SOFTWARE ENGINEERING SERVICES
1.0
Procedure Writer's Guide

60460270 01

REVISION RECORD

REVISION DESCRIPTION
01 (02-17-84) Preliminary manual released.

Address comments concerning this manual to:

Control Data Corporation
Software Engineering Services
4201 North Lexington Avenue
St. Paul, Minnesota 55112

60460270 01

© 1984

by Control Data Corporation

ALl rights reserved

Printed in the United States of America

Table of Contents

INTRODUCTION - L] - - - - - - - - - - - -

-—
L]

FEATURES OF SES . . = & o ¢ o o o o o &«
CONTROL STATEMENT FEATURES . « « & « « &
PROCEDURE PROCESSING . « « ¢ =« « & & o &
LAYOUT OF THIS GUIDE . . = « v o o = « &«

NNNN
[] []

BASIC SES PROCESSING
SES PROCEDURE CALL FORMAT
.1 SES PROCEDURE LAYOUT « . . .
ES SYNTAX . & & & o v ¢ ¢ o o o o o o« &«
TDIRECTIVES v v v« v« o = o o = « o « «
2 VARIABLES & v & ¢ = v o = =
3NUMBERS . v ¢ v =« o « o = = o « « =
4 STRINGS .+ v v v 4w o o o o o o o o @
SBOOLEANS . . & ¢ ¢ & ¢ ¢ o = = = = &«
6 FUNCTIONS . . & ¢ & ¢ o & « o = & .
7 EXPRESSION EVALUATION
8 COMMENTS . . & & v ¢ v ¢ = o « & « =
.9 CONTINUATION LINES . « &« o « &« o &« &
1
0
1
c
1
2
3
0

N W
)

W
.

WNNW.‘\NU‘NNWNNWMWNWNW—‘O WN =0 o
L]

0 SUBSTITUTION . . ¢« v & & ¢ o o « @
FILES ¢ & & ¢« o & o o o o o o = « @« «
SEARCH DIRECTIVE - ESTABLISH LIBRARY
ATING A PROCEDURE . . =« v« =« v« & & « «
DEFAULT ORDER OF SEARCH

W
[}

3'

CESSING A PROCEDURE . . . « = = & & «

EXPRESSION EVALUATION « o o o &
ASSIGNMENT OF EXPRESSIONS TO VARIABLES .

EXAMPLES OF ASSIGNMENT STATEMENTS . . .

FUNCTIONS . . & @ & ¢ v ¢ o & o o o « &«
UNIQUE - GENERATE UNIQUE NAMES OR LABELS
TESTING ATTRIBUTES OF EXPRESSIONS . . .
«2.1 NAM -~ TEST FORNAME
TEST FOR NUMBER « «
TEST FOR STRING
TEST FOR DEFINED VARIABLE . .

)
)

N
wn =
- C
D=2
[|

DEF
OPR -~ TEST FOR OPERATOR &

TRING HANDLING . & & & o o & o o« & « =
STRLEN - DETERMINE LENGTH OF STRING

GENSTR - REGENERATE A STRING
GENUPR - RAISE CASE OF ALPHABETICS .

SEARCH SPECIFIED ON CONTROL STATEMENT
SEARCH ORDER SPECIFIED VIA SEARCH DIRECTIVES . . .

0
1
.2 OPERATORS IN EXPRESSION EVALUATION . . .
3

3
4
5
.6
.7 VALEXPR ~ CHECK AND COMPUTE EXPRESSION
TR
1
2
3
4

SEARCH ORDER

DEFF - TEST FOR DEFINED FUNCTION OR OPERATOR . . .

SUBSTR ~ EXTRACT SUBSTRING FROM CHARACTER STRING .

1

13 DEC 83
. 1-1
. 2-1
. 2-1
. 2-2
. 2-3
. 3-1
. 3-2
. 3-3
. 3-4
. 3-4
. 3-4
. 3-5
. 3-5
. 3-5
. 3-6
. 3-6
. 3-6
. 3-7
. 3-8
. 3-10
. 3-11
. 3-12
. 3-13
. 3-13
. 3-14
. 3-16
. 41
. 4-1
. 42
. 4=4
. 5-1
. 5-2
. 5-3
. 5-3
. 5-4
. 5-4
. 5-5
. 5-5
. 5-6
. 5-7
. 5-8
. 5-8
. 5-9
. 5-11
. 5-12

3.5 GENLOWR - LOWER CASE OF ALPHABETICS
CHARACTER HANDLING FUNCTIONS . . - & &« & =« = & & &
«4.1 CHARREP - CHARACTER REPRESENTATION
4.2 INTREP.- INTEGER REPRESENTAION OF CHARACTERS .
TEGER EXPRESSION TO STRING CONVERSION
1 OCT - INTEGER TO OCTAL STRING CONVERSION . . .

s 2

I

5

5

5.3 HEX - INTEGER TO HEXADECIMAL STRING CONVERSION
DATE, CLOCK AND TIME FUNCTIONS . . . & & ¢ & &« & &«
.6.1 DATE - CURRENT DATE FUNCTION . . . « « o o « &
6
6
T
E

>

.2 CLOCK = TIME OF DAY FUNCTION . . . « . . .
.3 TIME - SYSTEM AND JOB TIME FUNCTION . . .
OKEN - READ SES TOKEN FROM A STRING
XAMPLE -~ TIME, TOKEN AND EXPRESSION EVALUATOR

ES DIRECTIVES & & & & & ¢ =& ¢ o o o « a o o o & &
F = ORIF - ELSE - IFEND CONDITIONAL PROCESSING .
HILE - WHILEND REPETITIVE CODE PROCESSING . . .
ONTROL STATEMENTS . = ¢ =« o« = « = o s o s = = = =
.1 STOP - STOP PROCEDURE PROCESSING « .
.2 ABORT - ABORT PROCEDURE PROCESSING
«3 EXIT = EXIT STRUCTURE . . = & « « o « = o = &«
<4 CYCLE = NEXT ITERATION OF WHILE
OUT = ROUTEND ROUT TEXT TO A NAMED FILE
NCLUDE = SWITCH INPUT TO A NAMED FILE . . .
SER INTERFACE DIRECTIVES . . . ¢ ¢ &« o« « &
.1 DAYFMSG - SEND MESSAGE TO DAYFILE . . .
.2 MSG - WRITE MESSAGE TO FILE
.3 ACCEPT - READ 1 LINE FROM A FILE
ETRFL - PROCEDURE FIELD LENGTH CONTROL

mGOQCquuuwnsz

PARAMETER DEFINITION AND PROCESSING . . . o &« o &
PARM - PARMEND DEFINING PARAMETER LISTS
PARAMETER ATTRIBUTE TESTING . . = . o« « ¢ « & o &
.2.1 DEFP -~ TEST FOR THE PRESENCE OF A PARAMETER .
2 DEFK - TEST FOR PRESENCE OF SPECIFIC KEYWORD .
.3 KEYVAL - ACCESS ACTUAL KEYWORD OF PARAMETER .
CCESSING PARAMETER VALUES . . . = ¢ o ¢« o o o o &
.1 VCNT - NUMBER OF VALUES OF A PARAMETER

2.
2
A
3
3.
.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST .
DEFINING PARAMETER DEFAULTS . . « o v o ¢ & o « &
4.1 SETVAL - SET DEFAULT VALUE « « &« =« « &
4.2 SETKEY - SET DEFAULT KEYWORD . . . = « « & « &

ILE SYSTEM DIRECTIVES . & =« & ¢ = ¢ « o o = « ¢ «
ILE - TESTING FILE ATTRIBUTES =« « &« « o &
EWIND FILES . & & ¢ o ¢ o o o o o o e ¢ o a2 « o »
ETURN FILES o ¢ v o o« o o o o o = o » « o o & o =
CQUIRE DIRECTIVE . . ¢« o « v « o o« o 2 = o o =
XTRACT DIRECTIVE . & & & ¢ 2 o ¢ o o = a o o « =

L]
W-PWN—‘O
maV20TN

REDEFINED VARIABLES . & & v« & = o o &« o o o & = &
ES SYSTEM DEFAULT VARIABLES . . . & & ¢ « o = .«

-0
w v

.2 DEC - INTEGER TO DECIMAL STRING CONVERSION . .-

2 VALS - EXTRACT PARAMETER VALUE FROM A VALUE LIST

2

13 DEC 83
. 5-12
. 5-13
. 5-13
. 5-13
. 5-14
. 5-14
. 5-14
. 5-15
. 5-16
. 5-16
. 5-17
. 5-18
. 5-19
. 5-20
. 6-1
. 6-2
. 6-3
. 64
. 6-4
. 6-5
. 6-6
. 6-7
. 6-8
. 6-10
. 6-12
. 6-12
. 6-13
. 6-14
. 6-15
. 7-1
. 7-2
. 7-4
. 7-5
. 7-6
. 7-7
. 7-8
. 7-9
. 7-10
. 71
. 7-14
. 7-15
. 7-16
. 8-1
. 8-2
. 8-3
. 8-4
. 8-5
. 8-
. 9-1
. 9-1

9.2 USER ENVIRONMENT VARIABLES . . « v =« « =« « . &

APPENDIX A Useful Procedure Segments

A1.0 USEFUL PROCEDURE SEGMENTS . . =« « « « = & « &
A1.1 CALPROC — CALL SES PROCEDURE . « o « o « « &
A1.2 JOBPARM - DEFINE PARAMETERS FOR BATCH JOBS .
A1.3 JOBHDR1 PROCESS JOB PARAMETERS
A1.4 JOBHDR2 - PROCESS START OF JOB FILE
A1.5 MSGCTRL - HANDLE MSG / NOMSG PARAMETER . . .
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

APPENDIX B Operating Modes of the SES Processor

B1.0 OPERATING MODES OF THE SES PROCESSOR
B1.1 SELECTING MODE OF OPERATION « . . .

APPENDIX C Error Messages . « « = « « = = « o

C1.0 ERROR MESSAGES . . ¢« o =« = « =« « o« o « = « =

APPENDIX D SYNTAX . & v ¢ o ¢ ¢ @ o o a ¢ « = «

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.1 THE META LANGUAGE . . « & v & =« = o a o = « «
D1.2 CHARACTER SET <« v & & & = = ¢ = o « o « « = =
D1.3 SYNTAX . o ¢« v« v & & &
D1.3.1 BASIC DEFINITIONS .
TOKENS

USE OF SPACES . . .
EXPRESSIONS
FOREIGN TEXT . . .
PARAMETER LISTS . .
SES PROCESSOR CALL
SUBSTITUTION . . .
PROCEDURES
O DIRECTIVES « s .. o.
ES AND THEIR CONTINUATION

.
AO@\IOW&WN

D
D
D
D
D
D
D
D
D

[]
ruuwuwwuuu

-
-

1
1.
1
1
1
1
1
1.
1
D1.4

APPENDIX E ACQUIRE Utility « . « v & & ¢ v = & &

E1.0 ACQUIRE UTILITY . . . ¢ v & ¢ o o « « o o =« &

APPENDIX F EXTRACT Utility . . . « & o v o o « .

F1.0 EXTRACT UTILITY . & v & o « o o o« o o = « = «

3

13 DEC 83
. 9-2
- A1
. A1-1
. A1-2
. A1-3
. A1-4
. A1-6
. A1-8
. A1-9
. B1
. B1-1
. B1-2
. c1
. c1-1
L] D1
. D1-1
. D1-1
. D1-2
. D1-4
. D1-4
. D1-4
- D1-7
. D1-8
. D1-9
. DI-11
. D1-12
. D1-13
. D1-14
. D1-15
. D1-16
- E1
. E1-1
. F1
. F1-1

4
13 DEC 83

APPENDIX G SESMSG Utility . o o« ¢ ¢ ¢ o ¢ o ¢ ¢ o o o = & 61

G1.0 SESMSG UTILITY . v ¢ ¢ o o o « = o o 2 o 2 = s = » = » G1-1

1-1
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

1.0 INTRODUCTION

1.0 INTRODUCTION

SES is a NOS utility whose major function 1is to Llocate and
process PROCEDURES so as to generate streams of CCL to the system
control statement file.

PROCEDURES are text records which contain CCL 1interspersed with
directives to the SES processor itself. The SES directives can
cause CCL to be generated according to specified conditions.

SES is invoked by an SES control statement, either from a
terminal session or from a batch job. The SES control statement
specifies the name of the procedure to be processed, and optionally,
parameters for that procedure. SES locates the procedure, processes
it, and generates the appropriate CCL stream to the control
statement file.

This document 1is intended as a guide to those who wish to write
procedures to be processed by SES.

60460270 01

2-1
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide - REV: 1

2.0 FEATURES OF SES

2.0 FEATURES OF SES

This section provides an overview of the features and facilities
available to the user of SES. The features fall into two related
classes, the first class being the ways in which parameters may be
specified on the SES control statement, and the second class being
the features provided by the SES processor. The two classes are
related, since in general, for each way that a parameter can be
written on the SES control statement, there is a corresponding SES
directive or function available to process that particular aspect of
the parameter.

2.1 CONTROL STATEMENT FEATURES

This section Llooks briefly at the way in which an SES control
statement and parameters may be written.

o Continuation Lines. SES procedure calls are not Llimited to
one control statement line. Continuation lines may be input,
whether from a terminal or in batch. The total Llength of a
statement, 1including continuation Llines, is Limited to 2000
characters.

o Procedure parameters may be specified by keyword, or
positionally, or by a combination of both methods.

o Parameters of a procedure may have multiple values.

o Parameters of a procedure may be coded solely as a keyword
with no values, in which case the keyword may be used to
specify options.

o A parameter keyword may have multiple synonyms.

o Parameter values may be coded as arbitrary character strings.

0 The user may 1indicate on the SES control statement that a
particular user's catalog is to be searched when Llocating a
procedure.

o Users may establish procedure Library search order and other

60460270 01

2-2
CDC - SOFTWARE ENGINEERING SERVICES
' ‘ 13 DEC 83
SES Procedure Writer's Guide ' REV: 1

O 0 BP PO PO 20 O P O RO 0O PO P B8 B 8 GO PO PO B FD 0O PO PO D B3 B0 S 83 B0 PP BO PP BO B0 SO T BD NY B PO 89 PO PO O B 0O 09 TP SO B BD 09 PO O O B9 2 59 8P 8 6O PO B SO PO SO 00

2.0 FEATURES OF SES
2.1 CONTROL STATEMENT FEATURES

O D D BB B B8 O PP O O PO PO D B PO O BO PO GO D 08 D FO B PO PO O 0O 0300 B9 0O O SO B 5O B9 8 SO PO P KO 0O B B0 5O 9 8P 8D RO 8D S BRI S 0O 88 B0 8O 00 S BE PO G0 80 PP SO B9

default information in a PROFILE, which SES accesses at call
time.

2.2 PROCEDURE PROCESSING

This section provides a brief Look at the features available to
the SES procedure writer.

o Values and defaults established in a user's PROFILE may be
accessed.

o The names of parameters, their possible types, and the number
of values that may be coded for them, are predefined within
the procedure.

o SES provides functions to test for the type, number of values,
and existence of a parameter.

o SES provides a function to 4index along a multiple valued
parameter.

o The procedure writer may define variables to hold values
during procedure processing. ‘

o CCL statements may be generated conditionally or iteratively
via IF and WHILE directives.

o Expression evaluation and string manipulation facilities.
o Generation of unique strings for names and labels.

o Text from within the body of a procedure may be ROUT'ed to any
spec1f1ed file.

o Text may be INCLUDE'd into the body of the procedure from any
specified file, or from any specified procedure of any
specified plib library. :

o Local files may be tested for attributes, similar to the FILE
function provided by the operating system.

o The user's environment at procedure call time can be restored
at procedure end.

60460270 01

: 2-3
CDC -~ SOFTWARE ENGINEERING SERVICES

' 13 DEC 83
SES Procedure Writer's Guide REV: 1

2.0 FEATURES OF SES
2.3 LAYOUT OF THIS GUIDE

2.3 LAYOUT OF THIS GUIDE

Rather than supplying an alphabetical Llist of directives and
functions, the features are going to be 1introduced in related
chunks, mostly illustrated by examples. As far as possible, the
examples given are taken from real live SES procedures, to avoid
creating artificial examples. The general layout of the guide is in
this order.

o Basic SES concepts, processing and syntax.

o Expression evaluator.

o Functions.

o SES directives.

o Parameter definition and processing.

o File system directives.

o Various summaries in appendices.

60460270 01

3-1
CDC = SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide REV: 1

3.0 BASIC SES PROCESSING

3.0 BASIC SES PROCESSING

This section is going to show the major aspects of how SES
performs its processing. Topics covered in this section are.

o procedure call format, showing the basic format of an SES
control statement.

o what a procedufe looks Llike.

o The mechanism for substitution of parameters and names.
o SES directives within procedure files.

o Profiles and the SEARCH directive.

o Locating a procedure. Explains the search method that SES
uses to Locate a procedure.

o Processing a procedure. Explains what happens to each Line of
text in an SES procedure. '

60460270 01

‘ : 3-2
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide : REV: 1

O B0 P PO 00 O 20 P B0 PO SO B BD SO PO B 8O PO 0D B9 6D PO 8O SO PO B 8O 8O 0D I IS PO 1D 08 O B SO P8 KO DO TP PO PP 3 PO B 08 KO SO 6O O KO 5O O 5D B9 SO BB PO O B 8O B8 PO S P 0P 08

3.0 BASIC SES PROCESSING
3.1 SES PROCEDURE CALL FORMAT

O 0 P RO D O PO PO O D PO PO KO PO PP D PO B BE PP D PO P B3 09 D O P 0 O NP B2 PO B9 RS B9 BE BD B0 BS 62 O O B2 B B9 €O B0 5D 09 B I PO B B TS PO FO PO B9 4D 89 B3 PO 0 PO P B

3.1 SES PROCEDURE CALL FORMAT

The basic form of an SES procedure call is.
SES.procedure_name Llist_of parameters

where "procedure_name" is the name of the procedure to be processed,
and "list_of_parameters"” is the (optional) List of parameters for
the procedure. The List is separated from the procedure name by a
comma or by space(s) or both. Elements in the parameter Llist are
separated from each other by commas or space(s) or both. The -
parameter Llist is terminated by an end of line, a period, or a
semicolon.

Parameters are generally written in the form of
keyword=value
this is only a part of the story however, and later in the document

we'll get to specific definitions of the manner in which parameters
may be coded. ‘

60460270 01

3-3
CDC - SOFTWARE ENGINEERING SERVICES

13 DEC 83

SES Procedure Writer's Guide REV: 1

3.0 BASIC SES PROCESSING

3.1.1 SES PROCEDURE LAYOUT

3.1.1 SES PROCEDURE LAYOUT

The general layout of an SES procedure is:

PROCNAME where PROCNAME is the name of the procedure.

\ PARM

\ PARM

\ PARM there are zero to many of these PARM directives.
They are used to define the exact format of the
parameters in the List. The form of a PARM
directive will be defined in a later section.

\ PARMEND this dindicates the end of the PARM directives,

and is always neccessary even when there are no
PARM directives.

BODY OF PROCEDURE the procedure body contains CCL which gets
written to the control statement file, and SES
directives which are processed at procedure build
time.

\ blah blah any Lline which starts with the directive
character, which 1is a reverse slash (\) by
default, is taken to be an SES directive.

A procedure of name PROCNAME may be a local file, or a file in
the current user's catalog, or it may be a record in a PLIB. But,
no matter where the procedure comes from, the first Line of the
procedure must be the name of the file or record in which the
procedure resides. '

60460270 01

3-4
CDC - SOFTWARE ENGINEERING SERVICES
’ : 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.2 SES SYNTAX

O RSP0 BE N O B PP CO B0 RO D B PO RO O PO P S B BO B0 PP PO S BT K0 0O PO B B D 0O 80P PO 0O B0 PO PO TP 00 P8 B9 PO 3 8D DSBS O N PO PP 5O PO 8O PO BI 8O NS 00 B0 80 0 02 00 80

3.2 SES SYNTAX

This section provides a short and informal dntroduction to the
syntax of the SES processor. A more formal and complete syntax
definition is provided at the end of the document. ‘

The discussions on syntax.use the characters [and 1 to 1indicate
that an item is optional.

3.2.1 DIRECTIVES

To determine if a Line of a procedure is a dijrective, the SES
processor goes through the following steps:

1. Any leading spaces on the Line are ignored.

2. SES looks for a variable called DIRCHAR (for DIRective
CHARacter) in its tables (we'll discuss variables later). If
DIRCHAR is undefined, or if DIRCHAR is defined but contains a
value other than a single character which dis a "visible
delimiter character" (space 1is not considered a visible
delimiter), then SES will use the reverse slash (\) as the
directive character, otherwise SES will use the character in
DIRCHAR as the directive character.

2. If the (now) first character of the Lline 1is equal to the
directive character, then the Line is assumed to be either a
directive or an assignment statement, and is processed
accordingly.

3.2.2 VARIABLES
Variables are one thru thirty-one characters in. length, must

start with a Lletter, and may contain only letters, digits, or the
characters _, $, 3, or #.

60460270 01

3-5
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.2.3 NUMBERS

" 0 2000 0 40 00 10 B0 PO 20 P8 00 40 B0 20 O 00 0 00 B PO PO GO 0 D B B PO P PO PO PO B 8O B O B PO B N RO B9 1O BS PO PO B0 B 0O B DO 8O 5O B P8BS PO PO PO B0 I PO PO 4P 60 8 WS

3.2.3 NUMBERS

SES only handles integers, there are no reals. Integers are
represented 1internally by 48 bit quantities. Thus integers range
between =2%%47-1 and 2%%47-1.

Numbers are normally assumed to be decimal, but bases other than
decimal may be represented by appending a base specification to the
string of digits. The base may be any base between 2 and 16, but
generally, the useful bases are 2, 8, 10 and 16, and any others are
sort of weird. For example:

4975 is a decimal number
377475(8) is an octal number
9A4L6(16) is a hexadecimal number

note that hexadecimal numbers (and in fact any base requiring use of

the Lletters A thru F) must start with a decimal digit (even if it's
2zero), to avoid confusion with names.

3.2.4 STRINGS

Strings are arbitrary strings of characters enclosed in single
quote marks, for example:

'Just the place for a Snark,'the Bellman cried.'

to represent a string quote inside a string, you must code it as two
string quotes:

'The time is Seven 0''Clock’

two juxtaposed string quotes, that is, '', represent a null, or
empty string.

3.2.5 BOOLEANS

Strictly speaking, there aren't really booleans in SES. However,
SES has the predefined variables TRUE, YES, FALSE and NO. The first
two represent the value TRUE, and the second two represent the value
FALSE. They are conformable with integers, in that TRUE or YES are
equal to one (1), and FALSE and NO are equal to =zero (0).

60460270 01

3-6
CDC - SOFTWARE ENGINEERING SERVICES
: 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.2.5 BOOLEANS

Otherwise, any non zero value is assumed to be TRUE, and a =zero
value is assumed to be FALSE. -

3.2.6 FUNCTIONS

SES provides many built in functions. A function reference
follows the standard form, that is:

function_name (list_of_arguments)

where "function_name" is the name of the function to be referenced,
and '"list_of_arguments" 1is the argument(s) to the function.
Elements of an argument Llist are separated from each other by commas
or space(s) or both.

3.2.7 EXPRESSION EVALUATION

SES can evaluate expressions containing mixed mode integer,
string, boolean and function references. Implicit type conversion
is performed as required.

3.2.8 COMMENTS

A comment is any arbitrary string of characters enclosed between
double quote marks ("). The comment may not itself contain comment
quotes. Comments may appear anywhere that a space may appear, and
in fact is syntactically equivalent to a space.

Comments may not appear before the directive character of an SES

directive Line, nor after the continuation signal on lines which are
being continued.

60460270 01

3-7
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.2.9 CONTINUATION LINES

P N L L L L L L T Y T T T X T P R X Y Ry Y Y N oy Y Y Sy S Py Sy S Y Y

3.2.9 CONTINUATION LINES

Any SES directive or call Line may be continued by placing a
continuation signal (..) at the end of the Line to be continued. A
continuation signal is defined to be two or more contiguous
periods. The total length of an SES call Line may not exceed 2000
characters, while the Length of a directive Line may not exceed 256
characters.

60460270 01

3-8
CDC - SOFTWARE ENGINEERING SERVICES
' ‘ 13 DEC 83
SES Procedure Writer's Guide ‘ REV: 1
3.0 BASIC SES PROCESSING
3.2.10 SUBSTITUTION

O P P PO O PP PP O O PO EO PO PO TP T PO P D PO S PO OO 0O B B BD B 08 RO DO 0D 5D D 08 B8 8O PP PO PP PSP T PO OO B SO B0 80 B9 PO B9 SO B8 PO 60 59 0 0P 8O B B0 PO 1O PO P 4O PO O

3.2.10 SUBSTITUTION

A major function of SES 1is to substitute parameters into
procedures. In actual fact, SES can substitute elements other than
parameters, and this latter aspect is covered first.

The basic substitution mechanism when processing a Lline of a
procedure is this:

1. SES Llooks for a variable SUBCHAR (for SUBstitution CHARacter)
in its tables (we'll discuss variables later). If SUBCHAR is
undefined, or if SUBCHAR is defined but contains a value other
than a single character which dis a "visible delimiter
character” (space is not considered a visible delimiter), then
SES will use the ampersand (&) character as the substitution
character, otherwise SES will use the character in SUBCHAR as
the substitution character.

2. If SES finds on a Line, the substitution character followed by
a name followed by the substitution character, then SES
follows the procedure below:

a) SES first searches for a parameter of the specified
name, and if such a parameter is not found, then SES
searches for a variable of the specified name. If the
parameter or variable is defined, then the value of the
variable, or the value of the parameter is inserted
into the output text at that point, without the
substitution characters.

b) If SES finds neither a parameter of the specified name,
.nor a variable of the specified name, then the -
substitution characters are stripped off and the
literal character string which comprises the name is
inserted into the output text.

60460270 01

3-9
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.2.10 SUBSTITUTION

PO O PO PO T PO PO PO PO PO PO PO B D RO B SO B0 B 8D RO B FO B0 FD 9 F3 TP 8P D D 9 SO B B3 SO NS PO KO B PO B0 PO 00 B3 SO 0D B PO PP 0O B PO BO PP FO PS BD PO O 8O WD PO KO 80 NS 8O 09

For example, supposing that the substitution character is &, and
that the name YIN is associated with the value YANG.

 ——

| . | |
| Input | Output Explanation |
| | I
+ + +
I I ‘ |
REWIND(&YIN&)	REWIND(YANG)	this example is straightforward.
	The value YANG is simply	
	substituted for the name YIN.	
	I	
	:	
REWIND(&MIN&)	REWIND(MIN) since MIN wasn't defined, then	
'	the substitution characters are	
	simply removed.	

- —

60460270 01

3-10
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.3 PROFILES

T O P B PP PO RS B B PO B0 PO BB 2O B PO PO B0 PO O RO 8 D PO BD D B B PO B8 B P B0 88 P 00 O B0 B3 D B0 RO BB PO FD 09 8P PO D KO GO B BP PO K 8O P NP BD PY PO N PV O PP NP PO PO 1O

3.3 PROFILES

A PROFILE is an important, albeit optional, component of the SES
system. Any wuser may choose to establish a PROFILE in their
catalog. PROFILE follows the same rules as any SES procedure, that
is, the name of the file must be PROFILE, and the first Line of the
profile must be the word PROFILE. From there on, the profile may
contain just about any SES command. The most important aspect of
the profile is the SEARCH directive, explained in the next section.

Typically, the types of things that a user may place in the
profile would be:

o a command to set a variable called PASSWOR to the user's
password. Procedures which optionally run as batch jobs can
then get the user's password without having to be told it on
the SES control statement.

o commands to establish defaults for Llibrary names (for the
source code and Llibrary maintenance procedures), and other
data for various procedures.

o SEARCH directives to establish a search order for procedures.

It is possible for a user to have more than one PROFILE, and

select which one to use by coding the PN or P parameter on the SES
control statement, for example.

SES,PN=alternate_profile.procname List_of_parameters
allows the user to use the file "alternate_profile" as the PROFILE
for the duration of that procedure catl. Also, a wuser may use
someone else's profile by coding the PUN or PU parameter, for
example:

SES,PUN=profile_owner.procname List_of_parameters

allows the user to access the profile belonging to "profile_owner”.
0f course, the PN and PUN parameters may be used together.

60460270 01

3-11
CDC - SOFTWARE ENGINEERING SERVICES
‘ 13 DEC 83

SES Procedure Writer's Guide REV: 1

3.0 BASIC SES PROCESSING
3.3.1 SEARCH DIRECTIVE - ESTABLISH LIBRARY SEARCH ORDER

O PP P PO O BS BO B PO O TO PO RO B8 PO O 5D P O D PO 00 BB PO PO B D S B3 5O PSS 8D PO B0 PP 0D 8D SO P8 B 8D PO B PO B0 B 8O PO B0 PO D PP PO P T NP O FE 00 BH PO PO N PO 80 09

3.3.1 SEARCH DIRECTIVE - ESTABLISH LIBRARY SEARCH ORDER
The SEARCH directive allows a user to establish, within PROFILE,
the names of libraries to search when locating a procedure, and also
the user names in whose catalogs those procedure Llibraries reside.
The general form of SEARCH is:
\ SEARCH search_spec, search_spec.......
where "search_spec" is in the form:
user_name
or
(Library_name, Library_name....., user_name)
The first form indicates that the Library name contained 1in the
predefined variablte SESLNAM is to be searched for in the catalog of
the user specified by "user name'". The second form gives a list of

Library names, with the Last item in the list being the user name in
whose catalog those libraries may be found.

60460270 01

3-12
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.4 LOCATING A PROCEDURE

O O D PO B PO B B0 PO PO PO P PO P P O PO D B O P B BP NP OO PO RS 8O BRSPS RS 8O BO PO PO PP TS B 08 B0 PO B0 B9 PO FO B 0O B B 4 B S B0 B0 RO P B PP B PO B NS O S0 88 ¥ F B9

3.4 LOCATING A PROCEDURE

SES performs its search for a given procedure according to well
defined and consistent rules. Basically SES has three methods of
specifying how a procedure is to be located. SES has an internal
table which contains the following data:

+

Y Y
h h

Library_name | user_name
Library_name | user_name
etc -

| etc. | |

etc.

-
+

Given that the table may be set up by one of three different
methods which are explained in more detail in the sections
following, the procedure that SES follows to locate a procedure is:

1. If there is a local file of the "procedure_name", whose first
line is "procedure_name", then SES uses that file as the
procedure.

2. SES searches the catalog of the user whose user name appears
as the first entry in the table, for a file of name
"procedure_name", whose first Lline is "procedure name". If
such a file is found, then SES uses that file as the
procedure.

3. For each entry in the search table, SES searches for a Library
of name "library name" in the catalog of the corresponding
"user_name", and searches that Library (which must have a
directory) for a TEXT record of name "procedure_name". If SES
eventually finds such a record, then SES uses that record as
the procedure. '

4, If the search 1is unsuccessful, then SES 1issues an error
message

procedure_name NOT FOUND

60460270 01

3-13
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.4 LOCATING A PROCEDURE

The next three sections provide a more detailed explanation of
the methods by which SES has its search table set up. The methods
are basically the default, the user name specified on the SES
control statement, and the SEARCH directive.

3.4.1 DEFAULT ORDER OF SEARCH

When SES is called, it sets up the following data in its search
table:

&SESLNAM&	user_name
&SESLNAME	&SESUNAME
This table is the normal default for SES. "user_name" is the

user name of the currently logged in user.

"“SESLNAM" is a predefined variable which contains the name of the
SES procedure Library NAMe. "SESUNAM" 1is a predefined variable
which contains the SES User NAMe. There will be a more detailed
section on predefined variables later in the document.

3.4.2 SEARCH SPECIFIED ON CONTROL STATEMENT

When the user types the SES control statement, he may specify via
the UN or U parameter of the SES program, which user's catalog to
Look in for the procedure specified by the call. For example:

SES,UN=user_name.procedure _name list_of_ parameters
specifies that the procedure "procedure_name" is to be searched for
only in the catalog of the user "user_name" (if the procedure is not

already Llocal). In this case SES modifies its search table to
contain only the following data:

60460270 01

3-14
CDC - SOFTWARE ENGINEERING SERVICES
' _ 13 DEC 83
SES Procedure Writer's Guide REV: 1
3.0 BASIC SES PROCESSING
3.4.2 SEARCH SPECIFIED ON CONTROL STATEMENT

D D O D GO B PO RO O PO PO P FO RO FO FO 08 PO 00 PO B 4O B0 B PP 8O P B 8O S GO 60 8O PO B B FO G B 09 PO TO 8O KD 6O 8O 8O B TS DO B B 0 B0 BE PP SO 8O 4D 6O PO 8P 29 0 D 80 8O WS

&SESLNAME | user_name

+— +
+ - 4
+— +

where ''SESLNAM" contains the SES Library NAMe as before, and
"user_name" 1is the wuser name specified on the SES control
statement. It is also possible to tell SES, via the LIBPFN or LPFN
parameter, the name of the Llibrary to be searched for the
procedure. For example:

SES,LPFN=Lib_name.procedure_name List_of_parameters
specifies that the procedure "procedure name" is to be searched for

only in the library "lib_name”. In this case SES modifies its
search table to reflect the following data:

-+

Lib_name user_name

+— +
+— +

where "user_name" is the user name of the current user, and
"lib_name" is the Llibrary name specified on the SES control
statement. Of course, the UN and LIBPFN parameters may be used
together.

3.4.3 SEARCH ORDER SPECIFIED VIA SEARCH DIRECTIVES
The third method of specifying the order in which to look for the
procedure is via SEARCH directives 1in the user's PROFILE. For
example, supposing that the user's PROFILE contains the following
SEARCH directive: ‘
\ SEARCH (HOLMLIB,JIMLIB,HG74), AM74, JFO3, (ANDYLIB,Eb73)

in this case SES would modify its search table to look Llike this:

60460270 01

3-15
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide . REV: 1
3.0 BASIC SES PROCESSING
3.4.3 SEARCH ORDER SPECIFIED VIA SEARCH DIRECTIVES

—+

I HOLMLIB I HG74
: JIMLIB { HGT4
: &SESLNAME I AM74 |
} &SESLNAME ; JFO3
i ANDYLIB i ED73

+—

Note that SEARCH directives are ignored 1if the UN or LIBPFN
parameters were specified on the SES control statement.

60460270 01

3-16
CDC - SOFTWARE ENGINEERING SERVICES
: 13 DEC 83

SES Procedure Writer's Guide i REV: 1

B PO O PO PO PO PO O PO PO PO O G0 PO BO SO B Y PO 5D PO O PO PO PO B B O T G0 PP 8O P PO 0O PP PO KO 0O O B2 B PO 09 KO PO BY PO 00 89 49 PO 03 00 0 00 20 B0 0 00 PO 20 P9 50 0 00 O

3.0 BASIC SES PROCESSING
3.5 PROCESSING A PROCEDURE

P D B PO PO PG PO PO B0 PO B 00 OE D O PO 00 PO PO PO SO B 8O PO TS 5O O P9 08 PO TS 59 P PO 8 8 PO IO BE PO 59 SO PO P K9 PO 1D PO 0 BV BD SO O 8O PO PO 85 SO B KO 0O P 8P O N B9 NS NS

3.5 PROCESSING A PROCEDURE

Now assuming that SES is able to locate the required procedure,
then the procedure is processed, at least in principle, on a one
pass, Line by line basis--we say "in principle"”, since in fact
because of WHILE (looping) directives, a given Line may be processed
many times. Also each Line may be scanned twice. Leaving all that
aside for the nonce, the processing for each Line of the procedure
goes like this:

1. The Lline 1is scanned by the substitution processor. Any
substitutable elements are processed at this stage, and the
replacement text inserted into the line at that point. This
process continues until the whole line is scanned.

2. The Lline is then examined to see if it is an SES directive (or
assignment statement), and if so it is processed accordingly.

3. If the line is not an SES directive, then that Line is written

to the output stream, whatever that happens to be at the
time.

60460270 01

4-1
CDC - SOFTWARE ENGINEERING SERVICES ‘
' 13 DEC 83
SES Procedure Writer's Guide REV: 1

4.0 EXPRESSION EVALUATION

DO P PO O PO PG D PO P 0 0D 10 D B D PO FD PO PO PO PO PO PP FO NO FP PO O D ED PO PO D D FO 1D D 5D B 1O 0 63 PO T O SO S NP KD O B9 D B9 PO 8O NO PO B9 FO PO FO KO PP T PO PO N0

4.0 EXPRESSION EVALUATION

Although, as we said before, the principal function of SES is to
substitute parameters into procedures, the expression evaluator of
SES is a sufficiently important aspect of processing SES procedures
that it and its related topics are covered first, before we ever get
to explaining parameters and parameter substitution. By starting
with the expression evaluator, you'll find it easier to understand
parameters when we get to them.

4.1 ASSIGNMENT OF EXPRESSIONS TO VARIABLES

Within the body of an SES procedure it 1is possible to have
variables. Variables are used for many purposes, such as control
variables in WHILE -Loops, building character strings, etc, etc.

If you assign a value to a variable which was previously
undefined, then SES defines the variable for you, and initializes it
to the value of the expression to the right of the equal sign. If
the variable was already defined, then its new value becomes the
value of the assignment expression.

Variables within SES may be of type NAME, INTEGER, STRING, or
BOOLEAN. When a variable is initialized, it takes the type of the
initialization expression. Upon subsequent assignment to the
variable, 4t takes the type of the expression to the right of the
equal sign. For example, here are four variables being declared:

\ stringy = "MOZZARELLA CHEESE'

\ number = 547(8)

\ logical = TRUE

\ aname = fred

In the example, the first variable is of type STRing; the second

is of type NUMber (there 1is no type REAL); the third is of type
BOOLEAN; and the fourth is of type NAMe (it is assumed that fred was
not previously defined as a variable). Generally speaking, the
expression evaluator performs implicit type conversion, so that
variables of different types may be mixed within an expression.

60460270 01

4=2
CDC - SOFTWARE ENGINEERING SERVICES
. 13 DEC 83
SES Procedure Writer's Guide REV: 1

P D P B PO RS PO B P BO PO PO PO PO PO PO PO PO 00 0D 8 8O 00 0 8O 80 P T BO O O B PO B8O B 5O PO P B0 PO U KO SO SO TS 80 B0 T SO PU P 8O SO 60 B9 6O 89 8O 8D P O 8P 0O 80 P 8O

4.0 EXPRESSION EVALUATION
4.2 OPERATORS IN EXPRESSION EVALUATION

O PO O P 0 PO PO B0 B0 G0 PO OO 00 TS PO 0O PO GO BD PO PO PO 8O P B BY KD PP 6O O BD NP 0 B0 6O 69 B0 B0 B0 GO 08 8O SO KO DO B RO B B0 NP PO 8O PO O N 0 B PO 8D B0 8P 9 B 8O SO 8O 69 #P

4.2 OPERATORS IN EXPRESSION EVALUATION

Before we go further into expression evaluation, we'll show the
operators that may be used 1in expressions. They fall into the
classes of arithmetic, string, relational and Llogical operators.
The table below also indicates the relative priority of the
operators.

| Operator | Prece- | Operator | Comments
| Class | dence |
+ + + + +
| Arithmetic | 1 *k Exponentiation |

2 " Multiply

| / Divide
' /! Modulo or Remainder

|

3 + Add or Monadic Plus

- Subtract or Monadic Minus
+ + + + +
| String | 4 | ++ | string Concatenation |
+ + + + +
| Relational | 5 | = | Equal To |
‘ = Not Equal To

’ <> Not Equal To

| | > | Greater Than
\ = Greater Than or Equal To
< Less Than
| | | <= Less Than or Equal To |
+ + + + +
Logical - 6 NOT Logical NOT or Negation
7 AND | Logical AND
| 8 OR -] Logical OR

| | XOR | Logical Exclusive OR |
+ + + + +

Notes:

o Operators at the same precedence Level are processed from
left to right.

o The right operand of the exponentiation operator must be
greater than or equal to zero.

60460270 01

4-3
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83

SES Procedure Writer's Guide REV: 1

O PSP 0 PO PO B B RO B PS D PO NS PO B PO PO D PO B0 PO PO P B0 B B0 TP B0 B PO B PO PO D PO B8 P PO BS PO P B0 B 0O O B3 O S RO KD b P RS O B SO 0 PO 9 5O 5O PO NS NP 49 89 88

4.0 EXPRESSION EVALUATION
4.2 OPERATORS IN EXPRESSION EVALUATION

O B PO D PO PO PO B PO PO TP PO PO PO PO PO PO O 5O 0O D PO B2 8O PO PO 8O B PP BB BU IS 8O 8O B B0 SO 5 B B9 D B B PO 8D B B8 B9 RS O 0O PO NS B O P B NS BF PO BY B0 B0 PO SO P9 B9 PO

o The right operand of the division and modulo operators must
not be zero.

o Processing of relational operators is as follows:
- If both operands of a relational operator can be
converted to integers, they are so converted and then

compared; otherwise both operands are converted to
strings (if necessary) and then compared.

60460270 01

b=4
(o)1 -.SOFTNARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
4.0 EXPRESSION EVALUATION
4.3 EXAMPLES OF ASSIGNMENT STATEMENTS

B 0O 00 B0 PO B0 PO B0 K B0 B2 PO 00 T PO BO B PO PO 0O D 5D PO PO 3 B PO O 0D B8 TP BO B9 PO TP B0 S PO 8P B9 FD B0 FD F 8O 00 VS 55 89 B 8D PO 8P b 8O B 0O B NP PO 8O 0O N VO P9 PO 89 00

4.3 EXAMPLES OF ASSIGNMENT STATEMENTS

In this section we're going to look at an example of the use of
the expression evaluator, showing how substitution of names works in
conjunction with assignment. This example is from the SES MATH
procedure, which acts as a quick and dirty desk calculator. At the
start of the MATH procedure, the following chunk of code may be
found. '

\ curnamq = "VALUE' “wq"
\ &curnamq& = 0 L
\ MSG '&curnamq& = ' ++ &curnamq& 3"
etc.
etc.
etc.

Note how we made use of comment quotes in the example in order to
number the Lines of interest to the discussion. Now the way this
works is that line 1 sets a variable "curnamg" to the character
string '"VALUE'. When Lline 2 is processed, the substitutor Looks for
something called "curnamq", and finds the string 'VALUE', so that by
the time the assignment statement s processed, the Lline will
actually read

\ VALUE =0

so the variable VALUE gets initialized to zero. Now Lline 3 s
scanned by - the substitutor, and when substitution is finished, the
Line will Look Llike

\ MSG 'VALUE = ' ++ VALUE

now the expression evaluator is called dinto play to process the
argument to the MSG directive. MSG wants its final argument in the
form of a string. The expression evaluator finds that the first
part of the expression is indeed a string. Then it finds that the
second part of the expression calls for a string concatenation of
whatever 1is in the variable VALUE. Name Llookup finds that the
variable contains the value 0. The expression evaluator converts
the 0 to a string and concatenates it to the previous string in the
expression. Finally the MSG directive outputs to the user a message
that says

VALUE = 0
60460270 01

) 5-1
coC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

O RO D P RO D PO FO O PO 10 PO B B0 PO D D PO PO BD 00 B BO RO D PP 05 5D 0O B9 PP B9 B0 8O B0 B BO B0 4O B0 B O 08 PO 09 PO B B8 PP PO B0 P 50 BO 1S 8D PO 8O B0 B PSP PO 8P B0 40 59 89

5.0 FUNCTIONS

O P O PO PP 0D 1 B P O PO BD PO PO B D GO BE PO B0 PO 08 PO PO PO R 8D 8 00 B0 B FS B0 B8 PO B PO B B O PO GO PO 5D 0O 8O B8 KO B0 8P B0 NS 80 80 89 80 9 80 0 00 00 80 00 00 20 00 00

5.0 FUNCTIONS

"SES has a number of functions for use by the expression
evaluator. These functions are explained in detail in the following
sections. First there's a brief overview of the functions.

UNIQUE génerates unique seven character strings in
the form of labels or filenames.

Attribute Testing ~ There are functions that test whether a
variable 4is a name, number, string or
operator, or whether an arithmetic

expression is legal.

String Handling string handling functions are provided by
SUBSTR, which returns a substring of a
Larger string, STRLEN, which returns the
Length of a string, GENSTR, which restores a
parsed string to its original format, and
functions to raise or Llower the case of
alphabetic characters.

Number Conversion the functions OCT, DEC and HEX perform
integer to string conversion.

DATE, CLOCK and TIME these functions returns the date and time 1in
various formats as specified by their
arguments.

-VALEXPR this function can be used to VALidate and/or
eVALuate an EXPRession contained within a
string variable.

TOKEN ‘ this function reads the next valid SES token
‘ (syntactic unit) from a string variable.

60460270 01

5=2
CDC - SOFTWARE ENGINEERING SERVICES ‘
: 13 DEC 83
SES: Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.1 UNIQUE - GENERATE UNIQUE NAMES OR LABELS

000 PO PO PO 0 O O PO PO PO O D D O S RS BD 8O PP 00 PO B0 0D B D B P O PO B0 B D D B8 B9 B B3 B D B B 8D B0 KD PO B O KD B 0O RO PO PO P DO KO PO B0 B8 B0 88 KO P 89 0O P9

5.1 UNIQUE - GENERATE UNIQUE NAMES OR LABELS

This function is used by most of the SES procedures to generate
unique names for intermediate scratch files, unique names for
programs invoked by the SES procedures, and unique labels (in those
rare cases where labels are needed). They are explained in detail
below.

UNIQUE (NAME) returns as a value a seven character alphanumeric
string, starting with the letters ZQ. The name
is guaranteed to be different from the name of
any file currently assigned to the running job
from which this SES procedure is being called.

UNIQUE (LABEL) returns as a value a seven character alphanumeric
string starting with the characters 9Q.

The UNIQUE function repeats about every seventeen hours.

As an example of how this is used, the following is a short
extract from the SES COPYACR procedure.

\ copyacr = UNIQUE(NAME)
\ Llibrary = UNIQUE(NAME)

EXTRACT(©acr&=COPYACR/T=ABS ,LFN=&Library&, L=PROGLIB, UN=&SESUNAME)
©ac r& (HERE, THERE)

The two variables at the top are initialized to unique names, so
that when those names are used, they will not conflict with any file
that the user may have assigned to the job.

It is good practice to use unique names for files and programs

wherever possible, because then the user does not have to remember
which procedures use which filenames.

60460270 01

5-3
CDC - SOFTWARE ENGINEERING SERVICES
: 13 DEC 83
SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.2 TESTING ATTRIBUTES OF EXPRESSIONS

5.2 TESTING ATTRIBUTES OF EXPRESSIONS

The functions described below are mainly used to test the type of
an expression. NAM, NUM, and STR return true if the argument is of
type NAMe, NUMber or STRing, respectively. DEF returns true if its
argument 1is DEFined, DEFF returns true if its argument is a DEFined
Function or a symbolic operator. OPR returns true if 1its argument
is an OPeRator. VALEXPR checks and computes a VALid EXPRession.

5.2.1 NAM - TEST FOR NAME

The NAM function returns true if its argument is a NAMe. The
general form of NAM is:

NAM (expression)
if "expression" evaluates to something that can be converted to a

name, then the NAM function returns TRUE, otherwise 1it returns
FALSE. For example:

\ test = NAM (FRED)
"\ test = NAM ('ABC' ++ 'DEF")
\ test = NAM ('JUNK' ++ TRUE)

a return the value TRUE. In the first example, FRED is definitely
a name, in the second example, the result of concatenating the two
strings results in a value which can be converted to a name, and in
the third example, the result of the expression 1is the string
YJUNK1', which can also be converted to a name. So in each case,
the value of variable '"test" is TRUE. However, the tests:

\ test = NAM (12345)
\ test = NAM (TRUE)
\ test = NAM ('123ABC')

all fail, since 12345 is not a name but a number, TRUE converts to
the value 1, which 1is also not a name, and '123ABC' is a string
which cannot be converted to a valid name.

60460270 01

5=4
CDC — SOFTWARE ENGINEERING SERVICES
v 13 DEC 83
SES Procedure Writer's Guide - REV: 1
5.0 FUNCTIONS ‘
5.2.2 NUM - TEST FOR NUMBER

B 0 O 10 00 O PO PO PO 5O PO PP 0O 00 PP O FO PO K S PO KO 0O PP PO 0O NP PO PO BP B0 I S 1O P 02 80 B0 0O 0 B 0O B0 B D 80 59 TV G0 SO P S P BV O PO 0O B PO B B0 BY 08 P PO 9 0O 8

5.2.2 NUM - TEST FOR NUMBER

.The NUM function returns true if its argument is a NUMber. The
general form of NUM is:

NUM (expression)
if "expression" evaluates to something that can be converted to a

number, then the NUM function returns TRUE, otherwise it returns
FALSE. For example:

\ test = NUM (497500)
\ test = NUM (377 ++ *(8)")
\ test =

NUM (OABC ++ TRUE ++ '(16)")

all return the value TRUE. In the first example, 497500 is
definitely a number, in the second example, the result of
concatenating the two strings results in a value which can be
converted to a number, and in the third example, the result of the
expression is the string '0ABC1(16)', which can also be converted to
a number. So in each case, the value of variable "test” is TRUE.
However, the tests: ‘

NUM (FILENAM)
NUM ('Haddocks Eyes')

\ test
\ test

both fail, since FILENAM is not a number but a name and the
character string 'Haddocks Eyes' cannot be converted to a valid
number.

5.2.3 STR = TEST FOR STRING

The STR function returns true if its argument is a STRing. The
general form of STR is: :

STR (expression)
if "expression" evaluates to something that can be converted to a
string, then the STR function returns TRUE, otherwise it returns
FALSE. For example:

STR (THROCKS)
STR (735725(8))

\ test
\ test

60460270 01

5-5
CDC -~ SOFTWARE ENGINEERING SERVICES
' ’ 13 DEC 83
SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.2.3 STR - TEST FOR STRING

~~~~~ B 0 B0 B0 PO P 0 B0 PO PO P N TP 10 BO PO PO B0 N0 PO O PO PO B PO PO SO B B 5O 5D D 20 0O O B B9 PO 03 08 8P BO B B0 0O D B B8 B O AP S O KO 8O O B B0 8O B9 NS 08 89

\ test = STR ('Nurdle yer Cordwangler')

all return the value TRUE, since any of those things, names, numbers
and strings can indeed be converted to a string. In fact it looks
as if you can convert anything at all to a string, and if this is
the case, what's the use of the STR function? Well as you've
probably guessed, Life's not as simple as all that, and there is in
fact one thing that cannot be converted to a string, and that is an
omitted value. We'll talk about this a bit more when we describe
parameters later in the guide.

5.2.4 DEF - TEST FOR DEFINED VARIABLE

DEF stands for DEFined, and its aim in life is to return TRUE if
the name specified as its argument is deined as a variable. The
general form of DEF is:

DEF(name)

where "name" is the name of the thing that you want to know about.
The "name" argument to DEF may not be an expression, only a name.

Note: that while SES is in operation a vast quantity of variables
get defined, other than those that the procedure writer may define.

The List of predefined variables 1is given at the end of this
document.

5.2.5 DEFF - TEST FOR DEFINED FUNCTION OR OPERATOR
DEFF stands for DEFined Funcfion, and it returns a true value if
the name given as its argument is any of the SES function names or
mnemonic operators. The general form of DEFF is:
DEFF(name)

where 'name" is the function or operator name that you want to test
for. The argument to DEFF may not be an expression, only a name.

60460270 01



5-6
CDC - SOFTWARE ENGINEERING SERVICES
: ‘ 13 DEC 83

SES Procedure Writer's Guide REV: 1

0O P 00 20 10 O PO 0O TS O PO PO T PO BI B PO PO 0O D DO BO O B D PO B0 B O S B BO OO B9 PO BO D SO O P8 KD D B B PO D 5D P B8 O FP 6D NO GO B 8O B 8D NS B B 0O 8O B8 B0 B0 89 W

5.0 FUNCTIONS
5.2.6 OPR - TEST FOR OPERATOR

B e L L T P e Y Ty oy oy Y L LY Y T

5.2.6 OPR = TEST FOR OPERATOR

OPR tests for its argument to be an OPeRator or delimiter. The
general form of OPR is:

OPR(string_expression)

OPR reads the first token from the string given by
"string_expression", and, if the token is a valid SES token, then
OPR returns TRUE if the token is an operator or a delimiter other
than an operator. A list of the valid SES tokens is given in the
appendix on SES syntax.

60460270 01



5-7
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.2.7 VALEXPR - CHECK AND COMPUTE EXPRESSION

5.2.7 VALEXPR = CHECK AND COMPUTE EXPRESSION

The purpose of VALEXPR is twofold. Firstly it is intended to VAL
idate an EXPRession, to see if it can be evaluated, and secondly, if
the expression is computable, then VALEXPR eVALuates the
EXPRession. The raison d'etre of VALEXPR is that it is possible to
read data from a file into a string variable, and then evaluate that
string as an expression. The general format of VALEXPR is:

VALEXPR (result_variable, input_string_variable)

where '"result_variable" is the name of a variable to receive the
result of the expression specified by the string in the variable of
name "input_string_variable". VALEXPR returns a value which is
either the null string, which dindicates that the expression was
valid, in which ~case the result of the expression is 1in
"result_variable", or else the function value is a character string
which 1is the SES error message indicating what was wrong with the
expression. ~

As an example of VALEXPR, we'll show another extract from the SES
MATH procedure. The relevant pieces of the procedure are given
here, with the interesting Line numbers in comments.

\ ACCEPT INTO='stringq',PROMPT='&curnamq®='++8curnamg®& " 1 "

\ tokstsq = VALEXPR (resultq, stringq) "

2 ”
\ IF tokstsq /= "' THEN .
\ MSG tokstsq A " o4 m
etc.
etc.
etc.

Line 1 reads a string from the user into the string variable
"stringqg". Further down in the procedure, after a Lot of other belt
and braces checking, the VALEXPR call at Lline 2 places the result of
the expression evaluation in "resultq" and returns as a function
value a character string which is checked at Line 3 to see if it's
the null string. If it idsn't, then the string in "tokstsq"
represents an error message which is output to the user at line 4.

60460270 01



5-8
CDC - SOFTWARE ENGINEERING SERVICES
' ' 13 DEC 83

SES Procedure MWriter's Guide "REV: 1

OGP PO O B BD B P 0D PO D BP0 PO PO 5O P PO PO 1D B OO PO PO TP B 8O B0 8P 9 B0 B3 D BP B B0 B 8D 0O B0 KD O BO P O B PO O 00 8O 0P PO P B9 D RS 6O B3 B P B B N B0 B 8O P 80

5.0 FUNCTIONS
5.3 STRING HANDLING

D S0 OO PO P B0 0 0 SO B D B0 0D D B 5O I S8 5O BB D O £ 3 8O S 8O B B3 PO PO SO 0O P B9 RO PP SO SD BI BD FP PO 08 GO TS 03 O B B9 D KO B9 8O B8 B BY GO KD S D FO BP 8D 6 8O 69 80

5.3 STRING HANDLING

The functions described below allow you to massage strings. The
functions described are STRLEN, to find the length of a string,
SUBSTR, to extract a part of a string, GENSTR, to regenerate a
string, and GENUPR and GENLOWR to raise or Llower the case of
alphabetic characters in a string.

5.3.1 STRLEN - DETERMINE LENGTH OF STRING

STRLEN stands for STRing LENgth, and it returns as a function
value, the lLength of its argument. The general form of STRLEN is:

STRLEN(string_expression)

where "string_expression” is the character string of which you want
to find the length. For example,

\ game = 'DWILE FLONKING'

\ size = STRLEN (game ++ ' AND NURDLING')

the STRLEN function call has as its argument a string expression
which should result in a string having the value
'DWILE FLONKING AND NURDLING®

and after evaluation is complete, the variable "size" should contain
the value 27.

60460270 01



5-9
CDC - SOFTWARE ENGINEERING SERVICES '
' 13 DEC 83

SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.3.2 SUBSTR = EXTRACT SUBSTRING FROM CHARACTER STRING

P Y Y P Sy S T Y Y Y R Y AP R Y R R P Y R Y P L R PR L L L L L X g

5.3.2 SUBSTR -~ EXTRACT SUBSTRING FROM CHARACTER STRING

SUBSTR, for SUB STRing, returns a part of a string from a string
variable. The general format of SUBSTR is: :

SUBSTR(string_exp, integer_exp, integer_exp)

where "exp" stands for "expression". The first parameter of SUBSTR
is the string from which you wish to extract a substring. The
second parameter 1is the character number (starting from one) at
which the substring is to start, and the third parameter is the
number of characters to be extracted from the string. For example.

\ this = "MONEY FOR OLD ROPE'

\ other = SUBSTR(this, 11, 8)

After the substring function has been evaluated, the value of
variable "other" is 'OLD ROPE', and STRLEN(other) returns the value
8.

If you omit the third parameter from the SUBSTR function, then it
returns one character from the position designated by the second
parameter.

If you omit the second and third parameters, then the SUBSTR
function returns the entire string. This doesn't seem to be a lot
of use, and it's a whole lot quicker to just assign the string to
another one.

It 1is- not possible to omit the second parameter and code the
third. If you do such an antisocial thing, you'll get the error
message EXPECTING NUMBER.

If the starting index parameter is given as less than one, it is
(internally) set to one; or 1if the starting index dis given as
greater than the Llength of the string, the starting index is
(internally) set to the larger of the length of the string or one.
The default starting index is one.

If the length is given as less than zero, it is (internally) set
to zero; or if the Length is given as greater than the maximum (80),
it is (internally) set to the maximum. The default length is the
Length of the original string.

Once the starting index and Llength have been determined, the
requested number of characters 1is returned as the function value

60460270 01



5-10

CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide \ REV: 1

L L L L P X L A AL L A 2 L L L L A A L2 L P X Y X P X ¥ 2 X 3 Y ¥ ¥

5.0 FUNCTIONS
5.3.2 SUBSTR = EXTRACT SUBSTRING FROM CHARACTER STRING

O O O 0O PO N0 90 PO O B0 PSSO PD P8 00 T FP PO PO O B SO TP 0O 0D RO FD B9 PO IO O O NS BD 8 TP 08 B T 3 P SO GO PO SO 8P B9 PO 85 89 PO 03 GO N KD B8 PO KO PP PO GO B B 89 63 89 88

(padding on the right with spaces if neccessary).

60460270 01



5-11
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.3.3 GENSTR - REGENERATE A STRING

5.3.3 GENSTR - REGENERATE A STRING

The GENSTR function is used to restore a string. When a string
value is coded for a parameter or in a string assignment, the string
is initially enclosed in single quote marks, and a single quote mark
within the string is represented by a pair of quotes. For example,

\ time = '"Thirteen 0''Clock’

will set the variable time to the string shown. When SES processes
this, the outer quotes are removed, and pairs of quotes reptaced by
single ones. However, 1if this string was to be passed on to the
call statement of another SES procedure, then it must be restored to
its original form, so that eventually SES can crunch it again. So
the function GENSTR, for GENerate STRing is used. The general form
of GENSTR is .

GENSTR(string_expression)

60460270 01



5-12
CDC ~ SOFTWARE ENGINEERING SERVICES
' ‘ 13 DEC 83

SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.3.4 GENUPR - RAISE CASE OF ALPHABETICS

D 0O 00 D PO PO B P B BD SO PO FP PO B FO 8D B D PO O PO OO T 00 FO B 0O O PP 09 BB 00 0D B 8O 8P B0 8O P B3 PO 6D B SO 8O B SO D PO B B B N B 6D NS PP 00 D SO PO NP PO B9 8O N8 B9

S.3.4 GENUPR - RAISE CASE OF ALPHABETICS

GENUPR is used to raise the case of alphabetic chéracters in a
string variable. The format of the GENUPR function is

GENUPR (string_expression)

where '"string_expression” 4is the string you want to process. An
example of GENUPR is shown here in this extract from the SES system
library procedure MATH. The procedure reads a string from the input
file into a string variable "stingq"

\ IF GENUPR(stringg) = "END' OR GENUPR(stringq) = 'BYE' THEN
\ STOP
etc,

etc.

the MATH procedure allows you to type END or BYE to exit from the
procedure, and that 1is what 1is being tested for in the example
above. Since the user may be logged in in ASCII mode, it's possible
for the input to be in a mixture of upper and Lower case, so we use
GENUPR to raise the case of the alphabetic characters.

5.3.5 GENLOWR - LOWER CASE OF ALPHABETICS

GENLOWR . is used to lower the case of alphabetic characters in a
string variable. The format of the GENLOWR function is

GENLOWR (string_expression)

where "string_expression" is the string you want to process.

60460270 01



5-13
CDC -~ SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

nnnnnn R Y Y YR PP Y R Y R A R N P L L L L L L L L L L Y L L ]

5.0 FUNCTIONS
5.4 CHARACTER HANDLING FUNCTIONS

5.4 CHARACTER HANDLING FUNCTIONS

The functions in this category can be used to manipulate ASCII
characters which do not have a graphic representation. The
functions are CHARREP which return the character represented by its
integer argument; and INTREP which returns the finteger
representation of its character argument.

5.4.1 CHARREP - CHARACTER REPRESENTATION

This function returns as its value, the ASCII character
corresponding to its argument. The general form of CHARREP is:

CHARREP (integer_expression)
where "integer_expression" must evaluate to an integer between 0
(zero) and 255. For example: CHARREP(15(8)) is the ASCII character
for "carriage return".

If the "integen_exbression" has a wvalue of 128, it will be
translated to a colon. If the value is between 129 and 255, and the
value of CHARREP with this argument is written to a file, it will be
translated to an asterisk.

5.4.2 INTREP -'INTEGER REPRESENTAION OF CHARACTERS

This function will return as its value, the integer
representation of dits character argument. The general form of
INTREP qs:

INTREP (string_expression)

where STRLEN(string_expression) must be equal to 1 <(one). For
-example:

INTREP ('2%")
has the value 50 or 62(8) or 32(16); and
" INTREP (CHARREP(10))

has the value 10 (i.e. the integer representation of the ASCII Lline
feed character.

60460270 01



5-14
CDC - SOFTWARE ENGINEERING SERVICES ‘
' 13 DEC 83
SES Procedure Writer's Guide REV: 1

OO P P OO PO RO B B o NG D D B PO B PO O RO 0 PO 5O B PO B9 8O T P 65 BS B0 GO 0 NP BB 8O 85 00 BU RO 5D SO R0 8O O K0 55 NS B 8O BD B8 RO BD PSP BE 00 B0 88 B0 00 KO G0 85 N6 B9 09 #O

5.0 FUNCTIONS
5.5 INTEGER EXPRESSION TO STRING CONVERSION

~~~nn--n.n-n-n-~~~-~.~~~n~~~~-~~~ﬁ-~¢'-~~O~0-~u~~bﬂﬁn-n-nnn-nn-tva.--u.

5.5 INTEGER EXPRESSION TO STRING CONVERSION

The functions described below are for converting dintegers to
strings. The functions are O0CT, DEC and HEX, which convert integers
to their OCTal, DECimal and HEXadecimal representations
respectively. None of the functions append any base designators,
that's up to you and your particular application.

5.5.1 OCT - INTEGER TO OCTAL STRING CONVERSION

This function converts an dinteger to its OCTal string
representation. The form of the function is:

0CT(integer_expression)

For example, if the variable "titus" has the value 795, then the
assignment statement

\ groan = O0CT (titus + &)

results in the variable "groan" being set to the string '1437', this
being the octal representation of the decimal integer 799.

5.5.2 DEC - INTEGER TO DECIMAL STRING CONVERSION

This function converts an integer to its DECimal string
representation. The form of the function is:

DEC(integer_expression)

For example, if the variable "mortice" has the value 497, then
the assignment statement

\ tenon = DEC (mortice + 29)

results in the variable "tenon™ being set to the string '526°'.

60460270 01

: 5-15
CDC — SOFTWARE ENGINEERING SERVICES

13 DEC 83
SES Procedure Writer's Guide : REV: 1

~~~~~~ O PO PO TP PO OB D P2 0O O PP PO OO T PP O PO BD PO D B P PO B B N NS 8O RO PO B3 B9 8O PP PO PO 5D 0O 60 08 1S NP PO RS B8 NS B8 8O B0 B PO D B 4O B9 69 O 88

5.0 FUNCTIONS
5.5.3 HEX - INTEGER TO HEXADECIMAL STRING CONVERSION

5.5.3 HEX - INTEGER TO HEXADECIMAL STRING CONVERSION

This function converts an integer to 1its HEXadecimal string
representation. The form of the function is:

HEX(integer_expression)

For example, if the variable "easter" has the value 10138, then
the assignment statement

\ bunny = HEX (easter + 1311)

results in the variable "bunny" being set to the string '2CB9', this
being the hexadecimal representation of the decimal integer 11449.

The HEX function always guarantees that there is a decimal digit
at the start of the character string, since the syntax of
hexadecimal numbers within SES requires that they start with a
decimal digit. If the first character of the resultant string is
not a decimal digit, then SES will place a 0 (zero) at the start of
the string.

60460270 01



5-16
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide . REV: 1
S.0 FUNCTIONS
5.6 DATE, CLOCK AND TIME FUNCTIONS

D OO NP PO P 00 D PO PO OO S PO D BO 0O O B B9 B FO PO PO OF PO B B B0 1 D B0 BD B 0O PO S0 85 SO SO BD B RO 0 6O 8D 8O B B P SO BE PP PP PO PO RO B B9 6O BS B8 SO 8D PO B8 NS B 00 P8

5.6 DATE, CLOCK AND TIME FUNCTIONS
These functions return character strings as values. DATE returns
the current date in a number of formats determined by its argument,

CLOCK returns the time of day in various formats, and TIME returns
information about job and system time.

5.6.1 DATE = CURRENT DATE FUNCTION

DATE returns the current date in any one of a variety of
formats. The form of the DATE function call is:

DATE(format)
where "format" may be specified in one of these ways:

YMD returns the date 1in the form 76/09/08 (AD 1976, month of
September, day 8)

DMY returns the date in the form 08/09/76, the reverse of the
way just above.

MDY returns. the date in the form 09/08/76 (American style -
month first).

DMONY returns the date in the form 8 SEP 76
MONDY returns the date in the form SEP 8, 1976

JULIAN returns the Julian date, 76252 for September 8.

60460270 01



5-17
CDC - SOFTWARE ENGINEERING SERVICES

13 DEC 83
SES Procedure Nr1ter s Guide REV: 1
5.0 FUNCTIONS
5.6.2 CLOCK - TIME OF DAY FUNCTION

5.6.2 CLOCK = TIME OF DAY FUNCTION

The CLOCK function returns the time, so that it is possible to
get NOS to give you the time of day. The general form of CLOCK is

CLOCK(format)
where "format" is one of the following.
HMS returns Hours, Minutes and Seconds, in the form 16:40:19.

AMPM returns the above time in the form 4:40 PM

60460270 01



5-18
CbPC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Gu1de REV: 1

5.0 FUNCTIONS
5.6.3 TIME - SYSTEM AND JOB TIME FUNCTION

B OO PP P S PO RO PO PG PO P PO PO P PO PO O PP B S B 0D PO PP B B2 B B D PO B S TD PO B PO BV SO B N PO B B8 BO B PO B 0O D B0 NP PO PO B0 PO P P PO " 20 0 00 00 10 20 0 20 00

5.6.3 TIME - SYSTEM AND JOB TIME FUNCTION

The TIME function returns information about the system time. The
general form of TIME is:

TIME (format)

where the "format'" parameter is one of the following.

SYS elapsed time in seconds since deadstart.
SYSMS elapsed time in milliseconds since deadstart.
JOoB processing time 1in seconds since the start of this job or

terminal session

JOBMS processing time in milliseconds since the start of this job
or terminal session.

60460270 01



5-19
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

PP RO PO PP D PO PO RS S B PO D PO PO D PO PO RO PP PO 8D 5D B B PP PO 0 B B PO B0 PO O PP PO PO BB B8 PO B D 8O PO P PO 8O B B 8 B0 B0 B 8 09 B0 P9 B0 B PO PO P2 RO KD 4O 2 4O

5.0 FUNCTIONS
5.7 TOKEN - READ SES TOKEN FROM A STRING

B PP PO PO PO PO PO P PO PO PO PO PO PO PO P BE RO B0 RO PO PO 8D 8O PO RO 8D P P D SO B0 O 0D O PO TS O P 1O PO B RS O B B9 PO PE P RS 8O PO NP

5.7 TOKEN - READ SES TOKEN FROM A STRING

TOKEN makes the internal Llexical scanner of the SES processor
available to the procedure writer. TOKEN reads the next SES token
(syntactic unit) from a string variable. The calling format of
TOKEN 1is:

TOKEN(source_string, token_string)

TOKEN reads the next available SES token from the variable
"source_string", and places . that token into the variable
"token_string". TOKEN returns as a value one of the following:

o If the token read from the string is a valid SES token, TOKEN
returns a null (empty) string to indicate that all 1is well.
Note that in  this case, the token 4is deleted from
"source_string", so that you can place calls on TOKEN into a
Loop, and get successive tokens from the source string.

o If the next token 1in the string is not a valid SES token,
TOKEN returns as a value a character string consisting of an
error message indicating what is wrong with the token.

60460270 01



5-20
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.8 EXAMPLE - TIME, TOKEN AND EXPRESSION EVALUATOR

XL Y X L Y P L L 24 0O 00 00 10 PO PO 00 PO PO PO 20 PO PO 0O PR PO PO O PO 00 O O VO PO TP 00 P9 1O T PP TV PO O 8O PO PO FP 20 PO BB L X Y Y )

5.8 EXAMPLE -~ TIME, TOKEN AND EXPRESSION EVALUATOR

The example below is taken from an old version of the SES TIME
procedure. TIME does not give you the time to the exact second,
rather it gives you the time in words to the nearest five minutes.
For example 1if you type SES.TIME, and the time was 11:17:43, SES
would output the time in the form

* QUARTER PAST ELEVEN

Part of the procedure to accomplish this is:

\ sect0 ="' 0''CLOCK'

\ sect1 = 'FIVE PAST'

\ sect2 = 'TEN PAST'

\ sect3 = 'QUARTER PAST®

\ sect4 = "TWENTY PAST'

\ sect5 = "TWENTY FIVE PAST'

\ secté = "HALF PAST'

\ sect? = 'TWENTY FIVE TO'

\ sect8 = 'TWENTY TO'

\ sect9 = 'QUARTER TO'

\ sect10 = "TEN TO'

\ sect11 = 'FIVE TO'

\ h1 ="' ONE®

\ h2 ="' TWo'

\ h3 = ' THREE'

\ hé& = ' FOUR'

\ h5 ="' FIVE'

\ hé6 ="' SIX®

\ h7 = ' SEVEN'

\ h8 = ' EIGHT®

\ h9 = * NINE'

\ h10 = ' TEN'

\ h11 = ' ELEVEN'

\ h12 = ' TWELVE °

\ tiktok- = CLOCK(AMPM) * 4 "
\ junk = TOKEN(tiktok, hours) ="
\ minutes = SUBSTR(tiktok, 2, 2) w3 "
\ hours = (hours+((33<=minutes) AND (minutes<=59)))//12 " 4 "
\ hours = 'h'++hours+(hours = 0)*12 “w.s "
\ sector = (minutes/S5+(minutes//5>2))//12 " 6 "
\ sectnam = 'sect'++'&sectord’ "

60460270 01



5-21
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
5.0 FUNCTIONS
5.8 EXAMPLE - TIME, TOKEN AND EXPRESSION EVALUATOR

O PO RO PP A RO O PO B0 L0 PO O PO O KD PO PO 0O PO P 8D PO PO 89 O B PO PO BE D BD 5O K0 0D PO D T RO PO 10 89 PO 50 P8 PO O PO 1S I PO PO PO SO D B0 B B B0 PO FO B8 PO 50 B0 PO 89 46 P

This simple Llittle procedure illustrates some of the more
esoteric uses of the expression evaluator. The numbers that appear
in comment quotes are for reference in the discussion that follows.

-- - The assignment statements at the beginning are just
initializing a bunch of strings which form parts of the
eventual output.

line 1 calls the CLOCK function which returns the . time. Let wus
. suppose that the time is 4:20 pm. The variable "tiktok" will
contain the string '4:20 PM'.

line 2 calls the TOKEN function which sets the value 4 into the
variable "hours". The result of TOKEN is being placed in the
variable "junk", because that's what it dis in this
application.

line 3 uses SUBSTR to get the "minutes" field out of 'tiktok". We
can't use TOKEN to get rid of the colon because colon is not
a valid SES token. So we use SUBSTR to get the second and
third characters of the string and place that in the variable
"minutes".

line 4 is incrementing the '"hours" counter if '"minutes" Llies
anywhere between 33 and 59 minutes past the hour. The
boolean expression ((33<=minutes) AND (minutes<=59)) will
evaluate to either TRUE or FALSE, which is convertible to 1
or O. Then we assign the whole expression modulo 12 to
"hours".

line 5 is setting "hours" to one of the "hxx" variables defined at
the start. The expression has to generate the string 'H12!
if the value of "hours", set in Lline 4, turned out zero
because of the modulo operator.

line 6 computes the '"sector", that is, the five minute slot on the
face of the dial. The expression will set the sector to
"minutes"/5. But the expression also says that if it's
3,4,5,6 or 7 minutes past the hour, then we'll set it to five
past the hour T

line 7 builds a name "sectxx". The names "hxx" and '"sectxx" can be
accessed by substituting. For example, if the time is
4:43 pm, then "hours" will eventually contain the string
'H5', and "sectnam" will contain the string 'SECT9'. Then
the substitution &hours will give the string 'FIVE', and
&sectnam& will give the string "QUARTER TO'.

60460270 01






6-1

CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide ’ REV: 1

6.0 SES DIRECTIVES

R 0 0 B0 00 20 B0 PO B BO 0O PO P PO PO B0 08 PO PO RS 0O PO 1O PO B 8O B P9 FO 09 8 PO 88 8O P PO O D 00 O R PO 0O O O PO PO PO PO PO D BD B PO PO S 0O Y 0O PO 1O B 0 8O 08 00 1O N

6.0 SES DIRECTIVES

In this section we'll Look at all the SES directives that are not
directly concerned with processing of parameters from the control
statement. Again we'll provide a brief summary of the available
commands, and go into more detail later on. The commands we're
going to discuss in this section are.

Conditional Processing The IF-ORIF-ELSE-IFEND commands provide
a means to process the procedure
conditionally.

Iterative Processing WHILE-WHILEND provide a means of

repeating a group of statements while
some condition remains true.

Other Control Statements CYCLE provides the means to go to the
beginning of a WHILE Loop. EXIT
terminates 1its dimmediately enclosing
structure, STOP terminates procedure
processing and starts execution of the
generated control statement file, while
ABORT terminates procedure processing
and returns control to the user.

Alternate File Creation ROUT provides a capability to direct
text from the body of a procedure to a
designated file.

File Inclusion INCLUDE can insert into the body of the
: procedure, the text of any other
designated file.

User Interaction The MSG command can send messages to
any designated file. The  ACCEPT
command can read lines from any
designated file. These two commands
are most useful for making interactive
procedures which may talk to the user.
DAYFMSG allows messages to be written
to the job dayfile during procedure
processing.

60460270 01



6-2
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES. Procedure Writer's Guide REV: 1

O PO O PO 0O RO O PO B PO P PO PO P RO 50 P 10 0O 00 D 8D P B CO 8D B PO B9 T BT BV PO N RS P B9 BE 9 B0 RO KD G0 B OO BD OO F0 B0 B0 PO BO O 6 B9 GO PO B0 PV 8 B 08 B B0 N GO 80 00

6.0 SES DIRECTIVES
6.1 IF - ORIF - ELSE -~ IFEND CONDITIONAL PROCESSING

O OP N PO NS RO P O PO PO B D PO B0 0 PO O GO PO 0D P O PP B0 B0 8D B0 SO B9 O B TV 83 BD 8O P 9 B B9 PO BD B TP PO 8O BB 6P PO B 8O B B B8 B 8D B9 PSP 0O 8 00 8O 6O 89 FE PO 89 8O

" 6.1 IF - ORIF - ELSE - IFEND CONDITIONAL PROCESSING

The SES processor provides a method whereby a block of statements
can be processed conditionally. The general form of the complete IF
gang is laid out below.

\ IF some condition THEN " One of these "
blah
blah
\ ORIF another condition THEN " There may be zero to "
mumb Le
mumb le
\ ORIF yet another condition THEN " many ORIF statements "
rhubarb
rhubarb o
\ ELSE - " zero or one of these "
yakk
yakkity yakk yakk '
\ IFEND " Terminates the lot "

To 1illustrate the use of IF, we'll Look at the Last few Lines of
the TIME procedure that was shown previously. Remember that we had
the variables '"sector', '"sectnam" and "hours" set up. The small
piece of conditional code in TIME is so that the time always comes
out in the form of SOMETHING TO/PAST SOMETIME, except when it is the
hour itself, in which case SOMETIME O'CLOCK will be output. The
piece of code that does this is:

\ IF sector = 0 THEN

\ lastwrd = &hours& ++ &sectnam&
\ ELSE

\ lastwrd = &sectnam& ++ &hours&
\ IFEND

* &lastwrd®

As you can see from the code, the two halves of the time string
are arranged in a different order depending whether it's the hour or
not. '

60460270 01



6-3
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES .Procedure Writer's Guide ' REV: 1
6.0 SES DIRECTIVES
6.2 WHILE - WHILEND REPETITIVE CODE PROCESSING

O P D O PO O O PO D PO PO TP PO PO PO PP FO PO PP D O 00 BD FD D P PO P PO GO B0 0O 5O BO B0 0 B 0D 89 B PO B B 9 8P BO PP O 5P KO P P PO PO P D PO B PO PO PO Y P O KO PO B W

6.2 WHILE - WHILEND REPETITIVE CODE PROCESSING

The WHILE command allows a section of code to be processed over
and over as Llong as a condition is true. The general form of the
WHILE command is:

\ WHILE condition is true DO
bunches of
procedure statements
\ WHILEND

60460270 01



b-4
CPC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES. Procedure Writer's Guide REV: 1

PO 00D RO O D PO 0 B0 PO 0O PO PO OB RO B 0O 05 PO B B9 BO P 0O B9 B B9 RO 0 BD D B0 B BP BS BD B D PO S OO B 8D S5 0O OO G0 O B0 B PO O BY 8P B B8 B0 NO B0 RS PO 0D BP FO B W9 B

6.0 SES DIRECTIVES
6.3 CONTROL STATEMENTS

O 0O PP G0N PO PO P O PO P PO D D O PP B PO PO PO O D PO 5D PO PO P B9 B 0D 0 PO PO B9 GO B B SO O3 B SO PO 8O BO B8 Y 8O O 09 PO P P O PO PO PO I PO P BY KO PO 00 00 89 B0 08 B0

6.3 CONTROL STATEMENTS

This section describes directives in addition to IF and WHILE
that control which statements will be processed by SES. These
directives are: STOP, ABORT, EXIT, and CYCLE.

6.3.1 STOP - STOP PROCEDURE PROCESSING
The STOP directive is used to prematurely terminate processing of
the procedure. Its effect is equivalent to surrounding the part of
the procedure that followed it with an IF/IFEND for which the
condition is FALSE. The general form of the STOP directive is:
\ STOP [ string_expression ]

where string expression specifies an optional message to be sent to
the dayfile.

60460270 01



6-5
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

B 00 0O O B0 GO B0 B0 PO RO B0 8D 0O 8O B PO BO BB 0O PO PO KD PO PO B B 5O 8D B 0 B0 B B3 8D 00 8D 8 BD P G0 5P 0D 0O 8 B0 0D 0 O D PO B0 PO OF 8O SO B3 BP O B9 PO 8D B PO PO 8 8O PO G

6.0 SES DIRECTIVES
6.3.2 ABORT - ABORT PROCEDURE PROCESSING

6.3.2 ABORT - ABORT PROCEDURE PROCESSING

The ABORT directive is similar to the STOP directive with the
exception that the SES program will abort instead of executing the
generated procedure. It can be used, for instance, when parameters
to a procedure were not specified correctly. The general form of
the ABORT directive is:

\ ABORT E'string_pxpression ]

60460270 01



6-6
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
6.0 SES DIRECTIVES
6.3.3 EXIT = EXIT STRUCTURE

O A O PO B O PO D G PO PO B NS D PO CD EO TP PO B FO PV BO 6O PO P SO PO B PO O PO BV PO RO TP B0 PO BV D O PO B0 8O 08 00 B0 PO S BO 8O PO D EP 5 B8 B B 0O O NP B9 BO 8O B 8O N9 8O

6.3.3 EXIT = EXIT STRUCTURE

The EXIT directive is used to conditionally or unconditionally
exit from the "immediately containing structure'". This "structure"
may be an IF "statement', WHILE "statement", or INCLUDEd procedure
"segment"”. If the EXIT directive is not contained within any of
these "structures", it acts lLike a conditional or unconditional STOP
directive. The general form of the EXIT directive is:

\ EXIT [ WHEN boolean_expression ]
The exit is taken if the WHEN boolean_expression is omitted or if .

it is given and evaluates to TRUE. For example, the following are
equivalent:

\ IF cond? THEN ' \ IF cond1 THEN
stuf and junk 1 stuf and junk 1
\ EXIT WHEN cond2 \ IF NOT cond2 THEN
stuf and junk 2 stuf and junk 2
\ IFEND
\ IFEND \ IFEND

60460270 01



6-7
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

O O B PO O T O PO PO PO D PO PP PO PO O PP PO PO P PO PO PO PO PP B B8 PP B 8O 8D 0O PO PO PP P KD 43 O ND P B0 B P P O PO PP B0 PO B O O B PO GO 8O 0O B9 BO RS P8 0 89 PO O 09 9

6.0 SES DIRECTIVES
6.3.4 CYCLE - NEXT ITERATION OF WHILE

PO B0 PP B PO O PO PO O PO O O PO 1O HO PO PO B O TP PO BE FO PO 08 BP P O PO PP D 5D D B0 2O 5D 8O 5D 85 09 PO TP B BY B 00 O SO B SO FO GO PO SO TP 0O PO PP B 03 0 B 8D PP PP PP PO 0

6.3.4 CYCLE - NEXT ITERATION OF‘NHILE

The CYCLE directive can be used to proceed to the next iteration
of the innermost WHILE "statement" that contains the CYCLE directive
either conditionally or unconditionally. The general form of the
CYCLE directive is:

\ CYCLE C WHEN boolean_expression 1
The cycle 1is taken if the WHEN boolean_expression is omitted or
if it is given and evaluates to TRUE. For example, the following

are equivalent:

\ WHILE cond1 DO \ WHILE cond1 DO

stuf and junk 1 stuf and junk 1
\ CYCLE WHEN cond?2 \ IF NOT cond2 THEN
stuf and junk 2 stuf and junk 2
\ IFEND '
\ WHILEND \ WHILEND

60460270 01



v 6-8
CDC - SOFTWARE ENGINEERING SERVICES -
, ' 13 DEC 83
SES Procedure Writer's Guide REV: 1
6.0 SES DIRECTIVES
6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE

6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE

ROUT provides the ability to divert text from within the body of
an SES procedure to a specified file. The form of the ROUT command
is:

\ ROUT LFA=] file_name
text
to
be
routed to another file
\ ROUTEND [NOEOR=] [file_pame]

ALL the text within the ROUT - ROUTEND bracket is sent to the
named file, with the proviso that any directive Llines within the
block are processed as they are encountered.

"file_name" is the file to which the text is to be routed. The
optional FA keyword on the ROUT command specifies that the text is
to be output in Full ASCII, that is, blank lines are output and
lower case letters are not folded to upper case. If the FA
parameter 1is not coded, then the output text has lower case letters
folded to upper case, and blank Llines are discarded on output.

When the ROUTEND command is encountered, SES normally writes an
end of record on the file at that point. If the optional NOEOR
parameter is coded on the ROUTEND, then the end of record 1is not
written. This provides a useful facility to ROUT many sections of
text to the same file in a disjointed fashion.

The "file_name"” on the ROUTEND is optional. Its wuse is
encouraged, since it makes the procedure easier to read, however, if
the name on the ROUTEND doesn't match the name of the file at the
top of the output control stack, then the ROUTEND directive is
ignored.

It is possible to nest ROUT - ROUTEND blocks within other ROUT <=
ROUTEND blocks, as long as the inner ROUT's don't reference the same
filename as the other ROUT's. If a ROUT directive does try to
reference a file which is already being ROUT'ed to, then that ROUT
directive is dignored. '

ROUTing is particularly useful for éreating a file, within a
procedure, which is to be submitted as a batch job. For example: '

60460270 01



6-9
CPC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
6.0 SES DIRECTIVES
6.4 ROUT - ROUTEND ROUT TEXT TO A NAMED FILE

B 0 PO RO B PO PO B0 PO PO PO B PO PO P O B 0O O BO PO PO S PO PO I PO PP B T 00 PP 5O PO 0 ND B PO PO PO G2 PO 3 PO B9 W KO PO 0D 0D PO PO FD D PO 5O FO BRI P P PO 8O 8O RO B B9 4O 09

\ jobfile = UNIQUE(NAME)
$SUBMIT(Rjobf1ile&,B)
$RETURN(&jobfile&)

* JOB &procnam& SUBMITTED

‘\ ROUT jobfile
&userk,T2000. **x*x &procnam& *i*
$USER(&users &passworg)
$CHARGE (8charge& ,&project®)
job
control

statements

\ ROUTEND jobfile

could be used by a procedure to SUBMIT a batch job.
As a convention, procedures that ROUT stuff to files have the
ROUT'ed text blocks at the end of the procedure. This makes the

main body of the procedure easier to read, without it being
cluttered up with all the ROUT'ed material.

60460270 01



6-10
CDC - SOFTWARE ENGINEERING SERVICES
' 13 DEC 83

SES Procedure Writer's Guide REV: 1

B OO PO D O P D PO BO D PO B 8D 5O P PO PO PO PO 8D 03 5O 5O PO PP B 0 8O 8D D 0 B PO PO 8O PO BD 0O PP PP PO PO D KD 0P NS D B0 PO P B0 PP B BO PO RO PO €D B BP0 PP FO 0O PO 2O 0O N9

6.0 SES DIRECTIVES
6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE

PO AP NP D PO O PO PP PO PO PO PO RO BD FO 0O RO O PO 08 8D PP GO PSSO 5D 8O D B 6D B B8 PO BO B FO TS B9 B3 KO S T O GO PO B B B0 B0 PO SO B8 PO B 0P 0 0D O B0 8D O PP B0 00 B0 88 00 PO

6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE

INCLUDE allows you to read text from a file other than the body
of the current procedure file. The effect is as if the INCLUDE'd
file was physically inserted in the procedure file body at the point
of the INCLUDE command. The most primitive form of INCLUDE is:

\ INCLUDE F=file_name [,UN=user_namel

"file_name" is the name of the file to be INCLUDE'd, and the
(optional) '"user_name" specifies the catalog where the file is to be
found. If the file is already local to the running job, then the
Local copy of the file is used.

The general, and probably more useful form of INCLUDE looks Like
this: '

\ INCLUDE F=file_name, L=local_Lib, LPFN=Library_name, UN=user

In this format, "file_name" is still the name of the file to be
INCLUDE'd, but now it refers to a procedure record in a PLIB Llibrary
of name "library_name" in the catalog of the user given by "user".
"local_Lib" is the name of the LFN or Local File Name by which the
Library is known when SES ACQUIRE's the Llibrary. It is always,
always, but always good practice to use a local file name for the
Library because INCLUDE's may be nested within INCLUDE's, and as
long as the local file names are different, NOS is quite happy to
Let you read from different positions of the same file.

To 1illustrate how INCLUDE works, we'll show a section from the
SES REPMOD procedure. This same INCLUDE file is used by all SES
procedures which update Llibraries.

\ rewriti = '&intbase&’
\ rewrito = 'nb&"'
\ INCLUDE °*REWRITE', L=UNIQUE(NAME), LPFN=SESLNAM, UN=SESUNAM

The procedure section shown above sets the input and output file
names for REWRITE ("rewriti" and "rewrito"), and then INCLUDE's the
REWRITE procedure. In actual fact, REWRITE 1is a stand alone
procedure in its own right, and it is possible to simply use REWRITE
as a standard SES procedure, such as.

SES.REWRITE I=&intbase&, 0=8nb&
Why didn't we do it that way? Well the main reason is that the
complete REPMOD procedure run (from procedure call to finishing the
job) 'goes faster by INCLUD'ing the REWRITE procedure. If we'd

60460270 01



6-11
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide , REV: 1
6.0 SES DIRECTIVES
6.5 INCLUDE - SWITCH INPUT TO A NAMED FILE

written SES.REWRITE, then during the processing of REPMOD, we'dve
hit the procedure call, searched the procedure libraries, cracked
the control statement, etc, etc. The whole thing goes a lot faster
for INCLUD'ing the inner procedure.

60460270- 01



6-12
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide , REV: 1

0 OO PO N O NS RO PO SO PO PO 02 80 0O PO PO B8 8O PO 5O 0O 89 B0 PO B0 0 O3PS B9 B0 40 B9 0O BI 08 BS B0 B9 80 B0 B9 B0 09 0 89 B0 B8 8O B0 PO B0 OO P8 P PO PO SV 8O B3 P8 4P 8

6.0 SES DIRECTIVES
6.6 USER INTERFACE DIRECTIVES

N O 0 P PO N 4000 00 PO 00 P 0O PO O T T 0D 0D 4D BU 0O 0O RO 8D 00 00 03 0 08 B9 80 FD 0D 55 PO B0 00 S0 B8 B0 B8 80 B3 00 K9 N PSPV U PU BB 00 PO PE BS BP9 8O EY R0 NS 1P 8O N 80 80 08

6.6 USER INTERFACE DIRECTIVES

The directives in this group can be used to "talk" to the user of
a procedure and to let the user "talk" back. The directives are:
DAYFMSG, MSG, and ACCEPT.

6.6.1 DAYFMSG - SEND MESSAGE TO DAYFILE

This directive can be used to place a message in the user's
dayfile. The general form of the DAYFMSG directive is:

\ DAYFMSG string_expression

where string_expression defines the message to be sent.

60460270 01



6-13
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

O OO B B B PO N B PO PO 00 B0 0O B O PO PO B0 8P S O B PO B0 B0 B0 0O O PO PO 8O B0 B 09 P 55 B S B RO 8O RO PO O B0 BD PO B 8P KD B8 TP S NY PP BSB89 1O FS 1O B B9 PO OO SO PO BS

6.0 SES DIRECTIVES
6.6.2 MSG - WRITE MESSAGE TO FILE

O D D PP PO PO PO 0 NO O 00 T BO PO PO 5O B0 PO B0 B0 D PO O BS PO 6D PO O CD O B9 EO PO 0O BB 5 8O SO 8D 03 PO B PO B0 BN B8 8O PO PO B8 P B RS B9 FO B9 0O L L T Ty Y

6.6.2 MSG - WRITE MESSAGE TO FILE

This directive is used to write messages to a specified file.
Its general form is:

\ MSG M=string_expression [ TO=file_name ]

where string expression defines the message to be written and
file_name specifies the name of the file to receive the message.

The default for file_name is OUTPUT. Note: that if file_name is

omitted and file OUTPUT is not assigned to a terminal, the message
is not written.

60460270 01



. 6-14
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES .Procedure Writer's Guide REV: 1

~~~~~~~-~a-n-nnonn-nun-n-~~~~n~~~~~~~~-—nnnl-n-an--n--a-nwnn-nnnao~~~~-~

6.0 SES DIRECTIVES
6.6.3 ACCEPT = READ 1 LINE FROM A FILE

L L L L 0 0 0O O B0 2O NP PP KO BO PO TP GO B BY E9 TP PO 0O 0O 8O PO TS 00 0O BO I BV B9 O B9 0O B 0O B9 BD N BD 6D GO RO P FO BO PD 08 08 PO BIB9S 08

6.6.3 ACCEPT = READ 1 LINE FROM A FILE

The ACCEPT directive reads 1 line from a specified file dinto a
specified variable, optionally preceeding the read request with a
prompting. message to another file. The general form of the ACCEPT
directive is:

\ ACCEPT INTO=var_name [FROM=infile] LPROMPT=mesg] LTO=outfilel

where var_name is the name of the variable which will receive the

Line from file infile. The PROMPT and TO parameters are equivalent

to the M and TO parameters, respectively, of the MSG directive (see
above). The default for infile is INPUT.

Note: all parameters on directives are expressions; therefore it
is strongly recommended that parameters which are to be names, be
given as strings. For example:

\ ACCEPT INTO='var1®' PROMPT=msg1
is generally much safer than:

\ ACCEPT INTO=var1 PROMPT=msg1

since in the second case, if var1 already has a value, that value
will be used for the INTO parameter.

60460270 01

6-15
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedu?e Writer's Guide REV: 1

P B PP O 0 00 PO B0 B0 B9 RS 1O PO PO PO PO FD (D B0 BO PO PO BV D D £ PP O 80 B9 B0 PO B2 8D B0 GO B8 O N B RO 8O B0 B0 B8 PO KO B0 B8 DO PO P2 8D B0 B P NS B B S 08 40 O NS 80 00 PO 88

6.0 SES DIRECTIVES
6.7 SETRFL - PROCEDURE FIELD LENGTH CONTROL

6.7 SETRFL - PROCEDURE FIELD LENGTH CONTROL

When a procedure is running, it is always good pratice to keep
central memory field Llength to a minimum. This helps to provide
better response time for all users (including you!), by reducing
swap time. However, it is also a nice touch to restore the user's
field Llength at procedure end to what it was when the procedure was
called. The SETRFL directive provides the ability to do this. The
format of the SETRFL directive is:

\ SETRFL minC..max]
the action of SETRFL is best explained in this set of SES code.

\ IF FL < min OR FL > max THEN

$RFL(Emink)

\ RFLLINE = 'SRFL(&FL&)’
\ ELSE

\ RFLLINE = ' !

\ IFEND

in other words, if the current user's field Llength, given by the
predefined variable FL is outside the Limits specified by "min" and
"max", then we generate a control statement to the control statement
file to RFL to "min", and we then set the predefined variable
"RFLLINE" to the control statement needed to restore the wuser's
" field Llength. Typically, we would then place an &RFLLINE& Lline at
the end of the procedure. The "max" part of the SETRFL directive is
optional, and if omitted, is the same as "min". In that case, the
$RFL statement is generated if the current FL dis . unequal to that
specified by "min".

60460270 01

7-1
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

7.0 PARAMETER DEFINITION AND PROCESSING

O PO 0 P T OO 0 PO PO PO B0 PO B0 PO PO B0 PO PO PO 8O D P B0 O P B0 PO B0 8O PO PSP PO PO D RIS PO B9 BD B0 B RO B B 8O B B P PP B9 O PO B0 PO PO B B9 EO BO TE PO O B 08 4O B9

7.0 PARAMETER DEFINITION AND PROCESSING

Now at last we come to the real purpose of SES, that is, reading
parameters from the SES control statement and substituting them into
the CCL statement file.

The topics discussed in this section should now be fairly
straightforward. They are basically concerned with parameter
definition via the PARM-PARMEND directives, and the various
facilities for accessing parameter attributes and values.

60460270 01

7-2
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

B0 O O PO IO PO PO PO PO PP O BD B O PP D 00 PO B0 B O 5O 6O B9 8O PO SO PP P B8 8O PO 1O BO PP 5 3 B0 B 6D D B PO 0. B9 KD NS 9 T GO D B3 B8 S 8O BO S8 8O S 0O P 83 09 K6 B9 08 0O

7.0 PARAMETER DEFINITION AND PROCESSING
7.1 PARM - PARMEND DEFINING PARAMETER LISTS

B OO P PO D PO P PO PO PO PO 0 PO PO PO 8O 08 PO D PO O PO P 5O 00 O NI PO 8D PO DO 08 S SO PO B 1O O PO B0 PO B B8 8 D K KO B3 GO 6O B0 P FO TP 8O B0 8O PO 0O TP O Y 00 P9 B P9 0P

7.1 PARM - PARMEND DEFINING PARAMETER LISTS

When we discussed the generél layout of a procedure in the
section on basic SES processing, we saw that a procedure may have
zero to many PARM directives, terminated with a PARMEND directive.

PARM stands for PARaMeter, and it is the basic SES directive
which defines what a procedure parameter may look Like. PARM allows
you to define the following things about a parameter.

o The keyword or keywords used to define that parameter.

o number of values which that parameter may be given when it is
coded.

o whether the parameter is required to be specified in the
procedure call Lline.

o the allowed type of the parameter.

The general form of the PARM directive is:

\ PARM KEY=keywords, [NVALS=xx], [typel C[REQJ [RNG]

KEY identifies the keyword or keywords that may be used to
specify this parameter when coding it on the control
statement.

NVALS specifies the minimum and maximum Number of VALueS that may

be coded for this parameter. Default is .1 (one).

type identifies the allowed type of the parameter. "type" may
be coded as one of the following:

NAM specifies that the parameter must be a NAMe. That is,
a one to seven character alphanumeric string starting
with a letter.

NUM specifies that the parameter must be a NUMber, that
is, a pure numeric string, with an optional base.

STR specifies that the parameter must be a STRing.

FGN designates that the parameter may be a ForeiGN text

parameter. This type of parameter has the format of
an expression (or parameter specification) but it is
not evaluated when encountered, rather it is "passed

60460270 01

7-3
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
7.0 PARAMETER DEFINITION AND PROCESSING
7.1 PARM - PARMEND DEFINING PARAMETER LISTS

on" essentially unmodified. Foreign text parameters
are normally only used when value sub-lists are .
required for a parameter, and it then becomes the
responsibility of the procedure to check the validity
of the parameter. Details of the format (and
restrictions) of foreign text values can be found in
the subsection '"Foreign Text" 1in the appendix on
syntax.

REQ is a keyword that specifies that the parameter is REQuired
to be stated when calling the procedure.

RNG states that the parameter may be coded as a RaNGe. That
is, the parameter may be coded in the form of x..y, for
example cols=2..75

The basis of all this definition is that SES ‘checks the
parameters given on the control statement to see 1if they are
actually as you said they should be. If they are not, then SES
outputs an error message at the time of processing the procedure,
saving a massive amount of playing about 1in the body of the
procedure itself.

Note that on an SES procedure call, a value can be omitted from a
parameter's value list only if that parameter was not declared with
an explicit type specifier on its PARM directive.

60460270 01

7-4
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

O PP RO PO R0 PO PO B0 B0 PP O BO P O B B BO PO B D 0O D D B3 05 PO D KO 8D B B 09 O B0 FO 0O 00 PO D D PO 5O B9 TS GO PO PO PO 00 0 OO BP 0O B8 8O KD 00 PO 9 8 0O 0O O B9 8O PO *

7.0 PARAMETER DEFINITION AND PROCESSING
7.2 PARAMETER ATTRIBUTE TESTING

PO B BP PO PO O PO P PO PO P P P PO PO PO B D RO B B PO B 8D PO 8O D B 0O 8O B FE B8 00 TS 09 B SO RO 8 PO 1O TS PO N3 D BU PO B0 PO PO N B 50 8O SD 8O PO R0 T 88 FS B8 8O PO 49 N9 KO

7.2 PARAMETER ATTRIBUTE TESTING

SES provides a number of functions to test the attributes of
parameters as defined 1in the PARM directives. A short summary of
the functions is provided below, and more detailed explanations

follow.

In the discussions that follow, we use the convention that
"parameter_name" means any of the keywords used to specify a
particular parameter, and "keyword_name" to mean a specific keyword
out of the set of possible keywords for a parameter. For example,
if we'd coded the following PARM directive:

\ PARM KEY = ('i', 'f', 'input', 'file') etc.

then "parameter_name" means 'i' or 'f' or 'input' or 'file', whereas
"keyword name" means only one of those, say 'input'.

Function Explanation
DEFP(parameter_name) returns a true value if the parameter

specified by "parameter_name'" was actually
coded on the control statement.

DEFK(keyword _name) returns a true value if the keyword
- specified by '"keyword name'" was actually
coded on the control statement.

KEYVAL(parameter_name) returns the keyword that was actually used
to define the parameter specified by
"parameter_name".

VCNT(parameter_name) returns the number of values actually coded
| for the parameter . specified by
"parameter_name". VCNT is described in
detail in the subsection on '"Accessing

Parameter Values'".

60460270 01

; 7-5
CDC - SOFTWARE ENGINEERING SERVICES

) 13 DEC 83
SES Procedure Writer's Guide REV: 1
7.0 PARAMETER DEFINITION AND PROCESSING
7.2.1 DEFP - TEST FOR THE PRESENCE OF A PARAMETER

7.2.1 DEFP - TEST FOR THE PRESENCE OF A PARAMETER

The DEFP function allows you to test if a parameter was actually
defined. DEFP stands for DEFined Parameter. The general form of
DEFP 1is:

DEFP(parameter_name)

where "parameter_name" is any of the keywords for the parameter 1in
question. For example, there are many of the SES library procedures
(or filters), that take one input file and produce one output file.
These procedures are geared up so that if you only specify one
filename, then when the procedure is finished it will write the
output file over the input file. The piece of SES procedure code
that would achieve this is:

\ IF NOT DEFP(o) THEN
\ o= "&i8&
\ IFEND

Later on in the procedure, we would use the fact that the 'i' and
'o' parameters are either equal to each other or not.

Note that if "parameter_name" is not the name of a parameter to
the procedure, this function will return FALSE as its value.

60460270 01

7-6
CDC - SOFTWARE ENGINEERING SERVICES -
13 DEC 83

SES Procedure Writer's Guide ' REV: 1
7.0 PARAMETER DEFINITION AND PROCESSING
7.2.2 DEFK = TEST FOR PRESENCE OF SPECIFIC KEYWORD

O 00 B0 PO 00 00 PO 00 1O PO B PO PO 80 00 PO B0 PO 1O NS PO D 00 8 B B O PO G0 8O 1O PO T O BD 50 RO 9 09 PO O 10 8O 89 8O B0 1S PO SO N8 PO B 00 N9 B2 PO B0 B8 SO 0 B0 N0 B0 N0 80 80 80 09

7.2.2 DEFK - TEST FOR PRESENCE OF SPECIFIC KEYWORD

The DEFK function stands for DEFined Keyword, and its function in
Life 4is to test whether, when a parameter was coded, a specific
keyword was used to define that parameter. The general form of DEFK
is:

DEFK(keyword_name)

where '"keyword name" 1is the keyword for which we want to test. To
jillustrate the use of DEFK, we'll show a short extract from the
FORMAT procedure. Most of the SES system library procedures which
can run as batch jobs contain this particular section of code. The
idea of the bit of code is to dump a dayfile to the user's catalog
if there were any errors in the job. The dayfile parameter is
defined via the following PARM directive.

\ PARM KEY=('nodayf','dayfile',"'df') NVALS=0..1 NAM

the 'nodayf' keyword specifies that no dayfile is required at all,
in any event.

In the FORMAT Job, the following piece of SES code may be found
to process the parameter.

\ IF NOT DEFK(nodayf) THEN
EXIT.

$DAYFILE (&dayfile&)
S$REPLACE(&dayfile&)

\ IFEND

To explain how this works, if the user coded nodayf as an option
on the procedure call, then the test at the IF statement would fail,
and none of the statements between the IF and the IFEND would be
processed or output to the control statement file. However if the
user coded df=some file, or dayfile=some_file, or omitted the
parameter altogether, then the test would succeed, and the EXIT,
$DAYFILE and $REPLACE control statements would be processed to refer
to whatever "some_file" happened to be, or would refer to "DAYFILE"
if the parameter had not been coded.

Note that if "keyword_name" is not the name of a keyword to the
procedure, this function will return FALSE as its value.

60460270 01

7-7
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

"o w00 00 00 00 0000 B PO P 10 00 PO PO 0 1O B PO PO 0 PP P O D B 0O PO 8 PO PO 8O 8O GO PO 0O B0 59 0O I 8O B9 80 TV SO D B B0 RO P PO RO PO BP B0 PO 8P B0 PO PO BP B PP BS 8O 9 09 PO

7.0 PARAMETER DEFINITION AND PROCESSING
7.2.3 KEYVAL - ACCESS ACTUAL KEYWORD OF PARAMETER

7.2.3 KEYVAL ~ ACCESS ACTUAL KEYWORD OF PARAMETER

KEYVAL stands for KEYword VALue, and its function is to let you
know which keyword was actually used when specifying a parameter.
The general form of KEYVAL is:

KEYVAL (parameter_name)

where "parameter_name" is any of the keywords that can be used to
specify the particular parameter that you are interested in. The
KEYVAL function returns as a string, the keyword that was actually
used when the parameter was coded.

If no keyword was used to define the parameter, that is, the
parameter was specified positionally, then KEYVAL returns the null
string.

Note that if "parameter_name" is not the name of a parameter to

the procedure, then this function returns the null string as its
value.

60460270 01

7-8
- CDC - SOFTWARE ENGINEERING SERVICES :
' 13 DEC 83

SES Procedure Writer's Guide REV: 1

O OO PO PO GO D PO B B O O P S S TP O PO 03 O PO O B B 0 BV O D PO O 83 O P BO 63 O B D B B9 8O B0 R RO BD BS 8O SO B B B0 O N0 P DS O 03 KO 8O 0O B 59 8O NS NP PP PO VO ®O

7.0 PARAMETER DEFINITION AND PROCESSING
7.3 ACCESSING PARAMETER VALUES

P D BO PO D RO PO P D O RO PO PP O O FO O PY B 0D O 0V PO PO 89 5O 8O B B 0O B0 59 DO 8 O BD B PO B8 B0 O B0 BO BP B 8O B0 8O B 0D B K0 NS G B S B 0D NP VS B0 9 0O 0O PP 0 99 09

7.3 ACCESSING PARAMETER VALUES

There are essentially two ways of getting at the value of a
parameter: by substitution, and by using one of the functions
described in the following subsections.

It is not possible to directly reference a parameter value in an
expression, rather, one of the methods described above must be
used. This is to allow a keyword for a procedure to have the same
name as, for dinstance, one of the predefined variables, and yet
within the procedure, to access both the parameter and the
variable.

The substitution mechanism of SES always first checks for the
name as being the name of a parameter, and only if this check fails
does it Llook for a variable to substitute. This priority is also
followed when assignment takes place, either explicitly 'via the
assignment statement, or implictly via functions such as TOKEN and
VALEXPR, discussed previously.

Substituting a parameter can be represented by the following SES
code:

\ dummy = VALS(param, 1, LOV)
wemmmmee———— 2dummy& =-=——---

where "dummy" is some temporary variable. In other words, the LOw
Value, of value 1 for parameter "param" is substituted. You would
actually code such a substitution as:

—eemeewee--- gparamg@ --------

The functions described in the following subsections may also be
applied to variables with string values (in addition to
parameters). When used for this purpose the string value must be in
the format of a value Llist (see the Appendix on Syntax for a
detailed description of the format of a value Llist). In particular,
the interpretation of the string is that it contains a value List
for a "parameter" defined by:

\ PARM NVALS=0..maxvals, FGN, RNG

The descriptions of the functions: VCNT, VALS, and GENLIST which
follow only discuss their use with parameters in order to keep the
description as simple as possible, however, the first argument to
all these functions may also be the name of a variable whose value
has the properties discussed above.

60460270 01

7-9
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

B B0 PO B0 PO PO O PO B0 PO BO B DO PO B PO PO PO PO O 58 PO B9 PO PO D PO PO D B P PO NI TP FS B BO PO B SO PO B0 BI FO PO B9 BP9 B 52 08 B9 PO PO PO EO P PO B3 B 8O KS P 0O PO 80 PO B8

7.0 PARAMETER DEFINITION AND PROCESSING
7.3.1 VCNT - NUMBER OF VALUES OF A PARAMETER

7.3.1 VCNT - NUMBER OF VALUES OF A PARAMETER

VCNT stands for Value CouNT, and its function is to determine the
number of values coded for a parameter. The form of VCNT is:

VCNT(parametér;pame)

where '"parameter_name" is the name of the parameter for which you
want the value count.

For example, the SES WIPEMEM procedure has one of its parameters
defined via the following PARM directive:

\ PARM KEY = "text' NVALS = 1..maxvals NAM

so that it's possible for the user to code a call on WIPEMEM which
Looks something like this:

SES.WIPEMEM text=(glug,grog,berk,clag)
so that within the WIPEMEM procedure, the assignment statement
\ memcoun = VCNT (text)
would set the variable "memcoun" to 4 in this case. The way that
this 4is actually used is in a WHILE loop, something along the Llines

of:

\ dindex =1 _
\ WHILE index <= VCNT (text) DO

blah
blah
) blah »
\ index = index + 1
\ WHILEND

60460270 01

7-10
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.2 VALS - EXTRACT PARAMETER VALUE FROM A VALUE LIST

O O PO PO PO PO PO O PO PO PP PO P PO O PO PO 8D B0 PO 8D PO D B0 B O PP 0O B0 2 05 85 P 8O 0D SO B B3 PO B 8O B0 B0 59 8O P GO B B B PO DO B8 BE B0 B B0 B0 NS B0 N PO 89 SO 00 49 09 89

7.3.2 VALS = EXTRACT PARAMETER VALUE FROM A VALUE LIST

VALS is probably about the most useful function available to the
writer of SES procedures. VALS stands for VALueS, and its function
is to extract a value from a List of values which may be coded for a
specific parameter. The general form of the VALS function is:

VALS(parameter_name, index, LOV/HIV)

where "parameter name" is the parameter for which the value is to be
extracted. "index" is an integer expression which determines which
value out of the value list is to be extracted. The last parameter
is LOV which stands for LOw Value, or HIV which stands for HIgh
Value. This 1indicates whether the low or the high side of a range
is to be extracted. As an example, the COLS parameter of the
COPYACR procedure can be coded as

COLS=XX..YY
where "xx" is the low side of the range and "yy" is the high side of
the range. The appropriate VALS functions 1is something Like the

following:

\ Lloside

VALS(cols, 1, LOV)

\ hiside

VALS(COLS, 1, HIV)

If the LOV or HIV parameter is omitted, then VALS takes the LOV
as default. If the "index" parameter is omitted, then VALS uses 1
as default. So for instance the VALS function: - ‘

—

VALS (parameter_name)
is equivalent to the VALS function:
VALS (parameter_name, 1, LOV)

If the "index" parameter is given as less than or equal to zero,
or greater than the maximum values allowed for any parameter (50)
the error message VALUE OUT OF RANGE is given; or if "index" is
greater than the actual number of values coded for the parameter,
the function returns an "undefined" value.

If HIV was specified on the call to VALS but the value was not

coded as a range (or was not allowed to have a range) the
corresponding LOw Value is returned.

60460270 01

7-11
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES. Procedure Writer's Guide REV: 1

7.0 PARAMETER DEFINITION AND PROCESSING
7 3 3 GENLIST - GENERATE LIST FROM PARAMETER LIST

7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST

The GENLIST function, for GENerate LIST, allows you to build up a
string from a parameter List supplied to the SES procedure. The
general form of GENLIST is:

GENLIST(parm_name, coun, Line_lim, max_coun, range_sep, value_sep)

This looks complicated but since most of the arguments can be
omitted, 1it's actually a lot simpler than it Looks. The meaning of
the various parameters of GENLIST are:

parm_name is the name of the parameter that you want to access.

coun is an index which indicates at which value in the Llist
you want to start accessing. If "coun" is undefined
when GENLIST is invoked, then GENLIST defines it for
you, and initializes it to one (1). When GENLIST has
processed the List, "coun" will be set to one greater
than the last value processed in the list. If "coun"
has a value (when GENLIST is invoked) which is less
than one or greater than "max_coun", the error message
VALUE OUT OF RANGE is given.

line_Lim is the maximum number of characters you want to go in
the generated lList. The default is 80.

max_coun is the highest 1index that GENLIST is to process up
to. The default is the actual number of values coded
for the parameter.

range_sep is the character used to separate the low side and
high side of a range value. If 'range_sep" s
omitted, it defaults to the SES range separator (..)

value_sep is the character used to separate values in the Llist.
If "value_sep" is omitted, it defaults to comma (,)

To dllustrate how GENLIST works, we'll look at a section of the
SES WIPEMEM procedure. One of WIPEMEM's parameters 1is defined as
follows. .

\ PARM KEY = "text' NVALS = 1..maxvals NAM RNG

The WIPEMEM procedure dnvokes LIBEDIT to actually delete the
member records from the library. It is possible to give LIBEDIT a
directive of the form.

60460270 01

7-12
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

D B0 0 0 PO B O ES 0O RO KO PO PO BO 6O B9 8O B0 PO PO GO PP OO 8O KD B9 SO B3 PO B PO PO SO GO B GO B0 8O B0 B PO S B0 PP GO RO SO PO T 8O SO PO SO O 0O 0D B KO S0 8 NS PP 0O B9 49 89 0 9

7.0 PARAMETER DEFINITION AND PROCESSING
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST

0O 00 0D N0 0 RO PO B RO PO PO B0 PO O PO PO 5D PO B9 S0 PO 0O 8O B BO B0 B 8O 0O B BD B B8 P GO NP SO BD B T 8O 0O 89 00 88 8D PO P 09 PO TP B9 PO PP B9 83 PO TP 85 N0 B9 N 8 NP B3 89 00 W

*DELETE TEXT/GRAB,HOLD,HERE-THERE,JUNK-YUKK etc etc

Such a deletion could be coded on the SES control statement 1in the
following manner:

SES.WIPEMEM L=MYLIB TEXT=(GRAB,HOLD,HERE..THERE,JUNK. .YUKK)

The following section of code is taken from the WIPEMEM
procedure, showing how GENLIST 1is used to generate the LIBEDIT
directives.

\ memtyps = "(TEXT,OPLC,OPL,REL,OVL,ABS,PPU,PP,COS)" " oqn
\ dirfile = UNIQUE (NAME) woaon
\ ROUT dirfile "3
\ typcoun = 1 Y
\ WHILE typcoun <= 9 DO s
\ memtype = VALS (memtyps, typcoun, LOV) " e
\ IF DEFP (&memtype&) THEN Y
\ memcoun = 1 " 8"
\ WHILE memcoun <= VCNT (&memtype&) DO “w.on
\ comd = GENLIST(&memtype&,memcoun,64,VCNT(&memtyped) ,'~")
*DELETE ,&memtype&/&comd& "1
\ WHILEND "2 "
\ IFEND . "q3 "
\ typcoun = typcoun + 1 "14 "
\ WHILEND "qs v
\

ROUTEND dirfile "6 "

line 1 defines the Llist of parameters for which LIBEDIT
directives may be generated. ,

line 2 . defines the name of the file to receive the directives.

line 3 initiates the directives file.

line 5 starts a loop which cycles through all of the directive
generating parameters defined on Line 1.

line 6 sets the variable "memtype" to the name of the next
parameter for which directives may be generated.

line 7 checks whether the current parameter was specified when
the procedure was called.)

60460270 01

7-13

CDC - SOFTWARE ENGINEERING SERVICES

13 DEC 83

SES Procedure Writer's Guide REV: 1
7.0 PARAMETER DEFINITION AND PROCESSING
7.3.3 GENLIST - GENERATE LIST FROM PARAMETER LIST

line 9

Line 10

Line 11

starts a loop which cycles through all values supplied
for the current parameter when the procedure was
called.

uses the GENLIST function to extract member names from
the value Llist of the current parameter, and format them
into a LIBEDIT directive. ’

causes the directive to be written to the directives
file.

The remaining Llines handle the <cycling of the loops and the
finishing off of the directives file.

60460270 01

: 7-14
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide , REV: 1

OGO O P 0O PO PP P B P O O P PO RO PO S O PO BD O VD 0O RO FO PV P 0 PO B D 3 IO O D 0 BS BO PP 0P RO PO B0 P BT 5P GO PR 59 S8 S BO PO BV KO RO B9 0 PO PO 4O 0 89 PP V9 45 VO EO

7.0 PARAMETER DEFINITION AND PROCESSING
7.4 DEFINING PARAMETER DEFAULTS

T DGO O PO D 5P PO N B2 BD O 0O PO PO 0O B0 5O B0 8P 8O 5O PO GO 6O O 8D B8 B9 0O PP GO P PO BV 00 KO Y SO GP SO RO 83 B 0O PO G PO B D PP GO SO O KO B3 PO 8O KD B9 B9 O 8O B 6O 00 09 4O

7.4 DEFINING PARAMETER DEFAULTS

In this section we will describe some of the methods for defining
default values for parameters (and keywords). The simplest way of
setting a default for a single valued NAM parameter is to declare
the default as one of the keywords for the parameter; then use that
keyword throughout the procedure to refer to that parameter. For
example, the SES REPMEM procedure contains:

\ PARM KEY=('g', 'group'), NVALS=1, NAM

which defines the parameter for the 'group' (of members) file. ALL
through the procedure, this parameter is referred to via the 'group'
keyword, thus if the parameter is not specified on the call REPMEM,
GROUP will be substituted anywhere &group& appears.

When this method is not appropriate, one of the functions
described in the following subsections could be useful. The purpose
of these functions is to determine if a parameter was given a value
(SETVAL) or if a keyword was used to specify the parameter
(SETKEY). 1If this condition is true, then the SETVAL function is
treated Like the VALS function, and SETKEY is treated Like KEYVAL.
If the condition is false, the remaining processing done by both
functions 1is the same. If the specified variable is defined
(usually in the user's PROFILE) then its value is returned by the
function, otherwise the specified default value is returned.

60460270 01

7-15
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

PO PO P PP PO PPV PO BO RO O B O PO PO B B B0 PO GO BO PO PO PO PO G0 8D O 8D B0 0D PO B 5D B 40 GO B9 TD 8D B 8O RO BT 8D 0O 0O 80 BP O PY PO B 8D 6O B0 GO PO B 0O 0O B 8O 8P B 09 NS

7.0 PARAMETER DEFINITION AND PROCESSING
7.4.1 SETVAL - SET DEFAULT VALUE

7.4.1 SETVAL = SET DEFAULT VALUE

The purpose of this function is to return a value for a
parameter, much Like the VALS function described earlier, in fact
this function's last three parameters are treated just Like the
three parameters for the VALS function. The general form of the
SETVAL function is:

SETVAL(default_value,var_name,parameter_name,index,LOV/HIV)

where "index" and "LOV/HIV" are the parameter value indices and are
handled in the same manner as in the VALS function, "parameter_name"
is any of the keywords for the parameter you are interested in,
"var_name" is a variable name, and "default_value" is an
expression.

The processing of the SETVAL function can best be explained 1in
terms of the following pseudo SES code:

\ IF STR(VALS(parameter_name, index, LOV/HIV)) THEN
\ SETVAL = VALS(parameter_name, index, LOV/HIV)

\ ORIF DEF(var_name) THEN

\ SETVAL = var_name

\ ELSE

\ SETVAL = default_value

\ IFEND

60460270 01

7-16
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

T PO RO O PO 0 PO RO B0 GO 0O B8 B B0 0O D 8P B 8D G0 8O 8 0O O B9 OO GO R PS8BS B9 PO BN KO I BD FO B9 FS PO 8O B B GO G 63 P GO B B 8D B K8 0 NS O 0O NP ED 00 RO P €9 60 O B9 80 N9

7.0 PARAMETER DEFINITION AND PROCESSING
7.4.2 SETKEY - SET DEFAULT KEYWORD

B 0 B PO PO PO PP I PO 0O PO O B BT SO D D D 8O BO FD O O B BD B NP D 8O B PO B3 B SO 3 B9 3 0O KO P SV 6O 8 GO RO B9 N0 SO TP KO B 08 RS P FO 00 8O 5D KO 80 B B8 PO PO B 90 40 9

7.4.2 SETKEY = SET DEFAULT KEYWORD

The purpose of this function is to establish a value for the
keyword of a parameter. The general form of the SETKEY function is:

SETKEY(default_value,var_name,parameter_name)

where ‘'parameter_name" is any of the keywords for the parameter you
are interested in, ‘'"var_name" is a variable name, and
"default_value" is an expression. The processing done by the SETKEY
function can best be described by the following pseudo SES code:

\ IF KEYVAL(parameter_name) /= '" THEN
\ SETKEY = KEYVAL(parameter_name)

\ ORIF DEF(var_name) THEN

\ SETKEY = var_name

\ ELSE

\ SETKEY = default_value

\ IFEND

60460270 01

8-1
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

8.0 FILE SYSTEM DIRECTIVES

8.0 FILE SYSTEM DIRECTIVES

SES provides directives which allow you to 1issue file system
commands directly from the body of an SES procedure. The commands
fall into the groups of

o File attribute testing similar to the NOS FILE function.

o Rewinding and Returning Files

o ACQUIRE and EXTRACT directives similar 1in function to the
ACQUIRE and EXTRACT control statements (the Latter are
described in appendices to this document).

60460270 01

8-2
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

8.0 FILE SYSTEM DIRECTIVES
8.1 FILE - TESTING FILE ATTRIBUTES

B0 D B O B 0O P 0 O PO PO PO B B0 D R0 D PO PO PO PO TS PO O O B B PO PP PO PO D B 6O B B 05 8 B0 B G0 GO B8 NS 8D B RO PO PO 0O PO PO PO PO 1O SO GO BS B8 0 PP PO FS N PO 0 80

8.1 FILE - TESTING FILE ATTRIBUTES

SES implements the NOS FILE function which allows you to ask
various questions about files. The tests that may be performed are
described in the NOS reference manuals. The general form of the
FILE function is:

FILE (file_name, expression)

where "file name" is the name of the file to be tested, and
"expression" is the test to be performed.

Don't forget that the FILE function implemented by SES tests the
file attributes at the time the procedure body is being processed,
and not when the generated control statements are actually being
executed. ' ’

60460270 01

8-3
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
8.0 FILE SYSTEM DIRECTIVES
8.2 REWIND FILES

8.2 REWIND FILES

SES allows files to be rewound during SES processing. The format
is:

REWIND F=list_of_ file_names

where Llist_of file_names 1is the name(s) of the file(s) to be
rewound.

60460270 01

’ 8-4
CDC - SOFTWARE ENGINEERING SERVICES -

13 DEC 83
SES' Procedure Writer's Guide REV: 1

OO PP 0O O O D PO PO D PP 00 PO B0 O D B 5D PO B0 PO 0D 59 PO D PP PO B PO P B 05 PO SO TO S B KD OO BD SO O 6D O B SO RO B8 TS 0O WS B O B9 B0 PO 8O B9 B0 8O PP B9 08 B9 0O 9 89 89 B9

8.0 FILE SYSTEM DIRECTIVES
8.3 RETURN FILES

PO P B CD 0 B PO RO D SD 8O B PO BD FD 1S PP BO T PO B K O TD 0O 1S B TS BV 6O B B0 8 B 9 B3 SO 0O B8 00 03 B8 B9 B9 NS D 5O PO 9 B9 KO KO B BV 8O 8O B 8O B B B S8 RO B B 89 80 0O

8.3 RETURN FILES

Files may also be returned during SES processing. The format is
similar to the Rewind directive:

RETURN F=list_of_file_names

where List_of file_names is the name(s) of the file(s) to be
returned.

60460270 01

8-5
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide , REV: 1

B8 B 00 B0 PO 0 00 0 4O B0 8O PO PV SO PO PO PO B B0 PO PO B B O PP B0 0O BO B 8O PO BB RO D P 0O PO PO D B S0 BO 0O BY PO GO PO KO I N B8 0O P PO O FO 19 0O EB PO O B SO 8P PO N B9 0

8.0 FILE SYSTEM DIRECTIVES
8.4 ACQUIRE DIRECTIVE

8.4 ACQUIRE DIRECTIVE

SES supports the ACQUIRE directive from inside the SES
processor. The SES ACQUIRE directive works in the same manner as
the ACQUIRE control statement. The general form of the ACQUIRE
directive is:

ACQUIRE FN/F=local_file_name, PFN=permanent_file_name, UN=user_name
where "local_file name" is the Llocal file name when the file is
ACQUIRE'd, "permanent_file_name" is the permanent file name of the
file in the file system, and "user_name" is the name of the user who
owns the file.

A complete description of the ACQUIRE control statement can be
found in an appendix to this document.

60460270 01

8-6
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide - REV: 1

O 0O R0 B 00 08 B0 O B9 0O FO PO GO KO TO 0O B0 TS P PO 8O B 09 B9 B SO 8P 00 80 PP BD 0 B8 OO 0O I B B DY B D 8O P B 8D 83 B P SO BP9 RO 8O 89 S PO PO BO 8O B9 B B9 BO B9 P8 9 6O

8.0 FILE SYSTEM DIRECTIVES
8.5 EXTRACT DIRECTIVE

O 00 00 0000 B PO B0 B0 TO O PO PO U B0 PO B2 D PO PO PO PO D P 8O B B8 09 PP PO S0 BO PO B0 08 B0 P GO D FD 0 B 0 8O 00 60 B PO 8O KD B8 0D BO B0 B9 FO 8O BD 8O 0O PO 00 P9 KO B9 89 P9 89

8.5 EXTRACT DIRECTIVE

SES also supports the EXTRACT directive, which functions at
procedure build time 1in the same manner as the EXTRACT control
statement functions at procedure run time. The general form of the
EXTRACT directive is:

EXTRACT F=Lfn,R=rn,L=L,LPFN=Lpfn, U=un,T=type

where the parameters of the EXTRACT directive have the following
meaning.

F or FN specifies the local File Name for the record when
it has been EXTRACT'ed.

R or RN specifies the Record Name of the record in the
library.

L or LIB specifies the Local file name of the LIBrary when
the EXTRACT directive ACQUIRE's the Llibrary for
processing.

LPFN or LIBPFN specifies the LIBrary Permanent File Name of the
Library in the permanent file system.

U or UN specifies the User NAMe of the file's owner.

T or RT specifies the Record Type. The record type may be
specified as TXT, TEXT, PP, ULIB, REL, OVL, ABS,
OPL, OPLC, OPLD, PPU. If this parameter is omitted
from the directive, then only the record name is
used when searching the Library, and the first
record of that name is EXTRACT'ed.

A complete description of the EXTRACT control statement can be
. found in an appendix to this document.

60460270 01

9-1.
CDC — SOFTWARE ENGINEERING SERVICES -
13 DEC 83
SES .Procedure Writer's Guide REV: 1

9.0 PREDEFINED VARIABLES

O P PO PO S P RO P PO PO PO B 0O B PO PO GO PO O PO B B 8D PO PO 00 0O BV PO O PO B0 8D S5 8O 0O S SO 0O 0O RO 83 B9 SO 8O 8O 5O 8O B3 B8 B BO B B0 B 5O S0 BY SO PO 60 B B8 6O 00 89 09 89

9.0 PREDEFINED VARIABLES

When SES is called it sets up a number of variables which are
available for use by the procedure writer to control the flow of
procedures. Most of these predefined variables are a record of the
user's environment at the time that SES was called.

9.1 SES SYSTEM DEFAULT VARIABLES

MAXVALS defines the MAXimum number of VALueS that may be coded for
a parameter. It is set to 255.

LINELEN defines the maximum LINE LENgth. It is currently set to
80.

SESLNAM defines the default name for the SES Library NAMe. It is
- currently set to SESPLIB.

SESUNAM defines the default name for the SES User NAMe.

'PRCLNAM defines the name of the file (library) from which the
current procedure is being read.

PRCUNAM defines the user name for the owner of the file (Library)
from which the current procedure is being read. If the
current procedure 1is being read from a local file, then
this variable is set to the name of the current user.

HLPLNAM defines the default name for the SES HeLP Library NAMe.
This Llibrary contains help documentation for standard SES
procedures. It is set to SESHLIB.

HLPUNAM defines the user name for the owner of the help Llibrary.
It is currently set to SES.

STALNAM defines the default name for the SES STAtus Library NAMe.
This Llibrary contains status information for the standard
SES procedures. It is set to SESSLIB.

STAUNAM defines the default name for the owner of the status

60460270 01

9-2

CDC - SOFTWARE ENGINEERING SERVICES ;
13 DEC 83

SES Procedure Writer's Guide REV: 1

9.0 PREDEFINED VARIABLES
9.1 SES SYSTEM DEFAULT VARIABLES

Library. It is currently set to SES.

PROCNAM contains the name of the procedure which is currently being
processed.

PRIMOUT contains the name of the current PRIMary OUTput file.
USER contains the user name of the currently logged in user.
JOBNAME defines the name of the currently running job.

CSET contains the current character set of the user terminal.
CSET may be either ASCII (1) or NORMAL (0). 1In batch mode,
CSET contains NORMAL.)

MODE defines the current mode of the procedure(s) being
processed. MODE contains one of RUN, meaning that the
procedure 1is being processed for execution in the control
statement file, TEST, meaning that the procedure is being
run in test mode, HELP, which means that the user wants
help with the procedure, or STATUS, which means that the
user wants the current status of the procedure.

SES_PROC_ERROR defines a numeric value that can be used to set the

EF indicating an error was detected by the procedure, not
the operating system. It is currently set to 60.

9.2 USER _ENVIRONMENT VARIABLES

When the user makes an SES call, SES records information about
the users environment at call time, so that a procedure writer may,
if so desired, restore the user's environment at the end of the
procedure. The data that is recorded is:

R1 thru R3 job control registers.

R16G global job control register.
EF error flag

EFG global error flag

SW1-SWé sense switches 1 to 6.

FL field length at procedure call time.

60460270 01

9-3
CDC - SOFTWARE ENGINEERING SERVICES

13 DEC 83
SES Procedure Writer's Guide REV: 1
9.0 PREDEFINED VARIABLES
9.2 USER ENVIRONMENT VARIABLES
RFLLINE until otherwise changed (see the SETRFL directive),

RFLLINE contains the character string "$RFL(&FL&)’,
where FL is as defined above.

ABL account block Llimit.
JSL job step limit

oT origin type.

SS sub system

TL time Llimit.

Note, that because of the Large number of built-in functions and
pre~defined variables available to the SES procedure writer, there
could be some confusion on the part of the procedure user when
he/she chooses a name (for a file, etc.) which conflicts with one
of the "built-ins". To avoid such confusion, SES will recognize
only the names: TRUE, FALSE, YES, and NO when it scans the
parameters on the control statement which calls a procedure.

60460270 01

A1-1
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide ' REV: 1

A1.0 USEFUL PROCEDURE SEGMENTS

PO B0 10 0O B0 PO 0 PO B 0O O PP O PO PO PO O B0 PO PP D SO P8 PP PO 0O B0 B 8D B0 PO D KO PO O 8O PO B BO O PO 00 T PO NP 1O PO O O SO KO O P SV GV N B9 P GO BO B2 09 B9 B9 9 9 4O 8O

A1.0 USEFUL PROCEDURE SEGMENTS

This appendix contains descriptions of some procedure segments
that could be wuseful when writing SES procedures. These segments
may be included in a procedure by means of the following directive:

\ INCLUDE ‘'segname', L=UNIQUE(NAME), LPFN=SESLNAM, UN=SESUNAM

where "segname" is the name of the desired procedure segment.

60460270 01

. , A1=2
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1 ,
A1.0 USEFUL PROCEDURE SEGMENTS
A1.1 CALPROC - CALL SES PROCEDURE

O B0 B TP PO KO O O O B BO B0 PO PO SO RO KD O BD PO B BD ED GO 8D PP 09 6O 8D 0O 00 D B2 PO 8O SO SO FO B9 5O BY B B BN B0 0O O B9 B9 SO B8 B9 B9 T 69 B9 GO O PO N 68 BB GO RO 8O B9 8P 89

A1.1 CALPROC - CALL SES PROCEDURE

This procedure segment allows for easy calling by one procedure
of another, when the calling procedure wishes to pass to the called
procedure, parameters from its own parameter List. The procedure
segment itself gives further details.

CALPROC
* August 31, 1981 "
" \ PARMEND "
\ DIRCHAR = '!"?
IF MODE = HELP THEN

!
\ INCLUDE °'CALPROCHLP' L=UNIQUE(NAME) LPFN=HLPLNAM UN=PRCUNAM
! TIFEND :

! DIRCHAR = '\'

" CALPROC_COMMON "

calindx = 1
WHILE calindx <= VCNT(&calparm&) DO
IF (',' /= SuBSTR(calline, STRLEN(calline))) AND ..
(SUBSTR(calline, STRLEN(calline)) /= '(') THEN
calline = calline ++ ',°
IFEND
calline = calline ++ ..)
GENLIST(&calparm&, calindx, LINELEN=5-STRLEN(calline))
EXIT WHEN calindx > VCNT(Rcalparm&)
IF STRLEN(calline) <= STRLEN(®' "." ,') THEN
ABORT '&calparm& PARAMETER VALUE TOO LONG'
IFEND
calline& ..
calline = * " " ¢
WHILEND
caltrlr = SETVAL('', caltrlr)
IF STRLEN(caltrlr) + STRLEN(®' "." *) > LINELEN THEN
ABORT '&calparm& TRAILER VALUE TOO LONG'
ORIF STRLEN(calline) + STRLEN(caltrlr) > LINELEN THEN
&callineg ..
"." &caltrirg
\ caltrlr = !

”

P

P I I N YW PP P

\ ELSE
&calline&&caltrirg
\ caltrlr = *°
\ IFEND

" End of CALPROC_COMMON "

60460270 01

A1-3
CDC - SOFTWARE ENGINEERING SERVICES
_ 13 DEC 83
SES. Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.2 JOBPARM - DEFINE PARAMETERS FOR BATCH JOBS

A1.2 JOBPARM - DEFINE PARAMETERS FOR BATCH JOBS

This procedure segment contains the PARM directives which define
all the '"standard" parameters used in procedures which may run as
batch jobs. This procedure should be INCLUDEd in any SES procedure
which will handle batch processing.

JOBPARM

* August 28, 1981 "

\ IF MODE = HELP THEN

\ INCLUDE 'JOBPARMHLP' L=UNIQUE(NAME) LPFN=HLPLNAM UN=PRCUNAM

\ IFEND

" JOBPARM_COMMON "

\ PARM KEY = 'jobun' " user name " NVALS =1 STR
\ PARM KEY = 'jobpw' " password " NVALS = 1 STR
\ PARM KEY = 'jobfmly® " family " NVALS = 1 STR
\ PARM KEY = 'joben' " charge number " NVALS = 1 STR
\ PARM KEY = 'jobpn' " project number " NVALS = 1 STR
\ PARM KEY = 'jobfl" " field Length " NVALS = 1 NUM
\ PARM KEY = 'jobtl' " time Llimit " "NVALS = 1 NUM
\ PARM KEY = 'jobpr' " job priority " NVALS = 1 NUM
\ PARM KEY = ('local' 'batch' 'batchn' 'defer') NVALS =0

\ PARM KEY = ('nodayf', 'dayfile', 'df') NVALS = 0..1 NAM

" '\ PARMEND " ,

" End of JOBPARM_COMMON "

60460270 01

A1-4
CDC - SOFTWARE ENGINEERING SERVICES :
13 DEC 83
SES -Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.3 JOBHDR1 - PROCESS JOB PARAMETERS

A1.3 JOBHDR1 - PROCESS JOB PARAMETERS

This procedure segment will process the parameters for a batch
job, setting up defaults, etc. Details of its function are
described in the procedure segment itself.

JOBHDR1
" August 28, 1981 "
" \ PARMEND "

\ IF MODE = HELP THEN
\ INCLUDE ‘'JOBHDRTHLP' L=UNIQUE(NAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND

" JOBHDR1_COMMON "

SETVAL('USER', USER, jobun)
SETKEY('LOCAL', jobmode, batch)

\ jobun
\ jobmode

\ IF jobmode /= "LOCAL' THEN

\ IF NOT DEF(PASSWOR) AND NOT DEFP(jobpw) THEN

\ IF FILECINPUT NOT TT) OR FILECOUTPUT NOT TT) THEN

\’ ABORT 'PASSWORD NOT GIVEN'

\ IFEND

\ PARTIAL_PASSWOR = CHARREP(128)++'I ENTER PASSWORD ' ..

++CHARREP(13) ++CHARREP(0) ..
++CHARREP (0) ++CHARREP(10) ++CHARREP(0) ++* HHHHHHHH®
\ PASSWOR = PARTIAL_PASSWOR ..
++CHARREP(13) ++CHARREP(0) ++CHARREP(0) ++' IIIIIIXII' ..
++CHARREP (13) ++CHARREP (0) ++CHARREP(0) ++* #HH#HHIHH® ..
_++CHARREP (13) ++CHARREP(128) ++'A"
ACCEPT PROMPT PASSWOR TO °'OUTPUT® FROM 'INPUT' INTO 'PASSWOR'
IFEND
jobpw = SETVAL(notused, PASSWOR, jobpw)

o~ o

IF NOT DEF(CHARGE) AND NOT DEFP(jobcn) THEN

IF FILECINPUT NOT TT) OR FILECOUTPUT NOT TT) THEN

ABORT 'CHARGE NUMBER NOT GIVEN®

IFEND

CHARGE = ' ENTER CHARGE NUMBER ' ++ CHARREP(128) ++ 'A'

ACCEPT PROMPT CHARGE TO 'OUTPUT' FROM °'INPUT' INTO 'CHARGE'
IFEND
jobcn = SETVAL(notused, CHARGE, jobcn)

Pl

IF NOT DEF(PROJECT) AND NOT DEFP(jobpn) THEN
IF FILECINPUT NOT TT) OR FILECOUTPUT NOT TT) THEN

”

60460270 01

A1-5
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES ‘Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.3 JOBHDR1 - PROCESS JOB PARAMETERS

ABORT 'PROJECT NUMBER NOT GIVEN'

IFEND
PROJECT = ' ENTER PROJECT NUMBER ' ++ CHARREP(128) ++ 'A’

ACCEPT PROMPT PROJECT TO 'OUTPUT' FROM 'INPUT' INTO 'PROJECT'
IFEND
jobpn = SETVAL(notused, PROJECT, jobpn)

o 7

-~

jobfmty = SETVAL('', FAMILY, jobfmly)

-~

IFEND

IF DEFP(jobfl) THEN
IF VALS(jobfl) < 70000(8) THEN
jobft = 70000(8)
IFEND
jobfl
ELSE
jobfl
IFEND

',CM' ++ OCT(VALS(jobfl))

Pt i

~

jobtlL = *",T' ++ OCT(SETVAL(2000(8), defjbtl, jobtl))

IF DEFP(jobpr) THEN
jobpr = ' ,P' ++ VALS(jobpr)
ELSE
jobpr
IFEND

P

P

jobfile = UNIQUE(NAME)

" End of JOBHDR1_COMMON "

60460270 01

A1-6
CDC -~ SOFTWARE ENGINEERING SERVICES _
13 DEC 83
SES Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.4 JOBHDR2 - PROCESS START OF JOB FILE

B0 O OO O P PO B9 BD RO SO 6O N 8000 B N0 B9 B 5O 5O D B0 0O B0 BV O 0O 0O B9 B 8O 19 03 0O 0 0O B9 TP SO RO PO 0 0O GO B BI B8 B OO 6D D B GO G SO BO BP B B GO 80 B PO RO B 8O 09 89
3

A1.4 JOBHDR2 - PROCESS START OF JOB FILE

This procedure segment conditionally generates the code necessary
to submit the procedure for batch processing. Details of its
function are described within the procedure segment itself.

JOBHDR2
" August 28, 1981 "
" \ PARMEND "

\ IF MODE = HELP THEN
\ INCLUDE 'JOBHDRZHLP' L=UNIQUE(NAME) LPFN=HLPLNAM UN=PRCUNAM

\ IFEND

" JOBHDR2_COMMON "

IF STRLEN(PROCNAM) > 7 THEN
PROC_JOBNAME = SUBSTR(PROCNAM, 1, 7)
ELSE
PROC_JOBNAME = PROCNAM
IFEND

s

IF jobmode /= 'LOCAL' THEN
IF jobmode = 'BATCHN® THEN
$SUBMIT(&jobfile&, N)
\ ELSE
$SUBMIT(&jobfile&,B)
\ IFEND :
$RETURN(&jobfile)
REVERT. JOB &PROC_JOBNAMER SUBMITTED
\ IF MODE = TEST THEN

”~

&jobfile&
\ ELSE
\ ROUT jobfile
\ IFEND

&PROC_}OBNAHE&&jobfl&&jobtl&&jobpr&. *%kkx KPROCNAMR ***
\ IF VALS(jobfmly) ++ VALS(jobpw) = '' THEN
SUSER(&jobun&)

\ ORIF VALS(jobfmly) = '' THEN

$USER(& jobun&,& jobpw&)

\ ELSE
SUSER(&jobun&,&jobpw&,&jobfmlyR)
\ IFEND

\ IF VALS(jobcn) ++ VALS(jobpn) /= '' THEN
$CHARGE (& jobcn& ,&jobpn&)
\ IFEND _

60460270 01

A1=7
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.4 JOBHDR2 - PROCESS START OF JOB FILE

\ IF jobmode = 'DEFER' THEN

$CHEAP.

\ IF VALS(jobcn) ++ VALS(jobpn) /= '' THEN
$CHARGE (& jobcng& ,&jobpn&)

\ IFEND

\ IFEND

&RFLLINER

SESMODE ,NEW.

\ EXIT WHEN FILE('SES', NOT AS)

$GET(XSES/UN=&SESUNAMR)

$BEGIN(XSES, XSES)

\ IFEND

\ IF DEFP(jobfl) THEN

\ jobfl = SUBSTR(VALS(jobfl), 4, STRLEN(VALS(jobfl)) - 3)
\ ORIF DEF(defjbfl) THEN

\ jobflL = O0CT(defjbfl)

\ ELSE

\ jobfl = '70000*

\ IFEND

\ IF NOT DEF(minjbfl) OR minjbflL < 70000(8) THEN

\ minjbfl = 70000(8)

\ IFEND

\ IF minjbfl > &jobfl&(8) THEN

\ jobfl = OCT(minjbfl)

\ IFEND :

\ jobtl = SUBSTR(VALS(jobtl), 3, STRLEN(VALS(jobtl)) - 2)

\ IF DEFP(jobpr) THEN

\ jobpr = SUBSTR(VALS(jobpr), 3, STRLEN(VALS(jobpr)) - 2)
\ IFEND

" End of JOBHDR2_COMMON "

60460270 01

A1-8
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS ’
A1.5 MSGCTRL - HANDLE MSG / NOMSG PARAMETER

0 O 0 PO P RO PO PO GO P B PO B N KD PO B GO 10 89 8O 0O 0O GO 0O B0 55 B0 B B8 8O 8O B SO D B9 BO 8O 63 O B GO B9 B9 BI G 0O GO B9 08 B9 B B3 B GO 8O C3 8O KO Bb 8O 8P B8 PO 09 80 40 89

A1.5 MSGCTRL — HANDLE MSG / NOMSG PARAMETER

This procedure segment will process the msg/nomsg keyword
parameter used by many of the '"standard" SES procedures. Details of
its function are described in the procedure segment itself.

MSGCTRL
™ August 31, 1981 "
“ \ PARMEND "

\ IF MODE = HELP THEN
\ INCLUDE 'MSGCTRLHLP' L=UNIQUE(NAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND

" MSGCTRL_COMMON "

\ IF DEFK(nomsg) OR (DEF(jobmode) AND jobmode /= 'LOCAL') THEN
\ sesmsg = 'x!

\ ORIF NOT DEFP(msg) AND DEF(MSGCTRL) THEN

\ sesmsg = MSGCTRL

\ ELSE

\ sesmsg = "SESMSG.*'

\ IFEND

" End of MSGCTRL_COMMON

60460270 01

A1-9
CDC - SOFTWARE ENGINEERING SERVICES
: 13 DEC 83
SES Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

PO B0 00 P 00 00 00 0 P 5D 00 8O O B B0 0O P B9 BD PO B TS O B B PO P O PO D B3 PO FD 0O I PO PO B0 B BI E9 8O P GO PO S GO O OO 8O B 0 D B 0O P8 B B 5D B P KO B 8O 89 8 4O

A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

This procedure (segment) can be used to over-write or create a
permanent file (if create, the file is defined as a direct access
private, read-only permanent file. If the procedure is used as a
procedure segment (i.e. INCLUDEd) the variables 'rewriti'" and
“"rewrito" must have been defined by the INCLUDing procedure.

REWRITE
* August 31, 1981 "

\ IF MODE = HELP THEN
\ INCLUDE °‘REWRITEHLP' L=UNIQUE(NAME) LPFN=HLPLNAM UN=PRCUNAM
\ IFEND
\ PARM KEY = ('i', 'rewriti") NVALS = 1 NAM REQ
\ PARM KEY = ('o', 'rewrito') NVALS =1 NAM REQ
\ PARM KEY = (‘un', '‘rewritu') NVALS = 1 STR
\ PARM KEY = ('status', 'sts') NVALS = 0
\ PARM KEY = ('msg', 'nomsg') NVALS = 0
\ PARMEND
" REWRITE_COMMON "
\ rewritu = SETVAL(USER, rewritu, rewritu)
\ retryrw = UNIQUE(NAME)
\ donerw = UNIQUE(NAME)
\ skiprw = UNIQUE(NAME)
\ label1 = UNIQUE(NAME)
\ Llabel3 = UNIQUE(NAME)
\ label4 = UNIQUE(NAME)
\ Llabel5 = UNIQUE(NAME)
\ Llabel6 = UNIQUE(NAME)
\ Llabel7 = UNIQUE(NAME)
\ Label8 = UNIQUE(NAME)
\ Llabel9 = UNIQUE(NAME)
\ Label10 = UNIQUE (NAME)
\ Llabel11 = UNIQUE(NAME)
\ Llabel12 = UNIQUE(NAME)
\ exittag = UNIQUE(NAME)
\ samerw = ('&rewriti&' = "&rewrito&"')
\ IF (DEFP(status)) OR (DEF(status)) THEN
\ rwfaild = "$SKIP(&exittagl)"’
\ ELSE
\ rwfaild = "EXIT. *%%x REWRITE FAILED %'
\ IFEND

60460270 01

A1-10
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

O B D PP GO P B2 G TS PO PO G2 ED 0D O 5 O TO 09 59 BO PO 0O 8O 59 N 65 SD GO O SO B PSSO GO PO E0 B 3 9 B GO BT RS VS PO ED BV KO IO B B3 D PV 6O B0 8D 8O D 8D S O NS B 0O PO W9 S

\ IF PROCNAM = °'REWRITE' THEN

* MSGCTRL_COMMON "

\ IF DEFK(nomsg) OR (DEF(jobmode) AND jobmode /= "LOCAL') THEN
\ sesmsg = '*!

\ ORIF NOT DEFP(msg) AND DEF(MSGCTRL) THEN

\ sesmsg = MSGCTRL

\ ELSE

\ sesmsg = 'SESMSG.*'

\ IFEND

" End of MSGCTRL_COMMON "
\ IFEND

$SET(EF=0)

$SET(EFG=0)

$SET(R1=1)

ACQUIRE(&rewriti&/A)

\ IF samerw THEN

\ pfnrw = *&rewritod’

\ rewrito = UNIQUE (NAME)

\ IF PROCNAM = 'REWRITE' THEN
$IFECFILE(Rrewriti&, PM) &Llabel1%)
SESMSG. REWRITE NOT PERFORMED SINCE FILE
SESMSG. NAMES EQUAL AND &rewriti& PERMANENT

$ENDIF(&Label18)

\ IFEND
SIFE(FILE(&rewriti&, .NOT.PM) &skiprw&)
\ ELSE

\ pfnrw = "&rewrito&’

\ IFEND

ACQUIRE(&rewrito&=8pfnrw&/UN=&rewrituk)

\ IF VALS(rewritu) = USER THEN
$IFE(FILE(Rrewrito&,PM) &Llabel38&)
ACQUIRE(&rewrito&=&pfnrw&/PO, M=W)
SENDIF(&Label38)

SWHILE,TRUE ,&retryrwd.
SIFE(FILE(&rewrito&,.NOT.AS) ,&Llabel4R)
$DEFINE (&rewrito&=8pfnrw&/M=R)
SENDIF(&Llabel4!)
ACQUIRE(&rewrito&=8pfnrw&/A, M=W)
$IFE(FILE(&rewrito&, PM) ,&Llabel58)
SEVICT(&rewritol)
$COPYEI(&rewriti&, &rewrito&,VERIFY)

60460270 01

A1-11

CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1 N
A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

~~~~~ L Y Y o ey R Ry Y Y Y R N T Y Y

$ELSE(&Label58)

$REPLACE(Rrewriti&=&pfnrw&)
$ENDIF(&Label58&)

\ ELSE

SIFE(FILE(&rewrito&,PM) ,&labelé’)
ACQUIRE(&rewrito&=&pfnrwd/PO,M=W,UN=8rewritu&)
$ENDIF(RLabel6&)

$WHILE ,TRUE,&retryrw&.
ACQUIRE(&rewrito&=&pfnrw&/M=W,UN=&rewrituk)
$IFECFILE(&rewrito&,.NOT.AS) ,&Label78)
$SET(EF=1)

&rwfaild®

$ENDIF(RLlabel78)

$IFECFILE(&rewrito&,PM) ,&Label88)
$EVICT(&rewritok)

$COPYEI(&rewriti&, &rewrito&,VERIFY)
$ELSE(&Label88)

$REPLACE (&rewriti&=8pfnrw&/UN=8&rewrituk)
$ENDIF(RLabel8%)

\ IFEND

$SKIP(&donerwd)

EXIT.

$IFE((EF.NE.ODE) .AND.(EF.NE.TKE) .AND. (EF.NE.PPE) ,&lLabel9%)
&rwfaild&

$ENDIF(&lLabel9&)

$SET(R1=R1+1)

$IFE((R1.GT.5) ,&label108)

&rwfaild®

$ENDIF(RLabel108)

$SET(EF=0)

SREWIND (&rewriti&, &rewritod)

&sesmsgd REWRITE FAILED - WAITING TO TRY AGAIN
$ROLLOUT(120) % REWRITE FAILED - WAITING TO TRY AGAIN
SENDW (Rretryrwd)

$ENDIF (&donerwg)
\ IF samerw THEN
$ENDIF(&skiprwd)
\ IFEND

\ IF PROCNAM /= 'REWRITE' THEN
SRETURN(&rewriti&, &rewritol)

\ ORIF samerw THEN
$RETURN(&rewriti&, &rewritok)
ACQUIRE(&rewriti&/A,UN=&rewritul)
\ ELSE

SREWIND(&rewriti&)

60460270 01



A1-12
CDC - SOFTWARE ENGINEERING SERVICES ‘
. 13 DEC 83
SES Procedure Writer's Guide REV: 1
A1.0 USEFUL PROCEDURE SEGMENTS
A1.6 REWRITE - OVER-WRITE OR CREATE PERMANENT FILE

PO O 0 PO PO S N O PO 10 PO P PO PO PO PO FO PE D O P8 P D PO 0 PO BD P PO B B N 8 D D 0D B0 P B8 P P PO PO PO 1) B0 P8 1D PO 00 B 1D D P B0 PO PO NS PO B0 B 1 P RO PO B0 P8 PO

$IFEC(FILE(&rewritod, PM) &Label128)
SRETURN(&rewritok)
SENDIF(RLlabel128)
ACQUIRE(&rewrito&/A,UN=Brewritul)
\ IFEND

$ENDIF(Rexittag®)

" End of REWRITE_COMMON "

\ IF samerw THEN

REVERT. END RPROCNAMZ &rewritil

\ ELSE

REVERT. END &PROCNAME &rewriti& =-> &rewritol
\ IFEND

60460270 01



cpC - S
SES Pro

B1.0 oP

81.0 oP

B1-1
OFTWARE ENGINEERING SERVICES ;
13 DEC 83
cedure Writer's Guide . REV: 1

ERATING MODES OF THE SES PROCESSOR

ERATING MODES OF THE SES PROCESSOR

The

RUN

TEST

SES processor may process a procedure in one of four modes:

This is the normal mode. The procedure 1is processed,
presumably generating control statements, and then these
control statements are executed.

In this mode the procedure is processed in the normal manner,
but the generated control statements are not executed,

HELP

STATUS

The
the SES
modes
SES pro

MODE

PRIMOUT

instead they are placed on a designated file for possible
inspection by the wuser. This mode is meant as an aid in
debugging new procedures.

This mode is similar to test mode, however dinstead of
generating control statements, a procedure set up for HELP
mode will produce some documentation on its purpose and
usage.

This mode is didentical to help mode, except a procedure set
up for STATUS mode will provide the current status of the
procedure.

modes are selectable by the user by means of parameters to
processor; and the procedure can determine in which of the
it was called by means of predefined variables set up by the
gram. These variables are: :

This variable may be compared with the variables RUN,
TEST, HELP, or STATUS to determine which of the modes is
in effect; for example:

\ IF MODE = HELP THEN
" code for HELP mode "
\ ORIF MODE = TEST THEN
" code for TEST mode "
\ ORIF MODE = STATUS THEN
" code for STATUS mode "
\ ELSE
" code for RUN mode "
\ IFEND

This variable contains the name of the PRIMary OUTput
file. In RUN mode this is the new control statement file;

60460270 01



B1-2
CDC - SOFTWARE ENGINEERING SERVICES
, 13 DEC 83
SES .Procedure Writer's Guide ‘ REV: 1

B1.0 OPERATING MODES OF THE SES PROCESSOR

PO 00 A PO 0O PO PO 0P 00 PO BT TP 2 59 1O C3 D 00 0D 0O 1O PP 29 00 P 8 B0 0O 8O 5V B0 PO 80 9 PO 8D 02 05 SO P G 0O 8O B B D B SO 03 BB GO B9 BO B9 B SO 8O 60 KO B3 B8 K9 BB 89 80 O P 00

in TEST mode this is the file designated by the test mode
parameter on the SES call (default is SESTEST); and in
HELP or STATUS mode this is the file designated by the
help or status mode parameter on the SES call (default is
OUTPUT). PRIMOUT is particularly useful in HELP or STATUS
mode. for directing the descriptive information about the
procedure to the file selected by the user on the SES
call. This may be accomplished as follows:

\ IF MODE = HELP THEN
\ ROUT FA=PRIMOUT
® descriptive information about called procedure
ROUTEND PRIMOUT
STOP
IFEND

-~

Note, in HELP or STATUS mode, a PARMEND directive will be
interpreted as a STOP directive, to prevent a procedure not set up
for HELP or STATUS mode from doing strange or undesirable things.

B1.1 SELECTING MODE OF OPERATION

As stated above, the mode of operation for a procedure is
selected by a parameter to the SES processor.

TEST mode may be selected by one of the keywords: TEST or T. For
example:

ses,test.procedure name Llist_of parameters

will process procedure "procedure name" in TEST mode, and place the
generated control statements on file SESTEST; whereas:

ses,t=my_file.procedure_name list_of_parameters

will process procedure "procedure_name" in TEST mode, but places the
generated control statements on file "my_file".

HELP mode may be selected by one of the keywords: HELP or H. For
example:
ses,help.procedure_name
causes procedure "procedure name" to be processed in HELP mode, and
any descriptive information available will be placed on file OUTPUT

; whereas:

60460270 01



B1-3
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

B1.0 OPERATING MODES OF THE SES PROCESSOR
B1.1 SELECTING MODE OF OPERATION

ses, h=my_info.procedure_name
causes procedure "procedure _name" to be processed in HELP mode, but

any descriptive information available will be placed on file
"my_info".

STATUS mode may be selected by one of the keywords: STATUS or S.
For example:
ses,status.procedure_name
causes procedure "procedure name" to be processed in STATUS mode,
and any status information available will be placed on file OUTPUT;
whereas:
ses,s=my_info.procedure_name
causes procedure '"procedure name" to be processed in STATUS mode,

but any status information available will be placed on file
"my_info". -

Note, that when calling a procedure in HELP or STATUS mode, a
list of parameters should not be given. HELP or STATUS for a group
of procedures may be obtained by one call to SES, as follows:

ses, help.proc_1; proc_2; proc_3

60460270 01






c1-1
CDC - SOFTWARE ENGINEERING SERVICES
. 13 DEC 83
SES. Procedure Writer's Guide REV: 1

C1.0 ERROR MESSAGES

B O PO PP 8O BO PO PO BO B O PO PO P PO P 5O P PP B SO 0 B O D PP PP BO D B0 P B3 P B DO 8O 08 05 08 NP DD 0O B9 B B0 PO BO PR GO B0 NP B PO 0O PP PP PO PO B S G0 0O PO 0O 03 B P 20

C1.0 ERROR MESSAGES

This appendix describes the messages produced by the  SES
processor when errors are detected. SES error messages have been
made as self-explanatory as possible. When an error is detected by
SES, a message is printed in the form:

*% E CL 11001: EXPECTING "name found integer for parameter I" ON
COMMAND STATEMENT

The E at the beginning of the line indicates this is an error
message. :

The CL is an abbreviation for the System Command Language used by
SES to do syntax processing. '

The number 11001 4is an error code assigned to this error
condition.

The text which follows the error code describes the error 1in
detail. Appended to the end of the text is the Line number of the
line being processed by SES. In this first example, it 1is the
command statement which is in error.

After the error message, SES outputs the Line it was processing
when the error was detected, followed by a Lline containing an
up_arrow at the point in the Line where the error was detected.

SES.REWRITE 1I=123 0=ABC

Usually the error actually occurred on the token just before the
up_arrow. :

Here are two more typical examples of error messages:

** F CL 11007: REQUIRED PARAMETER MISSING "I" ON COMMAND
STATEMENT
SES.FORMAT

**x E CL 11011: UNKNOWN KEYWORD ''NVLS'" ON LINE # 7 OF PROC SEGMENT
MYPROC

PARM KEY = ('group', 'g') NVLS =1 NAM

~

60460270 01



c1-2

CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES -Procedure Writer's Guide REV: 1

C1.0 ERROR MESSAGES

O 00 B 00 00 B 0P 00 B8 C PO BD 6D GO D BB PO PO SD P PO BN PO B0 8D GO B9 8O 8O PO I B9 SO FD O SO S PO FD GO F GO 0O GO O GO 0O B GO B0 B 8D O KO B8 B8 KO GO RS BO 8D B9 NS 88 8 B B9 8

Other abbreviations used in SES error messages are SE, which
means the error was detected in the processor itself, and UT, which
means the error was detected by a utility routine called by SES.

60460270 01



D1-1
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

B P 0 B2 B0 B0 PO B0 PO PO BO PO PG T O 0O O P BO P B0 PO PO 1O PO PO PO BD 1O D PO B 1D 8O N D 00 1O B P P98I PO RO PO 8D 00 B0 8O 8O O PO FD 00 80 PO PO RO 1O 8O PO 1% P9 PO P 9 P N0

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION

This section gives a semi-formal description of the syntax used
when writing procedures for and calling the SES. The description is
not intended to be rigorous. First we introduce the "meta-language"
used to describe the syntax: second the character set used by SES is
defined; and finally the syntax description itself is given.

D1.1 THE META LANGUAGE

This section describes the symbols used in the description of the
SES syntax. /

Symbol Interpretation

This symbol should be read as "is defined to be".

I‘ This symbol is used to indicate alternatives, for
example: A | B means that either A or B is allowed.

<item> This group of symbols denotes that dtem is to be
treated as a syntactic unit in relation to
surrounding meta symbols.

Citem] This group of symbols denotes that item is optional,
i.e. zero or one occurences of item are allowed.

{itemd) This group of symbols denotes that item may be used
zero or more times.

Spaces are used in the syntax description to fimprove its
readability, however they are not part of what's being defined
unless otherwise noted.

There are a few instances where some of the meta symbols
themselves are part of the syntax definition, and when this occurs
the meta symbol is underlined, for example: | means the | character
and not the meta symbol. When an _ appears alone, it means itself.

60460270 01



p1-2
CDC - SOFTWARE ENGINEERING SERVICES
‘ 13 DEC 83

SES Procedure Writer's Guide REV: 1

B0 B0 PO O B0 0O B0 N0 8O B 0O PO B O B0 03 PO FO PO B9 D SO B D PP SO PP B P 0O PO P SO B8 B 80 08 B8 5D SO PO D B 5D PP PO PO 80 B KO PO 8D PO PO O 8D PO B 0D 88 O 89 0O 8O NS PO 09 00

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.2 CHARACTER SET

B8 G0 RO PO B0 0D PO 00 PO PO O D 1O 1O B0 PO PO PO P PO KD PO TP 0O D PO S PP PO 0SSO P9 PO 08 B0 B 0O FD 1O 0 B PO TS PP RO DS 5D 0O OO 8O B PP PP 8D 0 B PO B8 80 P9 PO 09 80 00 8O 40 89 9

D1.2 CHARACTER SET

Characters used for NAMES

(=

2 3t 8

Y4 A .0 2

9 SsesscesesROsEnOReRone

Letters
Decimal Digits
Underline
Dollar Sign
Pound
Commercial At

Characters used for INTEGER CONSTANTS

0 - e 9
A .. F

(
)

2o f eeeeeeens

Characters used for OPERATORS

AV IES* L 4

Characters used for PUNCTUATION

b))

Decimal Digits
Hexadecimal Digits
Open Parenthesis
Close Parenthesis

Plus Sign

Minus Sign
Asterisk

Slash (Slant)
Equal Sign
Greater Than Sign
Less Than Sign

Blank (Space)
Comma

Open Parenthesis
CLose Parenthesis
Period

Character used for STRING DELIMITER

cesacscesenssnsacssassscsa Apostrophe (Single Quote)

60460270 01



D1-3
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

O B0 B PO B PO RO B PO 00 B PO B PO 0 B0 O PO NS D B B0 BD D PO B 0O 8O B B 1S 5O BO SO 0D 8D B T P9 0O 1D B O D P P G G B0 KD B3 G OO 6O B9 8O 8O B8 B8 8O B0 B9 8O B PP B P 60

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.2 CHARACTER SET

D 0 0 PO O GO 1O PO PO PO BP P O PO 0 40 D PO 6D PP PO PO D PO 5O B9 PO D B PO FD B0 P9 8O 0O 8D 8O B8 B RO 1D P PO B 8P B0 B D 8O O DD B B9 O B 8P 59 1P BD PO 4O PO P PO 89 €O PO PP

Character used for COMMMENT DELIMITER

" cesscessencssessssensnsasas (DOuble) Quote

(Default) Character used for SUBSTITUTION DELIMITER

& cesvssasenssasansansssssss AMpersand

(Default) Character used for DIRECTIVE HEADER

\ eesssscenansesscsssanassss Reverse Slash (Slant)

Note: Any ASCII character not listed in the above character set
has no meaning to the SES processor. These characters may

however be wused in strings, comments, or as data
characters.

60460270 01



D1-4

CDC - SOFTWARE ENGINEERING SERVICES
- 13 DEC 83

SES Procedure Writer's Guide REV: 1

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3 SYNTAX

B 50 00 PO PO PO NP PP 60 B0 20 B CF 3 09 8D O B B0 BY BV B PP SO B 8D SO 1D GO B PO B0 B 8O 0P 5O B0 5 RO TS B9 SO B SO EO SO 00 B PO B9 GO B B0 B 8D 8O 8O K 8P 80 5O 80 B 89 89 89 S0 S0

D1.3 SYNTAX

D1.3.1 BASIC DEFINITIONS

<upper case letter> ::=A | B | C|D]JE|F|]G]|H
T jlJd)lKlL|IM|IN]JO]|P
Q@RS TlU]V]|W]|X
I A I 4

<lower case letter> ::= a Iblc)ld|le] f]laglh
fililkltim]ln]olop
lalrisitlulv]vw]x
lylz

<letter> ::= <upper case letter>
| <lower case letter>
°

<decimal digit> ::=0 | 1] 2|3 |4|5|6]7]181]9

Als|c|
a c

<hexadecimal digit> : B
fblecl

Qo

<digit> ::= <decimal digit>
| <hexadec1mal digit>

| | |s161718]91]10

<base> ::=
1M 112113114115 16

D1.3.2 TOKENS
This séction defines the building blocks of SES syntax,
collectively referred to as tokens. The internal token scanner of

the SES processor is made availble to the procedure writer by means
of the built-in function TOKEN.

- <token> ::= <name> | <number> | <string>
| <delimiter> | <operator>
<name> ::= <alphabetic char> {<alphabetic char> | <decimal digit>

<alphabetic char> ::= <letter> | _ | $ | # | @

<upper case hame> ::=

60460270 01



p1-5
CDC —~ SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

B PO PO 40 O PO FD PO PO PO D B9 5O PO T B0 D PO PO PO PO O KD PO PO 00 SO TS RO PO PO 5O PO KO 55 8O FO 0O RS PO PO S PO 8O 8 PP NP G0 8O BV 80 O PP 00 8P 8O 0P 89 PO KO B0 P 80 89 B Y 09 8

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.2 TOKENS

PO PO D P PO PO RO PO PP PO RO PO D P O D B PO PP D 6D WD RO Y PP PO PO O PSP B9 PO 9 PO 0O 1O O 82 15 B D B3 B9 PO B8 $O B 80 6O BO BE RO P B RO B0 8O 8O D 0O P B0 89 O RO 80 80 PO

<upper case letter> {<upper case lLetter> | <decimal digit>}

ALl names are limited to thirty-one characters in length, except
procedure names and procedure identifiers, which are Limited to ten
characters. With the exception of <upper case name>s, any name may
be specified with either upper or lower case letters, but before a
name is used all letters in it are converted to upper case. For
instance the names: ABC, abc, aBc, and so on, are all equivalent.
(This includes any of the "specijal" names, such as DO, THEN, WHEN,
etc. In this description, however, these names are always spelled
out in upper case letters.)

<variable name> ::= <name>

<function name> ::= <name>

<parameter name> ::= <name>

<directive name> ::= <name>

<assignee> ::= <parameter name> | <variable name>

<procedure name> ::= <name>

<procedure identifier> ::= <upper case name>

<number> ::= <decimal digit> {<digit>)} [(<base>)]

<string character> ::= "!
| <any ASCII character except '>

<string> ::= '{<string“character>}'

<constant> ::= <string> | <number> | <name>

<delimiter> ::= , | C | D) | =] .| ..{.>
' | <end of Line>

<operator> ::= <graphic operator> | <mnemonic operator>
<graphic operator> z:= %% | * | / | // | + | = | ++

60460270 01



D1-6

CDC - SOFTWARE ENGINEERING SERVICES
: : 13 DEC 83

SES Procedure Writer's Guide \ REV: 1

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.2 TOKENS

=1 /=1 <> <] <=]3>]|>

<mnemonic operator> ::= AND | OR | XOR | NOT

60460270 01



p1-7
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

OO 0 00 0O PO 00 BP 1O S0 B PO PP 1D PO PO TV PO BD BD P DI BI G PP 8D P 0O 8O 00 PO B 8D 65 B0 80 SO 53 60 8O BD KO B PO B0 8 PO 8O 0O GO B B GO B0 I 59, 5D 80 B PO P9 6D B9 5O B9 89 PO 80 B9

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.3 USE OF SPACES

O D D P 0 PO PO BP0 O PO PO PO KO TP IO D FO PO P B K0 PP B0 0 FD PO 5O B D B NS KD 00 FO PO 8O S8 B 0 B3 PO B9 8O F SO BV G0 B8 8D PO B0 C8 PO B0 00 I 8O S 80 BY B9 8O PO 69 KO 80

D1.3.3 USE OF SPACES

Before discussing when and how spaces can be used we will first
define the syntax of comments.

<comment> ::= "{<any ASCII character except ">}"

In almost all cases a comment is treated identically to a single

blank character, and 2 or more contiguous blank characters (or
comments) are treated as a single blank character. Blank characters
and comments treated in this manner are known as spaces.

Spaces may be used between tokens to improve readability and in
general may be used to replace commas when used as argument, value,
or parameter separators. Spaces must be used to separate tokens
when no <delimiter> or <graphic operator> can be used to separate
them. For example the spaces between the tokens on the following
line must be present:

V1 AND V2
whereas the following two expressions are equivalent:

vVl + V2
Vi+V2

Further, the following value Llist contains 2 values:
(X, =3)
whereas the next contains only 1 value:
(X =3)
namely the value of the expression X-3.

Spaces within character strings represent themselves, and
comments may not be used in front of the \ which occurs at the
beginning of directive lLines, nor following the continuation signal
at the end of directive or call Llines. Lines within procedures
which are not directives or continuations of directives or Llines
which are read using the ACCEPT directive, are treated as unquoted
strings, and therefore spaces are significant in them. Whenever a
line 1is read by the SES processor, trailing blank characters are
deleted. Also, it is legal to precede the \ of a directive Line by

one or more blank characters.

60460270 01



D1-8
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

OO 00 0 B0 B0 00 8O PO PO PO B0 8O B0 O 00 09 B2 0P 09 80 PO B BB B0 8D G D B B BO B B B D PO B B BY 8D SO 8P 9 89 P 59 0 D B KO 8D FO B9 8BS PO P 09 0O D B GO BY B9 B9 P O NP 80 8

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.4 EXPRESSIONS

0 00 40 N0 P8 00 20 B0 00 00 10 03 0 00 B0 00 B BB IS KO 1D 1D B GO 0 S0 P9 B9 5O B9 B0 0D PO BD PO 8 B B 00 B O 00 00 O B9 RS B B 80 85 B9 80 B0 B9 B B 09 P NI B9 8O PO 8O B0 B 8 B0 0

D1.3.4 EXPRESSIONS

<lterm> {<or> <lterm>}

<expr> ::=
::= OR | XOR

<or>

<lterm>: ::= <Lfactor> {AND <lLfactor>)
<Llfactor> ::= [NOT] <lprimary>

<lprimary> ::= <sterm> {<rel op> <sterm>}
<rel op> ::==| /= | < | <=]|>]| >=

<sterm> ::= <term> {++ <term>}

<term> ::= [<term op>] <factor> {<term op> <factor>)
<term op> ::= + | -

<factor> ::= <primary> {<factor op> <primary>}
<factor op> z:=% | / | //

<primary> ::= <operand> {** <operand>}

<variable reference>
<function reference>
( <expr>)
<constant>

<null>

<operand> ::

<null> ::=
<variable reference> ::= <variable name>

<function reference> ::= <funhction name> <arguments>

<arguments> ::= ( [<arg> {, <arg>}] )
| <nutl>

<arg> ::= <name> | <expr>

= <expr> " must resolve to an integer "
= <expr> " must resolve to a string "
= <expr> " must resolve to an integer
" if the value is zero, it
" is taken to be FALSE "
" if non-zero, it's taken
" to be TRUE "

<integer expr> ::
<string expr> ::
<boolean expr> ::

60460270 01



: D1-9
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1
D1.0 SEMI~-FORMAL SYNTAX DESCRIPTION
D1.3.5 FOREIGN TEXT

D1.3.5 FOREIGN TEXT

Foreign text is primarily used for parameter values which are to
be 1in turn used as parameter Lists (e.g. to secondary procedures)
or simply to prevent the SES processor from evaluating - an
expression.

The scanning of foreign text is totally different from scanning
"normal"” text. The characteristics of this special scanning are

- parentheses are "balanced"

- single and double quotes are "matched"

- if not contained within parentheses, single quotes, or
double quotes, the tokens: comma, period, ellipsis
(..{.}), and close parenthesis will terminate the scanning
(and thus the foreign text value). 1In addition, spaces
which are used to separate names, numbers, or strings from
names numbers or strings will terminate scanning; as will
an "unenclosed" open parenthesis which follows a string or
number (Note, that an open parenthesis following a name
does not terminate scanning - this 1is because function
references are allowed in foreign text but the foreign
text scanner doesn't evaluate what it scans, and thus does
not know if the name is indeed the name of a function).

Foreign text may also be described as having the general format
of an expression, but the expression is not evaluated when scanned
as foreign text. During scanning comments and blanks not contained
within single quotes are "thrown away" and single blank characters
are inserted between tokens which would otherwise not be separated.

The following example illustrates some of the idiosyncracies of
foreign text:

\ vliist ="(abc(de) "'pqg''''r, s'" 123(8) (x,(y+3)) )
\ count = VCNT (vlist) 2"
\ value = VALS (vlist, 3) w3
\ slist = GENLIST (vlist, index) "4

The first line defines a value List in the variable vlist. Line
2 sets the variable count to the value 6. Line 3 sets the the
variable value to the value:
c(D E)
and line & sets the variable slist to fhe value:

A,B,C(D E),'p q''r, s',123(8),(X,(Y+3))

60460270 01



D1-10

CDC ~ SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

~~~~~-~~~~~~~~~~-~~~~.~~~~~~QU~~-~~\.~-~~~-~~~-~~~~-~~-~-‘~~~-~~~-~~~~

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.5 FOREIGN TEXT

B0 0 PO 0 B B N GO 0O 0O CO GO B 00 00 00 O B 00 1 D PP BO 1D B 0O O 0O 89 SO C 0O B9 B B 8P B B0 BD B0 RS GO BV BO B9 6D B SV 8O KD B P KO SO GO 8O NP BO B8 KO GO B9 GO B 0O B9 40 80

The next example illustrates how a parameter Llist may be passed
as a foreign text parameter:

\ plist = *'(i=infile "columns" cols=1..80 o=out)'
\ count = VCNT (plist)

\ tow = VALS (plist, 2, LOV)

\ high = VALS (plist, 2, HIV)

\ slist = GENLIST (plist, index)

Count is set to 3; low is set to:

coLs=1
high is set to 80; and slist is set to:

I=INFILE,COLS=1..80,0=0UT

60460270 01

D1-11
CDC - SOFTWARE ENGINEERING SERVICES
- : 13 DEC 83

SES Procedure Writer's Guide : , REV: 1

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.6 PARAMETER LISTS

D1.3.6 PARAMETER LISTS
<parameter Llist> ::= [<parameter> {[,] <parameter>}]
<parameter> ::= [<parameter name> [=]] <value Llist>
| <parameter name>

| <null>

<value>

<value Llist> ::=
| ¢ [<value> {[,] <value>}])

<value> ::= <value side> [..{.} <value 'side>]

<value side> ::= <expr> | <foreign text>

60460270 01

D1-12

CDC - SOFTWARE ENGINEERING SERVICES
: . 13 DEC 83

SES Procedure Writer's Guide ‘ REV: 1

OO PO PO PO PO B 0 20 00 00 0O B0 DO 1S B GO G N BB PO O 0O 1D D BO BD FD TS EP $D 0O BD B T 9 59 00 B8 8O BV B0 B GO RO 8P 0 B0 PO B8 D 83 PO B0 B0 8O PO D KO B 00 B0 80 60 89 89 80 80 89

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.7 SES PROCESSOR CALL

GO OO O O PO NS O O PO SO B0 PO C O PO PO RO BO F 10 0O 8 0O 00 B SO 8D B 8O 8O 89 8O B0 89 DO BO B B SO GY B2 SO B9 FO B0 B0 BD KD BY K PO S PO B B0 0O S 8 B0 B0 B0 SO 89 89 4 N9 S0 B9

D1.3.7 SES PROCESSOR CALL
<csep> ::= [;]|.] <end of Lline>

<proc call> ::= <procedure name> [,] <parameter List> <csep>

<control statement> ::= <string>

<control statements> ::= <control statement> [<csep>]
{[,] [Kcontrol statement>] [<csep>]1}

<call element> ::= <proc call> | <control statements>

<SES call> ::= SES [, <parameter Llist>] .
<call eLement>>{<call element>)

Because of operating system restrictions, a <parameter List>
following the SES (processor name) must have explicit punctuation.
That is to say, commas must be used to separate parameters (and
values) and equal signs must be used to separate parameter names
(keywords) from their value Llists.

Also, the operating system is not well acquainted with lower case
letters, so only upper case should be used; however, NAM/IAF (or
TELEX) and the SES processor alleviate this problem by converting
lower case Lletters to upper case on command and continuation lines.

When <control statements> are wused in a <SES call>, the SES
processor insures that they are all ‘"properly" terminated, i.e.
each <control statement> string is scanned for a right parenthesis
or period and if neither of these characters is found, a period will
be appended at the end of the string; if however, a right
parenthesis or period is found, the string will be left alone. NOTE
that this 1is the only validity checking of the <control statement>
done by the SES processor.

60460270 01

D1-13
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

'SES Procedure Writer's Guide REV: 1

O 00 B0 O PO SO PP PO B2 SO BV D 0O B0 PO PO O PO PO 8O 00 0O O PP PO 8O G PO 8O B B PO 0O PO SO 1O B B8 80 B8 8O 8O 8O 6 BY 0O PO P O B PO B9 B 80 PP B 63 00 Y 6O B B9 8O B8 80 0 00 88

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.8 SUBSTITUTION

D1.3.8 SUBSTITUTION

<substitute> ::= <parameter name> | <variable name>
<default substitution character> ::= &

<alternate substitution character> ::=
IM#IS 2 LD Ix=1+1=1717 17 18] 0 -0 20 22

<substitution char> ::=
<default substitution character>
| <alternate substitution character>

<substitution> ::=
<substitution char> <substitute> <substitution char>

- 60460270 01

D1-14

CDC - SOFTWARE ENGINEERING SERVICES

: : 13 DEC 83
SES Procedure Writer's Guide ‘ REV: 1

O OO B0 B0 PO PO KO R0 0O 8O RO 5O PO B8 B9 0O BD G0 BO 60 0O BO 89 B S P OO GO B3 B PO 63 B BD BI 89 O D Y 0O O G SO B K0 SO $9 8O K 8O 8O BD PP 00 FP KO B O NP B9 8D B8 B 8O W9 00 89 9

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.9 PROCEDURES

O OO (0 0 B0 B PO B0 B0 5O BO B K0 PO P9 PO BP 08 BD 59 8O B 0 BD 8O OO D B9 89 GO BS 9 D B 5O PO B0 SO B P GO SO CO TP SO GO B GO 00 8O 89 KU B 0O SO 8O NP B BP 0O B B 8O B0 80 89 50 S

D1.3.9 PROCEDURES
<procedure> ::= <procedure identifier> {<procedure line>}
<procedure Lline> ::= {<procedure Line'element>}

<procedure Line element> ::= <substitution>
| <any ASCII character>

The process of substitution applied to a <procedure Lline> yields
an <object Lline>. '

<object Lline> ::= <directive Line>

| <empty Line>
| <data Line>

<default directive character> ::= \

<alternate directive character> :
LIM#IsIX] T CD P *1=l+]=1/]"]

-
-
~

I"tal,1.1:1:]2

<directive header> ::=
<default directive character>
| <alternate substitution character>
<directive Line> ::= <directive header> <directive>
<empty Lline> ::=
<data line> ::= <any line which is not "empty" and does

not begin with a directive header>

Note: <empty Line>s may contain comments enclosed in double
quotes.

60460270 01

D1-15
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83
SES Procedure Writer's Guide REV: 1

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.3.10 DIRECTIVES

O 00 00 B PO B0 PO B0 PO B0 PO PO PO P O I 00 O 0O 8D 0O 0 S0 PO 0 5O 0 20 00 00 00 00 PO S B0 B PO B2 PO 0 GO PO B PO BO BD TV PO B0 PO PO 1O O TP B0 PO B PO 0O PO B0 B9 B8 NI 4O WO N0

D1.3.10 DIRECTIVES
<directive> ::= <assignment>
| <if while> <boolean expr> [<then do>]
| <exit cycle> [WHEN <boolean expr>]
| <directive name> <parameter Llist>
<assignment> ::= <assignee> = <expr>
<if while> ::= IF | ORIF | WHILE

<then do> ::= THEN

| %o

<exit cycle> ::= EXIT | CYCLE

60460270 01

D1-16

CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide ' REV: 1

O OO PO B PO B B0 CO PO PO ED 5O 5O KO O 1O PO 53 B9 D FO D P B9 5O B B9 OO 6V FO 9 C8 F TS SO BO KD SO TV SO 0D GO CF GO 0O P O KO SV PO P G0 FO 8P 8O GO 0 P PP BP B0 80 00 KO 88 %9 PO 0

D1.0 SEMI-FORMAL SYNTAX DESCRIPTION
D1.4 LINES AND THEIR CONTINUATION

0O P 29 TP O 0O O PO PO PO (D GO 0 S CO BD P BB PO PP D PO O PO 0 GO R PO PO B FP O 0O 6D BD PO BO 0D O SO BB 0P B BO 08 GO B0 80 8D SO B0 63 B8 PO PO O 0O GO S0 B 8O GO 6O 8O BY B0 89 0

D1.4 LINES AND THEIR CONTINUATION

It is sometimes necessary to pass more parameters to a procedure
(or give more parameters to a directive) than will fit on one line
(Lines are normally Limited to 80 characters in Llength, however,
TELEX further limits the command Lines to about 70 characters -- for
reasons known only to TELEX —-- continuation Llines entered at the
terminal may, however, be 80 characters Llong). To handle this
problem, SES processes continuation Lines.

The effective net result of using continuation Llines 1is to
construct an unbroken line of up to 256 characters.

Continuation may only be used in conjunction with SES directives
and when calling SES to process a procedure. Continuation 1is
signalled on the Lline which is to be continued, not the continuation
line itself. Note that the <continuation signal> is not considered
to be part of the Line. The mechanism for doing this is defined as
follows:

<whole Lline> ::=
<line starter> <stuf 1> [<continuation signal>
<stuf 2> { <continuation signal>

<stuf n> X} 1]

<continuation signal> ::= ..{.}

<line starter> ::= <directive header> <name>
’ | SES <parameter Llist>

<stuf i> ::= <whatever belongs with the line starter>
"1« ji<=n"

The effect of this is as if <whole Line> had been specified as:
<line starter> <stuf 1> {<stuf i>}

Note: Syhtactic units (tokens) may cross line boundaries.

60460270 01

E1-1
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide . REV: 1

E1.0 ACQUIRE UTILITY

00 A0 B0 0 00 POV PP 0O O PO O U PO PO D PO EP PO PO BT P FD FP VO D D B P 8O PO P9 B0 55 B0 B9 B2 B9 89 SO G4 B9 PO B0 PO Y B 8D O B FD PO PP 8O RO B0 FD BV TS N8 PO RS KO KO 8 B9 B9

E1.0 ACQUIRE UTILITY

ACQUIRE is a program that enables easy retrieval (acquisition) of
permanent files.

ACQUIRE combines the functions of the NOS "ATTACH" and "GET"
control statements. For each file specified ACQUIRE determines if
the file 1is already local to the job (unless suppressed by the PO
parameter, see below), if so it is rewound; if not, then for each
one of a Llist of user names, an ATTACH is attempted (waiting, if
necessary, until the file is not busy), and if that fails a GET is
tried. I1f, after all this, the file 1is still not Llocal, an
appropriate dayfile message is issued.)

Unless the A (abort) parameter is specified, ACQUIRE will abort
only because of control statement format or argument errors, or
because of a permanent file manager (PFM) detected error; and not
because one (or more) of the specified files could not be found.

The control statement format for ACQUIRE is :
ACQUIRE(Lfn1=pfn1,lfn2=pfn2,.../0p1,0p2,...)
Lfni is the (local) name of the file once it has been ACQUIREd
(note that this is the name used in making the "is the file

already local?" test)

pfni is the permanent file name for the file (if =pfni is omitted,
pfni is assumed to be the same as Lfni)

opi specify options used for acquiring the file(s) :

A specifies that if a file is not found, the program
should abort

NA is the opposite of A (and is the default)

PO specifies Permanent Only, i.e. that if a file is
already local, it will be returned and then the
ATTACH and GET will be attempted

UN=users specifies a Llist of user names to be searched for
each file (the user names are separated from each
other by commas)

60460270 01

‘ | E1-2
CDC - SOFTWARE ENGINEERING SERVICES

, 13 DEC 83

SES Procedure Writer's Guide REV: 1 ..
E1.0 ACQUIRE UTILITY

M=mode specifies the access mode desired for the file

: (READ or R == the default, WRITE or W, or EXECUTE

or E)
PW=pw specifies the permanent file's password
PN=pn specifies the packname for the permanent file

When ACQUIRE is attempting an ATTACH or GET, if the file is busy
or if a permanent file utility is active, the following message will
be issued and the request will be retried :

- WAITING FOR PFN=permanent_file_ﬁame UN=user_name

When ACQUIRE is attempting an ATTACH or GET, if an error is
detected by PFM the following message is issued and the program is
aborted : ‘ :

- ERROR WITH PFN=permanent_file_name UN=user_name

In both of the above cases, the designated messagé will be
preceeded by a more specific message generated by PFM.

60460270 01

F1-1
CDC - SOFTWARE ENGINEERING SERVICES
. 13 DEC 83
SES Procedure Writer's Guide REV: 1

F1.0 EXTRACT UTILITY

B D B0 P 20 PO PO O PO P B O PO PO O PP RO O BD PO SO B PO B0 O PO 1D 0O D BO D PP PO PO GO B O 0O B 09 PO 8D 89 8BS £ BRI B8 B9 8 RS KD B9 B BO B3 B P PP B9 PO KU PO 8O N8 09 P9 4O 9

F1.0 EXTRACT UTILITY

EXTRACT is a program that enables easy retrieval of records from
permanent file (or Llocal) Llibraries.

Although the program is designed primarily for use in procedure
files, it can be very useful on its own.

EXTRACT is similar in function to the NOS '"GTR" statement. It
differs from "GTR" in the following ways:

o EXTRACT insists that the Llibrary to be searched has a
directory (this can be built using the NOS utility
"LIBEDIT").

o The record type parameter for EXTRACT, if given, applies to
all records to be extracted, and if not given, only the names
of the records are used when searching the Llibrary.

o Each extracted record 1is copied to dits own local file by
EXTRACT, rather than all to the same file.

o EXTRACT does not insist that the Lfbrary to be searched be

local to the job when 1it's called, but will ACQUIRE the
Library from a permanent file catalog.

The control statement format is:

EXTRACT(Lfn1=rn1,Lfn2=rn2,.../0p1,0p2,...)

Lfni Is the Llocal file name given to the record once it's
extracted (lLfni 1is REWOUND before and after the extraction
takes place).

rni Is the name of the record to be extracted (if omitted, it is
assumed to be the same as Lfni).

opi These parameters specify options that control the extraction
process :
A Specifies that if a record is not found, the

program should abort.

60460270 01

F1-2
CDC -~ SOFTWARE ENGINEERING SERVICES

. 13 DEC 83
SES Procedure Writer's Guide , REV: 1
F1.0 EXTRACT UTILITY
NA Is the opposite of A (and is the default).
T=rt Specifies the record type (if given, it applies

to all records being extracted; if omitted, only
the record names are used when ’searching the

Library).

L=libname Specifies the name of the Llibrary to be searched
for the records (if omitted, "PROCLIB" is
assumed).

LFN=Lliblfn Specifies the Llocal file name for the library
’ (if omitted, the "libname" from the L paraeter
is used). Note that this is the name used to
make the "is file local?"” test when ACQUIRing

the Llibrary.

UN=un Specifies the wuser name of the permanent file
catalog to be searched for "Libname" if it's not
already Llocal (if omitted, the current user is

assumed) .

PW=pw Specifies the library's permanent file
password.

PN=pn Specifies the Library's permanent file
packname.

Valid record type designators are documented under the
description of the "CATALOG" control statement in the NOS Reference
Manual. . : '

In addition to these standard types, there's one more "type"
processed by EXTRACT, which is designated by "TXT". This "type" is
used to denote "TEXT" records that, when extracted, are to have
their first Lline (which contains the record's name) "stripped off".
This is useful if, for example, one has records containing
directives for a NOS utility, in which case the name of such a
record is 1in all Likelihood an illegal directive to the utility
program. * :

EXTRACT will abort under any of the following conditions:
o format or argument error(s) on the control statement

-0 the specified Library could not be AQUIREd

60460270 01

F1-3
CDC - SOFTWARE ENGINEERING SERVICES
13 DEC 83

SES Procedure Writer's Guide REV: 1

F1.0 EXTRACT UTILITY

o the library file does not have a directory as the last record
before end-of-information

Note, however, that EXTRACT won't abort if it does not find any
of the requested records (only an informative dayfile message is
issued), unless the Abort parameter was coded on the call.

If the Llibrary file was not local to the job when EXTRACT was
called, it will be RETURNed when EXTRACT terminates normally; but,

if the Llibrary file was Llocal, EXTRACT will REWIND it prior to
normal termination.

60460270 01

G1-1
CDC - SOFTWARE ENGINEERING SERVICES
‘ 13 DEC 83

SES Procedure Writer's Guide REV: 1

G1.0 SESMSG UTILITY

PO 0 B PP PO PO 00 0 0 00 NP B0 B0 PO O B0 8O PO 9 PO GO B8 0D 8O S0 PO B0 B9 GO BO 80 B 0O G0 B3 N I B9 PO BI BE B SO NI B P 6D NP B S 0O VP PO SU 0O SO D P PP O TP B9 BP0 O 09 N N

G1.0 SESMSG UTILITY

SESMSG is a program which copies the comment field of 1its call
Line to a file. The control statement format is:

SESMSG,file.message

file ~is the name of the file to receive the message (if
omitted, OUTPUT is assumed)

message is the message to be written to the file
The message will be written to the file only if the file is a
terminal file, or if "file" was explicitly quoted on the call Line.
SESMSG can be used in procedure files to inform the wuser about
what the procedure is currently doing. It can also be used for

creating files of input directives to utility programs when such
directives are dependent on execution time considerations.

60460270 01

CORPORATE HEADQUARTERS, P.O. BOX O, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

G

CONTROL DATA CORPORATION

