
&J IC:\ CONTR.OL DATA
\::I r::J CO~OR{\TION

INTERCOM VERSION 5
INTERACTIVE GUIDE FOR
USERS OF COBOL

CDC® OPERATING SYSTEM:
NOS/BE

60455960

EDITOR COMMAND FORMAT SUMMARY

COI\IIMAND

~DD ~line[,incr1] [,!UP] [,QVERWRITE]

!!YEq~YE]

~REATE ~Iine[.incr]] [,§UP]

.QELETEJt ~';~1 [,{ I~~}] ~ [,/textl ~(COI-1 ~,col-2])] [,YNIT] 1 [,YETO]
LAST- J .

[DIT,filename[,1.EOUENCE]

FORMAT[I'[~!:;"c3aL~b-.1 [,tab-2[, ... [,tab-n]]]] ['~H=nnn]}J
- . &HOW

~IST [.l~~.{~~ H] I.!UPI [.Itextl ~(coI-lI.coI-21 ~ I.~NITI]
R ESE 0 tline [,incr]]

W.!N,system-name [,fl LE=filename] [,~OEX] [,JUP]

lA VE.fil I.!I!OSEOI I.!!VERWR ITEI I,MER GEl [. t~ I. { ~~} Il]

t1textl ~(COI-1[,cOI-2])] [,YNIT]] [,~ETO]

[=] linenum=text

loldtextl-/nowtextl H ~~.{'~~~} I} 1 ~(coI-lI.col-2111 I.!!NITI I.YETOI

KEY

{ } Signifies only one of . enclosed items can be selected.

[] Encloses optional parameters.
- Signifies minimum abbreviation.

PAGE

4-10, 6-1

6-5

4-1, 6-6

4-11, 6-6

4-9, 6-8

4-2, 6-10

4-1, 6-11

6-12

4-3, 6-13

4-5, 6-14

4-10

4-7, 6-18

&:J E::\ CONTR.OL DATA
\::I r::J CO~OR(\TION

INTERCOM VERSION 5
INTERACTIVE GUIDE FOR
USERS OF COBOL

CDC® OPERATING SYSTEM:
NOS/BE

60455960

REVISION

A Manual released.
(10-17-78)

Publication No.
60455960 A

REVISION LETTERS I. 0, Q AND X ARE NOT USED

© 1978
by Control Data Corporation

Printed in the United States of America

ii

REVISION RECORD
DESCRIPTION

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112
or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 6-19 A
Inside Front A-I A

Cover - B-1 A
ii A B-2 A
iii/iv A Index-l A
v/vi A Comment
vii A Sheet A
viii A Back Cover -
1-1 A
1-2 A
1-3 A
2-1 A
2-2 A
2-3 A
2-4 A
3-1 A
3-2 A
3-3 A
3-4 A
3-5 A
3-6 A
3-7 A
3-8 A
4-1 A
4-2 A
4-3 A
4-4 A
4-5 A
4-6 A
4-7 A
4-8 A
4-9 A
4-10 A
4-11 A
5-1 A
5-2 A
5-3 A
5-4 A
5-5 A
5-6 A
5-7 A
6-1 A
6-2 A
6-3 A
6-4 A
6-5 A
6-6 A
6-7 A
6-8 A
6-9 A
6-10 A
6-11 A
6-12 A
6-13 A
6-14 A
6-15 A
6-16 A
6-17 A
6-18 A

60455960 A iii/iv

PREFACE

This manual describes access to CDC@> CYBER 170
Series, CDC@ CYBER 70 Models 72, 73, and 74, or CDC@
6000 Series computer systems through a remote terminal
under control of the INTERCOM 5 facilities of the
NOS/BE 1 operating system. Not all INTERCOM capa­
bilities are described; nor are all described commands
outlined in full. Throughout the manual, the emphasis is
on specific steps a user must take to achieve a final
result. The text assumes that INTERCOM is being
accessed through a terminal and that batch terminal or
central site facilities are not close at hand.

As an introduction to INTERCOM for COBOL program­
mers, this manual will acquaint programmers writing
compiler language programs as a tool for other means, to
use INTERCOM effectively. The EDITOR feature of
INTERCOM, which allows a program to be created and
updated line by line, dominates the text.

This manual is not written for a programmer experienced
in operating system usage who is trying to duplicate batch
job execution by a series of commands at a terminal.
Nevertheless, those persons may find this manual helpful
in reinforcing facts basic to any INTERCOM use.

Section 1 provides a concise summary of procedures for
accessing the central site and entering and executing a
COBOL program. Choose other sections depending on
familiarity with INTERCOM.

Section 2 reviews terminal operations.

Section 3 defines the concept of a command and its
syntax, as well as the logic behind required user actions
and the interaction between EDITOR and other parts of
the system. Disregard this section if you want a
demonstration of EDITOR use before studying EDITOR
operation.

Sections 4 and 5 show how to enter and execute a COBOL
progra,m through EDITOR, starting with a call to EDITOR
and ending with execution of several types of files.
Commands are introduced as needed to accomplish a
specific task with the minimum parameters possible.
Several variations in processing are presented. Full

60455960 A

command names are used at all times to reinforce the
command or parameter that performs a particular func­
tion.

Section 6 presents commands in alphabetical order,
discussing capabilities bypassed in sections 4 and 5.
Situations are also illustrated in which the command is
used with other commands to perform specific tasks.

COBOL Version 4 is the language used for examples;
however, COBOL Version 5 is also allowed.

Execution of FORTRAN and ALGOL programs through
EDITOR differs in minor details, but operating principles
for these languages are the same.

RELATED PUBLICATIONS

Other manuals containing information that may be useful
to INTERCOM users include the following.

Control Data Publication

INTERCOM Version 5 Reference
Manual

INTERCOM Version 5 Remote Batch
User's Guide

NOS/BE Version 1 Reference Manual

COBOL Version 4 Reference Manual

COBOL Version 5 Reference Manual

INTERCOM Interactive Procedures
Guide

DISCLAIMER

Publication
Number

60455010

60455890

60493800

60496800

60497100

60495200

This product is intended for use only as described in this
document. Control Data cannot be responsible for the
proper functioning of undescribed features or parameters.

v/vi

CONTENTS

1. COBOL PROGRAM EXECUTION File Editing 4-7
THROUGH INTERCOM 1-1 CREATE Command with Suppress 4-7

/oldtext/=/newtext/ Command Funda-
Enter and Execute Program 1-1 mentals 4-7

Call EDITOR 1-1 Common Errors in Using
Call FORMAT 1-1 /oldtext/= /newtext/ 4-8
Call CREATE 1-1 EDIT Command Fundamentals 4-9
Check Input 1-2 linenum=newtext Command Fundamentals 4-10
Correct Input 1-2 ADD Command Fundamentals 4-10
Execute Program 1-2 DELETE Command Fundamentals 4-11
Save Program 1-3 Summary of File Updating Commands 4-11

Summary of Operations 1-3

5. PROGRAM INPUT AND OUTPUT FILES 5-1
2. COMMUNICATION LINKS AND HARD-

WARE OPERATION 2-1 Review of COBOL File Linkage 5-1
Environment Division 5-1

Establish INTERCOM Access 2-1 Data Division 5-2
Dial into Central Site 2-1 Procedure Division 5-2
Acoustic Coupler Connection 2-1 Execution with Local Data Files 5-2
LOGIN Command 2-1 Format Control 5-2

Diagnostics for Incorrect User Execution Using RUN Command 5-3
Actions During LOGIN 2-2 Second Execution 5-4

LOGOUT Command 2-3 Execution with Two Sets of Data on One
Teletypewriter Operation 2-3 File 5-5

Execution with Connected Files 5-6
CONNECT and DISCONT Command

Fundamentals 5-7
3. CONCEPTS AND PRINCIPLES OF Experimenting with Connected File Input 5-7

OPERATION 3-1 Terminating Connected File Input 5-7

Commands 3-1
Valid Command Names 3-2
Invalid Entry Responses 3-2 6. INTERCOM AND EDITOR COMMANDS 6-1
Abnormal Command Termination 3-3

User Files 3-4 ADD Command 6-1
Attached Files 3-4 ADD Format 6-1
Local Files 3-4 AUDIT Command 6-2

Local File Names 3-4 AUDIT Format 6-2
Number of Local Files Allowed 3-5 System Response to AUDIT 6-2
Making a File Local 3-5 Output File Name 6-2

Permanent Files 3-6 BATCH· Command 6-3
Connected Files 3-6 BATCH Format 6-3
Special File Names 3-6 PRINT Disposition of BATCH 6-3

The EDITOR of INTERCOM 3-7 LOCAL Option of BATCH 6-4
EDITOR Command Syntax 3-7 RENAME Option of BATCH 6-4
Abbreviated Commands 3-8 Examples of BATCH Commands 6-4
The Edit File 3-8 BYE Command 6-5

BYE Format 6-5
CONNECT Command 6-5

CONNECT Format 6-6
4. FILE CREATION AND UPDATING 4-1 CREATE Command 6-6

CREATE Format 6-6
File Creation and Execution 4-1 DELETE Command 6-6

CREA TE Command Fundamentals 4-1 DELETE Format 6-7
LIST Command Fundamentals 4-1 Search Criteria Option of DELETE 6-7
FORMAT Command Fundamentals 4-2 VETO Option of DELETE 6-7
RUN Command Fundamentals 4-3 DISCARD Command 6-7

Summary of Program Entry and Execution 4-4 DISCARD Format 6-7
File Preservation and Elimination 4-4 Diagnostics from DISCARD Use 6-8

" SA VE Command Fundamentals 4-5 EDIT Command 6-8 I
J RETURN Command Fundamentals 4-5 EDIT Format 6-8

STORE and FETCH Command Funda- EDITOR Command 6-9
mentals 4-6 EDITOR Format 6-9

\)

'1 60455960 A vii
J

,
\

FETCH Command 6-9 REWINP Format 6-13
FETCH Format 6-9 RUN Command 6-13

FILES Command 6-9 RUN Format 6-13
FILES Format 6-10 NOEX Option of RUN 6-14
Systein Response to FILES 6-10 FILE Option of RUN 6-14
Diagnostics from FILES Use 6-10 SA VE Command 6-14

FORMAT Command 6-10 SAVE Format 6-14
FORMAT Format 6-10 OVERWRITE Option of SAVE 6-15
Diagnostics from FORMAT Use 6-11 MERGE Option of SA VE 6-15

LIST Command 6-11 NOSEQ Option of SAVE 6-17
LIST Format 6-11 STORE Command 6-17
Examples of LIST Use 6-12 STORE Format 6-17

RESEQ Command 6-12 TEACH Command 6-17
RESEQ Format 6-12 TEACH Format 6-18
Diagnostics from RESEQ Use 6-12 /oldtext/=/newtext/ Command 6~18

RETURN Command 6-12 /oldtext/=/newtext/ Format 6-18
RETURN Format 6-12 VETO Option of /oldtext/=/newtext/ 6-18
Diagnostics from RETURN Use 6-13 *EOR and *EOF 6-19

REWIND Command 6-13

INDEX

APPENDIXES

A-I GLOSSARY A-I B-1 STANDARD CHARACTER SETS B-1

TABLES

3-1 Valid INTERCOM Commands, Partial 3-2 Valid EDITOR Commands 3-2
Listing 3-2

viii 60455960 A

COBOL PROGRAM EXECUTION THROUGH INTERCOM 1

Determine whether your terminal is ready for use by
checking the following procedures. If it is not ready, turn
to section 2 to learn how to connect the terminal with the
central site. Otherwise, follow the instructions below and
enter your program.

Type the letter Q on the terminal keyboard, then press the
RETURN keyt. If nothing happens, go to the beginning of
section 2.

If the following message appears, turn to· the LOGIN
command heading in section 2 for instructions:

PLEASE LOGIN

If the system responds with the word COMMAND, you are
connected to INTERCOM. Call EDITOR before entering a
program.

ENTER AND EXECUTE PROGRAM

CALL EDITOR

To call EDITOR, type the word EDITOR with no spaces
between letters and press the RETURN key. The line
entered will look like this:

System displays

COMMAND- EDITOR

you enter

System response will be two dots at the left of the next
line. These dots appear whenever EDITOR is ready for a
new command. If two dots appear at the left, EDITOR
has been called and you can start program creation with
the FORMAT and CREATE commands.

Each remote terminal using EDITOR is assigned one
scratch file called the edit file. The edit file is used to
create, modify, and examine single text lines, a range of
text lines (up to a complete file), or character strings
within text lines which may subsequently be submitted for
compilation and execution. The edit file is the unstated
object of all file-oriented EDITOR commands; that is, the
LIST command lists one or more lines of the edit file, the
CREATE command places data entered from the keyboard
into the edit file, and the RUN command submits the
contents of the edit file for compilation. Normally, all
program text is entered into the edit file, reviewed,
corrected, and submitted for compilation through EDI­
TOR. When the file has been created, it may be allocated
to mass storage, as either a temporary or permanent file
through EDITOR, thus making the edit file available for
further use.

CALL FORMAT

The FORMAT feature of EDITOR makes it easy to enter a
program by providing a tabbing capability. EDITOR stores
a number of predefined formats, and the one that you
want is the COBOL format. Call the format by entering:

::FORMAT,COBOL

System response to EDITOR call

EDITOR acknowledges the request by again displaying the
two dots. It does not display the format; that is internal
to the system.

If you enter a FORMAT,SHOW command, the system
displays the format:

YOUR INPUT

.. FORMAT,SHOW
CH=72 TAB CHAR=; TAB COL=B 1216 20 24

SYSTEM RESPONSE

The format provides tab capabilities, just as you would
have on a typewriter or keypunch. Unlike these machines,
your tab is initiated by entering a character rather than
pressing a function key. The tab positions correspond to
the most commonly used COBOL columns. (This format
may be changed by a specific installation; therefore, it
would be wise to display the format to be certain that it
matches the one in this manual.)

CALL CREATE

Inform EDITOR that you want to create a program by
entering the command CREATE. The system responds by
displaying aline number. Your input and system output
looks like this:

System response when in EDITOR

::CREATE
100=
SY;tem response to your
CREATE entry

Type the first line in your program after the line number.

You may want to enter and run the program as shown in
the following example. It is a complete COBOL program
and its execution displays a line at the terminal. Note
that the tab character (;) is used to position the entry on
the line.

t This manual assumes you have a teletypewriter or a keyboard duplicating a teletypewriter. For a terminal with a display
screen, press the SEND, RETURN, or ETX key, whichever is available. For all RETURN key references, SUbstitute the
proper key.

60455960 A j -)

·.CREATE
100=;10 DIVISION.
110=;PROGRAM-ID. EXAMPLE.
120=;ENVIRONMENT DIVISION.
130=;CONFIGURATION SECTION.
140=;SPECIAL-NAMES. TERMINALt IS HERE.
150=;DATA DIVISION.
160=;PROCEDURE DIVISION.
170=;FIRST-PARAGRAPH.
180=;;DISPLAY "THIS PROGRAM RUN THROUGH EDITOR" UPON HERE.
190=;;STOP RUN.
200==

10 DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. TERMINAL IS HERE.
DATA DIVISION.
PROCEDURE DIVISION.
FIRST-PARAGRAPH.

•• LIST,ALL
100=
110=
120=
130=
140=
150=
160=
170=
180=
190=

DISPLAY "THIS PROGRAM RUN THROUGH EDITOR" UPON HERE.
STOP RUN.

At the end of each COBOL statement, press the RETURN
key. Wait for the system to respond with a line number
before entering another statement. .
A typing error made before RETURN is pressed can be
corrected. Hold down CTRL and press the character H
once for each character to be erased. Then enter the
correct characters. t t

A typing error discovered after RETURN is pressed, but
before another line is entered, should be corrected by
reentering the line correctly. The incorrect line can be
deleted after the entire program is entered.

After all COBOL program statements are entered, enter
an equal sign (=) as the first and only charcter in a line.
(Don't forget to press RETURN.) This signals the end of
program creation; the system responds once more with_
two dots.

CHECK INPUT

Verify you have entered the program correctly by calling
for a list of the program. Enter this command and press
RETURN.

•• LIST,ALL or •• L,A

System response is a list 6fthe program statements input.
Any line in which the CTRL and H keys were used should
appear correct.

CORRECT INPUT

To delete lines, enter DELETE (or D), the line number of
the line, and press the RETURN key as follows:

•• DELETE,number or •• D,number

t COBOL 4 does not allow quotation marks for this entry.

To delete two or more consecutive lines, enter DELETE
(or D), the line number of the first line, the line number of
the last line, and press the RETURN key. If further
changes are to be made, retype any line in error: enter
the line number, an equal sign, the correct text, and press
the RETURN key as follows:

.• linenum=new text

To insert any line you may have omitted, use
linenum=text, choosing a line number that inserts the line
in the proper location.

The two dots do not appear when a correction is made by
a command in the format linenum=text. Continue with
the next operation after the carriage returns to the left.

Use the LIST,ALL command to examine the program after
all changes are made.

EXECUTE PROGRAM

When the program appears as you want it, execute the
program by entering this command followed by RETURN
key.

..RUN,COBOL

System response is a status message giving the number of
errors, the amount of core memory required for
compilation, and the number of seconds the central
processor used to compile the program, followed by the
line printed as a result of the execution of the program as
in the previous example of a sample COBOL program.

t tOn some terminals, the BKSPACE or back arrow key can be used instead of CTRL/H.

1-2 60455960 A

SAVE PROGRAM

Now that you have confirmed that the program works
correctly by executing it, you may want to save it for
future use. Any file (or program) in the edit file can be
saved by using the SAVE command.

SAVE loads the edit file into a local file whose name is
specified as a parameter of the command. (A local file is
one which is available only to you and only during the
current session.) To keep the program shown in the
example as a local file named EXAMPLE, enter the
following.

•• SAVE,EXAMPLE

. Notice that the edit file still contains the program even
though it has been copied to the local file. This feature
allows you to make modifications to a program during
debugging while still retaining previous versions.

SUMMARY OF OPERATIONS

1. Establish link to central site if necessary
(section 2).

2.

3.

4.

5.

6.

7.

8.

Call the editor program: EDITOR

Specify format: FORMAT,COBOL

Tell the editor that you want to create a
program: CREATE

Enter program line by line; after all program
lines have been entered, exit from CREATE
with =.

Examine input: LIST,ALL

Correct program: DELETE,line and/or line­
num=new text

Execute program through COBOL:
RUN,COBOL

If execution reveals errors, correct the program and
execute again, as in steps 7 and 8.

If you want to keep a copy of the program, use
SAVE,name.

60455960 A

Recall CREATE to enter another program.

After successfully entering and executing the COBOL
program in the example, you are ready to execute your
programs through INTERCOM. All other operations are
elaborations or variations of these procedures.

INTERCOM operation principles demonstrated include:

• Commands terminated by RETURN key.

• System prompts next user input.

•

•

•

Status and error messages displayed for user
information •

EDITOR allows a program to be entered,
modified, and executed.

A program created with EDITOR can be
stored as a local file with SAVE.

At this point, go ahead with your own programs using
commands given previously. To learn easier ways of
entering a program and additional commands and options
available, read section 3 to learn principles of operation
or read section 4 to learn from examples.

Section 3 discusses basic INTERCOM and EDITOR opera­
tion, as affected by user inputs. Terminology used in
explanations of commands is defined. Commands relevant
to a concept are introduced so you can associate practical
applications with an idea.

Sections 4 and 5 present a series of complete examples of
file creation and use through EDITOR. In each example,
pertinent command parameters are described. Alternate
methods of performing the same task are shown, and
suggestions for ease of use or efficient execution are
included.

Section 6 lists INTERCOM and EDITOR commands alpha­
betically, with all optional parameters included. Again,
rather than merely presenting the options available,
emphasis is placed on when to use an option and how it
can be combined with others effectively.

If you are not acquainted with the terminal, consult
section 2 to learn the various functions of a teletype­
writer.

1-3

COMMUNICATION LINKS AND HARDWARE OPERATION 2

ESTABLISH INTERCOM ACCESS

To use INTERCOM, the first user at a terminal session
normally establishes hardware communication between
the terminal and the central site and establishes software
communication with INTERCOM by entering a LOGIN
command.

Hardware communicates with the central site through
telephone lines. Most often, these lines can be dialed.
Some terminals are hardwired to the central site. For
such terminals, LOGIN is the only user action needed to
establish communication.

Sometimes, software communication is established at the
start of the day or at the beginning of a class period and is
not disconnected until a scheduled time. The need for a
LOGIN command varies among installations.

If someone else has immediately preceded you at a
terminal and both hardware and software links to the
central site exist, you can enter commands at once.

At a teletypewriter, to determine whether the terminal is
ready to accept commands, check status lights and try a
command.

1.

2.

Look at the light marked ORIG in the lower
right area. If it is not lit, hardware
communication is not established; and the
user must follow procedures for dialing into
the central site computer.

If the ORIG light is on, enter the word
FILES and press the RETURN key. If this
message is displayed:

PLEASE. LOGIN

Software communication is not established
and the user must enter the LOGIN com­
mand as outlined in the following text.

3. If the ORIG light and the BRK-RLS light are
on, press the BRK-RLS button before enter­
ing the command.

DIAL INTO CENTRAL S.ITE

At a teletypewriter terminal you can dial into the
computer at the central site just as if dialing a friend's
home. The dial on a teletypewriter is the same as that on
a home phone. Push theORIG button so that the light
comes on, then dial the number you have been instructed
to use.

Dialing the number establishes a connection with equip­
ment at the central site. When the line is free for use,
you will hear a high-pitched tone. If the line is not
available, you will hear a busy signal similar to that for
any other busy telephone line. The high-pitched tone
indicates only that the line is available for use between
the terminal and the central site equipment. It does not
necessarily mean that the computer software programs
are in operation.

60455960 A

When telephone connection is established and INTERCOM
is operating, the following message is displayed:

CONTROL DATA INTERCOM 5.0
. DATE 09/08/78
TIME 10.46.26.

PLEASE LOGIN

The specific message at your terminal may be different.
This one identifies the system in use and gives the current
date and time at which hardware communication was
established, based on a 24-hour clock.

If you hear the high-pitched tone (and have pushed any
buttons required for operation of your particular termi­
nan, but the LOGIN message does not appear, press the
RETURN key. Response from an active central site
computer will be the LOGIN message. If the RETURN
key does not activate the message, assume the central
site is not currently running INTERCOM.

ACOUSTIC COUPLER CONNECTION

Some terminals must be connected through an acoustic
coupler, which includes a cradle for a telephone handset.
Examine the cradle to determine which end should receive
the mouthpiece and attached cord. Words similar to
CORD HERE may appear; if they do not, look for a groove
or channel to guide the cord or a diagram showing a
handset and cord. The direction in which the handset is
placed is significant.

1 . Turn the coupler ON if necessary.

2.

3.

Set any FULL/HALF DUPLEX switch to
HALF.

Dial the central site. When the high-pitched
tone is heard, set the handset firmly in the
cradle.

If the terminal does not respond with a request for a
LOGIN, press the RETURN key. Placing the handset in
the cradle may generate spurious line signals that prevent
the message from being sent. Also, check status lights for
communication between the coupler and the terminal.
Lights on the coupler show communication between the
central site and the coupler only; terminal lights show
terminal/coupler communication. Perhaps the plug linking
the coupler and the terminal is not secure. Make sure the
terminal is turned on.

LOGIN COMMAND

Software communication with INTERCOM is established
by the LOGIN command. It must be the first command
entered after hardware communications are established.
At the conclusion of a successful LOGIN procedure,
INTERCOM will have verified your right to access the
system, assigned a 2-character user identifier, and made
access possible to other INTERCOM commands.

2-1

The sequence of entries required for LOGIN may vary at
your installation. Generally, however, LOGIN asks you to
identify yourself and to give a password that indicates you
are authorized to use INTERCOM. Sometimes any name,
such as your last name, may be acceptable with a given
password; other times a particular name is necessary.
Often a name is a department or class identification, and
the password is an accounting number. Consult with your
instructor or systems analyst for specific instructions.

The name and password entered during LOGIN must
conform to a range of acceptable values stored at the
central site. Both of these items may consist of 1 to 10
letters or digits. If you do not enter values that match
allowed values, INTERCOM cannot be used.

Part of the function of the password is to restrict
INTERCOM access to authorized users only. Conse­
quently, when INTERCOM asks for a password to be
typed, it will prepare an input area on the teletypewriter
paper by overstriking several characters and then, setting
the carriage to the beginning of that line.

PLEASE LOGIN
LOGIN
ENTER USER NAME - USERA
$$$$$$$$$$ ENTER PASSWORD-

Your typing will be printed on the blacked-out area, so it
will be illegible, preventing unauthorized persons from
learning your password by reading discarded terminal
paper.

To begin the LOGIN procedure,type LOGIN and press the
RETURN key. Then wait for the system to respond with
instructions for additional entries. When prompted, type
the item requested, ending each item with a RETURN
key.

After all items are entered, successful completion of
LOGIN will be marked by the appearance of a message
similar to:

08/13/78

COMMAND-

LOGGED IN AT 14.06.29.
WITH USER-ID 00
EQUIP/PORT 25/060

The USER-ID is the means by which INTERCOM identifies
the user and files associated with the user. Look for this
identification when lists of jobs in the system are being
scanned. Also, use this identifier if you need to consult
with the central site operator or systems analyst. The
EQUIP/PORT information shows the hardware connection
to the central site and is not significant for beginners to
remember.

At some installations, additional messages may appear
before the word COMMAND. Such messages may be
system bulletins prepared by installation analysts to
inform users as to hours of operation or phone numbers of
analysts, as well as instructions to follow for obtaining
more help or system information.

You can hasten LOGIN completion by entering some or all
of the items required at the same time the word LOGIN is
entered. If this option is selected, use commas to
separate items.

Any of the following could be entered for LOGIN.

2-2

•

•

•

•

User enters the characters LOGIN and waits
to be prompted before entering other items.

LOGIN

System asks for a user name, then asks for a
password.

User enters a user name before pressing the
RETURN key.

LOGIN,MYNAME

System prompts a password entry.

User enters both user name and password.

LOGIN,MYNAME,SECRET

System responds with informative bulletins
or messages.

User suppresses long system messages by
adding the SUP parameter to the LOGIN
entry.

LOGIN,MYNAME,SECRET,SUP

The SUP parameter inhibits display of the LOGIN ac­
knowledgment and any other optional system information.
Information an installation deems too important for the
user to miss appears despite use of SUP.

Once the word COMMAND appears, INTERCOM is ready
to receive additional user commands.

Diagnostics for Incorrect User Actions
During LOGIN

Messages returned to the terminal indicate difficulties in
executing LOGIN because of current system status or user
error.

PLEASE LOGIN

LOGIN must be the first command entered after
hardware communication is established. This mes­
sage appears if some other command is entered, or
perhaps LOGIN has been misspelled.

LOGIN NOT PERMITTED AT THIS TIME

Push the CLR button, hang up the handset, or
otherwise abandon attempts to use INTERCOM at
this time. It is not possible for a terminal to begin
INTERCOM processing. This condition is initiated
by the central site operator and does not neces­
sarily indicate either a system malfunction or a
user error. Often the appearance of this message
precedes a scheduled interruption of system opera­
tion. Currently logged-in users are allowed to
complete operations, but no new users can LOGIN.

INVALID USER NAME OR PASSWORD

Your entry of a name or password must match
entries on a list at the central site. Check that
you have spelled required parameters correctly.
Reenter the correct letters or numbers for the
item prompted.

60455960 A

\
)

",
I

USER NAME/PASSWORD IN USE AT ANOTHER TERMI­
NAL

Be sure you are entering the correct characters.
Use another name or password if you have been
assigned alternates. Otherwise, consult with the
person who originally assigned your LOGIN param­
eters.

PREVIOUS USER AUTO LOGG ED OUT

The last user did not log out. The system has
logged-out the last user automatically. No action
is required.

YOU HAVE HAD THREE TRIES - GET HELP

The wrong names or passwords have been entered
three times. INTERCOM assumes you have the
wrong LOGIN information since a simple typing
error should not be repeated. Obtain the correct
words for INTERCOM access, then begin again with
the LOGIN command.

LOGOUT COMMAND

LOGOUT is the last command entered when all work is
complete. It terminates communications with INTERCOM
and the central site. No further commands can be entered
until the LOGIN command is used to reestablish communi­
cation.

LOGOUT destroys all local files associated with the
terminal except those you have retained as permanent
files prior to LOGOUT. (The STORE command will make
a local file permanent.) Any files identified as REMOTE
INPUT FILES, REMOTE EXECUTING FILES, and RE­
MOTE OUTPUT FILES remain in the system until the user
takes specified action to dispose of them. Refer to the
discussion of FILES command.

LOGOUT cannot be called when EDITOR is being used.
Type BYE to exit from EDITOR before attempting to log
out.

BYE

The command is simply the word LOGOUT followed by a
RETURN key.

LOGOUT

When this command is executed, information summarizing
session time is returned.

COMMAND- LOGOUT

CPA 2.245 SEC. 2.245 ADJ.
CPB .000 SEC. .000 ADJ.
SYS TIME 23.952
CONNECT TIME 0 HRS. 20 MIN.

10/08/78 LOGG ED OUT AT 11.06.02.

CPx indicates how many seconds each central processor
has used for all operations during this terminal session.

SYS TIME is computed from a formula that reflects all
system resources used.

60455960 A

CONNECT TIME shows the elapsed time, in number of
hours and minutes, between the LOGIN command and
LOGOUT command execution. These times are used by
the system to determine accounting charges for the
people using INTERCOM. You need not be concerned with
them, unless perhaps you have been asked to keep your
own or a class log of terminal work.

The time used by the central processor is small in
comparison to that of the peripheral processors. Compila­
tion and execution requires use of the central processor,
but most INTERCOM functions including displaying infor­
mation at the terminal occur in peripheral processors.

TELETYPEWRITER OPERATION

Several keys significant for INTERCOM use have no
counterpart among the keys of a standard typewriter;
some of these are CTRL, LINE FEED, and RETURN.

The RETURN signals the end of an input line. The system
advances the paper and moves the printer carriage to the
far left. On a typewriter, a carriage return is necessary
to confine characters to the physical page. On a
teletypewriter, however, the function of a carriage return
is performed by a LINE FEED, not a RETURN.

Although the following sequences appear the same to a
person sitting at a teletypewriter, their interpretation by
INTERCOM is significantly different.

• Enter FILES and press LINE FEED. Printer
carriage returns to far left of next line.

• Enter FILES and press RETURN. Printer
carriage returns to the far left of next line.

In the first instance, INTERCOM is waiting for more user
input. LINE FEED is acceptable only as a compensation
for physical paper size.

In the second instance, however, INTERCOM executes the
FILES command and displays the results of execution.
RETURN signals the end of a user command; LINE FEED
does not affect a command.

INTERCOM can accept more than 72 characters input as
a single line. The significant function for INTERCOM
operation is not the line on which an input command
appears physically, but whether the RETURN key has been
pressed to signal the end of a command.

Each time the user presses a key of a teletypewriter, the
associated character or function is transmitted immedi­
ately to the central site. INTERCOM interprets each
character as it is received. Possible interpretations are:

•

•

The character is a member of the installa­
tion character set. It is saved in a current
line buffer for future use after a RETURN is
received.

The character is TAB, FORM, or some other
character not recognized as a valid function.
The character is discarded.

The char.acter is a function LINE FEED, RETURN, CTRL,
any of which causes INTERCOM response:

2-3

LINE FEED Issues a carriage return.

RETURN Issues a line feed. Executes com­
mand accumulated in the buffer as
each character was entered. If a file
is being created through EDITOR, the
RETURN key signals the end of a
line. INTERCOM issues a line feed in
response to the carriage return.

CTRL

CTRL and
zt (ESC
or ALT
MODE)

Takes action on current line buffer
according to character H or X
pressed while CTRL is pressed.

H

X

Logical character back­
space. Each time H is
pressed the last charac­
ter in the buffer is
erased.

Logical line backspace.
All characters entered
by the user since the
last RETURN are
erased. The carriage is
not repositioned.

Interrupts command execution.
Pressing CTRL and Z together sus­
pends output to the terminal. The
next character entered must be %S or
%A followed by RETURN or RE­
TURN pressed alone. The interrupt
(CTRL/Z, ESC and ALT MODE), must
be used prior to entering a %A or %S
if output is to be suspended; other­
wise the abort or suspend will not be
recognized.

%S Stops output. Any data
awaiting output to the

%A

%EOR

%EOF

RETURN

terminal is discarded.
If more output is gener­
a ted, it will be dis­
played. %S may sup­
press the EDITOR • •
response or the word
COMMAND. Any exe­
cuting command will be
completed.

User abort. Stops fur­
ther command execu­
tion. Any output des­
tined for display will be
discarded. The message
USER ABORT is dis­
played.

End-of-record. An end
of record signal is sent
to the executing pro­
gram.

End-of-file. An end of
file signal is sent to the
executing program.

Resumes execution as if
CTRL and Z had not
been entered. The in­
terrupted logic 11 line is
repeated.

Any input from the keyboard interrupts output. If output
stops unexpectedly, first check the BRK-REL button. If it
is lit, press it to resume operation. If this butt')n is not
lit, enter a RETURN. The RETURN will restart the
output if it has been stopped by line noise or any other
interruption except %A or %S. Line noise is a spurious
transmission signal that originates from sourc ~s other
than a keyboard character entry. If may originate, for
example, if the telephone handset connection is bumped or
electrical disturbances occur. Also, line noise can occur
if the handset cradle of an acoustic coupler rloes not
muffle room noise sufficiently.

t When available, the ALT MODE or ESC key should be used in place of CTRL and Z.

2-4 60455960 A

CONCEPTS AND PRINCIPLES OF OPERATION 3

INTERCOM is a Control Data product that allows a user
at a terminal to access the processing facilities of a
computer located at a central site some distance away.
The central site computer used by INTERCOM may be one
of several models of the CDC CYBER 170, CYBER 70, or
6000 Series computer systems. These large computers are
capable of handling many different tasks at the same
time.

Normally, at the central site, a user submits a program
for execution as a deck of punched cards. The first card
in the deck, the job statement, identifies the deck and
often the person submitting the deck. A series of
instructions for the system follows; they are called
control statements and typically would call for compila­
tion, then execution of a program. The program itself
would follow in the deck, along with any data the program
would use during execution. The last card in the deck has
a special punch combination signaling the end of this job.

This particular job deck, along with many others, is placed
into a card reader. From this point, system programs
control the progress of the job from the card reader to
mass storage to execution and output of program results.
At minimum, each job deck results in a listing on a line
printer that is returned to the user to show steps taken
while the job was in the computer system.

INTERCOM enables a user at a remote site to perform the
same tasks on a computer without having that computer,
or its peripheral card readers and line printers, physically
available.

Many users at many different locations can access
INTERCOM at the same time. Simultaneously, other user
jobs submitted at the central site are being processed.
The user at any given site, however, is not aware of all
the jobs in process at once. Rather, he knows only that
the system responds to each of his instructions. The user
enters an instruction and waits for a response to show that
the desired action is completed. During execution,
INTERCOM ensures that all input and output from a
terminal is routed successfully for execution.

INTERCOM can control operations from several different
types of equipment. Terminals commonly used are:

• Several different types of portable teletype­
writer terminals that look like modified
typewriters.

• CRT terminals (cathode ray tubes similar to
television screens).

• Batch processing terminals with a CRT and
attached card reader, line printer, and lor
card punch.

The terminals with card readers and line printers attached
operate similarly to the card readers and line printers at
the central site. They are called batch terminals because
they allow a batch of user job decks to be entered into the
system and executed (as if they were at the central site).
Such terminals are not described here.

The description of terminals that do not have peripheral
equipment attached includes how the user communicates
with INTERCOM when a card reader and line printer are
not available. Further instructions are given for using file
construction and manipUlation features that are available
only through INTERCOM.

COMMANDS

A command is a user entry that calls for INTERCOM
action. LOGIN, which establishes communication with the
central site, is a command, as are FILES and EDITOR.

All commands have similar characteristics:

• They have a keyword that identifies the
command.

•

•

They may have optional parameters sepa­
rated by commas.

They are not complete until a RETURN key
is pressed.

Syntax of the individual commands depends on several
variables not readily apparent nor significant to beginning
users. t If you use commas between parameters, do not
include any blanks, and do not terminate the command
with a period, you will always have acceptable command
formats.

When the EDITOR facilities of INTERCOM are used,
command format is more flexible, as discussed in the
EDITOR topic below. Since most INTERCOM commands
not directly pertinent to EDITOR features can be entered
in EDITOR mode, it is easy to be confused about format.
Until you are familiar with what is or is not an EDITOR­
only command, use a comma between parameters. EDI­
TOR commands must not be terminated by a period.

The last character of an INTERCOM command may, but
need not be, a period. INTERCOM will supply one, if
necessary, before passing a command to other parts of the
operating system for execution.

A command can be entered any time this word is displayed
a t the far left:

COMMAND- t
typing element is
located at this point

t Commands corresponding to operating system control statements must conform to the operating system control statement
syntax. INTERCOM EDITOR commands need not do so.

60455960 A 3-J

VALID COMMAND NAMES

INTERCOM has an internal list of valid command names.
They can be the names of commands to be executed by
INTERCOM itself, or they can be operating system
control statements.

Table 3-J lists some of the commands recognized by
INTERCOM. Other commands relevant only to operation
of different equipment or to tasks not commonly per­
formed by beginning INTERCOM users have been omitted.
Consult the INTERCOM reference manual for additional
valid commands.

TABLE 3-1. VALID INTERCOM COMMANDS,
PAR TIAL LISTING

Command

BATCH

DISCARD

EDITOR

FETCH

FILES

LOGIN

LOGOUT

STORE

TEACH

Description

Changes file category
or sends file to another
site

Eliminates file or
purges permanent file

Calls facilities that
create and edit files

Accesses permanent
file

Lists files associated
with user

Establishes INTERCOM
access to begin termi­
nal session

Terminates
session

terminal

Makes file permanent

Calls utility that ex­
plains INTERCOM use

To avoid confusion in learning how to use INTERCOM, do
not create a file with a name duplicating a command
name.

An additional set of commands, available once EDITOR·
has been called, is listed in table 3-2.

3-2

TABLE 3-2.· VALID EDITOR COMMANDS

Command Description

ADD Inserts new lines into
edit file

BYE Exits from EDITOR

CREATE Begins new edit file
creation

DELETE Removes line from
edit file

EDIT Copies local file into
the edit file

FORMAT Specifies edit file
format

LIST Displays edit file
contents

RESEQ Renumbers lines in
edit file

RUN Compiles and exe-
cutes program

SAVE Copies edit file to a
local file

linenum=text Inserts single line
into edit file

/oldtext/=/newtext Changes text string
in edit file

INVALID ENTRY RESPONSES

A user command entry is checked by INTERCOM in
several ways. The first check determines that the
command consists of 1 to 7 letters and digits (the first
character must be a letter), or 1 to 7 letters and digits
followed by a list of parameters.

Then the first word of the entry is checked against a list
of valid INTERCOM commands. If it requires INTERCOM
action, any parameters are checked before execution.

An operating system command is executed by other parts
of the operating system.

If the entry is not a call for INTERCOM or operating
system execution, it is assumed to bea call for loading
and executing a user file having the entry name.

60455960 A

An entry with invalid characters or too many characters
produces the following diagnostic:

FORMAT ERROR

Omission of a required comma separator also may produce
these messages. An entry that produces either diagnostic
must be reentered.

INTERCOM can detect many types of user errors; but a
misspelled command name cannot be diagnosed. A
misspelled command, however, may produce an error
diagnostic that seems unrelated to your entry. If a
diagnostic is not meaningful, check that you have entered
the command name correctly.

For instance, the following diagnostic might appear when
you spell an INTERCOM command incorrectly and enter a
sequence that is a valid command from other types of
iNTERCOM terminals.

COMMAND/TERMINAL MISMATCH

If an entry does not match a command name or an existing
user file name, the operating system routines attempting
to load and execute the file issue an error diagnostic.

NO SUCH PROGRAM CALL NAME - name

/
System inserts name of
nonexistent file

If the user file exists, but does not contain an assembled
program that can be used by the loader, a diagnostic
similar to the following appears:

COMAND-SOURLD

55053005032524055555
23172522030555031704
05552711141455161724
55053005032524055555
23172522030555555555

EXECUTE
SOURCE COD
E WILL NOT

EXECUTE
SOURCE

NO PROGRAMS READ YET
LAST FILE ACCESSED- SOURLD

FATAL LOADER ERROR­
EMPTY LOAD

When any of these diagnostics appear, you must reenter
the correct command format. Revert to using a comma
as the only separator between words in a command, and
you can eliminate the diagnostic for many entries having
no other apparent error.

Invalid or missing parameters in an INTERCOM command
produce a variety of diagnostics, as discussed in section 6
under each individual command. Often, the message
displayed requests a missing parameter; and once that
parameter is entered, execution continues.

Another diagnostic referencing internal operating system
data can occur for some commands when a comma
separator is the last character before the RETURN key is
pressed.

COMMAND- REWIND,FILEA,
ILLEGAL I/O REQUEST

FILE NAME
FET ADDRESS 000112
ILLEGAL FILE NAME

System inserts file­
name; since the error
was blank file name, no
name appears.

Ignore this line; it per­
tains to internal system
execution, not a user
entry.

The same message can appear if an invalid file name is
used as a parameter . of the RETURN or REWIND
command. The message indicates an error in executing
the parameter list, not in the command name. Successful
execution occurs for files named before, but not for those
named after, the incorrect name.

The following message indicates that you must reenter a
command.

REPEAT LINE

Occasionally, when INTERCOM use is heavy, the com­
mand input buffer at the central site can become
saturated. The message tells you the last command was
not accepted.

ABNORMAL COMMAND TERMINATION

Under most circumstances, you anticipate complete exe­
cution of a command entered. At times, however, you
may want to stop execution before completion. For
instance, you may realize after you have requested
execution that you have made a logic error in a program;
and you may want to terminate the command so as not to
waste system resources.

The output of any command execution can be suspended
by pressing the ESC t key. The next key pressed then
determines whether execution resumes. Remember, do
not press the ESC key unless you want to interrupt output.

1 • Press the % and A keys to abort the
command.

2.

3.

Press the % and S keys to discard all output
currently waiting transmission to the termi­
nal.

Press the RETURN key to continue the
interrupted output.

The RETURN key must be pressed to enter an abort (%A)
or suspend (%S) request as with any other INTERCOM
command.

System response to receipt of the abort request is the
termination of the executing command, whether it is a
user program execution or an INTERCOM command such
as FETCH. The terminal displays:

USER ABORT

t If Y0l!r teletypewriter does not have an ESC key, use ALT MODE. If that key is not available, press the CTRL key while
pressmg Z.

60455960 A 3-3

USER FILES

A file is a collection of information referenced by its file
name. A file can contain a program to be run, data to be
used by the program, or the output from a program. Also,
a file may exist as a name only, having no information at
present, but available for writing.

When you reference a file name in a command, you
indicate that all information in the file is to be handled as
a unit.

A user has control over any file associated with his
terminal. These files may have been:

•

•

•
•
•

Created through the EDITOR facility of
INTERCOM and saved as files with specific
names.

Stored as permanent files and retrieved by
FETCH commands.

Created bya REWIND or COpy command.

Sent to the terminal from another terminal.

Created by execution of a program through
the RUN command or through the batch
facilities at the central site.

One other file, the edit file, exists whenever the user
creates or updates a file through EDITOR. The edit file is
a temporary work file. It has no name and does not
appear on a list of the user's files.

ATTACHED FILES
/
The list of files associated with your user-id is obtained
through the FILES command.

FILES

Files are listed under the following categories, as appli­
cable: LOCAL, REMOTE INPUT, REMOTE EXECUTING,
REMOTE OUTPUT, and REMOTE PUNCH.

REMOTE INPUT and REMOTE EXECUTING files exist
only if the terminal has been used to submit a job for
batch execution. Since this manual deals with job
execution through the EDITOR RUN command only, such
files are not described any further here.

REMOTE OUTPUT and REMOTE PUNCH files usually
result from batch job execution, but they also can result
from a BATCH command that sends a file from one
terminal to another.

Files in the remote categories cannot be used in most
INTERCOM commands until the user makes them local
files. These files, and the commands to make them local
files, are briefly described with the BATCH command in
section 6.

The remaining file category, LOCAL FILES, encompasses
almost all files used by beginners.

3-4

LOCAL files may be further categorized as follows:

• Attached permanent files.

• Connected files.

• Special name files INPUT and OUTPUT.

• Other.

The most important concept to know is that a file must be
a LOCAL.file before it can be used at a terminal, and that
LOCAL file status results automatically from most user
commands.

LOCAL FILES

A local file has these characteristics:

•

•

•

•

It is immediately accessible and can be
referenced in other INTERCOM commands.

It appears under the heading LOCAL FILES
when the FILES command is executed.

It has been created during the current
terminal session; or it is a permanent file
attached at user command.

It can be made permanent with a STORE
command (unless it is already an attached
permanent file).

• It can be used during execution of an
interactive user program.

• It disappears at the end of the terminal
session (unless it is a permanent file).

The last item is particularly important. Unless you make
a file permanent, it will be lost when LOGOUT is
executed.

Local File Names

Each local file must have a unique name consisting of 1 to
7 letters or digits beginning with a letter. These file
names are legal:

TAPE5

Bl

TEXT

NEW

A

Q007

ANOTHER

PF

OUT

The following file names should not be used unless the file
has the function and characteristics associated with the
name, as discussed below.

INPUT OUTPUT PUNCH

Some other file names, although legal, should be avoided
while you are learning to use INTERCOM. Specifically, do
not give a file the same name as any of the operating
system control statements or INTERCOM commands, and
do not use the reserved file names beginning with ZZZZZ.

60455960 A

Generally, a file name should be chosen to reflect its
contents. For example, use names such as:

PROGRAM or P

AREA

Pl and P2 and P3

For a source program

For a program calculat­
ing area of a triangle

For three successive
versions of a file

DATA or D or TAPE5 For data to be read by a
program

NEW or FILE2 For files copied

When several persons use a terminal during a single
session, it is often convenient to start or end all of your
file names with your initials. Any mnemonic identifier
that helps you remember the purpose of a file is useful.

Illegal names produce error messages such as:

ILLEGAL FILE NAME

ERR - RESERVED FILE NAME

Examples of improper names:

333

AB$C

ABCDEFGH

ZZZZZAB

File names must begin with a
letter

Only letters and digits can be
used

Maximum file name length is 7
characters

Reserved file name not al­
lowed

All local file names must be unique. An attempt to create
a second file with the same name either accesses an
existing file or produces a message, but does not create
the file.

DUPLICATE FILE NAME

ERR - name ALREADY EXISTS

YOU ALREADY HAVE A FILE BY THIS NAME

Number of Local files Allowed

The number of local files that can be associated with a
terminal is limited. The specific number of files allowed
is set by an installation; often 20 files are allowed. Each
of the following messages indicates an attempt to create
more files than you are allowed.

FILE QUOTA EXCEEDED

Reduce the number of local files attached to your
terminal. The command that caused this message
has been executed.

60455960 A

YOU HAVE TOO MANY FILES - PLEASE RETURN SOME

You have ignored the FILE QUOTA EXCEEDED
message. Execution of other commands is inhibited
until you eliminate some local files.

ERR - USER FILE LIMIT EXCEEDED

The edit file cannot be saved or executed until the
number of local files is reduced.

When .any of these messages appear, it is necessary to
dispose of some local files with one of the following
methods. The preferred ·response is a user command that
destroys unwanted files.

•

•

Use the BATCH command to change the file
from a LOCAL file to a REMOTE OUTPUT
file at the same or another terminal. Re­
mote output files do not affect local file
quota, since they are not immediately ac­
cessible.

Use the RETURN or DISCARD commands to
evict a file. The named file ceases to exist
as a local file. In addition, if DISCARD is
used, the file no longer exists as a perma­
nent file.

When you no longer need a file, eliminate it from the
system with a DISCARD or RETURN command. Not only
do these commands free system resources, they also
reduce the number of files of which you need to keep
track.

Making a file Local

Any file to be used at a terminal must have LOCAL
status. Unless the file name appears under the LOCAL
FILES category when the FILES command is executed, the
file cannot be rewound, copied, edited, or stored as a
permanent file.

A file may be made local in many ways; most require
explicit user naming of a file. Sometimes file names
appear as an indirect result of a user command.

A permanent file stored between terminal sessions can be
attached for use by the FETCH command.

A file created through EDITOR is given a specific name
with the EDITOR command SAVE.

Referencing a file in certain commands causes a file to be
created with that name if such a file does not exist.
These commands are:

CO PY ,afile,bfile

REWIND,cfile

File afile is assumed to exist;
bfile is created by execution
of COPY.

File cfile is created by RE­
WIND execution if cfile did
not previously exist. Although
cfile is an empty file, it does
exist.

A remote OUTPUT file can be given LOCAL disposition
with the BATCH command.

PERMANENT FILES

A permanent file exists from one day to the next. All
local files that are not permanent cease to exist when
LOGOUT occurs or a terminal session ends otherwise.

You can make a permanent file of any local file unless it
is already permanent.

·Three commands reference permanent files:

STORE

FETCH

DISCARD

Makes a local file permanent

Retrieves a permanent file
from storage

Destroys a permanent file

For the most part, an attached permanent file can be
treated as any other local file. It can be transferred to
the edit file for listing, executed by the RUN command,
or copied to another file; however, an attached permanent
file cannot be overwritten or otherwise have its contents
changed with INTERCOM or EDITOR commands.

On a list of local files, attached permanent file names are
preceded by an asterisk which is not part of the name.

The STORE, FETCH, and DISCARD commands are simple­
to-use versions of the operating system control state­
ments CATALOG, ATTACH, and PURGE. These state­
ments offer additional features of privacy, naming, and
modifying files, but their use requires more sophisticated
knowledge than is needed for the most commonly used
permanent file features.

STORE is adequate for retaining files from one day to the
next. It offers the user a feature that CATALOG does not
have: specifically, if the file to be made permanent is not
on a mass storage device that can hold permanent files,
STORE will copy the file to such a device for the user.

A permanent file remains in the system until it is
referenced in a DISCARD command or until the installa­
tion purges it after a certain retention period.

When a file is made permanent with STORE, it acquires an
expiration date (creation date plus retention period).
Depending on installation policy, permanent files may be
purged without advance information on the date they
expire. Some installations transfer expired files to an
archive tape, which may cause a delay in associating the
file with your terminal. The AUDIT utility shows the
expiration date for each of your files. Although perma­
nent files serve a need in preserving files, they tie up
system resources and should not be used needlessly.

CONNECTED FILES

Connected files are associated with the keyboard or
display of the terminal.

If a connected file is referenced in a program write
operation, a line is displayed immediately.

3-6

If a connected file is referenced in a program read
operation, a line must be entered at the keyboard for
immediate use.

Two commands are used for connected files:

CONNECT Connects a file

DISCONT Disconnects a connected file

Files INPUT and OUTPUT are always connected by
EDITOR when a program is executed through the RUN
command of EDITOR.

On a list of local files, connected file names are preceded
by a dollar sign. The $ is not part of the name.

Information written to a connected file while it is
connected goes to the executing program for use or to the
terminal for immediate display. No mass storage copy
exists for any information written to a connected file.

Before a file is connected, and after it is disconnected,
information written to the file exists on mass storage, the
same as for any other local file. Existing mass storage
information becomes inaccessible while the file is con­
nected, but it is not destroyed and can be used after a
disconnect.

An attempt to transfer a connected file to the edit file
work area for a LIST produces the message: ERR-FILE
name CONNECTED TO TERMINAL.

Connected files cannot be referenced in a RETURN or
DISCARD command until they are first disconnected.
Further, they cannot be referenced in a REWIND com­
mand since terminal information cannot be rewound.

SPECIAL FILE NAMES

Generally, the user can choose any sequence of letters for
a file name. Several file names, however, have special
meaning throughout the computer system. These names
should not be used indiscriminately. Two of these names
are INPUT and OUTPUT.

The system assumes any file with the name OUTPUT
contains information to be printed. Both system routines
and a user program can write to OUTPUT. For example,
the results of the AUDIT utility, which produces perma­
nent file status information, is written to OUTPUT;
execution of AUDIT causes an OUTPUT file to be created
if it does not already exist.

Since the user at a terminal does not have a printer
available, information that would otherwise appear on
printer output appears at the terminal. When a program is
executed through ttie RUN command of EDITOR, for
instance, the system always creates a file with the name
OUTPUT; it is connected to the terminal so that any
program print operations are displayed immediately.

Any file with the name INPUT also has special meaning
throughout the system. For example, in a job deck
submitted at the central site, INPUT refers to tl1e deck
itself. The COBOL compiler assumes that the program to
be compiled exists on the file with the name INPUT.

60455960 A

If a file named INPUT or OUTPUT is a local file, the
system uses it in its customary way, even if you did not
intend such use. Consequently, avoid these names until
you are sure of the implications.

Using the RUN command of EDITOR causes both INPUT
and OUTPUT to exist as connected files. Examples in
section 5 explain their use.

THE EDITOR OF INTERCOM

EDITOR is the file creating and editing facility of
INTERCOM. It is a utility program that must be called by
user command.

At most terminal sessions, EDITOR is one of the first
commands entered after LOGIN. EDITOR makes it
possible to:

• Enter a program line by line, equivalent to
keypunching it card by card.

• Correct any errors in the program.

• Execute the program and receive output.

• Save the corrected program for future use.

When EDITOR has been entered, the terminal is con­
sidered to be in EDITOR mode. You can distinguish
EDITOR mode by the system response to a user entry.
Two dots appear to the left of a new line in EDITOR mode
as shown:

.. +
~YOu can begin entering command here

Once in EDITOR mode, you can access a set of commands
applicable only in EDITOR mode, which are summarized in
table 3-2.

Two additional entries are valid only in EDITOR:

*EOR and *EOF

Exits from ADD or CREATE in
which a file is being created
line by line.

Writes file terminators to edit
file.

When the character strings *EOR and *EOF begin a line in
the edit file, they are converted to end-of-record and/or
end-of-file indicators recognizable by other parts of the
operating system when the edit file is made a local file by
the SAVE command.

If you try to use a command listed in table 3-2 before
calling EDITOR, the command is interpreted as a call for
loading a user file by that name, and the NO SUCH
PROGRAM CALL NAME diagnostic appears.

Once EDITOR has been called, almost all INTERCOM
commands can be entered as well as commands applicable
only to EDITOR. Those few commands not possible from
EDITOR include LOGOUT. Do not be concerned about
other commands and whether or not you can use them

60455960 A

from EDITOR. Assume all commands are possible and use
them at will. Any improper command is diagnosed but not
executed, and this message appears:

COMMAND NOT ALLOWED FROM EDITOR

EDITOR COMMAN D SYNTAX

EDITOR commands are similar to INTERCOM commands
in that:

•

•

•

The RETURN key signals the end of a
command.

The physical line on which a command or
part of a command appears is not signifi­
cant.

A separator must appear between param­
eters.

The syntax differs from INTERCOM commands in that:

•

•

•

A space may be used to separate param­
eters.

One or more spaces or commas between
parameters is considered to be a single
separator.

Both command names and parameters may
be abbreviated.

• Commands must not end with a period.

As an illustration, consider the use of an EDITOR
command SAVE and the INTERCOM command STORE.
SAVE is used to copy a file created through EDITOR and
make it a named local file; STORE preserves the file for
the next terminal session.

SAVE format for naming as file FILEA

SA VE'F

1
ILEA'1:::

Q
optional parameter

which removes EDITOR line
numbers before copying the
file

user assigned file name

EDITOR command

STORE format is:

STORE,FILEA, USERA

, ~w"e, idenUfie,

same name as on SAVE

The SAVE command can be entered several ways (where Ll.
represents a space bar en\ry):

SA VE,FILEA,NOSEQ SA VE,MMFILEALl.NOSEQ

SA VEAFILEALl.NOSEQ SLl.FILEAIl.N

The STORE command must be entered this way:

STORE,FILEA,USERA

Until you are sure what is or is not an EDITOR command,
use a single comma between parameters and do not end
with a period. Since the required syntax for INTERCOM
commands is acceptable for EDITOR commands, you will
always have an acceptable format.

ABBREVIATED COMMANDS

Both the command name and parameters of EDITOR
commands can be abbreviated. The minimum abbreviation
is as . many letters as necessary to identify a parameter
uniquely.

CREATE can be abbreviated C

SA VE can be abbreviated S

LIST can be abbreviated L

Two commands require a two-letter minimum abbrevia­
tion. The letter R could be intended for RUN or RESEQ. t
so abbreviations are:

RU for RUN

RE for RESEQ

The rule for abbreviations of command and parameter
names is that you can use as many letters as you care to,
as long as the string can be uniquely identified as the
proper name.

(
CREATE can be abbreviated in addition to C as
follows:

CR CRE CREA CREAT

SAVE can be abbreviated:

S SA SAY

Abbreviations are no~used in this manual so that you will
be reminded of the purpose for each command or
parameter. Once you are familiar with EDITOR use,
sUbstitute abbreviations to reduce the possibility of input
typing errors.

THE EDIT FILE

The edit file is a temporary work area used to accumulate
lines of a file being created or to hold a file that will be
changed.

When the user types CREATE, an edit file is begun.
EDITOR accumulates input characters as a series of lines;
RETURN key input signals the end of each line. Edit file
construction is terminated when the. user enters an equal
sign. All information entered remains in the edit file until
the user calls for line deletion or Change or for edit file
destruction.

Only one edit file can exist at any given time. You have a
choice of creating an edit file with the CREATE command
or transferring an existing file to the edit file.

Any existing file to be updated by adding new lines or
changing characters in .old lines must first be moved to
the edit file with the EDIT command~ No file updating is
possible unless the file exists in the edit file work area.

To protect the user from inadvertently destroying the edit
file, EDITOR issues the following warning message after a
BYE, EDIT, or CREATE command (unless the edit file has
been referenced in a SAVE command):

WARNING - EDIT FILE NOT SAVED

The command is not executed at this point. When the
message appears, the user can issue a SAVE, reissue the
BYE, EDIT, or CREATE command, or enter any other
legal command.

SAVE preserves the current edit file by copying it to a
local file; thereby freeing the edit file for use in creating
.another file. After issuing the SAVE, the previously
rejected BYE, EDIT, or CREATE must be reentered.

BYE causes an exit from EDITOR.

EDIT destroys the current edit file by writing the named
file over the file existing in the work area.

CREATE destroys the current edit file by beginning a new
file in the work area.

When leaving EDITOR and returning without logging out,
the following message appears:

YOU HAVE AN EXISTING EDIT FILE

At this point you have the option to save the edit file (if
not previously saved) or to enter any other legal com-
mand. .

A file in the edit file area must have a line number
associated with every individual statement. These num­
bers are necessary for EDITOR to identify the specific
changes you want to make. Numbers are assigned
automatically by CREATE or by using the SEQ parameter
of the EDIT command.

The following sections show many examples of creating
and modifying files through EDITOR.

tIn .actual operation, R is interpreted as an abbrelliia'tion for READ, a eommand that is possible only if a card reader is
attached to your terminal; thus the COMMAND NOT ALLOWED FROM EDITOR diagnostic appears if you use it instead of
RU or RE.

3-8 60455960 A

fiLE CREATION AND UPDATING 4

EDITOR commands allow a file to be created or updated
line by line. To call EDITOR, enter the characters
EDITOR for an INTERCOM command.

COMMAND - EDITOR

Don't forget to press RETURN to end this and all other
entries.

In EDITOR mode, two dots appear at the left to show the
system has completed execution of the previous entry and
is ready to accept another command.

EDITOR remains available until the command BYE is
entered.

Follow the text from beginning to end in this section as
COBOL programs are created and executed. Once
familiar with each step for entering and updating a file,
turn to section 6 for more details and common uses for a
given command.

FILE CREATION AND EXECUTION

The following discussion introduces the use of four
EDITOR commands: CREATE, FORMAT, LIST, and RUN.

The minimum parameters needed for a task are empha­
sized. Optional parameters are used only when they are
pertinent to the task at hand.

CREATE COMMAND FUNDAMENTALS

With the CREATE command, a program can be entered
statement by statement. Each statement entered is
assigned a line number that has meaning only to EDITOR.
The numbers make it possible to call out any individual
line for deletion, correction, or other manipulation with­
out affecting other lines.

CREATE signals EDITOR to begin a new file in the
temporary work area called the edit file. Since only one
edit file can exist, creation of a new file destroys the
present edit file contents. Consequently, EDITOR may
display a warning message before overwriting the edit
file; if so, you must reenter the CREATE command after
considering whether to save the existing file first.

When CREATE is called, EDITOR responds with the
number 100 and an equal sign:

.• CREATE

j 00=

60455960 A

You can enter as many as 72 characters before signaling
the end of the line with a RETURN key. EDITOR prompts
input of another line by displaying a line number with a
value 10 greater than the last line number, as follows:

.• CREATE
100=USER ENTERS A STATEMENT
110=

You can continue to add lines when prompted by a line
number, and terminate each line by pressing the RETURN
key.

You can specify the starting line number and line
increment as follows:

•• CREATE,1,5
1 =USER ENTERS A STATEMENT
6=

When all your statements have been entered, exit from
CREATE by entering an equal sign as the first and only
character in a line. The equal sign does not become part
of the file.

I NOTE I
Letters, digits, and special characters can
be part of a line.

Most often you will use CREATE to enter lines of a
program that has a purpose, such as calculation of a loan
amortization. The file created through EDITOR need not
be a program; it could be a file of test scores to be
averaged, or a single line of an input statement to be read
by a COBOL program. All CREATE options are explained
in detail in section 6.

LIST COMMAND FUNDAMENTALS

The original lines entered remain in the edit file until they
are destroyed. To examine the edit file, use the LIST
com mand as follows:

.. LIST,ALL

The ALL parameter caused the entire file to be displayed.
Other LIST options can:

• Display a single line of the edit file.

• Display a range of lines.

• Display lines without listing line numbers.

4-)

• Search and display all lines containing a
particular character string.

• Search and display all lines in a particular
range which contain a particular character
string.

• Restrict search for a character string to
particular positions in each line.

All LIST options are illustrated later in this section and
explained in detail in section 6.

FORMAT COMMAND FUNDAMENTALS

Now that you can enter a series of lines with miscella­
neous data, consider what is different about entering a
meaningful program.

The most obvious difference is that characters entered for
each line normally would not begin in the first character
position immediately after the line number displayed by
EDITOR.

A program to be executed must be entered in a format
expected by the language compiler. Consider, for
example, a program punched on standard cards with 80
columns. All the language compilers accept information
punched in columns 1 through 72. Any information in
columns 73 through 80 is listed but ignored during
compilation.

The COBOL compiler attaches special meaning to some of
the columns.

Columns 1 through 6

Column 7

Column 8

Numbers in this position
are line sequence num­
bers.

A hyphen in this posi­
tion indicates a contin­
uation of the statement
in the previous line. A
slash or asterisk indi­
cates that the remain­
der of this line is
treated as comment.

Statements must begin
in this position or be­
yond.

The column in which information begins affects the
interpretation of that information. For example, a
paragraph name must begin in column 8; the first sentence
of a paragraph must begin in column 12. Aligning COBOL
statements is accomplished by spacing to the proper
position before entering the first character. However, it
is much easier to take advantage of the format and tab
capabilities of EDITOR.

To establish a format suitable for a COBOL program,
enter this command before calling CREATE.

.. FORMAT,COBOL

When this command is accepted, EDITOR assumes the edit
file has these characteristics:

4-2

• Each line is limited to 72 characters, ex­
cluding the EDITOR assigned line numbers.

• The tab character is a semicolon (;).

• Tab stop positions are 8, 12, 16, 20, 24.

The tab character acts similarly to the TAB key on a
typewriter or a skip key on a keypunch to allow input to
be positioned on a line. Pressing the RETURN key at a
terminal moves the carriage to the far left, and the next
character entered occupies the first character position of
the line. Pressing the TAB key causes the next character
entered to occupy the same character position as the tab
stop.

The tab for EDITOR, unlike that of a typewriter, is a
charact.er. It is also possible to change the character that
signals a tab.

When the tab character is entered, EDITOR adds blanks to
move its internal position marker to the next tab position.
Although the terminal carriage does not move in response
to tab use, the position marker is changed. When the line
entered with a tab character is displayed at a terminal,
the carriage moves to correctly position characters in a
line.

For example, assume the semicolon is the tab character
and the first tab stop is in position 8. Under CREATE, the
following is entered:

310=;PARA-20

position 2

position 1

When the file containing that line is displayed, characters
are aligned:

310= PARA-20

position 8

The line is passed to the compiler with PARA-20 in
columns 8 through 14 and the line number in columns 73
through 78. The tab character is not part of your data.

Using the tab character, the following example could be
entered:

1 OO.=;IDENTIFICATION DIVISION.
11 0= PROGRAM-ID. PROG B.
120= ;ENVIRONMENT DIVISION.
130=;CONFIGURATION SECTION.
140= ;SPECIAL-NAMES. "TERMINAL" IS HERE.
150= DATA DIVISION.
J 60=;PROCEDURE DIVISION.
J 70=;FIRST-PARA.
J 80= ;DISPLAY"A SEMI-COLON CAUSES A

SKIP TO COL 8," UPON HERE.
190= DISPLAY "THE NEXT SEMI-CO-

LON SKIPS TO COL J 2" UPON
HERE.

200=;;DISPLAY "IF YOU ARE USING FORMAT,­
COBOL." UPON HERE.

210=;;STOP RUN .
220==

The tab character need not be used in all lines or at any
particular time. Spaces before the tab character are
allowed. The tab character is effective in any position
before the tab stop.

60455960 A

Display the contents of the file created in the previous
example by entering LIST (refer to following example).
Adding the SUP parameter to LIST suppresses the line
numbers; it does not affect the contents of the file.

.. LIST,ALL,SUP
IDENTIfICATION DIVISION.
PROGRAM-ID. PROGB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. "TERMINAL" IS HERE.
DATA DIVISION.
PROCEDURE DIVISION.
FIRST-PARA.

DISPLAY "A SEMICOLON CAUSES A
SKIP TO COL 8" UPON HERE.
DISPLAY "THE NEXT SEMICOLON
SKIPS TO COL 12" UPON HERE.
DISPLAY "IF YOU ARE USING FOR­
MAT, COBOL." UPON HERE.
STOP RUN.

Neither the tab character nor the equal sign is part of the
file. The lines are formatted as required.

In line 130, the word CONFIGURATION begins in position
8.

In line]50, the word DATA begins in position 8.

Entry at terminal:

entry position] 1 of line 200

200=;;STOP RUN.

logical position 12 of final line 200

Line passed to compiler:

bbbbbbbbbbbSTO PbR UN.

position 12

The final edit file line length is significant. The FORMAT
specification for COBOL limits line length of the file
being created to 72 characters.

Consider what happens if more than 72 characters are
entered when one of the 72 is the tab character (use the
line feed to enter more characters than a single teletype­
writer line can hold).

. .1 30=;DISPLA Yb

line feed

"A SEMICOLON CAUSES A SKIP TO COLUMN 8 WHEN
ADD OR CREATE MODE IS BEING USED

entry position 93 of line 130

RETURN
MOD ... TRUNCATED FROM LONG LINE

60455960 A

EDITOR does not accept more than 72 characters while
the FORMAT,COBOL command is in effect. The tab
character is replaced by 7 spaces, in this case, thus
expanding line length to 79 characters. The first three
characters of the diagnostic message show where line
truncation began.

This example also illustrates that the physical line on
which an edit file line is entered does not affect the
meaning of the EDITOR line. An edit file line is not
considered complete until a RETURN key is pressed; a
LINE FEED entered after the word DISPLAY in line
number 130 did not start either an edit file or a COBOL
program line. The LINE FEED is interpreted as a
continuation signal.

If, as in line] 30, a blank is required between the last word
of the first line and the first word of the second physical
line, that blank must be entered at the beginning of the
second line, or at the end of the first line (before the line
feed).

RUN COMMAND FUNDAMENTALS

Now that the edit file contains a valid COBOL program,
the program can be compiled and executed through
EDITOR using the RUN command. The RUN command
must specify the language in which the program is
written. The RUN command is then:

•• RUN,COBOL

Since no file name is given, RUN works with the current
edit file.

EDITOR first makes a copy of the edit file, then passes it
to the COBOL compiler. At the end of compilation, a
status message is displayed showing how long the central
processing unit at the central site was in use. Processing
of the RUN command continues by loading the compiled
program (the machine code translation of your program)
into central memory and starting execution.

The program PROGA contains three DISPLAY statements.
Successful execution should show these three lines on a
COBOL-provided connected file called TERMINL.

As RUN continues, the DISPLAY statements appear on
the terminal as shown in the following example.

COMPILING PROGA
000 E AND TIU DIAGNOSTICS ISSUED

053277B SCM USED
.] 5] CP SECONDS COMPILATION TIME

END COBOL
A SEMICOLON CAUSES A SKIP TO COL 8
THE NEXT SEMICOLON SKIPS TO COL 12
IF YOU ARE USING FORMAT,COBOL.

In addition to the three lines output because of the
DISPLA Y statements, the words END COBOL appear.
END COBOL is displayed by the compiler at the end of
the compilation. Unless your program contains state­
ments to display results, there will be no indication of
successful execution other than the EDITOR response
(..).

4-3

Since execution of program PROGA displayed three lines
destined for a connected file, you would expect to find
that file (TERMINL) in your list of files. To see what files
you do have, use the FILES command.

.. FILES

FILES provides a list of all file names associated with
your user name as shown in the following example.

.. FILES
-LOCAL FILES-

$INPUT $OUTPUT LGO $TERMINL

Notice that TERMINL is listed as a connected file. There
are three either files that RUN produces.

LGO

INPUT

OUTPUT

Contains the compiled pr'Og'ram which
was created, loaded, and executed
during RUN. It still contains the
machine code, and can be executed
again.

Has a $ preceding the name to indi­
cate it is a connected file. The file
was created and connected in antici­
pation of use during PROGA execu­
tion. As it happens, PROGA did not ,
reference a file by the name INPUT,
and the file was not used.

Also a connected file created by RUN
in anticipation of use in PROGA. If
any program statement writes to a
file named OUTPUT, the line will be
displayed immediately at the termi­
nal. After execution, data is not on
the file. Again, PROGA did not
reference a file by the name of
OUTPUT, and the file was not used.

These three files are always created by RUN execution.
As program PROGA shows, however, it is not necessary
for the program to use files INPUT and OUTPUT.

OUTPUT would have been used, rather than TERMINL, if
the COBOL program had not used the SPECIAL-NAMES
feature. In that situation, the DISPLAY verb would have
caused the lines to be written to OUTPUT rather than
HERE, which is in fact TERMINL. Since RUN automati­
cally connects OUTPUT, this technique would have
worked.

Section 5 contains examples of connected file use.

RUN execution does not affect the current contents of
the edit file. If you want to rerun the program, reenter
the RUN command. Files OUTPUT and LGO created by
the previous RUN execution are logically destroyed with
the second RUN execution; first these files are positioned
to their beginning, and then during PROGB compilation
and execution, they are written over.

The RUN command has several optional parameters in
addition to the required parameter that specifies the

4-4

language in which the program is written. These options
allow, as discussed in section 6: ..

• Compilation and execution of a program
that is not currently in the edit file •

• Suppression of informative or nonfatal error
diagnostics.

• Compilation, but not execution, of a pro-
gram.

This last option is particularly useful when you are first
learning COBOL, since it allows compilation errors to be
detected without wasting computer resources in an at­
tempt to execute an erroneous program.

SUMMARY OF PROGRAM ENTRY
AND EXECUTION

Call EDITOR if two dots do not appear at the left of a
line when RETURN. is pressed.

COMMAND-EDITOR

Call for formatting· according to COBOL: tabs at
positions 8, 12,] 6, 20, 24 by semicolon, 72-character line
length.

..FORMAT,COBOL

Call CREATE. Optional parameters specify starting line
number (n]) and increment between lines (n2).

.. CREATE,n] ,n2

Enter each line in file after EDITOR prompting by display
of a line number. Use tab character for skip to position 8.
Terminate each line by pressing RETURN key.

After all program lines have been entered, type = to
terminate CREATE mode.

Verify that the data has been entered correctly, by listing
the edit file.

Call RUN to execute program.

FILE PRESERVATION AND ELIMINATION

Once a file has been created through EDITOR, it can be
executed through the RUN command. To put the file
aside while creating another file, you must make the edit
file into a local file. Then, if the local file is to be
preserved until another terminal session, it must be made
into a permanent file. Alternately, if a file has served its
purpose and is no longer needed, it should be eliminated to
conserve system resources.

The following description introduces uSe of these com­
mands:

SA VE RETURN STORE FETCH DISCARD

60455960 A

'I
/

SAVE COMMAND FUNDAMENTALS

A file entered under the EDITOR command CREATE
exists in a temporary work area called the edit file. The
fact that only one edit file can exist does not imply that
you can create or use only a single file. Rather, you must
take steps to preserve the present edit file before
creating or updating another file in the edit file work
area.

As long as a file resides in the edit work area, it has no
name and is destroyed when a new file is constructed
through CREATE or EDIT.

If you are following this section of the manual from
beginning to end and studying examples as you read, you
will see that the edit file now has PROGRAM PROGB.

To make the contents of the edit file available for use in
other commands, use the SAVE command to copy the edit
file and give it a name.

· .SA VE,filename

Existence of the new file can be verified by the FILES
command as shown in the following example.

•. FILES
NONE
•• SAVE,BOB
•• FILES
-LOCAL FILE~

BOB

Saving the file does not affect the original edit file
contents. It makes a copy instead. It is possible to make
another copy with another SAVE command. Make four
copies, and use the FILES command to check that they
exist.

.. FILES
-LOCAL FILE~

BOB
.• SAVE,BOB2
.. SAVE,BOB3
.. SAVE,BOB4
•• FILES
-LOCAL FILE~

BOB2 BOB3 BOB4 BOB

The only required parameter of SAVE is the name to be
given to the local file. A file name can be any
combination of 1 to 7 letters or digits beginning with a
letter; it must be different from all other names listed by
the FILES command under the LOCAL FILES heading.

Optional parameters of SAVE can:

•
•
•
•

60455960 A

Save a single line of the edit file.

Save a range of lines.

Save lines without saving line numbers.

Search and save all lines containing a partic­
ular character string.

•

•

•

•

Search and save all lines in a particular
range which contain a particular character
string.

Restrict search for a character string to
particular positions in each line.

Replace the current contents of a local file
by the saved lines.

Add the saved lines to the current contents
of a local file.

If the options of the SAVE command seem familiar, look
at the LIST command options presented previously and
note they are similar. Four EDITOR commands use many
of the same optional parameters. When you learn the
options of LIST, you will know all but one option of the
text replacement command /oldtext/=/newtext/ and the
DELETE command, and all but two optional parameters of
SAVE.

RETURN COMMAND FUNDAMENTALS

Since four copies of PROGRAM PROGA serve no purpose
other than to illustrate that they can be made, eliminate
three copies.

Use the RETURN command to eliminate unwanted files:

•• RETURN ,filename

More than one file can be eliminated by a command in the
format:

•• RETURN,filename1,filename2,filename3 ...

RETURN is a system command; it is not an EDITOR
command. This means simply that RETURN can be
executed even if EDITOR is not in use. Any command
that is identified as an EDITOR command cannot be used
until after EDITOR is called.

For example:

all INTER­
COM and sys­
tem com­
mands can
be used
here

COMMAND-EDITOR

editor file creating
or updating statements

•• BYE
COMMAND-RETURN ,A
COMMAND-

com mands go here

COMMAND-LOGOUT

Most IN­
TERCOM
and sys­
tem com­
mands
can be
used here

EDITOR
commands
cannot be
used her'e

Valid EDITOR commands used when EDITOR has not been
called result in a diagnostic message. If EDITOR has not
been called, an EDITOR command cannot be recognized.
The system assumes a command such as LIST to be a call
for loading and executing a file by the name of LIST; as no
file with this name was found to be associated with the
terminal, an error resulted.

4-5

The following example shows use of RETURN and the
corresponding change that occurs in the list of files
associated with the terminal.

•• RETl,JRN ,BOB2,BOB3,BOB4
•• FILES
-LOCAL FILES­

BOB

RETURN can be used for any unconnected local file
except one with the name INPUT. (Refer to descriptions
of the DISCARD and the RENAME option of the BATCH
command in section 6 for means of eliminating this file.)
As long as you are executing programs only through the
RUN command of EDITOR, don't worry about more than
one program using these files or about the same program
using them several times.

Experienced programmers calling the compilers must be
concerned with file positioning. For beginners, RUN
command execution handles these files to produce the
results desired without aqditional user entries.

Normally, you will use RETURN to eliminate any file no
longer needed; but once a file is referenced in RETURN,
it is gone and cannot be recovered without duplicating the
process that created it. The exception, of course; is a file
made permanent by a STORE command; only a DISCARD
command will destroy the permanent copy of the file.
RETURN of a permanent file disassociates the file from
the terminal.

STORE AND FETCH COMMAND FUNDAMENTALS

Any file referenced in a SAVE command, as file BOB waS
in the previous example, exists as a local file. Local files
are destroyed when the LOGOUT command is executed.

To preserve a local file between terminal sessions, it must
be made a permanent file with the STORE command.

•• STORE,filename,owner

In the STORE command, the two required parameters are
local file name of 1 to 7 letters or digits which becomes
the permanent file name (permname parameter in subse­
quent examples) and the owner identification of 1 to 9
letters or digits.

These two parameters uniquely identify the file at the
central site. No other file can be made permanent with
the same name and owner. These same two parameters
must be used on the other two permanent file commands,
FETCH and DISCARD.

When STORE is executed, the file remains in the system
from day to day (barring unforeseen circumstances) until
you purge the file from the system using a DISCARD
command. Attaching the file to the terminal through the
FETCH command and using it during the terminal session
does not affect its permanent status. After a certain
number of days, called the retention period, permanent
files might be purged by the central site operator. Each
central site installation has a different policy, so check
with your instructor or analyst about retention periods.

4-6

Permanent files tie up system resources. Do not create
them needlessly.

When a file has been made permanent, it appears on the
list of local files with an asterisk before the name •

•• STORE,FILE1 ,SMITH
•• FILES user name
-LOCAL FILES- local file name

*FILEJ

The asterisk is not part of the file name.

If you enter LOGOUT 01' enter RETURN for an attached
permanent file, the file still exists. At a later time, you
can again make it a local file by using the FETCH
command. To destroy the file completely, use the
DISCARD command.

Whether or not you can use permanent files, and the
specific format of the commands to use, depends on the
policy of the instructor or installation. The owner
identification may not be required; the following formats
are th()se of the standard system, which are not neces­
sarily applicable to all systems.

When a file is made permanent, it still exists as a local
file at your terminal. RETURN eliminates the name from
the list of local files.

To attach a stored permanent file for use at another
terminal session, use the FETCH command •

•• FETCH,permname,owner

The two parameters must duplicate the parameters used
to STORE the file. If you have. forgotten the particular
combination of characters used in naming your file, use
the AUDIT utility, described in section 6, to obtain a list
of all permanent files stored with your owner identifica­
tion.

A permanent file is eliminated from the system by
DISCARD. If the file has been made local with the
FETCH command, DISCARD format is:

•• DISCARD,permname

If the file is stored at the central site but has not been
made a local file, format is:

•• DISCARD,permname,owner

In either instance, DISCARD destroys the permanent file
and any local file cqpy that may exist.

The STORE, FETCH, and DISCARD commands are IN­
TERCOM commands and can be Used any time, even when
EDITOR has not been called.

The following example illustrates a program that was
stored as a permanent file on one day and attached and
used again the next day.

60455960 A

Session I

COMMAND-EDITOR
.• CREATE

(ENTER PROGRAM HERE)

.• SAVE,FILEI
•. STORE,FILEI,SMITH
.. BYE
COMMAND-LOGOUT

Session 2

COMMAND-FETCH,FILEI,SMITH
COMMAND-EDITOR
.. EDIT,FILEI

FILE EDITING

An existing file can be changed in the following ways:

•

•

•

•

New lines can be added with the ADD
command.

A single line can be added or rewritten with
the linenum=text command.

Existing lines can be deleted with the
DELETE command.

A character string in a line in the file can be
replaced with another string of characters.

The changes made to a file may be required to add new
information or to alter program logic, as well as to
correct errors in existing information. Changing an
existing file, whether the change affects an entire line or
a single character in a line, is considered file editing or
updating.

The following description introduces these EDITOR com­
mands that update a file:

/oldtext/=/newtext/

EDIT

linenum=text

ADD

DELETE

Options of CREATE, LIST, and RUN are also included.

Changes cannot be made unless a file resides in the edit
file work area. The current edit file contents can always
be updated.

80455960 A

CREATE COMMAND WITH SUPPRESS

When you call CREATE, enter your text by either of the
following procedures:

•

•

After a line number appears, enter a line,
press RETURN, and wait until another line
number appears before entering the next
line •

Enter a line, press RETURN, and enter
another line.

To suppress line number prompting, enter CREATE with
the SUP parameter.

•• CREATE,SUP
ENTER LINES

abbreviated C, S
(system response)

The typing element is at the far left. Enter each program
statement, using the semicolon as a tab character. The
equal sign must be entered as the last line to terminate
CREATE.

The following example illustrates how errors are cor­
rected.

..CREATE,SUP
ENTER LINES
;WORKING-STORAGE SECTION.
;Ol;HEAD.
;;03;FILER PICTIRE 9 VALUE 1.
;;03;FILLERPICTURE X(9) VALEU "JOB CLASS".
;;03; FILLER PICTIRE X(17) VALUE SPACES.
;;03;FILLER PICTURE X(4) VALUE "NAME".
;03;FILLER PICTURE X(1 05) VALUE SPACES.

.. LIST,ALL
100=
110=
120=
130=

140=

150=

WORKING-STORAGE SECTION.
01 HEAD.

03 FILER PIC TIRE 9 VALUE 1.
03 FILLER PICTURE X(9) VALEU

"JOB CLASS".
03 FILLER PICTIRE X(17) VAL­

UE SPACES.
03 FILLER PICTURE X(4) VALUE

"NAME".
160= 03 FILLER PICTURE XO 05) VALUE

SPACES.

/ oldtext/=J newtext / COMMAND FUNDAMENTALS

EDITOR contains an updating command that affects
characters within a line or several lines in the edit file. It
can be used to correct typing input errors, as illustrated,
or to change the meaning of a particular line.

The program entered in the previous example does not
meet compiler standards.

FILLER and PICTURE are misspelled in line 120. VALUE
is misspelled in line 130. PICTURE is misspelled in line
140. Line 160 does not begin in position 12.

To correct an error without reentering the entire' erron­
eous line, use the text replacement command. The
command specifies which characters are to be replaced by
other characters. Both the original character string and
the replacement string must be delimited by any charac­
ters that are not part of the string. (However, the
delimiters must be the same for any string.) The
minimum command format is:

10Idtext/=/newtext/,range

The range parameter identifies the portion of the file
EDITOR searches for the character string oldtext. It can
have any of the formats valid for the range parameter of
the DELETE, SAVE, or LIST commands.

Once the character string identified by oldtext is found,
the characters are replaced with the string identified by
newtext. Text strings need not be the same length:
oldtext may be 1 to 20 characters and newtext may be 0
to 20 characters.

To correct line 130 only in the previous example, specify
the old characters and the new characters.

•• /EU/=/UE/,130
1 CHANGES

After every command in this format, EDITOR reports how
many changes were made.

If you are not sure of the number of the incorrect line, or
if EDITOR could find it faster than you could, use the
parameter ALL as a line number. EDITOR will search the
entire edit file and find and change all occurrences of
oldtext •

.. 1 JR/=/UR/, ALL
2 CHANGES

To correct the same error in more than one place, specify
the range of lines in which the error exists.

.. /IR/=/UR/,120,140
2 CHANGES

To change the position in which a character is located, use
spaces. The tab character positions to the tab stop in
CREATE mode; it has no meaning in a text replacement
string.

What happens if we try to use the tab character?

•. /0/=/;0/.160
2 CHANGES

.. LIST,160
160=

;03 FILLER PICTURE X (1;05) VAL­
UE SPACES.

We did not get the desired result, since the tab used in
CREATE mode positions the line, but it never appears in a
LIST. Now, to recover from the wrong correction:

4-8

.• /1 ;/=/1 /,160
1 CHANGES

•• 1;0/=1 01,160
1 CHANGES

•. LIST,160
160= 03 FILLER PICTURE X(105) VALUE

SPACES.

The blank insertion works the other way, also, to close up
spaces.

..• 1 F/=I F/,140
1 CHANGES

.. LIST,140
140= 03 FILLER PICTURE X(l05) VALUE

SPACES.

The following example summarizes the changes made to
the previous example. We missed one error, the FILLER
misspelling, but we can correct that.

•• LIST,ALL
100=
110=
120=

WORKING-STORAGE SECTION.
01 HEAD.

130=

140=

150=

160=

03 FILER PICTURE 9
VALUE 1.

03 FILLER PICTURE X(9)
VALUE "JOB CLASS".

03 FILLER PICTURE X(17)
VALUE SPACES.

03 FILLER PICTURE X(4)
VALUE "NAME".

03 FILLER PICTURE X(105)
VALUE SPACES.

COMMON ERRORS IN USING /oldtext/=/newtext/

A skill to acquire in using the text replacement command
is selecting the proper oldtext string. The idea is to find
an oldtext string that uniquely identifies the string to be
changed, yet reduces the number of characters to be
entered in the command.

As the correction of the PICTURE misspelling showed,
one way is to restrict the change to a range of lines. The
required range parameter can be identified by any of the
following:

Parameter Resulting Range

Line number Only line specified

Line-start, line- First line specified through
end last line specified

LAST Only last line in file

Line-start, LAST First line specified through
last line of file

ALL Entire file

60455960 A

)

""")

Even with a line restriction, however, the choice of
oldtext characters must identify the precise string to be
changed. Specifying too few characters in an attempt to
be concise can lead to unexpected results.

EDITOR makes the change requested, even if it is not
what you wanted. Use the number-of-changes message to
follow changes: if the number is not what you expected,
LIST thefne or line and recorrect as necessary.

Two other optional parameters can place restrictions on
oldtext. Both of these are available also on the DELETE,
LIST, and SAVE commands.

.. A column range can be specified to restrict oidtext to a
portion of a line. Either a single column or a range of
columns can be stated, with. different interpretations
existing for the range. These parameters have the
format:

(column)

(column-I, column-2)

The enclosing parentheses distinguish columns from line
range parameters.

The relation of the column range and oldtextis: if a
single column is specified, the old text character string
must begin in that column, while if a range of columns is
specified, the entire old text character string must lie
completely within that range.

As illustrations, consider lines from the previous example
and various means to change line 1 20 from FILER to
FILLER:

/FILER/=/FILLER/,ALL,(16)

/FIL/=/FILL/,ALL,(13-16)

/FIL/=/FILL/,120,(8-20)

/E/=/LE/,120

/E/=/LE/,120,(19)

Change, since
FILER begins in
column 16.

No change,
FILER begins,
but does not end,
within columns
13 through 16.

Change, since
FILER lies with­
in columns 8
through 20 in
line 120.

Produces desired
FILLER, but also
PICTURLE and
VALULE.

Corrects FILL­
ER.

Though the (column) parameter is precise, it is not always
practical to count to the column to be used in the
command. The UNIT option offers some help.

60455960 A

UNIT Specifies that oldtext must not be
preceded or followed by a letter or a
digit.

UNIT rejects any oldtext string that may be part of a
word or variable name composed of letters or numbers.
For example, consider the source program, complete with
COBOL line numbers, that contains the following line:

350 03 DATA-NAME-l.

If you choose to restructure your program, changing all
level 03 entries to level 05, you could enter the following:

/03/=/05/,ALL,UNIT

Only level numbers are changed, since oldtext must be
delimited by symbols, blanks, start-of-a-line, or end-of­
line but not letters or numbers; line numbers will not
change.

eDIT COMMAND fUNDAMENTALS

Any local file containing character data can be trans­
ferred to the edit file for updating. Since only one edit
file can exist, execution of the EDIT command destroys
the present edit file contents. EDITOR issues a warning
message and forces you to reenter the EDIT command if
the edit file has not already been saved.

To transfer a local file to the edit file, use the EDIT
command:

•• EDIT,file,SEQUENC E

Use of the optional SEQUENCE parameter depends on
whether the local file has sequence numbers that EDITOR
can use as edit file line numbers. SEQUENCE causes new
line numbers to be assigned, beginning with 100 for the
first line number and incrementing by 10 for each
successive line number.

Text in the edit file must have line numbers. A file
constructed through CREATE can be made a local file
with its original line numbers or made local without line
numbers, depending on SAVE command parameters:

•• SA VE,afile

..SA VE,bfile,NOSEQ

Line numbers written to
local file

Line numbers not writ­
ten to local file

When file afile is returned to the edit file, line numbers
already exist for EDITOR use and this EDIT command
should be used:

..EDIT,afile

In contrast, returning bfile to the edit file area requires:

•• EDIT,bfile,SEQUENC E

4-\1

The following example shows EDIT command use when
another file currently exists in the edit file, in other
words, moving a local file to the edit file.

.. FILES
-LOCAL FILE~

WARBLER
•• EDIT,WARBLER,SEQ
W ARNING- EDIT FILE NOT SAVED
•• SA VE,ORIOLE,NOSEQ
•• EDIT,WARBLER,SEQ
•. FILES
-LOCAL FILE~

WARBLER ORIOLE

A file moved to the edit file still remains as a local file.

linenum=newtext COMMAND FUNDAMENTALS

A single line in the edit file can be rewritten or added by
identifying a line number. Format of this command is:

. .linenum =newtext

This command is an exception to the statement that
EDITOR always prompts another response. At the
conclusion of command execution, the carriage returns to
the far left, but does not output two dots. You must enter
the next command.

On entering the new line of text, the maximum line
length, tab character, and tab stops defined by the
FORMAT statement can be used. In the following
example using the linenum=newtext command, FOR­
MAT,COBOL is assumed.

.. 236=;;DATA RECORD IS CARD
237=;;LABEL RECORD OMITTED.
LIST,ALL

236=
237=

DATA RECORD IS CARD
LABEL RECORD OMITTED.

Line 237 and the LIST command were entered with the
carriage at the far left, since no prompting dots appeared.

Enter lines in any order. EDITOR makes no distinction
between adding a new line and rewriting an old line. If a
single line is to be added but a free line number does not
exist, renumber the lines in the existing file with the
RESEQ command.

ADD COMMAND FUNDAMENTALS

There are times when you will want to add information to
an existing program. The following example illustrates a
file that contains the basic elements of a COBOL program
frame.

4-10

.• CREATE,2,2
2=;IDENTIFICATION DIVISION.
4=;ENVIRONMENT DIVISION.
6=;DAT A DIVISION.
8=;PROCEDURE DIVISION.

10==

Closer examination of this program shows that the file
does not contain all of the basic constant entries in a
COBOL program. For example, the STOP RUN statement
is not included nor are the CONFIGURATION SECTION
entries .

We want to add several lines between existing lines 4 and
6. Since any new line added to the file must have a unique
line number and line numbers must be in ascending order,
the file must be renumbered so that more than one line
can be added after line 4. As shown in the following
example, as many as 14 lines can be inserted in the
resequenced file.

.. RESEQ,1,15

.• LIST,ALL
1=

]5=
30=
45=

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

No EDITOR command exists to transfer a local file to the
edit file while renumbering with specific line numbers, so
resequencing is often necessary when sUbstantial inserts
are made •

When ADD is called, EDITOR presumes several lines are
to be inserted as a group and displays the next available
Iinenumber. (Use the linenum=newtext command if only
a single line is to be inserted.) User entries at this point
are similar to CREATE mode.

The current FORMAT command controls line length and
tabs.

An equal sign must be entered to exit from ADD mode.

If lines were to be added at the end of the current file,
command format would be:

.. ADD

If the insertion is to be made in the middle of the current
file, for example, entries after the ENVIRONMENT
DIVISION, the number of the first new line must be
stated. The increment value for succeeding lines is
optional, but normally should be used, since ADD does not
overwrite or skip over existing lines. The increment value
need not be the same as that used to create the file.

Prompting continues after each user line entry, until
either the user enters an equal sign as the first and only
character in line or the next line number equals or
exceeds the value of a line currently in the file.

ADD has two other options discussed in section 6: the
SUP parameter inhibits prompting by line number display;
and the OVERWRITE parameter allows existing lines to be
overwritten.

The following example shows insertion of new lines into an
existing file •

.. ADD,16,1
16=;CONFIGURATION SECTION.
17=;SOURCE-COMPUTER. CYBER.
18=;OBJECT-COMPUTER. CYBER.
19==

60455960 A

DELETE COMMAND FUNDAMENTALS

Any line existing in the current edit file can be eliminated
with a DELETE command. Minimum parameters for the
file specify the line or range of lines to be deleted.

•• DELETE,range

The required range parameter, as well as most of the
optional parameters, are the same as for the LIST and
SAVE commands. Options permit you to delete:

• A single line of the edit file.

• A range of lines.

•

•

•

All lines containing a particular character
string.

A line or all lines in a range containing a
particular character string.

A line or all lines in a range containing a
particular character string in a particular
position in each line.

In the previous example, we added lines. Now take them
out. The easy way, when specific line numbers are known,
is to identify the range of lines to be deleted.

•• DELETE,16,lS

When you do not know the exact line number, but do know
the specific arrangement of characters to be deleted, use
DELETE with a search criteria.

60455960 A

•• DELETE,ALL,/OBJECT/,(B)
1 DELETION

Any line in the edit file (lines to be searched specified by
ALL) with the word OBJECT beginning in column Bare
deleted •

SUMMARY OF FILE UPDATING COMMANDS

If necessary, transfer the local file to the edit file;
specify sequencing if the file was saved without line
numbers.

•• EDIT,filename,SEQ

Display the file to determine specific changes to be made.

Begin file correction, choosing the command that best
suits the corrections. Use the linenum=text command to
overwrite an existing line or to insert an omitted line.

Use DELETE to remove any extraneous lines, specifying a
particular line number or a search criteria.

Use ADD to correct several lines in a row. The
OVERWRITE parameter must be specified if existing lines
are to be overwritten. ADD line incrementing continues
until equal sign is entered alone •

Before adding lines, resequence if necessary.

4-11

PROGRAM INPUT AND OUTPUT FILES 5

The COBOL programs illustrated in section 4 have limited
usefulness since each is coded for one specific action.

With INTERCOM, you have three options for providing a
program with data:

1. Compile data into the program.

2. Write data onto a file and have the program
read the file during execution.

3. Enter data from the keyboard as the pro­
gram executes.

Option 1, as stated above, is valid for printing one
particular set of data only, and is not practical in the long
run.

Option 2, reading data from a file, requires that you first
create the data and make it known to your program as a
local file. Through the SELECT and FD statements, the
file is identified in the program. Any file name, except a
COBOL reserved word, can be used as the name of the
data file. The COBOL reserved words INPUT and
OUTPUT may be used as file names as long as they are
used in accordance with the rules of COBOL; that is, the
standard input and output files.

During execution, the data is read and manipulated
according to procedure division statements. Reading data
from a file stored in the system is fast and efficient.
Moreover, since the data exists on the file in storage, the
same data file can be used more than once or stored for
future use. Independently of the program, the file can be
displayed on a printing device to make a written record of
the data.

If the data file was created through the EDITOR CREATE
command, add the letters FZ to the file name in the
SELECT clause to identify the file as one containing fixed
length Z-type records, as follows:

SELECT AFILE ASSIGN AFILE-FZ

More detailed information concerning Z-type records can
be found in the COBOL Version 4 Reference Manual.

Option 3, reading data input from the keyboard, involves
the use of a connected local file. As with reading a local
file, the program must establish the source and format of
the expected data. COBOL offers two methods of
handling connected files. The first method is simply to
connect the input file and enter data from the keyboard.
In this situation, the COBOL program looks exactly like
one written for reading a local file. Each time a READ
statement is executed, the program waits for data to be
entered from the keyboard. The AT END imperative is
executed if the program is coded to terminate on a
specific input or %EOF is entered.

A second method to enter and output data is to construct
the program using the ACCEPT and DISPLAY statements.

60455960 A

In this situation, the source and format of the input data
is defined in the working-storage section. The use of
ACCEPT and DISPLAY allows a program to be written in
fewer statements, as shown later in this section. Less
flexibility is achieved, however, since a program written
in this manner cannot be used for batch processing
without first modifying the SPECIAL-NAMES paragraph.
When the DISPLAY verb is used, all output is single
spaced. The first character is not treated as a carriage
control character, as is normally done with output
destined for the printer. Should a carriage control
character be required, -C must be suffixed to the
implementor name.

SPECIAL-NAMES.
TERMINAL-C IS HERE.

Reading data from the keyboard requires more overall
execution time. The accuracy of keyboard entries is
significant, since no error correction is possible once the
RETURN key has been pressed to terminate the entry. No
permanent record can be made of the data entered unless
the program itself preserves the data in an output file. A
second execution would require the data to be reentered.

Options 2 and 3, executing with local file and connected
file data, are described in the remainder of this section.
EDITOR use is illustrated, but many of the same princi­
ples apply to advanced INTERCOM use when programs are
executed without EDITOR.

The handling of files generated during execution is not
discussed as a separate topic. Output file handling,
whether the files are connected or disconnected, is
generally analogous to the related input file handling.

REVIEW OF COBOL FILE LINKAGE

The portions of a COBOL program that link the program
to external files are summarized here. COBOL treatment
of external files is the same irrespective of INTERCOM
status as a local or connected file, with two exceptions,
the AT END imperative, as described previously, and the
fact that connected files cannot be rewound. The
following description does not apply to interactive use of
the ACCEPT and DISPLAY verbs.

External files are selected in the environment division,
described in the data division, and read and/or written in
the procedure division.

ENVIRONMENT DIVISION

The SELECT statement of the Input-Output Section links
the COBOL program to the external file. In addition, this
statement equates the COBOL program file name to the
system file name. These names may be identical but need
not be. COBOL file names are alphanumeric, may contain

5-1

hyphens, and may be up to 30 characters long. System file
names are limited to 7 characters and cannot contain
special symbols, such as hyphens. Both names must begin
with a letter and must not contain embedded blanks. The
format of the SELECT statement is:

SELECT filename1 ASSIGN TO filename2.

filename2 can be further described by appending a record
description code. This code describes the type of records
the file contains. All of these codes are described in the
COBOL 4 Reference Manual; however, the code that you
will probably use most often is FZ. This code describes
fixed-length, zero-byte terminated records.

Any file created through the EDITOR CREATE command
is created in this format. Failure to specify this type of
record when reading files created . through EDITOR causes
your program to misread data file. Should zero-byte
terminators (::) appear in the output,check to see that
you have properly defined your SELECT statement.

DATA DIVISION

All files selected in the environment division must be
described in the file section. The file description (FD)
entry provides such information as the block size, file
labels and the record names. For files created through
EDITOR, only the LABEL RECORDS OMITTED clause is
necessary. (Files to be sorted are similarly described by
an SD paragraph.) Each FD or SD entry must be
immediately followed by an 01 level description of the
record.

If required, this description may be further divided into
subordinate level descriptions so that each field of the
record may be described fully. The description must
include the size of the fields and the type of data
contained in the field; that is, numeric, alphabetic, or
alphanumeric. File names must be unique; record and
field names need not be. Record and field names must be
planned carefully to prevent unnecessary coding of the
procedure division. Nonunique names must be qualified
and only duplicate names may be manipulated through the
CORRESPONDING option.

PROCEDURE DIVISION

External files are read, written, and otherwise manipu­
lated through procedure division statements. Prior to any
program action, each file must be opened for input,
output, or input-output. Files opened for input may be
read but not written. Files such as those input from the
card reader are always opened only for input. Files
opened for output may only be written. Files such as
those destined for the line printer are opened only for
output. Nonsequential files stored on disks may be opened
in any of the three ways. OPEN 1-0 can be used for
existing files only.

All files opened by the program must be closed before
program execution is terminated. In general, a file should
be closed as soon as it is no longer required as this
releases central memory space. Unless otherwise speci­
fied, COBOL automatically rewinds all files when they are
opened and again when they are closed. Specifying a
CLOSE file name WITH NO REWIND leaves the file

5-2

positioned at the end of the last operation. A subsequent
OPEN WITH NO REWIND statement followed by a WRITE
statement causes a second set of data to be written on the
file. The two data sets will be separated by an EOF.
Since COBOL automatically attaches and opens files
through its internal statements, it is not necessary to use
INTERCOM commands to accomplish these functions.

EXECUTION WITH LOCAL DATA FILES

Thus far in this manual, file creation has implied entry of
a COBOL program. It is not true, however, that the file
entered through EDITOR must be a program. Any type of
character data may be input. One of the more obvious
uses of EDITOR, in addition to creating a program, is to
create a file of data to be read by that program.

Although any local file can be connected, this discussion
deals only with unconnected files. Names INPUT and
OUTPUT are deliberately avoided, although these imply
connected files when the EDITOR RUN command is used
to execute a COBOL program.

Additional uses and parameters of the following com­
mands include:

FORMAT RUN DELETE

REWIND, CREATE, LIST, and SAVE commands are also
used.

The first step in executing with a file of data is to create
that file.

FORMAT CONTROL

The FORMAT command introduced in the previous section
dealt only with the line length and tabs appropriate to a
compiler language program. FORMAT is not limited to
these values, however. The user can specify any line
length, tab character, or tab stop.

FORMAT has these restrictions:

• Maximum line length is 510 characters.

• The use of % as the tab character is not
recommended. % is just as valid as any
other tab character, but if the user enters
%A or %S as data, the system will interpret
these characters as a request for an abort or
suspend.

• Maximum number of tab stops is set by the
individual installation, but is usually 10
stops.

FORMAT must be entered before CREATE is called, since
interpretation of input characters during CREATE de­
pends on the FORMAT in effect. Any user setting of
FORMAT remains valid until another FORMAT is entered
or until you exit from EDITOR.

To determine the current format specification, enter:

.. FORMAT,SHOW

60455960 A

You have the option to change any or all settings. The
command is:

.• FORM AT,CH=nnn, TAB=x,nn,nn, ... nn

nnn Maximum number of characters in
each line

x Character to act as tab

nn Tab stop positions

For example, to establish a file to be read according to
this FD:

01 INREC.
05 FIELD 1 PIC X(5).
05 FILLER PIC X(8).
05 FlELD2 PIC X(5).

Enter a maximum line length of 18 characters, accept the
semicolon as a tab character, and set tab stop at 14 as
shown in the following example, setting FORMAT for the
data file.

•. FORMAT,CH=18,14
•• FORMAT,SHOW

CH=18 TAB CHAR=; TAB COL = 14

One other item, the relation between FORMAT and SAVE,
is significant. The SAVE command has an optional
parameter NOSEQ which strips line numbers before
writing edit file contents to a local file. Since your
COBOL program will probably be reading numeric values,
use the NO SEQ parameter when making the data file a
local file so that the line numbers cannot be inadvertently
read as part of the data.

Consider a line with text HERE ARE 16 LTRS. When this
line is saved with sequence numbers, and the previous
format, (NOSEQ parameter is omitted) it exists as:

HERE ARE 16 LTRS 000100

Saved with the NOSEQ parameter, it is simply:

HERE ARE 16 LTRS

The following example shows creation of a file with four
sets of data to be read in the format specified by INREC.

•• FORMAT,CH=18,14
•• CREATE,SUP
ENTER LINES

12345;12345
22222;22223
00033;00033
66 66;66666

.. SA VE,AFILE,NOSEQ

60455960 A

EXECUTION USING RUN COMMAND

Now that a file of data exists and has been saved as a
local file with the name AFILE, we must create the
COBOL program that will read the data, as shown in the
following example. Enter the program and make any
imput corrections as explained in section 4.

IDENTIFICATION DIVISION.
PROGRAM-ID. DATARD.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. CYBER.
OBJECT-COMPUTER. CYBER.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT AFILE ASSIGN AFILE-FZ.
SELECT OUTFILE ASSIGN OUTFILE-FZ.
DATA DIVISION.
FILE SECTION.
FD AFILE

LABEL RECORD OMITTED DATA
RECORD IS INREC.

01 INREC.
05 FIELD 1 PIC X(5).
05 FILLER PIC X(8) •
05 FIELD2 PIC X(5) •

FD OUTFILE.
LABEL RECORD OMITTED.
DATA RECORD IS OUTREC.

01 OUTREC PIC X(l8).
PROCEDURE DIVISION.
PPI.

LOOP.

OPEN INPUT AFILE.
OPEN OUTPUT OUTFILE.

READ AFILE AT END GO TO WRAP-UP.
IF FIELD] IS EQUAL TO FIELD2 MOVE

INREC TO OUTREC.
WRITE OUTREC.
GO TO LOOP.

WRAP-UP.
CLOSE AFILE OUTFILE.

STOP RUN .
.• RUN,COBOL

COMPILING DATARD
000 E AND TIU DIAGNOSTICS ISSUED

053377B SCM USED
.315 CP SECONDS COMPILATION TIME

END COBOL

Given that no compilation errors or execution errors were
reported and no output other than that shown previously is
displayed at the terminal, it appears that execution was
successful. But where is the output the program wrote?

Executing the FILES command before the RUN command
would have shown only one local file, AFILE, which
contains the data to be read in the program. Executing
FILES after the RUN command shows five files.

.• FILES
- LOC AL FILE&--
AFILE $INPUT $OUTPUT LGO OUTFILE

5-3

INPUT and OUTPUT are the connected files always
produced by RUN execution even if, as in this example,
they are not used by the program. The file named LGO
contains the compiled program. OUTFILE contains the
output.

How can we read OUTFILE? The easiest way is to move
OUTFILE to the edit file and list it. Remember that
EDITOR does not let you destroy the edit file inadver­
tently, so if you do not save the current edit file before
moving OUTFILE, you receive a warning message and
must reenter the EDIT command.

The foilowing example shows how the local file OUTFILE
.' can be listed.

•• SAVE,DATARD
•• EDlT,OUTFILE,SEQUENCE
•• LIST,ALL,SUP

12345 12345
00033 00033

The SUP parameter of the LIST command suppresses
display of the line numbers. Without the SUP parameter,
the first line would appear as follows.

.• LIST,100
100=12345 12345

The numbers are necessary for putting a file in the edit
file. The fact that an edit file is designed for updating
does not mean that its features carmot be used for a
simple listing of the file contents.

SECOND EXECUTION

When only the files INPUT and OUTPUT are used for a
program executed through the RUN command, it is not
necessary to reposition files. EDITOR rewinds the files
OUTPUT and LGO each time RUN is called. Successive
executions of a program require no special actions.

Similarly, COBOL rewinds files, except connected files,
whenever an OPEN or CLOSE statement is executed,
unless you have written statements to prevent the rewind.
Consequently, do not be concerned with file positioning as
long as you are using the RUN command and COBOL. A
second execution of the program can be accomplished
without recompiling. Remember. that the RUN execution
created a file LGO that contains the compiled program.
Execute LGO by entering its name as a command:

•• LGO

Since LGO is a local file containing a binary program (not
a coded source program), it executes the same statements
as those executed from the RUN command that created
it. Again, since input and output file positioning is
automatically performed by COBOL, and LGO is rewound
by the operating system, all required files have been
rewound during execution and no diagnostics are issued.

If the program had specified the following:

OPEN INPUT AFILE WITH NO REWIND
OPEN OUTPUT OUTFILE WITH NO REWIND

CLOSE AFILE OUTFILE WITH NO REWIND

5-4

The second execution woUld not have been successfUl
because at the end of execution through the RUN
command, files AFILE and OUTFILE were positioned at
the end of the last set of data read or written, the
automatic rewind having been disabled by the WITH NO
REWIND option. The LGO commarid caused the program
to attempt .to continue reading from AFILE, but instead of
data, the program encountered an end-of-information
terminator and the AT END imperative was executed.

To execute a program a second time, the data file must be
positioned to accommodate that second execution. If the
same 'set of data is to be used for execution, rewind the
file before execution begins. If another .set of data is to
be executed, the original input file must be established
with more than one set of data, as illustrated in the next
topic •

Repositioning a file at its beginning can be accomplished
by a system command:

•• REWIND,file

More than one file can be named, as in:

REWIND,file,file,file, •••

Within the program, file positioning is limited to rewind­
ing or not rewinding files. A file closed with no rewind
may be subsequently opened either in its current position
(by specifying OPEN ••• WITH NO REWIND) or reWound, by
omitting the no rewind option.

The next example shows two executions of the same set of
data. PROGRAM DATARD is assumed to exist as a local
file saved during the listing of the output file and
modified to include the NO REWIND options as shown
previously.

•• R UN ,COBOL,FILE=DAT ARD

•• REWIND,AFILE
..LGO

Notice the file written by the program, OUTFILE, was not
rewound. With the NO REWIND clause specified, rewind
of output file with an INTERCOM command is optional,
depending on the results desired.

Any data written during program execution is always
written at the current file position. In the absence of the
automatic rewind, the current position is after the last
data written. At the end of a program, the output file is
closed and a terminator written after current data. No
repositioning occurs, however, and any successive write to
a file with the same name continues after the terminator.
Although not shown in the previous example, the termi­
nator written at file close becomes the characters *EOF
in the edit file.

If a file is rewound before the .second set of data is
written, the current position is the beginning of informa­
tion. Any existing data, in' this instance, is destroyed by
new data written over the first set of data.

Rewind an output file to write over existing data. Do not
rewind if existing data is to be preserved and new data is
to be written at the end. Remember, the preceding
example applies only to programs that contain both OPEN
and CLOSE WITH NO REWIND statements.

60455960 A

)

1
/

EXECUTION WITH TWO SETS OF DATA
ON ONE FILEI

All local data files created through EDITOR have system
symbols at the end to mark the end of the file. These
markers are supplied by EDITOR. When such a file is read
by an executing program, the file ending marker can be
sensed by the AT END imperative. Through the use of an
*EOF in EDITOR, you can write a similar marker onto a
file under construction with CREATE, effectively dividing
the file into two parts.

The following example shows a data file being constructed
for a program, specifically, *EOF use in data program
TENKEYDISK.

•. CREATE
100=000123
110=000123
120=000123
1 30=000069-
140= S
150=000400
160=000200
170= S
180=001000
190=*EOF
200=111111
210=111111
220=111111
230=111111
240=*EOF
250=125400-
260=000258-
270=000147
280=*EOF
290=000100
300= U
310.=*EOF
320= 123
330= 456
340= T
350==

•• SA VE,INFILE,NOSEQ

Program TENKEYDISK is designed to read and total
multiple sets of data from one file. There is no limit to
the number of sets that can be processed, since processing
control is retained by the terminal user. The data sets, as
created here, are separated by an *EOF t. This separator
is detected by the AT END imperative and control is
passed to the CLOSE-PARA which interrogates the
terminal to determine if the next set is to be processed.
Program termination does not occur until the terminal
user answers NO (or, in fact, answers with anything but
YES). Notice that the program, as coded, goes to the
CLOSE-PARA when either a T (total) request is encoun­
tered or the AT END imperative is activated by the *EOF.
Consequently, using the T prior to an *EOF causes the
total to be printed twice, the first time with the correct
number and the second with a contents of O. The last data
set in the example contains this condition and, as you will
notice later, an extra total line is printed. This proves
that the *EOF condition is recognized by the COBOL AT
END imperative.

This example shows program TENKEYDISK reading multi­
ple sets of data.

IDENTIFICATION DIVISION.
PROGRAM-ID. TENKEYDISK.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 6600.
OBJECT-COMPUTER. 6600.
SPECIAL-NAMES.

TERMINAL IS HERE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN INFILE-FZ
DATA DIVISION.
FILE ·SECTION.
FD INFILE

LABEL RECORD·OMITTED.
DATA RECORD IS AMOUNT.

01 AMOUNT .
02 AMT PIC 9(6).
02 SYNE PIC X.

WORKING-STORAGE SECTION.
01 ACCUM PIC S9 (6).
01 ANS PIC X.
01 REG PIC ---9.
PROCEDURE DIVISION.
FIRST-PARA.

OPEN INPUT INFILE.
MOVE ZEROS TO ACCUM REG.

SEC-PARA.
READ INFtLE RECORD AT END GO TO

CLOSE PARA.
IF SYNE = "T" GO TO CLOSE-PARA.
IF SYNE = "S" GO TO SUBTOTAL-PARA.
IF SYNE = "-" GO TO SUBTRACT-PARA.
IF AMT NOT NUMERIC

DISPLAY "BAD DATA" UPON HERE GO
TO SEC-PARA.

ADD AMT TO ACCUM
ON SIZE ERROR DISPLAY "ACCUMULATOR

OVERFLOW" UPON HERE
GO TO SEC-PARA.

SUBTRACT-PARA.
SUBTRACT AMT FROM ACCUM

ON SIZE ERROR DISPLAY "ACCUMULATOR
OVERFLOW" UPON HERE

GO TO SEC-PARA.
SUBTOT AL-PARA.

MOVE ACCUM TO REG.
DISPLAY "SUBTOTAL IS " REG UPON HERE.
GO TO SEC-PARA.

CLOSE-PARA.
MOVE ACCUM TO REG.
DISPLAY "TOTAL IS" REG UPON HERE.
MOVE ZEROS TO ACCUM.
DISPLAY "MORE" UPON HERE.
ACCEPT ANS FROM HERE.
IF ANS = "Y" MOVE ZEROS TO ACCUM

CLOSE INFILE WITH NO REWIND
OPEN INFILE WITH NO REWIND

GO TO SEC-PARA.
CLOSE INFILE.
STOP RUN.

Also notice that the last data set contains the numbers
123 and 456 rather than 000123 and 000456. A space and
a zero are not recognized as equivalent by the COBOL
compiler. Since the space is a nonnumeric character, the
IF AMT NOT NUMERIC sentence is activated and the
words BAD DATA are displayed. This prevents spurious
data from being added to the accumulator. Tests of this
type are considered to be good coding practice in COBOL.

t When the file is saved on mass storage, an end-of-record level 17 is written in the *EOF position.

60455960 A 5-5

Notice that the FILE-CONTROL SELECT statement
assigns the COBOL file IN FILE to the operating system
file INFILE-FZ. The -FZ suffix informs the compiler that
IN FILE contains zero'-byte terminated records, as are all
EDITOR created records.

Each time the terminal user elects to process the next set
of data, IN FILE is closed and immediately reopened
without being rewound. Although this action does not
change the file positioning, it is necessary because a file
cannot be read after an AT END condition is detected
without the intervening CLOSE and OPEN.

The following example illustrates execution of the pro'­
gram TENKEYDISK, including the extra total line pre­
viously mentioned.

.• RUN,COBOL
COMPILING TENKEYD

OOOE AND TIU DIAGNOSTICS ISSUED
053377B SCM USED

.308 CP SECONDS COMPILATION TIME
END COBOL

SUBTOTAL IS
SUBTOTAL IS
TOTAL IS
MORE
? Y
TOTAL IS
MORE
? Y
TOTAL IS
MORE
? Y
BAD DATA
TOTAL IS
MORE
? Y
BAD DATA
BAD DATA
TOTAL IS
MORE
? Y
TOTAL IS
MORE
? N

300
900

J 900

444444

-J 255J J

J 00

o

o

EXECUTION WITH CONNECTED FILES
A connected file is a local file except data on the file
exists only as characters passed between the terminal and
an executing program. No copy of the data remains in the
system.

In a previous example, a program named DATARD read
data from AFILE. How is execution affected by connect­
ing AFILEJ before execution?

.• CONNECT,AFILE

.• FILES
-LOCAL FILES--
$AFILE DATARD
•. RUN,COBOL,FILE=DATARD
COMPILING DATARD

OOOE AND TIU DIAGNOSTICS ISSUED
053377B SCM USED

. 335 CP SECONDS COMPILATION TIME
END COBOL

After waiting a reasonable period of time, you are apt to
decide that RUN execution is hung, but not so. The
program is in execution and expecting keyboard entry of
data. This fact can be shown by trying any of the ploys
otherwise used to test whether the system is still

5-6

responsive to keyboard input; normally, entering a RE­
TURN key results in a line feed.

Program DATARD expected another line of data and is
still waiting for input. Since the program is expecting
data in the format X(5), 8 filler, X(5), almost anything
entered is accepted, and it appears that nothing has
happened.

Consequently, when writing a program to be executed
with connected input files, it is well to prompt response
by including DISPLAY or WRITE statements that display,
at minimum, the fact that input is expected. Even display
of a single character such as a question mark should alert
the terminal user to the current situation. Of course, if
you are using the ACCEPT and DISPLAY verbs to process
the I/O, rather than READ and WRITE, the question mark
is displayed automatically .

Now rewrite program TENKEYDISK as a program named
TENKEYI as in the following example. TENKEYI per­
forms the same operations as TENKEYDISK.

This example illustrates the use of ACCEPT and DIS­
PLAY.

IDENTIFICATION DIVISION.
PROGRAM-ID. TENKEYI.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. 6600.
OBJECT-COMPUTER. 6600.
SPECIAL-NAMES. TERMINAL IS HERE.
INPUT-OUTPUT SECTION.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
OJ ACCUM PIC S9(7).
OJ ANS PIC X.
OJ REG PIC ------9.
OJ AMOUNT.

03 AMT PIC 9(6).
03 SYNE PIC X.

PROCEDURE DIVISION.
FIRST-PARA.

DISPLAY "ENTER DATA" UPON HERE.
MOVE ZEROS TO ACCUM REG.

SEC-PARA.
ACCEPT AMOUNT FROM HERE.
IF SYNE = "T" GO TO CLOSE-PARA.
IF SYNE = "S" GO TO SUBTOTAL-PARA.
IF SYNE ~ 'U' GO TO SUBTRACT-PARA.
IF AMT NOT NUMERIC
DISPLAY "BAD DATA" UPON HERE GO TO

SEC-PARA.
ADD AMT TO ACCUM
ON SIZE ERROR DISPLAY "ACCUMULATOR

OVERFLOW" UPON HERE.
GO TO SEC-PARA.

SUBTRACT-PARA •
SUBTRACT AMT FROM ACCUM
ON SIZE ERROR DISPLAY "ACCUMULATOR

OVERFLOW" UPON HERE.
GO TO SEC-PARA .

SUBTOTAL-PARA.
MOVE ACCUM TO REG.
DISPLAY "SUBTOTAL IS" REG UPON HERE.
GO TO SEC-PARA .

CLOSE-PARA.
MOVE ACCUM TO REG.
DISPLAY "TOTAL IS" REG UPON HERE.
DISPLAY "MORE" UPON HERE.
ACCEPT ANS FROM HERE.
IF ANS = ny" MOVE ZEROS TO ACCUM
GO TO SEC-PARA.
STOP RUN.

60455960 A

To execute program TENKEYI, use the RUN command.
Since all input and output is accomplished by the COBOL
ACCEPT and DISPLAY commands, you need not connect
or create any files. The keyboard becomes your input file
and the display becomes your output file when you equate
the terminal with the object of the ACCEPT and
DISPLAY verbs in the SPECIAL-NAMES paragraph. In
fact, the system is using the INPUT and OUTPUT files,
which are automatically connected by RUN.

Each time the program expects input, a question mark is
displayed. This action is automatic; it occurs each time
the ACCEPT verb is encountered. However, there are
times when it would be advantageous to display more
prompting information. In this example, we have elected
to display the words ENTER DATA at the beginning of
program execution. The code could have been written so
that the ENTER DATA was displayed each time input was
expected. However, since the compiler is going to issue
the question mark as a separate line, this would mean that
two lines would be output for each line of expected input.
Such action would slow execution.

Similar results could be accomplished by using program
TENKEYDISK and connecting the input file, INFILE. (The
output already uses the terminal as a display medium.)
Since all input is activated by the READ command, rather
than ACCEPT, the question mark is not displayed. In
fact, no indication is given that the program is in
execution and awaiting input. Here it would be wise to
issue at least one prompting message such as ENTER
DAT A. Subsequent input may then be entered as fast as
you can key since INTERCOM stacks the input in a buffer
until your program is ready for it.

CONNECT AND DISCONT COMMAND
FUNDAMENTALS

Any local file can be connected by the INTERCOM
command CONNECT:

CONNECT,file

More than one file can be connected by naming several
files in the command.

The command that disconnects a file is:

DISCO NT ,file

Again, more than one file can be named in the command.
Disconnected files are not returned. Rather, the file

60455960 A

continues to exist and any additional data written to the
file is preserved on mass storage.

EXPERIMENTING WITH CONNECTED FILE INPUT

One of the ways to learn connected file operation is to
enter data at different times and study system response.
You should be aware of certain considerations.

Execution of the RUN command causes files named
INPUT and OUTPUT to be connected. Any other file to
be entered through the keyboard must be connected by the
user.

Data entered must conform to the format expected by the
program. In this case, all input must be numeric. Any
INTERCOM or EDITOR command is accepted simply as if
it were the expected data.

Input can be entered before any program output is
displayed. You cannot inhibit display of any prom pting
message (including the question mark if ACCEPT is being
used) by such action.

TERMINATING CONNECTED FILE INPUT

When reading is from an unconnected file, normally the
AT END imperative is included in the program to test for
end of data (EOF). This same condition can be duplicated
from interactive keyboard input by entering %EOF.
%EOF, then, is the interactive equivalent of a 6/7/8/9
card. Similarly, %EOR may be entered to perform the
function normally performed by the 7/8/9 card.

Another way to stop interactive READ processing is to
test for a particular data input, and if that input is
encountered, stop further read attempts. Remember that
any end-of-data indicator you choose must conform to the
format expected by your program. The example program
interrogates the user each time a total is requested. If
more data is to be processed, a Y (yes) must be input. If
any other response is encountered, including NO, the
program will terminate. This method provides the user
with more flexibility in handling data.

One more item to remember; if you neglect to program an
end to requests for input through the terminal, you can
always stop execution through an abort by entering %A.

5-7

INTERCOM AND EDITOR COMMANDS 6

This section presents INTERCOM and EDITOR commands
in alphabetical order including the special EDITOR entries
*EOR and *EOF. It tells when the command is used and
gives the complete format. Errors often made in using
the command, as well as recovery from these errors, are
described.

All EDITOR commands are included.

INTERCOM commands included are:

•

•

•
•

EDITOR, which makes file creation and
editing possible

STORE, FETCH, and DISCARD for perma­
nent file operations

FILES for status information

CONNECT and DISCONT for connecting and
disconnecting files

• BATCH to change status or file name

• TEACH to describe INTERCOM operation

LOGIN and LOGOUT are described in section 2.

Commands corresponding to operating system control
statements are included only so they can be used by
persons unfamiliar with their concepts. Commands
included are:

• AUDIT, to obtain permanent file status

• RETURN, to eliminate files

• REWIND, to rewind files

All options for the commands described are included.
Examples are given only for parameters frequently used
by inexperienced INTERCOM users. Diagnostic or error
responses are included, since they point out command
restrictions or common errors.

ADD COMMAND

ADD is an EDITOR command that adds lines to an existing
edit file. Although ADD can be used to add a single line
in a file, use of another command, linenum=newtext, is
preferable for inserting only one line.

The system response to ADD establishes an operation
similar to CREATE. Automatic incrementing of line
numbers is in effect, with either the default or user
specified incrementing value. User input for the next line
is prompted by display of the line number, unless
prompting is suppressed by the SUP option. An equal sign
must be entered as the first and only character in the line
to exit ADD mode.

60455960 A

Add is used to insert more than one line as a group within
an existing edit file or to make additions to the end of an
existing edit file.

No new lines can be added unless unused line numbers
exist or existing lines are to be destroyed. If necessary,
use the RESEQ command to change existing line numbers
before calling ADD.

ADD FORMAT

In the simplest form:

ADD or A

EDITOR assumes that lines are to be added to the end of
the existing file and prompts user input by displaying a
line number with a value] 0 greater than the last existing
line. Prompting continues after each user entry until an
equal sign is entered as the only character in a line.

ADD ,SUP ,0 VER WRITE,start,increment

Optional parameters:

SUP or S Suppresses prompting with line
number display. The system
response is ENTER LINES. In­
dividuallines are to be entered
in succession.

OVERWRITE or 0 Existing line numbers are
overwritten if necessary.
Without this parameter, an in­
sert into the file is not ac­
cepted if an existing line num­
ber is encountered.

start

increment

Point at which line numbers
begin. Default is] 0 greater
than the number of the last
line in the existing file.

Number added to starting line
to determine successive line
numbers. Default is] O. This
parameter cannot be used un­
less start is also specified.

The values for the start and incrementing of line numbers
need not be the same as those used in the remainder of
the file.

ADD does not skip over any existing line, nor does it allow
any existing line to be rewritten, unless the OVERWRITE
parameter is included in the ADD command. Either a skip
or rewrite attempt terminates ADD.

6-]

AUDIT COMMAND

AUDIT is an operating system command that gives
statistics about a user's files made permanent by the
STORE command or the CATALOG command.

AUDIT is used to find the name needed to access a
permanent file or to obtain status information such as
when your file can be destroyed or copied to an archive
tape.

AUDIT FORMAT

Parameters can appear in any order. AUDIT has no
abbrevia tion.

AUDIT,AI=P,LF=lfn,ID=owner identification.

P

lfn

owner
identification

Required letter.

Na.me of file to receive
AUDIT output. The
name consists of J to 7
letters or digits begin­
ning with a letter. Nor­
mally, the LF param­
eter is the name of a
connected file. If the
LF parameter is omit­
ted, statistics are writ­
ten to the file OUT­
PUT.

Name used on STORE
commands to make file
permanent. The name
consists of J to 9 let­
ters or digits.

The ID parameter is the same as that used on a STORE or
FETCH command.

STORE, TEST,MINE

AUDIT,LF=lfn,ID=MINE,AI=P

FETCH, TEST,MINE

SYSTEM RESPONSE TO AUDIT

AUDIT execution writes status information on the file
named with the LF parameter.

The time and date of AUDIT execution appears in the
output heading. Table entries show:

OWNER

6-2

Name which is specified by the
ID parameter of the AUDIT
command. Every file refer­
enced on a STORE command
with your name will appear.

PERMANENT
FILE NAME

CYCLE

ACCOUNT, UNIT,
and PRUS

CREATION

EXPIRATION

LAST ATT

LAST ALT

Name of a file referenced on a
STORE command.

System-assigned number. Two
permanent files with the same
name are distinguished by
cycle numbers. (These cannot
be created through STORE,
since cycle 999 is always
created.)

Refer to the hardware on
which the file exists and are
not significant at this time.

Month, day, and year the file
was made permanent.

Date shows the end of the file
retention period.

Date the file was last called
for use.

Date the file was last modified
and may be the same as the
creation date for files made
permanent by STORE.

When AUDIT is complete, this appears:

EXIT

OUTPUT FILEN.AME

AUDIT output can be written on any file named with LF
parameter. INTERCOM is used most effectively when an
AUDIT command is preceded by a CONNECT command.
Then, as AUDIT generates output, it is displayed directly
at the. terminal. Typical use is:

CONNECT,filename

AUDIT,LF=filena.me,AI=P,ID=userid

The file named filename is displayed. Omitting the LF
parameter assumes LF=OUTPUT.

If the output file is not connected, AUDIT results are still
written on the named file. In this instance, the only
indication of AUDIT completion is the word EXIT.

COM MAND-AUDIT,ID=W ALK ER,AI=P ,LF=AUDFIL
EXIT

COMMAND-FILES
--LOCAL FILE8--

AUDFIL

To examine AUDFIL, you could list the file under EDITOR
control or rewind and copy it onto another connected file.
Since AUDIT results are formatted for a printer, the
output can be referenced in a COPY utility command.
(When a file has not been formatted as a print file,
COPYSBF should be used in place of COPY.)

60455960 A

BATCH COMMAND
BATCH is an INTERCOM command that directs disposi­
tion of a file previously created or saved by the user.
Except for the LOCAL disposition, the file must be a local
file or an attached permanent file accessible to the
terminal user. If an attached permanent file is specified
with any disposition of the BATCH command except
RENAME, a copy of the file is created and processed by
BATCH. The attached permanent file remains unchanged.
For other local files, no copy is made, and except for
LOCAL and RENAME dispositions, the file does not exist
as a local file following execution of BATCH.

Beginning INTERCOM users find BATCH necessary for
four situations:

•

•

•

•

To send a file from a terminal with no
printing display to another terminal that has
a printing display. A file created at a CRT
terminal, for example, can be sent to a 200
User Terminal for output.

To change a REMOTE OUTPUT file received
from another terminal to a LOCAL file for a
printing display.

To change the name of the INPUT file so
that it can be released from the terminal.

To change the name of any local file to
some other name.

Experienced programmers familiar with the operating
system and job deck structure use BATCH to submit a full
job for execution at the central site. The TEACH utility
and the INTERCOM Reference Manual provide instruction
for remote batch operations.

BATCH FORMAT

BATCH is an interactive command. When called without
parameters, BATCH prompts specific responses until the
user enters END to terminate BATCH use.

To initiate BATCH, enter this word and wait for system
response. The word BATCH cannot be abbreviated.

BATCH

The system response is:

TYPE FILE NAME-

Your response should be the name of a file. (Remember
to press the RETURN key.)

The next system response is:

TYPE DISPOSITION-

Disposition should be LOCAL, RENAME, PUNCH,
PUNCHB, or PRINT, depending on your reason for calling
BATCH. A third message TYPE FILE ID is displayed for a
PRINT, PUNCH, or PUNCHB disposition.

After one file has been changed in disposition, BATCH
prepares to deal with another file and again displays:

TYPE FILE NAME-

60455960 A

At this point enter END and a RETURN key to terminate
BATCH, or continue with the name of another file to be
processed with the same or different disposition.

As an alternate to BATCH operation with system prompt­
ing, you can enter all parameters at once, as in:

BATCH,file,LOCAL

PRINT DISPOSITION OF BATCH

The PRINT disposition places a file into the remote output
queue and prints a hard copy of the file at a terminal that
is logged in. Use it when your terminal has a CRT screen
but you also have access to a 200 User Terminal.

INTERCOM prompts you as follows after you enter
BATCH,filename.

TYPE DISPOSITlON-

Type the following.

PRINT,x

x The 2-character terminal or user
identifier of the terminal to receive
the file, the word HERE to indicate
the terminal identifier, or the word
MINE to indicate the user identifier.
The default is the central site.

Determine the terminal or user identifier of the receiving
terminal by checking the messages that appear after
logging in at the receiving terminal or by entering the
ASSETS command at the receiving terminal. Both
methods are shown in the following example:

08/18/78 LOGGED IN AT 11.03.02.
WITH USER-ID CR
EQUIP/PORT 25/07

Use this identifier in command: BATCH,
MYFILE,PRINT,CR

COMMAND-ASSETS

ASSETS OF CR AT 11.53.15. Use this identifier in
command: BATCH,MY­
FILE,PRINT,CR

EQUIP/PORT 25/07
FILE QUOTA

FILES IN USE
MAX FL
TIME LIMIT
CP TIME
SYS TIME

COMMAND-

20
1

077700
0500

91.595
143.090

I NOTe I
The receiving terminal has an identifier that is
different from the sending terminal.

6-3

INTERCOM prompts you as follows after you enter
PRINT,x.

TYPE FILE lD

Enter a 1- to 4-character alphanumeric identifier of the
batched file. The operating system creates a banner page
with the following identifier printed on it.

Iidentsn

ident

sn

Indicates this file originated
from INTERCOM

J- to 4-character alpha­
numeric file identifier, left­
justified with zero fill

System-generated
number

sequence

If the receiving terminal is a dial-up terminal (or if the
user id was specified), the file appears under the category
REMOTE OUTPUT when you issue the FILES command.
The receiver must use the BATCH command to change the
file from the REMOTE OUTPUT to the LOCAL category
to display the file.

The following procedure is required when using the
BATCH command to send a file to a terminal that is not
logged in.

1. Use the disposition PRINT,MINE in the
BATCH command.

2. Execute the LOGOUT command at the
sending terminal.

3. Go to the receiving terminal and LOGIN
with the same user name and password
previously used at the sending terminal.
You are assigned the same identifier for
USER-lD.

4. At completion of LOGIN, issue the FILES
command to display the file name in the
form Iidentsn as a REMOTE OUTPUT file.

5. Use the BATCH command with a LOCAL
disposition to make the file available for the
EDIT and LIST commands or to rewind and
copy it (using the COPYSBF command) to a
connected file.

During the time you are moving from one terminal to
another, the file remains on mass storage at the central
site with the USER-lD of the user who issued the BATCH
command. It is possible to go to any other terminal and
make the file available by logging in with the same user
name and password originally used.

A REMOTE OUTPUT file is not a permanent file.

A local file referenced in a BATCH command glvmg
PRINT disposition no longer exists as a local file, unless
that file was an attached permanent file.

6-4

LOCAL OPTION OF BATCH

The LOCAL disposition of BATCH is used to change a
remote output file to a local file. Files with remote
output status are not under immediate user control; they
cannot be referenced in EDIT, RETURN, STORE, or most
other commands. Only files with local status are
available for such uses.

Remote output files usually originate at a terminal that
does not have a printed copy capability or from a terminal
with a card reader attached. They can also originate from
your· own terminal as a result of a remote batch job
execution.

Disposition to change a remote output file is:

LOCAL

RENAME OPTION OF BATCH

The RENAME disposition changes the name of an existing
local file to some other name. The new name cannot
duplicate the name of any existing local file, and must
consist of j to 7 letters or digits beginning with a letter.

This disposition is:

RENAME

System prompting continues with:

TYPE NEW FILE NAME'"

If you receive a FILE NOT A V AILABLE diagnostic while
trying to use RENAME, perhaps you .have misspelled the
old file name or are attempting to rename a file that is
not in the LOCAL category.

RENAME changes the local file name of an attached
permanent file. It does not, however, affect the perma­
nent file name by which the file is known to the system.

EXAMPLES OF BATCH COMMANDS

The sequence in the following example shows several local
and remote output files. You can monitor how the
BATCH command changes their categories by using the
FILES command.

As indicated by the results of the first FILES command,
two local files and one remote output file exist at your
terminal. Subsequently, the BATCH command is used to
print one of those local files, FILEl, at your own terminal.
Using this method, the file is sent from one category at
your terminal to another. Note that the next FILES
command no longer shows a local file named FILE1 but
does show an additional remote output file INOW064. File
INOW064 is the local file, FILEl, renamed by the BATCH
command. (The name NOW was entered in response to the
BATCH command TYPE FILE lD request. The prefix I is
added to identify the job as an INTERCOM job; 064 is
suffixed with 0 as filler and 64 as a unique identification.)

60455960 A

The third series of commands demonstrates three fea­
tures. First, the BATCH com mand is used to reverse the
procedure just demonstrated; that is, a remote output file
is made local. Notice that after the last FILES command,
file IMINE63 no longer exists as a remote output file but
rather as a local file.

Also demonstrated is the feature of the BATCH command
which allows multiple files to be processed by one
command. When the BATCH command verb is entered
without parameters, INTERCOM repeats the interrogation
cycle until END is entered.

The last BATCH entry sends the local file PROGA to your
terminal as remote output file IW ALK7E. This procedure
is no different than that demonstrated in the first
example. However, notice that PROGA remains as a local
file as well as a remote output file. This occurs because
PROGA is an attached permanent file. .

COMMAND- FILES
-LOCAL FILES-

FILEJ *PROG A
-REMOTE OUTPUT FILES­
IMINE63

COMMAND- BATCH,FILEJ
TYPE DISPOSITION-PRINT,CN
TYPE FILE ID- NOW
COMMAND- FILES
-LOCAL FILES-

*PROGA
-REMOTE OUTPUT FILES-
IMINE63 INOW064

COMMAND- BATCH
TYPE FILE NAME- IMINE63
TYPE DISPOSITION-LOCAL
TYPE FILE NAME- PROGA
TYPE DISPOSITION-PRINT,CN
TY PE FILE ID- WALK
TYPE FILE NAME- END
COMMAND- FILES
-LOCAL FILE8--

IMINE63 *PROGA
--REMOTE OUTPUT FILES-
IWALK7E INOW064

BYE COMMAND

BYE is an EDITOR command. It must be the last
command entered under EDITOR, since it causes an exit
from EDITOR and a return to COMMAND mode.

BYE is used when all terminal operations are complete
and user plans to stop communication with the LOGOUT
command, or when the next series of operations requires
INTERCOM, but not EDITOR, capabilities.

Beginning users will probably call BYE only when ending a
terminal session.

Experienced users, however, often execute a series of
operating system control statements or XEQ or PAGE
commands. These commands can be entered through
EDITOR, but quicker response occurs when they are
entered from COMMAND mode.

60455960 A

BYE FORMAT

The format of the BYE command is:

BYE or B

BYE,BYE or B,B

BYE checks edit file contents and results in a potential
delay to preserve the edit file contents. BYE executes
only if:

• The current edit file has been referenced in
a SAVE com mand.

• The current edit file is empty.

• The current edit file has not been modified.

If EDITOR determines that a new or modified file has not
been saved, this message appears:

W ARNING- EDIT FILE NOT SAVED

At this time the user can use the SAVE command to
preserve the edit file or reenter BYE to exit EDITOR.

Using BYE,BYE causes an immediate exit from EDITOR
with no warning message even if the edit file has not been
saved. The informative message

YOU HAVE AN EXISTING EDIT FILE

appears if you reenter EDITOR without logging out.

CONNECT COMMAND
CONNECT is an INTERCOM command that equates a file
with the display area of a terminal or with keyboard entry
from a terminal. Each line of any connected output file is
displayed as a program or utility writes on that file.
Similarly, execution of any program that reads a con­
nected input file is suspended until an input line is
received from the terminal keyboard. The opposite of
CONNECT is DISCONT, which disconnects a connected
file.

CONNECT is used mainly to display information at a
terminal, especially for files that have no use after
display. Typical uses are:

•

•

To examine a file to be produced during
utility execution such as AUDIT or
COPYSBF.

To connect the output file to determine
whether results are acceptable during de­
bugging of a program. If so, abort execu­
tion, disconnect the output file, and execute
the program with output written on a file
that can be preserved for future use.

• To enter data into an executing program
without first creating a separate local file
with that data.

The RUN command connects files with names INPUT and
OUTPUT every time it is executed. It is not necessary
that a program use the connected files.

6-5

Any local file may be connected. Although experienced
programmers may connect an existing file and preserve its
contents during connected operations, it is usually more
convenient to work with a new file having no contents.
Only this application is discussed below.

Connected files have these characteristics:

•

•

A dollar sign appears before the file name in
the list of LOCAL files. The $ is not part of
the file name.

A copy of information read or written while
the file was connected does not exist on
mass storage.

CONNECT FORMAT

The command that connects a file to the terminal cannot
be abbreviated.

CONNECT,file

file Name of file to be connected, 1 to 7
letters or digits beginning with a
letter.

More than one file can be connected with a single
command:

CONNECT,file1,file2, •••

CONNECT can be used to determine the contents of an
existing file named FILEX, as follows:

COMMAND-CONNECT,FILEY
COMMAND-REWIND,FILEX
COMMAND-COPYSBF ,FILEX,FILEY

The COPYSBF command inserts a carriage control char­
acter before each line to cause single-spaced lines. The
lines from file FILEX are displayed as they are copied. At
the end of COPYSBF execution, FILEY has no informa­
tion. All information has been transferred to the terminal
and displayed.

While attempting to edit FILEY, you receive the following
message.

ERR-FILEY CONNECTED TO TERMINAL

CREATE COMMAND
CREATE is an EDITOR command used to create a file line
by line from keyboard entries. Once CREATE is entered,
each entry terminated by a RETURN key is presumed to .
be a line of text for the evolving file. Until CREATE is
terminated, other EDITOR or INTERCOM commands are
not recognized. CREATE does not terminate until the
user enters an equal sign.

When CREATE is called, each line entered by the user
acquires a system assigned line number. The end of a file
line is signaled by the RETURN key. As many as 510
characters can be entered in a single line. A tab
character defined through the FORMAT command can be

6-6

u.sed to position characters entered. All characters
entered at the keyboard are assumed to be part of the file
until the equal sign is received as the only line character.

The CREATE command is used to construct a file. This
file may contain a program to be executed through the
RUN command or data to be used by a program.

Experienced programmers also may use CREATE to form
a file of further instructions such as a directive file for
UPDATE use or a complete job deck.

CREATE FORMAT

The command that initiates construction of a new file in
the temporary edit file work area has three optional
parameters.

CREATE,start,increment,SUP or C

start

increment

SUP or S

Number of first line in the edit
file. Default value is 100.

Number added to the last line
to determine value of next line
number. Default value is 10.

Suppresses prompting of user
response through display of
line numbers.

The numerical parameters are positional: if an increment
is to be stated, the starting line number must be given.

System response to CREATE is to prompt user input of
the first line by displaying the number of that line.

When the SUP parameter is used, response is:

ENTER LINES

In both instances, the user enters lines until the file has
been constructed. To terminate CREATE, enter an equal
sign as the only character in the line and press the
RETURN key.

If a tab character has been defined by the FORMAT
command or default FORMAT setting, that character acts
similarly to a SKIP key on a keypunch or a TAB key on a
typewriter. Each time the tab character is used in the
line, the next input character is located at the next
defined tab stop. If no more tab stops are defined,
however, the tab character becomes part of the input line.

Beginning programmers often forget to exit from CRE­
ATE with an equal sign when SUP has been used. Thus,
CREATE continues to accept entries with no visible
results.

DELETE COMMAND
With this EDITOR command, one or more lines in the edit
file can be deleted. The lines to be eliminated can be
specified explicitly by number or implicitly by a search
criteria. An entire line, not just part of a line, is affected
by DELETE.

60455960 A

Many of the options of DELETE are the same as for SAVE,
LIST, and the text replacement command.

DELETE is used to eliminate extraneous lines in the file,
such as those arising from input typing errors, to remove
program statements used to debug a program, or to empty
the temporary edit file in preparation for new file
construction.

DELETE is not needed before replacing a single line. By
using a command in the following format, the entire
specified line is rewritten.

linenum=text

The text replacement command, /oldtext/=/newtext/, also
can be used to correct a line without deleting the
incorrect line first.

DELETE FORMAT

The simplest form of DELETE specifies only the lines to
be eliminated from the edit file:

DELETE,range or D,range

The range parameter identifying the lines to be deleted
may have one of these forms:

ALL or A

LAST or L

line number

line-l ,line-2

line-l ,LAST

The entire edit file is deleted.

Only the last line in the file is
deleted.

Only this line is deleted.

Lines within this range are
deleted.

Line-l through the last line of
the edit file are deleted.

SEARCH CRITERIA OPTION OF DELETE

Indirect specification of a line is possible by specifying
search criteria. Lines within the range given are
searched, and then deleted if they meet qualifications.

/text/

(column)

(column-I,
column-2)

UNIT

60455960 A

Lines containing this text
string are deleted. The text
string may be further qualified
by the (column) and UNIT op­
tions.

The text character string must
begin in this column to satisfy
the search criteria.

The text character string must
be contained within the col­
umn range specified.

The text must not be immedi­
ately preceded or followed by
a letter or digit.

VETO OPTION OF DELETE

Lines to be deleted should be specified precisely, since no
restoration of deleted lines is possible except by individu­
ally reentering each deleted line.

The VETO option can be used to check each line before it
is deleted. The format is:

VETO or V

When the VETO is used, each line that meets specified
search criteria is displayed before deletion proceeds.
After examining the line, you can enter YES, NO, or
CONTINUE to accept or reject deletion of that particular
line.

YES or Y Causes line to be deleted.

NO or N Retains this line.

CONTINUE or C Deletes this line and all others
which meet search criteria in
range remammg. Remaining
deletions are not displayed.

The NO response affects only the line displayed; it does
not terminate DELETE. To bypass all other lines without
deletion, terminate the command with %A.

DISCARD COMMAND
DISCARD is an INTERCOM command used to eliminate a
local or permanent file. Its primary function is to delete
a permanent file, but it can be used with an unconnected
local file except one with the name INPUT.

DISCARD is used to eliminate a file made permanent with
a STORE command, or to eliminate any unconnected local
file from your list of files.

DISCARD FORMAT

DISCARD has two formats; the command has.no abbrevia­
tion or optional parameters.

DISCARD,file

DISCARD,permname,owner

The first format is used to eliminate any local file or an
attached permanent file. The second format is used to
eliminate a permanent file that has not been made local
by FETCH.

file

permname

owner

Name of local file

File name made permanent by STORE

Name used as owner identifier for
STORE

Only one file name can be used. In response to DISCARD,
the file ceases to exist as a LOC AL file and the
permanent file is purged.

6-7

For permanent files, either of the two following sequences
eliminates a file from the system. Assume a file was
made permanent by the command: STORE,SAM­
PLE,MINE.

•• FETCH,SAMPLE,MINE
•• DISCARD,SAMPLE

or
•• DISCARD,SAMPLE,MINE

DIAGNOSTICS FROM DISCARD USE

An error in entering this command produces one of the
following messages. Reenter the command correctly.

ERR - CANT FIND FILE file

File is neither local nor attached permanent file,
nor a permanent file with the correct owner id
specified. Make certain you have spelled the file
name correctly.

When a permanent file cannot be located, enter the
AUDIT command with your owner identification.
Perhaps the file was identified with another name
on STORE. Alternately, the expiration date for a
file may have been reached, and the file may no
longer exist.

ERR - FILE NAME REQUIRED.

You have neglected to specify a file name.

ERR - FILE NAME MUST BE ALPHANUM,<8 CHAR,] ST
CHAR A-Z

You did not enter a legal file name.

ERR - TOO MANY PARAMETERS

DISCARD,permfile,owner Cannot be used to
discard a local file.

CANNOT ROUTE INPUT FILE

You cannot discard a connected file. Use DIS­
CONT command, then DISCARD. A similar mes­
sage also appears if you are referencing the file
named INPUT. To eliminate INPUT from the list
of local files, you must rename it through the
BATCH command and then DISCARD the new file
name.

EDIT COMMAND
This EDITOR command transfers an existing local file
with coded data to the temporary edit file in preparation
for listing or modifying it. The reverse of EDIT is SAVE,
which copies the edit file contents to a local file.

EDIT must be used before any of these commands if an
existing local file is to be updated.

ADD

DELETE

6-8

LIST

RESEQ

/oldtext/=/newtext/

SAVE

linenum=text

EDIT is not used before the CREATE command which
constructs a new file.

Connected files cannot be transferred to .the edit file.

EDIT FORMAT

The EDIT command must identify the local file to be
placed in the edit file area. The optional parameter, SEQ,
is required if the local file does not have ascending line
numbers.

EDIT,file,SEQ or E,file,S

file Name of local file with character
contents

SEQ Optional sequencing call. Line num­
bers begin with] 00 and increment by
]0

In response to EDIT, the named file is rewound and copi,ed
to the edit file work area.

If another file already occupying the edit file has not been
saved or has been modified since it was last saved, a
warning message is issued rather than destroying the file.
To preserve the existing file, use the SAVE command; to
destroy the existing file reenter the EDIT command.

An alternative to reentering EDIT, when the current file
is no longer needed is:

..DELETE,ALL
•• EDIT,FILENAME,SEQ

If the current edit. file has already been saved, or is an
existing file that has not been modified, EDIT executes
immediately.

The file to be transferred to the edit file can consist of a
multifile set. A multifile set is a group of files separated
by an *EOF line. The character string *EOF becomes part
of the edit file when EDITOR encounters the end-of-file
indicator written by COPY. Similarly, an *EOR character
string would appear for a logical record indicator.

Each line in the edit file must have a unique number, and
numbers must be in ascending (lrder.

An attempt to execute EDIT with a file not having
numbers produces an error message. The present edit file
work area is destroyed once EDIT command execution
begins.

..SA VE,FILE,NOSEQ
•• EDIT,FILE
ERR- LINE NUMBERS OUT OF SEQUENCE
•• SAVE,FILE
ERR- NO INFORMATION IN EDIT FILE

60455960 A

Either of the following is correct:

.. SA VE,FILEB NOSEQ

.. EDIT,FILEB,SEQ
.. SA VE,FILEC
.. EDIT,FILEC

New line numbers can be added to existing line numbers.
Since an EDIT command with SEQ assumes no line
numbers exist, EDITOR treats actual numbers as part of
individual lines. If you SAVE a file with line numbers and
then call for EDIT with SEQ, a list of the file shows
extraneous characters at the end of each line. These
characters are the original line numbers. This situation
can be avoided by omitting the SEQ parameter when EDIT
is used. If the file was saved without numbers, a
diagnostic is issued when the EDIT command is given. A
RESEQ command could change 100 to 500, for example,
but could not change the 000100 at the end of the first
line.

Lines of up to 510 characters can be transferred to the
edit file. Characters beyond 510 are not moved but this
message is displayed:

LINES> 510 CHARS WERE TRUNCATED

The above message may appear when you expect 72-
character lines, if the named file contains binary data.
First verify that the correct file name was used. EDITOR
determines the end of a line in a local file by searching
for a special indicator written at the end of every line
with character data. If the line does not have character
data, no indicator exists; EDITOR searches continuously,
however, and can read an entire file in its search.

Any of the following messages indicates an error in the
command entry. Check for misspellings and omitted
separators.

ERR - CANT FIND FILE filename

ERR - FILE NAME MUST BE ALPHANUM, < 8
CHAR, 1 ST CHAR A-Z

ERR - FILE NAME REQUIRED

EDITOR FORMAT

No optional parameters exist. The following command
cannot be abbreviated .

EDITOR

The system responds with two dots at the left. The
appearance of these dots, rather than the word COM­
MAND-, after a user entry, indicates that EDITOR
commands are valid.

Once called, EDITOR is available until the user enters the
BYE command. An abort through a user entry of %A
terminates the current command but not EDITOR itself.
Remember, if output must be suspended, press ESC.

During EDITOR use, any INTERCOM command described
in this manual can be entered except:

EDITOR LOGOUT LOGIN

FETCH COMMAND
FETCH is an INTERCOM command that retrieves a file
made permanent by the STORE command.

FETCH is used to access a permanent file.

Execution results in the file being added to your list of
local files. Attached permanent files are identified by an
* preceding the file name.

fETCH fORMAT

FETCH format depends on installation procedures; the
owner parameter may not be required. Any differences
are the same for STORE and DISCARD. Follow any local
instructions.

The word FETCH cannot be abbreviated. Standard format
ERR - PARAM n: UNRECOGNIZABLE PARAM- is:
ETER

ERR - RESER VED FILE NAME

EDITOR COMMAND
EDITOR is the INTERCOM command used to call the file
creating and editing facility of INTERCOM and is used
when a file is to be entered statement by statement or an
existing file is to be changed.

EDITOR must be called before any of these commands can
be used.

ADD RESEQ

BYE RUN

CREATE SAVE

DELETE /oldtext/ = /newtext/

EDIT linenum=newtext

FORMAT LIST

60455960 A

F ETC H,file,owner

file

owner

Name by which file was made per­
manent with a STORE command. 1
to 7 letters or digits beginning with a
letter.

Identification of the file owner used
in the STORE command. J to 9
letters or digits.

Successful attach of the file can be verified by the FILES
command.

FILES COMMAND
FILES is an INTERCOM command used to obtain a list of
all files associated with the terminal.

Use FILES when operations have been conducted on
several files and you are not sure of the spelling of a
particular file name.

6-9

Use FILES to check whether a given file is connected or is
a permanent file or when the message FILE QUOTA
EXCEEDED has appeared and you must know the names of
existing files to be returned before new files can be
created.

In general, FILES can be used to refresh your memory
before entering a command that references a new or
existing file.

FILES FORMAT

FILES

No optional parameters exist. The command cannot be
abbreviated.

SYSTEM RESPONSE TO FILES

When FILES is executed, a list of all files for your
terminal appears:

-LOCAL FILES-

-REMOTE EXECUTING
FILES-
-REMOTE INPUT FILES-

-REMOTE OUTPUT
FILES-
-REMOTE PUNCH
FILES-

Files under immediate
control

Jobs named in BATCH
command for transfer
to central site

Results of BATCH use
with your terminal
identification

Headings appear only for the types of files to be listed.

Local files may have a character preceding the logical file
name to show further status.

Prefex

*
$

Meaning

Attached permanent file

Connected file. Input comes from
keyboard. Output is displayed.

none File neither permanent nor con­
nected.

Any change in status is reflected in this Jist.

At the beginning of a terminal session, FILES execution
produces the response:

NONE

No files are associated with the terminal until the user
enters a command to attach or create a file.

To remove a file from terminal control, use the RETURN
or DISCARD commands.

6-10

DIAGNOSTIC FROM FILES USE

THE ABOVE LIST MAY BE INCOMPLETE

When a large number of files are in the queue, this
message may be returned after the names listed
under any of the file categories. In most cases, the
list of terminal files is complete. Repetition of the
FILES command may not change the information
displayed.

FORMAT COMMAND

FORMAT is an EDITOR command that establishes the
maximum line length, tab stops, and tabbing character for
lines entered into the edit file from a terminal keyboard.
FORMAT affects the following commands:

CREATE

linenum=newtext

ADD

/oldtext/=/newtext/

SAVE

FORMAT is used in several instances:

• To change line length to a value requir'ed by
a compiler.

• To change line length to a value required by
an FD paragraph in a program.

• To make entering text easier by defining tab
stops.

• To determine existing line length and tabs.

The user who has experience with program and line
manipulation may want to use FORMAT to establish
variable line lengths.

A default format exists, corresponding to the format of
the language most frequently entered at an installation.
To determine the default, enter the command:

..FORMAT,SHOW

FORMAT FORMAT

The form of the command used most often contains a
compiler language name.

FORMAT,COBOL

A line length of 72 characters, a tab stop at positions 8,
J 2, 16, 20, 24, and a tab character of a semicolon is
defined.

60455960 A

")

Other FORMAT compiler names allowed are:

Line Tab Tab
Length Character Stops

ALGOL 72 $ 7,10,13,16,19

BASIC 72 None

COMPASS 72 11, 18, 36

FORTRAN 72 7

The three settings established by FORMAT can be set
independently of compiler requirements in any order and
value in any combination.

FORMAT, CH = length, TAB = char, stop, stop, ...

Any number entered without a preceding Cli = or TAB = is
assumed to be a tab stop. Tab stops must be contiguous.
For instance, FORMAT 5, TAB = %, lOis an illegal
statement.

CH= or C= Maximum number of char­
acters in line, 1 to 510.

TAB= or T= or TA= Any character, except %.
When used in a line entry, the
tab character repositions the
succeeding text character to
the next defined tab stop.

stop Any line position 0 to 510. A
series of tab stops must be in
ascending order. The tab stop
position must not exceed line
length set by the CH= param­
eter.

DIAGNOSTICS FROM FORMAT USE

ERR- CH= MUST SPECIFY < 511

The longest line possible in the edit file is 510
characters.

ERR- TAB= MUST SPECIFY ONLY 1 CHAR

You probably have forgotten a delimiter after the
tab character.

ERR- TABS TOO BIG OR OUT OF ORDER

Tab stops must be in ascending order.

LIST COMMAND

LIST is an EDITOR command that displays one or more
lines of the edit file. The lines to be displayed can be
specified directly by line numbers or indirectly by search
criteria.

Many of the optional search criteria parameters of LIST
are those of SAVE, DELETE, and the text replacement
command.

60455960 A

LIST is used when creating or updating a file through
EDITOR. Use LIST to:

• Display a line or an entire program or file so
you can check for syntax, logic, or typing
errors.

• Determine line numbers of statements to be
corrected.

• Determine line numbers for statements to
be added.

LIST works only with the edit file. Since a local file can
be transferred to the edit file, you cah use LIST to
examine the contents of a local file, such as the output
from program execution.

LIST FORMAT

The simplest form of LIST specifies only the lines to be
displayed.

LIST,range or L,range

The range parameter identifies the lines to be displayed.
It may have one of these forms:

ALL or A The entire edit file is displayed.

LAST or L Only the last line in the file is
displayed.

line number Only this line is displayed.

line-l,line-2 Lines encompassing this range are
displayed.

line-l,LAST Line-l through the last line of the
edit file are displayed.

If the range parameter is omitted, the last line previously
displayed is repeated. The last line may have been the
result of a LIST command or the VETO option of another
EDITOR command.

The SUP optional parameter suppresses display of the edit
file line numbers.

SUP or S

The lines to be displayed can be specified by search
criteria. Only lines within the range given with the first
parameter will be searched and listed if they meet
qualifications.

/text/

(column)

(column-l,
column-2)

Only lines containing this text string
are displayed. The text string may be
further qualified by the (column) and
UNIT options.

The text character string must begin
in this column to satisfy the search
criteria.

The text character string must be
contained within the column range
specified.

6-11

UNIT The text must not be preceded or
followed immediately by a letter or
number.

EXAMPLES OF LIST USE

LIST,ALL,SUP

LIST,ALL,/01/,UNIT

. LIST,200,300,/SELECT/

LIST,ALL,(7),/*/

LIST,500,LAST,UNIT,
/PERFORM-/

RESEQ COMMAND

Display entire file without line
numbers

Display all lines containing 01
levels

Display all SELECT state­
ments in lines 200 through 300

Display all comment state­
ments

Display all lines in range 500
to end of file if the line has a
PERFORM statement, but not
user-names such as PER­
FORM-PARA.

This EDITOR command renumbers the lines in the current
edit file.

Edit file line numbers must be in ascending order at all
times. A new line cannot· be. inserted into the edit file
unless an unused line number is available.

Resequence when line numbers are insufficient to allow
insertions or for your own convenience in referencing
lines.

RESEQ FORMAT

The RESEQ command may be entered with or without
numbering parameters.

RESEQ or RE

RESEQ,start,increment

start Line number for first line in
file. Value can be 1 to 6
digits. Must be specified if an
increment parameter is given.

increment Value to be added to previous
line number to determine next
line number. Value can be 1 to
6 digits.

If RESEQ is entered without a starting line number and
increment value, lines are numbered from 100 with
increments of 10. The entire edit file is renumbered. Do
not abort execution of RESEQ. An accidental abort must
be followed by another RESEQ to reestablish edit file line
number continuity.

6-12

DIAGNOSTICS FROM RESEQ USE.

Incorrect command format produces one of the following
diagnostics. RESEQ must be reentered correctly.

ERR - PARAM n: ILLJ:;:GAL LINE NUMBER

Line number canbe 1 through 999999

ERR - PARAM n: TOO MANY DIGITS

The starting line number and the increment value
must not exceed 6 digits.

ERR - TOO MANY PARAMETERS

Correct format is: RESEQ,start,increment

ERR - NO INFORMATION IN EDIT FILE

RESEQ works only with the contents of the edit
file. If you want to reassign line numbers for a
local file, use the EDIT command first.

RETURN COMMAND
RETURN is an operating system command that releases a
local file or several files from the terminal. Both the file
and the file name cease to exist at the terminal.

RETURN is used when a local file is no longer needed,
when a FILE QUOTA EXCEEDED message has appeared,
or when an attached permanent file is to be retained as a
permanent file but released from the terminal.

RETURN affects only local files. An attached permanent
file reverts to permanent file status only. A DISCARD
command must be used t6 eliminate a permanent file.

A connected file must be disconnected before use in
RETURN.

RETURN FORMAT

One or more .files can be released. RETURN has no
abbreviation. Comma separators must be used.

RETURN,file

RETURN ,file,file, •••

file Name of file to be released

Specie:! name files such as OUTPUT have meaning to the
operating system. Releasing them from the terminal by
R-ETURN is equivalent to a request for particular pro­
cessing. A file with the name PUNCH, for example, is
punched at the central site when released from the
terminal.

Do not use RETURN with files named OUTPUT, PUNCH,
P80C, PUNCHB, PRINT, or INPUT. Use the DISCARD
command for all except INPUT, which must be renamed
through BATCH before use in RETURN.

60455960 A

The list of your local files changes when RETURN is used.

No diagnostic is issued if the file name entered does not
match the name of a local file. Consequently, omitting a
comma between two file names does not produce a
diagnostic message, but neither does it execute as desired.

DIAGNOSTICS FROM RETURN USE

RETURN, REWIND OR UNLOAD MUST HAVE AT LEAST
ONE PARAMETER

You have omitted a file name.

UNLOAD NOT ALLOWED ON INPUT

The RETURN command cannot be used with a file
by the name of INPUT. To release INPUT, use two
commands:

BATCH,INPUT,RENAME,NEW

RETURN,NEW

REWIND COMMAND
REWIND is an operating system command that can be
used through INTERCOM. It causes the named file to be
rewound to beginning of information. A connected file
must be disconnected before it is rewound.

If the file named on a REWIND does not exist as a local
file, using that name with REWIND is sufficient to create
a file with that name. No information is contained in the
file, but the file exists.

REWIND is used to position a file to beginning of
information, to prepare a file for use after a COPY, t or
to create a scratch file with no data while you are
experimenting with INTERCOM command use.

For the INTERCOM applications described in this manual,
usually it is not necessary to specify REWIND. Execution
of most EDITOR and INTERCOM file commands implies a
rewind. For example, SAVE and EDIT rewind the
referenced local file. RUN rewinds the files INPUT,
OUTPUT, and LGO before sending the program in the edit
file to the compiler. Similarly, BATCH rewinds the file
before sending it to another terminal.

Users executing COBOL programs must rewind files with
the REWIND command if the program uses the WITH NO
REWIND option of the OPEN and CLOSE statements.

REWIND FORMAT

A REWIND command can specify a single file or several
files. REWIND cannot be abbreviated.

REWIND,file

REWIND,filel,file2,file3, ..• ,filen

file Name of file to be rewound.

The maximum number of files that can be rewound by a
single command is limited only by the fact that no
command can exceed 80 characters, including separators
and a final period that is supplied by INTERCOM if the
user omits it.

RUN COMMAND

This EDITOR command compiles and executes a program
in the edit file. It also can be used to compile and
execute any other local file. During execution, local files
referenced by the program can be read and new local files
created. .

RUN is used to compile and execute a source language
program, to check out program or subroutine accuracy by
compiling, but not executing, statements, or to learn
acceptable COBOL format by compiling test statements
that do not form a complete program.

RUN FORMAT

The minimum command that compiles and executes a
COBOL program residing in the temporary edit file is:

RUN,COBOL Abbreviated RU,COB. COBOL
is the required name for the
COBOL compiler.

Optional parameters can be added singly or together in
any order.

FILE=lfn Local file named, not the edit file, is
passed to the compiler. The abbrevi­
ated form is F=lfn.

NOEX Causes compilation; but not execu­
tion. The abbreviated form is N.

System response to the minimum command format is:

•

•

•

•

EDITOR creates a local file copy of the edit
file which is then rewound, as is file
OUTPUT and LGO.

COBOL compiler compiles the program and
writes the object code to file LGO.

Files INPUT and OUTPUT are connected to
the terminal.

File LGO is executed.

Variations in response occur when the compiled program
has errors or the NO EX option is selected.

Executing the FILES command after RUN,COBOL shows
three files that may not have existed previously. Files
INPUT and OUTPUT are connected to the terminal, as
indicated by the dollar signs preceding the file names.
Any statement in the program reading a file with the
name INPUT stops execution and waits for entry from the
terminal of information to be read. Similarly, any
statement writing to a file with the name OUTPUT
displays information at the terminal as it is generated.

tCOPY is an operating system routine. It does not rewind files either before or after execution; thus, a user initiated rewind
before and after use may be necessary. For more information concerning COpy, refer to the INTERCOM and NOS/BE
reference manuals.

60455960 A 6-13

INPUT and OUTPUT are always connected if the program
is to be executed; it does not matter whether or not they
are referenced in the program. The INTERCOM command
DISCONT entered before RUN does not prevent recon­
nection during RUN execution.

If execution of your program produces any errors, you will
receive diagnostics as a result of RUN execution. Com­
pilation errors, if any, would be displayed before the
execution time errors.

NOEX OPTION OF RUN

Execution is suppressed when NOEX is used as a RUN
parameter. Use NOEX the first time you compile a
program unless you are certain no format errors exist.

Without NOEX, the system calls the loading routine and
attempts to load the LGO file generated during compila­
tion. A fatal error diagnosed by the compiler, however,
sets a fatal error flag at the beginning of the LGO file. If
the loader detects the fatal flag, loading is stopped and a
message is output to the terminal. Meanwhile the loader
call is wasted.

Format of the option is:

NOEX or N

The use of the NOEX option creates the file LGO
containing the compiled program and connects the file
OUTPUT. It does not create and connect the file INPUT.

If you have compilation errors, the file OUTPUT is not
connected.

At the end of RUN with NOEX, the compiled program
exists on the file LGO and can be executed by:

LGO

The system accepts this command as a call to rewind, load
and execute a file named LGO which has binary data. As
long as OUTPUT is connected, program DISPLAY state­
ments or WRITE statements to a file equivalenced with
OUTPUT are displayed as a result of LGO.

FILE OPTION OF RUN

To compile and execute a COBOL program not in the edit
file, use the FILE option. The file named can be any local
file. The file must be positioned at the beginning. If in
doubt, rewind.

Contents of the file must be a source language program,
not binary output such as produced on file LGO.

Parameter format is:

FILE=name or name

Spaces are not allowed within the parameter.

6-14

Either of the following sequences produce the same
results:

.. EDIT,SOURC E,SEQ

.• RUN,COB

or

.. RUN,COB,FILE=SOURCE

SAVE COMMAND

SAVE is an EDITOR command. It copies the current
contents of the edit file into a local file. SAVE neither
changes nor destroys the current edit file. Rather, it
copies the temporary edit file to the file named in the
SAVE command.

The SAVE command is used when:

• Information entered under the CREATE
command of EDITOR is to be preserved for
later use.

• A file has been edited, and the changed file
is to be preserved.

•

•

The edit file is to be stored as a permanent
file.

The edit file is to be copied or otherwise
referenced by name.

SAVE does not make a file permanent or preserve it from
one day to the next. The STORE command, not SAVE, is
used for these purposes. SAVE preserves a file only for
the current terminal session. Once a terminal has been
logged out, any file not made permanent is lost.

SAVE FORMAT

The simplest form of the SAVE command is:

SAVE,filename or S,filename

Filename may be any combination of 1 to 7 letters or
digits beginning with a letter. It must not be the same
name as any other local file now existing at your terminal,
unless either the MERGE or OVERWRITE option (ex­
plained below) is used also.

The names of existing files can be learned by using the
FILES com mand.

In response to a SAVE com mand, the entire edit file is
copied to a local file. Logically, these steps occur within
EDITOR:

1. Request is made for a logical file on a
permanent file device. The permanent file
device request is made in anticipation of the
future STORE command. Files saved
through EDITOR are always written to
permanent file devices without user action.

60455960 A

2.

3.

4.

5.

The named local file is rewound.

The edit file is copied to the named file.
Numbers assigned to each line are copied
also; they appear as the last 6 characters of
each line. The NOSEQ option stops the line
number copy.

A system end-of-record, but not an end-of­
file, terminator is written after all user data
is copied. (Refer to the EDIT command
discussion for implications of the end-of­
record mark.)

The named local file is rewound.

Length of the lines saved is determined by the FORMAT
command currently in effect. Under the COBOL 72-
character line length, 72 user data characters and 6
system supplied digits (line number) would exist for each
line in the edit file.

Options of the SAVE command allow the following
varia tions of system response:

OVERWRITE

NOSEQ

MERGE

VETO

Rewrites and consequently de­
stroys an existing file with the
same name.

Suppresses copy of line num­
bers to local file.

Writes at present position of
an existing file with the same
name; inhibits rewind before
and after writing.

Allows user to approve or dis­
approve saving of individual
lines.

ALL, line numbers, and LAST save selected parts
rather than the entire edit file.

/text/,column numbers, and UNIT save only those
edit file lines that meet text search criteria.

These options can be used in any combination and in any
order.

In most instances, only the NO SEQ and OVERWRITE
parameters are used. The selective SAVE parameters that
specify a range of line numbers, search criteria, and VETO
options, are the same as for the DELETE, LIST, and
/oldtext/=/newtext/ commands.

Only NO SEQ, OVERWRITE, and MERGE options are
discussed in the following text.

OVERWRITE OPTION OF SAVE

Every file associated with a terminal must have a unique
name. An attempt to make a second file with the same
name results in the following diagnostic, but not a new
file.

ERR - - filename ALREADY EXISTS

OVERWRITE allows the user to replace or rewrite a file
with a given name by replacing the existing file with the
contents of the current edit file. The existing file is
destroyed.

Format of the option is simply the parameter name. It
can appear anywhere after the file name.

OVERWRITE Abbreviated 0

OVERWRITE is used commonly when a program or data in
the edit file has been saved with a specific name, since
the edit file has been modified. To make the named file
correspond to the modified file, use OVERWRITE.

An alternative to OVERWRITE is a sequence of operations
that would independently release a file or one that would
simply save the modified file with a different name. By
using the OVERWRITE option of SAVE, an existing file
(which is no longer valid) can be eliminated, as well as a
new local file created. These two sequences result in
identical information for file IN.

.. SAVE,IN
(COMMANDS TO CHANGE EDIT FILE)
•. RETURN,IN
.. SAVE,IN

or

•• SAVE,IN
(COMMANDS TO CHANGE EDIT FILE)
..SAVE,IN,OVERWRITE

Overwrite also occurs without an OVERWRITE parameter
if an existing file is saved without a MERGE parameter
and is then referenced with a MERGE parameter.

Permanent files attached to your terminal cannot be
overwritten. If a file listed by a FILES command
execution with a preceding * is referenced with OVER­
WRITE, this error message appears:

ERR - OVERWRITE ILLEGAL ON PERM FILE

After such a message appears, either of the following
sequences can be used.

To use a new permanent file name and eliminate old file:

..SAVE,NEWNAME

.. STORE,NEWNAME,OWNER

.. DISCARD,OLDNAMEt

To change contents but keep file name:

..DISCARD,OLDNAMEt

.. SAVE,OLDNAME

.. STORE,OLDN AME,OWNER

MERGE OPTION OF SAVE

A new file can be constructed by selectively saving parts
of one or more existing files with the MERGE option.
Lines to be saved can be identified by either a line number
or a search criteria.

t If the permanent file to be discarded has been attached, the owner's name must not be specified; including the name causes
the diagnostic: ERR- TOO MANY PARAMETERS.

60455960 A 6-15

Tne merge function is accomplished by adding a param­
eter to the SAVE command each time a specific file is
referenced.

MERGE or M

For example, assume that you have an existing COBOL
program in the edit file and an existing subroutine
ERR EXIT on another file. Use the MERGE parameter to
make the subroutine part of the program file named BOTH
for execution through the RUN command.

(COBOL program in edit file)

•• SAVE,BOTH,MERGE,NOSEQ

Saves main program without line numbers

•• EXIT,ERREXIT,SEQ

Moves subroutine to edit file area

•• SAVE,BOTH,MERGE,NOSEQ

Adds subroutine without line numbers to
main program

•• EDIT,BOTH,SEQ

Moves merged file to edit file area

•• LIST,ALL,/*EOR/

Looks for *EOR

160 = *EOR

•• DELETE,160

Deletes *EOR

•• RUN,COB

Executes program

Line 160 shows *EOR when the merged file is listed. This
end-of-record indicator is written by EDITOR after the
last line of any item copied by SAVE execution. *EOR
cannot be inhibited.

Since, in the preceding example, an end-of-record indi­
cator would prohibit successful execution, the line con­
taining *EOR must be deleted. In other instances, such as
creating a batch job deck by merging a control statement
record with a file containing a source language program,
the end-of-record would be required.

The simplest way to delete any unwanted end-of-record
indicators uses the DELETE command with search cri­
teria. Otherwise the user must list the file to determine
the specific line number to be deleted.

6-16

•• EDIT,BOTH,SEQ Loads merged file into
the edit file.

•• DELETE,ALL,/*EOR/,(l) Searches for and de­
letes all lines with
characters *EOR begin­
ning in column I •

If you know the approximate size of two merged files,
restrict the search for a line to be deleted to a reasonable
range to decrease execution time. If a file with
approximately 200 statements is merged with a second
file of 50 statements, the following statement could be
entered (assuming that both files had default sequence
number increments).

•• DELETE,2000,2200,/*EOR/,(1)

MERGE should be included on the first SAVE of a file
under. construction if information is to be written at the
end. Loss of information may result if MERGE is omitted·
for the following reasons: SAVE without a MERGE
parameter concludes execution with a rewind of the
named file, so current file position becomes the beginning
of information. Any time MERGE is used, the new
material is written starting at the current file position on
the assumption that the preceding MERGE left the file
positioned at end of information. Consequently,a default
OVERWRITE occurs if MERGE is not used on the first file
reference •

The following sequences illustrate an unsuccessful and a
successful MERGE.

•• EDIT,PROG
•• SAVE,NEW
•• EDIT,SUB
•• SAVE,NEW,MERGE

•• EDIT,PROG
•• SAVE,NEW,MERGE
•• EDIT,SUB
•• SAVE,NEW,MERGE

File PROG is copied to
NEW and NEW is re­
wound.

SUB is copied at the
beginning of NEW,
thereby destroying
NEW.

File PROG is copied to
NEW and NEW is left
positioned at end •

SUB is copied after
PROG, and NEW is left
positioned at end.

The NOSEQ parameter is not required with MERGE, but
MERGE and NOSEQ often are used together as discussed
under the NOSEQ option. The presence or absence of line
sequence numbers has no effect on the file as saved. An
EDIT of the merged file, however, requires ascending
sequence numbers.

The following commands illustrate a common sequencing
error when MERGE is used.

•• EDIT,PROG,SEQ
•• SAVE,NEW,MERGE
..EDIT,SUB,SEQ
•• SAVE,NEW,MERGE
•• EDIT,NEW

In this instance, both the files PROG and SUB had default
line numbering, beginning with IOO and incrementing by
10; line numbers on the merged file NEW are duplicated
and cannot be used for edit file purposes. The resulting
error message is ERR- LINE NUMBERS OUT OF SE­
QUENCE •. Add the NOSEQ parameter to each SAVE of
file NEW and subsequently use EDIT with the SEQ
parameter.

60455960 A

Normally, the first SAVE command with MERGE is the
first reference to a particular file name; any file existing
as a local file can be merged by first using the EDIT
command to transfer the file into the edit file, then
executing a SAVE command with MERGE parameter. If
the local file is to be retained in its entirety, however,
information can be merged at the end.

For example, assume a large local file named BIG FILE
exists. The current edit file contains information to be
merged at the end. To add the new information without
first moving BIG FILE to the edit file, the system control
statement SKIPF can be used; without the 7777 param­
eter, BIG FILE would be positioned after the first *EOR
encountered.

.. SKIPF ,BIGFILE,7777

.• SAVE,BIGFILE,MERGE

Moves current position
to end of existing file.

The resulting file still has the *EOR at the end of the
original BIGFILE data.

NOSEQ OPTION Of SAVE

Each line of the edit file has a unique line number
associated with it. SAVE execution preserves these
numbers, unless the NOSEQ option is selected to suppress
the numbers.

Saving. a file with line numbers does not interfere with
compiler action under FORMAT, COBOL conditions, since
the compiler uses only 72 characters of input and the line
numbers appear in columns 73 through 78. Under other
FORMAT settings, however, or when data for program
execution is being generated, line numbers may interfere
with the interpretation of the file.

This option can appear any place after the file name of
the SAVE command.

NOSEQ or N

NO SEQ is frequently used with the MERGE option when
parts of several files are being written as one file, since
the line numbers of any file to be edited must be in
ascending sequential order.

For example, an existing file has line numbers 100 to 500.
It is to be merged into the current edit file which has line
numbers 100 to 300 and then edited. In the following
sequence of commands, the user must know the highest
number in the current edit file and call for renumbering of
the second file accordingly.

.. SAVE,NEWFILE,MERG E

.. EDIT,OLDFILE
•. RESEQ,310,10
.• SAVE,NEWFILE,MERG E
.. EDIT,NEWFILE

The same results could be accomplished by one less user
command and without the need to know any line numbers
in the current edit file.

.. SAVE,NEWFILE,MERG E,NOSEQ

.. EDIT,OLDFILE
•. SAVE,NEWFILE,MERGE,NOSEQ
.. EDIT,NEWFILE,SEQ

60455960 A

STORE COMMAND

STORE is an INTERCOM command that makes a local file
a permanent file. Permanent files, unlike local files, are
preserved at the central site when you enter a LOGOUT
command. They can be accessed in the future by entering
a FETCH command.

STORE is used to make a file permanent. Use STORE
when you are going to use the same program at successive
terminal sessions, or when many users are going to access
the same program at different times. Also use STORE
when a message from the central site says INTERCOM is
going down for a short time, and you have not finished
your tasks.

Permanent files tie up system resources. Do not use them
needlessly .

Experienced users often use the control statement CATA­
LOG in place of STORE. STORE is adequate and simpler
to use, but your instructor may have all your class files
cataloged with one name.

STORE FORMAT

Normally, STORE format is as follows. No abbreviations
or optional parameters exist. At some installations,
another format is required.

STORE,file,owner

file Name of any local file.

owner Identification of the file own­
er. Usually this is your name,
restricted to 1 to 9 letters.

Use the FETCH command to make a permanent file local
and the DISCARD command to destroy the file. The file
and owner parameters are required for these commands.

Assume a file made permanent with: STORE,EX-
AMP,SMITH

Access file: FETCH,EXAMP,SMITH

or

Destroy file: DISC ARD, EXAMP ,SMITH

Only local files can be made permanent. If you have
created a file using EDITOR, first make the temporary
edit file a local file before making it permanent.

A file you have just made permanent is still available as a
local file. Execution of the FILES command shows the
name with a preceding asterisk, showing it to be an
attached permanent file .

TEACH COMMAND

TEACH is a utility that summarizes INTERCOM opera­
tion, commands, and syntax. It consists of a series of
displays about various topics •

6-17

The main TEACH display lists five items that can be
examined:

• How to use INTERCOM

• How to use the terminal

• An interactive command

• An editor command

• A remote batch command

The display includes further instruction for using TEACH
itself, as well as INTERCOM use.

Call TEACH if you need help in using commands.

TEACH FORMAT

To use TEACH, enter the command:

TEACH

After the main display of TEACH appears, select an item
for examination by typing the number of the item desired
and pressing the RETURN key. The first page of the item
chosen then appears.

At the end of each page displayed, this line appears:

TO CONTINUE TYPE- GO. TO END TYPE- END.

The typing element remains at the end of the line. If you
type GO, the next page of the current item is displayed.
If the current item has no continuation, the main display
of TEACH reappears.

To terminate the TEACH utility from the midst of an
item sequence; type END. If the main display reappears,
type END to exit from TEACH itself. END terminates
TEACH only when the main display is waiting for you to
type an item number or END.

If input response to the main TEACH display is not an
item number or the word END, an error diagnostic appears
with a request for a correct response. The typing element
remains at the right.

If the display is waiting for a user GO or END, an invalid
type-in gives the message:

INVALID REQUEST. TYPE GO OR END

A full entry of GO or END is required. Abbreviations
cannot be used during TEACH operation.

/oldtext/=/newtext/ COMMAND

This EDITOR command allows a string of 1 to 20
characters in the edit file to be replaced by another
character string. The strings may be the same or
different lengths.

The /oldtext/=/newtext/ command is useful for changing
the content of a line as well as correcting errors.

6-18

For example, when only part of a line is in error, the
incorrect characters can be changed without reentering
the whole line. If a correct line. begins in the wrong
column, increase or decrease blanks before a word,
thereby changing word position. If the same change is to
be made in several lines, EDITOR locates and changes all
occurrences.

The text to be replaced must be contained within a single
line of the edit file. As many as 20 characters can be
specified in either the original text or new text.

The tab character used in CREATE or ADD line entries is
not recognized as a tab character with this command.
The tab character is simply another character in. a
replacement string; it does not change a line position
indicator.

At the end of command execution, the system specifies
the number of changes made.

n CHANGES

If the message is 0 CHANGES when you expected at least
1, check that you have specified the proper line range,
column number, and text string.

/oldtext/=/newtext/ FORMAT

The minimum parameters for the command that replaces
a character string are:

/oldtext/=/newtext/ ,linenum

oldtext

newtext

linenum

String of 1 .to 20 characters to
be replaced.

String of 0 to 20 characters to
replace an existing string.

Line number, or range of line
numbers, to search for oldtext.
It may have any of the follow­
ing formats:

ALL

line number

line-l , line-2

line-I, LAST.

The delimiter must not be part of the string. Any
characters are allowed.

Optional parameters can restrict the search for the
/oldtext/ character string to a column position or a UNIT
string, as they can with LIST and DELETE.

VETO OPTION OF /oldtext/=/newtext/

The VETO parameter of the text replacement command
defers execution of the command until the user examines
the projected result and authorizes command completion.
It is used in the same way as the VETO parameter of the
DELETE or SAVE commands of EDITOR.

60455960 A

VETO is initiated by EDITOR in the absence of a user
parameter whenever the text search 01' replacement string
exceeds the system limit of 20 characters.

Format of the option is simply the parameter name. It
can appear anywhere after the replacement text.

VETO or V

When VETO is selected:

J. EDITOR finds a line with characters to be
replaced and displays the line that would
result from execution.

2. User examines the line and accepts or
rejects the change with a YES or NO type­
in.

3. EDITOR continues by searching for next line
with characters to be replaced.

The user controls acceptance of any line displayed by
entering one of the following:

YES or Y Change line as displayed.

NO or N Do not change displayed line. Actu­
ally, any character other than Y or C
is acceptable in place of NO.

CONTINU E Change this line as displayed, then
or C continue with any subsequent change

without displaying lines.

The VETO option is helpful to beginners in several ways.
You can use VETO to verify that text replacement
produces the results expected. More important, however,
using VETO helps avoid common errors in the text strings
entered.

Even after gammg confidence in using the text replace­
ment command, continue VETO selection any time file
contents are not known completely or when all occur­
rences of a text search string are not to be changed.

VETO combined with the UNIT parameter can be a
powerful tool in correcting errors in a program. For
example, assume that you had intended using a MOVE
CORR statement to reformat your input data. Conse­
quently, records INFILE and FORMATFILE have the same
field names. Later you decide not to use the CORR
option and want to Change the INFILE field names to
make them unique. Alternate ways of doing this include:
entering a separate command for each line to be changed
(this requires knowing the line number of each statement
that must be changed) or entering one command to change
all occurrences of the field name using the UNIT and
VETO options.

*EOR AND *EOF

*EOR and *EOF are special EDITOR entries. Their use
during edit file creation provides special indicators that
can be interpreted by other system routines as operating
system logical records or file delimiters. All files have an
ending terminator. Only for particular circumstances
would the user need to indicate a file end, since

60455960 A

INTERCOM supplies it for the user. These two symbols
are useful, however, since they increase program options
and, in the case of permanent files, can conserve system
resources.

Beginning programmers often find the words record and
file confusing. Consistency exists within routines internal
to INTERCOM and the operating system, but this con­
sistency is not always apparent to a user. What the user
thinks of as a file of individual records appears to part of
the operating system as a single record in a file and to
other parts as a file. The issue is further complicated by
record and file boundaries that can be interpreted by an
internal routine when a user is not aware that the
boundary existed.

The best advice for handling this situation is simply to
accept apparent inconsistencies. For any given situation,
learn the entry you must make to achieve the desired
results. You must enter an *EOR line to execute the AT
END imperative on a file named INPUT, but you must
enter an *EOF line to execute it on a file with names such
as INFILE. For now, use the specific character string in
the circumstances listed in the following text. *EOR and
*EOF are applicable only as entries into the edit file.

The *EOR statement is used to execute the AT END
imperative for a file named INPUT or to separate system
logical records in a file prepared for BATCH execution.
*EOR is the equivalent of a punch card with 7/8/9
multipunched in column 1.

EDITOR writes the equivalent of *EOR (7/8/9) at the end
of any file referenced in a SAVE command.

The *EOF statement is used to execute the AT END
imperative for files with names other than INPUT or to
indicate the end of a file for reference by a COpy
routine.

*EOF is the equivalent of a punch card with 6/7/8/9
multipunched in column J. INTERCOM writes an end-of­
file indicator as appropriate for other INTERCOM com­
mands.

When the user enters a SAVE command with MERGE
parameter, EDITOR writes an end-of-record indicator to
the local file. By returning the saved file to the edit file
and listing it, you can see this indicator causes an *EOR
line to be created, with a line number assigned.

The end-of-record and end-of-file indicator exist after the
second merge, but they are used internally and arc not
displayed with the edit file.

It is important to realize that the character string *EOR
or *EOF exists only in the temporary edit file. When
EDITOR makes the file local, or copies it for submission
to a compiler, the terminators are translated to a format
used internally by system routines. The characters *, E,
0, and R exist only in the edit file.

A test in a program for a character string *EOR will not
be successful. The function that tests for end of data
read by a COBOL program is the AT END imperative.

On the other hand, an EDITOR command to find and
delete the character string *EOR and *EOF is possible.

6-\9

Attach

Batch Processing

Central Site

Command

Command Mode

Connected File

Edit File

60455960 A

GLOSSARY

Execution of a FETCH or ATTACH
command to make a permanent file
available for use at the terminal.

Execution by submission of a series
of statements in a job deck, or
deck image, starting with a job
statement and ending with an end­
of-information indicator. Contrast
with execution through INTERCOM
where a single statement is exe­
cuted independently of any other
statement.

The location of the CDC CYBER
170, CYBER 70, or 6000 Series
computer running INTERCOM and
user programs. It may be many
miles away or in another room in
the same building. Equipment at­
tached to the system includes card
readers, line printers, tape units,
mass storage, and communication
equipment for remote terminals.

The form of an instruction to IN­
TERCOM. It is terminated by
pressing the RETURN key.

The initial state of INTERCOM
after LOGIN. The word COM­
MAND appears to the left of a line
when INTERCOM can accept
another command. Contrast with
editor mode.

A file equated with the terminal.
Input file data must be entered
from the keyboard; output file data
is displayed immediately. No copy
of the file data remains in the
system.

Temporary work area that holds
files being created or updated
through the EDITOR utility of IN­
TERCOM. Contrast with local file
and permanent file.

Editor Mode

Interactive
Processing

Local File

Operating System
Command

Permanent File

Remote Terminal

Terminal Session

A

The state of INTERCOM existing
after the EDITOR utility has been
called. A file can be created or
modified in the edit file work area.
Contrast with command mode.

Utilization of connected files dur­
ing program execution. The pro­
gram must expect keyboard input;
execution is suspended until input
is entered. Output is displayed
immediately.

A file available for reference in
INTERCOM commands. Appears
under category LOCAL FILES when
FILES command is executed.

Attached permanent files, con­
nected files, and files referenced in
the SAVE command are local files.
A file becomes a local as a result
of the LOCAL disposition of the
BATCH command. Local files are
destroyed by the LOGOUT com­
mand, unless they are permanent
files. Contrast with permanent file
and edit file.

A command that is passed to other
portions of the operating system
for execution instead of execution
by INTERCOM.

A file that exists from one ter­
minal session to another. It is
stored at the central site on mass
storage. When called to the ter­
minal in a subsequent session, it is
said to be an attached permanent
file. Contrast with local file and
edit file.

A teletypewriter or display ter­
minal connected to the central site
computer through INTERCOM use
of communication equipment.

The period between execution of a
LOGIN and LOGOUT command.

A-I

STANDARD CHARACTER SETS

Control Data opemting systems offer the following
variations of a basic character set:

CDC 64-character set

CDC 63-character set

ASCII 64-character set

ASCII 63-character set

The set in use at a particular installation is specified when
the operating system is installed.

Depending on another installation option, the system
assumes an input deck has been punched either in 026 or
in 029 mode (regardless of the character set in use).
Under NOS/BE 1, the alternate mode can be specified by
26 or 29 punched in columns 79 and 80 of the job
statement or any 7/8/9 card. The specified mode remains
in effect through the end of the job unless it is reset by
specification of the alternate mode on a subsequent 7/8/9
card.

Graphic character representation appearing at a terminal
or printer depends on the installation character set and
the terminal type. Characters shown in the CDC Graphic
column of the standard character set table are applicable
to BCD terminals. ASCII graphic characters are appli­
cable to ASCII-CRT and ASCII-TTY terminals.

60455960 A

I NOTE I
In table A-I, characters identified by the
heading CDC Graphic are applicable to
BCD-CRT models 214-11, 214-12, 217-11,
731-12, and 732-12.

Characters identified by the heading ASCII
Graphic are applicable to ASCII (CRTs and
TTYs) as follows:

ASCII-CRTs

217-13, 217-14, 731-12, 732-12

711-10

714

733-10

ASCII-TTYs

Model 33, 35, or 38 Teletype

713-] 0

B

B-1

tp
""

'" o
.;.
<:J1
<:J1
~

'" o

:.>

CDC

Graphic

:t
A

B
C

o
E
F

G
H

I

J
K

L
M

N
o
P
Q

R
S
T
U
V
W
X
y

Z

o
1

2
3
4
5

ASCII

Graphic DIsplay

Subset Code

A

B

C
o
E
F

G
H

I
J
K

L
M

N
o
P
Q

R
S
T
U

V

W

X
y

Z

o
1

2
3
4
5

OOtt
01

02
03
04
05
06
07
10
11
12
13
14
15
16
17
20
21
22
23
24
25
26
27
30
31
32
33
34

35
36
37
40

STANDARD CHARACTER SETS

Hollerith I External I ASCII

Punch
(026)

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8

12-9
11-1
11-2
11-3
11-4

11-5
11-6
11-7

11-8
11-9
0-2
0-3
0-4
0-5

0-6
0-7
0-8

0-9
o
1

2
3
4
5

BCD

Code

00
61
62
63
64
65
66
67
70
71
41
42
43
44

45
46
47

50

51
22
23
24

25
26
27
30
31
12

01

02
03
04
05

Punch I ASCII
(029) Code

8-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
11-1
11-2
11-3
11-4

11-5
11-6
11-7
11-8
11-9
0-2
0-3
0-4
0-5

0-6
0-7
0-8
0-9

o
1

2
3
4
5

072

101
102
103
104
105
106
107
110
111

112
113
114
115
116
117
120
121
122

123
124
125
126
127
130
131
132

060
061
062
063
064
065

CDC

Graphic

6
7

8
9
+

*

(

)

$

blank

, (comma)

. (period)

%

*-
~

v

ASCII

Graphic

Subset

6
7
8
9
+

*
/
(

)

$

blank
, (comma)

. (period)

[

J

%
" (quote)

(underline)

1\ &
t I (apostrophe)

-l-

< <

> >
::;; @

~
-, ----(circumflex)

; (semicolon) ; (semicolon)

Hollerith I External

Display

Code

Punch

(026)

41 6
42 7
43 8
44 9
45 12
46 11
47 11-8-4
50 0-1
51 0-8-4
52 12-8-4
53 11-8-3
54 8-3
55 no punch

56 0-8-3
57 12-8-3
60 0-8-6
61 8-7
62 0-8-2
63tt 8-6
64 8-4
65 0-8-5
66 11-0 or

11-8-2ttt

67
70
71
72

73
74
75
76
77

0-8-7
11-8-5
11-8-6

12-0 or

12-8-2ttt
11-8-7

8-5
12-8·5
12-8-6
12-8-7

BCD

Code

06
07
10
11
60
40
54
21
34
74

53
13
20
33
73
36
17
32
16
14
35
52

37
55

56
72

57
15
75
76
77

ASCII

Punch

(029)

6
7
8
9

12-8-6
11

11-8-4
0-1

12-8-5
11-8-5
11-8-3

8-6
no punch

0-8-3
12-8-3

8·3
12-8-2
11-8-2
0-8-4
8-7

0-8-5
12-8-7 or

11-0ttt

12
8-5

0-8-7
12-8-4 or

12-0ttt
0-8-6
8-4

0-8-2
11-8-7
11-8-6

tTwelve or more zero bits at the end of a 60-bit word are interpreted as end-of-line mark rather than two colons. End-of-line
mark is converted to external BCD 1632.

ASCII

Code

066
067
070
071
053
055
052
057
050

051
044
075
040
054
056
043
133
135
045
042
137
041

046
047

077
074

076
100
134
136
073

ttln installations using a 63-graphic set, display code 00 has no associated graphic or card code; display code 63 is the colon (8-2 punch).
The % graphic and related card codes do not exist and translations from ASCII/EBCDIC % yield a blank (558).

tttThe alternate Hollerith (026) and ASCII (029) punches are accepted for input only.

Accessing INTERCOM 2-1
ADD 4-10; 6-1
Attached files 3-4
AUDIT 6-2

BATCH 6-3
BYE 6-5

COBOL file linkage
Data division 5-2
Environment division 5-1
Procedure division 5-2

Command names 3-2
Communication links 2-1
CONNECT 5-7; 6-5
Connected files 3-6; 5-6
CREATE 4-1; 6-6
CTRL M 2-6
CTRL X 2-6
CTRL Z 2-6

Data division 5-2
DELETE 4-11; 6-6
DISCARD 6-7
DISCONT 5-7

EDIT 4-9; 6-8
Edit file 3-8
EDITOR 3-7; 6-9
Entering programs 1-1
Environment division 5-1
Executing programs 1-1

FETCH 4-6; 6-9
File

Creation 4-1
Editing 4-7
Elimination 4-4
Execution 4-1
Preservation 4-4

FILES 6-9
Files

Attached 3-4
Connected 3-6; 5-6
Local 3-4; 5-2

60455960 A

INDEX

Permanent 3-6
Special 3-6

FORMAT 4-2; 6-10

Hardware operation 2-1

LINE FEED key 2-6
linenum =newtext 4-10
LIST 4-1; 6-11
Local files 3-4; 5-2
LOGIN 2-1
LOGOUT 2-3

/oldtext/=/newtext/ 4-7; 6-18
Operating principles 3-1

Permanent files 3-6
Procedure division 5-2

RESEQ 6-12
RETURN 4-5; 6-12
RETURN key 2-6
REWIND 6-13
RUN 4-3; 5-3; 6-13

SAVE 4-5; 6-14
Special files 3-6
STORE 4-6; 6-17

TEACH 6-17
Teletypewriter operation 2-3

A 3-7
%A 2-6
%EOF 2-6
*EOF 6-19
%EOR 2-6
*EOR 6-19
%S 2-6

Index-l

w
Z
:;
CI
Z o
...I «
I­
::J
U

<i.
ui
::J
Z

o
W
I­
Z
a:
r:L

..
:>
III
It

COMMENT SHEET

MANUAL TITLE CDC INTERCOM Version 5 Interactive Guide for Users of COBOL

PUBLICATION NOloI6:.wO ... 4J,L5""591L,!6.uOl--___ _ REVISION _..&.A:..... ___ _

FROM: NAME: ___ __

BUSINESS ADDRESS: _________________________________ __

COMMENTS:
This form is not intended to be used as an order blank. Your evaluation of this manual will be welcomed
by Control Data Corporation. Any errors, suggested additions or deletions, or general comments may be
made below. Please include page number references and fIn in publication revision level as shown by the
last entry on the Revision Record page at the front of the manual. Customer engineers are urged to use
the TAR.

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

FOLD ON DOTTED LINES AND STAPLE

STAPLE STAPLE

_ ~Ol~ __ ~ _______________________________ ' ____ ~_~

BUSINESS REPlY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
ARH219
4201 North Lexington Avenue
Saint Paul, Minnesota 55112

I
FIRST CLASS I

PERMIT NO. 8241

MINNEAPOLIS, MINN.

--1 FOLD FOLD
I
1
I
I
I
I
f

w
Z
:;

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.
SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

<€:~
CONT~OL DATA CO~OR(\TION

