CONTROL DATA®

6400/6500/6600 COMPUTER SYSTEMS
~ - COBOL Reference Manual

Additional copies of this manual may be obtained
from the nearest Control Data Corporation Sales office.

CONTROL DATA CORPORATION

Documentation Department

June, 1967 3145 PORTER DRIVE ©1967, Control Data Corporation
Pub. No. 60191200 PALO ALTO, CALIFORNIA Printed in the United States of America

ACKNOWLEDGEMENT

The following acknowledgment is in accordance with the requirements of the official government
manual describing COBOL, Edition 1965.

""This publication is based on the COBOL System developed in 1959 by a committee composed of
government users and computer manufacturers. The organizations participating in the original
development were:

Air Materiel Command, United States Air Force

Bureau of Standards, United States Department of Commerce

Burroughs Corporation

David Taylor Model Basin, Bureau of Ships, United States Navy

Electronic Data Processing Division, Minneapolis-Honeywell Regulator Co.

International Business Machines Corporation

Radio Corporation of America

Sylvania Electric Products, Inc,

UNIVAC Division of Sperry Rand Corporation
"In addition to the organizations listed above, the following other organizations participated in the
work of the Maintenance Group:

Allstate Insurance Company

The Bendix Corporation, Computer Division

Chase Manhattan Bank

Control Data Corporation

DuPont Corporation

General Electric Company

General Motors Corporation

Honeywell

Lockheed Aircraft Corporation

National Cash Register Company

Owens-Illinois Incorporated

Philco Corporation

Royal McBee Corporation

iii

Space Technology Laboratories Incorporated
Southern Railway Company

Standard Oil Company (N.J.)

Sylvania Electric Products Incorporated
United States Steel Corporation

Westinghouse Electric Corporation

"Any organization interested in reproducing the COBOL report and specifications in whole or in part,
using ideas taken from this report as the basis for an instruction manual or for any other purpose is
free to do so. However, all such organizations are requested to reproduce this section as part of the
introduction to the document. Those using a short passage, as in a book review, are requested to
mention "COBOL'" in acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or group of companies, or of
any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the COBOL Committee as to
the accuracy and functioning of the programming system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL. Inquiries concerning the proce-
dures for proposing changes should be directed to the Executive Committee of the Conference on
Data Systems Languages.

"The authors and copyright holders of copyrighted material used herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programming for the
Univac (R) I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifications.

Such authorization extends to the reproduction and use of COBOL specifications in programming
manuals or similar publications."

iv

CONTENTS

INTRODUCTION
NOTATIONS USED IN MANUAL

CHAPTER 1 IDENTIFICATION DIVISION

1.1 Specification of Identification Division

CHAPTER 2 ENVIRONMENT DIVISION

2.1 Specification of Environment Division
2.2 Configuration Section
2.3 Input-Output Section

CHAPTER 3 DATA DIVISION

Specification of Data Division

Data Description

Sections

File Description Entry

Record Description Entry

Alphabetic List of Data Division Clauses

LW wwwww
SO W N

CHAPTER 4 PROCEDURE DIVISION

.1 Specification of Procedure Division

Declaratives

Segmentation

Statements and Sentences

Conditions

Arithmetic Expressions and Statements

Options

Alphabetic List of Procedure Division Statements

NN NN N N NN
o ~1 O WU W

CHAPTER 5 THE REPORT WRITER

General Description

Data Division Entry Formats
Report Description Entry
Report Group Description Entry
Procedure Division Statements
Sample Program

[I <2 B<) B B &) V) |
SO W N

vii

ix

1
—

]
)

|
-
N o

|
T LI N \CJ R
PN

[=2]

B R R R

I
—
-3

CHAPTER 6

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

APPENDIX I

APPENDIX J

vi

SCOPE/COBOL INTERRELATION
6.1 Input-Output Control

6.2 Compilation
6.3 Execution
6.4 COBOL Source Library

THE COBOL LANGUAGE
COBOL DISPLAY AND COLLATING SEQUENCE
COBOL RESERVED WORD LIST

INTERMEDIATE RESULTS IN ARITHMETIC
EXPRESSIONS

CALLING SEQUENCE FOR ENTER
SAMPLE PROGRAMS
DIAGNOSTICS

CONVERSION HINTS

NUMBER REPRESENTATION

BINARY OUTPUT FROM COMPILER

INTRODUCTION

COBOL for the CONTROL DATA ® 6400, 6500, and 6600 computers is a language resembling English
designed to simplify the programming of business data processing problems. Use of the COBOL
language produces easily modifiable source programs resulting in shorter program development time
and low program conversion costs.

This manual describes the 6400/6500/6600 COBOL source language, including a description of the
Report Writer feature.

The 6400/6500/6600 COBOL source language is an upwards compatible subset of DOD COBOL, 1965,
and is highly compatible with the CONTROL DATA 3000 series Compatible COBOL. In addition to all
the features of the CONTROL DATA 3600 COBOL, the 6400/6500/6600 C OBOL provides the following
features:

® Mass Storage input and output

® SORT verb to sort files in conjunction with the 6400/6500,/6600 Sort/Merge system

o RERUN option to allow restarting jobs at any specified point in the program

o RENAME option (level 66) to provide alternate naming of elementary items

e COMMON-STORAGE to permit data sharing by separately compiled programs

e COPY and INCLUDE to provide access to a source library

e REPORT WRITER to facilitate flexible formats for printed reports

e Segmentation and overlay of the object program

e 18-digit arithmetic operands

e Exponentiation available with COMPUTE

e Qualification allowed within the PROCEDURE division
The 6400/6500/6600 COBOL compiler is a two-pass system which resides on disk and operates under

control of the SCOPE system. Programs generated by the compiler also operate under SCOPE con-
trol and use the input/output file manager, the sort, and the restart features provided by SCOPE.

vii

NOTATIONS USED IN THIS MANUAL

Throughout this manual, basic formats are described for the essential elements of the COBOL
language. These formats are intended to guide the programmer in writing statements according
to the rules of the COBOL language. The following editorial conventions have been used.

Material enclosed in square brackets [] may be included or omitted as required
by the programmer.

When material is enclosed in braces { } , one, and only one of the enclosed items
must be chosen; the others are to be omitted.

When a pair of braces or brackets is immediately followed by ... representing
ellipses, the material within the braces or brackets may be repeated at the user's
option,

All words printed entirely in capital letters are COBOL words and have preassigned
meaning to the COBOL processor.

All underlined COBOL words are required unless the portion of the format containing
them is itself optional. Such words are key words; if any is missing or misspelled,
it is considered an error in the program. These words are not underlined by the
programmer

All COBOL words not underlined may be included or omitted at the option of the
programmer. They are used only for readability. Misspelling such words when
they are included in a format constitutes an error in the program.

All words printed in small letters represent information which the programmer is

to supply. These words generally indicate the nature of the information they represent

(level-number, data-name).

Special characters are essential where shown. For clarity, they are not underlined
in the manual.

Punctuation, where shown, is essential, and must be included by the programmer.
Other punctuation marks may be included in accordance with the rules specified in
this manual.

The notation 4 indicates the position of an assumed decimal point in an item.

L .
A numeric character with a plus or minus sign above it (n) indicates an operational
sign is stored in combination with the numeric character.

Character positions in storage are shown by boxes, [A[BJC [D]. An empty

box means an unpredictable result.

A indicates a space (blank).

ix

IDENTIFICATION DIVISION 1

The Identification Division specifies the information to identify the source program and the output
from compilation. It must include the program name, and may also include the date the program
was written, the date compiled, and so forth. Information specified in this division is included in
the listing of the source program, but only the PROGRAM-ID clause affects the object program.

1.1 SPECIFICATION OF IDENTIFICATION DIVISION

IDENTIFICATION DIVISION |

PROGRAM-ID. program-name,

[AUTHOR. comment-sentences]

[INSTALLATION. comment-sentences]

[DATE-WRITTEN. comment-sentences]
[DATE-COMPILED. comment-sentences]
[SECURITY. comment-sentences]

[REMARKS. comment-sentences]

The header IDENTIFICATION DIVISION begins in column 8 of the first line, and is followed by a per-
iod. The name of each succeeding paragraph is specified on a new line, each begins in column 8 and
is followed by a period. Only the PROGRAM-ID paragraph is required.

PROGRAM-ID. program name,

Program name may be up to 30 alphanumeric characters; the first must be alphabetic. This name is
used in referring to the source program, the object program, and all associated documentation. The
first seven characters of the name are used by the SCOPE system to identify the program. When the
subcompile capability is used, the first six characters in the program name must differ from the first
six characters in the name of any other separately compiled subprogram that is part of the same
COBOL program. The SCOPE system and subcompile capability are described in Chapter 6.

Succeeding paragraphs in this division supply documentary information. Any paragraph specified
will appear in the source program listing.

ENVIRONMENT DIVISION 2

The Environment Division provides a method for describing any aspects of a COBOL program that
depend on the physical characteristics of a specific computer. This division must be included in
every COBOL source program.

The Environment Division must be rewritten and the entire source program recompiled when the
object program is to be run on different computers. Rewriting and recompilation may also be nec-
essary for different configurations of the same computer.

2.1 SPECIFICATION OF ENVIRONMENT DIVISION
The information in the Environment Division is specified in two sections:

The CONFIGURATION SECTION contains the computer specifications. The SOURCE-COMPUTER
paragraph specifies the name of the compiling computer. The OBJECT-COMPUTER paragraph
specifies the name of the executing computer. The SPECIAL-NAMES paragraph associates hard-
ware devices, switch positions and character controls with mnemonic names in the source program.
The INPUT-OUTPUT SECTION describes the external devices and the data storage techniques.

The FILE-CONTROL paragraph names the files and their associated external devices. The I-O-
CONTROL paragraph defines control techniques to be used in the object program.

ENVIRONMENT DIVISION,

CONFIGURATION SECTION.

SOURCE-COMPUTER. source-computer-entry

OBJECT-COMPUTER. object-computer-entry

[SPECIAL-NAMES. special-names-entry]

INPUT-OUTPUT SECTION.

FILE-CONTROL. file-control-entry

[I-O-CONTROL. input-output-control-entry]

The header, ENVIRONMENT DIVISION begins in column 8 on the first line of the division. The
section headers and paragraph names all must begin on new lines in column 8.

2.2 CONFIGURATION SECTION

The SOURCE-COMPUTER and OBJECT-COMPUTER paragraphs must be included; however, they
are treated as notes and have no effect on the object program.
SOURCE-COMPUTER. COPY library-name.

6400
SOURCE-COMPUTER. {6600 }

OBJECT-COMPUTER. COPY library-name.
OBJECT-COMPUTER, [6400}

6600

2.2.1 SPECIAL-NAMES

This paragraph equates mnemonic-names with special control characters and standard names of
system files. It also equates switch-status-names with on or off status. Two clauses permit the
specification of non-standard currency conventions. If none of these features is required, SPECIAL-
NAMES may be omitted.

Format 1:

SPECIAL-NAMES. COPY library-name.

Format 1 is used only when the COBOL library contains the entire description of all SPECIAL-
NAMES used in the program.

Format 2:

SPECIAL-NAMES.
I:SWITCH integer-1

ON STATUS IS switch-status-name-1 [OFF STATUS IS switch-status-name-2]
{(_)E STATUS IS switch-status-name-2 [ON STATUS gswitch-status—name-l]]:l o
[implementor-name-1 IS mnemonic-name-1
[implementor-name-2 IS mnemonic-name-2].. .
[CONSOLE IS mnemonic-name-3j
[CURRENCY SIGN IS literal]
[DECIMAL-POINT IS COMMA]

[non-numeric-literal-1 IS mnemonic-name-4
[non-numeric-literal-2 IS mnemonic-name-5]...]

2-2

SWITCH

The SWITCH clause is used to test the ON/OFF status of a machine switch. SWITCH is followed by

a space and an integer from 1 to 6 corresponding to switches 1 to 6. ON STATUS, OFF STATUS, or
both may be specified for each switch depending on references in the Procedure Division. If a switch-
status-name is not unique, it must be qualified by a switch name, SWITCH integer-1, whenever it is
referenced. A reference to a switch-status-name in the Procedure Division is a reference to the
corresponding position of the switch.

Switches are set by the operator or by control card as specified by SCOPE.

implementor-name IS mnemonic-name

This clause equates mnemonic names in the COBOL source program to valid SCOPE file names.
The implementor name must conform to the naming conventions for SCOPE files (Chapter 6). All
implementor names appearing in the Special Names paragraph and in the ASSIGN TO clauses of the

File Control paragraph must be unique and may appear only once each. The special system files,
such as INPUT and OUTPUT, are valid implementor name entries.

CONSOLE IS mnemonic-name

This clause equates a mnemonic name specified in the DISPLAY statement to the display console.

CURRENCY SIGN IS literal
The literal in this clause replaces the dollar sign wherever it appears in the PICTURE clause and
the FLOAT DOLLAR SIGN wherever it appears in an editing clause. The literal is limited to a single

character and it cannot be any of the following:

0123456789
ABCDJKLPRSVX?Z

* o+ - ’ () .
DECIMAL-POINT IS COMMA

This clause exchanges the functions of the decimal point and the comma in the character string of
PICTURE clauses and in numeric literals.

2-3

non-numeric-literal IS mnemonic-name

This clause is used to associated special control characters with mnemonic names referenced in the
Procedure Division. It is required when a mnemonic name is specified in the WRITE BEFORE/
ATTER option of the WRITE statement, and when the CODE option of the Report Writer is used.

The non-numeric-literal is limited to one character, which must be enclosed in quotation marks.
The character may be any one of the COBOL character set except the quotation mark.

2.3 INPUT-OUTPUT SECTION

This section consists of the header INPUT-OUTPUT SECTION and the two paragraphs FILE-CON-
TROL and I-O-CONTROL. If ncither paragraph is needed, the entire section may be omitted.

2.3.1 FILE-CONTROL

This paragraph assigns implementor names to each file in the program. It may also be used to indi-
cate that extra input-output areas are required for buffers.

Format 1:

FILE-CONTROL. COPY library-name.

Format 1 is used only when the COBOL library contains the entire description of the FILE-CONTROL
paragraph.

Format 2:

FILE-CONTROL.

SELECT [OPTIONALJ file-name-1 [RENAMING file-name-2]

ASSIGN TO implementor-name

- REEL
FOR MULTIPLE 'UNIT]]

RESERVE {w } ALTERNATE {

AREA H
integer-1

AREAS

[FILE-LIMIT IS literal-1]

i SEQUENTIAL l]
ACCESS MODE IS [RANDOM

[PROCESSING MODE IS SEQUENTIAL]

ACTUAL)
H.s.ma@_ld KeY ls—data—name-o].
[SELECT...].

Each file described in the Data Division must be named and assigned to an implementor name in the
FILE-CONTROL paragraph.

SELECT

The entry file begins with the word SELECT and terminates with a period. Each file named must

be described in a DATA Division entry unless the RENAMING option is specified, and the file name
must be the same as that used in the Data Division; this name must be unique within the source pro-
gram. A single file name, however, may represent both an input and output file.

OPTIONAL

If an input file is named which will not necessarily be present when the object program is executed,
the word OPTIONAL immediately precedes the file name following the word SELECT.

RENAMING

When file and record descriptions are identical for two files , they are written only once in the
Data Division. (For example, a master file input to an updating run and the resulting new master
file.) Then the RENAMING option is included in the FILE CONTROL paragraph. File-name-2 is
the file described in the Data Division, file-name-1 is the file with the identical file and record
descriptions. File-name-2 must be named elsewhere in the FILE CONTROL paragraph as the
object of a SELECT entry; however, the SELECT clause must not contain a RENAMING option;
and file-name-2 must not be a SORT file. This option does not permit interchangeable file names,
each file name refers to a different file.

ASSIGN TO

A file named in a SELECT entry is assigned to an implementor name- specified by this clause.
Implementor-name must be a file name as specified by the SCOPE system (chapter 6). The special
SCOPE system files, such as INPUT and OUTPUT, are valid entries for implementor-name. If
such an association is specified, the system file name will become the external file name. The
implementor-names appearing in the ASSIGN TO clause and in the Special-Names paragraph must
be unique and each name may appear only once. The implementor name is formed like a data
name except that it must be unique in the first six characters and may not contain a hyphen. A
logical input-output device is assigned to the file named immediately following the word SELECT.
If the RENAMING option is used, the file within that option (file-name-2) is assigned to a logical
input-output device within its own SELECT entry.

A maximum of 53 files and reports can be specified in any one COBOL program. All files appearing
in FD and SD entries must be named in this paragraph.

MULTIPLE REEL

May be specified for a file that uses more than one tape reel. This phrase is not necessary since
multiple reels are handled automatically by the input-output control system which locates and assigns
physical units as needed.

RESERVE ALTERNATE AREAS

Permits the user to specify additional buffer area. One buffer area is used per file for buffering
data between the computer and the input-output devices. The one buffer area is circular; that is,
the highest addressed location is immediately followed by the lowest. The size of this buffer may be
increased by specifying additional alternate areas according to this formula:

S = (N*R) + (PRU-1)
where:

S = buffer size

N = number of alternate areas - 1

R = COBOL record size

PRU = physical record size, (see Chapter 6 for PRU)

FILE-LIMIT(S), ACCESS MODE, PROCESSING MODE, ACTUAL/SYMBOLIC KEY

These clauses may be specified for mass storage files only. ACCESS MODE is required for mass
storage files. When the mode is SEQUENTIAL, mass storage records are obtained or placed se-

quentially. Neither the ACTUAL/SYMBOLIC KEY nor the FILE-LIMIT need be specified for a file
with sequential access mode.

FILE-LIMIT must be used when the mode is RANDOM. It specifies the maximum number of records
that can be written on or read from a random access file. Literal-1 becomes the size of the file
index. The actual number of records written on a file determines when the INVALID KEY clause of
a READ for that file is executed. The INVALID KEY clause for a WRITE is determined by the
specified file limits,

When the mode is RANDOM, either ACTUAL KEY or SYMBOLIC KEY must be specified. The mass
storage control system obtains or writes each record randomly. The specified logical record is
located through data-name-5 of the ACTUAL/SYMBOLIC KEY clause and is made available on exe-
cution of a READ statement. When a WRITE statement is executed for a random access file, the
record is effectively placed at the location in the file specified by data-name-5 of the ACTUAL/
SYMBOLIC KEY clause. The user is responsible for setting the contents of data-name-5 prior to
each READ, WRITE, or SEEK statement executed for a random access mass storage file. If no
SEEK is issued prior to a READ or WRITE, the record is automatically located through the current
value of data-name-5. If a SEEK is issued, the location of the record as specified by data-name-5
is made available to the next READ or WRITE executed. If data-name-5 names or points to the
location of a record that is non-existent or outside the specified file limits, the INVALID KEY clause

2-6

of the READ or WRITE is executed. Data-name-5 of the ACTUAL/SYMBOLIC KEY clause must be
unique; it may be qualified, but not subscripted. If ACTUAL KEY is specified, data-name-5 is a
numeric item; at object time it contains a positive integer representing a position in the number index
of a random access file. This index number is a digit from 1 through the maximum size for the file
index specified by FILE-LIMITS. If SYMBOLIC KEY is specified, data-name-5 consists of one to
seven display code characters representing the name in the name index associated with a record.

The index tables resulting from this clause are described in chapter 6.

PROCESSING MODE IS SEQUENTIAL
This clause is for documentation purposes only. The sequential mode is used by the 6400/6500/6600
compiler to process all mass storage records. If both access and processing mode are sequential,

records are requested and processed as they appear on the file. If access is random and processing
is sequential, records may be requested in any order, and they are processed in the order requested.

2.3.2 |-O-CONTROL

This paragraph specifies the points at which rerun is to be made, the memory area to be shared
by different files, and the location of files on a multiple file tape reel. If none of these techniques
is needed, the I-O-CONTROL paragraph may be omitted.

Format 1:

I-O-CONTROL. COPY library-name.

Format 1 is used when the COBOL library contains the entire I-O-CONTROL paragraph. Otherwise
format 2 must be used.

Format 2:

I-O-CONTROL.

END OF REEL

[RERUN [ON file-name-1] EVERY integer-1 RECORDS

} OF file-name-2]

[SAME [[%BD }:l AREA FOR file-name-3, file-name-4... [file-name-5...]...]

[MULTIPLE FILE TAPE CONTAINS file-name-6 [POSITION integer-2] [file-name-7. ..

[POSITION integer-3...1]].

RERUN

This clause specifies complete checkpoint dumps at the end of each reel of file-name-2, or when the
specified number of records is reached. Upon request for restart, all files are automatically re-
positioned and the program may be restarted at thec most recent checkpoint. If file-name-2 is on a
tape unit, either the REEL or the RECORDS option may be specified. If it is not on a tape unit, only
the RECORDS option may be specified. If file-name-~2 is a SORT file, the entire clause is ignored .
File-name-1 is used for documentation only. The SCOPE system selects a disk file for the RERUN
output.

SAME

This clause allows two or more files to share the same record area in memory, and also the same
input-output areas for buffering. If the RECORD/SORT option is omitted, both the record and input-
output areas will be shared by the files specified. If the RECORD option is specified, only the record
area is shared; it is the area in storage affected by READ and WRITE statements.

SAME SORT AREA may be specified for documentation purposes only; it has no effect on the object
program, since the sort/merge system uses the same area for all files sorted.

Since the opening of a file initializes the input-output and record areas, it is illegal for more than one
of the files specified in a SAME clause to be open at the same time,

If two files specified in a RENAMING clause share the same record area, any reference to an item in
the record area must be qualified by the name of the appropriate file.

The SAME clause may be repeated as necessary.

MULTIPLE FILE

This clause is required when two or more files share the same rcel of tape. Regardless of the number
of files on a single reel, only those files that are used in the object program nced be specified. If all
files on a reel are listed in the exact order that they will be read or written with no files omitted, the
POSITION need not be given. Otherwise, POSITION is necessary to specify the position relative to
the beginning of the tape for all the files to be processed. If POSITION is used for one file, it must
be used for all other files on the reel.

2-8

DATA DIVISION 3

The Data Division, required in every COBOL program, contains a full description of data to be pro-
cessed by the object program. Every item referenced by name in the Procedure Division, except
the special registers and figurative constants (Appendix A), must be defined in the Data Division.
An item is a specific area in memory which is named and defined in this division and which contains
or will contain the data to be processed. Data may be divided into five types:

e Data stored or to be stored on an external device in the form of a file

e Data used to communicate between independently compiled programs

e Data developed internally during the operation of the program

® Data that has a fixed value

e Data to be output as reports

The Data Division, therefore, consists of File Section, Common-Storage Section, Working-Storage
Section, Constant Section, and Report Section.

3.1 SPECIFICATION OF DATA DIVISION

DATA DIVISION.
FILE SECTION.

COMMON-STORAGE SECTION.

WORKING-STORAGE SECTION.

CONSTANT SECTION.

REPORT SECTION.

The header DATA DIVISION is followed on a new line by a section header. Descriptions of elements
involved in processing begin on the next line. These are followed by the next section header, and so
forth. Each header is specified on a separate line, beginning in column 8, and is terminated by a
period.

If data comprising a particular section is not required by the program, the section header must be
omitted. When used, the sections must follow the order specified above.

3.2 DATA DESCRIPTION

3.2.1 ENTRY

The basic unit of description for the data in all sections is an entry. Each entry consists of a level
indicator or level number, a name which can be referenced elsewhere in the program, and one or
more clauses describing the data item.

Entries in the Data Division are of three types:

e File description entries describe physical characteristics of a file.
® Record description entries describe characteristics of items used in the program.

e Report, report group, and report element description entries describe items that are to
appear on a report.

All sections except the Report Section contain record descriptions; the File Section contains file
descriptions and record descriptions; the Report Section contains report descriptions only.

3.22 GROUPITEM

A group item congists of two or more related items. A record description entry is written for each
of the items in the group and the group itself must have at least a level number and a name. A
group item may itself be part of a larger group. The most inclusive group item is called a record
and must have the level number 01. (A record at the 01 level may be a single item.) When a record
is in the Working-Storage, Common-Storage, or Constant Section, each name associated with the
level number 01 must be unique. When a record is in the File Section the record name may be
qualified by the file name. Data names of group items not at the 01 level need not be unique if they
can be made unique by qualification.

3.2.3 ELEMENTARY ITEM

Elementary items, items that cannot be further subdivided, are preceded by a level number (2-49)
which must be the largest number in the group containing the item.

3-2

3.2.4 INDEPENDENT ITEM

An independent item is a single item, which does not include any items that can be referenced
independently, and is not contained in a larger item that can be referenced so as toinclude it.
Each independent item requires a separate record description entry consisting of level number,
data name, and descriptive clauses. Entries for independent items have the special level number
77. Level 77 items cannot occur in the File Section or in the Report Section.

3.2.5 LEVEL NUMBER

COBOL data description is based on the concept of levels of data. The more inclusive an item, the
higher its level. Each entry in a COBOL program has a level indicator or level number. A file,
which is the highest level of data, has a special level indicator, FD or SD, preceding the file name

in a file description entry. The record is the next highest level of data, and a record description
entry always has the level number 1 or 01 preceding the data name for the entry. A record may
contain group items which may in turn contain group items or elementary items. Group items within
a record and elementary items must have level numbers in the range 2-49. Level numbers need

not be consecutive as long as the less inclusive item has the higher number. The specific level
number is determined by the user.

Example: (This example gives only level number and data name; more clauses are required for
a complete record description entry.)

01 PAYROLL-RECORD

02 NAME
04 FIRST-INITIAL
04 SECOND-INITIAL
04 LAST-NAME

02 EMP-NUMBER

02 DATE
03 MONTH
03 DAY
03 YEAR

02 HOURS-WORKED

3.2.6 SPECIAL LEVEL NUMBERS

Three special level numbers, 77, 88, and 66, specify particular types of record description entries
rather than the hierarchy of the item. Level 77 identifies independent items in the Common-Storage,
Working~-Storage, and Constant Sections. Level 88 identifies record description entries for con-
dition names, which may appear in the Data Division anywhere except the Constant Section. Level 66
is used to rename elementary items or group items. A level 66 item cannot be used to rename an
item in another level 66 entry nor can it rename a 77, 88, or 01 level entry. A level 66 entry re-
quires the RENAMES clause.

3.2.7 DATA-NAME

Every record description entry must have a subject; that is, a name assigned to the item. This
name cannot be qualified or subscripted when used as the subject of a Data Divisionentry. The rules
for forming data names, report names, file names and condition names are as follows:

The name may contain any of the characters: 0, 1, ...9,
A, B, ...Z,
- (hyphen)

Each name must contain at least one, but not more than 30 characters and at least one character
in a data name must be alphabetic.

No name may contain a blank.

Names may neither begin nor end with a hyphen, although a hyphen may be used between other
characters in the name for readability.

Two or more consecutive hyphens are not permitted.

3.2.8 FILLER

The word FILLER may be used instead of a data name as the subject of an entry that is never re-
ferenced. It may only name an unused elementary item. FILLER cannot be used to replace any of

the following:
file name (FD)
report name (RD)
data name at the record level (01)
condition name or variable (88)
independent item name (77)
renamed item name (66)

An item assigned the name FILLER cannot be directly referenced from the Procedure Division,
although a group containing a FILLER item can be referenced.

3.2.9 CONDITION NAME

A condition name is assigned to a value or set of values that a data item may assume. The record
description entry for the data item is followed by one entry for each condition name associated with
the item. A condition name must conform to the rules for a data name. A condition name entry is
always preceded by the special level number 88 and must be followed by a VALUE clause specifying
the particular value the data item may assume. Any reference in a conditional statement to the
condition name becomes a reference to the value associated with it. Since each constant item has an
initial unchanging value, condition names cannot be used in the Constant Section.

3.2.10 INITIAL VALUE

An initial value is the value of any item at the beginning of object program execution. This is
specified by a VALUE clause in the record description entry in Working-Storage or Common Storage.
If a value is not specified, the initial value of the item is unpredictable. Any value, numeric or non-
numeric, may be assigned as the initial value of an item with the following restrictions:

The character used to specify the value must be in the same class as the item. Numeric items
can have only numeric initial values; alphabetic items only alphabetic initial values.

If the number of character positions occupied by the initial value exceeds the number of char-
acter positions specified for the item in the SIZE clause, truncation will occur. If the size of
the value is less, standard rules for justification apply.

Editing may not be performed on the initial value.

3.2.11 ASSIGNED VALUE

The value of a constant item is assigned by a VALUE clause in the entry. The value may be numeric
or non-numeric, within the same restrictions indicated for the initial value of a working-storage or
common-~storage item. Every elementary and independent item in the Constant Section must have a
value assigned unless it is within the scope of a REDEFINES.

3.2.12 LITERAL

Literals may be used wherever the format indicates. A literal is an explicit statement of the value
to be used in an operation performed by the object program. Literals may be numeric or non-
numeric. A complete definition of literals and the rules governing their formation is contained in
Appendix A.

3.2.13 FIGURATIVE CONSTANT
Figurative constants are predefined as a part of the COBOL language. They may be used wherever

a literal is allowed in the reference format. A complete list of figurative constants is contained in
Appendix A.

3.3 SECTIONS

3.3.1 FILE SECTION

The File Section in the Data Division defines the contents of data files stored on an external device.
One file description entry is specified for each file to be processed by the program. The section
header is followed by the file description entry which consists of a level indicator (FD or SD), a file

name, and a series of independent clauses. Each file description entry is followed by record
description entries for items associated with that file. These entries give the item patterns for
logical records of different types and describe the characteristics of each item.

If two or more files are identical except for the file name, the file description and record description
entries need not be repeated. These files are specified in the RENAMING clause of the FILE-CON-
TROL paragraph in the Environment Division. Sort files, however, may not appear in the RENAMING
clause but must be specified individually in the File Section.

FILE SECTION.
FD file-name-1...
01 data-name-1...
02 data-name-2...

03 data-name-3...
01 data-name-4
02 data-name-5

01 data-name-6
8D file-name-2

FD file-name-3

3.3.2 COMMON-STORAGE SECTION

During execution of an object program, independently compiled subprograms may communicate
through Common-Storage. Each item in a Common-Storage Section has a record description entry;
all entries are preceded by the header COMMON-STORAGE SECTION and a period. The entries
for independent items begin on new lines, and these are followed by entries for group items.

Each independently compiled subprogram which uses a Common-Storage Section for communication
must define common-storage items in its Data Division. Data in the common-storage sections must
be identical although the descriptions may differ. For instance, the same table fully described in
one section might be alternately described with an OCCURS clause in the common-storage section

of a separately compiled subprogram. The references from each subprogram differ, but the data
referenced is the same.

The Common-Storage Section is allocated to a labeled common block named CCOMMON.

3.3.3 WORKING-STORAGE SECTION

During execution of an object program, intermediate results and other information need to be stored
before being processed further or transferred out of memory. The storage areas, called Working-
Storage items, are contained in the Working-Storage Section. Each item must have a record descrip-
tion entry. Entries are preceded by the header WORKING-STORAGE SECTION. Independent items
are listed before grouped items.

WORKING-STORAGE SECTION.

{ COMMON-STORAGE SECTION.]

77 data-name-1
88 condition-name-1

77 data-name-2
01 data-name-3
02 data-name-4

66 data-name-5 RENAMES data-name-4
01 data-name-6
02 data-name-7
03 data-name-3
88 condition-name-2

3.3.4 CONSTANT SECTION

The Constant Section of the Data Division contains all the record description entries specifying the
named constants used in the program. A named constant is an item with a preassigned value that
does not change during processing. The section header, CONSTANT SECTION and a period is
followed on succeeding lines first by entries for independent constant items and then by entries for
grouped constant items.

Every independent and elementary item in the Constant Section must have a value specified by a
VALUE clause.

CONSTANT SECTION.

77 data~-name-1l...VALUE...

77 data-name-2...VALUE,..
01 data-name-3...VALUE...
02 data-name-4...VALUE...

01 data-name-5...VALUE...

02 data-name-6...VALUE...
03 data-name-7...VALUE...

3-7

3.3.5 REPORT SECTION

The Report Section is included when the Report Writer feature is used; it must be the last section in
the Data Division. The header REPORT SECTION and a period is followed on succeeding lines by
entries describing the physical format of each report to be produced. The level number RD and the
report name are followed by clauses specifying the page structure. The report name must be named
in the REPORT clause of the File Description Entry in the File Section. The Report Description
Entry is followed by one or more report group entries, which, in turn, may include group and ele-
mentary entries. A Report Group Description entry consists of the level number 01, an optional
data-name, and a series of independent clauses. Report Element Description entries, describing
elementary or group items within a report group, consist of a level number (2-49), an optional
data-name, and a series of independent clauses.

See Chapter 5 for a complete description of Report Writer entries.

REPORT SECTION.
RD report-name-1
01 [data-name-1]
02 [data-name-2]

02 [data-name-3]
01 [data-name-4]
01 [data-name-5]

01 [data-name-6]
RD report-name-2

3.4 FILE DESCRIPTION ENTRY

The file description entries are at the highest level in the File Section. The section header is
followed by a file description entry consisting of a level indicator (FD or SD), a file-name, and a
series of independent clauses.

The file description entry for an external file (level FD) indicates recording mode, block size,
labeling conventions, names of records or reports comprising the file, and so on. The object
program requires this information to correctly interpret or create the file. This entry must be
specified for each file.

The Sort File Description entry (level SD) is a special type of file description which gives informa-
tion about the name, size and number of data records in the sort file. A sort file is defined as a
set of records to be sorted by the SORT statement.

3-8

File Description Entry (FD):
FD file-name-1
Format 1:

COPY library-name.

Format 2:
HIGH
[RECORDING MODE IS['%L }][{ LOW ‘ DENSITY:| 1
e HYPER

[FILE CONTAINS ABOUT integer-1 RECORDS]

[BLOCK CONTAINS [integer-2 TO] integer-3 { RECORDS }

CHARACTERS

RECORD-MARK m

RECORD CONTAINS [integer-4 TQ] integer-5 CHARACTERS I:DEPENDING ON l
— — data-name-1

STANDARD
RECORDS ARE oA
LABEL {RECORD IS } {QI\QILE_Q]
- data-name-2
[M or [I—Q } IS l literal-1 l
IDENTIFICATION data-name-3
[DATE-WRITTEN IS {hteral-Z } |
data-name-4
[EDITION-NUMBER IS literal-3 l |
data-name-5
[REEL-NUMBER IS ’ literal -4] :
data-name-6

literal-5
[RETENTION-CYCLE IS [datamamio_n } 1]

literal-6 l |

[VALUE OF ENDING-TAPE-LABEL-IDENTIFIER IS ‘
—_ data-namc-8

RECORDS ARE
RECORD IS

{REPORTS ARE
REPORT IS

DATA [} data-name-9 [data-name-10...]

} report-name-1 [report-name-2...].

[SEQUENCED ON data-name-11 [data-name-12.,.]T

TThis clause is used for documentation purposes only.

Sort File Description Entry:
SD file-name-2
Format 1:
COPY library-name.
Format 2:

[FILE CONTAINS ABOUT integer-1 RECORDS]
[RECORD CONTAINS [integer-4 TO] integer-5 CHARACTERS]

RECORDS ARE

bala {RECORD IS

] data-name-9 [data-name-10]. ..

Specification of a File Description Entry

The level indicator (FD or SD) is written in columns 8 and 9; the file name, on the same line, starts
in column 12. Clauses may follow on the same line separated from the file name by one or more
spaces or on the next line starting in column 12. The order in which clauses are specified is un-
important; each clause is separated from the next by at least one space. No punctuation between
clauses is necessary, but the entire entry must be terminated by a period. Each line after the first
begins at or to the right of column 12.

The rules for continuing an entry on more than one line are given in Appendix A.

3.5 RECORD DESCRIPTION ENTRY

Every item referenced in a program must be described in a separate record description entry. Items
are essentially specific areas in storage; the record description entries define the areas in terms of
size, the manner in which they should be interpreted, and so on, based on the characteristics of the
data to be stored in them.

Format 1:

level-number data-name-1 [REDEFINES data-name-2] COPY data-name-3 [FROM LIBRARY].

3-10

Format 2:

data-name-4
level -number { FILLER } [REDEFINES data-name-5]

; CHARACTERS
[SIZE IS integer-1 {DIGITS }

[PICTURE IS character-string]

COMPUTATIONAL
[USAGE IS i COMPUTATIONAL-n]
DISPLAY

[OCCURS [integer-3 TO] integer-4 TIMES [DEPENDING ON data-name-6]]
[SIGNED]

[SYNCHRONIZED I—Lm }

RIGHT
LEFT
[POINT LOCATION IS RIGHT
ALPHABETIC
NUMERIC
ALPHANUMERIC]
AN

] integer-5 [PLACES]]

[CLASS IS

[JUSTIFIED RIGHT]

ZERO SUPPRESS
CHECK PROTECT
FLOAT DOLLAR SIGN
FLOAT CURRENCY SIGN

[VALUE IS literal-1].

[LEAVING integer-6 PLACES] | [BLANK WHEN ZERO]

Format 3:
66 data-name-7 RENAMES data-name-8 [THRU data-name-9].

Format 4:

VALUE IS

VALUES ARE} literal-2 [THRU literal-3] [literal-4 [THRU literal-5]].

88 condition-name {

Specification of a Record Description Entry

Level numbers may be one or two digits. They begin in column 8 (01 or 1) or they begin to the right
of column 11 (02 or 2 through 49).

With the exception of report groups and items, a data name must be specified on the same line as the

level number and separated from it by at least one space, it should not start before column 12. The
data name is optional in report groups and items.

3-11

The order of the clauses is unimportant, except where explicitly stated. The first clause is separated
from the data name by at least one space, and each clausc is separated from the next by at least one
space. Punctuation between clauses is not nccessary, but the entry is terminated by a period. The
rules for continuing an entry on more than one line are given in Appendix A.

The specification of Report Description Entries is given in Chapter 5.

3.6 ALPHABETIC LIST OF DATA DIVISION CLAUSES

The following pages contain a complete list in alphabetic order of the clauses used in the File,
Working-Storage, Common-Storage, and Constant Sections of the Data Division. FEach clause is
fully described.

3-12

BLOCK CONTAINS

RECORDS
. 2 . _o| JRECORDS
BLOCK CONTAINS [integer-2 TO] integer 3[{ CHARACTERS }:|
The basic input-output buffer size is specified in terms of logical records or characters. Logical
records may be arranged one per block or more or less than one per block. If alternate areas are
specified in the FILE-CONTROL paragraph of the Environment Division, this basic buffer size is
increased by the number of alternate areas times the size specified in this clause,

Integer-2 and integer-3 are numeric literals with positive integral values. Integer-3 determines
the maximum number of records or characters per block — the block size. Integer-2 may be used
for documentation purposes but has no effect on block size. When record size is fixed, the word
RECORDS is used; when record size is variable, the word CHARACTERS may follow integer-3 or
may be omitted. If the clause is omitted, the block size is 512 words.

If a logical record is greater than 512 words, it is read or written in blocks of 512. It may be
desired to specify a block size larger than record size so that an entire block may be read when
only part of that block is needed to complete the record. The block size should not exceed the
buffer size. In general, the buffer size should be:

S = (N*R) + (PRU-1)
where

S = buffer size

N = number alternate records - 1
R = COBOL record size

PRU = physical record size

3-13

CLASS

NUMERIC
ALPHABETIC
ALPHANUMERIC
AN

CLASS IS

Any data item can be classified as numeric, alphabetic, or alphanumeric. The CLASS clause
indicates this classification to the processor.

NUMERIC Ttems which consist only of digits 0-9; they may, however, also contain
an assumed decimal point and an operational plus or minus sign, though
none of these characters occupies a character position in the item in
memory.

ALPHABETIC Ttems which consist only of alphabetic characters and the blank (or space).

ALPHANUMERIC Items which consist of any characters from the COBOL character set;
numeric, alphabetic, and special characters (Appendix B).

AN Acceptable abbreviation of ALPHANUMERIC.

The CLASS clause may be written for an item at any level. For a group item, it indicates the class
for every item within that group and must not be contradicted by CLASS clauses within the group.

An ALPHANUMERIC group may contain both NUMERIC and ALPHABETIC items. A group referenced
in a move operation should be described as ALPHANUMERIC. If class is omitted, or specified

other than ALPHANUMERIC, group items are treated as ALPHANUMERIC when a move operation is
performed.

A CLASS clause is not necessary when an entry contains a PICTURE clause, but if both are included,
the PICTURE clause determines the class of the item; and the CLASS clause is used for documentation
purposes only.

The class of all elementary items must be specified or implied; the class of 77 level items must be
specified by either a PICTURE or CLASS clause.

The word CLASS is optional and may be omitted without altering the meaning of the clause. The
word is omitted when SIZE, CLASS, and USAGE are combined,

Example:

01 INPUT-TABLE CLASS IS ALPHANUMERIC.
03 PROG-NAME ALPHANUMERIC SIZE 10.
03 LINES SIZE IS 5§ NUMERIC COMPUTATIONAL-1 DIGITS.
03 OCTALS.
05 OCTAL-CHARS AN SIZE 1 OCCURS 6 TIMES.

3-14

CLAUSE EDITING

Two editing clauses permit the programmer to specify editing without using the PICTURE clause.
These clauses are used to describe report items, so that numeric data may be edited by moving it
to such items; neither may be used with a PICTURE clause. All of the editing specified by such
clauses can also be specified by the PICTURE clause.

Leading zeros may be suppressed and replaced in the edited data item by blanks or asterisks or
blanks and one dollar sign. Zero suppression terminates with the first occurrence of a non-zero
digit in the data or an assumed decimal point in the edited item whichever occurs first.

ZERO SUPPRESS
CHECK PROTECT
FLOAT DOLLAR SIGN
FLOAT CURRENCY SIGN

[LEAVING integer-6 PLACES)

ZERO SUPPRESS

All leading zeros in data moved are suppressed and replaced by blanks in the edited data item.

CHECK PROTECT

All leading zeros are suppressed and replaced by asterisks in the edited data item.

FLOAT DOLLAR SIGN

All leading zeros are suppressed and replaced by blanks, except the rightmost which is replaced
by a dollar sign in the edited data item.

FLOAT CURRENCY SIGN

Identical to FLOAT DOLLAR SIGN except that the replacement character is the currency sign
specified in the Special Names paragraph.

LEAVING integer-6 PLACES

Terminates suppression before the assumed decimal point is encountered. Suppression of leading

zeros terminates when integer-6 character positions remain to the left of the decimal point in the
edited data item. Integer-6 must be a positive integer.

3-15

CLAUSE EDITING

BLANK WHEN ZERO

This second editing clause is used for editing data items with a value of zero; it may be used in

conjunction with the first clause.

The edited data item is set to contain all blanks if the data value

is zero. When the data is all zero and BLANK WHEN ZERO is specified, any editing, except
check protect, specified in the first clause is overridden in favor of inserting blanks. If check pro-
tect is specified, the entire field is set to *; but if float dollar sign is specified with BLANK WHEN
7ZERO, the edited field contains all blanks with no dollar sign when the data value is zero.

Examples of Clause Editing:

Source Data
[0]o]3[4]
3]

] =] =] [#]
-

=
]

:

6

[o]o]oJo]9]5]8]

[oJofoJofo[2]

1

lofofoJo|s]s]
T

[o[o [0 [L[3l7]

[o]oJoJo]ofo]

The receiving field must be large enough to contain the edited item.

3-16

Editing Clause

ZERO SUPPRESS

ZERO SUPPRESS

CHECK PROTECT

CHECK PROTECT

FLOAT DOLLAR SIGN

FLOAT DOLLAR SIGN

ZERO SUPPRESS LEAVING 2 PLACES
ZERO SUPPRESS LEAVING 4 PLACES
CHECK PROTECT LEAVING 1 PLACE
FLOAT SIGN LEAVING 2 PLACES

BLANK WHEN ZERO

Edited Item

>
e |
|

3

=
o |

*
o] [%]
ERE

51
AL

3 4

3|2

o]

[a[afafo]9]s]s]

IAIOIOIOIOLZI
f*l*l*1013l8|

[aTalsgfofof4f7

L—

[alalala]al 4]

COPY

This clause is used to copy data description entries from the COBOL source library, or from another
part of the Data Division.

Format 1:
COPY library-name.

Format 1 is used to copy file description entries (FD and SD) when a complete description of the file
exists in the COBOL library. It may also be used to copy the Special-Names, File-Control, or I-O-
Control paragraphs in the Environment Division if a complete description of these files is in the
COBOL library. Library-name is formed in the same manner as a data-name; it is up to 30 alpha-
numeric characters at least one of which must be alphabetic., When this format is used, no other
description of a file is required.

Format 2:
level number data-name-1 COPY data-name-2 [FROM LIBRARY].

Format 2 is used to copy record description entries from elsewhere in the Data Division or from a
special library file. It eliminates the necessity of specifying such entries each time they occur.

Copying begins with the first clause in the data-name-2 entry; the clauses originally associated with
data-name-2 are subsequently associated with data-name-1. All subsequent entries are copied in
totality. Copying ends when an entry with a level number numerically equal to or less than the level
number of data-name-2 is encountered, or when the end of the library entry is reached if the FROM
LIBRARY option is used. Depending on the level structure of the information, one or more entries
may be copied with a single COPY clause.

If there are items subordinate to data-name-1, the user must insure that the resulting hierarchical
structure is correct. During the copying process, the level numbers of all inserted entries are
adjusted by an amount equal to the difference between the level numbers of data-name-1 and data-
name-2.

The copied entries may appear either before or after the entry referring to them. An entry being
copied may not itself contain a COPY clause unless it is in the library. The copied entry may not
contain a REDEFINES clause although the copying entry (data-name-1) may be redefined. Data-
name-2 must not be the name of an item that requires subscripting. If the FROM LIBRARY option
is specified, copying can be nested to a maximum of five levels.

Examples:

1. FD MASTER-FILE COPY FILEA.

FILEA is the library-name of the COBOL source library deck containing a complete file
description entry which will be copied into the source program as the description of the
file named MASTER-FILE.

3-17

COPY

2. 01 SUM-DATA COPY SUMMARY-A,
If SUMMARY-A is a record description entry of the following form:

02 SUMMARY-A.
03 COUNT PICTURE 9(3).
03 G-TOTAL PICTURE 9(5)V99.
03 O-TOTAL PICTURE 9(6)V99.
03 G-DEVIATION PICTURE 9(4)V99.
03 O-DEVIATION PICTURE 9(4)V99.
02 SUMMARY-B.

Then the following data description will be copied into the source program at the location of the
COPY clause:

01 SUM-DATA.
02 COUNT PICTURE 9(3).
02 G-TOTAL PICTURE 9(5)V99.
02 O-TOTAL PICTURE 9(6)V99.
02 G-DEVIATION PICTURE 9(4)V99.
02 O-DEVIATION PICTURE 9(4)V99.

3-18

DATA RECORDS
FILE CONTAINS

RECORDS ARE

DATA {RECORD IS

} data-name-3 [data-name-4...]

This clause must be specified for each file description entry. It permits the processor to correlate
file and record description entries.

When more than one name is specified, the file contains a corresponding number of different types
of logical records. The order in which the names are listed in the clause is not important.

The presence of more than one logical record type does not alter the basic concepts involved in
handling individual logical records. Irrespective of type, all logical records from the same file are
processed from a specific record area. The size of the record area is equivalent to the largest
logical record in the file.

When the file description entry is for a sort file (SD), the data names identify records named in
RELEASE statements.

This clause or the REPORT clause (Report Writer, Chapter 5), must be included in each File
Description Entry. However, both clauses may not be specified in the same File Description Entry.

Examples:

FD CARD-FILE
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD-INPUT.

FD MASTER-FILE
LABEL RECORDS ARE OMITTED
DATA RECORDS ARE DETAIL SUMMARY.

SD OUT-OF-SORT-FILE
DATA RECORD IS INPUT-FILE.

FILE CONTAINS
FILE CONTAINS ABOUT integer-1 RECORDS
This clause indicates the approximate number of logical records in the file. It is optional and has no

effect on the object program. Since it is printed as part of the source program listing, it provides
documentation for this information.

3-19

JUSTIFIED

JUSTIFIED RIGHT

This clause specifies positioning when a receiving item contains more or fewer character positions
than there are in the data. Numeric data is aligned by decimal point. The justified clause, therefore,
cannot be used on a numeric or edited item. Non-numeric data is left justified unless specified to the
contrary by the JUSTIFIED RIGHT clause.

Justification occurs only when the data is transferred by any statement (except READ) that results
in data movement.

Example:
Picture Data Item Justified
S9(5) [1]2]5] [ololi]2[3 -- Right justified, zeros filled-in.
S9(4) V9]2 Jolofof1? - No justification, aligned by point.
S9(4)V9 [1]2 Right Illegal; item is numeric.
X(5) [a]Blc] [al|alalslc] Rignt Right justified; blanks filled-in.
X(5) lalB[c] [a]B]c]a]a] - Left justified normally.
X(2) (a|B[c| |B|c| Right Right justified, left character truncated.

3-20

LABEL RECORDS

Tape and disk files may contain label records which identify the file. A LABEL RECORD clause
must be included in every file description entry regardless of the presence or absence of label re-
cords; it specifies whether labels are standard SCOPE labels, non-standard user defined labels, or
omitted entirely. Only 1/2 inch coded magnetic tape files can have standard labels.

Format 1:
. RECORDS ARE D literal-1
LABEL RECORD IS STANDARD VALUE OF IDENTIFICATION } IS ldata—name—z }
[DATE-WRITTEN IS {11Leral-2 }1
data-name-3
[REAL-NUMBER IS [hteral'?’ }]
data-name-4
oral.
[EDITION-NUMBER 1§ | Literal-4 }]
data-name-5
[RETENTION-CYCLE TS {htera1'5 l]
data-name-6
Format 2:
RECORDS ARE literal-6
E —— - - F EN NG~ - - >
LABEL ‘ RECORD 1 } data-name-7 [VALUE OF ENDING-TAPE-LABEL-IDENTIFIER IS {data-name—S l]
Format 3:
RECORDS ARE
LABEL [RECORD .8 } OMITTED

Standard Label

If label records are standard, the first format is used. VALUE OF IDENTIFICATION must be in-
cluded. For an input file, the operating system checks the label record for equality with the specified
items. For an output file, it writes the specified items in the label record of the file. If DATE-
WRITTEN is not included by the user for an output file, SCOPE provides the date. In either case,

the date is converted and placed in the File Environment Table (Chapter 6) at the time an OPEN QUT-
PUT is executed for the file and prior to execution of any USE procedures for that file.

The data-names in the VALUE OF clause must be defined in the Common-Storage, Working-Storage,

or Constant Sections. The items or literals specified in this clause must have the following char-
acteristics:

3-21

LABEL RECORDS

1D 1-20 alphanumeric characters;

IDENTIFICATION the first must be alphabetic.

DATE-WRITTEN 6-digit integer, yymmdd = year, month, day

REEL-NUMBER 2-digit integer 01-99. If omitted, 01 is assumed. For subsequent

reels of the file, this number is incremented by 1.
EDITION-NUMBER 2-digit integer, 01-99. If omitted, 00 is assumed.
RETENTION-CYCLE 3-digit integer, 000-999 specifying number of days from date-written

that tape is to be saved; if omitted, 000 is assumed. 999 indicates
indefinite retention.

Non-Standard Label

Format 2 is used when labels are non-standard. The data-name option indicates the first record on
each reel is a separate physical record assumed to be a non-standard beginning label. Data-name-7
may not exceed 84 characters, but otherwise it is described like any other record in the file. For
an input file, the first record is available to the user in the area specified by data-name-7 after an
OPEN INPUT statement and before the first READ statement. The label record may be prepared
before the OPEN OUTPUT statement for the file in the area defined by data-name-7. Non-standard
label records may be processed and prepared with the USE statement.

VALUE OF ENDING-TAPE-LABEL-IDENTIFIER is used to distinguish between end-of-file and end-
of-reel labels when a multiple-reel tape input file is being processed. This clause is used only for
non-standard labels on multi-reel files; and it is effective only for input files. The literal or data
name is 1 to 7 display characters. An end-of-reel label contains this value as the first characters

of the ending label, but an end-of-file label does not. The value specified by literal-6 or data-name-8
is compared with the same number of characters at the beginning of the ending label to determine
whether it is an end-of-file or an end-of-tape.

Memory contains a 40-character area called FILE-LABEL which may be referenced at any time

from the Procedure Division; it is one area shared by all labels for all files. When labels are standard,
this area corresponds to the standard label area of the File Environment Table (Chapter 6), and the
format is identical to words 10-13 of the File Environment Table. When labels are non-standard, this
area may be used to process or prepare file labels, and the user is responsible for the format of
FILE-LABEL. Alternate names for FILE-LABEL are ENDING-FILE-LABEL, BEGINNING-FILE-
LABEL, ENDING-TAPE-LABEL, and BEGINNING-TAPE-LABEL. These names are all inter-
changeable.

Omitted Label
Format 3 is used when a file has no labels or label processing is not required. LABEL RECORD IS
OMITTED indicates no labels, and no information is transferred until the first READ statement for the

file, Disk files must specify LABEL RECORD as data-name-7 if label processing or preparation is
required, and LABEL RECORD IS OMITTED if not.

3-22

OCCURS

OCCURS [integer-3 TO] integer-4 TIMES [DEPENDING ON data-name-6]

When each itéem in a sequence is identical in every respect to the next one, except for value, the:
items need not be described in separate entries. The OCCURS clause indicates the number of times
an item occurs and eliminates the necessity of repeating the description. Subscripting then permits
an item in a sequence to be referenced by its position in the list. The manner in which an OCCURS
clause is used is illustrated under the heading TABLES.

If the item occurs a fixed number of times, integer-4 represents the exact number of occurrences.
If the exact number is not known, but it equals the value of a particular data item at object program
execution, the integer-3 and the DEPENDING ON options are both included in the clause. The
integer-3 and DEPENDING ON options do not indicate that an item is of variable length, only that
the number of times it appears varies according to the value of another item.

The OCCURS. .. DEPENDING ON option may describe only one item in a record. No other items
may follow this item in the record. The item described by OCCURS...DEPENDING ON may not be
a conditional variable, nor may it be within the range of another OCCURS.

When a file contains a record with OCCURS. .. DEPENDING ON clause, the fixed portion of the
record must be equal in length to all other records in the file, the key item (data-name-6) must be in
the same relative position in the fixed portion of the record as any other key items in other records
in the file, and the trailer items (occurring items) must all be equal in length

A=B=C
C17C27C

Integer-3 and integer-4 are numeric literals with positive integral values. When integer-3 is
included it must be less than or equal to integer-4. Integer-3 may be zero, indicating that an item
may not occur; if integer-3 is one, the item is present but may occur only once.

Data-name-6 is the name of an elementary item and it must be unique or made unique by qualifica-
tion; but it may never be subscripted. This item can assume only positive integral values in the
range defined by integer-3 and integer-4. The data-name-6 item must appear in Working-Storage,
Common-Storage or in the same logical record as the entry containing the associated OCCURS clause
and must precede the variable portion of the record. It must not appear in another file of the same
program. An OCCURS clause may not appear in the same entry as a REDEFINES clause; but it

may appear in an entry subordinate to an entry using REDEFINES,

Sequential items in an OCCURS clause can be referenced only by subscripting. If such items are
groups, all references to items within the groups must be subscripted. Subscripting can be used
only with items described by the OCCURS clause. All clauses in an entry that contains an OCCURS
clause apply to each repetition of the item in the sequence. An item containing an OCCURS clause
and SYNCHRONIZED clause will be synchronized at each occurrence. OCCURS may not be used

with items at levels 01 and 77. RECORD CONTAINS. ..DEPENDING ON is used for records at 01
level in the File Section which contain a fixed portion and a variable number of trailer items. VALUE

may not be specified in the OCCURS entry.

3-23

PICTURE

PICTURE IS any-allowable-combination-of-characters-and-symbols

Many of the clauses in a report description entry may be specified in an alternative, more compact
manner with the PICTURE clause. The PICTURE clause specifies size and class, the presence or
absence of an operational sign, assumed decimal point, and so on. It can specify editing of data
(PICTURE EDITING). The PICTURE clause essentially specifies a picture of the data item,
assembled from a set of code characters and symbols. Any item can be fully described using the
PICTURE clause. Throughout this manual pictures are used to describe items which might in
practice be described by other clauses.

Only elementary items can be described by the PICTURE clause. When PICTURE appears in an
entry, it alone determines the description of the data item. If SIZE, CLASS, POINT LOCATION,
Editing clauses (except BLANK WHEN ZERO) appear in the same entry, they are used for docu-
mentation only.

The number of occurrences of any of the characters indicates the size of an item described by the
PICTURE clause. The size may be indicated either by repetition of the character, or in a short-
hand way by writing the character once and putting the number of its occurrences in parentheses.
Thus, P(10)9(2) is equivalent to PPPPPPPPPP99.

A maximum of 30 characters is allowed in a PICTURE clause. This limit does not refer to the num-

ber of characters in the item itself but only to the number of characters used in the picture specifying)
the item, including parentheses. For instance, the same item may be described by a picture con- ‘
taining 12 characters, PPPPPPPPPP99, or by a picture containing only 9 characters, P(10)9(2).

In either case, the actual size of the item is only two characters. An item containing 75 alphabetic

characters may be specified by the picture, A(75), which only uses 5 characters but the same item

may not be specified by a picture in which A is repeated 75 times.

The size of an item described by the picture is limited to a maximum of 255 characters.

The characters and symbols in a PICTURE clause depend on the class of the data item: numeric,
alphabetic, and alphanumeric.

Numeric Items

The PICTURE clause for a numeric item may contain only combinations of the following characters:
9 SV P.

9 This character indicates that the corresponding character position in the item will always
contain a numeric character.

S This character indicates the presence of an operational sign, and is equivalent to the use
of the SIGNED clause. When included, it is the leftmost character of the picture. An
operational sign does not occupy a character position in the item, so it is not counted in
the size of an item.

3-24

PICTURE

This character indicates the position of an assumed decimal point for aligning items during
computation. An actual decimal point can never appear in a numeric item. An assumed
decimal point does not occupy a character position in the item and is not counted in the size
of an item. The V is specified in the picture between the code characters which represent
the characters on either side of the assumed decimal point in the item.

For example, if a data item is described as having a picture of 9V999 and it contains the
digits 2567 at reference time, then the size of the item is considered to be four characters,
and its value would be 2.567 for calculation, although it would be displayed as 2567 because
the decimal point character is not actually present. A V directly to the right of all 9's is
redundant.

This character specifies the position of an assumed decimal point when this position does

not occur within the characters that actually comprise the data item. If the assumed decimal
point is to the right of the rightmost character in the item, one P is specified in the picture
for each implied character position between the assumed decimal point and the rightmost
character. Similarly, if the assumed decimal point is to the left of the leftmost character in
the item, one P is specified in the picture for each implied character position between the
assumed decimal point and the leftmost character. The item is treated as if a zero were
substituted for each P and a decimal point placed to the right or to the left of the last P.

The character P is never considered in determining the size of the item.

For example, an item composed of the digits 2567 is treated as 256700. in computations
if the picture is 9999PP or as .002567 if the picture is PP9999.

If an entry contains a VALUE clause and a PICTURE clause, the literal in the VALUE clause must
exactly reflect the picture even though a sign or decimal point will not actually be placed in the
associated item.

For example, if an item is described by the picture SPP9999, and is initially to contain the char-

acters 4513, the VALUE clause in the entry must be specified as VALUE IS .004513, or VALUE IS
+,004513.

Alphabetic Items

The PICTURE clause for an alphabetic item may contain only the code character A, although this
may be specified as many times as required.

A This character indicates that the corresponding character position in the item will always

contain either a letter of the alphabet or a blank (space).

3-25

PICTURE

Alphanumeric Items

Alphanumeric items which do not specify editing may contain only the characters X, 9, and A. The
use of the characters 9 and A in alphanumeric items is the same as in numeric and alphabetic items.

X This character indicates that the corresponding character position in the item may contain
any character in the COBOL character set. An A or 9 in an alphanumeric item, although
not illegal, is treated exactly as an X; neither character need be used in the picture of
such an item.

Examples:

Picture of Ttem Characters in Item Item

999 123 [1]2]3]

99V999 12345 34

S99V99 1234 2[3[4]

PPP9999 1234 00 of[L][2]3
SPPP9999 1231 000

S999PPP 123 [1]2]50 0 o,
AAAAA or A(5) ABCDE
XXXXXXXX or X(8) ABCD-*%* [A[B]c[D[-[*[*[*]
XXXXXXXX or X(8) 123.4567 [1]2]3]. [4]5]6]7]

3-26

PICTURE

The table below shows the possible legal combinations of characters in a PICTURE clause. Diag-
nostic tests will be made for most of the conditions represented in the table. The characters A, X,
9 are described above; the remaining characters are described under PICTURE EDITING.

Is this character
legal any- z 5 ;
Given wherfa to *3 % %
character right :’n; % %
in picture A X 9 8 VvV P zZ * $, . B 0 - + C D R @ g g
Alx | X [x | No|No|No|No|No|No|No|[No| x| x |No|No|No|No|No|No|No|No
X| x| x| x |No|No|[No|No|NofNo|[No|No| x | x [No|[NofNo|No|No|No|No|No
91X | x| x[No|lx | x|NofNo|No|fx|x|x]|x|x]|x xw ‘;(X | No | No |No
S [No|No| x |No| x | x [No|No|No|No|No|No| x |No No— Eﬁo No |No| No |No |No
V|[No|No| x |[No(No| x| 2 2 [No|f x |No| x| x| x| x | x ‘ xA Nx 2 212
PINo|No| x [No| x| x| x| x |No| x |[No| x| x| x| x wx‘ X 1 ﬁx X | x| x
Z|No|No| x |No| x| x| x [NolNo| x| x| x| x| x x“ ‘xi ~;~ X | No |No | No
¥ INofNo| x |[Nofj x| x |No|x |[No|x|x|[x|x|=x]|x] x| x ‘ X | No No« N-:
$INo|No| x {Nof x| x| x|x|[x|x|[x]|x]|x]x xw —x x | x | x |Yes|Yes
, INofNo| x [No| x| x| x| x |No|x|x|=x]| x| x xr_ .x ;{ | x| x| x| x
No| No| x | No|No|No| 2 No| x [No| x| x| x| x| x ;; x 2 2
Bix| x| x|Nolx!x|x|x|x|x|x]|]x]|x]|x]|x | ‘x X | x | No|[No|No
Olx| x| x|No|x|x|x |x|x|x|x|x]|x|[x|x}x] x| x]|No|NolNo
Leading - [No|Nof x [No| x | x| x| x| x| x| x| x| x . No [No| No|No|No| x | x | No
Leading + [No[No| x |No| x | x | x | x| x| x| x| x| x | No|No|No|No|No| x |No| x
C|No| No| No| No|No|Yes| No|No|No|No|No|No|No|No|No|lNo|No|[x |No|Noj|No
D|No| No| No| No|No|Yes| No|[No|No|No[No| x | No|No|No| No|No|No|[No|No|No
R|No| No|No|No|[No| 1 |No|No|No|No|No|[No|No|No|No ;\Io No | No| No [No | No
Trailing - [No| No| No| No|No| 1 | No|No|No| No|No|No| No|No|No| No|No|No| No|Nol|No
Trailing + |No| No| No| No|No| 1 | No|No|No| No|No|No| No|No|No| No| No|No| No|No|No
X Yes

1 Yes if all digits to the right are the same
2 Yes if all digits both to the right and left are the same

PICTURE EDITING

Editing alters the format and the punctuation of data in an item; characters can be suppressed or
added.

Editing is accomplished by moving a data item to an item described as containing editing symbols.
Movement may be direct or indirect. The programmer can specify a MOVE statement or he can
specify arithmetic statements in which the result of computation is stored in such an item.

Since the main function of editing is to arrange data in a convenient format for reading, as for
example in a report, an item described as containing editing symbols is a report item.

A report item, like any other item, is a storage area in memory, except the editing specified in the
picture of the report item is performed on any data moved into the item. The following restrictions

apply:
1. A report item can receive only numeric data; it is sometimes known as a numerically
edited item.
2. A maximum of 18 numeric characters can be moved to a report item.
3. Editing clauses cannot be used with a computational-n item.

4, Editing clauses cannot be used with FILLER items.
The characters which may be used in a picture of a report item are as follows:
9 V$+-.,0BCRDBZ*

The characters 9 and V are discussed above. Their use in report items is exactly the same as in
numeric items. The remainder are insertion and replacement characters.

The character $ may be replaced with a special currency sign whether it is used as an insertion or
replacement character. The special currency sign must be defined in the SPECIAL-NAMES para-
graph of the Environment Division. It is defined as a literal, limited to a single character which
cannot be one of the following:

012 3 456 7 89
ABCDJEKULPRSYVIXZ
*+',()

Insertion Characters

When an insertion character is specified in the picture of a report item, it appears in the edited data
item; therefore the s ze of the report item must reflect these additional characters. The insertion
characters are as follows:

$ +- ., 0B CR DB

3-28

(deci-
mal
point)

’

PICTURE EDITING

When a single dollar sign is specified as the leftmost symbol in a report item picture, it
appears as the leftmost character in the edited data item. This character is counted in the
size of the report item. A special currency sign may replace the $ sign; it must be defined
in the SPECIAL-NAMES paragraph. '

When a plus sign is specified as the first or last symbol of a report item picture, a display
plus sign is inserted in the indicated character position of the edited data item, provided
the data is positive (contains a positive operational sign) or is unsigned. If the data is
negative, a minus sign is inserted in the indicated character position. This sign is counted
in the size of the report item.

When a minus sign is specified as the first symbol or last symbol of a report item picture,
a display minus sign is inserted in the indicated character position of the edited data item,
provided the data is negative (contains a negative operational sign). If the data is not
negative, a blank is inserted in the indicated character position. This sign or blank is
counted in the size of the report item.

This character is used in a report item picture to represent an actual decimal point as
opposed to an assumed decimal point. When it is used, a decimal point appears in the edited
data item as a character in the indicated character position. Therefore, the decimal point
is counted in the size of the report item. A picture of a report item can never contain more
than one decimal point, actual or assumed.

When a comma is used in the picture of a report item, a comma is inserted in the corre-

(comma) sponding character position of the edited data item. It is counted in the size of the report

CR

DB

item.

When a zero is used in the picture of a report item, a zero is inserted in the corresponding
character position in the edited data item. It is counted in the size of the report item.

When this character is used in the picture of a report item, a blank is inserted in the
corresponding character position in the edited data item. It is counted in the size of the
report item.

This symbol, which represents credit, may be specified only at the right end of the picture
of a report item. The symbol is inserted in the last two character positions of the edited
data item, provided the value of the data is negative. If the data is positive or unsigned
these last two character positions are set to blanks. Since this symbol always results in

two characters, CR or blanks, it is included as two characters in the size of the report item.

This symbol, which represents debit, may be specified only at the right end of the picture of
a report item. It has the same results as the credit symbol.

PICTURE EDITING

Examples of Insertion Characters:

Source data

] =]
o] o]
X

=] (=]

=B
o | o] [
= =] [

o] [+]
<] [<]
] [

no

] =] =] 5]
= =] [=] [=]
=[] 5] [=F
[\V]

— & [=

=
™

w

W1

-]
=

SR

Replacement Characters

A replacement character in the picture of a report item suppresses leading zeros in data and replaces
them with other characters in the edited data item. The replacement characters are as follows:

Z*$+-

Only one replacement character may be used in a picture, although Z or * may be used with any one

Editing Picture
$99
$99.99
9,999
+999
+999
+999
999-
-999
999-
$BB999. 99
$00999. 99
99.99CR
99.99CR
99.99DB

99.99DB

of the insertion characters.

3-30

Edited Item

o] [
=

Do

HRENEIRES

o] o | oo} |- |
o] o] [e] []
[\V]

][]
o |]
o |]
o] []

PICTURE EDITING

One Z character is specified at the left end of the report item picture for each leading zero
that is to be suppressed and replaced by blanks in the edited data item. Z's may be preceded
by one of the insertion characters $ + or - and interspersed with any of the insertion char-
acters decimal point, comma, zero, or B.

Only the leading zeros that occupy a position specified by Z will be suppressed and replaced
with blanks. No zeros will be suppressed to the right of the first non-zero digit whether

a Z is present or not, Nor will any zeros to the right of an assumed or actual decimal point
be suppressed unless the value of the data is zero and all the character positions in the item
are described by a Z. In this special case, even an actual decimal point is suppressed and
the edited item consists of all blanks.

If a $ +or - is present preceding the Z's, it is inserted in the far left character position of
the item even if succeeding zeros in the item are suppressed. In the special case where
the value of the data is zero and all the character positions following the $ + or - are speci-
fied by Z's, the $ + or - will be replaced by blanks.

If a comma, zero, or B in the picture of a report item is encountered before zero suppression
terminates, the character is not inserted in the edited data item, but is suppressed and a
blank inserted in its place.

The asterisk causes the leading zeros it edits to be replaced by an asterisk instead of a
blank. It is specified in the same way as the editing character, Z, and follows the same
rules.

When the dollar sign is used as a replacement character to suppress leading zeros, it acts

as a floating dollar sign and will be inserted directly preceding the first non-suppressed
character. One more dollar sign must be specified than the number of zeros to be suppressed.
This dollar sign will always be present in the edited data whether or not any zero suppression
occurs. The remaining dollar signs act in the same way as Z's to effect the suppression of
leading zeros. No other editing character may precede the initial dollar sign. Each dollar
sign specified in a picture is counted in determining the size of the report item. A special
currency sign may replace the $; it must be defined in the SPECIAL-NAMES paragraph.

When a plus sign is used as a replacement character, it is a floating plus sign. The plus sign
is specified one more time than the number of leading zeros to be suppressed. It functions

in the same way as the floating dollar sign; a plus sign is placed directly preceding the first
non-suppressed character if the edited data is positive or unsigned, and a minus sign is
placed in this position if the edited data is negative.

When a minus sign is used as a replacement character, it is a floating minus sign. The
minus sign is specified one more time than the number of leading zeros to be suppressed.
It functions in the same way as the floating plus sign except that a blank is placed directly
preceding the first non-suppressed character if the edited data is positive or unsigned.

3-31

PICTURE EDITING

Examples of Replacement Characters:

Examples of Picture Editing:

3-32

Source Data

Data to be Edited

Editing Picture

77999
27799
27277.77
$Hkk, 99
$$$9. 99
--=9.99

$$3.99

Picture of Report Item

[o]1]2]3][4]5
[o]o]1]2]3]4
[oJoJo]1[2]3]
[oJoJoJo]1]2]
[oJoJ1i]2]3]4
(1]2]3]4]5]6
[1]213]4][5]s6
Lolofolol1]2

folofofof1]2

1]121sl4]516]

Lololol1]2l3

Z77,999. 99
799, 999.99
$Z7272,779.99
$227,7Z77.99
$rkk, k%9, 99
GHkk Kk Q9
Grawk kK 99
+999, 999
-222,27Z7
$2727,72729.99CR
$2272,7279.99DB
$(4), $$9.99

$(4), $$3.99

$$3$, $22. 99

Edited Item

[a]a]o]2]3]
[A]A]9]2]3]
(a[a]a[a[a]A] 4]

(S*[*]9]. [2]3]

[a]afs[s]. [2]4]
[a]a]-]5]. [2]6]
$]3]2]. [6]5]

Edited Iftem

[al1]2], [3]4]5].]0]0]
[afoJof, JoJt]2].]3]4]
[$]ala[afa]afa1]. T2]3]
[$]a]A[a[a]a]a]a]. [1]2]
[s[*[*[1]. [2]3]4].T0]0]
[$]1]2]3]. J4]5]6].J0]0]
[x[*[r[*[*[*]1]. [2]3]
[+]oJoJo], JoJ1]2]
[-Ta[a]aa[A]1]2]
[$]1]2]3], [4]5]6]. [o[0[C]R]
[s]afa]afa]afali].2]3]a[a]
[A]AJA[A[$]1]2[3].T4]0]
[a[ala[a]afaaTs]. Jo]o]
[a]afa[a]afa]al-T.]1]2]
[a[a]a[ala]alala]. [1]2]

illegal picture

PICTURE EDITING

Summary of Rules for Picture Editing Clauses

1.

Only one of the characters of the set Z * $ -+ and - can be used within a single picture as a
replacement character, though it may be specified more than once.

If one of the replacement characters Z or * is used with one of the insertion characters $ +
or -, the plus or minus sign may be specified as either the leftmost or rightmost character
in the picture.

A plus sign and a minus sign may not be included in the same picture.

A leftmost plus sign and a dollar sign may not be included in the same picture.

A leftmost minus sign and a dollar sign may not be included in the same picture.

The character 9 may not be specified to the left of a replacement character.

Symbols which may appear only once are: V, S, decimal point, CR, and DB.

The decimal point may not be the rightmost character in a picture.

3-33

POINT

LEFT

POINT LOCATION IS {RIGHT

} integer-2 [PLACES]

The POINT LOCATION clause specifies the position of an assumed decimal point in a numeric item
(see PICTURE clause). An actual decimal point (one that occupies a character position in memory)
cannot be specified by this clause; instead, a PICTURE clause must be used.

This clause can be used only in the description of an elementary item. When specified, the decimal
point for the item is assumed to be integer-2 digit positions to the right (or left) of the rightmost digit
in the item. Integer-2 is a numeric literal with positive integral value.

If a PICTURE clause is included in the entry, the POINT LOCATION clause is documentary only.
If neither the PICTURE clause nor the POINT LOCATION clause is specified, the item is assumed
to be an integer (no decimal point).

Example

If the digits 12345 are stored in an item of size 5, they are treated in accordance with the position
of the assumed decimal point in that item, even though these digits are stored in exactly the same
way in each case.

Assumed Decimal

Storage POINT LOCATION
(1]2[3]4]5
LEFT 2
1]2]3f4]5]
LEFT 5
0 o[1]2[3]4]5]
t LEFT 7
[1]2[s]4]5]0
— RIGHT 1
[1]2]3]4[5]0 0 0
| t RIGHT 3
[1[2{3]4]5
None

3-34

RECORD CONTAINS

RECORD-MARK l]
data-name-1

RECORD CONTAINS [ingeger-4 TO] integer-5 CHARACTERS [DEPENDING ON l

This clause specifies record size. If all the records in a file are the same size, integer-5 specifies
the exact number of characters in each. When integer-5 only is used, the clause provides docu-
mentary information and has no effect on the object program.

When the records in a file are not all the same size, the RECORD CONTAINS clause or the OCCURS
clause is used to specify record size. There are three ways to specify variable length records:

® RECORD CONTAINS clause with DEPENDING ON RECORD-MARK
o RECORD CONTAINS clause with DEPENDING ON data-name
® OCCURS clause with DEPENDING ON data-name

Only one type of variable length record may be used in a single file.

OCCURS is used to describe a file with records that have a fixed length base portion and a variable
number of fixed length trailer portions.

RECORD CONTAINS with DEPENDING ON option is used to describe all other variable length records.
Integer-4 and integer-5 mark the limits of record length in a particular file. Integer-4 is the num-
ber of characters contained in the smallest record in the file and integer-5 is the number of char-
acters in the largest record.

DEPENDING ON RECORD-MARK is used when each record in a file is terminated by the special
record-mark character |. For an input file, the RECORD-MARK character must be contained in
the last item of each record in the file. To use this option with an output file, a single character
item is defined with the value RECORD-MARK, and moved to the last character position in the
record, or the statement, MOVE RECORD-MARK TO. .. may be used to place the record mark
character in the last character position in the record.

DEPENDING ON data-name is used for a file in which each record contains a key item giving the
record length in characters; data-name specifies this key item. It must be an elementary item,
not exceeding 7 characters; it must appear as an entry in each record description; and occupy the
same relative position in each record. Each key item must be the same in every respect including
name, and the name must be unique to the whole D