another word must be allocated.
For a constant, the bits are not guaranteed; Z is
the same as L.

A delimiting character used only when n is omitted. The characters
between the first occurrence of d and the second occurrence of d
comprise the string. d can be any character other than r-+ or I-.

Characters from one of the COMPASS character sets (appendix D),
except for those characters that act as delimiters (see n and d), the
concatenation character (r--), and pairs of micro marks (~).

Concatenation marks and pairs of micro marks are removed by
editing before a string is examined. A single micro mark can be
used in a string.

An empty or omitted character string is defined under one of the
following conditions.

1. n is 0 and type is immediately followed by a delimiter, for
example, OL

2. n is omitted and the two delimiting characters are adiacent,
for example, H++

Omission of a string in a DATA pseudo instruction is legal and does
not cause generation of a data word.

For a constant, an omission of the string is valid and has a zero value.

An omitted string in a LIT pseudo instruction is legal and does not cause
generation of a literal for that item; however, the LIT must contain at
least one non-empty data item.

An omitted string for a literal in an expression is not legal and produces
an error.

It is not possible to generate empty strings using types C, Z, R or A.

2-15

Examples of character data:

In these examples, characters are converted to display code representation; all lines of code
generated by DA TA are printed only if the D or G list option is selected.

Data Items

Location Code Generated

144 05222217225511165520
145 0421550POOOOOOOOU000
146 5555?555555555555555

Location Code Generated

1100
1101
1102

1725
24?0
2524

Constants

Location Code Generated

4722
4723

4724

4725

4726

7130000047
7140000060

5110 031117
6260530000

1111240155
0155555531

1725242025
2400000001

0700000000

1

l

LOCATION OPERATION

11

DATA

LOCATION OPERATION

l ll

PPU

DATA

LOCATION OPERATION

ll

SX3
TAG SXLt

SA1
SB&
VFU

VFD

VFO

VARIABLE COMMENTS

18 j 30

L•ERROR IN PDQ •,L •• ,lOH

VARIABLE COMMENTS

18 130

T

I

I

OLOUTPUT I
I

VARIABLE COMMENTS

18 130

1R• I

I
1Rr+. + 1 I
3RCIO I
X OHL$ I
30/4HIOIA,6/1RA,24/0AX+1

I
42/0LOUTPUT,18/1

I
15/0 LG , 15 / 0 Lj

Note that the character constant in the expression in the second line consists of a decimal point
(57 in display code) to which 01 is added before the value is stored. Similarly, in the third field
of the first VFD, 1 is added to the display code representation of X right justified with blank fill
(55555530) so that 55555531 is generated.

2-16 60360900A

Literals

Location Code Generated

100003765
100003770

2652 5110003772 +
5120003774 +

2653 5130003767 +

LOCATION

I

TAG1

OPERATION

II

LIT
LIT
SA1
SA2
~A3

CONlfNT CF LITERALS eLOC~.

003765
,Q0376E>
0 OJ 767
003770
0 03771
003772
0 0377 3
003774
003175
0 03776

0000000000~546475051
525154555657ooqooooo
330000000000UOOOOOOO
14112405220114~35555
555555555555555555~5

24051603100122032423
ooonoooooooonooooooo
14050624551225232411
06315527112410550214
01161323555555555555

+- .. /(
) $= '.
0
L ITEQAL S

Tf NCHARCTS

LEFT JUST!
FY WITH PL
ANKS

VARIABLE COMMENTS

18 !Jo

R.h-•/ CA ,6L> 1= ,.,oco,oL
20HLITERALS
=OCTENCHARCTS
=H+LEFl JUSTIFY WITH BLANKS+
=OLO

The first LIT pseudo instruction generates three words in the literals block; the OL item is an empty
string and does not produce an entry. The second LIT pseudo instruction generates one two-word
entry. The expressions in the variable fields of the SAl, SA2, and SA3 instructions each consist of a
literal element. The character strings in the SAl and SA2 literals do not duplicate former literals
block entries so COMPASS generates new entries. However, since SA3 references an existing entry,
COMP ASS places the address of the entry in the address field of the instruction.

60360900A 2-17

2.7.5 NUMERIC DATA NOTATION

Numeric data can be specified in octal or decimal notation. The value is converted to an integer or a
floating point value in single or double precision.

Formats:

Data Item

Constant

Literal

sign

pre radix

value

2-18

I sign,preradix I value I modifiers

I value I modifiers I
j =I sign j preradix j value j modifiers I

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an element
operator.

+ or omitted The value is positive

The complemented (negative) value is formed

Optional for data items and literals; cannot be used for constants. The preradix
indicates the notation used for the value.

omitted

B or 0

D

Notation can be specified by a postradix modifier or can be
assumed from the assembly base. See BASE pseudo instruction.

Octal notation

Decimal notation

A series of octal or decimal digits optionally consisting of an integer, a decimal (or
octal) point, and a fraction. An integer value (fixed point) does not contain a point.
A floating point value (legal in CPU assemblies only) is noted by the occurrence of
the point.

An octal value can be a maximum of 20 significant digits (fixed point) or 32 significant
digits (floating point). An octal value cannot include 8 or 9. A decimal value cannot
exceed 1. 15 x 1018 (fixed point) or 7. 9 x 1028 {floating point, ignoring the decimal
point). Extra significant digits cause erroneous results.

If value is omitted, it is assumed to be zero.

60360900B

modifiers Associated with the value are the following optional modifiers specified in any sequence.
A specific type of modifier can be specified only once. A duplicate produces an error
flag.

postradix

decimal exponent

binary scale

binary point
position

60360900A

Indicates the notation used for the value. See preradix for legal values.
An error is flagged if notation contains both a preradix and a postradix.

Defines a power of 10 scale factor

E+n or En or E Single precision

EE+n or EEn or EE Double precision

When the sign is plus or is omitted, the exponent (n) is positive.

When n is omitted, it is assumed to be O. The value of n cannot exceed
32767 and is always assumed to be a decimal integer.

A fixed point value can be single precision (one word) only but a CPU
floating point value can be generated in double precision (two words).

If EE is used with a fixed point value, the assembler produces a fixed point
number in single precision.

The effect of the exponent is to multiply the value by 10 decimal raised
to the n power.

Defines a power of two scale factor and is specified as follows:

S+n or Sn or s
When the sign is plus or is omitted, the scale factor (n) is positive. When
n is omitted, it is assumed to be O. The value of n cannot exceed 32767
and is always assumed to be a decimal integer.

The effect of the binary scale is to multiply the value by 2 raised to the
n power.

Applies to floating point values only and is specified as follows:

P+n or Pn or p

When the sign is + or omitted, n indicates the number of bit positions
the point is to be shifted to the left of bit 0. When the sign is -, n
indicates the number of bits the point is to be shifted to the right.

The effect of P is to align the value so that the binary point occurs to the
right of the nth bit.

The exponent is adjusted to a value of - ~n)

For example, a value with P-6 will have a biased exponent of 20068; a
value with PlO will have an exponent of 17658•

If P is not specified for a floating point number or if n is omitted, the
assembler generates a normalized floating point value. The P modifier
permits generation of an unnormalized value.

If, as a result of P, the most significant bit of the value is shifted out of
the coefficient part of the single or double precision number, the assembler
generates an overflow or underflow error.

2-19

Although scale factors can exceed valid ranges, the ranges for numbers are restricted
by the hardware.

Example:

The number 1. OE4000S-1200 yields a number that is approximately 5. 8 x 10
38

and is in range of the floating point representation.

All calculations are performed in 144-bit precision. The values are rounded to 96
bits for double precision and to 48 bits for single precision floating point numbers and
to 60 bits for integers.

The order in which the assembler acts on the modifiers, regardless of the sequence
in which they are specified is:

1. Decimal exponent (single or double)

2. Binary scaling

3. Binary point position (CPU assemblies only)

CPU Numeric Data Items

Location Code Generated

c; 0 0 I]
5001
;002
5tl03
'>004
5005
5006
5007
;010

77777777777777777742
172350000000UOOOOOOO
1643000000Ufl00000000
20000000000000000012
17760000000000000002
171546517676355~~264

17200314631~631~6314

77777777777777777777
00000000000000000000

CPU Numeric Constants

Location Code Generated

5001 ..
555

?012
5112 20360

2-20

43760
7150400000

1

1

LOCATION OPERATION

11

POOL OATA
NUM OATA

DATA
OATA
OATA
OATA

LOCATION OPERATION

11

ALPHA f QU
VAL f"QU

BSSZ
LX3
MX7
SX5

VARIABLE COMMENTS

lB '30
-29 I
1.0EE1

I
1.0f+lPO I 3.2P1S-5E1
0.0151E+01 I
0.1P47,-E,OEES

I

VARIABLE COMMENTS

lB 130

POOL+1 I

55'58
I

1008 I
-14R I
'+a
1S17 I

60360900A

CPU Numeric Literals

Location Code Generated

5113 5150005151 +
51300U5152 +

5153
5155
5156
5157

1

LOCATION OPERATION

11

SA5
SA3

APLE LIT
LIT
LIT
LIT

rONlfNl OF LITE~ftlS ELOC~.

Ofl5151
005152
O'fl5153
005154
005155
005156
01)5157
005160
0 05161

20046755000234000004
17204314631463146315
17235~UUOOODOOOOOODO
16~30000000000000000

17200314631463146314
77777777777777777754
17154651767635544264
77177711777117777177
OOOUOOOOOOOGOOOODOOO

POA 81 0
OPe\..ll 1ltM
OSI
N8
OPCLILtltL ·-,,,,,,,,, -
OH-<-.-.2=7t ,,.,,.,,,,

Examples of numeric data (assume default radix is decimal):

PPU Data Items

VARIABLE COMMENTS

1 B T 30

=200467550002340000048
=1.1 I
1.0EE1 I 0.1P47
-01q I
0.0151£+01,-E,OEES

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

300
301
302
303
!04

60360900A

0005
7766
0013
0030
0002

1

I

11

PPU . . .
DATA

18 l3o
I

I
•

I •
• I
5,-qo,+B13,14BS1,24BE-1

2-21

PPU Constants-

Location

305
336
307

310

PPU Literals

Location

311
313
315

1103
1104
1105

2-22

Code Generated

0000
0011
'+443

7177

Code Generated

2000 1103
2100 U,.04
2000 uos

31
101

LOCATION

I

ARC
NU1

LOCATION

-1 --::=::

OPERATION

II

CON

CON
=
SET
CON

OPERATION

11

LDC
AOC
LDC

CCNTfNT OF LITfROLS P.LCC~.

0012
7776
7777

J ,,,,,,,,,
H

VARIABLE COMMENTS

18 TJo
o,+11 T

I
-3331t I

250
0101 I
777i I

VARIABLE COMMENTS

18 TJo

=100 T

=-1 !
=7777 I

60360900A

2.7.6 HEXADECIMAL DATA NOTATION

Numeric data can be specified in hexadecimal notation. The value is converted to an integer in
single precision.

Formats:

Data Item

Constant

Literal

sign

0

preradix

value

modifiers

60360900C

sign 0 preradix value modifiers

sign 0 preradix value modifiers

Applies to literals only; signifies that a literal follows.

Optional for data item or literal; a sign with a constant is interpreted as an
element operator.

+ or omitted Value is positive.

Complemented (negative) value is formed.

The zero is optional for data items and literals but must be present for constants,
so the preradix will not be taken as the first character of a symbol.

Must be present to indicate that a hexadecimal value follows. The preradix char­
acter is = or =It depending on the printer used.

A series of hexadecimal digits. Each hexadecimal digit represents 4 bits and is
either a decimal digit 0-9 or a letter A-F. The digits 0-9 represent values 0-9
and the letters A-F represent the decimal values 10-15.

The value may contain up to 26 significant hexadecimal digits. No radix point is
permitted. If value is omitted, it is assumed to be zero.

The binary scale (S) modifier is optional and has the same form and meaning as
for octal and decimal data (see section 2. 7. 5).

The binary point position (P) modifier is permitted but ignored, since it does not
apply to integer values.

2-23

2.8 EXPRESSIONS

Entries in subfields of most source statements are interpreted as expressions consisting of a
combination of one or more terms. Each term consists of one or more elements joined by operators.
A comma or a blank terminates the expression.

An expression element can be a:

Symbol
Numeric or character constant
Special element
Register designator (CPU only)
Literal

Examples of elements:

ALPHA
$
*P

A.7
X3
77BS3

3HABC
=lOHOUTPUT

A term can be a single element or two or more elements joined by the following element operators:

* Multiplication
I Division

An expression can be a single term or two or more terms joined by the following term operators:

+ Addition
Subtraction

/\ Logical minus (exclusive or)

The exclusive or operator is printed as A (carat) in the CDC character set or as & (ampersand) in
the ASCII character set.

Rules:

1. If the last element of a term is omitted, COMPASS provides an element of zero. For example,
if ABLE is a symbol, ABLE *+3 is interpreted as the value of ABLE times 0 plus 3.

2. Two successive elements are illegal. Note, however, that **is legal because the first
asterisk is interpreted as an element, the second asterisk is interpreted as an operator, and
the blank is interpreted as a null element.

3. A term can contain one relocatable or external element only. Thus, **ABLE, where ABLE is
a relocatable address, is illegal because ABLE and * are both relocatable.

4. The element to the left of a divisor must be absolute.

5. Division by zero results in zero with no error.

6. Two or more additive operators (+ or - or /\) in sequence are interpreted as having a term of
zero value between them.

7. If an expression begins with an additive operator (+ or - or /\), COMPASS provides a term with
zero value preceding the operator.

2-24 60360900 E

The operator that immediately precedes a register designator is the register operator, regardless
of the placement of the designator in the expression. The register operator can be:

+ - * or I

Examples of expressions:

~BLF Single term

Two terms; $ and 29

1+=~.141SqfE+6 Two terms; a constant and the address of a literal. COMPASS places the
literal in the literal block and uses its address in the expression.

Two terms; value of the location counter and numeric constant 3.

J\Blf.-\<4-72/NUH Two terms, each consisting of two elements; the value of ABLE times 4,
and 72 divided by the value of NUM.

lOP Single term consisting of a numeric constant.

1R.=A1R/:

The components of the expression are register A6 and 3-NUM.

The character constants (= and I) are logically differenced.

2.8.1 TYPES OF EXPRESSIONS

Evaluation during assembly reduces an expression to:

An absolute value (absolute address or an integer value)

An external symbol_:::. a 21-bit integer

_:::. relocatable value ~a 21-bit integer

Register designators and one of the above

Register designators

Absolute Expressions

} CPU assembly only

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable terms, under these two conditions:

1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of absolute expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
The control counters are for the block that contains EASY and FOX.

60360900C 2-25

Et.\SY-FOX+MIKE EASY and FOX cancel each other.

Fox-• FOX and the location counter cancel each other.

MIKF+16 The expression contains no relocatable elements.

Et.\ SY-FOX "'2+"" EASY and the location counter cancel 2 times FOX.

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation. A relocatable expression
consists of a single relocatable term or, under these two conditions, a combination of relocatable and
absolute terms:

1. The expression does not contain an even number of relocatable elements

2. All the relocatable elements but one must be organized in pairs that cancel each other. That
is, for all but one block, each relocatable element (or multiple thereof) in a block must be
canceled by another element (or multiple thereof) in the same block. The elements that form
a pair need not be contiguous in the expression.

3. The uncanceled relocatable element can have three kinds of relocation:

a. Positive program
b. Negative program
c. Positive common (Negative common relocation is not permitted by the loader).

Examples of relocatable expressions:

In the following examples, EASY and FOX are relocatable in the same block. MIKE is absolute.
LIMA is relocatable in a different block. The control counters are for the block that contains
EASY and FOX.

LIMA+MIKE-16

FOX-EllSY+FOX

FOX-1008/MIKE

-MIKE''·2+LI MA

=10HMESSAGE 33

The pairing of relocatable terms cancels the effect of relocation because both terms would be relocated
by the same amount. The comparative value of the two terms remains the same regardless of program
relocation.

2-26 60360900C

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the current
subprogram. Either an external expression consists of a single positive external term or under the
following conditions an external expression may consist of an external term, relocatable terms, and
absolute terms.

1. The expression contains an even number of relocatable terms.

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple thereof) in a block must be canceled by another element (or multiple thereof) in the
same block. In other words, pairs of elements in the same block must have signs that oppose
each other. The elements that form a pair need not be contiguous in the expression.

Examples of external expressions:

In the following examples, XYZ and ABC are external symbols. EASY and FOX are in the same
block. The control counters are for the block that contains LIMA. MIKE is absolute.

XYZ-~+FOX-EASY+LIMA The pairs *and LIMA, and FOX and EASY cancel each other.

The relocatable elements all cancel.

ABC+1008

XYZ+AAC Illegal; both are external

Illegal; ABC is negative

Illegal; *O is an unpaired relocatable element

Register Expressions

An expression is a register expression if, in a CPU assembly, it reduces to one or more register
designators and an operand. The attributes of the operand can be that of an absolute, external, or
relocatable expression. Use of register expressions is generally restricted to symbolic CPU machine
instructions (Sections 8. 4 and 8. 5). If the register designator is the first element in the expression,
the operator can be omitted and is assumed to be +.

Examples of register expressions:

In the following examples, XYZ is an external symbol and LIMA is a relocatable symbol.

X3+LIHA-108

} Produce identical results LIMA+X3-10B

-108+LIMA+X3

B1+XVZ

60360900C
2-27

Evaluatable Expressions

An evaluatable expression is an expression that does not contain any symbols as yet undefined. Certain
pseudo instructions require that the expressions be evaluatable.

2.8.2 EVALUATION OF EXPRESSIONS

When evaluating an expression, COMPASS replaces each element with a 60-bit value. A character
constant is first right or left adjusted in a field the size of the destination field and then extended to
60 bits. Signs are extended for 21-bit quantities, that is, for counters, addresses, and symbols. In
division, the integral portion of the quotient is retained; any remainder is discarded. Thus, 5/2*2
results in 4.

COMPASS forms a term value by interpreting each element and operator from left to right until it
reaches a+ or - or/\ operator. It then notes whether or not the newly formed term contains a
relocatable or external symbol or register designators. The value of the symbol is added, subtracted,
or differenced from the cumulative sum of the absolute elements, relocatable elements, or external
values. The assembler continues evaluating the expression until it is reduced to a symbol and/or a
value. An error is flagged if the expression cannot be reduced. The expression value is truncated, if
necessary, and placed in the destination field. If it is too large for the field, the system issues an
error flag. The maximum field size for an expression is 60 bits.

The value of an external symbol is zero if the external symbol is defined outside of the subprogram.
It is the value relative to the external used in defining the symbol if the external symbol was defined
within the subprogram.

A zero value is used in place of a register designator.

For pass one evaluation, the system uses the value of a relocatable symbol relative to the block in
which the symbol was defined. For pass two evaluation, the system uses a value relative to program
or common block origin.

The field size for an expression depends upon the instruction and is determined as follows:

1. For a symbol definition pseudo instruction, the expression value (including character
constants) is justified in a 21-bit field.

2. In a VFD pseudo instruction, the expression is placed in a field of the size specified.

3. For a CON pseudo instruction, the field size is one word (12 bits for PPU assemblies,
60 bits for CPU assemblies).

4. In a symbolic machine instruction, values of expressions are placed in address fields (18 or
6 bits for CPU assemblies; 18, 12, or 6 bits for PPU assemblies).

Some relocatable program loaders may give unexpected results if relocatable or external address values
are assembled into the same field of the same word more than once, as a result of ORGing backward
over the word, or by having more than one subprogram preset a common block. The ORGC pseudo
instruction (see section 4. 5. 3) can be used to avoid such problems.

2-28 60360900C

PROGRAM STRUCTURE 3

This chapter describes the general structure of a program. In some cases, it repeats information
described elsewhere and correlates it so that the programmer will obtain a better understanding of how
the program is assembled, loaded, and executed. Some mention is made of the SCOPE loader, but.
for a complete description of the loader, refer to the reference manual for the operating system in
use.

The first topic considered in this chapter is the subprogram block and how the assembler and the
programmer organize the object code into blocks. Following this is a brief description of the counters
that control the blocks.

Finally, there is a summary of the differences in the structure of absolute and relocatable programs
and the effect of these differences on block usage.

3.1 SUBPROGRAM BLOCKS

A subprogram, whether assembled as absolute or relocatable, can be divided into subprogram areas
called blocks. As assembly of a subprogram proceeds, the assembler or the user designates that
object code be generated or that storage be reserved in specific blocks. By properly assigning code
sequences, data, or reserved storage areas to blocks through use of ORG or ORGC, USE or USELCM,
a programmer can intersperse instructions for the different blocks. The assembler assigns locations
in a block consecutively as it encounters instructions destined for the block. A symbol defined within
a block is not local to the block. That is, it is global and can be referred to from any other block in
the subprogram. To render a symbol local to a sequence of code requires use of the QUAL pseudo
instruction (Section 4. 4. 3).

Blocks established between two IDENT instructions, or between an IDENT and END, form a group of
blocks. COMPASS recognizes a maximum of 255 blocks in a single block group, 252 of which can be
user-established. When COMPASS interprets an IDENT or END pseudo instruction, it begins pass two
processing of the completed block group.

All symbols are assigned absolute values, the table of block names is cleared, the list of USE,
USELCM, ORG, and ORGC instructions is cleared, and block structuring restarts. For END, the
symbol table is cleared before the next subprogram is assembled. If the group does not contain a
USE instruction or if object code is generated (or storage reserved) before the first USE instruction,
COMPASS places the code in the nominal block (identified as PROGRAM* on the listing). For an
absolute program, the nominal block is the absolute block. For a relocatable program, the nominal
block is the zero block. The user controls use of the nominal block and any user-established blocks
through USE, USELCM, ORG, and ORGC pseudo instructions (Section 4. 5). Each occurrence of a
non-redundant literal constant causes an entry in the literals block; otherwise, the user has no control
of this block.

60360900A 3-1

3. 1 . 1 ABSOLUTE BLOCK

The absolute block is the nominal block for an absolute assembly. It is identified by the name
PROGRAM* on the listing. All code generated in the block is absolute. Each address symbol is
defined during pass one as an absolute value relative to zero which is block origin. The code generated
must be loaded and executed at the origin specified as the absolute block origin.

Normally, a relocatable assembly does not contain an absolute block. It may have one established,
however, if the programmer issues an ORG (or ORGC) request using an absolute value. The assembler
generates text tables specifying absolute block relocation. The loader loads the absolute text when it
encounters the text table, without manipulating any addresses. For a relocatable assembly, an ab­
solute block is identified on the assembly listing by the name ABSOLUTE*. There is no ECS/LCM
absolute block.

3.1.2 ZERO BLOCK

The zero block has the block name 0 and is the nominal CM/SCM block for a relocatable assembly. It
is a local block; that is, it is not accessible to other subprograms. Upon completion of assembly, the
assembler assigns any undefined default symbols at the end of the zero block. The zero block is
identified by the name PROGRAM* on the assembler listing.

An absolute program has a zero block only if the program contains default symbols. In an absolute
assembly, the zero block immediately follows the absolute PROGRAM* block.

There is no E CS/LCM zero block.

3.1 .3 LITERALS BLOCK

COMPASS generates literal data entries in the literals block. It is local to a subprogram. The literals
block is identified by the name LITERALS* on the assembly listing. COMPASS always assigns storage
to the literals block immediately following the zero block. There is no ECS/LCM literals block.

3.1.4 USER-ESTABLISHED LOCAL BLOCKS

By using USE and USELCM statements, a programmer can establish local blocks in addition to those
previously described for an absolute or relocatable subprogram. At the end of assembly, COMPASS
assigns an origin relative to the nominal block to each user-established local block, in the sequence in
which they are established.

3-2 60360900A

All of the CM/SCM local blocks are concatenated to form a single block,, which is treated by the loader
as a CM/SCM block whose name is unique to the subprogram. Similarly, all of the E CS/LCM t local
blocks are concatenated to form a single block which is treated by the loader as an E CS/LCM block
whose naine is unique to the subprogram.

The length of each E CS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an E CS/LCM block is
1, 048, 568 words.

3. l .5 LABELED COMMON BLOCKS

A labeled common block is a storage area that can be preset with data accessible to one or more
relocatable subprograms. These blocks are designated during assembly ~s being in CM/SCM or
ECS/LCM through the USE and USELCM pseudo instructions respectively, where the name of the block
is the name enclosed by slant bars; that is, /name/. The tables are designed so that the loader can
allocate space in memory for the first subprogram that is loaded that declares the block. Thus, the
first subprogram that names a block sets the maximum size of the block. Each subprogram, as it is
loaded, can link to allocated blocks or can cause new blocks to be allocated. The contents of a labeled
common block can be generated by any of the subprograms having access to it.

If an absolute subprogram attempts to establish a labeled common block by using a USE /name/ or
USELCM /name/ instructions COMPASS treats the block as a local block having the slant-bar
enclosed name.

3.1.6 BLANK COMMON BLOCKS

A blank common block is a storage area that cannot be preset with data. That is, the loader does not
load information into the area before the program is executed.

For a relocatable program, the CM/SCM and ECS/LCM blank common blocks are allocated space
by the loader after all subprograms are loaded, according to the largest block area declared
by any of the subprograms. A CM/SCM blank common block is established through use of the USE
pseudo instruction (section 4. 5. 1). An E CS/LCM blank common block is established through use of
the USELCM pseudo instruction (section 4. 5. 2). A blank common block has no name. A USE //
indicates blank common in CM/SCM; A USELCM // indicates blank common in ECS/LCM.

+ SCOPE 2 does not currently allow LCM local blocks.

60360900 E 3-3

If no relocatable program declares a blank common block, there is none. If an absolute program
contains a USE I I or USELCM I I instruction, COMPASS treats the block as a local block named I I
and data can be stored in this block.

Only CPU programs can use the USELCM pseudo instruction.

3.1.7 REDUNDANT BLOCK NAMES

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks with
the same name and the same block type if they have different memory types (CM/SCM or E CS/LCM).
Thus, altogether, there niay be up to four different blocks with the same name.

3.2 BLOCK CONTROL COUNTERS

For each block used in a subprogram, COMPASS maintains three counters, an origin counter, a loca­
tion counter, and a position counter. When a block is first established or its use is resumed,
COMPASS uses the counters for that block. During pass one, the origin and location counters are
initially zero. During pass two, as the assembler constructs the program, it assigns an initial value
to each local block origin counter and location counter. Thus, expressions containing relocatable
symbols are not necessarily evaluated the same in pass one and pass two.

3.2.1 ORIGIN COUNTER

The origin counter controls the relative location of the next word to be assembled or reserved in the
block. It is possible to reserve blank storage areas simply by using either the ORG, ORGC, or
BSS pseudo instructions to advance the origin counter; ORG and ORGC also permit the programmer
to reset the counter to some lower location in the block or to change blocks. BSS allows the pro­
grammer to decrement the counter but not to change blocks. The origin counter is incremented by
one for each word assembled or skipped forward and decremented by one for each word skipped in
the reverse direction.

When the special element *O is used in an expression, the assembler replaces it by the current value
of the origin counter for the block in use.

3-4 60360900A

3.2.2 LOCATION COUNTER

The location counter is normally the same value as the origin counter and is used by the assembler for
defining symbolic addresses within the block. The counter iE? incremented whenever the origin counter
is incremented. It is possible through the LOC pseudo instruction to adjust the location counter so that
it differs from the origin counter. This may be desirable when the code being assembled is to be
loaded at one location and subsequently moved and executed at another location. In this case, the
programmer resets the location counter to reflect the actual location at which execution is to occur.
As another example of its use, the programmer assembling a large table may reset the location counter
to zero so that on the listing, the addresses alongside each word of the table reflect the word's position
in the table rather than in the block. Note that use of this technique does not alter the placement of code
in the block. (For an example of these applications, see the LOC pseudo instruction, section 4. 5. 5.)
\Vhen either of the special elements * or *L is used in an expression, the assembler replaces it by the
current value of the location counter for the block in use.

3.2.3 POSITION COUNTER

Assume that bits are numbered 59-00, from left to right within a 60-bit CPU word and numbered 11-00
within a 12-bit PPU word. Then, the position counter is initially 60 and 12, respectively, and indicates
the number of bits remaining in the word. The position counter, which is decremented by one for each
completed bit of an assembled word, becomes 00 when the word is completed, and is reset to 60 or 12
when a new operation is started.

For a CPU assembly, the 15-bit and 30-bit CPU instructions cause the position counter to normally
have values of 60, 45, 30, and 15 reflecting the placement in the word for the next instruction or
data word to be generated. For a PPU assembly, the normal value is 12.

The normal pattern of advancement for the position counter can be altered through use of the VFD and
POS pseudo instructions.

When the special element *P is used in an expression, the assembler replaces it with the current
value of the position counter.

When the special element $ is used in an expression, the assembler replaces it with the current value
minus one of the position counter for the block in use; that is, it returns the next available bit position.

3.2.4 FORCING UPPER

In a CPU assembly, if any of the following conditions is true, the assembler packs parcels remaining
in a partially completed word with no-operation instructions (section 8.1), sets the position counter to
60, and increments the origin and location counters before it assembles code for the next instruction:

Insufficient room remains in a partially filled word for the next instruction or data to be generated.

The current statement is a machine instruction, or a VFD pseudo instruction, with a location symbol
or + in the location field.

60360900 D 3-5

I

The current statement is an RE, WE, PS, XJ, CC, CU, DM, or IM instruction for a CYBER 170
Series or CYBER 70/Model 72, 73, 74, or 6000 Series. (The programmer can negate this force
upper by placing a minus sign in the location field of the instruction.)

The current statement is an END, BSS, BSSZ, DATA, DIS, CON, SEGMENT, SEG, IDENT, ORGC,
LOC, ORG, or MD pseudo instruction.

The assembler forces upper after it assembles code for one of the following:

JP
RJ
Unconditional EQ
Unconditional ZR
ES (CYBER 70/Model 76 or 7600)
MJ (CYBER 70/Model 76 or 7600)
PS (CYBER 170 Series, CYBER 70/Model 72, 73, 74 or 6000 Series)
XJ (CYBER 170 Series, CYBER 70/Model 72, 73, 74 or 6000 Series)
IM (CYBER 70/Model 72 and 73)

This post force upper does not occur immediately, but is def erred until the assembler encounters
the next machine instruction or data generating, storage allocating, or binary control pseudo in­
struction in the same USE block. The programmer can negate the force upper following the instruc­
tion by placing a minus sign in the location field of the next instruction. Thus, pseudo instructions
following one of the above machine instructions and referencing the origin, location, or position
counter will use the value before the force upper.

In a PPU assembly, no forcing upper occurs; the assembler ignores a +in the location field on any
instruction other than a VFD. A plus or minus in the location field of a VFD in PPU assemblies forces
the VFD data to begin at the next full word.

3.3 RELOCATABLE PROGRAM STRUCTURE

A CPU relocatable program consists of one or more subprograms that can be assembled separately,
either in the same computer run or in independent runs. The subprogram can all be written in
COMPASS source language, or can be written in any other source language available in the product set
of the operating system as long as the compiler or assembler produces relocatable binary output in a
form acceptable to the loader. A COMPASS language subprogram is composed of instructions
beginning with an IDENT pseudo instruction and ending with an END pseudo instruction.

The COMPASS assembler repertoire includes pseudo instructions that facilitate relocatable subprogram
linkage. Through these linkages, subprograms loaded together can transfer control to each other and
can access common storage locations.

Upon completion of assembly of a relocatable subprogram, COMPASS assigns each local block
an origin relative to the zero block (Figure 3-1). Output is in the form of tables for the Relocatable
Loader. Each local block thus becomes an extension of the zero block. The length of the
subprogram given on the assembly listing is the sum of the final values of the origin counters for the
local blocks, including the zero block and literals block, but not the absolute block. Any absolute text
is simply inserted at the absolute location relative to RA (S)a

COMPASS binary output for a relocatable subprogram consists of one section for each LCC pseudo
instruction (if any) in the source program, followed by one section containing the subprogram loader
tables.

3-6 60360900E

High Core

Low Core
Address

} Size determined by
------------- -~ largest block d~clared

Blank Common

Subprogram n

- _.,,,---.-_ _.....

Subprogram 3

Subprogram 2

Subprogram 1

Core Map of
Loaded Program

by any subprogram

Subprogram length

Sizes and locations
determined by first
subprogram declaring
them {

Blank Common Block

Local Block m

--------------------.
Local Block 1

Literals Block

Zero Block

Labeled Common
Blocks

Organization of
Subprogram 1

Figure 3-1. Relocatable Program Structure

60360900 D 3-7

3.4 ABSOLUTE PROGRAM STRUCTURE

An absolute program consists of code that is not relocatable and must be loaded at specific core
locations. Because the absolute loader performs no address manipulation, absolute code can be
loaded more rapidly than relocatable code.

The programmer has the option of constructing his absolute program as a single unit, or of dividing
it into overlays. Each overlay consists of data, information, or instructions that are needed at
different times. Dividing a program into overlays allows several routines to occupy the same core
storage consecutively so that total storage requirements for a program are reduced.

During assembly of an absolute program or overlay, COMPASS creates a core image of the absolute
code. During pass two, it assigns each block an origin relative to the absolute block. Any relocatable
symbol is reassigned an absolute address; each block effectively becomes an extension of the absolute
block. Figure 3-2 illustrates the structure of an absolute program that is not divided into overlays.

The binary output for the program consists of a section for each overlay. Note that the section for an
absolute program that is not divided into overlays has the same format as the main overlay of a
program divided into overlays. The user has the option of writing part of a binary section at a time
by using either a SEG pseudo instruction or an IDENT (other than the first IDENT) with a blank variable
field.

An absolute section has three parts:

1. 77
8

prefix table (PRFX)

2. 50
8

or 51
8

overlay table, or a 6000 or 7600 PPU header table

3. Core image of the program

The table formats are described more fully in the Loader Reference Manual.

The amount of binary written as a result of the binary control instruction (IDENT, SEGMENT, SEG, or
E.ND) is subject to whether or not an entire block group is written.

If a complete block group is being written (everything between an IDENT and an END or between
two IDENT instructions), the core image of the program or overlay ends with the maximum origin
counter value for the last block established, that is, with the last word address.

If only a portion of the binary for the block group is being written, it consists of the core image of
the program or overlay ending with the value of the current origin counter.

END, SEGMENT, and a nonblank IDENT complete on overlay and write an end of section. SEGMENT
and IDENT write header information for the overlay to follow.

3-8 60360900A

IDENTname -

END

Low Core Addresses

High Core Addresses

60360900A

Absolute

Block

PROGRAM*

Default Symbols

Literals

Local

Blocks

I

lOptional

Absolute

Block

PROGRAM*

Default Symbols

Literals

Local

Blocks

L-------------1.- End-of-section

Program
Block Structure

Absolute

Default Symbols

Literals

Local Blocks

Core Map of
Loaded Program

Binary Overlay

Figure 3-2. Absolute Program Structure

3-9

3.4. l ABSOLUTE OVERLAYS

When an absolute program contains more than the one IDENT t pseudo instruction or contains SEGMENT
pseudo instructions, COMPASS does not prepare just one section of a core image of the program as it
is assembled, but, instead, generates a section for each overlay.

Dividing the program into overlays permits core to be sequentially overlayed by different subroutines
and data during program execution, reducing the maximum core requirements for the program.

For a CPU assembly, the overlay generated is either primary or secondary as determined by the
IDENT or SEGMENT pseudo instruction. The portion of the program following the first IDENT is
normally the main overlay and is identified by the level numbers O, O. Secondary overlays can be
generated subsequent to the main overlay. A secondary overlay is identified by the level numbers
x, y, where x is nonzero.

Conventionally, the main overlay is the first one loaded and contains calls to the operating system
loader to load one or more overlays as they are required during object time execution. Any overlay
can call the loader to load another overlay. Control transfers to an entry in the overlay or returns
to the calling overlay according to the format of the call. (For detailed information concerning CPU
loader calls, refer to the Loader Reference Manual.)

Because overlays are not all in core concurrently during program execution and because the sequence
in which overlays are loaded and executed is beyond the scope of the assembler, it is the user's
responsibility to as sure that an overlay does not refer to symbols, instructions, or data that is not
concurrently in core.

Although PPU overlays are not identified by level numbers, they resemble CPU overlays in all other
respects.

Overlays generated by using IDENT pseudo instructions differ in certain respects from overlays
generated by using SEGMENT instructions, as described below.

Binary formats for overlays are described in the Loader Reference Manual.

IDENT-Type Overlays

The portions of the program from IDENT to IDE NT, and IDENT to END comprise the overlays. IDENT
provides the programmer with the option of specifying the overlay level numbers with each overlay,
including the overlay generated by the first IDENT.

If no level number is provided for a CPU assembly, the first overlay is numbered O, 0 and any overlay
after that is numbered 1, 0. IDENT allows each overlay to be assigned unique numbers. Thus, the
loader has a means of locating a specified overlay when several overlays are written on the same file.

t IDENT instructions described in this section are assumed to have nonblank parameters. The special
case of the blank IDENT is described in Section 3. 4. 3.

3-10 60360900A

The first IDENT causes COMPASS to generate the program or overlay identification information that
precedes the absolute section. Upon encountering a second IDENT instruction be~ore an END instruc­
tion, COMPASS generates output consisting of a core image of the overlay starting with the overlay
origin specified on the previous IDENT and normally ending with the maximum origin counter value of
the last block declared in the overlay, that is, it normally ends with the last word address. An IDENT
subsequent to a SEG or SEGMENT, however, generates binary that ends at the location specified by
the current origin counter. Following the core image, COMPASS writes an end of section and the
overlay identification information specified by the new IDENT for the overlay to follow.

For an ID ENT-type overlay, COMPASS completes all blocks, including the literals block. Block
structuring starts fresh with each overlay. This means that each overlay can use the same block names
used by other overlays, and each overlay can contain a literals block. The USE table and control
counters are all reinitialized. The origin specified for an ID ENT-type of overlay can be any place in a
previously generated overlay. This is possible because IDENT causes the assembler to assign an
absolute address to each symbol in the symbol table. It can do this because the sizes of all the blocks
are known.

Figure 3-3 illustrates a CPU program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block and block A. Default symbols and literals cause the assembler to
generate a zero block and the literals block. Following the second nonblank IDENT instruction, the
program overlay origin is set back into the block A. The overlay generates a new literals block
and new blocks A, C, and D.

60360900A 3-11

IDENT, MAIN, X, Y

BETA -

IDENT,OVl
ORG BETA

END

Low Core Address

High Core Address

3-12

11:::::::!.:~~J{ i~!!!f~~~111111 } ~::::~~~~~tnd ABSOLUTE

A

MAIN origin -

ABSOLUTE

A

ABSOLUTE
BETA -

A'

c

ABSOLUTE'

D
OVl origin

ABSOLUTE

0 (Default)

LITERALS

A

Section One

MAIN Overlay
0,0

End-of- section

Iden tifi ca ti on
and loader
control information

ABSOLUTE' ABSOLUTE' Overlay OVl

D LITERALS'

c A'

A' c

D D

Block Structure Section Two

0,0

::~ G~~~f~:i: :r~~~~:?}~\
ABSOLUTE

ABSOLUTE
:~:·cs~~f·~·~-i-.f~'b·f ~·:~:~:~:~:~:~:

0

LITERALS

A

ABSOLUTE'

LITERALS'

A'
1----~J
1-----------·---

'/i/,~~~:~~:~;:;11111111111111111111111111111: l, O< :
~L-~~~~~~~-'

Core Maps of Loaded
Overlays

Figure 3-3. IDENT-Type Overlay Structure

End-of-section

Overlayed portion of 0, 0

60360900A

SEGMENT-Type Overlays

The portions of the program from the IDENT that identifies the program to SEGMENT, from SEGMENT
to SEGMENT, and from SEGMENT to END comprise the oyerlays. SEGMENT provides the programmer
with the option of specifying the overlay level number with each overlay.

If no level number is provided for a CPU overlay, the first overlay is numbered 0, 0 and any overlay
after that is numbered 1, O. SEGMENT allows each overlay to be assigned a unique number. Thus,
the loader has a means of locating a specified overlay when several overlays are written on the same
file

Upon encountering a SEGMENT instruction, COMPASS generates output consisting of a core image of
the overlay starting with the overlay origin specified on the previous SEGMENT (or I DENT, for the
first overlay), and ending with the current origin counter value of the block in use at the time the
SEGMENT was encountered. Following this, COMPASS writes an end-of-section and overlay identi­
fication information for the overlay to follow.

For SEGMENT, the last block used in the overlay is incomplete. The literals block is in the overlay that
contains the end of the absolute blo~I<. It is the responsibility of the user to assure that all blocks other
than the one in use are complete. The origin of the new overlay can be defined using symbols in the
bloc'<: in use only. SEGMENT does not clear the symbol table or reinitialize the USE table.

Each new SEGMENT-created overlay must use unique block names because blocks established in
previous overlays cannot be resumed and because the block names remain in the USE table due to the
incompleteness of the block group.

Figure 3-4 illustrates a program consisting of a main overlay and a secondary overlay. The main
overlay uses the absolute block, the literals block, and block A. Default symbols cause the generation
of a zero block. Following the SEGMENT, an ORG instruction sets the overlay origin back into block A,
the block in use when the SEGMENT was encountered. The 1, 0 overlay establishes new blocks C
and D.

60360900 D 3-13

IDENT MAIN

SEGMENT OVl
ORG TAG

Origin

Main
Overlay

0,0

TAG-

END

ABSOLUTE

Block A

ABSOLUTE

Block A

Block C

Block D

Block Structure

0

Literals

Block A

MAIN
Origin

OVl
Origin

TAG-

Origin-

:!!!!!?!!!!f !:~:!:~~~~~~~!!!!!!!!!!!!!!!!!: }
:;:;:: 50 or 51 Table::;:;:;::
:::::::::::::::::::::::::::::::::·:·:·:·:::·:·:·:·:·:·:·:·

ABSOLUTE

0 (Default Block)

Literals

Block A

Section One

t~nr Jr f~~~~:rmttm
th§::~t:~r:r:~g~:{)

Block A

Block C

Block D

Section Two

ABSOLUTE

0

Literals

High Core
Addresses jiillillllllllllllll!lllilll!!'.111~:~~::11111111:11111111111111 1,0

Block C

Block D

Core Maps of Loaded Overlays

Figure 3-4. SEGMENT-Type Overlay Structure

3-14

Identification
and Loader
Control
Information

MAIN overlay
0,0

End-of-section

Identification
and Loader
Control
Information

OVl Overlay
1,0

End-of- section

Portion of 0, 0

60360900A

3.4.2 MULTIPLE ENTRY POINT OVERLAYS

When a CPU program or overlay that calls an overlay is assembled independently of the overlay called,
it may be desirable for the called overlay to identify more than one entry point. Thus, ENTRY pseudo
instructions are permitted within an absolute assembly and cause the generation of a 51s overlay
table. This table consists of a control word and a list of overlay entry points. The calling program can
examine the list and link to any of the entry points. The 51s table occupies the area below the overlay
origin and uses one more word than the number of entries in the table. For the format of the 51 8 table,

refer to the Loader Reference Manual.

3.4.3 PARTIAL BINARY

When a CPU absolute program or an overlay contains SEG pseudo instructions or IDENT pseudo
instructions for which the parameters are omitted (blank), COMPASS writes a partial binary section
consisting of the binary generated since the previous IDENT, SEGMENT, or SEG instruction. How­
ever, it does not write an end of section or a new 77

8
table. A SEGMENT, nonblank IDENT, or END

instruction completes the binary sectiono

SEG-Type Partial Binary

By writing partial binary using SEG, the programmer can reduce the assembler storage requirements.
A fatal error is issued if the user attempts to store data into a block previously written out or into a
block that will be written out later.

When the SEG is encountered, COMPASS writes binary beginning with the first block established in
that portion of binary and ending with the final count specified by the origin count for the current block.

SEG does not write a complete block group. The portion of the binary that contains the end of the
absolute block contains the literals block, if there is one. The symbol table and USE table are not
reinitialized.

Figure 3-5 illustrates how the binary for an absolute program can be written in three separate binary
writes to reduce the amount of core required to assemble the programo The resulting absolute section
is loaded and executed as a single program or overlay.

60360900A 3-15

ID ENT

SEG
(writes partial

binary)

ABSOLUTE

-1-------------_..,

ABSOLUTE

LITERALS

A

SEG _______. t--------------- "\

(writes partial
binary)

END

B

c

Block Structure

Largest partial assembly
>determines assembler

core requirements

·.

i!i!i!!!!l!!!!lliJ!:~~:;;~~~~~:!!!!!!!l!! >r~~:~~e~0n
:-:-:·:·:·:· 50 or 51 ·>
:}:;:;::: C t 1 bl ::: Control ·:-:·:-:·:-: on ro Ta e :-:
:·

ABSOLUTE

LITERALS

A

B

c

Binary Over lay

Absolute
>Image

End-of-section

Figure 3-5. SEG-Type Partial Binary

IDENT-Type Partial Binary

An IDENT with a blank variable field causes all binary accumulated since the previous IDENT, SEG,
or SEGMENT to be written out without an end of section or a new 77 prefix table. The USE table
and the block counters are reinitialized. Each symbol in the symbol

8
table is assigned an absolute

address. The blocks in each partial binary section generated in this manner are allocated as if the
partial binary section were a new subprogram with its own absolute block, literals block, and local
blocks. This allows portions of a program to be self-contained units even though they are not overlays
but are loaded as a single unit. The origin of an absolute block for a new portion is the last word
address plus one of the last block of the previous portion.

The core image written by a blank IDENT starts with the origin of the absolute block and normally ends
with the maximum origin counter value of the last block declared in the block gr:oup, that is, it normally
ends with the last word address. If part of the block group has already been written by a SEG or
SEGMENT, however, the end of the binary is specified by the value of the origin counter for the current
block.

3-16 60360900A

COMPASS completes all blocks. The literals block is terminated. Block structuring starts fresh
with each IDENT. Each new partial binary section created by a blank IDENT can use the same block
names as are used by the other blank IDENT-created partial binary sections and non-blank IDENT­
created overlays and each IDENT can contain a literals block but the blocks with the same names are
independent of each other.

An attempt to write into or to reset the origin counter to a location in a partial binary section written
separately causes a range error.

Figure 3-6 illustrates how the binary for an overlay can be written in three discrete partial binary
sections to reduce the amount of core required to assemble the program and divide the program into
self-contained units. The resulting absolute section is loaded and executed as a single overlay.

IDENT PGM ...

ID ENT

ID ENT

IDENT OVLY ...

60360900A

ABSOLUTE

LITERALS

Local
Blocks

ABSOLUTE'

LITERALS'

Local
Blocks

ABSOLUTE"

LITERALS''

Local
Blocks

Figure 3-6.

LITERALS

Local
Blocks

ABSOLUTE'

LITERALS'

Local
Blocks

ABSOLUTE''

LITERALS"

Local
Blocks

IDENT-Type Partial Binary

End-of-section

3-17

PSEUDO INSTRUCTIONS

4.1 INTRODUCTION TO PSEUDO INSTRUCTIONS

This chapter and chapters 5, 6, and 7 describe the pseudo instructions available in the COMPASS
language. It is impossible to write a program in the COMPASS language without using some of the
more basic pseudo instructions. The programmer who is new to the language should give special
attention to these instructions.

Pseudo Instruction Section CPU Relocatable CPU Absolute PPU Absolute

ID ENT 4. 2.1 x x x
ABS 4. 3.1 x
PPU or PERIPH 4.3.3 or 4.3.4 x
ORG 4. 5. 3 x x
ENTRY 4. 7.1 x
BSS 4.5.4 x x x
CON 4.8.6 x x x
END 4. 2. 2 x x x

4.1.1 TYPES OF PSEUDO INSTRUCTIONS

Pseudo instructions discussed in this chapter are classed according to application as follows:

Subprogram identification (IDENT and END)

Binary control (ABS, MACHINE,PERIPH, PPU, IDENT, SEGMENT, SEG, LCC, STEXT,
COMMENT, and NOLABEL)

Mode control (BASE, CHAR, CODE, COL, Bl= 1, B7= 1, and QUAL)

Block counter control (USE, USELCM, ORG, ORGC, BSS, LOC, and POS)

Symbol definition (EQU and=, SET, MAX, MIN, MICCNT, and SST)

Subprogram linkage (ENTRY, ENTRYC, and EXT)

Data generation (BSSZ and blank operation code, DATA, DIS, LIT, VFD, CON, R=, REP, REPC,
and REPI)

Assembly control (ELSE, ENDIF, IFtype, IF op, IF, IFC, IFPL, IFMI, and SKIP)

Error control (ERR and ERR:xx)

Listing control (LIST, EJECT, SPACE, TITLE, TTL, NOREF, CTEXT, ENDX, and XREF)

4

Later chapters describe pseudo instructions that involve definition operations, alterations to the opera­
tion code table, and micros. In general, pseudo instructions can be summarized according to where
they can be placed in a subprogram.

60360900C 4-1

4.1.2 REQUIRED PSEUDO INSTRUCTIONS

Two pseudo instructions, ID ENT and END, are required for any assembly. ID ENT must be the first
source statement; END signals the termination of source statements for a subprogram.

4.1.3 FIRST STATEMENT GROUP

Certain pseudo instructions establish basic characteristics of the assembly and provide the assembler
with required information. These instructions comprise the first statement group which must precede
any symbol definition, storage allocation, or object code generation. The following instructions, if used,
must be in the first statement group.

ABS
MACHINE
PERIPH
PPU
ST EXT

4.1.4 PERMISSIBLE ANYWHERE INSTRUCTIONS

The following pseudo instructions are permissible anywhere,

BASE CPSYN ENDM MICCNT
Bl=l DEC MIC HERE MICRO
B7=1 EJECT IFC NIL
CHAR ELSE IRP NO LABEL
CODE END LIST NOREF
COMMENT ENDD MACRO OCTMIC
CPOP ENDIF MAC ROE OPDEF

including in the first statement group.

OPSYN SPACE
PPOP SST
PURGDEF TITLE
PURGMAC TTL
QUAL XREF
RMT
SKIP

Comments lines and references to macro definitions are also permitted anywhere.

CPU or PPU symbolic machine instructions and all other pseudo instructions cannot be placed in the
first statement group. The first use of one of these instructions terminates the first statement group.

4.2 SUBPR03RAM IDENTIFICATION

Subprogram identification pseudo instructions designate subprogram beginning and end. When two or
more subprograms are assembled in a single COMPASS run called through COMPASS control state­
ment, the end of the source decks is indicated by a 7 /8/9 card.

4.2.1 IDENT - SUBPROGRAM IDENTIFICATION

An IDENT pseudo instruction of the following form is the first statement of a subprogram recognized
by the assembler. Usually, any lines preceding the first IDENT or between an END and IDENT are
assumed to be comments. However, when COMPASS has been called by some other language processor
such as FORTRAN, the assembler returns control to the processor when the statement following END
is not IDENT. For a relocatable subprogram, COMPASS flags any subsequent use of IDENT before
END as an error. For an absolute subprogram, a second form of IDENT described under BINARY
CONTROL is available for overlay generation.

4-2 60360900C

The format of IDENT varies according to the type of assembly.

CPU Relocatable Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ID ENT name

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ID ENT name, origin, entry, .e1 , .e 2

7600 PPU Absolute Format:

LOCATION OPERATION VA RI ABLE SUBFIELDS

ID ENT name,origin,entry,ppu

6000 Series PPU Absolute Format:

LOCATION

name

origin

60360900 E

OPERATION VARIABLE SUBFIELDS

ID ENT name, origin

Name of the subprogram or overlay. The parameter is required. For a CPU
relocatable or absolute assembly, name can be 1-7 characters, of
which the first must be alphabetic (A-Z) and the last must not be a colon.

For a CYBER 70/Model 76 or 7600 PPU assembly, name can be 1-7 characters.
For a CYBER 170 Series or CYBER 70/Model 72, 73, 74 or 6000-Series PPU
assembly, name can be 1-3 characters. In either case, there is no restriction
on the first character, but the last character must not be a colon.

An expression specifying the first word address of the absolute program or
overlay. The overlay loader table and all code assembled starting at this
address and ending with the next SEGMENT, nonblank IDENT, or END instruc­
tion comprises the overlay. For a single entry point CPU program the load
address for the overlay is origin-1. The word at origin -1 is overlayed by the
50

8
loader control table. For a multiple entry point CPU program, the load

address for the absolute overlay is origin-wc-1, where wc is the number of
entry points in the 51

8
loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table.

Data can be generated in locations starting with origin and above, but not below
or1gm. The origin subfield does not serve the same function as ORG nor does
it replace ORG for setting the origin counter.

4-3

entry

ppu

If the origin field is null for an absolute subprogram, the assembler uses
address 000000 RA(S) as the origin for a CPU program and 0000 as the origin
for a PPU program.

For a relocatable subprogram, the subfield is ignored. The loader auto­
matically relocates the first subprogram to be loaded starting at RA(S)+ 100 ,
the second subprogram starting at the first available location following 8

the first subprogram, etc.

For a CYBER 70/Model 76 or 7600 PPU assembly or for an absolute CPU
assembly, this subfield contains an expression specifying the subprogram
entry address, which can be symbolic.

Absolute expressions specifying the level numbers of the overlay. 111 is the
primary level (0-63) and 11

2
is the secondary level (0-63). When the first IDENT

identifies the main overlay, £1 and £2 can be omitted. If 11
1

is omitted, it is set

to 00. If .e.2 is omitted, it is set to 00.

Because the first !DENT precedes any use of the BASE pseudo instruction, the
level numbers on this IDENT are evaluated as decimal unless specifically
designated as octal by a post radix.

Absolute expression specifying the number of the PPU on which this program is
to be loaded. On the first IDENT, this number is evaluated as decimal unless
specifically designated as octal.

A location field symbol, if present, is ignored.

If the COMPASS assembler is called from within a FORTRAN compilation rather than by a COMPASS
control card, IDENT must be in columns 11-15.

When the subprogram does not include a TITLE instruction, COMPASS uses the IDENT variable field
entry as the main subprogram title on the assembly listing.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 bo
-

IfJENT CT,~ONTROL,CONTROL

AAS IAflSOLUTE CPU PROG~AM
ORG 110R I

~ONTROL RSS 0 IOEFINFS SYMBOL CONTROL
f NO

Absolute CPU program CT will be loaded at origin address 00110
8

•

4-4 60360900A

4.2.2 END - END OF SUBPROGRAM

An END pseudo instruction must be the last instruction of each subprogram. It causes the assembler to
terminate all counters, conditional assembly, macro generation, or code duplication. Before terminating
assembly, COMPASS assembles any waiting remote text (see RMT).

For a relocatable subprogram, the assembler combines all local blocks into a relocatable subprogram
block, generates the relocatable binary tables and produces the listing.

For an absolute assembly, the assembler assigns each block an origin relative to absolute zero,
combines all blocks into an absolute subprogram or overlay, generates the absolute binary section and
produces the listing.

END can also be used to signal the end of source statements from an external source (see XTEXT). In
this case, it does not terminate the subprogram.

Format:

LOCATION

sym

sym

trasym

Example:

LOCATION

1

Rf GIN

60360900A

OPERATION VARIABLE SUBFIELDS

END trasym

Optional last word address symbol; if present, COMPASS defines it as the
total subprogram length, including the literals block and all local blocks.
The value is the last word address plus one.

A symbol specifying the entry point to which control transfers for a reloca­
table subprogram. This symbol must be declared as an entry point in a
subprogram -- not n.ecessarily the subprogram being assembled. At least
one subprogram must specify a transfer address or the loader signals an
error. If more than one subprogram indicates a transfer address, the loader
uses the last one encountered.

For an absolute assembly, trasym is ignored.

OPERATION VARIABLE COMMENTS

11 18 TJo
IOENT PROG1 I
ENTRY REG IN

I I . .
SH1 1 I . .

I I FNO BEGIN

4-5

4.3 BINARY CONTROL

Pseudo instructions that allow the user extensive control of binary output produced by the assembler
are summarized below and descri}?ed fully in this section.

ABS

MACHINE

PPU

PERIPH

ID ENT

SEGMENT

SEG

ST EXT

COMMENT

NO LABEL

LCC

Specifies CPU absolute binary output

Specifies processor type

Specifies CYBER 70/Model 76 or 7600 PPU binary output

Specifies CYBER 170 Series, CYBER 70/Model 72, 73, 74, or 6000 Series
PPU binary output

Begins absolute overlay or writes partial binary section

Begins absolute overlay

Writes partial binary section

Generates system text overlay

Inserts comments into the 77
8

prefix table

Suppresses header information on binary output

Passes loader control information to the relocatable loader

4.3. l ABS - ABSOLUTE CPU PROGRAM

An ABS instruction declares a CPU program to be absolute. If used, it must be in the first statement
group.

The following instructions are illegal in an absolute program:

EXT
LCC
REP
REPC
REPI

A symbol can be prefixed by =X if it is also defined conventionally; in this case, the =X has no signifi­
cance because a conventional definition takes precedence (Section 2. 4. 2).

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ABS

Symbols in the location and variable fields, if present, are ignored. If a program contains both ABS
and PERIPH (or PPU), the PERIPH (or PPU) instruction takes precedence.

4-6 60360900E

Example:

LOCATION OPERATION VARIABLE COMMENTS

l 11 lB f3o
TOENT CT,CONTROL,CONTROL
l\8S IARSOLUTE CPU PROGRAM
• . . . I
n~G 110R

bEFINES r,oNTROL ASS 0 SYMBOL CONTROL . . 1 I
FNO I

4.3.2 MACHINE - DECLARE OBJECT PROCESSOR TYPE

The MACHINE pseudo instruction specifies the type of computer system on which the object program
can be executed successfully and optionally specifies hardware features needed by the object program.
If used, MACHINE must be in the first statement group.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

MACIITNE

A location field symbol, if present, is ignored.

type

60360900E

Character string designating object processor type. The subfield can be any length
and may contain any characters other than blank or comma. The first character
identifies processor type, as follows:

6 The object program is restricted to the following computer systems: CYBER
170 Series, CYBER 70/Model 72, 73, or 74, or 6000 Series. All machine
instructions unique to the CYBER 70/Model 76 or 7600 Computer Systems are
undefined.

4-7

I

hf.
1

4-8

7 The object program is restricted to a CYBER 70/Model 76 Computer System or
to a 7600 Computer System. With the exception of the PS instruction (often used
for subroutine entry points in CPU assemblies), all instructions unique to the
following computer systems are undefined: CYBER 170 Series, CY BER 70/
Models 72, 73, and 74, and 6000 Series.

In a CPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6 or 7, then all CPU instructions
are defined, and the target and valid fields of the PRFX table in the object pro­
gram are blanks. If the type subfield is present and its first character is 6 or 7,
the valid field contains 6X or 7X. If the type subfield is at least two characters,
the first character is 6 or 7, and the second character is a digit (0-9), the target
field contains those two characters.

In a PPU assembly, if the MACHINE pseudo instruction is omitted, or the type
subfield is blank, or its first character is not 6, or 7, then: if the PERIPH
pseudo instruction is present, MACHINE 6 is assumed; if the PPU pseudo in­
struction is present, MACHINE 7 is assumed. The target field of the PRFX
table contains blanks, and the valid field contains 6P or 7P.

Optional subfield, a character string designating an optional hardware feature re­
quired for successful execution of the object program. The subfield may be any
length and may contain any characters other than blank or comma. It has no effect on
assembly of the program. The first character of the subfield is placed in the hard­
ware-instruction-dependencies field in the PRFX table in the object program.

Recommended mnemonic letters are:

C Compare/Move Unit

D Distributive Data Path

I Integer Multiply Instruction

L ECS/LCM

R Interlock Register

X Central and Monitor Exchange Jumps

Up to nine hf. subfields are processed; any additional subfields are ignored. If the
hf. subfields

1
are omitted, the comma following type can also be omitted.

1

60360900E

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 I 3o

MACHI"J~ 6,CMU,LCM,XJ
I

I

4.3.3 PPU - CYBER 70/ MODEL 76 OR 7600 PPU PROGRAM

A PPU instruction declares a program to be a CYBER 70/Model 76 or 7600 absolute PPU program
rather than a CPU program. If used, PPU must be in the first statement group. For a description
of binary format generated as a result of this instruction, refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY SEGMENT
ENTRYC USE LCM
EXT R=
LCC Bl=l
REP B7=1
REPC
REPI
SEG

If the program contains both a PPU and a PERIPH pseudo instruction, the PPU takes precedence.
PPU programs permit symbols of the form used for CPU register designators; they are normal symbols
having no special significance. The following instructions are legal but are not applicable in a PPU
assembly:

OPDEF
CPOP
CPSYN
PURGDEF

Format:

LOCATION

J

60360900A

OPERATION VARIABLE SUBFIELDS

PPU J

A character string beginning with J supplied in the variable field alters the way
that COMPASS assembles the variable expression on UJN, ZJN, NJN, MJN, or
PJN instructions.

4-9

If J is not specified, COMPASS first tests the range of the expression against
the short jump limit ~31). If the value is in range, COMPASS assembles the
jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the
location counter value. If the value is now in range, COMPASS assembles the
instruction using the expression value minus the location counter value.
However, if it is out of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

As a result, COMPASS is able to differentiate between an expression value
that is an absolute address in the short jump range from an expression value
that is a true relative address.

A symbol in the location field, if present, is ignored.

Example:

Location

7lt0
760

Location

740
7nO

Code Generated

03~7

Code Generated

03c;7

LOCATION

I

TAG

LOCATION

I

1 ITAG

OPERATION

II

PPU . .
es~

UJM

OPERATION

"
PPU . .
RS<;
UJN

VARIABLE COMMENTS

lB T3o

I
I

2r:JR I
TAG-• IEXP~ESSION < 2'78

VARIABLE COMMENTS

TB T3o

JUMP T

I
I

20R I
TAG EXPRESSION-• < 37JJ

1

4.3.4 PERIPH - CYB ER 170 SERIES OR CYB ER 70/ MODELS 72, 73,

74 OR 6000 SERIES PPU PROGRAM

A PERIPH instruction declares a program to be a CYBER 170 Series or CYBER 70/Model 72, 73, 74,
or 6000 Series absolute PPU program rather than a CPU program. If used, PERIPH must be in the
first statement group. For a description of binary output produced as a result of this instruction,
refer to the Loader Reference Manual.

Floating point constants and the following instructions are illegal in a PPU assembly:

ENTRY
ENTRYC
EXT

LCC
REP
REPC

REPI
SEG
USE LCM

R=
Bl=l
B7=1

A symbol can be prefixed by =X if it is also defined conventionally.

4-10 60360900E

PPU programs permit symbols of the form used for CPU register designators; they are normal
symbols having no special significance. The following instructions are legal but are not applicable
to PPU assemblies:

OPDEF
CPOP
CPSYN
PURGDEF

Format:

LOCATION

J

OPERATION VARIABLE SUBFIELDS

PERIPH J

A character string beginning with J supplied in the variable field alters the
way that COMPASS assembles the variable field expression on UJN, ZJN,
MJN, or PJN instructions.

If J is not specified, COMPASS first tests the range of the expression value
against the short jump limit (±_31). If the value is in range, COMPASS assembles
the jump using the value of the expression. If the value is out of range, COMPASS
performs a second test, this time using the expression value minus the location
counter value. If the value is now in range, COMPASS assembles the instruction
using the expression value minus the location counter value. However, if it is out
of range, a fatal error is flagged.

Selection of the J option causes COMPASS to always subtract the value of the
location counter from the value of the expression.

For an example illustrating how to use J, see the PPU pseudo instruction.

A symbol in the location field, if present, is ignored.

4.3.5 IDENT - IDENTIFY AND GENERATE OVERLAY

Two or more IDENT pseudo instructions are permitted in CPU absolute or PPU assemblies. Second
and subsequent IDENT instructions having nonblank variable fields cause generation of overlays. IDENT
differs from SEGMENT in the way it generates overlays. First, it allows the specification of overlay
numbers. Second, the USE table and all block counters are reinitialized. The symbol table is not
cleared; all symbols are reassigned absolute addresses relative to absolute zero. Thus, an ORG to a
previously defined symbol restarts the absolute block at the symbolic address. The third difference is
that normally the end of the overlay is determined by the last word address, the maximum origin
counter value of the last block established in the overlay. A preceding SEG or SEGMENT can alter
this, however (Section 3. 4).

60360900A 4-11

For a CPU assembly, an IDE NT with a blank variable field causes a partial binary write. The
output is not terminated by an end of section, or a new 778 table. However, the USE table and the
block counters are reinitialized and each symbol in the symbol table is assigned an absolute address.

Following an ID ENT, COMPASS assumes that all blocks, including the literals block are complete.
Block structuring starts fresh with the new overlay or portion of binary. Thus, each new overlay or
partial can use the same block names as are used by other overlays or partial and each can have a
literals block.

For a blank IDENT, an attempt to write into or reset the origin counter to a location in a partial section
written separately causes a range error. Following the ID ENT, the origin of the new absolute block
is the next word after the binary written out, that is, it is lwa+l.

The format of the ID ENT varies according to the type of assembly as follows:

CPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ID ENT name, origin, entry, 1i, 1
2

or

LOCATION OPERAilON VARIABLE SUBFIELDS

ID ENT

7600 PPU Absolute Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ID ENT name, origin, entry, ppu

6000 Series PPU Absolute Format:

LOCATION

name

4-12

OPERATION VARIABLE SUBFIELDS

ID ENT name, origin

Name of the overlay. For a CPU program, 1-7 characters, the first of which
must be alphabetic (A-Z); for CYBER 170 Series or a CYBER 70/Model 72, 73,
or 74 or a 6000 Series PPU program, 1-3 characters; for a CYBER 70/Model 76
or 7600 PPU program, 1-7 characters. In all cases, the last character must
not be a colon. A name is a loader linkage symbol required for overlays.

60360900E

origin

entry

ppu

An expression specifying the first word address of the overlay. The overlay
control word and all code assembled starting with this address and ending with
the next SEGMENT, nonblank ID ENT, or END instruction comprises the overlay.
For a single entry point CPU program, the load address for the overlay is
origin-1. The word at origin-1 is overlayed by the 50

8
loader table. For a

multiple entry point CPU program, the load address for the overlay is origin­
wc-1, where wc is the number of entry points listed in the 51 g loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader control table. Data can be generated in
locations starting with origin and above, but not below origin. The origin
subfield does not serve the same function as ORG nor does it replace ORG for
setting the origin counter. The origin of an overlay can be below the origin
specified on any other IDENT or SEGMENT.

An expression specifying the overlay entry address. \\Then the overlay is
called, control optionally transfers to this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. £1 is the primary level (00-77 8), £2 is the secondary level

(00-77 8). If base is M, £1 and .e2 are assumed to be octal. If .e1 and £2 are not
specified, £1 is set to 01 and £2 is set to 00.

An absolute expression specifying the nun1ber of the PPU in which the overlay
is to be loaded. If base is M, ppu is assumed to be octal.

A location field symbol, if present, is ignored.

The binary is written on the file specified by the B parameter on the COMPASS control card. END
dumps the last overlay or completes a partially written section.

60360900A 4-13

Examples:

The following program uses IDENT for overlay creation. Symbols T. OVL, O. DMPl, etc. are
defined on a system text overlay.

LOCATION OPERATION

I II

IO ENT
ABS

Q,.H BASE
COHHEN~
LIST
SST
ORG
QUAL

PMP sxo
•
•
•
QUAL
IO ENT
ORG

l.JBW2 sxo .
• .
QUAL
IDE NT
ORG
sxo .
•
•
ENO

4-14

VARIABLE COMMENTS

18 TJo

OMP.1,T.OVL,O.OHP1

l I
M I

10/07170. CONTROL CARO CALL.DHP.
G I

I OVERLAY
T.OVL OHP1
DHP1 I

J
81

I •
• I •
OMP2 I
DHP2 9 T.OVL,O.OMP2 1
T.OVL I OVERLAYS D
86+1 I THROUGH OH .

J . I .
OHPq I ..,
OHP.9,T.OVL,O.OMP9 OVERLAY
T.OVL I OMP9
?• OMP2+F • MOEi

J • I .
ENO OVERLAY OMP9
J

HP2
P8

60360900A

The following program uses !DENT instructions having blank variable fields.

LOCATION OPERATION VARIABLE

l 11 18

I!JENT VVV, t I OB, ENT
l\RS
OPG 11 0 P.

f MT ~XO t

.
LIT 1,2,~
TrJENf

.
~ 455 lfT ?,3

!OFNT

.
7116 LIT t,2

F"Nf1

Origin-
ABSOLUTE

1617 - LITERALS

Local Blocks

ABSOLUTE'

3455 -
LITERALS'

ABSOLUTE"

7116 - LITERALS"

lwa
Local Blocks

Core Map

60360900B

COMMENTS

'30
I

I
I
I
I

I
I

l
I

I
l
I
I
I
I

l
I
r

I
I

l
First

Partial Binary

J
l

Second
Partial Binary

J
l
Third

Partial Binary

J

l
First

Partial Binary

J
-,

Second
Partial Binary

J

l
Third

Partial Binary

J

4-15

4.3.6 SEGMENT - GENERATE BINARY SEGMENT

The SEGMENT pseudo instruction produces overlays at assembly time. It has many of the features of
!DENT and is included primarily to provide another way of handling literals. Use of SEGMENT is
intended for 6000 Series CPU absolute or PPU assemblies. For a relocatable subprogram, a SEG­
MENT pseudo instruction causes BSSZ code and the FILL, REPL, and LINK relocatable tables to be
written on the binary output file.

The first SEGMENT causes all binary accumulated since the IDENT to be dumped as the main (0, 0)
overlay. Each subsequent SEGMENT generates a new overlay with the specified level numbers. END
dumps the last overlay. When COMPASS encounters a SEGMENT pseudo instruction, it does not clear the
symbol table or block declarations. All blocks other than the block in use must be complete. For a
CPU assembly, the literals block must be in one overlay only but that overlay can be any overlay.

Format:

LOCATION

name

name

origin

entry

4-16

OPERATION VARIABLE SUBFIELDS

SEGMENT origin, entry, 1
1

, 1
2

Name of overlay. For a CPU program, 1-7 characters, first of which must be
alphabetic (A-Z); for a PPU subprogram, 1-3 characters. In all cases, the last
character must not be a colon. It is a required loader linkage symbol.

A relocatable expression specifying the first word address of the overlay.
It can only be an address in the block in use. The overlay loader table and all
code assembled starting at this address and ending with the next SEGMENT,
nonblank IDE NT, or END instruction comprises the overlay.

For a CPU program the load address for the record is origin-1. The word at
origin-1 is overlayed by the 508 loader table.

For a PPU subprogram, the load address is origin-5. Five 12-bit PPU words
are overlayed by the 60-bit loader table. Data can be generated in locations
starting with origin and above, but not below origin. The origin subfield does
not serve the same function as ORG nor does it replace ORG for setting the
origin counter. The origin of an overlay can be below the origin specified on
any other !DENT or SEGMENT.

An expression specifying the overlay entry address. It is used for CPU
assemblies only. When the overlay is called, control optionally transfers to
this address.

Absolute expressions specifying the level numbers of the overlay for CPU
programs only. 1

1
is the primary level (00-77

8
), 1

2
is the secondary level

(00-77
8
). If base is M, 1

1
and 1

2
are assumed to be octal. If 1

1
and 1

2
are not specified, 1

1
is set to 01 and 1

2
is set to 00.

60360900C

Example:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 l3o

IOi::NT SAM,FNTA r
Ags

I 09G 110 R
fl\1TA PSS I) ENTRY POINT

I I . .
OVLOf: ASS !) IOVFRLAY LOl\D POINT I . .
Sf:G1 SFGMEf\J STRT,ENTR

I ORG OVLrr
PSC) 1 LOl\0£R TAPLE

STRT PSS () !FIRST WORD oi:- OVERLAY

. . I I
ENTO PSS 0 EXECUTION BEGINS HERE

I . .
I

Et\10 IEND OF OVfRL AY
I i

SEGl is loaded as an overlay upon a call for the loader from the program. The first word of the overlay
is loaded at OVLOC + 1, following the loader table. The entry point to the overlay and the first executable
instruction is at ENTB. The overlay, when executed occupies the area of the main program beginning
at OVLOC.

4.3.7 SEG - WRITE PARTIAL BINARY

The SEG pseudo instruction permits the generation of a CPU absolute subprogram or overlay in less core
than would otherwise be required for assembly. It is illegal in PPU and relocatable assemblies.

SEG causes COMPASS to write on the binary output file all binary information accumulated since the
previous ID ENT, SEGMENT, or SEG pseudo instruction. It does not write an end of section or begin
a new PRFX table. A SEGMENT, !DENT, or END instruction completes the binary section.

SEG does not affect the location and origin counters. The user cannot resume use of a block established
prior to the SEG, except for the block in use when the SEG was encountered. An attempt to reset the
origin counter so as to resume a block already written out causes an R error. Also, since the block
group is incomplete and the names of the blocks already written out are still in the USE table, no new
blocks can be established using the same block names as were used prior to the SEG.

The literals block is written in the portion that contains the end of the absolute block.

60360900A 4-17

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

SEG

Symbols in the location field and variable field, if present, are ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

1 11 lB 1 Jo
-.

!DENT NAME,ORIGIN,ENTRY
ABS I
USE A I
• • I • •
• • I SEG

I USE 8

• • I • .
• . I
SEG

I • .
• . I
• • I ENO

I

4-18 60360900A

4.3.8 STEXT - GENERATE SYSTEM TEXT RECORD

As a result of an ST EXT pseudo instruction, binary output for the subprogram consists of all symbols,
micros, and opcodes (macros, opdefs, and machine and p.seudo instructions), written in overlay
format at the end of pass one. The STEXT instruction must be in the first statement group.

The system text overlay becomes available in other assemblies through use of the G or S option on the
COMPASS control card (chapter 10). Through this feature, information in the system text overlay need
be processed only once for all COMPASS programs using the same system text. System text overlays
cannot be generated and used in the same assembly batch; system text overlays generated by one
COMPASS control card call can be used only by assemblies performed by later COMPASS control card
calls.

The symbols included in the system text overlay written are all symbols defined in the assembly
except those for which at least one of the following is true:

The symbol value is relocatable or external.

The symbol is qualified.

The symbol is redefinable (io e., defined by SET, MAX, MIN, or MICCNT).

The symbol is defined by statements read by XTEXT or occurring between CTEXT and ENDX.

The symbol is defined by SST (i.e. , is a system symbol input to the present system text assembly)· I
The symbol is 8 characters beginning with t ~.

All defined micros are included in the system text overlay.

All program-defined opcodes are also included. Machine and pseudo instructions automatically
defined by COMPASS, and opcodes defined by system text input (if any) to the assembly, are not
included.

When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all of the micros and opcodes in the system text are automatically defined at the start of
each assembly; however, the symbols in the system text are defined only for those assemblies that
contain the SST pseudo instruction.

60360900 D 4-19

A system text overlay on the library is an absolute overlay that has the following control table:

59 48 42 36 00

5000 01 I 01 000000000000

Format of Text:

[

System Symbol
Table
2 words per entry

Micro Definitions

Macro/opdef Definitions

Operation Table
Entries (2 words per entry)

ii= Number of words in each part of overlay

Format:

LOCATION

rname

rname

OPERATION VARIABLE SUBFIELDS

ST EXT

Name assigned to overlay; 1-7 alphanumeric characters, of which the first must be a
letter (A- Z) and the last must not be a colon. It is placed in the prefix table that

precedes the overlay.

If rname is blank, COMPASS uses the name from the IDENT instruction and generate
the system text only. Otherwise, the system text is generated in addition to the re­
locatable or absolute binary and precedes the binary output on the binary file.

An entry in the variable field, if present, is ignored.

4-20
60360900A

Example:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 bo

IO ENT SYSTEXT
I

I
STEXT

I SASE MI XEO
MPRS EOU 100 I l . . •

!SYSTEM CONSTANTS, SYMBOLS,
!ANO COMMUNICATIONS AREAS

• . .
!J . . .

TRTS EQU 1171
IXX/X OP DEF I,J,K 11 . • .

ISYSTEM-OEFINEO . • . MACROS . . • 1ANO OPOEFS
ENOH

!J
SYSCOH MACRO N

• • . . • . . . •
ENOM

:1 DATE MICRO 1,10,• ••••
• . . . • . !SYSTEM-DEFINED MICROS . . . 1J END

4.3.9 COMMENT-PREFIX TABLE COMMENT

The COMMENT pseudo instruction inserts the character string specified in the variable field into
the eighth through fourteenth words of the PRFX table in the object program. The prefix table, and
thus the comment, is ignored by the loader but identifies the section. If a subprogram contains more
than one COMMENT instruction, the new comments are appended to the table for the most recent
binary control card. If the subprogram contains a NOLABEL instruction, the COMMENT instruction
is meaningless. COMMENT instructions following SEG and blank IDENT pseudo instructions are
ignored without notification.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

COMMENT string

60360900A 4-21

string COMPASS searches the columns following the blank that terminates the operation
field. If it does not find a nonblank character before the default comments "Column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one. Otherwise, the character string begins with the first
nonblank character following the operation field. In either case, the last character
of the string is the last nonblank character of the statement. 1 to 10 blanks are
appended on the right so that the string is followed by at least one blank and the
length of the string is a multiple of 10 characters. If the variable and comment fields
are all blanks, the string consists of 10 blanks. If the string length is more than 70
characters, all characters beyond the 70th are lost.

A location field symbol, if present, is ignored. Refer to section 4. 3. 5 for an example.

4.3. l 0 NO LABEL - DELETE HEADER TABLE

The NOLABEL instruction modifies the format of the binary output produced by COMPASS for an
absolute assembly by optionally suppressing header information. It is particularly convenient for
generating deadstart programs which must be loaded at location zero or for writing Chippewa format
CPU programs.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

NOLABEL I

Optional; if the variable field contains a character string beginning with an I,
COMPASS suppresses all prefix (77 8) tables, but retains the other program header
tables.

If the I option is omitted, COMPASS suppresses all of the following:

Prefix tables (77 8)
Overlay control tables (50 8)
Multiple entry point tables (518)
PPU header control tables

A location field symbol, if present, is ignored. NOLABEL is illegal in a relocatable CPU assembly.

4-22 60360900B

4.3.11 LCC - LOADER DIRECTIVE

The LCC pseudo instruction provides a means of including loader directives with the tables for a
relocatable program.

Format:

LOCATION

directive

OPERATION VARIABLE SUBFIELDS

LCC directive

First nonblank character following LCC to the first blank. For directive
formats, refer to the Loader Reference Manual.

A location field symbol, if present, is ignored.

COMPASS writes a directive as a section in packed display code for subsequent interpretation by the
loader. COMPASS does not edit the directive; the loader recognizes illegal forms at load time.

4.4 MODE CONTROL

Mode control pseudo instructions influence the basic operating characteristics of the assembler.
Specifically, the instructions allow the programmer to alter the way in which the assembler:

Interprets binary data
Generates character data
Interprets the beginning of comments on statements
Qualifies symbols or does not qualify them
Interprets the R= instruction

BASE pseudo instruction
CODE pseudo instruction
COL pseudo instruction
QUAL pseudo instruction
Bl=l or B7=1 pseudo instruction

In each case, the assembler has a default mode which it uses if one of these instructions is never used.

4.4. l BASE - DECLARE NUMERIC DAT A MODE

The BASE pseudo instruction declares the mode of interpretation for numeric data for which a base
radix is not explicitly defined. Use of the BASE pseudo is optional; if BASE is not used in a subpro­
gram, COMPASS evaluates unspecified numeric data as decimal.

An alternate application of BASE is to define the previous base as a micro.

Format:

LOCATION

mname

mname

60360900B

OPERATION VARIABLE SUBFIELDS

BASE mode

Optional 1-8 character micro name by which the previous BASE mode can be referenced
in subsequent BASE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter D, M, or O, corresponding to the BASE mode
in effect prior to this BASE instruction.

4-23

mode

4-24

Blank, in which case the base remains unchanged, or 1-8 characters, the
first of which designates the new base as follows:

0

D

M

*

other

Octal assembly base; any subsequent use of a data item not
specifically identified by an 0, D, or B prefix or suffix is
evaluated as octal. For example, the constants 15 and 15B
are evaluated as 158; constant 15D is evaluated as 17 8• Any
item containing an 8 or 9 without a D radix is flagged as
erroneous. Exceptions are scale factors, character counts,
shift counts (S modifier), and binary point positions, which
are always considered decimal.

Decimal assembly base; any subsequent use of a data item
not specifically identified by an O, D, or B prefix or suffix
is evaluated as decimal.

Mixed assembly base; any subsequent use of a data item not
specifically identified by an O, D, or B is evaluated as decimal
if it is one of the following. Otherwise, it is evaluated as
octal.

VFD bit count

IF, ELSE, or SKIP line count

MICRO, OCTMIC, or DECMIC character count

B, C, or I subfield in REP or REPI

DUP or ECHO line count

Character count

Shift counts (S modifier)

Scale factors

Binary point position

COL column number

DIS word count

SPACE line count

Use base in effect prior to current base. The assembler records
occurrences of BASE pseudo instructions and maintains a table
of the most recent 50 occurrences. Each BASE * resumes use
of the most recent entry and removes it from the list. When the
subprogram contains more BASE * instructions than there are
entries in the stack, COMPASS uses a decimal base.

If the variable field is not blank and does not contain one of the
above, COMPASS sets an error flag.

60360900A

Examples:

This example illustrates the affect of BASE on a VFD instruction that defines a 48-bit field
containing 10 •

8

Code Generated

oooonoonoooooo10

(]00000000010

o,.o

O~D

nooo

O,.H
00000000

00000010

LOCATION

I

OPERATION

II

SASE
VFO
•
•
BASE
VFO

•
•
~ASE
VFO

VARIABLE

18

0
60110 . .
0
4818

•
•
t1
tt'3/10

The following example illustrates the micro capability of BASE:

LOCATION OPERATION VARIABLE

I II 18

0,.M SAVEB BASE M

• •
BASE ~SAVEBt

COMMENTS

'30
T

I
I
I
I
I
I
I
I
I

COMMENTS

ho

ISAVE BASE IN USE
I
ICOOE USING BASE M

IRE STORE SAVED RASE
t1.-0 AASE 0 REST ORE SAVEO BASE . • . I

• • • I
I • . I .

4.4.2 CHAR-DEFINE OTHER CHARACTER DATA CODE

The CHAR pseudo instruction defines character data codes to be used when the CODE 0 (for Other)
mode is in effect.

Format:

LOCATION

expl

exp2

60360900 E

OPERATION VARIABLE SUBFIELDS

CHAR expl,exp2

Evaluatable absolute expression whose value is 00 to 778. The value of expl
is the display code value of the character to be redefined.

Evaluatable absolute expression whose value is 00 to 77g. The value of exp2
is the new code other value of the character designated by expl.

4-25

A location field symbol, if present, is ignored.

Initially, all code other values are the same as display code. CHAR need be used only for those
characters whose code other values are different from -display code. Characters may be redefined
as many times as desired by subsequent CHAR pseudo instructions.

Example:

OOr+f!J
63.+UU

LOCATION OPERATION

CrlAJ.(
CHAM

VARIABLE SUBFIELDS

INTt~CHANGE COLON ANU
PERCENT FOR coot OTHlH

4.4.3 CODE - DECLARE CHARACTER DA TA CODE

The CODE pseudo instruction declares that until the next CODE pseudo instruction is encountered all
constants, character strings, and character data items are to be generated in the specified code.
Character data can be generated in ASCII t, display, external BCD, or internal BCD, codes. If no
CODE instruction is used, COMPASS generates display code. Codes are given in appendix D.

An alternative application of CODE is to define the previous code as a micro.

Format:

LOCATION

mname

mname

char

OPERATION VARIABLE SUBFIELDS

CODE char

Optional 1-8 character micro name by which the previous CODE mode can be referenced
in subsequent CODE instructions. If mname is present, the value of the micro named
mname is (re)defined to be a single letter A, D, E, or I, corresponding to the CODE
mode in effect prior to this CODE instruction.

The first character of a string indicates the code conversion:

A ASCII six-bit subset

D Display

E External BCD

I Internal BCD

0 Other code, defined by CHAR pseudo instructions.

* Use code in effect prior to current code. The assembler records occurrences of
CODE pseudo instructions and maintains a table of the most recent 50 occurrences.
Each CODE * resumes use of the most recent entry and removes it from the list.
\\hen the subprogram contains more CODE *instructions than there are entries in
the stack, COMPASS generates display code.

t American Standard Code for Information Interchange.

4-26 60360900D

Example:

Coqe Generated

112s24202s24oooouaoo
Or+A

57o56~6u6564DuuuuJOG
Ar+E

462423472~23uOOuuOOO
Er+I

466463476463JJu~uOOO
r .. o

112s24202s24uuouuooo
Or+I

466463476463JOuDuOJu

4.4.4 QUAL - QUALIFY SYMBOLS

LOCATION

1

OPERATION

11

DATA
CODE
DATA
COOE
DATA
CODE
DATA
CODE
DATA
COfJf
DATA

I

VARIABLE COMMENTS

lB !Jo

OLOUTPUT I
ASCII

I OLOUTPUT
EXTERNAL BCD
OLOUTPUT I
INTERNAL BCD
OLOUTPUT I
DISPLAY

I OLOUTPUT
• I
OLOUTPUT

I

The QUAL pseudo instruction signals the beginning of a sequence of code in which all symbols defined
in it are either qualified or are unqualified (global)o If no QUAL is in a subprogram, all symbols are
defined as global.

An alternative application of QUAL is to define the previous qualifier as a micro.

Within a QUAL sequence in which a symbol is defined, a symbol reference need not be qualifiedo
Used outside the sequence, the symbol must be referenced as/qualifier/symbol. Thus, a symbol and
a qualifier become a unique identifier local to the sequence in which the symbol was defined. The
same symbol used with a different qualifier is local to a different QUAL sequence. If a symbol is
defined with no qualifier as well as being defined as qualified, a reference to the symbol within the
QUAL sequence is assumed to be a reference to the qualified symbol rather than to the global symbol.
In this case, a reference to the global symbol must be written as // symbol.

Default symbols and linkage symbols are not qualified.

LOCATION

mname

mname

60360900E

OPERATION VARIABLE SUBFIELDS

QUAL qualifier

Optional 1-8 character micro name by which the previous qualifier can be
referenced in subsequent QUAL instructions or symbol references. If mname
is present, the value of the micro named mname is (re)defined to be the 0-8
characters comprising the qualifier in effect prior to this QUAL instruction.

4-27

qualifier

4-28

A symbol qualifier or * or blank, as follows:

qualifier 1-8 character name, the first character of which cannot be $or=
or numeric. The qualifier cannot contain the characters

*

+ - * I , or /\

A blank terminates the qualifier.

Any symbol defined subsequent to this QUAL up to the next
QUAL must be referenced from outside the QUAL sequence as

I qualifier I symbol

The current qualifier appears as the third sub-subtitle on the
assembly listing (section 11.1).

The assembler resumes using the qualifier in use prior to the
current qualifier. The assembler records occurrences of QUAL
pseudo instructions and maintains a table of the most recent 50
occurrences. Each QUAL * resumes use of the most recent entry
and removes if from the list. When the subprogram contains more
QUAL *instructions than there are entries in the stack,
COMPASS uses the null (global) qualifier.

blank A blank variable field causes any symbols defined up to the next
QUAL to be global. A global symbol does not require a qualifier.

NOTE

The first attempt to redefine a global symbol from
within a QUAL sequence results in A and U errors.
The symbol is defined local to the QUAL sequence
with a zero value. To avoid fatal errors, precede
any redefinition instruction (SET, MAX, MIN, or
MICCNT) within a QUAL sequence with a blank QUAL
and follow it with a QUAL *.

6G360900B

Examples:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

OUAL 0 1\SSt I
c.rn~ "X6 F I BCOE QUAL!FIEO RY PACSS1 . . I . .

I Fr) LOC1
OU Ill PllSS2 I

nrcf ~ r) IJ LOCc I p,r, DE QUALIFIEfl AV PASS2
OUl"IL ISYf'-1ROLCS GLOR Al F~OH NOW ON . .

I I
f;t CP RS<; n I GLO~ IS GLOBAL I

PJ /PfiS<::;1/BCDF!JUMP TO PViS1 ROUTINF . . I . .
RJ /Pl\SS?IRCOf!JUMP TO PASS2 ROUTINE

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

T ~f> '4ACRO ql QCI(, t<W Al
T

USf=' ~lOf'K
OUAL 1(WAL

ura 'PS~ UlR
1" ~G2 VF fl 60 /-1

US£ •
OUAL •
f Nl'JM . . .
1" AR Otff ,ONS:-
us~ ONE
OUAL ONf

1 f)!ftft.4 'fl Gt ess UB
UG2 Vf''l 601-1 I US£ •

1~t54 77777777777777777776

OUAL • I
f:'NOM I
TA" TWO, TWO I
USE TWO

I OUAL TMO
1..,n;c; UG1 ~SS UJB I

T'G? VFO 601-1 I
USE • I OUAL •

10'ftf>5 71777717777177777776

f NOM I

60360900A 4-29

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

OU Al l r
71 ass 0 lzi QUAL IFIEO BY 1 . . 1: I·

DUAL 9 !EQUATE SYMBOLS SO THAT
Z1 ::: I /Z/Z1 Z1 IN Z CAN Bf REFER~EO

jTO AS Z1 IN B

4.4.5 Bl = l AND B7 = l - DECLARE THAT B REGISTER CONTAINS ONE

The Bl=l and B7=1 pseudo instructions declare that in this CPU subprogram, the contents of the Bl
register or the B7 register, respectively, are one. These instructions do not produce code; they alter
the way in which code is generated by the R= instruction (Section 4. 8. 7) and define the symbol Bl=l
or B7=1. If more than one instruction is used, the assembler uses the last one encountered.

Formats:

LOCATION OPERATION

Bl=l
B7=1

VARIABLE SUBFIELDS

A symbol in the location or variable field is ignored.

Note that loading the respective B register with one is the user's responsibility.

For an example of use, refer to R= (Section 4. 8. 7).

4-30 60360900C

4.4.6 COL - SET COMMENTS COLUMN

The COL pseudo instruction sets the column number at which the comments field can begin when the
variable field is blank. If no COL instruction is used in the subprogram, COMPASS uses 30.

LOCATION

n

OPERATION VARIABLE SUBFIELDS

COL n

An absolute evaluatable expression designating the column number; n_? 12.
When base is M, n is assumed to be decimal. If n is less than 12,
COMPASS sets the column at 12. If n is zero or blank, COMPASS sets
the column to 30, the default column.

A location field symbol, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 ho

I
COL 36 1 ____

USE :RETURN TO BLOCK 0
I

In this example, subsequent statements for which the variable field is blank cannot have comments
beginning before column 36.

60360900C 4-31

4.5 BLOCK COUNTER CONTROL

Counter control pseudo instructions establish local blocks, labeled common blocks, and blank common
blocks in addition to the absolute, zero, and literal blocks established by the assembler; they control
use of all program blocks, and provide the user with a means of changing origin, location, and position
counters.

4.5.1 USE - ESTABLISH AND USE BLOCK

USE establishes a new block or resumes use of an already established block. The block in use is the
block into which code is subsequently assembled. A user may establish up to 252 blocks.

Format:

LOCATION

block

OPERATION VARIABLE SUBFIELDS

USE block

Identifies block to be used, as follows:

0 or blank

II

/name/

name

*

Nominal block (absolute or 0)

Blank common block; for a relocatable subprogram, this block
cannot contain data. The only storage allocation instructions
that can follow are BSS and ORG. The BSSZ instruction is
illegal because it presets the block to zeros.

Labeled common block. A name can be a maximum of 7 characters
and cannot include blank or comma. The first and last characters
must not be colons. Conventions imposed by the loader or other
assemblers or compilers could further restrict the use of names.

Local block. A name can be 1-8 characters, excluding blank or
comma. Use of this name enclosed by brackets does not cause
the block to become a labeled common block. For example,
USE A and USE I A/ are different blocks.

Block in use prior to current USE, USELCM, ORG, or ORGC.
See discussion following.

A location field symbol, if present, is ignored.

The nominal program block contains the entire program if no USE or USELCM is encountered.

Redundancy between block names is permitted as follows:

A labeled common block designated by /O/ can coexist with the program block designated by O.
Blank common designated by // can coexist with a labeled common block designated as ///I.

4-32 60360900A

A CPU subprogram may have two blocks with the same name and the same memory type if they have
different block types (local or common). Furthermore, a CPU subprogram may have two blocks
with the same name and the same block type if they have different memory types (CM/SCM or
E CS/LCM). Thus, altogether, there may be up to four different blocks with the same name.

When a block is first established, its origin and location counters are zero and its position counter is
either 60 (CPU subprogram) or 12 (PPU subprogram). When a different block than that in use is
indicated, COMPASS saves the values of the current origin and position counters along with an
indicator as to whether the next instruction is to be forced upper. If the most recently assembled
instruction under the block is one that forces the next instruction upper, the first instruction
assembled upon resumption of the block is forced upper. When the designated block has been
previously established, COMPASS resumes assembly in the block using the last known values for
the origin and position counters. The value of the location counter is not saved. Upon resumption of
the bl~ck, it is set to the value of the origin counter. If a LOC had been used previously, resetting
of the location counter to produce the desired results is the responsibility of the programmer.

The assembler records occurrences of USE, USE LCM, ORG, and ORGC pseudo instructions (except
USE * and USELCM *) and maintains a USE table of the most recent 50 occurrences. Each USE * and
USELCM * resumes use of the most recent entry and removes it from the table. When the subprogram
contains more USE * or USE LCM * instructions than there are entries in the stack, COMPASS uses
the nominal block.

Examples:

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

USE I
13 0100000000 GM1Md RJ ALPHA 1RLOCK !) IN USE

USF DA TA1 I BLOCK DATA! IN USF
35 11204oooono~oooooouo sr.p nAT/\ 1 .. 0 I

us~ • I RESUME USF OF BLOCK
14 513oooonoo SA3 <\AM I

Note that the SA3 is forced upper because the RJ causes a force upper of the next instruction in the
block.
Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

f)

USE. TAHLE 'use:
I TABLE LOCAL BLOCK

2615 00 VFO 6/0 I
USE • 1Rt:SUM£ PREVIOUS BLOCK

I . . .
I . .
I •

30002600 +

. .
:RESUME: USE TABLE USING TABLE

VFO 6/1RX,18/S
USE • I Rt::::>UMt PREVIOUS BLOCK

Note how separate blocks can be used to facilitate packing of partial-word bytes into a table residing in
a block other than the one primarily being used.

60360900A 4-33

4.5.2 USE LCM - ESTABLISH AND USE ECS/ LCM BLOCK

The USE LCM pseudo instruction establishes or resumes use of a block assigned to extended core
storage (ECS) or large core memory (LCM). For all E CS/LCM blocks in an absolute CPU assembly,
and for the ECS/LCM blank common block in a relocatable assembly, data generating instructions
(including BSSZ) and symbolic machine instructions are illegal; only storage reservation pseudo
instructions (BSS, ORG and ORGC) are allowed. The USELCM pseudo instruction is illegal in PPU
assemblies.

Format:

LOCATION

block:

OPERATION VARIABLE SUBFIELDS

USE LCM block

Identifies block to be used, as follows:

0 or blank

II

/name/

name

*

Illegal.

Blank common block. A subprogram can have two blank common
blocks if one of them is in E CS/LCM.

Labeled common block. The name can be a maximum of 7
characters and cannot include blank or comma. The first and last
characters must not be colons. The loader or other assemblers or
compilers could further restrict the use of names.

Local block. t The name can be 1-8 characters, excluding blank or
comma. Use of this name enclosed by brackets does not cause the
block to become a labeled common block. For example, A and I A/
are different blocks. All of the local ECS/LCM blocks are con­
catenated to form a single block, which is treated by the loader as
an E CS/LCM common block whose name is unique to the subprogram.

Block in use prior to current USE, USELCM, ORG, or ORGC.

A location field entry, if present, is ignored.

The length of each ECS/LCM block, including the combined local block, is rounded up, if necessary,
to an integral multiple of eight 60-bit words. The maximum size of an ECS/LCM block is 1, 048, 568
words.

Further rules for USELCM are the same as for USE.

t SCOPE 2 does not currently allow local blocks in LCM.

4-34 60360900A

Examples:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

BASE 0 T

I
I

U::>ELCM LCM 1ES TABLISH ANO USE L(.;M BLOCK
LCMC BSS 0 1UEFINE SYMBOL LCMC
BLOC1 SSS 100 1RESERVE 100 WORDS
BLOC2 8S5 200 1RESERVE 200 WORDS

U!:>E .y. !RESUME PREVIOUS 8LO~k . • I . •
ORG BLOC1+1000B I

BLOC3 BSS 20 IRESERVE 20 MORE WORDS
USE .. !RESUME Pt<EVIOUS BLO~k

4.5.3 ORG AND ORGC - SET ORIGIN COUNTER

ORG indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values.

ORGC t indirectly indicates the block to be used for assembly of subsequent code and specifies the value
to which the origin and location counters are to be set. COMPASS makes an entry in the USE table and
saves the current origin and position counter values. In a PPU or absolute assembly, ORGC is the
same as ORG. In a relocatable CPU assembly, ORGC is the same as ORG if the USE block specified
by the address expression is not a common block; otherwise, code following an ORGC is ignored by
the linking loader if that common block was first declared by a previously loaded subprogram.

t Not supported by SCOPE 2 Loader.

60360900 c 4-35

Formats:

LOCATION OPERATION VARIABLE SUBFIELDS

ORG exp
ORGC exp

exp Expression specifying the address to which the origin and location counters are to be
set. Following ORG or ORGC, the assembly resumes at the upper position of the
location specified. COMPASS determines the block as follows:

1. If the expression contains a symbolic address, COMPASS uses the block in
which the symbol was defined.

2. COMPASS uses the current block if the value of the expression is *, *L, or
*O. If the origin and location counters are the same value, and no code has
been assembled in the current location, the only effect of *, *L, or *O is to
force the next instruction upper. If a word is partially assembled, however,
the code already assembled into the location is lost.

If the counter values differ, * or *L sets the origin counter to agree with the
location counter value; *O sets the location counter to the origin counter value.

3. An absolute expression causes use of the absolute block. In a relocatable
assembly, this is the only way to establish the absolute block. All symbols
defined in the absolute block are absolute.

Any symbols in the expression must be already defined in the assembly and must not result in a
negative relocatable value. It is not possible to ORG or ORGC into the literals block.

A location field symbol, if present, is ignored.

Once an ORGC pseudo instruction has established the conditional loading indication for a given common
block, it is in effect whenever assembly in that block is resumed by subsequent USE or USELCM
pseudo instructions, and can be cleared only by an ORG pseudo instruction specifying that block.

4-36 60360900A

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

USE ALPHA I . • I • . . 1·
• • I •

ABC OATA zo,100 ,1000 ILOCATEO IN ALPHA

I
I • I •

USE BETA I
XY? ess 0 I LOCATED IN BETA

• . I • I •
ORG ABC I SETS ALPHA COUNTERS TO ABC . . 1ANO RfSUMES USE OF ALPHA
• . I •
BSS 1000

I . . 1: • .
ORG c;o ISETS ABSOLUTE BLOCK COUNTER . . I TO 50 ANO BEG! NS ITS USE . • .
ORG XYZ+100 ISETS BETA COUNTERS TO XYZ+lOQ . . I· . . 1· . • .
USE • I RESUMES ABSOLUTE !]LOCK . . i· . . I• . . , .
USE • RESUHfS BLOCK ALPHA

I I • . • , .
USE • I RESUMES BLOCK BETA . . , . . • , . . • . . . I •
USE • !RESUMES 9LOCK ALPHA . . I • . . 1: • .
USE .. 'RESUHES NOMINAL BLOCK

I . . l

60360900A 4-37

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

u:; E / lA TA I
DATA 3~~ > ') 0

O~GC 0 A Tl\
Ol\TA 1,2,3 GON!HT TONALLY 0 ~ES'::T DATA

u~~ y_ ANY!3LOCK
so~ 3RXVZ UNCONG IT ION AL JAH
IJ5f'.'" ..,.

FOU~ DATA 4 RFTU~N TO /rJATn/ ~TILL
r"JH~ 5,5 ~ONOITIO!\JftLL Y SKIPPING

O~J~ FOU~

n X1,ER~OR UNCONn IT ION ALLY LOAOEJ
~ .J SUti4 INST~UCTIONS . . .

4-38 60360900A

4.5.4 BSS-BLOCK STORAGE RESERVATION

The BSS instruction reserves core in the block in use by adjusting the origin and location counters. It
does not generate data to be stored in the reserved area. A primary application is for reserving blank
common storage. It can also be used to reserve an area to receive replicated code (see REP, REPC,
and REPI, section 4. 8. 8).

Format:

LOCATION

sym

sym

a exp

Example:

LOCATION

I

COMMON

HG

60360900A

OPERATION VA RI ABLE SU BF IE LDS

BSS aexp

If present, sym is defined as the value of the location counter after the force
upper occurs. It is the beginning symbol for the storage area.

Absolute expression specifying the number of storage words to be reserved.
All symbols must be previously defined; aexp connot contain external symbols.
The value of the expression can be negative, zero, or positive and the value
is added to both the origin counter and the location counter. A BSS O or an
erroneous expression causes a force upper and symbol definition but no storage
is reserved.

OPERATION VARIABLE COMMENTS

II lB 130

USE II T

ess 10008 I RESERVE: 512 WORDS OF BLANK COM MON
USE ... I . • I • • I •
SA6 COMMON•5008i I • . .

I ~EFINE BSS 0 SYMBOL TAG . . I

4-39

4.5.5 LOC - SET LOCATION COUNTER

A LOC pseudo instruction sets the value of the current location counter to the value in the variable
field expression. The location counter is used for assigning address values to location symbols.
Changing the location counter permits code to be generated so that it can be loaded at the location
controlled by the origin counter and moved and executed at the location controlled by the location
counter. Thus, any addresses defined while the location counter is different from the origin counter
will be correctly relocated only after the code is moved.

Format:

LOCATION

exp

OPERATION VARIABLE SUBFIELDS

LOC exp

Relocatable expression specifying the address to which the location counter
is to be set. Any symbols in the expression must be already defined in the
assembly and must not result in negative relocation.

A location field symbol, if present, is ignored.

Following a LOC, if the value of the location counter differs from the origin counter, the location field
is flagged with an L on the listing until a LOC *O, USE, ORG, ORGC, or USELCM instruction resets the
location counter to the value of the origin counter.

A LOC instruction does not cause the assembler to switch from the current block to another. LOC
causes the next instruction in the block to be forced upper. The only effect of LOC * or LOC *L is to
force upper. Because COMPASS does not save the value of the location counter when it switches
blocks, a USE, ORG, ORGC, or USELCM for a different block effectively resets the location counter to
the origin counter value. When use of the block is resumed, it is the responsibility of the user to reset
the location counter to produce the desired results.

4-40 60360900A

Example:

In the following example, the first LOC is used to generate PPU code that is to be loaded into one
PPU and transmitted to a different PPU for execution. The second LOC is used so that on the listing
the address field contains the table ordinal rather than a load address. At the end of the table, a LOC
instruction changes the location counter to resume counting under the first LOC. At the end of the
program, LOC *O returns the location counter to the value of the origin counter.

Location

7100
7100

L 100
L 10 0
L 101
L 102
L 103

L 205
L 0
L 0
L 1
L 2
L 3
L 4
L 5
L 6
L 7

L 215
L 215
L 2~0

7240

60360900A

Code Gene rated

2400
2400
2400
6100 0100

0100
0114
0121
0132
0136
0147
0240
1000

1
0

1

LOCATION

T1
('~

RfS

PPR

. . .
PPRA

. . .
[NO

OPERATION VARIABLE COMMENTS

11 1 B T 30

EQU 1 T

EQU 0 I
ORG 71 on I
RSS 0

I LOC 100
PSN 0 I
PSN 0

I PSN 0
fIM PP~.CH I
. . I . . I . .

i RSC:: 0
LOC 0 I
CON PPR

I CON STM
CON OPM I CON fXR
CON CHS I
CON OMP I CON ENO
CON 1000 I . . I . . I . .
LOC •o-RES+PPR I
BS<) 240-•

I BSS
LOC •o I

4-41

4.5.6 POS - SET POSITION COUNTER

The POS pseudo instruction sets the value of the position counter for the block in use to the value

specified by the expression in the variable field.

Format:

LOCATION

aexp

OPERATION VARIABLE SUBFIELDS

POS aexp

An absolute evaluatable expression having a positive value less than or
equal to the assembly word size (60 for CPU, 12 for PPU). A negative value, or
a value greater than 60 (or 12), causes an error. The value indicates the bit
position within the current word at which the assembler is to assemble the next
code generated. Use caution, because if the new position counter value is greater
than the old position counter value, part of the word is reassembled. (New code
is ORed with previously assembled data.) If the new position counter value is less
than the old position counter value, the assembler generates zero bits to the
specified bit position. If the value of aexp is zero, COMPASS assembles the next
code in the following word.

A location field symbol, if present, is ignored.

CAUTION

If the POS instruction is used on a word containing re­
locatable or external addresses, undefined results may
occur with no diagnostics.

The POS instruction does not alter the origin and location counters. The position counter is never 0
at the beginning of an instruction. At the beginning of a new operation, if a data value has been
stored into bit 0 (the rightmost bit) of a word, COMPASS increments the origin counter and the
location counter and resets the position counter to 60 (or 12).

A POS *P has no effect whereas a POS $ subtracts one from the counter.

4.6 SYMBOL DEFINITION

The pseudo instructions EQU, =, SET, MAX, MIN, and MICCNT permit direct assignment of 21-bit
values to symbols. The values can be absolute, relocatable, or external. Register designators are
not valid in the expressions. Subsequent use of the symbol in an expression produces the same result
as if the value had been used as a constant. In the listing of the symbolic reference table, a refer­
ence to an EQU, =, SET, MAX, MIN, or MICCNT instruction is flagged with a D. Symbols defined
using EQU and= cannot be redefined; symbols defined using any of the other symbol definition
instructions can be redefined.

4-42 60360900B

4.6.1 EQU OR= -EQUATE SYMBOL VALUE

An EQU or = pseudo instruction permanently defines the symbol in the location field as having the value
and attributes indicated by the expression in the variable field.

Formats:

LOCATION

sym
or

sym

sym

exp

Examples:

60360900A

OPERATION VARIABLE SUBFIELDS

EQU exp

20£+37
7 t+

3
71.t

&4271

exp

A location symbol is required. See section 2. 4 for symbol requirements.

An evaluatable expression. Any symbols in the expression must be previously
defined or declared as external. The expression cannot contain symbols
prefixed by =Sor= X unless the symbols have also been defined conventionally.
If the expression is erroneous, COMPASS does not define the location symbol
but flags an error.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

OPS = 204378 I

I
LINP = 74B I
CH EQU 3 I
PAGESIZ = LINP I
LG OPS £(Jj •-OPS I

4-43

4.6.2 SET - SET OR RESET SYMBOL VALUE

A SET pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the expression in the variable field. A subsequent SET using the same symbol redefines
the symbol to the new value and attributes. SET can be used to redefine symbols defined by SET, MAX,
MIN, or MIC CNT, only.

Format:

LOCATION

sym

sym

exp

OPERATION VARIABLE SUBFIELDS

SET exp

A location symbol is required. See section 2. 4 for symbol requirements.

An evaluatable expression. The expression cannot include symbols as yet
undefined and cannot contain symbols prefixed by =S or =X unless the symbols
are also defined conventionally.

If the expression is erroneous, COMPASS does not define the symbol but
issues a warning flag.

The symbol in the location field cannot be referred t.o prior to its first definition.

Sxamples:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

17 A EQU 15 IA HAS VALUE OF 1 '5

I
VALUE OF POSITION CO UN TE B SET •P 10 HAS R 71+

22 c SET A+3 'c
I

HAS VALUE A+3 OR 1R

76 B = B+2 I ILLEGAL, B IS DOUBLY OEFINEO
I

c SET C+2 I LEGAL, C CHANGfS FROM 18 TO 20

·O SET F+A I ILLEGAL, F AS YET UNDEFINED
I

BSS AA [ILLEGAL, REFERENCE PRECEDES

20 AA SET 16
I Fiqsy DEFINITION

I

4-44 60360900A

4.6.3 MAX - SET SYMBOL TO MAXIMUM VALUE

The IvIAX pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the largest (most positive) value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MAX can be used to redefine symbols defined by these instructions.

Format:

LOCATION

sym

sym

exp.
1

OPERATION VARIABLE SUBFIELDS

MAX

A location field symbol is required. See section 2. 4 for symbol requirements.

An evaluatable expression. Any symbols in the expression must be previously

defined. The expression cannot contain symbols prefixed by =S or =X unless
the symbols are also defined conventionally.

The expressions should have similar attributes. No test is made for attributes. The test for maximum
value is made in pass one. In testing for the maximum value in pass one, COMPASS uses values for
relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and these values are
used for the final value of the expression selected in the
first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning flag.
The symbol in the location field cannot be referred to prior to its first definition.

Example:

5
6
2

6

60360900A

1

LOCATION OPERATION

11

PT3 EQU
PT31 EQU
PT32 EQU

SYH HAX

VARIABLE COMMENTS

18 130

5 I

I
6 I

2 I
I
I

PT3,P T31,PT32
I

4-45

4.6.4 MIN - SET SYMBOL TO MINIMUM VALUE

A MIN pseudo instruction defines the symbol in the location field as having the value and attributes
indicated by the minimum or least positive value of the expressions in the variable field. A subsequent
SET, MAX, MIN, or MICCNT using the same symbol redefines the symbol to the new value.
Conversely, MIN can be used to redefine symbols defined by these instructions.

Format:

LOCATION

sym

sym

OPERATION VARIABLE SUBFIELDS

MIN

A location symbol is required (section 2. 4).

An evaluatable expression. Any symbols in the expression must be previously
defined. The expression cannot contain symbols prefixed by =Sor =X unless
the symbols are also defined conventionally.

The expressions should have similar attributes; no test is made for attributes.

The test for minimum value is made in pass one. In testing for the minimum value in pass one.
COMPASS uses values for relocatable symbols relative to block origins.

NOTE

During pass two, the expression selected in pass one is
used. The relocatable symbols have been reassigned
values relative to program origin and it is these values
that are used for the final value of the expression which
was selected in the first pass.

If any of the expressions are erroneous, COMPASS does not define the symbol but issues a warning
flag.

The symbol in the location field cannot be referred to prior to its first definition.

4-46 60360900A

4.6.5 MICCNT - SET SYMBOL TO MICRO SIZE

The MICCNT pseudo instruction defines the symbol in the location field as having a value equal to the
number of characters in the value of the micro named in the variable field. A subsequent SET, MAX,
MIN,,or MICCNT using the same symbol redefines the symbol to the new value. Conversely, MICCNT
can be used to rerlefine synibols d~fined by thes.e instructions.

Format:

LOCATION

sym

sym

mname

Example:

6

23

60360900A

OPERATION VARIABLE SUBFIELDS

MICCNT mnam.e

A location symbol is required (Section 2. 4).

Name of a previously defined micro; it may be a system micro or may have
been defined through MICRO, OCTMIC, DECMIC, or BASE. If mname has
not been previously defined, the location symbol is not defined (or redefined)
and a warning flag is is sued.

LOCATION OPERATION VARIABLE COMMENTS

MSG

HSIZE

MSG •"
KSIZE

II lB '30
-.

MICRO 1,,•STRING• !DEFINE &-CHARACTER MICRO
• • , .
• •
• • •
MICCNT MSG IMSIZE EQUALS 6
• • I.
• • I·
• • l•

' ······· Flill!l .liiililllil;.il0i•iiiil
MICCNT KSG '"SIZE EQUALS 19

4-47

4.6.6 SST- SYSTEM SYMBOL TABLE

An SST pseudo instruction defines system symbols, with the exception of the symbols noted, as if the
symbols had been defined in the subprogram.

I
When a system text overlay is used as input to an assembly through the G or S option on a COMPASS
control card, all micros and opcodes in the system text overlay are defined automatically at the start
of each assembly; however, the symbols in the system text overlay are defined only for assemblies
that contain the SST pseudo instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

SST

One or more symbols on the file that are not to be defined.

A location field symbol, if present, is ignored.

Refer to page 10-11 for an example of use.

4.7 SUBPROGRAM LINKAGE

Pseudo instructions ENTRY, ENTRYC, and EXT do not define symbols but either declare symbols
defined within the subprogram as being available outside the subprogram or declare symbols referred
to in the subprogram as being defined outside the subprogram.

4-48 60360900 E

4.7.l ENTRY AND ENTRYC - DECLARE ENTRY SYMBOLS

The ENTRY pseudo instruction specifies which of the symbolic addresses defined in the subprogram
can be referred to by subprograms compiled or assembled independently; ENTRY lists entry points to
the current subprogramo ENTRY is illegal in PPU assemblies.

The ENTRYC t pseudo instmction conditionally specifies which of the symbolic addresses defined in
the subprogram can be referred to by subprograms compiled or assembled independently; ENTRYC
lists conditional entry points to the current subprogram. ENTRYC is illegal in PPU assemblies and
is synonymous with ENTRY in absolute CPU assemblies. In a relocatable assembly, an entry point
symbol declared by ENTRYC is ignored by the linking loader if the value of the symbol is relative to a
common block and that common block was first declared by a previously loaded subprogram.

Formats:

LOCATION OPERATION

ENTRY

ENTRYC

VARIABLE SUBFIELDS

sym1 , sym2, ... , symn

sym
1

, sym
2

, ..• , symn

Linkage symbol; 1-7 characters of which the first must be alphabetic (A-Z) and the
last must not be a colon. The symbol cannot include the following characters:

+ - * I blank , or /\

Each symbol must be defined in the subprogram as nonexternal (cannot begin with
=X or be listed on an EXT pseudo instruction). Entry point symbols must be un­
qualified (Section 2. 4. 5).

A location symbol, if present, is ignored.

A list of all entry points declared in the subprogram precedes the assembly listing. An asterisk
appears to the right of each conditional entry point.

tNot supported by SCOPE 2 Loader.

60360900D 4-49

Example:

Location

110
110

Code Generated

1Hl 5120000100
1~12n

111 5110000002

LOCATION

1

fnt-1TROL
t-JnOE

4.7.2 EXT - DECLARE EXTERNAL SYMBOLS

OPERATION

11

TOE NT
ASS
FNTRY
ENTRY
tNTRY
fNTRY
ENTRY
fNTRY
FNTRY
O~G

RS<:;
SA2
SX7
SA1

. . .

VARIABLE COMMENTS

18 '30

CT,CONTROL,C;ONT~OL

trnnr I
ONSW

I OFFSW
ROLL OUT I
SETPR

I SET TL
SWITCH I 11on
0 I
AC TP I X2
? I

I . . I . I
!

The EXT pseudo instruction lists symbols that are defined as entry points in independently compiled
or assembled subprograms for which references can appear in the subprogram being assembled.
The EXT pseudo instruction is illegal in an absolute subprogram.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

EXT

Linkage symbol, 1-7 characters of which the first must be alphabetic (A-Z) and the
last must not be a colon. The symbol cannot include the following characters;

+ - * I blank , or /\

These symbols must not be defined within the subprogram. External symbols
are unqualified.

A location field symbol, if present, is ignored.

An external reference is flagged with an X in the address field in the listing of code generated. All
external symbols are listed in the header information for the assembly listing.

4-50 60360900A

4.8 DATA GENERATION

The instructions described in this section are the only pseudo instructions that generate data. All
other program data is generated through symbolic machine instructions. An instruction that
generates data cannot be used in a blank common block. The pseudo instructions that generate data
are:

BSSZ

blank operation field

Generates zeroed words

Generates one zeroed word

Generates one or more words of data

Generates one or more words of data

Generates literals block entries

Places expression values in user-defined fields

Places expression values in full words

DATA

DIS

LIT

VFD

CON

R= For use in macros; R= assumes that either (Bl)=l or (B7)=1 and
generates increment instructions accordingly

REP, REPC, or REPI Does not actually generate object code at assembly time but
causes the relocatable loader to repeatedly load a sequence of
code into a reserved blank storage area.

4.8.1 BSSZ AND BLANK OPERATION FIELD-RESERVE ZEROED STORAGE

The BSSZ instruction reserves zeroed core in the block in use. The origin and location counters are
adjusted by the requested number of words and the assembler generates data words of zero to be
loaded into the reserved area. An instruction that contains a symbol in the location field but has a
blank operation field has the same effect as a BSSZ of one word.

Format:

LOCATION

sym

sym

aexp

OPERATION VARIABLE SUBFIELDS

BSSZ a exp

If present, sym is defined as the value of the location counter after the force
upper occurs. The symbol identifies the beginning of the reserved storage area.

Absolute evaluatable expression specifying the number of zeroed words of
storage to be reserved. The expression cannot contain external symbols or
result in a relocatable or negative value.

A BSSZ 0 or an erroneous expression causes a force upper and symbol definition but no storage is
reserved.

60360900B 4-51

A BSSZ or group of BSSZ instructions of six or more words produces an REPL table in object code to
reduce the physical size of the object program (appendix B).

For a blank operation field the listing shows one zero word of data; for a BSSZ instruction the listing
shows the word count.

4.8.2 DATA- GENERATE DATA WORDS

The DATA pseudo instruction generates one or more complete 60-bit or 12-bit data words in the
current block for each item listed in the variable field.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DATA

sym If present, sym is assigned the value of the current location counter after
the force upper occurs. It becomes the symbolic address of the first item
listed.

item.
1

Character, octal numeric, or decimal numeric data item, according to
specifications described in section 2. 7. Floating point notation is illegal in
PPU assemblies. Items are separated by commas and terminated by a blank.
A literal cannot be used as an item.

A DATA pseudo instruction always forces upper. A blank item does not cause generation of a data word.

Unless the D list option is selected, only item1 appears on the listing.

Examples:

Location Code .Generated

552
553
554
SS5
556
557
c;r, 0

4-52

140717UOOOOOOOOOOOOO
~oooooonooo9onoooooo
03171520111405090000
172S24202524UOOOUnoo
oooooooooounoooooooo
17205146314631463146
16~03146314631463146

LOCATION

I

OPTS
OPT
O~TT

OPTO

OPTY

OPERATION VARIABLE

11 18

DATA OLLGO
DATA 1BS'>9
DATA DLCOHPILE
OATA CJLOUTPUT,O

OATA 1.3E£

COMMENTS

'30

I
I
I
I
I
I

60360900E

Location Code Generated LOCATION

o .. o

1250 7070 AT
1251 7170
1252 0000
1253 0031+
1254 5501
1255 0000
1256 0506
1257 0123
1260 7773
1261 0401
1262 2i.o 1

OPERATION VARIABLE

11

ER I PH
ASE

lB

COMMENTS

30

ATA 070,-7,0,1Rt
I
I
I

ATA C l',OLEF
I
I

ATA 123,-4 I
ATA "DATA• I

4.8.3 DIS-GENERATE WORDS OF CHARACTER DATA

The DIS pseudo instruction generates words containing character data. The instruction can be used
conveniently when a character data string is to be used repeatedly. Unless the D list option is selected
only the first word of character data appears on the listing. The instruction has two formats:

Format one:

LOCATION

sym

sym

n

string

OPERATION VARIABLE SUBFIELDS

DIS n, string

If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

An absolute evaluatable expression specifying an integer number of words to be
generated. When base is M, COMPASS assumes that n is decimal.

Character string

For a CPU program, COMPASS takes 10 times n characters from the string and packs them as they occur
10 characters per word into n words. For a PPU program, COMPASS Lake::; two times n characters from
the string and packs them as they occur two characters per word into n words. If the statement ends
before 10 x n (or 2 x n) characters, the remainder of the requested words are filled with blanks.
If n is O, COMPASS assumes the instruction is in format two.

60360900A 4-53

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

sym DIS , dstringd

sym If present, sym is assigned the location counter value after the force upper
occurs. It is the symbolic address of the first word containing the character
string.

d Delimiting character

string Character string; any character other than delimiting character

In this form, the string must be bounded by delimiters. The comma is required. The characters between
the two delimiting characters are packed into as many CPU or PPU words as are needed to contain them.
Twelve zero bits are guaranteed at the end of the character string even if COMPASS must generate an
additional word for them. If COMPASS detects the end of the statement before it detects a second
delimiting character, it produces a fatal error.

Examples:

Location

561
562
SGJ
564
56'5

4-54

Code Generated

07051605220124055535
55032025552717220423
0705160522012~055535

55032025552717220~23
ouoooonooonoooooooon

l

LOCATION OPERATION

11

ONE OIS

TWO DIS

VARIABLE COMMENTS

18 bo
2, GENERATE ?l Cf>U WORDS

I
,•GENERATE 21 CPU WORDS•

I
I

60360900A

Location

1402
1403
1404
1405
1406
1407
1410
1411
1412
1413
1414
1415
1416
1417
.l.420
1421
1422
1423
1424
1425
1426

Code Generated

0705
1605
2201
2405
55 34
3355
2020
5527
1722
0423
0705
1605
2201
2403
5534
3355
2020
5527
1722
0423
0000

LOCATION

I

Or+M

OPERATION VARIABLE

11 18

PPJ

BASE M
UIS 10,GENERATE

UIS , ~GEN C:RA TE

COMMENTS

T 30

1
I

l

I
1 Ll pp HORUS

I

I
I

I
I
I

I
(

10 ,..>p l->OROS.v.

I

I

I

I

I

4.8.4 LIT - DECLARE LITERAL VALUES

A LIT pseudo instruction generates data words in the literals block. This instruction and the
= prefix to a data item provide the only means of generating data in the literals block. The LIT
pseudo instruction assures sequential entries for a table of values.

Format:

LOCATION

sym

sym

item.
1

60360900A

OPERATION VARIABLE SUBFIELDS

LIT

If present, sym is assigned the value of the literals block location counter

At least one and not more than 100 words of character, octal numeric, or
decimal numeric data items. Section 2. 7. 3 contains specifications. Items
are separated by commas and terminated by a blank. Floating point data
items are illegal in PPU assemblies.

4-55

COMPASS enters data items into the literals block in the order specified.

If the converted binary values for all the data items listed with a single LIT match an existing literal
block sequence, they are not duplicated. If, however, any item in the list does not match an entry in
the block, the entire sequence is generated. A literal item subsequently referred to through an
=prefix is not duplicated. A null item (e.g. H** or OL) does not cause a word to be generated.

Examples:

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

611 POOL lIT 3.t,1.59265,2.7162182,57.2957795EE1

0 00611
000612
OOIJ613
00061r.
000615

Location

4-56

71+1+ 7
71t50
7451
7ft52
745]
71+5'+
71+55
71+S6
7ft57
7Z+60
7461

CONlfNl CF LITEP~LS 6LCCK.
1121&1463146314631'+6 oor-v-v-v-
1120&2755764'+1776271 0Pl~.t6;J~
17215337351136D1t+426 OQ14?11A9V
17314363651440663121 OY81~L5vYQ

16513J3303J51+0S76566 N<OOC25.~v

Code Generated

7447
71+53
7456

1

LOCATION

N2

OPERATION

11

LIT
LIT
LIT

CQNlfNl CF LITFRALS ELOC~.

0034-
7070
D007
0000
55D1
0000
0506
1411
24U5
2201
1ft23

1 .,..,.
G

A

EF
LI
TE
RA
LS

VARIABLE COMMENTS

18 130

1R1,7070,7,0f
2C A,OLEF I
H•LITERALS• I

. 6036~0900A

4.8.5 VFD - VARIABLE FIELD DEFINITION

The VFD instruction generates data in the current block by placing the value of an expression into a
field of the specified size.

Format:

LOCATION

sym

sym

item.
l

OPERATION VARIABLE SUBFIELDS

VFD

For a CPD assembly, the location field can contain sym, plus, minus, or
blank, as follows:

sym

blank

If a symbol is provided in the location field, a force upper occurs
and the value of the location counter following the force upper is
assigned to the symbol. The symbol identifies the first word of
data generated by the VFD.

Causes a force upper. Data generation begins in a new word.

COMPASS generates zero bits to the next quarter word boundary,
at which point the first field begins.

COMPASS begins the first field at the current value of the position
counter.

For a PPU assembly, if the location field contains a plus, minus, or a symbol,
data generation begins in a new word. If the location field is blank, the first
field begins at the current value of the position counter.

An unsigned constant or previously defined symbol having a value specifying a
positive integer number of bits for the field to be generated; maximum field
size is 60 bits for both CPU and PPU assemblies (60 being the maximum
number of significant bits for an expression value). When base is M, item.
is assumed to be decimal notation.

1

An absolute, relocatable, or external expression, the value of which will be
inserted into the field specified by i temi. The expression is evaluated using
the specified field size. Character constants are right or left adjusted in the
field according to the type of justification indicated. In a relocatable CPU
assembly, no field that contains a relocatable or external address expression
can cross a 60-bit word boundary, and no 60-bit word can have more than
four fields that contain relocatable or external address expressions.

Each field is generated as it occurs. For a CPU assembly, if the next instruction that generates code
in the block is not a VFD with a blank location field, and the last VFD field in the current VFD ends to
the left of a quarter word boundary, CO.MP ASS inserts zero bits up to the next quarter word boundary.
These zero bits do not show on the assembly listing. Remaining parcels are then filled with no­
operation iastructions.

60360900 D 4-57

When a VFD instruction that does not have a location field entry immediately follows another VFD in
the same block, no padding with zeros or forcing upper occurs; fields are generated sequentially as
they are specified.

Following a VFD, the position counter contains the number of bits remaining to be assembled in the
last word in which data was generated by the VFD.

Examples:

Location Code Generated

31
566 24010200000023000551
567 00000005665555555555
570 777777774

0000110000000
571 1117240155C155555531
572 00000015052323010705
573 031117000000033

Location

1310
1311
1312
1313
1314
1315
1316
1311
1320

Code Generated

3331t
3536
3740
4142
431+4
0010
0011
7765
07 07

OrtM

4.8.6 CON - GENERATE CONSTANTS

I

I

LOCATION OPERATION

11

ALPHA SFT
TARLE VFO

VFO

VFO
VFO
VFO

LOCATION OPERATION

11

PPU
BASE

NI+ VFD

A11 VFO

VARIABLE COMMENTS

18 '30
25 I
3o/3CTAB,6/1q,18/TABLOC
301""-1,30/'5H ,ALPHA./-0

I
•i> I I
30/0HIOTA,6/1RA,24/0AX+1
60/0RMESSAGE,30/JLCI0,15/0RO

I

VARIABLE COMMENTS

1 B !Jo
I

H I
60/10RU123456789

I
I
I

12110,12111,121-12,121-7070
I
I

The CON pseudo instruction generates one or more full words of binary data in the block in use. It
differs from DATA in that iJ generates expression values rather than data items and differs from VFD
in that the field size is fixed.

Format:

4-58

LOCATION

sym

sym

exp.
1

OPERATION VARIABLE SUBFIELDS

CON

If present, sym is assigned the value of the location counter after the force
upper occurs.

An absolute, relocatable, or external expression the value of which will be
inserted into a field having a size of one word. For PPU assembly, floating
point is not allowed; for CPU assembly, double precision is not allowed.

60360900A

Examples:

L
L
L
L
L

L
L
L

Location

l 46f1
1461
146?
1461
1464
146t;
146r,
1467
1470
1471

Location

574
0
0
1
2
3

7 fj
76
77

67 ..

Code Generated

() 0 () 0
f) (l () f.

no03
22()4
00~4
t1 n no
0 0 ()f,

(l 0 ~)3
:?172
(')()?4

Code Gene rated

OOUOOOOOOOOU00000055
00000000000000000062
ooooooooonoooooooon4
00000000000000000060

00000000000000000065
ooooooonoooooooooo1s
OOOOOOOU000000000055

LOCATION

I

t..15~1

MS<;2

LOCATION

I

r---T !\ n

4.8.7 R = - CONDITIONAL INCREMENT INSTRUCTION

OPERATION VARIABLE COMMENTS

II lB T3o

C'11\J 0 T

C·'1".1 ~ I
Cl")N 3 I C,..,f\J FA t L
c ')~I 20 I r.,.., ... J 0
C'11\l 6 I c" f\) 3
C0f\! PASS I
\, '"'..,, 20 I

OPERATION VARIABLE COMMENTS

II 18 T 30

PS~ 0 -r

LOC 0 l
roN 1R I oo
r.ON HJ I n1 -
f'ON 1 R. t 02
f ON 1 R := I 03 . . I • . . I • . .

j ;5 CON 1 R. v

f.ON 1R / 10
CON 1P 111
LOr. •o I

The R= pseudo instruction generates a CPU increment unit instruction depending on the contents of the
variable subfields and on whether or not the subprogram earlier contained a Bl =1 or B7=1 pseudo
instruction (Section 4. 4. 4).

Use of R= augments macro definitions and increases optimization of object code. It is illegal in a
PPU program.

The A list option controls listing of substituted instructions.

Format:

LOCATION

sym

sym

60360900A

OPERATION VARIABLE SUBFIELDS

R= reg, exp

Optional, if present, sym is assigned the value of the location counter after
the force upper occurs. This force upper occurs whether the R= generates an
instruction or not.

4-59

reg

exp

Examples:

A register designator (A, X, or B) and a diltit (0-7) which C,OMPASS
concatenates with S to form the instruct1on operation code.

Operand register or value expression. If the second subfield is the same two
characters as reg, no instruction is generated.

If the expression value is O, the variable field is BO.

If the Bl=l instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1- the variable field of fhe instruction is Bl,
Bl+Bl, or -Bl, respectively.

If the B7=1 instruction has been assembled prior to this instruction and the
expression value is 1, 2, or -1, the variable field for the instruction is B7.
B7+ B7, or -B7, respectively.

In all other cases, the variable field is the register or value indicated by the
expression.

1. R= used with Bl=l

Code Generated LOCATION OPERATION VARIABLE COMMENTS

11 18 30

81=1

2. R= used with Bl?'l

Code Generated LdCATION OPERATION VARIABLE COMMENTS

1 11 18 bo
., 1 TAG R= xs,-1 " ··~-:::~ .. I

"':-; &:. I

4-60 603669QOA

3. Expression is same as register designator:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o

IRFG I MICRO 1, , "'"R5• I

R= q5,t~EGt I
I

R= 95,85

No instruction is generated; SB5 B5 would be a no operation instruction.

4.8.8 REP, REPC, AND REPI - GENERATE LOADER REPLICATION TABLE

The REP, REPC, and REPI instructions cause the assembler to generate an REPL loader table so
that when the subprogram being assembled is loaded, the loader will load one or more copies of a
data sequence. For the REPI instruction, the loader generates the copies immediately upon encoun­
tering the table; for REP, the replication takes place at the end of loading. For REPC+the loader
ignores the REPL table if the destination data address is in a common block that was first declared
by a previously loaded subprogram; otherwise, the loader generates the copies immediately upon
encountering the tables.

Replication of object code is valid in relocatable assemblies only. It is particularly useful for setting
one or more blocks of storage to a given series of values or for generating tables.

Data to be replicated must not contain any external references or common block relocatable addresses.
For REPC and REPI, data must be inpreviously assembled text.

Format:

LOCATION OPERATION

REP
REPCt
REPI

VARIABLE SUBFIELDS

S/saddr, D/daddr, C/rep, B/bsz, I/inc

A location field symbol, if present, is ignored.

The variable field subfields can be in any order.

S/saddr

D/daddr

Relocatable expression specifying first word address of code to be copied.
The S/saddr subfield must be provided. If it is zero, or omitted, the assembler
flags the instruction as erroneous and does not generate an REPL loader table.

Relocatable expression specifying the destination of the first word of the first
copy. If D/ daddr is omitted, the assembler sets daddr to zero, and, when
daddr is zero, the loader uses saddr plus bsz for the destination address.

Note that room for the repeated data must be reserved in the destination block.

+ Not supported by SCOPE 2 Loader.

60360900 D 4-61

C/rep

B/bsz

I/inc

Absolute expression specifying the number of times code is to be copied. When
base is M, COMPASS assumes that rep is a decimal value. If C/rep is
omitted, the assembler sets rep to zero. When rep is zero or one, the loader
makes one copy.

Absolute expression specifying the number of words to be copied (block size).
When base is M, COMPASS assumes that bsz is decimal.

If B/bsz is omitted, the assembler sets bsz to zero. When bsz is zero or one,
the loader copies one word.

Absolute expression specifying the increment size in words. When base is M,
COMPASS assumes that inc is in decimal.

The increment size is the number of words between the first word of each copy.
When inc is zero or omitted, the loader uses bsz as the increment size. The
loader writes the first copy starting at daddr, the second starting at daddr+inc,
the third at daddr 1 2 x inc, etc. until the rep count is exhausted.

The origin and location counters for the block containing the daddr are not advanced by a value of
inc x rep. Storage reservation for replicated code is the responsibility of the user.

Hules for replication:

1. The S subfield cannot be omitted

2. Hoom must be reserved for the copies in the destination block (for example, through
ORG, ORGC, or BSS)

3. HEP, HEPC, and HEPI can be used in relocatable assemblies only

4. Data to be replicated musl not contain any external references or common block relocatable
addresses

5. For REPC and REPI, data must be in previously loaded text

Example:

Location

4-62

501"7
c;o20
5021
c;o22
5023
c:; 024

5251

Code Generated

10

00000000000000000015
oooooaooooooonoooo20
oooooooooonooooo107o
oooooooooooooonooao1
OOOOOOOP000000000005
17216300000000000000

13

LOCATION

l

Rf'

I B"

i
!
j !
i

!
;r

I
I

!

I lo"
L - -------- --

OPERATION

11

- -
::

USE
OATA

EQU
USE
RSS
USE

--- ---·--

j REP!

VARIABLE COMMENTS

18 '30
10 I

NE-WP
- ------- - j - ----------

I

1c;,20,70708,1,~,3.14

I
I
I

I I •-AA+5
I I 0AL0CK I

RC•!
l I• ___ - --- ----~--~--

/SIBA,OIOA,B/I-~,C/RC,I/I

60~60900B

4.9 CONDITIONAL ASSEMBLY

The following pseudo instructions permit optional assembly or skipping of source code. A special form,
SKIP, causes unconditional skipping. COMPASS provides IF test instructions that:

Test for assembly environment (IFtype)
Compare values of two expressions (IFop)
Compare values of two character strings (IFC)
Test the attribute of a single symbol or an expression (IF)
Test the sign of an expression (IFPL and IFMI)

Immediately following the test instruction are instructions that are assembled when the tested condition
is true and skipped when the condition is false. Skipping is terminated either by a source statement
count on the IF instruction, or by an ENDIF, an ELSE, or an END.

The statement count, when used, is decremented for instruction lines only; comment lines (identified by
* in column one) are not counted. Determining the IF range with a statement count produces slightly
faster assembly than using the ENDIF.

The results of an IF test are determined by the values of expressions in pass one; the value of a
relocatable symbol is relative to the USE block in which it was defined. The value of an external symbol
is 0 if the symbol was declared as external. If the symbol was defined relative to a declared external,
the value is the relative value.

4.9. l ENDIF - END OF IF RANGE

An ENDIF causes skipping to terminate and assembly to resume. When the sequence containing the
ENDIF' is being assembled, or is controlled by a statement count, the ENDIF has no effect other than
to be included in the count.

Skipped instructions such as macro references are not expanded. Thus, any ENDIF that would have
resulted from an expansion is not detected.

Format:

LOCATION OPERATION VARI ABLE SU BF IE LDS

ifname END IF

ifname Name of an IF, SKIP, or ELSE sequence; or blank

Skipping of a sequence initiated by an IF, SKIP, or ELSE that is assigned a name can be terminated
by an ENDIF specifying the sequence by name, or by any unnamed END IF. Any END IF terminates
skipping of an unnamed sequence that is not controlled by a source line count. A named ENDIF
terminates the named IF, SKIP, or ELSE and any unnamed IF, SKIP, or ELSE sequences in effect
that are not under line count control.

60360900A 4-63

4.9.2 ELSE - REVERSE EFFECTS OF IF

Through the ELSE instruction, COMPASS provides the facility to reverse the effects of an IF test
within the IF range. An ELSE detected during skipping causes assembly to resume at the instruction
following the ELSE. An ELSE detected while a sequence is being assembled initiates skipping of source
code following the ELSE. Skipping continues until:

1. A statement count specified on the ELSE is exhausted

2. A second ELSE is detected for the sequence

3. An ENDIF is detected for the sequence

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname ELSE .met

ifname Name of an IF, SKIP, or ELSE sequence, or blank.

met Optional absolute evaluatable expression specifying integer number of source
lines to be skipped. It has no effect if the ELSE resumes assembly. When the
base is M, COMPASS assumes that fnct is decimal.

An ELSE specifying the sequence by name or any unnamed ELSE terminates skipping of a sequence
initiated by an IF, SKIP, or an ELSE that has an assigned name. Skipped instructions such as macro
references are not expanded; any ELSE that would have resulted from the expansion is not detected.

4.9.3 IFTYPE - TEST OBJECT PROCESSOR TYPE

IFtype pseudo instructions test for the type of processor that will execute the object program, as
declared by MACHINE, and PERIPH or PPU pseudo instructions.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ifname IFtype .met

4-64 60360900B

ifname

type

60360900 E

Optional 1-8 character name.

Mnemonic specifying type of object processor.

CP

CP6

CP7

pp

PP6

PP7

Condition Causing Assembly

Any central processor unit

Neither PERIPH nor PPU nor MACHINE 7 has been specified.
CPU code is assembled for a CYBER 170 Series, CYBER 70/
Model 72, 73, or 74 or 6000 Series Computer System.

Neither PERIPH nor PPU nor MACHINE 6 has been specified.
That is, CPU code is assembled for a CYBER 70/Model 76
or a 7600 Computer System.

Any peripheral processor unit

One of the following is true:

1. PERIPH has been specified but MACHINE 7 has not
been specified.

2. PPU and MACHINE 6 have both been specified. PPU
code is assembled for a CYBER 170 Series, CYBER
70/Model 72, 73, or 74 or a 6000 Series Computer
System.

One of the following is true:

1. PPU has been specified but MACHINE 6 has not
been specified.

2. PERIPH and MACHINE 7 have both been specified.
That is, PPU code is assembled for a CYBER 70/
Model 76 or a 7600 Computer System.

4-65

\

I

.£net Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is. M, COMPASS assumes
that .£net is decimal.

The ifname and .£net parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

I"lENT XYZ I
MACHINE 6 I . I .
BS5 123 I
IFCP~ 2 i
XJ 0 I ELSE 1

173 u13JuOOOOG

MJ 0 I
I

4-66 60360900 E

4.9.4 IFOP- COMPARE EXPRESSION VALUES

An IFop pseudo instruction compares the values of two expressions according to the relational
mnemonic specified and assembles instructions in the IF range when the comparison is satisfied.

Format:

LOCATION

ifname

ifname

op

60360900B

OPERATION VARIABLE SUBFIELDS

I Fop exp
1

, exp
2

, fnct

Optional 1-8 character name

Specifies comparative test:

2.1?

EQ

NE

GT

GE

LT

Condition causing assembly

Equality, the expressions are equal in all respects. That is, they
not only have the same numeric value but have the same attributes
as well. For example, both are names that are common
relocatable, or absolute, or external, etc.

Inequality, the expressions are not equal in all respects. They
differ in value or in some attribute.

The first expression is greater in value than the second expression.
No other attributes are tested.

The first expression is greater than or equal in value to the second
expression. No other attributes are tested.

The first expression is less in value than the second expression.
No other attributes are tested.

LE The first expression ~s less than or equal in value to the
second expression. No other attributes are tested.

For these tests, positive zero and negative zero are equal.

4-67

I

bl ct

An expression. When the value of exp is tested, exp can include only previously
defined symbols and the result can be absolute, relocatable, or external. If an
undefined symbol is used, the expression value is set to zero, the IF instruction
is flagged as erroneous, and assembly continues with the next instruction.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that .enct is decimal. When .met is blank, the comma can be omitted.

The ifname and .enct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an END IF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that
does not match has no effect.

Example:

A demonstration of one use of IF statements in a PPU program:

LOCATION OPERATION VARIABtE COMMENTS

I IT 18 T3o

lf OEF,LOOP
IFL T •-LOOP,408
ZJN LOUP
EL~E 2
~JN •+3
L .JM LOOP . . .

This code assembles a zero jump to the symbol LOOP if LOOP has been defined within 37 words (the
range of a short jump) prior to the occurrence of this code. Otherwise, the NJN and LJNf'are assembled.

4-68 60360900E

4.9 .5 IFPL AND IFMI - TEST SIGN OF EXPRESSION

The IFPL and IFMI pseudo instructions test the sign of an expression and assemble instructions in
the IF range according to whether the sign of the value is plus (PL) or minus (MI). The pseudo
instructions allow positive zero to be distinguished from negative zero.

Format:

LOCATION

ifname
ifname

ifname

OPERATION

IFPL
IFMI

VARIABLE SUBFIELDS

exp,.enct
exp,,fnct

Optional 1-8 character name

exp An expression. It can include only previously defined symbols and the result
can be absolute, relocatable, or external. If an undefined symbol is used, the
instruction is flagged as erroneous and assembly continues with the next
instruction.

.enct Optional absolute expression specifying an integer count of the number of
statements to be skipped. When base is M, COMPASS assumes that .enct is
decimal. When .enct is blank, the comma can be omitted.

The ifname and .enct parameters are related as follows:

1. If a count is supplied, it takes precedence over any END IF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed EI.SE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

The condition tested for by IFPL is satisfied if the value of exp is greater than or equal to plus zero;
the condition for IFMI is satisfied if the value of exp is less than or equal to minus zero.

60360900 E 4-69

Example:

The following opdef defines the CPU instruction MXi jk so that the address value is 60 if the expression
value is negative zero or a positive non-zero multiple of 60, otherwise it is the address expression
value modulo 60.

LOCATION OPERATION VARIABLE COMMENTS

l 11 18 130

HXQ OPOEF REG, VAL I
LOCAL A I

A SET VAL I

A SET A-A/600•600 I
IFPL A,3 I
IFEQ A,0,3 I IFLE VAL,0,1
SKIP 1 I

A SET A+600 I
VFO 6/438, 3/REG,6/A
ENDH I

I
J

Example of call:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

W~n -52 I
7177713 11'•000001 Sl="T -S? I
7777713 1'•000001 sc-r ••000~01-•.a.00000116oo•non

TFPL 'f'.a.000001,3 I
TFFn ••OOOOOt.0,31
TFU~ -r:;2,o,1

I C::K!P 1
1. 0 IHIJOIJ001 <;FT 1' ... 0 0 o,o 0 1 +6 0 0

VFT'J ~/43A,316,611'•000001
~"Jr)M I

43r,1n

I

4.9.6 IF - TEST SYMBOL OR EXPRESSION ATTRIBUTE

The IF pseudo instruction tests a symbol or an expression for a specific attribute and assembles
instructions in the IF range if the test is satisfied.

4-70 60360900B

Format:

LOCATION

ifname

ifname

att

60360900B

OPERATION VARIABLE SUBFIELDS

IF att, exp, £net

Optional 1-8 character name

Specifies attribute test. A minus prefix to the attribute causes assembly on
the false rather than the true condition.

att

SET

-SET

ABS

-ABS

REL

-REL

REG

-REG

COM

-COM

EXT

-EXT

LCM

-LCM

LOC

-LOC

Condition causing assembly

The symbol given in the second subfield was defined by a SET,
MAX, MIN, or MICCNT

The symbol given in the second subfield was defined other than
by a SET, MAX, MIN, or MICCNT

The expression in the second subfield reduces to a value that is
not relocatable or external

The expression in the second subfield reduces to either a
relocatable or an external address

The expression in the second subfield reduces to a local or
common relocatable address

The expression in the second subfield does not reduce to a local
or common relocatable address

The expression in the second subfield contains one or more
register names

The expression in the second subfield does not contain a register
name

The expression in the second subfield reduces to a common re­
locatable address (any blank or labeled common block)

The expression in the second subfield is not a common relocatable
address (any blank or labeled common block)

The expression in the second subfield contains one or more
external symbols

The expression in the second subfield does not" contain an
external symbol

The expression reduces to an LCM address

The expression does not reduce to an LCM address

The expression reduces to a program relocatable address

The expression does not reduce to a program relocatable address

4-71

I

exp

£net

DEF

-DEF

MIC

-MIC

SST

-SST

All the symbols in the expression in the second subfield are
defined

One or more of the symbols in the expression in the second
subfield is undefined

The name in the second subfield is a micro

The second subfield does not contain a micro name

The second subfield does not contain a system symbol

The second subfield contains a system symbol

For SET, SST, -SET, and -SST, exp must be a single defined symbol. For
MIC and -MIC, exp must be a name. For any other test, it is an expression.
The expression can include symbols as yet undefined if att is DEF, -DEF, REG,
-REG, EXT, or -EXT only. If an undefined symbol is used with any other
attribute, the expression value is set to zero, the instruction is flagged as
erroneous, and assembly continues with the next instruction.

Optional absolute evaluatable expression specifying an integer count of the
number of statements to be skipped. When base is M, COMPASS assumes
that £net is decimal. When £net is blank, the comma can be omitted.

The ifname and !net parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is en­
countered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

Examples

LOCATION OPERATION VARIABLE COMMENTS

I II 18 bo

ABLE BSS 20 I
I . • . I

• • • I
• •

REl,A8LE+15: T£ST IF
• • • I . • • I
• • • I TEST ENO IF

IF COH,OTA, 2 ERRONEOUS, OTA AS YET UNOEFINE 0 . • I

• • I . • I
USE II I OTA ess 1

I
I

4-72 60360900E

4.9.7 IFC - COMPARE CHARACTER STRINGS

The IFC pseudo instruction compares two character strings according to the operator specified
and assembles instructions in the IF range if the comparison is satisfied.

Format:

LOCATION

ifname

ifname

d

op

string.
1

.Qnct

OPERATION VARIABLE SUBFIELDS

IFC op, dstring1 dstring2d, .Qnct

Optional 1-8 character name

Delimiting character. Characters between the first and second occurrence of this
character constitute the first character string; characters between the second and
third occurrence constitute the second character string.

Specifies comparative test:

EQ or -NE

NE or -EQ

GT or -LE

GE or -LT

LT or -GE

LE or -GT

Condition causing assembly

string
1

has the same value as string
2

string does not equal string
1 2

string
1

is greater than string
2

string1 is greater than or equal to string
2

string1 is less than string2

string1 is less than or equal to string2

Character string. When IFC is within a macro definition, each character string
can be a formal parameter.

Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that £net is
decimal. When £net is blank, the comma can be omitted.

The ifname and .Qnct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no eff ecto

60360900 E 4-73

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect

Each character in string1 is compared with the corresponding character in string2 progressing from
left to right until an inequality is found or both strings are exhausted. When one string is shorter than
the other, it is padded with a character that has a value less than any other character in the string.

The truth condition is based on the relative magnitudes of the characters in the strings.

Examples:

LOCATION OPERATION VARIABLE COMMENTS

I " 18 T3o

T~ST1 IFr. EQ, ~ABCABC; ABC EQUALS ABC
H:ST2 IFC LT,•AB•~BC• I AB IS Li:ss TH~N ABC
TfST3 IFC GT,XAXX I A IS GREATER THAN NULL

IFC -GE, .. z•e .. ,3 I z IS LES<; THAt.f 8

The IFC in the following example checks for an empty parameter string.

LOCATION OPERATION VARIABLE COMMENTS

I " IB 130

xx Mnr,1~Q Pt,P2 I

IFG ra,••P2 ... 1 I
p f:"RJ:? I

I
FLAG f PROR .

I . . I
~

(Nf)M I

The following example illustrates a character string terminated incorrectly. When COMPASS reaches
end of statement without finding a third asterisk. the asterisk omitted following Pl causes an error flag.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

IF~ [Q,•OO*P1,2$P2

4-74 60360900E

4.9.8 SKIP- UNCONDITIONALLY SKIP CODE

The SKIP instruction causes COMPASS to unconditionally skip the instructions in the SKIP range.
It resembles an IF for which there is no true condition.

Format

LOCATION OPERATION VARIABLE SUBFIELDS

ifname SKIP £net

if name Optional 1-8 character name

.Qnct Optional absolute evaluatable expression specifying an integer count of the number
of statements to be skipped. When base is M, COMPASS assumes that .enct is
decimal.

The ifname and ..enct parameters are related as follows:

1. If a count is supplied, it takes precedence over any ENDIF but not over an ELSE. The only
effect of an ENDIF in a count controlled sequence is to be included in the count. Skipping
terminates when the count is exhausted or when an ELSE with a matching or blank name is
encountered, whichever occurs first.

2. If neither a count nor a name is supplied, the IF range is terminated by an ENDIF, whether
named or unnamed, or by an unnamed ELSE, whichever is encountered first. A named ELSE
has no effect.

3. If a name but no count is supplied, the IF range is terminated by an ENDIF or ELSE with a
matching name or by an unnamed ENDIF or ELSE. An ENDIF or ELSE with a name that does
not match has no effect.

4.10 ERROR CONTROL

The ERR and ERRxx pseudo instructions described in this section either conditionally or unconditionally
set an error flag.

4. 10.1 ERR - UNCONDITIONALLY SET ERROR FLAG

An ERR pseudo instruction produces an assembly error but does not affect other code. Usually, it is
used in conjunction with a conditional assembly pseudo instruction to force an error into the assembly
based on an assembly time test. One application is to use a test and ERR to detect illegal macro
parameters.

60360900E 4-75

Format:

LOCATION

flag

flag

OPERATION VARIABLE SUBFIELDS

ERR

A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generatioo of the
binary deck unless the D mode option is selected on the COMPASS control
card. If no flag is specified, or the character is not one of those given in
section 11. 7, COMPASS uses P.

A variable field entry, if present, is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 TJo
NNN MACRO P1,P2,P3,P4T

IFEQ P1,0 I
A ERR I

• •
• . I
• • I
ENOH

I • .
• • I . • I NNN O,A,B,C

4. 10.2 ERRxx - CONDITIONALLY SET ERROR FLAG

An ERRxx pseudo instruction produces an assembly error when a condition detected during the second
pass of the assembler is true.

Format:

LOCATION

flag

flag

4-76

OPERATION VARIABLE SUBFIELDS

ERR.xx aexp

A single alphanumeric character denoting the error type. The flag is placed
in the listing to the left of the line for ERR. The flag can denote a fatal or
nonfatal error. A fatal error causes COMPASS to suppress generation of the
binary deck unless the D mode option is selected on the COMPASS control card.
If no flag is specified, or the character is not one of those given in section 11. 7,
COMPASS uses P.

60360900A

xx Defines condition under which aexp value is erroneous.

xx

NG or MI

NZ

PL

ZR

Error Condition

Value of expression is negative

Value of expression is nonzero

Value of expression is positive

Value of expression is zero

aexp Absolute expression. It cannot contain external symbols or references to blank
common. The test is made in pass two of the assembler. Relocatable addresses
are assigned values relative to program origin rather than to the block in which
they are defined.

Example:

NOTE

ERRxx is the only conditional instruction for which the
test is made in pass two. Therefore, this is the only
pseudo instruction that can be used to determine PPU
overflow if the PPU program has literals and USE
blocks.

Test for memory overflow in PPU assembly

Location Code Generated LOCATION OPERATION VARIABLE

1 11 18

PER.I PH .
•

LASTTAG ess fl

COMMENTS

]Jo

T

I
I

7777447 R ER~PL LASTTAG-7777j
£ND 71+&2

4.11 LISTING CONTROL

The instructions described in this section permit extensive control of the assembly listing format.

4.11 . 1 LIST - SELECT LIST OPTIONS

The LIST pseudo instruction controls the content and format of the assembler listing. LIST instructions
are disabled under either of the following conditions:

When the list parameter (L) on the COMPASS control card (section 10.1. 2) is zero, or

When the list option parameter (LO) on the COMPASS control card is used and is other than LO=O. I

60360900E 4-77

Use of the LIST pseudo instruction is optional. If it is not used in the subprogram, COMPASS list
output is according to the Land LO parameters on the COMPASS control card. If the LO parameter
is omitted or LO=O, the list options are as if L, B, N, and R only are selected and the listing contains
heading information, assembly text, assembler statistics, an error directory (upon occurrence of an
error only), and a symbolic reference table. Formats of this output are described in detail in
chapter 11 and briei summaries are given below.

Heading information

Assembly text

Assembler statistics

Error directory

Symbolic reference table

Formats:

Program length, or1gm, and length of each block, entry points
and external symbols.

Line, and assembly results of each line assembled (not skipped)
from the input device (excludes code generated by RMT, DUP,
ECHO, XTEXT, or a macro or opdef expansion). For data
generating pseudo instructions DATA, DIS, BSSZ that produce
more than one word of object code, only the first word is listed.
For VFD and CON all words of object code are listed. For R=,
only the pseudo instruction is listed.

Each occurrence of the LIST instruction is listed.

Amount of storage used, counts of assembled statements,
defined symbols, invented symbols, and references to symbols.

Lists fatal and nonfatal errors and summarizes the causes of each.

List of all symbols defined in the program according to symbol
qualifier, if any, followed by an index to every reference to the
symbol in the listed statements.

LOCATION OPERATION VARIABLE SUBFIELDS

LIST
or

LIST *

A location field symbol, if present, is ignored.

4-78

A list option represented by a single letter or a letter prefixed
by a minus sign. The unprefixed letter selects the option; the
prefixed letter cancels the option. Options are separated by
commas and terminated by a blank.

A List statements actually assembled

When A is not selected, a line containing concatenation
and micro substitution marks is listed with the marks in it
exactly as presented to the assembler. When the A option
is selected, however, the assembler lists the line before and
after the editing takes place. Selecting A also causes the
listing of lines of code resulting from the R= pseudo instruction.

60360900B

60360900A

B List binary control statements

When B is selected, the listing includes SEG, SEGMENT, ID ENT, and
END pseudo instructions.

C List listing control statements

When C is selected, the listing includes EJECT, SPA CE, TTL, and
TITLE pseudo instructions. A listing instruction that causes an EJECT
is listed as the first line of the new page after the EJECT takes place

D Include details

Selection of the D option causes listing of the following items not normally
listed:

Second and subsequent lines of DAT A and DIS
Code assembled remotely when HERE or END causes its assembly
Literals block
Default symbols

E Include echoed lines

Selection of E causes listing of all iterations of code duplicated as a result
of DUP and ECHO.

F List IF-skipped lines

When F is selected, the listing includes all lines skipped by IF, !Fop,
IFC, IFPP, IFCP, SKIP, and ELSE. In addition, the Symbolic Reference
Table contains references to symbols in IF statements.

G List generated code

Selection of this option causes listing of all code generating lines regardless
of list controls other than L. Instructions listed include symbolic machine
instructions and BSS, BSSZ, CON, DATA, DIS, R=, and VFD.

L Master list control

This option is normally selected. When L is canceled, the long list contains
error flagged lines, an error directory, and LIST pseudo instructions only,
regardless of selection of any other options on LIST.

M List macros and opdefs

Selection of M causes all lines generated by calls to macros and opdefs other
than those defined by the system to be listed.

4-79

$

*

N List nonreferenced symbols
This option is normally selected. Cancellation of this option causes
any non-system symbol for which no reference has been accumulated
(e.g., all occurrences are in IF statements with the F option deselected,
or are between CTEXT or ENDX with the X option deselected) to be
omitted from the symbolic reference table.

R Accumulate and List references
This option is normally selected. When R is canceled, COMPASS does
not accumulate references. R should not be canceled if a complete
symbolic reference table is desired. If R is canceled at the end of
assembly, no symbolic reference table is produced.

S List systems macros and opdefs
Selection of S causes all lines generated by calls to systems-defined
macros and opdefs to be listedo

T List nonreferenced system symbols
Selection of this option causes a symbol defined through SST to be
included in the symbolic reference table even if there are no accumulated
reference so

X List XTEXT lines

Selection of the X option causes listing of all statements assembled as a
result of an XTEXT pseudo instruction. CTEXT and ENDX provide a
means of alternately turning this external designator off and on.

A dollar sign in the variable field selects all options.

An asterisk in the variable field causes selection of the options in effect prior
to the current selection. The assembler records occurrences of LIST pseudo
instructions and maintains a table of the most recent 50 occurrences. Each
LIST * resumes use of the most recent entry and removes it from the list.
When the subprogram contains more LIST * instructions than there are entries
in the stack, COMPASS selects the default list options (B, L, N, and R).

For list options A, C, D, E, F, M, S, and X, all applicable options must be selected for a specific
line to be listed. For example, listing of an expansion resulting from a DUP within a macro requires
selection of both M and E. Similarly, an expansion causes by an XTEXT within a system macro call
is listed only when both X and S are selected. To obtain a listing showing rand -:/:- marks removed from
external text inside a DUP range requires that A, X, and E all be selected.

Example:

0 17205146314631463146

2 17205146314631463146
3 16403140314631463146

4 172051463146314&3146

6 17205146314631463146
7 16~03146314631463146

LOCATION

l

OPERATION

11

LIST
OATA
DATA
LIST
lJAf A
DATA

LIST
DAlA
LIS 1
DATA
DATA

VARIABLE COMMENTS

18 T 30

A r
1. 3r+EE I

1.3EE I

D !
1. 3r+EE I
1.3EE I

I
-A,-0 I
1. 3r+ EE I ...

I
1.3r+EEtt I 1.3EE

I

4-80 60360900B

4.11.2 EJECT-EJECT PAGE AND BEGIN NEW SUB-SUBTITLE

The EJECT pseudo instruction advances printer paper to a new page before printing. Then, page
headings are printed and listing continues. EJECT has no effect, other than setting the sub-subtitle,
if it is generated by DUP, ECHO, RMT, XTEXT, or a macro or opdef expansion, and the cor­
responding LIST options are not all selected.

Format:

LOCATION

name

name

OPERATION VARIABLE SUBFIELDS

EJECT

New program sub-subtitle for the page will be printed in character positions
70-79 of the second line of the page. A blank name clears the sub-subtitle.

An entry in the variable field, if present, is ignored.

4.11.3 SPACE - SKIP LINES AND BEGIN NEW SUB-SUB TITLE

The SPACE pseudo instruction spaces the assembler listing. When a page is full, an eject occurs
and listing resumes on the next page. A SPACE immediately following an EJECT is ignored. SPACE
has no effect, other than setting the sub-subtitle, if it is generated by a DUP, ECHO, RMT,
XTEXT, or a macro or opdef expansion, and the corresponding LIST options are not all selected.

LOCATION

name

name

sent

rent

OPERATION VARIABLE SUBFIELDS

SPACE sent, rent

New subprogram sub-subtitle will be printed in characters 70-79 on the second
line of the next page heading. A blank name clears the sub-subtitle.

An absolute expression specifying a positive integer number of spaces between
the most recent line and the next line of printout. If base is M, sent is assumed
to be decimal. If sent is omitted or zero, no line is skipped.

An absolute expression specifying a positive integer number of lines that must
be remaining on the page following spacing. If base is M, rent is assumed to
be decimal.

If sent+ rent exceeds the number of lines on the page before spacing occurs, the SPACE acts like an
EJECT. Note that either the eject occurs or the number of spaces are skipped but not both.

Blank cards can also be used to space the listing.

60360900 E 4-81

4. 11 .4 TITLE - ASSEMBLY LISTI NG TITLE

The first TITLE pseudo instruction establishes the title that will be printed on each page of the listing.
A subsequent TITLE instruction generates a subtitle and causes a page eject. If the subprogram does not
include a TITLE instruction, COMPASS prints the variable field of the first IDENT pseudo instruction
as the title. A TITLE instruction without a character string produces an untitled listing. A name in
the location field introduces a new subprogram sub-subtitle.

A TITLE instruction has no effect when LIST option X is deselected and the TITLE instruction is
in text read by XTEXT or is between CTEXT and ENDX instructions. All other TITLE instructions
(except the first which sets the main title) cause a page eject, even when generated by a macro
expansion, unless LIST option L is deselected.

Format:

LOCATION

name

name

string

Example:

LOCATION

I

I

4-82

OPERATION VARIABLE SUBFIELDS

TITLE string

New subprogram sub-subtitle to be printed in character positions 70-79
on the second line of the page. A blank name clears the sub-subtitle.

COMPASS searches the columns following the blank that terminates the
operation field. If it does not find a nonblank character before the default
comments column (see COL pseudo instruction), it takes the characters
starting with the default comments column minus one up to the end of the
statement. Otherwise, the title or subtitle begins with the first nonblank
character following TITLE and continues to the end of the statement or to
62 characters. Any characters beyond the 62nd are lost. A blank string
produces an untitled listing.

OPERATION VARIABLE COMMENTS

11 18 130
....L

IOENT HTO I

I
LIST c I

TITLE MT DRIVER I

• I
I

• I
• I

TITLE I/O ROUT INESt
• I
• I
•

60360900C

First page: MT DRIVER

Subsequent pages: MT DR!V[R
1/0 ROUTINES

4.11.5 TTL - NEW ASSEMBLY LISTING TITLE

The TTL pseudo instruction introduces a new main title to be printed on each page of the listing, and
clears the subtitle.

Format:

LOCATION

name

string

name

OPERATION VARIABLE SUBFIELDS

TTL string

COMPASS searches the columns following the blank that terminates the operating
field. If it does not find a nonblank character before the default comments column
(see COL pseudo instruction), it takes the characters starting with the default
comments column minus one up to the statement end. Otherwise, the title begins
with the first nonblank character following TTL and continues to the end of the
statement or to the 62nd character. Any characters beyond the 62nd are lost.
A blank string produces an untitled listing.

New sub-subtitle to be printed in character positions 70-79 on the second
line of the pages. A blank name clears the sub-subtitle.

TTL does not cause a page eject.

4.11 .6 NOREF - OMIT SYMBOL REFERENCES

The NOREF pseudo instruction causes the symbols named in the variable field to be suppressed from
the symbolic reference table.

Format:

LOCATION

sym.
1

OPERATION VARIABLE SUBFIELDS

NOREF

One or more symbols defined in the subprogram. If a symbol qualifier is in
effect when the NOREF is encountered, the symbols are assumed to be qualified
by the qualifier in use. Alternatively, sym. can be a non-blank qualifier symbol
enclosed by slant bars, /qualifier/, in whiJh case all symbols qualified by the
specified qualifier are suppressed from the sumbolic reference table.

A location field symbol, if present, is ignored.

60360900C 4-83

4.11.7 CTEXT AND ENDX - DISABLE/ENABLE LISTING OF COMMON DECK TEXT

The CTEXT pseudo instruction sets the XTEXT flag for list control.

Format:

LOCATION

name

name

string

NOTE

When the flag is set, external text is listed only if
the X list option is selected.

OPERATION VARIABLE SUBFIELDS

CT EXT string

If X list option is selected, name (optional) is treated as a sub subtitle;
otherwise it is ignored.

If the variable field is nonblank and the X list option is selected, the CTEXT
is treated as a subtitle. The CTEXT instruction generates a subtitle and
causes a page eject. If Xis not selected, the CTEXT does not affect titling.

The subtitle begins with the first nonblank character following CTEXT
or in the default comments column (see COL pseudo instruction) minus
one, whichever comes first, and continues to the end of the statement
or to 62 characters. Any characters beyond the 62nd are lost.

The ENDX pseudo instruction clears the XTEXT flag for list control and causes listing to resume,
starting with the instruction after ENDX, when the X list option has not been selected.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

ENDX

Entries in the location field or variable field, if present, are ignored.

4-84 60360900 D

4.11.8 XREF-REFERENCE SYMBOLIC ADDRESS

The XREF pseudo instruction provides the options of having the symbolic reference table contain
references to symbols according to (1) location counter address, (2) page and line number, or (3) both.
For the format of the symbolic reference table, refer to section lL 8.

Format:

LOCATION

string

OPERATION VARIABLE SUBFIELDS

XREF string

An optional character string, the first character of which indicates how symbols
are to be referenced.

A The symbolic reference table lists addresses only. Flags are not included.

B The symbolic reference table lists references to symbols according to
page number, line, and address. Flags are included.

P The symbolic reference table lists references to symbols according to
page and line numbers. Flags are included.

A location field symbol, if present, is ignored.

If the string is omitted or if no XREF is issued, the symbolic reference table contains references
according to page and line numbers and includes flags. The last XRE F encountered in a subprogram
determines the form of the listing for the entire subprogram.

60360900C 4-85

DEFINITION OPERATIONS

This chapter describes pseudo instructions that involve definition operations. These pseudo
instructions cause sequences of instructions to be saved for these reasons:

They can be assembled from an external source (XTEXT).

Assembly can be delayed until later in the subprogram (RMT).

They can be assembled repeatedly (DUP and ECHO).

They can be referred to for assembly (MACRO, MACROE or OPDEF).

5

Any instructions other than END, including other definitions or calls, can be in the body of a definition.

Each request for assembly of one of the saved sequences of code, such as a reference to a macro,
causes an entry in the assembler recursion stack. The most recent entry in the stack points to the
source of statements (the definition) to be assembled. When the definition contains an inner, nested,
reference to a saved definition, the stack pointer is changed so that the source of statements is the
innermost definition. The stack allows nesting of definitions to a maximum level of 400. When the
end of a definition is reached, the assembler switches to the preceding entry in the stack. When the
stack is empty, the assembler resumes assembly of the next statement in the input source deck.
A nested definition must be wholly contained by its next outer definition.

Definitions are saved compressed but otherwise unedited (with micro and concatenation marks). Editing
occurs each time the definition is processed. Compression removes blanks and replaces them with
coded bytes as follows:

A single space is represented by 558; it is not compressed. Two or more embedded spaces are
replaced in the image as follows:

2 spaces replaced by 5555
8

3 spaces replaced by 0002
4 spaces replaced by 0003

64 spaces replaced by 0077 8
65 spaces replaced by 007755 8
66 spaces replaced by 00775555

8
67 spaces replaced by 00770002

8
, etc.

Tra~ling spaces are considered as embedded and are included in the image. The 00 character
(colon) is represented by the 12-bit code 0001. A 12-bit zero byte marks the end of the statement.

The listing identifies the source of statements and the recursion level for all definition operations.

60360900A 5-1

For XTEXT, DUP, and ECHO, assembly occurs as soon as a definition is saved. Unless the definition
contains a l!SE, USELCM, or ORG instruction, code is assembled into the block in use when the
XTEXT, DlJP, or ECHO is encountered. For RMT, macros, and opdefs, however, definition and
assembly take place in two steps. The block in use at definition time does not determine where code
in the definition will be assembled. That is, code is assembled into the block in use when the definition
is assembled if the definition does not itself contain a USE, USELCM, or ORG.

Similarly, for XTEXT, DUP, and ECHO, any qualifier in effect when the pseudo instruction is
encountered applies to symbols defined in the sequence (assuming the sequence does not contain a
QUAL). For RMT, macros, and opdefs, however, because definition and assembly take place in two
steps, the qualifier in use at definition time does not affect symbols in the definition. The qualifier,
if any, in effect when the definition is assembled is applied to the symbols defined in the sequence.

A qualifier applies to symbols only. It does not apply to block names or to the names of DUP, ECHO,
RMT, or macro definitions, nor to any substitutable parameter names.

In definitions having substitutable parameters, it is possible to use a different block name, different
qualifier, or different symbols with each expansion simply by declaring either the qualifier symbol,
block name, or symbols to be qualified as substitutable parameters. (For an example, refer to
example 7 under Macro Call.)

5.1 EXTERNAL TEXT (XTEXT)

The XTEXT pseudo instruction provides a means of obtaining source statements from a fite other than
that being used for input. COMP ASS transfers the text from the external source and assembles it
before taking the next statement from the interrupted source of statements. The file may be a sequential
file, an indexed file with named records, or an UPDATE or MODIFY random-access program library
file.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

file XTEXT rname

5-2 60360900A

file

rname

Name of a file containing source statements. If file is omitted, COMPASS
assumes the file named in the X parameter on the COMPASS control card
(Section 10.1. 2). If no X parameter was specified, COMPASS assumes OLDPL.

If rname is blank, COMPASS assumes that the file is sequential; it rewinds the
file and reads the first section. If rname is not blank, it is the name of the
section to be read. The file must be a SCOPE 3 indexed file with named
records, t a record indexed file with named records, a random-access program
library file in UPDATE format, or a random-access program library file in
MODIFY tformat.

Text records may be in any of the following formats.

1. Normal text. If the first line contains rname starting in column 1, it is skipped.

2. A common deck in an UPDATE or MODIFY t random-access program library file. If the file
is in UPDATE format, the first line (*COMDECK rname) is always skipped.

3. An UPDATE or MODIFY t compressed compile file section.

COMPASS reads source statements to an end-of-section mark or an END pseudo instruction.

5.2 REMOTE ASSEMBLY

Definition and assembly of remote code takes place in two steps. A pair of Rl\IT pseudo instructions
delimit code that is to be saved for later assembly. Later, a HERE pseudo instruction directs
COMPASS to assemble a specific sequence of remote code or to assemble all unlabeled remote code.
An END instruction causes any unlabeled remote code to be assembled.

5.2. l RMT- SAVE REMOTE CODE

A RMT pseudo instruction signals the beginning or the end of a sequence of code to be assembled
remotely.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

rmtname RMT

rmtname Optional 1-8 character name identifying the remote sequence. It is
significant on the beginning RMT only. The field is ignored for a terminating
RMT. If supplied, rmtname can be used on a subsequent labeled HERE.
If the sequence is unlabeled, an unlabeled HERE or END causes its assembly.

A variable field entry, if present, is ignored.

t MODIFY is not supported by SCOPE 2.

60360900A 5-3

Any instruction legal when the remote lines are called for assembly is legal between the RMT pair.
If expansion of an RMT reveals a second RMT pair implicit to the saved definition, assembly of the
first pair must occur through a HERE instruction so that the inner pair will be expanded by an END.
Similarly, if the assembly of the second pair reveals yet a third RMT pair, the second pair must be
assembled through a HERE rather than the END, etc.

Any labeled remote code present when END is processed is discarded without notice.

5.2.2 HERE - ASSEMBLE REMOTE CODE

A HERE pseudo instruction causes the labeled remote sequence to be assembled or unlabeled saved
remote sequences to be assembled. In the absence of a USE, USELCM, IDENT, or an ORG within
the saved sequence, the remote code is assembled under the block in use at the time the HERE is
encountered. In the absence of a QUAL within the saved sequence, symbols are qualified under the
qualifier in use at the time the HERE is encountered. RMT code is assembled only once. After it
is assembled, it is no longer saved. A HERE encountered when there is no remote text saved has no
effect on assembly.

Format:

LOCATION

rmtname

rmtname

OPERATION VARIABLE SUBFIELDS

HERE

Optional; the name of a previously saved RMT sequence. Only the named
sequence will be assembled at this time.

A variable field entry, if present, is ignored.

If unlabeled remote sequences still remain to be assembled when the END card signaling the end of
assembly is encountered, COMPASS assembles them before it terminates assembly. However, any
RMT pairs that might have resulted from the assembly are lost. Also, any remaining labeled remote
code is lost.

Examples:

5-4

The following example illustrates use of RMT within a macro definition. Following the last call to
the macro, a HERE causes all saved unlabeled RMT sequences to be assembled.

60360900A

Location Code Generated

4730

4731

1131
Olt08fUl1118tUI 9889 83231lt

1:saa
01118•918•1181Ul81323Dlt

~,,,

f.PI
ftlll

60360900A

LOCATION OPERATION VARIABLE COMMENTS

f NAH
O.TNAH

TNAM
O.TNAH

L.TNAH

iNllR
a.INTER

11

MACRO
IFC
EQU
CON
ELSE
EQJ
EQU

RHT
EQU
RHT
•
•

ENOH
•
•
•
TASL~
IFC

EQU
COM

El.SE ... ,
L.iMTll EQU

rtl'IT
&NII.

LAST AB TABLE
tF'C

Ell.I
DGtl

tL:li

lttl
L.L.~$TA8 IQt.t

RMI
:1111
TABLE
IN
IL.II
llU
11~-

RMT
EDU

•• .~
•
•
•
HERE

l•ilt~Jt Ell
~~·~··~~·~~ ~I': .•• 111 .. (.: llV

18 30

TABLE,TNAH,EQIV
EQ,••fQIV• 1
•-ORIGINS
BUCKET
2
EQIV
O.EQIV

TNAH+SIZES

EQ,•••
•-ORIGINS
BUCt<ET

·z

INTER+sxies
f

' 1 IQ,••••.
••oR•.~lHll

t ltJCKlt I

I
LASTAl+S'.tzES

I

LASTAB ?
i'.lt••LilfAI•
I <'f
"'''·~· ...•. ' O.LISJAI

l

MRTA8+SIZIS
I

"'"···'"·'·'·-·-"'-~£;,,;;:." .. ····~·-·-·_.~~~·-~·~~~

' I
I
I

llf'.l'lfl~ll ZEI .
~•11Afi'' I<

NRf 11+111

5-5

In the following example, assembly of the RMT sequence is caused by the END statement.

LOCATION

FtO
PRS

5.3 CODE DUPLICATION

OPERATION VARIABLE COMMENTS

11

RHT
OECMIC
LIT
RHT

LIST

18 30

I
BUF+BUFL-WSA+ENOS
c~tFLOt DECIMAL REQUIRED.•

I
I

c

This section describes two pseudo instructions (DUP and ECHO) that cause a sequence of code to be
assembled repeatedly. For a DUP sequence, each assembly is identical with the first, and the
number of repetitions is specified or is indefinite. For an ECHO sequence, each assembly resembles
a macro reference. Actual parameters supplied in a list are substituted for formal parameters on
each repetition of the code sequence. The number of repetitions is determined by the number of
actual parameters provided on the ECHO instruction.

Every inner DUP or ECHO sequence must lie totally within the range of the next outer DUP or ECHO,
or a fatal E error is flagged.

5.3. 1 DUP - SIMPLE DUPLICATION

The DUP pseudo instruction specifies repeated assembly of the statements immediately following.
The range of the DUP is specified either by a source statement count on the DUP instruction or by an
ENDD.

5-6 - 603.60900A

Format:

LOCATION

dupname

dupname

rep

_enct

OPERATION VARIABLE SUBFIELDS

DUP rep, tnct

Optional name of the DUP sequence; 1-8 characters. When supplied, it can be
used in an ENDD. When no name is supplied, the range of the DUP is determined
by a statement count or by any ENDD.

Absolute evaluatable expression specifying the integer number of times state­
ments in the DUP range are to be assembled. If rep is null or zero, the instruc­
tions in the range are not assembled; that is, code is skipped. When base is M,
COMPASS assumes that rep is decimal.

NOTE

A very large (unobtainable) repeat count in conjunction with a
STOPDUP instruction can be used for indefinite duplication
of code.

An evaluatable expression specifying an integer count of the number of
statements to be assembled repeatedly. When base mode is M, COMPASS
assumes that tnct is decimal. The count is decremented for statements only;
comment lines (identified by * in column one) are not counted. On each
iteration, the assembler copies the source statements and then assembles
them. Thus, any recursive statements within the sequence are counted
before they are expanded.

The dupname and .enct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD is to
be included in the count. Under count control, a name is irrelevant.

2. If neither a count nor a name is supplied, the DUP range is terminated only by an unnamed

ENDD.

3. If a name but no count is supplied, the DUP range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not effect the

range.

5.3.2 ECHO - ECHOED DUPLICATION

The ECHO instruction specifies repeated assembly of the instructions immediately following. On each
iteration, the assembler copies the source statements substituting an actual parameter in the list for
each formal parameter until the shortest list is exhausted, and then assembles the statements. ECHO
offers many of the features of macros but does not require separate definition and reference. The
range of the ECHO instruction is specified either by a source statement count specified on the ECHO
instruction, or by an ENDD. The statement count, when used, is decremented for instructions only;

60360900B 5-7

comment lines, identified by * in column one, are not part of the definition and are not counted.

Format:

5-8

LOCATION

dupname

dupname

,enct

OPERATION VARIABLE SUBFIELDS

ECHO

Optional name of the ECHO sequence; 1-8 characters. When supplied,
it can be used in an ENDD. When no name is supplied, the range of the
ECHO is determined by a statement count or by any ENDD.

Optional absolute evaluatable expression specifying an integer count of the number
of source statements to be assembled repeatedly. If base mode is M, the
count is assumed to be decimal. If ,fnct is zero or omitted, the comma must
be present and the ECHO range is defined by an ENDD.

Any recursive statements, such as macro references, are counted before
they are expanded.

If the count exceeds the range of an outer DUP or ECHO sequence, a fatal
E error is flagged.

The dupname and .enct parameters are related.

1. If a count is supplied, it takes precedence over any ENDD. The only effect of an ENDD in a
count-controlled sequence is for it to be included in the count. Under count control a name
is irrelevant.

2. If neither a count nor a name is supplied, the ECHO range is terminated only by an unnamed
ENDD.

3. If a name but no count is supplied, the ECHO range is terminated by an ENDD with a matching
name or by an unnamed ENDD. An ENDD with a name that does not match does not terminate
the sequence.

Pi Names of not more than 63 formal substitutable parameters. Each name is 1-8
characters, the first of which must be alphabetic. A name cannot be END,
LOCAL, ENDD, IRP, or ENDM. A second or later occurrence of a parameter
name is ignored. A name that begins with a number is ignored.

The separator between pi and (lis~) is conventionally an= but can be any of the
following:

+ - * I () $ = , or .

COMPASS recognizes a substitutable parameter name within a definition when it
is between any two of the following:

+ - * I () $ = blank , . -.:} or

The substitutable parameter name can occur in any field within a definition.

60360900B

(list.)
1

Before the ECHO definition is stored, COMPASS replaces each use of a
substitutable name. Otherwise, it saves the definition unedited, i.e. , with
micro and concatenation marks. Use of the semicolon is restricted in the
definition because the assembler, when it expands the definition, interprets it
as a substitutable parameter flag (77 8).

The character r+ flags the occurrence of a name not bounded by any other
special character and, thus, not otherwise recognized. When it expands the
definition, COMPASS substitutes an actual parameter value from the list for
the substitutable parameter and removes the ,-+ so that the adjacent items are
concatenated.

Because the assembler replaces the first substitutable parameter with 7701,
the second with 7702, etc. the programmer can use the display characters
;A, ;B, etc. directly in place of his substitutable parameter names in the
definition and achieve the same results as if the assembler had replaced the
name with the flag. (Example 8, Section 5. 4. 3 illustrates a similar application
of this technique.)

Actual parameter list in the form a1 , a2, ... , a where a. is substituted for p.
n i i

on the first assembly of the ECHO sequence, a2 is substituted on the second
assembly, etc. until the shortest list is exhausted. Two consecutive commas
are interpreted as a null parameter. An explicit zero, if desired, must be
entered. An actual parameter can contain a set of embedded parameters
enclosed by parentheses. However, the embedded parentheses must be
properly paired. The assembler removes the outer pair of parentheses before
substituting the embedded set in a line. A parenthetical item can contain blanks
or commas.

If there are no parameters or any of the lists are null, COMPASS assembles the
ECHO sequence zero times, effectively skipping it.

5.3.3 STOPDUP- STOP DUPLICATION

The STOPDUP instruction al lows premature termination of a DUP duplication before the repeat count
is reached or of an ECHO duplication before the shortest list is exhausted. Assembly is completed to the
end of the range for the current iteration and then continues with the next source statement. Only the
innermost duplication is affected.

A STOPDUP outside of a DUP or ECHO range has no effect on assembly. If a DUP or ECHO is nested,
STOPDUP terminates only the innermost DUP or ECHO.

Fonnat:

LOCATION OPERATION VARIABLE SUBFIELDS

STOPDUP

An entry in the location or variable field is ignored.

60360900B 5-9

5.3.4 ENDO - END DUPLICATION SEQUENCE

The ENDD pseudo instruction terminates a DUP or ECHO sequence when the statement count is
unspecified on the DUP or ECHO.

Format:

LOCATION

dupname

dupname

Examples:

OPERATION VA RI ABLE SUBFIELDS

ENDD

Name of a DUP or ECHO sequence, or blank. A named DUP or ECHO
sequence can be terminated by an ENDD specifying the sequence by name,
or by any unnamed ENDD. An unnamed DUP or ECHO sequence that is not
controlled by statement count is terminated only by an unnamed ENDD.
An ENDD does not terminate a sequence controlled by a statement count.
The ENDD is included in the count but has no other effect.

An ENDD outside the range of a DUP or ECHO has no effect on assembly.

In the following examples, the statements that result from expansion are shown faded. They are
listed only when the E list option is selected. Source statements are shown in bold characters.

1. This example illustrates use of a simple DUP instruction.

Location Code Generated LOCATION

5-10

OPERATION VARIABLE

11

OUP
OATl

18

COMMENTS

30

60360900A

2. This example illustrates a nested DUP instruction with one of the DUP duplications terminated
by a STOPDUP.

LOCATION

GO
TAG

NO
GO
ALPHABET
NO

60360900A

OPERATION VARIABLE COMMENTS

11 18 30

NOt]tl-ALPHABET-/
E0t/-TAG¢/E/,1 ASSEMBLE STOPOUP WHEN TAG•E

N0+1 NO IS 6 tN LAST ITERATION

l•tlABCOEFGHIJK/
l
•1 UNOBTAINABLE ITERATION COUNT

5-ll

3. This example illustrates nested ECHO instructions. A statement count terminates the second
level ECHO. The ENDD terminates the first level. Notice how COMPASS assembles each
copy before it begins the next iteration.

Location Code Generated LOCATION

5-12

OPERATION VARIABLE COMMENTS

11

PPU

•
•
•

18

5,54158
H,D,E r
' CH= c x' y ' z) I
2,P1=cA,e,c>

1
CH I
Pi I

30

60360900A

5.4 MACROS AND OPDEFS

A macro or opdef definition is a sequence of source statements that are saved and then assembled
whenever needed through a macro or opdef call. A macro call consists of the occurrence of the
macro name in the operation field of a statement. It usually includes parameters to be substituted
for formal parameters in the macro code sequence so that code generated can vary with each assembly
of the definition.

An opdef call differs from a macro call in that the assembler interprets the call by examining the
format or syntax of the instruction rather than the contents of the operation field alone. The instruction
comprising the opdef call usually includes parameters to be substituted for parameters in the code
sequence. There are some differences in the way parameters are substituted, however, as is further
described under Opdef Call.

Use of a macro or an opdef requires two steps, definition of the macro or opdef sequence, and calling
of the definition.

A definition consists of three parts: heading, body, and terminator.

Heading

Body

60360900A

A macro definition is headed by a MACRO or MACROE pseudo instruction
stating the name of the macro and identifying substitutable parameters in
the body of the macro.

An opdef definition is headed by an OPDEF pseudo instruction stating the syntax
of the calling instruction and identifying substitutable parameters in the body of
the macro.

The heading optionally includes one or more LOCAL instructions identifying
symbols local to the definition.

The body begins with the first statement in a definition that is not a LOCAL
statement or a comment line. A comment line can be either identified by *
in column one or can have columns 1-29 blank. (Following the first statement
of the macro body, only comments identified by *in column 1 are ignored.)

Use of the semicolon is restricted because when a definition is expanded a
semicolon is interpreted as a substitutable parameter mark or a local symbol
flag.

The body consists of a series of symbolic instructions. All instructions other
than END, including other macro and opdef definitions and calls are legal within
a definition. However, a definition within a definition is not defined until the
outer definition is called. Therefore, an inner definition cannot be called before
the outer definition is called.

A name of a substitutable parameter listed in the heading can occur in any field
within the body. A reference to a substitutable parameter is recognized when it
is between two of the following characters in an expression or field:

+ - * I () $ = blank , . -I or r-
The characteq-flags the occurrence of a name not bounded by any other special

5-13

Terminator

Definition
Processing

character, and, thus, not otherwise recognized. On a call, the assembler
substitutes an actual parameter value for the substitutable parameter and
removes the r so that the adjacent items are concatenated.

NOTE

The programmer can legally use the characters . () :
$ and= in symbols but when he does, he must be careful
that these characters are not interpreted as delimiters in
macro definitions (example 4 under macro calls).

The macro body optionally contains IRP pseudo instructions that allow iterative
assembly of a sequence within the body such that each iteration uses a different
pR.rameter value.

An ENDM pseudo instruction terminates a macro or opdef definition.

A macro or opdef can be defined anywhere in a subprogram before it is called.
When COMPASS encounters a definition, it places the name of the macro or the
syntax of the opdef along with the number of substitutable parameters and local
symbols in the assembler operation code table. Before the definition is saved,
COMPASS replaces each occurrence of a parameter name or local symbol with
a 77xx (where xx is a number assigned to the substitutable parameter or local
symbol).

On the call, each use of a substitutable parameter (each 77xx) is replaced by
its actual parameter; each use of a local symbol is replaced by a unique symbol
generated by the assembler. Usually, symbols replaced in this way have no
meaning outside the definition. However, if the macro includes an RMT
sequence which contains local symbols, the local symbols will have meaning
where the remote code is assembled outside of the definition.

5.4.1 ENDM - END MACRO DEFINITION

An ENDM terminates a macro or opdef definition.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

mname ENDM

mname Name of a macro sequence, syntax of an OPDEF sequence, or blank.

5-14 60360900A

An ENDM specifying a macro by name terminates the named macro definition and any unterminated
macro or opdef definitions within it. An unnamed ENDM terminates all unterminated definitions.
An ENDM outside the range of any macro sequence has no effect other than to be included in statement
counts.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T30

JAY MACRO P1,P2,P3 I . I . I

• I
KAY MACROE" PK2,PK2,PK3~PK4 . I . I . I
JPX/XQ OP DEF OP1,0P2,0P3; . I .

I •
KAY ENOM

I
TEr:?MINATES KAY ANO . I THf OPDEF DEFINITION

• I
• I

I
ENOM TERMINATES JAY

I

5.4.2 MACRO - MACRO HEADING

A MACRO pseudo instruction notifies the assembler to place the instructions forming the body of the
macro in a table of macro definitions for assembly upon call and place the macro name in the operation
code table.

The MACRO pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

mname MACRO parameters

60360.900A 5-15

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

MACRO mname, parameters

The blank location field identifies the second format.

mname

parameters

5-16

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. 1-8 characters.

A name that is identical to a PPU symbolic machine instruction, pseudo
instruction, or macro already in the operation code table redefines the
instruction. The most recent definition applies for the macro call. A
redefinition causes an informative flag to be issued but the new definition
holds.

Names of substitutable parameters. The order in which names are listed
determines the order in which parameters must occur in the macro call. Each
name is 1-8 characters, the first of which must be alphabetic. A name cannot
be END, IRP, LOCAL, ENDD or ENDM. A name that begins with a number, or
a second or later occurrence of a parameter name in the list is ignored.

Any of the following special characters separate parameters in the list:

+ - * I () $ = , or .

These characters have no meaning other than as separators. A blank
terminates the list of parameters. Also, any of these characters can be used
to separate the mname from parameters in format two.

The total number of unique parameter names and local symbols must not
exceed 63 for any one macro definition.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a fatal error and
ignore the definition.

The assembler ignores a blank parameter produced by two concurrent
separators or by a separator at the end of the list.

For an example of definition and calls, refer to Macro Calls.

60360900B

Examples of macro instructions:

1. Legal MACRO instructions:

LOCATION OPERATION VARIABLE COMMENTS

l 11 18 ho
T

A0C HACRO P1,P2,P3 I
MACRO OEF•LOC•ONE•rwo•TEN

MESSAGE MACRO A I

2. MACRO instructions having identical parameter lists.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 ho

SUM MACRO X:Y+Z+X !SECOND X PARAMETFR IS IGNORED
SUH MACRO X<Y+Z>

'
SUH MACRO X:Y+Z
SUH· MACRO X,V, <Z+X) 1NULL PARAMETER ANO SECOND

:x ARE IGNORED
RAO MACRO x
RAO MACRO X=X+1 I SECOND X ANO NUMERIC

1 PARAMETE~ ARE IGNORED

3. Illegal use of format two:

LOCATION OPERATION VARIABLE COMMENTS

l 11 18 !Jo

I

MACRO ABC ~NO SUBSTITUTABLE PARAMEH.R
MACRO ABC,,FP I NULL PARAMETER FIELD
HACRO, ABC,16,FP

1 NUMERIC PARAMETER FIELD

60360900A 5-17

5.4.3 MACRO CALLS

A macro headed by a MACRO pseudo instruction can be called by an instruction in the following format:

LOCATION

sym

sym

OPERATION VARIABLE SUBFIELDS

mname

Optional; depends on definition (see discussion following)

Parameter list composed of alphanumeric strings. Parameters are separated
by commas and terminated by a blank. Two consecutive commas constitute
a null parameter. An explicit zero, if desired, must be entered.

Each parameter must be in its correct relative position depending on the sequence
in which its formal substitutable name is given in the MACRO pseudo instruction.

When the definition MACRO is in format one, the first parameter in the call is substituted wherever the
first substitutable parameter occurs in the definition, the second parameter in the call is substituted
wherever the second substitutable parameter occurs in the definition, etc. When the definition MACRO
is in format two, the location field entry in the call is substituted wherever the first substitutable
parameter occurs in the definition, the first parameter in the variable field of the call is substituted
wherever the second substitutable parameter occurs in the definition, etc.

If null parameters are interspersed with legal parameters, the correct positions must be established
with commas. When the list terminates before the last possjble parameter, all remaining parameters
are considered null.

When the first character of a parameter is a left parenthesis, the assembler considers all the
characters between it and the matching right parenthesis as an embedded parameter or as an iterative
parameter. It is an iterative. parameter when the substitutable parameter has been named in an IRP
pseudo instruction (Section 5. 4. 9). Otherwise, it is an embedded parameter.

The assembler removes the outer pair of parentheses before substituting the enclosed character string
in a line. Embedded parenthetical items must be properly paired. A parenthetical item can contain
blanks and commas.

Example:
LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

MESSAGE <=C•PROGRAM1ABORT.•>
I

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as
a variable subfield.

5-18 60360900A

Processing of a location symbol and forcing upper of the first macro instruction depend on the 1VIA CRO
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion. In the macro call, the location
field argument cannot be more than 8 characters. Parentheses are not given the special meaning used
in the variable field of a macro call line.

Example:

1. An illustration of concatenation

Location Code LOCATION OPERATION VARIABLE COMMENTS

Generated I 11 18 T 30

M t\CK '1ACRO P1,P2 1

S,.P1 P1+1R,.P2 I
I

• I . I . I

FNOM I .
I . . I

'MA~t< A2,A. I

s.-A2 A2HR,.A ! MACK 1

SA2 A?+1RA I MACK 1 .{
----· .. -· 7Y63 502?001C01

ENDM MACK 1

60360900B 5-19

2. An illustration of nested definitions and calls

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 l3o

NAME1 MACRO
T

I
• . I . . I . . I NAME2 MACRO

I . I . I . I
NAME2 ENUM I . I . I . IAT HUS IIME, THIS LINE

NAME2 1IS PART OF A Off !NIT ION . lRA r HER THAN BEING A CALL. . I . I . I

NAME1 ENDM I . I . I . I

NAME1 INAME1 rs CALL£U ANU EXPANUEO.
I

I .
I .
I . l

NAME2 !GALL
I

TO NAME2 IS VAL ID

'1

3. The following example illustrates two calls to a definition headed by a MACRO in format two
using the location argument. The macro is named TABLE; its substitutable arguments are
TABNAM, VALUEl, and VALUE2, where TABNAM is the location argument.

Code Generated Location
LOCATION

5-20

OPERATION VARIABLE COMMENTS

11

MACRO
VFD
ENOH

18 30

TABLE,TABNAH1VALUEi1VALUE2
60/VALUE1,60/VALUEZ

I
I

6Q36Q900A

4. An illustration of embedded parameters:

Definition:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

X ~M MACRO A,8 I
LO~ ~ l
lJM B I EWJM

I

Call:

LOCATION OPERATION VARIABLE COMMENTS

l 11 18 130

XA~ <StlM,1'18), CSAM,IND3>

Expansion:

Location Code Generated VARIABLE COMMENTS

30

5. The following example illustrates use of R= in macros:

LOCATION OPERATION VARIABLE COMMENTS

1 11 lB T 30

ONSW MACRO N
I R= X1,N I

SX2 118 I
RJ =XCPM= I
ENDM I

OFF SW MACRO N I
R= X1,N I
SX2 120 I
RJ =XCPM= I
fNOM I

60360900A 5-21

6. The following example illustrates a character in a symbol erroneously being interpreted as a
delimiter for a parameter.

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

~c MACRO Z,VAL,P5
SET vat
SA7 Z.ALPHA
• •
• •
• •
ENOH

ILLEGAL SYMBOL. TOO LONG

7. The following example illustrates changing of control blocks and symbol qualifiers through
substitutable parameters in a macro. (The same call could be used by using micros to
chang~ actual parameters.)

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

Tl8 MACRO BLOCK,KWAL
USE BLOCK
QUAL K~AL

Tl'l BSS 108
'UG! VFO 60/-1

USE •
QUAL •
ENOH

5-22 603609.QOA_

8. The following example illustrates a technique that an experienced programmer may wish to
use to save time in processing of definitions. Remember that the assembler replaces the
first substitutable parameter with 7701, the second with 7702, etc. Note that 7701 is ;A in
display characters, 7702 is ;B, etc. This means that the programmer can use the display
characters directly in place of his substitutable parameter names in the body of the definition
and achieve the same results as if the assembler had made the substitution when it saved the
definition. At the time the definition is assembled, the assembler replaces each 77xx with the
actual parameter whether the code was inserted by the assembler when it saved the definition
or by the programmer when he coded the definition.

LOCATION

CHAR

o .. o

60360900A

OPERATION VARIABLE COMMENTS

11

ttACRO
CON
~NOH

•
•
•

18 30

ASCII, :INTERNAL ,EXTERNAL, BCD
;o~c ;B1fA

0

lt5,60,20 ,13 + ,, •...•..
l+fi, .. ~, .. ~,15 -

'[?lftllRI

I
<Li ,.··drnJ ,

5-23

5.4.4 MACROE - EQUIVALENCED MACRO HEADER

A MACROE pseudo instruction can be used instead of a MACRO instruction to notify the assembler to
place the instructions forming the body of the macro in a table of macro definitions for assembly upon
call, to place the macro name in the operation code table, and to save the list of parameter names so
that actual parameters supplied in the macro call can be listed by name in any sequence in the macro
call.

The MACROE pseudo instruction has two forms:

Format one:

LOCATION OPERATION VARIABLE SUBFIELDS

mname MACROE parameters

Format two:

LOCATION OPERATION VARIABLE SUBFIELDS

MACROE mname, parameters

The blank location field identifies the second format.

5-24 60360900A

mname

parameters

A legal name other than END, ENDD, IRP, LOCAL, or ENDM. It can be
1-8 characters. A name that is identical to a PPU symbolic machine instruction
name, pseudo instruction, or macro instruction already in the operation code
table redefines the instruction. The most recent definition is the one that applies
for the macro call. A redefinition causes an informative flag to be issued but the
new definition holds.

Names of substitutable parameters. Unlike MACRO, the order in which names
are listed does not determine the order in which parameters can occur in the
macro call. Each name is 1-8 characters, the first of which must be alphabetic.
A name cannot be END, ENDD, LOCAL, IRP, or ENDM. A name that begins
with a number, or a second or later occurrence of a parameter name in the list
is ignored. Any of the following special characters separate parameters in the
list:

+ - * I () $ = , or .

These characters have no meaning other than as separators. A blank terminates
the list of parameters. The total number of unique parameter names and local
symbols must not exceed 63 for any one macro definition. Also, any of these
can be used to separate the mname from parameters in format two.

Format one does not require parameters.

Format two requires at least one substitutable parameter. This parameter is
termed the location argument because the location field entry in the macro call
is its substituted value. Omission of the location argument from a MACRO
instruction in format two causes the assembler to issue a warning flag and
ignore the definition.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list.

For an example of definition and calls, refer to Equivalenced Macro Call.

5.4.5 EQUIVALENCED MACRO CALL

A macro definition headed by a MACROE pseudo instruction can be called by an instruction of the
following format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym mname

mname Name of MACRO E definition

60360900A 5-25

sym Optional symbol. A symbol in the location field causes the location counter
to be forced upper. The symbol is then assigned the value of the location
counter. A location field symbol on the first line in the definition that generates
code is assigned the same address. If the location field of the macro call does
not contain a symbol, the manner of the force upper is a function of the first­
code-generating line in the macro expansion.

An equivalenced parameter. Each p is the name of a substitutable parameter.
The ai is an actual parameter to be substituted for pi. The parameters need not
be listed in the same order as they are listed on the MA CROE instruction.
Equivalenced parameters in the list are separated by commas and terminated
by a blank.

A null value is substituted for any parameter omitted from the list.

\Vhen the first character of an actual parameter is a left parenthesis, the
assembler considers all the charade rs between it and the matching parenthesis
as an embedded parameter or as an iterative parameter. It is an iterative
parameter when the substitutable parameter has been named in an IRP pseudo
instruction (section 5. 4. 9, IRP). Otherwise, it is an embedded parameter. The
assembler removes the outer pair of parentheses before substituting the enclosed
character string in a line. Embedded parenthetical items must be properly
paired. A parenthetical item can contain blanks and commas.

After substitution, spacing between fields is the same as it was before substitution. One effect is that
a null actual parameter replacing a formal parameter in a variable field effectively moves the comments
field to the left. Then, when the line is assembled, the comments could be erroneously interpreted as
a variable subfield.

Processing of a location symbol and forcing upper of the first macro instruction depend on the MACROE
form used for the definition.

If the macro is defined using format one, that is, the macro name is in the location field, a location
symbol on the macro call line forces the first word of generated code upper. The location field symbol
is assigned the current value of the location counter. A location field (if any) on the line in the
definition that generates the code is assigned the same address. If the location field of the macro call
does not contain a symbol, the location and position counters are not affected by the call.

When the macro is defined using format two, that is, the macro name is in the variable field and the
first parameter is a location argument, the location symbol of the call is substituted for the first
parameter or location argument. The fact that this argument came from the location field rather than
the variable field has no special significance in the macro expansion.

5-26

CAUTION

After substitution, spacing between fields is the same
as it was before substitution.

60360900A

Example:

Location Code Gene rated LOCATION OPERATION VARIABLE COMMENTS

II 18 30

SAM MA CR OE A,B,c;
CON A
CON B
CON c
ENOH
•
•

5.4.6 OPDEF - DEFINE CPU OPERATION

An OPDEF pseudo instruction notifies the assembler to place instructions in the body of the definition
in a table of definitions for assembly upon call and place the instruction syntax in the operation code
table. There is no way of removing the definition from the table. It can, however, be bypassed
through redefinition, or disabled through CPSYN. If the syntax duplicates a CPU instruction already
in the table, the OPDEF definition takes precedence.

Format:

LOCATION

syntax

syntax

60360900A

OPERATION VARIABLE SUBFIELDS

OPDEF parameters

The syntax consists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two letters. The first can be any letter.
The second letter can be a register designator: A, B, or X in which case the
operation field of the opdef call is recognized as cAn, cXn, or cBn (c is a
unique character; n is 0-7); or the second letter can be any other letter, in
which case the operation field of the opdef call is recognized simply by a ,
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
opdef call. It consists of none, one, two, or three of the following 22 subfield
descriptors. Q represents an expression. An r represents a register letter
(A, B, or X). A comma separates two descriptors; a blank terminates the
syntax.

5-27

parameters

5-28

void Q

r rQ

-r -rQ

rl+r2 rl +r2Q

-rl +r2 -rl +r2Q

* rl r2 r 1 *r2Q

-r *r
1 2

-r *r Q
1 2

rl /r2 rl /r2Q

-r /r 2 -rl /r2Q

rl-r2 rl-r2Q

-r -r -r -r Q
1 2 1 2

For example, -r 1 *r 2 would be written as -X*B to describe -X3*Bl whereas rQ
would be written as BQ to describe B2+ALPHA.

The first descriptor immediately follows the mnemonic operator.

A substitutable parameter for each register designator (r) and expression
designator (Q) in the syntax in the order in which they occur in the syntax
(and, consequently, in the calling instruction). Parameters can b~ separated
by any of the characters:

+ - * I () $ = , or .

A blank terminates the list.

The assembler ignores a blank parameter produced by two concurrent separators
or by a separator at the end of the list. A second or later occurrence of a
parameter name in the list is ignored.

60360900A

Examples:

1. Listed below are some instructions that could be defined through OPDEF and the syntax entries
that would describe them:

Calling Instruction

Operation

Jpt

JPt

JP

JP

JP

NEt

LJ

BXnt

SBnt

LXnt

JPt

NEt

BXit

SBit

SBit

t Legal COMPASS CPU instructions
it K represents an expression.

60360900A

Variable Subfields

Ktt

Bn+K -
Bn+Bn+K - -
Bn,K

Xn/Xn.::::K

Bn,Bn,K

Bn-Bn,An-Xn,K

-Xn*Xn

Xn+Bn

Bn,Xn

Bj+K

Bj, Bk, K

-Xk*Xj

Xj+Bk

Bj+Xk

Opdef

Syntax

JPQ

JPBQ

JPB+BQ

JPB,Q

JPX/XQ

NEB,B,Q

LJB-B,A-X,Q

BX-X*X

SBX+B

LXB,X

JPBQ

NEB,B,Q

BX-X*X

SBX+B

SBB+X

5-29

2. The following complete definition redefines single-address long jump JP as the EQ jump, which
is faster than JP on the 6600 Computer System.

LOCATION OPERATION VARIABLE COMMENTS

1 l1 lB '30
' JPQ OPOEF Pt I

11
EQ P1 I

I FNOM I

Each subsequent JP instruction that matches the syntax JPQ is assembled as an EQ. A JP
instruction having a different syntax, such as the following, is not affected.

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 IB bo

02331J00005 + JP n3+ALPf.fl\
I
t

3. The following definition traps all floating point double-precision subtraction instructions

1

(DXi Xj-Xk) and jumps to an error-check routine for debugging. I, J, and Kare substitutable
parameters used within the definition.

LOCATION OPERATION VARIABLE COMMENTS

11 lB '30

DXY-Y (')P'1fF r,J~K
T

I .
I . . I
I

PJ I f'!(,,, IT I
fNnM I

4. The following sequence causes RXi K to be defined as AXi K. It does not affect the standard
RXi instructions involving registers.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 ho
R)(Q OPOEF P1,P2 l

AX.Pt P2 I
FNOH I

5.4.7 OPDEF CALL

An opdef call resembles a CPU mnemonic machine instruction. The mnemonic code, quantity and
sequence of registers, arithmetic operators, and expressions (excluding operators within the expressions)
must match the syntax described in the OPDEF for the definition to be called.

5-30 60360900 E

NOTE

If the Qin a descriptor is combined with register letters,
a plus or minus must precede an expression in the call.

OPDEF Syntax Call

JPQ JP K Not combined

JPBQ JP Bn+K Combined

JPB,Q JP Bn,K Not combined

JPX/XQ JP Xn/Xn~K Combined

An OPDEF call can occur any place after the definition is saved. In substituting parameters, the
assembler uses only the register values given in the call. It does not substitute the register designators.

A location symbol on the opdef call line forces the first word of generated code upper. The location field
symbol is assigned the current value of the current location counter after the force upper. A location
field on the line in the definition that generates code is assigned the same value. If the location field of
the opdef call does not contain a symbol, the manner of the force upper is a function of the first code­
generating instruction in the expansion. If the call location field and the code-generating instruction
field both contain symbols they are assigned the same value.

Only a line having the correct syntax calls the definition.

Examples:

The following opdef defines an instruction having the syntax IXX/X. On the call, the assembler
substitutes 3, 4, and DIV (not X3, X4, and X. DIV) for Pl, P2, and P3, respectively.

Location Code Generated LOCATION OPERATION VARIABLE COMMENTS

11 18 30

IXXIX OPQ~,F P1,P2,P3
PX;.P2 X~P2
PX.-p3 X.P3

I NX•P2 X.P2,84
NX.P3 X.P3,Blt I

FX.P1 X.P2/X.P3 I

UX.P1 X.P1,Blt i
LX.Pl X.Pt,Blt
ENDM
IX3

60360900A 5-31

The following OPDEF selectively traps the SXi Xj-fBk instructions.

Definition:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 I 3o

SXX+B OPOEF I,J,K I . I . I . I
ENOM I

Statements that call the definition:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

SX3 X1+B2 I . I

• I . I

SYM SX.NN X6+8.XXX I

I

Statements that do not call the definition:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 I 30
\----+--- -- ----1------+-------~1-------------------

sxs

SXo

SX.Y

SY

Xl+

B3+X4

X4+B4

5.4.8 LOCAL-LOCAL SYMBOLS

/NO 8 DESIGNATOR O~ +.
I
I
1REGISTER~ INTERCHANGED
I
INO X DESIGNATOR OR OPERAND
I
IMNEMONIC CODE NOT SX.
I

One or more LOCAL instructions that list symbols local to the definition optionally follows the MACRO,
MACROE, or OPDEF pseudo instruction. The only lines that can separate the first header statement
from LOCAL are comment lines.

Format:

LOCATION

symbols

5-32

OPERATION VARIABLE SUBFIELDS

LOCAL symbols

List of local symbols. Each symbol must begin with an alphabetic character.
Symbols must be separated by and must not include the following characters:

+ - * I () $ = , or .

60360900A

A blank terminates the list. The maximum number of local symbols and
substitutable parameters is 63. COMPASS ignores the use of a substitutable
parameter name in the local symbol list.

A location field symbol, if present, is ignored.

A symbol in the list is considered local to the macro; that is, it is known only within the macro
definition. On each expansion of the macro, COMPASS creates a new symbol for each local symbol
and substitutes it for each occurrence of the local symbol in the definition (other than in comment lines
identified by * in column 1). Thus, invented symbols replace LOCAL-named symbols wherever they
appear in a macro difinition in a manner similar to the way substitutable parameters are replaced.

A user passes a local symbol to inner macro definitions or inner macro calls when he does not declare
the symbol local in any of the inner definitions saved or called. That is, a symbol declared local in a
macro can be referred to in any inner macro that does not also declare it as local (see example 2).

A symbol not defined as local is accessible from outside the macro definition. An invented symbol is
qualified if defined while in a QUAL block. It is not listed in the symbolic reference table. Blanks
are preserved in a line containing a substituted symbol; COMPASS makes no attempt to change the
structure of the line.

On the listing, each invented symbol is shown as Hsym, where sym is unique for each local symbol in
the subprogram. For example, if the symbol A is declared local to the macro, the subprogram can
define a different symbol A elsewhere.

Examples:

1. In the following example, C is local to macro ABC and is passed to inner macro definitions.
In the definition, each occurrence of formal parameter A is replaced by the parameter mark
7701; each occurrence of B by the parameter mark 7702, and each occurrence of C by the
parameter mark 7703. Then, when ABC is called, COMP ASS assigns invented symbol
H000001 to C and replaces each occurrence of 7703 in definitions ABC and XY z.

---- -·----- -- ---- --- --·-·-----

LOCATION OPERATION VARIABLE COMMENTS

11 18 30

ABC MACRO A,B I
LOCAL c I

c BSS 108 I

• • I
I DEFINITION • • I

• • I ! DEFINITION

OF ABC
XYl MACRO D

SA1 c
• 1 OF XYZ

I
I
I

i DEFINITION}

EXPANSION
OF ABC

1 OF XYZ
I

60360900A 5-33

2. In the following example, C is local to each level. Note how this example differs from the
preceding one.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

nro HACRO A' f3
i

' I
LOCAL c I

c ass 108 I . . I . I
>DEFINITION .

I . . OF BCD
YZA MAC~O I

LOCAL c l: DEFINITION SA1 c . 10F YZA . I
c BSSZ 1

) : ENOM

On the call to BCD, the assembler replaces each occurrence of C with the invented symbol,
tW00002 including the use of the symbol in the LOCAL instruction for macro XYZ.

LOCATION OPERATION VARIABLE COMMENTS

Finally, on a call to Y ZA, tW00002 is defined as local and the assembler replaces each
tW00002 with another invented symbol. Thus, each reference to C in the source code SAl
instruction does not result in a reference to the BSS in the outer macro.

LOCATION OPERATION VARIABLE COMMENTS

5.4.9 IRP - INDEFINITEL 'f REPEATED PARAMETER

An IRP pseudo instruction in a macro definition signals the beginning or e,nd of a sequence of code to be
assembled repeatedly with one parameter varied with each repetition.

It has two formats:

LOCATION

5-34

OPERATION

IRP

IRP

VARIABLE SUBFIELDS

parameter

60360900A

The first form introduces the sequence and names the substitutable parameter; the second form
terminates the repeated sequence. In either form, a location field symbol, if present, is ignored.

The parameter name must be listed as a substitutable parameter on the MACRO or MACROE pseudo
instruction for the definition.

On the macro call, the indefinitely repeated parameter consists of one or more subparameters enclosed
by parentheses and separated by commas. The assembler assembles the sequence for each subparameter;
the number of copies of the sequence depends on the number of subparameters (none at all when the
actual parameter is null). When the list of subparameters is exhausted, the assembler continues with
the next line in the definition. If the named substitutable parameter does not occur between the two
IRP instructions, the assembler repeats the code unchanged for each subparameter provided in the call.
An IRP outside of the range of a macro has no effect on assembly other than to be included in statement
counts.

IF-skips of IRP sequences should be controlled by instruction bracket names rather than statement
counts because IBP expansions are done even when an IF-skip is used and because the number of
statements generated by IBP is variable.

Anything that can be done with an IBP pair can be done with ECHO and ENDD. IRP is faster at assembly
time but ECHO is more flexible (it is not expanded during IF-skips, allows multiple arguments, and
can be nested). IRP should be used when greater speed is desired and the expanded capabilities of
ECHO are not needed.

Examples:

1. Repeat sequence within macro

102fJ7

1ti!07

19 210'

unu

11!12

18213

ittl01.ft?1 t
. 7!6·1010133 +

5161010127 +
1111018131 +

7161010131 +
5168010131 +

H111UU32 +
. 72-61019133 +

5Ut09U132 +

60360900 E

LOCATION

ZAP

OPERATION VARIABLE COMMENTS

II

HACRO
IRP
SA1
SX6
<;A6
IRP
ENOH
•
•
ZAB
IRP
~Al
SX6
SA&
SA1
SX6
SA6
SAl
SX6
SA6
tRP
ENDH

IB

A~G,B

AR.G
ARG
Xi +f\
ARG

'30

I
I

}

I

REPEATED
SEQUENCE

I

(J , K , L > , CON
J,K,L
J
Xi+CON
J
I(

X1+CON
K
L
Xi+CON
t.

~DEFINITION
OF ZAB

5-35

2. Assign symbol at every 1008 words of zeroed storage:

LOCATION

BUF

Pl

OPERATION VARIABLE

11

USE
HACRO
IRP
BSSZ
lRP
EMOH
BUF

18

STl>ltAG£
P1
Pl
11108

I
I
I
I

I
I

CPiQtRt:S, T> I.

COMMENTS

30

5.5 SYSTEM MACRO AND OPDEF DEFINITIONS

Definitions of such general usefulness that they should be available to any program without each
program defining them can be placed on the system· text file as system macros or can be placed on
a file accessible through an XTEXT pseudo instruction.

System macros provide for such system functions as reading and writing files and specifying parameters
for file environment tables, etc. Systems macro definitions are ayailable to COMPASS for each
assembly. The programmer can use a macro call for a system macro at any time in his prograrru.
Descriptions of system macros are given in the operating system reference manual.

Systems definitions can include any legal macro or opdef definition. An expansion of a call for a
system definition is not normally included on the assembler listing. Use of the S option of the LIST
pseudo instruction(Section 4.11.1) enables· listing of expansions of.system definitions.

5-36 60360900A.

OPERATION CODE TABLE MANAGEMENT

The COMPASS operation code table contains the information that COMPASS requires for interpreting
legal operation field entries for COMPASS instructions.

When assembly begins, the operation code table contains these entries.

Pseudo instructions (except LO CAL)
CPU symbolic instructions (Section 8. 4)
CMU symbolic instructions (Section 8. 5)
PPU symbolic instructions (Chapter 9)
System macro and opdef definitions

The MACRO, MACROE, and OPDEF pseudo instructions (Chapter 5) cause entries to be made in this
table. In addition, the programmer has the capability of creating entries through the following
instructions discussed later in this chapter:

CPOP

PPOP

OPSYN

CPSYN

CPU operation

PPU operation

Synonymous PPU or pseudo operation or macro

Synonymous CPU operation or opdef

6

If a new entry redefines an instruction already in the table, the obsolete entry is not physically removed
from the table. Instead, it is saved so that the table can be reconstructed between assemblies.
COMPASS reconstructs the operation code table using all the original system macros, opdefs, pseudo
instructions, and symbolic machine instructions. No programmer-created entry is preserved from
assembly to assembly. The number of entries in the table is limited to 4123.

The only pseudo instruct~on that logically removes entries from the operation code table are PURGMAC
and PURGDEF.

Entries in the operation code table are in two distinct formats permitting a logical division of the
table. One type of entry permits identification of an instruction by finding a match for the contents of
the operation field, thus, it provides mnemonic recognition. The other type of entry is looked at only
if the search for a mnemonic operator fails to yield a match during a CPU assembly.

This type of entry provides for recognition of an instruction according to its syntax. COMPASS
analyzes the statement to be interpreted, determines the syntax of the operation and variable subfields,
and again searches the table.

60360900A 6-1

Instructions recognized in the mnemonic search and the information provided to the assembler for
each instruction are as follows:

Pseudo instructions

PPU symbolic instructions

Instructions described through PPOP

Macro instructions

Instructions described through OPSYN

The entry contains addresses to routines that perform
pass one and pass two operations

The entry describes the format of the instructions to
be assembled

The entry describes the format of the instruction to
be assembled

The entry directs the assembler to the location of the
saved definition

The entry is a copy of the synonymous entry

For a PPU assembly, a failure to find an entry for a mnemonic operator causes an operation code error.
For a CPU assembly, however, if the search for the mnemonic operator does not yield a match,
COMPASS searches the operation code table again for an entry with a matching syntax. Instructions
recognized in the syntactical search and the information provided to the assembler for each instruction
are as follows:

CPU symbolic instructions

Instructions described through CPOP

Instructions defined through OPDEF

Instructions described through CPSYN

The entry describes the format of the CPU instruction
to be assembled

The entry describes the format of the CPU instruction
to be assembled

The entry directs the assembler to the location of the
definition

The entry is a copy of the synonymous instruction
The action taken depends on the synonymous entry

If, following the second search of the operation code table, the statement still has not been identified,
the assembler takes the following action:

For a PPU assembly, it generates a 24-bit instruction of which the first 12 bits are zero.

For a CPU assembly, it generates a 30-bit zero instruction.

Although OPSYN and CPSYN pseudo instructions provide a means of rendering more than one
instruction synonymous, only instructions of the same type can become synonymous. The logical
division of the table between the two types of entries prevents mnemonically identified instructions from
being made synonymous with syntactically identified instructions.

When a MACRO, MACROE, PPOP, or OPSYN creates an entry for a mnemonic name that is already
in the table for a different instruction, the new entry takes precedence over the old entry. Similarly,
when a OPDEF, CPOP, or CPSYN redescribes a syntax already in the table for a different instruction,
the new entry takes precedence over the old entry. As a result, the order of precedence for operation
field recognition is, from highest to lowest:

1. Programmer-created entries for mnemonically identified instructions

6-2 60360900A

2. System macros, pseudo instructions, PPU symbolic machine instructions, and CMU
instructions other than the IM instruction.

3. Programmer-created entries for syntactically identified instructions

4. CPU symbolic instructions and the CMU IM instruction

Example:

The following example illustrates a special case in which a macro name takes precedence over one
form of a machine instruction, i.e., the form using SB4 as an operation code.

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 '30
' ~Bl+ MACRO P1,P2 1 OE FINE MACRO NAMED SB4 . I . I

• I

ENOM I
I

• I .
I .
lcALL SA4 A1+ABLE TO MACRO. NOT CPU INSTRU CTI ON . I . I . I

SR3 A1+AALE !MACHINE INSTRUCTION
I
I

SB4 OPSYN NIL :DISABLES MACRO BUT OOES NOT . 1RESTORE NORMAL USE OF $84 . IAS AN OPERATION CODE. EVEN IF .
I

1

IT WERE REDEFINED WITH OPOfF . IT WOULD NOT RE RECOGNIZED • . I :THF MACRO FORM ALWAYS TAKES .
!

I PRECEDENCE •

PU~GMaci SB4 : RESTORES NORMAL USE OF SB'+

6.1 MNEMONICALLY IDENTIFIED INSTRUCTIONS

Mnemonically identified instructions include all pseudo instructions, macro instructions, and PPU
symbolic instructions whether system or programmer defined. PPOP, OPSYN, NIL, and PURGM.A C
provide the programmer with a means of creating or removing operation code table entries that are in
the mnemonically identified format.

6. 1 . 1 PPOP - PPU OPERATION CODE

The PPOP pseudo instruction defines the operation and variable fields of a PPU symbolic machine
instruction and creates an operation code table entry for the instruction. COMPASS generates an
octal machine instruction of the defined format whenever the PPU instruction described by the PPOP
instruction is used. If the operation code table already contains an entry for the name, the new
definition takes precedence over the old during assembly of the subprogram or until it is redefined.
No error is flagged. Any illegal parameter in PPOP causes COMP ASS to ignore the PPOP and issue
a 7-type error flag.

60360900A 6-3

Format:

LOCATION

name

name

ctl

val

type

6-4

OPERATION VARIABLE SUBFIELDS

PPOP ctl, val, type

Mnemonic name, 1-8 characters

Control of instruction assembly

ctl

0

1

2

3

4

5

6

7

Significance

Illegal; if used, COMPASS ignores the PPOP

24-bit instruction with 12-bit address and no indexing

12-bit instruction with signed relative address or absolute address
(e.g., UJN)

24-bit instruction with 18-bit address (e.g. , LDC)

12-bit instruction with 6-bit address (e.g. , LDN)

24-bit instruction with 12-bit address and optional indexing
(e.g., LDM)

12-bit instruction with signed relative address (e.g. , SHN)

24-bit instruction with 12-bit address and required second
field (e.g. , IAM)

An evaluatable expression specifying the 4-octal digit operation code value;
usually, only the two leftmost digits are significant. If the assembly base is M,
the field is assumed to be octal.

An evaluatable expression specifying an integer value that COMPASS interprets
as follows:

6

7

other or
omitted

Restrict the instruction being defined to the CYBER 170 Series,
CYBER 70/Models 72, 73, and 74; COMPASS sets an error
flag if the instruction being defined is used in a CYBER 70/
Model 76 PPU assembly.

Restrict the instruction being defined to the CYBER 70/Model 76;
COMPASS sets an error flag if the instruction being defined is
used in a CYBER 170 Series, CYBER 70/Model 72, 73, or 74
PPU assembly.

The instruction is not restricted to either machine type.
If the base is M, type is assumed to be octal. If type is omitted,
the comma preceding it can be omitted also.

60360900E

Example:

7311

Code Generat.ed

5415 0040

o~o

p;

40

LOCATION

1

LA
c
STM

I

OPERATION

11

DfRIOH
PASE . . .
FOU
J:"QU
PPOP .
l~T~

6.1.2 OPSYN - SYNONYMOUS MNEMONIC OPERATION

VARIABLE COMMENTS

18 130

T

I 0 I

I
I

15 I
41) I
S,5400+LA I

I

I
I

r I

The OPSYN pseudo instruction makes a name in the location field of the OPSYN synonymous with the
macro, pseudo instruction or PPU mnemonic name specified in the variable field. The size of the
operation code table is the only limit to the number of instructions that can be made synonymous.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

OPSYN

The name in the variable subfield must be previously defined as a standard instruction code. After an
OPSYN, either name produces equivalent results. If the location field specifies a previously defined
macro or operation code, the new definition takes precedence over the old without notification. Thus,
a macro defined by a name that is subsequently used in an OPSYN location field is not called when
the macro name is used in the operation field. The instruction actually called is the instruction
named in the variable subfield of the OPSYN. On the other hand, the old macro definition is not lost
and can be restored by purging the new definition with PURGMAC.

60360900A 6-5

Example:

6-6

1. An operation named CALL is synonymous with RJM.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

CALL OP SYN RJM I . I . I . I
CALL =X SUBR= lppooucEs SAME RESULTS

I As IF IT WERE AN RJM

2. In the following example, a programmer wishes to use a macro named LJM for part of the
program and use the real LJM for the remainder of the program.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

LJM. OPSYN LJM SAVE ORIGINAL DEFINITION AS LJ
PURGMAQ LJM ~URGE ORIGINAL DEFINITION

I .
I

• I . I
~JM MACRO xx

I . . I . I

LJM ENOM

} !CODE USING
•
• LJM MACRO
•

!LJM OPSVN LJM. } 1RESTORES ORIGINAL LJM .
~ODE USING ORIGINAL LJM . .

60360900A

6.1.3 NIL - DO NOTHING PSEUDO INSTRUCTION

The NIL pseudo instruction resembles a no-op; it produces no code and conveys no information to the
assembler. It is primarily designed for disabling a macro; it cannot be used with CPSYN. The
following instructions could be used in place of NIL as nil instructions:

ENDM
ENDD
ENDIF
IRP

Format:

LOCATION OPERATION VA RI ABLE SUBFIELDS

NIL

A location field symbol if present is ignored.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II 18 130

MACK OPSYN NIL
T

I

• I
I .
I

• I
TAG I ~ACK A,B,6,73 I

I
I

The assembler interprets each call to MACK as a NIL instruction. TAG is not defined because it
becomes the location field symbol for NIL when the statement is assembled.

6.1.4 PURGMAC-PURGE MACROS

The PURGMAC pseudo instruction provides a means of disabling operation code entries for the named
instructions for the duration of the current assembly.

Format:

LOCATION

name.
1

OPERATION VARIABLE SUBFIELDS

PURGMAC name1 , name2' •.. , namen

Names of mnemonic operation codes for macro definitions, pseudo instructions,
or PPU instructions.

A location field symbol if present is ignored.

60360900A 6-7

6.2 SYNTACTICALLY IDENTIFIED INSTRUCTIONS

Syntactically identified instructions apply to CPU assemblies only. The CPOP and CPSYN pseudo
instructions create operation code table entries for instructions that are to be identified through
recognition of their syntax, rather than through the contents of the operation field only.

6.2.l CPOP - CPU OPERATION CODE

The CPOP pseudo instruction describes the syntax of a new CPU symbolic machine instruction and
creates an operation code table entry for the instruction. An instruction of the defined format is
generated whenever the CPU instruction described by the CPOP instruction is used. If the operation
code table already contains an entry for the instruction, the new definition takes precedence over the
old during assembly of the subprogram. Any illegal parameter in CPOP causes COl\IPASS to ignore
the CPOP and issue an error flag.

Format:

LOCATION

sytx

sytx

6-8

OPERATION VARIABLE SUBFIELDS

CPOP ctl, val, reg, type

The syntax consists of a mnemonic operator and variable field descriptors.
The mnemonic operator consists of two letters. The first can be any letter.
The second letter can be a register designator: A, B, or X, in which case,
the operation field of the instruction is recognized as cAn, cXn, or cBn,
(c is a unique character; n is 0-7); or the second letter can be any other letter,
in which case the operation field of the instruction is recognized simply by a
two-letter mnemonic, such as EQ.

The variable field descriptors define the order of appearance of all registers,
expressions, and subfield separators that comprise the variable field of the
instruction being described. It consists of none, one, two, or three of the
following 22 subfield descriptors. Q represents an expression. An r represents
a register letter (A, B, or X). A comma separates two descriptors; a blank
terminates the syntax.

void Q

r rQ

-r -rQ

rl+r2 rl+r2Q

-rl +r2 -rl +r2Q

rl*r2 rl *r2Q

-r *r
1 2

-r *r Q
1 2

r/r2 r/r2Q

60360900A

-r/r2 -r/r2Q

rl-r2 rl-r2Q

-rl-r2 -r -r Q
1 2

For example, to describe -X3*Bl, the descriptor, -r1 *r2' would be written as -X*B whereas, to
describe B2+ALPHA, the descriptor rQ would be written as BQ.

ctl

val

reg

60360900B

Control of instruction assembly.

ctl

0

1

2

3

4

5

6

7

Significance

15-bit instruction

30-bit instruction

15-bit instruction, force upper before assembly

30-bit instruction, force upper before assembly

15 bit instruction, force upper after assembly

30-bit instruction, force upper after assembly

15-bit instruction, force upper before and after
assembly

30-bit instruction, force upper before and after
assembly

An evaluatable expression specifying a 9-bit operation code; if the base is M,
val is assumed to be octal.

Three octal digits specifying the order from left to right into which register
numbers are to be inserted into the i, j, k portions of a 15-bit instruction, or
into the i and j portions of a 30-bit instruction. If the assembly base is M,
reg is assumed to be octal.

1

2

3

0

Register number obtained from operation field

Number of second register or only register in
variable field

Number of first of two registers in variable field

Set field to 0

6-9

I

I

type

Example:

An evaluatable expression specifying an integer value that COMP ASS interprets
as follows:

6

7

other
or

omitted

Restrict the instruction being defined to the 6000 Series, CYBER
170 Series, and CYBER 70/Models 72, 73, and 74; COMPASS sets
an error flag if the instruction being defined is used when
MACHINE 7 has been specified.

Restrict the instruction being defined to the 7600 or the CYBER 70/
Model 76; COMPASS sets an error flag if the instruction being
defined is used when MACHINE 6 has been specified.

The instruction is not restricted to a machine type.

If base is M, type is assumed to be octal. If type is omitted, the comma
preceding it can be omitted also.

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

SAX+B CPOP 0 ,5300,1328 •DEFINES s 1\1 XJ+BK
I

sxxa CPOP 1,12oa,12oa :ot:FINES SXI XJ+K . I
I

• I
• I

53731 SA7 X3+tf1 I
I

722 7231000003 TAG SXJ X1+3
I

I

6-10 60360900 E

6.2.2 CPSYN - SYNONYMOUS CPU INSTRUCTION

The CPSYN pseudo instruction renders an instruction with the syntax given in the location field
synonymous with the instruction having the syntax specified in the variable field. The only limit to
the number of CPU instructions that can be made synonymous is the size of the operation code table
(4123 entries).

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

CPSYN

Syntax of a CPU instruction (see CPOP for legal forms). If this syntax is
already in the operation code table, the table entry for sytx2 takes precedence

over the old table entry for sytx1 without notification.

sytx
2

Syntax of a CPU instruction for which there must be an entry in the operation
code table. Following the CPSYN, an instruction in either syt~ or sytx2
produces an octal instruction of the format described by the entry for sytx2.

6.2.3 PURGDEF-PURGE CPU OPERATION CODE

The PURGDEF pseudQ instruction provides a means of disabling syntactically-identified operation code
entries for the duration of the current assembly.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

PURGDEF sytx

sytx Syntax of a CPU instruction (see CPOP for legal forms).

A location field symbol, if present, is ignored.

60360900A 6-11

MICROS

The COMPASS micro capability enables the programmer to symbolically refer to a defined character
string. When used in conjunction with IFC, DUP, STOPDUP, and SET pseudo instructions, micro
strings provide for varied manipulation of character strings -- testing for a particular character,
counting characters, concatenation of strings, etc.

Use of a micro definition requires two steps: definition of the character string, and substitution. In
this discussion, substitution rather than definition is discussed first so that the reader has a better
understanding of how a definition is used when it is described.

7 .1 MICRO SUBSTITUTION

Wherever a micro name between micro marks (;i) occurs in a statement other than a comment

7

line (* in column 1), the assembler substitutes the micro before it interprets the statement. If
column 72 of the last card read is exceeded as a result of micro substitution, the assembler
creates up to a maximum of 9 continuation cards, beyond which it discards excess characters
without notification on the listing. No replacement takes place if the micro name is unknown or if
one of the micro marks has been omitted. If the micro name is unknown, the assembler flags a
nonfatal assembly error. If the micro name is null, (that is, the two micro marks are adjacent),

then

1. Both micro marks are deleted, and

2. No error flag is set

Example:

A micro identified as NAM is defined as the 7 characters:

AOORESS

A reference to NAM is in the variable field of a line:

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 !Jo

LOC SA1 1NAM~+ 4 I
However, before the line is interpreted~ COMPASS substitutes the definition for NAM producing the
following line:

LOCATION

1

LOC

60360900B

OPERATION VARIABLE COMMENTS

11 18 130

SA1 AOORESS+4 I
I

NOTE

Unless the A option of the LIST pseudo instruction is
enabled, the listing depicts the instruction as it was
before the substitution took place.

7-1

7 .2 MICRO DEFINITION

Pseudo instructions specifically designed for the purpose of defining micros are: MICRO, OCTMIC and
DECMIC. In addition, the following pseudo instructions optionally define micros: BASE, CODE, and
QUAL. Also, system or built-in micros are automatically defined by COMPASS at the start of each
subprogram assembly.

7.2. l MICRO - DEFINE MICRO

The MICRO pseudo instruction defines a character string and assigns a name to that string.

Format:

LOCATION

micname

micname

dstringd

OPERATION VARIABLE SUBFIELDS

MICRO

Name by which definition is called; 1-8 characters

Absolute evaluatable expression specifying starting character in string; when the
base is M, COMPASS assumes that n

1
is decimal.

Absolute evaluatable expression specifying number of characters; when the base
is M, COMPASS assumes that n

2
is decimal.

Delimited character string. The delimiter d is a character not used in the
string.

Counting the first character after d as character 1, the assembler forms the string by extracting n2
characters starting with character n

1
. If the second delimiting character occurs before count n2 is

exhausted, the defined string terminates at that point. If lli is greater than zero and n2 is omitted, zero,
or negative, the defined string includes all the characters from ~ to the closing delimiter (see second
example).

If nl is omitted, zero, or negative, the defined string is empty; no substitution takes place when the micro
name is referred to. That is, n2 and the character string are ignored.

A previously defined micro can be a part of a micro definition; one micro can be defined as a substring
of another (see third example).

A micro can combine previously defined micros or can be a subset of another. Also, a micro defined
originally as one character string can be redefined subsequently with a different character string. After
the redefinition, the original character string is inaccessible.

If n1 or n2 is negative, the assembler generates a 7-type error.

Examples:

1. The following MICRO defines NAME as the 19 characters beginning with A and ending with G.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 ho

I N ~t-1E Mrcqo 1,19,•ALPHANUM~RIC STRING•

7-2 60360900C

2. This example illustrates a blank character count. The defined string begins with A and is
terminated by the closing delimiter.

LOCATION OPERATION VARIABLE COMMENTS

1 11 lB ho
MICKY MIC PO 1,, "'"ALPHANUMERIC ST~ING•

3. One micro can be defined as a substring of another.

LOCATION OPERATION VARIABLE COMMENTS

1 11 lB T3o

NAM1 MI~~O 1,2S,•MAJO~~ALPHANUM~RIC ST~It\JG• . . . I . I •
I : : . I •

NAM2 i MIC~O 1,,•tNAl"ftt• iSAMF SH ING Ac; IN EXAMPLES 1 A

4. One micro can combine others.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T30

IMAl'l MICRO 1,t2,$ALPHANUMFRIC~

NAM2 MICRO 1,1,x STRINGX
f'!Al'-13 "'4I~RO I 1,,+tNAMtttNAM2t+ C0'18 IN ES NA Mt ANO NAM2

5. A micro name can be redefined.

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

T

MSG MICRO 1,6,•STRING•1 . . . }
I . . . :coflE US INC, FIRST OfFP.fI TION . . . I

MSG MICRO 1,1q,•ALPHANU~fR1C tMSGt•

}
I

I

. . ' .
~CODE . .

I :
USING sErONO DEFINITir.N • . . 1FIPST OEF!NTTI ON TS INA~CESSil3

I
Lt.

6. Micro substitution takes place before a line is assembled or examined for syntax. Thus,
the following is possible.

LOCATION OPERATION VARIABLE COMMENTS

I 11 j 18 f 30

NAf", MICRO 1,25,• LOC SA1 ADDRESS+• . . .
1-NAMtl

LCC SA1 A00PESS+1

60360900 D 7-3

7.2.2 DECMIC - DECIMAL MICRO

Using a decimal conversion, the DECMIC pseudo instruction converts the expression into a character
string to be saved under the name specified.

Format:

LOCATION

micname

micname

aexp

n

Example:

LOCATION

I

v

SY~Bl

SY~BL

OPERATION VARIABLE SUBFIELDS

DECMIC aexp,n

Name by which definition is called; 1-8 characters

Absolute evaluatable expression

Optional absolute evaluatable expression specifying number of characters
in the defined string. The defined string is a maximum of 10 characters
regardless of the magnitude of n. When base is M, COMPASS assumes that
n is decimal

If n is omitted or has a zero value, the micro contains the number of characters
indicated by the conversion to a maximum of 10 characters. If the converted
expression has more than n (or 10) digits, the most significant digits are
truncated. If the value has fewer than n digits, the string is right justified and
filled with leading zeros. All numbers are treated as positive.

OPERATION VARIABLE COMMENTS

II 18 !Jo

Of C~H~ ~,6 I
I
I

MT CPO 11,,•tVt STORAGE NEEDED•
h1ICPO 1,,•001024 STORAGE NEEDED•

7.2.3 OCTMIC - OCTAL MICRO

l'sing an octal conversion, the OCT1\1IC pseudo instruction converts the value of the expression into a
~haracter string to be saved under the name specified.

7-4 60360900 D

Format:

LOCATION

micname

micname

a exp

n

OPERATION VARIABLE SUBFIELDS

OCTMIC aexp,n

Name by which definition is called; 1-8 characters

Absolute evaluatable expression

Optional absolute evaluatable expression specifying number of characters
in the string. The defined string is a maximum of 10 characters regardless
of the magnitude of n. 'When base is M, COMPASS assumes n as a decimal.
If n is omitted or has a zero value, the micro contains the number of
characters indicated by the conversion to a maximum of 10 characters.

If the converted expression has more than n (or 10) digits, the most significant digits are truncated.
If the value has fewer than n digits, the string is right justified and filled with leading zeros. All
numbers are treated as positive.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I II lB 130

V1 OCTHIC B,6 I
I
I
I
I
!

~1 MIC~O 1,,•tV1t AOOITIONAL STORAGE NEEOEO•
$1 M!CRO 1,,•002000 AOOITIONAL STORAGE NEEDED•

7 .3 PREDEFINED MICRO NAMES

Several standard micros are predefined by the COMPASS assembler. They are available for every
assembly. The programmer simply writes the micro reference as desired.

These micros are automatically defined at the beginning of each assembly, and have the default values
specified below until they are redefined by the programmer; thereafter, the programmer's definition
holds until the start of the next assembly.

60360900 n 7-5

7.3.1 DATE

The DATE micro contains the current date in 10 characters in the following form as obtained from the
operating system:

6.yr/mo/dy.

The micro reference is -:f.DATE~o

7.3.2 JDATE

The automatic value of the IDATE micro is five digits yyddd, where yy is the year and ddd is the day
of year at the time of assembly. Thus, JDATE is the Julian date form of DATE.

"''lle micro reference is :#JDATEi.

7.3.3 TIME

The TIME micro contains the current time of day in 10 characters in the following form as obtained
from the operating system:

6. hr. min. sec.

The micro reference is iTIME#.

Example:

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

TITLE PROGRAH ASSEMBLED ON ~DATE# AHTIHEt

7.3.4 BASE

The automatic value of the BASE micro is a single letter D, M, or 0, corresponding to the number
base currently in effect(specified by the most recent BASE pseuqo instruction); it is initially D.

The micro reference is #BASE#.

7-6 60360900A

7.3.5 CODE

The automatic value of the CODE micro is a single letter A, D, E, or I, corresponding to the
char::icter code currently in effect (specified by the most recent CODE pseudo instruction); it is
initially D.

The micro reference is ICODEI.

7.3.6 QUAL

The automatic value of the QUAL micro is 0 to 8 characters comprising the qualifier symbol
currently in effect (specified by the most recent QUAL pseudo instruction); it is null initially and
whenever the blank qualifier is in effect.

The micro reference is fQUAL~.

7.3.7 SEQUENCE

The automatic value of the SEQUENCE micro is 18 characters comprising the sequence field (card
columns 73-90) of the first line of the COMPASS source statement most recently read from the main
source input file. Thus, if the current statement was read from the main source input file, SEQUENCE
is the sequence field of the first line of the statement. However, if the current statement is generated
(i.e., part of a macro call expansion, DUP expansion, etc.) or is read from a different file via the
XTEXT pseudo instruction, then SEQUENCE is the sequence field of the first line of the statement most
recently read from the main source input file.

The micro reference is #SEQUENCE#.

7.3.8 MODLEVEL

The automatic value of the MODLEVEL micro is the value (up to 9 characters) specified by the ML
parameter on the COMPASS control card. If no ML parameter is present, the automatic value of the
MODLEVEL micro is equal to that of the JDATE micro. When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the MODLEVEL micro is supplied
by the calling compiler. The MODLEVEL micro is intended to be used when assembling a compiler
(or COMPASS itself), to provide the compiler modification level to be placed in word 6 of each PRFX
table in the binary output written by the compiler.

The micro reference is fMODLEVEL~.

60360900A 7-7

7.3.9 PCOMMENT

The automatic value of the PCOMMENT micro is the value specified by the PC parameter on the
COMPASS control card, with characters truncated from the right or blanks appended to the right, as
necessary, so that the micro's length is exactly 30 characters. If no PC parameter is present, the
automatic value of the PCOMMENT micro is 30 blanks. When COMPASS is called by a compiler to
process embedded COMPASS subprograms, the automatic value of the PCOMMENT micro is supplied
by the calling compiler. The PCOMMENT micro is intended to be used in a COMMENT pseudo in­
struction to specify words 8 - 10 of the PRFX table in the binary output. It may also be used, in
conjunction with the *F special symbol, to determine compiler options (debug mode, rounded arithme­
tic, etc.) in effect at the time of assembly.

The micro reference is ~PCOMMENTI.

7-8 60360900A

CPU SYMBOLIC MACHINE INSTRUCTIONS 8

COMPASS recognizes symbolic notation for all CYBER 170 Series Central Processor Unit Instructions,
all CYBER 70 Series Central Processor Unit Instructions, all 7600 Central Processor Unit Instructions
and all 6000 Series Computer Systems Central Processor Unit instructions.

The assembler identifies each symbolic instruction according to its syntax and generates a one parcel
15-bit instruction or a two parcel 30-bit instruction. The object code for an instruction is generated
in the block in use when the instruction is encountered.

8.1 MACHINE INSTRUCTION FORMATS

Figures 8-1 and 8-2 illustrate the formats for CPU 15-bit and 30-bit instructions generated by the
assembler.

I gh
14 08 05 02 00

Figure 8-1. CPU 15-Bit Instruction Format

gh i K
29 23 20 17 14

Figure 8-2. CPU 30-Bit Instruction Format

gh 6-bit instruction code

ghi 9-bit instruction code

3-bit code specifying one of eight designated registers (e.g. , Ai)

3-bit code specifying one of eight designated registers (e.g. , Bj)

k 3-bit code specifying one of eight designated registers (e.g. , Bk)

00

K 18-bit integer value used as an operand, address of an operand, or branch destination
address.

jk 6-bit integer value specifying a shift count or mask count

Figure 8-3 illustrates possible arrangements of one and two parcel instructions in a 60-bit CPU
instruction word. Generally, the assembler does not allow a two-parcel instruction to begin in the
fourth parcel of a word. However, the assembler may generate a 30-bit instruction in a fourth
parcel when all of the following are true:

1. The assember is at the fourth parcel (position counter is 15)

60360900E 8-1

2. The instruction does not include K. Note that if K is included in the syntax and reduces to zero,
it requires 30 bits because the evaluation of K takes place in the second pass whereas the space
for the instruction is reserved in the first pass.

3. The instruction does not have a location field symbol or is not otherwise forced upper.

When a two parcel instruction begins in the last parcel of a word, the CYBER 170/Model 175, CYBER 70/
Model 76 or 7600 executes it as if the instruction word had a fifth parcel containing all zeros. On the
CYBER 170/Model 172, 173, or 174, CYBER 70/Model 72 or 73, or 6400, this condition causes an error
exit. On the 6600 or CYBER 70/Model 74, the CPU takes the first parcel of the current instruction.

Before it assembles an instruction that must begin in the first parcel (forced upper) and after it
assembles an instruction that requires the instnlCtion following it to be forced upper, the assembler
completes a word as follows:

Lower 15 bits remain They are packed with a one parcel NO (pass) instruction

Lower 30 bits remain They are packed with a two parcel SBO BO+K instruction

Lower 45 bi ts remain They are packed with a NO instruction and an SBO BO+K instruction

First Second Third Fourth
Parcel Parcel Parcel Parcel

15 I 15 15 I 15 l
59 44 29 14 00

30 15 I 15 I
59 29 14 00

15 I 30 I 15
59 44 14 00

15 I 15 30
59 44 29 00

30 30
59 29 00

Figure 8-3. Arrangements of Instructions in a 60-bit CPU Word

8-2 60360900E

8.2 INSTRUCTION EXECUTION

8.2.l 6600/6700AND CYBER 70/MODEL 74 EXECUTION

After an exchange jump start by a PPU and CPU program, CPU instructions issue automatically in the
original sequence, to an 8-word instruction stack. The stack can hold a program loop consisting of up to
26 15-bit instructions and one 30-bit instruction.

Instructions are read from the stack one at a time and issued to the functional units (table 8-1) for
execution. A scoreboard reservation system in CPU control keeps a current log of which units and
operating registers are reserved for computation results from functional units.

Each functional unit executes several instructions, but only one at a time. Some branch instructions
require two units, the second unit receives direction from the branch unit.

The rate of issuing instructions varies from the maximum of one instruction every 100 nanoseconds
(one minor cycle). Sustained issuing at this rate may not be possible because of functional unit and CM
conflict or because of serial rather than simultaneous opera ti.on of units. Program run time can be
decreased by efficient use of the units. Instructions that are not dependent on previous steps may be
arranged or nested in program areas where they may be executed concurrently with other operations to
eliminate dead spots in the program and increase the instruction issue rate.

The following steps summarize instruction issuing and execution:

• An instruction is issued to a function unit when:

Specified functional unit is not reserved

Specified result register is not reserved for a previous result

• Instructions are issued to functional units at minor cycle intervals when no reservation conflicts
are present.

• Instruction execution starts in a functional unit when both operands are available. Execution is
delayed when an operand is a result of a previous step which is not complete.

• No delay occurs between the end of a first unit and the start of a second unit which is waiting for
the results of the first.

• After a branch instruction no further instructions are issued until instruction has been executed.
In the execution of a branch instruction, the branch unit uses:

Increment unit to form the instructions that branch to K + Bi and branch to Kif Bi ...

Long add unit to perform the instructions that branch to K if Xj ...

Time spent in the long add or increment units is part of total branch time.

Read central memory access time is computed from the end of increment unit time to the time an
operand is available in X operand register. Minimum time is 500 nanoseconds assuming no central
memory bank conflict.

t The 6700 also includes a 6400-type central processor unit

60360900A 8-3

8-4

TABLE 8-1. CYBER 70/Model 74 and 6600/6700 FUNCTIONAL UNITS

UNIT

Branch

Boolean

Shift

Floating Add

Long Add

Floating Multiply

Floating Divide

Increment

GENERAL FUNCTION

Handles all jumps or branches from the program.

Handles the basic logical operations of transfer, logical product,
logical sum, and logical difference.

Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and normalize, pack, and
unpack floating point operations. The unit also includes a mask
generator.

Performs single or double precision floating point addition and
subtraction on floating point operands.

Performs addition and subtraction of two 60-bit fixed point operands

Performs single or double precision floating point multiplication on
floating point operands

Performs single precision floating point division of floating point
operands; also counts the number of 1 bits in a 60-bit word.

Performs one's complement addition and subtraction of 18-bit operands.

60360900A

8.2.2 CYBER 170/MODELS 172, 173, 174, CYBER 70/
MODELS 72, 73 AND 6200/6400/6500 EXECUTION

The CYBER 170/Models 172, 173, 174, CYBER 70/Models 72 and 73, and 6200, 6400, and 6500 systems
CPU has a unified arithmetic unit, rather than separate functional units as in the 6600 system. Instruc­
tions in the CPU are executed sequentially.

For efficient coding in the central processor unit:

Always attempt to place jump instructions in the upper portion of the instruction word to avoid both
the additional time for RNI (2 minor cycles) and the possibility of a memory bank conflict with
(P + 1).

Where possible, place load/store instructions in the lower two portions to avoid lengthening
execution times.

Reading the next instruction words of a program from central memory, RNI, is partially concurrent
with instruction execution. RNI is initiated between execution of the first and second instructions of the
word being processed. Initiating RNI operation requires two minor cycles; the remainder of the RNI
is parallel in time with execution of the remaining instructions in the word:

p .__I _1 ~J-2______.1_3.,.-------11
Initiate\ ___/\
RNI Execution of
+ ..-+-instructions~

2 and 3

200
NSEC

RNI
~minimum of~

800 NSEC

·-----------Total RNI time -----------'-!

In calculating execution times, two minor cycles are added to each instruction word in a program to
cover the RNI initiation time. Exceptions are the return jump and the jump instructions (in which the
jump condition is met) when they occupy the upper position of the instruction word. Since the times for
these instructions already include the time required to read the new instruction word at the jump
address, no additional time is consumed (Appendix A).

60360900 E 8-5

Example:

Instruction

Jump

Add 1

RNI Initiation

Add 2

Load

Store

Total Time

P I Jump to K (met)

Add 2

Pass Pass

Load Load

Minor eycles Required

13

5

2

5

12

10

47 Minor Cycles

After RNI is initiated (between the first and second instructions of the word), a minimum of eight
minor cycles elapses before the next instruction word is available for execution. Even if the lower
order positions of the word should require less than eight minor cycles, a minimum of eight minor
cycles is allowed.

Example:

p !Jump to K
(not met)

p + 1

Pass Pass

8.2.3 CYB ER 170/ MODEL 175, CYB ER 70/ MODEL 76, AND 7600 EXECUTION

Execution of an arithmetic or logical machine instruction takes place in one of nine functional units in

the computation section of the CYBER 170/Model 175, CYBER 70/Model 76 or 7600 CPU. Each is a
specialized unit with algorithms for a portion of the CPU instruction execution. Table 8-2 lists the
general function of each unit. A number of functional units may be in operation at the same time.

8-6 60360900E

TABLE 8-2. CYBER 170/Model 175, CYBER 70/Model 76 and 7600 FUNCTIONAL UNITS

UNIT GENERAL FUNCTION

Boolean Handles the basic logical operations of transfer, logical product, logical
sum, and logical difference. It also performs the pack and unpack
floating point operations.

Shift Executes operations basic to shifting. This includes left (circular)
and right (end-off sign extension) shifting, and mask generation.

Normalize Performs the normalize operations.

Floating Add Performs single or double precision floating point addition or subtraction
on floating point operands.

Long Add Performs integer addition or subtraction of two 60-bit fixed point
operands.

Floating Multiply Performs single or double precision floating point multiplication on
floating point operands.

Floating Divide Performs single precision floating point division of floating point
operands.

Population Count Counts the number of 1 bits in a 60-bit word.

Increment Performs one's complement addition and subtraction of 18-bit operands.

A funcUonal unit receives one or two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers after performing the function. The functional
units do not retain any information for reference in subsequent instructions. The units operate in three­
address mode with source and destination addressing limited to the operating registers.

Except for the floating multiply and divide units, all functional units have one clock period segmentation.
This means that the information arriving at the unit, or moving within the unit, is captured and held
in a new set of registers at the end of every clock period. It is therefore possible to start a new set
of operands for unrelated computation into a functional unit each clock period even though the unit may
require more than one clock period to complete the calculation. This process may be compared to a
delay line in which data moves through the unit in segments to arrive at the destination in the proper
order but at a later time. All functional units perform their algorithms in a fixed amount of time. No
delays are possible once the operands have been delivered to the front of the unit.

The floating multiply unit has a two clock period segmentation. Operands may enter the multiply unit
in any clock period providing there was no multiply operation initiated in the preceding clock period.

The floating divide unit is the only functional unit in which an iterative algorithm is executed. There is
little segmentation possible in this unit. However, to increase execution speed, the beginning of a new
divide operation can follow a previous divide operation by 18 clock periods for a gain of 2 clock periods.

Instructions involving storage references for operands or program branching are difficult to time.
Program branching within the instruction stack causes no storage references and small program loops
can therefore be precisely timed.

60360900E 8-7

8.3 OPERATING REGISTERS

Twenty-four registers minimize memory references for arithmetic operands and results:

Function Identity Length Number

Operand Registers XO - X7 60 Bits 8

Address Registers AO - A7 18 Bits 8

Index Registers BO - B7 18 Bits 8

A register is reserved if it is the destination of an instruction that has been initiated but has not been
completed. A register is free in the clock period (or minor cycle) following the store into it.

8.3. l X REGISTERS

Eight 60-bit X registers in the computation section of the CPU designated XO, XI, ••• , X7 are the
principal data handling registers for computation. Data flows from these registers to the SCM (CM)
and the LCM (not ECS). Data also flows from SCM (CM) and LCM (not ECS) into these registers.
All 60-bit operands involved in computation must originate and terminate in these registers.

Operands and results transfer between SCM (CM) and these registers as a result of placing SCM (CM)
into corresponding address registers.

On the CYBER 70/Model 76 and 7600, the X registers also serve as address registers' for referencing
single words from LCM. XO is used as the LCM relative starting address in a block copy operation.

8.3.2 A REGISTERS

Eight 18-bit A registers in the computation section of the CPU, designated as AO, Al, •.• , A7, are
essentially SCM (CM) operand address registers. With the exception of AO and XO, A registers are
associated one-for-one with the X registers. Placing a quantity into an address register Al - A5
causes an immediate SCM (CM) read reference to that relative address and sends the SCM (CM) word
to the corresponding operand register Xl - X5. Similarly, placing a value into address register A6
or A7 causes the word in the corresponding X6 or X7 operand register to be written into that relative
address of SCM (CM).

The AO and XO registers operate independently of each other and have no connection with SCM (CM).
AO is used as the relative SCM (CM) starting address in a block copy operation and for scratch pad or
intermediate results.

8.3.3 B REGISTERS

Eight 18-bit B registers in the computation section of the CPU designated as BO, Bl, .•. , B7 are
primarily indexing registers for controlling program execution. Program loop counts can be incremented
and decremented in these registers.

8-8 60360900A

Program addresses may be modified on the way to an A register by adding or subtracting B register
quantities. The B register also holds shift counts for pack and normalize operations and the channel
number for channel status requests.

BO always contains positive zero; that is, BO is held clear. Often as a programming convention, Bl
or B7 contains positive 1. See the Bl=l, the B7=1, and the R= pseudo instructions.

8.4 SYMBOLIC NOTATION

This section describes notation used for coding symbolic CPU machine instructions. Instructions are
listed according to octal sequence. Instructions unique to a computer system are identified as such.
These instructions can be assembled on any machine but will execute properly on the noted machine only.
For details and special conditions arising during instruction execution, refer to the relevant hardware
system reference manual.

The location field of a symbolic machine instruction optionally contains a location symbol. When the
symbol is present, it is assigned the value of the location counter after the force upper (if any) occurs.

The operation field of a symbolic CPU machine instruction contains a mnemonic operator, the last two
characters of which are often a register designator.

The variable field contains one, two, or three subfields. For 15-bit instruction, subfields take the
forms:

r
-r
r,r
r op r
-r op r

±_jk

} r is a register designator

} op is a register operator + - * I

jk is an absolute expression specifying a shift count or mask bit count. If
the expression value is in the range -60 to -0, inclusive, COMPASS adds 60 to it.
If it is less than -60 or greater than 63, COMPASS sets a warning flag and uses
the low-order 6 bits of the expression value.

For a 30-bit instruction, subfields take the forms:

K

r op K

r,K

r, r,K

60360900B

The single subfield contains an absolute, relocatable, or external expression
that does not include a register.

The single subfield contains an absolute, relocatable, or external expression
that includes a register designator; op is an expression operator:

+ - * I

One subfield contains a register designator, the other subfield contains an
absolute, relocatable, or external expression that does not include a register
designator.

Two subfields contain register designators; a third contains an absolute,
relocatable, or external expression that does not include a register.

8-9

In the formats and examples, K reduces to an 18-bit value that represents one of the following in pass
two:

An absolute address or a word count

An external symbol _:'.:an integer value

An address that is relocatable relative to the program origin or common block origin.

An address of a literal

If K is negative, the assembler inserts the one's complement of the integer value in the K portion of the
instruction.

In the descriptions of the formats, _::K designates that the evaluation of all non-register elements can
result in a positive or negative value for the expression (see section 2. 8. 2 Evaluation of Expressions).
Use of .±_K to represent the integer portion of the expression does not imply that the first term oper­
ator in the expression is an expression operator. If you consider that a and b are terms in expression
K, then +K indicates that the sum of the values of a and b is positive and -K indicates that the sum of
the values is negative. Thus, -K does not mean that a-b would become -a+b.

In the following example, the symbol XRAY has the value 407 • The first term operator (-) forms the
value 777370

8
• Subtracting 1 from this results in 777367

8
or

8
a -K (-410

8
).

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 lB 130

13 7212777367 SX1 X2-xRAY-1 I
I

Unless otherwise noted, subfields can be in any ordero COMPASS also allows an added degree of
flexibility by allowing the variable subfields of an instruction to be written in the operation field with
each subfield preceded by a comma. For example•

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

UX1 f12,X~
T

I

can be written

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30
25j.?3 llX1,~? x '3 I

The instructions are identical to the assembler.

8-10 60360900A

Similarly, the following instructions are regarded as identical. Use of this feature is optional.

LOCATION OPERATION VARIABLE COMMENTS

I II 18 !Jo
I

li 1+23J h 641 El s2, 1n,1< I
I I
I El,B2 83,!(

I I
042301u641

i E1,B2,B3 K I
I I I

l
EQ,B2,B3,K

I

0423010641

Ot+2301U641

8.4.1 PROGRAM STOP OR EXCHANGE JUMP INSTRUCTION

(CYB ER 170 SERIES, CYB ER 70/ MODEL 72, 73, 7 4, AND 6000 SERIES)

The CEJ/MEJ Panel Switch determines whether this instruction causes the central processor unit to
halt or to execute an exchange jump. The DISABLE position disables the central exchange jump or

the monitor exchange jump. In this case, the instruction is illegal for a CYBER 170/Model 175. For
all other systems, PS halts the central processor unit at the current step in the program. An exchange
jump is necessary to restart the central processor unit. The ENABLE position enables the jump capa­
bilities for all systems. In this case, PS causes an exchange jump to monitor address (MA) in the
exchange package.

The contents of the location field become a sub-subtitle on the assembler listing. The assembler
forces upper before and after assembling a PS instruction.

Formats: CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

Operation Variable Description Size Octal Code

PS Program stop or exchange jump to (MA) 30 bits 00000 00000

PS K Program stop or exchange jump to (MA) 30 bits OOOOK

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 bo
OOO(lrJOOOO!J PS :

60360900E 8-11

\

8.4.2 ERROR EXIT INSTRUCTION (CYBER 70/ MODEL 76 OR 7600)

ES execution is treated as an error condition and the machine sets the program range condition flag
in the PSD register. The condition flag then generates an error exit request which causes an exchange
jump to address (EEA). All instructions issued prior to this instruction are run to completion. Any
instruction following this instruction in the current instruction word is not executed. When all operands
have arrived at the operating registers as a result of previously issued instructions, an exchange
jump occurs to the exchange package designated by (EEA).

The i, j, and k designators, which are ignored by the computation section, are set to zero by the
assembler. The program address stored in the exchange package on the terminating exchange jump is
advanced one count from the address of the current instruction word (P=P+l). This is true regardless
of which parcel of the current instruction word contains the error exit instruction.

The error exit instruction is not intended for use in user program code. The program range condition
flag is set in the PSD register to indicate that the program has jumped to an area of the SCM field which
may be in range but is not valid program code. This should occur when an incorrectly coded program
jumps into an unused area of the SCM field or into a data field. The program range condition flag is
also set on the condition of a jump to address zero. These conditions can be determined on the basis
of the register contents in the exchange package. The existence of an error exit condition resulting
from execution of this instruction can thus be deduced.

The location field of an ES instruction becomes a sub-subtitle on the assembler listing.

Format: Functional Unit: None

Operation Variable Description Size Octal Code

ES Error exit to EEA 15 bits 00000

ES K Error exit to EEA 15 bits 00000

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 r3o
T

ES I
I 00000

8-12 60360900A

8.4.3 RETURN JUMP INSTRUCTION

When this instruction is executed, an unconditional jump to the current address plus one [(P)+l)] is
stored in the upper half of relative address Kin SCM and control then transfers to K+l for the next
instruction. The lower half of the stored word is all zeros. The instruction always branches out of
the instruction stack and voids all instructions currently in the instruction stack.

After the instruction is executed the octal word at K is:

Address K I a 4 a a
59 '-v--1

Bi=Bj

p + 1 II 0 0 0 0 0 0 0 0 0 0

29 00

This instruction is intended for transferring control to a subroutine between execution of the current
instruction word and the following instruction word. Instructions appearing after the return jump
instruction in the current instruction are not executed. The called subroutine must exit at address K
in CM (SCM). A jump to address K of the branch routine returns the program to the original sequence.
The assembler sets the unused j designator to zero.

A force upper occurs after the instruction is assembled.

Format:

Operation Variable

RJ K

Example:

Code Generated

010000.5250 +

60360900E

CYBER 70/Model 74 or 6600/6700 Functional Unit:· Branch
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None

Description Size Octal Code

Return jump to K 30 bits OlOOK

LOCATION OPERATION VARIABLE COMMENTS

I II 18 be
RJ HELP I

8-13

8.4.4 ECS INSTRUCTIONS (CYBER 170 SERIES, CYBER 70/MODELS 72, 73, 740R 6000 SERIES)

These instructions initiate either a read or write operation to transfer (Bj) + K 60-bit words between
extended core storage (ECS) and central memory (CM). The initial ECS address is (XO) + RAECRi
the initial CM address is (AO) + RA CM·

The assembler forces upper before assembling an RE or WE instruction.

Three error conditions cause an error exit to the lower-order 30 bits of the instruction word
containing the RE or WE instructions. These 30 bits should always hold a jump to an error
routine. The conditions are:

1. Parity error(s) when reading ECS. If a parity error is detected, the entire block of data
is transferred before the exit is taken.

2. The E CS bank from/to which data is to be transferred is not available because the bank
is in maintenance mode, or the bank has lost power. If either of these conditions exists
on an attempted read or write, an immediate error exit is taken.

3. An attempt to reference a nonexistent address. On an attempted write operation, no data
transfer occurs and an immediate error exit is taken. If the attempted operation is a
read, and addresses are in range, zeros are transferred to central memory. This is a
convenient high-speed method of clearing blocks of central memory.

For additional information about these instructions, refer to the CONTROL DATA® CYBER 70
Computer System 7030 Extended Core Storage Reference Manual, Publication No. 60347100.

Formats: Functional Unit: None

Operation Variable Description Size Octal Code

RE Bj Read extended core storage 30 bits OlljO 00000

RE K Read extended core storage 30 bits OUOK

RE Bj+K Read extended core storage 30 bits OlljK

WE Bj Write extended core storage 30 bits 012j0 00000

WE K Write extended core storage 30 bits 0120K

WE Bj+K Write extended core storage 30 bits 012jK

8-14 60360900-E

The length of the block is determined by adding the quantity K to the contents of register Bj. Either
quantity may be used as an increment or decrement. The result is an 18-bit integer which is truncated
to a 10-bit quantity. Thus, a maximum block size is 1777 8. (For example, if the result of the add is
003000

8
, the instruction transfers 10008 words.) No error indications are given when this occurs unless

the field length is exceeded causing a block range error. If the block length is zero, the instruction
becomes a do-nothing instruction; the condition is not error flagged.

Relative source or destination addresses begin at (AO) in the SCM and at the relative LCM address
determined from the lowest order 19 bits of (XO). If (XO) is negative, the 19 bits are treated as a
positive integer. If the sum of (X018_00) and the block count exceeds the (FLL), the copy is not
executed and the LCM block range condition flag is set in the PSD register. Similarly, if the sum of
(AO) and the block exceeds (FLS), the copy is not executed and the SCM block range condition flag is
set in the PSD register.

Any error condition occurring during execution of a block copy instruction causes a flag to be set in the
PSD register but does not interrupt the block copy instruction. No further instructions are issued during
block transfer of data. Instructions already issued are completed; all other activity, with the exception
of 1/0 word requests, stops.

Formats: Functional Unit: None

Operation Variable Description Size Octal Code

RL Bj Block copy (Bj) words from LCM to SCM 30 bits OlljO 00000

RL K Block copy (K) words from LCM to SCM 30 bits OllOK

RL Bj±K Block copy (Bj) ~ K words from LCM to
SCM 30 bits OlljK

WL K Block copy (K) words from SCM to LCM 30 bits 0120K

WL Bj Block copy (Bj) words from SCM to LCM 30 bits 012j0 00000

WL Bj±K Block copy (Bj) ~ K words from SCM to
LCM 30 bits 012jK

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 j30

PL t 0 0 0 P+ P.5
I

I 0115001000

2 0 0 fl 8
I

RL I 011ono2000

rJ124777f77 I
. I

WL %-10 0 R I

60360900A 8-15

8.4.6 EXCHANGE JUMP INSTRUCTION
(CYBER 170 SERIES, CYBER 70/MODELS 72, 73, 74, AND 6000 SERIES)

This instruction unconditionally exchange jumps the central processor, regardless of the state of the
monitor flag bit. Instruction action differs, however, depending on whether the monitor flag bit is
set or clear.

This instruction is not legal for a CYBER 170/Model 175 if the MEJ/CEJ switch is in the DISABLE
position or if the instruction does not reside in parcel 0 of the instruction word.

Operation is as follows:

1. Monitor flag bit clear: The starting address for the exchange is taken from the 18-bit Monitor
Address register. This starting address is an absolute address. During the exchange, the
monitor flag bit is set.

2. Monitor flag bit set: The starting address for the exchange is the 18-bit result formed by adding
K to the contents of register Bj. This starting address is an absolute address. During the
exchange, the monitor flag bit is cleared.

For additional information, refer to the Standard Option 10104-A/B/C/D Central and Monitor Exchange
Jumps for 6600 Reference Manual, Pub. No. 60203200.

The assembler forces upper before and after assembling an XJ instruction.

Formats: Functional Unit: Branch

Operation Variable Description Size Octal Code

XJ Exchange jump to MA if in program mode 30 bits 01300 00000

XJ Bj Exchange jump to (Bj); flag set 30 bits 013j0 00000

XJ K Exchange jump to K; flag set 30 bits 0130K

XJ Bj+K Exchange jump to (Bj) + K; flag set 30 bits 013jK

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 bo

01300000011 XJ
I

I
0130001000)(J 10006 I

I
0135000600 XJ B5+&00B

8-16 60360900E

8.4.7 EXCHANGE EXIT INSTRUCTION (CYBER 70/ MODEL 76 OR 7600)

The normal termination for an exchange package execution interval is through execution of an exchange
instruction (MJ). The exit mode flag in the PSD register determines the source of the exchange package.

This instruction has priority over all other types of exchange jump requests. If an I/0 interrupt request
or an error exit request occurred prior to execution of this instruction, it is denied and the exchange
jump specified by the MJ is executed. The rejected interrupt request is not lost, however. The
conditions that caused it are reinstated when the exchange package enters its next execution interval.

The MJ instruction voids the instruction word stack. Any instructions remaining in the stack are not
executed.

The system makes no protective tests on the exchange jump address.

Exit Mode flag Set: \\Then the exit mode flag is set, the MJ instruction causes the current program
sequence to terminate with an exchange jump to a relative address in the SCM field for the current
program. The exchange package is located at relative address (Bj) .::::_ K. An overflow of the lowest
order 16 bits of this result causes an error condition that is not sensed in the hardware. Should a
program erroneously execute an exchange exit instruction with an overflow condition, the exchange
jump sequence begins at the absolute SCM address corresponding to the lowest order 16 bits of this
sum. This 30-bit form of MJ is privileged to a monitor program.

Exit Mode Flag Not Set: \\Then the exit mode flag is not set, the object program terminates the execution
interval with a 15-bit form of the MJ instruction. The normal exit address (NEA) is the absolute address
of the exchange package. This is an absolute address in SCM and is generally not in the SCM field for
the current program. This form of the MJ instruction has a blank variable field; the assembler sets the
j and k designators to zero.

This instruction is used for calling a system monitor program for input/output, monitor calls, etc.

All operating register values, program addresses, and mode selections are preserved in the exchange
package for the object program so that the object program can be continued at a later time. The program
address in the object program exchange package is advanced one count from the address of the
instruction word containing the exchange exit instruction. The monitor program normally resumes the
object program at this address.

The assignment of (NEA) is a responsibility of the system monitor program. If (NEA) has more than
16 bits of significance, the upper bits are discarded and the lower 16 bits are used as the absolute
address in SCM for the exchange jump. A force upper occurs after the instruction is assembled.

60360900A 8-17

Formats: Functional Unit: None

Operation Variable Description Size Octal Code

MJ Exchange exit to NEA if exit flag clear 15 bits 01300

MJ Bj Exchange exit to (Bj) if·exit flag set 30 bits 013j0 00000

MJ Bj_:'.:K Exchange exit to (Bj) ±. K if exit flag set 30 bits 013jK

MJ K Exchange exit to K if exit flag set 30 bits 0130K

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 ho
D1300 MJ I

I

I
I

MJ P,4+50011 I
I

013400QC::{JI)

I

M.J 1-3arB+% I
I

MJ 6110R I

013~777477

8.4. 8 DIRECT LCM TRANSFER INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600j

A single word transfer either reads one 60-bit word from LCM and enters this word into an X register
or writes one 60-bit word directly into LCM from an X register.

The execution time for transferring a word from LCM to an X register depends on whether the
requested word already resides in one of the bank operand registers. A read LCM instruction for a
word not currently residing in a bank operand register will require 17 clock periods for delivering a
field of eight 60-bit words to the designated X register. A read LCM instruction for a word already
residing in a LCM bank operand register as a result of a previous instruction will require three clock
periods to deliver the requested word to the designated X register. Thus, although the first 60-bit
word will require 17 clock periods, the second through eighth words in the same LCM word require
three clock perods each~ This means that consecutive LCM operands are available, on an average,
every five clock periods as opposed to SCM operands at eight clock periods.

The LCM address is determined from (Xk1s-oo). Even if (Xk) is negative, the 19 bits are treated as
a positive integer. If the address exceeds the field length (FLL), the word transfer does not take
place and the LCM direct range condition flag is set in the PSD register. Xj is either the source or
destination register.

Instructions are buffered to the extent that each issues in one minor cycle unless a previous LCM
reference is in process. When an RX instruction issues, the LCM busy flag is set and remains set
until the requested word is delivered.

For a write (WX) instruction, if the word cannot be entered immediately in the proper bank operand
register, it is held in the LCM write register until the bank operand register is free.

8-18 60360900A

Formats: Functional Unit: None

Operation Variable Description Size Octal Code

RXj Xk Read LCM at (Xk) and set Xj 15 bits 014jk

WXj Xk Write (Xj) into LCM at (Xk) 15 bits 015jk

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

l 11 18 T 30

P)(o XS T

I
fJ 15 7'1 WX7 XO I

8.4.9 RESET INPUT CHANNEL BUFFER INSTRUCTION (CYBER 70/ MODEL 76 OR 7600)

This instruction is exclusively a 7600 instruction. It initiates a new record transmission from a PPU
to SCM. This instruction prepares the input channel (Bk) buffer for a new record transmission from a
PPU to SCM. The instruction clears the input channel buffer address and resets the input channel
assembly counter to the first 12-bit position in the SCM word.

This instruction is intended to be privileged to an input routine, that is, one that terminates a record
of incoming data and prepares for the next record.

The input routine removes the data in the input channel buffer and then executes this instruction to
prepare the buffer for the next incoming record. This instruction is effective only if the monitor mode
flag is set in the program status register. If the monitor mode flag is cleared, this instruction
becomes a pass instruction. When this instruction issues, it will execute the required channel functions
without regard to the current status or activity at the input channel buffer.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

60360900A 8-19

Two or more consecutive RI instructions referring to different channels will issue in consecutive
clock periods with no interference resulting in the multiplexer. If two consecutive instructions refer to
the same channel, they repeatedly perform the same function but do not cause interference in the
multiplexer.

Format: Functional Unit: None

Operation Variable Description Size Octal Code

RI Bk Reset input channel (Bk) buffer 15 bits 0160k

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30

PI ~7 T

8.4.10 SET REAL-TIME CLOCK INSTRUCTION (CYBER 70/MODEL 76 OR 7600)

This instruction reads the contents of the CPU clock period counter (real-time clock) and places them in
Bl. The 18-bit clock counter advances one count in two's complement mode for each clock period. The
2 7 bit is the overflow bit. The CPU is interrupted when the overflow bit is set. When the interrupt
is handled, the bit is cleared. It permits measurement of CPU execution.

Format: Functional Unit: None

Operation Variable Description Size Octal Code

TBj Set Bj to current clock time 15 bits 016j0

TBj K Set Bj to current clock time; K is ignored. 15 bits 016j0

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

01670 TIP I -

8-20 60360900A

8.4.11 RESET OUTPUT CHANNEL BUFFER INSTRUCTION (CYBER 70/ MODEL 76 OR 7600)

This instruction initiates a new record transmission from SCM to PPU. It clears the output channel
(Bk) buffer address and disassembly counter, transmits a record pulse over the output channel "data
path to the PPU, and initiates an SCM reference for the first word to be transmitted.

This instruction is intended for execution in an output routine to initiate a new record transmission
over an output channel data path. The output channel buffer is normally inactive when this instruction
is executed. The output channel buffer is loaded with the data for the next record, and this instruction
is executed to initiate the transmission. The record pulse is transmitted along with the word pulse as
soon as the first word of data from the SCM is entered in the output channel disassembly register.

This instruction is effective only if the monitor mode flag is set in the program status register. If the
monitor mode flag is cleared, this instruction becomes a pass instruction. \Vb.en this instruction issues,
it will execute the required channel functions without regard to the current status or activity at the
output channel.

The lowest order four bits of (Bk) are used in this instruction. The higher order bits are ignored. If
higher order bits are set in (Bk), the lowest order four bits are masked out and used to determine the
channel number. If (Bk) is zero, this instruction becomes a pass instruction.

Normally, the output channel buffer is inactive when this instruction is executed, the program having
checked for completion of the previous record before issuing an RO. The program can detect the end
of record in two ways. First, it can compare the output channel buffer address with a known record
length. The alternative is to obtain a response from the peripheral unit over the corresponding input
channel data path. If data is moving over the output channel data path when an RO is issued, the RO
instruction takes priority, with a resulting loss of data in the previous record. Two or more
consecutive RO instructions referring to different channels will issue in consecutive clock periods with
no interference resulting in the multiplexer. If two consecutive instructions refer to the same channel,
they transmit a record pulse over the output path and restart the buffer repeatedly. A data word may
or may not be transmitted depending on the timing of the instructions and conflicts that occur.

Format: Functional Unit: None

Operation Variable Description Size Octal Code

RO Bk Reset output channel (Bk) buffer 15 bits 0170k

Example:

Code Generated
LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30
017f'JCJ pn 3S

60360900A 8-21

8.4.12 READ CHANNEL STATUS INSTRUCTIONS (CYBER 70/MODEL 76 OR 7600)

These instructions copy the contents of the input or output channel buffer address register indicated by
masking (Bk03 _00) and enter the value in Bj. The instructions are used for monitoring the progress of
an input channel buffer or an output channel buffer.

A channel buffer area is divided into fields by the threshold testing mechanism. The first half of the
buffer area constitutes one field and the last half of the buffer area the other field. An 1/0 multiplexer
interrupt request is generated by the threshold testing mechanism whenever the channel buffer address
is advanced across a field boundary. This occurs at the center of the buffer area and at the end of the
buffer area.

The IBj instruction is the only vehicle for a program to determine whether an 1/0 multiplexer interrupt
request was generated by a buffer threshold test or by a record flag. The program must retain the
input channel buffer address from one interrupt period to the next. If the buffer address is in the same
field as for the previous interrupt, the interrupt request was from a record flag. If the buffer address
is in the opposite field from the previous interrupt, the interrupt request was from a threshold test.

The lowest order four bits of (Bk) are used in these instructions. The higher order bits are ignored.
If higher order bits are set in (Bk) the lowest order four bits are masked out and used to determine the
channel number. If (Bk) = O, the IBj instruction reads the contents of the CPU clock period counter.
However, the OBj instruction places all zeros into Bj.

Two or more IBj instructions or OBj instructions may occur in consecutive program instruction locations
referencing the same or different channels. These instructions may issue in consecutive clock periods
providing the Bj register reservations do not cause a delay. No interference will result in the multi­
plexer in these situations.

If correct results are to be obtained, an IBj instruction must not immediately follow an RI instruction
nor may an OBj instruction immediately follow an RO instruction. A delay of one clock period is
sufficient.

Formats: Functional Unit: None

Operation Variable Description Size Octal Code

IBj Bk Bj -Read input channel (Bk) status 15 bits 016jk

OBj Bk Bj -Read output channel (Bk) status 15 bits 017jk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

!11664 JnF, q4 ' I
I

017'56 085 Rn I
I

8-22 60360900A

8.4.13 UNCONDITIONAL JUMP INSTRUCTION

This instruction adds the contents of index register Bi to Kand branches to the relative CM (SCM)
address specified by the sum. The remaining instructions, if any, in the current instruction word are
not executed. The branch address is K when i is zero.

Addition is performed in an 18-bit one's complement mode. On a CYBER 170 Series, a CYBER 70/
Model 72, 73, or 74 or 6000 Series system this instruction voids the stack. On a CYBER 70/Model 76
or 7600, the instruction word stack is not altered by execution of this instruction. The instruction is
intended to allow computed branch point destinations. It is the only CPU instruction in which a computed
parameter can specify a program branch destination address. All other jump instructions have pre­
assigned destination addresses at execution time.

The assembler sets the unused j designator to O. A force upper occurs after the instruction is assembled.

Format:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None

Operation Variable Description Size Octal Code

JP Bi+K Jump to (Bi~K 30 bits 02iiK

JP Bi Jump to (Bi) 30 bits 02ii0 00000

JP K Jump to K 30 bits 0200K

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 !Jo
I

0255000004 + .JP 85+GOTO I
I

0277000000 JP H7

8.4.14 X-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions cause the program sequence to branch to K or to continue with the current program
sequence depending on the contents of operand register Xj. The decision is not made until the Xj
register is free. These instructions do not void the stack.

The following rules apply to tests made in this instruction group:

1. The ZR and NZ operations test the full 60-bit word in Xj. The words 00 •.•.• 00 and 77 ••••• 77
are treated as zero. All other words are non-zero. Thus, these instructions are not a valid
test for floating point zero coefficients. However, they can be used to test for underflow of
floating point quantities.

2. The PL and NG operations examine only the sign bit (259) of Xj. If the sign bit is zero, the
word is positive; if the sign bit is one, the word is negative. Thus, the sign test is valid for
fixed point words or for coefficients in floating point words.

60360900E 8-23

I

3. The IB and OR operations examine the upper-order 12 bits of Xj.

On the 7600, the following quantities are detected as being out of range:

3777x ••••• x (positive overflow)
4000x ••••• x (negative overflow)
1777x. o ••• x (positive indefinite)
6000x ••••• x (negative indefinite)

All other words are in range. An underflow quantity is considered in range. The value of the
coefficient is ignored in making this test.

On a 6000-Series computer system, 3777x ••• x and 4000x ••• x are out of range; all other words
are in range.

4. The DF and ID operations examine the upper-order 12 bits of Xj. Both positive and
negative indefinite forms are detected:

1777x ••••• x and 6000x •.•••• x are indefinite

All other words are definite. The value of the coefficient is ignored in making this test.

5. An error exit occurs on a 6000 series or a CYBER 70/Model 72, 73, or 74 system when an
indefinite or out of range value is used as an operand of an arithmetic instruction. Such error
exits may be avoided by using DF, ID, IR or OR instructions to test for such values before
using them as operands.

On a 7600 or CYBER 70/Model 76 system, an error exit occurs as soon as indefinite or out of
range value is produced as the result of an arithmetic instruction. The DF, ID, IR and OR
instructions are useful only when a MODE control statement is used to suppress such error
exits.

Formats:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None

Operation Variable Description Size Octal Code

ZR Xj,K Branch to K if (Xj) = 0 30 bits 030jK

NZ Xj,K Branch to K if (Xj) =f 0 30 bits 03ljK

PL Xj,K Branch to K if (Xj) sign is plus 30 bits 032jK

NG Xj,K Branch to Kif (Xj) sign is minus 30 bits 033jK

MI Xj,K Branch to Kif (Xj) sign is minus 30 bits 033jK

IR Xj,K Branch to K if (Xj) in range 30 bits 034jK

OR Xj,K Branch to Kif (Xj) out of range 30 bits 035jK

DF Xj,K Branch to Kif (Xj) definite 30 bits 036jK

ID Xj,K Branch to K if (Xj) indefinite 30 bits 037jK

8-24 60360900E

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130
--.-

ZR X5,ZERO I
I

0305002363 +

I
0313002364 + NZ X3,NONZERO I

I
0324002365 + PL Xi+,PLUS I

l

NG X1,NEG I
I

0331002366 +

I
033100236& + MI XltNEG I

I

03!+0002367 + IR XO,INRANGE I

I

0351002370 + OR X1,0UTRNGt I

I

UF X5,UEFINT I

I
I
I

IU X7,INUE:FNl I

0365002371 +

0377002372 +

60360900A 8-25

8.4.15 B-REGISTER CONDITIONAL BRANCH INSTRUCTIONS

These instructions test an 18-bit word from register Bi against an 18-bit word from register Bj for the
condition specified. They branch to address K on a successful test. Otherwise, the program sequence
continues at the next instruction. The decision is not made until both B registers are free. For the
tests against zero (all zeros), the assembler sets either the i or the j designator to 0 indicating BO.

The following rules apply in the tests made by these instructions:

1. Positive zero is recognized as unequal to negative zero, and

2. Positive zero is recognized as greater than negative zero, and

3. A positive number is recognized as greater than a negative number.

The 06 and 07 instructions are intended for branching on an index threshold test. The tests are made in
a 19-bit one's complement mode. The (Bi) and the (Bj) are sign extended one bit to prevent erroneous
results caused by exceeding the modulus of the comparison device. The (Bj) is then subtracted from the
(Bi). The branch decision is based on the sign bit in the 19-bit result.

For these instructions, Bi and Bj must be specified in the order indicated below.

These instructions do not void the stack.

Formats:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Branch

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None

Operation Variable Description Size Octal Code

zRt K Branch to K 30 bits 0400K

ZR Bi,K Branch to K if (Bi) = 0 30 bits 04iOK

EQt K Branch to K 30 bits 0400K

EQ Bi,K Branch to K if (Bi) = 0 30 bits 04iOK

EQ Bi, Bj,K Branch to K if (Bi) = (Bj) 30 bits 04ijK

NE Bi,K Branch to Kif (Bi) -1- 0 30 bits 05iOK

NE Bi, Bj, K Branch to K if (Bi) -1- (Bj) 30 bits 05ijK

NZ Bi,K Branch to K if (Bi) -1- 0 30 bits 05iOK

PL Bi,K Branch to K if (Bi) ~ 0 30 bits 06iOK

GE Bi,K Branch to K if (Bi) 2:. 0 30 bits 06iOK

GE Bi, Bj, K Branch to Kif (Bi) 2:. (Bj) 30 bits 06ijK

LE Bj, Bi, K Branch to K if (Bj) ~ (Bi) 30 bits 06ijK

LE Bj,K Branch to K if (Bj) ~ 0 30 bits 060jK

NG Bi,K Branch to K if (Bi) < 0 30 bits 07iOK

MI Bi,K Branch to K if (Bi) < 0 30 bits 07iOK

t The assembler forces the position counter upper after assembling the instructions.

8-26 60360900E

Formats (cont'd):

Operation Variable Description Size Octal Code

GT Bj, Bi, K Branch to K if (Bj) > (Bi) 30 bits 07ijK

GT Bj,K Branch to K if (Bj) > 0 30 bits 070jK

LT Bi,K Branch to Kif (Bi) < 0 30 bits 07iOK

LT Bi, Bj, K Branch to Kif (Bi) < (Bj) 30 bits 07ijK

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 [30

04'3000S?21 + 7;~ r>c;, 0 7F~G T
I

041JSOOS?2? + f 0 "lQ, ri5, c-our.L I

I
04S30Q???? + FI) n5,n2,JUM: I

Fil .. iutv1r- I
I

w: rJ 1 , n ~ t ~I (J T f="" 1 I

I
05fi0f)Qt;225 .. I''? '.11=,' r'f'fQTJ~ I

I
On2000S??n + t:1L 1P, 0 !'.)LIJS I

r: c ~1l+,n~,r,c("I
I
I

GF f"'5,r,r11f) I

I
067~0iJS231 + LE q6,n7,LTHl\N I

077000523? +
"' r;

~1,rn1cr,
I
I

113,n 7 LTU
I

t-'T
I 073"00'3?33 +

0767005?34 + GT E3?,ri6,97GT I
I

070S005?.3S + GT PC),P5GTO I
I

0712005236 + LT Pl, 0 ?.,~LTR I

60360900A 8-27

8 . .4.16 TRANSMIT INSTRUCTION

This instruction transfers the 60-bit word in operand register Xj to register Xi. It is essentially a
copy instruction intended for moving data from X register to X register as quickly as possible. No
logical function occurs. The assembler sets the k designator to the value specified for j.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Operation Variable Description Size Octal Code

BXi Xj Transmit (Xj) to Xi 15 bits lOijj

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 !Jo
PX i;)(2 T

I

8 . .4.17 LOGICAL PRODUCT INSTRUCTION

This instruction forms the logical product (AND function) of 60-bit words from operand registers Xj and
Xk and places the product in operand register Xi. Bits of register Xi are set to 1 when the corresponding
bits of the Xj and Xk registers are 1 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 0100

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, the instruction becomes a transmit instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Operation Variable Description Size Octal Code

BXi Xj*Xk Logical product of (Xj) and (Xk) to Xi 15 bits llijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 TJo

r x c; X5~X3
I
I

8-28 60360900E

8.4.18 LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of 60-bit words from operand registers Xj and
Xk and places the sum in operand register Xi. A bit of register Xi is set to 1 if the corresponding bit
of the Xj or Xk register is a 1 as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1101

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value, the instruction degenerates into a transmit
instruction.

Format:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Operation Variable Description Size Octal Code

BXi Xj+Xk Logical sum of (Xj) and (Xk) to Xi 15 bits 12ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 I Jo

ri x 7 X6+Y7

8.4.19 LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of 60-bit words from operand registers
Xj and Xk and places the difference in operand register Xi. A bit in register Xi is set to 1 if the
corresponding bits in the Xj and Xk registers are unlike as in the following example:

(Xj) = 0101
(Xk) = 1100
(Xi) = 1001

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value the result will be a word of all zeros written
into register Xi.

Format:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean

CYBER 170/Model 175. CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Operation Variable Description Size Octal Code

BXi Xj-Xk Logical difference of (Xj) and (Xk) to Xi 15 bits 13ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30
PXn XO-X1 I

60360900E 8-29

8.4.20 COMPLEMENT INSTRUCTION

This instruction extracts the 60-bit word from operand register Xk, complements it, and transmits this
complemented quantity to operand register Xi. It is intended for changing the sign of a fixed point or
floating point quantity as quickly as possible.

The assembler sets the unused j designator of the instruction to k.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
Format: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Operation Variable Description Size Octal Code

BXi -Xk Transmit complement of (Xk) to Xi 15 bits 14ikk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30
14311 BX3 -x1 t

8.4.21 LOGICAL PRODUCT AND COMPLEMENT INSTRUCTION

This instruction forms the logical product (AND function) of the 60-bit quantity from operand register
Xj and the complement of the 60-bit quantity from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 when the corresponding bits of the Xj register and the comple­
ment of the Xk register are 1 as in the following example:

(Xj) = 0101

Complemented (Xk) = 0011

(Xi)= 0001

This instruction is intended for extracting portions of a 60-bit word during data processing. If the j and
k designators have the same value, a logical product is formed between two complementary quantities.
The result will be a word of all zeros.

Format:

Operation Variable

BXi -Xk*Xj

Examples:

Code Generated

15lt32

8-30

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Description Size Octal Code

Logical product of (Xj) and complement
of (Xk) to Xi 15 bits 15ijk

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 l3o

0X4 -x2•x3 I

60360900E

8.4.22 COMPLEMENT AND LOGICAL SUM INSTRUCTION

This instruction forms the logical sum (inclusive OR) of the 60-bit quantity from operand register
Xj and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bit of the Xj register is one or the
corresponding bits of the Xk register is a 0 as in the following example:

(Xj) = 0101

(Xk) = 1100

(Xi) = 0111

This instruction is intended for merging portions of a 60-bit word into a composite word during data
processing. If the j and k designators have the same value the result is a word of all ones.

Format:

Operation

BXi

Example:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Variable Description Size Octal Code

-Xk+Xj Logical sum of (Xj) and complement of
(Xk) to Xi 15 bits 16ijk

Code Generated I OPERATION I VARIABLE COMMENTS

8.4.23 COMPLEMENT AND LOGICAL DIFFERENCE INSTRUCTION

This instruction forms the logical difference (exclusive OR) of the quantity from operand register Xj
and the complement of the 60-bit word from operand register Xk, and places the result in operand
register Xi. Thus, bits of Xi are set to 1 if the corresponding bits of Xj and register Xk are alike as
in the following example:

(Xj) = 0101

(Xk) = 1100

(Xi) = 0110

This instruction is intended for comparing bit patterns or for complementing bit patterns during data
processing. If the j and k designators have the same value, a logical difference is formed between two
complementary quantities. The result is a word of all ones.

Format:

Operation

BXi

60360900E

CYBER 70/Model 74 or 6600/6700 Functional Unit: Boolean
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Variable Description Size Octal Code

-Xk-Xj Logical difference of (Xj) and complement
of (Xk) to Xi 15 bits 17ijk

8-31

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 bo
1.77~1 BX7 -X1-X3 :

8.4.24 LOGICAL LEFT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi left circular jk places if expression jk is
positive or left circular 60+jk places if jk is negative. Bits shifted off the left end of operand register
Xi replace those shifted from. the right end.

The 6-bit shift count jk allows a complete circular shift of (Xi).

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6
bits on the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result
in the jk fields. Thus, a negative value effectively designates a logical right shift. A positive value
designates a left shift.

If the negative shift count is less than -60, the assembler generates a 7-type error.

Format:

Operation Variable

LXi jk

Example:

Code Generated

203?5

::>!J36?.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Description Size Octal Code

Logical shift (Xi) by ±. jk places 15 bits 20ijk

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

LX3 ?58 T

I
I

L 'x'3 -128 I

8.4.25 ARITHMETIC RIGHT SHIFT jk PLACES INSTRUCTION

This instruction shifts the 60-bit word in operand register Xi right jk places if expression jk is positive
and right 60+jk places if expression jk is negative. The rightmost bits of Xi are discarded and the sign
bit is extended.

If the shift count is equal to the 60-bit register length, the result contains 60 copies of the sign bit. If
the operand is positive, a positive zero results. If the operand is negative, a negative zero results.

In COMPASS notation, jk is an absolute expression. If it is positive, COMPASS places the lower 6
bits of the value in the jk fields. If it is negative, COMPASS adds 60 to jk and places the result
in the jk fields. Thus, a negative value effectively designates the number of high order bits of
the operand that are to be retained. If the negative shift count is less than -60, a 7-type error is
generated.

8-32 60360900E

Format:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Operation Variable Description Size Octal Code

AXi jk Arithmetic shift (Xi) by .:!:: jk places 15 bits 21ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

llX5 .371'\ :

8.4.26 LOGICAL LEFT SHIFT (Bi) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified by
the quantity in index register Bj and places the result in operand register Xi.

L If (Bj) is positive, (that is, bit 17 of Bj = 0), the quantity from Xk is shifted left circular. The
low order 6 bits of (Bj) specify the shift count. The higher order bits are ignored.

2. If (Bj) is negative, (that is, bit 17 of Bj = 1), the quantity from Xk is shifted right (end off
with sign extension). For the CYBER 170 Series, the CYBER 70 Series/Models 72, 73, and
74, and the 6000 Series, the one's complement of the low order 11 bits of (Bj) specify the
shift count. The higher order bits are ignored. If the shift count is 59 to 63 (decimal), the
result stored in the Xi register consists of 60 copies of the operand sign bit. If the shift
count is 64 (decimal) or greater, the result register Xi is cleared to 60 zeros. For the
CYBER 70/Model 76 and the 7600, the one's complement of the low order 12 bits of (Bj)
specify the shift count. The higher order bits are ignored. If the shift count is 59 (decimal)
or greater, the result stored in the Xi register consists of 60 copies of the operand sign bit.

If - Bj is specified, the assembler converts the instruction to an arithmetic right shift. The (Bj) might
be the result of an unpack instruction, in which case it is the unbiased exponent and (Xi) is the coefficient.
This instruction is used for shifting a coefficient from a floating point number to the integer position
after an unpack operation.

60360900 E 8-33

Format:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Operation Variable Description Size Octal Code

LXi Xk, Bj Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

LXi Bj,Xk Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

LXi Xk Transmit (Xk) to Xi 15 bits 22i0k

LXi Bj Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji

LXi -Bj,Xk Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk

LXi Xk,-Bj Arithmetic right shift (Xk) by (Bj)
places to Xi 15 bits 23ijk

LXi -Bj Arithmetic right shift (Xi) by (Bj)
places to Xi 15 bits 23iji

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o

LX6 x5,57 ' I 22675
I

22534 LX? 83,X4 I

LX3 X2 I
I

22302

8.4.27 ARITHMETIC RIGHT SHIFT (B j) PLACES INSTRUCTION

This instruction shifts the 60-bit quantity from operand register Xk the number of places specified
by the quantity in index register Bj and places the result in operand register Xi.

1. If (Bj) is positive (that is, bit 17 of Bj = 0), the quantity from register Xk is shifted right (end
off with sign extension). For the CYBER 170 Series, CYBER 70/Model 72, 73, 74 and 6000
Series Computer Systems, the low order 11 bits of (Bj) specify the shift count. The higher
order bits are ignored. If the shift count is 59 to 63 (decimal) the Xi register contains 60
copies of the (Xk) sign bit. If the shift count is 64 (decimal) or more, the Xi register is
zeroed. For the CYBER 70/Model 76 or 7600 Computer Systems, the low order 12 bits of
(Bj) specify the shift count. The higher order bits are ignored. If the shift count is 64
(decimal) or more the Xi register contains 60 copies of the sign of the operand.

2. If (Bj) is negative (that is, bit 17 of Bj = 1), the quantity from register Xk is shifted left
circular. The complement of the lower order 6 bits of Bj specify the shift count. The higher
order bits are ignored.

8-34 60360900 E

If -B is specified, the assembler converts the instruction to a logical left shift. This instruction is in­
tended for use in data processing where the amount of shift is derived in the computation. This in­
struction is also useful for adjusting the coefficient of a floating point number while it is in its unpacked
form.

Format:

Operation Variable

A Xi Xk,Bj

A Xi Bj,Xk

A Xi Xk

A Xi Bj

A Xi -Bj,Xk

A Xi Xk,-Bj

A Xi -Bj

Example:

Code Generated

237'14

23211

23~>02

23424

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Description Size Octal Code

Arithmetic shift of (Xk) by (Bj) places
to Xi 15 bits 23ijk

Arithmetic shift of (Xk) by (Bj) places
to Xi 15 bits 23ijk

Transmit (Xk) to Xi 15 bits 23i0k

Arithmetic shift of (Xi) by (Bj) places
to Xi 15 bits 23iji

Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

Logically shift (Xk) by (Bj) places to Xi 15 bits 22ijk

Logically shift (Xi) by (Bj) places to Xi 15 bits 22iji

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 lJo

AX7 Xl+,A6 I

I
'.AX2 R1,X1 I
11\)('5)(2 I

I~'(4
I

82 l

8.4.28 NORMALIZE INSTRUCTION

This instruction normalizes the floating point quantity from operand register Xk and places it in
operand register Xi. Normalizing consists of shifting the coefficient the minimum number of positions
required to make bit 47 different from bit 59. This places the most significant bit of the coefficient
in the highest order position of the coefficient portion of the word. The exponent portion of the word
is then decreased by the number of bit positions shifted. The number of shifts required to normalize
the quantity is entered in index register Bj.

60360900 E 8-34.1

Format:

Operation

NXi
NXi
NXi
NXi
NXi

Example:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Variable Description Size Octal Code

Xk Normalize (Xk) to Xi 15 bits 24i0k
Bj,Xk Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk
Xk,Bj Normalize (Xk) to Xi; shift count to Bj 15 bits 24ijk

Normalize (Xi) to Xi 15 bits 24i0i
Bj Normalize (Xi) to Xi; shift count to Bj 15 bits 24iji

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 I 3o

?4? 7c:; "'Xe:; XS, 07 T
I

f\IXt; I
I

"'X c:;' qi:; X2 I

8.4.29 ROUND AND NORMALIZE INSTRUCTION

This instruction performs the same operation as the NXi instruction with the exception that the quantity
from operand register Xk is rounded before it is normalized. Rounding is accomplished by placing a
1 round bit immediately to the right of the least significant coefficient bit. The resulting coefficient is
increased by one-half the value of the least significant bit. Normalizing a zero coefficient places the
round bit in bit 47 and reduces the exponent by 48. Note that the same rules apply for underflow, overflow,
infinite, and indefinite results.

If (Xk) is an infinite quantity (3777x •.• x or 4000x ..• x) or an indefinite quantity (1777x •.• x or 6000x ..• x),
no shift takes place. The contents of Xk are copied into Xi, and Bj is set to zero.

Formats:

Operation

ZXi
ZXi

ZXi

ZXi

ZXi

60360900E

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Variable Description Size Octal Code

Xk Round and normalize (Xk) to Xi 15 bits 25i0k
Bj,Xk Round and normalize (Xk) to Xi; shift

count to Bj 15 bits 25ijk
Xk,Bj Round and normalize (Xk) to Xi; shift

count to Bj 15 bits 25ijk
Bj Round and normalize (Xi) to Xi; shift

count to Bj 15 bits 25iji
Round and normalize (Xi) to Xi 15 bits 25i0i

8-35

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 '30
ZX4 X4,B7 I

I
?~474

I
ZX4 I 25404

ZX3,B6
I

X1 ?53&1

8.4.J·O UNPACK INSTRUCTION

This instruction unpacks the floating point quantity from operand register Xk and sends the 48-bit
coefficient to operand register Xi and the 11-bit exponent to index register Bj. The exponent packing
is removed during unpack so that the quantity in Bj is the true one's complement representation of the
exponent. The contents of Xk need not be normalized.

The exponent and coefficient are sent to the low-order bits of the respective registers as shown below:

SIGN

5958

EXPONENT SIGN
EXTENDED

PACKED EXPONENT COEFFICIENT

COEFFICIENT
SIGN EXTENDED

00

UNPACKED Bj ~~~_ ______ ______, ~~~---------___.lxi
17 10 9 0 59 48 47

Special operand formats are treated in the same manner as normal operands.

I Formats:

Operation Variable

UXi Xk
UXi Bj,Xk
UXi Xk,Bj
UXi
UXi Bj

Example:

Code Generated

26777

2&342

26707

26777

8-36

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Boolean

Description Size Octal Code

Unpack (Xk) to Xi 15 bits 26i0k
Unpack (Xk) to Xi and Bj 15 bits 26ijk
Unpack (Xk) to Xi and Bj 15 bits 26ijk
Unpack (Xi) to Xi 15 bits 26i0i
Unpack (Xi) to Xi and Bj 15 bits 26iji

LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

UX7 X7,B7 I
UX3,X2 84 I

I I
UX7 I I
UX7 ja1 I

I

60360900E

8.4.31 PACK INSTRUCTION

This instruction packs a floating point number in operand register Xi. The coefficient of the number is
obtained from operand register Xk and the exponent is obtained from index register Bj. The exponent is
packed by toggling bit 210 during the pack operation. The instruction does not normalize the coefficient.

Exponent and coefficient are obtained from the proper low-order bits of the respective registers and
packed in reverse order as shown in the illustration for the unpack instruction. Thus, bits 58-48 of
Xk and bits 17-11 of Bj are ignored. There is no test for overflow or underflow. No flags are set in the
PSD register by this instruction.

Note that if (Xk) is positive, the packed exponent occupying Xi58_48 is obtained from Bho-oo by
complementing bit 10; if (Xk) is negative, bit 10 is not complemented but bits 09-00 are complemented.

The j designator may be set to zero in this instruction to pack a fixed point integer into floating point
format without using one of the active B registers (exponent= O)c

Format:

Operation Variable

PXi Xk
PXi Xk, Bj
PXi Bj, Xk
PXi
PXi Bj

Example:

Code Generated

27565

27671

27505

27565

CYBER 70/Model 74 or 6600/6700 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 .or 7600 Functional Unit: Boolean

Description Size Octal Code

Pack (Xk) to Xi 15 bits 27i0k
Pack (Xk) and (Bj) to Xi 15 bits 27ijk
Pack (Xk) and (Bj) to Xi 15 bits 27ijk
Pack (Xi) to Xi 15 bits 27i0i
Pack (Xi) and (Bj) to Xi 15 bits 27iji

LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T 30

PX5 X5,B6 I
PX6,97 Xi !

I !
'PX5

! I l
!P'(5 86 I

8 .. 4.32 UNROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the unrounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the result in operand register Xi. The packed result is the upper half of
a double precision sum or difference.

At the start both arguments are unpacked, and the coefficient of the argument with the smaller exponent
is entered into the upper half of the accumulator. The coefficient is shifted right by the difference
of the exponents. The other coefficient is then added to or subtracted from the upper half of the
accumulator. If overflow occurs, the result is right-shifted one place and the exponent of the result
increased by one. The upper half of the accumulator holds the coefficient of the result, which is not
necessarily in normalized form. The exponent and upper coefficient are then repacked in operand
register Xi.

60360900 E 8-37

I

Formats:

Operation

FXi

FXi

Examples:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Variable Description Size Octal Code

Xj+Xk Floating point sum of (Xj) and (Xk) to Xi 15 bits 30ijk

Xj-Xk Floating point difference of (Xj) minus
(Xk) to Xi 15 bits 31ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 bo
FX3 X4+X5 r

I

11213 FX2 I)(1-X3 I

8.4.33 DP FLOATING POINT ADD INSTRUCTIONS

These instructions form the sum or difference of two floating point numbers as in the single precision
instructions, but pack the lower half of the double precision result with an exponent 48 less than the
upper sum. The result is not necessarily normalized.

Formats:

Operation

DXi

DXi

Examples:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Variable Description Size Octal Code

Xj+Xk Floating DP sum of (Xj) and (Xk) to Xi 15 bits 32ijk

Xj-Xk Floating DP difference of (Xj) and (Xk)
to Xi 15 bits 33ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

OXJ X2+X3 T

I 32323
I

33414 OX4 X1-)(4 I

8-38 60360900 E

8.4.34 ROUNDED SP FLOATING POINT ADD INSTRUCTIONS

These instructions form the rounded sum or difference of the floating point quantities from operand
registers Xj and Xk and pack the upper portion of the double precision result in operand register Xi.
These instructions are intended for use in floating point calculations involving single precision
accuracy.

Formats:

Operation

RXi

lRXi

Examples:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Add
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Add

Variable Description Size Octal Code

Xj+Xk Rounded floating sum of (Xj) and (Xk)
to Xi 15 bits 34ijk

Xj-Xk Rounded floating difference of (Xj) minus
(Xk) to Xi 15 bits 35ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 I Jo

35653 I

I

PX5 X~ +X4 I

I
RXfi XS-X3 i I I

34'334

8.4.35 LONG ADD (FIXED POINT) INSTRUCTIONS

These instructions form the 60-bit one's complement integer sum or integer difference of quantities from
operand registers Xj and Xk and store the result in operand register Xi. An overflow condition is
ignored.

The instructions are intended for addition or subtraction of integers too large for handling in the
increment unit. They are also useful for merging and comparing data fields during data processing.

For an addition, if both operands are zero, the result is zero. If either zero operand is positive zero
(all O's), the result is a positive zero quantity. If both operands are minus zero (all 1 's), the result
is a negative zero quantity.

60360900 E 8-39

Format:

Operation

I.Xi

I.Xi

Example:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Long Add
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Long Add

Variable Description Size Octal Code

Xj+Xk Integer sum of (Xj) and (Xk) to Xi 15 bits 36ijk

Xj-Xk Integer difference of (Xj) minus (Xk)
to Xi 15 bits 37ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 bo
T

36545 IX5 X4+Y5 I
I

37631 IX6 X3-X1 I

8.4.36 UN ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj (multiplier)
and Xk (multiplicand) and packs the upper product result in operand register Xi.

In this operation, the exponents of the two operands are unpacked from the floating point format and are
added with a correction factor of 48 to form the exponent for the result. The coefficients are multiplied
as signed integers to form a 96-bit integer product. The upper half of this product is then extracted
to form the coefficient of the result. The result is a normalized quantity only when both operands are
normalized; the exponent in this case is the sum of the exponents plus 47 (or 48). The result is not
normalized when either or both operands are not normalized.

Formats:

Operation

FXi

Example:

8-40

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Variable Description Size Octal Code

Xj*Xk Floating point product of (Xj) and
(Xk) to Xi 15 bits 40ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 bo

40011 FXO Xi "'Xi
T
I
I

60360900E

8.4.37 ROUNDED SP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies the floating point number from operand register Xk (multiplicand), by the
floating point number from operand register Xj. The upper product result is packed in operand
register Xi. (No lower product is available.) The multiply operation is identical to that of the single
precision instruction except that a rounding bit is added in bit position 46 of the 96-bit product. The
upper half of the product is then extracted to form the coefficient for the result. An alternate output
path is provided with a left shift of one-bit position to normalize the result coefficient if the original
operands were normalized and the double precision product has only 95 bits of significance. The
exponent for the result is decremented by one count in this case.

Format:

Operation

R.Xi

Example:

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Variable Description Size Octal Code

Xj*Xk Rounded floating point product of (Xj)
and (Xk) to Xi 15 bits 41ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I lJ 18 !Jo
I

41232 RX2 X3 ll-Y.2 I
!

8.4.38 DP FLOATING POINT MULTIPLY INSTRUCTION

This instruction multiplies two floating point quantities obtained from operand registers Xj and Xk
and packs the lower product in operand register Xi. The two 48-bit coefficients are multiplied together
to form a 96-bit product. The lower-order 48 bits of this product (bits 47-00) are then packed together
with the resulting exponent. The result is not necessarily normalized. The exponent of this result is
48 less than the exponent resulting from an unrounded single precision instruction using the same
operands.

This instruction is intended for use in multiple precision floating point calculations. It may also be
used to form the product of two integers providing the resulting product does not exceed 48 bits of
significance. The operands must be packed in floating point format before executing this instruction.
The results must be unpacked to obtain the integer product.

Format:

Operation

DXi

60360900E

CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Variable Description Size Octal- Code

Xj*Xk Floating point DP product of (Xj) and
(Xk) to Xi 15 bits 42ijk

8-41

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 1Jo

42 345 DX3 X4 •X5 l

I

8.4.39 INTEGER MULTIPLY INSTRUCTION

The CPU integer multiply instruction is, to COMPASS, synonymous with the double precision floating
point multiply instruction. Regardless of how it is written in COMPASS, the 42ijk instruction is
executed as follows: If each operand register has all zeros or all ones in its leftmost 12 bits, the
47-bit integer product is formed in Xi with sign extension in its leftmost 12 bits. (Exception: if each
operand has bit z47 different from its sign bit, the result is shifted left one bit position.) Otherwise,
a double precision floating point multiplication is performed. Thus, there is no need to pack exponents
into the operands, and unpack the result, for an integer multiply. COMPASS provides the alternate
symbolic representations IXi Xj *Xk and DXi Xj *Xk for the 42ijk instruction as an aid to program read­
ability, so the programmer can indicate whether the instruction is being used for integer multiplication.

Format: CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Multiply
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Multiply

Operation Variable Description Size Octal Code

IXi Xj*Xk Integer product of (Xj) and (Xk) to Xi 15 bits 42ijk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 1Jo

42234 I
I

IX2 X3"''<4 I
I

8-42 60360900E

8.4..40 MASK INSTRUCTION

This instruction clears register Xi and forms a mask in it. A positive value for expression jk defines
the number of l's in the mask as counted from the highest order bit in Xi. A negative value for
expression jk defines the number of 0 bits (unmasked) counted from the low order bit in Xi. The
completed masking word consists of l's in the high order bit positions of the word and O's in the
remainder of the word.

The contents of operand register i are zero when jk is zero. The contents of operand register i are
all ones when jk is 60.

This instruction is intended for generating masks for logical operations. Used with the shift instruc­
tion, this instruction creates an arbitrary field mask faster than by reading a pre-generated mask
from storage.

In COMPASS notation, if the value of absolute expression jk is positive, the assembler inserts it
into the jk field of the assembled instruction. If the value of absolute expression jk is negative,
the assembler adds 60 to the expression value and places the sum in the jk field of the assembled
instruction.

A negative jk value less than -60 results in a 7•type assembly error.

An MXi 0 is the fastest instruction for clearing an X register.

Format: CYBER 70/Model 74 or 6600 Functional Unit: Shift
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Shift

Operation Variable Description Size Octal Code

MXi jk Form mask in Xi, ~ jk bits 15 bits 43ijk

Example:
LOCATION OPERATION VARIABLE COMMENTS

Code Generated
I 11 18 T Jo

MXO 42B
T

I 43042
I

43360 MX3 -14b I

60360900E 8-43

8.4.41 UNROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides two normalized floating point quantities obtained from operand registers Xj
(dividend) and Xk (divisor) and packs the quotient in operand register Xi.

Format:

Operation

FXi

Example:

CYBER 70/Mcxlel 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Floating Divide

Variable Description Size Octal Code

Xj/Xk Floating point divide of (Xj) by (Xk)
to Xi 15 bits 44ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II lB 130

44631 FX6 X3/X1 I
I

8.4.42 ROUNDED SP FLOATING POINT DIVIDE INSTRUCTION

This instruction divides the floating quantity from operand register Xj (dividend) by the floating point
quantity from operand register Xk (divisor) and packs the rounded quotient in operand register Xi.

Format:

Operation

RXi

Example:

CYBER 70/Mcxlel 74 or 6600/6700 Functional Unit: Floating Divide
CYBER 170/Model 175, CY BER 70/Model 76 or 7600 Functional Unit: Floating Divide

Variable Description Size Octal Code

Xj/Xk Rounded floating point division of (Xj)

by (Xk) to Xi 15 bits 45ijk

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130

45724 RX7 X2/X4 I
I

8-44 60360900E

8.4.43 PASS INSTRUCTION

The no-operation (pass) instruction is not associated with a functional unit. This instruction is a do­
nothing instruction used typically to pad the program between steps. An integer value in the variable
field (optional) is inserted into the lower 9 bits of the instruction. The assembler automatically pads
the remainder of a word whenever a force upper occurs; in this case, the programmer is not required
to insert the NO.

Format:
CYBER 70/Model 74 or 6600/6700 Functional Unit: None

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: None

Operation Variable Description Size Octal Code

NO Pass 15 bits 46000

NO n Pass 15 bits 46n

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 II 18 T Jo

46000 NO I

I

8.4.44 POPULATION COUNT INSTRUCTION

This instruction counts the number of 1 bits in operand register Xk and stores the count in the lower
order 6 bits of operand register Xi. Bits 59-06 are cleared.

If Xk is a word of all ones, a count of 60 (decimal) is delivered to the Xi register. If Xk is a word of all
zeroes, a zero word is delivered to the Xi register.

The assembler sets the unused j designator to k.

Formats:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Floating Divide

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Population Count

Operation Variable Description Size Octal Code

CXi Xk Count of number of 1 's in (Xk) to Xi 15 bits 47ikk

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 !Jo
47700 CX? XO T

I

60360900E 8-45

8.4.45 SET A REGISTER INSTRUCTIONS

These instructions are intended for fetching operands from storage for computation and for delivering
results back into storage. The instructions have two destination registers: the Ai register which
receives the address formed from the operands and either the Xi register or a CM (SCM) storage location.

If the i designator is nonzero, a storage reference is made using the lower 15, 16, or 17 bits of the
resulting sum or difference as the relative storage address depending on machine size. The upper
bits are ignored. The type of storage reference is a function of the i designator value.

i = O; no storage reference

i = 1, 2, 3, 4, or 5; contents of CM (SCM) relative address (Ai) to register Xi

i = 6 or 7; contents of register Xi stored at CM (SCM) relative address (Ai)

I Formats:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Increment
I

T Operation Variable Description Size Octal Code

SAi Aj+K Set Ai to (Aj) _:!: K 30 bits 50ijK

SAi I K Set Ai to K 30 bits 51iOK

SAi Bj+K Set Ai to (Bj) ~ K 30 bits 51ijK

SAi Xj+K Set Ai to (Xj) ± K 30 bits 52ijK

SAi Xj Set Ai to (Xj) 15 bits 53ij0

SAi Xj+Bk Set Ai to (Xj) + (Bk) 15 bits 53ijk

SAi Bk+Xj Set Ai to (Xj) + (Bk) 15 bits 53ijk

SAi Aj Set Ai to (Aj) 15 bits 54ij0

SAi Aj+Bk Set Ai to (Aj) + (Bk) 15 bits 54ijk

SAi Bk+Aj Set Ai to (Aj) + (Bk) 15 bits 54ijk

SAi Aj-Bk Set Ai to (Aj) - (Bk) 15 bits 55ijk

SAi -Bk+Aj Set Ai to (Aj) - (Bk) 15 bits 55ijk

SAi Bj Set Ai to (Bj) 15 bits 56ij0

SAi Bj+Bk Set Ai to (Bj) + (Bk) 15 bits 56ijk

SAi -Bk Set Ai to (BO) - (Bk) 15 bits 57i0k

SAi Bj-Bk Set Ai to (Bj) - (Bk) 15 bits 57ijk

SAi -Bk+Bj Set Ai to (Bj) - (Bk) 15 bits 57ijk

-

8-46 60360900E

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 '30
5011)000001 SA1 A0+1

I

I
I

510 0177774 SAO 1-3 I
I

'5121000003 SA2 3+81 I

5231777771 SA3 X1-6 I
l

SAit X1+B1 I
I

51+541 SAS A4+91 I

SA6 A4+81 I
t

54540 jsAc; A'4 I

jSA6 i-B1+A4
I

I
ISA7 81+81 I

1$A7
I

02-61 51721

60360900A 8-47

8.4.46 SET B REGISTER INSTRUCTIONS

These instructions perform one's complement addition and subtraction of 18-bit operands and store an
18-bit result in index register Bi.

Operands are obtained from address (A), index (B), and operand (X) registers as well as from the
instruction itself (K = 18-bit operand). Operands obtained from an Xj operand register are the
truncated lower 18 bits of the 60-bit word. The highest order bits are ignored; an overflow condition
is also ignored.

If the i designator is a zero, the instruction is a do-nothing instruction.

CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment
Formats: CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Increment

Operation Variable Description Size Octal Code

SBi Aj+K Set Bi to (Aj) ~ K 30 bits 60ijK

SBi K Set Bi to K 30 bits 61iOK

SBi Bj+K Set Bi t.o (Bj) ~ K 30 bits 61ijK

SBi Xj+K Set Bi t.o (Xj) ~ K 30 bits 62ijK

SBi Xj Set Bi t.o (Xj) 15 bits 63ij0

SBi Xj+Bk Set Bi to (Xj) + (Bk) 15 bits 63ijk

SBi Bk+Xj Set Bi to (Xj) + (Bk) 15 bits 63ijk

jsBi Aj Set Bi t.o (Aj) 15 bits 64ij0

SBi Aj+Bk Set Bi to (Aj) + (Bk) 15 bits 64ijk

ISBi Bk+Aj Set Bi to (Aj) + (Bk) 15 bits 64ijk

SBi Aj-Bk Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi -Bk+Aj Set Bi to (Aj) - (Bk) 15 bits 65ijk

SBi Bj Set Bi to (Bj) 15 bits 66ij0

SBi Bj+Bk Set Bi to (Bj) + (Bk) 15 bits 66ijk

IS Bi -Bk Set Bi to (BO) - (Bk) 15 bits 67i0k

IS Bi Bj-Bk Set Bi to (Bj) - (Bk) 15 bits 67ijk

jsBi -Bk+Bj Set Bi to (Bj) - (Bk) 15 bits 67ijk

8-48 60360900 E

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 T3o

SR1 A1-5
T

t 6011777772

SB1 -c; I
I 6110777772

SB2 3+El1 +6
I
I 6121000011

6231000100 SB3
I

X1+100n l
!'Bt. X2+07 I

I
SB5 At.•91 I
SB'i

.,. I
~86 -R1+ftt. I

I
SB6 Alt-i13 I

66711 SB7 91+81 I
I

SB1 ec;-e1

8.4.47 SET X REGISTER INSTRUCTIONS

The SXi instructions perform one's complement addition and subtraction of 18-bit operands and store
an 18-bit result into the lower 18 bits of operand register Xi. The sign of the result is extended to the
upper 42 bits of operand register Xi. An overflow condition is ignored.

Operands are obtained from address (A), index (B), and operand (X) registers as well as the instruction
itself (K = 18-bit operand).. Operands obtained from an Xj register are the truncated lower 18 bits of the
60-bit word. The highest order bits are ignored.

60360900A 8-49

I Formats:
CYBER 70/Model 74 or 6600/6700 Functional Unit: Increment

CYBER 170/Model 175, CYBER 70/Model 76 or 7600 Functional Unit: Increment

Operation Variable Description Size Octal Code

ISXi Aj+K Set Xi to (Aj) :t K 30 bits 70ijK

SXi K Set Xi to K 30 bits 71iOK

SXi Bj+K Set Xi to (Bj) :t K 30 bits 71ijK

SXi Xj+K Set Xi to (Xj) :!:, K 30 bits 72ijK

SXi Xj Set Xi to (Xj) 15 bits 73ij0

SXi Xj+Bk Set Xi to (Xj) + (Bk) 15 bits 73ijk

SXi Bk+Xj Set Xi to (Xj) + (Bk) 15 bits 73ijk

SXi Aj Set Xi to (Aj) 15 bits 74ij0

SXi Aj+Bk Set Xi to (Aj) + (Bk) 15 bits 74ijk

SXi Bk+Aj Set Xi to (Aj) + (Bk) 15 bits 74ijk

SXi Aj-Bk Set Xi to (Aj) - (Bk) 15 bits 75ijk

SXi -Bk+Aj Set Xi to (Aj) - (Bk) 15 bits 75ijk

SXi Bj Set Xi to (Bj) 15 bits 76ij0

SXi Bj+Bk Set Xi to (Bj) + (Bk) 15 bits 76ijk

SXi -Bk Set Xi to (BO) - (Bk) 15 bits 77i0k

SXi Bj-Bk Set Xi to (Bj) - (Bk) 15 bits 77ijk

SXi -Bk+Bj Set Xi to (Bj) - (Bk) 15 bits 77ijk

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o
T

100000~233· + sxo RNE<;+A!l+ 1 I

S'Xt -20228
I
I 711077 57'55

7121000005 5X2 A1+5 I
I

723"377771+4 S>C3 X3-33B I
73442 ~X4 X4+82 I

I
7'+553 SX5 A5+83 I

I
74540 SX5 Al+ I

I
75641 SX6 -B1+A4 I

75601+ SX6 A0-84 I
I

76776 SX7 87+86 I

77751 5X7 85-Bt I

8-50 60360900E

8.5 CMU SYMBOLIC MACHINE INSTRUCTIONS

The Compare/Move Unit (CMU) is a standard CPU hardware component of the CYBER 70 Series Model
72 and Model 73, and the CYBER 170/Models 172, 173 and 174. It provides CPU instructions for
moving and comparing data fields that consist of strings of 6-bit characters. Data fields can span word
boundaries and can begin and end at any character position within a word. A data field is specified by
its length in characters and the location of its leftmost character (according to word address and
character position). Data fields cannot be in the operating registers nor in ECS.

Each 60-bit word of a data field contains 10 character positions numbered 0 to 9 from left to right
(high order to low order).

COMPASS provides symbolic forms of the four CMU instructions plus a pseudo instruction used to
generate a descriptor word to be referenced by the indirect move instruction. Of the four instructions,
the indirect move (IM) instruction is the only one that syntactically resembles other CPU instructions.
The other three instructions have formats dissimilar to CPU instructions and are generated through
COMPASS pseudo instructions. All of these instructions must begin at the top of a 60-bit word;
COMPASS automatically forces upper before each of them unless the location field contains a minus
sign. All but™ are 60 bits in length. IM is 30 bits, but the hardware requires that the instruction be
in the upper half of its word. The lower half of the word is not executed. COMPASS automatically
forces upper following IM, unless the next instruction has a minus sign in its location field.

8.5.1 IM - INDIRECT MOVE

The indirect move instruction moves the contents of a data field to another location. It is a 30-bit
instruction that specifies the address of a descriptor word which, in turn, contains the length and
address of the data fields.

The descriptor word is fetched from storage location (Bj)+ K. If the data field length is zero, the
instruction is executed as a pass but the execution time is longer. Otherwise, the content of the source
field is moved to the destination field., If the two fields overlap, the results are undefined. The XO
register is used for intermediate storage during execution of the instruction, and is cleared upon
completion of the instruction.

Operation Variable Description Octal Code

IM K Move data according to word at K 4640K
IM Bj±K Move data according to word at (Bj)~ K 464jK
IM Bj Move data according to word at (Bj) 464j 000000

60360900E 8-51

8.5.2 MD - INDIRECT MOVE DESCRIPTOR WORD

The MD pseudo instruction generates a descriptor word for use by the indirect move (IM) instruction.

Format:

LOCATION OPERATION VARIABLE SUBFIELDS

sym MD

sym If present, sym is assigned the value of the location counter after the force upper occurs. It
becomes the symbolic address of the descriptor word.

k
s

c
s

Absolute address expression specifying the field length in characters (0-8191). The upper 9
bits (l) are placed in bits 56-48 of the descriptor word; the lower 4 bits (£) are placed in bits 29-26.

An expression specifying the first word address of the source field in CM/SCM.

An absolute expression (0-9) specifying the starting character position of the source field
within the word at location k • Characters are numbered from left to right.

s

An expression specifying the first word address of the destination field in CM/SCM.

An absolute expression (0-9) specifying the starting character position of the destination field
within the word at location kd.

Indirect Move Descriptor Word format:

59 48 30 26 22 18 00

0 f 12-4
source Jsrc des destination
address 13-0ch ch address

l

Example:

Code Generated

LOCATION OPERATION VARIABLE COMMENTS

I 11 IB !Jo

I
Ou760050uG~u05u07uao OW ORO MD 10u0 7 BUFFA,0,8UFFB,5 . I . I .

I I '1 OWO~O 4f>it0010665
I

BUFFA is at address 2000; BUFFB is at address 3000

8-52 60360900A

8.5.3 DM - DIRECT MOVE

The direct move (DM) pseudo instruction generates a CMU instruction that moves the contents of a
data field to another data field. The machine instruction occupies one full word and cannot be split
between words. The instruction includes its own data field descriptor.

If the data field length is zero, the instruction is executed as a pass, but the execution time is longer.
Otherwise, the contents of the source field are moved to the destination field. If the two fields overlap,
the results are undefined. The XO register is used for intermediate storage during execution of the
instruction and is cleared upon completion of the instruction.

Format:

sym

k
s

c
s

LOCATION OPERATION VARIABLE SUBFIELDS

sym DM

If present, sym is assigned the value of the location counter after the force upper occurs.
It becomes the symbolic address of the instruction word.

Absolute address expression specifying the field length in characters (0-127).

An expression specifying the first word address of the source field in CM/SCM.

An absolute expression (0-9) specifying the starting character position of the source field
within the word at location k •

s

An expression specifying the first word address of the destination field in CM/SCM.

An absolute expression (0-9) specifying the starting character position of the destination field
within the word at location k d• Characters are numbered from left to right.

Octal format of instruction:

59 51 48

465 £6-4

60360900A

source
address

30 26 22 18

destination
address

00

8-53

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 1 B T3o
I---" ~---

') "1 12 7, 'lUFF a, C ,11UFFri, 5
I

8.5.4 CC - COMPARE COLLA TED

The compare collated (CC) pseudo instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters
is found to have unequal collating values or until the data fields are exhausted. It is a 60-bit instruc­
tion that occupies one full word. It cannot be split between two words. The instruction includes its
own data field descriptor. Register AO contains the first word address of a table in storage that con­
tains the collating values to be used in comparing characters. The result of the comparison is placed
in register XO.

The first word address of the collating table is obtained from register AO. The contents of the data
fields are compared from left to right, one character at a time from each field, until two unequal
characters are found. The collating value of each character is obtained from the collating table. If
these values are equal, the compare continues until another character pair is unequal or until all
characters have been compared. If the collating values are unequal, the two data fields are unequal
and the field with a larger collating value is the greater of the two fields. The collating values are
treated as 6-bit unsigned integers. Note that two unequal characters could have the same collating
value and would compare equal.

Upon instruction completion, register XO contains a 60-bit signed integer as follows:

(Field A)>(Field B) (XO)=£- n > 0

(Field A)= (Field B) (XO)= 0

(Field A) <(Field B) (XO)= n - £ < 0

n is the number of pairs of characters that compared equal. If£= O, then (XO) is O.

8-54 60360900B

The format of the collating table for six-bit characters is:

59 53 47 41 35 29 23 27 11 0

00 01 02 03 04 05 06 07

\\l\ll\l\\\llli\\\11\f 10 11 12 13 14 15 16 17

(AO)

(AO)+ 1

(A0)+7 l ~ ~ ~ ~ ~ ~ <·

1\\·\l\i
1

l\l\\ll-\l\1\l\\\·l 70 n l 721 731 741 751 76] 77

Format:

sym

k
a

c
a

LOCATION OPERATION VARlABLE SUBFIELDS

sym cc

If present, sym is assigned the value of the location counter after the force upper occurs.
It becomes the symbolic address of the instruction.

Absolute address expression specifying the field length in characters (0 - 127)

An expression specifying the first word address of the first data field in CM.

An absolute expression specifying the starting character position of the first data field within
the word at location k • Characters are numbered from left to right.

a

An expression specifying the first word address of the second data field in CM.

An absolute expression (0-9) specifying the starting character position of the second data field
within the word at location ~.

Octal format of instruction:

59 51 48

466 161 first string
address

I

Example:
Code Generated

51J0003120
~&670050007405uJ7000

60360900A

I

30 26 22 18 00

1. I fs SS second string
3-0 ch ch address

I

LOCATION OPERATION VARIABLE COMMENTS

II IB ho

s ~ 0 Tt\qlf I
cc 127,9UFFA,O,~UFFq,5

r

8-55

8.5.5 CU - COMPARE UNCOLLATED

The compare uncollated (CU) pseudo instruction generates a CMU instruction that compares the contents
of two data fields, one character at a time, from left to right, until a pair of corresponding characters
are found to have unequal values or until the data fields are exhaustedo The machine instruction is a
60-bit instruction that occupies one full word and cannot be split between two words. It includes its
own data field descriptor. The result of the comparison is placed in register XO.

Execution resembles the CC instruction except that AO and the collating table are not used. Instead,
the characters are compared directly with each character regarded as a 6-bit unsigned binary integer.
Register XO is set in the same manner as by the CC instruction.

Format:

sym

k
a

c
a

LOCATION OPERATION VARIABLE SUBFIELDS

sym cu

If present, sym is assigned the value of the location counter after the force upper occurs.
It becomes the symbolic address of the instruction.

Absolute address expression (0-127) specifying the field length in characters.

An expression specifying the first word address of the first data field in CM.

An absolute expression (0-9) specifying the starting character position of the first data field
within the word at location k o Characters are numbered from left to righto

a

An expression specifying the first word address of the second data field in CM.

An absolute expression (0-9) specifying the starting character position of the second data
field within the word at location ~.

Octal format of lhstruction:

59 51 48 30 26 22 18 00

467 1 l. first string f J fs SS second string
6-4 address 3-~ ch ch address

J_

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 lB '30
cu 12 7' 9UFF A' 0 ,1i~uFFe' 5

I
~o770~5J007~asoo1000

I

8-56 60360900 E

PPU SYMBOLIC MACHINE INSTRUCTIONS 9

The COMPASS assembler recognizes symbolic notation for peripheral processor unit (PPU)
instructions. When a PPU or PERIPH pseudo instruction is in the first statement group, the assembler
identifies each symbolic instruction by name and generates a one word (12 bit) or two word (24 bit)
object code machine instruction under control of the current origin, location, and position counters.
All PPU code is absolute. Numeric data must be in integer notation. Floating point notation is illegal.

9.1 MACHINE INSTRUCTION FORMATS

An assembled instruction has a 12-bit or 24-bit format. The 12-bit format has a 6-bit operation code f
and a 6-bit operand d. A PPU accomplishes program indexing and manipulates operands in several
modes. The 12-bit and 24-bit instruction formats provide for 6-bit, 12-bit, or 18-bit operands and
6-bit or 12-bit addresses. Figures 9-1 and 9-2 illustrate the 12-bit instruction format and the 24-bit
instruction format, respectively.

(P)

11

operation
code

f

06 05

d

00

Direct Mode:

d = memory address of operand

Indirect Mode:

d = memory address of the address
of the operand

No Address Mode:

d = 6-bit operand, shift count, or
relative address

Other:

d = special value; e.g. , channel designator

Figure 9-1. PPU 12-bit Instruction Format

60360900A 9-1

The 24-bit format uses the 12-bit quantity m, which is the contents of the next program address (P + 1),
with d or the contents of d to form an 18-bit operand or a 12-bit operand address.

operation
code

f d (P) l
11--~~~~~-o-6~0-5~~--~~~~o-o

Indexed Mode:

d = address of the index for
modifying the address of
the operand

m =base address of the operand

(d) + m =address of operand

Constant Mode:

dm = 18-bit operand

Other:

dm = special values; e.g., d = channel
designator and m = 12-bit address
of word count on IAM and OAM
instructions

Figure 9-2. PPU 24-bit Instruction Format

9.2 SYMBOLIC NOTATION

This section describes notation used for coding symbolic PPU machine instructions. Instructions are
described in octal operation code sequence which generally reflects the mode of addressing.
Instructions unique to a computer system are identified as such.

The location field of a symbolic PPU machine instruction optionally contains a location symbol. When
the symbol is present, it is assigned the value of the location counter.

The operation field of a symbolic PPU machine instruction contains a three-character name.

The variable field contains one or two subfields. Each subfield contains an absolute or relocatable
expression that reduces to a 6-bit, 12-bit, or 18-bit value.

Designators used in this section are listed in Table 9-1.

Generally, the third character of the instruction mnemonic (N, D, M, C, or I) indicates the mode of
addressing:

N No operand address reference
D Direct operand address: d contains operand
M Memory address m or m + (d) contains operand
C 18-bit constant
I Indirect; operand address is (d)

9-2 60360900A

TABLE 9-1. PERIPHERAL PROCESSOR INSTRUCTION DESIGNATORS

Designator Use

A

c

d

m

p

Q

r

()

(())

18-bit A register

An expression that reduces to an 18-bit operand value.

A 6-bit operand or operand address expression.

A 12-bit expression value used with d or (d) to form an 18-bit operand or 12-bit
operand address.

12-bit Program Address register

12-bit Q register

An expression that reduces to a 6-bit value (-37 8 .:5. r ~ 37 8)
specifying relative address or shift count

Contents of a register or location

Refers to indirect addressing

Some of the instructions provide similar functions using different modes of add res sing. They can be
grouped according to function as shown below:

Function

Data transmission

60360900A

Description

The following instructions either load data into the A register or store
data from it. A load instruction loads a 6-bit, 12-bit, or 18-bit value
as indicated by the instruction; any remaining upper bits of A are zeroed,
except for the LCN instruction for which remaining bits are set to one.

A store instruction stores the lower 12 bits of the A register contents into
a memory location indicated by the instruction.

The contents of A are not altered.

Instruction Octal Code Section

LDN 14 9. 2. 3
LCN 15 9.2.3
LDC 20 9.2.4
LDD 30 9. 2. 9
STD 34 9. 2. 9

LDI 40 9.2.10
STI 44 9. 2.10

LDM 50 9. 2.11
STM 54 9. 2. 11

9-3

Function (cont'd)

Arithmetic

Logical

9-4

Description (cont'd)

A PPU arithmetic instruction adds or subtracts a 6-bit, 12-bit, or
18-bit quantity from the contents of the A register and enters the result
in A.

Instruction Octal Code Section

ADN 16 9. 2. 3
SBN 17 9. 2. 3
ADC 21 9.2.4
ADD 31 9. 2. 6
SBD 32 9. 2. 6
ADI 41 9. 2. 7
SBI 42 9. 2. 7
ADM 51 9. 2. 8
SBM 52 9. 2. 8

A logical instruction forms a logical value in A using the contents of A
as one of the operands and a 6-bit, 12-bit, or 18-bit value indicated by
the instruction as the second operand. When the second operand is
fewer than 18 bits, the remaining upper bits of A are unaltered, except
for the LPN instruction for which the upper 12 bits are zeroed.

Formation of a logical difference is equivalent to setting each bit in A
that is unlike the corresponding bit in the second operand. For example,

Initial (A)
Operand

Final (A)

=0101
=1100

=1001

Formation of a logical product is equivalent to setting a bit in A when
the original setting of the bit in A and the corresponding bit in the second
operand are both one's.

For example,

Initial (A)
Operand

Final (A)

=0101
=1100

=0100

A selective clear sets a bit zero in the A register wherever a bit is set
in the second operand. For example,

Initial (A)

Operand

Final (A)

=0101
=1100

=0001

60360900A

Function (cont'd)

Logical (cont'd)

Replace

Description (cont'd)

Logical instructions include the following:

Instruction Octal Code Section

LMN 11 9.2.3
LPN 12 9. 2. 3
SCN 13 9.2.3
LPC 22 9.2.4
LMC 23 9.2.4
LMD 33 9.2.9
LMI 43 9.2.10
LMM 53 9. 2.11

A replace instruction performs an arithmetic operation and returns the
results to the A register and the memory location from which one operand
was obtained. The lower 12 bits of the result replaces the operand
obtained from a memory location.

Instruction Octal Code Section

RAD 35 9.2.9
AOD 36 9.2.9
SOD 37 9.2.9
RAI 45 9.2.10
AOI 46 9. 2.10
SOI 47 9.2.10
RAM 55 9. 2.11
AOM 56 9. 2.11
SOM 57 9. 2.11

9.2. l BRANCH INSTRUCTIONS

For branch instructions, the r subfield is a numeric value that indicates the number of locations to be
jumped (maximum 31). When r is positive (01-37

8
), the jump is forward r locations. When r is

negative (768-408), the jump is backward 77 8-r locations. In the following tests, negative zero
(777777) is nonzero. For conditional instructions, when the test condition is true, the jump takes place.
When the condition is not met, execution continues with the next instruction.

CAUTION

The jump count must not be 00 or 77. If it is, execution
loops on the jump instruction.

The J option of the PPU instruction (Section 4. 3. 3) and the PERIPH instruction (Section 4. 3. 4) cause
the value of the location counter to be subtracted from the value of the symbolic address (tag) before it
is placed in the d field of the object code instruction.

60360900A 9-5

Formats:

Operation Variable Description Size Octal Code

LJM m,d Long jump to m+{d); if d = O, mis not
modified 24 bits Oldm

RJM m,d Return jump to m+(d); Store P1 2 at m+(d)
and jump to m+(d)+l. 24 bits 02dm

UJN rt Unconditional jump to P±_ r locations 12 bits 03d

UJN tag Unconditional jump to tag 12 bits 03d

z.JN rt Zero jump; jump to P±_r locations if
(A)= 0 12 bits 04d

ZJN tag Zero jump to tag 12 bits 04d

N.JN rt Nonzero jump; jump to P±_r locations if
(A) f- 0 12 bits 05d

NJN tag Nonzero jump to tag 12 bits 05d

PJN rt Positive jump; jump to P±_r locations if
(A)~O 12 bits 06d

PJN tag Positive jump to tag 12 bits 06d

MJN rt Minus jump; jump to P±_r locations if
(A)< 0 12 bits 07d

MJN tag Minus jump to tag 12 bits 07d

tu PPU J or PERIPH J option has been selected, r is not valid. The contents of the variable field must
be a symbolic address (tag).

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130
fJ10 0 1 ~52 LJM ST APT

I

I

f) 271 0 0 f) 0 PJM o,r,ro I
I

0~11 UJ"I Tl\G1-'1- I
I

04f14 7JN +4 I
Qt:;('Cj NJ"! TAG 3 I

I
!)'f) h 7 PJM Tl\G?-.11- I

I
'1726 MJN TnGt.. I

I

In the above examplel:i., the LJM instruction is at address 00148. TAGl is address 0012
8

, TAG2 has a
value of 138 , TAG3 has a value of 258 , and TAG4 has a value of 26

8
•

9-6 60360900A

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 130
PPU J I

I
I

I
0347 UJt--1 TAG1 I

?JN T/lG~
I In this example, the UJN is at
I address 0040. TAGl is address

0556 NJM TlH~2+10 I 0010, TAG2is 0011, TAG3is

I address 0045, and TAG4 is
oon? PJN -1+TAG4 I address 0046.

0 7 t.. '3 MJM TAG1 I

9.2.2 SHIFT INSTRUCTION

The SHN instruction shifts the contents of the A register right or left r places. If r is positive (+l to
+31), the shift is left circular r places; if r is negative (-31 to -1), the shift is end off r places to the
right with no sign extension. No shift takes place when r is .::'.:. 0. The assembler places the value of
the r expression in the d field. If -31 >r > 31, the assembler generates an address error.

Format:

Operation Variable Description Size Octal Code

SHN r Shift (A) by + (left) or - (right) r bi ts 12 bits lOd

Examples:

1. Shift contents of A left circular 6 places

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 TJo

101)6 ~HN f, ' I

2. Shift contents of A right end off 6 places

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

6 Sf"t-H SrT ~ I

1071 SHN -srtH I
I

60360900A 9-7

9.2.3 NO ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field are interpreted as a 6-bit
positive operand. This mode eliminates the need for storing many constants in core.

Formats:

Operation Variable Description Size Octal Code

LMN d Logical difference (A)-d -A 12 bits lld

LPN d Logical product (A) *d - A 12 bits 12d

SCN d Selective clear (A) 12 bits 13d

LDN d Load d-A 12 bits 14d

LCN d Load complement d-A 12 bits 15d

ADN d Add (A)+d-A 12 bits 16d

SBN d Subtract (A)-d-A 12 bits 17d

Examples:

Code Gene rated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

1112 Lt'IN t28 I
1207 LPN 7 I

I
1321. SCN 21P I

1 r:; AA SFT 1c:;g I
1415 L'lN t\A

I
1514 LCN AA-t I
1flCl1 AON 1 I

I
1702 SAN 2 I

9-8 60360900A

9.2.4 CONSTANT MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d and m fields are taken directly as an
operand. This mode also eliminates the need for storing many constants. The assembler reduces
absolute or relocatable expression c to an 18-bit value and stores the upper six bits in d and the lower
12 bits in m.

Format:

Operation Variable Description Size Octal Code

LDC c Load c -A 24 bits 20dm

ADC c Add (A)+c -A 24 bits 21dm

LPC c Logical product (A) *c -A 24 bits 22dm

LMC c Logical difference (A)-c -A 24 bits 23dm

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 ll 18 T 30

2070 7070 Lnr, 707G70q T
I
I

0 \/ t' L = 0 I
I

2177 7776 nor \/l'il-1 I
I

2?07 !:1707 LPC 07(17(!7!1 I
I

70707 Ml\C::K ~FT 0707078 I
2!?07 0707 LMC t-1A~K I

I

9.2.5 NO OPERATION INSTRUCTION

The PSN instruction specifies that no operation is to be performed. It provides a means of padding
a program.

Format:

lOperation Variable Description Size Octal Code

I
IPSN No operation (Pass) 12 bits 2400

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T 30

241"1 0 PSN I

60360900A 9-9

Other octal operation codes (not generated by COMPASS) that act as pass instructions are:

CYBER 170 Series, CYBER 70/
Models 72, 73, 74 and 6000 Series

00
25

9.2.6 EXCHANGE JUMP INSTRUCTIONS

CYBER 70/Model 76 and 7600

25
26
27
75
76

(CYBER 170 SERIES, CYBER 70/MODEL 72, 73, 74, AND 6000 SERIES)

The EXN instruction transmits an 18-bit (absolute) address of which only 17 bits are used from the A
register to the CPU with a signal notifying the CPU to execute an exchange jump. The address in A is
the starting location of the 16-word exchange package which contains information about the CPU pro­
gram to be executed. The 18-bit initial address must be entered in A before the EXN instruction is
executed. The CPU replaces the file with similar information from the interrupted CPU program.
The PPU is not interrupted.

The MXN instruction conditionally exchange jumps to the CPU and initiates CPU monitor activity. If
the monitor flag bit is clear, this instruction sets the flag and initiates the exchange. If the monitor
flag bit is set, this instruction acts as a pass instruction. The starting address for this exchange is
the 18-bit address in the PPU A register. This address must be entered in A before the MXN instruc­
tion is executed.

Execution of MAN resembles MXN. However, the exchange package address is taken from the 18-bit
Monitor Address (MA) register in CPU d, rather than from the PPU A register.

In a system with dual central processors, d can be 0 or 1 and specifies which CPU the exchange jump
will interrupt. In single processor systems, this value is not interpreted.

Formats:

Operation Variable Description Size Octal Code

EXN d Exchange jump to CPU d 12 bits 260d
MXN d Monitor exchange jump CPU d to (A) 12 bits 26ld
MANt d Monitor exchange jump CPU d to (MA) 12 bits 262d

t CYBER 170 Series and CYBER 70/Models 72. 73 and 74 only.

9-10 60360900 E

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 T3o

26()1 EXN 1 I
I

2610 MXN 0 I
2623 H~N 3 I

I I
I

9.2.7 READ PROGRAM ADDRESS INSTRUCTION
(CYB ER 170 SERIES , CYB ER 70/ MODELS 72, 73. 7 4 OR 6000 SERIES)

This instruction transfers the contents of the CPU P register to the PPU A register; this allows the PPU
to determine whether the CPU is in execution. In a dual central processor system, the lowest order bit
of the instruction format specifies which CPU P register is to be examined. This bit is not interpreted
for a single central processor system. The largest value that (P) can be is 17 bits. An ECS transfer is
in progress when bit 17 of this instruction is set; however, bit 17 of the P register is not set.

Format:

Operation Variable Description Size Octal Code

RPN d Read program address CPU d - A 12 bits 270d

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

1 11 18 ho
2700 RPN

I

I

60360900 E 9-11

9.2.8 6416 PPU INSTRUCTIONS

COMPASS assembles the following instructions for execution on a 6416 computer system only. The
ETN instruction initiates memory transfer operations by transmitting an 18-bit address from the
PPU A register to the 6416 16K memory. This address points to a word having the following format:

XO
59 36

Starting Address
in Extended Core Storage

AO

Starting Address
in 16 K Memory

18
K

Word Count

Expression d of this instruction specifies the transfer to be performed:

If dis O, K words are transferred from ECS to 16K memory.

If dis 1, K words are transferred from 16K memory to ECS.

00

Note that addresses contained in the word are absolute addresses. Operating systems may require
relocation (adding RA to an address) and field length testing, e. g., Is address -t RA FL? The
Exchange Jump package contains RA and FL values for central memory and for extended core storage.
The 6416 has no hardware for automatic relocation and field length testing; it is therefore incumbent
upon the program to perform these functions whenever required by an operating system.

The ERN instruction examines the status of the data trunk between 16K memory and the extended core
coupler. If the data trunk is busy (a transfer is in progress), a 1 is placed in the most significant bit
position of the A register. If the trunk is free (not busy), the A register remains cleared. The d
portion of this instruction is ignored.

After execution of this instruction the program would typically test the A register for a sign before
executing an instruction that initiates an ECS operation.

Formats:

Operation Variable Description Size Octal Code

ETN d Extended core transfer 12 bits 260d

ERN d Read extended core coupler status 12 bits 270d

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

l 11 18 130

2600 ETN i

I
I

2700 ERN I

9-12 60360900A

9.2.9 DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the contents of the d field specify the address of the operand.
During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 1008 addresses in core memory (0000 - 0077 8). During instruction execution,
(d) is treated as a positive 12-bit quantity.

Format:

Operation Variable I>escription Size Octal Code

LDD d Load (d)-A 12 bits 30d

ADD d Add (A) + (d)-A 12 bits 31d

SBD d Subtract (A) - (d) -A 12 bits 32d

LMD d Logical difference (A) and (d) -A 12 bits 33d

STD d Store (A)-d 12 bits 34d

RAD d Replace add (d) + (A)-d and A 12 bits 35d

AOD d Replace add (d) + 1-d and A 12 bits 36d

SOD d Replace subtract one (d) - 1-d and A 12 bits 37d

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 ho

301? LO') TAG1
I
I

l
3103 r. :in TA!,2-lf)!J I

I
3240 S1f"J l;.!)8 I

1327 U11J lAGl+1S8 I
I

~401 STCJ 1 I
I

~ Af"l 558 I
I

3612 AOO TAG1 I
I

3713 sno Tl\G2 I
I

60360900A 9-13

9.2.10 INDIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, d specifies an address, the contents of which specify the
address of the desired operand. Thus, d specifies the operand address indirectly.

During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit value that
specifies one of the first 100

8
addresses in core memory (0000 - 0077 8).

On the 7600 (or CYBER 70/Model 76), the address formed permits referencing of all memory locations
but one (0000 - 7776

8
).

On a 6000 Series Computer System (as well as CYBER 170 Series or CYBER 70/Model 72, 73 or 74)
PPU, the address formed in indirect address mode permits referencing of all memory locations,
including address 7777 s·
Formats:

Operation Variable Description Size Octal Code

LDI d Load ((d))-A 12 bits 40d

ADI d Add (A) + ((d))-A 12 bits 41d

SBI d Subtract (A) - ((d))-A 12 bits 42d

LMI d Logical difference (A) - ((d))-A 12 bits 43d

STI d Store (A)-(d) 12 bits 44d

RAI d Replace add ((d)) + (A)-(d) and A 12 bits 45d

AOI d Replace add one ((d)) + 1-(d) and A 12 bits 46d

SOI d Replace subtract one ((d)) - 1-(d) and A 12 bits 47d

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 T3o

LOI UG1 l

I 4012

nor TAG2-10 I
I 4103

4240 s~r 4QP I
I

t+3?7 LMI l"AG1+t?P I
I

4401 STI 1 I
I

455«; RAI 55R I
I

4612 AOI TAG1 I
I

SOI TAG2 I

9-14 60360900 E

9.2.11 INDEXED DIRECT ADDRESS MODE INSTRUCTIONS

In this mode, during instruction execution, the value formed by m+(d) is used as the address of the
operand. During assembly, the assembler reduces absolute or relocatable expression d to a 6-bit
value that specifies one of the first 1008 addresses in core memory (0000 - 0077 8). The value of
absolute or relocatable expression m is a 12-bit base address.

NOTE

The address formed in indexed addressing permits
referencing of all memory locations but one
(0000-77768). Although m and/or (d) can have a
value of 7777 8, the computer system does not
permit m+(d) to reference address 7777 8·

When in indexed direct address mode, if dis nonzero the contents of address dare added tom to
produce a 12-bit operand address (indexed addressing). If dis zero, m is taken as the operand address.

Formats:

Operation ~- Variable Description Size Octal Code

LDM m,d Load (m+(d))-A 24 bits 50dm

ADM m,d Add (m+(d))-A 24 bits 51dm

SBM m,d Subtract (m+(d))-A 24 bits 52dm

LMM m,d Logical difference (A) - {m+{d))-A 24 bits 53dm

STM m,d Store (A)·-m+(d) 24 bits 54dm

RAM m,d Replace add (m+(d)) + (A)-m+(d) and A 24 bits 55dm

!AOM m,d Replace add one (m+ (d)) + 1 -m+ (d) and A 24 bits 56dm

SOM m,d rriN°~Kce subtract one (m+(d)) - 1-m+(d) 24 bits 57dm

Examples:
LOCATION OPERATION VARIABLE COMMENTS

Code Generated
I II 18 T 30

5077 0203 LOH T AG6, 778 I
I

5106 0202 ADM T AG5, 6 I
I

5200 0202 SSH TAGS I
I

5315 7000 LHM 70006,158 I
r

5410 0272 STM TAGS+ 708, TAG 1-2
I

5500 0 34 2 RAM 140B+lAGS,0
1

5600 0173 AOM I -10B+TAG& I

5712 0203 SOM l TAGfulAG1 I
'

60360900C 9-15

9.2.12 CENTRAL READ/WRITE INSTRUCTIONS
(CYBER 170 SERIES, CYBER 70/MODELS 72, 73, 74 OR 6000 SERIES)

The CRD instruction transfers a 60-bit word from central memory to five consecutive PPU locations.
The 18-bit address of the central memory location must be loaded into A prior to executing this
instruction. (Note that this is an absolute address.) The 60-bit word is disassembled into five 12-bit
words beginning at the left. Location d receives the first 12-bit word. The remaining 12-bit words
go to successive locations. The (A) are not altered.

The CRM instruction reads a block of 60-bit words from central memory. The content of location d
gives the block length. The 18-bit address of the first central word must be loaded into A prior to
executing this instruction. (Note that this is an absolute address.) During the execution of the instruc­
tion, (P) goes to processor address 0 and P holds m. Also, (d) goes to the Q register where it is
reduced by one as each central word is processed. The original content of P is restored at the end of
the instruction.

(A) is advanced by one to provide the next central memory address after each 60-bit word is disassembled
and stored. The contents of the Q register are also reduced by one. The block transfer is complete
when (Q)=O. The block of central memory locations proceeds from address (A) to address (A) + (d) -1.
The block of processor memory locations proceeds from address m to m+5(d)-1.

Each central word is disassembled into five 12-bit words beginning with the high-order 12 bits. The
first word is stored at processor memory location m. The content of P (which is holding m) is advanced
by one to provide the next address in the processor memory as each 12-bit word is stored. If P overflows:
operation continues as Pis advanced from 7777

8
to 0000

8
. These locations will be written into as if

they were consecutive.

The CWD instruction assembles five successive 12-bit words into a 60-bit word and stores the word
in central memory. The 18-bit address word designating the central memory location must be in A
prior to execution of the instruction. (Note that this is an absolute address.)

Location d holds the first word to be read out of the processor memory. This word appears as the
higher order 12 bits of the 60-bit word to be stored in central memory. The remaining words are taken
from successive addresses.

The CWM instruction assembles a block of 60-bit words and writes them in central memory. The content
of location d gives the number of 60-bit words. The content of the A register gives the beginning
central memory address. (Note that this is an absolute address.) During the execution of this instruction
(P) goes to processor address O, and P holds m. Also, (d) goes to the Q register, where it is reduced
by one as each central word is assembled. The original content of P is restored at the end of the
instruction.

The content of P (the m portion of the instruction) gives the address of the first word to be read out of
the processor memory. This word appears as the higher order 12 bits of the first 60-bit word to be
stored in central memory.

The content of Pis advanced by one to provide the next address in the processor memory as each
12-bit word is read. If P overflows, operation continues as P is advanced from 7777

8
to 00008.

These locations will be read from as if they were consecutive.

(A) is advanced by one to provide the next central memory address after each 60-bit word is assembled.
Also, Q is reduced by one. The block transfer is complete when (Q)=O.

9-16 60360900E

Formats:

Operation Variable

CRD d

CRM m,dt

CWD d

CWM m,dt

tExpression d is required.

Example:

Code Gene rated

n a 1 s

612~) fHJ12

~232

63t:i0 IJ012

Description

Central read from (A) to d

Central read from (d) CM words begin-
ning at CM (A)- PPU m

Central write from d to (A)

Central write (d) words beginning at
PPU m- CM (A)

LOCATION OPERATION VARIABLE

1 11 18

CRO 158

CRM TAG1,C?58

C WO 32R

CWt-1 TAG1,508

9.2.13 1/0 BRANCH INSTRUCTIONS

Size Octal Code

12 bits 60d

24 bits 6ldm

12 bits 62d

24 bits 63dm

COMMENTS

l3o
T

I
I

I
I
I
I
I
I

(CYB ER 170 SERIES, CYB ER 70/ MODELS 72, 73, 74, AND 6000 SERIES)

The following instructions are conditional long jump instructions, each of which tests for a condition
on channel d. When the condition is true, the jump to address m takes place. When the condition is
not met, execution continues with the next instruction. These instructions are exclusively 6000-series
PPU instructions. The d expression is required.

For the F JM instruction, an input channel is full when the input equipment has sent a word to the channel
register and sets the full flag. The channel remains full until the PPU accepts the word and clears the
flag. An output channel remains full when a PPU sends a word to the channel register and sets the
full flag. The channel is empty when the output equipment accepts the word and notifies the PPU.

Formats:

Operation Variable Description Size Octal Code

AJM m,d Jump to m if channel d active 24 bits 64dm

IJM m,d Jump to m if channel d inactive 24 bits 65dm

FJM m,d Jump to m if channel d full 24 bits 66dm

EJM m,d Jump to m if channel d empty 24 bits 67dm

60360900 E 9-17

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 '30
AJ"4 TAG1,2 T

I
6402 0012

I
6502 0013 IJM TAG2,CHAN-2 I

I
660'+ 0025 FJM TAG3,4 I

I
6704 0026 EJM TAG4,CHAN I

9.2.14 1/0 BRANCH INSTRUCTIONS (CYBER 70/MODEL 76 AND 7600)

The following instructions are conditional long jump instructions each of which tests a condition on
channel d. When the condition is true, the jump to address m takes place. When the condition is not
met, execution continues with the next instruction. These instructions are exclusively 7600 PPU
instructions. The d expression is required.

Formats:

Operation Variable Description Size Octal Code

FIM m,d Jump to m on channel d input word flag 24 bits 60dm

EIM m,d Jump to m if no input word flag on channel d 24 bits 6ldm

IRM m,d Jump to m on channel d input record flag 24 bits 62dm

NIM m,d Jump to m if no input record flag on
channel d 24 bits 63dm

FOM m,d Jump to m on channel d output word flag 24 bits 64dm

EOM m,d Jump to m if no output word flag on i

channel d 24 bits 65dm

ORM m,d Jump to m on channel d output re cord flag 24 bits 66dm

NOM m,d Jump to m if no output record flag on
channel d 24 bits 67dm

9-18 60360900A

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 130

6005 136'5 FIM TAG5,5 I
I
l

61D2 1~65 FIM TA-Ge:> ,2 I

0201 1366 !RM TAG6,1
I
I

4 CH~N SFT 4
I
I

6301+ 1'366 NIM TAG6,CHAN I
I

6415 7000 FOM 70008,158 I
I

fit:;OO 1525 EOt-1 140B+TAGc;,o I
I

6601 1266 ORM -100B+TAG6,CHAN-3
I

6705 1366 NOM lAG6,CHAN+1 l

60360900A 9-19

9.2.15 A REGISTER INPUT/OUTPUT INSTRUCTIONS

The following instructions transfer a word to or from channel d and the lower 12 bits of the A register.

On the CYBER 70/Model 76 or 7600, the IAN instruction is not executed until the input channel d word
flag is set. If the flag is not set when the instruction is read, execution halts until an external signal
sets the flag. The input channel d record flag does not affect the IAN execution. The IAN instruction
clears the input channel d word flag and record flag and transmits a resume signal over the input cable
after the word is entered in the A register.

On the CYBER 70/Model 76 or 7600, the OAN instruction is not executed while the output channel d
word flag is set. If the flag is set, execution stops until an external resume signal clears the flag.
This instruction sets the output channel d word flag and transmits a work pulse over the output channel
cable.

On a CYBER 170 Series, CYBER 70/Model 72, 73, or 74 or 6000-series machine, executing either of
these instructions when the channel is inactive causes the peripheral processor unit to become inopera­
tive until some other peripheral processor activates the channel or the system is deadstarted.

Formats:

Operation Variable

IAN d

OAN d

Examples:

Code Generated

7003

7204

Description

Input: channel d to A

Output: (A) to channel d

LOCATION OPERATION

I II

IAN

OAN

9. 2 .16 BLOCK INPUT/ 0 UTP UT INSTRUCT I 0 NS

Size Octal Code

12 bits 70d

12 bits 72d

VARIABLE COMMENTS

18 !Jo

3 '
I

CHAN I
I

The following instructions transfer a block of 12-bit words on channel d to or from a starting PPU
memory location specified by m. The number of words transferred is specified by the contents of the
A register which is reduced by one as each word is transferred. The operation is completed when (A)

= 0 or the channel becomes inactive (CYBER 170 Series, CYBER 70/Model 72, 73, 74 or 6000 only).

On a CYBER 170 Series, CYBER 70/Model 72, 73, 74 or 6000-series machine, the input operation is
complete when (A) = 0 or the data channel becomes inactive. If the operation is terminated by the
channel becoming inactive, the next location in the processor memory is set to all zeros. The word
count is not affected by this empty word. Therefore, the contents of the A register gives the block
length minus the number of real data words actually read in.

During execution of either of these instructions, address 0000 temporarily holds P, while the P register
holds m. The contents of P advances by one to give the address for the next word as each word is
transferred.

9-20 60360900E

NOTE

If this instruction is executed on a CYBER 170 Series, CYBER
70/Model 72, 73 or 74 or 6000-series machine when the data
channel is inactive, no operation is accomplished and the pro­
gram continues at P + 2. However, the location specified by
m is set to all zeros for the IAM instruction.

On a CYBER 70/Model 76 or 7600 the IAM instruction is not executed until the input channel d word
flag is set. If the flag is not set when the instruction is read, execution halts until an external signal
sets the flag. The presence of an input channel d record flag is ignored for the first word of the block
but terminates the block input at any word after the first. In this case, the next location in the PPU
block input storage area contains a noise word; any remaining locations are unaltered. Note that the
storage location can be incremented through location 7776

8
to 0000

8
on a 7600 (or CYBER 70/Model 76),

or location 7777 through 0000 on a 6000-series machine (or a CYBER 170 Series, CYBER 70/Model 72,
73, or 74), which could destroy existing data or a program.

On a CYBER 70/Model 76 or 7600, the OAM instruction is not executed until the output channel d word
flag is cleared. If the flag is set when the instruction is read, execution halts until a resume pulse
clears the flag. An output channel d record flag does not affect OAM execution.

Formats:

Operation Variable Description Size Octal Code

IAM m,d t Input: (A) words to m from channel d 24 bits 71dm

OAM m,d t Output: (A) words to channel d from m 24 bits 73dm

tExpression dis required.

Examples:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I II 18 bo
IAM T~G.,J

I

I 7103 1364

OL\M TAG,4
I
I

60360900 E 9-21

9.2.17 SET OUTPUT RECORD FLAG INSTRUCTION (CYBER 70/MODEL 76 AND 7600)

The RFN instruction sets the output channel d record flag and transmits a record pulse over the cable.
The instruction ignores the previous status of the channel d flags; the instruction is executed even if the
output channel d record flag is set.

Format:

Operation Variable Description Size Octal Code

RFN d Set output record flag on channel d 12 bits 74d

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

I 11 18 j30

740& RFN 6 I

I

9.2.18 CHANNEL FUNCTION INSTRUCTIONS
(CYBER 170 SERIES, CYBER 70/MODELS 72, 73, 74, AND 6000 SERIES)

The ACN instruction activates the channel specified by d. This instruction must precede the IAN,
IAM, OAM, or OAN instructions. Activating a channel alerts the input/output equipment for the
exchange of data. Activating an already active channel causes the PPU to become inoperative until
another PPU or an external equipment deactivates the channel, or the system is deadstarted.

The DCN instruction deactivates the channel specified by expression d. It stops the input/output
equipment and terminates the buffer. Deactivating an already inactive channel causes the PPU to
become inoperative until deadstart or until the channel is activated. Avoid disconnecting the
channel before first sensing for channel empty, deactivating a channel before stopping the associated
processor, or deactivating a channel before placing a useful program into the associated processor.
After deadstart, PPUs wait on an input channel. Deactivating a channel after deadstart causes an
exit to address 0001 and execution of the program.

The FAN instruction sends the external function code from the lower 12 bits of the A register on
channel d.

The FNC instruction sends the external function code specified by m on channel d. For this instruction,
expression d is required.

Execution of a FAN or FNC instruction when the channel is active causes the PPU to become inoperative
until another PPU or an external equipment deactivates the channel, or the system is deadstarted.

Formats:

Operation Variable Description Size Octal Code

ACN d Activate channel d 12 bits 74d

DCN d Disconnect channel d 12 bits 75d

FAN d Function (A) on channel d 12 bits 76d

FNC c,d Function c on channel d 24 bits 77dm

9-22 60360900 E

Examples:
LOCATION OPERATION VARIABLE COMMENTS

l 11 18 130

7405 ACN 5 I

I

750~ OCN CHAN I
I

76C5 FAN CHAN+t I
I

7705 0020 FNC 208,5 I
l

9.2.19 ERROR STOP INSTRUCTION (CYBER 70/MODEL 76 AND 7600)

The ESN instruction halts execution of the peripheral processor program and indicates a program
error condition to the monitor control unit. The PPU must be restarted by a deadstart sequence from
the MCU, only.

Format:

Operation Variable Description Size Octal Code

ESN d Error Stop 12 bits 7700

Example:

Code Generated LOCATION OPERATION VARIABLE COMMENTS

l 11 18 130 ______ ,, __
7700 FSN I

j

60360900A 9-23

PROGRAM EXECUTION 10

COMPASS can be called from the library and placed in execution through a COMPASS call card or
through an !DENT statement (Section 4. 2. 1) in a FORTRAN source deck. When COMPASS is called
through FORTRAN, parameters are ordinarily specified on the RUN or FTN card and are the same as
for the FOR TRAN program.

10.1 CONTROL STATEMENTS

Normally, assembly of CO:l.\IPASS source programs or the execution of CPU binary object decks
is done from a job file, A file is usually submitted in the form of card decks or card images. The
first section of the file must contain the control statements described in this section. Other
optional statements are described in the operating system reference manual. Following the control
statement section are one or more sections containing source statements and data. A control
statement key \\·ord begins "·ith the first non-blank character on the card. A comma or a left
parenthesis or blank begins a parameter string. Parameters in the string are separated by com­
mas. A period or right parenthesis terminates a parameter string. Comments optionally follow the
terminator. Within the parameter strings, blanks are ignored. Ordinarily, a parameter can contain
only letters and digits. When a parameter is enclosed between dollar signs, all characters are
permitted and blanks are not ignored. Within such a dollar-sign delimited parameter, two con­
secutive dollar signs represent a single dollar sign.

10.1.1 JOB STATEMENT

A job statement of the following format must be the first statement in the deck. The parameters
follO\Ying name can be in any order or can be omitted. For any omitted field a default value is supplied
\\·hich is an installation option.

Format:

(name, Tt, Cl\Iscm, EClcm.

name 1-7 letters or digits by \\·hich the job is identified.
The first character must be a letter.

60360900 D 10-1

Tt

CMscm

EClcm

CPU time limit in octal seconds (1-7777
8
), must be sufficient to process all control

cards for the job, including assembly ana execution.

Estimate of maximum amount of SCM or CM required for execution (1 - 6 octal digits).
The estimate for COMPASS is a minimum of 40000.

Estimate of maximum amount of LCM or ECS in octal thousands, required for
assembly or execution (1 - 1400

8
). The estimate for COMPASS is a minimum of

none.

COMPASS notes storage used in the job dayfile. For subsequent runs, the field lengths can be de­
creased accordingly.

Examples:

(JOBl, P2, TlOO, CM40000, EC30.

(TESTER.

10.1.2 COMPASS CALL STATEMENT

The following statement causes the COMPASS assembler to be loaded from the library and executed.
Parameters specify modes and files.

Format:

COMPASS(p
1
,p , ••• ,p)

2 n

The optional parameters, p, may be in any order within the parentheses. A parameter can be omitted
or can be in one of the following forms.

mode

mode= 0

mode= lfn

Mode is one or two characters as described below; lfn is a 1 - 7 character name of a file or a
character string.

10-2 60360900 D

Mode Significance

A- Abort mode

A

omitted

B- Binary output

omitted or B

B=O

B=lfn

D- Debug mode

D

omitted

Abort job at end of run to EXIT(S) statement if any assembly errors occurred.

Do not abort job for assembly errors

Binary on the load-and-go file (LGO)

No binary output

Binary on the named file

Binary is generated on the file indicated by B parameter in spite of assembly errors
and regardless of the abort mode (A parameter)

D is ignored if B=O

Assembly errors inhibit binary output. In abort mode (A parameter present), no
binary output is written at all for a subprogram containing assembly errors. Other­
wise (A parameter omitted), the message ERRORS IN ASSEMBLY is written to the
file indicated by the B parameter for each subprogram containing assembly errors.

F - FORTRAN mode; establishes value of special element *F

omitted or F

F=number

F=name

G - Get system text

*Fis 0

*F is number (one decimal digit)

*F is a number corresponding to name as follows:

COMPASS= 0

RUN= 1

FTN = 2

Omitted or G=O Load no system text from a sequential binary file

G Load the first system text overlay, if any, from file named SYSTEXT

G=lfn Load the first system text overlay, if any, in the specified sequential binary file

G=lfn/ ovl Search the specified sequential binary file for a system text overlay whose name
is ovl and load the first such overlay

60360900 D 10-3

Mode Significance

I - Source of assembler input

omitted

I

I=O

I=lfn

L - Full List

omitted or L

L=lfn

L=O

Source deck is on INPUT file

Source deck is on COMPILE file in either compressed or expanded format.

Illegal

Source deck is on named file

List output on OUTPUT file

List output on named file. When the full list is on a different file than the short
list, the listing for each subprogram is preceded by a one-word header consisting
of an asterisk and the first six characters of the subprogram name. This header
identifies the subprogram as a convenience for sorting and cataloging. Also see
0 option.

No full list will be generated

LO-List options; selects or deselects a maximum of nine of the list options A, B, C, D, E, F, G, L,
M, N, R, S, T, or X

omitted or LO=O Same as selecting B, L, N, and R only

LO

LO=$$$$

Selects list options C, F, G, and X, and deselects R

A list of up to nine characters. Inclusion of B, L, N, or R deselects the corres­
ponding option. Otherwise, inclusion of a character selects the option. For
options, refer to LIST pseudo instruction, section 4.11. 1.

Selects all list options

ML-Initial Value of MODLEVEL Micro

omitted or ML MODLEVEL is defined equal to JDATE at the start of each assembly

ML=string MODLEVEL is defined as string (nine characters maximum) at the start of each
assembly

N - No eject; suppresses ejects caused by normal listing control. The only page ejects are at the be­
ginning of new subprograms.

N

omitted

10-4

No eject

Normal ejects

60360900B

O - Short list; suppressed if full list is directed to the same file or if no assembly errors occur. How­
ever, if the full list and short list are on different files (for example, the full list is written on
OUTPUT and the short list is written on the named file), the short list will be augmented by the
addition of any error lines originating with a macro call.

omitted or 0

O=lfn

O=O

P - Continue page

p

omitted

List output on OUTPUT file

List output on named file

No short list will be generated

Page numbering continues from subprogram to subprogram.

Page numbering begins with J at the start of each subprogram

PC- Initial Value of PCOMMENT Micro

omitted or PC

PC=string

PCOMMENT is defined as 30 blanks at the start of each assembly

PCOMMENT is defined as string at the start of each assembly. Characters are
truncated from the right or blanks are appended to the right, as necessary, so
that the length of the micro value is exactly 30 characters.

S - System Text Name

omitted

S=O

s

S=ovl

S=lib/ovl

If there are no G parameters other than G=O, load the overlay named SYSTEXT
from the job's current global library seto

Load no system text from a library

Load system text overlay named SYSTEXT from job's current global library set.

Load the system text overlay named ovl from the job's current global library set

Load the system text overlay named ovl from the library named lib, which may be
a user library file or a system library

X - Source of external text (XTEXT) when location field of XTEXT pseudo instruction is blank.

omitted External text 0 LD PL file

X=lfn

X=O

x

External text on named file

Illegal

External text on OPL fileo

Examples:
(,_c_O_M_P_A-SS_(_B_,-D-,-S=_O_V_I)--

(coMPASS(LO=ASGXD)

(coMPASS.

60360900 D

Reads source from INPUT, writes the binary output to LGO,
and the listing to OUTPUT. Assemble in debug mode with
system text from overlay OVI in the global library set.

Disables LIST pseudo instruction and sets LIST options
A, S, G, X, and D.

Uses the standard default options.

10-5

l\ICLTIPLE SYSTEM TEXT OVERLAYS

COl\IPASS 3 allows up to seven system text overlays to be used for an assembler run. They are
specified by G and S parameters on the COMPASS control card. Each G parameter (except G=O)
specifies loading of a system text overlay from a sequential binary file, and each S parameter (except
S=O) specifies loading of a system text overlay from a user library file or a system library. The G and
S parameters can be used in any combination and in any order, and can be intermixed freely with other
parameters, provided the total number of system text overlays specified does not exceed seven.
COl\IPASS loads the system text overlays in the order in which the G and S parameters occur on the
COl\IPASS card. If a system macro, micro, or symbol is defined by more than one system text, only
the last definition is used.

Examples:

(coMPASS(I, s, S=PFMTEXT' G=MYTEXT)

COMPASS(G=FILE/SCPTEXT, S=MYLIB/TEXT)

10.1.3 LGO CONTROL STATEMENT

Reads source from file COMPILE and gets system
text from overlays SYSTEXT and PFMTEXT in the
global library set, and from the local file MYTEXT.

Get system text from overlay SCPTEXT on the file
FILE, and from overlay TEXT in library l\IYLIB.

An LGO control statement calls for the loading and execution of CPU binary output produced by the
assembler when the B option on the COMPASS card is selected. When binary output is on some file
other than LGO, the card is replaced by a program call card for that file. TI1e file is automatically
re"·ound before loading. The LGO file is temporary; it is released at job termination.

Formats:

or

10.1.4 PROGRAM CALL STATEMENT

The program call statement directs the operating system to search for a file or CPL' program that has
the name specified on the card, load it into the user's small core memory, and execute it as a CPC
program.

10-6 60360900 D

Formats:

(name(pl,p2, .. • ,pn)

(name.--
name Program name

Parameters in a format acceptable to the program being called

When the operating system locates the file, it begins loading it from the current file position and, when
loading is complete, executes the program as a CPU program.

10.1.5 7 /8/9 CARD

The card that separates sections in the job deck is characterized by having rows 7, 8, and 9 punched in
column one. The level is assumed zero unless columns 2 and 3 contain an octal level number punched
in Hollerith code. The remainder of the columns optionally contain comments.

As an example, a deck consisting of a control card section and a COMPASS source input section would
include two 7 /8/9 cards. The first terminates the control cards and the second terminates COMPASS
input.

10.1.6 6/7 /8/9 CARD

The card that signals the end of the job deck is characterized by having rows 6, 7, 8 and 9 punched in
column one. Columns 2-80 optionally contain comments.

10.1.7 ACCOUNT CARD

The control card format is:

(ACCOUNT, usernum, passwrd.

usernum

passwrd

User (account) number

User password

The ACCOUNT card, required by some operating systems, follows the job card and specifies the user
number and password. The user number is used in system bookkeeping and defines the user's file
catalog area. The user can specify a different permanent file catalog during job processing by issuing
another ACCOUNT card.

The samples which follow do not have ACCOUNT cards.

60360900 E 10-7

10.2 SAMPLE DECKS

The following job calls for assembly of the source program and execution of the binary object program
produced by the assembly. COMPASS reads source statements from file INPUT, writes the listing on
OUTPUT, and writes a binary object deck on file LGO. Control statement LGO calls for execution of
the binary object program, which obtains its data from file INPUT.

10-8

Subprogram
TEST

Control
Section

6
7
8
9

I

7
8
9

END TEST

r ((((-IDENT-TEST ______,

'17
8
9

{_LGO.

{coMPASS.

SAMPLE, TlOOO, 840, LlOO.

Data for
execution

60360900A

In the following job, the COMPASS assembler is called twice. During the first assembly, binary
object decks for subprograms TESTl and TEST2 are written on file LGFILEl. The source decks for
these subprograms are in the second section of the INPUT file. During the second assembly, COM­
PASS writes a binary object deck for subprogram CDA on file LGFILE2. Each assembler run produces
a full listing. Following the second assembly, both files containing binary output are repositioned to
the beginning of the file. Then, the COPYBR program is called to copy the contents of LGFILE2 to a
punch file (PUNCHB). The LGFILEl statement then calls for the loading and execution of subprograms
TESTl and TEST2 from LGFILEl. Following successful execution of the subprograms, the file is re­
wound and copied to the punch file, after which the job terminates.

60369900A

'.
9 I END CDA l

l l IJ~] } Data for execution

/7
8
9

....___

} Subprogram CDA L

L

{ !DENT CDA

_l
I END TEST2 1 1J""

• i

1111
•

F !DENT TEST2

} Subprogram TEST2

i.....- I END TESTl

==::;illl } Subprogram TESTl • • .
.L

I !DENT TESTl ~

--~~~~~~~~~~~~--

COPYBR(LG FILEl, PUNCHB)

REWIND(LG FILEl)

LGFILEl.

COPYBR(LG FILE2, PUNCHB)

REWIND(LG FILE2)

REWIND(LGFILEl)

COMPASS(B=LG FILE2)

COMPASS(B=LG FILEl)

SAMPLE, T500, EC50, CM50000.

Control
Section

10-9

In the following example, COMPASS is called from within a FORTRAN program. The source program
follows the FORTRAN program in the same section.

No parameters on the RUN card cause:

1. Loading and execution of the RUN compiler

2. Object program CM/SCM and E CS/LCM fields to be set

3. Source decks on INPUT

4. Listings to be written on OUTPUT

5. Binary object programs to be written on LGO

6. No cross reference list to be produced

END

6
7
8
9

Data

COMPASS Source Deck

10-10

IDENT begins in
column 11 ----

7
8
9

RUN.

ID ENT

JOB, EClOO, CMlOOOOO, P2.

60360900B

The following sample programs illustrate how to assemble and use a system text overlay.

IDE NT MY TEXT

STEXT

1 ONE. t.UU J. CONSTANT ONE
:·if> HALF t.QU 30 POS CONSTANT

SHIFT MACRO ALPHAt~ETA POSITIONING ._,AC~O

IFC Nb iALPHASX2S t l
SA2 ALPHA

I FC NE.' $Bf. TA 82 t l
Si:t2 dE TA

LXb X2ttj2

tNDM

END

lDt:.NT TEST
ENT RV TEST
SST

bllOOOOOUl Tl ST S~l ONE CONSTANT ONE. FROM TEXT

:,12Ciouooo4 + SA2 INBUF PICK UP VALUE FROM STORAGE

bliOUOOOJo SHIFT X2tHALF POSITION WORD IN Xo

5160000006 + SA6 OUTl:JUF ~ETURN NEW WORD TO STORAGE

7l60c1+7ot!l l:NORlJN

2 INBUF ti SS l
1 OUT8UF BSS 1

END TEST

60360900 E 10-11 •

The deck for this job could be set up as follows:

• 10-12

7
8
9

7
8
9

6

i(,.c===.',..._..._,'-----IDE==N-T-TEST ~----111111

11111

• ,'

(IDENT MYTEXT

COMP ASS (G=MYTEXT)

COMP ASS(S=O, B=MYTEXT)

TEXT, Tl7.

60360900 E

LISTING FORMAT 11

This section describes assembly listing format. Control of the contents of the listing is described in
section 4.11 Listing Control, and in section 10.1. 2 COMPASS Control Statement.

11.1 PAGE HEADING

Each page of the assembly listing contains a title line and a subtitle line in the following format:

title

subtitle

title

date

time

PAGE x

subtitle

sub-subtitle

block name

symbol qual

COMPASS Version

sub-sub block
title name

date

symbol
qual

Up to 62 characters taken from the first TITLE pseudo instruction or from a
TTL pseudo instruction or, in lieu of these, from the IDENT instruction

Date of assembly

Time of assembly in hours, minutes and seconds

Page number of listing. Pagination begins with 1 for each END instruction
unless the P option is selected on the COMPASS control card

Up to 62 characters taken from second and subsequent TITLE pseudo
instructions or a CTEXT pseudo instruction

Up to 10 characters taken from the most recent EJECT, SPACE, TITLE, or
TTL pseudo instruction or the location field of an ES or PS machine instruction.
If the instruction that introduces the new sub-subtitle also causes a page eject,
the instruction immediately follows the heading (assuming the C list option is
also selected).

Name of the block in use at beginning of page

Qualifier in use (see QUAL pseudo instruction) at beginning of page

11.2 HEADER INFORMATION

The first page of the assembly listing for each subprogram contains a summary of binary control cards
(optional), a list of all the blocks established for the subprogram, and lists of entry points and
external symbols.

11.2. l BINARY CONTROL CARD SUMMARY

A binary control card summary in the following format is generated for each ID~NT instruction when the

60360900B 11-1

COMPASS control card or the LIST instruction selects the B list option:

ADDRESS

addr1

addr2

addr
n

binary car~

addri

.Q_i

Example:

a no RESS
101
~7?

%3~

7ry7r:,
1~24?

11-2

?O 4 ~7

22011

LENGTl-'
?71

')241
1242
4t4S
s11c;
1352

LENGTH BINARY CONTROL CARDS.

binary card1

binary card2

binary cardn

The binary card that caused generation of the binary for the overlay, partial
binary, or subprogram. The list includes SEG, SEGMENT, and END instruc­
tions.

The origin address for the subprogram, overlay, or partial binary written out
as a result of the binary card

The length of the subprogram, overlay or partial binary

PTNARY rONT~OL rAPD~.

rn~NT roMPnss,LOVF~,rMP

~fG

~J:"G
si:-G
<:: EG

. <::EG
nm CO~PJ'iSS

60360900B

11 .2 .2 BLOCK USAGE SUMMARY

A block usage summary of the following format is generated in the assembly listing under
control of the B list option:

BLOCKS TYPE ADDRESS LENGTH

name1

name2

narnen

namei

type

baddr.
l

length.
l

60360900A

tl baddr1 b.(11

t2 baddr2 b.(12

~ baddrn b.Qn

Name of the block used in the subprogram, as follows:

PROGRAM*

ABSOLUTE*

LITERALS*

other

For a relocatable assembly, indicates the zero
block. For an absolute assembly, the first
PROGRAM* indicates the absolute block, the
second indicates the default symbols block.

Appears in a relocatable assembly only and
indicates the use of an absolute block.

Identifies the literals block.

Identifiers a local, labeled common, or blank
common block.

The type of the block as follows:

ABSOLUTE

4 LOCAL

+COMMON

All addresses in the block are relative to absolute
zero. For an absolute assembly, all blocks are
ABSOLUTE.

Addresses in the block are relative to the origin
assigned to block zero. The + is present for an
ECS/LCM block.

Addresses in the block are relative to the origin of
the common block. The + is present for an ECS/
LCM block.

Beginning address of the block according to type.

Number of words in the block.

11-3

Examples:

RL(")r K<; TYP~ l'lf"1r1=?:;:. si::: LFNG TH

PROGRl\M• l\nl)OlllTF f! 54 tC:,
lITfRL\L~• AQSOLUTF 5 41 F- 215
'rONTOOL l\PSOLUTi= 5 F, ~ ~ 12 42
Pc:;i::-uon ~. P5:nL UT~ 7 0 7 t:: 4145
SUR~ ARSf"LUTr 13242 St?S
PUFFERS ~RSOLUTS:- 204H !. 1140

PLOCKS TY 0 E l\OJRESS l'.::NGTY

A'='!SOLUTE• A1SOLUTE J 62
PROGRAM• LOCAL J 3S
OATA1 LOCAL 35 1
LCM +ll1CAL Q 5
TABLE +L'JCAL s C\

TABLE +COMMON j 123
TA8LE LOCAL 36 1
TABLE GO-..MON J 1
II C'.1"'1MON \J hd

11.2.3 ENTRY POINT LIST

If the subprogram declares entry points, a list of entry point symbols in the following format follows the
block usage summary.

ENTRY POINTS.

sym
1
* +addr

1
+block

1
sym

1
* +addr

1
+block

1 n+ n+ n+
sym * +addr

1
+block

1 2n+l 2n+ 2n+

sym * +addr +block
2 2 2

sym * +addr +block
n+2 n+2 n+2

sym * taddr +block
2n+2 2n+2 2n+2

sym * + addr +block
n n n

sym * +addr +block
2n 2n 2n sym3n * +addr 3n +block3n

Where n is one-third the number of entry points. The asterisk to the right of sym. is present if sym.
is a conditional entry point (declared by ENTRYC). The + to the left of addr. is pi-esent if block. is 1

an ECS/LCM block. The + to the right of addr. is present if addr is reloca1table. Block. is
1

1 1
blank or a common block name surrounded by slashes.

If the symbol is undefined, addr. is *******.
1

11-4 60360900A

Example:

ENTqY POINTS.

~NAPl

SNAD2
S"JAP3
JUMPVEC
BEGIN
PYTE'SIZ

1345+
1352+
1357+

O+/JU~PVEC/

O+
6

11.2.4 EXTERNAL SYMBOL LIST

C~Ll

GOTO
!F
LABEL
REAO
RECORD

72+
156+
224+
372+
435+

2Lt+/!1ATA/

PEO~OEC>

RPF
9PH

LCM
u;w::~

? 375+
~ 461+
24b3+

u+
1 u+/LCl-1'\/

If external symbol references are declared in the subprogram, a list of the following format follows the
list of entry point symbols:

EXTERNAL SYMBOLS.

sym2n+l sym3n+l sym7n+l

sym2

Where n is one-eighth the number of external symbols.

Example:

~XTfRNAL SVM~OL~.

11.3 OCTAL AND SOURCE STATEMENT LISTING

The contents of the octal and source statement listing depends on the options selected.

The list is 130 characters wide with fields assigned as shown in figure 11-1.

60360900A 11-5

Error Location
F1ags Addresses

Error Flags

Location
Addresses

Octal Code

11-6

Title Line

Subtitle Line

Octal Source Lines Sequence
Code

Figure 11-1. Format of Octal and Source Statement Listing

Error flags indicating that errors of the type indicated have been detected on the
source line or in a subsequent statement that is not listed. These flags are
described more fully under Error Directory. Lines containing errors are always
listed.

The value of the location counter with leading zeros suppressed. If no code is
generated or no location symbol is defined by the statement, this field is blank.
If at the time the value is assigned, the value of the location counter differs from
the value of the origin counter, an L precedes the address.

The actual code generated by this statement. Depending on options selected, the
listing shows just the first word or all words generated for data generation
instructions. The field does not include NO instructions (460008) packed for a
force upper or zeros packed for a completed parcel on a VFD. A 24-bit PPU
instruction is shown two words of data per line.

60360900A

Source Code

Sequence

60360900E

If the word contains an address, the octal code is flagged as follows:

Negative relocatable address
+ Positive relocatable address
C Common relocatable address
X External address

For a statement that does not generate code, this field is normally blank.
Exceptions are as follows:

For a LIT instruction the field contains the address of the first word of
the literals generated.

For a COL instruction, the field contains the new beginning-of-comments
column number.

For a symbol defined through SET, MAX, MIN, EQU, =, or MICCNT,
this field contains the octal value of the symbol right justified with leading
zeros suppressed.

For an instruction resulting in a change of base, the notation brb2 is right
justified in the field. bi indicates the old base and b2 indicates the new base.

For an instruction resulting in a change of code conversion, the notation
c1 r- c2 is right justified in the field. c1 indicates the old code and c2
indicates the new code.

For a DUP instruction, the field contains the repeat count.

For a BSS or BSSZ instruction, the field contains the octal value of the word
count right justified with leading zeros suppressed. If the word count is
zero the field is blank.

For a DECMIC or OCTMIC instruction, the field contains the octal value of
the expression right justified with leading zeros suppressed.

Source statement image (columns 1-72)

Columns 73-90 of the card image or an identifier for an expansion of a definition
operation as follows:

Macro
Remote code
Duplicated code
Echoed code
XTEXT
OPDEF

macro name
RMT
DUP
ECHO
file name
Operation field of opdef call, e.g., SBl

The recursion level is indicated in the right half of the field.

11-7

Example:

COMPASS 3.71210 - CYBER 70/ COMPREHENSIVE ASSEHBLER.
COHllON ANO UTILITY SUBROUTINES.

COHPAS5 3. 71210
ALC

51+66 50200031+62

51+67 OililOOOOOOO
51+7& 6120000031+

51t71 51+322
541+21

51+72 37006

5030003516

50200031+62

36613
3701t2

0330005471+
54630

5'+73 01ooooo51+&&

5"71+ 5120003172
1Ult11

67721
5"75 67771

51570 03516
3641+5

51+76 0570005475
5130003345

51+77 63730
37021t

631tlt0
~

ALCX

ALC
AL Cl

ALC2

ALC3

ALC - TABLE HANAGER ANO ALLOCATO~.
A'-LOCATOR WILL HOVE TABLES TO ACQUIRE ROO:i. ALSO HAY DUMP
INTERMEDIATE OR CROSS-REFE 0 ENCES ONTO SCRATCH FILE.
E'lTRY IAO l = TABLE INOEX.

IXll = CHANGE I+ OR -I TO TABLE SIZE.
EXIT IX2l = ORIGIN OF TA'lLE.

I X3l = NEii LENGTH OF TABLE.

SA2
SA1

PS
sn
SA2
SA3
SA4
IX6
IJCQ
ll<J
N:;
SA&
E'l

ORIG HIS+ AO
SIZES+ A~

NT ABLES
ORI<; INS+ AO
A2+92
A2+31
Xl+X3
X<t-X2
xo-x6
Xu ,ALC2
A3
ALCX

H'lVE TA8Lf5.

SA2 SI ZCO~E
BXlt Xl
S17 82-'H
Sl7 87-91
SAS SIZES+ 87
ll(lt X4+X5
NZ g~S~L~~ SA3
S17 X3
IXJ X2-XI+
S~t+ Xt+
S97 -Br

RECLAIH VALUES FOR EXIT REPLY

RETURN EXIT
PoESET INDEX REGISTERS
CURRENT ORIGI'I
CURRENT LENGTH
NEXT TA'!LE ORIGIN
NEii S!ZE
l[ST IF RIJ0!1 FOR E".P~•ISIIJ~

JU'1P TO RE-ALLOCATE CO~c
STORE NEii SIZE
EXIT

<;EE !F ENOUGH ROOM

LOOP

l!lt+l -= TOTAL LENGTH

11.4 LITERALS

PAGE 82

CJHPASS 1r,q5
COHPASS 1&%
C0'1"ASS 1n~7

COH"ASS 1&gs
CQ.'1PAS5 ln'!CJ
C0'1DA5S 17-C
COH"ASS 17.1
COM" ASS 17: 2
COM"ASS 17-3
COM''AS<: 17 4
COM" ASS 17~ 5
C0'1"ASS 17. 6
COMPASS 17. 7
C0'1PA~<; 17 _ 8
C·JH:::>AS"3 17. q
co•ir AS"' 171:
CO'-!.,AS~ l711
co·~p as~ 171 2
CO!"!': A5'S 1 7 13
CO'F A7 ~ 11! 4
COM·' ASS 17!. 5
C0'1"ASS 1716
CQHP ASS 1717
CO"PA:~ 1 718
COM<'~SS 1719
C0"1t'A~3 17 2:
cn~ 0 As5 1721
r.OM·'AS<; 1722
CO"'~t\sc: 17~3
C•JM 0 A.SS 1 7 ?4
.i;-0~-S<,' n''~
r.o•PA;<; 1'2!>
GOP-'~1 A~ 5 17,~7

COM''AS<; 17.'8
CCi'PAs·s l72<i
COM" ASS 1 731j
C0'1:'AS5 1731
c·o

When the D list option has been selected, the assembly listing includes a listing of the literals block
following the default symbols listing. Following each literal address is the octal contents of
the word and a display code conversion of the contents of the word.

Examples:

0111121
01n12?
01'112~
01"1124
01012c;
01012e)
010127
0101 ~1
01nnt

731'3
731~
7317
732':1
7321
73??
7321
7324
73211
132Fi
7327

11-8

C0~1EN1 OF LITERALS BLOC~.

114~57737s~oqoaooooo
16nsooonooooonoooooo
15os232<01u1a?5s~&~n
S5040503111S01145522
05212511??~504570000
55??0521?51122050400
ooo~ooooonoooooooooo
20?217n72?0115SS0102
17??2457nnnonooooooo

O+.>~X
N~
MfSSlH~E 33

nl="('!Ml\L R.
EOUTR F11.
Rf'nUT~~n

PROGRAM AB
ORT•

CONHNl OF LITERALS EtOCI<.

00~4 1 70711 'f' 1'
0007 G onoo
s c:; n 1 A onoo
0 Cjf!6 fF
1411 LI
2405 TF
22n1 RA
14?3 LS

60360900A

11.5 DEFAULT SYMBOLS

When the D list option is selected, a list of default symbols immediately precedes the literals block.

Example:

000000 x
nr546t
OOS46?
ooc;46~

·rn546._

11.6 ASSEMBLER STATISTICS

OEFAUlT SYMBOLS OEFINEO BY COMPASS

MSG=
TllG1
TAG2
An("
~vt-1

Assembler statistics are printed at the end of the octal and source statement listing or, if the D list
option is selected, following the default symbols. Information includes the following:

Amount of storage used (octal)

Number of source statements

Number of symbols defined

Number of invented symbols

Number of symbol references

Machine on which COMPASS executed and assembly time

Number of errors encountered during assembly

Number of lost references, that is, references to symbols that have been omitted from the
symbolic reference table.

11.7 ERROR DIRECTORY

The assembly listing includes an error directory if any errors are detected during assembly. The
directory begins a new page identified with the subtitle ERROR DIRECTORY. Each type of error that
occurred is called out with a two-line message of the following format:

x TYPE ERROR description
OCCURRED ON PAGES Pi,

Types and descriptions are given in Tables 11-1 and 11-2. Errors flagged with an alphabetic character
are fatal. A fatal error causes suppression of binary output. Nonfatal warning flags are numeric; they
are informative only.

60360900B 11-9

TABLE 11-1. FATAL ERRORS

Error
Type Definition

A

D

E

F

11-10

ADDRESS FIELD BAD.

Indicates any of a number of possible errors in a variable subfield entry.
For example:

CODE character not A, D, E, I, O, or*

Symbol or name greater than 8 characters
Expression does not reduce to one external term, relocatable terms do

not cancel properly, instruction disallows register designators,
instruction requires absolute expression, etc.

Data error; 8 or 9 encountered in octal data, modifier not S, P, 0, E, D,
or B

No data in variable field of LIT instruction
No symbol following an =Sor =X prefix
Relative jump out of range (-3l>r >31) on PPU instruction
BASE character not 0, M, D, or *
Register illegal in CON instruction
Unable to locate synonymous -instruction for OPSYN or CPSYN.
Micro count less than zero or greater than ten
NOLABEL character not I
Negative relocation on ORG
POS value less than 0 or greater than word size.
Erroneous OPDEF reference

DOUBLY DEFINED SYMBOL. THE FIRST DEFINITION HOLDS.

Symbol previously defined or declared external

ECHO, DUP, RMT, OR MACRO ILLEGALLY NESTED.

Definition not wholly within next outer definition

NUMBER OF ENTRIES EXCEEDS PERMISSIBLE AMOUNT.

LIT generates more than 100 words
Data missing or erroneous on XTEXT file
More than 63 formal parameters and local names in macro definition
More than 255 blocks

60360000 E

TABLE 11-1. FATAL ERRORS (cont'd)

Error
Type Definition

L LOCATION FIELD BAD.

Required location field entry is erroneous
Format two macro definition has no substitutable parameters

N NEGATIVE RELOCATION ON ENTRY POINT.

0 OPERATION FIELD BAD.

Instruction unrecognizable, out of sequence (e.g. , ABS or PPU not in
first statement group or instruction is illegal for binary mode), or
relational mnemonic on IF statement is erroneous. Location symbol
begins beyond column two.

p CONSULT LISTING FOR REASON BEHIND P-ERROR

User-generated error flag (ERR or ERRxx instruction)

R DATA ORIGIN OUTSIDE BWCK OR IN BLANK COMMON.

Range error

u UNDEFINED SYMBOL. VALUE ASSUMED O.

Reference to a symbol that is not defined; for example, IF
statement line count, DIS word count, unrecognizable attribute
on IF statement, and undefined qualifier

v BIT COUNT ERROR ON VFD (MUST BE 0 .S COUNT :5: 60).

VFD field size erroneous

60360900B 11-11

TABLE 11-2. INFORMATIVE ERRORS

Error
Type Description

1 LOCATION SYMBOL BAD. SYMBOL NOT DEFINED.

Location field entry erroneous. The instruction does not require an entry.

2 ADDRESS ERROR ON SYMBOL DEFINITION

Erroneous variable field entry. The location field symbol is not defined.

3 DUPLICATE MACRO DEFINITION. NEW ONE OVERRIDES.

Macro, opdef, or synonymous operation redefines operation code

4 BAD FORMAL PARAMETER NAME IGNORED.

Macro or ECHO formal parameter name repeated or illegal

5 CPU OPERATION SYNTAX INCORRECTLY SPECIFIED.

OPDEF, CPOP, CPSYN, or PURGDEF specifies illegal syntax

6 LOCATION FIELD MEANINGLESS.

Entry in location field is ignored

7 ADDRESS VALUE EXCEEDS FIELD SIZE, RESULT TRUNCATED.

Value of expression exceeds size of destination field
BSS address expression value is negative
MICRO starting character position or character count is negative

8 MISSING OR EXTRA ADDRESS SUBFIELD.

Variable subfield entry missing or superfluous

9 MICRO SUBSTITUTION ERROR. NO SUBSTITUTION

Micro reference unrecognized

11-12 60360900B

11.8 SYMBOLIC REFERENCE TABLE

The assembler generates a symbolic reference table (figure 11-2) if the L list option is on at the end of
assembly. The table is not complete if the option was turned off at any time during the assembly. The
table lists symbols according to the qualifier, if any, under which. they were defined. The global
symbols are listed first. A new heading of the following form introduces each new list of qualified

symbols.

SYMBOL QUALIFIER = qualifier

The qualifiers are in the order declared in the subprogram.. Symbols are listed alphabetically.

When symbol references are lost because table space has been exceeded, the subtitle line includes
notification in the form n LOST RE FE REN CES.

Title Line

SYMBOLIC REFERENCE TABLE.

symbol value

symbol

value

block

60360900B

block page/line
and/or
address

page/line
and/or
address

page/line
~ and/or
~ address

Figure 11-2. Format of Symbolic Reference Table

Alphabetical list of symbols defined under the qualifier

Absolute value of the symbol or the address assigned to this symbol relative to
the block named

If the symbol was defined by the SST pseudo instruction, block is the system.
text file or overlay name. Otherwise, this field is blank in an absolute assembly
or, in a relocatable assembly, it contains the name of the block containing the
symbol.

11-13

I

page/line

address

flag

From left to right and from top to bottom, a list of indices sequenced according
to page number. Each index points to a statement containing references to the
symbol or defining the symbol.

When the XREF pseudo (section 4. 11. 8) has been used, the page line field contains
the location counter address of the instruction containing the reference. Page
and line numbers are optionally included with the address.

Identifies page/line index to a statement that defines the symbol or uses it in an
IF statement as follows:

D Definition statement; EQU, SET, MAX, MIN, or MICCNT

E ENTRY or ENTRYC pseudo instruction

F Symbol used in conditional test

I Symbol used for indirect storage (applies only to PPU or PERIPH
assemblies)

L Symbol used in location field of the statement

S Symbol used for storage

X EXT pseudo instruction

When XREF A is in effect, the table does not include the flags.

Example:

COHPASS 3. 71210 - CYBER 701 COHPREHENSIVE ASSEH!3LER. COHPllSS 3. 7121J • 8/2'..171 1&. 25.44. PAGF 'j~j 1
SYHBOLIC REFERENCE TABLE. OE BUG

SNTEHP 5115 72112 L 71+151 s 74153 7&12?. s 7&121+
SNUHB 5<t21 73/48 74103 71+112 71+/25 74/1+2 75141+ 75150 761':,<t L
SNUHBl 51+16 78148 L 78/53 78/56
SNWLIN 51+23 73128 73/<tl 7<t/iJ5 71+152 76123 79/CS L 7q141
s·NWL INl 51+25 79/14 L 79/16
SNWLIN2 51+27 79/13 79/17 L
SNX 5131+ 72116 L 72/39 s 71+/lil 77/11+ 77/?,<t

72132 s 7211.2 s 71+/1& 77 /3:; 77133

SYHBOL QUALIFIER = DATA

AF 6675 115/39 L 11&/4& 121/37 131/5Z i32/19 132/32
ccs 732<; 132/<tlt 133/.J 3 133/18 113131 13311+4 134/c2 135/<t~ L 13&/ 6
CCSl 7332 135152 13~151+ L
CCS2 7323 135138 L 13f>/Ql
CSA 725<t 117 /32 12v20 131/Jl L
csc 7257 117121) 121/17 13311& L
CSH 7251) 117/20 121111+ 132/1+2 L
CSL 7263 117/17 121/11 133/I+? L
CSR 726& 117/11 1211.; e 133/57 L
csz 72&1 1171.8 121105 133/29 L
ocs 7222 1171(,9 117/12 117/lA 1171'.?1 117/27 117/32 131133 L
OCS1 7225 131/<t2 L 131/<t&
DL 6674 115/3' L 12F./36 134/2 ·~
DO 6673 115137 L 115/46 s 116/35 12&/35 134119
DV 6653 115/16 L 12.12r, 5 12211+1 123/J6 121+/27 132/C!'
ff &&61 115121 L 12U21 125/11 126/B 127/C5 5
ERR &715 116/3:i L 121135 122/0<t 12C</.J3 126/J& 127/•: 7 131/51 132116

116/53 121151 122/j7 125/3, 126/11 1?8/19 132/.6
115157 122/Ul 12Uh 12515. 12':>144 12A/<tl 132/11

ES 6662 115122 L
ESC 7141 122122 1211/04 L
EV 66&3 11?/23 L 122/1+3 123/07 s 123/<tZ
FC &6&Q 115119 L 12'135 s 1221 .. 'l
FM 6676 115/1+0 L 13o;1113 135/17
GCS 7270 13211+9 133/01' 133/21 133131+ 13311+7 131+/"5 131+/19 L
GCS1 7275 13<t/31t L 13<t/37
GCS2 7277 134/32 131+139 L
GCS3 73ilu 131+/ .. 1 L 134/41+
GCSlt 7303 134/40 134/45 L
GCS5 7301t 131+/48 L 134/51
GCS& 7306 134/<t& 134/53 L
GCS7 73\J7 131+/§;3 131+/55 L
GCSS 731& 135/u2 135/11 135/15 l
INT 7135 12511+8 126/55 L
LRS &740 117115 117/21+ 119106 L
NCS 233 121/06 121/GC) 121/15 121/18 121/21 132/05 L

321

11-14 60360900 E

CHARACTER SETS

NOTES

1. The terms upper case and lower case apply only to the case conversions, and
do not necessarily reflect any true case.

2. When translating from display code to ASCII/EBCDIC the upper case equivalent
character is taken.

3. When translating from ASCII/EBCDIC to display code, the upper case and lower
case characters fold together to a single display code equivalent character.

4. All ASCII and EBCDIC codes not listed are translated to display code 55 (space).

5. Where two display code graphics are shown for a single octal code, the leftmost
graphic corresponds to the CDC 64-character set (system assembled with IP CSET
set to C64.1), and the rightmost graphic corresponds to the CDC 64-character
ASCII subset (system assembled with IP CSET set to C64. 2).

6. In a 63-character set system, the display code for the : graphic is 63. The %
character does not exist, and translations from ASCII/EBCDIC % or ENQ yield
blank (55

8
). The display code value 00 is undefined in 63-character set systems.

7. Twelve or more zero bits at the end of a 60-bit word are interpreted as an
end-of-line mark rather than two colons. An end-of-line mark is converted to
external BCD 1632 and internal BCD 1672 by operating systems when writing
7-track magnetic tape in even parity (coded) mode, and converted back to 0000
when reading.

8.

9.

10.

11.

12.

13.

This code is changed to 12 when written
parity (coded) mode.

11-0 and 11-8-2 are equivalent on input.
11-0 on oo.tput.

12-0 and 12-8-2 are equivalent on inputo
12-0 on output.

12-8-7 and 11-0 are equivalent on input.
12-8-7 on output.

12-8-4 and 12-0 are equivalent on input.
12-8-4 on output.

CODE pseudo selects 6-bit octal code as

A
D
E
I

ASCII
Display Code (default)
External BCD
Internal BCD

60360900 c

on a 7-track magnetic tape in even

The character will be punched as

The character will be punched as

The character will be punched as

The character will be punched as

follows:

A

A-1

CODE D (default)

i

I
Display Hollerith BCD ASCII EBCDIC l Code Punch Upper Case Lower Case Upper Lower

I
(026) 6-Bit

Octal Char. Ext. Int. Octal Hex. Char. Punch Hex. Char. Punch Hex. Char. Hex. Char. I
@ @ @ @ (029) I

;

:® oo®
I

00 8-2 12 32 3A : 8-2 lA SUB 9-8-7 7A : 3F SUB I

i
01 A 12-1 61 21 41 41 A 12-1 61 a 12-0-1 Cl A 81 a

02 B 12-2 62 22 42 42 B 12-2 62 b 12-0-2 C2 B 82 b

03 c 12-3 63 23 43 43 c 12-3 63 c 12-0-3 C3 c 83
I

c
I

04 D 12-4 64 24 44 44 D 12-4 64 d 12-0-4 C4 D 84 ! d

05 E 12-5 65 25 45 45 E 12-5 65 e 12-0-5 C5 E 85 e
I

06 F 12-6 66 26 46 46 F 12-6 66 f 12-0-6 C6 F 86 I f

07 G 12-7 67 27 47 47 G 12-7 67 g 12-0-7 C7 G 87 g

10 H 12-8 70 30 50 48 H 12-8 68 h 12-0-8 cs
I

H 88 h

11 I 12-9 71 31 51 49
I

I 12-9 69 i 12-0-9 C9 I I 89 i

12 J 11-1 41 41 52 4A J 11-1 6A j 12-11-1 D1 J
I 91 j

I
I

13 K 11-2 42 42 53 4B K 11-2 6B k 12-11-2 D2 K 92 k

14 L 11-3 43 43 54 4C L 11-3 6C l 12-11-3 D3 L 93 l

15 M 11-4 44 44 55 4D M 11-4 6D m 12-11-4 D4 M 94 m

16 N 11-5 45 45 56 4E N 11-5 6E n 12-11-5 D5 N 95 n

17 0 11-6 46 46 57 4F 0 11-6 6F 0 12-11-6 D6 0 96 0

20 p 11-7 47 47 60 50 p 11-7 70 p 12-11-7 D7 p 97 p

21 Q 11-8 50 50 61 51 Q 11-8 71 q 12-11-8 D8 Q 98 q

22 R 11-9 51 51 62 52 R 11-9 72 r 12-11-9 D9 R 99 r

23 s 0-2 22 62 63 53 s 0-2 73 s 11-0-2 E2 s A2 s

24 T 0-3 23 63 64 54 T 0-3 74 t 11-0-3 E3 T A3 t

25 u 0-4 24 64 65 55 u 0-4 75 u 11-0-4 E4 u A4 u

26 v 0-5 25 65 66 56 v 0-5 76 v 11-0-5 E5 v A5 v

27 w 0-6 26 66 67 57 w 0-6 77 w 11-0-6 E6 w A6 w

30 x 0-7 27 67 70 58 x 0-7 78 x 11-0-7 E7 x A7 x

31 y 0-8 30 70 71 59 y 0-8 79 y 11-0-8 ES y AS y

32 z 0-9 31 71 72 5A z 0-9 7A z 11-0-9 E9 z A9 z

33 0 0 12 00 20 30 0 0 10 DLE 1~11-9-8•1 FO 0 10 DLE

34 1 1 01 01 21 31 1 1 11 DCl 11-9-1 Fl 1 11 DCl

35 2 2 02 02 22 32 2 2 12 DC2 11-9-2 F2 2 12 DC2

36 3 3 03 03 23 33 3 3 13 DC3 11-9-3 F3 3 13 TM

37 4 4 04 04 24 34 4 4 14 DC4 11-9-4 F4 4 3C DC4

A-2 60360900 c

CODE D (default)

Display Hollerith BCD ASCII EBCDIC
Code Punch Upper Case Lower Case Upper Lower

(026) 6-Bit

l
Octal Char. Ext. Int. Octal Hex. Char. Punch Hex. Char. Punch Hex. Char. Hex. Char.
@ @ @ @) (029)

! 40 5 5 05 05 25 35 5 5 15 NAK 9-8-5 F5 5 3D NAK

41 6 6 06 06 26 36 6 6 16 SYN 9-2 F6 6 32 SYN

42 7 7 07 07 27 37 7 7 17 ETB 0-9-6 F7 7 26 ETB

43 8 8 10 10 30 38 8 8 18 CAN 11-9-8 F8 8 18 CAN
44 9 9 11 11 31 39 9 9 19 EM 11-9-8-1 F9 9 19 EM

45 + 12 60 20 13 2B + 12-8-6 OB VT 12-9-8-3 4E + OB VT

46 - 11 40 40 15 2D - 11 OD CR 12-9-8-5 60 - OD CR
47 * 11-8-4 54 54 12 2A * 11-8-4 OA LF 0-9-5 5C * 25 LF
50 I 0-1 21 61 17 2F I 0-1 OF SI 12-9-8-7 61 I OF SI

51 (0-8-4 34 74 10 28 (12-8-5 08 BS 11-9-6 4D (16 BS
52) 12-8-4 74 34 11 29) 11-8-5 09 HT 12-9-5 5D) 05 HT
53 $ 11-8-3 53 53 04 24 $ 11-8-3 04 EOT 9-7 5B $ 37 EOT

54 = 8-3 13 13 35 3D = 8-6 lD GS 11-9-8-5 7E = lD IGS

55 space space 20 60 00 20 space space 00 NUL 12-0-9-8-1 40 space 00 NUL

56
' 0-8-3 33 73 14 2C

' 0-8-3 oc (12-9-8-4 6B
' oc FF

57 12-8-3 73 33 16 2E 12-8-3 OE so 12-9-8-6 4B OE so
60 = #© 0-8-6 36 76 03 23 # 8-3 03 ETX 12-9-3 7B # 03 ETX

61 [8-7 17 17 73 5B [12-8-2 lC FS 11-9-8-4 4A c; IC IFS

62 1 0-8-2 32 72 75 5D 1 11-8-2 01 SOH
I

12-9-1 5A ! 01 SOH

63 %® 8-6 16 16 05 25 % 0-8-4 05 ENQ 0-9-8-5 6C % 2D ENQ
I

64 -I " 8-4 14 14 02 22 " 8-7 02 STX 12-9-2 7F " 02 STX

65 r- 0-8-5 35 75 77 5F - 0-8-5 7F DEL 12-9-7 6D - 07 DEL

66 V! 11-0® 52 52 01 21 ! 12-8-l~.9 7D } 11-0 4F I DO }
67 I\ & 0-8-7 37 77 06 26 & 12 06 ACK I 0-9-8-6 50 & 2E ACK

70 f ' 11-8-5 55 55 07 27 ' 8-5 07 BEL 0-9-8-7 7D I 2F BEL

71 l ? 11-8-6 56 56 37 3F ? 0-8-7 lF us 11-9-8-7 6F ? IF IUS

72 < 12-0® 72 32 34 3C < 12-8-4@ 7B { 12-0 4C < co {
73 > 11-8-7 57 57 36 3E > 0-8-6 1E RS I 11-9-8-6 6E > lE IRS

74 ~ @ 8-5 15 15 40 40 @ 8-4 60 ' 8-1 7C @ 79 " I
"-. I 75 ~ " 12-8-5 75 35 74 5C

""'
0-8-2 7C I 12-11 EO 6A I

76 -, /\ 12-8-6 76 36 76 5E /\ 11-8-7 7E rv 11-0-1 5F --, Al N

77 ; 12-8-7 77 37 33 3B ; 11-8-6 1B ESC 0-9-7 5E ; 27 ESC

60360900 c A-3

HEXADECIMAL-OCTAL CONVERSION TABLE

~
First Hexadecimal Digit

0 1 2 3 4 5 6 7 8 9 A B c D E F

Second 0 000 020 040 060 100 120 140 160 200 220 240 260 300 320 340 360

Hexadecimal

Digit 1 001 021 041 061 101 121 141 161 201 221 241 261 301 321 341 361

2 002 022 042 062 102 122 142 162 202 222 242 262 302 322 342 362

3 003 023 043 063 103 123 143 163 203 223 243 263 303 323 343 363

4 004 024 044 064 104 124 144 164 204 224 244 264 304 324 344 364

5 005 025 045 065 105 125 145 165 205 225 245 265 305 325 345 365

6 006 026 046 066 106 126 146 166 206 226 246 266 306 326 346 366

7 007 027 047 067 107 127 147 167 207 227 247 267 307 327 347 367

8 010 030 050 070 110 130 150 170 210 230 250 270 310 330 350 370

9 011 031 051 071 111 131 151 171 211 231 251 271 311 331 351 371

A 012 032 052 072 112 132 152 172 212 232 252 272 312 332 352 372

B 013 033 053 073 113 133 153 173 213 233 253 273 313 333 353 373

c 014 034 054 074 114 134 154 174 214 234 254 274 314 334 354 374

D 015 035 055 075 115 135 155 175 215 235 255 275 315 335 355 375

E 016 036 056 076 116 136 156 176 216 236 256 276 316 336 356 376

F 017 037 057 077 117 137 157 177 217 237 257 277 317 337 357 377

Octal 000- 040- 100 - 140 - 200- 240- 300- 340-

037 077 137 177 237 277 337 377

A-4 60360900 c

ASSEMBLY-TIME 1/0

SCOPE 2

COMPASS 3 under SCOPE 2 uses the Record Manager for all of its I/O operations. Thus, COMPASS 3
can read and write files with a variety of external formats. For each of the files used by COMPASS,
the default format, and the combinations of file format description parameters that may be specified in
FILE control cards to override the defaults, are given below.

Main Source Input File

The main source input file may be a normal source input file or a compressed compile file; COMPASS
determines which it is by inspecting the data in the file. A normal source input file under SCOPE 2
com.prises the following:

File Organization (FO)

Block Type (BT)

Maximum Block Length (MB L)

Record Type (RT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

sequential (SQ)

unblocked

none

control word (YI)

100 chars.

NO

unlabeled (UL)

The only other formats that may be specified by FILE control statements are as follows (X=allowed,
-=not allowed):

Block Record Type
Type F w z

unblocked x x -

c x x x
I - x -

File Organization (FO) must be sequential (SQ).

Maximum Record Length (MRL) must not exceed 160 characters.

Label Type (LT) may be any value supported by the operating system.

Although the maximum record length may be as large as 160 characters, only the first 90 char­
acters of each record are reproduced in the listing output files.

60360900 E B-1 e

If the file is a compressed compile file (written by UPDATE in X mode or MODIFYt in A mode),
COMPASS sets the file format description parameters to resemble normal input; however, MR L =
5120 characters.

Listing Output Files

The default format under SCOPE 2 comprises the following:

File Organization (FO)

Block Type (BT)

Maximum Block Length (MBL)

Record Type (RT)

Maximum Record Length (MRL)

Conversion Mode (CM)

Label Type (LT)

sequential (SQ)

unblocked

none

control word (W)

137 chars.

NO

Unlabeled (UL)

The only other formats that ~ay be specified by FILE control statements are as follows (X=allowed,
-=not allowed):

Block Record Type
Type F w z

unblocked x x -
c x x x

I - x -

File Organization (FO) must be sequential (SQ).

Maximum Record Length (MR L) must not exceed 137 characters.

Label Type (LT) may be any value supported by the operating system.

Binary Output File

FILE control statements can be used under SCOPE 2 to specify the format of binary output files for any
of the operating systems, such that a program can be assembled under SCOPE 2 and the object program
executed under a different system if so desired.

tMODIFY is not available under SCOPE 2.

e B-2 60360900 E

File Characteristics SCOPE 2 NOS/SCOPE 3/KRONOS

File Organization (FO) sequential (SQ) sequential (SQ)

Block Type (BT) unblocked character count (C)

Maximum Block Length (MBL) none 5120 chars.

Record Type (RT) control word (W) SCOPE logical record (S)

Maximum Record Length (MRL) 1, 310, 710 chars. none

Conversion Mode (CM) NO NO

Label Type (LT) Unlabeled (UL) ANY

No other formats are allowed, except that the label type (LT) may be any value supported by the opera­
ting system used for assembly. The format shown above under SCOPE 2 is the default binary output
file format under that system.

Scratch Files

COMPASS uses two scratch files named ZZZZZRL and ZZZZZRM, when table storage space overflows.
Regardless of what may be specified by FILE control cards, COMPASS sets the file format description
parameters for these files under SCOPE 2 as follows:

File Organization (FO) = sequential (SQ).

Conversion Mode (CM)= NO.

For file ZZZZZRL:

Block Type (BT) = unblocked
Maximum Block Length= 5120 characters.

Record Type (RT) = undefined (U) Maximum Record Length= 2550 chars.

For file ZZZZZRM:

Block Type (BT) = character count (C), Maximum Block Length= 5120 characters

Record Type (RT)= SCOPE logical (S), no Maximum Record Length

ALL OPERATING SYSTEMS

System Text Input Files

A user library file designated by an S parameter on the COMPASS control card must have the standard
library file format for the system on which COMP ASS is being used. COMPASS uses the operating
system overlay loader to acceas these files.

For a sequential binary (non-library) file designated by a G parameter on the COMPASS control card,
the default and permitted formats are the same as those given above for the COMPASS binary output
file.

60360900 E B-3 e

XTEXT Input Files

A file read by COMPASS when processing an XTEXT pseudo instruction may have any of several formats.
COMPASS determines the file format (a) by whether the XTEXT pseudo instruction variable field is
empty and (b) by inspecting the data in the file.

If the variable field is empty, the File Organization (FO) must be sequential (SQ). COMPASS rewinds
the file and reads until end of section or a COMP ASS END statement is encountered, whichever comes
first. The default and permitted formats under SCOPE 2 are the same as those given above for the
main source input file.

If the XTEXT variable field is non-empty, the file organization may be any of three non-standard types:

Record Indexed with name index (under SCOPE 2 only)

SCOPE 3. 3 style random file with name index (not supported under SCOPE 2)

UPDATE or MODIFYt random program library file

In each case, COMPASS sets the file format description parameters to the appropriate values; no FILE
control card is needed.

The record indexed file organization is actually the word addressable (WA) file organization with a set
of format conventions superimposed on it. Such a file can be created by a FORTRAN program using the
library subroutines OPENMS, STINDX, WRITMS, and CLOSMS with a name index, or by a COBOL
program specifying ORGANIZATION IS STANDARD, SYMBOLIC KEY IS data-name. When COMPASS
detects such a file under SCOPE 2, it sets the file format description parameters as follows (no FILE
card is needed):

File Organization (FO) = word addressable (WA).

Block Type (BT) = unblocked

Record Type (RT)= control word (W), Maximum Record Length (MRL) = 160 chars.

Conversion Mode (CM)= NO

COMP ASS positions the file at the record pointed to by the index entry containing the name given
in the XTEXT statement variable field, and then reads records sequentially until end of section
or a COMP ASS END statement is encountered, whichever comes first.

The SCOPE 3. 3 style random file with name index is permitted for compatibility with previous versions
of COMPASS. When COMPASS detects such a file, it searches the file index and positions the file at
the beginning of the specified section, and then reads sequentially until end of section or a COMPASS
END statement is encountered, whichever comes first. Such files cannot be used with SCOPE 2.

An UPDATE or MODIFYt random program library file is processed similarly. The name in the
variable field of the. XTEXT statement must be the name of a common deck. When COMPASS detects
such a file under SCOPE 2, it sets the file format description parameters as follows (no FILE control
card is needed):

tMODIFY is not available under SCOPE 2.

e B-4 60360900 E

File Organization (FO) = word addressable (WA).

Block Type (BT)= unblocked

Record Type (RT)= control word (W), Maximum Record Length (MRL) = 5120 characters

Conversion Mode (CM) = NO

COMPASS positions the file at the first card image of the designated section (common deck). The
first active card image (the *COMDECK card) is skipped. COMPASS then reads card images
sequentially, ignoring inactive card images, until end of section or a COMPASS END statement
is encountered, whichever comes first.

60360900 E B-5 e

Column 1

7, 8, 9 levels 0 to 16
6,7,9
6,7,8,9 or 7,8,9 level 17
7,9
7 and 9 not both in column 1

1 2 3 4 5

12 r----1

11
1-------1

BINARY CARD FORMATS

End of section
End of partition (KRONOS/NOS only)
End of information
Binary card
Coded card

---~--+-----~~-J-•• "g -----+----;r---+----Column Binary Information 0 ~_
IO ..

c

t---+-.-,--+--+--------------------1 00
d
;::$ O':I

1 0
0
'"O 2 ~
0

3 Er:
4 ~
5
~

6
w.v

7 -8 I
9 ii

0
~

0
.g
0
~

§
Cl.I
~
0
(I)

,..c:::
0

1--~--~~~-------1 § ~
(I)

..0

~ ~ §
~-t----ir---+---+----------------------1 r~------+-~a$t---- Z

1---------+-~ ~ 3
--.> s:: g (I)

'"O g.
~ (I)
ro r::n.
0

A binary card can contain up to 15 60-bit CPU words starting at column 3. Column 1 also contains
a count of 60-bit words in rows O, 1, 2, and 3 plus a check indicator in row 4. If row 4 of column 1 is
zero, column 2 is used as a checksum for the card on input; if row 4 is one, no check is performed on
input.

Column 78 of a binary card is not used, and columns 79 and 80 contain a binary serial number. If a
section is punched, each card has a checksum in column 2 and a serial number in columns 79 and 80,
which sequences it within the logical record.

60360900 E C-1

HINTS ON USING COMPASS

1. Within a macro definition:

a. Use comment cards having * in column one. These are not saved whereas other types of
comments are saved.

b. Whenever possible minimize the number of lines of code.

c. IRP is faster than either ECHO or DUP.

d. Use the substitutable parameter flags ;A, ;B, etc., for macros to avoid a second line.

e. Within macros, use symbols such as .1, . 2, etc. instead of local symbols.

f. If possible, avoid recursive macro structure to increase assembly speed.

g. If a macro call is the cause of an error, direct full list output to a file other than OUTPUT
(L=filename) to obtain a list of the erroneous macro call with the error listing.

2. In IF sequences:

a. Use line counts rather than ENDIF to terminate sequences.

b. Use SKIP rather than IFPP to skip code.

3. Micros:

a. Micro replacement is time consuming.

b. Avoid using local symbols for micros.

c. Use -:/: -:/: for a null substitution.

4. Minimize SYSTEXT size.

5. To reduce core requirements, use SEG cards in absolute programs.

6. Use NOREF for symbols for which listing is not required.

7. Use QUAL for all overlays.

60360900A

D

D-1

DA YFILE MESSAGES E

The dayfile messages that can be issued by COMPASS are listed below, with an explanation for each.

ASSEMBLING xxxxxxx

This message is displayed at the system operator's console only; it is not written to the dayfile.
COMPASS updates the display whenever it processes an IDENT statement with a non-blank variable field.

ASSEMBLY ABORTED - ECS READ ERROR.

This message can occur only when COMPASS is used on a CYBER 170 or CYBER 70/Model 72, 73, or
74, and only when the job has an ECS field length. In this case, COMPASS may store some of its
internal tables in ECS, and issues the above message (and aborts the job) when an ECS error persists
through four attempts to read the data. For the CYBER 70/Model 76, LCM errors are handled by the
operating system.

ASSEMBLY ABORTED - ECS WRITE ERROR.

This message can occur only when COMPASS is used on a CYBER 170 or CYBER 70/Model 72, 73, or
74, and only when the job has an ECS field length. In this case, COMPASS may store some of its
internal tables in ECS, and issues the above message (and aborts the job) when an error occurs in
writing data to ECS; no retry attempt is made. For the CYBER 70/Model 76, LCM errors are handled
by the operating system.

ASSEMBLY ABORTED - PASS n TABLE
OVERFLOW ASSEMBLING xxxxxxx

An irrecoverable table overflow condition has occurred in assembly pass n (1 or 2) while processing the
indicated program. COMPASS allocates memory space dynamically to all of its internal tables, so that
when one overflows, all do. When the tables do not all fit in the available SCM space, COMPASS
stores some of them in the job's ECS/LCM field length (if any) and some others go to mass storage
scratch files. COMPASS issues the above message, and aborts the job, when insufficient SCM exists after ·
all such possibilities have been exhausted.

60360900 E E-1

ASSEMBLY COMPLETE. nnnnnnB {~~M} USED.

{

SECONDS ASSEMBLY TIME. }
xxxx. xxx CPU {ECS }

SEC. nnnnnnB LCM USED.

COMPASS issues this message when it has completed processing of all source programs on the input file
and did not detect any fatal errors. nnnnnn is the octal number of SCM words needed; i.e. , the minimum
field length needed to perform the assemblies successfully. It may be larger than the actual field length;
in this case, it is the minimum field length needed to avoid lost references. The second line, which can
be suppressed by an installation parameter, gives the total central processor time used by COMPASS, in
seconds to three decimal places. If any ECS/LCM was used, this is shown in the second line.

ASSEMBLY ERRORS. nnnnnnB {~~M} USED.

xxxx xxx CPU {SECONDS ASSEMBLY TIME.}
• {ECS } SEC. nnnnnnB LCM USED.

COMP ASS issues this message when it has completed processing of all source programs on the input file
and detected at least one fatal error. If the A option was specified on the COMPASS control card,
COMPASS aborts the job after issuing this message. nnnnnn and the second line are as in the ASSEMBLY
COMPLETE message.

BAD CONTROL CARD ARGUMENT - xx

The COMPASS control card contains an unrecognized or invalid argument. The offending argument is
named in the message. See Chapter 10 for details.

CANT LOAD COMP3$

The operating system loader reported a fatal error when COMPASS attempted to load its primary overlay.
This message should be preceded by an explanatory message from the loader.

COMPASS NEEDS AT LEAST nnnnnB SCM.

The job's SCM field length is too small for COMPASS. nnnnnn is the octal number of words needed by
COMPASS before it can begin processing. This can vary depending on the version of COMPASS used and
the listing and binary output options specified on the control card. This is an absolute minimum, and
does not include whatever space may be required for system text, local macro and micro definitions, etc.

nnnnnnnnn ERRORS IN xxxxxxx

COMPASS issues this message for each source program in which fatal errors are detected.

E-2 60360900E

IDENT CARD MISSING.

COMPASS issues this message for each source program in which an END statement is encountered
before an IDENT statement is found. This is a fatal error.

IMPROPER SYSTEM TEXT FORMAT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

A system text overlay does not have the internal format required by this version of COl\IPASS. This may
be caused by a system error. COMPASS ignores the bad overlay but does not abort the job. The
second line identifies the offending overlay in the same form in which it is specified in the COl\IPASS con­
trol card; x=yyyyyyy/zzzzzzz may be any of the following:

G=filenam
G=filenam/ overlay
S=overlay
S=library I overlay

INPUT FILE EMPTY OR MISPOSITIONED.

COMPASS encountered end of data when it attempted to read the first line from the source input file.
After issuing this message, COMPASS generates an END card which in turn causes the ID ENT CARD
MISSING message and a fatal error.

INSUFFICIENT STORAGE FOR SYSTEM TEXT.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

COMPASS issues this message, but does not abort the job, when an irrecoverable table overflow occurs
during system text loading, before the first assembly is begun. The second line identifies the system
text being loaded at the time. A substantial increase the job's SCM field length may be needed.

nnnnnnnnn LOST REFERENCES IN xxxxxxx:

COMPASS issues this message for each source program whose symbolic cross-reference table does not
fit in the job's SCM field length for sorting just before it is printed. Rather than aborting the job,
COMPASS discards some of the references. The ASSEMBLY COMPLETE message gives the field
length needed to avoid lost references.

60360900A E-3

MORE THAN 7 SYSTEM TEXTS SPECIFIED.

COMPASS issues this message, and aborts the job, when the G and S parameters on the COMPASS
control card specify a total of more than seven system text overlays.

NO CONTROL CARD TERMINATOR.

COMPASS read continuation control cards and encountered end of section before finding a) or . not in
a $-delimited string. This is not a fatal error.

RECURSION DEPTH EXCEEDED 400.

COMPASS maintains a push-down stack for source input control, with one entry for each active DUP
ECHO, HERE, XTEXT, or macro call. The maximum depth of this stack is set by an installation
parameter; it is 400 in the released system. When this limit is exceeded, COMPASS sets a fatal error
and clears the stack (so that the next statement will be read from the source input file) but does not
abort the job. This is usually caused by a source program error in which a macro calls itself indefinitely.

SYSTEM TEXT NOT FOUND.
BAD SYSTEM TEXT - x=yyyyyyy/zzzzzzz

COMPASS issues this message, but does not abort the job, when it cannot load the system text overlay
identified in the second line. For an overlay loaded from a library (S parameter), this message should
be preceded by an explanatory message from the operating system loader. For an overlay loaded from
non-library file (G parameter), COMPASS could not find the overlay on the file.

nnnnnnnnn WARNING MESSAGES IN xxxxxxx

COMPASS issues this message for each source program in which non-fatal errors are detected.

E-4 60360900A

A abort mode 10-3
A code option 4-26
A error 11-10
A list option 4-7 8
A reference table option 4-85
A register

description 8-8
designators 2-8
setting 8-46

ABS attribute 4-71
ABS pseudo

description 4-6
example 4-4, 7, 14, 15, 17, 18, 50
first statement group 4-2

Absolute block
absolute program 3-8
description 3-2
establishment 4-36
relocatable program 3-6
using 4-32, 36

Absolute program
declaration 4-6
structure 3-8

Absolute text 3-6
A CN instruction 9-22
ACCOUNT card, KRONOS 10-7
ADC instruction

arithmetic function 9-4
description 9-9
example 2-22, 9-9

ADD instruction
arithmetic function 9-4
description 9-13

Add unit
floating point 8-4, 7, 37
long 8-3

Address modes, PPU 9-1
Address

absolute 4-4
direct 9-13
entry point 4-4, 5,49
external 4-6,9,10,50
indexed 9-15
indirect 9-14

60360900C

INDEX

ADI instruction
arithmetic function 9-4
description 9-14

ADM instruction
arithmetic function 9-4
description 9-15

ADN instruction
arithmetic function 9-4
description 9-8

AJM instruction 9-17
AOD instruction

description 9-13
replace function 9-5

AOI instruction
description 9-14
replace function 9-5

AOM instruction
description 9-15
replace function 9-5

Arithmetic functions, PPU 9-4
Arithmetic shift 8-32, 34
Arrow

parameter separator 5-8, 13
special character 2-4

ASCII code
character set A-1
option 4-26

Assembler 1-1
core requirements 1-3; 10-2
statistics 4-78; 11-9

Assembly environment test 4-64
Assembly listing

detailed description 11-1
general description 4-78
generation 1-4

Assembly, remote code 5-3
Assembly time 11-9
Asterisk

BASE instruction 4-24
element operator 2-24
first column 2-1,2
local symbol separator 5-32
location counter 2-9; 3-5

Index-1

parameter separator 5-8, 13, 16, 25, 28
special element 2-9, 23; 3-5
USE instruction 4-32
USELCM instruction 4-34

Attribute, symbol 2-6
Attribute test 4-71
AXi instruction 8-32, 34

B base 2-18, 19; 4-23
B binary mode 10-3
B list option 4-79
B reference table option 4-85
Bl=l or B7=1 pseudo instruction

description 4-30
effect on R= 4-59
example 4-60
illegal for PPU 4-9, 10

B register
conditional jumps 8-26 n
contents of Bl, B7 4-30
description 8-8
designators 2-8
setting 8-48

Base, assembly 4-23
COL column count 4-31
DIS word count 4-53
DUP count 5-6
ECHO count 5-7
line count 4-64, 66, 67, 68, 69, 72, 73, 75
micro count 7-2,4,5
numeric value 2-17
overlay level numbers 4-4
PPU number 4-4
REP counts 4-61
setting through BASE 4-23
SPA CE line count 4-81
string count 2-13
VFD count 4-57

BASE micro 7-6
BASE pseudo

description 4-23
example 4-14, 21, 25, 53, 55
permissible anywhere 4-2

Binary control statements 4-79, 11-1

Index-2

Binary mode 10-3
Binary output generation 1-4; 3-8, 11, 13, 15; 10-3
Binary write 3-8
Blank

compressed 5-1
embedded 2-1
expression terminator 2-2
name terminator 2-5
operation field 2-1
parameter separator 5-8, 13
statement terminator 2-1
string terminator 2-14
use in character data 2-14
variable field 2-2, 4; 3-7

Blank card 4-81
Blank common

CM 4-32
description 3-3
ECS 4-34
establishment 4-32, 34
example 4-39
LCM 4-34
SCM 4-32

Blank fill 2-15
DIS 4-53

Blank operation field 4-51
Block copy instruction 8-14
Block group 3-l,11,13,15,17
Block group listing 11-3
Block

absolute 3-2; 4-32, 36
blank common 3-3; 4-32, 34
labeled common 3-2; 4-32
literals 2-11; 3-2,6,7,9,ll,12,14,16
local 3-2; 4-32
maximum number 3-1; 4-32
origin assigned 1-3; 3-6, 8
subprogram 3-1
used for definition operation 5-2
user established 3-2; 4-32, 34
zero 3-2, 4-32, 34

Block name 4-32, 34
Block name listed 11-1
Block origin 1-3; 3-6
Block usage summary 11....:3

60360900 B

Boolean unit
description 8-4, 7
instructions 8-28, 29, 30, 31, 36, 37

Branch instructions
CPU 8-11, 13, 16, 23, 26
PPU 9-5

Branch unit
description 8-4
instructions 8-11, 13, 16, 23, 24, 26

BSS pseudo
description 4-39
effect on origin counter 3-3
example 4-4, 10, 17, 29, 30, 35, 37, 39, 41;

5-22,33
force upper 3-5

BSSZ pseudo
description 4-51
dumped by SEGMENT 4-16
example 2-20; 5-34, 36
force upper 3-5

BXI instruction 8-28, 29, 30, 31
Byte, guaranteed zero 2-15; 4-54

C hardware feature code 4-8
C list option 4-79
C on octal listing 11-7
Call

equivalenced macro 5-25
macro 5-18
opdef 5-30

CC instruction 8-54
Central processor unit

functional units 8-4, 7
instructions 8-1
registers 8-8

Channel buffer instruction
read status 8-22
resetinput 8-19
reset output 8-21

CHAR
define other character 4-25

Character codes A-1
Character data 2-14

code conversion 4-26
evaluation 2-27
examples 2-12, 16

60360900C

CMU 8-51
Code

CPU operation 6-8; 8-1
duplication 5-6
Code other 4-25
PPU operation 6-3; 9-1
remote assembly 5-3
replication 4-61

CODE micro 7-7
CODE pseudo

description 4-26
effect on character data 2-14; 4-53
example 4-27
permissible anywhere 4-2

Coding form 2-3
COL pseudo

description 4-31
octal listing 11-7

Column one 2-1
COM attribute 4-71
Comma

character string 2-14
column one 2-1
continuation 2-1
expression terminator 2-24
local symbol separator 5-32
name terminator 2-5
parameter separator 5-8, 13, 16, 25, 28
string terminator 2-14
subfield delimiter 2-1

COMMENT pseudo
description 4-21
example 4-14
first statement group 4-2

Comments column control 4-31
Comments field 2-2, 3; 4-31
Comments statement 2-2

heading of definition 5-13
micros not substituted 7-1
not counted 4-63; 5-7, 8
permissible anywhere 4-2

Comments, prefix table 4-21
Compare character strings 4-73
Compare expression values 4-67
Compare/Move unit 8-51

Index-3

COMPASS call statement
description 10-2
effect on LIST 4-77

Compile file 10-4
Comp and log difference instruction 8-31
Comp and log sum instruction 8-31
Complement instruction 8-30
Compressed code 5-1
CON pseudo

description 4-58
example 2-22; 4-59; 5-6, 23, 27
force upper 3-5

Concatenation 2-4
Concatenation mark 2-4

example of use 5-19
in definition 5-1

Conditional assembly 4-63
Conditional jump

B register 8-26
PPU 9-7
X register 8-23

Configuration 1-3
Constant

character 2-14
description 2-10
expression element 2-2.2, 27
field size 2-11
generated by pseudo 4-58
numeric 2-18
read only 2-12

Continuation, statement 2-2
generation of lines 2-4; 7-1

Control statements
COMPASS 10-2
job card 10-1
SCOPE cards 10-1

Core requirements 1-3; 10-2
Counters, block control 3-4, 11, 13
Counter control

BSS 4-39
forcing upper 3-5
LOC 4-40
ORG 4-35
ORGC 4-35
POS 4-42
USE 4-32
USELCM 4-34

Index-4

CPOP pseudo 6-8
CPSYN pseudo

description 6-11
permissible anywhere 4-2

GPU instructions
block copy 8-14
Boolean 8-28, 29, 30, 31
branching 8-23, 26
channel buffer 8-19, 21
channel status 8-22
complement 8-30
conditional 8-23, 26
direct LCM transfer 8-18
divide 8-44
double precision 8-38, 41
ECS 8-14
error exit 8-12
exchange exit 8-17
exchange jump, 6000 8-16
fixed point 8-38
floating point 8-38, 39, 40, 41, 44
increment 8-46,48,49
left shift 8-32, 33
logical 8-28, 29, 30, 31
long add 8-39
mask 8-42
multiply 8-40, 41, 42
no operation 8-45
normalize 8-34, 35
pack 8-37
pass 8-45
population 8-45
program stop 8-11
real-time clock 8-20
return jump 8-13
right shift 8-32, 34
set register 8-46, 48, 49
set time 8-20
shift 8-32, 33, 34
single precision 8-37,39,40,41,44
transmit 8-28
unconditional jump 8-23
unpack 8-36

CPU program execution 1-3; 10-1
CPU register designators 2-8; 8-8
CRD instruction 9-17
Created symbol 5-33, 11-9

60360900 c

CRM instruction 9-17
Cross reference table

(see symbolic reference table)
CTEXT pseudo 4-84
CU instruction 8-55
CWD instruction 9-17
CWM instruction 9-17
CXi instruction 8-45

D base 2-18; 4-23
D code option 4-25
D debug mode 10-3
D definition flag 11-14
D error 11-10
D hardware feature code 4-8
D list option 4-79
Data generation 4-51
Data item

character format 2-14
DA TA pseudo 4-53
general description 2-11
LIT pseudo 4-55
numeric format 2-18
VFD pseudo 4-57

Data notation
character 2-14
constant 2-11,14,18
decimal 2-18
element 2-11, 24
fixed point 2-18
floating point 2-18
hexadecimal 2-23
item 2-11, 14, 18
literal 2-11, 14, 18
numeric 2-18
octal 2-18

DATA psuedo
description 4-52
example 2-16,20,21; 4-27,33,37,52
force upper 3-5

Data transmission, PPU 9-3
DATA micro 7-6
Date of listing 11-1
DCN instruction 9-22
Debug mode 10-3

60360900 c

Decimal exponent 2-19
Decimal notation 2-18
DECMIC pseudo

description 7-4
example 5-6; 7-4
permissible anywhere 4-2

DEF attribute 4-7 2
Default symbols

definition 2-7
listing 11-9
unqualified 4-27
zero block 3-2

Deferred symbols
(see default symbols)

Definition
equivalenced macro 5-24
macro 5-13,15,24
micro 7-2
opdef 5-13, 27
processing 5-13
purging 6-9
reference 5-18, 25, 30
symbol 2-6; 4-42
system 5-36

Definition operation
duplicated code 5-6
equivalenced macro 5-13
external text 5-2
macro 5-13
operation code 5-13
processing 5-14
recursion level 5-1
remote text 5-3

Delimiter
actual parameter 5-18, 26
data item 2-14, 18
expression element 2-24
field 2-1,2
substitutable parameter 5-8, 13, 16
term 2-24

Descriptor, variable field 5-27; 6-7
Destination field 2-28
Detailed listing 4-78; 11-1
DF instruction 8-24
Direct address 9-13

Index-5

Directives, loader 4-23
Directory, error 11-9
DIS pseudo

description 4-54
example 4-54, 55
force upper 3-5

Display code option
character set A-1
default mode 2-14
option 4-26

Divide instructions 8-44
DM instruction 8-53
Dollar sign

local symbol separator 5-32
parameter separator 5-8,13,16,25,28
special element 2-6

Double precision instructions 8-38, 41
DUP pseudo

description 5-6
example 5-10, 11
listing of count 11-7

Duplicate symbol
definition 2-6
flag 11-14

Duplication
code 5-6
echoed 5-7
indefinite 5-7, 9

DXi instructions
add 8-38
multiply 8-41

E code option 4-26
E entry point flag 11-14
E error 11-10
E list option 4-79
E numeric data modifier 2-19
ECHO pseudo

description 5-7
example 5-12

E CS blocks 4-34
Editing 2-4
EE numeric data modifier 2-19
EIM instruction 9-18
EJECT pseudo 4-81

permissible anywhere 4-2

Index-6

Eject suppression 10-4
EJM instruction 9-1 7
Element

absolute 2-25
data 2-10, 11
expression 2-24 ,28
external 2-27
operator 2-24
register 2-2 7
relocatable 2-9 »26
special 2-9

ELSE pseudo
description 4-63
example 5-5
permissible anywhere 4-2

END pseudo
assembly of remote code 5-3
binary generation 3-8
description 4-5
effect on blocks 3-1, 8, 11, 15, 16
example 4-4, 5, 7, 14, 15, 17, 18, 21, 77
external text use 5-3
force upper 3-5
illegal definitions 5-1
permissible anywhere 4-2

ENDD pseudo
acting as nil 6-6
description 5-10
example 5-11
permissible anywhere 4-2
used with DUP 5-7
used with ECHO 5-8

ENDIF pseudo
acting as nil 6-6
description 4-63
permissible anywhere 4-2

ENDM pseudo
acting as nil 6-6

description 5-14
example 4-29; 5-ll,15,19,20,21,23,23,27,

30,31,32,33,35,36
permissible anywhere 4-2

End-of-line mark 5-1
ENDX pseudo 4-84
Entry address

absolute 4-4
declaration 4-49
multiple 3-15
relocatable 4-5

60360900C

ENTRY pseudo
description 4-49
example 4-5, 49

ENTRY C pseudo 4-49
Entry point list 11-4
Environment test 4-64
EOM instruction 9-18
EQ instruction

description 8-26
example 8-27
force upper 3-5

EQ IF operator 4-67
IFC operator 4-7 3

EQU pseudo
description 4-43
example 2-19, 21; 4-21, 29, 41, 43, 62; 5-6
listing 11-7

Equal sign
default symbol prefix 2-7
instruction 4-43
literals prefix 2-11, 14, 18
local symbol separator 5-32
parameter separator 5-8, 13, 16, 25, 28

ERN instruction 9-12
ERR pseudo

description 4-75
Error, assembly

fatal 11-10
informative 11-12
programmer controller 4-75, 76

Error directory
detailed description 11-9
general description 4-7 8

Error exit instruction 8-12
Error flags

conditionally set 4-75
fatal 11-10
informative 11-12
unconditionally set 4-7 6
where on listing 11-6

ERRxx pseudo 4-76
ES instruction 8-12
ESN instruction 9-23
ETN instruction 9-12
Evaluation of expression 2-2 7; 3-3
Exchange exit instruction 8-17
Exchange jump instruction 8-16
Execution, CPU program 1-4
EXN instruction 9-10

60360900C

Exponent 2-18
Expression

absolute 2-25
attribute 4-71
comparison 4-67
CON use 4-58
description 2-24
evaluation 2-24 ,28; 3-3
examples 2-25, 26, 27
external 2-27
maximum size 2-28
operators 2-24
pass one value 2-28; 3-3
pass two value 2-28; 3-3
register 2-27; 8-2, 10
rules 2-24
size 2-28
types 2-25
value 2-25, 28; 3-3; 8-6
VFD 4-57

EXT attribute 4-71
External BCD

character set A-1
option 4-26

External symbol
declaration 4-50
description 2-6

External symbol list 11-5
External text

assembly 5-2
file declaration 10-4
listing 4-84

EXT pseudo
description 4-50
illegal in absolute code 4-6, 9, 10

F conditional flag 11-14
F error 11-11
F FORTRAN mode 10-3
F list option 4-79
FAN instruction 9-22
Fatal error flag 11-10
Features of COMP A SS 1-2
Field

comments 2-2; 4-31
conventional 2-3
delimiter 2-1, 2
destination 2-27; 4-57

Index-7

File

free 2-1
location 2-1
operation 2-1
size 2-1
subfield 2-2
terminator 2-1
variable 2-2

COMPILE 10-4
INPUT 10-4
LGO 10-3
list output 10-4
load and go 10-3
OLDPC 10-5
OPL 10-5
OUTPUT 10-4
source 10-4
SYSTEXT 4-19; 10-3, 5, 6
System text overlay 10-6

Fill, blank 2-15
Fill, zero 2-15
FIM instruction 9-18
First column 2-1
First statement group 4-2
Fixed point data notation 2-17
Fixed point instructions 8-39, 42
F JM instruction 9-17

Flag, error
listing 11-6
setting 4-75
type 11-14, 15

Floating point data notation 2-1 7
Floating point units 8-4, 7

add 8-37, 38, 39
divide 8-44
multiply 8-40, 41

FNC instruction 9-22
FOM instruction 9-18
Forcing upper 3-4

BSS 4-39
CPU instructions 8-2
LOC 4-40
macro call 5-19, 26
opdef call 5-31
ORG 4-35
ORGC 4-35
R= 4-59
USE 4-32
USELCM 4-34
VFD 4-57

Index-8

Form, COMPASS coding 2-3
Format

control statement 10-1
CPU instruction 8-1
line 2-1
listing 11-1
PPU instruction 9-1

FORTRAN 2-6; 4-4; 10-3
Full list 10-3
Functional units 8-4, 7
Functions, PPU

arithmetic 9-4
data transmission 9-3
logical 9-4
replace 9-5

FXi instruction
add 8-37
divide 8-44
multiply 8-40

G assembly mode 10-3
G list option 4-79
GE instructions 8-26
GE IF operator 4-67

IFC operator 4-73
Generated code listing 4-79
Generation, data 4-51
Get text mode 10-3
GT instruction 8-27
GT IF operator 4-67

IFC operator 4-79
Guaranteed zero 2-15; 4-54

Hardware configuration 1-3
Hardware feature dependency 4-8
Heading

listing 4-78; 11-1
macro 5-13
opdef 5-13

HERE pseudo
description 5-4
permissible anywhere 4-2

Hexadecimal data 2-23

I code option 4-22
I hardware feature code 4-8
I input mode 10-4
I NOLABEL option 4-22

60360900C

IAM instruction 9-21
IAN instruction 9-20
IBj instruction 8-22
ID instruction 8-24
IDENT pseudo

binary generation 3-8, 10
blank variable field 3-16; 4-12
description 4-2, 11
example 4-4, 7, 14, 15, 17, 18, 21, 50
force upper 3-5
overlay generation 3-8, 10
program identification 4-2

IF pseudo 4-70
IF skipped lines listed 4-79
IFC P pseudos 4-64
IFC pseudo

description 4-73
example 5-5, 11
permissible anywhere 4-2

IFop pseudo 4-67
IFPP pseudo 4-64
IFtype pseudo 4-64
IJM instruction 9-17
IM instruction 8-51
Increment unit 8-4, 7, 46, 48, 49
Indexed address, PPU 9-15
Index register 8-8
Indirect address, PPU 9-14
Input, assembler 10-2, 24
Instructions

coding of 2-1
CMU 8-51
CPU 8-1
mnemonically identified 6-3
nil 6-7
no-operation 8-45; 9-9
PPU 9-1
pseudo 4-1
redefinition 5-16, 25
synonymous 6-5, 11
syntactically identified 6-8

Integer add 8-39
Integer subtract 8-39
Integer multiply 8-42
Integer value 2-17

60360900B

Internal BCD
character set D-1
option 4-26

Invented symbol 5-33; 11-9
IR instruction 8-24
IRM instruction 9-18
IRP pseudo

acting as nil 6-7
description 5-34
example 5-35, 36
permissible anywhere 4-2

I.Xi instructions 8-39, 42

J option 4-9,11; 9-5
JDA TE micro 7-6
Job statement 10-1
Job priority 10-1
JP instruction

description 8-23
force upper 3-5

L control statement option
description 10-4
related to LIST 4-78

L error 11-10
L hardware feature code 4- 8
L list option 4-79
L location flag 4-40, 11-14
Labeled common

description 3-3
establishment 4-32, 34

LCC pseudo
description 4-23
illegal if absolute 4-6, 9, 11

LCM attribute 4-71
LCM blocks 3-3; 4-34
LCM transfer instructions 8-14. 1, 18
LCN instruction

data transmission 9-3
description 9-8

LDC instruction
data transmission 9-3
description 9-9
example 2-22

Index-9

LDD instruction
data transmission 9-3
description 9-13

LDI instruction
data transmission 9-3
description 9-14

LDM instruction
data transmission 9-3
description 9-15
example 5-21

LDN instruction
data transmission 9-3
description 9-8
example 5-12; 9-8

Left shift instruction 8-32, 33
LE IF operator 4-67

IFC operator 4-73
LE instruction 8-26
Library maintenance programs 2-1
LGO control statement 10-4
Linkage symbols 2-7; 4-48
Listable output

assembled code 11-6
assembler statistics 11-9
binary control cards 11-1
block usage 11-3
control statement control 10-4
default symbols 11-9
entry point symbols 11-4
error directory 11-9
error flags 11-10, 11
external symbols 11-5
header information 11-1
literals 11-8
source statements 11-6
statistics 11-9
subtitles 11-1
symbolic reference table 11-13
titles 11-1
user control 4-77; 10-3,4

List, full 10-3
Listing control

control card 10-3, 4
pseudo 4-77

Index-10

List, parameter
ECHO 5-8
equivalenced macro 5-25
macro 5-18

LIST pseudo
description 4-77
example 4-14; 5-6, 12
permissible anywhere 4-2

List, short 10-4
Literals

absolute program 3-10
description of block 3-1, 2
IDENT 3-11,17
listing 11-8
location 1-3; 3-1, 2
notation 2-11
PPU overlay 3-13
protection 4-33
SEGMENT over lay 3-13
SEG partial binary 3-15
symbol (default) 2-7

LIT pseudo
description 4-55
example 2-12,17,21; 4-15,56; 5-6
listing 11-7, 8

LJM instruction
description 9- 6
example 5-21

LMC instruction
description 9-9
logical function 9-5

LMD instruction
description 9-13
logical function 9-5

LMI instruction
description 9-14
logical function 9-5

LMM instruction
description 9-15
logical function 9-5

LMN instruction
description 9-8
logical function 9-5

LO control statement option 10-4

60360900B

Load address 4-3
Load-and-go file 1-3; 10-3
Loader control card 4-23
LOC attribute 4-71
Local blocks 3-2

absolute program 3-7
description 3-2
establishment 4-32, 34
relocatable program 3-5

LOCAL statement
description 5-32
example 5-33
heading 5-13

Local symbol
CPU instruction 8-5
macro body 5-13
subprogram 3-1; 4-27

Location counter
BSS 4-39
control 4-40
description 3-5
forced upper 3-5
ORG 4-35
ORGC 4-35
special element 2-9; 3-5
USE 4-32
USELCM 4-34

Location field
listing 11-6
statement 2-1

LO control card option
description 10-4
related to LIST 4-77

LOC pseudo
description 4-40
example 4-41, 59
location counter changed 3-5

Logical difference instruction 8-29
Logical functions, PPU 9-4
Logical minus 2-24
Logical product instruction 8-28
Logical prod and comp instruc 8-30
Logical shift instruction 8-32, 33
Logical sum instruction 8-29

60360900C

Long add unit
description 8-4, 7
instructions 8-39

LPC instruction
description 9-9
logical function 9-5

LPN instruction
description 9-8
logical function 9-5

LT IF operator 4- 67
IFC operator 4-71

LT instruction 8-27
LXi instruction 8-32, 33

example 2-20

M base option 4-24
M list option 4-79
Machine test 4-64
MA CHINE pseudo 4-7
Macro

body 5-13
call 5-18, 25
equivalenced 5-24
definition 5-13
header 5-14
list control 4-79
name 2-2; 5-15, 18, 25; 6-1
permissible anywhere 4-2
processing 5-1,14
system defined 4-80; 5-36
terminator 5-14

MA CROE pseudo
description 5-24
example 5-27
IRP related 5-35
operation code table entry 6-1
permissible anywhere 4-2

MACRO pseudo
description 5-15
example 4-29, 74; 5-5, 19, 20, 21, 22, 33, 35, 36
IRP related 5-35
operation code table entry 6-1
permissible anywhere 4-2

Index-11

l\/IAN instruction 9-10
Mask instruction 8-4
Mass storage, system 1-3
Master list control 4-77
MAX pseudo

description 4-45
listing 11-7

MD instruction 8-52
MI instruction 8-24, 26
MIC attribute 4-72
MICCNT pseudo

description 4-47
example 4-47
listing 11-7
permissible anywhere 4-2

MICRO
decimal 7-4
definition 4-23, 25, 27; 7-2
editing 2-4
mark 2-4; 5-1
octal 7-4
reference 7-1
size 4-47; 7-2
system defined 4-19; 7-2, 5
test for 4-7 2

MICRO pseudo
description 7 -2
example 4-47; 5-11; 7-2, 3
permissible anywhere 4-2

MI instructions 8-24, 26
MIN pseudo

description 4-46
listing 11-7

Minus as local symbol separator 5-32

Minus as parameter separator 5-8, 13, 16, 25, 28
Minus on listing 11-7
Minus operator 2-24, 25; 8-5
Minus sign in location field

CPU instruction 3-4, 5; 4-57
PPU instruction 3-5; 4-57
VFD instruction 4-57

MJ instruction 8-17
force upper 3-5

MJN instruction
description 9-6
effect of J 4-9,11

Index-12

ML control statement option 10-4
Mnemonic operation code

legal operation field entry 2-1
OPDEF defined 5-27
search for 6-1

Modifiers, numeric data 2-19
MODIFY common decks 5-2
MODLEVEL micro 7-7
Multiple entry point table

suppression 4-22
used for overlays 3-15

MXi instruction
description 8-43
example 2-20; 8-43

MXN instruction
description 9-10

N eject mode 10-4
N error 11-11
N list option 4-80
Name

block 4-32, 34
different types 2-5
duplicate code 5-7, 8
general description 2-5
IF sequence 4-63
macro 5-16
micro 4-23,25,27; 7-2,4,5
mnemonic operation 6-1
overlay 4-12, 16
parameter 5-8
remote code 5-3

NE instruction 8-26
NE IF operator 4-67

IFC operator 4-73
Nesting, level of 1-3
NG instruction 8-24, 26
NIL pseudo 6-6

permissible anywhere 4-2
NIM instruction 9-18
NJN instruction

description 9-6
effect of J 4-9, 11

NO eject option 10-3
NO instruction 8-45

60360900C

NOLABEL pseudo
description 4-22
permissible anywhere 4-2

NOM instruction 9-18
NOREF pseudo 4-83

permissible anywhere 4-2
Normalize instruction 8-34.1, 35
Normalize unit

description 8-7
instructions 8-34.1, 35

Not equal sign
parameter separator 5-8, 13
special character 2-4

Numeric data 2-18
NXi instruction 8-35
NZ instruction 8-24, 26

O base 2-18; 4-24
0 error 11-10
0 mode 10-5
OAM instruction 9-21
OAN instruction 9-20
OBj instruction 8-22
Octal listing 11-6
Octal notation 2-18
OCTMIC pseudo 7-4

permissible anywhere 4-2
OLD PL file 10-3
Opdef

body 5-13
call 5-30
definition 5-13
heading 5-14
list control 4-79, 80
processing 5-14
sys tern defined 4-19, 3 6

OPDEF pseudo
description 5-27
example 5-29, 30, 31, 32
operation code table entry 6-1
permissible anywhere 4-2

Operand register 8-8
Operation code table 6-1

60360900C

Operation code value
CPU 6-9; 8-1
PPU 6-4; 9-1

Operation, definition
compressed 5-1
duplicated text 5-6
external text 5-2
general description 5-1
macro definition 5-13
opdef definition 5-13
remote text 5-3
system 5-36

Operation field
blank 4-51
description 2-1
search 6-1

Operator
element 2-22
mnemonic 5-27; 6-3
register 2-23; 5-28; 6-8
term 2-24

Operator with constant 2-14, 18
OPL file 5-2; 10-3
OPSYN pseudo

description 6-5
permissible anywhere 4-2

ORG pseudo
description 4-35
determine blocks 3-1
establish absolute blocks 3-2; 4-35
example 4-4, 7, 14, 15, 17, 37, 41, 50
location counter changed 4-35
origin counter changed 3-3; 4-35

ORGC pseudo 4-35
Origin

multiply entry point 4-3
overlay 4-12, 16
program 4-3

Origin counter
BSS 4-39
control 3-3; 4-35, 39
description 3-4
final value, absolute 3-8
final value, relocatable 3-6

Index-13

forced upper 3-4, 5
maximum value 3-8
ORG 4-35
ORGC 4-3fi
special element 2-9; 3-3
USE 4-32

OR instruction 8-24
ORM instruction 9-18
Overflow error 2-19
Overlay

absolute 3-8
entry point 4-12, 16
general description 3-10
level numbers 3-19; 4-4, 12, 16
multiple entry point 3-15
name 4-12, 16
origin 4-12, 16
PPU 3-10
primary 3-10; 4-12, 16
secondary 3-10; 4-12,16

P error 11-11
P numeric data modifier 2-19
P pagination mode 10-5
Pack instruction 8-37
Padding of CPU word 3-5; 4-57; 8-2
Page heading 11-1
Page number 11-1
Pagination control 10-4
Parameter

actual 5-7, 18, 26
embedded 5-18, 26
formal 5-8, 13
indefinitely repeated 5-35
iterative 5-18, 26, 35
substitutable 5-8, 13, 16, 25, 28, 35

Parameter mark 5-9, 13
Parameter, null 5-9, 18, 26
Parameter separator

actual 5-18, 26
formal 5-8, 13, 16

Parcel 8-1
Parentheses

local symbol separator 5-32
nested 5-9
parameter separator 5-8, 13, 16, 25, 28

Index-14

Partial binary
IDENT type 3-16
SEG type 3-15

Pass instruction
CPU 8-45
PPU 9-9

Pass one
expression evaluation 2-25, 28; 3-4
general description 1-3
maximum test 4-45
minimum test 4-46
symbol definition 2-6

Pass two
expression evaluation 2-25, 28; 3-4; 8-2
general description 1-3
symbol definition 2-6
value for MAX 4-45
value for MIN 4-46

PC control statement option 10-5
PCOMMENT micro 7-8
PERIPH pseudo

description 4-10
effect on branch instructions 9-5
example 4-53; 6-5
first statement group 4-2

PJN instruction
description 9-6
effect of J 4-9, 11

PL instruction 8-24, 26
Plus in location field

CPU instruction 3-4
PPU instruction 3-5
VFD instruction 4-57

Plus as parameter separator 5-8, 13, 16, 25, 28
Plus as local name separator 5-32
Plus on listing 11-7
Plus operator 2-24,25; 8-5
Point

binary 2-18, 19
decimal 2-18, 19
octal 2-18, 19
parameter separator 5-8,13,16, 25,28
register designator 2-8

Population unit 8-45
Position counter

control 4-42,57
description 3-4
special element 2-9; 3-4

60360900C

POS pseudo 4-42
Post radix 2-18
PPOP pseudo

description 6-3
example 5-12; 6-5
permissible anywhere 4-2

PPU instructions 9-1
A-register I/O 9-20
block I/O 9-20
branch I/O 9-17, 18
branch 9-5
central read/write 9-16
channel function 9-22
constant mode 9-9
designators 9-3
direct address 9-13
error stop 9-23
exchange jump 9-10
format 9-1
functions 9-3
indexed direct address 9-15
indirect address 9-14
jump 9-7
no address 9-8
no operation 9-9
output record flag 9-22
shift 9-7

PPU pseudo
description 4-9
effect on branch 9-5
example 4-10, 55
first statement group 4-2

Prefix table
comments 4-21
generation 3-8
suppression 4-22

Preradix 2-18
Program, absolute 3-7; 4-6
Program execution 10-5
Program identification 4-3
Program origin 4-3
Program, relocatable 3-5
Program stop instruction 8-11
Program structure 3-1

60360900A

Pseudo instructions
binary control 4-6
block counter control 4-32
conditional assembly 4-63

data generation 4-51
definition operation 5-1
error control 4-75
first statement group 4-2
introduction 4-1
listing control 4-77
micro 7-1
mode control 4-23
operation code table management 6-1
operation field entry 2-2
permissible anywhere 4-2
required 4-2
subprogram identification 4-2
subprogram linkage 4-48
symbol definition 4-42
types 4-1

PS instruction
description 8-11
force upper 3-5

PSN instruction 9-9
PURGDEF pseudo

description 6-11
permissible anywhere 4-2

PURGMA C pseudo
description 6-7
example 6-6
permissible anywhere 4-2

Push down stack 1-3
PXi instruction 8-37

Q to represent expression 5-27; 6-8
Qualifier, symbol 4-28

used for definition operations 5-2
QUAL micro 7-7
QUAL pseudo

description 4-27
example 4-14, 29; 5-22
permissible anywhere 4-2

Index-15

R error 11-10
R hardware feature code 4-8
R list option 4-80
R= pseudo

description 4-59
example 4-60; 5-21
illegal in PPU program. 4-9, 11

RAD instruction
description 9-13
replace function 9-5

Radix 2-18, 19
RAI instruction

description 9-14
replace function 9-5

RAM instruction
description 9-15
replace function 9-5

Real-time clock set instruction 8-20
Record name, external text 5-3
Recursion level 1-4; 5-1
Recursion stack 1-4; 5-1
Reference

external
macro 5-18
macroe 5-25
nested 5-1
opdef 5-30

Reference table, symbolic 11-13
Registers, CPU 2-8; 8-8
Register designators

CPOP 6-8
description 2-8; 8-8
not symbols 2-6
OPDEF 5-27
OPSYN 6-11
PURGDE F 6-11

RE instruction
description 8-14
force upper 3-4

REL attribute 4-71
Relocatable program structure 3-5
Relocatable test 4-71
Remote assembly 5-3
Repeat count

DUP 5-7
replication 4-61

Index-16

REP pseudo 4-61
REPC pseudo 4-61
REPI pseudo

example 4-62
description 4-61
illegal if absolute 4-6, 9, 11

REPL table
result of BSSZ 4-52
result of REP, REPC, or REPI 4-61
written by SEGMENT 4-16

Replace functions, PPU 9-5
Replication of code 4-61
Return jump, CPU 8-13
RFN instruction 9-22
RI instruction 8-20
Right shift 8-32, 34
RJ instruction

description 8-13
example 4-33; 5-21; 8-13
force upper 3-5

RJM instruction 9-6
RL instruction 8-15
RMT pseudo

description 5-3
example 5-5, 6
permissible anywhere 4-2

RO instruction 8-21
Round and normalize instruction 8-35
RPN instruction 9-11
RXi instructions

add 8-39
divide 8-44
multiply 8-41

RXj instruction 8-18

S list option 4-80
S numeric data modifier 2-18
S storage flag 11-14
S system text mode 10-5
SAi instructions

description 8-46
example 2-16, 17, 20; 4-33, 39; 5-22, 35; 8-47

SBD instruction
arithmetic function 9-4
description 9-13

60360900B

SBI instruction
arithmetic function 9-4
description 9-14

SBi instructions
description 8-48
example 2-11, 15; 4-52; 8-49

SBM instruction
arithmetic function 9-4
description 9-15

SBN instruction
arithmetic function 9-4
description 9-8

Scale, binary 2-19
SCM blank common 3-3
SCM labeled common 3-2
SCN instruction

description 9-8
logical function 9-5

SEG pseudo
binary generation 3-15
description 4-17
example 4-18
force upper 3- 5
illegal in PPU program 4-9, 11

SEGMENT pseudo
binary generation 3-7
description 4-16
example 4-17
force upper 3-5
illegal in PPU program 4-9, 11
overlay structure 3-13

Semicolon in definition 5-9, 13
SEQUENCE micro 7-7
Sequencing

listing 11-7
statement 2-1

SET attribute 4-71
Set instructions 8-46, 48, 49
SET pseudo

description 4-44
example 2-9, 22; 5-11, 22
listing 11-7

Shift
description of unit 8-4, 7
CPU instructions 8-32, 33, 34, 35, 36, 37, 43
PPU instructions 9-7

SHN instruction 9-7

60360900B

Short jump limit 4- 9, 11
Short list 10-4
Single precision instructions

add rounded 8-39
add unrounded 8-37
divide rounded 8-44
divide unrounded 8-44
multiply rounded 8-41
multiply unrounded 8-40

SKIP pseudo
description 4-7 5
permissible anywhere 4-2

Slant bar
local symbol separator 5-32
operator 2-23, 24; 8-5
parameter separator 5-8, 13, 16, 25, 28

SOD instruction
description 9-13
replace function 9-5

SOI instruction
description 9-14
replace function 9-5

SOM instruction
description 9-15
replace function ,9-5

Space, em bedded (see blank)
SPACE pseudo

description 4-81
permissible anywhere 4-2

Special elements
FORTRAN call 2-9
general description 2-9
in variable field 2-2
location counter 3-5
origin counter 3-3
position counter 3-5

SST attribute 4-72
SST pseudo 4-48

example 4-14
permissible anywhere 4- 2

Stack, recursion 1-4; 5-1
Statement

coding conventions 2-3
comments 2-2
compressed 5-1
continuation 2-2
external source 5-2

Index-17

first column 2-1
first group 4-1
format 2-1
listing 11-5
number assembled 11-9
size 2-1
source of 5-1; 10-3

Statistics, assembler 11-9
STD instruction

data transmission function 9-3
description 9-13

STEXT pseudo
description 4-19
example 4-21
first statement group 4-2

STI instruction
data transmission function 9-3
description 9-14

STM instruction
data transmission function 9-3
description 9-15

STOPDUP pseudo
description 5-9
example 5-11

Storage reservation 4-39, 51
String, character

comparison 4-73
data generation 4-53
delimited 2-10, 15
empty 2-15
micro 2-4
notation 2-14

Subprogram length 3-6
Subs ti tu ti on, micro 7 -1
Sub subtitle

CTEXT 4-84
EJECT 4-81
listing of 11-1
QUAL 4-27
SPACE 4-81
TITLE 4-82
TTL 4-83

Subtitle
CTEXT 4-84
listing of 11-1
TITLE 4-82

Index-18

SXi instruction
description 8-49
example 2-16, 20; 5-21, 35; 8-50

Symbol
attribute 2-6; 4-42, 71
created 5-33
default 2-7
definition 2-6; 4-42
duplicate 2-6
entry point 2-6
external 2-7
invented 5-33; 11-9
Ii terals 2-7
local to macro 5-13, 33
local to QUAL 3-1
location field 2-6
lost 11-9,13
number defined 11-9
number referenced 11-9
previously defined 2-8
qualified 2-8; 4-27
redefinition 4-44
system-defined 2-7; 4-48
undefined 2-8
value 2-6; 4-42

Symbol qualifier listed 11-1
Symbol table

clearing 3-10, 12
system text 4-19

Symbolic reference table,
address reference 4-85
detailed description 11-13
general description 4-7 8
generation 1-3
list control 4-78, 83, 85; 10-3, 4
omit symbol 4-83

Synonymous operation
CPU 6-11
mnemonic 6-5
PPU 6-5
syntactic 6-8

Syntax definition 5-27; 6-8, 11
Syntax search 6-1
System text 4-19
SYS TEXT option 10-4

related to G mode 10-3
related to STEXT 4-19

60360900B

T list option 4-80
Table

operation code 6-1
symbolic reference 11-13
USE 4-32

TBj instruction 8-29
Term 2-24
Term operator 2- 23
Terminator, macro 5-13
Test symbol attribute 4-71
Time limit 10-2
TIME micro 7-5
Time of assembly 11-1
Title

ES 8-12
IDENT 4-4
listing of 11-1
PS 8-11
TITLE 4-82

TITLE pseudo 4-82
permissible anywhere 4-2

Transfer symbol 4-5
Transmit instruction 8- 28
Truncation, character data 2-13

expression value 2-27
TTL pseudo 4-83

permissible anywhere 4-2

U error 11-11
UJN instruction

effect of J 4-9, 11
description 9-6

Unconditional jump
CPU 8-23
PPU 9-6

Underflow error 2-19
Unpack instruction 8-36
USE pseudo

change blocks 3-1; 4-32
description 4-32
establish common blocks 3-3, 4; 4-32
establish local blocks 3-2; 4-32
example 4-18, 29, 31, 33, 35, 37, 39

60360900C

USE table
entry 4-32, 33, 35
reinitialization 3-10, 12; 4-12

USELCM pseudo
description 4-34
establish common blocks 3-3
example 4-34
illegal in PPU program 4-9, 11

UXi instruction 8-36

V error 11-11
Value, numeric 2-17
Variable field 2-2
Variable field definition 4-57
VFD pseudo

description 4-57
example 2-16; 4-25, 26, 33, 58; 5-22

WE instruction
description 8-14
force upper 3-5

WL instruction 8-15
WXj instruction 8-18

X external flag 4-50; 11-7
X external text mode 10-5
X file option

description 10-5
XTEXT default 5-3

X hardware feature code 4-8
X list option 4-80
X register

conditional instructions 8-24
description 8-4
designator 2-8
setting 8-49

XJ instruction
description 8-16
force upper 3-5

XREF pseudo
description 4-85
permissible anywhere 4-2

Index-19

XTEXT pseudo 5-1
related to CTEXT/ENDX 4-84

XTEXT source 10-5

Zero block
absolute program 3-2
description 3-2
relocatable program 3-6

Zeroed words 4-51
Zero fill 2-15; 4-57
Zero guaranteed

data item 2-15
DIS item 4-54

'l. JN instruction
description 9-6
effect of J 4-9, 11

ZR instruction
description 8-24, 26
force upper 3-5

ZXi instruction 8-35

Index-20 60360900A

I
I
I
I
I
I
J

I
I
I
I
I

~I
_J

~J
r-

5 J
r-

a I

COMMENT SHEET CONTROL DATA
CORPORATION

TITLE: COMPASS 3 Reference Manual

PUBUCATION NO. 60360900 REVISION E

This form is not intended to be used as an order blank. Control Data Corporation solicits your comments about this
manual with a view to improving its usefulness in later editions.

Applications for which you use this manual.

Do you find it adequate for your purpose?

What improvements to this manual do you recommend to better serve your purpose?

Note specific errors discovered (please include page number reference}.

General comments:

FROM NAME: ___________ _ POSITION:---------------

COMPANY

NAME:~----------------------------------

ADDRESS=----------------------------------

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE

FOLD

STAPLE

FOLD I -- -~ ~- -~ ~- --- --- -~ --- -~ ~- ~

BUSINESS REPLY MA IL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Documentation Department
215 Moffett Park Drive
Sunnyvale, California 94086

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

I
I
lw

I~
I~
,~

I
I

__________________________ J
FOLD FOLD I

STAPLE STAPLE

I
I
I
I
I
I
I

PSEUDO INSTRUCTION INDEX
Section Section

Name Placement ~ Number Name Placement Usage Num~r

ABS fil"st group CPA 4.3.1 MACROE anywhere CP,PP 5.4.4
BASE anywhere CP,PP 4.4.1 MAX normal CP,PP 4.6.3
BSS norm.al CP,PP 4.5.4 MICCNT anywhere CP,PP 4.6.5
BSSZ norm.al CP,PP 4. 8.1 MICRO anywhere CP,PP 7.2.1
Bl=l anywhere CP 4.4.5 MIN normal CP,PP 4. 6.4
B7=1 anywhere CP 4.4.5 NIL anywhere CP,PP 6.1.3
CHAR anywhere CP,PP 4.4.2 NOLA BEL anywhere CP.A,PP 4.3.10
GODE anywhere CP,PP 4.4.3 NOREF anywhere CP,PP 4.11.6
COL normal CP,PP 4.4.6 OCT MIC ao.ywhere CP,PP 7. 2.3
COMMENT anywhere CP,PP 4.3.9 OPDEF anywhere CP 5.4.6
CON normal CP,PP 4.8.6 OPSYN anywhere CP,PP 6 •. 1.2
CPOP anywhere CP 6. 2.1 ORG normal CP,PP 4.5.3
CPSYN aqywhere CP 6. 2.2 ORGC normal CP,PP 4.5.3
C'l'EXT normal CP 4.11.7 PERIPH first gl"Oup PP 4.3.4
DATA normal CP,PP 4.8.2 POS normal CP,PP 4.S.6
DECMIC anywhere CP,PP 7. 2. 2 PPOP anywhere PP 6.1.2
DIS normal CP,PP 4. 8.3 PPU ftrst group pp 4.3.3
OUP normal CP,PP 5. 3.1 PURGDEF anywbere CP 6. 2.3
ECHO normal CP,PP 5.3 •. 2 PURGMAC anywhere PP 6.1.~
EJECT anywhere CP,PP 4. U. 2 QUAL anywhere CP,PP 4.4.3
ELSEt anywhere CP,PP 4.9.2 REP normal CPR 4.8.8
ENDt required last CP,PP 4. 2. 2 REPC normal CPR 4.8.8
ENDD anywhere CP,PP 5. 3,4 REPI normal CPR 4.8.8
ENDIFt anywhere CP,PP 4. 9.1 RMT ~here CP,PP 5.2.1
ENDM anywhere CP,PP 5. <&. l ft=1 normal CP .f.8.7
ENDX normal CP,PP 4. 11. 7 SEO normal CPA, PP 4.3.7
E.NTRY normal CP,PP ... 7. l SEGMENT normal CPA, PP 4. 3.6
ENTRYC normal CP,PP 4.1. 1 SET normal CP,PP 4.6.2
EQU normal CP, J>P •• 6. l SKIP &QYWhere CP~PP 4 .• 9.1
ERR normal CP,PP •. 10.1 SPACE anywhere CP,PP f.11. 9
ERR.MI. nonna.l CP, l,P 4.10. 2 S81' aaywbere CP,PP 4.6.6
ER,R.NG normal CP,PP 4.10.2 STtXT ft.Ht ll'OUp CJ>, PP 4,.a.e
ER:RNZ normal CP,PP 4. 10, 2 s·.roPOUP no.rmal CP,PP $,S.;3
tMPL normal CP, l~P 4.10.2 T.IT1.f; 1..,w•re CP,PP 4.U.4
tRRZR normal tP,PP ... 101

• 2 1'TL ...,.. CP,PP 4,11.a
EXT normal CP,PP 4. 7. 2 USE •ciirmal CP;PP •• 1 •. 1
RtR.E an,ywheni CP,PP &.t • .2 U8ELCM Mrmal CP 4.a.a
lDBN'1' requ.1 red nr1t CP,P,P a.11anc:1 vro DOftn&l CP,PP &

4.$.6 XUF " CP,.PP 4.n .. e
'IF norm a.I CP,P.J> 4.1.6 XT£XT norm.al C.P,PP d.1
IFC' anywbilre (.~P., pp '· 9. '7 tbla,nk) normal CP,PP '·1.FCP ao·rmal c:1--. pp ,, .. :,, r.orm&I ·CP,PP t. 1.1

, IFCPe Qo1rm.1l (~P. pp •••• 3
IFC.P7 norinal CP, l>J> '· o.~.
IFOE no I'm.It CP,PP .,

.rroT nonn.11 CP,P·P •••••
U'.:L! noi1.l\al (~P,.l>P .. , ...
IVl.1' non•.a1 C'P,Jn» ..•. " ~I!!! ,JP'MI nortn•l Cl>, r.1ii1-. 4.t.n
rrMr. IOl'mll CP,IC-P 4 CP 4btohd• or relec•llbl• CPU pql'Ul

.1,rPL n1~rm11 c:~P, Pl, 4,, o. ti C~PA Ab•ot.-. .. CPU proc:raa•
'' IPPWll< ~onrud CJ,,pJ,, 4. 9.:t (~PR tt.l'ooatablt C.Pl1 Pl"Olhh!l
trl•Pt normai . CP, 1:•1• 4,, o. 3 PP AbtoMill Pl>O P'~

. I P'Pf'1' n<,rmat c:1>, Pl'» •.••. 3
· rrr.Q norm.al c1•, 1,,1:• '· tJ •. 4
', l:Rt1 •n>·.•here (','.P, Pl, 5 ~
ux: Mrtnal Cl»f~ !1. ll1

' l •. 181' aa;ywbu·• c::r•, 1,,, 4.U.1

1 r:..rr •>nnll CP.PI, ... 8 .•
'IA:,X.' aior1n11 Cf1

', f•I, 4,&.I
. l10CAI .• n1t01'0 or 'llJl(llf <:::l>. ,,, ,,,

'· 4.111
,, t.lACfffNI: ti ritl •·rc:up (·•1:•, l~.I) 4,. ~.I
: MA<:ltc) 111)''11111hllr• (''P• pa:• •••. 1

1i

1 .. 1......i lor d•l'IOI IF AtM>IOI·

I ,, ' I '.,.', •I, ', ' ' I' ' ,,'','•' '' 'I

·'

CONTROL DATA

... •CUT OUT FOR USE AS. LQOSE -LEAF. 81NDER TITLE. TAI

Pu h:. No. 60360900

CON fROl DATA
- - ------ -- - --

' '

CORPORATE HEADOUaRTERS, 11• 34th •E. St) ••. lllW•EAPOLIS. MINN, 55441
SALES Off.ICES ~l.D SE"VICE CENHIS 1.1 .. AJOR Cf1'ES,THROUGHOUT THE WORLD

Litho. in U.S.A. .

