60481600

Gg CONTROL DATA
CORPORATION

ALGOL-60
VERSION 5
REFERENCE MANUAL

CDC®OPERATING SYSTEMS
NOS 1
NOS/BE 1

~ SCOPE 2

REVISION RECORD

REVISION DESCRIPTION
. A Original release.
(1-9-79) '
B Revised to reflect the release of ALGOL-60 Version 5.1. New features include sequenced input, a
(7-20-79) reserved word option, and the VIRTUAL comment for declaring virtual arrays.
C Implementation of ALGOL 5.1 under §COPE 2.1 operéting system. Miscellaneous technical corrections.
(8-22-79)

Publication No.

60481600

Address comments concerning
this manual to:

REVISION LETTERS I, O, @ AND X ARE NOT USED

©COPYRIGHT CONTROL DATA CORPORATION 1979
Alt Rights Reserved

Printed in the United States of America

. CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

" New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina-

tion rather than content has changed.

Page

Revision

Page

Revision

Page

Revision

Cover

Title Page

ii

fii/iv

v/vi

vii thru ix/x
Xi

1-1

1-2

1-3

1-4

2-1

2-2

2-3

2-4

2-5

3-1

3-2

3-3

3-4

3-5

3-6

3-7 thru 3-10
4-1

4-2

4-3

4-4 thru 4-6
4-7

4-8

5-1

5-2 thru 5-4
6-1

6-2

6-3 thru 6-5
6-6

7-1

7-2

ow>w>wwoow>ow>>w:§>o>>owwowoo>>w>oooooo

7-3

7-4

8-1

8-2

8-3 thru 8-5
8-6

8-7 thru 8-10
8-11

8-12

8-13 thru 8-15
8-16 thru 8-22
9-1

9-2 thru 94
10-1

11-1 thru 11-3
114 thru 11-6
12-1

12-2

12-3

124

12-5

12-6

12-7

13-1

132

14-1
14-2
14-3 thru 14-5
15-1
15-2
15-3
154
A-1
A-2
A-3
B-1
B-2

AP OO0 ArPrAO>rAr0OREPOAAPRARATO>OE > T > W T WA

60481600 C

B-3

B4

C-1 taru C-3
D-1 thru D-3
E-1 thru E-3
E4

E-5

E-6

E-7

E-8 thru E-10
E-11

E-12

Index-1 thru -3
Comment Sheet
Mailer

Back Cover

f OQPp@WROOWOE B> > P>

|

iifiv @

PREFACE

f

ALGOL 5.1 is an implementation of the ALGOL-60
programming language. The version of the language that
it implements is described in the following two
publications:

"Modified Report on the Algorithmic Language
ALGOL 60", Computer Journal, Volume 19, Number
4, November 1976, pages 364 through 379.

"A Proposal for Input-Output Conventions in ALGOL
60", Communications of the ACM, Volume 7, Number
5, May 1964.

For the most
defined. .in..,

part,
8 ‘! -

ALGOL 5
§ :

%@%s@

; CcDC 1mpe}r;nta ions ‘of features
of the standard are not shaded; for example, separately

ALGOL 5 operates
operating systems:

under control of the following

NOS 1 for the CONTROL DATA® CYBER 170 Series;
CYBER 70 Models71, 72, 73, 74; and 6000 Series
Computer Systems.

NOS/BE1 for the CDC® CYBER170 Series;
CYBER 70 Models71, 72, 73, 74; and 6000 Series
Computer Systems.

SCOPE 2 for the CDC 7600; CYBER 70 Model 76; and
CYBER 170 Model 176 Computer Systems.

This manual is designed for programmers familiar with the
ALGOL lanquage and the operating system under which
the ALGOL compiler executes.

compiled procedures and CDC-defined standard
procedures. Related material is contained in the foliowing publications.
Publication Publication Number
NOS Version 1 Reference Manual, Volume 1 60435400
NOS Version 1 Reference Manual, Volume 2 60445300
NOS/BE Version 1 Reference Manual 60493800
CYBER Record Manager Basic Access Methods 60497500
Version 1.5 Reference Manual
COMPASS Version 3 Reference Manual 60492600
FORTRAN Extended Version 4 Reference Manual 60497800
SCOPE 2.1 Reference Manual 60342600
SCOPE 2 Record Manager Reference Manual 60454690
SCOPE 2 Loader Reference Manual 60454780
CDC manuals can be ordered from Control Data Corporation, Literature and Distribution
Services, 308 North Dale Street, St. Paul, Minnesota 55103.
This product is intended for use only as described in this document.
Contro! Data cannot be responsible for the proper functioning of
undescribed features or parameters.
60481600 C v/vi

CONTENTS

]

Notations Used in This Manual xi 7. STANDARD PROCEDURES

~
1
b=

1. INTRODUCTION 1-1

@
o

8. INPUT/OUTPUT

Sample ALGOL. Program 1-1

FORTRAN Comparison 1-1 Coded Sequential Input/Output -
Comments 1-4 Simple Input/Output -
Sequenced Input 1-4 Horizontal and Vertical Control ° =

INLIST and OUTLIST
L ist Procedures
2. BASIC ELEMENTS 2-1 : Layout Procedures
Execution of NLIST and OUTLIST

8-1

© 8-1

8-4

8-5

8-5

8-6

8-6

Lexical Elements 2-1 Format Strings 8-9

Special Symbols 2-1 Replicators 8-9
Identifiers 2-1 Insertion Sequences and Title Formats 8-10
Numbers 2-2 Number Formats 8-11
Strings 2-2 Character Formats - 8-13
Syntactic Elements 2-3 Boolean Format 8-13
Variables 2-3 Nonformats 8-13
Arrays : 2-3 Standard Format 8-14
Labels and Switches 2-4 Alignment Marks 8-14
Procedure Identifiers 2-5 Binary Sequential Files 8-15
Word Addressable Files 8-15
Other Input/Output Procedures 8-16
3. EXPRESSIONS 3-1 CHANNEL Procedure 8-16

File Open and Close 8-17

Simple Expressions - File Positioning Procedures 8-20
Simple Arithmetic Expressions - Extended Memory Procedures 8-21
Simple Boolean Expressions - Miscellaneous Input/Output Procedures 8-21

Relations
L.ogical Operations
Simple Designational Expressions
Conditional Expressions
Evaluating a Conditional Expression

9. INPUT TO COMPILATION) 9-1

0O~ ONON\ U\

Expression Type - Separately Compiled Procedures 9-1
Procedure Declaration 9-1
Procedure Text 9-2
4, STATEMENTS 4-1 Circumludes 9-3
Assignment Statement 4.1
GOTO Statement 4.2 :
" Procedure Statement 4-3 10. COMMENT DIRECTIVES 10-1
Compound Statements and Blocks 4-3
FOR Statement 4.5
Multielement Forlist 4-5 :
Expression Forlist Elements 4-6 11. COMPILATION CONTROL STATEMENT 11-1
STEP/UNTIL Forlist Elements 4-6 ‘ ;
WHILE Forlist Elements 4-7 B Binary Output File 11-1
The Statement Part 4-7 CD Comment Directives So1141
Conditional Statement 4-7 DB Debugging Option 11-1
First Form 4-7 EL Error Severity Level 11-1
Second Form 4-8 ET Error Termination 11-2
I Source Input File 11-2
: LO Output Listing Options 11-2
5. DECLARATIONS 5-1 N Circumlude Compilation i 11-2
o] Output File 1122
Type Declaration 5-1 OPT Optimization Level 11-2
Array Declaration 5-2 PD Print Density 11-2
Switch Declaration 5-3 PS Page Size .11-2
‘Procedure Declaration 5-4 PW - Page Width 11-2
RES Reserved Words 11.2
S System Text for Circumlude 11-2
6.. PROCEDURE DECLARATION AND USE 6-1 SEQ -Sequenced Input : 11-3
: Sw Source Line Width : i 11-3
Procedure Declarations 6-1 V Virtual Arrays 113
Procedure Calling 6-4 Compilation Listings 11-3

60481600 C) . vii

12. INTERFACES 12-1 I Increment for Memory Request 13-1
L Line Limit for Dump 13-2
Record Manager Interface 12-1 M Maximum Field Length 13-2
COMPASS Interface 12-1 R " Recovery Type 13-2
COMPASS Interface Macros 12-3 z Preset Value 13-2
Procedure Defining Macros 12-3
Parameter Checking Macros 12-3
Parameter Accessing Macros 12-4
Procedure-Calling Macros 12-5
Stack-Handling Macros 12-6 14. EXECUTION TIME ERROR PROCESSING 14-1
Miscellaneous Macros 12-7 .
13. EXECUTION 13-1
15. EXAMPLES 15-1
Segment Loading Restrictions 13-1 :
Execution Control Statement 13-1 Complex Square Root 15-1
D Postmortem Dump Format 13-1 Circumludes 15-1
E Postmortem Dump File 13-1 Sample Jobs 15-4
APPENDIXES
A. Standard Character Sets A-1 D. Syntax Summary D-1
B. Diagnostics B- E. Execution Time System E-1
C. Glossary C-1
INDEX
FIGURES
1-1 Sample ALGOL Program 1-2 - Formats of INPUT and OUTPUT -
1-2 Output from Sample Program 1-2 - Formats of INLIST and OUTLIST -
2-1 State Diagram for Identifiers 2-1 - L_ist Procedure Example -
2-2 State Diagram for External Identifiers 2-2 - INLIST, QUTLIST Example -
2-3 State Diagram for Integer Numbers 2-2 - Example Layout Procedure -
2-4 State Diagram for Real Numbers 2-3 - Title Format Example -
3-1 Syntax of Simple Arithmetic Expression 3-3 - Number Format -
3-2 Order of Evaluation Example 1 3-4 - Components of Number Format -
3-3 Order of Evaluation Example 2 3-5 - Alignment Marks Example -
3-4 Syntax of Simple Boolean Expressions 3-7 - GETARRAY and PUTARRAY Format -
3-5 State Diagram for Simple Designational - FETCHLIST and STORELIST Format -
Expressions) 3-8 - FETCHITEM and STOREITEM Format -
3-6 - State Diagram for Conditional - FETCHARRAY and STOREARRAY Format -
Expressions - - CHANNEL Format -

Syntax of Assignment Statement

Syntax of GOTO Statements

Branch Into a Compound Statement

Syntax of Compound Statements

Syntax of Blocks

Block Example

Nested Block Example

Three Block Structures

Syntax of FOR Statements

Syntax of Conditional Statements

State Diagram for Variable Declarations

State Diagram for Array Declarations

State Diagram for Switch Declarations

Syntax of Procedure Declaration

Procedure Declaration Example

Procedure Statement Syntax

Parameter Substitution Example

Parameter Switch Example

Formats of INCHAR and OUTCHAR

Format of OUTSTRING

Formats of INREAL and OUTREAL

Standard Formats for Integer, Real,

and Boolean Values 8

Formats of INARRAY and OUTARRAY 8

Format of ININTEGER and OUTINTEGER 8

Formats of ININTARRAY and OUTINTARRAY 8-
8
8

Channel Equate Format
Format of OPEN

Format of CLOSE

Format of UNLOAD

Format of RETURN

Format of DETACH

Format of CONNECT

Format of DISCONT

Format of ENDFILE

Formats of SKIPF, SKIPB
Format of BACKSPACE
Format of REWIND)
Formats of READECS, WRITECS
SYSPARAM Format

EOF Format

BADDATA Format

PARITY Format
CHANERROR Format

IOLTH Format

Syntax of Code Part

Syntax of Separately Compiled Procedure
Syntax of Circumlude

Source Listing

Object Code (First Page Only)
Reference Map

PROC Macro Format
ENDPROC Macro Format
RETURN Macro Format

U
1
1

i
I
U
U

U
1
U

U
1
1
U

i
o

I
U
J

1
'
[
1

NFOVONOAUVAEWNMFOVONOAWMPEWNEFOVVIONOAUVEWNEFO

NNMNNNNFRFRFFROODOOOOCOCOOOVUNNONN VI HO

3 1
ole- BN Ne NV, | PUWNFUVULELEWUNEFHFUWNHEYONOOUVMES WNF
1
1
1

OJGJCDU\O\O\O\O\W\HWJ'}J-\#J-\DJ-\J-\J-\J-\J-\\N

U
1 U
)
1

}
MBNEEELELELEWWWWWUWWWWUWRNENNNNNNRNNNRNFEE R

1
1
WMNOUVEWUWHFHRNNNNNNNRNNRNNNNNNNNNRFER OO W

1
|
1

NNI.\)I—'I—'D—‘
WN - WN

Formats of INBOOLEAN and OUTBOOLEAN
Formats of INBARRAY and OUTBARRAY

»—r—ar—-r—‘b—w—wo\o\ooooooooooooooooooooom?mmmmmmmmmmmmmmmmmmmmm
NNNs—-l--»—\o\o\ommmmmmmmmmmm?mmmmmmmmmmmmmmmmmmmm

o 00 0 mmmmmmmmm&nmmbbbbb&bbbb

= bt et bt b

viii 60481600 C

12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18

PARAMS Macro Format
KIND Macro Format

TYPE Macro Format
VALUE Macro Format
ADDRESS Macro Format

FWA Macro Format
LENGTH Macro Format
ORDER Macro Farmat
ASSIGN Macro Format
GOTO Macro Format
CALLING Macro Format
PARAM Macro Format -
SIMPLE Macro Format
STRING Macro Format
CONSTANT Macro Format

Sample Program Components

Rules of Operation Precedence

Type Combinations Allowed for
Base-Exponent Pairs

Simple Arithmetic Expression Evaluations

Logical Values Yielded by Logical
Operations

Simple Boolean Expression Evaluations

Conditional Expression Evaluations

Relative Offset of Subscripted Variables

Actual-Formal Parameter Correspondence

Simple Functions

String Manipulation Procedures

Mathematical Functions

60481600 C

12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5
12-5
12-6
12-6
12-6
12-6

1
N W

YoVY o ovr
OV

4

NRNRO WO

12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26
14-1
14-2
15-1
15-2
15-3
15-4
15-5
15-6

TABLES

b b

t 11

v—-;—-s—-toomcum?nwmmcn\l\l\:
(e« JENN NIV I SWE I N

o
[y

CALL Macro Format
DECL Macro Format

PUTVAR Macro Format
GETVAR Macro Fermat
XFORM Macro Format
ERROR Macro Format
SBREGS Macro Format
RBREGS Macro Format
DUMP Procedure Format
Sample Dump

Sample Program

Circumlude Example
NOS/BE Control Statements
SCOPE Control Statements
NOS/BE and SCOPE Library Directives
NOS Control Statements

Environmental Inquiry Procedures
Termination and Error Handling Procedures
MOVE Procedure

Descriptive Procedures

Format Code Summary

Number Format Examples
Representations of Boolean Values
Standard Format for Output
Channe! Procedure Parameters
Default Channel Definitions
SYSPARAM Functions
CHANERROR Keys

Comment Directives

File Information Table Defaults
Dump Message Formats

12-6
12-6
12-7
12-7
12-7
12-7
12-7.
12-7
14-1
14-3
15-2
15-3
15-4
15-4
15-4
15-4

POOEPDOEE®N NN
NN b b O N D W

NHHNHO O WW

e i
-l-\lIVO

ix/x

NOTATIONS USED IN THIS MANUAL

The syntax of ALGOL entities shown in this manual is
explained by means of drawings called state diagrams. A
state diagram should be read like a flow chart. To
construct a syntactically valid entity of the type defined,
start at the left of the diagram and follow any path to an
exit at the right. Whenever the path goes through an oval
or rectangle, write down one of the entities described by
the oval or rectangle. The ovals contain entities that are
not further defined; the rectangles contain entities for
which further state diagrams are provided or which are
defined in the text. . Since some of the arrows point to the
left, some sub-entities can be indefinitely repeated within
an entity,

Example:

State Diagram for Identifiers

60481600 A

According to this diagram, any of the following is a valid
identifiers

A
ABCD .
A12345
X9E8BVIB6ENS
Examples and syntax in this manual use graphics from the

CDC character set. The ASCII equivalents can be found
in appendix A. The symbol A indicates a blank.

xi

INTRODUCTION 1

ALGOLS5 is an implementation of the ALGOL-60
programming language. @ ALGOL is an algorithmic
language suited for writing programs to implement a wide
variety of applications, especially mathematical and other
scientific applications.

This section provides a brief overview of ALGOL through
two different approaches: examination of a sample
program and comparison of ALGOL with FORTRAN. It
also describes the format of comments in an ALGOL
program.

SAMPLE ALGOL PROGRAM

Figure 1-1 shows a complete ALGOL program, designed to
find prime numbers through the familiar Eratosthenes'
sieve method. The output is shown in figurel-2. This
particular program (named ERATO) finds all primes less
than 1000, but it could be easily altered to find all primes
less than any given number. The specific actions taken by
the program cannot be explained without a detailed
discussion of the features of ALGOL, but the general
method used is as follows:

1. At the beginning of the program, all numbers from 2
through 1000 are considered candidates for primeness.

2. Beginning with 2, the program checks numbers until
one is found that is still a candidate for primeness.
Let N be this number. The first such number is 2.

3. Starting with N+N, every NtP number is eliminated
from the list, since all such numbers are divisible by
N. The first numbers eliminated are 4, 6, and so
forth,

4. Steps 2 and 3 are repeated until only prime numbers
less than 1000 remain.

Figure 1-1 also illustrates some facts about the format of
an ALGOL program, and the way it is listed by the
ALGOL 5 compiler:

e ALGOL is a free-format language. That is, the
interpretation of an ALGOL program is not dependent
on the number of characters per line or the columns
of the source line in which certain entities fall. (This
is in contrast to languages such as FORTRAN and
COBOL.) The characters of an ALGOL program are
grouped into larger entities such as statements,
declarations, and specifications, ‘which under certain
circumstances are terminated by semicolons, but a
single source line might contain more than one of
these entities or only part of a single entity.

o The compiler provides a line number for each source
line of a program numbered consecutively froml.
This number appears to the left of the line.

e To the right of the source line, the compiler indicates
whether the line is part of a comment, and also the
depth of nesting of blocks at that line. Comments
are defined below, and block nesting in section 4.

60481600 B

e An installation, or any group of programmers, might
define coding conventions to make programs easier to
read. Typical conventions are that the #BEGIN#
symbol of a block should begin in the same column as
the corresponding #END# symbol, and that the other
lines of that block should be indented. Other
conventions might relate to the wording, location,
and formatting of comments, or location of blanks.

e Blanks are ignored in an ALGOL program, except in

the following circumstances:

1. Blanks appearing in strings represent the blank
character.

2. Blanks are not permitted to interrupt the string
quote symbols #(#and #)#.

3. In reserved word mode (RES option specified on
ALGOLS5 control - statement), blanks delimit
reserved words. See section 2.

Elsewhere, blanks can be used freely to improve
readability.

Table 1-1 lists some of the components of an ALGOL
program, along with examples of where they can be found
in program ERATO, and which section of the manual
describes each component.

FORTRAN COMPARISON

Many programmers new to ALGOL ' have already
programmed in FORTRAN, so a comparison of the two
languages might help explain some of the characteristics
of ALGOL.

The major differences between ALGOL and FORTRAN
are as follows:

e FORTRAN: Subprograms are written and compiled
independent of the main program, and require no
declaration.

ALGOL: Procedures (equivalent to subprograms) are
declared within the main program, although their text
can be compiled separately.

e FORTRAN: Each program unit consists of a series of
individual statements.

ALGOL: Statements can be grouped into larger units
such as compound statements and blocks, each of
which is bracketed by the #BEGIN# symbo! and the
#END# symbol. Since compound statements and
blocks are also statements, they can appear anywhere
a statement is allowed. This can result in the nesting
of blocks to several levels.

e FORTRAN: No subprogram can reference itself,
either directly or indirectly.

ALGOL: A procedure can reference itself either
directly or indirectly; this is called recursion.

1-1

wetboiyg ajdweg wody Jnding *z-1 aanbiy

466 166 £86 416 L6 496 £56 {96 h6 L£6 626 616 121 206 l98
£8e 188 448 £9¢ (317 498 £5¢ 6£¢® 628 28 £ee 12¢ 123 60¢ L6¢ 494 £
€94 9L P3-7) 184 &9l X ¥4 ££4 222 612 604 194 169 £89 149 £29 199 659
£89 499 £99 Tho €9 619 219 £19 419 109 669 £66 84 lLs Tis 695 £36
y3-3- ins The £2s - 128 60s £0s 66" T6" 8% . 6lY 490 £34 9 LSh bhh £9h
68h ££9 134 12 6TH 60% 104 L6¢ 68¢ £8¢f 648 842 L3¢ 6s¢ £s¢ 6ng ALY
18£8 134 i1¢ £3¢ 1234 408 £6¢ £8e 182 22 e 692 €32 L52 4314 The 6£2
£€¢ 622 22 £2¢ ¥ 66T y3:34 £67 16°% 187 64T £47 237 £971 8T 351 60T
6E7T 28T et 27 £t 607 0% £07 10T 46 68 £8 6l £L T2 9 19
69 £8 ra £9 " i8 13> 62 £2 6% LT £T T i S £ e

weabodd |09y o[dweg °7-T aanbi4

03S 6gs 40 °0002£0 WO Q3¥IND3IY

SQYOM 8027000 HI9N37 WY390ud
(] 0lvy3 2ON32 *g2
T §(1S3LvI*2 (20Z22)24T9) LINdLINO 2
3 #00# 0 < 1S31VY #31IHM# (SEBWANC0OOTCLS3LVI) LXIN =1 1S3V 28042 *92
L3 ¢T =t 1S3V *s2
T £23n¥L2 =1 (1) SBWNN *92
4 #002 0007 #7ILNNZ T 2d431S# T =3 I 2304% *£2
T $I141S31vY 2¥393INI2 *22
T $L000T3T) SBHNN ZAVNAVZ 2NV3I008# °12
T §20N32 *5e
2 ¢0 =t IX3IN 238732 ‘6T
2 #0N3# *8T
£ $1SVI =t IX3N LT
£ : $£23STvdz =t [I) 3WI¥d *9T
£ ‘ #00% LIWIY #7ILNNz LSV #d431Sz ISV =t I 23042 . *sT
£ $T - ISVY =t ISyl 4T
£ #NI938%2 *£T
2 #N3IHLZz ONNO4 2d41% *21
2z §23n312 =3 GNNOJ 2N3IHLIZ [ASVI] 3WINd #4I# 1t
2 2002 1IWIT 2372 ISV v ONNOde 23IHMZ T ¢ ISVT =3 ISV #¥042 ‘0T
2 $€23SW42 =t ONNOJ *6
2 $ONNOS #NY¥3T0082 $T #¥I9IINI# *g
4 #NI938% ‘L
T $§3NI8d ZAVHYVZ ZNV3IT0082 LLIAITLSYT 2¥393INIZ °g
T S$LIWIT 22nVAZ *5
T $(3WIVA LIWITCLSY D AXIN 23¥N03J0¥d# #¥3DIUINIZ]
T $OOHL3W 3A3IS +SINIHISOLVYI HONONHL SHIBWAN 3IWI¥d ONIJ #INIWWOOIZ °g
T #NI93gz °2
INIWWOS § 101v¥3 °1
¥ 39vd *IS°ST*NT 8L/8T/1% g1£82 0°S 1037V * ONILISIT 33UNOS « oLvy3

60481600 A

1-2

TABLE 1-1. SAMPLE PROGRAM COMPONENTS

Entity Line Number " Example Section
Special symbol 2 #BEGIN# 2
27 #F 2
Comment 3 #COMMENT+ F;IND « « « METHOD 1
28 ERATO: 1
Number 21 1000 2
Identifier 8 FOUND 2
String 27 #(+ 72ZD#) # 2
Variable 25 LATEST (Simple) 2
16 PRIME [I] (Subscripted) 2
Array 21 NUMBS 2
Function Designator 17 NEXT 2
Expression 14 LAST - 1 (Arithmetic) 3
26 LATEST> 0 (Boolean) 3
Assignment Statement 25 LATEST := 1 4
Procedure Statement 27 OUTPUT 61, #(+# 7ZD#)+ ,LATEST) 6
Dummy Statement 27 Null string after semicolon 4
FOR Statement. 15,16 #FOR# I := LAST . . . #FALSE# 4
Conditional Statement 11 #IF# PRIME . . . #TRUE# : 4
Coﬁpound Statement 13 - 18 #BEGIN# . . . #EN]‘)% ’4
Block 1.- 28 Entire program 4
7 -20 Body of procedure NEXT 4
Type Declaration 22 #INTEGER# LATEST, I 5
Array Declaration 21 #BOOLEAN# #ARRAY# NUMBS [1:1000] 5
Procedure Declaration 4 - 20 Declaration of NEXT 6
Formal‘ Parameter 4 LAST 6
Actual Parameter 26 LATEST 6
Value Part 5 #VALUE# LIMIT 6
Specification 6 #BOOLEAN# +#ARRAY+# PRIME 6
Standard Procedure 27 OUTPUT 8
(Input/Output)
60481600 A 1-3

e FORTRAN: FEach statement (except assignment
statements and statement functions) begins with a
keyword that identifies the statement. However,
there are no reserved words; keywords can be used in
other contexts within a program.

ALGOL: One of two modes for detection of keywords
is selected by the RES option on the ALGOLS5 control
statement. If RES is selected, keywords are reserved
words, and cannot be used in any other context. They
are delimited by blanks and cannot have internal
blanks. If RES is not selected, keywords are
delimited by the # character, and can be used freely
elsewhere in the program.

e FORTRAN: The data types are real, integer, logical,
double precision, and complex.

ALGOL: The data types are real, integer, and Boolean
(equivalent to logical).

e FORTRAN: Arrays can have up to three dimensions,
and the lower bound of each dimension must be 1.

ALGOL: Arrays can have up to 254 dimensions.
Array bounds can be any arithmetic expression
(positive, negative, or zero; integer or real) as long as
the upper bound is greater than or equal to the lower
bound.

e FORTRAN: Variables need not be declared if they
have default type. Declarations occur at the
beginning of a program unit.

ALGOL: All variables must be explicitly declared.
Declarations can occur at the beginning of any block.

e FORTRAN: Maximum size of an array must be
determined before execution begins.

ALGOL: Array size can be specified dynamically
during execution.

e FORTRAN: Arguments to subprograms are passed by
the call-by-address method, whereby the address of
an argument is passed, and the argument can be used
or reset freely. In FORTRAN literature, this method
is often referred to as call-by-name.

ALGOL: Parameters to procedures are passed either
by the call-by-name method (which differs from that
used in FORTRAN) or the call-by-value method.
These are explained in section 6.

COMMENTS

A comment in an ALGOL program can be placed either
after the #BEGIN# symbol, after the #*END# symbol, or
after any semicolon. The format of a comment appearing
after the #BEGIN+# symbo! or a semicolon is identical: the
format is as follows:

#COMMENT+# - sequence;

where sequence is any sequence of characters not
containing a semicolon.

After an #END= symbol, a comment consists of any
characters not including a semicolon, the #END=# symbol,
the #ELSE# symbol, or the # EOP # symbol.

Comments are listed with the rest of the program. They
have no effect on execution, unless they include comment
directives and the CD parameter has been included in the
ALGOLS5 control statement. Comment directives are
discussed in section 10. The comment directive
#VIRTUAL # is always in effect, regardless of any control
statement options.

Examples:

#BEGIN# #COMMENT# MUCH ADC ABOUT
NOTHING;

I := 12; #COMMENT# LET#S HOPE IT STAYS THAT
WAY;

#END# OF PROGRAM

#END##COMMENT# END OF PROGRAM

SEQUENCED INPUT

When the SEQ option is selected on the ALGOLS5 control
statement (section 11), the input to the compiler is
assumed to be in sequenced format. In this case, each line
should have the following components in the order shown:

segnum source

segnum Sequence number of 1 to 10 digits. The
line number can have leading zeros or
blanks. The line numbers must be in
sorted order; if not, a diagnostic is
issued. If a line number is missing or
too large, the compiler generates a line
number.

source ALGOL source line.

A blank is optional between seqnum and source.

Example:

.The following program segment is written to be compiled

with both the SEQ and RES options:

090 TEST:

100 BEGIN

1110 INTEGER [

120 REAL A,B;
1401 := SQRT (A+B);
150 OUTREAL (61,])
160 END

60481600 C

BASIC ELEMENTS 2

f

The characters in an ALGOL program are grouped and
identified lexically in the following categories:

Identifiers

Numbers

Special symbols

Strings

Comments (see section 1)

Identifiers, in turn, are further categorized in one of the
following syntactic categories:

Variable

Array

L_abel

Switch

Procedure identifier
Formal parameter

A procedure identifier is used either as a function
designator or as a procedure statement. Function
designators are described in this section; procedure
statements are described in section 6.

LEXICAL ELEMENTS

All the characters in a syntactically correct ALGOL
program are either symbols or components of symbols. A
complete list of characters is given in appendix A. Some
of the symbols are grouped into more inclusive entities,
such as identifiers, numbers, strings, and comments. The
remaining symbols are called special symbols.

SPECIAL SYMBOLS

Special symbols are predefined keywords and special
characters whose appearance in an ALGOL program has a
specific meaning. The special symbols are shown in
appendix A. ’

The format of a keyword special symbol depends on the
selection of the RES option on the ALGOL5 control
statement. If RES is selected, keywords are reserved
words, and cannot be used in any other context. They are
delimited by blanks and cannot have internal. blanks. If
RES is not selected, keywords are delimited by the #
character, and can be used freely elsewhere in the
program.

For example, the keyword GOTO is represented as GOTO
in reserved word mode, and #GOTO+# if RES is not
selected. An internal blank is allowed in nonreserved
word mode, but not in reserved word mode.

Allowed:

Reserved word mode Nonreserved word mode
GOTO,#GOTO+#,#GO TO+# #G0TO+, #G0O TO#
Not allowed in reserved word mode:

GO TO

60481600 C

In reserved word mode, the # character is still required in
the string quote symbols #(#and#)#, and in the alternate
form of the integer divide operator #/+#.

In reserved word mode, the # character can still be used
to delimit any keyword.

In this manual, the meaning of each special symbol is
discussed in the context in which the symbol can appear.

IDENTIFIERS

Identifiers are used as names for arrays, labels, switches,
simple variables, and procedures. They are also used as
formal parameters of procedures, in which case they can
denote any of these entities as well as strings and
expressions. They must begin with a letter, which can be
followed by any number of letters and digits, as
diagrammed in figure 2-1.

letter

Figure 2-1. State Diagram for Identifiers

Every identifier has a scope, which is determined by the
declarations and specifications in effect in the block in
which it appears. The scope of an identifier is the block
in which it is declared, excluding any inner blocks in which
it is redeclared or respecified. Scope is explained more
fully in section 4. E

Examples of correctly formed identifiers:

Q

SOUP

V17A

AVERYLONGNAME

P1346790

SO UP (blanks are ignored)

FOR (not allowed as identifier in reserved word
mode)

Examples of incorrectly formed identifiers:

3RD (must begin with a letter)
(must contain only letters and digits)

P134.679

2-1

Figure 2-2. State Diagram for External Identifiers

NUMBERS

Numbers have their conventional mathematical meanings
and do not require declaration. The value of a number is
determined solely by the characters it comprises.
Decimal notation is used in representing numbers. A plus
or minus sign, a decimal point, and an exponent are all
optional parts of a number. Positive numbers can be
unsigned, although a plus sign is permitted. If a number
contains only digits (and possibly a sign), it is an integer;
otherwise, it is a real number. Negative numbers must be
prefixed with a minus sign. The syntax for integers and
real numbers is given in figures 2-3 and 2-4.

O,

i, digit

O

Figure 2-3. State Diagram for Integer Numbers

The exponent part of a real number consists of a not equal
sign(#), an optional plus or minus sign, and one or more
digits. It signifies that the number to which it is appended
is to be multiplied by an integer power of ten. For
instance, the number:

3879#+4

represents the quantity .3879x104, or 3879. Fractional
exponents are not allowed. An exponent can appear by
itself. The value of a lone exponent is 10 raised to that
power. For example, #+6 is 1000000; -++6 is -1000000.

2-2

The range of an integer constant is from -~(248_1) to
248_.1. An integer exceeding this range is replaced with
+MAXINT, and a diagnostic is issued. If a variable
exceeds this range, the results are unpredictable. An
integer constant used in a subscript must have an absolute
value no greater than 229.31, The range of absclute
values of real numbers is from 10-293 to 10322, A real
number whose absolute value is less than MINREAL is
replaced by zero, with no diagnostic, and a real number
whose absolute value is greater than MAXREAL is
replaced by +MAXREAL, with a diagnostic. (MAXINT,
MINREAL, and MAXREAL. are defined in section 7.)

Examples of integers:
+123 -6 0 114090 +0 -0

Examples of real numbers:

322 114 090.125 (blanks can be inserted to
improve readability, but are
ignored) :

3.221141++8 (rounded equivalent of first
example)

#-21

5 #-15

Example of an incorrectly formed real number:

114,090 (commas are not allowed)

STRINGS

A string is either a character sequence bracketed by
string quotes, or a sequence of strings and characters that
is bracketed by string quotes; the latter case occurs when
one string is nested inside another. Left and right string
quotes are #{ #and+)#. The three characters making up
the string quote must not be interrupted by blanks. The
following is not a valid string:

#(AAL#STRING) #
(Astands for a blank.)

A string can appear only as an actual parameter in a
procedure call. Strings are limited to 131 071 characters.

Examples of strings:
#(EA)# (Null string, with a length of zero.)
#(#THIS IS A STRING. . .#)#

(= AND#(#F THISE(FISEFONEA(# TOOH) #4) £4) #4) #=A)
(Nested string)

#F4ZV3D,5B,12D+)+ (Format string

(section 8))

60481600 B

digit

digit

o]

digit

Lo

Figure 2-4. State Diagram for Real Numbers

Concatenated strings are treated as one string. That is,
two strings that are separated by no characters other than
blanks are the same as the string formed by deleting the
right string quote of the first string, the left string quote
of the second string, and any blanks that lie between the
two. Concatenation only applies to outermost strings.
For example, the strings:

#(#MOON,SUN, #)###STARS,PLANE TS #)#
and the string:
#(#MOON,SUN,STARS,PLANETS#) #
are the same. However, the string:
#(# # (FAFL)# # (#B#A) # #)+#
is not the same as the string:
' #(# # (#AB#) # #)#

because inner strings are not concatenated.

SYNTACTIC ELEMENTS
Special symbols, numbers, strings, and comments all
represent themselves in an ALGOL program. An

identifier, on the other hand, has no intrinsic meaning, but
is defined by the context in which it appears. An
identifier represents a variable, array, switch, label,
procedure name, or formal parameter. Variables, arrays,
switches and procedures must appear in declarations.
Formal parameters appear in specifications. A label is
implicitly declared by its usage. Some procedure
identifiers do not require declaration in an ALGOL
program because they are standard procedures defined in
the standard circumlude (section 7).

VARIABLES

A variable is a quantity, referred to by name, whose value
can be changed any number of times during program
execution. Some of the actions that change the value of a
variable are:

1. Executing an assignment statement in which the
variable name occurs in the left part of the statement

60481600 C

2. Using it as an argument to a procedure that changes
the argument value (call-by-name only)

3. Reading a value into it through a call to an input
procedure (this is a special case of point 2).

In general, the value of a variable is retrieved or replaced k
wherever the name appears in the statements of a
program.

A variable is either simple or subscripted. A simple
variable is referred to using an identifier. It has a single
value which is numeric if the identifier has been declared
integer or real, and Boolean if the identifier has been
declared Boolean.

A subscripted variable is an array element. (See Arrays,
below.) ,

Every variable identifier, except for formal parameters in
a procedure i '%&?

The value of the
variable is not defined (the variable has no value) until one
is assigned to it with an assignment or procedure
statement (exception: own variables, described in
section5). If the variable is used (its value is required)
before it is defined, the results might not be meaningful.
The DB=P option on the ALGOL 5 control statement
(section 11) can be used to preset variables on entry to a
block.

Examples of variables:

EPSILON (Simple variable)
DETA

Al7

Ql7,2] (Subscripted variable)

x [sIN (N* P1/2), @ [7,N]]

ARRAYS

An array is an ordered set of values. An array can have
from 1 to 254 dimensions. The elements of the array are
called subscripted variables and take the form:

identifier [subscript, subscript, . . J

where identifier is the name of the array and the number
of subscripts is the same as the number of dimensions in
the array., Each subscript is an arithmetic (real or
integer) expression. If the expression is integer, the value
of the subscript is equal to the value of the expression. If
the expression is real, the value of the subscript is the
value of the expression, rounded to the nearest integer.
Values ending in .5 are rounded up. 2.5 is rounded to3,
rather than 2. -2.5 is rounded to-2.

Each subscripted variable selects an element from the
array; the location of the element is calculated from the
values of the subscript expressions and the upper and
lower bounds for each dimension declared for the array.
The formula for computing the location of the subscripted
variable is given under Array Declarations, section 5.

Array elements are ordered in memory in such a way that
the rightmost subscript varies the fastest, and the
leftmost subscript varies the slowest. For example, if the
array declaration is A[1:3,1:2], then A[1,2] is immediately
followed by [A 2,1]. (By contrast, in FORTRAN the
leftmost subscript varies the fastest, and the rightmost
the slowest.)

An array name without a subscript list appears only in a
procedure heading or procedure call. Every array, except
for formal parameters of a procedure, must be declared in
an array declaration that indicates the type, the number
of dimensions, and the upper and lower bounds for each
dimension. An array appearing as a formal parameter of a
procedure . be specified in a specification which
indicates the type but not the number of dimensions or the
bounds. However, the number of dimensions is determined
implicitly by any array references in the procedure, and
must match the number of dimensions in the actual
parameter.

The value of an array is established or changed by
establishing or changing the value of its elements. Since
these are subscripted variables, their value is changed in
the same ways that the value of any variable is changed.

A virtual array is an array which can only be accessed as a
block. The principal use of this feature is to store arrays
in extended memory, but a virtual array can be stored in
central memory instead. A virtual array can only be used
as an actual parameter. It cannot be subscripted;
therefore, its individual elements cannot be accessed. By
using the standard procedure MOVE (section7), the
contents of a virtual array can be transferred to a
non-virtual array, after which its individual elements can
be accessed. A virtual array cannot be an actual
parameter for any standard procedure other than MOVE.

Virtual arrays are indicated by the comment delimiter
#VIRTUAL# (section 10) appearing before the array
declaration or specification (sections 5 and 6). This
delimiter is always honored. The control statement option
V (section 11) can be used to specify the residence of all
virtual arrays in a compilation unit as central memory or
extended memory. The V option only applies to a given
compilation; if program units from more than one
compilation are mixed (using separately compiled
procedures or circumludes), it is not necessary for all the
virtual arrays to have the same residence. Thus, if a
separately compiled procedure using virtual arrays is
compiled with the V option selected, and the procedure is
subsequently called by a program that was compiled with
the V option not. selected, the virtual arrays in the
separately compiled procedure reside in extended
memory, and the virtual arrays in the program reside in
central memory.

2-4

If an array is allocated to extended memory, the extended
memory field length is increased as much as necessary to
hold the array, up to the maximum allowed for the job.

A program using virtual arrays allocated in extended
memory should not also use the standard procedures
READECS and WRITEECS. No diagnostic is issued, but
the results are undefined.

LABELS AND SWITCHES

A label is a quantity referred to by name whose value
gives access to the position of a single statement. A label
is used only as the destination of a GOTO statement. Any
statement, including compound statements and blocks, can
be prefixed with one or more constructs of the form:

label:

where label is any unique identifier. Several labels, such
as:

BOSTON: NEW YORK: R2P2:

can precede a single statement. A label must not appear
in front of a statement (or as the name of any other sort
of quantity) anywhere else within its scope.

A switch is a mechanism by which a program can
dynamically select a label. A switch is named and has a
value, defined by a switch list, which is a list of
designational expressions. A switch designator has a value
which is one of the elements of the switch list, and is
referred to using a name of the form:

switchid [subscript]

where switchid is the name of the switch and where the
subscript identifies the position of the element in the
switch list. The subscript is an arithmetic expression that
reduces to an integer value in the rangel ton, where n is
the number of elements in the switch list. For example, if
the value of the subscript isl, the first element in the
identified switch is evaluated and the value is assigned to
the switch designator; if the value of the subscript. is 2,
the second element in the identified switch becomes the
value of the switch designator, and so on. Switches are
defined recursively in that the value of a designational
expression can itself be another switch designator.

Every switch, except for formal parameters, must be
defined in a switch declaration. A formal parameter
switch is defined in a specification. The switch
declaration specifies the labels and switch designators
that are denoted by the switch identifier, and establishes
their sequence. Labels are not declared in the procedure
body, but when used as formal parameters
specified in the procedure heading.

Example:

#SWITCH# SW := L1, L2, L3;
N := 3;
+GOTO+# SW[NJ;

Control is transferred to label L3.

60481600 B

PROCEDURE IDENTIFIERS

A procedure identifier is used to call for execution of a
procedure. It is also used in the procedure declaration to
name the procedure. Outside the procedure, the
procedure identifier appears either in a procedure
statement or as a function designator. Procedure
statements and function designators are identical in form
but differ in how they are used; procedure statements are
discussed in section 6.

A function designator is an operand in an expression whose
value is the result of execution of a procedure. It differs
from a procedure statement in that a value is returned
through a function designator, but not through a procedure
statement. The syntax of function designators is the same
as procedure statements, as shown in figure 6-3.

An actual parameter can be a string, expression, array
name, switch name, or procedure name. Rules applying to
actual parameters are detailed under Procedure
Statements, section 6.

When procedure execution is invoked within an expression,
the procedure computes a single value and assigns it to

60481600 B

the procedure name as the procedure result. This value is
then used in computing the value of the expression.

Examples of function designators:
SIN(A-B)
AV, N, NVAN)
R

SIMP(S+5)TEMP: (T) PRESSURE: (P)
Equivalent to SIMP(5+5,T,P)

TOLL (A) X: (P1, P2, P3) Y: (P4)
Equivalent to TOLL(A,P1,P2,P3,P4)

COMPILE (#(#:=#)#) STACK: (Q)
Equivalent to COMPILE(#(#:= #)#,Q)

In addition to function designators derived from
user-defined procedures, function designators provided by
the system are available to invoke standard procedures.
These are listed in section7.

EXPRESSIONS

An expression is a series of symbols which, when
evaluated at execution time, yields a single value.
Expressions are of two kinds, simple and conditional.

A simple expression is a sequence of operands, together
with gperators that indicate the operations to be
performed on the operands. The expression is evaluated
by performing the indicated operations in a particular
hierarchical order.

A conditional expression is a compound structure
containing several simple expressions. It is of the form:

#IF# Boolean expression #THEN= simple expression

#EISE# expression
If the Boolean expression yields the value true, then the
value of the whole conditional expression is the value of
the simple expression following #THEN#; otherwise, it is
the value of the expression following #ELSE#. The
expression following #ELSE# can also be a conditional
expression, requiring a continuation of the same process.

Simple and conditional expressions can both be one of
three kinds:

® Arithmetic. When evaluated, these yield a numeric
value, of type real or integer.

o Boolean. When evaluated, these yield a Boolean
value, true or false.

e Designational. When evaluated, these yield a label.

SIMPLE EXPRESSIONS

Simple expressions are of three types; arithmetic,
Boolean, and designational. Since arithmetic expressions
are components of the other two types, they are described
first.
SIMPLE ARITHMETIC EXPRESSIONS
An arithmetic expression is a sequence of real and integer
operands, separated by arithmetic operators, which when
evaluated yields a value of type real or integer.
The operands in an expression can be any of the following:

Unsigned number

Variable (simple or subscripted)

Function designator

A parenthesized arithmetic expression:

(exp)

Any of these standing alone is also an expression. Thus,
evaluation of an expression does not always require

performing arithmetic operations, but can be simply the
retrieval of the value of a number or variable.

60481600 C

An unsigned number represents its own value, and requires
no operations for evaluation. A signed number, on the
other hand, is considered not an operand by itself, but a
unary operator (+ or-) followed by an operand. Thus the
evaluation of a signed number requires the operation of
addition or subtraction of the unsigned number to or from
an implied zero. .

A unary operator cannot be immediately preceded by
another operator; the subexpression with the unary
operator must be parenthesized.

Invalid:

X /-y
Valid:

X | Y)

The operands in a simple arithmetic expression can be
preceded by unary operators or separated from each other
(in pairs) by binary operators. The unary operators are +
and -, and yield, respectively, the value of the number and
its negative. The binary operators are +, -, *, /, /[, **,
and t. The operations performed by these operators are
described in table 3-1.

All of the operations can have either real or integer
operands, except // (integer divide), which can only have
integer = operands. The operations *, +, and -
(multiplication, addition, and subtraction) are defined as
in mathematics. For all three, the result is type integer if
both operands are integers; otherwise, the result is type
real.

Unary + and - are treated like addition and subtraction
with an implied operand to the left equal to zero.

Example:
.2 *% 2

is evaluated as 0 - (2 ** 2), not as (-2) ** 2

/ (division) is also defined as in mathematics, but the
result is always type real. If one of the operands is an
integer, its value is converted to real before the division
is performed. A fatal error occurs if the divisor has a
value of zero, and the result is subsequently used. On a
CDC7600, CYBER70 -Model76, or a CYBER170
Model 176, a fatal error occurs as soon as the division is
performed.

// is integer division; both of its operands must be
integers. It represents integer division with truncation of
the remainder. 1//J is equivalent to the integer whose
absolute value is as great as possible without exceeding
the value of I/J.

3-1

TABLE 3-1. RULES OF OPERATION PRECEDENCE

Operatoti Operation Precedence Category
) e e
had Exponentiation .
] Exponentiation First
o Multiplication
/ Division (real result) Second Arithmetic
// Division (integer operands
and result)
+ Addition; unary plus .
- Subtraction; -unary minus Third
< Less than
< Less than or equal to
= Equal to .
_ Not equal to Fourth Relational
2 Greater than or equal to
> Greater than
- Not Fifth
A And Sixth
Vv Or Seventh Logical
- Implies Eighth
= Is equivalent to Ninth
If 1/J is positive, 1//J is less than or equal to I/J. If I/J is SAE1 * SAE2
neqgative, 1//J is greater than or equal to I/J. Division by
zero is not allowed. The result of integer division is of SAE1 / SAE2

type integer.
Example:

17//4 is equal to 4.
- 17//4 is equal to -4.
- 20//4 is equal to -5.

** (exponentiation) is defined as in mathematics; that is,
X**Y is XY, Some restrictions exist as to allowable
combinations of operands, both with regard to their type
(real or integer) and their value (positive, negative, or
zero). Table 3-2 shows the type combinations allowed for
base and exponent, depending on their value.
Combinations not allowed by the table are diagnosed with
a fatal error.

Association of exponentiation is to the left. That is,
X**Y*¥%7 js evaluated as (X**Y)**Z not as
X **¥(Y ** 7). If both operands of exponentiation are
integers, the result is type integer; otherwise it is type
real.
If SAEL is a simple arithmetic expression, and SAE2 is a
simple arithmetic expression not preceded by unary + or -,
then the following are simple arithmeti- - «pressions:

+ SAE2

- SAE2

SAE1 + SAE2

SAE1 - SAE2

3-2

SAE1l // SAE2
SAE1 ** SAE2 (same as SAF1{ SAE?2)
This syntax is summarized in figure 3-1.

If the second operand is preceded by a unary + or -, it can
appear in an expression if it is parenthesized. For
example:

A+(-2.0)
~(-B)

Evaluation of an expression depends on its form, subject
to the following rules:

1. An operand must be evaluated before the operation of
which it is a component can be performed.
Evaluation of a number follows directly’ from the
characters it comprises. Evaluation of a simple
variable involves retrieving its most recently assigned
value. Evaluation of a subscripted variable requires
first the evaluation of its subscript, which is in turn
an expression whose evaluation is subject to all these
rules; after the subscript is evaluated, the value of
the indicated array element is retrieved. Evaluation
of a function designator requires evaluation of its
actual arguments and execution of the specified
function procedure. Such execution can result in side
effects (that is, operations unrelated to the
computation of the result of the procedure); these
side effects might cause unpredictable results, as
explained below.

60481600 A

TABLE 3-2. TYPE COMBINATIONS ALLOWED FOR BASE-EXPONENT PAIRS

Exponent
Base Value: Value: Value:
zero negative positive
value: any
zero none none
value: real**integer . real**integer
. : : Jeke er . .
negative integer**integer real**integ integer**integer
Joky r
value: feal lgiege
ositive any integer**real any
4 real¥*¥real
Simple arithmetic expression:
O
Il primary II ﬁI primary ll

O, ¢ ® @? OO

Primary:

———{ variable }

—L unsigned number }

—l function designator

—@-—l arithmetic expression

O—

Figure 3-1. Syntax of Simple Arithmetic Expression

If a procedure is invoked by a function designator,
and an exit is made from the procedure by means of a
goto statement, evaluation of the expression
containing the function designator is abandoned, and
the value of the expression is undefined.

A parenthesized expression must be evaluated before
its value can be used in a larger expression.

60481600 A

In the following expression:

(A +B) *(C-D)

the two operands are parenthesized expressions.
Therefore, both A+B and C-D must be evaluated
before the multiplication is performed.

3-3

2. When two or more consecutive operations are
indicated, and the order of execution is not defined
by parentheses, the order in which the operations are
performed is defined by the precedence of the
operators. The operation with the highest precedence
is performed first. The precedence of the operators
is shown in table 3-1. :

Example:
In the expression:
A+B*C

two consecutive operations at the same level of
parentheses are indicated. -According to the
precedence of operators, the multiplication is
performed before the addition. Thus, the value
is the same as that of the expression:

A+(B*C)

If the programmer wants the addition to be
performed first, the expression can be rewritten:

(A+B)Y*C

In this case, rulel is applied and the
parenthesized expression is evaluated before the
multiplication is performed.

3. If two consecutive operations at the same level of
parentheses have the same precedence, the operation
to the left is performed first.

Example:
A*B/C

The multiplication is performed before the division.
The two cases in which different order of evaluation
of operators with the same precedence affects the
value of the result are integer division and
exponentiation.

Example:

13 // 6 |/ 2 is evaluated as (13//6)//2, which
equals 1, not as 13 //(6 /1 2), which equals 4.

Example:

2 #% 2 **% 3 is evaluated as (2 %*2)**3, which
equals 64, not as 2 ** (2 **3), which equals 256,

The preceding rules establish the interpretation of the
expression, so as to uniquely compute its mathematical
value. - They do not determine the order in which
operations are performed in practice. The compiler avails
itself of the commutative and associative laws of
arithmetic to reorder operations, as long as the reordering
does not affect the mathematical result.

Example:

(A+B)*(C-D)

The value of this expression is the same whether the
addition or the subtraction is performed first; therefore,
the compiler might perform either operation first. In
order to obtain the correct mathematical value, however,
the addition and the subtraction must be performed before
the multiplication.

If T1 and T2 are intermediate . results, this expression
might be computed in either of the following ways:

1. Tl:=A+B
T2:=C-D
RESULT := T1 * T2

2, Tl1:=C-D
T2:=A+B
RESULT := T1 * T2

When the mathematical result of evaluation of an
expression does not depend on the order in which the
operations are performed, the compiler might evaluate
the expression in any order that produces the correct
results. The compiler freely uses the associative and
commutative laws to reorder operations. If the results of
the program depend on a particular ordering of operations,
the program is undefined; the results might not be the
same each time the program is compiled. This situation
particularly arises when one of the operands of an
expression is a function, and execution of the function
produces results other than those necessary to compute
the value of the function designator. Such results are
known as side effects.

In the example shown in figure 3-2, because addition is
commutative, either A(3) or B(4) could be evaluated first;
therefore, the order in which the two strings are output
cannot be determined. (Output procedures are explained
in section 8.)

The sequence of statements shown in figure 3-3 might not
produce correct results, because the procedureF changes
the value of its argument, which is X in this case. If F X)
is evaluated before X (which is permitted according to the
commutative law), the expression might have a different
value.

Different orders of evaluation can also prbduce different
results because of accumulated rounding errors.

Exarnples of simple expressions are shown in table 3-3.

C:=A(3) +B (4
#REAL# #PROCEDURE#A(INT);
OUTSTRING (61,#(=FIRST LINE#)#);

;&ENIE);&;
#REAL# #PROCEDURE#B(INT2); .

OUTSTRING (61,£(+SECOND LINE#)%);

#END#

Figure 3-2. Order of Evaluation Example 1

60481600 C

Y = X + F(X)
#REAL# #PROCEDURE%F(A)
A:=1.2;

#END#

Figure 3-3. Order of Evaluation Example 2

SIMPLE BOOLEAN EXPRESSIONS

A Boolean expression yields a Boolean value (true or
false). Simple Boolean expressions use both relational and
Boolean operators. The operand values used in a
relational operation can be real or integer; mixing operand
types is acceptable. The operand values used in a Boolean
operation must be Boolean. Relations are constructed
from arithmetic expressions, and Boolean expressions are
constructed from relations and Boolean variables,
constants, and function designators.

Relations

A relation is a comparison between the values of two
arithmetic expressions. The result of the comparison is
either true or false.

The relational operators are shown in table3-l.
Relational operators have a higher precedence than any of
the logical operators, so that in a Boolean expression,
relations are evaluated first.

If SAEl and SAE2 are simple arithmetic expressions, then
the following are relations:

SAE1 = SAE2
SAEl - = SAE2
SAEl < SAE2
SAE1l < SAE2
SAE1 > SAE2
SAEl 2 SAE2

To evaluate the relation, the expressions SAEl and SAE2
are first evaluated. Then the specified comparison is
performed. If SAEl and SAE2 are in the specified
relationship to each other (SAEl is equal to SAE2, not
equal, less than, and so forth), then the result of the
relational operation is true; otherwise it is false.

Logical Operations

A logical operation is a truth-valued operation performed
on operands of type Boolean. The logical operators are
shown in figure 3-1. Logical operators have the lowest
precedence of all ALGOL operators, which means that
they are the last to be evaluated in any particular
expression. The truth tables ‘illustrating the effect of
these operations on all combinations of logical values are
listed in table 3-4.

A logical operand can be any of the following:
e Relation

e DBoolean value

e Simple or subscripted variable of type Boolean

TABLE 3-3. SIMPLE ARITHMETIC EXPRESSION EVALUATIONS

Expression Value
= — |

10 The integer number 10,

2%%(-16.0) Integer 2 raised to the -16. The result is type real.

N Current numeric value of the simple variable N (type must have been
declared to be real or integer).

N + 10 * CDL Value of CDL multiplied by integer 10, added to the value of N.

B(N,R+1,S) Value yielded by the procedure B when applied to the current values of the
parameters N, R+l, and S (B must have been declared to be a function pro-
cedure and must be assigned a value).

A[N+10*CDL] Current value of the array element (in array A) identified by the value of
the subscript expression that is inside the square brackets (A must have-
been declared to be an integer or real array).

1/(P/(2%%(~16.0)-A[N+10*CDL])) Integer 1 divided by the value of (P/(2%%(-16.0)-A[N+10*CDL])), which is
the value of P divided by the value of {2%%(~16.0)~A [N+10*CDL]) which is
the difference of the value of 2*%%(-16.0) and the value of A[N+10*CDL].

60481600 A

3-5

TABLE 3-4. LOGICAL VALUES YIELDED BY LOGICAL OPERATIONS

P Q —Q PAQ PvQ P—Q P=Q
TRUE TRUE FALSE TRUE TRUE TRUE TRUE
TRUE FALSE TRUE FALSE TRUE FALSE FALSE
FALSE TRUE FALSE FALSE TRUE TRUE FALSE
FALSE FALSE TRUE FALSE FALSE TRUE TRUE

Function designator of type Boolean
Parenthesized Boolean expression:
(bexp)
Any of these standing alone is a simple Boolean expression.

If SBE1 and SBE2 are simple Boolean expressions, then the
following:

SBE1 A SBE2
SBE1 \/ SBE2
SBE1— SBE2
SBE1 = SBE2

are also simple Boolean. expressions. If SBE3 is a simple
Boolean expression not preceded by the — operator, then
-SBE3 is a simple Boolean expression. The syntax of
simple Boolean expressions is shown in figure 3-4.

Example:
A%2,997<BAC [2,N]

For this expression to be valid, the variables A, B,
and N must be real or integer, and C must be a
Boolean array. The relation is evaluated first to yield
a value true or false, depending on whether the value
of B is greater than A*2.997 or not, respectively. For
the expression value to be true, both the relation and
the Boolean array element C[Z,N] must have values
of true; if either or both have the value false, the
expression value is false too. .

The — operator can appear adjacent to itself only with
intervening parentheses, as in the following constructs:

—6P)

6P
The — operator can appear adjacent to any other logical
operator, but only as the operator on the right, as in the

following constructs:

Pv=—zZz
—P="Z

3-6

The operators A, V, =, and — cannot appear adjacent to
each other. This corresponds to the conventional usage of
logical disjunction and conjunction.

Some simple Boolean expression evaluations are shown in
table 3-5.

SIMPLE DESIGNATIONAL EXPRESSIONS

A simple designational expression is simply a label or a
switch designator. No operator symbols are used.

A switch designator has the form:
switchid [subscript]

where switchid is the name of a switch and subscript is an
arithmetic expression. Switch designators look like
subscripted variables, except that, whereas a switch
designator can have only one subscript, a subscripted
variable can have more than one -subscript (when the
subscripted variable refers to a multidimensional array).

The subscript in a switch designator is an arithmetic
expression that reduces to an integer value in the rangel
ton, where n is the number of items in the switch
declaration list. The current value of the subscript
selects one of the designational expressions listed in the
switch declaration by counting these from left to right
until the count is the same as the subscript value.

Figure 3-5 shows the syntax for simple designational
expressions. Using designational expressions is discussed
in section 4, under the GOTO statement.

CONDITIONAL EXPRESSIONS

A conditional expression is an expression whose value is
one of two or more alternatives, depending on the value of
a Boolean expression.

The general form for conditional expressions is:

#IF# bexpr #THEN# simple expression #EL SE#
condexpr

where condexpr is either a simple or conditional

expression, and bexpr is a Boolean expression. The syntax
for conditional expressions is shown in figure 3-6.

The expression following #ELSE# must be the same kind
as the simple expression; that is, both must be arithmetic,
Boolean, or designational. The value yielded by the entire
expression is then of the same kind.

60481600 B

Simple Boolean expression:

o

\ [- L
D — Boolean primary |

O

| . 1
Boolean primary
L]

503

Boolean primary:

—-l Boolean variable Jl

——(#TRUE=)

—(#FALSE*)}

———-L Boolean function designator]—————-

——'I relation i

Relation:

‘—'<)'——I Boolean expression I—@—

O

]
|

—-—I simple arithmetic expression l——‘

——"‘I simple arithmetic expression I——‘

@#@@

Figure 3-4. Syntax of Simple Boolean Expressions

EVALUATING A CONDITIONAL EXPRESSION

Evaluating a conditional expression consists of selecting
one of two or more simple expressions and evaluating the
selected expression. Selection is based on the value of the
Boolean expression following the #IF# symbol. If the
Boolean expression is true, the value of the whole
expression is the value of the simple expression following

6041600 A

#THEN#, Otherwise, it is the value of the expression
following #ELSE#. Since both the Boolean expression and
the expression following #ELSE# can be conditional
expressions, evaluation might be in several stages.

Some conditional expressions and their values are shown in
table 3-6.

TABLE 3-5. SIMPLE BOOLEAN EXPRESSION EVALUATIONS

Expression -

Value

#TRUE#

8*R—1=§

—Q

8*R—=8=(—Q)

AABACADAE—R~-T

8*R1=S= (#IF# FLAG #THEN# Q #ELSE#1Q)

The logical value true.

Current logical value of the simple variable T (the type of T must
have been declared to be Boolean).

true if the current numeric value of the arithmetic expression S
is greater than or less than the current numeric value of the
arithmetic expression 8*R, false otherwise.

true if the current logical value of the simple variable Q is
false, and false otherwise.

true if the current logical value of the relation 8*R1=S is the
same as the current logical value of the logical expression (—Q),
and false otherwise.

true if the current logical value of the simple variable T is
true, or if the current logical values of T and of the logical
expression:

AABACADAE—R

are both false; and false otherwise. The current value of the
expression:

AABACADAE~R

is false if the current value of R is false and the current value
of the logical expression:

AABACADAE
is true. The value of the expression:

AABACADAE

is true if the current values of the simple variables A,B,C,D, and
E are all true.

true if the current logical value of the relation 8*R—=S is the
same as the current logical value of the conditional expression:

FIFAFLAG #THEN# Q #ELSE# —Q

and false otherwise.

EXPRESSION TYPE

a'I label identifier }
switch arithmetic
identifier expression

The type of a conditional expression depends on the types
of the simple expression and condexpr. If they are both
Boolean, then the type of the conditional expcession is
Boolean. If the simple expression is type real, then the
type of the conditional expression is real. If the type of
the simple expression is integer, then the type of the
conditional expression is that of condexpr: if condexpr is

() I designational expression real, the conditional expression is real; if condexpr is
9 P integer, the conditional expression is integer.

Figure 3-5. State Diagram for Simple
Designational Expressions

3-8

Example:
Given the following declarations:

B is type Boolean.

60481600 A

Boolean

——.—-—MIFae expression ——>< #THEN# ,L

simple
arithmetic
_ expression
simple
~={ arithmetic +ELSE+
expression conditional
arithmetic
expression
simple
Boolean
expression
simple e I
Boolean +ELSE#
expression conditional
Boolean
expression
simple
designational
expression
simple
—— designational #ELSE+
expression conditional
designational
expression

Figure 3-6. State Diagram for Conditional Expressions

TABLE 3-6. CONDITIONAL EXPRESSION EVALUATIONS

Expression
#IF# Q #THEN# N-1 #ELSE# N

#IF# Q<0 #THEN# S+3%*Q/A
#ELSE# F9(Q)

#1F# R<] #THEN# S>W #ELSE# A<C

#IF# A<O0 #THEN# U+V #ELSE+#
#1F# A*B>17 #THEN# U/V #ELSE+#
#IF+# K=Y #THEN# V/U #ELSE# 0

#IF# ABSC V AB>D #THEN# L17
#ELSE# 127

#IF# T #THEN# CAIRO
#ELSE# TOWN [#IF#¥<O~THEN#N
#ELSE#N+1]

Value

Value of the arithmetic expression N-1 if value of the
Boolean variable Q is #TRUE¥#; otherwise, the current value of N.

Value of the arithmetic expression S+3*%Q/A if the value of the Boolean
expression Q<0 is true; otherwise, the procedure F9 is called with
the value of Q as the argument.

Value of the Boolean expression S>W if the value of K is less than 1;
otherwise, the value of the Boolean expression A<C.

Value of one of the arithmetic expressions:

U+V

u/v

v/u

0 .
depending on whether the first Boolean expression (scanning from left
to right) that is found to have the value true is:

A<O

A*B>17

K=Y

none of the above
respectively.

The label L17 if the Boolean expression:
AB<C V AB>D
has a current value of true; otherwise, the label L27.

The label CAIRO if the current value of T is true; the label desig-
nated by the switch designator: :

TOWN [#I FAY<O#THENAVAELSE-AN+1]
if the current value of T is false.

60481600 A

S is type integer.

is real, even if the current value of B is true, so that
R is type real.

S (which is type integer) is selected. The integer
value of S, converted to real, is the value of the

the type of the conditional expression: conditional expression in this case.

#IF# B #THEN# S #ELSE* R

3-10 60481600 A

STATEMENTS

Statements describe the actions of an ALGOL program.
Since sequences of statements can be grouped together
into compound statements and blocks, which are also
statements, the definition of statement is recursive.
Also, since declarations enter fundamentally into the
structure of most statements, the definition of statements
in this section presumes that appropriate declarations
have already been made. (See section5 for declarations.)

Normally, the sequence in which statements are executed
is defined implicitly:s the statements in a program are
executed consecutively in the order in which they appear
in the program. However, the normal execution séquence
can be altered by any of the following statements:

e GOTO Defines its successor statement
explicitly.
e Procedure Causes the specified procedure to
be executed.
e Conditional Can cause specified statements to
be skipped.
e FOR Can cause specified statements to
be repeated.

Some ALGOL statements contain other kinds of
statements. The simplest statements, which do not
contain other statements, are:

e Assignment statements
e GOTO statement

[] Procedure statements

These statements are the first to be described in this
section. They perform some of the basic actions of any
program: giving quantities values, and unconditionally
altering the normal execution sequence. Later in the
section, the statements that contain other statements are
described:

o Compound statements and blocks
o FOR statements
e Conditional statements

These perform the more complex functions of grouping
statements, controlling repeated execution of groups of
statements, and conditionally altering the normal
execution sequence.

Dummy statements, which are written as zero or more
blank characters, perform no action and are generally
used to carry labels. A dummy statement, like any other
ALGOL statement, must be separated from a preceding
statement (if there is one) by a semicolon.

Since the last statement before the #END# symbol of a
block cannot be followed by a semicolen, a semicolon
immediately before an #END# symbol indicates a dummy
statement.

60481600 A

Any statement can optionally be labeled with one or more
labels in the following format:

label: label: ... label: statement

This also applies to statements that are components of
other statements.

Example:
In the program segment:
Az=l

L:

e WY

#GOTO# L;
#END#

the symbols:
L:

constitute a labeled dummy statement to which a
subsequent GOTO statement specifies that control is
to be transferred. The semicolon after # GOTO# L is
followed by another dummy statement.

ASSIGNMENT STATEMENT

An assignment statement gives a value to one or more
variables and procedure names. The syntax is shown in
figure 4-1. The statement has either of the following
forms:

dest := expr
dest := assignment statement

where ‘dest, the destination of the assignment, is a
variable (either simple or subscripted) or a procedure
name; and expr is an arithmetic expression if the type of
dest is real or integer, and a Boolean expression if dest is
of type Boolean. A destination can be a procedure name
only within the body of a function procedure having that
procedure name.

The second form allows multiple assignments such as:
A:=B:=C:=D:=0

where all of the destinations in the statement must be the
same type.

The assignment operator := is not to be confused with the
relational operator = (the equal to operator).

Examples:

A := B/C-V-Q*S
SFV,1+2]:= 3-ARCTAN(S*ZETA)
Vi=Q>UAZ
N:=N+1
S:=P[0] :=N:=N+1+S
" Ai=AF£FLG1=FLG2#THEN# B/C-V-Q*S #ELSE* 0

arithmetic variable I———

———l arithmetic procedure identifier I—-—
———I Boolean variable }-————-

__—I arithmetic expressi(M—

‘\ L= ,‘ I Boolean expressionJ——

-——I Boolean procedure identife;l—-—

Figure 4-1. Syntax of Assignment Statement

The process of assigning the new value proceeds as follows:

1. Any subscripts occurring among the destinations of an
assignment statement are evaluated in sequence from
left to right in the statement.

2. The arithmetic or Boolean expression (the right part
of the statement) is evaluated.

3. The value of the expression is assigned to all of the
destinations, with any subscripts that appear in the
left part list having the values that were obtained in
step 1. If the type of the right part expression
differs from that of the destination (the left part),
and both are arithmetic, the type of the expression
value is converted to that of the destination.
Rounding is performed on conversion from a real to
an integer value. The result of rounding is the largest
integral quantity not exceeding n+0.5, where n is the
value of the expression. That is, the value is rounded
to the nearest integer. For example, 2.8 is rounded
to 3, and 3.5 is rounded to 4; -3.5, however, is
rounded to -3.

Example:

The statement:
N:=A[N]:=(N+1)*100

is evaluated 'as follows. Suppose that the current
value of N is0. Then the left part list refers to array
element A[0]. The expression is evaluated to 100,
which is then assigned as the new value of the array
element A[0] and as the new value of N.

Example:
The statement:

M:=N:=A:=B[0):=D

assigns the value O to each of M, N, A, and B[D]. In
this case, the set of assignment statements:

M:=0; N:=0; A:=0; B[0):=0;

would have a result identical to that of the multiple
assignment.

A multiple assignment statement, however, does not
always specify the same actions as would a separate
assignment statement for each of the destinations. The
expression of the right side of the assignment statement is

4-2

evaluated only once in a multiple assignment, and more
than once if separate assignments are made.

Example:

Assuming that in every case, N initially has a value
of 0, the assignment statement:

N:=A[N]:=(N+1)*100

results in a value of 100 for N and for A[0].
However, the corresponding pair of assignment
statements:)

N:=(N+1)*100;
A[N]:=(N+1)*100;

would assign a value of 100 to N as before, but this
time would assign a value of 10,100 to A[100].

GOTO STATEMENT

A GOTO statement interrupts the implicit execution
sequence, causing control to transfer unconditionally to a
labeled statement. The syntax is shown in figure4-2. In
reserved word mode, the characters GOTO must be
entered with no intervening blanks. The GOTO statement
has the form:

#GOTO+# designational expression

H#GOTOﬂ——i designational expression]——-

Figure 4-2. Syntax of GOTO Statements

The labeled statement whose label has the value of the
designational expression is the next statement to be
executed. Control does not return to the statement
immediately following the GOTO statement unless
another GOTO statement is executed that transfers
contro! to that point. Therefore, if the statement
following the GOTO statement is to be executed, it must
be labeled.

Examples:
#GOTO= EXIT

#GOTO# SWITCH [M+1]
#GOTO# L

60481600 B

Labels are local to a block (as explained under Compound

Statements and Blocks in this section), so no GOTO

statement can transfer control from outside a block into
the block. A GOTO statement can, however, lead from
outside into a compound statement (unless the compound
statement is a procedure body or the statement part of a
FOR statement).

For example, in the program segment shown in figure 4-3,
when the statement #GOTO+# L is executed, control
passes unconditionally to the statement N:=N+1 (which is
part of a compound statement) without the Boolean
expression X<2 being evaluated. Execution proceeds (the
next statement to be executed after the compound
statement is R:=A[N]) until it reaches the statement
#GOTO# M. At that point, control passes unconditionally
back up to the statement R:=0 so that next time execution
reaches the IF statement, the entire IF statement is
evaluated.

#GOTO# L;
_M: R:=0;

£IF£X<2 #THEN#
#BEGIN#
L: N:=N+1;

#END#;
R:=A[N];

£GOTO% M;

Figure 4-3. Branch Into a Compound Statement.

PROCEDURE STATEMENT

A procedure statement is written as a procedure identifier
optionally suffixed by an actual parameter list. The
statement is used to invoke execution of .a procedure
body; control is passed to the procedure named in the
procedure statement. If the called procedure exits
through the final #END%, contro! returns to the statement
immediately following the procedure statement. If the
called procedure exits through a GOTO statement, control
is transferred to the label referenced in the GOTO
statement.

Procedure statements are described in detail in section 6.

COMPOUND STATEMENTS AND BLOCKS

ALGOL enables the user to group any number of
statements and declarations, precede the group with &
#BEGIN# symbol, follow it with an #END# symbol, and
then use this group as a single statement wherever zn
ALGOL statement is allowed. The group is called a block

-if it begins with declarations; otherwise, it is called a

compound statement. The syntax of a compound
statement is shown in figure 4-4; the syntax of a block is
shown in figure 4-5.

()
o/
O—(#BEGINA)] statement H-w{ 4END# }—

Figure 4-4. Syntax of Compound Statements

A compound statement has the form:

#BEGIN#s; 85 . . . 55 s #END#

where s is any kind of ALGOL statement, including
possibly another compound statement or a block. A block
has the form:

#BEGIN#d; d; . .. d; d; 55 85. . .55 s #END+#

where d is a declaration, and s is any kind of ALGOL
statement, including possibly another block or a compound
statement. A block or compound statement must contain
at least one statement, although that statement can be a
dummy statement. A block must contain at least one
declaration. Semicolons must be used to separate the
statements in a block or compound statement containing
two or more statements. Semicolons can precede the
#END# symbol, but are not required. A semicolon must

- follow an #END+# symbol unless it terminates a program,

or is followed by an #END# or #ELSE#,

Examples of compound statements:

#BEGIN+# A:=A+2; # GOTO# R #END+#
#BEGIN# A:=B #END+

The example in figure4-6 shows a block containing a
compound statement. The compound statement begins on
line 4 and ends on line 7.

#BEGIN=#

()
U

declaration —G

statement

Figure 4-5. Syntax of Blocks

60481600 C

4-3

1. +#BEGIN# #REAL# W; #INTEGER# | K;

2. #FOR# 1:=1 #STEP# 1 #UNTIL# N #DO+

3. #FOR# K:=1+1 #STEP# 1 #UNTIL# N #DO#
4. #BEGIN= W:=A [I,K];)

5. ALK :=A[K,I];

6. A [K,1]:=W .

7. #+END#

8.

#END# -

Figure 4-6. Block Example

Blocks have a special status among ALGOL statements in
that blocks define the scope of identifiers by means of the
declarations at the head of every block. That is, the
quantity to which an identifier refers depends on the
static block-structure of the procedure in ‘which it is
~used. The block in which an identifier declaration
appears, along with any other blocks contained within that
block, but not including any inner blocks in which the
identifier is redeclared, is the scope of that identifier.
Outside of that block, the identifier has other meanings (if
declared in more inclusive blocks) or else no meaning at
all.

The identifiers that are used inside a block and which have
been declared at the beginning of that block are said to be
local to the block. This means two things:

e The quantity referred to by a local identifier has no
existence outside of the block.

e Any quantity represented by this identifier outside of
the block is inaccessible inside the block.

Identifiers, other than those representing labels, that are
used inside the block, but which have not been declared at
the beginning of the block, are said to be nonlocal to the
block. This means that the quantity referred to by a
nonlocal identifier represents the same quantity inside the
block and in the level immediately outside it. (The
concepts of local and nonlocal to a block apply only to
blocks, and not to compound statements.)

Since a statement in a block can itself be a block, the
concepts of local and nonlocal te a block are recursive,
An identifier that is nonlocal to block A may or may not
be nonlocal to the block B in which A is one statement.

In example A of figure 4-7, the identifier A referred to in
the assignment statement is the variable local to the inner
block, BLOCK2. This variable does not exist in the outer
block, BLOCK]. .

In example B of figure 4-7, the variable A referred to in
BLOCK2 is nonlocal to BLOCK2 but local to BLOCKI.
Therefore, the assignment statement assigns a value to
the variable declared in BLOCK1.

In example C of figure 4-7, a variable named A is declared
in BLOCK1. Then, when BLOCK2 is entered, another
_variable with the same name is decl!sred. The previous
declaration ceases to have any effect, .nd any references
to A, such as the one in the assignment statement A :=14,
are to the variable declared in BLOTK2, not to the
variable declared in BLOCK1. When 3LOCK2 is exited
through the #END+# symbol, the previous declaration of A
becomes effective again, and the vari.ble referenced in
the assignment statement A :=25 is the variable declared
in BLOCK1.

4-4

(® BLOCKI: +#BEGIN# #REAL# X;

BLOCK2: +#BEGIN# #INTEGER+ A;
A:=12;

+#END+#

#END+#

BLOCK1: #BEGIN# #INTEGER# A;

BLOCK2: #BEGIN# #REAL+ X;
A:=13;

#END#

#END#

(© BLOCKI: #BEGIN# #INTEGER# A;

BLOCK2: #BEGIN# #INTEGER# A;
A:=14;

+END#
A:=25 i
#END+

Figure 4-7. Nested Block Example

Nonlocal identifiers representing labels behave as though
they were local identifiers. A label identifier is implicitly
declared at the beginning of the smallest bleck in which
the label identifier appears as a statement label (that is,
appears suffixed with a colon in front of a statement).
Figure 4-8 diagrams three control structures involving
blocks (represented by the rectangles) and GOTO
statements. :

In block diagram A, the GOTO statement in the outer
block transfers control to the statement labeledL in the
outer block, while the GOTO statement in the inner block
transfers control to the statement labeledlL in the inner
block.

In block diagram B, the GOTO statements in the outer
block and the inner block both transfer control to the
statement labeledl. in the outer block.

In block diagram C, the GOTO statement in the inner

block transfers control to the statement labeledl in the
inner block, but the GOTO statement in the outer block

60481600 A

L =GOTO=L

#GOTO# L

#GOTO# L

#GOTO# L

L:
#GOTO# L

#GOTO+# L

Figure 4-8. Three Block Structures

produces an error. The label in the inner block has a
scope limited to the inner block, and has no meaning
outside the inner block.

Certain syntactic structures in ALGOL are said to act like
blocks. This means that the scopes of the labels involved
in these structures are limited. In particular, the
statement part of a FOR statement and the procedure
body of a procedure (when the body is not a block) act as
if they were bracketed by #BEGIN# and #END+ as far as
the scope of labels is concerned. Further explanations are
given in the discussions of the FOR statement and
procedure declarations.

A program is a block or a compound statement.

FOR STATEMENT

A FOR statement causes a specified statement to be
executed repeatedly. The syntax is shown in figure 4-9.
Any FOR statement consists of two parts:

° A FOR clause

e A statement

The FOR clause part immediately precedes the statement
part. It contains specifications for controlling the
iterative execution of the statement part. The statement
part of the FOR statement can be any kind of statement,
including another FOR statement. The statement part is
always treated as though it were a block even if it does
not have the form of one (this affects the scope of labels
that appear in the statement part).

The form of the FOR clause is:
#FOR# var:=forlist #D0+

where var (called the control variable) is a real or integer
simple variable, and forlist is a list of one or more
elements each of which has one of the forms:

aexpr
aexpr #STEP+# aexpr2 #UNTIL# aexpr3
aexpr #WHILE+# bexpr

where aexpr, aexpr2, and aexpr3 are arithmetic
expressions and bexpr is a Boolean expression. The list
elements of forlist must be separated by commas.

Examples:

1. #FOR# L=IVAL #DO%* A[1]:=B[I]

2, #FOR# L=IVAL, IVAL+l, IVAL+2, IVAL+3 #DO#
AlL1] :=B [1,I]

3. #FOR#K := K*¥2 #WHILE#K N=#DO+

#FOR# J= 1 #STEP# 1 #UNTIL=N #DO#
A[K,d] :=B[K,J]

MULTIELEMENT FORLIST

A FOR statement containing n list elements in the forlist
part of the #FOR+# clause has the same meaning as n FOR
statements, each having a forlist consisting of only one of
the n list elements. For the correspondence to be exact,
the order of the n statements would be dictated by the
order of the n list elements, and the n statements would
have to be a block.

Example:
The FOR statement:

#FOR# I := A,B,C #DO+ statement

simple e arith
- variable exp #STEP#
#WHILE#

arith
exp

arith
exp

Boolean expression

arith exp = arithmetic expression

Figure 4-9. Syntax of FOR Statements

60481600 A

4-5

_and the compound statement:

#BEGIN#
#FOR# I:=A #DO# statement;
#FOR# I:=B #DO+ statement;
#FOR# I:=C #DO+ statement;
#END#

perform the same actions, assuming the statement is
the same in each case.

EXPRESSION FORLIST ELEMENTS
A FOR clause of the form:
#FOR# ident:=aexpr #DO#

performs a single assignment of the arithmetic expression
aexpr to the variable ident. This form initializes the
variable ident before the statement part is executed, The
control variable ident may or may not occur in the
statement part.

The compound statement:

#BEGIN+

ident:=aexpr; statement

#END+#
and the FOR statement:

#FOR# ident:=aexpr # DO+ statement
are effectively the same. With this type of FOR
statement, the statement part is executed once for each
execution of the FOR statement.
Example:

The FOR statement:

#FOR# I:= IVAL DO+ A[l]:=B[I1]
first assigns the value of IVAL to I, then assigns the
value of array -element B[I] to the array

element A[I). Suppose that the value of IVAL is10.

Then, the value of I becomesl0 and the value of
A[10] becomes that of B[10].

STEP/UNTIL FORLIST ELEMENTS

A FOR statement of the form:

#FOR# ident := aexprl #STEP# aexpr2
#UNTIL # aexpr3 DO+ statement

causes the statement part of the FOR statement to be
performed zero, one, or more times with ident typically
having a different value each time. The simple variable
ident may or may not occur in the statement part or in
aexpr. ‘Execution of a FOR statement containing this kind
of FOR clause causes the following sequence of operations:

1. The variable ident is assigned the value of aexprl.

2. The value of aexpr2 is computed and assigned to a
temporary variable; for example, tvar.

3. The identifier ident is compared to aexprB; The
following expression is evaluated:

(ident - aexpr3) * SIGN (tvar) £ 0

4-6

where SIGN is a function that returns -1 for negative
values, +1 for positive values, and O for zero values.
When tvar is positive, the expression is true if ident
does not exceed aexpr3. When tvar is negative, the
expression is true if ident is not less than aexpr3.
When tvar is zero, the expression is always true. If
the expression is true, the statement part of the FOR
statement is executed. If the expression is false, the
statement part is not executed, and control passes to
the statement after the FOR statement.

5. The value of tvar is added to that of ident (that is,
ident:=ident+tvar).

6. The sequence of operations repeats starting at step 3.

Example:

#FOR# I 3= 3 £#STEP+ -6
UNTIL -16 #DO+# statement

The statement is executed with I equal to 3, -3, -9,
and -15.

The statement part of a FOR statement is permitted to
change the value of the control variable. This feature can
be used to prematurely terminate the execution of the
loop.

Example:

#REAL# XYZ,A;

#FOR# XYZ := 3.2 #STEP# 1.57
#UNTIL# 13.69 #DO+
#IF# BOOL # THEN+ PERF (BOOL,A)
#ELSE# XYZ 3= 19.79

In this example, the loop continues executing as long as
BOOL is true and XYZ does not exceed 13.69. If PERF
changes BOOL to false, however, then the assignment
statement is executed, and the next time XYZ is tested it
exceeds 13.69, ending execution of the FOR statement.
Note that XYZ is incremented before being tested, so that
the value of XYZ after the FOR statement is 21.36, not
19.79.

Upon. completion of the FOR statement, either through a
GOTO statement or by reaching the terminating
condition, the control variable ident retains the last value
assigned to it at step5. It is possible for the statement
part of a FOR statement containing this kind of FOR
clause never to be executed. Also, if aexpr2 (the step
value) is0, the statement executes endlessly unless a
GOTO statement transfers control out of the statement.

Example:
The FOR statement:

#FOR# J:=1 £STEP+ 1
#UNTIL+ 4 DO+ A[1,3}:=8[1,3]

performs the following series of assignments:

&=1;A[1,1] :=B[1,1];
X=2;A[1,2] :=B[1,2];
J=3;Al1,3} :=B|1,3];
J:=4;A[1,4] :=B|1,4];
J=5;

60481600 A

After execution has'completed, J has a value which is the
sum of the step value and the terminating value given in
the FOR clause.

WHILE FORLIST ELEMENTS
A FOR statement of the form:

#FOR# ident := aexpr
#WHILE# bexpr #DO# statement

causes the statement part of the FOR statement to be
performed zero, one, or more times. The control variable
ident may or may not occur in the statement part or in
bexpr. Execution of a FOR statement containing this kind
of FOR clause causes the following sequence of operations:

1. The variable ident is assigned the value of aexpr.
2. If the current value of bexpr is false, the statement

part of the FOR statement is not executed, and
control passes to the statement following the FOR

statement. If the current value of bexpr is true, the

statement part of the FOR statement is executed.
The statement can change the value of ident.

3. The sequence of operations repeats starting at step 1.

Upon completion of the FOR statement, either through a
GOTO statement or by reaching the terminating
condition, the control variable ident retains the last value
assigned to it. Either the value of bexpr must always be
false whenever execution of the FOR statement begins (in
which case the statement part would never execute), or
else at some point during execution of the FOR statement
it must become false. Otherwise, a FOR statement
having a WHILE clause could not terminate normally; a
termination by means of a GOTO statement would be
required.

Example:
The FOR statement:
#FFOR# K=K *¥2 #WHILE# KEM#DO+
#FOR# J:=1 #STEP+# 1
#UNTIL# N#DO+# A[K,J]:=B[K,J];
performs the following series of k assignments, if when

execution begins, K has a value of 1, N has a value
of 2, and M has a value of 10:

K:=2; J=1; A[2,1] :=B[2,1] ;
J=2; A[2,2] :=B[2,2] 3 J=3;
Ka=4; :=1; A[4,1] :=B[4,1] ;
X=2; A[4,2] :=B[4,2]; I3=3;
K:=8; J=1; A[8,1]:=B[8,1];
J:=2; A[8,2] :=B[8,2] ; J:=3; K:=16;

Example:

If the initial value of the Boolean variable FLAG is
true, then the FOR statement:

#FOR+# RESULT:=0 #WHILE+# FLAG #DO+
#BEGIN#
PROC(RESULT,FLAG); OUTINTEGER
(61,RESULT)

#END+#

60481600 B

causes the variat:le RESULT to be repeatedly set to0,
and the procedure named PROC to be repeatedly
called until PROC alters the value of FLAG to false.
Each time that control returns from PROC, the
variable RESULT is output, reset to 0, and passed
again to PROC. The variable FLAG must be passed
by name, as explained in section 6; if it is passed by
value, this FOR statement can never complete
executing, because PROC cannot alter the value of
FLAG. Loop execution could also be terminated by a
GOTO statement within PROC. :

THE STATEMENT PART

The statement part of a FOR statement can be any kind
of ALGOL statement, including another FOR statement.

The statement part might not, in some cases, be executed
at all. The test for the terminating condition of a WHILE
or STEP clause is performed before the statement part
has been executed even once. If the condition is met at
that time, the statement part is not executed. The
statement part is always executed if the FOR clause has
the form which merely initializes the control variable.

:The statement part is treated like a block (whether or not

it has the form of one), so that the labels of the statement
part itself and of labeled statements in the statement part
have no meaning outside of the statement part. Hence, a
GOTO statement can transfer control out of, but-not inteo,
a statement part. The fact that the statement part is
treated like a block does not affect the scope of any other
identifiers appearing in it.

CONDITIONAL STATEMENT

A conditional statement either dynamically selects the
execution of a statement from among a group of two or
more statements, or else dynamically selects whether or
not a specified statement is to be executed at all. The
selection depends on the current value of one or more
Boolean expressions. The IF statement has either of the
following forms:

#IF# bexpr # THEN+# statement 1
#IF# bexpr # THEN# statement 2+ ELSE# statement 3

where bexpr is a Boolean expression; statement 1 is any
statement except another conditional statement;
statement 2 is any statement except a conditional or FOR
statement; and statement 3 is any statement. The first
form allows a selection between performing and not
performing statement 1. The second form allows a
selection - between statement 2 and statement 3, which
might be another conditional statement.

Figure 4-10 shows the syntax of conditional statements.

FIRST FORM
Evaluation of a statement of the for‘m:
#IF+# bexpr # THEN+ statement 1
causes the Boolean expression bexpr to be evaluated. If
the value of bexpr is true, statement 1 is executed. If the

value of bexpr is false, statement 1 is not executed and
control passes to the next statement.

4-7

Boolean
[- expression | (iTHEN;&)

any statement except
another IF statement

any statement except

an IF statement or a #ELSE#)= statement

FOR statement

Figure 4-10. Syntax of Conditional Statements

Example:
In the program segment:

#IF# X>0 #THEN= N:=N+10;
A[N]:=NUM=30.0;

the Boolean expression X>0 is evaluated. If the value
of X is greater thanO0, N is incremented by 10 before
the array A is accessed in the next statement. If the
value of X is less than or equal to0, N retains the
value it had before the IF statement was evaluated;
and control passes to the next statement, which
assigns a value to the Boolean array element A[N].

Although statement 1 cannot be a conditional statement,
there is no prohibition against its being a compound
statement (or block) that contains a conditional statement
as its only statement element.

Example:
The statement:

#[F# BOOL1 #THEN=
L:#BEGIN#
IF# BOOL2 # THEN=
:=B
#END=#

is syntactically correct. If the compound statement
were not labeled, a simpler way to describe the same
actions would be:

#IF# BOOL1ABOOL2 #TH“EN#= A:=B

Bexpr is not evaluated when statement 1 is labeled, and a
GOTO statement transfers control to it.

If statement 1 is a FOR statement, it is treated as a block
even if it does not have the form of one.

SECOND FORM

Conditional statements of the second form are similar to
conditional expressions: both contain the symbols #IF#,
#THEN#, and #ELSE+#. The difference between the two is
that the conditional objects of a conditional statement are
statements to be executed instead of expressions to.be
evaluated. The Boolean conditions in both cases are
" evaluated only at execution time and the selection of the
operations to be performed is made then.

Evaluation of a statement of the form:
#HF# bexpr # THEN# statement 2 #ELSE+ statement 3

causes the Boolean expression bexpr to be evaluated.
Depending on the value of bexpr, either statement 2 or
statement 3 is executed, but not both. If bexpr is true,
statement 2 is executed and, unless statement 2 contains
a GOTO statement, control then passes directly to. the
statement that follows the conditional statement. I[f
bexpr is false, statement 3 is executed instead of
statement 2. Statement 3 can be any type of statement,
including another conditional statement. Statement 2 can
be any type of statement except a conditional statement
or a FOR statement.

Example:

In the program segment:

#IF#= NV
#THEN# Z:=N+M
 #ELSE# Z:=Nj
Alz]‘::NUM-30.0; i

the Boolean expression N<V is evaluated. If the value
of N is less than or equal to the value ofV, the
assignment Z:=N+M: is performed and control passes
to the- assignment statement A[Z]:=NUM-30.0. If,
instead, the value of N is greater than that of V, N is
assigned to Z and control passes to the next
statement. '

Although statement 2 can be neither a conditional
statement nor a FOR statement, there is no prohibition
against its being a compound statement (or a block) that
contains either a conditional statement or a FOR
statement as its only statement.

Example:
The statement:

#IF# BOOL1 £ THEN=
#BEGIN##FOR# Q:=Q+L
+WHILE# A[Q]>0
#D0# A[Q]:=N/A[Q]
#END+
#ELSE# GOTO EXIT

is syntactically correct. Omitting the #BEGIN# and

#END# symbols around the FOR statement would
yield an incorrect statement.

60481600 C

DECLARATIONS

A

Declarations serve to define properties of quantities
(arrays, switches, procedures, and simple variables) and to
associate the quantities with identifiers. Every quantity
used in a program must be explicitly declared within the
program, except that labels and quantities declared in the
standard circumlude are implicitly declared, while formal
parameters must be described in the specification part of
the procedure heading (section 6).

Declarations appear only at the head of a block. (See
Compound Statements and Blocks in section4.) The scope
of a declared quantity is the block at the head of which
the declaration appears, minus any inner blocks in which
the identifier is redeclared. The quantity is said to be
local to that block. Outside of the block in which a
declaration appears, that declaration is irrelevant. In
effect, the quantity does not exist outside of the block,
although its. associated identifier can appear outside of
the block with a different meaning, since any identifier
can be declared in any block. No identifier can be
declared explicitly or implicitly more than once at the
head of a block.

During.- execution of a block, when the block is entered
through the #BEGIN#, all identifiers declared for the
block assume the significance implied by the nature of the
declarations given. If these identifiers have already been
declared outside, they are for the time being given a new
(local) significance. At the time of an exit from a block
through an #END# symbol or by a GOTO statement, all
identifiers - declared.- for the block lose their local
significance. ~ If these identifiers had already been
declared outside, they regain their former significance.

If a declaration is preceded by the #OWN=% symbol, then
upon a reentry into a block, the values of quantities
declared own have the values they had at the last exit
from the block. The values of local quantities not
declared own are undefined at reentry. The values of
quantities nonlocal to the block are unchanged by entry
into or exit from the block. Own variables are initialized
to zero if they are arithmetic, and false if they are
Boolean.) : !

The ALGOLS5 control statement option DB=P (section1l)
and the execution control statement optionZ (section13)
can be used to initialize non-own variables (including
array elements). o '

Not every identifier within an inner block of the program
need be declared at the head of that block. Those that

are not have the same meanings that they possess outside
of the block.

TYPE DECLARATION

A type declaration must be used to specify:

e The type of a simple variable (integer, real, or
Boolean)

o The identifier of the simple variable in that block

60481600 C

The variable can have only one type in any particular
block. In the declaration, the variable is referred to by
the name that must be used to refer to it throughout the
block. .

The form of a simple variable type declaration is any of
the following:

=REAL# list
#INTEGER# list
#=BOOLEAN= list
=OWN==REAL# list
#OWN#==INTEGER# list
#OWN==BOOLEAN= list

where list is one or more single variable identifiers
separated by commas. :)

The symbol #*REAL# indicates that any identifier in the
list following it can only assume a real value (it cannot be
given the value true, for instance). The symbol
#INTEGER# indicates that any identifier in the list
following ‘it can only assume an integral value. The
symbol #BOOLEAN# indicates that any identifier in the
list following it can only assume a value of true or false.

EXamples:
#INTEGER=* X
“REAL* A, BOOBY, CATS
#OWN= =INTEGER= K, M, W

#BOOLEAN= TRUE, F, FLAG
(The variable TRUE is independent of the symbol
#TRUE# unless reserved word mode has been
specified by the RES option on the ALGOL5
control statement, in which case TRUE cannot
be used as an identifier.)

Figure 5-1 shows the syntax of type declarations.

The symbol #OWN# indicates that any identifier in the
list following will upon -reentry into the block retain
whatever value it possessed at the last exit from the
block. Any variable declared own is also initialized to
zero. (for types integer ‘and real) or false {for type
Boolean), at the first entry to the block.

Example (in reserved word: mode):

BEGIN :
OWN INTEGER §
T:=T+1;)
IF I>N THEN GO TO BYE
END

This example: consists of one block that increments the
value of 1 by 1 each time the block is executed. The first
time the block is entered, I has the value zero when
execution reaches the statement I:=I+l, and the valuel
when the block ends. The second time the block is
entered, I has the valuel on entry and 2 on exit, and so
forth. .

5-1

— G

' : N\

O
N\

l:lL ’ \ #INTEGER#)

#BOOLEAN=+

identifier

Figure 5-1." State Diagram for Variable Declarations

ARRAY DECLARATION

An array declaration must be used to specify:
e The type of an array

e The identifier of the array in that block
ob The number of dimensions of the array

e The bounds of the array (that is, the size of each
* dimension)

From these specifications the number of elements in the
array and the order of subscripted variables identifying
the array elements can be derived. The array can have
only one type in any particular block. In the declaration,
the array is referred to by the name that must be used to
refer to it throughout the block.

The form of an array declaration is one of the following:

- #ARRAY# list
type #ARRAY# list
#OWN=* type #ARRAY# list
#OWN+# #ARRAY# list

where type is the type of the array, real, integer, or
Boolean, and list is one .or more items of the following
form, separated by commas:

names [limits]
Names is a list of one or more array identifiers separated
by commas, and limits is a list of pairs of arithmetic
expressions giving the upper and lower bounds of each
dimension of the array. Limits has the form:

low:high, low:high, . . . , low:high

" where low is the lowest value and high is the highest value

that a subscript in the corresponding position in a
bracketed subscript list can have. The values of all bound
pairs are evaluated once at each entry into the block. The
maximum absolute value for a lower or upper bound is
229 .1 (=536 870 991).

The number of pairs in the bracketed list is the number of
dimensions in the array. The first pair gives the bounds
for the first dimension, the second pair for the second
dimension, and so forth.

If no type is given in the declaration, real is assumed.
Example:
The following declarations are identical in effect:
+REAL# #ARRAY# M[2:20]
#ARRAY# M 2:20
Figure 5-2 shows the syntax of array declarations.

If the array declaration is immediately preceded by a
comment of the following form:

#COMMENT # #VIR TUAL#;

then all the arrays declared are assumed to be virtual
arrays. The comment directive only applies to one array
declaration; thus, either all the virtual arrays in a block
must be declared in the same declaration, or the same
comment must precede each declaration of a virtual
array. Virtual arrays are discussed in section 2, under
Arrays.

Virtual arrays cannot be declared to be own arrays,
regardless of the setting of the V control statement option.

#REAL#

#INTEGER# -—@ARRAY;#)

identifier

{)

U/
f[\ arithmetic ‘@_1 arithmetic i
\/ expression expression

#BOOLEAN+

Figure 5-2. State Diagram for Array Declarations

5-2

60481600 B

The array is undefined when the value of any upper bound
is less than the value of the accompanying lower bound.
The comment directive #CHECKON+# can be used to
chsack that array references are within bounds (see section
10).

When more than one array name precedes a bracketed list
in an array declaration, the dimensions apply to each of
the arrays in the list. The type and own specifications
apply to every array in the declaration.

Example:
The declaration:
#ARRAY=# A, B, C[7:N, 2:M], S[-2:10]

specifies the properties of four arrays: A, B, C,
andS. All four arrays are type real. A, B, and C
have two dimensions, with subscripts ranging from 7
to N and from 2 to M, respectively; S has one
dimension, with subscripts ranging from -2 to 10.
None of the arrays is an own array.

Example:
The declaration:
#OWN+ #BOOLEAN#* *ARRAY= STOP[1:3],
FLAG, SWITCHES 0:15

specifies. the properties of three arrays: STOP,
FLAG, and SWITCHES. All three arrays are Boolean
and own, and have one dimension. The subscripts for
STOP range from 1 to3, and for FLAG and
SWITCHES from 0 to 15.

Example:
The declaration:

#REAL# #ARRAY+# Q[1: #IF# C<0
#THEN+ 10.3 #EL SE+ 20.6]

specifies the properties of an array Q. The array is
real and non-own, with one dimension. The lower
subscript bound is 1, and the upper bound is either 10
(rounded from10.3) or 21 (rounded from 20.6),
depending on whether or not C is negative.

The expressions that define the upper and lower bounds of
the dimensions of an array must not include any identifier
that is declared, implicitly or explicitly, in the same block
head as the array. Also, the expressions that define the
bounds of an own array must be integer numbers.

The relative location of a subscripted variable within an
array can be determined from its subscript and the array
declaration. Table 5-1 shows the relative offset for a
given subscripted variable when the array declaration is
shown. The table shows the offset for one, two, and three
dimensions; the case for a higher number of dimensions
can be calculated inductively. For the sake of simplicity,
the table assumes that all subscripts and lower and upper
bounds are integers. The offset is the ordinal of the array
element; thus, the offset of A[7] is7 when the declaration
is A[1:10].

SWITCH DECLARATION

A switch declaratibn must be used to specify:
e The identifier of a switch in the block

® The switch elements and their sequence

The switch is referred to in the declaration by the name
that must be used to refer to it throughout the block at
the head of which the declaration appears.

The form of a switch declaration is as follows:
#SWITCH=# switchid := list

where switchid is a switch identifier, and list is one or
more designational expressions separated by commas. The
list of designational expressions is the switch list for
switchid. One switch is defined per declaration; to define
several switches, several declarations need to be made. A
switch cannot be declared own.

Example:

The declaration:

#SWITCH=+# TRAINS := SOUTH, NORTHEAST,
MIDWEST

specifies that the switch named TRAINS has three
elements. The switch designator SWITCH[1] has the
value SOUTH; SWITCH|[2] has the value
NORTHEAST; SWITCH[3] has the value MIDWEST;
SWITCH[4] and SWITCH[O] are undefined.

Figure 5-3 shows the syntax of switch declarations.

A designational expression in the switch list is evaluated
when a switch designator identifying one of the
expressions is evaluated during program execution. The
current values of any variables in the expression are used.

TABLE 5-1. RELATIVE OFFSET OF SUBSCRIPTED VARIABLES

. Subscripted
Array Declaration Variable Offset
A [L1:U1] A [M] M-1L1+1
A [L1:U1 L2:U2] A [M, N] N-L2+1+(M-1Ll)* (U2 -12+1)
A [r1:v1, L2:U2, L3:03] A [M, N, P] P-L3+1+(N~-L2+ (M=1L1) *# (U2 -12+ 1)) * (U3 - L3 + 1)

60481600 B

)
o/

#SWITCH= 1 - switch identifier

@ designational expression

Figure 5-3. State Diagram for Switch Declarations

Example:

The declarations:

+SWITCH+# @ := S1, S2, S[M],
£IF# V>-5 #THEN# 53 #EL.SE# 54
#SWITCH= S := PARIS, VIENNA, TRIESTE,
VENICE, TORINO, AOSTA

specify that the switch named Q has four elements and
the switch named$S has six elements. Q[3] is the switch
designator S[M]; when a reference is made to Q[3], the
current value of M is used to select a designational
expression from the switch list.

PROCEDURE DECLARATION

A procedure declaration is used to specify:

The body of the procedure (the actions it performs)

® The procedure identifier

@ The type of the procedure identifier if the name is

used in a function designator
@ Procedure parameters

® Parameter specifications

The declaration of procedures is described in section 6.

60481600 B

PROCEDURE DECLARATION AND USE 6

\

Procedures allow the user to execute the same sequence
of code in different parts of the program without
respecifying the code each time. A procedure is declared
at the head of the block in which it is to be used, and
brought into execution either by a procedure statement,
or by the use of its name as a function designator in an
expression. The body of the procedure, which contains the
executable instructions, can be provided in one of two
ways:

® As an ALGOL statement, in the procedure
declaration. In this case, the procedure can only be
used within the block in which it is declared.

® As a separately compiled procedure. A declaration
must still appear in the block which is to use the
procedure, but the body itself is compiled separately.
In this way, more than one program can use the same
procedure.

Separately compiled procedures are described in
section 9; this section describes procedures declared
completely within the ALGOL program. It also describes
how procedures are called, which is the same for both
kinds of procedures.

PROCEDURE DECLARATIONS

The syntax of a procedure declaration is shown in
figure 6-1. A procedure declaration consists of an
optional type identification (#REAL#, #INTEGER#, or
#BOOLEAN#), the symbol #*PROCEDURE#, a procedure
heading and a procedure body, in that order. The
procedure body is either a statement (section 4) or a code
part. A code part applies to separately compiled
procedures, and is defined in section 9.

The procedure heading consists of either the procedure
identifier followed by a semicolon, or the procedure
identifier followed by a formal parameter part, a
semicolon, an optional value part, and a specification part.

The procedure identifier is the name by which the
procedure is brought into execution in the block in which
it is declared.

The formal parameter part names the formal parameters
in the same order as in the procedure call. The maximum
number of formal parameters is 254. When the procedure
is called, an actual parameter is substituted for each
formal parameter. The formal parameters are identifiers;
they are separated either by commas or by parameter
delimiters of the form:

) letter string : (

where letter string is a series of letters (no blanks
allowed). This form is logically equivalent to a comma;
the other characters are documentary only and have no
effect on the program.

No identifier can occur twice in the formal parameter
list. The name of the procedure being declared cannot
occur in the list.

The value part (if included) consists of the symbol
#VALUE#, a list of identifiers, and a semicolon. If
present, the value part - specifies that each of the
parameters in the list is call-by-value, rather than
call-by-name. Only formal parameters can appear in this
list. Call-by-value and call-by-name are explained under
Procedure Calling.

Virtual arrays cannot be called by value.

The specification part is similar to the declaration part of
a block, in that it provides type and kind information. A
specification part, however, only applies to the formal
parameters of a procedure. The specifiers from
#STRING# to #SWITCH# (as they are listed in figure 6-1)
specify type and kind; no formal parameter can be
specified by more than one of these specifiers (type
ARRAY and type PROCEDURE each count as one
specifier). All formal parameters must be specified.

Procedure:

D__[. type

»=#~PROCEDURE procedure heading

statement

Procedure Heading:

()

AN
D——'- identifier formal parameter part value part * #1 specification part ‘ ——
Figure 6-1. Syntax of Procedure Declaration (Sheet 1 of 2)
60481600 B 6-1

Formal Parameter Part:

D——@ identifier

letter

Value Part:

B #VALUE#

Specification Part:

39 %) Q0o

identifier —,@—————-»

F »{ +STRING#)

-/

identifier

type

—-P-‘ #ARRAY# }

—— type #ARRAY#

#LABEL=+#

—»={ +PROCEDURE# ;

type —-GPROCEDU RE;&)———

#=SWITCH=

—-b-‘ #VARIABLE# } -

—>< #SIMPLE+ ;—

#LIST#

—’-{ #FORMAT# ‘f

Code: See figure 9-1

©

Figure 6-1. Syntax of Procedure Declaration (Sheet 2 of 2}

60481600 A

The type and kind specifiers restrict the type and kind of
the. actual parameters that can correspond to the
specified formal parameters. This correspondence is
explained. under Procedure Calling. : 1t

If an array specification is immediately preceded by a
comment of the following form:

#COMMENT# #VIRTUAL#;

then all the arrays specified are assumed to be virtual
arrays. The comment directive only applies to one array
specification; thus, either all the virtual arrays in a block
must be specified in the same specification, or the same
comment must precede each specification of a virtual
array. Virtual arrays are discussed in section 2, under
Arrays.

For a procedure whose body is a statement (that is, not a
separately compiled procedure), the statement acts as a
block even if it does not have the form of one. In
particular, labels within the procedure have no scope
outside of the procedure.

Identifiers in the procedure body that are not formal
parameters are local if they are declared within the
procedure, otherwise they are nonlocal. If they are
nonlocal their scope must include at least the block in
which the procedure is declared. If the identifier of a
formal parameter is redeclared within a procedure body,
it loses its significance as a formal parameter and is, in
effect, a different identifier. The actual parameter
corresponding to it ceases to be accessible as long as the
new identifier is active.

If the procedure identifier ‘is used as a function
designator, a' type is required before the symbol
#PROCEDURE#. Also, the identifier must appear in the
procedure body (without declaration or specification) as
the destination of an assignment statement at least once,
and at least one such statement must be executed. The
last value assigned to this identifier during the execution
of the procedure is the value returned by the procedure in
the expression in which it is called. If the procedure
identifier appears in any other context within the bady of
the procedure, it indicates a recursive call to the
procedure. If a GOTO statement in the procedure causes
an exit from the procedure before a value has been
assigned to the procedure identifier, the value of the
function designator, and hence the value of the expression
containing it, is undefined.

Figure 6-2 shows an example of a procedure declaration.
The procedure A interchanges the first Celements of the
arrays D and E. Dis a real array, and E is an integer
array; when an element of E is assigned toD, it is
converted to real. The Boolean flag B is used to signal if

#VALUZ2 C3

#3EGINE
8 t= f#FALSE?S

28EG INEZ
FLIY t= CCIYS
DCI t= E(I)

SCIN s= FLI}
#END 2
EENCES

#PROCEDURE ¢ A(8) COUNTERt (C) ARRAYSH (Do)}

#REAL? 2ARRAYZ DS £INTEGERZ fARRAYZ (3}
2INTEGER? C3 £20CLEANZ RS

TREALZ ZARRAYZ £ (13018 ZINTEGERZ I3

#FOR2 I t= 1 #STEPZ 1 ZUNTILZz C #00%

tIFz ABS (FLI1) > MAXINT 2THENZ B 3= £TRUE#:

Figure 6-2. Procedure Declaration Example

60481600 B

6-3

any of the elements of D are out of range, that is, larger
than the system-defined function designator MAXINT
(section 7). If so, B is set to true. The array F, which is
tocal to the procedure, is used to hold the elements of D
while the elements of E are assigned to D. In its
declaration, the formal parameter C is used as the upper
bound.

PROCEDURE CALLING

A procedure is called in one of two ways:

e In a procedure statement. The syntax of this
statement is shown in figure 6-3.

e Through a function designator occurring in an
expression. The syntax of this construction is the
same as the procedure statement, figure 6-3.

In both cases, the steps followed in execution of the
procedure are the same. These steps can be outlined as
follows:

1. For each formal parameter in the procedure
declaration defined as call-by-value, the
corresponding actual parameter is evaluated and the
value is assigned to a fictitious variable. The
fictitious variable, which acts like a variable declared
in a fictitious block that includes only the procedure
body, is then substituted for the formal parameter in
each occurrence. The net result is that assignment to
call-by-value formal parameters is valid within the
body of the procedure, but has no effect on the values

2. For each remaining formal parameter, all of which
are call-by-name, the entity provided as the actual
parameter (that is, the actual characters making up
the parameter as it appears in the call) is substituted
for each occurrence of the formal parameter in the
procedure. If necessary for correct evaluation, the
actual parameter is treated as if it were surrounded
by parentheses. If an identifier provided as an actual
parameter is the same as an identifier already
present in the procedure body, and they represent two
different quantities, they are treated as two separate
identifiers.

3. The procedure body, with the actual parameters
substituted for the formal parameters, is executed.

A procedure can call itself, either directly or through
another procedure.

In the example in figure 6-4, when procedure B is called,
the first actual parameter is evaluated, since it
corresponds to C, which is a call-by-value parameter.
The value of A+3, which is7, is assigned to C. For the
second parameter, which is a call-by-name parameter, the
expression E+2 is substituted for D in the' OUTINTEGER
call. Then the body of the procedure is executed: 17 is
assigned toE, the first OUTINTEGER call writes the
integer 7, and the second OUTINTEGER call writes 19. If
D were call-by-value instead of call-by-name, the
expression E+2 would be evaluated before entry into the
procedure, and the value 14 would be output by the second
OUTINTEGER call.

Procedure Statement:

identifier

actual parameter

Actual Parameter:

O~ string

expression

array identifier

switch identifier -

w1 procedure identifier

Figure 6-3. Procedure Statement Syntax

i 64

60481600 B

#BEGIN# #INTEGER+ A,E;
#PROCEDURE# B(C,D); #VALUE# C;
#INTEGER# C,D;

#BEGIN+#
E:=17;
OUTINTEGER (61,C);
OUTINTEGER (61,D)
#END#;
E:=12;
A:=4;
B (A+3,E+2)

#END+

Figure 6-4. Parameter Substitution Example

The type and kind of the formal parameter restrict the
allowable types and kinds of the actual parameter.
Table 6-1 lists the kinds of actual parameters allowed as
well as the mode (call-by-value or call-by-name) allowed
for each kind of formal parameter. In addition to these
restrictions, the following rules must be observed:

® If a string is an actual parameter to a procedure, then
the string can only be used within the procedure as a
parameter to another procedure. This restriction
does not apply to separately compiled procedures not
written in ALGOL. Eventually, a string must be a
parameter to a procedure not written in ALGOL, such
as a standard procedure.

e If a value is assigned to a call-by-name formal
parameter, the corresponding actual parameter must
be a variable, rather than any other kind of
expression. A value assigned to a call-by-value
formal parameter changes the parameter value only
within the procedure.

f

A formal parameter specified as an array must
correspond to an actual parameter that is an array
with the same number of dimensions.

If the array is call-by-name, then the declaration for
the actual parameter array currently in effect is used
in the procedure for calculating subscripts based on
the declared array bounds. If the array is
call-by-value, a laocal copy of the array is made, and
the array bounds used for calculating subscripts are
the same as for the actual parameter array. Virtual I
arrays cannot be call-by-value.

The parameters to a procedure that is itself an actual
parameter must be compatible with the parameters
to the corresponding formal parameter procedure in
number, kind, and type.

A call-by-value formal parameter cannot correspond
to an actual parameter that is a :
identifier, -or string. It also cannot cor
actual parameter that is a procedure identifier, with
the exception of a procedure with no parameters that
is used as a function designator. In this latter case,
the procedure identifier is considered to be an
expression. A function designator with parameters is
also an expression and can be an actual parameter.

If a formal parameter is specified to be a virtual
array (as explained above, under Procedure
Declarations), then the corresponding actual
parameter must also be a virtual array.

A switch parameter in a procedure must be called by

name. When the

procedure is called, the actual

expressions in the switch list in the calling block are

substituted for

switch designators of the formal

parameter switch in the called procedure. When a switch
designator is referred to, the current value of the
expression in the switch list in the calling block is used.

TABLE 6-1. ACTUAL-FORMAL PARAMETER CORRESPONDENCE

Formal Parameter Mode
Integer Value
: Name
Real Value
Name

Boolean Value
Name

Label Value
Name

Integer array Value
} Name
Real array Value
Name

Boolean array Value
Name

Typeless procedure Name
Integer procedure Name
Real procedure Name
Boolean procedure Name
Switch Name
String Name
Virtual array Name

===============================F==

Actual Parameter

Arithmetic expression

expression

sion
Boolean expression
Designational expression
Designational expression
Arithmetic array

Integer array

Arithmetic array

Real array

Boolean array

Boolean array
Arithmetic procedure, or
typeless procedure, or
Boolean procedure
i _

o
“Boolean procedure

Switch
Actual string or string identifier
Virtual array I

60481600 B

6-5

In the example in figure 6-5, the variable N is nonlocal to
procedure B. When B is called, N has the value 5.
However, when the GOTO statement is executed, N has
the value 3. Since the designational expression X[N] has
effectively been substituted for S[1], the branch is to the
designational expression X[3], not X[5].

#PROCEDURE# A(N); #INTEGER+# N;

+BEGIN#

#SWITCH# Q := X[N], L;

#PROCEDURE# B(S);
#SWITCH+# S;

N :='3;
#GOTO= S[1];
#+END#;

N :=5;
B(Q);

Figure 6-5. Parameter Switch Example

6-6

The procedure whose declaration is shown in figure 6-2 is
called by the following program segments

+REAL##ARRAY# M [1:32] ;
#INTEGER* #ARRAY# N [1:32];
#REAL J; #BOOLEAN+ BOO; ...
A (BOO, J**2,M,N);

LAY

The following correspondence is established:

Actual Formal
BOO B
J**2 C
M D
N E

The formal parameter C is called by value; therefore,
J**2 is evaluated when the procedure is called, and
the result is assigned to a fictitious variable that is
substituted for every occurrence of C in the
procedure. The other parameters are call-by-name;
the names BOO, M, and N are substituted for B, D,
and E respectively. The procedure is then executed.
Note that J is declared as real in the calling program
segment, but is specified as an integer (C) in the
procedure. This is valid, since C is called by value.
The expression J**2 is converted to integer after it is
evaluated.

60481600 A

STANDARD PROCEDURES 7

In addition to the procedures provided by the user, a set of
standard procedures which require no definition by the
user is available. These procedures are declared in the
standard circumlude. See section 9 for a description of
circumludes.

Standard procedures fall into the following categories:

e Simple functions. These are miscellanecus functions
that perform simple operations on expressions, such
as returning the absolute value, truncating a real
number, returning the length of a string, and so forth.

e String ' manipulation procedures. These perform
functions such as converting strings to integers,
selecting characters from strings, and so forth. They
-are most commonly used with = input/output
procedures.

e Mathematical functions. These include the
trigonometric, exponential, and logarithmic functions.

e Error handling and terminating procedures. - These

) specify error conditions to be checked and actions to
be taken, and provide for program termination in the
normal and error cases. The procedure DUMP, which
is related to this category, is discussed in section 14.

o Environmental inquiry and control procedures. These
include procedures to return the value of variables
relevant to the: execution time environment of the
program and set new values for some of these
variables. .

In addition, standard procedures are provided for
input/output; these are discussed in section 8.

In the tables of this section, the following abbreviations
are used to specify the types of actual arguments allowed
for each procedure: :

ae Arithmetic expression.

re Real expression. An integer expression is
allowed, but is converted to real.

ie Integer expression. A real expression is
allowed, but is rounded to the - nearest
integer.

iv Call-by-name integer variable (simple or
subscripted). A value is assigned to" this
argument. ‘

a ‘Array of -any type. The corresponding
forrmal parameter is call-by-name.

de Desighational expression.

s String.

60481600 B

For each procedure, the table also shows the type of value
returned by the procedure if it can be called as a
function. If the type is listed as none, the procedure
cannot be called as a function. Some procedures, such as
MAXREAL, have no parameters; a reference to the
procedure name in an expression results in a call to the
procedure unless the name has been redeclared. Table 7-1
shows the simple functions. Table 7-2 shows the string
manipulation functions. Table 7-3 shows the mathe-
matical functions. Table 7-4 shows the environmental
inquiry procedures. Table 7-5 shows the error handling
and termination procedures. Table 7-6 shows the

_ procedure MOVE.

The procedures from PROGRAMSIZE to
MAXIMUMFIELDLENGTH (table 7-4) return the number
of words of memory currently allocated for different
components of the execution time field length. The
arrangement of components of memory at execution time
is explained in appendix E.

"For the proeedure MEMORY (table 7-4), the amount of

field length obtained is constrained by the values of the
variables MOPTION and IOPTION. These variables are
defined in the standard circumlude. MOPTION is the
maximum field length that can be requested by a job
during execution, whether by wuser request through
MEMORY or by the ALGOL execution time system.
IOPTION is the minimum increment of field length that
can be requested. Thus, if ae words are requested, fl is
the current field length, and minfl is the minimum fieid
length required for the current job step, the amount
actually obtained is given by the formulas:

ae>fl: minimum (maximum (ae, fl+IOPTION),
MOPTION)

ae = fl: fl

ae<fl: maximum (ae, minfl)

TABLE 7-1. SIMPLE FUNCTIONS

Type of

Procedure Action
Call Function
ABS (re) Real Return absolute value of
expression.
IABS (ie) Integer Return absolute value of
expression.
SIGN (ae) Integer Return -1 if ae< 0.0

0 if ae = 0.0
+1 if ae >0.0
Return largest integer

not greater than rej
re -1 <ENTIER(re) < re.

ENTIER (re)| Integer

MOPTION and IOPTION can be .

set by the M and I

parameters, respectively, on the execution control
statement (section 13). The default values are maximum
field length for MOPTION, and 1024 for IOPTION.

The error keys for ERROR (table 7-5) are as follows:

0 Any of the following errors

1 Arithmetic overflow
indefinite value)

(use of infinite or

2 Subscript out of range for array or switch

3 Parameter mismatch

4 Standard function parameter error; error in
array specification or subscripting detected
by MOVE procedure

5 Stack overflow

6 Error in the call to STRINGELEMENT

TABLE 7-2. STRING MANIPULATION PROCEDURES

Procedure Call

EQUIV (s)

LENGTH (s)
CHLENGTH (s)

STRINGELEMENT(sl,ie,s2,iv)

Type of
Function

[L ——

Integer

Integer
Integer

None

Action

SRl |

Return integer equivalent of string.
(See A format, section 8.) Only the
first eight characters are processed.

Return number of characters in string.
Same as LENGTH.

. Locate character by counting ie char-
acter positions from left in string sl.
Search for this character in string s2,
and set iv to character position num-
ber of leftmost occurrence of char-—
acter in string. Set iv to 0 if
character not found. ‘

TABLE 7-3. MATHEMATICAL FUNCTIONS

" Procedure Call

SQRT (ae)

SIN (ae)
oS (ae)
" TAN (ae)

ARCSIN (ae)
ARCCOS (ae)
ARCTAN (ae)

LN (ae)

EXP (ae)

Type of
Function

m¢—_—_—’=

Real

Real
Real
Reai

Real

Real

Real

Real

Real

Action
Return square root of ae. Fatal error
if ae is negative.

Return sine of ae (ae is in radians).
Return cosine of ae (ae is.in radians).
Return tangent of ae (ae is in radians).
Return principal value, in radians, of
arcsine of ae. :

-7 /2 < ARCSIN(ae)< 7/2

Return principal value, in radians, of
arccosine of ae.

0 < ARCCOS(ae)S T

Return principal value, in radians, of
arccosine of ae.

-7 /2< ARCTAN(ae)< 1m/2

Return natural logarithm of ae. Fatal
error if ae £ 0.

Return exponential function of ae.

60481600 C

The procedure MOVE (table 7-6) transfers all or part of an
array to another array. The arrays can be both virtual,
both non-virtual, or mixed. The parameter aj is the name
of the array from which the transfer is to take place; the
parameter aj; ig the name of the array to which the
transfer is to take place. The last parameter (ien), is the
number of elements to be transferred. The parameters
ie1, .. , iej indicate the subscripts of the first element of
the array a) to be transferred. The parameters iej, ey
iey indicate the subscripts of the first element of array aj
to which the values are to be transferred.

Example:
MOVE (ARR1,2,3,ARR2,5,7,9,18);

transfers 18 elements of ARRI, beginning at

ARR1(2,3) to ARR2, beginning at ARR2 (5,7,9).

For successful execution of MOVE, the

conditions must be true:

e A and B must be of the same type.

following

e The number of subscripts provided in the call (1
through i and j through k) must be the same as the

dimensionality of a; and ap, respectively.

e The array elements specified as the starting locations
must be within the bounds of their respective arrays.

e The number of elements to be transferred must be

within the bounds of both arrays.

Diagnostics are issued for all of these conditions, as well

as when an extended memory parity error occurs.

The

ERROR procedure, invoked with key4, may be used to
trap invalid move operations, recover from them, and

continue program execution normally.

TABLE 7-4. ENVIRONMENTAL INQUIRY PROCEDURES

Type of :
Procedure Call Function Action -
= —f

MAXINT Integer Return value of maximum allowable‘positive integer.

MAXREAL Real Return value of maximum allowable real number.

MINREAL Real Return value of smallest positive real number dis-
tinguishable from zero.

EPSILON Real Return the value of the smallest positive real

: number such that 1,0 + EPSILON>1.0 and
1,0 - EPSILON<1.0.

INRANGE (ae) Boolean Return false when ae is out of range or indefinite
and true otherwise.

LOWERBOUND (a,ie) Integer - Return the lower bound for the ieth subscript of the
array a.

UPPERBOUND (a,ie) Integer Return the upper bound for the ieth subscript of the
array a.

DATE Integer Return current date as eight characters in the form
dd/mm/yy (or other form selected by installation
option). "Value can be output with 8A format.

TIME Integer Return the current time as eight characters in the
form hh.mm.ss. Value can be output with 8A format.

CLOCK . Real Return the elapsed central processor time for job in
seconds, with a resolution of one millisecond.

~ PROGRAMSIZE Integer Return the current size in words of the loaded pro-

; gram exclusive of all the stacks and the heap.

_ SCALARSTACK Integer Return the current size in words of the scalar stack.
HEAPSIZE Integer Return the current size in words of the heép.
FIELDLENGTH Integer Return the field length currently allocated for the

job.)

MAXIMUMFIELDLENGTH Integer Return the maximum field length allowed for the job.

MEMORY (ie) Integer Request the field length to be set to ie; return the
field length actually obtained as value of the func-
tion designator. MEMORY(0) sets the field length to
the minimum currently needed for the job. Amount
obtained is constrained by MOPTION and IOPTION;
see text.

60481600 C 7-3

TABLE 7-5. TERMINATION AND ERROR HANDLING PROCEDURES

Procedure Call

Type of
Function

Action

Procedure Call

Type of
Function

Action

STOP

FAULT (s,ae)

ERROR (ie,de)

None

None

None

Stop execution of
program.

Stop execution of
program after
writing message
to channel 61 in
the following
format:

FAULT s ae
Establish that

control is to be
transferred to

ARTHOFLW (de)

DUMP (ie,ie,s)

None

None

label de if an
error of type ie
occurs. For error
codes, see text.
If label is not
accessible, termi-
nate program.

Branch to label de
if arithmetic
overflow (use of
infinite or in-
definite value)
occurs.

See section 14,

TABLE 7-6. MOVE PROCEDURE

Procedure Call

Type of Function

Action

MOVE (ay, iey, . . . , iej; a2, iej, + « + 4 ieg, iep)

None

See Text.

60481600 B

INPUT/OUTPUT 8

D R R

ALGOL input/output is accomplished through calls to a
set of standard procedures.

All input/output takes place between central memory and
a file residing on an external device. The file is known to
the operating system by its logical file name, which must
have from one to seven letters and digits, the first being a
letter. The CHANNEL procedure specifies some of the
characteristics of the file, and links the logical file name
with a channel number used in all input/output calls in the
ALGOL program. The procedure calls that actually
perform the input/output specify the channel number as
the first actual parameter.

The input/output procedures are of three basic types:

e Coded sequential. Data in internal binary format is
converted into coded format. Records are written
sequentially; that is, the location of each record is
defined only by the locations of the preceding and
following records.

e Binary sequential. Data is moved between central
memory and the external device without conversion.
Records are written sequentially.

e Word addressable. Records are written randomly.
Each record is identified by its word address, which is
the offset of the record from the beginning of the file.

Other procedures described in this section perform control
functions and return system information to the user.

CODED SEQUENTIAL INPUT/OUTPUT

Coded sequential output procedures transmit expression
values from central memory and write them in the form
of a sequence of characters to a file. The input
procedures read sequences of characters into variables in
a symmetrical way. :

The method of conversion from expression values to
character sequence depends on the procedure:

e The procedures INCHAR, OUTCHAR, and
OUTSTRING transmit characters and strings with no
conversion.

® The procedures ININTEGER, OUTINTEGER,

ININTARRAY, OUTINTARRAY, INREAL, OUTREAL,
INARRAY, and OUTARRAY transmit values of real
and integer type with an implicit conversion that the
user cannot control.

e The procedures INBOOLEAN, OUTBOOLEAN,
INBARRAY, and OUTBARRAY transmit Boolean
values with an implicit conversion that the user
cannot control. :

e The procedures INLIST, OUTLIST, INPUT, and
OUTPUT transmit values of any type; a format string
provided by the user determines the way in which
conversion takes place.

60481600 A

The procedures INLIST and OUTLIST are the most
powerful, enabling the user to specify not only the format
but such features as page width and length. In addition,
the values to be transmitted are ordered by a list
procedure, providing greater execution time control over
input/output. For these reasons, the description of these
procedures is deferred until after some of the simpler
procedures have been described; in this way, the complex
capabilities of INLIST and OUTLIST will be clearer.

SIMPLE INPUT/OUTPUT

The most basic input/output procedures are INCHAR and
OUTCHAR (figure 8-1).

INCHAR (channel, string, destination)
INCHARACTER (channel, string, destination)
INSYMBOL (channel, string, destination)
OUTCHAR (channel, string, source)
OUTCHARACTER (channel, string, source)
OUTSYMBOL (channel, string, source)

string String from which character is read or
written.

destination Integer variable to be assigned the relative
position in the string of the character
read.

source Integer expression’ indicating relative posi-

tion in string of character to be output.

Figure 8-1. Formats of INCHAR and OUTCHAR

In both procedures, a mapping is established between the
characters of the string (the second parameter), from left
to right, and the integers 1, 2, 3, and so forth. Using this
correspondence, INCHAR assigns to the integer variable
(third parameter) the value corresponding to the next
character appearing on the channel. If this character does
not appear in the string, the value 0 is assigned. If there
is no next character because the end of the input record
has been reached, -1 is assigned. Similarly, OUTCHAR
writes to the channel the character of the string
corresponding to the integer value (third parameter). If
the -integer value is 0 or larger than the number of
characters in the string, an error results. If the value
is -1, the current record is terminated.

The standard procedures named INCHARACTER and
INSYMBOL are synonymous with INCHAR.
OUTCHARACTER and OUTSYMBOL are synonymous with
OUTCHAR.

Example:
INCHAR (60,#(0123456789+)},N)

If the next character on channel 60 is the digit i, N is set
to i+l. If the next character is not a digit, N is set to 0.

Example:

OUTCHAR (61, #ABCDEFGHIIKLM
NOPQRSTUVWXY Z#)#,J)

If Jis 1, the character A is output to channel 61; if Jis 2,
B is output, and so forth.

The procedure OUTSTRING (figure 8-2) transmits a
character string from central memory to the channel.
The string is transmitted as is, without .conversion. The
outermost string quotes are not transmitted.

OUTSTRING (channel, string)

string String to be output.

Figure 8-2. Format of OUTSTRING

INREAL and OUTREAL (figure 8-3) transmit real values
according to the standard format for real values.

INREAL (chanﬁel, destination)
OUTREAL {channel, source)

destination Real variable to be assigned the value read
from the channel.
source Real expression to be written to the

channel.

Figure 8-3. Formats of INREAL and OUTREAL

A brief description of the standard formats for real
numbers, integers, and Boolean values is shown in
figure 8-4; a fuller description can be found under Format
Strings, below. On input, standard format is actually free
form input, as explained under Format Strings.

INREAL reads the next value on the channel and assigns it
to the real variable; OUTREAL writes the value of the
real variable to the channel. Because they use the same
format, a value written by OUTREAL can be read by
INREAL.

INARRAY and OUTARRAY (figure 8-5) transmit all the
elements of a real array using standard format. The
effect is the same as a series of calls to INREAL or
OUTREAL. The elements are transmitted in the same
order that they are stored (as defined in section 5). The
dimensions of the array are determined by the applicable
array declaration.

Because standard format is wused, INARRAY and
OUTARRAY are compatible with INREAL and CUTREAL;
a number output by OUTARRAY can be read by INREAL.
Examples

OUTREAL (61, 452.9);

The number output to channel 61 is in the following
form:

+4,52900000000000++002

8-2

Real values:
A+D.DDDDDDDDDDDDDD+#+DDDA
Integer values:
AAAANDA+ZZZZ222727722ZDA
Boolean values:
AAAAAAAAAAANAAAAAFTRUE#A
or
AAAAAAAADDAAAANANFFALSEFA
Blank.
Digit. Leading zeros are included.

Digit. Leading zeros are replaced by blanks.

* N O P>

For real values, indicates that the integer that follows
is the exponent to the base 10. For Boolean values,
appears as part of the special symbols #TRUE+# and
#FALSE#.

+ Either a plus sign or a minus sign, as appropriate.

Figure 8-4. Standard Formats for Integer, Real,
and Boolean Values

INARRAY (channel, destination)
OUTARRAY (channel, source)

destination Real array to be assigned the values read
from the channel.
source Real array to be written to the channel.

Figure 8-5. Formats of INARRAY and OUTARRAY
Example:

#REAL# #ARRAY# A[1:30};
OUTARRAY (52, A)

The values output by the call to OUTARRAY can be
read by a FOR statement:

REWIND (52);

#FOR# 1 := 1 #STEP# 1 #UNTIL# 30 #DO#
INREAL (52, AlID)

Procedures OUTINTEGER and ININTEGER (figure 8-6)
transmit integer values between a channel and a variable.
The integer is read and written in standard format
(figure 8-4), as a decimal number with a sign.
Example:

OUTINTEGER (61, 4*12 - 105)

The following is output:

-57

60481600 B

ININTEGER (channel, destination)
OUTINTEGER (channel, source)

destination Integer variable to be assigned the value
read from the channel.
source Integer expression to be written to the

channel.

Figure 8-6. Format of ININTEGER and QUTINTEGER

ININTARRAY and OUTINTARRAY (figure 8-7) transmit
integer arrays in the same way the ININTEGER and
OUTINTEGER transmit single values. The values are in
standard format. Integers output by OUTINTARRAY can
be read by either ININTEGER or ININTARRAY.

ININTARRAY (channel, destination)
OUTINTARRAY (channel, source)

destination Integer array to be assigned the values
read from the channel.
source Integer array to be written to the channel.

Figure 8-7. Formats of ININTARRAY and OUTINTARRAY

Example:

#INTEGER# #ARRAY# I [1:50];
OUTINTARRAY (33,0)

The values output by the call to OUTINTARRAY can
be read by a FOR statement:

REWIND (33);
#FOR# J := 1 #5STEP# 1 #UNTIL# 50 #D0O+
ININTEGER (33,113])

Procedures INBOOLEAN and OUTBOOLEAN (figure 8-8)
transmit Boolean values. The values are in the standard
format for Boolean values (figure 8-4),

INBARRAY (channel, destination)
OUTBARRAY (channel, source)

destination Boolean array to be assigned the values
read from the channel.
source Boolean array to be written to the

channel.

Figure 8-9. Formats of INBARRAY and OUTBARRAY

Example:

#BOOLEAN# X;
X = #FALSE#;
OUTBOOLEAN (31, X)

The following is output to channe! 31:
#F ALSE#
Example:

#BOOLEAN# #ARRAY# A [1:3]);
A[l] := #TRUE#; A[2] := #FALSE#;
AD := #TRUE*;

OUTBARRAY (44, A)

The following is output to channel 44:
FTRUE#A ... A#FALSE#A ... A+TRUE#

Procedures INPUT and OUTPUT (figure 8-10) provide
more flexibility by allowing the user to specify a format
string to define the conversion to take place. With
OUTPUT, the value of an expression in the list is
converted to a string according to the format string and
written to the channel. With INPUT, a string is read from
the channel, converted according to the format string, and
transmitted to a variable. Format strings are described
fully below, under the heading Format Strings.

INBOOLEAN . (channel, destination)
OUTBOOLEAN (channel, source)

destination Boolean variable to be assigned the value
read from the channel.
source Boolean expression to be written to the

channel.

Figure 8-8. Formats of INBOOLEAN and OUTBOOLEAN

INBARRAY and OUTBARRAY (figure 8-9) transmit
arrays of Boolean type in the same way that INBOOLEAN
and OUTBOOLEAN transmit single values. The values are
in standard format.

60481600 A

INPUT (channel, format string, ViV, e, vn)

OUTPUT (channel, format string, eq.ep, ..., €
format string String to indicate conversion between
central memory and device; syntax is
defined under Format Strings.

Vi, ee e, Vg Variables and arrays to which the
values read from the channel are to
be assigned; n must be from 0 to 252.
The v parameters can be omitted.

eq, ..., ¢€ Expressions or arrays to be written to

the channel; n must be from 0 to 252.
The e parameters can be omitted.

Figure 8-10. Formats of INPUT and OUTPUT

When INPUT is executed, the list of items to be input can
only include variables and arrays. If an array appears,
each of its subscripted variables is treated as a separate
item. Each list item is matched with a format item. If
the number of format items is greater than the number of

list items, the remaining format items are ignored. If the
number of list items is greater than the number of format
items, standard format is used for the remaining list
items. The items are then matched with values appearing
on the channel. Each value on the channel is assighed to
the next item in the list.

When OUTPUT is executed, a similar process takes place,
except that the item list can include any expressions. The
list items are matched with format items in the same
way, and the value of each list item is converted and
output.

HORIZONTAL AND VERTICAL CONTROL

For all coded sequential files, parameters defining
horizontal and vertical positioning are defined. Data is
grouped into lines, and the current character position of
the file within a line is called its horizontal position.
Lines can in turn be grouped into pages; the position of a
line within a page is called the vertical position.
Horizontal and vertical positioning can apply logically to
any file, even when physically the file is not divided into
lines and pages (for example, mass storage). The most
general case of horizontal and vertical contro! applies to
files processed through INLIST and OUTLIST; a subset of
the capabilities is available for files processed through
other input/output procedures.

For each file, three horizontal and three vertical
parameters are established. These parameters take as
values numbers indicating character positions (columns) in
a horizontal direction, or lines in a vertical direction. The
leftmost column in a line is numbered 1, as is the topmost
line of a page, The horizontal parameters are as follows:

P The maximum number of characters per line.

R The right margin of a line (default: infinite;
‘parameter applies to INLIST/OUTLIST only).

L The left margin of a line (default: 1; parameter
applies to INLIST/OUTLIST only).

The vertical parameters are:

PP The maximum number of lines to a page
(default: 0).

RR The bottommost line of a page (default:
infinite; parameter applies to INLIST/
OUTLIST only).

LL The topmost line of a page (default: 1;
parameter applies to INLIST/OUTLIST only).

Values for P and PP are established through calls to the
procedures CHANNEL and SYSPARAM or by default.
Nondefault values for R, L, RR, and LL can only be set
through the procedures INLIST and OUTLIST. For other
coded sequential input/output procedures, R, L, RR, and
LL are not used.

Coded sequential files are divided into paged and unpaged
files, based on their setting of the PP parameter. Paged
files are those that are formatted for printing, and have a
nonzero value for PP. Carriage control characters are
added by ALGOL. Unpaged files are not formatted for
printing, and have a value of zero for PP, No carriage
control characters are added. The value zero indicates
that the file is not to be regarded as being divided into

8-4

pages; operations like skipping to the top of a new page
are ignored. The default value for P is 136 for paged files
(carriage control characters added by the system are not
counted) and 80 for unpaged files.

The effect of these parameters depends on device type.
Although any file can be paged, a page advance does not
necessarily result in physical repositioning of the device.
It is the user's responsibility to ensure that the values
selected for P and PP are appropriate for the device the
file resides on, and the disposition of the file at job
termination.

L, R, and P are interpreted according to the device type
as follows:

e Punch card files

P indicates the maximum number of card
columns to be used; it should be set to the
number of columns on the card. L and R are the
margins within the card between which
characters are to be read or punched. Columns
less than L or more than R are bypassed on input
and not punched on output.

e Line printer files

P indicates the maximum number of character
positions to be printed; L and R are the margins
between which printing takes place. Character
positions less than L or greater than R are
printed as blanks.

e Mass storage

P is the maximum record length; L. and R are the
character positions within the record that
delimit data to be interpreted. Character
positions less than L or greater than R are
bypassed.

e Magnetic tape

Identical to mass storage. Block size is fixed and
has no relation to record size. (See Record
Manager Interface, section 12.)

For the simple input/output procedures (all those except
INLIST and OUTLIST), the user has limited control over
horizonal and vertical arrangement of data. For INPUT
and OUTPUT, which allow the user to specify a format
string, the for code / can be used to start a new li
and the code ¢ can be used to start a new page. B
allow horizontal spacing. Otherwise, characters are
input or output in a continuous stream unless overflow
occurs.

For simple input/output procedures, overflow is handled
symmetrically for input and output. On output, an item
that is too long to fit on the remainder of a line is output
at the beginning of the next line instead; that is, items are
not broken between lines. The only exception is an item
that is too large to fit on one line; it is output beginning in
column 1 of the next line and then continuously for as
many lines as required. On input, the end of a line is
treated as a delimiter; values cannot be broken between
lines. The exception is a value too large for one line.
Such a value cannot begin on the same line as any other
value; it must begin on a line by itself and extend
continuously for as many lines as required.

60481600 A

For INLIST and OUTLIST, the handling of overflow is
more complicated, because the user can specify left and
right margins as well as procedures to be executed when
specified conditions occur. (See Layout Procedures,
below.) The algorithm used for INLIST and OUTLIST is
designed to ensure reasonable results under any
circumstances.

INLIST AND OUTLIST

The greatest flexibility in coded sequential input/output is
achieved through the procedures INLIST and OUTLIST
(figure 8-11). These procedures allow dynamic
specification of the major components of the input/output
process: the list of items to be input or output, the
format string, and the physical layout of the items on the
filee These specifications take place through a list
procedure and a layout procedure, provided as parameters
to each call to INLIST and OUTLIST.

INLIST (channel, layout, list)
OQUTLIST (channel, layout, list)

layout Name of layout procedure to be called
each time INLIST or OUTLIST is
executed.

list Name of a list procedure to be used in

conjunction with INLIST or OUTLIST.

Figure 8-11. Formats of INLIST and OUTLIST

When a call to INLIST or OUTLIST is executed, the
following steps take place:

1. The layout procedure is called to establish the
format, page layout, and other characteristics of the
physical form of the data.

2. The list procedure is called. Each item presented by
the list procedure is input or output as specified by
the format string and other layout parameters. When
the items presented by the list procedure have been
exhausted, the input/output process terminates.

List Procedures

The primary application of list procedures is in
conjunction with INLIST and OUTLIST; however, they can
also be useful in any context in which the same operation
is performed on every member of a set.

A list procedure has exactly one parameter, which is itself
a procedure. The list procedure executes a series of calls
to this formal parameter procedure, one call for each
item in the list to be processed. When the list procedure
itself is called, an actual procedure name is substituted
for the formal parameter procedure. This procedure is
then executed once for each item in the list.

For INLIST and OUTLIST, the user writes a list procedure
and specifies its name as the third parameter in a call to
INLIST or OUTLIST. When INLIST or OUTLIST is
executed, one of the standard procedures INITEM or
OUTITEM, respectively, is substituted for the formal
parameter procedure, and the list of items presented by
the procedure is input or output. (INITEM and OUTITEM
cannot be called directly by a user program.)

Figure 8-12 is a program illustrating list procedures in a
context other than input/output. In this case, ALIST is
the list procedure. The result of the procedure is to
replace each element of the array A with its absolute
value. The order of execution within the program is as
follows:

1. The procedure call ABSLIST(ALIST) is executed
(line 17).

2. The actual parameter ALIST is substituted for the
formal parameter LIST and execution of ABSLIST

begins (line 4).

1. 2BEGINZ

2 2INTEGERZ ZARRAYZ A (1110)% 2INTEGERZ K3

3. #PRCCEDURE2 ABSLIST(LIST)S ZFPROCEDUREZ LISTS
b £BEGINZ

Se tPROCEDUREZ Z (X)§ 2INTEGERZ X3

€ tIF2 X < € 2THENZ X 8= =X3

Te LIST(2) %

8 EENDZ?

e #PROCEDURE® ALIST(ITEM)S #PROCEDUREZZ ITEMS
1C. ¥BZGINZ
11, £INTEGERZ? I3

i2. £FOR® I 8= 1 #STEP# L ZUNTILZ 10 2002
13. ITEM(ALID S

1ie LEND#S
15, #ZFORZ2 K t= 1 £STEPZ § #UNTIL2 1C 2DO2

16, ALK 8= (=2)*%K3
17. ABSLIST(ALIST) S
18, #FOR# K 1= 1 #£STEPZ 1 #UNTIL2Z 10 D02
19, OUTPUT (61, 2(22)2,ALK]))

20, ZEND#

Figure 8-12. List Procedure Example

60481600 A

8-5

3. The procedure statement LIST(Z) is executed; since
ALIST has been substituted for LIST, the statement is
actually ALIST(Z).

4. The FOR statement (line 12) is executed, causing the
statement part of the FOR statement:

ITEM(A[L])

to be executed 10 times. Before execution, the
actual parameter Z is substituted for the formal
parameter ITEM, so that the call actually executed
is Z(A[I].

S. FEach execution of Z involves execution of the
conditional statement (line 6) in which an element
of A is changed to its absolute value (if necessary).

Figure 8-13 shows a section of a program that uses INLIST
and OUTLIST. Notice that the list procedure ALIST is the
same as the list procedure in the previous example. In
this example, the order of execution is as follows:

1. The call to INLIST is executed:
a. The layout procedure FORM is executed.

b. The list procedure ALIST is executed. The
procedure named INITEM is substituted for the
formal parameter procedure ITEM; the FOR
statement results in 10 calls to ITEM (which
become calls to INITEM); 10 items are input
from channe! 60 into the elements of the
array A (because the actual _arguments to
INITEM are the array elements A[I]).

2. The remainder of the program is executed.
3, The call to OUTLIST proceeds exactly the same as

the call to INLIST except that the elements of A are
transmitted to channel 61.

#BEGIN# #ARRAY= A[1:100];
#PROCEDURE# ALIST (ITEM); #PROCEDURE# ITEM;
#BEGIN# #INTEGER# I;
#FOR# | := 1 #STEP# 1 #UNTIL# 10 #DO+#
ITEM (A[I]);
+END#;
#PROCEDURE# FORM;
FORMAT (#(#N+#)#);
INLIST (60,FORM,ALIST);

(remainder of program)

OL:'TLIST (61,FORM,ALIST)
#END+#

Figure 8-13. INLIST, OUTLIST Example

Layout Procedures

Layout procedures are user-written procedures specified
as the second parameter to calls to INLIST and OUTLIST.
They cannot be written to control input/output performed
through any other input/output procedures.

A layout procedure has no parameters. Its function is to
control aspects of the input/output process through calls

to a series of standard descriptive procedures. Each of
these descriptive procedures establishes nondefault values
for .parameters. the system wuses internally during
input/output. These parameters cannot be set by the user
except through these procedures. If a descriptive
procedure is called when INLIST/QUTLIST is not in effect,
it acts as a dummy procedure; the call is permitted but no
operation takes place. Descriptive procedures can be
called from any procedure that is itself called as a result
of an INLIST/OUTLIST activation.

Table 8-1 shows the names of the descriptive procedures,
their functions, and parameters (with the default value for
each parameter).

Example:

Figure 8-14 shows a layout procedure. The format string
consists only of an indefinite number of D's (indicating
decimal digits); the actual number at execution time is
the current value of N. N is defined outside of the layout
procedure. Margins are established at columns 4 and 84 if
TEST is true, or at columns 8 and 80 otherwise. EXIT is
specified as the label to be branched to in the event an
end-of-partition is encountered on the file; EXIT also
occurs outside the layout procedure.

#PROCEDURE# LAYT;

#BEGIN#

FORMAT (#(#XD#)#,N);

#IF# TEST #THEN+# HLIM(4,84)
#ELSE# HLIM(8,80);

NODATA(EXIT);

#END#

Figure 8-14. Example Layout Procedure

Execution of INLIST and OUTLIST

The execution of INLIST and OUTLIST is somewhat
complicated, for the following reasons:

The user can change the layout parameters, even
after input/output has already begun, through the
layout procedure and the overflow procedures.

The system makes every attempt to continue
execution in a reasonable way when an unusual
condition occurs.

In the discussion that follows, the steps taken when
OUTLIST is executed are outlined. The algorithm for
INLIST is symmetrical, except as noted.

During execution of INLIST/OUTLIST, the current position
of the file is defined by the values of two parameters: CP
{horizontal position) and CPP (vertical position). CPP
equals the number of lines that have already been output;
CP equals the number of characters in the current line
that have been output. Thus, the file is positioned so that
the next character to be written will be at vertical
position CPP+1 and horizontal position CP+1. At the
beginning of the program, CPP =CP =0.

1. On each call to OUTLIST, the layout parameters
(described in table 8-1) are reset to their default
values. Then, the user layout procedure, which might
change some of these values, is executed. Because
the parameters are reset on each call to OUTLIST,
nondefault values are not cumulative, but must be
reset each time.

60481600 B

TABLE 8-1. DESCRIPTIVE PROCEDURES

Call

Parameters

Default

Function

HLIM(1,r)

VLIM(11,rr)

HEND(rnorm, rover,pover)

VEND(bnorm,bover, ppover)

TABULATION(n)

NODATA(1ab)

FORMAT(string,x;,...,xp)

string

11

Ir

rnorm

rover

pover

bnorm

bover

ppover

lab

Format string.

Nonnegative integer pro-
viding value for the ith
X replicator.

Left margin for input/
output lines; character
positions <1 are not used.

' Right margin for input/

output lines; character
positions > r are not used.

Top margin of a page of
input/output; lines num-
bered <11 are not used.

Bottom margin of a pageiof
input/output; lines num-
bered > rr are not used.

Name of a procedure to be
executed for normal line
alignment (processing of
/ format code).

Name of a procedure to be
executed for overflow of
the right margin (R param—
eter),

Name of a procedure to be
executed for overflow of
the maximum number of char-
acters in a line (P param-
eter).

Name of a procedure to be
executed for normal page
alignment (processing of ¢
format code).

Name of a procedure to be
executed for overflow of
the bottom margin (RR
parameter).

Name of a procedure to be
executed for overflow of
the maximum number of lines
to a page (PP parameter).

Tabulation increment;
establishes tabulation
settings of L, L+n,

Label to be branched to if
no data remains on input.
Detects end-~of-partition
(end-of-section on file
INPUT).

Standard format

unlimited

unlimited

Dummy procedure
(no operation)

Dummy procédure
(no operation)

Dummy procedure

(no operation)

Dummy procedure
(no operation)

Dummy procedure
(no operation)

Dummy procedure
(no operation)

Program is
terminated

Establish format string
for input/output calls,

Establish left and right

margins.

Establish top and bottom
margins; ignored for un-

paged channels.

Establish procedures to
be executed at the end

of a line.

Establish procedures to
be executed at the end
of a page (ignored for
unpaged channels).

Establish tabulation
settings; a J in the
format string indicates
a skip to the next tabu-
lation setting, with
blank fill on output.

Establish label to
branch to when end-of-

data occurs.

60481600 A

2. The next format item is examined. (The first time
through, the first format item in the string is
examined.) If the format string has been exhausted,
standard format is used until the end of the call to
OUTLIST. If the next format item is a title format,
it does not require a list item, and it is output
without activation of the list procedure. On input,
the number of characters required by the title format
is skipped. After output of the title format, the next
format item is examined, and so on, until a nontitle
format is encountered.

3. When a nontitle format has been encountered, the list
procedure is activated. The first time, it is activated
by calling it with the actual parameter OUTITEM (or
INITEM for INLIST). Subsequently, the list procedure
is activated by returning from OUTITEM. The list
procedure then continues execution from the last call
to OUTITEM. Eventually, it either terminates, in
which case the execution of OUTLIST is complete, or
it calls OUTITEM. The conversion and transfer of a
data item, as well as detection and processing of
overflow conditions, are all under control of
OUTITEM, The following lettered steps give the
algorithm for OUTITEM.

a. The current format item is examined. If the list
procedure has called the descriptive procedure
FORMAT, thereby changing the format string,
the first item in the new string is defined as the
current item. Otherwise, the current item is the
item that was examined in step 2, which is
unchanged. At this point, the format item is
removed from the format string and copied
elsewhere, so that any further calls to FORMAT
have no effect on the current item.

b. Any alignment marks at the left of the format
item are processed by executing line advance for
each / and page advance for each f. (See
description under Page and Line Advance,
below.) If the format item consists entirely of
alignment marks, then after the page and line
advances have been executed, return to step 2.
The list procedure is not reactivated until
another list item is required.

c. If necessary, page and line alignment are
performed (as described below), to ensure that
data .is only written between the specified
margins.

d. The size of the data item (the number of
characters it occupies on the file) is calculated
from the format item. This can be calculated in
every case except input under standard format,
which is essentially free-form. In this case, data
is input until a delimiter is encountered. (See
Standard Format, below.) In all other cases, a
determination is made whether transfer of the
current item would result in overflow (that is,
printing beyond the R or P margin). If so, steps f
and g are executed; if not, step e is executed.

e. In the nonoverflow case, the item is converted
and written according to the current format
item. Then any alignment marks to the right of
the format item are processed by executing line

d page advance for each $%,

Return to

step 2.

f. In the overflow case, if writing the item would
require writing characters past the right margin
(R parameter), the file is advanced to the
beginning of the next line (CP=0), and the user's
overflow procedure (specified by the rover
parameter of HEND) is executed. Otherwise, if
the item would overflow the maximum number of
characters per line (the P parameter), the file is
advanced to the beginning of the next line, and
the overflow procedure indicated by the pover
parameter of HEND is executed. In other words,
R-overflow takes precedence over P-overflow.

g. Line and page alignment are then performed, if
the overflow procedure has changed the current
position or margins of the file. Then, as many
characters of the item as possible are written,
without exceeding character position R or P. If .
more characters remain to be transferred, the
file is advanced to the beginning of the next line,
and either the rover procedure (when R<P) or
the pover procedure (when R>P) is called.
Step g is repeated as many times as necessary
-until the whole item is output. After the item is
transferred, any alignment marks to the right of
the format item are processed., Return to step 2.

Page and Line Advance

Line advance consists of checking page alignment, then
advancing the file to the left of the next line (CP=0) and
executing the procedure specified by the rnorm parameter
of HEND.

Page advance consists of performing line advance (unless
the file is positioned at the extreme left margin, that is,
CP=0). Then the file is positioned at the top of the next
page (CP=0, CPP=0), and the procedure indicated by the
bnorm parameter of HEND is executed.

Page and Line Alignment

Line alignment is required when the current position (CP)
of the file is to the left of the left margin (L parameter).
In this case, blanks are inserted (on output) or characters
skipped (on input) until CP=L -1. This is so that the next
input/output operation begins at the margin.

Page alignment is necessary when the current line position
(CPP) of the file is not within the top and bottom
margins. If the file is positioned above the top
margin (LL), then a check is made to see if it is positioned
at the left of the line (CP=0). If so, lines are skipped until
the current line is LL-1, and the file is positioned at the
left of that line. If not, the file advances to the left of
the next line, procedure rnorm is executed, and page
alignment is repeated.

If the file is positioned below the bottom margin (RR) or
below the maximum number of lines per page (PP), the
file is advanced to the beginning of the next page, and
procedure bover or ppover, respectively, is executed.
Page alignment is then repeated in case the overflow
procedure has changed the margins or file position.

60481600 A

FORMAT STRINGS

A format string is a string with a particular syntax used to
control the conversion of data on input or output by the
procedures INPUT, OUTPUT, INLIST, and OUTLIST. For
INPUT and OUTPUT, the string is specified as a
parameter to the procedure call; for INLIST and OUTLIST,
it is defined through the déscriptive procedure FORMAT.
In either case, the string can be either specified as a
string in the program, or be input to an array using the
H format specification. The array must be an integer
array.

A format string consists of a list of format items,
separated by commas. The list is bracketed by string
quotes. The format items are interpreted from left to
right; each controls the input or output of one value.

Format items can be parenthesized and optionally
preceded by replicators. This is explained under
Replicators. An empty format string (string quotes with
no nonblank characters between them) implies standard
format.

Example:

A(£ #)*

This is an empty format string.

The format items in turn are composed of individual
characters called format codes. In general, each format
code specifies the conversion to be performed for one
character position on the external device. The exceptions
include replicators, the string quotes used in insertion
sequences, alignment marks, and certain special codes-
that specify the conversion of a sequence of character
positions. The character codes are summarized in
table 8-2.

Replicators

A replicator is a format code that specifies the repetition
of the object following it. There are two kinds of
replicators:

® An unsigned integer indicates that the object it

precedes is to be repeated the specified number of
times. For example, 5D is equivalent to DDDDD.

e The format code X specifies that the object it
precedes is to be repeated an unspecified number of
times. The exact number of repetitions is specified
at execution time through the procedure FORMAT,
Since this can only be called when INLIST or
OUTLIST is active, X replicators can only be used
with these procedures. The method for providing
values for X replicators is explained in table 8-1,
under the FORMAT procedure.

TABLE 8-2. FORMAT CODE SUMMARY

I Integer

P Boolean value (1 or 0)
R Real
S Single character, output only

Code Meaning Code Meaning
= — — —
A Character, translated into display T Truncation
code

v Implied decimal point

B Blank
X Variable replicator

C Comma
A Digit with zero suppression
+ Write sign unconditionally
- Write sign if negative
Exponent part indicator
O Delimiters for replicated sequence of

format items

’ Separates format items
/ Advance to new line
t Advance to new page

#(# #)#| Delimiters for insertion

. Explicit decimal point

60481600 A

Two types of objects can be repeated through replicators:

e Format codes. The replicator immediately precedes
the format code to indicate the number of times the
code is to be repeated. The following format codes
can be preceded by a replicator:

B
z

e Parenthesized format items, The format item, or a
list of format items separated by commas, is
bracketed by parentheses and preceded by a
replicator. At execution time, the item or list of
items is repeated the specified number of times.
Parentheses can be nested to 32 levels.

A parenthesized item or list of items that is not preceded
by a replicator is repeated a maximum of 131071 times.
In practice, this feature would be used when all the
remaining items to be transferred are to be converted
according to the same code or series of codes. When the
list of items is exhausted, transmission stops. Thus,
infinite repetition is only meaningful when it is specified
at the end of the format string.

Example:

#INTEGER# I, J;
#INTEGER* #ARRAY# K [1:14];
OUTPUT (61, #(#5D,ZZDD,(4D)#)#, 1, J, K);

I is output according to the specification 5D; J is output
according to the specification ZZDDj; and each subscripted
variable in the array K is output according to the
repeated specification 4D.

Insertion Sequences and Title Formats

An insertion is a sequence of characters that interrupts
the transfer of characters in a number format or other
format. On output, when an insertion is encountered in a
format item, the characters specified by the insertion are
written to the channel. On input, the number of
characters in the insertion is skipped in reading from the
channel. In this case, the characters composing the
insertion are irrelevant; only the number of characters
matters.

Insertions can be specified in two ways:

e By the B format code. Each B in a format item
specifies that a blank is to be inserted on output, or a
character to be skipped on input. The B code can be
preceded by a replicator.

e By a string, bracketed by string quotes. On output,

the characters in the string are written; on input, the
same number of characters is skipped.

8-10

Example:

OUTPUT (61, #(+2D3B2DB
#FUNITS:# J#BD#)#, NUM)

If the value of NUM is 13579, it is output as follows:
13 AMASTAUNITS:A9

Anywhere that a single insertion (string or B format code)
is permitted, a series of insertions can appear. A series of
insertions is known as an insertion sequence., An insertion
sequence can appear either before or after any of the
following format codes:

Pt < + 400N

F, FFFFF, or F (Boolean formats)

>0

Insertion sequences cannot appear in the following
contexts:

e Between a replicator and the object to be repeated.

Invalid: 5# (#*REPEAT THIS ONE 5 TIMES#) #D

Or after any of the nonformat codes I, R, L,
4, or the standard format N.

o Bef

Invalid: 3BI

However, the same result can be achieved by using a
title format in the same position.

Valid: 3B, I

e Between any two of the characters makmg up the
Boolean formats 5F and FFFFF,

If a format item contains nothing but an insertion
sequence (with or without alignment marks), it is known as
a title format.

Figure 8-15 shows an OUTPUT procedure statement that
includes a title format, and the line that is written.

ALGOL Statement:

OUTPUT (61, #(+ 5B, #(#NAME=#)+ 6B
#(#RANK+#)# 6B #(#SERIAL
NUMBER=#)##)#)

Line Written:

AAAAANAMEAAAAAARANKAAAAAA
SERIALANUMBER

Figure 8-15. Title Format Example

60481600 A

Number Formats

Number formats are used to input or output values of real
or integer type. Any number format can be used to
transfer values of either type. Figure 8-16 shows the
basic layout of a number format. In format 1, the number
format must have either an unsigned integer part, a
decimal fraction part, or both. A sign part and an
"exponent part are optional.

In format 2 the number format must have an unsigned
integer part, a decimal fraction part, or both. The
required sign part follows the number, instead of
preceding it as in format 1. The number format
components appearing in figure 8-16 are broken down
further in figure 8-17.

A sign part consists of a plus sign or a minus sign. If a
plus sign is used, the sign of the number (either + or-) is
always written on output; if a minus sign is used, the sign
is only written if the number is negative. When a sign is
written, it appears in a sign position or in the position of a
suppressed Z or C, right justified as far as possible.

Examples:

-ZD

Under this format, the number -1 is output as: A-1

-ZBD

Under this format, the number -1 is output as: A-Al
When the sign is not written, a blank is written instead. If
no sign part appears, and the number is negative, standard
format is substituted.
On input under format 1, the sign can appear in any Z, D,
or C position to the left of the first digit of the number,
or in the pesition occupied by the sign part. Under
format 2, the sign must appear in the position occupied by

the sign part at the right of the number.

Unsigned integer format consists of a Z part, a D part, or
a Z part followed by a D part. The Z part consists of one

or more occurrences of the letter Z, by itself or preceded
by a replicator, optionally interspersed with occurrences
of the letter C. The D part is identical in syntax to the Z
part, except that the letter D replaces the letter Z. Z
indicates zero suppression, and D indicates digit printing
without zero suppression. Each Z or D corresponds to a
single digit position. Their effect is identical except in
the case of leading zeros. A digit in a character position
corresponding to a D in the format string is always
written. A digit in a character position corresponding to a
Z in the format string is written, unless the digit and all
the digits to its left are zeros. When a zero is suppressed,
a blank is written instead. If no D's appear in the string, a
zero value is written as all blanks. Therefore, it is
advisable to ensure that at least one D is used.

On input, no distinction is made between Z and D.
Leading zeros can appear even if Z's are used, and leading
blanks can appear even if the format begins with D.

Each C corresponds to the location of a comma. The
comma is written unless the character position to the left
is occupied by a zero that was suppressed according to Z
format. In this case, a blank is written instead of a
comma. A comma following a D is always written.

Decimal fraction format consists of a period or V,
followed by a D part, followed by an optional T. The D
part is as described for unsigned integer format; no Z's
can appear after a period. Either a period or a V is
required. If a period is used, it is always written in the
corresponding character position. If a V is used, the
period is not written, but its location is defined by the
location of the V. In this case, no blank is written either.
On input, a period is required if a period is used in the
format string, but the period must be omitted if V is used.

The format code T indicates truncation. When no T
appears, the last digit of the integer or fraction part of a
number is rounded to fit the format specified. T specifies
that the remainder of the number is to be truncated

- instead. If N is the number of decimal places specified
for a number in a format, the formula for rounding is
represented by the ALGOL expression:

104(-N) * ENTIER(10N * X + .5)

Format 1:

(M)
N

—m—ﬂunsigned integer format }

decimal fraction format I Lexponent part format I———

Format 2:

(D)—
-/

———I unsigned integer format I { decimal fraction format }———I sign part]——"

Figure 8-16. Number Format

604816008

8-11

Sign part:

(+)
(N

Unsigned integer format:

replicator

replicator

©
Q)

Decimal fraction format:

replicator

©

©
®
©

Exponent part format:

()

N>

unsigned integer format [~

Figure 8-17. Components of Number Format

The formula for truncation is:
104(-N) * SIGN(X) *ENTIER(10#N * ABS(X))
J’he

t

exponent part format consists of the character #
1 followed by an optional sign part, followed by an
unsigned integer format. The character # oF is
interpreted to mean that the number following it is the
exponent of the preceding number to the base 10. The
mathematical interpretation of this notation corresponds
to that for a real constant with an exponent (section 2).
On output, if no D's are present and the value of the
exponent is zero, then the sign and the # i@

omitted. Otherwise, the interpretation of the sign part is
the same as when it appears at the left of the number
format, except that it applies to the sign of the exponent.

8-12

If the exponent part format is omitted, as many digits of
the number are output as the format allows. The division
between the unsigned integer and the decimal fraction is
made where indicated by the period or V. If not enough
digit positions are provided for the unsigned integer
portion, standard format is substituted. If an unsigned
integer format, but no decimal fraction format, is
specified, the integer portion of the number is written,
and the fractional portion is ignored. If a decimal
fraction format is specified, but no unsigned integer
format is specified to the left of the decimal point, the
fractional part of the number is written unless the
absolute value of the number is greater than or equal
to 1. In this case, standard format is substituted.

If an exponent part format is included, the decimal point
is aligned so that the most significant digit (the leftmost
nonzero digit) occupies the character position indicated by
the first D or Z in the format. The exponent is adjusted
accordingly. If the absolute value of the exponent is too
big for the number of digit positions provided in the

60481600 A

exponent part, standard format 1is substituted. This
substitution also takes place when the exponent is
negative and no sign part precedes the exponent part
format.

Table 8-3 shows how each of several values would be
output, using various formats.

Character Formats

The three character f ing format), A
(alpha format), it String format
can only be used to output strings. A string format item
consists of a series of S's, any of which can be preceded by
replicators. Insertion sequences can appear before, after,
or within the format item. Each S indicates a character
position corresponding to a character in the string. If the
number of S's is less than the number of characters in the
string, the leftmost characters are output. If the number
of S's is greater than the number of characters in the
string, the remaining character positions are filled with
blanks.

Alpha format specifies transfer (input or output) of a
string of characters on the channel to or from an integer
variable or array. An alpha format item has the same
" syntax as a string format item, except that A's are used
instead of S's. n input, characters are read from the

channel into the integer array or variable specified in the
input call. FEight characters are stored in each word,
left-justified with zero fill, in the lower 48 bits of the
word. The symmetrical process occurs for output. The
translation of the characters is according to display code.
(See appendix A.) The value of the integer variable or
array can be used in all arithmetic operations. On output,
if the number of A's in the format item is less than the
number of characters originally read, only the leftmost
number specified by the format item are output. If the
number of A's is greater than the number of characters
originally input, the characters are output, followed by
characters whose display code value is 0 (colons on most
printers). The largest replicator allowed for A is 8.

The function EQUIV translates a string into display code
values in a manner identical to input under A format. The
result of the function is an integer corresponding to the
actual parameter string.

Boolean Format

When Boolean values are input or output, one of the
format items P, F, 5F, or FFFFF, or standard format,
must be used. The format item can be preceded and
followed by insertion sequences. The correspondence
between the Boolean value and the string on the channel is
shown in table 8-4.

TABLE 8-4. REPRESENTATIONS OF BOOLEAN VALUES

Format Item Value String on Channel
P #TRUE# 1
#FALSE+# 0
F #TRUE# T
#FALSE+ F
5F or FFFFF #TRUE# TRUEA
#FALSE# FALSE
Nonformats .

Nonformats are single-character format items that
specify the transfer of the internal value of a single

TABLE 8-3. NUMBER FORMAT EXAMPLES

I Value Format

Characters Written I

1756.1791 +3ZC3ZCZZD.6D
8DV2D-

8DV2DT+
DD3BDD3BDD #-ZZD

6D #3D

3ZV5D
-.00019375 -4D.3DT #+32
+DDDD. DDDT#+22Z

-3DE-32Z

BB #(#NUMBER:#)# +D.4D #(#EXPONENT:#)## -2D

+1,756.179100
0000175618
0000175617+

17 AAA 56 AAA 18#AA -2

Standard format (no sign part is pro-
vided for exponent, which is negative)

Standard format (integer portion of
number is too large for unsigned in-
teger format provided)

- =1937.500% - AA7
-1937.500+# - AA7
~194E-AA6

AANUMBER:-1.9375EXPONENT: #-04

60481600 B

8-13

variable of a given type. The nonformat codes, and their
corresponding types, are as follows:

I Integer
R Real

L. Boolean

When a value is output according to a nonformat code, the
machine representation of the value is written as a string
of 20 octal digits. An integer value can be output using
the R code, and a real value can be output using the I
code; in each case the number is converted before it is
output. If i i
On input, : 4
variable. Either real or integer numbers can be read
under either I or R format, and are converted
appropriately. Only Boolean values can be read under L
format. Insertion sequences and replicators cannot be
used with nonformat codes.

Standard Format

Standard format is used whenever any of the following
occurs:

e The format string is exhausted before transmission of
the input/output list is complete.

e The format string is empty =(# #)#).

The format provided by the
ith th being output

Standard format differs depending on whether input or

output
integer,

nd also differs among real,

taki lace

On output, a different format is used for each type of
value. Table 8-5 shows the format used for each type.

Example:
The following procedure call:

OUTPUT (I#(4(N)##,1428571,7421.35#-6,
#TRUE#,#(#POPOVERS#)#)

produces the output:

AAAANAANANA +1 42857
A+0.07421350000000+-001A
AAAAAANNNANAMANA #TRUE#
APOPOVERS

On input, standard format implies free-format input. For
a real or integer variable, any value that obeys the syntax
rules for numbers (section 2) is valid. If necessary, the

£

8-14

TABLE 8-5. STANDARD FORMAT FOR OUTPUT

Type Equivalent Format Item
Real B+D.14D# +3DB

Integer | 7B+14ZDB

i

String nS, where n is the length of the string

A number read in standard format is delimited at the right
by any of the following:

1. A nonblank character other than a period, + or -,
digit, or # when occurring to the right of a period,
+ or -, digit,Ej or # In other words, insertions can
occur to the left of the number, but once meaningful
characters of the number have been read, further
insertions indicate the end of the number.

2. A sequence of K or more blanks,
right of a period, + or -, digit,iE; or#. K can be set
by a call to CHANNEL or SYSPARAM; the default
is 2. If fewer than K blanks occur, they are ignored.

3. The end of the first line, if the line contains any
meaningful characters of the number, such as period,
+ or -, digit, or# If the end of a line is
encountered before any meaningful characters are
read, the number is read until a delimiter of type 1 or
2 is encountered; further end-of-lines are ignored.
That is, a number can be split across more than one
line, but only if the first line contains no meaningful
characters.

Alignment Marks

Alignment marks are format items that do not control the
input/output of any input/output list items, but rather
specify horizontal or vertical repositioning before the
next list item is processed. Alignment marks can only
appear to the left or right of a format item.

The alignment marks are:

/ New line (explained under Horizontal and
Vertical Control, previously in this section)

* New page (explained under Horizontal and
Vertical Control)

Alignment marks can be preceded by replicators.

60481600 B

Figure 8-18 shows an example of a format string including
alignment marks and the output produced from the call to
OUTPUT.

BINARY SEQUENTIAL FILES

A binary sequential file is a sequential file in which the
data is not converted. Each record in a binary sequential
file is the image of a single array in exactly the same
form as it appeared in memory.)

PUTARRAY writes an array; GETARRAY reads an array.
These procedures are shown in figure 8-19.

For both procedures, the number of words transferred is
the same as the length of the array unless file structure
parameters specified by the CHANNEL procedure or by a
Record Manager FILE control statement do not allow this
length to be transferred. For PUTARRAY, the number of
‘words: actually written is the smaller of the array size and
MRL/10, where MRL is the maximum récord length in
characters. For GETARRAY, the number of words
actually read is the smaller of the array size and RL/10,
where RL is the length in characters of the current
record. The number of words actually read or written can
be obtained from a call to IOLTH (described under
Miscellaneous Input/Output Procedures).

On binary sequential files, the procedure EOF detects an
end-of-partition. End-of-partition can be written by the
procedure ENDFILE.

WORD ADDRESSABLE FILES

A word addressable file is a random access file in which
each record is located by the word address of its first
word. A word address is an integer equal to the offset of
each word in the file from the beginning of the file. Word
addresses are consecutive, beginning with 1. If the word
address of a record is k, and it is n words long, the record
occupies words k through k+n-1-of the file. L

The user supplies the word address as a parameter of the
input/output. call, and the record is written to or read
from contiguous words beginning with the word specified.
After execution of the input/output call, the channel is
positioned at the next word address following the last

GETARRAY (channel, destination)
PUTARRAY (channel, source)

destination Real, integer, or Boolean array into which
data is to be read.
source Real, integer, or Boolean array from which

data is to be written,

Figure 8-19. GETARRAY and PUTARRAY Format

word of the record. The word address parameter (which is
call-by~name) is set by the system to the next available
word address; if records are written sequentially, it is
unnecessary to reset this parameter.

Three pairs of standard procedures execute input/output
for word addressable files. FETCHLIST and STORELIST
(figure 8-20) use a list procedure (the third parameter) to
transfer items between central memory and the word
addressable file beginning at the word address specified by
the second parameter. The operation of the list procedure
is exactly the same as for INLIST and OUTLIST. (See
under List Procedures, above,)

FETCHLIST (channel, address, list)
STORELIST (channel, address, list)

address Word address on file 'where data is to be read
or written (call-by-name integer).

list Name of user's list procedure, executed to
provide items to be read or written,

Figure 8-20. FETCHLIST and STORELIST Format

FETCHLIST begins by calling the list procedure, which in
turn calls a system procedure that inputs one item at a
time. .The items requested by the list procedure are read
from successive words of the channel and transferred,
without ' conversion, to the list items. ' Because no

. conversion takes place, the user should ensure that the

types of the list items specified by the list procedure are
the same as the types of the data items on the file.

FIRST PAGE OF QUTPUT:

LINE 1 OF PAGE 1

SECOND PAGE OF OUTPUT:

LINE 1 OF PAGE 2
LINE 2 OF PAGE 2

PROGRAM:
1. #3EGIN#
2. OUTPUT(614% (22 (£LINE 1| OF PAGE 1#)#+,
3. #(£LINE 1 OF PAGE 2#)#/,
4, : #(#LINE 2 OF PAGE 2%#)#%)#)
5. - #END#

Figure 8-18. Alignment Marks Exaniple

60481600 B

8-15

STORELIST writes data items, as provided by the list
procedure, to the channel, beginning at the specified word

address. The items are not converted. Since any word
address is permitted, regardless of whether data has
already been written at that address, the user should
ensure that records do not unintentionally overlap. If a
word address is specified that is beyond the current end of
the file, the file is extended by allocating space sufficient
to accommodate all the intervening words. Thus, if a
record is written to a very large word address, a large
amount of unused space might be allocated.

FETCHITEM and STOREITEM (figure 8-21) operate the
same as FETCHLIST and STORELIST, except that the
items to be transferred are specified in the call instead of
by a list procedure.

FETCHITEM (channel, address, v1, . . . , vn)
STOREITEM (channel, address, e1, . . . , en)
address ~Word address on file where data is to be

read or written (call-by-name integer).

vl, ..., vn Call-by-name variables and arrays to which
the values read from the channel are to be
assigned; n must be less than or equal to
252,

el,...,en Expressions or arrays to be written to the

channel; n must be less than or equal to
252.

Figure 8-21. FETCHITEM and STOREITEM Format

The amount of data actually read or written by
FETCHITEM, FETCHLIST, STOREITEM, and STORELIST
depends on the Record Manager record type. (Nondefault
record types are set by the CHANNEL procedure or the
FILE control statement.) If the record type is F (fixed
length), the combined length of the items specified in the
input or output list must be the same as the fixed record
length. If the record type is U (unknown) or W (control
word), as many records as necessary to fill the specified
list items are read or written. (U is the default record
type for word addressable files.)

FETCHARRAY and STOREARRAY (figure 8-22) have the
same effect as FETCHLIST and STORELIST, except that
each call transfers a single array. No list procedure is
used. FETCHARRAY and STOREARRAY are. faster than
FETCHLIST . and STORELIST. For both procedures, the
number of words-transferred is the same as the length of
the array unless file structure parameters specified by the
CHANNEL procedure or by a Record Manager FILE
control statement do not allow this length to be
transferred. For STOREARRAY, the number of words
actually written is the smaller of the array size and
MRL/10, where MRL is the maximum record length in
characters. For FETCHARRAY, the number of words
actually read is the smaller of the array size and RL/10,
where RL is the length in characters of the current
record. For record type U, RL is either MRL or the
number of characters before the next end-of-section,
whichever is less.

8-16

For any word addressable procedure, the number of words
in the most recently read or written record can be
obtained - from a call to IOLTH (described under
Miscellaneous Input/Output Procedures). This number
might not be the same as the number of words of ALGOL
data actually read or written.

FETCHARRAY (channel, address, array)
STOREARRAY (channel, address, array)

address Word address on file where data is to be read or
written (call-by-name integer).

array Name of real, integer, or Boolean array to be
read or written,

Figure 8-22. FETCHARRAY and STOREARRAY Format

OTHER INPUT/OUTPUT PROCEDURES’_

The remainder of the procedures described in this section
are auxiliary input/output procedures that perform various
functions in conjunction with the procedures already
described. With the exception of READECS and
WRITEECS, they do not transfer data but perform other
functions such as channe! specification, file positioning,
and error processing. The procedures READECS and
WRITEECS are not technically input/output procedures,
since extended memory is not a device, but they are
included here because they are similar to input/output
procedures. :

Unless otherwise noted, these procedures apply to all
channels, coded sequential, binary sequential, and word
addressable. The procedure CHANNEL must be executed
for all channels except those for which system defaults
are available.

CHANNEL Procedure

The CHANNEL procedure (figure 8-23) links the channel
number used in ALGOL input/output calls with a logical
file name known to the operating system, and specifies
some of the characteristics of -the file. Except for
channels 60 and 61, which are defined by default, all
channels used in a program must be defined by a call to
the CHANNEL procedure. The program can check the
existence of a particular channel with the CHEXIST
procedure. The call to CHANNEL must be executed
either before any other reference to the channel has been
executed, or after the channel has been explicitly
unloaded by the UNLOAD, RETURN, or DETACH
procedure; CHEXIST can refer to a nondeclared channel.
The channel definition takes effect when the file is
opened, either explicitly, by a call to OPEN, or implicitly,
when the first input/output operation is executed. The
CHANNEL procedure specifies the channel number, the
channel type, and other optional parameters. The channel
type is coded sequential, binary sequential, or word
addressable. The operations allowed on the channel
depend on the type.

Once a channel has been defined, it remains available to
the program until either the program ends execution or
the channel is referenced by the procedure UNLOAD,
RETURN, or DETACH (see below).

60481600 C

CHANNEL (channel, type, paramlist)

channel Channel number; integer expression,
. type One of the following:
#(# C #)# Coded sequential channel
#(F B #)# Binary sequential channel
#(# W #)#

Word addressable channel

List of parameter/value pairs, separated by
commas. Parameters are strings, and values
are either strings or integers. See table 8-6
for complete list.

paramlist

Figure 8-23. CHANNEL Format

A channel can be equated to a previously defined channel
by using the format shown in figure B-24. In this case, all
references to either channel number are to the same file.

'CHANNEL (ch1, #(#¢ E #)# , ch2)

“ch1 Number of new channe! to be equated to ch2;
integer.
ch2 Number of previously defined éh_ahnel; integer.

Figure 8-24. Channel Equate Format

At execution time, each channel must be linked with a
logical file name. This can be accomplished in one of four
ways:)

e By using the #LFN# parameter in the CHANNEL
procedure to define the file name directly.

o By using the #ILF# parameter in the CHANNEL
procedure. The parameter is provided as an integer
representing the display code value of the logical file
name,. in the same format as 7A format or the EQUIV
function.

o By using the LFN parameter in the Record Manager
- FILE control statement (section 12). The channel
must still be declared through the CHANNEL
procedure (or by default) but the:logical file name
becomes that specified in the FILE control statement.

e By default. If no logical file name is specified, the
system constructs a name of the form TAPEnn, where
nn is the channel number. Only channel numbers O
to 99 are valid in this case. Channel 1 generates
TAPEL, not TAPEOIL.

The CHEXIST procedure determines whether or not the
specified channel currently exists within the executing
program. It is a function procedure which returns a
boolean result to the point of call.

Example:
CHAN:=3;
IF CHEXIST (CHAN)

THEN OUTSTRING (61,#CHANNEL PRESENT#))
ELSE OUTSTRING (61,%(*CHANNEL MISSING#)#);

60481600 C

Parameters of the CHANNEL procedure are of two types:
ALGOL parameters and Record Manager parameters.
Parameters are not cumulative; each call to CHANNEL
resets unspecified parameters to the default setting.
Therefore, any nondefault values desired must be reset by
each call to CHANNEL.

File structure values supplied by the FILE control
statement override those supplied by CHANNEL.

Parameters that can be specified in the CHANNEL
procedure are shown in table 8-6.

Examples:

CHANNEL(92,.# (#C#)#, #(=P#)%, 136,
#F#PP#)#, 60)

specifies the following attrlbutes for channel 92
explicitly or by default:

Type Coded sequential
Logical file name TAPE92
Horizontal length 136 characters
Vertical length 60 lines

SQ@ (sequential)

Z (zero-byte terminated)
C (character count)

137 characters

File organization
Record type

Block type
Fixed record Iength

CHANNEL (77 ,#(#W#) ##(#PD#)#, ¢(¢OUTPUT¢)¢
#(AILF)% EQUIV#BASTAR) %) :

specifies the following attributes for ' channel 77

explicitly or by default:

l.ogical file name BASTA

Type Word addressable
Record type U (undefined)
Maximum record length 5120 characters
Processing direction Output

Channels 60 and 61 are defined by default; the definitions
are included in the standard prelude. - These channels can
be redefined provided they are first unloaded by the
UNLOAD, RETURN, or DETACH procedures; however,
action taken varies with the operating system being used.
Consult - the operating system reference manual for
further detail. The default channel definitions are shown
in table 8-7.

FILE OPEN AND CLOSE

Files are implicitly opened when the first input/output
statement is executed, and implicitly closed when -the
program terminates. If desired, however, a file can be
explicitly opened by the OPEN procedure and closed by
the CLOSE - procedure. In addition, the UNLOAD,
RETURN, and DETACH procedures can be executed to
close the file and dispose of it in various ways. These
procedures are applicable to any file type.

The OPEN procedure (figure 8-25) performs the same
function as the -Record Manager OPENM macro. Any
FILE control statement values already specified take
effect when the file is opened. The second parameter of
OPEN specifies what kinds of operations are allowed for
the file: input, output, or both. To change the operations
allowed, the file can be closed and reopened. If the file is
opened implicitly, the operations allowed depend on the
first operation performed. An implicit open takes place
when an input/output operation is performed on the file,
but the OPEN procedure has not been called.’

TABLE 8-6. CHANNEL PROCEDURE PARAMETERS

Type

Parametert Value Type Values Default Meaning

p— ey —y

PP A 1 O-inf 0 Maximum number of lines per page
(coded sequential). PP=0 means
channel unpaged.

P A I 0-inf 80 if PP=0 Maximum number of characters per

136 if PP > 0 line (coded sequential).

K A 1 1-inf 2 Number of blanks that serve as a
delimiter in standard format (coded
sequential).

rrtt c s Z for coded sequential | Record type.

under NOS or NOS/BE
W for coded sequential
under SCOPE 2
8 (binary sequential)
U (word addressable)
4 Zero-byte terminated
(coded sequential only).
S System-logical-record (coded
sequential or binary sequential).
W Control word.
F Fixed length.
U Undefined.
| Brttt C S C (When RT= W)ttt Block type (coded or binary
sequential only).
1 (When RT=W)'T1T
C Character count.
I Internal control word (only allowed
for RT=W). .

FL c I 1-10(217-1) Paged file: 137 if P Maximum record length for Z type
not provided, other- records; fixed record length for
wise P+1 F type records.

Unpaged file: 80

OF [S N File position on open (sequential
only).

N No rewind.
R Rewind.
E Extend.
CF [S N File position after close
(sequential only).
N No rewind.
R Rewind.
U Unload.
RET Return.
DET Detach.
8-18 60481600 C

TABLE 8-6. CHANNEL PROCEDURE PARAMETERS (Contd)

Parameter Type/ Value Type Values Default Meaning
PD c S 10 Processing direction.
I0 Allow input and output.
INPUT - Allow input only.
OUTPUT Allow output only.
LT c S UL Label type.
UL Unlabeled.
s ANSI standard.
NS Nonstandard.
ANY Any.
MRL c I 1-10(217-1) 5120 Maximum record length for RT=W,S,U.
BFS c I 1-(217-1) "Set by Record Manager Buffer size in words.
LFN c] ‘ Logical file | see text Logical file name.
name
ILF A S Integer see text Integer equivalent of logical file
name (A format)
Typ-e: A=ALGOL . Value Type: I=integer
C=Record Manager : S=string
TConsult the Recofd Manager reference manual for restrictions on parameter combinations for CHANNEL.
TtRecord type U is not permitted for a coded sequential channel. The RT parameter must not be specified for
a word-addressable file.
TttThe BT parameter must not be specified for a word-addressable file.
Tt ror SCOPE 2 mass storage files, the default is unblocked. For SCOPE 2 tape files, the default is I for
RT=W, C for RT=S, and K for all other record types.

TABLE 8-7. DEFAULT CHANNEL DEFINITIONS

OPEN (channel, direction)

String specifying whether input, output, or
both can take place on the channel. One of
the following:

#(# INPUT #)# Input only
#(# OUTPUT #)# Output only
10 #)# Input or output

g::::il L;;E‘%Eal Type Parameters direction
60 INPUT c P = 80
FL =138
61 OUTPUT c P =136
PP = 60
60481600 C

Figure 8-25. Format of OPEN .

8-19

OPEN can be called when a file has been closed by a call
to CLOSE, or when the file has already been defined by
CHANNEL and no input/output operations have taken
place yet. .

The CLOSE procedure (figure B-26) performs the same
function as the Record Manager CLOSEM macro. When a
file is closed, no input/output operations can be performed
until another OPEN is executed (either an explicit or an
implicit open). If the last operation on the file was a
write, any information remaining in the buffer is written
to the file; an end-of-partition is written, and the file is
backspaced past the end-of-partition.

The DISCONT procedure (figure 8-31) disassociates a
channel from the terminal so that no more information
can be exchanged between the program and the terminal.
On NOS/BE, after being disconnected, the channel
remains a local file. Alse, if the channel existed before
being connected, the file name is reassociated with the
information contained on the device where the channel
resided before connection. Data written to a connected
channe! is not contained in the file after disconnection.

DISCONT (channel)

CLOSE (channel)

Figure 8-26. Format of CLOSE

The UNLOAD procedure (figure 8-27) closes the file and
performs an operating system unload function. The file
becomes undefined to the ALGOL program; its channel
number can be reused. Any equipment allocated for the
file is freed.

UNLOAD (channel)

Figure 8-27. Format of UNLOAD

The RETURN procedure (figure 8-28) performs an
operating system return function. It closes the file, frees
the device the file is on, and removes its definition. The
file becomes undefined to the ALGOL program. RETURN
differs from UNLOAD in that, if the file is on tape,
RETURN decreases by one the maximum number of tape
units allowed for the job, while UNLOAD does not.

RETURN (channel)

Figure 8-28. Format of RETURN

The DETACH procedure (figure 8-29) closes a file and
removes its definition, but does not free the device on
which the file resides.

DETACH (channel)

Figure 8-29. Format of DETACH

The CONNECT procedure (figure 8-30) associates a
channel with the terminal. Data can then be entered or
displayed as the program executes. If a channel exists as
a local file but is not connected when CONNECT is called,
the buffer of the file is flushed before the channel is
connected to the terminal. Under NOS, the file is re-
turned. Calls to CONNECT are ignored in batch mode.

CONNECT ({(channel)

Figure 8-31. Format of DISCONT

On NOS, the DISCONT procedure causes the connected
channel to be returned. The disconnected file name is not
reassociated with the preexisting information.

FILE POSITIONING PROCEDURES

File positioning procedures include those that write
end-of-partition boundaries and those that skip them
forwards or backwards, as well as procedures that rewind
files. REWIND is applicable to all files; all other file
positioning procedures are only applicable to sequential
files.

ENDFILE (figure 8-32) writes an end-of-partition
boundary on a file. On an output file, any information in
the buffer is written to the file before the
end-of-partition is written. On an input file, ENDFILE is
treated as a dummy procedure.

ENDFILE (channel)

Figure 8-32. Format of ENDFILE

SKIPF and SKIPB (figure 8-33) skip end-of-partition
boundaries forwards and backwards, respectively. Each
call skips one boundary. After the skip, the file is
positioned on the other side of the boundary.

SKIPF (channel)
SKIPB (channel)

Figure 8-33. Formats of SKIPF, SKIPB

BACKSPACE (figure 8-34) positions the file backwards
one record. On a coded sequential channel, a record is a
single card image or print line or the corresponding
amount of information. On a binary sequential file, a
record is the amount of information written by a single
call to PUTARRAY.

BACKSPACE (channel)

Figure 8-30. Format of CONNECT

8-20

Figure 8-34. Format of BACKSPACE

60481600 C

An end-of-partition counts as a record on any sequential
file. An end-of-section counts as a record on any
sequential file with record type other than S (the default
record type for binary sequential files). If one of these
boundaries is -encountered, the exit established by a call to
EOF, if any, is taken. If that label is no longer accessible,
or if none was established, the program terminates
abnormally.

REWIND (figure 8-35) positions a file at
beginning-of-information. It is applicable to all file types.

REWIND (channel)

Figure 8-35. Format of REWIND

EXTENDED MEMORY PROCEDURES

The * procedures - READECS and WRITEECS (figure 8-36)
transfer data between central memory and extended
memory. On the CDC 7600, CYBER 70 Model 76, and
CYBER 170 Model 176 computers, the ECS procedures
transfer data between small central memory (SCM or
SSM) and large central memory (LCM or LCME). Each
call reads or writes a single array of any type. -

READECS (address, array, Iabel)k
WRITEECS (address, array, label)

address Address in ECS where reading or wﬁting
is to begin.

array Name of array to be read or written.

label Label to be branched to in case of

irrecoverable parity error.

Figure 8-36. Formats of READECS, WRITECS

If the extended memory field length currently allocated
would be exceeded by a call to WRITEECS,. a request is
made to increase the field length, up to the maximum
allowed for the job. If insufficient extended memory field
length is available, or if the allocated field length is
exceeded on a call to READECS, the program terminates
abnormally.

The procedure MOVE (section 7) should not be used to
move virtual arrays allocated in extended memory by the
same program . as the procedures READECS ' and
WRITEECS.

MISCELLANEOUS INPUT/OUTPUT PROCEDURES

The remaining input/output procedures are those that
check or alter the status of ALGOL system control
variables (SYSPARAM), establish labels to branch to in
case of .specified conditions (EOF, BADDATA, PARITY,
CHANERROR), or return the amount of data read or
written by a previous call (IOLTH).

SYSPARAM (figure 8-37) either returns or changes the
value of a system input/output parameter, dependlng on
the value of the function parameter. If function.is-an odd
number, the value of the system parameter is returned in
the variable specified by quantity. If function is an even
number, the ‘parameter is set to the value given by

60481600 C

quantity. The parameters that can be set or checked are
shown in table 8-8.

SYSPARAM (channel, function, quantity)

function Integer value from 1 to 10. Specifies parameter
and whether it is to be set or checked. See
table 8-8.

quantity Integer value. If function is odd, an integer

variable that receives value of parameter. If
function is even, an. integer expression that
provides value for parameter.

Figure 8-37. SYSPARAM Format

TABLE 8-8. SYSPARAM FUNCTIONS

Function | Action | Parameter Meaning

1 R cp Current position
within line.

2 S (6334

3 R CPP Current position of

: line within page
(returns 0 for un-
paged channels).

4 S CPP Dummy procedure for
unpaged channels.

5 - R P Maximum number of
characters per line.

6 $ P

7 R PP Maximum number of
lines per page
(returns 0 for un-
paged channels).

8 s PP Dummy procedure for
unpaged channels.

9 R K Number of spaces that
serve as a delimiter
in standard format
input/output,

10 S K

R = Value is returned.
S = Value is set.

If the value of function is 2 or 4, the parameters that are

.changed are CP (current character -position within line) or

CPP (current line position on page). Changing these
positions usually - involves manipulation of the file
contents. If the file is an output file (last operation was a
write), blanks are written until the file is properly
positioned; if the file is an input file (last operation was a
read), characters are skipped. If no operations have taken
place, or the last operation was a positioning operation
such as REWIND, no action takes place.

8-21

For function=2, if the new value is greater than the old
value, the file is positioned further to the right on the
same line. If the new value is less than the old value, the
file is skipped to a new line, and then spaced over the
appropriate number of character positions.

For function=4, if the new value is greater than the old
value, the file is positioned to the beginning of a new line,
and then spaced down the appropriate number of lines. If
the new value is less than the old value, the file is
positioned to the beginning of the line at the top of a new
page, and then spaced down the appropriate number of
lines. In no case is a file ever moved backwards as a
result of a call to SYSPARAM.

When function=6 or 8, the quantities P and PP cannot be
changed unless a new value is allowed for the device on
which the file resides. Otherwise, the procedure acts as a
dummy procedure.

A paged file can be made into an unpaged file at any time
by resetting the quantity PP to O (through function=8).
When this happens, the value for P is automatically
increased by 1, to allow for the carriage control
character. Similarly, an unpaged file can be made into a
paged file by changing PP to a nonzero value. In this
case, the value for P is automatically decreased by 1.

Example:
CHANNEL (92,#(C#)#,#(P#)#,136, # (#PP#)#,60)
SYSPARAM (92,8,0)

Changes channel 92 to an unpaged file, and resets P
to 137.

SYSPARAM (92,8,40)

Changes channel 92 back to a paged file, and resets P
to 136.

EOF (figure 8-38) establishes a label to be branched to
when a boundary is encountered during a read operation on
the specified channel. The boundary causing the branch is
end-of-section on a coded sequential file and
end-of-partition on a binary sequential file. During
execution of BACKSPACE, the label is also branched to if
an - end-of-partition or beginning-of-information is
encountered, or if end-of-section is encountered on any
file except those with record type S (the default record
type for binary sequential files).

EOF (channel, label)

label Label to branch to if a boundary condition is
encountered during a read operation on the
specified channel.

BADDATA (channel, label)

label Label to be branched to in event of a conflict
between input data and format string on the

specified channel.

Figure 8-39. BADDATA Format

PARITY (figure 8-40) establishes a label to branch to
when an irrecoverable parity error occurs on the specified
channel. If the label is no longer accessible, or no label
has been established, the program terminates abnormally.

PARITY (channel, label)

label Label to be branched to in event of an irrecov-
erable parity error on the specified channel.

Figure 8-40, PARITY Format

CHANERROR (figure 8-41) establishes a label to branch
to when a specified type of error occurs on the specified
channel. The errors, and their codes, are shown in
table 8-9.

CHANERROR (channel, key, label)

key Integer value from O to 6, indicating type of
error to cause branch. See table 8-9.

label Label to be branched to if error of specified
type occurs on the specified channel.

Figure 8-41. CHANERROR Format

‘ TABLE 8-9. CHANERROR KEYS

Key Type of Error
= =

Any of the errors 1 through 6

Irrecoverable parity error
End-of-partition
Bad data (see BADDATA procedure)

Formatting errors

v &~ W N = O

Illegal operation for file type or input/
output direction

6 Errors in input/output procedures other
-than reads and writes

Figure 8-38. EOF Format

During execution of INLIST, the label established by a call
to NODATA takes precedence over the label established
by EOF. If the label is no longer accessible when EOF is
executed, or if no label is established, and a boundary is
encountered, the program terminates abnormally.

BADDATA (figure 8-39) establishes a label to branch to
when, during a read operation on the specified channel,
the data read does not match the corresponding format
(string or Boolean data with number format, and so
forth). If the label is no longer accessible, or no label has
been established, the program terminates abnormally
when the error occurs.

8-22

IOLTH (figure 8-42) returns the length in words of the last l

record read or written on the specified channel. It only
applies to binary sequential ‘and word addressable
channels; when called for a coded sequential channel, it
returns a value of 0.

IOLTH (channel)
IOLTH = Function designator returning length in characters
of last record read or written on specified
channel.

Figure 8-42. IOLTH Format

60481600 C

INPUT TO COMPILATION 9

D ..

Three types of program groupings are compiled by ALGOL:

o Programs. . A program is a block or compound
statement; see section 4.

e Separately compiled procedures. These are
procedures whose text is compiled separately from
the program from which they are called. Thus,
several programs can use the same procedure without
recompilation.

e Circumludes. These are separately compiled program
segments - containing declarations and statements,
which logically surround a program.

A single call to the ALGOL compiler compiles either
programs and separately compiled procedures only, or
circumludes only. Programs and separately compiled
procedures can be mixed, but a circumlude must be
compiled by itself. Any number of units can be compiled
by one call; the units .are separated by the symbol
#EOP+. Any characters following #EOP# on the same
line are ignored. Thus, the section of the job. deck to be
processed by one call to the compiler follows one of two
patterns:

One program or any number of separately compiled
procedures :

#EOP+

Ore program or any number of separ'ately compiled
procedures

or

. One circumlude
+EOP+

_One circumlude

Separately compiled procedures can follow each other
without an intervening #EOP#; they are separated by
semicolons. Procedures compiled together (not separated
by #EOP# symbols) are all loaded whenever one of them
is. The #EOP+# symbol is required between a program or
circumlude and any other unit.

Any of these three kinds of units can be preceded by an
identification sequence. An identification sequence is a
sequence of characters preceding the first #BEGIN#
symbol of a program or circumlude, or the #CODE# or
#ALGOL# symbol of a separately compiled procedure.
The sequence cannot contain any of the symbols
#BEGIN#,#CODE#, #ALGOL#, or #EOP#. ‘The first
identifier encountered in the sequence is truncated to
seven characters and used as identification for. the unit.
A circumlude name is truncated to six characters.

Identification is required for a circumlude. For a
program, if no identification appears, the name used is
A60PROG. For a separately compiled procedure, if no
identification appears, the name used is the- external
identifier associated with the first code procedure in the
source text. :

SEPARATELY COMPILED PROCEDURES

Separately compiled procedures allow the user to declare
and use a procedure in one or more programs without
repeating the text in each program. The text of the
procedure is linked with its declaration in the calling
program unit by a code identifier which is present in this
procedure declaration and also in the separate
compilation. The procedure declaration is found in the
calling program unit; however, the text of the procedure
is compiled separately.

PROCEDURE DECLARATION

The procedure declaration for a separately compiled
procedure can be contained in a program, a circumlude, or
another separately compiled procedure. The declaration
has the. same syntax as the procedure declaration
described in section 6, except that the statement forming
the procedure body is replaced with a code part. The
syntax of the code part is shown in figure 9-1.

, +CODE# -

(#Ry=)

code identifier

#FORTRAN+#

G

_code identifier

" Figure 9-1. Syntax of Code Part

60481600 A

If the code part begins with the symbol #ALGOL# or
#CODE#, the compiler assumes that the separate
procedure is written in either ALGOL or COMPASS, and
that if written in COMPASS, it uses the ALGOL calling
sequence. To facilitate the writing of COMPASS
procedures for ALGOL programs, and ensure that the
. linkage is correct, a set of interface macros is provided;
they are described in section 12.

If the code part begins with the symbol #FORTRAN#, the
compiler assumes that the procedure is ~written in
FORTRAN Extended version4, SYMPL, or COMPASS. In
this case, it generates a calling sequence compatible with
FORTRAN (SYMPL has the same calling sequence). If the
procedure is written in COMPASS, the interface macros
cannot be used. The following restrictions apply to
FORTRAN procedures and to any other FORTRAN
procedures they call:

e If a formal parameter is defined in the FORTRAN
subprogram (that is, it is given a value), the
corresponding actual parameter must be a simple or
subscripted variable.

e A formal parameter that is a procedure can only
correspond to an actual parameter that is a
separately compiled procedure declared with the
#FORTRAN# symbol.

® An actual parameter cannot be a switch or
designational expression.

e The FORTRAN procedure must not perform any
input/output.

e The FORTRAN procedure must not use blank common.

e An array should not be specified in the value part of
the procedure declaration in the ALGOL program,
since FORTRAN might change the values of the
array. However, a call-by-value array in an ALGOL
procedure that calls a FORTRAN subprogram can be
passed as an actual parameter to the FORTRAN
subprogram.

e If a FORTRAN subprogram is called from an ALGOL
procedure, a formal string parameter in the ALGOL
procedure cannot be an actua! parameter to the
FORTRAN subprogram.

e In FORTRAN, array elements are stored with the
leftmost subscript varying most rapidly. In ALGOL,
the rightmost subscript varies. the most rapidly.
Array elements are not reordered by ALGOL, so that
a subscript of a multidimensional array element in
FORTRAN. does not in general reference the same
array element as the same subscript in ALGOL.

The code identifier that follows the #ALGOL#, #CODE#,
or #FORTRAN=+# symbol is either an external identifier or
a number of one to five digits. If it is a number, ALGOL
makes it into an external identifier by prefixing it with
the letters CD and enough leading zeros to make five
digits. Thus, 123 becomes CDO00123. In either case, the
external identifier links the procedure declaration in the
calling program with the identification preceding the
separately compiled procedure. The external identifier
must match the identification found in the separately
compiled procedure.

The code identifier is optionally preceded by the symbol
#RJ# (unless the procedure is declared with the
#FORTRAN# symbol). This feature enables the
separately compiled procedure to use a faster calling
sequence. The procedure must be written in COMPASS to
take advantage of this calling sequence. The calling
sequence is defined in section12.

For a procedure specified with the #RJ# symbol, the
linkage between the calling program wunit and the
procedure depends on how it is called. If the procedure is
called directly (that is, its name is used in a procedure
statement or as a function designator) the fast calling
sequence is used. If the procedure is called indirectly,
(that is, a formal parameter procedure is called and the
name of the #RJ# procedure is the corresponding actual
parameter), then the compiler cannot determine at
compile time which calling sequence the procedure uses.
Therefore, when the indirect call is executed, control is
transferred to a special piece of code that translates the
normal ALGOL calling sequence into the fast calling
sequence.

The #RJ+# feature is only applicable to procedures with at
most one parameter. The parameter must be called by
value, and cannot be an array.

PROCEDURE TEXT

Separately compiled procedures are written in FORTRAN
Extended, COMPASS, SYMPL, or ALGOL. If they are not
written in ALGOL they must be compiled or assembled by
the appropriate compiler or assembler with a name that
matches that derived from the procedure declaration in
the ALGOL program. They must be available to the
loader; when the ALGOL program is loaded, the
procedures it calls are loaded as well.

If the procedure is written in ALGOL, it can be compiled
by the ALGOL compiler. Separately compiled procedures
can be grouped together for compilation; a separately
compiled procedure must be followed by a semicolon. A
grouping of procedures must be separated from any
programs in the same compilation by the symbol #EOP+,

The syntax of a separately compiled procedure written in
ALGOL is the same as that for a procedure declaration
(section 6) except that the symbol #PROCEDURE# (or the
type, if any) must be preceded by the symbol #ALGOL# or
#CODE# and an optional external identifier or number.
The external identifier or number is linked with the
procedure declaration in the calling program as explained
under Procedure Declaration, above. The syntax of a
separately compiled procedure is shown in figure 9-2.
Logically, a separately compiled procedure is considered
to be part of the circumlude under which it is compiled, or
under the standard circumlude if no user-defined
circumludes are used. That is, it can only make use of
identifiers declared in the procedure itself and in the
circumlude.

A main program written in another language cannot call
an ALGOL procedure directly. Interlanguage communi-
cation is accomplished using a COMPASS module. See
section 12, ALGOL procedures can be called only if the
main program is written in ALGOL.

60481600 C

#CODE#

code
identifier

+

procedure
heading

statement

60481600 C

Figure 9-2. Syntax of Separately Compiled Procedure

60481600 C

9-4

COMMENT DIRECTIVES 10

N

The user can add directives to a program to enable
compilation time options. These directives are included
as comment sequences in the following format:

#COMMENT# directive ;

By including the appropriate option with the CD
parameter on the ALGOLS5 control statement (section 11),
the user instructs the compiler to take the action
indicated by the directive. If the CD parameter is
omitted, or if it does not specify the appropriate option
for the directive in question, the comment containing the
directive is listed, but the directive is ignored. If the CD
parameter selects the appropriate option, the specified
action is taken.

Comment directives are especially useful in the debugging
stages of a program; the program can be compiled with
the directives selected in the early stages of debugging,
and then compiled with the directives disabled for the
compilation that actually produces executable code.

The comment directives, as well as the options of the DB
parameter that select them, are shown in table 10-1.

The paired directives: #LIST#/#NOLIST#, #OBJLIST#/
#OBJINOLIST#, and #CHECKON=#/+CHECKOFF+#, have a
scope that is determined statically at compile time. The
default settings are #LIST#, +#OBJINOLIST#, and
#CHECKOF F=. When a nondefault directive is
encountered, it remains in effect as the text of the
program is read until the default directive is
encountered. Thus the period during which a nondefault
directive remains in effect is not related to the dynamic
flow of control of a program.

#LIST#, #NOLIST#, #OBJLIST#, and #OBJINOLIST# are
in effect at compile time; #CHECKON# and
#CHECKOFF+# are in effect at execution time.

An additional comment directive, #VIRTUAL#, specifies
that the arrays named in the immediately following array
declaration or specification are to be virtual arrays. It is
always in effect, regardless of any control statement
options. The V option on the ALGOLS5 control statement
determines the residence of virtual arrays, not whether
the comment directive is to be honored. Virtual arrays
are discussed in section 2, under-Arrays.

TABLE 10-1. COMMENT DIRECTIVES

Directive Selected By Effect

#INCLUDE# CD=I All the characters following #INCLUDE# and preceding the first semicolon are
included in the source program. The effect is the same as if the characters
#COMMENT+# # INCLUDE+ were omitted.

#LIST+ CD=L Begin listing source code with this comment and continue listing until a
#NOLIST+# directive is encountered.

#NOLIST+ CD=L Stop liéting source code, and do not list until a #LIST# directive is
encountered.

+#EJECT+# CD=L Eject a page in the source listing.

+0BJLIST# CD=0 Begin listing generated object code with this comment, and continue listing
until an #0BJNOLIST+ directive is encountered.

#OBJNOLIST# CD=0 Stop listing object code, and do not list until an #0BJLIST# directive is

i encountered.

#CHECKON# CD=8 Include code to begin checking subscripts in array references to see if the
array bounds are exceeded. When bounds are exceeded at execution time, issue a
fatal error message. Continue checking until a #CHECKOFF# directive is
encountered.

#CHECKOFF+ CDh=§ Stop generating code to check array reference subscripts. At execution time,
requests to store or fetch values out of bounds are honored unless field length
is exceeded.

60481600 B

10-1

COMPILATION CONTROL STATMENT 11

—

The ALGOL compiler is called with a control statement
whose keyword is ALGOLS5 in any of the following forms:

ALGOL5(py,pp, - - . ;pn) comments
ALGOLS5,py,py, . . . sPpe cOmments
ALGOLS5. comments

The parameters (pl,pz, « « « »Pp) can be written in any
order and are separated by commas. Comments are
optional; they are written on the _dayfile but are ignored
by the system.

The control statement must conform to operating system
syntax. -In particular, it can be continued on a second line
under NOS/BE or SCOPE 2 but not under NOS.

All parameters are optional. The effect of omitting a
parameter is described under the - definition of that
parameter. Parameters are presented inthis section in
alphabetical order.

B BINARY OUTPUT FILE

omitted Same as B=LGO.

B Same as B=BIN.

B= No binary output is generated.

B=ifn Relocatable complled code is written to file

named Ifn. The file is not rewound before or
after compilation.

CD COMMENT DIRECTIVES OPTION

More than one comment directives option can be selected
by separating the .options with slashes; for example,
CD=I/S. See sectlon 10 for comment directives.

Omitted No comment directive options are selected.
CD=I Honor #INCLUDE# command directive.
CD=L Honor £LIST#, #NOLIST#, and
B #EJECT+# comment directives.
CD=0 Honor aaéOB.JLISTae and a&OBJNOLIST%
comment directives.
CD=S Honor ¥CHECKON+# ahd #CHECKOF F#

comment directives.

DB DEBUGGING OPTION

More than one debuggmg option can be selected by
separating the options with slashes; for example, DB=D/P.

Omitted No debuggnng optlons are selected.

60481600 C -

DB=D Information required for execution time
symbolic dump is included in object code.
Array elements are not dumped. See

section 14.

DB=DA Same as DB=D, with addition of array
elements. .

DB=P Preset all non-own variables at block entry

to negative indefinite for real and integer,
and true for Boolean. Overridden by Z
option on - execution control statement
(section 13).

DB=SB Perform subscript bounds checking for
arrays, regardless of #CHECKON=# and
#CHECKOFTF # directives.

EL ERROR SEVERITY LEVEL

See appendix B. for a discussion of error messages and
their severity level.

Omitted Safne as EL=W.

EL Same as_EL:F.

EL=T Trivial errors, plus errors of levels W, F, and
: C -are listed. Trivial errors indicate
suspicious usages. The syntax is correct,
and the output is executable, but the
compiler has reason to believe that what the

program specifies is not what is intended.

EL=W Warning - errors, plus errors of levels F and
C, are listed. Warning errors are those in
which the syntax is incorrect, but the
compiler has made an assumption about
what was - intended and has continued
compilation. The binary is output, but the
program might not run as intended.

EL=F Fatal errors, plus errors of levelC are
listed. Fatal errors prevent the compiler
from compiling the statement in which the
error is detected. The binary is not
executable. Unresolvable semantic errors
fall in this category; the .actual error might
have occurred in a statement other than the
one flagged.

EL=C - Only - catastrophic -~ errors - are listed.
Catastrophic errors are those from . which
the compiler cannot recover. Compilation
of the current program is discontinued and
the compiler advances to the next program.

ET ERROR TERMINATION

If an ET option is selected, and errors of the specified
type occur, the job step aborts to an EXIT(S) control
statement (under NOS/BE or SCOPE 2) or an EXIT control
statement (under NOS) when compilation finishes. For an
‘explanation of the error levels, see the EL parameter.

Omitted Same as ET=C.

ET Same as ET=F,

ET=0 Do not abort job step even if errors occur.

ET=T Abort job step if errors of level T or higher
have occurred.

ET=W Abort]Ob step if errors of level W or higher
have occurred.

ET=F Abort job step if errors of level F or higher
have occurred.

ET=C Abort job step if errors of level C have

occurred.

| SOURCE INPUT FILE

Omitted Source input is on file INPUT,
I Source input iskon file COMPILE.
I=lfn Source input is on file Ifn.

L OUTPUT LISTING FILE

Omitted Output is listed on file OUTPUT.

L‘ Output is listed on file LIST.

L=0 Diagnostics only are listed on file OUTPUT.
L=Ifn Output is listed on file Ifn.

LO OUTPUT LISTING OPTIONS

More than one listing option can be selected by separating
the options with slashes; for example, LO=0/S. Any
option can be negated by prefixing it with a minus sign.

Omitted Same as LO=S.

LO Same as LO=R/S.

LO=0 .Object and source listing but no reference
map.

LO=-0 Source listing but no object listing or
reference map.

LO=R Source listing and reference map.

LO=R/-S Reference map only.

LO=S Source listing only.

LO=-5 No source listing, object listing, or

reference map.

LO=-S/O Object listing but no source listing or
reference map.

11-2

N CIRCUMLUDE COMPILATION

Omitted- Source input contains programs and
separately compiled procedures only.

N Source input contains circumludes only. See
section 9.

OPT OPTIMIZATION LEVEL

Omitted No extra optimizations performed.

OPT=IS Instruction scheduling performed.

PD PRINT DENSITY

Omitted Same as PD=6.

PD Same as PD=8.

PD=6 Compilation listings produced at a densnty of
six lines per inch.

PD=8 Compilation listings produced at a density of

eight lines per inch.

PS PAGE SIZE

Omitted Same as PS= 60 if PD=6; same as PS=80 if
PD=8.
PS=n Maximum number of lines per page for

compilation listings is n. If n is less than 4,
the default is substituted.

PW PAGE WIDTH

Omitted Same as PW=72 if output file is a terminal
file; same as PW=136 if output file is a
printer file. .

PW=n The number of characters on a line of the

compilation time output listing is n. Values
less than 50 or greater than 136 are ignored.

RES RESERVED WORDS

Omitted ALGOL keywords are delimited by the =+
character. See section 2.
RES ALGOL keywords are recognized as reserved

words, and are delimited by blanks or #.

S SYSTEM TEXT FOR CIRCUMLUDE

Omitted Only standard ecircumlude is available for
compilation.

S=circ Circumlude named circ from library
ALG5LIB is available during compilation.

S=lib-circ Circumlude named circ from library named

lib is available during compilation.

60481600 C

SEQ SEQUENCED INPUT

Omitted Same as SEQ=0.

SEQ Input is in sequenced line number format.
Sequenced format is explained in section 1.

SEQ=0 Input is in unsequenced format.

SGM SEGMENT DIRECTIVES

Omitted Provide no special code to verify the proper
segmentation of program.
SGM Provide special code to allow segmentation

of procedures. See section 13 for details
about the effect of this parameter.

SW SOURCE LINE WIDTH

Omitted , Same as SW=72.
SW Same as SW=80.
SW=n Columns 1 through n of each source line are

compiled. The remaining columns are listed,
but are otherwise ignored.

V VIRTUAL ARRAYS

Omitted Virtual arrays are to be allocated in central
memory.: Seé section 2, under Arrays.
V. Virtual ‘arrays are to be allocated ' in

extended memory (ECS, L.CM, or LCME),

COMPILATION LISTINGS

The format and contents of. the listings output by the
compiler depend on several control statement options:

e The LO option specifies whether the -listing is to

include a source listing, an object listing, a reference

map, or any combination of the three.

® The EL option determines the levels of diagnostics to
be listed.

e The L option names the file on which the listing is to
be written. If L=0 is specified, then diagnostics are
written to the file OUTPUT.

e - The PD option specifies the number of lines per inch.

‘e The PS option specifies the number of lines per page.

.® The PW option specifies the width of each line.

The format of the diagnostics is shown in appendix B.

60481600 C

An example of a source listing for program COMPLEX
(described in section 1) is shown in figure 11-1. The
components of the listing are identified.

An example of an object listing of program COMPLEX is
shown in figure 11-2.

An example of a cross-reference map for program
COMPLEX is shown in figure 11-3. For each identifier
the following information is listed:

e Name. Identifiers are listed in alphabetical order.
(Heading: NAME)

e Line number on which the identifier is declared.
(Heading: DECL)

e Name of the procedure or program in which the.
identifier is declared, truncated to seven characters.
(Heading: SCOPE)

® Line number of the start of the block in which the
procedure is declared. (Heading: START)

e Kind: variable, array,. procedure, label, switch, or
string. Blank indicates a variable. (Heading: KIND)

e Type: integer, real, or Boolean. (Heading: ‘TYPE) k

e Attributes, such as formal parameter, . value
parameter or external. (Heading: ATTR)

e Line numbers of all occurrences of the identifier, in
ascending order. (Heading: USAGE/FLAG) Each line
is accompanied by a one-character flag indicating the

following:

Letter Significance

S Identifier is assigned a value. -

P Identifier- is used as an. actual
parameter.)

C Identifier is used as.the controlled
variable of a FOR statement.

blank Other, such as use of value of the

identifier in an expression.

Address of the identifier relative to the beginning of
the section of code it falls within. (Heading: 1.OC)

Relocation, or type of block .in which the identifier is
located (such as // for blank common, INLINE for a

- standard procedure, or CODE for a code block).
(Heading: REL)

Redundant _declaration indicator. If an identifier -is
either declared twice, or is declared once but never
referenced, the character < appears on the left of the
identifier's line in the map. If the value of the
identifier is used before a value has been assigned,
the character * appears on the left. If the variable is
accessible for future compilations (which can only be
true during a circumlude compilation), the letter X
appears on the left.

11-3.

Buryst] 80anog *T-1T @1nbi 4

LN3IW 0D

ANIWWOI
INIWWOI

AIN3W 02
AN3WWOD

_seun
wBWWo)

" LNIHNHOD

LN3HKWOD
IN3IWNOI

IN3W 0D

ININKOD
AIN3WN0D
IN3WN 0D
IN3WAO0D
IN3IWi 0D

IN3IHHOD

O A AA N AAATHAUAUNN NN NN Al AN A NAUNMM MM IITIMURNANNAUN VNN D

/

$j3019 Jo
BunisaN jo yidaQ

39v¢

#0ON32 *9n
SNIVW #0N32 ‘gn
$46 *V S 2(20C°0Z+°82*0C0*AL+%6<c2)24dlF0) LNDIND *nn
$ 487 *A*X)1alSO “gn
$0°0 =¢ A $0°T =% X . *2en
$319 =3 dinu “In
$dinN0 #A393ANIZ ¢(aVéalx 23y ‘on
$(E%Y) 100¥ 33VAOS wbH ONI4 GANV (A*X) &04 3NTIVA ¥V 3SOO0HD *6g
eeoscscoccaccccee,iYNI0AUd NIVA Z2iNIWWOOZ *ug
#N1938%# *is
*3¢
$130S3 #UN32) o *ae
ZUN32 *he
#0N32 ; ‘s
td+8) /A =3 .V . : b3 4
$V 238737 v- #N3HiZ 0 > A 23I% =% o - *1g
#NIg3€z *og
$3813¢# : *62
(V4V) /A =8 8 #NJHIL# 0 =< X #d41I#4 ' *e82
.moat..».x~mm<o¢-x-wmc-b¢cm =t v *L2
INID3E2 : *9¢
#38132 *62
g =1 8 =% ¥V zN3HLz 0 = & 2ONVZ 0 = X #d1%# . *n2
#N]1a38ez : ¥ 97
.m.q.».x 2IY342 IASX #3NIVAZ : *22
$A3ANON xwaazou 3Hl 40 100¥ mmqsem 34l 31VINOIVI 2IN3KNOTZ *12
$(BOVEASX) 13DST #340033T0ud# siaquinN *ge
aur *6l
$S8VI zGN3# 804n0g YT
H an:\x:.:.—acm * A #3813z ' : /;:
(2aa(X/A)+T7)14DS 2 X #N3HiZ : *91
A < X 23I# #3873 *s1
X #N3HI#z 0 = A #3I# #3S513¢# ‘91
A #N2HIZ2 0 = x #d4Iz =1 Sgv0 b
$tA)SEY A $AX)SEY =3 X *éT
#NI93e2 ‘1t
SACX £v3IA# tASX #23NTIVAz *01
».>.x- JIBHWNAN X31dWOD uo 3NTIVA 31nT0SEV 3dl 3LVINIIVI 2AIN3WKOIZ *o
$€atx) SAV3 233N0300adz #IV3d# bt
'
¢INOISSINd3d A QO3S0 : *9
*AY3INL HOVK wZN»:quo uou NOI LVIOJOSSY ¢/96T 1h91dAd0l *a
*(A%X) SV C3IN3S3¥d3a SI AIGWNN X3ITdWOI 3HL .]
*A3IGHNN X3 TIdWOI V 40 L0OO¥ FAVNLS 3HL SIiNdW0I WY IS0da SIiHI Z2iN3IWR0D2 ‘e
JaquinN ZN1936#) b4
. UOISIBA : $X31dW0D 3
awtj aleq _m__a.c_,oo . aweN weiboid
oum-%m.Oa o»xu«\oo 22164 1S W09 : * SNIRSIT 33300S = xwaM:Op
s, WRW NS W AR W RN RN RN R R WA RN AR R N RRAR N AR AR AR AR R RN AR AR ARA W RRA N R AR WA

ttz.zxzzx:lzzxtzxrtzrtzzz:zzzzzIrzr\r\xzxsztx.txzrtl:zxzztzzzxrzxzzzzz;z:xxz:xzzzixz!zzzzt

60481600 B

11-4

(2 40 T 333yS) (AJuQ 8bed 3811 4) apo] 198(qO *z-TT 94nbi 4

39vd

*18°0£°91 b62/%1/9)

1¢

Cy1S*9x=

T84 g~

2425184498

31113ddv+sd
1/8142500009/8T7%1000009/6T%2/9
2000009/3148000000£c20T080/2%
6/t

9356/5149956/51%2/67

9210009

W09 X6

Uai1Se9x=

Tee NG~

2H+xtTg% %y

31 I113ddV+su

0/67 40970003747 40/6T%8/9
00C0009/8T%80ES0NTOCSTLTILR/2%
=1S$0YVX=

W03*%18

IN3S¥d

1Y)

w3 /X37dW03/
T
¥
1
£3 /<5S$99v/
23 /51S309v/
1

-l et vt

1

13 /4
800000000000020024020
87T0071005090260040£710
800£0%0£0009020000190
4702020£0£00090500090
30000000000000009274T
8000000000000000%0241
§00000000000000D000CE+6/09
€000300000000000000E24v/09
9000009761 ¢0/81%2/%2
2100009/871%€0£50GT1325T4180/2"n

22164 1°s 109

gvsS

24S

asn
3sn
SS8
ss8
$sg
3sn
3sn
$s8
SSH
SSy
ssg
SS9
SSu
3sn
viva
viva
J4va
vivag
viva
viva
[{ET
a3
C4A
[VET))

SYv

3200009

iINFYdd

X37dW03
2100029

NOI 1dO1I
NOI 1dOK

WO *x78

01359
X00300002070
kAR TP
+320000T9%0
YALLELERTY
T06000es000aTR0CD020
+02000000003CxcedT0ED
60Gag
9222¢%2cee2tiont
4327030830
130009006919
Xgoonpeoato
n11Ld
+5200081T79¢0
£94424E9T9
006000009100000006007T
+0000000£90%7025T47£0
X0003000620
150000000912
+970000377<

pajesauan)
apo) auiyaep

apo) jo
sSaIppy aAne[ay

0200060G30000c002£020
T00T0090902030408110
00£0%)50009220000T90
102020€02086896500039
00000300000000094747
0000000600000006%047
10%00003000020200000088
T0£003020000000060905¢
+30000300000020000000
+21000305907302ST4180

+ 3003 123780 «

90000
&2 0000

hego000
£20000
<2060 ‘¥

3c0000
Geteoe
410000

916600
sT0000
%10000

£10000

ciogeo *e
2100060 *e

¢i6000
Ta0000
020000 6uns
80N0g WoJy
siaquinN aur
$30600
208000
£30000
200600
100060
ouooco

Ti0C00
oInooo
403000
300080
$30000
750000
£00000
cuacee
$10000
gugooee

X3VaW0U

11-5 @

60481600 B

depy aoualayey °*¢-1T aanbi 4y

30 *0009x0 wd Q3eInu3d

*33S 406°
dsh sz // ¢BO000 L% *x31dW0OJ 0% ¥ A
2t 1§ %2 dle 'Y 2 0 L3US0 2¢ *a*h a A
i1 L1 st a1 "1 £1 4zt s2t P ¥ SHYD 0% ‘oA a A
ash sa% /4 100000 2F X31dn0d 0% d %
T dee de2 LY 1 92 14082 22 *d*A a *
L1 91 91 [} L) £3 daz3 sat 1 o savd 07 *dA d M
22 i1 91 6¥T =1S309V 43¥x () 206d @ 1808
4y 681 =1S309v 33ax €)J0¥d NciNG
dnn SI% /4 S00000 <% X31dW0J 0% I cana
€9 360C 090069 2 X37aK00 02 ()3udd 1aUSJ
¥ sg1 3003 %20000 2 X31dw0d ¥ ()00%d o SEvd
dnn dgh /¢ n03302 L8 x374W00 0% a 6
s 2g ST% see sne " 02 139S0 2¢ ‘g4 s "
42 3 21 INIWI 68T =1S$09v daax ()30¥d & sev
a4 dgn /4 £30000 L% X31dn0Jd 0% a v
sa¢ 1s £ 82 82 séz sne £ n2 14D80 ¢é *g*4 & v
(*¥VA*HINODID $°uva°15Vid *13S1S) 9v1s/39vsSn 36 901 13ViS 35d03S 1330 olaV OGNIX 3oAr 3KUN
L 39vd *15°08°ST 62/%1/99 22164 1°% 1097 » 3ON3%3438 SS0AT X31dW0J
(Z 40 Z 198ys) (ATuQ 8bed 1811 4) 9po) 193(qQ *Z-TT b1y
2X=0x 48 c0.8% TI£0000
09 OXV ni012
2x*p8 0Xx1 etsee
AsT8 2vS G244401276 080000
ON poay" *21
v 9vs 31998
IX-CX 9x8 10987
09 OxvV 9l01e 422800
X CXd 31007
x+38 1S Y4illilVils *21

60481600 B

® 11-6

INTERFACES

12

This section describes the interfaces between an ALGOL
program and Record Manager (which processes all the
input/output for ALGOL) as well as guidelines for writing
a procedure in COMPASS intended to be called from. an
ALGOL program. A COMPASS procedure called from
ALGOL must be a separately compiled procedure; how to
declare and call
explained in section9. This section explains modifications
to the COMPASS program which enable it to interface
properly with ALGOL.

Procedures written in FORTRAN and SYMPL can also be
compiled separately and called from ALGOL. This
facility is described in section 9.

RECORD MANAGER INTERFACE

Calls to input/output procedures (section8) in an ALGOL
program are translated by the compiler into calls to
Record Manager, which performs the input/output at
execution time.

For each file (which is equivalent to a channel), Record
Manager requires, and the compiler provides, a file
information table, which guides the Record Manager
processing. This table contains fields that specify the
structural characteristics of the file. The fields in this
table are set by the compiler at execution time when the
CHANNEL procedure is executed, or by default if the
logical file name is INPUT or OUTPUT. If the user
provides a FILE control statement, the values provided
override those established by the CHANNEL procedure.
The FILE control statement is processed when the file is

these procedures from ALGOL is

first input/output procedure referencing the file is
executed. Table12-1 lists the file information . table
settings for each of the three file types (coded sequential,
bmary sequential, and word addressable). For the
meanings of these parameters, and more information in
general, see the CYBER Record Manager/Basic Access
Methods: reference manual, or the SCOPE2 Record
Manager reference manual.

COMPASS INTERFACE

A COMPASS subroutine written to be called as a
separately compiled procedure from an ALGOL program
can be declared.:in the program by any of the symbols

#CODE#, #ALGOL#, or #FORTRAN#. +#CODE# and
#ALGOL+ are synonymous, and indicate that the
procedure is to be called with the ALGOL calling

sequence. If the procedure is declared with the symbol
#FORTRAN#, the FORTRAN Extended calling sequence
is used, as described in the FORTRAN Extended reference
manual. - The procedure is entered through the RJ
instruction, and return must be through a branch to the
entry point. ALGOL saves and restores all relevant
registers. ‘

If the procedure is declared with the symbol #RJ#, an
especially fast calling sequence is used. The procedure
must have no more than one parameter, which must be
called by value and cannot be an array. The procedure is
entered by an RJ instruction; the value of the parameter
is in register X1. The procedure should not change the
contents of registers Bl, B2, and B3 without restoring
them before exit. The result of the procedure (if .it isa

opened. A file is opened either explicitly, by the OPEN function) must be in register X6 when control returns to
procedure - (section8), or implicitly, when the the calling program unit.
TABLE 12-1, FILE INFORMATION TABLE DEFAULTS
FIT Field ' :
- Coded Sequential Binary Sequential Word Addressable
Mnemonic Meaning
FO File organization SQ SQ WA
RT Record type Z (NOS, NOS/BE) ' s U
‘W (SCOPE 2) B
BT - Block type C (NOS, NOS/BE) c -
unblocked (SCOPE 2)
1 (SCOPE 2 tape files) |
FL Fixed record length (RT=Z), 137 for paged, - -
in characters 80 for unpaged
MRL Maximum record length, in - 5120 5120
characters
OF Open flag N N N
CF Close flag N N
PD Processing direction I0 I0 - 10
LT Label type U U -
60481600 C 12-1

Location

Operation Variable

tname

tname

name

type

parlist

fast

list

- PROC name,type,parlist,fast,list

Optional. If present, this name is used in the traceback.

Entry point name. Either a number of one to five digits, or. a name of up to seven letters and digits, the
first a letter. f a number, it is prefixed with leading zeros and the letters CD to create an acceptable
7-character entry point name for the loader. ' The name provided in the macro should appear after the
#CODE+# symbol in the procedure declaration. . .

Optional. If absent, procedure is assumed to be a typeless procedure If present, must be one of the
following, to indicate the type of the procedure: : ‘)

I integer
R Real
B Boolean

List of formal parameter descriptions. The whole list must be parenthesized, and each description must be
parenthesized. The list is of the form: .

(pktyvd), ..., (pktvd)
Parameters of descriptions are as follows:

p Name by which parameter is referred to in macros.

-k Letter indicating kind of parameter; one of the following:

String

Array

Constant
Simple variable

Procedure with parameters
Switch

Expression .

Procedure without parameters
Subscripted - variable

Virtual array

DNZXEVIr<OPO

t Type of par_émeter:

i Integer

B Boolean

R _ Real

omitted: Type not relevant

v If nonblank, value parameter; if omitted, name parameter.

d For arrays only. If present, number indicating required number of dimensions of array. If omitted,
any number is permitted.

Optional. If absent, generate stack request. [f present, suppress stack request {only allowed when the
procedure does not use the scalar stack).)

Optional. - If present, additional parameters are permitted, and are treated as if call-by-name. - If omitted,
no additional parameters are permitted. : ‘

12-2

Figure 12-1. " PROC Macro Format

60481600 B

COMPASS INTERFACE MACROS

The COMPASS interface macros simplify the process of
writing a COMPASS subroutine meant to be called as a
procedure from an ALGOL program. Calls to the macros
are included in a COMPASS procedure and must follow all
the conventions for macro calls as described in the
COMPASS reference manual.. To use the macros,
S=AL5TEXT must be specified on the COMPASS control
statement.

The steps to be followed for separate compilation of
procedures written in COMPASS are outlined in section 9.
When the interface macros are used, the procedure must
be declared in the calling program unit using the symbols:
#ALGOL# or #CODE# {not #FORTRANs or #RJ#). This
is so that the usual ALGOL calling sequence is used.
COMPASS procedures not using the interface macros can
be declared with the symbols #FOR TRAN# or#R J#.

Macros are of six types:

e Procedure definition. These macros define the
beginning and end of a procedure, and return control
to the calling procedure.

® - Parameter checking. These macros check the
number, type, and kind of the actual parameters the
procedure was called with.

® Parameter accessing. These macros make available
to the procedure the values and locations of the
actual parameters.

® Procedure-calling. These macros enable the
procedure to call other procedures.)

o Stack-handling. These macros obtain space on the
scalar stack and store values on, or fetch them from,
the stack. '

e Miscellaneous. These macros convert values, post
error messages, and save and restore B-registers.

In procedures using the macros, the character | (ASCII ?)
should be avoided, since it is heavily used in a variety of
contexts by the macros.

There are several registers that should not be used by a
procedure, unless they are saved after each macro call
_ and restored before the next macro call. These include
Bl, B2, and B3, which are used by the run-time system,
and X0, X1, X2, X6, Al, A2, A6, and B4, which are used
by the macros themselves. If an X-register is used as a
parameter to a macro call, the corresponding A-register
might be used by the macro. When it is necessary for a
macro to evaluate a call-by-name parameter, however, all
registers might be used by the macro; this applies only to
the VALUE, ASSIGN, and ADDRESS macros. This is also

true whenever a stack request is necessary; this applies

only to the PROC macro. Registers Bl, B2, and B3 can be
saved by the macro SBREGS and restored by the macro
RBREGS.

The macros attempt to optimize register usage; the user
can consult a COMPASS listing in which the macros are
expanded to see which registers are actually used in any
given case.

60481600 A

PROCEDURE DEFINING MACROS

The procedure defining macros establish and disconnect
the linkage between the COMPASS procedure and the
ALGOL run-time system.

The PROC macro (figure 12-1) establishes the entry point
of the procedure and must be called in each procedure
using the interface macros. It should be the first code
generating instruction. Procedures cannot be nested; that
is, an ENDPROC macro call must occur before the next
PROC macro call is allowed.

The ENDPROC macro (figure 12-2) indicates the end of
the procedure. It should be called as the last code
generating instruction of the procedure. ENDPROC
assigns values to local variables needed by other macros.
It does not transfer control; this can only be accomplished
through the RETURN macra.

Location Operation Variable

ENDPROC

Figure 12-2. ENDPROC Macro Format

The RETURN macro (figure 12-3) returns control to the
calling procedure. It can appear more than once in a
procedure. If the procedure has a result, it is put in an
X-register, and the xreg parameter indicates which
register. :

Location Operation Variable

RETURN xreg,type

xreg For typed procedures, name of X-register
containing result. Omitted for typeless
procedures.

type Optional; indicates type of number in
X-register and conversion to be performed:

R Floating point number, to be
normalized. .

| Floating point number, to be
rounded to nearest integer.

B Boolean value, no conversion
performed.

F Integer, to be floated and
normalized.

omitted No conversion performed.

Figure 12-3. RETURN Macro Format

- PARAMETER CHECKING MACROS

The parameter checking macros check the number, type,
and kind of actual parameters the procedure has been
called with. They allow the user to take alternative
courses of action depending on the actual parameters.

12-3

The PARAMS macro (figure 12-4) returns the number of
actual parameters. No check is made by the system as to
whether this number is the same as the number of formal
parameters specified in the PROC macro.

Location Operation - " Variable

PARAMS. xreg

- Xreg Name of ‘X-register to receive number. of
actual parameters; number is returned as
an integer.

Figure 12-4. PARAMS Macro Format

The KIND macro (figure 12-5) must be called once for
each parameter for which checking is desired. In the
macro call, the user specifies labels to be branched to
when the actual parameter is one of the specified kinds.
If the actual parameter is not of any of the specified
kinds, control falls through to the next statement after
the macro call.

Location Operation Variable
KIND parname, (k:lab, ..., k:lab)
parname Parameter name, as established via the

PROC macro; an integer parameter num-
ber; or the B register containing the
parameter number.

k Any concatenation of characters indicating
the kinds to be checked. The characters
are those shown in figure 12-1 for the

PROC macro.

lab COMPASS label to be branched to if the
actual parameter is one of the specified
kinds.

Figure 12-5. KIND Macro Format

The TYPE macro (figure 12-6) is the same 'as the KIND
macro, except that it checks types instead of kinds.

Location Operation Variable
TYPE 'parname, (t:lab, ..., t:lab)

parname Same as for KIND.

t Concatenation of characters indicating
type to be checked for. Allowable codes
are: '
| Integer
R Real
B Boolean
N No type; allowed only for a label,

switch, procedure, or string.

lab Label to be branched to if actual param-
eter-is one of the specified types.

PARAMETER ACCESSlNG MACROS

‘The parameter accessing macros make available to the

COMPASS procedure the values and addresses of actual
parameters, the lengths of strings and. arrays, and the
number of dimensions.in an array. They also assign values
to call-by-name parameters and transfer control to label
parameters. . E

The VALUE macro (figure.12-7) computes the value of a
specified actyal parameter and places it in a specmed
X-reglster. : .

'L,ocation 'Operatiqn Variable
VALUE ‘ parname,xreg,kind,check
parmame ~ Same as for KIND.
xreg ‘Name of X-register to receive value of
parameter.
kind' .- Optional; one of fhe allowable kinds for

this parameter. The only kinds' allowed
are C, V, X, N, and S (as listed. in
figure 12-1). The codes are the same
as for the PROC macro (figure 12-1).
For call-by-name parameters, more
efficient code is produced if this param-
eter is included.

check Optional; only meaningful for call-by-'
name parameters. 1f omitted, no check
is performed. If specified as |, B, or R,
kind is checked according to the kind
parameter and type is checked for integer,
Boolean, or real, respectively. |f kind or
type does not match, a fatal error results.
‘If specified as a nonblank value other
than |, B, or R, kind is checked but not
type. .

Figure 12-7. VALUE Macro Format

The ADDRESS macro (figure12-8) computes the first
word address of an array or string, or the address of a
constant. or variable. The parameter - must be
call-by-name.

Location Operation Variable

parname,xreg,kind,check

ADDRESS

parname Same as for KIND.

Xreg Name of X-register to receive address of
parameter. For kind = R, the sign bit is
1 if the array is allocated in extended
memory, and O if the array is allocated
in central memory.

kind One of the allowable kinds for this
parameter. Only G, C, A, V, R,and S
are allowed, as listed in figure 12-1.

check Optional; if specified, the kind of the
parameter is checked; if it does not match
the kind parameter, the program aborts.
If omitted, no checking takes place.

Figure 12-6. TYPE Macro Format.

12-4

Fig}ure 12-8. ADDRESS Macro Format

60481600 C

The FWA macro (figure 12-9) performs the same function
as ADDRESS, except that it only applies to arrays and
strings, and the kind of the parameter is not specified.

Location Operation Variable
FWA parhame,xreg,check
parname
xreg See VALUE macro.
check

Figure 12-9. FWA Macro Formét

The LENGTH macro (figure 12-10) computes the length of
an array or string; the parameter must be call-by-name.

Location Operation Variable

LENGTH parname,xreg,kind,check
arname
Eind } See VALUE macro.
check See ADDRESS macro (figure 12-8).
xreg Name of X-register to receive length of

array or string. The length is returned in
characters for a string and in words for
an array. String length does not include
string quotes.

Figure 12-10. LENGTH Macro Format

The ORDER macro (figure 12-11) returns the number of
dimensions of an actual parameter array.

Location Operation Variable
| ORDER parname,xregd,check
parname See VALUE macro.
xreg)‘(-regi'ster to recefve number of dimen-
sions in array.
check See ADDRESS macro (figure 12-8).

" Figure 12-11. ORDER Macro Format

The ASSIGN macro (figui‘elZ-lZ) assigns a value to a
call-by-name parameter that is a simple or subscripted

Location Operation Variable
ASSIGN parname,xreg,kind,check
parname
kind See VALUE macro.
check
xreg X-register containing value in correct
format to be assigned to parameter.
Figure 12-12. ASSIGN Macro Format -
Location Operation Variable
GOTO parname,index,check
parname See VALUE macro.
index - Required for switch; forbidden for label.
Indicates which label in switch is to be
transferred to.
check See ADDRESS macro {figure 12-8).

Figure 12-13. GOTO Macro Format

PROCEDURE-CALLING MACROS

The procedure-calling macros set up the parameters for a

call to another procedure and then execute the call.

The

macros should be executed in this order:

1. The macro CALLING (figurel12-14) is called to
establish that a calling sequence is being established.

variable, or to any call-by-value parameter.

The GOTO macro (figure 12-13) transfers control to a
designational expression (label or switch) provided as the
value of an actual parameter.. The environment of the
procedure to which control is transferred is restored.

60481600 C

Location Operation Variable
CALLING npar,name

npar Absolute expression equal to the number
-of actual parameters in the call.

name If absolute expression or B-register: num-

ber of parameter to this procedure {the
calling procedure) which is the procedure
to be called. 1f relocatable or external
expression: name of entry point of pro-
cedure to be called.

2.

Figure 12-14. CALLING Macro Format

For each actual! parameter, either the macro PARAM

(figure 12-15) - or

one of the macros SIMPLE

(figure 12-16), STRING (figure 12-17), or CONSTANT
(figure 12-18) is called to place the actual parameter

on the stack.

If the parameter is a call-by-value

parameter, its value is placed on the stack; if it is a

call-by-name

descriptor is placed on the stack.

parameter,

a

specially

formatted

PARAM can be

called for any kind of parameter, call-by-name. or

125

call-by-value; SIMPLE, STRING, and CONSTANT can
be called for call-by-name parameters that are
simple variables, strings, and constants, respectively.
For call-by-name parameters, PARAM requires that
the user provide the descriptor; for the others, the
descriptor is provided automatically. The formats of
descriptors are presented in appendix E.

Location Operation Variable
" PARAM par
par If X-register: the contents of the register

are stored on the stack.. If the parameter
is call-by-value, the contents are inter-
preted as the value of the parameter; if
call-by-name, as the-descriptor of the
parameter. Descriptor formats are pre-
sented in appendix E. If the procedure
being called is a parameter of the current
procedure, all actual parameters must be
call-by-name. |f B-register or absolute

. expression: the value is interpreted as
the index of the parameter to this pro-
cedure (the calling procedure) which is
to be transmitted as a parameter to the
called procedure.

Location Operation Variable

CONSTANT]| type,value

type ' Type of constant:
I Integer
R Real
B~ Boolean
value Value of constant. If Boolean, value is T
or F. e o

Figure 12-15. PARAM Macro Format

Figure 12-18. CONSTANT Macro Format

3. The CALL ‘macro (figure 12-19) is called, bringing the
procedure’ into. execution. The next statement after
the call ‘to CALL is the first statement to be
executed after return from the procedure. If the
procedure is typed, the value is in register X5. If the
procedure being called is a parameter of the current
procedure, all actual parameters must be
call-by-name. ~ In case the corresponding formal
parameter in the called procedure is declared
#VALUE#, the system automatically evaluates the
parameter and the parameter is afterwards treated as
a call-by-value parameter.

Location Operation Variable -
SIMPLE - | typename
k type Type of parameter:
1 Integer
R Real

B Boolean

name If absolute expression: index of simple
variable in the stack. If relocatable
expression: address of variable.:

Location | Operation Variable

CALL

Figure 12-16. SIMPLE Macro Format

Location Operation Variable
STRING name,str

name Optional; required when str parameter is not
present. -Address in code of descriptor for
string.

str Optional; required when name parameter is

absent. String contained in parentheses, not
containing # or $.

Figure 12-17. STRING Macro Format

12-6

Figure 12-19. CALL Macro Format

STACK-HANDLING MACROS

The stack-handling macros request additional space on the
scalar stack, and fetch and store variables. The scalar
stack is described in appendix E. The DECL macro
(figure 12-20) requests a specified number of words of
additional scalar stack space. This macro uses no
registers. The PUTVAR macro (figure12-21) places a
variable on the stack. . The GETVAR macro (figure 12-22)
retrieves the value of a variable from the stack. In both
cases, the index of the variable provided is not checked
for validity at execution time. If the value of the index is
an absolute expression, it is checked at compilation time.

Location Operation Variable
DECL name,length
name Name of location or register to receive index

of first word of available stack space after
macro call is executed. Name is the stack
address, relative to the base address in regis-
ter B1.

length Optional; absolute expression equal to the
number of words requested. If omitted,
value assumed is 1.

Figure 12-20. DECL Macro Format

60481600 A

Location Operation Variable

PUTVAR xreg,index

xreg, X-register containing value to be stored.

index Absolute expression, relocatable expression,
or register containing index of variable on
stack. The index is the stack address
relative to the base address in register
B1.)

Location

Operation Variable

Figure 12-21. PUTVAR Macro Farmat

operand

result

action

XFORM operand,result,action

X-register containing value to be reformatted.

X-register to receive result. Can be the same
register as operand.

Type of conversion:

Rl Round to nearest integer.

RF Convert operand from real to integer
by unpacking and shifting.

FR -Convert operand from integer to real
by packing and normalizing.

Figure 12-23. XFORM Macro Format

Location Operation Variable

GETVAR xreg,index

xreg X-register to receive value of variable.

index Same as for PUTVAR (figure 12-21).

Location Operation Variable
ERROR string
string Optional; error message enclosed in paren-

theses and not containing $ or, in 64~
character set, two consecutive colons.

Figure 12-22. GETVAR Macro Format

MISCELLANEOUS MACROS

The miscellaneous macros take care of various
housekeeping functions. The XFORM macro (figure 12-23)
converts a value in an X-register into a different format,
and places it in the same or a different register.

The ERROR macro (figure12-24) starts the error
traceback and optionally writes a message to the
post-mortem dump output file.

The SBREGS macro (figure 12-25) saves the dedicated

B-registers (Bl, B2, and B3) and the RBREGS macro
(figure 12-26) restores them.

60481600 B

Figure 12-24. ERROR Macro Format

Location

Operation Variable

SBREGS

Figure 12-25. SBREGS Macro Format

Location

* Operation Variable

RBREGS

Figure 12-26. RBREGS Macro Format

12.7

EXECUTION 13

Compilation of an ALGOL program results in a
relocatable binary. The program can be loaded and
executed -in the same way as any other relocatable
binary. (See the loader reference manual.)

SEGMENT LOADING RESTRICTIONS

If the segment loader is used, the following restrictions
. should be observed:

e The main program and all circumludes should reside
in the root segment. This takes place automatically
when the main program is assigned to the root
segment and the circumludes are not assigned to any
segment.

e Code procedures can be assigned to nonroot
segments. - However, the results are not valid if a
return is made to a calling segment when the segment
is no ‘longer loaded. For example, the following
sequence produces invalid results:

Segment A, containing procedure Al, is the
ancestor of both segmentB, which contains
procedure Bl, and segmentC, which is on the
same level asB. Procedure B1 calls
procedure Al, which then causes segment C to be
loaded on top of segment B. When Al terminates
and attempts to return to Bl, segmentB is no
longer in memory and a branch is made to some
irrelevant address in segment C. This situation
cannot be diagnosed; the user must guard against
it.

® Other situations that can cause invalid results are
calling a parameter procedure, branching to a
parameter label, and evaluating a name parameter
when the procedure, label, or name parameter is in a

different segment from that containing the called

procedure.

The SGM. parameter on the ALGOLS5 control statement
eliminates these restrictions in most cases. For main
programs and circumludes, the SGM option is not
necessary (but harmless). . A separately - compiled
procedure. to be executed under segmentation should be
compiled. with the SGM option if either of the followmg
conditions is true: :

e The procedure is called from a procedure in a
different segment. This applies whether the call is

direct (through a call to the procedure) or lndlrect,

(through a formal parameter).

e _ The procedure itself calls a procedure in a different
segment, either directly or 1ndlrectly.

When a procedure is complled under the SGM option, it
must either have a name that does not exceed six
characters, or a number. The module name must be
different from the procedure name.

The -main program of a -segmented program should be
loaded in the root segment. ' When one separately
compiled procedure is. compiled with the SGM option, all
procedures compiled at the same time should also use the
option. : .

160481600 C -

EXECUTION CONTROL STATEMENT

Parameters can be included on the control statement that
executes an ALGOL program (frequently the LGO control
statement). The parameters are all optional and can be
specified in any order, except on an EXECUTE statement,
where the first parameter is the entry point name.

D POSTMORTEM DUMP FORMAT

The dump format is described in sectionl4. DB=D or

DB=DA must have been specified on the ALGOL 5 control

statement; inclusion of arrays depends on the compile

time specxflcatlon.

Omitted Same as D=DT.

D Same as D=DV.

D=ab This option is a two-character string. The first
character, denoted by a, indicates the scope of
code to be dumped. The second character,
denoted by b, indicates the type of dump.

Choices for a:
B Current block only
P Current procedure
S All accessible blocks (static)
D All active blocks (dynamic)
Choices for b:
T - Traceback only

V Traceback and dump of simple variables

F . Traceback and dump of array elements
and simple variables

D=abA When the two characters are followed by A, the
addresses of the entities are listed as well.

D=0 No dump or traceback information.

E POSTMORTEM DUMP FILE
Omitted Same as E=OUTPUT.

E Same as E=OUTPUT.

E=Ifn Postmortem dump is written to file Ifn.

| INCREMENT FOR MEMORY REQUEST
Omitted - Same as 1=2000. '

1 Same as 1=2000.

=n ‘ Minimum number of words by which field length

can be increased is n (n is interpreted as an’
octal number). See MEMORY procedure,
section 7.

13-1

L LINE LIMIT FOR DUMP

The line limit applies to both the postmortem dump
(section 14) and to dumps induced by the DUMP procedure
(section 7). :

' Omitted Same aé’L:ZOO.
‘ L Same as .=1000.

L=n" Dump outpﬁt limited to n lines.

M MAXIMUM FIELD LENGTH |

Omitted Maximum field length determined by " loader.
’ (See the Loader reference manual.)

M Field length when execution begins is to be
maximum field length. :

M=n Maximum field length is n (n is an octal
number). See MEMORY procedure, section 7.

13-2

‘R RECOVERY TYPE

R indicates under which conditions a recovery. subroutine
is to be executed (see the explanation of the RECOVR
macro in the NOS or NOS/BE reference manual or the
REPRIEVE macro in the SCOPE 2 reference manual). The
n option specifies a mask that indicates the types of
conditions that cause recovery.

Omitted Same as R=77. (R=777700148B for SCOPE 2)

R Same as R=77. (R=777700148 for SCOPE 2)

R=n Execute recovery subroutine under conditions
indicated by mask n (n is an octal number, less
than or equal ta 77).

z PRESET VALUE

Z is effective when DB=P has been selected on the
ALGOL 5 control statement.

Omitted Numeric values are preset to negative
indefinite; Boolean values to true. :

zZ Numeric values . are preset to zero; Boolean
values to false.

60481600 C

EXECUTION TIME ERROR PROCESSING

14

When a fatal error occurs during execution of ‘an ALGOL
program, execution terminates and diagnostic information
is output. All the information is output to the file named
in the E option on the execution control statement
(section 13), or to the file OUTPUT by default. The
following types of errors can occur at execution time:

¢ FErrors detected by the ALGOL execution time
system. These include array subscripts out of bounds
(only when DB=SB is specified on the ALGOLS5 control
statement, or when CD=S is specified and the
#CHECKONs= directive is in effect for the statement
causing the error); invalid correspondence between
actual and formal parameters; invalid arguments to
standard procedures; and input/output errors.

e FErrors detected by the hardware. These are also
known as arithmetic mode errors and include the use
of indefinite and infinite operands, and references to
addresses outside of the user's field length. More
detail ~about these errors can be found in the
appropriate operating system reference manual.

The information output when an error occurs consists of a
diagnostic, traceback information, and possibly a symbolic
dump. The amount of information included in the: dump
depends on the options selected for the DB parameter on
the ALGOL5 control statement and the D parameter on
the execution contro! statement. If neither DB=D nor
DB=DA is selected on the ALGOLS control statement, no
dump is produced. If DB=D is selected, the dump includes
the following: '

e For each block in the traceback,-a line indicating.the
module name and line number of the block, the values
of all simple variables declared in the block, and the
names,-types, and bounds of each array in the block.

o For each procedure in the traceback, thé name of the

"~ module in which the procedure is declared, as well as
the line number of the dec¢laration, and the values of
the formal parameters of the procedures.

If DB=DA is selected; the values of array elements for

each - array declared in each block in the traceback are

added to the information output for DB=D.

For the D parameter on the execution control statement,

the ‘options selected consist of two or three letters, as
follows: i

‘1. The first letter indicates the blocks to be included in
the traceback:
B k Current block only
P All active blecks in the current brocedure
$ All accessible blacks in the static chain
5 .

All active blocks in the dynamic chain

2. The second letter indicates the entities to be dumped:

T. Traceback only

60481600 A

V Traceback plus simple variables
F Traceback, simple variables, and array elements

If a more restrictive set of entities is specified on the
ALGOLS5 control statement, the execution -control
statement is overridden. For example, if DB=D is
specified on the. ALGOLS5 control statement, and
D=xF is specified on the execution control statement,
array elements are not dumped because the required
information is not added to the object code at
compile time.)

3, . The third letter is either A or omitted. If A, stack
addresses of entities are included in the dump, and
COMPASS procedures are added to the traceback. . If
A is omitted, no addresses are included and
COMPASS procedures cannot be traced.

For example, D=SVA means that all blocks in the static
chain are dumped, and a traceback, simple variables, their
values, and their stack addresses are output for each
block. D=BF means that only the current block is traced,
and all its variables and arrays are output, but not their
addresses. If D=0 is specified, no traceback or dump is
produced.)

A dump is also produced: when the standard procedure
DUMP is called; this is called a dynamic dump as opposed
to the postmortem dump produced for a fatal error. It is
in the same format as the postmortem dump. except for
the wording of some messages. The format- of the
procedure call is shown in figure 14-1. The formats of the
messages output for a dump are -shown in table 14-1.
Figure 14-2 shows a sample program and the dump it
produces.

DUMP (ie1,ie2,s)

iel Channel number of file on which dump is to be
output.

ie2 Identification number to be output in heading of
dump. .

S Stringbonsisting of two letters preceded by an

optional plus or minus sign. If a plus sign is
present, a page eject takes place before the
dump is output. If a minus sign, two lines are
skipped.

Values for the first letter:

B Current block only

P Current procedure only :
~S All accessible blocks in static chain
D All active blocks in dynamic chain

Values for the second letter:
T Traceback only

V Traceback plus simple variables)
F Traceback plus simple variables and arrays

Figure 14-1. DUMP Procedure Format

14-1 -

TABLE 14-1. DUMP MESSAGE FORMATS

{

e

LABEL

Required Control
Message Output For Statement Parameters
‘ ALGOL (DB=) 160 (D=)
proc CALLED AT LINE line IN PROCEDURE proc, Header line - | any any {A}
DECLARED AT LINE line, {AT STACK ADDRESS add }
IN MODULE mod
IN BLOCK STARTING AT LINE line OF proc Block any any
type ident = value {ADDRESS add } Variable D,DA v,F {a}
type ARRAY ident [bound pair list] Array D,DA v,F {A}
. {STARTING AT ADDRESS add
ident [row subscript lisc] = Array row DA F
sub: value value value value value (num *) Arfay elements 7 DA F
FORMAL PARAMETERS OF PROCEDURE proc Formal parameters header D,DA ?,S,D,V,F
. line '
type ident CALLED BY VALUE ACTUAL = value Formal parameter variable D,DA P,s,D,V,F
called by value

. : VALUE=value}. " Formal parameter variable D,DA P,S,D,V,F
type ident CALLED BY NAME ACTUAL {EXPRESSION called by name
type ARRAY ident {bound pair list] CALLED BY VALUE Formal parameter array DA p,s,D,F

. | called by value:
type ARRAY ident [bound pair list] CALLED BY NAME Formal parameter array DA p,S,D,F
called by name

PROCEDURE proc ACTUAL ident DECLARED AT LINE line Formal parameter pfocedure D,DA p,S,b,V,F
OF MODULE mod’
STRING string ACTUAL CHARACTERS = ccccecccece Formal parameter string D,DA p,S,p,V,F
SWITCH} label ACTUAL AT LINE line OF proc Label or switch parameter D,DA p,S,D,V,F
DECLARED AT LINE line OF MODULE mod

Key:‘
proc
line
“add
mod
type
ident

value

bound pair list

row subscript list
sub

num
string
C...C
label

{4

Procedure name.

‘ Line number, as listed on output listing.
Stack address. ‘
Module name.
REAL, INTEGER, or BOOLEAN.

Variable or array identifier, truncated to 7 characters.

Value of variable

or array element. Numbers are left justified, and only significant
digits are shown.)

Boolean values appear as TRUE or FALSE.
Pairs of array subscript bounds for each dimension, separated by commas.

Subscripts, separated by commas, of all but the rightmost dimension, indicating which
row of the array is listed next.

Last subscript of first array element in line listing array element values. Five
numeric or ten Boolean values are listed per line.

Number of consecutive array elements equal to the last one listed.
Name of string parameter. '

Characters (maximum of 10).

Name -of label or switch parameter.

Item is included only if A is selected on the execution control statement.

14-2

60481600 C

(¢ 40 1 198yg) dwnq s[dweg *z-yT adnbl 4y

IN3NKO D

0
3
T
T
T
LS
¥
¥
e
4
2
L3
¥
¥
¥
T
13
3
¥
v
¥
¥
T
4
2
4
e
4
2
e
T
T
T
¥
L §
T
0

39vd

"En 21T

*338 99.° 49

*005480 WO Q3¥IND3IY

SQy0m ga9cee0n HII9N3T WVY90¥d
dWNOA3GNN M 20N32 *4E
$(IXILVHA IV 42/ IIINLNVEIIANIINOY TUNX °9g
#002 OF 27IINNZ T 2d31S2 0 =t INN 23042 *qf
$TTIT =8 33NNV *he
ENIIIZL00¥Y =% 9IONI3NO i ¥
$100¥9/T =1 NI3IWN $§062+2 =t 100%9 A4
*1e
¢%0078 #ON32 *g¢
SUITIIXILAVHATIV 2 (2V82) 2409) UNdNI *62
#0002 LT 27IINAZ T 2d31S# 0T =3 1 23042 *ge
$1 2¥39IUINIz *d2
#NI9382 *92 -
. *52
f + 1 =2 [I*FrIAIC3IEG: *q2
2002 € 27IINNZ T 2d31S2 T =3 © z¥042 ¥4
2002 02 2V7IINNZ T 2d31S# T =t I 23042 *ee
. *°32
STI02ETCEST LI TINIC3ING £AVEEVZ 2V3d2 *02
SIZTR0TIIXILVHA IV 2AVHAVZ 23393UINIZ ‘et
$(52G6-1SNIYIUIAND 2AVYAYZ 2NV310082 ‘8T
ENI3TNC10048940AZ3INTIS3QION0“OIANIIND 2IV3N2 LT
SHYVUN 3JONVT N33 L3WCTIINIAVCINNGLT 23393LINIZ *9T
*at
$TVNA #0N32 ‘9T
$2d + Td =t TvIO" °£T
$6« =1 (TO2LI9ONVT 2T
$0°0 =8 (WO0TIONVT ‘T
2002 2d 27IINNZ T 2d31S% 2d- =t VYO0 2y042 *GT
$(2d12d=JONV 2AVIVZ 21V3¥2 ‘6
$IVO0T 2¥393UINIZ ‘8
¢NIO38¢ *L
$€d 2AVUHEYZ 2¥I9IANIZz £24 2¥3IIUINIz £Td 23y ‘9
$§2d%Td 23NIVAZ £(£d4%2d*Td) NN #33N0300dd# *3
) oy
$dWN0 v N3H1 ONV NOYN¥3 SONNOB AVAIY NV S30N00dd WYd90dd SIHL #INIWWOIZ ‘e
#NI938¢ e
SVRAYIO0NSITILVUISNONIO dWNOBIANNM *T
92730727 8I€82 3°S 09V « ONILISIT 203N0S « C¥3IANNM
‘WY HDOHd

14-3

60481600 A

(¢ 40 Z 193yg) dwnQ s[dweg *Z-4T ainbi 4

1082 ¢7 ¢¢ 37 ¢¢ s7] WIO3TAO AvydY v 3y
6224£003€£609507 2844068808485 £22645208208492 ¢ ST
21534628 06%2¢2 6L£E28H TN HNNSH2 92299078 008292 0£562%656922097 6590T080602752% ¢ OF
= 1 «) 3LVHdTV
[4T 8 0T) 3.VHdTIV AV¥NV d8393INI
C» I3) #3N¥L# ¢ G-
= [«] 39330NO
[& & G-] ¥Iu3ONO AVI¥V Nv3l008

052-20°T = NI3M V3

0g2+20°T = 10039 Iv3y

JLINIIZONI - = 43039NO Iv3y

31INIINI + = IOGNI3NO Iv3d

31INIS3ONI - = INI3L3W ¥393UNI

)) TTTT = T330iXV ¥393UNI
e = NN J392UNI

Y = f ¥393INI

¥2 = I ¥393iNI

Q¥3INNM 40 S INIT IV ONILYVLS %3078 NI

[IR RSP R PEPRPRP S PRI ettt atadedetada bt Dl L el ol b e dddad otttk dedad bbbt

gd33GNNM 3NCOK NI O 3NIT 1V G3¥VYT1030 C¥IONNM AV390¥d NI 9% 3NIT Lv G377V0 TUNA

FU PP IR P S RpPEP PP ROE YRSy SO MM ettt bl el bl e dded b d bt dad bt

3WYN A8 G370 L 2T 2 0T) £d AV3YY ¥393iINI
955 = TVALOV 3NIVA AB G37TV3 2d ¥393INI
JLINISNT + = YNLIOV 2NTvA A8 037VD 1d kL

TYNN 33N0300¥d 30 S¥ILIWVAVY TVHAOA

) (» STIT) 2°0 & 965~
=l = INVT
f 985 & 965~] ONVT AVHYY v3d
488 = V30T ¥393INI

JYNMN 40 8 INIT 1V INIL¥VLIS %3078 NI

B PEP e CEe e CERPEES P O EET RO e e RN PR PP AR CP e EEe S AR PR Ee PR S C SR T aAReR e EER eSS eSS TR Ses s e aeeettccent sansseens

0Y3GNNM 3TNCOW NI 8 3NIT Lv 03¥vI030 TYNM 33n03003d NI 2T ANIT Lv 0377V 3 dWNA-Kd

0313Y1S dhNO W31¥OW=-1SOd

aranaar AVEUY 40 T 1dI¥OSENS 40 NOILVNIVAI ONIJNG (3103130 SYM A0¥u3I 3HL
‘ SI09V A8 ONNOJ AONAI SONNCE AVHIY

dWNa

60481600 A

14-4

(¢ 30 ¢ 193ys) dwing ardweg -z-yT aanb1 4

hdeddet sttt bbbt bt ettt d et DA L L L el L L LD L R R L Y L L L T L T L L

Tezg %2 T+z2°2 . T+21°2 T+20°2 T+26°T ¢ Q%
I+28°T T+z2l°T T+29°T T+286°T T+429°T 1 I
T+2E°T T+22°T Te2T°T 1420°T 06 1 3

0°e 0L 0°9) g*s g° 1 T

= [»*¢€ *¢ 3 WIO3I¥O
¢ » 02) 31INIJ3ANTI - 3 ¥

= [« ¢ 2 ¢¢ 1 WIO3ING
(« 02) 3LINIS3ONI - 1 T

= [«*%T ¢ ¢) WIO3I¥O
C » 02) 3LINIJ3ONTI - ¢ T

= { ¢ ¢2 1 WIO3INO

T+z22°2 T+2T 02 I+20°2 T+26°Y T+28°T s 9%
T+EL°T T+29°T I+26°T T+29°T T+2€°T ¢ 1%
Tez2°T T+231°3 T+20°T 0°6 0°s t g

0°L g9 g*s 0" 0°e %

=0« *2 ¢ 2 1 WIG3I¥C
(» 02) 3LINIJ3ONI - ¢ T

=0« ¢ 3T ¢ 2 1 WIO3ING
(» 02) 31INIJ30NI - 8 T
) =L« *¢ *7T) KWIG3INO
¢ » 02) 31INIZ30NI - 3 T

=+ %2 *7T) WIC3TNO

T2y %2 T+20°2 T+26°T T+28°7T T+£.°T 3 9T
T+29°T T+z25°T Jezh°T T+28°T T+22°T ¢ 1T
T+2T°T T+20°7 0°6 0°e 8°L s 9

8°9 0°s 0 ot nee +1

=0 « ¢ 7 ¢ 7T) WIG3IY¥O

14-5

60481600 A

EXAMPLES 15

This section contains some examples of programs that
illustrate various features of ALGOL 5. It also contains
some examples of typical jobs for execution-of ALGOL
programs.

COMPLEX SQUARE ROOT

Program COMPL (figure 15-1) computes the square root of
a complex number. Although ALGOL does not support
complex arithmetic directly, it can be simulated by using
a pair of real numbers to represent the real and imaginary

parts of a complex number. . In the sample program, X and

Y stand for the real and imaginary parts, respectively.

The program uses two procedures: CABS and CSQRT,
CABS computes the absolute value of the number, and
CSQRT computes the square root. The formula for the
absolute value is:

CABS =4/X2 + Y2

The equivalent method used in the procedure CABS is
designed to produce more accurate results.

The square root is represented by the two numbers A and
B, where A is the real part and B is the imaginary part. In
order to ensure real values for A and B, one of two
formulas is used, depending on the value of X. The first
formula, used when: X is positive or zero, is:

DA . /XicAss XY g-_Y
2 Y

In the program, the positive root is used.

The second formula, used when X is negative, is:

B =i /-X£CABS (XY) A=Y
2 28

The positive root is used when'Y is Ppositive or zero, and

,the negative root is used when Y is negative. In both
cases, the sign before the CABS within the radical is
always taken as positive.

In" the “main program of COMPL, - the square: root of -

(1.0, 0.0) is computed and the result, (1.0, 0.0), is output.

60481600 C

CIRCUMLUDES

Figure 15-2 shows an example of a circumlude and a
separately compiled main program and procedure. The
program creates a histogram in the array HIST by reading
values into the array DATA and computing the frequency
of occurrence of each value. :

The control statements needed to run the example under
NOS/BE and SCOPE are shown in figures 15-3 and 15-4.
The circumlude is compiled using the N option on the
ALGOLS5 control statement. The output from this
compilation is written to the file ONE. :

A library named CIRCUML is created ' using the
appropriate library utility: EDITLIB under NOS/BE, and
LIBEDT under SCOPE. The directives used with the
EDITLIB and LIBEDT utilities are identical. They are
shown in figure 15-5. The library contains two programs:
an absolute program containing tables derived from the
declarations in the circumlude, and a relocatable program
containing the executable code from the circumlude.

The main program and procedure are then compiled. The
N option is omitted from the ALGOL5 control statement,
and the S option is included to specify the name of the

library and circumlude. The output from this compilation

is written to the file TWO.

When the binary file TWO is executed, the procedure
HISTOGRAM is called. This procedure is defined in the -
circumlude. The body of the procedure is a code part with
the name HISTOGRAM, which is truncated to HISTOGR.
Within the code part, the procedure is named HISTG.

The control statements needed to run the. program: under
NOS are shown in figure 15-6. The circumlude is
compiled as before using the N option.

NOS control statements are used to separate the absolute

- program from the relocatable program, both of which are
“on the file ONE after compilation. They are separated by

backspacing two records, then copying each record to
different files. The name of the first file, the absolute
part, must correspond to the name .of the prelude
truncated to 7 characters.

The LIBGEN utility is used to place the relocatable
program, which is on file RELREC, in a library. The
library is placed on the file CIRCUML. .

The main program and procedure are compiled as before,
by omitting the N option and specifying the S aption on
the ALGOL5 control statement.

The output from the second compilation is written to the
file TWO, and is executed as before.

weiboudy ajdwesg *1-gT ainbiy

LIN3HKWOJ

INIHWOD
INIWHOD
IN3WWOI

IN3WKOJ

*C3S 269° d0 *DI29£0 Ky (30INCGAS
SQaLM w%97090 HAYMN3T mVESCad
UN352 ‘94
SNLumw 7#0N3Z sy
$(E 'Y S {20(°CZ+*82%0G°0Z+*822)2%diN0) LNainO ey
stV CACX) 1050 *EY
07 =8 A 30°T =8 X <
:1S =t alfo 14
$0hfC #8393UINIZ2 6 VCA*X zv3yz - 0%
.a.«. 100¥ 3JVNUS SATI ONIS ONV (A*X) 204 3NIVA ¥V 3SO0KD *6g
eecsscccccsoncnro vaS0ad NIVW #EN3WW0OZ ‘g
#NIOFEZ *if
.) *gg
$1d0S0 #ON3z *GE
#UN3Z i
#CN3z *$g
$E8+6) /0 =T ¥ *cs
§V #3ST1372 v zN3Miz 0 > A #4Iz =3 & A4
#N193gs# *gg
#4873% *te
. (VAW /A =3 8 #N3HLIZ 0 =< X #31% %<
$US0a (LASX)ISEYVIH(XDISEY) ILIEDS =8 ¥ *4c
i #NIY3e? T4
#3813¢ *ge
0 =8 & =8 v #N3H1Z 0 = A #2UNVZ 0 = X #31%# *42
) #NI93uz *g2
) SEEVSASX 2UVIAE 1ACX FINVAZ *c2
$SIEHON qua:ou 3HL dC 1CO¥ 3AVADS FHL 31VINDTUI 2IN3WW0OI# *1e
$EESYCASX) LAUSS #34003J08d% *ge
‘el
1SEVD. #0ON3Z R
EUCantAZX)I+T)LYEDS a A #38737 21
(2a2{X/A)4T)330S » X #N3WiZ 93
A < X #3dI# #3§8732 ey
X #N3HLIz 0 = A #4I# #3513%2 ‘%3
A #ZN3HIZ 0 = x #4I# =1 38v9 *£7
§UAISBY =t A 3 UX)34vV =t X 21
#NI93g# 11
SASX 21V3d# SASX #307VAZ 67
$CASX) AFGWAN X31dWOJ 40 3NTIVA 3ANTOSEY 3HL 3LVINOIWI ZIN3WWOLE ‘e
sCASX) S8VI #3¥N0350dd# #1v3vz %
i
ENOISSIWN3d Aw Q3sn *g
*AY3NIHIVW SNIANCAWOD ¥03 NCIAIVISOSSVY ¢2967T 1EOIEAdLS *g
*CASX) SV 03IN3S3ed3¥ ST ¥3GaON XI1dKOO 3HI oy
*YIEWNN X31dWOD V 30 L00¥ JEVODS 3HL S3INGWOD WYJ9Cdd SIHI #INIWWOOZ s
#Nigig *é
1X31dk03 ‘7

60481600 A

15-2

CIRCUMLUDE:

STATISTIC:

BEGIN COMMENT OUTERMOST BLUCK
INTEGER OUT ; COMMENT OUTPUT CHANNEL IDENTIFIER
INTEGER BOTTOMBUUND ,TOPBOUND COMMENT DYNAMIC ARRAY BOUND L1ST
0UT := ol COMMENT OUTPUT CHANNEL NUMBER ;
BOTTUMBOUND := 0 ; TOPBUUND := 99 ; COUMMENT DYNAMIC ARRAY BOUNDARY ;
BEGIN COMMENT INNER BLOCK 5

INTEGER ARRAY HIST{BUTTOMBOUNDL:TUPBUUNL] ;
PRUCEDURE HISTUGRAM (AA,LU,UP) ;
VALUE LU,UP ;
REAL ARRAY AA ;
INTEGER LO,UP ;
CODE HISTUGRAM ;
INTEGER I,J ;
REAL MIN,SPAN ;
FOR I := 0 STEP 1 UNTIL 99 DO HIST[I] := -u ;
COMMENT THIS SPOT IS FOR THE ACTUAL ALGOL MAIN PROGRAM (PRUG SYMBUL).

PROG
OUTPUT (O0UT, “(“/"("HISTO&RAM“)" 10(/,10(6ZD))")" ,HIST) ;
END COMMENT INNER BLUCK 3
END_ COMMENT OUTERMUST BLOCK 3

MAIN PROGRAM AND PROCEDURE:

HISMAIN: : -
BEGIN

INTEGER LUW,UPP ;

INTEGER INP ;

INP := 60 ; :
INPUT (INP,"("N,N")",LON,UPP) ;
BEGIN

ARRAY DATA[LUW:UPP] ;
INPUT (INP,"("N")",DATA) ;
HISTUGRAM (DATA Low UPP)
END
END

HISPRUC:

CODE HISTOGRAM ;
PRUCEDURE H15Ta (A,LUWER,UPPER) ;
VALUE LUWER,UPPER ; INTEGER LUWER,UPPER
REAL ARRAY A ;

BEGIN)
MIN := MAXREAL ; OSPAN := -MAXREAL ;
FOR I := LOWER STEP 1 UNTIL UPPER w0

BEGIN

IF ALIT < MIN THEN MIN := A{I] ;
IF ALIJ > SPAN THEN SPAN - AlLI}

SPAN := SPAN-MIN ;
FOR I := LOWER STEP 1 UNTIL UPPER DO

J := (A[I]-MIN)/SPAN ;
HIST[J] := HISTLU]+1 ;
END

bl

EuP

Figure 15-2. Circumlude Example

60481600 C

15-3 ®

SAMPLE JOBS

A typical deck setup for compllatlon and execution of an
ALGOL program under NOS/BE is as follows:

job statement

ALGOLS5 contro! statement

Execution control statement

7/8/9 card (7,8,9 multipunched in column 1)
ALGOL program

.7/8/9 card

data

6/7/8/9 card (6,7,8,9 multipunched in column 1)

A typical deck setup for compxlatlon and execution of an
ALGOL program under NOS is as follows:

job statement i
USER control statement
CHARGE control statement
ALGOLS5 control statement -
execution control statement
7/8/9 card

ALGOL program

7/8/9 card

data

6/7/8/9 card

A typical deck setup for compilation and execution of an
ALGOL. program under SCOPE 2 is as follows:

job statement
ACCOUNT statement
ALGOLS control statement
execution control statement
7/8/9 card

ALGOL program
7/8/9 card

data
6/7/8/9 card

.

ALGULS,N.

REWIND,LGO.

LIBEDT(M)
ALGOL5,B=LG02,S=CIRCS-STATIS.
LGOZ.

.

Figure 15-4. SCOPE Contrdl Statements

LIBRARY(CIRCUML,NEW)
SKIPB(2,UNE)
AUD(*,UNE)

FINISH.

ENDRUN.

Figure 15-5. NOS/BE and SCOPE Library Directives

ALGOLS,N.

EDITLIB,USER.
ALGOL5,B=LG02,5=CIRCS-STATIS.
LGOZ.

ALGOLS(SW=80,RES,N,B=0UNE)
BKSP,ONE,2.

COPYBR,UNE,STATIST.
CUOPYBR,ONE,RELREC.

UNLOAD(ONE)
LIBGEN(F=RELREC,P=CIRCUML,N=CIRC)
UNLOAD(RELREC)

ALGOL5(SW=80,RES,S=CIRCUML-STATIST,B=TW0)

TWO.

.

Figure 15-3. NOS/BE Control Statements

® 15-4

Figure 15-6. NOS Control Statements

60481600 C

STANDARD CHARACTER SETS

e

CONTROL DATA operating systems offer the following
variations of a-basic character set:

CDC é4-character set
CDC 63-character set
ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified
when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or in
029 mode (regardless of the character set in use)s Under
NOS/BE or SCOPE 2, the alternate mode can be specified
by a 26 or 29 punched in columns 79 and 80 of the job
statement or any 7/8/9 card. The specified mode remains
in effect throughout the job unless it is reset by
specification of the alternate mode on a subsequent 7/8/9
card.

60481600 C

Under NOS, the alternate mode can be specified by a26 or
29 punched 4n columns79 and80 of any 6/7/9 card, as
described .above for a 7/8/9 card. In addition, 026 mode
can be specified by a card with 5/7/9 multipunched in
columnl, and 029 mode can be specified by a card with
5/7/9 multipunched in columnl and a 9 punched in
column 2.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable
to BCD terminals; ASCII graphic characters are applicable
to ASCII-CRT and ASCII-TTY terminals.

The table entitled ALGOL Special Symbols and Alternate
Representations shows the ALGOL symbols in the form
required if the RES parameter of the ALGOL control
statement (section 11) is not selected. If RES is selected,
the # character can be omitted, and blanks delimit the
symbol. No blanks can appear within the symbol in this
case. The # character is always required for string quotes
#(# and #)#, and for the alternate representation of the
integer divide operator #/#.

A-1

TABLE A-1. STANDARD CHARACTER SETS

cbe ASCIl
Display Hollerith External .
Code Graphic Punch BCD c;f;’:;'f ':‘6;;')' (gzge”
(octal) (026) Code
oot : (colom)T* 82 00 : {colon) 1 8-2 072
01 A 121 61 A 121 101
02 B 122 62 B 12-2 102
03 c 123 63 c 12-3 103
04 D 12-4 64 D 124 104
05 E 125 65 E 125 105
06 F 126 66 F 126 106
07 G 127 67 G 127 107
10 H 12-8 70 H 128 110
1 1 12-9 71 | 12:9 1
12 J 111 41 J 111 112
13 K 11-2 42 K 11-2 113
14 L 11-3 43 L 113 114
15 M 11-4 44 M 114 115
16 N 116 45 N 15 116
17 0 116 46 o] 16 117
20 P 117 47 P 17 120
21 Q 11-8 50 Q 118 121
22 R 119 51 R 119 122
23 s 02 22 S 02 123
24 T 0-3 23 T 03 124
25 u 0-4 24 U 04 125
26 v 05 25 v 05 126
27 w 06 26 w 06 127
30 X 07 27 X 07 130
31 Y 08 30 3% 08 131
32 Z 09 31 z 09 132
33 0 0 12 0 0 060
34 1 1 01 1 1 061
35 2 2 02 2 2 062
36 3 3 03 3 3 063
37 4 4 04 4 4 064
40 5 5 05 5 5 065
a1 6 6 06 6 6 066
42 7 7 07 7 7 067
43 8 8 10 8 8 070
44 9 9 11 9 9 071
45 + 12 60 + 12-8-6 053
46 N 1 40 : 1 055
47 11-8-4 54 11-8-4 052
50 / 0-1 21 / 0-1 057
51 (084 34 (1285 050
52) 12-8-4 74) 1185 051
53 $ 11-8-3 53 $ 11-8-3 044
54 = 8-3 13 = 8-6 075
55 blank no punch 20 blank no punch 040
56 , {cormma) 0-8-3 33 , {comma) 0-8-3 054
57 . (period) 1283 73 . {period) 12-8-3 056
60 = 086 36 # 83 043
61 { 8.7 17 { 1282 133
62] 08-2 32 b} 11-8-2 1356
63 % T 86 16 9% 11 08-4 045
64 = 8-4 14 " {quote) 8-7 042
65 ~ 085 35 {underline) 085 137
66 v 11-00or 11-82111 52 ! 1287 or 110111 041
67 A 087 37 & 12 046
70 t 11-8-5 55 ' (apostrophe) 85 047
71 | 11-8-6 56 ? 087 . 077
72 < 12-0 or 1282117 72 < 1284 or 120717 074
73 > 11-8-7 57 > 08-6 076
74 < 85 15 @ 84 100
75 > 1285 75 AN 08-2 134
76 - 12-8-6 76 ~ (circumflex) 11-8-7 136
77 . {semicolon) 12-8-7 77 ; (semicolon) 11-8-6 073

tt

7Twelve zero bits at the end of a 60-bit word in a zero byte record are an end of record mark rather than

two colons.

In installations using a 63-graphic set, display code 00 has no associated graphic or card code; display

code 63 is the colon (8-2 punch).

yield a blank (55,

).
"The alternate Hol?erith {026) and ASCII (029) punches are accepted for input only.

The % graphic and related card codes do not exist and translations

60481600 B

TABLE A-2. ALGOL SPECIAL SYMBOLS AND ALTERNATE REPRESENTATIONS

CDC Graphic Subs:-\tsglrlabhic A'EE;?:;ECRDECF”;:::;?:S”S CDC Graphic Subsﬁtsglrlaphac
+ + #FALSE# "FALSE"
- - #FOR# "FOR"

* * #GOTO# "GOTO"

/ / #IF# "IF"

7 Vi #/#7 , #DIV# #INTEGER# "INTEGER"
e * #POWER=, 1 #LABEL# "LABEL"
< < #£LESS#, #LT# #OWN= "OWN"

< e #NOT GREATER# , #LE#<= #PROCEDURE# "PROCEDURE"
= = #EQUAL# , #EQ# #REAL# “REAL"
—1= —~= £NOT EQUAL , %NE= #STEP# “STEP"

> \ #NOT LESS# , #GE# #STRING# "STRING"
> > #GREATER# , #GT#>= #SWITCH# "SWITCH"
A & +AND= #THEN= "THEN"
v ! #0R# #TRUE+ “TRUE"
= # #eQvzTT #UNTIL# “UNTIL"
- ~~ (circumflex) #NOT# #VALUE= "VALUE"
- ___(underline) #IMPL# #WHILE= "WHILE"
» "

((

))

[[(/

1] /)

= = S or . =

#(# "

#*) # "

#ARRAY# "ARRAY"

#BEGIN# “BEGIN"

#BOOLEAN# “BOOLEAN"

#COMMENT# "COMMENT"

+DO# "po"

#ELSE+ “ELSE"

#END# “END"

T & character required for #/#, #(#, and #)# in reserved word mode.
Former version #EQUIV+ is no longer supported.

60481600 C

DIAGNOSTICS

e e~

Two types of diagnostics are issued by ALGOL:

e Compile time diagnostics are issued by the ALGOL
compiler whenever an incorrect or suspicious usage is
detected during compilation.

e Execution time diagnostics are issued by the ALGOL
execution time system whenever an invalid action is
requested or takes place during execution.

COMPILE TIME DIAGNOSTICS

Compile time diagnostics are dynamically constructed by
the compiler when an error condition occurs during
compilation. The compiler tries to recover from the error
condition by making an assumption ‘about what was
intended instead of the incorrect usage. Because these
assumptions do not necessarily reflect the user's actual
intentions, recovery from one error might lead to other
errors further along in the program. For example, an
incorrectly spelled identifier in a declaration means that
the identifier is not declared in the block containing the
declaration; each remaining use of that identifier in the
block results in a dlagnostlc stating that the identifier is
not declared.

In other cases, a mispunched character can cause the

compiler ‘to prematurely terminate a statement by

~substituting a semicolon for the character. The remainder
of the original statement is then read as the beginning of
a new statement, often producing further diagnostics.

In general, if the user receives multiple diagnostics in a
program, the first line in error should be checked to see if
a mistake on that line ultimately resulted in other
diagnostics as well. Since the compiler attempts to be as
explicit as possible in the wording of diagnostics, it is
usually possible to .correct the error on the next
recompilation.

- Each diagnostic consists of three asterisks, the line
number ‘where the error was detected (which could be
later than the actual line in error), a letter indicating
severity level (T, W, F, orC) and the text of the
diagnostic. In addltlon, header lines are listed before
groups - of diagnostics, indicating the stage of compilation
during which the error was detected.

The severity level of a diagnostic is one of the following:

e T (trivial). In this case, the program is syntactically
or - semantically correct, but a suspicious usage has

“occurred. An example is an incorrect specification of

a comment directive in which the directive is invalid,
but the syntax of the comment string is still correct.
Another example is the message "SCAN RESUMED"
which informs the user that the compiler has
recovered from a previous error and is attempting to
continue compilation of the program.

. 60481600 A

e W (warning). In this case, an incorrect usage. has

occurred, but by making an assumption about what
was intended, the compiler is able to continue. An
example is a real constant out of range; the constant
is replaced with MAXREAL, and - compilation
continues. For both T andW level diagnostics, the
binary produced is executable but possibly incorrect.

e F (fatal).. In this case, an error has occurred that
prevents the compiler from compiling the statement
in which the error occurred. An example is use of an
identifier that has not been declared. When any fatal
errors have occurred, the binary produced from
compilation is not executable.

o C (catastrophic). In this case, the compiler cannot

continue compiling the program unit in which the
error occurred, and advances to the next program
unit. An example is symbol table overflow, in which
too many identifiers have been declared. for the
symbol table to be kept within the field length.

Diagnostics can be issued during any of five phases of
compilation. If any errors are detected during phase x,
the following header is issued before the diagnostics
detected during that phase:

ERRORS DETECTED DURING x

In addition, if errors have already been found in previous
phases, the following message is issued:

(NOTE: ERRORS MAY BE PROPAGATED FROM
THE PREVIOUS SCAN)

The five phases are as follows:

e Lexical scan. During this phase, the characters
constituting the program are grouped into the
appropriate syntactic = entities. = Errors . detected
include invalid placement of delimiters or comments.

e Syntactical scan. During this phase, the symbols are
checked to see that they are correctly grouped-into
statements. Errors detected during this phase include
badly formed expressions and statements.

e Semantic scan. During this phase, the scope of
identifiers. is determined and calling sequences for
procedures are set up. Errors detected include
failure to declare identifiers and invalid
correspondence between actual and formal
parameters. i

e Code generation. During this phase, the actual
relocatable code is generated. If fatal errors have
already occurred, code generation does not take
place. Errors detected include invalid actual/formal
parameter correspondence (for cases that have. not
been detected during the semantic scan), and some
types of format string errors.

B-1

e Optimization. During this phase, the code already
generated is rewritten in some cases to improve its
performance. . All errors detected during this phase
are catastrophic and likely to be the result of internal
compiler malfunction. If the user receives an error
during this phase, a CDC analyst should be notified.

An example of an incorrect program and the error
messages it causes is shown in figure B-1.

EXECUTION TIME DIAGNOSTICS

Errors detected during execution. include the use of
arithmetically invalid values such ‘as infinite and
indefinite, type or kind mismatch between actual and
formal parameters (in the case where this cannot be
detected during compilation, such as with a separately
compiled procedure), and badly formatted input data. All
execution time errors are fatal; if the user has called

B-2

ERROR, CHANERROR, or .ARTHOFLW with the .
appropriate parameters, recovery to a user-defined label
is 'possible. Otherwise, the program terminates after
issuing the diagnostic.

Execution time diagnostics, like compile time.diagnostics,
are dynamically constructed with appropriate information
added to the text of the diagnostic when the error occurs.

For most errors detected by the operating system, the
ALGOL execution time system regains control after the
error and outputs its own diagnostic message, together
with a post-mortem dump; this information is placed into
the file specified by the E parameter on the execution
control statement. An example of a program producing an
execution time error is shown in figure B-2, along with the
messages written to the file OUTPUT and the dayfile. In
addition to an error message, a traceback (unless D=0 was
specified on the execution control statement) and possibly
a dump are also output. The formats of these listings are
described in section 14,

60481600 C

a[dwex3 a13soubeiqg awiy afidwoy *1-g ainbiy

W AN NN ANt D

ININKWOD ©
IN3WKOD B
IN3NHOD ©

AdVYNI8 Ove *033S 6ST° dd °006S£0 WO (O33IND3N

033vI1030 N338 LON SVH I ¥3I4IINIOIX
T YIBHAN ¥ILIWVAEYC 3417 40 1D NI HOLVASIN 3dAL IWNLIIV/IVNE0S
033v7030 N338 10N SVYH I ¥3I4IIN3OX
03¥vI030 N338 ION SVH 2Nz d01vy3d0
(NVOS SNOIA3¥d 3HL WONS 031VOVdO¥d 38 AVH SJOUYI $1310N) NVOS OILINVA3S 3H1 SNI¥NG
03HIVIY LX31 3D08NOS 40 ON3 ANVYNIWII3Nd
G3WNS3Y¥ NVIS
0313730 SI #aN3z ¢
ISTT ¥313WVIVd WALOY NI ¥3LIWIN3A0 V93T

03WNS3¥ NVIS

0313730 ST 19) indino ¢
1SIT ¥3L13WVNVC VNIV NI ¥3ILIWITN3G Y93I
0313730 SI ¢ (
d01V¥3d0 JIOVNOW ¥0d4 ONVA¥3dO 1I3IWAOONI

(NVIS SNOIA3Yd 3IHL WO¥S GILVIVHO¥d 38 AVW SUONN3I 131O0N) NYOS TOILOVINAS 3H1 INIdNG

0313730 *1IX3IINOD SIHL NI 93T #

: 0313730 ¢IX3LINO3 SIHL NI W93 #

’ IN3WNKOD NI ¥31IKIT30
11 330438 Q31¥3ISNI 310ND *UILIWITI0 ONNOJWOD ONILYNIWN3L ONNOS -
WY¥90d¥d 40 1Y¥VLIS 330438 ¥ILIWIT3CO

WVY90¥d 40 L¥VLIS 3¥0338 ¥3LIWIT3C

3 s ran
3 St R
ERR R 2T
FIR D¢ *un
03133130 SY0¥¥3
3 97 TS
i 97 *wk
4 ST TS
1 s% *wn
4 47 e
3 %7 *hw
03133130 S¥0¥A3
4 47 21
3 "7 'Yy
M 1T YT
1 £ kW
Mg Fes
K2 *aw

NVIS TvIIX3T 3H1 9NINNO 03193130 SY0A¥3

. #0N32
$(SS3T3dOH*I) 33171 *2(20Z**0Z#)# *19) 1NdiNO
$(I*2(2N2 12¢19) Indino

2002 02°ST*0F =3 I 24042
$INIE428T] SSITIA0H zAVNAVZ 2Tv3dz
$I #2393UINIZ
2aN32
$SOVHO =3 34I0
§24+SOVHD =t [%4CIAVHNY.
#N19392
SAVNNV 2AVNNVZ 27V3NZ
$SOVHO #7W3¥2 $(AVHYVSSOVHO) 33417 #33N03008d# #W3I¥z
ZNI19302
£7WND3-10N Vv INISSIH SI 30NTINIZ #IN3WWOOZ
$SOILSONOVIG 30N0Q0¥d 0L O3ONIAINI #INIWWOOZ
$13ZYN3ITHIS

*9t
°st
°47
.”ﬂ
*27
°TT
.ﬁ«
*6
*g
*e
*9
°s
*h
°E
*Z
°T

B-3

60481600 A

PROGRAM:

t. SCHLEMIEL?
2. #BEGINZ
3. #COMMENT 2 PRODUCES EXECUTION TIME ERRIRSS
b PREALZ X,Y,o2°?
5e X 8= 03 Y 1= 03 7 8= X/V3
be X 3= 7 & ¥V
Te OUTPUT (5142(25D.5D%) 242)
B #END 2
PROGRAM LENGYH £00038” HWOROS

REQUIRED® TM 036500. CP «223 SEZ.

MESSAGES ON OUTPUT:.

NODE ERROD @h FOUND 8Y ALGOLS
APITHMETIT JSE OF INDEFINIYE VALUE

POST=-MIRTFEN DUMP STARVEN

PM=DJYP CALLED AT LINE 7 IN POGRAM SCHLEMI DEGLARED AT LINE

NOS/BE DAYFILE:.

MFS NR®i- CYB74-SN10% 5C/P0B 11/714/7%
10.00.51.ALEXNST FROM /7xQ
10.00.51.7° @0C08192 WORDS - FILE INPUT , DC 06
10.00.51.A.FXDyP5,T10,
100058 REWINDLOUTPUT .
10.00.54eMBOyOFF,
1000564 ALGILEHEL=T,
10.00.57¢ =SCHLEMI=- NO ERRORS DEVECTED
10.08.57., "M 036500. CP «223 SEC.
18.00.5%.L504
10.01.31. ALSGOL 5.0 78318
10.01.31.M7NE FRROR
10.01.21. 300 RPEPRIEVED
10.01.01.M0DE ERROR 0& FOUND ™Y ALGOLS
10.01.21. CM 024300. CP C.036 SEC.
10.01.31.,EXECUTION ERROR,y SO ABORTFD
10.01.01,2 00000320 WORDS ~ FILE OUTPUT , DC 40

10.C01e31M5 3584 WORNS (25088 MAX USED)
10.01.11.C"A «R32 SEf. . 832 ADJ.
10.01.01.07" +229 SEC. «229% ADJ.
10.01.01.1IN 1.011 SEC, . 1.01t ADJ.
10.01.%1.0v 31.652 KWS. 1.931 ADJS.
10.01¢314SS 4.0C5
10.01.31.P° 5.520 SECe NATE 12/06/7%

10.01.91.E3 END OF JoOR, KQ

TREETSERRIES 1014GFB 7777 SND NF LIST /777
sEEBIRIIEES 1044GF8 /7777 END OF LISTY /777

0 IN MODULE SCHLEMI

Figure B-2. Execution Error Example

B-4

60481600 A

GLOSSARY

This glossary does not include terms defined in either of
the ALGOL standards (see preface).

BEGINNING-OF -INFORMATION (BOD) -
Record Manager defines beginning-of-information as
the start of the first user record in a file.
System-supplied information, such as an index block
or control word, does not affect beginning-
of-information. Any label on a tape exists prior to
beginning-of-information.

BINARY SEQUENTIAL -
An ALGOL file type consisting of a sequential file in
which data is in the same format as in memory.

BLOCK -
In the context of input/output, a physical grouping of
data on a file that provides faster data transfer.
Record Manager defines four block types on
sequential files: I, C, K, and E. Blocks are not
defined for word addressable files.

CALLING SEQUENCE -
Conventions established for linkage between
subpragrams, especially as to where parameters are
located on entry and returned on exit.

CHANNEL -

Synonymous with file. Represented in the ALGOL-

program by a channel number, which is linked with
the. file through the CHANNEL procedure or by
default.

CIRCUMLUDE -
Declarations and executable code logically forming
an outer block to a program, but compiled separately.

CODED SEQUENTIAL -
An ALGOL file type consisting of a sequential file in
which data is converted to coded format. Conversion
takes place either according to a format string or by
standard format.

COMMENT DIRECTIVE -
A series of symbols occurring in a comment,
governing options such as object and source code
listing, array bounds checking, and omission of
portions of source code. The directive is either
honored or ignored, depending on a control statement
option. .

COMMON BLOCK -
An area of memory that can be declared by more
than one relocatable program and used for storage of
shared data.

COMPILE TIME -
The period during which a program is being compiled.
Contrast with execution time.

END-OF -INFORMATION (EOI) -
Record Manager defines end-of-information on a
sequential file in terms of file residence. See
table C-1.

60481600 A

TABLE C-1. END-OF-INFORMATION

File Physical
Residence Position

e |

Mass storage After last user record.
After last user record
and before any file
trailer labels.

Labeled tape in
sI,I,X,S,L format

After last user record
and before any file.
trailer labels.

Unlabeled tape in
SI,I,X format

Unlabeled tape in Undefined.

S or L format

ENTRY POINT -)
A location within a program unit that can be
referenced from other program units. Each entry
point has a unique name.

EXECUTION CONTROL STATEMENT -
The control statement used to execute, or load and
execute, the binary output from an ALGOL
compilation. The file name and control statement
LGO are frequently used for this purpose.

EXECUTION TIME -
The period during which a program is executing.
Contrast with compile time.

EXTERNAL IDENTIFIER -
An identifier, limited to seven characters, used as a
module name by the loader and for separately
compiled procedures. -

EXTERNAL REFERENCE -
A reference in one program unit to an entry point in
another program unit.

FIELD LENGTH -
The number of memory words assigned to a job.

FILE -
A logically related set of information; the largest
collection of information that can be. addressed by a
file name. Starts at beginning-of-information and
ends at end-of-information.

FILE CONTROL STATEMENT -
A control statement, processed by Record Manager,
that . contains parameters used to build the file
information table.

FILE INFORMATION TABLE -)
A table through which a user program communicates
with Record Manager. All file processing executes on
the basis of fields in the table.

LOGICAL FILE NAME -
The name by which a file is identified; consists of one
to seven letters and digits, the first a letter.

LOGICAL OPERATION -
An operation performed on one or two Boolean
operands and yielding a Boolean value. The operation
performed on one operand is - (negation). The
operations performed on two operands are A (logical
and), V (logical or), - (implication), and
= (equivalence).

OBJECT LISTING -
A compiler-generated listing of the object code
produced for a program, represented in COMPASS
code.

PAGED FILE -
A file in which ALGOL has inserted carriage control
characters, making it in valid format for printing.

PARTITION -
Record Manager defines a partition as a division
within a file with sequential organization.
Generally, a partition contains several records or

sections. Implementation of a partition boundary is -

affected by file structure and residence. See
table C-2.

Notice that in a file with W type records a short PRU
of level 0 terminates both a section and a partition.

POSTLUDE -
The portion of a circumlude consisting of code to be
executed after the program represented by the
#PROG# symbol.

PRELUDE - -
The portion of a circumlude consisting of declarations
and code to be executed before the program
represented by the # PROG# symbol.

RECORD -
Record Manager defines a record as a group of
related characters. A record or a portion thereof is
the smallest collection of information passed between
Record Manager and a user program. FEight different
record types exist, as defined by the RT field of the
file information table. -

RELATION -
A comparison of two arithmetic expressions by one of
the operators =(equal), - =(not equal), < (less than),
<(less than or equal to), >(greater than, >(greater
than or equal to). A relation yields the Boolean value
#TRUE# or #F ALSE#.

REL.OCATION -
Placement of object code into central memory in
locations that are not predetermined and adjusting
the addresses accordingly.

SECTION -
Record Manager defines a section as a division within
a file with sequential organization. Generally, a
section contains more than one record and is a
division within a partition of a file. A section
terminates with a physical representation of a section
boundary. See table C-3.

The NOS and NOS/BE operating systems equate a
section with a system-logical-record of level 0
through 16 octal.

' TABLE C-2. PARTITION BOUNDARIES

Device RT BT. Physical Representatation

| = —

PRU w I A short PRU of level 0
device containing one-word
deleted record pointing
back to last I block
boundary, followed by a
control word with flag
indicating partition
boundary. '

A short PRU of level 0
containing word with a
flag indicating partition
boundary.

sRy |C A short PRU of level O
u, followed by a zero-length
PRU of level 17.

SorL|W 1 Separate tape block con-
format taining as many deleted
tape | records of record length
0 as required to exceed
noise record size,
followed by a deleted
one~word record pointing
back to the last I block
boundary, followed by a
control word with a flag
indicating a partition
boundary.

Separate tape block con-
taining as many deleted
records of record length
0 as required to exceed
noise record size,
followed by a control
word with a flag
indicating a partition
boundary.

s|C,K,E | Tapemark.

Any other tape format | Undefined.

SEQUENTIAL -
A file organization in which the location of each
record is defined only as occurring immediately after
the preceding record. A file position is defined at all
times, which specifies where the next record is to be
read or written.

SEPARATELY COMPILED PROCEDURE -
A procedure, written in ALGOL, COMPASS,
FORTRAN, or SYMPL, and compiled or assembled
separately from the ALGOL program in which it is
called.

SIMPLE INPUT/OUTPUT -
The standard procedures that perform input/output on
coded sequential files, other than INLIST and
OUTLIST.

60481600 A

TABLE C-3. SECTION BOUNDARIES

Device RT

BT

- —
PRU W
device

Sor LW
format
tape

C,E

Any other tape format

W#Phys ical Representatation

Deleted one-word record
pointing back to last I
block boundary followed
by a control word with
flags indicating a sec-
tion boundary. At least
the control word is in a
short PRU of level O.

Control word with flags
indicating a section
boundary. The control
word is in a short PRU of
level 0.

Short PRU with level less
than 17 octal.

Undefined.

A separate tape block
containing as many
records of record length
0 as required to exceed
noise record size,
followed by a deleted
one-word record pointing
back to the last I block
boundary, followed by a
control word with flags
indicating a section
boundary.

A separate tape block
containing as many
deleted records of record
length 0 as required to
exceed noise record size,
followed by a control
word with flags
indicating a section
boundary.

Undefined.

Undefined.

Undefined.

———]

60481600 A

SOURCE LISTING -
A compiler-produced listing, in a particular format,
of the user's original source program.

STACK - :
The portion of the execution time field length used
for allocation of currently active variables, arrays,
and other program data entities.

STANDARD CIRCUMLUDE - .
The circumlude provided by the ALGOL system by
default. It contains definitions of the standard
procedures as well as system-defined variables.

STATE DIAGRAM -
A method of indicating the syntax of a construct in a
form similar to a flowchart. See Notations Used in
this Manual.

SYMBOL -
An indivisible component of an ALGOL program.
Symbols include letters, digits, special characters
(3, = and so forth) and special symbols delimited by
the character (#BEGIN+, #ELSE#, and so forth).

SYMBOLIC DUMP -
A printout, in a specific format, displaying the names
and values of program entities such as variables and
arrays.

SYSTEM-LOGICAL-RECORD -
Under NOS/BE, a data grouping that consists of one
or more PRUs terminated by a short or zero-length
PRU. These records can be transferred between
devices without loss of structure.

UNPAGED FILE -
A coded sequential file in which no carriage control
characters are inserted by ALGOL..

WORD ADDRESSABLE -
A file organization in which the location of each
record is defined by the ordinal of the first word in
the record, relative to the beginning of the file.

C-3

SYNTAX SUMMARY

This appendix defines the syntax of ALGOL entities in a
notation known as Backus Normal Form (BNF). In this
notation, entities are defined in terms of other entities in
the following format:

<a> 1= <e>

This notation means that the entity <a> consists of the
entity followed by the entity <e>. An entity bracketed
by < and > is defined further elsewhere in the syntax.
Anything not appearing between < and > stands for itself.
For example:

<g> ::= <d> #BEGIN#

If one entity can be defined by more than one sequence, the
sequences are separated by vertical lines:

<a> 1= <e> | <d> #BEGIN#

In this example, the entity <a> consists of either
followed by <e>, or <d> followed by the characters
#BEGIN#.

The entity being defined can also appear in the definition, in
which case the definition is recursive. For example:

<a> 1= <e> | <d> #BEGIN# | <a><e>

This definition means that <a> consists of either

followed by <e>, or <d> followed by #BEGIN#, followed in

either case by any number (including none) of occurrences
- of <e>.

The representation of syntax in this appendix does not
correspond precisely to the representation of syntax in the
main text of the manual, but the ultimate syntax of an
ALGOL program is the same in both cases.

<empty> .=

<basic symbol> ::= <letter> | <digit> | <logical value>
| <special symbol> | <delimiter>

<letter> :=AIBICIDIEIF{GIHIII
INIOIPIQIRISITIUIVIWIX

<digit>==0111213141516171819
<logical value> ::= #TRUE# | #F ALSE#
<special symbol> ::= <any symbol in CDC 64-character set>

JIKILIM
lYlz

<delimiter> ::= <operator> ! <separator> | <bracket>
| <declarator> | <specificator>

<operator> ::= <arithmetic operator> | <relational
operator> | <logical operator> | <sequential operator>

<arithmetic operator> =+ [= | * | /| J | ¥* | ¢
<relational operator> =< 1< 1=[>1>I7=
<logical operator> ::= =l—|Alv (™

<sequential operator> ::= #GO TO# | #IF# | #THEN#
| #ELSE# | #FOR# | #DO#

<separator> = # 1, 1. 1:1; 1:=1#STEP# | #UNTIL#
| #WHILE# | #COMMENT# | #CODE# | #ALGOL#
| #FORTRAN# | #RJ#

60481600 A

<bracket>::=) | (1 11[| {# | A# | #BEGIN# | #END#

<declarator> ::= #OWN# | #BOOLEAN# | fINTEGER#
| #REAL# | #ARRAY# | #SWITCH# | #PROCEDURE#

<specificator> ::= #STRING# | #LABEL# | #VALUE#
| #VARIABLE# | #SIMPLE# | #FORMAT# | £LIST#

<identifier> ::= <letter> | <identifier><letter>
| < identifier><digit>

<ld> ::= <letter> | <digit>.

<tail> == <1d> | <1d><1d> | <1d><1d><1d>
| <1d><1d><1d><1d> | <1d><1d><1d><1d><1d>
| <1d><1d><1d><1d><1d><1d>

<external identifier> ::= <letter> | <letter><tail>
<unsigned integer> ::= <digit> | <unsigned integer><digit>

<integer> ::= <unsigned integer> | + <unsigned integer>
| -<unsigned integer>

<decimal fraction> ::= .<unsigned integer>
<exponent part> ::= # <integer>

<decimal number> ::= <unsigned integer> | <decimal
fraction> | <unsigned integer><decimal fraction>

<unsigned number> ::= <decimal number> | <exponent part>
| <decimal number><exponent part>

<number> ::= <unsigned number> | + <unsigned number>
| - <unsigned number>

<proper string> ::= <any sequence of characters not
containing #(# or ##> | <empty>

<open string> ::= <proper string> | <proper
string >##<open string>#)#<open string>

<string> ::= A#<open string>#)#
| # (#<open string>#)#<string>

CONSTITUENTS OF EXPRESSIONS

<variable identifier> ::= <identifier>
<simple variable> ::= <variable identifier>
<subseript expression> ::= <arithmetic expression>

<subscript list> ::= <subscript expression>
| <subseript list>, <subseript expression>

<array identifier> ::= <identifier>

<subseripted variable> ::= <array identifier> [<subseript
list>] "

<variable> ::= <simple variable> | <subseripted variable>
<procedure identifier> ::= <identifier>

<actual parameter> ::= <string> | <expression> | <array
identifier> | <switch identifier> | <procedure
identifier>

<letter string> ::= <letter> | <letter string><letter>
<parameter delimiter> ::=, |)<letter string>:(

<actual parameter list> ::= <actual parameter> | <actual
parameter list><parameter delimiter><actual
parameter>

<actual parameter part> ::= <empty> | (<actual parameter
list>) .

<function designator> ::= <procedure identifier><actual
parameter part>

EXPRESSIONS

<expression> ::= <arithmetic expression> | <Boolean
expression> | <designational expression>

<adding operator> =+ | -
<multiplying operator> ::=* 1/ 1/

<primary> ::= <unsigned number> | <variable> | <funection
designator> | (<arithmetic expression>)

<factor> ::= <primary> | <factor> ** <primary>
| <factor> t <primary>

<term> ::= <factor> | <term><multiplying operator>
<factor>

<simple arithmetie> ::= <term> | <adding operator>
<term> | <simple arithmetic><adding
operator><term>

<if clause> ::= #IF#<Boolean expression>#THEN#

<arithmetic expression> ::= <simple arithmetic>
I <if elause><simple arithmetic>#ELSE#<arithmetic
expression>

<relational operator> =< I < I=1>1> =

<relation> ::= <simple arithmetic expression><relational
operator><simple arithmetic expression>

<Boolean primary> ::= <logical value> | <variable>
| <funetion designator> | <relation> | (<Boolean
expression>)

<Boolean secondary> ::= <Boolean primary> I-1<Boolean
primary>

<Boolean factor> ::= <Boolean secondary> | <Boolean
factor> A <Boolean secondary>

<Boolean term> ::= <Boolean factor> | <Boolean
term> v <Boolean factor>

<implication> ::= <Boolean term>
| <implication>~><Boolean term>

<simple Boolean> ::= <implication> | <simple
Boolean> = <implication>

<if clause> ::= #IF#<Boolean expression>#THEN#

<Boolean expression> ::= <simple Boolean> | <if clause>
<simple Boolean>#ELSE#<Boolean expression>

<label> ::= <identifier>

<switech identifier> ::= <identifier>

<switeh designator> ::= <switch identifier>[<subseript
expression>]

<subseript expression> ::= <arithmetic expression>

<simple designational> ::= <label> | <switeh designator>
| (<designational expression>)

<designational expression> ::= <simple designational>
| <if clause><simple designational>#ELSE#<designa-
tional expression>

COMPOUND STATEMENTS AND BLOCKS

<compound tail> ::= <statement>#END# | <state-
ment>;<compound tail>

<bloek head> ::= #BEGIN#<declaration> | <block

head>;<declaration>
<unlabeled compound> ::= #BEGIN#<compound tail>
<unlabeled block> ::= <block head>;<compound tail>

<compound statement> ::= <unlabeled compound>
| <label>:<compound statement>

<bloek> ::= <unlabeled block> | <label>:<block>
<program> ::= <block> | <compound statement>

STATEMENTS AND BASIC STATEMENTS

<unlabelled basic statement> ::= <assignment statement>
I <go to statement> | <dummy statement> | <proce-
dure statement> :

<basie statement> ::= <unlabelled basic statement>
| <label>:<basic statement>

<destination> ::= <variable> | <procedure identifier>
<left part> ::= <destination>:=
<left part list> ::= <left part> | <left part list><left part>

<assignment statement> ::= <left part list><arithmetic
expression> | <left part list><Boolean expression>

<go to statement> ::= #GO TO#<designational expression>
<dummy statement> ::= <empty>
<procedure identifier> ::= <identifier>

<actual parameter> ::= <string> | <expression> | <array
identifier> | <switch identifier> | <procedure
identifier>

<letter string> ::= <letter> | <letter string><letter>
<parameter delimiter> ::=, |)<letter string>:(

<actual parameter list> ::= <actual parameter> | <actual
parameter list><parameter delimiter><actual
parameter>

<actual parameter part> ::= <empty> | (<actual parameter
list>) -

<procedure statement> ::= <procedure identifier><actual
parameter part>

<statement> ::= <unconditional statement> | <conditional
‘statement> | <for statement>

<for list element> ::= <arithmetic expression> | <arithmetic
expression>#STEP#<arithmetic expression>#UNTIL#
<arithmetic expression> | <arithmetic expression>
#WHILE#<Boolean expression>

<for list> ::= <for list element> | <for list>,<for list
element>

<for clause> ::= #FOR#<variable identifier>:=<for list>#DO#

<for statement> ::= <for clause><statement> | <label>:<for
statement>

<if clause> ::= #IF#<Boolean expression>#THEN#

<unconditional statement> ::= <basic statement> | <com-
pound statement> | <bloek>

<if statement> ::= <if clause><unconditional statement>

<conditional statement> ::= <if statement> | <if state-
ment>#ELSE#<statement> | <if clause><for statement>
| <label>:<conditional statement>

60481600 A

DECLARATIONS

<declaration> ::= <type declaration> | <array declaration>
| <switeh declaration> | <procedure declaration>

<type list> ::= <simple variable> | <simple variable>,<type
list>

<type> ::= #REAL# | INTEGER# | #BOOLEAN#

<loeal or own> ::= <empty> | #OWN#

<type declaration> ::= <local or own><type><type list>
<lower bound> ::= <arithmetic expression>

<upper bound> ::= <arithmetic expression>

<bound pair> ::= <lower bound>:<upper bound>

<bound pair list> ::= <bound pair> | <bound pair list>,<bound
pair>

<array segment> ::= <array identifier>[<bound pair list>]
| <array identifier>,<array segment>

<array list> ::= <array segment> | <array list>,<array
segment>

<array declarer> ::= <type>#ARRAY# | #ARRAY#
<array declaration> ::= <local or own><array declarer>
<array list>

<switeh list> ::= <designational expression> | <switch list>
<designational expression>

<switeh declaration> ::= #SWITCH#<switch
identifier>:=<switch list>

<formal parameter> ::= <identifier>

<formal parameter list> ::= <formal parameter> | <formal
parameter list><parameter delimiter><formal
parameter>

<formal parameter part> ::= <empty> | (<formal parameter
list>)

<identifier list> ::= <identifier> | <identifier list>,<identi-
fier>

60481600 A

<value part> ::= #VALUE#<identifier list>; | <empty>

<separate specifier> ::= #STRING# | <type>
| <array declarer> | #LABEL# | #SWITCH#
| #PROCEDURE# | <type>#PROCEDURE#
| #VARIABLE# | #SIMPLE# | #FORMAT# | #LIST#

<separate specification part> ::= <empty> | <separate
specifier><identifier list>; | <separate specification
part><separate specifier><identifier list>;

<separate procedure heading> ::= <procedure identifier>
<formal parameter part>;<value part><separate
specification part> ’

<code number> ::= <digit> | <digit><digit> | <digit><digit>
<digit> | <digit><digit><digit><digit> | <digit><digit>
<digit><digit><digit>

<code identifier> ::= <empty> | <ecode number> | <external
identifier>

<code specifier> ::= #RJ# | <empty>
<eode> ::= #CODE#<code specifier><code identifier>

| #ALGOL#<code specifier><code identifier>
| #FORTRAN#<code identifier>

<separate procedure body> ::= <code>

<separate procedure declaration> ::= #PROCEDURE#
<separate procedure heading><separate procedure
body> | <type>#PROCEDURE# <separate procedure
heading><separate procedure body>

<specifier> ::= #STRING# | <type> | <array ‘
declarer> | #LABEL# | #SWITCH# | #PROCEDURE#
| <type>#PROCEDURE#

<specification part> ::= <empty> | <specifier><identifier
list>; | <specification part><specifier><identifier list>

<procedure heading> ::= <procedure identifier><formal
parameter part>;<value part><specification part>

<procedure body> ::= <statement>

<procedure declaration> ::= #fPROCEDURE#<procedure
heading><procedure body> | <type>#PROCEDURE#
<procedure heading><procedure body> ‘

EXECUTION TIME SYSTEM

MEMORY LAYOUT

The memory layout allows dynamic field length
adjustment and file creation during program execution.

Among the components maintained in memory are the
stack and the heap. The stack starts at some address
above the program and grows to higher addresses. It
contains all entries of which the size can be determined at
compile time and of which the lifetime depends only on
the block structure of the program as well as arrays that
possess dynamic bounds and format strings that cannot be
converted at compile time. The heap is allocated in the
area between the top of the stack and the highest address
(FL) available to the job step. The heap can grow in both
directions and contains all entries of which the lifetime
does not fully depend on the block structure of the
program.

The heap can be moved and obsolete entries discarded
whenever memory requirements make it necessary. When
the heap is moved, all references to entries in the heap
are adjusted accordingly.

The memory layout is depicted in figure E-1.

ALLOCATION OF VARIABLES
AND STACK LAYOUT

For simple variables one word is allocated.
For arrays three entries are allocated separately:
One word

Array descriptor

One word plus one word for
each dimension

Dope vector

Array elements One word for each element

All entries are allocated in the stack or the labeled
common block associated with the module generated.

In the general case, the stack is allocated dynamically in
blank common. Entries in the outer program level in the
stack are accessed directly in blank common. Efficiency
of access is optimal for common blocks. Optimization of
allocation is shown in table E-1.

TABLE E-1. OPTIMAL ALLOCATION
Type of Normal Condition for Optimized
Entry Allocation Optimization Allocation
Simple variable Stack Own or declared in Common
prelude
Bounds are known at Not allocated
compile time
Array descriptor Stack Own In code
Declared in prelude Common
Bounds are known at Common
compile time
Dope vector Stack . Array is used Not allocated
only locally
Declared in prelude Common
Bounds are known at Stack
compile time
Elements of Stack Own array or Common
array declared in
prelude

60481600 B

RA

Job communication area

RA+100B
Main program
Standard and user circumludes Program
Separately compiled procedures > as
Run-time routines loaded
Common blocks
HHA

Program level of main program

(Register B1)

Program levels of active procedures > Stack

Program level of current procedure

Free space for
stack extension

{Register B3)
and G{TO PAR

Free space for
heap extension

Channels

Buffers
Formats

Data contro! blocks

Heap

RA+FL

Space for heap
extension

st gttt ! . —— “a— —

Figure E-1. Memory Layout of Program

The stack is organized in program levels: one for the
main program and one for each activation of a procedure.
The layout of a program level in the stack is shown in
figure E-2. The program level contains return
information, a block section for each active block, the
static working stack, and dynamic arrays if any exist. The
size of the program level is determined at compile-time,
except for dynamic arrays.

A block section contains a block header and the variables
declared in the block. The lowest address of dynamic
arrays in the stack relative to the top of the stack is
stored in the block header. The block header is required

when the block contains arrays with dynamic bounds or
when labels defined in the block are referenced from
outside the block. The block header is suppressed if not
needed. Simple variables occupy one word in the block
section. For declarations of arrays with dynamic bounds
the block section in the stack contains an array descriptor
for each array identifier and a common dope vector of n+l
words, where n is the dimension of the arrays being
declared. Declarations of arrays with static bounds are
represented in the stack by an array descriptor only for
those arrays that appear as actual parameters in a
procedure call. The dope vector is allocated in the code
when at least one of the arrays appears as an actual
parameter in a procedure call, but appears otherwise in
the stack.

60481600 B

B1
Return information

B1+1

Block sections of outer blocks

Block
sections

Block header

Variables

Block

Dope vectors of dynamic arrays

section
innermost
block

Elements of static arrays not
defined in prelude, not own

_ Intermediate results

Parameter n of procedure

Static
working

Parameters 2 through n-1 of procedure

stack .

Parameter 1 of procedure

(Register B2) Dynamic_Arrays

Figure E-2. Program Level in Scalar Stack

The stack also contains the following entities:

e The elements of an array with static bounds are
allocated in the block section above the variables.

e - A for statement with multiple forlist elements has
one loop control word in the stack.

® The static working stack contains the parameters for
a procedure being called and intermediate results. of
formulas that cannot be kept in the registers.

e The elements of arrays with dynamic bounds in the

order of declaration. The lower address of the stack
segment associated. with any block is contained in a
block header.

Labels, pr'ocedures, and switches are not represented in
the stack at all.

60481600 B

STACK ENTRIES

The scalar stack contains:
Arithmetic and Boolean values.

Control words and descriptors of internal objects.

All values occupy one word. Real values are represented
in standard normalized floating point format. * Integer
values are represented in standard fixed point format with
12 leading sign bits: Boolean values are represented by a
full word of which the most significant bit is 1 for
#TRUE# and 0 for #FALSE# and the other bits are
irrelevant.

The formats of control words and descriptors are shown in
figure E-3.

B E-3

CCCCCC An 18-bit data -address in code or common.

SSSSSS An 18-bit address of a program level in the scalar stack.
BBBBBB A 17-bit relative address of a block header within its program level.
PPPPPP An 18-bit address in executable code.

LLLLLL An 18-bit length.

NNNN A 12-bit count.
NNN A 9-bit count.
JJdJ A 12-bit instruction code with i and j designators.

VVVVVV An 18-bit address of a variable in the scalar stack.

222727277 A 21-bit address in small -or Iafge core.

Return information:
If SGM = 0:
59 48 46 .) 17 0

Offs L) Retadd -

If SGM optioh appears on ALGOLS5 control statementf

Force Address of code to force loading of the module containing the address specified by Retadd.

Block Header:

59. 47 17 0
Offs Count : . B2

Offs) Same as for return information.

Count Number of- block headers. Used to check for acceésibility of error labels.

B2 ~The value of register B2 associated with this block header.

For controt

59 " 17 0
X| ’ Unused : PPPPPP
X 0 No addition of #STEP# on next cycle.

1 Addition of #STEP# on next cycle.

PPPPPP Program address for the current forlist element.

59 48 46 35 17 o
Offs L - Retadd Force
Offs Offset of current block header relative to register B1. The value is stored with a pack instruction, to that
bit 58 is always 1. Present only if procedure has dynamic arrays. i
L 0 INLIST/QOUTLIST currently active
1 INLIST/OUTLIST not currently active
Retadd Return: address

Figure E-3. Control Words and Descriptors in Scalar Stack (Sheet 1 of 4)

60481600 C

T is a 2-bit code (bits 54-55) for type as follows:

0 Void
1 Boolean
2 Integer
3 ' Real
String
59 55535250 47 29 17 0
j1o01]0] |Fj O LLLLLL NNNN ccccce
F Flag indicator for usage and kind of string:
0 The string has not been analyzed as format string.
1 The string has been converted to another format internally used as format string; in this case
the length is in words.
2 The string cannot be used as format string.
3 The string can be used as format string.
LLLLLL Length of the string in characters or words.
NNNN Level of replicator nesting in the format; used only when F = 1.

CCccce Address of the string.

‘Array with dynamic bounds . : .
59 55 53 47 . 29 20 0

o2|t] o DDDDDD NNN 2727727

DDDDDD Address of the dope vector.

NNN Number of dimensions of the array.

2272277 Address of the element of the array with all subscripts equal to zero.
For a dynamic array, ZZZZZZZ is relative to the top of the array stack for this level.

Virtual array . .
59 55 53652 47 29 20 0

03|TM| O DDDDDD NNN . 222272722

DDDDDD Address of the dope vector in stack or code.
NNN Number of dimensions of the array.

Z2227227 Address of the elemeht of the array with all subscripts equal to zero.

M Memory residence. indicator:

0 Central memory -
1 ' Extended memory

Figure E-3. Control Words and Descriptors in Scalar Stack (Sheet 2 of 4)

60481600 B

Constant
59 55 53 - 17 : 0
04T 0 Ccccccece
cccccee Address of the constant in common.
Si>mple variable
‘69 55 5352 17
06 |T}|O Unused VVVVVV
VVVVVV Address of the variable in stack or common.
Subscripted variable fixed subscripts
59 5653 ' S 20 0
07 |T Unused) . 222722727
' v 2222727 Address of the array element in CM/SCM or LCM/ECS.
Label
i If SGM = 0
59 55 53 35 17
10]0 0 Label Block
I If SGM option is present on ALGOL5 control statement:
59 5553 ‘ v 36 7
10 |0 Label Force Block
Label Program address of label.
Block Address of block header associated with label.
Force Same -as for return information.
Expression
59 55 53 52 47 29 17 0
1 |tlo}] o PPPPPP 0 SSSSSS
PPPPPP Program address where evaluation of the expression begins.
SSSSSS The address of the innermost program level from which identifiers are referenced in the expression.

Figure E-3. Control Words and Descriptors in Scalar Stack (Sheet 3 of 4)

E-6 60481600 C

Procedure without parameters

59 55 53 52 47 - 29 17 0
15[Tlo] 0 PPPPPP SSSSSS
PPPPPP

SSSSSS -
in the procedure body.

Subscripted variable

Program address of the procedure's entry point.

The address of the innermost program level outside the procedure from which identifiers are referenced

59 55 5352 47 29 17 0
16 |Tl0] O PPPPPP SSSSSS
PPPPPP Program address where evaluation of the subscripted variable begins.

SSSSSS
variable.

Dope -vector

The dope vector of an n-dimensional array occupies n+1 words, namely a one-word header and a bound word for

each dimension.

The address of the innermost program level from which identifiers are referenced in the subscripted

word is then the total size of the array. The multiplier for the last subscript is always 1.

Header LBE
Bound - |)
word LWB Stride
1
Bound Ce
words . .
2 thru n . .
LBE Lower bound effect; that is FWA-ZZZZZZ, when FWA is the address of the element with all subscripts
_equal to the lower bound. :
LWB Lower bound.
Stride The multiplier for the preceding subscript position in subscripting. The stride field of the first bound.

Figure E-3. Control Words and Descriptors in Scalar Stack (Sheet 4 of 4)

HEAP ORGANIZATION

All entries in the heap are preceded by a header word in
the format shown in figure E-4.

There are four classes of heap entries:

Channels
Purpose: Definition’ of & channel number and

associated data control block.

Channel entries are chained through their LINK-field;
the head of the chain is in G{CHN.

Channel definition black :)
Purpose: A data control block is created for each

60481600 C

file defined in the program (by means of
a call to the procedure CHANNEL.).

References to data control blocks are found in the
list of files, in the channel -entries, and 'in the
program levels of INLIST or OUTLIST activations in
the stack.

Input/Output buffers (NOS and NOS/BE only)

Purpose: Provide buffers for files to be used by
Record Manager for NOS or NOS/BE.
SCOPE 2 Record Manager provides its
own buffer for user files outside the
user's field length.

All references to buffers are in the ¢hanne!l definition

block the buffer is associated with.

E-7

D|L “Link New Address Length
D 0 Entry is valid.
1 'Entry is obsolete.
L 0 Entry belongs to an activation of INLIST or OUTLIST.
1 Life time of entry does not depend on activation of INLIST or OUTLIST.

Link Address of the next entry of the same class. This field is used only -for Channel entries.

New Address The address where the header word will be moved to. This field is used only during the move/compact

process.

Length Length in words of the entry including the header word.

Figure E-4. Heap Organization

4. Formats
Purpose: To contain converted format string,
created by a call to the procedure

'FORMAT.

References are in the scalar stack in-the program
level of an INLIST or OUTLIST activation.

CODE GENERATED FOR SPECIFIC
LANGUAGE CONSTRUCTS

The code generated for parameter transmission and
procedure calls is discussed here.

PARAMETER TRANSMISSION

Parameters are transmitted on top of the working stack,
in the reverse order of the source text, each parameter
occupying one word.

Parameters called by value are evaluated before
transmission and the resulting value is stored on the stack.

For a parameter called by name, a parameter descriptor is
constructed and stored on the stack. When the procedure
called is itself a formal parameter, all parameters are
transmitted as if called by name.

PROCEDURE CALL

The call of a procedure that is not. a formal parameter is
performed in the following steps:

1. Place the parameters on the stack.

2. When the procedure being called has nonglobal scope
(that is, the procedure body contains references to
nonglobal variables outside itself) obtain the static
link of the procedure.

3. Construct the return information, using the static
link if applicable, and store it on the stack.

4, Set the register Bl to the address of the return
information in the stack.

E-8

5. Transfer control to the procedure by a simple jump to
its start address.

6. Upon return from the procedure, reset Bl to its value
before the call by subtracting the size of the current
program level from it.

The call of a procedure that :is a formal parameter is
performed in the following steps:

1. Place the parameters on the stack. All parameters
are handled as if called by name.

2. Fetch the descriptor of the procedure being called in
register X1,

3., Fetch a jump instruction” to -the return address in
register X2.

4., Set register Bl to the first address in the stack above
the parameters.

S. Transfer .control to the execution routine GJCALL
that wills

a. Construct the return information from the return
instructions and the static link extracted from
the procedure descriptor and store it on the
stack.

b. Check the actual parameters against the
specifications of the formal parameters.

c. Evaluate all parameters called by value and
overwrite their descriptors in the stack with the
result of the evaluation.

d. Transfer control to the procédure being called.

6. Upon return from the procedure, reset Bl to its value

before the call by subtracting the size in words of the
program level from it.

ENTRIES IN THE CODE

Entries in the code include the module info, procedure
info, specification info, and call info.

60481600 A

MODULE INFO

A module info is generated for each relocatable module.
It consists of a two-word header, a block table (if the D
option.is selected) and a line table.

The format of the header is shown in figure E-5,

PROCEDURE INFO

A two-word procedure info is g'enerated for each
procedure body in the program. The procedure info can be
preceded by the specification info.

The format is shown in figure E-6.

SPECIFICATION INFO

The specification info consists of 15-bit bytes. The first
byte holds the number of formal parameters of the
procedure. The check bytes are used to check the
specifications and some attributes of the actual
parameters. One check byte is used for each parameter.
A second byte is used for an array parameter for which
the number of dimensions of the actual array parameter
must be checked.

The format is shown in figure E-7.

CALL INFO

A one-word call info is generated for each call in the
program in front of the return address.

The format is shown in figure E-8.

Name of the Module

Code

0 Block Table Dumper

Lintab

Name of the module

option is not selected.

Block Table
not selected.

Module name consisting of seven display code characters.

Lintab The address of a table used to determine the line number in the source text from a relative
address in the program code (line table).

Code The address of the start of executable code in the program, used to convert an absolute
address into a relative address in the program code. .
Dumper The address of the execution time symbolic dump routine. This field is zero when the D

The address of the block table for this module. This field is zero when the D option is

The module information is generated at the beginning of the module in a special segment, TPLC.

Figure E-5. Module Info Header

Specification Info

Name Modinfo
Procedure
info |
KIO|T Unused L-spec
Name The first seven characters of the identifier for this procedure.
Modinfo The address of the module info for the program this procedure is part of.
K 1 Variable number of parameters.
0 Fixed number of parameters.
T Type of the procedure.
L-spec The length in words of the specification info.

Figure E-6. Procedure Info Format

60481600 A

Specification byte

Dimension byte

Parameter count

L|R Parameter Count

Mask Checkval val {D \

Dimension

> Check bytes

/

1 Actual number of parameters can exceed parameter count.
0 Otherwise.

The minimum number of actual parameters to the procedure.

Mask A mask used to extract information from the kind and type fields of the descriptor of the
actual parameter.

Checkvat A value to be compared with the information extracted from the kind and type fields of the
descriptor of the actual parameters.

Val 0 Name parameter; otherwise, type of value parameter.

D 1 This specification byte is followed by a dimension byte.
0 This specification byte is not followed by a dimension byte.

Dimension The number of the dimensions that the actual parameter array must have.

Figure E-7. Specification Info Format
Procedure Descriptor

0 0 Entry Address Offset

1 Parno Level

Offset The negative value to be added to the stack pointer upon return of the procedure.

Procedure descriptor

Entry

Parno

Level

address

Used to locate the entry point of the procedure being called. Its interpretation depends on
the left-most bit. : .

Entry point of the called procedure.
The negated number of parameters of the called procedure.

The difference in static levels of the calling procedure and the procedure of which the called
procedure is a parameter.

E-10

Figure E-8. Call Info Format

60481600 A

LINE TABLE

The line table is part of the module info. It contains
‘information about the conversion from relative address (in
the executable code) to source line number. The table
consists of a sequence of groups of 6-bit bytes.

A count is a group of 6-bit bytes with the format of either
a byte with value 1 through 62 or a sequence of bytes with
value 63, followed by a byte with value 0 through 62.

A count denotes a value which is the sum of all its bytes
(always greater than 0).

Each group .in the line table has one of the following
formats:

e A count, which denotes the number of words of code
generated for the current line, if any.

e A zero byte, followed by a count, which denotes the
number of lines for which no code was generated.

e Two zero bytes, which denote the end of the table.

BLOCK TABLE

The block table is generated only when the dump option is
specified on the ALGOLS5 control statement. Each block

in the program has its own subtable, consisting of a
two-word header and a one-word entry for each identifier
declared in the range.

The format is shown in figure E-9.

DEDICATED B-REGISTERS

The dedicated B-registers are as follows:
Bl Stack pointer for the current program level.

B2 Pointer to the end of the last dynamic array in
the stack +1.

B3 Pointer to a location approximately 260 words
below the heap; only modified if the heap is
moved.

Register Bl must be reloaded on every procedure entry
and exit and on a goto statement that discards the current
program level.

Register B2 must be reloaded on every array declaration
and upon exit of a block containing arrays.

Register B3 is modified only when the stack is moved,
because the field length is modified, or when a new file
information table and buffer must be allocated and the
field length cannot be adjusted.

Start Address
module info).

Own Start

Total Length

Header

0 Offset Length Start Address

0 Own Start Total Length End Address
Offset The relative address in the program level of the first identifier in the block.
Length : The length of the subtable for this block.

The address of block entry relative to the start of executable code (field Code in the

Address in the own common block of the first own identifier of the range.

The length of the consecutive subtables for this block and all its inner blocks.

End Address The address of block exit relative to the start of executable code (field Code in the
module info).
Figure E-9. Block Table Format (Sheet 1 of 2)
60481600 B E-11

Identifier Entry

N
Identifier Reserved % gl K T
n e
Identifier The first seven characters of the -identifier.
Reserved Reserved for later use.
Own 1 For own identifiers, 0 otherwise.
Name 1 For call-by-name parameter.
0 For normal identifier, label or call-by value parameter.
K Kind of the identifier.
T Type of the identifier.
Block Word
(0} Fwa Lwa Offset
Fwa Address where the generated code for the block starts.
Lwa Address where the generated code for the block ends.
Offset The offset of the block header in the program level.

E-12

Figure E-9. Block Table Format (Sheet 2 of 2)

60481600 A

INDEX

Abort 11-2
ABS 7-1
Actual parameter 6-4
ADDRESS macro 12-4
ALGOL symbol - 9-1
ALGOL5 control statement ll 1
Alignment marks - 8-14
ARCCOS . 7-2
ARCSIN - 7-2
ARCTAN 7-2
Arithmetic expressions
Conditional 3-6
Simple . 3-1
Arithmetic mode errors 14-1
Arrays
Declaration 5-2
Elements 2-3
Subscripts 2-3
ARRAYSTACK 7-3
ARTHOFLW 7-4
ASCII graphics = A-2
ASSIGN macro 12-5
Assignment statements 4-1
A60PROG 9-1

'} BACKSPACE 8-20

Backus Normal Form D-1

BADDATA 8-22

Binary file 11-1

Binary sequential 8-15

Blanks 1-1

Block 4-3

BNF - D-1

Boolean expressions
Conditional ~ 3-6
Simple . 3-5

Boolean format 8-13

BOOLEAN symbo! 5-1

Call-by-name ~ 6-4
Call-by-value 6-4
CALLING macro 12-5
Calling sequence 12-1
CALL macro 12-6
CDC graphics: A-2
CHANNEL = 8-16
CHANERROR = 8-22
Character

Format. 8-13

Sets A-1
‘CHECKOFF 10-1
CHECKON 10-1
CHLENGTH ' 7-2
Circumlude

Compilation 9-3, 11- 2,15-1

Standard 7-1
CLOCK 7-3
CLOSE . 8-17 .
Coded sequential 8-1
Code

Identifier 9-2

Part 9-1
CODE symbol 9-1

60481600 C

Comment directives
Control statement option 11-1
Table 10-1
Comments 1-4
COMPASS
Interface 12-1
Procedures 9-2
Compile time diagnostics B-1
Compound statement 4-3
Conditional statement 4-7 :
CONNECT 8-20 _ [B
CONSTANT macro 12-6
Constants - see Numbers or Boolean values
Control statement
Compilation 11-1
Execution 13-1
cos 7-2
CYBER Record Manager - see Record Manager

DATE " 7-3
Debugging 11-1
Deck structure 15-1
Declarations

Array 5-2

Procedure 6-1

Simple variable 5-1

Switch 5-3
DECL macro 12-6
Designational expressions 3-6 . : :
DETACH 8-20, : [|
Diagnostics B-1 : cL
Dimensions of arrays 5-2
Directives, comment 106-1
DISCONT 8-20 , ,]
DUMP - 14-1 : . : :

EDITLIB - 9-4
EJECT 10-1 :
ENDFILE - 8-20 ‘ N |
ENDPROC macro 12-3
ENTIER 7-1 :
EOF 8-22 :]
EOP symbol 9-1 :
EPSILON 7-3°
EQUIV 7-2
ERROR macro 12-7
ERROR procedure
Call. 7-4
Keys 7-2
Error level
Control statement option 11-1
Definition B-1
Error termination 11-2
Evaluation of expressions 3-2
Examples 15-1
Execution control statement 13-1
Execution time diagnostics B-2
EXP. 7-2
Exponent 2-2
Exponentiation 3-2
Expression evaluation 3-2
Expressions 3-1
External identifiers 2-1

~ Index-1

FAULT 7-3
FETCHARRAY 8-16
FETCHITEM 8-16
FETCHLIST 8-15
FIELDLENGTH 7-3
FILE control statement 12-1
File information table 12-1
Formal parameters 6-1
FORMAT
Procedure 8-7
Specifier 6-3
Format strings 8-9
FOR statement 4-5
FORTRAN

Comparison with ALGOL 1-1

Procedures 9-2

Symbol 9-1
Function designator 2-4
FWA macro 12-5

GETARRAY 8-15
GETVAR macro 12-7
GOTO .
Macro 12-5
Statement 4-2

HEAPSIZE 7-3
HEND 8-7

HLIM 8-7

Horizontal control = 8-4

IABS 7-1

Identifiers, external 2-1
INARRAY 8-2
INBARRAY 8-3
INBOOLLEAN 8-3
INCHAR 8-1
INCHARACTER 8-1
INCLUDE 10-1
ININTARRAY 8.3
ININTEGER 8-2
INLIST 8-5

INPUT 8-3

INRANGE 7-3
INREAL 8-2

Insertion sequence 8-10
INSYMBOL 8-1
Integer numbers 2-2
INTEGER symbol 5-1
IOLTH 8-22

IOPTION 7-1

KIND macro 12-4

Label 2-4
Layout procedures 8-6
LENGTH
Macro 12-5
Procedure 7-2
LGO 13-1
LIBGEN 9-4
Library for circumlude 9-4
Line
Advance 8-8
Alignment 8-8
LIST

Comment directive 10-1
Specifier 6-3

Index-2

List procedures 8-5
LN 7-2

Loading .13-1

Logical operations 3-5
Lower bound = 5-2
LOWERBOUND 7-3

Macros 12-3

MAXIMUMFIELDLENGTH 7-3

MAXINT 7-3
MAXREAL. 7-3
MEMORY 7-3
MINREAL 7-3
Mode errors 14-1
MOPTION 7-1

Nested circumludes 9-3
NODATA 8-7
NOLIST 10-1

. Nonformat 8-13

Number format 8-11
Numbers 2-2

OBJLIST 10-1
OBJNOLIST 10-1
OPEN 8-17
Operations 3-1
Optimization 11-2
ORDER macro 12-5
OUTARRAY 8-2
OUTBARRAY 8-3
OUTBOOLEAN 8-3
OUTCHAR 8-1
OUTCHARACTER - 8-1
OUTINTARRAY 8-3
OUTINTEGER - 8-2
OUTLIST 8-5

Output listing file 11-2
Output listing options 11-2
OUTPUT 8-3
OUTREAL 8-2
OUTSTRING 8-2
OUTSYMBOL 8-1
Own variables 5-1

Page
Advance 8-8
Alignment 8-8
Paged files 8-4
PARAM macro 12-6
Parameter
Actual 6-4
Delimiter 6-1
Formal 6-1
PARAMS macro 12-4
PARITY 8-22
Postludes 9-2
Postmortem dump 14-1
Precedence of operators 3-2
Preludes 9-2
Preset 13-2
Procedure
Body - 6-1
Calling 6-3
Declaration 6-1
Heading 6-1
Statement 6-3

60481600 C

Procedure identifier
In function procedure 6-3
Syntax 2-4,
Procedures
Separately compiled 9-1
Standard 7-1
PROC macro 12-2
PROGRAMSIZE 7-3
PUTARRAY 8-15
PUTVAR macro 12-7

RBREGS macro 12-7
READECS 8-21
Real numbers 2-2
REAL symbol 5-1
Record Manager interface 12-1
Recursion 6-4
Relations 3-5
Replicators 8-9
RETURN

Macro 12-3

Procedure 8-17
REWIND 8-21
RJ symbol 9-2

Sample jobs 15-1
SBREGS macro -12-7
SCALARSTACK 7-3
Scope of variables 5-1
Segment loading 13-1
Separately compiled procedures 9-1
Side effects 3-4
SIGN - 7-1
SIMPLE
Macro 12-6
Specifier 6-3
- Simple expressions
Arithmetic 3-1
Boolean 3-5
Designational 3-6
Simple input/output B-1
Simple variables 2-3
SIN 7-2)
SKIPB 8-20
SKIPF 8-20
Source input file 11-2
Special symbols
Definition 2-1
Table A-3
Specifications 6-1
SQRT - 7-2
Standard
Circumlude 7-1
Format 8-14
Procedures 7-1
Statements 4-1
STEP/UNTIL - 4-6
STOP 7-3

60481600 C

STOREARRAY 8-16
STOREITEM 8-16
STORELIST 8-15
STRINGELEMENT 7-2
STRING macro 12-6

‘String quotes 2-2

Strings 2-2
Concatenated 2-3
Subscripted variables 2-3

Subscripts
Array 2-3
Switch designator 2-4
Switch
Declaration 5-3
Designator 2-4
Symbolic dump 14-1
Symbols 2-1
SYMPL procedures 9-2
Syntax summary D-1
SYSPARAM 8-21

TABULATION 8-7
TAN 7-2

TIME 7-3

Title format 8-10
Traceback 14-1
Type declaration 5-1
TYPE macro 12-4

Unary operator 3-1
UNLOAD 8-17
Unpaged files 8-4
Upper bound 5-2
UPPERBOUND 7-3

VALUE
Macro 12-4
Specifier 6-1
Value part 6-1
Variables 2-3
VARIABLE symbol 6-3
VEND 8-7
Vertical control 8-4
VLIM 8.7

WHILE - 4-7
Word addressable 8-15
WRITEECS 8-21

XFORM macro 12-7

As exponent indicator 2-2
#(# and #)# 2-2

Index-3

CUT ALONG LINE

AA3419 REV. 4/79 PRINTED IN U.S.A.

COMMENT SHEET

MANUAL TITLE: ALGOL-60 Version 5 Reference Manual
PUBLICATION NO.: 60481600 REVISION: C

NAME:

COMPANY:

STREET ADDRESS:

ary: ' STATE: ' ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please

include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND STAPLE

TAPE TAPE
FOLD FOLD
NO POSTAGE
' NECESSARY
IF MAILED
) IN THE
‘ : UNITED STATES

- - |

BUSINESS REPLY MAIL S

FIRST CLASS PERMIT NO. 8241 MINNEA_POI.IS, MINN.

"]
POSTAGE WILL BE PAID BY N

CONTROL DATA CORPORATION I

; : |

Publications and Graphics Division [

215 Moffett Park Drive N

Sunnyvale, California 94086 I

]

]

L]
FOLD B FOLD
TAPE TAPE

CUT ALONG LINE

