
SOFTWARE ENGINEERING SERVICES

1.0

Procedure Writer's Guide

60460270 01

REVISION RECORD

REVISION DESCRIPTION

01 (02-17-84) Preliminary manual released.

Address comments concerning this manual to:

-t

Control Data Corporation

Software Engineering Services
4201 North Lexington Avenue
St. Paul, Minnesota 55112

60460270 01

© 1984

by Control Data Corporation
All . rights reserved

Printed in the United States of America

Table of Contents

1.0 INTRODUCTION ••••••••

2.0 FEATURES OF SES ••••••
2.1 CONTROL STATEMENT FEATURES •
2.2 PROCEDURE PROCESSING ••••••
2.3 LAYOUT OF THIS GUIDE ••••

3.0 BASIC SES PROCESSING •••
3.1 SES PROCEDURE CALL FORMAT

3.1.1 SES PROCEDURE LAYOUT
3.2 SES SYNTAX •••

3.2.1 DIRECTIVES •
3.2.2 VARIABLES
3.2.3 NUMBERS ••
3.2.4 STRINGS • • •••
3.2.5 BOOLEANS •••••••••••
3.2.6 FUNCTIONS ••••••••
3.2.7 EXPRESSION EVALUATION
3.2.8 COMMENTS •••••
3.2.9 CONTINUATION LINES ••
3.2.10 SUBSTITUTION •••••

3.3 PROFILES ••••••••••

1
13 DEC 83

1-1

2-1
2-1
2-2
2-3

3-1
3-2
3-3
3-4
3-4
3-4
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-8

3.3.1 SEARCH DIRECTIVE - ESTABLISH LIBRARY SEARCH ORDER •
3-10
3-11
3-12
3-13
3-13
3-14
3-16

3.4 LOCATING A PROCEDURE ••••••••••••••
3.4.1 DEFAULT ORDER OF SEARCH ••••••••••
3.4.2 SEARCH SPECIFIED ON CONTROL STATEMENT ••••
3.4.3 SEARCH ORDER SPECIFIED VIA SEARCH DIRECTIVES •

3 .5 PROCESSING A .PROCEDURE • • • • • • • • •

4.0 EXPRESSION EVALUATION •••••••••
4.1 ASSIGNMENT OF EXPRESSIONS TO VARIABLES •
4.2 OPERATO~S IN EXPRESSION EVALUATION •••.
4.3 EXAMPLES OF ASSIGNMENT STATEMENTS • • •

. . ..

5.0 FUNCTIONS •••••••••••••••
5.1 UNIQUE - GENERATE UNIQUE NAMES OR LABELS •
5.2 TESTING ATTRIBUTES OF EXPRESSIONS

5.2.1 NAM - TEST FOR NAME ••••••
5.2.2 NUM - TEST FOR NUMBER •••••••
5.2.3 STR - TEST FOR STRING •••••••
5.2.4 DEF - TEST FOR DEFINED VARIABLE ••
5.2.5 DEFF - TEST FOR DEFINED FUNCTION OR OPERATOR
5.2.6 OPR - TEST FOR OPERATOR •••••••
5.2.7 VALEXPR - CHECK AND COMPUTE EXPRESSION •••

5.3 STRING HANDLING •••••••••••••••••
5.3.1 STRLEN - DETERMINE LENGTH OF STRING ••••
5.3.2 SUBSTR - EXTRACT SUBSTRING FROM CHARACTER STRING
5.3.3 GENSTR - REGENERATE A STRING • • • • • •••••
5.3.4 GENUPR - RAISE CASE OF ALPHABETICS •••••••

4-1
4-1
4-2
4-4

5-1
5-2
5-3
5-3
5-4
5-4
5-5
5-5
5-6
5-7
5-8
5-8
5-9

5-11
5-12

2
13 DEC 83

5.3.5 GENLOWR - LOWER CASE OF ALPHABETICS •••••
5.4 CHARACTER HANDLING FUNCTIONS •••••••••••

5.4.1 CHARREP - CHARACTER REPRESENTATION •••••
5.4.2 INTREP.- INTEGER REPRESENTAION OF CHARACTERS •

5.5 INTEGER EXPRESSION TO STRING CONVERSION •••••
5.5.1 OCT - INTEGER TO OCTAL STRING CONVERSION ••
5.5.2 DEC - INTEGER TO DECIMAL STRING CONVERSION •• ·• ••
5.5.3 HEX - INTEGER TO HEXADECIMAL STRING CONVERSION •

5.6 DATE, CLOCK AND TIME FUNCTIONS • • • • • • • ••••
5.6.1 DATE - CURRENT DATE FUNCTION ••••••••••
5.6.2 CLOCK - TIME OF DAY FUNCTION ••••••••
5.6.3 TIME - SYSTEM AND JOB TIME FUNCTION ••••••

5.7 TOKEN - READ SES TOKEN FROM A STRING •••••••
5.8 EXAMPLE - TIME, TOKEN AND EXPRESSION EVALUATOR •

6.0 SES DIRECTIVES •••••••••••••••••••••
6.1 IF - ORIF - ELSE - IFEND CONDITIONAL PROCESSING ••
6.2 WHILE - WHILEND REPETITIVE CODE PROCESSING ••••
6.3 CONTROL STATEMENTS • • • • • • • • • • • ••••

6.3.1 STOP - STOP PROCEDURE PROCESSING • • • •••
6.3.2 ABORT - ABORT PROCEDURE PROCESSING •••••••
6.3.3 EXIT - EXIT STRUCTURE ••••••••
6.3.4 CYCLE - NEXT ITERATION OF WHILE •••

6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE
6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE •
6.6 USER INTERFACE DIRECTIVES ••••••

6.6.1 DAYFMSG - SEND MESSAGE TO DAYFILE •
6.6.2 MSG - WRITE MESSAGE TO FILE •••••
6.6.3 ACCEPT - READ 1 LINE FROM A FILE •••

6.7 SETRFL - PROCEDURE FIELD LENGTH CONTROL

7.0 PARAMETER DEFINITION AND PROCESSING ••
7.1 PARM - PARMEND DEFINING PARAMETER LISTS •
7.2 PARAMETER ATTRIBUTE TESTING •••••••

7.2.1 DEFP - TEST FOR THE PRESENCE OF A PARAMETER ••••
7.2.2 DEFK - TEST FOR PRESENCE OF SPECIFIC KEYWORD
7.2.3 KEYVAL - ACCESS ACTUAL KEYWORD OF PARAMETER

7.3 ACCESSING PARAMETER VALUES ••••••••••••
7.3.1 VCNT - NUMBER OF VALUES OF A PARAMETER •••
7.3.2 VALS - EXTRACT PARAMETER VALUE FROM A VALUE LIST
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST

7.4 DEFINING PARAMETER DEFAULTS ••••••••••••
7.4.1 SETVAL - SET DEFAULT VALUE • • • ••••••
7.4.2 SETKEY - SET DEFAULT KEYWORD ••

8.0 FILE SYSTEM DIRECTIVES ••••
8.1 FILE - TESTING FILE ATTRIBUTES
8.2 REWIND FILES •••
8.3 RETURN FILES •••
8.4 ACQUIRE DIRECTIVE •
8.5 EXTRACT DIRECTIVE ••

9.0 PREDEFINED VARIABLES ••••
9.1 SES SYSTEM DEFAULT VARIABLES •

5-12
5-13
5-13
5-13
5-14
5-14
5-14
5-15
5-16
5-16
5-17
5-18
5-19
5-20

6-1
6-2
6-3
6-4
6-4
6-5
6-6
6-7
6-8

6-10
6-12
6-12
6-13
6-14
6-1,5

7-1
7-2
7-4
7-5
7-6
7-7
7-8
7-9

7-10
7-11
7-14
7-15
7-16

8-1
8-2
8-3
8-4
8-5
8-6

9-1
9-1

9.2 USER ENVIRONMENT VARIABLES ••••

APPENDIX A Useful Procedure Segments •

A1.0 USEFUL PROCEDURE SEGMENTS ••••
A1.1 CALPROC - CALL SES PROCEDURE
A1.2 JOBPARM - DEFINE PARAMETERS FOR BATCH JOBS ••••
A1.3 JOBHDR1 - PROCESS JOB PARAMETERS ••••••
A1.4 JOBHDR2 - PROCESS START OF JOB FILE ••••
A1.5 MSGCTRL - HANDLE MSG I NOMSG PARAMETER •••
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE •

APPENDIX B Operating Modes of the SES Processor

3
13 DEC 83

9-2

A1

A1-1
A1-2
A1-3
A1-4
A1-6
A1-8
A1-9

B1

B1.0 OPERATING MODES OF THE SES PROCESSOR • • • • • • • • • B1-1
B1.1 SELECTING MODE OF OPERATION • • • • • • • • • • • • • • B1-2

APPENDIX C Error Messages

C1.0 ERROR MESSAGES

APPENDIX D SYNTAX

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION ••••
D1.1 THE META LANGUAGE •••
D1.2 CHARACTER SET •••••
D1.3 SYNTAX • ~ •••••

D1.3.1 BASIC DEFINITIONS •
D1.3.2 TOKENS •••
D1.3.3 USE OF SPACES •
D1.3.4 EXPRESSIONS ••••
D1.3.5 FOREIGN TEXT ••
D1.3.6 PARAMETER LISTS •
D1.3.7 SES PROCESSOR CALL
D1.3.8 SUBSTITUTION •••
D1.3.9 PROCEDURES •••••••••
D1.3.10 DIRECTIVES ••••

D1.4 LINES AND THEIR CONTINUATION

APPENDIX E ACQUIRE Utility •

E1.0 ACQUIRE UTILITY •••••

APPENDIX F EXTRACT Utility •

F1.0 EXTRACT UTILITY •••••

C1

C1-1

D1

D1-1
D1-1
D1-2
D1-4
D1-4
D1-4
D1-7
D1-8
D1-9

D1-11
D1-12
D1-13
D1-14
D1-15
D1-16

E1

E1-1

F1

F1-1

APPENDIX G SESMSG Utility

G1.0 SESMSG UTILITY • •••

4
13 DEC 83

G1

61-1

CDC ~ SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

1-1

13 DEC 83
REV: 1

--
1 .O INTRODUCTION

--
1 .0 INTRODUCTION

SES is a NOS utility whose major function is to locate and
process PROCEDURES so as to generate streams of CCL to the system
control statement file.

PROCEDURES are text records which contain CCL interspersed with
directives to the SES processor itself. The SES directives can
cause CCL to be generated according to specified conditions.

SES is invoked by an SES control statement, either from a
terminal session or from a batch job. The SES control statement
specifies the name of the procedure to be processed, and optionally,
parameters for that procedure. SES locates the procedure, processes
it, and generates the appropriate CCL stream to the control
statement file.

This document is intended as a guide to those who wish to write
procedures to be processed by SES.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

2-1

13 DEC 83
REV: 1

--
2.0 FEATURES OF SES

--
2.0 FEATURES OF SES

This section provides an overview of the features and facilities
available to the user of SES. The features fall into two related
classes, the first class being the ways in which parameters may be
specified on the SES control statement, and the second class being
the features provided by the SES processor. The two classes are
related, since in general, for each way that a parameter can be
written on the SES control statement, there is a corresponding SES
directive or function available to process that particular aspect of
the parameter.

2.1 CONTROL STATEMENT FEATURES

This section looks briefly at the way in which an SES control
statement and parameters may be written.

o Continuation Lines. SES procedure calls are not limited to
one control statement line. Continuation lines may be input,
whether from a terminal or in batch. The total length of a
statement, including continuation lines, is limited to 2000
characters.

o Procedure parameters may be specified by keyword, or
positionally, or by a combination of both methods.

o Parameters of a procedure may have multiple values.

o Parameters of a procedure may be coded solely as a keyword
with no values, in which case the keyword may be used to
specify options.

o A parameter keyword may have multiple synonyms.

o Parameter values may be coded as arbitrary character strings.

o The user may indicate on the SES control statement that a
particular user's catalog is to be searched when locating a
procedure.

o Users may establish procedure library search order and other

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

2-2

13 DEC 83
REV: 1

--
2.0 FEATURES OF SES
2.1 CONTROL STATEMENT FEATURES
--

default information in a PROFILE, which SES accesses at call
time.

2.2 PROCEDURE PROCESSING

This section provides a brief look at the features available to
the SES procedure writer.

o Values and defaults established in a user's PROFILE may be
accessed.

o The names of parameters, their possible types, and the number
of values that may be coded for them, are predefined within
the procedure.

o SES provides functions to test for the type, number of values,
and existence of a parameter.

o SES provides a function to index along a multiple valued
parameter.

o The procedure writer may define variables to hold values
during procedure processing.

o CCL statements may be generated conditionally or iteratively
via IF and WHILE directives.

o Expression evaluation and string manipulation facilities.

o Generation of unique strings for names and labels.

o Text from within the body of a procedure may be ROUT'ed to any
specified file.

o Text may be INCLUDE'd into the body of the procedure from any
specified file, or from any specified procedure of any
specified plib library.

o Local files may be tested for attributes, similar to the FILE
function provided by the operating system.

o The user's environment at procedure call time can be restored
at procedure end.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

2-3

13 DEC 83
REV: 1

--
2.0 FEATURES OF SES
2.3 LAYOUT OF THIS GUIDE
--
2.3 LAYOUT OF THIS GUIDE

Rather tha~ supplying an alphabetical list of directives and
functions, the features are going to be introduced in related
chunks, mostly illustrated by examples. As far as possible, the
examples given are taken from real live SES procedures, to avoid
creating artificial examples. The general layout of the guide is in
this order.

o Basic SES concepts, processing and syntax.

o Expression evaluator.

o Functions.

o SES directives.

o Parameter definition and processing.

o File system directives.

o Various summaries in appendices.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-1

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING

--
3.0 BASIC SES PROCESSING

This section is going to show the major aspects of how SES
performs its processing. Topics covered in this section are.

o procedure call format, showing the basic format of an SES
control statement.

o what a procedure looks like.

o The mechanism for substitution of parameters and names.

o SES directives within procedure files.

o Profiles and the SEARCH directive.

o Locating a procedure. Explains the search method that SES
uses to locate a procedure.

o Processing a procedure. Explains what happens to each line of
text in an SES procedure.

60460270 01

CDC .- SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-2

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.1 SES PROCEDURE CALL FORMAT
--
3.1 SES PROCEDURE CALL FORMAT

The basic form of an SES procedure call is.

SES.procedure_na•e list_of_parameters

where "procedure_name" is the name of the procedure to be processed,
and "l i st_of _parameters" is the Coptiona l> list of parameters for
the procedure. The list is separated from the procedure name by a
comma or by space(s) or both. Elements in the parameter list are
separated from each other by commas or spaceCs> or both. The
parameter list is terminated by an end of line, a period, or a
semicolon.

Parameters are generally written in the form of

keyword=value

this is only a part of the story however, and later in the document
we'll get to specific definitions of the manner in which parameters
may be coded.

60460270 01

3-3
CDC ~ SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1
--
3.0 BASIC SES PROCESSING
3.1.1 SES PROCEDURE LAYOUT
--
3.1.1 SES PROCEDURE LAYOUT

The general layout of an SES procedure is:

PROCNAME

\
\
\

\

PARM
PARM
PARM

PARMEND

where PROCNAME is the name of the procedure.

there are zero to many of these PARM directives.
They are used to define the exact format of the
parameters in the list. The form of a PARM
directive will be defined in a later section.

this indicates the end of the PARM directives,
and is always neccessary even when there are no
PARM directives.

BODY OF PROCEDURE the procedure body contains CCL which gets
written to the control statement file, and SES
directives which are processed at procedure build
time.

\ blah blah any line which starts with the directive
character, which is a reverse slash (\) by
default, is taken to be an SES directive.

A procedure 'of name PROCNAME may be a local file, or a file in
the current user's catalog, or it may be a record in a PLIB. But,
no matter where the procedure comes from, the first line of the
procedure must be the name of the file or record in which the
procedure resides.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-4

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.2 SES SYNTAX
--
3.2 SES SYNTAX

This section provides a short and informal introduction to the
syntax of the SES processor. A more formal and complete syntax
definition is provided at the end of the document.

The discussions on syntax use the characters C and l to indicate
that an item is optional.

3.2.1 DIRECTIVES

To determine if a line of a procedure is a directive, the SES
processor goes through the following steps:

1. Any leading spaces on the line are ignored.

2. SES looks for a variable called DIRCHAR (for DIRective
CHARacter) in its tables <we'll discuss variables later). If
DIRCHAR is undefined, or if DIRCHAR is defined but contains a
value other than a single character which is a "visible
delimiter character" (space is not considered a visible
delimiter), then SES will use the reverse slash (\) as the
directive character, otherwise SES will use the character in
DIRCHAR as the directive character.

2. If the Cnow) first character of the line is equal to the
directive character, then the line is ass~med to be either a
directive or an assignment statement, and is processed
accor-di ngly.

3.2.2 VARIABLES

Variables are one thru thirty-one characters in length, must
start with a letter, and may contain only letters, digits, or the
characters __, S, a, or #. ·

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3.0 BASIC SES PROCESSING
3.2.3 NUMBERS

3-5

13 DEC 83
REV: 1

--
3.2.3 NUMBERS

SES only handles integers, there are no reals. Integers are
represented internally by 48 bit quantities. Thus integers range
between -2**47-1 and 2**47-1.

Numbers are normally assumed to be decimal, but bases other than
decimal may be represented by appending a base specification to the
string of digits. The base may be any base between 2 and 16, but
generally, the useful bases are 2, 8, 10 and 16, and any others are
sort of weird. For example:

4975 is a decimal number
377475(8) is an octal number
9A46C16) is a.hexadecimal number

note that hexadecimal numbers Cand in fact any base requiring use of
the letters A thru F) must start with a decimal digit Ceven if it's
zero), to avoid confusion with names.

3.2.4 STRINGS

Strings are arbitrary strings of characters enclosed in single
quote marks, for example:

'Just the place for a Snark, the Bellman cried.'

to represent a string quote inside a string, you must code it as two
string quotes:

'The time ;s Seven O''Clock'

two juxtaposed string quotes, that is, '', represent a null, or
empty string.

3.2.5 BOOLEANS

Strictly speaking, there aren't really booleans in SES. However,
SES has the predefined variables TRUE, YES, FALSE and NO. The first
two represent the value TRUE, and the second two represent the value
FALSE. They are conformable with integers, in that TRUE or YES are
equal to one C1>, and FALSE and NO are equal to zero CO>.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-6

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3 .2.5 BOOLEANS
--
Otherwise, !!!l ~~value is assumed to be TRUE, and a zero
value is assumed to be FALSE.

3.2.6 FUNCTIONS

SES provides many built in functions.
follows the standard form, that is:

A function reference

function name Clist_of_arguments>

where "function name" is the name of the function to be referenced,
and "list of arguments" is the argument(s) to the function.
Elements of an argument list are separated from each other by commas
or spaceCs> or both.

3.2.7 EXPRESSION EVALUATION

SES can evaluate expressions containing mixed mode integer,
string, boolean and function references. Implicit type conversion
is performed as required.

3.2.8 COMMENTS

A comment is any arbitrary string of characters enclosed between
double quote marks ("). The comment may not itself contain comment
quotes. Comments may appear anywhere that a space may appear, and
in fact is syntactically equivalent to a space.

Comments may not appear before the directive character of an SES
directive line, nor after the continuation signal on lines which are
being continued.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-7

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.2.9 CONTINUATION LINES

3.2.9 CONTINUATION LINES

Any SES directive or call line may be continued by placing a
continuation signal C •• > at the end of the line to be continued. A
continuation signal is defined to be two or more contiguous
periods. The total length of an SES call line may not exceed 2000
characters, while the length of a directive line may not exceed 256
characters.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-8

13 DEC 83
REV: 1

---------------------------------·----------------------------------
3.0 BASIC SES PROCESSING
3.2.10 SUBSTITUTION
--
3.2.10 SUBSTITUTION

A major function of SES is to substitute parameters into
procedures. In actual fact, SES can substitute elements other than
parameters, and this latter aspect is covered first.

The basic substitution mechanism when processing a line of a
procedure is this:

1. SES looks for a variable SUBCHAR Cfor SUBstitution CHARacter)
in its tables (we'll discuss variables later). If SUBCHAR is
undefined, or if SUBCHAR is defined but contains a value other
than a single character which is a "visible delimiter
character" (space is not considered a 1 visible delimiter), then
SES will use the ~mpersand C&> character as the substitution
character, otherwise SES will use the character in SUBCHAR as
the substitution character.

2. If SES finds on a line, the substitution character followed by
a name followed by the substitution character, then SES
follows the procedure below:

a) SES first searches for a parameter of the specified
name, and if such a parameter is not found, then SES
searches for a variable of the specified name. If the
parameter or variable is defined, then the value of the
variable, or the value of the parameter is inserted
into the output text at that point, without the
substitution characters.

b) If SES finds neither a parameter of the specified name,
nor a variable of the specified name, then the
substitution characters are stripped off and the
literal character string which comprises the name is
inserted into the output text.

60460270 01

3-9
CDC ~ SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
1-3 DEC 83

REV: 1
--
3.0 BASIC SES PROCESSING
3.2.10 SUBSTITUTION
--

For example, supposing that the substitution character is &, and
that the name YIN is associated with the value YANG.

+---------------+--------------+-----------------------------------+
I __ I I I
I Input I Output I Explanation I
I I I I
+---------------+--------------+-----------------------------------+

I I
REWINDC&YIN&) REWINDCYANG) I this example is straightforward. I

I The value YANG is simply I
I substituted for the name YIN. I
I I

+---------------+--------------+-----------------------------------+
I

REWINDC&MIN&> REWINDCMIN) I since MIN wasn't defined, then I
I the substitution characters are I
I simply removed. I
I I

+---------------+--------------+-----------------------------------+

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-10

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.3 PROFILES
--
3 .3 PROFILES

A PROFILE is an important, albeit optional, component of the SES
system. Any user may choose to establish a PROFILE in their
catalog. PROFILE follows the same rules as any SES procedure, that
is, the name of the file must be PROFILE, and the first line of the
profile must be the word PROFILE. From there on, the profile may
contain just about any SES command. The most important aspect of
the profile is the SEARCH directive, explained in the next section.

Typically, the types of things that a user may place in the
profile would be:

o a command to set a variable called PASSWOR to the user's
password. Procedures which optionally run as batch jobs can
then get the user's password without having to be told it on
the SES control statement.

o commands to establish defaults for library names Cfor the
source code and library maintenance procedures>, and other
data for various procedures.

o SEARCH directives to establish a search order for procedures.

It is possible for a user to have more than one PROFILE, and
select which one to use by coding the PN or P parameter on the SES
control statement, for example.

SES,PN=alternate_profile.procname list_of_parameters

allows the user to use the file "alternate profile" as the PROFILE
for the duration of that procedure call. Also, a user may use
someone else's profile by coding the PUN or PU parameter, for
example:

SES,PUN=profile_owner.procname list_of_parameters

allows the user to access the profile belonging to "profile owner".
Of course, the PN and PUN parameters may be used together._ -

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-11

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.3.1 SEARCH DIRECTIVE - ESTABLISH LIBRARY SEARCH ORDER

3.3.1 SEARCH DIRECTIVE - ESTABLISH LIBRARY SEARCH ORDER

The SEARCH directive allows a user to establish, within PROFILE,
the names of libraries to search when locating a procedure, and also
the user names in whose catalogs those procedure libraries reside.
The general form of SEARCH is:

\ SEARCH search_spec, search_spec •••••••

where "search_spec" is in the form:

user name

or

Clibrary_name, library_name ••••• , user name>

The first form indicates that the library name contained in the
predefined variable SESLNAM is to be searched for in the catalog of
the user specified by "user name". The second form gives a list of
library names, with the last item in the list being the user name in
whose catalog those libraries may be found.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-12

13 DEC 83
REV: 1

-----------------------------~----------------~---------------------
3.0 BASIC SES PROCESSING
3.4 LOCATING A PROCEDURE
-------------~--

3.4 LOCATING A PROCEDURE

SES performs its search for a given procedure according to well
defined and consistent rules. Basically SES has three methods of
specifying how a procedure is to be located. SES has an internal
table which contains the following data:

+--------------+-----~-----+ I library_name user name
I
I library_name user name
I
I etc.
I.
I etc.
I
I etc.
I
+--------------~~---------~+

Given that the table may be set up by one of three different
methods which are explained in more detail in the sections
following, the procedure that SES follows to locate a procedure is:

1. If there is a local file of the "'procedure name", _whose first
line is "procedure name", then SES uses that file as the
procedure~ -

2. SES searches the catalog of the user whose user name appears
as the first entry in the table, for a file of name
"procedure name", whose· first line is "procedure name". If
such a file is found, then SES uses that file as the
procedure.

3. For each entry in the search table, SES searches for a library
of name "library name" in the catalog of the corresponding
"user name", and searches that library (which must have a
directory) for a TEXT record of name "procedure namerr=- If SES
eventually finds such a record, then SES uses-that record as
the procedure.

4. If the search is unsuccessful, then SES issues an error
message

procedure_name NOT FOUND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-13

13 DEC 83
REV: 1

---------------------~--
3.0 BASIC SES PROCESSING
3.4 LOCATING A PROCEDURE
--

The next three sections provide a more detailed explanation of
the methods by which SES has its search table set up. The methods
are basically the default, the user name specified on the SES
control statement, and the SEARCH directive.

3.4.1 DEFAULT ORDER OF SEARCH

When SES is called, it sets up the following data in its search
table:

+-----------+-----------+ I &SESLNAM& I user name I
I I I
I &SESLNAM& I &SESUNAM& I
+-----------+-----------+

This table is the normal default for SES.
user name of the currently logged in user.

"user name" is the

"SESLNAM" is a predefined variable whi c-h contains the name of the
SES procedure Library NAMe. "SESUNAM" is a predefined variable
which contains the SES User NAMe. There will be a more detailed
section on predefined variables Later in the document.

3.4.2 SEARCH SPECIFIED ON CONTROL STATEMENT

When the user types the SES control statement, he may specify via
the UN or U parameter of the SES program, which user's catalog to
look in for the procedure specified by the call. For example:

SES,UN=user_name.procedure_name list_of_parameters

specifies that the procedure "procedure name" is to be searched for
only in the catalog of the user "user name" (if the procedure is not
already local). In this case SES modifies its search table to
contain only the following data:

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-14

13 DEC 83
REV: 1 ------------------------·--

3.0 BASIC SES PROCESSING
3.4.2 SEARCH SPECIFIED ON CONTROL STATEMENT
--

+-----------+-----------+ I &SESLNAM& I user_name I
+-----------+-----------+

where "SESLNAM" contains the SES Library NAMe as before, and
"user name" is the user name specified on the SES control
statement. It is also possible to tell SES, via the LIBPFN or LPFN
parameter, the name of the library to be searched for the
procedure. For example:

SES,LPFN=lib_name.procedure_name list_of_parameters

specifies that the procedure "procedure name" is to be searched for
only in the library "lib_name". In this case SES modifies its
search table to reflect the following data:

+-----------+-----------+ I tib_name I user_name I
+-----------+-----------+

where "user name" is the user name of the current user, and
"lib name" -is the library name specified on the SES control
statement. Of course, the UN and LIBPFN parameters may be used
together.

3.4.3 SEARCH ORDER SPECIFIED VIA SEARCH DIRECTIVES

The third method of specifying the order in which to look for the
procedure i~ via SEARCH directives in the user's PROFILE. For
example, supposing that the user's PROFILE contains the following
SEARCH directive:

\ SEARCH (HOLMLIB,JIMLIB,HG74>, AM74, JF03, CANDYLIB,ED73)

in this case SES would modify its search table to -look like this:

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-15

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.4.3 SEARCH ORDER SPECIFI~D VIA SEARCH DIRECTIVES
--

+-----------+------+
I HOLMLIB I HG74 I
I I I
I JIMLIB I HG74 I
I I I
I &SESLNAM& I AM74 I

I I I
I &SESLNAM& I JF03 I

I I I
I ANDYLIB I ED73 I

+-----------+------+

Note that SEARCH directives are ignored if the UN or LIBPFN
parameters were specified on the SES control statement.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

3-16

13 DEC 83
REV: 1

--
3.0 BASIC SES PROCESSING
3.5 PROCESSING A PROCEDURE
-----------------------------------~--------------------------------

3.5 PROCESSING A PROCEDURE

Now assuming that SES is able to locate the required procedure,
then the procedure is processed, at least in principle, on a one
pass, line by line basis--we say "in principle", since in fact
because of WHILE (looping) directives, a given line may be processed
many times. Also each line may be scanned twice. Leaving all that
aside for the nonce, the processing for each line of the procedure
goes like this:

1. The line is scanned by the substitution processor. Any
substitutable elements are processed at this stage, and the
replacement text inserted into the line at that point. This
process continues. until the whole line is scanned.

2. The line is then examined to see if it is an SES dir~ctive (or
assignment statement>, and if so it is processed accordingly.

3. If the line is not an SES directive, then that line is written
to the output stream, whatever that happens to be at the
time.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

4-1

13 DEC 83
REV: 1

--
4.0 EXPRESSION EVALUATION

--
4.0 EXPRESSION EVALUATION

Although, as we said before, the principal function of SES is to
substitute parameters into procedures, the expression evaluator of
SES is a sufficiently important aspect of processing SES procedures
that it and its related topics are covered first, before we ever get
to explaining parameters and parameter substitution. By starting
with the expression evaluator, you'll find it easier to understand
parameters when we get to them.

4.1 ASSIGNMENT OF EXPRESSIONS TO VARIABLES

Within the body of an SES procedure it is possible to have
variables. Variables are used for many purposes, such as control
variables in WHILE loops, building character strings, etc, etc.

If you assign a value to a variable which was previously
undefined, then SES defines the variable for you, and initializes it
to the value of the expression to the right of the equal sign. If
the variable was already defined, th~n its new value becomes the
value of the ass.ignment expression.

Variables within SES may be of type NAME, INTEGER, STRING, or
BOOLEAN. When a variable is initialized, it takes the type of the
initialization expression. Upon subsequent assignment to the
variable, it takes the type of the expression to the right of the
equal sign. For example, here are four variables being declared:

\ stringy = 'MOZZARELLA CHEESE'

\ nullber = 547(8)

\ logical = TRUE

\ ananae = f red

In the example, the first variable is of type STRing; the second
is of type NUMber (there is no type REAL); the third is of type
BOOLEAN; and the fourth is of type NAMe Cit is assumed that fred was
not previously defined as a variable). Generally speaking, the
expression evaluator performs implicit type conversion, so that
variables of different,types may be mixed within an expression.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

4-2

13 DEC 83
REV: 1

--
4.0 EXPRESSION EVALUATION
4.2 OPERATORS IN EXPRESSION EVALUATION
--
4.2 OPERATORS IN EXPRESSION EVALUATION

Before we go further into expression evaluation, we'll show the
operators that may be used in expressions. They fall into the
classes of arithmetic, string, relational and logical operators.
The table below also indicates the relative priority of the
operators.

+------------+--------+----------+---------------------------+
Operator 1 Prece- I Operator I
Class I dence I I

Comments I
I

+------------+--------+----------+---------~-----------------+
Arithmetic 1

2

3

**
* I
II

+

Exponentiation

Multiply
Divide
Modulo or Remainder

I
I
I
I
I
I

Add or Monadic Plus I
Subtract or Monadic Minus I

+------------+-----~--+-----~----+---------------------------+ I String 4 ++ I String Concatenation I
+------------+--------+----------+---------------------------+

Relational 5 =
I=
<>
>
>=
<
<=

Equal To
Not Equal To
Not Equal To

I
I
I
I Greater Than

Greater Than or
Less Than

Equal To I

Less Than or Equal To
I
I

+------------+--------+----------+---------------------------+
Logic'al -I 6 NOT Logical NOT or Negation

I
I 7 AND Logical AND
I
I 8 OR Logical OR
I XOR Logical Exclusive OR

+------------+--------+----------+---------------------------+

Notes:

o Operators at the same precedence level are processed from
left to right.

o The right operand of the exponentiation operator must be
greater than or equal to zero.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

4-3

13 DEC 83
REV: 1

-------------------------------~------------------------------------
4.0 EXPRESSION EVALUATION
4.2 OPERATORS IN EXPRESSION EVALUATION
--

o The right operand of the division and modulo operators must
not be zero.

o Processing of relational operators is as follows:

If both operands of a relational operator can be
converted to integers, they are so converted and then
compared; otherwise both operands are converted to
strings Cif necessary) and then compared.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

4-4

13 DEC 83
REV: 1

--
4.0 EXPRESSION EVALUATION
4.3 EXAMPLES OF ASSIGNMENT STATEMENTS
--
4.3 EXAMPLES OF ASSIGNMENT STATEMENTS

In this section we're going to look at an example of the use of
the expression evaluator, showing how substitution of names works in
conjunction with assignment. This example is from the SES MATH
procedure, which acts as a quick and dirty desk calculator. At the
start of the MATH procedure, the following chunk of code may be
found.

\ curnamq = 'VALUE'
\ &curnamq& = 0

\ MSG '&curnamq& = ' ++ &curnamq&
etc.

etc.
etc.

..
"

1 ..
2 II

" 3 "

Note how we made use of comment quotes in the example in order to
number the lines of interest to the discussion. Now the way this
works is that line 1 sets a variable "curnamq" to the character
string 'VALUE'. When line 2 is processed, the substitutor looks for
something called "curnamq", and finds the string 'VALUE', so that by
the time the assignment statement is, processed, the line wi LL
actually read ·

\ VALUE = 0

so the variable VALUE gets initialized to zero. Now line 3 is
scanned by -the substitutor, and when substitution is finished, the
line will look like

\ MSG 'VALUE = I ++ VALUE

now the expression evaluator is called into play to process the
argument to the MSG directive. MSG wants its final argument in the
form of a string. The expression evaluator finds that the first
part of the expression is indeed a string. Then it finds that the
second part of the expression calls for a string concatenation of
whatever is in the variable VALUE. Name lookup finds that the
variable contains the value O. The expression evaluator converts
the 0 to a string and concatenates it to the previous string in the
expression. Finally the MSG directive outputs to the user a message
that says

VALUE = 0

60460270 01

5-1
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1
--
5.0 FUNCTIONS

--
5.0 FUNCTIONS

SES has
evaluator.
sections.

a number of functions for use by the expression
These functions are explained in detail in the following

First there's a brief overview of the functions.

UNIQUE

Attribute Testing

String Handling

Number Conversion

DATE, CLOCK and TIME

VALEXPR

TOKEN

generates unique seven character strings in
the form of labels or filenames.

There are functions that test whether a
variable is a name, number, string or
operator, or whether an . arithmetic
expression is legal.

string handling functions are provided by
SUBSTR, which returns a substring of a
Larger string, STRLEN, which returns the
Length of a string, GENSTR, which restores a
parsed string to its original format, and
functions to raise or Lower the case of
alphabetic characters.

the functions OCT, DEC and HEX perform
integer to string conversion.

these functions returns the date and time in
various formats as specified by their
a rgumerit s.

this function can be used to VALidate and/or
eVALuate an EXPRession contained within a
string variable.

this function reads the next valid SES token
(syntactic unit) from a string variable.

60460270 01

5-2
CDC - SOFTWARE ENGINEERING SERVICES

SES· Procedure Writer's Guide
13 DEC 83

REV: 1
--
5.0 FUNCTIONS
5.1 UNIQUE - GENERATE UNIQUE NAMES OR LABELS
--
5.1 UNIQUE - GENERATE UNIQUE NAMES OR LABELS

This function is used by most of the SES procedures to generate
unique names for intermediate scratch files, unique names for
programs invoked by the SES procedures, and unique labels Cin those
rare cases where labels are needed). They are explained in detail
below.

UNIQUECNAME)

UNIQUE (LABEL)

returns as a value a seven character alphanumeric
string, starting with the letters ZQ. The name
is guaranteed to be different from the name of
any file currently assigned to the running job
from which this SES procedure is being called.

returns as a value a seven character alphanumeric
string starting with the characters 9Q.

The UNIQUE function repeats about every seventeen hours.

As an example of how this is used, the following is a short
extract from the SES COPYACR procedure.

\ copyacr = UNIQUECNAME)
\ library = UNIQUECNAME)

•
•

EXTRACTC©acr&=COPYACR/T=ABS,LFN=&library&,L=PROGLIB,UN=&SESUNAM&)
©acr&CHERE,THERE)

The two variables at the top are initialized to unique names, so
that when those names are used, they will not conflict with any file
that the user may have assigned to the job.

It is good practice to use unique names for files and programs
wherever possible, because then the user does not have to remember
which procedures use which filenames.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-3

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.2 TESTING ATTRIBUTES OF EXPRESSIONS
--
5.2 TESTING ATTRIBUTES OF EXPRESSIONS

The functions described below are mainly used to test the type of
an expression. NAM, NUM, and STR return true if the argument is of
type NAMe, NUMber or STRing, respectively. DEF returns true if its
argument is DEFined, DEFF returns true if its argument is a DEFined
Function or a symbolic operator. OPR returns true if its argument
is an OPeRator. VALEXPR checks and computes a VALid EXPRession.

5.2.1 NAM - TEST FOR. NAME

The NAM function returns true if its argument is a NAMe. The
general form of NAM is:

NAM (expression)

if "expression" evaluates
name, then the NAM function
FALSE. For example:

to something that C$n be converted to a
returns TRUE, otherwise it returns

\ test = NAM (FRED)
'\ test= NAM {'ABC' ++'DEF')
\ test = NAM ('JUNK' ++ TRUE)

a return the value TRUE. In the first example, FRED is definitely
a name, in the second example, the result of concatenating the two
strings results in a value which can be converted to a name, and in
the third example, the result of the expression is the string
'JUNK1', which can also be converted to a name. So in each case,
the value of variable "test" is TRUE. However, the tests:

\ test = NAM C12345)
\ test = NAM (TRUE)
\ test = NAM C'123ABC')

all fail, since 12345 is not a name but a number, TRUE converts to
the value 1, which is also not a name, and '123ABC' is a string
which cannot be converted to a valid name.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-4

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.2.2 NUM - TEST FOR NUMBER -
--
5.2.2 NUM - TEST FOR NUMBER

The NUM function returns true if its argument is a NUMber. The
general form of NUM is:

NUM <expression>

if . "expression" evaluates to something that can be converted to a
number, then the NUM function returns TRUE, otherwise it returns
FALSE. For example:

\ test = NUM (497500)
\ test= NUM (377 ++ '(8)')
\ test. = NUM COABC ++ TRUE ++ I (16) ')

all return the value TRUE. In the first example,. 497500 is
definitely a number, in the second example, the result of
concatenating the two strings results in a value which can be
converted to a number, and in the third example, the result of the
expression is the string '0ABC1C16>', which can also be converted to
a number. So in each case, the value of variable "test" is TRUE.
However,,the tests:

\ test = NUM CFILENAM)
\ test = NUM ('Haddocks Eyes'>

both fail, since FILENAM is not
character string 'Haddocks Eyesi
number.

a number but a name and the
cannot be converted to a valid

5.2.3 STR - TEST FOR STRING

The STR function returns true if its argument is a STRing. The
general form of STR is:

STR Cexpressfon>

if "expression" evaluates to something that can be converted to a
string, then the STR function returns TRUE, otherwise it. returns
FALSE. For example:

\ test = STR CTHROCKS)
\ test = STR (735725(8))

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's .Guide

5.0 FUNCTIONS
5.2.3 STR - TEST FOR STRING

s-s

13 DEC 83
REV: 1

--
\ test = STR C'Nurdle yer Cordwangler'>

all return the value TRUE, since any of those things, names, numbers
and strings can indeed be converted to a string. In fact it looks
as if you can convert anything at all to a string, and if this is
the case, what's the use of the STR function? Well as you've
probably guessed, life's not as simple as all that, and there is in
fact one thing that cannot be converted to a string, and that is an
omitted value. We'll talk about this a bit more when we describe
parameters later in the guide.

5.2.4 DEF - TEST FOR DEFINED VARIABLE

DEF stands for DEFined, and its aim in life is to return TRUE if
the name specified as its argument is deined as a variable. The
general form of DEF is:

DEFCname>

where "name" is the name of the thing that you want to know about.
The "name" argument to DEF may not be an· expression, only a name.

Note: that while SES is in operation a vast quantity of variables
get defined, other than those that the procedure writer may define.
The list of predefined variables is given ·at the end of this
document.

5.2.S DEFF - TEST FOR DEFINED FUNCTION OR OPERATOR

DEFF stands for DEFined Function, and it returns a true value if
the name given as its argument is any of the SES function names or
mnemonic operators. The general form of DEFF is:

where
for.

DEFFCname)

"name" is the function or operator name that you want to test
The argument to DEFF may not be an expression, only a name.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-6

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.2.6 OPR - TEST FOR OPERATOR
--
5.2.6 OPR - TEST FOR OPERATOR

OPR tests for its argument to be an OPeRator or delimiter. The
general form of OPR is:

OPR(string_expression>

OPR reads the first token from the string given by
"string expression", and, if the token is a valid SES token, then
OPR returns TRUE if the token is an operator or a delimiter other
than an operator. A list of the valid SES tokenS-is given in the
appendix on SES syntax.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-7

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.2.7 VALEXPR - CHECK AND COMPUTE EXPRESSION
---~----

5.2.7 VALEXPR - CHECK AND COMPUTE EXPRESSION

The purpose of VALEXPR is twofold. Firstly it is intended to VAL
idate an EXPRession, to see if it £!!'.!_be evaluated, and secondly, if
the expression is computable, then VALEXPR eVALuates the
EXPRession. The raison d'etre of VALEXPR is that it is possible to
read data from a file into a string variable, and then evaluate that
string as an expression. The general format of VALEXPR is:

VALEXPR Cresult_variable, input_string_variable)

where "result variable" is the name of a variabl·e to receive the
result of the expression specified by the string in the variable of
name "input string variable". VALEXPR returns a value which is
either the null string, which indicates that the expression was
valid, in which · case the result of the expression is in
"result variable", or else the function value is a character string
which Ts the SES error message indicating what was wrong with the
expression.

As an example of VALEXPR, we'll show another extract from the SES
MATH procedure. The relevant pieces of the procedure are given
here, with the interesting line numbers in comments.

\ ACCEPT INTO='stringq',PROMPT='&curnamq&='++&curnamq&

\ tokstsq = VALEXPR Cresultq, stringq)
\ IF tokstsq /= '' THEN
\ MSG tokstsq
etc.

etc.
etc.

" 1 "

" 2 "
" 3 ..
ti 4 II

Line 1 reads a string from the user into the string variable
"stringq". Further down in the procedure, after a lot of other belt
and braces checking, the VALEXPR call at line 2 places the result of
the expression evaluation in "resultq" and returns as a function
value a character string which is checked at line 3 to see if it's
the null string. If it isn't, then the string in "tokstsq"
represents an error message which is output to the user at line 4.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-8

13 DEC 83
·REV: 1

----~---
5.0 FUNCTIONS
5.3 STRING HANDLING
--
5.3 STRING HANDLING

The functions described below allow you to massage strings. The
functions described are STRLEN, to find the length of a string,
SUBSTR, to extract a part of a string, GENSTR, to regenerate a
string, and GENUPR and GENLOWR to raise or lower the case of
alphabetic characters in a string.

5.3.1 STRLEN - DETERMJNE LENGTH OF STRING

STRLEN stands for STRing LENgth, and it returns as a function
value, the length of its argument. The general form of STRLEN is:

STRLEN<string_expression>

where "string expression" is the character string of which you want
to find the length. For example,

\ game = 'DWILE FLONKING'

\ size = STRLEN (game ++ I AND HURDLING')

the STRLEN function call has as its argument·a string expression
which should result in a string having the value

'DWILE FLONKING AND NURDLING 1 ·

and after evaluation is complete, the variable "size" should contain
the value 27.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-9

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.3.2 SUBSTR - EXTRACT SUBSTRING FROM CHARACTER STRING
--
5.3.2 SUBSTR - EXTRACT SUBSTRING FROM CHARACTER STRING

SUBSTR, for SUB STRing, returns a part of a string from a string
variable. The general format of SUBSTR is:

SUBSTRCstring_exp, ;nteger_exp, integer_exp)

where "exp" stands for "expression". The first parameter of SUBSTR
is the string from which you wish to extract a substring. The
second parameter is the character number (starting from one) at
which the substring is to start, and the third parameter is the
number of characters to be extracted from the string. For example.

\ this = 'f40NEY FOR OLD ROPE'

\ other = SUBSTRCthis, 11, 8)

After the substring function has been evaluated, the value of
variable "other" is 'OLD ROPE', and STRLENCother) returns the value
8.

If you omit the third parameter from the SUBSTR function, then it
returns one character from the position designated by the second
pa ratneter.

If you omit the second and third parameters, then the SUBSTR
function returns the entire string. This doesn't seem to be a lot
of use, and it's a whole lot quicker to just assign the string to
another one.

It is - not possible to omit the second parameter and code the
third. If you do such an antisocial thing, you'll get the error
message EXPECTING NUMBER.

If the starting index parameter is given as less than one, it is
(internally) set to one; or if the starting index is given as
greater than the length of the string, the starting index is
(internally) set to the larger of the length of the string or one.
The default starting index is one.

If the length is given as less than zero, it is (internally) set
to zero; or if the length is given as greater than the maximum C80>,
it is (internally) set to the maximum. The default length is the
length of the original string.

Once the starting index and length have been determined, the
requested number of characters is returned as the function value

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

s-10

13 DEC 83
REV: 1

--------------------------~--------------------~--------------------
5.0 FUNCTIONS
5.3.2 SUBSTR - EXTRACT SUBSTRING FROM CHARACTER STRING
--------------------------~--------------~---------------------------

(padding on the.right with spaces if neccessary).

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-11

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.3.3 GENSTR - REGENERATE A STRING
--
5.3.3 GENSTR - REGENERATE A STRING

The GENSTR function is used to restore a string. When a string
value is coded for a parameter or in a string assignment, the string
is initially enclosed in single quote marks, and a single quote mark
within the string is represented by a pair of quotes. For example,

\ time= 'Thirteen O''Clock'

will set the variable time to the string shown. When SES processes
this, the outer quotes are removed, and pairs of quotes replaced by
single ones. However, if this string was to be passed on to the
call statement of another SES procedure, then it must be restored to
its original form, so that eventually SES can crunch it again. So
the function GENSTR, for GENerate STRing is used. The general form
of GENSTR is

GENSTRCstring_expression>

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-12

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.3.4 GENUPR - RAISE CASE OF ALPHABETICS
------~-~---

5.3.4 GENUPR - RAISE CASE OF ALPHABETICS

GENUPR is used to raise the case of alphabetic characters in a
string variable. The format of the GENUPR function is

GENUPR Cstring_expression>

where "string expression" is the string you want to process. An
example of GENUPR is shown here in this extract from the SES system
library procedure MATH. The procedure reads a string from the input
file into a string variable "stingq"

\ IF GENUPRCstringq) = 'ENO' OR GENUPR(stringq) = 'BYE' THEN
\ STOP
etc.

etc.

the MATH procedure allows you to type END or BYE to exit from the
procedure, and that is what is being tested for in the example
above. Since the user may be logged in in ASCII mode, it's possible
for the input to be in a mixture of upper and lower case, so we use
GENUPR to raise the case of the alphabetic characters.

5.3.5 GENLOWR - LOWER CASE OF ALPHABETICS

GENLOWR . is used to lower the case of alphabetic characters in a
string variable. The format of the GENLOWR function is

GENLOWR Cstring_expression>

where "string_expression" is the string you want to process.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5.0 FUNCTIONS
5.4 CHARACTER HANDLING FUNCTIONS

5-13

13 DEC 83
REV: 1

--~-

5.4 CHARACTER HANDLING FUNCTIONS

The functions in this category can be used to manipulate ASCII
characters which do not have a graphic representation. The
functions are CHARREP which return the character represented by its
integer argument; and INTREP which returns the integer
representation of its character argument.

5.4.1 CHARREP - CHARACTER REPRESENTATION

This function returns as its value, the ASCII character
corresponding to its argument. The general form of CHARREP is:

CHARREP Cinteger_expression)

where "integer expression" must evaluate to an integer between 0
(zero) and 255. For example: CHARREPC15C8)) is the ASCII character
for "carriage return".

If the "integer expression" has a value of 128, it will be
translated to a colon. If the value is between 129 and 255, and the
value of CHARREP with this argument is written to a file, it will be
translated to an asterisk.

5.4.2 INTREP - INTEGER REPRESENTAION OF CHARACTERS

This function will
representation of its
INTREP is:

return as its
character argument.

v•lue, the integer
The general form of

INTREP Cstr;ng_expression)

where STRLENCstring expression) must be equal to 1 Cone>. For
example: -

INTREP ('2')

has the value 50 or 62(8) or 32(16); and

INTRE~ CCHARREPC10))

has the value 10 Ci.e. the integer representation of the ASCII line
feed character.

60460270 01

CDC - SOFTWARE, ENGINEERING SERVICES

SES Procedure Writer's Guide

5-14

13 DEC 83
REV: 1

----------·--·--
5.0 FUNCTIONS
S.5 INTEGER EXPRESSION TO STRING CONVERSION
--
5.5 INTEGER EXPRESSION TO STRING CONVERSION

The functions described below are for converting integers to
strings. The functions are OCT, DEC ~nd HEX, which convert integers
to their OCTal, DECimal and HEXadecimal representations
respectively. None of the functions append a~y base designators,
that's up to you and your particular application.

5.5.1 OCT - INTEGER TO OCTAL STRING CONVERSION

This function converts an integer to its OCTal string
representation. The form of the function is:

OCTCinteger expression)

For example, if the variable "titus" has the value 795, then the
assignment statement

\ groan = OCT Ctitus + 4>

results in the variable "groan" being set to the string '1437', this
being the octal representation of the decimal integer 799.

5.5.2 DEC - INTEGER TO DECIMAL STRING CONVERSION

This function converts an integer to its DECimal string
representation. The form of the function is:

DECCinteger_expression>

For example, if the variable "mortice" has the value 497, then
the assignment statement

\ tenon = DEC (mortice + 29>

results in the variable "tenon•• being set to the string '526'.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5.0 FUNCTIONS
5.5.3 HEX - INTEGER TO HEXADECIMAL STRING CONVERSION

5.5.3 HEX - INTEGER TO HEXADECIMAL STRING CONVERSION

5-15

13 DEC 83
REV: 1

This function converts an integer to its HEXadecimal string
representation. The form of the function is:

HEXCinteger_expression)

For example, if the variable "easter" has the value 10138, then
the assignment statement

\ bunny = HEX (easter + 1311)

results in the variable "bunny" being set to the string '2CB9', this
being the hexadecimal representation of the decimal integer 11449.

The HEX function always guarantees that there is a decimal digit
at the start of the character string, since the syntax of
hexadecimal numbers within SES requires that they start with a
decimal digit. If the first character of the resultant string is
not a decimal digit, then SES will place a 0 (zero> at the start of
the string.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-16

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.6 DATE, CLOCK AND TIME FUNCTIONS
--
5.6 DATE, CLOCK ANO TIME FUNCTIONS

These functions return character strings as values. DATE returns
the current date in a number of formats determined by its argument,
CLOCK returns the time of day in various formats, and TIME returns
information about job and system time.

5.6.1 DATE - CURRENT DATE FUNCTION

DATE returns the current date in any one of a variety of
formats. The form of the DATE function call is:

DATE(format)

where "format" may be specified in one of these ways:

YMD returns the date in the form 76/09/08 CAD 1976, month of
September, day 8)

OMV returns the date in the form 08/09/76, the reverse of the
way just above.

MOY returns. the date in the form 09/08/76 (American style
month first).

DMONY returns the date in the form 8 SEP 76

MONDY returns the date in the form SEP 8, 1976

JULIAN returns the Julian date, 76252 for September 8.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-17

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.6.2 CLOCK - TIME OF DAY FUNCTION
---~------

5.6.2 CLOCK - TIME OF DAY FUNCTION

The CLOCK function returns the time, so that it is possible to
get NOS to give you the time of day. The general form of CLOCK is

CLOCKCformat)

where "format" is one of the following.

HMS returns Hours, Minutes and Seconds, in the form 16:40:19.

AMPM returns the above time in the form 4:40 PM

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-18

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.6.3 TIME - SYSTEM AND JOB TIME FUNCTION
--
5.6.3 TIME - SYSTEM AND JOB TIME FUNCTION

The TIME function returns information about the system time. The
general form of TIME is:

TIMECformat)

where the "format" parameter is one of the following.

SYS elapsed time in seconds since deadstart.

SYSMS elapsed time in milliseconds since deadstart.

JOB processing time in seconds since the start of this job or
terminal session

JOB MS processing time in milliseconds since the start of this job
or terminal session.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-19

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.7 TOKEN - READ SES TOKEN FROM A STRING
--
5.7 TOKEN - READ SES TOKEN FROM A STRING

TOKEN makes the internal lexical scanner of the SES processor
available to the procedure writer. TOKEN reads the next SES token
(syntactic unit) from a string variable. The calling format of
TOKEN is:

TOKENCsource_string, token_string)

TOKEN reads the next available SES token from the variable
"source_string", and places that token into the variable
"token_string". TOKEN returns as a value one of the following:

o If the token read from the string is a valid SES token, TOKEN
returns a null (empty) string to indicate that all is well.
Note that in this case, the token is deleted from
"source string", so that you can place calls on TOKEN into a
loop, and get successive tokens from the source string.

o If the next token in the strin~ is not a valid SES token,
TOKEN returns as a value a character string consisting of an
error message indicating what is wrong with the token.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5-20

13 DEC 83
REV: 1

--
5.0 FUNCTIONS
5.8 EXAMPLE - TIME, TOKEN AND EXPRESSION EVALUATOR
--
5.8 EXAMPLE - TIME, TOKEN AND EXPRESSION EVALUATOR

The example below is taken from an old version of the SES TIME
procedure. TIME does not give you the time to the exact second,
rather it gives you the time in words to the nearest five minutes.
For example if you type SES.TIME, and the time was 11:17:43, SES
would output the time in the form

* QUARTER PAST ELEVEN

Part of the procedure to accomplish

\ sectO = I O''CLOCK'
\ sect1 = I FIVE PAST'
\ sect2 = 'TEN PAST'
\ sect3 = 'QUARTER PAST'
\ sect4 = 'TWENTY PAST'
\ sects = 'TWENTY FIVE PAST'
\ sect6 = 'HALF PAST'
\ sect7 = I TWENTY FIVE TO I
\ sects = 'TWENTY TO'
\ sect9 = I QUARTER TO I
\ sect10 = 'TEN TO I
\ sect11 = I FIVE TO'

\ h1 : I ONE'
\ h2 : I TWO'
\ h3 : I THREE'
\ h4 : I FOUR'
\ hS = I FIVE'
\ h6 : I SIX'
\ h7 : I SEVEN'
\ h8 : I EIGHT'
\ hcJ : I NINE'
\ h10 : I TEN'
\ h11 : I ELEVEN'
\ h12 : I TWELVE I

\ tiktok- = CLOCKCAMP")
\ junk = TOKENCtiktok, hours>
\ minutes = SUBSTRCtiktok, 2, 2)

this is:

II 1 II

.. 2 ..

.. 3 ..

\ hours = Chours+CC33<=minutes> AND Cminutes<=59)))//12 " 4 "
\ hours = 'h'++hours+Chours = 0>•12 " 5 "

\ sector= Cminutes/5+Cminutes//5>2))//12
\ sectnam = 'sect•++'§or&'

.. 6 ..

.. 7 ..

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

5.0 FUNCTIONS

5-21

13 DEC 83
REV: 1

5.8 EXAMPLE - TIME, TOKEN AND EXPRESSION EVALUATOR
--

This simple little procedure illustrates some of the more
esoteric uses of the expression evaluator. The numbers that appear
in comment quotes are for reference in the discussion that follows.

The assignment
i n i ti a l iz i ng a
eventual output.

statements
bunch of

at the
strings

beginning are just
which form parts of the

line 1 calls the CLOCK function which returns the time. Let us
suppose that the time is 4:20 pm. The variable "tiktok" will
contain the string '4:20 PM'.

line 2 calls the TOKEN function which sets the value 4 into the
variable "hours". The result of TOKEN is being placed in the
variable "junk", because that's what it is in this
application.

line 3 uses SUBSTR to get the "minutes" field out of "tiktok". We
can't use TOKEN to get rid of the colon because colon is not
a valid SES token. So we use SUBSTR to get the second and
third characters of the string and place that in the variable
"mi nut es".

line 4 is incrementing the "hours" counter if "minutes" lies
anywhere between 33 and 59 minutes past the hour. The
boolean expression ((33<=minutes> AND <minutes<=59)) will
evaluate to either TRUE or FALSE, which is convertible to 1
or 0. Then we assign the whole expression modulo 12 to
"hours".

line 5 is setting "hours" to one of the "hxx" variables defined at
the start. The expression has to generate the string 'H12'
if the value of "hours", set in line 4, turned out zero
because of the modulo operator.

line 6 computes the "sector", that is, the five minute slot on the
face of the dial. The expression- will set the sector to
"minutes"/5. But the expression also says that if it's
3,4,5,6 or 7 minutes past the hour, then we'll set it to five
past the hour

line 7 builds a name "sectxx". The names "hxx" and "sectxx" can be
accessed by substituting. For example, if the time is
4:43 pm, then "hours" will eventually contain the string
'HS', and "sectnam" will contain the string 'SECT9'. Then
the substitution &hours& will give the string 'FIVE', and
§nam& will give the string 'QUAR~ER TO'.

60460270 01

6-1
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

--
6.0 SES DIRECTIVES

--
6.0 SES DIRECTIVES

In this section we'll look at all the SES directives that are not
directly concerned with processing of parameters from the control
statement. Again we'll provide a brief summary of the available
commands, and go into more detail later on. The commands we're
going to discuss in this section are.

Conditional Processing

Iterative Processing

Other Control Statements

Alternate File Creation

File Inc;lusion

User Interaction

The IF-ORIF-ELSE-IFEND commands provide
a means to process the procedure
conditionally.

WHILE-WHILEND provide a means of
repeating a group of statements while
some condition remains true.

CYCLE provides the means to go to the
beginning of a WHILE loop. EXIT
terminates its immediately enclosing
structure, STOP terminates procedure
processing and starts execution of the
generated control statement file, while
ABORT terminates procedure processing
and returns control to the user.

ROUT provides a capability to direct
text from the body of a procedure to a
designated file.

INCLUDE can insert into the body of the
procedure, the text of any other
designated file.

The MSG command can send messages to
any des,ignated file. The ACCEPT
command can read lines from any
designated file. These two commands
are most useful for making interactive
procedures which may talk to the user.
DAYFMSG allows messages to be written
to the job dayfile during procedure
processing.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES.Procedure Writer's Guide

6-2

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.1 IF - ORIF - ELSE - !FEND CONDITIONAL PROCESSING
--
6.1 IF - ORIF - ELSE - !FEND CONDITIONAL PROCESSING

The SES processor provides a method whereby a block of statements
can be processed conditionally. The general form of the complete IF
gang is laid out below.

\ IF some condition THEN II One of these II

blah
blah

\ ORIF another condition THEN II There may be zero to II

mumble
mumble

\ ORIF yet another condition THEN II many ORIF statements II

rhubarb
rhubarb

\ ELSE II zero or one of these II

yakk
yakkity yakk yakk

\ I FEND II Terminates the lot II

To illustrate the use of IF, we'll look at the last few lines of
the TIME procedure that was shown previously. Remember that we had
the variables "sector", "sectnam" and "hours" set up. The small
piece of conditionat code in TIME is so that the time always comes
out in the form of SOMETHING TO/PAST SOMETIME, except when it is the
hour itself, in which case SOMETIME O'CLOCK will be output. The
piece of code that does this is:

\ IF sector = 0 THEN
\ lastwrd = &hours& ++ §nam&
\ ELSE
\ lastwrd = §nam& ++ &hours&
\ !FEND

* &lastwrd&

As you can see from the code, the two halves of the time string
are arranged in a different order depending whether it's the hour or
not.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-3

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.2 WHILE - WHILEND REPETITIVE CODE PROCESSING
--
6.2 WHILE - WHILEND REPETITIVE CODE PROCESSING

The WHILE command allows a section of code to be processed over
and over as long as a condition is true. The general form of the
WHILE command is:

\ WHILE condition is true DO
bunches of

procedure statements
\ WHILEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES. Procedure Writer's Guide

6-4

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.3 CONTROL STATEMENTS
--
6.3 CONTROL STATEMENTS

This section describes directives in addition to IF and WHILE
that control which statements will be processed by SES. These
directives are: STOP, ABORT, EXIT, and CYCLE.

6.3.1 STOP - STOP PROCEDURE PROCESSING

The STOP directive is used to prematurely terminate processing of
the procedure. Its effect is equivalent to surrounding the part of
the procedure that ·followed it with an IF/IFEND for which the
condition is FALSE. The general form of the STOP directive is:

\ STOP [string_expression J

where string expression specifies an optional. message to be sent to
the dayfi le.-

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-5

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.3.2 ABORT - ABORT PROCEDURE PROCESSING
--
6.3.2 ABORT - ABORT PROCEDURE PROCESSING

The ABORT directive is similar to the STOP directive with the
exception that the SES program will abort instead of executing the
generated procedure. It can be used, for instance, when parameters
to a procedure were not specified correctly. The general form of
the ABORT directive is:

\ ABORT [string_expression]

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-6

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.3.3 EXIT - EXIT STRUCTURE
--
6.3.3 EXIT - EXIT STRUCTURE

The EXIT directive is used to conditionally or unconditionally
exit from the "immediately containing structure". This "structure"
may be an IF "statement", WHILE "statement", or INCLUDEd procedure
"segment". If the EXIT directive is not contained within any of
these "structures", it acts like a conditional or unconditional STOP
directive. The general form of the EXIT directive is:

\ EXIT C WHEN boolean_expression]

The exit is taken if the WHEN boolean expression is omitted or if
it is given and evaluates to TRUE. For example, the following are
equivalent:

\ IF cond1 THEN \ IF cond1 THEN
stuf and junk 1 stuf and junk 1

\ EXIT WHEN cond2 \ IF NOT cond2 THEN
stuf and junk 2 stuf and junk 2

\ I FEND
\ I FEND \ I FEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-7

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.3.4 CYCLE - NEXT ITERATION OF WHILE
--
6.3.4 CYCLE - NEXT ITERATION OF WHILE

The CYCLE directive can be used to proceed to the next iteration
of the innermost WHILE "statement" that contains the CYCLE directive
either conditionally or unconditionally. The general form of the
CYCLE directive is:

\ CYCLE [WHEN boolean_expression J

The cycle is taken if the WHEN boolean expression is omitted or
if it is given and evaluates to TRUE. For -example, the following
a re equivalent:

\ WHILE cond1 DO \ WHILE cond1 DO
stuf and junk 1 stuf and junk 1

\ CYCLE WHEN cond2 \ IF NOT cond2 THEN
stuf and junk 2 stuf and junk 2

\ IFEND
\ WHILEND \ WHILEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-8

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE

6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE

ROUT provides the ability to divert text from within the body of
an SES procedure to a specified fi.le. The form of the ROUT command
is:

\ ROUT [FA=J file name
text

to
be

routed to another file
\ ROUTEND [NOEOR=J [file_nameJ

All the text within the ROUT - ROUTEND bracket is sent to the
named file, with the proviso that any directive lines within the
block are proce'Ssed as they are encountered.

"file name" is the file to which the text is to be routed. The
optional FA keyword on the ROUT command specifies that the text is
to be output in Full ASCII, that is, blank lines are output and
lower case letters are not folded to upper case. If the FA
parameter is not coded, then the output text has lower case letters
folded to upper case, and blank lines are discarded on output.

When the ROUTEND command is encountered, SES normally writes an
end of record on the file at that point. If the optional NOEOR
parameter is coded on the ROUTEND, then the end of record is not
written. This provides a useful facility to ROUT many sections of
text to the same file in a disjointed fashion.

The "file name" on the ROUTEND is optional. Its use is
encouraged, since it makes the procedure easier to read, however, if
the name on the ROUTEND doesn't match the name of the file at the
top of the output control stack, then the ROUTEND directive is
ignored.

It is possible to nest ROUT - ROUTEND blocks within other ROUT -
ROUTEND blocks, as long as the inner ROUT's don't reference the same
filename as the other ROUT's. If a ROUT directive does try to
refe~ence a file which is already being ROUT'ed to, then that ROUT
directive is ignored.

ROUTing is particularly useful for creating a
procedure, which is to be submitted as a batch job.

file, within a
For example:

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-9

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE
--
\ jobfile = UNIQUECNAME)
SSUBMITC&jobfile&,B)
SRETURNC&jobfile&>
* JOB &procnam& SUBMITTED

·\ ROUT jobfile
&user&,T2000. *** &procnam& ***
SUSERC&user&,&passwor&>
SCHARGEC&charge&,&project&>

job
control

statements
\ ROUTEND jobfile

could be used by a procedure to SUBMIT a batch job.

As a convention, procedures that ROUT stuff to files have the
ROUT'ed text blocks at the end of the procedure. This makes the
main body of the procedure easier to read, without it being
cluttered up with all the ROUT'ed material.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-10

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE
--
6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE

INCLUDE allows you to read text from a file other than the body
of the current procedure file. The effect is as if the INCLUDE'd
file was physically inserted in the procedure file body at the point
of the INCLUDE command. The most primitive form of INCLUDE is:

\ INCLUDE F=f;le_name [,UN=user_name]

"file name" is the name of the file to be INCLUDE'd, and the
(optional> "user name" specifies the catalog where the file is to be
found. If the- file is already local to the running job, then the
local copy of the file is used.

The general, and probably more useful form of INCLUDE looks like
this:

\ INCLUDE F=file_name, L=local_lib, LPFN=library_name, UN=user

In this format, "file name" is still the name of the file to be
INCLUDE'd, but now it refers to a procedure record in a PLIB library
of name "library name" in the catalog of the user given by "user".
"local lib" is the-name of the LFN or Local File Name by which the
library is known when SES ACQUIRE's the library. It is always,
always, but always good practice to use a local file name for the
library because INCLUDE's may be nested within INCLUDE's, and as
long as the local file names are different, NOS is quite happy to
let you read from different positions of the same file.

To illustrate how INCLUDE works, we'll show a section from the
SES REPMOD procedure. This same INCLUDE file i.s used by all SES
procedures which update libraries.

\ rewriti = '&intbase&'
\ rewrito = 'nb&'
\ INCLUDE 'REWRITE', L=UNIQUECNAME), LPFN=SESLNAM, UN=SESUNAM

The procedure section shown above sets the input and output file
names for REWRITE C"rewriti" and "rewrito"), and then INCLUDE's the
REWRITE procedure. In actual fact, REWRITE is a stand alone
procedure in its own right, and it is possible to simply use REWRITE
as a standard SES procedure, such as.

SES.REWRITE I=&intbase&, O=&nb&

Why didn't we do it that way? Well the main reason is that the
complete REPMOD procedure run (from procedure call to finishing the
job) goes faster by INCLUD'ing the REWRITE procedure. If we'd

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-11

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE
--
written SES.REWRITE, then during the processing of REPMOD, we'dve
hit the procedure call, searched the procedure libraries, cracked
the control statement, etc, etc. The whole thing goes a lot faster
for INCLUD'ing the inner procedure.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-12

13 DEC 83
REV: 1

---~-------------~--
6.0 SES DIRECTIVES
6.6 USER INTERFACE DIRECTIVES
--
6.6 USER INTERFACE DIRECTIVES

The directives in this group can be used to "talk" to the user of
a procedure and to let the user "talk" back. The directives are:
DAYFMSG, MSG, and ACCEPT.

6.6.1 DAYFMSG - SEND MESSAGE TO DAYFILE

This
dayfile.

directive can be used to place a message in the user's
The general form of the DAYFMSG directive is:

\ ·oAYFMSG string_expression

where string_expression defines the message to be sent.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-13

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.6.2 MSG ~ WRITE MESSAGE TO FILE
--
6.6.2 MSG - WRITE MESSAGE TO FILE

This directive is used to write messages to a specified file.
Its general form is:

\ MSG M=string_expression [TO=file_name J

where string express;on defines the message to be written and
file_name specifies the name of the file to receive the message.

The default for file name is OUTPUT. Note: that if file name is
omitted and file OUTPUT is not assigned~a terminal, the message
is not written.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES.Procedure Writer's Guide

6-14

13 DEC 83
REV: 1

--
6.0 SES DIRECT.IVES
6.6.3 ACCEPT - READ 1 LINE FROM A FILE
--
6.6.3 ACCEPT - READ 1 LINE FROM A FILE

The ACCEPT directive reads 1 line from a specified file into a
specified variable, optionally preceeding the read request with a
prompting.message to another file. The general form of the ACCEPT
directive is:

\ ACCEPT INTO=var_name [FROM=infile] [PROMPT=mesg] [TO=outfilel

where var name is the name of the variable which will receive the
line from file infile. The PROMPT and TO parameters are equivalent
to the Mand TO parameters, respectively, of the MSG directive Csee
above>. The default for infile is INPUT.

Note: all parameters on directives are expressions; therefore it
is --str'ongly recommended that parameters which are to be names, be
given as strings. For example:

\ ACCEPT INTO='var1' PROMPT=msg1

is generally much safer than:

\ ACCEPT INTO=var1 PROMPT=msg1

since in the second case, if var1 already has a value, that value
will be used for the INTO parameter.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

6-15

13 DEC 83
REV: 1

--
6.0 SES DIRECTIVES
6.7 SETRFL - PROCEDURE FIELD LENGTH CONTROL
--
6.7 SETRFL - PROCEDURE FIELD LENGTH CONTROL

When a procedure is running, it is always good pratice to keep
central memory field length to a minimum. This helps to provide
better response time for all users (including you!), by· reducing
swap time. However, it is also a nice touch to restore the user's
field length at procedure end to what it was when the procedure was
called. The SETRFL directive provides the ability to do this. The
format of the SETRFL directive is:

\ SETRFL min[•• max]

the action of SETRFL is best explained in this set of SES code.

\ IF FL < min OR FL > max THEN
SR FL <&min&>
\ RFLLINE = 'SRFLC&FL&)'
\ ELSE
\ RFLLINE = I I

\ IFEND

in other words, if the current user's field length, given by the
predefined variable FL is outside the limits specified by "min" and
"max", then we generate a control statement to the control statement
file to RFL to "min", and we then set the predefined variable
"RFLLINE" to the control statement neede,d to restore the user's .
field length. Typically, we would then place an &RFLLINE& line at
the end of the procedure. The "max" part of the SETRFL directive is
optional, and if omitted, is the same as "min". In that case, the
SRFL statement is generated if the current FL is. unequal to that
specified by "min".

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-1

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING

--
7.0 PARAMETER DEFINITION AND PROCESSING

Now at last we come to the real purpose of SES, that is, reading
parameters from the SES control statement and substituting them into
the CCL statement file.

The topics discussed in this section should now be fairly
straightforward. They are basically concerned with parameter
definition via the PARM-PARMEND directives, and the various
facilities for accessing parameter attributes and values.

60460270 01

7-2
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1
--
7.0 PARAMETER DEFINITION AND PROCESSING
7.1 PARM - PARMEND DEFINING PARAMETER LISTS
--
7.1 PARM - PARMEND DEFINING PARAMETER LISTS

When we discussed the general layout of a procedure in the
section on basic SES processing, we saw that a procedure may have
zero to many PARM directives,.terminated with a PARMEND directive.

PARM stands for PARaMeter, and it is the basic SES directive
which defines what a procedure parameter may look like. PARM allows
you to define the following things about a parameter.

KEY

o The keyword or keywords used to define that parameter.

o number of values which that parameter may be given when it is
coded.

o whether the parameter is required to be specified in the
procedure call line.

o the allowed type of the parameter.

The general form of the PARM directive is:

\ PARM KEY=keywords, [NVALS=xxl, [type] [REQ] [RNG]

identifies the keyword or
specify this parameter when
statement.

keywords
c,oding

that may be used to
it on the control

NVALS specifies the minimum and maximum Number of VALueS that may
be coded for this parameter. Default is .1 Cone).

type

NAM

identifies the allowed type of the parameter.
be- coded as one of the following:

"type" may

specifies that the parameter must be a NAMe.
a one to seven character alphanumeric string
with a letter.

That is,
starting

NUM specifies that the parameter must be a NUMber, that
is, a pure numeric string, with an optional base.

STR specifies that the parameter must be a STRing.

FGN designates that the parameter may be a ForeiGN text
parameter. This type of parameter has the format of
an expression Cor parameter specification) but it is
!!21 evaluated when encountered, rather it is "passed

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES.Procedure Writer's Guide

7-3

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.1 PARM - PARMEND DEFINING PARAMETER LISTS
--

on" essentially unmodified. Foreign text parameters
are normally only used when value sub-lists are
required for a parameter, and it then becomes the
responsibility of the procedure to check the validity
of the parameter. Details of the format (and
restrictions> of foreign text values can be found in
the subsection "Foreign Text" in the appendix on
syntax.

REQ is a keyword that specifies that the parameter is REQuired
to be stated when calling the procedure.

RNG states that the parameter may be coded as a RaNGe. That
is, the parameter may be coded in the form of x •• y, for
example cols=2 •• 75

The basis of all this definition is that SES ·checks the
parameters given on the control statement to see if they are
actually as you said they should be. If they are not, then SES
outputs an error message at the time of processing the procedure,
saving a massive amount of playing about in the body of the
procedure itself.

Note that on an SES procedure call, a value can be omitted from a
parameter's value list only if that parameter was not declared with
an explicit !l2!. specifier on its PARM directive.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-4

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.2 PARAMETER ATTRIBUTE TESTING
--
7.2 PARAMETER ATTRIBUTE TESTING

SES provides a number of functions to test the attributes of
parameters as defined in the PARM directives. A short summary of
the functions is provided below, and more detailed explanations
fol low.

In the discussions that follow, we use the convention that
"parameter_name" n:teans .!!!l. of the keywords used to specify a
particular parameter, and "keyword name" to mean a specific keyword
out of the set of possible keywords-for a parameter. For example,
if we'd coded the following PARM directive:

\ PARM KEY= C'i', 'f', 'input', 'file') etc.

then "parameter name" means 'i' or 'f' or 'input' or 'file', whereas
"keyword_name" means only one of those, say 'input'.

Function Explanation

DEFPCparameter_name) returns a true value if the parameter
specified by "parameter name" was actually
coded on the control statement.

DEFKCkeyword_name) returns a true value if the keyword
specified by "keyword name" was actually
coded on the con~rol statement.

KEYVALCparameter_name) returns the keyword that was actually used
to define the parameter specified by
"parameter_name".

VCNTCparameter_name) returns the number of values actually coded
for the parameter specified by
"parameter name". VCNT is described in
detail in- the subsection on "Accessing
Parameter Values".

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7.0 PARAMETER DEFINITION AND PROCESSING
7.2.1 DEFP - TEST FOR THE PRESENCE OF A PARAMETER

7.2.1 DEFP - TEST FOR THE PRESENCE OF A PARAMETER

7-5

13 DEC 83
REV: 1

The DEFP function allows you to test if a parameter was actually
defined. DEFP stands for DEFined Parameter. The general form of
DEFP is:

DEFPCparameter_name)

where "parameter name" is any of the keywords for the parameter in
question. For example, there are many of the SES library procedures
Cor filters>, that take one input file and produce one output file.
These procedures are geared up so that if you only specify one
filename, then when the procedure is finished it will write the
output file over the input file. The piece of SES procedure code
that would achieve this is:

\ IF NOT DEFP(o) THEN
\ 0 = '&i&'
\ IFEND

Later on in the procedure, we would use the fact that the 'i' and
'o' parameters are either equal to each other or not.

Note that if "parameter name" is not the name of a parameter to
the procedure, this function-will return FALSE as its value.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-6

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.2.2 DEFK - TEST FOR PRESENCE OF SPECIFIC KEYWORD
--~---------

7.2.2 DEFK - TEST FOR PRESENCE OF SPECIFIC KEYWORD

The nEFK function stands for DEFined Keyword, and its function in
life is to test whether, when a parameter was coded, a specific
keyword was used to define that parameter. The general form of DEFK
is:

DEFK(keyword_name)

where "keyword name" is the keyword for which we want to test. To
illustrate the use of DEFK, we'll show a short extract from the
FORMAT procedure. Most of the SES system library procedures which
can run as batch jobs contain this particular section of code. The
idea of the bit of code is to dump a dayfile to the user's catalog
if there were any errors in the job. The dayfile parameter is
defined via the following PARM directive.

\ PARM KEY=C'nodayf','dayfile','df') NVALS=0 •• 1 NAM

the 'nodayf' keyword specifies that no dayfile is required at all,
i n any event •

In the FORMAT job, the following piece of SES code may be found
to process the parameter.

\ IF NOT DEFK(nodayf) THEN
EXIT.
SDAYFILEC&dayfile&)
SREPLACEC&dayfile&)
\ IFEND

To explain how this works, if the user coded nodayf as an option
on the procedure call, then the test at the IF statement would fail,
and none of the statements between the IF and the IFEND would be
processed or output to the control statement file. However if the
user coded df=some file, or dayfile=some file, or omitted the
parameter altogether, then the test would succeed, and the EXIT,
SDAYFILE and SREPLACE control statements would be processed to refer
to whatever "some file" happened to be, or would refer to "DAYFILE"
if the parameter had not been coded.

Note that if "keyword name" is not the name of a keyword to the
procedure, this function will return FALSE ·as its va Lue.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-7

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.2.3 KEYVAL - ACCESS ACTUAL KEYWORD OF PARAMETER
--
7.2.3 KEYVAL - ACCESS ACTUAL KEYWORD OF PARAMETER

KEYVAL stands for KEYword VALue, and its function is to let you
know which keyword was actually used when specifying a parameter.
The general form of KEYVAL is:

KEYVALCparameter_name)

where "parameter_name" is~ of the keywords that can be used to
specify the particular parameter that you are interested in. The
KEYVAL function returns as a string, the keyword that was actually
used when the parameter was coded.

If no keyword was used to define the parameter, that is, the
parameter was specified positionally, then KEYVAL returns the null
string.

Note that if "parameter name" is not the name of a parameter to
the procedure, then this function returns the null string as its
value.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-8

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.3 ACCESSING PARAMETER VALUES
--
7.3 ACCESSING PARAMETER VALUES

There are essentially two ways of getting at the value of a
parameter: by substitution, and by using one of the functions
described in the following subsections.

It is not possible to directly reference a parameter value in an
expression, rather, one of the methods described above must be
used. This is to allow a keyword for a procedure to have the same
name as, for instance, one of the predefined variables, and yet
within the procedure, to access both the parameter and the
variable.

The substitution mechanism of SES always first checks for the
name as being the name of a parameter, and only if this check fails
does it look for a variable to substitute. This priority is also
followed when assignment takes place, either explicitly 1 via the
assignment statement, or implictly via functions such ~s TOKEN and
VALEXPR, discussed previously.

Substituting a parameter can be represented by the following SES
code:

\ dummy = VALS(param, 1, LOV)
----------- &dummy& --------

where "dummy" is some temporary variable. In other words,
Value, of value 1 for parameter "param" is substituted.
actually code such a substitution as:

----------- &pa ram& --------

the LOW
You would

The functions described in the following subsections may also be
applied to variables with string values Cin addition to
parameters). When used for this purpose the string value must be in
the format of a value list (see the Appendix on Syntax for a
detailed description of the format of a value list). In particular,
the interpretation of the string is that it contains a value list
for a "parameter" defined by:

\ PARM NVALS=O •• maxvals, FGN, RNG

The descriptions of the functions: VCNT, VALS, and GENLIST which
follow only discuss their use with parameters in order to keep the
description as simple as possible, however, the first argument to
all these functions may also be the name of a variable whose value
has the properties discussed above.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-9

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.1 VCNT - NUMBER OF VALUES OF A PARAMETER
--
7.3.1 VCNT - NUMBER OF VALUES OF A PARAMETER

VCNT stands for Value CouNT, and its function is to determine the
number of values coded for a parameter. The form of VCNT is:

VCNTCparameter..;..name)

where "parameter name" is the name of the parameter for which you
want the value count.

For example, the SES WIPEMEM procedure has one of its parameters
defined via the following PARM directive:

\ PARM KEY= 'text' NVALS = 1 •• maxvals NAM

so that it's possible for the user to code a call on WIPEMEM which
looks something like this:

SES.WIPEMEM text=Cglug,grog,berk,clag)

so that within the WIPEMEM procedure, the assignment statement

\ memcoun = VCNT (text)

would set the variable "memcoun" to 4 in this case. The way that
this is actually used is in a WHILE loop, something along the lines
of:

\ index = 1
\ WHILE index <= VCNT (text) DO

blah
blah

blah
\ index = index + 1
\ WHILEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-10

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.2 VALS - EXTRACT PARAMETER VALUE FROM A VALUE LIST
--
7.3.2 VALS - EXTRACT PARAMETER VALUE FROM A VALUE LIST

VALS is probably about the most useful function available to the
writer of SES procedures. VALS stands for VALueS, and its function
is to extract a value from a list of values which may be coded for a
specific parameter. The general form of the VALS function is:

VALSCparameter_name, index, LOV/HIV)

where "parameter name" is the parameter for which the value is to be
extracted. "index" is an integer expression which determines which
value out of the value list is to be extracted. The last parameter
is LOV which stands for LOw Value, or HIV which stands for High
Value. This indicates whether the low or the high side of a range
is to be extracted. As an example, the COLS parameter of the
COPYACR procedure can· be coded as

COLS=xx •• yy

where "xx" is the low side of the range and "yy" is the high side of
the range. The appropriate VALS functions is something like the
following:

\ loside = VALSCcols, 1, LOV)

\ hiside = VALSCCOLS, 1, HIV)

If the LOV or HIV parameter is omitted, then VALS takes the LOV
as default. If the "index" parameter is omitted, then VALS uses 1 I
as default. So·for instance the VALS function:

VALS Cparam~ter_name)

is equivalent to the VALS function:

VALS Cparameter_name, 1, LOV)

If the "index" parameter is given as less than or equal to zero,
or greater than the maximum values allowed for any parameter CSO)
the error message VALUE OUT OF RANGE is given; or if "index" is
greater than the actual number of values coded for the parameter,
the function returns an "undefined" value.

If HIV was specified on the call to VALS but the value was not
coded as a range Cor was not allowed to have a range) th~
corresponding LOw Value is returned.

60460270 01

7-11
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1
--
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST
--
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST

The GENLIST function, for GENerate LIST, allows you to build up a
string from a parameter list supplied to the SES procedure. The
general form of GENLIST is:

GENLISTCparm_name, coun, line_lim, max_coun, range_sep, value_sep)

This looks complicated but since most of the arguments can be
omitted, it's actually a lot simpler than it looks. The meaning of
the various parameters of GENLIST are:

parm_name

coun

line l i m

max coun

range_sep

value_sep

is the name of the parameter that you want to access.

is an index which indicates at which value in the list
you want to start accessing. If "coun" is undefined
when GENLIST is invoked, then GENLIST defines it for
you, and initializes it to one C1). When·GENLIST has
processed the list, "coun" will be set to one greater
than the last value processed in the list. If "coun"
has a value Cwhen GENLIST is invoked) which is less
than one or greater than "max coun", the er.ror message
VALUE OUT OF RANGE is given. -

is the maximum number of characters you want to go in
the generated list. The default is 80.

is the highest index that GENLIST is to process up
to. The default is the actual number of values coded
for the parameter. 1

is the character used to separate the low side and
high side of a range value. If "range sep" is
omitted, it defaults to the SES range separator C •• >

is the character used to separate values in the list.
If "value_sep" is omitted, it defaults to comma C,>

To illustrate how GENLIST works, we'll look at a section of the
SES WIPEMEM procedure. One of WIPEMEM's parameters is defined as
fol lows.

\ PARM KEY = 'text' NVALS = 1 •• maxvals NAM RNG

The WIPEMEM procedure invokes LIBEDIT to actually delete the
member records from the library. It is possible to give LIBEDIT a
directive of the form.

60460270 01

7-12
CDC - SOFTWARE ENGINEERING SERVICES

SES .Procedure Writer's Guide
13 DEC 83

REV: 1
--
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST
--

*DELETE TEXT/GRAB,HOLD,HERE-THERE,JUNK-YUKK etc etc

Such a deletion could be coded on the SES control statement in the
following manner:

SES.WIPEMEM L=MYLIB TEXT=CGRAB,HOLD,HERE •• THERE,JUNK •• YUKK)

The following section of code is taken from the WIPEMEM
procedure, showing how GENLIST is used to generate the LIBEDIT
directives.

\ memtyps = 'CTEXT,OPLC,OPL,REL,OVL,ABS,PPU,PP,COS)'
\ dirfile =UNIQUE CNAME)

II 1 II

II 2 II

\ ROUT di rf ile " 3 "
\ typcoun = 1 " 4 "
\ WHILE typcoun <= 9 DO " 5 "
\ memtype = VALS Cmemtyps, typcoun, LOV) " 6 "
\ IF DE FP C&memtype&) THEN " 7 "
\ memc oun = 1 " 8 "
\ WHILE memcoun <= VCNT C&memtype&> DO " 9 "
\ comd = GENLISTC&memtype&,memcoun,64,VCNTC&memtype&>,'-')
•DELETE,&memtype&/&comd& " 11 "
\ WHILEND " 12 "
\ IFEND " 13 "
\ typcoun = typcoun + 1 " 14 "
\ WHILEND " 15 t1

\ ROUTE ND di rf i le t1 16 t1

line 1

line 2

line 3

line S'

line 6

line 7

defines the list .of parameters for which LIBEDIT
directives may be generated.

defines the name of the file to receive the directives.

initiates the directives file.

starts a loop which cycles through all of the directive
generating parameters defined on line 1.

sets the variable tlmemtypetl to the name of the next
parameter for which directives may be generated.

checks whether the current parameter was specified when
the procedure was called.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-13

13 DEC 83
REV: 1

--~-------
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST
--

line 9 starts a loop which cycles through all values supplied
for the current parameter when the procedure was
called.

line 10 uses the GENLIST function to extract member names from
the value list of the current parameter, and format them
into a LIBEDIT directive.

line 11 causes the directive to be written to the directives
file.

The remaining lines handle the cycling of the loops and the
finishing off of the directives file.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-14

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.4 DEFINING PARAMETER DEFAULTS

7.4 DEFINING PARAMETER DEFAULTS

In this section we will describe some of the methods for defining
default values for parameters (and keywords>. The simplest way of
setting a default for a single valued NAM parameter is to declare
the default as one of the keywords for the parameter; then use that
keyword throughout the procedure to ref~r to that parameter. For
example, the SES REPMEM procedure contains:

\ PARM KEY=C'g', 'group'), NVALS=1, NAM

which defines the parameter for the 'group' (of members> file. All
through the procedure, this parameter is referred to via the 'group'
keyword, thus if the parameter is not specified on the call REPMEM,
GROUP will be substituted anywhere &group& appears.

When this method is not appropriate, one of the functions
described in the following subsections could be useful. The purpose
of these functions is to determine if a parameter was given a value
CSETVAL) or if a keyword was used to specify the parameter
CSETKEY). If this condition is true, then the SETVAL function is
treated like the VALS function, and SETKEY is treated like KEYVAL.
If the condition is false, the remaining processing done by both
functions is the same. If the specified variable is defined
(usually in the user's PROFILE) then its value is returned by the
function, otherwise the specified default value is returned.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES ·Procedure Writer's Guide

7-15

13 DEC 83
REV: 1

--
7.0 PARAMETER DEFINITION AND PROCESSING
7.4.1 SETVAL - SET DEFAULT VALUE
--
7.4.1 SETVAL - SET DEFAULT VALUE

The purpose of this function is to return a value for a
parameter, much like the VALS function described earlier, in fact
this function's last three parameters are treated just like the
three parameters for the VALS function. The general form of the
SETVAL function is:

SETVALCdefault_value,var_name,parameter_name,index,LOV/HIV)

where "index" and "LOV/HIV" are the parameter value indices and are
handled in the same manner as in the VALS function, "parameter name"
is~ of the keywords for the parameter you are interested in,
"var name" is a variable name, and "default value" is an
expression.

The processing of the SETVAL function can best be explained in
terms of the following pseudo SES code:

\ IF STRCVALSCparameter name, index, LOV/HIV)) THEN
\ SETVAL = VALSCparameter name, index, LOV/HIV)
\ ORIF DEFCvar name) THEN -
\ SETVAL = var name
\ ELSE
\ SETVAL = default value
\ IFEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

7-16

13 DEC 83
REV: 1

--7.0 PARAMETER DEFINITION AND PROCESSING
7.4.2 SETKEY - SET DEFAULT KEYWORD
---~--
7.4.2 SETKEY - SET DEFAULT KEYWORD

The purpose of this function is to establish a value for the
keyword of a parameter. The general form of the SETKEY function is:

SETKEYCdefault_value,var_name,parameter_name)

where "parameter_name" is .!!:!l. of the keywords for the parameter you
are interested in, "var name" is a variable name, and
"default value" is an expression. The processing done by the SETKEY
function-can best be described by the following pseudo SES code:

\ IF KEYVALCparameter name) /= 11 THEN
\ SETKEY = KEYVAL(parameter name)
\ ORIF DEFCvar name) THEN -
\ SETKEY = var name
\ ELSE
\ SETKEY = default value
\ IFEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

8.0 FILE SYSTEM DIRECTIVES

8.0 FILE SYSTEM DIRECTIVES

SES provides directives which allow you to issue
commands directly from the body of an SES procedure.
fall into the groups of

8-1

13 DEC 83
REV: 1

file system
The commands

o File attribute testing similar to the NOS FILE function.

o Rewinding and Returning Files

o ACQUIRE and EXTRACT directives similar in
ACQUIRE and EXTRACT control statements
described in appendices to this document).

function to the
Cthe latter are

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES ~rocedure Writer's Guide

8-2

13 DEC 83
REV: 1

--
8.0 FILE SYSTEM DIRECTIVES
8.1 FILE - TESTING FILE ATTRIBUTES
--
8.1 FILE - TESTING FILE ATTRIBUTES

SES implements the NOS FILE function which allows you to ask
various questions about files. The tests that may be performed are
described in the NOS reference manuals. The general form of the
FILE function is:

FILE Cfile_name, expression>'

where "file name" is the name of the file to be tested, and
"expression"-is the test to be performed.

Don't Jorget that the FILE function implemented by SES tests the
file attributes at the time the procedure body is being processed,
and not when the generated control statements are actually being
executed. r

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

8.0 FILE SYSTEM DIRECTIVES
8.2 REWIND FILES

8-3

13 DEC 83
REV: 1

--
8.2 REWIND FILES

SES allows files to be rewound during SES processing. The format
is:

REWIND F=list of file names - - -
where list of file names is the nameCs> of the fileCs> to be
rewound.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES· Procedure Writer's Guide
j

8-4

13 DEC 83
REV: 1

------------------------------·-------------------------------------
8.0 FILE SYSTEM DIRECTIVES
8.3 RETURN FILES
---~---~----------

8 .3 RETURN FI LES

Files may also be returned during SES processing. The format is
similar to the Rewind directive:

RETURN F=l i st_of file names

where list of file names is the nameCs> of the file(s) to be
returned. - -

60460270. 01

CDC - SOFTWARE ENGINEERING SERVICES

SES.Procedure Writer's Guide

8-5

13 DEC 83
REV: 1

--
8.0 FILE SYSTEM DIRECTIVES
8.4 ACQUIRE DIRECTIVE
--
8.4 ACQUIRE DIRECTIVE

SES supports the ACQUIRE directive from inside the SES
processor. The SES ACQUIRE directive works in the same manner as
the ACQUIRE control statement. The general form of the ACQUIRE
directive is:

ACQUIRE FN/F=local_file_name, PFN=permanent_file_name, UN=user_name

where "local file name" is the local file name when the file is
ACQUIRE'd, "permanent file name" is the permanent file name of the
file in the file system, and "user name" is the name of the user who
owns the file.

A complete description of the ACQUIRE control statement can be
found in an appendix to this document.

60460270 01

8-6
CDC - SOFTWARE ENGINEERING JERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

--
8.0 FILE SYSTEM DIRECTIVES
8.5 EXTRACT DIRECTIVE
--
8.5 EXTRACT DIRECTIVE

SES also supports the EXTRACT directive, which functions at
procedure build time in the same manner as the EXTRACT control
statement functions at procedure run time. The general form of the
EXTRACT directive is:

EXTRACT F=lfn,R=rn,L=l,LPFN=lpfn,U=un,T=type

where the parameters of the EXTRACT directive have the following
meaning.

F or FN

R or RN

L or LIB

specifies the local File Name for the record when
it has been EXTRACT'ed.

specifies the Record Name of the record in the
library.

specifies the Local file name of the LIBrary when
the EXTRACT directive ACQUIRE's the library for
processing.

LPFN or LIBPFN specifies the LIBrary Permanent File Name of the
library in the permanent file system.

U or UN

T or RT

specifies the User NAMe of the file's owner.

specifies the Record Type. The record type may be ·
specified as TXT, TEXT, PP, ULIB, REL, OVL, ABS,
OPL, OPLC, OPLD, PPU. If this parameter is omitted
from the directive, then only the. record name is
used when searching the library, and the first
record of that name is EXTRACT'ed.

A complete description of the EXTRACT control statement can be
found in an appendix to this document~

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES .Procedure Writer's Guide

9-1'

13 DEC 83
REV: 1

--
9.0 PREDEFINED VARIABLES

--
9.0 PREDEFINED VARIABLES

When SES is called it sets up a number of variables which are
available for use by the procedure writer to control the flow of
procedures. Most of these predefined variables are a record of the
user's environment at the time that SES was called.

9.1 SES SYSTEM DEFAULT VARIABLES

MAXVALS defines the MAXimum number of VALueS that may be coded for
a parameter. It is set to 255.

LINELEN defines the maximum LINE LENgth. It is currently set to
80.

SESLNAM defines the default name for the SES Library NAMe. It is
- currently set to SESPLIB.

SESUNAM defines the default name for th~ SES User NAMe.

PRCLNAM defines the name of the file (library) from which the
current procedure is being read.

PRCUNAM defines the user name for the owner of the file (library)
from which the current procedure is being read. If the
c~rrent procedure is being read from~ local file, then
this variable is set to the name of the current user.

HLPLNAM defines the default name for the SES HeLP Library NAMe.
This library contains help documentation for standard SES
procedures. It is set to SESHLIB.

HLPUNAM defines the user name for the owner of the help library.
It is currently set to SES.

STALNAM defines the default name for the SES STAtus Library NAMe.
This library contains status information for the standard
SES procedures. It is set to SESSLIB.

STAUNAM defines the default name for the owner of the status

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

9-2

13 DEC 83
REV: 1

--
9.0 PREDEFINED VARIABLES
9.1 SES SYSTEM DEFAULT VARIABLES
-------------~-----~--

library. It is currently set to SES·.

PROCNAM contains the name of the procedure which is currently being
processed.

PRIMOUT contains the name of the current PRIMary OUTput file.

USER contains the user name of the currently logged in user.

JOBNAME defines the name of the currently running job.

CSET contains the current character set of the user terminal.
CSET may be either ASCII .(1) or NORMAL CO). In batch mode,
CSET contains NORMAL.

MODE defines the current mode of the procedure(s) being
processed. MODE contains one of RUN, meaning that the
procedure is being processed for execution ih the control
statement file, TEST, meaning that the procedure is being
run in test mode, HELP, which means that the user wants
help with the procedure, or STATUS, which means that the
user wants the current status of the procedure.

SES PROC ERROR defines a numeric value that can be used to set the
-EF indicating an error was detected by the procedure, not
the operating system. It is currently set to 60.

9.2 USER ENVIRONMENT VARIABLES

When ~he user makes an SES-call, SES records information about
the users environment at call time, so that a procedure writer may,
if so desired, restore the user's environment at the end of the
procedure. The data that is recorded is:

R1 thru R3 job control registers.

R1G global job control register.

EF error flag

EFG global error flag

SW1-SW6 sense switches 1 to 6.

FL field length at procedure call time.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

9.0 PREDEFINED VARIABLES
9.2 USER ENVIRONMENT VARIABLES

9-3

13 DEC 83
REV: 1

RFLLINE until otherwise changed <see the SETRFL directive>,
RFLLINE contains the character string 'SRFLC&FL&>',
where FL is as defined above.

ABL account block limit.

JSL job step limit

OT origin type.

SS sub system

TL time limit.

Note, that because of the large number of built-in functions and
pre-defined variables· available to the SES procedure writer, there
could be some confusion on the part of the procedure user when
he/she chooses a name (for a file, etc.) which conflicts with one
of the "built-ins". To avoid such confusion, SES will recognize
only the names: TRUE, FALSE, YES, and NO when it scans the
parameters on the control statement which calls a procedure.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

A1-1

13 DEC 83
REV: 1

--
A1.0 USEFUL PROCEDURE SEGMENTS

--
A1.0 USEFUL PROCEDURE SEGMENTS

This appendix contains descriptions of some procedure segments
that could be useful when writing SES procedures. These segments
may be included in a procedure by means of the following directive:

\ INCLUDE 'segname', L=UNIQUECNAME), LPFN=SESLNAM, UN=SESUNAM

where "segname" is the name of the desired procedure segment.

60460270 01

A1-2
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1
--A1.0 USEFUL PROCEDURE SEGMENTS
A1.1 CALPROC - CALL SES PROCEDURE
---~------------------------
A1.1 CALPROC - CALL SES PROCEDURE

This procedure segment allows for easy calling by one procedure
of another, when the calling procedure wishes to pass to the called
procedure, parameters from its own parameter list. The procedure
segment itself gives further details.

CALPROC
" August 31, 1981 "

" \ PARMEND II

\ DIRCHAR = I ! I
IF MODE = HELP THEN

\ INCLUDE 'CALPROCHLP' L=UNIQUECNAME) LPFN=HLPLNAM UN=PRCUNAM
IFEND
DIRCHAR = '\'

II CALPROC COMMON ..

\ cal i ndx = 1
\ WHILE calindx <= VCNTC&calparm&) DO
\ IF C',' /= SUBSTRCcalline, STRLENCcalline))) AND ••

CSUBSTRCcalline, STRLENCcalline)) /= '(') THEN
\ calline = calline ++ ','
\ IF END
\ calline = calline ++ •• ,

GENLISTC&calparm&, calindx, LINELEN-5-STRLENCcalline))
\ EXIT WHEN calindx > VCNTC&calparm&)
\ IF STRLEN C call i ne) <= STRLEN C' 11

•
11

, ') THEN
\ ABORT '&calparm& PARAMETER VALUE TOO LONG'
\ I FEND
&call ine& ••
\ cal (i ne = ' ". 11

'

\ WHILEND
\ caltrlr = SETVALC' ', caltrlr)
\ IF STRLENCcaltrlr) + STRLENC' 11

." ') > LINELEN THEN
\ ABORT '&calparm& TRAILER VALUE TOO LONG'
\ ORIF STRLENCcalline) + STRLENCcaltrlr) > LINELEN THEN
&call ine& ••
"." &caltrlr&

\ caltrlr = ''
\ ELSE
&calline&&caltrlr&
\ caltrlr = 11

\ IFEND

" End of C ALPRO C COMMON "

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES.Procedure Writer's Guide

A1-3

13 DEC 83
REV: 1

--
A1.0 USEFUL PROCEDURE SEGMENTS
A1.2 JOBPARM - DEFINE PARAMETERS FOR BATCH JOBS
--
A1.2 JOBPARM - DEFINE PARAMETERS FOR BATCH JOBS

This procedure segment contains the PARM directives which define
all the "standard" parameters used in procedures which may run as
batch jobs. This procedure should be INCLUDEd in any SES procedure
which will handle batch processing.

JOBPARM
" August 28, 1981 ti

\ IF MODE = HELP THEN
\ INCL~DE 'JOBPARMHLP' L=UNIQUECNAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND

" JOBPARM COMMON t1

\ PARM KEY = 'jobun ': ti user name ti NVALS = 1 STR
\ PARM KEY = 'jobpw' ti password ti NVALS = 1 STR
\ PARM KEY = 'jobfmly' ti family ti NVALS = 1 STR
\ PARM KEY = 'jobcn' " charge number 11 NVALS = 1 STR
\ PARM KEY = 'jobpn' ti project number ti NVALS = 1 STR
\ PARM KEY = 'jobfl' ti field length 11 NVALS = 1 NUM
\ PARM KEY = I jobt l 1 11 ti me l i m.i t 11 NVALS = 1 NUM
\ PARM KEY = 'jobpr' 11 job priority 11 NVALS = 1 NUM
\ PARM KEY = C' local' 'batch' 'batchn' 'defer') NVALS = 0
\ PARM KEY= C'nodayf', 'dayfile', 'df') NVALS = O •• 1 NAM

II \ PARMEND II

" End of JOB PARM COMMON "

60460270 01

A1-4
CDC - SOFTWARE ENGINEERING SERVICES

SES ·Procedure Writer's Guide
13 DEC 83

REV: 1
--
A1.0 USEFUL PROCEDURE SEGMENTS
A1.3 JOBHDR1 - PROCESS JOB PARAMETERS
--
A1.3 JOBHDR1 - PROCESS JOB PARAMETERS

This procedure segment will process the parameters for a batch
job, setting up defaults, etc. Details of its function are
described in the procedure segment itself.

JOBHDR1
" August 28, 1981 "

" \ PARMEND "

\ IF MODE = HELP THEN
\ INCLUDE 'JOBHDR1HLP' L=UNIQUECNAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND

" JOBHDR1 COMMON "

\ jobun = SETVALC'USER', USER, jobun)
\ jobmode = SETKEYC'LOCAL', jobmode, batch)

\ IF jobmode /= 'LOCAL' THEN

\ IF NOT DEFCPASSWOR) AND NOT DEFPCjobpw) THEN
\ IF FILECINPUT NOT TT) OR FILECOUTPUT NOT TT) THEN
\. ABORT 'PASSWORD NOT GIVEN'
\ IFEND
\ PARTIAL PASSWOR = CHARREPC128)++'I ENTER PASSWORD 1

++CHARREPC13)++CHARREPC0) ••
++CHARREPCO)++CHARREPC10)++CHARREPC0)++' HHHHHHHH'

\ PASSWOR = PARTIAL PASSWOR ••
++CHARREPC13)'i"+CHARREPCO)++CHARREPC0)++' IIIIIIII'
++CHARREPC13)++CHARREPCO)++CHARREPC0)++' ########'
++CHARREPC13)++CHARREPC128)++'A'

\ ACCEPT PROMPT PASSWOR TO 'OUTPUT' FROM 'INPUT' INTO 'PASSWOR'
\ IFEND
\ jobpw = SETVALCnotused, PASSWOR, jobpw)

\ IF NOT DEFCCHARGE) AND NOT DEFPCjobcn) THEN
\ IF FILECINPUT NOT TT) OR FILECOUTPUT NOT TT) THEN
\ ABORT ,·CHARGE NUMBER NOT GIVEN'
\ IFEND
\ CHARGE = 1 ENTER CHARGE NUMBER 1 ++ CHARREPC128) ++ 'A'
\ ACCEPT PROMPT CHARGE TO 'OUTPUT' FROM 'INPUT' INTO 'CHARGE'
\ IFEND
\ jobcn = SETVALCnotused, CHARGE, jobcn)

\ IF NOT DEFCPROJECT) AND NOT DEFPCjobpn) THEN
\ IF FILECINPUT NOT TT) OR FILECOUTPUT NOT TT) THEN

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES·Procedure Writer's Guide

A1-5

13 DEC 83
REV: 1

--
A1.0 USEFUL PROCEDURE SEGMENTS
A1.3 JOBHDR1 - PROCESS JOB PARAMETERS
--
\ ABORT 'PROJECT NUMBER NOT GIVEN'
\ IF END
\ PROJECT= ' ENTER PROJECT NUMBER ' ++ CHARREPC128) ++ 'A'
\ ACCEPT PROMPT PROJECT TO 'OUTPUT' FROM 'INPUT' INTO 'PROJECT'
\ IFEND
\ jobpn = SETVALCnotused, PROJECT, jobpn)

\ jobfmly = SETVALC'', FAMILY, jobfmly)

\ IFEND

\ IF DEFPCjobf l) THEN
\ IF VALS(jobf l) < 70000(8) THEN
\ jobf l = 70000(8)
\ I FEND
\ jobf l = ',CM' ++ OCTCVALSCjobf l))
\ ELSE
\ jobf l = I I

\ IF END

\ jobtl = ',T' ++ OCTCSETVALC2000C8), defjbtl, jobtl))

\ IF DEFP(jobpr) THEN
\ jobpr = ',P' ++ VALSCjobpr)
\ ELSE
\ jobpr = "
\ IFEND

\ jobfile = UNIQUECNAME)

" End of JOBHDR1 COMMON "

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

A1-6

13 DEC 83
REV: 1

----------------~---
A1.0 USEFUL PROCEDURE SEGMENTS
A1.4 JOBHDR2 - PROCESS START OF JOB FILE
-------------~--
A1.4 JOBHDR2 - PROCESS START OF JOB FILE

This procedure segment conditionally generates the code necessary
to submit the procedure for batch processing. Details of its
function are described within the procedure segment itself.

JOBHDR2
" August 28, 1981 11

" \ PARMEND "

\ IF MODE = HELP THEN
\ INCLUDE 'JOBHDR2HLP' L=UNIQUECNAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND

.. JOBHDR2 COMMON II

\ IF STRLENCPROCNAM) > 7 THEN
\ PROC JOBNAME = SUBSTRCPROCNAM, 1, 7)
\ ELSE -

_\ PROC JOBNAME = PROCNAM
\ IFEND

\ IF jobmode /= 'LOCAL' THEN
\ IF jobmode = 'BATCHN' THEN
SSUBMITC&jobfile&,N)
\ ELSE
SSUBMITC&jobfile&,B)
\ IFEND
SRETURNC&jobfile&>
REVERT. JOB &PROC JOBNAME& SUBMITTED
\ IF MODE = TEST THEN
&jobfi le&-
\ ELSE
\ ROUT jobfile
\ IF END
&PROC JOBNAME&&jobfl&&jobtl&&jobpr&. *** &PROCNAM& ***
\ IF VALSCjobfmly) ++ VALSCjobpw) = '' THEN
SUSERC&jobun&> -
\ ORIF VALS(jobfmly) = '' THEN
SUSERC&jobun&,&jobpw&)
\ ELSE
SUSERC&jobun&,&jobpw&,&jobfmly&>
\ I FEND
\ IF VALS(jobcn) ++ VALSCjobpn) /= '' THEN
SCHARGEC&jobcn&,&jobpn&)
\ I FEND

60460270 01

A1-7
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC .83

REV: 1
--
A1.0 USEFUL PROCEDURE SEGMENTS
A1.4 JOBHDR2 - PROCESS START OF JOB FILE
--
\ IF jobmode = 'DEFER' THEN
SCHEAP.
\ IF VALS(jobcn) ++ VALSCjobpn) /= '' THEN
SCHARGEC&jobcn&,&jobpn&)
\ IFEND
\ IFEND
&RFLLINE&
SESMODE,NEW.
\ EXIT WHEN FILEC'SES', NOT AS)
SGETCXSES/UN=&SESUNAM&)
SBEGINCXSES,XSES)
\ IFEND

\ IF DEFP(jobf l) THEN
\ jobfl = SUBSTRCVALSCjobfl), 4, STRLENCVALSCjobfl)) - 3)
\ ORIF DEFCdef jbf l) THEN
\ jobf l = OCTCdefjbf l)
\ ELSE
\ jobf l = '70000'
\ IFEND
\ IF NOT DEFCminjbfl) OR minjbfl < 70000(8) THEN
\ minjbf l = 70000(8)
\ IFEND
\ IF minjbfl > &jobf l&C8) THEN
\ jobfl = OCTCminjbfl)
\ IFEND
\ jobtl = SUBSTRCVALS(jobtl), 3, STRLENCVALSCjobtl)) - 2)
\ IF DEFPCjobpr) THEN
\ jobpr = SUBSTRCVALSCjobpr), 3, STRLENCVALSCjobpr)) - 2)
\ IFEND

" End of JOBHDR2 COMMON "

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

A1-8

13 DEC 83
REV: 1

-----------------------·--
A1.0 USEFUL PROCEDURE SEGMENTS
A1.5 MSGCTRL - HANDLE MSG I NOMSG PARAMETER
--
A1.5 MSGCTRL - HANDLE MSG I NOMSG PARAMETER

This procedure segment will process the msg/nomsg keyword
parameter used by many of the "standard" SES procedures. Details of
its f~nction are described in the procedure segment itself.

MSGCTRL
"'' August 31, 1981 "

" \ PARMEND II

\ IF MODE = HELP THEN
\ INCLUDE 'MSGCTRLHLP' L=UNIQUECNAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND

" MSGCTRL COMMON "

\ IF DEFKCnomsg) OR CDEFCjobmode) AND jobmode /= 'LOCAL') THEN
\ sesmsg = '*'
\ ORIF NOT DEFPCmsg) AND DEFCMSGCTRL) THEN
\ sesmsg = MSGCTRL
\ ELSE
\ sesmsg = 'SESMSG.*'
\ IFEND

" End of MSGCTRL COMMON "

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

A1-9

13 DEC 83
REV: 1

--
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

This procedure <segment) can be used to over-write or create a
permanent file Cif create, the file is defined as a direct access
private, read-only permanent file. If the procedure is used as a
procedure segment Ci.e. INCLUDEd) the variables "rewriti" and
"rewrite" must have been defined by the INCLUDing procedure.

REWRITE
" August 31, 1981 "

\ IF MODE = HELP THEN
\ INCLUDE 'REWRITEHLP' L=UNIQUECNAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND
\ PARM KEY = C ' i ' , ' r ew r i ti ') NVALS = 1
\ PARM KEY = (1 0 I, 'rewrite'> NVALS = 1
\ PARM KEY = C'un', 'rewritu'> NVALS = 1
\ PARM KEY = ('status', 'sts '> NVALS = 0
\ PARM KEY = C'msg', 'nomsg') NVALS = 0
\ PARMEND

II REWRITE COMMON II

\ rewritu = SETVALCUSER, rewritu, rewritu)
\ retryrw = UNIQUECNAME)
\ donerw = UNIQUECNAME)
\ skiprw = UNIQUECNAME)
\ label1 = UNIQUECNAME)
\ label3 = UNIQUECNAME)
\ label4 = UNIQUECNAME)
\ labels = UNIQUECNAME)
\ label6 = UNIQUECNAME)
\ label? = UNIQUECNAME)
\ label8 = UNIQUECNAME)
\ label9 = UNIQUECNAME)
\ label10 = UNIQUECNAME)
\ label11 = UNIQUECNAME)
\ label12 = UNIQUECNAME)
\ exittag = UNIQUECNAME)
\ samerw = C'&rewriti&' = '&rewrito&'>

\ IF CDEFPCstatus)) OR CDEFCstatus)) THEN
\ rwfaild = 'SSKIPC&exittag&)'
\ ELSE
\ rwfaild = 'EXIT. ***REWRITE FAILED***'
\ IFEND

NAM REQ
NAM REQ
STR·

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

A1-10

13 DEC 83
REV: 1

--A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

\ IF PROCNAM = 'REWRITE' THEN

II MSGCTRL COMMON "

\ IF DEFKCnomsg) OR CDEFCjobmode) AND jobmode /= 'LOCAL') THEN
\ sesmsg = '*'
\ ORIF NOT DEFPCmsg) AND DEFCMSGCTRL) THEN
\ sesmsg = MSGCTRL
\ ELSE
\ sesmsg = 'SESMSG.*'
\ IFEND

11 End of MSG CTRL COMMON "

\ IFEND

SSETCEF=O)
SSETCEFG=O>
SSETCR1=1>
ACQUIREC&rewriti&/A)
\ IF samerw THEN
\ pfnrw = '&rewrito&'
\ rewrito = UNIQUECNAME)
\ IF PROCNAM = 'REWRITE' THEN
SIFECFILEC&rewriti&,PM>,&label1&>
SESMSG. REWRITE NOT PERFORMED SINCE FILE
SESMSG. NAMES EQUAL AND &rewriti& PERMANENT
SENDIFC&label 1&>
\ IFEND
SIFECFILEC&rewriti&,.NOT.PM),&skiprw&>
\ ELSE
\ pfnrw = '&rewrito&'
\ IFEND

ACQUIREC&rewrito&=&pfnrw&/UN=&rewritu&>

\ IF VALSCrewritu) = USER THEN
SIFECFILEC&rewrito&,PM),&label3&)
ACQUIREC&rewrito&=&pfnrw&/PO,M=W)
SENDIFC&label3&>
SWHILE,TRUE,&retryrw&.
SIFECFILEC&rewrito&,.NOT.AS>,&Label4&>
SDEFINEC&rewrito&=&pfnrw&/M=R)
SENDIFC&label4&>
ACQUIREC&rewrito&=&pfnrw&/A,M=W)
SIFECFILEC&rewrito&,PM),&labelS&>
SEVICTC&rewrito&)
SCOPYEIC&rewriti&,&rewrito&,VERIFY)

60460270 01

A1-11
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

SELSEC&labelS&>
SREPLACEC&rewriti&=&pfnrw&)
SENDIFC&labelS&>
\ ELSE
SIFECFILEC&rewrito&,PM),&label6&)
ACQUIREC&rewrito&=&pfnrw&/PO,M=W,UN=&rewritu&>
SENDIFC&label6&)
SWHILE,TRUE,&retryrw&.
ACQUIREC&rewrito&=&pfnrw&/M=W,UN=&rewritu&>
SIFECFILEC&rewrito&,.NOT.AS),&label7&)
SSETCEF=1>
&rwfaild&
SENDIFC&label7&>
SIFECFILEC&rewrito&,PM),&label8&)
SEVICTC&rewrito&>
SCOPYEIC&rewriti&,&rewrito&,VERIFY)
SELSEC&label8&>
SREPLACEC&rewriti&=&pfnrw&/UN=&rewritu&>
SENDIFC&label8&)
\ IFEND

SSKIPC&donerw&>
EXIT.
SIFECCEF.NE.ODE).AND.CEF.NE.TKE).AND.CEF.NE.PPE),&label9&)
&rwfai ld&
SENDIFC&label9&)
SSETCR1=R1+1)
SIFECCR1.GT.5),&label10&)
&rwfaild&
SENDIFC&label10&)
SSETCEF=O>
SREWINDC&rewriti&,&rewrito&>
&sesmsg& REWRITE FAILED - WAITING TO TRY AGAIN
SROLLOUTC120)* REWRITE FAILED - WAITING TO TRY AGAIN
SENDWC&retryrw&>

SENDIFC&donerw&>
\ IF samerw THEN
SENDIFC&skiprw&)
\ IFEND

\ IF PROCNAM /= 'REWRITE' THEN
SRETURNC&rewriti&,&rewrito&>
\ ORIF samerw THEN
SRETURNC&rewriti&,&rewrito&>
ACQUIREC&rewriti&/A,UN=&rewritu&>
\ ELSE
SREWINDC&rewriti&>

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

A1-12

13 DEC 83
REV: 1

---"
A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE
--
SIFECFILEC&rewrito&,PM>,&Label12&>
SRETURNC&rewrito&)
SENDIFC&label12&)
ACQUIREC&rewrito&/A,UN=&rewritu&>
\ IFEND
SENDIFC&exittag&)

" End of REWRITE COMMON "

\ IF samerw THEN
REVERT. END &PROCNAM& &rewriti&
\ ELSE
REVERT. END &PROCNAM& &rewriti& -> &rewrito&
\ IFEND

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

81.0 OPERATING MODES OF THE SES PROCESSOR

81.0 OPERATING MODES OF THE SES PROCESSOR

81-1

13 DEC 83
REV: 1

The SES processor may process a procedure in one of four modes:

RUN

TEST

This is the normal mode. The
presumably generating control
control statements are executed.

procedure
statements,

is
and

processed,
then these

In this mode the procedure is
but the generated control
instead they are placed on a
inspection by the user.
debugging new procedures.

processed in the normal manner,
statements are not executed,
designated file for possible

This mode is meant as an aid in

HELP This mode is similar to test mode, however instead of
generating control statements, a procedure set up for HELP
mode will produce some documentation on its purpose and
usage.

STATUS This mode is identical to help mode, except a procedure set
up for STATUS mode will provide the current status of the
procedure.

The modes are selectable by the user by means of parameters to
the SES processor; and the procedure can determine in which of the
modes it was called by means of predefined variables set up by the
SES program. These variables are:

MODE This variable may be compared with the variables RUN,
'rEST, HELP, or STATUS to determine which of the modes is
in effect; for example:

\ IF MODE = HELP THEN
11 code for HELP mode "

\ ORIF MODE = TEST THEN
11 code for TEST mode "

\ ORIF MODE = STATUS THEN
11 code for STATUS mode "

\ ELSE
" code for RUN mode "

\ IFEND

PRIMOUT This variable contains the name of the PRIMary OUTput
file. In RUN mode this is the new c~ntrol statement file;

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES.Procedure Writer's Guide

81-2

13 DEC 83
REV: 1

--
81 .0 OPERATING MODES OF THE SES PROCESSOR

--
in TEST mode this is the file designated by the test mode
parameter on the SES call (default is SESTEST); and in
HELP or STATUS mode this is the file designated by the
help or status mode parameter on the SES call (default is
OUTPUT). PRIMOUT is particularly useful in HELP or STATUS
mode for directing the descriptive information about the
procedure to the file selected by the user on the SES
call. Th;s may be accomplished as follows:

\ IF MODE = HELP THEN
\ ROUT FA=PRIMOUT

" descriptive information about called procedure "
\ ROUTEND PRIMOUT
\ STOP
\ IFEND

Note, in HELP or STATUS mode, a PARMEND directive will be
interpreted as a STOP directive, to prevent a procedure· not set up
for HELP or STATUS mode from doing strange or undesirable things.

81.1 SELECTING MODE OF OPERATION

As stated above, the mode of operation for a procedure is
selected by a parameter to the SES processor.

TEST mode may be selected by one of the keywords: TEST or T. For
example:

ses,test.procedure_name list_of_parameters

will process procedure "procedure name" in TEST mode, and place the
generated ~ontrol statements on file SESTEST; whereas:

ses,t=my_file.procedure_name list_of_parameters

will process procedure "procedure name" in TEST mode, but places the
generated control statements on file "my _file".

HELP mode may be selected by one -0f the keywords: HELP or H. For
example:

ses,help.procedure_name

causes procedure "procedure name" to be processed in HELP mode, and
any descriptive information available will be placed on file OUTPUT
; whereas:

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

81-3

13 DEC 83
REV: 1

--
81.0 OPERATING MODES OF THE SES PROCESSOR
81.1 SELECTING MODE OF OPERATION
--

ses,h=my_info.procedure_name

causes procedure "procedure name" to be processed in HELP mode, but
any descriptive information available will be placed on file
"my_ info".

STATUS mode may be selected by one of the keywords: STATUS or S.
For example:

ses,status.procedure_name

causes procedure "procedure name" to be processed in STATUS mode,
and any status information-available will be placed on file OUTPUT;
whereas:

ses,s=my_info.procedure_name

causes procedure "procedure name" to be processed in STATUS
but any status information available will be placed on
"my_; nfo".

mode,
file

Note, that when calling a procedure in HELP or STATUS mode, a
list of parameters should not be given. HELP or STATUS for a group
of procedures may be obtained by one call to SES, as follows:

ses,help.proc_1; proc_2; proc_3

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES. Procedure Writer's Gui de

C1.0 ERROR MESSAGES

C1.0 ERROR MESSAGES

C1-1

13 DEC 83
REV: 1

This appendix describes the messages produced by the SES
processor when errors are detected. SES error messages have been
made as self-explanatory as possible. When an error is detected by
SES, a message is printed in the form:

** E CL 11001: EXPECTING "name found integer for parameter I" ON
COMMAND STATEMENT

The E at the beginning of the line indicates this is an error
message.

The CL is an abbreviation for the System Command Language used by
SES to do syntax processing.

The number 11001 is an error code assigned to this error
condition.

The text which follows the error code describes the error in
detail. Appended to the end of the text is the line number of the
line being processed by SES. In this first example, it is the
command statement which is in error.

After the error message, SES outputs the line it was processing
when the error was detected, followed by a line containing an
up_arrow at the point in the line where the error was detected.

SES.REWRITE I=123 O=ABC

Usually the error actually occurred on the token just before the
up_arrow.

Here are two more typical examples of error messages:

** F CL 11007: REQUIRED PARAMETER MISSING "I" ON COMMAND
STATEMENT

SES.FORMAT

** E CL 11011: UNKNOWN KEYWORD "NVLS" ON LINE# 7 OF PROC SEGMENT
MYPROC

PARM KEY= ('group', 'g') NVLS = 1 NAM

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES·Procedure Writer's Guide

C1.0 ERROR MESSAGES

c1-2

13 DEC 83
REV: 1

Other abbreviations used in SES error messages are SE, which
means the error was· detected in the processor itself, and UT, which
means the error was detected by a utility routine called by SES.

60460270 01

01-1
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION

This section gives a semi-formal description of the syntax used
when writing procedures for and calling the SES. The description is
not intended to be rigorous. First we introduce the "meta-language"
used to describe the syntax; second the character set used by SES is
defined; and finally the syntax description itself is given.

D1.1 THE META LANGUAGE

This section describes the symbols used in the description of the
SES syn.tax.

Symbol

: :=

<item>

[item]

{item}

Interpretation

This symbol should be read as "is defined to be".

This symbol is used to indicate alternatives, for
example: A I B means that either A or B is allowed.

This group of symbols denotes that
treated as a syntactic unit in
surrounding meta symbols.

item is to be
relation to

This group of symbols denotes that item is optional,
i.e. zero or one occurences of item are allowed.

This group of symbols denotes that item may be used
zero or more times.

Spaces are used in the
readability, however they are
unless otherwise noted.

syntax description to improve its
not part of what's being defined

There are a few instances where some of the meta symbols
themselves are part of the syntax definition, and when this occurs
the meta symbol is underlined, for example: l means the I character
and not the meta symbol. When an appears alone, it means itself.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-2

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
01.2 CHARACTER SET
--
01.2 CHARACTER SET

Characters used for NAMES

A
0

i

@

z
9

a •• z
...........................
...........................

Letters
Decimal Digits
Underline
Dollar Sign
Pound
Commercial At

Characters used for INTEGER CONSTANTS

0
A
(
)

9
F a •• f
..•.................•.....

Characters used for OPERATORS

+

*
I
=
>
<

.••....•.••.••............
•.........................
..........................
..•....•......•.....•...•.
..........................
..........................

Characters used for PUNCTUATION

..........................
, ...•.•..•.................
(..........................
)•.......

..........................

Decimal Digits
Hexadecimal Digits
Open Parenthesis
Close Parenthesis

Plus Sign
Minus Sign
Asterisk
Slash (Slant)
Equal Sign
Greater Than Sign
Less Than Sign

Blank (Space>
Comma
Open Parenthesis
Close Parenthesis
Period

Character used for STRING DELIMITER

•••••••••••••••••••••••••• Apostrophe (Single Quote)

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-3

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.2 CHARACTER SET

Character used for COMMMENT DELIMITER

ti •••••••••••••••••••••••••• (Double) Quote

(Default) Character used for SUBSTITUTION DELIMITER

&•............ Ampersand

(Default) Character used for DIRECTIVE HEADER

\ •••••••••••••••••••••••••• Reverse Slash (Slant)

Note: Any ASCII character not listed in the above character set
has no meaning to the SES processor. These characters may
however be used in strings, comments, ~r as data
characters.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-4

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3 SYNTAX
--
D1.3 SYNTAX

D1.3.1 BASIC DEFINITIONS

<upper case letter> ::=A I B c D E F
I I I J K L M N
I Q I R s T u v
I v I z

<lower case letter> ::=a I b I c I d I e f
I i I j I k I l I m n
I q I r I s I t I u v
I Y I z

<letter> ::=<upper case letter>
I <lower case letter>

0

<decimal digit> ::= 0 I 1 I 2 I 3 4 5 6

<hexadecimal digit> ::=A I B I c D I E F
I a I b I c d I e f

<digit> ::= <decfmal digit>
I <hexadecimal digit>

<base> ::= 2 I 3 I 4 I s I 6 I 1 I a I 9 I 10
I 11 I 12 I 13 I 14 I 1s I 16

D1.3.2 TOKENS

G H
0 p
w x

g I h
0 I p
w I x

I 1 I a I 9

This section defines the building blocks of SES syntax,
collectively referred to as tokens. The internal token scanner of
the SES processor is made availble to the procedure writer by means
of the built-in function TOKEN.

<token> ::=<name> I <number> I <string>
I <delimiter> I <operator>

<name> ::=<alphabetic char> {<alphabetic char> I <decimal digit>

<alphabetic char> ::=<letter> I _I S I # I m

<upper case name> ··.. -

·,1,-

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.2 TOKENS

D1-5

13 DEC 83
REV: 1

--
<upper case letter> {<upper case letter> I <decimal digit>}

All names are limited to thirty-one characters in length, except
procedure names and procedure identifiers, which are limited to ten
characters. With the exception of <upper case name>s, any name may
be specified with either upper or lower case letters, but before a
name is used all letters in it are converted to upper case. For
instance the names: ABC, abc, aBc, and so on, are all equivalent.
CThis includes any of the "sp.ecial" names, such as DO, THEN, WHEN,
etc. In this description, however, these names are always spelled
out in upper case letters.)

<variable name> ::=<name>

<function name> ::=<name>

<parameter name> ::=<name>

<directive name> ::=<name>

<assignee> ::=<parameter name> I <variable name>

<procedure name> ::=<name>

<procedure identifier> ::=<upper case name>

<number> ::=<decimal digit> {<digit>} [C<base>)J

<string character>::=''
I <any ASCII character except '>

<string> ::= '{<string character>}'

<constant> ::=<string> I <number> I <name>

<delimiter>::=, I CI> I= I • ..{.}
I <end of line>

<operator> ::=<graphic operator> <mnemonic operator>

<graphic operator> ::= ** I * I I I // I + I - I ++

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1.0 SEMI-FORMAL ·svNTAX DESCRIPTION
D1.3.2 TOKENS

D1-6

13 DEC 83
REV: 1

I = I t= I <> I < I ~= I .~ I >=

<mnemonic operator> ::= AND I OR I XOR I NOT

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-7

13 DEC 83
REV: 1

----------------------------------~---------------------------------
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.3 USE OF SPACES
--
D1.3.3 USE OF SPACES

Before discussing when and how spaces can be used we will first
define the syntax of comments.

<comment> : := "{<any ASCII character except ">}"

In almost all cases a comment is treated identically to a single
blank character, and 2 or more contiguous blank characters Cor
comments) are treated as a single blank character. Blank characters
and comments treated in this manner are known as spaces.

Spaces may be used between tokens to improve readability and in
general may be used to replace commas when used as argument, value,
or parameter separators. Spaces must be used to separate tokens
when no <delimiter> or <graphic operator> can be used to separate
them. For example the spaces between the tokens on the following
line must be present:

V1 AND V2

whereas the following two expressions are equivalent:

V1 + V2
V1+V2

further, the following value list contains 2 values:

(x, -3)

whereas the next contains only 1 value:

(x -3)

namely the value of the expression X-3.

Spaces within character strings represent themselves, and
comments may not be used in front of the \ which occurs at the
beginning of directive lines, nor following the continuation signal
at the end of directive or call lines. Lines within procedures
which are not directives or continuations of directives or lines
which are read using the ACCEPT directive, are treated as unquoted
strings, and therefore spaces are significant in them. Whenever a
line is read by the SES processor, trailing blank characters are
deleted. Also, it is legal to precede the \ of a directive line by
one or more blank characters.

60460270 01

D1-8
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1
--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.4 EXPRESSIONS
--
D1.3.4 EXPRESSIONS

<expr> ::= <lterm> {<or> <lterm>}
<or> ::=OR I XOR

<lterm>: : := <l factor> {AND <l factor>}

<lfactor> ::= CNOTJ <lprimary>

<lprimary> ::= <sterm> {<rel op> <sterm>}
<rel op> ::= = I /= I < I <= I > I >= - - -

<sterm> ::= <term>{++ <term>}

<term> ::= [<term op>J <factor> {<term op> <factor>}
<term op>::=+ I -

<factor> ::=<primary> {<factor op> <primary>}
<factor op> ::= * I I I //

<primary> ::=<operand>{** <operand>}

<operand> ::=<variable reference>
<function reference>
C <expr>)
<constant>
<null>

<null> : :=

<variable reference> ::=<variable name>

<function reference> ::=<function name> <arguments>

<arguments> ::= C [<arg> {, <arg>}J)
I <null>

<arg> ::= <name> I <expr>

<integer expr> : := <expr> " must resolve to an integer 11

<string expr> : := <expr> 11 must resolve to a string II

<boolean ex pr> : := <expr> 11 must resolve to an integer 11

II if the value is zero, it 11

ti is taken to be FALSE ti

" if non-zero, it's taken II

II to be TRUE II

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-9

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.5 FOREIGN TEXT
--
D1.3.5 FOREIGN TEXT

Foreign text is primarily used for parameter values which are to
be in turn used as parameter lists Ce.g. to secondary procedures)
or simply to prevent the SES processor from evaluating an
expression.

The scanning of foreign text is totally different from scanning
"normal" text. The characteristics of this special scanning are

parentheses are "balanced"
single and double quotes are "matched"
if not contained within parentheses, single quotes, or
double quotes, the tokens: comma, period, ellipsis
C •• {.}), and close parenthesis will terminate the scanning
Cand thus the foreign text value). In addition, spaces
which are used to separate names, numbers, or strings from
names numbers or strings will terminate scanning; as will
an "unenclosed" open parenthesis which follows a string or
number CNote, that an open parenthesis following a name
does not terminate scanning - this is because function
references are allowed in foreign text but the foreign
text scanner doesn't evaluate what it scans, and thus does
not know if the name is indeed the name of a function).

Foreign text may also be described as having the general format
of an expression, but the expression is not evaluated when scanned
as foreign text. During scanning comments and blanks not contained
within single quotes are "thrown away" and single blank characters
are inserted between tokens which would otherwise not be separated.

The following example illustrates some of the idiosyncracies of
foreign tex-t:

\ vlist ='Cab c Cd e) "p q""r, s" 123(8) Cx,Cy+3)))'
\ count = VCNT Cvl i st) " 2 "
\ value = VALS Cvlist, 3) "3 "
\ slist = GENLIST Cvlist, index) " 4 "

The first line defines a value list in the variable vlist. Line
2 sets the variable count to the value 6. Line 3 sets the the
variable value to the value:

CCD E)

and line 4 sets the variable slist to the value:

A,B,CCD E),'p q''r, s',123C8),CX,CY+3))

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-10

13 DEC 83
REV: 1

-----------------------------------~--------------------~-----------
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.5 FOREIGN TEXT
--

The next example illustrates how a parameter list may be passed
as a foreign text parameter:

\ pl i st = '< i =i nfi le "columns" cols=1 •• 80 o=out) '
\ count = VCNT Cplist>
\ low = VALS Cplist, 2, LOV)
-\ high = VALS Cpl i st, 2, HIV)
\ slist = GENLIST (plist, index)

Count is set to 3; low is set to:

COLS=1

h;gh is set to 80; and slist is set to:

I=INFILE,COLS=1 •• 80,0=0UT

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-11

13 DEC 83
REV: 1

--
. D1.0 SEMI-FORMAL SYNTAX DESCRIPTION

D1.3.6 PARAMETER LISTS
--
D1.3.6 PARAMETER LISTS

<parameter list> ::= [<parameter> {[,J <parameter>}]

<parameter> ::= [<parameter name> C=JJ <value list>
I <parameter name>
I <null>

<value list> ::= <value>
I C [<value> {[,] <value>}] >

<value> : := <value side> [•• {.} <value 'side>]

<value side> ::= <expr> I <foreign text>

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-12

13 DEC 83
REV: 1

--~-----------------------
01.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.7 SES PROCESSOR CALL
--
01.3.7 SES PROCESSOR CALL

<csep> ::= [;l.J <end of line>
I ; I .

<proc call> ::= <procedure name> [,] <parameter list> <csep>

<control statement> ::=<string>

<control statements> ::=<control statement> [<csep>J
{[,J [<control statement >J [<csep>J}

<call element> : := <proc call> I <control statements>

<SES call> ::=SES ·r, <parameter list>J •
<call element> {<call element>}

Because of operating system restrictions, a <parameter list>
following the SES (processor name) must have explicit punctuation.
That is to say, commas must be used to separate parameters Cand
values) and equal signs must be used to separate parameter names
(keywords) from their value lists.

Also, the operating system is not well acquainted with lower case
letters, so only upper case should be, used; however, NAM/IAF Cor .
TELEX) and the SES processor alleviate this problem by converting
lower case letters to upper case on command and continuation lines.

When <control statements> are used in a <SES call>, the SES
processor insures that they are all "properly" terminated, i.e.
each <cont~ol statement> string is scanned for a right parenthesis
or period and if neither of these characters is found, a period will
be appended at the end of the string; if however, a right
parenthesis or period is found, the string will be left alone. NOTE
that this is the only validity checking of the <control statement>
done by the SES processor.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-13

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.8 SUBSTITUTION
--~-------------------------

D1.3.8 SUBSTITUTION

<substitute> ::=<parameter name> I <variable name>

<default substitution character> ::= &

<alternate substitution character> ::=
! l"l#ISIXl 'I <I> l•l=l+l-111_1,.l. lml,1-l;I :I?

l\l_l~l~lf.111.:£1~:.ll

<substitution char> ::=
<default substitution character>

I <alternate substitution character>

<substitution> ::=
<substitution char> <substitute> <substitution cha~>

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

01-14

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.9 PROCEDURES
--
01.3.9 PROCEDURES

<procedure> ::=<procedure identifier> {<procedure line>}

<procedure line> ::= {<procedure line element>}

<procedure line element> ::=<substitution>
I <any ASCII character>

The process of substitution applied to a <procedure line> yields
an <object line>.

<object line> ::=<directive line>
I <empty line>
I ·<data line>

<default directive character> ::= \

<alternate directive character> ::=
! I" I# Is Ix I ' I c I> I* I= I+ 1-111·1 ·I • I 011, 1-1; I : I?

l&l_l~l~lil!lill:.11

<directive header> ::=
<default directive character>

I <alternate substitution character>

<directive line> ::=<directive header> <directive>

<empty line> ::=
·-

<data line> ::=<any line which is not "empty" and does
not begin with a directive header>

Note: <empty line>s may contain comments enclosed in double
quotes.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

D1-15

13 DEC 83
REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.10 DIRECTIVES
--
D1.3.10 DIRECTIVES

<directive> ::=<assignment>
I <if while> <boolean expr> [<then do>J
I <exit cycle> [WHEN <boolean expr>J
I <directive name> <parameter list>

<assignment> ::=<assignee>= <expr>

<if while> ::=IF I ORIF I WHILE

<then do> ::=THEN
I DO

<exit cycle> ::=EXIT I CYCLE

60460270 01

D1-16
CDC ~ SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

--
D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.4 LINES AND THEIR CONTINUATION
--
D1.4 LINES AND THEIR CONTINUATION

It is sometimes necessary to pass more parameters to a procedure
Cor ~ive more parameters to a directive) than will fit on one line
Clines are normally limited to 80 characters in length, however,
TELEX further limits the command lines to about 70 characters -- for
reasons known only to TELEX -- continuation lines entered at the
terminal may, however, be 80 characters long). To handle this
problem, SES processes continuation lines.

The effective net result of using continuation lines is to
construct an unbroken line of up to 256 characters.

Continuation may only be used in conjunction with SES directives
and when calling SES to process a procedure. Continuation is
signalled on the line which is to be continued, not the continuation
line itself. Note that the <continuation signal> is not considered
to be part of the line. The mechanism for doing this is defined as
fol lows:

<whole line> ::=
<line starter> <stuf 1> [<continuation signal>

<stuf 2> { <continuation signal>

<stuf n> } J

<continuation signal> ::= •• {.}

<line starter> ::=<directive header> <name>
I SES <parameter list>

<stuf i> ::=<whatever belongs with the line starter>
" 1 <= i <= n "

The effect of this is as if <whole line> had been specified as:

<line starter> <stuf 1> {<stuf i>}

Note: Syntactic units (tokens) may cross line boundaries.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES
E1-1

13 DEC 83
REV: 1 SES Procedure Writer's Guide

--
E1.0 ACQUIRE UTILITY

--
E1.0 ACQUIRE UTILITY

ACQUIRE is a program that enables easy retrieval (acquisition) of
permanent files.

ACQUIRE combines the functions of the NOS "ATTACH" and "GET"
control statements. For each file specified ACQUIRE determines if
the file is already local to the job (unless suppressed by the PO
parameter, see below>, if so it is rewound; if not, then for each
one of a list of user names, an ATTACH is attempted (waiting, if
necessary, until the file is not busy), and if that fails a GET is
tried. If, after all this, the file is still not local, an
appropriate dayfile message is issued.

Unless the A (abort> parameter is specified, ACQUIRE will abort
only because of control statem~nt format or argument errors, or
because of a permanent file manager CPFM) detected error; and not
because one Cor more> of the specified files could not be found.

The control statement format for ACQUIRE is :

lfni

pf ni

opi

ACQUIREClfn1=pfn1,lfn2=pfn2, ••• /op1,op2, •••)

is the (local) name of the file once it has been ACQUIREd
(note that this is the name used in making the "is the file
already local?" test>

is the permanent file name for the file Cif =pfni is omitted,
pfni is assumed to be the same as lfni>

specify options used for acquiring the file(s)

A specifies that if a file is not found, the program
should abort

NA is the opposite of A Cand is the default)

PO specifies Permanent Only, i.e. that if a file is
already local, it will be returned and then the
ATTACH and GET will be attempted

UN=users specifies a list of user names to be searched for
each file (the user names are separated from each
other by commas)

60460270 01

E1-2
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

------------~---------~------------------~--------------------------
E1.0 ACQUIRE UTILITY

--------------------~----~--
M=mode

PW=pw

PN=pn

specifies the access mode desired for the file
(READ or R -- the default, WRITE or W, or EXECUTE
or E)

specifies the permanent file's password

specifies the packname for the permanent file

When ACQUIRE is attempting an ATTACH or GET, if the file is busy
or if a permanent file utility is active, the following message will
be issued and the request will be retried :

- WAITING FOR PFN=permanent_fite_name UN=user name

When ACQUIRE is attempting an ATTACH or GET, if an error is
detected by PFM the following message is issued and the program is
aborted :

- ERROR WITH PFN=permanent_file_name UN=user_name

In both of the above cases, the designated message will be
preceeded by a more specific message generated by PFM.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

F1-1

13 DEC 83
REV: 1

--
F1.0 EXTRACT UTILITY

--
F1.0 EXTRACT UTILITY

EXTRACT is a program that enables easy retrieval of records from
permanent file Cor local) libraries.

Although the program is designed primarily for use in procedure
files, it can be very useful on its own.

EXTRACT is similar in function to the NOS "GTR" statement. It
differs from "GTR" in the following ways:

0 EXTRACT insists
directory (this
"LIBEDIT").

that
can

the library to
be built using

be searched
the NOS

has a
utility

o The record type parameter for EXTRACT, if given, applies to
all records to be extracted, and if not given, only the names
of the records are used when searching the library.

o Each extracted record is copied to its own local file by
EXTRACT, rather than all to the same file.

0 EXTRACT does not insist that the library
local to the job when it's called,
library from a permanent file catalog.

to be searched be
but will ACQUIRE the

The control statement format is:

lfni

EXTRACTClfn1=rn1,lfn2=rn2, ••• /op1,op2, •••)

Is the local file
extracted Clfni is
takes place>.

name given to the record once it's
REWOUND before and after the extraction

rni Is the name of the record to be extracted Cif omitted, it is
assumed to be the same as lfni).

opi These parameters specify options that control the extraction
process

A Specifies that if a record is not found, the
program should abort.

60460270 01

F1-2
CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide
13 DEC 83

REV: 1

--
F1.0 EXTRACT UTILITY

--
NA

T=rt

L=libname

LFN=liblfn

UN=un

PW=pw

PN=pn

Is the opposite of A Cand is the default).

Specifies the record type Cif given, it applies
to all records being extracted; if omitted, only
the record names are used when searching the
library>.

Specifies the name of the library to be searched
for the records Ci f omitted, "PROCLIB" is
assumed).

Specifies the local file name for the library
Cif omitted, the "libname" from the L paraeter
is used). Note that this is the name used to
make the "is file local?" test when ACQUIRing
the library.

Specifies the user name of the permanent file
catalog to be searched for "libname" if it's not
already local Cif omitted, the current user is
assumed).

Specifies the
password.

Specifies the
packname.

library's permanent

library's permanent

file

file

Valid record type designators are documented under the
description of the "CATALOG" control statement in the NOS Reference
Manual.

In addition to these standard types, there's one more "type"
processed by EXTRACT, which is designated by "TXT". This "type" is
used to denote "TEXT" records that, when extracted, are to have
their first line (which contains the record's name) "stripped off".
This is useful if, for example, one has records containing
directives for a NOS utility, in which case the name of such a
record is in all likelihood an illegal directive to the utility
program.

EXTRACT will abort under any of the following conditions:

o format or argument error(s) on the control statement

-o the specified library could not be AQUIREd

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

F1-3

13 DEC 83
REV: 1

--
F1.0 EXTRACT UTILITY

o the library file does not have a directory as the last record
before end-of-information

Note, however, that EXTRACT won't abort if it does not find any
of the requested records Conly an informative dayfile message is
issued), unless the Abort parameter was coded on the call.

If the library file was not local to the job when EXTRACT was
called, it will be RETURNed when EXTRACT terminates normally; but,
if the library file was local, EXTRACT will REWIND it prior to
normal termination.

60460270 01

CDC - SOFTWARE ENGINEERING SERVICES

SES Procedure Writer's Guide

G1-1

13 DEC 83
REV: 1

--
G1.0 SESMSG UTILITY

--~-----

G1.0 SESMSG UTILITY

SESMSG is a program which copies the comment field of its call
line to a file. The control statement format is:

SESMSG,file.message

file is the name of the file to receive the message Cif
omitted, OUTPUT is assumed)

message is the message to be written to the file

The message will be written to the file only if the file is a
terminal file, or if "file" was explicitly quoted on the- call line.

SESMSG can be used in procedure files to inform the user about
what the procedure is currently doing. It can also be used for
creating files of input directives to utility programs when such
directives are dependent on execution time considerations.

60460270 01

/

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONTl\.OL DATA CO[\PORf\TION

