
&J 1:\ CONTR,OL DATA
\::I r:J CO~O~TION

INTERCOM VERSION 4
INTERACTIVE GUIDE FOR

60495000

USERS OF FORTRAN EXTENDED

CDC® OPERATING SYSTEM:
NOS/BE

REVISION RECORD
REVISION DESCRIPTION

A Original release.

(01-30-76)

B Corrects various technical and typographical errors and reflects PSR summarY 473.

(10-10-78)

Publication No.
60495000

REVISION LETTERS I, 0, a AND x ARE NOT USED

© 1976, 1978

Control Data Corporation
Printed in the United States of America

ii

Address comments concerning
this manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in
the margins or by a dot near the page number if the entire page is .affected. A bar by the page number indicates
pagination rather than content has changed.

Page Revision Page Revision Page Revision

Front Cover -
Title Page -
ii B

3-8 A
3-9 B

4-25 A
4-26 A

iii B 3-10 A 4-27 A

iv B 3-11 B 5-1 A
v B 3-12 A 5-2 A
vi B 3-13 A 5-3 A
vii A 3-14 A 5-4 A
viii B 3-15 A 5-5 A
ix A 3-16 A 5-6 A
I-I A 3-17 A 5-7 A
1-2 A 3-18 A 5-8 A
1-3 B 3-19 A 5-9 A
1-4 B 4-1 A 5-10 A
1-5 A 4-2 A 5-11 A
1-6 A 4-3 A 5-12 A
1-7 A 4-4 A 5-13 A
1-8 B 4-5 A 5-14 A
1-9 B 4-6 A 5-15 A
2-1 A 4-7 A 5-16 A
2-2 A 4-8 A 5-17 A
2-3 A 4-9 A 5-18 A
2-4 A 4-10 A 6-1 A
2-5 A 4-11 A 6-2 A
2-6 A 4-12 B 6-3 A
2-7 A 4-13 B 6-4 A
2-8 A 4-14 A 6-5 A
2-9 A 4-15 A 6-6 A
2-10 A 4-16 A 6-7 B
2-11 A 4-17 A 6-8 B
3-1 A 4-18 A 6-9 B
3-2 B 4-19 A 6-10 A
3-3 B 4-20 A 6-11 A
3-4 A 4-21 A 6-12 A
3-5 A 4-22 A 6-13 A
3-6 A 4-23 A 6-14 A
3-7 A 4-24 A 6-15 A

60495000 B iii

Page Revision Page Revision Page Revision

6-16 A
6-17 A
6-18 A
6-19 A
6-20 A
6-21 A
6-22 A
6-23 A
6-24 A
6-25 B
6-26 B
6-27 A
6-28 A
6-29 A
6-30 A
6-31 A
6-32 A
6-33 A
6-34 A
6-35 A
6-36 A
6-37 A
6-38 A
6-39 A
6-40 A
6-41 A
6-42 A
6-43 A
6-44 A
6-45 A
6-46 A
6-47 A
6-48 A
6-49 A
6-50 A
A-I A
A-2 A
B-1 A
C-1 A
C-2 B
Index-1 A
Index-2 A
Index-3 A
Comment Sheet B
Back Cover

iv 60495000 B

PREFACE

This manual describes access to CDC® CYBER 170 Series, CDC® CYBER 70 Models 72, 73, and 74, or
CDC® 6000 Series Computer Systems through a remote terminal under control of the INTERCOM Version 4 I
facilities of the NOS/BE Version 1 operating system. Not all INTERCOM capabilities are described, nor are
all described commands outlined in full. Throughout the manual, the emphasis is on specific steps a user
must take to achieve a final result. The text assumes that INTERCOM is being accessed through a terminal
and that batch terminal or central site facilities are not close at hand.

This manual is an introduction to INTERCOM for the FORTRAN Extended programmer. Its aim is to help I
those knowing little about computers in general, who are writing compiler language programs as a tool for
other means, to use INTERCOM effectively. The EDITOR of INTERCOM, which allows a program to be
created and updated by line, dominates the text.

This manual is not written for a programmer experienced in operating system usage who is trying to duplicate
batch job execution by a series of commands at a terminal. Nevertheless, those persons may find this manual
helpful in reinforcing facts basic to any INTERCOM use.

Turn to the first section of this manual for a concise summary of procedures for accessing the central site and
entering and executing a FORTRAN Extended program. Choose other sections depending on familiarity with
INTERCOM.

Section 2 reviews terminal operations.

Section 3 defines the concept of a command and its syntax, as well as the logic behind required user
actions and the interaction between EDITOR and other parts of the system. If you want a demonstration
of EDITOR use before studying EDITOR operation, skip section 3.

Sections 4 and 5 show how to enter and execute a FORTRAN Extended program through EDITOR,
starting with a call to EDITOR and ending with execution of several types of files. Commands are
introduced as they are needed to accomplish a specific task with the minimum parameters possible.
Several variations in processing are presented. Full command names are used at all times to reinforce
the command or parameter that performs a particular function.

Section 6 presents commands in alphabetical order, discussing capabilities bypassed in sections 4 and 5.
Illustrations show situations in which the command is used with other commands to perform specific
tasks.

FORTRAN Extended is the language used for examples.

Execution of COBOL and ALGOL programs through EDITOR differs in minor details, but operating principles
for these languages are the same.

60495000 B v

Other manuals containing information that may be useful to INTERCOM users are:

Control Data Publication Publication Number

INTERCOM Version 4 Reference Manual 60494600

NOS/BE Version I Reference Manual 60493800

FORTRAN Extended Version 4 Reference Manual 60497800

INTERCOM Interactive Procedure Guide 60495200

INTERCOM Version 4 Remote Batch User's Guide 60496100

This product is intended for use only as described in this document. Control Data cannot be responsible
for the proper functioning of undescribed features or parameters.

• vi 60495000 B

1. so YOU WANT TO EXECUTE A
FORTRAN PROGRAM THROUGH
INTERCOM?

Enter and Execute Program
Call EDITOR
Call FORMAT
Call CREATE
Check Input
Correct Input
Execute Program
Save Program
Summary of Operations

What's Next?
Questions New Users Ask

Can I Harm INTERCOM or Other Parts
of the Computer System?

Can I Ruin My Own Files?
What Happens if I Make a Mistake?
What if I Don't Know What to do Next?
Why Does it Take so Long for the

System to Respond?
Can I Shorten Response Time?
Do I Have to Wait for INTERCOM to

Respond Before Entering Another
Command?

What is a Reasonable Time to Wait Before
Suspecting System Problems?

How do I Know INTERCOM is Active
or that the Communication Links
are Still In tact?

What Happens if Communication With
the Central Site Computer is Dropped
Through no Fault of Mine?

Assuming the Manual Tells Me What to
do for Each Command, What Shouldn't
I do?

2. COMMUNICATION LINKS AND
HARDWARE OPERATION

Establishing INTERCOM Access
Dialing In to the Cen tral Site
Acoustic Coupler Connection
LOGIN Command

60495000 A

CONTENTS

Diagnostics for Incorrect User
Actions During LOGIN 2-5

1-1 LOGOUT Command 2-6
Teletype Operation 2-7

I-I
I-I
1-2 3. CONCEPTS AND PRINCIPLES OF

1-2 OPERATION 3-1

1-3 What is a Command? 3-2
1-3 Valid Command Names 3-2
1-4 Invalid Entry Responses 3-3
1-4 Abnormal Command Termination 3-5
1-5 Examples of Entering a Command 3-6
1-5 User Files 3-9
1-6 Attached Files 3-9

Local Files 3-10
1-6 Local File Names 3-10
1-6 Number of Local Files Allowed 3-12
1-7 Making a File Local 3-12
1-7 What is a Permanent File? 3-13

What is a Connected File? 3-14
1-7 Special File Names 3-14
1-8 The EDITOR of INTERCOM 3-15

EDITOR Command Syntax 3-17
Abbreviated Commands 3-18

1-8 The Edit File 3-19

1-8
4. FILE CREATING AND UPDATING 4-1

File Creation and Execution 4-1
1-9 CREA TE Command Fundamentals 4-1

LIST Command Fundamentals 4-3
FORMAT Command Fundamentals 4-3

1-9 RUN Command Fundamentals 4-7
Summary of Program Entry and Execution 4-9

File Preservation and Elimination 4-10
1-9 SAVE Command Fundamentals 4-11

RETURN Command Fundamentals 4-12
STORE and FETCH Command

2-1 Fundamentals 4-14
File Editing 4-15

2-1 CREATE Command With Suppress 4-16
2-1 /oldtext/=newtext/ Command
2-2 Fundamentals 4-17
2-3

vii

Common Pitfalls in Using /oldtext/= BYE Fonnat 6-12
newtext/ 4-20 CONNECT Command 6-13

EDIT Command Fundamentals 4-22 When is CONNECT Used? 6-13
linenum=text Command Fundamentals 4-23 CONNECT Fonnat 6-13
ADD Command Fundamentals 4-24 CREATE Command 6-14
DELETE Command Fundamentals 4-26 When is CREATE Used? 6-14
Summary of File Updating Commands 4-26 CREATE Fonnat 6-15

DELETE Command 6-17

5. PROGRAM INPUT AND OUTPUT When is DELETE Used? 6-17

FILES 5-1 DELETE Format 6-17
Search Criteria Option of DELETE 6-18

Review of FORTRAN Extended File Linkage 5-2 VETO Option of DELETE 6-18
Execution with Local Data Files 5-3 DISCARD Command 6-18

FORMAT Control 5-4 When is DISCARD Used? 6-18
Execution Through RUN Command 5-6 DISCARD Fonnat 6-19
Second Execution 5-7 Diagnostic From DISCARD Use 6-19
Execution With Two Sets of Data on EDIT Command 6-20

One File 5-9 When is EDIT Used? 6-20
Execution With Connected Files 5-11 EDIT Format 6-20

CONNECT and DISCONT Command EDITOR Command 6-23
Fundamentals 5-13 When is EDITOR Used? 6-23

Experimenting With Connected File Input 5-13 EDITOR Format 6-23
What Happens if T APE7 Has Not FETCH Command 6-24

Been Connected? 5-13 When is FETCH Used? 6-24
What Happens if Another Command FETCH Fonnat 6-24

is Entered While RUN is FILES Command 6-24
Executing? 5-14 When is FILES Used? 6-24

Can Input be Entered Before the FILES Fonnat 6-25
Program Prompts Input? 5-14 System Response to FILES 6-25

Can Several Variables be Entered Diagnostic From FILES Use 6-26 I
at Once? 5-14 FORMAT Command 6-26

Ending Connected File Input 5-15 When is FORMAT Used? 6-26
Summary of Connected File Operations 5-16 FORMAT Format 6-27

Diagnostics From FORMAT Use 6-27

6. INTERCOM AND EDITOR COMMANDS 6-1 LIST Command 6-28
When is LIST Used? 6-28

ADD Command 6-2 LIST Format 6-28
When is ADD Used? 6-2 Examples of LIST Use 6-29
ADD Format 6-2 RESEQ Command 6-29

AUDIT Command 6-4 When is RESEQ Used? 6-29
When is AUDIT Used? 6-4 RESEQ Format 6-30
AUDIT Format 6-4 Diagnostics From RESEQ Entry 6-31
System Response to AUDIT 6-5 RETURN Command 6-31
Output File Name 6-6 When is RETURN Used? 6-31

BATCH Command 6-7 RETURN Format 6-31
When is BATCH Used? 6-7 Diagnostics From RETURN 6-32
BATCH Format 6-7 REWIND Command 6-33
PRINT Disposition of BATCH 6-8 When is REWIND Used? 6-33
LOCAL Option of BATCH 6-10 REWIND Format 6-33
RENAME Option of BATCH 6-10 RUN Command 6-33
Examples of BATCH Commands 6-10 When is RUN Used? 6-34

BYE Command 6-12 RUN Format 6-34
When is BYE Used? 6-12 NOEX Option of RUN 6-35

viii 60495000 B

FILE Option of RUN 6·36 TEACH Command 6-43
SAVE Command 6·36 When is TEACH Used? 6·44

When is SAVE Used? 6·36 TEACH Format 6·44
SAVE Format 6·37 /oldtext/=/newtext/ Command 6·45
OVERWRITE Option of SAVE 6·38 When is /oldtext/=/newtext/ Used? 6-45
MERGE Option of SAVE 6·39 /oldtext/=/newtext/ Format 6-46
NOSEQ Option of SAVE 6·41 VETO Option of /oldtext/=/newtext/ 6-46

STORE Command 6-42 *EOR and *EOF 6-47
When is STORE Used? 6·42 When are *EOR and *EOF Used? 6-48
STORE Format 6·43

APPENDIXES

A Standard Character Sets A·I C Glossary C-1
B EDITOR Command Format Summary B·1

INDEX

FIGURES

1-1 Entering a Sample FORTRAN Program 1·3 4-12 Correction and Execution of Figure 4-11 4·19
2·1 Model 33 Teletype 2·7 4·13 Moving a Local File to the Edit File 4·23
2-2 Model 35 Teletype 2-8 4-14 Using linenum=text Command 4-23
2-3 Model 38 Teletype 2-8 4-15 Resequencing the Edit File 4-24
2-4 Typical Teletype Keyboard, Models 33 4·16 Adding Lines to the Edit File 4-25

and 35 2-9 4·17 Deleting Lines by Search Criteria 4-26
2-5 Typical Teletype Keyboard, Model 38 2·9 5-1 Changing a Local File Name 5-3
4·1 Fundamental CREATE Use 4·2 5·2 Setting FORMAT for Data File 5-5
4-2 Listing Edit File 4-3 5-3 Data File Creation for PROGRAM LCL 5-5
4·3 Program PRINTIT 4·4 5-4 Program LCL to Read Local File 5·6
4-4 Tab Character Use with CREATE 4·5 5·5 Listing a Local Output File 5·7
4-5 LIST of Program Entered in Figure 4-4 4·6 5·6 Execution of Local File 5·8
4-6 Output from PROGRAM PRINTIT 4·8 5·7 *EOF Use in Data for Program TWICE 5·10
4-7 Files Generated by RUN Command 4·8 5-8 Program TWICE to Read 2 Sets of Data 5-10
4·8 Saving the Edit File 4·11 5·9 Program to Prompt Connected File
4·9 Eliminating Unneeded Files 4·13 Response 5·12
4·10 STORE and FETCH Use for Permanent 5·10 Ending Read from Connected File 5·16

Files 4·16 5·11 Hero's Approximation 5·18
4-11 CREATE,SUP Entry 4·17

TABLES

3·1 Some Valid Commands 3-3 3-2 Valid EDITOR Commands 3·16

60495000 A ix

so YOU WANT TO EXECUTE A
FORTRAN PROGRAM THROUGH INTERCOM? 1

First detennine whether your terminal is ready for use by following the procedures below. If it is not ready,
turn to section 2 to learn how to connect the terminal with the central site. Otherwise, follow the instructions
below and enter your program.

Type the letters RETURN,A on the terminal keyboard, then press the RETURN keyt. If nothing happens, go
to the beginning of section 2.

If the following message appears, turn to the LOGIN command heading in section 2 for instructions:

PLEASE LOGIN

If the system responds with the word COMMAND, you are connected to INTERCOM. You will want to call
EDITOR before entering a program.

If two dots appear at the left, EDITOR has been called and you can start program creation with the FORMAT
and CREATE commands.

ENTER AND EXECUTE PROGRAM

CALL EDITOR

To call EDITOR, type the word EDITOR with no spaces between letters and press the RETURN key. The
line entered will look like this:

System displays

~

COMMA1~D- EDITOR
~

you enter

System response will be two dots at the left of the next line. These dots appear whenever EDITOR is ready
for a new command.

tThis manual assumes you have a Teletype or a keyboard duplicating a Teletype. For a terminal with a display
screen, press the SEND or ETX key, whichever is available. For all RETURN key references, substitute the
proper key.

60495000 A 1-1

CALL FORMAT

The FORMAT feature of EDITOR makes it easier to enter a program by providing a tabbing capability.
EDITOR stores a number of predefined formats, but the one that you want is the FORTRAN format.
Call the format by entering:

•• FORMAT, FORTRAN -
System response when in EDITOR

EDITOR acknowledges the request by again displaying the two dots. It does not display the format; that is
internal to the system.

If you enter a FORMAT,SHOW command, the system displays the format:

YOUR INPUT
~

•• FORHAT,SHOW
ca- "2 TAa CHAR-JTAa COL- 1 --=- ~

SYSTEM RESPONSE

As you can see, the format provides you with tab capabilities, just as you would have on a typewriter or
keypunch. Unlike these machines, your tab is initiated by entering a character rather than pressing a function
key. The tab position corresponds to the most commonly used FORTRAN column. (This format may be
changed by your installation; therefore, it would be wise to display the format to be certain that it matches
the one in this manual.)

CALL CREATE

Inform EDITOR that you want to create a program in the edit me by entering the command CREATE. (The
edit me is a temporary, working me provided to each EDITOR user.) The system responds by displaying a line
number. Your input and system output looks like this:

L System response when in
EDITOR _L You enter a command

•• CREATE
100----

lsystem response to your CREATE entry

- -
Type the first line in your program after the line number. Since a FORTRAN PROGRAM statement starts in
column 7, enter a semicolon or press the space bar 6 times, then start typing characters.

You may want to enter and run the program in figure 1-1. It is a complete FORTRAN program and its
execution displays a line of text at the terminal.

1-2 60495000 A

At the end of each FORTRAN statement, press the RETURN key. Wait for the system to respond with a line
number before entering another statement.

A typing error made before RETURN is pressed can be corrected. Hold down the CTRL key and press the
character H once for each character to be erased. Then enter the correct characters.t

A typing error discovered after RETURN is pressed but before another line is entered should be corrected by
re-entering the line correctly. The bad line can be deleted after the entire program is entered.

After all FORTRAN program statements are entered, enter an equal sign, =, as the first and only character
in a line. (Don't forget to press RETURN.) This signals the end of program creation; the system responds
once more with two dots.

CHECK INPUT

Verify you have entered the program correctly by calling for a display of the program. Enter this command
and press RETURN.

.. LIST ,ALL or .. L,A

System response is a list of the program statements input, as shown in figure 1-1. Any line in. which the
CTRL and H keys were used should appear correct .

.. CREATEtt
100= PROGRAM TRY <OUTPUT)
1 10= __ ---=P-=R:.:.:I::.;:.\I~T~I.I_=_
120= 1.1 FORMAT (* OUTPUT FROM PROGRAM ENTERED & EXECUTED

THROUGH EDITOR *>
130= __ -,5::..,;' T::....;:O~P:....
140 = __ --=E::.:.N~O::...;
150==

Figure 1-1. Entering a Sample FORTRAN Program

CORRECT INPUT

To eliminate any extra lines, enter the word DELETE (or D), the line number of the extra line, and press
RETURN.

. . DELETE,number or .. D,number

To delete two or more consecutive lines, enter DELETE (or D), the line number of the first line, the line
number of the second line, and press the RETURN key.

tOn some terminals, the BKSPACE or back arrow key can be used instead of CTRL/H.
ttIn the remainder of this manual, user entries are underlined.

60495000 B 1-3

I

If further changes are to be made, retype any line in error: enter the line number, an equal sign., and correct
I text, and press the RETURN key.

. . line number-new text correctly spaced

as in

. . 130= 1\ 1\ I\A 1\ 1\ END or .. 130= ;END

To insert any line you may have omitted, use linenum=text, choosing a line number that places the new
line correctly.

The two dots do not appear when a correction is made by a command in the format linenum=text. Continue
with the next operation after the carriage returns to the left.

Use the LIST ,ALL command to examine the program after all changes are made.

EXECUTE PROGRAM

When the program appears as you want it, execute the program by entering this command followed by
RETURN key .

• -RUN. FTN

System response is a status message giving the number of seconds the central processor used to compile
the program, followed by the line printed as a result of the execution of the program in example 1-1. The
word STOP appears as a result of execution of the STOP statement in your program. The remaining line gives
the number of seconds used to execute the program .

• 080 CP SECONDS COMPILATION TIME
OUTPUT FROM PROGRAM ENTERED & EXECUTED THROUGH EDITOR

STOP
.005 CP SECONDS EXECUTION TIME

••

SAVE PROGRAM

Now that you have confirmed that the program works correctly by executing it, you may want to save it for
future use. Any file (or program) in the edit file can be saved by using the SAVE command.

SAVE copies the edit file into a local file whose name is specified as a parameter of the command. (A local
file is one which is available only to you and only during the current session.) To keep the program shown in
example 1-1 as a local file named TRY, enter:

•• SAVE,TRY

Notice that the edit file still contains the program even though it has been copied to the local file. This
feature allows you to make modifications to a program during debugging while still retaining previous versions.

1-4 60495000 B

SUMMARY OF OPERATIONS

1. Establish links to central site if necessary (section 2).

2. Call EDITOR: EDITOR

3. Call FORMAT: FORMAT,FORTRAN

4. Call CREATE: CREATE

5. Enter program line by line; exit from CREATE with =

6. Examine input: LIST,ALL

7. Correct program: DELETE,line and/or linenum=new text

8. Execute program through FORTRAN Extended: RUN,FTN

If execution reveals errors, correct the program and execute again, as in steps 7 and 8.

If you want to keep a copy of the program, use SA VE,name.

Recall CREATE to enter another program.

WHAT'S NEXT?

Now that you have successfully entered and executed the FORTRAN Extended program in example 1-1, you
are ready to execute your own programs through INTERCOM. All other operations are elaborations or vari­
ations of these procedures.

INTERCOM operation which was demonstrated includes these principles:

Commands are terminated by RETURN key

System prompts next user input

Status and error messages are displayed for user information

EDITOR allows a program to be entered, modified, and executed

A file named OUTPUT is equated with information to be displayed at the terminal

A program entered through CREATE can be stored temporarily with SAVE

At this point, you can go ahead with your own programs using commands given above. To learn easier ways
of entering a program and additional commands and options available, read section 3 to learn principles of
operation or read section 4 to learn from examples.

60495000 A 1-5

Section 3 discusses basic INTERCOM and EDITOR operation, as affected by user inputs. Terminology
used in explanations of commands is defined. Commands relevant to a concept are introduced so you can
associate practical applications with an idea.

Sections 4 and 5 present a series of complete examples of fIle creation and use through EDITOR. In each
example, pertinent command parameters are described. Alternate methods of performing the same task are
shown, and suggestions for ease of use or efficient execution are included.

Section 6 lists INTERCOM and EDITOR commands alphabetically, with all optional parameters included. Again,
rather than merely a presentation of the options available, emphasis is placed on when to use an option and
how it can be combined with others effectively.

If you are not acquainted with your terminal, consult section 2 to learn the various functions of a Teletype.

Read the remainder of section 1 if you are new to INTERCOM. Answers to the questions are meant to en­
courage your experimentation. with INTERCOM commands.

QUESTIONS NEW USERS ASK

Often, the first few times programmers use INTERCOM, they are unsure of system operations. Students, or
others new to any type of terminal or computer operations, often are hesitant to use equipment or to deviate
from specific instructions.

Answers to the questions which follow are intended to reassure new users about their use of the system

CAN I HARM INTERCOM OR OTHER PARTS OF THE COMPUTER SYSTEM?

All users at terminals communicate with other parts of the system through INTERCOM. INTERCOM protects
other user's fIles and system files that should be accessed only by system analysts.

You may destroy fIles you created or fIles attached to your terminal, but you cannot interfere with other
users or the system. (Lest this be accepted as a challenge, willful misuse of equipment and system operating
principles can effectively stop system operation at any time.)

CAN I RUIN MY OWN FILES?

Yes, but INTERCOM contains many features that alert the user to potential file destruction or error. Often,
alternate commands or command options are available to have INTERCOM check theconsequerices before
completing a command which could calise fIle destruction.

1-6 60495000 A

WHAT HAPPENS IF I MAKE A MISTAKE?

Don't worry. Few errors are irrecoverable.

INTERCOM will not execute any command that is not in its instruction repertoire. If you enter a series of
characters INTERCOM does not recognize, you receive a FORMAT ERROR or NO SUCH PROGRAM NAME
diagnostic message. INTERCOM checks the parameters of each legitimate command to determine whether they
are reasonable; if not, a message is returned to you, but execution does not continue. If you violate system
syntax, you are informed and, often, prompted for the correct response.

If you decide an executing command was given in error, you can terminate execution by entering %A. If nec­
essary, suspend output by pressing ESCt before entering the %A.

You can end a terminal session, if you decide to start all over again, by logging out. Type BYE to exit from
EDITOR, then type LOGOUT.

WHAT IF I DON'T KNOW WHAT TO DO NEXT?

Call the TEACH utility by typing the characters TEACH and pressing the RETURN key. It explains commands
available for various functions.

If you can't remember the exact command format, try what you think will work. INTERCOM will detect
an incorrect format and perhaps prompt you for the correct syntax or format.

If you are hopelessly confused and the terminal does not seem to respond to your entries, try BYE then
LOGOUT. You can always disconnect the terminal by breaking communication links. Pushing the CLR button
of a Teletype or hanging up the telephone results in a system LOGOUT; that way system resources are not
be tied up.

Seek help before you LOGIN again so that terminal time can be used productively.

WHY DOES IT TAKE SO LONG FOR THE SYSTEM TO RESPOND?

Are you sure the system isn't waiting for your response? Did you end every command with a RETURN key?
Are you using CREATE or ADD with SUP? Usually, but not always, the system acknowledges your entry by
displaying two dots, the word COMMAND, or some other status or error diagnostic. First, press the RETURN
key to be sure that you are not delaying execution.

Sometimes, however, system response is much slower than at other times. When the system use is heavy,
response is slower than if EDITOR is processing only a single terminal. Be patient, and read the answer to the
next question for suggestions about improving response time.

tIf your terminal does not have an ESC key, use ALT MODE. Lacking that, the same effect may be achieved
by holding down the CTRL key and pressing Z.

60495000 A 1-7

CAN I SHORTEN RESPONSE TIME?

Yes, by using the system wisely~

Plan your operations. Don't begin with a call for EDITOR if you do not require EDITOR capabilities for
creating and updating files. Response time for commands such as permanent file requests may be less when
they are entered directly in command mode.

Reduce your input errors by typing commands carefully. In the time required for INTERCOM to detect and
display an error condition, it may have been able to successfully execute a command correctly entered.

In general, this manual details both the long and short ways to use a command. Even though the long way,
in which INTERCOM prompts user response and the user spells out all commands, is best for learning how
to use INTERCOM, the experienced user will want to give the maximum amount of information with a
single command.

Finally, consider using INTERCOM early in the morning, at lunch time, or late afternoon. Experience at
many installations shows that INTERCOM usage is heaviest around 10 a.m. and 24 p.m. Talk with your own
analysts to avoid, or at least be aware of, times that the central site operator may regularly give priority to
batch jobs. Response time is best with fewer users.

DO I HAVE TO WAIT FOR INTERCOM TO RESPOND BEFORE ENTERING ANOTHER
COMMAND?

Usually, no.

INTERCOM executes each command as it is received. For some types of commands, such as a sequence
calling for REWIND and COPY, or EDITOR and CREATE, more than one command can be entered; each is
executed in turn. An error diagnosed during execution of the first command, however, often prevents suc­
cessful execution of the second command.

If the command or program requires additional input, don't enter more than is expected. In commands that
change a line of text, for example, selection of the VETO option requires YES or NO response to the change
displayed. Another command entered before YES or NO will be accepted as if it were the expected input.
Often a diagnostic or error message results instead of successful command. completion.

WHAT IS A REASONABLE TIME TO WAIT BEFORE SUSPECTING SYSTEM PROBLEMS?

It depends on what you are doing and how busy the system is.

One command often results in many system tasks. The RUN command with a FORTRAN Extended program,
for example, causes a file to be copied, the copied file to be compiled before a response is returned to the
user. Obviously a command such as RUN requires more time than a command to rewind a file, since it involves
calls to many parts of the system.

When many people are using the system, response time may be slower at your terminal. EDITOR itself is
affected by the demand for system resources made by other non-INTERCOM jobs. The central site operator
can assign priorities to different classes of jobs. Usually, EDITOR jobs run with the highest priority for access
to the central processor, but at times, the central site operator may decrease EDITOR priority to accommo-
date other system users. .

1-8 60495000 B

HOW DO I KNOW INTERCOM IS ACTIVE OR THAT THE COMMUNICATION LINKS ARE
STILL INTACT?

An active system acknowledges a user entry by changing the line or character position marker. If you press the
RETURN key at a Teletype, the system moves the paper up one line. If you press the RETURN or SEND key
at a CRT terminal, the system responds with line feed; and the line marker at the left will advance by one line.

At terminals connected by acoustic couplers, check that the carrier light is still on. Communication has been
lost if the light is off. .

If the response time seems inordinately long compared to previous entries, be sure that the system is not wait­
ing for your response. Until a RETURN key is entered, the system assumes your entry is not complete. Some­
times users are distracted and omit the entry terminator.'

Look at the typing element position. If it is not at the left, check the characters in the line. There may be a
message from the system asking for your response; the system does not always position to the left for your
entry. If the last line entered is an entry you have created, press RETURN. It may be the first time the system
is aware of your entry; if it is the second RETURN, it should not interfere with execution of the current entry.

WHAT HAPPENS IF COMMUNICATION WITH THE CENTRAL SITE COMPUTER IS DROPPED
THROUGH NO FAULT OF MINE?

That depends on why communication is down.

All files associated with the terminal are recovered whenever possible. After reestablishing communication,
LOGIN again with the same name and password to establish your identifier. If system response is two dots I
at the left, the edit file you were using at time of disconnect is intact. Enter the FILES command to
determine whether other files are intact. Except under extraordinary circumstances permanent files are avail­
able, although they may have to be attached again.

ASSUMING THE MANUAL TELLS ME WHAT TO DO FOR EACH COMMAND, WHAT
SHOULDN'T I DO?

Until you have completed the terminal session with a LOGOUT command or are hopelessly confused, do not
disconnect the communication links with the central site. Do not push the CLR button or pull the plug on
a Teletype, or hang up the telephone or put the telephone on HOLD if you are connected to the system
through an acoustic coupler. Breaking communications could cause the loss of files you may have just entered.

Do not expect proper results if you change equipment settings or deliberately violate principles of operation.

60495000 B 1-9

I

COMMUNICATION LINKS
AND HARDWARE OPERATION

ESTABLISHING INTERCOM ACCESS

To use INTERCOM, the first user at a terminal session normally:

Establishes hardware communication between the terminal and the central site.

Establishes software communication with INTERCOM by entering a LOGIN command.

Hardware communicates with the central site through telephone lines. Most often, these lines can be dialed.
Some terminals are hardwired to the central site. For such terminals, LOGIN is the only user action needed
to establish communication.

2

Sometimes, software communication is established at the start of the day or at the beginning of a class period
and not disconnected until a scheduled time. The need for a LOGIN command varies among installations.

If someone else has immediately preceded you at a terminal and both hardware and software links to the cen­
tral site exist, you can enter commands at once.

At a Teletype, to determine whether the terminal is ready to accept commands, check status lights and try a
command:

• Look at the light marked ORIG in the lower right area. If it is not lit, hardware communication is
not established; and the user must follow procedures for dialing into the central site computer.

• If the ORIG light is on, enter the word FILES and press the RETURN key. If this message is
displayed:

PLEASE LOGIN

software communication is not established and the user must enter the LOGIN command as
outlined below.

• If the ORIG light and the BRK-RLS light are on, press the BRK-RLS button before entering the
command.

DIALING INTO THE CENTRAL SITE

At a Teletype terminal you can dial into the computer at the central site just as if you were dialing a friend's
home. The dial on a Teletype is the same as that on a home phone, but the handset does not exist. Push the
ORIG button so that the light comes on, then dial the number you have been instructed to use.

60495000 A 2-1

Dialing the number establishes a connection with equipment at the central site. When the line is free for use,
you will hear a high pitched tone. If the line is not available, you will hear a busy signal similar to that for
any other busy telephone line. The high pitched tone indicates only that the line is available for use between
the terminal and the central site equipment. It does not necessarily mean that the computer software programs
are in operation.

After the· telephone connection has been established when INTERCOM is operating, a message appears at the
terminal:

CONTROL DATA lNTERCOM 4.5
DATE 08/29/75
TIME 14.49.05.

PLEASe: LOGll-J

The specific message at your terminal may be different. This one identifies the system in use and gives the
current date and. time at which hardware communication was established, based on a 24-hour clock.

If you hear the high pitched tone (and have pushed any buttons required for operation of your particular ter­
minal), but the LOGIN message does not appear, press the RETURN key. Response from an active central
site computer will be the LOGIN message. If the RETURN key does not activate the message, assume the
central site is not currently running INTERCOM.

ACOUSTIC COUPLER CONNECTION

Some terminals must be connected through an acoustic coupler, which includes a cradle for a telephone hand­
set. Examine the cradle to determine which end should receive the mouthpiece and attached cord. Words
similar to CORD HERE may appear; if they do not, look for a groove or channel to guide the cord or a
diagram showing a handset and cord. The direction in which the handset is placed is significant.

Turn the coupler ON if necessary.

Set any FULL/HALF DUPLEX switch to HALF.

Dial the central site. When the high pitched tone is heard, set the handset firmly in the cradle.

If the terminal does not respond with a request for a LOGIN, press the RETURN key. Placing the handset in
the cradle may generate spurious line signals that prevent the message from being sent. Also, check status
lights for communication between the coupler and the terminal. lights on the coupler show communication
between the central site and the coupler only; terminal lights show-terminal/coupler communication. Perhaps
the plug linking the coupler and the terminal is not secure. Make sure the terminal is turned on.

2-2 60495000 A

LOGIN COMMAND

Software communication with INTERCOM is established by the LOGIN command. It must be the first command
entered after hardware communications are established. At the conclusion of a successful LOGIN procedure,
INTERCOM will have:

Verified your right to access the system;

Assigned a 2-character user identifier.

Made access possible to other INTERCOM commands.

The sequence of entries required for LOGIN may vary at your installation. Generally, however, LOGIN asks the
user to identify himself and to give a password that indicates he is authorized to use INTERCOM. Sometimes
any name, such as your last name, may be acceptable with a given password; other times a particular name is
necessary. Often a name is a department or class identification, and the password is an accounting number.
Consult with your instructor or system analyst for specific instructions.

The name and password entered during LOGIN must conform to a range of acceptable values stored at the
central site. Both of these items may consist of 1-10 letters or digits. If you do not enter values that match
allowed values, INTERCOM cannot be used.

Part of the function of the password is to restrict INTERCOM access to authorized users only. Consequently,
when INTERCOM asks for a password to be typed, it will prepare an input area on the Teletype paper by
overstriking several characters and, then, setting the carriage to the beginning of that line.

PLEASE LOG I:\J
LOGIN
&\J'-ER USER NAME- SVLQ.PS
•• 8.S~~·;I~S ENTEH PASSWORD-

Your typing will be printed on the blacked out area, so it will be illegible, preventing unauthorized per­
sons from learning your password by reading discarded terminal paper.

To begin the LOGIN procedure, type LOGIN and press the RETURN key. Then wait for the system to
respond with instructions for additional entries. When prompted, type the item requested, ending each item
with a RETURN key.

After all items are entered, successful completion of LOGIN will be marked by the appearance of a message
similar to:

09/03/75

Cor1MA.~D-

LOGGED IN AT Iq.03.45.
wITH USER-[D E.L
EQUIP/PORT 57/010

The USER-ID is the means by which INTERCOM identifies the user and files associated with the user. Look
for this identification when lists of jobs in the system are being scanned. Also, use this identifier if you need
to consult with the central site operator or system analyst. The EQUIP/PORT information shows the hardware
connection to the central site and is not significant for beginners to remember.

60495000 A 2-3

At some installations, additional messages may appear before the word COMMAND. Such messages may be
system bulletins prepared by installation analysts to inform users as to hours of operation or phone numbers
of analysts, as well as instructions to follow for obtaining more help or system information.

You can hasten LOGIN completion by entering some or all of the items required at the same time the word
LOGIN is entered. If this option is selected, use commas to separate items.

Any of the following could be entered for LOGIN:

1. User enters the characters LOGIN and waits to be prompted before entering other items

LOGIN

System asks for a user name, then asks for a password.

2. User enters a user name before pressing the RETURN key.

LOGIN,MYNAME

System prompts a password entry.

3. User enters both user name and password.

LOGIN,MYNAME,SECRET

System responds with informative bulletins or messages.

4. User suppresses long system messages by adding the SUP parameter to the LOGIN entry.

LOGIN,MYNAME,SECRET,SUP

The SUP parameter inhibits display of the LOGIN acknowledgment and any other optional system information.
Information an installation deems too important for the user to miss appears despite use of SUP.

Once the word COMMAND appears, INTERCOM is ready to receive additional user commands.

Summary of LOGIN:

PLEASE LOGIN

LOGIN

ENTER USER NAME -

MYNAME

ENTER PASSWORD -

SECRET

(DATE, TIME, USER-ID)

2-4 60495000 A

(INSTALLATION INFORMATION MAY APPEAR HERE)

COMMAND -

Summary of abbreviated entry:

PLEASE LOGIN

LOGIN,NAME,PASSWORD,SUP

COMMAND -

DIAGNOSTICS FOR INCORRECT USER ACTIONS DURING LOGIN

Messages returned to the terminal indicates difficulties in executing LOGIN because of current system status
or user error.

PLEASE LOGIN

LOGIN must be the first command entered after hardware communication is established. This message
appears if some other command is entered, or perhaps LOGIN has been misspelled.

LOGIN NOT PERMITTED AT THIS TIME

Push the CLR button, hang up the handset, or otherwise abandon attempts to use INTERCOM at this
time. It is not possible for a terminal to begin INTERCOM processing. This condition is initiated by the
central site operator and does not indicate either a system malfunction or a user error. Often the appear­
ance of this message precedes a scheduled interruption of system operation. Currently logged-in users are
allowed to complete operations, but no new users can LOGIN.

INVALID USER NAME OR PASSWORD

Your entry of a name or password must match entries on a list at the central site. Check that you have
spelled required words correctly. Re-enter the correct letters or numbers for the item prompted.

USER NAME/PASSWORD IN USE AT ANOTHER TERMINAL

Be sure you are entering the correct characters. Use another name or password if you have been assigned
alternates. Otherwise, consult with the person who originally assigned your LOGIN parameters.

PREVIOUS USER AUTO LOGGED OUT

The last user did not log out. An automatic logout takes place before your LOGIN executes.

60495000 A 2-5

YOU HAVE HAD THREE TRIES - GET HELP

The wrong names or passwords have been entered three times. INTERCOM assumes you have the wrong
LOGIN information since a simple typing error should not be repeated. Obtain the correct words for
INTERCOM access, then begin again with the LOGIN command.

LOGOUT COMMAND

LOGOUT is the last command entered when all work is complete. It disassociates the terminal from INTERCOM.
No further commands can be entered until the LOGIN command is used to re-establiSh communication.

LOGOUT destroys all local fIles associated with the terminal except those you have retained as permanent fIles
prior to WGOUT. (The STORE command will make a local fIle permanent.) Any fIles identified as REMOTE
INPUT FILES, REMOTE EXECUTING FILES, and REMOTE OUTPUT FILES remain in the system until the
user takes action to eliminate them. See the discussion of FILES command.

LOGOUT cannot be called when EDITOR is being used. Type BYE to exit from EDITOR before attempting
to log out.

BYE

The command is simply the word LOGOUT followed by a RETURN key.

LOGOUT

When this command is executed, information summarizing session time is returned.

COMMAND- LOGOUT
CPA 14.907 SEC. 14.907 ADJ.
SYS TIME
CONNECT TIME 0
08/29/75 LOGGED

30.06~

HRS. 31 MHh
OUT AT 15.20.2~.

CPX indicates how many seconds the computing unit at the central site was used for all operations
during this terminal session.

SYS TIME is computed from a formula that reflects all system resources used.

CONNECT TIME shows the elapsed time, in number of hours and minutes, between the LOGIN com­
mand and WGOUT command execution. These times are used by the system to determine accounting
charges for the people using INTERCOM. You need not be concerned with them, unless perhaps you
have been asked to keep your own or a class log of terminal work.

The time used by the central processor is small in comparison to that of the peripheral processors. Compilation
and execution requires use of the central processor, but most INTERCOM functions including displaying infor­
mation at the terminal occur in peripheral processors.

2-6 60495000 A

TELETYPE OPERATION

Several types of Teletypes exist. They have been designed for many applications and have many features and
controls irrelevant to INTERCOM operation. The model 33 Teletype is smaller and has fewer features than
the model 35 or model 38. None of the differences in appearance between models affect INTERCOM use.

Figures 2-1 through 2-3 show the model 33, 35 and 38 Teletypes and the buttons for establishing communication.

ORIG Activates Teletype

CLR or Deactivates Teletype
CLEAR ALARM

K For model 35 only, activates the keyboard

The buttons may not be located in the same place on an units, but their functions are the same.

PAPER TAPE PUNCH

REL OFF

o 0
BKSP_ ON

o 0

PAPER TAPE READER

I
START

o STOP

FREE

60495000 A

Keyboard

Press to resume operation if light appears

t
BRK-RLS REST

o 0
OUT OF

SERV

o
NORMAL
RESTORE

CD

ORIG CLR- ANS TST LCL BUZ

°9 000 R2
L Press to disconnect

terminal

'- Press before dialing into central site

Figure 2-1. Model 33 Teletype

2-7

2-8

D-
,."'" TA'" = 0 0

TO TO TO ROTR
CALL IN OFF ON ON

0 0 0 0
0 0 0 0

+
KT T TTS

1
Press after high pitched tone is heard

Keyboard

HERE
IS BREAK

0 0
0 0
TT R MOTOR

ON

Press to resume operation if light appears

+ BRK·RLS

o
OUT OF

SERV

o

REST

o
NORMAL
RESTORE

CD

ORIG CLR ANS TST LCL BUZ

09 0000
• RLS

L Press to disconnect
terminal

L... Press before dialing into
central site

Figure 2-2. Model 35 Teletype

LATCH

~

START B.SP

STEP

ON ON

STOP

FREE OFF

READ PUNCH

Press to Disconnect Terminal

Keyboard

Press After High-Pitched
Tone Is Heard

Figure 2-3. Model 38 Teletype

fHEREl
~

CLEAR
ALARM

60495000 A

The keyboards are similar to that of a typewriter (figures 2-4 and 2-5), and have a variety of extra keys.
The characters differ in placement, but their function is not affected by location.

CD· r.\ f#\a CD (%\ CD 0 CD CD (;\ 0 f-\ ~ 1 ~\.:V 4 \..V 6 7 8 9 '-.J : ~~

8~88880G~G)(!)@@
88EV©0888CV9CD@ 8 e

SPACE BAR

Figure 2-4. Typical Teletype Keyboard, Models 33 and 35

\ mrn[JQrumwmDmWQD~~0~
Gmrn~~rn~rn~Qrn~QB§B
CJ SHIFT M R f7rl R R n n A [""F.l i+l D I I D Ll LOCK ~ ~ ~ ~ L.!J ~ L.:!J ~ L:J LJ : . LINE FEEO . u

B[TI~~~c;J[IJGJDD[I]B a
I SPACE BAR I

Figure 2-5. Typical Teletype Keyboard, Model 38

60495000 A 2-9

The following characters are used for INTERCOM commands:

letters A-Z

digits 0-9

characters = I • () $; .

Any other character defined by the character set in use at the central site (appendix A) may be entered as
part of a line in a user file.

The SPACE bar functions as for a typewriter. Display of a line entered shows a blank character for operation
of the space bar.

The SHIFT key is used to access some of the upper characters of double keys, as it is on a typewriter.

Several keys significant for INTERCOM use have no counterpart among the keys of a standard typewriter;
some of these are the CTRL, LINE FEED, and RETURN.

The RETURN signals the end of an input line. INTERCOM responds by advancing the paper and moving the
printer carriage to the far left. On a typewriter, a carriage return is necessary to confine characters to the
physical page. On a Teletype, however, the function of a carriage return is performed by a LINE FEED, not
a RETURN.

Although the following two sequences appear the same to a person sitting at a Teletype, their interpretation
by INTERCOM is significantly different.

1. Enter FILES and press LINE FEED. Printer carriage returns to far left of next line.

2. Enter FILES and press RETURN. Printer carriage returns to the far left of next !in.!l.

In the first instance, INTERCOM is waiting for more user input. LINE FEED is acceptable only as.a compen­
sation for physical paper size.

In the second instance, however, INTERCOM executes the FILES command and displays the results of execu­
tion. RETURN· signals the end of a user command; LINE FEED does not affect a command.

A model 33 or 35 Teletype line has a maximum of 72 characters. A model 38 Teletype line has a maximum
of 132 characters. INTERCOM, however, can accept even more charact~rs input as a single line. The significant
function for INTERCOM operation is not the line on which an input command appears physically, but whether
the RETURN key has been pressed to signal the end of a command.

Each time the user presses a key of a Teletype, the associated character or function is transmitted immediately
to the central site. INTERCOM interprets each character as it is received. Possible interpretations are:

2-10

The character is a member of the installation character set. It is saved in a current line buffer for future
use after a RETURN is received.

The character is TAB, FORM, or some other character not recognized as a valid function. The character
is discarded.

60495000 A

The character is a function LINE FEED, RETURN, CTRL, any of which causes INTERCOM response:

LINE FEED

RETURN

CTRL and H

CTRL and X

CTRL and zt
(ESC or
ALT MODE)

Issues a carriage return.

Issues a line feed. Executes command accumulated in the buffer as each char­
acter was entered. If a file is being created through EDITOR, the RETURN
key signals the end of a line.

Logical character backspace on current line buffer. Each time H is pressed
while CTRL is held down, the last character in the buffer is erased. The typing
element remains in place.

Logical line backspace. All characters entered by the user since the last
RETURN are erased. The carriage is not repositioned.

Interrupts output. Pressing CTRL and Z together suspends output from the
current command but does not otherwise interrupt command execution. The
next characters entered must be 0/08 or %A followed by RETURN or RETURN
pressed alone. The interrupts (CTRL/Z, ESC and ALT MODE), must not be
used prior to entering a %A or 0/08 unless output is to be suspended; other­
wise, the abort or suspend will not be recognized.

0/08

%A

RETURN

Discards any data awaiting output to the terminal. If more out­
put is generated, it will be displayed, %S may suppress the
EDITOR .. response or the word COMMAND. Any command
currently in execution is completed.

Stops the command execution. Any output destined for display
will be discarded. The message USER ABORT is displayed.

Resumes output display as if CTRL and Z had not been entered.
The interrupted line is repeated.

Any input from the keyboard interrupts output. If output stops unexpectedly, first check the BRK-REL button.
If it is lit, press it to resume operation. If this button is not lit, enter a RETURN. The RETURN will restart
the output if it has been stopped by line noise. or any other interruption. Line noise is a spurious transmission
signal that originates from sources other than a keyboard character entry. It may originate, for example, if
the telephone handset connection is bumped or electrical disturbances occur. Also, line noise can occur if the
handset cradle of an acoustic coupler does not muffle room noise sufficiently.

tWhen available, the ALT MODE or ESC key should be used in place of CTRL and Z.

60495000 A 2-11

CONCEPTS AND PRINCIPLES OF OPERATION 3

INTERCOM is a Control Data product that allows a user at a terminal to access the processing facilities of a
computer located at a central site some distance away. The central site computer used by INTERCOM may
be one of several models of the CDC CYBER 170, CYBER 70 or 6000 Series Computer Systems. These large
computers are capable of handling many different tasks at the same time.

Normally, at the central site, a user submits a program for execution as a deck of punched cards. The first card in
the deck - the job statement - identifies the deck and often the person submitting the deck. A series of instructions
for the system follows; they are called control statements and typically would call for compilation then execution of
a program. The program itself would follow in the deck, along with any data the program would use during execution.
The last card in the deck has a special punch combination signaling the end of this job.

This particular job deck, along with many others, is placed into a card reader. From this point, system programs
control the progress of the job from the card reader to mass storage to execution and output of program re­
sults. At minimum, each job deck results in a listing on a line printer that is returned to the user to show steps
taken while the job was in the computer system.

INTERCOM enables a user at a remote site to perform the same tasks on a computer without having that com­
puter, or its peripheral card readers and line printers, physically available.

Many users at many different locations can access INTERCOM at the same time. Simultaneously, other user
jobs submitted at the central site are being processed. The user at any given site, however, is not aware of all
the jobs in process at once. Rather, he knows only that the system responds to each of his instructions. The
user enters an instruction and waits for a response to show that the desired action is completed. During exe­
cution, INTERCOM ensures that all input and output from a terminal is routed successfully for execution.

INTERCOM can control operations from several different types of equipment. Terminals commonly used are:

Teletypes

Several different types of portable terminals that look like modified typewriters and operate similarly to
Teletypes

CRT terminals (cathode ray tubes similar to television screens)

Batch processing terminals with a CRT and attached card reader, line printer, and/or card punch

The terminals with card readers and line printers attached operate similarly to the card readers and line printers
at the central site. They are called batch terminals because they allow a batch of user job decks to be entered
into the system and executed just as if they were at the central site. Such terminals are not described here.

60495000 A 3-1

The description of terminals that do not have peripheral equipment attached includes how the user communicates
with INTERCOM when a card reader and line printer are not available. Further, instructions are given for
using file construction and manipulation features that are available only through INTERCOM.

WHAT IS A COMMAND?

A command is a user entry that calls for INTERCOM action. LOGIN, which establishes communication with
the central site, is a command, as are FILES and EDITOR.

All commands have similar characteristics:

They have a keyword that identifies the command.

They may have optional parameters separated by commas.

They are not complete until a RETURN key is pressed.

Syntax of the individual commands depends on several variables not readily apparent nor significant to beginning
users.t If you use commas between parameters and do not include any blanks, you always will have acceptable
command formats.

When the EDITOR facilities of INTERCOM are used, command format is more flexible, as discussed in the
EDITOR topic below. Since most INTERCOM commands not directly pertinent to EDITOR features can be
entered in EDITOR mode, it is easy to be confused about format. Until you are familiar with what is or is
not an EDITOR-only command, use a comma between parameters, and do not use a period at the end of an
entry.

A command can be entered any time this word is displayed at the far left:

COMMAND-
t
typing element is
located at this point

VALID COMMAND NAMES

INTERCOM has an internal list of valid command names. They may be the names of commands to be
I executed by INTERCOM itself, or they can be operating system control statements.

Table 3-1 lists some of the commands recognized by INTERCOM. Other commands relevant only to operation
of different equipment or to tasks not commonly performed by beginning INTERCOM users have been omitted.
Consult the INTERCOM reference manual for additional valid commands.

To avoid confusion in learning how to use INTERCOM, do not create a file with a name duplicating a com­
mand name.

t Commands corresponding to operating system control statements must conform to the operating system control
statement syntax. INTERCOM EDITOR commands need not do so.

3-2 60495000 B

TABLE 3-1. SOME VALID COMMANDS

Command Description

BATCH Changes me category or sends me to another site

DISCARD Eliminates me or purges permanent me

EDITOR Calls facilities that create and edit mes

FETCH Accesses permanent me

FILES lists mes associated with user

LOGIN Establishes INTERCOM access to begin terminal session

WGOUT Terminates terminal session

STORE Makes me permanent

TEACH Calls utility that explains INTERCOM use

An additional set of commands, available once EDITOR has been called, is listed in table 3-2, under EDITOR
operation, later in this section.

INVALID ENTRY RESPONSES

A user command entry is checked by INTERCOM in several ways.

The first check determines that the command consists of: 1 to 7 letters and digits (the first character
must be a letter) or 1 to 7 letters and digits followed by a list of parameters.

Then the first word of the entry is checked against a list of valid INTERCOM commands. If it requires
INTERCOM action, any parameters are checked before execution.

An operating system command is executed by other parts of the operating system.

60495000 B 3-3 •

If the entry is not a call for INTERCOM or operating system execution, it is assumed to be a call for
loading and executing a user file having the entry name.

An entry with invalid characters or too many characters produces the following diagnostic:

FORMAT ERROR

Omission of a required comma separator also may produce these same messages. An entry that produces either
diagnostic must be re-entered.

INTERCOM can detect many types of user errors; but a misspelled command name cannot be diagnosed. A
misspelled command, .however, may produce an error diagnostic that seems unrelated to your entry. If a diag­
nostic is not meaningful, check that you have entered the command name correctly.

For instance, the following diagnostic might appear when you spell an INTERCOM command incorrectly and
enter a sequence that is a valid command from other types of INTERCOM terminals.

COMMAND/TERMINAL MISMATCH

If an entry does not match a command name or an existing user me name, the operating system routines
attempting to load and execute the me issue an error diagnostic. Typing FILWA instead of the FILES com­
mand, for instance, results in:

COMMAND- FILWA

NO SUCH PROGRAM CALL NAME FILWA

L system inserts name
of non-existent me

If the user file exists, but does not contain an assembled program that can be used by the loader, a diagnostic
similar to the following appears:

COMi.YIAND-~
FATAL LOADER ErtROR -

BAD LOADER INPUT
**AT BEGIN~lNG OF RECORD··

1ST 25 wORDS OF GARBAGE AS
55555555555520221707

FOLLOwS -
PROG

22011555140314555124
01200540562401200541

RAM LCL (T
APES .. TAPE6

When any of these diagnostics appear, you must re-enter the correct command format. Revert to using a comma
as the only separator between words in a command, and you can eliminate the diagnostic for many entries
having no other apparent error.

3-4 60495000 A

Invalid or missing parameters in an INTERCOM command produce a variety of diagnostics, as discussed in
section 6 under each individual command. Often, the message displayed requests a missing parameter; and
once that parameter is entered, execution continues.

Another diagnostic referencing internal operating system data occurs for some commands when a comma
separator is the . last character before the RETURN key is pressed.

CO~~AND- REWIND, COMB,
ILLEGAL 1/0 REQUEST

FI LE NAME.... System inserts filename; since the error was blank file name,
FET AD DRES S 000112 no name appears.
ILLEGAL FILE NIl.i"lE L

Ignore this line; it pertains to internal system execution, not
a user entry.

The same message can appear if an invalid file name is used as a parameter of the RETURN or REWIND
command. The message indicates an error in executing the parameter list, not in the command name. Success­
ful execution occurs for files named before, but not for those named after, the incorrect name.

The following message indicates that you must re-enter a command.

REPEAT LINE

Occasionally, when INTERCOM use is heavy, the command input buffer at the central site can become satur­
ated. The message tells: you the last command was not accepted.

ABNORMAL COMMAND TERMINATION

Under most circumstances, you anticipate complete execution of a command entered. At times, however, you
may want to stop execution before completion. For instance, you may realize after requesting execution that
you have made a logic error in a program; and you may want to terminate the command so as nbt to waste
system resources.

The output of any command execution can be suspended by pressing the ESCt key. The next key pressed
then determines whether execution resumes. (Remember, do not press the ESC key unless you want to
interrupt output.)

Press the % and A keys to abort the command.

Press the % and S keys to discard all output currently waiting transmission to the terminal.

Press the RETURN key to continue the interrupted output.

The RETURN key must be pressed to enter an abort (%A) or suspend (%S) request just as any other
INTERCOM command.

tIf your Teletype is not equipped with an ESC key, use ALT MODE. If that key is not available, output may
be suspended by holding down the CTRL key while pressing Z.

60495000 A 3-5

System response to the receipt of the abort request is the termination of the executing command, whether it
is a user program executing or an INTERCOM command such as FETCH. The terminal displays:

USER ABORT

EXAMPLES OF ENTERING A COMMAND

Try several sequences illustrated as follows to become familiar with command entries.

The TEACH command is illustrated. Its format is simply the word TEACH. Execution produces a list of items
to be selected for further instruction in INTERCOM use. TEACH is aborted in the same way as any other
command, by pressing ESC (if output must be interrupted) followed by %A.

3-6

1. Normal command entry:

COMMAND- TEACH.
t
press RETURN

Execution response is:

TEACH
IF YOU WOULD LIKE TO KNO~ ABOUT THE FOLLOWING.

TYPE THE CORRESPONDING NUMBER. ELSE TYPE END

HOW TO USE 'INTERCOM
HOW TO USE THE TERMINAL
AN INTERACTIVE COMMAND
AN gDITOR COMMAND
A REMOTE BATCH COMMAND
IA.
t
ESC, % and A presSed

Response to abort request:

US~R ABORT
COMMAND-

2. TEACH is spelled incorrectly:

COMMAND- TEECH

NO SUCH PROGRAM CALL NAME

TYPE
TYPE
TYPE
TYPE
TYPE

TEECH

1
2
3
4
5

This message appears any time the user entry is not a valid command and a fIle with the entry
name does trot exit.

60495000 A

3. One command correctly entered on two physical lines:

COMMAND- TEA

Wi. t
t press LINE FEED
press RETURN

TEACH
Ii YOU ~JULD LIKE TO KNO~ ABUUT THE FOLLO~I~~I

TYPE THE C0RRESPUNUIN~ ~UMBER. ELSE TYPE END

HOW TO USE INTERCOM
HOW TO USE THE TERMINAL
AN INTERACTIVE COMMAND

USER ABdRT

TYPE 1
TYPE 2
@YPlA

A LINE FEED during command input affects the carriage.

RETURN is the proper end-of-command signal.

4. Same as example 3, but space bar is pressed incorrectly before LINE FEED:

COMMAND- ~T~E~A~ __________ __
CH t t

t space in error press LINE FEED
press RETURN

NO SUCH PROGRAM CALL NAME TEA

5. Logical equivalent of incorrect example 4:

COMMAND- TE ACH

NO SUCH PRUGRAM CALL NAME TE

Spaces are not allowed in a command keyword.

6. Spaces before a command cause a diagnostic message to be issued but are ignored after a
command.

COMMAND- TEACH

FORMAT ERROR

60495000 A 3-7

3-8

7. RETURN incorrectly used in attempt to duplicate example 3:

COMMAND- TEA
CH t

t press RETURN in error
press RETURN

NO SUCH PROGRAM CALL NAME TEA
CO[lllMANO-

,';IU SUCH PROCiRAM CALL NAME CH

RETURN signals the end of a command.

8. Backspace used correctly on single character:

COMMAND- TEEACHl

t t
press RETURN

press CTRL and H, then A to replace E

T14";A(;H
IF YOU WOULD LIKE TO KNOW ABOUT THE FJLLO\ING,

TYPE THE CORRESPONDING NUMBER, ELSE TYPE END

HOW TO USE INTERCOM TYPE 1
HOW TO USE THE TERMINAL

9. Backspace used correctly for several characters:

COMMAND- TEECHACH

t
press RETURN 1

press CTRL and H
3 times; enter correct
characters

TEACH
IF YUU WOULD LIKS TO KNOW ABOUT T~E FULLOWING#

TYPE THE CORRESPONDING NUMBER# ELSE TYPE END

HO~ TO USE INT~RCOM

HOW TO USE THE TERMINAL
TYPE

@ %A

60495000 A

USER FILES

.A file is a collection of information referenced by its file name. A file can contain a program to be run, data
to be used by the program, or the output from a program. Also, a file may exist as a name only, having no
information at present, but available for writing.

When you reference a file name in a command, you indicate that all information in the file is to be handled
as a unit.

A user has control over any file associated with his terminal. These files may have been:

Created through the EDITOR facility of INTERCOM and saved as files with specific names

Stored as permanent files and retrieved by FETCH commands

Created by a REWIND or COpy command

Sent to the terminal from another terminal

Created by execution of a program through the RUN command or through the batch facilities at the
central site.

One other file - the edit file - exists whenever the user creates or updates a file through EDITOR. The edit
file is a temporary work file. It has no name and does not appear on a list of the user's files.

ATTACHED FILES

The list of files associated with your user-id is obtained through the FILES command.

FILES

Files are listed under the following categories, as applicable: LOCAL, REMOTE INPUT, REMOTE EXECUTING, I
REMOTE OUTPUT, and REMOTE PUNCH.

REMOTE INPUT and REMOTE EXECUTING files exist only if the terminal has been used to submit a job
for batch execution. Since this command deals with job execution through the EDITOR RUN command only,
such files are not described any further here.

REMOTE OUTPUT and REMOTE PUNCH files usually result from batch job execution, but they also can I
result from a BATCH command that sends a file from one terminal to another.

Files in the remote categories cannot be used in most INTERCOM commands' until the user makes them
local files. These files, and the commands to make them local files, are briefly described with the BATCH
command in section 6.

The remaining file category - LOCAL FILES - encompasses almost all files used by beginners.

60495000 B 3-9

LOCAL mes may be further categorized as follows; they are described individually below:

Attached permanent mes

Connected files

Special name files INPUT and OUTPUT

Other

The most important concept to know is that a file must be a LOCAL file before it can be used at a terminal,
and that LOCAL file status results automatically from most user commands.

LOCAL FILES

A local file has these characteristics:

It is immediately accessible and can be referenced in other INTERCOM commands.

It appears under the heading LOCAL FILES when the FILES command is executed.

It has been created during the current terminal session; or it is a permanent file attached at user
command.

It can be made permanent with a STORE command (unless it is already an attached permanent file).

It can be used during execution of an interactive user program.

It disappears at the end of the terminal session (unless it is a permanent file).

The last item is particularly important. Unless you make a file permanent, it will be lost when LOGOUT is
executed.

LOCAL FILE NAMES

Each local file must have a unique name consisting of 1-7 letters or digits beginning with a letter. These file
names are legal:

TAPES Q007

B1 ANOTHER

TEXT PF

NEW OUT

A

3-10 60495000 A

The following me names should not be used unless the me has the function and characteristics associated with I
the name, as discussed below.

INPUT OUTPUT PUNCH

Some other me names, although legal, should be avoided while you are learning to use INTERCOM. Specifically,
do not give a me the same name as any of the operating system control statements or INTERCOM commands,
and do not use the reserved me names beginning with ZZZZZ.

Generally, a file name should be chosen to reflect its contents. For example. use names such as:

PROGRAM or P For a source program

AREA For a program calculating area of a triangle

PI and P2 and P3 For three successive versions of a file

DATA or D or TAPES For data to be read by a program

NEW or FILE2 For files copied

When several persons use a terminal during a single session, it is often convenient to start or end all of your
file names with your initials. Any mnemonic identifier that helps you remember the purpose of a file is useful.

Illegal names produce error message such as:

ILLEGAL FILE NAME

ERR - RESERVED FILE NAME

Examples of improper names:

333 File names must begin with a letter

AB$C Only letters and digits can be used

ABCDEFGH Maximum file name length is 7 characters

ZZZZZAB Reserved file name not allowed

All local file names must be unique. An attempt to create a second file with the same name either accesses
an existing file or produces a message, but does not create the file.

DUPLICATE FILE NAME

ERR - name ALREADY EXISTS

YOU ALREADY HAVE A FILE BY THIS NAME

60495000 B 3-11

I

NUMBER OF LOCAL FILES ALLOWED

The number of local files that can be associated with a terminal is limited. The specific number of files allowed
is set by an installation; often 20 files are allowed. Each of the following messages indicates an attempt to
create more files than you are allowed.

FILE QUOTA EXCEEDED

Reduce the number of local files attached to your terminal. The command that caused this message has
been executed.

YOU HAVE TOO MANY FILES - PLEASE RETURN SOME

You have ignored the FILE QUOTA EXCEEDED message. Execution of other commands is inhibited
until you eliminate some local files.

ERR - USER FILE LIMIT EXCEEDED

The edit file cannot be saved or executed until the number of local files is reduced.

When any of these messages appear, it is necessary to dispose of some local files with one of the following
methods. The preferred response is a user command that destroys unwanted files.

Use the BATCH command to change the file from a LOCAL file to a REMOTE OUTPUT file at the
same or another terminal. Remote output files do not affect local file quota, since they are not immedi­
ately accessible.

Use the RETURN or DISCARD commands to evict a me. The named file ceases to exist as a local
file. In addition, if DISCARD is used, the file no longer exists as a permanent file.

When you no longer need a file, eliminate it from the system with a DISCARD or RETURN command. Not
only do these commands free system resources, they also reduce the number of files of which you need to
keep track.

MAKING A FILE LOCAL

Any file to be used at a terminal must have LOCAL status. Unless the me name appears under the LOCAL
FILES category when the FILES command is executed, the file cannot be rewound, copied, edited, or stored
as a permanent file.

A file may be made local in many ways; most requite explicit user naming of a file. Sometimes file names
appear as an indirect result of a user command.

A permanent me stored between terminal sessions can be attached for use by the FETCH command.

A file created through EDITOR is given a specific name with the EDITOR command SAVE.

3-12 60495000 A

Referencing a file in certain commands causes a file to be created with that name if such a file does
not exist. These commands are:

COPY,aflle,bfile File afile is assumed to exist; bfile is created by execution of COPY.

REWIND,cfile File cfile is created by REWIND execution if cfile did not previously exist.
Although cfile is an empty file, it does exist.

A remote OUTPUT file can be given LOCAL disposition with the BATCH command.

WHAT IS A PERMANENT FILE?

A permanent file exists from one day to the next. All local files that are not permanent cease to exist when
LOGOUT occurs or a terminal session ends otherwise.

You can make a permanent file of any local file unless it is already permanent.

Three commands reference permanent files:

STORE Makes a local file permanent

FETCH Retrieves a permanent file from storage

DISCARD Destroys a permanent file

For the most part, an attached permanent file can be treated as any other local file. It can be transferred to
the edit file for listing, executed by the RUN command, or copied to another file; however, an attached per­
manent file cannot be overwritten or otherwise have its contents changed with INTERCOM or EDITOR
commands.

On a list of local files, attached permanent file names are preceded by an asterisk which is not part of the name.

The STORE, FETCH, and DISCARD commands are simple-to-use versions of the operating system control
statements CATALOG, ATTACH, and PURGE. These statements offer additional features of privacy, naming,
and modifying files, but their use requires more sophisticated knowledge than is needed for the most commonly
used permanent file features.

STORE is adequate for retaining files from one day to the next. It offers the user a feature that CATALOG
does not have: specifically, if the file to be made permanent is not on a mass storage device that can hold
permanent files, STORE will copy the file to such a device for the user.

A permanent file remains in the system until:

It is referenced in a DISCARD command; or

The installation purges it after a certain retention period.

60495000 A 3-13

When a file is made permanent with STORE, it acquires an expiration date (creation date plus retention period}.
Depending on installation policy, your permanent files may be purged without advance information on the date
they expire. Some installations transfer expired files to an archive tape, which may cause a delay in associating
the file with your terminal. The AUDIT utility shows the expiration date for each of your files. Although
permanent files serve a need in preserving files, they tie up system resources and should not be used needlessly.

WHAT IS A CONNECTED FILE?

Connected files are associated with the keyboard or display of the terminal.

If a connected file is referenced in a program write operation, a line is displayed immediately.

If a connected file is referenced in a program read operation, a line must be entered at the keyboard
for immediate use.

Two commands are used for connected files:

CONNECT Connects a file

DISCONT Disconnects a connected file

Files INPUT and OUTPUT are always connected by EDITOR when a program is executed through the RUN
command of EDITOR.

On a list of local files, connected file names are preceded by a dollar sign. The $ is not part of the name.

Information written to a connected file while it is connected goes to the executing program for use or to
the terminal for immediate display. No mass storage copy exists for any information written to a connected
file.

Before a file is connected, and after it is disconnected, information written to the file exists on mass storage,
the same as for any other local file. Existing mass storage information becomes inaccessible while the file is
connected, but it is not destroyed and can be used after a disconnect.

An attempt to transfer a connected file to the edit file work area for a LIST produces the message: ERR-FILE
name CONNECTED TO TERMINAL.

Connected files cannot be referenced in a RETURN or DISCARD command until they are first disconnected.
Further, they cannot be referenced in a REWIND command since terminal information cannot be rewound.

SPECIAL FILE NAMES

Generally, the user can choose any sequence of letters for a file name. Several file names, however, have spe­
cial meaning throughout the computer system. These names should not be used indiscriminately. Two of these
names are INPUT and OUTPUT.

3-14 60495000 A

The system assumes any file with the name OUTPUT contains information to be printed. Both system routines
and a user program can write to OUTPUT. For example, the results of the AUDIT utility, which produces
permanent file status information, is written to OUTPUT: execution of AUDIT causes an OUTPUT file to be
created if it does not already exist.

In a user FORTRAN Extended program, the compiler associates a PRINT statement with the file name OUTPUT.
(You know the PROGRAM statement must include OUTPUT when PRINT is used.)

Since the user at a terminal does not have a printer available, information that would otherwise appear on
printer output appears at the terminal. When a program is executed throUgh the RUN command of EDITOR,
for instance, the system always creates a file with the name OUTPUT; it is connected to the terminal so that
any program print operations are displayed immediately.

Any file with the name INPUT also has special meaning throughout the system. For example, in a job deck
submitted at the central site, INPUT refers to the deck itself. A FORTRAN Extended program reading data
from the deck would contain a PROGRAM statement to equivalence the READ statement unit number file
name with the file INPUT. The FORTRAN Extended compiler assumes the program to be compiled exists
on the file with the name INPUT.

If a file named INPUT or OUTPUT is a local file, the system uses it in its customary way, even if you
did not intend such use. Consequently, avoid these names until you are sure of the implications.

Using the RUN command of EDITOR causes both INPUT and OUTPUT to exist as connected files. Examples
in section 5 explain their use.

THE EDITOR OF INTERCOM

EDITOR is the file creating and editing facility of INTERCOM. It is a utility program that must be called by
user command.

At most terminal sessions, EDITOR is one of the first commands entered after LOGIN. EDITOR makes
it possible to:

Enter a program line by line, equivalent to keypunching it card by card

Correct any errors in the program

Execute the program and receive output

Save the corrected program for future use

When EDITOR has been entered, the terminal is considered to be in EDITOR mode. You can distinguish
EDITOR mode by the system response to a user entry. Two dots appear to the left of a new line in EDITOR
mode as shown below:

..
t
You can begin entering command here

Once in EDITOR mode, you can access a set of commands which are applicable only in EDITOR mode. They
are summarized in table 3-2.

60495000 A 3-15

TABLE 3-2. VALID EDITOR COMMANDS

Command Description

ADD Inserts new lines into edit file

BYE Exits from EDITOR

CREATE Begins new edit file creation

DELETE Removes line from edit file

EDIT Copies local file into the edit file

FORMAT Specifies edit file format

LIST Displays edit file contents

RESEQ Renumbers lines in edit file

RUN Compiles and executes program

SAVE Copies edit file to a local file

linenum=text Inserts single line into edit file

/oldtext/=/newtext/ Changes text string in edit file

Two additional entries are valid only in EDITOR:

Exits from ADD or CREATE in which a file is being created line by line

*EOR and *EOF Writes file terminators to edit file

When the character strings *EOR and *EOF begin a line in the edit file, they are converted to end-of­
record and/or end-of-file indicators recognizable by other parts of the operating system when the edit file is
made a local file by the SAVE command.

If you try to use a command listed in table 3-2 before calling EDITOR, the command is interpreted as
a call for loading a user file by that name, and the NO SUCH PROGRAM CALL NAME diagnostic appears.

Once EDITOR has been called, almost all INTERCOM commands can be entered as well as commands appli­
cable only to EDITOR. Those few commands not possible from EDITOR include LOGOUT. Do not be
concerned about other commands and whether or not you can use them from EDITOR. Assume all commands
are possible and use them as you wish. Any improper command is diagnosed but not executed; and this
message appears:

COMMAND NOT ALLOWED FROM EDITOR

3-16 60495000 A

EDITOR COMMAND SYNTAX

EDITOR commands are similar to INTERCOM commands in that:

The RETURN key signals the end of a command.

The physical line on which a command or part of a command appears is not significant.

A separator must appear between parameters.

The syntax differs from INTERCOM commands in that:

A space may be used to separate parameters.

One or more spaces or commas between parameters is considered to be a single separator.

Both command names and parameters may be abbreviated.

Commands must not end with a period.

As an illustration, consider the use of an EDITOR command SAVE and the INTERCOM command STORE.
SAVE is used to copy a file created through EDITOR and make it a named local file; STORE preserves the
file for the next terminal session.

SAVE format for naming as file MEW

SAVE,MEW,NOSEQ

l l SAVE optional parameter which removes EDITOR line numbers
before copying the file

user assigned file name

EDITOR command

STORE format is:

STORE,MEW,GULL

t t owner identifier

same name as on SAVE

The SAVE command can be entered several ways (where A represents a space bar entry):

SAVE,MEW,NOSEQ SAVE, A A A A MEWANOSEQ

SAVE A MEW A NOSEQ

60495000 A 3-17

The STORE command must be entered this way:

STORE,MEW,GULL

Until you are sure what is or is not an EDITOR command, use a single comma between parameters and do
not end with a period. Since the required syntax for INTERCOM commands is acceptable for EDITOR com­
mands, you always will have an acceptable format.

ABBREVIATED COMMANDS

Both the command name and parameters of EDITOR commands can be abbreviated. The minimum abbreviation
is as many letters as necessary to identify a parameter uniquely.

CREATE can be abbreviated C

SAVE can be abbreviated S

UST can be abbreviated L

Two commands require a two letter minimum abbreviation. The letter R could be intended for RUN or RESEQ.t
so abbreviations are:

RU for RUN

RE for RESEQ

The rule for abbreviations of command and parameter names is that you can use as many letters as you care
to, as long as the string can be uniquely identified as the proper name.

CREATE can be abbreviated these ways, in addition to C:

CR CRE CREA CREAT

SAVE can be abbreviated:

S SA SAV

Abbreviations are not used in this manual so that you will be reminded of the purpose for each command or
parameter. Once you are familiar with EDITOR use, substitute abbreviations to reduce the possibility of input
typing errors.

tIn actual operation, R is interpreted as an abbreviation for READ, a command that is possible only if a
card reader is attached to your terminal; thus the COMMAND NOT ALLOWED FROM EDITOR diagnostic
appears if you use it instead of RU or RE.

3-18 60495000 A

THE EDIT FI LE

The edit file is a temporary work area used to accumulate lines of a file being created or to hold a file that
will be changed.

When the user types CREATE, an edit file is begun. EDITOR accumulates input characters as a series of lines;
RETURN key input signals the end of each line. Edit file construction is terminated when the user enters an
equals sign. All information entered remains in the edit file until the user calls for line deletion or change or
for edit file destruction.

Only one edit file can exist at any given time. You have a choice of creating an edit file with the CREATE
command or transferring an existing file to the edit file.

Any existing file to be updated by adding new lines or changing characters in old lines must first be moved
to the edit file with the EDIT command. No file updating is possible unless the file exists in the edit file
work area.

To protect the user from inadvertently destroying the edit file, EDITOR issues the following warning message
after a BYE, EDIT, or CREATE command (unless the edit file has been referenced in a SAVE command):

WARNING - EDIT FILE NOT SAVED

The command is not executed at this point. When the message appears, the user can issue a SAVE, re-issue the
BYE, EDIT, or CREATE command, or enter any other legal command.

SAVE preserves the current edit file by copying it to a local file; thereby freeing the edit file for use in
creating another file. After issuing the SAVE, the previously rejected BYE, EDIT, or CREATE must be
re-entered.

BYE causes an exit from EDITOR.

EDIT destroys the current edit file by writing the named file over the file existing in the work area.

CREATE destroys the current edit file by beginning a new file in the work area.

When you leave EDITOR and return without logging out, the following message appears:

YOU HAVE AN EXISTING EDIT FILE

At this point you have the option to save the edit file (if not previously saved) or to enter any other legal
command.

A file in the edit file area must have a line number associated with every individual statement. These numbers
are necessary for EDITOR to identify the specific changes you want to make. Numbers are assigned automatically
by CREATE or by using the SEQ parameter of the EDIT command.

The following sections show many examples of creating and modifying files through EDITOR.

60495000 A 3-19

FILE CREATING AND UPDATING

EDITOR commands allow a file to be created or updated line by line. To call EDITOR, enter the characters
EDITOR for an INTERCOM command.

COMMAND - EDITOR

Don't forget to press RETURN to end this and all other entries.

In EDITOR mode, two dots appear at the left to show the system has completed execution of the previous
entry and is ready to accept another command .

. .
EDITOR remains available until you enter the command BYE.

4

Follow the text from beginning to end in this section as FORTRAN Extended programs are created and exe­
cuted. Once you are familiar with each step for entering and updating a file, you can turn to section 6 for more
details and common uses for a given command.

FILE CREATION AND EXECUTION

The following discussion introduces the use of these EDITOR commands:

CREATE FORMAT LIST RUN

The minimum parameters needed for a task are emphasized. Optional parameters are used only when they are
pertinent to the task at hand.

CREATE COMMAND FUNDAMENTALS

With the CREATE command, a program can be entered statement by statement. Each statement entered is
assigned a line number that has meaning only to EDITOR. The numbers make it possible to callout any indi­
vidual line for deletion, correction, or other manipulation without affecting other lines.

CREATE signals EDITOR to begin a new file in the temporary work area called the edit file. Since only
one edit file can exist, creation of a new file destroys the present edit file contents. Consequently, EDITOR
may display a warning message before overwriting the edit file; if so, you must re-enter the CREATE com­
mand after considering whether to save the existing file first.

When CREATE is called, EDITOR responds with the number 100 and an equals sign:

•• CHEAT.!::.
100=

60495000 A 4-1

You may enter as many as 72 characters before signaling the end of the line with a RETURN key:

•• CREATE
100=USER ENTERS A STATEMENT

EDITOR prompts input of another line by displaying a line number with a value 10 greater than the last line
number:

•• CREATE
100=USER ENTERS A STATEMENT
110=

The user continues adding lines when prompted by a line number, terminating each line with a RETURN key

You can specify the starting line number and line increment as follows:

•• CREATE.I.S
I-USER ENTERS A STATEMENT
6-

When all your statements have been entered, exit from CREATE by entering an equals sign as the first and
only character in a line. The equals sign does not become part of the me.

The statements in figure 4-1 present some new information about CREATE use: letters, digits, and special
characters can be part of a line .

•• CREATE

••

100=STATEMENT. END OF LINE 100 IS SIGNALED BY RET.URN KEY
110=SPACES ARE SIGNIFICANT IN LINES ENTERED
12Q=LINES NEED NOT BE THE SAME LENGTij
130=SPECIAL CHARACTERS SUCH AS ~) / # $ CAN BE ENTERED
140=LINE 150 wILL BE THE LAST LINE OF TEXT INPUT HERE
150=ONLY AN EQUALS SI.GN (=) wILL BE Et'lTERED FOR LINE 160
160==

Figure 4-1. Fundamental CREATE Use

Most often you will use CREATE to enter lines of a program that has a purpose, such as calculation of a
square root or solving an equation by matrix operations. But as figure 4-1 shows, the me created through
EDITOR need not be a program; it could be a me of 999,999 test scores to be averaged, or a single line of
a NAMEUST statement to be read by a FORTRAN Extended program.

All CREATE options are explained in detail in section 6.

4-2 60495000 A

LIST COMMAND FUNDAMENTALS

The original lines entered remain in the edit me until they are destroyed. To examine the edit me, use the
LIST command (LIST can be used only for the edit me as shown in figure 4-2):

•• LIST,ALL

••

100=STATEMENT. END OF LINE 100 IS SIGNALED BY RETURN KEY
110=SPACES ARE SIGNIFICANT IN LINES ENTERED
120=LINES NEED NOT BE THE SAME LENGTH
130=SPECIAL CHARACTERS SUCH AS () I I ~ CAN BE ENTERED
140=LINE 150 WILL BE THE LAST LINE OF TEXT INPUT HERE
150=ONLY AN EQUALS SIGN (=) WILL BE ENTERED FOR LINE 160

Figure 4-2. Listing Edit File

Notice the equals sign, entered as line 160 in figure 4-1 to exit from CREATE, is not part of the me itself.

The ALL parameter caused the entire file to be displayed. Other LIST options can:

Display a single line of the edit file.

Display a range of lines.

Display lines without line numbers.

Search and display all lines containing a particular character string.

Search and display all lines in a particular range which contain a particular character string.

Restrict search for a character string to particular positions in each line.

All LIST options are explained in detail in section 6 and illustrated later in this section.

FORMAT COMMAND FUNDAMENTALS

Now that you can enter a series of lines with miscellaneous data, let's see what may be different about
entering a meaningful program.

The most obvious difference is that characters entered for each line normally would not begin in the first
character position immediately after the line number displayed by EDITOR.

A program to be executed must be entered in a format expected by the language compiler. Consider, for
example, a program punched on standard cards with 80 columns; All the language compilers accept infor­
mation punched in columns 1 through 72. Any information in columns 73-80 is listed but ignored during
compilation.

60495000 A 4-3

The FORTRAN Extended compiler attaches special meaning to some of the columns.

Column 1

Columns 1-5

Column 6

Column 7

The letter C in this position indicates a comment follows.

Numbers in these positions are statement labels.

Any character in this position indicates a continuation of the statement in the
previous line.

Statements other than comments must begin in this position or beyond.

The column in which information begins affects the interpretation of that information. Most statements would
begin in column 7 or beyond.

Figure 4-3 shows a complete FORTRAN Extended program entered after CREATE was called. It prints two
lines during execution.

5
CREATE

PROGRAM PRINTIT (OUTPUT)
PRINT 5
PRINT 6
FORMAT (* A SEMICOLON CAUSES SKIP TO COLUMN 1 WHEN ADD OR

+ IS BEING USED *>
6 FORL'1AT (* AN = ENTERED ALONE TERMINATES ADD AND CREATE * >

SlOP
END

Figure 4-3. Program PRINTIT

Aligning FORTRAN statements in position 7 can be accomplished, as shown in figure 4-3, by spacing to posi­
tion 7 before entering the first character. Alternately, you can take advantage of the automatic formatting
capabilities of EDITOR

To establish a format suitable for a FORTRAN Extended program, enter this command before calling CREATE .

. . FORMAT,FORTRAN

When this command is accepted, EDITOR assumes the edit me. has these characteristics:

Each line is limited to 72 characters, excluding the EDITOR assigned line numbers.

The tab character is a semicolon (;).

Tab stop is position 7.

4-4 60495000 A

The tab character acts similarly to the TAB key on a typewriter or a skip key on a keypunch to allow input
to be positioned on a line. Pressing the RETURN key at a terminal moves the carriage to the far left, and the
next character entered occupies the first character position of the line. Pressing the tab character causes the
next character entered to occupy the same character position as the tab stop.

The tab for EDITOR, unlike that of a typewriter, is a character and not a particular key. Further,the character
that signals a tab can be changed by the user.

When the tab character is pressed, EDITOR adds blanks to move its internal position marker to the ne~t tab
position. Although the terminal carriage does not move in response to tab use, the position marker internal tQ
EDITOR is changed. When the line entered with a tab character is displayed at a terminal, the carriage moves
to correctly position characters in a line.

For example, assume the semicolon is the tab character and the first tab stop is in position 7. Under
CREATE, the user enters for line 310:

310=;END

r ;osition 2

position 1

When the file containing that line is displayed, characters are aligned:

310= END
t
position 7

The line is passed to the compiler with END in columns 7-9 and the line number in columns 73-78.

The tab character does not appear as part of the user data. It simply signals a change in the EDITOR internal
line position marker.

Using the tab character, the above example could be entered as shown in figure 4-4:

•• CREATE
100=JPROGRAM PRINTIT (OUTPUT)
110= paINT 5
120" J PRli'liT 6
130= 5JFORMAT (* A SEMICOLON CAUSES SKIP TO COLUMN 7 WHEN ADD OR

CREATE

••

140= + IS BEING USED *)
150= 6 JFOnMAT C* AN • ENTERED ALONE TERMINATES ADD AND CREATE *)
160= JSTOP
110-JEND
180.~

Figure 4-4. Tab Character Use with CREATE

60495000 A 4-5

Notice, the tab character need not be used in all lines nor used at any particular time. Spaces before the tab
character can be entered. The tab character is effective in any position 1-6 before the tab stop.

The files resulting from lines entered as in figure 4-3 and 4-4 are identical.

The contents of the fIle created in figure 4-4 can be displayed by LIST (figure 4-5). Adding the SUP param­
eter to LIST suppresses the line numbers; it does not otherwise affect contents .

• _y STI-ALL .. SUP
PROGR~~ PRINTIT (OUTPUT)
PRINT 5
PRINT 6

5 FORMAT ·C* A SEMICOLON CAUSES SKIP TO COLUMN 7 wH~~ ADD OR CREATE

••

+ IS BEING USED *)
6 FORMAT C* ~~ = ENTERED ALONE TERMINATES ADD ~~D CREATE *)

STOP
END

Figure 4-5. LIST of Program Entered in Figure 4-4

Neither the tab character nor the = used to exit from CREATE is part of the fIle created. The lines are for­
matted as required by the FORTRAN Extended compiler.

line numbers displayed by EDITOR to prompt user response are not part of the line text. In figure 4-4:

In line 130, the statement label number 5 is in position 2; the word FORMAT begins in position 7.

In line 150, statement label 6 appears in position 3; the right parenthesis is in position 63.

If line 110 said PRINT 130 instead of PRINT 5, compilation would produce an UNDEFINED STATE­
MENT NUMBER fatal diagnostic, since EDITOR line numbers are for EDITOR use only.

Although line 170 is entered with 4 characters in position 1-4, the resulting fIle line occupies 9 char­
acters. The tab character, a semicolon, causes the character E to be in position 7. The character string
END occupies positions 7-9.

line 140 is a continuation of the format statement begun at line 130. The RETURN key pressed after
the final E in line 130 terminates the line. According to FORTRAN Extended compiler conventions,
line 140 is a logical continuation of line 130 even though two physical lines appear.

The final edit fIle internal line length, as opposed to the number of characters entered at the terminal, is
Significant. The EDITOR command FORMAT specification of FORTRAN limits line length of the fIle being
created to 72 user characters.

4-6 60495000 A

When a command in this format is accepted, EDITOR first makes a copy of the edit me, then passes it to
the FORTRAN Extended compiler. At the end of compilation, a status message is displayed showing how long
the central processing unit at the central site was in use. (If your program has compile errors, diagnostics are
displayed first.)

.096 CP SECONDS COMPILATION TIME

Processing of the RUN command continues by connecting mes INPUT and OUTPUT, then loading the com­
piled program (the machine code translation of your program) into central memory, and starting execution.

The program PRINTlT, in figure 4-4, contained two PRINT statements. Successful execution should show
these two lines on the me OUTPUT. (Remember, the FORTRAN language equates a PRINT statement with
a me named OUTPUT.)

As RUN continues, you will see the results of the PRINT statements appear at the terminal. At the end of
program PRINTlT execution, the time used for execution is displayed (figure 4-6) .

• • RUN" FTN
.095 CP SECONDS COMPILATION TIME

A SEMICOLON CAUSES SKIP TO COLUMN 7 WHEN ADO OR CREATE IS BEING USED
~~ = ENTERED ALONE TERMINATES ADO AND CREATE

STOP
.008 CP SECONDS EXECUTION TIME

••

Figure 4-6. Output from PROGRAM PRINTlT

In addition to the two lines output because of PRINT statements, the word STOP appears. STOP is displayed
as; a result of executing the STOP statement in a program. Unless your program contains statements to display
results, the word STOP may be the only indication of complete execution.

Since execution of program PRINTIT displayed two lines destined for a me named OUTPUT, the RUN com­
mand must have equated the name OUTPUT with the terminal. To see what else RUN has done, use the
FILES command .

. . FILES

FILES provided a list of all me names associated with the terminal as shown in figure 4-7 .

.. FILES
--LOCAL FILES--

$lNPUT $OUTPUT LGO
••

Figure 4-7. Files Generated by RUN Command

4-8 60495000 A

RUN has produced three files:

LGO Contains the compiled program which was created, loaded, and executed during RUN.
It still contains the machine code, and can be executed again.

INPUT Has a $ preceding the name to indicate it is a connected file. The file was created and
connected in anticipation of use during PRINTIT execution. As it happens, PRINTIT
did not reference a file by the name INPUT, and the file was not used.

OUTPUT Also is a connected file created by RUN in anticipation of use in PRINTIT. If any
program statement writes to a file named OUTPUT, the line will be displayed immedi­
ately at the terminal. After execution, the file will be empty.

These three files are always created by RUN execution. As program PRINTIT shows, however, it is not necessary
for the program to use files INPUT and OUTPUT.

Section 5 contains examples of connected file use.

RUN execution does not affect the current contents of the edit file. If you want to rerun the program, simply
re-enter the RUN command. Files OUTPUT and LGO created by the previous RUN execution are logically

, destroyed with the second RUN execution; first these mes are positioned to their beginning, and then during
PRINTIT compilation and execution, they are written over.

The RUN command has several optional parameters in addition to the required parameter that specifies the
language in which the program is written. These options allow, as described in section 6:

1. Compilation and execution of a program that is not currently in the edit file.

2. Suppression of informative or nonfatal error diagnostics.

3. Compilation, but not execution, of a program.

This last option is particularly useful when you are first learning FORTRAN Extended, since it allows
compilation errors to be detected without wasting computer resources in an attempt to execute an
erroneous program.

SUMMARY OF PROG RAM ENTRY AND EXECUTION

Call EDITOR when the word COMMAND appears at the start of a line.

COMMAND- EDI TOR

Call for formatting according to FORTRAN Extended: tab stop at position 7, semicolon causes tab, 72 char­
acter line length .

•• FORMAT .. FORTRAN

60495000 A 4-9

Call CREATE. Optional parameters can specify starting line number and increment between lines .

•• CREATl-: .. 50 .. 2

Enter each line in the program after EDITOR displays a line number. Use tab character for a skip to position
7. Terminate each line by pressing RETURN key.

50=;PROGRAM SQROOT (OUTPUT)
52=;X=33~.7

54=; Y=S(")HT(X)
56=JPHINT 4 .. X .. Y
58=4JFORMAT (it THE SQUARE ROOT OF it F5.1 it IS it F5.1)
60=JSiOP
62= J ENU

After all program lines have been entered, type a single = to terminate CREATE.

64==.

Verify that the data has been entered correctly by listing the edit file .

PROuRAM SQROOT (OUTPUT)
X=332·?
Y=S.QRT(X)
PRL\iT 4 ..){ .. Y

•• LIST .. ALL

50=
52=
54=
56=
58=4
60=
62=

FORMA,.. (* THE SQUARE ROOT OF it F5.1 oft IS it F5.2)
STOP
END

• •

Call RUN to execute program:

•• RUN .. FTN
.109 CP SECO~DS COMPILATION TIME

TH& SQUARE ROOT OF 332.7 IS 18.2
STOP

.006 CP SECONDS EXECUTION TIME
••

FILE PRESERVATION AND ELIMINATION

Once a file has been created through EDITOR, you can put it aside while you are creating another file or
store it as a permanent file. In either instance, you must change the edit file into a local fIle. Then, if' the
local file is to be preserved until another terminal session, it must be made into a permanent file. Alternately,
if a file has served its purpose and is no longer needed, it should be eliminated to conserve system resources.

4-10 60495000 A

The following discussion introduces use of these commands:

SAVE RETURN STORE FETCH DISCARD

SAVE COMMAND FUNDAMENTALS

A file entered under the EDITOR command CREATE exists in a temporary work area called the edit file. The
fact that only one edit file can exist does not imply that you can create or use only a single file. Rather, you
must take steps to preserve the present edit file before creating or updating another file in the edit file work
area.

As long as a file resides in the edit work area, it has no name and is destroyed when a new file is constructed
through CREATE or EDIT.

If you are following this section of the manual from beginning to end and studying examples as you read, you
will see that the edit file now has PROGRAM PRlNTIT, as listed in figure 4-5.

To make the current contents of the edit file available for use in other commands, use the SAVE command to
copy the edit file and give it a name.

. . SA VE,filename

Figure 4-8 shows that the existence of the new ftle can be verified by the FILES command .

• • FILES
NONE
•• SAVEl DOVE
•• FI LES
--LOCAL FILES--

DOVE ••

Figure 4-8. Saving the Edit File

Saving the file does not affect the original edit file contents. It merely makes a copy. You can make another
copy with another SAVE command. Let's make four copies, in all, and use the FILES command to check
that they exist .

.. FILES
--LOCAL FILES--

DOVE
•• SAVEl DOVE2
•• SAVE:l [JOVE]
•• SAVE., UOVi!:4
•• FI LES
--LOCAL FILES--

DOV£2 DOVE3

60495000 A

DOVE4 DOVE

4-11

~e ?nly required parameter of SAVE is the name to be. given to the local me. A me name can be any com­
bmation of 1 to 7 letters or digits beginning with a letter; it must be different from all other names listed by
the FILES command under the WeAL FILES heading. .

Optional parameters of SAVE can:

Save a single line of the edit file.

Save a range of lines.

Save lines without line numbers.

Search and save all lines containing a particular character string.

Search and save all lines in a particular range which contain a particular character string.

Restrict search for a character string to particular positions in each line.

Replace the current contents of a local file by the saved lines.

Add the saved lines to the current contents of a local file.

If the options of the SAVE command seem familiar, look at the LIST command options presented previously
and note they are similar. Four EDITOR commands use many of the same optional parameters. When you
learn the options of LIST, you will know all but one option of the text replacement command
/oldtext/=/newtext/ and the DELETE command, and all but two optional parameters of SAVE.

RETURN COMMAND FUNDAMENTALS

Since four copies of PROGRAM PRINTIT serve no purpose other than to illustrate that they can be made,
eliminate three copies.

Use the RETURN command to eliminate unwanted files:

.. RETlJRN,filename

More than one file can be eliminated by a command in the format:

. . RETURN ,filename 1 ,filename2,filename3 . . .

I RETURN is a system command; it is not an EDITOR command. This means that RETURN can be executed
even if EDITOR is not in use. Any command that is identified as an EDITOR command cannot be used until
after EDITOR is called.

4-12 60495000 B

For example:

all INTERCOM
and system com·
mands can be
used here

COMMAND-EDITOR ~
dOt fil t" most INTERCOM and system commands

e 1 or 1 e crea mg can be used here
or updating statements

00 BYE
COMMAND-RETURN,A
COMMAND­

commands go here
EDITOR commands cannot be used here

COMMAND-LOGOUT

Valid EDITOR commands used when EDITOR has not been called normally result in a diagnostic message
beginning:

NO SUCH PROGRAM CALL lvAME

EDITOR command name

"" LIST

If EDITOR has not been called, an EDITOR command cannot be recognized. The system assumes a command
such as LIST to be a call for loading and executing a fIle by the name of LIST; as no file with this name was
found to be associated with the terminal, a loader error resulted.

Now, to resume discussion of the RETURN command, figure 4-9 shows use of RETURN and the correspond­
ing change that occurs in the list of fIles associated with the terminal .

•• RETURNIDOVE2IDOVE3IDOVE4
•• FILES
--LOCAL FILES-­

DOVE
• •

Figure 4-90 Eliminating Unneeded Files

RETURN can be used for any unconnected local file except one with the name INPUT. (Refer to descriptions
of the DISCARD command and the RENAME option of the BATCH command in section 6 for means of
eliminating this file.) As long as you are executing programs only through the RUN command of EDITOR,
don't worry about more than one program using these special name fIles or about the same program using
them several times.

Experienced programmers calling the compilers themselves must be concerned with me positioning. But for
beginners, RUN command execution handles these t1Ies to produce the results desired without additional user
entries.

60495000 B 4-13

Normally, you will use RETURN to destroy any file you no longer need; but don't forget that once a file is
referenced in RETURN, it is gone and cannot be recovered without duplicating the process that created it. (The
exception, of course, is a file made permanent by a STORE command; only a DISCARD command destroys the
permanent copy of the file. RETURN of a permanent file merely disassociates the file from the terminal.) If
you are passing the terminal to someone else, return all your files so the next person may start clean.

STORE AND FETCH COMMAND FUNDAMENTALS

Any file referenced in a SAVE command, as file DOVE was in figure 4-8, exists as a local file. Local files
are destroyed when the LOGOUT command is executed.

To preserve a local file between terminal sessions, it must be made a permanent file with the STORE command.

. . STORE,filename,owner

When STORE is executed, the file attains a special status. The file remains in the system from day to
day (barring unforeseen circumstances) until the user purges the file from the system through a DISCARD
command. Attaching the file to the terminal through the FETCH command and using it during the terminal
session does not affect its permanent status. After a certain number of days, called the retention period,
permanent files may be purged by the central site operator. Each central site installation has a different policy,
so check with your instructor or analyst about retention periods.

Remember that permanent files tie up system resources. Do not create them needlessly.

When a file has been made permanent, it appears on the list of local files with an asterisk before the name .

•• STOREIDOVEITU&TLE
•• FILES t my name; I am S. Turtle
--LOCAL FILES-- local file name

"DOVE;
••

The asterisk is not part of the file name; it is merely a status indicator.

If you LOGOUT or execute a RETURN for an attached permanent file, the file still exists. At a later time,.
you can again make it a local file by using the FETCH command. To destroy the file completely, you must
use the DISCARD command.

Whether or not you can use permanent files, and the specific format of the commands to use, depends on the
policy of your instructor or installation. The owner identification may not be required; the formals shown
below are those of the standard system, which are not necessarily applicable to all systems.

In the STORE format above, the two required parameters were:

4-14

local file name of 1-7 letters or digits which becomes the permanent file name (permname parameter in
examples below)

owner identification of 1-9 letters or digits

60495000 A

These two parameters uniquely identify the file at the central site. No other file can be made permanent with
the same name and owner. These same two parameters must be used on the other two permanent file com­
mands, FETCH and DISCARD.

When a file is made permanent, it still exists as a local file at your terminal. RETURN eliminates the name I
. from the list of local files.

To attach a stored permanent file for use at another terminal session, use the FETCH command:

· . FETCH,permname,owner

The two parameters must duplicate the parameters used to STORE the file. If you have forgotten the particular
combination of characters used in naming your file, use the AUDIT utility, described in section 6, to obtain a
list of all permanent files with your owner identification.

A permanent file is elimiriated from the system by DISCARD. If the fIle has been made local with the FETCH
command, DISCARD format is:

· . DISCARD,permname

If the file is stored at the central site but has not been made a local file, format is:

· . DISCARD,permname,owner

In either instance, DISCARD destroys the permanent file and any local fIle copy th~t may. e~st ..

The STORE, FETCH, and DISCARD commands are INTERCOM commands and can be used any time, even
when EDITOR has not been called.

Figure 4-10 shows a program that was stored as a permanent fIle on one day and attached and used again the
next day.

FILE EDITING

An existing file can be changed in several ways:

New lines can be added with the ADD command.

A single line can be added or rewritten with the linenum=text command.

Existing lines can be deleted with the DELETE command.

A character string in a line in the fIle can be replaced with another string of characters.

The changes made to a fIle may be required to add new information or to alter program logic, as well as to
correct errors in existing information. Changing an existing file, whether the change affects an entire line or a
single character in a line, is considered file editing or updating.

60495000 A 4-15

(LOGIN MESSAGES APPEAR HERE)

COMMAND-EDITOR
•• CREATE

(ENTER PROGRAM HERE)

•• 51-WE .. PROG
•• STORE .. PHOG .. TURTLE
•• BYE
COMMANO ... LOGOUT

(LOGOUT MESSAGES APPEAR HERE)

COMMAND-FETCH .. PROG .. TURTLE
COMMAND-EDITOR
•• EDI T .. PROG
•• RUN .. Jo~TN

Figure 4-10. STORE and FETCH Use for Permanent Files

The following description introduces these EDITOR commands that update a me:

/oldtext/=/newtext/ EDIT linenum=text ADD DELETE

Commands used in support include new options of CREATE, LIST, and RUN.

Changes cannot be made unless a me resides in the edit me work area. The current edit me contents always
can be updated. The first editing command, /oldtext/=/newtext/, is illustrated using PROGRAM SLOPPy created
in the edit me in the example below.

CREATE COMMAND WITH SUPPRESS

When you call CREATE, you can choose to enter your text by either of the following procedures:

1. After a line number appears, enter a line, press RETURN, and wait until another line number
appears before entering the next line.

2. Enter a line, press RETURN, and enter another line.

4-16 60495000 A

To suppress line number prompting, enter CREATE with a SUP parameter .

. . CREATE,SUP abbreviated C, S
ENTER LINES (system response when you can enter new lines)

The typing element is at the far left. Enter each program statemeni, using the semicolon as a tab character. The =
sign must be entered as the last line to terminate CREATE.

In figure 4-11 below, we have a very inaccurate typist .

•• CREATE .. SUP
ENTER LINES
lPROHAM SLOPPY (OUTPUT)
;1=4455
lJ= 7890
lJ= I+J
lPRINT 10 .. I .. J
10;FROMAT (* 1 IS * .. 17 .. * J IS * .. 17)
;PRINT II, M
11;FROMAT (* SUM IS * .. 17)
STOP
lEND
•
• •

Figure 4-11. CREATE,SUP Entry

Examine the program with the LIST command:

•• LIST .. ALL

100=
110=
120=
130=
140=
150=10
160=
170=11
180=STOP
190=

PRORAM SLOPPY (OUTPUT)
1=4455
«1= 7890
J=I+J
PRINT 10 .. I .. J
FROMAT (* 1 IS * .. 17, * J IS * .. 17)
PRINT 11 .. M
FROMAT (* SUM IS * .. 17)

END

loldtext/=/newtextl COMMAND FUNDAMENTALS

EDITOR contains an updating command that affects characters within a line or several lines in the edit file. It
can be used to correct typing input errors, as illustrated below, or to change the meaning of a particular line.

60495000 A 4-17

Look at program SLOPPy entered in figure 4-11, it is obvious that it does not meet compiler standards:

PROGRAM is misspelled in line 100

FORMAT is misspelled in lines 150 and 170

Line 130 was intended to be M=I+J, not J=I+J

STOP in line 180 does not begin in position 7

To correct an error without re-entering the entire line, use the text replacement command. It specifies which
characters are to be replaced by other characters. Both the original character string and the replacement string
must be delimited by slashes. The slashes are not part of the string. Minimum command format is:

/oldtext/=/newtext/ ,range

The range parameter is required to identify which portion of the fIle EDITOR is to search for the character
string /oldtext/. It can have any of the formats valid for the range parameter of the DELETE, SAVE, or LIST
commands, including a line number or two numbers to defme a range.

When it finds the character string identified by /oldtext/, EDITOR replaces the characters with the string identi­
fied by /newtext/. Text strings need not be the same length.

/oldtext/ may be 1-20 characters

/newtext/ may be 0-20 characters

To correct line 100 in example 4-11, specify the bad characters and the replacement characters:

•• /PRORAM/=~PROGRAM/II00
1 CHANGES

After every command in this format, EDITOR reports how many changes were made. You can confirm the
accuracy of a change by listing the changed line .

.. LISTII00
100= PROGRAM SLOPPY <OUTPUT)

To correct the same error in more than one place, specify the range of lines in which the error exists:

•• /RO/=/ORII150r170
2 CHANGES

Line 100, although it has a character string RO in the word PROGRAM, is not affected since it does
not lie in the range 150 through 170 in the edit file.

To change the position in which a character is located, you must use spaces. The tab character automatically
positions to the tab .stop when CREATE is used; it has no special meaning, however, in a text replacement
string.

4-18 60495000 A

What happens if we try to use the tab character?

•• /5/=1;5/,180
1 CHANGES

•• LIST,180
180=;STOP

The ,result is not as intended, since the tab used within CREATE positions the line, but it never appears
in a LIST. Now, to recover from the wrong correction:

•• /;STOP/=/ STOP/,180
1 CHANGES

.. LI51",180
180= Sl'OP

The blank insertion works the other way, also, to close up spaces .

•• 1 7/=/7/,120
1 CHANGES

•• LI STI120
120= J=7890

If you are not sure of the number of the line, or if EDITOR could find it faster than you, use the parameter
ALL as a line number. EDITOR will search the entire edit file, find, and change all occurrences of /oldtext/ .

•• /J=I+J/=/M=I+J/,ALL
! CHANGES

Figure 4-12 shows SLOPPY as corrected and the results of its execution:

60495000 A

•• LIST,ALL
100=
110=
120=
130=
140=
150=10
160=
170= 11
180=
190=

•• RUN, FT.\l

PROGRAM SLOPPY (OUTPUT)
1=4455
J=7890
M=I+J
PRINT 10, I,J
FOEMAT (* I IS *, 171 * J IS *, 17)
PRINT 11, M
FORMAT (* SUM IS *, 17)
STO'P
END

.120 CP SECONDS COMPILATION TIME
1 IS 4455 J IS 7890
SUM IS 12345

STOP
.009 CP SECONDS EXECUTION TIME

Figure 4-12. Correction and Execution of Figure 4-11

4-19

COMMON PITFALLS IN USING loldtext/=/newtextl

One skill to acquire in using the text replacement command, is selecting the proper /oldtext/ string. The idea
is to find an /oldtext/ string that:

Uniquely identifies the string to be changed, yet

Reduces the number of characters to be entered in the command

As the correction of the FORMAT misspelling showed, one way is to restrict the change to a range of lines.
The required range parameter can be identified by any of the following:

Parameter Resulting Range

line number only line specified

line-start, line-end first line specified through last line specified

LAST only last line in file

line-start, LAST first line specified through last line of file

ALL entire file

Even with a line restriction, however, the choice of /oldtext/ characters must identify the precise string to be
changed. Specifying too few characters in an attempt to be concise can lead to unexpected results.

For instance, the original line 130 in figure 4-11 could have been changed:

•• /J/=/M/I130
2 CHANGES

.. LISTI130
130= M=I+M

• •

Logically, M should have replaced J only to the left of the equals sign in line 130. But now 130 would
be M=I+M.

EDITOR makes the change requested, even if it is not what you intended. Use the status message to follow
changes: if the number is too many or too few changes, LIST the file or line and recorrect as necessary.

Two other optional parameters can place restrictions on the character string to be changed. Both are available
also on the DELETE, LIST, and SAVE commands.

A column range can be specified to restrict /oldtext/ to a portion of a line. Either a single column or a range
of columns can be stated, with different interpretations existing for the range. The enclosing parentheses dis­
tinguish columns from line range parameters. The column parameters have the format:

(column)

(column-I, column-2)

4-20 60495000 A

The relation of the column range and /oldtext/ is:

If a single column is specified, the /oldtext/ character string must begin in that column.

If a range of columns is specified, the entire /oldtext/ character string must lie within that range.

As illustrations, consider lines from figure 4-11 and various means to change them:

• ./FROMAT/=/FORMAT/,ALL,(7)

• ./FRO/=/FOR/,ALL,(1,7)

Change, since F begins in column 7.

No change, FRO begins, but does not end, within
columns 1-7.

• • /FRO/=/FOR/,150,170,(5,15) Change, since FRO lies within columns 5-15 in lines
150-170 .

•• /J/=/M/,130 Produces M=I+M, not desired M=I+J.

• • /J/=/M/,130,(7) Correctly sets M=I+ J

Though the (column) parameter is preCise, it is not always practical to count to the column to be used in the
command. The UNIT option offers some help.

UNIT Specifies that /oldtext/ to be replaced will not be preceded or followed by a letter or a
digit.

Unit rejects any /oldtext/ string that may be part of a word or variable name composed of letters or digits.
For example, the character I is frequently used in a FORTRAN Extended program and is used as DO loop
control as well as a character in variable names. This command finds some, but not all, occurrences of I
in a program .

. . /I/=/J/,ALL,UNIT

Program statements containing the references below are changed, since special characters (+ = blank or start
of a line are not letters or digits.

(I) 1= (1+1) *1* DO 220 1=1,5

Program statements that are not changed include references such as:

PRINT 002201=1,5 WRITE DIMENSION VARI

Because of the advantages that /oldtext/=/newtext/ can offer, you may find it worthwhile to format FORTRAN
Extended program statements in anticipation of EDITOR updating rather than simply for compiler acceptance.
For instance, using spaces between elements of a DO statement is not a compiler requirement. As shown above,
the search criteria for a text change with a UNIT parameter produce different results depending on whether
spaces are used in the DO statement. Similarly, the compiler accepts statements beginning in column 7 or after.
By consistently using orily column 7 to begin statements, you can control searches by using a column number or
range of columns.

60495000 A 4-21

Specifying a range of lines or column numbers to be searched significantly reduces search time.

Another error that beginning users often make involves specifYing different logical character strings. To cor­
rect line 180 in figure 4-11, for instance, this command was first entered:

•• /;S/~/ STOP/,180
1 CHANGES

• .LIST, 180
180= STOPTOP

EDITOR carries out the command, with unsatisfactory results. While you may be able to conclude that moving
the character S to the left also moves characters TOP, EDITOR can only carry out the command literally. The
correct replacement string should end at the same logical place as the original string ends.

EDIT COMMAND FUNDAMENTALS

Any local ftle containing character data can be transferred to the edit ftle for updating. Since only one ftle can
exist in the edit ftle area, execution of the EDIT command destroys the present edit me contents. EDITOR
issues a warning message and forces you to re-enter the EDIT command if the existing copy of the edit file has
not already been saved.

To transfer a local ftle to the edit ftle, use the EDIT command;

· . EDIT,ftle,SEQ

Use of the optional SEQ parameter depends on whether the local file has sequence numbers that EDITOR can
use as edit ftle line numbers. SEQ causes new line numbers to be assigned, beginning with 100 for the first
line number and incrementing by 10 for each successive line number.

Text in the edit me must have line numbers. A ftle constructed through CREATE can be made a local ftle
with its original line numbers or made local without line numbers, depending on SAVE command parameters:

· . SA VE,aftle line numbers written to local ftle

· . SAVE,bftle,NOSEQ line numbers not written to local ftle

When ftle aftIe is returned to the edit ftle, line numbers already exist for EDITOR use and this EDIT command
should be used:

· . EDIT,aftle

In contrast, returning bftle to the edit ftle area requires:

· . EDIT,bftle,SEQ

Figure 4-13 shows EDIT command use when another ftle currently exists in the edit ftle work area.

4-22 60495000 A

•• f1 LES
--LOC:~L FIL£S--

WAHBLE,ii
•• EDIT,~ARBLER,SEQ
~ARNING- EDIT FIL~ NOl SAVED
•• SAVE,OkIOLE,NOSEQ
•• EDll,~ARBL£R,S~Q
•• FI LES
--LOCAL fILES--

WARBLER ORIOLE
••

Figure 4-13. Moving a Local File to the Edit File

Notice, a me moved to the edit me still remains as a local me.

linenum=text COMMAND FUNDAMENTALS

A single line in the edit file can be rewritten or added by identifying a line number. Format of this command
is simply:

.. linenumber=new line text

This command is an exception to the statement that EDITOR always prompts another response. At the con­
clusion of command execution, EDITOR returns the carriage to the far left, but does not output two dots.
You must enter the next command without prompting.

On entering the new line of text, the maximum line length, tab character, and tab stops defined by the FOR­
MAT statement can be used. In figure 4-14, FORMAT,FORTRAN is assumed .

•• 356=;PRINT 14, X
389= 14;FORMAT <*VALUE OF X IS * 14)
267=C PRI NT 14 IS tOR- bEBUGGI NG ONLy
LlST,265. LAST

217=Cv PRINT 14 IS FOR DEBUGGING ONLY
356= PRINT 14"X
389= 14 FORMAT <* VALUE OF X IS * 14)

Figure 4-14. Using linenum=text Command

Notice, lines 389, 267, and the LIST command were entered with the carriage at the far left, since no
prompting dots appear.

60495000 A 4-23

Lines can be entered in any order. EDITOR makes no distinction between adding a new line and rewriting
an old line. If a single line is to be added but a free line number does not exist, renumber the lines in the
existing me with the RESEQ command discussed in section 6.

ADD COMMAND FUNDAMENTALS

Let's go back to the program SQROOT used to summarize me creation procedures earlier in this section. Good
programming techniques insist that any program be documented. We are going to document the program by
adding comments after the PROGRAM statement.

The existing me SQROOT has been saved with line numbers. Transfer to the edit me and display is accom­
plished by

•• ED I T ~ SQ,i=tOO T
•• LIST~ALL

••

50=
52=
54=
56=
58=4
60=
62=

PROGRAM SQROOT (OUTPUT)
X=332··1
'i = S.QR T (X)
PRINT 4~ x~ '(
FuR~AT (* THE SQUARE HOOT OF * F5.1 * IS * F5.2)
STOP
ENl.l

We want to add several lines between existing lines 50 and 52. Since any new line added to the me must
have a unique. line number and line numbers must be in ascending order, the me must be renumbered with
RESEQ so that more than one line can be added after line 52. As shown in figure 4-15, the RESEQ
command can specify the starting value and increment for new line numbers. Then, since the starting line
number is known, the UST command can call for display of the first line through the last line in the me .

• • H£SF~Q~ 1,15
.. LIS T ~ 1 ~ LA 5·1

• •

1=
16=
31=
46=
61=4
76=
91=

PHOGRA~ SQR00T (UUTPUT)
X=332.7
'(= SG,R TC X)
PRLvT 4~ X~ Y
FORMAT (* TnE SQUARE ROOT 0r * FS.l * IS * fS.2)
STuP
END

Figure 4-15. Resequencing the Edit File

No EDITOR command exists to transfer a local me to the edit me and to renumber with specific line num­
bers, so resequencing is often necessary when substantial inserts are to be made.

4-24 60495000 A

When ADD is called, EDITOR presumes several lines are to be inserted as a group and displays the next avail­
able line number. (Use the linenum=text command if only a single line is to be inserted.) ADD use is similar
to CREATE, only ADD presumes lines already exist in the edit file.

The current FORMAT command controls line length and tabs.

An equals sign must be entered to exit from ADD.

If lines were to be added at the end of the current file, command format would be the command name.
EDITOR prompts input by displaying a line number 10 greater than the last line in the file .

•• ADD

If the insertion is to be made in the midst of the current file, as for example comments after the PROGRAM
statement, the number of the first new line must be stated. The increment value for the succeeding line is
optional, but normally will be used, since ADD does not rewrite or skip over existing lines. The increment
value need not be the same as currently used in the file .

•• ADD,2, I

Prompting continues after each line entry, until one of the following occurs:

= is entered as first and only character in line.

The next line number equals or exceeds the value of a line currently in the file.

ADD has two other options discussed in section 6:

The SUP parameter inhibits prompting by line number display.

The OVERWRITE parameter allows existing lines to be rewritten.

The following example (figure 4-16) shows insertion of new lines into an existing file .

•• A00,2,1
2:CTHIS PROGRAM CALC~LATES A SQUARE ROOT
3:C IT USES A F'ORtRAN FUNCTION SQRT
4:C SQRt REQUIRES REAL, NOT 'INTEGER, ARGUM[NTS
5:C NOTICE THAT TM[PRINT STATEMENI PRESERVES INPUT VALU[S
6==-

Figure 4-16. Adding lines to the Edit File

60495000 A 4-25

DELETE COMMAND FUNDAMENTALS

Any line existing in the current edit file can be eliminated with a DELETE command. Minimum parameters
for the file specify the line or range of lines to be deleted.

. . DELETE,range

The required range parameter, as well as most of the optional parameters, are the same as for the LIST and
SAVE commands. Options permit:

Delete of a single line of the edit file.

Delete of a range of lines.

Delete of all lines containing a particular character string.

Delete of a line or all lines in a range containing a particular character string.

Delete of a line or all lines in a range containing a particular character string in a particular position.

In figure 4-16, we added comments to program SQROOT. Let's take them out in figure 4-17. The easy
way, when specific line numbers are known, is to identifY the range of lines to be deleted:

•• lJl:.:Li-:"fE. 2,,5

When you do not know the exact line number, but do know the specific arrangement of characters to be
deleted, use DELETE with a search criteria .

•• u~LETE.ALL./C/.(l)
4 Ci-iA'\lt;t.S

••

Figure 4-17. Deleting lines by Search Criteria

In figure 4-17, any line in the edit flle (lines to be searched specified by ALL) with the character C in
column 1 are deleted.

SUMMARY OF FILE UPDATING COMMANDS

If necessary, transfer local file to edit flle; specify sequencing if the flle was saved without line numbers.

4-26 60495000 A

Display the file to determine specific changes to be made:

•• LISt,30.o .LAST
300= THIS LINE IS CORRECT
310: MIStEAKS START
320= MISTAKES START
330= ERROR ARE I~ HEER
340= ANOTKER GOOOF
35,0: THIS LI NNE IS BAD TWO
36~: I CANT TYPE SO GOOD
370: FINALLY OK

Begin file correction, choosing the command that best suits the corrections. Use the linenumber=text command
to overwrite an existing line or to insert an omitted line .

•• 330: ERROR IS IN HERE

Use DELETE to remove any extraneous lines, specifying a particular line number or a search criteria .

• ,DELETE,,310

Use ADD to correct several lines in a row. The OVERWRITE parameter must be specified if existing lines are
to be overwritten. ADD line incrementing continues until = is entered alone .

•• ADD,340,lOjOVERWRITE

••

340: ANOTHER GOOF FIXED
350: THIS LINE IS NOW OK
360= I CAN TYPE BETTER
3 70':~

Before adding lines, resequence if necessary .

.. RESEQ

The updated file now reads:

.. LIST,ALL,SUP
THIS LINE IS CORRECT
MISTAKES START
ERROR IS IN HERE
ANOTHER GOOF FIXED
nns ~I NE IS NOW OK
I CAN ,tYPE BETTER
F."I NALLY OK
••

60495000 A 4-27

PROGRAM INPUT AND OUTPUT FILES 5

The FORTRAN Extended programs illustrated in section 4 have limited usefulness since each is coded to do one
very specific calculation. Figure 4-11, for instance, adds 4455 and 7890, but cannot be used to add 2 and 4
without first changing the program and recompiling it. This limitation is why programs are usually written in
such a way that data for calculations is independent of the program that does the calculations.

With INTERCOM, you have three options for entering data into a program:

1. Compile data into the program as in figure 4-11.

2. Write data onto a file and have the program read the file during execution.

3. Enter data from keyboard as program executes.

Option 1, as stated above, is valid for calculation with one particular set of data only. Since part of the reason
for learning FORTRAN Extended is to be able to handle many sets of data, this option isn't practical, in the
long run.

Option 2, reading data from a file, requires that you first create the data and make it known to your program
as a local file. Through the READ and PROGRAM statements, the file is identified in the program. Any file
name, except INPUT or any of the other special names, can be used as the name of the data file. During exe­
cution, the data is read according to the FORMAT statement in the program, and manipulated according to
other statements. Reading data from a file stored in the system is fast and efficient. Moreover, since the data
exists on the file in storage, the same data file can be rewound and used more than once or stored for future
use. Independently of the program, the file can be displayed on a printing device to make a written record of
the data.

Option 3, reading data input from the keyboard, involves use of a connected local file. As with reading from
a local file, program statements must establish the FORMAT of data expected and identify a file name in the
PROGRAM and READ statements. The file name, in the default case of RUN execution, must be INPUT.
During execution, the program halts each time it encounters a READ statement and waits for keyboard input.
Reading data from the keyboard requires more overall processing time. The accuracy of keyboard entries is
significant, since no error correction is possible once the RETURN key has been pressed to terminate the entry.
No permanent record can be made of the data entered unless the program itself preserves the data in an output
file. A second execution would require the data to be re-entered; the connected file read during execution is
empty at the end of execution.

Options 2 and 3, executing with local file and connected file data, are described in the remainder of this
section. EDITOR use is illustrated, but many of the same principles apply to advanced INTERCOM use when
programs are executed without EDITOR.

60495000 A 5-1

REVIEW OF FORTRAN EXTENDED FILE LINKAGE

The statements that link a fIle to a FORTRAN Extended program are summarized here. They apply to any
input or output fIle irrespective of INTERCOM status as a local or connected fIle.

The input and output statements READ and WRITE reference fIles by unit number according to standard
language syntax.

READ (5, 42) X, Y, Z

1 t ~bles to be read from external file
FORMAT statement label

unit number

Since the operating system under which FORTRAN Extended runs deals with fIle names and not with unit
numbers, the unit number must be equated with a me name. When the program containing the above READ
statement is compiled, the letters TAPE are prefIXed to the unit number in the READ statement to form a
me name of 1-6 letters or digits beginning with a letter.

READ (2,42) X Gives fIle name TAPE2

WRITE (l8,42) X Gives fIle name TAPE18

In addition to the standard READ and WRITE statements above, FORTRAN Extended allows forms of the
input and output statements which imply particular fIle names as follows (assume 42 is label of the FORMAT
statement):

READ 42, X Implies read from fIle named INPUT

PRINT 42, Z Implies write to fIle named OUTPUT

All fIles used in a Control Data FORTRAN Extended program and its subroutines and functions must be
identified on a PROGRAM statement. PROGRAM must be the first statement in the program. If it is omitted,
the compiler presumes fIle names INPUT and OUTPUT only.

The program statement has the format:

PROGRAM progname(fIlel,fIle2, ...)

progname

me

Required program name of 1-7 letters or digits beginning with a letter

Name of external fIle, 1-6 letters or digits beginning with a letter. File names may be
equivalenced with the format:

fIle=flle

All files a program reads or writes must be named. Notice, the requirements for elements of a name - can
contain letters or digits, but must start with a letter - are the same as for INTERCOM fIle names. They differ
only in length: fIles used in a FORTRAN Extended program are limited to 6 characters, while INTERCOM fIle
names may be 7 characters.

5-2 60495000 A

Equivalencing files means that any input or output statement referring to one file is to be executed as if it
referenced another file name. When names are equivalenced, they must be declared on the PROGRAM statement
in this order: assume INPUT is the name of the external file (INTERCOM local or connected file) and a READ
statement references unit 5:

PROGRAM EQ (INPUT, TAPE5=INPUT, ...)

1 ;rogram reference
external file name

The interpretation of TAPE5=INPUT is that any program reference to TAPES is to be executed as if the file
name were INPUT. Notice the external file must be declared before it is equivalenced to theme referenced
internally in the program.

EXECUTION WITH LOCAL DATA FILES

Thus far in this manual, file creation has implied entry of a FORTRAN Extended program. It is not true,
however, that the file entered through EDITOR must be a program. Any type of character data may be input.
One of the more obvious uses of EDITOR, in addition to creating a program, is to create a file of data to be
read by that program.

Any fue whose name appears in the category LOCAL when the FILES command is executed can be used by
a program executed through the RUN command. Remember, FORTRAN Extended file names are limited to
6 characters. If you have a file with a 7-character name, change it to 6 characters by either of the methods
shown below in figure 5-1:

60495000 A

.. FILES·
--LOCAL FILES--

LNGNAME TOOLONG
•• BATCH~LNGNAME,RENAME,SHORTN
•• FILES
--LOCAL FILES--

SHORTN TOOLO~G

• .REWIND, TOOLONG
•• CQPY,TOULO~G,~TLONG
• • HEW I ND, ",'fLONG
•• RETURN~TOOLONG
• • FI LES
--LOCAL FILES--

SHORTN NTLONG
• •

Figure 5-1. Changing a Local File Name

5-3

Although any local me can be connected, this discussion deals only with unconnected meso Names INPUT and
OUTPUT are deliberately avoided since these imply connected mes with execution through RUN.

Additional uses and parameters of these commands are illustrated below:

FORMAT RUN DELETE

REWIND, CREATE, LIST, and SAVE commands are used in support.

The first step in executing with a me of data is to create that me.

FORMAT CONTROL

The FORMAT command introduced in the previous section dealt only with the line length and tabs appropriate
to a compiler language program. FORMAT is n9t limited to a set of values, however. The user can specify any
line length, tab character, or tab stop.

FORMAT has only these restrictions:

Maximum line length is 510 characters.

Tab character should not be % (to prevent the inadvertent entry of %A or 0/08).

Maximum number of tab stops is set by individual installation, but is usually 10 stops.

FORMAT must be entered before CREATE is called, since interpretation of input characters during CREATE
depends on the FORMAT in effect. Any user setting of FORMAT remains valid until another FORMAT is
entered or the BYE command is used to exit from EDITOR.

To determine the current format specification, enter:

.. FORMAT,SHOW

System response, assuming FORTRAN format, would be:

·CKIII "12 TAB CRAB- J TAt CpL-" "7
"~".IND

You have the option to change any or all of these settings.

The command is:

.. FORMAT,CH=yyy,TAB=x,nn,nn, ... nn

yyy Maximum number of characters in each line

5-4 60495000 A

x Character to act as tab

nn Tab stop positions

For example, to establish a file to be read according to program statement:

FORMAT (F5.1, 8X, F5.1)

Enter a maximum line length of 18 characters, accept the default semicolon as a tab character by not
replacing it, and set tab stop at 14 as shown in figure 5-2 .

•• FORMAT,CH=18,14
•• FOH£-1AT, SHOIJ;
CH= 18 TAB CHAR=; TAB COL= 14
••

Figure 5-2. Setting FORMAT for Data File

One other point to consider when entering data, rather than a program, is what happens to the edit file line
numbers when the data file is saved as a local file. SAVE preserves the line numbers in a position beyond
the line length specified by the FORMAT command unless you specify otherwise. When a NOSEQ parameter
is added to the SA VE command, line numbers are not made part of the local file .

. . SA VE,name,NOSEQ

Use the NOSEQ parameter when making your EDITOR created data file a local file, so that the line numbers
cannot be read inadvertently as part of the data.

Figure 5-3 shows creation of a file with four sets of data to be read in a format (F4.1,9X,4.1) .

60495000 A

•• FORMAT,CH=lR,14
•• CHEAT£,SUP
&\l'l'ER LBlES

230; 230
1233;3321

34; 68
333;,5555

Figure 5-3. Data File Creation for PROGRAM LCL

5-5

EXECUTION THROUGH RUN COMMAND

Now that a me of data exists and has been saved asa local me with the name TAPES, we must create the
FORTRAN Extended program that reads the data. It is shown in figure 5-4. Enter the program and make
any input corrections as explained in section 4.

Do not forget to change the FORMAT back to a 72-character line and tab at position 7 that is appropriate
for FORTRAN before starting to enter the program .

•• FORMAT,FORTRAN
.. eRE-AtE, L2

. 1: PR.o(lRAM LCL (TAPE5. TAPE6)
3= REWIND 5
5 = I 00 REA D (5. '3 0) ON E. TWO
7= IF (EOF(5).NE.0) GO TO 200
9= HYPOT=S,QRT" (ONE**2' + TWO**2)

11= WRITE (6,31) ONE,TWO.HYPOT
13= GO TO JOO
15: 20<lt STOP
17= 30 FORMAT (F4.1.9X.F4.1,>
19= 31 FORMA T . ('" SIDES ARE * "5.1 *iA ND '* ,f5. J

* HYPOTENUSE IS * F8.1)
21= END

·23== .
• • RUi.J,FTN

••

.172 CP SECONDS COMPILATION TIME
STOP

.036 CP SECONDS EXECUTION TIME

Figure 5-4. Program LCL to Read Local File

Given that no compilation errors or execution errors were reported, and the word STOP appears as part of the
output displayed at the terminal, it appears that execution was successful. But where is the output the program
wrote?

Executing the FILES command before the RUN command would have shown only one local ftle, TAPES, which
contains the data to be read in the program. Executing FILES after the RUN command shows 5 ftles:

•• FILES
--LOCAL FILES--

TAPE6 SOUTPUT
LGO

SINPlIT TAPES

INPUT and OUTPUT are the connected ftles always produced by RUN execution even if, as in this example,
they are not used by the program. File named LGO contains the compiled program. T APE6 should contain
the information output by the program.

5-6 60495000 A

How can we read T APE6? One of the easiest ways is to move T APE6 to the edit me and list it. Remember
that EDITOR does not let you destroy the edit me inadvertenly, so if you do not save the current edit me
before moving TAPE6, you receive a warning message and must re-enter the EDIT command.

Figure 5-5 shows how the local me TAPE6 can be listed. The SEQ parameter on the EDIT command causes
numbering of lines in T APE6 for edit me needs .

•• SAVE .. LCL
•• EDI't,TAPE6,SEQ
•• LIST,ALL,SUP

SIDES ARE 23·0 AND 23.0 HYPOTENUSE· IS 32.5
SIDES ARE 123·3 AND 332.1 HYPOTENUSE IS 354·3
SIDES ARE 3·4 AND 6.8 HYPOTENUSE IS 7.6
SIDES ARE 33.3 AND 555.5 HYPOTENUSE IS 556.5

••

Figure 5-5. listing a Local Output File

The SUP parameter of LIST suppresses display of the EDITOR line numbers assigned with EDIT. Without the
SUP parameter, the first line would appear:

• • LIST" roo.
100= SIDES ARE 23.0 AND 23.0 HYPOTENUSE IS

The fact that an edit file is designed for updating does not mean that its features cannot be used for a simple
listing of the file contents.

SECOND EXECUTION

When only the files INPUT and OUTPUT are used for a program executed through the RUN command, all
positioning of files is performed by the system. EDITOR rewinds the files OUTPUT and LGO each time
RUN is called. Successive executions of a program require no special actions.

It is important to realize, however, when OUTPUT has been disconnected from within a user program, any
information written to it may be destroyed by the next execution writing on top of the existing data if
OUTPUT is rewound.

When reading or writing from local files, the user is responsible for file positioning. In example 5-4, for in­
stance, local file TAPES is read and file TAPE6 is written. Remember that RUN execution creates a file LGO
that contains the compiled program. You can execute LGO by entering its name as a command:

•• LGO

LGO is not one of the commands INTERCOM recognizes. It is, however, a local file containing binary infor­
mation and not a coded source program. Since INTERCOM can find a file, with the name entered as a
command, and that file contains information suitable for the loader, the file LGO is rewound, loaded, and
executed. (If LGO had not been the name of a local file, the NO SUCH FILE NAME diagnostic would display.)
Entering LGO executes the same program statements as were executed previously by the RUN command.

60495000 A 5-7

The compiled program LCL contains a statement that rewinds file TAPES. Without the rewind statement in
the program, two successive executions of LCL would produce an error. At the end of execution through the
RUN command, files TAPES and T APE6 were positioned at the end of the last set of data read or written.
Another execution, without rewind, would cause the program to continue reading from TAPES; if an end-of­
information terminator, rather than data, were encountered, the program would abort.

To execute a program a second time, the data file must be positioned to accommodate that second execution.

If the same set of data is to be used for execution, rewind the file before execution begins.

If another set of data is to be executed, the original input file must be established with more than one
set of data, as illustrated in the next topic.

RepOSitioning a file to its beginning can be accomplished by an INTERCOM command or a FORTRAN Ex­
tended statement. The INTERCOM command is:

. . REWIND,file

More than one file can be named, as in:

REWIND,filel,file2,file3, ...

Within a program rewind can be accomplished by:

REWINDS

The unit number is the same as the unit number used in the READ statement and the PROGRAM statement.

Rewind of output files is optional, depending on the results desired.

Figure 5-6 shows two executions of the same set of data. PROGRAM LCL is assumed to exist as a local flle
saved in figure 5-5. A local flle containing a source program, rather than the current edit flle contents, can
be executed by adding a FILE parameter to the RUN command .

5-8

•• RUN#FT~#FILE=LCL
.086 CP SECONDS C0MPI~ATION ~IME

S·J·OP
.018 CP SECuNDS EXECUTION TIME

•• LGO
STOP

.016 CP SECONDS EXECUTION TI~E ...
Figure 5-6. Execution of Local File

60495000 A

Let's examine TAPE6, as we did in figure 5-5, by transferring it to the edit me and listing. We will fmd two
copies of the program output. Since TAPE6 was not rewound between executions, results from the second
execution appear after the first .

•• EDIT,TAPEIi,SEQ
•• LIST,lOO,LAST

100= SIDES AH£ 23.0 A:JD 23.0 HYPJ1'K"USE: IS 32.5
1 1 0= SIDES ARE. 123·3 M~D 332. 1 HYPJTK\iuSt: IS 354.3
120= SIu~S AHE 3·4 Ai" D 6.8 i-iYPJ TE;;\jU SE IS 7.6
130= SilJES MtE. 33·3 A,\jD 555.5 ~YP'Jl£;\jUSE IS 556.5
140= t.uft
150= S lOr-oS f,HE 83.0 l4'."\J D 83.0 :iYPJTE."USE IS 32·5
160= SIDE~S ARt: 123.3 MJD 332. 1 HYP)TD.lUSE IS 354.1
170= SIDES AHE J./4 AND 6.8 HYPU 'j E,\j U 5 Eo IS 7.6
180= SID~S Arit. 33.3 A:>JD 555.5 rl YP0 TE.:\iU SE IS 556.5

• •

Any data written during program execution always is written at the current me position. In the absence of
any me repositioning statements, current position is after the last data written. At the end of a program, the
output me is closed and terminators written after current data. No repositioning occurs, however, and any
successive write to a me with the same name continues after the terminators. Although not shown above, the
terminators written at me close become the characters *EOR and *EOF in the edit file.

If a file is rewound before the second set of data is written to a file with that name, current position is the
beginning of information. Any existing data, in this instance, is destroyed by new data written over the
first set of data.

Rewind an output file to write over existing data; do not rewind if existing data is to be preserved and new
data is to be written at the end.

EXECUTION WITH TWO SETS OF DATA ON ONE FILE

All local data mes created through EDITOR have special system symbols at the end to mark the end of the
me. These markers are supplied by EDITOR without user action. When such a file is read by an executing
program, the me ending marker can be sensed by an EOF(u) function, as shown in figure 5-4. By using
*EOF, you can write a similar marker into a me un.der construction with CREATE, effectively dividing the
me into two parts.

Figure 5-7 shows a data file being constructed for program TWICE which is shown in figure 5-8. The
FORMAT command is used to change line length and tab stops appropriate for the data file under construction.
After the data me is saved, command must be re-entered to change to a format appropriate for a FORTRAN
program.

60495000 A 5-9

•• FORMAT~CH=12~TAB=j~11
•• FOfl..."lAT" SHO W
CH= 12 TAB CHAH=:6 TAB COL= 11
•• CREATE"SUP
ENTER LINES
11 :b22
33$44
55::666
~.

77::668
11::622
3$ 4

4 :6 5

=
•• SAVE TAPE3~NOSEQ
• •

Figure 5-7. *EOF Use in Data for Program TWICE

•• FO!{MA'i'~ F'ORirU\N
•• CREATE·

100= ______ ~P=R=O~G=R=~=M~T~W=I~C=E~(~T~A~P~E=3~,,~O~U~T~P~U~T~)
11 O= _____ !.!.N.::.=~O
120=2 READ(3~50) I"J
130=50 FORMAT (I2"8X,,I2)
140= IF(EOF(3).NE.0) GO TO 200
150= N=N+I+J

-------'--'-'---:;..~

160= GO TO 2 ------.:::..::....-::...=..--=.
170=200 ?RIN7 52"N

~------~----'----
180=~5~2~ __ ~F~O~R~M_A~T~(_Y~A~T~E~N~D~O~F~F~I~R~S~T~S~E~T~O~F~D_A_T_A __ N_= ___ *~I~I_4~)
190 = ___ l:..:..N=_O;:::.,

200=4 READ (3,,50) I"J
210= IF(~JF(3).NE.0) GO TO 300

------~~~~~~~~--~~~~~

220= N=~+(I*J)
-----=..:..-:..:.-~--=~

230= GO TO 4
---=-=...;:;.....~

240=~3~0=0 __ ~P.~R~I.~N~T-=5=3~"L~N
250=53 FUR~AT (* AT E~D OF SECOND SET OF DATA N= * 120)
260= STOP
270= E.'JD
280= =-

•• RUN" F'fN
.217 CP SECONDS COMPILATION TIME

AT END OF FIRST SET OF DATA N=
AT END OF SECOND SET UF DATA ~=

STOP
.012 CP SECONDS EXECUTION TIME

••

Figure 5-8. Program TWICE to Read 2 Sets of Data

5-10

231
7230

60495000 A

The program expects the file named TAPE3 with two sets of data to be treated individually. The EOF func­
tion statement detects the marker written by "'EOF and transfers control to statement 200 to print the data
total. Any subsequent READ clears the function value and continues reading until it reaches the terminating
marker written as part of SAVE execution.

Within the program, the test for the end of the first set of data must be an EOF function. A test for the char­
acter string "'EOF would never be successful, since these characters exist only in the edit me. Once the me is
made local, or copied and passed to the FORTRAN Extended compiler, the characters become a special system
symbol.

EXECUTION WITH CONNECTED FI LES

A connected me is a local me with special characteristics. Data on the fIle exists only as characters passed
between the terminal and an executing program. No copy of the data remains in the system.

In figure 5-4, a program named LCL reads data from TAPES. How is execution affected by connecting
TAPES before execution?

.. CON(ljF.:CT,,1·A?£5
•• RUN"~~N,,ilL~=LCL

.111 CP SECO~DS COMPIl.ATION TIMEIA

USER ABORT
••

After waiting a reasonable period of time, we are apt to infer that the program is hung in a loop or there is
a problem with RUN, but not so. The program is waiting for keyboard entry of data in the format F4.1.
Entering a RETURN key produces no unusual response since PROGRAM LCL expected another line of data
and is once again waiting for input. If we enter the FILES command to see if the system is active, an unantic­
ipated error message is produced. The diagnostic lines are generated by the FORTRAN Extended execution.

Consequently, when writing a program to be executed with connected input fIles, it is well to prompt response
by including PRINT statements that display, at minimum, the fact that input is expected. Even display of a
single character such as a question mark should alert the terminal user to the current situation.

Now rewrite program LCL as a program named CALC. The example in figure 5-9 performs the same opera­
tions as shown in fJgUre 5-4 with TAPE7 connected.

60495000 A 5-11

•• CREATE.

1 00 = ___ ...:..P..:.:R:.::O~G::..:R:.:..;A::..:M:.....::C:.:..;A=L:..=C:..-..::(:...::O:...::U~T~P-=U~T:..:,~T:..:.A.:..:.P-=E:...:7~)
110= PRINT 20

--~-~~~~~

120=-=2~0 __ ~F~O~R~M~A~T~(~*~E~N~T:...:E~R~~S~I:D~E~I __ *~)
130= ______ R~EA~D~(...:..7~,~3~0~)~O.:..:.N=E
140=~30~~F~O~R~M=A~T~(~F~4~._=2~)
150= ____ ~P~H~I~N~T~2~1
160= 21 FORMAT (0 ENTER SIDE 2 *)
170= READ (7,30) TWO
180= HYPOT=SQRT(ONE**2 + TkO**2)
190= PRINT 22, ONE, TwO, HYPOT
200= 22 FORt-iAT (* HYPOTENUSE Of THI ANGLE TNI TH SI DES *
210= + F6.2 * k~D * F6.2 * IS * F7.2>
220= S·TOP
230= END
240·~

••

Figure 5-9. Program to Prompt Connected File Response

The PRINT statements of lines 110 and 150 are not essential to program execution, but they are helpful in
tracking program progress.

To execute PROGRAM CALC, use the RUN command. Before execution, however, connect TAPE? to inform
INTERCOM that TAPE? is the equivalent of input from the keyboard .

•• CONNECT,TAPE7
••

Execute CALC, which has been created in the edit me work area, with:

After displaying ENTER SIDE 1, the program halts:

CP SECONDS COMPILATION TIME
•• R_~JI'TN

.112
ENTER SIDE 1
ENTER SIDE 2

STOP

2360} user must enter data and press RETURN
1470

5-12

HYPOTENUSE OF TRIANGLE wITH SIDES 23.60 AND
STOP

.011 CP SECONDS EXECUTION TIME

••

14.70 IS

60495000 A

Although ENTER SIDE I is a guide to desired input, the format required is unknown unless you are familiar
with the program itself. A better way to prompt input is to include more specific instructions. Statement 20
could be changed, for instance, to display:

ENTER SIDE I IN F4.2 FORMAT

CONNECT AND DISCONT COMMAND FUNDAMENTALS

Any local file can be connected by the INTERCOM command CONNECT:

CONNECT ,file

More than one file can be connected by naming several files in the command.

The command that disconnects a file is:

DISCONT ,file

Again, more than one file can be named in the command.

These same functions can be performed within a FORTRAN Extended program by calls to library routines
with the file name in left justified Hollerith format.

CALL CONNEC(nLfile)

CALL DISCON(nLfile)

Disconnected files are not returned. Rather, the file continues to exist and any data written to the file is
preserved on mass storage.

EXPERIMENTING WITH CONNECTED FILE INPUT

One of the ways to learn connected me operation is to enter data at different times and study system
response, as in the following examples. The example in figure 5-9 is presumed to be in the edit me; its first
statement is:

PROGRAM CALC(OUTPUT,TAPE7)

WHAT HAPPENS IF TAPE7 HAS NOT BEEN CONNECTED?

•• RUN, FiN
.169 CP SECO~DS COMPILATION TIME

~~~~~ ~! ~~ ~} RETURN entered to continue program 

END-OF-FIL~ ENCOUNTERED, FILENAME - 1·APE7 
ERROr{ ,\jUt-'IBC::R 0065 l)i!:TECTEIJ BY L\JPC= AT ADDRESS 000160 
GALLED FROM CALC AT LINE 0008 

FTN - FATAL ERROR 0065 
.016 CP SECONDS EXECUTIO~ TIME .. 

60495000 A 5-13 



Execution of the RUN command causes files named INPUT and OUTPUT to be connected. Any other file to 
be entered through the keyboard must be connected by the user . 

•• CONNEC1, TApE'( 

WHAT HAPPENS IF ANOTHER COMMAND IS ENTERED WHILE RUN IS EXECUTING? 

Data entered must conform to the FORMAT statement in the program. Any INTERCOM or EDITOR com­
mand causes a format error message to be issued. Data in the correct format can then be entered . 

•• RUN.FTN 
LIST. ALL 

ENTER SIDE ONE 

6789 

L < ERROR. RETYPE RECORD AT THIS FJEL.D 
.053 CP SECONDS COMPIL.ATION TIME 

ENTER SIDE TWO 5678 

CAN INPUT BE ENTERED BEFORE THE PROGRAM PROMPTS INPUT? 

Yes, input can be entered before any program output is displayed. You cannot inhibit display of the prompting 
message by such action, however . 

• • KU,\l, FTN 

33·99 

.167 CP SECONDS CO~PILATION TIME 
£NTER SIDE 1 
ENTER 5 IDE 2 
HYPOTENUSE OF TRIA~GLE WITH SIDES 33.90 AND 56.00 IS 

STUP 
.017 CP SECONDS EXECUTION TIME .. 

65.46 

This example also illustrates the importance of the FORMAT statement. For side 1, the value 33.99 is entered, 
but the F4.2 format reads only 4 characters, including the decimal point typed; the value used in the hypote­
nuse calculation is 33.90. 

CAN SEVERAL VARIABLES BE ENTERED AT ONCE? 

Any data input must conform to the FORMAT statement in the program. Program CALC accepts the value 20, 
bUt ignores any data past the F4.2 specification. It was necessary to enter the second side value, 89, when 
prompted. 

5-14 60495000 A 



•• RUN" FTN 
20. 8~. 2 

.170 CP SECONDS COMPILATION TI~E 
E:-JTER. SIDE 1 
ENTER S I DE. 2 
89.2 

STOP 
HYPJTE~USE OF TRIANGLE ~ITrl SIDES 20.00 AND 89.20 IS 

.01B CP SECONDS EXECUTIuN TIME 
• • 

Data entered from the keyboard for a connected fIle is limited only by the read statement FORMAT. Change 
the FORMAT statement and you can change the data entered. The program CALC could be edited to execute 
this way: 

110= 
120=20 
130= 
140=30 

PitUJT 20 
FJRMAT C~ ~~TER 2 SIDES IN F4.2 FJRMAT §) 

READ (7,30> ONE"T~O 
f'OHMAT C2F4.2> 

Keyboard input, for instance, for data 11.1 and 22.2 would then be: 

11.122.2 

Execution would produce: 

• • I'IUH. F1"H 
.143 CP'SE~O~uS COMPILATI0~ TIME 

ENTER 2 SIDES IN F4.2 FORMAT 11.122.2 
STO? 

HYPUTENUS~ OF TRIA;\lGLE wITrl SIDES 11.10 AND 22.20 IS 
.016 CP SECONDS EXECUTIO~ TIME 

• • 

INTERCOM poses no restrictions on character or numeric data input. 

ENDING CONNECTED FILE INPUT 

The READ statement in figure 5-9 is executed only once. Most often, programs are designed to read many 
sets of data, not just one. Program CALC accepts one set of input data, produces a result, and stops. 

When programs read many sets of data from a connected fIle, how do they know when to stop asking for 
keyboard input? 

When reading is from an unconnected fIle, normally, the EOF function of FORTRAN Extended is included in 
the program to test for end of data. EOF is set to 1 when a special system condition is detected. (See the 
example in figure 5-10.) This same condition can be duplicated from keyboard input by entering %EOF. 
%EOF, then, is the interactive equivalent to a 6/7/8/9 caret. 

60495000 A 5-15 



PROGRAM CALCEND (OUTPUT.TAPE7) 
10 PRINT 20 
20 FORMAT (* iNTER SIDE 1 *) 

READ (1..30) ONE 
IF (EOF( 7),8&.0) GO TO lie 

30 FORMAT (F4.a) 
PRINT 21 

21 FORMAT (* ENTER SIDE 2 .) 
READ (.,.30) TWO 
HYPOT-SQRTCONs·*a + Two**a) 
PRINT a2. ONE. TWO. HYPOT 

a2 FORMAT (* HYPOTENUSE 0,. TRIANGLE WITH SIDES * 
+ ,.6.2 * AND * ,.6 .• a· * IS * "".2) 

GO TO 10 
401 PRINT .111 
III FORMAT C* EO,. ACCEPTED *) 

STOP 
END 

Figure 5-10. Ending Read from Connected File 

Similarly, %EOR may be entered to perform those functions normally performed. by the 7/8/9 card. 
One restriction exists, however; %EOR is recognized only on the INPUT file. 

One more item to consider: if you neglect to program an end to your requests for input through the terminal, 
you can always stop execution through an abort by entering %A. 

SUMMARY OF CONNECTED FILE OPERATIONS 

Connected file programming considerations are summarized in fIgure 5-11. The program determines the jth 
root of a number N through an iterative process of a series of approximations fIrst thought out by a Greek 
mathematician, Hero, around 100 A.D. This approximation technique was used by programmers until the in­
vention of logarithms, and forms of the technique are still required in the numerical solutions of certain 
equations. 

The program illustrates interactive programming. That is, the program depends not only on control variables 
entered from the keyboard; but, also, continuation of the program depends on the control statements entered 
as execution progresses. 

Connected file considerations include: 

Connect me if name is not INPUT or OUTPUT: 

5-16 

CALL CONNEC(5LTAPE5) 

CONNECT,TAPE5 

Within program 

Alternately, INTERCOM command before RUN 

60495000 A 



Print instructions for data to be entered: 

PRINT 11 
11 FORMAT (* ENTER NUMBER TO TAKE ROOT OF IN 14 FORMAT *> 

Establish a test for end-of-data: 

PRl'IT 65 
65 FORMAT (* DC YOU WANT TO FIND ANOTH£R RCOT? ENTER YES OR NO *) 

RE~D (5,165) Q 
165 FOqMAT (A3) 

I Fe Q. NE.3 LYES) STOP 

Preserve input data as part of results output: 

16.0000000001' 
.1492928998 
.342986 Os U~ 

__ .1402138472 
1.3601831904 
i.8688149 341 
i.99547225 13 
1.99999486';8 
?,OOOOOOOOOO 
2,000000000('1 

4,750000001)0 
:'.C)9982322s0 
2.7856139317 
2,?74263910& 
2.1'1457437305 
2.001511531 4 
2.000001711 4 
:?,OOOOOOOOQO 
':',oooooooogo 
2,0000000000 

THE 4TH ROOT o~ 1615 2.0nO.QOOOOQO~OUNO IN In TTERATIONS 

60495000 A 5-17 



P~06RA~ APP~OX IINPUI.TA~E~=IN~uT.OUTPUT) 
C~LL CONNECI~LTAP~~) 
UikENSION )(IIOUI 

500 (;ONTl'llUI:: 

11 

12 

14 

PI'IINT 11 
f0kM.T 1* tNTEk NUM~lK N lu l~Kl ~OOI Of IN I~ FUKMAT *) 
RlAO b .1111 N 
t>~INT 12 
fUwMAT 1* lN1Ek NOOT J IN l~ fU~MAT. J LI ~o ANO Ll N *1 
Rt::Allb.1l21 J 
PI-IIN1 13 
fUI'IMA1 1* EN1~~ M. NU~~tN uf SIGNItCAN1 ~LACl~ IN RESULT. INTEGE~ 

lLTlO*i 
N~ADb.ll.j1 N 

"'~IIH 1 .. 
f0kMA T 1* tNH.K 

1 K~SULTS ONLY *1 
kEAOloj.ll~I L 
P=lO*''{-Ml 

TU UISPL~Y INTlKM~uIATl ~ESULTS O~ 0 fON FINAL 

C CALCULATE Flk~T At>PNOKIMArIUN 
)( (1 l =:,,/J**i! 

C NUW 
1 
C SET 

CUMPUTE. CHlCKl~G EV~kY t! VALU~S 
VV 10 I=l.~O . 
LI~ITS 1U ~lEt> f~UM kUNNINu ALL NlbHT 
X(2*Il=N/()((2*1-lll**IJ-ll 
X (i!* 1 + 1 l = I (J-I l * ()I. (~"I-l l l + )I. 12* II II ..J 

IfIL.I::U.V) bU TO 2 
C "'~lNT I~TEkMt01A1t VALUI:: 

P~INT 4U. X(~*ll.)((2*I+ll 

C MONE CALULA11UN~ 
2 k=AhS(XI2*1+11 - )l.1~*lll 

I~ (".GT .PI (,0 I"u 10 
IJ=I 

10 

50 

51 

52 

XK=XI~"l+ll 
GO TO lc?O 
CUflT i .. UI:: 
IJ='5(J 
XK=l'd 1001 
"'~INl ~O. J.N.XK.IJ 
fOhMAT 1* rHE *.Ic?*lk NOUT Of *.I3.*lS*.f14.10.*tOUND IN *,ll. 

+ * lTt:NATIUI>ls *1 
P~HlT 51 
FUNMAT 1* uill NOT FINISH IN ~O "'ASS~S. 00 YOU WANT TO CONTINUF *1 
PNIN1 s2 
FUMMAT ( ... TYPE 1 TO CVNliNUt. u Tu STOP "'1 
KEAO b.t~lI IC 
)(11= Xlioul 
IFIlC.EIoI.ll GO TU 
l>U TU 20 

C PI-II~T FIN~L I-Il~ULTS 
120 pl-IINr ~O.J.N.~K.IJ 

20 CO'lT INU~ 

65 

'40 
III 
112 
113 
114 
lSI 
165 

P~INT 6':> 
fOMMAT 1* uO YOU ~.Nf TO flNU ANUTHtK I-IOUT. ENTt~ Yl~ UR NO *1 
Ki::AU 15.16':>1 U 
if (Q.NE..~LYt::~I :.10;> 
(;0 TO ~OU 
hlHMAT l~fl ... 1ul 
fUr<t-lAr 1141 
fURMAI 1121 
fOf<MAT 1111 
f0r<MAT I III 
FUt<MAT IIll 
fU~I~AT IA';I 
lt~[) 

Figure 5-11. Hero's Approximation 

5-18 60495000 A 



INTERCOM AND EDITOR COMMANDS 6 

This section presents INTERCOM and EDITOR commands in alphabetical order including the special EDITOR 
entries *EOR and *EOF. It tells when the command is used and gives the complete format. Errors often made 
in using the command, as well as recovery from these errors, are discussed. 

All EDITOR commands are included. 

INTERCOM commands included are: 

EDITOR which makes file creation and editing possible 

STORE, FETCH, and DISCARD for permanent file operations 

FILES for status information 

CONNECT and DISCONT for connecting and disconnecting files 

BATCH to change status or file name 

TEACH to describe INTERCOM operation 

LOGIN and LOGOUT which establish INTERCOM access, are described in section 2. 

Commands corresponding to operating system control statements are included only so they can be used by 
persons unfamiliar with their concepts. Commands include: 

AUDIT to obtain permanent file status 

RETURN to eliminate files 

REWIND to rewind files 

All options for the commands described are included. Examples are given only for parameters frequently used 
by inexperienced INTERCOM users. Diagnostic or error responses are included, since they point out command 
restrictions or common errors. 

60495000 A 6-1 



ADD COMMAND 

ADD is an EDITOR command that allows lines to be added to an existing edit file. Although ADD can be 
used to add a single line in the midst of the file, use of another command, linenum=text, is preferable for 
inserting only one line. 

The system response to ADD establishes an operation similar to CREATE: 

Automatic incrementing of line numbers is in effect, with either the default or user specified incrementing 
value. 

User input for the next line is prompted by display of the line number, unless prompting is suppressed 
by the SUP option. 

An equals sign must be entered as the first and only character in the line to leave the ADD mode. 

WHEN IS ADD USED? 

To insert more than one line as a group within an existing edit file. 

To make additions to the end of an existing edit file. 

No new lines can be added unless unused line numbers exist or existing lines are to be destroyed. If necessary, 
use the RESEQ command to change existing line numbers before calling ADD. 

ADD FORMAT 

In the simplest form: 

ADD abbreviated A 

EDITOR assumes that lines are to be added to the end of the existing file and prompts user input by displaying 
a line number with a value 10 greater than the last existing line. Prompting continues after each user entry 
until an equals sign is entered as the only character in a line. 

ADD,SUP,OVERWRITE,start,increment 

Optional parameters: 

SUP 

OVERWRITE 

6-2 

abbreviated S 

Suppresses prompting with line number display. The system response is ENTER 
LINES. Individual lines are to be entered in succession. 

abbreviated 0 

EXisting line numbers are overwritten if necessary. Without this parameter, an 
insert into the file is not accepted if an existing line number is encountered. 

60495000 A 



start Point at which line numbers should begin. Default is 10 greater than the number 
of the last line in the existing file. 

increment Number added to starting line to determine next and succeeding line numbers. 
Default is 10. This parameter cannot be used unless start is also specified. 

The values for the start and incrementing of line numbers need not be the same as those used in the remainder 
of the file: 

··CREATE 
lOO=TrlIS LINE ~AS PART OF uRIGINAL FILE 
110=Sl~CE CR~ATE DID ~JT SPECIFY LINE START OR INCREMENT 
120=DEFAULT LINE NUM3EHS STARl AT 100 AND 
130=I~CHEKENT BY 10 
140==-. 

.. ADD,231,1 
231=LINES ADDED Bt THE ADD COM~A~D 
232=NEED ~JT CO~TINU~ THE INCREMENT OF THE ORIGI~AL FILE 
233=TrlE START NU~BER FOR AuD,HO~EV~R, MUST B~ GREATER 
234=THA~ LAST ~UMB~R OF OHIGNIAL FILE 
2~5=TO EXI~ FROM ADD, ~NTER A~ EQUALS SIGN 
236=JUST AS GB~ATE IS ENDED 

•• 
237==.. 

ADD does not skip over any existing line, nor does it allow any existing line to be rewritten, unless the OVER­
WRITE parameter is included in the ADD command. Either a skip or rewrite attempt terminates ADD 

•• CREATE,550 
5!:)O=A S1·AHT LI:-JE NUYlBER viAS SPECIFIED 
56a=SINC~ 7~F INCREMENT ~AS NOT SPECIFIED 
570=LINE NUMBERS INCREM~NT BY 10 
580==-

.. ADD,551 
551= I-M TR"YIi-.JG TO ADD LINES BETwEE~'J 550 AND 560 

ADD ~ONT REPLACE On ~YPASS LINES. 
• • 

At first glance, you may assume that line 551 is not in the file; not so. The diagnostic tells you the 
next line to be entered - 561 - is not possible since an existing line occurs between 551 and 561. Default 
incrementing for both the existing file and the ADD insert creates a problem. LIST shows 551 has 
been made part of the file . 

•.• LI S1', 550 .. 560 
550=A START LINE NUMBER wAS SPECIFIED 
551= I-M TRYING TO ADD LINES BETWEEN 550 A~D 560 
560=SINCE THE INCREMENT ~AS NOT SPECIFIED 

60495000 A 6-3 



The proper way to add lines to the preceding file is to specify a start and increment value and exit from 
ADD with an equals sign: 

•• 

On the other hand, you can take advantage of the automatic termination of ADD when you try to bypass 
an existing line as follows: 

•• ADD,,561,,2 
561= THESE ARE 5 NEW LINES 
563= ______ ~A~t~)U~-~~E~D~B~E~1~-~~,E~·.~H;~N~5~6~O~A~.N~D~~5~7~O~ 
565= I ~ON-T HAVE TO EXIT ~ITH = 
567=------~S~I~N~'~~'~E~T~P~:~~~L-A~S-·i~·~L-I~N~E~I~~~~A~~~T=-

569=------~17.~~T~h~.~~~L~A~S~1~·~L~I~~~iE~·~A~D~U~~~~_~TL~L~ACCEPT 
ADD WONT REPLACE OR BYPASS LINES • 
• • 

AUDIT COMMAND 

IN .THIS RANGE 

AUDIT is a operating system command that gives statistics about a user's mes made permanent by the STORE 
command or the operating system CATALOG command. . 

WHEN IS AUDIT USED? 

To fmd the name needed to access a permanent me. 

To obtain status information such as expiration date on which your file may be destroyed or copied to 
an archive tape. 

AUDLT FORMAT 

Parameters can appear in any order. AUDIT has no abbreviation. 

AUDIT ,A1=P,LF=lfn,lD=owner identifier 

P 

lfn 

owner identifier 

Required letter. 

Name of me to receive AUDIT output. 1-7 letters or digits beginning with a 
letter. Normally, the lfn parameter is the name of a file the user has connected 
by a CONNECT command, as shown below. If the LF parameter is omitted, 
statistiCs are written to the me OUTPUT. 

Name used on STORE commands to make me permanent. 1-9 letters or digits. 

60495000 A 



The 10 parameter is the same as that used on a STORE or FETCH command. 

STORE,TEST,MINE FETCH,TEST,MINE 
I I 

I I 
AUDIT ,LF=lfn,ID=MINE,AI=P 

SYSTEM RESPONSE TO AUDIT 

AUDIT execution writes status information to the file named with the LF parameter. 

The following sample was produced on a Teletype that has a maximum of 72 characters on a line. AUDIT 
output is formatted for line printer output with 135 print positions. Consequently, terminal output requires 
2 lines of text for every single line of printer output. 

AUOIT OF 6000 PERMANENT FILES PARTIAL ID 
PAGE NO. 10.48.38 10/09/75 

SETNAME-PFQSET: 

OWNER 
VSN 

HAWK 
00844L 

HAWK 
00844t{ 

PRUS 
PERMANENT 
CREATIO~ 

NEWTEXT 
1 10/09/75 
MASTER 

1 10/09/75 

AUDIT FINISHED 
EXIT 

FILE NAME 
EXPIRATION 

10/14/75 

10/14/75 

LAST ATT 

10/09/75 

10/09/75 

TIME 
1 

CYCLE ACCOUNT 
LAST ALT 

999 
10/09/75 

999 
10109/75 

Read every other line of terminal output, giving a logical table with 2 entries for files NEWTEXT and MASTER: 

OWNER PERMANENT FILE NAME CYCLE ACCOUNT UNIT PRUS CREATION 

HAWK NEWTEXT 999 844 10/09/75 

HAWK MASTER 999 844 10/09/75 

The time and date of AUDIT execution appears in the output heading. Table entries show: 

OWNER is the identifier specified by the ID parameter of the AUDIT command. Every file referenced 
on a STORE command with this identifier appears. 

PERMANENT FILE NAME is the name of a file referenced on a STORE command. 

CYCLE is a system assigned number. Two permanent files with the same name are distinguished by 
cycle numbers. (These cannot be created through STORE, since cycle 999 is always created.) -

60495000 A 6-5 



ACCOUNT,UNIT, and PRUS refer to the hardware on which the me exists and are not significant at 
this time. 

CREATION is the month, day, and year the me was made permanent. 

EXPIRATION date shows the end of the me retention period. 

LAST ATT is the date the me was last called for use. 

LAST ALT is the date the me was last modified and may be the same as the creation date for mes 
made permanent by STORE. 

When AUDIT is complete, this line appears: 

EXIT 

OUTPUT FILE NAME 

AUDIT output can be written to any me named with LF parameter. INTERCOM is used most effectively 
when an AUDIT command is preceded by a CONNECT command. Then, as AUDIT generates output, it is 
displayed directly at the terminal. Typical use is: 

CONNECT ,RESULTS 

AUDIT ,LF=RESULTS,AI=P ,ID=ME 

The me named RESULTS is displayed. 

Omitting an LF parameter produces the same effect as stating LF=OUTPUT. 

If the output me is not connected, AUDIT results are still written to the file named. In this instance, the 
only indication of AUDIT completion is the word EXIT. 

COMMAND- AUDITIID=HAWKIAI=P,LF=PFIL 
EXIT 

COMMAND- FILES 
--LOCAL FILES--

PFIL 

To examine PFIL, you could list the me under EDITOR control or rewind and copy it to another 
connected file.t 

COMMAND- CONNECT,LOOK 
COMMAl.'1D- RE:v!INul ?FIL 
COMt"lAN D- COpy I PF I LI LOOK 

tSince AUDIT results are formatted for a printer, the output can be referenced in a COpy utility command. 
(When a file has not been formatted as a print me, COPYSBF should be used in place of COPY.) 

6-6 60495000 A 



BATCH COMMAND 

BATCH is an INTERCOM command that sends a file from one terminal to another or changes a file associated 
with the terminal from one category to another. These categories are LOCAL, REMOTE INPUT, and REMOTE 
OUTPUT as shown by execution of the FILES command. The BATCH command also can change a file 
name. 

WHEN IS BATCH USED? 

Beginning INTERCOM users find BATCH necessary for these situations: 

To send a file from a terminal with no printing display to another terminal that has a printing display. 
A file created at a CRT terminal, for example, can be sent to a 200 User Terminal for output. 

To send a file from a terminal with low-speed printing capability to one with high-speed printing capa­
bility. A long file created at a teletypewriter can be sent to a high-speed batch terminal or to the cen­
tral site for printing. 

To change a REMOTE OUTPUT file received from another terminal to a LOCAL file for a printing 
display. 

To change the name of the INPUT file so that it can be released from the terminal. 

To change the name of any local file to some other name. 

Experienced programmers familiar with the operating system and job deck structure use BATCH to 
submit a full job for execution at the central site. The TEACH utility and the INTERCOM reference manual 
provide instruction for remote batch operations. 

BATCH FORMAT 

BATCH is an interactive command: when called without parameters, it prompts specific responses until the 
user enters END to terminate BATCH use. 

To initiate BATCH, enter this word and wait for system response. The word BATCH cannot be abbreviated. 

BATCH 

The system response is: 

TYPE FILE NAME-

Your response should be the name of a file. (Remember to press the RETURN key.) 

The next system response is: 

TYPE DISPOSITlON-

Disposition should be one of the words LOCAL, RENAME, PUNCH, PUNCHB, or PRINT,xx depending on the 
reason you are calling BATCH. A third message TYPE FILE ID is displayed for a PRINT, PUNCH, or PUNCHB 
disposition. 

60495000 B 6-7 

I 

I 

I 



I 

I 

After one file has been changed in disposition, BATCH prepares to deal with another file and again displays: 

TYPE FILE NAME -

At this point, enter END and a RETURN key to terminate BATCH, or continue with the name of another 
me to be processed with the same or different disposition. 

As an alternate to BATCH operation with system prompting, you can enter all parameters at once, as in: 

BATCH,file,LOCAL 

PRINT DISPOSITION OF BATCH 

The PRINT disposition places a me into the remote output queue and prints a hard copy of the me at a 
terminal that is logged in. Use it when your terminal has a CRT screen but you also have access to a 200 
User Terminal. 

INTERCOM prompts you as follows after you enter BATCH,filename. 

TYPE DISPOSITION -

Type the following: 

PRINT,x 

x The 2-character terminal or user identifier of the terminal to receive 
the file, the word HERE to indicate the terminal identifier, or the word 
MINE to indicate the user identifier. The default is the central site. 

You determine the terminal or user identifier of the receiving terminal by checking the messages that appear 
after logging in at the receiving terminal or by entering the ASSETS command at the receiving terminal. Both 
methods are shown as follows: 

6-8 

08/13/73 LOGGED I~ AT 11.03.32. 
Y.'ITH USER-ID CH -----­
EQUIP/POrn 25/07 

COMMAND- ASSETS 

Use this identifier in command: 
BATCH,MYFlLE,PRINT ,CR 

~r :::::::=-------.L 
ASSETS OF CR AT 11.53. 15. Use this identifier in command: 
EQUI ?/P0RT 25/07 BATCH,MYFILE,PRINT,CR 
FILE QUOTA 20 
FILES IN USE 1 
MAX FL 077700 
TIME LIMIT 0500 
CP TIME 91.595 
SYS·TIME 243.090 

60495000 B 



NOTE 

The receiving terminal has an identifier that is different from 
the sending terminal. 

INTERCOM prompts you as follows after you enter PRJNT,x. 

TYPE FILE lD 

Enter a 1- to 4-character alphanumeric identifier of the batched file. The operating system creates a banner 
page with the following identifier printed on it. 

lidentsn 

ident 
sn 

Indica tes this file originated from INTERCOM 
1- to 4-character alphanumeric file identifier, left-justified with zero fill 
System-generated sequence number 

At the receiving terminal, the file appears under the category REMOTE OUTPUT when you issue the FILES 
command. The receiver must use the BATCH command to change the file from the REMOTE OUTPUT to 
the LOCAL category, as explained below, and cause the file to be displayed as would any other local file. If 
the file was sent to the central site, printing commences automatically. 

When using the BATCH command to send a file to a terminal that is not logged in, you should: 

Use the disposition PRINT,MINE in the BATCH command. 

Execute the LOGOUT command at the sending terminal. 

Go to the receiving terminal and LOGIN with the same user name and password previously used at the 
sending terminal. You will be assigned the same identifier for USER-ID. 

At completion of LOGIN, issue the FILES command to display the file name in the format Iidentsn, 
listed as a REMOTE OUTPUT file. 

I 

Use the BATCH command with a LOCAL disposition to make the file available for the EDIT and LIST , 
commands or to rewind and copy it (using the COPYSBF command) to a connected file. 

While you are moving from one terminal to another, the file remains on mass storage at the central site with 
the USER-ID of the user who named it in a BATCH command. You can go to any other terminal and make 
the file available by logging in with parameters used originally. 

A REMOTE OUTPUT file is· not a permanent file. 

A local file referenced in a BATCH command giving PRINT disposition no longer exists as a local file unless 
that file was an attached permanent file. 

60495000 B 6-9 

I 



LOCAL OPTION OF BATCH 

The LOCAL disposition of BATCH is used to change a REMOTE OUTPUT file to a LOCAL file. Files with 
REMOTE OUTPUT status are not under immediate user control; they cannot be referenced in EDIT, RETURN, 
STORE, or most other commands. Only files with LOCAL status are available for such uses. 

REMOTE OUTPUT files usually originate at a terminal that does not have a printed copy capability or from 
a terminal with a card reader attached. They can also originate from your own terminal as a result of a remote 
batch job execution. 

Disposition to change a REMOTE OUTPUT file is simply: 

LOCAL 

RENAME OPTION OF BATCH 

The RENAME disposition changes the name of an existing local file to some other name. The new name 
cannot duplicate the name of any existing local file, and must consist of 1-7 letters or digits beginning with 
a letter. 

This disposition is simply: 

RENAME 

System interactive prompting continues with: 

TYPE NEW FILE NAME -

If you receive a FILE NOT A V AILABLE diagnostic while trying to use RENAME, perhaps you have misspelled 
the old file name or are attempting to rename a file that is not in the category LOCAL. 

RENAME changes the local file name of an attached permanent file. It does not, however, affect the permanent 
file name by which the file is known to the system. 

EXAMPLES OF BATCH COMMANDS 

The sequence in the following example shows several local and remote output meso You can monitor how the 
BATCH command changes their categories by using the FILES command. 

As indicated by the results of the first FILES command, two LOCAL and one REMOTE OUTPUT files exist 
at your terminal. Subsequently, the BATCH command is used to print one of those LOCAL files, HUH, at 
your own terminal. Using this method, the file is sent from one category at your terminal to another. Note 
that the next FILES command no longer shows a local file named HUH but does show an additional 
REMOTE OUTPUT file INOW064. File INOW064 is the LOCAL file HUH renamed by the BATCH command. 
(The name NOW was entered in response to the BATCH command TYPE FILE ID request. The prefix I is 
added to identify' the job as an INTERCOM job; 064 is suffixed with 0 as filler and 64 as a unique identification.) 

6-10 60495000 A 



The third series of commands demonstrates three features. First, the BATCH command is used to reverse the 
procedure just demonstrated; that is, a REMOTE OUTPUT file is made LOCAL. Notice that after the last 
FILES command, file IMINE63 no longer exists as a REMOTE OUTPUT file but rather as a LOCAL file. 

Also demonstrated is the feature of the BATCH command which allows multiple files to be processed by one 
command. Note that when the BATCH command verb is entered without parameters, INTERCOM automatically 
repeats the interrogation cycle until END is entered. 

The last BATCH entry sends the LOCAL file PRINTIT to your terminal as REMOTE OUTPUT file IDIOT7E. 
This procedure is no different than that demonstrated in the first example. However, notice that PRINTIT 
remains as a LOCAL file as well as a REMOTE OUTPUT file. This occurs because PRINTIT is an attached 
permanent file. 

COMMAND- FILES 
--LOCAL FILES--

HUH ·PRINTIT 
--REMOTE OUTPUT FILES-­
IMINE63 

COMMAND- BATCH. HUH 
TYPE DISPOSITION-eRINT.C~ 
TYPE FILE 10- HOW 
COMMAND- FILES --
--LOCAL FILES--

·PRINTIT 
--REMOTE OUTPUT FILES--
IMINE63 INOW"4 

COMMAND- 8ATCH 
TYPE FILE NAME- IMINE63 
TYPE DISPOSITION-LOCAL 
TYPE, FILE NAME- PRINTIT 
TYPE DISPOSITION-PRINT.CN 
TYPE FILE ID,- DIOT 
TYPE FILE NAME- END 
d'OMMAND- FILES -
--LOCAL FILES--

IMINE'3 .PRINTIT 
--REMOTE OUTPUT FILES·­
IDIOT7E ~NOW"4 

60495000 A 6-11 



BYE COMMAND 

BYE is an EDITOR command. It must be the last command under EDITOR, since it causes an exit from 
EDITOR and a return to COMMAND mode. 

WHEN IS BYE USED? 

All terminal operations are complete and you are going to stop communication with the LOGOUT 
command. 

The next series of operations requires INTERCOM, but not EDITOR, capabilities. 

Beginning users will probably call BYE only when ending a terminal session. 

Experienced users, however, often execute a series of operating system control statements or XEQ or PAGE 
commands. These commands can be entered through EDITOR, but faster execution occurs when they are 
entered from COMMAND mode. The user must weigh the time gained by leaving EDITOR against the time 
required to re-establish EDITOR for future file editing. 

BYE FORMAT 

BYE abbreviated B 

BYE,BYE abbreviated B,B 

Using BYE causes a check of edit file contents and a potential delay to preserve the edit file contents. BYE 
executes only if: 

The current edit file has been referenced in a SAVE command 

The current edit file is empty. 

The current edit file has not been modified. 

If EDITOR determines that a new or modified me has not been saved, this message appears: 

WARNING- EDIT FILE NOT SAVED 

At this time the user can: 

Use the SAVE command to preserve the edit file; or 

Re-enter BYE to exit EDITOR 

6-12 60495000 A 



Using BYE,BYE causes an immediate exit from EDITOR with no warning message even if the edit file has not 
been saved. The informative message 

YOU HAVE AN EXISTING EDIT FILE 

appears if you re-enter EDITOR without loggiag out. 

CONNECT COMMAND 

CONNECT is an INTERCOM command that equates a file with the display area of a terminal or with 
keyboard entry from a terminal. Each line of any connected output file is displayed as a program or utility 
writes to that file. Similarly, execution of any program that reads a connected input file is suspended until an 
input line is received from the terminal keyboard. The opposite of CONNECT is DISCONT, which disconnects 
a connected file. 

WHEN IS CONNECT USED? 

CONNECT is used mainly to display information at a terminal, especially for files that have no use after dis­
play. Typical use is: 

To examine a file to be produced during utility execution such as AUDIT or COPYSBF. 

During debugging of a program; connect the output file to determine whether results are acceptable. If 
so, abort execution, disconnect the output file, and execute the program with output written to a file 
that can be preserved for future use. 

To enter data into an executing program without first creating a separate local file with that data. 

The RUN command connects files with names INPUT and OUTPUT every time it is executed. It is not neces­
sary that a program use the connected files however. 

Any local file may be connected. Although experienced programmers may connect an existing file and preserve 
its contents during connected operations, it usually is more convenient to work with a new file having no con­
tents. Only this application is discussed below. 

Connected files have these characteristics: 

A dollar sign appears before the file name in the list of LOCAL files. The $ is not part of the file name. 

A copy of information read or written while the file was connected does not exist on mass storage. 

CONNECT FORMAT 

The command that connects a file to the terminal cannot be abbreviated. 

CONNECT ,file 

file Name of file to be connected, 1-7 letters or digits beginning with a letter. 

60495000 A 6-13 



More than one me can be connected with a single command: 

CONNECT ,fIlel,me2, ... 

CONNECT may be used to determine the contents of an existing fIle named UNKNOWN: 

COMMAND- CONNECT,SCREEN 
COMMAND- REWIND, UNKNOWN 
COMMAND- COPYSBF,UNKNOWN,SCREEN 

The COPYSBF command inserts a carriage control character before each line to cause single spaced lines. The 
lines from fIle UNKNOWN are displayed as they are copied. At the end of COPYSBF execution, SCREEN has 
no information: all information has been transferred to the terminal and displayed. 

If you try to edit SCREEN, you receive this message: 

ERR - FILE SCREEN CONNECTED TO TERMINAL 

CREATE COMMAND 

CREATE is an EDITOR command used to create a fIle line by line from keyboard entries. Once CREATE 
is entered, each entry terminated by a RETURN key is presumed to be a line of text for the evolving fIle. 
Until CREATE is terminated, other EDITOR or INTERCOM commands are not recognized as such. CREATE 
does not terminate until the user enters an equals sign. 

When CREATE is called: 

Each line entered by the user acquires a system assigned line number. 

The end of a fIle line is signaled by the RETURN key. As many as 510 characters can be entered in a 
single line. 

A tab character defined through the FORMAT command can be used to position characters entered. 

All characters entered at the keyboard are assumed to be part of the fIle until = is received as the only 
line character. 

WHEN .ISCREATE USED? 

The CREATE command is used to construct a fIle. This fIle may contain: 

A program to be executed through the RUN command. 

Data to be used by a program 

Experienced programmers also may use CREATE to form a me of further instructions such as a directive 
file for UPDATE use or a complete job deck. 

6-14 60495000 A 



CREATE FORMAT 

The command that initiates construction of a new file in the temporary edit file work area has three optional 
parameters. 

CREATE ,start,increment ,SUP abbreviated C 

start Number of first line in the edit file. Default value is 100. 

increment Number added to the last line to determine value of next line number. Default value is 10. 

SUP abbreviated S 

Suppresses prompting of user response through display of line numbers. 

The numerical parameters are positional: if an increment is to be stated, the starting line number must be 
given. 

System response to CREATE is to prompt user input of the first line by displaying the number of that line: 

•• CREATE,,1,,5 
l=USER TEXT GOES HERE FOLLOWED BY RETURN KEY 
6= 

When the SUP parameter is used, response is: 

•• CREA.TE" SUP" 1" 4 
ENTER LINES 

In both instances, the user enters lines until the file has been constructed. To terminate CREATE, enter an 
equals sign as the only character in the line . 

•• CREATE,,15,,6 

•• 

15= FIRST US~R LINE 
21= SECO~D USER LINE IS LAST LI~E OF TEXT 
27== 

If a tab character has been defined by the FORMAT command or default FORMAT setting, that character 
acts similarly to a SKIP key on a keypunch or a TAB bar on a typewriter. Each time the tab character is 
used in the line, the next input character is located at the next defined tab stop. If no more tab stops are 
defined, however, the tab character becomes part of the input line. 

Assume a file of data statements is to be constructed. The input statement in a FORTRAN Extended 
program is: 

READ (5,,34) A,B,C,D 
34 FORMAT (14, 3X, F,.2" 4X, 215) 

60495000 A 6-15 



Data cards should be formatted with tab stops at positions 8, 19 

•• FORI'1AT I 81 19 
•• CREATEISJP 
ENTER L I i\i F~S 
1111 8222222 3333333333 
4444J5555555;66566fffE6 
7777JB88~88o;~999999999; 

= 
•• LIST .. IOOILAST 

100=1111 8222222 
110=4444 5555555 
120=7777 8888888 

•• 

3333333333 
6666666666 
~999999999; 

Since no more tab stops are defined, 
the last semicolon becomes part of text 

A common mistake beginners often make, particularly when SUP has been used, is forgetting to exit from 
CREATE with an equals sign. CREATE continues accepting entries with no visible results: 

•• CRi';ATE .. 1 .. 1 .. ~:;U:-l 
J-'..'\i~ E, :-; L l,\i .~~ S 
FUi<i·j!-\T, TA:'3=* .. 50 
FldST LI~E r~XT~AFTE~ TAB TO 50 
A£\) 0 HEi{ L L\1 E 
LAST Ll~E US~R ~ASNNTS· STAR CAUSES TAB TO 50 
SAVE, :,jF~l·!FILE 
S10R~,~~~~lLE .. NJt~ 
BY)';, RYE 

LOGOUT 
:LOGOUT 
~~LP. THIS ISN-T STOPPI~G 

An abort through %A, or the single =, will terminate CREATE at this point. 

To recover from the previous situation after an abort, the command lines can be deleted; but since the 
FORMAT command appeared after CREATE, it is not recognized and the lines must be re-entered: 

6-16 

•• FORMAT,TAB=*,50 
•• ericA'rEI 11 1 
WARNING- EDIT FILE NOT SAVED 
•• CREATE .. lll 

l=FIEST LINE TEXT*AFTER TAB TO 50 
2= ANa TH}-:H L Il'J E 
3=LAST LI ~E USEJ3.. wANTS* AS'rERI sa CAUSES TAB TO 5"0 -= 
4==.. 

60495000 A 



DELETE COMMAND 

With this EDITOR command, one or more lines in the edit file can be deleted. The lines to be eliminated can 
be specified explicitly by number or implicitly by a search criteria. An entire line, not just part of a line, is 
affected by DELETE. 

Many of the options of DELETE are the same as for SAVE, LIST, and the text replacement command. 

WHEN IS DELETE USED? 

To eliminate extraneous lines in the file, such as those arising from input typing errors. 

To remove program statements used to debug a program. 

To empty the temporary edit file in preparation for new file construction. 

DELETE is not used for replacing lines. By using a command in the following format, the entire specified 
line is rewritten. 

linenum=text 

The text replacement command, /oldtext/=/newtext/, also can be used to correct a line without deleting the 
incorrect line first. 

DELETE FORMAT 

The simplest form of DELETE specifies only the lines to be eliminated from the edit file: 

DELETE ,range abbreviated D,range 

The range parameter identifying the lines to be deleted may have one of these forms: 

ALL abbreviated A 

The entire edit file is deleted. 

LAST abbreviated L 

Only the last line in the file is deleted. 

line number Only this line is deleted. 

line-1 )ine-2 Lines within this range are deleted. 

line-1,LAST Line-1 through the last line of the edit file are deleted. 

60495000 A 6-17 



SEARCH CRITERIA OPTION OF DELETE 

lndirect specification for deletions is possible by specifying search criteria. Only lines within the range given 
are searched, and then deleted if they meet qualifications. 

!text! 

(column) 

Only lines containing this text string are deleted. !text! may be further qualified 
by the (column) and UNIT options. 

!text! character string must begin in this column to satisfy the search criteria. 

(column-! ,column-2) !text! character string must be contained within the column range specified. 

UNIT !text! must not be preceded or followed immediately by a letter or digit. 

VETO OPTION OF DELETE 

lines to be deleted should be specified precisely, since no restoration of deleted lines is possible except by 
re-entering each deleted line individually. 

The VETO option can be used to check each line before it is deleted. Option format is the word: 

VETO abbreviated V 

When VETO is used, each line that meets specified search criteria is displayed before deletion proceeds. After 
examining the line, you can enter YES, NO, or CONTINUE to accept or reject deletion of that particular line. 

YES Causes line to be deleted; abbreviated Y 

NO Retains this line; abbreviated N 

CONTINUE Deletes this line and all others which meet search criteria in range remaining; do not display 
remaining lines to be deleted; abbreviated C. 

The NO response affects only the line displayed; it does not terminate DELETE. To bypass all other lines with­
out deletion, terminate the command with %A. 

DISCARD COMMAND 

DISCARD is an INTERCOM command used to eliminate a local or permanent ftle. Its primary function is to 
delete a permanent ftle, but it can be used with an unconnected local ftle except one with the name INPUT. 

WHEN IS DISCARD USED? 

To eliminate a ftle made permanent with a STORE command. 

To eliminate any unconnected local ftle from your list of ftles. 

6-18 60495000 A 



DISCARD FORMAT 

DISCARD has two formats; the command has no abbreviation or optional parameters. 

DISCARD,file 

DISCARD,permname,owner 

The first format is used to eliminate any local file, including an attached permanent file. 

The second format is used to eliminate a permanent file that has not been made local by FETCH. 

file Name of local file 

permname File name made permanent by STORE 

owner Name used as owner identifier for STORE 

Only one file name can be used. In response to DISCARD, all references to the file are destroyed including 
purge of the permanent file. 

For permanent files, either of the two following sequences eliminates a file from the system. Assume a 
file was made permanent by the command: STORE,sAMPLE,MINE . 

•• FETCH,SAMPLE,MINE 
•• DI SCAiW, Si~;'-;PL£ 

or 

•• DISCARD,SAMPLE,MINE 

DIAGNOSTIC FROM DISCARD USE 

An error in entering this command produces one of the following messages. Re-enter the command correctly. 

ERR - CANT FIND FILE file 

File is neither local nor permanent with the owner specified. Make certain you have spelled the file 
name correctly. 

When a permanent file cannot be located, enter the AUDIT command with your owner name. Perhaps 
the file was identified with another name on STORE. Alternately, the expiration date for a file may 
have been reached; and the file may no longer exist. 

ERR - FILE NAME REQUIRED 

You have neglected to specify a file name. 

60495000 A 6-19 



ERR - FILE NAME MUST BE ALPHANUM, <8 CHAR, 1 ST CHAR A-Z 

You did not enter a legal me name. 

ERR - TOO MANY PARAMETERS 

Correct format is: 

DISCARD,me 

DISCARD,me,owner 

CANNOT ROUTE INPUT FILE 

If me is a local me 

If file is not a local me 

You cannot discard a connected me. Use DISCONT command, then DISCARD. A similar message also 
appears if you are referencing the file named INPUT. To eliminate INPUT from the list of local files, 
you must rename it through the BATCH command and then DISCARD the new me name. 

Execution of DISCARD, under extraordinary circumstances, may produce the following message. 

ERR - PERM. FILE ERROR, RETURN CODE = nn 

Re-enter the DISCARD command. If the message persists, notify your instructor. The codes have 
meaning only to experienced system programmers. 

EDIT COMMAND 

This EDITOR command transfers an existing local me with coded data to the temporary edit file in prepar­
ation for listing or modifying it. The reverse of EDIT is SAVE, which copies the edit file contents to a local 
file. 

WHEN IS EDIT USED? 

EDIT must be used before any of these commands if an existing local me is to be updated: 

ADD 

DELETE 

UST 

RESEQ 

/ old tex t/= / newtex t/ 

SAVE 

EDIT is not used before the CREATE command which constructs a new file. 

Connected mes cannot be transferred to the edit me. 

EDIT FORMAT 

linenum=text 

The EDIT command must identify the local me to be placed in the edit me area. The optional parameter, 
SEQ, is required if the local me does not have ascending line numbers. 

EDIT,me,SEQ abbreviated E,me,S 

me Name of local file with character data 

SEQ Optional sequencing call. line numbers begin with 100 and increment by 10 

6-20 60495000 A 



In response to EDIT, the named me is rewound and copied to the edit me work area. 

If another me already occupying the edit me has been modified but not saved, a warning message is issued 
rather than destroying the me. To preserve the existing edit me, use the SAVE command; to destroy the 
existing me, re-enter the EDIT command. 

An alternative to re-entering EDIT, when you know you no longer need the current me is: 

• • DELETE, ALL deletes all lines in current me 
•• EDIT,CALC,SEQ 

The me to be transferred to the edit me can consists of a multi-me set. For instance: 

•• .. 
•• 
•• 
• ·REwINLi.LCL 
• .nEWIND. TAPE3 
• ·COPY. LCL. LCL3 
•• ~JPY~TAPE3.LCL3 
• .r.,DIT,LCL3 
•• LIST,I.L 

1= 
3= 
5= 
7=100 
9= 

11= 

PROGRAM LCL .( TAPE5~ TAPE6> 
RE:\d<'lD 5 
REWI:\lO 6 
READ (5,30) O~E, TWO 
IF (EOF(S).NE.O) GO T0 200 
HYPOT =SQRT (J1E~~2 + TWO* it 2) 
WRITE (6,31) ONE, TwO, HYPOT 
GO 'TO 100 
S'WP 
FORMAT CF4.1,9X.F4.1) 

13= 
15= 
17=20'0 
19=30 
21=31 FOR.1AT Cit SIDES ARE It F5.1 It A."ID It FS.l it HYPOTENUSE IS it F 

801> 
23= 
24=*EOR 
25=*EOF 

106=11 
110=33 
120=55 
12J=*EOR 
122=*EOF 
140=77 
150=11 
160= 3 
170=4 
171=.itEOR 
172=*EOF 
173=itEOF 

END 

22 
44 
66 

88 
22 

" 5 

The character string *EOF becomes part of the edit me when EDITOR encounters the end-of-file indicator 
written by COPY. Similarly, an *EOR character string would appear for a logical record indicator. 

60495000 A 6-21 



Each line in the edit me must have a unique number; numbers must be in ascending order. Since the two 
files copied to LCL3did not have overlapping numbers, SEQ was not needed on the EDIT command. 

An attempt to execute EDIT with a me not having numbers produces an error message. The present edit me 
work area is destroyed once EDIT command execution begins, as illustrated by: 

•• SAVE,FILE,NOSEQ 
.. EDIT,FIL!!: 
ERR- LINE NUMBERS OUT OF SEQUENCE 
•• SAVE, FILE 
ERR- NO INFORMATION IN EDIT FILE 

Either of the following is correct: 

•• SAVE,ROBIN,NOSEQ 
•• EDIT,ROfHN, SEQ 

•• SAVE.,CARD 
•• EDIT,CAHD 

New line numbers can be added to existing line numbers. Since an EDIT command with SEQ assumes no line 
numbers exist, EDITOR treats any actual numbers as part of individual lines. If you SAVE a me with line 
numbers and then call for EDIT with SEQ, a list of the me shows extraneous characters at the end of each 
line. These characters are the original line numbers, which in this example began at 100 and incremented by 10 . 

•• SAVE,FINCH 
.. EDI 'f, F' INC~, SEQ 
.. LIST,100,LAST 

100=THIS IS THE CONTENTS OF FILE A 
000100~.r--------------------------

110=*EOR 
120=*EOF 
130=THIS IS THE CONTENTS OF FILE B 

000130 

'----line numbers from 
EDIT command 

line numbers from 
SAVE command 

A RESEQ command could change 100 to 500, for example, but could not change the 000100 at the end of 
the first line. 

Lines of up to 510 characters can be transferred to the edit me. Characters beyond 510 are not moved but 
this message is displayed: 

LINES> 510 CHARS WERE TRUNCATED 

The above message may appear when you expect 72-character lines, if the named me contains binary data. 
First verify that the correct file name was used. EDITOR determines the end of a line in a local file by 
searching for a special indicator written at the end of every line with character data. If the line does not 
have character data, no indicator exists; EDITOR searches continuously, however, and can read an entire file 
in its search. 

6-22 60495000 A 



Any of the following messages indicates an error in the command entry. Check for misspellings and omitted 
separators. 

ERR - CANT FIND FILE filename 

ERR - FILE NAME MUST BE ALPHANUM, < 8 CHAR, 1ST CHAR A-Z 

ERR - FILE NAME REQUIRED 

ERR - PARAM n: UNRECOGNIZABLE PARAMETER 

ERR - RESERVED FILE NAME 

EDITOR COMMAND 

EDITOR is the INTERCOM command used to call the file creating and editing facility of INTERCOM. 

WHEN IS EDITOR USED? 

A file is to be entered statement by statement. 

An existing file is to be changed. 

EDITOR must be called before any of these commands can be used: 

ADD DELETE RESEQ /oldtext/ = /newtext/ 

BYE EDIT RUN linenum=text 

CREATE FORMAT SAVE LIST 

EDITOR FORMAT 

The following command cannot be abbreviated. 

EDITOR 

The system responds with two dots at the left. The appearance of these dots, rather than the word COMMAND- , 
after a user entry, indicates that EDITOR commands are valid. 

Once called, EDITOR is available until the user enters the BYE command to exit from EDITOR. An abort 
through a user entry of %A terminates the current command but not EDITOR itself. Remember, if output must 
be suspended, press ESC. 

During EDITOR use, any INTERCOM command described in this manual can be entered except: 

EDITOR LOGOUT LOGIN 

60495000 A 6-23 



FETCH COMMAND 

FETCH is an INTERCOM command that retrieves a file made permanent by the STORE command. 

WHEN IS FETCH USED? 

To access a permanent file. 

Execution results in the file being added to your list of local files. Attached permanent files are identi­
fied by an * preceding the file name. 

FETCH FORMAT 

FETCH format depends on installation procedures: the owner parameter may not be required. Any differences 
are the same for STORE and DISCARD. Follow any local instructions. 

The word FETCH cannot be abbreviated. Standard format is: 

FETCH,fIle,owner 

file 

owner 

Name by which file was made permanent with a STORE command. 1-7 letters or digits 
beginning with a letter. 

Identification of the file owner used in the STORE command. 1-9 letters or digits. 

Successful attach of the file can be verified by the FILES command . 

.. FILES 
NONE 
•• F£TCH,GaEBE,AUDUEO~ 
•• FILES 
--LOCAL FILES-­

*GRE8E 
•• 

FILES COMMAND 

FILES is an INTERCOM command used to obtain a list of all files associated with the terminal. 

WHEN IS FI LES USED? 

Operations have been conducted on several files and you are not sure of the spelling of a particular file 
name. 

You want to check whether a given file is connected or is a permanent file. 

6-24 60495000 A 



The message FILE QUOTA EXCEEDED has appeared and you must know the names of existing files to 
be returned before new tiles can be created. 

In general, FILES can be used to refresh your memory before entering a command that references a new or 
eXisting file. 

FI LES FORMAT 

FILES 

No optional parameters exist. The command cannot be abbreviated. 

SYSTEM RESPONSE TO FI LES 

When FILES is executed, a list of all files for your terminal appears: 

--LOCAL FILES- Files under immediate control 

-REMOTE EXECUTING FILES- } 
-REMOTE INPUT FILES-

Jobs named in BATCH command for transfer to central site 

-REMOTE OUTPUT FILES- } Results of BATCH use with your terminal identification 
-REMOTE PUNCH FILES-

Headings appear only for the types of files to be listed. 

LOCAL files may have a special character preceding the logical file name to show further status: 

Prefix 

* 
$ 

none 

Meaning 

Attached permanent file 

Connected file. Input comes from keyboard. Output is displayed. 

File neither permanent nor connected. 

Any change in status is reflected in this list. 

At the beginning of a terminal session, FILES execution produces the response: 

NONE 

No files are associated with the terminal until the user enters a command to attach or create a file. 

To remove a file from terminal control, use the RETURN or DISCARD commands. 

60495000 B 6-25 



I DIAGNOSTIC FROM FILES USE 

I 

THE ABOVE LIST MAY BE INCOMPLETE 

When a large number of files are in the queue, this message may be returned after the names listed 
under any of the file categories. In most cases, the list of terminal files is complete. Repetition of 
the FILES command may not change the information displayed. 

FORMAT COMMAND 

FORMAT is an EDITOR command that establishes the maximum line length, tab stops and tabbing charac­
ter for lines entered into the edit file from a terminal keyboard. FORMAT affects these commands while 
lines are being written to the edit file: 

CREATE linenum=text ADD /oldtext/=/newtext/ SAVE 

WHEN IS FORMAT USED? 

To change line length to a value required by a compiler 

To change line length to a value required by a READ statement in a program 

To make entering text easier by defining tab stops 

To determine existing line length and tabs 

When you become more experienced with program and line manipulation, you may want to use FORMAT to 
establish variable line lengths. 

A default format exists, corresponding to the format of the language most frequently entered at an installation. 
To determine the default, enter the command: 

.. FORMAT,SHOW 

System response, if the default is FORTRAN, will be: 

CH= 72 TAB CHAR=; TAB COL= 7 

Lline length lab character lab stop 

Any other response can be changed to FORTRAN settings as indicated below. 

6-26 60495000 B 



FORMAT FORMAT 

The fonn of the command used most often contains a compiler language name. 

FORMAT,FORTRAN 

A line len~th of 72 characters, a tab stop at position 7, and a tab character of a semicolon is thereby defined. 

Other FORMAT compiler names allowed are: 

Line Length Tab Character Tab Stops 

ALGOL 72 $ 7, 10, 13, 16, 19 

BASIC 72 None 

COBOL 72 8, 12, 16, 20, 24 

COMPASS 72 11, 18,36 

The three settings established by FORMAT can be set independently of compiler requirements in any order 
and value in any combination. 

FORMAT, CH = length, TAB = char, stop, stop, ... 

Any number entered without a preceding CH = or TAB = is assumed to be a tab stop. Tab stops must be 
contiguous. For instance, FORMAT 5, TAB = #, 10 is an illegal statement. 

CH= abbreviated C= 

Maximum number of characters in line, 1-510. 

TAB= abbreviated T= or TA= 

Any character, except %. When used in a line entry, the tab character repositions the 
succeeding text character to the next defined tab stop. 

stop Any line position 0-510. A series of tab stops must be in ascending order. The tab stop 
position must not exceed line length set by the CH= parameter. 

DIAGNOSTICS FROM FORMAT USE: 

ERR- CH= MUST SPECIFY < 511 

The longest line possible in the edit file is 510 characters. 

ERR- TAB= MUST SPECIFY ONLY I CHAR 

You probably have forgotten a delimiter after the tab character. 

60495000 A 6-27 



ERR- TABS TOO BIG OR OUT OF ORDER 

Tab stops must be in ascending order. 

LIST COMMAND 

LIST is an EDITOR command that displays one or more lines of the edit me. The lines to be displayed can 
be specified directly by line numbers or indirectly by search criteria. 

Many of the optional search criteria parameters of LIST are those of SAVE, DELETE, and the text replace" 
ment command. 

WHEN IS LIST USED? 

When you are creating or updating a me through EDITOR, use LIST to: 

Display a line or an entire program or me so you can check for syntax, logic, or typing errors. 

Determine line numbers of statements to be corrected. 

Determine line numbers for statements to be added. 

LIST works only with the edit me. Since a local me can be transferred to the edit me, you can use LIST to: 

Examine the contents of a local me, such as the output from program execution. 

LIST FORMAT 

The simplest form of LIST specifies only the lines to be displayed. 

LIST,range abbreviated L,range 

The range parameter identifies the lines to be displayed. It may have one of these forms: 

ALL abbreviated A 

The entire edit file is displayed. 

LAST abbreviated L 

Only the last line in the file is displayed. 

line number Only this line is displayed. 

line-l ,line-2 lines encompassing this range are displayed. 

line-l ,LAST line-! through the last line of the edit me are displayed. 

If the range parameter .is omitted, the last line previously displayed is repeated. The last line may have 
been the result of a· LIST command or the VETO option of another EDITOR command. 

6-28 60495000 A 



The SUP optional parameter suppresses display of the edit file line numbers. 

SUP abbreviated S 

The lines to be displayed can be specified by search criteria. Only lines within the range given with the first 
parameter will be searched and listed if they meet qualifications. 

/text/ 

(column) 

(column-l,colurnn-2) 

UNIT 

EXAMPLES OF LIST USE: 

UST,ALL,SUP 

UST,ALL,/(J)/ 

UST ,200,300,/FORMAT / 

UST,ALL,(I ),/C/ 

UST,500,LAST,UNIT,/DO/ 

RESEO COMMAND 

Only lines containing this text string are displayed. /text/ may be 
further qualified by the (column) and UNIT options. 

/text/ character string must begin in this column to satisfy the search 
criteria. 

/text/ character string must be contained within the column range 
specified. 

/text/ must not be preceded or followed immediately by a letter or 
number. 

Display entire file without line numbers 

Display all lines with subscript J references 

Display all FORMAT statements in lines 200 through 300 

Display all comment statements 

Display all lines in range 500 to end of fIle if the line has a DO statement, 
but not variable names such as DOT 

This EDITOR command renumbers the lines in the current edit me. 

WHEN IS RESEO USED? 

Edit fIle line numbers must be in ascending order at all times. A new line cannot be inserted into the edit fIle 
unless an unused line number is available. 

Resequence when line numbers are insufficient to allow insertions. 

Resequence for your own convenience in referencing lines. 

60495000 A 6-29 



RESEQ FORMAT 

The RESEQ command may be entered with or without numbering parameters: 

RESEQ abbreviated RE 

RESEQ ,start ,increment 

start 

increment 

line number for fIrst line in fIle. Value may be 1-6 digits. Must be specifIed if an increment 
parameter is given. 

Value to be added to previous line number to determine next line number. Value may be 
1-6 digits. 

, If RESEQ is entered without a starting line number and increment value, lines are numbered from 100 with 
increments of 10. 

In response to RESEQ, the entire edit fIle is renumbered. 

Assume a program in the edit file is not executing correctly. PRINT statements are to be inserted after 
a READ to verify data validity. The current fIle is: 

READ C'S,500)A,B,C 
D=A+B 

221= 
222= 
223= I Fe D. LT. 4000) GO TO 77.1 

No new lines can be inserted between line 221 and 222. Resequence the file starting at 100 and 
incrementing by 5; then insert new lines . 

.. RE5Ef.h 100,5 
•• LIST./~,B,CI,ALL 

120= READ C5,500)A,B,e 
•• 121=;PRI~T 999,A,g,C 
122= 999;FOHi'jAT (* A,B, A,\lO e ARE 
1.151',120,130 

120= 
121= 

READ C5,500)A,B,e 
PRINT 999,A,B,C 

* 314) 

122= 999 
125= 

FORMAT C* A,B, ANDe ARE * 314) 
O=A+B 

130= IFCO.LT.4000) GO TO 771 
•• 

Do not abort execution of RESEQ. An accidental abort must be followed by another RESEQ to re-establish 
edit me line number continuity. 

6-30 60495000 A 



DIAGNOSTICS FROM RESEQ ENTRY 

Incorrect command format produces one of these diagnostics. RESEQ must be re-entered correctly. 

ERR - PARAM n: ILLEGAL LINE NUMBER 

line number can be 1 through 999999 

ERR - PARAM n: TOO MANY DIGITS 

The starting line number and the increment value must not exceed 6 digits. 

ERR - TOO MANY PARAMETERS 

Correct format is: RESEQ,start,increment 

ERR - NO INFORMATION IN EDIT FILE 

RESEQ works only with the contents of the edit file. If you want to reassign line numbers for a local 
file, use the EDIT command first. 

RETURN COMMAND 

RETURN is an operating system command that releases a local file or several files from the terminal. Both 
the file and the file name cease to exist at the terminal. 

WHEN IS RETURN USED? 

A local file is no longer needed. 

FILE QUOTA EXCEEDED message has appeared. 

An attached permanent file is to be retained as a permanent file but released from the terminal. 

RETURN affects only local files. An attached permanent file reverts to permanent file status only. A DISCARD 
command must be used to eliminate completely a permanent file. 

A connected file must be disconnected before use in RETURN. 

RETURN FORMAT 

One or more files can be released. RETURN has no abbreviation. Comma separators should be used. 

RETURN,file 

RETURN,file,file, ... 

file Name of file to be released 

60495000 A 6-31 



Special name files such as OUTPUT have meaning to the operating system. Releasing them from the terminal 
by RETURN is equivalent to a request for particular processing. A file with the name PUNCH, for example, 
is punched at the central site when released from the terminal. 

Do not use RETURN with files named OUTPUT, PUNCH, P80C, PUNCHB, PRINT, or INPUT. Use the 
DISCARD command for all except INPUT, which must be renamed through BATCH before use in RETURN. 

The list of your LOCAL files changes when RETURN is used: 

.. FILES 
--LOCAL FILES--

BB AA. 
•• dC:Tun~,33,CC 
•• FILES 
--LOCAL FILES--

AA DD 
•• 

CC DD 

No diagnostic is issued if the file name entered does not match the name of a local file. Consequently, 
omitting a comma between two file names does not produce a diagnostic message, but neither does it exe­
cute as desired. For example, files FF, AA, and DD exist: 

•• REWIND,FF 
•• RETUR~,AA FF,DD 
•• FILES 
--LOCAL 1"1 LES--

AA. FF .. 
Files DD and AAFF will be returned, not AA and FF as expected. 

DIAGNOSTICS FROM RETURN 

RETURN, REWIND OR UNLOAD MUST HAVE AT LEAST ONE PARAMETER 

6-32 

You have omitted a file name 

UNLOAD NOT ALLOWED ON INPUT 

The RETURN command cannot be used with a file by the name of INPUT. To release INPUT, use two 
commands: 

BATCH ,INPUT ,RENAME,NEW 

RETURN ,NEW 

60495000 A 



REWIND COMMAND 

REWIND is an. operating system command that can be used through INTERCOM. It causes the named file 
to be rewound to beginning of information. A connected file must be disconnected before it is rewound. 

If the file named on a REWIND does not exist as a local file, using that name with REWIND is sufficient to 
create a file with that name. No information is contained in the file, but the file exists. 

WHEN IS REWIND USED? 

To position a file to beginning of information. 

To prepare a file for use after a COpy.t 

To create a scratch file with no data while you are experimenting with INTERCOM command use. 

For the INTERCOM applications described in this manual, usually it is not necessary to specify REWIND. 
Execution of most EDITOR and INTERCOM file commands implies a rewind. For example, SAVE and EDIT 
rewind the referenced local file. RUN rewinds the files INPUT, OUTPUT, and LGO before sending the pro­
gram in the edit file to the compiler. Similarly, BATCH rewinds the file before sending it to another terminal. 

Experienced users executing programs without the RUN command must rewind files with the REWIND com­
mand. 

REWIND FORMAT 

A REWIND command can specify a single file or several files. REWIND cannot be abbreviated. 

REWIND ,file 

REWIND,filel,file2,file3, ... , filen 

file Name of file to be rewound. 

The maximum number of files that can be rewound by a single command is limited only by the fact that 
no command can exceed 79 characters. 

RUN COMMAND 

This EDITOR command compiles and executes a program in the edit file. It also can be used to compile and 
execute any other local file. During execution, local files referenced by the program can be read and new local 
files created. 

tCOpy is a very useful operating system utility routine. However, it does not rewind files either before or 
after execution; thus, a user rewind before and after use may be necessary. For more information concerning 
COPY, refer to the INTERCOM and operating system reference manuals. 

60495000 A 6-33 



WHEN IS RUN USED? 
----. - -

To compile and execute a source language program. 

To check out program or subroutine accuracy by compiling, but not executing, statements. 

To learn acceptable FORTRAN Extended format by compiling test statements that do not form a 
program. 

RUN FORMAT 

The minimum command that compiles and executes a FORTRAN Extended program residing in the temporary 
edit file is: 

RUN,FTN Abbreviated RU,F where FTN is the required name for identifying the 
FORTRAN Extended compiler. 

Optional parameters can be added singly or together in any order: 

FILE=lfn Local file named, not the edit file, is passed to the compiler 

NOEX Causes compilation; but not execution 

RUN,FTN,FILE=lfn,NOEX Abbreviated RU,F,F=lfn,N 

Other compilers can be called with the RUN command by using the appropriate compiler name. 

System response to the minimum command format is: 

EDITOR creates a local file copy of the edit file which is then rewound, as is file OUTPUT and LGO 

FORTRAN Extended compiler compiles the program in the local file and writes the object code to 
file LGO 

Files INPUT and OUTPUT are connected to the terminal 

File LGO is executed 

Variations in response occur when the compiled program has errors or the NOEX option is selected. 

Executing the FILES command after RUN ,FTN shows three files that may not have existed previously: 

.. RUN, FTN 
.062 C? SECONDS COMPILATION TIME 

THIS IS PROGRAM OUTPUT 
STOP 

.005 CP SECONDS EXECUTION T I ME 
.. FILES 
--LOCAL FILES--

$lNPUT $OUTPUT LGO 

6-34 60495000 A 



Files INPUT and OUTPUT are connected to the terminal, as indicated by the me names. Any statement in 
the program reading a me with the name INPUT stops executing and waits for an entry from the terminal. 
Similarly, any statement writing to a file with the name OUTPUT displays information at the terminal as it 
is generated. 

INPUT and OUTPUT are always connected if the program is to be executed; it does not matter whether 
or not they are referenced in the program. If you do not want these mes connected to the terminal, your 
program must contain FORTRAN Extended calls to a library routine that disconnects the meso 

Format of the program calls is: 

CALL DISCON (5L1NPUT) or CALL DISCON (6LOUTPUT) 

The INTERCOM command DISCONT entered before RUN does not prevent reconnection during RUN execution. 

NOEX OPTION OF RUN 

Execution is suppressed when NOEX is used as a RUN parameter. Use NOEX the first time you compile a 
program unless you are certain no errors exist. 

Without NOEX, the system calls the loading routine and attempts to load the LGO me generated during com­
pilation. A fatal error diagnosed by the compiler, however, sets a fatal error flag at the beginning of the LGO 
file. If the loader detects the fatal flag, loading is stopped and a message is output to the terminal. Meanwhile 
the loader call is wasted. 

Format of the option is: 

NOEX Abbreviated N 

NOEX creates the me LGO containing the compiled program and connects the me OUTPUT. It does not 
create and connect the me INPUT . 

•• RUN,F"TN,NOEX 
.052 CP SECONDS COMPILATION TIME 

•• FILES 
-- LOCA L 1'1 LES--

$OUTPUT LGO 

If you have compilation errors, the me OUTPUT is not connected. 

At the end of RUN with NOEX, the compiled program exists on the me LGO and can be executed by: 

.. LGO 

60495000 A 6-35 



The system accepts this command as a call to rewind, load, and execute a file named LGO which has binary 
data. As long as OUTPUT has not been disconnected, program PRINT statements or a write to a file equiva­
lenced with OUTPUT are displayed as a result of LOG . 

•• [GO 
THrs-IS PROGRAM OUTPUT 

STOP 
.004 CP SECONDS EXECUTION TIME 

FILE OPTION OF RUN 

To compile and execute a FORTRAN Extended program not in the edit file, use the FILE option. The file 
named can be any local file. 

Contents of the file must be a source language program, not binary output such as produced on file LGO. 

Parameter format is: 

FILE=name Abbreviated F=lfn 

Spaces are not allowed within the parameter. 

Either of the following sequences produce the same results: 

.. EDIT,SOURCE,SEQ 

.. RUN,FTN 

SAVE COMMAND 

.. RUN,FTN,FILE=SOURCE 

SAVE is an EDITOR command. It copies the current contents of the edit file into a local file. SAVE neither 
changes nor destroys the current edit file; rather, it copies the temporary edit file to the file named in the 
SAVE command. 

WHEN IS SAVE USED? 

Information entered under the CREATE command of EDITOR is to be preserved for later use. 

A file has been edited, and the changed file is to be preserved. 

The edit file is to be stored as a permanent file. 

The edit file is to be copied, or otherwise referenced by name. 

SAVE does not make a file permanent or preserve it from one day to the next. The STORE command, not 
SAVE, is used for these purposes. SAVE preserves a file only for the current terminal session. Once a terminal 
has been logged out, any file not made permanent is lost. 

6-36 60495000 A 



SAVE FORMAT 

The simplest form of the SAVE command is: 

SA VE,fIlename Abbreviated S,fIlename 

A filename may be any combination of 1-7 letters or digits beginning with a letter. It must not be the 
same name as any other local file now existing at your terminal, unless either the MERGE or 
OVERWRITE option (an explanation follows) is used also. 

The names of existing files can be learned by using the FILES command. 

In response to a SAVE command, the entire edit file is copied to a local file. Logically, these steps occur 
within EDITOR: 

1. Request is made for a local file on permanent file device. The permanent file device request is 
made in anticipation of future STORE command. Files saved are always written to permanent 
file devices without user action. 

2. The named local file is rewound. 

3. The edit fIle is copied to the named file. Numbers assigned to each line are copied also; they 
appear as the last 6 characters of each line. The NOSEQ option stops line number copy. 

4. A system end-of-record but not an end-of-file, terminator is written after all user data is copied. 
(See the EDIT command discussion for implications of the end-of-record mark.) 

5. The named local file is rewound. 

Length of the lines saved is determined by the FORMAT command currently in effect. Under the default 72-
character line length, 72 user data characters and 6 system supplied digits would exist for each line in the 
edit file. 

Options of the SAVE command allow the following variations of system response: 

OVERWRITE Rewrites and consequently destroys, an existing file with the same name. 

NOSEQ Suppresses copy of line numbers to local file. 

MERGE Writes at present position of an existing file with the same name; inhibits 
rewind before and after writing. 

VETO Allows user to approve or disapprove saving of individual lines. 

ALLJine numbers, and LAST save selected parts rather than the entire edit file. 

/text/ ,column numbers, and UNIT save only those edit file lines that meet text search criteria. 

These options can be used in any combination and in any order. 

60495000 A 6-37 



SAVE allows individual lines or a range of lines to be made a local file. If some, but not all, lines are refer­
enced in SAVE, the warning message appears before edit file destruction by a subsequent command. 

In most instances, only the NOSEQ and OVERWRITE parameters are used. The selective SAVE parameters 
that specify a range of line numbers, search criteria, and VETO options, are the same as for the DELETE, 
LIST, and /oldtext/=/newtext/ commands. 

Only NOSEQ, OVERWRITE, and MERGE options are discussed below. 

OVERWRITE OPTION OF SAVE 

Every file associated with a terminal must have a unique name. An attempt to make a second file with the 
same name results in the following diagnostic, but not a new file. 

ERR- - filename ALREADY EXISTS 

OVERWRITE allows the user to replace or rewrite a file with a given name by replacing the existing file with 
the contents of the current edit file. The existing file is destroyed. 

Format of the option is simply the parameter name. It can appear anywhere after the file name. 

OVERWRITE Abbreviated 0 

OVERWRITE is used commonly when a program or data in the edit file has been saved with a specific name, 
then the edit file has been modified. To make the named file correspond to the modified file, use OVERWRITE. 

An alternative to OVERWRITE is a sequence of operations that would independently release a file or one that 
would simply save the modified file with a different name. By using the OVERWRITE option of SAVE, an 
existing file, which is no longer valid, can be eliminated as well as a new local file created. These two sequences 
result in identical information for file IN. 

· . SAVE,IN 
(commands to change edit file) 

· . RETURN,IN 
· . SAVE,IN 

. . SAVE,IN 
(commands to change edit file) 

.. SAVE,IN,OVERWRITE 

Overwrite also occurs without an OVERWRITE parameter if an existing file is saved without a MERGE param­
eter and is then referenced with a MERGE parameter. 

Permanent files attached to your terminal cannot be written over. If a file listed by a FILES command execu­
tion with a preceding * is referenced with OVERWRITE, this error message appears: 

ERR - OVERWRITE ILLEGAL ON PERM FILE 

6-38 60495000 A 



After such a message appears, either of the sequences shown below can be used: 

To use a new permanent file name and eliminate old file 

•• SAVE,NE'WNA1-IE 
•• STORE.NEWWA~E.OWNER 
•• DISCARD, OL OUA '''1: t 

To change contents but keep me name 

•• DISCARD.OLDNAMEt 
•• SAVE, OL o Ntd-1E 
•• STORE, OLPNA:~E. O\'JNER 

MERGE OPTION OF SAVE 

A new file can be constructed by selectively saving parts of one or more existing files with the MERGE option. 
Lines to be saved can be identified by either a line number or a search criteria. 

The merge function is accomplished by adding a parameter to the SA VE command each time a specific file is 
referenced: 

MERGE Abbreviated M 

For example, assume that you have an existing FORTRAN Extended program in the edit file and an existing 
subroutine ERREXIT on another file. Use the MERGE parameter to make the subroutine part of the program 
file named BOTH for execution through the RUN command. (FORTRAN program in edit file.) 

•• SAVE.BOTH,MERGE~NOSEQ 
•• gpIT,ENDEXIT,SE . 
.. SAVE,BOTH, MERGE, NOSEQ 
•• EDI T, B OTHtSEQ 
.. LIS 1, 1 50, AS T 

150= STOP 
160= END 

Save main program without line numbers 
Move subroutine to edit file area 
Add subroutine without line numbers to main program 
Move merged file to edit file area 
Look for *EOR 

170=*EOR 
180= 
190: 
200:500 
210= 

SUBROUTI.NE ENDEXIT 
PRI NT 500 

•• DELETE, 170 

FORM~T <* LINE OUTPUT FROM SUBROUTINE *) 
END 

Delete *EOR 
•• RUN, FTN Execute program 

.065 CP SECONDS COMPILATION TIME 
TH~S IS PROGRAM OUTPUT 
LINE OUTPUT FROM SUBROUTINE 

STOP 
.003 CP SECONDS EXECUTION TIME .. 

tIf the permanent file to be discarded has been attached, the owner's name must not be specified; including 
the name causes the diagnostic: ERR - TOO MANY PARAMETERS. 

60495000 A 6--39 



Line 170 shows *EOR when the merged me is listed .. This end-of-record indicator is written by EDITOR 
after the last line of any item copied by SAVE execution. *EOR cannot be inhibited. 

Since, in the preceding example, an end-of-record indicator would prohibit successful execution, the line con­
taining *EOR must be deleted. In other instances, such as creating a batch job deck by merging a control 
statement record with a me containing a source language program, the end-of-record would be requir~d. 

The simplest way to delete any unwanted end-of-record indicators uses the DELETE command with search 
criteria. Otherwise the user must list the me to determine the specific line number to be deleted. 

· . EDIT ,BOTH,SEQ 

· . DELETE,ALL,/*EOR/,(1) 

Loads merged me into edit me 

Search for and delete all lines with characters *EOR beginning in 
column 1 

If you know the approximate size of two merged mes, restrict the search for a line to be deleted to a reason­
able range to decrease execution time. If a me with approximately 200 statements is merged with a second 
file of 50 statements, the following could be entered, assuming that both mes had default sequence number 
increments: 

· . DELETE,2000,2200,/*EOR/,(I) 

MERGE should be included on the first SAVE of a me under construction if information is to be written at 
the end. Loss of information may result if MERGE is omitted, for the following reasons: SAVE without a 
MERGE parameter concludes execution with a rewind of the named me, so current me position becomes the 
beginning of information. Any time MERGE is used, the new material is written starting at the current me 
position on the assumption that the preceding MERGE left the me positioned at end of information. Conse­
quently, a default OVERWRITE occurs if MERGE is not used on the first me reference. 

The two following sequences illustrate an unsuccessful- and a successful MERGE. 

· . EDIT,PROG 
· . SAVE,NEW 
· . EDIT,SUB 
· . SAVE,NEW,MERGE 

· . EDIT,PROG 
· . SA VE,NEW ,MERGE 
· . EDIT,SUB 
· . SAVE,NEW,MERGE 

File PROG is copied to NEW and NEW is 
rewound. 
SUB is copied at the beginning of NEW, 
thereby destroying NEW. 

File PROG is copied to NEW and NEW is 
left positioned at end. 
SUB is copied after PROG, and NEW is 
left positioned at end. 

The NOSEQ parameter is not required with MERGE, but MERGE and NOSEQ often are used together, as 
discussed under the NOSEQ option. The presence or absence of line sequence numbers has no effect on the 
me as saved. An EDIT of the merged me, however, requires ascending sequence numbers. 

6-40 60495000 A 



The following commands illustrate a common sequencing error when MERGE is used . 

•• EDIT,SQURCE,SEQ 
•• SAVE, NEW, MERGE 
•• EDIT,ENDEXIT,SEQ 
•• SAVE,N~W,MERGE 
.. EDIT, NEW 
ERR-LI~E NUMBERS OUT Or SEQUENCE . , 
In this instance, both the files PROG and SUB have default line numbering, beginning with 100 and 
incrementing by 10; line numbers on the merged file NEW are duplicated and cannot be used for edit 
file purposes. Adding the NOSEQ parameter to each SAVE of file NEW is efficient. 

Normally, the first SA VE,MERGE is the first reference to a particular file name: any file existing as a local 
file can be merged by first using the EDIT command to transfer the file into the edit file, then executing a 
SAVE with MERGE parameter. If the local file is to be retained in 'its entirety, however, information can be 
merged at the end as follows: 

Assume a large existing local file named BIGFILE. The current edit file contains information to be 
merged at the end. To add the new information without first moving BIG FILE to the edit file, the 
control statement SKIPF can be used; without the 7777 parameter, BIGFILE would be positioned 
after the first *EOR encountered . 

. . SKIPF,BIGFILE,7777 Move current position to end of existing file 

.. SA VE,BIGFILE,MERGE 

The resulting file still has the *EOR at the end of the original BIGFILE data .. 

NOSEQ OPTION OF SAVE 

Each line of the edit file has a unique line number associated with it. SAVE execution preserves these num­
bers, unless the NOSEQ option is selected to suppress the numbers. 

Saving a me with line numbers does not interfere with compiler action, under default FORMAT conditions, 
since the compiler uses only 72 characters of input and the line numbers appear in columns 73-78. Under 
other FORMAT settings, however, or when data for program execution is being generated, line numbers may 
interfere with the interpretation of the file. 

This option format is the parameter name. It can appear any place after the me name of the SA VE command. 

NOSEQ Abbreviated N 

NOSEQ is frequently used with the MERGE option when parts of several mes are being written as one me, 
as the line numbers of any me to be edited must be in ascending sequential order. 

60495000 A 6-41 



For example; an existing fIle has line numbers 100-500. It is to be merged into the current edit fIle which 
'has line numbers 100-300 and then edited. In the following sequence of commands, the user must know the 
highest line number in the current edit fIle and call for renumbering of the second fIle accordingly. 

· . SA VE,NEWFILE,MERGE 
· . EDIT ,OLDFILE 
· . RESEQ,310,1O 
· . SA VE,NEWFILE,MERGE 
· . EDIT,NEWFILE 

The same results could be accomplished without the need to know any line numbers in the current edit fIle. 

· . SA VE,NEWFILE,MERGE,NOSEQ 
· . EDIT,OLDFILE 
· . SA VE,NEWFILE,MERGE,NOSEQ 
· . EDIT,NEWFILE,SEQ 

STOR E COMMAND 

STORE is an INTERCOM command that makes any local file a permanent file. Peonanent fIles, unlike local 
files, are preserved at the central site when you enter a LOGOUT command. They can be accessed in the 
future by entering a FETCH command. 

WHEN IS STORE USED? 

To make a me permanent use STORE when: 

You are going to use the same program at successive terminal sessions. 

Many users are going to access the same program at different times. 

A message from the central site says INTERCOM is going down for a short time, and you have not 
fInished your tasks. 

Permanent fIles tie up system resources. Do not use them needlessly. 

Experienced users often use the control statement CATALOG in place of STORE. STORE is adequate 
and simpler to use, but your instructor may have all your class files cataloged with one name. 

6-42 60495000 A 



STORE FORMAT 

At some installations, another format is required. Otherwise, STORE format is as follows. No abbreviations or 
optional parameters exist. 

STORE,me,owner 

me Name of any local me 

owner Identification of the me owner. Usually this is your name restricted to 1-9 letters. 

The file name and owner are both required to use the file at any future time. 

Use the FETCH command to make a permanent file local and the DISCARD command to destroy the file. 

Assume a file is made permanent with: STORE,EXAMP,SMITH. 

Access me: FETCH,EXAMP,SMITH 
or 
Destroy file: DISCARD,EXAMP,SMITH 

Only local mes can be made permanent. If you have created a me under EDITOR control, you must first 
make the temporary edit me a local me before you can make it permanent. 

A me you have just made permanent is still available to you as a local file. Execution of the FILES command 
shows the name with a preceding asterisk, showing it to be an attached permanent file . 

•• SAVE,SAMPLE,NOSEQ 
•• rl LES 
--LOCAL rILES--

SAMPLE U~PERM 

•• STORE,S~MPLE,JONES 
•• rI LES 
--LOC~L rILES--

*SAMPLE U~PERM 

•• 

TEACH COMMAND 

OTHER 

OTHER 

TEACH is a utility that summarizes INTERCOM operation, commands, and syntax. It consists of a series of 
displays about various topics. 

60495000 A 6-43 



WHEN IS TEACH USE O? 

The main TEACH display lists five items that can be further examined: 

TEACH 
I F YOU WOULD LIKE TO KNO~ ABOUT THE FOLLO~ING~ 

TYPE THE COHRESPONDING NUMRERI ELSE TYPE ~ND 

HOW 10 USE INTERCOM 
HOW TO USE THE TERMINAL 
AN INTERACTIV~ COMMAND 
.AN EUITOR COMMAND 
A REMOTE BATCH COMMAND 

TYPE 
TYPE 
TYPE 
TYPE 
TYPE 

1 
2 
3 
4 
5 

As you can see, the display includes further instruction for using TEACH itself, as well as INTERCOM use. 

Call TEACH if you need help in using commands. 

TEACH FORMAT 

To use TEACH, enter the command: 

TEACH 

After the main display of TEACH appears, select an item for examination by typing the number of the item 
desired and pressing the RETURN key. The first page of the item chosen then appears. 

At the end of each page displayed, this line appears: 

TO CONTINUE TYPE- GO\:O END TYPE- EN~ 

These periods are sentence punctuators and are not required. 

The carriage remains at the end of the line. If you type GO, the next page of the current item is displayed. 
If the current item has no continuation, the main display of TEACH reappears. 

To terminate the TEACH utility from the midst of an item sequence, type END. If the main display reappears, 
type END to exist from TEACH itself. END terminates TEACH only when the main display is waiting for you 
to type an item number or END. 

6-44 60495000 A 



If input response to the main TEACH display is not an item number or the word END, an error diagnostic 
appears with a request for a correct response. The carriage remains at the right. 

TEACH 
IF YOli WOULD LIKE: TO KNOW ABOUT ""HE F'OLLO~' l(\jl~, 

TYPE THE CORRESPONDING NUMBER, ELSl!~ TYPE END 

HOW TO USE INTERCOM 
HOW TO USE THE TERMINAL 
AN INTERACTIVE COMMAND 
Ai'il EDl TOR COMMAND 
A REMOTE BATCH COMMA~D 
l> 

t 
user entry 

TYPE 
TYPE 
TYPE 
TYPE 
TYPE 

INVALID REQUEST - TYPE OPTION NUMBER4 
t 

1 
2 
3 
4 

5 

carriage remains here for correct entry 

If the display is waiting for a user GO or END, an invalid type-in gives the message: 

INVALID REQUEST. TYPE GO OR END 

A full entry of GO or END is required. Abbreviations cannot be used during TEACH operation. 

loldtextl = Inewtextl COMMAND 

This EDITOR command allows a string of 1-20 characters in the edit fIle to be replaced by another character 
string. The strings may be the same or different lengths. 

WHEN IS /oldtext/=/newtext/ USED? 

This command is useful for changing the intent of a line, as well as correcting errors. For example: 

Only part of a line is in error. The incorrect characters can be changed without re-entering the whole 
line. 

A correct line begins in the wrong column. By increasing or decreasing blanks before a word, the word 
position can be changed. 

The same change is to be made in several lines. EDITOR locates and changes all occurrences.' 

The text to be replaced must be contained within a single line of the edit file. As many as 20 characters can 
be specified in either the original text or new text. 

60495000 A 6-45 



The tab character is not recognized as such with this command. The tab character is simply another character 
in a replacement string; it does not change a line position indicator. 

At the end of command execution, the system specifies the number of changes made: 

n CHANGES 

If the message is 0 CHANGES when you expected at least I, check that you have specified the proper line 
range, column number, and text string. 

loldtextl=/newtexti FORMAT 

The minimum parameters for the command that replaces a character string are: 

/ oldtext/=fnewtext/ ,linenum 

oldtext String of 1-20 characters to be replaced 

newtext String of 0-20 characters to replace an existing string 

linenum Line number, or range of line numbers, to search for oldtexL It may have any of the 
following formats. 

ALL 
line number 
line-I, line-2 
line-I, LAST 

Slashes should be used to delimit the text strings. These are not part of the string itself. Optional parameters 
can restrict the search for the /oldtext/ character string to a column position or a UNIT string, as they can 
with LIST and DELETE. 

VETO OPTION OF loldtextl=/newtextl 

The VETO parameter of the text replacement command defers execution of the command until the user ex­
amines -the projected result and authorizes command completion. It is used in the same way as the VETO 
parameter of the DELETE or SAVE commands of EDITOR. 

VETO is initiated by EDITOR, in the absence of a user parameter, whenever the text search or replacement 
string exceeds the system limit of 20 characters. 

Format of the option is simply the parameter name. It can appear anywhere after the replacement text. 

VETO Abbreviated V 

6-46 60495000 A 



When VETO is selected: 

1. EDITOR fmds a line with characters to be replaced and displays the line that would result from 
execution. 

2. User examines the line and accepts or rejects the change with a YES or NO type-in. 

3. EDITOR continues by searching for next line with characters to be replaced. 

The user controls acceptance of any line displayed by entering one of the following: 

YES Change line as displayed. Abbreviated Y 

NO Do not change displayed line. Actually, any character 
other than Y or C is acceptable in place of NO. 

Abbreviated N 

CONTINUE Change this line as displayed, then continue with any 
subsequent change without displaying lines. 

Abbreviated C 

The VETO option is helpful to beginners in several ways. You can use VETO to verify that text replacement 
produces the results expected. More important, however, using VETO helps you avoid common errors in the 
text strings entered. 

Even after you have gained confidence in using the text replacement command, continue VETO selection any 
time file contents are not known completely or when all occurrences of a text search string are not to be 
changed. 

VETO combined with the UNIT parameter can be a powerful tool in correcting errors in a program. For 
example, assume that you have nested DO loops with many subscripted elements within the loops but you 
mistakenly have used the variable I as the control for both loops and subscripts. The problem is to change 
the inner loop control to J affecting the outer loop control. Alternate ways of doing this include: 

Enter a separate command for each line to be changed. This requires knowing the line number of 
incorrect statements. 

Enter one command to change all occurrences of I to J using the UNIT and VETO options. 

*EOR AND *EOF 

*EOR and *EOF are special EDITOR edit file entries. Their use during edit file creation provides special 
indicators that can be interpreted by other system routines as system logical records or file delimiters. All 
files have an ending terminator. Only for particular circumstances would the user need to indicate a file end, 
since INTERCOM supplies it for the user. These two symbols are useful, however, since they increase program 
options. 

Beginning programmers often find the words record and file confusing. Consistency exists within routines in­
ternal to INTERCOM and the operating system, but this consistency is not always apparent to a user. What 
the user thinks of as a file of individual records appears to part of the operating system as a single record 
in a file and to other parts as a ·file. The issue is further complicated by record and file boundaries that can 
be interpreted by an internal routine when a user is not aware that the boundary existed. 

60495000 A 6-47 



The best advice for handling this situation is simply to accept apparent inconsistencies: for any given situation, 
learn the entry you must make to achieve the desired results. Do not be disturbed that you must enter a 
*EOR line to execute the FORTRAN Extended EOF function on a file named INPUT, but a *EOF line to 
execute the EOF function on a file with names such as TAPES. For now, use the specific character string in 
the circumstances listed below. Remember, when operating with connected files, use %EOR and %EOF rather 
than *EOR and *EOF. 

WHEN ARE *EOR AND *EOF USED? 

The *EOR statement is used: 

To seperate records to be detected by a FORTRAN Extended EOF function for the file named INPUT. 

To separate system logical records in a file prepared for BATCH execution. *EOR is the equivalent of 
a punch card with 7/8/9 multi-punched in column 1. 

EDITOR writes the equivalent of *EOR (7/8/9) at the end of any file referenced in a SAVE command. 

The *EOF statement is used: 

To separate records to be detected by a FORTRAN Extended EOF function for files with names other 
than INPUT. 

To indicate the end of a file for reference by a COpy routine. 

INTERCOM writes an end-of-file indicator as appropriate for other INTERCOM commands. 

When the user enters a SAVE command with the MERGE parameter, EDITOR writes an *EOR to the local 
file. By returning the saved file to the edit file and listing it, you can see that a line number has been 
assigned to this indicator. 

•• SAVE,SQUEEZE,MERGE,200 
•• SAVE,SQUEEZE.MERGE,300 
•• EDl T. SQUEEZE 
WARNlNG- EDIT FILE NOT SAVED 
.. ED! T, SQUEEZE . 
• • LIS T , 100 • LA S T 

200=rHIS IS LINE 200 WHICH WILL BE.SAVED BY ITSEl' 
201=*EOR 
300=LINE 300 WltLBE .SAVED BY ITSELF .. 

*EOR and *EOF exist after the second merge, but they are used internally and are not returned to the edit 
file. 

It is important to realize that the character string *EOR or *EOF exists only in the temporary edit file. When 
EDITOR makes the file local, or copies it for submission to a compiler, the characters are translated to a for­
mat used internally by system routines. The characters *, E, 0, and R exist only in the edit file. 

6-48 60495000 A 



A test in a program for a character string *EOR can never be successful. The function that tests for end of 
data read by a FORTRAN Extended program is EOF. 

On the other hand, an EDITOR command to find and delete the character string *EOR or *EOF is possible. 
In the 3 lines listed above, line 201 can be deleted by: 

•• DELETE,ALL,I*EORI 
1 DELETIONS 

•• 1..1 ST. 100 , LA S T 

•• 

200=THIS IS LINE 200 WHICH WILL BE SAVED BY ITSELF 
300:LINE 300 WILL BE SAVED BY ITSELF 

Study the following example to see how INTERCOM and the operating system use *EOR and *EOF and how you 
may use them to your advantage. This example is pertinent for conserving entries in the permanent file catalog 
the operating system maintains internally to keep track of permanent files. Each STORE command results in an 
entry. Table entries are at a premium, since a full catalog prevents new permanent files. A message P.F. 
DIRECTORY FULL,FILE NOT PERMANENT is returned to the terminal when STORE cannot complete. 

Assume two local files exist. A third file is to be created, and all three files made permanent with the 
name SEVERAL. As a result of the COPY! the system adds file terminators: 

•• FI LES 
--LOCAL FILES--

PONE PTINO 
•• COPY,PONE,TEMP 
•• COPY,PTWO.TEMP 
•• EDI T ,TEMP, SEQ 
•• LIST.lOO,LAST 

100:THIS IS CONTENTS OF PONE 
110=*EOR 
120=*EOF 
130=THIS IS CONTENTS OF PTINO 

.. ADD,SUP 
ENTER Ll NES 
*EOF 
Tm IS CONTENTS OF ADDED THIRD FlU., 
~OU MUST g:NTER*gOF AS FIRST LINE IN ADDED LINES. 

-:-. SAVE, SEVERAL, NOSEQ 
•• STORE,SEVERAL,MINt 
... FI LES 
-~t.OCA L FI LES--

TEMP *SEVERAL PONE PTINO 
•• 

You must enter the *EOF after ADD is initiated to delimit PTWO information from new lines entered. 

60495000 A 6-49 



( 

When you access the combined fIle at another terminal session, you can separate the programs or use 
them together. In order to move the third fIle to the edit files, use the operating system control statement 
COPYBpr to copy the first two fIles to a scratch fIle, then copy the third fIle and move it to the edit 
fIle. At the end of the combined fIle copy, the system displays an informative message. 

~.F[TCH.stVERAL.MIN[ 
,.COPVBF. SEVERAL. PI AND2.2 
~.COPY8F.S[V[RAL.P3 
EoFI E,Ol . ENCOUNTERtD 

,.FILES· . 
• .; l.OCA L F I L [S--' 

PI A. Nt2 *SEVERA L P3 
.. EDI T. P3, SEg 
•• tlST~lO~.LAST . 

lOO:TKIS IS 'CONTENTS OF ADDED tHIRD FILE. 
110:YO~ MtIST ENTER *£OF AS FIRST LINE IN ADDED LINES. 

• • 

If the contents of the first two programs are not needed during the current terminal session, an alternate way 
to select program 3 is: 

•• EDlt,SEVERAL •. SEQ 
•• LIST, ALL~/*EOF/ I 

126=*£0 · 
150:*EOF 
170~YOUMUST.ENTER.*EOF AS FIRST LINE- IN ADDED LINES. 

~.DELEtE 100~15a 
.. (151,16'0 LAST, SUP 
THIS IS CONTENTS 0' ADDED THI RD Fl LE. 
YOU MUST ENtER *EOF A~ FIRST LINE IN ADDED LINES~ 
fI' 

tRefer to the INTERCOM and operating system reference manuals for more information about COpy and COPYBP. 

6-50 60495000 A 



STANDARD CHARACTER SETS 

CONTROL DATA operating systems offer the following variations of a basic character set: 

CDC 64-character set 

CDC 63-character set 

ASCII 64-character set 

ASCII 63-character set 

The set in use at a particular installation was specified when the operating system was installed. 

A 

Depending on another installation option, the system assumes an input deck has been punched either in 026 or 
in 029 mode (regardless of the character set in use). Under NOS/BE I, the alternate mode can be specified by 
26 or 29 punched in columns 79 and 80 of the job statement or any 7/8/9 card. The specified mode remains in 
effect through the end of the job unless it is reset by specification of the alternate mode on a subsequent 7/8/9 
card. 

Graphic character representation appearing at a terminal or printer depends on the installation character set and 
the terminal type. Characters shown in the CDC Graphic column of the standard character set table are applicable 
to BCD terminals: ASCII graphic characters are applicable to ASCII -CRT and ASCII -TTY terminals. 

60495000 A 

NOTE 

In the following chart, characters identified by the heading CDC GRAPHIC 
are applicable to BCD-CRTs models: 214-11, 214-12, 217-11, 731-12, and 732-12. 

Characters identified by the heading ASCII GRAPHIC are applicable to ASCII 
(CRTs and TTYs) as follows: 

ASCII-CRTs 

217-13, 217-14, 731-12, 732-12 

711-10 

714 

733-10 

ASCII-TTYs 

Model 33, 35, or 38 Teletype 

713-10 

A-I 



~ 
N 

0-

~ 
\0 
VI 
o o o 
» 

STANDARD CHARACTER SETS 

ASCII Hollerith External ASCII ASCII Hollerith External ASCII 

CDC Graphic Display Punch BCD Punch ASCII CDC Graphic Display Punch BCD Punch ASCII 

Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code 

: t OOtt 8-2 00 8-2 072 6 6 41 6 06 6 066 

A A 01 12-1 61 12-1 101 7 7 42 7 07 7 067 

B B 02 12-2 62 12-2 102 8 8 43 8 10 8 070 

C C 03 12-3 63 12-3 103 9 9 44 9 11 9 071 

D D 04 12-4 64 12-4 104 + + 45 12 60 12-8-6 053 
E E 05 12-5 65 12-5 105 - - 46 11 40 11 055 

F F 06 12-6 66 12-6 106 * * 47 11-8-4 54 11-8-4 052 

G G 07 12-7 67 12-7 107 I I 50 0-1 21 0-1 057 

H H 10 12-8 70 12-8 110 ( ( 51 0-8-4 34 12-8-5 050 

I I 11 12-9 71 12-9 111 ) ) 52 12·8-4 74 11-8-5 051 

J J 12 11-1 41 11-1 112 $ $ 53 11-8-3 53 11-8-3 044 

K K 13 11-2 42 11-2 113 = = 54 8-3 13 8-6 075 

L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040 

M M 15 11-4 44 11-4 115 , (comma) , (comma) 56 0-8-3 33 0-8-3 054 

N N 16 11-5 45 11-5 116 . (period) . (period) 57 12-8-3 73 12-8-3 056 

0 0 17 11-6 46 11-6 117 - # 60 0-8-6 36 8-3 043 

P P 20 11-7 47 11-7 120 [ [ 61 8-7 17 12-8-2 133 

Q Q 21 11-8 50 11-8 121 J 1 62 0-8-2 32 11-8-2 135 

R R 22 11-9 51 11-9 122 % % 63tt 8-6 16 0-8-4 045 

S S 23 0-2 22 0-2 123 *- II (quote) 64 8-4 14 8-7 042 

T T 24 0-3 23 0-3 124 -> (underline) 65 0-8-5 35 0-8-5 137 -
U U 25 0-4 24 0-4 125 v ! 66 11-0 or 52 12-8-7 or 041 

V V 26 0-5 25 0-5 126 11-8-2ttt 11-0ttt 

W W 27 0-6 26 0-6 127 1\ & 67 0-8-7 37 12 046 

X X 30 0-7 27 0-7 130 t I (apostrophe) 70 11-8-5 55 8-5 047 

Y Y 31 0-8 30 0-8 131 ~ ? 71 11-8-6 56 0-8-7 077 

Z Z 32 0-9 31 0-9 132 < < 72 12-0 or 72 12-8-4 or 074 

0 0 33 0 12 0 060 12-8-2ttt 12-Ottt 

1 1 34 1 01 1 061 > > 73 11-8-7 57 0-8-6 076 

2 2 35 2 02 2 062 S @ 74 8-5 15 8-4 100 

3 3 36 3 03 3 063 ~ \ 75 12-8-5 75 0-8-2 134 

4 4 37 4 04 4 064 -, ....... (circumflex) 76 12-8-6 76 11-8-7 136 

5 5 40 5 05 5 065 ; (semicolon) ; (semicolon) 77 12-8-7 77 11-8-6 073 

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-11ne 
mark is converted to external BCD 1632. 

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch). 
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558). 

tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only. 
- - ~ --- -



EDITOR COMMAND FORMAT SUMMARY 

~DD [,line [,iner]] [.§..UP] [,QVERWRITE] 

!!YE [,!!YE] 

CREATE [,line [,iner]] [,§..UP] 

QELETE, {~~~1 L {~~~~}]} [,1textl [.(eol-l [,eol-2]1] [~NIT]] [~ETO] 
LAST -

.§.DIT,filename [~EOUENCE] 

[{ 
,format-name 

fORMAT [.I AB=e] [,tab-l [,tab-2 [ , ... [,tab-n]]]] 
,2HOW 

I,£H=nnnJ} ] 

[ {
ALL 
-:- line-2 

!:.IST , IlOe-l [, {LAST} 
LAST -

L§..UP] [,1textl [,(eol-l [,001-2] I] [~NIT]] 

RESEO [.line[,iner]] 

RUN,system-name [,.!:.ILE=filename] [~OEX] [,§..UP] 

SAVE.filename I~OSEOJ I.QVERWRITEJ I.MERGEJ [- {~~; I. {~:;} J}] 

[,1textl [.(eol-l Leol-2])] L~NlT]] [,YETO] 

[ = ] linenum=text 

/"dtexU=/newtexu [.{ S I. {~n J} ] [,(eOI-l [,eol-2] I] [~NIT] I~ETO] 

Legend 

{ } Signify that one of enclosed item, may be selooted 

Enclose optional parameters 
Signify minimum abbreviation 

60495000 A 

B 

B-1 





GLOSSARY c 

Attach 

Execution of a FETCH or ATTACH command to make a permanent file available for use at the terminal. 

Batch Processing 

Execution by submission of a series of statements in a job deck, or deck image, starting with a job 
statement and ending with an end-of-information indicator - in contrast to execution through INTERCOM 
where a single statement is executed independently of any other statement. 

Central Site 

The location of the CDC CYBER 170, CYBER 70, or 6000 Series computer running INTERCOM and user 
programs. It may be many miles away or in another room in the same building. Equipment attached to 
the system includes card readers, line printers, magnetic tape units, and mass storage, and communication 
equipment for remote terminals. 

Command 

The form of an instruction to INTERCOM. It is terminated by pressing the RETURN key. 

COMMAND Mode 

The initial state of INTERCOM after LOGIN. The word COMMAND appears to the left of a line when 
INTERCOM can accept another command. 

Contrast with EDITOR Mode. 

Connected File 

A file equated with the terminal. Input file data must be entered from the keyboard; output file data 
is displayed immediately. No copy of the file data remains in the system. 

Edit File 

Temporary work area that holds files being created or updated through· the EDITOR utility of INTERCOM. 

EDITOR Mode 

The state of INTERCOM existing after the EDITOR utility has been called. A fil~ can be created or 
modified in the edit file work area. 

Interactive Processing 

Utilization of connected files during program execution. The program must expect keyboard input; 
execution is suspended until input is entered. Output is displayed immediately. 

60495000 A C-l 



Local File 

A me avaHable for reference in INTERCOM commands. Appears under category LOCAL when FILES 
command is executed. 

Attached permanent mes. connected mes, mes referenced in SAVE and BATCH,LOCAL commands are 
local files. Local files are destroyed by the LOGOUT command, unless they are permanent files. 

Operating System Command 

I A command that is passed to other portions of the operating system for execution instead of execution 
by INTERCOM. 

Permanent File 

A me that exists from one terminal session to another. It is stored at the central site on mass storage. 
When called to the terminal in a subsequent session, it is said to be an attached permanent me. Con­
trast with Local File. 

Remote Terminal 

A teletypewriter or display terminal connected to the central site computer through INTERCOM use of 
communication equipment. 

Terminal Session 

The period between execution of a LOGIN and LOGOUT command. 

C-2 60495000 B 



Abbreviated commands 3-18 
Abort 2-11, 3-5 
Access, terminal 2-1 
Acoustic coupler 2-2 
ADD command 4-24,6-2 
Attached files 3-9, 4-14 

using FETCH 6-24 
AUDIT command 6-4 

Backspace 1-3, 2-11 
BATCH command 6-7 
BYE command 6-12 

Character 
set A-I 
string replacement 6-45 
tab 4-4 

Command 
definitions 3-2 
entry 3-6 
error messages 3-4 
names 3-2 
syntax 3-17 
termination 3-5 

Commands, INTERCOM 
AUDIT 6-4 
BATCH 6-7 
CONNECT 3-14, 5-13, 6-13 
DISCARD 4-13, 6-18 
DISCONT 3-14, 5-13 
EDITOR 6-23 (see EDITOR) 
FETCH 4-14, 6-14 
FILES 4-8, 6-24 
LOGIN 2-3 
LOGOUT 2-6 
RETURN 4-12, 6-31 
REWIND 6-33 
STORE 4-14, 6-42 
TEACH 6-43 

Communication 2-1 
Compile program 6-33 
CONNECT command 3-14, 5-13,6-13 
Connected file 3-14, 5-13, 6-13 

60495000 A 

INDEX 

input end 5-15 
summary 5-16 

Control keys 2-10 
Copy 

files 4-11 
with SAVE 1-5 
utility 6-14, 6-50 

COPYSBF utility 6-14 
CREATE command 6-14 

call 1-2 
fundamentals 4-1 
with suppress 4-16 

Data 
entry 5-1 
input 5-13 

DELETE command 4-26,6-17 
correct input 1-3 

Diagnostics 
command entry 3-3 
DISCARD 6-19 
EDIT 6-22 
FILES 6-26 
local file limit 3-11 
LOGIN 2-5 
RESEQ 6-31 
RETURN 6-32 

Dial central site 2-1 
Discard 

command 6-18 
file 4-13,6-31 

DISCONT command 3-14, 5-13 
Display edit file 4-3, 5-7, 6-28 

EDIT command 4-22,6-20 
Editflle 3-19,4-22 

copy 4-11 
examine 4-3,5-7,6-28 
exit 6-12 
with RUN 4-7, 6-33 

EDITOR 
call 1-1 
command syntax 3-17 

Index-l 



commands 3-16 
me creation 4-1 
me execution 4-7 
utility program 3-15 

EDITOR commands 6-23 
ADD 4-24,6-2 
BYE 6-12 
CREATE 1-2,4-1, 4-16, 6-14 
DELETE 1-3,4-26,6-17 
EDIT 4-22, 6-20 
FORMAT 1-2,4-3,5-4,6-26 
linenum=text 1-4, 4-23 
LIST 1-3, 4-3, 6-28 
/oldtext/=/newtext/ 4-17,6-45 
RESEQ 6-29 
RUN 1-4,4-7, 5-6, 6-33 
SAVE 1-4,4-11, 6-36 

End 
command execution 2-11, 3-5 
CREATE 6-15 
EDITOR 6-12 
me input 5-17 
session 2-6 

ENTER LINES 6-15 
Entry 

responses 3-3 
samples 3-6 

EOF 3-16,5-9,5-15,6-47 
EOR 3-16, 5-15,6-47 
Execute program 1-4, 4-7, 5-6, 6-33 
Exit see End 

FETCH command 4-14,6-24 
Files 

attached 3-9 
command 4-8,6-24 
connected 3-14, 5-13 
disposition 6-6 
edit 3-19 
editing 4-15 
eliminate 4-12 
linkage 5-2 
local 3-10 
name~ 3-10, 5-2 
permanent 3-13,4-14,6-42 
preselVe 4-14 
special named 3-14 
status 4-8, 6-24 
rewind 6-33 
unconnected 5-3 
updating summary 4-26 
user 3-9 

Index-2 

FORMAT 
call 1-2 
command 6-26 
fundamentals 4-3 
parameters 5-4 

FORTRAN 
me linkage 5-2 
format 4-4 
statements 3-15,5-1 

Help 6-43 

INPUT me 3-14,4-9, 5-2 

Keys, Teletype 2-10 

LGO me 4-9, 5-6 
Line 

length 4-7, 6-26 
number 4-21, 4-23, 6-21 
number suppress 4-16, 6-15 
overwrite 6-1 

linenum=text command 4-23 
change input 1-4 

Ust 
checking input 1-3 
command 6-28 
fundamentals 4--3 
edit file 5-7, 6-28 

Local files 
defined 3-10 
disposition 6-8 
limit 3-12 
merge 6-41 
names 3-10 
release 6-31 
and SAVE 4-11,5-5 
status 3-12 

LOGIN 
command 2-3 
diagnostics 2-5 

LOGOUT command 2-6 

MERGE option 6-39 

NOEX option 6-35 
NOSEQ option 4-22,6-41 

60495000 A 



Operation 
summary 1-5 
Teletype 2-7 

OUTPUT file 3-14,4-9, 5-2 
OVERWRITE option 

ADD 6-2 
SAVE 6-38 

Owner identification 4-14 
/oldtext/=/newtext/ command 4-17, 6-45 

pitfalls 4-20 

Password 2-3 
Permanent fIles 3-13, 4-14, 6-42 

attach 6-24 
audit 6-4 

Print disposition 6-8 
statement 3-15, 5-1 

Program 
compile 6-33 
data entry 5-1 
entry 1-1 
statement 3-15, 5-1 
with NOEX 6-35 

Range parameter 4-18,4-26 
READ statement 3-15, 5-1 
Release 

local file 4-12 
permanent fIle 6-18 

Remote output fIles 6-9 
RENAME option 6-10 
Replace character string 4-17, 6-45 
RESEQ command 6-29 
RETURN command 6-31 

fundamentals 4-12 
REWIND command 6-33 
RUN command 6-33 

execute program 1-4, 5-6 
fundamentals 4-7 

SAVE command 6-36 
call 1-4 
fundamentals 4-11 
and local fIle 5-5 

60495000 A 

Search criteria 4-20 
Separa tors 3-17 
SEQ option 4-22 
Special named fIles 3-14 
Status information 6-4, 6-24 
Stop 

command execution 2-11,3-5 
fIle creation 6-16 

STORE command 6-42 
fundamentals 4-14 

Suppress 
line numbers 4-16 
LOGIN messages 2-4 

Syntax 
EDITOR commands 3-17 
INTERCOM commands 3-2 

Tab character 4-4, 5-4, 6-26 
TEACH command 6-43 
Teletype operation 2-7 
Terminals 

batch 3-1 
operation 2-1 
Teletype 2-7 
user questions 1-6 

Text 
change 6-45 
entry 3-19 

Text replacement command 4-17, 6-45 
pitfalls 4-20 

Unconnected fIles 5-4 
UNIT parameter 4-21 
Updating fIles 4-17 

summary 4-26 
User 

fIles 3-9 
id 6-9 
questions 1-6 

VETO option 
DELETE 6-18 
/oldtext/=/newtext/ 6-46 

Index-3 





w 
2 
:::i 
CJ 
2 
o 
~ 

<t ... 
::l 
(J 

<i. 
!Ii 
::i 
2 

C 
w ... 
2 
a: 
~ 

COMMENT SHEET 

MANUAL TITLE CDC INTERCOM Version 4 Interactive Guide for Users of FORTRAN Extended 

PUBLICATION NO. ~6.;;.04.;.;.9.;;.5.;;.OO~O~ ___ _ REVISION __ .;;;;;B'--__ _ 

FROM: 
NAME: ________________________________ __ 

BUSINESS ADDRESS: ____________________________________ __ 

COMMENTS: 
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed 
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be 
made below. Please include page number references and flll in publication revision level as shown by the 
last entry on the Revision Record page at the front of the manual. Customer engineers are urged to use 
the TAR. 

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 
FOLD ON DOTTED LINES AND STAPLE 



STAPLE STAPLE 

fOLD FOlD 
-------------------------------------------~ 

FOLD 

BUSINESS REPLY MAil 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

CONTROL DATA CORPORATION 
Publications and Graphics Division 
ARH219 
4201 North lexington Avenue 

Saint Paul, Minnesota 55112 

FIRST CLASS 
PERMIT NO. 8241 

MINNEAPOLIS, MINN. 

FOLD 

III 
Z 
::::; 
o z 
9 
~ ... 
:) 
u 





CORPORATE HEADOUARTERS, P.O. BOX 0, MINNEAPOLIS, MINNESOTA 55440 LitHO IN U.S.A. 
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD 

~~ 
CONTI\.OL DATA CO~O~TlON 


