60471160

@ E CONTROL DATA
CORPORATION

COMMUNICATIONS CONTROL INTERCOM
VERSION 3

SYSTEM PROGRAMMERS

REFERENCE MANUAL

cpc® COMPUTER SYSTEMS
255X HOST COMMUNICATIONS PROCESSOR
255X NETWORK PROCESSOR UNIT
CDC®HOST NETWORK OPERATING SYSTEMS
NOS/BE 1

REVISION RECORD

REVISION

DESCRIPTION

A

Initial Release

12/31/79

Publication No.

60471160

REVISION LETTERS |, O, Q AND X ARE NOT USED

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
P. O. Box 4380-P

Anaheim, CA 92803

©1979

by Control Data Corporation or use Comment Sheet in the back of
. . . . this manual.

Printed in the United States of America

ii

- LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in
this manual, are indicated by bars in the margins or by a dot near the page
number if the entire page is affected. A bar by the page number indicates
pagination rather than content has changed.

Page Rev Page Rev Page Rev

Cover
Title Page
ii thru xiii
thru 1-19
thru 2-12
thru 3-6
thru 4-30
thru 5-29
thru 6-36
thru 7-26
thru 8-13
thru 9-6
0-1 thru 10-17
11-1 thru 11-28
12-1 thru 12-16
Index-1 thru
Index-13
A-1 thru A-11
B-1 thru B-5
C-1 thru C-21
D-1 thru D-14
E-1
F-1/F-2
G-1 thru G-35
H-1 thru H-83
I-1 thru I-13
Comment Sheet
Mailer
Back Cover

I N

1
2
3
4
5
6
7
8
9
1

[g g B R - S S

60471160 A iii/iv

PREFACE

This manual describes those externals of the Communications Control Intercom
(CCI), Version 3.0, necessary to aid a systems programmer in making minor
modifications to standard CCI software. The manual also provides a
sufficient basis to understand those standard programs which interface to
any new terminal interface program which the user writes for a nonstandard
terminal. CCI is used with the CONTROL DATA® 255x Series Network
Processing Unit (NPU).

It is assumed that the reader is already familiar with CCI basic functions
and the role of CCI in network processing. If the reader does not have this
knowledge, he is referred to the CCI 3 reference manual which provides an
introduction to CCI functions.

It is recommended that the user be experienced with the PASCAL programming
language and the CYBER CROSS support system software. If the user plans to
write his own terminal interface program, he should also be familiar with
the state programming language.

CONVENTIONS USED

Throughout this manual, the following conventions are used in the
presentation of statement formats, operator type-ins, and diagnostic
messages:

ALN Uppercase letters indicate words, acronymns, or mnemonics either
required by the network software as input to it or produced as
output.

aln Lowercase letters identify variables for which values are
supplied by the host or terminal user, or by the network
software as output.

... Ellipsis indicates that the omitted entities repeat the form and
function of the entity last given.

of any entity causes the use of a default entity, the default is
under lined.

[] Square brackets enclose entities that are optional; if omission
{ } Braces enclose entities from which one must be chosen.
Unless otherwise specified, all references to numbers are to decimal

values; all references to bytes are to 8-bit bytes; all references to
characters are to 8-bit ASCII-coded characters.

60471160 A v

RELATED MANAULS

Additional information on both the hardware and software elements of the
CONTROL DATA 255x Series Computer Systems and the CCI and related software
can be found in the following documents:

Publication Title

Network Products

UPDATE Reference Manual

Macro Assembler Reference Manual
Mass Storage Operating System

INTERCOM Version 5
Reference Manual

Network Products
Communciations Control Intercom (CCI)
Version 3 :
Reference Manual

CYBER CROSS System Version 1
Link Editor and Library Maintenance Programs
Reference Manual

Network Processor Unit
Hardware Maintenance Manual

State Programming Language
Reference Manual

NOS/BE Version 1
Operator's Guide

NOS/BE Version 1
Installation Handbook

CYBER CROSS System Version 1
PASCAL Reference Manual

CYBER CROSS System Version 1
Micro Assembler Reference Manual

CYBER CROSS System Version 1
Macro Assembler Reference Manual

Publication Number

60342500

60361900

60455010

60471150

60471200

60472000

60472200

60493900

60494300

96836100

96836400

96836500

These publications can be ordered from Control Data Corporation, Literature

and Distribution Services,

308 North Dale Street, St. Paul, Minnesota 55103.

This product is intended for use only as described in this document.
Control Data cannot be responsible for the proper functioning of undescribed
features or parameters.

vi

60471160 A

1. CCI OVERVIEW

CCI Design
Priority Processing at the
Interfaces
OPS-Level Processing
Downline Message Processing
Upline Message Processing
CCI Features
CCI Modular Structure
CCI Programming Methods
Block Protocol
Block Routing
Point of Interface (POI)
Programs
Direct and Worklist Calls
Direct Calls on Firmware
Level
Special Call to Multiplex
Subsystem
Special Call to Firmware
Interface
Communication Using PASCAL
Globals (Tables)
Line Interface Handling
CCI Programming Languages

2. INITIALIZING AND
CONFIGURING THE NPU

Initializing the NPU
Phase I Initialization
Phase II Initialization

PINIT
PIPROTECT
PIBUF1
PIWLINIT
PIINIT
PIAPPS
PIMLIA
PILININIT
PIBUF2

Load and Dump NPU

Configuring the NPU

Configuring NPU
Line Configuration

Configure Line SM
Configure Line Deletion
Terminal (TCB) Configur-

ation

60471160 A

CONTENTS

=
|
=

[
|
w

L =
COVVEUU S W

|
e
w

T
=
wWw

N
|

NMNNMNNN!})NNNNNNMN
CAOUVTUITBBRBWWWWWWNNNDNHE [

N
1
—

N
!
[
o

Configure Terminal SM
TCB Reconfiguration
TCB Deletion

3. FAILURE, RECOVERY, AND
DIAGNOSTICS

Host Failure

NPU Failure

NPU Recovery

Halt Codes and Dump Inter-
pretation

Line Failure

Line Recovery

Terminal Failure

Terminal Recovery

In-line Diagnostic Aids
CE Error Messages
Statistics Messages

4, BASE SYSTEM SOFTWARE

System Monitor
Buffer Handling
Obtaining a Single Buffer
Releasing a Buffer
Releasing a Single Buffer
Releasing Several Buffers
Testing Buffer Availability
Buffer Copying
Other Buffer Handling
Routines
Timing Services
Direct Calls
Worklist Services
Making a Worklist Entry
Extracting a Worklist Entry
Basic Interrupt Processing
Macrointerrupts
Interrupt Priority
PBSMASK - Set Interrupt
Mask
PBAMASK - And Interrupt
Mask (and PBLMASK)
PBOMASK - Or Interrupt
Mask
User Interface
Microinterrupts
PASCAL Globals

2-11
2-12
2-12

] 1
SRV

bdwWwwwdddDN

[S ;b»erlob.bshhnb >
N O WO o o NNNgdOND [l

i
e e]
www

4-14
4-14
4-14
4-14
4-15

4-16
4-17

vii

Standard Subroutines 4-17 Console Support 4-27

Calling Macroassembly General Peripheral Pro-
Lanquage Programs from cessing 4-27
PASCAL Programs 4-17 Console Support Services 4-28
Defeating Type-Checking Console Worklist Entry 4-29
in PASCAL Procedure Console Control Messages 4-29
Calls 4-19 . :
Handling Routines 4-19
PBFMAD - Converts from 5. MULTIPLEX SUBSYSTEM 5-1
ASCII Decimal to Binary 4-20
PBFMAH - Converts from Hardware Components 5-3
ASCII Hexadecimal to Multiplex Loop Interface
Binary 4-20 Adapter 5-3
PBMAX - Funds the Larger Loop Multiplexers 5-3
Maximum of Two Numbers 4-20 Communications Line
PBMEMBER - Test ASCII Adapters (CLA) 5-3
Set Membership 4-20 System and User Interfaces 5-4
PBMIN - Funds the Smaller System Interfaces 5-4
Minimum of Two Numbers 4-21 Multiplex Level 1
PTOAD - Converts (Firmware) 5-4
Binary to ASCII Multiplex Level 2
Decimal 4-21 (PMWOLP) 5-7
PBTOAH - Converts Binary Multiplex Subsystem
to ASCII Hexadecimal 4-22 Firmware Worklist
Maintaining Paging Entries 5-8
Registers 4-22 Command Driver Work-
PBSTPMODE - Sets Paging list Entries 5-8
Mode 4-22 OPS Level 5-8
PBPSWITCH - Performs User Interfaces 5-9
Page Switching 4-22 Command Driver Interface 5-9
PBRDPGE - Reads Dynamic Clear Line Command 5-11
Page Register 4-23 Initialize Line Command 5-11
PBPUTPAGE - Write Control Command 5-11
Specified Page Register 4-23 Enable Line Command
PBGETPAGE - Reads (KLENBL) 5-12
Specified Page Register 4-23 Input Command (NKINPT) 5-15
PB18ADD - 18-Bit Output Command (NKDOUT) 5-15
Addresses 4-23 Input After Output
PB18BITS - 18-Bit Address (NKINOUT) 5-18
Functions 4-24 Terminate Input
PB18COMP - Compares Two Command (NKENDIN) 5-19
18-Bit Addresses 4-24 Terminate Output
Block Functions 4-24 Command (NKENDOUT) 5-19
PBCLR - Clears a Block Disable Line Command
of Main Memory 4-24 (NKDISL) 5-20
PBCOMP - Compares Two Common Multiplex Sub-
Equal Length Blocks 4-24 routines for TIPs 5-21
Set/Clear Protect Bits 4-25 PMWOLP, Multiplex
PBSETPROT - Set Protect Worklist Processor 5-21
Bit 4-25 PTCLAS, CLA Status
PBCLRPOT - Clear Protect Analyzer 5-22
Bit 4-25 CLA Status Overflow
Miscellaneous Subroutines 4-25 Handling 5-24
PBFILEl - Load/Display Modem Response
File 1 4-25 Timeout Handling 5-25
PBHALT - Stops the NPU 4-26 PLINIT, Line
PBILL - Illegal Calls 4-26 Initializer 5-26
PBLOAD - Load a User- PMT1SEC, Output Data
Defined Message 4-26 Demand Timing Handler 5-29
Program Execution Timers 4-27

viii 60471160 A

6. NETWORK COMMUNICATIONS
SOFTWARE

Block Protocol
Address
Node
Connection Number
BSN/Block Type

Block Serial Number (BSN)

Block Types
BLK (Block) Block
MSG (Message) Block

BACK (Block Acknowledg-

ment) Block
CMD (Command) Block
Service Channel
Data Stream Control
Data Formats

Interactive Format Data

Batch Format Data
Nontransparent Data
Transparent Data

Routing
Directories

Destinations Node
Directory

Source Node Directory

Connection Directory

Routing Process

Alternating Directories
Service Messages (SM)
Internal SM Processing

Validating and Timing Out

SMs

Generating and Dispatching

Service Messages
Configuring/Enabling/

Disabling/Deleting

Control Blocks
Generating and Sending

Status SMs

Line Status Request SM

Line Count Request SM

Terminal Status Request

SM
Generating and Sending
Statistics SMs
CE Error Messages
Common TIP Subroutines

Point of Interface Routines

(POI)

PBPIPOI, Post Input POI
PBIOPOI, Internal Output

POI

PBPROPOI - Preoutput POI
PBPOPOI - Post Output POI

Standard TIP Subroutines

Output Queuing (PBQI1BLK

and PBQBLKS)

60471160 A

N
|

|OI\G\O\G\O\ [e) N2 e) We W) e) We We We)
= 1
COPO®OMUN NUYOAAANNH

6-19
6-19
6-20

6-20

6-20
6-21
6-21

6-21
6-22

6-22
6-30
6-30
6-30

6-30

Removing a Message Segment

From Queue PBGTI1SET

Saving and Restoring

Registers

PBBEXIT - Save R1 and R2

PBAEXIT - Restore R1 and
R2

Interface to Text Pro-
cessing Firmware,
PTTPINF

Finding Number of Char-
acters to be Processed,
PTCTCHR

Saving and Restoring
LCBs, PTSVXLCB, and
PTRTXLCB

Common Return Control
Routine, PTRETOPS

Common TIP Regulation,
PTREGL

Set Logical Link Regu-
lation, PNLLREG

Set Accept Input/Accept
Output Flags, PTINIT

Discards Non-routable
Blocks, PBLOST

Upline Abort, PBUPABRT

Downline Abort, PBDNABRT

Send CMD Block to Host,
PTCOMMAND

Upline PRU Block Routing,
PBRTEPRU

PRU Block Routing,
PBRTEIA

Check to Find if Block is
to be Sent, PBBCHCHK

Generate Banner and Lace
Records, PTBANLACE

HOST INTERFACE PACKAGE
(HIP)

Transaction Protocol

Transfer Functions
Directives Used
Transfer Initiation
Transfer Timing

Error Processing
Host/NPU Word Formats
Coupler Interface Hardware

Programming
Coupler Register Use
Programming the Coupler By

Use of Function Codes

Host Function Commands

NPU Function Commands
HIP Functions

6-32

6-32
6-32

6-33

6-33

6-33
6-34
6-34
6-34
6-35
6-35
6-35
6-35
6-35
6-35
6-35
6-35
6-35

~
|

\l\l\l\l\ll\l\l
I
NSNS [l

77

\l\l\ll\l
e
NDNNO O o0 0

ix

Single Word Transfers Carriage Control for Output

(Control) 7-12 Messages 9-4
Load/Dump NPU 7-14 Direct Calls to TTY TIP 9-4
Multiple Character Data Direct Calls from the TTY TIP 9-5
Transfer (Block Transfer) 7-16 Error Processing 9-6
Contention for Coupler Use 7-17 Autorecognition 9-6
"Regulation of Coupler Use 7-18
Host Failure and Recovery 7-18
Error Checking and 10. MODE 4 TIP 10-1
Timeouts 7-19
Interface Protocol Sequences 7-20 Hardware Considerations 10-1
Buffer Format 7-25 TIP Functions 10-1
HIP States 7-25 Terminal Interface 10-3
Terminal Addressing 10-3
Message Type Indicators 10-3
8. BINARY SYNCHRONOUS E Codes 10-3
COMMUNICATIONS (BSC) TIP 8-1 Code Conversion 10-3
Host Interface 10-7
Operational Features 8-2 Interactive Interface 10-7
Remote Batch Facilities 8-2 Cursor Positioning 10-7
EOR/EOI 8-2 Carriage Control 10-8
Binary Codes 8-2 Upline Breaks 10-8
026/029 Codes 8-2 Contention Resolution 10-9
Transparent Data 8-3 Card Reader Interface 10-9
Carriage Control 8-3 Printer Interface 10-9
Interactive Carriage Error Handling 10-12
Control 8-3 Short Term Error Pro-
Punch Files 8-3 cessing 10-12
Compression/Expansion 8-4 Long Term Recovery 10-13
Terminal Features 8-5 Handling of Errors for
Operational Characteristics 8-5 CDC 711 Terminal 10-13
2780 Input Nontransparent Duplicating of Write Data
Terminal Mode 8-5 on CRT 10-13
2780 Input Transparent Input Regulation 10-13
Terminal Mode 8-6 Autorecognition 10-14
3780 Input Nontransparent Mode 4 Protocol Features
Terminal Mode 8-7 Not Supported 10-16
3780 Input Transparent Direct Calls to the Mode 4
Terminal Mode 8-7 TIP 10-16
Input Transparent Data Direct Calls from the Mode
Mode, 2780 and 3780 8-7 4 TIP 10-16
2780 Output Nontransparent
Transmission Mode 8-8
2780 Output Transparent 11. HASP TIP 11-1
Transmission Mode 8-10
3780 Output Nontrans- Hardware Considerations 11-1
parent Transmission Major TIP Functions 11-3
Mode 8-10 HASP Protocol 11-4
Direct Calls to the BSC TIP 8-11 Terminal Operational
Direct Calls from the BSC TIP 8-12 Procedure 11-6
Error Processing 8-13 Multileaving Block
Autorecognition 8-13 Descriptions 11-6
Control Blocks 11-6
Acknowledgment Block
9. ASYNCHRONOUS (TTY) TIP 9-1 (ACK) 11-6
Negative Acknowledge
Operating Modes 9-1 Block (NAK) 11-7
Interactive Mode 9-1 Enquiry Block (ENQ) 11-7
Tape Mode 9-2

X 60471160 A

Idle Block (ACKO)
Control Bytes for Data
Blocks
Block Control Byte (BCB)
Function Control
Sequence (FCS)
Record Control Byte
(RCB)
Subrecord Control Byte
(SRCB)
String Control Byte
(SCB)
Data Block Description
Operator Console Blocks
End-of-File Blocks (EOF)
FCS Change Blocks
User Interface
Workstation Startup and
Termination
Workstation Initialization
Communication Line
Initialization
Signon Block
Signoff Block
Host Interface
Configuration and
Addressing
Console
Card Reader
Card Reader Non-
transparent Data Mode
Card Reader Transparent
Data Mode
Printer
Printer Nontransparent
Data Mode
Printer Transparent
Data Mode
Command Interface for
the Printer

Glossary
CCI Mnemonics
Service and Command
Message Summary
Block Protocol Summary
Sample Main Memory
Map for NPU

HO QW

60471160 A

11-8

11-8 CRC-16 Error (Cyclic
11-8 Redundancy Checking)
Illegal Block Make-up
11-10 Error
Unknown Response Error
11-10 Block Control Byte (BCB)
Error
11-11 Regulation and Flow Control
Autorecognition
11-12 Direct Calls to the HASP TIP
11-12 Direct Calls from the HASP
11-13 TIP
11-13 HASP Postprint
11-13
11-14
12. STATE PROGRAMS
11-14
11-14 Execution of State Programs
Classes
11-14 Components of a State Program
11-15 Functions
11-16 Input State Programs
11-16 Text Processing State
Programs
11-16 Firmware Interface to the
11-17 Output Data Processing
11-18 Modem State Programs
Firmware Interface to the
11-19 Modem State Programs
Multiplex Level Status
11-20 Handler (PTCLAS)
11-20 Interface to the
Modem State Programs
11-20 Input State Programs
Interface to the Modem
11-21 State Programs
Macroinstructions
11-21
APPENDIXES
A-1 F CCI Naming Conventions
B-1 G Standard TIP and SVM
Trees
Cc-1 H Principal Data
D-1 Structure
I On-line Debugging Aids
E-1
INDEX

Punch

Error Conditions

11-22
11-22

11-23

11-23
11-23

11-23
11-25
11-25
11-26
11-26
11-27
12-1
12-1
12-2
12-4
12-4
12-5
12-6

12-7
12-8

12-9

12-10

12-10
12-10

F-1
G-1

H-1
I-1

xi

xii

Role of NPU in a Network 1-2
Priority and Nonpriority

Tasks in CCI 1-4
Downline Message Pro-

cessing 1-6
Upline Message Pro-

cessing 1-7
NPU Configuration

Sequence 2-4
Line/Terminal Configur-

ation Flowchart 2-7
Format of CE Error,

and Statistics

Messages 3-3
OPS Monitor Table Format 4-4
Buffer Formats and

Stamping 4-5
Worklist Organization 4-11
Basic Elements of the

Multiplex Subsystem 5-2
TIP and Multiplex Sub-

system Worklist

Communications 5-5
Command Packet General

Format 5-10
Control Command Format 5-12
Enable Line Command

Format 5-13
Input Command Format 5-16
Input After Output

Command Format 5-18
Terminate Input Command

Format 5-20
Terminate Output

Command Format 5-21
PTLINIT Relationships

With Major CCI

Modules 5-27

Communications Paths
for Block Flow Control 6-3

CCI Modules 1-10
Support Programs for

TIPs 1-11
Principal Data

Structures 1-17
Inline Diagnostic

Service Messages 3-5
OPS Monitor Table 4-3

FIGURES

10-1
10-2
11-1

11-2
11-3
11-4
11-5

12-1

TABLES

[nlr
]
Ol W N

(8]
!
=

Data Block Header

Formats 6-4
Use of Routing

Directories 6-14
Simplified Routing

Flow Chart, PBSWITCH 6-15
Important Common TIP

Subroutines 6-23
Structure of a TCB

Queue 6-31
Coupler I/0 Trans-

actions 7-3

I/0 Transaction Con-
tention at the Coupler 7-5
OPS and Interrupt Levels

for the HIP 7-6
Coupler Registers 7-9
Host Interface Protocol

Sequence, NPU Side 7-21
Host Interface Protocol

Sequence, Host Side 7-23
Standard Data Block

Format Used by the

HIP 7-25
Mode 4 Protocol Message

Formats 10-4
MTI Codes for Mode 4 10-5
Typical HASP Multi-

leaving Data Trans-

mission Block 11-9
EOF Block 11-13
FCS Change Block 11-14
Signon Block Format 11-15
Format of Block

Control Byte (BCB)

Error Block 11-24
Locating a State

Process 12-3
Interrupt State Defi-

nitions (PBINTRAPS) 4-15
Interrupt Assignments 4-16
Standard Subroutines 4-18
NPU Console Control

Commands 4-29
Multiplex Level 2

Worklists 5-6

60471160 A

5-2 TIP/TIP OPS level
Worklists
5-3 Optional Modem/Circuit
Functions
5-4 PTCIAS Worklist
Analysis and Action
5 PTLINIT State Transi-
tion Table
-1 Block Types
2 Command Blocks Used on
Nonzero Connections
Coupler Status Register
Bit Assignment
Orderword Register
Codes
NPU Status Word Codes
Address Register Code
PPU Function Commands
NPU Function Commands
HIP States and
Transitions
Summary of Batch Car-
riage Control Symbols
8-2 Summary of Interactive
Carriage Control
Symbols
8-3 2780 Batch Carriage
Control Action
8-4 3780 Batch Carriage
Control Action
9-1 TIP State Transitions,
Interactive Mode
9-2 TIP State Transitions,
Tape Mode

~ ~
! [
N =

DN

]
[l N0 s W

©
[}

60471160 A

11-1
11-2
11-3

11-4
11-5

11-6

11-7

Carriage Control for

TTY Output Messages 9-5
Mode 4 Nomenclature 10-3
Mode 4 Terminal/Cluster

Addresses J0-5
E-Codes 10-6
DBC Codes for Carriage

Control 10-8
Break Codes 10-8

Card Reader Input

Stopped CMD Blocks 10-10
Printer Carriage

Control Codes 10-11
Printer Input Stopped

CMD Blocks 10-11
HASP Workstation

Features 11-2
HASP Protocol Mnemonic

Definitions 11-5
HASP Significant EBCDIC

Characters 11-7
HASP Device Type 11-17
Card Reader Stream

Control CMD Blocks 11-18
Printer Data Stream

Control CMD Blocks 11-20
HASP Printer Carriage

Control Codes 11-21
Punch Data Stream

Control CMD Block 11-22
State Program Macro-

instructions 12-11

xiii

CCI OVERVIEW 1

This section describes Communications Control Intercom (CCI) on a conceptual
level. The description gives the programmer an overview of how CCI
functions in a Network Processor Unit (NPU). For a more complete
description of how CCI functions in a network, refer to the CCI reference
manual.

CCI provides the software necessary to process data (messages) through the
network communications portion of a Control Data network. The network
communication functions that are moved from the host (a CYBER 70/170) to the
NPU allow an application program in the host to process data as if the
program were connected to a virtual terminal that was connected directly to
a host port. Since virtual terminals must be either batch or interactive,
host processing becomes almost independent of terminal type.

The network communications tasks that have been moved into the NPU are of
four types:

) Multiplexing data to and from the terminals

) Demultiplexing data and storing it in buffers for buffered high-speed
transfers to and from the host

) Converting all terminal protocols into either an interactive virtual
terminal protocol or into a batch virtual terminal protocol

° Regulating the volume of message traffic handled

CCI is divided into several major subsections to handle these tasks: (See
figure 1-1.)

° Base modules to provide NPU control and general services to other
major subsections

) Network communications subsystem modules (internal processor and
service module) to provide routing and network configuration services

) A host interface (HIP and coupler) subsection
) Terminal interface subsections for each major class of terminal

° A multiplex subsystem that provides the hardware and software
interface between the NPU and the various types of terminals

60471160 A 1-1

NPU M
C u
0 L
Host | ¢ Hip |—| INTERNAL e | TERMINAL
S L PROCESSOR | ")
E L
R E
~ °
[] S [J
U
[] B []
S
Y
e S TERMINAL
E
M
HIP — HOST INTERFACE PACKAGE
SVM — SERVICE MODULE
TIP — TERMINAL INTERFACE PACKAGE M-7563

Figure 1-1.

Role of NPU in a Network

60471160 A

CCI passes ASCII and display code messages to and from the host in format.
CCI passes messages to and from the terminals in a code and format
appropriate to the terminal. Downline messages (output from the host) are
switched to the proper terminal and translated from host to terminal format
and code. Upline messages are normally received from the terminals,
converted to host format, and passed to the host.

NOTE

A transparent mode is available. In this case, the message
remains in the terminal code and format throughout the
network.

CClI DESIGN

CCI can be classified as a responsive (driven) system rather than an active
system. The external stimuli that drive the system come (1) from the host
in the form of downline messages and commands and (2) from the terminals in
the form of upline messages. At the two principal interfaces (Host
Interface Package, HIP, on the upline side; multiplex subsystem on the
downline side), hardware and firmware do much of the preparation for a
message or command transfer.

PRIORITY PROCESSING AT THE INTERFACES

At the interfaces, CCI is largely interrupt-driven and operates at priority
levels. Interrupts are processed immediately unless a higher priority task
is already being performed. The interrupt can be processed completely at
that time. However, many tasks take so much time that it is preferable to
defer part of the task processing until later. This is done by generating a
worklist that defines the parameters for the task and then queuing that
worklist (task request) to the module that must process it. The multiplex
subsystem works this way and has its own worklist processor to schedule the
appropriate modules at a priority level.

The principal priority tasks, in order of decreasing importance, are as
follows:

Memory errors

Multiplex loop errors

Host coupler events

Real-time clock count

Output data demands (multiplex subsystem)

Input data frame received (multiplex subsystem)

The output of the priority level is either a message that the NPU can route
to the specified destination, or a command for the NPU which CCI interprets
to change its own processing mode.

Some major modules operate largely on the priority level (the multiplex
subsystem, for example); others have portions that operate on a priority
level while the remainder of their processing is on a nonpriority (OPS)
level (HIP, Terminal Interface Package (TIP), for example). A few of the
major modules do almost all of their processing on the OPS level (internal
processor and service module).

60471160 A 1-3

OPS-LEVEL PROCESSING

When no priority tasks are pending, CCI processes OPS-level tasks. There is
an OPS Monitor that assigns tasks by scanning all the nonpriority

worklists. These worklists are queued to one or another of the major system
modules. Each of these major modules (such as a TIP, HIP, internal
processor, or the service module) has its own internal worklist scanner that
determines the exact task to be performed on the basis of a workcode in the

worklist.

OPS-level worklists can originate either from a priority task or from
another nonpriority task. For example, a downline message from the host is
first handled on a priority basis as the HIP and the coupler set up to
receive the message and actually input the message into the assigned buffers
in the NPU. When the message (or part of a message called a block) has been
completely received, CCI is ready to process it. This block is passed on a
nonpriority basis to the internal processor with a worklist. The internal
processor routes the block to the proper TIP with a worklist. The TIP
passes the message (still at OPS level) to the multiplex subsystem. The
multiplex subsystem sets up the transfer on the OPS level and then outputs
the message to the terminal, one character at a time, on a priority basis.

Figure 1-2 shows the processing levels for most of the major modules.

MULTIPLEX
HIP SUBSYSTEM TIPS
REAL- ‘
PRIORITY COUPLER |I/O PROCES- | STATE
TIME CLOCK | |NTERRUPT |SING (WORK-| PROGRAMS
HANDLING | LISTS) (ASYNC 1/0)
TIMED D
EVENTS MODULE | MULTIPLEX | yopy e
(DELAYED | conTRoL | SUBSYSTEM | ~onNTROL
NONPRIORITY)| OR CONTROL
(OPS LEVEL) PERIODIC)
OPS MONITOR INTERNAL SERVICE
BASE MODULES PROCESSOR MODULE
M-379

Figure 1-2.

Priority and Nonpriority Tasks in CCI

60471160 A

DOWNLINE MESSAGE PROCESSING

Downline interactive messages originate in the host in blocks, each block
usually being one output line. It is assumed that the interactive mode is
conversational; that is, a line output is followed by a reply of one input
line entered from the terminal's interactive device. The interactive device
at the terminal is always ready for output unless the connection of the
terminal is preempted by batch transfers or by an input interactive

message. The output block is passed to the Host Interface Program (HIP) and
is handled as a batch mode Physical Record Unit (PRU) block. See
description, following.

Downline messages originate serially from the host in blocks. A block is a
full message or one part of a message treated as a unit. The block is
passed to the NPU via the HIP, which is responsible for all transfers across
the coupler. (See figure 1-3.) The HIP passes the block to an internal
processor, which examines the block header to gain information about the
terminal receiving the message. Each category of terminal is serviced by
one of the Terminal Interface Programs (TIPs). The internal processor
passes the message to the appropriate TIP.

The TIP processes the message (translates it to terminal code and format)
and passes the message to the command driver in the multiplex subsystem.
Before this, the host (through the TIP) must have requested the multiplex
subsystem to prepare the line connecting the NPU to the terminal for a
transmission.

At the multiplex subsystem, the output message block is multiplexed, along
with other message blocks being transmitted to the terminals, and sent to
the terminal one character at a time. Actual timing of the character
transmission depends on an output data demand (ODD) signal sent by the
communication line controller (consisting of the communications line adapter
(CLA)) to the NPU. An output data processor in the multiplex subsystem
handles this activity. The host is informed of message transmission
progress twice: first, when the complete block is accepted by the NPU; and
again after the block is transmitted to the terminal.

UPLINE MESSAGE PROCESSING

Upline messages (input to the host) originate at the terminals and are sent
one character at a time to the input loop of the multiplex subsystem. An
input processor picks up all characters and stores them in a temporary
buffer called the circular input buffer. The TIPs are responsible for
furnishing the multiplex subsystem a set of programs that are used to
demultiplex the data into line-oriented input buffers. Code and format
conversions are performed along with the demultiplexing. Since block size
is a CCI/host build-time parameter, any message that exceeds the maximum
block size is divided into blocks. Each block is then treated as a separate
message unit by CCI. The message is converted from terminal code and format
to host format. (Note that a transparent mode is also available for
messages.) After a complete block has been assembled, the multiplex
subsystem notifies the appropriate TIP, which finishes processing the
message. Then the TIP passes the message block to an input Point of
Interface (POI) program. That program transforms the batch blocks to PRU
blocks and then passes the block to the HIP by way of an input Point of
Interface (POI) program. The HIP, in turn, passes the block to the host.
Terminals are notified of processing progress according to the demands of
the terminal protocol. Figure 1-4 shows simplified upline message
processing.

60471160 A 1-5

HOST c MESSAGE
> 1]o HOST MESSAGE TRANSLATION el
{‘PPU u _| ROUTING AND CONTROL|
P INTERFACE (INTERNA »| MULTIPLEX
[L PACKAGE L (TERMINAL SUB.
E PROCESSOR) INTERFACE SYSTEM)
R PACKAGE)
TIP
v
MLIA
TIP OUTPUT
MULTIPLEX
LooP
L
NETWORK PROCESSOR UNIT
TERMINAL | @ ® @ | TERMINAL
M-376
Figure 1-3. Downline Message Processing
1-6 60471160 A

TERMINAL

TERMINAL

—_——a -
I MLIA r |

| IcircuLAr! i |

| T INPUT Fp-» |

—-.’ | N .
| LooP IBUFFER [T =~ »| INTERNAL
i L —J — || Tes »| PROCESSOR
el >
LINE-ORIENTED
INPUT v
BUFFERS
HIP
NETWORK PROCESSOR UNIT
\ 4
COUPLER
\ 4
I PPU 1
—_————]
HOST

TINPUT POI PROGRAMS TRANSFORM UPLINE
BLOCKS TO PRU FORMAT.

60471160 A

Figure 1-4.

Upline Message Processing

M-377

CCl FEATURES

CCI provides several message processing features:

) TIPs and Point of Interface (POI) programs relieve host application
programs of needing to handle terminal protocols. The TIPs and POIs
convert messages to and from host code (display for batch devices)
for the host.

) Block protocol relieves the NPU and the host of upline message length
restrictions. Any size input message is accepted; when the normal
maximum number of input characters has been received (2048 bytes
including NPU-added header bytes), the block is declared full. It is
processed for shipment to the host, and another block is started.
Blocks are designed so that the only block, or the last block of a
message, is clearly designated (MSG type block).

) The multiplex subsystem provides hardware and software which makes
the terminal hardware characteristics invisible to the TIPs. The TIP
needs to know only the terminal type.

° The NPU regulates its input (rejects incoming messages) under one of
several conditions:

The entire NPU is short of assignable space (buffers) for message
processing.

An individual TIP is using too many buffers at any one time.

An accept input/accept output flag is being set by the NPU or by
the host.

Message priority is lower than the current logical link
regulation level.

In this way, the NPU rejects messages directed to it when those
messages might cause peak loading problems severe enough to stop the
NPU.

° Priorities exist so that time-critical tasks can interrupt non-time
dependent tasks. The time-critical tasks are concerned with either
the multiplex subsystem (input and output processing at the lines to
the terminals plus various errors that occur during this processing)
or the NPU console. Since the console is rarely used, these latter
interrupts have minimal system impact. The lowest priority is not
interrupt-driven. It is called the operations (OPS) level. Most
processing occurs on the OPS level.

° Programs are written in PASCAL or using state programming
instructions. (A few frequently-used routines are written in
macroassembly language.) There is no correlation between language
used and operating priority. PASCAL was chosen for its simplicity of
use and because it is an effective language for manipulating table
entries. Much of the CCI processing depends on information saved in
tables. The OPS level of any program (TIP or otherwise) uses PASCAL
code,

1-8 60471160 A

For some purposes, it is more effective to write code on the firmware
level (also called multiplex-level processing). State programming
instructions are used for this. Such programs demultiplex data and
translate code and format. Every TIP has at least one firmware level
program: an upline input state program. Most TIPs also have at
least one downline firmware level program: the text processor for
translating host code to terminal code and format.

‘The HIP does not use firmware programs directly. Several of the
general support programs that are written in macroassembly language
contain portions that are written in firmware. These programs should
not be altered by any user.

) Three methods of communication between modules are provided: direct
calls, queued calls (using worklists), and setting global variables
in tables, which are then accessed by other programs.

CCl MODULAR STRUCTURE

CCI can be considered as a group of generalized modules that provide
services for the TIPs, which interface the terminal protocol to the host
(block) protocol. Terminal-oriented programs are called Terminal Interface
Packages (TIPs). The modularization of CCI is shown in tables 1-1 and 1-2.

CCI is always resident in the NPU. It is downline loaded from the host.
After loading is complete, additional communications between the host and
CCI configure all the tables that hold line and terminal-oriented
information. See appendix E for a sample CCI load map.

CClI PROGRAMMING METHODS

CCI provides the interface for the network between terminal protocols and
the host (block) protocol. It also provides multiplexing to match the
high-speed block transfers at the host interface with the low-speed
character-by-character transfers at the line interfaces to the terminals.

BLOCK PROTOCOL
Block protocol defines three principal types ¢f block:

) BLK and MSG blocks carry data. No block can have more than 2048
bytes. The host is responsible for block size downline; the TIP
input state programs and internal process are responsible for block
size upline. MSG blocks carry a full message or the end of a
message. BLK blocks carry all segments of a message except the last
or only segment.

® CMD blocks carry commands and status. The service module (SVM)

handles generalized commands. Some commands can also be directed to
and from TIPs, to start or stop a data stream for a specific terminal.

60471160 A 1-9

) BACK blocks carry communications protocol information, such as
acknowledgment that is sent to the terminal that downline messages
have been received from the host, and acknowledgment that upline
messages have been received by the host.

Each block header has information relating to routing:
nodes (SN and DN), which are related to the host and NPU,

source/destination
and a connection

number (CN), which is related (through directories) to lines and terminals.

Data (BLK and MSG) blocks have an additional header, which contains control
information and includes a data block clarifier (DBC).

Internal processing handles downline routing by use of the directories.

Upline, the originating terminal is known.
multiplex subsystem passes the block to the appropriate TIP.

Using this information, the
The input POI

provides destination code information during upline routing, since this data
is to be shipped to the host.

TABLE 1-1. CCI MODULES

Module

Major Function

Normal Calls

Terminal-Oriented

Mode 4 TIP Handles synchronous Mode 4A/4C

terminals. PT4...
TTY TIP Handles asynchronous terminals

using teletypewriter protocols. PTTY...
HASP TIP Handles synchronous HASP HS...

workstations. HASP...
BSC TIP Handles the bisynchronous

protocol used by IBM 2780/3780

terminals. various
Host-Oriented
Host Interface Handles block protocol between
Program (HIP) host and NPU; transfers use

the host coupler. PTHIP...

1-10 60471160

TABLE 1-1. CCI MODULES (Contd)

Module Major Function Normal Calls
General Support
Base system Includes a monitor, timing,
standard subroutines, NPU
console services, and task
calls (worklists). PB...
Multiplex Part of the base system;
subsystem contains command driver and
input/output multiplex loops.
The multiplex subsystem con-
sists of hardware, software,
and firmware. PM...
Network Message routing, service
communications messages, and common TIP
subroutines (including POIs). {PN..
This group of modules also PT...
handles upline formatting
of blocks to PRU format.
TABLE 1-2. SUPPORT PROGRAMS FOR TIPS
Programs Location™ Comments
Host Interface Program (HIP)
GENERAL SUPPORT
Operating system B (Includes program
execution, space
allocation, and
interrupt handling)
Worklist handling B Interprogram task re-
quests
Timing services B
Standard subroutines B

60471160 A

TABLE 1-2. SUPPORT PROGRAMS FOR TIPS (Contd)

Programs - LocationT Comments

Host Interface Program (HIP)

Internal processor maintenance B Building directories

Command driver M

Output data processor (ODP) M

Input data processor (IDP) M

Other multiplex

subsystem routines M

Message routing N

Service module, SVM B Handles most commands
between host and NPU

TIP support N Includes Point of
Interface (POI)
programs, block
handlers, regula-
tion, and command
block generator

Inline diagnostics N

NPU console services B

Initialization programs Released when
initialization is
complete

B = Base system

M = Multiplex subsystem
N = Network communications

All host/NPU transfers are controlled on the NPU side by the HIP. The HIP
operates either by coupler interrupts or at OPS-level. The HIP does not
process blocks except to the extent that it assures that a complete block is
sent or received. The HIP can reject a request to send an input block
unless enough buffers can be assigned to receive the entire block at the
time the transfer is requested. No effort is made to re-receive or
retransmit portions of a block.

1-12 60471160 A

The service module (SVM) handles most commands between host and NPU other
than those to start and stop a data stream. For service messages, the
connection number (CN) is zero. For downline commands, the SVM processes
the command (such as entering fields in a terminal-related table) and
returns an acknowledgment service message to the host. In processing a
service message, SVM can call on a TIP or on one or more other support
- routines.

Commands to start or stop message transmission on a line are sent directly
between the host and the appropriate TIP. In this case, CN is not zero.

BLOCK ROUTING

Block switching downline is done by internal processing. Almost all blocks
are passed to the receiving program (TIP, or SAVM) using a worklist entry.
Invalid blocks are discarded. Upline blocks are routed by internal
processing to the host (directly or through the local NPU), or, in rare
cases, to the NPU console.

POINT OF INTERFACE (POI) PROGRAMS

From the standpoint of the TIPs, there are certain protocol requirements
that each TIP must fulfill both upline and downline. Common POI programs
are provided for these tasks.

L) PBIOPOI - internal output POI. Downline block switching is handled
by the PBIOPOI. This POI checks the block serial number to assure
that the block is in sequence. If it is a batch block, the TIP is
called directly to convert the PRU block to a block in terminal
code/format; then queues the block to the TIP or SVM for further
processing.

) PBPOPOI - postoutput POI. This downline POI generates an
acknowledgment to the host that the block has been transmitted to the
terminal. It also gathers statistics for the transfer.

° PBPIPOI - postinput POI. These POIs handle the upline block by
building the block header. If it is a batch device block, the block
is reformatted to PRU format. This is done by gathering the data
buffers together to form a PRU size block (note: the UPs have already
converted the data into display code). In all cases, the block is
routed upline immediately, or is queued for upline routine.

°® PBPROPOI - preoutput POI. This POI sets up table information for
downline transfers.

DIRECT AND WORKLIST CALLS

Direct calls can be made from any PASCAL program to any other PASCAL
program. At the OPS level, direct calls are freely made between routines of
the same kind (such as SVM routines or TIP routines within the same TIP).
Calls are also made freely from the SVM, a TIP, and the HIP to support
routines (base and network types).

60471160 A 1-13

Direct calls pass task-oriented information in either of two ways:

° Information can be stored in one or more fields of PASCAL tables
(data structures). The called program is expected to find the table
and the field.

) A small parameter list may accompany the call. This type of list is
ordinarily restricted to a few pointers and/or numbers. In this
manual this type of call is depicted as:

MNCALL parml,...parmn

MNCALL is at least the first six characters of the entry point
name. Parml...parmn are the associated parameters. Parameters
can be omitted, but the delimiting commas cannot (exception:
terminating comma(s)).

Calls between types of routines (such as a call from a TIP to the SVM or the
reverse, or a block switching call) are usually made with worklists.

A worklist is a packet of information about the requested task. Worklists
are queued on a first in, first out basis to those few modules designated to
receive them. Those modules are the following:

TIPs

HIP

SVM

Internal processor

Timing processor

Multiplex loop interface adapter interrupt processor
NPU console handler

All of the named modules execute at the OPS level. Worklists are also
queued for certain priority routines in the multiplex subsystem (multiplex
level). A worklist is considered to be an event that requires CCI to take
appropriate action.

The monitor scans the list of OPS-level programs to find the next event
(task) that must be processed. It then passes control to that module
together with the worklist. The worklist contains a workcode that most
receiving modules (such as a TIP) use as the index to an internal switch
determining the module entry point appropriate to the requested task.

The multiplex subsystem has its own worklist processor which runs at
multiplex level (priority 3). The worklist processor handles the following
functions:

Communications line adapter status

Output buffer transmitted

Buffer threshold reached in multiplex subsystem
Unsolicited input or output on a line

Bad communications line adapter address

Illegal frame format

Timeout of output data demand (ODD)

Termination of input

CE error message generation

Hardware errors

Calling the TIP at OPS level for further processing

1-14 60471160

The event workcodes in the worklist define the internal switching for the
multiplex worklist processor.

DIRECT CALLS ON FIRMWARE LEVEL

Input state programs and text processing programs can branch during
processing. The branching calls are embedded in the code. Whenever state
programs are suspended for any reason (such as finishing processing on the
current input character and having to release control until the next input
character is available for processing), the state programs save a pointer to
the next entry point in a global table (NAPORT, MLCB, or TPCB: these are
defined later). When firmware processing resumes, the appropriate table is
checked for the pointers to the firmware entry point. Since the table is an
OPS-level data structure, the pointers can be readily used by software on
any priority level, as well as by firmware.

SPECIAL CALL TO MULTIPLEX SUBSYSTEM

TIPs or SVM call the multiplex subsystem directly, to save processing time.
This call to the command driver (PBCOIN) has a special parameter list called
a command packet. Information in this packet is used by the multiplex
subsystem to set up the table controlling this message transfer (MLCB).
During the transfer, additional information is added to the MLCB, and all
programs concerned with the transfer (whether software or firmware) refer to
the MLCB for transfer control information. The MLCB for the transfer is
released when the transfer is completed.

SPECIAL CALL TO FIRMWARE INTERFACE

A support routine (PTTPINF) is called directly by the OPS-level TIP when
firmware-level text processing is to be done. All text processing for a
block occurs in a single pass, although PTTPINF returns to OPS level (within
itself) frequently so that interrupts can be processed. (While processing
on the firmware level, interrupts are inhibited.) For text processing, the
OPS-level TIP defines a table to control the transfer (TPCB) and fills all
the necessary fields before calling PTTPINF. The firmware accesses TPCB for
control information and adds status information used by the OPS-level TIP
after PTTPINF returns control to the TIP. The TPCB is discarded by the
OPS-level TIP when the text processing is completed.

NOTE
Space is reserved in the TPCB for the contents of the first
16 microprocessor file 1 registers. This provides 16 full

words for communication in addition to the words already
defined in the TPCB.

60471160 A 1-15

COMMUNICATION USING PASCAL GLOBALS (TABLES)

Instances of communications between modules and between different levels of
programs (OPS level/firmware level) have already been cited: worklists,
MLCBs, TPCBs. Use of PASCAL globals (tables) is a way of passing
information between programs or saving information for later use. CCI
defines several major data structures as shown in table 1-3. Some of these
are defined temporarily, to be used only for one task (such as sending a
message block to a terminal) or for one sequence of tasks (such as defining
terminal information from the time when the line is enabled until the line
is disabled). A few structures are defined permanently. Even permanent
structures may need to be reconfigured each time the NPU is downloaded from
the host.

All principal data structures are defined in appendix H.

LINE INTERFACE HANDLING

Much of the line interface is the responsibility of the multiplex subsystem.
Important aspects of message transfer are as follows:

) Setting up the communication line adapter (CLA) for the transfer is
accomplished by a command originating in the host and passed to the
command driver via the TIP that controls this type of terminal
(line). The whole process can be started by a signon from the
terminal. Low-speed lines can use autorecognition features (part of
the TIP code) to establish line speed and code type.

[Polling synchronous Mode 4 lines for the next input character is
initiated by the command to start polling, which originates in the
host. The TIP, however, determines the exact moment of sending each
successive polling message. The line polling message is passed to
the terminal via the multiplex subsystem. It is a timed output so
that failure to supply another input character in the specified
period is treated as a hardware error. Unsolicited input characters
are also treated as hardware errors.

) The NPU may reject input when the entire NPU is running out of
buffers.

) Output data is sent to the multiplex subsystem as a block of data in
terminal format and code. The output processor sends each character
in response to an output data demand (ODD) interrupt from the CLA.
This is a timed operation. If the ODD request does not appear in one
second, this is treated as a hardware error.

) The multiplex subsystem has limited error recovery logic. If the
attempt to send or receive a character fails n times, the line is
declared down and the TIP and SVM are called to take the appropriate
internal action and to notify the host of the line failure.

1-16 ' 60471160

TABLE 1-3. PRINCIPAL DATA STRUCTURES

Structure

Major Functions

Principal
Users

Block format

Service message
formats

Console request
packet

System buffers
and buffer
control block
(BCB)

Worklists,
worklist
control block
(WLCB)

Timing tables

Logical link
control block
(LLCB)

Line control
block (LCB)

Terminal
control block
(TCB)

Command packet
(NKINCOM)

60471160 A

Provides vehicle for NPU-to-host
communications.

Part of block format; passes commands,
status, and statistics between NPU and
host.

Controls transfer to and from NPU
console.

Controls space for processing. BCBs
locate assignable buffers in each of
four pools of assignable buffers.
Nominal buffer sizes are 8, 16, 32,
and 64 words (2 bytes per word).

Make major task request calls from
module to module. WLCB locates work-
lists queued to a single module.

Provide periodic and delayed calls;
some timing is embedded in LCBs.

Directory information and regula-
tion level; one static block per 1link.

Line-related information, timing,
pointers to TIPs and terminal-related
structures (TCBs); statistics informa-
tion for the line; one static block
per line.

Terminal-related information, includ-
ing terminal and device type, cluster
and terminal addresses, statistics,
pointers, and flags for data in the
current transfer. Dynamically
assigned when terminal is configured;
released when line disabled or termi-
nal deleted.

Controls information for a multiplex
subsystem I/0; builds the MLCB.

All modules

SVM, all
modules

Base
modules

Base modules;
all modules
use buffers

Base modules;
all modules
that call
other modules

Base modules;
TIPs, SVM

Routing mod-
ules, SVM

SVM, timing
module, TIPs,
HIP, multiplex
subsystem

SVM, TIPs,
HIP, multiplex
subsystem

Sent from
initializer,
base or TIP
to multiplex
subsystem

TABLE 1-3. PRINCIPAL DATA STRUCTURES (Contd)
Principal
Structure Major Functions Users

Port table Current line (port) status; pointers Multiplex
(NAPORT) to MLCB and state programs controlling subsystem

a transfer at the multiplex port; one

static entry per line.
Multiplex line Controls information for a message Multiplex
control block transfer to and from a terminal major subsystem
(MLCB) device used by OPS level and firmware

level (input state programs) to

exchange information. Dynamically

assigned for a single block transfer

(downline) or message transfer (upline).
Text processing Controls information for converting Responsible
control block code and format (downline or second TIP
(TPCB) pass upline) of data blocks; dynami-

cally assigned for a single block.
TIP-type table TIP-related addresses. SVM, base

modules

Line table Defines principal characteristics of Multiplex

a line. subsystem
Modem/CLA Defines modem and communications line Multiplex
tables adapter physical characteristics. subsystem
Terminal/device Defines physical characteristics of Multiplex
type tables terminals and devices at a terminal. subsystem

The generation of the ODD and polling messages, and the use of worklists for
calls is sometimes referred to as an event-driven processing system.

Physical positioning of CLAs in the loop multiplexer card cage generates a
preferential processing scheme. Since only one line frame (input or output)
is on the multiplex loop at any one time, the CLA farthest from the loop
multiplexer has first chance to use the loop. As viewed from the front, the
loop multiplexer is in the next to last slot on the right-hand side of the
cage (the last slot is not used). The CLA which has first chance to use the
loop is in the leftmost slot, and is the half of the CLA card associated
with the switches for the top half of the card.

CCl PROGRAMMING LANGUAGES

Commonly-used base programs, especially those with firmware portions, are
written in macroassembly language for speed of execution. These programs
should never be altered in the field. Such programs are listed in an
assembly listing.

1-18 60471160 A

OPS-level support programs, most priority-level multiplex subsystem
programs, and the OPS level of each TIP are written in PASCAL language.
Altering these programs can require altering the data structures (tables)
that these programs use to store and pass programming control information.
These programs are listed in an MPEDIT listing and are especially usable in
a PASCAL EDIT XREF listing.

NOTE

These programs can escape directly to firmware processing
using the PASCAL INST instruction together with the firmware
address of the firmware program.

The firmware parts of the TIP are called input state programs or text
processing state programs. The multiplex subsystem has special firmware
programs called the modem state programs. These are used to process
CLA-generated status. If this status word occurs, it is usually in the same
frame as an input message character.

These programs are written using a predefined set of macroassembly language
macroinstructions called state instructions. These programs are called in
one of three ways:

° A direct call from the internal processor to PTTPINF for a text
processing program.

) An event-driven call, triggered by the placement of data in the
circular input buffer, to the modem state programs.

[A call from a modem state program to an input state program.

The firmware programs communicate with the multiplex subsystem by releasing
control (input state programs or modem state programs) and by storing
information in data structures. Worklist calls can be made to the OPS-level
and multiplex-level multiplex subsystem programs, or the OPS-level or
multiplex-level TIP. (Multiplex-level calls to the TIP are ordinarily
immediately converted to OPS-level calls to the same TIP.)

Text processing programs communicate with the calling TIP by releasing

control and by storing information in the TPCB. Worklist entries to the
OPS-level TIP can also be made.

60471160 A 1-19

INITIALIZING AND CONFIGURING THE NPU 2

This section describes the loading, initializing, and configuring of the NPU.

Before the CCI can be loaded into the NPU, the host must prepare the load
file. Two cases of load file preparation in the host must be considered.
The normal case assumes released installation tapes and the associated
installation materials. Use the techniques described in the NOS
installation handbook (see preface) to generate a CCI load file and to
update a load file using corrective code release (CCR) tapes.

The special case occurs when the user initiates his own changes to CCI.
This case assumes the use of a system configure file (SCF) or the
equivalent. New modules sometimes have to be generated and prepared as
change tapes. In all cases, changes may need to be made to the SCF itself
and to the CCI tables. Table changes are normally entered by MPEDIT
statements. Such changes should be made only by qualified analysts.
Consult the CDC publication index for TIP Writer's Guide bulletins.

Assuming a load file is ready, a three-step process is used to make the NPU
into a fully operational network node:

° Dumping the contents of the failed NPU to the host. This is an
optional procedure but is normally used. If the user has purchased
network maintenance from CDC, a host application program is available
for a quick analysis of the dump. Refer to the CCI reference manual
for standard dump formats. If the user has not purchased this
maintenance, he should devise his own programs to make the dumps
readily available for later analysis.

) Loading the NPU from the host. A special overlay loading capability
is available for the dump/load process.

) Configuring the NPU by specifying the network logical 1link, line, and
terminal connections for this NPU.

INITIALIZING THE NPU

Initialization takes place in two phases: the first to load and initialize
the micromemory; the second to load and initialize the macromemory.

PHASE | INITIALIZATION
BEGINA starts initialization after the following occurs:
The macromemory is downline-loaded with the phase I load file.

The host sends the start signal.
® The processor starts execution at location 000015 (routine BEGINA).

60471160 A 2-1

BEGINA first executes PIRAM to load the firmware microcode into the
micromemory. Then BEGINA calls PIEX to send a coupler idle status to the
host. CCI loops while waiting for the phase II load file.

PHASE Il INITIALIZATION

The system initialization routine (PINIT) receives control after the
following occurs:

° The phase II load file is downline-loaded into the NPU.
) The host sends a start signal.

e The NPU starts execution at memory location 000034 (a jump to
routine BEGINX). BEGINX loads general-purpose registers 1 and 3 with
parameters for dynamic stack management (used during initialization
of recursive routines). Register 1 contains the dynamic stack last
word address; register 3 contains the dynamic stack first word
address.

) BEGINX executes the PASCAL routine MAINS. This routine disables
interrupts, loads the interrupt mask, and calls PINIT.

PINIT

PINIT controls the remaining macromemory initialization. The routine resets
the deadman timer for host transfers, sets the page registers, and zeroes
the page mode. It then calls each of the other initialization routines.
Before each routine is called, a specified bit is set in the initialization
status word. This word can be checked for debugging purposes if the
initialization procedures fail. (See CCI reference manual.) The routines
are called in the sequence given in the following paragraphs.

PIPROTECT

PIPROTECT sets memory protect bits. Before setting or clearing these bits,
PIPROTECT calls PISIZCORE to determine the last addressable memory location
and the last word of the buffer area. The protect bits are cleared from
every buffer word and set for all other words. Use of the protect system
prevents DMA devices from writing into any area but buffers. The protect
system can also be used with the Test Utility Program (TUP) for debugging
purposes. (See appendix I.)

PIBUF1

PIBUF1l starts buffer initialization. PIWINIT is called to determine DN
limits, and to allocate the first node in the DN table to the NPU's local
node. The IDLNK and IDTBL tables are allocated and initialized, as is the
ORG DN table. An entry to TUP is allowed if the TUP option has been
selected.

2-2 60471160 A

PIGETABLE calls PILCBS to create port and circular input buffer tables. The
PIGETABLE determines the pointers to the timer, port, LCB, and subLCB
tables. SubLCBs for the MLIA, console, and coupler are initialized, and the
first LCB is also initialized. The address variables for these subLCBs are
then filled.

PIBUF1l sets the address limits of the buffer area and calls PIFR1 to
initialize the file 1 (firmware) registers. A 256-word array is used.
Dynamic values are assigned FFFFjg. Any nonused registers are set to
zero. PBEF transfers the array contents into the file 1 registers. Next,
some file 2 registers are loaded using assembly language (INST) commands.

Finally, PIBUF1 initializes the buffer maintenance control block. For each
buffer size, the pool boundary is forced to an even boundary, each word in
the buffer area is cleared, each buffer is released to the pool, and the
normal buffer threshold is set.

PIWLINIT

PIWLINIT initiates worklists. Each active worklist is allocated one
worklist-sized buffer. The put and get pointers are set. Zero-sized
worklists are assumed to be inactive; a default size of three is used but no
buffer is assigned.

PIINIT

PIINIT sets the NPU console to the write mode so the CCI banner message can
be displayed. PIINIT also sets up the branch-to-low-core halt routine.
This routine consists of 14 no-op instructions followed by a jump to
PBHALT. The routine starts at memory location 0000;g. Next, PIINIT sets
the time of day clock to the operator-assigned value (month, day, hour,
minute, second).

PIAPPS

PIAPPS initializes any trunks in the system, using the LIP. The banner
message is sent to the NPU console.

PIMLIA

PIMLIA initializes the MLIA and the CLAs. The routine checks for duplicate
CLA addresses. If any are found, PBHALT is called. The system is also
halted if the MLIA cannot be initialized correctly.

PILININIT

PILININIT sets up the multiplexer and coupler timing services by adding the

MLIA and coupler subLCBs to the list of active LCBs. The data buffer size
is set up for the coupler. The deadman timer is reset.

PIBUF2

60471160 A 2-3

PIBUF2 clears and releases the last of the data buffers. The real-time
clock is started, the NPU initialized message is sent to the host,

interrupts are enabled, and the deadman timer is reset. PIBUF2 passes
control to PBMON (the OPS monitor routine), to start normal operation of CCI.

LOAD AND DUMP NPU

A detailed description of loading and dumping an NPU, whether a local or
remote unit, is given in the CCI 3 reference manual.

CONFIGURING THE NPU
After loading and initializing the NPU, the host configures it by
establishing all logical links and logical connections for that NPU. This
is done in the following sequence:

) Logical links (LL) are configured by building the LLCB.

° Lines are configured by building the line LCBs.

) Terminals are configured by building the TCBs.
See appendix H for the definition of the data structures known as LLCB, LCB,
and TCB. Format for the service messages to configure the LLCB, LCB, and

TCB are given in appendix C.

Figure 2-1 shows the sequence of configuring the NPU and the service
messages and blocks used for the operation.

HOST NPU
Configure line service message > Repeat for

< Line-configured service message each line in
Enable line service message > the system.

< Line-enabled service message
Configure TCB service message > Repeat for

< TCB-configqured service message each terminal
INIT block > in the system.

INIT block

A

Figure 2-1. NPU Configuration Sequence

2-4 60471160 A

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs, followed by a connection number.
(Refer to Block Protocol portion of section 6.) The two node IDs represent
the nodes at which each station interfaces to the network. The order in
“which they appear in the network logical address specifies the direction of
the connection (the destination node appearing first, then the source
node). The connection number specifies a full-duplex logical channel
connecting the stations. Connection number zero is reserved as a permanent
service channel for service messages.

CONFIGURING NPU

After the NPU is loaded, the host configures the unit by establishing all
logical links and logical connections for that NPU. (Note: 1In CCI the
links are preconfigured.) This is done in the following sequence:

® Lines are configured by building the line control blocks (LCB).

) Terminals are configured by building the terminal control blocks
(TCB) .

Refer to appendix H for the definition of the data structures known as LCB
and TCB. Format for the service messages used to configure the LCB and TCB
are given in appendix C.

A logical connection is the association of two stations made by the
assignment of a network logical address. The network logical address is a
set of three numbers: two node IDs, followed by a connection number.
(Refer to block protocol portion of section 6.) The two node IDs represent
the nodes at which each station interfaces to the network. The order in
which they appear in the network logical address specifies the direction of
the connection (the destination node appearing first, then the source
node). The connection number specifies a logical channel connecting the

stations. Connection number 2zero is reserved as a permanent service channel

for service messages.

The NPU sends an NPU-initialized service message to the host to notify it
that the NPU has entered this active state.

LINE CONFIGURATION .

After loading the NPU, the host sends service messages to the NPU to
configure the lines between the NPU and the terminals. These configure lin
service messages are handled by the service module in the receiving NPU.

The format of the service message is shown in appendix C.

Line configuration requires sending the following line control block (LCB)
information to the NPU in the FN/FV pairs:

) Port ID for the 1line.

60471160 A

e

® Host identifier.

) Line type - includes type of duplex, CLA, modem, carrier circuit;
answering and turnaround mode; and type of transmission, synchronous
or asynchronous.

) Terminal type (TIP/sub-TIP required to process the terminal's data,
device type, and terminal class).

® Data necessary to fill the selected fields of the line control block
(LCB).

Processing of each line is governed by fields in the LCB. The format of the
LCB is shown in appendix H.

A simplified flowchart for line configuration is shown in figure 2-2.
Terminal configuration consists of configuring the terminal control block
(TCB). TCB configuration is shown on the same diagram, to emphasize the
fact that a network cannot use the terminal until both of the terminal's
associated LCB and TCB are configured. After configuration, the following
events occur:

) The host can identify the terminal. The host can also find the
proper regulation level to use.

® CCI can identify the protocol necessary for the data transfers and
can assign a proper TIP to handle that protocol.

° The hardware in the CLA and modem are prepared for data transfers.

After a line is configqured, it is automatically enabled by the service
module. This allows the line to be monitored. Normal response is made,
using the enable line service message response message. When the line is
reported operational, TCBs are configured. The host starts the line
configuration process whenever an NPU has been loaded and all links are
configured, or when a network operator has entered a command that generates
a specific type of supervisory message in the host.

Configure Line SM

For each line to be configured, the host sends a configure line service
message to the NPU connected to that terminal. All configure SMs contain a
control block descriptor string (FN/FV). There is one such descriptor
string for each type of configurable block in the NPU. The descriptor
string equates a field number to a field position within the control block,
and allows the associated field value to be entered into that field.
Additionally, an optional action can be defined for the field number. The
action allows such operations as validating the field value, assigning
chains to other structures, and other actions appropriate to the newly
entered field. The service module returns a line configured response to the
host. The host then sends an enable line service message to the NPU. The
service module then attempts to enable the configured line. At the
completion of the enable process, the line enabled response SM is returned.

2-6 60471160 A

ENTRY y
NPU SENDS
LINE STATUS
y SM TO HOST
HOST SENDS LINE INOP-
CONFIG LINE ERATIVE
SM TO NPU
\
NPU SENDS LINE >
CONFIGURED TED STATUS
RESPONSE MESSAGE,
\ 4
\ 4
HOST SENDS
ENABLE LINE ¢
SM TO NPU DISCONNECT ¥ DELETE
DISCONNECT DELETE
LINE SM LINE SM
TO NPU TO NPU
Y ¢
CLA

OPERATIONAL
?

NPU —=HOST:
LINE DELETED
SM
CONDITION EXIT
MODEM FOR

OPERATION

M-756

Figure 2-2. Line/Terminal Configuration Flowchart (Sheet 1 of 3)

60471160 A

SWITCH
ON LINE
TYPE

SWITCHED, DEDICATED, SWITCHED,
W/O AUTO. WITH AUTO- WITH AUTO-
DEDICATED, ¢ RECOGNITION RECOGNITION RECOGNITION
W/O AUTO- —
RECOGNITION l
W NPU == HOST ¥ NPU - HOST ¥ NPU = HOST NPU —» HOST
SEND LINE SEND LINE 22&%&;”&, LINE ENABLE
ENABLE SM: ENABLE SM: PRysabucl SM WITH
LINE OPERATIVE WAIT FOR RING onEe WAIT FOR RING

l PROCESS l
° (RDHI\JAGL :m) DIAL-IN
- OCCURS

OCCURS

\ 4 l
NPU SENDS y

UNSOLICITED PERFORM PERFORM
LINE STATUS AUTO- AUTO-

SM TO HOST: RECOGNITION RECOGNITION
LINE OPERATIVE

M-757

Figure 2-2. Line/Terminal Configuration Flowchart (Sheet 2 of 3)

2-8 60471160 A

=N

—

Figure 2-2.

60471160 A

HOST—-> NPU

CONFIGURE
TCB SM

y NPU > HOST

TCB
CONFIGURED
SM

\ 4

TERMINAL
REMAINS
CONFIGURED

LINE/MODEM

CHANGE FAILURE
OF STATUS
?
HOST
INTERVENES
HOST -+ NPU
DELETE TCB
SM
W NPU > HOST
i NPU - HOST UNSOLICITED
LINE STATUS SM
TCB DELETED LINE INOP-
SM ERATIVE

M-381

Line/Terminal Configuration Flowchart (Sheet 3 of

The response message contains a reason code. If the response is normal, the
code specifies either that the line is enabled and operational, or that the
line is enabled but must wait for ring indicator/autorecognition results.

If the response is an error type, the reason code specifies the type of
error.

The four normal types of response messages correspond to the four major line
types:)

Dedicated line, no autorecognition
Switched line, no autorecognition
Dedicated line, autorecognition
Switched line, autorecognition

The response to configuration of a dedicated line is line enabled (1) if the
modem of a dedicated line indicates data set ready, and (2) if (for a
constant carrier) both clear-to-send and data-carrier-detect are on.
Otherwise, line inoperative is reported.

Line operational is reported if autorecognition is not specified. A
30-second timer is started if autorecognition is specified. If no response
is obtained within the 30 seconds, the TIP responds with
line-not-operational; the host then disconnects the line at the earliest
opportunity. If a response is obtained, line operational is reported,
containing the results of autorecognition.

The response to configuration of a switched line is line enabled, if a ring
indicator is present. This normal response is generated immediately. Line
enabled with no ring indicator is generated immediately, if no ring
indicator is present. This is followed by a line operational SM when a
dial-in connection occurs. At this time, ring indicator is signaled and the
"NPU returns a data-terminal-ready to answer the call. 1If, when ring
indicator is signaled, the host or logical link is not available, the NPU
ignores the dial-in.

Autorecognition/non-autorecognition is the same for switched lines as it is
for dedicated lines.

CONFIGURED LINE DELETION

The delete line SM changes the LCB status to not-configured. CCI also
releases all TCBs for the line. The delete line SM is also treated as a
positive response to an unsolicited line inoperative SM.

TERMINAL (TCB) CONFIGURATION

When the line is operational, the host can configure terminals for the line
by issuing one or more configure terminal service messages. CCI responds to
the configure terminal SM by generating the TCB. The amount of information
in a TCB varies, depending on terminal type.

A TCB can be built only when a line is enabled and operational. The block

remains in existence until a delete terminal SM, a disconnect SM, or
delete-line SM is processed.

2-10 ' 60471160 A

Terminals are identified in service messages by specifying the line, the
hardware address, device type, and terminal class. Cluster and terminal
address ranges are as follows (in hexadecimal):

Cluster Address Terminal Address
Mode 4A 70-7F 60
Mode 4C 70-7F 61-6F
TTY 0 0
- HASP 0 0-7
BSC 0 0-1

TA = stream ID of device: console = 1, card reader = 0-7, printers = 0-7,
punches = 0-7.

Punch only. All other devices = 0.

The hardware address varies with the protocol being used by the terminal.
Mode 4A can have one or more cluster controllers on a line, but only a
single console terminal on the cluster. Mode 4C can have one or more
cluster controllers per line, and one or more console terminals per

cluster. The TTY TIP does not support any terminal addressing capability.
The HASP TIP uses the terminal address as the stream number and does not use
the cluster address. For HASP, the device type is combined with the
terminal address to form the hardware identifier. Card readers and line
printers can use the full range of stream number, but plotters must share
the range with card punches.

A single line can have numerous terminals and therefore numerous TCBs. Each
terminal has its own TCB, and each TCB is normally established at the close
of the intialization process.

Configure Terminal SM

The configure terminal SM requires the service module to configure the TCB.
Message parameters include terminal address, cluster address, device type,
and FN/FV pairs, such as were defined for the configure line SM. The FV
values are used in the specified fields of the TCB.

The service message is sent to the NPU by the host as the result of a line
operational SM received and processed by the host. As in the configure line
service message, the FN/FV pair designates the field number and the value to
be used in the field, and has an optional action associated with entering
the field in the TCB. The SVM sets the fields in the TCB, as directed.
Ranges for the FVs are given in appendix C.

A response SM is sent to the host indicating whether the fields were set or
not.

60471160 A 2-11

TCB Reconfiguration -

Terminals are reconfigured to establish or delete a logical connection
number in an existing TCB, or to reinitialize the block protocol on an
existing logical connection. This occurs when the host detects a need to
establish or change a connection or modify other values in the TCB.

The format of the reconfigure terminal SM is similar to that for the
configure terminal SM, except that the subfunction code (SFC) differs. The
resulting operation in the NPU is the same, except that the TCB should
already exist. The TCB is modified as specified in the SM. The response
formats are the same as those for the configure terminal SM.

The reconfigure terminal SM provides a general mechanism for the host to
control terminals. Any action required coincident with the field change is
also provided by the reconfiguration mechanism. If the toggle bit setting
in the host ordinal byte does not change, an error response is generated.
If the connection number is not zero, the block protocol is initialized or
reinitialized on the connection.

TCB DELETION

When the operator requests that a terminal be deleted from the network, the

host sends a delete terminal SM to delete the TCB and to clean up all table

and data space associated with the TCB. CCI removes the connection from the
logical connection directory. The service module responds to the host with

a TCB-deleted SM. The host is responsible for correctly deleting both ends

of a connection.

Format of the delete terminal SM is similar to that of the configure
terminal SM (above) except the SFC code differs and there are no FN/FV pairs
in the message. Normal response format is similar to that of the reply to
the configure terminal SM response.

2-12 60471160 A

FAILURE, RECOVERY, AND DIAGNOSTICS 3
L

Failure and recovery of CCI depends on a number of factors:

) Host failure - If a host fails, the NPU and its software stop message
processing.

° NPU failure - If an NPU fails, it must be reloaded and reinitiated
from the host. Off-line diagnostic tests are useful during this
period to help identify the cause of failure.

° Line failure - Lines are disconnected and terminal control blocks
associated with the lines are deleted.

° Terminal failure - Terminal status is reported and message is
discarded.

To aid recovery and to assure dependable network operations involving the
CCI, three sets of diagnostic programs are available:

® In-line diagnostics - These include CE error and alarm messages,
statistics messages, halt code messages that specify the reason for an
NPU stoppage, and off-line dumps.

) Optional on-line diagnostics - These tests allow checking of circuits
to terminals, and are available only if a network maintenance contract
is purchased.

) Off-line diagnostics - These hardware tests for NPU circuits are
described in detail in the Network Processor Unit Hardware Maintenance
Manual.

HOST FAILURE

If the NPU fails to receive a coupler interrupt within 10 seconds, the NPU
assumes a host failure and declares the host is unavailable. (See HIP
description, section 7.) The NPU also sends an informative service message
to all connected interactive terminals.

NPU FAILURE

The peripheral processor unit (PPU) of the host has a 1l0-second deadman
timer. If the PPU connected to the NPU fails to receive an anticipated input
or an idle response during this period, a timeout occurs. The host declares
the NPU dead, and the NPU dump and load (or load only) operation is entered
to start NPU recovery.

60471160 A 3-1

NPU RECOVERY

The host dumps and reloads an NPU after receiving a request for load. The
stimulus for this reload comes from the host PPU driver. The reasons for
requesting a load are as follows:

® Software failure caused PPU hardware deadman timer to expire.
® Hardware failure caused deadman timer in the PPU to expire.
° Operator initiated a software halt, forcing reloading.

° Operator pressed MASTER CLEAR on the NPU maintenance panel, causing a
reload request.

After n successive attempts to load, the loading operation is aborted. The
NPU is thereafter ignored until manually reactivated. After the NPU is
successfully loaded and initialized, the host sets up all logical links for
that NPU that the present state of the network allows. The methods of
loading and initializing NPUs are described in the CCI 3 reference manual.
The host examines its configuration tables for elements that have been
affected by the change in status. Then the host configures and enables
lines that are supported by the NPU. For any line reported as operational,
an examination of the configuration tables reveals those terminals that can
be connected. For each such terminal, both the terminal and the host
support tables are configured and thereby connected.

HALT CODES AND DUMP INTERPRETATION

Unless the NPU stoppage resulted from a host failure or was initiated by
operator action, some fault in the NPU caused the failure. If a dump is a
normal part of the reloading cycle (and the network is normally set up so
that it is), a dump is sent to the host. The CCI 3 reference manual
describes the mechanics of transmitting the dump. Appendix B of that manual
(Diagnostics) describes the format of the dump and its interpretation with
or without the use of halt codes.

LINE FAILURE

Line failure is detected by abnormal modem status or by line protocol
failure. The change of status is reported to the host using an unsolicited
line status reply SM. The host deletes all TCBs supported by the line using
the disconnect line service message.

LINE RECOVERY

A line cannot recover from a failure spontaneously. The host must first
process the unsolicited status reply (line inoperative) SM by deleting the
supported TCBs. The host then disables and reenables the line, using the
appropriate service message. At this time, the TIP/HIP commences to check
for a change in status. When the line status changes to operational, this

is reported to the host with an unsolicited line status reply SM (line
operational). When the host receives a message indicating that line status
has changed to operational, it attempts to configure the supported terminals.

3-2 60471160 A

TERMINAL FAILURE

Where the protocol is capable of determining terminal status, the protocol
maintains records of such status. Terminal failure status is reported to
the host for network management purposes. An unsolicited terminal status
reply (terminal inoperative) SM reports the failure.

Undeliverable traffic is discarded. The logical connection is not broken on
terminal failure.

TERMINAL RECOVERY

When terminal failure is detected, possible terminal recovery is monitored.
Typically, this is performed by a periodic status or diagnostic poll from
the NPU to the terminal. Terminal recovery status is reported to the host
with an unsolicited terminal status reply SM. The host replies with start
message to the TIP, allowing transmission for the terminal to begin.

IN-LINE DIAGNOSTIC AIDS

Three types of in-line diagnostic aids are provided with CCI:

° CE Error SMs. These messages, which report individual hardware
errors, are sent to the host engineering file. Such messages should
be examined periodically.

) Statistics SMs. These messages, are optional periodically for each
NPU, line, and terminal. Statistics SMs are also generated when
frequent errors cause the error counters for the device (statistic
block counters) to overflow. All statistics SMs are sent to the host
engineering file. These messages should be processed and displayed
periodically.

) Halt messages, dumps, and dump interpretation. When the NPU stops, a
halt message is sent to the NPU console. This message contains a
code indicating the cause of the halt (a halt message indicates the
NPU came to a soft stop; in a hard stop situation, the message cannot
be generated), and the dump should be examined. The dump will
disclose the program in control when the halt command was generated.
Dumps are part of the initialization process and are discussed in
detail in appendix B of the CCI 3 reference manual. Dump
interpretation is described in appendix B. Note that the halt
message is delivered using PBQUICKIO; the message does not use an SM.

Format of the SMs used to generate alarm, CE error, and statistics messages
are given in appendix C. The basic format of all three SMs is shown in
figure 3-1.

Byte 1 2 3 4 2 & 1
Data (one or
DN SN CN BT PFC SFC more bytes)

60471160 A 3-3

DN -~ Destination node

SN - Source node, the originating NPU

CN - Connection number, 00 = services messages
BT - Block type, 04 = CMD (see section 6)

PFC - Primary function code

OA - CE error or alarm
07 - Statistics
SFC - Secondary function code
00 - CE error message, with PFC = 0A

01 - Alarm message
00 - NPU statistics . _
01 - Trunk/line statistics with PFC = 07
02 - Terminal statistics
DATA - (see table 3-1)

Figure 3-1. Format of CE Error, and Statistics Messages

CE ERROR MESSAGES

This category of diagnostic service message reports the occurrence of
hardware-related abnormalities. This includes all NPU-related hardware
(coupler, MLIA, loop multiplexers, CLAs), and (indirectly) all connected
hardware: modems, lines and terminals. The creation of the service message
is separate from and in addition to the statistics accumulated in the NPU
and periodically dumped to the host.

To prevent swapping the NPU or host with error messages when an oscillatory
condition arises, an error counter is incremented for each error message
generated. When the counter reaches the limit specified at build-time, the
event is discarded rather than recorded. The counter is periodically reset
to zero. This period is another system build-time parameter.

Six types of CE error messages are used. The types and text portion of the
messages are in appendix B of the CCI 3 reference manual.

3-4 60471160 A

TABLE 3-1.

INLINE DIAGNOSTIC SERVICE MESSAGES

Message PFC SFC Data Byvtes
CE Error 0A 00 First: Error Code (ECﬁ' ,
Subsequent: data (if any) - up to 27 bytes
NPU 07 00 Error words 1 thru 11F ; 2 bytes/word
Statistics
Line 07 01 First: P - port
Statistics Second: 00
Third: 00
Subsequent: explanation words 1 thru 4;
2 bytes/word+
Terminal 07 02 First: P - port
Statistics Second: 00
Third: CA - cluster address
Fourth: TA - terminal address See appendix C
Fifth: DT - device type for values.
Sixth: CN - connection number
Subsequent: explanation words 1-3,
2 bytes/word

TRefer to appendix B of the CCI 3 reference manual for details.

STATISTICS MESSAGES

Three forms of statistics messages are used: NPU statistics, line
statistics, and terminal statistics. Each type is sent upline to the host
engineering file.

The host does not reply to statistics messages.

Statistics data is placed in the statistics block for the appropriate device
(coupler TCB for NPU, LCB for lines, TCBs terminals) by a call to PNSGATH.
The call comes from either a TIP (usually via the post-input or post-output

POI) or the HIP.

60471160 A

One stimulus for a statistics report is a request from the timer module \
PBTIMAL. The period for this timeout is a system build time parameter.
PNPSTAT handles the periodic request. Two other stimuli cause PNDSTAT to
generate the message: one stimulus arises when any one of the counters that
keeps the statistics overflows. In that case, the message for the NPU,
line, or terminal is immediately generated. The other stimulus arises when
‘a line disconnect SM, a delete line SM, or delete terminal SM is received by
the NPU. The affected line and/or terminal statistics blocks are dumped and
the appropriate statistics SM is sent before the normal response SM is

sent. When any statistics message is sent upline, the statistics counters
in that statistics block of the TCB or LCB are cleared.

The search by PNPSTAT for periodic statistics is conducted as follows. The
search cycle begins at the permanently-assigned TCB for the NPU. The
statistics from this TCB are dumped if any are available. The next search
is set to begin at the first active LCB. If no NPU statistics are
available, the currect search moves to the first active LCB. These
statistics are dumped, if available. The next search is set to begin at the
first TCB attached to this LCB. If the LCB has no statistics available, the
search moves to the first TCB. 1Its statistics are dumped, if available,

The next search is set to begin at the next TCB for this line; then
continues until all the TCBs for the first active line are checked. Then,
the second active line and all its TCBs are checked. This continues until
all TCBs and all active lines are checked. The next cycle again starts with
the NPU TCB.

3-6 60471160 A {

BASE SYSTEM SOFTWARE 4

The support software can be divided into three categories: the base system,
the multiplex subsystem (technically a part of the base system), and the
network communications software. This section describes the support software
for the base system only. Note also that the HIP (section 7) can be
considered as a support program for the TIPs.

The functional grouping of support tasks is as follows:

) Base system - operating system functions (program execution, buffer
allocation, interrupt handling), timing support, and data structures
support. NPU console handling is also described in this grouping.

® Multiplex subsystem - drivers for the multiplexer I/O lines.

° Network communications software - message routing, command
interpretation (the service module), common TIP support routines
(including statistics gathering, CE error messages to the host, and
requlation assistance).

The major base subsystem components are the following:

Monitor, also called OPS monitor

Space (buffer) allocation

Timing services

Direct program calls

Indirect (worklist-driven) program calls
Interrupt handling

Directory maintenance

Global structures

Standard code and arithmetic support routines

SYSTEM MONITOR

The NPU is a multiple-interrupt-level processor. Interrupts are serviced in
a priority scheme in which all lower priority interrupts are disabled during
execution of a program that is operating at a higher priority level. When no
interrupt is being processed, the NPU runs at its lowest priority, known as
the operations (OPS) monitor level. (Refer to interrupt lines/priorities in
appendix H.)

NOTE
This priority is not to be confused with the regulation level
priority (discussed in the CCI 3 reference manual) nor with

the host interface priorities (discussed as a part of the
HIP).

60471160 A , 4-1

The system monitor (PBMON) controls allocation of time to programs running
at the OPS level. The monitor gives control to a program by scanning the
table by worklist control block WLCB that defines the OPS level programs
that can be called with a worklist. Control is released to the first
program encountered with a queued worklist waiting to be serviced.

Scanning starts at entry 8 of the table (table 4-1) and continues until the
first program is encountered with a worklist attached (figure 4-1). The
monitor then determines whether the program can be called with more than one
worklist (N>1). Worklist control block (BYLISTCB) contains parameter
(BYMAXCNT) which defines the number of worklist entries to be proceéessed by
the OPS level program before the pointer is moved to the next program (usual
number is 1). If multiple executions are allowed, pointer does not advance
until the N allowable worklist entries have been cleared from the worklist,
or until there are no more worklist entries in the module's queue. If N is
greater than 1, the program is given control successively until either all
the worklists for that program are serviced or until the maximum number of
consecutive executions for that program has been reached. If N is 1, the
scan pointer moves to the next entry each time the program is executed, even
though there may be more worklists attached to this program's queue.

The scan pointer automatically recycles to the BOCHWL entry when BODUMMY is
reached. If new worklist-driven OPS-level programs are added to the list,
they precede BODUMMY. A worklist must be established to drive the new
program.

Each time a program completes, PBMON initializes a timer (BTTIMER). This
timer is advanced and checked by the interrupt level timer routine (PBTIMER)
at specific system-defined intervals. If the timer expires, it indicates
that an OPS-level program has been abnormally delayed. PBMON execution then
terminates and a call to PBHALT is made. This is called an OPS timeout
condition.

BUFFER HANDLING

This function allocates any of the four types of buffers (each type has its
own free buffer pool) and returns buffers to the appropriate free buffer
pool when users are finished with the buffers. As an option, the function
also stamps buffers to keep a record of the buffer's usage and the address
of the program requesting the buffer.

Standard buffers are also assigned for the following:

Data buffer for special TIP application
Console format

Integer overlay

Buffer chaining overlay

Terminal control blocks (TCBSs)

Physical I/O request packets

Active TTY LCB list

Type 1 table entries

Type 4 table entries

Timeout buffers

Diagnostic control block (DCB)

Mux line control block (MLCB) and text processing control block (TPCB)

4-2 60471160 A

TABLE 4-1.

OPS MONITOR TABLE

WLG
EE?::]i-zs Eggry Program Enrt\:kr)ies"' ngéiim (Sifg)
BYWLCB BOFSWL 1
2 These entries not
3 serviced by the
4 monitor; reserved
5 for generating the
6 worklists
7
...to here BOCHWL 8 Console PBCONSOLE
BOINWL 9 Internal processing PBINTPROC 2
BOMLWL 10 MLIA interrupt
handler 10 PBMLIAOPS 5
Current ——» | BOSMWL 11 Service module
| (SVM) PNSMWL 4
Pointer | BOTIWL 12 Timing services PBTIMAL 1
Positionl 13 Reserved
l BOLIWL 14 Line initializer 1 PTLINIT 3
BODGWL 15 (On-1line
diagnostics) 0 | ===—-- -
BOCOWL 16 HIP 1 PTHIPOPS 3
BOMAWL 18 Mode 4 TIP 1 PTMD4TIP 3
BOTTYWL 19 TTY TIP (Mode 3) 1 PTTYTIP 3
BOHASP 20 HASP TIP 1 PTHSOPSTIP 3
Moni tor BO27WL 21 2780/3780 TIP 1 PTIP780 3
Pointer BOHHWL 22 Reserved 0 | ====-- -
recycles... | BODUMMY 23 Dummy for console;
recycles to entry 8 0 | =-=-—--- -
tNumber of multiple executions allowed for this program.
60471160 A 4-3

Common

Used by
OPS
Monitor

Word 15 8 7 0
0 + BYCNT (count)
1 Put pointer
2 Get pointer
3 First entry index BYINC
4 Not used
5 ++ BYMAXCNT BYPAGE
6 BYPRADDR

See appendix H for the format of entries in a worklist.

T Multi-wLCB flag
Tt BYWLREQ, worklist required flag

BYCNT - number of WLCBs to process in one pass
BYCNT - number of WLCBs to process in one pass

BYWLINDEX - WLCB index
BYMAXCNT - number of WLCBs to process in one pass
BYPAGE - program page address

PYPRADDR - program address

Figure 4-1. OPS Monitor Table Format

60471160 A

Figure 4-2 indicates the types of buffers assigned. Each buffer type has
its own field definitions. The figure also shows the stamping techniques.

0 LCD FCD 0 LCD FCD 0 LCD FCD
FLAGS FLAGS FLAGS
o
e
CHAIN CHAIN REVERSE m-1 NIL
m-1 CHAIN FWD

Buffer of size m
LCD - last character
displacement
FCD - first character Buffer before assignment. Buffer after assignment.
displacement Chains of free buffers No chain, but word for
FLAGS - end indications, both forward and reverse. chaining reserved.
transparent
text, queuing,
etc.

Buffer stamping area

15 1l 0
0 \ Address of requestor
1 , Address of buffer | F
Pointer Most recent
to next 150 buffers
entry assigned or
released
98 Last buffer entry
99 F

F status flag
0 put
1 get

A circular buffer, two words/entry

Figure 4-2. Buffer Formats and Stamping

60471160 A 4-5

Buffer splitting continues until enough buffers of the size needed are made
available from progressively larger buffer pools, or until all possible
buffer splits have been made from all larger buffer pools, and not enough
buffers are available.

When testing buffer availability against a specified threshold number,
buffer maintenance attempts to adjust distribution of buffer sizes by using
buffer mating or buffer splitting to replenish buffer pools that are below
the threshold level. 1If buffer cannot be made available, the system halts
with a diagnostic halt. Buffer mating is the converse of buffer splitting.

Buffers are potentially available in six sizes: 4, 8, 16, 32, 64, and 128
words. At installation time, the user chooses any four contiguous sizes;
for instance, 8, 16, 32, and 64 words.

In the standard system, buffers are assigned in following sizes, for the
uses indicated:

) 8 words =~ timing

) 16 words - MLCB and WILCB
® 32 words - TCB and TPCB
) 64 words - data

Buffers are assigned from a buffer pool of the appropriate size, and are
assigned one at a time; buffers can be released singly or in a chain of
buffers. Buffers are released to the buffer pool from which they were
originally drawn.

Buffer stamping is available as a build-time option. If this option is
selected, a buffer stamping area is reserved to save diagnostic information
on the assignment and release of buffers. The circular stamping buffer, 100
words long, can save information on the most recent 50 buffer assignments/
releases. Each 2-word entry consists of the address of the routine that
requested the assignment/release, and the address of the buffer. A flag in
each entry indicates whether the buffer is currently assigned or in a free
buffer pool. Information concerning the use and location of the buffer
stamp area and the pointer to the next entry to be used is found in

appendix H, the buffer subsection.

OBTAINING A SINGLE BUFFER
The calling sequence to obtain a single buffer of a specified size is:
PBGET1BF (parm)

Parm is the address of the pointer to the buffer control block. PBGETI1BF is
a PASCAL function and returns the value of BOBUFPTR that points to the base
address of the buffer obtained. PBGETI1BF also uses the buffer control block
for the specified size buffer. The chain word and flag word of the newly
assigned buffer is cleared and the LCD/FCD are set to their initial values.

Interrupts are inhibited during execution. A system halt occurs if the
buffer pool is down to the last buffer and there are no buffers in
larger-sized pools available to be split. A halt occurs if the next buffer
has a bad chain address.

4-6 60471160 A

RELEASING A BUFFER

The following calling sequences are used, respectively, to release a single
buffer, or a specified size to release one or more buffers of a specified
size, or to release a chain of buffers. After checking for no buffers, the
system returns the released buffer to the free pool of other same-sized
"buffers. The buffer handler also ensures that the address is a valid buffer
address and determines if the buffer has already been released to the free
buffer pool. Contents of released buffers are not altered except for chain
words.

Releasing a Single Buffer
The calling sequence to release a single buffer is:
PBREL1BF (parml, parm2)

Parml is a pointer to any address within any word of the buffer to be
released, and parml is the address of the pointer to the buffer control
block. Parml is a PASCAL VAR parameter that is altered by the procedure so
that, upon completion, parml contains the chain value of the last buffer
released.

Releasing Several Buffers

Two methods are available to do this. The first method requires a pointer
to the first buffer in the chain to be released. The second method will not
return an error indication if the buffer address is zero. 1In both cases,
the release mechanism is actually performed by firmware. The two methods
are called by PBRELCHN (parml, parm2) and PBRELZRO (parml, parm2).

In both cases, parml designates a pointer to the first buffer in the chain
to be released, and parm2 designates (indirectly) the address of the buffer

pool to which the buffers will be returned. If parml for PBRELZRO is zero,
no action is taken.

TESTING BUFFER AVAILABILITY
The calling sequence to test buffer availability is:

PBBFAVAIL (parml, parm2, parm3)
PARM1 specifies the number of buffers required; parm2 pointer specifies the
buffer control block required; and parm3 specifies the total free space
threshold. PBBFAVAIL is a PASCAL function; it returns a true value if the

test indicates that sufficient buffers are available. This calling sequence
can be used at any interrupt level.

BUFFER COPYING

The BBCOPYBFRS routine allows copying data from a chain of any type of
buffers to a chain of data buffers. The call is:

PBCOPYBFRS (parm rcd)

60471160 A - 4-7

The parameter record (parm rcd) requires the following:

) The number of source buffers to copy
) Source buffer size

) Data buffer size

) A release flag

The source chain can be released after the copying operation.

OTHER BUFFER HANDLING ROUTINES

PBDLTXT deletes data from a buffer by advancing the first character
displacement (FCD) pointer in the buffer header. (See figure 4-2.) PBSTRIP
returns the empty buffers to the free buffer pool of the appropriate size.

TIMING SERVICES

Timing services provide the means for running those programs or functions
which are executed periodically or following a specific lapse of time.
Seven timing services are available:

) A firmware program handles the 3.33 ms microinterrupt to provide a
100-ms timing interval. This real-time clock interrupt is handled by
PBTIMER. PBCLKINIT restarts the real-time clock following the
interrupt.

) Every 100 ms, PBTIMER calls PBTOSRCH to search the chain of
time-lapsed buffer entries. These entries are assigned as needed in
response to calls from any module. If an entry's time period
elapses, and if the release flag for that entry is set, the entry is
deleted from the chain. 1In all cases, a worklist call is made to the
program which requested the delayed call. Timing services use
PBTOQUE to add entries to this chain of delayed calls.

) Every 500 ms, PBTIMER checks the deadman timer. The timer is reset,
and the timer monitor routine is executed. If the deadman timer
expires, the monitor has spent too much time in one OPS-level
program. The NPU stops.

[) Every 100 ms, PTMSCAN (a part of the ASYNC TIP) scans the list of
active line control blocks (LCBs) for asynchronous terminals. If a
character is received, the timeout is set for the next character. 1If
no character has been received during the 100-ms period, a timeout is
declared, the LCB is removed from the list of active LCBs, and the
ASYNC TIP is notified by means of a worklist.

) Every second, a timing routine checks all active output lines to find
whether an output data demand (ODD) interrupt has been generated for
the next character to output. If one second has passed with no new
ODD interrupt, the multiplex subsystem worklist processor is called
to declare a hardware failure for the line.

) A time-of-day routine, PBTIMEOFDAY, is called every second. The time

of day is incremented and, if necessary, recycled to the start of day
time (00 hour, 00 minute, 00 second).

4-8 60471160 A

® Every 500 ms, PBLCBTMSCAN scans all active lines for periodic
requests. If a line's period for a specific request has elapsed, the
appropriate TIP is called, using a worklist entry. Input or output
is terminated for the line if this is requested. Inactive LCBs are
unchained from the set of active LCBs. Timer services provide the

means for chaining LCBs to this list of LCBs that require periodic
action.

DIRECT CALLS

Most OPS-level programs call other programs directly for performing minor
tasks. A few major task calls use indirect (worklist) calls. For direct
calls, the last program in the calling chain is usually PBCALL. It is used
for direct calls among OPS-level programs, for transferring between programs
on different pages, for timed or periodic calls, for service message
switching, for overlay execution, and by PBMON when that program places a
program into execution.

PBCALL calls a procedure from PASCAL by address, rather than by name.

Unlike other procedure calls, PBCALL can pass a variable number of

parameters, corresponding to the number of parameters expected by the
calling procedure. Example:

type pgms = (pgml...pgmn);

var table: array pgms of integer:
index: pgms;

addr (programl , table pgml);

éddr (programn , table pgmn);

set up index
PBCALIL (table index); (call program, no parameters)

The PBCALL calling sequence is:
PBCALL (addr, parml,...parmn)

addr is the address of the program to be called, and parml through parmn are
optional and are parameters passed to the called program as shown:

procedure PBCALL;
begin
(store return address in called procedures entry point)
(jump to procedure)
end;
Other switching programs of importance are as follows:
) PBPAGE (parml) switches control directly from one OPS-level program

to another. Parml is a worklist index to OPS programs set into an
intermediate array.

60471160 A 4-9

° PBXFER (parml, parm2) transfers control to a program that may be on
another page of main memory. Parml is the called program's address,
and parm2 is the dynamic page register base address. Both are global
variables.

) PBTIMAL (parm) controls all time-dependent OPS-level programs. Parm
is the array of time dependent programs (CBTIMTBL).

WORKLIST SERVICES

Worklists provide a convenient method to handle communications between
software modules that do not use direct calls. Figure 4-3 depicts the
worklist organization. The list services function manipulates worklists
with variable entry sizes. Functions provided by list services include the
following:

® Make (PUT) worklist entries from any priority level (including OPS
level) by terminal type.

) Extract (GET) an entry from a list.
Characteristics of lists managed by list services are as follows:
® First in, first out.

° Entries can be from one to six words in length, but all entries in a
particular list must be the same length.

° Lists are maintained in dynamically assigned space.

® There is no maximum on the number of entries in a list or on the
number of lists serviced.

Contention between priority interrupt levels is resolved by defining an
intermediate worklist array (BWWLENTRY) with 6-word entries for each
possible system interrupt level. Worklist entry parameters are assembled
and extracted in the intermediate worklist area corresponding to their
interrupt level. (A user can design his own programs to perform this
function, however.)

A worklist entry is passed to PBLSPUT and data is normally obtained from
PBLSGET through a global array named BWWLENTRY. Each element of the array
has a variant record structure consisting of one case for each logical entry
structure. When each new worklist-driven program is created, the format of
the new worklist is added as another case to the PASCAL-type definition
BOWKLSTS. Thus, each worklist has unique fields and names.

There are 17 elements to the array BWWLENTRY, one for each priority
interrupt level. To access the proper interrupt level, the global variable
LEVELNO is used. For example, to access a field of a particular worklist
entry at the proper interrupt level, the following expression is used:

BWWLENTRY LEVELNO . FIELDNAME

4-10 60471160 A

BYLISTCB

F BYCNT
BYPUT
BYGET
BYFEINC BYINC
BYFEINC
—> Entry >
Next entry Entry
> to GET —
y Next entry 7
T c: = 2 to PUT
FWD. CHAIN FWD CHAIN — FWD CHAIN
F = BYCONTEND - A multiprocessor contention flag for 2552 NPUs
BYCNT - Entry count
BYINC ~ Entry size (uniform in any one worklist)
BYFEINC - Displacement in buffer to first entry
Figure 4-3. Worklist Organization
60471160 A

The fields of the worklist entry are accessed to store information before
calling PBLSPUT or to obtain information after calling PBLSGET. For
programs that always run at a specific interrupt (for example, OPS, and
RTC), constants can be used to increase efficiency.

If a program using PBLSPUT or PBLSGET calls a program also using PBLSPUT or
PBLSGET, information in the worklist entry BWWLENTRY might be changed upon
return. In such cases, one of the following techniques must be used to
ensure proper data integrity:

e Put all information in the worklist entry and call PBLSPUT before
calling the second program.

® Call PBLSGET and access all pertinent information from the worklist
entry before calling the second program.

° Save and restore the worklist entry from BWWLENTRY.

MAKING A WORKLIST ENTRY

PBLSPUT puts an entry into a worklist from any interrupt priority level.
The calling sequence is:

PBLSPUT (parml, parm2)

Parml is the address of the worklist entry, and parm2 is the address of the
proper worklist control block.

PBPUTYP makes a worklist entry after calculating the worklist index from the
line number. Firmware makes the actual worklist entry. Format of the call
is:

PBPUTYP (parm)

Parm is the entry to be made, either in an intermediate array or in a local
save area.

NOTE
The second word of the entry is always a line number.

Two other important worklist entry builders are actually a part of network
supervision:

) PBTWLE parm - This makes a worklist entry for the specified terminal
control block (TCB). The parm is the work code. The entry made
contains the line number and the TCB pointer. PBPUTYP moves the
entry from the intermediate array to the worklist,

° PBSWLE - This makes a worklist entry for SWITCH, the procedure used
for switching. PBSWLE puts the pointer to the block to be switched
in a worklist entry for PRINTPRC. That routine calls SWITCH.
PBLSPUT moves the entry from the intermediate array to PBINTPRC's
worklist.

4-12 60471160 A

EXTRACTING A WORKLIST ENTRY

The PBLSGET routine moves entries from a worklist to an intermediate array
(BWWLENTRY). The routine is available at all priority interrupt levels. A
special firmware sequence speeds up execution and eliminates contention
between software and firmware. Format of the call is:

PBLSGET (parml, parm?2)

Parml is the address of the worklist entry, and parm2 is the address of the
worklist control block. If the list is not empty, the next entry is moved
into the specified worklist area.

BASIC INTERRUPT PROCESSING

The two types of interrupts that are processed are the macrointerrupts and
the microinterrupts.

MACROINTERRUPTS

The interrupt mask register is set by an interregister command, and the
interrupt system is activated by the enable interrupt command. Upon
recognizing an interrupt, the hardware automatically stores the appropriate
program return address in a storage location reserved for the activated
interrupt state. This ensures that the software returns to the interrupted
program after interrupt processing.

With the return address stored, the hardware deactivates the interrupt
system and transfers control to an interrupt handler program that begins at
the address specified for that interrupt state. The program thus entered
stores all registers (including the interrupt mask register and overflow) in
addresses reserved for the interrupt state. The interrupt mask register is
then loaded with a mask to be used while in this interrupt state, with a one
in the bit position indicating interrupt lines with higher priority than the
interrupt state being processed. The program then saves the current
software priority level, sets the new software level, activates the
interrupt system, and processes the interrupt.

During such interrupt processing, an interrupt line with higher priority may
interrupt. However, such interrupts also cause storage of return address
links to permit sequential interrupt processing according to priority level,
with eventual return through the return addresses to the mainstream computer
program.

When processing is completed at that level, the computer exits from an
interrupt state by inhibiting interrupts, restoring registers to their
pre-interrupt states, and executing the exit interrupt state command (EXI).
This command retrieves the return address stored when the interrupt state
was entered. Control is transferred toc the return address, and the
interrupt system is again activated.

60471160 A 4-13

Interrupt Priority

Interrupt priority is under control of the computer program. Priority is
established by an interrupt mask for each interrupt state that enables all
higher priority interrupts and disables all lower priority interrupts. When
an interrupt state is entered, the mask for that state is placed in the mask
‘register. Bit 0 of the mask register corresponds to interrupt state 00;

bit 1 corresponds to interrupt state 01, and so forth. A bit that is set
means that the corresponding interrupt state has a higher priority than the
interrupt state to which the mask belongs. Thus, there can be as many as 17
levels of priority.

NOTE

Priority of any interrupt state can be changed during program
execution.

Standard subroutines are provided for servicing the interrupt mask. These
subroutines are as follows:

Set interrupt mask.

Reload interrupt mask.

Perform a logical AND with the mask.
Perform a logical OR with the mask.

PBSMASK - SET INTERRUPT MASK

This routine loads a specified interrupt mask value into the M register to
become the new interrupt mask. The calling sequence is:

PBSMASK (parm)
Parm is a value parameter specifying the new interrupt mask value to be
loaded into the M register. The resultant mask becomes the new mask value
in the M register. '

PBAMASK - AND INTERRUPT MASK (AND PBLMASK)

PBAMASK, in conjunction with PBLMASK, is used to selectively disable and
enable one or more software interrupt levels. The calling sequence is:

PBAMASK (parm)
Parm is a value parameter specifying the value to be logically ANDed with
the current interrupt mask. ’
PBOMASK - OR INTERRUPT MASK
PBOMASK employs a logical OR function to combine a given interrupt mask with
the current mask in the M register, the result becoming the new interrupt
mask value in the M register. The calling sequence is:

PBOMASK (parm)

Parm is a value parameter specifying the mask value to OR with the current
interrupt mask.

4-14 60471160 A

User Interface

Because each interrupt handler is an independent program, there are no
interfaces. However, pertinent information is necessary to
enable modification of, and additions to, the interrupt handlers.

specific user

An array contains interrupt masks for the 16 interrupt states. . To access
particular interrupt mask, use the interrupt state number as an index.
LEVELNO is the global variable where the current software priority level is

saved.

a

Table 4-2 lists the 16 interrupt states, gives the value for the delta field
for its exit instruction, the storage location for its return address, and
the location of the first instruction of the interrupt handler program.
Current interrupt assignments and their associated software priority are

listed in table 4-3.

is the OPS 1le

vel.

The seventeenth state (no interrupt line associated)

TABLE 4-2. INTERRUPT STATE DEFINITIONS (PBINTRAPS)

Interrupt E:}gnlngi:c- Lgﬁagigﬁrgf Firggcigég?ugiion
State Field Value Address of Interrupt

Handler Program
00 00 0100 0101
01 04 0104 0105
02 08 0108 0109
03 oc 010C 010D
04 10 0110 0111
05 14 0114 0115
06 18 0118 0119
07 1C 011C 011D
08 20 0120 0121
09 24 0124 0125
10 28 0128 0129
11 2C 0l2c 012D
12 30 0130 0131
13 34 0134 0135
14 38 0138 0139
15 3C 0l13C 013D

60471160 A

TABLE 4-3. INTERRUPT ASSIGNMENTS

Inﬁgggupt g?f;:?i; Interrupt Description H;:gier
0 Pl Memory parity, program protect,
' power failure, software breakpoint PBLNOO
1 P6 NPU console PBLNO1
2 P2 Multiplex loop error (MLIA) PBLNO2
3 P3 Multiplex subsystem - Level 2 PBLNO3
4
5 P7 Coupler 2 PBLNO5
6 p7 Coupler 1 PBLNO6
7 P8 Spare
8 P9 Real-time clock PBLNO8
10 P11 Spare
11 P12 Spare
12 P13 ODD input parallel PBLNOC
13 P14 Input line frame received (MLIA) PBLNOD
15 —-—— Macro breakpoint PBLNOF

MICROINTERRUPTS
Three microinterrupts are also serviced:

) The output data processor processes the output data demand (ODD)
interrupt that each communications line adapter generates to indicate
that it is ready to output another character. The output data
processor (part of the multiplex subsystem) gets the next character
from the appropriate line-oriented output buffer and puts the
character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

® The input data processor processes the interrupt produced when the
entry of either a data character or communications line adapter
status into the circular input buffer is completed. The input data
processor (also part of the multiplex subsystem) gets the next
character from the appropriate line-oriented output buffer and puts
the character on the output loop. The requesting communications line
adapter picks the character from the loop and transmits it.

) The timing services firmware processes the 3.3-millisecond clock
interrupt, which is used as the time base for all timed NPU functions.

4-16 60471160 A

PASCAL GLOBALS

CCI provides a number of PASCAL globals, frequently in the form of fields
embedded in tables. Appendix H shows the tabular form of the principal data
structures and describes the fields. A complete listing of the CCI PASCAL
‘globals is in an MPEDIT listing.

STANDARD SUBROUTINES

Standard subroutines are a miscellaneous group of support routines that
perform the following tasks:

Convert and handle numbers.

Maintain paging registers.

Perform block functions.

Set or clear protect bit.

Perform miscellaneous other tasks.

Table 4-4 lists these standard subroutines. Some of these frequently used
routines are written in macroassembly language rather than in PASCAL.

CALLING MACROASSEMBLY LANGUAGE
PROGRAMS FROM PASCAL PROGRAMS

A procedure call to a macroassembly source code program from a PASCAL-coded
program is the same as a call to any other PASCAL program. The same calling
sequence code is generated; that is:

RTJ program
ADC parml
ADC parmn

A macroassembly program handles parameters as PASCAL parameters. To treat a
parameter as a value parameter, the user loads the contents of the parameter
and stores it locally and then passes the address of the store location to
the called program. To treat a parameter as a variable parameter, the user
loads the address of the parameter and uses this as a pointer. Packed
record parameters that are fields less than full word length are unpacked
into a temporary word and the address of the temporary word is passed to the
called program.

60471160 A 4-17

TABLE 4-4.

STANDARD SUBROUTINES

Subroutine Description Typet| Language®t Chggﬁgng
Name Defeated
PBCLR Clears block of main memory. NI PP Yes
PBCLRPROT Clears protect bit. NI MA Yes
PBCOMP Compares two blocks. NI MA Yes
PBFILEl Loads/displays file 1. (o] MA Yes
PBFMAD Converts from ASCII to binary. R PF No
PBFMAH Converts from ASCII to binary. R PF No
PBGETPAGE Reads page register from
specified bank. NI MA Yes
PBHALT System halt. NI PP Yes
PBILL Illegal call; passes to TIP
for CCI variants. NI PP Yes
PBLOAD Loads a canned message. R PP Yes
PBMAX Gets max of 2 numbers. NI PF No
PBMEMBER Tests ASCII set membership. NI PF No
PBMIN Gets min of 2 numbers. NI PF No
PBPSWITCH Loads page registers 30 and 31. NI MA Yes
PBPUTPAGE Writes page registers to either
bank. NI MA Yes
PBRDPGE Reads dynamic page register. NI MA Yes
PBSETPROT Sets protect bit. (0] MA Yes
PBSTPMODE Sets page mode. NI MA Yes
PBTOAD Converts to ASCII decimal. R PP No
PBTOAH Converts to ASCII hexadecimal. R PP No
PB18ADD Adds to 18-bit address (paging). R PP No
PB18BITS 18-bit address functions (paging). R PP No
PB18COMP Compares two 18-bit addresses
(paging). R PP No
TOSTART Starts program execution timer. R PP No
TOSTOP Stops program execution timer. R PP No
TOTIME Programs execution timer. R PP No
TNI = Noninterruptable ttPP = PASCAL procedure
O = OPS level only PF = PASCAL function
R = reentrant MA = Macroassembler
4-18 60471160 A

A functional call to a macroassembly program differs in that a PASCAL
forward reference describing the calling sequence must appear before all
function calls in the source code so that type-checking on the function
return value can be performed.

Defeating Type-Checking in Pascal Procedure Calls

The PASCAL compiler is a one-pass compiler. When it encounters a procedure
call in source code, it may or may not have processed the calling sequence
of the called program. If the calling sequence has been processed, all
parameters of the user's procedure are error checked. The type of each
parameter corresponds to the type specified in the calling sequence, and the
number of parameters must be the same. No expressions and no fields of less
than a word in length in a packed record can be variable parameters.

If the calling sequence of a program has not been processed when a call to
it is encountered, the PASCAL compiler generates a subroutine jump to an
external symbol. The standard calling sequence is then generated; however,
no error checking is done on the parameters. This situation defeats
type-checking in the procedure call.

If used carefully, defeating type~checking can be a useful technique. For
example, arrays with the same element types, but of different lengths, are
treated as different types by PASCAL. Therefore, any program needing
variable length array input as a variable parameter must defeat
type-checking. Ramifications of defeating type-checking are as follows:

° All calls from PASCAL programs to macroassembly procedures
automatically defeat type-checking unless defined as FORWARD.

°® PASCAL and macroassembly functions cannot defeat type-checking.

HANDLING ROUTINES

These seven handling routines for number conversion are listed below and
described in the following paragraphs.

[PBFMAD - converts from ASCII decimal to binary.
° PBFMAH ~ converts ASCII hexadecimal to binary.
) PBMAX - finds larger of two numbers.

) PBMEMBER - tests number to find whether it is a member of the user
defined subset of ASCII code.

® PBMIN - finds smaller of two numbers.
) PBTOAD - converts binary to ASCII decimal.

° PBTOAH - converts binary to ASCII hexadecimal.

60471160 A 4-19

PBFMAD — Converts From ASCIl Decimal to Binary

PBFMAD converts up to five ASCII decimal characters in a buffer into a
binary number contained in one 16-bit word. The calling sequence is:

PBFMAD (parml, parm2, parm3)

Parml is integer type; the converted word is returned in parml. Parm2 is a
pointer specifying the buffer address where the decimal digits to be
converted are located. Parm3 is an integer variable specifying the index
where the first decimal digit to be converted is located within the buffer.

PBFMAD is a Boolean function. 1If PBFMAD is true, the conversion was
successful; otherwise, there was either bad data or a bad index.

PBFMAH — Converts From ASCIl Hexadecimal to Binary

PBFMAH converts up to four ASCII hexadecimal characters in a buffer to a
binary number stored in one 16-bit word. The calling sequence is:

PBFMAH (parml, parm2, parm3)

Parml is a variable parameter of type BOOVERLAY; the converted word is
returned in parml. Parm2 is a pointer to the buffer address where the
hexadecimal characters to be converted are located. Parm3 is an integer
parameter specifying the index where the first hexadecimal character to be
converted is located within the buffer.

Like PBFMAD, PBFMAH is a Boolean function. 1If true, PBFMAH indicates the
conversion was successful. Otherwise, there was either bad data or a bad
start/stop index.

PBMAX — Funds the Larger Maximum of Two Numbers

PBMAX is a function that returns the larger (maximum) of two given numbers.
The calling sequence is:

PBMAX (parml, parm2)

Parml and parm2 are integers to be compared. The larger of parml and parm2
is returned by PBMAX.

PBMEMBER — Tests ASCIlI Set Membership

PBMEMBER determines whether or not a given ASCII character is a member of a
user~defined set of ASCII characters. PBMEMBER overcomes the 255X PASCAL
restriction of having l-word, l6-element sets by accessing an array of
1-word sets. A character is broken up for testing by the following format:

7_6 4 3 0

Index into Element number
array of sets in set

4-20 60471160

In an array of type JSACIISET, 128 bits are reserved (one for each possible
ASCII character), where JSASCIISET = array (0..7) of SETWORD. Characters
are located in the set by bit number; for instance, a blank (2074) is bit
number 20j7¢. Bits of the JSASCIISET array are numbered as follows:

Word 0| Word 1| Word 2| Word 3 | Word 4 | Word 5 | Word 6 | Word 7
F 0 1F 10 2F 20 3F 30 4F 40 5F 50 6F 60 7F 70

Bit Numbers (hexadecimal)

Therefore, the value initialization for testing hexadecimal characters is:

var JSHEXSET: JSACIISET;

value JSHEXSET = (0, 0, 0, 3Fj16,
~*\
digits 0-9

7E]_6r 0, 0, 0);

characters A-F

The calling sequence is:

PBMEMBER (parml, parm2)
PARM1 is a value parameter of type BOOVERLAY containing the character to
test. Parm2 is a variable parameter of type JSASCIISET and is the set to

test parml for membership. PBMEMBER is a Boolean function; it returns a
true value if the character is in the set, and a false value otherwise.

PBMIN — Funds the Smaller Minimum of Two Numbers

PBMIN is a function that returns the smaller minimum of two given numbers.
The calling sequence is:

PBMIN Pparml, parm2)
Parml and parm2 are integer value parameters. The smaller number of parml
and parm2 is returned by PBMIN.
PBTOAD - CONVERTS BINARY TO ASCII DECIMAL
PBTOAD converts a binary number contained in one 16-bit word to as many as
five ASCII decimal characters. Leading zeros are suppressed. The converted
digits are stored in a specified position in a buffer, followed by a blank.

The calling sequence is:

PBTOAD (parml, parm2, parm3, parmé)

60471160 A 4-21

Parml is an integer containing the word to be converted; parm2 is a pointer
to the buffer that stores the converted ASCII digits. Parm3 and parm4 are
integers specifying the start and stop indices for storing the converted
ASCII digits in the buffer. The JMCNVTO (convert to ASCII) system table is
used by this routine.

PBTOAH — Converts Binary to ASCII Hexadecimal

PBTOAH converts a binary number contained in one 16-bit word into four ASCII
hexadecimal characters. The converted characters are stored in a specified
position in a buffer, followed by a blank. The calling sequence is:

PBTOAH (parml, parm2, parm3, parm4)
Parml is a hexadecimal value and contains the word to be converted. Parm2
is a pointer to the buffer that stores the converted hexadecimal
characters. Parm3 and parm4 are integers specifying the start and stop

indices for storing the characters in the buffer. The SMCNVTO (convert to
ASCII) system table is used by this routine.

MAINTAINING PAGING REGISTERS
Five subroutines maintain the paging address system for an NPU with more
than 65K words of main memory. (The maximum allowable address is 3FFFFjg,

and requires 18 bits.) Three other subroutines allow arithmetic and
functional operations on 18-bit paging type addresses.

PBSTPMODE — Sets Paging Mode
PBSTPMODE sets the page mode for one of the three possible types of
operation: no paging, paging with bank 0 page registers, or paging with
bank 1 page registers. The calling sequence is:
PBSTPMODE (parm)

Parm is the input index:

0 - use page mode 0; bank 0 registers

1 - use page mode 1; bank 1 registers

2 - absolute; no paging
PBPSWITCH — Performs Page Switching

PBPSWITCH loads the two dynamic page registers (30 and 31) using the input
specified page register base value. The calling sequence is:

PBPSWITCH (parm) .
Parm is the page register base value for the program to be executed

(programs must execute within a single 2K-word page). Output of the
subroutine is that the dynamic paging registers are ready for use.

4-22 60471160 A

PBRDPGE — Reads Dynamic Page Register

PBRDPGE reads the contents of the dynamic page register (30) and returns the
base address in the register to the requestor. The calling sequence is:

PBRDPGE

There are no input parameters.

PBPUTPAGE — Write Specified Page Register

PBPUTPAGE loads a specified page register (number and bank) with a specified
value. The calling sequence is:

PBPUTPAGE (parml, parm2)
Parml contains the page number; a bank flag uses the leftmost bit (flag = 0
indicates bank 0; flag = 1 indicates bank 1). Parm2 is the 9-bit value to

be loaded in the designated register. Upon return, the specified page
register is loaded.

PBGETPAGE — Reads Specified Page Register

PBGETPAGE reads the contents of the specified page register and returns them
to the user. The calling sequence is:

PBGETPAGE (parml, parm2)
Parml designates the number of the register and uses the leftmost bit as a

bank flag (flag = 0 indicates bank 0; flag = 1 indicates bank 1). Parm2 is
the location used to return the page register contents to the caller.

PB18ADD — Add Bit Addresses

PB18ADD adds two 18-bit addresses together. Format of an 18-bit address is
as follows:

Word 1 2
lower 16 bits

|

upper 2 bits
The calling sequence is:
PB18ADD (parml, parm2)

Parml and parm2 are the two addresses to be added in B018BITS format.
Output is the single 18-bit address which is properly loaded by PB18BITS.

60471160 A 4-23

PB18BITS — 18-Bit Address Functions
PB18BITS performs one of five possible functions:

Stores a number into an 18-bit address.

Reads the specified 18-bit address.

Clears the protect bit in an 18-bit address.
Sets the protect bit in an 18-bit address.
Forms an 18-bit address from a 17-bit address.

The calling sequence is:
PB18BITS (parml, parm2, parm3)
Parml is an 18-bit address; parm2 is the read/store word address, and parm3

specifies the function to be performed. The output is a properly performed
function.

PB18COMP — Compares Two 18-Bit Addresses

PB18COMP makes a comparison between two 18-bit addresses. The calling
sequence is:

PB18COMP (parml, parm2, parm3)
Parml is the A address, and parm3 is the B address. Parm2 specifies the
type of comparison: A COMP B, where COMP is one of =, #, » , = , < , or

=< . The output is a BOOLEAN function: true if A COMP Bl; false if any
other condition exists.

BLOCK FUNCTIONS
Two standard block function subroutines are provided: PBCLR clears the
contents of a block, and PBCOMP compares the contents of two blocks.

PBCLR — Clears a Block of Main Memory

This subroutine is used to clear any block-sized area in main memory. The
calling sequence is:

PBCLR (parml, parm2)
Parml is the starting address of the block to be cleared; parm2 is the

number of consecutive words to be zeroed. Output is a cleared block of
memory.

PBCOMP — Compares two Equal Length Blocks

After block comparison, a Boolean answer (1 represents true; 0, false) is
returned to the caller. The calling sequence is:

PBCOMP (parml, parm2, parm3)

4-24 60471160 A

Parml and parm2 are the starting address of the two blocks to be compared;
parm3 is the number of words compared in each block. Output is the Boolean
true-false function, which depends on whether the blocks had identical
contents.

SET/CLEAR PROTECT BITS
The protect bit is bit 17 of the main memory word. It cannot be used for
data, but it can be used to deny unprotected programs access to the word.

The bit (as well as the parity bit) is dropped by most interregister
transfers.

PBSETPROT — Set Protect Bit

PBSETPROT sets the protect bit at a specified address. The calling
sequence is:

PBSETPROT (parm)

Parm is the address of the protect bit to be set.

PBCLRPOT — Clear Protect Bit

PBCLRPOT clears the protect bit at the specified address. The calling
sequence is:

PBCLRPOT (parm)

Parm is the address at which the protect bit is to be cleared.

MISCELLANEOUS SUBROUTINES
PBFILE1 — Load/Display File 1

PBFILEl consists of two routines: PBEF (load file 1) and PBDF (display file
1). Both programs execute specified firmware sequences to perform the load
or display operations. Because of firmware timing constraints, a maximum of
12 transfers per call can be specified during on-line operation. During
off-line operation, as many as 256 transfers can be specified.

PBEF transfers the contents of memory to file 1 starting at a specified
register. The calling sequence is:

PBEF (parml, parm2)
Parml is a value parameter, formatted as follows:

15 7 0
Number of words to load First File 1 register to load

To load all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the address of the first memory location to transfer.

60471160 A 4-25

PBDF transfers the contents of file 1, starting at register n, to memory.
The calling sequence is:

PBDF (parml, parm2)
Parml is a value parameter formatted as follows:
15 7 ' 0

First file 1 register
to transfer

Number of words to move

To display all 256 registers, set parml to 0. Parm2 is a value parameter
specifying the memory address to receive the first register transfer.

PBHALT — Stops the NPU

PBHALT stops the system after a serious error has occurred. The following
information is saved, starting in consecutive words at address 30;¢.

) Return address of program calling PBHALT, or a value relating to a
halt code.

) Halt code (indicates a reason for the halt).
) Software registers.
The calling sequence is:
PBHALT (parm)

Parm is an integer value parameter specifying the halt code. The halt
message printed at the local console is:

*HALT XXXXX YYVY
xxxxx is the return address of the program calling PBHALT and yyyy is the
hexadecimal halt code or a value relating to the halt code.
PBILL — lIllegal Calls

This subroutine is used to stop the NPU when calls are made to TIPs that are
not a part of the CCI system. The calling sequence is:

PBILL

PBILL calls PBHALT with the halt code for an illegal TIP call.

PBLOAD — Load a User-Defined Message

The PBLOAD module loads a user—-defined message into a buffer starting at the
designated character position. The calling sequence is:

PBLOAD (parml, parm2, parm3, parm4)

4-26 60471160 A

Parml points to the location where the user-defined message is to be loaded,
and parm2 specifies the text of the message to be loaded. Parm3 specifies
the starting position in the buffer of the first character in the message,
and parm4 specifies the position of the last data character in the message
after it is loaded in the buffer. Parm4 overrides the message length.
Example:

VAR Buffer: BOBUFPTR: (assume a 32-word buffer)
MSG : JOMLI1O:
Value MSG = (= 0123456789:);

PBLOAD (BUFFER, MSG, J1FRSTCHAR, J1LST32);
NOTE

All user-defined messages must have a right bracket (]) as
the end-of-message delimiter unless parm3 minus parm4 is less
than the message length.

PROGRAM EXECUTION TIMERS

Three subroutines (TOTIME, TOSTART, and TOSTOP) provide execution timing
analysis for programs. TOSTART sets a status mode (flag bit 206) which can
be used by an external hardware instrument to start a timer. TOSTOP resets
the status bit. TOTIME measures the elapsed time. Output is the total
execution time as measured by an external hardware instrument.

CONSOLE SUPPORT

This group of modules provides the Terminal Interface Package (TIP) for the
NPU console. Console devices communicate with the NPU via the A/Q register
interface, rather than through the multiplex subsystem interface. Two
categories of subroutines are discussed in the following paragraphs.

) General peripheral processing: these modules assign device, start,
read, and write.

) Console processing: this set of routines forms the console TIP.

GENERAL PERIPHERAL PROCESSING
These subroutines provide for general peripheral functions.

® Starting I/0 and (if necessary) assigning a device. Two routines
perform these services: PBIOSERV and PBSTARTIO.

PBIOSERV reformats the logical request packet (LRP) from the user
into a physical request packet (PRP). A device code is assigned and
the subroutine tests whether there are too many messages awaiting
delivery. If so, the new message is discarded. Then PBSTARTIO is
called.

60471160 A 4-27

PBSTARTIO either starts the I/0, using the LRP packet from PBIOSERV,
or it queues the logical request packet to the appropriate driver,
using a worklist entry. If immediate I/0O is requested but cannot be
accomplished, the request is rejected. This subroutine sets up the
device controller table parameters and issues the I/0O start command.
The individual driver interrupt handler then takes control.

° Testing whether device is ready, PBTCSTIORDY. Input to this routine
is the device number. If the device status indicates it is ready for
'I/0, a ready indication is returned to the caller.

e Off-line quick output, PBQUICKIO. This permits one buffer (a short
message) to be output while the NPU is in off-line mode (such as
initialization breakpoint or during halt operations). As input, the
caller specifies the device to be used and the location of the
message to be sent.

) Timeout: PBIOTMP and PBTMEOUT are discussed in this section with
other timing services.

) Ready and write a character to a peripheral device. PBWRITE and
PBREAD handle the single character transfers. Characters passing
over the A/Q channel are in unpacked format, right-justified in the A
register. (Q register usually carries peripheral addressing
information.)

PBWRITE writes data or director functions to a local peripheral device. The
subroutine uses the macroassembler routine PBPUTCHAR, to write the
character. Attempts are made to write until a retry threshold is reached.
At that time, the attempts cease and the reject error is counted by the
reject counter. This can cause a peripheral device timeout. In any event,
Q and A values are saved for debugging.

PBREAD reads data or status from a peripheral device. The routine uses the
macroassembler routine, PTGETCHAR, to read the character. Attempts are made
to read the character until a retry threshold is reached. At that time, the
attempts cease and a reject error is added to the count in reject counter.
This can cause a peripheral device timeout. In any event, Q and A values
are saved for debugging. '

e Common driver completion PBDRCOMPL. This routine uses a completion
code in the logical request packet. It requires device
identification and a physical request packet address as input.
Completion actions can include one or more of the following:

Releasing message output buffers

Changing I/O request flags

Starting another message transfer

Releasing current messages physical request packet

CONSOLE SUPPORT SERVICES

For certain applications, a local console is used as a communications
supervisory position. Two console functions can be selectively activated or
deactivated by the console operator (or at build time). These functions are
orderwire and diagnostics. When one, or both, of these functions is
transferred to a remote console, the corresponding functions must be
deactivated at the local console.

4-28 60471160 A

The orderwire function is employed for both input and output traffic
messages. The diagnostic function is used for input of diagnostic commands
and output of hardware diagnostic messages.

CONSOLE WORKLIST ENTRY

A type BOCHWL worklist entry is made by the internal process output
procedure for every message placed in an empty console queue. Such entry
contains the console TCB address.

CONSOLE CONTROL MESSAGES

All console control messages begin with a slash (/) and end with an
end-of-transmission code, control D (this consists of pressing the CONTROL
and D keys simultaneously). Table 4-5 contains console control messages and
the results of each.

Several routines constitute or support the console TIP.

[PBDISPLAY queues a message of 300 characters or less for output on
the local console. The input parameter is the location of the
message to display. This routine is a part of the base and is not
technically a part of the console TIP. The routine could be used to
support other devices. '

NOTE
Every canned message must have a right bracket (]).
Canned messages use 32-word buffers.
PBDISPLAY uses the PBLOA and PBIOSERV subroutines to load a canned message
and to provide I/0 services. PBDISPLAY also uses system structure JCOPSLRP
(OPS-level console logical request packet).

® PBOFMT formats the output for the console. Characters are converted

to hexadecimal and stored in a new buffer chain.

TABLE 4-5. NPU CONSOLE CONTROL COMMANDS

Command Function
/SUP Puts console in supervisory mode.
/ORD Puts console in orderwire (diagnostic) mode.
/OVL Puts NPU in overlay mode.
/REQ Message interrupted by manual interrupt is requeued to console.
/CAN Message interrupted by manual interrupt is canceled.
/MTQ Flushes console queue.
égT} Controls routing of service messages (input, output, and
LOC locally generated messages).
MSNOP Generates message to NOP,

60471160 A 4-29

o PBTTYSETMODE switches the console (keyboard/display or
teletypewriter) between read and write modes. If the console is in
TUP mode, a TUP message flag is set. If the output interrupt flag is
already set, the subroutine restarts the message output. Otherwise,
the message is sent to the console primary output device. A 5-minute
timeout period is set when entering read mode.

) PBTTYINT is the interrupt handler for the console. Interrupts clear
the I/0 timer. Action depends on the interrupt type, such as one of
the following:

Type Action
Spurious Count as spurious interrupt.
Alarm Clear console.
Manual Change mode.
Data (read) Read character.
Data (write) Write character.
Other ‘ Clear interrupt.

This interrupt handler is composed of several local subroutines.

) PBSUPMSG decodes and executes supervisory (/SUP) input messages from
the NPU console. The subroutine routes to the NPU console input
service messages (SMs), output SMs, locally generated SMs, and
messages that are directed to the network operator (NOP). An error
message is generated if the messages cannot be routed.

) PBIFMT formats input messages from the console. Supervisory messages
(/SUP) are specially flagged. Messages are converted from
hexadecimal and the buffer headers are prepared. Conversion takes
place in a new chain of buffers. This subroutine uses other local
internal subroutines. Otherwise, the output is a message in normal
network block protocol. If this is a /SUP message, the action
directed by the /SUP message has been performed.

4-30 60471160 A

MULTIPLEX SUBSYSTEM 5

The multiplex subsystem contains the hardware, microprograms, and software
elements necessary to provide data and control paths for information
interchange between the various protocol handlers (TIPs and LIP) and all
communications lines. Design of the subsystem is based on the multiplex
loop concept, which is a demand-driven system for gathering input data and
status from the communications lines, and distributing output data and
control information to the communications lines. All of this is done on a
real-time basis. Figure 5-1 shows the basic elements of the multiplex
subsystem.

A major purpose of the multiplex subsystem is to transfer the task of
processing lines according to physical characteristics from the TIPs to the
multiplex subsystem programs. The TIPs need only command the multiplex
subsystem according to the logical characteristics of a line; the physical
characteristics are handled by the multiplex subsystem and are transparent
to the TIPs.

Line-oriented input and output buffers provide temporary storage for data.
The input data is placed in the circular input buffer (CIB) from which it is
later extracted (demultiplexed), transformed to IVT/BVT ASCII format by the
appropriate TIP, and moved into a line-oriented input buffer. The part of
the TIP that does this (called input state programs) is controlled by the
multiplex subsystem. The OPS-level TIP informs the command driver where the
programs are located; the multiplex subsystem's input processor controls
execution of the input state programs. For trunks, the frames are removed
from the block formatted data, and the blocks are reconstituted.

Output data is picked by the output processor from an output data buffer.
The address of this buffer and other transfer information is supplied by the
OPS-level TIP to the command driver. Data is in terminal format.

The multiplex subsystem is event-driven by interrupts: an output data
demand (ODD) for the next character of output data, or the input line frame
received interrupt which indicates that data (and possibly CLA status) is
contained in the CIB ready for demultiplexing.

The interrupts are handled with global information stored in various

tables. The subsystem processes data on a character-by-character basis
while user programs (TIPs) process data on a message or block basis.
Circuit, modem, and subsystem status is detected and transferred to the TIPs
multiplex 2 level worklist calls. Control information is received from the
TIPs in the form of a call to the command driver with an attached command
packet. This command packet is used to set up the multiplex LCB (MLCB),
which is the principal table used to control the transfer.

60471160 A 5-1

COMMUNICATIONS PROCESSOR

~

INPUT LOOP
OUTPUT LOOP

MULTIPLEX
SUBSYSTEM
MICROPRO-
GRAMS AND
SOFTWARE

INCLUDES COMMAND DRIVER,
+ INPUT DATA PROCESSOR, AND
OUTPUT DATA PROCESSOR

EMORY BUFFERS

|
M
!

A
\ 4

CLA — COMMUNICATIONS LINE ADAPTER
TIP — TERMINAL INTERFACE PROGRAM

At

e
LA
LOOP
MULTI-
< PLEXER
MULTIPLEX l 1
Loor .
INTERFACE MULTIPLEX °
| ADAPTER LOOPS
1 (MLIA)

11

LOOP
MULTI-
PLEXER

MULTIPLEX SUBSYSTEM

CLA

COMMUNI-
CATIONS
LINES OR
TRUNKS

Figure 5-1. Basic Elements of the Multiplex Subsystem

60471160 A

HARDWARE COMPONENTS

The multiplex subsystem includes the multiplex loop interface adapter
(MLIA), loop multiplexers, and communications line adapters (CLAs).

MULTIPLEX LOOP INTERFACE ADAPTER

The MLIA provides hardware interface between the multiplex input/output
loops and the multiplex subsystem software. The major functions are as
follows:

° Management of the I/O loops.

® Input data buffering - compensates for the difference in rate at
which characters are removed from the input loops and the rate at
which they are stored in the main memory.

® Output data demand (ODD) detection and buffering.
° Multiplex loop error detection.

) Generation of interrupts for the multiplex subsystem microprograms
and software for functions such as:

Output data demand received
Line frame received
Loop error conditions

LOOP MULTIPLEXERS

Each loop multiplexer provides an interface between a group of as many as 32
CLAs and the demand-driven multiplex loop. 1Its primary function is to
receive parallel data from the CLAs and present it to the serial input loop
in the loop cell format. Conversely, it assembles serial data in the loop
cell format from the output loop and presents it to the CLAs in parallel
form.

COMMUNICATIONS LINE ADAPTERS (CLA)

The CLAs provide the interface between the loop multiplexers and the
communications lines. The primary functions of the CLAs are to assemble
serial data from the communications line into parallel data and present this
data to the loop multiplexer or, conversely, to disassemble parallel data
from the loop multiplexer and present it in serial form to the
communications line. The CLA operating characteristics can be altered under
program control for such functions as signal rate, character length, parity,
and stop bit duration.

60471160 A 5-3

SYSTEM AND USER INTERFACES

To promote a better understanding of the internal multiplex subsystem
interfaces, the system and user interfaces are described in detail in the
following paragraphs.

SYSTEM INTERFACE

A TIP is a multilevel program that executes at three processing levels:
) Multiplex level 1 (firmware or microcode level)
® Multiplex level 2 (macrocode level)

) OPS level (processing to satisfy network protocol such as service
message handling and timing)

Control passes to the TIP or multiplex control OPS level by use of worklist
entries. Direct calls are used for the other two levels. The TIP must
handle the worklist entry according to the program's current processing
state. State programs operate on firmware levels. State instructions
provide a type of reentrant processing where the states are related to entry
points, which are, in turn, related to the various stages of processing a
message. Each TIP contains decision logic that switches processing to the
entry point determined by a combination of the worklist and the program
state.

Figure 5-2 shows the multiplex level 2 worklist codes and the programs
responsible for handling and generating these codes. Table 5-1 summarizes
workcode functions for level 2, and table 5-2 describes the workcode
functions for OPS level.

Multiplex Level 1 (Firmware)

This level of TIP processing handles all incoming characters and status.
Worklist entries generated by the input state programs are directed to
either multiplex level 2 or to OPS level for processing.

Preliminary handling of CLA status is done by the modem state programs. The
two lowest-numbered input states (which receive control from the modem state
programs) are reserved to handle the following special status conditions:

° State 0 - is reserved for CLA status such as parity errors and data
transfer overruns.

) State 1 - is reserved for data carrier detect (CDC) signal dropped.

5-4 60471160 A

¥ 09TTL¥09

MUX LEVEL 1 ' MUX LEVEL 2 | OPS LEVEL
(FIRMWARE) (MACROCODE) (TIP)
IGOOD BLOCK, BAD BLOCK, ETC. I AOWK1-=— AOWK33
TIP | AOTIMEOUT | TIMING
STATE < AOTIMEOUT
STATE ws MMBUTCHI » pMwoLp —RELEASED BUFFERS I SERVICES
MODEM l < POQUEOUT |
STATE MMCLAS PMWOLP — PTCLAS CE _ERROR »EXIT INTERNAL
PROGRAMS AOSTOP PROCESS
‘—__
MMTIMRE MMFES, MMBREAK ' .
~ MMUNSOD| v CE ERROR AOSMEN
O R DRIVER
MM
UNSIN L TERMINATE AOSMTCB
1/0
MMTI < AOSMDA | SERVICE
MODD CLEAR MODULE
MMINEND — INPUT AOSMDLTCB
M TERMINATED —
X | AcHARDERR ADSMRCTCH
‘—_—_—
F ——»> PMWOLP VNOTIFY TIP
1 MMOBT —» PMWOLP — TIP I
R
cﬂv MMCAOR » pMwoLp —CE ERROR o o |
A MMIFFO R CE ERROR .
a » PMWOLP »EXIT I
E TERMINATE OUTPUT
CcMD
CMD
TERMINATE INPUT DRIVER DRIVER
I oPS
OPTIONAL WORKLIST o |
OPTIONAL WORKLIST .o l
M-386

Figure 5-2.

TIP and Multiplex Subsystem Worklist Communications

TABLE 5-1.

MULTIPLEX LEVEL 2 WORKLISTS

Wor kcode

Workcode to TIP Functions

MMCLAS - CLA status error, implies line error to TIP.

MMUNSOD - Unsolicited output, implies hard error to
PMWOLP, which disables the line.

MMUNSIN - Unsolicited input, implies hard line error to
PMWOLP, which disables the line.

MMTIMODD - ODD timeout, implies hard line error to PMWOLP,
which disables the line.

MMTIMRE MMHARDER Modem response timeout, implies hard line error
to TIP.

MMOBT MMOBT Output block transmitted.

MMBUTCH MMBUTCH Multiplex subsystem buffer threshold reached.
Buffers are released.

MMCHOUT MMCHOUT 100-ms timeout.

MMCAOR - CLA address out of range - not seen by TIP.

MMIFFO - Illegal lineframe format - not seen by TIP.

NMINEND AOHARDERR Input buffer terminated, response to PMWOLP

to OPS command for hard errors.
level

MMFES - Framing error status, TIP should cause command
driver to send delimiter to line (asynchronous
lines).

MMBREAK - User break, TIP is called (asynchronous lines).

5-6 60471160 A

TABLE 5-2. TIP/LIP OPS LEVEL WORKLISTS

Workcode to TIP/LIP Description
AQOWK1 Good block received from IP input states.
AOWKn Other workcodes from IP input states.
AOHARDERR Hard error detected from IP at level 2.
AOTIMEOUT Line timeout from timing services.
AOQOQUEOUT Output buffer queued to IP's TCB.
AOSMEN Line enabled from service module.
AOSMTCB TCB configured from service module.
AOSMDA Disable line command from service module.
AOSMDLTCB Delete TCB command from service module.
AQOSMRCTCB Reconfigure TCB command from service module.

Two additional input states are reserved for buffer handling conditions.
These are called by the input data processor if one of the buffer thresholds
is exceeded when the multiplex subsystem is trying to store another input
character when this requires assigning a new buffer. (Note: the character
is discarded.)

) State 2 - Number of input buffers being used by this TIP exceeds the
allowable number (ABL threshold).

e State 3 - System buffer threshold reached.

Multiplex Level 2 (PMWOLP)

This processing runs at the multiplex interrupt level. It is entered by
means of worklist entries received from the modem state programs, the
multiplex subsystem firmware, and the command driver. Processing at this
level is primarily of an error nature. Each interface program provides code
to process the workcodes at this level (MMOBT, MMBUTCH, MMCHOUT, MMFGS,
MMBREAK) plus any of its own that are generated in multiplex level 1. For
synchronous TIPs, there is no processing required since the MMOBT entry is
optional.

60471160 A 5-7

Input State Program Worklists from firmware level are passed directly to the
TIP or LIP at OPS level.

The primary workcode generated is the CLA status workcode. After the modem
state programs have analyzed the CLA status for soft errors (data carrier
detect dropped and others) and determined that this is not a soft error, the
input processor modem state program generates a CLA status worklist to this
processing level. The CLA status handler (PTCLAS) analyzes the status and
generates the appropriate CE error code. If a hard error is detected on the
line, PMWOLP terminates input and output over the line. All multiplex level
worklists for the line are discarded until a response from the terminate
input logic is received. At that time, the TIP is sent an OPS-level
AOHARDERR worklist.

MULTIPLEX SUBSYSTEM FIRMWARE WORKLIST ENTRIES

The multiplex subsystem firmware generates nine worklists to the interrupt
level. These can be divided into three categories:

) Worklists resulting from hard errors for unsolicited input or output,
and timeouts for output data demand or modem response.

) Worklists to the system indicating that the output buffer has been
transmitted, the buffer threshold has been reached so no more buffers
can be assigned, or 100 ms have elapsed since the last input
character was received.

° Worklists resulting from multiplex loop errors indicating that the
CLA address is out of range or an illegal line frame format was
detected.

COMMAND DRIVER WORKLIST ENTRIES

The command driver generates worklist entries at the request of the TIP.
Two optional entries are generated: input terminated and output terminated.

OPS Level

The OPS level portion of the TIP handles all line or terminal servicing,
output block preparation, input block processing, service module interface
for configuring lines and terminals, and line error handling. Worklists are
generated to the interface processor by four different programs: 1)
interrupt programs multiplex level 1 and 2; 2) timing services; 3) internal
process; and 4) service module.

) Multiplex level 1 worklist normally indicates a good block has been
received on input. The block is passed to the Point of Interface
(POI) program and the interface program resumes its processing at the
initial entry point or at the saved entry point where processing was
suspended.

5-8 60471160 A

e Multiplex level 2 worklist indicates a hard error has occurred on the
line. Normally, a line nonoperational service message is sent to the
host. Service on that line is discontinued until the host takes
continuation action.

) Timing services worklist is generated whenever the line control block
timer expires (BZLTIMER). It can be used as a means of delaying
service on a line or indicating a line failure (failure to respond).

® Internal processing worklist indicates that output is queued to the
terminal control block (TCB) for this interface program. This is a
worklist for interface programs that stop processing when there is
nothing to do; it must therefore be restarted when the next output
arrives.

® The service module (SVM) maintains the interface between the host and
the interface program. SVM worklists indicate to the interface
program those lines and terminals that are to be configured or are to
be deleted from service.

USER INTERFACES

User interfaces to the multiplex subsystem can be divided into three
categories:

® Command driver interface (PBCOIN and PMCDRV). These modules command
communications to the multiplex subsystem and control data flow to
and from the communications lines. These include setting up the
hardware to start or stop transmissions.

° Common multiplex subroutines for TIPs are provided. These
subroutines allow the multiplex subsystem to communicate input events
to the user.

° State programs. PMCDRV sets up the operation and calls PMCOIN to
escape to the firmware. On the firmware level, the input state

programs provide processing on a character-by-character basis. State
programs and their OPS-level interfaces are described in section 12.

Command Driver Interface
The command driver calling sequence from the OPS level is:
PBCOIN (parm)

where parm is the command packet (NKINCOM). The command driver calling
sequence from level 2 is:

PMCDRV (parm)

where parm = NKINCOM is the name of the command packet. The general format
of a command packet which is used for most commands (NKCMD type) is shown in
figure 5-3.

60471160 A 5-9

WORD 15 7 0
—

0 Command Parameter
1 . Line Number

2 Parameters

3 Parameters

4 Parameters

5 Parameters

6 Parameters

7 Parameters

Figure 5-3. Command Packet General Format

The following commands are available to the user for controlling the flow of
data to and from the communications lines:

) NKCLRL - Clear line.

° NKINIL - Initialize line.

) NKCONTROL - Control line.

) NKENBL - Enable line.

e NKINPT - Input.

) NKDOUT - Direct output.

) NKINOUT - Input after output.

) NKENDIN - Terminate input.

) NKENDOUT - Terminate output.

) NKDISL - Disable line.

) NKTURN - Turn line around (not used).
) NKSPECIAL - Diagnostic interface.

Individual subroutines handle the various requests. PMCOIN is the interface
between the command driver and the firmware. PMCOIN can be used by other
software users to clear a CLA. If it is so used, it must be followed by a
clear line command. Inputs to PMCOIN are the two global variables, NGA and
NGQ, that hold command and port information for use in the A and Q registers
by the firmware.

5-10 60471160 A

CLEAR LINE COMMAND

The clear line command (NKCLRL) causes the subsystem to clear (reset) all
line-oriented software and hardware (CLA) functions associated with the line
specified by the line number. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP
1 NKLINO
NKCMD -~ Command code (NKCLRL).

NKLINO - Line number; identifies port and subport.

NKLTYP - Line type; specifies line-type entry; defines physical
characteristics of port, modem, and circuit type.

INITIALIZE LINE COMMAND

The initialize line command (NKINIL) establishes the line type of the
specified port, and places the line in a mode in which the subsystem
monitors and processes modem and circuit related status. Other line-related
functions, such as processing of input and output characters, are inhibited
while the line is in the initialize mode. The command format is as follows:

WORD 15 7 0
0 NKCMD NKLTYP
1 NKLINO
NKCMD - Command code (NKINIL).
NKLINO - Line number.

NKITYP - Line type; specifies line-type table entry.

CONTROIL COMMAND

The control command (NKCONTROL) serves a twofold purpose. It can define the
character transmission characteristics of a given line according to the
transmission characteristics key (NKTCKY) for input/output signaling rate,
character length, parity type, stop bit duration, and sync character. The
command can also specify up to five modem/circuit control functions, such as
echo, break, terminal busy, or resync. Such control functions are specified
in the optional fields of the command packet.

Generally, the command is used to initialize or alter the character
transmission characteristics of the line or to generate circuit control
functions. This command must not be issued before the initialize command.
The control command format is as shown in figure 5-4. Optional
modem/circuit functions are defined in table 5-3.

60471160 A 5-11

ENABLE LINE COMMAND (NKENBL)

The enable line command directs the subsystem to activate, as a function of
line type, the necessary modem signals to allow the local modem to connect
to the specified communications line. The command also conditions the
subsystem to monitor and analyze any changes in the modem status for signals
indicating that a line connect occurred. Character processing functions are
inhibited during the time the line is in the enable mode. The format for
the enable line command is shown in figure 5-5.

WORD 15 14 7_6 0
0 NKCMD NKTCKY
1 NKLINO
2 Fl NKFUN1 F2 NKFUN2
3 F3 NKFUN3 F4 NKFUN4
4 F5 NKFUNS5 NKZERO
NKCMD - Command code (NKCONTROL).
NKTCKY - Optional character transmission key. If nonzero,

references the character transmission characteristics table.

NKLINO - Line number.

Fl thru F5 Optional modem/circuit function; if the associated flag
and NKFUN1 (NKSRF1 - NKSRF5) is set, the function is to be
thru NKFUN5 implemented.

NICSRF1l - NKSRF5 is zero, the function is disabled.
NKZERO - Delimits end of options. NKZERO is placed in the byte

following the last requested modem/circuit function; five
functions can be specified.

Figure 5-4. Control Command Format

5-12 » 60471160 A

WORD

NKCMD
NKTCLS
NKLINO

NKUOPS

NKIFCD

60471160 A

15 14 7 0
NKCMD NKTCLS
NKLINO
Not used
NKUOPS NKIFCD
Fl NKBLKL
Not used
NKSCHR

Command code (NKENBL).
Terminal class.
Line number.

Eight user flags (NKUOPl1 - NKUOP8) can be accessed either
individually or as an 8-bit field.

First character displacement (FCD) of first buffer of input

block; optional FCD or zero. If zero, use value from the
terminal characteristics table (NJTECT).

Figure 5-5. Enable Line Command Format (Sheet 1 of 2)

Fl

NKBLKL - Block length; optional block length or zero.

- NKNOXL, the code translate flag

1
0

translate

do not translate

from NJTECT.

If zero, use value

NKSCHR - Special character (optional character or 0).

Figure 5-5.

Enable Line Command Format (Sheet 2 of 2)

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS
Function Function
Mnemonic Provided Description
NOISR statust Input status request
NORTS RTS Request to send
NOSRTS SRTS Secondary request to send (Supervisory Channel)
NOOM OM Originate mode/auxiliary modem control
NOLM LM Local mode/auxiliary modem control
NOLT LT Local test
NODTR DTR Data terminal ready
NOTB TB Terminal busy (line busy out)
NORSYN rRsyn't Resynchronize
NONSYN NSYN New sync
NOBREAK BREAK Send break
NODLM pm* Data line monitor
NOECHO ECHO Echoplex mode
NOLBT LBT Loopback test
NOION ION Input on
NOOON OON Output on

60471160 A

TABLE 5-3. OPTIONAL MODEM/CIRCUIT FUNCTIONS (Contd)

Function Function

Mnemonic Provided Description
NOISON ISON Input supervision on

NOPON PON Parity on

NOPSET PSET Parity set (1 = even, 0 = odd)
NOCLLS CLLS Character length (LSB)

NOCLMS CLMS Character length (MSB)

T pulsed functions, provide momentary signal and need not be reset.

INPUT COMMAND (NKINPT)

The input command directs the multiplex subsystem to initiate the processing
of data on the specified input line (that is, turn on the input side of the
communications line adapter). The processing functions provided by the
subsystem are determined by the input processing state program index.
Additional information is passed by a pointer table address for the input
processing states. If this option is not used, the information is taken
from the terminal characteristics table (NJTECT). Parity is stripped for
normal processing or passed for test purposes. Format of the input command
is shown in figure 5-6.

OUTPUT COMMAND (NKDOUT)

The output command permits output messages to be directed to a specified
output line. Line, modem, and control functions, as defined in the line
type tables, are generated by the subsystem as a function of the physical
line requirements.

(6, }
|

60471160 A

15

WORD

NKCMD
NKLINO

NKUOPS

Fl

F2

4 o w

14

NKCMD

Not used

NKLINO

Not used

NKUOPS

F1|F2

NKISTAI

F3

F4

NKBLKL

NKISPTA

NKSCHR

NKCNT1

NKCXLTA

Command code (NKINPT).

Line number.

Eight user flags (NKUOP1l - NKUOPS8).

is moved into MLCB if NKMVB is 1.

NKMVB; move block of user flags into MLCB.

NKRPRT;

1
0

Figure 5-6.

strip parity

do not strip parity

strip parity flag.

Input Command Format (Sheet 1 of

2)

NKUOP1 is bit 15 in the
MLCB user flag field,...NKUOP8 is bit 8 in that field.

NKUOPS

60471160 A

NKISTAI - Input state program index.

F3 ~ NKNOXL; code translate flag.
1 = translate

F4 - NKSCENBL; change special character flag.

NKBL - Block length. If this value is nonzero, this replaces CC2 in

’ the MPCB.

NKISPTA - Pointer to input state program pointer table address. Optional
address or zero. If zero, use NJTECT value.

NKSCHR =~ Special character; moved to MLCB if NKSCENBL flag is set.

NKCNT1 - Character count; moved into the CCl field of the MLCB if the
value is nonzero.

NKCXLTA - Code translation table address. If nonzero, this replaces the

current code translation table address in MLCB.

Figure 5-6. Input Command Format (Sheet 2 of 2)

Output continues until the character specified by the last character
displacement is transmitted. At that point, the subsystem chains to the
next output buffer, if the chain address in the buffer is nonzero. Output
stops if the chain address is zero or if the suppress chaining flag
(BFSUPCHAIN) is set in the flag word of the first output buffer.

The subsystem generates an optional worklist entry for the user program for
each data block output by the subsystem. If the buffer output is the last
data buffer of a transmission block and line turnaround is required, the
subsystem: 1) generates the proper modem control signals to turn the line
around, 2) monitors modem status for line turnaround, and 3) notifies the
appropriate terminal dependent subroutine that the line is ready for input.
Modem signals and modem status analysis functions are specified by the line
type tables.

Either the terminate output or the disable command can be used to terminate
output processing functions on a specified line. Receipt of either command
causes the subsystem to immediately cease all processing functions
associated with the specified line.

The format of the output command is as follows:

WORD 15 7 0
0 NKCMD Not used
1 NKLINO
2 NKOBP

60471160 A 5-17

NKCMD - Command code (NKDOUT)
NKLINO - Line number
NKOBP - Output buffer pointer

INPUT AFTER OUTPUT (NKINOUT)

This command permits interactive terminals (such as a display/keyboard
combination) to be immediately ready to receive input data in response to a
message displayed at the terminal. An index to the input state process

The format for this

table indicates the treatment of the returned data.
command is shown in figure 5-7.

WORD 15 14 13 7 6 5 0
0 NKCMD Not used
1 NKLINO
2 NKOBP
3 NKUOPS F1l|F2 NKISTAI
4 F3 NKBLKL
NKISPTA
6 NKSCHR NKCNT1
'7 NKCXLTA
NKCMD - Command code (NKINOUT).
NKLINO - Line number.
NKOBP - Output buffer pointer.
NKUOPS - Eight user flags (NKUOPl1 - NKUOP8). NKUOPl is bit 15 in the
MILCB user flag word; NKUOP8 is bit 8 in that word. NKUOPS is
moved into MLCB if NKMVB is 1.
Fl - NKMVB; move user flags to MLCB.
F2 - NKRPRT; strip parity flag.
1l = strip parity
0 = do not strip parity
NKBLKL - Block length (CC2). Moved into MLCB if nonzero;

current MLCB block length.

replaces

Figure 5-7. Input After Output Command Format (Sheet 1 of 2)

60471160 A

F3 - NKSCENBL, special character flag. If set, move NKSCHR into the

MLCB.

NKISTAI - Input processing state index.

NKISPTA - Input processing state pointers table address (optional address
or 0; if 0, NJTECT value is used).

NKSCHR - Special character; moved into MLCB if NKSCENBL flag is set.

NKCNT1 - Character count (CCl). 1If nonzero, this replaces the current
character count in the MILCB.

NKCXLTA - Code translation table address. If nonzero, this replaces the

current translation table address in MLCB.
Figure 5-7. 1Input After Output Command Format (Sheet 2 of 2)

TERMINATE INPUT COMMAND (NKENDIN)

This command enables the TIP to direct the multiplex subsystem to
immediately stop input processing functions on the specified line. All
input characters and buffers are discarded. The TIP program can, by issuing
an input command, direct the subsystem to resume input on the line.
Transmission line characteristics are not altered by the terminate input
command and therefore the TIP need not generate a control command. The
format for the terminate input command is shown in figure 5-8.

After processing the terminate input command, the subsystem optionally
generates a worklist entry to the TIP as specified in the worklist and
workcode.

TERMINATE OUTPUT COMMAND (NKENDOUT)

This command enables the TIP to direct the multiplex subsystem to terminate
output processing functions on the specified line immediately. After
processing the terminate command, an optional worklist entry is generated to
the TIP, using the specified worklist and workcode. This command is used
when the TIP interrupts an outgoing message for a higher priority message,
or when an abnormal line condition occurs. The format of the terminate
output command is shown in figure 5-9.

60471160 A 5-19

DISABLE LINE COMMAND (NKDISL)

The disable line command directs the multiplex subsystem to terminate all
processing functions of the specified line. Modem control signals are
generated to inhibit further exchange between the local modem and the
communications line. The subsystem also releases all data structures
defining the character processing functions for the line. To reactivate the
line, the system must issue control, initialize, and enable commands,
followed by either an input or output command. The format for the disable
line command is as follows:

WORD F;S 7 0
0 NKCMD Not used
1 NKLINO

NKCMD - Command code (NKDISL)
NKLINO - Line number

WORD 15 7 6 5 0
0 NKCMD Fl | F2 NKWLINDX B
1 NKLINO
2 NKUSRBY NKWKCOD
NKCMD - Command code (NKENDIN).
Fl - NKRELBFS; release buffer flag (release buffer if set).
F2 - NKWKFL; send worklist to user (if set).
NKWLINDX - Worklist index; used if NKWKFLG is set.
NKLINO - Line number.
NKUSRBY - User-supplied byte returned in field MMWTCOUNT in worklist.
NKWKCOD -~ User workcode in worklist (MMWKCOD).

Figure 5-8. Terminate Input Command Format

5-20 60471160

R

WORD 15 7 6 5 0

0 NKCMD Fl| F2 NKWLINDX
1 NKLINO
2 NKUSRBY NKWKCOD -
NKCMD - Command code (NKENDOUT).
Fl - NKRELBFS; releases buffer when flag is set. These are buffers

specified in BZLBTOMUX.
F2 - NRWKFLG; sends worklist to user when set.
NKWLINDX - Worklist index; used if NKWKFLG is set.
NKLINO - Line number.

NKUSRBY - User-supplied byte to be returned in field MMWTCOUNT in
worklist.

NKWKCOD -~ User workcode in worklist (MMWKCO).

Figure 5-9. Terminate Output Command Format

Common Multiplex Subroutines for Tips

The multiplex subsystem provides a number of common subroutines for the
interface programs; these are as follows:

PMWOLP, the worklist processor on the multiplex level

PTCLAS, the CLA status analyzer

PTLINIT, the line initializer

PMT1SEC, the timing supplier for the output data demand (ODD) function

PMWOLP, MULTIPLEX WORKLIST PROCESSOR

PMWOLP processes each multiplex worklist by workcode type. Most workcodes
concern error processing. Workcodes that PMWOLP does not recognize are
passed directly to the responsible TIP at multiplex level 2.

If the workcode is a hard error, the line is cleared, and input and output
are terminated. The terminate input command to the command driver causes
the driver to return a worklist to PMWOLP. All hard errors from the line
are discarded until the terminate input worklist is received. The input
terminated worklist is changed into a hard error worklist (AOHARDERR =
MMHARDERR) and the worklist is sent to the responsible tip at OPS level.

If the line is active, all errors, hard or soft, are reported to the CE
error file.

60471160 A 5-21

The multiplex level workcodes are summarized in table 5-1. The actions that
PMWOLP takes in response to the workcodes are as follows:

® MMCLAS - CLA status. This workcode is generated for selected CLA
status words by one of the modem state programs. (Refer to
section 12.) PMWOLP calls PTCLAS to analyze the status word. PTCLAS
returns information to PMWOLP in three ways: 1) the function is set
true if the worklist is to be sent to the TIP, 2) NRCODE is set to
nonzero if a CE error is to be reported, or 3) the workcode in the
intermediate array is changed to AQOHARDERR (or MMHARDERR) if a hard
error is found.

) MMOBUX - Output buffer terminated. This is an optional worklist
generated by the multiplex firmware after the completion of an output
message. If the line is to be turned around, PBTOQUE is called to
provide a 200-ms delay. The worklist is passed to the TIP at level 2
either immediately (if the line does not require a turnaround delay)
or when the delay timeout period is completed.

) MMBUTCH - Multiplex buffer threshold reached. This worklist is
generated by the TIP's input state program 3 (section 12) when the
multiplex firmware notifies that state program that the buffer
threshold has been reached. PMWOLP releases any input buffers and
stops processing.

) MMCAOR - CLA address out of range. The multiplex firmware reports
this error whenever the CLA address is out of range. The CLA is
cleared and the error is reported to the CE error file.

° MMUNSOD - Unsolicited output data demand (ODD). The multiplex
firmware reports this error when an ODD is received on a line that is
not in output state. The error is reported to the CE error file and
a hard error is declared.

[) MMUNSIN - Unsolicited input. The multiplex firmware reports this
error in two cases: 1) a status character is received and input
status flag (ISON) is not set, or 2) a data character is received and
the input on (ION) flag is not set. In either case, the error is
reported to the CE error file and a hard error condition is declared.

e MMIFFO - Input framing error. The multiplex firmware reports this
error when it cannot recognize the input frame. The error is
reported to the CE error file and no further action is taken.

) MMTIMOD - Modem timeout. PTCLAS reports this error after the
10-second timeout for dedicated lines has elapsed without a response
from the modem. The error is reported to the CE error file and a
hard error condition is declared.

°® MMINEND - Input terminated. PMWOLP generates this error worklist to
itself after the terminate input command is sent to the command
driver. The worklist informs PMWOLP that no more worklists will
follow. PMWOLP sends a hard error (AOHARDERR) worklist to the
OPS-level TIP.

5-22 60471160 A

PTCLAS,

MMTIMOD - ODD timeout. The multiplex subsystem timing routine
(PMT1SEC) generates this worklist when an active output line has not
requested a new character (ODD) within the allotted l-second period.
The error is reported to the CE error file and a hard error condition
is declared.

MMFES - Framing error for synchronous lines. PTCLAS generates this
error after examining the status word. The error is reported to the
CE error file and control is passed to the responsible TIP at
multiplex level 2. The TIP should send a command to the command
driver to clear this condition.

MMBREAK - User break on synchronous lines. PTCLAS generates this
condition after examining the status word. The user break indicates
that the user has requested output to be terminated. The condition
is reported to the CE error file and control is passed to the
responsible TIP at multiplex level 2.

CLA STATUS ANALYZER

Analyzing CLA status is a joint task of the modem state programs and

PTCLAS.

All incoming 2-word status entries (8 bits per word) are combined

into one 16-bit status word by the multiplex firmware. Control is passed to
the responsible modem state program for that line. The modem state program

checks
®
°
®

If the
PTCLAS

for one of the necessary modem signals:

To init<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>