
&ll::\ CONTI\.OL DATA
\::I r::J CO~OR(\.TION

INTERCOM VERSION 4
MULTI-USER JOB CAPABILITY
REFERENCE MANUAL

CDC® OPERATING SYSTEM:
NOS/BE 1

60.49.4700

REVISION RECORD
REVISION DESCRIPTION

A Original printing.

(11-1-75)

B Revised to correct technical errors. Reflects NOS/BE version 13 at PSR level 473.

(6.13-78)

Publication No.
60494700

REVISION LETTERS I, 0, Q AND X ARE NOT USEO

© 1975, 1978

Control Data Corporation
Printed in the United States of America

ii

Address comments concerning
this manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars in the
margins or by a dot near the page number if the entire page is affected. A bar by the page number indicates pagina­
tion rather than content has changed.

Page Revision Software
Feature Change Page Revision Software

Feature Change

Front Cover - 5-1 A
Title Page - 5-2 A
ii B A-I A
iii/iv B A-2 A
v/vi B B-1 A
vii B B-2 A
viii A B-3 A
I-I A Index-I A
1-2 A Index-2 B
1-3 A Index-3 A
14 A Comment Sheet B
1-5 A Back Cover -
2-1 A
2-2 A
2-3 A
24 A
2-5 B
2-6 B
2-7 A
2-8 A
2-9 A
2-10 A
2-11 A
2-12 A
2-13 B
2-14 A
3-1 A
3-2 A
3-3 A
34 A
3-5 A
3-6 A
4-1 A
4-2 A
4-3 A

60494700 B iii/iv

PREFACE

INTERCOM Version 4 contains a multi-user job
capability that allows more than one terminal user
to access a single copy of an executing program.
A program written in COBOL Version 4 or COBOL
Version 5, COMPASS Version 3, or FORTRAN
Extended Version 4 uses subroutine calls to inter­
face with tables and routines internal to INTER­
COM that permit the multiple access.

SCED and the multi-user job capability of INTER­
COM operate under the NOS/BE Version 1 operat­
ing system on the CONTROL DATA®{:YBER 170,
CYBER 70 Models 71, 72, 73, and 74, and 6000
Series Computer Systems.

This manual describes the calls to the multi-user
job subroutines and SCED subroutines. The

In addition to calls directly to the multi-user job
subroutines, Control Data Corporation provides a
higher level call capability for COBOL Version 4
or COBOL Version 5 users known as SCED.
SCED interfaces with the routines that in turn
interface with INTERCOM.

reader is assumed to be an experienced programmer,
familiar with terminal communication as well as

60494700 B

the host language, who is writing an application
program to be installed as part of the system
library. Related publications are listed below.

Control Data Publication Publication Number

INTERCOM Version 4 Reference Manual 60494600

COMPASS Version 3 Reference Manual 60492600

COBOL Version 4 Reference Manual 60496800

COBOL Version 5 Reference Manual 60497100

FORTRAN Extended Version 4 Reference Manual 60497800

SCED User Guide for INTERCOM Version 4
Multi-User Job Capability

UPDATE Reference Manual

NOS/BE Version 1 Installation Handbook

60494800

60449900

60494300

This product is intended for use only as described
in this document. Control Data cannot be respon­
sible for the proper functioning of undescribed
features or parameters.

v/vi •

CONTENTS

l. MULTI-USER JOBS 1·1 tiobuff Parameter 2·11

Subroutine Calls 1·1 leng Parameter 2·12

Typical Program Structure 1·2 err Parameter 2·12

Initialization 1·2 TIO Use 2·12

Allocating muj Tables 1·2 MSYSERR Subroutine 2·13

Assigning User Areas 1·3 MSYSERR Parameters 2·13

User Files 1·3 number Parameter 2·13

Terminal Input/Output 1·3 iflags Parameter 2·13

Execution 1·3 auxsub Parameter 2·14

Termination 14 MSYSERR Use 2·14

Error Processing 14
Trace Printout 14 3. SCED INTERFACE TO MUJ

Accounting 14 SUBROUTINES 3·1

SCED Use in a Program 3·1

2. MUJ SUBROUTINE CALLS 2·1 Program Organization 3·2

INMUJ Subroutine 2·1 Programming Considerations 3·2

INMUJ Parameters 2·1 Input/Output File Processing 3·2

mujtbl Parameter 2·1 User Areas 3·2

nuserfile Parameter 2·1 Interlocks 3·3

ntermfile Parameter 2·1 SCED Calls 3·3

nuser Parameter 2·3 . CONNECT 3·3

narea Parameter 2·3 DISCON 34

larea Parameter 2·3 EXITMUJ 34

uarea Parameter 2·3 GETINT 3·4

INMUJ Use 2·3 INIT 34

USER Subroutine 2·3 IOWAIT 34

USER Parameters 24 RETINT 3·5

old user Parameter 24 TERMIN 3·5

actn Parameter 24 TERMOUT 3·5

state Parameter 2·6 SCED muj Installation 3·5

iperms Parameter 2·6 MAXUSR num 3·6

I ibklg Parameter (Optional) 2·6 NUMINT num 3·6

itime Parameter (Optional) 2·6 USAREA num, len 3·6

ibreak Parameter 2·6 DEFBUF 3·6

newuser Parameter 2·6 OUTBUF num, len 3·6

iarea Parameter 2·9
complt Parameter 2·9 4. MUJ INSTALLATION 4·1
fetadd Parameter 2·9
flun Parameter 2·9 Installation Example 4·1

fname Parameter 2·9 Variations on Installation Procedures 4·2

fwait Parameter 2·9 FORTRAN Variations 4·2

lwait Parameter 2·9 COMPASS Variations 4·2

USER Subroutine Use 2·10 SCED Variations 4·3

TIO Subroutine 2·10
TIO Parameters 2·10 5. MUJ EXAMPLE 5·1

user Parameter 2·10
iocode Parameter 2·10

60494700 B vii

APPENDIXES

A Standard Character Sets A·l B Diagnostic Messages B-1

INDEX.

FIGURES

2-1 INMUJ Calling Sequence and Parameter 2-5 MSYSERR Calling Sequence and
Formats 2·2 Parameter Formats 2·14

2-2 Structure of mujtbl 2·2 4·1 Sample Deck for COBOL muj Program
2-3 USER Calling Sequence and Parameter Installation 4·3

Formats 2·5 5-1 Sample Program CONVERS 5·2
2-4 TIO Calling Sequence and Parameter

Formats 2·11

TABLES

2-1 state Values Returned to muj Program B-1 Diagnostic Messages B·l
from USER Call 2·7

viii 60494700 A

MULTI-USER JOBS 1

The multi-user job (muj) facility of INTERCOM 4
enables a program to provide processing for many
terminal users at the same time. The interface be­
tween a muj program and INTERCOM is a set of
subroutines called the muj subroutines. These sub­
routines schedule users for muj program execution by
maintaining a scheduling queue, monitoring the cur­
rent condition of each user in the queue, and return­
ing the users to the program, one at a time, as they
become ready for further processing. Although many
users can call the muj program from their terminals
and be active simultaneously, the muj program itself
processes only one user at a time; the other users
wait in the scheduling queue maintained by the muj
subroutines.

In addition to scheduling and switching users, the
muj subroutines perform input and output operations
between the muj program and individual terminals,
monitor completion of output operations, interface
with INTERCOM tables, and provide error processing
and recovery facilities.

Writing an application as a muj program might
improve real-time performance (input/output opera­
tions can be occurring for one user while the muj
program is executing central processor code for
another), and might also reduce central memory re­
quirements, since only one copy of the muj program
is loaded no matter how many users call it.

Muj programs are more difficult to design and code
than single-user jobs, and their interactive nature
makes debugging more difficult; therefore, they are
normally restricted to heavily used applications in
which users remain active for a considerable period
of time. An example of an existing muj program is
the EDITOR utility of INTERCOM. Interactive data
base processing programs are also good candidates for
programming as muj programs.

A muj program differs from a single-user job in that
the muj program must be installed in the system; it
cannot be submitted for execution as part of a
normal user job. A program that is not installed in
the system cannot call the muj subroutines.

60494700 A

To install a muj program, an absolute binary of the
muj program must be added to a system library, and
entries must be made to INTERCOM tables so that
INTERCOM can recognize the muj program's name.
The system EDITLIB utility must be used to install
the m uj program, either as part of the deadstart file
or directly into the running system. A system EDIT­
LIB usually requires the consent or participation of
the principal systems programmer responsible for the
system. Procedures for installation are discussed in
section 4.

SUBROUTINE CALLS

The muj subroutines can be called from programs
written in COBOL, COMPASS, or FORTRAN. The
entry point names for the subroutines might vary
from one language to another because FORTRAN and
COBOL can call preprocessors instead of the COMPASS
entry point names. The basic functions of the muj
subroutines, however, do not change. Parameters in
the calls to the muj subroutines result in logically
equivalent functions from all languages, even though
the number of parameters in the call might vary.

When preprocessors are called by FORTRAN and
COBOL, the preprocessors accept parameters in forms
convenient to the high-level languages and reformat
them before issuing calls to the COMPASS entry
points. The preprocessor routines are discussed in
section 2 with the muj subroutines for which they
can be substituted.

In addition to the muj subroutines and preprocessors,
a higher-level interface named SCED is available for
the COBOL programmer. SCED enables the program­
mer to write a multi-user job as if it were a single­
user job, and simplifies the complexities involved in
programming with the muj subroutines. SCED is
discussed in section 3.

1-1

TP.e basic functions of muj subroutines are:

To maintain tables of the status of each user
connected to the muj program.

To communicate with user terminals and the
muj program.

To initiate input/output operations between the
muj program and connected terminals at muj
program request.

To schedule the users ready for further proces­
sing, and pass the user areas to the muj program
upon request or in the order in which they
occur in the scheduling queue.

To monitor users waiting for input/output
completion and prepare the users for further
processing.

To switch the user and associated user areas
into or out of muj program execution at
program request.

The four multi-user job subroutines that can be
called by a program are listed below, along with their
specific functions.

Subroutine

INMUJ

USER

no

MSYSERR

Function

Performs initialization for a muj
program.

Handles user scheduling and switch­
ing, as well as file action requests.

Performs terminal input/output
operations.

Generates system error messages and
dumps.

One of the subroutines, MSYSERR, cannot be called
directly from COBOL; however, the subroutine can
be referenced in a COBOL program by writing a
COMPASS subroutine that issues the calls to
MSYSERR.

TYPICAL PROGRAM STRUCTURE

The general order of events in a muj program is as
follows:

Initialization: A call to INMUJ initializes data areas
(INMUJ is executed only once each time the muj
is loaded).

1-2

Execution: Calls to USER cause users to be
switched, and calls to no perform terminal
input and output operations.

Termination: The muj does not terminate in the
normal manner; rather, when INTERCOM detects
that no users are attached to the muj program,
execution is halted.

Recovery: If termination is due to an error, recovery
processing is initiated, and an automatic call is
made to MSYSERR to generate dumps.

INITIALIZATION

Certain areas, such as muj tables and user areas, are
established in the field length of the muj program to
facilitate communications among the muj program, the
muj subroutines, and the terminals. Each muj pro­
gram must have a muj table area, and might have a
user area and other areas set up for individual user
files. Allocation of these areas is the responsibility
of the muj program; allocation can be accomplished
through the DIMENSION statement in FORTRAN,
the BSS statement in COMPASS, or Data Division
entries in COBOL. Some of the areas, such as the
muj table, are accessed only by the muj subroutines,
even though the areas are allocated by the user.

Allocating muj Tables

The call to INMUJ must be the first call to muj
subroutines executed. The call to INMUJ passes
information to the muj subroutines about the muj
table that is used internally by the muj subroutines
no and USER. The muj table is subdivided into
four parts, as follows:

The first part contains status and accounting
information, by user, of all users attached to
the program.

The second part contains pointers to each active
user file and its file environment table (FET).

The third part contains pointers to user area
buffers.

The fourth part contains an FET for each
internal fIle used for input/output by the muj
subroutines.

60494700 A

Assigning User Areas

The muj program can maintain information associated
with an individual user by assigning a special area to
each attached user. The area is called a user area
buffer. Space for the user area buffer is defined in
the muj program, and the size and number of buffers
to be allocated within the program are passed to the
muj subroutines in the INMUJ call.

If more users are attached to the program than the
number of user area buffers allocated, muj subroutines
maintain the excess user area buffers on disk storage.
By swapping user area buffers between disk storage
and the muj program, the muj subroutines ensure
that the appropriate user area buffer is in the muj
program whenever the corresponding user is scheduled
for processing.

User Files

A muj program can allow individual user files to be
accessed during program execution; however, a user's
file is not attached automatically when a user calls
the muj program. Files must be attached during pro­
gram execution by a special call to the USER sub­
routine which equates the name specified by the user
with a name already compiled into the program.
Certain established procedures eliminate user conflict
during individual file accessing:

Space must be allocated for a file environment
table in the muj program for each user me the
muj program can attach concurrently. If the
muj program is to use the file attaching facility,
it is suggested that space be allocated for two
or three FETs.

Space must also be allocated in the muj table,
by the INMUJ call, for an entry composed of
one central memory word for each user file
that can be concurrently attached to the muj
program. The central memory word identifies
the owner and FET address of each attached
user file.

In response to calls with file action requests,
the USER subroutine inserts the file name table
(FNT) address of the file in the fifth word of
the FET to distinguish the me name from pos­
sible duplicates. Input/output is directed to the
FNT entry by the pointer in the FET when an
input/output operation is performed on a user
file.

60494700 A

If the muj program attaches its own files, the file
names must not conflict with attached user files. One
way of ensuring that no conflicts occur is to have the
muj program attach all its own files in the initializa­
tion section of the program before any user files are
attached. In this way, even user files of the same
name cannot cause conflicts with muj program files.

Terminal Input/Output

Special six-word FETs must be allocated in the muj
table for internal use by muj subroutines in perform­
ing terminal input/output operations. Only one input/
output request can be in process for a terminal at
one time. As soon as an input/output operation is
completed for a terminal, the FET is released and the
six-word area allocated to the FET can be assigned to
another terminal input/output operation.

The sixth word of the special FETs used for terminal
input/output is set with the user's identification, which
is used to route messages to the proper terminal and
identify the sending user to the muj program. The
user identification is also used in creating and releas­
ing the FETs, since all of the FETs created for termi­
nal input/output have the same file name.

EXECUTION

A muj program is activated and/or associated with a
user when the muj program name is entered as a
command at a terminal. When this command is issued,
the specified muj program is brought into execution if
no other user is being serviced by the muj; if the muj
program is already active, the terminal is placed in the
scheduling queue and eventually given to the muj pro­
gram for processing by a call to USER.

An activiated muj program can handle processing for
any number of terminal users, up to the maximum
defined by the muj program on the INMUJ call. The
USER subroutine keeps track of each user attached to
the muj program. The muj program calls the USER
subroutine whenever a new user can be scheduled for
program execution. USER schedules the next user or
a specific user for program execution and ensures that
the corresponding user area buffer is in central mem­
ory. A new user can also be requested when proces­
sing for the current user cannot proceed until some
condition is satisfied. For example, it might be nec­
essary to wait until input/output is completed, a file
is attached, or a buffer is available. When a user

1-3

awaiting some condition is returned to the scheduling
queue, the USER routine keeps track of the condi­
tion awaited, and does not return the user until the
condition is fulfilled.

The muj program and individual users communicate
through the TIO subroutine. When the muj program
is ready to communicate with an individual user, a
call is issued to TIO indicating whether the program
is ready either to accept input data or to transmit
output data. TIO takes care of the actual transfer of
data to and from the user's terminal through
INTERCOM buffers; thus, the muj program is imme­
diately freed to continue processing for other users.

TERMINATION

A muj program cannot terminate in the normal
manner. When no users are attached, INTERCOM
terminates the muj program. No reprieve is possible
from this termination.

Each user processing in a muj program can terminate
at any time. Typically, the user detaches from the
muj by entering the command that the muJ program
interprets as denoting end of processing for a termi­
nal. The muj program then issues a call to USER to
detach the user from the muj. For certain errors, the
muj program itself might be terminated as a result of
internal system checks; in this case, all users are
detached from the muj program.

The muj program is terminated automatically when
the last user processing the muj program is detached.
INTERCOM initiates this termination, and the pro­
gram ceases to exist as a task in the system. When
another user enters its name as an INTERCOM com­
mand, the program is reinitialized as a new task in
the system.

ERROR PROCESSING

MSYSERR muj subroutine can be called when an
error is detected in the muj program. Parameters in
the call indicate the action that is to be taken as a
result of the error. Some of the actions the muj
program can request are:

Send error messages and codes to all users.

Abort the entire muj program.

1-4

TRACE PRINTOUT

The muj subroutines can be compiled optionally to
generate a trace printout as an aid in diagnosing muj
program aborts. This trace printout is generated and
included in the abort dump if a *y ANK MDEBUG
card is included in the UPDATE job that extracts the
muj subroutines from the INTERCOM program library.

The trace printout is generated by FORTRAN PRINT
statements; consequently the muj programmer must
provide, at address x, a word containing the left­
justified display code characters OUTPUT in bits
59-18, and the address of a file information table
(FIT) for the file named OUTPUT in bits 17-0.
Address x must satisfy the condition RA+2~x~RA+63
(decimal). None of the words preceding address x can
be binary zero. Linkage is provided by including the
file name OUTPUT on the PROGRAM statement of a
FORTRAN program.

In order to handle an abort, INMUJ calls the operat­
ing system RECOVR routine. If the muj program
that is being written also calls RECOVR, this call
should be included after the muj program calls INMUJ.
The last call to RECOVR is executed first, in effect
stacking requests.

ACCOUNTING

Each time the USER subroutine returns a user to the
muj program in a ready state, the subroutine incre­
ments two servicing counts. One count is maintained
in an internal table associated with the user to record
the number of times the muj provided processing for
the user since the last accounting period. The second
count is incremented to tally the total number of muj
services for all users since the last accounting period.

When a user's servicing count reaches a threshold
value, USER performs the following accounting
procedure:

Reads the total central processor time used by
the muj program since the last accounting period.

Computes the percentage of the total central
processor time received by each user.

Distributes the charges to all users for an equal
percentage of the total central processor time
used by the muj program.

60494700 A

Reinitializes the user's servicing count and the
total muj program counts to zero to restart the
accounting cycle.

If the maximum authorized time limit allotted to a
user is exceeded, the state parameter returned by the
USER subroutine informs the muj program. The muj

60494700 A

programmer is responsible for ensuring that the
specific user is denied any further muj processing
except as required for exiting from the muj. program
without drastic consequences; for example, a multi­
user text editor program could be programmed to
allow the user to save a fIle before forcing an exit.

1-5

MUJ SUBROUTINE CALLS 2

Calls can be made from a COMPASS or a FORTRAN
program to all four muj subroutines: INMUJ, TIO,
USER, and MSYSERR. A COBOL program can call
only three of the muj subroutines: INMUJ, TIO,
and USER. MSYSERR can be accessed by a COBOL
program only by a call to a COMPASS subroutine,
which in turn issues the call to MSYSERR.

COBOL and FORTRAN programs can also issue. calls
to preprocessors to communicate with the muj sub­
routines. The use of the preprocessors allows the
COBOL or FORTRAN program to specify parameters
in standard language formats. The preprocessors con­
vert the parameters to the format required by muj
subroutines before calling the muj subroutines, and
restore the parameters to the standard language
format before returning to the calling program.

FORTRAN can call the following preprocessor:

USERFO instead of USER.

COBOL can call the following preprocessors:

USERCO instead of USER.

INMUJCO instead of INMUJ.

TIOCO instead of TIO.

INMUJ SUBROUTINE

The INMUJ subroutine performs initialization for
multi-user jobs. The call to INMUJ passes to the
INMUJ muj subroutine information required to fill in
the muj table used by the USER and TIO sub­
routines. The space for the muj table must be
allocated by the muj program, but the table is used
only by the muj subroutines. The muj table, along
with other tables internal to the mujsubroutines, is
initialized when a call to INMUJ is issued.

Other initialization performed by INMUJ includes
connecting the file used for terminal input/output,
initializing the INTERCOM tables TERMIN and
TERMOUT within the muj field length, and calling
RECOVR to reprieve on all error conditions.

60494700 A

The INMUJ subroutine must be called by the muj
program before any other muj subroutines are called;
it can be called only once. The calling sequence and
parameter formats for INMUJ and INMUJCO are
shown in figure 2-1.

INMUJ PARAMETERS

Parameters in the INMUJ call specifY information the
muj subroutines require to initialize the program for
terminal communication.

mujtbl Parameter

The mujtbl parameter specifies the beginning of a
block within the program that is allocated for use by
the muj subroutines. The length of the block depends
on the value of the other parameters in the INMUJ
call:

(nuserfile) + 6(ntermftle) + 4(nuser) + (narea) =
length of mujtbl

Figure 2-2 shows how the muj subroutines use the
area within the mujtbl block.

nuserfile Parameter

The nuserfile parameter specifies the maximum number
of user files that can be attached simultaneously to
the muj program. For each active fIle, mujtbl contains
a one-word entry that identifies the fIle's FET address
and the user associated with the ftle. The FET is de­
fined elsewhere in the muj program.

ntermfile Parameter

The ntermftle parameter specifies the maximum num­
ber of terminal input/output FETs that can be used.
The muj table must contain space for these FETs
(6*ntermfile).

2-1

2-2

INMUJ Calling Sequence

FORTRAN:

CALL INMUJ (mujtbl, nuserfile, ntermfile, nuser, narea, larea, uarea)

COMPASS:

+

INPAR

COBOL:

SAl
RJ

· · · VFD
VFD
DATA

INPAR
INMUJ

60/mujtbl,60/nuserfile,60/ntermfile
60/nuser,60/narea,60/larea,60/uarea
o

ENTER INMUJCO USING mujtbl, nuserfile, ntermfile, nuser, narea, larea, uarea.

Parameters

mujtbl

nuserfile

ntermfile

nuser

narea

larea

uarea

location
mujtbl

INMUJ Parameter Formats

FORTRAN COMPASS

array BSS or other storage allocation instruction

integer variable or constant integer

integer variable or constant integer

integer variable or constant integer

integer variable or constant integer

integer variable or constant integer

array BSS or other storage allocation instruction

Figure 2-1. INMUJ Calling Sequence and Parameter Formats

nuser Status and accounting information supplied by user.
(4 central memory words per possible user)

nuserfile Pointers to FET and user for each attached user file.
FETs for user files must be defined elsewhere in the muj program
(1 central memory word per possible attached user file)

narea Pointers to each user area buffer in central memory.
(1 central memory word per possible user area buffer)

ntermfile FET for each definer! internal terminal input/output file.
(6 central memory words per possible concurrent terminal
input/output request)

Figure 2-2. Structure of mujtbl

COBOL

table

COMP-l

COMP-l

COMP-l

COMP-l

COMP-1

table

Length-of
nuser =.
nuser*4

Length of
nuserfile =
nuserfile *1

Length of
narea=
narea*l

Length of
ntermfile =
ntermfile*6

60494700 A

nuser Parameter

The nuser parameter specifies the number of users
that can be in some state of execution within the
muj program. For each active user, mujtbl contains
a four-word entry to hold status and accounting infor­
mation. When the number of users in the muj pro­
gram is equal to nuser, other users are denied access;
a message from INTERCOM instructs those users to
try to call the muj program from their terminals at
another time.

narea Parameter

The narea parameter specifies the number of user area
buffers to be allocated in central memory. For each
user area buffer that is swapped into the muj program
mujtbl contains a one-word entry pointing to the
buffer. If user area buffers are not used in the muj
program, narea can be either zero or omitted.

larea Parameter

The larea parameter specifies the length of each user
area buffer in central memory words. If user area
buffers are not used in the muj program, larea can be
either zero or omitted.

uarea Parameter

The uarea parameter specifies the name of the block
of memory in the muj program provided for user area
buffers. If user area buffers are not used in the muj
program, uarea can be either zero or omitted.

INMUJ USE

The call to INMUJ is made to initialize the program
and to pass to muj subroutines the location of the
muj table, as well as the size of each table entry.
The muj subroutines use the information passed by
INMUJ for interaction with the muj program. Care
should be taken in allocating space for the muj table
because an inadequate amount of allocated space
might slow program response time to an unacceptable
level. The amount of space allocated in the muj
table should increase as the number of terminal users
increases.

60494700 A

USER SUBROUTINE

The USER subroutine provides scheduling and
switching of users into the muj program, and performs
file action requests such as attaching and detaching
user files. The USER subroutine receives instructions
from the muj program concerning actions to be taken
and returns to the muj program the status of the
actions requested.

The muj program issues a call to the USER subroutine
when a user executing in the program cannot proceed
until some event occurs that is external to the pro­
gram execution. Execution of USER temporarily
halts processing for the current user, and causes
another user to be switched into the program for
processing while the first user is waiting for an opera­
tion such as input from the terminal.

The information that the muj program can pass to the
USER subroutine includes:

The identification of the current user and the
pointer to the user area associated with the
current user.

The action that must be performed before the
user can continue processing in the muj program.

The request for the scheduling of either a
specific new user or any new user.

USER subroutine execution returns information to the
muj program indicating the status of actions requested.
The information that the USER subroutine can return
to the muj program includes:

The identification of the new user switched into
execution and the location of the user area
associated with the new user.

The status of the new user; that is, whether the
new user is attaching to the program; whether
the new user is ready to continue processing; or,
if a specific new user was requested, whether
that new user is presently unavailable to continue
processing.

Each time USER is called, the user currently process­
ing in the program is switched out and another user
is switched in. The user scheduled for execution by
the muj subroutine is determined by the status of the
users in relation to the actions requested. The pro­
gram has the option of specifying a switch of a

2-3

particular user, however. When the program, rather
than the muj subroutines, decides when a given user
is to be switched in, the program is also responsible
for checking whether a prior request has been com­
pleted. If a requested user is not ready to continue
processing, the user and user area are not switched in.
In this instance, only the status of the requested user
is returned to the program.

USER execution switches in a new user and the
associated user area. (The use of user areas is
optional; whether or not they are employed depends
on the needs of the program.) A pointer to the user
area is returned to the program along with the iden­
tification of the user. The program should set this
user identification as the old user parameter the next
time USER is called to switch out that user.

Whether or not the old user's area is swapped out to
mass storage when the user is switched out of execu­
tion depends on the program logic. If the user area
contains an FET or a buffer for an input/output re­
quest currently in process, the user area must remain
in central memory until that operation is completed;
under these circumstances the call to USER should
indicate that the user area is to be retained in
memory.

The calling sequences and parameter formats for
USER, USERFO, and USERCO are shown in
figure 2-3.

USER PARAMETERS

The parameters specified as part of the USER call
identify the old user, specify the action to be per­
formed, point to a buffer, and, in the case of a file
action request, specify the user file name. On return
from USER, parameters are set to show the results
of execution of this call.

olduser Parameter

The old user parameter contains the identification of
the user that is to be switched out of execution.
Two left-justified zero-filled display code characters
identify a user. The identification is determined by
INTERCOM and returned to the program in the
newuser field each time a user is switched into execu­
tion. When the program calls USER for the first
time, the olduser parameter should be set to O.

2-4

actn Parameter

The actn parameter specifies the action to be
performed. Most actions define the conditions under
which the old user currently executing can be re­
turned to the muj program for further processing.

The sign of the actn value specifies whether the user
area can be swapped out to mass storage when the
old user is switched out: a negative value retains the
user area within the muj program field length; a posi­
tive value allows the user area to be swapped out. If
user areas are not employed by the muj program, the
sign of actn is irrelevant.

The actions are represented by the following codes:

o

2

3

5

6

7

9

11

Switch in a new user. Use 0 only when the
muj program has no old user to be switched
out.

Return the old user only when terminal input
is available.

Return the old user at any time.

Return the old user only if the complete bit
in the complt parameter word is set, indicat­
ing that a previously requested action is
completed.

Detach the old user from the muj program.
No further processing for this user is possible,
since INTERCOM releases all internal tables
associated with the user and reassociates all
files with the terminal instead of the muj
program.

(Reserved for INTERCOM EDITOR.)

Return the old user only when an output
request initiated by a call to TIO is
completed.

Return the old user only after all output
reaches the terminaL Normally this actn is
specified only as a follow-up to receipt of a
state value with bit 57 set, which indicates a
backlog of output for the user.

Create a new local file for the old user; the
fetadd (or, in a compiler language, fname)
parameter specifies the file name. Return
the old user when the new file is created.

60494700 A

USER Calling Sequence

FORTRAN:

CALL USERFO (olduser, actn, state, newuser, iarea, Iwait, flun, fname)

COMPASS:

USPAR

COBOL:

SA1 USPAR
RJ USER · · •
VFD
VFD
DATA

60/0lduser ,60/actn,60/state
60/newuser,60/iarea,60/complt,60/fetadd
o

ENTER USERCO USING olduser, actn, state, ibreak, iperms, newuser, iarea, fwait, fname,

itime, ibklg.

Parameters

olduser

actn

state

newuser

iarea

complt

fetadd

Iwait

flun

fname

ibreak

iperms

fwait

itime

ibklg

USE R Parameter Formats

FORTRAN

integer variable; left-justified,
zero-filled

integer variable

integer variable

integer variable; left-justified,
zero-filled

integer variable or constant

integer

integer variable

file named on PROGRAM
statement

COMPASS

display code characters;
left-justified zero filled

integer

integer

display code characters;
left-justified, zero filled

integer

address

address

Figure 2-3. USER Calling Sequence and Parameter Formats

COBOL

COMP,
SYNC LEFT

COMP-1

COMP-1

COMP-1
SYNC LEFT

COMP-1

file named in
FD entry

COMP-1

COMP-1

display code

COMP-1

COMP-1

12 Attach an existing local file for the old user;
the fetadd (or fname) parameter specifies the
file name. Return the old user when the
local fIle associated with the terminal is
attached to the muj program.

13 Delete a local fIle for the old user; the fetadd
(or fname) parameter specifies the fIle name.
The actn parameter results in the performance
of an operating system UNLOAD function.
Return the old user after the file is deleted.

60494700 B 2-5

I

I

14

16

Detach an existing file and make it a local
file; the fetadd (or fname) parameter specifies
the file name. Return the old user after the
attached file is made a local file.

Attach the local file associated with the old
user if it exists; otherwise, create a local file
for the old user. The fetadd (or fname)
parameter specifies the file name. Return
the old user after the local file is attached.

state Parameter

The state parameter is returned to the muj program
by USER execution. It represents the status of the
new user being returned to the muj program for
processing or it specifies the reason why a requested
user cannot be returned. Table 2-1 lists the values
returned in the state parameter.

In calls to USER and USERFO, the state value is
returned in bits 0-17. If the status is concerned
with a permanent fIle, bits 18-22 are set to one to
indicate the permissions granted for the fIle:

bit 18

bit 19

bit 20

bit 21

bit 22

Read permission is granted.

Extend permission is granted.

Modify permission is granted.

Control permission is granted.

Permanent file is attached.

In calls to USER and USERFO, flags are returned in
bits 57-59:

bit 57

bit 58

bit 59

2-6

The user indicated by the newuser
parameter has an output backlog within
the INTERCOM buffer; unless USER is
called with actn=9, subsequent output
to this user will be delayed.

The user indicated by the newuser
parameter exceeded the maximum time
limit as specified in the INTERCOM
password file; the muj program should
call USER with actn=5 to detach the
user from the muj program.

The user newuser entered a break (%A,
ESC A or CTRL-Z characters) or a
temporary terminal disconnect occurred.
See USER Subroutine Use in this section.

In calls to USERCO, the only values returned in state
are those listed in table 2-1. Four additional param- I
eters, iperms, ibklg, itime, and ibreak, contain the
permanent fIle and flag information.

iperms Parameter

The iperms parameter contains permanent fIle informa­
tion corresponding to bits 18-22 of the state param­
eter in a USER or USERFO call. The iperms integer
parameter is valid only in a call to USERCO.

ibklg Parameter (Optional)

The ibklg parameter contains the output-backlog
information corresponding to bit 57 of the state
parameter in a USER or USERFO call. The ibklg
parameter is valid only in a call to USERCO.

itime Parameter (Optional)

The itime parameter contains the session time limit
exceeded information corresponding to bit 58 of the
state parameter in a USER or USERFO call. The
itime parameter is valid only in a call to USERCO.

ibreak Parameter

The ibreak parameter contains the break information
corresponding to bit 59 of the state parameter in a
USER or USERFO call. The ibreak parameter is
valid only in a call to USERCO.

newuser Parameter

The newuser parameter specifies the new user's iden­
tification. Its meaning depends on whether USER is
being called or has already been called. When USER
is being called, the newuser parameter identifies the
new user to be switched into the program:

o Switch in any user.

#J Switch in only the user identified.

When USER execution is complete, the newuser param­
eter is returned to the muj program. If a user was
switched in, the newuser parameter identifies that user.
If state=4 or 20-30, a new user was not switched in,
but the newuser parameter indicates the user for which
status information is being returned in the state field.

60494700 B

Old
state User

Out

o

1 yes

2 yes

3 yes

4 no

5 yes

6

7 yes

8 yes

9 yes

10 yes

11 yes

12 yes

13 yes

14 yes

15 yes

60494700 A

TABLE 2-1. state VALUES RETURNED TO MUJ PROGRAM FROM USER CALLS

Last actn for New User

1 (input available)

2 (any ready user)

3 (complt parameter set)

any

(not applicable)

7 (output buffer free)

any

9 (wait for backlog to clear)

11 or 16 (attach local file)

11 (attach local file)

12 (attach file to muj
program)

12 or 16 (attach file to muj
program)

New
User
In

yes

yes

yes

no

yes

yes

yes

yes

yes

yes

yes

yes

13 (delete file) yes

11 or 16 (create new local file) yes

Comment

state occurs only when the muj program is scheduling user for
processing. If the program requests a user currently in execu­
tion, an error condition exists. If the program requests a user
but that user has never been switched out, however, state=O.
This never occurs as long as the program sets the olduser field
to switch out the current user before a new user is switched in.

An actn=1 request is fulfilled.

An actn=3 request is fulfilled.

The value passed to USER in the olduser field does not corres­
pond to the identification of any user connected to the program.

The user is executing in the muj program for the first time.

(Reserved for INTERCOM EDITOR.)

TIO output request complete.

INTERCOM logged out the user after the user failed to log
back in within an installation-specified time period and follow­
ing a line disconnect. The user is switched in so that the pro­
gram can clear tables or perform other wrap-up functions and
disconnect the user.

An actn=9 request is fulfilled.

An actn= 11 or actn= 16 request is fulfilled.

An actn= 11 request was not fulfilled because the user already
has a file by that name.

The file was not attached because no local file with the name
specified exists for that user terminal.

The file was not attached because the user previously refer­
enced the file in an INTERCOM CONNECT command that
caused the file to be connected to the terminal. The file
cannot be attached to the muj program until the user enters
an INTERCOM DISCONT command to disconnect the file
from the terminal.

An actn= 13 request is fulfilled.

An actn= 11 or actn= 16 request is fulfilled.

2-7

TABLE 2-1. state VALUES RETURNED TO MUJ PROGRAM FROM USER CALLS (Continued)

Old New
state User Last actn for New User User Comment

Out In

16 yes 14 (detach and make local fIle) yes An actn=14 request is fulfilled.

17 yes 12 (attach local file) yes The file was not attached to the muj program because the
limit established by the INMUJ call was reached.

18 yes 11 or 16 (make local file) yes The me was not made local because the INTERCOM limit for
the maximum number of local mes was reached.

20 no none no The user identified in the newuser field is not attached to
the muj.

21 no 1 (input available) no The user identified in the newuser field is not ready for
execution because no terminal input is available.

22 no none no No user area buffer is free to be assigned to newuser. The
muj program must process at least one other user and return
a user area from memory before this user can be requested
again.

23 no 3 (complt parameter set) no The user identified in the newuser field is not ready for
execution because the complt (fwait or lwait in FORTRAN
and COBOL) parameter has not been set.

24 no 9 (wait for backlog to clear) no The user identified by the newuser field is not ready for
execution beacuse some output data still remains in the
INTERCOM buffer.

25 no 7 (wait for buffer) no The user identified by the newuser field is not ready for
execution because an output buffer is not available.

26 no any no The user identified by the newuser field is not ready for
execution because the associated user area is now being rolled
to mass storage.

27 no any file action code no The user identified by the newuser field is not ready fof
execution because the fIle action request is not complete.

28 no 13 or 14 (delete or detach no The user identified by the newuser field is not ready for
file) execution because the file detach or delete request is not

complete.

29 - - - - - - (Reserved for INTERCOM EDITOR)

30 no 5 (detach user) no An actn=5 request is in process.

2-8 60494700 A

iarea Parameter

The iarea parameter provides a user area pointer. Its
meaning depends on whether USER is being called or
has already been called. If the muj program has not
defined user areas in the INMUJ call, the iarea param­
eter is ignored.

When USER is being called, the iarea parameter iden­
tifies the location of the user area for the old user
to be switched out. Most often the program simply
respecifies the location received by the program, and
does not need to use the pointer during execution.

When USER execution is complete, the iarea param­
eter identifies the location of the user area for the
new user switched in. If no user was switched in,
iarea remains as it was when USER was called.

camplt Parameter

The complt parameter is valid in a call to USER
only. It specifies the address of a central memory
word, residing anywhere in the muj field length, in
which bit 0 will be set by some external program
(such as the operating system input/output routines)
to indicate the completion of an operation. The
complt parameter is meaningful only when actn=3,
but it must be specified for all file action requests
(act=11-16).

fetadd Parameter

The fetadd parameter is valid in a call to USER, but
not USERCO or USERFO. It specifies the file envi­
ronment table location. This parameter is meaningful
and need be specified only for USER calls with
actn=11-16.

If USER is being called with actn=l, actn=12, or
actn=16 (create or attach file to muj program), the
first word of the FET must specify the logical file
name in display code, left-justified and zero-filled.
When the user is again switched in for processing, the
fifth word of the FET contains the file name table
pointer for the file in bits 48-59.

If USER is being called with actn=13 or actn=14
(delete or detach file), the fifth word of the FET
must specify the file name table pointer in bits 48-59.

60494700 A

flun Parameter

The flun parameter is valid in a call to USERFO only.
It specifies the logical unit number of a file to be pro­
cessed that is identified on the PROGRAM statement
of the muj program. The parameter is meaningful only
when actn=11-16.

fname Parameter

The fname parameter is' valid in a call to USERFO or
USERCO only, and is meaningful only when actn=
11-16. The fname parameter is the name of a file
in display code, left-justified and zero-filled, which
identifies the file to be processed.

In a call to USERCO, fname must correspond to a file
name referenced in an ASSIGN clause in the Data'
Division; otherwise an error condition exists.

In a call to USERFO fname can be any file name,
whether or not it is referenced in a PROGRAM state­
ment. If the fname parameter is the name of a file on
the PROGRAM statement, that file is used to carry
out the file action request. If the fname parameter
is not the name of a file on the PROGRAM statement,
the file name is equivalenced to the file identified by
the flun parameter.

fwait Parameter

The fwait parameter is valid only in calls to USERCO.
It is meaningful only when actn=3, but must be spec­
ified for all actn=11-16 requests, also. For an actn=
11-16 request, the fwait parameter is the same as the
fname parameter. The fwait parameter is the logical
equivalent of the complt parameter used in a
COMPASS call to USER. In a call to USERCO it
specifies the name of a file in display code, left­
justified and zero-filled; the file name must have pre­
viously been referenced in an ASSIGN clause in the
Data Division.

Iwait Parameter

The lwait parameter is valid only in calls to USERFO.
It is meaningful only when actn=3, but must be spec­
ified for all actn= 11-16 requests as well. The lwait
parameter is the logical equivalent of the complt

2-9

parameter used in a COMPASS call to USER. In a
call to USERFO it specifies the name of a file in
display code, left-justified and zero-filled; the file
name must have previously been referenced in a
PROGRAM statement.

USER SUBROUTINE USE

The muj program should always check the state of a
new user returned to it for processing, to determine
if a break has been entered or a temporary disconnect
has occurred. The muj program must determine the
meaning of the break and the processing required for
it. Entry of the break at a terminal terminates out­
put currently being sent to the terminal and unsets
certain wait conditions in effect for the user; for in­
stance, if the user is waiting for input when the
break is entered, the muj program must again request
that the user be switched out to wait for input, even
though bits 0-17 of state indicate input is ready.

When the USER subroutine returns newuser for
processing, it performs only a normal subroutine re­
turn. In many cases, the muj program branches to a
particular part of the program. The part depends on
the user status and actn values. If user areas are
employed, branching can be accomplished by main­
taining a reentry address in the user area. If a re­
entry address is kept, care must be taken that asso­
ciated muj routines are reentrant, since other informa­
tion, including return addresses for nested subroutines,
might have to be saved in the user area, and the
passing of parameters in reentrant subroutines might
have to be avoided.

If they are employed, the user area buffers can be
the biggest obstacles in user scheduling. Even if a
user is ready for processing, a user area buffer must
be available before the user can be passed to the muj
program for processing. An adequate number of user
area buffers should consequently be allocated, and
information for a specific user should not be retained
in central memory in the user area buffers during a
user switch unless retention is absolutely necessary.
The use of FETs or input/output buffers in the user
areas should be avoided, if possible.

TIO SUBROUTINE

The TIO subroutine performs terminal input/output
for a specific user. If a call to rIO specifies a user

2-10

that is currently processing an input/output operation,
the request is rejected and an error code is returned in
a rIO parameter.

All terminal input/output in a muj program must be re­
quested through the TIO subroutine. The calling se""
quence and parameter formats for rIO are shown in
figure 2-4.

TID PARAMETERS

A call to the rIO subroutine specifies four parameters
identifying the user and the data to be transmitted. A
fifth parameter is returned to the program if an error
occurs.

user Parameter

The user parameter specifies the identification of the user
for whom an input/output operation is requested. The
value of the user parameter is normally obtained from
information returned to the muj program by the USER
subroutine.

iocode Parameter

The iocode parameter specifies the type of input/output
operation requested. The values used for iocode and an
explanation of what each value indicates are shown
below.

2

Perform a read operation from a terminal. The
request should be made only after the USER
subroutine indicates that input from the termi­
nal is ready for a user. Control is not returned
to the muj program until the data requested by
the read operation is transferred into the pro­
gram at the location indicated by the tiobuff
parameter.

Perform a write operation to a terminal. Con­
trol is returned to the muj program immedi­
ately after the write operation is initiated and
the area indicated by the tiobuff parameter is
free. The FET or buffer might not be free
at the time control is returned to the muj
program.

60494700 A

3

4

TID Calling Sequence

FORTRAN:

CALL TIO (user, iocode, tiobuff, leng, err)

COMPASS:

SAl TIPAR
RJ TIO

• • •
TIPAR VFD

DATA
60/user ,60/iocode,60/tiobuff ,60/leng,60/err
o

COBOL:

ENTER TIOCO USING user, iocode, tiobuff, leng, err.

TI D Parameter Formats

Parameters

user

iocode

tiobuff

length

err

FORTRAN

integer variable with two left-justified
display code characters

integer variable

array

integer variable

integer variable

COMPASS

left-justified; two display
code characters

integer

BSS or other storage
allocation instruction

integer

integer

COBOL

COMP, SYNC
LEFT

COMP-1

table

COMP-l

COMP-1

Figure 2-4. TIO Calling Sequence and Parameter Formats

Perform a one-line read operation from a
terminal. The code differs from iocode= 1 in
the one-line limitation. A line of data is
transferred to the muj program at location
tiobuff; any other input for the user remains
in the INTERCOM buffers and can be read
later.

Perform a READSKP operating system func­
tion from a terminal. If the ftrst line of
terminal input does not ftt into the circular
buffer, data is read until the buffer is full;
the remainder is discarded. No error code is
returned in the FET. If the first line of
data fits into the circular buffer, the code
acts as a normal read (iocode= 1).

5 Perform a one-line READSKP from a
terminal. If the line does not ftt into the
circular buffer, data is read until the buffer
is full; the remainder is discarded. No error
code is returned in the FET. If the line
ftts into the circular buffer, the code acts as
a normal one-line READSKP (iocode=3).

tiobuff Parameter

The tiobuff parameter speciftes an array or table that
is to be used in a terminal input/output operation.
When a read operation is specified, tiobuff receives
the input data; when a write operation is specified,
the data is written from tiobuff. For a write

60494700 A 2-11

operation, tiobuff must contain the data that is to be
transmitted to the terminal in display code format,
the carriage control characters, and the end-of-line
indicator. The end-of-line indicator must contain
12 bits of binary zeros in bits 0-11 of a central
memory word. The carriage control characters are
listed in the INTERCOM reference manual.

leng Parameter

The leng parameter specifies the number of words of
information to be either received in tiobuff or trans­
mitted from tiobuff. After a read, the leng parameter
is set to the number of words transmitted to tiobuff.
If the number of words specified in a read operation
cannot be accommodated in tiobuff, the input data is
truncated. If the number of characters of data involved
in the input/output operation is either one less than
an even multiple of ten or an exact multiple of ten,
leng must include an extra word to contain the end-of­
line indicator; otherwise the end-of-line indicator is
placed in bits 0-11 of the last word of output data.

err Parameter

The err parameter is a field that is set for the muj
program's use after a return from TIO execution. It
indicates errors that occurred during input/output
processing. The parameter values are shown below.

o No error occurred.

1

2

3

4

5

2-12

An input/output operation is in process for
the specified user; the requested operation
cannot be performed. This condition
should notarise if user switching is done
properly.

An error was made in the TIO call. The
error is usually an illegal value for iocode.

No terminal FET was available for the input/
output request; it must be reissued later.

A read operation was requested, but input
was not ready for the user.

The user identification is not that of a user
attached to the muj program.

6

7

The buffer is shorter than the input; the
input is truncated accordingly.

Information in the buffer is improperly
formatted; an end-of-line zero byte is not in
the last word.

8 A TIO system error occurred.

TIO USE

The muj program must format the data to be sent to
the terminal in display code, with a carriage control
character and an end-of-line indicator (a 12-bit byte
of binary zeros in bits 0-11 of a central memory
word). FORTRAN programs can use ENCODE to
format output messages; COBOL can use MOVE or
some other type of editing operation. The program­
mer must ensure the presence of the binary zero end­
of-line indicator in the last word to be sent to the
terminal, however.

Since the FETs used for terminal input/output are in
the area defined by mujtbl in an INMUJ call, a user
area need not be retained in central memory during
terminal input/output unless the input buffer is in the
user area.

If an input/output request is rejected because no
terminal FET is available, a user switch should be
requested, with the current user to be returned under
no special conditions (actn=2) .. The input/output
request can then be reissued.

A read request, issued by calling subroutine TIO with
iocode set to the type of read desired, causes terminal
input data to be transferred from an INTERCOM
buffer, where it is received from a user terminal, to
the muj program buffer indicated by the tiobuff
parameter. A read request should be issued only after
the USER subroutine informs the muj program that
input is ready for a specific user; that is, after USER
returns a new user to the muj program with state=l.
The muj program can ensure that USER returns a
specific user to the muj program only when the user's
input is ready by returning the user as olduser with
actn= 1, in a call to USER.

A write request, issued by calling subroutine TIO with
iocode=2, initiates data transfer from a muj program
buffer to an INTERCOM output buffer, where it is

60494700 A

sent to the user's terminal. The muj program
considers output complete when all data is removed
from the muj program buffer and the buffer is free
for use in another operation.

If a muj program generates output for a specific user
faster than it can be displayed at the user's terminal,
the output accumulates in INTERCOM's output
buffers as backlog. When the backlog becomes
excessive, INTERCOM eventually refuses to accept
additional output from that user until the backlog is
diminished.

The muj program must return users to USER with actn=7
after a write request to ensure that output is completed
before attempting further processing for that terminal.
This in tum might tie up the output buffer indefinitely;
the following actions can be taken after the user is returned
from the USER call, to determine whether a danger of a
backlog exists on the next write request:

Examine bit 57 when the user is returned to
the muj with state=7; state=7 indicates that the
muj buffer used for output is free. If bit 57
is set, the user's output is backlogged and the
next write statement for the user will probably
be refused.

When bit 57 is set, the muj program can return
the user to USER with actn=9 to wait until the
backlogged output reaches the user's terminal.
Returning the user with actn=9 ensures accept­
ance of the next write request and earlier
availability of the buffer holding the output
data.

MSYSERR SUBROUTINE

The MSYSERR subroutine generates system error
messages and requests dumps for the muj program.
MSYSERR is also called internally by the muj
subroutines to generate error messages and dumps
when errors are detected through internal system
checks; however, the muj program has no control
over the errors generated by the muj subroutines.
Any dump requested is written to the me OUTPUT
in standard dump format. OUTPUT is disposed
immediately to the central site printer. The calling
sequence and parameter formats for MSYSERR are
shown in figure 2-5. A calling sequence is not
supplied for COBOL. A COBOL muj program can
call MSYSERR from a COMPASS subprogram by
using the COMPASS calling sequence.

60494700 B

The error messages and codes generated by the muj
subroutines are shown in Appendix B.

MSYSERR PARAMETERS

The first two parameters, number and iflags, are
required to specify the error number and type of
diagnostic information to be generated. The auxsub
parameter is optional; it identifies an error routine.

number Parameter

The number parameter provides the system error
number that appears in messages and dumps, as shown
below.

0-49 Reserved for the muj subroutines system
errors.

50-59 Available for the muj program errors.

iflags Parameter

The bit-structured iflags parameter specifies the diag­
nostic information to be generated by MSYSERR. The
bits and the meaning associated with each setting are:

0-3 Dump to be made (octal value)

o No dump is to be made.

Dump the muj field length.

2 Dump all of the field length
and low core i.neluding the
INTERCOM area.

3 Dump the muj field length,
low core (including the
INTERCOM area), and the
RBT area of high core.

4-5 Reserved (should be 0)

6 Action after execution of MSYSERR

o Return to the muj program.

1 Abort the muj program.

7 User messages

o Send no messages.

1 Send a MUJ SYSTEM ERROR
message to all users.

2-13

8

MSYSERR Calling Sequence

FORTRAN:

CALL MSYSERR (number, iflags, auxsub)

COMPASS:

Parameters

number

iflags

auxsub

MSPAR

SAl MSPAR
RJ MSYSERR
• • •

VFD
DATA

60/number,60/iflags,60/auxsub
o

MSYSE R R Parameter Formats

FORTRAN

integer variable or constant

octal value

external subroutine name

COMPASS

integer

bit string

label

Figure 2-5. MSYSERR Calling Sequence and Parameter Formats

Dayfile messages

o Send no messages.

Send a system error message to
the dayfile.

users simultaneously, an abort affects all users; there­
fore, it is especially important to make sure a muj
program is essentially error-free before it is installed
in the system library.

9 Reserved (should be 0)
The muj subroutines contain a number of internal
checks for system errors that determine whether to
abort the user command or the entire job. The muj
program can also use a similar decision-making
process to generate error messages and codes. When
a system error is encountered in the muj program,

10-59 Unused

auxsub Parameter the program must choose one of the following courses
of action:

The auxsub parameter names a subroutine that
MSYSERR calls immediately before disposing the file
OUTPUT to the central site printer.

MSYSERR USE

The reentrant nature of a muj program renders debug­
ging difficult. Because a muj program services many

2-14

Ignore the situation and continue processing.

Issue messages and/or request dumps indicating
that the error occurred, and either abort the
command of the user currently being processed,
or abort the entire muj.

60494700 A

SCED INTERFACE TO MUJ SUBROUTINES 3

SCED is a set of interface routines that provides a
means to write multi-user jobs in COBOL that is
simpler to use than the calls to the muj subroutines.
Applications such as data base access are particularly
suited to use of SCED; however, programmers writing
more generalized applications may find that SCED
does not offer the flexibility that direct calls to the
muj subroutines provide.

The philosophy of a program using SCED differs in
several respects from that of a program calling the
muj subroutines directly. A COBOL muj program
that interfaces with SCED is written as if it were to
service a single terminal. Program logic assumes that
the flow of control through the program is similar
for all users: connect the user to the program, input
data from the terminal, process the data, send output
to the terminal, and, when all dialogue with the ter­
minal is complete, disconnect the user from the pro­
gram. Each time the program issues a call to SCED
to perform terminal input/output or another SCED
function, the program relinquishes control to the
SCED routines. SCED schedules all users into execu­
tion of the program; and, of more significance from
a programming standpoint, returns each user to the
program immediately following the SCED call at
which that user left execution. The SCED routines
can switch a user out of execution and put another
user into exe.cution at the same or a different area of
the program.

SCED functions that are performed after the muj
program relinquishes control include:

Tracking the stage of processing of the indi­
vidual users so that each user executes the
complete program.

Requesting execution of the muj subroutines
and processing responses from those subroutines.

Maintaining and allocating buffers for terminal
input/ output.

Processing permanent and temporary terminal
disconnects and user aborts.

60494700 A

Another feature that SCED offers the application pro­
grammer is a debugging aid called DUMMUJ. DUMMUJ
contains the same entry points as SCED, but calls to
the SeED functions other than for terminal input/
output are treated as dummy calls. Much of the muj
program can be tested by executing the DUMMUJ
routines rather than SCED routines. Once the single­
user logic is debugged, the program should be installed
with SeED replacing DUMMUJ for final checkout of
conditions such as protection of data areas and inter­
lock handling.

A program calling SeED, like a program calling the
muj subroutines directly, must be installed as part of
the system before it can be used from a terminal.
Section 4 presents a typical installation procedure.

seED USE IN A PROGRAM

The entry points to SCED, along with the action each
achieves, are as follows:

INIT Initializes the muj program for
execution.

CONNECT Connects a user to the muj program.

TERMIN Performs a terminal input
operation.

TERMOUT Performs a terminal output
operation.

GETINT

RETINT

IOWAIT

DISCON

EXITMUJ

Reserves an interlock.

Releases an interlock.

Relinquishes control of the muj
program for a user when an input/
output operation is initiated with
the SEEK verb.

Disconnects a user from the muj
program.

Terminates the muj program.

3-1

Each time a SCED call is made, the program relin­
quishes control to SCED. SCED returns control to
the program for a user at the statement after the
SCED call. Control is returned in such a manner
that the continuity of processing for the user switched
into execution is maintained.

PROGRAM ORGANIZATION

The Procedure Division of the application program is
usually organized in three parts: initialization, ter­
minal session, and termination.

The initialization portion of the program is executed
when the program is first brought into central mem­
ory; it includes such activities as attaching the fIles
that the terminal users access. The first call to SCED
in the program, INIT, causes the SCED subroutines
to initialize areas in the program field length that are
to be processed by SCED during subsequent program
execution. INIT is executed only once, by the first
user to enter a muj program.

Terminal session processing begins with a call to the
SCED function CONNECT. Each new user entering
the program begins execution at this point. The
statements that fall between the call to CONNECT
and the call to DISCON make up the terminal session
portion of the program. Terminal session processing
is the only part of the muj program that is executed
by all users.

Calls to SCED functions TERMIN, TERMOUT,
GETINT, RETINT, and IOWAIT are made during ter­
minal session processing. SCED maintains the con­
tinuity of execution for a single user, although many
other users can execute in the muj program· between
executions for the first user.

The termination portion of a program, like the initia­
lization code, is executed only once for each loading
of the muj program. Any fIles attached during initia­
lization must be closed and detached in the termina­
tion of the program. The last statement in the muj
program must be a call to EXITMUJ, which releases
the muj program from the system.

If a terminal user is permanently disconnected from
the program by a line disconnect, SCED returns con­
trol to the muj program at the paragraph name speci­
fied in the INIT call. The paragraph must contain a

3-2

call· to DISCON to disconnect the user from the pro­
gram. SCED itself releases any assigned interlocks
and frees the user area.

A break, which is caused by a temporary line discon­
nect of a terminal or a %ABORT entered by a ter­
minal user, need not be handled within the muj
program because SCED performs recovery processing.
A break during terminal input causes SCED to discard
what was input before the break and return to the
waiting-for-input state; a break during terminal output
causes SCED to return control to the statement after
the TERM OUT call as if all the output were success­
fully completed.

PROGRAMMING CONSIDERATIONS

Some special considerations must be made in a
COBOL program that interfaces with SCED.

Input/Output File Processing

All fIles accessed from a COBOL program must be
identified in the Environment Division. Although the
muj subroutines provide a mechanism for equating a
user-specified fIle name with a fIle name defined in
the Environment Division, the SCED routines do not;
consequently, all fIles accessed by any user connected
to the muj program must be defined by the COBOL
program. Further, the program itself must provide
for attaching those fIles.

Only mass storage fIles can be accessed in a program
calling SCED. Most often they are permanent fIles in
existence before the program is executed. The per­
manent fIles must be attached to the program by a
subroutine that can issue an RA+1 call, and opened
by an OPEN statement, before any user is connected
to the program. In the termination portion of the
program, the fIles are closed and then returned to the
operating system by another subroutine that issues an
RA+l call.

User Areas

A user area is a special data area dermed within the
program. Any information within a user area is
associated with one and only one user. Each time a
user executes a SCED point and is taken out of

60494700 A

execution, the information in the user area is saved.
When that user returns to execution, the information
is copied back to central memory for that user. The
program need not be concerned with the overwriting
of data within a user area, since all user areas are
protected by SCED.

The data to be sent to a terminal is written out from
a buffer specified in the TERMOUT call. The buffer
must be contained within the user area, so that SCED
can transfer the data to be transmitted to an
INTERCOM buffer while allowing the muj program to
continue execution with another user. Although the
program defines and uses a single user area, the pro­
gram field length contains many buffers for users
areas, as defined when the program is installed. These
SCED buffers allow the program to have a single user
area, yet allow terminal transmission to overlap an­
other user execution.

Terminal input areas need not be defined in the user
area because the input data is received in SCED buf­
fers and held until the call for terminal input is issued
by a specific user.

Record areas for data to be read from or written to
mes on mass storage should not appear in user areas.
Record areas should be protected from overwriting by
the use of interlocks discussed below.

Data cannot be preset in the user area. The program
itself must put data in the user area during execution.

Interlocks

The many users executing a single muj program share
the data areas as well as the Procedure Division state­
ments. The item defined as the key-item for an
indexed sequential me, for instance, is the same for
all users accessing that me. To prevent the key
entered by one user from being overwritten by the
key entered by another user, SCED provides an inter­
lock facility that protects a data· area, even though
the user who defined its contents has temporarily left
execution.

An interlock is a SCED feature that permits one user
to have exclusive access to statements that reference
a data area such as a key-item or record area. All
Procedure Division statements that lie between a
GETINT call, which reserves the interlock, and a
RETINT call, which releases the interlock, are said to

60494700 A

fall within the range of the interlock. Only the user
reserving the interlock can execute statements within
its range. Other users are locked out of the inter­
locked statements, but are not locked out of the en­
tire program. The program continues to be shared
under SCED control.

The range of an interlock can encompass many state­
ments and more than one SCED point. SCED points
TERMIN and TERM OUT should not be used within
an interlock, however, because such use would need­
lessly delay execution for other users.

Typically, an interlock is associated with each random
access me in the program. When a user indicates that
a record is to be read, for example, the interlock is
reserved, the key-item is set, and a SEEK statement
is executed for the record. An lOW AIT call to SCED
immediately following the SEEK statement causes the
user to leave the program and another user to execute
in some other portion of the program. When control
is returned to the user, a READ statement can move
the requested data record to the data area associated
with the key-item entered the last time the user was
executing in the program. The program can continue
by moving the record just retrieved to the TERMOUT
buffer within the user area, issuing a RETINT call to
release the interlock, and the next time in execution,
issuing a TERMOUT call to send the record to the
requesting terminal. If no other user is waiting for
that interlock, the TERMOUT call is executed imme­
diately. Otherwise, the next user requesting that
interlock begins execution as soon as the interlock is
released.

Each interlock is identified by name in the Working­
Storage Section, and is initialized to a level 77
COMP-l value, starting from O.

SCED CALLS

SCED is called by ENTER statements. Parameters in
the calls must be defined as elementary items in the
Data Division. The calls are presented below, alpha­
betically.

CONNECT

The CONNECT call connects a user to the muj pro­
gram. The call causes SCED to assign a user area
and create appropriate entries in tables internal to

3-3

seED. CONNECT also indicates the beginning of
terminal session processing. It is executed once for
each new user entering the program. The format of
the CONNECT call is:

ENTER CONNECT.

DISCON

The DISCON call disconnects a user from the muj
program and causes SCED to release all associated
table entries or buffer areas for that user. It also in­
dicates the end of the terminal session processing.
DISCON is executed once for each user attached to
the program. The call to DISCON must be followed
either by the termination code or by a branch to the
termination code. The format of the DISCON call is:

ENTER DISCON.

EXITMUJ

The EXITMUJ call terminates a muj program. It is
used instead of the STOP RUN statement normally
used to terminate a COBOL program that is not a muj
program. The call to EXITMUJ must be the last state­
ment in the program. SCED causes it to be executed
when the last active user is disconnected from the
program. The format of the EXITMUJ call is:

ENTER EXITMUJ.

GETINT

The GETINT call reserves an interlock and defines
the beginning of a series of statements reserved exclu­
sively for use of the user reserving the interlock. All
other users are locked out of the interlocked portion
of the muj program until the interlock is released by
a call to RETINT. Interlocks should be used only
when they are necessary to protect a data area that
would be overwritten if another user was switched
into the program. The format of the GETINT call is:

3-4

ENTER GETINT USING interlock-id

interlock-id Name of an independent item
whose value identifies an interlock.
The value must be a level 77
COMP-l integer from 0 to n-l,
where n is the value set at

INIT

installation time. The program
should define a unique interlock
for each random access file that
can be used in the program.

The INIT call initializes the SCED processing. The
call causes SCED to establish tables and buffers
according to the information in the INIT call and the
information installed in the SCED routines for a parti­
cular muj program. INIT must be the first call to
SCED within the program. It is executed only once,
when the program is first brought into execution.
The format of the INIT call is:

ENTER INIT USING u-area, rest, abt.

u-area

rest

abt

IOWAIT

Name of a data area allocated in
the muj program that contains, at
minimum, the buffer for terminal
output. Each time a new user is
switched into execution, SCED
copies the information in this area
to an internal SCED buffer, so
that the data is not overwritten by
information related to another user.

Name of the paragraph containing
the initialization procedures.

Name of the paragraph containing
a DISCON call to disconnect a user
from the program. SCED returns
control to this paragraph if a user
is permanently disconnected from
the muj program.

The IOWAIT call relinquishes control of the program
until a prior SEEK statement is completed. The call is
used to minimize central processor use while file actions
are in process. IOWAIT, if it is used at all, must be
issued within the range of an interlock. SCED returns
control to the program after the SEEK is completed.
The format of the IOWAIT call is:

ENTER IOWAIT USING file-name.

file-name Name of a file for which an input/
output operation was initiated with
the SEEK verb.

60494700 A

RETINT

The RETINT call releases an interlock previously re­
served by a call to GETINT, so that previously re­
served sections of the program are available to other
users. A release of an interlock that was not reserved
causes a fatal error. The format of the RETINT
call is:

ENTER RETINT.

TERMIN

The TERMIN call requests a terminal input operation.
It causes SCED to switch a user out of execution
until such time as input is available for the program
to process. When terminal user input is available,
SCED switches in the user, places the transmission
from the user in the input area defined in the
TERMIN call, and resumes program execution at the
statement after the call. The first word of the area
must contain a COMP-I item specifying the number
of following words allocated for the incoming data.
If the data received from the terminal is larger than
the input area, the data is truncated to area size.

TERMIN should not be issued within the range of an
interlock because processing for other users would be
unduly delayed. The format of the TERMIN call is:

ENTER TERMIN USING in-area.

in-area

TERMOUT

Name of the terminal input area
defined in the Data Division.

The TERM OUT call requests that data be sent to the
terminal. It causes SCED to switch out the user and
the user area containing the output buffer, and to
transmit the data to the terminal from the SCED
buffer rather than directly from the program output
buffer. TERMOUT should not be issued within the
range of an interlock.

The muj program is responsiqle for formatting the
data with the control characters required for terminal
output. The first three fields of the terminal output

60494700 A

area specified in the TERMOUT call must contain the
specifications listed below.

buffer type COMP-l integer, one central mem­
ory word in length, corresponding
to one of the buffer types defined
to SCED when it was installed

length

format
character

(see SCED Muj Installation later
in this section).

COMP-l integer, one central mem­
ory word in length, specifying the
number of following data words
to be transmitted to the terminal.

One-character field set to an
INTERCOM control character for
interactive output.

Any number of lines can be transmitted with a single
TERMOUT call. Each line should begin with a car­
riage control character and must end with a word con­
taining zeros in bits 0-11. The format of the
TERM OUT call is:

ENTER TERM OUT USING out-area.

out-area Name of the terminal output area
within the user area that contains
two control words and data for­
matted for transmission to a
terminal.

The INTERCOM reference manual contains additional
information about the format control character.

seED MUJ INSTALLATION

Installation of a muj program that calls SCED follows
essentially the same procedure as installation of a muj
program making direct calls to the muj subroutines.
An example is given in section 4. SCED installation
might involve an extra step, however, if the program­
mer chooses to alter any or all values in a group of
SCED parameters. These parameters are altered by
COMPASS macros added to the source statements of
SCED by means of an UPDATE run before SCED
assembly. (The exact location in the SCED source
text where the macros are to be inserted is given in

3-5

the NOS/BE 1 installation handbook.) Default values
are provided for all the parameters. The macros and
their parameters are listed below.

MAXUSR num

Defines the maximum number of users that can be
attached to the muj program at a given time. Sub­
sequent users attempting to call the program will not
be allowed to do so by INTERCOM.

num is the maximum number of users;
default 30.

NUMINT num

Defines the number of interlocks needed by the muj
program. (Each random access file should be. associ­
ated with an interlock.) Interlock identification num­
bers start from zero and extend to num-l.

num is the number of interlocks; default 40.

USAREA num, len

Defines the number of user area buffers that are to
remain in central memory. When SCED requires
more user area buffers than the limit defined in
USAREA, some buffers might be swapped out. Effi­
ciency of the muj program execution increases in
direct proportion to the number of user area buffers
that are allowed to remain in central memory.

num

len

3-6

is the number of user area buffers to
remain in central memory; default 2.

is the length, in words, of each user
area buffer; default 214 words decimal.

DEFBUF

Specifies that output buffer definition is to take place.
DEFBUF is required if OUTBUF macros are defined.
The DEFBUF macro has no parameters.

OUTBUF num, len

Defines the number and length of output buffers.
Allocation of these buffers is the responsibility of the
muj program. The OUTBUF macro can occur as
many times as desired; each occurrence defmes a dif­
ferent type of output buffer. The type of output
buffer is governed by the length specification. The
first occurrence of the OUTBUF macro defmes a
group of buffers whose buffer type is 0 and whose
length is given by len. Subsequent occurrences of
OUTBUF defme buffer types that are numbered con­
secutively. When an output buffer is referenced by
the TERM OUT call to SCED, the first word of the
output buffer must contain the buffer type as a
COMP-I item, and the second word must contain the
length of the data to be output in words, also as a
COMP-l item. The length given in the second word
of the output buffer is often less than the full output
buffer length.

num is the number of output buffers
of this type.

len is the length in words of each buffer
of this type.

Two buffer types are defined by default:

OUTBUF 4,45 Buffer Type 0

OUTBUF 4,144 Buffer Type 1

60494700 A

MUJ INSTALLATION 4

A muj program cannot be submitted for execution as
a normal user job; it must be installed in the system.
Installation requires the use of the system EDITLIB
utility to add the muj program either to the deadstart
file or directly to the running system. In the latter
case, operator intervention is required, and INTER­
COM cannot be running at the time the system
EDITLIB takes place.

Although the exact steps involved in installation may
vary, the procedure outlined below can be used to
install any muj program, whether it uses SCED or
calls the muj subroutines directly. The basic steps to
be followed in installing a muj program are listed
below:

1. The user's mUj-program is compiled by
FORTRAN Extended or COBOL, or assembled
by COMPASS. (SCED muj programs are compiled
by COBOL.)

2. The muj subroutines (and preprocessors, if used)
are extracted by an UPDATE run from the
program library; the program library must be a
file containing the source code for all INTER­
COM routines.

3.

4.

5.

6.

(SCED jobs only) SCED is extracted from the
INTERCOM program library in an UPDATE
run. The SCED parameters can be altered in
the same run if desired.

The muj subroutines (and preprocessors, if used)
are compiled by FORTRAN Extended.

(SCED jobs only) SCED is assembled by
COMPASS.

The relocatable binary code produced in steps 4
and 5 is made absolute by the loader and
written to a file. (It can be written in overlay
form if requested by the user.)

60494700 A

7. The program written to a file in step 6 is added to
a system library through the system EDITLIB
utility.

8. A second UPDATE run adds entries to tables in
the INTERCOM peripheral processor routines
1 QP and 1 CI. These entries enable INTERCOM
to recognize the muj program name.

9. The updated peripheral processor routines are
assembled by COMPASS and the object modules
are written to a file.

10. A second system EDITLIB procedure replaces
the versions of lQP and lCI in the system
peripheral processor library with the versions
created in step 9.

Some of the above steps can be consolidated or
executed in a different order. They do not have to

. be executed in the same job that adds the muj pro­
gram to the system library. For example, all the
binaries can be generated in advance and written to a
tape; the tape can then be used as input to the sys­
tem EDIT LIB procedure that adds the muj program
to the system.

INSTALLATION EXAMPLE

Figure 4-1 shows a job structure that can be used to
install a COBOL muj program that uses the COBOL
preprocessing routines. The job assumes that the
INTERCOM routines have been extracted from a
release tape and cataloged with the permanent file
name INTPL. The job performs a system EDITLIB
to add the muj program to the running system.

The second statement compiles the COBOL muj pro­
gram. The E parameter generates an OVERLAY
(COBCODE,O,O) loader directive and specifies that the
name used to call the program is MYMUJ. The relo-
catable object code is written to me MUJBIN. .

4-1

Statement 3 attaches the permanent file that contains
the INTERCOM routines in program library format.

Statement 4 extracts the muj subroutines (MUJSUBS)
and the COBOL preprocessors (COBOLMUJ) from
INTPL and writes them to the file COMPILE, following
the directive on statement 19.

Statement 5 compiles the muj subroutines from the file
COMPILE and writes the re10catable object code to
MUJBIN.

Statement 6 compiles the preprocessors from the file
COMPILE and writes the relocatable object code to
MUJBIN.

Statement 8 creates an absolute binary of all the pro­
grams on MUJBIN and writes it as an overlay to the
file COBCODE.

Statement 10 adds the user muj program to the system
library NUCLEUS, following directives in statement 21
through 26.

Statement 12 extracts the peripheral processor routines
1 CI and 1 QP from INTPL, changes them according to
directives following statement 28, and writes the
changed tables to the file COMPILE.

Statements 13 and 14 assemble the changed versions of
1 CI and 1 QP and writes the object code on file LGO.

Statement 16 replaces the running system versions of
1 CI and 1 QP with the changed versions on LGO,
following directives in statements 31 through 34.

The COBOL muj program should be inserted in the
deck between statements 17 and 18.

Statement 19 contains directives for UPDATE called at
statement 4. The deck named CWEOR6 occurs on
INTPL between MUJSUBS and COBOLMUJ, and con­
tains a *CWEOR directive to write an end-of-section
on the COMPILE file. The exact order and names of
decks on the old program library should be verified
before an installation run is executed.

Statements 21 through 26 are system EDITLIB
directives that add the COBOL muj program to the
system library. Statement 23 must contain an FL
parameter giving the field length required to execute
the program and an AL parameter giving access level
information. AL values depend on other INTERCOM
installation parameters and should be chosen with the aid
of a system analyst.

4-2

Statement 28 gives an UPDATE identifier that will be
applied to directives between statements 28 and 29.

These directives must specify the location within the
1CI and 1QP tables where the name of the COBOL
muj program is to be placed.

Statements 31 through 34 are system.EDITLIB directives
that add the new version of 1 CI and 1 QP to the run­
ning system.

VARIATIONS ON INSTALLATION
PROCEDURES

The job structure in figure 4-1 is basically the
same for muj programs written in FORTRAN or
COMPASS. If the muj program uses SCED to
interface with the muj subroutines, the SCED
routines must be compiled in addition to the
MUJSUBS routines.

FORTRAN VARIATIONS

If the muj program is written in FORTRAN
Extended, make the following changes to the state­
ment shown in figure 4-1.

Replace statement 2 with:

FTN,R=MUJ8IN.

Ensure that the first statement (before the PROGRAM
statement) in the FORTRAN program inserted be­
tween statements 17 and 18 is:

OVERLAY(COBCOOE,Q,O)

Replace statement 19 with a directive that extracts the
muj subroutines and the FORTRAN preprocessors:

"C MUJSUBS,CWEOR6,FTNMU,J

COMPASS VARIATIONS

If the muj program is written in COMPASS, make the
following changes to the statements shown in fig-
ure 4-1.

Replace statement 2 with:

COMPASS,8=MUJBIN.

60494700 A

1 JOB STAT~MENT
2 C(')BOL,C=MUJP.IN,~=~V~UJ.
3 ATT~CH,OLOoL,INTPL,TO=WHOns.
4 UPOATE,Q,C=COMPILF.
5 FTN,r=COMP1LE,9=MUJ~tN,L=Q.
6 FTN,I=COMPTLi:,B=t-1UJ9IN,L=C.
7 L (') A f) , M tlJ ~ J N •
8 NOGO.
9 REWIND ,r:OBcnOE.

10 ED1TLIB,5YSTE~.
11 RETURN,COHPTLE.
12 UPOATE,O,C=COMPILE.
13 COMPASS,r=COMPILE,q=Lr,O,L=~,
14 S= TP t E)t'T , S =P PT J: X T , S:: SC H T I; X T •
15 REWIND ,LGO.
16 EDITlT!HC::YSTEM)
17 7/B/q

COBOL MUJ pqOGP~M

18 7/8/<3
19 "'C "-1UJSUAS, C Wi:: O~F" CO ~() L~ UJ
20 7/8/9
21 REAOY(SYSTEI",OlO)
22 LIBPARY(NUCLEUS.OLD)
23 REP LAC E ('" , COR COD 1:: • I=" l ::. • •)
24 FPITSH.
25 COMPlE TE.
26 fNDRUN.
27 7/8/9
28 "'I!) AN Y

UPDATE OIR=CTIVcS
29 If. C 1 C I ,1 (') p

30 7/8/9
31 REIHJY(SYSTE~!,Oln)
32 PEP lAC r: ('" , L (; 0)
33 COMPLE TE.
34 ENORUN.
35 6/7/B/q

Figure 4-1. Sample Deck for COBOL muj
Program Installation

60494700 A

Include an LCC pseudo-instruction after the IDENT
statement of the program inserted between statements
17 and 18 as:

lec OVERLAY(COBCOOE,O.O)

Delete statement 6.

Replace statement 19 with a directive that compiles
only the muj subroutines:

If.C MUJSUBS

seED VARIATIONS

If the muj program is written in COBOL and uses
SCED instead of direct calls to the muj subroutines,
make the following changes to the deck shown in
figure 4-1.

Replace statement 6 with a call to assemble SCED:

COMPASS,I::COMP1LE,B=MUJBIN,L::O.

Replace statement 19 with a directive that extracts the
muj subroutines and SCED:

"'C MUJSUBS,CWEORo,SCED

If DUMMUJ is being used to debug a program calling
SCED, the program need not be installed as part of
the running system. Make the following changes to
the deck shown in figure 4-1.

Replace statement 6 with a call to assemble DUMMUJ:

COMPASS,I=COMPIlE,B=MUJBIN,L=O.

Replace statement 8 with:

EXECUTE.

Replace statement 19 with a directive that extracts
the muj subroutines and DUMMUJ:

.C MUJSUBS,CWEOR6,OUHMUJ

Delete statements 9 through 16 and 20 through 34.

4-3

MUJ EXAMPLE 5

The muj program described in this section illustrates
the basic structure of a muj program and some of
the capabilities available. The purpose of the pro­
gram, which is written in FORTRAN Extended and
is called CONYERS, is to enable connected users to
send messages to each other. Both sender and
recipient of a message must be connected to
CONVERS.

After connecting to the muj program by entering
CONVERS at the terminal, the user sends as many
one-line messages as desired by entering:

id, message

where id is the two-character use identification of the
intended recipient (previously obtained via the
INTERCOM SITUATE command), and message is
0-76 characters in any sequence.

When the user wishes to disconnect from the muj
program, the characters END are entered at the be­
ginning of a line and followed by a carriage return.
The FORTRAN Extended source code for sample
program CONYERS is shown in figure 5-1.

When the first INTERCOM user calls CONVERS, the
program is loaded from the system library and execu­
tion begins with the first executable statement, the
call to INMUJ (statement 7). The call to INMUJ is
executed once each time CONYERS is loaded; it is
executed only for the first user. When subsequent
users call CONVERS, they are put into a scheduling
queue by INTERCOM. Eventually each of these
users is given to CONVERS as a new user on return
from a call to USER (statement 9). The program con­
tains only one call to USER; the program repeatedly

60494700 A

branches on this call to process user requests and
receive new users. The parameter STATE is then
examined to determine the nature of the user request.
Three possible user requests can be made:

The user asks to be connected to the muj
program by entering CONVERS. When the user
is sent by USER to CONVERS as NEWU, the
parameter equals 5. In this simple muj program,
no special action is taken at that time; other
programs might perfonn initialization processing,
such as setting up tables for each user.

The user requests that a message be sent to
another terminal. In this case, state==1, since
USER does not schedule the user until the input
from the terminal is ready. CONYERS deter­
mines the recipient from the two-character user
identification and formats the message. TIO is
then called to send the message to the recipient.

The user asks to exit the muj program. Exit
can be achieved in one of two ways: either the
user types END, and is returned by USER with
state:: 1, or the user enters a break of %A, and
bit 59 of the state parameter is set. It is also
possible that the user has been automatically
disconnected by INTERCOM; in this case,
state==8. In all of these cases, CONVERS re­
quests user disconnection by returning the user
to USER with actn==-5.

If any state other than those described above is
detected, CONVERS simply returns the user to the
scheduling queue.

5-1

5-2

nVE~LAY(MUJAnS,O,C)

PROGRAM r.1I\lVEPS
JIMENSION MUJT1L (54' ,1J,4REA(6G)
II\lTEG~R ST~T~t1LOU,ACTN,UAPEA

nATA· IARt=:A,STATE,NHfU,OUW,ACTN/5"'QI
C INITIALIZE (CALL~O ONLY ONCE ~OP ~ACH LOAD)

CALL INMUJ(MUJTBL,J,6,6,6,1Q,UAREA)
C MAIN LOOP -- J'JST KEEP CALL IN!'; US~R TO ppr'lCE:SS PfflUESTS
110 CALL USER(OLOU,ACTN,ST4TE,N(WU,IaR~A)

OLOU=NEWU
NE WU= J

C l~ RQF AK HA S ace URRE '"' -­
IF (S TATE. LT. 1) r; ° TO 108
STATE=STATE.ANQ.7777779

C
101

c

c

C

GO T fl (101 t 10 a ; 1 D : ,10 C ,1 C ?, 1 cr. ,1 r c ,1 C ~) S TAT F
WE HAVE A MESSAGE
NW=8
CALL TIO (OLDU.3.UAREA(IAREA+2),NW)
CHECK F~P TEoMTNATTON
IF«UAREA(IAREA+?) .AN[l.MA'SK(tp·)l.EQ.3LENO) G0 Tn 1:3-"
EXTRACT ID OF RECIPI(NT
Iry=UA9EA(IA~EA+2).ANn.~ASK(12)
UAREA(IARFA)=SH ~~OM
UAREA(IAREA+1)=UAREA(IAREA+?).ANO.MASK(12).OR.RR
REPLACE ~IO,t WITH 8L~NKS

•• . .
c

UAREA(TAREA+2l=UAQEA (I4REA+2).AND.COMPL(MASK(1~» .O~.3L

SEND MESSAGE

C
108

CALL TIO (ID,2.UAREA(IAREA), NW + 2)
ACTN=-l
GO TO 1& 0
GET NE XT USEQ
ACTN=-l
GO TO 100
DISC aNNE CT US~ Q

AC T N=- 5
GO TO 100
ENn

Figure 5-1. Sample Program CONVERS

60494700 A

STANDARD CHARACTER SETS A

CONTROL DATA operating systems offer the following
variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation was specified
when the operating system was installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026

60494700 A

or in 029 mode (regardless of the character set in use).
Under NOS/BE I the alternate mode can be specified
by a 26 or 29 punched in columns 79 and 80 of the
job statement or any 7/8/9 card. The specified mode
remains in effect through the end of the job unless it
is reset by specification of the alternate mode on a sub­
sequent 7/8/9 card.

Graphic character representation appearing at a termi­
nal or printer depends on the installation character set
and the terminal type. Characters shown in the CDC
Graphic column of the standard character set table
are applicable to BCD terminals: ASCII graphic char­
acters are applicable to ASCII-CRT and ASCII-TTY
terminals.

A-I

:r
N

0\

~
\0
oj:>.
-.l o o
>

STANDARD CHARACTER SETS

ASCII Hollerith External ASCII ASCII Hollerith External ASCII

ASCU I CDC Graphic Display Punch BCD Punch ASCII CDC Graphic Display Punch BCD Punch
Graphic Subset Code (026) Code (029) Code Graphic Subset Code (026) Code (029) Code I

:t OOtt 8-2 00 8-2 072 6 6 41 6 06 6 066 I

A A 01 12-1 61 12-1 101 7 7 42 7 07 7 067
B B 02 12-2 62 12-2 102 8 8 43 8 10

I
8 070

C C 03 12-3 63 12-3 103 9 9 44 9 11 9 071
D D 04 12-4 64 12-4 104 + + 45 12 60 12-8-6 053
E E 05 12-5 65 12-5 105 - - 46 11 40 11 055
F F 06 12-6 66 12-6 106 * * 47 11-8-4 54 11-8-4 052
G G 07 12-7 67 12-7 107 I I 50 0-1 21 0-1 057
H H 10 12-8 70 12-8 110 ((51 0-8-4 34 12-8-5 050
I I 11 12-9 71 12-9 111)) 52 12·8-4 74 11-8-5 051
J J 12 11-1 41 11-1 112 $ $ 53 11-8-3 53 11-8-3 044
K K 13 11-2 42 11-2 113 = = 54 8-3 13 8-6 075
L L 14 11-3 43 11-3 114 blank blank 55 no punch 20 no punch 040 ,

M M 15 11-4 44 11-4 115 , (comma) , (comma) 56 0-8-3 33 0-8-3 054
N N 16 11-5 45 11-5 116 . (period) . (period) 57 12-8-3 73 12-8-3 056

0 0 17 11-6 46 11-6 117 - # 60 0-8-6 36 8-3 043
P P 20 11-7 47 11-7 120 r [61 8-7 17 12-8-2 133
Q Q 21 11-8 50 11-8 121)) 62 0-8-2 32 11-8-2 135

R R 22 11-9 51 11-9 122 % % 63tt 8-6 16 0-8-4 045

S S 23 0-2 22 0-2 123 =t- Il (quote) 64 8-4 14 8-7 042

T T 24 0-3 23 0-3 124 -+ (underline) 65 0-8-5 35 0-8-5 137 -
U U 25 0-4 24 0-4 125 v ! 66 11-0 or 52 12-8-7 or 041

V V 26 0-5 25 0-5 126 11-8-2ttt 11-0ttt

W W 27 0-6 26 0-6 127 A & 67 0-8-7 37 12 046

X X 30 0-7 27 0-7 130 t I (apostrophe) 70 11-8-5 55 8-5 047
y y 31 0-8 30 0-8 131 ,j, ? 71 11-8-6 56 0-8-7 077

Z Z 32 0-9 31 0-9 132 < < 72 12-0 or 72 12-8-4 or 074

0 0 33 0 12 0 060 12-8-2ttt 12-0ttt

1 1 34 1 01 1 061 > > 73 11-8-7 57 0-8-6 076

2 2 35 2 02 2 062 S @ 74 8-5 15 8-4 100

3 3 36 3 03 3 063 ~ \ 75 12-8-5 75 0-8-2 134

4 4 37 4 04 4 064 -, (circumflex) 76 12-8-6 76 11-8-7 136

5 5 40 5 05 5 065 ; (semicolon) ; (semicolon) 77 12-8-7 77 11-8-6 073

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line
mark is converted to external BCD 1632.

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch).
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558).

tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

DIAGNOSTIC MESSAGES B

The diag;nostic messages generated by multi-user job
processing, as described in this manual, are listed by
error number. Each message is described by the
significance of the message, the action to be taken,
and the issuing routine.

The header message MUJ SYSTEM ERROR xx, where xx
is the error code number, is routed to both the system
dayfile and each user's terminal whenever an error occurs.
Values of xx that are less than 50 indicate error condi­
tions encountered by the system muj subroutines; values
of 50 or greater indicate errors detected by SCED.

TABLE B-1. DIAGNOSTIC MESSAGES

Error Issuing
Code Significance Action Routine

0 A system error, such as operator drop, a mode error, or Notify systems analyst. REKOVER
a peripheral processor abort, occurred.

1 The user area was lost internally. Notify systems analyst. ADJUAR/
SRCUAR

2 Not used.

3 Bit KWCON was set for this value of MMACT. (FATAL) Notify systems analyst. SERVICE

4 An error from CIO occurred on the last user area swap. Notify systems analyst. SWAPOK

5 An illegal CIO function code was received on the last Notify systems analyst. SWAPOK
user area swap. (FATAL)

6 The user area was lost on swapout. (FATAL) Notify systems analyst. SEGSWPD

7 A CIO error code occurred during terminal output. Notify systems analyst. SERVICE

8 Not used.

9 The muj program returned a user area not currently Programmer action USER
assigned to it. (FATAL) required.

10 An invalid ACTN code was sent by the muj program. Programmer action USER
(FATAL) required.

11 Invalid information was received from lQP. Notify systems analyst. USER

60494700 A B-1

TABLE B-1. DIAGNOSTIC MESSAGES (Continued)

Error Issuing
Code Significance Action Routine

12 New user already exists in MUJTERM. Notify systems analyst. USER

13 A non-ready user was marked ready. Notify systems analyst. USER

14 A logical unit number was specified in the call to Programmer action NSCFET
USERFO, but corresponding file was not declared on required.
the muj PROGRAM card. (FATAL)

15 Not used.

16 The muj program is returning a user not assigned to it. Programmer action USER
(FATAL) required.

17 The user's files cannot be returned when the user leaves Notify systems analyst. USER
the muj program.

18-42 Not used.

43 Binary-to-decimal conversion error from MSYSERR. Bad error code passed NUMCHAR
to MSYSERR.

44-49 Not used.

50 INIT was called out of sequence. INIT must be first call SCED
to SCED in muj
program.

51 CONNECT was called out of sequence. CONNECT call must be SCED
preceded by a call to
INIT.

52 Terminal session section function was called out of Calls to INIT and SCED
sequence. CONNECT must pre-

cede calls to terminal
session functions.

53 DISCON was called out of sequence. DISCON call must be SCED
preceded by a call to
CONNECT.

54 EXITMUJ was called out of sequence. EXITMUJ call must be SCED
preceded by call to
DISCON.

55-59 Not used.

B-2 60494700 A

TABLE B-1. DIAGNOSTIC MESSAGES (Continued)

Error Issuing
Code Significance Action Routine

60 Interlock number specified in GETINT call is outside of Programmer action SCED
range specified during installation. required.

61 User attempted to reserve an interlock already reserved Programmer action SCED
for that user. required.

62 Interlock number specified in RETINT call is outside of Programmer action SCED
range specified during installation. required.

63 User attempted to release an unreserved interlock. Programmer action SCED
required.

64 User attempted to disconnect from muj program while Programmer action SCED
an interlock is still reserved for the user. required.

65-69 Not used.

70 Buffer type is outside range specified during installation. Programmer action SCED
required.

71 Word count is greater than size specified for buffer type Programmer action SCED
requested. required.

72 TIO error, usually caused by incorrectly formatted Programmer action SCED
terminal output. required.

73-79 Not used.

80 TIO error occurred on read. Notify systems analyst. SCED

81 No free user ordinal is available for new user. Notify systems analyst. SCED
(Maximum number of users specified during installation
exceeded.)

82 ID of new user is already in use. Programmer action SCED
required.

83 Muj subroutines returned ID unknown to SeED. Notify systems analyst. SCED

84 Muj subroutines status code is not handled by SCED. Notify systems analyst. SCED

60494700 A B-3

Accessing files 1-3, 3-2
Accounting 1-4
Action codes 2-4
actn parameter 2-4
Allocating

buffers 3-6
muj tables 1-2, 2-3
user and table areas 1-2

Applications suited to SCED 1-1, 3-1
auxsub parameter 2-14

Backlog 2-13
Break 2-6, 2-10, 3-2
Buffer

allocation 3-6
length 2-3
type 3-6
use 1-3, 2-10, 3-3

Calling sequence
INMUJ 2-2
MSYSERR 2-14
TIO 2-11
USER 2-5

Calls
preprocessor 2-1
SCED function 3-2
subroutine 1-1, 2-1

Carriage control characters 3-5
CDC character set A-I
Central memory word address 2-9
Character

format 3-5
set A-I

COBOL
preprocessor use 2-1
program considerations for use of SCED

interface 3-2
COMPASS variations on installation procedure 4-2
complt parameter 2-9
CONNECT call 3-1,3-3
Control characters 3-5

60494700 A

INDEX

Data
formatting 2-12,3-5
transfer 2-12

DEBUF macro 3-6
Debugging

SCED program 3-1
trace printout 1-4

Diagnostic messages B-1
DISCON call 3-1,3-4
Disconnecting users from muj program 2-10, 3-4
DUMMUJ use 3-1
Dumps 2-13

EDITLIB utility 1-1,4-1
End-of-line indicator 2-12
Entry points to SCED 3-1
err parameter 2-12
Error

during input/output 2-12
messages 2-13, B-1
number 2-13
processing 1-4,2-13

Examples
installation 4-1
muj program 5-1

Executing muj program 1-3
EXITMUJ call 3-4

fetadd parameter 2-9
File

access 1-3,3-2
action requests 2-3
attach or create 2-4
delete or detach 2-6
logical unit number 2-9
name 2-9
processing 3-2
user 1-3

File environment table
location 2-9
use 1-2

flun parameter 2-9

Index-l

fname parameter 2-9
Format character 3-5
Formats of parameters (see Parameter formats)
Formatting data 2-12,3-5
FORTRAN

calls to preprocessor 2-1
variations on installation procedure 4-2

fwait parameter 2-9

GETINT call 3-1, 3-4

iarea parameter 2-9
I ibklg parameter (optional) 2-6

iflags parameter 2~ 13
INIT call 3-1,3-4
Initializing

application programs 3-2
muj programs 1-2, 2-1
SCED processing 3-4

INMUJ subroutine 1-2,2-1
Input 2-12,3-2
Installation

example 4-1
muj program 1-1,3-5,4-1

Interface
INTERCOM/muj program 1-1
muj program/SCED 3-1

Interlocks 3-3
iocode parameter 2-10
IOWAIT call 3-1, 3-3
iperms parameter 2 - 6

I itime parameter (optional) 2-6

Key-item 3-3

larea parameter 2-3
leng parameter 2-12
Length of .user buffer 2-3
Logical me name equating 2-9
Logical unit number of me 2-9
lwait parameter 2-9

MAXUSR macro 3-6
MSYSERR subroutine 1-2, 2-13
Muj program

applications 1-1
example 5-1
execution 1-3
initialization 1-2, 2-1

Index-2

installation 1-1, 3-5, 4-1
interface 1-1
subroutines

calls 2-1
functions 1-2

table allocation 1-2, 2-3
termination 1-4, 3-4
user disconnection 3-4

mujtbl parameter 2-1

Name of file 2-9
narea parameter 2-3
newuser parameter 2-6
ntermfile parameter 2-1
number parameter 2-13
NUMINT macro 3-6
nuser parameter 2-3
nuserfile parameter 2-1

olduser parameter 2-4
One-line reading 2-11
Organizing a program 3-2
OUTBUF macro 3-6
Output 2-12, 3-2, 3-5
Owncode routine 2-14

Parameter formats
INMUJ 2-2
MSYSERR 2-14
TIO 2-11
USER 2-5

Permanent file information 2-6
Preprocessors 1-1, 2-1
Preventing backlogs 2-13
Processing

errors 1-4, 2-12
input/output files 2-12,3-2

Program
organization 3-2
structure 1-2

Range of interlocks 3-3
Read operations 2-10,2-12
READSKP operating system function 2-11
Record areas 3-3
Releasing/reserving interlocks 3-4
Requesting terminal input/output 3-5
RETINT call 3-1, 3-5
Return codes from USER 2-7

60494700 B

Sample program 5-1
SCED

ca1ls 3-3
entry points 3-1
functions 3-1
installation 3-5
interface 3-1
processing initialization 3-4
variations 4-3

Scheduling users 2-3
SEEK statement 3-4
Servicing count 1-4
Standard CDC character set A-I
state parameter 2-6
Status

from USER 2-2
from TIO 2-12

Structure
mujtbl 2-2
program 1-2

Subroutines 1-1, 2-1
Switching users 2-3
System

EDITLIB utility 1-1, 4-1
error number 2-13

Table a1location 1-2, 2-1
TERMIN ca1l 3-1,3-3,3-5
Terminal

input areas 3-3
input/output 1-3,2-10
session processing 3-2

60494700 A

Terminating a muj program 1-4, 3-4
TERMOUT call 3-1,3-3,3-5
Time limit 1-5
TIO subroutine 2-10
tiobuff parameter 2-11
Trace printout 1-4
Transmitting input data 2-12

uarea parameter 2-3
USAREA macro 3-6
User

area assignment 1-3,3-2
buffers 1-3, 2-3,2-10, 3-6
pointer 2-9
disconnection 3-4
files 1-3
parameter 2-10

USER subroutine 2-3

Values
error 2-12
input/output operation type 2-10
state 2-7

Variations on installation procedure 4-2

Write operations 2-10,2-12

Index-3

COMMENT SHEET

CDC INTERCOM Version 4 Multi-User Job Capability Reference Manual MAN~nn£ __ _

60494700 PUBUCATION NO- __________________ _ REVISION ____ B ______ _

FROM: NAME: ____________________ __

BUSINESS AD~§: __ _

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

FOLD FOLD

-----------~--------------~-----~---------~~

FOLD

BUSINESS REPLY MAil
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219
4201 North Lexington Avenue
Saint Paul, Minnesota 55112

FIRST CLASS
PERMIT NO. 82 .. 1

MINNEAPOLIS, MINN.

FOLD

t
•

III
Z
:::;

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINNESOTA 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONTI\.OL DATA CO~OR{\TION

