
'..·.,.·".m&....'..'1..:...'·.·.·'.·.:._. ~-
J

•

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

DATE: February 26, 1982

TITLE: BASIC Version 3 Reference Manual

PUBLICATION NO.: 19983900

.BE.VISION: H

,.

'REASON FOB. CHANGE:

Revised at PSl level 552 to reflect BASIC 3.5, which supports NOS Version 2, and to clarify use of the RESTOm
statement with the SET statement, use of a carriage return as a delimiter, and use of format 2 of the PRINT aue!
PRINT USING.-statements when files are connected to the terminal. This revision also includes a new appendix ot

-." 1D.:nne_.~dit1Dg commands, two new compile time diagnostics, and miscellaneous changes.

f
IBSTRUCTIONT;

~'--

This revision supersedes all previous editions.



t ('.. .
I

_.~..... ,~r•...... \

(

.-~

'*''',,::.
-' ~

.~

~r

r·

~ 1::\ CONT"OL DATA
~~ CORrORf\TION

BASIC
- VERSION 3

REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NO'S 2
NOS/BE 1

'-- ~-' .-. .' - _. '---"'--~~,

19983900



INDEX TO BASIC STATEMENTS AND FUNCTIONS

STATEMENTS

APPEND 7-6 IF 4-2 ON ATTENTION 4-5
IF END 7-5 ON ERROR 4-6 I
IF GOTOELSE 4-3 I ON GOSUB 6-2

CALL 6-3 IF MORE 7-5 ON GOTO 4-2 "1 11

CHAIN 6-5 IFTBEN ELSE
4-3 I OPTION 3-2

CLOSE 7-4 I image 7-17
INPUT 7-10 PRINT 7-13 I

PRINT USING 7-15 "'-
DATA 7-25 I J
DEF 5-11 JUMP 4-6 I
DELIMIT 7-12 I RANDOMIZE 5-3
DIM 3-3 LET 3-1 READ 7-26 I"

REM 3-4
REM LIST 12-4 I

END 3-5 MARGIN 7-24 I REM TRACE 9-1
MAT assignment 8-2 RESTORE 7-4
MAT INPUT 8-10 RETURN 6-2

FILE 7-3 I MAT PRINT 8-11
FNEND 5-13 MAT PRINT USING 8-12
FOR 4-3 MAT READ 8-9 I SET 7-8 IMAT WRITE 8-9 SETDIGITS 7-24

STOP 3-4
GOSUB 6-1 NEXT 4-3
GOTO 4-1 NODATA 7-4 WRITE 7-7 I



,..-- -

r

\.

.~

r

&J1:\CONT"OL DATA
\::I~CO~ORi\TION

BASIC
VERSION 3
REFERENCE MANUAL

CDC® OPERATING SYSTEMS:
NOS 1
NOS 2
NOS/BE 1

19983900



Revision

A (06/23/75)

B (11/05/75)

C (02/15/76)

D (05/23/78)

E (11/10/78)

F (07/20/79)

G (10/31/80)

H (02/26/82)

REVISION RECORD

Description

Origi~al printing.

Includes corrections to revision A and user information pertaining to the Network
Operating System/Batch Environment (NOS/BE Version 1.0).

Includes minor-editorial changes to revision B, plus modifications for the following new
features: CHAIN Statement, user number function, file number 0, trace option, comments
at end of source lines, positioning beyond bad input items, and improved field length
management.

Revised to include new features upgrading the products to BASIC Version 3.2, PSR
level 472. These consist of the IF ••• THEN·•••ELSE· statement and the capability to handle
large strings.

Revised to include new features upgrading the product to BASIC Version 3.3, PSR
level 485. These consist of the RPT function and the ON ATTENTION statement.

Revised to reflect BASIC 3.4. The changes and additions include substring addressing;
CYBER Interactive Debug facility; eight new string functions (LPAD$, LTRM$, LWRC$, ORD,
POS, RPAD$, RTRM$, and UPRC$); alphabetic characters in file name must be uppercase; CALL
statement limitation with IF ••• THEN ••• ELSE; operating system terminology; and
miscellaneous changes. This printing obsoletes all previous editions.

Revised to conform to the American National Standard for Minimal BASIC (ANSI). Changes
and additions include new statements OPTION and RANDOMIZE; subscript and index rounding;
FOR ••• NEXT control variable value; handling of unquoted strings; new RND and DET function
forms; default array base 0 (zero); formatting of large integers; new TAB features; ASCII
default collating sequence; print comma spacing control; redimensioning result matrices;
reading numeric data as string data; INPUT validation; other miscellaneous changes; and
appendixes explaining guidelines for a possible CDC merge to ANSI standard BASIC and the
difference between BASIC 3.4 (last revision) and BASIC 3.5 (this revision). Released at
PSR level 528. This printing obsoletes all previous editions.

Revised at PSR level 552 to reflect BASIC 3.5, Which supports NOS Version 2, and to
clarify use of the RESTORE statement with the SET statement, use of a carriage return as
a delimiter, and use of format 2 of the PRINT and PRINT USING statements When files are
connected to the terminal. This revision also includes a new appendix on in-line editing
commands, two new compile time diagnostics, and miscellaneous changes. This printing
obsoletes all previous editions.

REVISION LETTERS I, 0, Q, AND X ARE NOT USED

© COPYRIGHT CONTROL DATA CORPORATION
1975, 1976, 1978, 1979., 1980, 1982
kll Rights Reserved
Printed in the United States of America

ii

Address comments concerning this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the back of this manual

19983900 H



LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

" Page Revision
~

Front Cover
Iaside Pront Cover R
Title Page
11 B
iil/iv R
v B
vi R
vii thru xli H
xlii H
1-1. thru 1-17 R
2-1 ~hru 2-8 H
3-1 thru 3-5 B
4-1 thru 4-9 .8
5-1 thru 5-14 'R
6-1 thru '6-6 H
7-1 thru 7-26 H
8-1 thru 8-13 H
9-1 thru 9-7 H
10-1 thru 10-6 H
11-1 thru 11-5 H
12-1 thru 12-11 H
A-I thru A-4 H
B-1 thru B-5 H
B-6 G
B-7 H
B-8 thru 8-11 G
B-12 H
C-l H
C-2 H
D-l thru D-S H
E-l H
E-2 H
F-l H
F-2 H
G-l H
H-l thru B-3 H
I-I thru 1-3 H
1ndex-l thru -4 H
Comment Sheet H
Mailer
Summary Card - Front H
Summary Card - Back H
Inside Back Cover H
Back Cover

~

r 19983900 H iii/iv





I

PREFACE

This manual describes the BASIC Version 3.5 language
which operates under control of the following
operating systems:

NOS 1 and NOS 2 for the CONTROL DATA® CYBER 170
Series; CYBER 70 Models 71, 72, 73, and 74; and
6000 Series Computer Systems

NOS/BE 1 for the CDC® CYBER. 170 Series;
CYBER 70 Models 71, 72, 73, and 74; and 6000
Series Computer Systems

Matrix I/O for 1- and 2-dimensional numeric and
string arrays

Output format determination, including various
commercial formats

Manipulation of coded and binary files, includ
ing random access for binary files

Error detection and processing during program
execution

I
Any reference to NOS refers to either the NOS 1 or
NOS 2 operating system. In all instances where the
two operating systems differ, NOS 1 or NOS 2 is
specified.

CDC offers guidelines for the use of the software
described in this manual. These guidelines appear
in appendix E. Before using the software described
in this manual, the reader is strongly urged to
review the content of this appendix. The guide
lines recommend use of this software in a manner
that reduces the effort required to migrate appli
cation programs to future hardware or software
s,ystems.

BASIC 3 is an extension of the original BASIC
language which was designed and implemented at the
Dartmouth College Computation Center. Although
BASIC is normally used interactively from a remote
terminal, BASIC programs can be compiled and exe
cuted as batch programs. The CDC CYBER Interac
tive Debug (CID) facility can be used in interactive
mode to debug a BASIC program.

BASIC is an all-purpose programming language that
includes features which render it well-suited for
scientific, business, and educational applications.
BASIC provides a small but powerful set of easy-to
learn statements that are similar to English and
written in free format. Some of the more important
features provided by BASIC are:

Numeric and character string manipulation

Array definition and redimensioning

Access to trigonometric, matrix, and string
functions

Facility for writing multiple-line and multiple
argument user-defined functions

Facility for calling BASIC and non-BASIC
subroutines

Facility to chain to other BASIC programs

19983900 R

Facility to trace program flow

Facility to debug a program (CYBER Interactive
Debug)

This document is intended to describe these and
other BASIC features to both the nonprogrammer and
the experienced programmer. The information in
this manual is provided in three major parts:

Section 1 is a primer or introduction to the
BASIC language directed at the nonprogrammer.
Appendix H contains sample BASIC programs.

Sections 2 through 12 include reference infor
mation that expands on section 1 information
and is directed at the experienced programmer.
Appendixes A through D and I support and I
summarize information in these sections.

Appendix E contains general feature use guide
lines to ensure ease of migration to future
hardware or software systems and appendix F
contains an overview of the differences between
this version of BASIC (BASIC 3.5) and the pre
vious version (BASIC 3.4). Appendix G summa
rizes those features that are described in the
American National Standard for Minimal BASIC as
implementation-defined.

You can find additional pertinent information in
the Control Data Corporation manuals. The NOS
Manual Abstracts and the NOS/BE Manual Abstracts
are pocket-sized manuals containing brief descrip
tions of the contents and intended audience of all
NOS and NOS/BE manuals and all the product set
manuals of these two systems. The abstracts manuals
can be useful in determining which manuals are of
greatest interest to a particular user. The Soft
ware Publications Release History serves as a guide
in determining which revision level of software
documentation corresponds to the Programming System
Report (PSR) leve~ of installed site software.

The manuals are listed alphabetically in groupings
that indicate relative importance to the readers of
this manual.

v



The following manuals are of primary interest:

Publication

Network Products Interactive Facility
Version 1 Reference Manual

Network Products Interactive Facility
Version 1 User's Guide

NOS Version 1 Reference.Manual,
Volume 1 of 2

NOS Version 2 Reference Set,
Volume 3 of 4, System Commands

NOS/BE Version 1 Reference Manual

Publication
Number

60455260

60455250

60435400

60459680

60493800

NOS 1

x

x

x

NOS 2

x

x

The following manuals are of secondary interest:

Publication

CYBER Interactive Debug
Version 1 Reference Manual

Publication
Number

60481400

NOS 1

x

NOS 2

x x

CYBER Loader Version 1 Reference Manual 60429800

INTERCOM Version 5 Reference Manual 60455010

NOS Time-Sharing Version 1 User's Guide 60436400

NOS Time-Sharing Version
User's Reference Manual 60435500

NOS Version 1 Manual Abstracts 84000420

NOS Version 2 Manual Abstracts 60485500

NOS/BE Version 1 Manual Abstracts 84000470

x

x

x

x

x

x

x

x

Software Publications Release History

Text Editor Reference Manual

XEDIT Version 3 Reference Manual

60481000

60436100

60455730

x

x

x

x

x

x

• vi

CDC manuals can be ordered from Control Data Corporation, Literature and
Distribution Services, 308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this
document. Control Data cannot be responsible for the proper
functioning of undescribed features or parameters.

19983900 H



CONTENTS

NOTATIONS xiii 3. FUNDAMENTAL STATEMENTS 3-1

"1Qr
1. BASIC PRIMER 1-1 Value Assignment 3-1

LET Statement 3-1
Programming and Languages 1-1 OPTION Statement and DIM Statement 3-2

~
Statement of the Problem 1-1 OPTION Statement 3-2

I Analysis of Statements 1-2 OPTION BASE n 3-2
REM Statement 1-2 OPTION COLLATE 3-3
LET Statement 1-2 DIM Statement 3-3
PRINT Statement 1-2 Program Comments 3-4

I IF, GOTO , and END Statements 1-3 REM Statement 3-4
Break-Even Program and Output 1-3 Tail Comments 3-4

Expressions in BASIC 1-3 Program Termination 3-4
Arithmetic Expressions 1-4 STOP Statement 3-4
Relational Expressions 1-4 END Statement 3-5

Defining and Reading Data 1-4
DATA and READ Statements 1-4

Looping in BASIC 1-5
IF and GOTO Statements 1-5

I FOR and NEXT Statements 1-5 4. BASIC FLOW CONTROL STATEMENTS 4-1 I
Lists and Tables 1-5
Terminal Input and Output (I/O) 1-8 Test and Branch Statements 4-1
Using BASIC Under NOS and NOS/BE 1-10 GOTO Statement 4-1

NOS 1-10 ON GOTO Statement 4-2
Login, Execution, and Logoff IF Statement 4-2

Procedures for the Interactive IF ••• THEN ••• ELSE Statement 4-3 I
Facility 1-10 Looping 4-3

Login, Execution, and Logoff FOR •••NEXT Statements 4-3
Procedures for the Time-Sharing Error and Interrupt Processing 4-5
System 1-12 ON ATTENTION Statement 4-5

Sample Terminal Session 1-12 ON ERROR Statement 4-6 II NOS/BE 1-14 JUMP Statement 4-6
Sample Terminal Session 1-16 ASL Function 4-8

ESL Function 4-8
ESM Function 4-9 I2. ELEMENTS OF THE BASIC LANGUAGE 2-1 NXL Function 4-9

BASIC Language Structure 2-1
Character Set 2-1
Statement Structure 2-1

I Program Structure 2-1 5. BASIC FUNCTIONS 5-1
Constants 2-2

Numeric Constants 2-2 Referencing a Function 5-1
Integer Constants 2-2 Mathematical Functions 5-1
Decimal Constants 2-2 Random Number Generation 5-1
Exponential Constants 2-2 RND Function 5-2 I

String Constants 2-3 RANDOMIZE Statement 5-3
Variables 2-3 System Functions 5-3

Simple Variables 2-3 String Functions 5-4 I
Numeric 2-3 ASC Function 5-4
String 2-3 CHR$ Function 5-4

I Subscripted Variables 2-4 LEN Function 5-5
Substring Addressing 2-4 LPAD$ Function 5-6 ,-~ I Expressions 2-5 LTRM$ Function 5-6
Arithmetic Expressions 2-5 LWRC$ Function 5-7

Rules for Writing Arithmetic ORD Function 5-7
Expressions 2-5 POS Function 5-7

~ Arithmetic Expression Evaluation 2-5 RPAD$ Function 5-8 I
I String Expressions 2-6 RPT$ Func tion 5-8

Concatenation 2-6 RTRM$ Function 5-9 IRelational Expressions 2-6 STR$ Function 5-9
Simple Relational Expressions 2-6 UPRC$ Function 5-9
Compound Relational Expressions 2-7 VAL Function 5-9

r-
19983900 H vii



Error And Interrupt Processing 5-9 Matrix Arithmetic 8-2
Matrix Functions 5-10 Matrix Assignment 8-2
I/O Functions 5-10 Matrix Addition 8-3
User-Defined Functions 5-10 Matrix Subtraction 8-3

Single-Line Function Using DEF 5-11 Matrix Multiplication 8-4
Multiple-Line Functions Using DEF •••FNEND 5-13 Matrix Scalar Multiplication 8-4

Matrix Functions 8-5
Matrix CON Function 8-5

6. SUBROUTINES, SUBPROGRAMS, AND CHAINING 6-1 Matrix IDN Function 8-6
Matrix ZER Function 8-6 ~

BASIC Subroutines 6-1 Matrix INV Function 8-7 e
GOSUB Statement 6-1 Matrix TRN Function 8-8
ON GOSUB Statement 6-2 Matrix DET Function 8-8
RETURN Statement 6-2 Matrix I/O 8-8 ;

External Subprograms 6-3 MAT WRITE Statement 8-9 SfiJ
1,(

CALL Statement 6-3 MAT READ Statement 8-9
Writing External Subprograms 6-5 MAT INPUT Statement 8-10

Program Chaining 6-5 MAT PRINT Statement 8-11
CHAIN Statement 6-5 MAT PRINT USING Statement 8-12
CHAIN Processing 6-6

7. I/O STATEMENTS AND FUNCTIONS 7-1 9. DEBUGGING 9-1

BASIC Files and File I/O Statements 7-1 BASIC Debug Features 9-1

JFile Access Methods 7-2 Inserting PRINT Statements 9-1
Permanent File Access 7-3 Conditional Trace Statement 9-1
FILE Statement 7-3 Unconditional Trace Parameter 9-2
CLOSE Statement 7-4 CYBER Interactive Debug 9-2

File Control Statements 7-4 Entering and Exiting the CID Environment 9-2
RESTORE Statement 7-4 Executing Under CID Control 9-3
NODATA Statement 7-4 Referencing BASIC Line Numbers and Variables 9-3
IF END Statement 7-5 Variables 9-3
IF MORE Statement 7-5 Line Numbers 9-3
APPEND Statement· 7-6 Resuming Program Execution 9-3

Binary I/O Statements and Functions 7-6 GO Command 9-3
WRITE Statement 7-7 GOTO Command 9-3
READ Statement 7,;'1 STEP Command 9-4

.~SET Statement 7-8 Setting and Clearing Breakpoints and Traps 9-4
LOC Function 7-9 SET BREAKPOINT Command 9-4
LOF Function 7-9 CLEAR BREAKPOINT Command 9-4

Display Format I/O Statements and Functions 7-9 SET TRAP Command 9-5
INPUT Statement 7-10 CLEAR TRAP Command 9-5

Terminal Input 7-10 Default Traps 9-6
File Input 7-10 Displaying Program Values 9-6

DELIMIT Statement 7-12 PRINT Command for Cln 9-6
DELIMIT Not in Effect (Normal Case) 7-12 MAT PRINT Command for CIn 9-6
DELIMIT in Effect 7-12 LIST VALUES Command 9-6

PRINT Statement 7-13 Changing and Testing Program Values 9-7
Default Print Formats 7-13 LET Command for CID 9-7

Numeric Formats 7-13 IF Command for CID 9-7
String Formats 7-13 Other Commands and Features 9-7

Print Zoning 7-14
TAB Function 7-15

PRINT USING Statement 7-15
Image 7-17 10. TERMINAL OPERATION UNDER NOS 10-1

Format Fields 7-18
Order Restrictions 7-20 Entering a Program 10-1
Special Cases 7-22 BASIC Subsystem 10-1

MARGIN Statement 7-24 BATCH Subsystem 10-1
SETDIGITS Statement 7-24 Using Data Files 10-1

Internal Data Table I/O 7-24 Renumbering BASIC Lines 10-4
DATA Statement 7-25
READ Statement 7-26

11. TERMINAL OPERATION UNDER NOS/BE 11-1 ,
8. MATRIX OPERATIONS 8-1 i'

Entering a Program 11-1
Matrix Definition and Declaration 8-1 Interactive BASIC Terminal Session 11-1

Array Boundaries 8-1 Using the BASIC Command Interactively 11-1
Array Declaration 8-2 Using Data Files 11-4
Redimensioning 8-2 Renumbering BASIC Lines 11-5

.~

• viii 19983900 H



12. BATCH OPERATIONS

Deck Structure
BASIC Control Statement
REM LIST Statement
Batch Processing From a Terminal

NOS
NOS/BE

APPENDIXES

A Character Sets
B Diagnostics
C Glossary
D NOS File Handling
E Future System Migration Guidelines
F Differences Between BASIC 3.5 and

BASIC 3.4
G Implementation-Defined Features
H Sample BASIC Programs
I In-Line Editing Commands

INDEX

FIGURES

1-1 Break-Even Program
1-2 REM Statement Lines
1-3 LET Statement Lines (Constants)
1-4 LET Statement Lines (Formulas)
1-5 PRINT Statement Lines
1-6 IF, GOTO, and END Statement Lines
1-7 Break-Even Program and Output
1-8 LET Statement Value Assignment
1-9 Break-Even Program With READ and DATA

Statements
1-10 Break-Even Program With IF and GOTO

Statements
1-11 Break-Even Program With FOR and NEXT

Statements
1-12 Break-Even Program With DIM Statements
1-13 Array V
1-14 Placing Data Into Arrays
1-15 PRINT Statements for Array Elements
1-16 Break-Even Program With DIM Statements

Output
1-17 Break-Even Program With INPUT Statement
1-18 Break-Even Program With INPUT Statement

Interactive Input/Output
1-19 NOS Login Examples
1-20 Sample Timesharing Login
1-21 IAF System
1-22 OLD Command Accesses Permanent File

Under NOS
1-23 Editing a Program Under NOS
1-24 BASIC Program Under NOS/BE
1-25 Retrieval and Execution Example
2-1 Numeric and String Subscripted Variables
2-2 Substring Addressing Format
2-3 String Concatenation Format
2-4 Format for Simple Relational Expressions
2-5 Evaluating Simple Relational Expressions
2-6 Format for Compound Relational

Expressions
3-1 LET Statement Format
3-2 LET Statement Examples
3-3 Substring Addressing Usi~g LET Statement
3-4 OPTION Statement Formats
3-5 DIM Statement Format
3-6 DIM Statement Examples

19983900 H

12-1

12-1
12-1
12-4
12-9
12-9
12-9

A-I
B-1
C-l
D-l
E-l

F-l
G-l
H-l
I-I

1-1
1-2
1-2
1-2
1-3
1-3
1-3
1-4

1-5

1-6

1-7
1-8
1-8
1-8
1-8

1-8
1-9

1-9
1-12
1-12
1-13

1-14
1-15
1-16
1-17
2-4
2-4
2-6
2-6
2-7

2-7
3-1
3-1
3-2
3-3
3-3
3-4

3-7
3-8
3-9
3-10
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20

4-21
4-22
4-23
4-24
5-1
5-2
5-3
5~4

5-5
5-6
5-7

5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-35
5-36
5-37

5-38

6-1
6-2
6-3

REM Statement Format
REM Statement Examples
STOP Statement Format
END Statement Format
GOTO Statement Format
Infinite Loop
ON GOTO Statement Format
Example of ON GOTO and GOTO Statements
IF Statement Format
IF Statement Examples
Nested IF ••• THEN Statement Example
IF ••• THEN ••• ELSE Statement Format
IF •••THEN ••• ELSE Statement Examples
FOR•••NEXT Statement Formats
Loop With Specified STEP Value
Control Variable Value Changed
Loop Exit Effect on Control Variable
FOR•••NEXT Statement Examples
FOR••• NEXT Loops
ON ATTENTION Statement Formats
ON ATTENTION Statement Example
ON ERROR Statement Formats
JUMP Statement Format
Example Using ON ERROR, JUMP, ESL, ESM,

and NXL
ASL Function Format
ESL Function Format
ESM Function Format
NXL Function Format
Function Reference Format
ABS and SQR Functions Example
RND Function Format
RND Function Example
RANDOMIZE Statement Format
RANDOMIZE Statement Example
Program Using System Functions CLK$,

DAT$, and TIM
ASC Function Format
CRR$ Function Format
CRR$ Function Example
LEN Function Format
LEN Function Example
LPAD$ Function Format
LPAD$ Function Example
LTRM$ Function Format
LTRM$ Function Example
LWRC$ Function Format
LWRC$ Function Example
ORD Function Format
ORD Function Example
POS Function Format'
POS Function Example
RPAD$ Function Format
RPAD$ Function Example
RPT$ Function Format
RPT$ Function Examples
RTRM$ Function Format
RTRM$ Function Example
STR$ Function Format
STR$ Function Example
UPRC$ Function Format
UPRC$ Function Example
VAL Function Format
VAL Function Examples
Single-Line Function Using DEF
Single-Line Function Example Using DEF
Multiple-Line Function Format With

DEF••• FNEND
Multiple-Line Function Examples Using

DEF ••• FNEND
BASIC Subroutine and RETURN Statement
GOSUB Statement Format
Nested Subroutines

3-4
3-4
3-5
3-5
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-7
4-7
4-7

4-8
4-8
4-9
4-9
4-9
5-1
5-1
5-2
5-3
5-3
5-3

5-4
5-4
5-5
5-6
5-6
5-6
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-10
5-11
5-12

5-13

5-14
6-1
6-1
6-2

ix •



6-4 ON GOSUB Statement Format 6-2 8-7 Matrix Addition Format 8-3
6-5 ON GOSUB Statement Example 6-3 8-8 Matrix Addition Example 8-3
6-6 RETURN Statement Format 6-3 8-9 Matrix Subtraction Format 8-4
6-7 CALL Statement Format 6-3 8-10 Matrix Subtraction Example 8-4

~6-8 BASIC Program Call to FORTRAN Subprogram 6-4 8-11 Matrix Multiplication Format 8-4
6-9 CHAIN Statement Format 6-5 8-12 Matrix Multiplication Example 8-4
6-10 Keywords for Optional Values 6-6 8-13 Scalar Multiplication Format 8-4
6-11 CHAIN Processing Example 6-6 8-14 Scalar Multiplication Example 8-5
7-1 FILE Statement Format 7-3 8-15 Matrix CON Function Format 8-5
7-2 FILE Statement Examples 7-4 8-16 Matrix CON Function Example 8-6 fa

~
7-3 CLOSE Statement Format - 7-4 8-17 Matrix IDN Function Format 8-6
7-4 CLOSE Statement Example 7-4 8-18 Matrix IDN Function Example 8-6
7-5 RESTORE Statement Format 7-4 8-19 Matrix ZER Function Format 8-6
7-6 RESTORE Statement Example 7-4 8-20 Matrix ZER Function Example 8-7
7-7 NODATA Statement Format 7-5 8-21 Matrix INV Function Format 8-7 !!l

7-8 End-of-Information Processing 7-5 8-22 Matrix INV Function Example 8-7
7-9 IF END Statement Format 7-5 8-23 Matrix TRN Function Format 8-8
7-10 IF END Statement Example 7-5 8-24 Matrix TRN Function Example 8-8
7-11 IF MORE Statement Format 7-6 8-25 Matrix DET Function Format 8-8
7-12 IF MORE Statement Example 7-6 8-26 Matrix DET Function Example 8-8
7-13 APPEND Statement Format 7-6 8-27 MAT WRITE Statement Format 8-9
7-14 APPEND Statement Example 7-7 8-28 MAT WRITE Statement Example 8-9
7-15 WRITE Statement Format 7-7 8-29 MAT READ Statement Format 8-9
7-16 WRITE Statement Example 7-7 8-30 MAT READ Statement Example 8-10
7-17 READ Statement Format 7-7 8-31 MAT INPUT Statement Format 8-10
7-18 READ Statement Example 7-8 8-32 MAT INPUT Statement Example 8-11
7-19 SET Statement Format 7-8 8-33 MAT PRINT Statement Formats 8-11
7-20 SET Statement Example 7-9 8-34 MAT PRINT USING Statement Formats 8-12
7-21 LOC Function Format 7-9 8-35 MAT PRINT USING Statement Example 8-12
7-22 LOF Function Format 7-9 9-1 REM TRACE Statement Formats 9-1
7-23 Example of LOC and LOF Functions 7-9 9-2 REM TRACE ,ALL Example 9-2
7-24 INPUT Statement Format 7-10 9-3 REM TRACE Statement Example 9-2
7-25 INPUT Statement Example 7-11 9-4 Variables Examples 9-3
7-26 DELIMIT Statement Format 7-12 9-5 Line Number Referencing Format 9-3
7-27 PRINT Statement Format 7-13 9-6 GO Command Format 9-3
7-28 PRINT Statement Example 7-13 9-7 GOTO Command for CID Format 9-3
7-29 Program Example of Numeric Formats 7-14 9-8 STEP Command Format 9-4
7-30 String Formats Using the PRINT Statement 7-15 9-9 STEP Message Format 9-4
7-31 Use of Semicolon With Numeric Data 7-15 9-10 SET BREAKPOINT Command Format 9-4
7-32 Use of Semicolon With String Data 7-15 9-11 SET BREAKPOINT Examples 9-4
7-33 Print Zoning Examples 7-16 9-12 Breakpoint Message Format 9-4
7-34 TAB Function Format 7-16 9-13 CLEAR BREAKPOINT Command Format 9-4
7-35 TAB Function Examples 7-17 9-14 CLEAR BREAKPOINT Examples 9-5
7-36 PRINT USING Statement Formats 7-17 9-15 SET TRAP Command Format 9-5
7-37 The Image for a PRINT USING Statement 7-17 9-16 Trap Message Format 9-5
7-38 Image Statement Format 7-17 9-17 SET TRAP Command Examples 9-5
7-39 Image With PRINT USING Statement 7-18 9-18 CLEAR TRAP Command Format 9-5
7-40 Delimiters in Image 7-18 9-19 CLEAR TRAP Examples 9-5
7-41 Delimiters in Image Reused 7-18 9-20 PRINT Command for crn Format 9-6
7-42 Format Field Types 7-20 9-21 PRINT Command for crn Examples 9-6
7-43 Sign and Edit Option Examples 7-21 9-22 MAT ·PRINT Command for cm Format 9-6
7-44 Fields of ~age Statement Identified 7-22 9-23 MAT PRINT Command for CID Examples 9-6
7-45 Field Character in Literal 7-22 9-24 LIST VALUES Command 9-7
7-46 Correction of Field Character Use 7-22 9-25 LET Command for CID Format 9-7
7-47 Special Cases for Format Fields 7-23 9-26 LET Command for CID Examples 9-7
7-48 MARGIN Statement Formats 7-24 9-27 IF Command for crn Format 9-7
7-49 MARGIN Statement Example 7-24 10-1 BASIC Subsystem Under NOS 10-2
7-50 Program Example Using ·MARGIN Statement 7-24 10-2 OLD Command Under NOS 10-3
7-51 SETDIGITS Statement Format 7-24 10-3 Program Executed Interactively Under
7-52 SETDIGITS Statement Example 7-25 BATCH Subsystem 10-3
7-53 DATA Statement Format 7-25 10-4 Using Data Files Under NOS 10-4
7-54 DATA Statement Examples 7-25 10-5 RESEQ Command Format 10-5
7-55 READ Statement Format 7-26 10-6 RESEQ Command Example 10-6
7-56 READ Statement Example 7-26 11-1 Interactive BASIC Terminal Session 11-2
8-1 Array A(2,4) With OPTION BASE 0 8-1 11-2 BASIC Command Parameters Under NOS/BE 11-4
8-2 Array (2,4) With OPTION BASE 1 8-1 11-3 Using Data Files Under NOS/BE 11-4 ~ ..

8-3 Formats for Redimensioning Specifiers 8-2 11-4 BRESEQ Command Format 11-5
8-4 Redimensioning Example Using MAT READ 8-2 11-5 BRESEQ Command Example 11-5
8-5 Matrix Assignment Statement Format 8-2 12-1 Job Structure Under NOS 12-1
8-6 Matrix Assignment Example 8-3 12-2 Job Structure Under NOS/BE 12-1

.• x 19983900 H



r 12-3 BASIC Compile and Execute Job Under NOS 12-2 3-2 OPTION and DIM Statements 3-2
12-4 BASIC Compile and Execute Job Under 3-3 REM Statement and Tail Comment 3-4

NOS/BE 12-2 3-4 END and STOP Statements 3-5
12-5 BASIC Compile to Binary File, Load, 4-1 Test and Branch Statements 4-1

and Execute Job Under NOS 12-3 4-2 Looping Statements 4-4
12-6 BASIC Compile to Binary File. Load. 4-3 Error and Interrupt Processing

and Execute Job Under NOS/BE 12-3 (Statements 'and Functions) 4-6
12-7 REM LIST Statement Format 12-4 5-1 Mathematical Functions 5-2
12-8 HEM LIST Statement Example 12-9 5-2 Predefined System Functions 5-4

~
12-9 Batch Processing From a Terminal 5-3 String Functions 5-5

Under NOS 12-10 5-4 Error and Interrupt Processing
12-10 Batch Processing From a Terminal Functions 5-10

Under NOS/BE 12-10 5-5 Matrix Functions 5-11
-;;, 12-11 Printing a Batch Job 12-11 5-6 I/O Functions 5-11
~ 5-7 User-Defined Functions 5-11

6-1 Subroutine. Subprogram, and Chaining
TABLES Statements 6-2

7-1 I/O Statements and Functions 7-1
1-1 Arithmetic Operators 1-4 7-2 I/O Statements and Related Type of I/O 7-2
1-2 Relational Operators 1-4 7-3 Sequential Access Versus Random Access 7-3
2-1 BASIC Character Set 2-1 7-4 Standard Numeric Output Formats 7-14
2-2 Arithmetic Expression Operator 7-5 Types of Fields 7-19

Hierarchy 2-5 7-6 Sign and Edit Options 7-19
2-3 Expression Evaluations 2-6 8-1 Matrix Arithmetic Statements 8-3
2-4 Relational Expression Operators 2-7 8-2 Matrix Functions 8-5
2-5 Logical Operator Hierarchy 2-7 8-3 Matrix I/O Statements 8-9
2-6 NOT (UNARY) Operator Evaluations 2-8 12-1 Compiler Lis·table Output Parameters 12-5
2-7 AND Operator Evaluations 2-8 12-2 Compiler Input Parameters 12-6
2-8 OR (INCLUSIVE) Operator Evaluations 2-8 12-3 Compiler Binary Output Parameters 12-7
3-1 Value Assignment 3-1 12-4 Program Execution Parameters 12-8

r 19983900 H xi/xii.



~.



NOTATIONS

-
Certain notati ons are used throughout this manual.
The notations and their meanings are:

Horizontal ellipses indicate repe
tition.

Delta indicates a space (blank).

Carriage return denotes the trans
mission key on the keyboard.

UPPERCASE

Lowercase

19983900 H

Vertical ellipsis indicate program
lines not shown.

Uppercase text in examples of
terminal dialog indicates termi
nal output. Uppercase words in
statement and command formats
must appear exactly as shown.

Lowercase text in examples of
terminal dialog indicates user
input. Lowercase words in state
ment and command formats indicate
values or options supplied by the
user.

Examples of actual terminal sessions appearing in
this manual were produced on a class 1 terminal.
The format of these terminal sessions might dif
fer slightly from· the formats appearing at your
terminal.

xiii.





N

BASIC PRIMER 1

Modern digital computers are designed" for a wide
range of applications. However, all digital comput
ers have certain common characterist~cs; they all
perform tasks specified by a set of instructions.

A set of sequential instructions designed to solve
a specific problem is called a program. A program
can perform a simple task, such as adding or sub
tracting two numbers, or printing a single letter
or digit. However, a program usually performs a
more complicated task. A program for a complete
scientific computation could require a few thousand
computer instructions.

Computer programs process or manipulate information
called data. A program can be used to perform
calculations by using data, and to print out the
results. Most programs permit new data to be input
each time the program is used. The three phases of
program operation are input, computation, and out
put. The process of a program performing tasks in
a computer is called program execution, or r"unning
a program.

PROGRAMMING AND LANGUAGES
Computers can execute thousands and even millions
of computer instructions each second; therefore,
computer instructions must be structured in a form
suited to the computer's architecture. Writing a
program by using computer instructions in the form
used directly by the computer (machine instructions)
is tedious and time-consuming. In order to sim
plify writing programs, computer specialists have
developed several high-level, easy-to-use, program
ming languages and associated compilers and trans
lators to convert these high-level languages to
machine instructions. BASIC, the beginner's al1
purpose symbolic instruction code, is one such
high-level language. BASIC was originally developed
by professors John G. Kemeny and Thomas E. Kurtz at
Dartmouth College.

This section describes the process of writing and
executing a BASIC program by solving a sample prob
lem. The BASIC statements used in solving the
problem are explained. This section is intended
for nonprogrammers. This section provides the
information necessary to write BASIC programs and
understand the more detailed descriptions of the
BASIC language provided in the sections that follow
this section.

5TATEMENT OF THE PROBLEM

The following general description outlines a manu
facturing system problem that is to be solved by
using BASIC. In this problem, F represents fixed
costs per year associated with production, C repre
sents variable costs incurred per unit, and V rep
resents the annual volume of production (and sales)
in units. The total cost incurred per year is

", 19983900 H

T = F + C*V. If the revenue per unit made (and
sold) is R per unit, then the total annual revenue
is Rl = R*V. The profit obtained on an annual
basis is the difference between R1 and T, if that
result is positive. A loss occurs if Rl - T is
negative. The break-even point is reached when the
volume is sufficient to make Rl = T.

For example, a company operates with fixed costs of
$1 million per year, variable costs of $10 per
unit, and a revenue of $30 per unit of production.
Using this data, answer the following questions:

1. What is the break-even point?

2. If the predicted sales are 25000 units, what is
the expected profit or loss?

3. What is the expected profit or loss for sales
of 50000, 75000, and 100000 units?

The BASIC program in figure 1-1 answers questions 1
"and 2 of the problem. The solution to 'question 3
is provided later in this section.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000
030 LET C=10
040 LET R=30
050 LET V=25000
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT="iV1i"VOLUME UNITS"
100 REM
110 REM COMPUTE TOTAL COST
120 LET T=F+c*v
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = $"i-P~"VOLUME ="iVi"UNITS"
220 GOTO 240
230 PRINT "PROFIT=S"iP,"VOLUME="iVi"UNITS"
240 END

Figure 1-1. Break-Even Program

1-1

I



I

I

I

I

ANALYSIS OF STATEMENTS

Each line of a BASIC program is called a statement;
each statement must begin with a line number. Line
numbers normally indicate the sequence in which the
computer is to execute the statements. The follow
ing statements are used in the break-even program
shown in figure 1-1.

REM Statement

Figure 1-2 shows a segment of the break-even pro
gram that contains the REM statement. The REM
statement allows the user to insert remarks. These
remarks increase readability and comprehension in a
program; they have no effect on the program during
execution. A maximum of itll characters can be
included in a REM statement.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003' REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
·009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM

Figure 1-2. REM Statement Lines

Figure 1-2 shows the use of the REM statement to
identify the type of program, the variables used,
and the variable identifiers. These identifiers
are used later in program computations.

LET Statement

The LET statement specifies that the variable
(quantity that can vary during execution of the
program) to the left of the equals sign be set to a
value (the value is the formula or expression to
the right of the equals sign).

Examples:

Constant Value Assignment - Statements 20
through 50 of the program in figure 1-3 ·assign
values to variables F, C, R, and V, which are
used later in computing the break-even point.
The values for F, C, and R represent dollars
and the value for V represents units.

Formula Value Assignment - In the program in
figure 1-4, statements 120, 150, and 180 com
pute total cost, total revenue, and prof it or
loss, respectively, and assign these values to
variables T, Rl, and P. The symbol * specifies
multiplication. The value of the variable ot"
expression to the right of the equals sign
becomes the value of the variable to the left
of the equals sign. BASIC conforms to the
normal algebraic rules for order of ari thmetic
computation. (See Arithmetic Expressions in
this section.)

1-2

I
013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000
030 LET C=10
040 LET R=30
050 LET V=25000

Figure 1-3. LET Statement Lines (Constants)

110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM
140 REM· COMPUTE TOTAL REVENUE
150 LET R1=R*V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T

Figure 1-4. LET Statement Lines (Formulas)

Statement 120 directs the computer to multiply V
(25000) by C (10) and add the product (250000) to F
(1000000) equaling a sum of 1250000. This sum is
assigned to the variable T.

In computing total revenue, the volume (V) is mul
tiplied by the revenue per unit (R) (25000 * 30),
and the product (750000) is assigned to Rl.

To determine profit or loss» the total cost (T) is
subtracted from the total revenue (Rl): (750000
1250000) and the remainder ( - 500000) is assigned
to P.

PRINT Statement

The PRINT statement can be used to: print out a
value; print a message; print a combination of a
v~lue and a message; and print a blank line. BASIC
normally separates an output line into five print
zones, each 15 characters long. Spacing is con
trolled with commas and semicolons embedded in the
PRINT statement. The comma is used to space over
to the next print zone (insert blank spaces between
items); the semicolon permits items to be printed
with no additional blanks between them. When
printing headings or labels, enclose the heading or
label in quotes in the PRINT statement. To print a
blank line, simply use the PRINT statement without
specifying what to print.

Statement 080 in figure 1-5 illustrates the assign- I
ment of a value to a variable by using the LET
statement. Statement 090 illustrates the use of
the PRINT statement to print an identifying label
and the derived value.

19983900 H



1
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT="iV1i"VOLUME UNITS"
100 REM

BREAK-EVEN PROGRAM AND OUTPUT

Figure 1-7 shows the break-even program and theI
output that answers questions 1 and 2. After the
program is entered into the computer, the BASIC
compiler is directed to compile and execute the
program.

BREAK-EVEN POINT= 50000 VOLUME UNITS

Figure 1-5. PRINT State~ent Lines

IF, GOTO, and END Statements

In the sample program (figure 1-1), if sales volume
V is greater than the break-even volume, a profit
is earned. If the sales volume is less than the
break-even volume, a loss is incurred.

I

I

After the program is entered into the computer,
the BASIC compiler is directed to compile and
execute the program. Below is the output after
program execution.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARI~LES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
DOS REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=10000oo
030 LET C=10
040 LET R=30
050 LET V=25000
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT="iV1i"VOLUME UNITS"
100 REM
110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = S"i-P,"VOLUME ="iVi"UNITS"
220 GOTO 240
230 PRINT "PROFIT=S";P,"VOLUME="iVi"UNITS"
240 END

BREAK-EVEN POINT= 50000 VOLUME UNITS

a--
L_0_S_S_=_S_5_0_0_00_0 V_0_LU_M_E_-_-_2_5_00_0_UN_I_T_S..... I

Figure 1-7. Break-Even Program and OutputFigure 1-6. IF, GOTO, and END
Statement Lines

200 IF V>V1 THEN 230
210 PRINT "LOSS = S"i-P,"VOLUME ="iVi"UNITS"
220 GOTO 240
230 PRINT "PROFIT=S"iP,"VOLUME="iVi"UNITS"
240 END

I

Statement 080 directs the computer to subtract C
from R (30-10) and, by using the remainder (20) as
a divisor, divide F (1000000) by 20. The quotient
(50000) is then assigned to the variable VI. (The
symbol/indicates divide.) Statement 090 directs
the computer to print the value of VI and the BREAK
EVEN POINT identifying label. The unit of measure
for VI is labeled VOLUME UNITS. When executed,

I this PRINT statement in figure 1-5 produces:

I The IF statement at line number 200 in figure 1-6
directs the program execution to the statement at
line number 230, if the condition V is greater than
VI is met. The IF statement directs execution to
the statement at line number 210, if the condition
is not met. Line 200 illustrates how execution
sequence by line number can be altered.

I

The IF statement (line 200) selects the print label
PROFIT or LOSS to be printed with the values asso
ciated with variables P and V.

I In figure 1-6, the PRINT statement at line number
210 is executed because V = 25000 and VI = 50000.
After executing the PRINT statement, the computer
executes statement 220. Statement 220 is a COTO
statement that directs the computet to continue
execution at statement 240.

The END statement directs the computer to stop
executing the BASIC program. Its corresponding
line number must be the highest in the program.

EXPRESSIONS IN BASIC
An expression can be simple, that is, consisting of
one term (A); or complex, that is, consisting of
two or more terms connected by operators (A+B-C).
Expressions evaluate to a single value, which can
be used later in computation, or can be used in
determining program execution sequence. (See line
number 200.) There are three types of expressions
in BASIC: arithmetic, relational, and string.
Arithmetic and relational expressions are discussed
in the following paragraphs and in section 2; I
string expressions are discussed in section 2 of
this manual.

r 19983900 H 1-3



ARITHMETIC EXPRESSIONS TABLE 1-2. RELATIONAL OPERATORS

TABLE 1-1. ARITHMETIC OPERATORS

Symbol Meaning

Arithmetic expressions are formed from numeric
variables, numeric constants, func tion references,
and arithmetic operators. The arithmetic operators
allowed for BASIC are shown in table 1-1.

I

I
Equal to

Not equal to

Greater than

Less than or equal to

Greater than or equal to

Less than

>

> = ortQ~~

<

<> or~~11

Symbol Meaning

Division

Exponentiation ( t on
some teletypewriters)

/

*
+

Multiplication

Addition

Subtraction

An example of the use of the relational operator
can be found in line number 200 of the sample break
even program. For more details and the rules for
using relational operators, see section 2.

N01:E

The circumflex (,,) is the preferred character
symbol for exponentiation. See Future System
Migration Guidelines, appendix E.

DEFINING AND READING DATA
An efficient method of assigning values to variables
is through the use of the READ and DATA statements.

In the sample break-even program, operators (+, -,
*, and /) are used in line numbers 080, 120, 150,
and 180. The exponentiation operator raises a num
ber to a specified power. For example, 2**3 means
2 raised to the third power, or 23•

DATA AND READ STATEMENTS

In the break-even program, values are assigned
to variables by using LET statements as shown in
figure 1-8.

The arithmetic operators have a hierarchy for
evaluation: exponentiation; multiplication and
division; addition and subtraction. Evaluation
proceeds from left to right through an expression.
The hierarchy is al tered by the use of parenthe
ses. When using parentheses in BASIC, the rules
of algebra apply. For example, 2*3+2 = 8 and
2*(3+2) = 10.

Within a n\DDber in BASIC, commas cannot be used
to separate decimal groupings. For example, ten
million is written 10000000, not 10,000,000.

013 REM ASSIGN VALUES TO F, C, R, V
020 LET F=1000000
030 LET C=10
040 LET R=30
050 LET V=25000
060 REM

A numeric variable (such as F, C, R, or V in the
sample program) is named with' a single alphabetic
character or an alphabetic character followed by a
digit. The detailed rules for using numbers and
variables are included in section 2.

BASIC provides several mathematical func tions that
can be requested within an arithmetic expression
such as SIN (sine), COS (cosine), and SQR (square
root), Functions are described in section 5.

Figure 1-8. LET Statement Value Assignment

Statements at line numbers 020 through 050 can be
replaced with the following:

035 DATA 1000000.10,30.25000
037 READ F,C.R,V

RELATIONAL EXPRESSIONS

Relational expressions' are formed by combining
variables and/or constants into arithmetic ex
pressions that are compared by using relational
operators. Relational expressions are used in IF
statements to compare two values. Table 1-2 illus
trates the relational operators.

The DATA statement creates a block of data that is
internal to the program. Within the DATA state
ment, values must be separated by commas. In the
above program. the DATA statement precedes the READ
statement; however, this is not required. The DATA
statement can be placed anywhere in the program.
The READ statement is used to access the values
contained in the internal data block. The vari
ables in the READ statement are assigned values

6,,'

1-4 19983900 H



sequentially from the data block; for example, F =
1000000, C = 10, R = 30, and V = 25000. This method
is more efficient from the programmer's standpoint
because only the associated DATA statements need to

I be changed for added or different data. Figure 1-9
illustrates the use 6f the READ and DATA statements
in the break-even program.

I

I

I

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R, V
035 DATA 1000000,10,30,25000
037 READ F,C,R,V
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/CR-C)
090 PRINT "BREAK-EVEN POINT="iV1i"VOLUME UNITS"
100 REM
110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = S"i-P,"VOLUME ="iVi"UNITS"
220 GOTO 240
230 PRINT "PROFIT=S"iP,"VOLUME="iVi"UNITS"
240 END

IF AND GOTO STATEMENTS

In the original problem, question 3 requests the
profit or loss for sales of values 50000, 75000, I
and 100000 units. To solve questions 1 and 2 of
the problem for these four values, a loop is in
serted using the IF statement (line number 104 in
figure 1-10) and the GOTO statement (line numberI
236).

In figure 1-10, V is assigned the initial value of
25000 (line number 102). The statement of line.
number 104 then compares V to 100000. If V is
greater than 100000, control is transferred to line
number 240 and the loop ends. If V is not greater
than 100000, line numbers 110 through 236 are exe
cuted in the normal sequence. The statement at
line 235 increments V by 25000, and the statement
at line 236 transfers control back to line 104.
The statement at line number 104 compares the new
value of V to 100000 to determine whether or not to
execute the loop again. Looping continues until V
is greater than 100000. I

For each value of V, the values of T, R1, and Pare
computed, and LOSS or PROFIT is printed depending
on the value of V; this completes the execution of
the loop in the break-even program.

During the first pass through the loop, V equals
25000; during the second pass, V equals 50000; dur
ing the third pass, V equals 75000; and during the
fourth pass, V equals 100000. The printed output
from the program shows the break-even point and the I
profit or loss for the four volume levels.

FOR AND NEXT STATEMENTS

The sample program in figure 1-11 shows a loop I
created by using the FOR statement (line number
101) and the NEXT statement (line number 235).

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS

I,--~_O_S_S_=_S_5_0_00_0_0 V_OL_U_M_E_=_2_50_0_0_U_N_I_TS~

Figure 1-9. Break-Even Program With
READ and DATA Statements

LOOPING IN BASIC
We are frequently interested in solving a problem
in which a specified sequence of statements is exe
cuted a number of times. Each time the sequence is
executed, a variable is assigned a different value.
In programming, this is done by using a technique
called looping. The following statements provide
two methods for looping:

IF and GOTO statements

FOR and NEXT statements

19983900 R

The FOR statement establishes the first value of V
(25000), the final allowable value of V (100000),
and the step value of (25000). Statements between
the FOR statement and the NEXT statement are repeat
edly executed until V is greater than the final
allowable value. The value of V is incremented by
the step value each time the NEXT statement is exe
cuted. Output from the program is identical to the
output produced when the IF and GOTO statements
controlled the loop.

LISTS AND TABLES
For some problems, it is desirable to present data
or the solution in the form of a list or table;
such lists and tables are called arrays. An array
is an ordered collection of items (data elements)
arranged in a multidimensional structure. A 1
dimensional array, or list, is called a vector and
a 2-dimensional array, or table, is called a matrix.
These terms have been borrowed from mathematical
terminology because vectors and matrices in BASIC
obey other HS ecial ro erties ex ected by mathe
maticians. ~.?,

.I_~'· ~j1~~

1-5



I

I

LOOP

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME' V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R
035 DATA 1000000,10,30
037 READ F,C,.R
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT="iV1i"VOLUME UNITS"
100 REM
102 LET V = 25000
104 IF V>100000 THEN 240
110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = S"i-P,"VOLUME ="iVi"UNITS"
220 GOTO 235
230 PRINT "PROFIT=S"iP,"VOLUME="iVi"UNITS"

, 235 LET V = V + 25000
236 GOTO 104
240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS
LOSS = $ 500000 VOLUME = 25000 UNITS
LOSS = $ 0 VOLUME = 50000 UNITS .
PROFIT=S 500000 VOLUME= 75000 UNITS
PROFIT=$ 1.00000E+6 VOLUME= 100000 UNITS

Figure 1-10. Break-Even Program With IF and GOTO Statements

9 10 11 12

A= 5 6 (}) 8

In the break-even program. where the profit or loss
for four different sales volumes is computed. the
values V. P, T, and Rl can be organized in array
form. with each array containing four elements.
For each volume (V) , an associated revenue (R1),
cost (T), and profit (P) are computed.

Variables are used to name arrays. The individual
elements of an array, identified by the use of sub
scripts, are called subscripted variables. The
subscripts, one for each dimension of the array,
are position indicators that locate elements within
the array. Subscripts are separated by commas and
enclosed by parentheses. The first matrix sub
script designates a row; the second matrix sub
script designates a column. Numbering of the
elements begins with zero; the first element in the
first row and the first column has subscripts (O.O).

Example:

In the following matrix, the element designated
by A(l,2) is circled.

1 2 3 4

1-6 19983900 H



001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
OOB REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R, V
035 DATA 1000000,10,30,25000
037 READ F,C,R,V
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT="iV1i"VOLUME UNITS"
100 REM

~101 FOR V = 25000 TO 100000 STEP 25000
110 REM COMPUTE TOTAL COST
120 LET T=F+C*V
130 REM
140 REM COMPUTE TOTAL REVENUE
150 LET R1=R*V
160 REM
170 REM COMPUTE PROFIT/LOSS
180 LET P=R1-T
200 IF V>V1 THEN 230
210 PRINT "LOSS = S"i-P,"VOLUME ="iVi"UNITS"
220 GOTO 235
230 PRINT "PROFIT=S"iP,"VOLUME="iVi"UNITS"

~235 NEXT V
240 END

When executed, this program produces:

BREAK-EVEN POINT= 50000 VOLUME UNITS
LOSS = $ 500000 VOLUME = 25000 UNITS
LOSS = $ 0 VOLUME 50000 UNITS
PROFIT=S 500000 VOLUME= 75000 UNITS
PROFIT=S 1.00000E+6 VOLUME= 100000 UNITS

Figure 1-11. Break-Even Program With FOR and NEXT Statements

I

I

I

~:

I In the sample program (figure 1-12), the DIM state
ment is used to specify each array as containing
four elements (line numbers 039, 040, 041, and
042); however, the use of this statement is not
required. To specify an array of up to eleven
elements, only the selected variable name and asso
ciated subscripts are required. The advantage of
using DIM in this situation is the conservation of
space because the use of a variable and subscript
results in an automatic "allocation of space for
eleven array elements by BASIC. If the array is to

I contain more than eleven elements, the DIM state
ment is required. See section 3 for additional
information pertaining to the DIM statement.

I The DIM statement in line number 039 of figure 1-12
reserves space for an array named V. The amount of
space reserved is determined by the bound speci
fier; the bound for array V is 3. This means that
the largest subscript for array V is 3 and that

19983900 H

array V has four elements: V(O), V( 1), V(2), and
V(3) because a count of the elements begins with
zero (0). (See figure 1-13.) Arrays P, T, and R1
in figure 1-12 are also four-element arrays. A
count of the elements can also begin with 1. See
the OPTION statement described in this manual.

Figure 1-14 shows the method used for placing data
into the array. The variable I is used to ini
tialize the volume array V. The variable I is set
to the value of zero, and is incremented within the
FOR loop (line number 102) by 25000 for each incre
ment of J. The variable J is a subscript used to
address the individual elements of array Vj when
J is zero, the first element is addressed. The
statement at line 103 places the current value of I
into the array V at the location identified by the
current value of J. J is also used as a subscript
for addressing the elements of arrays P, T, and Rl.

1-7



I

I

I

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012. REM
013 REM ASSIGN VALUES TO F, C, R
035 DATA 1000000,10,30
037 READ F,C,R
038 REM DEFINE ARRAYS FOR V, P, T, R1
039 DIM V(3)
040 DIM P(3)
041 DIM T(3)
042 DIM R1(3)
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/CR-C)
090 PRINT "BREAK-EVEN POINT="iV1;"VOLUME UNITS"
095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1
096 LET I = 0
101. FOR J = a TO 3
102 LET I = I + 25000
103 LET VCJ) = I
130 REM
140 REM COMPUTE TOTAL COST
141 LET TeJ) = F + C * VeJ)
160 REM COMPUTE TOTAL REVENUE
161 LET R1(J) =R * VeJ)
170 REM COMPUTE PROFIT/LOSS
181 LET peJ) =R1eJ) - TeJ)
183 NEXT J
201 PRINT" VOLUME",VeO),Ve1),V(2),V(3)
202 PRINT" REVENUE",R1eO),R1(1),R1 (2),R1 (3)
203 PRINT" COST",TeO),T(1),T(2),T(3)
204 PRINT" PROFIT",PCO),pe1),p(2),PC3)
240 END

'Figure 1-12. Break-Even Program With
DIM Statements

I element 0 I element 1 I element 2 I element 3 I
Figure 1-13. Array V

After completing the loop between line numbers 101
and 183 (figure 1-14), all of the arrays contain
the results of the computation. The PRINT state
ments in lines 201, 202, 203, and 204 (figure 1-15)
print the individual elements of each array. The
program output displays the contents of each array
as shown in figure 1-16.

095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1
096 LET I = 0
101 FOR J = 0 TO 3
102 LET I = I + 25000
103 LET VeJ) = I
130 REM
140 REM COMPUTE TOTAL COST
141 LET T(J) = F + C * VeJ)
160 REM COMPUTE TOTAL REVENUE
161 LET R1eJ) = R * V(J)
170 REM COMPUTE PROFIT/LOSS
181 LET P(J) = R1(J) - T(J)
183 NEXT J

Figure 1-14. Placing Data Into Arrays

201 PRINT" VOLUME",V(0),VC1),V(2),Ve3)
202 PRINT" REVENUE",R1(0),R1(1),R1(2),R1e3)
203 PRINT" COST",T(0),T(1),Te2),TC3)
204 PRINT II PROFIT",P(0),PC1),P(2),P(3)
240 END

Figure 1-15. PRINT Statements for
Array Elements

TERMINAL INPUT AND
OUTPUT (I/O)
Sometimes it is desirable to enter data while a
program is executing. For example, if the break
even problem is generalized to permit several
different products with different fixed costs,
variable costs, and revenue per unit, the program
can be modified to request the values for these
variables while the program is executing.

The INPUT statement is used in a BASIC program when
entering data from the terminal keyboard. When the
INPUT statement is executed, a displayed ? asks for
data. Execution stops until the requested data is
entered. Data entered through the terminal key
board is assigned sequentially to variables listed
as INPUT statement arguments.

If more than one item is reques ted by one INPUT
statement, the exact number of items requested must
be entered and the items must be separated by
commas. If not enough data or too much data is
entered, diagnostics are issued by BASIC. The
specified action must be taken before execution can
resume.

BREAK-EVEN POINT= 50000 VOLUME UNITS
VOLUME 25000 50000
REVENUE 750000 1.50000E+6
COST 1.25000E+6 1.50000E+6
PROFIT -500000 0

75000
2. 25000E+6
1.75000E+6
500000

100000
3.00000E+6
2.00000E+6
1.00000E+6

1-8

Figure 1-16. Break-Even Program With DIM Statements Output

19983900 H



Figure 1-17 illustrates the break-even program
using the INPUT statement. The values of variables
F, C, and R are to be input. The PRINT statement
at line number 015 prints a message on the terminal
indicating the values and the sequence of the values
to be input. The output of this statement is fol
lowed by the question mark and the result of the
INPUT statement line 036 is shown in figure 1-18.

Note that only two values were entered and that the
NOT ENOUGH DATA diagnostic was issued; the data was
then reentered.

The program output is shown in figure 1-18. Reve
nue, cost, and profit were computed on the basis of
data entered at the terminal. Refer to sec t ion 7
and appendix D for more information pertaining to
input and output.

001 REM THIS IS A BREAK-EVEN PROGRAM
002 REM THE FOLLOWING VARIABLES ARE USED
003 REM FIXED ANNUAL COST F
004 REM VARIABLE COST PER UNIT C
005 REM SALES REVENUE PER UNIT R
006 REM SALES VOLUME V
007 REM BREAK-EVEN POINT (VOLUME) V1
008 REM TOTAL COST T
009 REM TOTAL REVENUE R1
010 REM PROFIT/LOSS P
011 REM
012 REM
013 REM ASSIGN VALUES TO F, C, R
015 PRINT "INPUT:FIXED COSTS VARIABLE COSTS REVENUE PER UNIT"
036 INPUT F,C,R
038 REM DEFINE ARRAYS FOR V, P, T, R1
039 DIM V(3)
040 DIM P(3)
041 DIM T(3)
042 DIM R1(3)
060 REM
070 REM COMPUTE BREAK-EVEN POINT
080 LET V1=F/(R-C)
090 PRINT "BREAK-EVEN POINT=";V1;"VOLUME UNITS"
095 REM INITIALIZE ARRAY V, COMPUTE P,T,R1
096 LET I = 0
101 FOR J = 0 TO 3
102 LET I = I + 25000
103 LET V(J) = I
130 REM
140 REM COMPUTE TOTAL COST
141 LET T(J) = F + C * V(J)
160 REM COMPUTE TOTAL REVENUE
161 LET R1(J) = R * V(J)
170 REM COMPUTE PROFIT/LOSS
181 LET P(J) = R1(J) - T(J)
183 NEXT J
201 PRINT" VOLUME",V(0),V(1),V(2),V(3)
202 PRINT II REVENUE",R1(0),R1(1),R1(Z),R1(3)
203 PRINT" COST",T(0),T(1),T(2),T{3)
204 PRINT" PROFIT",P(0),P(1),P(2),P(3)
240 END

Figure 1-17. Break-Even Program With INPUT Statement

75000
2. 25000E+6
1.75000E+6
500000

INPUT:FIXED COSTS VARIABLE COSTS REVENUE PER UNIT
? 1000000,10

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 36
? 1000000,10,30
BREAK-EVEN POINT= 50000 VOLUME UNITS

VOLUME 25000 50000
REVENUE 750000 1.50000E+6
COST 1.25000E+6 1.50000E+6
PROFIT -500000 a

100000
3.00000E+6
2.00000E+6
1.00000E+6

r
Figure 1-18. Break-Even Program With INPUT Statement Interactive Input/Output

19983900 H 1-9 •



When this occurs, perform the following steps: I
1. E~ter the family name on the same 1 ine. If

the family name is the default family for the
system, press the carriage return. Certain
installations do not request a family name.

USING BASIC UNDER NOS
AND NOS/BE

The previous paragraphs describe BASIC statements
and the organization of these statements into a
BASIC program. The following paragraphs describe
the procedures for entering a program into a com
puter and for executing that program.

BASIC is primarily a terminal-oriented language;
however, programs in card deck form can be entered
and executed (batch mode). The following para
graphs describe the method for entering and exe
cuting BASIC programs interactively through use of
a teletypewriter (TTY) or cathode ray tube (CRT)

I terminal. See section 12 for a description of
BASIC program card deck structures and batch mode
operations.

BASIC runs under beth the NOS and NOS/BE operating

I systems. Its usage under NOS is described in the
following paragraphs; its usage under NOS/BE is
described later' in this section. See sections 10
and 11 for more detailed information.

If operating from a terminal, the program must be
written into a file, as shown in the examples that
follow, and must be executed from the file. To
correct a line, reenter the line number, followed
by the corrected line. To delete a line under NOS,
enter the line number and press t)le transmission
(carriage return) key. To delete a line under
NOS/BE, enter DELETE, the 1 ine number, and press
the transmission (carriage return) key. New lines
can be added freely.

NOS

2.

3.

The system responds:

USER NAME:

Enter the user name on the same 1 ine. The I
user name consists of alphanumeric characters
assigned by the installation.

The system responds:

PASSWORD:

Enter the password. The password must consist I
of up to seven alphanumeric charac ters. To
provide a greater measure of security, over
typing is done on hardcopy terminals.

If the family name, user name, and password
are not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

If the family name, user name, and password
are acceptable, the system responds:

termname - APPLICATION:

The termname on this line is the same as that
on the first line of the login sequence and
can be disrega~ded.

or

IAF

JSN: zzzz, NAMIAF

Select the Interactive Facility by entering:

nn, NAMIAF

nn, NAMIAFTERMINAL:
RECOVER/SYSTEM:

TERMINAL:
RECOVER/CHARGE:

JSN: zzzz, NAMIAF
CHARGE NUMBER:
?~

Under NOS 1, if validation is given to access
the Interactive Facility, the system responds:

or

where nn is the terminal number. Remember this
number because it can be used for recovery.

Under NOS 2, if validation is given to access
the Interactive Facility, the system responds:

4.BASIC programs can be run from a time-sharing termi
nal under NOS through Interactive Facility (IAF) or
the Time-Sharing System. Login procedures for IAF
and the Time-Sharing System differ. The procedures

I are described in the following paragraphs.

I Login, Execution, and Logoff Procedures
for the Interactive Facility

The login procedure for the 'Interactive Facility
(IAF) begins with the system printing the following
three lines at the terminal. The second line of
this message is dependent on the installation.

To initiate the login procedure, establish physical
connection between the terminal and the computer.
The method used to establish this connection varies
depending on the type of terminal being used and
the type of· coupling between the terminal and the
computer. Connection methods for IAF are described
in the Network Products Interactive Facility ·ref-

I erence manual (NOS 1 sites) and Volume 3 of the
NOS 2 reference set (NOS 2 sites). Connection
methods for the Time-Sharing System are described
in the NOS Time-Sharing User's reference manual.

yy/mm/dd. hh.mm.ss termname
CDC NOS
FAMILY:

READY.

where zzzz is the job sequence name. Reme@b~r

this name because it can be used for recovery.

1-10 19983900 H



~.

5. If RECOVER/ SYSTEM (NOS 1) or READY (NOS 2) is
printed, the login procedure is complete; any
valid command can be entered.

If, under NOS 1, RECOVER/CHARGE is printed,
type CHARGE followed by the assigned charge
number and project number on the same line:

CHARGE,chargeno,projectno

The system responds by printing:

READY.

The login procedure is now complete.

If, under NOS 2, CHARGE NUMBER is printed,
type the assigned charge number in the area
that has been blacked out. The system will
respond:

PROJECT NUMBER:1-
Type in the assigned project number in the
area that has been blacked out.

If the charge number and project number are
valid, the system responds by printing:

READY.

The login procedure Is now complete.

8.

9.

If the file name entered contains too many
characters, the system responds:

ILLEGAL PARAMETER

Correct the file name.

After the system finds the specified file, it
responds:

READY.

The example in figure 1-19 illustrates a sample
login for both NOS 1 and NOS 2.

Enter the new BASIC program. Each line must
begin with a 1- through 5-digit line number,
and end with a carriage return. BASIC state
ments need not be typed. in correct order; the
BASIC subsystem automatically sequences the
statements according to line number. The NOS
edit facility, XEDIT , can be used to enter a
new BASIC program or change an exist lng file.
See the XEDIT reference manual for use of this
facility.

To execute the program, type:

RUN

This command initiates compilation ana execu
tion of the BASIC program. If there are com
pilation or execution errors, the appropriate
error messages will be displayed.

... _----.,

6. Enter the desired subsystem by typing:

BASIC

Because all interactive programs run under
NOS reside as files, the system queries the
applicable file type by responding:

OLD, NEW, OR LIB FILE:

10. When a run is completed, the following options
are available:

Continue processing (build and execute new
programs; modify existing program and re
run; or rerun the same program).

or
Terminate the terminal session with the
following command:

7. Submit the appropriate file status:
the local file name.

OLD,lfn

lfn is BYE

All flIes not saved (see appendix D, Indirect Access
Permanent Files) are released.

Under NOS 1, the following .is print~d:Indicates the file previously created and
available.

NEW,lfn
axxxxx
xxxxxxx

LOG OFF
SRU

hh.mm.ss.
s.sss UNTS

Indicates a new file.

Indicates a file from the system library.

xxxxxxx

s.sss

Indicates the user name.

Indicates the total number of system
resource units used under this charge
and project number.

Under NOS 2, the following is printed:

Indicates the user name.

Indicates the job sequence name.

The file name cons lsts of up to seven alpha
numeric characters. If an OLD or LIB file
does not exist, the system responds:

lfn NOT FOUND, AT nnnnn.

If the file name entered contains illegal
characters, the system responds:

UN=xxxxxxx
JSN=zzzz

xxxxxxx

zzzz

LOG OFF
SRU

hh.mm.ss.
s.sss UNlTS.

ERROR IN ARGUMENT

Correct the file name.

19983900 H

s.sss Indicates the total number of system
resource units used under this charge
and project number.

1-11 •



The system requests:
NOS 1 Login:

82/01/08. 10.50.14. T128
CDC NOS 1
FAMILY:
USER NAME : xxxxxxx .
PASSWORD: xxxx -_
T128 - APPLICATION: iaf
TERMINAL: 61, NAMIAF
RECOVER/ CHARGE: charge,xxxx,xxxxxxx
CHARGE,xxxx,xxxxxxx.
Ibasic
OLD, NEW, OR LIB FILE: new,ex4

READY.

3.

PASSWORD:

Enter the password. The password must con
sist of up to seven alphanumeric characters.
To provide a greater ",measure of security,
type the password in the area the system has
blacked out. If a password is not needed,
enter a carriage return.

If the family name, user number, and password
are not acceptable, the system responds:

IMPROPER LOGIN, TRY AGAIN.
FAMILY:

new,ex4

NOS 2 Login:

82/01/08. 10.42.16. T143A
CDC NOS 2
FAMILY:
USER NAME: xxxxxxx
PASSWORD: xxxx
T143A - APPLICATION: iaf
JSN: AADI, NAMIAF

CHARGE NUMBER:
?~,~~.~

PROJECT NUMBER:
?~-~~/basic
OLD, NEW, OR LIB FILE: new,ex4

READY.

Figure 1-19. NOS Login Examples

Login, Execution, and Logoff Procedures
for the Time-Sharing System

The login sequence for the Time-Sharing System
begins with the system printing the following three
lines at the terminal. The second line of this
message is dependent on the installation.

yy/mm/dd. hh.mm.ss.
CDC TIME-SHARING SYSTEM NOS
FAMILY:

When this occurs, perform the following steps:

If the family name, user number, and password
are acceptable, the system responds:

TERMINAL: nnn, TTY
RECOVER/CHARGE:

or
TERMINAL: nnn , TTY
RECOVER/SYSTEM:

The nnn indicates the particular terminal
number being used. (These responses are
installation-dependent.)

4-6. These steps are the same as steps 5 through
7 of the previous description of Login,
Execution, and Logoff Procedures for the
Interactive Facility.

The example in figure 1-20 illustrates a
sample login.

7-9. These steps are the same as steps 8 through
10 of the previous description of Login,
Execution, and Logoff Procedures for the
Interactive Facility.

81/07/31. 13.19.28.
TIME SHARING SYSTEM
FAMILY:
USER NUMBER:xxxxxxx
PASSWORD
xxxx
TERMINAL: 60,TTY
RECOVER/SYSTEM: basic
OLD,NEW,OR LIB FILE:

1.

2.

• 1-12

Enter the family name on the same line. If
the family name is the default family for the
system, press the carriage return. If your
installation does not use family names, a
family name is not requested.

The system requests:

USER NUMBER:

Enter the user number on the same line. The
user number consists of up to seven alphanu
meric characters assigned by the installation.

READY.

Figure 1-20. Sample Timesharing Login

Sample Terminal Session

The sample program in figure 1-21 was run at a ter
minal under the NOS 2 IAF System. Responses entered
at the terminal are in lowercase letters. Press
the transmission (carriage return) key after typing
in each response.

19983900 H



...

Ibasic "r4~---------~---
OLD, NEW, OR LIB FILE: new,ex4 "1C~------------

READY.

100 print "type a numbe~"

110 input x
120 let f=1
130 for i=1 to x
140 let f=f*i
150 print "factorial ";x,"is ";f
160 goto 110
170 end
list ........._---------------

100 PRINT "TYPE A NUMBER"
110 INPUT X
120 LET F=1
130 FOR 1=1 TO X
140 LET F=F*I
150 PRINT "FACTORIAL ";X,"IS ";F
160 GOTO 110
170 END

Requests BASIC subsystem.
Creates new file EX4.

Enters BASIC program•

Lists BASIC program.

READY.
alter,160,/110/100/ ~ ,Changes statement 160 to correct error.

160 GOTO 100

READY.
run ..".__---------------

FOR WITHOUT NEXT AT 130 .._-------
BASIC COMPILATION ERRORS

RUN COMPLETED
145 next ; ]
115 if x=O then 170 .........--.----------------
run

TYPE A NUMBER
? 3
FACTORIAL 3 IS 6
TYPE A NUMBER
? 0

RUN COMPLETE.
list -

100 PRINT "TYPE A NUMBER"
110 INPUT X
115 IF X=O THEN 170
120 LET F=1
130 FOR 1=1 TO X
140 LET F=F*I
145 NEXT I
150 PRINT "FACTORIAL "iX,"IS "iF
160 GOTO 100
170 END

READY.

Compiles and executes program.

BASIC issues diagnostic.

Correct program and rerun.

Program requests input and prints output.

Lists BASIC program.

save,ex4 ..---------------- Makes file EX4 permanent.

READY.

Figure 1-21. IAf System

19983900 H 1-13 •



In figure 1-21 t the program is saved as a file
named EX4. The program in this file is stored as
an indirect access permanent file which can later

:be accessed by use of the OLD command (as shown
. in figure 1-22). At this ttme, add, delete, or
change program statements as shown in figure 1-23.
(See appendix I for an explanation of the editing
commands used in figure 1-23.)

In figure 1-23, the REPLACE command replaces the
old version of EX4 with the updated version. If
logoff of the system had occurred before replacing
EX4, the corrected version would have been lost
while the old version of EX4 remained intact.

2. Enter the user name followed by a carriage
return. The user name can· be any combination
of tip to ten letters· or digits and must not be
followed by a period.

When the user name has been entered at a TTY
terminal, the system responds:

~ ENTER PASSWORD-

At a 200 User Terminal (200 UT) or any display
te~inal, the system responds:

ENTER PASSWORD-

When the user name and password are accepted,
the time logged in and the user id (a 2
character user code), followed by the equipment
number (multiplexer equipment status table
ordinal) and the port number logged in, are
displayed at the terminal, as shown below:

3. Enter the password followed by a carriage
return. A password is any combination of up to
ten letters or digits that must not terminate
with a period. On a teletypewriter (TTY) list
ing, the system preserves privacy by allowing
the password to be entered over ten character
spaces that have been blacked-out by over
printing.

For a detailed description of the NOS commands used
in figure 1-21, as well as other available NOS
commands, see the IAF reference manual (NOS 1
sites), Volume 3 of the NOS 2 reference set (NOS 2
sites), or the NOS Time-Sharing User's reference
manual.

NOS/BE

To access a central computer from a terminal t

establish physical connection with the computer
system. The method of establishing the connection
between the terminal and the central site computer
varies depending on the type of terminal equipment
and the connection provided by the telephone com
pany. See the INTERCOM Version 5 reference manual.
When connected to the terminal, the system responds:

CONTROL DATA INTERCOM 5.n
DATE mm/dd/yy
TIME hh.mm.ss

PLEASE LOGIN

19/07/79 LOGGED IN AT 17.47.26
WITH USER-ID AB
EQUIP/PORT 52/03

When this occurs, perform the following steps:

1. Log in to the system by entering:

LOGIN

The system responds:

ENTER USER NAME-

4. After a successful login the system responds:

COMMAND-

Enter the text edit mode by typing

EDITOR

The system indicates text edit mode by display
ing two consecutive periods.

old,ex4 ~.__------------------------ Makes a copy of file EX4 accessible.

READY.
list ....4-------------------- Lists BASIC program on file EX4.

100 PRINT "TYPE A NUMBER"
110 INPUT X
115 IF X=O THEN 170
120 LET F=1
130 FOR 1=1 TO X
140 LET F=F*I
145 NEXT I
150 PRINT "FACTORIAL uiX,"IS uiF
160 GOTO 100
170 END

READY.

Figure 1-22. OLD Command Accesses Permanent File Under NOS

• 1-14 19983900 H



list ~.~~~~~~~~~~~~~~~~~~-ListsBASIC program.

100 PRINT "TYPE A NUMBER"
110 INPUT X
115 IF X=O THEN 170
120 LET F=1
130 FOR 1=1 TO. X
140 LET F=F*I
145 NEXT I
150 PRINT "FACTORIAL ";X,"IS ";F
160 GOTO 100
170 END

READY.
alter,100,/type/please input

100 PRINT "PLEASE INPUT A NUMBER"

READY.
delete,1.50

150 PRINT "fACTORIAL ";X,"IS ";F

-

~.--------- Make changes to program.

READY.
150 print f;" is the factorial of ";x _

list -~~~~~~~~~~~~~~~~~~~~~Lists corrected version.

100 PRINT "PLEASE INPUT A NUMBER"
110 INPUT X
115 IF X=O THEN 170
120 LET F=1
130 FOR 1=1 TO X
140 LET F=F*I
145 NEXT I
150 PRINT F;" IS THE FACTORIAL OF ";X
160 GOTO 100
170 END

READY.
run-.~~~~~~~~~~~~~~~~~~~~~ Compiles and executes program.

-PLEASE INPUT A NUMBER
? 4

24 IS THE FACTORIAL OF 4
PLEASE INPUT A NUMBER
? 0

RUN COMPLETE.

I--...---------------~Programrequests input and prints output.

-
replace,ex4 -~__--------------------------------Replaces old version of file EX4 with corrected version.

READY.

bye .. Log off NOS.

Figure 1-23. Editing a Program Under NOS

5. Once in text edit mode, enter the command

FORMAT,BASIC

When this command is entered after the two
periods, a format specification is automati
cally established at the terminal that permits
lines to be entered in BASIC language format.
The comma is optional.

19983900 H

6. Enter the BASIC program statements (line number
followed by BASIC statement).

After the first line, the two period prompts
are not given; continue inserting statements.
Each line must begin with a 1- through 5-digit
line number and end with a carriage return.
BASIC statements need not be typed in correct
order because the EDITOR automatically sequences
them according to line number.

1-15 •



7. Once the entire program is entered, compile and
execute the program by typing:

RUN ,BASIC

After the program compiles and executes, the
appropriate error messages are displayed if
program errors occur. The comma is optional.

8. When the run completes, select one of the
following options:

Continue processing (build and execute new
programs; modify and rerun existing pro
grams; or rerun the same program).

or
Terminate the terminal session by entering
the BYE or BYE BYE command. When the BYE
or BYE BYE command is entered, the system
is returned to command mode from EDITOR
mode. The BYE command does not save the
EDIT file. (See the INTERCOM Version 5
reference manual.)

The system responds with:

COMMAND-

At this time, enter the LOGOUT command to
release any local files created under EDITOR.

Only files that are permanent are retained
after logout. Disassociation from NOS/BE
occurs until a subsequent LOGIN command is
entered. NOS/BE displays the date and time
logged out. LOGOUT is not allowed when oper
ating under control of the EDITOR. (Leave
EDITOR via the END or BYE command.)

For example if the command LOGOUT is entered,
the system responds:

CPA 6.377 SEC. 6.377 ADJ.
CPB .000 SEC. .000 ADJ.
SYS TIME 7.774
CONNECT TIME 0 HRS. 19 MIN.

10/21/79 LOGGED OUT AT 08.43.09.

Logout time is given in hours, minutes, seconds
(24-hour clock); CP time is given in seconds.
Disconnect the terminal froin NOS/BE by turning
it off, or by hanging up the data set receiver.

Sample Terminal Session

After logging in, create and execute BASIC pro
grams. The sample BASIC program in figure 1-24
illustrates how to run a BASIC program under NOS/BE.
The program was entered at a TTY terminal. After
typing each response, press the carriage return key.

-

COMMAND- editor -~-------------
•• format,basic ----------------.------------
••10 print "type a number";
20 input x
30 let f=1
40 for i=1 to x
50 let f=1*i
60 print "factorial ";x,"is ";f
70 goto 110
80 end
run,basi c _~__--------------

FOR WITHOUT NEXT AT 40 -....._-------
BASIC COMPILATION ERRORS

•• 55 next i ] ".
25 if x=O then 80 ~----------

run,basi c -....-----------------------

TYPE A NUMBER?3 ]
FACTORIAL 3 is 6 ........---------
TYPE A NUMBER ?O
•• l ist ,all,sup -_....------------

Enter EDITOR •
Request BASIC program format •

Enter BASIC program.

Compile and execute the program.

BASIC issues diagnostic.

Correct errors.
Rerun program.

Program requests input and prints output.

List program; sup s~ppresses additional line number prefixes.

Exit EDITOR •

10 PRINT "TYPE A NUMBER";
20 INPUT X
25 IF X=O THEN 80
30 LET F=1
'40 FOR 1=1 TO X
50 LET F=F*I
55 NEXT I
60 PRINT "FACTORIAL ";X;" IS";F
70 60TO 10
80 END
•• save,basprog -~-------------------------- Make edit file a local file named BASPROG •
•• store,basprog,jones .. Make local file BASPROG permanent.

CT ID= JONES PFN=BASPR06:
CT CY= 001 SN=PFQSET 00000064 WORDS.:

•• end -.....---------------------........-----

Figure 1-24. BASIC Program Under NOS/BE

• 1-16 19983900 H



Using the SAVE command to save file BASPROG allows
the file to be reserved for later use during the
terminal session (for example, before logging out).
To save the file permanently, it must be stored as
a permanent file using the STORE command. (Some
accounting information might be necessary before
saving a file with STORE. Check site procedures.)
To retrieve and execute this program later, the
command sequence in figure 1-25 must -follow the
user login sequence.

The FETCH command retrieves the file previously
made permanent and tells EDITOR that BASPROG is
to be the edit file. The commas are optional.
The RUN command compiles and executes the program.

19983900 H

COMMAND-fetch,basprog
COMMAND-editor
•• format ,basi c
••edit,basprog
•• run,basic

Figure 1-25. Retrieval and Execution Example

For a more detailed description of INTERCOM EDITOR
commands used in this example, as well as other
available commands, see the section on Terminal
Operation under NOS/BE and the INTERCOM Version 5
reference manual.

1-17 •





r ELEMENTS OF THE BASIC LANGUAGE 2

.~.

This section describes the BASIC language structure,
and explains the elements of the language. The
language elements include: numeric data consisting
of integer, decimal and exponential constants;
string data consisting of alphanumeric text with or
without quotation marks; variables representing
values that are not fixed; and operators of the
language, expressions, and function references.

BASIC LANGUAGE STRUCTURE
A BASIC program is comprised of statements that
define the type of operations performed and the
types of data manipulated by the program. The
statement lines are written by using characters
from the BASIC character set. The following para
graphs define the BASIC character set, the structure
of a BASIC statement, and the structure of a BASIC
program.

CHARACTER SET

The characters listed in table 2-1 can be used to
form BASIC statements. Any character available to
the operating system can be used in data and string
constants. See appendix A for a description of all
available characters.

STATEMENT STRUCTURE

A BASIC statement can be in the form of an exe
cutable statement that specifies a program action
(LET Xa l0) or a nonexecutable statement that pro
vides information necessary for program execu
tion (DATA 1,3,5). All BASIC statements have the
following common characteristics:

Each statement begins with a liJ:l~~~ber. Line
numbering must range from 1 to ~aMlfll~'n

Each statement must be completed on a single
line. Statement continuation onto another line
is not allowed.

Generally, blanks within a BASIC statement have
no meaning. However, there are specific in
stances in which blanks are significant, such
as in strings. Blanks should only be used to
separate elements of the BASIC language; for
example, they should not be embedded within
line numbers, keywords, constants, or variable
names. See Future System Migration Guide
lines, appendix E.

A BASIC statement, including blanks line num
bel's, and tail comments, can be ~i:;i\:';:jDliliiii1L1i/ '/Q~:'

t~~~~~ charactel's.

character

19983900 H

TABLE 2-1. BASIC CHARACTER SET

Symbol Description

A thru Z Letters (uppercase)

+ Plus

- Minus

* Asterisk

/ Slash

( Left parenthesis

) Right parenthesis

$ Dollar

= Equal

: Colon

I Apostrophe

o thru 9 Numerals

~ B1ankt

, Conma

Period

II Quote

A Circumflextt

< Less than

> Greater than

? Question mark

; Semicolon

# Number

tRefer to appendix E for recommendations
tions for the use of blanks.

ttup arrow (t) on some terminals.

PROGRAM STRUCTURE

A BASIC program is a group of statement lines
arranged according to the following general rules:

Program statements must be in line number order
when the program is compiled. If entering
program lines in the BASIC subsystem under NOS I
or using the EDITOR command FORMAT, BASIC under

2-1



I

I

NOS/BE, the program statements need not be
entered in line number order because they are
automatically sorted. See the Interactive
Facility r~ference manual (NOS 1 sites), Vol
ume 3 of the NOS 2 reference set (NOS 2 sites),
or the INTERCOM Version 5 reference manual for
information about sorting line numbers before
execution.

Executable and nonexecutable statements can be
intermixed. In the following "example, a non
executable statement is the DATA statement at
line number 110, and an executable statement is
the IF statement at line number 100. These
executable and nonexecutable statements are
explained in more detail later in this manual.

100 IF A=B THEN 110
110 DATA 10,20,30
120 READ C,D,E
130 END

An END statement must have the highest line
number in the source program.

Al though BASIC programs can be compiled. and exe
cuted as batch programs, BASIC is normally used
interactively from a remote terminal.

10322 • To compile a program containing con-I
stants with values' above this range results in
the diagnostic ILLEGAL NUMBER. Constants with
values below this range are treated as zeros.

Integer Constants

An integer constant is a whole number written
without a decimal point.

Examples:

-49
+123456789
25000
o

Decimal Constants-

A decimal constant is any whole number, fraction,
or mixed number written with 'a decimal point.
Leading zeros to the left of the decimal point and.
trailing zeros to the right of the decimal point
'are ignored; the decimal point can appear anywhere
in the number.

Examples:

CONSTANTS
A constant is a fixed, unchanging value. In BASIC,
there are numeric and string constants.

NUMERIC CONSTANTS

In BASIC there are three types of numeric constants:

Integer

Decimal

Exponential

Although each of the numeric constant types has
specific rules that govern its use, the following
rules apply to all three constant types:

A conuna cannot be used to delimit placement
over the one-hundredth place, such as thousands
and millions.

When a numeric constant is not signed ex
plicitly by a negative or positive sign, the
constant is assumed to be positive.

Any number of digits can appear in a numeric
constant; a maximum of 14-digit accuracy is
used in computation. The CYBER 170 Model 176
uses a method different from other CYBER models
when rounding the results of division. The
difference is in the 15th digit of accuracy,

,. but can become apparent when several divides
and multiplies are done in succession (as in
the case when matrix inversion is followed by
matrix multiplication).

Whether integer, decimal, or exponential, the
absolute value of a constant must be in the
range 3.13152 times 10-294 to 1.26501 times

2-2

-4.08
50.5
1.91632614
147.2
.0000001
+3025.098

Exponential Constants

The representation of very large or very small
numbers is simplified by using expoD;ential con
stants. For example, to write ten billion in its
full form requires 11 digits (10000000000); however,
ten billion can also be represented as 1.0 times
1010 •

In BASIC, this exponential form is expressed by
1.0EI0. The 1.0 is the significand and the 10
is the exponent. The E means times ten to the
power of.

Similarly, a small number, such as .00000000923,
can be represented as 9.23 times 10-9 • In BASIC,
this notation can be expressed by 9.23E-9.

To use exponential constants in a BASIC program,
the following rules must be observed:

A number, the significand, must precede the E.
The significand can be any valid integer or
decimal constant.

The exponent (number that follows the E) is an
integer constant with a positive or negative
sign. If a sign is absent, a positive sign is
assumed. If the exponent is too large to be
represented in the computer, a diagnostic is
issued.

Decimal points are not permitted in the
exponent.

19983900 H

~""':"..,....,.:."::::'J



Examples:

-2.517EI30
7E+20
4.91812634E-18

STRING CONSTANTS

A string is a collection of alphabetic, numeric,
and special characters. In BASIC, these characters
are usually set off by quotes from the rest of
the program; this is called quoted text. Strings
that are not set off with quotes, called unquoted
strings, are permitted, but they can only be used
in DAtA statements or as input data.

Rules:

A string enclosed in quotes consists of all
characters between quotes, including blanks.

:t~.1~.I.~~~~.:~ij~~l~~·~~>~~{~~:i~~~;depends on the
mode: normal or ASCII. In normal mode, the

;;;~~e:~~~~ i;~~~ ~~_:t;s1i~~~i
;~!;3U111" characters, depending on the number of
escape code characters in the string. See
appendix A.

A zero-length string, also called a null string,
is represented by a pair of quotes ("").

Any character can be used in quoted strings.

tll_i~l,1;~~\~:~~~~~~~~!~!!{Pt!
pairs.

Examples:

"PART 25"
"THIS IS A TEST"
"An""embedded""quote"

The outside quotation marks are not part of the

I string constant. See DATA statement under I/O
Statements and Functions, section 1, for an example
of unquoted strings.

VARIABLES
Variables represent values that are not fixed.
Values can be assigned to variables and later
changed by other statements or conditions during
execution of the BASIC program. Variables can
represent numeric or string data and can be simple
or subscripted.

SIMPLE VARIABLES

Simple variables can be either numeric or string.
These two types of simple variables are described
in the following paragraphs.

19983900 H

Numeric

A simple numeric variable represents a numeric
value. It is named by a single alphabetic charac
ter or a single alphabetic character and a numeric
character. Variable names must not exceed two
characters in length. Examples of simple numeric
variables are:

A
Z3
C9
E

Examples of invalid numeric variable identifiers
are:

B23
49
G*
AA

The following rules apply to numeric variables:

Numeric variables represent only numeric data.

Numeric variables are preset to zero before the
program executes.

The absolute value of a numeric variable must
be in the range of 3.13152 times 10-294 to
1.26501 times 10322 •

If a value smaller than the minimum is assigned,
the variable is set to zero.

If a value greater than the maximum is assigned,
a fatal diagnostic is issued.

String

String variables represent alphanumeric text and

;~ji~~~~~((ii~;~E~:~~M~~,~~'i
in either case, the last character must be a dollar
sign ($). For example:

A$
B$
Y$
A1$
B9$
Y3$

The value represented by a string variable is a
string of characters. Internally, each character
is represented by one or two 6-bit numeric codes.
(See appendix A.) Each character has a code value I
that represents a position in the collating. se
quence. The characters at the beginning of the
alphabet have code values that are less than the
characters at the end of the alphabet. For exam
ple, if A$ and B$ represent strings ABC and XYZ,
respectively, then A$ has.a value less than B$.

2-3



The string represented by a string variable can
contain from 0 t.~"~.~i~2~'~... ~, ..'.~...'.•1'l.::,_llli~j 6-bit characters or
from 0 through _Blji 12-bit escape code (ASCII)
characters. The maximum for a" string containing
both 6- and 12-bit characters (the usual case when
operating in ASCII mode) lies somewhere between
65535 and 131070 characters depending upon the
number of 12-bit escape code characters.

The memory space allocated to each string is deter
mined by the length of the string. The minimum is
one computer word; the maximum is 13108 computer
words. The one-word minimum space is allocated by
the BASIC compiler for every string variable men
tioned in the program. The remaining words are
allocated and de~allocated dynamically at execution
time.

SUBSCRIPTED VARIABLES

Subscripted variables represent one value in an
There are two types of suh

variables: numeric If·
'~'r"~>~I~~~ ;1 ~1:~'l~&~~&5'.~~?
followed by a subscript ist;

subscripted variables are formed by a simple string
variable followed by a subscript list. A subscript
list consists of one to three numeric expressions

I bounded by parentheses. (See figure 2-1.) Rules
for the values of subscripted variables are the
same as for simple variables.

NUMERIC SUBSCRIPTED VARIABLES

A(O)

82(3)

B(5,10)

A(B2(3))

X(1,N+M,A(3))

STRING SUBSCRIPTED VARIABLES

8$(4)

L$(1,J+3)

C$(1,J+3,A(1))

Figure 2-1. Numeric and String
Subscripted Variables

Rules for subscripted variables are listed below:

~~I~A::~it:rr~;- ~~~~ J!f!!f
implicitly by using subscripted variables.

Unless an array has been explicitly defined by
a DIM statement, as described in section 3, the
first subscripted variable that references an
element in an array automatically defines the
array as containing 11 elements (0 through 10)
in each dimension. Thus, a I-dimensional
array has 11 elements; a 2-dimensional array
has 11 times 11 (or 121) elements, and a 3
dimensional array has 11 times II times 11 (or
1331) elements.

2-4

A subscript value greater than 10 requires a
DIM statement. If a maximum subscript value of I
less than 10 is desired, a DIM statement can be
used. (See section 3.)

Subscripted variables with one subscript refer
to elements in I-dimensional arrays; sub
scripted variables with two subscripts refer to
2-dimensional arrays; subscripted variables
with three subscripts refer to 3-dimensional
arrays.

A subscript can be any arithmetic expression.
The subscript used is the value of the expres
sion rounded to an integer.

The lower limit on subscripts is zero. How- I
ever, this limit can be changed to one by using
OPTION BASE 1. (See OPTION statement in sec
tion 3.) OPTION BASE 1 instructs the system
to start array subscripting with element 1,
rather than the default element O. Thus, When
OPTION BASE 1 is in effect, automatically
defined I-dimensional arrays contain 10 ele
ments (1 through 10), automatically-defined
2-dimensional arrays contain 100 elements, and
automatically-defined 3-dimensional arrays
contain 1000 elements.

Once an array is defined in a BASIC program,
the number of array dimensions cannot be
changed. For example, T(5) and T(2,3) cannot
be used in the same program. However, the
number of elements within a particular dimen-
sion can be changed if the total number of
elements in the resulting array is less than or
equal to the total number of elements in the
original array. For example, array T(2,3)
could be redefined as T(3,2).

19983900 H



TABLE 2-2. ARITHMETIC EXPRESSION
OPERATOR HIERARCHY

Hierarchy Operator Definition

1 Aor '**: Exponentiation (Note: t on;

some teletypewriters)

2 * and / Multiplication and division

3 + and - Unary + and -

4 + and - Addition and subtraction

Rules for Writing Arithmetic Expressions

In the formation of arithmetic expressions, certain
rules must be followed:

Only numeric operands and numeric operators can
be used.

Two arithmetic operators cannot appear side by
side; for example, X++-Y is not allowed. If a
minus sign is used to indicate a negative value
in an expression, parentheses must be used to
separate the negative sign and associated oper
and from the remainder of the expression. For
example:

EXPRESSIONS

Correct

Incorrect

A*(-B)

A*-B

r

An expression is usually formed from a series of
operands and operations; however, a single constant
or variable can also be considered an expression.
In BASIC, there are three types of expressions:
arithmetic, string, and relational. The value of
an arithmetic expression is numeric; a relational
expression is either true or false; and a string
expression is a string of characters.

ARITHMETIC EXPRESSIONS

Arithmetic expressions consist of a series of
numeric operands and operators. Operators can be
any arithmetic operator listed in table 2-2; oper
ands can be any numeric constant, simple or sub
scripted variable, numeric func tion reference, or
any expression enclosed in parentheses. A function
reference is a notation for activating a predefined
algorithm. If arguments are required by the func
tion, the arguments are evaluated and passed to the
function. The function then calculates and returns
a result based on the arguments. The returned value
is used in place of the func tion reference. BASIC
provides several built-in functions and allows you
to write your own functions. See BASIC Functions
in section 5.

19983900 R

Operators cannot be implied; for example,
(X+1) (Y+2) is not allowed. The correct form
is (X+1) * (Y+2).

The following are examples of valid arithmetic
expressions:

A+B*C/DAE
A1(3,I+4)A 2.6-G3/Z
A+B**C
A+SIN(X) (SIN is a built-in function)
-3.14*RA 2

Arithmetic Expression Evaulation

The rules for the evaluation of arithmetic expres
sions are as follows:

Expressions within parentheses are evaluated
first.

Operations of higher precedence are performed
before those of lower precedence. Precedence
is determined by the hierarchy illustrated in
table 2-2 from highest (1) to lowest (4).

2-5

I



Operations of equal priority or precedence are
performed in order from left to right.

Table 2-3 illustrates some examples of arithmetic
expression evaluation.

TABLE 2-3. EXPRESSION EVALUATIONS

Expressions Evaluation Steps

A+B*C/DAE 1• OAE = a
2. B*C = b
3. b/a = c
4. A+c = d (final value)

A+(B-C)*3 1• B-C = a
2. a*3 = b
3. A+b = c (fi na1 value)

-2 A2 1. 2A2 = a
2. -a = -4 (final value)

(-2) 1'2 1. -2 = a
2. aA 2 = 4 (final value)

STRING EXPRESSIONS RELATIONAl EXPRESSIONS

String expressions consist of a series of string
operands and operators. There is only one string
operator . available. string concatenation (+).
String operands can be one of the following:

A string constant

A simple or !t.'lltBII~~string variable

The following are examples of string expressions:

There are two types of relational expressions:
simple and compound. Simple relational expressions
are formed by connecting two numeric or string
expressions with a relational operator. Compound
relational expressions are formed by connecting
two s~ple relational expressions with a logical
operator.

Simple Relational Expressions

The format of a simple relational expression is
shown in figure 2-4. The relational expression
operators that can be used to connect numeric or
string expressions are shown in table 2-4.

"TEST1"
B$(I)+D$
B$(1:4) Indicates numeric or string constants,

variables or expressions.

The rules for writing simple relational expressions
are as follows:

Comparison of a string to numeric expressions
is not allowed.

Relational expressions can be used only in' IF
statements (section 4).

Indicates relational operator.

Figure 2-4. Format for Simple
Relational Expressions

op

Only one relational operator is allowed in an
expression.

I 2-6 19983900 H



TABLE 2-4. RELATIONAL EXPRESSION OPERATORS

Operator Definition

When strings are equal in length, the first
pair of corresponding characters that are not
equal determines the greater string. For
example, ABlY is greater than ABCZ because the
numeric code for X is greater than the numeric
code for C.

When strings are unequal in length, but one of
the corresponding characters that can be com
pared when scanning from left-to-right is
greater, the string with the first character of
greater value is the greater string. For
example, X7 is greater than X6543 , and X76 is
greater than X75123.

When strings are unequal in length, but corre
sponding characters that can be compared are
equal, the longer string is always considered
greater. For example, ABX is greater than AB.

Greater than or equal to

Less than or equal to

>=

<

< = or =<

Equal to

<> 01.'111 Not equa1 to

> Greater than

Less than

I The rule for evaluating simple numeric relational
expressions is as follows: Compound Relational Expressions

The two arithmetic expressions are evaluated
and then their resultant values are compared
algebraically to yield a true or false value.
If A = 2 and B = 3, the expressions in figure
2-5 are evaluated as shown.

A compound relational expression is a sequence of
simple relational expressions separated by logical
operators. A compound relational expression evalu
ates to TRUE -or FALSE. The format for the compound
relational expression is shown in figure 2-6. The
logical operator hierarchy is shown in table 2-5.

TABLE 2-5. LOGICAL OPERATOR HIERARCHY

Relational Expression Value

A=B False

. I A<>B True

A>B False

A<B True

A>=B False

A<= B True

A*A+3<B*2 False

r1,r2

op

Simple relational expression or com
pound relational expression.

Logical operator (AND, OR, unary
NOT).

Figure 2-6. Format for Compound
Relational Expressions

I

I The rules for evaluating simple string relational
expressions are as follows:

I

Figure 2-5. Evaluating Simple
Relational Expressions

character-by-character in

ASCII is the default collating sequence used for
all string comparisons in BASIC. OPTION COLLATE
can be used to change the collating sequence to
a collating sequence that is native to the char
acter set being used. See the OPTION state
ment, and appendix A (describes the various
character sets supported by BASIC).

Strings are equal if they have the same length
and contain the same characters (including
blanks) in the same order. Blanks are important
when they are used in strings.

Hierarchy Operator Definition

1 NOT Logica1 negation

2 AND Logical multiplication or
logical intersection

3 OR Logical addition or union
(inclusive or)

The rules for evaluating compound relational ex
pressions are as follows:

Expressions within parentheses are evaluated
first.

Operators of higher precedence (hierarchy) are
performed before those of lower precedence.
The hierarchy and definition of the logical
operators are provided in table 2-5.

NOT is a unary operator and can appear to the left
of any operand; however, it cannot appear as the
only operator between two operands.

19983900 B 2-7



In the truth table 2-6, the NOT (unary) operator is
eva+uated. The NOTp is the opposite of p. In the

I following examples, A=l and B=2; thus, TRUE is
printed for the first example, and FALSE is printed
for the second example.

I

NOT can appear between the other logical operators
(AND, OR) and an operand (for example, rl AND NOT
r2; rl OR NOT r2).

IF A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"

IF NOT A<B THEN PRINT "TRUE" ELSE PRINT "FALSE"

NOT (A>B AND C=D)

Evaluates to NOT false J so the expression I
is true.

I=J OR NOT J>1

Evaluates to false OR true J so the expres
sion is true.

2*I=J A 2 AND !(J

Evaluates to true AND false, so the expres
sion is false.

In the first example, it is true that A is-' less
than B; in the second example, it is false that A
is not less than B (A is less than B).

I TABLE 2-6. NOT (UNARY) OPERATOR.EVALUATIONS

P NOTp

FALSE TRUE

TRUE FALSE

The logical operators AND, OR are defined in truth
tables 2-7 and 2-8.

IIn the exampl~s below, which illustrate the use of
NOT, AND, and OR, if A=5, B=4, C=2, D==l, 1=8, and
J=4, the results are as follows:

NOT A>B AND C=D

Evaluates to false AND false, so the ex
pression is false.

TABLE 2-7. AND OPERATOR EVAlUATIONS

~ FALSE TRUE

FALSE FALSE FALSE

TRUE FAlSE TRUE

TABLE 2-8. OR (INCLUSIVE)
OPERATOR EVALUATIONS

~ FALSE TRUE

FALSE FALSE TRUE

TRUE TRUE TRUE

2-8 19983900 H



FUNDAMENTAL STATEMENTS 3

This section describes the statements that are used
for the following purposes:

Perform value assignment during program execu
tion.

Choose the lower boundary of an array.

Choose the collating sequence to be used for
string and function comparisons.

1.

2.

LET nv=ne(o~}.nFne
(or)'

LET sv=se (~tf',~e

'f~f*c~~tll~1>::~Y2:~~~~~
(or)

Define and allocate storage for arrays.

Terminate execution of a program.

Insert explanatory remarks into a program.

The tables in each category of statements summarize
the effect and usage of each statement.

VALUE ASSIGNMENT
The value of a variable can be assigned wi th the
LET statement. For numeric variables, the present
'value is replaced by a new value. For string vari
ables, the complete present value or a specified
substring of the value can be replaced by a new
value.

LET STATEMENT
The LET statement assigns a value to one or more
variables during execution of a BASIC program. The
effect and usage of the LET statement is shown in
table 3-1. The format of the LET statment is shown
in figure 3-1. The use of the word LET is optional
in the LET statement.

TABLE 3-1. VALUE ASSIGNMENT

nv Indicates a numeric variable (simple or sUbscripted).
The string variables can also have a substring
descriptor.

sv Indicates a string variable (simple or subscripted).

ne Indicates a numeric expression of any complexity.

se Indicates a string expression of any complexity.

Figure 3-1. LET Statement Format

10 LET A1=X+Y
20 LET A2=A3=A4=X+Y
25 LET 1=2+1
30 LET Zel)=1=6
35 LET Z(I)=4
40 LET B$="TEST"

When the LET statement contains a single variable
(nv or sv) on the left-hand side of the equals
sign, the value of the expression ne or se on the
right-hand side of the equals sign is assigned to
the variable. When the LET statement contains a
series of equalities, each variable is assigned the
value of the expression. Subscript expressions are
evaluated prior to the assignment of the value, and
all expressions are evaluated according to the
rule of operator precedence. (See table 2-2 in
section 2.) For examples, see figure 3-2.

Statement

LET

Effect

Assigns a numeric
or string value
to one t9~i:jmg,n.~

variables speci
fied in the LET
statement line.

Usage

LET B = 3+2

.~.~J·:,AJ·7'A2.= X±X,':L

C(4) = 20

Figure 3-2. LET Statement Examples

In figure 3-2, the LET statement at line number 10 I
assigns the value of the expression X+Y to the
variable Ai. The LET statement at line number 20
assigns the same expression value to each of the
variables A2, A3, and A4. The LET statement at
line number 2S assigns the value 3 to variable 1.
The LET statement in line number 30 simultaneously
assigns the value 6 to variable I and Z(3). (The
subscript is evaluated before any assignments
occur; therefore, the value of I in Z(I) is 3.)
The LET statement in line number 3S assigns the
value 4 to Z(6). The LET statement in line number
40 assigns the character string TEST to the string
variable B$.

Substring addressing can be used anywhere that
st ring var iables are used. Use the LET and the
INPUT statements to replace, delete, extract, or
insert substrings into or from a simple or sub
scripted string variable. Any length string (up to

19983900 H 3-1



the limits) can be inserted into a string by using
a substring descriptor. A substring can be re
placed by assigning a new value to that particular

I part of the string. A substring can be deleted by
assigning a null value to it. The value of the
original string can be lengthened or shortened with
these insertion, deletion, and replacement opera
tions. A variable containing a null string can be
assigned a value by extracting a substring value
from one string and inserting it into the null
string. Figure 3-3 shows several examples of
substring addressing; all the examples assume an
original string variable value of ABCDEF.

The following examples of substring addressing use an original
string value of ABCDEF.

20 LET A$(2:5)="XXXX" Value XXXX replaces BCDE;
value of string A$ becomes
AXXXXF.

OPTION statement. To declare and allocate storage I
for 1-, 2-, or 3-dimensional arrays that are not
the default size, use the DIM statement. See table
3-2 for a summary of the effec ts and usage of the
OPTION and DIM statements.

OPTION STATEMENT

Use the OPTION statement for two distinct pur
poses: to explicitly declare the lower boundary
(or origin) of all arrays being used in the program

~..~ ~~.~ ..~ 9 ~..~ ~.C? p~..~.~ ,I.~ ··.~ti# •••·•••·••• t§.•·.·.··~.~~.~.~.~ .•.•·,•.·.·.~.~~ •.••·;••••Fe~·~~~.~~~i:~
·~.~~~~~~.~); ..·.· ~·~.·· ..·..··i.·~.~ ·· ..·:~~.~~ ·i.ll ••.••.••··.·the.··•••·•••·•••ll·f.o.~r.~·!/·.'~~~,.· •.·.•>~~~p~ ••~.~~~ .•;~
.~.t12~P$~·.~~~··~or···c:()DlP\1t:f.ng ••. v.a:rues •• ••. of .. ···..~h.e·;~~:p~n.~:
gIq>.·.~"'n*'tiC?n8. If the' OPTION statement is encoun-
te'r~d during normal program execution, control
passes to the next statement, with no effect on the
program.

110 LET B$(4)(2:0)="MM" Value MM replaces the null
string before B; value of
subscripted string variable
B$(4) becomes AMMBCDEF.I

215 LET C$(3:5)=""

30 LET Z$(1 :3)=Z$(4:6)

10 LET B$=A$(2:4)

Null value replaces CDE;
value of string C$ becomes
ABF.

Value DEF replaces the
first three characters of
string Z$; value of Z$
becomes DEFDEF.

A$ is the original string
value of ABCDEF; B$
contains the null value; B$
is assigned the extracted
value BCD.

OPTION BASE n

The OPTION BASE n statement explicitly sets the ori- I
gin of all arrays to either 0 or I. OPTION BASE n
can appear only once in a program, and it must
precede any DIM statement or any reference to an
array. If OPTION BASE n is not specified, the
lower boundary of all arrays is assumed to be
base O. The default for array subscripting starts
with element O.

In the following example, BASE n is declared as 1.
Since the example specifies that subscripting starts
with element 1, the DIM statement defines A as a 3
by 4 (or 12 element) array, and B as a 2 by 13 (or
26 element) array.

Figure 3-3. Substring Addressing
Using LET Statement

OPTION STATEMENT AND
DIM STATEMENT
To choose a particular collating sequence for
comparing strings and computing values, and to

I declare the base (origin) of all arrays, use the

100 OPTION BASE 1
110 DIM A(3,4),B(2,13)

Using OPTION BASE 0 (the default) in the above
example would cause the array A to be dimensioned
as a 4 by 5 (or 20 element) array, and B to be
dimensioned as a 3 by 14 (or 42 element) array.
Other examples of using OPTION BASE n are shown
under Matrix Statements in section 8. Figure 3-4
shows the possible formats for OPTION BASE n.

3-2

Statement

OPTION

DIM

TABLE 3-2. OPTION AND DIM STATEMENTS

Effect

Can set the lower boundary of all
arrays being used by the
to base 0 to base 1.

Defines and allocates storage for
1-, 2-, and 3-dimensional arrays.

Usage

OPTION BASE 1

Q.eJJ.O~·•• ,,·.·.•;~QLLJ\T~ ••••·..••N~T··~'·~.E .•·.,

\·.o.~tI6N;·.;·.··.·GO.LbJ\,..~·.·.·.··:·~1AN.Q8R;Q:

DIM A(4,4), B(15)

19983900 H



1. OPTION BASE n

2.

3. ()Ptlc:J~i;!i~~SEHn,·.COLLA~.~}·i~ATIVE
. (qr:}····,/;<· .•'... ..•• .. •. .... ..•.. .•.•. ·..:>'Yii;.·
Of'JI9N;'·PASE n,.C()L.~~I;'<§IANDARD

(or)

n Indicates the origin to be set; it can be
either 0 or 1.

Note

You should not use OPTION COLLATE NATIVE
in normal mode. See Future System Migration
Guidelines, appendix E.

display code. However, because of the antici
pated changes in BASIC, it is recommended that
OPTION COLLATE NATIVE not be used in normal mode.
See the Future System Migration Guidelines, appen
dix E. BASIC treats display character codes in the
same way as ASCII character codes. That is, the
smaller the display character code, the earlier the
character appears in the collating sequence.
Table A-2 in appendix A provides a list of char
acters and their corresponding display character
codes.

The COLLATE option can be used only once in a pro
gram. If the statement is not specified, OPTION
COLLATE STANDARD is assumed by default.

DIM STATEMENT

The DIM statement explicitly defines one or more
arrays and allocates storage space for the named
arrays. The format for the DIM statement is shown
in figure 3-5.

Figure 3-4. OPTION Statement Formats Indicates numeric or string matrix
identifier.

Arrays passed as arguments to the INV function are
limited to 100 times 100 elements. (See INV func
tion, section 8.) In all other cases, the number I
of dimensioned array elements is limited only by
the amount of available memory. Figure 3-6
illustrates use of the DIM statement to define
arrays and to reserve space for each of the
declared array elements. The examples presented in
figure 3-6 assume that subscripting begins with
element O.

OPTION COLLATE

The OPTION COLLATE NATIVE and OPTION COLLATE
STANDARD determine the collating sequence used by a
program for comparing strings and for computing
values of the CHR$ and ORD functions. Figure 3-4
shows the formats for these two choices.

OPTION COLLATE STANDARD is the default collating
sequence; it specifies that the ASCII collating
sequence is to be used by the program for comparing
strings and computing values of the CHR$ and ORD
functions. Every character in the BASIC character
set (as shown under BASIC Language Structure) is
assigned an ASCII character code; the smaller the
ASCII character code, the earlier the character
appears in the collating sequence. This ordering
is important in string comparison operations be
cause BASIC compares characters according to their
assigned numeric codes in the applicable character
set. For example, A is less than B because the
ASCII (or BASIC decimal) code is 65 for A and 66
for B. Table A-I in appendix A provides a list of
characters and their corresponding ASCII character
codes.

OPTION COLLATE NATIVE instructs BASIC to select the
collating sequence native to the character set
being used by the program. The character set used
by a program is determined by the AS parameter of
the BASIC control statement. (See Batch Opera-

I tions, section 12.) As shown in appendix A, the
native character sets supported by BASIC can be
classified as the ASCII character set or as the
normal character set. The native collating se
quence for ASCII character sets (described in
appendix A as NOS ASCII 128-character set, NOS/BE

I ASCII 128-character set, and the Extended Character
Set) is the same as for the standard collating
sequence. The native collating sequence used for
normal character sets (described in appendix A as
CDC 63-character set, CDC 64-character set, ASCII
63-character set, and ASCII 64-character set) is

Indicates one-to-~~r~:unsigned integers,
separated by commas, that represent the
maximum value of each subscript.

Figure 3-5. DIM Statement Format

Arrays require a DIM statement when a subscript
value greater than 10 is needed. To save space,
use the DIM statement to dimension an array with an
upper subscript limit of less than 10. An array
not previously defined by the DIM statement is im
plicitly declared to have one dimension (10) when
an element is referenced by an array variable with
one subscript; two dimensions (10,10) when the ele
ment is referenced by an array variable with two
subscripts; and three dimensions (10,10,10) when
the element is referenced by an array variable with
three subscripts. In all cases, the maximum sub
script for each dimension in implicitly declared
arrays is 10.

Use DIM statements anywhere in a program, but
define an array prior to usage of that array. See
Future System Migration Guidelines, appendix E.
However, an array variable cannot be declared in a
DIM statement more than once in the same program.
An array can be redimensioned when a matrix state
ment is executed. (See Redimensioning and Matrix
Operations, section 8.) DIM is not executable;
the program is not af fec ted if DIM is encountered
during normal program execution.

I

19983900 H 3-3



• 100 DIM X$(5,5), 83(1,2), X1(50)
TABLE 3-3. REM STATEMENT AND TAIL COMMENT

This statement reserves space for: Statement Effect Usage

• 50 DIM G2(5,6,7), AO(9,2), P$(2,3)

This statement reserves space for:

X$

B3

X1

A two-dimensional string array with
6 times 6, or 36 elements.

A two-dimensional numeric array with
6 elements.

A one-dimensional numeric array with
51 elements•

REM Adds conments
to a program

\without
affecting
execution.

REM SOLVE FOR Y

G2 A three-dimensional numeric array with
6 times 7 times 8, or 336 elements.

AO

P$

A two-dimensional numeric array with
10 times 3, or 30 elements.

A two-dimensional string array with
12 elements.

NOTE

REM ch1 ••• chn

ch1 • • • chn Any comment or explanatory character
string within the 1~'I't-character total
statement length llniftation; comments
can be continued on additional REM
statements.

I
Each element of a numeric array requires one
computer word. Each element of a string array
requires 1 + n computer words where n is a
function of the number of 6-bit characters
currently assigned to the string. If the number
of characters is zero, n=O. If the number of
characters is nonzero, n=1NT «number of 6-bit
characters +11) /10) + 1.

Figure 3-6. DIM Statement Examples

PROGRAM COMMENTS
Program comments in a BASIC program are indicated

..~.~.q~~~~~...t~~ ~~ st~t~~~nt ~~i:).~D·J;!"'·~;:·;~PJl~~g'~ijg·· •... t3 ta.~t:~ •.
;.i·m~~~~;;i~~~\1:?':;:~~~',·;~PJi1J11~~t.§~~~:J Tabie' 3~j a_ariz'es' the'
effect's' and" usage" of . the'.... REM statement and the tail
comment.

REM STATEMENT

The REM statement is used to insert explanatory
remarks or comments into a program. REM is a non
executable statement and, therefore, has no effect
on program execution. The format of the REM state
ment appears in figure 3-7. Figure 3-8 shows some·
examples of the REM statement.

If control reaches, or is transferred to, a REM
statement, the next executable statement following
the REM statement is executed. In the following
example, if A is equal to 10, control is trans
ferred to the REM statement and the next executable
statement becomes ,40.

10 IF A=10 GOTO 30
20 PRINT "A=AVERAGE"
30 REM TEST FOR SECOND AVERAGE
40 IF B=20 PRINT "B=AVERAGE2"

3-4

Figure 3-7. REM Statement Format

100 REM M EQUALS MASS IN GRAMS

110 REM V EQUALS VELOCITY IN CM/SEC.

120 REM T EQUALS KINETIC ENERGY

Figure 3-8. REM Statement Examples

PROGRAM TERMINATION
To terminate a program, use either the END state
ment or the STOP statement. Table 3-4 shows the
purpose of these two statements. I

STOP STATEMENT

The STOP statement can be used anywhere in a BASIC
program to cause an immediate exit from the pro
gram. When the STOP statement is encountered,
program execution terminates at that particular
point, and control is returned to the operating
system. Figure 3-9 shows the format of the STOP
statement.

19983900 H



r

TABLE 3-4. END AND STOP STATEMENTS

Statement Purpose

STOP Terminates program
execution.

END Marks physical end
of a source program
and terminates
execution.

STOP

Figure 3-9. STOP Statement Format

The STOP statement is equivalent to an uncondi
tional GOTO statement that specifies the line
number of an END statement.

In the following example, the STOP statement causes
program execution to terminate if Al is less than
zero; if Al is greater than or equal to zero, pro
gram execution continues until the END statement is
encountered.

19983900 H

100 IF Al<O GOTO 120
110 IF A1)=0 GOTO 130
120 STOP
130 PRINT "VALUE IS SUFFICIENT."

999 END

END STATEMENT

The END statement signals the end of a BASIC pro
gram; if control reaches the END statement during
program execution, the program te~iB.'Cl~~s as if a
STOP statement had been executed·:lf,~~~etJ' the END I
statement must be the last statement in' 'the pro-
gram. The format of the END statement appears in
figure 3-10.

The END statement is' optional. but it should be
used in programs because future versions of BASIC
might require its use. See the Future System
Migration Guidelines, appendix E.

END

Figure 3-10. END Statement Format

3-5





BASIC FLOW CONTROL STATEMENTS 41

This section describes control statements of the
language that are used to change the sequence of
execution of statements t to test and branch on a
condition, to perform loops, and to monitor and
control errors and interrupts.

TEST AND BRANCH 5TATEMENT5
Testing and branching to certain points in a program
is accomplished with the GOTO, the ON GOTO, the IF,
and the ~iltlli~~~~~S~ statements. Table 4-1
defines the test and branch statements and their
effects in a program. Further details of these
statements follow table 4-1.

GOTO STATEMENT

The GOTO statement unconditionally transfers
control from one point in the program to another,
thereby interrupting the normal sequence of in
structions. The format for this statement is shown
in figure 4-1.

Since the GOTO statement unconditionally causes
control to be transferred to the specified line
number, care must be taken that this does not set
up an infinite loop.

For example, consider the program in figure 4-2. I
When this program is executed, it cycles continu
ously through lines 10, 20, and 30, and never
reaches the END statement at line 40. It can be
terminated only by interrupting the program. (See
the NOS Interactive Facility reference manual
(NOS 1 sites), Volume 3 of the NOS 2 reference set I
(NOS 2 sites), or the INTERCOM Version 5 reference
manual.) Inserting an IF statement before the GOTO
(25 IF X=100 GOTO 40) provides an exit. When the
value of X equals 100, the IF statement branches to
line 40 and automatically terminates the program.
The IF statement is described later in this section. I

GOTOln

In Indicates line number.

Figure 4-1. 60TO Statement Format

GOTO specifies that the statement at the referenced
line number is to be executed next. Normal sequen
tial execution continues from that point. If a
GOTO statement references a nonexecutable state
ment, such as a DIM statement, execution continues
with the first executable statement that follows
the referenced nonexecutable statement.

10 LET X=X+1
20 INPUT X
30 GOTO 10
40 END

Figure 4-2. Infinite Loop I

Statement

GOTO

ON GOTO

IF

TABLE 4-1. TEST AND BRANCH STATEMENTS

Effect

Unconditionally transfers
control to a specified state
ment.

Transfers control to one of
a group of statements depen
ding on the integer value
specified in the ON GOTO
statement.

Tests a relationship or a
group of relationships. If
the test is true, control
moves to a referenced pro
gram statement; otherwise,
control falls through to the
next executable statement.

Usage

GOTO 50

ON A/3 GOTO 50,60

IF A=20 THEN 80

19983900 H 4-1



ON GOTO STATEMENT

The ON GOTO statement provides for conditional
branching depending on the value of an expression.
The expression is evaluated and rounded to an in
teger value. Then control is transferred to lnl
if ne is equal to 1; to In2 if ne is equal to 2;
and so forth. If the value of the expression is
negative, zero, or greater than the number of line'
numbers specified, an execution diagnostic ON

I EXPRESSION OUT OF RANGE is issued. Figure 4-3
illustrates the formats for the ON GOTO state
ment. The second format should not be used because
it might not be .supported in future versions of
BASIC. See the Future System Migration Guidelines,
appendix E.

1. IF r THEN In (or) ~tBI1,liltlllll

Indicates simple or compound relational
expression.

In Indicates line number.

stm Indicates executable BASIC statement.

Figure 4-5. IF Statement Format I

20 IF 2*1 >= J ,,2-1 THEN 165

or
Assuming I =8 and J =4, the value 16 is compared to the
value 15; the evaluation is true, the next statement executed
is at line number 165.

ne Indicates numeric expression.

I
Figure 4-3. ON GOTO Statement Format

In figure 4-4, SGN(A) can have the value -1, 0, or
1. The expression SGN(A)+2 can have the value 1,
2, or 3, and control transfers to statements 100,
110, or 120, respectively. If, for example, A has
the value 2.5, then SGN(A)+2 has the value 3, and
the order of statement execution is 95, 120, 130,
and the next logical statements.

Figure 4-4. Example of ON GOlO and
GOlO Statements

I

25 IF A <> 0 THEN LET B = 0

Figure 4-6. IF Statement Examples

15 IF I = J OR NOT J < I THEN 140

Assuming I = 8 and J = 4, the relation I = J is false. The
relation J < I is true; however, NOT J < I is false. The
compound relational expression evaluates to false (false or
false is false) and the branch to statement 140 is not made.

This statement causes B to be set to 0 if A is not equal
to O. The next statement in sequence is then executed.
If A = 0 the next statement in sequence is executed but
the LET B = 0 is not.

The stm parameter can contain any executable state
ment other than a FOR or a NEXT statement. The
nonexecutable statements OPTION, DATA, DEF, DIM,
END, FNEND, image, and REM are not allowed in the
stm parameter.

Multiple IF ••• THEN clauses can be embedded within a
single IF statement to perform various kinds of
conditional tests) as shown in figure 4-7. The I .
maximum number of IF ••• THEN clauses is governed
only by the 150 character line width limitation.
The IF statement in figure 4-7 contains two I
IF ••• THEN clauses to test for a zero value in each
of the numeric variables A and B. If both A and B
are zero, C is assigned the value 14. If neither A I
nor B is zero, C is not assigned the value 14.

Indicates line number.In

.
095 ON SGNCA)+2 Goro 100,110,120
100 LET A=A*A
105 GOTO 130
110 LET A=A*B
115 Goro 130
120 LET A=A*B A 2
130 LET B=A+1

I

IF STATEMENT

When the IF statement contains multiple IF ••• THEN
clauses, the clauses are tested consecutively,
beginning with the first clause.

The IF. statement tests conditions and controls the
sequence of operations. The formats for the IF

I statement are shown in figure 4-5. If the rela
tional expression r is true, the program transfers
control to the statement at line number In, if
format 1 is used, and executes statement stm, if
format 2 is used. Do not use the format GOTO be
cause it might not be supported in future versions
of BASIC. See the Future System Migration Guide
lines, appendix E. If the relation r is false, the
next sequential statement is executed. Examples of

I simple IF ••• THEN clauses are shown in figure 4-6.

030 IF A=O THEN IF 8=0 THEN LET C=14

Figure 4-7. Nested IF••• THEN
Statement Example

4-2 19983900 H



r

1. IF A<O THEN 150 ELSE 160

2. IF A$=uSTOP" OR AS="END" THEN STOP
ELSE 100

3. IF X=O THEN LET Y=Q ELSE LET Y=Y/X

4. IF A=O THEN IF 8=0 THEN PRINT 1
ELSE PRINT 2 ELSE PRINT 3

5. IF A=O THEN IF 8=0 THEN PRINT 1
ELSE PRINT 2

6. IF A=O THEN GOSU8 500 ELSE IF 8=0
THEN GOSU8 600 ELSE LET 8=3

Figure 4-9. IF ••• THEN.~.ELSE
Statement Examples

19983900 H

LOOPING

Looping, the repetitive execution of the same
statement or statements, can be efficiently con
trolled in BASIC with the FOR and NEXT statements.
Table 4-2 summarizes these looping statements .and
their effect in a program.

FOR ••• NEXT STATEMENTS

The FOR statement initiates repeated looping
through the statements that physically follow the
FOR statement, up to and including a corresponding
NEXT statement. The FOR statement must appear as
the first statement of the loop, and the NEXT
statement must be the last statement of the loop.
The format of the FOR•••NEXT statements is illus
trated in figure 4-10.



TABLE 4-2. LOOPING STATEMENTS

Statement Effect Usage

FOR Marks the beginning of a loop and in- FOR 1=1 TO 10
itiates its execution.

"NEXT Marks the end of the FOR loop; tests for NEXT I
end-of-loop condition and reexecutes or
termi nates depend i n9 on the resu1ts. .

1. FOR snv = ne, TO· ne2 STEP n~

(or) .

2. -FOR snv = ne1 TO ne2

NEXT snv

.
010 fOR X=1 TO 11 STEP 2
020 PRINT X
030 NEXT X
040 END

Figure 4-10." FOR •••NEXT Statement Formats

When the FOR statement is executed, the expressions
are evaluated and their values are saved as ini
tial, step, and-final values of the loop. The con
trol variable is assigned the initial value and, if
it does not surpass the final value, the statements
between the FORand NEXT statements are executed.
When the NEXT statement is encountered, the value
of the control variable is adjusted by the step
value. A comparison is made between the value of
the adjusted control variable and the specified
final value: if the control value has not sur
passed the final value, looping continues at the
statement following the FOR; if it has, the loop is
complete and execution continues with the statemen~

following NEXT. The statements between the FOR and
NEXT statements are never executed if the initial
value is beyond the final value.

I

snv Indicates simple numeric variable
(called the control variable; it must
be identical in both statements).

Indicates any arithmetic expression
(called the initial value).

Indicates any arithmetic expression
(called the final value).

Indicates any ~rithmetic expression
(called the step value).

Figure 4-11. Loop With Specified STEP Value

The initial, final, and STEP expressions are
evaluated only once (upon entrance into the loop).
These values do not change during execution of the
loop, even if the program changes the value of the
variables within the expressions. The value of the
control variable, however, can be changed by state
ments within the loop; its last value is always
adjusted by the STEP value and is used in compari
son to the final value, as shown in figure 4-12. I
Execution of the loop in figure 4-12 causes the
values 2, 4, 6, 8, and 10 to be printed. Even
though the FOR statement specifies that the control
variable X be incremented by an implicit STEP value
of +1 until it exceeds 10, the LET statement adds 1
to X, thereby causing the control variable to be
incremented by 2 for each pass through the loop.
Thus, the value of the control variable can be

.changed by statements within the loop.

.
010 FOR X=1 TO 10
020 LET X=X+1
030 PRINT X
040 NEXT X
050 END

Figure 4-12. Control V~r;able Value Changed

The STEP value can be positive or negative. For a
positive STEP value, the initial value must be less
tha~ the final value _upon entrance to the loop.
Similarly, for a negative STEP value, the initial
value must be greater than the final value. If
either condition is not met, the loop does not exe
cute, and control branches to the statement follow-

,
ing the NEXT statement. Figure 4-11 illustrates a
loop with a specified STEP value of +2. Execution
of the loop in figure 4-11 causes the values 1, 3,
5, 7, 9, and 11 to be printed. Statements 20
through 30 are repeated six times, once for each
value assigned to X.

4-4

After a loop has repeated itself the specified
number of times, the final value of the control
variable is the first value not used • That is,
upon normally exiting from a loop, the control
variable assumes its final value plus an additional
STEP value (+1 when a STEP value is not speci
fied). Using a control statement, such as GOTO, to
prematurely terminate a loop causes the control
variable to retain the value it has when the con
trol statement is executed. Figure 4-13 shows the I
effect that a normal exit from a loop haSOD the
cont~ol variable. The X in line number 120 assumes
the value of 1, 3, 5, 7, 9, and 11, and the X in
line number 140 assumes the value 13.

19983900 H



Figure 4-15. FOR ••• NEXT Loops

Figure 4-14. fOR ••• NEXT Statement Examples

Figure 4-14 shows the effect of the FOR statement
on control variables. The loop initiated in line
number 112 did not execute because the initial
value is not greater than the final value, and the
step value is negative. Figure 4-15 shows examples
of correct and incorrect looping.

Values

2,3,4,5

6,5,4,3,2

5

Incorrect:

FOR X .••

FOR V •.•

NEXT X

NEXT V

FOR X ••.

OR V •••

Correct:

NEXT V

NEXT X

[

FOR Q

NEXT Q

[
F~R Z. ; •

NEXT Z

Statement

111 FOR G = 6 TO 3 STEP -1

112 FOR X = 5 TO 10 STEP -1

110 FOR X = 2 to 4

·110 FOR X=1 TO 11 STEP 2
120 PRINT X
130 NEXT X
140 PRINT X
150 END

A loop can contain a GOTO statement or other state
ments that transfer control outside th~ range of
the loop. In this case, the loop terminates prema
turely, and the control variable retains its latest
value. Do not transfer control into a FOR••• NEXT
loop. See Future System Migration Guidelines,
appendix E.

Figure 4-13. Loop Exit Effect
on Control Variable

Loops can be nested (loops specified within loops)
to a maximum depth of 10, but the loops must not
intersect each other. Examples of correct and
incorrect looping are shown later in this section.

19983900 B ·4-·S •.



19983900 H

~
I



·100 ON ATTENTION GOTO 900

·200 PRINT "ENTER NEXT ORDER NUMBER OR 0"
210 INPUT N
220 IF N=O GOTO 500 'a MEANS END OF ORDERS

a

300 PRINT "ENTER NEXT ITEM NUMBER OR 0"
310 INPUT I
320 IF 1=0 GOTO 400 '0 MEANS END OF ITEMS
330 PRINT "ENTER QUANTITY"
340 INPUT Q

·900 Z=ASL(O) 'z IS LINE NUMBER AT WHICH TO CONTINUE
910 ON ATTENTION GOTO 910 'RESET SO INTERRUPT WILL NOT CHANGE Z
920 PRINT "INTERRUPTED AT LINE";Z;", LAST ORDER ";N;", LAST ITEM";I
930 PRINT "TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE"
940 INPUT ZS
950 IF ZS="STOP" THEN STOP
960 ON ATTENTION GOTO 900 'RE-ENABLE AT ORIGINAL LINE NUMBER
970 IF Z$="NEXT ORDER" THEN GOTO 200
980 IF ZS="NEXT ITEM" THEN GOTO 300
990 IF Z$="CONTINUE" THEN JUMP Z
995 GOTO 910 'INVALID RESPONSE. REPEAT QUESTION
999 END

ENTER NEXT ITEM NUMBER OR 0
? 443
ENTER QUANTITY
? ATTNt
INTERRUPTED AT LINE 340 , LAST ORDER 6087 , LAST ITEM 443
TYPE STOP, NEXT ORDER, NEXT ITEM, OR CONTINUE
? NEXT ITEM
ENTER NEXT ITEM NUMBER OR a
? 444
ENTER QUANTITY
? 2

tThe key that initiates an interrupt varies with the operating system
and the terminal mode. Consult the appropriate reference manual for
this information.

Figure 4-17. ON ATTENTION Statement Example

I

I

19983900 H 4-7

I



\

• 4-8

100 ON ERROR 6OTO 160
110 PRINT "READ ERROR WILL BE PROCESSED BY PROGRAM"
120 READ X1,X2,X3
130 PRINT "VALUES READ WERE ";X1;",";X2;",AND";X3
140 STOP
150 REM ERROR PROCESSING ROUTINE
160 LET X=ESL (X)
170 LET Y=ESM(X)
180 IF X=120 THEN 210
190 PRINT "ERROR NOT IN STATEMENT 120"
200 STOP
210 PRINT "ERROR NUMBER II";Y;"DETECTED AT LINE #";X
220 JUMP NXL(X)
230 DATA 2.0,3.0,"STRING"
240 END

produces:

READ ERROR WILL BE PROCESSED BY PROGRAM
ERROR NUMBER #I 126 DETECTED AT LINE II 120
VALUES READ WERE 2, 3 ,AND 0

Figure 4-20. Example Using ON ERROR, JUMP, ESL, ESM, and NXL

19983900 H



r

19983900 H



/~

~.....

~.



BASI.C FUNCTIONS 5

r

I A function is a predefined algorithm. A function
returns a value to the point of reference each time
the function is invoked from an executing program.

Two kinds of functions are provided with BASIC:
the predefined functions of the language, called
built-in functions j and the func tions that can be
written by using the DEl and FNEND statements,
called user-defined functions. The built-in func
tions are in the form of subset programs written to
perform specific kinds of tasks.

The built-in functions and user-defined functions
are classified as follows:

Built-in functions:

Mathematical functions
System functions
String functions
Matrix functions
Error and interrupt processing functions
I/O functions

User-defined functions:

Single-line functions
Multiple-line functions

I Although all of the built-in functions are defined
in this section, some of the functions are described
in more detail in other sections of this manual.

I The seven tables in this section identify the
built-in functions and indicate their functional
classification. See the Summary Card at the end of
this manual for a complete alphabetical list ing of
the built-in functions. (See the table of contents
for specific section references.) The user-defined
functions are described at the end of this section.

I

REFERENCING A FUNCTION
Built-in and user-defined functions are referenced
by specifying a function name followed by asso-

I ciated function parameters in parentheses. If no
parameters are used in the function definition, no
parameters are needed in the function reference.
The form for a function reference is shown in
figure 5-1.

function name (81,82' ••• ,en).

e Indicates numeric or string expression;
parameter is optional.

Figure 5-1. Function Reference Format

19983900 R

The number and type of parameters (e) passed with a
function reference must exactly correspond to the
number and type of parameters expected by the func
tion; for example, a string must be passed where a
string is expected and a number must be passed
where --a number is expected. A diagnostic is issued
if the type and number of parameters contained in
the function reference do not correspond to those

. expected in the definition.

·Built-in function parameters that are integer
qu:ant lties use the value of the numeric expression
rounded to an integer. User-defined functions can-·
not specify that a parameter is an integer. With
user-defined functions, all numeric values are real
numbers and the function either truncates or· rounds
values to integers, depending upon the written
statement. Function reference parameters are eval
uated and the values of the· parameters are passed
to the function. The function is then evaluated
and the result is returned t.o the point of the
function reference.

MATHEMATICAL FUNCTIONS
Table 5-1 is an alphabetical list of the standard
mathematical functions that can be referenced by a
BASIC program. In this table) the function argu
ment ne can be a numeric expression of any com
plexity and can include other function references.

Figure 5-2 shows an example of the ABS and the SQR
mathematical func tions. The absolute value of -:71
is multiplied by the square root of 520.

10 LET C=ABSC-71)
20 PRINT C
30 LET D=SQRC520>
40 PRINT D
50 LET· T=C*D
60 PRINT "ABS(-71>*SQR(520>=";T
70 END

produces:

71
22.8035

ABSC-71)*SQR(S20)= 1619.05

Figure 5-2. ASS and SQR Functions Example

RANDOM NUMBER GENERATION

The generation of pseudo random numbers is con
trolled by the RND function and by the RANDOMIZE
statement. The RANDOMIZE statement overrides the
predefined sequence of numbers generated by RHD.

5-1



Function

ABS(neo

)

ATN(ne)

COS(ne)

TABLE 5-1. MATHEMATICAL FUNCTIONS

Description

Finds the absolute value of nee

Finds the arctangent of ne in the principal value range (-11' /2) to (+11' /2).

Finds the cosine of net the angle ne is expressed in radians.

EXP(ne)

lNT(ne)

Finds the value of e to the power of nee

o Finds the largest integer not greater than ne.

Example: INT{5.95) =5 and INT{-5.95) = -6.

I

SGN(ne)

SIN(ne)

SQR(ne)

TAN{ne)

RND FUNCTION

Interrogates the sign of ne and returns "a value of 1 if ne is ·positive;
o if ne is 0; or -1 if ne is negative.

Finds the sine o~ net the angle ne is expressed in radians.

Finds the square root of net ne must be ~ o.
Finds ~he tangent of net the angle ne is expressed in radians.

RND
The RIm function returns a pseudo random number
from the set of numbers uniformly distributed over

.. the range of 0 to 1. The formats for the RND func
tion are shown in figure 5-3. Do not use the second
format because it might not· be supported °in future
versions of BASIC. (See Future System Migration
Guidelines) appendix E.)

RND is equivalent to RND(O) in that it returns a
value in the established. ~equenceo of - pseudo random
.numbers uniformly distributed over the range of 0
to 1. Random numbers are returned in the same
sequence each time the program containing RND 1s
executed unless the RANDOMIZE statement is used
to override the predefined sequence. RANDOMIZE
affects RND(O). RND(ne) affects RND, if ne>O. The
RANDOMIZE statement and its effect on random number
generation is di.scussed in more detail later in
this section.

5-2

I

Figure 5-3. RHD Function Format I
An example of the RND function is shown in
figure 5-4. The program was executed twice. The
RND function twice returned the same set of pseudo
random nwnbers. An example later .in this section
shows this same program with the RANDOMIZE state-I
ment that ensures that a different sequence of
pseudo random numbers 1s generated each time the
program is executed.

19983900 H



\ ..
100 FOR T=1 TO 3
110 L=RND
120 E=RND
130 I=RND
140 PRINT L,E,I
150 NEXT T
160 END

reference and a different sequence each
time it is run. The sequence initial
ized by ne<O is separate from the se
quence controlled by ne>O, and ne=O
references to RND sequences.

RANDOMIZE STATEMENT

Figure 5-4. RND Function Example

The value of ne in RND(ne) affects random number
generation as follows:

A random number sequence is initialized
based on the value of ne, and the first
number in the sequence is returned.
Each reference to RND with ne equal to
a particular positive constant value
initializes the sequence at the same
starting point and returns the same
value. Therefore, the same number or
the same sequence of numbers can be
returned each time RND is referenced
andI or each time the program is run if
the ne>O arguments are used. If ne>O,
RND(ne) can affect RND without the
argument.

I

produces:

.580114

.29762

.275736

produces:

.580114

.29762

.275736

ne>O

.950513

.4537

.305651

.950513

.4537

.305651

.786371
6.26194E-3
.689101

.786371
6.26194E-3
.689101

The RANDOMIZE statement causes a new initial or I
seed value to be placed in the random number gen
erator each time a program containing the RND func
tion is run. The placement of this new value in
the random number generator overrides the prede
fined sequence of pseudo random numbers generated
by the RND function; therefore, the RND function
returns a different sequence of values each time
the program is executed. Figure 5-5 shows the I
format for the RANDOMIZE statement.

RANDOMIZE I

Figure 5-5. RANDOMIZE Statement Format I
Figure 5-6 shows an example using RANDOMIZE to
control random number generation. This program was
executed twice. The RANDOMIZE statement causes RND
to return a different sequence of values, unlike
the example shown for the aND function that does
not use RANDOMIZE (figure 5-3). I

090 RANDOMIZE
100 FOR T=1 TO 3
110 L=RND
120 E=RND
130 I=RND
140 PRINT L,E,I
150 NEXT T
160 END

produces:

RANDOMIZE Statement Example
I

ne=O The next number in the established
sequence of pseudo random numbers is
returned. If the sequence was not
previously established by an ne>O RND
reference, a standard constant is used
to initiate the sequence. The same
sequence of random numbers is returned
when using RND(O) references each time
the program is run unless you initial
ize the sequence with a different posi
tive (>0) value each time the program
executes. This can be done by using a
first reference, such as RND(CLK(O».
CLK(O) returns the time-of-day. If
ne=O, RANDOMIZE affects RND(ne).

.34368

.993254

.481367

produces:

.463818

.882296

.630496

Figure 5-6.

.310629

.237534

.900958

.82842

.96833

.41131

.590422

.876869

.320888

.977286
6.09989E-2
.654263

ne<O

19983900 H

The first reference initializes a random
number sequence based on the current
time of day, and returns the first value
in that sequence. Subsequent refer
ences with ne<O return the next number
in the sequence. A program that uses
ne<O returns a· different value on each

5-3



I

I

10 lET X=TIM(1)
20 PRINT "elKS TIME OF"iClKSi"="iClK(1)i"IN ClK(X) TIME"
30 PRINT OATS
40 LET Y=TIM(2)
50 PRINT "TOTAL ELAPSED TIME IS"iY-X
60 END

produces:

ClKS TIME OF 12.40.43.= 12.6786 IN ClK(X) TIME
81/06/22.

TOTAL ELAPSED TIME IS .001

Figure 5-7. Program Using System Functions ClKS, OATS, and TIM

5-4 19983900 H



~
~l:··

19983900 H 5-5 •



10 REM 98 IS THE ASCII CODE FOR LOWERCASE B
15 OPTION COLLATE STANDARD
20 LET BS=CHRS(98)
30 PRINT BSi" IS"iLENCBS)i"CHARACTERCS)"
40 END

In ASCII mode, produces:

b IS 1 CHARACTERCS)

In normal mode, produces:

AB IS 2 CHARACTERCS)

10 REM 98 IS THE ASCII CODE FOR LOWERCASE B
15 OPTION COLLATE NATIVE
20 LET BS=CHRS(98)
30 PRINT BSi" IS"iLEN(BS)i"CHARACTERCS)"
40 END

In ASCII mode produces:

b IS 1 CHARACTERCS)

In normal mode, produces:

ILLEGAL CHRS ARG AT 20
BASIC EXECUTION ERROR

Figure 5-10. CHRS Function Example

100 LET S$="543"
110 LET A=LENCSS)
120 PRINT A
130 END

produces:

3

Figure 5-12. LEN Function Example

100 LET AS="1234"
110 LET B$=LPADSCAS,6)
120 PRINT "O"i8$;"5"
130 END

produces:

OM12345

Figure 5-14. LPAD$ Function Example

.~
!

• 5-6 19983900 H



100 LET BS='~1234S"

10S PRINT "8";BSi"S"
110 PRINT "8"iLTRM$CBS)i"S"
120 END

r
r

produces:

~234SS

8123455

Figure 5-16. LTRMS Function Example

100 PRINT "PROGRAM FOR ORD FUNCTION"
105 LET AS="a"
110 LET A=ORDCAS)
115 PRINT "CHARACTER "iAS;" HAS ORDINAL OF "iA
120 PRINT ORD("LCA")
130 PRINT ORD C"S")
140 PRINT ORDC"BS") .
150 END

produces:

PROGRAM FOR ORD FUNCTION
CHARACTER a HAS ORDINAL OF 97
97
53
8

Figure 5-20. ORD Fu~ction Example

100 LET AS="FILE A"
110 PRINT AS
120 LET B$=LWRCSCAS)
130 PRINT BS
140 END

produces:

FILE A
file a

Figure 5-18. LWRCS Function Example

19983900 H 5-7 •



100 LET AS="D"
110 PRINT "ABC";AS;"EF"
120 PRINT "ABC";RPADSCAS,2);"EF"
130 END

produces:

ABCOEF ~
ABCD~F

Figure 5-24. RPADS Function Example

,:1

.5-8

10 PRINT "POS FUNCTION PROGRAM"
20 PRINT
30 LET AS="OUTSTANDING"
40 LET A=POSCAS,"AN",2)
50 PRINT "THE POSITION OF 'AN' STARTING WITH CHARACTER POSITION 2 IS ";A
60 PRINT POSCAS,"ST")
70 PRINT POSCAS,"AN",15)
80 PRINT P~SCAS,"T")

90 END

produces:

POS FUNCTION PROGRAM

THE POSITION OF 'AN' STARTING WITH CHARACTER POSITION 2 IS 6
4
o
3

Figure 5-22. POS Function Example

19983900 H



10 LET AS=u1t134SM"
20 PRINT ASiuABCu
30 PRINT RTRMSCAS)iuABCu

- 40 END

produces:

1634~BC

1t134SABC

Figure 5-28. RTRMS Function Example

10 LET A$ = RPT$("*",132)

20 IF B$ = RPT$('~',80) THEN 90

05 LET C$ = RPT$("ABC",2)

A$ is assigned the string consisting of 132 asterisks (*).

Control is transferred to statement 90 if B$ consists
of 80 blanks.

C$ is assigned the string ABCABC.

r
\.

Figure 5-26. RPT$ Function ExampLes

19983900 H 5-9 •



TABLE. 5-4. ERROR AND INTERRUPT PROCESSING FUNCTIONS

10 LET B$ =STR$(A(1,6)) Assuming A(1,6) =1234, execution of this statement
assigns the string 1234 to B$.

20 LET A$ '= STR$(I,"PRICE =$###. ##") Assuming I =203.23476, execution of this statement
assigns the string PRICE =$203.23 to A$.

Figure 5-30. STR$ Function Example

10 LET AS=UPRCSC"Department 4")
20 PRINT AS
30 END

produces:

DEPARTMENT 4

Figure 5-32. UPRCS Funct;on Example

I/O FUNCTIONS

Table 5-6 briefly describes the functions used in
I/O operations. Further details of these functions
are described in the section I/O Statements and
Functions.

USER-DEFINED FUNCTIONS

BASIC, in addi t ion to providing buil t-in functions
of the language, also permits you to define your own
functions. User-defined functions can be written
either as single- or multiple-line functions. When
these functions are referenced, they return a value
based upon the parameters passed by the function
reference and the function definition. User-defined
functions are referenced the same as built-in
functions. See Referencing a Function.

110 LET 89 =VAL(8$(1))

100 LET X4 =2*C4 + VAL("123.7")

090 LET IF VAL(D$(I,J))< 24 THEN 291

Assuming that 8$(1) contains a string 1234, then the numeric value
1234 is assigned to 89.

}
Similarly for these two examples, numeric values are extracted and used
for arithmetic purposes or for comparison with a numeric constant.

• 5-10

Figure 5-34. VAL Function Examples

19983900 H



TABLE 5-6. I/O FUNCTIONS SINGLE-LINE FUNCTIONS USING DEF I

Function Description

Returns a string of blanks, which
results in moving the print mecha
nism to print position nee TAB can
only be used with the PRINT state
ment.

The DEF statement is used to write a single-line
user-defined function. A single-line function is a
complete definition on one statement line. It can
be in the form of a numeric function or a string
function, and. it can contain parameters (up to 20
parameters are allowed). The format for a single-
line function appears in figure 5-35. I

1. DEF FNa=ne

sV1 ... sv20 Indicates simple variable numeric or
string.

The DEF and FNEND statements are provided to write
user-defined functions. To write a single-line
function, only the DEF statement is used. To write
a multiple-line function, the function definition
must begin with the DEF statement and end with the
FNEND statement. Any BASIC statement, except END
and another DEF statement, can be located between
the DEF and FNEND statements. Table 5-7 summarizes
the effect and usage of the DEF and FNEND state
ments.

a

ne

se

Any alphabetic character that uniquely
identifies the function.

Indicates numeric expression:

Indicates string expression.

TABLE 5-7. USER-DEFINED FUNCTIONS
NOTE

Formats 1 and 2 are for numeric functions;
formats 3 and 4 are for string functions.

~.

\'

Statement

OfF

19983900 R

Effect

Defines a
function.

Usage

OfF FNA(X) A+B+C
Figure 5-35. Single-Line Function Using DEF

The rules for writing a single-line function using
DEF are as follows:

The variables sv are formal parameters. They
can be used elsewhere in the program without
affecting the function. Each formal parameter
must be unique within the function. From 0 to
20 formal parameters are permitted.

5-11

I



I

I

The expression defining the function can include
variables other than formal parameters. The
current value of these variables is used when
the function is evaluated.

The definition must be complete on one line.

A function can include references to built-in
BASIC functions or other user-defined func
tions, but not to the function being defined;
recursive definitions are not allowed and cause
an error diagnostic to be issued at compilation
time.

Although a user-defined function can be refer
enced before it is defined, this is not recom
mended. A compile time warning diagnostic is
issued when this occurs (WARNING - FUNCTION
REFERENCE BEFORE DEFINITION). See the Future
System Migration Guidelines, appendix E.

Although a function can- be redefined within a
program, it is not recommended; a compile time
warning diagnostic is issued when this occurs
(WARNING - FUNCTION REDEFINITION). If a func
tion is redefined, the definition used is the
one on the highest line number before the line

10 DEF FNA(M,N,O,P)=M+N+O+P
20 LET E=FNA(2,3,4,5)
30 PRINT E
40 END

produces:

14

containing the function reference; for a func
tion· referenced at a line number before any
definitions, the definition used is the one
with the lowest line number after the function
reference. See the Future Systems Migration
Guidelines, appendix E.

Figure 5-36 shows three examples using the DEF I
statement to express a single-line function. In
example 1 of figure" 5-36, line number 10 contains
the function definition, 'and line number 20 contains
the function reference.

In example 2 of figure 5-36, FNA computes the area I
of a circle when given its radius, FNC computes the
circumference of a circle when given its diameter,
and FNY computes the volume of a sphere when given
its radius. Note ,that the definition FNV uses the I
function FNA. At line 40, four column headings are
printed. The FOR loop prints, on successive lines,
a radius and the. corresponding circumference, area,
and volume computed by the user-defined functions.

In example 3 of figure 5-36, a DEF statement with I
no formal parameters is used to define the area of
a circle having a radius of .2.

I
10 DEF FNA(R)=3.14159*R**2
20 DEF FNC(D)=3.14159*D
30 DEF FNV(R)=FNA(R)*R/3
40 PRINT "RADIUS","CIRCUMFERENCE"," AREA"," VOLUME"
50 FOR R=.1 TO 1 STEP .3
60 PRINT R,FNC(2*R),FNA(R),FNV(R)
70 NEXT R
99 END

produces:

RADIUS
.1
.4
.7
1

CIRCUMFERENCE
.628318
2.51327
4.39823
6.28318

AREA
3.14159E-2
.502654
1.53938
3~14159

VOLUME
1.04720E-3
6.70206E-2
.359188
1.0472

I

I

5-12

10 DEF FNP=3.14159
20 DEF FNA(R)=FNP*R**2
30 PRINT "AREA="iFNA(.2)
40 END

produces:

AREA= .125664

Figure 5-36. Single-Line Function Examples Using DEF

.19983900 H

~,



.8

r

19983900 H 5-13 •



• 5-14

100 DEF FNRSCAS,I,J,BS)
120 REM REPLACE J CHARACTERS OF AS BEGINNING AT CHARACTER I
130 REM WITH THE FIRST J CHARACTERS OF BS
140 REM BS IS PADDED TO LENGTH J IF NECESSARY
150 IF J<LENCBS) THEN LET BS=RPADSCBS,J)
160 LET ASCI:I+J-1)=BSC1:J)
170 LET FNRS=AS
180 FNEND
190 LET XS=tlABCDEFGH"
200 LET YS=11234S"
210 PRINT FNRSCXS,3,4,Y$)
220 END

produces:

AB1234GH

100 DIM BCS)
110 PRINT tlTYPE IN ANY 5 NUMBERS"
120 INPUT BCO),BC1),B(2),8(3),B(4)
130 LET M= 17
140 REM FUNCTION DEFINITION
150 DEF FNMCN)
160 LET FNM=8(0)
170 FOR N=1 TO 5
180 IF FNM>=B(N) THEN 200
190 LET FNM=B(N)
200 NEXT N
210 FNEND
220 LET Y=FNM(M)
230 PRINT liTHE VALUE OF MIS UNCHANGED BY THE FUNCTION"
240 PRINT lilT IS STILL ";M
250 PRINT tlMAXIM IS ";Y
260 END

produces:

TYPE IN ANY 5 NUMBERS
? 89,78,45,67,9
THE VALUE OF MIS UNCHANGED BY THE FUNCTION
IT IS STILL 17
MAXIM IS 89

Figure 5-38. Multiple-Line Function Examples Using DEF ••• FNEND

19983900 H

~.,
~



SUBROUTINES, SUBPROGRAMS, AND CHAINING 6

-~

This section describes the statements used to write
BASIC subroutines, link to external subprograms,
and chain to other programs. Table 6-1 outlines
the subroutine, subprogram, and chaining state
ments. Further details for these functions and
statements follow the table.

execution of subroutine A, control is transferred
to line 70, and at line 80 execution is directed to
line 230 (the end of the program) bypassing the
subroutine statements.

BASIC SUBROUYRNES
When a particular part of a program must be
performed more than once, it is useful to use a
subroutine. Control can be transferred to a sub
routine from the main program and, at the conclu
sion of the subroutine, be returned to the main
program.

GOSUB STATEMENT

The simple GOSUB statement unconditionally transfers
control to a line number that is the first state
ment of the subroutine. Figure 6-2 shows the
format of the GOSUB statement.

GOSUB In

Figure 6-2. GOSUB Statement Format

Execution of the GOSUB statement and the RETURN
statement (described later) can be described in
terms of a stack of line numbers. The stack is
empty prior to execution of the first GOSUB state
ment. Each time a GOSUB statement is executed, the
line number referred to in the GOSUB statement is
placed on top of the stack and execution of the
program continues at this line number, which is the
first statement of a subroutine. Each time a RETURN
statement 1s executed, the line number on top of
the stack is removed from the stack and execution
of the program is continued at the line following
the line number presently at the top of the stack.

Within the main BASIC program, control can be
transferred to BASIC subroutines. These subrou
tines are compiled along with the main program.
The following paragraphs describe the method of

Icalling subroutines using the GOSUB or J~~I~;;~~rll~;tlI~
statements. The RETURN statement directs execution
to the most recently executed GOSUB or ;11f:;i;tj~ID't~[i
The following rules must be followed when using
these statements:

Any number and type of BASIC statements are
allowed in a BASIC subroutine.

GOSUB statements can be nested to a depth of 40.

Recursion is allowed; a subroutine can contain
a call to itself.

Figure 6-1 illustrates a subroutine call and return
sequence. Lines 150 through 220 contain subroutine
A. The subroutine is called from line 60. After

In Indicates the line number of the first
statement of the subroutine.

REM USER PROGRAM TRANSFERS CONTROL TO SUBROUTINE A

Transfer control to subroutine

~--- .....J

RETURN
END

Subroutine A

REM SUBROUTINE A
LET A=1+X -

GOSUB 150 -------------------,
LET Z=A**2 I
GOTO 230 I

I
I
I

10
20
30
40
50
60

~70
I 80

I 90
100

I 120

I 130
140

I 150

I 160
170

, 180

I 190
200

L 210
-220

230

.t;f

Figure 6-1. BASIC Subroutine and RETURN Statement

19983900 H 6-1



TABLE 6-1. SUBROUTINE, SUBPROGRAM, AND CHAINING STATEMENTS

Statement Effect Usage

GOSUB Transfers control to a BASIC sub
routine.

GOSUB 150

A GOSUB (or ~~Di:r:Gfij.~~: statement can be used within
one subroutiile'~ 'to ..'. "transfer control to another sub-
routine; these are nested subroutines. The GOSUB
statement can be used 40 times in these nested sub
routines. Each subroutine in nested subroutines is
executed by the stack order, explained under the
GOSUB statement. A GOSUB can be ended without a
RETURN. For example, execution can be stopped
inside a subroutine. An example of nested subrou
tines is shown in figure 6-3.

GOSUB 250

GOSUB 150-.,

I
I

160
170

150

200

l[1 250

300

80
r~90

I
I
I
I
I
I I

Figure 6-3. Nested Subroutines
RETURN STATEMENT

The RETURN statement is usually the last statement
of a BASIC subroutine; however, it can be used
anywhere and any number of times within the subrou-
tine; RETURN direc ts the program to resume execu
tion at the statement immediately following the
most recently executed GOSUB or ON GOSUB state
ment. Figure 6-6 shows the format of the RETURN
statement.

• 6-2 19983900 H



RETURN

RETURN

RETURN

90

r~~OO

I:I~oo
I ·

i-I~
I :
I..... 290

L
: I ~oo

340

ON X-V GOSUB 200, 250, 200, 300 l
I
I]-----i Integer valult of 1

]- - - - -llnteger value of 2

] - - - - - -J Integer value of 4

Figure 6-5. ON GOSUB Statement Example

or 3

RETURN

Figure 6-6. RETURN Statement Format

Each time a RETURN statement is executed, a line
number is removed from the top of the GOSUB stack,
and control is transferred to the next line follow
ing that line number. See GOSUB statement for a
description of GOSUB stack. The diagnostic RETURN
BEFORE GOSUB is issued if there is no return line
number on the GOSUB stack (if there is no remaining
GOSUB or ON GOSUB from which to return). For exam
ples of the RETURN statement, see the GOSUB and ON
GOSUB statements in this section.

19983900 H 6-3 •



BASIC Program on File F681:

100 OPTION BASE 1 'BASE 1 NEEDED SO BASE IS SAME AS FORTRAN SUBPROGRAM
110 DIM AC2,3)
120 FOR 1=1 TO 2
130 FOR J=1 TO 3
140 ACI,J)=I*J
150 NEXT J
160 NEXT I
165 PRINT "THESE ARE THE BASIC ELEMENTS"
170 FOR I =1 TO 2
185 PRINT ACI,1),ACI,2),ACI,3)
186 NEXT I
190 CALL FSUB CAC1,1» ......._._---------------------
191 PRINT "THESE ARE THE BASIC ELEMENTS CHANGED WITH THE FORTRAN SUBPROGRAM"
192 FOR 1=1 TO 2
194 PRINT ACI,1),ACI,2),ACI,3)
195 NEXT I
210 STOP
220 END

FORTRAN Subprogram on File F682:

Call to FORTRAN subprogram.

j..

C SUBROUTINE FSUB ...~~----------------------------------------- FORTRAN subprogram.
C NO"I"E THAT ORDER OF SUBSCRIPTS MUST BE REVERSED FROM BASIC

SUBROUTINE FSUBCA)
DIMENSION AC3,2)
DO 200 1=1,3

DO 100 J=1,2
ACI,J)=ACI,J)+10

100 CONTINUE
200 CONTINUE

RETURN
END

Control Statements:

Ix,basic(i=f681,l=0,b=f68b) .....~---------------------------------------------- Compile BASIC program•
•011 CP SECONDS COMPILATION TIME

Iftn5Ci=f682,l=0,b=f68b) .. Compile FORTRAN subprogram.
0.009 CP SECONDS COMPILATION TIME

If~b~~~----------------------------------------------------------------- Execute BASIC main program
and FORTRAN subprogram.

Output:

THESE ARE THE BASIC ELEMENTS
123
246

THESE ARE THE BASIC ELEMENTS CHANGED WITH THE FORTRAN SUBPROGRAM
11 12 13
12 14 16

Figure 6-8. BASIC Program Call to FORTRAN Subprogram

• 6-4 19983900 H



19983900 B 6-5 •



• 6-6

100 PRINT "ENTER NAME OF THE GAME"
110 INPUT AS
120 IF AS="POKER" GOTO 170
130 IF AS="ROULETTE" GOTO 190
140 IF AS="STARTREK" GOTO 210
150 PRINT "I DON'T HAVE THAT GAME. TRY AGAIN"
160 6010 110
170 PRINT "CALLING POKER"
180 CHAIN "POKER, LIBRARY"
190 PRINT "CALLING ROULETTE"
200 CHAIN "ROULETT,LIBRARY"
210 PRINT "CALLING STARTREK"
220 CHAIN "STARTRK,LIBRARY"
230 END

Figure 6-11. CHAIN Processing Example

19983900 H

..~

~ ..



r I/O STATEMENTS AND FUNCTIONS 7

This section explains file usage in BASIC and
describes the s tatements and func tiona rela ted to
input and output. Included are the statements and
functions to input and print display formatj read
and write binary dataj construct and read internal.
data tables; aid random access; manipulate files;
and produce special output formats. Table 7-1
summarizes the input and output statements.

BASIC FILES AND FILE I/O
STATEMENTS

Data can be contained within the BASIC program
internally in a data block or externally in a
file. A file is a named collection of data that a
BASIC program can reference and manipulate. A

Statement

TABLE 7-1. I/O STATEMENTS AND FUNCTIONS

Effect Usage

.DATA

19983900 H

Creates a' table of data values internal to a program. DATA "A II ,1,2,3

7-1



logical file name (lfn) consists, ·of 1 to 7 alpha~

numeric characters. The first character must
always be a letter. Any letters that are used must
be uppercase. Files used with BASIC are normally
located on mass storage; exceptions are those files
connected or assigned to the terminal. Terminal
files accept and display data directly at a termi
nal. If a BASIC program implicitly or explicitly
references the name of a nonexistent file, the
operating system (NOS or NOS/BE) automatically
creates an empty file by that name. Direct access
to tape files is not supported.

Piles named INPUT and OUTPUT have special meaning
in a BASIC program. In interactive mode, if these
files are connected or assigned to the terminal,
data written on file OUTPUT is automatically printed
at the terminal, and data read from file INPUT must

I
be entered at the terminal. These files are always
connected to the terminal in interactive mode under
NOS. Sometimes the files INPUT and OUTPUT must be
explicitly connected to the terminal by using the
CONNECT command' under NOS/BE. (See section 11.)
In batch mode, data written on file OUTPUT is auto-
matically printed at the end of the job and data
read, from INPUT must be included in the file that
contains job control statements.

BASIC programs can read and write files in two
formats: binary format (a file created by WRITE)
and display format (files created by PRINT or an
external method). It is more efficient and more
accurate to manipulate data in binary format be
cause no translation is needed before processing,
but it is sometimes inconvenient to use binary data
because it cannot be printed at the terminal or
printer. Conversely, it is less efficient and
sometimes less accurate to manipulate data in dis
play format because translation into binary is nec
essary before the data can be used by BASIC, but it
is usually more convenient to use display format
data because it can be printed at the tepninal or

printer.' Thus, all data entered on cards or at the
terminal, and all printed data, is formatted in
display format. In general, binary data files are
wri t ten only if the data is to be read later by a
BASIC program and a printed copy is not needed.

The BASIC statements described in this section are
used for binary input and output, display input and
output, and input and. output for internal data
tables. Some of the statements, such as RESTORE,
apply to all of these categoriesj while others,
such as INPUT and PRINT, apply to only one cate
gory. Table 7-2 identifies each I/O statement that
is applicable to each category. The statements
listed in this table are grouped according to their
respective functions.

TABLE 7-2. I/O STATEMENTS AND RELATED TYPE OF I/O

Display I/O Binary I/O I/O for
Type Internal Data Tables
of

Statements Sequential Sequential Random Sequential
Access Access Access Access

File Access FILE FILE FILE
and CLOSE CLOSE CLOSE CLOSE
statement

Input INPUT READ READ READ
DELIMIT

Output PRINT WRITE WRITE DATA
PRINT USING
Image
MARGIN
SETDIGITS

File RESTORE RESTORE SET RESTORE
Control NO DATA NODATA RESTORE NODATA

IF END IF END NODATA
IF MORE IF MORE IF END
APPEND APPEND IF MORE

APPEND

7-2 19983900 H



r
~

r

~

r 19983900 H 7-3 •



I

I

1. 110 FILE #99 = "OUTPUT"

2. 10 FILE #1 = "OLDM", #11 = "NEWM"

3. 50 FILE #48 = A$

4. 100 FILE #X = A$

Figure 7-2. FILE Statement Examples

100 FILE #1="DTFIL1"
110 CLOSE #1
120 FILE #1="DTFIL2"
130 FILE 112="DTFIL1"
140 CLOSE #1
150 CLOSE #2
160 END

Figure 7-4. CLOSE Statement Example

FILE CONTROL STATEMENTS

All of the file control statements can be used with
1?,i.J:l~E,Y.". and display f onnat files; the RESTORE and
NODl~: statements can also be used with internal
data tables created by the DATA statement.

7-4

RESTORE STATEMENT

A file or internal data table has a pointer asso
ciated with it that indicates the position of the
file or table. For an input file, as the file is
being read, the pointer moves ahead, indicating the
next item of data to read. For ~n output file, the
pointer is always at the end of the file, indi
cating where the next data item is to be written.
The RESTORE statement positions this pointer to the
beginning of the file or internal data table.' A
file is not automatically rewound at the end of
program execution. A file can be rewound with a
RESTORE or CLOSE statement. Once a file has been
restored, it can be written into or read. After I
execution of a RESTORE statement, a file is in
sequential mode. If data is written to the file
without using a SET statement, information that is
on the file might be destroyed. The file can be in
either binary or display format. Be careful not to
write over any data that is to be saved. Figure 7-5
shows the formats for the RESTORE statement.

1. RESTORE

Figure 7-5. RESTORE Statement Format

I
10 DATA 1,2,3
20 READ A,B,C
30 RESTORE
40 READ D
50 PRINT A;B;C;D
60 END

produces:

231

Figure 7-6. RESTORE Statement Example

19983900 H

~.



100 FILE #1=IIFEND"
110 IF END #1 GOTO 160
120 INPUT '1,A
130 PRINT ,A
140 LET S=S+A
150 GOTO 110
160 PRINT ,,, u
170 PRINT "TOTAL:u,S
180 END

File IFEND contains the values 10, 10, 20,
20, 30, 30, 40, 40. Program output:

090 FILE 111=uNODAT1 u
100 DATA 1,2,3,4
110 NODATA 150
120 READ A
130 PRINT A
135 WRITE #1,A
140 GOTO 110
150 PRINT "END OF DATA BLOCK"
160 NODATA 111,180
170 STOP
180 PRINT "END OF FILE 111"
190 END

produces:
TOTAL

10
10
20
20
30
30
40
40

200

1
2
3
4

END OF DATA BLOCK
END OF fILE #1

Figure 7-8. End-of-Information Processing

19983900 H

Figure 7-10. If END Statement Example

7-5 •



100 FILE #1="IFENO"
120 INPUT #1,A
130 LET S=S+A
140 PRINT ,A
150 IF MORE #1 6OTO 120
160 PRINT ,"--"
170 PRINT "TOTAL:",S
180 ENO

File IFENO contains the values 10, 10, 20,
20, 30, 30, 40, 40. Program output:

10
10
20
20
30
30
40
40

TOTAL 200

Figure 7-12. IF MORE Statement Example

• 7-6 19983900 H



Incorrect APPEND Statement Example Program:

100 FILE 111="CREATED"
110 READ 1#1,A
120 IF MORE 111 THEN 110
130 LET A=99
140 WRITE 1#1,A
150 END

Output from Incorrect Program:

ILLEGAL OUTPUT ON fILE AT 140
BASIC ·EXECUTION ERROR

Corrected APPEND Statement Example Program:

100 FILE 111="CREATED"
110 APPEND '1
120 LET A=99
130 WRITE '1,A
140 RESTORE 1#1
150 READ '1,A
160 PRINT A;
170 IF MORE '1 THEN 150
180 END

File CREATED initially contains the values 96,
97, 98. After program execution it contains:

96 97 98 99

Figure 7-14. APPEND Statement Example

19983900 H

100 FILE 111="OLDM"
110 LET A=1
120 LET 8=10
130 WRITE 111,A,B
140 RESTORE #1
150 READ 1#1,D,E
160 PRINT D,E
170 END

produces:

10

Figure 7-16. WRITE Statement Example

7-7 •



~
)

100 FILE 111="MYFILE"
110 RESTORE 111 'ENSURES FILE IS AT BEGINNING
120 LET AS="WRITE A FILE OF SEQUENTIAL NUMBERS FROM 1 TO 20"
130 WRITE 111,AS
140 FOR 1=1 TO 20
150 WRITE 111,1
160 NEXT I
170 RESTORE 111
180 READ 111,AS
190 PRINT AS
200 IF END 111 THEN 999
210 READ 111,A
220 PRINT A;
230 IF MORE 111 THEN 210
999 END

produces:

WRITE A FILE OF SEQUENTIAL NUMBERS FROM 1 TO 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 7-18. READ Statement Example

• 7-8 19983900 H

~.



~ I SET Statement ExampLe Program:

I

I

100 FILE 1#1="STUDENT"
. 110 PRINT "ENTER A STUDENT NUMBER"

115 PRINT "ENTER 999 TO TERMINATE JOB"
120 INPUT N
125 IF N=999 THEN 999
130 LET N1=N-10000
140 SET 1#1,N1
150 READ 1#1,G1
160 PRINT "STUDENT NUMBER ";N;" GRADE ";61
170 GOTO 120
999 END

File STUDENT contains the values 95, 89, 80,
84, 94, 78, 88, 68, 96, 79, 92, 900
Program output:

LOC and LOF Function Example Program:

Figure 7-23. Example of LOC and LOF Functions

DISPLAY FORMAT I/O
STATEMENTS AND FUNCTIONS

I
95
89
80
84
94
78
88
68
96
79
92
90

78.5833

100 FILE 111="STUDENT"
105 RESTORE #1
110 LET M=100oo
120 READ 111,6
130 LET M=M+1
140 PRINT M,G
150 IF MORE 1#1 THEN 120
200 RESTORE 1#1
210 LET S=O
220 READ 1#1,G1
230 IF LOC(1)=LOF(1)+1 THEN 260
240 LET S=S+G1
250 GOTO 220
260 LET A=S/LOF(1)
270 PRINT "CLASS AVERAGE ";A
300 END

10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012

CLASS AVERAGE

File STUDENT contains the values 95, 89, 80,
84, 94, 78, 88, 68, 96, 79, 92, 90.
Program output:

Figure 7-20. SET Statement Example

~
\ <'<'

ENTER A STUDENT NUMBER
I ENTER 999 TO TERMINATE JOB

? 10001

r STUDENT NUMBER 10001 GRADE 95
? 10002
STUDENT NUMBER 10002 GRADE 89
? 10003
STUDENT NUMBER 10003 GRADE 80
?999

19983900 H 7-9



If an insufficient number of data items is
entered, BASIC issues a request to reenter or
type in more data.

INPUT STATEMENT

The INPUT statement permits display format data to
be read from a file or from the terminal during
program exec.ution. The two forms of the INPUT
statement are shown in figure 7-24.

If .too much data or unacceptable
entered, BASIC requests that the
reentered.

data
data

is
be I

Indicates string or numeric variables.

Figure 7-24. INPUT Statement Format

Terminal Input

When a BASIC program is run interactively from a
terminal, the INPUT statement without a file ordi
nal (format 1 in figure 7-24) reads data into the
program from the terminal. One item- is input for
each variable of the INPUT statement.

Each time an INPUT statement is executed, a question
mark is displayed at the current print position of
the terminal line. Enter data to satisfy the input
request; the data entered must correspond one-for
one with the variables in the INPUT statement.

Numbers must be entered for numeric variables, and
quoted or unquoted strings must be entered for
string variables. No assignment of values in a
reply takes place until the reply is validated with
respect to the type of data, the number of input
items, and the allowable range for each item.

Unless DELIMIT is in effect, numeric constants must
be separated by commas or blanks, and string con-

I stants must be separated by commas. (See DELIMIT
Statement in this section.)

A carriage return marks the end of the input reply
(the end of the data to be entered). If an insuf
ficient number of data items is entered, the diag
nostic NOT ENOUGH DATA, REENTER OR TYPE IN MORE is
issued. When this message appears at the terminal,
either reenter the entire input line or enter a
non-blank delimiter followed by the additional data
items. Starting a subsequent input line with a
delimiter indicates that it is a continuation of
the first input line. One of the diagnostic mes
sages TOO MUCH DATA, RETYPE INPUT or ILLEGAL DATA,
or RETYPE INPUT is issued if too much data or
unacceptable data is entered. In these cases,
retype the entire data list.

Rules for entering data from a terminal are as
follows:

Numeric items must be delimited by commas or
blanks and string items must be delimited by
c.oumas, unless a DELIMIT statement (described
later) is in effect.

A carriage return marks the end of the input
reply.

7-10

All leading and trailing blanks (blanks between
the last nonblank character of the data list
and the carriage return) are eliminated from
the input line.

Redundant delimiters preceding or following
data items are ignored.

If a line ends with a delimiter, the input
reply is assumed to be continued on the fol
lowing line and another input prompt is issued.

Figure 7-25 illustrates a program example of using
the INPUT statement to enter data from the terminal
during program execution. The example shows what
happens if insufficient data is supplied in response
to an INPUT request. The input reply line is com
pletely reentered (the 2 is repeated). Alterna
tives are to add data to the previous input reply
(,2) or to continue the input reply line on the
next line (2,).

19983900 B



19983900 H

Example 1:

100 LET AS="ABCDEF"
110 PRINT "ENTER A NUMBER AND A STRING"
120 INPUT X,AS(4:S) 'TWO VALUES MUST BE SUPPLIED
130 REM NOTE INPUT INTO SUBSTRING OF AS IN PROGRAM OUTPUT
140 PRINT "X=";X,"AS=";AS
150 END

produces:

ENTER A NUMBER AND A STRING
? 2

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 120
? 2,48
X= 0 AS=ABC48F

Example 2:

100 LET AS="ABCDEFGHI"
110 PRINT "ORIGINAL AS=";AS
120 PRINT "ENTER 5 STRING VALUES."
130 INPUT AS(4:5),BS,CS,DS,ES
140 PRINT "NOTE INPUT INTO SUBSTRING OF AS"
150 PRINT "NEW AS=";AS
160 END

produces:

ORIGINAL AS=ABCDEFGHI
ENTER 5 STRING VALUES.
? zz,trailing comma means more data on next line,
? 3rd value

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 130
? ,start with comma to add more (4th value>

NOT ENOUGH DATA, REENTER OR TYPE IN MORE AT 130
? 11111,22,333,44,complete reentered repLy
NOTE INPUT INTO SUBSTRING OF AS
NEW AS=ABC11111FGHI

Figure 7-25. INPUT Statement Example

7-11



DELIMIT Not in EHect (Normal Case)

Carriage return on a terminal (end-of-line on
files) is always treated as a delimiter.

When input is from a terminal and carriage
return is encountered before the input list is
satisfied, the message NOT ENOUGH DATA, REENTER
OR TYPE IN MORE is issued.

• 7-12

When input is from a terminal and data exists
on the input line after the input list is
satisfied, the message TOO MUCH DATA, RETYPE
INPUT is issued.

When input is from a file and end-of-line is
encountered before the input list is satisfied,
it (the end-of-line) is treated as a delimiter
(item separator) and input continues from the
next line.

When input is from a file and data exists on
the input line after the input l1st is satis
fied, this excess data item is retained for the
next INPUT request. No diagnostic is issued.

If a delimiter is encountered after the input
list is satisfied, the delimiter is ignored.

Comma is the delimiter for all input items (num
bers, quoted strings, and unquoted strings). Blank
is a delimiter for numbers, but not for strings.
When input is from a terminal, the input reply can
be continued onto the next line by terminating the
current line with a comma delimiter. Leading and
trailing blanks are ignored.

19983900 H



PRINT STATEMENT

The PRINT statement writes display format data on a
terminal or a file. The formats for the PRINT
statement are shown in figure 7-27.

1. PRINT e1 d 82 d .. · ~n d

e Indicates constant, variable, or expression
(numeric or string).

10 L~T AS="STRING"
20 LET BS="STRING2"
30 LET X=1
40 FILE #7="FILEX"
50 REM PRINT ON FILE
60 PRINT 117,AS;",";B$
70 PRINT #7,X,X+X,SINCX)
80 REM PRINT ON TERMINAL
90 PRINT AS;",";BS
100 PRINT X,X+X,SINCX)
110 END I

d Indicates delimiter (comma or semicolon);
final delimiter is optional.

produces:

STRING,STRING2
1 2 .841471

I

Figure 7-27. PRINT Statement Format

When the PRINT statement 1s executed, the value of
each expression (e) is printed according to stand
ard format. Spacing between the printed values is
controlled by delimiters (d) in the print list.
If no expressions are specified, a blank line is
printed.

The PRINT statement of format 1 in figure 7-27
writes on a default file named OUTPUT. When run
ning the program interactively, file OUTPUT is the
terminal; when running in batch mode, file OUTPUT

the printer. The default file name can be
using the K option of the BASIC control

(See Batch Operations, section 12.

Figure 7-28. PRINT Statement Example

DEFAULT PRINT FORMATS

Unless a USING clause is used or the SETDIGITS
statement (described later) is in effect, all num
bers and strings printed are printed in standard
default formats. These formats are explained below.

Numeric Formats

Numeric values are formatted in one of the three
standard formats shown in table 7-4. A program
example using the numeric formats is shown in
figure 7-29. The following items refer to the
output formats in table 7-4.

"...•...... ,.. ; .

~'

Format 1 prefixes a carriage control character at
the beginning of each line. Except for the first
printed line, this character is always a blank.
The carriage control character is not normally
affixed to lines output if the second PRINT format
is used, unless the file ordinal referenced is
that of the default print file OUTPUT or default
file specified by the K option of the batch BASIC
control statement.

When printing data on a file that is to be read
later with the INPUT statement, ensure that items
on the file are separated by delimiters. When only
numbers are printed, default delimiters (blanks)
are automatically included in the output. When
printing a file containing strings, each string
must be printed on a separate line, or explicitly
specified print delimiter characters must be printed
between data items. In addition, if the string
includes leading or trailing blanks, quote marks
must be printed around the string. Figure 7-28
illustrates an example of the PRINT statement.

19983900 R

The n represents a numeric digit.

The s represents a minus sign if the value is
negative and a blank if the value is positiv~.

Each format is terminated by one trailing blank.

Leading zeros are suppressed.

Trailing zeros after a decimal are suppressed
in F format, but not in E format.

The final digit in both the first and second
formats. of table 7-4 is obtained by rounding to
the sixth place from the first nonzero digit,
for example:

123 456 789.453 is rounded to 123 457 000.000
and
.001234567 is rounded to .001234570

String Formats

String values are formatted as a contiguous group
of characters. For example, only the characters in
the original string value are displayed; no quota
tion marks or blanks are added.

7-13



I

I

100 LET A1=0
110 LET 81=-124
120 LET C1=123456
130 LET 01=1234567
140 LET E1=123456.789
150 LET F1 =-.00192
160 LET 61=1234567890
165 LET· H1 =1234567.8.
170 LET J1=.07623488
180 LET K1 =-.0000192
190 PRINT "INTERNAL VALUE"
200 PRINT "0","-124","123456","1234567","123456.789"
210 PRINT
220 PRINT "OUTPUT FORMAT"
230 PRINT .
240 PRINT A1,81,C1,D1,E1
250 PRINT
260 PRINT "INTERNAL VALUE"
270 PRINT "-.00192","1234567890","1234567.8", ....07623488.. ,"-.0000192"
280 PRINT -
290 PRINT "OUTPUT FORMAT"
300 PRINT F1,61,H1,J1,K1
310 END

produces:

INTERNAL VALUE
0 -124 123456 1234567 123456.789

OUTPUT FORMAT

0 -124 123456 1.23457E+6 123457.

INTERNAL VALUE
-.00192 1234567890 1234567.8 .07623488 -.0000192

OUTPUT FORMAT
-.00192 1.23457E+9 1.23457E+6 7.62349E-2 -1.92oooE-5

Figure 7-29. Program Example of· Numeric Formats

TABLE 7-4. STANDARD NUMERIC OUTPUT FORMATS

The print line is divided into zones of 15 spaces
each. Unless the MARGIN statement (described
later) is used to specify some other value) the
default margin (line length) is 75; there are five
print zones in a line. A comma) used as a sepa
rator or a final delimiter) signals BASIC to move
to the next zone of the print line) or to the first
zone of the next print line when the last zone is
filled. If a print zone is exactly filled by a
print item t a comma separator causes the print
mechanism to skip over the following print zone.

I

Internal Value

Exact integers less than seven
digits.

Nonintegers that after
rounding can be represented as
accurately in decimal "notation
as in exponential (E format)
notation.

All other numbers.

Output Format
Used

snnnnnn
(I format)

snnnnnnn
(where one n
represents a
decimal point)
(F format)

sn.nnnnnE+nnn
(Eformat)

String constants are printed exactly as they appear
in the PRINT statement) without the quotation
marks. Examples of string formats using the PRINT
statement are illustrated in figure 7-30.

PRINT ZONING
I

7-14 199~3900B



10 LET X=2
20 LET Y=2
30 LET Z=2
40 PRINT "ANSWER","X AND Z ARE ";Z,"X*V*Z=";X*V*Z
50 PRINT "ANSWER","X AND Z ARE "Z;"X*Y*Z=";X*V*Z
60 END

~.

produces:

ANSWER
ANSWER

X AND Z ARE
X AND Z ARE

2 X*V*Z= 8
2 X*Y*Z= 8

be used as a separator when the TAB function is
used because the semicolon has no spacing effect.
Figure 7-34 illustrates the format for the TAB
func tion. The TAB func tion is legal only in the
PRINT statement; it should not be used in MAT PRINT
or PRINT USING statements. If the argument is less
than the current position, the print mechanism is
positioned to the specified column of the next
print line. If the argument is greater than the
current line margin, it is divided by the line
margin, and the remainder is used as the argument.
If the argument is less than one, a warning diag
nostic is issued, and the value one is substituted.
Examples of the TAB function appear in figure 7-35.

Figure 7-30. String Formats Using the
PRINT Statement

A semicolon used as a separator has no spacing
effect (the print line zoning effect is inhib
ited). Numbers are printed, preceded by a blank or
a minus sign, and followed by another blank, so two
positive numbers a~e separated by two blanks. (See
figure 7-31.)

When a semicolon is used to separate strings, the
strings are printed consecutively without any
preceding or intervening blanks, as shown in
figure 7-32.

Commas and semicolons can be intermixed in any
PRINT statement. When commas are used as sepa
rators with numeric data, each number occupies one
zone; but with string data, each string can occupy
more than one zone.

Successive commas can be used to skip zones. Each
comma causes a skip to the beginning of the next
print zone. Successive semicolons have no spacing
effect.

If a PRINT statement does not end with a delimiter
(either semicolon or comma), subsequent printing
commences at the beginning of a new line. If a
PRINT statement does end in a delimiter, subsequent
printing continues on the same line until the line
is .filled. If a semicolon is used as the final
delimiter, the next item printed starts in the next
available space. If a comma is the last delimiter,
the next item printed starts at the beginning of
the next zone.

10 LET A1 =123
20 LET 82=256
30 PRINT "12345678901234567890"
40 PRINT A1;B2
50 PRINT -A1;-e2
60 PRINT -A1;14.3
70 END

produces:

12345678901234567890
123 256

-123 -256
-123 14.3

Figure 7-31. Use of Semicolon With
Numeric Data

10 PRINT "THIS IS"i"AN EXAMPLE"
20 PRINT "THIS IS","AN EXAMPLE"
30 END

produces:

THIS ISAN EXAMPLE
THIS IS AN EXAMPLE

Figure 7-32. Use of Semicolon
With String Data

I

I

I

I

~
--"

r

If the formatted print item does not fit entirely
on the current line, it is printed as the first
item of the next line. If an item does not fit on
an empty line, it 1s broken at the margin and
continued on the next line. (See figure 7-33.)

TAB Function

The TAB function causes the printing mechanism to
tab to a specified column. Printing can commence
in the specified column. The semicolon should

19983900 H 7-15



Example 1:

10 fOR 1=1 TO 10
15 PRINT I
20 NEXT I
30 END

produces:

1
2
3
4
5
6
7
8
9
10

Example 2:

10 fOR 1=1 TO 10
15 PRINT I,
20 NEXT I
30 END

produces:

1
6

Example 3:

2
7

3
8

4
9

5
10

10 FOR 1=1 TO 10
15 PRINT I;
20 NEXT I
30 END

produces:

2 3 4 5 6 7 8 9 10

Figure 7-33. Print Zoning Examples

• 7-16

TAB(ne)

ne Indicates constant, variable, or expression
indicating the print position number.

Figure 7-34. TAB Function Format

19983900 H

1
./



Figure 7-35. TAB Function Examples

123.4
123.456
123.457

1.23457E+7
1.23457E+8
1.23457E+10

produces:

Example 2:

produces:

Example 1:

1 2 3
123456789012345678901234567890

100 LET 11=12345678
110 LET 12=123456789
120 LET 13=12345678901
130 LET D1=123.4
140 LET 02=123.456
150 LET 03=123.4567
160 PRINT 11,TAB(2S);01
165 PRINT 12,TAB(25);02
170 PRINT I3,TAB(25);03
180 END

. 20 PRINT TAB(10) ;"1 ";TAB(20) ;"2";TAB(30) ;"3"
30 PRINT "123456789012345678901234567890"
40 END

r

19983900 H 7-17 •



Example 1:

100 LET T1=544
200 PRINT USING 300,T1
300 :TOTAL OF ORDERS 1111111111
400 END

produces: ~

TOTAL OF ORDERS 544

Example .2:

100 LET T1=544
200 PRINT USING "TOTAL OF ORDERS ##II##",T1
300 END

produces:

TOTAL OF ORDERS 544

Example 3:

100 LET T1=544
110 LET AS="TOTAL OF ORDERS #11111111"
120 PR'INT USING AS,T1
130 END

produces:

TOTAL OF ORDERS 544

Figure 7-39. Image With PRINT USING
Statement

• 7-18

10 LET N=5
25 PRINT USING 30,N,
30 :STOTALS PAGE 111111 DATE
40 PRINT DATS
50 END

produces:

STOTALS PAGE 5 DATE 81/06/23.

Figure 7-40. Delimiters in Image

100 LET N=5
101 LET "=10
102 PRINT USING "1I11",N;"
103 PRINT USING "''''',N,"
104 END

produces:

510
5

10

Figure 7-41. Delimiters in Image Reused

19983900 H



~
"

19983900 H 7-19



Example 1 (integer field):

10 LET A=12345.67
15 PRINT USING 20,A
20 :SUMMARY TOTAL=#######
30 END

produces:

SUMMARY TOTAL= 12346

Example 2 (fixed-point field):

10 LET A=12345.678
20 PRINT USING "TOTAL COST IIIIIIIIII.II#",A
30 END

produces:

TOTAL COST 12345.68

Example 3 (floating-point field):

10 LET A=12.345E01
20 PRINT USING uII.IIIIIIII",,,,,,,u,A
30 END

produces:

1.2345E+2

Example 4 ('string and neuter fiel,ds):

10 LET A=12345
11 PRINT USING 12,"FRACTION =",A
12 : <#11111111111111111111 1111111111
13 END

produces:

FRACTION = 12345

Figure 7-42. Format Field Types

• 7-20 19983900 H



Example 1 (sign specifications):

10 PRINT USING 30,11,11,11
20 PRINT USING 30,-12,-12,-12
30 :+.. -.. ..,1
40 END

produces:

I

I

+11
-12

11 11
-12 -12

Example 2 (comma insertion):

10 PRINT USING "11#11,1111'1,111111,11'1'",1000000
20 END

produces:

1,000,000

Example 3 (parentheses and DB/CR sign options):

500 PRINT USING 550,1000.588,1000.588
520 PRINT USING 550,-14738.10,-14738.10
550 :(111111,111111,1111#.11#) OR 11#11,111111,1111#.11#08 YOUR CHOICE
600 END

I

I

Example 4 (floating dollar option):

produce~:

1,000.59 OR
(14,738.10) OR

1,000.59 YOUR CHOICE
14,738.10DB YOUR CHOICE I

600 PRINT USING 650,10.75,138.7,111.888
610 PRINT USING 650,-1738,-28,-29
650 :SS,SSS.##CR $SSSSS (SSS###.#II)
660 PRINT USING "+$$$$$",-7
700 END

produces:

I

$10.75
$1,738.00CR

-$7

$139
$-28

$111.89
($ 29.00)

19983900 H

figure 7-43. Sign and Edit Option Examples (Sheet 1 of 2)

7-21



I

I

Example 5 (check protect):

600 LET FS="S***,***.",..
610 PRINT USING FS,1745.50
620 PRINT USING FS,25
700 END

produces:

S**1,745.50
$*****25.00

Figure 7-43. Sign and Edit Option Examples (Sheet 2 of 2)

1010 :TOTALS:.. $$M#.## #####$$$$#.##AMOUNT: $$,###.##
t t t t t f t t

G) (2) @@ ® @ (1) ®

G) The character T is not an allowable format field character so it indicates the start of a literal.

® The $$ begins a field. One $ by itself is not considered a numeric field.

@ Blanks are not allowable format field characters so they indicate the end of the field and beginning of a literal.

@) The # begins a new field.

® The $ because of position cannot be part of the previous field, so that field ends. $$ begins a new field.

@ The A is not an allowable format field character, so it indicates the start of a literal.

(i) The $$ begins a new field.

(§) The end-of-line terminates the last field.

Figure 7-44. Fields of Image Statement Identified

I 20 LET N=5
21 PRINT USING "A IS # ## IN THE LIST", N

produces:

A IS 5

Figure 7-45. Field Character in Literal

22 PRINT USING uA IS # ## IN THE LIST",
u#,', N

produces:

A IS # 5 IN THE LIST

Figure 7-46. Correction of
Field Character Use

7-22 19983900 H



r
r

Example 1:

130 PRINT USING "1I1I##1I.1I.IIIIIIIIIIIIIIIIIIIIIIII",1.08988E20
1"40 END

produces:

*+1E+20

Example 2:

100 LET A=-7.82
120 PRINT USING 130,A
130 :II'I.IIIIIIIIIIIIIIIIIIIIIIIIIIIIDB
140 END

produces:

7.8200000000000 DB

Example 3:

100 LET A=7.82
120 PRINT USING 130,A
130 : 11.11111111111111111111111111111111 AAAAA
140 END

produces:

.78200000000000 E+001

Example 4:

produces:

*-78 *7.82

Example 5:

400 LET A=-17.82
410 PRINT USING "S.II''',A
420 END

produces:

****

Example 6:

800 LET A=12000000000.0
810 PRINT USING "11.1111 AA",A
820 END

produces:

1.20E*10

Example 7:

500 LET AS="THIS IS THE TOTAL"
600 PRINT USING "<IIIIIIIIIIIIIIIIIIIII#III##II",AS
700 PRINT USING ">IIIIIII#IIIIIIIIIIIIIIIIIIIIII",AS
800 END

produces:

100 LET A=-78
200 PRINT USING "1111
300 END

.1I''';A,7.82 THIS IS THE TOTA
HIS IS THE TOTAL

figure 7-47. Special Cases for format fields

r'

r 19983900 H 7-23 •



• 7-24

200 MARGIN #6, 136

310 MARGIN I*J/K

Figure 7-49. MARGIN Statement Example

10 MARGIN 17
20 PRINT RPT$("a",26),1.75,88
30 END

. produces:

aaaaaaaaaaaaaaaaa
aaaaaaaaa
1.75
88

Figure 7-50. Program Example Using
MARGIN Statement

INT.ERNAL DATA TABLE I/O
I/O for internal data tables (blocks of data inter
nal to a BASIC program) uses the DATA statement to
create and the READ statement to access the tables •

19983900 H

~
}

.~



r
r
\

100 LET A=55.45454545
110 PRINT "A=55.45454545 AND IS NORMALLY OUTPUT AS";A
120 PRINT "SETDIGITS","VALUE OUTPUT"
130 FOR N=1 TO 10
140 SETDIGITS N
150 PRINT N,A
160 NEXT N
170 END

produces:

A=55.45454545 AND IS NORMALLY OUTPUT AS 55.4545
SETDIGITS VALUE OUTPUT
1 6E+1
2 55.
3 55.5
4 55.45
5 55.455
6 55.4545
7 55.45455
8 55.454545
9 55.4545455
10 55.45454545

Figure 7-52. SETDIGITS Statement Example

DATA STATEMENT

The DATA statement constructs an internal data
table containing the values appearing in the DATA
statement line; this data can then be accessed by
the READ statement. Figure 7-53 shows the format
for the DATA statement.

c Indicates numeric or string constant.

DATA statements are nonexecutable and have no
effect on the results of a program if they are
encountered in the normal sequence of execution.

Figure 7-54 shows two examples of using the DATA
statement to construct internal data tables. Exam
ple 2 also illustrates the diagnostic for not
enough data. Both examples also demonstrate the
READ statement.

Example 1: I

7-25

Figure 7-54. DATA Statement Examples

r

Figure 7-53. DATA Statement Format

The data values cI, c2, ••• , cn are entered
in the data table in the same order that they
appear in the DATA statement line. The number of
values per DATA statement line is restricted only
by the length of the line. Any number of DATA
statements can be used anywhere in the program to
construct the data table; the BASIC compiler con
siders the statements to be contiguous statements
and automatically places the data in sequential
order in one internal data block before the program
executes.

Both quoted and unquoted strings are allowed in a
DATA statement line. Leading or trailing blanks in
unquoted strings are ignored. An unquoted string
can begin with plus, minus, digit, letter, or
period, and can contain these characters as well as
blanks. Unquoted strings cannot begin with a comma
or a question mark. Other characters are allowed,

I but they should not be used because they might not
be supported in future versions of BASIC. All
characters in quoted strings are considered to be
significant, including any leading or trailing
blanks.

19983900 H

100 DATA 1,2,3
110 READ A,B,C
120 PRINT A,B,C
130 END

produces:

2

Example 2:

100 DATA 1,2,3
110 READ A,B,C,D
120 PRINT A,B,C,D
130 END

produces:

END OF DATA AT 110
BASIC EXECUTION ERROR

3

I

I



READ STATEMENT

The READ statement (READ without a file ordinal) is
used to read data values contained in the internal
data table. The internal data table is a table
containing data values that has been built into a
program by using DATA statements. The format for
the READ statement appears in figure 7-55.

READ v1, v2' · · · , vn

v Indicates variable identifier (numeric or string).

NOTE

An alternate form of the READ statement is provided
for reading binary files created by the WRITE state
ment. See Binary I/O Statements in this section.

Figure 7-55. READ Statement Format

and program execution terminates. Check for end
of-data by using the NODATA statemen~ (described in
this section under File Control Statements). The
IF END or IF MORE statements cannot be used to
check for end-of-data in an internal data table;
these two statements apply only to files. After
issuing a READ, use RESTORE to move the data pointer
to the beginning of the data table.

In figure 7-56, the DATA statements at lines 10 and
20 establish values for the data table. The READ
statement at line 30 reads the first two data
values (10 and 15). The READ statements at lines
40 and 50 read the remaining data values. The
substring reference F$( 1 :4) in the READ statement
at line 50 indicates that the complete data value
is to be read into a substring of F$. The char
acter string THREE replaces characters 1 through 4
of F$. The value of F$ after execution of this
READ statement is THREE5678; the PRINT statement at
line 80 outputs this value.

10 DATA 10,15,17
20 DATA "ONE","TWO","THREE","FOUR"
25 LET FS="1234567S"
30 READ A,S
40 READ C,DS
50 READ ES,FSC1:4),GS
60 PRINT A,S
70 PRINT C,DS
SO PRINT ES,FS,GS
90 END

When a READ statement is executed, data values
contained in the data table are placed sequentially
into the variables VI, v2, ••• , vn. The read
position pointer is advanced one data item for each
value read.

The variables in a READ list must correspond in
type to data items being read from a data table.
For example, numeric variables must correspond to
numeric data; otherwise, program execution termi
nates, displaying the diagnostic BAD DATA IN READ.
If the ON ERROR statement is used to trap this
situation t the diagnostic BAD DATA IN READ is not
returned, and a subsequent READ statement accesses
the next data item (the one following the bad
data) • Note that unquoted strings that look like
numbers can be read either as strings or numbers.

. produces:

10
17

TWO

15
ONE
THREE567S FOUR

I

I
If a READ statement attempts to read more data than
is available, the diagnostic END OF DATA is given,

7-26

Figure 7-56. READ Statement Example

19983900 H



_MM.

MATRIX OPERATIONS 8

19983900 R 8-1



8-2· 19983900 H

:~



19983900 H 8-3



8-4 19983900 H

.~



r I

~

I

I

r
r 19983900 B 8-S

I

I



I

•

8-6 19983900 H

I



19983900 H 8-7



8-8 19983900 H

~
I



19983900 H 8-9

I



8-10 19983900 H



I

19983900 H 8-11

I



8-12 19983900 H

~.



19983900 H 8-13 I





DEBUGGING 9

Often newly written programs do not operate
correctly on the first attempt to execute them.
They either stop with a run-time diagnostic (such
as SUBSCRIPT ERROR AT 230) or run to completion but
produce incorrect results. The process of iso
lating and removing errors or bugs in a program is
referred to as debugging.

BASIC itself provides some tools to help debug a
program (PRINT statements and tracing). In addi
tion, a companion product, CYBER Interactive Debug
(CID), provides a powerful interactive debug facil
ity. The choice of particular tools to use is
determined by personal preference, mode of opera
tion (batch or interactive), and availability. CID
is the most powerful and easy-to-use tool j CIO is
not available at all sites.

BASIC DEBUG FEATURES
Three debugging aids or techniques that are
available in BASIC are: inserting PRINT state
ments, conditional tracing of program flow, and
unconditional tracing.

INSERTING PRINT S1rATEMENTS

A common debugging technique is to temporarily
insert PRINT statements in a program. Output from
these PRINT statements can indicate program control
flow (what order statements are executed) and
values of selected program variables at specific
points in the program. However, these PRINT state
ments must be removed once the program is debugged
and making any changes to the program (even rela
tively minor changes, such as removing temporary
PRINT statements) provides the opportunity for
introducing new errors. Refer to section 7 for the
format and examples of the PRINT statement.

19983900 H 9-1 •



150 REM TRACE,ALL
160 FOR" X=1 TO 10
170 LET X=X+1
180 NEXT X
190 END

If the TR (trace) option of the DB parameter is
selected on the BASIC control statement when the
program is compiled, the message * AT nnn is output
for each executable line encountered during program
execution. The nnn represents the line number of
the executed statement.

produces:

* AT 160
* AT 170
* AT 180
* AT 170
* AT 180
* AT 170
* AT 180
* AT 170
* AT 180
* AT 170
* AT 180
* AT 190

Figure 9-2. REM TRACE,ALL Example

This debug feature does not require program
modifications, not even insertion of REM TRACE
statements. However, only a full trace of the
entire program can be obtained.

CYBER INTERACTIVE DEBUG
The CYBER Interactive Debug (CrD) facility is a
companion to BASIC. ern permits external moni
toring and controlling of the execution of the
program from an interactive terminal without making·
any changes to the program. The eID commands and
features are only available if CID is installed in
the system. CID commands and features can be used
when the BASIC program is compiled in debug mode.
The use and features of CID are described below.
For further information, see the CYBER Interactive
Debug reference manual.

The CID facility allows the following to be done:

Suspend program execution when control reaches
a predefined point (called a breakpoint).

Display and/or change the values of program
variables while program execution is suspended.

Suspend program execution when a particular
event, such as a store into a specific variable
or program termination, occurs (called a trap).

the point of
point in the

Restart program execution at
interruption or at some other
program.

100 PRINT "REM,' 'TRACE,PART BEING EXECUTED"
110 REM TRACE,PART
120 GOSUB 200
130 PRINT "REM TRACE,NONE BEING EXECUTED"
140 REM TRACE,NONE

.160 GOSUB 200
165 PRINT "REM TRACE,ALL BEING EXECUTED"
170 REM TRACE,ALL
190 GOSUB 200
195 STOP
200 PRINT "SUBROUTINE 200"
210 RETURN
240£ND

pr~uces:

REM TRACE,PART BEING EXECUTED
* AT 120

SUBROUTINE 200
* AT 130

REM TRACE, NONE BEING EXECUTED
SUBROUTINE 200
REM TRACE,ALL BEING EXECUTED
* AT 190
* AT 200

SUBROUTINE 200
* AT 210
* AT 195

Figure 9-3. REM TRACE Statement Example

UNCONDITIONAL TRACE PARAMETER

ENTERING AND EXITING THE CID
ENVIRONMENT

To execute a BASIC program under CIn control, you
must compile and execute the program in debug
mode. Debug mode is turned on by using the system
control statement DEBUG or DEBUG(ON). The DEBUG
control statement must be entered befo.re compiling
and executing the program. When debug mode is on,
the operating system and terminal can be used in
the normal manner.

When compiling the BASIC program, you can specify
the parameter DB in the BASIC control statement.
See section 12 for the options that can be selected
using the DB parameter. DB=O must not be speci
fied; if DB=O is specified, the program will not be
compiled for use with CID even if debug mode is
turned on.

In addition to the conditional trace statements
that can 'be included within the program, BASIC
provides a parameter on the BASIC control statement
that can be used to force program flow tracing to
be printed no matter what statements are included
in the program•

A ern session is terminated by using the eIn command
QUIT. The QUIT command returns control to the
operating system; however, the debug environment
remains in effect until the system control state
ment DEBUG(OFF) is issued. DEBUG(OFF) should be
used if subsequent debugging is not needed.

• 9-2 19983900 H



EXECUTING UNDER CID CONTROL

A debug session is a sequence of interactions
between the programmer and Cln that occurs while
the object program is executing in debug mode. The
session begins with the execution of the object
program. Under the NOS/BE EDITOR or under the NOS
BASIC subsystem, the session can be initiated with
the RUN command. Under the NOS BATCH subsystem,
the session can be initiated using the BASIC con
trol statement X,BASIC,I=lfn; this control state
ment compiles and executes' the BASIC program on
file lfn.

When the debug session begins, control transfers to
an entry point in CIn and the following message is
issued:

CYBER INTERACTIVE DEBUG
?

The question mark prompts for input of a CIn
command. In response, enter a CIn command and
press the transmission key (RETURN on most termi
nals). CrD processes the command and generates any
appropriate output, such as a message or another
prompt.

REFERENCING BASIC LINE
NUMBERS AND VARIABLES
The following paragraphs explain the formats for
referencing variables and line numbers in CIn
commands.

VARIABLES

Program variables are referenced in CIn commands in
the same format as they are in BASIC statements.
Simple and subscripted variables, full arrays, and
substring addressing can be referenced. Variables
referenced' in ern' commands must exist in the pro
gram; and execution must be suspended inside a
function before formal parameters are known to CID.

See figure 9-4 for examples.

A
A1$
X$(2:4)
X(1)

L.n

n Indicates line number.

Figure 9-5. Line Number Referencing Format

An exception to this format is the GaTa command,
which references line numbers in the same format as
it does in BASIC statements. (See the GOTO command
described in this section.)

Example:

COTO 310

RESUMING PROGRAM
EXECUTION
The CID commands GO, GOTO, and STEP can be used to
resume the execution of a program. These commands
are explained in the following paragraphs •.

GO COMMAND

The GO command resumes program execution from the
point at which program execution was suspended.
The format is shown in figure 9-6.

GO

Figure 9-6. GO Command Format

When the GO command is entered, the program resumes
execution from the last point of suspension and
executes -until it reaches a breakpoint or trap.
The GO command cannot be used after an END trap
because execution is complete and cannot continue
any further.

GOTO COMMAND

The GOTO command resumes execution of the program
at a specified line number. This command h~s the
same format as the BASIC statement GOTO. The
format is shown in figure 9-7.

GOTO n

figure 9-4. Variables Examples
n Indicates line number.

LINE NUMBERS

Line numbers for eIn commands are referenced with a
special format not similar to BASIC. This format
is shown in figure 9-5.

Example:

L.310

19983900 H

Figure 9-7. GOTO Command for CID Format

Example:

COTO 50

The GOTO command causes program execution to
continue at the specified statement line number 50.
E~ecution proceeds until the program reaches a
breakpoint or trap.

9-3.



STEP COMMAND SET BREAKPOINT COMMAND

The STEP command executes a specified number of
lines. Execution begins where it was previously
interrupt~d. The.format is shown in figure 9-8.

The SET BREAKPOINT command sets a breakpoint at a
specific program line number. The format is shown
in figure 9-10.

See figure 9-11 for examples.

STEP n LINES

or

Sn

A breakpoint remains set until it is explicitly
cleared. Figure 9-12 shows the format of the
breakpoint message displayed when the program
reaches a breakpoint during execution.

or Example:

S *B 11, AT L.IIO

n An integer that indicates the number of
lines to be executed; optional. SET BREAKPOINT,L.n

or

Figure 9-8. STEP Command Format
SB,L.n

If the n parameter is not specified, the value used
for the previous STEP command is used; if there is
no previous STEP command, the value 1 is used.

A message is issued after the number of lines
specified in the STEP command are executed.
Figure 9-9 shows the format of the step message.

n Indicates line number.

Figure 9-10. SET BREAKPOINT Command Format

SET BREAKPOINT,L.120
SB,L.150

__ ",_ *8 LINE AT L.n

n The line number where execution is
suspended.

Figure 9-11. SET BREAKPOINT Examples

Figure 9-9.· Step Message Format *B Ii, AT l.n

If a breakpoint or trap is reached before the
specified number of lines are executed, the break
point or trap overrides the STEP command and
terminates the STEP operation.

n

Indicates identifying ordinal for the
breakpoint.

Indicates line number or point in the
program where the breakpoint is set.

Example:

STEP,7
Figure 9-12. Breakpoint Message Format

or

CLEAR BREAKPOINT,L.n

CLEAR BREAKPOINT COMMAND

The CLEAR BREAKPOINT command clears a breakpoint
that exists at a specific line number. The format
is shown in figure 9-13.

Indicates line number or point at which
the breakpoint is set.

Figure 9-13. CLEAR BREAKPOINT
Command Format

n

CB,l.n

Traps are set to cause program suspension on the
occurrence of a particular event. Traps are set by
using the SET TRAP command and are cleared by using
the CLEAR TRAP command.

The following commands allow specific breakpoints
and traps to be set or cleared in the BASIC pro
gram. A breakpoint is a point within a program at
which CIn takes control. When program execution
reaches a breakpoint, execution is suspended, a
message is issued, and CIn requests input of com
mands by displaying a question mark. Any number of
commands can be entered once CID gains control. A
breakpoint is se t by using the SET BREAKPOINT com
mand and cleared by using the CLEAR BREAKPOINT
command.

SETTING AND CLEARING
BREAKPOINTS AND TRAPS

• 9-4 19983900'H



I See figure 9-14 for examples.

The last example clears all of the breakpoints.
Breakpoints can also be cleared by referring to the
identification number, such as CB,'I. See the
CYBER Interactive Debug reference manual for more
details.

SET TRAP,type,scope

or

ST,type,scope

CLEAR BREAKPOINT,L.120
CB,L.150
CB,*

type

scope

Indicates keyword describing the condi
tion that causes the trap.

Indicates range of applicability.

I Figure 9-14. CLEAR BREAKPOINT Examples

SET TRAP COMMAND

Figure 9-15. SET TRAP Command Format

*T #itype AT n

The SET TRAP command is used to set a trap of a
specified type for a specified range of applica

I bility. The format is shown in figure 9-15.

When a trap event occurs, program execution is
suspended, a message is issued, and eIn requests
commands. Any number of commands can be entered

I once eID is in control. Figure 9-16 shows the
format of the trap message.

There are many forms of the keyword type used in
the trap commands. See" the CYBER Interactive Debug
reference manual for a complete list. Two important
types are' STORE and LINE.

type

n

Indicates identification ordinal for this
trap.

Describes briefly the condition that
caused the trap.

Indicates line in the program where
execution was suspended. If IN,
rather .than AT, is specified, then
execution is suspended inside, not
before the indicated line.

Figure 9-16. Trap Message Format

I

I

STORE traps can catch stores into any variable or
range of variables; however, BASIC string pointers
are sometimes manipulated without affecting the
string to which they point, so extraneous STORE
traps can occur for string variables. The source
statement should be inspected to verify that the
named string variable is actually being referenced.

I The first example in figure 9-17 shows an example
of the STORE trap.

LINE traps cause a trap prior to execution of each
statement in the specified range. For instance, in

I the second example of figure 9-17, a trap occurs at
any statement from line 100 to line 200 so this
type of trap enables program flow to be traced in a
specific area.

SET TRAP,STORE,A(4,7) Trap occurs after any
STORE in variable
A(4,7).

ST,LINE,L.100...L.200 Trap occurs before any
line in the range of 100
to 200 is executed.

Figure 9-17. SET TRAP Command Examples

CLEAR TRAP,type,scope

or

CT,type,scope

I

CLEAR TRAP COMMAND

type,scope Type and scope must be the same as
those used when setting the trap.

Traps can also be cleared by referring to the
identification number, such as CT,#l or by clearing
all traps at once, CT,*. See the CYBER Interactive
Debug reference manual for more details.

The CLEAR TRAP command clears specific traps.

I
format is shown in figure 9-18.

See figure 9-19 for examples.

The Figure 9-18. CLEAR TRAP Command Format

CLEAR TRAP,LINE,L.100...L.200
CT,STORE,A(4,7)

Figure 9-19. CLEAR TRAP Examples

I

I

19983900 R 9-5



DEFAULT' TRAPS

Three traps are on by default and cannot be
cleared: END, ABORT, and INTERRUPT. The END trap
occurs whenever the BASIC program reaches normal
completion, which occurs when a STOP, END, or CHAIN
statement is executed. Program execution can be

I resumed at a specific line with the GOTO command;
the GO command cannot be used because the program
has completed and cannot continue from these traps.

PRINT output-I.ist

output-list List of any number of restricted
arithmetic or string expressions;
separated by commas or
semicolons.

Figure 9-20. PRINT Command for CIO Format

I
I

The END trap for the CHAIN statement causes
execution to end at the point just before the next
chained-to program is 'executed. Compilation and
execution of the chained-to program is not auto
matic; enter the QUIT command in order to terminate
the present Cln session, then enter any necessary
control statements in order to compile and execute
the chained-to program.

PRINT liTHE VALUE OF B=II;B
PRINT A,A*A,A+135,7,B(17,J)
PRINT C$(1)(2:3)

Figure 9-21. PRINT Command for CIO Examples I

See figure 9-23 for examples.

MAT PRINT array-list

MAT PRINT COMMAND FOR CID

The MAT PRINT command is similar to the BASIC MAT
PRINT statement. It prints complete 1-, 2-, or
3-dimensional arrays. (The BASIC MAT PRINT state
ment prints only 1- or 2-dimensional arrays.) The
format is shown in figure 9-22.

IList of one or more of 1-,2- or 3
dimensional arrays; separated by
commas or semicolons.

array-list

Arrays listed in the array list must exist in the
BASIC program. Elements of the array are printed
in row order with spacing between items controlled
by the comma or semicolons (as with the PRINT com
mand). A'blank line is output after each row and
an extra blank line is output between matrices.
The MAT PRINT command is separated from the next
command on the same line by using two semicolons
(as with the PRINT command).

DISPLAYING PROGRAM
VALUES'

The INTERRUPT trap occurs whenever the BASIC
program is interrupted from the terminal. If ON
ATTENTION is in effect, that is, if the program

.executes an ON ATTENTION statement before the
interrupt is trapped, GO causes the program to
begin executing at the ON ATTENTION line. If ON
ATTENTION is not in effect, GO causes execution to
resume at the point where it was interrupted. The

I GOTO cOllDDand can be used to cause execution to
restart at a particular line.

The ABORT trap occurs whenever the BASIC program
terminates because of an error. If the program
executes an ON ERROR statement before the trap
occurs, a GO command causes execution to resume at
the ON ERROR line. If the program does not execute
an ON ERROR, execution cannot be resumed with a GO
command; however, it can be resumed with the GOTO

I cODDDand. Note that the ABORT trap does not occur
for interactive input errors and the normal BASIC
recovery options still apply.

Three of the commands that allow program values in
then BASIC program to be displayed are PRINT, MAT
PRINT, and LIST,VALUES. The first two commands are
similar to BASIC statements.

Figure 9-22. MAT PRINT Command
for C10 Format

I

PRINT COMMAND FOR CID
MAT PRINT A,B
MAT PRINT X1$

The LIST VALUES command lists values of all
variables within the program. The format is shown
in figure 9-24. I

The PRINT command is similar to the BASIC PRINT
statement. It prints values of program variables
or computed expressions. The format is shown in

I
figure 9-20.

See figure 9-21 for examples.

Variables used in the output list must exist in the
program. Multiple semicolons must be used to sepa-
rate the PRINT command from the next command on the
same line (also true for the MAT PRINT command).
Expressions cannot contain references to functions
or to the exponentiation operator. CIn does not
allow partial print lines. The trailing comma or
semicolon is ignored in Cln. Images, PRlNT USING
statements, and file ordinals cannot be used in CID.

Figure 9-23. MAT PRINT Command
for CID Examples

LIST VALUES COMMAND

The names and values of all variables, including
arrays, ar,e listed in alphabetical order. Formal
arguments of user-defined functions are listed only
if program execution was suspended inside and while
executing the function DEF.

I

9-6 19983900 H



LIST VALUES

or

LV

Sets of Cln commands can be predefined to
execute automatically when a breakpoint or trap
occurs.

Breakpoints can be defined to occur every nth
time through a loop.

;- I Figure 9-24. LIST VALUES Command

CHANGING AND TESTING
PROGRAM VALUES
Two commands that can be used to change and test
program values are the LET command and the IF com
mand. These commands are similar to the BASIC
statements.

LET COMMAND FOR CID

A debug session can be suspended so that
operating system commands can be entered. The
debug session can then be resumed.

Sequences of commands can be saved on and read
from files.

Other commands include HELP, LIST,BREAKPOINT and
LIST,TRAP.

eIn can be used interactively in ASCII mode only I
under NOS. Cln can be used in normal mode under
NOS and NOS/BE. See the CYBER Interactive Debug
reference manual for further information regarding
erD commands and features.

The LET command is similar to the BASIC LET
statement. It assigns values to program vari
ables. The command can be used with simple and

I
subscripted variables and substrings. The format
is shown in figure 9-25.

See figure 9-26 for examples.

LET nv=ne

nv Indicates numeric variable.

ne Indicates restricted arithmetic expression.

or

LET sv=se
The variables referenced must exist in the BASIC
program being debugged. Nul tiple assignments,
references to functions, and use of the exponen
tiation operator are not allowed; all other arith
metic operators (+, -, *, and / ) and the string
concatenation operator can be used in the
expressions.

IF COMMAND FOR CID

The IF command is similar to the BASIC IF statement.
It controls the selection of CID commands based on
a comparison of program variables or computed
values. See the CYBER Interactive Debug reference
manual for further uses of the IF command in debug

I mode. The format is shown in figure 9-27.

The following is an example of the IF command:

$V

se

Indicates string variable.

Indicates restricted string expression.

Figure 9-25. LET Command for CID Format

LET A=A+45
LET B$(3,2)=A$ + IIABCII

LET O$(3:6)="0EFGII

LET F$(1)(4:6)=1I1I

Figure 9-26. LET Command for CID Examples

I

I

IF A<=B THEN PRINT A
IF re THEN db

Figure 9-27. IF Command for CID Format I

OTHER COMMANDS AND
FEATURES
There are many other em features and commands.
The following is a list of some features and

I commands not explained in this manual:

re

db

Indicates any BASIC relational expres
sion; variables must exist in BASIC
program being debugged.

Indicates any CID or BASIC debugging
command.

r
19983900 H 9-7





r····

···"·,,·,,
,,;--

~

\

liST VALUES

or

lV

Sets of CID commands can be predefined to
execute automatically when a breakpoint or trap
occurs.

Breakpoints can be defined to occur every nth
time through a loop.

.,
rr

I Figure 9-24. LIST VALUES Command
A debug session can be suspended so
operating system commands can be entered.
debug session can then be resumed •

that
The

CHANGING AND TESTING
PROGRAM VALUES
Two commands that can be used to change and test
program values are the LET command and the IF com
mand. These commands are similar to the BASIC
statements.

LET COMMAND FOR CID

The LET command is similar to the BASIC LET
statement. It assigns values to program vari
ables. The command can be used with simple and

I
subscripted variables and substrings. The format
is shown in figure 9-25.

See figure 9-26 for examples.

The variables referenced must exist in the BASIC
program being debugged. Multiple assignments,
references to functions, and use of the exponen
tiation operator are not allowed; all other arith
metic operators (+, -, *, and /) and the string
concatenation operator can be used in the
expressions.

Sequences of commands can be saved on and read
from files.

Other commands include HELP, LIST,BREAKPOINT and
LIST ,TRAP.

CID can be used interactively in ASCII mode only I
under NOS. CID can be used in normal mode under
NOS and NOS/BE. See the CYBER Interactive Debug
reference manual for further information regarding
CID commands and features.

lET nv=ne

nv Indicates numeric variable.

ne Indicates restricted arithmetic expression.

or

lET sv=se

sv Indicates string variable.

se Indicates restricted string expression.

Figure 9-25. LET Command for CIO Format I

IF COMMAND FOR CID

The IF command is similar to the BASIC IF statement.
It controls the selection of CID commands based on
a comparison of program variables or computed
values. See the CYBER Interactive Debug reference
manual for further uses of the IF command in debug

I mode. The format is shown in figure 9-27.

The following is an example of the IF command:

IF A<=B THEN PRINT A

lET A=A+45
lET B$(3,2)=A$ + IIABCII

lET O$(3:6)=IIOEFG II

lET F$(1 )(4:6)=1111

Figure 9-26. LET Command for CIO Examples

IF re THEN db

I

db Indicates any CIO or BASIC debugging
command.

OTHER COMMANDS AND
FEATURES
There are many other cm features and commands.
The following is a list of some features and

I commands not explained in this manual:

19983900 H

re Indicates any BASIC relational expres
sion; variables must exist in BASIC
program being debugged.

"Figure 9-27. IF Command for CIO Format

9-7

I



..~



TERM·INAL OPERATION UNDER NOS . 10

NOS is the Network Operating System for CDC's
CYBER 170, CYBER 70, and 6000 Series computer
systems. NOS provides BASIC users with both a
batch and an interactive processing environment.
BASIC can be accessed from a remote time-sharing
terminal, such as a Teletype Model 33 or Model 35
teletypewriter (TTY), or a CDC Model 713 CRT
terminal.

When accessing NOS from a remote terminal, BASIC
programs can be entered and executed by using
either the BASIC subsystem or BATCH subsystem when
under the NOS Interactive Facility (IAF). Also,
data files created under NOS can be built at the
terminal through use of TEXT mode, Text Editor, or
XEDIT.

This section illustrates the use of the BASIC and
BATCH subsystems, a method of creat tng data files
at a terminal, and some tips on using the line
editor when writing programs at a TTY or CRT
terminal.

For a detailed description of 713 CRT and Model 33
or Model 35 TTY terminal usage, see the Networks

I Interactive Facility reference manual (NOS 1 sites),
Volume 3 ·of the NOS 2 reference set (NOS 2 sites),
or the NOS Time-Sharing reference manual. For a
detailed description of Text Editor or XEDIT usage,
see the Text Editor reference manual or the XEDIT
reference manual.

ENTERING A PROGRAM
The process for interactively entering a program
into a file is shown in the examples that follow.
To correct an existing syntax, semantic, or logic
error, enter the line number that contains the
error, type in the correc ted line, and press the
carriage return key. To delete a line, enter the
ltne number and press the carriage return key. To
correct an error while typing a line, backspace n
characters by pressing the backspace key or by
holding down the control key and pressing H once
for each incorrect character; then type the correct
information. For additional control key informa
tion, refer to the NOS Network Products Interactive
Facility reference manual, the NOS Time-Sharing
User's reference manual) and the operator's guide
for a specific terminal.

BASIC SUBSYSTEM
When in the BASIC subsystem under IAF (or TELEX), a
BASIC program can be written at a TTY or CRT termi
nal, and the program can be edited or executed
interactively. The program in figure 10-1 was
created and run at a terminal under lAP and the
BASIC subsystem. Responses entered are in lower
case; the carriage return key is pressed after
typing in each response.

19983900 B

For a detailed description of the NOS commands used
in figure 10-1 and other available commands t see
the Networks Interactive Facil ity reference manual
or the NOS Time-Sharing User's reference manual.
In figure 10-1, the program is saved as a file
named EX4. The program in this f Lle is now stored
as an indirect-access permanent file that can later
be accessed by use of the OLD command. (See
figure 10-2. Responses entered are in lowercase.) I

Use the REPLACE command to store the changed
program; this replaces the old program with the
corrected program. For example, the following
command stores an updated program in file EX4:

REPLACE, EX4

The updated file EX4 is lost if the session is
logged off before storing the corrected version.

BATCH SUBSYSTEM
The batch subsystem provides batch control statement
capability from the terminal. It enables control
statements to be typed at the terminal; otherwise,
control statements must be entered through a card
reader at the central site or must be entered from
a remote batch terminal that calls the statements
from a procedure file or includes the statements in
a submitted job.

BASIC can be run interactively in the batch
subsystem. The BASIC control statement in the form
X,BASIC is issued to call the BASIC compiler. All
options of the BASIC control statement described in
the section on Batch Operations are available when
BASIC is run interactively in the batch subsystem.

The program contained in file SUM (figure 10-3) was
written during a previous terminal session, while
in the BASIC subsystem, and saved with the SAVE
command. The BATCH command requests the batch
subsystem, and the X,BASIC(I=SUM) command requests
the BASIC compiler to compile and execute the I
program found in file SUM.

USING DATA FILES
To create a data file under NOS 1 or NOS 2, specify I
the name of the new file and enter the TEXT com
mand. The TEXT command permits the file to be
created without sequence numbers. If, after the
file is created, corrections, additions) or dele
tions are required, enter EDIT or XEDIT and use
Text Editor or XEDIT commands. (For a complete I
description of Text Editor or XEDIT commands, see
the Text Editor reference manual or the XEDIT
reference manual.)

10-1



I Ibasic .. Request BASIC subsystem•
OLD, NEW, OR LIB FILE: new,ex4 • Create new file named EX4.

READY.

10 print "type a number"
20 input x
25 let 1=1
30 for i=1 to x J')

I
~

40 let 1=1.; ~ Enter BASIC statements.
50 print "factorial ";x,"is ·";f
60 goto 10
70 end

I list ,. List file EX4.

I

I

10 PRINT "TYPE A NUMBER"
20 INPUT X
25 LET F=1
30 FOR 1=1 TO X
40 LET F=F*I
50 PRINT "FACTORIAL ";X,"IS ";F
60 60TO 10
70 END

READY.
run ....--------------- Compile and execute program.

FOR WITHOUT NEXT AT 30 .....------ Program contains an error.
BASIC COMPILATION ERRORS

RUN COMPLETE.
45 next ; ]24 if x=O then 70 ......------ Correct error by entering more BASIC statements.
list .....---~----------- List file EX4.

10 PRINT "TYPE A NUMBER"
20 INPUT X
24 IF X=O THEN 70
25 LET F=1
30 FOR 1=1 TO X
40 LET F=F*I
45 NEXT I
50 PRINT "FACTORIAL ";X,"IS "iF
60 60TO 10
70 END

READY.
run ........-------------Compile and execute program again.

TYPE A NUMBER
? 3 .....~--------------- Input 3 to executing program.
FACTORIAL 3 IS 6
T,YPE A NUMBER
? 0 .........------------- Input 0 to executing program.

RUN COMPLETE.

save,ex4 .........----------- Make file EX4 permanent.

READY.

Figure 10-1. BASIC Subsystem Under NOS

19983900 B



old,ex4 ......------------- Make file EX4 accessible.

READY.
list ......-------------- List program.

10 PRINT "TYPE A NUMBER"
20 INPUT X
24 IF X=O THEN 70
25 LETF=1
30 FOR 1=1 TO X
40 LET F=FkI
45 NEXT I
50 PRINT "FACTORIAL .. ;X,'LIS ";F
60 GOTO 10
70 END

READY.
run .....------------------------ C~pile and execute program.

TYPE A NUMBER
? 6
FACTORIAL 6 IS 720
TYPE A NUMBER
? 0

RUN COMPLETE.
bye ...._----------------- Log off.

Figure 10-2. OLD Command Under NOS

batch .....------------------------Enter the BATCH subsystem.
RfL,O.
Iget,sum
Il;st,f=sum
10 INPUT N
20 PRINT TAB(2);"IHTEGER","SUM"
30 LET 5=0
40 FOR 1=1 TO N
50 LET 5=5+1
60 PRINT TAB(5);I,S
70 NEXT I
80 END

EOI ENCOUNTERED.
Irew;nd,sum
REWIND,5UM.
Ix,bas;cC;=sum) .....-----------------Compile and execute program on file SUM.
? 10

INTEGER SUM
1 1
2 3
3 6
4 10
5 15
6 21
7 28
8 36
9 45
10 55

figure 10-3. Program Executed Interactively Under BATCH Subsystem

19983900 H 10-3 •



Under NOS 2, data files al so can be creat'ed in a
two step process. First of all, the data, with
line numbers, is entered into a file. The line
n~mbers allow the use of the in-line editing com
mands. When all. the data is correct, the in-line
edit command WRITEN will copy all the data from the
line numbered file, excluding" the. ~line numbers, to
the file specified in the command~ "(See appendix I
for further explanation of the in-line editing
co~ands.)

In figure 10-4, the first data file is created
using. the two step process. The data is initially
entered into file f¢LIENT using ·the AUTO mode.' (In
AUTO mode, line numbers are supplied by the system.)
Using the line numbers as a reference, the data is
corrected. When the -data has been corrected, the
WRITEN command is used to write the data, without

. line numbers, to file CLIENT • File CLIENT is then
made pe~anent using the SAVE command.

reference manual (NOS 1 sites), Volume 3 of the
.·NOS 2 reference set (NOS 2 sites), NOS Time-Sharing
User's reference manual J and the operator's guide
for a specific terminal. After terminating TEXT
mode, file UPDATE is made permanent under .its
respective 'name by the using the SAyE command.

Later', local copies of' the files are made by using
the GET command in order to ,~ak~. them accessible to
the ,BASIC program. For addi t'ional file handling
information, see appendix D.

.RENUMBERING BASIC·LIN'ES
In the BASIC subsystem,' the .RESEQ command re
sequ~nces BASIC programs and automatically updates
all line references. The format of the RESEQ com
mand is shown in figure 10-5 J and an example of
this command is illustrated in figure 10-6.

'The second data file is created using the TEXT
command and inserting .the data line by line. Each
line ends by pressing the carriage ret~rn key.
TEXT Mode is terminated by using the user break 1
or 2; see the Network Products Interactive Facility

For additionai inform~tionJ see the NOS Time
Sharing· User's reference manual, the Network
Products Interactive Facility reference manual
(NOS 1 sitea), and Volume 3 of the NOS 2 reference
set (NOS 2 sites).

new,tclient ~..--------------------------------------------------Establish a new file named TCLIENT.

READY.
ascii ~..-------------------------------------------------------Activate ASCII mode.

READY.
auto·.~."""------------------------------ Activate automatic line number

generation.
00100 J.Brown,1422 East St,charge no 1111,510.00 ]
00110 R.Apple,3434 Chery St,charge no 2211,222.22 ....--------- Enter data into fi le TCLIENT.
00120 N.Redi,1896 Algo Ave,charge no 1660,133.98
00130~.......-------------------------------------------- Enter u-ser break to stop line number

*TERMINATED* generation.

alter,110,/Chery/Cherryl -..----------------------------~----------Correct date.

00110 R.Apple,3434 Cherry St,charge no 2211,222.22

READY. Write all data in file TCLIENT
writen,client .........------------------------ (excluding line numbers.) to file

CLIENT.
READY.

save,client --------------------------------------Make file CLIENT permanent.
READY.

new,update ...~--------------------------~--- Establish new file UPDATE.

READY.
text

ENTER TEXT MODE.

10.56J
20.53 .....--------------------------- Enter data into fi le UPDATE.
13.78 "

.......----------------------------- Enter user break to exit text mode.
EXIT TEXT MODE.

figure 10-4. Using Data Files Under NOS (Sheet 1 of 2)

• 10-4 19983900 H



. Enter BASIC program into file TEST.
~ (L i ne numbers are supp1i ed by

system. )

READY.
save ~..~---------------------------------------------------------------------------Makefile UPDATE penmanent.

READY.
new,test~.----------------------------------------------------Establish a new file named TEST.

READY.

auto ~.---------------------------------------------;Act;vate automatic line number
00100 file 111="CLIENT" Igeneration.
00110 file 112="UPDATE"
00120 restore 111
00130 restore 112
00140 for ;=1 to 3
00150 input 111,aS,bS,cS,d
00160 input 12,s
00170 let x=d+s
00180 print tab(2)iaSitab(12)ibSitab(32)icSitab(52)i"BALANCE=S"iX
00190 next i
00200 end
00210 ~"---------------------------------------------------Enter user break to stop line number

*INTERRUPTED* generation.

*TERMINATED*

get,cl ient ]
READY. ~~-------------------------------------- Make data fi les 1oca1•

get,update

READY.
run ~.-----------------------------------------------------Compile and execute program.

J.BROWN. 1422 EAST ST
R.APPLE 3434 CHERRY ST
N.REDI 7896 ALSO AVE

RUN COMPLETE.

CHARGE NO 1111
CHARGE NO 2211
CHARGE NO 1660

BALANCE=S 520.56
BALANCE=S 242.75
BALANCE=S 147.76

Figure 10-4. Using Data Files Under NOS (Sheet 2 of 2)

RESEQ,nn,ii

19983900 R

nn

ii

Indicates new line number of the first statement in the file; maximum size is
five digits; if omitted, the default is 00100.

Indicates increment to be added to nn; default value is 10.

Figure 10-5. RESEQ Command Format

10-5 •



• 10-6

Ibas;c .. Enter BASIC subsystem.
OLD, NEW, OR LIB FILE: old,ex4 -----.--Make file EX4 accessible.

READY.
list .......----------- List BASIC program (file £X4).

10 PRINT "TYPE A NUMBER"
20 INPUT X
24 IF X=O THEN 70
25 LET F=1
30 FOR 1=1 TO X
40 LET f=f*1
45 NEXT 1
50 PRINT "FACTORIAL ";X,"15 ";f
"60 6OTO 10
70 END

READY.
reseq ........-----------Resequence file EX4.

READY.
l;st ...~...-------_--_iList resequenced file.

00100 PRINT "TYPE A NUJlUJER"
00110 INPUT X
00120 IF X=O THEN 00190
00130 LET F=1
00140 FOR 1=1 TO X
00150 LET F=F*I
00160 NEXT I
00170 PRINT "FACTORIAL u;X,"I5 ";F
00180 60TO 00100
00190 END

READY.

Figure 10-6. RE5EQ Command Example

19983900 H



TERMINAL OPERATION UNDER NOS/BE 11

The Network Operating System/Batch Environment
(NOS/BE) permits multiple-user access to CDC's
CYBER 170, CYBER 70, and 6000 Series computers.
From a remote terminal, the INTERCOM commands and
directives can be used to enter and execute BASIC
programs interactively, to create and submit BASIC
programs for batch execution, and to create data
files to be accessed by BASIC programs. The remote
terminal can be any teletypewriter CITY) or CRT
supported by NOS/BE.

This section describes and illustrates the creation
of BASIC programs for interactive processing; a
method of creating data files to be accessed by a

I BASIC program; and the utility for renumbering
BASIC programs. For a complete description of Text
Editor commands, and remote terminals supported by

I NOS/BE, see the INTERCOM Version 5 reference manual.
Creation and 'submission of BASIC programs for batch
processing is described in the section on Batch
Operations.

line, back space n characters by pressing the back
space key or by typing CONTROL H, n times, and
enter the correct information, or erase the entire
line by pressing CONTROL X. The CONTROL key must
be held down while the H or X key is pressed. To
correct an existing line, reenter the line number
and type the correct information. To delete an
existing line, type DELETE, line number. If an
entered line exceeds 150 key strokes, it is trun
cated and a message is displayed at the terminal.

INTERACTIVE BASIC
TERMINAL SESSION
A BASIC program can be entered, edited, and exe
cuted interactively from a CRT or TTY terminal.
Figure 11-1 was created and run at a TTY termi
nal. Responses entered are in lowercase. Press
the carriage return key, @, after typing in each
response.

ENTERING A PROGRAM

I

When creating a BASIC program that is to be run
interactively or submitted for batch execution,
first enter text edit mode. Text edit mode can be
entered at any time after the login sequence is
completed by typing EDITOR and the carriage return
key after the system prompt:

COMMAND-

USING THE BASIC
COMMAND INTERACTIVELY
Basic can be run interactively using the full capa
bility of the BASIC control statement, described in
section 13, by performing the following steps:

1. Create the BASIC program under EDITOR.

2. Save the program by entering:

I

The system editor responds with two consecutive
periods, indicating text edit mode is in effect. SAVE ,lfn
After the EDITOR command, enter the following
command (after the periods): For a program created in BASIC format

••FORMAT ,BASIC @>

This cODDDand establishes a special BASIC program
environment. The maximum line length is estab
lished at 150 ~haracters. BASIC line numbers serve
as EDITOR sequence numbers, and EDIT with SEQUENCE,
CREATE, ADD, or RESEQ becomes illegal •. Once speci
fied, the BASIC format environment remains in
effec t for the duration of the terminal session or
until the one of the following is specified: a
FORMAT without parameters, or a FORMAT with a
COMPASS, FORTRAN or COBOL parameter (such as
FORMAT ,COBOL).

Once the FORMAT command is accepted (apparent by
two periods displayed on the next line following
the command), enter program text in one of the fol
lowing two forms: line number (one space) text
(for the BASIC format) or line number = text (in
other formats). If an error is made while typing a

19983900 H

SAVE,lfn,NOSEQ

For a program created in other than
BASIC format

3. To leave EDITOR, type in END.

4. Connect required files to terminal by entering:

Normally the J and K files on the BASIC command
(default INPUT ~~d OUTPUT) should by connected.

5. Compile and execute the program by entering:

BASIC(I=lfn, ••• )

An example of these command parameters is shown in
figure 11-2. BASIC command parameters are described
in the section on Batch Operations.

11-1



CONTROL DATA INTERCOM 5.1
DATE 06/25/80
TIME 14.30.50

-

PLEASE LOGIN
login

ENTER USER NAME-xxx

~~ ENTER PASSWORD-
Login procedure.

06/25/81 LOGGED IN AT 15.35.15.
WITH USER-ID 4K
EQUI P/PORT ,. 63/073

LOGIN CREATED 06/25/81 TODAY IS 06/25/81 _

CO~AND- ed~or~~~~~~~~~~~~~~~~~~~~~Calls EDITOR •
•• format,basic .. Requests BASIC format.

~..------------- Enters BASIC program line-by-line.

-

##'##.#1'

-••10 rem this program computes interest payments
20 print "enter total amount of loan"
21 input a
22 if a<=O then 200
26 print "enter interest percentage"
30 input j
35 let j=j/100
40 print "enter total number of years"
45 input n
50 print Uenter number of payments per year"
55 input m
60 let n=n*m
65 let i=j.Jm
70 let b=1+i
75 let r=a*i/(1-1/b**n)
79 amount per payment =$$$S#.##
80 :total interest =$$$$$#.##
81 print using 79,r
82 print using 80,r*n-a
88 print
94 :interest app to prin S balance S
95 print using 94
100 let l=a*i
110 let p=r-l
120 let a=a-p
130 print using 135, l,p,a
135 :###.## #•••##
140 if a>=r then 100
150 print using 135, a*i,r-a*i
155 print
160 print using "last payment =$$$'.#''',a*i+a
170 goto 20
200 end
run,basic ~..~~~---~------~---------~---------------~---~-----Compiles and executes program.

ILLEGAL STATEMENT AT 79 ]
NON-IMAGE REFERENCED AT 81 ~..----~~----~--~~~-----BASIC issues diagnostic.

BASIC COMPILATION ERRORS

•• 79 :amount per payment =$$$$•• 11# ~.__--~~--~---~-Corrects error.
run,basic .. Compiles and executes program again.

Figure 11-1. Interactive BASIC Terminal Session (Sheet 1 of 2)

• 11-2 19983900 H



ENTER TOTAL AMOUNT OF LOAN
?5000
ENTER INTEREST PERCENTAGE
111
ENTER TOTAL NUMBER Of YEARS
12
ENTER NUMBER OF PAYMENTS PER YEAR
16
AMOUNT PER PAYMENT = S467.97
TOTAL INTEREST = S615.66

INTEREST
91.67
84.77
n.74
70.59
63.30
55.88
48.33
40.64
32.80
24.82
16.70
8.43

APP TO PRIN S
376.31
383.20
390.23
397.38
404.67
412.09
419.64
427.34
435.17
443.15
451.27
459.55

BALANCE S
4623.69
4240.49
3850.26
3452.88
3048.21
2636.12
2216.48
1789.14
1353.97
910.82
459.55

.....--------- Program asks for input and generates output. I

•

-r

LAST PAYMENT =S467.97
ENTER TOTAL AMOUNT OF LOAN
10

•• save,basprog .....~----------------~ Saves edit-file in local file B~PROG•
••store,basp rag .. Makes BASPROG a permanent f i 1e•
•• list,all,sup .. Lists edit file without sequence numbers.

10 REM THIS PROGRAM COMPUTES INTEREST PAYMENTS
20 PRINT "ENTER TOTAL AMOUNT OF LOAN"
21 INPUT A
22 IF A<=O THEN 200
26 PRINT "ENTER INTEREST PERCENTAGE"
30 INPUT J
35 LET J=J /1 00
40 PRINT "ENTER TOTAL NUMBER OF YEARS"
45 INPUT N
50 PRINT "ENTER NUMBER OF PAYMENTS PER YEAR"
55 INPUT M
60 LET N=N*M
65 LET I=J/M
70 LET 8=1+1
75 LET R=A*I/(1-1/B**N)
79 :AMOUNT PER PAYMENT =SSSS#.##
80 :TOTAL INTEREST =$$SSS#.##
81 PRINT USING 79,R
82 PRINT USING 80,R*N-A
88 PRINT
94 :INTEREST APP TO PRIN $ BALANCE $
95 PRINT USING 94
100 LET L=A*I
110 LET P=R-L
120 LET A=A-P
130 PRINT USING 135, L,P,A
135 :###.## ###.## N###N.##
140 IF A>=R THEN 100
150 PRINT USING 135, A*I,R-A*I
155 PRINT
160 PRINT USING "LAST PAYMENT =$$$#.#N",A*I+A
170 GOTO 20
200 END

Figure 11-1. Interactive BASIC Terminal Session (Sheet 2 of 2)

19983900 H 11-3

I

I

I
I



COMMAND- editor
•• format ,basi c
•• 100 print "sample program"
save,ex1
•• end
COMMAND- connect, input,output.
COMMAND- basic(;=ex1,l)

I EX1 BASIC 3.5 81027

100 PRINT "SAMPLE PROGRAM"

06/25/81 16.08.25. PAGE

SAMPLE PROGRAM1'--" --1

Figure 11-2. BASIC Command Parameters Under NOS/BE

USING DAYA FILES
Data files to be used by a BASIC program can be
created under EDITOR. To create data files accept
able to the BASIC program, select a format; the
format must be a format other than BASIC. In the
BASIC format, line numbers are part of the text and
cannot be removed.

Data is entered one line at a time in line
number=text format. After the entire file is

created, save the file (file becomes local file)
without sequence numbers by using the SAVE,lfn,NOSEQ
command. EDITOR line numbers are stripped when the
SAVE command with no sequence number option (NOSEQ)
is selected. To edit a file that was saved without
sequence numbers, enter the EDIT,lfn,SEQ command.
The SEQ parameter causes an EDITOR line number to
be appended to each line of text. An example of
using data files under NOS/BE is illustrated in I
figure 11-3.

COMMAND~ editor
•• format,fortran ~.~~~~~~~~~~~~~~~~~~~~~~~-Chooses a format other than BASIC

for data. .
•• create ] Creates and places data in edit

100=j.brown,1422 east st,charge no 1111,500.00
1-10=r.apple,3434 cherry st,charge no 2211,222.22 .. file; the line numbers are supplied
120=h.redi,7896 algo ave,charge no 1660,133.98 by EDITOR. The equals sign termi-
130==' nates input •

•• save,client,noseq .. Saves edit file as local file
•• create CLIENT without sequence numbers.

100=10
110=20
120=30
130==

•• save,update,noseq
••delete,all ~.--~----~--~~-----------------------------------Deletes contents of edit file •
•• format,basic ~..-------------------------------------------------- Chooses BASIC format for program.

-

-

I

•• 5 file 112="update"
10 file 111="client"
20 restore ·111
30 restore 112
40 for i=1 to 3
50 input 111,aS,bS,cS,d
60 input 112,s
70 let x=d+s
80 pri'nt tab(2) ;aSitab(12) ibSitab (32) icSitab(52) i "balance=S"i x
90 next ;
100 end .
run,bas i c .......----------------~~-------------------------------

Creates a BASIC program.

Executes the program.

J.BROWN
R.APPLE
H.REDI

1422 EAST ST.
3434 CHERRY ST
7896 ALGO AVE

CHARGE NO 1111
CHARGE NO 2211
CHARGE NO 1660

BALANCE=S 510 ]
BALANCE.=S 242.22 ...- Program output.
BALANC~=S 163.98

•• save,test ~,.__----~~---~--~~--------~~--~-----------Saves the program as local file
TEST •

•• end ....4__.------------------------- Exits EDITOR.
COMMAND-

Figure 11-3. Using Data Files Under NOS/BE

11-4 19983900 H



BRESEQ,lfn,start,incr

RENUMBERING BASIC LINES

start Indicates new line number to be
assigned to the first line in'the file.

The BRESEQ command provides a means of resequencing
the line numbers in a BASIC local file. Line num
ber references in the BASIC program are automati
cally updated. The format for the BRESEQ command
is shown in figure 11-4. When only one parameter
is specified, it is assumed to be the starting line
number for the· new file, and the default increment
value (10) is used.

COMMAND- editor

•• format,basi c
•• 5 print "type a positive number"
10 input a
50 if a<O then 80
60 print using 71, a
71 :+••• is positive
75 stop
80 print ai" is negative, try again"
·100 goto 10

An example of the BRESEQ command and reloading of
the resequenced file is shown in figure 11-5.

Indicates filename of the· local file to
be resequenced.

Ifn

II.e;

incr Indicates increment to be added to
nn; defaUlt value is 10.

save,ex

..breseq(ex,10,10)

Figure 11-4. BRESEQ Command Format ••edit,ex

The BASIC file must exist as a local file and can
not be the local name for an attached permanent
file. To resequence a permanent file, copy the
file and assign a unique filename. This can be
accomplished by the use of the COpy command or by
loading the file into an EDIT file and then using
the SAVE command.

The BRESEQ command affects only the specified local
file and not the edit file. If further modifica
tions are to be performed, the resequenced file
must be reloaded into the EDITOR edit file by using
the following directive:

-EDIT, filename

•• list,all,sup

00010 PRINT "TYPE A POSITIVE NUMBER"
00020 INPUT A
00030 If A<O THEN 00070
00040 PRINT USING 00050, A
00050 :+••• IS POSITIVE
00060 STOP
00070 PRINT Ai" IS NEGATIVE, TRY AGAIN"
OOOSO 60TO 00020

Figure 11-5. BRESEQ Command Example

•

19983900 H 11-5 I



· .~.. ~ ~ :



BATCH OPERATIONS 12

A batch job includes a user-written program,
associated data, and control statements organized
as separate logical records. A batch job can be
input through a card reader at the central site,
input from a remote batch terminal, invoked from a
procedure, or, if the batch job is stored on a file
or created during an interactive terminal session,
it can be entered into the batch queue from the
interactive terminal.

This section describes the general structure of a
batch job, the BASIC control statement parameters,
and the procedure for creating and submitting a
batch job under NOS or' NOS/BE. Figure 12-1 shows
the control statements for a batch job under NOS
and figure 12-2 shows the control statements under
NOS/BE. The BASIC statement can be used to compile
and execute your program, or you can use the B op
tion on the BASIC control statement to place the
object code on a file. Figures 12-1 and 12-2 place
the ob j ec t code on the file LGO, then load and
execute the file LGO.

Job statement

ACCOUNT
statement

BASIC
statement

LGO.

7/8/9

Figure 12-2.

Specifies job name, and optionally,
the memory and time requirements,
priority, and other information.

Specifies accounting information
for NOS/BE.

Calls BASIC compiler. If the B option
is specified, the object code is written
on the specified file; otherwise, it is
written into memory and executed
immediately.

Leads and executes the binary fi Ie
LGO. If B = LGO is not specified
on the BASIC control statement, omit
this statement.

Indicates end-of-record.

Job Structure Under NOS/BE

Job statement

USER and
CHARGE
Statements

BASIC
statement

LGO.

7/8/9

Figure 12-1.

Specifies job name, and optionally,
the memory and time requirements,
priority, and other information.

Specifies accounting information
for NOS. CHARGE might be
optional at your site.

Calls the BASIC compiler. If the B
option is specified, the object code is
written on the specified file; other
wise, it is written into memory and
executed immediately.

Leads and executes the binary file
LGO. If B = LGO is not specified
on the BASIC control statement,
omit this statement.

Indicates end-of-record.

Job Structure Under NOS

Both compile-to~emory (no B option on control
statement) and compiling to a binary file (using
the B option) are allowed on NOS and NOS/BE. An
example of a compile-to-memory job deck for use
under NOS is shown in figure 12-3; an example for
use under NOS/BE is shown in figure 12-4. An
example of compiling a BASIC program to a binary
fiie and then loading and executing that file under
NOS is shown in figure 12-5; an example for use
under NOS/BE is shown in figure 12-6.

Information on entering a job from an interactive
terminal can be found in the Network Products
Interactive Facility reference manual (NOS 1 sites),
Volume 3 of the NOS 2 reference set (NOS 2 sites),
the XEDIT reference manual for NOS» and in the
INTERCOM Version 5 reference manual for NOS/BE.

A 6/7/8/9 statement specifies end-of-information
(end-of-deck). A complete description of the BASIC
control statement follows. Refer to the NOS or
NOS/BE reference manual for a detailed description
of these and other control statements.

DECK STRUCTURE
Compile-to-memory enables you to compile and
execute a BASIC program without loading a binary
file. Thus J you need only. specify the BASIC con
trol statement in order to compile and execute the
program, and you need not and must not specify the
B option.

19983900 R

BASIC CONTROL STATEMENT
Programs submitted for batch processing must
include a BASIC control statement. This control
statement calls the compiler and is formatted as
follows:

BASIC(Pl.···.Pn)

12-1.



Data
Record

BASIC Program Statements

I

Program
Record

Control
Statement

Record

_l_

7
8
9

BASIC.
CHARGE Statement

USER Statement

JOB Statement

--

Figure 12-~. BASIC Comp;l~ and Execute Job Under NOS

==

7
8
9

.BASIC.

ACCOUNT Statement
JOB Statement

BASIC Statements

Data for Input Statements

----
Data

Record

ProlPm
Record

I
Control

Statement
Record

_!-----
I Figure 12-4. BASIC Compile and Execute Job Under NOS/BE

. 12-2 19983900 H



r
r
\ - - - -- -- ----

Data
Record

~a

~,

-- ----
BASIC Program Statements

Program
Record

~~
9

LGO.

BASIC (B=LGO),.- CHARGE Statement"

USER Statement
Control

Statement
Record

!
Figure 12-5. 'BASIC Compile to Binary File, Load, and Execute Job Under NOS

.,

Data
Record

Program
Record

Control
Statement

Record

_l_

6
7
8
9

:---..

Ie~ -,
Data for Input Statements ~

Lfl
-

-,
~

BASIC Statements
I

II
L-<LGO.

L.BASIC (B=LGO).
ACCOUNT Statement I-

JOB Statement ~

I-

Figure 12-6. BASIC Compile to Binary File, Load, and Execute Job Under NOS/BE

19983900 H 12-3 •



I

The simplest form of the BASIC control statement is:

BASIC.

This control statement specifies that the BASIC
program on file INPUT is to be compiled and exe
cuted. A source listing is produced on file OUTPUT
unless the control statement was issued from a ter
minal. A relocatable binary file is not produced.
The parameters (Pl, ••• ,Pn) associated with this
control statement permit the selection of the
following parameter types:

Compiler listable output options

Compiler input options

Compiler binary options

Program execution options

Tables 12-1 through 12-4 list available control
statement parameters under the appropriate cate
gory, and describe their use. Some control state
ment parameters can have multiple values associated
with them. Multiple values are separated by
slashes and are cumulative.

The following examples illustrate some combinations
of control statement parameters and the following
paragraphs discuss possible options.

Compile and Execute

BASIC(B=SAM,GO)

The above control statement· compiles the pro
gram found on file INPUT (I parameter default),
places the compiler binary output on file SAM
(B=SAM), and loads and executes the compiled
program (GO). Execution-time output is written
on file OUTPUT (K parameter default). Compile
time errors prevent execution and, when detec
ted, are written to file OUTPUT (E and EL
'parameter default). A source list is created
on file OUTPUT (L parameter default and LO
parameter default) unless it is assigned to a
terminal. When under NOS, source 1 is·ting is
not written when the program is in interactive
mode (default L value is zero) because file
OUTPUT is automatically associated with the
terminal.

ASCII Compile and Execute

BASIC(AS,I=PROG3)

The AS parameter specifies that the source code
found' in file PROG3 is encoded in ASCII charac
ters 'and that data produced by the BASIC
program is in the ASCII character set. The
program is compiled-to-memory and executed

12-4

immediately (B and GO parameter defaults). A
source listing is produced on file OUTPUT un~
less it is assigned to a terminal (L parameter
defaul t). On NOS, the source code of the pro
gram must be in ASCII 6/12 characters. On
NOS/BE, the source can be in either display
code (6-bit) characters or in ASCII 8/12
characters.

Compile, Execute, and List

BASIC(I=SOURCE,L=LIST)

This control statement compiles-to-memory and
executes; compiler input (source) is on file
SOURCE. Listable compiler output is written on
file LIST. Source listing is specified by the
LO parameter default. Error diagnostics are
written on file LIST (default of E parameter).
Source code and data do not contain ASCII
characters.

Compile and Execute with Listing Options and
Controls

BASIC(I=TESTP,EL=F,LO=O,PD=8,PS=20)

The compiler input (source code) is on file
TESTP (I=TESTP) and the program is compiled and
executed (default B and GO parameters).
Compile-time errors are written on file OUTPUT.
However, warning diagnostics are suppressed
(EL=F). Also, a source and object listing is
written on file OUTPUT (default L parameter and
LO=O). Print density of file OUTPUT is set to
8 (PD=8). ROU'rE (DISPOSE on NOS/BE) the file
OUTPUT to a device that can print 8 lines per
inch. Page size for the printed output file is
set at 20 lines per page (PS=20).

19983900 B



TABLE 12-1. COMPILER LISTABLE OUTPUT PARAMETERS

The number zero (0) turns off all I
previously specified values. In
this case, it turns off the de-
fault S value. The letter 0
turns on object listing.

I

Parameter Parameter
Format

Compile-Time omitted
List File (L)

~

L
~

L=lfn

L=O
(zero)

Listing Options omitted or
(LO) LO or LO=S

LO=O
(letter 0)

LO=O/O
(zero/
letter)

LO=O
(zero)

Burstable List- omitted
ing Control
(BL)

Description

For batch jobs, default list file
is OUTPUT. For interactive jobs,
default is no compiler listable
output file (same as L=O).

Listable compiler output on file
OUTPUT.

Listable compiler output on file
lfn.

No compile list file.

Produces a source listing on a file
specified by the L parameter.

Produces a source listing and an
object listing on L file.

Produces an object listing on
L file.

Turns off all list options.

Page ejects between portions of the
compiler output (source listing and
object listing) are suppressed;
listing is not burstable. If the
compile-to-memory and execute-in-
ane-step option is selected (no B
option), both the page between the
compiler output eject and the
first line of execution output is
suppressed; four blank lines are
listed instead.

Remarks

If the program is in ASCII, the
listing file must be sent to the
ASCII printer, not to the normal
64-character printer.

This parameter can have multiple
values associated with it. Values
are separated by slashes and are
cumulative.

S is on by default.

The installation can change the
meaning of BL omitted to that
specified by the BL option that
follows.

I

Print Density
Control (PO)

19983900 H

BL

omitted

PD=6

PD=8 or PO

Includes page ejects between com
piler output portions and between
the compiler output and the first
line of execution output.

Specifies the print density (lines
per-inch) on the files specified by
the Land K parameters as the in
stallation default (usually 6).

For Land K files, sets print
density to 6. Automatically resets
after all output is written to the
files.

For Land K files, sets the print
density to 8 and automatically
resets the density to the default
value after output is written to
the files.

Does not apply if the L file is
the terminal.

Only effective on an output device
whose density can be changed. I

12-5



TABLE 12-1. COMPILER LISTABLE OUTPUT PARAMETERS (Contd)

Parameter Parameter Description RemarksFormat

Page Size omitted If PO is not specified, uses
Contro1 (PS) installation default page size

(number of printable lines per
page excluding upper and lower
margins for the file).

If PO specifies a nondefault print
density, PS is calculated as
follows:

PS=PD*(default PS)/(default PO).

PS=n Establishes the L file page size as Four is the smallest possible page
(where n is n printable lines per page. This size because each page must in-
4S n~ 32768) parameter has no effect on execution clude a 3-line header and at least

output. Lines are not counted at one additional line.
execution time.

Compile-Time omitted Compile-time error diagnostics If the program is in ASCII, the
Error File (E) written on the file specified by listing file must be sent to the

the L rarameter. If there is no L ASCII printer, not to the normal
file ( =0), diagnostics are written 64-character printer.
to file OUTPUT.

E Compiler error diagnostics are
written on file ERRS.

E=lfn Error diagnostics are written on Diagnostics are listed only once
file 1fn. even when the file specified by

the E parameter is the same as
that specified by the L parameter.

Error Level omitted or Writes warning diagnostics and
Control (EL) EL=W fatal compiler diagnostics on the

file specified by the E parameter.

EL=F Fatal error diagnostics, but no
warning diagnostics, are written
on the E file.

TABLE 12-2. COMPILER INPUT PARAMETERS

Parameters Parameter Description RemarksFormat

ASCII Character omitted Source program and data files con-
Set (AS) or AS=O tain only normal (non-ASCII display

(zero) code) characters. (See appendix A.)

AS Source program and data are encoded Under NOS/BE, a normal character set
in the extended ASCII character set. source program is also acceptable.
(See appendix A.) Program runs in
ASCII mode.

Compile-Time omitted Compiler input (BASIC source program) Normally the program ID (name) con-
Input (I) is on file INPUT. tained in optionally generated relo-

eatable binar{ decks is the name of
I Compiler input (BASIC source program) the source fi e specified in the I

is on file COMPILE. parameter. The only exception occurs

I=lfn Compiler input (BASIC source program)
when the I file is the system file,
INPUT or COMPILE; in which case, the

is on f i1elfn. program name in the binary deck is
BASICXX.

I 12-6 19983900 H



Parameter Parameter
Formats

TABLE 12-3. COMPILER BINARY OUTPUT PARAMETERS

Description Remarks

Binary File
( B)

omitted
or 8=0
(zero)

B

Compile-to-memory. Does not produce a
relocatable·binary.

Binary of compiled program written on
file BIN.

Automatic execution is controlled by
the GO parameter. See table 12-4.
If in CID mode (DEBUG (ON) has been ex
ecuted, or DB=ID has been specified),
a relocatable binary is written onto
the reserved system file ZZZZZDC.

8=lfn Binary of compiled program written on
file lfn. .

Debug
(DB)

omitted

DB=Ot
(zero)

DB

DB=O/Bt
(zero)

DB=O/DLt
(zero)

DB=O/IDt
(zero)

DB=O/TRt
(zero)

OB=TR

DB=ID

Trace feature, force binary gener
ation, and program execution are
not activated. CID feature is not
activated unless an explicit DEBUG
or DEBUG(ON) command has been
previously issued.

CID and trace features are not
activated.

Same as DB=B/DL.

Forces binary generation and/or
program execution regardless of
compilation errors.

Activates program tracing as con
trolled by REM TRACE debug lines.

Activates generation of CID infor
mation.

Traces all statements regardless of
REM TRACE debug lines.

Same as DB=B/DL/TR.

Same as DB=B/DL/ID.

Binary generation and automatic
program execution are inhibited by
compilation errors, and REM. TRACE
statements are only comments.
Generation of CID information is
controlled solely by an explicit
DEBUG conanand.

Same as if omitted except that CID
information is inhibited even if an
explicit DEBUG command has been
issued.

The default list of parameters.

See B and GO parameters. A program
containing compilation errors executes
normally until a statement that
caused the compilation error is en
countered.

See section 9.

Causes generation of CID tables and
special code.

Turns on the trace feature.

TR parameter is added to the defaul t
list of parameters.

10 parameter is added to the default
list of parameters.

tThe zero turns off all previously specified values. For example, DB=O/TR turns off default values B
and DL and turns on TR.

19983900 H 12-7

I



Parameter Parameter
Formats

TABLE 12-4. PROGRAM EXECUTION PARAMETERS

Description Remarks

I

ASCII Mode
(AS)

Execution
Control (GO)

Execution-Time
Input File (J)

Execution-Time
Print File (K)

12-8

omitted
or AS=O
(zero)

AS

omitted

GO

GO=O
(zero)

omitted
or J

J=lfn

J=O
(zero)

omitted
or K

K=lfn

Program runs in normal mode.
Data files are presumed to be
in normal, not ASCII mode
(display code, not ASCII,
characters).

Program runs in ASCII mode.
All character data is inter
preted as ASCII, not display
code. See appendix A.

Compiled BASIC program
executes without loading
provided it was compi1ed
to-memory (i.e., no B
parameter specified) and
there were no compilation
errors. When the Boption
(table 12-3) is specified,
the compiled program does
not execute.

Compiled BASIC program exe
cutes provided there were no
compilation errors.

Inhibits execution. Neither
the compi1e-to-memory version
nor the re10catable binary
version of the BASIC program
executes.

Default input file for com
piled BASIC program (file
read when INPUT statement is
executed) is INPUT.

Default input file for com
piled BASIC program is lfn.

No default run-time input
file.

Default output file for com
piled BASIC program (file
used for PRINT statement and
run-time error diagnostics)
·is OUTPUT.

Default output file fo~ the
compiled BASIC program is
lfn.

Program can be executed despite com
pilation errors. See DB parameter
table 12-3.

See DB parameter in table 12-3.

Use of the INPUT statement aborts the
executing BASIC program.

J and K options control the default
input and output files of the com
piled program because BASIC does not
provide a means of controlling file
assignment for the simple form of the
PRINT and INPUT statements; also, the
normal mode of operation, compile-to
memory and execute-in-one-step
option, prohibits file assignments
from being manipulated by interven
ing loader control statements. When
loading and executing a program from
relocatable binaries, parameters can
be used to change the names of the J
and K files, such as when relocatable
binaries have been written on file
LGO:

LGO, FILEIN, FILEOUT.

This causes the program to be loaded
and executed with INPUT data from
FILEIN and output PRINT data on
FILEOUT.

19983900 H



---------------

TABLE 12-4. PROGRAM EXECUTION PARAMETERS (Contd)

Parameter Parameter Description RemarksFormats

Debug and Trace Activates trace feature and
(DB) forces execution regardless

of compilation errors. See
table 12-3.

Print Density Controls density (lines per
Control (PO) inch) of printed output.

See table 12-1.

I
I

BATCH PROCESSING FROM A
TERMINAL
BASIC programs can be created at a terminal and
submitted for batch processing. This is accom
plished by setting up the program in a Text Editor
file that includes control statements.

NOS

Remove sequence numbers.

Remove internal EOR and EOF marks (converts
/EOR and /EOF found in this deck to end-of
record and end-of-file, respectively).

See the Network Products Interactive Facility I'
reference manual (NOS 1 sites), Volume 3 of the
NOS 2 reference set (NOS 2 sites), or the NOS
Time-Sharing User's reference manual (Reformatting
Submit File) for remaining directive descriptions.
The options of the BASIC control statement are
available to the interactive user when using the
batch subsystem.

NOS/BE

. I Figure 12-9 shows an example of a terminal session
where a job is created and submitted for batch
processing.

The /JOB directive indicates that the file is to be
reformatted for batch processing. Some defaults
indicated by the directive are:

For the prog ram:

10 LET J =10
20 REM LIST,NONE
30 PRINT J
40 LET S=J*.07
50 REM LIST,ALL
60 PRINT S
70 END

the compiler-generated source listing is:

To send a batch job to NOS/BE from a remote termi
nal, first enter EDITOR, as described in Terminal
Operation under NOS/BE. You can then issue the
CREATE command to construct the program statements
to be processed. When using CREATE, a FORMAT com
mand need not be specified, but if one is, the
format cannot be BASIC.

10 LET J=10
20 REM LIST,NONE
50 REM LIST,ALL
60 PRINT S
70 END

1
o

DONE BASIC 3.5 81208 81/08/13. 16.27.26. PAGE

19983900 H

Figure 12-8. REM LIST Statement Example

12-9



I

I

I

Ibatch
RFL,O.
Inew,guide
1100 Ijob
110 bin014g.
120 user,xxxxxxx,xxx.
130 charge,xxxx,xxxxxxx.
150 basic.
151 dayfile,prog.
152 replace,prog.
153 exit.
154 dayfile,prog.
155 replace,prog.
160 leor
170 Inoseq
180 let a=304
190 let b=403
200 let t=a*b
210 print t
220 end
250 leof
submit,guide,b
10.01.57. SUBMIT COMPLETE. JOBNAME IS ACLIBCP

/ enqui re,j n=bcp
ACLIBCP IN INPUT QUEUE.

When entering BASIC statements (under a fo~at

other than BASIC), the EDITOR sequence numbers are
distinct from the BASIC line numbers and must be
specified separately. In figure 12-10, 610 is the I
EDITOR sequence statement number generated by the
system, and 100 is the BASIC line number input from
the terminal. Once this is accomplished, the file
can be modified by using EDITOR commands and can be
saved by using the SAVE,lfn,NOSEQ form of "the SAVE
command.

To submit a batch job created under EDITOR, save
the edit file without sequence numbers, then submit
the saved file to the batch input queue by using
the BATCH or ROUTE command. The following are two
types of processes for submitting a job into file
TESTJOB for batch execution; results are automati
cally printed at the central site.

SAVE,TESTJOB,NOSEQ
BATCH,TESTJOB,INPUT

or
SAVE,TESTJOB,NOSEQ,
ROUTE,TESTJOB,DC=IN.

Figure 12-9. Batch Processing From a
Terminal Under NOS

The job must include the NOS!BE control statements,
along with the BASIC program. Each control state
ment and' BASIC statement is entered on a separate
line. A line with *EOR indicates the place in the
deck where an end-of-record mark is to be inserted;
when the EDITOR command SAVE is .issued, the *EOR is
transformed into an actual end-of-record mark. A
typical deck setup is shown in figure 12-10.

Optionally, the job can be submitted for batch
processing with the resul ts directed to the sub
mitting te~inal for inspection. If acceptable,
the job can be printed at the central site.
Figure 12-11 shows an example of printing a batch I
job.

-Refer to the INTERCOM Version 5 reference manual I
for additional details and examples concerning
these commands.

COMMAND-editor
•• create ....~--------------- Creates the fi le.
100=jOb statement. .. Control statements (lines 100-600) •

.
SOO=basic.

600=*eor
610=100 input x-..~"--------------------------- BASIC statements (lines 610-700).
620=110 if x=O then 190

680=170 print "factorial";x;"is";f
690=180 goto 110
700=190 end
710=*eor ......~--------------------------- End "of BASIC source record; optional if no succeeding information.
= .. End CREATE mode .
•• s,testjob,ns .. Saves job in file named TESTJOB with no sequence line numbers.

I

12-10

Figure 12-10. Batch Processing From a Terminal Under NOS/BE

19983900 H



BATCH,TESTJOB,INPUT,HERE Submits the job.

Allow time for batch job to complete.

FILES

BATCH,lfnt,LOCAL

PAGE,lfnt,L

Lists file names so you can identify remote output file Ifn created by the job.

Makes remote output file local to terminal.

Prepares to display contents of file Ifn. The L is optional to display ASCII
coded file.

When prompted with READY ... enter 1 to see the first page and + to see each
additional page. Enter E or END to exit from the PAGE mode.

BATCH,lfn,PRINT,id Submits the file to the batch print queue with user identification ide

tThe remote output file name consists of the first five characters from the job statement (job name) and two characters
generated by the system.

Figure 12-11. Printing a Batch Job

19983900 H 12-11

I



.tt.



CHARACTER SETS A

Each computer has its own character· set, which
includes a collection of graphics (letters, digits,
and special symbols) that the computer recognizes.
Associated With each graphic of a character set is
a number called a code. The code represents the
character within the computer. Computers differ in
their codes as well as their graphic sets, so in
order to permit intercomputer communication, the
American Standard Code for Information Interchange
(ASCII) has been established. The ASCII character
set includes all letters (uppercase and lowercase),
digits, and many special symbols. The characters
used in BASIC are taken from the ASCII character
set. Table A-I lists the full ASCII character set.

Anyone of several character sets can be used on
CDC CYBER and the 6000 Series computers. These
character sets include CDC 63- and 64-character
sets, ASCII 63- and 64-character sets, and ASCII
128-character set. Differences in character sets
occur in either graphics (CDC or ASCII), or the
number of characters (63 or 64 and normal or
128-ASCII). Graphic differences are a function of
the terminal or printer that is used; some devices
use CDC symbols; others use ASCII symbols. These
differences do not affect the BASIC program pro
vided the programmer realizes that all BASIC char
acters are defined in terms of ASCII codes. When
using CDC character set devices, the programmer
must use CDC symbols equivalent (same internal
code) to ASCII symbols required by BASIC. Table A-2
lists ASCII and CDC character sets so that equiva
lent symbols can be easily determined; for example,
the ASCII U is equivalent to the CDC =.
Differences in internal representations of char
acters can have an effect on programs and program
resul ts. Differences in program resul ts can only
occur when a program is developed on a 63-character
set system, then run on a 64-character set system,
or vice versa, and the program uses the OPTION
COLLATE NATIVE statement and the normal (not ASCII)
character set. Normally, however, there is no
problem because computer systems operate either
with a 63- or 64-character set system and do not
switch between character sets. Even if one of the.
charac ter set dispari ties exis ts, there is a prob
lem only if the program uses string data that
contain the charac ters % (percent) and (colon) •
The character % is not available in a 63-character
set system; the character : has a numeric code 0 in
a 64-character system, but a numeric code 51 (638)
in a 63-character set system. As a result, for a
program in normal mode that uses the OPTION COLLATE
NATIVE statement, the relation n:BCDn( 1IABCD" is
true in a 64-character set system, but false in a
63-character system.

19983900 H

CHARACTER USAGE
RESTRICTIONS

If operating with the 64-character set in normal
mode, it is advisable to restrict the use of the
colon, as follows:

Never use the colon at the end of a string.

Do not use multiple colons (:::) because they
could be interpreted as the end of the string
or end of the line.

Do not use a colon at the end of a line or on a
line by itself.

Do not use :A, :B, :D, :E, or :H at the end of
a terminal output (PRINT) line because it is
interpreted by the operating system as a
terminal command. Other colon and letter com
binations, :L, :F, :G, and :1, could be misin
terpreted depending on the carriage control at
the beginning of a terminal PRINT line.

NOS ASCII 128-CHARACTER
SET
NOS enables the BASIC programmer at an ASCII code
terminal to make use of the ASCII 128-character
set. (See table A-I.) This character set, which
includes lowercase letters, special symbols, and
device control characters, is only available when
the user's terminal and program are in ASCII mode.
A terminal is switched into ASCII mode by entering
the ASCII command. The terminal is re turned to
normal mode by entering the NORMAL command. (Refer
to the Network Products Interactive Facility refer
ence manual (NOS 1 sites), Volume 3 of the NOS 2 I
reference set (NOS 2 sites), or the NOS Time
Sharing User's reference manual). Under the BASIC
subsystem, the BASIC compiler and the BASIC program
automatically operate in ASCII mode when the termi
nal is in ASCII mode. In order for the compiler
and program to handle the ASCII 128-character set
in batch mode, the AS parameter must be explicitly
specified.

A-I



In order to provide 128 characters, some characters
must be represented as 12-bit instead of 6-bit
characters. The 6-bit characters are distinguished
from the 12-bit characters by using the 6-bit codes
748 and 768 as escape codes to indicate that
the next six ·bits are actually part of this 12-bit
character. This coding method is referred to as
the 6/12 or extended display code. When operating
in ASCII mode, the BASIC compiler assumes that all
data files contain 128-ASCII characters, so display
code 748 and 768 are interpreted as escape code
characters; they are never characters by themselves.

NOS/BE ASCII 128-CHARACTER
SET
NOS/BE provides an ASCII 128-character set, as
listed in table A-I. This charac ter se t includes
the symbols, uppercase and lowe r.case le t ters, and

A-2

control characters that are available when the I
terminal operates in ASCII mode.

In NOS/BE, the terminal is switched to ASCII mode
only when directed from within the user program.
There is no ASCII command available under NOS/BE.
To specify ASCII mode, include the AS parameter

. option in the BASIC control statement. Once the
program switches the terminal to ASCII mode, the
ASCII mode remains in effect until the program
terminates.

In order to provide 128 characters, each character I
is represented by 12 bits (the eight rightmost bits
in a 12-bit byte). If a BASIC program is run in
ASCII mode, all associated .data files must be in
8/12 ASCII code. NOS/BE does not use the 6/12 dis-
play code. BASIC' converts all 8/12 characters to I
6/12 characters so that only 6/12 characters are
available internally. On output, BASIC converts
the 6/12 characters back to 8/12 characters.

19983900 H

/~•.

"~7



TABLE A-I. EXTENDED CHARACTER SETS

BASIC BASIC Display ASCII ASCII BASIC BASIC Display ASCII ASCII
BASIC Character Decimal Code Code Code BASIC Character Decimal Code Code Code

Character Abbrevia- Codet (6/12-Bit (7-Bit (7-Bit Character Abbrevia- Codet (6/12-Bit (7-Bit (7-Bit
tion Octal) Octal) Hexadecimal) tion Octal) Octal) Hexadecimal)

oott null c LCC 99 7603 143 63
A UCA 65 01 101 41 d LCD 100 7604 144 64
8 UC8 66 02 102 42 e LCE 101 7605 145 65
C UCC 67 03 103 43 f LCF 102 7606 146 68
D UCD 68 04 104 44 9 LCG 103 7607 147 87
E UCE 69 05 105 45 h LCH 104 7610 150 68
F UCF 70 06 106 46 i Lei 105 7611 151 69
G UCG 71 07 107 47 j LCJ 108 7612 152 6A
H UCH 72 10 110 48 k LCK 107 7613 153 68
I UCI 73 11 111 49 I LCL 108 7614 154 6C
J UCJ 74 12 112 4A m LCM 109 7615 155 6D
K UCK 75 13 113 48 n LCN 110 7616 156 8E
L UCL 76 14 114 4C 0 LCO 111 7617 157 6F
M UCM·· 77 15 115 40 p LCP 112 7620 180 70
N UCN 78 16 116 4E q Lca 1·13 7621 161 71
0 UCO 79 17 117 4F r LCR 114 7622 162 72
P UCP 80 20 120 50 s LCS 115 7623 163 73
a uca 81 21 121 51 t LCT 116 7624 164 74
R UCR 82 22 122 52 u LCU 117 7625 165 75

.S UCS 83 23 123 53 v LCV 118 7626 168 76
T UCT 84 24 124 54 w LCW 119 7827 167 77
U UCU 85 25 125 55 x LCX 120 7630 170 78
V UCV 86 26 126 56 V LCV 121 7631 171 79
W UCW 87 27 127 57 z LCZ 122 7632 172 7A
X UCX 88 30 130 58 l L8R 123 7633 173 78
V UCY· 89 31 131 59 VLN 124 7634 174 7C
Z UCZ 90 32 132 5A 1 R8R 125 7635 175 70
0 48 33 060 30 TIL 126 7836 176 7E
1 49 34 061 31 DE~ DEL 127 7637 177 7F
2 50 35 062 32 NUL tt 0 7640 000 00
3 51 36 063 33 SOH 1 7641 001 01
4 52 37 064 34 STX 2 7642 002 02
5 53 40 065 35 ETX 3 7643 003 03
8 54 41 066 36 EOT 4 7644 004 04
7 55 42 067 37 ENa 5 7645 005 05
8 56 43 070 38 ACK 6 7846 008 06
9 57 44 071 39 8EL 7 7647 007 07
+ 43 45 053 28 BS 8 7650 010 08- 45 46 055 20 HT 9 7651 011 09
• 42 47 052 2A LF 10 7652 012 OA
I 47 50 057 2F VT 11 7653 013 OB

f
40 51 050 28 FF 12 7654 014 OC
41 52 051 29 CR 13 7855 015 00

$ 38 53 044 24 SO 14 7656 016 OE
:D 61 54 075 3D SI 15 7857 017 OF

SP (space) 32 55 040 20 OLE 16 7660 020 10. 44 56 054 2C DCl 17 7661 021 11
46 57 056 2E OC2 18 7662 022 12

# 35 60 043 23 OC3 19 7663 023 13
( 91 61 133 5B OC4 20 7664 024 14
) 93 82 135 5D NAK 21 7665 O. 15
,,§§ 37 83 045 25 SVN 22 7666 026 16

" (quote) auo 34 64 042 22 ETB 23 7667 027 17
~ (underlinet§ UNO 95 65 137 SF CAN 24 7670 030 18

I 33 68 041 21 EM 25 7671 031 19
& 38 67 046 26 SUB 26 7672 032 1A

, (apostrophe) 39 70 047 27 ESC 27 7673 033 1B
7 83 71 077 3F FS 28 7674 034 1C
< 60 72 074 3C GS 29 7675 035 10
>" 62 73 076 3E RS 30 7676 036 1E

74 (elcape US 31 7677 037 IF
code) 7400 - -

\ 92 75 134 5C @ 64 7401 100 40
176 (el~ape A(circumflex) 94 7402 136 5E

code) 7403 - -
; (semicolon). 59 77 073 3B :§§ 58 7404 072 3A

7600 - - 7405 - -
a LCA 97 7801 141 61 7406 - -
b LeB 98 7602 142 62 \ GRA 96 7407 140 60

tThese codes are the decimal equivalent of the 7-bit octal ASCII codes. They are returned by the ORO function, used by the CHR$
function and used for comparing strings when the standard collating sequence is in effect (regardless of the character set used) and when
the native collating sequence is in effect and the ASCII character set is being used. (See AS parameter or BASIC control statement.)

ttTwelve zero bits at the end of a 6O-bit word are an end-of-Une or end-of-record mark rather than two colons. Colons at the end of
lines or strings are considered part of the end-of-line or end-of-string marker. In the 63-eharacter set, this display code represents a
null character.

tttThose characters which are not included in the NOS/BE 95-eharacter set are shaded.

IOn TTY models having no underline, the backarrow (+-) takes its place.

I§ In a 63-character set the internal octal representation for colon (:) is 638, and the intemal octal representation for percent (%) is
74048- (The characters reverse posiitons.)

19983900 H A-3



TABLE A-2. CDC AND ASCII 63- AND 64-CHARACTER SETS

BASIC CDC ASCII
Display

Hollerith ExternalCharacter Decimal Code Graphic Punch CodeCharacter Abbreviationt Code tt (Octal) Graphic Punch BCD Subset (029) (Octal)(026) Code

: (colon) ttt 58 OO§ : (colon) ttt 8-2 00 : (colon) ttt 8-2 072
A UCA 65 01 A 12-1 61 A 12-1 101
B UCB 66 02 B 12-2 62 B 12-2 102
C UCC 67 03 C 12-3 63 C 12-3 103
D UCD .68 04 D 12-4 64 D 12-4 104
E 'UCE 69 .05 E 12-5 65 E .12-5 105
F UCF 70 06 F 12-6 66 F 12-6 106
G UCG' 71 07 G 12-7 67 G 12-7 107
H UCH 72 10 H 12-8 70 H 12-8 110
-I UCI 73 11 I 12-9 71 I 12-9 - 111
J UCJ 74 12 J 11-1 41 J 11-1 112
K UCK 75 13 K 11-2 42 K 11-2 113
'L UCL 76 14 L 11-3 43 L 11-3 114
M UCM 77 15 M 11-4 .44 M 11-4 115
N UCN 78 16 N 11-5 45 N 11-5 116
0 UCO 79 17 0 11·-6 46 0 11-6 117
p UCP 80 20 P 11-7 47 P 11-7 120
a uca 81 21 a 11-8 50 a 11-8 121
R UCR 82 22 R 11-9 51 R 1.1-9 122
S UCS 83 23 S 0-2 22 S 0-2 123
T UCT 84 .24 T 0-3 23 T 0 ..3 124
U UCU 85 25 U 0-4 24 U 0-4 125
V UCV 86 26 V 0-5 25 V 0-5 126
W UCW 87 27 W 0-6 26. W 0-6 127
X UCX 88 30 X 0-7 27 X 0-7 130
.Y UCY 89 31 Y 0-8 30 Y 0-8 131
Z UCZ 90 32 Z 0-9 31 Z 0-9 132
0 48 33 0 0 12 0 0 0'60
1 49 34 1 1 01 1 1 061
2 50 35 2 2 02 2 2 062
3 51 36 3 3 03 3 3 063
4 52, 37 4 4 04 4 4 064
5 53 40 5 5 05 5 5 065
6 54 41 6 6 06 6 6 066
7. 55 42 7 7 07 7 7 067
8 56 . 43 8 8 10 8 8 070
9 57 44 9 9 11 9 9 071
+ 43 45 + 12 60 + 12·8·6 053- 45 46 - 11 40 - 11 ,055
• 42 47 • 11·8-4 54 • 11·8-4 052
I 47 50 I 0-1 21 I 0·1 057

.( 40 51 ( 0-8·4 34 ( 12-8-5 050). 41 52 ) 12-8-4 74 ) 11-8-5 051
$ 36 53 $ 11-8-3 53 $ 11-8-3 044
= 61 ' 54 = 8-3 13..- = 8-6 075

SP (space) 32 55 blank no punch' 20 blank no punch 040
, (comma) 44 56 , (comma) 0·8-3 33 , (comma) 0-8-3 054
• (period) . 46 57 • (period) 12-8-3 73 • (period) 12~8·3 056

# 35 60 - 0·8-6 36 # 8·3 043
( ·91 61 [ 8-7 17 ( 12-8·2 133
]. 93 62 ] 0-8-2 32 ] 11-8·2 135

%ttt 37 63t.tt %ttt 8-6 16 %ttt 0-8-4 045
" (quote) QUO 34 64 =I:- 8.4 14 ,; (quote) 8-7 042

_ (unrerline) UND 95 65 r+ 0·8~5 35 _ (underline) 0-8·5 137
33 66 V 11"() 52 I 12-8·7 041

& 38 67 1\ 0-8-7 37 & 12 046
, (ap~stro'phe) 39 70 t· 11-8-5 55 • (apostrophe) 8-5 047

? 63 71 .I- 11-8-6 56 1 0-8-7 077
< 60 72 < 12"() 72. < 12-8-4 074
> 62 73 > 11-8·7 57 > 0-8-6 076
@ 64 . 74 ~ 8-5 15 @ 8-4 100
\ 92 75 ~ 12·8·5 75 \ 0-8-2 134

A (circumflex) 94 76 .., 12-8-6 76 . A(circumflex) 11-8-7 136
; (semicolon) 59 77 ; (semicolon) 12-8-7 77 ; (semicolon) 11-8·6 073

t The BASIC character abbreviation can be used only with the ORD function.

ttThese decimal codes are the-values ~eturned by the ORO function, used by the CI:iR$ function, and used for string comparison when
the native collating sequence is in effect and the normal (not ASCII) character set is in use.

.ttt in installations using a 63 character se~, display code 00 has no associated graphic or card code; display code 63 is the colon
(8-2 punch); the % character and related card code; do not exist and translations yield a blank (558) .

. § Twelve zero bits at the end of a 60-bit word in a zero-byte record are an end-of-line or end-of-record mark rather than two colons.

I A-4 19983900 H



.

DIAGNOSTICS B

BASIC produces three categories of diagnostic
messages: dayfile messages, compile-time diag-

Inostics, and execution-time diagnostics. These
messages and diagnostics are listed in tables B-1
through B-4.

DAYFILE MESSAGES
When a job is operating interactively, dayfile
messages are displayed at the terminal. In con
trast, dayfile messages for a batch job are appended
to the output file for the job. Special control
statements are required to access the dayfile of a
job submitted by using the NOS command SUBMIT.
(See section 12, Batch Operations.)

. Dayfile messages are listed in table B-1. BASIC
automatically increases its memory field length as
required up to the maximum allowedj therefore, this
maximum is the field length referred to in the
dayfile messages.

COMPILE·TIME ·DIAGNOSTICS
While compiling or translating a program into object
code, BASIC checks. the source code f or such things
as incorrect syntax, improper use of statements,
and missing or illegal arguments. If any of these
checks fail, the program (in most cases) compiles
unsuccessfully and an error message, indicating the
nature of the problem, is returned to the terminal
from where the program originated. The messages
that can be produced during program compilation are
listed in table B-2. These messages are printed in
the following format:

message AT line-number

TABLE B-1.

With the following exceptions, all compile-time
diagnostics listed in table B-2 inhibit program
execution. The messages OBSOLETE FORM, LINES
TRUNCATED AT 150 CHARACTERS, WARNING - FUNCTION
REDEFINITION, and WARNING FUNCTION REFERENCE
BEFORE DEFINITION are warning types of diagnostics
that do not inhibit program execution. The program
that contains compilation errors can be forced to
execute by specifying the DB=B parameter in the
BASIC control statement.

EXECUTION·TIME DIAGNOSTICS
BASIC allows two modes of execution-time error
processing. During normal error processing, control
is returned to the operating system. If the pro
gram has executed an ON ERROR statement, the program
retains control. The program can then inspect the
error number by use of the ESM function.

Errors 100, 106, and 115 can be recovered from only
once. Should these errors occur a second time
during the same execution period, the BASIC program
aborts without transferring control to the ON ERROR
address.

Execution-time diagnostics are listed in alphabeti
cal order in table B-3. These messages are printed
in the following format:

message AT line-number

For ease of reference, diagnostics are listed by
error numbers in table B-4.

DAYFliE MESSAGES

Message

BAD CONTROL CARD
ARGUMENT-par":,

BASIC COMPILATION
ERRORS

BASIC EXECUTION
ERROR

INPUT FILE EMPTY OR
MISPOSITIONED

FIELD LENGTH TOO
SHORT FOR BASIC

FL TOO SMALL FOR
EXECUTION

19983900 H

Si gni f icance

The specified control statement parameter or
the parameter value is invalid.

Indicates that errors occurred during
compi lat ion.

An error has terminated program execution.

Input file is empty or positioned at end-of
information.

The maximum field length is too short to allow
comp i 1at ion.

The program compiled correctly but there was
not enough assigned memory for execution. This
condition is usually caused by excessive array
dimensions. This message only occurs in
compile-to-memory and execute mode.

Action

Correct the parameter.

Correct the errors.

Correct the error.

Rewind th~ input file.

Increase field length.

Increase field length.



Message

BLANK FILE
STATEMENT

BLA.NK CLOSE
STATEMENT

OEF WITHIN OEF

DELIMITER
OVERFLOW

DUPLICATE LINE NO

END NOT LAST

FL TOO SMALL FOR
COMPILATION

FNEND MISSING

FOR NESTED TOO
DEEP

FOR WITHOUT NEXT

ILLEGAL ARGUMENT
IN ASC

ILLEGAL BOUND

ILLEGAL CHARACTER

ILLEGAL
COMPARISON

ILLEGAL EXTERNAL
NAME

ILLEGAL FILE NAME

ILLEGAL FILE
NUMBER

ILLEGAL FN NAME

ILLEGAL LINE NO

ILLEGAL LINE REF

I B-2

TABLE B-2. COMPILE TIME DIAGNOSTICS

Significance

File ordinal or name missing in a
file statement.

The CLOSE statement does not specify
which file to close.

A OEF statement occurs before the
current multiple-line function defi
nition is terminated by FNEND.

More than three characters are
specified in the DELIMIT statement.

The same line number was used twice.

An END statement is placed prior to
the last statement.

The maximum field length allowed is
too small to allow compilation. The
more compilation options requested,
the more memory required. The B
option requires more memory than the L.

Amultiple-line function is not ter
minated by FNEND before the end of the
program.

FOR statements are nested more than
ten deep.

A FOR .statement has no balancing
NEXT statement.

The argument in an ASC function is not
a character or a defined abbreviation
for a character.

An array bound declared in a DIM state
ment is < 0 or > 131070. If OPTION
BASE 1 was specified, the array bound
cannot be = O.

BASIC encountered an unrecognizable
character.

A numeric quantity was compared to a
string in an IF statement.

A' name in a CALL statement does not
begin with a letter, or it is longer
than seven characters. ~

The specified name is not allowed as a
file name.

The numb,r in a FILE statement is < 0
or > (2 8-1).

The user function name' is not in the
form FNx or FNx$.

Ali ne number is> 99999.

Referenced line number is incorrectly
written or > 99999.

Action

Correct and rerun.

Correct and rerun.

Move the OEF statement outside
of the multiple-line function.

Specify three or fewer char
acters.

Change one of the line numbers.

Remove the END statement and
replace it with a STOP state
ment if necessary.

Increase field length.

Supply an FNEND statement.

Rewrite so that no more than ten
FOR statements are nested.

Supply a NEXT statement.

Replace the argument with a valid
one.

Replace the array bound with a
valid one.

Replace the character with a
valid one.

Replace the comparison with a.
valid one.

Correct the name.

Replace the file name with
a valid one.

Replace the file number with
a valid one.

Correct the function name.

Replace the line number with
one ~ 99999.

Correct the line number
reference.

19983900 H



Message

TABLE B-2. COMPILE TIME DIAGNOSTICS (Contd)

Significance Action

..,.'

ILLEGAL MARGIN

ILLEGAL NUMBER,

ILLEGAL OPERAND

ILLEGAL
REDIMENSIONS

ILLEGAL STATEMENT

ILLEGAL STATEMENT
WITHIN IF

ILLEGAL STRING

ILLEGAL USE OF
LEFT PAREN

ILLEGAL USING

INVALID BASE
STATEMENT

INVALID BASE
VALUE

INVALID CHANGE

LINES TRUNCATED
AT 150 CHARACTERS

LI.NES OUT OF
ORDER

MISSING LINE NO

NEXT WITHOUT FOR

NON IMAGE
REFERENCED

NOT ENOUGH
ARGUMENTS

19983900 H .

The margin specified in a MARGIN
statement is < 0 or > 131070.

A numeric constant is incorrectly
written •

A string is used in an arithmetic
expression.

An array specified in a DIM statement
has been dimensioned in a previous DIM
statement t or a statement attempts to
change the number of dimensions (sub
scripts) of an array.

A statement does not begin with a
recognizable word or is written
incorrectly.

The statement is not allowed as an
object of THEN or ELSE in an IF THEN
ELSE statement. The object of THEN
or ELSE must be executable.

A string constant is incorrectly
written.

An attempt was made to use an argument
with a system function when none was
required.

USING clause is not allowed where it is
written or it is not allowed at all.

OPTION BASE statement appears after the
DIM statement or array reference.

Base value is not 0 or 1.

CHANGE statement arguments are other
than string-expression TO one-dim
array or one-dim-array TO string
express ion.

Some lines are greater than 150 char
acters. Although lines were truncated,
program compilation continued.

Line numbers are not in ascending
order.

A statement was written without a line
number.

A NEXT statement has no balancing FOR
statement. ,

The line number referenced in the
USING clause is not an image statement.

The number of arguments in a function
reference is less than the number ex
pected by the function.

Specify the margin with a valid
value.

Write the constant correctly.

Write the expression correctly.

Delete the duplicate DIM state
ments or use the proper number
of subscripts.

Rewrite the statement.

Replace the invalid statement
with a valid one.

Rewrite the string correctly.

Remove the argument.

Correct the placement of the
USING clause.

Place the OPTION BASE statement
before the DIM statement or
array reference.

Correct the value in the
OPTION BASE statement.

Replace this statement. It is
no longer supported.

Shorten the lines.

Renumber lines in ascending
order.

Rewrite the statement with a line
number.

Supply a FOR statement.

Change the line number to one
that references an image state
ment.

Reference the function with
with the proper number of
arguments.

B-3



Message

TABLE B-2. COMPILE TIME DIAGNOSTICS (Contd)

Significance Action

I

I

OBSOLETE FORM

PARAMETER LIST
CONFLICT

READ WITHOUT
DATA

RECURSIVE FN

REDEFINITION OF
COLLATE

SET VALUE ILLEGAL

STATEMENT TOO
COMPLEX

TOO MANY
ARGUMENTS

TOO MANY FILES

TOO MANY FORMALS

TRANSFER INTO DEF

TRANSFER OUT OF
DEF

UNDEFINED IN REF

UNDEFINED LINE
REF

WARNING-DIM
AFTER REFERENCE

WARNING - FUNCTION
REDEFINITION

WARNING - FUNCTION
REFERENCE BEFORE
DEFINITION

B-4

The statement form used is no longer
supported; compilation continues.

Too many or too few parameters for the
function reference; a string is used
where the function expects a number; or
a number is used where the function
expects a string.

The program contains a READ statement
but no DATA statement.

A user function calls itself. This is
not allowed.

The program contains more than one
OPTION COLLATE statement.

The value in the SET statement is spec
ified as a string or is not specified
at all.

The statement or the expression is· too
long or complex.

The number of arguments in a function
reference is greater than the number
expected by the function. The number
of arguments in a CALL statement is
greater than 20.

More than 13 FILE statements are in
the program.

The DEF statement contains more than
20 formal parameters.

The statement refers to a line that
is ~art of a multiple-line function
definition.

A statement within a multiple-line
function definition refers to a line
number not contained in the DEF .••
FNEND block.

The user function referenced is
undefined.

The line number referenced does not
exist. Several statements can refer
ence the same nonexistent line; only
the first reference is diagnosed.

The DIM statement for an array appears
after the first reference to the
array.

A user-defined function was redefined
within the program; compilation con
tinues.

A user-defined function was referenced
before it was defined with DEF; com
pilation continues.

Use proper statement form.

Replace the invalid parameter
list with a valid one.

Include DATA statements.

Eliminate the recursion.

Remove the excessive OPTION
COLLATE statement(s}.

Replace the invalid value with
a valid one.

Simplify the expression or break
the statement into two or more
simpler statements.

Replace the argument list with
one containing the proper number
of arguments.

Use fewer FILE statements.

Rewrite the DEF statement with 20
or fewer parameters.

Change the statement reference.

Change the statement refer€nce.

Refer to a defined function.

Refer to a defined line number.

Move the DIM statement for the
array before the first reference
to the array.

Remove the affected function
reference.

Move the function definition
ahead of the function reference.

19983900 H

o



TABLE B-3. EXECUTION TIME DIAGNOSTICS

Message

ARGUMENT IS POLE IN COT

ARGUMENT IS POLE IN TAN

ARGUMENT NEGATIVE IN LOG

ARGUMENT NEGATIVE IN SQR

ARGUMENT TOO LARGE IN COS

ARGUMENT TOO LARGE IN COT

ARGUMENT TOO lARGE IN EXP

ARGUMENT TOO lARGE IN SIN

ARGUMENT TOO lARGE IN TAN

ARGUMENT IS ZERO IN lOG

ARRAY TOO SMALL IN CHANGE

AUTO RECAll STATUS
MISSING

BAD DATA IN READ

BAD FORMAT FI ElD

BAD TAB ARG - 1 USED

CHAIN FILE NOT FOUND

COMPILATION ERROR

19983900 H

Error
Number

148

153

154

160

152

149

156

150

151

155

163

116

126

127

197

144

119

Significance

The argument for the COT function
is a multiple of 1r; therefore,
the results are undefined.

The argument for the TAN function
is a multiple of 1r12; therefore,
the results are undefined.

The argument for the LOG function
is negative.

The argument for the SQR function
is negative.

The argument for the COS function
must be less than 2.21069E14.

The argument for the COT function
must be less than 2.21069E14.

The argument for the EXP function
must be less than 2.21069E14.

The argument for the SIN function
must be less than 2.21069E14.

The argument for the TAN function
must be less than 2.21069E14.

The argument for the lOG function
is zero.

Array in the CHANGE statement is
not large enough to hold the
string length plus one word for
each character of the string.

Internal error.

A string was read when a number
was expected, or vice versa.

The current data conversion field
in the image is for string data
only, but the item to be printed
is a number, or vice versa.

A TAB function was issued that
contained a bad argument. A tab
of 1 (col 1) was assigned. Exe
cution continues.

The file referenced in CHAIN does
not exist as a local or permanent
file.

The statement caused a compila
tion error; therefore, it cannot
be executed. This error occurs
only if the OB=B option is
specified.

Action

Make sure the argument is
not a mu1tip 1e of 1r •

Make sure the argument is
not a multiple of 1r/2.

Make sure the argument is
positive.

Make sure the argument is
positive.

Make sure the argument is
less than 2.21069E14.

Make sure the argument is
less than 2.2l069E14.

Make sure the argument is
less than 2.21069E14.

Make sure the argument is
less than 2.2l069E14.

Make sure the argument ;s
less than 2.21069E14.

Make sure the argument is
nonzero.

Replace this statement;
it is no longer sup~

ported.

Follow site procedures
for reporting and re
solving system problems.

Correct the DATA state
ment.

Correct the print image.

Change the TAB setting,
or take no action.

Check the spelling of the
file name.

Correct the statement.

B-5

I



TABLE B-3. EXECUTION TIME DIAGNOSTICS .(Contd)

Message

CPU ERROR EXIT 00

CPU ERROR EXIT 01 .

CPU ERROR EXIT 03

CPU ERROR EXIT 05

CPU ERROR EXIT 06

CPU ERROR EXIT 07

DEl USED BEFORE INV

DIVISION BY ZERO

ECS OR CV 170 PARITY
ERROR

B-6

Error
Number

107

108

110

112

113

114

162

125

101

Significance

An illegal instruction was exe
cuted. Could result from an
error in a FORTRAN or COMPASS
subroutine.

Address is out-of-ran~e. Can
result from an error 1n a FORTRAN
or COMPASS subroutine.

Address is out-of-range, or
infinite operand.

Indefinite operand or address is
out-of-range. Could result after
division of zero by zero if an ON
ERROR was used to continue execu
tion. Could result from an error
in a FORTRAN or COMPASS subrou
tine that modified the parameters
passed.

Indefinite or infinite operand.
Could result after division of
zero by zero if an ON ERROR was
used to continue execution.
Could result from an error in a
FORTRAN or COMPASS subroutine
that modified the parameters
passed.

Address is out-of-range, or in
definite operand. Could result
after division of zero by zero if
an ON ERROR was used to continue
execution. Could result from an
error in a FORTRAN or COMPASS
subroutine that modified the
parameters passed.

OET without a parameter was
called before a square numeric
matrix was inverted by INV.

An attempt was made to divide by
zero.

A hardware error occurred.

Action

Correct the subroutine •.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the subroutine.
If there are no errors in
the subroutine, follow
site-defined procedures
for reporting software
errors or operational
problems.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor
rect the subroutine.

Correct the calculation
that generated the faulty
number or change ON ERROR
code to correct the
faulty variable before
using it again, or cor
rect the subroutine.

Correct the calculation
that generated the faulty
ntimber or change ON ERROR
code to correct the
faulty variable before
using it again, or cor
rect the subroutine.

Before issuing OET, in
vert a matrix (with INV),
or supply a parameter to
DET.

Make sure no division by
zero occurs.

Follow site procedures
for reporting and re
solving system problems.

19983900 G



TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)

Message Error Significance ActionNumber

END OF DATA 120 A READ statement was executed Check for end-of-data, or
after the internal data block was supply more data.
exhausted.

J END OF DATA ON FILE 136 A READ' or INPUT' statement was Check for end-of-data, or
executed after file data was supply more data.
exhausted.

c:! ERROR IN CHANGE 164 The length as specified in the Replace this statement; Ifirst element of the array that it is no longer sup-
is being changed to a string is ported.
greater than 131070, less than 0,
or an element is not a valid
character code.

FILE ALREADY OPEN 143 The file name specified in the Close the file before
FILE statement has been assigned attempting to open it
a file number in a previous FILE again.
statement and is still in use.

FILE CLOSED/UNDEFINED 141 The file number referenced does Check the file number or
not correspond to an active file. activate the file with a

FILE statement.

FILE NUMBER ALREADY IN 142 The file number specified in the Specify an unused file
USE FILE statement is already number.

assigned to an open, active file.

GOSUB·NESTED TOO DEEP 123 More than 40 GOSUB statements are Nest 40 or fewer GOSUB
nested. statements.

HUNG IN AUTO RECALL 117 Internal system error. Follow site procedures
for reporting and re-
solving system problems.

ILLEGAl ACTION ON BINARY 175 A DELIMIT, MARGIN, OR SETDIGITS Do not attempt a DELIMIT,
FILE was attempted on a binary file. MARGIN, or SETDIGITS on a

binary file.

ILLEGAL ACTION ON CODED 171 A SET statement or LOC or lOF Do not attempt a SET, LaC
FILE function was attempted on a coded or LOF on a coded file.

file.

ILLEGAL CHAIN PARAMETER 145 A parameter in the CHAIN state- Form the parameter
ment is incorrectly formed, or correctly.
the referenced file is assigned
or connected to the terminal.

ILLEGAL CHARACTER 165 A string in a string comparison Eliminate the invalid
or a string that is referenced in character or change the
a CHANGE statement contains an mode.
invalid character; usually caused
by processing non-ASCII data in
ASCII mode, or vice versa.

ILLEGAL CHR$ ARGUMENT 196 Argument does not correspond to Correct the argument.
an ordinal in the collating
sequence.

d ILLEGAL DATA ON FILE 135 An illegal number or string was Check data on the file.
encountered when INPUT from a
file was attempted; usually
caused by reading a string when a
number was expected.

19983900 H B-7



TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)

Message Error Significance ActionNumber

ILLEGAL DATA, RETYPE 133 An improperly formed number or Reenter the entire line.
INPUT string was entered; usually

caused by entering a string when
a number was expected.

ILLEGAL FILE NAME 139 The file name is not allowed as a Choose another name.
NOS file name.

ILLEGAL· FILE NUMBER 138 The file number referenced is Use a file number within
less than zero or is greater than the proper range.
131071.

ILLEGAL INPUT ON FILE 137 The input operation, READ. or IN- Use the RESTORE statement
PUT, is not valid for the current to permit change of mode.
mode of the file (READ on a coded
file, INPUT on a binary file,
READ or INPUT on an output file).

ILLEGAL LABEL 170 The label referenced in a JUMP Correct the label.
statement or NXL function does
not exist, is greater than 99999,
or is the label of a REM
statement.

ILLEGAL LPAO$ ARGUMENT 192 The LPAO$ numeric argument is Correct the argument.
negative, indefinite, or
infinite.

ILLEGAL. MARGIN 131 Margin specified is outside the Specify the margin within
allowable range of 0 through the range of 0 through
131070. 131070.

ILLEGAL ORO ARGUMENT 194 The value of the ORD argument is Correct the argument.
neither a valid character nor a
valid character mnemonic for
characters in the collating
sequence.

ILLEGAL OUTPUT' ON FILE 130 Th~ output operation, PRINT or Restore the file to
WRITE, is not valid for the cur- change mode.
rent mode of the file (WRITE on a
coded file, PRINT on a binary
file, PRINT or WRITE on an input
file). An attempt to WRITE or
PRINT on ·a read-only penmanent
file causes this error.

ILLEGAL RPAD$ ARGUMENT 193 The RPAD$ numeric argument is Correct the argument.
negative, indefinite, or
infinite.

ILLEGAL RPT$ PARAMETER 191 The RPT$ parameter is negative, Correct the parameter.
indefinite, or infinite.

ILLEGAL SET VALUE 172 The SET value is negative, in- Correct the parameter.
definite, or infinite.

ILLEGAL SUBSTR PARAMETER 169 Parameters specified in the Specify parameters within
SUBSTR function are outside the the allowable range.
legal range as determined by the
actual string length.

B-8 19983900 G



TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)

Message

INDEFINITE OPERAND

INFINITE OPERAND

INPUT WITHIN INPUT

I/O TIME LIMIT

MASS STORAGE LIMIT

MATRIX DIMENSION ERROR

MEMORY OVERFLOW

NEGATIVE NUMBER TO POWER

NO FILE SPACE. ADD
ANOTHER FILE STMT

NO FORMAT FIELD SPECIFIED

NONNUMERIC STRING

NOT ENOUGH DATA, REENTER
OR TYPE I N MORE

XXX NOT IN. PPLIB

19983900 G

Error
Number

111

109

195

106

118

161

166

158

140

128

167

134

103

Significance

An indefinite floating-point
value was used in a calculation.
Could result after division of
zero by zero if an ON ERROR was
used to continue execution.
Could result from an error in a
FORTRAN or COMPASS sUbroutine
that modified the parameters
passed.

An invalid floating-point number
was used in a calculation. Could
result from division by zero if
ON ERROR was used to continue.
Could result from an error in a
FORTRAN or COMPASS subroutine
that modified the parameters
passed.

INPUT statement includes a
funct ion reference that attempts'
to execute another INPUT state
ment. No diagnostic is returned
if the second reference INPUT is
in another file.

Time limit exceeded.

Mass storage limit exceeded.

Dimension inconsistency in one of
the MAT statements or the dimen
sion is greater than 100 times
100 in the INV function.

Field length exceeded.

An attempt was made to raise a
negative number to a noninteger
exponent.

All declared fill buffers are
used.

The print image does not contain
a data conversion field but the
print list specifies that data is
to be printed.

The string in the VAL function is
nonnumeric.

Not enough data was entered in
response to an input request.

System software malfunction.

Action

Correct the calculation
that generated the faulty
number; change ON ERROR
code to correct the
faulty variable before
using it again; or
correct the subroutine.

Correct the calculation
that generated the faulty
number; change ON ERROR
code to correct the
faulty variable before
using it again; or cor
rect the faulty sub
routine.

Eliminate one of the
INPUT statements.

Increase the time limit.

Increase the mass storage
1imi t.

Correct the dimensioning
error.

More field length needed.

Correct the error.

Add another FILE state
ment or CLOSE a file.

Rewrite the print image
to include a data con
version field.

Make the string numeric.

Either reenter the entire
input line or enter a de
limiter followed by the
additional data items.

Follow site procedures
for reporting and re
solving system problems.

B-9



TABLE B-3. EXECUTION TIME DIAGNOSTICS (Contd)

/

Message

ON EXPRESSION OUT OF
RANGE

OPERATOR DROP OR KILL

OPERATOR RERUN

POWER TOO LARGE

PPU ABORT

PP CALL ERROR

RANDOM ACTION BEYOND EOF

RANDOM -FILE EMPTY

RETURN BEFORE GOSUB

STRING OVERFLOW

SUBSCRIPT ERROR

TAPE FILE IS NOT ALLOWED

TIME LIMIT EXCEEDED

TOO MUCH DATA, RETYPE
INPUT

UNSATISFIED EXTERNAL
REFERENCE

ZERO TO ,A NEGATIVE POWER

B-IO

Error
Number

122

105

115

159

102

104

174

173

124

168

121

147

100

132

129

157

Significance

The expression in the ON state
ment is negative, zero, or ex
ceeds the count of line numbers.

The operator dropped or killed
the program.

The operator reran the program.

The exponent in an expression is
such that an overflow occurs.

A PPU abort occurred. The pro
gram was terminated by an oper
ating system-detected error.

Internal 'system error.

The SET value is greater than LOF
or a WRITE operation on a random
file attempted to extend the file
length.

A SET was attempted on an empty
file.

A RETURN statement was encoun
tered with no GOSUB in effect.

An attempt was made to create a
string that contains more than
131070 (6-bit) characters.

An attempt was made to reference
an element outside the bounds of
an array.

An attempt was made to use a tape
file.

The program time limit was
exceeded.

Too many data items were entered
in response to an input request.
All items entered on the last
type-in are ignored.

An attempt was made to execute a
CALL statement in compile-to
memory mode.

Exponent in an expression is neg
ative when the mantissa is zero.

Action

Make sure the expression
is valid.

None.

None.

Use a smaller exponent.

Follow site procedures
for reporting and re
solving system problems.

Follow site-defined pro
cedures for reporting
software errors or
operational problems.

Correct the error.

Correct the error.

Add a GOSUB or remove the
RETURN.

Use two or more strings
that are shorter than the
limit.

Use a correct subscript
value or specify a larger
array with a DIM state
ment.

Use mass storage for the
file. Copy an existing
tape file to mass storage
before using with BASIC.

Increase 'the time limit.
Check the program for a
nonending loop.

Reenter the entire input
line. The exact number
of items requested shou1d
be entered.

Use the B and GO options
on the BASIC control
statement.

Correct the error.

19983900 G



TABLE 8-4. EXECUTION TIME DIAGNOSTICS BY ERROR NUMBER

Error Error
Number Message Number Message

...

100 TIME LIMIT EXCEEDED 131 ILLEGAL MARGIN

101 ECS OR CV 170 PARITY ERROR 132 TOO MUCH DATA, RETYPE INPUT

102 PPU ABORT 133 ILLEGAL DATA, RETYPE INPUT

103 xx NOT IN PPL18 134 NOT ENOUGH QATA. REENTER OR TYPE' IN

104 PP CALL ERROR
MME .

105 OPERATOR DROP OR KILL'
135 ILLEGAL DATA ON FILE

106 I/O TIME LIMIT
136 END OF DATA l)N FILE

107 CPU ERROR £XIT 00
137 ILLEGAL INPUT ON FILE

108 -CPU ERROR EXIT 01
138 ILLEGAl FILE. NUMBER

109 INFINITE OPERAND
139 ILLEGAL FILE ~E

110 CPU ERROR EXIT 03
140 NO FILE SPACE. ADD ANOTHER FILE STMT .

111 INDEfINITE OPERAND
141 FILE ClOSED/UNDEFINED

112 CPU ERROR EX IT 05
142 FILE NUMBER ~·READY IN USE

113
I 143 FILE ALREADY OPEN
CPU ERROR EXIT 06

114 CPU ERROR EXIT~07

144 CHAIN FILE NOT FOUND

115 OPERATOR RE'RUN
145 ILLEGAL CHAIN PARAMETfR

116 AUTO RECALL STATUS MISSING
147 TAPE FILE IS NOT ALLOWED

111 HUNG IN AUTO RECALL
148 ARGUMENT IS POLE IN COT

118 MASS STORAGE lIMIT
149 ARGUMENT TOO LARGE IN COT

~19 -COMPILATION ERROR
150 ARGUMENT TOO LARGE IN Sift

120 END OF ·DATA
151 ARGUMENT TOO LARGE IN TAN

121 SUBSCRIPT ERROR
152 ARGUMENT TOO LARGE INCaS

122 ON EXPRESS ION OUT OF RANGE
153 'ARGUMENT IS POLE IN TAN

123 GOSUB NESTED TOO DEEP
154 ARGUMENT IS NEGATIVE IN LOG

124 RETURN BEFORE GOSUB
155 ARGUMENT IS ZERO IN LOG

125 DIVISInN BY ZERO
156 ARGUMENT IS TOO LARGE IN EXP

126 BAD DATA IN READ
157 ZERO TO A NEGATIVE POWER

127 BAD FORMAT FI aD
158 NEGATIVE NUMBER TO POWER

128 NO FORMAT FIELD SPECIFIED
159 POWER TOO LARGE

129 UNSATISFIED EXTERNAL REFERENCE
160 ARGUMENT NEGATIVE IN SQUARE ROOT

130 ILLEGAL OUTPUT ON FILE
161 MATRIX DIMENSION ERROR

19983900 G B-11



TABLE B-4. EXECUTION TIME DIAGNOSTICS BY ERROR NUMBER (Contd)
-

Error MessageError Message NumberNumber
-

-,,~ ~ -....... . '..
#_. ~.162 DEl USED BEFORE I~V

17~ RANDOM FILE EMPTY
163 ·ARRAY TOO SMALL IN CHANGE

174 RANDOM ACTION BEYONQ EOF
164 ERROR. IN CHANGE •.

175 ILLEGAL ACTION ON BINARY FILE
165 ILLEGAL CHARACTER

191 ILLEGAL RPT$ PARAMETER
166 MEMORY OVERFLOW

192 ILLEGAL LPAD$ ARGUMENT
167 NONNUMERIC STRING

193 ILLEGAL RPAD$.ARGUMENT
.168 STRING OVERFLOW

194 ILLEGAL ORD ARGUMEN~

169 ILLEGAL SUBSTR PARAMETER
195 INPUT WITHIN ~NPUT

170 ILLEGAL LABEL
196 ILLEGAL C~S ARGUMENT

171 IllE~Al ACTIO~ ON COOED FILE
.197 BAD TAB ARG - 1 USED

172 ILLEGAL SET VALUE
, ,

I

1-12 19983900 It



GLOSSARY c

I

Abort
The procedure to terminate a program or job
when a specified condition exists.

Alphanumeric -
The letters, digits, and special characters in
the computer character sets defined in appen
dix At tables A-I and A-2.

ASCII -
American National Standard Code for Information
Interchange, 'used as the ASCII I28-character
set" with either 6- or 12-bit characters.

BASIC -
Beginner's all-purpose symbolic instruction
code, an elementary programming language.

End-of-File (EOF)
A boundary within a sequential file; the end of
a file.

End-of-Info~tion (EOI)
The definition of the actual end of a named
file.

End-of-Line (EOL)
A special indicator that marks the end of each
line or card image. BOLs are automatically
written on coded files created by BASIC. I

End-of-Record (EOR)
A special indicator that marks the end of a
logical record.

Batch Processing -
A processing method that accumulates andproc
esses together a number of related input items.

I
Bound Specifier

An integer used to define the largest subscript
. for ·an array.

Breakpoint
A designated location in a· program where, if
reached during program execution, a break or
suspension in execution occurs.

Character Set
The numbers, letters, and symbols baving meaning
in a given device or coding system.

Compile -
The procedure that translates a program from a
high-level programming language, such as BASIC,
into machine instructions called object code.

·Concatenate -
The procedure of uniting or linking a series of
characters; chaining.

Constant
A value assumed to be fixed or invariable in a
given operation or calculation.

etBER Interactive Debug (CID)
The facility that externally monitors and con
trols execution of a program, usually from an
interactive te~inal.

Debug -
The procedure to trace, detect, and eliminate
mistakes in a program or in any software.

Direct Access File -
The permanent file, itself, that is made local.

Display Code -
.An internal code set that is ·used by CDC
CYBER 70, CYBER 170, and 6000 Series computers
to represent alphanumeric and special char
acters. (Refer to tables A-I and A-2 in
appendix A.)

19983900 B

File -
A collection of data with an.associated name.

Function -
A procedure that returns a value; invoked by a
function reference in an expression.

Indirect Access File
A separate· local copy of the permanent file
(used under NOS).

Input/Output (I/O)
The equipment used to process data with a com
puter or the data processed and produced by the
computer.

Interactive
A tw-way exchange of information; alternating
input/output. dialog; contrast with batch
processing.

Interrupt
The procedure to stop a running program in such
a way that it can be resumed at a later time.
The interrupt key depends on the terminal and
system that is being used.

Local File
Any file assigned to a job; this includes all
temporary files (indirect access permanent I
files), all direct access permanent files, and
all files. that are not permanent.

Login -
The procedure to initially establish a terminal
session.

Logoff
The procedure used to end a terminal session.

Null String
A data string that has a length of zero.

On-Line
The condition when equipment communicates with
the host computer.

C-l



Parameter Variable
A variable that is given a specific value for a
particular purpose or process.

Permanent File
A file that remains in the operat~ng system
permanent file system after the user logs off.

Record -
A collection of related items of da·ta treated
as a unit. A complete set of such records can
form a file.

Statement -
Each line of a program that begins with a line
number.

String -
A sequence of contiguous characters or bits
treated as a unit.

String Variable -
A variable that holds string values.

Subscripted Variable
A representation for one value in an array of
values; consists of numeric and string
variables.

I C-2

Substring -
A character string that is part of another
string.

Temporary File
A file that is released from the NOS system
When the user logs off. It is a local file of
an indirect access permanent file.

Time-Sharing -
,The allocation of available computer time among
all users, such that each user has equivalent
access to system resources.

Trap (noun)
The established mechanism for detecting a spec
ified conditton and causing a transfer of
control. In CID, the location to Which control
is transferred is in CID itself.

Trap (verb)
The automatic transfer of control to a prede
fined location upon the detection of some
specified condition.

Variable -
An established identifer that represents a
value or values that can change during program
execution.

19983900"B



NOS FILE HANDLING D

A file is a collection of information with an
associated name. A BASIC program is an example of
a file. A BASIC progr~ frequently reads in another
file containing data. Allor part of the output
from a program can be stored in a file instead of
being printed at the termi~al. This file can then
be I is ted on a teletypewriter or on a high-speed
printer, or simply used as data for another program.

NOS recognizes two types of files, local and perma
nent. A local file is any file assigned to a job;
this includes all temporary and all attached direct
access files. Before any file can be used, it must
be made local. A permanent file is one that re
mains in the NOS permanent file system after the
system is logged off. There can be both a local
and a permanent copy of the same file. After the
system is logged off, the permanent copy is retained
and the local copy is released.

There are two types of permanent files, indirect
access and direct access. An indirect access file
is used indirectly; it is always a separate local
copy of the permanent file that is used. With a
direct access file, the permanent file (not a copy)
is made local. (See figure D-1.) An indirect
access file is created by using the NOS system
commands: REPLACE and SAVE; a local copy is made
available to the user by either the OLD, GET, or
LIB commands; the local copy is updated by the
REPLACE command and released from use (but not from
permanent storage) by the RETURN command. A direct
access file is created by the DEFINE command; it is
made local by the ATTACH command and released from
use by the RETURN command. The PURGE command is
used to remove from permanent storage both direct
and indirect access files.

When a file is made local, it becomes either a
primary or a local file. The local file established
by a NEW, OLD, or LIB command, under the BASIC sub
system, is always primary. The NEW command creates
a primary file; the OLD and LIB commands obtain a
primary file from an indirect access file. There
can be only one primary file and usually this file
is the program to be run. When the commands LIST,
SAVE, or RUN are issued, the operating system
assumes it refers to the primary fIle. The GET or
ATTACH commands establish a local file. To refer
to a local file with a NOS command, the file name
must be spec-ified, as in: LIST,F=DAT, or SAVE,DAT.
In SAVE ,DAT, file DAT is retained as a permanent
file; DAT can be a primary or local file. When the
current primary file is released by entry of the
OLD, NEW, or LIB commands, all primary and local
files are released unless the ND (no drop), is
included in the command.

NOS FILE CONTROL
COMMANDS
The following subsections include brief descriptions
of some NOS file manipulation commands. Specific
information can be obtained pertaining to permanent
files by using the CATLIST command described in the
Network Products Interactve Facility reference
manual (NOS 1 sites) '. Volume 3 of the NOS version 2 I
reference set (NOS 2 sites). or in the NOS Time
Sharing User's reference manual.

If the following commands are entered in batch
mode, they should end with a period. The following
commands are divided into those that access direct
access permanent files and those that access indi
rect access permanent files.

Local Files
(temporary) Commands Permanent Files

Commands

Primary OLD
LIST (1 only) . - Indirect Access
RETURN
SAVE
etc. ~<v~

LIST,F=lfnt
RETURNJfn

Local ATTACHtt Direct AccessSAVE,lfn
etc. ...:

tlfn is the name of a local file
ttsame copy

Figure 0-1. NOS Files

19983900 H D-l

I

I



DIRECT ACCESS PERMANENT
FILES

Figure D-2 illustrates the formats for the commands
DEFINE and ATTACH, which are used to -access direct
access permanent files under NOS. The DEFINE com
mand creates an empty permanent file pfn with a

I loc'al file name. The ATTACH command makes a perma
nent file pfn a local file. For a description of
the parameters not explained for ATTACH, seethe
DEFINE cODlliand.

INDIRECT ACCESS
PERMANENT

.Figure D-3 illustrates the formats ~or the commands
that access the indirect access permanent files
under NOS. For a description of the statement
parameters shown in these formats, see the DEFINE
and CHANGE cODlDands (figures D-2 and D-3).

The SAVE command creates an. indirect access perma
nent file, permits a copy of the specified local
file to be retained on the permanent file system,
and specifies the subsystem to be associated with
the file.

The GET cODDDand retrieves a copy of a specified
indirect access file for use as a local file. To

• DEFINE,lfn=pfn/CT=n,M=m,NA.

reference the local file by a name other than the
pfn, the lfn parameter is used. The current pri
mary file remains primary unless the file name
specified by ltn is that of the current primary
file. In that case, the contents of the primary
file are replaced by a copy of pfn, which becomes
the new primary file.

The OLD command requests a copy of the specified
permanent file as a primary file. When a specific
subsystem is associated with the file, it is se
lected automatically. This occurs only if the file
was originally a primary file and was saved while
a subsystem, other than the null subsystem,- was
active.

The LIB command requests a copy of specified indi
rect access permanent files from the catalog of a
spec'ial user library; this file becomes a primary
file.

The REPLACE comma~d permits the contents of an
indirect access permanent file to be replaced with
the contents of a local file·. If pfn does not
exist, a new permanent file is created.

The CHANGE command allows attributes of permanent
files to be changed without further operation of
the file; this is valid only for the originator of I
the file.

Ifn

pfn

CT

M

NA

If DEFINE is to be used to create an empty direct access permanent file, Ifn (local file name) is
specified only to reference the file by a name other than its permanent file name. If DEFINE is to
be used to define an existing local file as a· direct access file, Ifn is the name of the local file. Also,
if Ifn exists, its position is not altered.

This is the permanent file name. If pfn is omitted, the system assumes Ifn = pfn.

Permanent File Category where n is one of the following (n can be abbreviated by concatenating the
underlined letters):
fRIVATE private
.§PR IV seini-private
PUBLIC public

File or User Permission where m is one of the following (m can be abbreviated by concatenating the
underlined letters):

WRITE write permission
MODIFY modify permission
READMD read in modify mode
ftEADAP read in append mode
~XECUTE execute file permission

If a resource is unavailable, NOS suspends requests until a resource is free.

I • ATTACH,lfn=pfn/M=m,NA.

D-2

Ifn=pfn

M=m

NA

This is used when desirable to reference an attached file by other than its permanent file name. If a
current temporary file is referenced as Ifn, the contents of that file are lost when the permanent file
is attached.

This indicates modify permission. If omitted, the system assumes read permission only.

This allows waiting for the direct access file to become available. If the file is currently being
accessed, the job is suspended. IAF uses a user break, such as CTL P, to terminate the request.
Enter STOP to terminate the request under the NOS Time-Sharing system.

Figure 0-2. Direct Access Permanent File Commands

19983900 H



~,

.• SAVE,lfn=pfn/CT=n,M=m,ss=subsyst,NA.

• GET,lfn=pfn/NA.

• OLD,lfn=pfn.

• LIB,lfn=pfn.

• REPLACE,lfn=pfn/NA.

• CHANGE,nfn=ofn/CT=n,M=m,ss=subsyst,NA.

nfn

ofn

CT and M

This is the new permanent file name to be assigned.

This is the current permanent file name.

These are to be specified only if they are to be changed. For a description of the command
parameters, see DEFINE command.

Figure D-3. Indirect Access Permanent File Commands

EXAMPLE OF FILE CONTROL
COMMANDS

Figure D-4 illustrates a series of programs that
use the system commands to create, reference, list,
and purge files with a time-sharing terminal. The
example is divided into three main columns. The
leftmost column contains a transcript of the text
entered and received at the terminal. The center
column represents the area of temporary files. The
center column is divided into two sections: the
left section shows the life span of each program
(primary file) entered; the right sec tion is the
area of the remaining temporary files and shows
when temporary files enter the working area and how
long they remain. The rightmost column represents
permanent files. It shows when a copy of a tempo
rary file is made into a permanent file and how
long that permanent file exists.

19983900 H

Temporary files are created with the NEW command or
a copy of a file that already exists in the -system.
All temporary files are released when they are
logged off the system. Local files include tempo
rary and direct access files assigned to a job.

Duration of a file is indicated by a solid vertical
line. An arrow point signals destination and ter
mination. The copying of a file from lfn to pfn,
or the reverse, is indicated by a broken horizontal
line.

For a complete explanation of system commands,
consult the Network Products Interactive Facility
reference manual (NOS 1 sites), Volume 3 of the NOS I
version 2 reference set (NOS 2 sites), or the NOS
Time-Sharing User's reference manual.

D-3



Keyboard Text

Temporary Files

Primary
File (OLD,
NEW, LIB)

Local
(lfo)

Permanent Files

(pfn)

WORK1 WORK2

- - - - - - - - - ~ ~PROG1

NEW,PROG1
READY.

090 FILE #1 = "WORK1"
095 FILE #2 = '~ORK2"

100 WRITE #1,1,2,3
110 PRINT #2, "A", '11"
120 RESTORE #1 .
130 RESTORE #2
140 END

I RUN

RUN COMPLETE.

SAVE
READY.

NEW,PROG2/ND
READY.

145 FILE #1 = ''WORK1''
150 READ #1,X,Y~

160 PRINT X;Y;Z
170 END

I RUN

12· 3

RUN COMPLETE.

SAVE,WORK1=PERM1
READY.

SAVE,WORK2=PERN12
READY.

NEW,PROG3
READY.

175 FILE #3 = "PERM1"
177 APPEND #3
180 WRITE #3,4,5,6
190 RESTORE #3
200 END

GET,PERM1
I RUN

RUN COIVPL~TE.

PROG1

PROG2

PROG3

PROG1
WORK1 WORK2

, '.

l~ - - - '- - - ~PERM1

4"- - - I- ~ - ,-- -~PERM2

~

PERM1 -le- - - I- - ~.

REPLACE,PERM1

OLD,PROG1
READY.

I LIST
090 FI LE #1 = "WORK1"
095 FILE #2 = "WORK2"
100 WRITE #1,1,2,3
110 PRINT. #2, "A", "B"
120 RESTORE #1

D-4

""--1- --I--~,
PROG1~- -- - ---- -I- - ~t

Figure D-4. File Control Comman~s (Sheet 1 of 2)

19983900_H



Keyboard Text

130.RESTORE #2
140 END
READY.

PURGE,PROG1
READY.

NEW,PROG4
READY.

Temporary Files

Primary
File (OLD,
NEW, LIB)

I

PROG1

PROG4

Local
(lfn)

Permanent Files

(pfn)

PROG1 I·

j PERM1

PERM2

GET,NEW1=PERM1
READY.

200 FILE #4 = "NEW1"
210 RESTORE #4
230 READ #4, A
240 PRINT A;
250 IF MORE #4 THEN 230
270 PRI NT IIALL OUT"
280 END
RUN

1 ·2 3 4 5 6 ALL OUT

RUN COMPLETE.

CATLIST

CATALOG OF USER007

INDIRECT ACCESS FILE(S)

PERM1 PERN12

DIRECT A'CCESS FILE(S)

2 INDIRECT ACCESS FILE(S), TOTAL PRUS = 14.

oDIRECT ACCESS FILE(S}, TOTAL PRUS = O.

READY.

NEW1 - - - - - I- - - - - -4.

I

19983900 H

Figure D-4. File Control Commands (Sheet 2 of 2)

D-5



,~



FUT'URE SYSTE,M MIGRATION GUIDELINES E

This appendix contains programming practices recom
mended by CDC for users' of the software described
in this manual. When possible, application pro
grams based on this software should be designed and
coded in conformance with these recommendations.

Two forms of guidelines are given. The general
guidelines minimize application program dependence
on the specific characteristics of a hardware
system. The feature use guidelines ensure the
easiest migration of an application program to
future hardware or software systems.

GENERAL GUIDELINES
Good programming techniques always include the
following practices to avoid hardware de,pendency:

Avoid programming with hardcoded constants.
Manipulation of data should never depend on the
occurrence of a type of data in a fixed multiple
such as 6, 10, or 60.

Do not manipulate data based on the binary
representation of that data. Characters should
be manipulated as characters, rather than as
octal display-coded values or as 6-bit binary
digits. Numbers should be manipulated as
numeric data of a known type, rather than as
binary patterns within a central memory word.

Do not identify or classify information based
on the location of a specific value within a
specific set of central memory word bits.

Avoid using COMPASS in application programs.
COMPASS and other machine-dependent languages
can complicate migration to future hardware or
software systems. Migration is restricted by
continued use of COMPASS for stand-alone pro
grams, by COMPASS subroutines embedded in
programs using higher-level languages, and by
COMPASS owncode routines used with CDC standard
products. COMPASS should only be used to
create part or all of an application program
when the function cannot be performed in a
higher-level language or when execution
efficiency is more important than any other
consideration.

FEATURE USE GUIDELINES
The recommendations 1n the remainder of this appen
dix ensure the easiest mig,ration of an application
program for use on future hardware or software sys
tems. These recommendations are based on known or
anticipated changes in the hardware or software
system, or comply with, proposed new industry stan
dards or proposed changes' to existing industry

I standards.

19983900 R

ASC Function

Do not use the ASC function. Use the equivalent
ORD function instead.

ANSI Form

If both an ANSI form and a non-ANSI fo~ exist, use
the ANSI form. Non-ANSI forms might not be sup
ported in future versions of BASIC.

Blanks I
Do not embed blanks within line numbers, keywords,
variable names, and any other elements of the
language.

CHANGE Statement

Do not use the CHANGE statement. Use string
functions or substring notation to manipulate char
acters. Do not manipulate the numeric codes for
characters.

Characters in Unquoted Strings

Use only the characters plus, minus, period, blank,
digit, and letter in unquoted strings. Future ver
sions of BASIC might only allow these characters;
if other characters are needed, use quoted strings•.

CLK$ and DAT$ Functions

Do not dismantle values returned by the CLK$ and
DAT$ functions; use the result as a whole. The
order of fields in the result might be different in
a future version of BASIC.

Collating Sequence

Do not rely on the display code collating sequence
(native collating sequence in normal mode, non
ASCII character set in use). The display code
collation order might not be supported in future
systems.

DEF Function

Do not redefine a user-defined function within a
program. In the future, redefining a function
might not be possible.

END Statement

Use the END statement in all programs. Future
versions of BASIC might require the use of this
statement.

£-1



Exponentiation

Use the circumflex character (,,) rather than two
asterisks (**) for exponentiation.

File Numben

Do not ·use file numbers greater than 255. Larger
values might not be supported in future versions of
BASIC.

I FOR•••NEXT Loops

Do not transfer control into a FOR•••NEXT loop.
Results are unpredictable and future versions of
BASIC might not allow it.

I 'Function Names Used as Variables

Do not use a function name as a variable within a
function definition (do not place the name on the
right side of an equals sign). This usage might
not be permitted or might generate code with a
different meaning in future versions of BAsIC.

I~••GOTO Statement

I Av~id using this ~tatement. Use IF ••• THEN in,tead.
IF •••GOTO might not be supported in future versions
of BASIC.

I Keywords and Language Elements

Do not run keywords and variable names together. A
statement such as PRINTT might not be supported in
the future versions of BASIC.

Multiple Assignments

Do not use multiple assignments. The form of such
assignments might change in future versions of
BASIC.

E-2

Obsolete Forms

Avoid using any statement or function that causes
the compile-time diagnostic OBSOLETE FOIM. The
BASE statement, the CIIAHGE statement. and the

. SUBSTll$ function are examples of obsolete fOnDS
that should be avoided.

ON ne THEN Statement

Avoid using OR ne TRER lnl,ln2, ••• ,lnu because
this form might not be supported in future versioDS
of BASIC. OR ne GOTO lnl ,ln2, ••• ,lUn should
be used instead.

Presetting Variables

Do not assume that variables will be preset to zero
or null. Future versions of BASIC might not auto-
matically preset variables.

Referencing Functions

.,- Define functions before referencing' them. Future
versions of BASIC might require the function defi
nition to appear before the first reference to the
function.

RND Function

·Use the RND function without a parameter. The
parametric form might not be supported in future
versions of BASIC.

Simple and Subscripted Variable Names
\

Do not use the same name for array variables as for
scalar variables. The use of the same name for
both types of variables is not supported by stan- I
dard BASIC and might not be supported in future
versions.

SUBSTR Function
Do not use the SUBSTR function. Use the equivalent
substring notation instead.

19983900 H

.~



DIFFERENCES BETWEEN BASIC 3.5 AND- BASIC 3.4 F

-
BASIC 3.5, the subject of this reference manual, is
a version of BASIC 3.4 that was updated to conform
to the American National Standard (ANSI) for Minimal
BASIC. Due to syntax and semantic changes to the
product, BASIC 3.5 is not 100 percent upward com
patible with BASIC 3.4. Therefore, some BASIC 3.4
programs operate differently when compiled under
BASIC 3.5. The following text identifies these
differences and, where possible, provides sugges
tions for modifying the program to compensate for
the affected change. Differences between 3.4 and
3.5 that are extensions (does not effect existing
3.4 programs) are not listed. BASIC 3.4 binaries
continue to operate the same, except in those cases
noted below.

AR-RAY BOUNDARIES
Unless otherwise instructed, in BASIC 3.5 the lower
boundary (origin) of all arrays in a program is
zeroj in BASIC 3.4 the lower boundary is one.
Therefore, arrays in BASIC 3.5 normally have one
more -element along each dimension than the arrays
in BASIC 3.4. The OPTION statement using BASE n
(was BASE statement in BASIC 3.4) is provided to
set the lower boundary of an array to zero or one.
Thus, if array subscripts are to begin with ele
ment 1 rather than element 0, use OPTION BASE 1 to
change the origin to 1. (See OPTION statement
described ·in section 3.)

ROUNDING VERSUS
TRUNCATION OF NUMERIC
VALUES
BASIC 3.5 rounds all index, subscript, or pointer
values that require integer values (for example,
subscripts, TAB arguments, substring indexes, and
ON statement indexes; BASIC 3.4 truncates these
values to integer values. To truncate numeric quan
ti ties in a BASIC 3.5 program, use the !NT function
to force the truncation.

TRAILING BLANKS IN
UNQUOTED STRINGS OF DATA
STATEMENTS AND INPUT
REPLIES
BASIC 3.5 ignores all trailing blanks in unquoted
strings of DATA statements and INPUT replies that
use standard delimiters. BASIC 3.4 returns all
trailing blanks of unquoted strings, unless the
trailing blanks are at the end of a line (a string
not followed by a delimiter), then BASIC 3.4 ignores
the blanks. If trailing blanks are important to a
program, enclose all unquoted strings with trail
ing blanks within quotation marks (for example:
STRING1, STRING2, "THEN END b. " ) •

19983900 R

INPUT VALIDATION
BASIC 3.5 validates all interactive responses to an
INPUT request as to data type, number of data items
input, and range of data values, before assigning
any of them to the program. BASIC 3.4- validates
and assigns INPUT responses one at a time. No
programming changes can compensate for this
difference.

NOT ENOUGH DATA
When insufficient data is entered in response to an
INPUT request, BASIC 3.5 permits either the entire
INPUT response or only the additional items required
to satisfy the request to be reentered. To add
data, begin the next response with a C01lllll8.

BASIC 3.4 only allows the additional data required
to be entered to complete the INPUT request. No
programming changes can compensate for this differ
ence. This BASIC 3.5 response also applies to
BASIC 3.4 binaries run under the BASIC 3.5 library.

NUMERIC OATA READ AS
CHARACTER- STRING OATA
In BASIC 3.5, unquoted strings in DATA statements
that look like numbers can be read either as num

_bers or as strings. In BASIC 3.4, this type of
string can only be read as numbers.-

OUTPUT FORMATTING
BASIC 3.5 prints all integers greater than or equal
to 1E7 in E Format (d.ddddddE+nn) if no other for
mat is specified. In BASIC 3.4, integer values up
to IE9 are printed in integer format.

PRINT ZONES
If a print zone is exactly filled in BASIC 3.5, the
comma- separator causes the print mechanism to skip
over the next print zone causing spaces to be out
put; in BASIC 3.4, the next print zone is not
skipped if the current print zone is exactly filled.
In those cases where output must conform to
BASIC 3.4 output, replacing the comma separator
with a semicolon causes the print mechanism to be
positioned at the first character of the next print
zone.

TAB POSITION
In BASIC 3.5, TAB(n) causes the print mechanism to
be positioned so that the next character prints in
column n. In BASIC 3.4, TAB(n) positions the print
mechanism so that the next character prints in
column n+l. If positioning is critical, add 1 to
all TAB arguments in the equivalent BASIC 3.5
program.

r-1 I



NEGATIVE TAB ARGUMENT
VALUES

When BASIC 3.5 encounters a negative TAB value
(TAB(n) where n(O) J it resets the TAB value to 1
and issues an execution time warning diagnostic
(error message number 197). BASIC 3.4 ignores neg
ative TAB values. Change negative TAB values to
positive TAB values in a BASIC 3.5 program to
compensate for this difference.

BACKWARD TABBING
In BASIC 3.5, TAB(n) positions the print mechanism
to positon n on the next line, if n is less than

I the current print position; BASIC 3.4 ignores
backward tabbing.

COLLATING SEQUENCE
ASCII is· the standard collating sequence used by
BASIC 3.5 for string comparison operations and for
computing values of the CHR$ and OlD functions
regardless of the character set being used. In
BASIC· 3.4, the collating sequence depends upon the
character set being used. It is display code if a
normal, non-ASCII character set is· being used; it
is ASCII if an extended ASCII character set is
being used. In BASIC 3.5, the OPTION statement
using COLLATE can be used to select the collating
sequence native to the character set currently
being used by the program.

FOR...NEXT LOOP CONTROL
VARIABLE
In BASIC 3.5, the value of the loop control vari
able, upon normal exit from a FOR block via its
NEXT statement, is the first value not used; in
BASIC 3.4, it is the last value used. That is, in
BASIC 3.5 the control variable value is the last
value used plus one additional STEP value (+1 when
no STEP value is specified), and in BASIC 3.4, the
control variable value is the last value used upon
exit f rom a loop.

INPUTTING ARRAY DATA
BASIC 3.5 allows an entire array being read by a
MAT INPUT statement to appear on one INPUT line in
row order. A delimiter following the last item on
the line indicates that the response is continued
on the next line. BASIC 3.4 allows only one row of
the array in each input reply line. In BASIC 3.5,

1-2

if only one row of the array is entered, the diag
nostic NOT ENOUGH DATA is received. The data for
the complete matrix can be reentered or the
remaining data can be entered to complete the
matrix by beginning the response with a comma.
This BASIC 3.5 feature also applies to BASIC 3.4
binaries run under the BASIC 3.5 library.

REFERENCING DET BEFORE INV
Referencing the DET function before a matrix has
been inverted via the INV fu~ction is considered a
fatal error by BASIC 3.5. BASIC 3.4 simply returns
a value of zero if no matrix has been inverted.

REDIMENSIONING RESULT·
MATRICES
If required, BASIC 3.5 automatically redimensions a
result matrfx to accommodate the result; BASIC 3.4
generates a fatal error if the result matrix does
not conform to the previously specified dimensions.
No programming change can compensate for this dif
ference. Redimensioning also a·pplies to BASIC 3.4
binaries run under the BASIC 3.5 library.

-INVERTING A SINGULAR
MATRIX
BASIC 3.5 does not diagnose as fatal error an
attempt to invert a singular matrix; BASIC. 3.4 does
diagnose this as a fatal error. The DET (determi
nant) function must be used in BASIC 3.5 programs
to determine if the matrix was singular or nearly
singular; when DET returns a zero, it indicates that
the matrix is singular.

INVALID USE OF THE CHR$
FUNCTION
If the argument given to the CHR.$ function is not
the ordinal of any character in the selected col
lating sequence, BASIC 3.5 generates a fatal error
and BASIC 3.4 returns· a null string and no diag
nostic. Use the ON ERROR mechanism to simulate 3.4
under 3.5.

PRINT USING INTEGER FORMAT
In BASIC 3.5, values are rounded to an integer When
printing according to an integer PRINT USING image
field. In BASIC 3.4, these values are truncated.
To force truncation under BASIC 3.5, use the INT I
function in the PRINT list. .

19983900 H



IMPLEMENTATION-DEFINED FEATURES G

-
BASIC, Version 3.5, is a revision of BASIC,
Version 3.4. BASIC 3.5 conforms to the American

I National Standard for Minimal BASIC as specified in
document ANSI X3.6o-1978 published by the American

National Standard institute. The ANSI publication I
identifies some features as implementation-defined.
These features and their definitions for BASIC 3.5
are shown in table G-l.

Item

TABLE G-1. IMPLEMENTATION-DEFINED FEATURES

BASIC 3.5 Definition/Comment

Initial value of numeric and string
variables

End-of-line (End of source line)

End-of-input reply

Precision of numeric constants

Range of numeric constants

Length of string constant

Length of line

Length of string associated with a string
variable

Precision of numeric value associated with
a numeric variable

Range of numeric value associated with a
numeric variable

End-of~print line

Print significance-width (d)

Print extra-width (e)

Length of print zone

Margin

Input-prompt

19983900 H

Numeric variables are preset. to zero; string variables are
preset to null. However, your program should not depend
on this initialization. See Future System Migration
Guidelines, appendix G.

Indicated with carriage return when entering source lines
at a terminal, with end-of-card when entering statements
on cards. Trailing blanks are ignored by the BASIC com
piler or removed by the operating system. Internally,
end-of-line is denoted by a zero-byte terminator.

Same as end-of-1ine.

Approximately equal to 13+ decimal digits. Not all stan
dards of BASIC support 13 digits of precision because only
six digits are required.

Range can be from 3:13152£-294 to 1.26501E+322. However,
the standard only requires a range of lE-38 to 1E+39.

Length is limited only by line length. Since line length
is longer for BASIC 3.5 than required by the ANSI stan
dard, string constants can be longer than required by
the ANSI standard.

Length can be 150 characters; the ANSI standard requires
only 72 characters.

Length can be 131,070 6-bit characters; the ANSI standard
requires only 18 characters.

Same as for precision of numeric constant.

Same as for range of numeric constant.

Internally, it is a zero-byte terminator; last two or more
6-bit characters of a word are zero.

Width is six digits, the minimum required by the ANSI
standard. The d controls the number of digits printed
when the default format is used.

Width is three digits. The minimum required by the ANSI
standard is two, but BASIC 3.5 uses three to accommodate
the large exponents available on CYBERs.

Length is 15 characters. The minimum required by the ANSI
standard is d+e+6=15.

Margin is 75 characters.

Prompt is II?", the same as recommended by the standard.

G-l



&:;-



r
r

SAMPLE BASIC PROGRAMS H

.
The following sample programs illustrate- some common
features of BASIC. They are not presented as models
for programming or mathematical techniques in
problem solving.

The program in figure B-1 illustrates the use of
the DBl and GOSUB statements to calculate the value
PI by evaluation of a series.

The progr81llin figure B-2 illustrates the use of a
rol.•••'NEXT loop to caleulate a table of factorials.

The program in figure B-3 illustrates the sorting
of a list of names (string variables) into alpha
betic order.

The program in figure R-4 illustrates the inversion
of a Hilbert Matrix (n times n) by using BASIC
matrix operations.

The interactive te~inal session shown in figure B-S
illustrates the CYBBB. Interactive Debug (em) .
facility under HOS.

00100 LET A=1
00110 LET z=2O
00120 FOR 1=1" TO Z
00130 l.ET A=A*I"
00140 PRINT "FACTORIAL"iI,A
00150 .EXT I
00160 'END

00100 DEF fNA(D)=(1/D)
00110 DEF ·FNB(D)=(D-FNA(8»
00120 DEf FNC(D)=(D+FNA(B»
00130 PRINT "CALCtl.ATE A VALUE FOR PI"
00140 PRINT

~ 00150 lET Z=100000
00160 PRUT "NUfllBER Of ITERATIONS"iZ
00170 PRINT

- 00180 lET A=1
00190 LET 8=3
00200 FOR 1=1 TO Z
00210 LET A=FNB(A)
00220 GOSUB 00280
00230 LET A=flIC (A)
00240 GOSUB 00280
00250 ME,IT I
00260 PRINT "PI="i4*A
00270 STOP
00280 -lET 8=8+2
00290 RETURN
00300 END

produces:

,CALCULATE A VALUE FOR PI

NUMBER OF ITERATIONS ooסס10

PI= 3.1416

produces:

FACTORIAL 1
FACTORIAL·2
fACTORIAL 3
'fACTORIAL 4
fACTORIAL 5
fACTORIAL 6
FACTORIAL 7
FACTORIAL 8
fACTORIAL 9
fACTORIal 10
fACTORIAl 11

. fACTORIAL 12
fACTORIAl 13
FACTORIAL 1'4
FACTORIAL 15
FACTORIAL 16
FACTORIAL 17
FACTORIAL 18
FACTORIAL 19
FACTORIAL 20

1
2
6
24
120
720
5040
,40320
362880
3.6288OE+6
3.99168E+7
4. 79OO2E+8
6.22702E+9
8.71783E+10
1.30767E+12
2.09228E+13
3.55687E+14
6.40237E+15
1.21645E+17
2.4329OE+18

F;gure H-1. Us;ng DEF and GOSUB Statements

19983900 B

Figure H-2. Using FOR •••NEXT Loop

B-1



00100 PRINT "UNSORTED LIST"
00110 READ N
00120 FOR 1=1 TO N
00130 READ ASCI)
00140 PRINT A$CI)
00150 NEXT I
00160 FOR 1=1 TO N-1
00170 FOR J=I+1 TO N
00180 IF ASCI)<ASCJ) THEN 00220
00190 LET TS=ASCI)
00200 LET ASCI)=ASeJ)
00210 LET ASCJ)=TS
00220 NEXT J
00230 NEXT I
00240 PRINT
00250 PRINT "SORTED LIST"
00260 FOR 1=1 TO N
00270 PRINT ASCI)
00280 NEXT I
00290 STOP
00300 DATA 8
00310 DATA MARY,JOHN,SUE,JOE,JACK,BILL,TED,ANN
00320 END

produces:

lItSORTED LIST
MARY
JOHN
SUE.
JOE
JACK .
BILL
TED
ANN

SORTED LIST
ANN
BILL
JACK
JOE
JOtli
MARY
SUE
TED

F;gure H-3. Sort;ng Str;ng Vari~bles

• B-2

00100 DIM Ae20,20),B(20,20)
00110 READ N
00120 MAT A=CONCN,N)
00130 MAT B=CON(N,N)
00140 FOR 1=1 TO N
00150 FOR J=1 TO N
00160 LET A(I,J)=1/CI+J-1)
00170 NEXT J.
001'80 NEXT I
00190 MAT B=INV(A)
00200 MAT PRINT Bi
00210 DATA 4
00220 END

produces:

-6.66667E-2 -.266667 4. -12. 9.33333

.... 266667 14.9333 -104. 192. -102.667

4. -104. 960. -1980. 1120.

-12. 192. -1980. 4320. ~2520.

9.33333 -102.667 1120. -2520. 1493.33

Figure H-4. Using Matrix Operations

19983900 H



Ibasic
OLD, NEW, OR LIB FILE: oLd,db1

READY.
debug(on)~~'-------------------------------- Enters CID facility command while in the BASIC subsystem.

READY.
List

100 LET A=2.1
110 LET B=A*A
120 LET CS="SUBSTRING ADDRESSING"
130 PRINT A,B
140 PRINT CS
150 END

READY.
run~~~------------------------------~---Compi1es and executes the BASIC program.

CYBER INTERACTIVE DEBUG
? sb L.110~"-------------------------------- Sets breakpoint at 110.
? go .. Initiates execution.

*B #1, AT L.110 .. Program reaches breakpoint.
? print a,b ,. Displays values of variables A- and B.

2.1 0 .. B=O since 1i ne 110 has not yet executed.
? cb L.110 - Clears breakpoint at line 110.
? st Line L.110••• L.120 ~ Sets line traps.
? goto 100 • Resumes execut ion at 1i ne 100.

*T #1, LINE AT L.110 4E LINE trap detected at line 110.
? let a=2.3 .. Assigns 2.3 to variable A.
? go .. Resumes execution.
*T #1, LINE AT L.120

? Let b=30~..----~--------------------------Assigns 30 to variable B.
? print -a,b

2.3 30
? ct * ~.......----------------------------- C1ears all traps.
? gato 100 • Resumes execut ion at 1i ne 100.
2.1 -4.41

SUBSTRING ADDRESSING
*T #17, END IN L.1S0~------------------- Default trap occurs at program termination.

? print a,cS
2.1 SUBSTRING ADDRESSING

? let a=20
? Let c$=cS(1:9)~-~------------------------------------ Replaces C$ with substring of C$.
? print a,cS

20 SUBSTRING
? Lv ~..~---------------------------Lists all program values for program 081.

P.DB1
A = 20, B = 4.41, CS = "SUBSTRING"

? gata 100 ~~~--------------------------~ Resumes execution at line 100.
2.1 4.41

SUBSTRING ADDRESSING
*T #17, END IN L.1S0

? quit ----------------------------------- Terminates this CID session.

SRU 10.236 UNTS.

RUN COMPLETE.
debug(off) ~~~----------------~--------~ Exits CIO environment.

READY.

Figure H-S. Using CIO Under NOS

I

I
I

I

I

I

D

19983900 H B-3





IN-LINE EDITING COMMANDS I

This appendix briefly covers the in-line editing
(IEDIT) commands available when the user is in
BASIC subsystem under NOS 2/1AF. lEDIT is an
extension of the in-line editing functions avail
able under NOS l/IAF. For a detailed presentation
of these commands, ~ee Volume 3 of the NOS Ver
sion 2 reference set.

In the BASIC subsystem, IEDIT allows the user to
perform some fundamental editing functions on the
user's files without explicitly entering or exiting
the editor. IAl recognizes IEDIT commands and
generates calls to the in-line editor. This allows
the user to intermix lEDIT commands with operating
system commands.

The file to be edited is called the edit file. To
use IEDIT commands, the edit file must be the pri
mary file and a line-numbered file. The edit file
is positioned to beginning-of-information (BOI)
before and after each IEDIT command. The edit file
will be altered whenever an IEDIT command which
changes the content of the file is successfully
executed.

IEDIT commands consist of a command name followed
by parameters. The command name must be separated
from the parameters by a non-blank separator; also,
parameters must be separated from each other by a
non-blank separator. In this appendix, a comma is
always used as the separator.

PARAMETERS
lEDIT command parameters must be specified in the
order defined by' each command format. The MOVE ,
DUP, and READ command parameters are position
dependent; therefore, embedded parameters which are
omitted must -be -explicitly indicated by two succes
sive separators. For all other commands, omitted
parame·ters need not be explicitly indicated by two
successive separators.

The parameters used by the lEDIT commands are the
lines parameter, the string parameter, and the file
parameter. The formats of these parameters are
discussed in' the following paragraphs.

LINES PARAMETER

The lines parameter specifies a noncontiguous set
of lines in the edit file. The general format of
the lines parameter is as follows:

m,n,p •• q,r,s •• t,u •• v,w

19983900 H

where m, n, p, q, r, s, t, u, v, and ware line
numbers. If a line in the edit file is referenced
more than once in a lines parameter, a syntax error
occurs.

STRING PARAMETER

The string parameter consists of a sequence of
characters (possibly the null string) with a string
delimiter at the beginning and end of the sequence.
The general format of the string parameter is as
follows:

Istringl

The string delimiter cannot occur within the string.
A valid string delimiter is any character except a
digit, a C01DDl8, an asterisk, a colon, or a space.
In this appendix, a slash is used as the string
delimiter.

FILE PARAMETER

The file parameter specifies a file name consisting
of one to seven characters where each character is
a letter or digit. Either uppercase or lowercase
letters can be used.

COMMANDS
The following paragraphs present the formats and
functions of the IEDIT commands.

ALTER COMMAND

The ALTER command allows the user to change the
specified string of characters in the edit file.
the format of the ALTER command is as follows:

ALTER,lines,/stringl/string21

lines A line andI or a range of lines in- the
edit file. This parameter is optional.
If omitted, all lines in the file
are considered when the command is
executed.

stringl The character string to be replaced.
This parameter is required; however J

it can be the·null string.

string2 The character string to replace
stringl. This parameter is required;
however, it can be the null string.

I-I •



DELETE COMMAND

The DELETE cODDDand deletes the specified line or
lines containing the specified character string
from the edit file. The format of the DELETE
command is as follows:

MOVE COMMAND

The MOVE command moves lines to another place in
the edit file. The format of. the MOVE command is
as follows:

MOVE,lines,n,z

READ COMMAND

DELETE,lines,/string/

lines A line and/or a range of lines to be
deleted. This parameter is optional.
If omitted, all lines containing the
specified string are deleted.

string A string of characters that must be
contained in all lines that are de
leted. This parameter is optional.
If omitted, all specified lines are
deleted.

Note that although both the lines parameter and the
string parameter are optional, at least one must be
specified.

lines

n

z

The line and/or range of lines to be
moved. This parameter is required.'·

The line number after which the lines
being moved are to be inserted. This
parameter' is optional. If omitted,
the default line number is the number
of the last line in the edit file.

The line number increment for the lines
being moved. This parameter is op
tional. If omitted, the default value
is 1.

DUPCOMMAND

The DUP command allows the user to duplicate lines
in the edit file. The duplicated lines can be
inserted anywhere in the edit file. The DUP com
mand, copies the specified lines; it does not move
or de!ete the original lines. The format of the
DUP comm~~ is as follows:

DUP,lines,n,z

The READ command adds the contents of the specified
file to the edit file. The user can control where
the lines being added .to the edit file will be
inserted. The format of the READ command is as
follows:

READ,file,n,z

file The name of the file which is being
added to the edit file. This parameter
is required.

lines

n

z

A line and/or range of lines to be
duplicated. This parameter is required.

The line number after which the dupli
cated lines are to be inserted. This
parameter is optional. If omitted,
the default line number is the number
of the last line in the edit file •.

The line number increment for the
duplicated lines. This parameter is
optional. If omitted, the default
value is 1.

n The line number after which the lines
being ... added should be inserted. This
parameter is optional. If omitted, the
default line number is the last line
in the edit file.

z The line number increment for the lines
being added. This parameter is op
tional. If omitted, the default value
is 1.

WRITE COMMAND

LIST 'COMMAND

The LIST command displays lines in the edit file.
The user can also use the LIST command to display
lines in the edit file which contain the specified
character string. The format of the LIST command
is as follo~:

LIST,lines,/strlng/

lines The line and/or range of lines to be
displayed. This parameter is optional.

string The character string that must be
contained in all lines which are dis
played. This parameter is optional.

If both the lines parameter and the string param
eter are omitted, the entire edit .file is displayed.

.1-2

The WRITE command writes lines from the edit file
to the specified file. The line numbers associated
with the lines in the edit file are included. in the
data written to the specified file. The format of
the WRITE command is as follows:

WRITE,file,lines,/string/

file The name of the file to Which the
specified lines are written. This
parameter is required.

lines The line and/or range of lines to
written to the specified file." This
parameter is optional.

string The string of characters which must be
contained in all lines written to the
specified file. This, parameter is
optional.

19983900 H



.If both the lines parameter and the string parameter
are omitted t the entire edit filet including line
numbers. is written to the specified file.

WRITEN COMMAND

file

lines

The file name to which the lines are
to be written. This parameter is
required.

The line andI or range of lines to be
written. This parameter is optional.

The WRlTEN command writes lines from the edit file
to the specified file. The line numbers associated
with the lines in the edit file are not included in
the data written to the specified file. The format
of the WRITEN command is as follows:

WRlTEN,file,lines,/string/

19983900 H

string The character string which must be
contained in all lines written to the
file. This parameter is optional.

If both the lines parameter and the string parameter
are omitted, the entire edit file. excluding line
numbers, is written to the specified file.

1-3 •





~-

r
•

ABS function 5-2
APPEND statement 7-6
Arithmetic expressions 1-4, 2-5
Arithmetic operators 1-4, 2-5
Arrays 1-5, 3-3
AS parameter 12-6
ASC function 5-4
ASCII mode 5-4, 12-6, A-I
ASL function 4-8
ATN function 5-2
ATTACH command D-2

BASIC character set 2-1
BASIC control statement 12-1
BASIC functions (see Summary Card)
BASIC statements (see Summary Card)
BASIC subsystem 10-1
BATCH operations

Control statement 12-1
Deck structure 12-1

BATCH subsystem 10-1
BATCH terminal processing

NOS 12-9
NOS/BE 12-9

Binary I/O functions
LOC 7-9
LOF 7-9

Binary I/O statements
Random access 7-2, 7-6
READ 7-7
SET 7-8
WRITE 7-7

Blanks 2-1
Branching

GOTO statement 4-1
IF statement 4-2
IF ••• THEN •••ELSE 4-3
ON GOTO statement 4-2

BRESEQ command 11-5

CALL statement 6-3
CHAIN processing 6-6
CHAIN statement 6-5
CHANGE command D-2
Character sets

NOS or ASCII 128- A-I
NOS/BE ASCII 128- A-2
63- or 64- A-I

CHR$ function 5-4
CID (see CYBER Interactive Debug)
eLK function 5-4
CLK$ function 5-4
CLOSE statement 7-4
Coded format files

DELIMIT statement 7-12
Image 7-17
INPUT filename 7-2
INPUT statement 7-10
MARGIN statement 7-24
OUTPUT filename 7-2
PRINT statement 7-13
PRINT USING statement 7-15
Standard print formats (numeric and

string) 7-13

19983900 H

INDEX

Comments
REM statement, remarks 3-4
Tail comments 3-4

Compound relational expressions 2-7
Concatenation 2-6
Constants

Numeric 2-2
String 2-3

Control statement parameter examples 12-4
COS function 5-2
COT function 5-2
CR 7-12

.CYBER Interactive Debug (CID)
Changing and testing program values

IF command for CID 9-7
LET command for eID 9-7

Displaying program variables
LIST VALUES command 9-6
MAT PRINT command for CID 9-6
PRINT command for CID 9-6

Entering and exiting the CID environment 9-2
Executing under CID control 9-3
Introduction 9-2
Other commands and features 9-7
Referencing BASIC line numbers and variables

Line numbers 9-3
Variables 9-3

Resuming program execution
GO command 9-3
GOTO command 9-3
STEP command 9-4

Setting and clearing breakpoints and traps
Breakpoint commands

CLEAR BREAKPOINT 9-4
SET BREAKPOINT 9-4

Default traps
ABORT 9-6
END 9-6
INTERRUPT 9-6

Trap commands
CLEAR TRAP 9-5
SET TRAP 9-5

Data file usage
NOS 10-1
NOS/BE 11-4

DATA statement (BASIC I/O) 1-4, 7-25
. DAT$ function 5-4

Debugging 9-1
Decimal constants 2-2
Deck structures

Compile and execute 12-1
Compile, load, and execute 12-1

DEF statement 5-11
DEFINE command D-2
DELIMIT statement 7-12
DET function 5-2, 8-8
Diagnostics

Compile time B-2
Dayfile B-1
Execution time

Error number B-ll
Message B-5

DIM statement 3-3
Direct access file (NOS) D-2

Index-I.



EDITOR 1-14, 11-1
END statement 1-3, 3-5
Entering a program

NOS 10-1
NOS/BE 11-1

Error and interrupt processing
ASL function 4-8
ESL function 4-8
ESM function 4-9
JUMP statement 4-6
NIL function 4-9
ON ATTENTION statement 4-5
ON ERROR statement 4-6

Error messages (see Diagnostics)
EXP function 5-2
Exponential constants 2-2
Expressions

Arithmetic 1-4, 2-5
Relational 1-4, 2-6
String 2-6

External programs
CHAIN statement 6-5

External subprograms
CALL statement 6-3

File access methods 7-2
File control commands D-l
File ordinal 7-3
FILE statement 7-3
Files and internal data blocks

APPEND statement 7-6
CLOSE. statement 7-4
DATA statement 7-25
FILE "statement 7-3
IF END statement 7-5
IF MORE statement 7-5
NODATA statement 7-4
RESTORE statement 7-4

FNEND statement 5-13
FOR statement 1-5, 4-3
Format

Image
Fields 7-18
Order restrictions 7-20
Special cases 7-22

Output format, numeric 7-13
Output format, string ,7-13
Print .zoning 7-14
Statement structure 2-1

Functions
Mathematical functions 5-1
Referencing functions 5-1
String functions 5-4
System functions 5-3
User-defined functions 5-10

GET cODDDand D-2
GOSUB statement, branching 6-1
GOTO statement 1-3, 4-1

IF END GOTO statement 7-5
IF END THEN statement 7-5
IF MORE GOTO statement 7-5
IF MORE THEN statement 7-5
IF statement 1-3, 1-5, 4-2
IF••• THEN •••ELSE statement 4-3
Image s tatement

Definition 7-17
Fixed-point format 7-18

.Index-2

Image statement (Contd)
Floating~point format 7-18
Integer format 7-18
Neuter 7-18 .
Order restrictions 7-20
Sign and edit options 7-19
Special cases 7-22
String format 7-18

Indirect access file (NOS) D-2
In-line editing commands I-I
INPUT statements

INPUT 1-8, 7-10
MAT INPUT 8-10

!NT function 5-2
Integer constant 2-2
Internal Data Table I/O statements

DATA 7-25
READ 7-26

JUMP statement 4-6

LENGTH (LEN) function 5-5
LET statement 1-2, 3-1
LGT function 5-2
Library D-l
Line numbers 1-2
LIST command D-l
Lists and tables 1-5
LOC statement 7-9
Local files D-l
LOF statement 7-9
LOG function 5-2
Logical operators 2-7
Login procedure (NOS)

IAF 1-10
Time-sharing 1-12

Login procedure (NOS/BE) 1-14
Logoff procedure (NOS)

IAF 1-11
Time-sharing 1-12

Logoff procedure (NOS/BE) 1-16
Looping

FOR••• NEXT statements 1-5, 4-3
IF GOTO statements 1-5

LPAD$ function 5-6
LTRM$ function 5-6
LWRC$ function 5-7

MARGIN statement 7-24
MAT INPUT statement 8-10
MAT PRINT statement 8-11
MAT PRINT USING statement 8-12
MAT READ statement 8-9
MAT WRITE statement 8-9
Matrix arithmetic

Addition 8-3
Assignment 8-2
Multiplication 8-4
Scalar multiplication 8-4
Subtraction 8-3

Matrix declaration 8-2
Matrix definition 8-1
Matrix functions

Determinant (DET) 8-8
Identity matrix (IDN) 8-6
Matrix inversion (INV) 8-7
Matrix transposition (TRN) 8-8
One matrix (CON) 8-5
Zero matrix (ZER) 8-6

Matrix Input/Output (I/O) 8-8

19983900 H



Matrix Input/Output (I/O) statements
MAT INPUT statement 8-10
MAT PRINT statement 8-11
MAT PRINT USING statement 8-12
MAT READ statement 8-9
MAT WRITE statement 8-9

Matrix operations 8-1
Matrix redimensioning 8-2
MAX function 5-2
MIN function 5-2
Multiple-line functions (DEF •••FNEND) 5-13

ND D-l
Nested loops 4-5
NEW command D-l
NEXT statement 1-5, 4-3
NODATA statement 7-4
NOS commands

ATTACH D-2
CHANGE D-2
DEFINE D-2
GET D-2
LIB 1-11, D-2
LIST D-l
ND D-l
NEW 1-11, D-l
OLD 1-11, D--2
PURGE D-l
REPLACE 1-14, 10-1, D-2
RESEQ 10-4
REmRN D-l
RUN 1-11, D-l
SAVE 10-4, D-2

NOS file handling
Direct access permanent files D-2
Indirect access permanent D-2

NOS terminal operations 10-1
NOS/BE commands

BRESEQ 11-5
EDITOR 1-14, 11-1
FETCH 1-17
FORMAT 1-15., 11-1
RUN 1-16
SAVE 1-17, 11-1

NOS/BE terminal operations 11-1
Numeric constants 2-2
NIL function 4-9

OLD command 1-11, D-2
ON ATTENTION statement 4-5
ON ERROR statement 4-6
ON GOSUB statement 6-2
ON GOTO statement 4-2
Operations

BATCH operations 12-1
Terminal operations under NOS 10-1
Terminal .operations under NOS/BE 11-1

Operators
Arithmetic 2-5
Relational 2-6

OPTION statement 3-2
ORD function 5-7
Output

Examples B-1
Numeric formats 7-13
Print zoning 7-14
String format 7-13

19983900 H

Permanent file access 7-3
Permanent file (NOS) D-l
POS function 5-7
Predefined functions 5-1
Primary file D-l
PRINT statements

MAT PRINT 8-11
MAT PRINT USING 8-12
PRINT 1-2, 7-13
PRINT USING 7-15

Print zoning 7-14
Program structure 2-1
Program termination

END statement 3~5

STOP statement 3-4
PURGE command D-l

Quoted strings 2-3

Random access 7-2, 7-6
Random number generation 5-1
RANDOMIZE statement 5-3
READ statements

MAT READ statements 8-9
READ statement 1-4, 7-7, 7-26

Redimensioning 8-2
Relational expression operators 1-4, 2-6
Relational expressions 1-4, 2-6
REM LIST 12-4
REM statement (remarks) 1-2, 3-4
REM TRACE 9-1
Remote terminals (TTY) 10-1
Renumbering BASIC lines 10-4, 11-5
REPLACE command 1-14, 10-1, D-2
RESEQ command 10-4
RESTORE statement 7-4
RETURN command D-l
RETURN statement 6-2
RND function 5-2
BOF function 5-2
RPAD$ function 5-8
RPT$ function 5-8
RrRM$ function 5-9
RUN command D-l

Sample programs B-1
SAVE command 10-4, D-2
Secondary file D-l
SET statement 7-8
SETDIGITS statement 7-24
SGN function 5-2
Significand 2-2
Simple relational expressions 2-6
Simple string variables 2-3
SIN function 5-2
Single-line functions (DEF) 5-11
sQa function 5-2
Statement structure 2-1
STOP statement 3-4
String comparison 2-7
String concatenation 2-6
String constants 2-3
String expressions 2-6
String functions 5-4
String output formats 7-13
STR$ function 5-9

Index-3.



Subprograms 6-3
Subroutines

GOSUB statement 6-1
ON GOSUB statement 6-2
RETURN statement 6-2

Subscripted variables 2-4
Substring addressing 2-4
System functions 5-3

TAB function 7-15
Tail comments 3-4
TAN function 5-2
Temporary files D-1
Terminal Input/Output (I/O) 1-8
Terminal operations

NOS 10-1
NOS/BE 11-1

Test and branch statements
GOTO statement 4-1
IF statement 4~2

IF ••• THEN •••ELSE statement 4-3
ON GOTO statement 4-2

elndex-4

TEXT mode 10-1
TIM function 5-4

Unquoted strings 2-3
UPRC$ function 5-9
User-defined BASIC subroutines 6-1
User-defined functions 5-10
Using data files 10-1, 11-4
USR$ function 5-4

VAL function 5-9
Value assignment 3-1
Variables

Simple, numeric 2-3
Simple, string 2-3
Subscripted 2-4
Substring addressing 2-4

WRITE statements
MAT WRITE 8-9
WRITE 7-7

19983900 H



COMMENT SHEET

MANUAL TITLE: BASIC Version 3 Reference Manual

PUBLICATION NO.: 19983900

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE:

REVISION: H

ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

___ Please reply ___ No reply necessary

\,;:.

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE



TAPE TAPE

L

•I
I
I

•
FOLD FOLD I
---------------------------------------------------------------------------------------------------------------~

III II I
BUSINESS REPLY MAIL

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FIRST CLASS PERMIT. NO. 8241 MINNEAPOLIS, MINN. w
Z
=:;

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park- Drive
Sunnyvale, California 94086

0 ----------------------------------------------- ,

FOlD' . FOLD I

I
I
I

.\

~

~



·1 ~ ~~", " ,,',
__~__.__~T~~ ~ ..-£!!!~~--~----

BASIC VERSION 3 SUMMARY CARD
Statement Format

BASIC STATEMENTS

Function Section Statement Format

BASIC STATEMENTS (Contd)

Function

19983900 H

Section

Comma il'lllartion d Delimiter

Decimal point Insertion e Expression, constant, or variable

o Negative values enclosed in parentheses; positive f Format specification
values In blanks

A RJmerlc constant consists of an integar, decimal, or rc
exponential romber with absolute value In the range
:J.l3l52 x 10-294 to 1.26501 x 10322 and is accurate to
a maximum of 14 decimal digits.

A Btring constant consists of a IItrlng of 0 to 131070 6-blt
characters or 0 to 65535 6/12-blt characters In display sc
code.

Only one element mu&t be 88lected.

12

Permits a branch to a specific BASIC
subroutine line number. The line ref
erenced is dependent on the value of ne.

Expression is evaluated and rounded to
an integer value; transfers control to
line number lnl if ne=l, line number lnZ
if ne=Z, and so forth until lnn·

~~~~ ~~et~~W~~o~~~~d~~yb~~eaJ1(:~~~rso~ei ng
to base 1. and selects the collating
sequence to be used for string comparison
and for value computation of the CHRS and
ORD functions. Both or only one of these
functions can be selected.

Prints data at terminal.

Output to be formatted by an image statement
(In) or an image (se) on a terminal.

Prints data on specified file.

Output to be formatted by an image statement
on specified file.

Overrides the predefined sequence of random
numbers generated by the RND function.

Accesses data created by OATA statements.

Reads binary data from named fi le created
by WRITE FILE statements.

Inserts coments in program; chI••• chn
represents any character string which does
not trigger REM LIST or REM TRACE.

Reinitializes data pointer to the first
word of the data block.

Sets named file to beginning-of-information.

Resumes execution at statement following
most recent ly executed GOSUB statement.

Positions a fi le pointer to the desired
relative word location which is to be ref
erenced by the next READ or WRITE statement.

Specifies number of significant digits for
output.

Terminates program execution at places other
than the END statement.

Writes data in binary format on specified
file.

Controls optional source listing.

Contro1s opti ana 1 trace fac 11 i ty.

Transfers control to ln on runtime error.

Turns on normal error processing.

Reads matrices from internal data block
or reads matrices from file Ine in binary

:0:~;1X.C(S~ ~:~~i~~ed~~~~~~fri~~Y

Prints matrices on a terminal or prints
matrices in a coded format on specified f11e.

Matrices to be formatted to an image
statement (In) or an image (se) on a
terminal.

Matrices to be formatted to an image
~~~m"~ ~~~l. or an image (se) on a

}~v~t:n:~trices from a terminal or a

Writes matrices in binary format on a
specified f11e.

Terminates a FOR... NEXT loop and incre
ments the va lue tested by the loop.

Tests data pointer for increment beyond
end-of-data block. Branches to ln if
end-of-informati on is encountered.

Transfers program control to specified
line number if file is positioned at
end-of-information.

Transfers control to ln on runtime
terminal interrupt.

Transfers control to ln on runt ime
terminal interrupt.

Turns on normal terminal interrupt
processing.

Transfers control to ln on runtime error.

RESTOOE Ine

RETURN

REM chI" .chn

WRITE Ine.ebel.' .. ,en

SET Ine1, ne2

STOP

RAN[)(JoIIZE

ON ne {~~~~} lnl,lnZ,· .. ,lnn

ON ERROO GOTO ln

ON ERROR THEN ln

ON ERROR

PRINT e1 d eZ d••• en d

PRINT USING {~~::~ ~ :~ ~::::~ ~}

PRINT 'ne,e1 d eZ d••• en d

PRINT Ine USING In.el d ez d... en d

SETDIG ITS ne

RESTOOE

ON ne GOSUB lnlo lnZ, .. " lnn

READ vlov2, ... ,vn

READ 'ne,vl,v2"" ,vn

REM LI ST, {~~E}

REM TRACE, ~~T t
{t()NE f

{

BASE {Ol} [COLLATE {STANDARD}]}
OPTION ' NATIVE

COLLATE {STANDARD} [BASE {O}]
NATIVE ' 1

ON AmNTION GOTO ln

ON ATTENTION THEN ln

ON ATTENTION

NlDATA ln

NlDATA Ine, ln

NEXT snv

MAT INPUT {~~~~i:~:~ .•I1ln}

MAT WRITE 'ne,l1lt.m2,'" ,mn

MAT PRINT Ine USING {~~:~ ~ ~ ~:::~ ~}

MAT PRINT {~e~l1ltlll2ddmid~::dd}

MAT PRINT USING g~:~ ~ ~,~::';"'l1lndd}

MAT READ {~~e:~i:~2~ .. ,mn}

Crea tes an I dent i ty matr i x.

Allows the user to add additional information
to the end of an ex i sting f11e.

Allows the user to access external subroutines
by subprogram name and pass up to 20 param
eters to that subroutine.

Returns a matrix of all ones.

Returns a matrix of all zeros.

Transposes a matrix.

Executes program on f11e specified by se.
Program can exist as binary or BASIC source.

Executes program on file whose ordinal is ne.
Program can exist as binary or BASIC source.

Sets the named file to the beginning of infor
mation and detaches it from the BASIC program
to allow reassignment by another FILE statement.

Creates a block of data internal to the BASIC
program.

Defines a new single-line numeric or string
(FNaS) function to be used within the BASIC
program.

Defines the start of a new numeric or string
multiple-line function. The end of the func
tion definition is indicated by FNEND.

Defines separators between input items from
terminal.

Defines separators between input items on
specified file.

Inverts a matrix.

Declares the dimensions of an array
variable; nc must be integer.

Specifies end of program; must be last
statement in program.

Defines file ordinal and equates it to a
file name.

Assigns a value to a variable during
program execution.

Defines a right-hand margin for output to
a terminal.

Defi nes a right-hand margi n for output to
a specified file.

Matrix assignment.

Matrix addition.

Matrix subtraction.

Matrix multiplication.

Matrix scalar multiplication by value of
an expression.

Begins a FOR ... NEXT loop.

Reads data from the terminal.

Reads coded data from spec ined file Ine.

Transfers control to statement where line
number"ne.

Specifies output formats.

This statement is the logical converse of
the NODATA and IF END statements.

Transfers program control to a subroutine
beginning at line number indicated.

Interrupts the normal sequence of program
execution and transfers program control
to indicated line number.

This statement is equivalent to the NODATA
statement except that this statement
cannot refer to an i nterna 1 data block.

Transfers program control to line ln or
executes statement stm if relational
expressi on is true. Control fa 11 s through
to next line if r is false.

Transfers program control to line ln1
or executes statement Stm1 if relational
expression r is true; transfers control to
line ln2 or executes stlll2 if r is false.

Specifies the end of a multiple-line
function definition.

INPUT vl,vZ,'" ,vn

INPUT 'ne, VI, vz, ... ,vn

DEF FHa [(svl,SV2.... ,sv20))"ne

DEF FHa$ [( sV1, sV2,'''' sv2o)) "se

DEF FHa [(svltSV2..... SV20)]

DEF FNa$ [(sv1,SV2, ••• ,sv20)]

DELIMIT (chl) .... ,(ch3)

IF r {THEN {~~l}} ELSE {~~~z}
GOTO 1nl

MAT m-INV(m)

MAT maTRN(m)

MAT m=ZER[( nel[, nez])]

MAT maCON[(nel[.nez]>]

MAT m"ION[( nel[, nez])]

APPEND fne

IF END /fne {~~~~} ln

MAT ml =m2-+mJ

MAT ml=m2-m:3

IF r lTliEN {~~}'
IGOTO ln I

DIM m1(nq •••• ,nc3),'" ,mn(nq •••• ,nc3)

FILE Inr,lfnl. InZ=lfnZ, •.• ,'nn=lfnn

IF I«)RE Ine {~i~} ln

END

MAT ml =mZ1rm3

MAT m-(ne)*m

DATA cloc2.... ,cn

FNEND

CALL subnm (el,e2, ... ,e2O)

CHAIN fne

DELIMIT Ine,(chl), ... ,(ch3)

(image)
: character string

CLOSE lne

CHAIN se

MAAG IN Inel. neZ

MAT m=m

FOR snv=nel TO neZ [STEP ne3]

JUMP ne

MARGIN neZ

GOSUB ln

[LET] {~rVZ"V3 ... =Vn} "e

GOTO ln

<= or = <

>= or =>

<>or><

'" or··

Matrix Identifier (1- or 2-dimenslonal array)

Letter

Numeric constant

Numeric expreBslon, constant, or variable

Executable statement

Constant, variable, function, or numerical expression

Numeric array name

Variable Identifier (simple, subscripted, numeric, or
string)

Relational expression

String constant

String variable

Simple romeric varieble

Multiplication:

Rel8tiolUll Operators

Arithmetic Operators

Divillionl

Exponentiation:

Equal tal

Less than:

Greater than or equal tOI

Not equal tOI

Addition; unary plus:

Slbtractlon; unary mirosl

Greater than:

Less than or equal tal

Numeric or string constant

OPERATORS

Alphabetic identifier

Logical addition or union: OR

string String of alphanumeric characters.

If the character II is to appear in the string, it must be
specified by two consecutive " marks.

Ifn Logical file name

In Line RJmber

ch Any character or carriage return

Be String expression, constant, or variable

Throughout the following summary tables these notations
are used. Terms in these tables that are in lowercase
represent words or symbols supplied by the programmer.

Logical negation: NOT

Logical multiplication or intersection: AND

LogicalOpenltOf'S

sv Simple variable

... Repeat elements as needed.

String concatenation:

srATEMENTS AND FUNCTIONS

String Operators

[ ] Enclosed elemantB are optional.

U

o Numeric character, alphabetic character, alphanu
meric character

A strirg variable consists of a single alphabetic character
followed by a dollar sign ($) or a single alphabetic
character and a rumeric character followed by a dollar
sign.

A romeric variable consists of a single alphabetic
character or a single alphabetic character followed by a
romeric character. Numeric variables are preset to zero
before progrem execution.

Numeric Variables

VARIABLES

A romeric slbscripted variable consists of a rAJmeric
variable followed by a subscript list bounded by parenthesis.

Any character avaUable to the operating system can be
used In data and string constanta.

A string sl.bscripted variable consists of a string variable
followed by a slbscripted list bounded by parenthesis.

LANGUAGE ELEMENTS

BASIC CHARACTER SET

Alphabetic: A thrU Z
Numeric: 0 thru 9
Special: • I •

, ( $
_ ) = : blank

$ Currency sign; floating when more than one

String Variables

• Plus printed for positive values; miros for negative

- Blank printed for positive values; minus for negative

Subseripted Variables

FORMAT FIELD SPECIFICATION
CHARACTERS

DB DB inserted for Il8gative value; two blanks for positive

CR CR Inserted for negative value; two blanks for positive

* Check protect; ieading blanks replaced by *

< Lett-justify string; right truncate

> Right-justify string; left truncate

A Floating poInt indicator

Decimal digits

E;tll Exponent

Besa 10 scale factor

CONSTANTS

"string"

Integer ConstantJ

;tnE;tB ;tn.nE;ts Z.nE;tB ;tn.E;ts

Dcclmcl ConSUlntS

;tn ;t.n ;tn.n

Exponential ConstZlntl

String Constanta\



" +:)J ~) ~ -J

rJ r r r r'· r r
., . / CUT ALONG HERE .' CUT ALONG HERE . /- - - -_._--- - - - - - - - - --------- - - --- - - _.- - - - - - - -------- - ----

19983900 H

BASIC FUNCTIONS BASIC FUNCTIONS (Contd)

Function Meaning Section Function Meaning Section

BASIC CONTROL STATEMENT

Finds the tangent of ne where ne is an angle expressed in radians.

Returns elapsed time in seconds (x is a dumny argument).

Returns string se with all lowercase letters replaced by their
uppercase equivalents.

Returns the NOS 7-character user nallle (number). Under NOS/BE this
function returns the string USERHUM.

Converts string se to its numeric value.

DB Same as O8=B/OL

DB omitted Do not activate the debug and trace
OB=O feetures.

K omitted Write execution-time output on
K default output file OUTPUT.

L=O Suppress compile-time output.

omitted Compile source program from file
INPUT.

L=lfn Write compile-time output on file Ifn.

PS::n Use a page size of n lines/page;
4Sn92768.

K=lfn Write execution-time output on default
output file Ifn.

Write compile-time output on file
Cl.JTPUT.

Compile source program from file
COMPILE.

L omitted If batch job, write compile-time output
on default output file OUTPUT. If
Interactive job, suppress compile-time
output.

PO Use a print density of 8 lines/inch
P0=8 on the files specified by the L and K

parameters.

PO=6 Use a print density of 6 lines/Inch on
the files speclfled by the L aOO K
parameters.

GO=O Do not execute compiled program.

PO omitted Use the installation default print
density on the flies specified by the L
aOO K parameters.

1=lfn Compile source program from file Ifn.

J omitted Read data from default file INPUT.
J

J=1fn Read data from default file Ifn.

J=O No default runtime data file.

LO=O Write object and source listing on the
file specified by the L parameter.

LO=O/O Write object listing only on the file
specified by the L parameter.

U):O Tum off all list options.

LO omitted Write source IIstirg on the file
LO specified by the L parameter.
LO=S

PS omitted If PO Is not specified, use installation
default pege size for the file specified
by the L parameter. If PO is specified,
use PS::PO*(default PS)/(default PO).

Source prognlm and data files contain
ASCII characters.

AS

GO

E=lfn Write compile time error diagnostics on
file Ifn.

O8=O/DL Activate prognlm tracing as controlled
by REM TRACE debug lines.

OB=O/B Force binary generation aOO/or program
execution regardless of compilation
errors.

BL omitted Suppress page ejects on output listing.

BL Do not suppress page ejects on output
listing.

Write relocatable binary on file BIN.

B=lfn Write relocatable binary on file Ifn.

B omitted Do not produce relocatable binary.
B=O

AS omitted Source program and data files
AS=O contain non-ASCn characters.

BASIC.
BASIC(parameter-list)

E omitted Write compile-time error diagnostics on
the file specified by the L pal1lmeter.
If L=O then write diagnostics to
OUTPUT.

EL omitted Write warning diagnostics and fatal
B-:W compile-time diagnostics on the file

specified by the E parameter.

EL=F Write only fatal compile-time
diagnostics on the file spac Ifled by the
Eparameter.

Write compile time error diagnostics on
file ERRS.

DB=O/TR Traces all statements ragardless of
REM TRACE debug lines.

OB=TR Same as DB=B/OL/TR.

OB=ID Same as OB=8/DLiIO.

08=0/10 Activates generation of CIO
Information.

GO omitted If no B parameter is spaclfled, execute
complied program without 1000109. If B
parameter is spaclfied, do not execute
complied program.

Execute compiled program, If no
compilation errors.

TAH(ne)

TlM(x)

UPRCS(se)

VAL(se)

USRS

Returns the decimal code (ordinal position) of a character in
string se in the collating sequence being used. See appendix A.

~~;~~~~ t~:a~~ i~~~~n~fwn~ i~~a~~t~t~~~ si, i~ ~:1~otT~~d i cated.
the default is the first character.

Finds the absolute value of ne.

Returns the ASCII code in decimal of the character in its
argument.

Returns the line number of the statement at which the last terminal
interrupt occurred.

Finds the arctangent of ne in the principal value range 
7f/e to + rr/2.

Returns the character with decimal code (ordinal position in the
collating sequence) that corresponds to ne.

Returns the time of day in hours and fract ions of an hour in a
24-hour scale (x is a dUllllly argument).

Returns the time of day as a string.

Finds the cosine of ne expressed in radians.

Finds the cotangent of ne expressed in radi ans.

Returns the date as a string.

Returns the determinant of the matrix most recently inverted by
the INV function. or the determinant of matrix m.

Returns the line number of the statement that caused the most recent
program execution.

Returns the error number associated with the most recent program
execution error.

Finds the value of e to power of ne.

~~=l;~ }:~n~~~~~e~~~ ~~~(~~~~)~_i~an ne.

Determines current length of string se.

Finds the base 10 logarithm of ne; ne > 0; otherwise an execution
error will cause the program to terminate.

Returns the current word position in a fi le.

Returns the length in words of the referenced binary file (ne).

Finds the natural logarithm of ne where ne > 0; otherwise an
execution error will cause the program to terminate.

Pads string se out to ne characters by adding spaces on the left
of string se.

Trims string se of all leading space characters.

Returns a string consisting of the se string value with all
uppercase letters replaced by their lowercase equivalents.

Returns the maximwn element in the list.

Returns the minimum element in the list.

Returns the line number of the statement where the program execution
is to resume.

Returns pseudo-random numbers fran the set of numbers uniformly
distributed over the range 0 :s RHO < 1.0. For RND, the same
sequence of random numbers is returned unless the predefined
sequence is overridden with the RANDOMIZE statement.

If ne> 0, a random number sequence is initialized based on the
value of ne and the first number of the sequence is retumed.

If ne • 0, the next number in the established sequence of random
numbers is retumed. If the sequence was not previously
established by an ne> 0 RND reference, a standard constant is
used to initiate the sequence.

If ne < O. the first RHO reference initializes a random nwnber
sequence based on the time of day and retums the first value of
the sequence. Subsequent ne < 0 RND references retum the next
number in the sequence.

Finds the value of the first argument rounded to the number of
decimal places specified by the second argwnent. Omission of ne
rounds variable ne to the nearest integer.

Pads string se to ne characters by inserting blanks on the right
of string se.

Retums the string created by repeating the se string ne times.

Trims string se of all trailing space characters.

Assigns a value of 1 if ne is positive; 0 if ne is 0; or -1 if ne
is negative.

Finds the sine of ne where ne is an angle expressed in radians.

Finds the square root of ne where ne ~ O. otherwise an execution
error causes the program to be terminated.

Converts ll1JIIeric value ne to string representation. The result is
controlled by image string se, if present.

Moves print line to position ne. Can only be used in PRINT
statement.

ATN(ne)

EXP(ne)

IHT(ne)

POS(selose2.ne)
or

POS( sel. se2)

RHO or
RND(ne)

ESM(x)

ESL(x)

ABS(ne)

ASC(ch)
ASC(abr)

ASL(x)

RPADS( set ne)

CLK(x)

CHR$(ne)

LTRMS(se)

LWRCS(se)

MAX( nel ,nezo)

MIN(nel. ,nezo)

NXL(ne)

LEN(se)

LGT(ne)

STRS(ne)
STRS( ne. se)

TAS(ne)

SIN(ne)

SQR(ne)

LOC(ne)

LOF(ne)

LOG(ne)

LPADS(se.ne)

RPTS( se. ne)

RTRMS(se)

SGN(ne)

ORD(se)

CLKS

COS(ne)

COT(ne)

OATS

DEl or DET(m)

:Oon~:~ne) or



BASIC CONTROL STATEMENT PARAMETERS

Compiler Listable Output Compiler Binary Output

BL Burstable Listing Control

· ,~ I
omitted

BL

Suppresses page ejects on output
listing.
Does not suppress page ejects on
output listing.

B Binary File

omitted or
B=O
B
B=lfn

None.

File BIN.
File lfn.

EL Error Level Control

E Compile-Time Error File

L Compile-Time List File

DB Debug, Trace, and Force Binary
Generation and/or Program
Execution

None activated.
Debug and trace not activated.
Default(DB=B/DL).
Execute normally regardless
of compilation errors.
Program tracing with REM Trace.
Interactive debug (CID tables
and special code).
Trace ail statements.
Same as DB=B/DL/TR.
Same as'DB=B/DL/ID.

omitted
DB=O
DB
DB=O/B

DB=O/DL
DB=O/ID

DB=O/TR
DB=TR
DB=ID

Fatal and warning to
E parameter file.
Fatal only to E file.

L parameter file, if no
L file, OUTPUT.
File ERRS.
File lfn.

Default file OUTPUT.
File OUTPUT.
File lfn.
None.

omitted

E
E=lfn

omitted
L
L=lfn
L=O

,omitted or
EL=W
EL=F

LO Listing Options

"./'.',.... \t " omitted or
LO or
LO=S
LO=O

LO=O/O
LO=O

So~rce listing on L
parameter file.

Object listing on L
parameter file.
Object listing only on L file.
None.

Program Execution

AS ASCII Mode

omitted or Run in normal (non-ASCII) mode.
AS=O
AS Run in ASCII.

PD Print Density Control

PS Page Size Control

GO Execution Control

DB Debug and Trace
(see Compiler Binary Output)

Execute without loading
if B not specified.
Execute compiled program, if
no compilation errors.
Inhibits execution.

GO

GO=O

omitted

Default on Land K
parameter files.
Density 6'.
Density .~.

Default.
(n is 4 ~u ~ 32768)

PD=6
PD=8 or
PD

omitted

omitted
PS=n

AS ASCII Character Set

I Compile-Time Input

PD Print Density Control
(see Compiler Listable Output)

Default file OUTPUT.
Same as omitted.
Default file lfn.

omitted
K
K=lfn

J Execution-Time Input File

omitted or Default file INPUT.
J
J=lfn Default file lfn.
J=O None.

K Execution-Time Print File
Normal (non-ASCII).

Encoded and run in ASCII.

File INPUT.
File COMPILE.
File lfn.,

omitted or
AS=O
AS

omitted
I
I=lfn

Compiler Input



CORPORATE HEAOQ~ARTERS.P.O.BOX 0; MINNEAPOLIS, MINN. 56440
SALES 'OFFICES AND SeRVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~:?)
CONTl\.OL DATACO~ORl\TION

LITHO IN U.S.A.

' ..
' .....

~:
."",-

, __u .-Y'


	Revision Record
	List of Effective Pages
	Preface
	Contents
	Notations
	1. BASIC Primer
	2. Elements of the BASIC Language
	3. Fundamental Statements
	4. BASIC Flow Control Statements
	5. BASIC Functions
	6. Subroutines, Subprograms, and Chaining
	7. I/O Statements and Functions
	8. Matrix Operations
	9. Debugging
	10. Terminal Operation under NOS
	11. Terminal Operation under NOS/BE
	12. Batch Operations
	Appendix A. Character Sets
	Appendix B. Diagnostics
	Appendix C. Glossary
	Appendix D. NOS File Handling
	Appendix E. Future System Migration Guidelines
	Appendix F. Differences Between BASIC 3.5 and BASIC 3.4
	Appendix G. Implementation-Defined Features
	Appendix H. Sample BASIC Programs
	Appendix I. In-Line Editing Commands
	Index

