(SD) CONTROL DATA

60497200

COBOL
VERSION 5
USER’S GUIDE

cDC® OPERATING SYSTEMS:

NOS 2
NOS/BE 1



REVISION RECORD

Revision
A (04/30/76)
B (06/01/77)

C (04/11/80)

D (07/24/81)

E (03/11/86)

Description

Original release.

This revision reflects COBOL 5.1 (feature CP176) at PSR level 446.

This revision reflects COBOL 5.3 at PSR level 508, Changes update documentation for the
Basic Access Methods 1.5, Advanced Access Methods 2.1, and CYBER Database Control

System 2.1. New sections include an interface to CYBER Record Manager, an interface to

MCS 1.0, and interactive usage.

This revision reflects COBOL 5.3 at PSR level 538. -Changes includevthe addition of
Multiple-Index Processor material and minor corrections.

This revision reflects COBOL 5.3 at PSR level 647. Changes include the deletion of all
references to operation under NOS 1 and miscellaneous technical and editorial changes.

REVISION LETTERS I, O, Q, AND X ARE NOT USED Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division

©copyYRIGHT CONTROL DATA CORPORATION P. 0. Box 3492

1976, 1977, 1980, 1981, 1986 SUNNYVALE, CALIFORNIA 94088-3492

All Rights Reserved .

Printed in the United States of America or use Comment Sheet in the back of this manual
ii 60497200 E



LIST OF EFFECTIVE PAGES

’

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revision Page Revision Page Revision

Front Cover - 3-52 E 14-6.1/14-6.2 D
Title Page - 3-53 thru 3-56 C 14-7 E
ii E 4-1 thru 4-4 C 14-8 thru 14-10 C
iii/iv E 4-5 E 15-1 thru 15-3 D
v/vi A 4-6 thru 4-8 C 15-4 E
vii E 4-9 E 15-5 thru 15-15 D
viii E 5-1 thru 5-6 c 15~16 E
ix D 5-7 thru 5-9 E 15-17 D
b4 c 5-10 thru 5-16 C 16-1 thru 16-3 E
xi D 6-1 C 16-4 [
xii D 6-2 D 16-5 E
xiii/xiv D 6-3 thru 6-8 . C 16~6 E
XV C 6-9 E 16-7 C
1-1 C 6~10 C 16-8 E
1-2 C 6-11 C 16-9 (o}
2-1 thru 2-4 C 7-1 thru 7-6 c 16-10 c
2-5 E 8~1 thru 8-9 C 16-11 E
2-6 C 9-1 Cc 16-12 E
3-1 E 9-2 c 17-1 thru 17-8 c
3-2 C 10-1 E A-1 E
3-3 thru 3-5 D 10-2 c A=-2 D
3-6 E 10-3 E A-3 C
3-6.1 D 10-4 E A-4 C
3-6.2 D 10-5 D A-5 E
3-7 c 10-6 thru 10-9 c A-6 C
3-8 C 11-1 [ A-7 E
3-9 D 11-2 D A-8 C
3-10 thru 3-12 c 11-3 D B-1 [
3-13 E 11-4 E B-2 E
3-14 c 11-4.1/11-4.2 D B-3 D
3-15 D 11-5 E B-4 D
3-16 thru 3-18 C 11-6 (o} B-5 thru 59 E
3-19 E 11-7 [+ c-1 c
3-20 c 11-8 E c-2 E
3-21 E 11-9 c c-3 [
3-22 C 11-10 E D-1 thru D-4 C
3-23 C 11-11 thru 11-13 C Index—1 D
3-24 thru 3-27 D 11-14 E Index-2 E
3-28 thru 3-38 c 11-15 E Index-3 E
3-39 E 12-1 thru 12-3 C Index~4 D
3-40 thru 3-42 C 13-1 E Index-5 D
3-43 E 13~-2 E Index—-6 E
3-44 thru 3-47 c 13-3 thru 13-6 c Comment Sheet/Mailer E
3-48 E 14-1 thru 14-6 E Back Cover -
3-49 thru 3-51 C

60497200 E

iii/iv






ACKNOWLEDGEMENT

0 —

The following acknowledgement is reproduced in its

entirety at the request of the American National Standards -

Institute.

"Any organization interested in reproducing the COBOL
standard and specifications in whole or in part, using ideas
from this document as the basis for an instruction manual
or for any other purpose, is free to do so. However, all
such organizations are requested to reproduce the
following acknowledgment paragraphs in their entirety as
part of the preface to any such publication (any
organization using a short passage from this document,
such as in a book review, is requested to mention "COBOL"
in acknowledgment of the source, but need not quote the
acknowledgment):

COBOL is an industry language and is not the property of
any company or group of companies, or of any organization
or group of organizations.

No warranty, expressed or implied, is made by any
contributor or by the CODASYL Programming Language

60497200 A

Committee as to the accuracy and functioning of the
programming system -and language. Moreover, no
responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted
material used herein

FLOW-MATIC (trademark of Sperry Rand
Corporation), Programming for the
UNIVAC® 1 and 11, Data Automation Systems
copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commercial Translator
Form Neo. F 28-8013, copyrighted 1959 by
IBM; FACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in
whole or in part, in the COBOL specifications. Such
authorization extends to the reproduction and use of
COBOL. specifications in programming manuals or similar
publications." : .

v/vi






PREFACE

#

This quide describes the usage of the COBOL Version 5.3
language. As described in this publication, COBOL 5
operates under control of the following operating systems:

NOS 2 for the CONTROL DATA® CYBER 180
Computer Systems; CYBER 170 Series; CYBER 70

Models 71, 72, 73, 74; and 6000 Series Computer
Systems.

NOS/BE 1 for the CDC® CYBER 180 Computer
Systems; CYBER 170 Series; CYBER 70 Models 71, 72,
73, 74; and 6000 Series Computer Systems.
COBOL 5 is designed to be a superset of the language
specified in American National Standard X3.23-1974,
COBOL. In this quide, no distinction is made between the

standard language and Control Data extensions to the
language.

The following publications are of primary interest:

Publication

COBOL Version 5 Diagnostic Handbook
COBOL. Version 5 Reference Manuai

COBOL Version 5 Reference Manual online
COBOL Version 5 Report Writer's User Guide

NOS Version 2 Reference Set,
Volume 3, System Commands

NOS/BE Version 1 Reference Manual

The following publications are of secondary interest:

Publicati on

CYBER Record Manager

Advanced Access Methods Version 2 Reference Manual

CYBER Record Manager

Basic Access Methods Version 1.5 Reference Manual

DMS-170 CYBER Database Control System

Version 2 Application Programming Reference Manual

DMS-170 DDL Version 3 Reference Manual
Volume 2: Subschema Definition for
CYBER Database Control System

Use With: COBOL QUERY UPDATE

60497200 E

This guide is written for a programmer familiar with the
COBOL language and with the operating system under
which the COBOL. 5 compiler is operating. The language is
presented in relation to specific features of COBOL 5. The
formats of statements and clauses are illustrated by
examples rather than by format specifications.

Detailed information can be found in the listed
publications. The publications are listed alphabetically
within groupings that indicate relative importance to
readers of this manual.

The NOS System Information Manual is an online manual
that includes brief descriptions of all NOS and NOS product
manuals. To access this manual, log in to NOS and enter
the command EXPLAIN.

Publication

Number NOS 2 NOS/BE 1
60482500 X X
60497100 X

L60497100 X

60496900 X X
60459680 X

60493800 X
Publication

Number NOS 2 NOS/BE 1
60499300 X X
60495700 X X
60485300 X X
60482000 X

vii @



® viii

DMS-170 FORM Version 1 Reference Manual 60496200
Message Control System Version 1 Reference Manual 60480300
NOS Full Screen Editor User's Guide 60460420
Update Version 1 Reference Manual 60449900

Sites within the United States can order CDC manuals from Control Data
Corporation, Literature and Distribution Services, 308 North Dale Street, St.

Paul, Minnesota 55103.

Other sites can order CDC manuals by contacting the local country sales

office.

This manual describes a subset of the features and
parameters documented in the COBOL 5 reference
manual. Control Data cannot be responsible for the
proper functioning of any features or parameters not
documented in the COBOL 5 reference manual.

X X X X

60497200 E



CONTENTS

NOTATIONS XV Indexed File Organization
File Definition
1. INTRODUCTION TO COBOL 5 1-1 FILE-CONTROL Paragraph
File Description Entry
COBOL 5 Features 1-1 Record Description Entry
COBOL 5 Job Processing 1-2 File Manipulation

Opening Indexed Files
Writing Indexed Files

2. PROGRAM STRUCTURE 2-1 Positioning Indexed Files
Reading Indexed Files
Program Organization 2-1 Updating Indexed Files
Identification Division 2-1 Closing Indexed Files
Environment Division 2-1 Direct File Organization
Data Division 2-1 File Definition
Procedure Division 2-1 FILE-CONTROL Paragraph
Language Elements 2-2 File Description Entry
Reserved Words 2-2 Record Description Entry
User-Defined Words 2-2 File Manipulation
Literals 2-2 Opening Direct Files
Numeric Literals 2-2 Writing Direct Files
Nonnumeric Literals 2-2 Positioning Direct Files
Punctuation 2-2 Reading Direct Files
Level Numbers 2-3 Updating Direct Files
Record Level Numbers 2-3 Closing Direct Files
Special Level Numbers 2-3 Actual-Key File Organization
Report Level Numbers 2-3 File Definition
Picture-Specifications 2-3 FILE-CONTROL Paragraph
COBOL 5 Coding Conventions 2-5 File Description Entry
Source Program Entries 2-5 Record Description Entry
Sequence Numbers -2-5 File Manipulation
Continuation Lines 2-5 Opening Actual-Key Files
Comment Lines 2-5 Writing New Actual-Key Files
Program Text Replacement 2-6 Positioning Actual-Key Files With
Alternate Keys
Reading Actual-Key Files
Updating Actual-Key Files
3. FILE PROCESSING 3-1 Closing Actual-Key Files

Word-Address File Organization

Alternate Key Processing 3-1 File Definition
Creating Alternate Keys 3-1 FILE-CONTROL Paragraph
Establishing the Key of Reference 3-2 File Description Entry
Accessing by Alternate Key 3-2 Record Description Entry
Sequential File Organization 3-3 File Manipulation
File Definition 3-3 ' Opening Word-Address Files
FILE-CONTROL Paragraph 3-3 Writing Word-Address Files
File Description Entry 3-3 Reading Word-Address Files
Record Description Entry 3-5 Closing Word-Address Files
File Manipulation 3-6.1 Error Handling ’
Opening Sequential Files 3-6.1 User-Supplied Error Procedures
Writing Sequential Files 3-7 Status Code
Reading Sequential Files 3-7 Sample Programs
Updating Sequential Files 3-7 Relative File Programs
Closing Sequential Files 3-8 Indexed File Programs
Relative File Organization 3-8 Direct File Programs
File Definition 3-8 Actual-Key File Programs
FILE-CONTROL Paragraph 3-8 Word-Address File Programs
File Description Entry 39
Record Description Entry 3-9
File Manipulation 3-10 4, ARITHMETIC AND BOOLEAN OPERATIONS
Opening Relative Files 3-10
Writing Relative Files 3-10 Arithmetic Expressions
Positioning Relative Files 3-11 Arithmetic Operators
Reading Relative Files 3-11 Evaluation of Expressions
Updating Relative Files 3-12 Simple Arithmetic Expressions
Closing Relative Files 3-12 Complex Arithmetic Expressions

60497200 D

1 U 1 1 1 [ 1 1 1 U 1 11 ] (] ] ] 1 ) I
PRI NN R NI N bt bt bt bt bt s b ot bt ot ot ot et o ot
VE WWN N

R Y N N A R R R R N e N R e R VW)

LA U A AU A A A A A AU I A A ]
VWON NN UVMERLRPPUWUNEHHFOOOWVOOO®O®N NV N

£ AWM W AW WA W W W WA AN W AW WNN N NNNNRNNNDNN

B R R R R R R R A Y R RV A RV AV

OFRFOPRPLEPLPPUWUNWNNRFRFEFEFFOOOO



Arithmetic Statements
Addition of Items
Subtraction of Items
Multiplication of Items
Division of Items
Computing a Data Item Value
Rounding a Result
Checking for a Size Error

Number Representation
Display Code Operation
Integer Operation
Floating Point Operation

Sample Arithmetic Program

Boolean Expressions
Boolean Operators
Evaluation of Expressions

Sample Boolean Program

5. - CONDITIONAL OPERATIONS

Conditional Expressions
Simple Conditions
Relational Conditions
Class Conditions
Condition-Name Conditions
Switch-Status Conditions
Sign Conditions
Complex Conditions
Implied Elements
Order of Evaluation
Conditional Statements
Explicit Conditional Statements
IF Statement Without END-IF
IF Statement With END-IF
PERFORM Statement Without
END-PERFORM
PERFORM Statement With
END-PERFORM
SEARCH Statement Without END-SEARCH
SEARCH Statement With END-SEARCH
Implicit Conditional Statements
At End Condition
End-of-Page Condition
Invalid Key Condition
Overflow Condition
Size Error Condition
Sample Conditional Program

6. TABLE HANDLING

Table Definition
Assigning Individual Data-Names
Redefining a Table
Moving Values Into a Table
Table Reference
Unique Reference
Subscripting
Indexing
Table Handling Statements
PERFORM Statement
SEARCH Statement
Sequential Search
Binary Search
SET Statement
Sample Table Handling Programs
TABLE-SUBSCRIPTING Program
TABLE-SEARCHING Program

4-2
4-2
4-2
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-5
4-5
4-8
4-8
4-9
4-9

s
—

1
OOV E LD WU

\'ﬂ\.ﬂ\ln\."l
~ O\

¥
~

5-8.1
5-9
5-10
5-10
5-10
5-10
5-11
5-11
5-11

o
1
—

A A NN
6)~A\lm\n\.n-z>-l>4>wuNNNb—'Hb-

7. CHARACTER HANDLING

Setting the Value of a Data Item
Inspecting Characters in a Data Item

Inspection Cycle

Inspection Limitation

Tallying Operation

Replacing Operation

Tallying and Replacing Operation
Transferring Characters Between Data Items

STRING Statement

UNSTRING Statement
Referencing Part of a Data Item

8. SORT/MERGE PROCESSING

Sort/Merge File
Sort-Merge Description Entry
Key Items

Memary Allocation

Sort/Merge Operation
Input/Output Files
Input Procedure
Output Procedure

Sort/Merge Statements
SORT Statement
MERGE Statement
RELEASE Statement
RETURN Statement
SET Statement

Sample Sort Program

Sample Merge Program

9. SEGMENTATION

Types of Segments
Fixed Segments
Independent Segments
Overlays
Subprograms and Overlays
Structuring Segments

10. SUBPROGRAM INTERFACE

Transferring Control to a Subprogram
Entering Non-COBOL Subprograms
Calling COBOL. Subprograms

Sharing Files

"~ External Files
Data Base Files

Processing With Fast Dynamic Loader
Program Name Usage
FDL File Creation
Compilation With FDL Processing

Canceling a Subprogram

Writing a COBOL Subprogram
Procedure Division Header
Linkage Section
Common-Storage Section
Return of Control

Sample Programs
Entering a FORTRAN Subprogram

_Calling a COBOL Subprogram

~
1
—

[ UL

\I\I\l\l\ll\l\l\l\l\l\l
VEWWUWNNN

8-3
8-3
8-4
8-4
8-5
8-6
8-6
8-6

9-1
9-1
9-1
9-1
9-1
9-2

10-1

10-1
10-1
10-1
10-2
10-2
10-3
10-3
10-3
10-3
10-3
10-3
10-4
10-4
10-4
10-4
10-4
10-4
10-4
10-4

60497200 E



11. COMPILATION AND EXECUTION

Compiling a Program
COBOL5 Control Statement
Input/Output File Parameters
Error Processing Parameters
Source Program Parameters
Output Listing Parameters
Debugging Parameters

COPY Statement Parameter

COBOL Subprogram Parameters

Sub-Schema File Parameter
Compilation Output Listings

Source Program Listing
Cross Reference Listing
Object Code Listing
Data Map Listing

Executing a Program

Sample Deck Structures

12. COBOL 5 SOURCE LIBRARY

Creating a COBOL Source Library

Maintaining a COBOL Source Library
Adding New Decks
Inserting New Cards
Deleting Cards Fom Decks
Restoring Cards to Decks
Removing Correction Sets
Removing Decks

Using a COBOL 5 Source Library

13. PROGRAM DEBUGGING AIDS

Debugging F eature
Debugging Lines
Debugging Sections
Monitoring Data Items
Monitoring Procedures
Monitoring Files
Debugging Register

Activating Debugging at Compile Time
Activating Debugging at Execution Time

Paragraph Trace Feature
Source Program Statements
Trace File
Termination Dump Feature
Obtaining a Termination Dump
Termination Dump Listing
Control Statement Debugging Options
Binary Output
Subscript and Index Checking

14, CDCS INTERFACE

Data Base Concepts
The Schema
COBOL Sub-Schemas
Relations
Processing an Area
The Data Base Status Block
Common CDCS Diagnostics
Processing a Relation
Structure of a Relation
CDCS Relation Processing
Record Qualification
Program Relation Processing

60497200 £

11-1

11-1
11-1
11-1
11-2
11-3
11-4
11-4.1/
11-4.2
11-5
11-5
11-5
11-5
11-5
11-10
11-10
11-10
11-10
11-14

13-1

13-1
13-1
13-1
13-1
13-2
13-2
13-2
13-2
13-2
13-3
13-3
13-3
13-4
13-4
13-4
13-4
13-4
13-4

14-1

14-1
14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3
14-3
14-4
14-4

Coding the Program
Environment Division
Data Division
Procedure Division

Compiling the Program

Executing the Program

Sample Program

15. CYBER RECORD MANAGER INTERFACE

File Information Table
FIT Fields Set With Source Statements
FIT Fields Set With the USE Clause
Setting the Index Block Padding
Changing the Record and Block Type
Setting the Old/New File
Organization
FIT Fields Set With the File Control
Statement
CRM Debugging Tools
Accessing File Status Codes
Accessing the CRM Error Status Code
Using the System Error File and FIT Dump
Controlling CRM Messages on the Dayfile
Setting the Trivial Error Limit
Multiple-Index Files
Defining Alternate Keys With MIPGEN
Positioning and Reading a File by
Alternate Key
File Structure and Efficiency Considerations
Determining the Best Block Size
Indexed Sequential Block Size
Actual-Key Block Size
Reducing Direct File Creation Time

16. INTERACTIVE USAGE

Concepts of Terminal Operation
NOS Terminal Operations Using IAF
Local Files Under NOS
Program Creation Using FSE and IAF
Under NOS
Program Compilation and Execution
Under NOS
Running the Program
Executing With local Data Files
NOS/BE Terminal Operations Using INTERCOM
Local Files Under NOS/BE

Program Creation Using INTERCOM EDITOR

Under NOS/BE
Program Compilation and Execution
Under NOS/BE
Running the Program
Execution With Local Data Files
Interactive Usage of COBOL ACCEPT and
DISPLAY Statements
Accepting Data From the Terminal
Accepting Data From a Connected File
Displaying Data Upon the Terminal
Displaying Data Upon a Connected File

17. MESSAGE CONTROL SYSTEM INTERFACE

General Concepts
Messages and Message Queues
Enqueuing and Dequeuing Messages
Queue Hierarchy
Enabling and Disabling Queues
Message Destination and Source
Data Mode and Command Mode

14-5
14-5
14-5
14-5
l4-6
14-6
14-6

15-1

15-1
15-1
15-2
15-2
15-2

15-7

15-7
15-8
15-8
15-9
15-9
15-9
15-9
15-11
15-11

15-11
15-11
15-15
15-16
15-16
15-17

17-1

17-1
17-2
17-2
17-2
17-2
17-2
17-2

xi



COBOL Communication Facility
The Communication Section
Sending and Receiving Messages
Receiving Messages
Sending Messages
Updating the CD Area
Accessing the Status Key
Execution of COBOL Programs Using MCS
An Interactive Session

APPENDIXES

A Standard Character Set

B  Glossary

C Additional Software For Data
Base Programs

D

Additional Software for MCS Application

INDEX

FIGURES

3-1  Structure of the Alternate Key Index File

3-2 FILE-CONTROL Paragraph for a
Sequential File

3-3  File Description Entry for a
Sequential File

3-3.1 IBM EBCDIC Tape Conversion

3-4 Record Description Entry for a
Sequential File

3-5 FILE-CONTROL Paragraph for a
Relative File

3-6  File Description Entry for a
Relative File

3-7  Record Description Entry for a
Relative File

3-8  FILE-CONTROL Paragraph for an
Indexed File

3-9  File Description Entry for an
Indexed File

3-10 Record Description Entry for an
Indexed File

3-11 FILE-CONTROL Paragraph for a
Direct File

3-12 File Description Entry for a
Direct File

3-13 Record Description Entry for a
Direct File

3-14 FILE-CONTROL Paragraph for an
Actual-Key File.

3-15 File Description Entry for an
Actual-Key File

3-16 Record Description Entry for an
Actual-Key File

3-17 FILE-CONTROL Paragraph for a
Word-Address File

3-18 File Description Entry for a
Word-Address File

3-19 Record Description Entry for a
Word-Address File

3-20 Example of the USE Statement

3-21 Creating a File With Relative
Organization

3-22 Input Data for Creating the
Relative File

3-23 Updating a File With Relative
Organization

3-24 Input Data for Updating the Relative File

3-25 Output Report From Updating the
Relative File

xii

17-2
17-2
17-2
17-3
17-4
17-4
17-5
17-7
17-7

3-2
3-3

3-4
3-6

3-6.1

3-8

3-10
3-14
3-14
3-14
3-18
3-20
3-20
3-24
3-25
3-26
3-30
3-31

3-31
3-34

3-35
3-36

3-36
3-38

3-39

3-41
3-42
3-43
3-44
4-1

pee
S WN

R
AWV EUWN U

LN ]
== \0 00~
Ll =]

BN -

0\0\0\0\?\0\0\0\
===\ O~ O\ \n
MEHEWNEHO

[ U] ] 1 ] 1 1)
BN AW N b e

Creating a File With Indexed Organization

Input Data for Creating the Indexed File

Accessing an Indexed File by
Alternate Key

Output Report From Accessing the
Indexed File

Creating a File With Direct Organization

Input Data for Creating the Direct File

Updating a File With Direct Organization

Input Data for Updating the Direct File

Output Report From Updating the
Direct File

Creating a File With Actual-Key
Organization

Input Data for Creating the Actual-Key
File

Updating a File With Actual-Key
-Organization

Input Data for Updating the Actual-Key
File

Output Report From Updating the
Actual-Key File

Creating a File With Word-Address
Organization

Input Data for Creating the Word-Address
File

Accessing a File With Word-Address
Organization

Input Data for Accessing the
Word-Address File

Output Report From Accessing the
Word-Address File

Addition of Corresponding Items

Sample Arithmetic Program

Input Data for Sample Arithmetic Program

Output Report From Sample Arithmetic
Program

Boolean Example

Using a Condition-Name Condition

Using a Switch-Status Condition

Setting a Switch

IF Statement With END-IF Example 1

IF Statement With END-IF Example 2

Varying Indexes in a PERFORM Statement

PERFORM Statement With END-PERFORM

SEARCH Statement With END-SEARCH

Sample Conditional Program

Sample Input for Conditional Program

Output Report From Sample Conditional
Program

Table Definition by Data-Names

Table Redefinition

Table Definition by the OCCURS Clause

Using PERFORM/END-PERFORM to Fill
a Table

Table Reference by Subscripting

Table Reference by Indexing

Table Searching, Sequential Search

Table Searching, Binary Search

Searching a Two-Dimensional Table

Sample Program Using Subscripts

Input Data for Subscripting Program

Output Report From Subscripting Program

Sample Program Using Index-Names

Input Data for Indexing Program

Output Report From Indexing Program

Initializing a Group Data Item

Out-of-Bounds Reference Modification

Reference Modification Examples

SD Entry and Key Items

Examples of the SORT Statement

Examples of the MERGE Statement

Examples of the RELEASE Statement

3-39
3-41

3-42
3-43
3-43
3-45
3-46
3-48
3-48
3-49
3-50
3-50
3-52
3.52
3-53
3.54
3-54
3-55
3-56
4-3
4-6
4-7
4-8
4-9
5-3
5-4
5-4
5-7

5-7
5-8

y
= b \O
N

T
o

PPy
NN

™ O l?\?\?\?\?\o\mc\
VNNV P WN
[y

[

PENNNT AR
O\ O\ b 0

J

B e
W

60497200 D



0
=000 ~NO\Wu

85
N—= O

I-‘I—JGJCDC'DQJCDO

13-1
13-2
14-1
14-2
14-3
14-4
14-5
1l4-6
14-7

14-8

15-1
15-2
15-3
15-4
15-5

Examples of the RETURN Statement
Establishing a Collating Sequence
Sample Sort Program

Input Data for Sample Sort Program

Output Report From Sample Sort Program

Sample Merge Program

Entering a FORTRAN Subprogram

Calling a COBOL Subprogram That Uses
the Linkage Section

Calling a COBOL Subprogram That Uses
the Common-Storage Section

Source Listing

COBOL 5 Diagnostics

Load Map

Standard Dump

Dayfile

Cross Reference Listing

Object Code Listing

Data Map Listing

Compiling and Executing a COBOL 5
Source Program

Executing a COBOL. 5 Object Program

Compiling and Executing a COBOL 5

Main Program and a COBOL 5 Subprogram
Compiling and Executing a COBOL 5 Main

Program with a Previously Compiled
Subprogram

Trace File Format

COBOL Program With Termination Dump

Data Base Status Block Description

Tree Structure for a Three-Area Relation

Record Qualification in the Sub-Schema

USE FOR ACCESS CONTROL Example

USE. FOR DEADLOCK Example

Source Listing for Sub-Schema BILLING

Sample Program for Reading a Data Base
Relation

Output Report Generated by Program
CBILLS

COBOL Input/Output Interfaces

COBOL File Processing

Accessing the File Status Code

Example of a FIT Dump

MIPGEN Example - NOS

60497200 D

t 1

[

1

o chlomoumm
o MOV oONOWUN

—

e
TP
oo™

11-7
11-8
11-9
11-10
11-11
11-12
11-13

11-14
11-14

11-15

11-15
13-3
13-5
14-2
14-3
14-4
14-6
14-6
14-7

14-8

14-10
15-2
15-3
15-8
15-10
15-12

Reading a File By Alternate Key

XEDIT Program Creation, Compilation,
and Execution

PSQ Parameter Example

INTERCOM Program Creation, Compilation,

and Execution
Accepting Data From a Terminal
Accepting Data From a Connected File

COBOL/MCS Communications Environment

A COBOL Communication Section

SAVINSQ Structure

Receiving Messages From a 2-level
Queue Structure

LOANQ Structure

Receiving Messages From a 3-level
Queue Structure

Sending Messages From a COBOL Program

COBOL/MCS Interactive Terminal User
Session

TABLES

17-2

Picture-Specification Characters

Block Type and Size for Sand L
Tape Files

Record Type Determination From
COBOL. Statements for Sequential,
Indexed, Direct, and Actual-Key Files

True Numeric Relational Conditions

True Nonnumeric Relational Conditions

True Boolean Relational Conditions

Non-Fatal CDCS Diagnostic Codes

File Organizations

FIT Fields by Record Type

FIT Fields Set From Source Code

Record Type and File Organization
Combinations

File Status Codes

CRM File Structure Terms and
Equivalents

MCS Status Key Codes

MCS Error Key Codes

2-4

N
1
&

bt et
YOV YYEYYY Y

-

1
@D NMEFHEFWWNNW

,_.
¥

15-16
17-6
17-7

xiit/xiv






NOTATIONS

. Underlining in examples indicates terminal .
user input. . Ellipses in examples indicate missing text.
IA]B]C] Boxes in examples indicate character position
in storage. An empty box means an Numerals are represented in decimal unless indicated
unpredictable resuit. otherwise.

60497200 C Y%






INTRODUCTION TO COBOL 5 1

The COBOL 5 language is a high-level programming
language that is problem oriented rather than machine
oriented. The programmer can thus concentrate on the
logic of the problem. The COBOL 5 language consists of
ordinary English words and arithmetic symbols that are
used in an ordered manner to define data and procedures.
Although the language is relatively unrestricted in its
simulation of English, it is governed by rules that enable
the COBOL 5 compiler to translate a COBOL source
program into an object program intelligible to the
computer.

COBOL 5 FEATURES

The COBOL 5 language provides a wide range of features.
In addition to implementing the 1974 ANSI COBOL
standard (X3.23-1974), a powerful set of Control Data
extensions is provided in COBOL 5. The features described
in this guide are summarized in the following paragraphs.

Six file organizations are available in COBOL 5:
sequential, relative, indexed, direct, actual-key, and
word-address. These organizations provide efficient
processing for a wide range of applications. File access
can be sequential, random, or dynamic; dynamic access
allows records to be accessed both sequentially and
randomly. Records in all file organizations except
sequential organization have an associated primary key
that is used for random access. Input/output statements
are provided to read, write, rewrite, and delete records in
a file and to position a file for subsequent processing. The
open mode established when the file is opened determines
which input/output statements can be executed for the file.

Indexed, direct, and actual-key file organizations can be
installed as either initial or extended. Extended Advanced
Access Methods (AAM) files are more efficient and are the
default for COBOL programs. Any further discussion of
AAM files in this manual implies extended AAM file
organization.

Indexed, direct, and actual-key file organizations allow
records to be accessed by a choice of keys. In these file
organizations, alternate keys can be defined in addition to
the primary key. When alternate keys are specified for a
file, any key (primary or alternate) can be used to access
records in the file.

A complete set of arithmetic statements provides the
means to perform operations involving addition,
subtraction, multiplication, and division. Each type of
operation is accomplished by an individual statement:
ADD, SUBTRACT, MULTIPLY, or DIVIDE. A series of
different arithmetic operations can be accomplished by the
COMPUTE statement; exponentiation, unary plus, and
unary minus can also be specified. Results of an
arithmetic operation can be rounded. Size error detection
on a result is also provided.

Boolean operations allow two operands to be compared bit
by bit for equality or inequality. Operations are
accomplished by statements that include the reserved
words BOOLEAN-AND, BOOLEAN-OR, BOOLEAN-EXOR
or BOOLEAN-NOT. The COMPUTE statement can be used
to assign values to boolean variables.

60497200 C

Conditional operations in COBOL 5 provide the means to
specify an alternate path of control that is followed only
when designated conditions are true. This decision making
capability allows the program to specify that certain
procedures or statements are executed under specified
conditions. The IF, PERFORM, and SEARCH statements
can specify an explicit condition that is tested each time
the statement 1is executed; the next statement or
procedure executed depends on the truth of the condition.
Implicit conditions are specified through the AT END,
INVALID KEY, ON SIZE ERROR, ON OVERFLOW, and AT
END-OF -PAGE options that can be included in arithmetic
and input/output statements. An implicit or explicit
condition must be true before the alternate path of control
is followed.

Delimited scope statements allow the COBOL user to write
structured programs more easily. Explicit  scope
terminators END-IF, END-SEARCH, and END-PERFORM,
are used to explicitly terminate the scope of IF, SEARCH,
and PERFORM statements, respectively. A capability
similar to the FORTRAN do-loop is possible in COBOL
with a PERFORM V ARYING statement followed by in-line
imperative  statements, and terminated by END-
PERFORM. The inclusion of END-IF with IF or
END-SEARCH with SEARCH allows the IF and SEARCH
statements to be used anywhere an imperative statement
can be used.

Tables of fixed or variable length can be specified in a
COBOL 5 program. A table can be described with up to 48
levels of OCCURS clauses. Table elements can be
referenced by subscripting or indexing. Indexing and
subscripting can be mixed. The SET statement can be used
to manipulate indexes. The SEARCH statement is used to
search a table for a specific element.

Records in sequentially organized files are sorted or
merged automatically by the SORT or MERGE statement.
Input and output procedures can be defined or the input and
output files can be named. One or more data items are
used as keys for the sort or merge operation. The collating
sequence for the sort or merge operation can be explicitly
specified by the SET statement. The SORT statement
causes records from one or more files to be sorted by the
specified key data items. The MERGE statement is used to
combine two or more identically sequenced files.

A COBOL 5 program can be segmented to reduce memory
requirements during program execution. In a segmented
program, the entire Procedure Division is written in
sections. Each ‘section is assigned a number that
designates the segment to which the section belongs. A
segment is either fixed or overlayable.” Fixed segments are
in memory at all times during execution; overlayable
segments are made available in memory when they are
needed.

Independently compiled subprograms can be accessed by a
COBOL 5 program. Subprograms can be written in
COBOL, COMPASS, and FORTRAN Extended. The CALL
statement is used to access a COBOL subprogram; other
subprograms are accessed by the ENTER statement. Data
can be passed between the main program and the
subprogram by specifying a parameter list in the ENTER or
CALL statement; the Common-Storage Section can also be

1-1



used for passing data. Fast Dynamic Loader processing
allows COBOL_ subprograms to be dynamically called and
canceled.

Portions of a COBOL 5 program can be copied from a
COBOL source library. The COPY statement can be
specified anywhere in the source program. During
compilation, the specified library deck is incorporated into
the program and replaces the COPY statement.
Modifications to the library deck can be specified in the
REPLACING phrase of the COPY statement.

Debugging procedures can be specified in the COBOL 5
program to monitor files, data items, or procedures during
program execution. A debugging section is included in the
Declaratives portion of the Procedure Division. A USE
FOR DEBUGGING statement specifies the files, data
items, or procedures for which the debugging section is
executed. A special register, DEBUG-ITEM, provides
information related to the condition that caused the
debugging section to execute. The paragraph trace feature
can be used to trace the flow of the program during
execution. The termination dump feature can be used to
obtain a formatted map of the contents of all data items
within the program.

Data base files can be processed by COBOL 5 programs
through an interface with the CYBER Database Control
System (CDCS). All references to CDCS in this manual
refer to CDCS 2 only. The files are described by a
sub-schema instead of by File Description entries in the
program. The files can be locked and unlocked by the
ENTER statement. Access control keys, as well as
recovery points, can be specified within the program.
Input/output operations are performed using standard
COBOL 5 statements. In addition to reading an individual
file, a read operation can retrieve records from several
files joined together in a logical relationship.

CYBER Record Manager (CRM) interfaces to COBOL
programs are generally transparent to the user. A file
information table (FIT) exists for each file and contains
descriptions of the file, such as file organization, blocking
structure, and record type. The FIT is the most important
element used for communication between COBOL and
CRM. The COBOL compiler uses the source statements to
set many FIT values. Other values are set as defaults. The
USE clause can set or override certain FIT fields that
might also be set or overridden by a FILE control card.

A COBOL 5 program can be written, compiled, and
executed interactively through the terminal. The ACCEPT
statement provides the means to input data to the
executing program from the terminal. Similarly, the
DISPLAY statement can be used to output data from the
program to the terminal.

1-2

The Message Control System (MCS), the Network Access
Method (NAM), and the COBOL Communication Facility
(CCF) together allow a COBOL program to communicate
with terminals. Messages are routed to and from terminals
with the SEND and RECEIVE statements.

COBOL 5 JOB PROCESSING

Creating a COBOL 5 program can be considered as a
three-step procedure. The first step is writing the source
program. The next step is compiling the source program
into executable code. The last step involves executing the
program and determining that no errors exist in the logic
of the program.

The COBOL 5 program is written according to the
specifications of the language. The coded program is then
punched on 80-column cards or entered through a terminal
as card images. The resulting source deck is input to the
COBOL 5 compiler.

Before the source program can be input to the COBOL 5
compiler, a set of control statements must be prepared to
precede the source program. This set includes the job
statement, the COBOL5 control statement, the program
call control statement for execution, permanent file
control statements when permanent files are involved
during execution, and any other control statements
required by the operating system or by a particular
installation. The set of control statements must be
terminated by a 7/8/9 card or its equivalent. The source
program can follow the control statements.

The source program is input to the COBOL 5 compiler for
translation into an object program containing executable
code. The compiler checks the program and reports any
errors in the diagnostics listing. The object program can
be punched on cards or written on a disk file for subsequent
execution of the program.

Execution of the COBOL 5 object program can be included
in the compilation run or it can be a separate job. When
execution immediately follows compilation, the object
program usually is written on the system file LGO and the
input data must follow the source program in the input
file. Once the program has been completely debugged, the
object program is usually punched on cards or stored on
disk by making it a permanent file or part of a permanent
file library in either absolute or relocatable form. Job
processing then consists of executing the object program
and providing the input data on the input files specified b

the program. i

60497200 C



PROGRAM STRUCTURE 2

A COBOL 5 program defines the data to be used and
specifies the manner in which the data is manipulated in
order to produce the desired results. The program is
organized according to a predefined structure. Various
components of the language are used in structuring the
program.

PROGRAM ORGANIZATION

A COBOL 5 program consists of a series of entries that are
organized into divisions, sections, and paragraphs. An
entry contains one or more language elements and is
terminated by a period. A COBOL 5 program has four
divisions; each division contains a specific type of
information. Within three of the divisions, the infarmation
can be further organized into sections that contain a series
of related paragraphs.

IDENTIFICATION DIVISION

The Identification Division is the first division in a
COBOL 5 program. It identifies the program by assigning
a program name. In addition, the Identification Division
can document the author's name, the date the program was
written, the date it was compiled, the installation's
identification, and a security entry.

Sections are not used in the Identification Division. Each
type of information is presented in a paragraph that begins
with a predefined name. Only the PROGRAM-ID
paragraph is required.

ENVIRONMENT DIVISION

The Environment Division documents the equipment to be
used to compile and execute the COBOL 5 source program
and assigns each data file in the program to a specific file.
It can also include other information related to input and
output and the assignment of special names. The
Environment Division is organized into two sections: the
Configuration Section and the Input-Output Section.

The Configuration Section documents the source and object
computers, which are the computers used, respectively, to
compile and to execute the source program. The debugging
feature can be activated for compilation and the collating
sequence to be used during execution of the program can
be specified. The SPECIAL-NAMES paragraph provides the
means to assign user-defined names to implementor-names
recognized by the compiler, to designate the name by
which a specific character code set is recognized, and to
specify the sub-schema for accessing data base files. In
addition, this paragraph can specify an alternate character
for the currency sign, the decimal point, and the quotation
mark; the default position of the operational sign for
signed numeric display data items can also be specified.

The Input-Output Section contains two paragraphs. The
FILE-CONTROL paragraph names each file used in the
source program, assigns the file to a system file-name, and
specifies other file related information such as file
organization, access mode, and key fields. The
I-O-CONTROL paragraph specifies the points at which

60497200 C

rerun is to be established, whether memory area is to be
shared by different files, and the location of files on a
multiple-file reel.

DATA DIVISION

The Data Division defines all data that is processed by the
object program. FEach data item referenced in the
Procedure Division is described in one of the seven possible
sections in the Data Division.

The File Section describes the data items within each file
processed by the object program. The Common-Storage
Section describes data items that are shared between the
main program and an independently compiled subprogram.
Data that is developed internally during operation of the
program is described in the Working-Storage Section. The
Secondary-Storage Section describes data to be stored in
extended memory. Data to be passed to a COBOL
subprogram (through the CALL statement in the main
program) is described in the Linkage Section of the COBOL
subprogram. When the Report Writer capability is used, the
output report is described in the Report Section. The
Communication Section is used when a COBOL object
program . communicates, through the Message Control
System (MCS), with local or remote communication devices
such as terminals.

Only those sections that are applicable need be specified in
the source program. Each item defined in the Data
Division contains (or will contain as a result of processing)
data used by the program.

The Data Division does not have paragraphs. Each data
item in a section is described completely in a Data
Description entry. This entry describes a data item in
terms of size and class.

PROCEDURE DIVISION

The Procedure Division specifies the manner in which data
is manipulated. Statements in this division perform
input/output operations, arithmetic processing, program
control, and data movement. In addition, files can be
sorted, tables can be searched, and reports can be written
through the Report Writer capability. Terminal messages
can be received from buffer areas called input queues and
placed in areas called output queues through the COBOL
Communication Facility (CCF). Refer to section 17.

Statements in the Procedure Division are combined into
sentences; sentences are organized into paragraphs. One
or more paragraphs can be designated as a section. If
sections are to be used, the entire Procedure Division must
be organized into sections. Section-names  and
paragraph-names in this division are user-defined.

Declaratives can be included at the beginning of the
Procedure Division to specify procedures that are
automatically executed at the appropriate time.
Declarative procedures can be used with errar checking,
debugging, report writing, and key manipulation. Each
procedure is contained in a section that begins with a USE
statement.

2-1



LANGUAGE ELEMENTS

The COBOL 5 language is composed of various elements
that are combined to form entries in the source program.
The use of these elements is governed by specific rules.
Source program entries consist of reserved words,
user-defined words, literals, and punctuation. In the Data
Division, entries also include level numbers and
picture-specifications. The following paragraphs briefly
describe these COBOL 5 program elements, Detailed
descriptions are contained in the COBOL 5 reference
manual.

RESERVED WORDS

Reserved words are English words and abbreviations that
have special meanings to the COBOL 5 compiler. These
words can be wused only as shown in the format
specifications and must be spelled correctly. Reserved
words are divided into five categories:

Keywords

Words that are required in the format
specifications. A keyword conveys a special
meaning to the COBOL 5 compiler and is
necessary to correctly compile the entry or
statement.

Optional Words

Words that can be included in the format
specification to improve readability. An optional
word is not needed to compile the entry or
statement.

Connectives

Words used to associate a name with its qualifier
(OF and IN) or to logically join conditions (AND
and OR).

Special Registers

Words that identify compiler-generated data
related to specific COBOL 5 features. Five
special registers are available: LINE-COUNTER,
PAGE-COUNTER, LINAGE-COUNTER, DEBUG-
ITEM, and HASHED-V ALUE.

Figurative Constants

Words that represent fixed values. Six different
figurative constants are available: ZERO,
SPACE, HIGH-VALUE, LOW-VALUE, QUOTE,
and ALL. ALL can precede any of the other
figurative constants or their plural equivalents, or
it can be followed by a nonnumeric literal.

USER-DEFINED WORDS

Many of the format specifications include words that are
supplied by the user. Various types of names (such as
data-names, paragraph-names, section-names, and
file-names) are defined by the user.

2-2

A user-defined name can be up to 30 characters in length.
Only the characters A through Z, 0 through 9, and the
hyphen can be used; the hyphen cannot be the first or the
last character of a user-defined word. Level numbers and
segment numbers must be numeric. Paragraph-names and
section-names can be entirely numeric. All other
user-defined words must contain at least one alphabetic
character. A user-defined word cannot be spelled exactly
the same as a reserved word.

LITERALS

In some of the format specifications, literals are supplied
by the user. A literal is a string of characters that
represents a specific value. Literals are either numeric or
nonnumeric.

Numeric Literals

A numeric literal contains a combination of the digits 0
through 9, the decimal point, and the plus sign or minus
sign. The decimal point can be in any character position
except the rightmost position. If the plus sign or the minus
sign is included in the numeric literal, it must be the
leftmost character. A numeric literal can contain up to 18
digits.

Floating point numeric literals can also be specified in a
COBOL 5 program. These literals can be used only as
follows:

In the Data Description entry of an elementary
COMPUTATIONAL-2 data item.

In a Procedure Division statement that allows a
noninteger numeric literal.

A floating point numeric literal consists of a mantissa, the
letter E, and an exponent; a plus sign or minus sign can be
included in the mantissa and in the exponent. The mantissa
can contain up to 14 digits and must include a decimal
point. The largest value that can be specified as the
exponent is +308 or -279. If a sign character is specified,
it must be the leftmost character in the mantissa or
exponent.

Nonnumeric Literals

A nonnumeric literal is a string of up to 255 characters.
The string of characters must be enclosed in quotation
marks. Any character in the character set, including the
space, can be used in a nonnumeric literal. A quotation
mark can be included in the literal by specifying the
quotation mark twice for each occurrence. For example,
"PROGRAM ™ONE" REPORT" would yield the literal
PROGRAM "ONE" REPORT.

‘When the QUOTE IS APOSTROPHE clause is specified in

the Environment Division or the APO parameter is included
in the COBOLS control statement, the apostrophe
character is used to delimit nonnumeric literals.

PUNCTUATION

Most punctuation marks in a COBOL 5 program are
optional. In some instances, punctuation is essential to
program compilation and the rules must be followed
exactly. .

60497200 C



-Commas and semicolons are included or omitted at the
user's option and have no effect on program compilation.
A period is required to terminate each of the following
elements in a COBOL 5 program:

e Division header

® Section header

e Paragraph name

e Complete paragraph

e Environment or Data Division entry

® Procedure Division sentence

A period, comma, or semicolon must be followed by at
least one space.

A colon must be used in reference modified items, as
described in section 7.

Parentheses are used to delimit subscripts, indexes,
arithmetic  expressions, reference modifiers, and
conditions. Parentheses must be specified in balanced
pairs of left and right parentheses.

Quotation marks are used to enclose nonnumeric literals
and must be specified in balanced pairs except when the
literal is continued on more than one line (refer to
COBOL 5 Coding Conventions in this section). The opening
quotation mark cannot be followed by a space, and the
closing quotation mark cannot be preceded by a space,
unless the space is considered part of the nonnumeric
literal.

Periods, commas, and parentheses can appear in
picture-specifications and as such characters are not
considered punctuation marks.

LEVEL NUMBERS

Level numbers can be used in the Data Division to
designate the hierarchical structure of the data items
being defined. Level numbers 01 through 49 are used to
define the structure of a record or a report. Level
numbers 66, 77, and 88 are special level numbers that do
not designate a hierarchical position.

Record Level Numbers

The hierarchy of data items within a record is defined with
level numbers 02 through 49. Level number Ol identifies
the record and is used in the entry that specifies the
record-name. The organization of the data items within
the record is indicated by the level numbers. Elementary
data items are assigned higher level numbers than the level
number of the group item to which they belong. Level
numbers need not be consecutive. Level number 01 can
also be used to define an independent data item or the
highest element in a group item that is not part of a file
description.

60497200 C

Special Level Numbers

- Three level numbers have been provided for particular

types of entries; these level numbers do not define the
hierarchy of data items:

L_evel Number 66

Used to rename a data item. Level number 66
can be used in any section of the Data Division,
except the Secondary-Storage and Report
- Sections, to rename one or more elementary
items or group items.

L_evel Number 77

Used in the Working-Storage, Common-Storage,
and Linkage Sections to define independent data
items. Level number 77 is used to define
elementary items that are not a part of any
record.

Level Number 88

Used to assign one or more values to a
condition-name. Level number 88 can appear in
any section in the Data Division except the
Secondary-Storage and Report Sections.

Report Level Numbers

In the Report Section of the Data Division, level numbers
are used to identify group and elementary items. A report
group item is assigned level number 01 and describes one
type of report line (heading, detail, or footing).
Subordinate group and elementary items are -assigned level
numbers 02 through 49; these items further describe the
characteristics of the report group item. Refer to the
Report Writer user's guide.

PICTURE-SPECIFICATIONS

Picture-specifications are used in the Data Division to
describe the characteristics of a data item and to specify
editing requirements for a data item. A
picture-specification can be associated only with an
elementary data item and is specified by the PICTURE
clause. A complete description of the use of the PICTURE
clause is contained in the COBOL 5 reference manual. The
following paragraphs summarize picture-specifications.

The type of characters used in the picture-specification
determines the data category of the data item. Each data
item belongs to one of six categories: alphabetic, numeric,
boolean, alphanumeric, alphanumeric-edited, or numeric-
edited. Table 2-1 lists each character that can be used in
a picture-specification and specifies the character
representation and the data categories for which it can be
used.

The picture-specification can contain up to 30 characters;
however, the size of the data item being described can be
more than 30 characters.  Consecutively repeated
characters in the picture-specification can be abbreviated
by specifying the character followed by a number enclosed
in parentheses. For example, A(20) is equivalent to the
character A repeated 20 times.

2-3



TABLE 2-1. PICTURE-SPECIFICATION CHARACTERS

Character Representation Data Category
A Alphabetic character Alphabetic, alphanumeric, or
(including space) alphanumeric-edited
B Blank (space) insertion Alphabetic, a}phanumeric-edited;
or numeric-edited
9 Numeric character Numeric, alphanumeric,
: alphanumeric-edited, or numeric-
edited
P Assumed decimal scaling position Numeric or numeric-edited
S Operational sign Numeric
v Assumed decimal point Numeric or numeric-edited
X Alphanumeric character Alphanumeric or alphanumeric-edited
Z Zero suppression Numeric-edited
0 Zero insertion Alphanumeric-edited or numeric-
edited
1 Boolean character 0 or 1 Boolean
/ Slash insertion Alphanumeric-edited or numeric-
edited
T Comma insertion Numeric-edited
.1 Decimal point insertion Numeric-edited
CR CR insertion for negative value Numeric-edited
DB DB insertion for negative value Numeric-edited
+ Plus sign insertion Numeric-edited
- Minus sign insertion Numeric-edited
* Asterisk insertion Numeric-edited
$TT Currency sign insertion Numeric-edited

TIf the DECIMAL-POINT IS COMMA clause is specified, the representations of the comma and decimal

point characters are exchanged.

TT'The character # or the character specified in the CURRENCY SIGN clause can be used in place of the

character $ in the picture-specification.

The following rules apply to the picture-specification for

each data category:

2-4

Alphabetic

Only the characters A and B can be used.

Numeric

Only the characters 9, P, S, and V can be used.

Up to 18 digit positions can be described.

Each of the characters S and V can be used only

once.

Baoolean

Only the character 1 can be used.
Alphanumeric

Only the characters A, X, and 9 can be used.

At least one X, or at least one A and one 9, must
be specified.

Alphanumeric-Edited

Only the characters A, X, 9, B, 0, and / can be
used.

60497200 C



At least one X and one B, 0, or / must be
specified, or at least one A and one 0 or / must be
specified.

Numeric-Edited
Only the characters B, /, P, V, Z, 0, 9, comma (,),
decimal point (), *, +, -, CR, DB, and the
currency symbol can be used. :

Up to 18 digit positions can be described.

At least one character other than.P, V, or 9 must
be specified.

Each of the characters V, decimal point, CR, and
DB can be used only once; CR and DB cannot be
used in the same picture-specification.

COBOL 5 CODING CONVENTIONS

The COBOL 5 source program is written on COBOL coding
forms that correspond to 80-column punched card format.
The coding form is divided into five reference areas:

Reference Area Columns
Sequence Number Area 1-6
Indicator Area 7

Area A 8-11
Area B 12-72
Program Identification

Area 73-80

SOURCE PROGRAM ENTRIES

A source program entry is written according to the
applicable format specification. Entries on the coding
form must conform to the following rules:

o Division headers and the keywords DECLARATIVES
and END DECLARATIVES must begin in Area A; the
remainder of the line following the terminating period
must be blank.

e Section headers must begin in Area A; only a COPY or
USE sentence can follow a section header on the same
line.

e Paragraph names must begin in Area A; at least one
space must follow the terminating period.

e Sentences must be written in Area B; a sentence can
begin on a new line or follow a preceding sentence
separated by at least one space.

® Level indicators FD, SD, and RD and level numbers 01
and 77 must begin in Area A and must be followed by
at least one space.

e Level numbers 02 through 49, level number 66, and
level number 88 must begin in Area B and must be
followed by at least one space.

® Level numbers 01 through 09 can be written as a single
digit or can be preceded by a zero.

60497200 E

SEQUENCE NUMBERS

If the program sequence (PSQ) parameter is specified in
the COBOLS5 control statement, each line of the source
program must have a numeric sequence number not greater
than 65535, not equal to zers, and not consisting of ail
spaces. Diagnostics issued at compile time and at
execution time then reference the applicable sequence
numbers. Sequence numbers do not have to be in ascending
order; however, the numbers should be in order to
facilitate locating source lines referenced in diagnostics.
If a sequence number contains any character other than the
digits 0 through 9 and a space, a diagnostic is issued and
the last valid sequence number is used.

Processing of sequence numbers depends on the PSQ
parameter in the COBOLS5 control statement. When the
PSQ parameter is omitted, sequence numbers are optional
and can include any character in the computer character
set. The compiler does not perform any checking on the
sequence number.

When a program has been created with line sequence
numbers through a NOS interactive text editor facility
(EDITOR or XEDIT), or the NOS Full Screen Editor (FSE),
the PSQ parameter causes those sequence numbers to be
used for diagnostic message references. Refer to
section 16.

CONTINUATION LINES

A source program entry can be written on more than one
line. Continuation lines must begin in Area B. When a
word or a literal is continued from one line to the next, a
hyphen must be entered in the Indicator Area, and the
continuation is processed as follows:

e For a continued word or numeric literal, the first
nonblank character in Area B of the continuation line
is assumed -to immediately follow the last nonblank
character of the preceding line.

e For a nonnumeric literal, the first nonblank character
in Area B of the continuation line must be a quotation
mark; the first character following the quotation mark
is assumed to immediately follow the character in
column 72 of the previous line. All spaces at the end
of the continued line are considered part of the
nonnumeric literal.

A continuation line that does not contain a hyphen in the
Indicator Area assumes that a space follows the last
nonblank character in the preceding line.

COMMENT LINES

Comment lines can appear anywhere in the source program
after the Identification Division header. A comment line is
designated by entering an asterisk or a slash in the
Indicator Area. An asterisk causes the line to be printed in
the source program listing immediately following the
preceding line. A slash causes page ejection before the
line is printed. All characters in Area A and Area B are
considered to be a comment line and are printed on the
output listing.

2-5



PROGRAM TEXT REPLACEMENT

Source program text can be replaced anywhere in the
COBOL 5 source program by using the REPLACE
statement. Two contiguous equal signs are used to delimit
pseudo-test.

REPLACE ==TEST== BY ==TEST-AMT==,

This statement replaces the characters TEST with the
characters TEST-AMT, from the point at which the

statement is used, until either the end of the program or
until REPLACE OFF is encountered. TEST appears in the
source listing but the COBOL compiler uses TEST-AMT
instead. New reserved words can be replaced in this
manner to avoid diagnostics.

All REPLACE statements are processed by the compiler
after all COPY statements (see section 12) have been
processed; the program is then checked for syntactical
correctness.

60497200 C



FILE PROCESSING 3

—

Most data items used during execution of a COBOL 5
program are contained in files. The structure of a file as
specified in the source program determines the type of
device on which the file can reside, the organization of
records within the file, and the method used to input and
output records in the file.

COBOL 5 files can reside on magnetic tape or on mass
storage devices; card and' line printer files are mass
storage files. Records are positioned in a file sequentially
or according to a specified key. Depending on the file
organization, the access mode can be sequential, random,
or dynamic. Dynamic access allows records to be accessed
sequentially as well as randomly during program execution.

Six different file organizations are available for COBOL 5
files: sequential, relative, indexed, direct, actual-key, and
word-address, Records in all file organizations except
sequential are stored according to a primary key value.
The description of the file and the format of the
statements used to manipulate the file depend on the file
organization selected. File organization is established
when the file is created and remains the same as long as
the file exists.

Indexed, direct, and actual-key file organizations can be of
two types: extended or initial. Extended file organizations
are more efficient and are the COBOL default. All
references to indexed, direct, and actual-key files in this
section imply extended file organization unless otherwise
stated.

Alternate keys can be defined for a file with indexed,
direct, or actual-key organization. Alternate Kkey
processing allows records to be accessed by any one of
several key fields. An index of the alternate keys is
automatically created and maintained on an alternate key
index file that is separate from the data file. Alternate
keys can be included in the index file or omitted from it,
depending on conditions specified when the keys are
defined.

A file can be declared an External file. This allows the file
to be shared by programs in the same run unit. External
files are discussed in section 10, Subprogram Interface.

Data base files, which are accessed through the CYBER
Database Control System (CDCS), can be processed by a
COBOL. 5 program. The files are described in a subschema
instead of in the COBOL 5 program. Data base file
processing is discussed in section 14, CDCS Interface.

Errors and exception conditions encountered during file
processing can be handled in several different ways.
Special procedures can be specified in the COBOL 5
program; other procedures are performed automatically by
the system.

File processing is described in this section for each of the
six file organizations. The definition of a file and the use
‘of the applicable input/output statements are discussed
separately for each file organization. The user of this
section can refer to a specific file organization for
information related to file definition and file

60497200 £

manipulation. More detailed information on the interface
with CYBER Record Manager is in section 15.

ALTERNATE KEY PROCESSING

File processing can be greatly enhanced by the use of
alternate keys. This capability is provided for files with
indexed, direct, and actual-key organizations. Alternate
keys allow records in the file to be accessed by various
keys. As many as 255 alternate keys can be defined for a
file.

CREATING ALTERNATE KEYS

Alternate keys are defined when the file is being created.
An ALTERNATE RECORD KEY clause is included in the
FILE-CONTROL paragraph for each alternate key.
Alternate key fields are described in a Record Description
entry for the file. Alternate key fields can overlap and can
differ in length. An alternate key field can begin in the
same location as the primary key field or any other
alternate key field; however, overlapping keys must not be
the same length. The location and description of alternate
key fields must remain the same for the life of the file.

A data item described with the OCCURS clause can be an
alternate key field. This type of field is called a repeating
group, whether or not the data item is a group item.
Specifying a repeating group as an alternate key field
allows a record to have more than one value for the
alternate key. Each unique occurrence of the alternate
key provides a value by which the record can be accessed.

When the data file is being created, index entries are
automatically generated by Advanced Access Methods
(AAM) for each alternate key. An alternate key value is
included or excluded from the alternate key index file
depending on conditions specified by the USE or OMITTED
phrase in the ALTERNATE RECORD KEY clause.
Specifying one of these phrases allows an alternate key
value to be included in the index file or omitted from it on
the basis of a code value contained in the record. Keys
that have some values of little or no interest (sparse keys)
can be ignored.

The index file is specified in the ASSIGN clause for the
data file. The appearance of two file names in the ASSIGN
clause indicates an alternate key file, as shown in the
following statement:

SELECT CUSTOMERS ASSIGN TO CSTMRS, CSTINDX.

Whenever the data file TSTMRS is updated, the index file
CSTINDX is automatically updated by AAM. The index file
is a mass storage permanent file that must be preserved
between jobs. It must be made available to a job that
updates the data file or reads the data file by alternate key.

The index for an alternate key contains an entry for each
alternate key value encountered as records are written on
the data file. The entries for the alternate key are
maintained in sorted order by AAM. Each alternate key
entry contains the primary key values associated with that
alternate key value.

3-1



When the alternate key is a repeating group, the primary
key value for a record is associated with each occurrence
of the alternate key data item. If duplicate alternate key
values are not allowed, only one primary key value is
associated with an alternate key value. The structure of
the index file is illustrated in figure 3-1.

Alternate-key-1

Alternate-key-value-1

Primary-key-value-1 All primary
Primary-key-value-2 keys with
: alternate-
Primary-key-value-n ) key-value-1
Alternate-key-value-2
Primary-key-value-1 Al primary
Primary—key-value-2 keys with
: alternate-
Primary—key-value-n ) key-value-2
Alternate-key-value-3
Primary-key-value-1 All primary
Primary-key-value-2 keys with
: alternate-
key-value-3

Primary-key-value-n

Alternate-key-n

Alternate-key-value-1
Primary-key-value-1
Primary-key-value-2

see

Figure 3-1. Structure of the Alternate Key Index File

The order of primary key values in an alternate key entry
depends on whether or not the ASCENDING option is
included in the DUPLICATES phrase of the ALTERNATE
RECORD KEY clause. If ASCENDING is specified, the
primary key values are maintained in ascending sequence
(indexed). If ASCENDING is omitted, the primary key
values are maintained in the order in which the records are
written (FIFO).

ESTABLISHING THE KEY OF REFERENCE

For indexed, direct, and actual-key files, records are
accessed according to the current value of the key of
reference. The key of reference can be the primary key or
an alternate key. An alternate key is established as the
key of reference by executing either a START statement
or a random READ statement. The key of reference
remains the same until another START statement, a
random READ statement, or an OPEN statement is
executed.

The START statement is used to position the file to a
record that satisfies a specific condition. The file can then
be processed sequentially from that position. An alternate
key is established as the key of reference by specifying

either an alternate key or the leading portion of an
alternate key in the START statement. The alternate key
index is searched for the alternate key value that satisfies
the specified condition.- Sequential processing then
retrieves records in order by alternate key value. This
allows records to be accessed in alternate key sequence
beginning with any desired alternate key value. For
example, an employee file with the date hired field defined
as an alternate key can be positioned such that the records
subsequently accessed are those for employees hired after
a certain date; the records retrieved are in sequence by
alternate key value. The START statement is described in
more detail in the paragraphs related to the specific file
organizations.

A random READ statement can be used to establish an
alternate key as the key of reference. The KEY IS phrase
of the READ statement specifies the alternate key. When
the statement is executed, the alternate key index is
searched for a value equal to the current value of the key
of reference (the alternate key data item); the record
retrieved is the record with the first primary key
associated with the alternate key value. Sequential READ
statements can then be executed to access records with
the same alternate key value or in sequence by alternate
key value.

ACCESSING BY ALTERNATE KEY

Records can be read sequentially or randomly by alternate
key. The key of reference is established as an alternate
key before the record is accessed. When duplicate
alternate key values are allowed, the specific record
retrieved depends on the order of primary key values in the
alternate key index. The order is determined by the
ASCENDING option.

When the ASCENDING option is not specified for duplicate
alternate keys, records with duplicate alternate key values
are retrieved in the same chronological order they were
written on the file (first in, first out). When the
ASCENDING option is specified, records with duplicate
alternate key values are retrieved in ascending sequence of
primary key values. Access by alternate key is
considerably more efficient when primary key values are in
ascending sequence; therefore, the ASCENDING option
should be specified in the DUPLICATES phrase unless
chronological sequence is required for the application.

When the USE phrase or OMITTED phrase is specified for
an alternate key, only those records with keys satisfying
the condition specified in the phrase are retrieved. For
example, when the following clauses are specified, key
values equal to zero are not included in the index.

ALTERNATE RECORD KEY IS DAYS-DQ
OMITTED WHEN DAYS-DQ IS ZERO.

Similarly, particular values that are rare or of no concern
(sparse keys) can be excluded as illustrated in the following
clauses: . ’

ALTERNATE RECORD KEY IS EVENODD
OMITTED WHEN EVENODD CONTAINS
CHARACTER FROM "13579".

In this example, records are not to be indexed when the
EVENODD value is 1, 3, 5, 7, or 9. :

60497200 C



Random access by alternate key retrieves the first record
(chronologically or sequentially) for the alternate key
value. Additional records with the same alternate key
value can then be accessed by executing sequential READ
statements. When all records with the same alternate key
value have been read, the next sequential READ statement
retrieves the first record for the next alternate key value
in the index file. The final occurrence of a particular
alternate key value can be detected through the status
code returned in the FILE STATUS clause by testing for a
code value of 02.

SEQUENTIAL FILE ORGANIZATION

Records are read and written in sequence when the file
organization is sequential. The position of each record in
the file determines the order of access. Records can only
be written following the last record in the file. Sequential
file organization is most effective for files that are
normally read from beginning to end.

Magnetic tape, punched card, and line printer files must
have sequential organization. Other mass storage files can
have sequential organization if desired. Keys are not used
for sequential file organization; the file can only be
accessed sequentially.

FILE DEFINITION

The structure of a file with sequential organization is
described through the FILE-CONTROL paragraph in the
Environment Division and the File Description and Record
Description entries in the Data Division.

FILE-CONTROL Paragraph

For sequential file organization, the FILE-CONTROL
paragraph requires two clauses: SELECT and ASSIGN.
Five optional clauses can be included in this paragraph.
Refer to figure 3-2,

. Required Clauses

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE~-CONTROL.

SELECT CUSTOMER-FILE ASSIGN TO CSTMER

ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL
RESERVE 2 AREAS
FILE STATUS IS FILE-CODE
USE "RT=Z".

Figure 3-2. FILE-CONTROL Paragraph for a Sequential File

The SELECT clause specifies the file-name used by the
COBOL 5 program; the same file-name is referenced in a
File Description entry. The ASSIGN clause associates the
program file-name with a logical file name that is used by
the operating system. If the logical file name duplicates a
name used in the program or a reserved word, with the
exception of the words INPUT and OUTPUT, it must be
enclosed in quotation marks.

The ORGANIZATION clause and the ACCESS MODE clause
can be specified in the FILE-CONTROL. paragraph for a

60497200 D

sequential file. These clauses, if included, must specify
SEQUENTIAL; this is the default value for both clauses.

The RESERVE clause is included to specify the number of
input/output areas to be used for file buffers. If the clause
is not specified, five input/output areas are allocated. In
many cases, performance can be improved significantly
when the RESERVE clause is used. The size of each
input/output area is the maximum block size.

The FILE STATUS clause names a data item that is used to
receive a status code whenever an input/output statement
is executed. The value of the status code indicates
whether or not the statement executed successfully. The
status code is discussed further in section 15.

The USE clause supplies file information used by Basic
Access Methads (BAM) to process the file. Certain FILE
control statement parameters can be specified in the USE
clause. These parameters supply file information that
cannot be specified through the clauses and statements in
the source program, or they override parameter values
normally obtained from the source program. Refer to
section 15 for a complete list of the parameters that can
be specified.

One additional parameter can be included in the USE
clause for a sequential file. A file that is not assigned to
OUTPUT in the ASSIGN clause can be designated as a print
file by specifying USE "PRINTF=YES". When this
parameter is specified, the user program does not supply a
carriage control character as the first character in the
record area. line spacing can be established with the
BEFORE/AFTER ADVANCING phrase of the WRITE
statement. If this phrase is not specified, all lines are
single spaced.

A FILE-CONTROL paragraph for a file with sequential
organization is illustrated in figure 3-2. The file-name
CUSTOMER-FILE is used within the COBOL 5 program to
reference the file; the logical file name recognized by the
operating system is CSTMER. The ORGANIZATION and
ACCESS MODE clauses are included for documentary
purposes.

File Description Entry

A sequential file named in a SELECT clause must be
defined by a File Description entry (FD entry) in the File
Section of the Data Division. The FD entry defines the
structure of the file, the manner in which data is stored,
and tape labeling conventions. Six clauses in the FD entry
are applicable to sequential file organization. Refer to
figure 3-3. :

The BLOCK CONTAINS clause is used to determine the
block type and block size for a sequential file that is on a
tape with S or L format. Table 3-1 shows the various block
types and block sizes that result from the BLOCK
CONTAINS clause for a tape with S or L format. For other
sequential files, the block type is always block type C; the
block size is determined as follows:

e On a mass storage device, block size is 640 characters.

e On a tape with SI or 1 format, block size is one
physical record unit (PRU). PRU device sizes are:

Binary SI tapes - 5120 characters
1 tapes - 5120 characters (supported on NOS only)

Coded SI tapes - 1280 characters (supported on
NOS/BE only)

3-3



DATA DIVISION.
FILE SECTION.
FD CUSTOMER-FILE

CODE-SET IS UNI

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS "CF123"

BLOCK CONTAINS 10 RECORDS

RECORD VARYING FROM 60 TO 100 CHARACTERS
DEPENDING ON REC-LENGTH

RECORDING MODE IS DECIMAL
DATA RECORD IS CUSTOMER-REC.

Figure 3-3. File Description Entry for a Sequential File

TABLE 3-1. BLOCK TYPE AND SIZE FOR S AND L TAPE FILES
Block s oot
BLOCK CONTAINS Clause Type Block Size
Omitted K Number of characters in one record; number varies
as actual record lengths vary
BLOCK CONTAINS integer RECORDS K Number of characters in the specified number of
records; number varies as actual record lengths
vary
BLOCK CONTAINS integer TO integer RECORDS E Number of characters within the range first integer
times minimum record size and second integer times
maximum record size; maximum number of records
within the specified range, not exceeding maximum
block size
BLOCK CONTAINS integer CHARACTERS E Specified number of characters
BLOCK CONTAINS integer TO integer CHARACTERS E Number of characters within the specified range;
maximum number of records without exceeding maximum
block size

character.

"Block types K and E always have an even number of characters; if necessary, the system adds a padding

The CODE-SET clause is applicable primarily to tape and
card files. The clause indicates that the data in the file is
to be read or written according to the external alphabet
named in the ALPHABET clause of the Environment
Division. This allows information from  another
manufacturer's system to be processed in correspondence
with the internal display code of the CDC system. The
conversion parameter on the LABEL statement (CV on NOS
or N on NOS/BE) overrides any external alphabet named in
the ALPHABET clause.

The LABEL RECORDS clause must be specified in every
FD entry. It indicates whether or not labels exist on the
file. Labels can be specified only for magnetic tape files.
When labels exist, values can be specified for certain fields
in the label record. For an input file, values specified in
the FD entry are checked against the values in the label
fields. For an output file, values specified in the FD entry
are placed in the label fields.

The RECORD clause specifies the number of characters in
arecord. If all records in the file are not the same length,
this clause indicates the least number of characters and
the most number of characters a record can contain. The
information supplied in the RECORD clause is used to
determine the record type and record size for input/output
processing by BAM. If the clause is omitted, record type
and size are determined by the Record Description entry.
Table 3-2 lists the record type for each format of the
RECORD clause. Refer to table 4-2 in section 4 of the
COBOL. 5 reference manual for record size information.

The RECORDING MODE clause is applicable only to tape
files. It specifies whether the tape file is recorded in
binary or decimal code. Conversion between internal and

external code sets occurs when the recording mode is
decimal. : )

60497200 D



TABLE 3-2. RECORD TYPES FOR SQ, IS, DA AND AK FILES

RECORD DESCRIPTION ENTRY

R?EgkgngtA¥SE 01 Entries 01 Entries Entry with Entry with

y of of OCCURS/DEPENDING ON OCCURS/DEPENDING ON
Same Length Different Length data-name in record data-name not in record

Clause omitted F W T W

RECORD CONTAINS integer +

CHARACTERS F F F F

RECORD CONTAINS :

integer-1 TO integer-2 W W T W

CHARACTERS

RECORD CONTAINS

integer-1 TO integer-2 D D D D

CHARACTERS DEPENDING ON

data-name in record

RECORD CONTAINS

integer-1 TO integer-2 W W W W

CHARACTERS DEPENDING ON

data-name outside record

respective record type.

TRecord type is Z if file name is INPUT, OUTPUT, or PUNCH.
Note: For each RECORD CONTAINS format, an equivalent RECORD VARYING format exists, giving the same

RECORDING MODE IS DECIMAL causes the CM field of
the FIT to be set to YES. RECORDING MODE IS BINARY
causes the CM field of the FIT to be set to NO (no
conversion occurs). For ASCIl and EBCDIC conversions the
tape driver makes the conversion only when the CM field in
the FIT contains YES. (YES is the COBOL default). For
7-track UNIVAC conversions, the COBOL library -makes
the conversion.

If the RECORDING MODE clause is omitted, conversion is
assumed (except for block-I-type-W records).

The terms CM=YES, RECORDING MODE IS DECIMAL., and
coded tapes with even parity (7 track) are equivalent.
Likewise, the terms CM=NO, RECORDING MODE IS
BINARY, and binary tapes with odd parity (7 or 9 track)
are equivalent.

Figure 3-3.1 illustrates a COBOL program that converts an
IBM EBCDIC tape to CDC display code, on the NOS
operating system. In this program, the ALPHABET clause
and the CODE-SET clause are documentary only. The
CV=EB parameter on the LABEL statment overrides the
COBOL statements and causes the conversion.

The LINAGE clause can be specified for a file that is to be
printed. It indicates the number of lines on a logical page
and can_optionally define the top margin and footing area
within the page. When the LINAGE clause is included in
the FD entry, the ADVANCING and AT END-OF-PAGE
phrases of the WRITE statement can be used to position
print lines within the boundaries of the logical page. The
value of the special register LINAGE-COUNTER indicates
the current line number. The LINAGE clause cannot be
specified for a report file generated through the Report
Writer feature.

60497200 D

A File Description entry for a tape file is illustrated in
figure 3-3. The file contains a standard label. If it is an
input file, the operating system issues a diagnostic message
and terminates the job if the FILE-ID field of the LABELS
RECORDS clause does not agree with the file-id set by the
file identifier (FI) parameter of the NOS LABEL control
statement. The usage of the FILE-ID field is not required.

The block type for the tape file is K and each block
contains 10 records; the actual length of the block can be
from 600 to 1000 characters, depending on the actual size
of each record. The record type is D and each record
contains from 60 to 100 characters; the value of the data
item REC-LENGTH, which is contained within the record,
specifies the actual size of the individual record. The
recording mode for the tape file is decimal. The DATA
RECORD clause is included for documentary purposes only;
it indicates that all records in the file are formatted
according to the Record Description entry for the record
named CUSTOMER-REC.

Record Description Entry

The File Description entry must include one Record
Description entry for each record format applicable to the
sequential file. A Record Description entry describes the
physical structure of a record and provides data-names
that are used to access specific data items within the
record. Records in sequential files can be either fixed

length or variable length.

When the RECORD clause is not included in the FD entry,
record type and record size are determined from the
Record Description entries for the file. Variable-length
records can be described with an OCCURS clause that
includes the DEPENDING ON option.

3-5



Control Statements (NOS)

JOB Statement

USER Statement .
LABEL,EB1,R,D=PE,F=S,PO=RM,CV=EB,VSN=XXXXX
COBOLS5.

LGO.

Source Program

IDENTIFICATION DIVISION.
PROGRAM-ID. TAPTST.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
ALPHABET IBM-CODE IS EBCDIC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT REFORMAT-FILE ASSIGN TO "EB1“;
USE "RT=S,BT=C,EO0=AD,EFC=3",
SELECT CUSTOMER-FILE ASSIGN TO "CSTMER";
USE "“RT=Z,BT=C,E0=AD,EFC=3",
DATA DIVISION.
"FILE SECTION.
FD REFORMAT-FILE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 107 CHARACTERS;
CODE-SET IS IBM-CODE;
RECORDING MODE IS DECIMAL;
DATA RECORD IS CUSTOMER-REC1.
01 CUSTOMER-REC1.
02 REC-1 PIC X(80).
FD CUSTOMER-FILE N .
LABEL RECORDS ARE OMITTED
DATA RECORD IS CUSTOMER-REC2.
01 CUSTOMER-REC2.
02 REC-2 PIC X(80).
PROCEDURE DIVISION.
OPENING.
OPEN INPUT REFORMAT-FILE .
OPEN OUTPUT CUSTOMER-FILE.
PERFORM 26 TIMES )
READ REFORMAT-FILE
WRITE CUSTOMER~REC2 FROM CUSTOMER-REC1
END-PERFORM
PERFORM WRAPUP.

WRAPUP.
CLOSE REFORMAT-FILE, CUSTOMER-FILE.
STOP RUN.

3-6

Figure 3-3.1. IBM EBCDIC Tape Conversion (Sheet 1 of 2)

60497200 E



Converted File

S358244038ADAMS BARBARA 220070900141409
S570327591BURCHELL DONALD 2200706701522019
S4634L45549CLEVELAND WILLIAM 22N0N070200170500
S207243050DAVIES DAVID 220073519219000
S571649574ELLIS ALAN F220070680081500
S562460661FERRERA ROBERT 220970060137100
S148169725GRAME CARL 220070800195000
S566208909HARVEY LAURENCE E220079450383500
$1322462431IMMITT SALVATOREJ2200706902904300
$572548172JENSEN HOWARD M220070070091250
S576246405KANE DAVID H220071190146999
S087222701LEAVITT MURRAY 220079640175700
S359304744MILTON JOHN 221070220079200
S551482673NEWTON PAULINE 220070410068550
S$5643883520"DONNELL DANIEL J220070630159800
S550429831PETERSON DENNIS 2209708207787090
S091403215QUEENSBURY TATIANA 22N00704002449590
S545014985ROKITIANSKY N 220070410280359
$384186384S0WYL JEROME 220070630225600
$571202817TREJO PAUL 220070090202250
S568283442UTTERBACH WILLIAM 220070270075300
$567451439VAN FOSSEN, L220970751365950
$555244713WILLEY GEORGE 220070720185800
$548546977XANDTHRUS ROGER 2210702560135500
$293305616YDLLES ROBERT 229070870044500
$568462813Z0FFMAN NORMA B220079622035850
Figure 3-3.1. 1BM EBCDIC Tape Conversion (Sheet 2 of 2)

A Record Description entry for a mass storage file with
sequential organization is illustrated in figure 3-4. The
record type, determined from the Record Description
entry, is record type T. All records in the file contain at
least 70 characters (60 characters in the fixed portion and
10 characters in one item in the trailing portion). The
maximum record size is 210 characters (60 characters in
the fixed portion and 10 characters in each of 15 items in
the trailing portion).

FILE MANIPULATION

Sequential files are processed through the use of five
Procedure Division statements. Records can be added at
the end of an existing sequential file; if the file resides on
a mass storage device, records can also be rewritten.
Individual data items in a record are processed by various
statements that are discussed in other sections of this
guide.

Opening Sequential Files

Before records in a sequential file can be input or output,
the file must be opened by the execution of an OPEN
statement. Any sequential file can be opened for input or
for output. A mass storage sequential file can also be
opened for input and output.

An input file is opened with the OPEN INPUT statement.
The file is available for read-only processing. If the file
contains a label, label checking is performed. The file is
positioned at the first record unless the file resides on the
file INPUT or unless the REVERSED or NO REWIND phrase
is specified in the OPEN statement. Records in the file
can then be read in sequence until the end of the file is
reached.

60497200 D

ENVIRONMENT DIVISION.

SELECT INVOICES ASSIGN TO INVFLE.

DATA DIVISION.
FILE SECTION.
FD - INVOICES

LABEL RECORDS ARE OMITTED
DATA RECORD IS INVOICE-REC.

01 INVOICE-REC.
03 CUST-NAME
03 CUST-ADDRESS.

05 STREET
05 CITY
05 STATE
05 z1p

03 NUM-ITEMS

PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

03 ITEMS-ORDERED OCCURS 1 TO
DEPENDING ON NUM-ITEMS.

05 ITEM-NO
05 QUANTITY
05 CosT

PICTURE
PICTURE

PICTURE 999v99.

X(18)

X(18)
X(15)
AA.
9(5).
99.
15 T1

XXX.
99.

MES

Figure 3-4. Record Description Entry

for a Sequential File

3-6.10.



OPEN INPUT CUSTOMER-FILE.

Execution of this statement opens the file
CUSTOMER-FILE for input and positions the file at the
first record. Records can be read from the file but cannot
be written on it.

For a tape file that is contained on a single reel, the
REVERSED phrase can be included in the OPEN INPUT
statement. This phrase causes the file to be positioned at
its end; records are then read in sequence from the end to
the beginning. The REVERSED phrase can only be used
when the tape file records are record type F, W, R, or Z.
(Record type R or Z is specified through a FILE control
statement parameter or in the USE clause.) For record
type F, record length must be a multiple of 10 characters.
Reading a tape file from the end to the beginning results in
inefficient processing.

When the NO REWIND phrase is included in the OPEN
INPUT statement, the file is opened at its present
position. If this phrase is not specified, the file is rewound
during execution of the OPEN statement.

The OPEN OUTPUT statement is specified when a new
sequential file is being created. When this statement is
executed, the file is available for write-only processing. If
the LABEL RECORDS ARE STANDARD clause is specified
for a tape file, the beginning label is written on the file;
the file is then positioned immediately after the label.
Records are written in sequence on the file. When the last
record has been written, an ending label (if applicable) is
written on the file.

OPEN OUTPUT INVENTORY-FILE.

Execution of this statement causes the file
INVENTORY-FILE to be opened for output. If a label has
been specified for the file, the label is written. Records
are then written on the file in sequence.

I 3-6.2

The NO REWIND phrase can be included in the OPEN
OUTPUT statement to open the file at its present
position. This phrase is normally used to open an output
file that has already been  closed during program
execution. When records are subsequently read from the
file, an end-of-file condition is encountered at the point
where the CLOSE statement was executed.

When records are to be added at the end of an existing
sequential file, the OPEN EXTEND statement is specified.
If the file contains labels, the labels are checked. The file
is positioned immediately after the last record in the file.
Records are then written following the last record. When
the file is subsequently opened for input, no distinction
exists between the records originally written and the
extended records. When a file is created through a COPY
control statement, the OPEN EXTEND statement causes it
to be positioned after an end-of-file condition.

OPEN EXTEND INVENTORY-FILE.

The existing file INVENTORY-FILE is opened for output
and the file is positioned immediately following the last
record in the file. Records are then written in sequence on
the file.

When more than one tape file is contained on a single reel
or on a set of reels, only one of the files can be open at any
given time. The files can be opened in any order when they
are opened for input. When a file is opened for output
(OPEN OUTPUT or OPEN EXTEND), the position number
of the file being written must be higher than that of any
existing files in the set. Once a file is opened for output,
any subsequent WRITE statements for the file destroy all
files positioned after the one being written.

When a file to be opened is contained in a multifile set,
that file must be specified in the MULTIPLE FILE TAPE
clause of the I-O-CONTROL paragraph. Refer to the
COBOL 5 reference manual for the format and usage of
this clause.

60497200 D



A mass storage sequential file is opened for input and
output by the OPEN I-O statement. When this statement is
executed, the file is available for reading or updating
records. Records: can be read or updated (through the
REWRITE statement) in sequence. The OPEN I-O
statement should only be used when the file is being
updated.

OPENI-O INVOICE-FILE.

The file INVOICE-FILE is a mass storage file and is opened
for both input and output. Records can be read from or
rewritten on the file. No additional records can be written
on this file.

Writing Sequential Files

The WRITE statement is used to write a record on a
sequential file that has been opened with the OPEN
OUTPUT or OPEN EXTEND statement. Three optional
phrases can be included in a WRITE statement for a
sequential file.

If the output file is not a print file, only the FROM phrase
is applicable. This phrase causes the data in the specified
area to be moved into the output record area and the
record to be written on the output file.

WRITE OUT-REC FROM TEMP-REC.

This statement causes the data in the storage area named
TEMP-REC to be moved to the output record area
OUT-REC. The output record is then written on its
associated file.

The ADVANCING phrase specifies print line positioning
before or after the output record is printed. A number of
lines to be skipped before or after printing can be specified
by either an integer or a data item that contains an
integer. If the integer is 1, the print line is single spaced.

WRITE PRINTLINE
BEFORE ADVANCING 3 LINES.

The data in the output record PRINTLINE is written on the
output file. The next record written on the output file
contains a carriage control character that causes the line
printer to advance, or skip ahead, three lines before the
record is printed.

The keyword PAGE can be specified in the ADVANCING
phrase to position the output to the top of the next page,
either for the present line or for the next line to be
printed. If the FD entry for the file contains the LINAGE
clause, the output is positioned to the top of the next
logical page; otherwise the output is positioned at the top
of the physical page (if a physical page concept exists).

WRITE PRINTLINE
AFTER ADVANCING PAGE.

Execution of this statement causes the record to be
written as the first line of the next page.

A  mnemonic-name can also be specified in the
ADVANCING phrase to insert a carriage control character
as the first character of the output record.
Mnemonic-name is defined in the SPECIAL-NAMES
paragraph as one of the carriage control characters
recognized by the operating system. If the file is defined

60497200 C

with the LINAGE clause, a mnemonic-name cannot be
specified for line positioning.

WRITE PRINTLINE
BEFORE ADV ANCING TRIPLE.

The mnemonic-name is defined in the SPECIAL-NAMES
paragraph as "-" IS TRIPLE. The PRINTLINE record is
written on the output file and a hyphen is inserted as the
first character of the next record to be written.

When a WRITE statement without the ADV ANCING phrase
is ~executed following a WRITE statement with the
ADVANCING phrase (with no intervening OPEN
statement), the output record is written after advancing
one line if the first character of the line is a blank. If the
first character of the output record is a nonblank
character, the record is written according to the rules for
AFTER ADV ANCING.

The END-OF -PAGE phrase is only applicable to a print file
that includes the LINAGE clause in the FD entry for the
file. This phrase causes execution of an imperative
statement when the end of the page is reached. The
END-OF -PAGE phrase is described in more detail in
section 5, Conditional Operations.

Reading Sequential Files

Once a sequential file has been opened for input (OPEN
INPUT or OPEN I-0), individual records in the file are
made available to the COBOL program by -the READ
statement. Records are read in the sequence in which they
were written. The AT END phrase is included in the READ
statement to specify the action to be taken after the last
record has been read.

READ INVENTORY-FILE RECORD
AT END GO TO END-IT.

When this statement is executed, a record is read from the
file INVENTORY-FILE. Control is transferred to the
paragraph named END-IT when the end of the file is
reached.

The INTO phrase of the READ statement causes the record
to be read from the file and stored in a specified area. The
record is available in both the input record area and the
specified storage area. When the file is defined by more
than one Record Description entry, the INTO phrase cannot
be used if any entry is a level 01 elementary item that is
described as a numeric or numeric-edited data item.

READ INVOICE-FILE RECORD INTO TEMP-REC
AT END GO TO CLOSING.

Each time this statement is executed, a record from the
file INVOICE-FILE is read and is stored in both the input
record area and the storage area designated TEMP-REC.
When the end of the file is reached, control is transferred
to the paragraph named CLOSING.

Updating Sequential Files

Existing sequential mass storage files can be updated by
using the REWRITE statement to replace an existing record
in the file. Only files with record type F (fixed length) or
W (control word) can be rewritten. The file must be open
for input and output (OPEN I-O). Tape files cannot be
updated by the REWRITE statement. Rewriting records
does not result in efficient processing and should be
avoided when possible.

3-7



The record replaced is the last record read before the
REWRITE statement is executed. The new record must
contain the same number of characters as the record being
replaced. After the record has been read, individual data
items can be changed by program statements. The updated
record is then written in place of the original record.

REWRITE CUSTOMER-REC.

The current data in the record area for the file is written
in place of the last CUSTOMER-REC record read from the
file.

The FROM phrase is included in the REWRITE statement
when the new record is created in a storage area that is
not the record area for the file. The storage area must be
the same size as the record area.

REWRITE CUSTOMER-REC FROM TEMP-REC.

The data in the storage area TEMP-REC is moved to the
record area for CUSTOMER-REC. The record is then
written in place of the last record read from the file.

Closing Sequential Files

A sequential file that has been opened for processing is
closed by the CLOSE statement to terminate processing of
the file. When a CLOSE statement is executed for a file,
no input/output statement can reference that file until it
has been opened again.

The simplest form of the CLOSE statement specifies only
the file-name. The file is closed and labels are processed
as appropriate.

CLOSE INVENTORY-FILE.

The file INVENTORY-FILE is rewound and closed. If the
file has labels, the labels are checked for an input file or
written for an output file. No subsequent input/output
statement can access INVENTORY-FILE unless the file is
reopened.

When the REEL (or UNIT) phrase is included in the CLOSE
statement, a checkpoint takes place if the RERUN EVERY
END OF REEL clause is specified in the I-O-CONTROL
paragraph. For a mass storage file, no further action takes
place; for a tape file, processing stops on the current reel
and resumes on the next reel.

CLOSE INVENTORY-FILE REEL
WITH NO REWIND.

A checkpoint takes place if established for the end of a
reel; processing resumes with the next reel. The WITH NO
REWIND phrase inhibits the rewinding that normally takes
place during processing of the CLOSE statement.

The WITH LOCK phrase is included in the CLOSE
statement to prevent the file from being reopened during
execution of the current job step. The file is returned to
the system. If an attempt is made to reopen the file, the
program aborts.

When the file being closed is to be reopened immediately,
the C.FILE routine should be entered to override the
default COBOL setting of the CF field in the file
information table (FIT). If the value in the CF field is
changed from DET (the default) to R prior to the close,
buffer space and BAM capsules that would otherwise be

3-8

returned to the system are retained by the program. User
setting of the CF field is overridden if the REEL phrase or
WITH LOCK phrase is included in the CLOSE statement.

ENTER "C.FILE" USING INVENTORY-FILE,"CF=R".
CLOSE INVENTORY-FILE.

The CF field of the FIT for the file INVENTORY-FILE is
altered to contain the R option, and the file is closed.

RELATIVE FILE ORGANIZATION

A relative file is a mass storage file in which a record key
specifies the physical position of a record within the file.
Record position is relative to the first record in the file.
The key value for the first record is 1, for the second
record is 2, and so forth. All records in the file are fixed
length; if the file has multiple record descriptions of
different lengths, the length of the largest record is the
length used for all records. The access mode for a relative
file can be sequential, random, or dynamic.

Relative file organization can be effectively used for files
needing rapid access. Key values should be contiguous
beginning with key value 1. Space exists on the file for
unused key values. If the first record written on the file
has a key value of 100, the file is created with 99 empty
entries preceding the record with key value 100.

FILE DEFINITION

The FILE-CONTROL paragraph in the Environment
Division, as well as the File Description and Record
Description entries in the Data Division, describe the
structure of a file with relative organization.

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph for a file with relative
organization must include three clauses: SELECT,
ASSIGN, and ORGANIZATION. Five optional clauses can
be included in this paragraph as needed. Refer to
figure 3-5.

- Required Clauses

ENVIRONMENT DIVISION.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT BOX-FILE ASSIGN TO BOXFLE
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS REL-KEY.

Figure 3-5. FILE-CONTROL Paragraph for a Relative File

The file-name used by the program is specified in the
SELECT clause; the logical file name recognized by the
operating system is specified in the ASSIGN clause. If the
logical file name is the same as any other name used in the
program or as a reserved word, with the exception of
INPUT and OUPUT, it must be enclosed in quotation
marks. The ORGANIZATION clause must specify
RELATIVE for arelative file.

60497200 C



The ACCESS MODE clause establishes the manner in which
records can be processed during program execution. If
SEQUENTIAL is specified or if the clause is omitted,
records can only be processed sequentially; for a read
operation, empty record entries in the file are bypassed.
Records are processed randomly according to key value
when RANDOM is specified. If DYNAMIC is specified,
records can be processed both randomly by key value and
sequentially by position during program execution.

The key value used to access records randomly is contained
in the data item specified in the RELATIVE KEY clause.
This clause must be included when the access mode is
random or dynamic; it is required for sequential access
only if the START statement is used to position the file for
subsequent processing. The relative key data item cannot
be a data item contained in the record. When the
RELATIVE KEY clause is specified, it must immediately
follow the ACCESS MODE clause. If the file is an External
file, the relative key data item must be defined in the
Common-Storage Section.

The number of input/output buffer areas can be increased
by the RESERVE clause. Each input/output area is 64
words. When the file is processed sequentially, additional
buffer areas can improve program performance because
more records can be stored in memory at one time and the
number of accesses is reduced. For random processing,
however, the RESERVE clause should not be specified. If
the clause is omitted, two buffer areas are reserved.

The FILE STATUS clause is specified to make a status code
available to the program whenever an input/output
statement is executed for the file. The status code is a
value that designates successful or unsuccessful execution
of the statement. The value further identifies the type of
error that prevented the statement from executing. Refer
to section 15 for a description of the status code.

File information used by BAM can be specified in the USE
clause. Certain FILE control statement parameters can be
specified to override file information obtained from the
source program or to provide information that cannot be
obtained from the program. The parameter list is enclosed
in quotation marks and is in the same format used for the
FILE control statement. Refer to section 15 for a
complete list of parameters that can be specified.

One additional USE statement parameter can be specified
for a relative file. All records begin on a physical record
unit (PRU) boundary when PRUF=YES is specified in the
USE clause. Records are then read and written in
multiples of PRU size; PRU size is 640 characters. This
results in very efficient processing when the record size is
a multiple of PRU size minus 10 characters; COBOL adds
10 characters at the beginning of each record. If USE
"PRUF=YES" is specified, the RESERVE clause has no
effect on buffers; the record area is used as the buffer.

A FILE-CONTROL paragraph for a file with relative
organization is illustrated in figure 3-5. The COBOL 5
program uses the file-name BOX-FILE while the operating
system recognizes the file as BOXFLE. Random access is
specified for the file; therefore, Procedure Division
statements must access the file randomly by key value.
The data item REL-KEY contains the key value used for
random access.

60497200 D

File Description Entry

The structure of a relative file is defined in a File
Description entry (FD entry) in the File Section of the
Data Division. The FD entry specifies the program
file-name from the SELLECT clause. Two clauses in the FD
entry are applicable to files with relative organization.
Refer to figure 3-6.

DATA DIVISION.

FILE SECTION.

FD BOX-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 60 CHARACTERS
DATA RECORD IS BOX-REC.

Figure 3-6. File Description Entry for a Relative File

The LABEL RECORDS clause is required in every FD
entry. A relative file cannot have labels; this clause must
specify OMITTED.

All records in a relative file are fixed-length records
(record type F). The RECORD clause can be specified to
indicate the number of characters in each record. If a
range of characters is specified, the record size is the
maximum number of characters; otherwise, the record size
is the specified number of characters. If the RECORD
clause is omitted, record size is determined by the Record
Description entry.

Figure 3-6 illustrates a File Description entry for a
relative file. Each record in the file contains 60
characters. The DATA RECORD clause documents the

name of the record description for the file.

Record Description Entry

A Record Description entry is included in the File
Description entry for each record format applicable to the
relative file. All records in a relative file must be
fixed-length records. The Record Description entry
identifies each data item by a data-name and describes the
physical structure of a record.

Because all records are fixed length, the record type is
always record type F for relative files. The record size, if
not specified in the RECORD clause, is determined by the
number of character positions described in the Record
Description entry. If the File Description entry includes
more than one Record Description entry, the size of the
longest record described is the size of each record in the
file. For variable-length records, the record size of each
record is the maximum record length.

The Record Description entry shown in figure 3-7 is
applicable to the FILE-CONTROL paragraph (figure 3-5)
and the File Description entry (figure 3-6) for a relative
file. The format of the record BOX-REC describes 60
character positions, which is the number of characters
specified in the RECORD clause. Each record in the file
has a fixed length of 60 characters. The record key, which
is used to access the file randomly, is described in the
Working-Storage Section as a three-digit integer.

3-9



-

DATA DIVISION.
FILE SECTION.

01 BOX-REC.

03 CUST-NAME PICTURE X(20).

03 STREET PICTURE X(18).
03 CITY PICTURE X(15).
03 STATE PICTURE AA.

03 ZIP-CODE PICTURE 9(5).

WORKING-STORAGE SECTION.
01 REL-KEY

PICTURE 999.

Figure 3-7. Record Description Entry' for a Relative File

FILE MANIPULATION

Relative file input/output processing is specified through
seven Procedure Division statements. Once the relative
file has been created, records can be read, replaced,
deleted, inserted, and added to the file. Various
statements, which are discussed in other sections of this
guide, are available to process data items within the
records.

Opening Relative Files

A relative file is opened for input, for output, or for input
and output. The specific format of the OPEN statement
determines the open mode for the file.

A file is opened for input with the OPEN INPUT
statément. Records within the file are processed
sequentially or randomly depending on the access mode.
The OPEN INPUT statement makes the file available for
read-only processing. The file is positioned at the first
record stored in the file.

OPEN INPUT BOX-FILE.

This statement specifies that the file BOX-FILE is to be
opened for input. When the statement is executed, the file
is positioned at the first record. Records can be read from
BOX-FILE, but no record can be written on BOX-FILE,

When a relative file is being created, the OPEN OUTPUT
statement is specified for the file. Execution of this
statement makes the file available for write-only
processing. Records are written on the file sequentially or
randomly by key value.

OPEN OUTPUT REL-FILE.
When this statement is executed, the file REL-FILE is
opened for output and is positioned for the first record.

Records can then be written on the file in sequence or
randomly by key value.

3-10

The OPEN I-O statement is used to open an existing
relative file for input and output. Records in the file can
be read or updated. If the access mode is random or
dynamic, records can also be added to the file.

OPEN I-O REL-FILE.

Execution of this statement causes the file REL-FILE to be
opened for input and output. Records can subsequently be
read, deleted, and rewritten. If random or dynamic access
mode is specified for REL-FILE, records can also be
written on the file.

Writing Relative Files

Records are written on a relative file that has been opened
for output (OPEN OUTPUT for file creation or OPEN I-O
for file updating). The access mode established for the file
determines whether the records can be written sequentially
or randomly.

When the access mode is sequential, records are
automatically written in sequence. The system generates
the key values beginning with key value 1 for the first
record written on the file. As each record is written, the
key value is incremented to indicate the next record
position in the file. When a record is written, the relative
key data item, if specified, contains the key value for the
record just written. Creating a relative file by writing
records sequentially ensures that all record positions in the
file are filled.

WRITE BOX-REC.

Each time this statement is executed, a BOX-REC record
is written on its associated file. The record positions in
the file are used in sequence; no empty record positions
exist when the file is closed. )

If the access mode for the file is random or dynamic,
records are written on the file according to key values that
are supplied by the program. When the WRITE statement is
executed, the current value of the relative key data item
specifies the record position for the record being written.
An invalid key condition exists if the key value specifies a
record position that already contains a record.

WRITE REL-REC
INVALID KEY GO TO BAD-KEY.

For a relative file with random or dynamic access, this
statement causes a record (REL-REC) to be written on its
associated file in the record position corresponding to the
value of the relative key data item. If the key value is not
valid, control is transferred to the paragraph named
BAD-KEY.

The FROM phrase can be included in the WRITE statement
for either a sequential or random write operation. The
data in the specified storage area is moved to the output
record area before the record is written.

WRITE BOX-REC FROM TEMP-REC.
When this statement is executed, the data in the storage
area named TEMP-REC is moved to the output record area

for BOX-REC. The record is then written on its associated
file.

60497200 C



Positioning Relative Files

A relative file can be positioned to a specific record in the
file for subsequent sequential processing. The file must be
open for input (OPEN INPUT or OPEN I-O) and the access
mode must be either sequential or dynamic.

The START statement positions the file according to the
current value of the relative key data item. Records are
then retrieved sequentially beginning with the record at
which the file is positioned.

The KEY phrase, if included in the START statement, must
specify the relative key data item. Depending on the
relational operator selected, the file is positioned at the
record position equal to, greater than, or not less than the
current value of the relative key data item. The relational
operator NOT LESS THAN is equivalent to the equal to or
greater than condition. If the KEY phrase is not specified,
the file is positioned at the record position equal to the
value of the relative key data item.

START BOX-FILE
KEY IS EQUAL TO REL-KEY.

Execution of this statement causes the file BOX-FILE to
be positioned at the record position indicated by the value
of the relative key data item REL-KEY. Paositioning of the
file is the same whether or not the KEY phrase is specified.

The INVALID KEY phrase is included in the START
statement to indicate the action to be taken when the
specified condition cannot be satisfied by any record in the
file.

START REL-FILE
KEY IS GREATER THAN REC-NO
INVALID KEY GO TO CANT-FIND.

When this statement is executed, the file is positioned at -

the first record position following the record position
indicated by the current value of the relative key data
item REC-NO. If the value of REC-NO indicates the last
record in the file, the condition cannot be satisfied and
control is transferred to the paragraph named CANT-FIND.

Reading Relative Files

When a relative file has been opened for input (OPEN
INPUT or OPEN I-0O), the READ statement makes a record
in the file available to the COBOL 5 program for
subsequent processing. Depending on the access mode
established for the file, records are read sequentially by
position in the file or randomly by relative key value. The
format of the READ statement differs for reading
sequentially and randomly.

Accessing Sequentially

When the access mode for a relative file is established as
sequential or dynamic, records can be read sequentially.
The first time the READ statement is executed, the record
retrieved is either the first record in the file or the record
at which the file has been positioned by the START
statement. If the access mode is dynamic and a random
READ statement has been executed, the next record in
sequence is retrieved. Subsequent executions of the READ
statement cause the records to be read in the order they
appear in the file. Only records that have been written are
retrieved; empty record positions are bypassed. After a

60497200 C

successful read operation, the relative key data item, if
specified, contains the key value for the record just read.
The AT END phrase designates the action to be taken when
the last record in the file has been read.

READ BOX-FILE RECORD
AT END GO TO CLOSE-FILE.

This statement causes records to be read sequentially from
the file BOX-FILE. When the end of the file has been
reached, control is transferred to the paragraph named
CLOSE-FILE.

The INTO phrase can be included in the READ statement
to store the record in a specified storage area. The record
is then available in both the storage area and the input
record area. When the file is defined by more than one
Record Description entry, the INTO phrase cannot be used
if any entry is a level 01 elementary item that is described
as a numeric or numeric-edited data item.

READ REL-FILE RECORD INTO REC-AREA
AT END GO TO FINISHED.

When this statement is executed, the next record in
sequence in the file REL-FILE is read and stored in the
input record area and in the storage area named
REC-AREA., Control is transferred to the paragraph
named FINISHED when the end of the file has been reached.

If the access mode is dynamic, the keyword NEXT must be
included in the READ statement to access the records
sequentially. For sequential access, the keyword NEXT
only provides documentation.

READ BOX-FILE NEXT RECORD
AT END GO TO CLOSING.

Execution of this statement causes records from the file
BOX-FILE to be read in sequence. If dynamic access is
established for BOX-FILE, the keyword NEXT is required;
otherwise, NEXT is optional. When the end of the file is
reached, control is transferred to the paragraph named
CLOSING.

Accessing Randomly

Relative file records are read randomly by relative key
when the access mode is established as random. Records
can also be read randomly when the access mode is
dynamic. The value of the data item defined as the
relative key indicates the record number of the record to
be read. If the key value indicates an empty record
position or is greater than the record number of the last
record on the file, an invalid key condition exists. The
INVALID KEY phrase is included in the READ statement
to designate the action to be taken when the key value is
not valid.

READ BILL-FILE RECORD
INVALID KEY GO TO END-IT.

This statement reads a record from the file BILL-FILE
according to the value of the relative key data item. If the
key value is not valid, control is transferred to the
paragraph named END-IT.

The INTO phrase can also be included in a random access
READ statement to store the record in a specified storage
area. This phrase is executed in the same manner as for a

'sequential read operation.

3-11



Updating Relative Files

Existing relative files are updated through the DELETE and
REWRITE statements. The WRITE statement is used to
insert records in empty record positions and to add records
to the end of a file. The file must be open for input and
output (OPEN I1-0).

The DELETE statement is used to remove a record from
the file. Once a record is deleted, the record position is
considered to be an empty record position. Depending on
the access mode for the file, the record deleted is either
the last record read or the record in the record position
indicated by the current value of the relative key data
item.

When the access mode is sequential, the last input/output
statement executed before the DELETE statement must be
a valid sequential READ statement. The record retrieved
by the READ statement is then the record that is deleted.

READ REL-FILE RECORD.

DELETE REL-FILE RECORD.

Execution of this statement causes the record retrieved by
the READ statement to be deleted from the file
REL-FILE. The record can no longer be accessed from the
file.

When the access mode for the file is either random or
dynamic, the record identified by the value of the relative
key data item is the record that is deleted. The INVALID
KEY phrase is included in the DELETE statement to
specify the action to be taken when the record to be
deleted does not exist on the file.

DELETE BOX-FILE RECORD
INVALID KEY GO TO NO-RECORD.

The record in the record position identified by the relative
key data item is deleted from the file BOX-FILE, If the
designated record position does not contain a record,
contral is  transferred to the paragraph named
NO-RECORD.

The REWRITE statement is used to replace an existing
record in the file. The current data in the record area
replaces the data stored on the file. The FROM phrase is
included in the REWRITE statement when the updated
record is stored in an area other than the record area. The
data in the specified area is moved to the record area
before the record is rewritten on the file.

If the access mode is sequential, the input/output
statement preceding the REWRITE statement must be a
sequential READ statement. The record replaced is then
the last record read.

READ REL-FILE RECORD INTO TEMP-REC.
REWRITE REL-REC FROM TEMP-REC.
When the REWRITE statement is executed, the data in the
storage area TEMP-REC is moved to the record area for

REL-REC. The record read by the preceding READ
statement is then replaced by the data in the record area.

3-12

If the access mode is random or dynamic, the record to be
replaced is identified by the value of the relative key data
item. An invalid key condition occurs when the key value
does not identify an existing record.

REWRITE BILL-REC
INVALID KEY GO TO BAD-KEY.

Execution of this statement rewrites the BILL-REC record
staored in the record position that is indicated by the value
of the relative key data item. If the key value does not
specify an existing record, control is transferred to the
paragraph named BAD-KEY.

Closing Relative Files

Processing of a relative file is terminated by clesing the
file with the CLOSE statement. Once the CLOSE
statement is executed, input/output statements cannot
access the file until it is opened again. When a relative file
is closed, a partition boundary exists at the end of the file.
The boundary is overwritten when records are added to the
end of the file.

When the WITH LOCK phrase is included in the CLOSE
statement, the file is closed and returned to the system. It
cannot be reopened during execution of the current control
statement; an attempt to reopen the file causes the
program to abort. :

When a file is to be reopened immediately after being
closed, the C.FILE routine should be entered to change the
FIT setting of the CF field from DET to R. If this action
is taken before the CLOSE statement is executed, buffer
space and BAM capsules that are normally returned to the
system are preserved for the program. If the WITH LOCK
phrase is specified in the CLOSE statement, the CF field
setting cannot be overridden by the user.

ENTER "C.FILE" USING REL-FILE, "CF=R".
CLOSE REL-FILE.

Execution of these statements causes the CF field setting
for the file REL-FILE to be changed to the R option. When
the file is closed, buffer space and system capsules used by
the file are not released.

INDEXED FILE ORGANIZATION

When the file organization is indexed, records are stored in
sequence according to the primary key values. Records
can be accessed sequentially and randomly. Indexed files
can reside only on mass storage devices.

Indexed file organization is used most effectively for very
large mass storage files that need to be accessed both
randomly and sequentially. Each record is identified by a
primary key. The value of the primary key is unique for
each record in the file. Alternate keys can also be
specified and used to access records in the file.

FILE DEFINITION

The structure of an indexed file is described through the
FILE-CONTROL paragraph in the Environment Division
and the File Description and Record Description entries in
the Data Division.

60497200 C



FILE-CONTROL Paragraph

For indexed file organization, four clauses are required in
the FILE-CONTROL paragraph: SELECT, ASSIGN,
ORGANIZATION, and RECORD KEY. Four additional
clauses can be included in this paragraph as needed. Refer
to figure 3-8.

The SELECT clause specifies the file-name used by the
program; the ASSIGN clause specifies the logical file name
recognized by the operating system. If alternate keys are
specified for the file, the ASSIGN clause must also include
the logical file name of the alternate key index file. If
either logical file name is identical to any other name used
in the program or to a reserved word, it must be enclosed
in quotation marks. The ORGANIZATION clause must
specify INDEXED far an indexed file.

The RECORD KEY clause designates the data item that is
the primary key for indexed file records. The primary key
must be a data item embedded in each record or defined in
the Working-Storage Section. The data item can be an
elementary or group item. It can be described as an
alphanumeric or unsigned numeric data item. Each
primary key value in the file must be unique. As records
are written on the file, they are stored in ascending
sequence by primary key value.

Alternate keys are specified for indexed files by
ALTERNATE RECORD KEY clauses. The clause is
included once for each alternate key desired. If the
primary key is embedded in the record, it must begin in a
unique location within the record. Alternate keys can
begin in unique or identical locations; however, if they
begin in the same location, they must not be the same
length. The location and description of the key data items
must remain the same for the life of the file. Duplicate
alternate key values can exist in the file only if the
DUPLICATES phrase is included in the ALTERNATE
RECORD KEY clause; otherwise, each value for the
alternate key must be unique.

The ASCENDING option of - the DUPLICATES phrase
determines the order in which records with duplicate
alternate key values are retrieved for sequential access by
alternate key. If ASCENDING is not specified, the records
with duplicate key values are retrieved in the order they
were written. The records are retrieved in ascending
primary key order when ASCENDING is specified..

Conditions for including an alternate key index entry in the
alternate key index file are specified in the USE phrase and
the OMITTED phrase of the ALTERNATE RECORD KEY
clause. If neither phrase is included in the clause, index
entries for all alternate keys in the file are stored in the
index file. THE USE WHEN phrase identifies a
one-character data item contained within each record and
a literal of one to 36 characters in length. The alternate
key index entry is stored in the index file when the
character contained inthe data item is the same as one of
the characters in the literal. Both the data item and the
literal must be alphanumeric. A single data-name can be
used in more than one ALTERNATE RECORD KEY clause.
Each character in the literal must be unique.

The OMITTED phrase of the ALTERNATE RECORD KEY -

clause can include either the KEY option or, as in the USE
phrase, a data-name and literal. When KEY IS SPACES is
specified, the alternate key index entry is omitted from
the index file if the key value is all spaces and is described
with USAGE IS DISPLAY. If KEY IS ZEROS is specified,
the index entry is not stored in the index file when the key
value is all zeros and has a usage of COMPUTATIONAL-1
or COMPUTATIONAL-2.

60497200 E

When the option of specifying a data-name and a literal is
chosen in the OMITTED WHEN phrase, the alternate key
index entry is excluded from the index file if the dataitem
contains a character included in the literal. The literal and
data item are set up in the same manner as described in
the USE WHEN phrase. Refer to the example in the
discussion on alternate key processing at the beginning of
this section.

An alternate key in an indexed file record has more than
one value when the alternate key is described with the
OCCURS clause. When a record is written on the file, the
value in each unique occurrence of the alternate key is
indexed on the alternate key index file. The record can
then be retrieved by the value in any occurrence of the

“alternate key.

The manner in which records are accessed during program
execution is determined by the ACCESS MODE clause. If
this clause is omitted or if SEQUENTIAL is specified,
records can only be processed sequentially. All records are
accessed randomly by key value when RANDOM is
specified. Dynamic access mode allows records to be
processed both sequentially and randomly during program
execution. When an indexed file is being created, the
sequential access mode should be used.

The FILE STATUS clause specifies a data item to receive a
status code each time an input/output statement is
executed. The status code value indicates whether or not
the statement executed successfully. The status code is
described in section 15.

The USE clause can supply file information used by AAM to
process the indexed file. Certain FILE control statement
parameters can be specified to supply file information that
cannot be obtained from other clauses and statements in
the source program, or to override file information
normally obtained from the source program. The
parameter list specified in the USE clause is enclosed in
quotation marks. Refer to section 15 for a complete list
of the parameters that can be specified in this clause.

The type of indexed file to be used is determined by the
ORG parameter of the USE clause. If extended AAM files
have been installed and either the parameter is omitted or
ORG=NEW is specified, the file is treated as an extended
indexed sequential file. ORG=0LD is required for files in
the initial indexed sequential format.

The FILE-CONTROL paragraph illustrated in figure 3-8
describes a file with indexed organization. The file-name
used within the COBOL 5 program is EMP-FILE. The
ASSIGN clause specifies two logical file names; EMPFLE
identifies the data file and INDFLE identifies the index file
for the alternate keys. Dynamic access is specified for the
file; therefore, the file can be processed both randomly and
sequentially, The primary key for each record is the data
item EMP-ID. Two alternate keys, HIRE-DATE and
JOB-ID, are also specified; duplicate alternate key values
are allowed. If records are retrieved by either alternate
key, records with duplicate key values are returned in
ascending sequence by primary key values.

File Description Entry

The File Description entry (FD entry) for an indexed file
defines the physical structure of the file. The same
program file-name specified in the SELECT clause is
specified in the FD entry. Three specific clauses in the FD
entry are applicable to indexed files. Refer to figure 3-9.

3-13



. - Required Clauses
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL. :

SELECT EMP-FILE !
ASSIGN TO EMPFLE, INDFLE
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMP-ID
ALTERNATE RECORD KEY IS HIRE-DATE

- WITH DUPLICATES ASCENDING
ALTERNATE RECORD KEY IS JOB-ID

WITH DUPLICATES ASCENDING
FILE STATUS IS CODE-RETURN
USE "RT=Z". .

Figure 3-8. FILE-CONTROL Paragraph for an Indexed File

DATA DIVISION.

FILE SECTION.

FD EMP-FILE
LABEL RECORD IS OMITTED
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 90 CHARACTERS
DATA RECORD IS EMPLOYEE.

Figure 3-9. File Description Entry for an Indexed File

The LABEL RECORDS clause, which is required in every
FD entry, specifies whether or not labels exist on the file.
Indexed files cannot have labels and the clause must
specify OMITTED.

Records in an indexed file are stored in data blocks. The
size of a data block is calculated by the system; however,
the calculation is affected by the BLOCK CONTAINS
clause. The data block size is calculated by rounding

upward to a multiple of physical record unit (PRU) size less

50 characters; PRU size is 640 characters. The value used
for rounding upward is as follows:

® If the clause is omitted, the value is the maximum
record size. (This can be very inefficient; it is usually
best to specify the clause.)

e If a number of records is specified, the value is the
maximum record size multiplied by the specified
number of records.

e If a number of characters is specified, the value is the
specified number.

The RECORD clause is used by AAM to determine the
record type and record size for inputfoutput processing. If

this clause is omitted, the Record Description entry is’

3-14

used. For indexed file organization, the format of the
RECORD clause determines record type and record size
the same as described for sequential file organization.
Refer to table 3-2 for the effect of the RECORD clause.

A File Description entry for an indexed file is shown in
figure 3-9. A data block in the file EMP-FILE contains 20
records of 90 characters each for a total of 1800
characters; the actual block size is 1870 characters (three
PRUs less 50 characters). The record type is F (fixed
length). The DATA RECORD clause documents the name
of the record format for the file.

The best maximum block length can be calculated with the
FLBLOK utility. Refer to the AAM reference manual for
details.

Record Description Entry

A Record Description entry is included in the FD entry for
each record format applicable to the indexed file. This
entry provides data-names used to access individual data
items and describes the physical structure of the record.
Indexed file records can be fixed or variable length.

The record type and record size used by AAM are
determined by the Record Description entry if the
RECORD clause is not specified in the FD entry. The
number of Record Description entries and the length of
each entry determine record type and size in the same
manner as described for sequential file organization.

The Record Description entry illustrated in figure 3-10
defines a record format for the indexed file described in
figures 3-8 and 3-9. The primary key EMP-ID and the
alternate keys HIRE-DATE and JOB-ID are contained
within each EMPLOYEE record. Records can be accessed
by any of the three keys. The Record Description entry
describes a fixed-length record containing 90 character "
positions; this corresponds to the record type and record
size specified by the RECORD clause in the FD entry.

[ DATA DIVISION.
FILE SECTION.

01 EMPLOYEE.
03 EMP-ID
03 EMP-NAME
03 EMP-ADDRESS.

PICTURE 999.
PICTURE X(20).

05 STREET PICTURE X(20).

05 cCcI1T7Y PICTURE X(20).

05 STATE PICTURE AA.

05 ZIP-CODE PICTURE 9(5).
03 4J4o0B-ID PICTURE X(5).
03 DEPT PICTURE 999.
03 DIV PICTURE 999.

03 HIRE-DATE
03 LOCATION

PICTURE 9(6).
PICTURE 999.

Figure 3-10. Record Description Entry for an Indexed File

60497200 C



FILE MANIPULATION

Input/output processing of indexed files is accomplished
through the use of seven Procedure Division statements.
An existing indexed file can have records read, replaced,
deleted, and inserted. Individual data items within a
record are manipulated by various statements discussed in
other sections of this guide.

Opening Indexed Files

Before any record in an indexed file can be accessed, the
file is opened for input, for output, or for input and
output. The open mode established by the OPEN statement
determines the input/output statements that can be
executed. The OPEN statement establishes the primary
key as the key of reference; for an existing file, the
current value of the key of reference is the primary key
value for the first record in the file.

An input file is opened with the OPEN INPUT statement.
The file is positioned at the first record; because records
are stored in ascending sequence by primary key value, the
record with the lowest primary key value is the first record
in the file. Records are then read from the file
sequentially or randomly depending on the access mode.
The collating sequence for an indexed file with alternate
keys is determined the first time the file is opened for
output; the collating sequence in use within the program
when the file is opened becomes the collating sequence for
the file and remains the same as long as the file exists.

OPEN INPUT EMP-FILE.

When this statement is executed, the file EMP-FILE is
opened for input processing. Records can be read from but
not written on the file.

An indexed file is created by opening the file for output.
Records are then written on the file randomly or
sequentially depending on the access mode.

OPEN OUTPUT INV-FILE.

Execution of this statement causes the file INV-FILE to be
opened in the output mode for file creation. Records can
only be written on the file.

An indexed file is opened for input and output processing
by the OPEN I-O statement. The file is positioned at the
first record; the primary key of the first record becomes
the current key of reference.

OPEN I-O EMP-FILE.

This statement causes the file EMP-FILE to be opened for
input and output. Records in the file can be read, deleted,
inserted, and updated.

Writing Indexed Files

When an indexed file is opened for output (OPEN OUTPUT
for file creation or OPEN I-O for file updating), records
are written on the file sequentially or randomly depending
on the access mode for the file. If the access mode is
sequential, the file must be open for output only. Records
are then written on the file sequentially; the records must
be in ascending sequence by primary key value. An invalid

60497200 D

key condition exists if the primary key value of the record
being written is not greater than the primary key value of
the previous record. If duplicate alternate keys are not
allowed, duplication of an alternate key value creates an
invalid key condition. )

WRITE EMPLOYEE
INVALID KEY GO TO BAD-RECORD.

This statement causes an EMPLOYEE record to be written
on the indexed file. In sequential access mode, the records
must be in ascending sequence by primary key value. An
invalid key condition causes control to be transferred to
the paragraph named BAD-RECORD; the record is not
written on the file.

Records are written randomly when the access mode is
random or dynamic. The records are placed in the file
according to the primary key values. When the file is
closed, the records are in order by ascending sequence of
primary key values. An invalid key condition exists if the
primary key value is not unique or if an alternate key value
is duplicated when the NO DUPLICATES phrase is used in
the ALTERNATE RECORD KEY clause. The format of the
WRITE statement is the same for sequential and random
writing. Creating an indexed file randomly can result in
very inefficient processing; it is always best to create the
file sequentially.

When alternate keys are defined for the indexed file
without the USE or OMITTED phrase, an entry is made in
the alternate key index file for each alternate key in the
record being written. When the USE or OMITTED phrase is
included in the definition, entries are made for keys
according to conditions specified in the phrase. For a
repeating group alternate key, an entry is made for each
occurrence of the alternate key.

The FROM phrase is included in the WRITE statement
when the data for the record to be written is stored in an
area other than the output record area. The data in the
specified area is moved to the record area before the
record is written.

WRITE STOCK-REC FROM NEW-REC
INVALID KEY GO TO DUP-KEY.

The data in the storage area named NEW-REC is moved to
the STOCK-REC record area; the record is then written on
the file. If the primary key value for the record to be
written already exists on the file, control is transferred to
the paragraph named DUP-KEY.

Positioning Indexed Files

Sequential processing of an indexed file can begin at a
position other than the first record in the file. The access
mode must be sequential or dynamic and the file must be
open for input (OPEN INPUT or OPEN I-0).

The START statement positions the file at the record that
satisfies a specified condition and establishes the key of
reference for subsequent sequential READ statements.
The primary key, an alternate key, or the leading portion
of either key can be specified in the relational condition.
The designated primary or alternate key becomes the key
of reference when the START statement is executed. The
value of the key in the record at which the file is
positioned becomes the current value of the key of
reference.

3-15



The KEY phrase specifies the data item and the relational
condition to be tested. If the phrase is omitted, the
primary key is the key of reference and the file is
positioned at the record with the primary key value equal
to the current value of the primary key data item. When
the KEY phrase is specified, the file is positioned at the
first record with a key value that is equal to, greater than,
or not less than the current value of the designated key
data item,

START EMP-FILE
KEY IS GREATER THAN EMP-ID.

When this statement is executed, the file EMP-FILE is
positioned at the first record with a primary key value that
is greater than the current value of the EMP-ID data item.
Sequential processing of the file then begins at that
position.

A repeating group alternate key can be used to position the
file; however, the data-name of the alternate key cannot
be subscripted or indexed in the START statement. The
current value in the first occurrence of the alternate key
data item is the value that is used to position the file. In
the record at which the file is positioned, the value
satisfying the condition can be in any occurrence of the
alternate key.

The data item specified in the KEY phrase can be the first
subordinate item of the primary key. It can be the first
subordinate item of an alternate key if the alternate key
begins in a unique location. If two alternate keys begin in
the same character position, the KEY phrase cannot
specify an item subordinate to either key. If a subordinate
item is specified, it must begin in the first character
position of the key field and must be described as an
alphanumeric data item. For example:

03 HIRE-DATE.

05 YEAR PICTURE XX.
05 MONTH PICTURE 99.
05 DAE PICTURE 99.

These three entries describe an alternate key. The KEY
phrase of the START statement can specify either
HIRE-DATE or YEAR; the data items MONTH and DAE
cannot be specified.

START EMP-FILE
KEY IS NOT LESS THAN YEAR.

In this statement, the KEY phrase specifies the leading
portion of the alternate key HIRE-DATE. Only the first
two characters of the alternate key values in the index file
are checked against the two characters of the current
value of the YEAR data item. The file is positioned at the
first record with a YEAR value that is equal to or greater
than the current value of YEAR.

The INVALID KEY phrase specifies the action to be taken
when no record in the file satisfies the condition of the
START statement.

START STOCK-FILE
INVALID KEY GO TO BAD-ID.

The primary key values in the file STOCK-FILE are
checked for a value equal to the current value of the
primary key data item. If no record in the file satisfies
this condition, control is transferred to the paragraph
named BAD-ID.

3-16

Reading Indexed Files

Once an indexed file has been opened for input (OPEN
INPUT or OPEN I-O), records are read from the file by the
READ statement. Depending on the access mode
established for the file and the format of the READ
statement, records are read sequentially or randomly.

Accessing Sequentially

Records in an indexed file can be accessed sequentially
when the access mode is established as sequential or
dynamic. When the READ statement is executed, the order
in which records are retrieved depends on the key of
reference. The key of reference is determined as follows:

e When the file is opened, the primary key is the key of
reference.

e If the file is positioned by the START statement, the
primary or alternate key used to position the file
becomes the key of reference.

e In dynamic access mode, a random read executed
before the sequential read establishes the key used for
the random read as the key of reference.

When the primary key is the key of reference, records are
retrieved in the order they are stored in the file. In an
indexed file, records are stored in ascending sequence by
primary key value. When the primary key is the key of
reference and it is defined in the Working-Storage Section
(rather than embedded in the record), the primary key
value is stored in the data item named in the RECORD
KEY clause. If an alternate key is the key of reference,
records are retrieved in the order of the key values in the
alternate key index file.

If the access mode is sequential, the first record read is
either the first record in the file or the record at which the
file has been positioned by the START statement. Records
are then read in sequence according to the key of
reference until the end of the file is reached. The FILE
STATUS clause can be used to determine the final
occurrence of a particular value for the key of reference
by testing for a status code of 02,

READ EMP-FILE RECORD
AT END GO TO FINISHED.

This statement causes the records in the file EMP-FILE to
be read sequentially; the access mode for EMP-FILE is
sequential. Records are read in stored order if the primary
key is the key of reference or in index file order if an
alternate key is the key of reference. When the end of the
file is reached, control is transferred to the paragraph
named FINISHED.

If the access mode is dynamic, the first record retrieved by
a sequential READ statement is one of the following:

® The first record in the file.

®  The record at which the file has been positioned by the
START statement.

e The next record in sequence according to the key of

reference used in the preceding random READ
statement.

60497200 C



Subsequent records are retrieved sequentially by stored
position (if the primary key is the key of reference) or by
the order of alternate key values in the index file (if an
alternate key is the key of reference). The keyword NEXT
must be included in a sequential READ statement when the
access mode is dynamic. A change in values for the key of
reference can be detected through the FILE STATUS
clause.

READ STOCK-FILE NEXT RECORD
AT END GO TO CLOSING.

The access mode for the file STOCK-FILE is dynamic.
This statement causes records in STOCK-FILE to be
retrieved sequentially according to the key of reference.
When the end of the file is reached, control is transferred
to the paragraph named CLOSING.

The INTO phrase is included in the READ statement to
store the record in a specified area as well as in the input
record area. The record is moved into the specified
storage area when the READ statement is executed. When
the file is defined by more than one Record Description

- entry, the INTO phrase cannot be used if any entry is a
level 01 elementary item that is described as a numeric or
numeric-edited data item.

READ INV-FILE NEXT RECORD INTO TEMP-REC.
When this statement is executed, the next record in
sequence is read from the file INV-FILE. The record is

stored in the input record area and in the storage area
named TEMP-REC.

Accessing Randomly

Records in an indexed file can be read randomly when the
access mode is random or dynamic. The primary key or an
alternate key can be the key of reference for reading a
record randomly.

The key of reference for a random read is established by
the KEY IS phrase of the READ statement. If this phrase
is not specified, the primary key is the key of reference.
The key of reference designated by the KEY IS phrase can
be either the primary key or an alternate key. When the
READ statement is executed, the current value of the key
of reference is compared with the key values of records in
the file. The first record that contains a key of equal
value is retrieved from the file. If no record contains a
key of equal value, an invalid key condition exists.

READ EMP-FILE RECORD
KEY IS JOB-ID
INVALID KEY GO TO NO-JOB-ID.

In the file EMP-FILE, the data item JOB-ID is an alternate
key and duplicate keys are allowed. Execution of this
READ statement causes the index file to be searched for
the first alternate key value that is equal to the current
value of the JOB-ID data item. If no record in the file has
an equal value, control is transferred to the paragraph
named NO-JOB-ID. When this statement executes
successfully, a sequential read can be executed to retrieve
the next record in alternate key sequence.

When a repeating group alternate key is specified in the
KEY IS phrase, the data-name of the alternate key cannot
be subscripted or indexed. The current value in the first
occurrence of the alternate key data item is the value that
is used to retrieve a record from the file. When the READ
statement is executed, the index file is searched for the

60497200 C

matching alternate key value and the first record with that
value is read from the file. The matching value can be in
any occurrence of the alternate key in the record that is
retrieved. A sequential read can then be performed to
retrieve the next record in sequence in the alternate key
index. Because a record has multiple values for a
repeating group alternate key, the same record can be
retrieved more than once.

A record read randomly can be stored in a specified area
by including the INTO phrase in the READ statement. The
record is then available in both the input record area and
the specified storage area.

READ EMP-FILE RECORD INTO NEW-REC
INVALID KEY GO TO BAD-KEY.

This statement reads a record randomly; because the KEY
IS phrase is not specified, the primary key is the key of
reference. After a successful read, the record is available
in the storage area named NEW-REC as well as in the input
record area. If the file does not contain a record with a
primary key equal to the current value of the key of
reference, control is transferred to the paragraph named
BAD-KEY.

Updating Indexed Files

The DELETE and REWRITE statements are used to update
existing records in indexed files. The WRITE statement is
used to write additional records on the file; it cannot be
used to replace an existing record. The file must be open
for input and output (OPEN I-O); any access mode is
allowed.

The DELETE statement removes a record from the indexed
file. Once the DELETE statement is executed, the record
can no longer be accessed. The record deleted is either the
last record read or the record with the primary key equal
to the current value of the primary key data item.

If the access mode is sequential, the input/output
statement preceding the DELETE statement must be a
valid sequential READ statement. The last record read is
then the record that is deleted.

READ EMP-FILE RECORD.

DELETE EMP-FILE RECORD.

The record read from the file EMP-FILE is removed from
the file when the DELETE statement is executed. The
record can no longer be accessed.

Records are deleted by primary key when the access mode
is random or dynamic. The current value of the primary
key data item identifies the record to be deleted. The
INVALID KEY phrase is included to specify the action to
be taken if the file does not contain the record to be
deleted.

DELETE EMP-FILE RECORD
INVALID KEY GO TO NO-RECORD.

This statement deletes the EMP-FILE record whose
primary key is equal to the current value of the primary
key data item. If no record in the file contains the
designated primary key value, control is transferred to the
paragraph named NO-RECORD.

3-17



The REWRITE statement is used to update data in an
existing record in the file. The primary key value
identifies the record to be rewritten. The data in the
record area replaces the data stored in the file. If the
FROM phrase is included in the REWRITE statement, the
data in the specified storage area is moved to the record
area befaore the record is rewritten.

If the access mode is sequential, the input/output
statement preceding the REWRITE statement must be a
sequential READ statement. The record replaced is then
the last record read. The primary key value cannot be
changed between execution of the READ statement and
execution of the REWRITE statement.

READ INV-FILE RECORD INTO UPD-REC.

.

REWRITE INV-REC FROM UPD-REC.

A record is read from the file INV-FILE and stored in the
area named UPD-REC. Statements executed before the
REWRITE statement can update fields other than the
primary key field in UPD-REC. When the REWRITE
statement is executed, the data in UPD-REC is moved to
the record area (INV-REC) and the updated record
replaces the record read by the previous READ statement.

If the access mode for the file is random or dynamic, the
record to be replaced is identified by the current value of
the primary key data item, which must correspond to the
primary key of an existing record in the file. If the
primary key does not identify an existing record, an invalid
key condition exists. When the file contains alternate keys,
the replacing record can specify new values for the
existing key items; however, the new key values cannot
duplicate any current alternate key values in the file unless
the DUPLICATES phrase is included in the key definitions.

REWRITE EMPLOYEE
INVALID KEY GO TO BAD-KEY.

Execution of this statement causes the data in the
EMPLOYEE record area to replace the record that
contains the primary key value currently stored in the
primary key data item. If the file has no record with the
current primary key value, control is transferred to the
paragraph named BAD-KEY.

Closing Indexed Files

When a CLOSE statement is executed for an indexed file,
processing of the file is terminated. AAM updates the
internal tables that are part of the file. If the file is
subsequently reopened, it is positioned at the first record
in the file.

When the WITH LOCK phrase is included in the CLOSE
statement, the file is returned to the system and cannot be
reopened during the execution of the current control
statement. If an attempt is made to reopen the file within
the same program, the program is aborted.

If the file is to be reopened immediately after the close
and the WITH LOCK phrase is not specified in the CLOSE
statement, the routine C.FILE should be entered. Through
this routine, the CF field of the FIT can be reset from the
default setting DET to the setting R, thus preventing the
release to the system of buffer space and AAM capsules
needed for the file.

ENTER "C.FILE" USING EMP-FILE, "CF=R".,
CLOSE EMP-FILE.

3-18

Execution of these statements causes the file EMP-FILE to
be closed and buffer space and system capsules associated
with the file to be retained by the program.

DIRECT FILE ORGANIZATION

When file organization is direct, records are stored
randomly in blocks on a mass storage device. Each record
contains a primary key field; the value in this field is
hashed to a number that indicates a home block in the file.
The hashing technique uses a formula to convert the
primary key value to a number that distributes records
evenly across the home blocks. A hashing routine is
provided by the system; however, a user hashing routine
can be supplied in the Declaratives portion of the
Procedure Division.

The primary key must be specified for a direct file. In
addition, alternate keys can be specified and used to access
the file. Alternate keys are not hashed; the values are
indexed on a separate file that must be maintained as a
permanent file. The access mode for a direct file can be
sequential, random, or dynamic.

Direct file organization is used most effectively for large
mass storage files requiring rapid random access. A direct
file can be read sequentially; however, the order of the
records has no relationship to the primary key values or to
the order in which the records were written.

FILE DEFINITION

The structure of a file with direct organization is specified
through the FILE-CONTROL paragraph in the Environment
Division and the File Description and Record Description
entries in the Data Division.

FILE-CONTROL Paragraph

In the FILE-CONTROL paragraph for a file with direct
organization, five clauses are required: -SELECT, ASSIGN,
ORGANIZATION, BLOCK COUNT, and RECORD KEY.
Four optional clauses can also be included in this
paragraph. Refer to figure 3-11.

Required Clauses

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INVENTORY —=
ASSIGN TO INVNTRY, INVIDX
ORGANIZATION IS DIRECT
BLOCK COUNT IS 11
ACCESS MODE IS DYNAMIC
RECORD KEY IS PART-NOQ =
ALTERNATE RECORD KEY IS WHERE-USED
WITH DUPLICATES ASCENDING
OMITTED WHEN KEY IS SPACES
FILE STATUS IS CODE-RETURN
USE "ORG=0LD".

Figure 3-11. FILE-CONTROL Paragraph for a Direct File

60497200 C



The SELECT clause specifies the filé-name used in the
COBOL program. The ASSIGN clause specifies the logical
file name recognized by the operating system. When
alternate keys are specified for the file, the ASSIGN clause
must also include the logical file name of the alternate key
index file. If either logical file name is the same as any
other name in the program or as a reserved word, it must
be enclosed in quotation marks. The ORGANIZATION
clause must specify DIRECT for a direct file.

The BLOCK COUNT clause is used only when the direct
file is opened in the output mode; it is ignored if it is
specified at any other time. This clause designates the
number of home blocks for the file being created. The
specific block in which a record is written is determined by
the hashing routine. For the system hashing routine, more
efficient processing results when the number of blocks is a
prime number.

The primary key for direct file records is specified by the
RECORD KEY clause. The data item designated as the
primary key must be a fixed-length data item embedded in
each record or within the Working-Storage Section. The
primary key data item can be an alphanumeric elementary
or group item or it can be an unsigned numeric elementary
item. The primary key value for each record must be a
unique value; duplicate primary keys are not allowed in a
direct file. When a record is written on the file, the
hashing routine uses the primary key value to determine
the home block for the record.

The ALTERNATE RECORD KEY clause specifies an
alternate key for the direct file. Multiple alternate keys
are specified by repeating the clause for each desired key.
An alternate key must be a data item contained in a direct
file record. When the primary key is contained in the
record, it must begin in a unique character position if they
are different lengths; alternate keys of the same length
must begin in unique positions. Duplicate alternate key
values are not allowed unless the DUPLICATES phrase is
included in the ALTERNATE RECORD KEY clause.

The ASCENDING option of the DUPLICATES phrase
determines the - order of retrieval when records with
duplicate alternate key values are read sequentially by
alternate key. If the option is omitted, records with
duplicate alternate keys are retrieved in the order they
were written. Including the ASCENDING option causes the
records with duplicate alternate key values to be retrieved
in ascending sequence by primary key value.

The condition specified in the USE phrase or the OMITTED
phrase determines whether or not an entry is made in the
alternate key index file for each alternate key in the data
file. When neither phrase is included, an entry is made for
every key in the file. The USE WHEN phrase specifies a
data-name and an alphanumeric literal. The item
referenced by the data-name must be defined within the
record as a one-character alphanumeric item. The same
data-name can be used in more than one ALTERNATE
RECORD KEY clause for a file. The literal must contain
from one to 36 unique characters. When the character in
the data item of an alternate key duplicates a character in
the literal, an entry is made for the key in the alternate
key index. If the character in the item is not present in
the literal, no entry is made. .

The OMITTED phrase of the ALTERNATE RECORD KEY
clause can specify either a data-name and literal, as in the
USE phrase, or the KEY option.. When the data-name and
literal are included in the phrase, no entry is made in the
index file for an alternate key if the character in the data
item duplicates any character in the literal. The data item
and literal are set up in the same manner as described in
the USE phrase.

60497200 E

The KEY option of the OMITTED phrase can specify either
SPACES or ZERQS. SPACES indicates that no entry is to
be made in the index file for any key with the usage of
DISPLAY and a value of spaces. When ZEROS is specified,
no entry is made for a key described as
COMPUTATIONAL-1 or COMPUTATIONAL-2 with a value

of zero.

An alternate key described with the OCCURS clause has
more than one value for the alternate key. When the
record is written, the value in each unique occurrence of
the alternate key is indexed on the alternate key index
file. Reading the file by alternate key can then retrieve
the record for the value in any occurrence of the alternate
key.

The ACCESS MODE clause determines the manner in which
records in the direct file can be accessed during program
execution. If SEQUENTIAL is specified or if the clause is
omitted, records can only be accessed sequentially.
Records are accessed randomly by primary or alternate key
value when RANDOM is specified. If DYNAMIC is

- specified, both random and sequential processing can be

intermixed in the program.

The FILE STATUS clause is used to specify a data item to
receive a status code whenever an input/output statement
is executed for the file. The status code is a value that
designates whether or not the statement executed
successfully. Refer to section 15 for a description of the
status code.

The USE clause supplies file information used by AAM to
process the direct file. Certain FILE control statement
parameters can be specified in this clause. These
parameters can supply file information that cannot be
specified through other clauses and statements in the
source program, or they can override parameter values
normally obtained from the source program. The
parameter list is enclosed in quotation marks. Refer to
section 15 for a complete list of parameters that can be
specified.

o

The type of direct file to be used is determined by the
ORG parameter of the USE clause. If extended AAM files
have been installed and either the parameter is omitted or
ORG=NEW is specified, the file is treated as an extended
direct file. ORG=0LD is required for files in the initial
direct format.

A FILE-CONTROL paragraph for a file with direct
organization is illustrated in figure 3-11. The direct file is
referenced in the COBOL 5 program by the: file-name
INVENTORY; the logical file name used by the operating
system is INVNTRY. The index file for the alternate keys
is identified by the logical file name INVIDX. The number
of home blocks for the file is 11. Dynamic access allows
the file to be processed sequentially and randomly during
program execution. The hashed value of the primary key
(PART-NO) determines the home block for the record. The
alternate key (WHERE-USED) can be duplicated within the
file; duplicate alternate key - values are. retrieved in
ascending sequence of the primary key values.

File Description Entry

The physical structure of a direct file is defined by a File
Description entry (FD entry) in the File Section of the
Data Division. The program file-name specified in the
SELECT clause is also specified in the FD entry. Three
clauses in the FD entry are applicable to files with direct
organization. Refer to figure 3-12.

3-19



DATA DIVISION.

FILE SECTION.

FD INVENTORY
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 55 TO 80
DATA RECORD IS INV~-REC.

Figure 3-12. File Description Entry for a Direct File

The LABEL. RECORDS clause is required in every FD entry
and specifies whether or not the file contains labels.
Direct files cannot contain labels and the clause must
specify OMITTED.

Direct file records are stored in home blocks. The size of
a home block is calculated by the system using the BLOCK
CONTAINS clause. The home block size is calculated by
rounding upward to a multiple of physical record unit
(PRU) size less 50 characters; PRU size is 640 characters.
The value used for rounding upward is as follows:

e If the clause is omitted, the value is the average
record size multiplied by two. (This can result in
inefficient processing; it is best to specify the clause.)

e If a number of records is specified, the value is the
maximum record size multiplied by the specified
number of records.

e If a number of characters is specified, the value is the
specified number.

The RECORD clause is used by AAM in determining the
record type and record size for input/output processing of
direct files. If this clause is not specified, the Record
Description entry is used. The record type and record size
for a direct file are determined according to the specific
format of the RECORD' clause in the same manner as
described for sequential file organization. Refer to
table 3-2 for the effect of the RECORD clause.

A File Description entry for a direct file is illustrated in
figure 3-12. Each home block can contain 20 records with
lengths ranging from 55 to 80 characters. The home block
size is rounded upward to 1870 characters (three PRUs
minus 50 characters). The DATA RECORD clause is
documentary only and provides the record name (INV-REC)
for the file.

Record Description Entry

Each record format applicable to the direct file is
described by a Record Description entry. This entry
specifies the physical structure of the record and provides
the data-names .used to access data items within the
record. Direct file records can be fixed or variable length.

When the RECORD clause is not specified in the FD entry,
the Record Description entry is used to determine the
record type and record size for input/output processing.
The number of Record Description entries for the file and
the length of each entry determine record type and size in
the same manner as described for sequential file
organization.

3-20

The Record Description entry illustrated in figure 3-13
defines the record format for the direct file described in
figures 3-11 and 3-12. Both the primary key (PART-NO)
and the alternate key (WHERE-USED) are defined within
the record. Either key can be used to access an INV-REC
record. The entry describes a record with a 50-character
fixed-length portion and a S5-character trailer portion that
occurs from one to six times. The NUM-USED data item
indicates the number of occurrences of the trailer portion
in a specific record.

DATA DIVISION.
FILE SECTION.

01 INV-REC.

03 PART-NO

03 DESCRIPTION

03 QTY-ON-HAND

03 QTY-ON-ORDER

03 AQTY-RESERVED

03 ORDER-DATE

03 REORDER-POINT

03 REORDER-QTY

03 QTY-PER-UNIT

03 NUM-USED PICTURE 9.

03 WHERE-USED PICTURE X(5).
OCCURS 1 TO 6 TIMES
DEPENDING ON NUM-USED.

PICTURE 9(5).
PICTURE X(15).
PICTURE 9(4).
PICTURE 9(4).
PICTURE 9(5).
PICTURE 9(6).
PICTURE 9(4).
PICTURE 9(4).
PICTURE 99.

Figure 3-13. Record Description Entry for a Direct File

FILE MANIPULATION

Input/output processing of direct files is specified through
seven Procedure Division statements. Records in an
existing direct file can be read, replaced, deleted, and
inserted. Various statements, which are discussed in other
sections of this guide, are provided to manipulate
individual data items in the records.

_Opening Direct Files

A direct file is opened for input, for output, or for input
and output before file processing can begin. The
input/output statements that can be executed depend on
the open mode established by the OPEN statement. The
primary key is established as the key of reference when the
OPEN statement is executed; for existing files, the current
value of the key of reference is the primary key value for
the first record in the file.

The OPEN INPUT statement opens a direct file for input
processing only. Records can be read from but not written
on the file. Execution of the OPEN INPUT statement
positions the file at the first record in the first home
block. Records are then read sequentially by position in
the file or randomly by key value depending on the access
mode. - :

60497200 C



OPEN INPUT INVENTORY.

When this statement is executed, the file INVENTORY is
opened for input. The file is positioned at the first record.

If a direct file is being created, the file is opened for
output by the OPEN OUTPUT statement. Records can be
written on but not read from the file. Records are written
according to the hashed value of the primary key.

OPEN OUTPUT CUSTOMERS.

This statement causes the file CUSTOMERS to be opened
for output. Records are subsequently written on the file at
locations indicated by the primary key hashed values.

The OPEN 1-O statement opens the file for input and
output processing. Records can be read, inserted, deleted,
or updated. The file is positioned at the first record
currently existing in the file.

OPEN I-O PERS-FILE.

Execution of this statement opens the file PERS-FILE for
input and output processing. Records can then be read,
inserted, deleted, and rewritten.

Writing Direct Files

Records are written on a direct file at locations
determined by the hashed values of the primary keys. The
file must be open for output (OPEN OUTPUT for file
creation or OPEN I-O for file updating) and can have any
access mode. When a direct file is being created,
processing is more efficient if records are written in the
sequence of hashed key values. An AAM utility, CREATE,
is available to create direct files efficiently. Refer to the
AAM reference manual for a description of the CREATE
utility.

The value of the primary key in the record being written is
hashed to determine the home block in which the record is
written. The hashing routine, which can be the system
routine or a user-supplied routine, converts the primary
key value to a home block number within the limits
specified in the BLOCK COUNT clause in the
FILE-CONTROL paragraph. The record is then written in
the home block indicated by the hashed value.

If the home block designated by the hashed value is full, an
overflow block is created and the record is written in the
overflow block. Retrieving a record in an overflow block
increases access time because an additional mass storage
access is required to read the record.

When the direct file is closed, the physical order of the
records is completely random. Primary key values and the
order in which the records are written have no effect on
the stored order of the records.

When alternate keys are defined for the direct file without
the USE or OMITTED phrase, the primary key is entered in
the alternate key index file for each alternate key in the
record being written. When the USE or OMITTED phrase is
included in the key definition, an entry is made in the
alternate key index file according to the condition
specified in the phrase. For a repeating group alternate
key, an entry is made in the index file for each unique
occurrence of the alternate key in a record.

60497200 E

An invalid key condition occurs if the primary key value is
duplicated or if the hashed value is greater than the
number of home blocks allocated for the file. If duplicate
alternate keys are not allowed, duplication of an alternate
key value also creates an invalid key condition.

WRITE INV-REC
INVALID KEY GO TO BAD-RECORD.

When this statement is executed, the record INV-REC is
written on its associated file. The hashed value of the
primary key designates the home block in which the record
is written. If an invalid key condition exists, control is
transferred to the paragraph named BAD-RECORD.

The FROM phrase is included in the WRITE statement
when the data for the record to be written is stored in an
area other than the output record area. The data in the
specified area is moved to the output record area and then
the record is written on the file.

WRITE PERS-REC FROM NEW-REC
INVALID KEY GO TO NO-GOOD.

This statement causes the data in the storage area named
NEW-REC to be moved to the record area for PERS-REC.
The record is then written in the home block indicated by
the hashed value of the primary key. If an invalid key
condition is encountered, control is transferred to the
paragraph named NO-GOOD.

Positioning Direct Files

Direct files can be positioned to a record within the file
for subsequent sequential processing. The file must be
open for input (OPEN INPUT or OPEN I-O) and the access
mode must be either sequential or dynamic.

The START statement establishes the key of reference for
subsequent sequential READ statements and positions the
file at the first record that satisfies a specified condition.
The KEY phrase indicates the data item and the condition
to be used for positioning the file.. The data item must be
an alternate key or the leading portion of an alternate key;
it cannot be the primary key. When the START statement
is executed, the index file is searched for a value that is
greater than, equal to, or not less than the current value of
the designed data item. The file is positioned at the first
record that satisfies the specified condition.

START PERS-FILE
KEY IS NOT LESS THAN HIRE-DATE.

Execution of this statement causes the index for the
alternate key HIRE-DATE to be searched for a key value
that is equal to or greater than the current value of the
HIRE-DATE data item. The index file is positioned at the
first alternate key value that satisfies the condition.
Records can then be retrieved from the direct file in the
sequential order of the alternate keys in the index file.

When a repeating group alternate key is specified in the
KEY phrase, the data-name is not subscripted or indexed.
The current value in the first occurrence of the alternate
key data item is used to position the file. The value that
satisfies the specified condition can be in any occurrence
of the alternate key in the record at which the file is
positioned.

3-21



The data item specified in the KEY phrase can be the
leading portion of an alternate key if the alternate key
begins in a unique character position. If two alternate keys
begin in the same position, the KEY phrase cannot specify
~an item subordinate to either key. When the leading
portion of an alternate key is used in the KEY phrase, it
- must begin in the first character position of the alternate
. key and must be described as an alphanumeric data item.

03 DIV-CODE.
05 LOCATION PICTURE XXX.
05 FUNCTION PICTURE %(5).

The alternate key DIV-CODE is described with two
subordinate items. Either DIV-CODE or LOCATION can
be specified in the KEY phrase.

The INVALID KEY phrase is included in the START
statement to designate the action to be taken when the
specified condition is not satisfied by any record in the file.

START EMP-FILE
KEY IS GREATER THAN LOCATION
INVALID KEY GO TO BAD-KEY.

When this statement is executed, the alternate key values
in the index file are tested for a value greater than the
current value of LOCATION, which is the first three
character positions of the alternate key data item
DIV-CODE. If the condition cannot be satisfied, control is
transferred to the paragraph named BAD-KEY.

Reading Direct Files

Records are retrieved from a direct file by the READ
statement. The file must be open for input (OPEN INPUT
or OPEN [-O). The access mode and the format of the
READ statement determine whether records are read
sequentially or randomly.

Accessing Sequentially

When the access mode for a direct file is sequential or
dynamic, records can be read sequentially. The sequence
in which records are read depends on the key of reference
at the time the READ statement is executed. The key of
reference is determined as follows:

e When the file is opened, the primary key is the key of
reference. '

e If the file has been positioned by the START
statement, the alternate key used to position the file
becomes the key of reference. ’

° In dynamic access mode, a random read executed
before the sequential read establishes the key used for
the random read as the key of reference.

If the key of reference is the primary key, the records are
read in the order they are stored in the file. This order
bears no relationship to the primary key values or to the
order in which the records were written. If the primary
key is the key of reference and it is defined in the
Working-Storage Section (rather than embedded in the
record), the primary key value is stored in the data item
designated by the RECORD KEY clause. When an alternate
key is the key of reference, the records are read in the
order of the key values in the alternate key index file.

3-22

If the access mode is sequential and the key of reference is
the primary key, records are read in stored sequence from
the beginning of the file or from the record that satisfied
the condition in the START statement. An alternate key
as the key of reference causes reading to begin with the
record at which the file has been positioned by the START
statement; the sequential read then proceeds in the order
of the alternate key values in the index file. The FILE
STATUS clause, discussed in section 15, can be used to
detect a change of values for the key of reference by
testing for a status code value of 02.

READ INVENTORY RECORD
AT END GO TO END-IT.

This statement reads records sequentially. The file
INVENTORY is a direct file with sequential access mode.
If the primary key is the key of reference, the records are
read in the order they are stored in the home blocks of the
file. If an alternate key is the key of reference, the
records are read in sequence by the alternate key values in
the index file. Control is transferred to the paragraph
named END-IT when the end of the file has been reached.

If the access mode is dynamic, the first record retrieved by
a sequential READ statement is one of the following:

® The first record in the first home block of the file.

e The record at which the file has been positioned by the
START statement.

e The next record in sequence according to the key of
reference used in the preceding random READ
statement.

Subsequent records are retrieved sequentially by stored
position (if the primary key is the key of reference) or by
the order of alternate key values in the index file (if an
alternate key is the key of reference). The keyword NEXT
must be included in a sequential READ statement when the
access mode is dynamic. A change in the value of the key
of reference can be determined through the FILE STATUS
clause, discussed in section 15.

READ PERS-FILE NEXT RECORD
AT END GO TO FINISHED.

Befare this statement is executed, the access mode for the
file PERS-FILE has been established as dynamic and a
record has been randomly read by alternate key. Execution
of this statement then reads the next record in sequence
according to the alternate key index file. When the last
record has been read, control is transferred to the
paragraph named FINISHED.

The INTO phrase is included in a sequential READ
statement when the input record is to be stored in a
specified area in addition to the input record area. When
the READ statement is executed, the record is moved into
the specified storage area and is then available in the
storage area and in the input record area. When the file is
defined by more than one Record Description entry, the
INTO phrase cannot be used if any entry is a level 01
elementary item - that is described as a numeric or
numeric-edited data item.

READ INVENTORY NEXT RECORD
INTO TEMP-REC.

60497200 C



Execution of this statement causes the next record in
sequence according to the key of reference to be read from
the input file INVENTORY. The record is available in both
the input record area and the storage area named
TEMP-REC.

Accessing Randomly

The access mode for a direct file must be random or
dynamic to access records randomly. Either the primary
key value or an alternate key value is used to read a record
randomly.

The KEY IS phrase of a random READ statement
establishes the key of reference. The data-name specified
in the phrase identifies the primary key or an alternate
key. If the KEY IS phrase is omitted, the primary key is
the key of reference. When the READ statement is
executed, the current value of the key of reference
determines the record to be read. An invalid key condition
exists if no record in the file contains a key of equal value.

When the key of reference is an alternate key with
duplicate values, the record with the first primary key
indexed for the alternate key value is the record that is
retrieved. The order in which the primary keys are indexed
depends on whether or not the ASCENDING option is
specified in the ALTERNATE RECORD KEY clause. If
ASCENDING is specified, the primary keys are indexed in
ascending sequence; otherwise, the primary keys are
indexed in the order the records were written on the file.

READ PERS-FILE RECORD
KEY IS HIRE-DATE
INVALID KEY GO TO NONE.

When this statement is executed, a record is read from the
file PERS-FILE. The alternate key HIRE-DATE, which can
have duplicate values, is the key of reference for the
random read. The index file is searched for the alternate
key value equal to the current value of the HIRE-DATE
data item. The record with the first primary key indexed
for that value is then read from the file. If an alternate
key of equal value does not exist on the index file, control
is transferred to the paragraph named NONE.

A repeating group alternate key can be specified in the
KEY IS phrase; however, the data-name of the alternate
key cannot be subscripted or indexed. The index file is
searched for a value equal to the current value in the first
occurrence of the alternate key data item. The record
with the first primary key indexed for the alternate key
value is read from the file. The value can be in any
occurrence of the alternate key in the record read from
the file. When records are read by repeating group
alternate key values, the same record can be retrieved for
the value in each occurrence of the alternate key.

READ INVENTORY RECORD
KEY IS WHERE-USED
INVALID KEY GO TO NOT-FOUND.

The key of reference for this statement is the data item
WHERE-USED, which is a repeating group alternate key for
the file INVENTORY. When this statement is executed,
the alternate key index for WHERE-USED is searched for a
value equal to the current value in the first occurrence of
the WHERE-USED data item. If no key value in the
alternate key index equals the current value in
WHERE-USED, control is transferred to the paragraph
named NOT-FOUND.

60497200 C

The INTO phrase in a random READ statement specifies an
additional storage area for the input record. The record
retrieved is stored in both the input record area and the
specified storage area.

READ INVENTORY RECORD INTO NEW-REC
INVALID KEY GO TO NOC-USE.

This statement reads a record randomly from the file
INVENTORY and stores it in the storage area named
NEW-REC as well as in the input record area. The KEY IS
phrase is omitted and the primary key is the key of
reference by default. If the read operation is not
successful, control is transferred to the paragraph named
NO-USE.

Updating Direct Files

Records in an existing direct file are updated by the
DELETE and REWRITE statements. New records are added
to the file by the WRITE statement; existing records cannot
be replaced through execution of the WRITE statement.
The file can have any access mode; it must be opened for
input and output (OPEN I-O).

A record is removed from the direct file by the DELETE
statement. Depending on the access mode, the record
deleted is either the last record read or the record with the
primary key value equal to the current value of the key of
reference.

If the access mode is sequential, a sequential READ
statement must be the last input/output statement
executed before the DELETE statement. The record
accessed by the READ statement is then the record that is
deleted.

READ INVENTORY RECORD.

bELETE INVENTORY RECORD.

When the DELETE statement is executed, the record
retrieved by the READ statement is removed from the file
INVENTORY. The record can no longer be accessed.

For random or dynamic access mode, records are deleted
by primary key value. The current value of the primary
key data item identifies the record to be deleted. An
invalid key condition exists if the record to be deleted
cannot be found on the file.

DELETE PERS-FILE RECORD
INVALID KEY GO TO NOT-FOUND.

Execution of this statement deletes the record in the file
PERS-FILE with the same primary key value as the current
value of the primary key data item. If the record does not
exist on the file, control is transferred to the paragraph
named NOT-FOUND.

Existing records in a direct file can be updated with new
data by the REWRITE statement. The record to be
rewritten is identified by the primary key. The record
stored on the file is replaced by the data in the record
area. The FROM option is included in the REWRITE
statement when the data to be rewritten is stored in an
area other than the record area. The data in the specified
storage area is moved to the record area and the record.is
then rewritten.

3-23



For sequential access mode, the last record read is the
record that is replaced. Between execution of the
sequential READ statement and the REWRITE statement,
no other input/output statement can be executed and the
primary key value cannot be changed.

READ INVENTORY RECORD INTO UPDATING.

I.:{EWRITE INV-REC FROM UPDATING.

When the READ statement is executed, the next record in
sequence is read from the file INVENTORY and stored in
the area named UPDATING. Data manipulation
statements are then executed to update fields in
UPDATING other than the primary key field. The
REWRITE statement causes the updated record stored in
UPDATING to be moved to the record area for INV-REC
and the record to be rewritten in place of the record
retrieved by the READ statement.

For random or dynamic access mode, the current value of
the primary key data item identifies the record to be
replaced. The current primary key value must correspond
to the primary key value of an existing record in the file.
An invalid key condition exists when the current primary
key value does not identify an existing record. Alternate
key values in the replacing record can differ from those in
the record being replaced, but the new values cannot
duplicate any existing values in the file unless the
DUPLICATES option is included in the key definition.

REWRITE PERS-REC
INVALID KEY GO TO BAD-KEY.

When this statement is executed, the record containing the
primary key value currently stored in the primary key data
item is replaced by the data in the PERS-REC record
area. If no record in the file contains the primary key
value, control is transferred to the paragraph named
BAD-KEY.

Closing Direct Files

Processing of a direct file is terminated by the CLOSE
statement. AAM updates the internal tables that are part
of the file. Input/output statements cannot access the file
until it has been opened again.

The WITH LOCK phrase of the CLOSE statement prevents
a file from being opened again during the execution of the
current control statement. When the CLOSE statement
with the WITH LOCK phrase is executed, the file is closed
and returned to the system. An attempt to reopen the file
results in a program abort.

The utility routine C.FILE should be entered when a file is
to be reopened immediately after it is closed. By
overriding the default option DET of the FIT with the
option R, this routine can prevent the release to the
system of buffer space and AAM capsules associated with
the file. If the WITH LOCK phrase is specified in the
CLOSE statement, the C.FILE routine cannot override the
default setting for the CF field.

ENTER "C.FILE" USING INVENTORY, "CF=R".
CLOSE INVENTORY

When these statements are executed, the file INVENTORY

is closed and the buffer space and system capsules used for
the file are retained by the program.

3-24

ACTUAL-KEY FILE ORGANIZATION

In an actual-key file, records are stored according to the
record number specified by the primary key value.
Records are accessed sequentially or randomly depending
on the ACCESS MODE clause. A file with actual-key
organization can reside only on a mass storage device.

Actual-key file organization is used for rapid access by
alternate key. The primary key is system-oriented rather
than data-oriented; the value of the key identifies the
actual location of the record in the file. The system
generates the primary key values when the records are
written on the file. Multiple alternate keys can be defined
for an actual-key file. Alternate key values are stored on
a separate index file.

FILE DEFINITION

The FILE-CONTROL paragraph in the Environment
Division and the File Description and Record Description
entries in the Data Division describe the structure of a file
with actual-key organization.

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph for a file with actual-key
file organization requires four clauses: SELECT, ASSIGN,
ORGANIZATION, and RECORD KEY. Four optional
clauses can also be included in this paragraph. Refer to
figure 3-14.

. Required Clauses
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CUSTOMERS
ASSIGN TO CSTMRS, CSTINDX
ORGANIZATION IS ACTUAL-KEY
ACCESS MODE IS RANDOM
RECORD KEY IS ACT-KEY -1
ALTERNATE RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-TYPE

WITH DUPLICATES ASCENDING
FILE STATUS IS CODE-RETURN
USE "ORG=0LD".

Figure 3-14. FILE-CONTROL Paragraph
for an Actual-Key File

The file-name that is used in the COBOL 5 program is
specified in the SELECT clause. The ASSIGN clause
specifies the logical file name recognized by the operating
system; if alternate keys are defined for the file, the
ASSIGN clause also designates the logical file name for the
alternate key index file. If either logical file name
duplicates any other name used in the program or a
reserved word, it must be enclosed in quotation marks. For
an actual-key file, the ORGANIZATION clause must
specify ACTUAL-KEY.

60497200 D



The RECORD KEY clause specifies the primary key, which
must be an elementary COMPUTATIONAL-1 or
COMPUTATIONAL-4 data item consisting of one to eight
digits. The primary key must be a data item embedded in
each record in the file or within the Working-Storage
Section. Each primary key value is unique; duplicate
primary keys cannot exist in the file because the primary
key indicates the storage location for the record.

Alternate keys are specified by ALTERNATE RECORD
KEY clauses. The clause is included once for each
alternate key field. An alternate key must be a data item
within the actual-key recerd. The first character position
of each alternate key must be different from the primary
key when the primary key is contained in the record. An
alternate key must begin in a different character position
from another alternate key when the keys are the same
length; if the keys are not the same length, they can begin
in the same position. Duplicate values for an alternate key
are allowed only when the DUPLICATES option is included
in the ALTERNATE RECORD KEY clause for the alternate
key.

The order in which records with duplicate alternate keys
are retrieved during sequential reading by alternate key
depends on whether or not the ASCENDING option is
included in the DUPLICATES phrase. If the option is
included, records with duplicate alternate keys are
retrieved in sequential order of primary keys; otherwise,
the records are retrieved in the order they were written.

An alternate key value is included in or excluded from the
alternate key index file depending on whether the USE
phrase or the OMITTED phrase is specified in the
ALTERNATE RECORD KEY clause. If neither phrase is
included in the clause, an entry is made in the index file
for each alternate key value in the data file. The USE
phrase, which includes a one-character alphanumeric data
item and an alphanumeric literal, specifies a condition for
including an index entry in the index file. When the
character contained in the data item is the same as one of
the characters in the literal, an entry is made in the index
file. When the specified condition is not satisfied, no entry
is made. The literal in the phrase must consist of 1 to 36
unique characters. The data item must be contained within
the record; the data-name used to reference the data item
can be used in more than one ALTERNATE RECORD KEY
clause for an actual-key file.

The access mode for an actual-key file can be sequential,
random, or dynamic. Access mode determines the
input/output statements that can be executed for the file.
If the ACCESS MODE clause is omitted or if it specifies
SEQUENTIAL, records can only be accessed sequentially.
Records in an actual-key file can be accessed randomly if
the access mode is random or dynamic. If dynamic access
is specified, records can be accessed both randomly and
sequentially during program execution.

The FILE STATUS clause specifies a data item to receive a
status code each time an input/output statement is
executed. The status code value indicates whether or not
the statement executed successfully. The status code is
discussed further in section 15.

The USE clause supplies file information used by AAM to
process the actual-key file. Certain FILE control
statement parameters can be specified to override
parameter values obtained from other clauses and
statements in the source program and to supply parameter
values that cannot otherwise be specified in the source
program. The parameter list must be enclosed in quotation
marks. Refer to section 15 for a complete list of the
parameters that can be specified.

60497200 D

The type of actual-key file to be used is determined by the
ORG parameter of the USE clause. If extended AAM files
have been installed and either the parameter is omitted or
ORG=NEW is specified, the file is treated as an extended
actual-key file. ORG=0LD is required for files in the
initial actual-key format.

The OMITTED phrase of the ALTERNATE RECORD KEY
clause can specify either a data-name and a literal (as in
the USE phrase) or the KEY option. When a data-name and
literal are specified, the alternate key index entry is not
stored in the index file if the character in the data item
named by the data-name is identical to any character in
the literal. The literal and data item are set up in the
same manner as described in the USE phrase. The option
KEY IS SPACES indicates that an alternate key index entry
is not stored in the index file when the alternate key item
contains all spaces and has a usage of DISPLAY. When
KEY IS ZEROS is specified, the alternate key index entry
is omitted from the index file if the key item contains all
zeros and has a usage of COMPUTATIONAL-1 or
COMPUTATIONAL-2. An alternate key in an actual-key
file record has more than one value when the key is
described with the OCCURS clause. When a record is
written, the value in each occurrence of the alternate key
is indexed on the alternate key index file. The record can
then be retrieved by the value in any occurrence of the
alternate key.

The FILE-CONTROL paragraph shown in figure 3-14
describes a file with actual-key organization. The program
name for the file is CUSTOMERS and the logical file name
used by the operating system is CSTMRS. The logical file
name for the alternate key index file is CSTINDX. The
access mode for the actual-key file is established as
random; records can only be processed randomly by key
value. The data item ACT-KEY is the primary key; its
value identifies the block number and record slot in which
the record is stored. Two alternate keys are specified; the
data item CUST-ID must be unique for each record while
the data item CUST-TYPE can be duplicated within the
file. Records with duplicate CUST-TYPE alternate key
values are retrieved in sequential order of primary key
values.

File Description Entry

The File Description entry (FD entry) in the File Section of
the Data Division describes the physical structure of the
actual-key file. The program file-name, as specified in the
SELECT clause, is specified in the FD entry. Three
specific clauses in the FD entry are applicable to
actual-key files. Refer to figure 3-15.

DATA DIVISION.

FILE SECTION.

FD CUSTOMERS
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 10 RECORDS
RECORD CONTAINS 165 CHARACTERS
DATA RECORD IS CUST-REC.

Figure 3-15. File Description Entry
for an Actual-Key File

3-25



The LABEL RECORDS clause is required in every FD entry
and specifies whether or not the file contains labels.
Actual-key files cannot contain labels and OMITTED must
be specified in this clause.

The BLOCK CONTAINS clause provides information that
the system uses in determining the physical size of a block
in the file. The block size is calculated by rounding upward
to a multiple of physical record unit (PRU) size less 50
characters; PRU size is 640 characters. The value used for
rounding upward is as follows:

If the clause is omitted, the value is determined by
adding 90 to the result of the maximum record size
multiplied by 8.

If a number of records is specified, the value is
determined by adding together the following results:

1. The specified number of records plus one,
multiplied by 10.

2. The maximum record size multiplied by the
specified number of records.

If a number of characters is specified, the value is the
number of characters.

When primary keys are user-generated, it is usually simpler
to generate key values if the number of records in a block
is a power of 2.

The RECORD clause determines the record type and
record size used by AAM for input/output processing of
actual-key files. If the clause is omitted, the Record
Description entry is used for record size and type. The
specific format of the RECORD clause determines record
type and record size in the same manner as described for
sequential file organization. Refer to table 3-2 for the
effect of the RECORD clause.

Figure 3-15 illustrates a File Description entry for an
actual-key file named CUSTOMERS. Each block in the file
contains 10 records and a record consists of 165
characters. The DATA RECORD clause is included to
document the record-name for the file.

Record Description Entry

The File Description entry for an actual-key file includes
one Record Description entry for each record format
applicable to the file. The Record Description entry
provides data-names for individual data items within the
record and describes the physical structure of the record.

If the FD entry does not include the RECORD clause, the
record type and record size used for input/output
processing are determined from the Record Description
entry. The record type and record size are determined in
the same manner as described for sequential file
organization.

The record format defined by the Record Description entry
illustrated in figure 3-16 is applicable to the actual-key
file described in’ figures 3-14 and 3-15. The primary key
ACT-KEY is described in the Record Description entry as
an eight-digit number with COMP-1 usage. The value of
ACT-KEY identifies the sequential record number in which
the record is stored. The two alternate keys, CUST-ID and
CUST-TYPE, are also described in the record format. A

3-26

CUST-REC record can be accessed by any of the three
defined keys. The record type and record size specified by
the Record Description entry is the same as determined by
the RECORD clause far the file. The records are fixed
length (record type F) with 165 characters per record.

DATA DIVISION.
FILE SECTION.

01 CUST-REC.
03 ACT-KEY PICTURE 9(8)
USAGE IS COMP-1.

03 CusT-ID PICTURE X(6).
03 CUST-NAME PICTURE X(15).
03 CUST-TYPE PICTURE XX.
03 MONTHLY-ORDERS OCCURS 12 TIMES.

05 NO-ORDERS PICTURE 99.

05 MONTH-AMT PICTURE 9(5)Vv99.
03 YTD-ORDERS.

05 TOTAL-ORDERS PICTURE 999.

05 TOTAL-AMT PICTURE 9(7)V99.
03 CURRENT-BAL PICTURE 9(6)Vv99.
03 LAST-ACTIVITY PICTURE 9(6).

Figure 3-16. Record Description Entry
for an Actual-Key File

FILE MANIPULATION

Seven Procedure Division statements are provided for
input/output processing of actual-key files. Once the file
has been created, records can be read, replaced, deleted,
and inserted. Individual data items within actual-key
records are manipulated through various statements that
are described in other sections of the guide.

Opening Actual-Key Files

Before records in an actual-key file can be accessed, the
file must be opened by the OPEN statement. The file is
opened for input, for output, or for input and output
processing. The open mode established for the file
determines the input/output statements that can be
executed. The primary key becomes the key of reference
when the OPEN statement is executed; for an existing file,
the current value of the key of reference is the primary
key value for the first record in the file.

An actual-key file is opened for input with the OPEN
INPUT statement. The file is then available for read-only
processing. When the OPEN INPUT statement is executed,
the file is positioned at the first record slot of the first
block in the file. Depending on the access mode
established for the file, records are then read sequentially
or randomly.

OPEN INPUT CUSTOMERS.
This statement causes the actual-key file CUSTOMERS to

be opened for input. Records can be read from but not
written on the file.

60497200 D



The OPEN OUTPUT statement is used when an actual-key
file is being created. Records can only be written on the
file; they cannot be read or updated. Records are
subsequently written in the location specified by the value
of the primary key.

OPEN OUTPUT MASTER-FILE.

Execution of this statement opens the file MASTER-FILE
for write-only processing. Records cannot be read from
the file.

An existing actual-key file is opened for input and output
processing by the OPEN I-O statement. The open mode
established by this statement allows records in the file to
be read, deleted, inserted, and updated. The file is
positioned at the first record currently existing in the file.

OPEN I-O STOCK-FILE.

When this statement is executed, the file STOCK-FILE is
opened for input and output processing. Records can be
read, inserted, deleted, and rewritten.

Writing New Actual-Key Files

Records are written on a new actual-key file when the file
has been opened for output (OPEN OUTPUT). The primary
key specifies the record number. AAM converts the record
number to the storage location of the record.

WRITE MASTER-REC.

Execution of this statement causes a MASTER-REC record
to be written in the location specified by the
system-generated primary key value. Records are written
serially beginning with the first record position.

The primary key values can be generated by AAM. If AAM
is to generate primary key values, the primary key data
item must be set to zero before each record is written on
the file. The system-generated key value is returned to
the program in the primary key data item when the record
is written on the file. These values must be preserved by
the program if the file is to be accessed by primary key.

An invalid key condition exists if the key value indicates a
location that already contains a record or if it indicates a
block number that is more than one greater than the
highest existing block number. If duplicate alternate keys
are not allowed, a duplicate alternate key value also causes
an invalid key condition.

WRITE CUST-REC
INVALID KEY GO TO KEY-ERROR.

When this statement is executed, a CUST-REC record is
written in the location indicated by the primary key value
supplied by the program. If an invalid key condition is
encountered, control is transferred to the paragraph named
KEY-ERROR.

60497200 D

If alternate keys are defined for the actual-key file
without the USE or OMITTED phrase, the primary key is
indexed in the alternate key index file for each alternate
key in the record being written. When the USE or
OMITTED phrase is specified in the key definition, the
primary key is entered in the index file on the basis of the
condition specified in the phrase. A repeating group
alternate key causes the primary key to be indexed for
each occurrence of the alternate key.

The FROM phrase is included in the WRITE statement
when the data for the output record is stored in an area
other than the output record area. The data is moved from
the storage area to the record area and the record is then
written on the file.

WRITE STOCK-REC FROM TEMP-REC
INVALID KEY GO TO BAD-WRITE.

Before the STOCK-REC record is written on the file, the
data in the storage area TEMP-REC is moved to the output
record area. If an invalid key condition occurs, control is
transferred to the paragraph named BAD-WRITE.

Positioning Actual-Key Files With Alternative Keys

Retrieval of records in an actual-key file with alternate
keys can begin with a record other than the first record in
the file. The file is positioned to a record that meets a
specified condition. The access mode for the file must be
sequential or dynamic and the file must be open for input
(OPEN INPUT or OPEN I-0).

The START statement positions the file for subsequent
sequential READ statements and establishes the key of
reference. The file is positioned at a record that satisfies
a specified condition. The KEY phrase establishes the key
of reference and specifies the condition used in positioning
the file. The key of reference specified in the phrase must
be an alternate key or the leading portion of an alternate
key; it cannot be the primary key. When the START
statement is executed, the index file is searched for a
value that is greater than, equal to, or not less than the
current value of the designated data item. The file is
positioned at the first record that satisfies the specified
condition.

START MASTER-FILE
KEY IS GREATER THAN MASTER-NO.

When this statement is executed, the index for the
alternate key MASTER-NO is searched for a value greater
than the current value of the MASTER-NO data item. The
index file is positioned at the first alternate key value that
satisfies the condition. Retrieval of the records in the
actual-key file (MASTER-FILE) proceeds in the order of
the alternate key values in the index file.

3-27



A repeating group alternate key can be specified in the
KEY phrase; however, the data-name of the key cannot be
subscripted or indexed. The value that is used to position
the file is the current value in the first occurrence of the
alternate key data item. In the record at which the file is
positioned, the value satisfying the specified condition can
be in any occurrence of the alternate key.

The leading portion of an alternate key can be specified in
the KEY phrase if the alternate key does not begin in the
same character position as another alternate key; when
two alternate keys begin in the same position, the KEY
phrase cannot specify an item subordinate to them.

If the leading portion of an alternate key is specified in the
KEY phrase, it must begin in the first character position of
the alternate key and must be described as an
alphanumeric data item. For example:

03 MASTER-NO.
05 TYPE-CODE
05 MST-NUMBER

PICTURE XX.
PICTURE 9(4).

The alternate key MASTER-NO is described with two
subordinate data items. The KEY phrase can specify either
MASTER-NO or TYPE-CODE, but not MST-NUMBER.

An invalid key condition occurs when the condition
specified in the KEY phrase cannot be satisfied by any
record in the file. The INVALID KEY phrase designates
the action to be taken when this condition occurs.

START MASTER-FILE
KEY IS NOT LESS THAN TYPE-CODE
INVALID KEY GO TO NO-TYPE.

Execution of this statement causes the alternate key index
file to be searched for a value with the first two
characters of MASTER-NO equal to or greater than the
current value of TYPE-CODE. If the value cannot be
found, control is transferred to the paragraph named
NO-TYPE.

Reading Actual-Key Files

When an actual-key file is opened for input (OPEN INPUT
or OPEN I-O), records are retrieved from the file by the
READ statement. Records are read randomly or
sequentially depending on the access mode established for
the file and the format of the READ statement. The key
of reference for reading an actual-key file can be the
primary key or an alternate key.

Accessing Sequentially

Sequential read operations can be executed when the
access mode for the actual-key file is sequential or
dynamic. At the time the READ statement is executed,
the key of reference determines the order in which records
are retrieved. The key of reference is determined as
follows:

e  When the file is opened, the primary key is the key of
reference.

e If the file has been positioned by the START
statement, the alternate key used to position the file
becomes the key of reference.

® In dynamic access mode, a random read executed

before the sequential read establishes the key used for
the random read as the key of reference.

3-28

When the primary key is the key of reference, records are
read in the order they are stored in the file; if the primary
key is defined in the Working-Storage Section (rather than
within the record), the key value is stored in the data item
designated by the RECORD KEY clause. If an alternate
key is the key of reference, records are read in the order
of the key values in the alternate key index file.

For sequential access mode, records read by primary key
are retrieved in stored sequence beginning with the first
record in the first block of the file or with the record that
satisfied the condition in the START statement. When an
alternate key is the key of reference, the first record read
is the record at which the file has been positioned by the
START statement; sequential reading then proceeds in the
order of the alternate key values in the index file. The
final occurrence of a particular alternate key value can be
detected through the FILE STATUS clause (described in
section 15) by testing for a status code of 02,

READ MASTER-FILE RECORD
AT END GO TO CL.OSING.

Records in the actual-key file MASTER-FILE are read
sequentially. The access mode for the file is established as
sequential. If the primary key is the key of reference,
records are read in stored order. When an alternate key is
the key of reference, records are read in sequence by the
alternate key values. When the last record has been read,
control is transferred to the paragraph named CLOSING.

For dynamic access mode, the first record retrieved by a
sequential READ statement is one of the following:

The first record in the first block of the file.

The record at which the file has been positioned by the
START statement.

The next record in sequence according to the key of
reference used in the preceding random READ
statement.

Subsequent records are retrieved sequentially by stored
position (if the primary key is the key of reference) or by
the order of alternate key values in the index file (if an
alternate key is the key of reference). The keyword NEXT
must be included in a sequential READ statement when the
access mode is dynamic. The FILE STATUS clause,
described in section 15, can be used to determine the final
occurrence of an alternate key value during sequential
retrieval by alternate key.

READ CUSTOMERS NEXT RECORD
AT END GO TO FINISHED.

This statement reads a record sequentially from the file
CUSTOMERS. If the key of reference is the primary key,
the next record in stored sequence is read. If an alternate
key is the key of reference, the next record in alternate
key sequence is read. When the end of the file has been
reached, control is transferred to the paragraph named
FINISHED.

A sequential READ statement includes the INTO phrase
when the input record is to be stored in a specified area.
The record is then available in both the input record area
and the specified storage area. When the file is defined by
more than one Record Description entry, the INTO phrase
cannot be used if any entry is a level 01 elementary item
that is described as a numeric or numeric-edited data item.

READ STOCK-FILE NEXT RECORD
INTO UPDATING.

60497200 C



When this statement is executed, the next record in
sequence according to the key of reference is read from
the file STOCK-FILE. The record is stored in the input
record area and in the storage area named UPDATING.

Accessing Randomly

Records in an actual-key file can be accessed randomly by
key value when the access mode for the file is established
as random or dynamic. The key of reference for the
random read can be the primary key or an alternate key.

The KEY IS phrase specifies the key of reference for a
random READ statement. If the phrase is omitted, the
primary key is the key of reference. Either the primary
key or an alternate key can be designated in the KEY IS
phrase as the key of reference. At the time the READ
statement is executed, the record retrieved is the record
with the key value equal to the current value of the key of
reference.

When the key of reference is an alternate key with
duplicate values, the first primary key indexed for the
alternate key value determines the record to be retrieved.
The order in which the primary keys are indexed depends
on whether or not the ASCENDING option is specified in
the ALTERNATE RECORD KEY clause. If ASCENDING is
specified, the primary keys are indexed in ascending
sequence; if it is not specified, the primary keys are
indexed in the order the records were written on the file.

READ CUSTOMERS RECORD
KEY IS CUST-TYPE
INVALID KEY GO TO KEY-ERROR.

The KEY IS phrase establishes the alternate key
CUST-TYPE as the key of reference. CUST-TYPE can
have duplicate values and the primary keys are indexed in
ascending sequence. Execution of this statement causes
the alternate key index file to be searched for a
CUST-TYPE value that is equal to the current value of the
data item CUST-TYPE. The record with the first primary
key indexed for the CUST-TYPE value is read from the
file. If a key of equal value cannot be found, control is
transferred to the paragraph named KEY-ERROR.

When a repeating group alternate key is specified in the
KEY IS phrase, the data-name of the alternate key cannot
be subscripted or indexed. The current value in the first
oceurrence of the alternate key data item is used to search
the index file for an equal value. The record with the first
primary key indexed for the alternate key value is read
from the file. The value can be in any occurrence of the
alternate key in the record that is read from the file. When
records are read by repeating group alternate key values,
the same record can be retrieved for the value in each
occurrence of the alternate key.

The INTO phrase is included in the random READ
statement to specify an additional storage area for the
input record. When the record is read, it is stored in the
input record area and in the specified storage area.

READ MASTER-FILE RECORD INTO NEW-REC
KEY IS MAST-NO
INVALID KEY GO TO BAD-KEY.

When this statement is executed, a record is read from the
actual-key file MASTER-FILE; the record is then available
in the input record area and in the storage area named
NEW-REC. The alternate key MAST-NO is established as

the key of reference. If an invalid key condition exists, -

control is transferred to the paragraph named BAD-KEY.

60497200 C

Updating Actual-Key Files

Records in an existing actual-key file are updated by the
DELETE and REWRITE statements. The WRITE statement
is used to add new records to the file; it cannot be used to
replace an existing record in the file. Any access mode is
allowed and the file must be open for input and output
(OPEN I-0).

Records are removed from the actual-key file by the
DELETE statement. After the DELETE statement is
executed, the record can no longer be accessed. The
record deleted is either the last record read or the record
indicated by the current value of the primary key.

If the access mode is sequential, the last input/output
statement preceding the DELETE statement must be a
valid sequentiai READ statement. The record deleted is
then the last record read.

READ MASTER-FILE RECORD.

DELETE MASTER-FILE RECORD.

A record is read in sequence from the file MASTER-FILE.
When the DELETE statement is executed, the record read
from MASTER-FILE is removed from the file and can no
longer be accessed. '

Records are deleted by primary key value when the access
mode is random or dynamic. The record in the location
specified by the current value of the primary key data item
is deleted from the file. If the specified location does not
contain a record, an invalid key condition exists.

DELETE CUST-FILE RECORD
INVALID KEY GO TO NO-RECORD.

This statement deletes the CUST-FILE record in the
location indicated by the current value of the primary key
data item. If a record does not exist in the specified
location, control is transferred to the paragraph named
NO-RECORD.

Data in an existing record in the actual-key file can be
updated through the REWRITE statement. The record to be
rewritten is identified by the primary key value. The
FROM phrase is included in the REWRITE statement when
the updated record is stored in a location other than the
record area. The data in the storage area is moved to the
record area before the record is rewritten on the file.

If the access mode is sequential, a sequential READ
statement must precede the REWRITE statement. The
record rewritten is then the previously read record. The
primary key value must not be changed before the
REWRITE statement is executed. An invalid key condition
exists if the key value is changed.

READ STOCK-FILE RECORD INTO UPDATING.

REWRITE STOCK-REC FROM UPDATING.

The record read from the file STOCK-FILE is stored in the
area named UPDATING. Data in any field except the
primary key field can be updated before the REWRITE
statement is executed. The updated record is moved from
UPDATING to the record area for STOCK-REC and then
replaces the record retrieved by the previous READ
statement.

3-29



If the access mode is random or dynamic, the current value
of the primary key data item specifies the record to be
rewritten. An invalid key condition occurs if the record
position indicated by the primary key value does not
contain a record. When a record containing alternate key
data items is rewritten, new values can be specified for the
key items; however, the new values cannot duplicate any
existing alternate key values in the file unless the
DUPLICATES phrase is included in the key definition.

REWRITE MASTER-REC
INVALID KEY GO TO KEY-ERR.

When this statement is executed, the data in the
MASTER-REC record area replaces the record stored in
the location identified by the current value of the primary
key data item. If a record does not exist at that location,
control is transferred to the paragraph named KEY-ERR.

Closing Actual-Key Files

Processing of an actual-key file is terminated by execution
of the CLOSE statement. AAM updates the internal tables
that are part of the file. The file can be reopened for
further processing; it is then positioned at the first record
in the file.

The WITH LOCK phrase is included in the CLOSE
statement to prevent the actual-key file from being
reopened during the execution of the current control
statement. When the file is closed, it is returned to the
system. If an attempt is made to reopen the file, the
program aborts.

If a file is to be reopened immediately after it has been
closed, the routine C.FILE should be entered to prevent the
release to the system of buffer space and AAM capsules
used for the file. The routine C.FILE overrides the default
setting DET of the CF field in the file information table
with the setting R. The R parameter indicates that the
buffer space and system capsules associated with the file
are retained by the program. The ENTER statement should
immediately precede the CLOSE statement. If the WITH
LOCK statement is included in the CLLOSE statement, the
default setting for the CF field cannot be overridden.

ENTER "C.FILE" USING STOCK-FILE, "CF=R".
CLOSE STOCK-FILE.

The file STOCK-FILE is closed and the system resources
associated with the file are retained for subsequent use
when the file is reopened.

WORD-ADDRESS FILE ORGANIZATION

A word-address file is a mass storage file in which the
word-address key specifies the number of the first word in
the record. Word numbers begin with 1 for the first word
of the first record in the file and continue in sequence to
the end of the file. Each record begins in a new word; a
word contains 10 character positions. Boundaries do not
appear between records. A word-address file is similar to
a table in which any entry can be identified by an index
into the table. ‘

Word-address file organization is used most often in

specialized applications that require immediate access.
Records are read or written beginning with the word

3-30

number indicated by the word-address key value. The
number of words read or written is determined by the
Record Description entry. The system performs no
checking of the data being read or written to ensure that
the information is valid. If the file is created sequentially,
unused words do not exist in the file., Alternate keys
cannot be specified for word-address files.

FILE DEFINITION

The FILE-CONTROL paragraph in the Environment
Division and the File Description and Record Description
entries in the Data Division define the structure of a file
with word-address organization.

FILE-CONTROL Paragraph

In the FILE-CONTROL paragraph for a word-address file,
four clauses must be included: SELECT, ASSIGN,
ORGANIZATION, and WORD-ADDRESS KEY. Four
optional clauses can be included in this paragraph. Refer
to figure 3-17.

Required Clauses

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT PARTS-FILE ASSIGN TO PARTFLE

ORGANIZATION IS WORD-ADDRESS
ACCESS MODE IS DYNAMIC
WORD-ADDRESS KEY IS PART-KEY
RESERVE 1 AREA
FILE STATUS IS FILE-CODE
USE "DFC=3".

Figure 3-17. FILE-CONTROL Paragraph
for a Word-Address File

The SELECT clause specifies the file-name used in the
COBOL. 5 program. The ASSIGN clause specifies the
logical file name recognized by the operating system. If
the logical file name is the same as any other name in the
program or as a reserved word, it must be enclosed in
quotation marks. The ORGANIZATION clause designates
the file as a word-address file.

The WORD-ADDRESS KEY clause specifies the data item
that contains the key value used to access word-address
records randomly. During program execution, the key
value must be a numeric integer that identifies the word
number at which the record begins. The data item
containing the key value must not be included in the record
stored in the file. If the file is an External file, the
word-address key data item must be defined in the
Common-Storage Section.

The access mode for a word-address file can be sequential,
random, or dynamic. If the ACCESS MODE clause is
omitted or if it specifies SEQUENTIAL, records are read or
written sequentially. Records are accessed randomly by
key value when the clause specifies RANDOM. If
DYNAMIC is specified, records can be accessed
sequentially and randomly during program execution.

60497200 C



The RESERVE clause can specify the number of
input/output buffer areas for the word-address file. The
specified number of areas, plus two additional words, are
reserved. If the ‘clause is omitted, the system allocates
«wo buffer areas. The size of each input/output buffer
area is the maximum block size.

The FILE STATUS clause is used to specify a data item to
receive a status code whenever an input/output statement
is executed for the_file. The status code is a value that
indicates whether or not the statement executed
successfully. Refer to section 15 for a description of the
status code.

The USE clause supplies file information used by BAM to
process the word-address file. Certain FILE control
statement parameters can be specified in this clause.
These parameters supply file information that cannot be
specified through the clauses and statements in the source
program, or they override parameter values normally
obtained from the source program. Refer to section 15 for
a complete list of parameters that can be specified.

A FILE-CONTROL paragraph for a file with word-address
organization is illustrated in figure 3-17. The file-name
PARTS-FILE is used in the COBOL 5 program and the
logical file name PARTFLE identifies the file for the
operating system. Records in the file can be accessed
sequentially or randomly since the access mode is
established as dynamic. The key value used to access a
record is contained in the data item PART-KEY.

File Description Entry

The physical structure of the word-address file is described
in the File Description entry (FD entry) of the Data
Division. The program file-name specified in the SELECT
clause is also specified in the FD entry. Two clauses,
LABEL RECORDS and RECORDS, are applicable to
word-address files. Refer to figure 3-18.

DATA DIVISION.

FILE SECTION.

FD PARTS-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 30 CHARACTERS
DATA RECORD IS PART-REC.

Figure 3-18. File Description Entry
for a Word-Address File

The LABEL RECORDS clause, which is required in every
FD entry, must specify that label records are omitted.
Labels cannot exist on a word-address file.

Record type and record size are used by BAM for
input/output processing of word-address files. The
RECORD clause, if included, is used to determine record
size. For a word-address file, record type is always U
(unless overridden by a FILE control statement).

The File Description entry illustrated in figure 3-18 is for
a word-address file named PARTS-FILE.. The file contains
U type records with 30 characters per record. The DATA
RECORD clause documents the record name as PART-REC.

60497200 C

Record Description Entry

The File Description entry for a word-address file must
include a Record Description entry for each record format
applicable to the file. Records can be fixed or variable in
length. The Record Description entry assigns data-names
to individual data items and describes the physical
structure of the record.

When the RECORD clause is not included in the FD entry,
the record size used by BAM is determined by the Record
Description entry. If all records contain the same number
of characters, the record size is the maximum number of
character positions described in the Record Description
entry. If Record Description entries are not all the same
size and no OCCURS...DEPENDING ON phrase exists in
the RECORD clause, the record size is the actual size of
the named record.

The Record Description entry illustrated in figure 3-19 is
applicable to the word-address file described in
figures 3-17 and 3-18. The record format defines a record
with 30 character positions; each stored record occupies
three words. The record key, which is used to access
records randomly, is described in the Working-Storage
Section as a four-digit integer.

DATA DIVISION.
FILE SECTION.

01 PART-REC.
03 PART-NAME
03 USED-WITH
03 AQTY-ON-HAND
03 MFG-CODE

PICTURE X(10).
PICTURE X(5).
PICTURE 9(5).
PICTURE X(10).

WORKING-STORAGE SECTION.
01 PART-KEY

PICTURE 9(4).

Figure 3-19. Record Description Entry
for a Word-Address File

FILE MANIPULATION

Input/output  processing of word-address files is
accomplished through four Procedure Division statements.
Records in an existing word-address file can be read,
replaced, and inserted. Individual items within a record
are manipulated through various statements that are
discussed in other sections of this guide.

Opening Word-Address Files
Word-address files are opened for input, for output, or for

input and output. The specific format of the OPEN
statement determines the open mode for the file.

3-31



The OPEN INPUT statement opens the word-address file
for input only. Records are read from the file sequentially
or randomly depending on the access mode. The file is
positioned at the first record (word 1 of the file).

OPEN INPUT PARTS-FILE.

This statement causes the word-address file PARTS-FILE
to be opened for input. Records can then be read from but
not written on the file.

When a word-address file is being created, the file is
opened for output. The OPEN OUTPUT statement makes
the file available for write-only processing. Records are
written sequentially or randomly depending on the access
mode established for the file.

OPEN OUTPUT WORD-FILE.

Execution of this statement causes the file WORD-FILE to
be opened for output. Records are then written on but not
read from the file.

An existing word-address file can be opened for input and
output. The OPEN I-O statement allows records to be read
from and written on the file. The file is positioned at the
first record (word 1 of the file). Subsequent statements
read and write records sequentially or randomly depending
on the access mode.

OPEN I-O PARTS-FILE.

When this statement is executed, the file PARTS-FILE is
opened for input and output. The program can then read or
write records on the file.

Writing Word-Address Files

Records are written on a word-address file sequentially or
randomly depending on the access mode established for the
file. The file must be open for output (OPEN OUTPUT for
file creation or OPEN I-O for file updating) when records
are to be written. The word-address key data item is
updated after each write operation to indicate the
beginning word number for the next record. The key should
be initialized to one or to a specific value to avoid a large
word address.

For sequential access mode, the file must be open for
output only. Records are written on the file beginning with
word number 1; each record uses a designated number of
words. If the records are fixed length, the number of
words used is the same for all records in the file. The
number of words used for variable-length records depends
on the actual size of the record being written. When the
record is written on the file, the system returns the
beginning word number for the record to the word-address
key data item.

WRITE WORD-RECORD.

Execution of this statement in sequential access mode
causes the record WORD-RECORD to be written on its
associated file. The record begins in the next word in
sequence; the system returns the word number for the
record to the word-address key data item.

3-32

For random or dynamic access mode, the record is written
according to the current value of the word-address key
data item. The key value specifies the word number in
which to begin the record. The record is written at the
designated location, whether or not a record already exists
at that location. An invalid key condition occurs when the
key value is not an integer.

WRITE PART-REC
INVALID KEY GO TO BAD-KEY.

When this statement is executed, the record PART-REC is
written on the file beginning with the word number
indicated by the word-address key value. If an invalid key
condition exists, control is transferred to the paragraph
named BAD-KEY.,

The FROM phrase is included in the WRITE statement when
the record data is in a storage area other than the record
area. The data in the specified area is moved into the
record area and then the record is written on the file.

WRITE WORD-RECORD FROM TEMP-REC.

This statement specifies that the data in the storage area
named TEMP-REC is to be moved into the record area
before the record is written on its associated file.

Reading Word-Address Files

Records are retrieved from a word-address file by the
READ statement. The file must be open for input (OPEN
INPUT or OPEN [-O). Depending on the access mode

- established for the file and the format of the READ.

statement, records are read sequentially or randomly.

The number of words retrieved when a READ statement is
executed depends on the record size established by the
Record Description entry. If multiple record descriptions
are used, and there are no DEPENDING ON phrases in
either the RECORD clause or the Record Description
entry, the read operation uses the number of characters in
the largest record description. If variable length records
are to be used, the user must define the record length
before a read operation occurs. Each time the READ
statement is executed, the designated word-address key is
updated to point to the next available word by using the

" record length of the record just read.

Accessing Sequentially

Word-address records can be read sequentially when the
access mode is sequential or dynamic. When the file is
opened, it is positioned at the first record. The READ
statement retrieves the designated number of words
beginning at the current file position. The AT END phrase
is included in the sequential READ statement to specify
the action to be taken when the end of the file is reached.

READ WORD-FILE RECORD
AT END GO TO DONE.

Execution of this statement reads a record from the file
WORD-FILE. When the end of the file is reached, control is
transferred to the paragraph named DONE.

60497200 C



The INTO phrase can be included in the READ statement
to store the record in a specified area. The record
retrieved is available in both the input record area and the
specified storage' area. When the file is defined by more
than one Record Description entry, the INTO phrase cannot
be used if any entry is a level 01 elementary item that is
described as a numeric or numeric-edited data item.

READ PARTS-FILE RECORD
INTO REC-AREA.

When this statement is executed, a record is retrieved from
the file PARTS-FILE. The record is available in both the
input record area and the storage area named REC-AREA.

For sequential reading in dynamic access mode, the
keyword NEXT must be included in the READ statement.
In sequential access mode, the keyword NEXT is
documentary only.

READ PARTS-FILE NEXT RECORD
AT END GO TO FINISHED.

This statement reads the next record in sequence when the
access mode for the file PARTS-FILE is dynamic. If the
last record in the file has been read, control is transferred
to the paragraph named FINISHED.

Accessing Randomly

If the access mode established for the word-address file is
random or dynamic, records can be read randomly by key
value. The data item defined as the word-address key
contains a value that indicates the first word number of
the record to be read. An invalid key condition exists if
the key value is not an integer within the range of words in
the file or if the attempt to read a record extends beyond
the end of the file.

READ WORD-FILE RECORD
INVALID KEY GO TO BAD-READ.

When this statement is executed, a record is read from the
file WORD-FILE beginning at the word number indicated by
the value of the word-address key. An invalid key
condition causes control to be transferred to the paragraph
named BAD-READ.

A random READ statement can also include the INTO
phrase to store the record in a specified area. This phrase
is executed in the same manner as for reading sequentially.

Closing Word-Address Files

The CLOSE statement terminates processing of a
word-address file. Once the - statement is executed,
input/output statements cannot access the file until it has
been opened again. When a word-address file is closed, a
partition boundary exists at the end of the file. The
boundary is overwritten when records are added to the end
of the file.

The WITH LOCK phrase of the CLOSE statement specifies
that the file being closed cannot be reopened during
execution of the current control statement. The file is
returned to the system. An attempt to reopen the file
causes the program to abort.

If the file being closed is to be reopened immediately, the
C.FILE routine should be entered before the file is closed.
The routine changes the file information table CF field
from the default DET setting to the R setting. The

60497200 C

R parameter causes the program to retain the buffer space
and BAM capsules associated with the file that are
otherwise returned to the system. The setting of the CF
field cannot be overridden if the WITH LOCK phrase is
included in the CLOSE statement.

ENTER "C.FILE USING PARTS-FILE, "CF=R".
CLOSE PARTS-FILE.

When these statements are executed, the file PARTS-FILE
is closed; the associated buffer space and system capsules
are retained for subsequent use when the file is reopened.

ERROR HANDLING

File-related errors and exception conditions encountered
during program execution are handled in various ways.
Some actions are performed automatically by the system
while others are specified in the COBOL 5 program.
Whenever an input/output statement is executed, the
system generates a status code. This code can be used by
the program to determine the course of action following
execution of the input/output statement.

Input/output errors are handled in the following order:

1. Standard input/output error routines are automatically
executed by the system.

2. If a user-supplied error procedure is specified for the
file, the procedure is executed.

For at end and invalid key conditions, the program is
responsible for determining subsequent action. Processing
continues in one of two ways with the following order of
precedence:

1. Control is transferred to the imperative statement
specified in the AT END or INVALID KEY phrase of
the input/output statement.

2. The user-supplied error procedure specified for the
file is executed.

If neither method is used to provide for processing of at
end and invalid key conditions, the program is aborted
when the condition occurs.

USER-SUPPLIED ERROR PROCEDURES

The source program can specify procedures that are
executed when input/output errors or exception conditions
ocecur during file processing. A user-supplied procedure is
executed after the standard input/output error routine has
been performed. A USE statement introduces the error
procedure to be executed. The keywords ERROR and
EXCEPTION are synonymous; the choice between words is
provided for documentary purposes only. An error
procedure is executed for any file organization.

Execution of a user-supplied error procedure occurs under
any of the following conditions:

® A standard input/output error routine has been
executed.

e An at end condition exists for an input/output

statement that does not include the AT END phrase.
e An invalid key condition exists for an input/output

statement that -does not include the INVALID KEY
phrase.

3-33



User-supplied error procedures are specified in the
Declaratives portion of the Procedure Division. Each error
procedure is contained in a named section. The first
statement in the section is a WUSE statement that
designates the files to which the error procedure applies.
This is followed by one or more paragraphs containing the
statements to be executed when an input/output error or
exception condition occurs.

The error procedure is executed only for those files
indicated by the USE statement. If specific file-names are
included in the USE statement, the errar procedure is
invoked for the named files regardless of the open mode of
the files. If an open mode is specified in the USE
statement, the error procedure applies to all files in the
specified open mode.

Figure 3-20 shows two USE statements and the order in
which they appear in the Procedure Division. Statements
following paragraph-name INPUT-ERROR are executed
when one of the conditions that invoke a USE statement is
encountered for any input file. If the condition is
encountered for the file named FILE-1, the statements
following paragraph-name FILE1-ERROR are executed; the
error procedure for input files is not executed if FILE-1 is
an input file.

PROCEDURE DIVISION.

DECLARATIVES. -

INPUT-PROC SECTION.

USE AFTER STANDARD ERROR PROCEDURE
ON INPUT.

INPUT-ERROR.

FILE1-PROC SECTION.

USE AFTER STANDARD EXCEPTION PROCEDURE
ON FILE-1.

FILE1-~ERROR.

END DECLARATIVES.

Figure 3-20. Example of the USE Statement

STATUS CODE

The system generates a status code each time an
input/output statement is executed. If this code is to be
used by the program, the FILE STATUS clause in the
Environment Division specifies the data item to receive
the status code. The data item can be tested to determine
the execution status of the input/output statement. Usage
of the file status code (and other CRM debugging tools) is
illustrated in section 15.

3-34

SAMPLE PROGRAMS

The sample programs included in this section illustrate the
six file organizations. Each program uses at least one
sequential file and one file with a different file
organization. Two programs are shown for each of the
following file organizations: relative, indexed, direct,
actual-key, and word-address. The first program creates
the file and the second program accesses the existing file.

RELATIVE FILE PROGRAMS

A file with relative organization is created by the program
shown in figure 3-21. This file contains the name and
address of each person who has a safe-deposit box. When
customers are billed, the relative file is used to print
address labels.

Each input record contains a customer's box number, name,
and address (see figure 3-22). The box number is moved to
the relative key data item (line 50), the customer's name
and address are moved to the output record area (line 51),
and the record is written on the relative file (line 52). The
record is stored in the record position that corresponds to
the box number.

The program shown in figure 3-23 uses the relative file
created by the preceding program. This program is used to
update the existing file and to create ‘address labels for
billing the customers. The first input card contains either
the letter A or the letter B in the CARD-CODE field. The
letter A indicates that the following cards contain
information to update records in the relative file (lines 72
and 73). The letter B indicates that address labels are to
be printed for the box numbers on the following cards
(lines 74 and 75).

The UPDATING procedure reads an input record (line 79),
moves the box number to the relative key data item
(line 83), and rewrites the record using the new
information (lines 84 and 85). This procedure is repeated
until the CARD-CODE field contains the letter B (line 81)
or the end of the input file is reached (line 80).

The BILLING procedure reads an input record (line 92),
moves the box number to the relative key data item
(line 94), and reads the corresponding record from the
relative file (line 95). The name and address from the
relative file record are used to create the address label on
the output file (lines 97 through 103).

The format of the input records used to access the relative
file is illustrated in figure 3-24. The output labels created
by the program are shown in figure 3-25.

INDEXED FILE PROGRAMS

Two programs illustrate indexed file organization. The
first program creates the indexed file and the second
program accesses the file by alternate key.

The indexed file EMP-FILE is created by the program
shown in figure 3-26. The alternate key index file is
assigned the logical file name INDFLE (line 10). Two
alternate keys, HIRE-DATE and JOB-ID, are specified
(lines 14 through 17); duplicate key values are allowed for
both alternate keys. When records are accessed by
alternate key, records with duplicate alternate key values
are retrieved in ascending sequence by the value of the
primary key EMP-ID.

60497200 C



O NOTN S WN =

IDENTIFICATION DIVISION.
PROGRAM-ID. NEW-REL.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDFILE ASSIGN TO INPUT.
SELECT BOX-FILE ASSIGN TO BOXFLE
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS REL-KEY.
DATA DIVISION.
FILE SECTION.
FD CARDFILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-IN.
01 CARD-IN.

03 BOX-NO PICTURE 999.
03 CUST-NAME PICTURE X(20).
03 FILLER PICTURE X.

03 STREET PICTURE X(18).
03 FILLER PICTURE XX.

03 cITY PICTURE X(15).
03 FILLER PICTURE X(5).
03 STATE PICTURE AA.

03 FILLER PICTURE XXX.
03 ZIP-CODE PICTURE 9(5).
03 FILLER PICTURE X(6).

FD BOX-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 60 CHARACTERS
DATA RECORD IS BOX-REC.

01 BOX-REC,

03 CUST~NAME PICTURE X(20).
03 STREET PICTURE X(18).
03 CITY PICTURE X(15).
03 STATE PICTURE AA.
03 ZIP-CODE PICTURE 9(5).
WORKING-STORAGE SECTION,
01 REL-KEY PICTURE 999.
PROCEDURE DIVISION.
STARTING.

OPEN INPUT CARDFILE.
OPEN OUTPUT BOX-FILE.
CREATING.
READ CARDFILE RECORD
AT END GO TO CLOSING.
MOVE BOX-NO TO REL-KEY.
MOVE CORRESPONDING CARD-IN TO BOX-REC.
WRITE BOX-REC
INVALID KEY GO TO BAD-KEY.
GO TO CREATING.
BAD-KEY.
DISPLAY "INVALID KEY " REL-KEY.
GO TO CREATING.

CLOSING.
CLOSE CARDFILE, BOX-FILE.
STOP RUN.

60497200 C

Figure 3-21. Creating a File with Relative Organization

3-35




o> 2 ® &
& & &

o\‘\'& & \°& o & ¢
<P P P ® P
O01JOHN J SMITH 1580 HAPPY LANE MAYS LANDING NJ 08330
OD02ROBERT K RILEY P.0. BOX 124 EGG HARBOR CITY NJ 08215
O03ELIZABETH JONES 9377 FIRST ST RICHLAND NJ 08350
OO4MICHAEL M MARTIN 2598 LAWRENCE AVE MC KEE CITY NJ 08310
O0OS5RUTH L STEPHENS 6403 KILGORE RD RICHLAND NJ 08350
O006JEFFREY J CARTER 3354 WELLINGTON ST MAYS LANDING NJ 08330
OD7RICHARD S GREEN P.0. BOX 57A EGG HARBOR CITY NJ 08215
OO8CHRISTOPHER A BURNS 4816 PEACHTREE RD MC KEE CITY NJ 08310
O09JEAN L RICHARDSON P.0. BOX 36C EGG HARBOR CITY NJ 08215
010GEORGE R BROWN 1269 HIDDEN LANE MAYS LANDING NJ 08330
011JANICE WHEELER 5528 THIRD ST RICHLAND NJ 08350
012ALBERT L ANDERSON P.0. BOX 35C EGG HARBOR CITY NJ 08215
013MARVIN VAN DYKE 2012 CENTER ST MC KEE CITY NJ 08310
N14PAUL J GRIFFITH 70046 WILLOW LANE MAYS LANDING NJ 08330
015FRANK PATTERSON 4619 COLLEGE AVE MC KEE CITY NJ 08310
O16LORETTA D BURKE P.0. BOX 19L EGG HARBOR CITY NJ 08215
O17EDWARD N MILLER 6825 ASHFIELD RD RICHLAND NJ 08350
D18CRAIG SULLIVAN 1221 ORCHARD LANE MAYS LANDING NJ 08330
ND19BARBARA FINNEGAN 4545 WEBSTER AVE RICHLAND NJ 08350
N20STEVEN TREADWELL 3779 GILBERT AVE MC KEE CITY NJ 08310

Figure 3-22. Input Data for Creating the Relative File

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. USE-REL.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

<] OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARDFILE ASSIGN TO INPUT.

10 SELECT BOX-FILE ASSIGN TO BOXFLE

1 ORGANIZATION IS RELATIVE

12 ACCESS MODE IS RANDOM

13 RELATIVE KEY IS REL-KEY.

14 SELECT PRINTFILE ASSIGN TO OUTPUT.
15 DATA DIVISION.
16 FILE SECTION.
17 FD CARDFILE
18 LABEL RECORDS ARE OMITTED
19 DATA RECORD IS CARD-REC.
20 01 CARD-REC.
21 03 BOX-NO PICTURE 999.
22 03 CUST-NAME PICTURE X(20).
23 03 FILLER PICTURE X.
24 03 STREET PICTURE X(18).
25 03 FILLER PICTURE XX.
26 03 cITY PICTURE X(15).
27 03 FILLER PICTURE X(5).
28 ) 03 STATE PICTURE AA.
29 03 FILLER . PICTURE XXX.
30 03 ZIP-CODE PICTURE 9(5).
31 03 FILLER PICTURE X(5).
32 03 CARD-CODE PICTURE X.
33 FD BOX-FILE
34 LABEL RECORDS ARE OMITTED
35 RECORD CONTAINS 60 CHARACTERS
36 DATA RECORD IS BOX-REC.

Figure 3-23. Updating a File With Relative Organization (Sheet 1 of 3)
3-36 60497200 C




01 BOX-REC.

03 CUST-NAME PICTURE X(20).
03 STREET PICTURE X(18).
03 CITY PICTURE X(15).
03 STATE PICTURE AA.

03 ZIP-CODE PICTURE 9(5).

FD PRINTFILE
LABEL RECORD IS OMITTED
DATA RECORD IS LISTLINE.

01 LISTLINE PICTURE X(50).
WORKING-STORAGE SECTION.
01 REL-KEY PICTURE 999.
01 LINE-1.
03 FILLER PICTURE X VALUE SPACE.
03 NAME-OUT PICTURE X(20).
03 FILLER PICTURE X(29) VALUE SPACES.
01 LINE-2.
03 FILLER PICTURE X VALUE SPACE.
03 STREET-0UT PICTURE X(18).
03 FILLER PICTURE X(31) VALUE SPACES.
01 LINE-3.
03 FILLER PICTURE X VALUE SPACE.
03 CITY PICTURE X(15).
03 FILLER PICTURE XX VALUE SPACES.
03 STATE PICTURE AA.
03 FILLER PICTURE XX VALUE SPACES.
03 ZIP-CODE PICTURE 9(5).
03 FILLER PICTURE X(23) VALUE SPACES.
PROCEDURE DIVISION.
OPENING.

OPEN INPUT CARDFILE.
OPEN I-0 BOX-FILE.
OPEN OUTPUT PRINTFILE.
READ CARDFILE RECORD
AT END GO TO ERROR-1.
IF CARD-CODE EQUALS "A"™
GO TO UPDATING.
If CARD-CODE EQUALS "B"
GO0 TO BILLING.
DISPLAY "INVALID CODE " CARD-CODE.
STOP RUN.
UPDATING.
READ CARDFILE RECORD
AT END GO TO CLOSING.
IF CARD-CODE EQUALS "B"
GO TO BILLING.
MOVE BOX-NO TO REL-KEY.
MOVE CORRESPONDING CARD-REC TO BOX-REC.
REWRITE BOX-REC
INVALID KEY GO TO BAD-RECORD.
GO TO UPDATING.
BAD-RECORD.
DISPLAY "NO EXISTING RECORD FOR " REL-KEY.
GO TO UPDATING.
BILLING.
READ CARDFILE RECORD
AT END GO TO CLOSING.
MOVE BOX-NO TO REL-KEY.
READ BOX-FILE RECORD
INVALID KEY GO TO NO-RECORD.
MOVE CUST-NAME OF BOX-REC TO NAME-OUT.
WRITE LISTLINE FROM LINE-1
AFTER ADVANCING 5 LINES.
MOVE STREET OF BOX-REC TO STREET-0UT.
WRITE LISTLINE FROM LINE-2.
MOVE CORRESPONDING BOX~REC TO LINE-3.
WRITE LISTLINE FROM LINE-3,
GO TO BILLING.

60497200 C

Figure 3-23. Updating a File With Relative Organization (Sheet 2 of 3)

3-37




105  NO-RECORD.

106 DISPLAY "BOX NUMBER " REL-KEY.

107 MOVE SPACES TO LISTLINE.

108 WRITE LISTLINE

109 AFTER ADVANCING 3 LINES.

110 GO TO BILLING.

111 ERROR-1.

112 DISPLAY “NO INPUT RECORDS".

113 CLOSING.

114 CLOSE CARDFILE, BOX-FILE, PRINTFILE.
115 STOP RUN.

Figure 3-23. Updating a File With Relative Organization (Sheet 3 of 3)

N ® ® & Q@
& & & & & &
o R § S
< Y & ey P *
| J | = b J
012ALBERT L ANDERSON 7004 WILLOW LANE MAYS LANDING NJ 08330
014PAUL J GRIFFITH P.0. BOX 35C EGG HARBOR CITY NJ 08215
OO3ELIZABETH JONES 8612 FIRST STREET RICHLAND NJ 08350
B
015
002
017 _ Box numbers for Frank Patterson, Robert K. Riley,
006 o Edward Miller, . . . .
009
020

Figure 3-24. Input Data for Updating the Relative File

Two input records are used to create an indexed file record
(lines 70 through 82). Since the access mode for
EMP-FILE is sequential (line 12), the input records must be
in ascending sequence by primary key value. An invalid
key condition exists when the primary key for the record
being written is not greater than the primary key for the
preceding record. As each record is written on the file,
the primary key is automatically entered in each alternate
key index. The format of the input records is illustrated in
figure 3-27.

The program shown in figure 3-28 uses the indexed file

EMP-FILE to generate a listing of all employees hired -

since a certain date. The date to be used is accepted from
the system file INPUT (line 71) and is moved to the
alternate key data item HIRE-DATE (line 72). The date is
represented on a punch card with the digits' 700101 in
columns 1 through 6. The START statement is then used
to search the HIRE-DATE index for the first date that is
equal to or greater than the date currently stored in
HIRE-DATE (lines 73 through 75). Records are then read
from the file EMP-FILE in the order of the HIRE-DATE
values in the alternate key index (line 77). An output line
is generated and printed for each record read from
EMP-FILE (lines 79 through 83). The report shown in
figure 3-29 lists the employees that were hired on or after
January 1, 1970.

3-38

DIRECT FILE PROGRAMS

The two programs that illustrate direct file organization
‘create and then access a file containing inventory records.
Under certain conditions, records are updated and
rewritten on the file.

The program shown in figure 3-30 creates the direct file
INVENTORY. The primary key is the data item PART-NO
(line 14). The hashed value of PART-NO determines the
home block in which the record is stored. One alternate
key WHERE-USED) is specified for the file (line 15);
duplicate alternate key values are allowed. The primary
keys associated with an alternate key value are in
ascending sequence because DUPLICATES- ASCENDING is
specified. The description of the WHERE-USED data item
(lines 54 through 56) indicates that it is a repeating group
alternate key. Each record contains from one to six values
for the WHERE-USED data item.

Each time the WRITE-FILE paragraph is executed, an input
record is read (see figure 3-31), the data is moved to the
output record area, and the record is written on the file
INVENTORY (lines 64 through 73). When a record is
written on the file, the primary key is entered in the index
file for each WHERE-USED value in the record.

60497200 C




FRANK PATTERSON
4619 COLLEGE AVE

The direct file INVENTORY is accessed by alternate key
in the program shown in figure 3-32. This program reads
an input card containing the code of an ordered item and

the quantity ordered. Records are then read from the file
INVENTORY to reserve the parts needed and to determine
whether parts must be ordered. The records are updated to
reflect the reserved quantities and, if applicable, the
ordering of parts.

MC KEE CITY NJ 08310

ROBERT K RILEY
P.0. BOX 12J
EGG HARBOR CITY NJ 08215

The access mode for the file INVENTORY is dynamic
(line 13) to allow records to be read both randomly and
sequentially. The FILE STATUS clause (line 13) specifies a
data item to receive a status code after execution of an
input/output statement referencing the file.

The file is opened for input and output (line 86) so that
records can be read and rewritten on the file. An input
card is read (line 92) and the item code is moved to the
first occurrence of the repeating group alternate key
WHERE-USED (line 94).

EDWARD N MILLER
6825 ASHFIELD RD
RICHLAND NJ 08350

The random READ statement (line 95) specifies an
alternate key value from the input card as the key of
reference. When this statement is executed, the index file
is searched for an alternate key value that is equal to the
current value in the first occurrence of WHERE-USED in
the record area. The record with the first primary key
indexed for the WHERE-USED value is then retrieved from
the file INVENTORY. The status code returned to the
KEY-CHECK data item is moved to the KEY-SAVE data
item (line 97) for later reference.

JEFFREY J CARTER
3854 WELLINGTON ST
MAYS LANDING NJ 08330

JEAN L RICHARDSON

P.0. BOX 36C

EGG HARBOR CITY NJ 08215
After the record is updated (lines 99 through 110), a line is

‘written on the output report and the updated record is
rewritten on the file INVENTORY (lines 112 through 119).
The status code saved after the read operation is then
checked to determine whether the file contains another
record with the same WHERE-USED value. If the status
code in KEY-SAVE is 02 (lines 120 and 121), the next
record in alternate key sequence is indexed for the same
WHERE-USED value and a sequential read should be
executed (lines 126 and 127). If KEY-SAVE is not equal to
02, all records with the same WHERE-USED value have
been read and another input card should be read (line 124).

STEVEN TREADWELL
3779 GILBERT AVE
MC KEE CITY NJ 08310

Figure 3-25. Output Report from Updating
the Relative File

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. NEW-IND.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

S SOURCE-COMPUTER. CYBER-170.

[ OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARD-IN ASSIGN TO INPUT.

10 SELECT EMP-FILE ASSIGN TO EMPFLE, INDFLE
1 ORGANIZATION IS INDEXED

12 ACCESS MODE IS SEQUENTIAL

13 RECORD KEY IS EMP-ID

14 ALTERNATE RECORD KEY IS HIRE-DATE
15 : WITH DUPLICATES ASCENDING

16 ALTERNATE RECORD KEY IS JOB-ID
17 WITH DUPLICATES ASCENDING.
18 DATA DIVISION.

19 FILE SECTION.

20 FD CARD-IN

21 LABEL RECORD IS OMITTED

22 DATA RECORDS ARE CARD-1, CARD-2.

Figure 3-26. Creating a File With Indexed Organization (Sheet 1 of 2)

60497200 E 3-39



“23 01 CARD-1.

24 03 EMP-ID-1 PICTURE 999.

25 03 FILLER PICTURE X.

26 03 EMP-NAME PICTURE X(20).

27 03 EMP-ADDRESS.

28 05 STREET PICTURE X(20).

29 05 CITY PICTURE Xx(20).

30 05 STATE - PICTURE AA.

31 05 FILLER PICTURE X.

32 05 ZIP-CODE PICTURE 9(5).

33 03 FILLER PICTURE X(8).

34 01 CARD-2.

35 03 EMP-ID-2 PICTURE 999.

36 03 FILLER PICTURE X.

37 03 JOB-1D-IN PICTURE X(5).

38 03 FILLER PICTURE X(5).

39 03 DEPT PICTURE 999.

40 03 FILLER PICTURE XX.

41 03 »pI1vV PICTURE 999.

42 03 FILLER PICTURE XX.

43 03 HIRE-DATE-IN PICTURE 9(6).

44 03 FILLER PICTURE X(4).

45 03 LOCATION PICTURE 999.

46 03 FILLER PICTURE X(43).

47 FD EMP-FILE

48 LABEL RECORD IS OMITTED

49 BLOCK CONTAINS 20 RECORDS

50 RECORD CONTAINS 90 CHARACTERS

51 DATA RECORD IS EMPLOYEE.

52 01 EMPLOYEE.

53 03 EMP-ID PICTURE 999.

S4 03 EMP-NAME PICTURE X(20).

55 03 EMP-ADDRESS. .

56 05 STREET PICTURE X(20).

57 05 CITY PICTURE X(20).

58 05 STATE PICTURE AA.

59 05 ZIP-CODE PICTURE 9(5).

60 - 03 Jo0B-ID PICTURE X(5).
) 61 03 DEPT PICTURE 999.

62 03 b1V PICTURE 999.

63 03 HIRE-DATE PICTURE 9(6).

64 03 LOCATION PICTURE 999.
65 PROCEDURE DIVISION. .
66 OPEN-FILES.

67 OPEN INPUT CARD-IN.

68 OPEN OUTPUT EMP-FILE.

69  READ-CARDS.

70 READ CARD-IN RECORD

71 AT END 60 TO CLOSE-FILES.

72 MOVE EMP-ID-1 TO EMP-ID.

73 MOVE CORRESPONDING CARD-1 TO EMPLOYEE.
74 " READ CARD-IN RECORD

75 AT END GO TO INPUT-ERROR.

76 IF EMP-ID-2 NOT EQUAL TO EMP-ID

77 60 TO INPUT-ERROR.

78 .~ MOVE JOB-ID-IN TO:JOB-ID.

79 MOVE HIRE-DATE-IN TO HIRE-DATE.

80 MOVE CORRESPONDING CARD-2 TO EMPLOYEE.
81 WRITE EMPLOYEE

82 INVALID KEY GO TO BAD-RECORD.

83 GO TO READ-CARDS.

84 INPUT-ERROR.

85 DISPLAY "CARD-2 MISSING OR IN ERROR ".
86 DISPLAY EMPLOYEE.

87 GO TO READ-CARDS.

88  BAD-RECORD.

89 DISPLAY "INVALID RECORD - " EMPLOYEE.

90 © 60 TO READ-CARDS.

91 CLOSE-FILES.

92 CLOSE CARD-IN, EMP-FILE.

93 STOP RUN.

Figure 3-26. Creating a File With Indexed Organization (Sheet 2 of 2)

3-40 . ‘ 60497200 C



S oo 0'1‘? ® Qé’ &
& N

\0& A\Q& \\’& & \o& &

CP (P CP (P 00 00

120 CATHERINE WILCOX 3316 ELM ST MAPLEWOOD MO 63143

120 DEV68 658 659 720801 306

158 GERALD MURPHY 4489 W BAYFIELD AVE ST LOUIS MO 63122

158 PBS25 227 659 620115 125

269 JOHN GRIFFITH 1234 ASHFIELD AVE ST LOUIS MO 63122

269 ACT97 409 831 640413 215

277 PAUL RICHARDSON 5523 MARYLAND AVE ST LOUIS MO 63134

277 DEV6S 658 659 711119 302

304 MARY ELLEN RICHARDS 2175 ROARING CREEK WELLSTON MO 63112

304 ACTO97 409 831 741001 216

346 FRANK ANDERSON 2446 RUSHING CREEK WELLSTON MO 63112

346 ACTO7 409 831 680330 219

411 CHRISTOPHER WHEELER 3621 FIFTEENTH ST EAST ST LOUIS IL 62206

411 ACT97 409 831 740604 222

476 JUDITH PETERSON 925 DELANEY ST RICHMOND HEIGHTS MO 63117

476 PRG14 167 659 710707 189

522 LAWRENCE HAVERSTON 1198 FOURTEENTH ST EAST ST LOUIS IL 62206

522 ACT97 409 831 690322 214

583 RICHARD STEVENS 2675 TWELFTH ST EAST ST LOUIS IL 62206

583 PBS25 227 659 730114 123

629 JANICE GREEN 1492 OAK ST MAPLEWOOD MO 63143

629 PRG14 167 659 680520 185 )

683 ROBERT MARTIN 5678 ROARING CREEK WELLSTON MO 63112

683 PBS25 227 659 721001 126 ‘

715 RUTH VAN DYKE 1188 CENTER ST RICHMOND HEIGHTS MO 63117

715 PRG14 167 659 711205 182

791 JOSEPH ARMSTRONG 5633 PINE AVE MAPLEWOOD MO 63143

791 PRG14 167 659 701116 186

804 ELIZABETH RILEY 1069 DELANEY ST RICHMOND HEIGHTS MO 63117

804 DEV6S 658 659 750228 305

850 MICHAEL BURNS 6977 OAKRIDGE AVE ST LOUIS MO 63122

850 PBS25 227 659 700715 121

930 ALEXANDER COLLINS 6700 DELAWARE AVE ST LOUIS MO 63134

930 ACT97 409 831 660505 220

938 LORRAINE SMITH 4890 WASHINGTON AVE ST LOUIS MO 63134

938 PRG14 167 659 700910 183

Figure 3-27. Input Data for Creating the Indexed File

The format of the input cards used to access the direct file
INVENTORY is illustrated in figure 3-33. An output
report generated by the program is shown in figure 3-34.

ACTUAL-KEY FILE PROGRAMS

A file with actual-key organization is created and then
updated by two programs shown in this section. The
actual-key file is a file of customer records. Each
customer record contains order totals on a monthly basis as
well as year-to-date totals.

The program shown in figure 3-35 creates the actual-key
file CUSTOMERS. The primary key is the data item
ACT-KEY, which is described as an eight-digit COMP-1
item (lines 13 and 34). The value of ACT-KEY specifies
the location of the record in the file. Two alternate keys
(CUST-D and CUST-TYPE) are specified (lines 14
through 16). Because each customer has a unique
identification number, duplicate CUST-ID values are not
allowed. Duplicate values are allowed for the alternate
key CUST-TYPE.

60497200 C

Before each record is written, the primary key ACT-KEY
is set to zero (line 53). The system then generates the
primary key value automatically and stores it in the
ACT-KEY data item. Data from the input card (see
figure 3-36) is moved into the output record area (lines 54
through 58). The remaining data items in the output
record are initialized with a value of zero (lines 59
and 60). The record is then written on the file
CUSTOMERS (line 61).

Records in the file CUSTOMERS are updated by the
program shown in figure 3-37. Each input card contains
the date and amount of an order for a customer. When an
input card is read, the customer identification
(CUST-ID-IN) is moved to the alternate key data item
CUST-ID (lines 81 through 83). A CUSTOMERS file record
is then read by the alternate key CUST-ID (line 84). The
record is updated to reflect the new order (lines 86
through 88) and is rewritten on the file (line 95).

An output report is also generated during program
execution. This report shows the customers for which
orders were processed and the new year-to-date totals.

The format of the input cards is illustrated in figure 3-38.

An output report generated by the program is shown in
figure 3-39.

3-41



VNP W=

IDENTIFICATION DIVISION.
PROGRAM-ID. LST-IND.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-QUTPUT SECTION.
FILE-CONTROL.
SELECT EMP-FILE ASSIGN TO EMPFLE, INDFLE
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS EMP-ID
ALTERNATE RECORD KEY IS HIRE-DATE
WITH DUPLICATES ASCENDING
ALTERNATE RECORD KEY IS JOB-ID
WITH DUPLICATES ASCENDING.
SELECT PRINTOUT ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD EMP-FILE
LABEL RECORD IS OMITTED
BLOCK CONTAINS 20 RECORDS
RECORD CONTAINS 90 CHARACTERS
DATA RECORD IS EMPLOYEE.

01 EMPLOYEE.
03 EMP-ID PICTURE 999.
03 EMP-NAME PICTURE X (20).
03 EMP-ADDRESS.
05 STREET PICTURE X(20).
05 cIvTy PICTURE X(20).
05 STATE PICTURE AA.
05 ZIP-CODE PICTURE 9(5).
03 JoOB-ID PICTURE X(5).
N3 DEPT PICTURE 999.
N3 »bIvV PICTURE 999.
03 HIRE-DATE PICTURE 9(6).
N3 LOCATION PICTURE 999.
FD PRINTOUT
LABEL RECORD IS OMITTED
DATA RECORD IS PRINTLINE.
01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 DATE-CARD.
N3 DATE-IN PICTURE 9(6).
03 FILLER PICTURE X(74).
01 HEAD-OUT.
03 FILLER PICTURE 9 VALUE 1.
N3 FILLER PICTURE X(5) VALUE " DATE".
03 FILLER PICTURE X(13) VALUE SPACES.
03 FILLER PICTURE X(4) VALUE '"NAME".
03 FILLER PICTURE X(11) VALUE SPACES.
03 FILLER PICTURE X(11) VALUE "JOB-1ID ".
03 FILLER PICTURE X(11) VALUE "EMPLOYEE-ID".
03 FILLER PICTURE X (80> VALUE SPACES.
01 LINE-OUT.
03 FILLER PICTURE X VALUE SPACES.
03 DATE-QOUT PICTURE 9(6).
03 FILLER PICTURE X (4) VALUE SPACES.
03 EMP-NAME-OUT PICTURE X(20).
03 FILLER PICTURE X (4) VALUE SPACES.
03 ID-0UT PICTURE X(5).
03 FILLER PICTURE X(9) VALUE SPACES.
03 EMP-ID-OUT PICTURE 999.
03 FILLER PICTURE X(84) VALUE SPACES.

PROCEDURE DIVISION.
OPENING.

OPEN INPUT EMP-FILE.
OPEN OUTPUT PRINTOUT.
PERFORM PRINT-HEAD.

3-42

Figure 3-28. Accessing an Indexed File by Alternate Key (Sheet 1 of 2)

60497200 C



70 SETTING-UP.

71 ACCEPT DATE-CARD.

72 MOVE DATE-IN TO HIRE-DATE.

73 START EMP-FILE

74 KEY IS NOT LESS THAN HIRE-DATE
75 INVALID KEY GO TO BAD-DATE.
76 READING.

7 READ EMP-FILE NEXT RECORD

78 AT END GO TO CLOSE-OUT.

79 MOVE HIRE-DATE TO DATE-OUT.

0 MOVE EMP-NAME TO EMP-NAME-OUT.
81 MOVE JOB-ID TO ID-OUT.

82 MOVE EMP-ID TO EMP-ID-OUT.

83 WRITE PRINTLINE FROM LINE-OUT.
84 GO TO READING.

85 PRINT-HEAD.

86 WRITE PRINTLINE FROM HEAD-OUT.
87 MOVE SPACES TO PRINTLINE.

88 WRITE PRINTLINE.

89 BAD-DATE.

90 DISPLAY "NO EMPLOYEES HIRED FROM " DATE-IN.
91 CLOSE~-OUT.

92 CLOSE EMP-FILE, PRINTOUT.

93 STOP RUN.

Figure 3-28. Accessing an Indexed File by Alternate Key (Sheet 2 of 2)

DATE NAME JOB-ID EMPLOYEE~-ID
700715 MICHAEL BURNS PBS25 850
700910 LORRAINE SMITH PRG14 938
701116 JOSEPH ARMSTRONG PRG14 791
710707 JUDITH PETERSON PRG14 476
711119 PAUL RICHARDSON DEV68 277
711205 RUTH VAN DYKE PRG14 715
720801 CATHERINE WILCOX DEV68 120
721001 ROBERT MARTIN PBS25 683
730114 RICHARD STEVENS PBS25 583
740604 CHRISTOPHER WHEELER ACT97 411
741001 MARY ELLEN RICHARDS ACT97 304
750228 ELIZABETH RILEY DEV63 804

Figure 3-29. Output Report from Accessing the indexed File

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. NEW-DIR.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

6 OBJECT-COMPUTER. CYBER-170.

7 INPUT-QUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARD-FILE ASSIGN TO INPUT. :
10 SELECT INVENTORY ASSIGN TO INVNTRY, INVIDX
11 ORGANIZATION IS DIRECT
12 BLOCK COUNT IS 50
13 ACCESS MODE IS DYNAMIC
14 RECORD KEY IS PART-NO
15 ALTERNATE RECORD KEY IS WHERE-USED
16 WITH DUPLICATES ASCENDING.

Figure 3-30. Creating a File With Direct Organization (Sheet 1 of 2)

60497200 £ 3-43



74
75
76
77
78
79
80
81
82

DATA DIVISION.
FILE SECTION.

FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-REC.
01 CARD-REC.
03 PART-NUM PICTURE 9(5).
03 DESCRIPTION PICTURE X(15).
03 QTY-ON-HAND PICTURE 9(4).
03 QTY-ON-ORDER PICTURE 9(4).
03 QTY-RESERVED PICTURE 9(5).
03 ORDER-DATE PICTURE 9(6).
03 REORDER-POINT PICTURE 9(4).
03 REORDER-QTY PICTURE 9(4).
03 QTY-PER-UNIT PICTURE 99.
03 NO-USED PICTURE 9.
03 USED-WITH PICTURE X(5)
OCCURS 1 TO 6 TIMES
- DEPENDING ON NO-USED.
FD INVENTORY
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 25 RECORDS
RECORD IS VARYING IN SIZE FROM 55 TO 80 CHARACTERS
DATA RECORD IS INV-REC.
01 INV-REC.
03 PART-NO PICTURE 9(5).
03 DESCRIPTION PICTURE X(15).
03 QTY-ON-HAND PICTURE 9(4).
03 QTY-ON-ORDER PICTURE 9(4).
03 QTY-RESERVED PICTURE 9(5).
03 ORDER-DATE PICTURE 9(6).
03 REORDER-POINT PICTURE 9(4).
03 REORDER-QTY PICTURE 9(4).
03 QTY-PER-UNIT PICTURE 99.
03 NUM-USED PICTURE 9.
03 WHERE-USED PICTURE X(5)

WORKING-STORAGE SECTION.
01 CNTR

OCCURS 1 TO 6 TIMES
DEPENDING ON NUM-USED.

PROCEDURE DIVISION.

OPENING.

PICTURE

OPEN INPUT CARD-FILE.
OPEN OUTPUT INVENTORY.

WRITE-FILE.

READ CARD-FILE RECORD
AT END GO TO CLOSING.
MOVE CORRESPONDING CARD-REC TO INV-REC.
MOVE PART-NUM TO PART-NO.
MOVE NO-USED TO NUM-USED.
MOVE 1 TO CNTR.
PERFORM MOVE~ALT-KEY NO-USED TIMES.
WRITE INV-REC
INVALID KEY GO TO BAD-RECORD.
GO TO WRITE-FILE.

MOVE-ALT-KEY.

MOVE USED-WITH (CNTR) TO WHERE-USED (CNTR).
ADD 1 TO CNTR.

BAD-RECORD.
DISPLAY

"RECORD NOT WRITTEN. REC IS

GO TO WRITE-FILE.

CLOSING.

CLOSE CARD-FILE, INVENTORY.
STOP RUN. .

CARD-REC.

Figure 3-30. Creating a File With Direct Organization (Sheet 2 of 2)

60497200 C




N e » PR PP RES S & & A A

& & & & & & LS & & & & & & &
\0& \é'o \0(0 \\’(Q \0& \0& \0& \\"‘Q \0&\0&\\*& \0& \\"& \\"& \°<° \06\
¢ & < Y N < ¢ F F PR P PP PP

U T UL SO UK TN L T R N I

60072BRWN CHAIR SEAT040012000000076022806001200046MPL15MPL460AK120AK77PNEL4L4PNEDS
67138NILE CHAIR SEAT008002000000076021601000200042GRN38GRN82
68524WHTE CHAIR SEAT120000000000000000004000800042WHT25WHT60
302960AK TABLE LEG 06000000000000000000200040004620AK120AK77
31903MAPLE TABLE LEGD26000000000000000002000400042MPL15MPL46
32765PINE TABLE LEG 030000000000000000001000200042PNE44PNE9YS
34518BLACK TABLE LEG008002000000076013101000200042GRN38WHT25
37624BRASS TABLE LEG026000000000000000002000400042GRN82WHT60
70612BRASS LEG SCREW052000000000000000004000800082GRN82WHT60
71385BROWN LEG SCREW2320000000000000000100020000860AK120AK77MPL15MPL46PNELLPNEDS
73470BLACK LEG SCREW016004000000076013102000400082GRN38WHT25
91672BROWN LEG BRACE1160000000000000000050010000460AK120AK77MPL15MPL46PNE44LPNESS
95208BLACK LEG BRACED08002000000076013101000200042GRN38WHT25
98093BRASS LEG BRACE026000000000000000002000400042GRN82WHT60
410470AK CHAIR FRAME0600000000000000000020004000420AK120AK77
43528MPL CHAIR FRAME026000000000000000002000400042MPL15MPL46
44378PNE CHAIR FRAME(030000000000000000001000200042PNE44PNEYS
46592BLK CHAIR FRAME008002000000076013101000200042GRN38WHT25
49061WHT CHAIR FRAME026000000000000000002000400042GRN82WHT60
52149BRN CHAIR SCREW1600480000000760228240048001660AK120AK77MPL15MPL46PNEL4PNEYS
57073BLK CHAIR SCREW032008000000076013104000800162GRN38WHT25
59868WHT CHAIR SCREW104000000000000000008001600162GRN82WHTS60
146970AK GRAIN TOP 0100000000000000000005001000110AK12
146980AK GRAIN LEAF (0200000000000000000010002000210AK12
15923MPLE GRAIN TOP 005500000000000000000500100011MPL46
15924MPLE GRAIN LEAF011000000000000000001000200021MPL46
18306PINE GRAIN TOP 005000000000000000000250050011PNE9S
18307PINE GRAIN LEAF010000000000000000000500100021PNE95
19123NILE GREEN TOP 001000250000076013100250050011GRN38
19124NILE GREEN LEAFD02000500000076013100500100021GRN338
19740WHITE/GOLD TOP 005500000000000000000500100011WHT60
19741WHITE/GOLD LEAF011000000000000000001000200021WHT60
146900AK TABLE TOP 0050000000000000000002500500110AK77
146910AK TABLE LEAF 0100000000000000000005001000210AK77
15904MPLE TABLE TOP 001000500000076022800250050011MPL15
159NSMPLE TABLE LEAF0D02001000000076022800500100021MPL15
18348PINE TABLE TOP 002500000000000000000200040011PNE44
18349PINE TABLE LEAF005000000000000000000400080021PNE44
19176GRNE TABLE TOP 001000400000076013100200040011GRN82
19177GRNE TABLE LEAF002000800000076013100400080021GRN82
19700WHTE TABLE TOP 001000000000000000000050010011WHT25
19701WHTE TABLE LEAFD02000000000000000000100020021WHT25

Figure 3-31. Input Data for Creating the Direct File

60497200 C

3-45




1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. UPD-DIR.
3- ENVIRONMENT DIVISION.
4 CONFIGURATION SECTION.
5 SOURCE-COMPUTER. CYBER-170.
6 OBJECT-COMPUTER. CYBER-170.
7 INPUT-OUTPUT SECTION.
8 FILE-CONTROL.
9 SELECT ORDER-FILE ASSIGN TO INPUT.
10 SELECT INVENTORY ASSIGN TO INVNTRY, INVIDX
11 ORGANIZATION IS DIRECT
12 BLOCK COUNT IS 11
13 ACCESS MODE IS DYNAMIC
14 FILE STATUS IS KEY-CHECK
15 RECORD KEY IS PART-NO
16 ALTERNATE RECORD KEY IS WHERE-USED
17 WITH DUPLICATES ASCENDING.
18 SELECT PRINT-FILE ASSIGN TO OUTPUT.
19 DATA DIVISION.
20 FILE SECTION.
21 FD ORDER-FILE
22 LABEL RECORDS ARE OMITTED
23 DATA RECORD IS ORDER-REC.
24 01 ORDER-REC.
25 03 ITEM PICTURE XXX99.
26 03 FILLER PICTURE X(5).
27 03 NO-ORDERED PICTURE 999.
28 03 FILLER PICTURE X(67).
29 FD INVENTORY
30 LABEL RECORDS ARE OMITTED
31 BLOCK CONTAINS 20 RECORDS
32 RECORD IS VARYING IN SIZE FROM 55 TO 80 CHARACTERS
33 DATA RECORD IS INV-REC.
34 01 INV-REC.
35 03 PART-NO PICTURE 9(5).
36 03 DESCRIPTION PICTURE X(15).
37 03 QTY-ON-HAND PICTURE 9(4).
38 03 QTY-ON-ORDER PICTURE 9(4).
39 03 QTY-RESERVED PICTURE 9(5).
40 03 ORDER-DATE PICTURE 9(6).
41 03 REORDER-POINT PICTURE 9(4).
42 03 REORDER-QTY PICTURE 9(4).
43 03 QTY-PER-UNIT PICTURE 99.
44 03 NUM-USED PICTURE 9.
45 03 WHERE-USED PICTURE X(5)
46 OCCURS 1 TO 6 TIMES
47 DEPENDING ON NUM-USED.
48 FD PRINT-FILE
49 LABEL RECORDS ARE OMITTED
50 DATA RECORD IS PRINTLINE.
51 01 PRINTLINE PICTURE X(136).
52 WORKING-STORAGE SECTION.
53 01 TEMP PICTURE 9(5).
54 01 QTY-NEEDED PICTURE 9(5).
55 01 ORD-DATE PICTURE 9(6).
56 01 KEY-CHECK PICTURE XX.
57 01 KEY-SAVE PICTURE 99.
58 01 HEAD.
59 03 FILLER PICTURE 9 VALUE 1.
60 03 FILLER PICTURE XX VALUE SPACES.
61 03 FILLER PICTURE X(12) VALUE "ITEM ORDERED".
62 03 FILLER PICTURE X(8) VALUE SPACES.
63 03 FILLER PICTURE X(11) VALUE "PART NEEDED".
64 03 FILLER PICTURE X(10) VALUE SPACES.
65 03 FILLER PICTURE X(11) VALUE "DESCRIPTION".
66 03 FILLER PICTURE X(10) VALUE SPACES.
67 03 FILLER PICTURE X(12) VALUE "QTY RESERVED".
68 03 FILLER PICTURE X(8) VALUE SPACES.
69 03 FILLER PICTURE X(12) VALUE "ORDER AMOUNT".
70 03 FILLER PICTURE X(39) VALUE SPACES.
Figure 3-32. Updating a File With Direct Organization (Sheet 1 of 2)

3-46

60497200 C



118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

01 OUT-LINE.

03 FILLER PICTURE X(6) VALUE SPACES.
03 ITEM-OUT PICTURE X(5).

03 FILLER PICTURE X(15) VALUE SPACES.
03 PART-OUT PICTURE 9(5).

03 FILLER PICTURE X(11) VALUE SPACES.
03 DESC-0UT PICTURE X(15).

03 FILLER PICTURE X(12) VALUE SPACES.
03 RESERVED-OUT PICTURE Z1zZ.

03 FILLER PICTURE X(16) VALUE SPACES.
03 REORD-QTY-OUT PICTURE Z1Z1Z.

03 FILLER PICTURE X(43) VALUE SPACES.

PROCEDURE DIVISION.
OPEN-FILES.
OPEN INPUT ORDER-FILE.
OPEN I-0 INVENTORY.
OPEN OUTPUT PRINT-FILE.
ACCEPT ORD-DATE FROM DATE.
WRITE PRINTLINE FROM HEAD
BEFORE ADVANCING 2 LINES.
ITEM-READ.
READ ORDER-FILE RECORD
AT END GO TO CLOSE-FILES.
MOVE ITEM TO WHERE-USED (1), ITEM-OUT.
READ INVENTORY RECORD KEY IS WHERE-USED
INVALID KEY GO TO NOT-FOUND.
MOVE KEY-CHECK TO KEY-SAVE.
QTY-CHECK.
COMPUTE QTY~NEEDED = NO-ORDERED * QTY-PER-UNIT.

COMPUTE TEMP = QTY-ON-HAND + QTY-ON-ORDER - QTY-RESERVED.

IF QTY-NEEDED GREATER THAN TEMP
GO TO REORDER.
SUBTRACT QTY-NEEDED FROM TEMP.
IF TEMP GREATER THAN REORDER-POINT
MOVE ZERO TO REORD-QTY-OUT
GO TO WRITE-LINE.
REORDER.
MOVE REORDER-QTY TO REORD-QTY-OUT.
ADD REORDER-QTY TO QTY-ON-ORDER.
MOVE ORD-DATE TO ORDER-DATE.
WRITE-LINE.
ADD QTY-NEEDED TO QTY-RESERVED.
MOVE QTY-NEEDED TO RESERVED-OUT.
MOVE PART-NO TO PART-OUT.
MOVE DESCRIPTION TO DESC-0UT.
WRITE PRINTLINE FROM OUT-LINE.
MOVE SPACES TO ITEM-OUT.
REWRITE INV-REC
INVALID KEY PERFORM NO-REWRITE.
IF KEY-SAVE IS EQUAL TO 02
GO TO NEXT-PART.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE.
GO TO ITEM-READ.
NEXT-PART.
READ INVENTORY NEXT RECORD
AT END GO TO ITEM-READ.
MOVE KEY-CHECK TO KEY-SAVE.
GO TO QTY-CHECK.
NO-REWRITE.
DISPLAY "RECORD NOT REWRITTEN FOR ABOVE PART".
NOT-FOUND. ‘
DISPLAY "NO RECORDS FOR ITEM " ITEM.
GO TO ITEM-READ.
CLOSE-FILES.
CLOSE ORDER-FILE, INVENTORY, PRINT-FILE.
STOP RUN.

60497200 C

Figure 3-32. Updating a File With Direct Organization (Sheet 2 of 2)

3-47




N :\'\
& &
&
O
C:o\ 00\0
0AK12 040
WHT60 225
GRN38 050

Figure 3-33. Input Data fon; Updating the Direct File

WORD-ADDRESS FILE PROGRAMS

Word-address file organization is illustrated in two
programs. The first program creates the word-address file
and the second program reads records from the file.

The word-address file PARTS-FILE is created by the
program shown in figure 3-40. Input data is shown in
figure 3-41. The word-address key is the Working-Storage

 data item PART-KEY (lines 13 and 40). When a record is

written on the file, the value of PART-KEY identifies the
number of the word in which the record begins. Each
30-character record is stored in three words; the part
numbers, which are assigned in sequence, cannot be the key
values, The key value for a record is computed by
multiplying the part number by three and then subtracting
two from the result (line 48).

The program shown in figure 3-42 reads records from the
file PARTS-FILE in order to determine whether enough
parts are on hand to satisfy the quantity needed. A record
is read from the file CARD-FILE; the part number is used
to calculate the word-address key value (lines 68
through 70). A record is then read from the file
PARTSFILE according to the calculated key value
(line 71). The USED-FOR value in the CARD-FILE record
is compared with the USED-WITH value in the
PARTS-FILE record to ensure that a valid record has been
read from PARTSFILE (lines 73 and 74). A line is printed
on the output report whenever the quantity on hand is less
than the quantity needed (lines 79 through 83). The input
records illustrated in figure 3-43 were used to create the
output report shown in figure 3-44.

ITEM ORDERED PART NEEDED DESCRIPTION QTY RESERVED ORDER AMOUNT
0AK12 14697 OAK GRAIN TOP 40
14698 -OAK GRAIN LEAF 80
30296 OAK TABLE LEG 160
41047 OAK CHAIR FRAME 160
52149 BRN CHAIR SCREW 640
60072 BRWN CHAIR SEAT 160
71385 BROWN LEG SCREW 320
91672 BROWN LEG BRACE 160
WHT60 19740 WHITE/GOLD TOP 225 100
19741 WHITE/GOLD LEAF 450 200
37624 BRASS TABLE LEG 900 400
49061 WHT CHAIR FRAME 900 400
59868 WHT CHAIR SCREW 3600 1600
68524 WHTE CHAIR SEAT 900 800
70612 BRASS LEG SCREW 1800 800
98093 BRASS LEG BRACE 900 400
GRN38 19123 NILE GREEN TOP 50 50
19124 NILE GREEN LEAF 100 100
34518 BLACK TABLE LEG 200 200
46592 BLK CHAIR FRAME 200 200
57073 BLK CHAIR SCREW 800 800
67138 NILE CHAIR SEAT 200 200
73470 BLACK LEG SCREW 400 400
95208 BLACK LEG BRACE 200 200
Figure 3-34. Output Report from Updating the Direct File
3-48 60497200 E




VXNV WN =

IDENTIFICATION DIVISION.
PROGRAM-ID. NEW-AK.
ENVIRONMENT DIVISLON.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-INPUT ASSIGN TO INPUT.
SELECT CUSTOMERS ASSIGN TO CSTMRS, CSTINDX
ORGANIZATION IS ACTUAL-KEY
ACCESS MODE IS RANDOM
RECORD KEY IS ACT-KEY
ALTERNATE RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-TYPE
WITH DUPLICATES ASCENDING.
DATA DIVISION.
FILE SECTION.
FD CARD-INPUT
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.

01 CARD.
03 CUST-ID-IN PICTURE Xx(6).
03 FILLER PICTURE XXX.
03 CUST-TYPE-IN PICTURE XX.
03 FILLER PICTURE XXX.
03 CUST-NAME-IN PICTURE X(15).
03 FILLER PICTURE X(51).

FD CUSTOMERS
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 50 RECORDS -
DATA RECORD IS CUST-REC.

01 CUST-REC.

03 ACT-KEY PICTURE 9(8) USAGE IS ComMP-1.
03 CusT-ID PICTURE X(6).
03 CUST-NAME PICTURE X(15).
03 CUST-TYPE P1ICTURE XX.
03 MONTHLY-ORDERS OCCURS 12 TIMES.
05 NO-ORDERS PICTURE 99.
05 MONTH-AMT PICTURE 9(5)V99.
03 YTD-ORDERS.
05 TOTAL-ORDERS PICTURE 999.
05 TOTAL-AMT PICTURE 9(7)V99.
03 CURRENT-BAL PICTURE 9(6)V99.
03 LAST-ACTIVITY PICTURE 9(6).
WORKING~-STORAGE SECTION.
01 COUNTER PICTURE 99.
PROCEDURE DIVISION.
BEGIN-1.

OPEN INPUT CARD-INPUT.
OPEN OUTPUT CUSTOMERS.
CREATING.
MOVE ZEROS TO ACT-KEY.
READ CARD-INPUT RECORD
AT END GO TO END-IT.

MOVE CUST-~ID-IN TO CUST-ID.
MOVE CUST-TYPE-IN TO CUST-TYPE.
MOVE CUST-NAME-IN TO CUST-NAME.

INITIALIZE COUNTER, YTD-~ORDERS, CURRENT-BAL, LAST-ACTIVITY.

PERFORM ZERO-SET 12 TIMES.
WRITE CUST-REC
INVALID KEY GO TO BAD-RECORD.
GO TO CREATING.
BAD-RECORD.
DISPLAY "RECORD NOT WRITTEN " CUST-ID.
GO TO CREATING.
ZERO-SET.
ADD 1 TO COUNTER.
MOVE ZEROS TO MONTHLY-ORDERS (COUNTER).

END~IT.
CLOSE CARD-INPUT, CUSTOMERS.
STOP RUN.

60497200 C

Figure 3-35. Creating a File With Actual-Key Organization

3-49




N N NS
& & &
\0& \°‘° \\‘6\
4 P <P

B69513 C4 ABC DISTRIBUTOR
626078 X9 FRIENDLY SALES
A13289 C4 SMITH AND SON
M44071 R2 WORLD SALES CO
M50066 R2 RETAILERS INC
R31492 X9 DAY AND NIGHT
L85734 Cé4 OAKVILLE CORP
$25897 X9 SELECT SALES €O
617953 R2 YOUNG BROTHERS
Y48206 $6 CORP SALES INC

Figure 3-36. Input Data for Creating the
Actual Key File

VXNV SWN

IDENTIFICATION DIVISION.
PROGRAM-ID. UPD-AK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE~-CONTROL.
SELECT INVOICES ASSIGN TO INPUT.
SELECT CUSTOMERS ASSIGN TO CSTMRS, CSTINDX
ORGANIZATION IS ACTUAL-KEY
ACCESS MODE IS DYNAMIC
RECORD KEY IS ACT-KEY
ALTERNATE RECORD KEY IS CUST-ID
ALTERNATE RECORD KEY IS CUST-TYPE
WITH DUPLICATES ASCENDING.
SELECT PRINT-OUT ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD INVOICES
LABEL RECORDS ARE OMITTED
DATA RECORD IS INV-RECORD.
01 INV-RECORD.

03 CUST-ID-IN PICTURE X(6).

03 FILLER PICTURE XXX.

03 ORDER-DATE PICTURE 9(6).

03 FILLER PICTURE XXXX.

03 ORDER-AMT PICTURE 9(5)V99.
03 FILLER PICTURE XXX.

03 MONTH PICTURE 99.

03 FILLER PICTURE X(49).

FD CUSTOMERS
LABEL RECORDS ARE OMITTED
BLOCK CONTAINS 50 RECORDS
DATA RECORD IS CUST-REC.
01 CUST-REC.

03 ACT-KEY PICTURE 9(8) USAGE IS COMP-1.
03 CcusT-ID PICTURE X(6).
03 CUST-NAME PICTURE X(15).
03 CUST-TYPE PICTURE XX.
03 MONTHLY-ORDERS OCCURS 12 TIMES.
05 NO-ORDERS PICTURE 99.
05 MONTH-AMT PICTURE 9(5)Vv99.

3-50

Figure 3-37. Updating a File With Actual-Key Organization (Sheet 1 of 2)

60497200 C




03 YTD-ORDERS.
05 TOTAL-ORDERS PICTURE 999.
05 TOTAL-AMT PICTURE 9(7)V99.
03 CURRENT-BAL PICTURE 9(6)V99.
03 LAST-ACTIVITY PICTURE 9(6).

FD PRINT-OUT

01 OUT-LINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 HEADER.
03 FILLER PICTURE X(8) VALUE " CUST-ID".
03 FILLER PICTURE X(6) VALUE SPACES.
03 FILLER PICTURE X(13) VALUE "CUSTOMER NAME".
03 FILLER PICTURE X(6) VALUE SPACES.
03 FILLER PICTURE X(10) VALUE "NO. ORDERS".
03 FILLER PICTURE X(7) VALUE SPACES.
03 FILLER PICTURE X(10) VALUE "YTD AMOUNT".
03 FILLER PICTURE X(76) VALUE SPACES.
01 LINE-1.
03 FILLER PICTURE X VALUE SPACES.
03 ID-0UT PICTURE X(6).
03 FILLER PICTURE X(6) VALUE SPACES.
03 NAME-OUT PICTURE X(15).
03 FILLER PICTURE X(9) VALUE SPACES.
03 ORDERS-0OUT PICTURE 9.
03 FILLER PICTURE X(9) VALUE SPACES.
03 AMT-OUT PICTURE $3%,$%%$,$99.99.
03 FILLER PICTURE X(75) VALUE SPACES.

LABEL RECORDS ARE OMITTED
LINAGE IS 50 LINES
DATA RECORD IS OUT-LINE.

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT INVOICES.
OPEN I-0 CUSTOMERS.
OPEN OUTPUT PRINT-OUT.
PERFORM HEAD-OUT.

UPDATING.

READ INVOICES RECORD
AT END GO TO CLOSE-OUT.
MOVE CUST-ID-IN TO CUST-ID.
READ CUSTOMERS RECORD KEY IS CUST-ID
INVALID KEY GO TO NO-RECORD.
MOVE ORDER-DATE TO LAST-ACTIVITY.
ADD 1 TO NO-ORDERS (MONTH), TOTAL-ORDERS.
ADD ORDER-AMT TO MONTH-AMT (MONTH), TOTAL-AMT.
MOVE CUST-ID TO ID-OUT.
MOVE CUST-NAME TO NAME-OUT.
MOVE TOTAL-ORDERS TO ORDERS-OUT.
MOVE TOTAL-AMT TO AMT-0UT.
WRITE OUT-LINE FROM LINE-1
AT END-OF-PAGE PERFORM HEAD-OUT.
REWRITE CUST-REC
INVALID KEY GO TO KEY-ERROR.
GO TO UPDATING.

HEAD-QUT.

WRITE OUT-LINE FROM HEADER
BEFORE ADVANCING 2 LINES.

NO-RECORD.

DISPLAY "NO RECORD FOR " CUST-ID.
GO TO UPDATING.

KEY-ERROR.

DISPLAY "RECORD NOT REWRITTEN " CUST-ID.
GO TO UPDATING.

CLOSE-0OUT.

CLOSE INVOICES, CUSTOMERS, PRINT-OUT.
STOP RUN.

60497200 C

Figure 3-37. Updating a File With Actual-Key Organization (Sheet 2 of 2)

3-51



N ) o o@
& & &

Q§§ Q§> &ép Qﬁp
P P v '0°
B69513 081575 0289042 08
626078 100675 0861775 10
M50066 100875 0062055 10
A13289 092975 0052330 09
M44071 Q71775 0334950 07
R31492 082775 0767545 08
L85734 102675 0936785 10
$25897 101875 0454647 10
617953 091975 0088735 09
Y48206 103175 0092843 10

Figure 3-38. Input Data for Updating the

Actual-Key File

CUST~ID

B69513
G26078
M50066
A13289
M44071
R31492
L85734
$25897
G17953
Y 48206

CUSTOMER NAME

ABC DISTRIBUTOR
FRIENDLY SALES
RETAILERS INC
SMITH AND SON
WORLD SALES CO
DAY AND NIGHT
OAKVILLE CORP

SELECT SALES CO
YOUNG BROTHERS
CORP SALES INC

NO.

ORDERS

sSSP S BW

YTD AMOUNT

$12,282.92
$28,619.83
$11,203.11

$9,810.29
$28,424.86
$27,335.96
$43,735.87
$29,467.63
$14,970.53
$23,122.90

3-52

Figure 3-39. Output Report from Updating the Actual-Key File

60497200 E



L oO~NOUVIPHWN -

IDENTIFICATION DIVISION.
PROGRAM-ID. NEW-WA.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-IN ASSIGN TO INPUT.
SELECT PARTS-FILE ASSIGN TO PARTFLE
ORGANIZATION IS WORD-ADDRESS
ACCESS MODE IS DYNAMIC
WORD-ADDRESS KEY IS PART-KEY.
DATA DIVISION.
FILE SECTION.
FD CARD-IN
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-REC.
01 CARD-REC.

03 PART PICTURE 9(4).
03 FILLER PICTURE X(5).
03 PART-NAME PICTURE X(10).
03 FILLER PICTURE X(5).
03 USED-WITH PICTURE X(5).
03 FILLER PICTURE X(5).
03 QTY-ON-HAND PICTURE 9(5).
03 FILLER PICTURE X(5).
03 MFG-CODE PICTURE X(10).
03 FILLER PICTURE X(26).

FD PARTS~FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 30 CHARACTERS
DATA RECORD IS PART-REC.

01 PART-REC.

03 PART-NAME PICTURE X(10).
03 USED-WITH PICTURE X(5).
03 QTY-ON-HAND PICTURE 9(5).
03 MFG-CODE PICTURE X(10).
WORKING-STORAGE SECTION.
01 PART-KEY PICTURE 9(4).

PROCEDURE DIVISION.
OPEN-FILES.
OPEN INPUT CARD-IN.
OPEN OUTPUT PARTS-FILE.
CREATE-FILE.
READ CARD-IN RECORD
AT END GO TO CLOSE-FILE.
COMPUTE PART-KEY = PART * 3 - 2.
MOVE CORRESPONDING CARD-REC TO PART-REC.
WRITE PART-REC
INVALID KEY GO TO NO-GOOD.
GO TO CREATE-FILE.
NO-GOOD.
DISPLAY "BAD KEY " PART.
GO TO CREATE-FILE.
CLOSE-FILE.
CLOSE CARD-IN, PARTS-FILE.

60497200 C

Figure 3-40. Creating a File with Word-Address Organization

3-53




0\ ® cﬁ? cﬁ? ®

& &
6§9 ‘s? 6§9 s§9 S§&
f () () <
0001 SCREW-10 CX48J 00192 YOUNGBRO10
0002 SCREW-15 GT26L 00048 ABCDISTO15
0003 SCREW-23 AVS0Q 00099 HGHDWRES23
0004 SCREW-58 RM132 00753 ABCDISTOS8
0005 B-BRACKT CX48J 00298 YOUNGBRO69
00n06 W-BRACKT AVS0Q 00040 HGHDWRES40
0007 G-BRACKT RM132 00983 ABCDIST125
o008 S-BRACKT GT26L 00480 ABCDIST163
0009 PEDSTL1S BUS7F 00316 MILLERS115
0010 PEDSTL74 KY96P 00789 JHNSNSP174
0011 PEDSTLS82 HDS52W 00946 MILLERS182
0012 PEDSTL36 NI38E 00130 JHNSNSP136
0013 SHADE-43 HD52W 00488 XYZSUPLY43
0014 SHADE-16 KY96P 00697 MASNDIST16

Figure 3-41. Input Data for Creating the Word-Address File

NVONOINDS W

IDENTIFICATION DIVISION.
PROGRAM-ID. READ-WA.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-FILE ASSIGN TO INPUT.
SELECT PARTS-FILE ASSIGN TO PARTFLE
ORGANIZATION IS WORD-ADDRESS
ACCESS MODE IS DYNAMIC
WORD-ADDRESS KEY IS PART-KEY.
SELECT LIST-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-IN.
01 CARD-IN.

03 USED-FOR PICTURE X(5).

03 FILLER PICTURE X(4).
03 PART-NO PICTURE 9(4).
03 FILLER PICTURE X(6).
03 NO-NEEDED PICTURE 9(5).
03 FILLER PICTURE X(56).

FD PARTS-FILE
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 30 CHARACTERS
DATA RECORD IS PART-REC.
01 PART-REC.
03 PART-NAME
03 USED-WITH
03 QTY~ON-HAND
03 MFG-CODE
FD LIST-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS LIST-LINE.
01 LIST-LINE PICTURE X(60).
WORKING-STORAGE SECTION.
01 PART-KEY

PICTURE X(10).
PICTURE X(5).
PICTURE 9(5).
PICTURE X(10).

PICTURE 9(4).

1 HEADS.
03 FILLER PICTURE 9 VALUE
03 FILLER PICTURE X(9) VALUE
03 FILLER PICTURE X(5)

1.

"

PART NO.".

VALUE SPACES.

3-54

Figure 3-42. Accessing a File With Word-Address Organization (Sheet 1 of 2)

60497200 C



63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

01

03 FILLER PICTURE X(11)

03 FILLER PICTURE X(5)
03 FILLER PICTURE X(10)
03 FILLER PICTURE X(5)
03 FILLER PICTURE X(10)
03 FILLER PICTURE X (4)
LINE-OUT.

03 FILLER PICTURE X (4)
03 PART-NUM PICTURE 9(4).
03 FILLER PICTURE X (10)
03 ON-HAND PICTURE 22719.
03 FILLER PICTURE X(10)
03 NEEDED PICTURE 7717119.
03 FILLER PICTURE X(8)
03 MANUFACTURER PICTURE X(10).
03 FILLER PICTURE X(4)

PROCEDURE DIVISION.
OPENING.

OPEN INPUT CARD-FILE, PARTS-FILE.
OPEN OUTPUT LIST-FILE.
PERFORM HEADINGS.

PARTS-CHECK.

READ CARD-FILE RECORD
AT END GO TO CLOSE-OUT.

COMPUTE PART-KEY = PART-NO * 3 - 2.

READ PARTS-FILE RECORD
INVALID KEY GO TO BAD-KEY.

IF USED-FOR NOT EQUAL TO USED-WITH
GO TO BAD-KEY.

IF QTY-ON-HAND LESS THAN NO-NEEDED
PERFORM PRINT-LINE.

GO TO PARTS-CHECK.

PRINT-LINE.

MOVE PART-NO TO PART-NUM.

MOVE QTY-ON-HAND TO ON-HAND.
MOVE NO-NEEDED TO NEEDED.

MOVE MFG-CODE TO MANUFACTURER.
WRITE LIST-LINE FROM LINE-OUT.

HEADINGS.

WRITE LIST-LINE FROM HEADS.
MOVE SPACES TO LIST-LINE.
WRITE LIST-LINE.

BAD-KEY.

DISPLAY "BAD NUMBER " PART-NO.
GO TO PARTS-CHECK.

CLOSE-QUT.

CLOSE CARD-FILE, PARTS-FILE, LIST-FILE.

STOP RUN.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE

"QTY ON HAND".
SPACES.

"QTY NEEDED".
SPACES.

"ORDER CODE".
SPACES.
SPACES.
SPACES.
SPACES.
SPACES.

SPACES.

60497200 C

Figure 3-42. Accessing a File With Word-Address Organization (Sheet 2 of 2)

~N O 49
& & &
o o o

ey e P
RM132Z 0004 00250
BUS7F 0009 00400
BUS7F 0016 00400
GT26L nno2 nooz7s
AVS50Q 0003 no1s50
AVS50Q 0006 00075
CX48J 0001 00100
CX484 0005 000s0
NI38E no12 00140

Figure 3-43. Input Data for Accessing the Word-Address File



3-56

1 PART NO. QTY ON HAND QTY NEEDED ORDER CODE

0009 316 400 MILLERS115
BAD NUMBER 16

0002 48 75 ABCDISTO15
0003 99 150 HGHDWRESZ23
0006 40 75 HGHDWRES40
0012 130 140 JHNSNSP136
Figure 3-44. Output Report from Accessing the Word-Address File

60497200 C




ARITHMETIC AND BOOLEAN OPERATIONS 4

The COBOL 5 program can specify various arithmetic
operations to be performed at execution time. These
operations include addition, subtraction, multiplication,
division, and exponentiation. Arithmetic operations can be
specified through five Procedure Division statements:
ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPUTE.
Arithmetic expressions, which are used in COMPUTE
statements, can also be specified in conditional
statements. An arithmetic operation can be performed in
display code, integer, or floating point mode of operation.

The COBOL 5 program can also specify boolean operations
to be performed at execution time. Boolean operations can
be specified through Procedure Division statements that
include the boolean operators BOOLEAN-AND,
BOOLEAN-OR, BOOLEAN-EXOR, or BOOLEAN-NOT.
Boolean expressions can be used in COMPUTE statements
and in conditional statements. The boolean character
values can only be 0 or 1.

ARITHMETIC EXPRESSIONS

An arithmetic expression consists of data-names, numeric
literals, and arithmetic operators, which are used to
separate pairs of data-names and literals. A simple
arithmetic expression contains two or more data-names
and literals separated by arithmetic operators. A complex
arithmetic expression contains two or more simple
expressions separated by arithmetic operators.
Parentheses can enclose arithmetic expressions to specify
the order of evaluation or to clarify the logic of the
expression.

ARITHMETIC OPERATORS

Two types of arithmetic operators can be used in
arithmetic expressions: binary and unary. Five binary
arithmetic operators are available:

Operator Function

+ Addition

- Subtraction

* Multiplication
/ Division

*x Exponentiation

An arithmetic expression can be preceded by one of the
following unary arithmetic operators:

Operator Function

+ Multiplication by +1

- Multiplication by -1
A unary operator can also precede an element (data-name
or literal) within an arithmetic expression. The value of

the data item or literal is effectively multiplied by the
value +1 or -1.

60497200 C

An arithmetic operator must be preceded and followed by a
space. With one exception, an arithmetic operator must be
followed by a data-name or a literal; the one exception is
that a binary operator can be followed by a unary
operator. When parentheses are used, the data-name or
literal can be preceded by a left parenthesis.

EVALUATION OF EXPRESSIONS

The order of evaluation for arithmetic expressions is
determined by the arithmetic operators:

Operator Order of Evaluation
Unary + and - First

** Second

* and / Third

Binary + and - Fourth

7
Expressions at the same level are evaluated from left to
right.

Parentheses can be used to modify the normal sequence of
evaluation. Expressions enclosed in parentheses are
evaluated first, beginning with the innermost pair and
proceeding to the outermost pair. Within a pair of
parentheses, evaluation occurs according to the
hierarchical order of evaluation.

SIMPLE ARITHMETIC EXPRESSIONS

A simple arithmetic expression consists of two or more
data items separated by arithmetic operators. Each data
item can be either a numeric literal or a data~-name that
identifies an elementary numeric data item described in
the Data Division. The following examples are typical
simple expressions:

SUBTOT + TAX
PRICE * DISCOUNT
SALARY / 40 * HOURS

COMPLEX ARITHMETIC EXPRESSIONS

A series of two or more simple expressions can be specified
in a statement. The expressions are separated by
arithmetic operators; parentheses can be used to enclosed
each simple expression. The following examples are
typical complex expressions:

(PRICE * QTY) + (PRE-BAL - DISCT)

(SALARY / 40) * (TOT-HRS - 40)
In the first example, PRICE is multiplied by QTY and
DISCT is subtracted from PRE-BAL; the result of the first

operation is then added to the result of the second
operation.

4-1



For more complex expressions, parentheses can be nested
within other pairs of parentheses. The expression within
the innermaost pair of parentheses is evaluated first. In the
following example, C is added to D; B is then divided by
the result of that operation.

(Z+A)*xB/(C+D))

ARITHMETIC STATEMENTS

Arithmetic operations are specified through arithmetic
statements in the Procedure Division of a COBOL 5
program. Basic arithmetic operations can be performed
using the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements. More complex operations are performed
through the COMPUTE statement.

Items to be used for computation in the arithmetic
statements are referred to as operands. All operands must
be elementary numeric items. Items in which results of
arithmetic operations are stored are referred to as
receiving items. A receiving item can be an operand or it
can be a separate item that is not involved in the
computation. Receiving items must be either elementary
numeric items or elementary numeric-edited items. The
storage location of a receiving item should not overlap that
of any of the items involved in the computation; if the
fields do overlap, unpredictable results might occur.

Numeric literals, data items described in the Data
Division, and special registers can be specified as items in
arithmetic statements. If the Data Division description of
a data item includes the USAGE clause, the usage must be
DISPLAY, COMPUTATIONAL, COMPUTATIONAL-1,
COMPUTATIONAL -2, or COMPUTATIONAL-4. Display
usage is assumed by default when the USAGE clause is not
specified for a data item. Four special registers can be
specified in arithmetic statements: LINAGE-COUNTER,
HASHED-V ALUE, LINE-COUNTER, and PAGE-
COUNTER. The special register LINE-COUNTER cannot
be used as a receiving item.

When the receiving item is a numeric-edited item, the
result of the computation is edited before it is moved to
the receiving item. Decimal point alignment is supplied
automatically throughout computation.

ADDITION OF ITEMS

Two or more items are added together by the ADD
statement. The receiving item for the result can be one of
the operands or a separate item. The choice of the
keyword TO or GIVING in the ADD statement determines
whether the receiving item is an operand or a separate
item.

The receiving item is an operand when the keyword TO is
used. The operand preceding TO is added to the receiving
item. When more than one operand precedes TO, the
operands are added together and the result is added to the
receiving item. If more than one receiving item is
specified, the operand, or the result of multiple operands,
is added to each receiving item.

The simplest format of the ADD statement adds one item
to another item.

ADD ITEM-AMT TO ACCUM.
ADD 1 TO PAGE-COUNTER.

In the first statement, the value of the data item
ITEM-AMT is added to the value of ACCUM and the result
of the addition is stored as the new value of ACCUM. The
second statement adds 1 to the special register
PAGE-COUNTER.

A more complex addition operation occurs when multiple
operands are specified.

ADD FED-TAX, SOC-SEC, STATE-TAX
TO TOT-TAX, TOT-DED.

The three operands preceding TO are added together. The
result of this addition is then added to each of the
receiving items TOT-TAX and TOT-DED.

The keyword GIVING in the ADD statement indicates that
the receiving item is not included in the addition
operation. The operands preceding GIVING are added
together and the result is stored in the receiving item. If
more than one receiving item is specified, the result is
stored in each receiving item.

ADD REG-PAY, OT-PAY GIVING GROSS-PAY.

When this statement is executed, the data item
GROSS-PAY contains the result of adding the values of
REG-PAY and OT-PAY.

The third available format of the ADD statement allows
items within a group item to be added to corresponding
items within another group item. The ADD statement
specifies the data-name of each group item. When the
statement is executed, the elementary items that have the
same data-names and qualifiers are added together. The
corresponding items are added and the results are stored in
the receiving group item.

Figure 4-1 illustrates the use of  the ADD
CORRESPONDING statement. When this ADD statement
is executed, only three items in RATE-TABLE are
changed: the RATE data items for NEW-YORK, BOSTON,
and LOS-ANGELES.

In the ADD CORRESPONDING statement, one or more
receiving items are specified after the keywerd TO. If
more than one receiving item is specified, the
corresponding items in the group item preceding TO are
added to each receiving item.

Within the group items, data items described by (or
subordinate to a data item described by) a REDEFINES
clause or an OCCURS clause are ignored during the
addition. Neither group item can contain any data item
described with a RENAMES clause or a USAGE IS INDEX
clause.

SUBTRACTION OF ITEMS

One or more items can be subtracted from another item
through the SUBTRACT statement. The difference is
stored in the receiving item, which can be an operand or a
separate item.

When the receiving item is an operand, the result of the
subtraction is stored as the new value of the item following
the keyword FROM.

SUBTRACT DISCT FROM ACCUM.

SUBTRACT 5 FROM TEMP.

60497200 C



DATA DIVISION.

01 UPDATE-TABLE.
03 EASTERN-REG.
05 NEW-YORK.

07 RATE S
05 BOSTON.
07 RATE v

03 WESTERN-REG.
05 LOS-ANGELES.
07 RATE .
01 RATE-TABLE.
03 EASTERN-REG.
05 NEW-YORK.

07 RATE  ea
05 BOSTON.

07 RATE “ e
05 PHILADELPHIA.

07 RATE -

03 WESTERN-REG.
05 LOS-ANGELES.

07 RATE cee
05 SAN-FRANCISCO.
07 RATE -

PROCEDURE DIVISION.

ADD CORRESPONDING UPDATE-TABLE
TO RATE-TABLE.

Figure 4-1. Addition of Corresponding Items

The value of DISCT is subtracted from ACCUM; the
difference is stored as the new value of ACCUM. In the
second statement, the numeric literal 5 is subtracted from
the value of TEMP; the difference is stored as the new
value of TEMP.

More than one item can be subtracted from another item.
The sum of the items preceding the keyword FROM is
subtracted from the item following FROM.

SUBTRACT SOC-SEC, FED-TAX
FROM GROSS-PAY.

The values of SOC-SEC and FED-TAX are added together
and the sum is subtracted from GROSS-PAY. The
difference is then stored as the new value of GROSS-PAY.

Multiple operands can also be specified after the keyword
FROM. The sum of the operands preceding FROM is then
subtracted from each operand following FROM and the
difference is stored as the new value in each case.

SUBTRACT DISCT FROM TOTAL, AMT-DUE.
The value of DISCT is subtracted from TOTAL and from

AMT-DUE. The differences are stored as the new values
of TOTAL and AMT-DUE, respectively.

60497200 C

The difference computed by the SUBTRACT statement can
be stored in a separate item by including the GIVING
phrase. The subtraction is performed and the difference is
stored in the item specified in the GIVING phrase.

SUBTRACT SOC-SEC, FED-TAX
FROM GROSS-PAY GIVING NET-PAY.

The sum of SOC-SEC and FED-TAX is subtracted from
GROSS-PAY. The difference is stored as the new value of
NET-PAY.

Items within a group item can be subtracted from
corresponding items within another group item. The
data-names specified in the SUBTRACT CORRE-
SPONDING statement identify the group items. Execution
of the statement causes the elementary items in the first
group item to be subtracted from the corresponding
elementary items in the receiving group item.
Corresponding items have the same data-names and
qualifiers up to the group item level.

SUBTRACT CORRESPONDING UPDATE-TABLE
FROM RATE-TABLE.

Using the data descriptions in figure 4-1, execution of this
statement causes the three RATE data items in
UPDATE-TABLE to be subtracted from the corresponding
RATE data items in RATE-TABIL_E. ’

When more than one receiving item is specified in the
SUBTRACT CORRESPONDING statement, the data items
in the group item preceding FROM are subtracted from the
corresponding data items in each receiving item.

During subtraction of corresponding items, data items
described by, or subordinate to items described by, a
REDEFINES clause or an OCCURS clause are ignored.
Neither the sending nor the receiving group item can
contain any data item described with a RENAMES clause
or a USAGE IS INDEX clause.

MULTIPLICATION OF ITEMS

Multiplication of two items is accomplished through the
MULTIPLY statement. The product of the multiplication
process is stored in an operand or in one or more separate
items.

The simplest format of the MULTIPLY statement
multiplies one item by another item.

MULTIPLY INTEREST BY NEW-PRINC.

The value of INTEREST is multiplied by the value of
NEW-PRINC. The resulting product is stored as the new
value of NEW-PRINC.

More than one operand can be specified as a receiving
item. Each of the receiving items stores the product of
the operand preceding the keyword BY and the operand
receiving item.

MULTIPLY 1.05 BY EARNINGS, OT-RATE,
SOC-SEC, FED-TAX.

The numeric literal 1.05 is multiplied by each of the four

receiving items. The product of each multiplication
operation is stored in the respective receiving item.

4-3



The product can be stored in a receiving item that is not an
operand by including the GIVING phrase in the MULTIPLY
statement. One or more receiving items are specified to
store the product of the two operands.

MULTIPLY .10 BY AMOUNT
GIVING PERCENT, ACCUM.

The numeric literal .10 is multiplied by the value of
AMOUNT. The product is then stored in the two receiving
items PERCENT and ACCUM.

DIVISION OF ITEMS

One item can be divided by another item through the
DIVIDE statement. The result of the division is stored

either in an operand or in a separate item depending on the
format of the statement.

A data item or a numeric literal can be divided into a data
item that subsequently stores the quotient (the result of
the division).

DIVIDE 1.5 INTO TEMP.

The numeric literal 1.5 (the divisor) is divided into the
value of TEMP (the dividend). The quotient is then stored
as the new value of TEMP.

If two or more dividends are specified, the divisor is
divided into each dividend. The quotient resulting from
each division operation is stored in the respective data
item used as the dividend.

DIVIDE TEMP INTO CNTR1, CNTR2,

When this statement is executed, two division operations
take place. The value of TEMP is divided into the value of
CNTR1 and the quotient is stored as the new value of
CNTR1. The value of TEMP is then divided into the value
of CNTR2 and the resulting quotient is stored as the new
value of CNTR2.

The GIVING phrase is used to specify one or more
receiving items that are not operands. The position of the
divisor and the dividend in the statement depends on the
choice of the keyword INTO or BY. When INTO is
specified, the first operand is the divisor and the second
operand is the dividend. When BY is specified, the first
operand is the dividend and the second operand is the
divisor.

DIVIDE CNTR INTO TEMP GIVING AVERAGE.
DIVIDE TEMP BY CNTR GIVING AVERAGE.

In both examples, the divisor is CNTR and the dividend is
TEMP. The quotient is stored as the new value of
AVERAGE.

The remainder resulting from a division operation can also
be stored in a data item. The remainder is calculated by
subtracting the product of the quotient and the divisor
from the dividend.

DIVIDE 12 INTO AMOUNT
GIVING PAYMENT REMAINDER TEMP.

The quotient resulting from dividing 12 into the value of

AMOUNT is stored in the data item PAYMENT. The
remainder is calculated and stored in the data item TEMP.

4-4

The quotient that is used to calculate the remainder is an
intermediate item. The picture-specification of the
intermediate item is the same as the quotient and contains
an operational sign; however, editing symbols are excluded
from the intermediate item. Rounding, if specified for the
receiving item, is not performed on the intermediate item.
If the quotient is described as COMPUTATIONAL-2, the
calculation for the remainder is always zero.

COMPUTING A DATA ITEM VALUE

The value of a data item is sometimes determined by
performing a series of arithmetic operations. With the
basic arithmetic statements already discussed, several
statements could be required to obtain the desired result.
A single COMPUTE statement can cause several different
operations to be performed and the final result to be stored
in the data item.

The arithmetic operations are specified in the COMPUTE
statement as an arithmetic expression. Arithmetic
operations that can be performed include addition,
subtraction, multiplication, division, and exponentiation.
When the COMPUTE statement is executed, the expression
is evaluated and the result is stored in one or more
receiving items.

The arithmetic expression consists of data-names, literals,
and arithmetic operators. The structure of arithmetic
expressions and the order of evaluation have been discussed
previously in this section.

COMPUTE AMT-DUE = ACCUM - DISCT + TAX.

The value of DISCT is subtracted from the value of
ACCUM. The difference is then added to the value of TAX
and the result is stored as the new value of AMT-DUE.

The order of evaluation of the arithmetic expression can be
explicitly stated by enclosing operands in parentheses.
Arithmetic operations within parentheses are evaluated
first.

COMPUTE TAX = (ACCUM - DISCT) * 0.06.

The expression enclosed in parentheses is evaluated; the
result is then multiplied by the numeric literal 0.06. If
parentheses are not used, the value of DISCT is multiplied
by 0.06 and the product is then subtracted from the value
of ACCUM.

In more complex expressions, parentheses can be nested.
The expression within the innermaost pair of parentheses is
evaluated first. The result of the evaluation is then used
to evaluate the expression within the next pair of
parentheses. This process continues until the expression
within the outermost pair of parentheses has been
evaluated.

COMPUTE XVAL = X1 + (X2 * (X3 + X4)) -
(X5 / (X6 + X7)).

In this example, four pairs of parentheses are used to
explicitly specify the order of evaluation. The value of
XVAL is computed as follows:

1. X3 is added to X4.

2. X2 is multiplied by the result of step 1.

3. X6 is added to X7.

4. X5 is divided by the result of step 3.

60497200 C



5. Xl is added to the result of step 2.

6. The result of step 4 is subtracted from the result of
step 5.

Whenever possible, division should be the final arithmetic
operation in order to preserve the accuracy of the result.
Operands should not be described as COMPUTATIONAL-2
items.

ROUNDING A RESULT

The result computed by an arithmetic statement is stored
in the receiving item according to the data description of
the item. If the number of decimal places in the receiving
item is less than the number of decimal places in the
computed result, the excess digits are truncated. Rounding
of a truncated result is performed when the ROUNDED
option is specified for a receiving item.

When rounding is requested, the least significant digit of
the receiving item is increased by 1 when the most
significant truncated digit is 5 or greater. The following
examples illustrate rounding for a receiving item that is
described as PICTURE 99V 99. The symbol ¢ indicates the
decimal position.

Computed Stored
Result Result
25427 2543

t t
91622 9162

t t
63109 6311

t t

A receiving item that is described with the character P in
the rightmost positions can be rounded in the least
significant stored digit position. Rounding occurs in the
rightmost stored digit when the most significant truncated
digit is equal to or greater than 5.

CHECKING FOR A SIZE ERROR

A size error occurs when the number of integral positions
in the receiving item is less than the number of integral
digits in the result. The SIZE ERROR option in an
arithmetic statement provides the means to perform a
specific function when a size error condition exists.

Size error checking is performed on the intermediate result
and on the final result of any arithmetic operation. A size
error always occurs for each of the following conditions:

e Anexponentiation error.

e A floating point exponent overflow or underflow.

e Division by zero.

Exponent overflow or underflow causes program
termination, unless a MODE control statement is in effect
for these conditions.

The SIZE ERROR option specifies an imperative statement
that is to be executed when a size error occurs. The
imperative statement can transfer control to an error

routine, print a message, or perform any required function.

ADD ITEM-AMT TO ACCUM
ON SIZE ERROR GO TO ERR-PROC.

60497200 E

When this statement is executed, the resuit of the addition
operation is checked for a size error. If a size error exists,
control is transferred to the paragraph named ERR-PROC.

If the SIZE ERROR option is specified for an ADD
CORRESPONDING or SUBTRACT CORRESPONDING
statement, each individual arithmetic operation is checked
for a size error condition. A size error detected for an
individual operation does not cause the imperative
statement to be executed immediately. All the individual
additions or subtractions are performed before the
imperative statement is executed.

When a size error occurs and the SIZE ERROR option is not
included in the arithmetic statement, the value stored in
the affected receiving item is undefined. If the SIZE
ERROR option is specified, the receiving item is not
changed when a size error occurs. A size error condition
for one receiving item does not affect other receiving
items included in the arithmetic operation.

NUMBER REPRESENTATION

All operands in arithmetic expressions and arithmetic
statements must be numeric items. Arithmetic operations
are performed in one of three modes: display code,
integer, or floating point. The specific operation and the
description of the operands determine the mode of
operation.

DISPLAY CODE OPERATION

Addition and subtraction can be performed in the display
code mode of operation. The operands must be described
as display items with a maximum result size of 18 digits.
Results obtained in the display code mode of operation are
exact results.

INTEGER OPERATION

Integer mode of operation is performed on operands that
are described as COMP-1 or COMP-4. This is the most
efficient mode of operation and should be used whenever
possible. For addition and subtraction, the size of the
intermediate result, which is determined by aligning the
operands on the decimal points, cannot exceed 14 digits.
Multiplication in integer mode of operation requires that
the sum of the operand sizes does not exceed 14 digits.
Exponentiation can be performed only with zero point
location. '

FLOATING POINT OPERATION

Floating point mode of operation is used whenever the
arithmetic operation cannot be performed in display code
or integer mode. The maximum size of a floating point
number is 28 digits. Floating point operations do not yield
exact results.

SAMPLE ARITHMETIC PROGRAM

The use of the basic arithmetic statements is illustrated in
the sample program shown in figure 4-2. The input file
contains one record for each item on an invoice. The
output file is a report that lists each item and its computed
amount as well as the computed totals for each invoice.
Figure 4-3 shows the input records used to create the
output report shown in figure 4-4.

4-5



NV OONON NN =

IDENTIFICATION DIVISION.
PROGRAM-ID.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD=-IN ASSIGN TO
SELECT OUTFILE ASSIGN TO
DATA DIVISION.
FILE SECTION.
FD CARD-IN :

ARITHMETIC-EXAMPLE.

INPUT.
OUTPUT.

LABEL RECORD IS OMITTED
DATA RECORD IS IN-REC.

01 IN-REC.
03 INVOICE-NO PICTURE 9(6).
03 FILLER PICTURE X(5).
03 ITEM-ID PICTURE 999.
03 FILLER PICTURE X(5).
03 QUANTITY PICTURE 999.
03 FILLER PICTURE X(5).
03 COST-PER-UNIT PICTURE 99V99.
03 FILLER PICTURE X(48).
03 END-FLAG PICTURE A.
FD OUTFILE
LABEL RECORD IS OMITTED
DATA RECORD IS PRINTLINE.
01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 ITEM-AMT PICTURE 9(4)V99 VALUE ZERO.
01 DISCT PICTURE 9(4)V99 VALUE ZERO.
01 TAX PICTURE 9(4)V99 VALUE ZERO.
01 ACCUM PICTURE 9(5)V99 USAGE COMP-1.
01 TEMP PICTURE 9(6)V99 USAGE COMP-1.
01 CNTR PICTURE 999 USAGE COMP-1.
01 QUANT PICTURE 999 USAGE COMP-1.
01 UNIT-COST PICTURE 99V99 USAGE COMP-1.
01 AVERAGE PICTURE $22,229.99.
01 HEAD.
03  FILLER PICTURE X VALUE "1".
03 FILLER PICTURE X(12) VALUE ™ INVOICE ".
03 FILLER PICTURE X(6) VALUE " ITEM".
03 FILLER PICTURE X(8) VALUE " QTY".
03 FILLER PICTURE X(8) VALUE SPACES.
03 FILLER PICTURE X(12) VALUE "COST ",
03 FILLER PICTURE X(13) VALUE "DISCOUNT "
03 FILLER PICTURE X(12) VALUE "SALES TAX ",
03 FILLER PICTURE X(12) VALUE " AMOUNT DUE".
N3 FILLER PICTURE X(52) VALUE SPACES.
01 OUTPUT-LINE-1.
03 FILLER PICTURE X(5) VALUE SPACES.
03 INVOICE-NUM PICTURE 9(6).
03 FILLER PICTURE X(5) VALUE SPACES.
03 ITEM-IDENT PICTURE 999.
03 FILLER PICTURE X(5) VALUE SPACES.
03 aTy PICTURE Z19.
03  FILLER PICTURE X(5) VALUE SPACES.
03 AMOUNT PICTURE $2,229.99.
03 FILLER PICTURE X(95) VALUE SPACES.
01 OUTPUT-LINE-2.
03 FILLER PICTURE X(31) VALUE SPACES.
03 INV-TOTAL PICTURE $22,279.99.
03 FILLER PICTURE X(5) VALUE " - ',
03 DISCOUNT PICTURE $Z,229.99.
03 FILLER PICTURE X(5) VALUE "™ + ",
03 SALES-TAX PICTURE $2,229.99.
03 FILLER PICTURE X(5) VALUE " = ",
03 AMT-DUE PICTURE $22,229.99. .
03 FILLER PICTURE X(52) VALUE SPACES.

4-6

Figure 4-2. Sample Arithmetic Program (Sheet 1 of 2)

60497200 C




PROCEDURE DIVISION.

72 OPENING.
73 OPEN INPUT CARD-IN.
74 OPEN OUTPUT OUTFILE.
75 MOVE ZEROS TO ACCUM, TEMP, CNTR.
76 WRITE PRINTLINE FROM HEAD.
77 MOVE SPACES TO PRINTLINE, WRITE PRINTLINE.
78 READ-CARD.
79 READ CARD-IN AT END GO TO CLOSING.
80 MOVE INVOICE-NO TO INVOICE-NUM.
81 MOVE ITEM-ID TO ITEM-IDENT.
82 MOVE QUANTITY TO QTY, QUANT.
83 MOVE COST~PER-UNIT TO UNIT-COST.
84 MULTIPLY UNIT-COST BY QUANT GIVING ITEM-AMT.
85 ADD ITEM-AMT TO ACCUM.
86 MOVE ITEM-AMT TO AMOUNT.
87 WRITE PRINTLINE FROM OUTPUT-LINE-1.
88 IF END~-FLAG EQUALS "E"
89 GO TO INVOICE-TOTAL.
90 GO TO READ-CARD.
91 INVOICE-TOTAL.
92 MOVE ACCUM TO INV-TOTAL.
93 MULTIPLY ACCUM BY .1 GIVING DISCT ROUNDED.
94 MOVE DISCT TO DISCOUNT.
95 SUBTRACT DISCT FROM ACCUM.
96 MULTIPLY ACCUM BY .06 GIVING TAX ROUNDED.
97 MOVE TAX TO SALES-TAX.
98 ADD TAX TO ACCUM.
99 MOVE ACCUM TO AMT-DUE.
100 ADD ACCUM TO TEMP.
101 ADD 1 TO CNTR.
102 WRITE PRINTLINE FROM OUTPUT-LINE-2
103 AFTER ADVANCING 2 LINES.
104 MOVE ZEROS TO ACCUM.
105 MOVE SPACES TO PRINTLINE.
106 WRITE PRINTLINE
107 AFTER ADVANCING 3 LINES.
108 GO TO READ-CARD.
109 CLOSING.
110 DIVIDE CNTR INTO TEMP GIVING AVERAGE ROUNDED.
111 DISPLAY "AVERAGE INVOICE AMOUNT IS " AVERAGE.
112 CLOSE CARD-IN, OUTFILE.
113 STOP RUN.
Figure 4-2. Sample Arithmetic Program (Sheet 2 of 2)
N Q,\q, » qub oq’Q
&
\0& \0& \0@ \5‘0 \"&
‘0° < oy fo
175256 465 005 1095
175256 103 020 0495
175256 9216 002 2495 E
175257 696 012 0895 E
175258 309 100 1475
175258 682 050 2250
175258 916 010 2495
175258 277 125 0725 E
180696 103 030 0495
180696 456 045 1650
180696 916 005 2495 E
180697 465 023 1095
180697 599 040 3200 E
180698 196 020 2495
180698 696 050 0895
180698 456 050 1650 E
Figure 4-3. Input Data for Sample Arithmetic Program
60497200 C 4-7




INVOICE ITEM QrTy cosT
175256 465 5 $  54.75
175256 103 20 $ 99.00
175256 916 2 $  49.90

$  203.65
175257 696 12 $ 107.40

$ 107.40
175258 309 100 $1,475.00
175258 682 50 $1,125.00
175258 916 10 $ 249.50
175258 277 125 $ 906.25

$ 3,755.75
180696 103 30 $ 148.50
180696 456 45 $ 742.50
180696 916 5  $ 124.75

$ 1,015.75
180697 465 23 $ 251.85
180697 599 40 $1,280.00

$ 1,531.85
180698 196 20 $ 499.00
180698 696 50 $ 447.50
180698 456 50 $ 825.00

$ 1,771.50

AVERAGE INVOICE AMOUNT IS $ 1,333.36

 DISCOUNT SALES TAX AMOUNT DUE

11.00

]
()

$ 20.37, + s 194.28

$ 10.74 + 8 5.80 = s 102.46
$ 375.58 + $ 202.81 = $ 3,582.98
$ 101.58 + s 54.85 = $ 969.02
$ 153.19 + s 82.72 = $ 1,461.38
$ 177.15 + s 95.66 = $ 1,690.01

Figure 4-4. Output Report from

Each input record contains the quantity of the invoice item
and the cost of one item. The total cost for the specified
quantity is computed (line 84) and an output line is
generated for the invoice item (line 87).

The last record for an invoice is identified by the letter E
in the last character position of the input record (line 88).
When all records for an invoice have been processed, the
totals for the invoice are computed (lines 93 through 98)
and an output line is generated.

As each invoice is completed, a running total of invoice
amounts is maintained (line 100). When all invoices have
been processed, the average amount for all invoices is
computed (line 110) and displayed on the output report.

BOOLEAN EXPRESSIONS

A boolean expression consists of boolean variables, boolean
literals (consisting of the characters 0O or 1), and boolean
operators that are used to separate pairs of boolean
variables and literals. Boolean expressions can be used in
COMPUTE statements to define a boolean variable and its
value. Boolean expressions can be used in relational
conditions to compare boolean variables and/or literals for
equality or inequality.

A simple boolean expression can contain a single boolean
variable or literal, or two boolean variables or literals
separated by a boolean operator. A complex boolean
expression contains two or more simple boolean expressions

Sample Arithmetic Program

separated by boolean operators. Parentheses can enclose
boolean expressions to specify the order of evaluation or to
clarify the logic of the expression.

BOOLEAN OPERATORS

Two types of boolean operators can be used in boolean
expressions: binary and unary. Three binary boolean
operators are available:

Operator Function

BOOLEAN-AND Boolean conjunction

BOOLEAN-OR Boolean inclusive OR

BOOLEAN-EXOR Boolean exclusive OR
A boolean expression can also be preceded by the following
unary boolean operator:

Function

Operator

BOOLEAN-NOT Boolean negation

A boolean operator must be preceded and followed by a
space. With one exception, a boolean operator must be
followed by a boolean variable or literal; the one exception
is that a binary operator can be followed by a unary
operator. When parentheses are used, the variable or
literal can be preceded by a left parentheses.

60497200 C



EVALUATION OF EXPRESSIONS

The order of evaluation for boolean expressions is
determined by the boolean operators:

Order of
Operator evaluation
BOOLEAN-NOT First
BOOLEAN-AND Second
BOOLEAN-OR and
BOOLEAN-EXOR Third

Expressions at the same level are evaluated from left to
right.

Parentheses can be used to modify the normal sequence of
evaluation. Expressions enclosed in parentheses are
evaluated first, beginning with the innermost pair and
proceeding to the outermast pair. Within a pair of
parentheses, evaluation occurs according to the
hierarchical order of evaluation.

The following boolean expression:
B"001010110"

is a boolean literal that produces the 9-character boolean
value 001010110.

The boolean expression:
CODE-VALUE1 BOOLEAN-AND CODE-VALUE2
praduces the boolean conjunction (logical multiplication) of

CODE-VALUE1l and CODE-VALUE2. For instance, if
CODE-VALUE1 is 10110 and CODE-VALUEZ2 is 01101:

CODE-VALUE1L 10110
CODE-VALUE2 01101
Result of conjunction 00100

The boolean expression:

MISC-ITEM BOOLEAN-OR(BOOLEAN-NOT
STANDARD-ITEM)

produces the boolean disjunction (logical addition) of
MISC-ITEM and the complement of STANDARD-ITEM.
For instance, if MISC-ITEM has a value of 01101 and
STANDARD-ITEM has a value of 11010:

MISC-ITEM 01101
Complement of STANDARD-ITEM 00101
Result of disjunction 01101

Boolean expressions can be used in Procedure Division
statements. The COMPUTE statement can be used to
define a boolean variable.

COMPUTE NEW = MISC-ITEM BOOLEAN-OR
(BOOLEAN-NOT STANDARD-ITEM)

This statement defines the boolean variable NEW and sets
its value to 01101 (using values from the previous example).

The IF statement can be used to compare two boolean
variables or literals for equality.

F M-CODE BOOLEAN-AND B-VAL = B"10010"
GO TO PROC-A ELSE GO TO PROC-B.

In this statement, the boolean variable M-CODE is
compared with the boolean variable B-VAL. If the result
of the conjunction is 10010, then the branch to PROC-A is
taken; otherwise, the branch to PROC-8B is taken.

SAMPLE BOOLEAN PROGRAM

The use of boolean statements is illustrated in figure 4-5.
VALL and CONST are defined in the Working-Storage
Section as boolean variables. The IF statement performs a
logical AND operation on VALl and CONST. The
COMPUTE statement performs the same operation and
places the result in VAL before displaying it.

A. Program Listing

DATA DIVISION.

01 STRS.

02 VAL1

02 CONST
PROCEDURE DIVISION.
STRT.

ELSE

STOP RUN.

B. Program Output

G00D :
RESULT=0100010101

IDENTIFICATION DIVISION.
PROGRAM-ID. BOOL .

WORKING-STORAGE SECTION.

PIC 1(10) VALUE B"0101011101".
PIC 1(10) VALUE B"1100110101".

IF VAL1 BOOLEAN-AND CONST = B"0100010101"
DISPLAY "GOOD"

DISPLAY "BAD".
COMPUTE VAL1 = CONST BOOLEAN-AND VAL1
DISPLAY "RESULT=" VAL1

Figure 4-5. Boolean Example

60497200 E

4-9






CONDITIONAL OPERATIONS S

Conditional operations are used in a COBOL 5 program to
select an alternate path of control. A conditional
expression is tested for its truth value, which is either true
or false. The path of control to be executed depends on
the truth value of the condition. Conditional expressions
can be either simple or complex and are specified in the IF,
PERFORM, and SEARCH statements.

Implicit conditional operations can be designated through
five different options that can be included in various
Procedure Division statements. These options specify
imperative statements that are executed when the implied
conditions exist. The five conditional options that can be
specified are AT END, AT END-OF -PAGE, INVALID KEY,
ON O VERFLOW, and ON SIZE ERROR.

CONDITIONAL EXPRESSIONS

A conditional expression specifies the condition that is
tested to determine the next statement to be executed.
The condition can be either a simple condition or a
complex condition.

In an IF or SEARCH statement, the conditional expression
is followed by an imperative statement that is executed
when the condition is true. In a PERFORM statement, the
procedure is performed repeatedly until the specified
condition is true; control is then passed to the statement
following the PERFORM statement.

SIMPLE CONDITIONS

A simple condition specifies one condition that is to be
tested for its truth value. Five different types of
conditions can be tested: relational, class, condition-name,
switch-status, and sign conditions.

Relational Conditions

A relational condition causes two numeric or boolean
operands to be compared. If the specified relationship
exists, the condition is true. A relational condition not
involving boolean expressions specifies that the first
operand is one of the following:

o Greater than or not greater than the second operand.

e Less than or not less than the second operand.

e Equal to or not equal to the second operand.

® Exceeds the second operand.

A relational condition involving boolean expressions
specifies that the first operand is equal to or is not equal
to the second operand.

The operands in a relational condition can be data items
described in the Data Division, literals, boolean, or
arithmetic expressions. When an arithmetic expression is

specified, the result of evaluating the arithmetic
expression is used for the comparison.

60497200 C

Comparing Numeric Operands

A numeric comparison is based on the algebraic values of
the numeric operands. The operands can be different
lengths; decimal point alignment is  performed
automatically. Unsigned numeric operands are considered
to be positive values. Numeric comparisons can be made
between operands that are described with different
usages. For example, a display item can be compared with
a computational item.

GROSS-PAY IS GREATER THAN 150.99

The data item GROSS-PAY is compared with the numeric
literal 150.99. If the value of GROSS-PAY is greater than
150.99, the condition is true; if GROSS-PAY is equal to or
less than 150.99, the condition is not true.

The keyword NOT can be included in the relational
condition to test for a negative condition.

AGE IS NOT LESS THAN 21

In this example, the condition is true when the value of the
data item AGE is equal to or greater than 21. If the value
of AGE is less than 21, the condition is not true.

Zero is considered a unique value regardless of the sign of
the operand. Positive zero values are equal to negative
zero values.

Operands  described as COMPUTATIONAL-2 items
typically do not have exact values. Because comparisons
compare exact values, a range test should be used for a
COMPUTATIONAL-2 operand.

Table 5-1 lists some numeric operand values and relational
operators that result in a true condition.

Comparing Nonnumeric Operands

A nonnumeric comparison is performed when one or both
operands are nonnumeric items. This type of comparison is
based on a specified collating sequence. The collating
sequence to be used can be selected by:

e Specifying the program collating sequence in the
Environment Division.

e Changing the program collating sequence with a SET
statement that is executed before the relational
condition is tested.

Execution of a SET statement takes precedence over a
collating sequence previously specified. If a collating
sequence is not explicitly specified, the default collating
sequence is used for the comparison.

A numeric operand that is compared with a nonnumeric
operand must be an integer data item or literal or an
arithmetic expression containing only integer operands.
Both operands must be display items. If the nonnumeric
operand is an elementary item, the numeric operand is
treated as if it were moved to an alphanumeric item of the

5-1



same size as the nonnumeric item; any sign associated with
the numeric operand is ignored. A nonnumeric group item
causes the numeric operand to be treated as if it were
moved to a group item of the same size as the nonnumeric
item. :

Operands of equal length are compared character by
character as specified by the relational operator.
Comparison begins with the leftmost character of each
operand and continues until a pair of unequal characters is
encountered or the last pair of characters has been
compared. If no unequal pair is detected, the operands are
equal. Unequal characters are evaluated according to their
relative positions in the collating sequence. The operand
that contains the higher character in the collating
sequence is considered the greater operand.

When the operands are not the same length, the shorter
operand is considered to be extended on the right with
spaces up to the length of the longer operand. The
comparison then proceeds as described for operands of
equal length.

Table 5-2 lists some nonnumeric comparisons that result in
a true condition. The comparisons are based on the CDC
64-character collating sequence; at least one operand in
each comparison is described as a nonnumeric item.

The keyword NOT can also be included in a nonnumeric
comparison to test for a negative condition.

Comparing Boolean Operands

Boolean operands of equal size are compared character for
character, starting from the leftmost character of each
operand, until either an unequal pair is encountered or the
last pair of characters has been compared. If no unequal
pair is detected, the operands are equal. If the operands
are of unequal length, the shorter operand is treated as
though it were extended on the right with boolean
character zeros to make the operands of equal length.

Table 5-3 lists some boolean comparisons that result in a
true condition.

TABLE 5-1. TRUE NUMERIC RELATIONAL CONDITIONS

Value of Operand-1

Relational Operator

Value of Operand-2

1]0]

=
[on]
Jo

IS LESS THAN
or IS <

ca
=
o

8

[o]o]

IS GREATER THAN
or IS >

ol
o

<]
=

or EXCEEDS
[0fof3]9]5] IS EQUAL TO

or IS =

or EQUALS

5 E
[}l ]
[ ]

IS NOT LESS THAN

or IS NOT <
43@ IS NOT GREATER THAN 7]s
E or IS NOT > ]::EI

or IS NOT EQUAL TO

TABLE 5-2.

TRUE NONNUMERIC RELATIONAL CONDITIONS

Value of Operand-1

Relational Operator

Value of Operand-2

IS EQUAL TO
or IS =
or EQUALS

IS GREATER THAN
or IS >

[Fl1[s[c[HE[R]

or EXCEEDS
IS LESS THAN [5[7T9]0]0]
or IS <
Fl8]9]o] IS NOT LESS THAN £]F{7]8]0]0]
or IS NOT <

IS NOT GREATER THAN
or IS NOT >
or IS NOT EQUAL TO

[3{o[u[n]s]o]M

5-2

60497200 C



TABLE 5-3. TRUE BOOLEAN RELATIONAL CONDITIONS

Value of Operand-1

Relational Operator

Value of Operand-2

0]1]1]o]o[1]1]

or IS =

IS EQUAL TO
or EQUALS

[of1]1]ofo[1]1]

[of1]1]of1]

or IS =

IS EQUAL TO
or EQUALS

fof1]1fo]1fofofo]

[o]1f1]ofs]

IS NOT EQUAL TO
or IS NOT =
or IS UNEQUAL TO

Lo[1[1]ofs]o[1]o]

Class Conditions

A class condition tests a data item to determine whether
the value of the data item is either numeric or alphabetic.
The keyword NOT in the expression tests for a value that is
not numeric or not alphabetic.

A numeric or alphanumeric data item can be tested for a
numeric value. For a true condition, the value consists of
the digits 0 through 9 and optionally can contain an
operational sign.

An operational sign is indicated in the data description by
the character S in the picture-specification. If the SIGN IS
SEPARATE clause is also included in the description, the
operational sign is the plus or the minus character (+ or -).
Without the SIGN IS SEPARATE clause, the sign is
combined with the first or last digit of the data item.

PART-NO IS NUMERIC

The data item PART-NO must have a numeric value for
the class condition to be true. If the data description of
PART-NO does not specify an operational sign, the value
cannot contain an operational sign; however, the
operational sign can be present if the SIGN clause is
specified in the data description.

When the data item is described as COMPUTATIONAL-1,
the numeric test is true only if the leftmost 12 bits of the
computer word containing the data item are either all ones
or all zeros. For a data item described as
COMPUTATIONAL-2 or COMPUTATIONAL.-4, the numeric
test is always true.

An alphabetic or alphanumeric data item can be tested for
an alphabetic value. The data item being tested can
contain only the characters A through Z and the space for
a true condition.

EMP-ID IS ALPHABETIC

The data item EMP-ID is checked for an alphabetic value.
If the value contains any character other than A through Z
and the space, the class condition is not true.

The keyword NOT is included in the class condition
expression to test for a value that is not numeric or not
alphabetic. ‘The condition is true when the value does not
satisfy the specified class condition.

EMP-ID IS NOT ALPHABETIC

60497200 C

If the value of EMP-ID contains any character other than A
through Z and the space, the condition is true.

Condition-Name Conditions

A conditional expression can specify a condition-name.
This causes the value of a conditional variable to be
tested. A conditional variable is a data item that is
established in the Data Division; condition-names are
assigned to the values that can be associated with the data
item. A condition-name can be assigned one or more
individual values or ranges of values.

When a condition-name is specified as a conditional
expression, the value of the conditional variable is tested
to determine whether or not it is equal to one of the values
assigned to the condition-name. The condition is true if
the value of the conditional variable is the same as a value
associated with the specified condition-name.

Figure 5-1 illustrates the wuse of a condition-name
condition in an IF statement. The conditional variable
PAY-PERIOD is associated with three condition-names;
each condition-name is assigned one numeric value. When
the IF statement is executed, PAY-PERIOD is tested for
the value 2; if the value of PAY-PERIOD is 2, control is
transferred to the paragraph named BI-WEEKLY-PAY.

DATA DIVISION.

03 PAY~-PERIOD PICTURE 9.
88 WEEKLY VALUE IS 1.
88 BI-WEEKLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

PROCEDURE DIVISION.

IF BI-WEEKLY GO TO BI-WEEKLY-PAY.

Figure 5-1. Using a Condition-Name Condition

5-3



Switch-Status Conditions

The on or off status of a switch can be tested through a
switch-status condition. The condition-name specified as a
switch-status condition is established in the Environment
Division. Six external switches (SWITCH-1 through
SWITCH-6) and 120 internal switches (SWITCH-7 through
SWITCH-126) can be associated with condition-names; both
the on status and the off status can be assigned
condition-names. A condition-name should be associated
with only one condition because condition-names cannot be
qualified in the Procedure Division.

- When a switch-status condition-name is specified as a
conditional expression, the switch is tested for the on or
off status associated with the condition-name. If the
switch setting is the same as specified for the
condition-name, the switch-status condition is true.

Figure 5-2 illustrates the use of a switch-status condition.
The condition-name TAPE-OUTPUT is assigned to the on
status of SWITCH-1. When the IF statement is executed,
SWITCH-1 is tested to determine whether or not it has been
set to on. If SWITCH-1 is on, control is transferred to the
paragraph named WRITE-TAPE.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SWITCH-1 ON STATUS IS TAPE-OUTPUT.

PROCEDURE DIVISION.

IF TAPE-OUTPUT GO TO WRITE-TAPE.

Figure 5-2. Using a Switch-Status Condition

The status of an external switch can be set by the SWITCH
control statement before the program is executed. This
statement can also be used to set an external switch when
the program is executing from a terminal and when a STOP
literal statement is specified to cause a program pause.
The status of an external switch or an internal switch can
be set during program execution by a SET statement.
Figure 5-3 illustrates switch setting during program
execution. If the SET statement is executed before the
switch-status condition is tested, the condition is true and
control is transferred to the paragraph named WRITE-RPT.

Sign Conditions

The sign condition tests the value of a data item or an
arithmetic expression to determine if it is a positive value,
a negative value, or a zero value. If an arithmetic
expression is specified, it must contain at least one
reference to a variable item. The value zero, whether
signed or not, is considered to be neither positive nor
negative.

(ON-HAND - ORDERED) IS POSITIVE

5-4

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
SWITCH-4 IS PRINT-CHECK
ON STATUS IS PRINT-OUT.

PROCEDURE DIVISION.

SET PRINT-CHECK TO ON.

IF PRINT-0OUT GO TO WRITE-RPT.

Figure 5-3. Setting a Switch

The arithmetic expression is evaluated and the result is
then tested for a positive value. The sign condition is true
if the value is greater than zero; if the value is zero or less
than zero, the condition is not true.

The keyword NOT can be included in a sign condition
expression. The value is tested to determine if it is not
positive, not negative, or not zero.

(ON-HAND - ORDERED) IS NOT NEGATIVE
In this example, the condition is true if the resuit of the

arithmetic expression is not a negative value. It can be a
positive value or a zero value for a true condition.

COMPLEX CONDITIONS

" A complex condition tests more than one condition for a

truth value. The conditions are connected by logical
operators. The function of each logical operator is as
follows:

AND Both simple conditions must be true for the
complex condition to be true. If either
condition is not true, the complex condition
is not true.

OR At least one of the simple conditions must be
true; both conditions can be true. If neither
condition is true, the complex condition is
not true.

NOT The truth value is reversed (negated). If the
expression is true, the complex condition is
not true.

Parentheses can be used to designate the order of
evaluation for complex conditional expressions.
Expressions within parentheses are tested for a truth value
first; the complete expression is then evaluated for a truth
value. When parentheses are nested, evaluation begins with
the innermost pair of parentheses and proceeds to the

60497200 C



outermost pair. If parentheses are not used, evaluation
begins at the left; all expressions connected with AND are
evaluated first and then all expressions connected with OR
are evaluated.

AGE>20 OR MARITAL = "M" AND
CLASS>50

In this example, the complex conditional expression is true
under either of the following conditions:

® The data item MARITAL is equal to M and the data
item CLASS is greater than 50.

e The data item AGE is greater than 20.

If at least one of these conditions is true, the complex
condition is true; if neither one is true, the complex
condition is false.

(AGE>20 OR MARITAL = "M") AND
CLASS>50

This example is the same as the previous example except
that parentheses have been added. The parentheses cause
the complex condition to be evaluated in a different
manner. The complex condition is true under either of the
following conditions:

e The data item AGE is greater than 20 and the data
item CLASS is greater than 50.

e The data item MARITAL is equal to M and the data
item CLLASS is greater than 50.

The complex condition yields a true condition when at least
one of these conditions is true; the complex condition is
not true when neither condition is true.

The reverse of the condition just described can be specified
by including the logical operator NOT before the complex
expression.

NOT ((AGE>20 OR MARITAL = "M") AND
CLASS>50)

The inclusion of the logical operator NOT specifies that
one of the following conditions must exist for the complex
condition to be true:

e The data item CLASS is less than or equal to 50.

® The data item AGE is less than or equal to 20 and the
data item MARITAL is not equal to M.

A complex conditional expression contains a series of
elements. The following rules apply to the order in which
the elements can be specified: )

e A simple condition can be the first or last element in
the expression.

e A simple condition can be followed by the logical
operator OR or AND or by a right parenthesis; it can
be preceded by a logical operator (OR, NOT, or AND)
or a left parenthesis.

e The logical operator OR or AND cannot be the first or
the last element in the expression. It can be preceded
by a simple condition or by a right parenthesis and
followed by a simple condition, NOT, or a left
parenthesis.

60497200 C

e The logical operator NOT can be the first but not the
last element in the expression. It can be preceded by
OR, AND, or a left parenthesis and followed by a
simple condition or a left parenthesis.

e A left parenthesis can be the first but not the last
element in the expression. It can be preceded by OR,
NOT, AND, or another left parenthesis and can be
followed by a simple condition, NOT, or another left
parenthesis.

e A right parenthesis can be the last, but not the first,
element in the expression. It can be preceded by a
simple condition or another right parenthesis and can
be followed by OR, AND, or another right parenthesis.

Implied Elements

A complex conditional expression can contain a series of
two or more relational conditions. In certain instances,
some elements of the relational conditions can be omitted
from the expression. These omitted elements become
implied elements.

When two or more consecutive relational conditions have
the same operand preceding the relational operator, the
operand can be omitted in the succeeding relational
conditions. The operand must be specified in the first
condition.

AGE>20 AND<66

Two relational conditions are specified in this example.
The operand AGE is implied in the second condition. If the
value of AGE is greater than 20 and it is less than 66, the
complex condition is true.

When the first operand and the relational operator are the
same in consecutive relational conditions, these two
elements can be omitted following the first occurrence of
the elements.

HRS-WORKED = 40 OR TEMP

The operand HRS-WORKED and the relational operator =
are implied in the relational condition following the logical
operator OR. If the value of HRS-WORKED is equal to
either the numeric literal 40 or the value of TEMP, the
complex condition is true.

The keyword NOT can be a part of the relational operator
or it can be a logical operator. The usage of NOT is
determined as follows:

o When NOT is immediately followed by GREATER, >,
LESS, <, EQUAL, or =, it is part of the relational
operator.

e In all other cases NOT is a logical operator.

As a relational operator, NOT can be an implied element;
however, NOT cannot be an implied element as a logical
operator.

Logical operators cannot be implied elements. Parentheses
can be used to apply the logical operator to more than one

condition.

NOT (TEMP1>TEMP2 AND ACCUM)

5-5



This example illustrates the use of parentheses and also
includes a relational condition that has two implied
elements. The two relational conditions are evaluated
first; the logical operator NOT is then applied to the truth
value of the two conditions. If both conditions are true,
the complex condition is not true; if either or both
conditions are not true, the complex condition is true. This
example in expanded form is:

NOT TEMP1>TEMP2 AND NOT TEMP1>ACCUM

Order of Evaluation

A complex conditional expression contains a series of
simple conditions that are evaluated individually and
collectively to determine a final truth value for the
complex condition. The hierarchical order of evaluation
for a complex condition is as follows:

1. Arithmetic expressions within simple conditions.
2. Simple conditions in the following order:
Relational
Class
Condition-name
Switch-status
Sign

3. Conditions connected by logical operators in the
following order:

AND
OR
NOT

Conditions at the same level in the order of evaluation are
evaluated from left to right.

Parentheses can be used to change the order of evaluation.
Conditions within parentheses are evaluated first; when
parentheses are nested, evaluation begins with the
innermost pair of parentheses and proceeds to the
outermost pair. After the conditions enclosed by
parentheses have been evaluated, the final truth value is
determined according to the hierarchical order of
evaluation.

It is good programming practice to avoid abbreviations and
to use parentheses whenever both the logical operators
AND and OR are included in the conditional expression.
This ensures that the expression is evaluated in the desired
order.

CONDITIONAL STATEMENTS

A conditional statement specifies that the next operation
to be performed depends on the truth value of a specific
condition. The condition is explicitly specified in some
statements as a conditional expression. In other
statements, the condition is implied by the use of certain
phrases.

5-6

Within the same sentence, a conditional statement can be
preceded by an imperative statement. The imperative
statement is executed regardless of the truth value of the
conditional statement.

The inclusion of an explicit scope terminator makes a
conditional statement into an imperative statement. This
section includes discussion of END-IF, END-PERFORM,
and END-SEARCH terminators even though the associated
IF, PERFORM, and SEARCH statements are not considered
conditional in this context.

EXPLICIT CONDITIONAL STATEMENTS

An explicit conditional statement depends on the
evaluation of a specified conditional expression. The truth
of the condition determines what statement is executed
next. Three different statements in the Procedure Division
can specify an explicit condition: the IF statement, the
PERFORM statement, and the SEARCH statement.

IF Statement Without END-IF

An IF statement specifies a conditional expression that is
evaluated to determine whether or not the next statement
is executed. The statement following the conditional
expression is executed if the condition is true; it is
bypassed if the condition is not true.

IF MARITAL ="M" ADD 1 TO MARRIED.

The conditional expression MARITAL = "M" is evaluated
for a truth value. If the data item MARITAL contains the
letter M, the condition is true and 1 is added to the data
item MARRIED. If the condition is not true, the ADD
statement is not executed. Control is then passed to the
next sentence.

The IF statement can also specify a statement to be
executed when the condition is not true. The keyword
ELSE precedes the statement that is executed for a false
condition.

IF MARITAL ="M" ADD 1 TO MARRIED
ELSE ADD 1 TO SINGLE.

The evaluation of the conditional expression determines
which data item (MARRIED or SINGLE) is incremented. If
the condition is true, 1 is added to MARRIED; if the
condition is not true, 1 is added to SINGLE. Control is
then passed to the next sentence.

The phrase NEXT SENTENCE can be substituted for the
statement following the conditional expression or the
statement following ELSE. This phrase causes control to
be transferred to the next executable sentence.

IF PART-NO IS NUMERIC NEXT SENTENCE
ELSE GO TO BAD-NUMBER.

In this example, a true condition causes control to be
transferred to the next sentence. If the condition is false,
control is transferred to the paragraph named
BAD-NUMBER.

The statements following the conditional expression can be

imperative or conditional statements; either statement can
be followed by a conditional statement. IF statements are

60497200 C



considered to be nested when either statement following
the conditional expression contains another IF statement.
When IF statements are nested, each ELSE phrase is paired
with the immediately preceding IF statement that is not
already paired with another ELSE phrase.

IF INV-NO = TEMP ADD COST TO ACCUM
IF FLAG = 1 PERFORM DISC-ITEM
ELSE NEXT SENTENCE

ELSE GO TO NEW-INV.

The conditional expression in the first IF statement is
evaluated. If the condition is true, the value of COST is
added to the data item ACCUM and the data item FLLAG is
checked for the value 1. If this second condition is also
true, the procedure DISC-ITEM is performed and control
returns to the next executable sentence. If FLAG does not
contain the value 1, control is immediately passed to the
next sentence. When the first conditional expression is
evaluated and the condition is false, control is immediately
transferred to the paragraph named NEW-INV.

IF Statement With END-IF

The inclusion of an END-IF terminator with an IF
statement makes the IF statement an imperative
statement. This structure can eliminate the repetition of a
condition that identifies a major category, as shown in
figure 5-4.

PROCEDURE DIVISION.

IF CATEGORY = "ANIMALS"
IF SPECIES = "CAT"
IF HABITAT = "PET"
PERFORM CAT-PET-ROUTINE
END-IF
IF HABITAT = "Z00"
PERFORM CAT-ZOO0-ROUTINE
END-IF
ELSE
PERFORM NOT-CAT-ROUTINE
END-IF
IF SPECIES = "FISH"
IF HABITAT = "PET"
PERFORM FISH-PET~ROUTINE
END-IF
IF HABITAT = "Z00"
PERFORM FISH~ZOO-ROUTINE
END-IF )
ELSE
PERFORM NOT—-ANIMAL-ROUTINE
END~-IF

The IF statement with the END-IF terminator is allowed in
all places that allow imperative statements, such as
following the AT END phrase in a READ statement. When
the end of INFILE is reached in figure 5-5, control passes
to ROUTINE-2, ROUTINE-3, or ERROR-ROUTINE,
depending on the specific condition.

READ INFILE
AT END
IF CONDITION = 2
PERFORM ROUTINE~2
ELSE
IF CONDITION = 3
PERFORM ROUTINE-3
ELSE
PERFORM ERROR-ROUTINE
END-IF
CLOSE INFILE OUTFILE
STOP RUN.

Figure 5-4. IF Statement with END-IF Example 1

60497200 E

Figure 5-5. |F Statement with END-IF Example 2

PERFORM Statement Without END-PERFORM

The PERFORM statement causes a procedure or a range of
procedures to be performed. It is a conditional statement
when the procedure is performed repeatedly until one or
more specified conditions are true.

If WITH TEST BEFORE is specified or if the WITH TEST
phrase is omitted, the conditional expression is evaluated
before control is transferred to the procedure. If the
condition is not true, the procedure is performed and the
condition is then tested again. Each time that the
condition is not true, the procedure is performed. When
the condition is true, control is transferred to the next
statement after the PERFORM statement.

PERFORM ROUTINE1 WITH TEST BEFORE
UNTIL TEMP = CNTR.

The conditional expression is evaluated and if it is true, the
procedure is not perforrned and control is immediately
passed to the next sentence. If the condition is not true,
the procedure ROUTINEL is performed and the condition is
tested again. This process continues until the condition is
true; control is then transferred to the next sentence.

If the WITH TEST AFTER phrase is specified, the
conditional expression is evaluated after the last statement
in the procedure is executed. The statements are executed
at least once, regardless of the initial conditions.

A data item or an index can be varied while performing a
procedure until a specified condition is true. The
PERFORM statement specifies the initial value of the data
item or index and the value by which it is incremented or
decremented each time the procedure is performed.

PERFORM RATE-CALC THRU RC-EXIT

VARYING QUANT FROM 50 BY 5
UNTIL QUANT GREATER THAN TEMP,

5-7



Before the range of procedures is executed, the data item
QUANT is set to 50 and the condition is evaluated. If the
condition is true, the procedures are not performed and
contro! is passed to the next executable statement. If the
condition is not true, the procedures are executed, QUANT
is incremented by 5, and the condition is evaluated again.
This cycle is repeated until the value of QUANT is greater
than the value of TEMP; control then passes to the next
statement following the PERFORM statement.

Up to three data items or indexes can be varied during
execution of the PERFORM statement. Each data item or
index is varied until a specified condition is true. At the
beginning of the PERFORM statement processing, each
item to be varied is set to its specified initial value. If the
first condition is true at this point, the procedure is not
perfarmed and control is immediately transferred to the
next statement. The procedure is performed varying the
last data item or index until its associated condition is
true. This loop is repeated each time the preceding
condition is not true. When all conditions are true,
processing of the PERFORM statement is complete and
control is passed to the next statement.

Execution of a PERFORM statement with more than one
variable item is best described through an example.
Figure 5-6 illustrates a PERFORM statement with three
variable items. When this PERFORM statement is entered,
the three indexes are each set to the initial value of 1.
The procedure MPY-ROUTINE. is executed as follows:

PERFORM MPY-ROUTINE
VARYING I-INDEX FROM 1 BY 1
UNTIL I-INDEX > CNTR
AFTER J-INDEX FROM 1 BY 7T
UNTIL J-INDEX > CNTR
AFTER K-INDEX FROM 1 BY 1
UNTIL K-INDEX > CNTR.

Figure 5-6. Varying Indexes in a PERFORM Statement

1. MPY-ROUTINE is executed repeatedly until the value
of K-INDEX is greater than the value of CNTR;
K-INDEX is incremented by 1 each time the procedure
is executed.

2. K-INDEX is reset to its initial value of 1; J-INDEX is
incremented by 1 and tested for a value greater than
CNTR.

3. If JJINDEX is not greater than CNTR, steps 1 and 2
are repeated; if it is greater than CNTR, J-INDEX is
reset to its initial value of 1 and I-INDEX is
incremented by 1 and tested for a value greater than
CNTR.

4. I I-INDEX is not greater than CNTR, steps 1, 2, and 3
are repeated; if it is greater than CNTR, contral is
passed to the next statement following the PERFORM

statement.
PERFORM Statement With END-PERFORM
The inclusion of an END-PERFORM terminator with a

PERFORM statement makes the PERFORM statement an
imperative statement and provides the COBOL user with a

®5.8

capability similar to a FORTRAN do-loop. This structure
does not have a procedure-name following the PERFORM
verb. Instead, the in-line code is performed until the
END-PERFORM  terminator is reached. Figure 5-7
illustrates this capability and the structure of the
PERFORM statement with an END-PERF ORM terminator.

A. Program Listing

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. PERF.

3  DATA DIVISION.

4  WORKING-STORAGE SECTION.

5 01 STOR1 PIC 99.

6  PROCEDURE DIVISION.

7 SRTR.

8 MOVE ZEROS TO STOR1

9 PERFORM 2 TIMES

10 DISPLAY "1"

1 DISPLAY 2"

12 PERFORM VARYING STOR1
13 FROM 1 BY 1

14 UNTIL STORT = 5
15 DISPLAY "STOR1=" STOR1
16 END-PERFORM

17 DISPLAY "A"

18 PERFORM WITH TEST AFTER
19 VARYING STOR1
20 FROM 1 BY 1

21 UNTIL STORT = 5
22 DISPLAY "STOR1=" STOR1
23 END-PERFORM

24 DISPLAY "B"

25 END-PERFORM

26 DISPLAY "zZ"

27 STOP RUN.

B. Program Output

1
2
STOR1=
STOR1=
STOR1=
STOR1=

SN -

A

STOR1=
STOR1=
STOR1=
STOR1=
STOR1=

VA WN -
\

STOR1=
STOR1=
STOR1=
STOR1=

NUAN =

STOR1=
STOR1=
STOR1= -
STOR1=
S$TO51=

Vi W

Figure 5-7. PERFORM Statement with END-PERFORM

60497200 E



In the example in figure 5-7, two PERFORM statements
are nested within a higher level PERFORM. The
PERFORM at line 9 has within it, at lines 12 and 18, two
PERFORMS that are independent of each other. The
PERFORM at line 18 also demonstrates the WITH TEST
AFTER phrase; the data-item STORI is tested for a value
of 5 after the DISPLAY statment has executed. The
omission of the WITH TEST phrase (or inclusion of a WITH
TEST BEFORE phrase) would cause STOR1 to be evaluated
before the DISPLAY statement execution.

SEARCH Statement Without END-SEARCH

The SEARCH statement is used to search a table for a
specific element within the table. The element is
designated by specifying a condition; when the condition is
true, the desired element has been lacated. The use of the
SEARCH statement is described in detail in section 6,
Table Handling.

60497200 E

The condition that must be satisfied to terminate a search
operation depends on the type of search performed:

® A sequential search is terminated when any one of the
specified conditions is true.

e A binary search is terminated when all the specified
conditions are true.

The table to be searched must be described in the Data
Division with an OCCURS clause that includes the
INDEXED BY phrase. The index-name specified in this
phrase is used to search the table. At the end of a
successful search, the index-name points to the table
element that satisfies the search criteria.

5-8.1/5-8.2 ]






A sequential search begins at the current setting of the
index-name and continues to the end of the table. Each
table element is tested for the specified conditions. Any
valid relational condition can be specified. Multiple
conditions are tested in the order specified. When a table
element satisfies a condition, the imperative statement
associated with that condition is executed. If the end of
the table is reached, control is passed to the imperative
‘statement of the AT END phrase (if specified) or to the
next executable statement.

A binary search is specified by the SEARCH ALL format of
the SEARCH statement. One or more conditions can be
specified; all conditions must be true for the search
operation to terminate successfully. Each specified
condition can be a condition-name condition or an equal
condition. If no element in the table satisfies the
conditions, control is passed to the imperative statement
of the AT END phrase (if specified) or to the next
executable statement.

The sample program at the end of this section illustrates
the use of the SEARCH statement to perform a sequential
search operation. Additional examples of the SEARCH
statement can be found in section 6.

SEARCH Statement With END-SEARCH

The inclusion of an END-SEARCH terminator with a
SEARCH statement makes the SEARCH statement an
imperative statement. This structure can eliminate the
repetition of searching for an item at a major level, as
shownin figure 5-8.

In the example in figure 5-8, the value 13 is found in the
table TBL by finding the first digit in one SEARCH and the
second digit in another SEARCH. The table values above
and below 13 are also displayed.

A. Program Listing

IDENTIFICATION DIVISION.
PROGRAM-ID. ENDSEARCH.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 TBL.
02 LEVEL-1
03 LEVEL-2
13 L21 PIC 9.
13 L22 PIC 9.
PROCEDURE DIVISION.
STRT.

SET L1INDX, L2INDX TO 1
SEARCH LEVEL-1

SEARCH LEVEL-2
AT END DISPLAY

END-SEARCH

SET L2INDX UP BY 2

END-SEARCH
DISPLAY "ALL DONE"™
STOP RUN.

B. Program Output

18T DIGIT FOUND- 1
FOUND 2ND DIGIT- 3
NUMBER BELOW IS-12
NUMBER ABOVE IS-14
ALL DONE

OCCURS 3 INDEXED BY LT1INDX.
OCCURS 5 INDEXED BY L2INDX.

MOVE "000102030410111213142021222324" TO TBL

AT END DISPLAY "1ST DIGIT NOT FOUND"
WHEN L21 (L1INDX, L2INDX) =1
DISPLAY "1ST DIGIT FOUND-" L2171 (LT1INDX, L2INDX)

"2ND DIGIT NOT FOUND"
WHEN L22 (LT1INDX, L2INDX) = 3

DISPLAY "FOUND 2ND DIGIT-" L22 (LT1INDX, L2INDX)

SET L2INDX DOWN BY 1
DISPLAY "NUMBER BELOW IS-" LEVEL-2 (LTINDX, L2INDX)

DISPLAY "NUMBER ABOVE IS-" LEVEL-2 (L1INDX, L2INDX)

Figure 5-8. SEARCH Statement with END-SEARCH

60497200 E



IMPLICIT CONDITIONAL STATEMENTS

Implicit conditions are indicated in certain optional phrases
that can be included in specific Procedure Division
statements. When one of these phrases is included, it is
followed by an imperative statement that is executed when
the condition implied by the phrase is true.

Five phrases imply a conditions AT END, AT
END-OF -PAGE, INVALID KEY, ON OVERFLOW, and ON
SIZE ERROR. Each phrase can be used with specific
statements.

At End Condition

The AT END phrase can be used in conjunction with the
READ, RETURN, and SEARCH statements. The condition
implied by this phrase is true when the end of a file or
table has been reached. When a true condition occurs,
control is passed to the imperative statement associated
with the AT END phrase.

Execution of a READ statement causes a record to be
made available to the program. The AT END phrase can be
included in a READ statement that accesses records
sequentially. If it is included, the associated imperative
statement is executed when the end-of-file condition is
detected while attempting to read a record.

READ CARD-IN RECORD
AT END GO TO CLOSING.

Execution of this statement causes the next sequential
record in the input file CARD-IN to be read. If the
end-of-file condition is true when the READ statement is
executed, control is transferred to the paragraph named
CL.OSING.

The AT END phrase is required in the RETURN statement.
This statement accesses a record in a sort file or a merge
file and makes the record available for processing. The
imperative statement associated with the AT END phrase
is executed when the end-of-file condition is true.

RETURN SORT-FILE RECORD
AT END GO TO ENDIT.

Each time this statement is executed, a record is retrieved
from the file SORT-FILE until an end-of-file condition
exists. When this condition is true, control is transferred to
the paragraph named ENDIT.

The SEARCH statement can include the AT END phrase.
If it is included, the imperative statement associated with
the AT END phrase is executed when no element in the
table satisfies the search criteria.

SEARCH PART-ITEM AT END GO TO NOT-FOUND
WHEN PART-ITEM (PI-INDEX) = PART-NO
GO TO FOUND.

When this statement is executed, the table PART-ITEM is
searched for an element that satisfies the specified
condition. If the end of the table is reached and the
condition has not been satisfied, control is transferred to
the paragraph named NOT-FOUND.

5-10

End-of-Page Condition

The AT END-OF-PAGE (or AT EOP) phrase can be used
only with a WRITE statement that prepares an output file
for printing; the FD entry for the file must include the
LINAGE clause. This phrase is usually specified to control
the printing of headings and footings. The AT
END-OF -PAGE phrase includes an imperative statement
that is executed when the end of a page is reached. The
limits of the page must be defined by the LINAGE clause.

An end-of-page condition exists when execution of the
WRITE statement causes printing or spacing in the footing
area (if specified) or beyond the page limit. The
imperative  statement  associated with the AT
END-OF -PAGE phrase is executed before page positioning
if printing occurs in the footing area or after page
positioning if printing extends beyond the page limit.

WRITE PRINT-LINE
AT END-OF-PAGE GO TO PRINT-HEADS.

When the end-of-page condition occurs, control is
transferred to the paragraph named PRINT-HEADS.
Assuming that the LINAGE clause for the print file does
not specify a footing area, the GO TO statement is
executed after the file is positioned at the next page.

WRITE PRINT-LINE
AT END-OF -PAGE GO TO LAST-LINE.

In this example, the end-of-page condition causes control
to be transferred to the paragraph named LAST-LINE.
Assuming that the LINAGE clause for the print file
specifies a footing area, the GO TO statement is executed
before the file is positioned at the next page.

Invalid Key Condition

An invalid key condition can occur when a DELETE, READ,
REWRITE, START, or WRITE statement is being executed
for a file that is accessed by a key data item. The
INVALID KEY phrase implies that the attempted operation
is illegal. In most cases, the invalid key condition oeccurs
when the record cannot be found in the file. For a WRITE
statement, an invalid key condition occurs when the record
already exists in the file.

The INVALID KEY phrase specifies an imperative
statement that is executed when the condition is true; the
statement containing the INVALID KEY phrase is not
executed. An invalid key condition can exist under the
following circumstances:

DELETE statement - any file organization except
sequential or word-address; random or dynamic access
mode.

The record to be deleted cannot be found.
READ statement - any file organization except
sequential; random access mode or dynamic access
mode when records are accessed randomly.

The record to be read cannot be found; for

word-address file organization, an attempt - is
made to read past the last word of the file.

60497200 C



REWRITE statement - any file organization except
sequential or word-address; random or dynamic access
mode.

The record to be rewritten cannot be found.

REWRITE statement - indexed, direct, or actual-key
file organization; any access mode.

The primary key has been changed between
reading and rewriting in sequential access mode
or the record to be rewritten would create a
duplicate alternate key when duplicate alternate
keys are not allowed.

START statement - any file organization except
sequential or word-address; sequential or dynamic
access mode.

No record in the file satisfies the specified
relational condition.

WRITE statement - any file organization except
sequential or word-address; any access mode.

The record to be written already exists in the file
with the same primary key.

WRITE statement - indexed, direct, or actual-key file
organization; any access mode.

The record to be written already exists with the
same alternate key when duplicate alternate keys
are not allowed.

WRITE  statement - indexed file organization;
sequential access.

The record to be written does not have a primary
key that is greater than the primary key of the
previous record written.

WRITE statement - actual-key organization; random or
dynamic access mode.

The key of the record to be written is not a valid
actual key.

Overflow Condition

The CALL, STRING, and UNSTRING statements include
the optional ON OVERFLOW phrase. When an overflow
condition occurs during execution of the statement, the
imperative statement associated with the ON OVERFLOW
phrase is executed.

An overflow condition exists for a STRING or UNSTRING
statement when the receiving item or items cannot contain
the complete sending item. If the ON OVERFLOW phrase
is not specified, an overflow condition causes control to be
passed to the next executable statement.

For a CALL statement, an overflow condition exists when
there is insufficient room to load a dynamic subprogram.
This occurs when the maximum field length would be
exceeded by loading the subprogram. When the ON
OVERFLOW phrase is not specified and an overflow
condition occurs, the run is aborted.

60497200 C

Size Error Condition

The ON SIZE ERROR phrase can be included in any of the
arithmetic statements: ADD, SUBTRACT, MULTIPLY,
DIVIDE, and COMPUTE. A size error condition occurs
when the number of integral digits in the result of an
arithmetic operation exceeds the number of integral
positions in the receiving item. Size error testing is
performed on intermediate and final results of all
arithmetic operations. When a size error exists, the
imperative statement associated with the ON SIZE ERROR
phrase is executed. The ON SIZE ERROR phrase is
described in more detail in section 4, Arithmetic
Operations.

SAMPLE CONDITIONAL PROGRAM

Various types of conditional operations are used in the
sample program shown in figure 5-9. Both implicit and
explicit conditions are included in the program.
Figure 5-10 illustrates the format of the input records used
by the program. An output report generated by the
program is shown in figure 5-11.

The input file used by this pragram contains four different
types of records. The first group of input records
(CUSTOMER-REC records) is used to enter data into the
table CUST-TABLE. The second group of input records is
used to enter data into the table ITEM-TABLE. The third
group of input records contains two types of records
(NAME-REC and LINE-REC records) that are used to
process an order for a customer.

Two PERFORM statements are utilized to access the input
data and to enter it into the two tables. The first
PERFORM statement (lines 84, 85, and 86) causes data to
be stored in the table CUST-TABLE (lines 91
through 100). This statement is executed repeatedly until
the data item DISC-FLAG contains the letter E (line 86).
When this condition is true, the next PERFORM statement
is executed. The second PERFORM statement (lines 87,
88, and 89) causes data to be stored in the table
ITEM-TABLE (lines 101 through 109). This statement is
executed repeatedly until the data item ITEM-ID equals
zero (line 89). When this condition is true, control is passed
to the procedure ORDER-PROCESSING (line 90).

A customer order consists of at least two input records.
The first record for an order (NAME-REC record) is
identified by the letter A in the REC-CODE field
(lines 113 and 132). This record is followed by one record
(LINE-REC record) for each item of the order; LINE-REC
records are identified by the letter B in the REC-CODE
field (line 130). When the first record is read for an order,
the CUSTOMER-ID field is used to search the table
CUST-TABLE for the name of the customer (lines 116
through 119). As each LINE-REC record is read, the table
ITEM-TABLE is searched for the description of the item
specified by the ITEM-NO field (lines 136 through 139).

As the item records are processed, a total for the order is
accumulated (line 143). When all line items for an order
have been read, a discount is computed if the discount
conditions for the order have been satisfied (lines 150
through 153).

5-11



-
VRNV WN =

- e
W =

14

IDENTIFICATION DIVISION.
PROGRAM-ID. CONDITIONAL-EXAMPLE.
ENVIRONMENT DIVISION. )
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IN-FILE ASSIGN TO INPUT.
SELECT PRINT-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD IN-FILE
LABEL RECORD IS OMITTED
DATA RECORDS ARE CUSTOMER-REC, ITEMS-REC,
NAME-REC, LINE-REC.
01 CUSTOMER-REC.

03 CuUsT-ID PICTURE XXX.
03 CUST-NAME PICTURE X(20).
03 FILLER PICTURE X(56).
03 DISC-FLAG : PICTURE X.
01 ITEMS-REC.
03 ITEM-ID PICTURE 999.
03 ITEM-DESC PICTURE X(20).
03 FILLER PICTURE X(57).
01 NAME-REC.
03 REC-CODE PICTURE X.
03 FILLER PICTURE XXX.
03 INV-NO PICTURE 9(6).
03 FILLER PICTURE XXXX.
03 CUSTOMER-ID PICTURE XXX.
03 FILLER PICTURE X(63).
01 LINE-REC.
03 REC-CODE PICTURE X.
03 FILLER PICTURE XXX.
03 ITEM-NO PICTURE 999.
03 FILLER PICTURE X(7).
03 QUANTITY PICTURE 999.
03 FILLER : PICTURE X(7).
03 cosT PICTURE 9(5)Vv99.
03 FILLER PICTURE X(49).

FD PRINT-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS PRINTLINE.

01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.

01 SAVE PICTURE X.

01 ACCuM PICTURE 9(7)V99 USAGE
01 DISCOUNT PICTURE 9(6)V99 USAGE

01 CUST-TABLE.
03 CUSTOMER OCCURS 50 TIMES
INDEXED BY C-INDEX.

05 C-IDENT PICTURE XXX.
05 C-NAME PICTURE X(20).
05 C-FLAG PICTURE X.

01 ITEM-TABLE.
03 ITEM OCCURS 100 TIMES
INDEXED BY I-INDEX.
05 I-IDENT PICTURE 999.
05 1I-DESC PICTURE X(20).

COMP-1.
CoMP.

5-12

Figure 5-9. Sample Conditional Program (Sheet 1 of 3)

60497200 C



01 LINE-1. i
03 FILLER PICTURE X(5) VALUE SPACES.
03 CUST-NAME PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 INVOICE PICTURE 9(6).
03 FILLER PICTURE X(100) VALUE SPACES.
07 LINE-2.
03 FILLER PICTURE X(10) VALUE SPACES.
03 aTy PICTURE Z1Z9.
03 FILLER PICTURE X(5) VALUE SPACES.
03 DESCRIPTION PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 PRICE PICTURE $$$%$9.99.
03 FILLER PICTURE X(85) VALUE SPACES.
01 LINE-3.
03 FILLER PICTURE X(42) VALUE SPACES.
03 AMOUNT PICTURE $$$%$$9.99.
03 FILLER PICTURE X(85) VALUE SPACES.

PROCEDURE DIVISION.
SETTING-UP.
OPEN INPUT IN-FILE.
OPEN OQUTPUT PRINT-FILE.
MOVE SPACES TO CUST-TABLE, ITEM-TABLE.
PERFORM TABLE-SETUP-1 THRU TSET-1A
VARYING C-INDEX FROM 1 BY 1
UNTIL DISC-FLAG EQUALS "E".
PERFORM TABLE-SETUP-2 THRU TSET-2A
VARYING I-INDEX FROM 1 BY 1
UNTIL ITEM-ID EQUALS ZERO.
GO TO ORDER-PROCESSING.
TABLE-SETUP-1.
READ IN-FILE RECORD
AT END GO TO TSET-1A.
IF DISC-FLAG = "g"
GO TO TSET-1A.
MOVE CUST-ID TO C-IDENT (C-INDEX).
MOVE CUST-NAME OF CUSTOMER-REC TO C-NAME (C-INDEX).
MOVE DISC-FLAG TO C-FLAG (C-INDEX).
TSET-1A.
EXIT.
TABLE-SETUP-2.
READ IN-FILE RECORD
AT END GO TO TSET-2A.
IF ITEM-ID EQUALS ZERO
GO TO TSET-2A.
MOVE ITEM-ID TO I-IDENT (I-INDEX).
MOVE ITEM-DESC TO I-DESC (I-INDEX).
TSET-2A.
EXIT.
ORDER-PROCESSING.
READ IN-FILE RECORD
AT END GO TO ERROR-1.
IF REC~CODE OF NAME-REC NOT EQUAL TO "A"
GO TO ERROR-2.
HEADER-ITEM.
SET C-INDEX TO 1.
SEARCH CUSTOMER AT END GO TO ID-NOT-FOUND
WHEN CUSTOMER-ID EQUALS C-IDENT (C-INDEX)
NEXT SENTENCE.
MOVE C-FLAG (C-INDEX) TO SAVE.
MOVE C-NAME (C-INDEX) TO CUST~-NAME OF LINE-1.

60497200 C

Figure 5-9. Sample Conditional Program (Sheet 2 of 3)

5-13



122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

HI-1.
MOVE INV-NO TO INVOICE.
WRITE PRINTLINE FROM LINE-1
AFTER ADVANCING 3 LINES.
MOVE ZEROS TO ACCUM.
READ-RECORD.
READ IN-FILE RECORD
AT END GO TO CLOSING.
IF REC-CODE OF LINE-REC EQUALS "B"
GO TO LINE-ITEM.

IF REC-CODE OF NAME-REC EQUALS "A" PERFORM TOTALS

ELSE GO TO ERROR-2.
GO TO HEADER-ITEM.
LINE~-ITEM.
SET I-INDEX TO 1.
SEARCH ITEM AT END GO TO NOT-FOUND
WHEN I-IDENT (I-INDEX) EQUALS ITEM-NO
MOVE I-DESC (I-INDEX) TO DESCRIPTION.
LI-1.
MOVE QUANTITY TO QTY.
MOVE COST TO PRICE.

ADD COST TO ACCUM ON SIZE ERROR PERFORM ERROR-3.

WRITE PRINTLINE FROM LINE-2.
GO TO READ-RECORD.
TOTALS.
MOVE ACCUM TO AMOUNT.
WRITE PRINTLINE FROM LINE-3
AFTER ADVANCING 2 LINES.
IF ACCUM GREATER THAN 100.00 AND SAVE EQUALS
NEXT SENTENCE
ELSE GO TO HEADER-ITEM.
COMPUTE DISCOUNT ROUNDED = ACCUM * _10.
MOVE DISCOUNT TO AMOUNT.
WRITE PRINTLINE FROM LINE-3.
SUBTRACT DISCOUNT FROM ACCUM GIVING AMOUNT.
WRITE PRINTLINE FROM LINE-3
AFTER ADVANCING 2 LINES.

ERROR-1.
DISPLAY "NO INPUT RECORDS".
STOP RUN.
ERROR-2. A
DISPLAY "ILLEGAL REC-CODE - " REC-CODE OF NAME-REC.

GO TO READ-RECORD.
ID-NOT-FOUND.

MOVE CUSTOMER-ID TO CUST-NAME OF LINE-1.

GO TO HI-1.
NOT-FOUND.

MOVE ITEM-NO TO DESCRIPTION.

GO TO LI-1.
ERROR-3.

DISPLAY "ACCUMULATOR OVERFLOW".
CLOSING.

PERFORM TOTALS.

CLOSE IN-FILE, PRINT-FILE.

STOP RUN.

5-14

Figure 5-9. Sample Conditional Program (Sheet 3 of 3)

60497200 C




Column 1 Column 80

| J

A13FASHIONS INC D
A4L9IDA"S DRESSES
C25THE MOD BOUTIQUE

GBATODAY"S FASHIONS INC b
K49MARY"S DRESS SHOPPE
L91COUNTRY GIRL FASHION D
V73ANN"S FASHION SHOP
MS8THE CLOTHES RACK INC D

J92CARY"S SPORTSWEAR
R64MR SMITH FASHIONS

.
.

SN7JILL"S BOUTIQUE
TSOWILDA"S DRESS SHOPPE
W62EDITH"S CASUALS D

023NILE-GR PANTS - 5
024NILE-GR PANTS - 7
025NILE-GR PANTS - 9
026NILE-GR PANTS -11
027NILE-GR PANTS -13
041LEMON-YEL PANTS - 5
N42LEMON-YEL PANTS - 7
043LEMON-YEL PANTS - 9
044LEMON-YEL PANTS -11
O45LEMON-YEL PANTS -13
150BROWN PANTS - 5
151BROWN PANTS - 7
152BROWN PANTS - 9
153BROWN PANTS -11
154BROWN PANTS -13

962TARTAN JACKET - 9
963TARTAN JACKET -11
964TARTAN JACKET -13

000

A 265401 Ré64

B N41 020 0021900
B 042 025 0027375
B 043 030 0032850
B 044 025 0027375
B 045 020 0021900
B 604 010 0014950
B 606 015 0024425
B 654 010 0022500
B 656 015 0033750
A 265403 D16

B 527 . 012 0017940
8 577 012 0027000
B 741 010 0016950

Figure 5-10. Sample Input for Conditional Program

60497200 C 5-15



MR SMITH FASHIONS

041
042
043
044
045
604
606
654
656

HIS-N-HERS FASHIONS

12
12
10
10
6
10
8
10
6

GUYS AND
15
15
15
15

10
10

10
15
17
12
10
15
17
12

527
577
741
781
024
026
044
152
154

GALS
195
196
201
202

152
236

410
411
412
413
490
491
492
493

THE CLOTHES RACK

363
364
388
389
816
817
818
876
877
878

INC

265401

265403

265405

265406

$219.00
$273.75
$328.50
$273.75
$219.00
$149.50
$244.25
$225.00
$337.50

$2270.25

$179.40
$270.00
$169.50
$285.00
$65.70
$109.50
$87.60
$109.50
$65.70

$1341.90
$134.19

$1207.71

$207.00
$207.00
$315.00
$315.00

$109.50
$225.00

$152.50
$228.75
$259.25
$183.00
$265.00
$397.50
$450.50
$318.00

$3633.00

$457.50
$305.00
$795.00
$530.00
$387.50
$620.00
$542.50
$643.75
$1030.00
$901.25

$6212.50
$621.25

$5591.25

5-16

Figure 5-11. Output Report from Sample Conditional Program

60497200 C




TABLE HANDLING

#

Data used by a COBOL 5 program is frequently organized
into a table as a group of constant values. Three methods
are available for describing a table and referencing
specific elements within a table:

e Each table element is named, described, and assigned
a value; elements are referenced by data-name.

Y A table described by the above method is redefined
and described with the OCCURS clause; individual
elements are referenced by subscripting or indexing.

e During program execution, data can be moved into a
table described with the OCCURS clause; individual
elements are referenced by subscripting or indexing.

Table elements are referenced by indexing when the
INDEXED BY option is included in the OCCURS clause. If
the INDEXED BY option is not included, table elements
must be referenced by subscripting. Indexing and
subscripting can be mixed within a table. An index, which
is identified by the index-name specified in the OCCURS
clause, contains a value that points to a specific table
element. A subscript is either an integer or a data item
that contains an integer value; it locates a specific table
element.

Indexing is more efficient than subseripting and should be
used whenever possible. When subscripting is used,
subscripts should be COMPUTATIONAL-1 items for the
most efficient results. Constant indexing or subscripting
should always be specified by a literal.

TABLE DEFINITION

Tables used during program execution are described in the
Data Division. The values for the table elements can be
assigned in the table description, or the values can be
entered in the table during program execution. Table
definition can involve the VALUE, REDEFINES, and
OCCURS clauses as well as the PICTURE clause.

ASSIGNING INDIVIDUAL DATA-NAMES

A data-name can be assigned to each element in the table.
This allows direct reference to a specific table element.
Values are stored in the table by specifying the VALUE
clause for each table element.

Figure 6-1 illustrates a table that contains the number of
male students and the number of female students for each
of the 12 grades. The 24 numbers in the table are
organized by grade level with the male number preceding
the female number.

During compilation, the processor associates the 24
numbers with particular areas i-» memory. At execution
time, all of the numbers are stored in memory and are
available for reference by the object program. The table
elements are referenced by data-name; however, a specific
male or female number must be qualified when it is
referenced.

ADD MALE OF GRADE-2, MALE OF GRADE-3
TO COUNTER.

60497200 C

DATA DIVISION.

01 GRADE-COUNT.
03 GRADE-1.
05 MALE PICTURE 999 VALUE 215.
05 FEMALE PICTURE 999 VALUE 257.
03 GRADE-2.
05 MALE PICTURE 999 VALUE 245.
05 FEMALE PICTURE 999 VALUE 289.
03 GRADE-3.
05 MALE PICTURE 999 VALUE 198.
05 FEMALE PICTURE 999 VALUE 232.

03 GRADE-12.
05 MALE PICTURE 999 VALUE 202.
05 FEMALE PICTURE 999 VALUE 248.

Figure 6-1. Table Definition by Data-Names

This statement causes the values 245 and 198 to be added
to the data item COUNTER. The values stored in the table
GRADE-COUNT are constant values that remain the same
each time the program is executed.

REDEFINING A TABLE

Elements within a table can be referenced by position in
the table rather than by data-name. This is accomplished
by describing a table that assigns values and then
redefining the table as a series of repeating data items.
Procedure Division statements then reference the table
data by specifying the redefined data-name along with a
subscript or index-name. The REDEFINES and OCCURS
clauses are required to redefine a table.

The table shown in figure 6-1 is redefined in figure 6-2.
The level Ol entry in figure 6-2 must immediately follow
the last level 05 entry for GRADE-12 in figure 6-1. The
redefined table is given the data-name GRADE-TABLE.
The table elements are organized into 12 sets named
GRADE; each set contains two values named
SEX-COUNT. Subsequent references to the redefined
table can specify GRADE-TABLE (the entire table),
GRADE (one set of two values, identified by one subscript),
or SEX-COUNT (one value in one set, identified by two
subscripts).

MOVE SEX-COUNT (12, 1) TO TEMP.

This statement causes the first value (number of males) in
the twelfth set (GRADE-12) to be moved to a data item
named TEMP. If the subscript had been (12, 2), the female
number of the GRADE-12 set would have been maved.



‘DATA DIVISION.

01 GRADE-TABLE REDEFINES GRADE-COUNT.
03 GRADE OCCURS 12 TIMES.
05 SEX-COUNT PICTURE 999
OCCURS 2 TIMES.

Figure 6-2. Table Redefinition

A data-name rather than an integer can be used as a

subscript. This allows one statement to re ference
different table elements at different times during
processing. Indexing can also be used for a redefined

table. Subscripts and indexes are described in detail later
in this section.

MOVING VALUES INTO A TABLE

A table that is described with the OCCURS clause cannot
specify values to be stored in the table. When the entry
containing the OCCURS clause is not subordinate to an
entry that redefines a table with specified values, the
values can be entered into the table during program
execution.

When a table is described in the Data Division and values
are not entered in the table, statements in the Procedure
Division can supply the data and store it in the table.
Figure 6-3 illustrates the description of a table for which
values are supplied at execution time. The table contains
50 sets named CUSTOMER; each set contains one value for
each of the three subordinate items. Reference to an
element in this table must include the index-name
C-INDEX unless it is a constant reference, in which case a
literal can be specified. The sample program in section 5
(figure 5-5) reads an input file and stores the information
in this table.

DATA DIVISION.

CUST-TABLE. ‘
03 CUSTOMER OCCURS 50 TIMES
INDEXED BY C-INDEX.

01

05 C-IDENT PICTURE XXX.
05 C-NAME PICTURE X (20).
05 C-FLAG PICTURE X.

Figure 6-3. Table Definition by the OCCURS Clause

The example in figure 6-4 illustrates how to use the
PERFORM statement with an END-PERFORM terminator
to store information in a table (STOCK-TABLE). Refer to
section 5 for more detail on the usage of the PERFORM
statement with END-PERFORM.

TABLE REFERENCE

Table elements are referenced in Procedure Division
statements in one of three ways depending on the
description of the table. The first type of reference is
used when the table is not described with the OCCURS
clause. Each element in the table can be identified by a
unique data-name or a data-name that can be made unique
by qualification. When a table is described with the
OCCURS clause, either subscripting or indexing must be
used to reference table elements.

UNIQUE REFERENCE

When a table is described without using the OCCURS
clause, data-names are assigned to all table elements. A
specific table element can then be referenced by its
data-name. If the data-name is not unique, it must be
made unique by qualification.

01 STOCK-TABLE.
03 PART-ITEM
OCCURS 10 TIMES
INDEXED BY INDEX-B.
05 PART PICTURE 999
OCCURS 20 TIMES
INDEXED BY INDX-P.

PERFORM VARYING INDEX-B FROM 1 BY 1
UNTIL INDEX-B = 10
UNTIL INDEX-P = 20

END-PERFORM
END-PERFORM.

PERFORM VARYING INDEX-P FROM 1 BY 1

MOVE PART-LIST (INDEX-B, INDEX-P) TO PART (INDEX-B, INDEX=P)

Figure 6-4. Using PERFORM/END-PERFORM to Fill a Table

60497200 D



Unique reference is used with the table shown in
figure 6-1. The MALE or FEMALE element for any grade
level must be qualified by the group data-name of the
specific grade level.

FEMALE OF GRADE-1
MALE OF GRADE-9

The first example references the FEMALE element in the
set of two values associated with the group item
GRADE-1. The MALE element in the set of two values
associated with GRADE-9 is referenced in the second
example. Group data-names in this table can be
referenced without qualification.

MOVE GRADE-3 TO GRADE-QUT.

This example references the third set of values in the
table. The data-name GRADE-OUT references a group
item consisting of two elementary data items to receive
the MALE and FEMALE values in the GRADE-3 set.

SUBSCRIPTING

A table described by the OCCURS clause can be
referenced by subscripts. A subscript is either an integer
or the data-name of an elementary numeric data item
containing an integer value. The integer points to a
specific group or elementary item within the table.

Subscripts are enclosed in parentheses following the
data-name of the table element. The lowest valid
subscript number is one; the highest valid number
corresponds to the maximum number of occurrences of the
element as specified in the OCCURS clause. The system
does not automatically check the subscript for a valid
number; this can be performed by Procedure Division
statements or by specifying DB=SB in the COBOLS5 control
statement.

The table description can contain up to 48 levels of nested
OCCURS clauses. In this case, one subscript is required
for the first entry and one for each subordinate entry
containing the OCCURS clause.. When more than oane
subscript is required, the subscripts are written in
descending order of inclusiveness. The subscripts can, but
need not, be separated by commas. A separating comma
must be followed by a space. The table shown in figure 6-2
contains two levels of nesting; reference to the
SEX-COUNT items requires two subscripts.

SEX-COUNT (4, 2)

The first subscript refers to the fourth occurrence of the
group item GRADE and the second subscript refers to the
second occurrence of SEX-COUNT within the fourth group
item; that is, the subscripts point to the female population
of the fourth grade.

When a data-name is used as a subscript, it must refer to a
numeric elementary data item that represents an integer;
the usage "of the data item cannot be INDEX or
COMPUTATIONAL -2. For most =fficient usage, the data
item should be COMPUTATIONAL-1; otherwise, it should
be as small as possible. A subscript data-name can be
qualified; however, it cannot be subscripted. . When the
table referemce is executed, the current value of the
subscript data item is used to calculate the table element
desired.

60497200 C

Figure 6-5 illustrates the use of a data-name subscript.
The data item COUNTER is described in the Data Division
as an integer. In the Procedure Division, COUNTER is
given an initial  value  of 1. The  paragraph
TABLE-LOOKUP is executed repeatedly until one of the
two conditions is satisfied. Each time TABLE-LOOKUP is

- executed, the subscript COUNTER has been incremented

by 1 and points to the next element in the table. '

DATA DIVISION.

01 TEMP PIC 9(5).
01 COUNTER PIC 999 USAGE COMP-1.
01 PARTS-TABLE.
03 PART-ITEM PIC 9(5)
OCCURS 100 TIMES.

PROCEDURE DIVISION.

MOVE 1 TO COUNTER.
TABLE-LOOKUP. '
ILF PART-ITEM (COUNTER) = TEMP
GO TO PART-FOUND.
IF COUNTER > 100 GO TO NOT-FOUND.
ADD 1 TO COUNTER.
GO TO TABLE-LOOKUP.

Figure 6-5. Table Reference by Subscripting

INDEXING

When a table description includes the INDEXED BY option
in the OCCURS clause, table elements are referenced by
indexing. The INDEXED BY option specifies the
index-name to be used for referencing an element within
the table. The index-name cannot be described anywhere
else in the program; the allocation and format of the index
associated with the index-name are controlled by the
compiler. The index is not data and cannot be part of a
data hierarchy. Indexing is more efficient than
subscripting and should be used if possible. Indexes and
integers can be mixed in a table reference. Indexes and
subscripts can also be mixed.

Up to 48 levels of nested OCCURS clauses can be specified
in the table description. Each level is assigned an
index-name in an INDEXED BY phrase. Table references
include the index-names in descending order of
inclusiveness. Index-names are enclosed in parentheses and
can, but need not, be separated by commas. A separating
comma must be followed by a space.

The value of the index at the time of execution
corresponds to the occurrence number of an element in the
associated table. An index must be initialized before it is
used as a table reference; a SET, SEARCH, or PERFORM
statement can be used to give an initial value to an index.
An index value cannot be less than 1 or greater than the
highest permissible occurrence number for the element.

6-3



Figure 6-6 illustrates a table description with two levels of
nested OCCURS clauses. An index-name is specified for
each level. The MOVE statement in the Procedure
Division references a specific YEAR element in the table.
The two index-names (S-INDEX and Y-INDEX) point to a
location in the table corresponding to the current values of
the respective indexes.

DATA DIVISION.

01 POPULATION TABLE.
03 STATE OCCURS 50 TIMES
INDEXED BY S-1INDEX.
05 YEAR PICTURE 9(10)
OCCURS 10 TIMES
INDEXED BY Y-INDEX.

PROCEDURE DIVISION.

MOVE YEAR (S-INDEX, Y-INDEX)
TO MALE-POP.

Figure 6-6. Table Reference by Indexing

The type of indexing used in figure 6-6 is called direct
indexing. The table element referenced is located by the
absolute value of the index associated with the specified
index-name. Relative indexing is specified when the
index-name is followed by a plus sign or a minus sign and
an integer. The table element referenced in this manner is
located by using the value of the index and incrementing or
decrementing that value by the specified integer; the
actual value of the index is not changed.

The table shown in figure 6-6 contains 10 population

numbers for each of 50 states. The 10 numbers represent
the number of males followed by the number of females for
each of five years. Assuming that execution of the MOVE
statement in this figure references the first number for the
first state, the male population number for the first year is
moved to the data item MALE-POP. The female
population number for the same year can then be
referenced by relative indexing.

MOVE YEAR (S-INDEX, Y-INDEX + 1)
TO FEMALE-POP.

The value associated with an index-name can only be used
as a table reference. The value can be stored in an index
data item when the index value is to be used as data. The
index data item is described in the Data Division with the
USAGE IS INDEX clause. A SET statement in the
Procedure Division can store an index value in the index
data item. Anindex data item can be used in SEARCH and
SET statements and in relational conditions; it can also be

specified in the USING phrases of the Procedure Division-

header and the CALL statement.

6-4

TABLE HANDLING STATEMENTS

Three COBOL 5 statements provide the means to
effectively enter data in tables or to access data stored in
tables. The PERFORM statement with the VARYING
phrase can be used for a table that is either subscripted or
indexed. The SEARCH statement is used only for a table
that is indexed. An index can be set to a value by the SET
statement.

Data can be entered into tables by using the PERFORM
statement with the END-PERFORM terminator (see
figure 6-4). A table can be searched for a specific value
by using the SEARCH statement with the END-SEARCH
terminator (see figure 5-8 in section 5).

PERFORM STATEMENT

An index or a data-name subscript can be automatically
incremented or decremented by a specified value eacn
time a PERFORM statement is executed. The index or
subscript points to a different element in the table each
time the procedure is performed.

The VARYING phrase of the PERFORM statement
specifies the index-name or subscript data-name. This
phrase also specifies the initial value for the index or
subscript, the value by which it is incremented or
decremented, and the condition that determines when
execution of the PERFORM statement is complete. A
negative value is specified when the index or subscript is to
be decremented. The procedure is performed repeatedly
until the specified condition is true.

PERFORM TABLE-SETUP-1 THRU TSET-1A
VARYING C-INDEX FROM 1 BY 1
UNTIL DISC-FLAG EQUALS "g".

The procedure to be performed is a series of paragraphs
beginning with TABLE-SETUP-1 and ending with TSET-1A.
The index associated with C-INDEX is initialized with the
value 1. Each time the procedure is executed, C-INDEX is
incremented by 1. When the data item DISC-FLAG
contains the letter E, the procedure is not performed and
control passes to the sentence following the PERFORM
statement.

The PERFORM statement can specify up to 48 indexes or
48 data-name subscripts to be varied. The initial value,
the increment or decrement value, and the condition to be
satisfied are specified for each index or subscript. The
manner in which three items are varied and the procedure
(or range of procedures) is performed is discussed in
section 5, Conditional Operations. The sample program in
section 5 uses the PERFORM statement to enter data in a
table by varying an index.

SEARCH STATEMENT

A table referenced by indexing can be searched for an
element that satisfies one or more conditions. Two
different types of search procedures can be specified by
SEARCH statements. The format of the statement
determines whether the search procedure is a sequential or
binary search.

The description of the table to be searched must include
the OCCURS clause with the INDEXED BY phrase. This
phrase specifies the index-name that is used to search the
table. After a successful search, the index-name points to
a table element that satisfies the search criteria.

60497200 C



Sequential Search

A sequential search begins at the current setting of the
index-name. If the current value of the index-name points
to the first element in the table, the search starts at the
beginning of the table; otherwise, the search begins at the
indicated position within the table, If the current value of
the index-name exceeds the upper limit defined for the
table, control is passed to the imperative-statement of the
AT END phrase (if specified) or to the next executable
statement following the SEARCH statement.

The table element indicated by the index-name setting is
tested for the specified condition. If the condition is true,
the search is complete and the imperative statement
associated with the condition is executed. If the condition
is not true, the next element in the table is tested for the
condition. This procedure continues until the condition is
true or the end of the table is reached.

More than one condition can be specified for the search
operation. A table element is then tested for each
specified condition. When any one of the conditions is true,
the search is complete and the imperative statement
associated with the true condition is executed.

Figure 6-7 illustrates the SEARCH statement for a
sequential search. Index-name P-INDEX is set to 1 so that
the search will begin with the first element in the table.
The condition PART-ITEM (P-INDEX) = PART-NO is
tested for each element in the table until a true condition
is encountered. When the condition is true, control is
transferred to the paragraph named PART-FOUND., If the
end of the table is reached before a true condition occurs,
control passes to the paragraph named NOT-FOUND.

DATA DIVISION.

03 PART-NUMBERS.
05 FILLER PICTURE 9(3) VALUE 075.
05 FILLER PICTURE 9(3) VALUE 212.
05 FILLER PICTURE 9(3) VALUE 153.

U5 FILLER PICTURE 9(3) VALUE 010.
03 PART-TABLE REDEFINES PART-NUMBERS.
05 PART-ITEM PICTURE 9(3) :
OCCURS 20 TIMES
INDEXED BY P-INDEX.

PROCEDURE DIVISON.

SET P-INDEX TO 1.

SEARCH PART-ITEM
AT END GO TO NOT-FOUND
- WHEN PART-ITEM (P-INDEX) = PART-NO
GO TO PART-FOUND.

Figure 6~7. Table Searching, Sequential Search

60497200 C

Binary Search

A binary search is an efficient means of searching a large
table for an element that satisfies one or more conditions.
The table must be ordered in the sequence of the
ASCENDING/DESCENDING KEY phrase in the OCCURS
clause. If more than one condition is specified, all the
conditions must be true for a successful search.

The SEARCH ALL format of the SEARCH statement
designates a binary search operation. The OCCURS clause
for the table must include the KEY IS phrase as well as the
INDEXED BY phrase. One or more of the data-names
specified in the KEY IS phrase are used to search the
table. The data-narme can be referenced by specifying a
condition-name associated with the data-name or by
specifying the data-name in a relational condition that
tests for equality. The data-name must be indexed by the
index-name in the INDEXED BY phrase; if more than one
index-name is specified, the first index-name is used.

When a condition-name is specified, the description of the
condition-name can designate only one value. The
condition-name must be associated with a data-name in the
KEY IS phrase of the table description.

The SEARCH ALL statement can specify a relational
condition that uses the EQUALS relational operator or one
of its equivalent forms. The operand preceding the
relational operator must be one of the data-names in the
KEY IS phrase of the table description. The operand
following the relational operator can be a literal, an
arithmetic expression, or a data item that is not
referenced in the KEY IS phrase.

When the SEARCH ALl. statement is executed, the table
elements are tested for the specified condition. The
search ends if the condition is true for a table element;
when more than one condition is specified, all conditions
must be true for a successful search. Control is then
passed to the imperative statement associated with the
specified conditions. If a table element that satisfies the
conditions cannot be found, control is passed to the
imperative statement of the AT END phrase (if specified)
or to the next executable statement following the SEARCH
ALL statement.

A SEARCH ALL statement with two conditions specified is
illustrated in figure 6-8. The table DATA-LIST is searched
for an element that satisfies both conditions; the values of
ITEM1 and TEMP1 must be equal and the values of ITEMZ
and TEMP2 must also be equal. ITEM. and ITEM2 are
subscripted by the index-name LIST-INDEX. When a table
element that satisfies both conditions is found, control is
transferred to the paragraph named LIST-ITEM. If no
element in the table satisfies both conditions, control is
passed to the next executable sentence after the SEARCH
ALL statement.

SET STATEMENT

The SET statement can be used to initialize an index-name
or to transfer the value of an index-name to another
index-name, an index data item, or an integer data item.
It can also be used to increment or decrement the value of
an index-name. '

The initial value given to an index-name can be specified
as a numeric literal, a data-name, or another index-name.
If a data-name is specified, it must refer to either an index
data item or an elementary integer data item; the current
value of the data item becomes the value of the



DATA DIVISION.

U2 DATA-LIST OCCURS 25 TIMES
INDEXED BY LIST-INDEX
DESCENDING KEY IS ITEM1

04 ITEMT1 PICTURE XX.
04 ITEMA PICTURE 9(7).
04 1TEMZ PICTURE 99.

ITEMZ.

PROCEDURE DIVISION.

SEARCH ALL DATA-LIST
WHEN ITEM1 (LIST-INDEX) = TEMP1
AND ITEM2 (LIST-INDEX) = TEMP2
GO TO LIST-ITEM.

Figure 6-8. Table Searching, Binary Search

index-name. When a data-name or an index-name is
specified as the initial value of an index-name, the storage
areas of the sending and receiving items should not
overlap; if the areas do overlap, unpredictable results
might occur during execution.

SET INDX-P TO 1.

Initializes the index-name (INDX-P) with a value
of 1. :

SET INDX-D TO INDX-P.

Transfers the current va!ue of one index-name
(INDX-P) to another index-name (INDX-D).

SET INDX-C TO SAVE.

Initializes the index-name (INDX-C) with the
current value of the data item (SAVE).

SET SAVE TO INDX-C.

Transfers the current value of the index-name
(INDX-C) to the data item (SAVE).

The capability to store the value of an index-name in a-
data item (as shown in the last of the preceding examples)
provides the means to retain the value for later reference.
This feature is particularly advantageous for input/output
because an index-name cannot be defined as part of a file
but an index data item (or integer data item) can be
defined as part of a file.

The value of an index-name can be incremented or
decremented by the SET statement. A numeric literal or a
data-name that references an elementary integer data
item can be specified for the increment or decrement
value. Incrementing is indicated by the keywords UP BY;

decrementing is indicated by the keywords DOWN BY. The .

6-6

value of the index-name after execution of the SET
statement must correspond to a valid occurrence number
for the table. When the value of an index-name is
incremented or decremented by a value contained in a data
item, the storage areas of the items should not overlap; if
the areas do overlap, unpredictable results might occur
during execution.

Figure 6-9 illustrates the use of the SET statement in
searching a table that has nested OCCURS clauses. The
table is searched for the first population number greater
than 1,000,000. The index-name values for the found item
are saved for future reference. Before the search
operation begins, the two index-names are initialized with
a value of 1. The value of Y-IDX is incremented
automatically during the search operation; the value of
5-IDX does not change. If the ten YEAR elements for the
current setting of S-IDX do not satisfy the condition,
control is transferred to the paragraph named
TRY-AGAIN. The value of S-IDX is incremented by I,
Y-IDX is set to a value of 1, and the next ten YEAR
elements are searched. If S-IDX reaches a value greater
than 50, the entire table has been searched unsuccessfully
and control is passed to the paragraph named CANT-FIND.

DATA DIVISION.

01 SAVA USAGE IS INDEX.
01 SAVB USAGE IS INDEX.

01 POPULATION-TABLE.
03 STATE OCCURS 50 TIMES
INDEXED BY S-IDX.
05 YEAR PICTURE 9(10)
OCCURS 10 TIMES
INDEXED BY Y-IDX.

PROCEDURE DIVISION.

SET S$-1IDX, Y-IDX TO 1.
SRCH.
SEARCH YEAR
AT END G0 TO TRY-AGAIN
WHEN YEAR (S-IDX,Y-IDX) > 1000000
SET SAVA TO S-IDX
SET SAVB TO Y-IDX
GO TO MILLION-PLUS.
TRY-AGAIN.
SET S-IDX UP BY 1.
SET Y-IDX TO 1.
IF S-IDX > 50 GO TO CANT-FIND
ELSE GO TO SRCH.

Figure 6-9. Searching a Two-Dimensional Table

60497200 C



SAMPLE TABLE
HANDLING PROGRAMS

Two sample programs are included in this section to show
two different methods of table handling. The first program
uses subscripting and the second program uses indexing and
table searching. Both of these programs specify the table
values in the Working-Storage Section of the Data
Division. Refer to the sample program in section 5
(figure 5-8) for an example of entering values into a table
during program execution and wusing the SEARCH
statement to locate table elements.

TABLE-SUBSCRIPTING PROGRAM

The use of subscripts in table references is shown in the
sample program illustrated in figure 6-10. This program
reads a record (line 87), obtains the fare for the designated
class from one table (line 92), obtains the city code for the
destination from another table (line 94), and writes a line
on the output report (line 95). The input data shown in
figure 6-11 is used to create the output report shown in
figure 6-12,

IDENTIFICATION DIVISION.
PROGRAM~ID. TABLE-SUBSCRIPT
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT CARDIN

DATA DIVISION.
FILE SECTION.

N=maaaasaaaaa
DOV NOOVMPUNL2DIOXNTASUWN—

ING.

ASSIGN TO INPUT.
SELECT PRINTOUT ASSIGN TO OUTPUT.

FD CARDIN
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.
01 CARD.

03 NumB PICTURE IS 99.

03 NAME PICTURE IS X(18).

03 CLSS PICTURE IS 9.

03 DEST PICTURE IS 9.
21 03 FILLER PICTURE X(58).
22 FD PRINTOUT
23 LABEL RECORDS ARE OMITTED
24 DATA RECORD IS PRINTLINE.
25 01 PRINTLINE PICTURE IS X(136).
26 WORKING-STORAGE SECTION.
27 01 DISP.
28 03 FILLER PICTURE IS X.
29 03 NUMBA PICTURE IS 99.
30 03 FILLER PICTURE IS X(10).
31 03 NAMEA PICTURE IS X(18).
32 03 FILLER PICTURE IS X(10).
33 03 CLASSA PICTURE IS 9.
34 03 FILLER PICTURE IS X(8).
35 03 DESTA PICTURE IS XXX.
36 03 FILLER PICTURE IS X(10).
37 03 FAREA PICTURE IS $$$3.99.
38 03 FILLER PICTURE IS X(66).
39 - 01 FARES.
40 03 FIRST-CLASS.
41 05 LAX PICTURE IS 9(5) VALUE 12750.
42 05 BUR PICTURE IS 9(5) VALUE 14500.
43 05 O0AK PICTURE IS 9(5) VALUE 24000.
44 05 SsFoO PICTURE IS 9(5) VALUE 27250.
45 05 SEA PICTURE IS 9(5) VALUE 52500.
46 03 SECOND-CLASS.
47 05 LAX PICTURE IS 9(5) VALUE 10750.
48 05 BUR PICTURE IS 9(5) VALUE 12500.
49 05 O0AK PICTURE IS 9(5) VALUE 22500.
50 05 sFoO PICTURE IS 9(5) VALUE 25000.
51 05 SEA PICTURE IS 9(5) VALUE 50000.
52 03 TOURIST.
53 a5 LAX PICTURE IS 9(5) VALUE 8750.
54 05 BUR PICTURE IS 9(5) VALUE 10500.
55 05 O0AK PICTURE IS 9(5) VALUE 20000.
56 05 SsFo PICTURE IS 9(5) VALUE 23000.
57 05 SEA PICTURE IS 9(5) VALUE 47500.

Figure 6-10. Sample Program

60497200 C

Using Subscripts (Sheet 1 of 2)

6-7



58 01 FARE-TABLE REDEFINES FARES.

59 03 CLASS-CODE OCCURS 3 TIMES.

60 05 FARE OCCURS 5 TIMES PICTURE IS 999Vv99.

61 01 CITY-TABLE.

62 03 A PICTURE IS XXX VALUE "LAX".
63 03 B PICTURE IS XXX VALUE "BUR".
64 03 ¢ PICTURE IS XXX VALUE "OAK".
65 03 PICTURE IS XXX VALUE “"SFO".
66 03 E PICTURE IS XXX VALUE “SEA".
67 01 CITY-ID REDEFINES CITY-TABLE.

68 03 CITY OCCURS S TIMES PICTURE IS XXX.

69 01 HEAD.

70 03 FILLER PICTURE IS 9 VALUE 1.

71 03 FILLER PICTURE IS XX VALUE "1ID".
72 03 FILLER PICTURE IS.X(17) VALUE SPACES.
73 03 FILLER PICTURE IS XXXX VALUE "NAME".
74 03 FILLER PICTURE IS X(15) VALUE SPACES.
75 03 FILLER PICTURE IS X(5) VALUE "CLASS".
76 03 FILLER PICTURE IS X(6) VALUE SPACES.
77 03 FILLER PICTURE IS XXXX VALUE "CITY".
78 03 FILLER PICTURE IS X(10) VALUE SPACES.
79 03 FILLER PICTURE IS XXXX VALUE "FARE".
80 03 FILLER PICTURE IS X(68) VALUE SPACES.
81 PROCEDURE DIVISION.

82 START-UP.

83 OPEN INPUT CARDIN.

84 OPEN OUTPUT PRINTOUT.

85 PERFORM WRITE-HEAD.

86 GET-FARE.

87 READ CARDIN RECORD

88 AT END GO TO CLOS-ROUTINE.

89 MOVE SPACES TO PRINTLINE.

90 MOVE NUMB TO NUMBA.

91 MOVE NAME TO NAMEA.

92 MOVE FARE (CLSS, DEST) TO FAREA.

93 MOVE CLSS TO CLASSA.

04 MOVE CITY (DEST) TO DESTA.

95 WRITE PRINTLINE FROM DISP.

96 GO TO GET-FARE.

97  WRITE-HEAD.

98 WRITE PRINTLINE FROM HEAD.

99 MOVE SPACES TO PRINTLINE.

100 WRITE PRINTLINE.

101 CLOS-ROUTINE.

102 CLOSE CARDIN, PRINTOUT.

103 STOP RUN.

Figure 6-10. Sample Program Using Subscripts (Sheet 2 of 2)

N

&
o o‘éo v

O1DENIS FISHER
02JOHN FOSTER
O3DAVID BROWN

O4CHARLES SANDS

O5HAROLD SHERMAN

O6ALBERT JONES

O7MATTHEW BARNETT
O8ROBERT WILLIAMS

O9STEVEN SMITH
10MARTHA SMITH

11SUSAN J ANDERSON
12JEROME LANDERS

13SHARON CARTER

T4WILLIAM RICHARDS

15ROBERT KATZ
16JUDITH EVANS

6-8

Figure 6-11. Input Data for Subscripting Program

Two tables are described in the Data Division of this
program. Each table is redefined in order to reference the
table elements by subscripting. The input record contains
the data items CLSS and DEST (lines 19 and 20); these
data items are used as subscripts to reference a specific
element in the table FARE-TABLE (line 58). The table
element FARE (line 60) requires two subscripts. The table
CITY-ID (line 67) contains only one OCCURS clause and
therefore uses only one subscript. The input data item
DEST is used to reference a specific CITY element in this
table.

TABLE-SEARCHING PROGRAM

Table reference by indexing is illustrated by the sample
program shown in figure 6-13. This program reads an input
record (line 92), searches a table for the part number in
the input record (line 96), obtains the part description from
a corresponding table (line 100), and writes the description
on the output report (line 101). Sample input data and the
resulting report are shown in figures 6-14 and 6-15,
respectively.

60497200 C




0 NAME CLASS CITY
0 DENIS FISHER 1 LAX
02 JOHN FOSTER 2 LAX
03 DAVID BROWN 3 LAX
04 CHARLES SANDS 1 SEA
05 HAROLD SHERMAN 2 SEA
06 ALBERT JONES 3 SEA
a7 MATTHEW BARNETT 2 LAX
08 ROBERT WILLIAMS 2 SFO
09 STEVEN SMITH 1 0AK
10 MARTHA SMITH 3 SFO
" SUSAN J ANDERSON 2 SEA
12 JEROME LANDERS 1 SFO
13 SHARON CARTER 3 BUR
14 WILLIAM RICHARDS 2 BUR
15 ROBERT KATZ 1 SEA
16 JUDITH EVANS 3 0AK

FARE

$127.50
$107.50
$87.50
$525. 00
$500. 00
$475.00
$107. 50
$250. 00
$240.00
$230. 00
$500. 00
$272.50
$105.00
$125. 00
$525.50
$200. 00

Figure 6-12. Output Report from Subscripting Program

O 00NN NN

IDENTIFICATION DIVISION.
PROGRAM-ID. TABLE-SEARCHING.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER-170.
OBJECT-COMPUTER. CYBER-170.
INPUT~OUTPUT SECTION.
FILE-CONTROL.
SELECT CARD-FILE ASSIGN TO INPUT.
SELECT LIST-FILE ASSIGN TO OUTPUT.
DATA DIVISION.
FILE SECTION.
FD CARD-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS CARD.

01 CARD.
03 PART-NO PICTURE 999.
03 FILLER PICTURE X(77).

FD LIST-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS LIST-LINE.

01 LIST-LINE PICTURE X(136).

WORKING-STORAGE SECTION.

01 NUM PICTURE 999.

01 PRT PICTURE 999.

01 PART-NOS.
03 FILLER PICTURE 999 VALUE 075.
03 FILLER PICTURE 999 VALUE 212.
03 FILLER PICTURE 999 VALUE 153.
03 FILLER PICTURE 999 VALUE 609.
03 FILLER PICTURE 999 VALUE 024.
03 FILLER PICTURE 999 VALUE 030.
03 FILLER PICTURE 999 VALUE 121.
03 FILLER PICTURE 999 VALUE 174.
03 FILLER PICTURE 999 VALUE 185.
03 FILLER PICTURE 999 VALUE '186.
03 FILLER PICTURE 999 VALUE 187.
03 FILLER PICTURE 999 VALUE 205.
03 FILLER PICTURE 999 VALUE 339.
03 FILLER PICTURE 999 VALUE 216.
03 FILLER PICTURE 999 VALUE 206.

60497200 E

Figure 6-13. Sample Program Using Index-Names (Sheet 1 of 2)

6-9



03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE
03 FILLER PICTURE 999 VALUE

01 PART-TABLE REDEFINES PART-NOS.
03 PART-ITEM PICTURE 999
OCCURS 20 TIMES
INDEXED BY INDX-P.
01  TABLE-DESCRIPT.

03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X (20D VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE
03 FILLER PICTURE X(20) VALUE

01 PART-DESC REDEFINES TABLE-DESCRIPT.
03 PART-LIST PICTURE X(20)
OCCURS 20 TIMES
INDEXED BY INDX-D.

01 HEAD.
03 FILLER - PICTURE X(10) VALUE
03 HEADLINE PICTURE X(20) ° VALUE
03 FILLER PICTURE X(106) VALUE
01 LINE-OUT.
03 FILLER PICTURE X(10).
03 LIST-NAME PICTURE X(20).
03 FILLER PICTURE X(106).
PROCEDURE DIVISION.
START~UP.

OPEN INPUT CARD-FILE.
OPEN OUTPUT LIST-FILE.
MOVE HEAD TO LIST-LINE.
WRITE LIST-LINE
BEFORE ADVANCING 2 LINES.
FIND.
READ CARD-FILE RECORD
AT END GO TO CLOS.
MOVE PART-NO TO PRT.
SET INDX-P TO 1.
SEARCH PART-ITEM
AT END GO TO NOT-FOUND
WHEN PART-ITEM (INDX-P) = PRT NEXT
SET INDX-D TO INDX-P.
MOVE PART-LIST (INDX-D) TO LIST-NAME.
WRITE LIST-LINE FROM LINE-OUT.
GO TO FIND.
NOT-FOUND.
DISPLAY "PART " PRT " NOT FOUND".
GO TO FIND.
CLOS.
CLOSE CARD-FILE, LIST-FILE.
STOP RUN.

159.
157.
163.
002.
010.

"CLOTH SHADES ".
"TEXTURED SHADES ".
"WOODEN ROMAN SHADES ".
"WASHABLE SHADES .
"DECORATOR SHADES "
"LIGHTPROOF SHADES "
"OPAQUE SHADES ".
"WOVEN ALUMINUM SHADE".
"TRANSPARENT SHADES .
“DECORATOR AWNINGS .
"METAL-STRIP AWNINGS ".
"WOODEN SHUTTERS ".
"ALUMINUM SHUTTERS ".
"VENETIAN BLINDS WOOD".
"VENITIAN BLINDS ,ALUM".
"VENETIAN BLINDS WHIT".
"VENETIAN BLINDS,GREY".
"STRIPED CANVAS SHADE".
"LAMINATED SHADES ".
"DRAPERY HARDWARE Y.
SPACES.

“NAME OF PART ORDERED".
SPACES.

SENTENCE.

6-10

Figure 6-13. Sample Program Using index-Names (Sheet 2 of 2)

60497200 C




o\
\06\

075
024
609
159
002
111
121

Figure 6-14. Input Data for Indexing Program

The first table described in this program specifies 20
different part numbers (lines 26 through 46). The second
table specifies the corresponding description for each of
the 20 part numbers (lines 51 through 71). Each table is
redefined and assigned an index-name.

60497200 C

NAME OF PART ORDERED

CLOTH SHADES

DECORATOR SHADES

WASHABLE SHADES

VENETIAN BLINDS WHIY

LAMINATED SHADES
PART 111 NOT FOUND

OPAQUE SHADES

Figure 6-16. Output Report from Indexing Program

The table PART-TABLE is searched for the PART-ITEM
element that is the same as the part number in the input
record (line 98). When the table element is found, the
value of the index-name (INDX-P) is transferred to the
index-name (INDX-D) for the description table (line 99).
The PART-LIST element that corresponds to the
PART-ITEM element found by the search is then moved to
the line for the output report (line 100).

6-11






CHARACTER HANDLING 7

Character handling is a term that is used to define special
operations that can be performed on selected data items.
Four types of special operations are provided in COBOL 5:
setting the value of a data item, inspecting characters in a
data item, transferring characters between data items, and
referencing a part of a data-item. These operations are
performed by the INITIALIZE, INSPECT, STRING, and
UNSTRING statements, and with the reference
modification structure.

SETTING THE VALUE OF A
DATA ITEM

A data item can be set to a predetermined value by the
INITIALIZE statement. The value that is used depends on
the format of the statement and the category of the data
item. One or more data items are specified as receiving
items for the value.

An elementary item or a group item can be specified as a
receiving item. When a group item is specified, subordinate
elementary items are considered receiving items. The
specified item cannot be an index data item, a renamed
data item (level 66), or a data item described with the
OCCURS DEPENDING ON clause. An item that is
subordinate to the specified receiving item and that
contains the REDEFINES clause, or any item subordinate
to such an item, is not allowed. However, the receiving
item itseif can have a REDEFINES clause or be subordinate
to a data item with a REDEFINES clause. When a group
item is specified, subordinate index data items and
elementary FILLER data items are not affected. Named
data items subordinate to a FILLER group item, however,
are receiving items.

In the simplest format of the INITIALIZE statement,
receiving items are set to zeros or spaces. Numeric and
numeric-edited receiving items are set to zeros; all other
data items are set to spaces.

INITIALIZE COUNTER, TOTALS, LINE-OUT.

When this statement is executed, the numeric items
COUNTER and TOTALS are given values of zero. . The data
item LINE-OUT is an alphanumeric item and is set to
spaces.

The REPLACING phrase is included in the INITIALIZE
statement to set the value of the receiving item (or items)
to a specified value. The value of the sending item is
indicated by specifying a literal or the data-name of the
item that contains the value. An index data item cannot
be specified as the sending item. The category of the
sending item and each elementary receiving item must be
consistent with the category specified in the REPLACING
phrase. If a receiving item is a group item, only those
elementary items in the specified category are affected by
the INITIALIZE statement; all occurrences of table items
in the group item are affected.

60497200 C

The INITIALIZE statement in figure 7-1 illustrates the use
of the REPLACING phrase. The sending item is specified
by the figurative constant ALL and a nonnumeric literal.
The receiving item is the group item LINE-OUT. When the
statement is executed, the elementary alphanumeric data
items COL-1, COL-2, and COL-3 are set to asterisks. The
FILLER data items are not affected by the INITIALIZE
statement. An output line produced from LINE-OUT would
then print three groups of five asterisks.

DATA DIVISION.

01 LINE-OUT.
03 FILLER PICTURE X(10) VALUE SPACE.
03 COL-1 PICTURE X(5).
03 FILLER PICTURE X(10) VALUE SPACE.
03 COoL-2 PICTURE X(5).
03 FILLER PICTURE X(10) VALUE SPACE.
03 CoL-3 PICTURE X(5).

03 FILLER PICTURE X(91) VALUE SPACE.

PROCEDURE DIVISION.

INITIALIZE LINE-OUT REPLACING
ALPHANUMERIC DATA BY ALL "*".

Figure 7-1. Initializing a Group Data Item

INSPECTING CHARACTERS IN A
DATA ITEM

A data item can be inspected for the occurrences of one or
more characters in order to perform tallying and/or
replacing operations. The character string for which the
data item is inspected and the operation to be performed
are specified in the INSPECT statement. When the
statement is executed, the inspection occurs as a series of
cycles. The number of inspection cycles performed
depends on the inspection criteria specified in the
INSPECT statement.

INSPECTION CYCLE

An inspection cycle consists of comparing the character
string to be tallied or replaced with an equal number of
characters in the data item. The first inspection cycle
begins at the first character position of the data item or at
the first character position after a specified character
string.



When a single character is being tallied or replaced,
successive inspection cycles begin at the next character in
sequence. When a group of characters is being tallied or
replaced, the beginning position for successive inspection
cycles depends on whether or not the preceding comparison
resulted in a match:

e If a match occurred, the beginning position is the next
position to the right of the matching characters.

e If amatch did not occur, the beginning position is the
next position to the right of the previous beginning
position.

INSPECTION LIMITATION

The inspection cycles for tallying or replacing can be
limited to the portion of the data item preceding or
following the initial occurrence of a specified character
string. The limiting character string can be specified as a
nonnumeric literal, a figurative constant, or the data-name
of a data item containing the character string. A
figurative constant is considered to be one character in
length. If a data item contains the limiting character
string, it must be an elementary alphabetic, alphanumeric,
or numeric data item; a numeric data item must be
described with display usage.

The BEFORE INITIAL phrase limits the inspection cycles
to the characters before the first occurrence of the
limiting character string. The inspection cycles begin with
the first character and include all characters preceding the
first character of the limiting character string.

Only those characters following the first occurrence of the
limiting character string are included in the inspection
cycles when the AFTER INITIAL phrase is specified. The
inspection cycles begin with the character immediately
following the limiting character string and continue to the
end of the data item.

TALLYING OPERATION

Inspection of a data item counts the number of occurrences
of the character string when the keyword TALLYING is
specified in the INSPECT statement. The data item to be
tallied can be a group item or an elementary item with
display usage; implicit display usage exists for a group item
or for an elementary item without the USAGE clause. An
elementary numeric item must be specified to hold the
tally. This data item is not initialized by the INSPECT
statement; one is added to the current value of the tally
data item each time the character string occurs in the data
item being inspected.

Character positions in the data item are tallied when the
keyword CHARACTERS is specified. If the BEFORE/
AFTER INITIAL phrase is included, only those character
positions within the specified limit are tallied.

INSPECT ITEM-1 TALLYING ACCUM-1
FOR CHARACTERS BEFORE INITIAL "X".

This statement causes the character positions in ITEM-1 to
be tallied; the inspection begins with the first character
and continues until the character X is encountered. One is
added to ACCUM-1 for each character position preceding
the X.

7-2

The data item is inspected for all occurrences of a
character string when the keyword ALL is specified. If the
inspection is limited by the BEFORE/AFTER INITIAL
phrase, only those occurrences within the specified limit
are tallied.

INSPECT ITEM-2 TALLYING ACCUM-2
FOR ALL "G5" AFTER INITIAL. "A",

When this statement is executed, the first inspection cycle
begins with the character immediately following the first
A in ITEM-2, Each occurrence of the character string G5
during the inspection cycles causes one to be added to the
current value of ACCUM-2.

The keyword LEADING specifies that the data item is
inspected for consecutive occurrences of the character
string beginning with the first inspection cycle. The tally
data item is incremented by one for each consecutive
inspection cycle where the comparison results in a match.
The characters to be inspected can be limited by the
BEFORE/AFTER INITIAL phrase.

INSPECT ITEM-3 TALLYING ACCUM-3
FOR LEADING ZEROS.

This statement inspects ITEM-3 for leading zeros. The
inspection begins with the first character position and
continues until a nonzero character is encountered. One is
added to ACCUM-3 for each leading zero.

REPLACING OPERATION

The replacing operation is performed when the keyword
REPLACING is specified in the INSPECT statement. This
operation inspects the data item for occurrences of the
character string and replaces each occurrence with another
character string of equal length. A group item or an
elementary item with display usage can be inspected for
the replacing operation; implicit display usage exists for a
group item or for an elementary item without the USAGE
clause.

The replacing character string can be specified as a
nonnumeric literal, a figurative constant, or the data-name
of a data item containing the character string; it must
have the same number of characters as the character
string to be replaced. If a figurative constant is specified
for the replacing character string, the character string to
be replaced must be one character in length. When a
data-name is specified for the replacement character
string, the storage areas of the replacing string and the
string to be replaced should not overlap; if the areas do
overlap, unpredictable results might occur during program
execution.

Each character in the data item is replaced by another
character when the keyword CHARACTERS is specified.
If the BEFORE/AFTER INITIAL phrase is included, only
those characters within the specified limit are replaced.
The replacing character string must be a single character
when the keyword CHARACTERS is specified.

INSPECT ITEM-4 REPLACING CHARACTERS
BY SPACE BEFORE INITIAL "X".

When this statement is executed, the replacing operation
begins with the first character and continues until the
character X is encountered. Each character preceding the
initial X is replaced by a space.

60497200 C



The keyword ALL is specified when each occurrence of the
character string is to be replaced. The BEFORE/AFTER
INITIAL phrase can be specified to place a limit on the
characters being inspected for the replacement.

INSPECT ITEM-5 REPLACING ALL "ABC"
BY "XYZ".

Execution of this statement causes ITEM-5 to be inspected
for the character string ABC. The character string XYZ
replaces each occurrence of ABC within the data item
ITEM-5,

Consecutive occurrences of the character string are
replaced by another character string when the keyword
LEADING is specified. The first inspection cycle must
result in a matching comparison for any replacement to
take place; only consecutive occurrences of the character
string are replaced. If the BEFORE/AFTER INITIAL
phrase is included, inspection cycles are only within the
specified limits.

INSPECT ITEM-6 REPLACING LEADING "W»
BY SPACE AFTER INITIAL "A'",

When this statement is executed, the first inspection cycle
begins in the character position immediately following the
first A in ITEM-6. Each leading W is then replaced by a
space; once an inspection cycle does not result in a
matching comparison, the replacing operation is
terminated.

Only the first occurrence of the character string is
replaced when the keyword FIRST is specified. The
inspection cycles are performed within the limit of the
BEFORE/AFTER INITIAL phrase, if specified, and are
terminated when a match is found.

INSPECT ITEM-7 REPLACING FIRST "m"
BY SPACE BEFORE INITIAL "-".

This statement inspects ITEM-7 for the first occurrence of
the letter M. The inspection cycles begin with the first
character position and continue until the letter M or a
hyphen is found. If the letter M is found, it is replaced by
a space.

TALLYING AND REPLACING OPERATION

The INSPECT statement can specify that the operation to
be performed on the data item includes both tallying and
replacing. Each operation is specified in the same manner
as described in the preceding paragraphs. Tallying can be
performed before or after replacing; before is assumed by
default.

INSPECT ITEM-8 TALLYING ACCUM-8 FOR
ALL ZEROS BEFORE INITIAL "X"
BEFORE REPLACING ALL SPACES BY "*",

When this statement is executed, ITEM-8 is inspected for
tallying and replacing; tallying is performed before
replacing. For each zero before the first X in ITEM-8, one
is added to the current value of ACCUM-8. All spaces in
ITEM-8 are then replaced by asterisks.

INSPECT ITEM-9 TALLYING ACCUM-9 FOR

LEADING "*" AFTER REPLACING
ALL SPACES BY """,

60497200°C

This statement specifies that tallying is performed after
all spaces in ITEM-9 have been replaced by asterisks. One
is then added to ACCUM-9 for each leading asterisk in
ITEM-9.

TRANSFERRING CHARACTERS BETWEEN
DATA ITEMS

The STRING and UNSTRING statements provide the
capability to join and separate the contents of data items.
All or part of a sending item can be transferred to a
receiving item.

STRING STATEMENT

The characters in two or more data items are transferred
to a receiving data item by the STRING statement. The
transfer begins with the first sending item and continues
with the remaining sending items in the order specified.
The transfer terminates when all sending items have been
transferred or when the receiving item is filled.

The sending items can be data items, nonnumeric literals,
and figurative constants. Data items must be described
with implicit or explicit display usage. A figurative
constant specified as a sending item is considered to be one
character in length. Sending items cannot be boolean data
items.

The receiving item can be a group item or an elementary
item without editing symbols; the usage of the item must
be display. Receiving items cannot be boolean data items
and cannot be reference modified. Only those character
positions that receive a sending character are affected by
execution of the STRING statement.

The sending item and the receiving item should not share
any part of their storage areas; if the items are not
uniquely defined, unpredictable results might occur when
the program is executed.

Transfer of characters begins with the first character in
the sending item and terminates as specified in the
DELIMITED BY phrase. All characters are transferred
when the keyword SIZE is specified.

STRING ITEM-A, ITEM-B DELIMITED BY SIZE
INTO GROUP-1.

When this statement is executed, all characters in ITEM-A
are transferred to GROUP-1 followed by all characters in
ITEM-B. Character transfer terminates when ITEM-A and
ITEM-B are exhausted or GROUP-1 is filled.

Transfer of characters can be terminated by the
occurrence of a specific character string in the sending
item. The character string is a literal or the contents of a
data item specified in the DELIMITED BY phrase. The
literal can be a nonnumeric literal or a figurative constant;
a figurative constant is considered to be one character in
length. If a data item is used to delimit the transfer of
characters, it must be a display data item.

STRING ITEM-C, ITEM-D, ITEM-E
DELIMITED BY SPACE INTO GROUP-2.

This statement specifies that characters are to be
transferred from ITEM-C, ITEM-D, and ITEM-E to
GROUP-2. Character transfer in each sending item begins
with the first character and terminates when a space is
encountered; the space is not transferred to the receiving
item.

7-3



Sending items can have different delimiting character
strings. The DELIMITED BY phrase is specified for each
sending item or group of sending items to which it applies.

STRING ITEM-F DELIMITED BY "
ITEM-G DELIMITED BY TEMP
INTO GROUP-3.

Execution of this statement transfers characters from
ITEM-F and ITEM-G to GROUP-3. All characters in
ITEM-F up to the first asterisk are transferred to the
receiving item, and then all characters in ITEM-G up to a
character string equal to the contents of TEMP are
transferred to the receiving item.

The beginning position within the receiving item for the
transfer of characters can be other than the first character
position. The POINTER phrase specifies an elementary
integer data item that contains the number of the
character position to which a character is transferred. The
data item is incremented by one each time a character is
transferred to the receiving item. The initial value of the
pointer data item must be set by the program before the
STRING statement is executed.

STRING ITEM-H, ITEM-1 DELIMITED BY SIZE
INTO GROUP-4 WITH POINTER COUNT-4,

When this statement is executed, all characters in [TEM-H
and- ITEM-1 are transferred to GROUP-4. The value of
COUNT-4 specifies the character position within GROUP-4
in which character transfer begins. When all characters
have been transferred, the value of COUNT-4 points to the
position immediately following the last character
transferred.

The ON OVERFLOW phrase is included in the STRING
statement to specify the action to be taken if the receiving
item is filled before the transfer operation is completed.
The statement specified in this phrase is also executed if
the value of the pointer data item does not indicate a
position within the receiving item (less than one or greater
than)the number of character positions in the receiving
item). -

STRING ITEM-J, ITEM-K
DELIMITED BY SPACE INTO GROUP-5
ON OVERFLOW GO TO GROUP-FULL.

Execution of this statement transfers characters in ITEM-J
and ITEM-K preceding the first space in each sending item
to GROUP-5. If an overflow condition is encountered,
control is passed to the paragraph named GROUP-FULL.

UNSTRING STATEMENT

The UNSTRING statement provides the means to separate
data from a sending item into one or more receiving
items. Characters are transferred to a receiving item until
the item is filled or until a specified delimiter is
encountered in the sending item. The transfer of
characters occurs according to the COBOL MOVE rules.

The sending item must be an elementary alphanumeric data
item or a group data item and must not be reference
modified. Each receiving item must be an elementary data
item with display usage or a group data item. The
PICTURE clause for a receiving item can describe the item
as alphabetic without the symbol B, alphanumeric, or
numeric without the symbol P. The sending item and the
receiving item should not share any part of their storage
areas; if the items are not uniquely defined, unpredictable
results might occur during program execution.

7-4

The UNSTRING statement specifies the sending item and
one or more receiving items. When no optional phrases are
included in the statement, character transfer begins with
the first character position in the sending item and
continues until all sending item characters are transferred
or all receiving items are filled.

UNSTRING GROUP-6
INTO ITEM-L, ITEM-M, ITEM-N.

When this statement is executed, character transfer begins
from the first character position in GROUP-6 to the first
character position in ITEM-L. When ITEM-L is filled, the
next character in GROUP-6 is transferred to the first
character position in ITEM-M. Characters are transferred
to ITEM-N after ITEM-M is filled. Transfer of characters
terminates when all characters have been transferred from
GROUP-6 or when ITEM-N has been filled.

A delimiter for the transfer of characters from the sending
item to a receiving item is specified by the DELIMITED BY
phrase. A literal or the contents of a data item can be
specified for the delimiter. The data item must be an
elementary or group alphanumeric data item. If a literal is
specified, it can be either a nonnumeric literal or a
figurative constant; a figurative constant represents a
single-character delimiter.

Characters are transferred from the sending item to the
first receiving item beginning with the first character
position. Transfer to subsequent receiving items begins
with the first character following the delimiter for the .
previous transfer operation. Transfer to a receiving item
terminates when the delimiter is encountered or when the
receiving item is filled. The following events occur when
transfer terminates due to the receiving item being filled:

e The sending item is searched for a delimiter; a
delimiter is located.

e The sending item is moved to the receiving item,
according to the COBOL MOVE rules.

e The receiving item is filled; truncation of characters
occurs; transfer stops.

If the keyword ALL is specified preceding the delimiter,
character transfer resumes following all consecutive
occurrences of the delimiter; otherwise, each consecutive
occurrence of the delimiter causes a subsequent receiving
item to be zero or space filled, according to the
description of the individual receiving item.

UNSTRING GROUP-7 DELIMITED BY "*"
INTO ITEM-O, ITEM-P.

Execution of this statement transfers characters from
GROUP-7 into ITEM-O until an asterisk is encountered or
ITEM-O is filled. If the character following the asterisk is
another asterisk, ITEM-P is zero or space filled; otherwise,
the character and succeeding characters are transferred
until another asterisk is encountered or ITEM-P is filled.
Character transfer is terminated and control is
immediately passed to the next statement if the end of
GROUP-7 is reached.

More than one delimiter can be specified in the
DELIMITED BY phrase. The occurrence of any specified
delimiter terminates transfer to the current receiving
item. If the DELIMITER IN phrase is specified for a
receiving item, the delimiter that terminated transfer to
the receiving item is moved to a separate data item. The
data item to receive the delimiter must be an
alphanumeric elementary or group data item.

60497200 C



UNSTRING GROUP-8 DELIMITED BY ALL ZEROS,
OR ALL SPACES, OR ALL "
INTO ITEM-Q, DELIMITER IN Q-SEP
ITEM-R, DELIMITER IN R-SEP.

This statement transfers characters from GROUP-8 to
ITEM-Q and ITEM-R. The transfer to ITEM-Q is
terminated when a zero, a space, or an asterisk is
encountered in GROUP-8; the actual delimiter is moved to
Q-5EP. The next character following all consecutive
appearances of the delimiter is transferred to ITEM-R;
character transfer continues until one of the three
delimiters is encountered. The delimiter that terminates
transfer to ITEM-R is then moved to R-SEP. If the
transfer of characters to either receiving item is
terminated by reaching the end of the sending item, the
data item to receive the delimiter is set to spaces.

When a delimiter is specified for the sending item, a count
of the characters preceding the delimiter can be stored in
a data item. The count indicates the number of characters
between the preceding delimiter and the current delimiter,
whether or not all characters are transferred to the
receiving item. The COUNT IN phrase specifies the data
item to receive the character count for the associated
receiving item. The data item must be an elementary
numeric integer data item.

UNSTRING GROUP-9
DELIMITED BY ALL ZERQOS
INTO ITEM-S, COUNT IN S-CNTR
ITEM-T, COUNT IN T-CNTR.

Execution of this statement transfers characters from
GROUP-9 to ITEM-S and ITEM-T. Transfer to the
receiving items is terminated when zeros are encountered
in the sending item. The count of characters up to the
first delimiter is stored in S-CNTR. The character count
between the first and second delimiters is stored in
T-CNTR; if the sending item does not contain a second
delimiter, T-CNTR contains the number of characters
between the first delimiter and the end of GROUP-9.

The POINTER phrase is specified when the transfer of
characters from the sending item is to begin in a position
other than the first character position. For the first
character to be transferred, the data item indicates the
beginning position. It is incremented by one each time a
character is transferred. The data item must be an
elementary numeric integer data item. The initial value of
the pointer data item must be established by the program
before the UNSTRING statement is executed.

UNSTRING GROUP-10 INTO ITEM-U,
ITEM-V WITH POINTER COUNT-10.

When this statement is executed, the current value of
COUNT-10 indicates the position of the first character
within GROUP-10 to be transferred to ITEM-U. As each
character is transferred, COUNT-10 is updated to reflect
the next character position in GROUP-10.

The TALLYING phrase is used to maintain a count of the
receiving items to which characters are actually
transferred when the UNSTRING statement is executed.
The data item specified in this phrase must be an
elementary numeric integer data item and the initial value
must be set by the program.

UNSTRING GROUP-11
DELIMITED BY ALL SPACES
INTO ITEM-W, ITEM-X
TALLYING IN COUNTER.

60497200 C

Each time this statement is executed, COUNTER is
incremented by one for each receiving item to which
characters are transferred. Character transfer from
GROUP-11 to ITEM-W and to ITEM-X is terminated by the
occurrence of spaces in GROUP-11. The initial value of
COUNTER is set before the first execution of the
UNSTRING statement.

Action to be taken if the transfer terminates before the
end of the sending item is reached is specified in the ON
OVERFLOW phrase. The statement in this phrase is
executed when the receiving items are filled and the
sending item is not exhausted, or when the value of the
pointer data item does not indicate a position within the
sending item. )

UNSTRING GROUP-12 INTO ITEM-Y,
ITEM-Z WITH POINTER COUNT-12
ON OVERFLOW GO TO SEND-AGAIN.

This statement transfers characters from GROUP-12 to
ITEM-Y and ITEM-Z; transfer begins at the position
indicated by the current value of COUNT-12. If transfer
to the two receiving items terminates befare the end of
GROUP-12 is encountered, or if the value of COUNT-12 is
less than one or greater than the number of character
positions in GROUP-12, control is passed to the paragraph
named SEND-AGAIN.

REFERENCING PART OF A
DATA ITEM

Reference modification allows the referencing of a portion
of a data item without predefining the item in the Data
Division (with level number, name, size, and usage). Data
item usage can only be DISPLAY. With the exception of
boolean items, which remain in the boolean class, the class
of reference modified items is always alphanumeric.

Reference modification can be used to eliminate complex
REDEFINES clauses and to unstring data into areas of
variable length.

In its simplest structure, an item is described in the
Working-Storage Section. A portion of the characters in
the item is then referenced in a Procedure Division
statement.

WORKING-STORAGE SECTION.
01 NAMES PICTURE X(7) VALUE "JOHNSON".

.

.

PROCEDURE DIVISION.

.

;\/IO VE NAMES (1:5) TO HOLD

This MOVE statement moves five characters, beginning
with the first character of NAMES. The characters JOHNS
are moved to the data item HOLD.

The example in figure 7-2 illustrates an out-of-bounds
reference that is undetected by the COBOL compiler.
Unless DB=RF is specified on the COBOLS5 control
statement, the values that are used in referencing a data

7-5



item are not checked to be within the range of the data
item's length. If DB=RF is specified, bounds checking is
performed. If illegal reference modification is used, a
message appears in the dayfile at execution time and the
job aborts. Program output (without the DB parameter
specified) is also shown.

The first ordinal within the parentheses specifies the
position of the leftmost character of interest within the
data item. This ordinal must be a positive non-zero integer
not greater than the number of characters in the data
item. An arithmetic expression is also allowed.

The second ordinal within the parentheses specifies the
total number of consecutive characters of interest. This

_ordinal must be a positive non-zero integer. Alternatively,

END can be used to include all characters to the end of the
data item. An arithmetic expression is also allowed.

The sum of the first and the second ordinals, minus one,
cannot exceed the number of characters in the data item.

Figure 7-3 illustrates valid statements involving reference
modification. The subscript is evaluated first in the final
MOVE statement.

A. Program Listing

PROGRAM-1ID.

STR.

DISPLAY
STOP RUN.

B. Program Output

**QUTPUT IS -
CDEFGH

DEFGHI
DEFGHIJ99
GooD

IDENTIFICATION DIVISION.
REFMOD.
DATA DIVISION.
WORKING-STORAGE SECTION.

X(10) VALUE "ABCDEFGHIJ".
X(10) VALUE ALL "9".

9 VALUE 3.

9 VALUE 3.

PROCEDURE DIVISION.

01 STRS.
02 STRT PIC
02 PIC
02 A PIC
02 B PIC

DISPLAY "**QUTPUT IS -"
DISPLAY STRT (3 : A
DISPLAY STRT (4 : A
DISPLAY STRT ( 4 : 9 )
IF STRT ( 3 A+ B ) = "CDEFGH"

"G00D".

+ B )
+ B )

Figure 7-2. Out-of-Bounds Reference Modification

PROCEDURE DIVISION.

WORKING-STORAGE SECTION.
01 NUMERALS PICTURE X(10) VALUE "0123456789".
01 CONST PICTURE 9 VALUE IS 3. ’

MOVE NUMERALS (2
MOVE NUMERALS (3
MOVE N(3) (4 : END) TO ITEM (CONST : 3).

6) TO N(C1).
I + K) TO N(2).

Figure 7-3. Reference Modification Examples

7-6

60497200 C



SORT/MERGE PROCESSING 8

\

Records in files can be sorted or merged automatically by
internal routines that are executed as a result of a SORT
or MERGE statement. The sort or merge operation uses
one or more keys to pracess the records; the data items to

be used as keys are specified in the SORT or MERGE
statement.

Sorting or merging records is a three-phase operation:

1. Input phase - Transfers records from the input file or
files to the sort/merge file.

2. Sort/merge phase - Sorts or merges the records in the
sort/merge file.

3. Output phase - Transfers sorted or merged records to
the output file.

The sort operation causes records from one or more files to
be arranged in order according to a specified sequence.
The merge operation combines records from two or mare
identically sequenced files.

SORT/MERGE FILE

The sort/merge file is not an actual file although it is
logically treated as a file during sort/merge operation. It
must be specified in SELECT and ASSIGN clauses in the
FILE-CONTROL paragraph of the Environment Division; no
other clauses are allowed for a sort/merge file.

A Sort-Merge Description (SD) entry must be specified in
the Data Division for the sort/merge file. At least one
Record Description entry must be included in the SD entry
to describe the key items that are used to sort or merge
the files. When a key item is a nonnumeric data item, the
collating sequence used to determine the order of records
in the output file can be specified for the sort/merge
operation.

SORT-MERGE DESCRIPTION ENTRY

Whenever a sort or merge operation is to be performed
during program execution, the file to be used for the sort
or merge procedure is described in the File Section by a
Sort-Merge Description entry (SD entry). The file-name
from the SELECT clause is specified in the SD entry. Two
optional clauses can be specified. The RECORD clause
indicates the size of the sort/merge record; however,
actual record size is determined by the Record Description
entries for the file. The DATA RECORDS clause
documents the names of the record formats for the
sort/merge file.

At least one record format must be described for the
sort/merge file. The size of the largest record described
establishes the maximum record length. If a record
processed during the sort/merge operation exceeds the
maximum record length, the record is truncated. When
fixed-length records are being merged, records should be at
least 10 characters in length; otherwise, an extra record
exists at the end of the output file for each input file used
in the merge operation.

60497200 C

A file described in an SD entry can be referenced in the
Procedure Division only by sort/merge statements. An SD
entry for a sort file is illustrated in figure 8-1.

DATA DIVISION.
FILE SECTION.
FD GEN-FILE
LABEL RECORD IS OMITTED
DATA RECORD IS GEN-REC.
01 GEN-REC.
03 IDENT-A PICTURE 9(8).
03 IDENT-B PICTURE 99.
03 IDENT-C PICTURE X(20).
SD SORT-FILE :
DATA RECORD IS SORT-REC.
01 SORT-REC.
03 IDENT-1 PICTURE 9(8).
03 IDENT-2 PICTURE 99.
03 IDENT-3 PICTURE X(20).

PROCEDURE DIVISION.

SORT SORT-FILE ON ASCENDING KEY
IDENT-1, IDENT-2, IDENT-3
USING GEN-FILE
GIVING SORTED-FILE.

Figure 8-1. SD Entry and Key Items

KEY ITEMS

One or more data items in the Record Description entry
for a sort/merge file are specified as key items for the
sort/merge operation. The actual value of a key item is
used to determine the order of records in the output file.
When more than one Record Description entry is specified
for a sort/merge file, each key item must be described in
at least one record.

Key item values are sequenced in either ascending or
descending order as specified in the SORT or MERGE
statement. Ascending order causes the values to be
sequenced from the lowest value to the highest value;
descending order is from the highest value to the lowest
value. The position of a key item value in the sorted or
merged order is determined according to the rules for
comparison of operands in relational conditions; in this
instance, the full range of COMPUTATIONAL-2 items can
be properly compared. Relational conditions are discussed
in section 5, Conditional Operations.

8-1



Data items used as keys for a sort/merge operation must
be fixed-length items. A key item cannot be described by
or be subordinate to an item described by the OCCURS
clause. A key data item cannot be described with
COMPUTATIONAL-4 usage.

When two or more key items are specified for the
sort/merge operation, the order of the key items
determines the order of significance. The first key
specified is the most significant key and the last key
specified is the least significant key. Comparisons for
sorting or merging records proceed from the most
significant to the least significant key.

For a sort operation, records with duplicate values for all
specified keys are sequenced in the order the records were
released to the sort file. This is called initial sequence and
requires 10 extra characters for each record sorted. A
significant amount of overhead can be involved when initial
sequence is maintained. If the sequencing of records with
duplicate key values is not important, the overhead can be
reduced by executing the following statement to remove
the initial sequence option:

ENTER "C.SORTP".,

After this statement is executed, initial sequence is not
maintained for a sort operation. Refer to the discussion of
memory allocation for the effect on the initial sequence
option when this statement is used to change the central
memory block size for a sort operation.

The SD entry shown in figure 8-1 describes three
elementary items. The SORT statement in the Procedure
Division specifies each of these items as a key item for the
sort operation. The most significant key is the data item
IDENT-1. If two records contain the same value for
IDENT-1, the values for the IDENT-2 data items are
compared. When the first two key data items have
identical values, the third key items (IDENT-3) are
compared. The record with the lower key item value (on
the first, second, or third comparison) is the first of the
two records in the sorted file.

MEMORY ALLOCATION

A block of 92161g words of central memory is allocated
for the sort or merge operation. For most operations, this
default size is sufficient; however, more efficiency can be
gained by increasing or decreasing the size of the memory
block when a large or a small sort/merge operation is
performed. Memory size is changed by executing the
following statement:

ENTER "C.SORTP" USING data-name-1, data-name-2.

Data-name-1 specifies a COMPUTATIONAL-1 data item
that contains the memory size to be used for all subsequent
sort and merge operations. It cannot be omitted or equal
to zero; if only data-name-2 is of interest, data-name-1
must specify the default value.

Data-name-2 refers to the initial sequence option for
duplicate sort keys. If it is omitted or is equal to zero, the
initial sequence option is removed; a value other than zero
in the COMPUTATIONAL-1 data item causes initial
sequence to be maintained.

8-2

SORT/MERGE OPERATION

The input and output phases of a sort/merge operation are
performed automatically when input and output files are
specified in the SORT or MERGE statement. For a sort
operation, the input phase can be program-controlled by
providing an input procedure. The output phase is
program-controlled for either a sort or a merge operation
when an output procedure is specified in the SORT or
MERGE statement.

INPUT/OUTPUT FILES

Input files are specified for the sort/merge operation when
the records to be sorted or merged reside on files. The
MERGE statement must indicate at least two input files.
If an output file is specified, the sorted or merged records
are automatically written on the output file.

The USING phrase of the SORT or MERGE statement
specifies the input files. The following functions are then
performed automatically:

1. The input files are opened for input and the
sort/merge file is opened for output.

2. All the input records are transferred to the sort/merge
file.

3. The input files and the sort/merge file are closed.

At this point in the sort/merge operation, the records are
available in sorted or merged sequence. When an output
file is specified in the GIVING phrase, the following
functions are performed automatically:

1. The sort/merge file is opened for input and the output
file is opened for output.

2, The sorted or merged records are transferred to the
output file.

3. The sort/merge file and the output file are closed.

INPUT PROCEDURE

The input phase of a sort operation is controlled by the
program when the INPUT PROCEDURE phrase is specified
instead of the USING phrase. An input procedure, which
must be written in one or more contiguous sections in the
Procedure Division, allows the user to control the release
of records to the sort file. It can include statements that
select, create, or modify records for the sort operation.
At least one RELEASE statement must be included to
transfer records to the sort file; records are transferred
one at a time. Execution of a SORT statement with the
INPUT PROCEDURE phrase proceeds as follows:

1. The sort file is opened for output.

2. Control is passed to the input procedure until the last
statement of the procedure has been executed.

3. The sort file is closed.

Processing then continues with the sort and output phases.
A SORT or MERGE statement cannot be specified within
the input procedure sections of the source program.
Control cannot be explicitly transferred outside the input

procedure; however, implicit transfer of control to
declarative procedures is allowed.

60497200 C



OUTPUT PROCEDURE

An output procedure provides the means for the user to
control the use of records returned from the sort/merge
file during the output phase of the sort/merge operation.
The OUTPUT PROCEDURE phrase replaces the GIVING
phrase in the SORT or MERGE statement and specifies the
section or range of sections that contains the statements
to be executed for the output phase.

The output procedure can include statements that select,
madify, or copy the sorted or merged records. At least one
RETURN statement must be specified to return a record
from the sort/merge file for subsequent processing by the
output procedure. Records are returned one at a time in
sorted or merged sequence.

The output phase of a sort/merge operation that specifies
an output procedure is as follows:

1. The sort/merge file is opened for input.

2. Control is transferred to the output procedure until all
sorted or merged records have been returned; the AT
END phrase of the last RETURN statement is
executed.

3. The sort/merge file is closed.

A SORT or MERGE statement cannot be specified within
the output procedure sections of the source program.
Control cannot be explicitly transferred outside the output
procedure; however, implicit transfer of control to
declarative procedures is allowed.

SORT/MERGE STATEMENTS

Five Procedure Division statements are applicable to the
sort/merge operation. The SORT statement sequences
records according to specified key items. The MERGE
statement combines two or more identically sequenced
files. An input procedure for a sort operation requires the
RELEASE statement; the RETURN statement must be used
in an output procedure for a sort or merge operation. The
collating sequence for sort/merge operations can be
established through the SET statement.

SORT STATEMENT

The SORT statement causes records from one or more files
to be sorted on a set of specified keys. Records are
transferred to the sort file during the input phase, sorted
on the key items during the sort phase, and returned from
the sort file during the output phase. Only one file on a
multifile tape reel can be specified in the SORT statement.

The sort file designated in the SORT statement is
described in an SD entry in the File Section of the Data
Division. This file receives the records to be sorted during
the input phase, contains the records in sorted order at the
end of the sort phrase, and provides the records to be
returned during the output phase.

One or more key items are specified in the SORT
statement. A record is placed in the sorted sequence
according to the contents of the key items. Key values are
sequenced as specified by the keyword ASCENDING or
DESCENDING.

60497200 C

The collating sequence for a nonnumeric sort can be
specified in the SORT statement. The alphabet-name in
the COLLATING SEQUENCE phrase is defined by an
ALPHABET clause in the SPECIAL-NAMES paragraph of
the Environment Division. A collating sequence
established by a SET statement before execution of the
SORT statement overrides the COLLATING SEQUENCE
phrase.

The USING phrase specifies one or mare input files for the
sort operation. Input files can have any file organization
and are described by FD entries in the File Section.
Automatic transfer of input records to the sort file occurs
as if sequential READ statements were being executed.

If the USING phrase is not specified, the INPUT
PROCEDURE phrase must specify the Procedure Division
section or range of sections containing the statements to
process and transfer records to the sort file. Control is
passed to the input procedure through the SORT statement;
the procedure must not be entered directly.

The sorted records are automatically written on the output
file when the GIVING phrase is specified. The output file
can have sequential, relative, indexed, or actual-key file
organization. If the output file has indexed file
organization, the most significant key for the sort
operation must be the primary key and the key values must
be in ascending sequence. The output file is described by
an FD entry in the File Section; record size must be the
same size described by the SD entry for the sort file.

The OUTPUT PROCEDURE phrase replaces the GIVING
phrase when the output phase of the sort operation is
program-controlled. The phrase specifies the section or
range of sections that contains the statements to return
and process the sorted records. The output procedure must
not be entered directly; it receives control through the
SORT statement.

Example 1

SORT SORT-FILE ON ASCENDING KEY IDENT-1
ON DESCENDING KEY IDENT-3
COLLATING SEQUENCE IS SORT-SEQ
USING FILE-1, FILE-2
GIVING FILE-3

Example 2

SORT SORT-FILE ON ASCENDING KEY IDENT-1
INPUT PROCEDURE IS INP-1
OUTPUT PROCEDURE IS OUT-1 THRU OUT-3.

Figure 8-2. Examples of the SORT Statement

Two sample SORT statements are shown in figure 8-2.
Example 1 specifies two key items for the sort operation.
The most significant key, IDENT-1, is sequenced in
ascending order. The second key item, IDENT-3, is used
when two or more records contain the same value for
IDENT-1; it is sequenced in descending order. The
collating sequence for the nonnumeric key, IDENT-3, is
specified as SORT-SEQ; SORT-SEQ is defined by the
ALPHABET clause in the Environment Division. Two files
are designated for input; records from FILE-1 and FILE-2
are automatically transferred to the sort file. The sorted
records are written on the file named FILE-3.

8-3



Example 2 in figure 8-2 illustrates a SORT statement that
uses input and output procedures. One key item, IDENT-1,
is specified and the records are to be sequenced with the
values of IDENT-1 in ascending order. The input
procedure, which is contained in a section named INP-1,
receives control during the input phase of the sort
operation. Execution of the statements in INP-1 causes
records to be transferred to the sort file. The output
procedure is contained in the sections beginning with
OUT-1 and ending with OUT-3. Execution of the
statements in these sections includes the return of sorted
records from the sort file.

MERGE STATEMENT

The MERGE statement causes records from two or more
identically sequenced files to be combined based on the
values of specified key items. During the input phase, the
records are transferred to the merge file. The merge
phase merges the records into a single file with the records
in order according to the key items. The output phase
returns the records from the merge file.

The merge file specified in the MERGE statement is
described in an SD entry in the File Section of the Data
Division. This file receives the records from the input
files, contains the merged records at the end of the merge
phase, and provides the records in merged order to the
output file or output procedure.

At least one key item is specified for the merge operation.
Additional key items are specified for use when duplicate
values can exist for a key item. The merged sequence for
a key item is as specified by the keyword ASCENDING or
DESCENDING.

When a key item for the merge operation is a nonnumeric
data item, the collating sequence to be used for the
comparison can be specified in the MERGE statement. The
COLLATING SEQUENCE phrase specifies an
alphabet-name that is defined by an ALPHABET clause in
the SPECIAL-NAMES paragraph of the Environment
Division. A SET statement executed before the MERGE
statement can also specify the collating sequence for the
merge operation. The collating sequence established by
the SET statement overrides a collating sequence specified
in the MERGE statement.

Two or more input files are specified in the USING phrase.
These files must have sequential file organization and must
be described by FD entries in the File Section of the Data
Division. Record sizes for all input files must be the same
as described in the SD entry. The records in the input files
are transferred automatically to the merge file as if
sequential READ statements were being executed.

The output phase of the merge operation proceeds
automatically when an output file is specified in the
GIVING phrase. The output file is described by an FD
entry in the File Section and must have the same record
size as described in the SD entry for the merge file. The
file organization for the output file can be sequential,
relative, indexed, or actual-key. For indexed file
organization, the most significant key for the merge
operation must be the primary key and the sequence must
be ascending.

If the GIVING phrase is not specified, the OUTPUT
PROCEDURE phrase must specify the Procedure Division
section or range of sections containing the statements to
return and process the merged records.  Control is passed
to the output procedure through the MERGE statement;
the procedure must not be entered directly.

8-4

The use of the MERGE statement is illustrated in
figure 8-3. Example 1 shows a statement that merges the
records from two files (INFILE-1 and INFILE-2) and
transfers the merged records to a third file (QUTFILE).
The key field ITEM-A is used to merge the records with the
key values in ascending sequence.

Example 1

MERGE MERGE-FILE ON ASCENDING KEY ITEM-A
USING INFILE-1, INFILE-2
GIVING OUTFILE.

Example 2

MERGE MERGE-FILE ON ASCENDING KEY ITEM-A
ON DESCENDING KEY ITEM-B
USING INFILE-1, INFILE-2
OUTPUT PROCEDURE IS MERGE-OUT.

Figure 8-3. Examples of the MERGE Statement

Example 2 in figure 8-3 shows a MERGE statement that
specifies an output procedure to be executed during the
output phase. The input records are merged with the
values of the key item ITEM-A in ascending sequence; the
key item ITEM-B, which is used when more than one record
contains the same value for ITEM-A, is sequenced in
descending order. The output procedure is contained in the
section named MERGE-OUT; the statements in the section
return and process the records from the merge file.

RELEASE STATEMENT

The RELEASE statement is used in an input procedure for
the SORT statement. At least one RELEASE statement
must be included in the input procedure. When this
statement is executed, a record is transferred to the sort
file.

The record-name specified in the RELEASE statement is a
record-name in the Data Division SD entry for the sort
file. After the RELEASE statement is executed, the sort
record is no longer available in the sort file record area.

The FROM phrase is included in the RELEASE statement
to move the contents of a data area to the sort record area
before transferring the sort record to the sort file. This
phrase can be effectively used when the data for a sort
record is created in a Working-Storage area; the FROM
phrase eliminates the need to move the data into the sort
record area.

Two examples using the RELEASE statement are shown in
figure 8-4. In both examples, the section named INP-1 has
been specified as the input procedure in a SORT
statement. Example 1 reads an input record and moves the
corresponding data to the sort record; the RELEASE
statement then transfers the sort record to the sort file.
Example 2 creates a record (TEMP-REC) from an input
data item and an item resulting from an ADD statement;
the RELEASE statement moves the data from TEMP-REC
to the sort record (SORT-REC) and then releases the sort
record to the sort file.

60497200 C



RETURN STATEMENT

The RETURN statement is used in an output procedure for
a SORT or MERGE statement. At least one RETURN
statement must be included in an output procedure.
Execution of this statement causes the next record in
sorted or merged sequence to be made available to the
output procedure for processing.

The file-name of the sort/merge file is specified in the
RETURN statement. An AT END phrase is included to
specify the action to be taken after the last record has
been returned from the sort/merge file. After the
RETURN statement is executed, the record is available for
processing by the output procedure. When the INTO phrase

Example 1

PROCEDURE DIVISION.

INP-1 SECTION.
IN-RECORDS.
READ CARD-IN RECORD
AT END GO TO IN-END.
MOVE CORRESPONDING CARD TO SORT-REC.
RELEASE SORT-REC.
GO TO IN-RECORDS.

Example 2

DATA DIVISION.

01 TEMP-REC.
03 ITEM-A PICTURE 9(5).
03 ITEM-B PICTURE 9(7).

PROCEDURE DIVISION.

‘
-

INP-1 SECTION.
IN-RECORDS.
READ CARD-IN RECORD
AT END GO TO IN-END.
MOVE ITM-A TO ITEM-A.
ADD ITM=-C, ITM-B GIVING ITEM-B.
RELEASE SORT-REC FROM TEMP-REC.

is included in the RETURN statement, the sort/mel;ge
record is moved from the sort/merge file into the specified
storage area as well as into the sort/merge record area.

The use of the RETURN statement in output procedures is
illustrated in figure 8-5. In both examples, the section
named OUT-1 has been specified as the output procedure in
a SORT or MERGE statement. Example 1 returns the
sorted record, moves the corresponding data to OUT-REC,
and writes the record on the output file. Example 2
returns a record from the merge file and at the same time
stores it in an area named TEMP-REC; the value of an
additional item in TEMP-REC is computed and the record
is then written on the output file.

Example 1

PROCEDURE DIVISION.

OUT~1 SECTION.
OUT-RECORDS.
RETURN SORT~FILE RECORD
AT END GO TO OUT-END.
MOVE CORRESPONDING ST-REC TO OUT-REC.
WRITE OUT-REC.
GO TO OUT-RECORDS.

Example 2

DATA DIVISION.

01 TEMP-REC. )
03 ITEM-A PICTURE 9(5).
03 1ITEM-B PICTURE 9(7)..
03 ITEM-C PICTURE 9(5).

PROCEDURE DIVISION.

OUT-1 SECTION.
OUT-RECORDS.
RETURN MERGE~FILE RECORD INTO TEMP-REC
AT END GO TO OUT-END.
COMPUTE ITEM-C = ITEM-A - ITEM-B.
WRITE TEMP-REC.
GO TO OUT-RECORDS.

Figure 8-4. Examples of the RELEASE Statement

60497200 C

Figure 8-5. Examples of the RETURN Statement

8-5



SET STATEMENT

The SET statement can be used to establish the collating
sequence for sort or merge operations. The collating
sequence of a SET statement executed prior to the SORT
or MERGE statement overrides any other collating
sequence. A SET statement in a subprogram does not
affect the collating sequence of any other program.

The alphabet-name specified in the SET statement must be
defined in the SPECIAL-NAMES paragraph in the
Environment Division. Depending on the keyword used in
the SET statement, the specified collating sequence can
apply to sort operations only, merge operations only, or
both sort and merge operations.

The SET statement shown in figure 8-6 establishes the
collating sequence for the subsequent SORT statement.
The collating sequence S-SEQ is defined in the
SPECIAL-NAMES paragraph as CDC-64; the  collating
sequence of the CDC 64-character code set is used for the
sort operation.

SAMPLE SORT PROGRAM

The sample program shown in figure 8-7 illustrates a sort
operation that is controlled by input and output
procedures. The program reads an input deck, selects
records for the sort file, and produces an output listing.
The input data shown in figure 8-8 is used to create the
output report shown in figure 8-9.

The input phase of the sort operation is controlied by the
input procedure contained in the section INP-1 (lines 76
through 87). Records are read from the input file
CARD-FILE; only those records that contain the letter A
in the data item FLLAG are released to the sort file.

The sort phase sorts the records in the sort file in
ascending order according to the value of the key item
S-NAME (line 72). Because no collating sequence is
specified for the sort operation, the program collating
sequence is used.

ENVIRONMENT DIVISION.

SPECIAL-NAMES.
ALPHABET S-SEQ IS CDC-64.

PROCEDURE DIVISION.

SET SORT COLLATING SEQUENCE TO S-SEQ.
SORT SORT-FILE

ON ASCENDING KEY IDENT-3

USING FILE-1

GIVING FILE-2.

Figure 8-6. Establishing a Collating Sequence

The output phase of the sort operation is controlled by the
output procedure contained in the section OUT-1 (lines 88
through 105). Records are returned from the sort file and
stored in the data area TEMP-REC. Output lines are
created and written on the output file PRINT-FILE.

SAMPLE MERGE PROGRAM

The sample program shown in figure 8-10 illustrates a
merge operation. The program reads two input files and
merges them into a single output file. The first five
characters of each record represent the merge key and are
used to merge the records in ascending order.

1 IDENTIFICATION DIVISION.

2 PROGRAM-ID. SORT-EXAMPLE.

3 ENVIRONMENT DIVISION.

4 CONFIGURATION SECTION.

5 SOURCE-COMPUTER. CYBER-170.

) OBJECT-COMPUTER. CYBER-170.

7 INPUT-OUTPUT SECTION.

8 FILE-CONTROL.

9 SELECT CARD-FILE ASSIGN TO
10 SELECT PRINT-FILE ASSIGN TO
11 SELECT SORT-FILE ASSIGN TO
12 .DATA DIVISION. ‘

13 FILE SECTION.

14 FD CARD-FILE

15 LABEL RECORD IS OMITTED
16 DATA RECORD IS CARD-REC.
17 01 CARD-REC.

18 03 CUST-ID PICTURE
19 03 CUST-NAME PICTURE
20 03 CUST-ADDRESS PICTURE
21 03 FILLER PICTURE
22 03 LIST-DATE PICTURE
23 03 FILLER PICTURE
24 03 FLAG PICTURE

INPUT.
OUTPUT.
SORTFLE.

999.
X(20).
X(45) .
X.
X(8).
XX.

X.

8-6

Figure 8-7. Sample Sort Program (Sheet 1 of 3)

60497200 C



SD SORT-FILE
DATA RECORD IS SORT-REC.
01 SORT-REC.
03 S-NAME PICTURE X(20).
03 S-ADDRESS PICTURE X(45).
FD PRINT-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS PRINTLINE.

01 PRINTLINE PICTURE X(136).
WORKING-STORAGE SECTION.
01 CNTR ) PICTURE 99.
01 TEMP-REC.
03 T-NAME PICTURE X(20).
03 T-ADDRESS.
05 T-STREET PICTURE X (20).
05 T-CcITY PICTURE X(20).
05 T-z1P PICTURE 9(5).
01 OUT-LINE-1.
03 FILLER PICTURE 9 VALUE 1.
03 FILLER PICTURE X(27) VALUE SPACES.
03 FILLER PICTURE X(16) VALUE "CUSTOMER LIST ON".
03 FILLER PICTURE X VALUE SPACES.
03 DATE-OUT PICTURE X(8).
03 FILLER PICTURE X (84) VALUE SPACES.
01 OUT-LINE-2.
03 FILLER PICTURE X(5) VALUE SPACES.
03 NAME-OUT PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 STREET-0UT PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 CITY-OUT PICTURE X(20).
03 FILLER PICTURE X(5) VALUE SPACES.
03 zIiP-o0UT PICTURE 9(5).
03 FILLER PICTURE X(51) VALUE SPACES.

PROCEDURE DIVISION.
READ-CARD SECTION.
READ-IN.
OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE.
MOVE ZEROS TO CNTR.
READ CARD-FILE RECORD
AT END GO TO ERROR-1.
IF LIST-DATE NOT EQUAL TO SPACES
MOVE LIST-DATE TO DATE-OUT
ELSE GO TO ERROR-1.
SORT~-CARD SECTION.
SORTING.
SORT SORT-FILE ON ASCENDING KEY S-NAME
INPUT PROCEDURE IS INP-1
OUTPUT PROCEDURE IS 0OUT-1.
GO TO END-SORT.
INP-1 SECTION.
IN-1.
READ CARD-FILE RECORD
AT END GO TO IN-2.
IF FLAG NOT EQUAL TO "A"
GO TO IN-1.
MOVE CUST-NAME TO S-NAME.
MOVE CUST-ADDRESS TO S~ADDRESS.
RELEASE SORT-REC.
GO TO IN-1.
IN-2.
CLOSE CARD-FILE.
OUT-1 SECTION.
oT-1.
WRITE PRINTLINE FROM OUT-LINE-1.
MOVE SPACES TO PRINTLINE.
WRITE PRINTLINE
BEFORE ADVANCING 2 LINES.

60497200 C

Figure 8-7. Sample Sort Program (Sheet 2 of 3)

8-7



94 0T-2.

95 RETURN SORT-FILE RECORD INTO TEMP-REC

96 AT END GO TO OT-3.

97 MOVE T-NAME TO NAME-OUT.

98 MOVE T-STREET TO STREET-0UT.

99 MOVE T-CITY TO CITY-OUT.

100 MOVE T-ZIP TO ZIP-OUT.

101 WRITE PRINTLINE FROM OUT-LINE-2.

102 ADD 1 TO CNTR.

103 GO TO OT-2.

104 oT-3.

105 CLOSE PRINT-FILE.

106 END-SORT SECTION.

107 CLOSING.

108 DISPLAY SPACES.

109 DISPLAY " CUSTOMER LIST CONTAINS " CNTR " NAMES".

110 STOP RUN. .

111 ERROR-1.

112 DISPLAY * BAD INPUT DECK ".

113 STOP RUN.

Figure 8-7. Sample Sort Program (Sheet 3 of 3)
S oq?‘ °«° o@
\0<° \~><° \°‘° \\"&
P < ¢y <
¢ ) 4 ) )
01/31/776
259ABC DISTRIBUTORS 5820 MARKET ST ARCADIA, CA 91006 A
029ACME DISTRIBUTING 9802 VENICE BLVD MAR VISTA, CA 90066 A
ND46JONES COMPANY 4156 WARNER AVE CULVER CITY, CA 90230 A
44619 04683 55025 17802
0O89PREMIUM PRODUCTS 3691 SPRING ST LOS ANGELES, CA 90012 A
73294 50721 64325 73815
134XYZ COMPANY 7708 WILSHIRE BLVD LOS ANGELES, CA 90046 A
04513 97625 43581 44300
178MASON MERCHANDISERS 2764 ROSECRANS AVE HAWTHORNE, CA 90250 A
88303 46165 73259 90707
263COURTESY SALES CORP 2700 W MAGNOLIA BLVDBURBANK, CA 91506 A
33450 79165 11950 73259
339RETAILERS INC 14391 E BROADWAY WHITTIER, CA 90604 A
22870 94059 61667 53123
372SMITH AND SONS 1163 N ANAHEIM BLVD ANAHEIM, CA 92801 A
99735 82701 00567 39462
428WORLD SALES COMPANY 3930 LANKERSHIM BLVDNORTH HOLLYWOOD, CA 91604 A
90921 77345 64521 50640
4L85DAY AND NIGHT INC 8529 BELLFLOWER AVE BELLFLOWER, CA 90706 A
S110AKVILLE CORP 1744 LINCOLN BLVD SANTA MONICA, CA 90404 A
76456 28904 20164 65077
620SELECT SALES COMPANY9635 SANTA MONICA BLBEVERLY HILLS, CA 90210 A
644YOUNG AND YOUNG 20125 DEVONSHIRE CHATSWORTH, CA 91311 A
97894 35610 27059 08431
656QUALITY SALES €O 1276 W VICTORY BLVD BURBANK, CA 91502 A
729DARRELL BROTHERS 5509 WESTMINSTER BL SANTA ANA, CA 92703 A
45612 64302 50189 79532
TL7TMERCHANTS INC 2268 E ORANGETHORPE ANAHEIM, CA 92806 A
67943 52146 76285 90431
788IDEAL SALES COMPANY 7125 SEPULVEDA BLVD VAN NUYS, CA 91405 A
805SHOUSEHOLD PRODUCTS 802 N LA BREA AVE INGLEWOOD, CA 90302 A
73158 62490 05137 44630
84L6EXECUTIVE SALES INC 5893 S FIGUEROA ST LOS ANGELES, CA 90003 A
863ROYAL SALES COMPANY 11601 PARAMOUNT DOWNEY, CA 90241 A
929MORGAN BROTHERS INC 8523 W OLYMPIC BLVD LOS ANGELES, CA 90035 A
951A-1 PRODUCTS 16053 S CRENSHAW BL TORRANCE, CA 90506 A
976INTERNATIONAL SALES 1049 ATLANTIC BLVD ALHAMBRA, CA 91803 A
210MI CORPORATION 1732 CALIFORNIA AVE LONG BEACH, CA 90813 A
Figure 8-8. Input Data for Sample Sort Program
8-8 60497200 C



A-1 PRODUCTS

ABC DISTRIBUTORS
ACME DISTRIBUTING
COURTESY SALES CORP
DARRELL BROTHERS
DAY AND NIGHT INC

CUSTOMER LIST ON 01/31/76

16053 S CRENSHAW BL
5820 MARKET ST

9802 VENICE BLVD
2700 W MAGNOLIA BLVD
5509 WESTMINSTER BL
8529 BELLFLOWER AVE

5893
802 N
7125
1049
4156
2764
2268
1732
8523

EXECUTIVE SALES INC
HOUSEHOLD PRODUCTS
IDEAL SALES COMPANY
INTERNATIONAL SALES
JONES COMPANY

MASON MERCHANDISERS
MERCHANTS INC

MI CORPORATION
MORGAN BROTHERS INC

OAKVILLE CORP 1744
PREMIUM PRODUCTS 3691
QUALITY SALES CO 1276
RETAILERS INC 14391
ROYAL SALES COMPANY 11601

SELECT SALES COMPANY
SMITH AND SONS
WORLD SALES COMPANY

1163

XYZ COMPANY 7708
YOUNG AND YOUNG 20125
CUSTOMER LIST CONTAINS 25 NAMES

S FIGUEROA ST
LA BREA AVE
SEPULVEDA BLVD
ATLANTIC BLVD

WARNER AVE
ROSECRANS AVE
E ORANGETHORPE
CALIFORNIA AVE
W OLYMPIC BLVD
LINCOLN BLVD
SPRING ST
W VICTORY BLVD
E BROADWAY
PARAMOUNT

9635 SANTA MONICA BL

N ANAHEIM BLVD

3930 LANKERSHIM BLVD

WILSHIRE BLVD
DEVONSHIRE

TORRANCE, CA 90506
ARCADIA, CA 91006
MAR VISTA, CA 90066
BURBANK, CA 91506
SANTA ANA, CA 92703
BELLFLOWER, CA 90706
LOS ANGELES, CA 90003
INGLEWOOD, CA 90302
VAN NUYS, CA 91405
ALHAMBRA, CA 91803
CULVER CITY, CA 90230
HAWTHORNE, CA 90250
ANAHEIM, CA 92806
LONG BEACH, CA 90813
LOS ANGELES, CA 90035
SANTA MONICA, CA 90404
LOS ANGELES, CA 90012
BURBANK, CA 91502
WHITTIER, CA 90604
DOWNEY, CA 90241
BEVERLY HILLS, CA 90210
ANAHEIM, CA 92801
NORTH HOLLYWOOD, CA 91604
LOS ANGELES, CA 90046
CHATSWORTH, CA 91311

Figure 8-9. Output Report From Sample Sort Program

A. Program Listing

IDENTIFICATION DIVISION.
PROGRAM-1D. MERGE-FILES.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IFILE1 ASSIGN TO INP
USE "RT=Z"

SELECT IFILE ASSIGN TO INO
USE "RT=z2"

SELECT MFILE ASSIGN TO M

SELECT OFILE ASSIGN TO OT
USE "RT=Z"

DATA DIVISION.

FILE SECTION.

FD IFILET LABEL RECORDS
01 IREC1 PIC X(30).

FD IFILE LABEL RECORDS OMITTED.
01 IREC PIC X(30).

SD MFILE.
01 MREC.
02 MKEY PIC X(5).
02 PIC X(25).
FD OFILE LABEL RECORDS OMITTED.
01 OREC PIC X(30).
PROCEDURE DIVISION.
STRT.

USING IFILE, IFILE1
GIVING OFILE.
STOP RUN.

OMITTED.

MERGE MFILE ON ASCENDING KEY MKEY

Program' Input
FILE INP:

OO010AAAAAAAAAAAAAAAAAAAAAAAAA
000158BBBBBBBBBBEBBBBBBBBBBEBB
00020cccccccccccccccccecccccccce

FILE INO:

00009XXXXXXXXXXXXXXXXXXXXXXXXX
D00 TAYYYYYYYYYYYYYYYYYYYYYYYYY
0001722227277122222222222222222

Program Output: Merged file OT

OO0009XXXXXXXXXXXXXXXXXXXXXXXXX
OOO010AAAAAAAAAAAAAAAAAAAAAAAAA
O00TAYYYYYYYYYYYYYYYYYYYYYYYYY
000158BBBBBBBEBBBBBBEBBB8BBBBBB
0001722222222222271222222122211
gooz20ccccccccccecccecccccecccecccccce

Figure 8-10. Sample Merge Program

60497200 C

8-9






SEGMENTATION 9

When a COBOL 5 program is executing, segmentation
provides a way to conserve memory space by overlaying
sections of the program in central memory. The entire
Procedure Division in a segmented program is written in
sections that are separated into fixed and independent
segments. The segment number assigned to a section
determines whether it is a fixed or an independent segment.

If any reordering of the object program is required to
handle the flow from segment to segment, the compiler
provides the control transfers to maintain the logic flow
specified in the source program. An automatic jump is
made when the succeeding section is in a different
segment. Control can be transferred to any paragraph in a
section; it is not mandatory tec transfer control to the
beginning of a section.

The use of the Fast Dynamic Loader (FDL) can serve as an
alternative to segmentation (see section 10).

TYPES OF SEGMENTS

A segment of the Procedure Division is either a fixed
segment or an independent segment. The segment number
designates the type of segment; segment numbers 0
through 49 identify fixed segments, and numbers 50
through 99 identify independent segments. Sections with
the same segment number are part of the same segment.

FIXED SEGMENTS

Fixed segments are logically treated as if they are always
in memory; therefore, those segments should contain the
sections that are referenced most frequently. A fixed
segment is either permanent or overlayable.

A fixed permanent segment is always available for
reference. It cannot be overlaid by another segment.
Sections that must be available at all times are included in
the fixed permanent segments.

A fixed overlayable segment can overlay and can be
overlaid by another overlayable segment (fixed or
independent). If it is overlaid, it is returned in its last used
state; last used state refers to modified GO TO statements.

The range of segment numbers for fixed segments
(0 through 49) is divided into numbers that define
permanent segments and numbers that define overlayable
segments. The SEGMENT-LIMIT clause in the Environment
Division specifies the lowest number that can be used for
fixed overlayable segments. Segment numbers up to, but
not including, the specified number are used for fixed
permanent segments; segment numbers from the specified
number up to and including 49 are used for fixed
overlayable segments. When the SEGMENT-LIMIT clause is
not specified, all segments with segment numbers O
through 49 are treated as fixed permanent segments.

60497200 C

INDEPENDENT SEGMENTS

Independent segments, which are identified by segment
numbers 50 through 99, are considered overlayable. These
segments can overlay and can be overlaid by ancther
overlayable segment (fixed or independent). In future
standards, independent segments might be deleted;
therefore, it is best to avoid using independent segments, if
possible.

When control is transferred to an independent segment, it is
in its initial state only under the following conditions:

e Execution of a PERFORM, USE, SORT, MERGE, or
GO TO statement transfers control to the independent
segment.

e Execution of the last statement in the preceding
segment  implicitly  transfers control to the
independent segment.

An independent segment is in its last used state when it
receives control under any other circumstances. Initial
state and last used state refer to modified GO TO
statements.

OVERLAYS

Both fixed overlayable segments and independent segments
are called overlays. Only one overlay can be present in
memory with the fixed permanent segments. As each
overlay is referenced, it is loaded into memory over the
last overlay. This conserves memory because it need be
only as large as the fixed permanent segments plus the
largest overlay.

If the BBH field of the file information table (FIT) is set to
YES through the USE clause or through a FILE control
statement, the associated file must be opened and closed
with no intervening call to a fixed overlayable or
independent segment.

SUBPROGRAMS AND OVERLAYS

Subprograms should not be written in segments because
they are not actually broken up into segments; therefore,
no advantage in memory space is gained and some is lost.

A subprogram can be called from a segmented main
program. If the statement calling the subprogram is in an
overlayable segment and it specifies a literal that is not a
program-name in the FDL file, the subprogram must reside
on a user library. The user library must be made availabie
to the job before the main (calling) program is loaded. The
subprogram is initialized each time the overlay is loaded.
To prevent this, the subprogram must be loaded with the
fixed permanent segments. An unexecuted ENTER or
CALL statement in a fixed permanent segment or an
LDSET,USE control statement can be used to load the
subprogram with the fixed permanent segments.

9-1



STRUCTURING SEGMENTS

The Procedure Division of a segmented program is
organized into sections. Each section is assigned to a
specific segment and is part of either a fixed segment or
an independent segment. More than one section can be
included in a segment.

Segmentation does not affect the logical sequence of the
program as specified in the source program. Control can
be transferred to any paragraph in a segment; it need not
be transferred to the beginning of a section.

A section is assigned to a segment by specifying a segment
number in the section header. The segment number further
identifies the segment as a fixed or independent segment.
Fixed segments are assigned segment numbers 0 through
49; independent segments are assigned segment numbers 50
through 99.

READ-INPUT SECTION 4.

UPDATE-MASTER SECTION 53.

The first section header specifies that the section named
READ-INPUT is assigned to segment number 4, which is a
fixed segment. The section named UPDATE-MASTER is
assigned to segment number 53, which is an - independent
segment.

The SEGMENT-LIMIT clause is used to divide the fixed
segment numbers (0 through 49) into permanent and
overlayable segments. This clause is specified in the
OBJECT-COMPUTER paragraph of the Environment
Division. The designated number is the lowest segment
number for fixed overlayable segments. Segment numbers
that are less than the designated number identify fixed
permanent segments.

SEGMENT-LIMIT IS 45

This clause specifies that segment numbers 0 through 44
are used for fixed permanent segments. Segment numbers
45 through 49 are used for fixed overlayable segments.

When segment numbers are being assigned, consideration
should be given to the frequency with which the section is
used.

®  Sections that must be available at all times should be
assigned to fixed permanent segments.

e Frequently referenced sections should be assigned to
fixed permanent segments.

e Sections that frequently reference each other should
be assigned to the same segment.

e Declarative sections must be assigned to permanent
segments.

9-2

The coding requirements for a segmented program are
summarized in the following rules:

e Overlay segments (fixed or independent) are made
available when:

A PERFORM statement references a procedure
within the segment.

A GO TO statement references a procedure
within the segment.

The segment logically follows the previously
executed statement.

A SORT or MERGE statement references a
procedure within the segment.

e A PERFORM statement in a fixed segment can
reference one of the following:

Procedures in fixed segments (permanent or
overlayable).

Procedures in any one independent segment.

e A PERFORM statement in an independent segment
can reference one of the following:

Procedures in fixed segments (permanent or
overlayable).

Procedures in the independent segment that
contains the PERFORM statement.

e An ALTER statement that changes the
procedure-name for a GO TO statement to a
procedure in an independent segment must be within
that independent segment.

® A SORT or MERGE statement in a fixed segment can
reference one of the following:

Input or output procedures in fixed segments
(permanent or overlayable).

Input or output procedures in any one independent
segment.

e A SORT or MERGE statement in an independent
segment can reference one of the following:

Input or output procedures in fixed segments
(permanent or overlayable).

Input or output procedures in the independent

segment that contains the SORT or MERGE
statement.

60497200 C



SUBPROGRAM INTERFACE ' 10

5

An independently compiled subprogram can be used within
the structure of a COBOL 5 source program. The
subprogram can be written in COBOL, COMPASS, or
FORTRAN and is compiled and tested .as an independent
program. Two typical instances in which a subprogram
could be used are:

e A subroutine written in one of the acceptable
languages has already been coded, compiled, and
tested.

e A square root is needed and can be calculated more
efficiently with a FORTRAN routine.

Control is transferred to a subprogram when an ENTER or
CALL statement in the main program is executed. The
ENTER statement is used for subprograms that are not
written in COBOL. For COBOL subprograms, the CALL
statement is specified. (Mode errors might occur if CALL
is used with FORTRAN subprograms.)

Data can be passed between the main program and the
subprogram through the USING phrase of the ENTER or
CALL statement. The Common-Storage Section can also
be used for passing data. External files and the CYBER
Database control system (CDCS) data base files can be
shared between programs.

Fast Dynamic Loader (FDL) processing allows COBOL
subprograms to be dynamically loaded and unloaded during
execution of the main program. Fast Dynamic Loader is
not required for subprograms to access data base files
under CDCS 2.

TRANSFERRING CONTROL TO A
SUBPROGRAM

Depending on the language used to write the subprogram,
either the ENTER statement or the CALL statement is
specified in the COBOL 5 program (main program). When
the statement is executed, contro! is transferred to the
specified subprogram. Control returns to the main
program at the statement immediately following the
ENTER or CALL statement.

ENTERING NON-COBOL SUBPROGRAMS

A subprogram written in COMPASS or FORTRAN can be
entered from the COBOL 5 main program to perform
specific functions. Common data can be passed between
the main program and the subprogram through the USING
phrase of the ENTER statement or the Common-5torage
Section in the Data Division.

The ENTER statement is specified in the main program to
transfer control to a non-COBOL subprogram. This
statement specifies the language of the subprogram and
the entry point into the subprogram. COMPASS is the
default. If COMPASS or FTN 5 is not specified, COMPASS
is assumed. When the ENTER statement is executed,
control is transferred to the subprogram at the designated
entry point. The entry point is defined in the subprogram;
it can be a program name, subroutine name, function name,
or statement label. The entry point must be specified as a

60497200 E

nonnumeric literal if it contains characters other than
letters and digits or if it duplicates a COBOL reserved
word.

ENTER COMPASS TESTL.

This statement specifies that the subprogram is written in
COMPASS. The entry point into the subprogram is named
TESTI.

The USING phrase is included in the ENTER statement to
designate data that is common to the main program and
the subprogram. The parameter list specified in this
phrase can include data-names, file-names, procedure-
names, and literals.

ENTER FTN5 HYP USING LEGI,
LEG2, DIAG.

When this statement is executed, the FORTRAN
subprogram is entered at the entry point named HYP. The
data items LEGI1, LEG2, and DIAG are shared between the
main program and the subprogram.

When a FORTRAN subprogram is entered, best results are
obtained by passing the following types of data items:

e An item described as COMPUTATIONAL-1
e An item described as COMPUTATIONAL-2

o A level 01 item that is a multiple of 10 characters in
length

e Literals

COMPUTATIONAL-1 and COMPUTATIONAL-2 data items
in COBOL 5 correspond to integer and real items,
respectively, in FORTRAN. Data items with any other
COBOL usage are treated as character strings. A numeric
literal without a decimal is treated as an integer item in
FORTRAN. A numeric literal with a decimal is treated as
a real item. An alphanumeric literal is treated as a
character string.

Data to be passed between the main program and the
subprogram can also be specified in the Common-Storage
Section. The data is allocated to a labeled common block
named CCOMMON. The FORTRAN or COMPASS
subprogram accesses this data by referencing the common
block CCOMMON.

CALLING COBOL SUBPROGRAMS

A subprogram written in COBOL is called into execution by
a CALL statement in the COBOL main program. Data to
be passed between the main program and the subprogram
can be specified in the CALL statement or it can be passed
through the Common-Storage Section. External files and
data base files can also be shared between the programs.

The CALL statement in the main program specifies the
program name from the PROGRAM-ID paragraph in the
subprogram. The program name is specified as a
nonnumeric literal of no more than seven characters when

10-1



" the FDL parameter is not included in the COBOLS5 control

statement. When the FDL parameter is specified, the"

program name can be contained in an alphanumeric data
item and can be up to 30 characters in length. FDL
processing is discussed later in this section.

CALL "COMPAY™.

Execution of this statement transfers control to the
COBOL subprogram named COMPAY. The program name
is specified as a nonnumeric literal and must be enclosed in
quotation marks. The program name must begin with an
alphabetic character and must not contain a space or a
hyphen.

The subprogram can also contain CALL statements;
however, it must not call the main program or call ancther
subprogram that calls the main program. When the
subprogram is called, all data fields and alterable switches
are the same as when the subprogram was last exited. The
status and positioning of all local files used by the
subprogram are also unchanged; however, External files
might have been changed by other programs.

Data items that are common to the main program and the
subprogram are specified in one of two ways:

e The USING phrase can be included in the CALL
statement to name the common data items.

e The Common-Storage Section can be used to describe
the common data items.

Sharing External files and data base files is discussed later
in this section.

The USING phrase of the CALL statement specifies the
data items that are to be passed between the main program
and the subprogram. FEach data item specified must be a
level 01 or level 77 item that is described in either the
File Section or the Working-Storage Section of the main
program. If the subprogram is called by another
subprogram, the data items can also be described in the
Linkage Section of the calling program. When the USING
phrase is specified in the CALL statement to identify
common data, the subprogram must identify the common
data items in the Procedure Division header and describe
the data items in the Linkage Section of the Data
Division. The data-names in the CALL statement
correspond by position to the data-names in the Procedure
Division header; therefore, the names can differ while the
number of names must be identical. Both data items in
each corresponding pair shoild be defined at the same level
(level 01 or level 77) to ensure proper synchronization. If
items of different levels are in correspending positions, the
ANSI=77LEFT parameter must be specified in the COBOL5

control statement. When the parameter is specified for the .

main program, it should be specified for all subprograms to
avoid conflicts between level 77 items.

CALL "SUBPRO3" USING SUB-REC.,

When this statement is executed, control is transferred to
the COBOL subprogram named SUBPRO3. The data item
SUB-REC, which is described in the Working-Storage
Section of the main program as a level Ol data item, is
made available to the subprogram. Items subordinate to
SUB-REC pass values to be used by the subprogram and
receive values determined through execution of the
subprogram.

10-2

Data to be passed between the main program and the
COBOL  subprogram can be specified in the
Common-Storage Section of the Data Division. This
section, in both the main program and the subprogram,
describes the shared data. The data-names and
descriptions need not be the same in both sections;
however, the data in each section must be identical. For
example, a table can be fully described in one
Common-Storage Section and be described with an
OCCURS clause in the other Common-Storage Section; the
complete size of the table must be the same in both
sections.

The initial value of a data item shared between the main
program and the COBOL subprograms can be set only in
the main program by the VALUE clause; the initial value
cannot be set in the subprograms.

SHARING FILES

Files declared in the main program can be shared with any
subprogram in the same run unit. Various types of files
can be shared between programs. External files and data
base files are two special types of files with particular
requirements and considerations that are discussed in the
following paragraphs. Any other type of file that is shared
must be described in each subprogram that references it.
The file must be closed before the subprogram is exited so
that another program using the file can open it for
processing. This method of sharing files should be avoided;
External files provide more efficient processing.

EXTERNAL FILES

External files can be referenced by any program in the run
unit. File information exists external to the programs.
The record areas are shared in the same manner as
Common-Storage Section items are shared. External files
do not have to be closed by one program and reopened by
another program processing the files.

All External files must be declared in the main program.
The File Description (FD) entry for an External file
includes the EXTERNAL clause. The following restrictions
apply to an External file:

e Data items specified in the File-Control and FD
entries must be defined in the Common-Storage
Section. (This includes data-names in clauses such as
the BLOCK COUNT and RECORD KEY clause, but
does not include the Record Description entries of
levels 01 and subordinate entries.)

e The LABEL RECORDS clause in the FD entry must
specify OMITTED.

e The Report Writer feature cannot be used.

e The RERUN and SAME AREA clauses in the
I-O-CONTROL paragraph cannot be specified.

A subprogram describes only those External files it
references. The file description must be exactly the same
as it is in the main program; therefore, COPY statements
or UPDATE common decks should be used for External file
descriptions.

60497200 C



DATA BASE FILES

Data base files are accessed through the CYBER Database

Control System (CDCS). The interface with CDCS is
described in detail in section 14. When data base files are

shared between programs in a run unit, the main program
specifies the name of the subschema describing the data
base files in the SUB-SCHEMA clause in the
SPECIAL-NAMES paragraph. A subprogram that accesses
at least one data base file must also include the
SUB-SCHEMA clause in the SPECIAL-NAMES paragraph.
There are no other requirements.

PROCESSING WITH FAST
DYNAMIC LOADER

Fast Dynamic Loader (FDL) processing provides additional
capabilities during execution of COBOL subprograms. The
information on the FDL file, which must be created before
FDL processing can be used, allows the main program and
any subprogram in the same run unit to perform operations
related to the usage of program names.

PROGRAM NAME USAGE

The usage of program names affects the CALL statement
and allows the CANCEL statement to be executed for
dynamic subprograms. With FDL processing, program
names can be up to 30 characters in length. The CALL and
CANCEL statements can also specify a data item that
contains the program name instead of specifying a literal.
The FDL file indicates whether a subprogram is static or
dynamic. All static subprograms are loaded with the base
module. A dynamic subprogram is not loaded until a CALL
statement for that subprogram is executed. - After the
subprogram has been executed, the CANCEL statement
can be used to release the memory space occupied by the
subprogram.

For a dynamic subprogram, the ON OVERFLOW phrase can
be included in the CALL statement. This phrase specifies
a statement that is executed when there is not enough
room to load the dynamic subprogram. This could occur if

the maximum field length for the job or the field length
specified in the job statement ‘is reached. If the ON

OVERFLOW phrase is not specified and an overflow
condition occurs, the run is aborted. The phrase is ignored
if it is specified for a static program.

CALL "DEDUCTIONS"
USING DEDUCT-REC
ON OVERFLOW GO TO CANT-LOAD.

The dynamic subprogram DEDUCTIONS is called for the
first time. If the subprogram cannot be loaded within the

program field length, control is transferred to the
paragraph named CANT-LOAD.

FDL FILE CREATION

The FDL file, which must be made available to the
COBOL 5 compiler to initiate Fast Dynamic Loader
processing, consists of a series of card images containing
FDL processing information. The Program Equivalence
section of the file contains statements related to program
name usage.

60497200 £

A program equivalence statement equates the. program
name from the PROGRAM-ID paragraph of a subprogram
with the internal name used by the system. The program
name, which is also used .in CALL and CANCEL
statements, can be up to 30 characters in length. The
internal name cannot exceed seven characters and must be
unique within the run unit. If the subprogram is static, the
key word STATIC must be included in the program
equivalence statement; otherwise, the subprogram is
considered to be dynamic.

COMPILATION WITH FDL PROCESSING

When COBOL. 5 programs that use FDL processing are
compiled, the FDL parameter must be specified in the
COBOL5 control statement. This parameter designates the
FDL file to be used during compilation. The main program
and all subprograms are compiled as one compilation job.
The programs are input to the compiler in the following
order: main program, static subprograms, and dynamic
subprograms.

During compilation, overlay capsules are generated for the
dynamic subprograms as part of the relocatable binary
file. The capsule format allows subprograms to be
dynamically loaded and unloaded during execution.
Operating system control statements must then be
specified to load the binary file. Once the load file is
created, the overlay capsules and the main program must
be maintained as a unit. The unit can be executed from a
sequential file or it can be placed on a user library.

Another subprogram can be compiled and added to the user
library. The COBOL5 control statement must include the
SB parameter and the FDL parameter, which must specify
the same FDL file as when the library was created. The
COPYL utility can then be used to replace the subprogram
capsule on the original binary file. The load sequence must
then be repeated in order to create a new library.

CANCELING A SUBPROGRAM

When Fast Dynamic Loader processing is used, a dynamic
subprogram can be canceled. This releases the memory
space occupied by the subprogram. Once the subprogram
has been called and dynamically loaded, it cannot be
canceled until an EXIT PROGRAM statement has been
executed.

The CANCEL. statement specifies one or more dynamic
subprograms to be canceled. A subprogram is indicated by
specifying either the program name as a nonnumeric literal
or an alphanumeric data item containing the program
name. If the subprogram to be canceled is not currently
loaded, no action takes place and control is passed to the
next executable statement.

CANCEL "DEDUCTIONS", PROG-NAME.

The subprogram DEDUCTIONS and the subprogram
identified by the current contents of the data item
PROG-NAME are canceled when this statement is
executed, If either subprogram has not been loaded or has
already been canceled, no action takes place for that
subprogram.

10-3



WRITING A COBOL SUBPROGRAM

A COBOL subprogram is written the same as any other
COBOL program. When data is shared between the main

program and the subprogram, certain requirements must be

met. The specific requirements depend on the method used
to specify the common data in the main program.

PROCEDURE DIVISION HEADER

The USING phrase must be included in the Procedure
Division header when the CALL statement in the main
program specifies shared data in a USING phrase. Each
data item specified in the main program CALL statement
must be referenced in the subprogram Procedure Division
header.

The data-names in the subprogram need not match the
data-names in the main program; the data items
correspond by position in the USING phrases rather than by
data-names. The use of the Procedure Division header to
identify shared data is shown in the second sample program
at the end of this section of the guide.

LINKAGE SECTION

The Linkage Section is included in the subprogram when
shared data is specified through the USING phrases in the
Procedure Division header of the subprogram and in the
CALL statement of the main program. This section
describes the common data items for processing by the
subprogram.

The data-names specified in the Procedure Division header
are described in the Linkage Section as level 77 or level 01
entries. The data descriptions of these data items must
match the corresponding data descriptions in the main
program. Values cannot be assigned to Linkage Section
items; if a VALUE clause is specified, it is ignored and
causes a trivial diagnostic to be issued.

Results are unpredictable if a Procedure Division
statement references a Linkage Section item that is not
specified in the Procedure Division header or is not
subordinate to one of those items.

An item defined in the Linkage Section should be moved to
a Working-Storage item if it is referenced frequently. This
eliminates the additional overhead created by Linkage
Section references.

COMMON-STORAGE SECTION

The Common-Storage Section provides the most efficient
method for sharing data between programs. This section
must be included in the subprogram when it is called by a
COBOL 5 program that specifies shared data in the
Common-Storage Section. It is also used when the
subprogram is called by a FORTRAN or COMPASS program
that shares data through the common bleck CCOMMON. If
an External file is used by the subprogram, data items
specified in the File-Control entry and the FD entry are
defined in the Common-Storage Section. For example, if
data-names are used in the BLOCK COUNT clause or FILE
STATUS clause, they wmust be defined in the
Common-Storage  Section. However, level 01 and
subordinate Record Description entries must not be defined
in the Common-Storage Section.

10-4

Data-names and descriptions in the main program and the
subprogram can be different, but the storage allocations
must be the same. For example, a table described with the
OCCURS clause in the main program can be described as
individual elements in the subprogram as long as the table
size is not changed. For COBOL 5 programs, it is best to
use the COPY statement or UPDATE common decks to
ensure that the descriptions are the same.

Level 77 entries and Record Description entries can be
specified in the Common-Storage Section. The initial
value of a data item can be set by the VALUE clause in
the main program but not in the subprogram. If an initial
value is specified in the Common-Storage Section of the
subprogram, the value is ignored and a warning diagnostic
is issued.

RETURN OF CONTROL -

The subprogram returns control to the main program when
the EXIT PROGRAM statement is executed. Control is
returned to the statement immediately following the CALL
statement in the main program.

SAMPLE PROGRAMS

Three examples are included in this section to illustrate
the use of subprograms. The first example shows a
COBOL 5 main program that enters a subprogram written
in FORTRAN 5. The second and third examples call a
COBOL 5 subprogram; the programs are the same
application, but the method of describing shared data
differs.

ENTERING A FORTRAN SUBPROGRAM

The use of a FORTRAN subprogram by a COBOL 5 main
program is illustrated in figure 10-1. The COBOL 5
program enters the subprogram (which is written in
FORTRAN) to determine the diagonal of a right triangle.

The ENTER statement in the COBOL 5 program (line 24)
specifies three data items to be used for passing data
between the main program and the subprogram. When the
ENTER statement is executed, the data items LEG1 and
LEG2 contain the triangle dimensions that are passed to
the FORTRAN subprogram; the data item DIAG is used to
receive the result computed by the subprogram. The
subprogram identifies the three data items as A, B, and C,
respectively.

CALLING A COBOL SUBPROGRAM

Two different ways to specify the data to be passed
between a COBOL 5 main program and a COBOL 5
subprogram are shown in the programs illustrated in
figures 10-2 and 10-3. In figure 10-2, the main program
specifies the shared data in the CALL statement; the
subprogram specifies the data in the USING phrase of the
Procedure Division and describes the data in the Li