53

COMPUTER SCIENCES CORPORATION

" CONTROL DATA CORPORATION

~ 64/6600 COBOL

'VERSION 1.0

INTERNAL REFERENCE SPECIFICATIONS

COMPUTER SCIENCES CORPORATION

At Los Angeles International Airport
. 680 North Sepulveda Boulevard

El Segundo, California 80245

Los Angeles/San Francisco/Richland,Washington/Houston/Washington/New York/London

NOVEMBER 1987

CONTROL DATA CORPORATION ° DEVELOPRPMENT DIV

]

SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications PAGE NO__1
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_L. 0 and-2.0 MACHINE SERIES ___64/6600
TABLE OF CONTENTS
Pa_ge
Section 1 - Introduction

Abstract

References

Design Objectives
Prime Objectives

Compiler Structure
Compiler Layout

Section 2 - Processing Techniques

Two-Pass Approach
Syntax Analysis
General
Syntax Table Language Structure
Detailed Operation of SAD
SCAN2 and LEXSRCH
Compiler I/0 Interface
DIAG - Diagnostic Output Routine
Tree Output (TREEOUT) Subroutine
Tree Input (TREEIN) Subroutine
Table Handling
" ITEMCOP - Random’File Item Search Routine

Section 3 - Compiler Components

Control Routine
CONCRDI - Control Cards Interpreter Subroutine
Identification, Environment, and Data Division
Syntax
Pass 1B and Elements
Report Writer - General Description
Pass 1D Processing of Renames
Procedure Division Processing - Pass 1E
Procedure Division Syntax
Handling of Sequence Control Verbs
Tree Processing, Tree Representation
Pass 1E Syntable Routines '
Pass 1E Tlowcharts
Pass 1F and Elements

CA138-1

1
CONNN[\OL[:?’-QFPHI—‘HH

w

MNNNMN[}?NNN[\DL\')
(23N e B¢ BN

o
1
[}

1
O ~3.=3 =

=

O W O LWLWWWW WL W
1 1
-3
[ep]

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE BOCUMENTY

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO_11
PRODUCT NAME 64:/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_L.0 and 2.0 MACHINE SERIES __64/6600

- TABLE OF CONTENTS (Cont'd)

Page
Object Code Generation 3-185
Assembler (ART) 3-205 -
Pass 1H and Elements :) 3-218
Pass 2 and Elements 3-234
INIT ' 3-238
EDINIT ’ ‘ 3-244
SCALLOC 3-245
STOTEMP : 3-246
MOVES 3-247
GENLOD _ 4 3-252
GENADDR 3-262
GENPREV 3-263
GENSTO 3-264
STORIT : 3-310
STSUB 3-311
EDIT ' 3-312
STOCOR g 3-313
ARITHMETIC 3-314
GENMOVE 3-317
GENARTH 3-324
SUBSCR 3-358
LODINT 3-359
GENIF] | 3-360
LIT02 Subroutine (Compiler) 3-371
Control Transfers - 3-383
GOTOGEN Subroutine . 3-385
ALTRGEN - Code Generator for Alter Verbs (Node 660) ' : 3-389
TCLIMB - Tree Climber v 3-392
GENPLIM - Code Generation for Limits of Paragraphs 3-393
GENSLIM - Code Generation for Limits of Sections ' 3-394
GENBOS Subroutine 3-394
GENEOS Subroutine o ' 3-394
GENPRTFM - Generate Code for Perform Verbs : 3-395
THRUGEN - An Entry Point in Subroutine GENPRFM 3-396
PRIFOPS - Perform Options' _ 3-401
UNTLGEN - PRFOPS Subroutine 3-402
TIMSGEN - PRFOPS Subroutine 3-404
SCFRM - PRIFOPS Subroutine ' 3-405

ATTRGEN - PRFOPS Subroutine ’ . ’ 3-406

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV
DOCUMENT CLASS Internal Reference Specifications

PRODUCT NAME 64:/6600 COBOL Compﬂer

SOFTWARE DOCUMERT
PAGE No__1il

PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERIES

TABLE OF CONTENTS (Cont'd)

VARYGEN - -PRFOPS Subroutine
GENDISP - Object Subroutine Calling Sequence Code
Generation Routine

Section 4 - Compiler Internal Table Formats

Data Name and Procedure Name Tables

~ COBOL File Table Legend

External Access Table
Format of Items on the Report Reference File (on Disk)
Coding of Report Reference Items

Report Tables.

 Detailed Description of the Report Module

Hash Table

Diagnostic Table

Lexicon Table

Syntax Analysis Tables

Section 5 - Compiler Output

Structure of Load
Object Code Formats
" Listings ’

Section 6 - Object Time Routines

Introduction

Object Time Register Usage

Tables of Binary Constants

Subroutines
BLOCKIO - Output CIO Buffering Subroutine
DDDATCN Subroutine
DDBCDCM - BCD Compare Subroutine
DDBN - Binary Conversion Subroutine
DDDSPLY - COBOL Statement Subroutine
DDCOBIO Subroutine
DDOPIN Subroutine
DDOPOT Subroutine

DDOPRAN - Open Input/ Oufput Subroutine
DDREAD - Read File-Name Subroutine

CA138-1

QO@GG@?@@@@O’:

Page

3-408

3-410

™
jay

1
RN

1 [
I)

!
L e e
U RO

rh»hrhrhrhv?rht—!-\rhyhvh

W

(=2 W =>]
U U U
W WN N

1
Lo\)

g

w

1
N DN D) R
-3

[¥2]

CONTNOL DATA CORPORATION ° DEVELOPMENY DIV o
DOCUMENT CLASS Internal Reference Specifications '

SOFTWARE DOCUMENT

PRODUCT NAME 64/6600 COBOL Compiler

PAGE NO__1V

PRODUCT NO. COo43 VERSION_1.0 and 2.0 MACHINE SERIES

64/6600

- TABLE OF CONTENTS (Cont'd)

. DDRDNCH - READ N Characters Subroutine
DDWRITE - WRITE Record-Name Subroutine
DDWBA - WRITE Record-Name Before Advancing Subroutine
DDWAA - WRITE Record-Name After Advancing Subroutine
DDWRENCH ~ WRITE N Characters Subroutine
DDCLOS - CLOSE TFile~-Name Subroutine
DDCRELR -~ CLOSE REEL-Name Subroutine
DDDADD - Double-Precision Decimal Additon Subroutine
DDCVBD - Binary to Decimal Conversions Subroutine
DDEDIT - COBOL Editing Subroutine
DDEXAMO - Examine Subroutine _
DDFINIS - Terminate All Action for Input/Output at Object

Time Subroutine
DDFIVES - Miscellaneous Object Time Constants Subroutine
DDMOVIO - I/O MOVE Subroutine
DDSOL - Segment Overlay Subroutine
DDSORT - COBOL Sort Interface Subroutine
DDSTRP - Sign Stripping Subroutine
DDTENS, DDTNTHS, and DDTENDP Subroutines
DDTRUBL - COBOL Error Routine for Object Running
Subroutine

DDZONE - COBOL Format Subroutine
SNAP - Snapshot of Register Status Subroutine
DDXCEPT - ACCEPT Subroutine
DDSUBSC - Short Field Subscripted Load - Store Subroutine
SUBMV - Subscripted Long Move Subroutine
DDEXP - Exponential Interface Subroutine
DDANCM - Alphanumeric Status Test Subroutine
DDDSPLY

Appendié es

Appendix A - Procedure Division Lexicon List
Appendix B - Syntax Analysis Table Program (SYNTBLE)

Appendix C - Copy from COBOL Source Library Program (COPYCL)

Appendix D - List of Compiler Diagnostics

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV °

SOFTWARE DOCUMENY

DOCUMENT CLASS Internal Reference Specifications PAGE NO__V
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600
LIST OF FIGURES
Figure No. Page
Compiler Overlay Scheme 1-4

1-1

w
juy

PR PR EEEPEPePEEeEEEeEEEe PR pEPY
DODO DO DO DO DO DD DD b bt e e 00000 W N 0 -1 ¢ U W
OO WD RO

W N = O W

=

1
)]

cowooc.loww

D

CA138-1

Processing Associated With 6600 COBOL Subprocessor
in Syntax Language o '

Syntax Analysis Driver (SAD) Flowchart

Tree to Disk Format

TREEOUT Flowchart

. TREEIN Flowchart

Example of Data Division

ITEMCOP Flowchart

UNNESTC Flowchart

CONCRDI Flowchart
Data Division Syntax Levels
Select Buffer

IOCTL Buffer
FDBUFT Buffer
XTFC17 Flowchart
XDD1 Flowchart
XDDCK Flowchart
XLIT2 Flowchart
DCKPRE Flowchart
DID Flowchart
ENVSQ Flowchart
SETDNT Flowchart
SETFET Flowchart
SPECSQ Flowchart

" SQASHS8 Flowchart

SQUASH Flowchart
Pass 1C Flowchart

Pass 1D Flowchart

The Procedure Network
The Reference Network
ACCEPT Tree Formats
ADD Tree Formats
ALTER Tree Formats
CLOSE Tree Formats
COMPUTE Tree IFFormats
DISPLAY Tree Formats

CONTROL DATA CORPORATION ° DEVELOPMENT DIV

DOCUMENT .CLASS Internal Reference Specifications
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO. COo43 VERSION_L. 0 and 2.0 MACHINE SERIES ___64/6600

CA138-1

SOFTWARE DOCUMENT
PAGE NO___ V1

LIST OF FIGURES (Cont'd)

TFigure No.
3-28 DIVIDE Tree Formats
3-29 ENTER, ENTRY Tree Formats
3-30 EXAMINE, EXIT Tree FFormats
3-31 GENERATE Tree Formats
3-32 GO TO Tree Formats
3-33 IF Tree Formats
3-34 INITIATE Tree Formats
3-35 MOVE Tree Format
3-36 MULTIPLY Tree Formats
3-37 OPEN Tree Formats
3-38 PERFORM Tree Formats
3-39 READ Tree Formats
3-40 RELEASE Tree Formats
3-41 RETURN Tree Formats
3-42 SEEK, SORT Tree Formats
3-43 STOP Tree Formats
3-44 Subscripting Tree Formats
3-45 SUBTRACT Tree Formats
3-46 TERMINATE Tree Formats
3-47 WRITE Tree Formats
3-48 Routines Called by Pass 1E Syntable and/or
Used to Generate the Trees
' 3-49 Pass 1E Flowchant ’
3-50 INCLIB (Pass 1E) Flowchart
3-51 INC (Pass 1E) I'lowchart
3-52 DIG Flowchart
3-53 DIP Flowchart
3-54 RIP Flowchart
3-55 REF Flowchart -~ -
3-56 SWART and ART Flowcharts
3-57 DEPART, LINKOUT, and CLEARTX Flowcharts
3-58 CLEAREX TFlowchart
3-59 CLEARPR Flowchart
3-60 CART TIlowchart
3-61 CLLOUT and HENTRY Flowcharts
3-62 PIDLOUT Flowchart
3-63 HEART Flowchart
3-64 EXTAB and HFORCE Flowcharts
3-65

HMOVE, HNOPS, and OVCARD I'lowcharts

Page

3-99
3-100
3-101
3-101
3-102
3-103
3-105
3-106
3-107
3-108
3-109
3-111
3-112
2-112
3-113
3-114
3-114
3-115
3-116
3-117

3-119
3-138
3-160
3-162
3-170
3-173
3-176
3-181
3-186
3-187
3-188
3-191
3-192
3-194
3-195
3-196
3-201
3-202

CONTROL DATA CORPORATION ° DEVELOPMENT DIV

DOCUMENT CLASS Internal Reference Specifications
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO. CO43 VERSION_1.0 and 2.0 _MACHINE SERIES

CA138-1

SOFTWARE DOCUMENT
PAGE NO_Vil _

LIST OF FIGURES (Cont'd)

Figure No.

3-66 LISTOUT Flowchart

3-67 MNEMON TFlowchart

3-68 Pass 1H Flowchart

3-69 OUTID and OUTCS Flowcharts

3-70 OUTDC Flowchart :

3-71 OUTKS Flowchart

3-72 OUTIFD Flowchart

3-73 SECTOUT Flowchart

3-74 OUTA and OUTE Flowcharts

3-75 MVAL Flowchart

3-76 P2START Flowchart

3-77 GENLOD Flowchart

3-78 GENSTO Flowchart

3-79 GENMOVE Flowchart

3-80 GENARTH Flowchart

3-81 GENIT Flowchart

3-82 LITO02 Flowchart

3-83 GOTOGEN Flowchart

3-84 ALTRGEN and GENPRFM Flowcharts

3-85 THRUGEN Flowchart

3-86 UNTLGEN and SCFRM Flowcharts

3-87 ATTRGEN Flowchart

3-88 VARYGEN Flowchart

3-89 GENDISP Flowchart

3-90 GENACPT Flowchart

3-91 GENINS Flowchart

3-92 GENCLOP Flowchart

3-93 GENREAD, GENSTOP, and GENSLIT Flowcharts
. 3-94 OCKEY Flowchart- '

3-95 GENWRIT Flowchart

3-96 GENPTRN and GENRELS Flowcharts

3-97 GENSORT Flowchart

3-98 GENEXAM Tlowchart

3-99 GENENTR Ilowchart

5-1 Compiler Print Lines

5-2,

COBOL Update Print Lines

Page

3-203
3-204
3-219
3-220
3-221
3-222
3-223
3-226
3-230
3-231
3-239
3-253
3-265
3-318

' 3-325

3-361
3-372
3-386
3-390

3-397

3-403
3-407
3-409
3-411
3-413
3-414
3-415
3-417
3-418
3-419
3-421
3-422
3-425
3-427

5-10

CONTROL DATA CORPORATION ° DEVELOPMENTY DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES

CA138-1

PAGE NO__ Vil

64/6600

LIST OF FIGURES (Cont'd)

Figure No.
6-1 DDDATCN Interface Printout
6-2 DDBCDCM Flowchart
6-3 DDBCDCM Interface Printout
6-4 DDOPIN Flowchart
6-5 DDOPOT Flowchart
6-6 DDOPRAN TFlowchart
6-17 DDREAD Flowchart
6-8 DDRDNCH Flowchart
6-9 DDWRITE Flowchart
6-10 DDWBA Flowchart
6-11 DDWCAA Flowchart
6-12 DDWRNCH Flowchart
6-13 DDCLOS Flowchart
6-14 DDCLREL Flowchart
6-15 DDDADD Interface Printout
6-16 DDCVBD Interface Printout
6-17 DDEDIT Interface Printout
6-18 Examine Tallying All CHAR-1 Flowchart
6-19 Examine Tallying Leading CHAR-1 Flowchart
. 6-20 Examine Tallying Until First. CHAR-1 Flowchart

6-21 Examine Tallying A1l CHAR-1 Replacing by CHAR-2
6-22 Examine Tallying Leading CHAR-1 Replacing by CHAR-2
6-23 Examine Tallying Until First CHAR-1 Replacing by CHAR-2
6-24 Examine Replacing All CHAR-1 by CHAR-2

-6-25 Examine Replacing Leading CHAR-1 by CHAR-2
6-26 Examine Replacing First CHAR-1 by CHAR-2
6-27 Examine Replacing Until CHAR-1 by CHAR-2
6-28 ~DDFINIS Interface Printout
6-29 DDMOVIO Flowchart

~6-30 DDMOVIO Interface Printout
6-31 DDSOL Flowchart
6-32 DDSOL Imterface Printout
6-33 DDSORT Flowchart
6-34 DDSORT Interface Printout
6-35 DDSTRP Interface Printout
6-36 DDTENS, DDTNTHS, and DDTENDP Interface Printouts
6-37 DDTRUBL Interface Printout
6-38 DDZONE Interface Printout
6-39 DDXCEPT Flowchart

|

D

1 1
3OO OO OO
= (9]

D >

I
O 1

1

w

(92}

1

o]

?ammmmmm?mmlmcﬁmmmm
l
HQOCD(DSOQOOQ\'IQ

=]
=

CONTROL DATA CORPORATION ° DEVELOPMENT DIV e . SOFTWARE DOCUMENY

DOCUMENT CLASS Internal Reference Specifications : PAGE NO__ X
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43: VERSION_1.0 and 2.0 MACHINE SERIES ___64/6600

LIST OF FIGURES (Cont'd)

Figure No. : . . Page
6-40 DDXCEPT Interface Printout 6-102
6-41 DDSUBSC Interface Printout 6-104
6-42 DDSUBMV Flowchart . 6-106
6-43 DDSUBMYV Interface Printout ‘ 6-108
6-44 DDEXP Interface Printout . 6-110
6-45 DDANCM Interface Printout 6-112
6-46 DDDSPLY TFlowchart 6-114
C-1 RANDMAK Flowchart ‘ ' C-3

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV °

SOFTWARE DOCUMENTY

DOCUMENT CLASS Internal Reference Specifications PAGE NO__%
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO..____CO43 VERSION_L.0 and 2.0 MACHINE SERIES __64/6600
LIST OI' TABLES
Table No. Page
2-1 Pseudo Instructions - Syntax Language 2-3
2-2 Lexicon Table 2-15
2-3 Sample Diagnostic Table Format 2-24
2-4 First-Pass Table Storage 2-32
3-1 SQUASHBU Buffer Table 3-11
3-2 ID and Environment Division Subroutines
Performed from SYNTBLE 3-13
3-3 Data Division Subroutines Performed from SYNTBLE 3-17
3-4 Pass 1B Internal Subroutines 3-32
3-5 - Subroutines Common to ID, Environment, and Data
Division Performed from SYNTBLE 3-43
3-6 Picture Precedence Table (Octal) - 3-46
3-7 History Register Table 3-49
3-8 Mural Code Table 3-49
3-9 Clause-Change Table 3-79
3-10 Load File Layout with Overlays 3-168
3-11 PERFORM Code 3-384
4-1 Data and Procedure Name Tables - Legend for
T and D Fields 4-2
4-2 Data Name Table - Legend for Entry Fields - 4-3
4-3 COBOL File Table Legend 4-5
4-4 External Access Table 4-9
4-5 Report Table 4-15
4-6 Diagnostic Table 4-16
4-7 Lexicon Table 4-17
5-1 Binary Output from COBOL Compiler 5-2
5-2 Structural Details - Relocatable COBOL Output
' Decks (Except Files and Common) 5-3
6-1 USE Declarative Sector Composition 6-19
6-2 Detection/Execution Group Table Guide 6-20
6-3 Table Usage Summary 6-20
6-4 6-54

Murcode Processor Input/Output

CA138-1

/" SECTION 1

CONTROL DATA CORPORATION o DEVELOPMENT DIV] SOFTWARE DOCUMENY

DOCUMENT CLASS Internal Reference Specifications : PAGE NO__ 171
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERiEs __64/6600

SECTION 1 - INTRODUCTION

ABSTRACT

This manual is a design document that describes the internal design of the COBOL compiler
for the CDC 64/6600. It has several major sections that describe the design from different
points of view:

Section 2 describes the form of the processor itself and the methods of producing,
changing and operating with it within the SCOPE operating system and describes
techniques used broadly throughout the compiler, describing in some cases, the
way the source information is processed by different parts of the compiler.

Section 3 describes the major parts of the compiler, glvmg all the processing in
-~ roughly the order in which it occurs.

Section 4 contains the format descriptions of internal tables in one place,
showing the ways in which information is encoded.

Section 5 describes the various outputs of the compiler.

Section 6 describes routines that are used by object programs during execution
time (by calls from the subprogram library).

REFERENCES

This document presupposes that the reader is famlhar with the 64/6600 computers, the
ASCENT assembly language for them, the SCOPE 2.0 and 3.0 operating systems, and the
- COBOL language as described in the External Reference Specifications for this compiler

(12/9/66).

DESIGN OBJECTIVES

PRIME OBJECTIVES

1. Early delivery

2. Modularity

3. Reliability

4., Ease of maintenance
5. Object code efficiency

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO__1~2
PRODUCT NAME 64/6600 COBOL Compiler -
PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES ___64/6600

The structure, internal design, and scheduling of implementation stresses these objectives
in the order listed. /"7

The large memory capacity available in the 64/6600/computer makes new techniques feasible
that will result in processing speeds in excess of 6000 statements per minute for normal
COBOL source code on the 6600 (assuming source input to the compiler, compiler prmtmg,
and relocatable instruction output are not I/O limited).

External Design Obiectives

The language to be implemented is. covered in the External Reference Specifications
(12/9/66). The system provides the data processing user with a complete system for his
needs, including report writing, linkage to 64/6600 SORT/MERGE, and the facility to link
COBOL object code with relocatable subroutines.

Hardware Conficuration

The COBOL system operates on the minimum hardware configuration required by 64/6600
SCOPE Version 3.0. (25K of words of core storage will be available to the compiler, plus
disk and tape storage.) Additional core and peripheral equipment may improve compiler
capacity.

Implementation Language and Operating Systems

The compiler is written in the COMPASS language. It produces relocatable binary output
for loading by the 64/6600 SCOPE system.

64/6600 COBOL operates under 64/6600 SCOPE, Version 3.;.

~"Object time input/output for COBOL programs is provided by the 64/6600 SCOPE system.
' The COBOL compiler generates appropriate linkage to utilize SCOPE.

64/6600 COBOL generates appropriate linkage to 64/6600 SORT/ MERGE, providing the,
SORT facility within the COBOL system.

‘Operator Communication

Th2 COBOL compiler requires no communication with the computer operator. Any equip-
ment or files that are not available when the compiler needs them will cause the termination
of the compilation run.

CA138-1

CONTROL DATA CORPORA)ION ° DEVELOPMENT DIV o SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO 1-3
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_L. 0 and 2.0 MACHINE SERIES ___64/6600

Tape assignments, tape-label handling, tape changing, file searching, and similar functions
requiring communication with the computer operator are performed by the SORT/MERGE
and SCOPE systems.

COBOL statements ACCEPT, DISPLAY, and STOP literal communicate with the operator
by means of the standard 64/6600 SCOPE operating system's communication facilities.

Any unexpected arithmetic errors result in error termination of the COBOL object program.
The reason for the termination is printed in the user's control listing.

Programmer Communications (Diagnostics)

Information supplied to the compiler by the programmer, i.e., such as compiler options
and location of library data, is provided to the COBOL compiler from standard 64/6600
SCOPE control cards, by means of the 64/6600 SCOPE operating system.

Diagnostic information about the source program is available at four levels, which may
optionally be printed on the user's listing. These four levels are as follows:

. Non-DOD messages

. Precautionary diagnostics
. Errors

. Fatal errors

EN IO R

‘Normally, non-DOD and precautionary diagnostics are not printed in the user's listing
format.

General Performance

The primary objective is to provide a COBOL system in which heavy emphasis has been
placed on modularity, reliability, and ease of maintenance. Object code efficiency consis-
tent with the speed and power of the 64/6600 has been achieved consistent with a sound
compiler design. No special optimization pass was employed in an effort to approach
""hand coded" efficiency.

COMPILER STRUCTURE

COMPILER LAYOUT

The following pages describe the overlay format of the compiler. The corhpiler is con-
structed in overlays so that maximum control can be utilized to minimize the space needed
for the compiler routines. (See Figure 1-1.) SCOPE rules limit overlays to two levels,

primary and secondary overlays.

‘The compiler is placed in absolute form on the system library.

CA138-1

SOFTWARE DOCUMENT
PAGE NO__174

64/6600

DEVELOPMENT DIV

VERSION_L, 0 and 2,0 MACHINE SERIES

Internal Reference Specifications

64/6600 COBOL Compiler

€043

CONTROL DATA CORPORATION

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

owayog AelI10AQ Iopidwo) -1 oIndrg

1 1018I2U39 3p0)
| I 2 SSvd

| ’ . sanfeA [enug RIquassy
_ HT SSvd

suond110sa(1oday
|] o1 s5vd

Sj9y 3Mpad01g

sunnoy
| _ 41 sSVd asunnoy pue 91qe])
onsouderql 0/1 _ ysey _ Tonuo)

olqel sweN $3[qel 913y SO[qelL a1qel salqel saunnoy
_ mpasolyg 1da2oy | 1roday aweN e1eq _ Elif _ sjay - sso1y | saunnorqus | 379INAS

— 3T SSVd

_ 1uawudissy ereq
_ art ssvd
_ I9ALI ueog

, _ £dop somog
_ DTssvd

saunnoiqng F19INAS
a1 pUe vV T SSVd

C— — ——— — —

PEOT
Jo puz

. CONTROL DATA CORPORNATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_1-5
PRODUCT NAME 64/6600 COBOL Compiler’
PRODUCT NO.____CO43 VERSION 1.0 and 2.0 MACHINE SERIES _64/6600

The compiler is designed so that a number of "open-ended'" tables are located in one big
area at the end of available memory. Since the SCOPE loader allows the compiler access
to any area within the field length (fl) specified on the JOB card, the open-ended tables are
located above the program load area and below the field length. Obviously, certain amounts
of surplus core must be furnished by the user before any significant table work can be done.

CA138-1

| SECTION 2

CONTROL DATA CORPORATION ° DEVELOPMENT BIV ° SOFYWARE BOCUMENT

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO 2-1
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.___€O43 VERSION_ 1.0 and 2.0 MACHINE SERIES __64/6600

SECTION 2 - PROCESSING TECHNIQUILS

TWO-PASS APPROACH

The compiler makes two passes over the Procedure Division code. The first pass consists
of the preliminary processing of statements and procedures to establish their references to
the Data Division and to each other--or to other compilations. Output from the first pass is
a symbol table for procedure names and references, and encoded syntax items in a format
which is often referred to as "Trees." The first pass places the syntax items on the disk.

The second pass generates object code and creates relocatable binary elements, placing
them on a file ready for subsequent loading and execution by the user.

SYNTAX ANALYSIS

GENERAL

The COBOL compiler consists of several parts. Those parts which are concerned with the
scan of the COBOL source code are written in a specially designed source language, the
syntax language; this language is processed into a pseudo-machine code in the 6600. An
interpretative routine, the Syntax Analysis Driver (SAD) executes this pseudo-code during
a COBOL compilation. A part of the compiler written in this language can be called a
"subprocessor.' Each subprocessor (there are two) undergoes a preprocessing to convert
from the syntax language to an octal format acceptable to the 6600 assembler. This pre-
processing is done by a separate routine written in the COBOL language. This octal format
as output from the preprocessor, is put into loadable form by the assembler. Tigure 2-1
illustrates this process and the operation of this subprocessor during a COBOL compilation.

' The preprocessor is a routine written in the COBOL language whose input is a

SUBPROCESSOR written in syntax language. It converts this to assembly language. This
SUBPROCESSOR is then assembled into binary psuedo code for the 6600. The routine SAD
and all the necessary routines it uses, including SCAN, DIAG, and certain special punctua-
tion processors, are also assembled. '

During operation of the compiler, the source language is processed by the SUBPROCESSOR
into an encoded form for use by other parts of the compiler. The SUBPROCESSOR exists as
pseudo code that is interpreted by SAD. This technique permits the ‘ntroduction of a large
number of operations into the syntax language, each defined by a subroutine that executes it.

SYNTAX TABLE LANGUAGE STRUCTURE
‘Each separate syntax language SUBPROCESSOR (there are two in CDC COBOL) is called a

syntax table. Each syntax table consists of named scctions of variable length. Each sec-
tion consists of fixed length entries that are numbered-within the section. Each such entry

CA138-1

CONTROL DATA CORPORATION e DEVELOPMENT DIV
DOCUMENT CLASS Internal Reference Specifications

. SOFTWARE DOCUMENT
PAGE NO_272

PRODUCT NAME 64/6600 COBOL _Compiler

PRODUCT NO._._CO43 VERSION_L, 0 and 2,0 MACHINE SERIES

Preerocessing

Subprocessor
in Syntax
Source

Language

Preprocessor

(SYNER) 6600

Subprocessor SAD in

in Assembly Assembly
Coded Language
Language

64/6600

Subroutines
in Assembly
Language

Assembler

SAD in Binary
Machine
Language

Subprocessor
as Binary
Pseudocode

COBOL Processing S~

Cobol Source
Program in

Cobol Lang-
uage

Subroutines
in Binary
Machine
Language

Cobol Pro
in Encode:
Form

gra m

SAD asa
Pseudo-machine
(Interpreter)

Subroutines

U

6600

Figure 2-1. Processing Associated With 6600 COBOL Subprocessor in Syntax Language

CONTROL DATA CORPORATION °

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

is written as one line in the original source syntax language.
subdi

is a different type field called a "branch' fie

DEVELOPMENT DIV

Internal Reference Specifications

©

SOFTWARE DOCUMENT

PAGE NO_‘E)’_

64/6600 COBOL Compiler

CO43

VERSION_1.0 and 2.0 MACHINE SERIES

64/6600

This line can then be further
vided into two half-entries, each of which has four fields. Three of these fields are of
one type and can be called "action" fields.

The fourth field in each half-entry (or half-line)

1d. The name of the section and the number of

the entry are also written on the line. A line is written in the following form:

Section
Name

Entry
Number

Action Fields

[

Branch
Field

Action Fields

Branch
Field

]

Left Half-Entry

Pseudo-Computer Operation (SAD)

The pseudo-computer
Different type instructions, however,
action fields. The form of these instructions is shown in Table 2-1.

Right Half-Entry

can be thought of as having eight instructions per entry ("'word').
are actually generated for the branch fields and the

Table 2-1. Pseudo Instructions - Syntax Language
Source Form Encoded Form
Field Explanation Op Address Operation Performed
» | Subroutine name 0 Subroutine number Execute the subroutine.
o
—i
5‘ Dnnn nnn is a diagnostic number, 2 Diagnostic number Issue the diagnostic,
.§ $aaa aaa is a reserved word 4 Lexicon entry number Scan next word for this entry,
5 (in lexicon).
<

Section name 6 Section location Execute the section,

YES 7 1 Return from this section
skipping to next half-entry
after calling instruction.

ﬁ NO 7 0 Return from this section to
o next instruction after calling
b instruction,
i
S | nn Entry number must be in 5 Entry number (in Go to first instruction in
A this section, table) numbered entry.
1 2 Return from this instruction
to second half instruction
after the calling instruction.

CA138-1

CONTROL DAYA CORPORATION ° DEVELOPMENT DIV o SOFTWARE ROCURMENY

DOCUMENT CLASS Internal Reference Specifications : PAGE NO 2-4
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6G00

The process of "executing" a subroutine or section of the table (pseudo code) involves a
transfer of control remembering the calling location. A return is made either to the next
instruction (PARAM = 0) or to the first instruction of the nth half word after that
(PARAM = n). The NO return from an execution section (of pseudo code) corresponds to
PARAM = 0 while the YES return corresponds to PARAM = 1.

Use.of the Syntax Language

The syntax language has the ability to be recursive (a section can be executed from within
itself, directly or indirectly). It was primarily designed for one particular line format that
is the one most commonly used in the CDC COBOL syntax tables. In this form, the first
action field is called the "look for' field. It can be a $ field (look for a reserved word), a
section-name field (look for some specific type of source word or words), or a subroutine
name (look for a particular type word). The remainder of the left half-entry contains '""NO-
action' fields; the right half-entry contains "YES-action" fields. The "look-for' field is
expected to produce a skip to the right half-entry if the thing sought is found; otherwise,
sequential return is made to do the NO-actions. The NO-action and YES-action fields do
not execute skips, allowing control to pass to the following branch field which transfers
control. These branch fields are sometimes called the NO-GO-TO and YES-GO-TO fields,
reéspectively.

DETAILED OPERATION OF SAD
The flowchart in Figure 2-2 describes the Syntax Analysis Driver.

Subrouﬁnes Used by SAD

There are several external subroutines called by SAD that deal directly with SCAN's working
storage. They are listed below with brief explanations of each:

1. IMPKEYW--Calls SCAN2 then checks bits 8 and 7 of the lexicon number of the
current character string for 11, which identifies the word as an imperative key
word. If true, the NOSCNFL is set, and a return to SADYES is made; otherw1se,

return is to SADNOSN.

2. SIMPKEY--Calls SCAN2 then checks bits 8, 7, 6 of the lexicon number for a
setting of 111, which indicates a key word that sometimes is imperative and some-
times is-conditional. If true NOSCNF'L is set and return is made to SADYES;
otherwise, return is to SADNOSN.

3. KEYWORD--Calls SCAN2, then checks bit 9 of the lexicon number obtained from

SCANZ2 for a setting of 1, which indicates a key word that can introduce a new
statement. If true, return is to SADYES; otherwise, return goes to SADNOSN.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO. 2-5
PRODUCT NAME 64/6600 COBOL Compiler —
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

SAD SADNO

‘ ENTER ’ ‘ ENTER }

Set Beginning
of Syntax Table
in B2,
PARAM = X4
Clue - B7
Jump
on B7
0 Jump on
Subroutine List EXIT
To SUBJUMP
2)
EXIT
To SADNO
EXIT N 3
\
To SADNO ot sed]

4
EXIT

SAD5S

v To SCAN
SADS5
5 Go to Syntable
Plus PARAM EXIT
To SADSET

(=]

@
SAD6

7
2B
SAD7

Figure 2-2. Syntax Analysis Driver (SAD) Flowchart (1 of 2)

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ‘ PAGE NO 2-6
PRODUCT NAME 64/6600 COBOL Compiler .
PRODUCT NO. CO43 VERSION_L.0 and 2.0 MACHINE SERIES ___64/6600

4, ACCT--Turns on the conditional comma test flag CONCOMA for subsequent testing,
then goes to SADNO.

5. DCCT--Clears the CONCOMA flag to zero to discontinue conditional comma
testing, then goes to SADNO.

-6. CCT--Conditional Comma Test. Checks the CONCOMA flag. If ON, transfer is
made to the COMMA subroutine; otherwise, the NO return (JP SADNO) is made to
SAD. : '

7. COMMA--Clears COMAFLG to allow a comma as punctuation before the previous
words then checks the XTENDMD flag. If OFF, the SEMIFLG is cleared to allow
comma and semicolon to be used interchangeably before the previous word.
Otherwise, the SADNO return is made.

8. SEMICOL--First checks SCNOTNW flag to see if semicolon is legal before the
next word. If ON, return to SADNO is made; otherwise, the SEMIFLG is cleared
and XTENDMD is checked for ON. If ON, return to SADNO is made; otherwise,
the COMATLG is cleared to allow interchangeable use of comma and semicolon
before the previous word. Then return is to SADNO.

9. A--Checks the necessity and/or legality of column 8 beginnings. If COL8FLG is
ON, it is cleared. If zero, a diagnostic is issued and return is made to SADNO.

10. SNC--Set to Next Card. Sets SKIPOPS to 2, which causes SCAN2 upon subsequent
_ entry to skip to the next source card begmmng

11. SBW--Set Back of Word. Sets the NOSCNFL to enable a reexamination of the
previous word returned by SCAN.

12, SCNANW--Semicolon not allowed. Next word sets the SCNOTNW to disallow
semicolon use before the next word.

13. NONNLIT--Checks CWIC for 2, which describes a non-numeric literal just
returned by SCAN. If true, return is to SADYES; otherwise, return is made to
SADNOSN.

14, NUMBER--Calls SCAN2 then checvks CWIC = 3. If true, the last character string
from SCAN2 was a numeric literal and return is made to SADYES; otherwise,

returns to SADNOSN.

15. NAME--Calls SCAN2 then checks CWIC = 0 which describes a name of some type.
If true, goes to SADYES; otherwise, returns to SADNOSN.

CA138-1

‘CONTROI. DATA CORPORATION . DEVELOPMENT DIV .

DOCUMENT CLASS Internal Reference Specifications : PAGE NO__2-6
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.____CO43 VERSION_L. 0 and 2,0 MACHINE SERIES __64/6600

SOFTWARE DOCUMENT

SAD6

SAD17
_ JPerform Subset _ | Return from
Specified by PARAM

Perform of Subset

Save DATA Word Restore DATA
in Push D List and B2 of Last
i own Pushdown Level

Save B2 in OR History to
Push Down List Previous PD Level

Set History Word
in Push Down List

To SADNO

Move B2
to Yes DATA
of NO-YES Pair

To SADS

v

‘ EXIT ’

To SADSET

EXIT

To ABORTCO

Figure 2-2. Syntax Analysis Driver (SAD) Flowchart (2 of 2)

CONTROL DATA CORPORATION ° DEVELOPMENTY BIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications . PAGE NO 2-17
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_1.0 and 2.0 _MACHINE SERIES.___64/6600

16. INTEGER--Calls SCAN2 then checks CWIC = 3 and PNTLOC = 0, which indicates
‘ an integer. If CWIC =3 and PNTLOC > 0, indicates a decimal literal; conscqucntly
returns to SADNOSN. If integer, return is made to SADYES.
17. SNW--Clear NOSCNTL to enable skipping current word, then returns to SADNO.
SCAN2 AND LEXSRCH
The SCAN2 program separated the next available character string from the source program
and forms and identifies a source "word." SCAN2 obtains source cards from the source
input file one block at a time when needed. As it inspects each character in a string it
classifies it into one of five categories and stores the "word'" in a sequential set of cells:
(CURNWD, left-justified with the word length count as the high-order character in
CURNWD + 0). The word descriptor 12-bit code is right-justified in CWIC.
SCAN2 is constructed to have entry points:
1. To obtain next word.
Calling sequence:
RJ SCAN2 (Normal)
or
JP SCAN (Syntax Analysis Driver)
~2. To reexamine thg previous character string.
Calling sequence:
SX6 1
SAG NOSNT'L (Set No SCAN)

(Then use same call as in A.)

3. Special entry used by INCLUDE verb processing.

CA138-1

CONTROL DATA COR{’C[ZATION ° DEVELOPMENT DIV ° SOFTWARE BOCUMENT

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO_2-8
PRODUCT NAME 64/6600 COBOL COll’l])ﬂCI‘
PRODUCT NO.____CO43 VERSION_1.0 and 2.0 _MACHINE SERIES __64/6600

SCAN2 is also able tfo:
1. Skip to the beginning of the next logical source card.
Calling sequence:

SX6 2
SA6 SKIPOPS
(Then call SCAN2 as in A.)

2. Skip past the next period followed by a space and give no diagnostic messages if
invalid character conditions are sensed prior to the period.

Calling sequence:
SX6 1
SAG6 SKIPOPS
(RJ SCAN2 or JP SCAN.)

When SCAN2 is asked to obtain a word, it obtains the next word bounded by blanks or
punctuation. As words are obtained, the left delimiters '," and ";" are sensed and the
flags COMAFLG and SEMIFLG set nonzero accordingly, so that the subsequent entry to
SCAN2 can test the correctness of the punctuation. If the structure or character usage in
the word is illegal, SCAN2 puts out diagnostics via DIAG. The type of words that may be
obtained are as follows:

‘1. Non-numeric Literal

A non-numeric literal is bounded by quotation marks as shown below:
n(;é)n

Quotation marks are # signs in the 6400 DISPLAY CODE. The literal not including
the quotation mark is stored in CURNWD. The length of the literal is available.

2. Numeric Literal

A numeric literal is composed of all numeric characters, with or without a leading
sign and/or decimal point. A decimal point may not be at the right end. The
entire literal, both integral and fractional parts, but not the decimal point will be
stored at CURNWD. The sign indication, decimal position and total length is
available on exit. ‘

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV © SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications . PAGE NO_279
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 VERSION_1.0 and.2.0 MACHINE SERIES __64/6600

3. Lexicon Words
Lexicon words are found by looking up the words in the lexicon list. The corre-
sponding lexicon control word containing an assigned lexicon code number is avail-
able on exit. The =, *, **, /, +, and _ are recognized as lexicon words when they
have a space on either side.

4., Name
Name may be of the following types:
a. All words not found in the lexicon list.

b. Words with illegal character (by default).

c. Words with trailing hyphen, imbedded hyphens or leading hyphen on
non-numeric words.

5. Period, (and)

The following three characters are treated as separate words by the Syntax
Analysis Driver (SAD):

(as the left delimiter, causes return to SAD.

) as the right delimiter causes a character backspace and the string
recognized previous to the) is identified and return is made.

as the ‘right delimiter causes a backspace to itself, and exit is made.

The LEXICON contains a list of COBOL reserved words. A separate LEX list is allocated
for each division analysis with the reserved words pertinent to that division. An attempt
has been made to recognize all illegal uses of reserved words throughout compilation. This
causes some LEXICON overlays to contain the same words, but different LEXICON numbers.

The 12-bit descriptor code found in CWIC upon return from SCAN2 is either the associated
lexicon number (if a reserved word), or one of the special control numbers 000 through 004
as follows:

000 Name (or string with invalid character).
001 "Not in" jump return.

002 Non-numeric literal.

003 Numeric literal.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENTY

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO__2-10
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO. CO43 VERSION_1.0 and 2.0 _MACHINE SERIES __64/6600

Special syntax analysis external subroutines examine numeric literals and names for
specific types. For example: '

1. Literals
- a., Unsigned

b. Signed

c. Infeger or Decimal (PNTLOC = 0)
2. Names

a. File name

b. Report name

c. Routine name

d. Subroutine name

e. SWITCHNAM

f. Other (data name)

SCAN?2 returns the following specific information on exit:
1. LEXICON number or control code number in CWIC.

2. Left delimiters occurrence flags for "," and ";". These flags are COMATFLG and
SEMIFLG. '

3. . Sign +1 or -1 in cell SNG; SGN=0 if unsigned.

4. Point location (numeric only). The cell PNTLOC is zero if no decimal point, or a
positive integer denoting disposition of the actual decimal point from the rightmost
end of the decimal literal.

5. Character count of string in CHARCNT (in binary).

6. Number of words of CURNWD containing character string in bits 59-54 of
CURNWD + 0.

7. A margin usage indicator COLSFLG.
SCAN2 exits one of two ways: if called by the Syntax Analysis Driver via:

JP SCAN
SCAN RJ SCAN2

CA138-1

CONITHOL DATA COHRPOUOKATIVUN ° DEVELUPMENY IV ° DU FIVVAKE POTUNIENI

DOCUMENT CLASS Internal Reference Specifications . PAGE NO_2-11
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES ___64/6600

a test is made upon return to SCAN + 1 to compare the PARAM and the lexicon number of
control code found in CWIC. If these two match, X4 is set to 1 and a yes jump is made (JP
SADYES). Otherwise, the no jump (JP SADNO) is made.

The second exit from SCAN2 simply returns to the calling external subroutine where CWIC
is tested for content.

Special flags are .given to SCAN2 in the following cases:
1. PICTURE
SCAN2 uses CHAR to extract the picture, one character at a time, and stores them
one char/word in PICTEMP (in Picture Encoding Routine). No diagnostics are
issued for illegal characters and the optional word IS, if used, will be bypassed
with no action required by the syntax driver routine. See Picture Processor
Description, Section 3, for details.

2. INCL2

- SCAN2 jumps to a special INCLUDE routine, REPLACE, which does the replacing
while compiling the INCLUDE sections or paragraphs from the COBOL library.

3. INCL1

SCAN2 jumps to the PASSI INCLUDE processor, which makes one full pass ’over
the INCLUDED section or paragraph in the COBOL library and sets up the REPBY
table for REPLACE.

4. COPYFLG

COPY FROM LIBRARY sets this ﬂag to inform SCAN2 to duplicate source from the
COBOL library.

Upon entry to SCAN2, NOSCNTL is checked for the reexamination option. If OFF, the -
previous left punctuation is checked for correctness. Diagnostics are issued for incorrect
","and '";" as left delimiters. The starting word column is then checked for correct ~
A and B margin beginning columns. Diagnostics may be issued accordingly.

The source card images are given to OUTPUT for subsequent source listing. CHARBRK sets
up the source input card image for CUTPUT.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMERNY DIV ° SOFTWARE ROCUMEMT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2712
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.___CO43 VERSION_L1.0 and 2.0 MACHINE SERIES __64/6600

SCAN2 is the control routine for the subordinate SCANNER routines listed below which
perform specific functions:

1. Character Getter Routine--CHAR (MACROQ)

" CHAR is a MACRO that generates in-line code to load up the next input source
character. The CHAR MACRO looks as follows:

CHAR
SA4 B5 B5 = CHARBUF+N = COLUMN
SB5 B5 + B6 B6 = -1
NZ X4, *+2
+ RJ ENDCRb GET NEXT CARD AND RETURN THE NEXT

CHAR IN X4, RIGHT JUSTIFIED.

A byte of 00 in X4 indicates end-of-card. ENDCRD is then called to read in the
next card and to CHARBRK into CHARBUF.

ENDCRD performs the necessary hyphenation and beginning column usage tests and
issues diagnostics accordingly. Column 7 is check for a blank. If blank, Column 8
is checked for nonblank. If nonblank, COL8BE4 is set and B5 is set to Column 8

. and exit is made. If Column 8 is blank, ENDCRD positions to the last column
checked first nonblank and returns a blank in X4 and B5. If any of the Columns 9,
10, or 11 were nonblank, a diagnostic is issued.

If Column 7 is a hyphen, CHAR positions to the first nonblank character and loads
it into X4, If any column between Column 7 and 12 is nonblank, a diagnostic is
issued before exit is made.

If something otliet than a blank or hyphen occurred in Column 7, a diagnostic is
issued and Column 8 is checked for nonblank. If nonblank, COLS8I'LG is set and B5
is positioned to Column 12. Return is then made.

An end-of-card sensed while in the NON-NUMERIC LITERAL mode causes

73-(last column)=N blanks to be stored in CURNWD to compensate for any logical
blanks of a continued literal that were suppressed by 2RC (card-to-disk routine).

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENTY DIV ° SOFTWANLE BOCTURIEINT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2713_
PRODUCT NAME 6‘1-/6600 COBOL COIllpﬂCl‘

PRODUCT NO.__ C043 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

2. Non-Numerical Literal Getter--NNLIT

SCAN2 calls NNLIT to store all non-numeric literals triggered by a left quote or

apostrophe in CURNWD. It, in turn, uses CHAR to feed one character at a time

for storage in CURNWD until it finds a right quotation mark followed by a period,
- space, comma, or semicolon.

This routine truncates (on the right) any literal longer than 255 characters. The
quotation marks bounding the literal are neither stored nor counted in the character
count. :

CHARBRK is called by ENDCRD to get.the next source card from either the
CHTEMP (normal) or CTEMP2 (Includes and Copies) buffer and breaks it down
into one character buffer CHARBUF. When the source block buffer is near empty,
SRCRDGT is called to read in the next block, thus keeping a full buffer for the
SCAN2 routine. If OUTADD # FRSTOUT (OUT of 00 byte) upon entry to CHARBRK,
the previous source card is sent to the OUTPUT buffer for listing. Printing one
card behind always necessitates a listing of the last card before end-of-file action
is taken. '

A missing leading quote on a continuation card of a non-numeric literal causes a
diagnostic to be issued and processing continues.

3. Word Getter Routine-~-NUMLIT

_ This routine controls the analysis of all words other than pictures and non-numeric
literals. It decides if a word is a numeric literal, LEXICON word, or name. It
checks for invalid character combinations. Within the word getter routine, there
are two subroutine sections, DISCODE and STORIT. '

DISCODE examines and identifies each character. The word type is determined
and hyphenation is detected and processed.

STORIT stores-each legitimate character of the string in CURNWD and test for a
maximum of 30 characters. Words greater than 30 characters are truncated on

the right and a diagnostic is issued.

Operators, left and right parentheses, and periods are identified instantly and
stored in CURNWD. The appropriate LEX number is stored in CWIC.

Numeric literals are identified and 003 put in CWIC.

Alphanumeric words are tagged as names (000 in CWIC).

CA138-1

COUINIRUL LRATA CURPUIALIVUN ©° MEVELWIIVILING WiV v DVUPF L VVAILE WUV UIVIEIN |

DOCUMENT CLASS Inﬁernal Reference Specifications _ PAGE NO 2-14
PRODUCT NAME 64/6600 COBOL Compiler

- PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

Alphabetic words are tested by LEXSRCH for possible match to a reserved word.
If a match is found, LEXSRCH returns to INLEX in NUMLIT. Otherwise, the
NOTIN return to NUMLIT is taken.

Character strings with invalid character combinations are tagged as names.

Before exiting from NUMLIT, the last word of the stored character string is left-
justified in CURNWD and is blank-filled on the right.

SCAN2 employs SRCRDGT to read in the next block of source .inp'ut cards. SRCRDGT
utilizes the File Manager system for its I/O.

Separate LEXICON lists are allocated for the ID-DD and the Procédure Division. LEXDATA
and LEXPROC are each divided into four parts.

Part IV is an indexed jump list of 32 words. The low-order addresses of the first 28 words
contain the jump addresses in Part I of the one word LEXICON subsets, e.g., ONEA,
ONEB, ..., ONEZ, SPEC. The 27th word contains SPEC, which is the subset of COBOL
special characters.

Part I is the actual list of one-word reserved subsets arranged in alphabetical order with
respect to the subset headings. The elements are arranged in order of predicted descending
frequency within each subset; this arrangement optimizes the linear word search.

Part II is the list of two-word reserved word entries (> 10 characters). They are arranged
in order of predicted descending frequency. No attempt has been made to jump to any par-
ticular subset of the two~-word entries due to the relatively few entries for comparison.

Part III is a constant section containing the corresponding lexicon numbers for the one- and
two-word entries of the reserved word list. They are grouped four 12-bit numbers per
word, left-justified in each quadrant. ‘

LEXSRCH examines the subset of the LEXICON corresponding to the word length and first
letter of the candidate for reserved word identification. If a match is found, the lexicon
number is ascertained and returned in CWIC for future PARAM comparison in SCAN or a
syntax table subroutine which had called SCAN2, '

A cell called LEXOVLA, in CONTROL, reflects the absolute address of the current
LEXICON list referenced by LEXSRCH assembled in SCAN2.

Table 2-2 illustrates the format of the lexicon table.

Note: The last four cells are needed by the LEXSRCH routine to establish LIMITS for its
searches. ' ‘

CA138-1

CONTROL DATA CORPORATION

DOCUMENT CLASS Internal Reference Specifications
64/6600 COBOL Compiler

DEVELOPMENT DIV

. SOFTWARE DOCUMENT

PAGE No___2715

PRODUCT NAME
PRODUCT NO.___CO43 VERSION_1.0 and 2,0 MACHINE SERIES __64/6600
Table 2-2. Lexicon Table
ONEA 1 A A a
1
1
ONEZ 1 Z A A
SPEC 1 N A
R
L]
.
1 / a a
ENDEX 1 kA a
TWUWDS 2 w o] A [o] D paY
E N T R 1 S A A A
2 etc.
2 E D A F A T A
(o] A W O R S A A
LEXNRS 00005 01725 00002 01602
00003 01601 00001 00006
.
.
L]
LEXPROC ONEA
+1 [} ONEB
.
L]
L]
+25 ONEZ
C 426 SPEC
+27 ENDEX
+28 ONEA
+29 LEXNRS
+30 LEXPROC
+31 TWUWDS

CONTROL DAYA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ‘ PAGE NO 2-16
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_L1.0 and 2.0_MACHINE SERIES ___64/6600

LEXDATA and LEXPROC are identical lists of the reserved words. Nonzero lexicon
numbers are assigned to the words of each list if the words are legal in the ID-DATA Divi-
sion or Procedure Division respectively; otherwise, a zero lexicon number is assigned.
LEXSRCH senses incorrect reserved word usage by finding a match in the list whose lexicon
number is zero. Upon return to SCAN2, a diagnostic is issued stating that for this Division
there is either:

1. Incorrect reserved word usage, or
2. Illegal CDC reserved word usage.

Certain words in the reserved word list are marked as nonstandard COBOL '65. When they
are used as optional, precautionary diagnostic "NON-STANDARD RESERVED WORD USAGE"
will be issued.

The lexicon numbers consist of a coded 12 bits of which:

Bitll=1 If the reserved word is not DOD COBOL '65 standard.

Bit 9=1 If the reserved word in a sentence separates such as ELSE
END . DECLARATIVES PROCEDURE, etc. or is a key word.

Bit 8=1 If the reserved word is a key word signaling a new statement.
Bit 7=1 If the key word can be imperative.
Bit 6=1 If the key word can be conditional.

Delimiter Handling

The structure of the COBOL lanGLtage coupled with the method of 6600 COBOL syntax
analysis requires a different approach to certain delimiter tests.

1. Normally the syntax analysis table does not indicate a left-punctuation test. If left
punctuation has appeared, a diagnostic message is issued the next time SCAN gets
- a new word.

2. The syntax analysis table indicates places in the language where a ','" or ;" is
allowed. This can be implemented by causing SCAN to cancel the fact that a''," or
";" has appeared, so that a diagnostic message will not be issued when SCAN is
entered to get the next word.

CA138-1

CONTROL DAYA CORPORATION ° DEVELOPMENTY DIV ° SOFTWARE DOCURMENY

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO 2-17
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES ___64/6600

3. Some parts of the syntax table (in order to save repetition of the code in the table),
sometimes allow "," and sometimes not. This condition is handled by the routine
CCT (Conditional Comma Test). Normally the '"," is not allowed (in which case no
attempt is made to cancel the fact that a '"," has appeared) but when an indicator
has been turned on by ACCT (Allow Conditional Comma Test), CCT cancels the

fact that a ','" has appeared so that a diagnostic message is not issued. The rou-
tine DCCT (Disallow Conditional Comma Test) returns the indicator to OFF
(normal).

4. At places in the language where THEN has occurred, it is necessary to disallow a
";" to the right. SCNANW (Semicolon Not Allowed Next Word) sets a flag that pre-
vents the fact that a '";'" has appeared from being canceled. The flag remains set
until the time SCAN exits with a new word.

5. The DOD rules are very strict as to where a "," and where a '";" is allowed; how-
ever, many programmers use the ",'" and ";" interchangeably. The following
usage is allowed in 6600 COBOL: '

When the X option if OFF (so that extended diagnostics are not required)
every place in the syntax table that indicates that either a "," or a ";" is
allowed, cancels both indicators (one for ', and one for '; ") so that the
two punctuation signs may be used mterchanoeably

6. Starting in Column 8, certain words must appear. Normally a diagnostic message
is.issued when a word starts before Column 12 the next time SCAN2 is entered to
get a word. However, if "A" is indicated, a diagnostic is issued if it does not
begin in Column 8, and the fact that it begins prior to Column 12 is canceled.

-

Copy (From Library)

Library Copies are made from a random file whose name is specified by the S-parameter
on the COBOL control card. This file is written by COPYCL (see Appendix C). ITEMCOP
is called by SCAN2 when the COPYFLG is set after the E. O.S. is detected on the COPY
clause, to integrate the copied source statements at this time.

ITEMCOP searches the COPYCL random file index for a data-name-3 match. If not found,
ITEMCOP requests SCAN2 to skip to the next source item. If found, the disk location is
input to SCAN2's input routine, which reads the copy item symbolic source into CTEMP2.
Compilation of the data-name-3 item proceeds from this buffer while its level numbers, if
data-name-3 was not an 01 item, are qualified by the level-number gradient of the data-name
to which the COPY clause is subordinate.

© CA138-1

CONTROL DATA CORPORATION ° DEVELORIVIENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS___ Internal Reference Specifications : PAGE NO 2-18
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

Nested copy's from LIBRARY are allowed up to five levels. Overlapping copies or copies
including themselves, are not, of course, allowed. Nested copies utilize the same common
input buffer, CTEMP2. CHTEMP buffer pointers and random access disk address informa-
tion is kept in a pushdown list to be used in unnesting the copies. UNNESTC is called to
position to finish the previous nested copy, if present, or to return to the source input to
continue normal compilation.

INCLUDE Procedure Processing

There are two phases to the INCLUDE procedure processing. The first phase stores the
section and/or paragraph name of the library element in PNBUF and PQBUF. Then the
REPLACING (item) BY pair, if present, is analyzed and replacement pair clusters are con-
structed into a table named REPBY. If no replacing option is used, a default replacement
pair consisting of the library paragraph name vs. the section and/or paragraph name to
whlch the INCLUDE procedure is subordinate.

The second phase has two subphases. The first subphase consists of a call to ITEMCOP,
with INCL1 set to nonzero, to search the RANDOM file, specified by the S-parameter on
the COBOL compilation control card, for the request item named by PNBUF/PQBUF. If
not found, a diagnostic is issued and the INCLUDE section or paragraph is ignored. If
found, the named record is read into CTEMP2. ITEMCOP positions past the headers to
the first procedure in the item and jumps to SADYES.

Subphase two of the second phase passes over the library record constructing word clusters,
similar to those produced during phase one, pass over the replacing pairs, for each char-
acter string. These clusters are formatted as shown in I3 and are written out on a sequen-
tial binary file naimed DDINCL. When an EOR is sensed in the library element, the file is
rewound and the INCL2 flag is set totell SCAN2 to call REPLACE to check for replacing
while compiling the cluster from DDINCL.

REPLACE will read a cluster from DDINCL and compare it to the replacement pairs in the
table REPBY. If the cluster and all of its qualifiers (if any) match any left-string of quali-
fiers of a replacement pair in REPBY, then the right string of the REPBY pair is substi-
tuted for the string of clusters in DDINCL. ‘

The REPBY table is fixed-length, and therefore, may overflow if the REPLACING (item) BY
option is too long. If an overflow should occur, a diagnostic will be issued and the whole
INCLUDE procedure will be ignored.

The following list of SCAN2's working storage is saved in the INCLUDE clusters.

CWIC (lexicon or pseudo-lexicon number)

. Delimiter flags (COMATLG, SEMIFLG, COL8FLG, COL8BE4, and PUNFLAG)
Point location (PNTLOC)

. Sign (SGN (2 bits))

> W N

CA138-1

CONIROL DATA COUPOUHATION © DEVELOMIFIEINT DIV ° SOFIWAKE VOCUNIENY

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-19
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_1.0 and 2.0 _MACHINE SERIES __64/6600

a. 0= not signed
b. 1=+ signed
c. 2=- gigned

5. Beginning column of word (COLUMST)
6. Number of characters in string (CHARCNT)

The following formats show the left- and right-replacement clusters and the Pass 1 library

source clusters: :

REPLACING (ITEM) BY LEFT CLUSTER FORMAT (REPBY)

Link to First Link to First
Word 1 Word of Word of Next
Replacement Entry Replace String

6 k‘7 8 1 18

12 6

PNT=- | COL- | CHAR Link to Next

Word 2 }CWIC | DELIM LOC |UMST| CNT 7 Replace Entry

/NL

ZOO o

CURNWD
(Words 3-28)

CA138-1

CONTROL DATA CORPORATION J DEVELOFMENT DIV ° SOFTWARE DOCUMENTY

DOCUMENT CLASS Internal Reference Specifications

PAGE NO_2-20
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO. C043 VERSION_1.0 and 2.0 MACHINE SERiES ___64/6600

INCLUDE PASS 1 CLUSTER FORMAT

12 6 2 6 7 8 1 18
S .
: PNT- | COL- CHAR- Link to Next
Word 1 CWIC | DELIM A Gl 1oC | UMST | CNT [/} Pass 1 String

B

CURNWD
(Word 2-27)

CA138-)

CONTROL DATA CORPORATION o . DEVELOPMENT DIV ° SOFYWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-21
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

REPLACING (ITEM) BY RIGHT CLUSTER FORMAT
(INTERSPERSED WITH REPBY)

(INCRT) |

S Link to Next Use
PNT- COL- CHAR-~
Word 1 CWIC DELIM G . Replacement
N LoC UMST CNT . in String
12° 6 2 6 1 8 1 18

Create by
LDWDFX

CURNWD
(Word 2-27)

CA138-1

CONTROL DAYA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO_2-22
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

COMPILER /O INTER FACE

The compiler performs I/0 through the File Manager furnished in the SCOPE system. This
causes compiler use of File Environment Tables (FET) similar to those generated for object
code. :

All printer output is buffered by BLOCKIO and output to the output logical file name specified
by the L-option on the COBOL control card. BLOCKIO uses WRITOUT to buffer its input.)
 The output CIO buffer can be written out at any time by an RJ to FLUSH, which does a
WRITER on the output file. Registers A5 and A7 are destroyed by either a call to BLOCKIO
or FLUSH. Page ejection and header printout is controlled by BLOCKIO.

The format requirements for printer images given to BLOCKIO are as follows: (See printer
formats in Section 5.)

1. Carriage control character as first character. (This character is not printed.)

2. End-of-line terminator.
The standard OUTPUT EOL is at least two zero bytes (six bits/byte). If the first
of the two zero bytes is the rightmost byte of the last word of the printer image,
then a whole word of zero bytes must follow to complete the EOL requirement.

3. No zero bytes between CC and EOL (i.e., inclusive image must be display coded).

4, bLi,ne image < 136 characters.
It should be noted that if the images are > 136 display characters, the PP OUTPUT
routine will use the 137th, 273rd, ... character for the carriage control characters
that are not printed.

The CALL to BLOCKIO is as follows:

RJ BLOCKIO
VFD A30/BUFFER,N30/M

where
BUFTER is relocatable label address of printer image being output,
and

M is number of whole words .of display-coded printer image. M should include
EOL terminator.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV o ‘SOFTWARE DOCUMENY

DOCUMENT CLASS Internal Reference Specifications ' PAGE NO_2-23
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. C0O43 VERSION_ 1.0 and'2.0 MACHINE SERIES __64/6600

The CALL to FLUSH is as follows:
RJ FLUSH

There are four main compiler CIO buffer areas. They are used for source input/output
procedure division TREEOUT/TREEIN, and the Assembler relocatable binary output.

The buffer size of these buffers is determined by the field length of the compilation (assum-

- ing a minimum of 53000g). Each buffer occupies 1/8 of the core space between 50000g and
the top of the field length. The CIO areas begin at a location half way between 500008 and the
field length, and run to the end of the field length. The remaining one half of the area is
utilized by extending the top of the PNT.

DIAG - DIAGNOSTIC OUTPUT ROUTINE

The diagnostic message output routine retrieves the diagnostic English error message
requested by the call and outputs the message to the output file. (See Table 2-3.)

The calling sequence to DIAG consists of the following:

RJ DIAG
DATA N
where

N is the message number.
Registers A5 and A7 are destroyed by DIAG.

The maximum diagnoStic number is 999. If the number exceeds this limit, a diagnostic is
included and issued by DIAG itself. Diagnostic messages have a 10-word maximum length.

The printer-line image for the messages includes the following: (See format in Section 5.)
o 4
1. Attention-getting field of asterisks ** *%*,

2. A 3-digit decimal diagnostic message number within the asterisks. Each number
is unique for every spot in the compiler routines where an error can be detected.

3. A 2-digit card column indicator prefaced by a special character 'cc'. This number

specifies the card column of the word or position of syntax where the error is
sensed. If cc=0, the message applies to the previous card.

CA138-1

CONTROL DATA CORPORATION °

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO. CO43

CA138-1

Internal Reference Specifications

DEVELOPMENT DIV

SOFTWARE DOCUMENT

64/6600 COBOL Compiler

PAGE NO_2724

VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

Table 2-3. Sample Diagnostic Table Format

DAGNOS1 | DL €000 DL €001
DL C002 DL C003
DL Cc004 - DL C005
:
DL C096 DL C097
DL co9s | DL €099
C000 A A
€001 X A I N € O R R E C
T A S T A R T I N G
A € O L U M N A B E
F O R E A C O L U M
N 1 2 A A A A A A A
Cco002 s
€009 A
A

A 1-letter indicator from the followihg list:

a. C - Fatal error with no execution possible..
b. E - Serious error with probable execution of part of the object code.

c. T - Trivial precautionary message (extended).

d. U - Non-DOD error condition message (extended).

An English language error comment. (To conserve space, several diagnostic
numbers may use the same error message; consequently, the printed number is

more specific than the message.)

Source line number, indicating the line in the vicinity of the error. (Most error
messages will print interspersed in the programmer listing, but some error
messages will print before and some after the source line to which they apply.)

CONTROL DATA CORPORATION . DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2725
PRODUCT NAME 64:/6600 COBOL Compiler '
PRODUCT NO.____C0O43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

An X—parametei' on the COBOL control card determines which degree of diagnostics is
printed. ' :

Ranges for the diagnostic numbers for the different compiler segments are as follows:

OVERLAYS 0,0 and 1,0 1- 99
OVERLAYS 1,1 thru 1,4 100 - 499
OVERLAYS 1,5 thru 1,6 500 - 799
OVERLAYS 2,0 thru 2,3 800 - 999

- Diagnostic overlefy elements (of which there are 10) containing < 100 diagnostic messages
per element will be loaded in conjunction with the various passes of the compiler. Their
absolute locations (relative to RA) are stored in the CONTROL working storage in the cells

- named DAGLOC1, DAGLOC2,,, DAGLOC9, DGLOCI10. '

DIAG first determines in which overlay the requested diagnostic resides. Then the first
word of the message is loaded and the degree key is checked for possible extended degree.

If the degree of the potential diagnostic is either T or U, a special flag XTENDMD is
. checked. If this flag is set, the U and T diagnostic is printed. If not, exit is made from
the DIAG routine with no diagnostic issued. All C and E diagnostics are output.

Appendix D contains a list of compiler diagnostic messages.
TREE OUTPUT (TREEOUT) SUBROUTINE

The Tree Output (TREEOUT) subroutine is used for interphase I/0. Each time TREEOUT
is called, one tree is written to disk. Each time a section number changes (0-49 is con-
sidered no change), the previous logical record is terminated and a new logical record is
started. The calling sequence to TREEOUT is:

. Load X4 Priority Number (0-99)
.- Load B4 with length of tree

Load B5 with base address of tree
RJ TREEOUT

O DN =

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE COCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-26
PRODUCT NAME 64:/6600 COBOL Compiler)
PRODUCT NO. CO43 __ VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

The format of the trees as they are written to disk is shown in Figure 2-3.

L1+1
Ly
L1+1
A
' Lo+l 1
A
L2+1 Ii
4
Lo+l
! 3 *1
A
Lg

Figure 2-3. Tree to Disk Format

‘s

is the length of

. This pictorial diagram represents a logical record of three trees. L1

tree 1, etc.

The word immediately preceding the one pointed to by register B5 is destroyed by
TREEOUT. Registers preserved by TREEOUT are:

1. . X0, X1, X2, X3
2. B1, B2, B3, B6

After the last tree has been ivritten, it is necessary to terminate TREEOUT outputs to the
disk by performing the following call;

RJ- PHASEND
Register preservation is the same as indicated above for TREEOUT.

A flowchart of TREEOUT appears in Table 2-4.

CA138-1)

CONTROL DATA CORPORATION e DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NoO__2-27
PRODUCT NAME 64/6600 COBOL Compiler —
PRODUCT NO. CO43 VERSION_1.0 and 2,0 MACHINE SERIES __64/6600

TREE OUT PHASEND

(ENTER) { ENTER)

CHGED

Writer On Writer on RANFILE

Save Registers RANFILE Recall

Has
Priority Number Compute Priority Write Out on
Changed ? Number Sequence File
| OUTPT
) Set Drum Addr,
Set RANFILE of Sequence File Write Out on Seq, Writer on
Wk-Storage Word to Go In File Recall Sequence File
GOBAK
EXIT
Write Out RANFILE Store it Reset Pointer
Load Pointer
EXIT
Priority Loaded
in X6

NOTEND

Add 1 to Pointer

Compute Position
for bit Imbedding

in PRIND,
Store it Back in Store Previous
Pointer in RANFILE + 7

Figure 2-4. TREEOUT Flowchart

CONTROL DATA CORPORATION o DEVELOPMENT DIV ° SOFYWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ‘ PAGE NO__2-28
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO._CO43 VERSION_1.0 and 2.0_MACHINE SERIES __64/6600

TREE INPUT (TREEIN) SUBROUTINE

The Tree Input (TREEIN) subroutine is used for interphase I/O. See Figure 2-5. Each
time TREEIN is called, one tree is returned. There are two exceptions:

1. If a priority change, no tree will be returned; instead, special end of priority exit
will be taken with the number of the next priority given in X1.

2. If there are no more trees to be input, X1 will contain a negati've number.
The calling sequence is:
+ RJ TREEIN
+ Priority change return
+ New tree return
Upon exit, B2 contains the address of the new tree. Registers preserved are:

X3 and B1.

TABLE HANDLING

The use of a number of "open-ended" tables are made by various compiler routines. The
Data Name table and the Procedure Name table are the two most prominent tables because
they are each used commonly by several phases of the compiler. However, many other
open-ended tables are also used.

The compiler is designed .so that all such tables are located in one big area at the end of
available memory. Since the SCOPE loader allows the compiler access to any area within
‘the field length (fl) specified on the JOB card, the open-ended tables are located above the
program load area and below the field length. Obviously, certain amounts of surplus core
must be furnished by the user before any table work can be done. :

Only two open-ended tables can be built at any one time. One begins at one end of available
.core area and the other begins at the opposite end. The combined length of these tables is
limited by one table's extension into a table extending from the other end, in which case
every part of available table space is used. Should such a limit be reached in the COBOL
compiler, the compilation will be aborted.

Although only two open-ended tables should be ""growing' at one time; once a table's maxi-
mum extension is determined, another open-ended table may begin from that point, contin-
uing in the same direction. Also, if a table is no longer nceded, a new table can begin in
its spot. The tables have been carefully designed to make maximum use of the area.

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications N PAGE NO_2-29
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

TREE IN

ENTRY

FTM1

Set Disc Add

of SEQFILE

In Rec Req/
Return Info. Wd.

First Time
Thru ?

Set Wk-Stg from
Next Wk-Stg Pointey Turn on End

on RANFILE, iori
Read In RANFILE to Priority Flag
Get One Tree

Was a Tree Set SEQFILE
Read ? Wk-Stg Area

Save Last Word

for Next Read Read In on

Set B2 to Point SEQFILE

to Tree Top

Set Pointer to
EXIT Top of Buffer
Set Amt. Read

Pick Up Priority
Indicator Word

Pick Up Priority
Flag (0 Initially)

Pick Up
Bit Pointer
(51 Initially)

Figure 2-5. TREEIN Flowchart (1 of 2)

CONTROL DATA CORPORATION]

Internal Reference Specifications
64/6600 COBOL Compiler

DOCUMENT CLASS

DEVELOPMENT DIV

. SOFTWARE DOCUMENT
PAGE NO__ 27830

PRODUCT NAME
PRODUCT NO.____CO43

Priority Yes

TY

Store Priority Flag

Indicator
Negative ?

Priority Indicator
Bit Pointer

VERSION_1.0 and 2,0 MACHINE SERIES

64/6600

PRIND=0 ?

Add1 1o
Priority Flag

Shift Priority
Inidcator
Left 1

Mask Off
———— Right Most
Bit of PRIND

Any
More Disc
Addresses in
This Buf-
End Priority fer ?
and Special

End Job

UTADD

1

Does
Priority
Flag Match That
in Buffer
Word

No

idd 1 to Pointer

Read SEQFILE
Set Pointer to
Top of Buffer
Set Amt, Read

Set Up to
Send 1 Wd.
Up RANFILE

Set End
Priority Flag

Store This Wd.
in Next Wk-Stg
Pointer

End
Priority
Flag On ?

Pick Up Priority
Indicator
Bit Pointer Turn Off
Priority Flag

EXIT

End Priority
Reset SEQFILE
~—=- Disc Address to With New One

Top of File

Figure 2-5. TREEIN Flowchart (2 of 2)

CONTIIOL DATA CORPORATION © DEVELOPMENT DIV o SOFTWARE DOCUMENTYT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-31
PRODUCT NAME 64:/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_L.0 and 2.0 MACHINE SERIES __64/6600

Specifically, the Data Name table will begin at the top end of Pass 1B or 1E, whichever is
longer, and extend it upward toward RA + FL. When Pass 2 is loaded, it will be allowed to
overlay the DNT as the table is no longer needed. Since Pass 2 will need the Procedure
Name table, it is not overlayed and is placed above the DNT, extending from the top of the
table area downward. The report tables are not needed in Pass 2 and may be overlayed.
The DNT length will be determined when the report tables start and thus the latter extend
from the former in the area building up towards the top. The Procedure Name table is not
started until the length of the report tables is known and extends from the top down toward
the completed tables. The PNT is limited by the high end of either the report table or
Pass 2, whichever extends the highest. All of these tables exist during Pass 1E.

Several more open-ended tables are used by certain passes. TFor example, after the report
table length has been determined in Pass 1B, subsequent passes build tables upward from
the end of the report tables for "local use.'" After Pass 1E, open-ended tables also extend
down from the PNT. Tables not named here, and required for the use of more than one
pass, are coordinated so as to not overlay or be overlayed by a "local' table. After

Pass 1G, extension upwards is not from the report tables, but from the end of Pass 2 code.

Limited table space is always available to smaller passes between its length and the begin-
“ning of the file tables.

Table 2-4 outlines how the table might be stored during the first pass. Indented items do
not have a 6-bit identifier.

The initial method used to find entries in the data table is to use a. HASH table as an index.
As each entry is placed in the data table, its three words of name (30 characters maximum)
are hashed as follows:

The three words are added together, ignoring overflow. The resulting sum is equal to its
.two halves. The resulting value is multiplied by the binary equivalent of 1/511. The first
nine bits to the right of the decimal point of the above product is the position in the HASH
table of the location of the data table entry. The HASH table will consist of a possible 511
entries. If an entry to the HASH table finds another entry there already, the new data table
entry will be linked to the already existing data table entry referenced by the HASH table or
to the last link of previous duplicates. Thus strings of entries may be established for
‘duplicate hashing results.

The address of the first word of data name is to be in an address register for the HASH
subroutine. The resulting pointer will be in an increment register.

The HASH subroutine will generate a 9-bit hash number from data words, using word one or
words one and two of the input data. ‘

CA138-1

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications PAGE NO__2-32
PRODUCT NAME 64/6600 COBOL Compiler . —
PRODUCT NO..__C043 vERsION_L.0and 2,0 MACHINE SERIES._64/6600

Table 2-4. First-Pass Table Storage

Contents of Table Contents of Table
HL EDD
NM EDD2-3
SNI EP
HL HL
NM NM
FD . CN
FD2-27 DDL
HL HL
NM NM
FD CN
FD2-27 DDL
HL DDL
NM HL
GDD NM
GDD2-3 sc
HL HL
NM NM
EDD sC
EDN2-3 GDD
HL GDD2-3
Tt HL
EDD NM
EDD2-3 RD
ssr RD2-00
HL HL
NM NM
GDD . RG
GDD2-3 RG2-7
HL RE
NM RE2-7
RN RE
HL RE2-7
NM RG
GDD RG2-7
GDD2-3 RE
EDD RE2-7
EDD2-3 HL
DDL NM
DDL PD
DDL HL
DDL NM
HL PD
NM PR
EDD PR
EDD2-3 ete
EP
DDL
Legend:
HL -~ Hash link EP - Encoded PICTURE
NM - Name SSC - Subscript coefficient (OCCURS)
GDD - Group data descriptor CN - Condition name (88)
EDD - Elementary data descriptor PD - Procedure def.
DDL - Data division literal PR - Procedure ref.
PDL - Procedure division literal FD - File table
SNI - Special name item RD - Report descriptor
SC - Source copy RG - Report group
RN - Renames (66) RE - Report elementary

CONTROL DATA CORPORATION ° DEVELOPMENTYT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specificalions ‘ PAGE NO_2-33
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 _MACHINE SERIES __64/6600

The initial method used to find entries in the data table is to use a HASH table as an index.
As each entry is placed in the data table, its three words of name (30 characters maximum)
are hashed as follows:

The first three words are added together, ignoring overflow. The resulting sum is equal to
its two halves. The resulting value is multiplied by the binary equivalent of 1/511, The
first nine bits to the right of the decimal point of the above product is the position in the
HASH table of the location of the data table entry. The HASH table will consist of a possi-
ble 511 entries. If an entry to the HASH table finds another entry there already, the new
data table entry will be linked to the already existing data table entry referenced by the
HASH table or-to the last link of previous duplicates. Thus strings of entries may be
established for duplicate hashing results, '

The address of the first word of data name is to be in an address register for the HASH
subroutine. The resulting pointer will be in an increment register.

The HASH subroutine will generate a 9-bit hash number from data words, using word one or
words one and two of the input data.

The calling sequence is:

RJ HASH
Return

where register B7 contains the location of a buffer containing the hash data words. The
first character of the first word of the buffer must contain the length in words of the data
item. If the name or HASH data does not completely fill the last word, blanks should be
used to fill the rest of the last word in the item's buffer for display code information and
zeros used as filler for binary information.

The return will be to the word following the call with the result in register B7.

CA138-1

CONTROL DAYA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENTY

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-34
PRODUCT NAME 64;/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

The HASH table itself is entered using the HASH result as an index to the table. The HASH
table entry format is: '

0 Assembler Pointers PNT Location DNT Location

6 18 18 18

The DNT field will also be used by the assembler during Pass 2 assemblies.
The compiler data table format is constructed so that each data item has a pointer to.the
next more dominant item in the hierarchy and also a pointer to other items having the same

name which in turn will point to the name itself. Also, each item includes its level number.

A typical data division is shown in Figure 2-6.

T A
|

N Name D 00 Level o 01 Level -
Box 1 -1 Box 2 i Box 3
4 L
Name C - 01 Level 02 Level
> Box 4 ” Box 5 Box 6

4 |
|

Name B 02 Level 02 Level
. Box 7 -~ Box 8 (e Box 9

4 1
| |

Name A 03 Level 03 Level 03 Level
” -Box 10 Box 11 Box 12 Box 13

Y

Figure 2-6. Example of Data Division

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV v SOFTWARE DOCUMENT

DOCUMENT CLASs.___ Internal Refercnce Specifications ‘ PAGE NO_2-35
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERIES ___64/6600

Suppose it is desireci to. locate A of B of D:
1. Start at the name A (Box 10).
2. Listall A items as candidates (Box 11, 12, 13).
3. | Go "up" the hierarchy from one of thé candidates (Box 11 to Box 8).

‘4, Go "around the circle' through all the items of like name until the name (Box 7) is
located. .

5. See if this name is next in the list of qualifiers (A of B of D). If it is, step to the
next name in the qualifier list. (It is, so we step to D).

6. Go "up" the hiérarchy again ('same as Steps 3, 4, 5). This time the next name in
the qualifier list (D) does not match the name "up'" the hierarchy. In this case, do
not step to the next qualifier but do go "up" the hierarchy (same as Steps 3, 4, 5)
(to Box 2).

7. A candidate is disqualified if the hierarchy is exhausted before the list of quahflers
is used up.

8. Otherwise, a candidate is retained.

In the example Box 11 and Box 12, both afe retained, but Box 13 is disqualified. (B, the
first qualifier, would not be found before the hierarchy is exhausted.)

If no candidates are retained, the item is not defined.
If one candidate is retained, the item is correctly defined and referenced.

If two or more candidates are retained, the item is ambiguously referenced (as in
Figure 2-6).

In testing to determine if the name and its qualifying names is defined, it is not necessary to
actually compare all the names encountered along the way. In locating A of B of D, setup a
table consisting of a pointer to the HL item for each of the names A, B and D. Use the HASH
table to find each pointer. Start with the dominant item for one of the A items (Box 8 via 11)
and find the location of the HL item for its name. Compare this location with the one from
the table for B. If equal, continue up the dominance and down the table. If not equal, hold
your position in the table and continue up the dominance. '

CA138-1

CONTROL DAYA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENTY

DOCUMENT CLASS Internal Reference Specifications . PAGE NO_2-36
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SE:(Es__64/6600

ITEMCOP - RANDOM FILE ITEM SEARCH ROUTINE

Purpose

ITEMCOP reaches the random file named by the S-parameter for the item specified by
a COPY or INCLUDE from library statement. (See Figures 2-7 and 2-8.)

Calling Sequence

1. For.COPIES:
a. COPYDNT - absolute address of last qualifier of item requested.

b. LEVCOPY - level number of item.
0 - nonrecord copy.
1-88 - record copy.

¢c. COPYFLG - set nonzero.
2. For INCLUDEs:
a. COPYDNT - absolute address of procedure or section name.
b. LEVCOPY - set to -1,
c. COPYFLG - set nonzero.
d. INCL1 - set nonzero.

Routines Called

DIAG, SAD, SCANZ2

Operation

ITEMCOP reads the random file index (if not already open). The requested record name
is hashed and its cotrresponding record disk address is placed in INCOPY+6. If the disk
address is zero, the record does not exist on the random file, and a diagnostic is issued. .
Exit is then made to SADNO. Otherwise, the named record is read from the random file.
If the name of the record matches that of the requested record, INCL1 is checked for
INCLUDE. If it is an INCLUDE request, INCLOOD positions to the first procedure of
the requested paragraph and returns to SADYES. If INCL1 is zero, QUALCHK positions
to the first compliable word of the COPY item. If a record COPY, the level number of
the LIBRARY item is returned in binary in NEWLEVN. QUALCHK returns to SADYES.

CA138-1

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-37
PRODUCT NAME 64/6600 COBOL Compiler —

PRODUCT NO,__._CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

If the name of the record read does not match that of the requested record name, the
linkage word (word 1 of the record) is checked for nonzero, If zero, the element
requested, is not in the random file, and a diagnostic is issued and the SADNO exit .
is taken. Otherwise the nonzero link address represents the absolute disk address
of the next record with the same hash index.

CA138-1

’CONTROL DATA CORPORATION

Internal Reference Specifications
64/6600 COBOL _Compiler

DOCUMENT CLASS
PRODUCT NAME

PRODUCT NO.

ITEMCOP

‘ ENTER ’

Store Registers

DEVELOPMENT DIV

SOFTWARE DOCUMENT

PAGE NO_2-38

CO43

VERSION_1,0 and 2,0 MACHINE SERIES

YEPOPN

+ Hash = X

- Pick Up DECINDX

Get Pointer to

Move Lower at

Save Its Linkage
and Length (High
Order 6 Bits)

OPEN
(DECINDX)

READ
DECINDX

Set Read Flag,

Highest Qualifier X to Random

in DNT or PQBUF Read FET + 6
BE4YREAD

Set INCOPY"s

Set Index
Pointer = OUT,

64/6600

OUT = IN = FIRST
OUT to IN for
Next Record Read

Clear Record Bit
in INCOPY + 0

Save OUTADD,
FRSTAD, INADD,
LIMADD, FSTOUT

Save LSTFLG.
READ Zero to LSTFLG, Include
(INCOPY) Set NOTDAG Mode ?
Flag in DIAG
EADREC MOV2
Set INCOPY
Set Pointers to IN, OUT, FIRST,
OUT + 1 and Get and LIMIT to

Length of Name
This Record

Compare OUT +1
+WDL to DNT
Name

Figure 2-7.

mage 10

First Card
I -
CHARBUF

DIAG
(Item Not Found
in Library)

l

Set Lower @ OUT
to FET Request
Addr, (DISC)

FRSTAD, OUTADD,
INADD, LIMADD

ENDCRD
First Card to
CHAR

Record Copy ?
(01,--49,71,
88)

End of
Source ?

ITEMCOP Flowchart (1 of 4)

.CON'l'llOl. DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_2-39
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO. CO43 VERSION_1. 0 and 2,0 MACHINE SERIES __64/6600

DNTFIX
Link, Length

Exit to
UNNESTC

COMPARE
(Record- Name
vs. DNT)

Level Nr =
NEWLEVN

Compare

Name is in CURNWD.]"

CWIC=0
ISCANZ Is Positioned
|to Next Word of Item.

Figure 2-7. ITEMCOP Flowchart (2 of 4)

CONTROL DATA CORPORATION e DEVELOPMENT DIV

. SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications
PRODUCT NAME 64/6600 COBOL Compiler

PAGE NO_2-40 |

PRODUCT NO. CO43

VERSION_1.0 and 2,0 MACHINE SERIES

64/6600

INCLOOD
Next Qualifier
v INames Buffer l\\ 3E 3B
N\
A Lans
INC1IA)
Initialize : Set COPYDNT Clear History
Clear INCL = - for Replace-by
ear 1 COPYDNT-4 Analysis
.NCIB INC1H

Any
Qualifier for
Recorg Namg

INCLSEC

Word Begin in

PARSAVE
A Column 8 ?

INC1D

Compare CURNWD)
to Name @
COPYDNT

UNCOP/

INC1C

Section
(075) ?

Period
(01041) ?

2 - SKIPOPS to
REGREST Skip to Next Card

Set NOSCNFL

]

@

EXIT

To SADNO

UNCOPY

w

Figure 2-7. ITEMCOP Flowchart (3 of 4)

_ —{Found Element]

Set Past Section
and Paragraph
Names.

PARSAVE

INCOUT

Restore PPCNTR

REGREST

Set X4=1

EXIT :

To SADYES

. CONTHOL DATA CORPORATION

DOCUMEIT CLASS
PRODUCT NAME

64/6600 COBOL Compiler

DEVELOPMENT DIV
Internal Reference Specifications

. SOFTWARE DOCUMENT

PAGE NO_2-41

PRODUCT NO.__.CO43

VERSION_1.0 and 2,0 MACHINE SERIES __64/6600

QUAL1

Set SKIPOPS
to SKIPPER

(SNP)

b QuALC

SCAN2
Level Nr

DIAG

SOREND
Not Found

Flag Set?

DIAG
Lib Format Error
(34)

DIAG
(Not Found)
(29)

ERROUT

QUAL1A

This Level

r»— Number
-NEWLEVN

DNTFIX

COPYDNT+
DNTLNK-»
COPYDNT,
NEWLEVN
—+CURNLEV

SCAN2 Any More
Qualifiers ?
No
Yes
= QUALS

Compare Name Clear
(CURNWD) with NOTDAG
DNT Qualifier Flag

COMPARE
Param vs. DNT,

DIAG
32

EXIT

To UNNESTC

Figure 2-7.

ITEMREG

REGREST

Set X4=1

EXIT

To SADYES

ITEMCOP Flowchart (4 of 4)

L

CQNIROL DATA CORPORAYION
DOCUMENT CLASS

DEVELOPMENT DIV

Internal Reference Specifications

SOFTWARE DOCUMENT
PAGE NO_2742

PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO,__.CO43 VERSION_L. 0 and 2,0 MACHINE SERIES _684/6600
UNNESTC UNCOPY
ENTER
Return to ————
Source Input
PDPNTR Clear
UNCOPY >1 Level of CHARBRK COPYFLG,
Copy ? Flag.
Must Be Yes
Nested [*=
Copy
Restore:
Set PDPNTR :
- oo Card o ok, Mo
(Back Up One +1-CC Reszore'[.STFLG.
Exit to Level) FRSTOUT
SADNO
Get DISC Addr, No Set OUTADD
of Last Level of = FRSTOUT
Copy =+ FET + 6 (Reread Last
(INCOPY) Card)
Yes Breakdown Last
[-] Card Again
Set
IN=OUT=FRST ENDCRD ENDCRD
in INCOPY .
. r
READ GRADIENT
Recor - PASS1B. (reTurN)
Set Card
Counter to 0. —>— EXIT
0 ~» LSTFLG
To SADNO

Figure 2-8. UNNESTC Flowchart (1 of 2)

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMINT

DOCUMENT CLASS Internal Reference Specifications . PAGE NO__2-43
PRODUCT NAME — 64/6600 COBOL Compiler
PRODUCT NO..._CO43 VERSION 1,0 2,0 MACHINE SERIES __64/6600
OPINDEX PUSHDWN
ENTER ENTER

—EPuil Down Sn;ua

CN=Card Number|
of Nested Copy

Request N
PDPNTR + N
Get S-Parameter - PDPNTR
from CONCRDI, (Index of
Push Down)
Absolute DISC
"=~ Addr. of

Current Item

Set DECI DISC Address
to Read -+ FPD + B,
65 Wd Index B+1-B,

Copy Type
"~ (Must Be
Record)

Copy Type
READ .
(DECI) ;F ? 1%.
Card Numbed
[~ Keegﬂy
INCOPY 1/0]
Get Wd 6_5 Card Number
of Index = -PD+B
Random File B+1-B,
Name. : ’

Record Level
E----| Number
Difference (1B,

Set Random Level NR

File Name Gradient

in INCOPY - PD + B,
B+1-B,

‘ RETURN ' ‘ RETURN ’

Figure 2-8. UNNESTC Flowchart (2 of 2)

@ SECTION 3

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ‘ PAGE NO_3-1
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO. CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

SECTION 38 - COMPILER COMPONENTS

CONTROL ROUTINE

A general control routine (CONTROL) exists in the compiler to load the overlay passes and
to furnish communications between them. The overlays have no other access to code in
other overlays or higher level overlays. Initialization routines are required for the syntax
ovei‘lays and the assembler overlay. The main overlay contains the control routine, sev-
eral general subroutinges; and some subroutines to take snapshot-type dumps, etc.

The general flow is as follows:

Calculate initial limits for data table locations
Load SCAN overlay

Load Pass 1A

Go to Pass 1A for initialization

Go to SCAN overlay for processing
Load Pass 1B

Go to Pass 1B for initialization

Go to SCAN overlay for processing
Load Pass 1C

10. Go to Pass 1C for processing

11. Load Pass 1D

12, Go to Pass 1D for processing

13. Load Pass 1E :
14. Go to Pass 1E for initialization
15.- Go to SCAN overlay for processing
16. Load Pass 1F

17. Go to Pass 1F for processing

18. Load assembler overlay

19. Go to assembler overlay for initialization
20. Load Pass 1G

21, Go to Pass 1G for processing

22, Load Pass 1H

23. Go to Pass 1H for processing

24. Load Pass 2

25. Go to Pass 2 for processing

26. Clean up

00 -3 O O i W N =

©

Table values in the CONTROL routine include:

FTBASE Location of file tables base
DNTBASE Location of data name table base
RTBASE Location of report tables base
AFTBASE’ Location of accept file tables base
UPTOP Location of end of "up' tables’

DOWNBOT Location of end of ""down' tables

CA138-1

CONTROL DATA CORPORATION .

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

Internal Reference Specifications

DEVELOPMENT DIV °

64/6600 COBOL Compiler

C0O43

VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

SOFTWARE DOCUMENT
PAGE NO_ 32

PNTBASE
PAS2TOP
DAGLOC1
DAGLOC2
DAGLOC3
DAGLOC4
DAGLOCS
DAGLOC6
DAGLOC7
DAGLOCS
DAGLOC9
XYZ
SYNSTRT
SYNSUBJ
SCANOV
LEXOVLA
EAT
DAGLOCY
DGLOC10
SCNSNAP
SNAPSET

CA138-)

Location of Procedure Name Table base
Location of top of Pass 2

Location of diagnostics 000-99

Location of diagnostics 100-199

Location of diagnostics 200-299

Location of diagnostics 300-399

Location of diagnostics 400-499

Location of diagnostics 500-599

Location of diagnostics 600-699
Location of diagnostics 700-799

Location of diagnostics 800-899

Location of syntax tables (current)
Location of first entry in syntax table
Location of subjump table

Location of SCAN overlay entrance
Location of lexicon list

Location of 64-word external access table
Location of diagnostics 800-899

Location of diagnostics 900-999

Flag* to indicate snapshot dumps in SCAN (debug aid)
Flag* to indicate snapshot dumps in the current phase

*Set by CONTROL upon interpretation of control card parameters.

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWANE BOCUMENT

DOCUMENT CLASS Internal Reference Specifications PAGE NO_3-3
PRODUCT NAME 64/6600 COBOL Compiler —
PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

CONCRDI - CONTROL CARDS INTERPRETER SUBROUTINE

Purpose

CONCRDI is called by control to analyze the COBOL compilation control card and
‘encode its compilation parameters. (See Tigure 3-1.) '

Calling Sequence

CONCRDI is entered by a return jump.

Routines Called

RJ CONCRDI
DIAG

Limitations

This routine is the first executed subroutine of the compiler, therefore, it saves and
restores no registers. A parameter, either side of connecting = sign, exceeding seven
alphanumeric characters causes a control card error job abortion before control is
transferred to control. Parameters other than those specified in the Equipment Ref~
erence Specification cause COBOL abortion. '

Operation

CONCRDI begins paramecter encoding when it reaches a left parenthesis. It identifies
the left-hand option mnemonic and then passes over the equal sign, if any, and stores
the right-hand parameter (Ifn or o) in the corresponding table space in CONTPRM. If
the right parameter of an option is not specified, the appropriate default parameter is
set in its place. This process continues from left to right until either a period or right
parenthesis is scanned, thus terminating the encoding and initiating the setting of nec-
essary listing option flags specified by the L option,

If no parameters are specified CONCRDI returns directly to CONTROL upon sensing a
period control card terminator.

CA138-1

CONTROL DATA CORPORATION

DOCUMENT CLASS
PRODUCT NAME

. DEVELOPMENT DIV .

Internal Reference Specifications .
64/6600 COBOL Compiler

SOFTWARE DOCUMENT
PaGE NO_3=4

PRODUCT NO. €043

VERSION_L. 0 and 2,0 MACHINE SERIES _ 64/6600

CCI

‘ ENTER ’

Initial Parameters Are:
1= INPUT
B=LGO
OB = Zero
S = COLIB
L = OUTPUT
P=LBitSettol
SUB = Zero
DUMP = Zero
Input Scan = Col 1

MX2 6, SA1 70

Initialize
GETCHAR

Set B7 = 6 Shift

Point to 1

ST1

Set Sto Char to
7 Characters

Zero Out Word

STO

Pointed at
Initialize Sto Cnt.

Zeroout L, R, C,
t O, M, X, Bits
of P (AND)

L=0
in First
Char?

!

OBOB Yes | ClearBito
=0°? of OCARDO

To CCI1B

Figure 3-1.

3
GET Char
Yes DUMP No Alpha
Non Zero? Numeric?
Yes
DIAG - Bad Con-
trol Card Format STO Char
Run Aborted
EXIT
To ABORT

CONCRDI Flowchart (1 of 3)

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS, Internal Reference Specifications . PAGE NO_3-5
PRODUCT NAME
PRODUCT NO.

64/6600 COBOL Compiler

Point to OB

C043 VERSION_L. 0 and 2.0 MACHINE SERIES __64/6600

Point to B

Point to § GET Char GET Char

OR into P Store Char 1

GET Char
Point to L :) GET Char
UEQ
Point to SUB, Set
Sto Char to 8 Store Char 2
Point to DUMP
Set Sto Char to 10

STO

Figure 3-1. CONCRDI Flowchart (2 of 3)

CONTROL DATA CORPORATION . DEVELOPMENT DIV . SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications . PAGE NO__3-6
PRODUCT NAME 64/6600 COBOL Compiler
PRODUCT NO.___CO43 vERsION.L.0 and 2.0 MACHINE SERIES _ 64/6600

GET Char STO Char

‘ ENTER > (ENTER)
Load Word of
Increment

Card Image

Shift One Char. STO Count

into Register

Is
Char, Count
Exceeded?
B2:B1

Add 6 to
Shift Amount .

Does Set up Shift
Shift Exceed and Store
60 ? Character

Set Shift to 0
Increment Word (EXIT)

Set Char = 00

Yes Does
Character =
Blanks ?

No

EXIT

Figure 3-1. CONCRDI Flowchart (3 of 3)

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO_3-7
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.___CO43 VERSION_1.0 and 2.0 MACHINE SERIES __64/6600

IDENTIFICATION, ENVIRONMENT, AND DATA DIVISION

SYNTAX

The Identification, Environment, and Data Divisions are analyzed by means of a syntax
table in theory, not unlike the Procedure Division syntax table. The first three divisions
of a-COBOL source program must adhere to stringent syntax rules: only certain kinds of
statements may appear within any division and section. Therefore, the Identification,
Environment, and Data Division syntax table might be thought of almost as a linear search
for allowable syntax within a given division or section.

For instance, once a file description (FD) is encountered, the syntax table looks for specific
allowable words or clauses that must follow. If an encountered source word is not any of
the anticipated words, or is not a section header, then the syntax table issues an appropri-
ate diagnostic, i.e., "Compiler Out of Synchronization' and attempts to get back in syn-
chronization by one of several methods:

1. Skipping past the next period.
2. Searching for a keyword in cc 8.
3. Skipping to the next word.

If an encountered source word is one of the anticipated words, appropriate subroutines are
performed to process the word and/or current item.

A brief description of syntax table proceséing follows, assuming the reader has familiarized
himself with the SYNTBLE writeup in Appendix B and under Syntax Analysis in Section 2.

The syntax table items are in alphabetical order, with the first level of analysis beginning
with MSTRCON. The syntax levels of processing and structure are shown in TFigure 3.2 .

The syntax table begins executing table items at the main level of processing MSTRCONO1.
This table item '"performs" the table item IDNTDIV (second level of processing). IDNTDIV
searches for allowable Identification Division COBOL source words. If the word is found,
processing returns to the next higher level and the subroutines and/or diagnostics in the
yes-action field are performed. If the anticipated word is not found, processing returns and
the subroutines vand/ or diagnostics in the no-action field are performed. '

Both the no- and yes-action fields of MSTRCONO1 proceed to MSTRCONO2 which "performs"
the table item ENVDIV, returning to perform the subroutines and/or diagnostics in the no-
or yes-action field. Processing continues in a similar manner fo the completion of Data
Division processing. '

CA138-1

DEVELOPMENT DIV . SOFTWARE DOCUMENT

Internal Reference Specifications

64/6600 COBOL Compiler

CONTROL DATA CORPORATION

3-8

PAGE NO

64/6600

VERSION_1,0 2,0 MACHINE SERIES

C043

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

S[9AQT XBJjukg UOISIAIQ BJBQ ‘g-§ 2Indig
1207304 1ovod
A¥S¥DA 0ddod
WI10d 9SV2d
20Vvod TNDNA in
) 100d
yad sNaa snada
sad aad waa Asad
. INDD01 N1403dS aodids aad AQd siaa 14ad
Ws2201 N9SO3dS MSOdS wWaad a4 ooad Zsad
NV¥D0I A4odr 1o1sad pLiel:iy] 14D3ds XdDOD3dS ouad p¥ ol iy aiaa TAda ioad
,|4L ,I—L —| 1 1
201 od WND3dS as ai Jaa fet']
L] | | 1]
| | | l
LNONIL 9HNOD @ as ai saa sd [Se] SM [4 sy
L l § | | | |] 1 |
I 1 ! 1
s¥ LNONI AIAANE ~ OHNOD o] SM A sd aa AIALNAI
1 I 1 1] 1 I 1] |
NODYISW

U

19A9T PXIg

1949 YA

19A9T Yanog

184977 PAIYL

[9A97T puodag

19497 Isa1q

CONTROL DATA CONPORAYION ° DEVELOPMENT DIV 0 SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications : PAGE NO8-9
PRODUCT NAME 64/6600 COBOL Compiler —

PRODUCT NO. C043 VERSION_L. 0 and 2.0 MACHINE SERIES __64/6600

PASS 1B AND ELEMENTS

PASS 1B employs several buffers or tables to facilitate the processing of an item. In
certain cases, all pertinent information about a single item is stored in these buffers until
the item is ready to be processed, after which the buffer is zeroed in preparation for
another item. A description and format of the main buffers used in Pass 1B is shown in
TFigures 3-3, 3-4, and 3-5, and in Table 3-1.

The SELECT buffer is used to store pertinent information about a file-name that is
“"Selected" in the File-Control paragraph.

59 SELECT 543210
SELECT optional file lfli.lg's;eié i?ijeiif optional
. . h.o. bit on if assign
+1 assign option option was accepted
+2 not used
. . . h. o. bit on if file-name
+3 subject of renaming option is subject of a reﬁamiug
option
“+4 not used
+o . alternate areas integer 6 bits ;.lge.rr?a?l;iez (;gltlggé:cd
P TN - 1.0. 12 bits = converted
+6 file~limit integer 12 bits file-limit integer
1.0, bit on if random
+1 _ o access mode 1. 0. bit off if sequential
- 1 1l o. 18 bits contain pointer
+8 symbolic key 18 bits to EOM of symbolic key
data-name
. . 1. 0. 18 bits contain pointer
+9 actual key 18 bits to EOM of actual key
data-name

Tigure 3-3. Select Buffer

CA138-1

CONTROL DATA CORPORATION o - DEVELOPMENT DIV

DOCUMENT CLASS Internal Reference Specifications
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.___CO43

° SOFTWARE DOCUMENT

VERSION_1.0 and 2.0 MACHINE SERIES __64/G600

The IOCTL buffer is used to store pertinent information about a file-name used in the
I/O-Control paragraph.

IOCTL

I0CTL End of Reel logical Status
+1 Records Rerun Integer 30 bits
+2 Records Rerun logical status

Figure 3-4. IOCTL Buffer

The FDBUFT buffer is used to store pertinent information about a file-name used in a file
description in the File Section paraOTaph.

FDBUFF
+1
+2
+3
+4

+5

. CA138-1

FDBUFF

standard
omitted
f l— data-name

label records

value of (current clause)

number of data names in Data
Records Clause

report repoits clause

v

value of ID

value of Ending-Tape-Label-Identifier

100 if standard
010 if omitted
011 if data-name

PAGE NO_3-10

001 if ID 100 if Reel-Number
010 if Date- Written 101 if Retention-
011 if Edition- Number Cycle
110 if Ending-
Tape-Label-

Identifier

1. 0. bit on if value of 1D
clause specified

1. 0. bit on if value of End-of-Tape-
Label-Identifier specified

Figure 3-5. FDBUTT Buffer

SOFTWARE DOCUMENT
PAGE NO_38-11

64/6600

DEVELOPMENT DIV

Internal Reference Specifications

64/6600 COBOL Compiler

C0O43

L]
VERSION_1.0 and 2,0 MACHINE SERIES

CONTROL DATA CORPORATION

DOCUMENT CLASS,
PRODUCT NAME
PRODUCT NO.

19pE3Y € §1 WAl J1 019Z-UoU 19peay : €e
PopIeosTp 3q 01 §T WAL JT T=11q *0° _ Berd piedsia 2€
- . 1€
QreSyd 100 %M_wmunwmn.wm 2N wm_w%mj ATSSVd PUBDTSSV 10§ YIBUI] waif ommmn_ og
(@ UT U] HO 1953y 03 Jur] 63
uumio)) 82
193 o1 x3puy dumf L2
suondp uoday 92
SOV IdAL Ay k14
SOV1d uoday 2
dnoio 1XaN) €3
asne[Iury 22
(s1eWiI0) TRUIAINY JO SP[aY} AnUS 10} PUIBI] 295 I9 %9 €9 ¥ Sn 9p Is11q 9 s3erd 12
Iaqunu UI[22IN0S PIUAAUCD s11q ST JaquinyN aury .02
SWEU SWeS Y1 YIIM LWIAJ] I1X3U 03 1P21UTod [si1q §T SweN 2Wes 03 HuT] 61
w911 WEUTLIOp S1 01 I121ulog [s11q 8T ueUTWO(01 Mur] 8T
(s1eUlio} TRUISIUY JO SPIAY} ANUS 10§ PUSBA] 99g) In2n€n [g 28es) LT
(s1eULIO} TRUISIUT JO SPIaY Anus 1o} puadal 23g) TD 2D €D [sug ¢ : SSe1D 9T
w1y pausys Jt 1=11q ‘0°Y pausis o1
._onEEm_WWM wwmwtwmm_%om nmmowu.%m $319 9 I2qUINN 12491 vT
mmwm&su monw_w_m w«o,_m_wﬂw u.wmw s1q 9 1aquiny 110day/Uon199s 31 sl
1553301 mDHUEA MMMM uwwﬂﬂﬂm._%%nmﬂmmw P _www_ﬂw“ = M“M w 2 “ s11q 9 BurAEa] pue 191081RYD UOTH3SU] 49
an[eA JO SPIOM JO ToqUNU =S4 9 O °T [gq 9 Be1d oneA 1T
e T VL — Sween "
UBFS Jeq[op 1e01) JI [= SAd .MMMEMMH_M w M = m_w wu_mﬂn_lwg Bunpa 6
paly1oads 019z USYM JUELq J1 T=1q "0°] M8 8
I %o 3 P s R 2 s Ao P
patyroads 131 paynsnf J1 1=11q ‘0T Beld paynsnf 9
cmw.ﬂ w WWW Gmﬁ“umwm] mWo. 1unod uopesor utod = s11q ¢ *o°t [0 _m_\«v_ uonesoT rod g
paty1oads sauryapal J1 T=11q 1I9PI0-MO] Be1d soUlpI ¥
e e St eaeny w0 Eprnesc w0 | (R | (s | st — [0
az1s way] [a1q 91 2213 3
(seuLIo] TewIPIU] Jo SPIAY @ Pue I, 1o pussor 235) Ia %a €a e . adkL ereq T+
(s1ewIo) [eUIAIUY JO SP{AY} @ pue I 1of puasar 93g) TL 81 &L fuq g 2d1 wayj NEHSVOS
- ~ - T - B N A - - .

oIqEL 197N NFHSVADS ‘I-€ SIqEL

CONTROL DATA CORPORATION ° DEVELOPMENT DIV ° SOFTWARE DOCUMENT

DOCUMENT CLASS Internal Reference Specifications ; PAGE NO_93~12
PRODUCT NAME 64/6600 COBOL Compiler

PRODUCT NO.____CO43 VERSION_1.0 and 2.0 MACHINE SERIES _64/6600

The SQASHBU buffer is used to process the current or previous item. Actually, a double
buffering technique is employed, with two SQASHBU buffer areas defined. SQASIHBU indexed
by B3 references the current item. SQASHBU indexed by B4 references the previous item.
(See Table 3-1.) '

Pass 1B is comprised of subroutines that handle the Identification, Environment, and Data
Divisions. Tables 3-2, 3-3, 3-4, and 3-5 list all of Pass 1B's subroutines, with a brief

description of each.

RG Checks Done in Pass 1B

Several special checks and actions are made in Pass 1B on items in the Report Section.
Diagnostics are given in appropriate situations. Further checking of the items in the
Report Section is done in Pass 1D and Pass 1II. Many of the normal Data Division checks
are made on report items in addition to the checks discussed below:

XRDCK 1) Check line bosition from PAGE clause in RD item.
| a) Heading position (H) must be > 1. Ifno H, set to 1.
b) First detail position (FD) must be > H. If no FD, set to H.
c) Last detail position (LD) must be > FD. If no LD, set to I.

d) Tooting position (F) must be > LD, Ifno F, set to LD. If no
F or LD, set both to page limit.

_e) Page limit must be > F.

SYNTG61 2) The COPY clause can only appear on an RD or 01 item. The
object of the copy can he in the source program or the library for
an 01, but can only be in the library for the RD.

XRECK 3) . -Every 01 level item in the Report Section must have a TYPE
clause and be subordinate to an RD which was listed in the
RETPORTS clause of an FD.

XRECK:- 4) The NEXT GROUP clause can only appear on an 01 level item.

XRECK 5) An 01 item with a type designation of DETAIL or DE must have a
data name following the level humber.

DCKPRE 6) The SELECTED option of the SOURCE clause can appear at the
group level only. : ' ‘

CA138-1

DEVELOPMENT DIV . SOFYWARE DOCUMINT

Internal Reference Specifications

L]
64/6600 COBOL Compiler

CONTROL DATA CORPORATION

DOCUMENT CLASS

PAGE NO 3718

64/6600

VERSION_ 1.0 2,0 MACHINE SERIES

PRODUCT NAME
PRODUCT NO.

CO43

*JUOWAd

TOYLNOD Ul dureu (I WeISold JO 8I9)0BaBYD [9AD I8I1J 8O.I013 ax
. *pa3od[es
92T oxe osnepo Jurwzual ® Jo 309(qO SB PIsn SaUWRU-I[Y [[E Jeq SaInsul M00IX
g€t -1aynq 300198 uI Suyy uSIsse UO suUIN] fu3IssE
01T ue Jo j09{qo oy} se oI0Jaq pateadde jou seq T Je} Suransur 19)5e
231 JIASNDSY, Ul dWeu Iojudwelduwy 19308180 L uSsse jo 300{qo gaAEg 8TDJIX
RACEAACE *,FASNDSV, Ul SI sweu uSmeoESﬁ udisse Jo 309{q0 °¥
LOISLNd *JaJnq 109198 Ul UOTJBWLIOIUT JUSUNIdg °§
INALIS geT *, ASN'HY, UT S owreu ejep Surweudl Jo 309{q0 °Z
aNId ¢4 9-¢ eandid *,ASTTIJ, UT 8] SWIRU BJep 399198 JO 193(q0 °T
I ISO¥Z :98NB[O J09198 oY) §9889001d LIDIX
-Ioyynq 309108 Ut Se[J §59002-WOPURI U0 SUINT, 0IDJdX
*Ioyynq 09198 UL
WOILIS WOH 07 asjurod [LIOWON-JO-PUF UL SWEBU-EIEP Aoy Temoe Sa1018 6004X
SIT *I9Jnq 109198 UI 13399UT BolE 2JEUIS)[E PAYISAUOD 8II0}S 80D0IX
41} *I9Jynq 309798 U I039Ul JFWI[-S PIRISAU0D SII0YS L0DdX
*xoymq 309198 Ul WOH 0} Ieyutod
WOZLIS M (WOH) AToWwsN-Jo-puy Ul SWeu-Ejep Ao OTOqUIAS 531015 9004X
«Joymq 309198 Ul el
Surureuaa uo suan) {, ASNAY, UT SWeua[y Surureusaa Jo 109{qo S0ABS €0D.IX
-Ieynq 309108 ul Jepy feuorido Uo winy, 200dX
* ASTTIJ, Ul Sureu o[309[os Jo 123(qo soAey T0DJIX
*19pEeY WOISTAI(J Bje(Sopadead pue Iapeey
(1141 UOISIAI(Q UOT}ROITUSP] SPOadoNsg I8pedy UOISTAI(J JUOUIUOITAUT SSINSUL aax
£92 .a&w.&n.ﬁma uorjoes jmdyno Andur sepedoead pue I5peay UOISIAIQ
441 JuewuoIAuy spadoons ydeidered uoroag uopeIMSQuo) SaINsul NOX
8)8ULIO] pawxojIad panss] uopdirosaq aureN
alqey, 1ewIajul soulnoIqns soyysoudeig jxeqomol g
aaiduo) jeuiajul
JuauIag

€307 mqm.n&zwm UIOI] POUIIO}Iag SIUNNOIQNS WOISIALJ JUSWUOIIAUT PUB O °Z-€ 2198l

SOFTWARE DOCUMENT
PAGE NO_3-14

64/6600

DEVELOPMENT DIV

VERSION_L. 0 and 2.0 MACHINE SERIES

Internal Reference Specifications

64/6600 COBOL Compiler

CO43

*oureu-o9[UMt
§® 919)0BIRYD ¢ I0pIO-YSTY 910}g ‘poudisse sem SWIBU-IY SIH

CONTROL DATA CORPORATION

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO,

aIqe], 91td yoym 03 owreu-Iojuowedwy oY} JO SISPOBIEYD § I9pI0-y31T 9Y) S2AES SIDOIX
*ISIWANVS N0 S0I3Z 6TD0IX
*olqed
91qel 3d 91} S,9WEBU-[Ij JUSLIMD OJUT LTOOIX £q PIARS I3qUMU 317} SII0IS 8TD0IX
*3gneo Iy
EICLAREILES a1dyinwt Uy pegroads SWIRU-9[f 3SITY Y JO I3qUINU Il O goAes LID0IX
*(03S0d AN} Sepy uoprsod o[y Spdpmu Vo SWML 0TD0IX
9IqelL °1'd 121 -a[qe, o[Td 9y} ojur Joqunu uoryIsod penroads saA0l 60D00IX
91qeL 9ITd 131 -asne[o o[y ardpinur I0f (LNOSOd) equmu suorjisod SjUaWSIOU] 8000IX
*Sursgoooad ofy erdpnur I0j ST[80 oyeradoadde sozTenIul 2000IX
*HASOOI UT (S7eULIO) TRUISIUT JO O[qe) oY 39s) a4 03 1jutod saAes 9000IX
9IqeL °Ttd *ILNQ 91} ojur J9)ng TLOOI WOIJ UOHBULIOJUT UNISI 8910}S S0D0IX
*1973nq TLOOI Uf Se[J UNISI-SPIOISL UO SUWIMT, €0D0IX
811 *1a7ynq TTLOOI 0UT I959)UT UNIDI PSYIIAUCD SOI0}S 20D0IX
*x9ynq TLOOI Ul 31q [991-JO-PUS U0 SUINL T0D0IX
‘vd pue €4
819751301 POAISSaI SOZENIUT ¢ (WOH) o1qe} AT0WAaN-JO-pud JO
Surmurdeq 03 Xopul SIZI[RRUL ‘INC JO pud 0} Suruurdeq oIy 9I00 INO
soxoz ‘(LNQ) SIqel oWEN Ejed oy Jo Suruuidoq 0} XOpUl SeZIBRIUL LINIX
*juowald TOULNOD Wt , TOG00, Swed poudisse 591015 cdIxX
*sIopeoy
0eT UOISTATp IoYj0 Aue sopaoaad I0pedy UOISIAIQ UONEdITHUSPI soansuy 141X
s)BWIOS pawmaojrad paenss] uondixosaq ouEN
ajqeJ, [euIANUL saurmnoIqnsg soysoudeiq
Joridwo) 1BuIajul
juaunIad

(€ 70 2) TTALNAS WOIJ POWIOJIS SOUNNOIQNS UOISIAIQ JUSWIUOIIAUTY PUe I ‘Z-€ SI9BL

SOFTWARE DOCUMENT
PAGE NO_3-15

64/6600

DEVELOPMENT DIV

Internal Reference Specifications

64/6600 COBOL Compiler

C0O43

VERSION_L. 0 and 2.0 MACHINE SERIES

. *3uissoooad
ydexdexed soweu-Teroads uf pasn sdefy [[¢ 019Z 0} SIZIEHIUI

CONTROL DATA CORPORATION

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

LINIdSX
‘o010z 0} sSeyy sjeradoadde sezERIUL SNTAdSX
OSANT «ILNQ oy urydexSered soureu [g1oods UT pasn SWEU O[UOWSUW 97} sg FNTIISX
sydeasered soureu yeroeds ur owrew zojuewrardury
ge posn sem ndino, piom 3} Jeqy Surkyul1s Seqy uo suany, eNTJIdSX
‘ydeadeaed sowreu-eroads ur sureu-Jojusmatdurr
se posn sem jnduy, pIom oY} Je Surfyruds Sy Uo sum], ZNTIISX
T9¢ Fod£) oy weysAs 5398 fouwmBU I0juowro[d W JO SI9}0BIBYD USAS }SITJ SOABS INTIISX
bsSANE *LNQ ur odf3 WayT [eIa}]] PUE JWEU OTUOWSUUW SN 80AdSX
ydeaSered sowreu-Teroads
901 30 uorjdo odA} WA ,OWET OTUOWIUW ST [BINIT orroumu-uou, dn s388 10AISX
Juowerd WAILOId W, ¢, WU ,°, oy} seoeldea ‘qurod [EWITOOP
soor[dol eurwod Surdjrudis JuSWAId TOWLNOD Ut Sepy uo suang, 9D AdSX
90T *Jueward YNLOIA U [e1eyl] peyroeds mim ¢, o sooeidey SOUdSX
‘woryisod NO 0} IeqUIMU YOJIMS I0J 3¥q S}E)S-UO SUINT, £0UdSX
OSANT -INQ o ur odk) Wejt sMEIs JJ0/NO Iequmu yoyms ojetadordde spg Z0HdSX
*IaqUINU YojIMS S91098 pue AIeUlq
901 03 Aejds1p WoOJJ S110AU0O ‘9 PUE T UIMIS(ST ISqUMU YOJIMS saaInsu] 10AdSX
€93 *uorjoag uorjeM3IFuoD 9Y} SMOJ[0] UOTOIS JndjnQ /ynduy oy} ey} SeInsuy SOIX
*3e1y NOTLOOI Jj0 sumy, #3100IX
-aumnox WVN'TIA 10§ (NOTLOOI) Jefj uo swmy, €100IX
*oWRu-9[gHNU S8 SI9OBIBYD §
50J01g ‘9SNE[O o[y S[dN[NW UT SUreU-9[y I9YI0 Y} 5B dWeS I
GeT ST swrgu-Iojuowarduy oY} Jo SI9)0BILYD § I9p10-ySTY O} Jey} SoInsuf TI00IX
Syeurao g pawoyIad panssi uonydixosa@ aureN
a1qe], Jeuraul saurmoaqng sonysoudeiq
xaidwo) jBuIajul
jusured

(¢ 70 ¢) TTALNAS WOIJ PpaULI0}Iad SOUNNOIQNS UOISIAL(J JUIWIUOIIAUF PUt dI °3-€ 9qeL

No

-CON'I'ROI. DATA CORPORATION . DEVELOPMENT DIV

DOCUMENT CLASS Internal Reference Specifications

PRODUCT NAME 64/6600 COBOL Compiler

SOFTWARE DOCUMENT
PAGE NO_3-16

PRODUCT NO.__CO43 VERSION_L.0 and 2.0 MACHINE SERIES

XFC11

ENTER

Assign Clause
Present ?

To SADNO

Object
of Assign
'Input’, ‘Output’,
'Dagﬁle'

PUTSLCT

4

CHECKRE

Is
SeleAN0
File Subject of

a Rengming

Object
of Renaming
1 - ALLINFG File in the

DNT ?

CHECKS

Subject
of Renaming
Also ?

Dominant Pointer
of Object of
Select to MW1 of
Object of Re~
naming

Dominant Pointer

D124 D133

PUTDONE

ZROSLT

EXIT

To SADNO

Figure 3-6. XFC17 Flowchart

SOFTWARE DOCUMENT
PAGE No_3-17

64/6600

DEVELOPMENT DIV

Internal Reference Specifications

L]
64/6600 COBOL _Compiler

VERSION_ 1.0 and 2,0 MACHINE SERIES

€043

~uoIsIAI(] Ble(Popedead eaey

CONTROL DATA CORPORATION

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

0€T UOISIAI(JUSTIUOIIAU PUE WOISIAL(J UOTedIFHUSp] 941 387} S9.mSUl aax
fcr: e teltd
JYOLSIY
JAVS
HOLIMS
ATYd0YZ €92 *(3ussead J1) uorjoag jxoday oY} sopavaxd pue
SSINTA [444 (3uasaad j1) uopoas 98e10}g-UD{ION SMO[[O] UOHIAS JUBISUOD SIINSUL SOX
*JUdWATd JOOIWHLI Ut DLSANNN
0} asysuea) jeuopIpucoun £q spow £doo Arexqy woiy SIXH JAJIO0XdOX
902 *wayt AJoo £IBIQI] JUSLIND 9y UO SIOSYD SUWLA0JId ATATXdDX
*g1I%0 pue osnejo Lxeaqy woxy Adod payssu §39819(0 SIDXIDX
" NOWODa
HSVH
Lvdind
e in:roled
JH0LSTH
HAVS
HOLIMS *gogged juonbosqns JI0J UOTJRZ
ATYd0YZ -renru ojeradoadde S90p puB--Iopedy UOISIAIQ 2INPOd0LJ 91 91053q
88INIJL €21 wayt SB[9y} ‘ST Jeq}--UOISTALJ BJed 9Y3 Ul WNT }ST] oY} 895582014 dNNTOX
*398 udaq seq Je[y J01Id
Tere; oqy ey sassed juonbasgns o3 Surkyudts Seyy 1404V U0 sumny, 13909V
*(d JuexImo Jo suondlIossp pI0odadl 10 Jo Iequmu
a7} JO I9JUNCO O} SJUSTAIOUI ‘(] JUSLIND 31} IopEn TQ We ST STH JI 10aQ LIS
*ILNQ 97} Ul ST oWeu-o[UdALS ® jeq)
JUSAS o) Ul SAXAVS 0} 0 ‘LN oY} Ul JOU ST SWeu-a[f pamyroads o
7eq} JUoAd o} Ul ONAVS 03 duo ‘syurod UImMIaI om} SEY SUNNOIGNS STLL WVNTIL
*9SnB[o SPI00dY
TR 9 UI POJEIS JBY) Se SWES 9y} S] IJoqumu 93U Jey} 9msul 03 A4
702 Temonred Jopun suondrIosep PIooaX TQ JO IeqUmu Ay} goreduro) dANTOad
S)BWLIO] pawmIoyiad ponss] uondiaosadq oweN
alqe], 1euxajul saupmoIqng sopsouselq 1IeqOMO1d
aaidwo) Jeuaayul
juauIad

(470 T) ATELNAS WOJIJ PoUWIIOfIad SIUNNOIqng uoIsiAl@ ejed "g-¢ 9IqBL

SOFTWARE DOCUMENT

DEVELOPMENT DIV .

Internal Reference Specifications

L]
64/6600 COBOL Compiler

CONTROL DATA CORPORATION

PAGE NO_3-18

64/6600

VERSION_L. 0 and 2,0 MACHINE SERIES

C0O43

PRODUCT NAME

DOCUMENT CLASS
PRODUCT NO.

NodTIvVAD *XHOWAIW IO ANT 893 ul Iemrenb Adoo saxms £X0adx
*£doo Axeaqry ® ST WNI
va Juaamo osneoaq 891dod 90anos Surijmusis g3eqy ejeradoadde jjo sumg, ZX0dax
*(W03F) AHOWENW
J0 AN o) ut 9sneo £doa sy jo 309(qo SY) 831038 pue sSeqy oerad
iva WOALIS —oxdde mpag *odfy weyr £doo & ST Wl Juermo Surkfrudls ey s195 TX0aax
*orroumueydie ssef) Surdyrusis Seyy uo swny e10aax
*orreumu sse[) SurfjruSis Seyy uo sumg, Z10dax
*opeqeydie sser) Surfjusis Se[y uo suIy, TI0aax
63¢ ‘L1¢
‘g1e ‘v1¢ ‘€18
‘gIe ‘11¢ ‘018
‘60¢ ‘80€ ‘L0E
‘90¢ ‘g0g ‘v0e
qYOLSIY ‘20€ ‘10€ ‘00€
TIVIAON ‘662 862 ‘962 *030 ‘S9SNE[d JO UONBUIqUOD
JAVS £202 ‘9%T ‘ST g-g omSrg 18Se1[! ‘serousysISucdur 9souseIp 03 WSYI JUSLIND o sozATeuy I0Aax
*LNQ o ojut Surgsenbs jusnbasqns 10] UATTIL PIOM 87} SaAES 9aax
682 *sure)1 9soy) 0} poudIsse 9 Jouued
618 HATTIA 95Neoaq g8 JI0 L) B J0U ST JoqUINU [9AS] JUSLIND SO.IMSUY caax
*INd o ojut Surqsenbs juenbosqns I0] SUrEU-EIEp JUILINO Y} SAABS FaAdAxX
*a[qejdoooe st 168071 JUALIND JT SAXQVS 07 SUO PUE $ISQUINU [SAS] B SE
qa1ax 902 a1qejdeooe jou ST 10399UT JUSLIND JT ONQVS 0} dUO ‘SIS WIMSI g §eH 2aax
a0 a
HOLIMS
aanoouz Gse
qYOLSIY ‘902 ‘vse ‘2S¢
grax | ‘cez ‘¥6Z ‘29e (g9 + NGHSVDS) IoxNq JudLmMd
JAVS ‘gce ‘€62 ‘1SS 1~¢ om3ra oI} UT 31 §9I0)§ PUR JOQUMU [AS] JUSLIND 3T} UO SX03YD [ENIUL 830(TAax
SIBULIOJ powwLIo}Iag panss| uonpdizosaq sureN
o[qe], TeuIul soumnoIqng gomjgouderq 3I8qoMOT
Jeqrduro) TeuIaju]
JuauTIag

(1 70 2) ATALNXS WOIJ PAULIOJI9d SSUMOIqNG UOISTAIQ B8 °€-€ PGl

SOFTWARE DOCUMENT
PAGE NO_3-19

64/6600

DEVELOPMENT DIV

Internal Reference Specifications

64/6600 COBOL Compiler

CO43

VERSION_1.0 and 2,0 MACHINE SERIES

‘XUYOWIAN

'CONTROL DATA CORPORATION

DOCUMENT CLASS
PRODUCT NAME
PRODUCT NO.

NOATVNDd J0O aNT oy} ur 9sne[o ssUopay oy} Jo dWeu Suikyrenb ey so10318 Z2319aax
*XMOWHI IO GNE O} Uf OWET-gJEp SUTJOpax o
NOALIAS 10 109(qo oY} §210}8 pUL ISNB[D SAUFOPIY SULAJrU3TS Seqy vo swny, 1J9aax
8€%
gLaX 6€2 asne[d Uoneoo] jurlod oY} ul pasn Jo8ojut oY) §988900Xd Z1daax
*asneld uoreoo] jurod Surdyrudis Sepy uo suany, 17daax
*aamorid
201n08 OGO 9 Jo Surssevoxd Lrerpawasyut 10 Sely aamord sjeg 10daax
i ‘AHOWIN JO AONI
WOATIVND o ut uonjdo uQ Surpuedo SaNDOQ A} JO dUrEU Suirkyrenb o3 sa10lg $¥00dax
*XHOWIIW JO ANZ o} ut sweu-ejep uo Jurpuadop
WOodALdS 6¢T o) $9109s pue uondo ug Surpusdeq sIN0dQ Surkjrudis Sep uo SUIML £000ax
GET *9sneo
qg1.ax $92 gamooQ a1 Jo (NUHI, Jo 10e(qo-wnwxeu) I9397ul 37} 59853001 200adax
geg
gLax €32 *asne[o $anodQ oY) Jo (wmwrurur) 1a8)UT 9y} $9889001g 100dax
+asneo pagnysnp Surfjudis e Uo SWM], 1Sraax
-ogne[d 0197 WAYM Yueld Surijrudis Jeyy uo suImy, caIaAax
gLax 162 *osnero SuraroT Oy} UT Pash I0899UT oY} S98S9001] FAHadx