CONTROL DATA ${ }^{\circ}$

 CYBER 70 SERIES MODELS 72/73/74 6000 SERIES COMPUTER SYSTEMSKRONOS 2.1
INSTANT MANUAL

CONTROL DATA ${ }^{\circledR}$ CYBER 70 SERIES MODELS 72/73/74 6000 SERIES COMPUTER SYSTEMS

KRONOS ${ }^{\circledR} 2.1$ INSTANT MANUAL

RECORD of REVISIONS	
REVISIoN	Notes
A	Manual released.
$(12-15-73)$	

Publication No. 60407200 © 1973 by Control Data Corporation Printed in the United States of America

Address comments concerning this manual to:

Control Data Corporation

Technical Publications Department
4201 North Lexington Ave.
Arden Hills, Minnesota 55112
or use Comment Sheet in the back of this manual.

PREFACE

The KRONOS ${ }^{\circledR}$ Time-Sharing System provides four types of job processing to users of CONTROL DATA ${ }^{\circledR}$ CYBER 70 Series Model 72, 73, or 74 or CONTROL DATA ${ }^{\circledR} 6000$ Series Computer Systems.

- Local batch processing
- Remote batch processing
- Time-sharing processing
- Deferred batch processing

This manual provides condensed descriptions of console commands, control cards, central memory tables, function requests, machine instructions, external function codes, and character sets for analysts, programmers, and operators. The following manuals provide more detailed descriptions of these subjects.

| Control Data Publication | Publication No. |
| :--- | :---: | :---: |
| KRONOS 2.1 Reference Manual | 60407000 |
| KRONOS 2.1 Operator's Guide | 60407700 |
| KRONOS 2.1 Installation Hand-
 book | 60407500 |
| COMPASS 3.0 Reference Manual | 60360900 |
| 6400/6500/6600 Computer Systems
 Reference Manual | 60100000 |
| CYBER 70/Model 72 Computer
 System Reference Manual | 60347000 |
| CYBER 70/Model 73 Computer
 System Reference Manual | 60347200 |
| CYBER 70/Model 74 Computer
 System Reference Manual | 60347400 |
| ECS Description/Programming
 Manual | 60347100 |

ψ
ν
\checkmark
v
v

0

CONTENTS

CONSOLE COMMANDS
System Display (DSD) Commands 1-1
DSD Description 1-1
Display Selection 1-1
Special First Character Entries 1-3
Control Characters 1-5
System Display Commands 1-5
Dayfile Commands 1-6
Job Processing Control Commands 1-6
Peripheral Eauipment Control Commands 1-11
BATCHIO Buffer Point Control Commands 1-13
Subsystem Control Commands 1-14
System Control Commands 1-15
Memory Entry Commands 1-18
Channel Control Commands 1-18
Keyboard Messages 1-19
Job Display (DIS) Commands 1-19
DIS Description 1-19
Display Selection 1-19
Other System Display Commands 1-21
Special First Character Entries 1-21
Control Characters 1-22
Keyboard Entries 1-22
PP Call Commands 1-25
Keyboard Messages 1-26
File Editor (O26) Commands 1-26
O26 Description 1-26
Special First Character Entries 1-26
Messages 1-27
System Commands 1-27
File Commands 1-28
Line Entry and Data Move 1-29
Display, Tab, Scan Control Commands 1-30
Line, Record Search Commands 1-30
Replace Commands 1-31
Miscellaneous Commands 1-32
CONTROL CARDS
Product Set Control Card Formats 2-1
System Control Card Formats 2-3
CENTRAL MEMORY
Central Memory Resident 3-1
Central Memory Layout 3-1
Pointers and Constants 3-2
Control Point Area 3-5
Exchange Point Area 3-8
PP Communication Area 3-9
Dayfile Buffer Pointers 3-9
Central Memory Tables 3-10
Job Communication Area 3-18
System Sector Format 3-19
Rollout File 3-21
PPU Memory Layout 3-23
PP0- System Monitor (PPU Portion) 3-23
PP1-System Display Driver (DSD) 3-24
P001 Processors 3-25
Equipment Codes 3-25
Deadstart Panel Settings and Options 3-26
Deadstart Panel Settings 3-26
Word 13 and 14 Options 3-27
Mass Storage Data Organization 3-28
6603 and 6603- MOD 1 Disk Files 3-28
6638 Disk Files 3-29
3637/3436/863 Drums 3-30
3234/853/854 Disk Drives 3-31
Extended Core Storage (ECS) 3-32
3234/813/814 Disk Files 3-33
3553-1/821 Disk Files 3-34
7054/844 Disk Storage Subsystems 3-35
3553-1/841-N Multiple Disk Drives 3-36
FUNCTION REQUESTS
PPU Function Requests 4-1
MTR Functions 4-1
CPU MTR Functions 4-9
CPU Function Requests 4-18
Function Processors 4-24
CIO- Combined Input/Output 4-24
CPM- Control Point Manager 4-31
LFM- Local File Manager 4-33
SFM- System File Manager 4-35
PFM- Permanent File Manager 4-36
INSTRUCTIONS
Peripheral Processor (PPU) InstructionFormats5-1
PPU Instruction Formats 5-1
Symbols Used in PPU Instruction Listings 5-1
PPU Instructions 5-2
Central Processor (CPU) Instruction Formats 5-8
CPU Instruction Formats 5-8
Symbols Used in CPU Instruction Listings 5-8
CPU Instructions 5-9
Instruction Execution Times - CDC
CYBER 70/Models 72, 73, 74 5-22
Instruction Execution Times - 6400/6500/ 6600 5-25
EXTERNAL FUNCTION CODES
External Function Codes and Status Responses 6-1
6612 Console Display 6-1
6603 Disk System 6-2
6638 Disk System (6639 Disk Controller) 6-3
6681 Data Channel Converter 6-3
(3000 Series Interface) 6-5
6682 / 6683 Satellite Coupler 6-7
6684 Data Channel Converter 6-7
6411/6414 Augmented I/O Buffer and Controller 6-9
6671 Data Set Controller 6-9
6676 Data Set Controller 6-11
6673/6674 Data Set Controller 6-12
7054 Disk Storage Controller 6-13
7618/7628 Magnetic Tape Controller 6-14
Distributive Data Path 6-16
3000 Series Peripheral Equipment Codes 6-17
3127/322X/342X/362X Magnetic Tape Controller 6-17
3518/3528 Magnetic Tape Controller 6-19
3446/3644 Card Punch Controller 6-21
3447/3649 Card Reader Controller 6-22
3152/3256/3659 Line Printer Controller 6-23
3555-1 Line Printer Controller 6-24
3436/3637 Drum Controller 6-26
3234 Mass Storage Controller 6-28
3553 Disk Storage Controller 6-30
KRONOS 2.1 Character Sets
Character Set for Time-Sharing Terminals 6-33
KRONOS 2.1 Standard Character Set 6-36
ASCII/Display Code and EBCDIC/Display Code Conversion 6-38

SYSTEM DISPLAY (DSD) COMMANDS

DSD DESCRIPTION

DSD is an interpretive display driver. When a console operator is typing a command, DSD completes the command as soon as it recognizes enough characters to establish the uniqueness of the command. Moreover, DSD does not accept or display illegal characters.

display selection

The system displays can be selected by the console command:
x. CR
or
xy. (CR
where x and y represent the letter designations of the displays; x appears on the left screen and y on the right. If x and y are identical, both screens display the same information.

Letter

Designation	Display Dayfile \dagger	Chronological history of operation; includes the system (A, .) display, the account (A, ACCOUNT
FILE.) display, and the		
error log (A, ERROR		
LOG.) display.		

[^0]

[^1]Letter

- $\frac{\text { Designator }}{\mathrm{N}}$

O Transaction Status of Transaction status

P PP communications area

Queue status

$\frac{\text { Display }}{\text { File display }}$
PP comm cations ar
Q

R Export/Import status Subsystem.
Current contents of PPU registers.
Status of input/output/ rollout queues.
Status of remote batch operations.
S System control
Parameters used to information

Time-sharing status control job flow.

Z

Status of time-sharing job processing.
Lists all monitor mnemonics and codes.
List of the letter designators and description of all DSD displays.

SPECIAL FIRST CHARACTER ENTRIES

*

$+$

Alternates display control between DSD and DIS each time * key is pressed
Alternates left screen display between its absolute and relative setting (applicable only to memory displays C, D, F, or G)

Advances left screen display as follows:

Memory (C, D, F, or G)	Advances display ad- dress by 408.
H	Advances to next page of FNT display.
N	Advances file displayed by one sector.
P	Advances to next page of P display.
R,T	Advances to next page of R or T display.

	A, J, K, L	Advances control point number of controlpoint oriented display.
	Decrements left screen display as follows:	
	Memory (C, D, F, or G)	Decrements display address by 408 .
	H	Decrements FNT display one page.
	N	Backspaces file displayed by one sector.
	P	Decrements one page of P display.
	R, T	Decrements one page of R or T display.
	A, J, K, L	Decrements control point number of con-trol-point oriented display.
right blank (display)	Advances left screen display sequence established by SET command.	
1	Advances lef play by the v of the first w	screen memory disue in the lower 18 bits rd displayed.
(Advances rig for + key.	t screen as described
)	Decrements cribed for -	ight screen as desey.
CR (carriage return)	Sets repeat quent entry i erased after cleared by pr (erase) key.	try flag. The subseprocessed but not ompletion. Flag is essing the left blank

CONTROL CHARACTERS

left blank (erase) Clears current keyboard entry and BKSP any resultant error messages. (clear) Deletes last character typed and clears error messages. CR Initiates processing of entered (carriage command.	
return)	

SYSTEM DISPLAY COMMANDS

H, x.
mx, aaaaa.

Specifies the type of files to appear on the H display:
$x \quad$ File type:

A	All files
C	Common files
I	Input files
O	Output files
P	Punch files
R	Rollout files
T	Timed/event rollout files
n	Control point number

Sets control-point oriented display m (A, J, K, or L) to display only control point n information.
n Control point number
$\mathrm{m} \quad$ Letter designation of a storage display (C, D, F, or G).
$x \quad$ Type of display modification:
$x=0-3$ Changes the specified group to display the eight words beginning at location aaaaaa
$x=4 \quad$ Changes the entire display to display the memory contents beginning at location aaaaaa
$x=5 \quad$ Increments the display by aaaaaa locations
$x=6$ Decrements the display by aaaaaa locations
aaaaaa Location parameter (as explained previously)

SET, ssss.	Preselects left screen display se- quence
ssss	Letter designating any four DSD displays. Pressing the right blank key after SET is
entered causes each display	
to appear on the left console	
screen in the sequence spe-	
cified by ssss.	

DAYFILE COMMANDS

A.
A..

Resets the A display to the beginning of the system dayfile buffer.
Resets the A display to the system dayfile when the error log dayfile, account dayfile, or one of the control point dayfiles is currently being displayed.
A, ACCOUNT Displays the account dayfile buffer FILE.
A, ERROR LOG.

ACCOUNT, xx.

DAYFILE,xx. on the left console screen.

Displays the error log dayfile buffer on the left console screen.

Requests that account dayfile be dumped to equipment $x x$.

Requests that the system dayfile be dumped to equipment $\mathbf{x x}$.

ERRLOG,xx. Requests that error log dayfile be dumped to equipment xx.

JOB PROCESSING CONTROL COMMANDS

n. CKP.	Requests checkpoint of job at control point n .
CPxx, yy.	Assigns a numeric identifier yy to card punch xx.
CRxx, yy.	Assigns a numeric identifier yy to card reader $x x$.
DELAY, t_{1}	Changes system delay parameters:
xxx, ...,	t_{i} Delay
	JSxxx Job scheduler delay interval in seconds
	CRxxx CPU recall period in milliseconds

ARxxx	PPU auto recall in-
terval in milliseconds	

JAxxx Job advance interval in milliseconds
CSxxx \quad CPU job switch interval in milliseconds
n. DROP. Drops the job currently assigned to control point n.
DUMP, xx,yy. Requests that all files in the print queue with an assigned identifier yy be dumped to equipment $x x$.
ENID, yy, zzz. Enters identifier; assigns a numeric identifier yy ($0-678$) to the queue type file specified by FNT ordinal zzz.
n. ENPR, xx. Enters CPU priority $x x\left(1-70_{8}\right)$ for job currently assigned to control point n .
n. ENQP, xxxx. Enters queue priority of xxxx (MNPS to MXPS) for the job currently assigned to control point n.
ENPR, xxxx, уyy.
ENQP, xxxx, уyy.
n, ENTL, xxxxx.

LOAD, $x x, y y$.
Enters a priority of $x x x x$ for a file specified by FNT ordinal yyy.

Enters queue priority of $x x x x$ for a queue type file specified by FNT ordinal yyy.

Enters time limit of xxxxx for job currently assigned to control point n.
Requests that a job be loaded from equipment $x x$. Job is assigned identifier yy $\left(0-67_{8}\right)$.
LPxx,yy. Assigns identifier yy (0-678) to the or
LQxx,yy. line printer identified by equipment number xx. LP directs output to 501, 505 , or 512 printers; LQ directs output only to 512 printers.

MSAL, C, Assigns job files of type f_{i} to mass
$\mathrm{f}_{1} \mathrm{xx}, \ldots$,
$\mathrm{f}_{\mathrm{n}} \mathrm{xx}$. storage device xx. Mass storage device specified must be nonremovable, and its current status must be ON. If C is entered, the value specified by the MSAL entry in the IPRDECK (if any) are cleared. If C is omitted and an MSAL entry was specified in IPRDECK, the new values are added to those already specified.
$\frac{\mathrm{f}_{\mathrm{i}}}{\text { LO }} \quad \frac{\text { File Type }}{\text { Local }}$

IN Input
OT Output
RO Rollout
LG LGO
PURGE, xxx. Purges queue type file identified by FNT ordinal xxx from the system.
PURGEALL,t. Purges all files of queue type from the system:

t	File Type
I	Input
O	Output
P	Punch
R	Rollout
T	Timed/event rollout

QUEUE, ot,
$\mathrm{qt}, \mathrm{qp}_{1} \mathrm{xxxx}$,, qp $\mathrm{p}_{\mathrm{xxxx}}$.

Alters the queue priorities associated with the input, rollout, and output queues.

ot	Job Origin Type
SY	System
BC	Local batch
TX	Time-sharing
EI	Export/Import
MT	Multiterminal
qt	Job Queue Type
IN	Input
RO	Rollout
OT	Output
qp	Queue Priority
LPxxxx	Lowest priority at which a job can enter the queue and still be aged (MNPS $\leq x \times x x \leq$ MXPS).
OPxxxx	Original (entry) priority; the entry associated with the job when it initially enters the specified queue.

U Pxxxx Highest priority a job can reach in the specified queue; aging stops when this priority is reached.
INxxxx Number of scheduler cycles before incrementing the job priority by one.
n. RERUN, xxxx.

ROLLIN, $x x x$. Allows job identified by FNT ordinal xxx to be scheduled to an available control point by assigning it maximum queue priority (MXPS).
n. ROLLOUT.
n. ROLLOUT, xxxx.

SERVICE, ot, $\mathrm{p}_{1} \mathrm{xxxx}, \ldots$, $\mathrm{p}_{\mathrm{n}} \mathbf{X X X X}$.

Removes job currently assigned to control point n and places it in the rollout queue; job is not scheduled back to a control point automatically.
Removes job currently assigned to control point n and places it in the rollout queue for xxxx job scheduler delay intervals; job is automatically scheduled back to a control point at this time.
Alters the service limits associated with each job origin type.

ot	Job Origin Type
SY	System
BC	Local batch
TX	Time-sharing
EI	Export/Import
MT	Multiterminal
p_{i}	Service Limits
PRxx	$\overline{C P U}$ priority ($1-708$)
CPxx	CPU time slice (milliseconds * 64)
CMxxxx	Central memory time slice in seconds
NJxxxx	Maximum number time sharing jobs

FLxxxx	Maximum field length/ 100 for any job of the specified job origin type
A Mxxxx	Maximum field length/ 100 for all jobs of the specified job origin type
FCxxxxx	Number of permanent files allowed (1777778)
CSxxxxxx	Cumulative size in PRUs allowed for all indirect access permanent files; maximum of 7777778
FSxxxxx	Size in PRUs allowed for individual indirect access permanent files; maximum of 777778

The following job control commands are used to respond to a job currently assigned to a control point.
n. CFO.ccc Allows the operator to send message ...cce. ccc. . . ccc (36 characters maximum) to the program currently assigned to control point n.
n. COMMENT. Enters comment ccc. . . ccc (120 charccc...ccc. acters maximum) in the dayfile for
or
n. *cec... ccc.
n. GO.
n. OFFSWx. Turns off sense switch ($1 \leq x \leq 6$) at control point n.
n. ONSWx. Turns on sense switch $(1 \leq x \leq 6)$ at control point n.

The following job control commands apply only to time-sharing origin jobs.

DIAL, nnnn, ccc...ccc.

MESSAGE, ccc...ccc.

WARN.

WARN, ccc. . .ccc.

Sends message ccc. . . ccc (48 characters maximum) to terminal currently using line number nnnn.
Changes current header message that is output to terminal when user logs in to ccc. . . ccc (48 characters maximum).

Clears message entered by the WARN, ccc. . . ccc. command.

Sends message ccc. . . ccc (48 characters maximum) to all terminals currently logged into the system.

PERIPHERAL EQUIPMENT CONTROL COMMANDS

n. ASSIGN, $x x$. Assigns equipment $x x$ to job at control point n.

INITIALIZE, Sets initialize status for mass storage xx. device xx. Enter the INITIALIZE command for each device to be initialized and then assign the K display. If more that one device is to be initialized, enter the K. RERUN. command. If the user decides not to initialize the device specified, initialize status can be cleared by entering K. CLEAR.

Device characteristics are:
Device
Definition

Option	Description FN $=$
1-to 7-character family name	
	$1-$ to 7 -character pack name

$\mathrm{UN}=\quad 1$ - to 7-character user number
$\mathrm{TY}=\mathrm{D} \quad$ Initialized device may contain direct and indirect access permanent files.

Device Definition Option	Description
$\mathrm{TY}=\mathrm{I}$	Initialized device may contain only indirect access permanent files.
$\mathrm{TY}=\mathrm{X}$	Initialized device is an auxiliary device.
$\mathrm{DM}=$	3-digit device mask (0-3778)
$\mathrm{NC}=$	Octal number of catalog tracks (power of 2)
EQ =	EST ordinal of device to be initialized.
NP=	Number of physical units to be included in a multispindle device; default is 1.
DN =	2-octal-digit device number (1 to 77) that uniquely identifies the device in its permanent file family.

Track
Flawing
Option
RTK

TTK	Input is the same as
	for RTK, but track
	reservation is toggled.

STK Performs the same function as RTK except that input address is a logical address.

After all necessary parameters have been entered for a specific device, the K.GO. command is entered to begin initialization.

OFFxx. Logically turns off device xx.
ONxx. Logically turns on device $x x$.

SCRATCH, x. Indicates that magnetic tape unit $x x$ should be used to satisfy a request for a scratch VSN tape. The VSN is displayed as SCRATCH although the original VSN is used when the tape is assigned. If the tape is written, the original VSN is retained and not made scratch.
TEMP, xx. Reverses current set or clear condition of temporary file status for mass storage device $x x$.
UNLOAD, $x x$. Logically removes a magnetic tape unit $x x$ or removable mass storage device $x x$ from the operating environment while the operator dismounts a tape or disk pack.
Clears current VSN for tape unit $x x$ and checks if a VSN is specified on that tape; valid only if the unit is not currently assigned.
VSN, xx, Assigns 1- to 6-character VSN aaaaa aaaaaa.
VSN, xx, . to magnetic tape unit $x x$.
Assigns a scratch VSN to magnetic tape unit xx. The VSN is displayed as SCRATCH, and if the tape is written, the VSN in the VOL1 label is written as a scratch VSN destroying any previous VSN.

BATCHIO BUFFER POINT CONTROL COMMANDS

ENDxx.

ENDxx, yy.

REPEATxx.

REPEATxx, yy.

Terminates current operation at BATCHIO buffer point xx. BATCHIO then assigns the next available file to that buffer point or accepts a new job from that buffer point.
Terminates current operation at BATCHIO buffer point xx; yy clears any portion of the repeat count specified for that buffer point.
Repeats the current operation at BATCHIO buffer point $x x$ one time.

Repeats the current operation at BATCHIO buffer point $x x$ the number of times specified by yy (maximum is 77_{8}).

RERUNxx.	Terminates current operation at BATCHIO buffer point xx and reenters the job in the correct queue at a default queue priority.
RERUNxX, yyyy.	Terminates current operation at BATCHIO buffer point xx and reenters the job in the correct queue with queue priority yyyy (MNPS \leq yyyy \leq MXPS).
SUPPRESSxx.	Suppresses automatic printer carriage control at BATCHIO buffer point xx (must be line printer buffer point).
SUBSYSTEM CONTROL COMMANDS	
n. EXPORTL.	Calls Export/Import to control point n (next to last); punch files disposed as follows:
	Entry Response
	n. ONSW 1. Sends all punch files to local batch card punch
	n. ONSW2. Purges all punch files
n. IO.	Calls BATCHIO to control point n (second from last).
n. MAGNET.	Calls the magnetic tape subsystem to control point n (third from last).
n. STOP.	Drops (terminates) subsystem currently assigned to control point n. This command must also be entered in order to drop any job with a queue priority greater than MXPS.
TELEX.	Calls the time-sharing subsystem to control point 1; control options are:
	Entry Response
	1. ONSW 1. When TELEX is terminated (with a 1. STOP command), enters users into recover state and inhibits restarting operations.
	1. ONSW2. Enables TELEX to use the delay queue feature.

1. ONSW 3. Aborts TELEX on all abnormal conditions.
2. ONSW4. Verifies all user's working files upon recovery.
3. ONSW5. Calls DMP, which dumps information to OUTPUT and releases OUTPUT after TELEX is dropped or aborted; (default).

TRANEX. Calls the transaction subsystem to control point 2.

SYSTEM CONTROL COMMANDS

AUTO.	Calls specific subsystems to control points and initiates automatic job processing.
BLITZ.	Drops all but the last control point (system is permanently assigned to the last control point).
CHECK POINT	Rolls out all jobs and transfers con- tents of central memory tables to mass storage.
SYSTEM.	Changes current system date (console keyboard must be unlocked): DATE. yy/mm/dd. Year (0-99) mm Month (1-12) dd \quad Day (1 through number of days in month)
DEBUG.	Reverses the current set or clear condition of debug mode; debug mode provides system origin privilege to validated users and allows modifica- tions to be made to the running system (console keyboard must be unlocked).
n. Calls DIS to control point n.	

ENABLE, x. or
DISABLE, \mathbf{x}.
Enables or disables one of the following options:
$\frac{\mathrm{x}}{\mathrm{ACCOUNT}}$

AUTOROLL | Enables or disables |
| :--- |
| automatic rollout |
| of jobs. |

BATCHIO	Enables or disables BATCHIO subsys- tem.
EI200	Enables or disables Export/Import.
MAGNET	Enables or disables magnetic tape sub- system.
PRIORITY	Enables or disables priority aging.
AGING	Enables or disables
REMOVABLE	automatic label checking for mass
PACKS	storage devices defined as remov- able.
TELEX	Enables or disables time-sharing sub- system.
TRANEX	Enables or disables transaction sub- system.
VALIDATION	Enables or disables user validation.

IDLE. Idles all but the system control point.
K. ccc. . . ccc. Allows entry of data ccc. . . ccc in or
L. ccc...ccc.

LOCK.
MAINTENANCE.

CPU buffer for control when K or L is active.
Locks the console keyboard.
Performs the same function as the AUTO command but also assigns several maintenance routines at available control points and runs them with minimum queue and CPU priorities.

STEP.

STEP, xx.
n.STEP. or
n. STEP, xx.

SYSGO.

TIME. hh.
TIME. hm .

UNLOCK.

Sets monitor in step mode; stops all central memory I/O operations and prevents the system from processing PPU requests when the next monitor function is encountered.
Sets step mode for monitor function xx; stops all central memory I/O operations and prevents the system from processing PPU requests when function $x x$ is encountered.

Sets monitor in step mode for control point n. If $x x$ is present, step mode is set for that monitor function.

Clears pause bit at system control point.

Changes current system time (console must be unlocked):
hh Hour (0-23)
$\mathrm{mm} \quad$ Minute (0-59)
ss Second (0-59)
Unlocks the console keyboard; keyboard must be unlocked for following commands.

- DEBUG.
- DATE.yy/mm/dd.
- TIME. hh. mm.ss.
- DISABLE, VALIDATION.
- ENABLE, VALIDATION.
- All memory entry commands
- All channel control commands
- STEP.
- STEP, xx.
- n. STEP.
- n. STEP, xx.
- UNSTEP.

UNSTEP. Clears step mode (console must be unlocked).

X. name.	Calls a system program or utility or
specified by name to an available con-	
X. name	trol point. If parameters are to be (cc...ccc) or
passed, second form is used. Third form is used if a field length, xxxxx,	
X. name, xxxxx.	greater than the default is required.
	Disables or enables syntax overlay processing.

MEMORY ENTRY COMMANDS

 nnnn. . . n. aaaaa, b, nnnn.aaaaaa, Dnnnn....n.
aaaaaa土 nnnn. . . n.
$a a a a a \pm b$, nnnn.
aaaaaa, Changes contents of location aaaaaa to nnnn. . . n (20 digits).
Changes contents of byte b at location aaaaa to nnnn; b represents a 12bit byte numbered 0-4 from left to right.

Changes contents of location aaaaaa with left-justified zero-filled display code characters nnnn...n.

Changes contents of location aaaaaa to nnnn. .. n and increments or decrements aaaaaa by 1.

Changes the contents of byte b at address aaaaa to nnnn and increments or decrements aaaaa by 1 ; b represents a 12 -bit byte numbered $0-4$ from left to right.

CHANNEL CONTROL COMMANDS

ACNcc. Activates channel cc.

DCHec.
DCNec. FCNcc.

FNCcc, xxxx. Outputs function code xxxx to channel cc.

IANcc. Inputs to pseudo A register from channel cc.

LDC, nnnn. Loads pseudo A register with nnnn (normally a peripheral equipment function code).

MCHce. Master clears and removes all 3000series peripheral equipment selections on channel cc (6681 function code ${ }^{1700} 8$ is issued).

Outputs contents of pseudo A register to channel cc.

KEYBOARD MESSAGES

ILLEGAL Command not recognized by DSD. ENTRY. Operator must either correct or reenter the command.
SYSTEM
BUSY - DISK. DSD is waiting for an overlay to be loaded from a mass storage device.
SYSTEM
BUSY - PPU. DSD is waiting for a PPU to be assigned so that it can process a command.
SYSTEM DSD is waiting for a response from BUSY - MTR. the system.

JOB DISPLAY (DIS) COMMANDS

DIS DESCRIPTION

Unlike DSD, DIS is not interpretive. The operator must complete every entry manually and signal DIS to act upon the message by pressing the carriage return key.

DIS is brought to a control point by any of the following methods.

- Control statement in the form DIS.
- Operator call to DIS by typing n. DIS. for the job active at control point n .
- Operator call to DIS by typing X. DIS,fl. (fl is field length desired) or X. DIS.

DISPLAY SELECTION

$x y$.

Brings the x and y displays to the left and right screens, respectively.

The right screen display must be B, C, D, N, T, or U.

Letter

$\frac{\text { Designation }}{\mathrm{A}} \frac{\text { Display }}{\text { Dayfile }}$
B Control point status

Description
Dayfile messages and files attached to control point.
Job status, control cards, and exchange package.

Letter Designation	Display	Description
C, D	Data storage	Five groups of four octal digits per group with display code translation.
E	Data storage	Four groups of five octal digits with display code translation.
F, G	Program storage	Four groups of five octal digits per group with COMPASS mnemonic translation.
H	Job files	File name table entries for this control point.
J	Job display	Current status of jobs being processed.
K	Equipment status table	Displays the status entry for each device in the system.
L	System file name table	Lists, by type, all active files in the system.
N	Blank screen	Blank screen.
P	PP registers	Displays current contents of PP registers.
Q	Job queues display	Gives status of input, output, and rollout queues.
T, U	Text display	Displays text from central memory in coded lines (240 words for T; 300 words for U).
V	Central memory buffer	Displays 512 words directly from central memory.
Y	Monitor functions	Displays mnemonics and values of all monitor functions.
Z	Directory	Lists DIS directory.

OTHER SYSTEM DISPLAY COMMANDS

m, XXXX.
If m is one of the letters C through G, xxxx is the bias address for the managed table display.
SET, ssss...s. Sets the left screen display sequence; ssss...s consists of one to eight display identifiers. The sequence is toggled by the right blank key.

SPECIAL FIRST CHARACTER ENTRIES

* If DSD has relinquished the main display console to DIS, * acts as a quick hold, and DIS drops the display channel so that DSD can use it.

Toggles memory references between absolute and relative.

Advances left screen memory display address by 408.
Decrements left screen memory display address by 408 .
right blank Advances left screen display sequence established by SET command.

Advances left screen memory display address by the values in the lower 18 bits of the first word displayed.

Breakpoint program to ($\mathrm{P}+1$).
Breakpoint program to (Γ-1).
Advances left screen managed table pointer.

Decrements left screen managed table pointer.

Sets repeat entry flag. The subsequent entry is processed but not erased after completion.
Reads control card buffer automatically and executes until completion or an error is detected (same as RCS command).

CONTROL Characters

left blank (erase)	Clears entry line and error message (if one exists).
BKSP (backspace key)	Deletes last character entered and clears error message (if one exists)
CR (carriage return)	Initiates processing of command.

Deletes last character entered and clears error message (if one exists).

Initiates processing of command.

KEYBOARD ENTRIES

$\left.\begin{array}{ll}\text { BKP, xxxxxx. } & \begin{array}{l}\text { Breakpoints to address xxxxxx. } \\ \text { Central processor execution begins } \\ \text { at current value of } P \text { and stops when } \\ \text { P=xxxxx; DIS is the only PPU active } \\ \text { at user's control point. }\end{array} \\ \text { BKPA, xxxxxx. } \\ \text { Breakpoints to address xxxxxx. Cen- } \\ \text { tral processor execution begins at } \\ \text { current value of P and stops when } \\ \text { P=xxxxx. }\end{array}\right]$

BKPA, xxxxxx. Breakpoints to address xxxxxx. Central processor execution begins at current value of P and stops when $\mathrm{P}=\mathrm{xxxxxx}$.

CALL (lfn) Calls procedure file lfn into control Drops the central processor and displays the exchange jump area on the B display.
DIS. Reloads main DIS overlay.
DROP. Drops DIS; does not drop the job if there are control cards remaining in set).

ELS. Enters control statement ccc...cce
ccc...cce. in the control card buffer after the last control statement, if there is space.
ENAi, xxxxxx. Sets register $A i=x \times x x x x$ in the exchange package area.
ENBi, xxxxxx. Sets register $\mathrm{Bi}=\mathrm{xxxxxx}$ in the exchange package area.
ENEM, x. Sets exit mode to, x ($0 \leq x \leq 7$).
ENFL, xxxxxx. Sets FL=xxxxxx in the exchange package area.
EN P, xxxxxx. Sets P=xxxxxx.
ENPR, x. Sets job priority to $x x\left(1 \leq x x \leq 70_{8}\right)$.

ENS. ccc... ccc.

ENTL,xxxxx. Sets the job time limit to xxxxx. 77777_{8} is infinite.
ENXi, xxxxx
xXXXX XXXXX
xxxxx.
ENXi, Lzzz
...zzz.
ENXi, Dcce ... ccc.

ENXi,b, zzzz. ERR.

GO.
GOTO, ссс ...ccc.

HOLD. DIS relinquishes the display console, but the job is held at the present status.
M. ccc... ccc. Enters ccc... ccc as a program command. Data is stored at $R A+C C D R$.
mx, aaaaa.
Sets register $\mathrm{Xi}=\mathrm{xxxxx} \mathbf{x x x x x} \mathbf{x x x x x}$ xxxxx in the exchange package area.

Sets register Xi to zzz... zzz, leftjustified.
Sets register Xi to ccc. . . ccc display code characters.

Sets byte b of register Xi to $\mathbf{z z z z}$.
Sets error flag, terminates execution, and clears AUTO mode if set.

Restarts a program which has paused.
Sets AUTO mode and transfers control to statement or tag defined by ccc...ccc.
$m \quad$ Letter designation of a
display (C, D, F, or G).
Type of display modifications:
$x=0-3 \quad$ Changes the specified group to display the eight words beginning at location aaaaa.
$x=4 \quad$ Changes the entire display to display the memory contents beginning at aaaaa.

$x=5 \quad$| Increments the |
| :--- |
| display by aaaaaa | locations.

$x=6 \quad$ Decrements the display by aaaaaa locations.
aaaaa Location parameter

N. ccc. . .ccc.	Sets DIRECT CPU INPUT mode. Characters entered from the keyboard are passed one character at a time, right-justified, directly into central memory at RA+CCDR.
OFFSWx.	Turns off sense switch x for the job ($1 \leq x \leq 6$).
ONSWx.	Turns on sense switch x for the job ($1 \leq x \leq 6$).
026.	Calls O26 to the control point.
RCP.	Requests central processor. Depending on job priority, execution begins at the next program address for a job suspended by a DCP request.
RCS.	Sets AUTO MODE and initiates automatic control card processing.
RNS.	Reads and processes the next control statement in the DIS control card buffer.
ROLLOUT.	Allows the job to roll out.
ROLLOUT, xxxx.	Places job in rollout queue for xxxx seconds; job is automatically rolled back in after this period of time.
RSS.	Reads the next control statement and stops prior to CPU execution.
$\begin{aligned} & \text { RSS, ccc. . } \\ & \text { ccc. } \end{aligned}$	Reads statement ccc. . .ccc and stops before execution.
RE, xx.	Releases reservation of equipment xx.
SCS.	Clears AUTO mode and stops automatic control card processing.
T, xxxxxx.	Changes the T display to start at address xxxxxx.
U, xxxxxx.	Changes the U display to start at address xxxxxx.
$\mathrm{UCC}=\mathrm{c}$	Sets the uppercase character to c (default is *).
$\mathrm{V}, \mathrm{xxxxxx}$.	Changes the V display to start at address xxxxxx.
X. ccc. . . ccc.	Processes ccc... ccc as the next control statement.

* xxx.
aaaaa, b, yyyy.
aaaaaa, Dccc...ccc.
aaaaaa, Iy, nnnnn.
xxxx.
aaaaaa, yy... уy.

If an asterisk is followed by a blank and $x x x$ is encountered during automatic control card processing, $x x x$ is interpreted as a direct DIS command rather than a control card.
xxxx is processed as a control statement if it is not a recognizable DIS command.

Changes the contents of the word at aaaaaa (relative to its RA) to yy... yy. Leading zeros may be dropped. If in absolute mode, the entry is at central memory absolute location aaaaa.
Enters yyyy in byte b of memory location aaaaa.

Changes to contents of the word at aaaaaa (relative to its RA) to the display-coded value of character string ccc....ccc. The entry is leftjustified with trailing zero fill.

Changes to contents of instruction y (0-3) at location aaaaa to nnnnn; nnnnn may be a 15 - or 30 -bit instruction.
aaaaaa, Lyy... Enters yy...yy, left-justified in mem-
yy. ory location aaaaa.
aaaaaa+ Enters yy...yy in memory location yy...yy. aaaaa; command leaves address at aaaaaa +1 followed by the + sign, allowing immediate entry for the next memory location.

PP CALL COMMANDS

Keyboard Entry
nam.
nam, $x x x$.
nam, $x x x$, ууу.

Description
Calls PPU program nam to control point.
xxx is a parameter required by the PPU program nam.
xxx and yyy are parameters required by the PPU program nam.

Format of PPU Call Initiated 18/3Lnam,6/n, 36/0

18/3Lnam, 6/n, 18/0, 18 /xxx

18/3Lnam, 6/n, 18/xxx, 18/yyy

KEYBOARD MESSAGES

ILLEGAL Command cannot be processed. ENTRY.

REPEAT Command in control card buffer is reENTRY. peated each time carriage return is pressed; cleared by left blank key.

OUT OF Memory entry address is greater than RANGE. the field length.

SYSTEM DIS is waiting for an overlay to be BUSY - DISK. loaded from a mass storage device. SYSTEM DIS is waiting for a PPU to be assigned BUSY - PPU. in order to process the keyboard entry.

JOB Previous request not completed.
ACTIVE.
AUTO \quad Control card buffer is read automatiMODE.

DIRECT N. command has been entered, and all
CPU
INPUT. cally. Automatic control card processing can be selected by the RCS command or by pressing the . key.

FILE EDITOR (O26) COMMANDS

O26 DESCRIPTION

O26 enables the user to create or edit a file from the 6612 console. A central memory buffer is used to store and edit the BCD lines before writing the file.

SPECIAL FIRST CHARACTER ENTRIES

0
1
2
3
4
5
6
7
8
9

Sets insert at first line.
Sets insert at 4th line on screen.
Sets insert at 8th line on screen
Sets insert at 12th line on screen.
Sets insert at 16 th line on screen.
Sets insert at 20th line on screen.
Sets insert at 24 th line on screen.
Sets insert at 32nd line on screen.
Sets insert 8 at insert line.
Sets insert 9 at insert line.

CR
(carriage return)
space

Displays next page.
Backs up 18 lines or to start of buffer. Holds display and returns control to DSD. When * is entered under DSD, control returns to O26.
Starts or stops roll.
Advances insert by one line.
Decrements insert by one line.
Clears insert flag.
Finds insert line and starts display at insert marker.

Deletes the line following the insert line.
Sets REPEAT ENTRY flag.

Sets the characters P. into buffer.

MESSAGES

FORMAT A format error has been detected dur-
ERROR. ing translation of the entry.
PPU BUSY. Request was ignored by the system.
DISK BUSY. Waiting for O26 overlay.
NOT IN Character was not found by the replace LINE.
REPEAT character commands.

ENTRY.

RECORD Record read does not fit into buffer.
Entry is not cleared after execution.

SYSTEM COMMANDS

DIS.

DROP.

ERR.
GO.
HOLD.

Writes the buffer, rewinds the file, and transfers control back to DIS.

Writes the buffer, rewinds the file, and drops the display unit.
Sets error flag at control point.
Clears pause flag.
Releases display to DSD.

XDIS.

XDROP. Drops display unit; does not write file.

FILE COMMANDS \dagger

BKSP. lfn. Backspaces file lfn one logical record. If lfn is missing, previously specified file is used.
BKSPRU, x. Backspaces current file x physical records.

BKSPRU.lfn. Backspaces file lfn one PRU. If lfn is missing, previously specified file is used.

FILE.lfn. Changes name of current file to lfn.
RC.lfn. Reads compile file. Rewinds, reads, and rewinds file lfn. If lfn is missing, set file name to COMPILE. Set scan tab to 6.

READ.lfn. Clears buffer and rewinds, reads, and rewinds lfn. If lfn is missing, previously specified file is used.

READI.lfn. Skips to end-of-information, backspaces twice, and reads last logical record of information on lfn. If lfn is missing, previously specified file is used.
READN. lfn. Reads file lfn with no rewind. If lfn is missing, previously specified file is used; stops read on buffer full or end-of-record encountered.

READNS. lfn. Reads file lfn nonstop with no rewind. If lfn is missing, previously specified file is used; stops read on buffer full or end-of-file encountered.

RETURN. lfn. Returns file lfn. If lfn is missing, previously specified file is returned to system.

REWIND. lfn. Rewinds file lfn. If lfn is missing, previously specified file is used.
RFR.lfn. Clears buffer and rewinds and reads file lfn. If lfn is missing, previously specified file is used.

RI. lfn. Rewinds, reads, and rewinds file lfn. If lfn is missing, file INPUT is read.
\dagger For these commands, if no file was previously specified, INPUT is used.

RLR. lfn. Clears buffer and reads last record on file lfn. If lfn is missing, previously specified file is used.
RNR.lfn. Clears buffer and reads next record on file lfn. If lfn is missing, previously specified file is used.
RO. lfn. Clears buffer and rewinds, reads, and rewinds file lfn. If lfn is missing, file OUTPUT is used. Sets word scan to words 4, 8, 12.
RPR. lfn. Reads previous record from file lfn (that is, backspaces twice and reads).
SKIPEI.lfn. Skips to end-of-information on lfn. If lfn is missing, previously specified file is used.

UNLOAD. lfn.

Unloads tape specified by 1 fn . If 1 fn is missing, previously specified tape is unloaded.

WRITE. lfn. Writes buffer on file lfn. If lfn is missing, previously specified file is used.
WRITEF. Writes buffer on file lfn and places an lfn.

WRITEW. Writes data from start of buffer up to lfn. EOF mark after the data written. If lfn is missing, previously specified file is used. insert line on file lfn. If lfn is missing, previously specified file is used.

LINE ENTRY AND DATA MOVE

On all commands that read the following line for character merging (A., L., M., and N.), the following line is saved in the DUP buffer. This line can be referenced at a later time with the D. command.

A.ccc...ccc	Merges specified characters with the line following insert marker except for tabbed or spaced-over area up to carriage return.
C.ccc...ccc	Enters specified characters into buffer; ccc...ccc may consist of up to 90 characters.
COPY.	Copies data block starting at insert 8 and ending at insert 9 into block at in- sert marker.
DEL.	Deletes all lines after insert marker. If insert is not set, deletes all lines.

D, *.	Deletes block from insert 8 through insert 9.
D.ccc. . .ccc	Merges line from DUP buffer with characters ccc... ccc of keyboard buffer. Tab rules for A. command apply.
E.ccc...ccc	Merges characters ccc. . . ccc with remainder of characters in DUP buffer except for tabbed or spaced-over area.
L.ccc...ccc	Merges characters ccc. . . ccc with remainder of following line except for tabbed or spaced-over area.
M. ccc. . .ccc	Merges characters ccc. . . cce with remainder of following line.
MOVE.	Moves data starting at insert 8 and ending at insert 9 into block starting at insert marker.
N.ccc. . .ccc	Merges characters ccc. . . ccc with following line except for tabbed area.
P.ccc. . .ccc	Enters characters ccc...ccc into buffer (up to 90 characters). User can set data entry mode by typing P. or typing a space.
DISPLAY, TAB	SCAN CONTROL COMMANDS
DFL.	Displays first line.
DLL.	Displays last part of file.
DS,	Displays first line.
$\begin{aligned} & \text { TAB, } x, y, \\ & \ldots, z \end{aligned}$	Sets tabs x, y, z. If x equals 0 , the command clears all tabs. Default is TAB,11, 18, 30, 73.
$\begin{aligned} & \text { SCAN, } x, y, \\ & \ldots, z, z \end{aligned}$	Sets word scan to x, y, z. If x equals 0 , the command clears scan.
LINE, RECORD SEARCH COMMANDS	
F.ccc. . .ccc	Searches for matching field in line. Search is end-around.
GET, lfn. rname.	Searches file lfn for record rname. If lf is missing, previously specified file is used.
GET. rname.	Clears buffer and searches current file for record rname.

GETR, lfn. Reads random file lfn for TEXT record rname.

GETR. Searches current random file for rername. cord rname.

GTR, lfn. Reads random file lfn for record rname. rname. If lfn is missing, previously specified file is used.

GTR. rname. Gets random record rname from current file. If a record of that name and type TEXT exists, reads that record; otherwise, reads record rname of any type.
LIST.
LIST, lfn.
Lists directory of current file.
Lists directory of file lfn. If lfn is missing, previously specified file is used.
S. ccc... ccc Starting with the first line displayed, searches for a line beginning with the characters ccc... ccc. Search is endaround.

REPLACE COMMANDS

RC, x, c. Replaces character position x of line following insert marker with character c (extend line if necessary).
RM/ Replace multiple; works the same way
aaa... aaa/
bbb. . . bbb/

RS/
aaa....aaa/
bbb. . . bbb/ as RS command, but if a replacement took place and REPEAT ENTRY is set, this command does not advance to next line.

R,x. / Replaces character string aaa. . . aaa
aaa....aaa/
bbb. . . bbb/
Replaces character string aaa... aaa from the following line with character string bbb...bbb. The / can be any delimiting character. from the following line starting with character position x with character string bbb...bbb. The / can be any delimiting character.

MISCELLANEOUS COMMANDS

ENFL. Sets field length to buffer size plus ${ }^{1000} 8$.
ENFL, xxxxx. Sets field length to $x^{2} \times x x_{8}$.
LC.
OUT.
$\mathrm{UCC}=\mathrm{c}$. Toggles lowercase mode flag.

Transfers output files to output queue. KRONOS processes the output files without waiting for 026 to terminate.

Sets uppercase control character to c. If c is missing, clears the uppercase control character. To enter a character which has been previously specified as the uppercase control character, enter that character twice.

To enter:	Enter uppercase control character and:
\$	S
三	0
[1
1	2
\%	3
\#	4
\rightarrow	5
v	6
\wedge	7
\uparrow	Q
\downarrow	W
$<$	E
>	R
\leq	T
\geq	Y
\checkmark	U
;	I
\neq	$=$
\wedge	A
$<$	(
>)
\leq	$+$
2	-
;	,

PRODUCT SET CONTROL CARD FORMATS

ALGOL
($\mathrm{A}=\mathrm{lfn}_{1}$,
$B=l f n_{2}, C, D$,
$\mathrm{F}, \mathrm{G}=\mathrm{lfn}_{3}$,
$I=\operatorname{lfn}_{4}, L=l f n_{5}$,
M, N,O,
$P=1 \mathrm{fn}_{6}, \mathrm{Q}$,
$\mathrm{R}=\operatorname{lfn}_{7}, \mathrm{~S}=\operatorname{lfn}_{8}$,
$\mathrm{U}=\mathrm{lfn}_{9}, \mathrm{Z}$)
BASIC($L=1 \mathrm{ln}_{1}$, Calls the BASIC compiler.
$K=1 \mathrm{ln}_{2}$, $\mathrm{I}=\mathrm{lfn}_{3}$,
$B=\operatorname{lfn}_{4}, A=l n_{5}$,
$\mathrm{N}=\mathrm{lfn}_{6}$)
$\operatorname{COBOL}\left(\mathrm{A}, \mathrm{B}=\operatorname{lfn}_{1}\right.$,
BUF, C, D,
$\mathrm{E}=$ program-name,
$\mathrm{F}, \mathrm{H}, \mathrm{I}=\mathrm{lfn}_{2}$,
$\mathrm{L}=\mathrm{lfn}_{3}, \mathrm{~N}$,
$\mathrm{OB}=\operatorname{lfn}_{4}, \mathrm{P}$,
S=ulib, SUB, T, U,
W, Z)
COMPASS(A,
B =fname, D,
$F=$ name,
G=fname/ovl,
I=fname, $L=$ fname,
LO=chars,
ML=chars, N,
$\mathrm{O}=$ fname,
PC=chars, P ,
$\mathrm{S}=$ lib/ovl, $\mathrm{X}=$ fname)
FTN(A, B=lfn $1, C$ Calls the FORTRAN Extended
$D=\operatorname{lfn}_{2}, E=\operatorname{lfn} n_{3}$, compiler.
$\mathrm{G}=\operatorname{lfn}_{4}, \mathrm{I}=\mathrm{lfn}_{5}$,
$\mathrm{GT}=\mathrm{lfn}_{6} / \mathrm{ovl}$,
$O P T=n, P L=n, Q$,
$R=r, R O U N D=s$,
$\mathrm{S}=\mathrm{lfn}_{7}, \mathrm{SYSEDIT}$,
$\left.T, V, x=1 f_{8}, Z\right)$

MODIFY($\mathrm{I}=1 \mathrm{fn} n_{1}$, Calls the Modify utility program. $\mathrm{P}=\mathrm{lfn}_{2}, \mathrm{C}=1 \mathrm{fn} n_{3}$, $\mathrm{N}=\mathrm{lfn} \mathrm{n}_{4}, \mathrm{~S}=\mathrm{lfn} 5$. $\mathrm{L}=\mathrm{lfn}_{6}^{4}, \mathrm{LO}=$ chars, A,D, $\mathrm{F}, \mathrm{U}, \mathrm{NR}$, $X=$ prog, $Q=$ prog, $\mathrm{Z}, \mathrm{CB}=1 \mathrm{fn} 7$, $\mathrm{CL}=1 \mathrm{ln}_{8}, \mathrm{CS}=1 \mathrm{fn} \mathrm{n}_{9}$, $C G=1 f n_{10}$)

PERT66. Local file call to execute PERT binaries. PERT input must be included in local file INPUT.

RUN(cm, fl, bl, Calls the FORTRAN RUN 2.3 if, of, bf, lc, as, cs)

SIMSCRIPT
Calls the SIMSCRIPT compiler. $\left(\mathrm{I}=\mathrm{lfn}_{1}, \mathrm{~L}=\mathrm{lfn}_{2}\right.$,
$\mathrm{A}=\mathrm{lfn}_{3}, \mathrm{~B}=\mathrm{lfn}_{4}$,
$\mathrm{G}=\mathrm{g}, \mathrm{D}=\mathrm{d})$

SIMULA(A $=\mathrm{lfn}_{1}$, Calls the SIMULA compiler. $\mathrm{B}=\mathrm{lfn}_{2}, \mathrm{G}=\mathrm{lfn}_{3}$, $\mathrm{I}=\mathrm{lfn}_{4}$, $\mathrm{L}=\mathrm{lfn}_{5}, \mathrm{~N}$, $\mathrm{P}=\mathrm{lfn}_{6}, \mathrm{R}=\mathrm{lfn}_{7}$,
$\mathrm{S}=\mathrm{lfn}_{8}, \mathrm{U}=\mathrm{lfn}_{9}$, $X=\operatorname{lfn}_{10}$)

SORTMRG. or Calls the Sort/Merge program. SORTMRG(7C)

```
TSRUN(cm,if, rf,
bl, fl, cl)
UPDATE(A, B, Calls the Update utility program.
\(\mathrm{C}=\mathrm{lfn}_{1}, \mathrm{D}, \mathrm{E}, \mathrm{F}\),
\(\mathrm{G}=\mathrm{lfn}_{2}, \mathrm{I}=\mathrm{lfn}_{3}\),
\(K=l_{n} n_{4}, L=c h a r\),
\(\mathrm{M}=1 \mathrm{lf}_{5}\), \(\mathrm{N}=1 \mathrm{fn} \mathrm{n}_{6}\),
\(O=\mathrm{lfn}_{7}, P=\mathrm{lfn}_{8}, \mathrm{Q}\),
\(\mathrm{R}=\mathrm{char}, \mathrm{S}=1 \mathrm{fn} \mathrm{n}_{9}\),
\(\mathrm{T}=\mathrm{lfn}_{10}, \mathrm{U}, \mathrm{W}, \mathrm{X}, \mathrm{Z}\),
8,*=char, /=char)
```


SYSTEM CONTROL CARD FORMATS

ACCOUNT (usernum,
passwrd, familyname)

APPEND(pfn, lfn_{1}, $\operatorname{lfn}_{2}, \ldots, \operatorname{lfn}_{n} / P W=$ passwrd, UN =usernum, $\mathrm{PN}=$ packname, $\mathrm{R}=\mathrm{r}, \mathrm{NA}$)

ASSIGN(nn, lfn, $D=\operatorname{den}$, $\left\{\begin{array}{r}F C=f \text { count } \\ C=\text { ccount }\end{array}\right\}, C V=$ conv, $\left\{\begin{array}{l}\mathrm{MT} \\ \mathrm{NT}\end{array}\right\}, \mathrm{PO}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}$, $F=$ format, $N S=$ ns, $L B=1$, VSN=vsn, $\left\{\begin{array}{l}C K \\ C B\end{array}\right\}$)

ATTACH $\left(\operatorname{lfn}_{1}=\operatorname{pfn}_{1}\right.$, $\mathrm{lfn}_{2}=\mathrm{pfn}_{2}, \ldots$, lf $n_{n}=p n_{n}$ /UN =usernum, $\mathrm{PW}=$ password, $\mathrm{M}=\mathrm{m}$)

BKSP(lfn, n)

BLANK (D=den, $\left\{\begin{array}{l}M T \\ \mathrm{NT}\end{array}\right\}$, $\mathrm{VSN}=\mathrm{vsn}, \mathrm{FA}=\mathrm{fa}, \mathrm{VA}=\mathrm{va}$, OWNER=usernum/ familyname, LSL=1s1, U)

CATALOG(lfn, p_{1}, p_{2}, ..., p_{n})

Sets validation for a user's account number and password.

Copies local files lfn_{1} through lfn_{n} to end of indirect access permanent file pf .

Assigns file lfn to the device or device type specified by nn .

Attaches permanent files pfn_{1} through pfn n as local files lfn_{1} through lfn_{n} for direct access.

Backspaces file lfn n logical records.

Blank labels a magnetic tape.

Catalogs file lfn:

$\frac{p_{i}}{\mathrm{~N}=0}$	$\frac{\text { Description }}{\text { Catalog until }}$ an empty file is encountered.
$\mathrm{N}=\mathrm{x}$	Catalog x files; default is 1.
N	Catalog to end of information.
$\mathrm{L}=$ fname	Specifies out- put file.
U	Select user library list.

	D	Suppress comment field and page heading following first 1.
	R	Rewind lfn before and after cataloging.
CATLIST(LO $=\mathrm{p}, \mathrm{FN}=\mathrm{pfn}$, UN =usernum, $\mathrm{PN}=$ pack name, $R=r, L=l f n, N A$)	Lis use per ces nat	mation about manent files and files he can acalogs of alter-
CHANGE(nfn=ofn/ CT $=$ ct $, \mathrm{M}=\mathrm{m}, \mathrm{PW}=$ pass wrd, $P N=$ packname, $R=r$, NA)		ginator of a perto alter any of rameters.
CHARGE(chargenum, projectnum)	$\begin{aligned} & \text { Spe } \\ & \text { proj } \\ & \text { prof } \end{aligned}$	ser's charge and mbers for user trol validation.
$\underset{\left.\operatorname{lfn}_{n}\right)}{\operatorname{CKP}\left(\operatorname{lfn}_{1}, \mathrm{lfn}_{2}, \ldots,\right.}$	Dir che is in	stem to take a dump; each lfn_{i} in the dump.
$\begin{aligned} & \text { COMMENT. comments } \\ & \text { or } \\ & \text { *comments } \end{aligned}$	Ent tem	ments in syser's dayfile.
$\begin{aligned} & \operatorname{COMMON}\left(\mathrm{lfn}_{1},\right. \\ & \operatorname{lfn}_{2}, \ldots ., \mathrm{lfn}_{\mathrm{n}} \end{aligned}$	Acc alre Stat file	file that was signed common ssigns a local mon status.
$\operatorname{COPY}\left(\mathrm{lfn}_{1}, \mathrm{lfn}_{2}, \mathrm{x}\right)$	Cop pres befo veri copy	to lfn_{2}. If x is les are rewound and rewound, and rewound after
COPYBF($\left.\mathrm{lfn}_{1}, \mathrm{lfn}_{2}, \mathrm{n}\right)$	$\begin{aligned} & \mathrm{Cop} \\ & \mathrm{gin} \\ & \text { of } \end{aligned}$	inary files becurrent position fn_{2}.
$\operatorname{COPYBR}\left(\mathrm{lfn}_{1}, \mathrm{lfn}_{2}, \mathrm{n}\right)$		nary records becurrent position fn_{2}.
2-4		60407200 A

$\begin{aligned} & \text { COPYCF(lfn }, \operatorname{lfn}_{2}, n, \\ & \text { fchar, nchar) } \end{aligned}$	Copies n coded files beginning at current position of lfn_{1} to lfn_{2}. Portion of each line image to copy is specified by fchar (first character position) and lchar (last character position).
$\operatorname{COPYCR}\left(\mathrm{lfn}_{1}, \mathrm{lfn}_{2}, \mathrm{n}\right.$, fchar,lchar)	Copies n coded records beginning at current position of lfn_{1} to lfn_{2}. Portion of each line image to copy is specified by fchar and lchar.
COPYEI(lfn $\left.{ }_{1}, \operatorname{lfn}_{2}, \mathrm{x}\right)$	Copies lfn_{1} (current position to EOI) to lfn_{2}. If x is present, files are rewound before copy and rewound, verified, and rewound after copy.
COPYSBF $\left(\operatorname{lfn}_{1}, \operatorname{lfn}_{2}, \mathrm{n}\right)$	Copies n coded files beginning at current position of lfn_{1} to lfn_{2}, shifting each line image one character to the right and adding a leading space.
$\begin{aligned} & \text { COPYX(lfn } \left.{ }_{1}, \operatorname{lfn}_{2}, x, b\right) \\ & \text { or } \\ & \text { COPYX } \operatorname{lfn}_{1}, \operatorname{lfn}_{2}, \\ & \text { type/name,b) } \end{aligned}$	Copies logical records from lfn $_{1}$ to lfn_{2} beginning at current position of lfn n_{1} and continuing until terminator specified by x or type/name is encountered. Files are then backspaced according to b parameter.
	type / name is first 7 name characters of record; type is:
	ABS Multiple entry point overlay COS Chippewa format CP program
	OPL $\begin{aligned} & \text { Modify OPL } \\ & \text { deck }\end{aligned}$
	OPLC Modify OPL common deck
60407200 A	2-5

		OPLD OVL PP PPU REL TEXT ULIB	Modify OPL directory CP overlay 6000 series PP program 7600 PP program Relocatable CP program Unrecognizable as a program User library program
	x	Termi 00 n name	nator type: Zero record n records (default is 1) Record name
	b	Backsp 0 1 2 3	ace control: No backspace (default) Backspace lfn_{1} Backspace lfn_{2} Backspace lfn_{1} and lfn_{2}
COPY67(lfn $\left.{ }_{1}, \mathrm{lfn}_{2}\right)$		KRONOS to lfn_{2}, pointer s to 760	-formatted adding s so lfn_{2} 0 format.
COPY 76(lfn $\left.{ }_{1}, \operatorname{lfn}_{2}\right)$		7600-for fn_{2}, ref conform forma	matted file ormatting to
CTIME.		accumul system	ated CPU and user's
2-6		6040	200 A

DEFINE $\left(\operatorname{lfn}_{1}=\operatorname{pfn}_{1}\right.$, $\operatorname{lfn}_{2}=\mathrm{pfn}_{2}, \ldots, \mathrm{lfn}_{\mathrm{n}}=$ $\mathrm{pfn}_{\mathrm{n}} / \mathrm{PW}=$ passwrd, $C T=c t, M=m, R=r$, $\mathrm{S}=$ space, $\mathrm{PN}=$ packname, NA)
$\operatorname{DFSORT}\left(D=l f n_{1}\right.$,
$\left.L=l n_{2}, S=s s s, F=f f\right)$

DISPOSE $\left(\operatorname{lfn}_{1}=q_{1}\right.$,
 ot $=$ usernum)

DMD(fwa,lwa)
or
DMD(lwa)
or
DMD.
DMP(fwa, lwa)
or
DMP(lwa)
or
DMP.

Write user's dayfile on lfn; default is OUTPUT.

Creates an empty direct access permanent file or defines an existing local file as a direct access file.

Sorts dayfiles by job names and lists accounting information.

Releases files to specified output queues.

Dumps central memory from first word address to last word address minus 1 ; output contains display code equivalences. If lwa alone is present, fwa=0 is assumed. If neither fwa nor lwa is present, DMD dumps exchange package and 408 locations before and after program address in exchange package.

Dumps central memory from first word address to last word address minus 1. If lwa alone is present, fwa $=0$ is assumed. If neither fwa nor lwa is present, DMP dumps exchange package and 408 locations before and after program address in exchange package.

Extracts the external or internal documentation from file lfn_{2} containing COMPASS source code.

Releases file space for lfn $_{1}$ but does not release the file attachment to the job.
$\left.\begin{array}{ll}\begin{array}{l}\text { EXECUTE } \\ \left.\text { (ep, } p_{1}, p_{2}, \ldots, p_{n}\right)\end{array} & \begin{array}{l}\text { Causes loader to complete } \\ \text { program loading and passes } \\ \text { parameters; must immedi- } \\ \text { ately follow a LOAD card. }\end{array} \\ \text { EXIT. } & \begin{array}{l}\text { Indicates where in control } \\ \text { card record to resume con- } \\ \text { trol card processing if an }\end{array} \\ \text { error is encountered or } \\ \text { where to terminate normal }\end{array}\right\}$

LBC(addr)	Loads binary corrections, beginning at addr, into central memory.
LDI(lfn, id)	Copies batch job image on lfn to mass storage and submits it to the input queue.
LDSET(LIB=libname ${ }_{1} /$ libname ${ }_{2}$ /libname $_{3}$, $\ldots, /$ libname $_{n}, \mathrm{MA} P=$ p option, PRESET = p option, ERR = p option, $\left\{\begin{array}{l}\text { REWIND } \\ \text { NOREWIN }\end{array}\right\}$, USEP= pname ${ }_{1} /$ pname $_{2} / \ldots$ / pname ${ }_{n}$, USE =eptname ${ }_{1} /$ eptname $_{2} / \ldots$ /eptname n SUBST = pair $1 /$ pair $_{2} / \ldots$; pair ${ }_{n}$, OMIT $^{\text {P }}$ eptname ${ }_{1}$ / eptname ${ }_{2} / \ldots$ leptname ${ }_{n}$, FILES $=1 \ln _{1} / \operatorname{lfn}_{2} / \ldots /$ lfn_{n})	Provides user control of a variety of load operations.
$\begin{aligned} & \text { LIBEDIT(} I=l_{1 f n_{1}}, P=l f n_{2}, \\ & N=\operatorname{lfn}_{3},\left\{\begin{array}{l} L=0 \\ L=1 \end{array}\right\}, \\ & L O=l n_{4}, B=l n_{5}, C, R, \\ & V, D) \end{aligned}$	Edits and replaces records on a file with records from one or more correction files.
$\begin{aligned} & \text { LIBGEN }\left(F=\operatorname{lfn} n_{1},\right. \\ & \left.P=\operatorname{lfn}_{2}, N=\operatorname{lfn}_{3}, N X=n\right) \end{aligned}$	Generates a user library file named lfn_{3} on lfn_{2} using records from lfn_{1}.
LIBRARY(ulib)	Sets ulib as the name of the user library from which to satisfy external references.
LIMITS.	Lists validation information for user named on current ACCOUNT card.
$\begin{aligned} & \operatorname{LINK}\left(F=\operatorname{lfn}_{1},\right. \\ & P=\operatorname{lfn}_{2}, B=\operatorname{lf}_{3}, \\ & L=\operatorname{lfn}_{4}, E=\text { name }^{2}, \\ & \text { LO=c. }, \mathrm{c}, \\ & \left.\left\{\begin{array}{l} X \\ X P \end{array}\right\}\right) \end{aligned}$	Loads and links relocatable code from lfn_{1} and reformats into absolute code on lfn_{3}.

LISTLB($\mathrm{D}=$ den,	Reads ANSI labels on tape
$\left\{\begin{array}{l}\text { MT } \\ \mathrm{NT}\end{array}\right\}, \mathrm{VSN}=\mathrm{vsn}$,	specified by vsn and writes them on file specified by
SI=setid, QN =seqno,	L.
LO=ltype, L=out)	
LIST80(lfn $\left.{ }_{1}, \mathrm{lfn}_{2}, \mathrm{NR}\right)$	Reads file lfn_{1} containing COMPASS source code and writes it, compressed to 80 columns, on lfn_{2}.
$\begin{aligned} & \text { LOAD(lfn, } \mathrm{lib}_{1}, \\ & \left.\operatorname{lib}_{2}, \ldots, \mathrm{lib}_{n}\right) \end{aligned}$	Loads lfn and the programs on lib $_{\mathbf{i}}$ required to satisfy external references occuring in lfn.
LOC(fwa, lwa) or LOC(lwa) or LOC.	Enters octal correction card images from INPUT into central memory in specified area.
LOCK $\left(\operatorname{lfn}_{1}\right.$, $\operatorname{lfn}_{2}, \ldots$, lfn $_{n}$)	Sets write lockout bit in FNT/FST entry for local file ${ }^{f f} n_{i}$.
$\begin{aligned} & L O 72\left(I=l f n_{1}, S=l f n_{2},\right. \\ & L=l n_{3}, T=x, H=x x x, \\ & L P, N R, N x=y, I x=y, \\ & O x=y) \end{aligned}$	Reforms data on lfn_{2} and writes it in 72-column format on lfn_{3}.
$\operatorname{MAP}\left(p_{1}, p_{2}, \ldots, p_{n}\right)$	Sets loader map flags; loader generates core map. Options are:
	$\mathrm{p}_{\mathrm{i}} \quad$ Description
	P Partial map
	F Full map
	$\mathrm{S} \quad$Statistics and errors
	B Block assignments
	E Entry points
	$\mathrm{X} \quad \begin{aligned} & \text { External refer- } \\ & \text { ences }\end{aligned}$
	C Symbols not used
	$R \quad \begin{aligned} & \text { Relative address } \\ & \text { references }\end{aligned}$
	ON Turn on full map
	OFF Turn off full map
MODE(n)	Sets CPU exit mode to n.

NOEXIT.

NOGO.

NOMAP.

ONEXIT.
$\operatorname{ONSW}\left(s_{1}, s_{2}, \ldots, s_{n}\right)$

OPLEDIT(I=lfn ${ }_{1}$, $P=\mathrm{lfn}_{2}, \mathrm{~N}=\mathrm{lfn}_{3}, \mathrm{~S}=\mathrm{lfn}_{4}$, $\left.\mathrm{L}=\mathrm{lfn}_{5}, \mathrm{LO}=\mathrm{x}, \mathrm{F}, \mathrm{D}\right)$

OUT.
$\operatorname{PACK}\left(\operatorname{lfn}_{1}, \operatorname{lfn}_{2}, x\right)$

PACKNAM
(PN =packname)
or
PACKNAM(packname)
PASSWOR(oldpswd, newpswd)

PBC(fwa, lwa)

Creates, modifies or inquires about VALIDUX.

Suppresses transfer to card following next EXIT card if an error occurs.

Processes loaded program in same way as EXECUTE card but does not execute the program.

Clears loader map flag for control point.

Clears pseudo-sense switches for reference by user's program.

Reverses effect of NOEXIT card.

Sets pseudo-sense switches for reference by user's program.

Removes specified modification decks and identifiers from an OPL.

Releases output files from control point to the output queue.

Packs lfn_{1} into one record on lfn_{2}.

Directs subsequent permanent file requests to the specified auxiliary device.

Changes user's password from oldpswd to newpswd.

Writes one record from specified area in central memory on PUNCHB.

```
PERMIT(pfn, Allows user to explicitly
usernum
usernum}\mp@subsup{m}{2}{=m2,\ldots,
usernumm}=\mp@subsup{m}{n}{}\mathrm{ ,
PN =packname, R=r,NA)
PROFILE(I=lfn}\mp@subsup{n}{1}{},L=lf\mp@subsup{n}{2}{},\quadEnables site to create, up
P=lfn}3,S=lf\mp@subsup{n}{4}{},OP=option, date, and inquire about a
CN =chargenum,
PN =projnum, LO=option)
PURGALL(CT=ct,AD=ad,
MD=md,CD=cd, DN = dn,
TY=ty,TM=tm,
PN =packname, R=r,NA)
PURGE(pfn
pfn}2,\ldots,\mp@subsup{p|n}{n}{\prime}
UN=usernum,
PW =passwrd,
PN =packname, R=r,
NA)
\begin{tabular}{|c|c|}
\hline RBR(n, name) & Loads one binary record from specified file. \\
\hline \[
\begin{aligned}
& \text { REDUCE. } \\
& \text { or } \\
& \text { REDUCE (-) }
\end{aligned}
\] & Clears or sets field length reduction flag for the job. \\
\hline RELEASE (lfn \({ }_{1}\),
\[
\left.\operatorname{lfn}_{2}, \ldots, \operatorname{lfn}_{n}\right)
\] & Changes FNT/FST entry of common file \(\operatorname{lfn}_{i}\), currently assigned to job, to a local file. \\
\hline \[
\begin{aligned}
& \text { RENAME(nlfn }{ }_{1}=\text { olfn }_{1}, \\
& \text { nlfn }_{2}=\text { olfn }_{2}, \ldots, \\
& \text { nlfn }_{n}=\text { olfn }_{n} ;
\end{aligned}
\] & Changes name of file olfn i \(_{1}\) to \(\mathrm{nlfn}_{\mathrm{i}}\) in FNT/FST. \\
\hline \begin{tabular}{l}
REPLACE \(\left(\operatorname{lfn}_{1}=\operatorname{pfn}_{1}\right.\), \\
\(\mathrm{lfn}_{2}=\mathrm{pfn}_{2}, \ldots\), \\
\(\operatorname{lfn}_{n}=\operatorname{pfn}_{\mathrm{n}} / \mathrm{UN}=\) usernum, \\
PW =passwrd, PN = pack - \\
name, \(R=r, N A\) )
\end{tabular} & Substitutes new file \(\operatorname{lfn}_{\mathrm{i}}\) for old file \(\mathrm{pfn}_{\mathrm{i}}\). \\
\hline
\end{tabular}
```

```
REQUEST(lfn, \(D=\) den,
\(\left\{\begin{array}{r}F C=f \text { count } \\ C=c c o u n t\end{array}\right\}\),
\(\mathrm{CV}=\) conv, \(\left\{\begin{array}{l}\mathrm{MT} \\ \mathrm{NT}\end{array}\right\}\),
\(\mathrm{PO}=\mathrm{p}_{1} \mathrm{p}_{2} \ldots \mathrm{p}_{\mathrm{n}}\),
\(\mathrm{F}=\) format, \(\mathrm{NS}=\mathrm{ns}, \mathrm{LB}=1\),
\(\mathrm{VSN}=\mathrm{vsn},\left(\begin{array}{c}\mathrm{CK} \\ \mathrm{CB}\end{array}\right\}\) )
RESEQ(lfn, t, xxx, yy)
```

RESOURC(rt $_{1}=u_{1}$,
$\left.r t_{2}=u_{2}, \ldots, r t_{n}=u_{n}\right)$
RESTART(lfn, nn, \mathbf{x}_{i})
RETURN $\left(\operatorname{lfn}_{1}\right.$,
$\left.\operatorname{lfn}_{2}, \ldots . \operatorname{lfn}_{n}\right)$
REWIND(lfnil, lfn_{2},
...., lfn_{n})
RFL(nnnnnn)
ROLLOUT.

RTIME.

SAVE($\operatorname{lfn}_{1}=\operatorname{pfn}_{1}$,
$\mathrm{lfn}_{2}=\mathrm{pfn}_{2} \ldots$,
$\operatorname{lfn}_{\mathrm{n}}=\mathrm{pfn}_{\mathrm{n}} / \mathrm{PW}=$ passwrd,
CT=ct, $M=m_{n}$
$\mathrm{PN}=$ packname, $\mathrm{R}=\mathrm{r}, \mathrm{NA}$)
SETCORE(p)
$\stackrel{\text { Or }}{\text { SETCORE(}}$ (p)
SETID $\left(\operatorname{lfn}_{1}=\mathrm{x}_{1}\right.$.
$\left.\operatorname{lfn}_{2}=x_{2}, \ldots, \operatorname{lfn_{n}}=x_{n}\right)$

Requests operator to assign a device to lfn.

Resequences source files that have leading sequence numbers.

Specifies maximum number of tape units and/or disk packs that job will use concurrently.

Restarts a previously terminated job from a specified checkpoint.

Releases job attachment and/or file space of $\mathrm{lfn}_{\mathrm{i}}$.

Rewinds the files and positions them to the BOI.

Changes job field length from that specified on the job card.

Rolls out user's job and releases all memory assigned to the job.

Issues current time in milliseconds to dayfile.

Retains copy of local file lf_{i} as an indirect access file $\mathrm{pfn}_{\mathrm{i}}$.

Sets each word within the field length to the fill character specified by p.

Assigns a new identification code for lfn_{i}.

SETPR(p)	Specifies a new CPU priority for user's job.
SETTL(t)	Specifies a new time limit for user's job.
SKIPEI(lfn)	Positions lfn at EOI.
SKIPF(lfn, x)	Bypasses x files, in the forward direction, from the current position on lfn.
SKIPR(lfn, x)	Bypasses x records in the forward direction, from the current position on lfn.
SORT(lfn, NC=n)	Sorts a file, lfn, of line or card images in numerical order based on leading line numbers consisting of n digits.
$\begin{aligned} & \text { STAGE(lfn, } p_{1}, \\ & \left.p_{2}, \ldots, p_{n}\right) \end{aligned}$	Copies the specified number of files from the specifield device to mass storage file lfn.
SUBMIT(lfn, q, NR) c	Submits a batch job on lfn to the input queue for processing.
SUI(n)	Allows user to access a permanent file catalog without using an ACCOUNT card.
$\begin{aligned} & \text { SWITCH(s } s_{1} \text {, } \\ & \left.s_{2}, \ldots, s_{n}\right) \end{aligned}$	Sets the pseudo-sense switches for reference by the user's program.
$\begin{aligned} & \text { SYSEDIT(I }=\operatorname{lfn}_{1}, \\ & \left.B=\operatorname{lfn}_{2}, L=\operatorname{lfn}_{3}, R=n\right) \end{aligned}$	Performs modifications to the system library.
$\mathrm{N}=$ lines, NR)	Lists file lfn_{1} on lfn_{2} in octal and/or alphanumeric form.
UNLOAD llfn_{1}, $\left.\operatorname{lfn}_{2}, \ldots, \operatorname{lfn}_{n}\right)$	Rewinds and unloads the specified files but does not release them from the control point.
UNLOCK $\left(\operatorname{lfn}_{1}\right.$, $\left.\operatorname{lfn}_{2}, \ldots, \operatorname{lfn}_{n}\right)$	Clears the write lockout bit for local file $\mathrm{lfn}_{\mathrm{i}}$.
2-14	60407200 A

$\begin{aligned} & \mathrm{UPMOD}\left(\mathrm{P}=\operatorname{lfn}_{1}, \mathrm{~N}=\operatorname{lfn}_{2},\right. \\ & \left.\mathrm{M}=\operatorname{lfn}_{3}, \mathrm{~F}, \mathrm{NR}\right) \end{aligned}$	Converts Update-formatted old program library file lfn_{1} to Modify-formatted old program library lfn_{3} and writes it on lfn 2 .
$\operatorname{USECPU}(\mathrm{n})$	Specifies which CPU (6600 for $n=1$ and 6400 for $n=2$) is to be used for processing.
$\begin{aligned} & \text { VERIFY }\left(\mathrm{lfn}_{1}, \mathrm{lfn}_{2},\right. \\ & \left.\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right) \end{aligned}$	Performs a binary comparison of all data from the current position of lfn_{1} and lfn_{2}.
$\begin{aligned} & \text { VFYLIB(lfn} \\ & \text { NR) }, \operatorname{lfn}_{2}, \operatorname{lfn}_{3}, \end{aligned}$	Performs a comparison of binary records on files lfn_{1} and lfn_{2} and lists replacements, deletions, and insertions on lfn_{3}.
$\begin{aligned} & \operatorname{VSN}\left(\operatorname{lfn}_{1}=\operatorname{vsn}_{1},\right. \\ & \operatorname{lfn}_{2}=\operatorname{vsn}_{2} ; \cdots, \\ & \left.\operatorname{lfn}_{n}=\operatorname{vsn}_{n}\right) \end{aligned}$	Associates volume serial number $v s n_{i}$ with file lfn $_{i}$.
WBR(n, rl)	Writes a binary record from central memory on the specified file, beginning at its current position.
WRITEF(lfn, x)	Writes x file marks on lfn.
WRITER(lfn, x)	Writes x empty records on lfn.

CENTRAL MEMORY RESIDENT

CENTRAL MEMORY LAYOUT
system pointers and
control words

POINTERS AND CONSTANTS

*1 Bits 23-16 unused; bit 15 set if CMU present; bit 14 set if CEJ/MEJ present; bit 13 set if CPUO is 6600; bit 12 set if CPU 1 present.
*2 Bit 12 is scheduler requested flag.
*3 Bit 59 is scheduler active flag.
*4 Bits 35-24 assumed character conversion set ($0=63 \mathrm{ch}$. set, $1=64 \mathrm{ch}$. set); bits 23-12 as sumed conversion mode ($1=$ ASCII/USASI, $2=$ EBCDIC); bits 11-0 assumed tape density ($1=200,2=556,3=800,4=1600$)
*5 Bits 59-50 unused; bit 49 ignore ACCOUNT card; bit 48 disable account verification; bit 47 disable BATCHIO; bit 46 disable TELEX; bit 45 disable EI200; bit 44 disable MAGNET; bit 43 disable TRANEX; bit 42 disable removable device checking; bits 41-14 unused; bit 13 console initial lock status; bit 12 DEBUG switch; bits 11-3 unused; bit 2 disable priority evaluation; bit 1 disable job scheduler; bit 0 disable AUTOROLL.

*1 Bit 59 set if CPU 0 off.
*2 Bit 59 set if CPU 1 off.
*3 Bit 59 total PF system interlock; bit 58 request total PF system interlock; bits 57-54 reserved; bits 53-48 PF activity count; bits 47-18 reserved; bits 17-12 default family equipment number; bits 11-6 alternate family count; bits 5-1 reserved; bit 0 word interlock.

CONTROL POINT AREA

*1 Bits 59 CPU W status; bit 58 CPU X status; bit 57 CPU auto recall; bit 56 CPU subcontrol point active status; bits 55-54 unused; bit 53 job advancement flag; bits 52-48 number of PPUs assigned to job.
*2 Bits 35-33 CPU status for rollout; bits 32-28 unused; bit 27 set if rollout in process; bits 26-25 unused; bit 24 set if rollout requested.
*3 Bit 35 set if CPU time slice active.
*4 Bit 12 PP pause flag.

*1 Bits 59-57 unused; bit 56 no FL reduction flag; bits 55-54 unused.
*2 Bits 11-9 reserved; bits 8-0 index into table of limits (bits 8-6 limit for size of indirect access file; bits 5-3 limit for number of permanent files; bits 2-0 limit for cumulative size of indirect access files).
*3 Bit 47 set if bits 46-36 are error flag instead of reprieve error option.
*4 Bit 17 reprieve error return address.
*5 Bit 47 set if EOR on control statement file.
*6 Bit 59 set if information is for INPUT file; bit 58 skip to EXIT flag; bits 57-53 unused.
*7 Bit 59 set indicates presence of entry points; bits 58-54 reserved; bit 53 set if ARG= entry point present; bit 52 set if DMP = entry point present; bit 51 set if SDM = entry point present; bit 50 set if SSJ = entry point present; bit 49 set if VAL= entry point present; bit 48 reserved.
8 Bit 35 restart flag; bit 34 unused; bit 33 suppress DMP = if control card call; bit 32 create DM file only flag; bit 31 dump FNTs with control point area; bit 30 leave DM* file unlocked; bits 29-18 DMP = FL/100B (if field is 0 , dump entire FL).
*9 For input: bits 59-42, entry point if RA+1 request, 770000B if control card call; bit 41 special program request active (1 AJ only); bit 40 clear RA+1 upon completion; bit 39: if set, parameter list is in bits 35-0, if clear, address of parameter list is in bits 17-0; bit 38 does not start CPU at completion of control card call (1AJ only); bits 37-36 unused; bits 35-0 (refer to description of bit 39).

For output: bits 59-36 unused, bits 35-24 status return, bits 23-0 unused.

EXCHANGE PACKAGE AREA

RA Reference address
FL Field length
MA Monitor address
Ai Address registers
Bi Increment registers
$\mathrm{Xi} \quad$ Operand registers
EM Exit mode:

000000	Disable exit mode
010000	Address out of range
020000	Operand out of range
030000	Address or oper
040000	Indefinite operand of range
050000	Indefinite operand or address out of range
060000	Indefinite operand or operand out of range
070000	Indefinite operand or address out of range or operand out of range

PP COMMUNICATION AREA

*1 Bit 41 set if called with auto recall, bits 40-36 control point assignment

DAYFILE BUFFER POINTERS

CENTRAL MEMORY TABLES

EQUIPMENT STATUS TABLE (EST) FORMATS

MASS STORAGE DEVICES

NONMASS STORAGE DEVICE (3000 TYPE EQUIPMENT)

*1 Bit 59 set to indicate mass storage device; bit 58 set if device has copy of system; bit 57 set if device contains permanent files; bit 56 set if removable device; bit 55 set if checkpoint request pending; bit 54 set if device is not available for automatic assignment by system.
*2 Bits 35-33 physical equipment number; bits 32-30 number of physical units for device minus 1; bits 29-27 device selection for connect code; bits 26-24 first physical unit for device.
*3 Bit 23 ON/OFF flag (set if access not allowed)
*4 Bit 23 ON/OFF flag (set if access not allowed)

FILE IN INPUT QUEUE

FILE IN PRINT QUEUE

FILE IN PUNCH QUEUE

FILE IN ROLLOUT QUEUE

$59 \quad 53$	35		17	1
id eq code no	first track	reserved	fiength	queue

FILE IN TIMED/EVENT ROLLOUT QUEUF

*1 Bit 5 set if system sector contains control information.

MAGNETIC TAPE FILES

FAST ATTACH PERMANENT FILES

*1 Bit 5 set if system sector contains control information.
*2 Bit 17 unused; bit 16 set if extend-only file; bit 15 set if alter-only file; bit 14 set if exe-cute-only file; bit 13 unused; bit 12 write lockout.
*3 Bit 11 unused.
*4 Bits 10-9 unused; bit 8 set if file opened; bit 7 set if file written since last open; bit 6 set if file written on; bits 5-4 unused; bits 3-2 read status ($0=$ incomplete read, $1=E O R, 2=$ EOF, $3=\mathrm{EOI}$); bit 1 set if last operation write; bit 0 if busy status.

clear

*5 Bits 17-14 unused; bit 13 set if opened; bit 12 write lockout.
*6 Bits 35-32 data format; bits 31-30 type ($0=$ VSN entry, $1=7$-track, $2=9$-track).
*7 Bit 11 set if labeled tape.
*8 Bit 17 unused; bit 16 set if modify; bit 15 set if append; bit 14 set if execute; bit 13 set if write; bit 12 set if read.

FILE TYPES
Files in Queues

Type	Value		Description
INFT	0		Input
ROFT	1		Rollout
PRFT	2		Print
PHFT	3		Punch
TEFT	4		Timed/event rollout

Other Files

Type	Value	Description
SYFT	5	System
LOFT	6	Local
CMFT	7	Common
LIFT	10	Library
PTFT	11	Primary terminal
PMFT	12.	Direct access permanent file
FAFT	13	Fast attach file

JOB ORIGIN CODES

$\frac{\text { Type }}{}$		Value	
SYOT	0		Description BCOT
	1		Local batch
EIOT	2		Remote batch (Export/ Import)
TXOT	3		Time-sharing
MTOT	4		Multiterminal

MASS STORAGE TABLE (MST)

*1 Bit 47 set if FORMAT PACK request pending (844 only); bit 46 set if release reservation when channel released; bit 45 reserved.
*2 Bit 59 set if mass storage device; bit 58 set if system on device; bit 57 set if permanent files on device; bit 56 set if removable device; bits 55-54 reserved; bit 53 set if direct access files may reside on device; bit 52 set if INITIALIZE request pending; bit 51 set if not available for PF access (UNLOAD status); bit 50 set if auxiliary permanent file device; bit 49 set if available for system allocation; bit 48 set if alternate system device.
*3 Bits 11-6 next equipment in multiple equipment chain; bits 5-3 original number of units for equipment; bit 2 set if device in use (in multiple equipment chain); bit 1 device interlock (set means utility active); bit 0 device interlock (clear means device busy).
*4 Bit 11 set if catalog track continuous with label track; bit 10 set if continuous tracks have overflowed; bits 9-8 reserved; bits 7-0 device mask.
*5 Bits 5-3 relative unit on multiunit device; bits 2-0 number of units in multiunit device.

WORD FORMAT

* 1 Bits 11-8 each bit set indicates corresponding byte (0-3) is first track of direct access file; bits 7-4 track interlock bits; bits 3-0 track reservation bits.

TRACK LINK BYTE (FORMAT 1)

$\frac{\text { Bit }}{11}$	Contents
$10-0$	Set
	Next track in track chain

TRACK LINK BYTE (FORMAT 2)

$\frac{\text { Bit }}{11}$	$\frac{\text { Contents }}{\text { Clear }}$
$10-0$	End of chain (EOI sector in file)

JOB CONTROL AREA (JCB)

LIBRARIES/DIRECTORIES

RESIDENT CPU LIBRARY (RCL)

TY PE OVL

TYPE ABS

RESIDENT PPU LIBRARY (RPL)

PPU LIBRARY DIRECTORY (PLD)

CPU LIBRARY DIRECTORY (CLD)

TYPE OVL

TYPE ABS

TYPE ULIB

TYPE PROC

USER LIBRARY DEFINITION, ENTRY AFTER $(0,0)$ OVERLAY OF COMPILER

TYPE COS

*1 Alternate device equipment number (if applicable)
*2 Bits 17-14 unused; bit 13 SCOPE record flag; bit 12 unused; bits 11-6 alternate device equipment number.
*3 If ULIB associated with program, field is set to 1 and ULIB name is added to entry.
*4 If program is CM resident, field contains index to its location (that is, FWA RPL + index = RCL address); if program is assigned to alternate system device, field has mass storage address of copy on system device.
*5 Bit 59 type ($0=\mathrm{P}$ mode, $1=1$ mode)

JOB COMMUNICATION AREA

*1 Bit 12 pause flag.
*2 Bit 40 auto recall.
*3 Bit 59 set if compare/move unit (CMU) is present.
*4 Bit 59 set if CEJ/MEJ option is available.
*5 Bit 29 set if load has completed.
*6 Bit 59 unused; bit 58 set if program called from DIS; bit 57 unused; bit 56 set if no automatic field length reduction.
*7 If an overlay is loaded, then ULIB is overlayed in bits 35-18 with lwa+1 of last and largest overlay.
*8 Map flags:
0001 Statistics and errors
0002 Block assignments
0004 Entry points
0014 Cross-reference of entry points

SYSTEM SECTOR FORMAT

STANDARD FORMAT

fnss	FNT entry
eqss	Equipment number
ftss	First track
fass	Address of FST entry

DIRECT ACCESS FILE FORMAT

Equipment number
First track
Current user counts:

$$
\begin{array}{ll}
\text { RM } & \text { READMD users } \\
\text { RA } & \text { READAP users } \\
\text { R } & \text { Read/Write users }
\end{array}
$$

*1 Bit 29 purge; bit 28 extend; bit 27 modify; bit 26 zero; bit 25 write; bit 24 read

ROLLOUT FILE

SYSTEM SECTOR

(tayfile buffer pointer

FILE FORMAT

*This is the only part of the rollout file used for TXOT jobs.

PPU MEMORY LAYOUT

PPO - SYSTEM MONITOR (PPU PORTION)

PP1 - SYSTEM DISPLAY DRIVER (DSD)

7777
$\left.\begin{array}{|c|}\hline \text { DIRECT CELLS } \\ \hline \text { COMMAND OR SYNTAX OVERLAY } \\ \text { SYSTEM } \\ \text { DISPLAY } \\ \text { DRIVER }\end{array}\right]$ REFT SCREEN OVERLAY

POOL PROCESSORS

(PP2 through PP11 on 10 PP machines; PP2 through PP11 and PP20 through PP31 on 20 PP machines.) \dagger

EQUIPMENT CODES

CP Card punch (3446/3644-415)
CR Card reader (3447/3649-405)
DA Disk file (6603/6603 MOD1)
DB Disk file (6638/6639)
DC Drum (3436/3637-863)
DD-n Disk drive (3234-853/854)
DE Extended core storage
DF Disk file (3234-813/814)
DH Disk file (3553-821)
DI-n
Disk storage subsystem (7054-844)
\dagger PP numbers are in octal notation.

DP	Distributive data path to ECS
DS	Display console (6612)
LP	Line printer $(3256 / 3659-501 / 505)$
LQ	Line printer $(3555-512)$
MD-n	Disk drive ((3553-1)-841)
MS	Mass storage device
MT	Magnetic tape drive (7-track)
NT	Magnetic tape drive (9-track)
NE	Null equipment
ST	Remote batch multiplexer (6671)
TT	Time-sharing multiplexer (6676 or 6671$)$

DEADSTART PANEL SETTINGS AND OPTIONS

DEADSTART PANEL SETTINGS

Word on Panel	Setting			
0001	111	101	ccc	ccc
0002	111	111	ccc	ccc
0003	eee	000	00u	uuu
0004	111	111	ccc	ccc
0005	000	000	001	000
0006	111	111	ccc	ccc
0007	001	100	000	000
0010	111	100	ccc	ccc
0011	111	001	ccc	ccc
0012	110	110	000	110
0013	www	xxx	xxx	yyy
0014	rrr	ppp	Sss	SSS

1	Switch up
0	Switch down
ccc ccc	Tape channel number (must be 12 or 13)
eee	Tape controller number
uuuu	Tape unit number
xxx xxx	CMRDECK number
yyy	Deadstart options
rrr	Recovery options
ppp	Central processor options
SSS sss	System library assignments
www	LIBDECK number

-

WORD 13 AND WORD 14 OPTIONS

Deadstart panel setting to transfer the contents of PPU 0 to another PPU.

Word on Panel	Setting			
0001	010	000	000	000
0002	111	111	111	110
0003	111	011	ppp	ppp
0004	000	000	000	000
0005	000	011	000	000

ppp ppp PPU to which transfer is to be made \dagger If either of the CPU is disabled, detection of the compare/move unit (CMU) is also disabled. Also, both CPUs should not be disabled simultaneously.

MASS STORAGE DATA ORGANIZATION

6603 AND 6603-MOD I DISK FILES

KRONOS accesses each 6603 as a single device.

- Equipment type DA
- Sectors/track

64 in outer zone 50 in inner zone

- Tracks/device 2048
- Words/device 7,471, 104
- Maximum data rate

61. 1 K words per second, outer zone 48. 5 K words per second, inner zone

- Address mapping

LOGICAL
TRACK SECTOR

PHYSICAL

- Equipment connect code
e000
$\mathrm{e}=1$ normally

6638 DISK FILES

KRONOS accesses each disk unit as a single device whether the 6638 has the standard option 10037 or not. If the 6638 has the standard option 10037, the 6638 is accessed through two channels instead of one.

- Equipment type DB
- Sectors/track 49
- Tracks/device 2048
- Words/device 6,422,528
- Maximum data 62.9 K words per second rate
- Address mapping:

LOGICAL

PHYSICAL

- Equipment connect
e00u code
$\mathrm{e}=1$ normally
$\mathrm{u}=$ unit 0 or 1
$u=0$ if SO 10037 in use

3637/3436/863 DRUMS

KRONOS accesses one to eight drums connected to one 3637-3436 which are referenced as a single device. For the 3637 , only one channel may be used.

- Equipment type DC
- Sectors/track 25
- Tracks/drum 256
- Words/drum 409,600
- Maximum data

48. 0 K words per second rate

- Address mapping:

LOGICAL

TRACK

PHYSICAL

- Equipment connect code

```
e000
```

$$
\mathrm{e}=\begin{aligned}
& 3637 / 3436 \text { equipment } \\
& \text { number }
\end{aligned}
$$

3234/853/854 DISK DRIVES

KRONOS accesses the 3234 and $n 853$ s or $n 854$ s (n may range from 1 through 4) as a single device. Only one channel of the 3234 controller is used.

- Equipment type

DD

- Sectors/track
$26 \times n$
- Tracks/device

400/854, 200/853

- Words/device
$665,600 \times \mathrm{n} / 854 \mathrm{~s}$; $332,800 \times \mathrm{n} / 853 \mathrm{~s}$
- Maximum data

6. 6 K words per second rate

- Address mapping:

LOGICAL

PHYSICAL

- Equipment connect
e00u
code
$\mathrm{e}=3234$ equipment number
$u=853 / 854$ unit number.

EXTENDED CORE STORAGE (ECS)

KRONOS accesses ECS as a single device, reserved for PPU transfers by pseudo channel 16.

- Equipment type DE/DP
- Sectors/track 16
- Tracks/device $121 \mathrm{~K}-125 \mathrm{~K}$ of ECS $243 \mathrm{~K}-250 \mathrm{~K}$ of ECS
- Words/device 123,904-125,000 of ECS 248, 832-250, 000 of ECS
- Maximum data 80 K words per second rate for PPU transfers
- Equipment connect 0000 code
- Address mapping:

System
Physical

Unit	$\underline{\text { Bits }}$	\quad Unit
Track	$\underline{\text { Bits }}$	
$0-10$		

Sector 0-3

Formula:

$$
\left(\mathrm{S}_{0-3} \times 101_{8}\right)+\left(\mathrm{T}_{0-10} \times 2020_{8}\right)
$$

3234/813/814 DISK FILES

KRONOS accesses each 3234/813/814 file as a single device. Only one channel of the 3234 controller is used.

- Equipment type

DF

- Sectors/track 85
- Tracks/device 2048
- Words/device 11, 141, 120
- Maximum data 6.8K words per second rate
- Address mapping:

LOGICAL

PHYSICAL

- Equipment connect

$$
\begin{aligned}
& \mathrm{e} 00 \mathrm{u} \\
& \mathrm{e}=3234 \text { equipment } \\
& \quad \text { number } \\
& \mathrm{u}=813 / 814 \text { unit number }
\end{aligned}
$$

3553-1/821 DISK FILES

KRONOS accesses each unit of an 821 as a single device.

- Equipment type DH
- Sectors/track 320
- Tracks/device 2048
- Words/device

41,943, 040

- Maximum data 19.2 K words per second rate
- Address mapping: .

LOGICAL

- Equipment connect e00u code
$\mathrm{e}=3553-1$ equipment number
$u=$ unit number 0 or 1

7054/844 DISK STORAGE SUBSYSTEMS

- Equipment type DI
- Sectors/tracks 107 x n
- Tracks/device 1616
- Words/device 11,066,368 x n
- Maximum data 46.1 K words per second
- Address mapping:

LOGICAL

3553-1/841-N MULTIPLE DISK DRIVES

KRONOS accesses the 3553-1 and n 841s as a single device. n may range from 1 through 8.

- Equipment type MD
- Sectors/track $32 \times n$
- Tracks/device 1600
- Words/device

3, 276, $800 \times \mathrm{n}$

- Maximum data rate

17. 8 K words per second

- Address mapping:

LOGICAL

- Equipment connect
e00u code
$e=$ 3553-1 equipment number
$u=$ unit number

GET (MASS STORAGE FILES)

\cdots
ν
v
v
ψ
\cup

FET (TAPE)

DT: KRONOS (I, X, E, B, F)

$$
\begin{aligned}
& M T+4000 B \text { (7TR) } \\
& \mathrm{NT}+4000 \mathrm{~B} \text { (9TR3) } \\
& \text { SCOPE (SI, S,L) } \\
& \begin{array}{ll}
40 n n & 9 T R \\
41 n n & 9 T R
\end{array} \\
& n n=\begin{array}{lll}
x \times x \times 10 & 800 B P I \\
x \times 000 \times x & \text { UNLABELED } \\
x \times 01 \times x & A N S I \angle A B E L \\
00 \times x \times x & S I \\
10 X X X X & S \\
11 \times x \times x & L
\end{array}
\end{aligned}
$$

u
\cup
\cup
\cup
\cup
\cup

WORD: POSITION(LEN) DESCRIPTION

（
\star
\star
\star
$凶$
$*$

ψ
\cup
v
\cup
$*$
\cup
$\frac{\text { WORD }}{10} \frac{\text { POSITION (LEN) }}{48-50 \text { (3) }}$
DESCRPTIOA

10
$\begin{array}{cc}36-47 & \text { (12) } \\ 45-47 & \text { (3) }\end{array}$
CONVERSION $1=$ asch 11 $2=E 8 C D$
Processing Options:

$$
\begin{aligned}
& 0=\text { Ref } \\
& 1=o p+10 \Delta 2 \\
& 2=111 \\
& 4=113
\end{aligned}
$$

$$
\begin{array}{r}
44 \\
+43 \\
42
\end{array}
$$

41
40
39

Fill user message? write system noise
Inhibit Unload (U)
Ring IN
Ring out
(w)

Inhibit error (E)
Do Not Abort
Abort
(6) format $0=I$

$$
\begin{aligned}
& 1=5 I \\
& 2=x
\end{aligned}
$$

$$
3=5
$$

$$
4=L
$$

$$
S=E
$$

$$
\begin{aligned}
& 6=B \\
& 7=6
\end{aligned}
$$

(6) Norse size

\cup

\cup

v
\cup
ψ

4

Word Position (Len) Descriptim
$\frac{12}{13} \quad 0.59$ (60) first 10 chacs file $=0$
13
18-59 (42)
Last 7 chars file ID
13 0-14 (15) file sequerrie nor
$13 \quad 0-59$ (60) User control word (PFM)
14 18-59 (42) Packname
14. 0-11 (12) No, units inlultimit

14 24.59 (36) SETID
14. 15-23 (a) Generation Ver no.

15 18-59 (42) new file name
15 30-59 (30) Expiration dite (disp)
is 0-29 (30) Creation " (disp)
readew control word.

READN Header

\cup

$凶$
u
\cup
u

UDT

MT, C13-5-02, ABCDEF, RD,53,500, 3207,3001 . MT, C13, FO4, T13, B0000123, $\angle 5004, P 000 \cdots$ MTC13, EOO, H244000000.

1) $\mathrm{Ch} 13, E Q 5, O N 2$
2) $V S N=A B C D E F$
3) $O P=$ RCad
4) EST writien o.. (3)
5) 6681 status
status 1 of contioler
6) Ch 13
7) Software $\mathrm{fen}_{\mathrm{n}} 14$
8) Error teration
9) Blockno.
10) Block len (bytes)
o) 1 mT internal errar params
11) Ch 13
12) Dxt-1 error cote
13) Controller optionc.
each 2 dibits is furctorn ace

VDT
Word
0 RS Completion:

$$
\begin{aligned}
& 1=\text { IN Progress } \\
& 2=\text { Normal Complete } \\
& 3=\text { Requeve delay } \\
& 4=\text { error }
\end{aligned}
$$

FN Function

MD Modes

- None

Read Skip
2,3 O- PRU operation
I- KOR

$$
z-E O F
$$

$$
\begin{array}{ll}
\text { z- EOF } \\
3-E 0 F
\end{array}
$$

$\begin{array}{lll}4 & 260 / 264 \text { Control word } \\ 500 / 204 & 11\end{array}$
6 Coded
10 EUR THIS OP
In SET IN= OUTEFIRST
12 REVERSE (TEADLABEC) ". (" dATA)
1 Icio internal clio code
2. R auto-recall

D Data in butter (-1)
EC10 user ciao code
FOPS USE FIT OPTIONS
LN Level Number
3 FL of Job

$$
\begin{aligned}
& \text { 1: SET EQ DEFN } \\
& 2=\text { COMPlETE USER sET } \\
& 3=\text { MESSAGE AND ABORT } \\
& 4=P_{\text {rocks }} \text { function (FNH). } \\
& 5=\text { skip } \\
& \text { 5: OPEN FUNCTIONS } \\
& 7=\text { READ DATA } \\
& 10=\text { READLABEL } \\
& \text { "I = WRite data } \\
& \text { 12= WRITE LABEG }
\end{aligned}
$$

p
$19876543210: 108876543210$
 \rightarrow Clipping eve being
\rightarrow Reentry cox +2
\rightarrow dipping level
$(0) \rightarrow$ opposite parity
$\rightarrow(11) \rightarrow$ Reverse dircufion

Nard
4 ED Equip Connect ($13-11,3-0$)
Channel desig. ($10-4$)
HP $\underset{0}{\operatorname{Hardware}} \mathrm{q}_{\text {TR }}$ MS
1 STR
2 Conversion mode
3 Controlled BkS
4 Programmable le
5 MTS Contriver.
11 Blank tape
12 LAST BLOCK EOR/EUF
13 LAST OP WRITE

\sim
 u
 U

v
\cup
\cup

UDT
Hosd
4 ES extended status
os device status

$$
\text { ifor mis conve to } 30007
$$

3 UP useroptions io Nooded std label, $13=1$ aiol 1
6 EP Crror pascmetons
DEN $\quad \begin{array}{ll}1=200 & 3=800 \\ 4=1600\end{array}$

(V) | $a=2 f$ |
| :--- |
| $i=A S C l:$ |
| $3=E B C D 1 C$ |

7 WC Block Wand Camt
ov Unused chor cart (E, B)
chunk count
(L)

FM $\quad \begin{array}{llll}0=I & 2=X & 4=L & 6=B \\ 1=S I & 3=S & S=6 & 7=F\end{array}$
NB Noce byte detr.

SP Software up

- Abort RPE/WPE with E?
$1 \frac{1}{2}$ accept data whibit erco ep
3 Inhibit error proc.
3 Ringout
4 Ring In
5 Inhibit Unload.
6 write system iloise
10 sull error diág to user
11 systars stoe Pocam
13-12 ent of cet?

$$
0 . \text { peon to } 1 \mathrm{~m}
$$

1- Acepta data 2-discaird "
12 Esul est writien
20 Flags o Remount tape
'in File apened
i2 scratec is.
2 Detarit labell
13 habel chect
\cup

PPU FUNCTION REQUESTS

A PPU sets one of the following codes in the output register when a system request is made. The system replies to the request with a word in the output register as shown.

MTR FUNCTIONS

01 ASSIGN EQUIPMENT - AEQM
Request: OR $000100 \mathrm{eq} * * * * * * * * * * * * \dagger$ eq Equipment number

Reply: OR 00000000000000000000

02 ASSIGN MASS STORAGE SPACE - AMSM
Request: OR 0002 ******** ssss ****
ssss Sector count requested
Reply: OR 0000 00eq **** **** tttt
eq Equipment assigned
tttt First track assigned

03 CHECK CHANNEL - CCHM
Request: OR $0003 \operatorname{ccc} * * * * * * * * * * * *$ cccc Channel number

Reply: OR $0000 \operatorname{cccc} 000 \mathrm{r} * * * * * * * *$
ccce Channel assigned if r is 1
r $\quad 0 \quad$ Channel assigned
1 Channel not assigned

04 DROP CHANNEL - DCHM

Request: OR 0004 00ch **** **** ****
ch Channel number

Reply: OR 00000000000000000000
\dagger *denotes contents unimportant, OR denotes output register.

05 DROP EQUIPMENT - DEQM
Request: OR 000500 eq **** **** ****
eq Equipment number
Reply: OR 00000000000000000000

06 PROCESS DAYFILE MESSAGE - DFMM
Request: OR 000600 mc wwww ${ }^{*} * * * * * * *$ mc Message control:

0 Message to system dayfile, control point dayfile, control point message buffer
1 Normal message with no message at control point (NMSN)
2 Message to system dayfile only, with job name from message (JNMN)
3 Message to control point dayfile only (CPON)
4 Message to account file only (ACFN)
5 Message to account file, with job name from message (AJNN)
6 Message to error log only (ERLN)
7 Message to error log only, with job name from message (EJNN)
wwww Word count minus one of message
MB Dayfile message continuation; message begins in MB and is terminated by a zero byte. Message cannot exceed six words.

-

If message is completed:

Reply: OR 00000000 **** **** ***		
If dayfile buffer is full:		
Reply:	OR 0000 dddd 1111 \%*** *****	
	dddd	Pointer address of buffer to be dumped
	1111	Length minus 3 of dump buffer
Inter- mediate processing (buffer busy):	OR 0006 wwww cece tttt iiii rrrr	
	wwww	Option word (option obtained from table of message processing codes)
	cccc	Word count of message data
	tttt	Number of words transferred
	iiii	Buffer index
	rrrr	Reentry address

07 OFF EQUIPMENT - OFEM
Request: OR 000700 eq ******** $\begin{gathered}* * * *\end{gathered}$ eq Equipment number

Reply: OR 00000000000000000000

10 ON EQUIPMENT - ONEM

Request: OR 0010 00eq **** ********* eq Equipment number

Reply: OR 00000000000000000000

11 PAUSE FOR Storage relocation - prlm
Request: OR 0011 **** **** ********
Reply: OR 00000000000000000000

12 REQUEST CHANNEL - RCHM
Request: OR 0012 bbaa ddcc **** ****
aa First channel choice
bb Second channel choice
cc Third channel choice
dd Fourth channel choice
Reply: OR 0000 00ch ******** ****
ch Channel assigned

13 REQUEST EXIT MODE - REMM
Request: OR 0013 eeee $* * * * * * * * * * * *$ eeee Exit mode

Reply: OR 00000000000000000000

14 REQUEST EQUIPMENT - REQM
Request: OR 0014 00eq ********* ****
eq Equipment number
Reply: OR 0000 00st **** **** ****
st eq If equipment is assigned
0 If equipment is not available

15 ROLL OUT CONTROL POINT . ROCM
Request: OR 001500 cp ************ cp \quad Control point number

Reply: OR 00000000000000000000

16 REQUEST PRIORITY - RPRM
Request: OR 0016 pppp 000 t **** **** pppp Priority
$t \quad 0 \quad$ CPU priority
1 Queue priority
Reply: OR 00000000000000000000

17 REQUEST JOB SEQUENCE NUMBER - RJSM

Request: OR 0017 **** **** **** ****
Reply: OR 0000 ssss ssss ssss ****
ss...s Display code sequence number

20 SELECT CHANNEL - SCHM
Request: OR 0020 eeee eeee eeee eeee ee...e EST entry bytes 1-4

Reply: OR 00000000000000000000 MB 0000 cccc dddd xxxx nnnn
ccce Connect code
dddd Device type
xxxx Maximum sector limit
nnnn Minimum sector limit

21 REQUEST STORAGE - RSTM
Request: OR 0021 ffff $* * * * * * * * * * * *$ ffff Field length request (octal hundreds)

Reply: OR 0000 xxxx 000000000000 xxxx $0 \quad$ Request honored, or move is in progress
$\neq 0 \quad$ Storage not available

22 REQUEST SYSTEM - RSYM
Request: OR 0022 00ad **** **** ****
ad Alternate device equipment number

Reply: OR 0000 00ch 00eq **** **** ch Channel
eq Equipment number

23 SET MONITOR STEP - SMSM

This function is honored only from DSD.
Request: OR $0023 \mathrm{cpfn} * * * * * * * * * * * *$
$\mathrm{cp} \quad$ Special step flag and control point number
fn Function to step on
Reply: OR 00000000000000000000

24 STEP MONITOR - STPM

This function is honored only from DSD.
Request: OR 0024 ******** **** ****
Reply: OR 00000000000000000000

25 TELEX GET POT • TGPM
Request: OR 0025 **** **** **** ****
Reply: OR 0000 pppp 000000000000
pppp Pot pointer; 0 if pot unavailable

26 PROCESS TELEX REQUEST - TSEM
Request: OR 0026 **** **** **** ****
MB TELEX request
Reply: OR 00000000000000000000

27 DISK ERROR PROCESSOR - DEPM
Request: OR 002700 ec 00 p e $\ell \ell \ell$ sfun

ec	Error code
op	Operator code (read or write)

$\ell \ell \ell \ell$ Link 1 byte from sector read
sfun Status/function:

$\frac{\text { Bits }}{11-9} \quad$| S81 (6681 sta- |
| :--- |
| tus if function
 reject) |
| $8-0$ |
| Device function
 if function re-
 ject |

MB Bits 59-48 exit address to main driver, bits 470 disk address message
MB+1 Bits 59-0 disk address message
MB+2 Bits 59-0 disk address message

MB+3 Bits 59-48 device status; bits 47-36 zero; bits 3524 retry count; bits 2312 user error processing options; bits 11-0 connect code (not all devices;

MB+4 Bits 59-48 link 2 byte from sector read; bits 47-24 sector limits; bits 23-0 zero
MB+5 Bits 59-48 channel; bits 47-36 equipment number; bits $35 \cdot-24$ track; bits 23-12 sector; bits 11-0 contents of first word of PP program

30 DRIVER RECALL CPU - DRCM
Request: OR 0030 **** **** **** ****
Reply: OR 00000000000000000000

31 SELECT CPUS ALLOWABLE FOR JOB EXECUTION - SCPM

Request: OR 0031 000c **** **** ****

c	0	Any CPU
	1	CPU 0 only
	2	CPU 1 only

Reply: OR 00000000000000000000
1 CPU 0 only
2 CPU 1 only

Request: OR 0032 000f **** **ee eeee
f $\quad 0 \quad$ Enter event
1 Return event count
2 Return events to message buffer
eeeeee Event
Reply: OR 0000 000s **** **** **** (f=0)
$s \quad 0$ if event entered
OR $0000 \operatorname{cccc} * * * * * * * * * * * *(f=1)$
ccce Count of events in table presently

OR $0000 \operatorname{cccc}$ **** **** wwww ($\mathrm{f}=2$)
ccce Count of events in table presently
wwww CM word count of events returned

CPU MTR FUNCTIONS

36 ABORT CONTROL POINT - ABTM
Request: OR 0036 **** $* * * * * * * * * * * *$
Reply: OR 00000000000000000000

37 CHANGE CONTROL POINT ASSIGNMENT - CCAM
Request: OR 0037 ffnn **** $\begin{gathered}\text { **** } * * * * ~\end{gathered}$
ff Flags:
Bit Description
11 Set if job name not required of new control point Set if job advance flag set at new control point If set, reject change if move flag set; if not set and move

Request: OR 0043 00eq tttt ssss $* * * *$
eq Equipment number
tttt First track
If bit 11 of $\mathrm{tttt}=1$, all tracks from tttt to end of chain are dropped.
If bit 11 of $\mathrm{tttt}=0$, all tracks after tttt are dropped and ssss is inserted in track byte.
ssss Sector number
Reply: OR 00000000000000000000

44 DROP PP - DPPM
Request: OR 0044 **** ************
Reply: OR 00000000000000000000

45 ECS TRANSFER - ECSM
Request: OR 0045 000f $* * * *$ aaaa aaaa
f $\quad 0 \quad$ Reads ECS
1 Writes ECS
aa...a Absolute ECS address

Reply: OR 0000 000s 0000 aaaa aaaa
s $\quad 0 \quad$ Complete transfer $\neq 0 \quad$ Aborted transfer
aa...a Absolute ECS address where error occurred if $s \neq 0$

46 RECALL CPU - RCLM

Request:	OR $0046 * * * * * * * * * * * * * * * *$
Reply:	OR 00000000000000000000

47 REQUEST CPU - RCPM
Request: OR 0047 **** **** $\begin{gathered}\text { ******** }\end{gathered}$
Reply: OR 00000000000000000000

50 REQUEST DATA CONVERSION - RDCM
Request: OR 0050 ***c $* * * * * * * * * * * *$

	c $\quad 1$ if data to be converted is CM usage
	MB **** **** **nn nnnn nnnn
	nn...n 30-bit integer
Reply:	OR 00000000000000000000
	MB ccce $\operatorname{cocc} \operatorname{cocc} \operatorname{cocc} \operatorname{cocc}$
	cc...c Display code conversion (F10.3 conversion)

51 READ ECS WORD - REWM
Request: OR 0051 **** **** aaaa aaa aa...a Absolute ECS address

Reply: OR 00000000000000000000 MB ECS word read

52 REQUEST JOB ACCOUNTING - RJAM
Request: OR 0052 ****************
Reply: OR 00000000000000000000

53 REQUEST PPU - RPPM
Request: OR 0053 **** **** **** **** MB Input register for PPU

Reply: OR 0000 ssss **** **** **** ssss Address of assigned PPU's input register 0 if no PPU assigned

54 REQUEST JOB SCHEDULER - RSJM
Request: OR 0054 **** **** **** ****
Reply: OR 00000000000000000000

55 REQUEST TRACK CHAIN - RTCM
Request: OR 0055000 eq tttt ssss ****
eq Equipment number
tttt Current track
ssss Sectors requested
Reply: OR 0000 00eq **** **** tttt

eq	Equipment number
tttt	First track assigned

56 SET FILE BUSY - SFBM
Request: OR 0056 **** ******aa aaaa
aaaaaa Address of file status word

MB Value compare with file name word (aaaaaa-1)

Reply: OR 0000 ssss **** **** ****
ssss $\quad 0 \quad$ File was set busy
1 File is busy
2 Comparison failed
Comparison is not performed if aaaaa is not within the file name table.

57 SET TRACK BIT - STBM
Request: OR 0057 00eq tttt nnnn ****

eq	Equipment number	
tttt	Track	
n	0	Set permanent file bit Set write reserva-
	1	Sion bit tion
	77778	Clear permanent file bit Clear write reser- vation bit
77768		

Reply: OR 0000 000s 000000000000

\mathbf{s}	0	Function performed
	1	Bit is already set

60 UPDATE ACCOUNTING AND DROP PPU - UADM
Request: OR 0060 aaaa **** **** ****
MB **** **** **ii iiii iiii
aaaa Address of accounting word in control point area (if aaaa $=0$, activity count is incremented by one).
ii. ..i Increment value for update.

Reply: OR 00000000000000000000

61 WRITE ECS WORD - WEWM
Request: OR 0061 **** **** aaaa aaaa
MB ECS word to write
aa...a Absolute ECS address

Reply: OR 00000000000000000000

62 JOB ADVANCEMENT CONTROL - JACM
Request: OR 0062 000s **** **** $\# * * *$

Reply OR 00000000000000000000

63 DELINK TRACKS -DLKM
Request: OR 0063 00eq ffff nnnn 1111
eq Equipment number
ffff Track onto which nnnn is linked (bit 11 of ffff must be clear)
nnnn Track to be linked to ffff
1111 Last track in chain to drop

Reply: OR 00000000000000000000

64 TRANSFER DATA TO/FROM JOB - FROM/TO MESSAGE BUFFER - TDAM

Request OR 0064 000r qqqq wwaa aaaa

\mathbf{r}	0	Read
	1	Write

qqqq Queue priority of job
ww Number of words to transfer
aa...a Relative address
MB Up to six words of data to be sent or to be read from job OR 0000 000s 000000000000

s	0	Operation complete
	1	Move in progress
2	Not ready for data	
	3	Reject (write re-
		quest to nonzero
	4	first word)
	Inactive	

65 TAPE I/O PROCESSOR - TIOM
Request: OR 0065 uuuu bbbb 00cc cccc
uuuu MAGNET unit descriptor table address to be cleared
bbbb Blocks transferred (added to MTUW)
cc...c FET completion code

Reply: OR 0000 ssss uuuu uuuu uuuu
ssss $0 \quad$ Operation complete
1 Function must not be reissued
uu...u Unchanged
MB Unchanged

66 REQUEST CPU TIME LIMIT - RTLM
Request OR 0066 tttt tttt $\begin{gathered}\text { **** } * * * * ~\end{gathered}$
tt...t Time limit in seconds
Reply: OR 00000000000000000000

67 LOAD CENTRAL PROGRAM - LCEM
Request: OR 0067 00aa aaaa pppp pppp
aa...a User-specified load address
pp...p Program location:

- If ECS resident, pp. . . p is tttt ssss tttt Track ssss Sector
- If CM resident, pp...p is 00cc cecc cc...c CM address

Reply: OR 00000011111100 ff ffff (normal)

$$
\begin{array}{ll}
\text { 11. . . } & \begin{array}{l}
\text { Last word address of } \\
\text { load }
\end{array} \\
\text { ff...f } & \begin{array}{l}
\text { First word address of } \\
\text { load }
\end{array}
\end{array}
$$

OR 00007777 eeee 00aa aaaa (error)

eeee	Error flag	
aa. . a a	Address in error:	
	eeee $=0$	ECS read
		error
	eeee $\neq 0$,	Illegal load
	aa...aキ0	address
	eeee $\neq 0$,	Insufficient
	aa...a=0 field length	

70 CLEAR STORAGE - CSTM
Request: OR 00700000 wwww wwaa aaaa ww...w Word count
aa...a First word address
Reply: OR 00000000000000000000
71. CHECKSUM SPECIFIED AREA CKSM

Request: OR 007100 ff ffff 00111111 ffffff Absolute first word address of checksum area
11111 Absolute last word address +1 of checksum area

MB Checksum compare value
Reply: OR 0000000000000000 ssss ssss Status

0 Calculated checksum equals specified checksum
$\neq 0 \quad$ Calculated checksum does not equal specified checksum

MB Calucated checksum

CPU FUNCTION REQUESTS

The CPU issues the following requests to the system as needed. These requests are processed directly by CPUMTR.

ABT - ABORT CONTROL POINT
Request: AB T00 000000000000

CPM - RESIDENT CPM FUNCTIONS
Request: \quad CP M00 ffff 00pp pppp ffff Function number pp...p Parameter

END - TERMINATE CURRENT CPU PROGRAM
Request: EN D00 000000000000

LDR - REQUEST OVERLAY LOAD
Request: LD R00 0000 00aa aaaa
aaaaaa Specifies address of parameters for overlay load

LDV - REQUEST LOADER ACTION
Request: LD V00 000000000000
Request: LD V00 0000 00aa aaaa
aaaaaa Specifies address of parameters for overlay load

LOD - REQUEST AUTOLOAD OF RELOCATABLE FILE, FILE NAME IN (644_{8}^{7})

Request: LO D00 000000000000

MEM - REQUEST MEMORY

Request:	ME M00 0000 00aa aaaa
	aaaaaa Address of request word
Request	0000 nfff ff00 00000000
word:	n No-reduce override
	ff...f Field length request (if ff...f=0, current field length is returned)
Reply:	0000 ffff ff00 00000001
	ffffff Field length

- MSG - SEND MESSAGE TO SYSTEM

Request: = MS Gr0 aaaa 00ff ffff

r	Recall (if desired)
aaaa	Message option

0 System dayfile
1 Console line 1
2 Console line 2
3 Job dayfile
4 Error log (system origin or SSJ = only)
5 Account log (SSJ = only)
ffffff Address of message

\square
PFL - SET (P) AND CHANGE FIELD LENGTH
Request: PF L00 pppp ppff ffff
pppppp New (P)
ffffff New FL

RC - PLACE PROGRAM ON RECALL
If the program desires recall until system recall delay has expired:

Request: RC L00 000000000000

If the programmer desires recall until bit 0 is set:
Request: RC L20 0000 00aa aaaa
aaaaaa Program is placed on recall until bit 0 of aaaaaa is set

RFL - REQUEST FIELD LENGTH
Request: RF L00 aaaa aanf ffff
aaaaa Address of status response
n No-reduce override
ff. . .f Field length; if ff. . .f $=0$, current field length is returned.

Reply: $\quad 0000$ ffff ff00 $0000000 \stackrel{\rightharpoonup}{1}$ ff...f Field length

RSB - READ SUBSYSTEM PROGRAM BLOCK

Request: \quad RS Br0 00qq qqss ssss

r	$1 \quad$ Auto recall selected
qqqq	Subsystem queue pri- ority; if qqqq=0, block is read from CM or
relative to caller's con-	
trol point.	

Status $\quad 0000$ wwww aaaa aabb bbbb word:

wwww	Number of words to be read
aa. . .a	Address to read from in subsystem
bb. ..b	Address of buffer to receive data

Reply: rrrr wwww aaaa aabb bbbb

rrrr	4000	Transfer suc- cessfully com- pleted
2000	Subsystem not present	

wwww	Number of words to be read.
aa. . . a	Address to read from in subsystem.
bb. . .b	Address of buffer to receive data.

SIC - SEND INTERCONTROL POINT BLOCK TO SUBSYSTEM PROGRAM

Request:	SI Cr0 bbbb bbss ssss
	$r 11$ Auto recall selected
	bb...b Address of buffer to be transferred to subsystem.
	ss...s Address of status word in format.
Status word:	nnnn nnqq qq00 00000000
	nn...n Buffer number of subsystem for transfer.
	qqqq Destination subsystem queue priority.
Reply:	nnnn nnqq qqrer rerr rrrr
	$\mathrm{nn} . . \mathrm{n}$ Buffer number of subsystem for transfer.
	qqqq Destination subsystem queue priority.
	rr...r 1 Transfer completed successfully.
	3 Destination subsystem is not present in the system.
	5 Subsystem buffer is full, subsystem is being moved, or subsystem job is advancing.
	7 Block length as specified in first word is larger than that permitted by the subsystem.
	11 Destination buffer is undefined by subsystem.

Request:	TI M00 rrrr 00ff ffff ff...f Address for response If $\mathbf{r r r r}=0$, the system replies with accumulated CPU time
Reply:	2sss ssss ssss ssss mmmm ss...s Seconds mmmm Milliseconds If $\mathrm{rrrr}=1$, the system replies with the date line.
Reply:	yy. mm. dd If $\mathrm{rrrr}=2$, the system replies with the clock line.
Reply	hh. mm.ss If $\mathrm{rrrr}=3$, the system replies with the Julian date (right-justified).
Reply:	yyddd If $\operatorname{rrrr}=4$, the system replies with SCOPE format real-time.
Reply:	2sss ssss ssss ssss mmmm ss...s Seconds mmmm Milliseconds If $\operatorname{rrrr}=5$, the system replies with real-time.
Reply:	SSSS SSSS mmmm mmmm mmmm ss...s Seconds mm...m Milliseconds If rrrr=6, the system replies with packed date/time.

Reply: $\quad 00000000$ gymo ddhh mmss

yy	Year-70 decimal
mo	Octal month
dd	Octal day
hh	Octal hour
mm	Octal minutes
ss	Octal seconds

TLX - PROCESS SPECIAL REQUEST

This function can process special PPU requests from any subsystem with queue priority of MXPS or above. It provides two capabilities.

- PPU programs with names starting with 1 (such as 1TA) can be called.
- If no PPU is available, control is returned to the running program.

Request: TL X00 0000 00aa aaaa
aa... a Address of PPU request
Reply: aa... a is not cleared if no PPU is available

XJP - INITIATE SUBCONTROL POINT

Request: XJ P00 tttt ttaa aaaa
tttttt CPU time limit (in milliseconds) for subcontrol point
aaaaaa Address of subcontrol point exchange package

Reply: \begin{tabular}{cccc}

$\frac{\text { Register }}{\mathrm{X} 2}$ \& \& | Bits |
| :---: |
| $59-0$ | \& | Contents |
| :--- |
| Milliseconds |
| of CPU time |
| used by caller |
| before control |
| was given to |
| subcontrol point. |

X 6 \& $59-48$ \& | 2000B + ef |
| :--- |
| ef Error |

\& \& \& | flag set |
| :--- |
| by con- |
| trol point. |

\end{tabular}

$\frac{\text { Register }}{\mathrm{X} 7} \quad \frac{\text { Bits }}{59-0} \quad$| Contents |
| :--- |
| Milliseconds of
 CPU time used
 by subcontrol
 point. |

XJR - PROCESS EXCHANGE JUMP REQUEST
Request: XJ R00 ffff 00aa aaaa ffff Function code

0 Start job with exchange package at aaaaa.
1 Save current exchange package at aaaaa.
aaaaaa Address for function code

FUNCTION PROCESSORS

CIO - COMBINED INPUT/OUTPUT
Call:
$R A+1$

$r \quad$ Auto recall, if desired
$n \quad$ Count for skip operations
addr Address of the FET

FET Format:

\dagger These fields apply only to S and L format tapes.

READ AND WRITE FUNCTIONS

Code	Name	Description
000	R PHR	Reads physical record
004	WPHR	Writes physical record
010	READ	Buffer read
014	WRITE	Buffer write
020	READSKP	Reads skip
024	WRITER	Writes end of record
034	WRITEF	Writes end of file
200	READCW	Nonstop read of PRUs bounded by control words
204	WRITECW	Nonstop write of PRUs bounded by control words
210	READLS	Reads nonstop with list (mass storage only)
214	REWRITE	Buffer rewrite in place (mass storage only)
224	REWRITER	End-of-record rewrite in place (mass storage only)
230	RPHRLS	Reads PRUs with list (mass storage only)
234	REWRITEF	End-of-file rewrite in place (mass storage only)
250	READNS	Reads nonstop until buffer is full or EOF or EOI
260	READN	Reads data from an S or L formatted tape. Reads until buffer full or EOF or EOI
264	WRITEN	Writes nonstop on S or L formatted tape
600	READEI	Reads information until buffer full or EOI

FILE POSITIONING FUNCTIONS

Code	Name	Description
040	BKSP	Backspaces file one logical record
044	BKSPRU	Backspaces user-specified number of PRUs
050	REWIND	Rewinds file
060	UNLOAD	Rewinds and unloads file (if mass storage file, same as RETURN)
070	RETURN	Releases file space and releases file from job control
110	POSMF	Positions multifile tape set to member of set
114	EVICT	Releases file space
240	SKIPF	Skips forward user-specified number of records or files
240	SKIPFF	Skips forward user-specified number of records or files
240	SKIPEI	Positions file at EOI
640	SKIPB	Backspaces file userspecified number of records
640	SKIPFB	Backspaces file userspecified number of files

DATA TRANSFER MACROS

Name	Function
READC	Reads coded line from I/O buffer to working buffer
WRITEC	Writes coded line from working buffer to I/O buffer
READH	Reads coded line with space fill from I/O buffer to working buffer
WRITEH	Writes coded line, deleting all trailing spaces, from working buffer to I/O buffer

Name	Function READO
WRITEO	X6 Writes one word from X6 to I/O buffer
READS	Reads line image to character buffer
WRITES	Writes line image from character buffer
READW	Fills working buffer from I/O buffer WRITEWWrites data from working buffer to I/O buffer

CPM - CONTROL POINT MANAGER

Call:

CPM FUNCTIONS

$\frac{\text { Code }}{}$	Name	Description
000	SETQP	Sets job queue priority
001	SETPR	Sets job CPU priority
002	MODE	Sets exit mode flags
003	SETTL	Sets CPU time limit for job
004	EREXIT	Sets error exit address; when job aborts, control is returned to this address
005	CONSOLE	Transfers information to/ from console
006	ROLLOUT	Rolls out job
007	NOEXIT	Suppresses processing of EXIT statement if job aborts
011	ONSW	Sets sense switches for user job

Code	Name	Description
012	OFFSW	Clears sense switches
013	GETJN	Gets job name
014	GETQP	Gets job queue priority
015	GETPR	Gets job CPU priority
016	GETEM	Gets exit mode control
017	GETTL	Gets job time limit
020	---	Sets demand file random index (SSJ = only)
021	SETUI	Sets user index (system origin job only)
022	SETLC	Sets loader control words
023	SETRFL	Sets new field length restoration
024	GETJCR	Gets last error flag and KCL job control registers
025	SETJCR	Sets KCL job control registers
027	GETJO	Gets job origin code
030	GETJA	Gets job accounting information
031	USECPU	Specifies CPU to be used
032	USERNUM	Returns user number
033	GETFLC	Gets field length control word
034	EESET	Enters event in system event table (SYOT only)
035	PACKNAM	Writes default pack name in control point area
036	PACKNAM	Gets pack name from control point area
040	VALID	Validates account number (SSJ = only)
041	FAMILY	Enters family name (SYOT only)
042	---	Special CHARGE functions

LFM - LOCAL FILE MANAGER

Call:

code Function code
id File id number (refer to SETID, function code 017)
addr Address of the FET

FET format:

lfn	File name
$d t$	Device type
ep	Error processing bit

After the request is completed, the first word of the FET contains the following information.
addr

ec Error code

LFM FUNCTIONS

$\frac{\text { Code }}{}$	Name	Description
000	RENAME	Renames local file
001	ASSIGN	Accesses common file
002°	COMMON	Changes file type to common
003	RELEASE	Changes file type from common to local
$004-7$,	RELEASE	Releases file to user- specified output queue

Code	Name	Description
010	LOCK	Sets write lockout bit for file
011	UNLOCK	Clears write lockout bit for file
012	STA TUS	Obtains last status of file
013	STA TUS	Returns current position and status of file
014	REQUEST	Requests operator assignment of equipment to file
015	REQUEST	Assigns file to user-specified equipment
017	SETID	Sets identifier code for file
020	ASSIGN	Accesses library file
021	ACCSF	Attaches control statement file as read-only file
022	ENCSF	Replaces the control statement file
023	PSCSF	Positions control statement file
024	LABEL	Assigns file to tape and processes tape
025	GETFNT	Generates table of FNT/ FST entries for all local files
026	---	Requests tape assignment (SSJ = only)
027	---	Enters VSN file entry (SSJ = only)

Call:

$r \quad$ Auto recall bit
code Function code
id File identification number
addr Address of the FET for the file

FET format:

lfn	File name
dt	Device type

SFM FUNCTIONS

Code	Name	Description
000	SUBMIT	Enters batch job image in input queue
$\begin{aligned} & n 01-3, \\ & 005 \end{aligned}$	DAYFILE	Accesses system, account, error log, and user dayfiles
004	ESYF	Enters file attached to control point as a system file
006	RDVT	Obtains device type
007	SFQUE	Searches FNT for a queuetype file and changes it to a local file
010	REQUE	Releases local file to print or punch queue
011	-	Enters fast attach file (SSJ = only)
012	---	Deletes fast attach file (SSJ = only)
013	---	Releases file to CYBERLINK transmit queue

PFM - PERMANENT FILE MANAGER

Call:

FET format:

lfn Local file name
dt Device type
$\ell \quad$ FET length
pfn Permanent file name
ct File category
m File access mode
ouan Optional user number
pwd Optional file password
erad Error message return address
ucw User control word
pn Alternate packname
unit Number of units
nfn New file name

PFM FUNCTIONS

Code	$\frac{\text { Name }}{\text { SAVE }}$	Description
Saves copy of local file as indirect access per- manent file		
001, CCSV		

PERIPHERAL PROCESSOR (PPU) INSTRUCTION FORMATS

PPU INSTRUCTION FORMATS

An instruction may have a 12 -bit or a 24 -bit format. The 12-bit format has a 6-bit operation code F and a 6 -bit operand or operand address d.
\(\left.$$
\begin{array}{l}\begin{array}{c}\text { Operation } \\
\text { Code } \\
\text { F }\end{array}\end{array}
$$ \begin{array}{c}Operand or

Operand Address

d\end{array}\right] |\)| 6 | 6 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11 | | | | | |
| 6 | | | | 5 | 0 |

The 24-bit format uses the 12 -bit quantity m , which is the contents of the next program address $(P+1)$, with d to form an 18-bit operand or operand address.

Operand or Operand Address
Operation

SYMBOLS USED IN PPU INSTRUCTION LISTINGS

d	Implies d itself
(d)	Implies the contents of d
((d))	Implies the contents of the location specified by d
m in	Implies m itself used as an address
$\mathrm{m}+(\mathrm{d}$	Contents of d is added to m to form an operand (jump address)
($\mathrm{m}+(\mathrm{d}$) $)$	Contents of d is added to m to form the address of the operand
dm	Implies an 18 -bit quantity with d as the upper 6 bits and m as the lower 12 bits

PPU INSTRUCTIONS

NUMERICAL LISTING
All times are given to major cycles; one major cycle equals 1000 nanoseconds. Execution times are PPU times only. Instructions that interact with the CPU or CM do not include the time required by the CPU or CM to respond.

F	Mnemonic	Address	Name	(major cycles)
00	PSN		Pass	1
01	LJM	md	Long jump to $\mathrm{m}+(\mathrm{d})$	2-3
02	RJM	md	Return jump to $\mathrm{m}+(\mathrm{d})$	3-4
03	UJN	d	Unconditional jump d	1
04	ZJN	d	Zero jump d	1
05	NJN	d	Nonzero jump d	1
06	PJN	d	Plus jump d	1
07	MJN	d	Minus jump d	1
10	SHN	d	Shift d	1
11	LMN	d	Logical difference d	1
12	LPN	d	Logical product d	1
13	SCN	d	Selective clear d	1
14	LDN	d	Load d	1
15	LCN	d	Load complement d	1
16	ADN	d	Add d	1
17	SBN	d	Subtract d	1
20	LDC	dm	Load dm	2
21	ADC	dm	Add dm	2
22	LPC	dm	Logical product dm	2
23	LMC	dm	Logical difference dm	2
24	PSN		Pass	1
25	PSN		Pass	1
260	EXN	d	Exchange jump CPU d	1

4	F	Mnemonic	Address	Name	Time (major cycles)
	261	MXN	d	Monitor exchange jump CPU d to (A)	1
	262	MAN	d	Monitor exchange jump CPU d to (MA)	1
\cdots	270	RPN	d	Read program address of CPU d	1
	30	LDD	d	Load (d)	2
	31	ADD	d	Add (d)	2
	32	SBD	d	Subtract (d)	2
\cdots	33	LMD	d	Logical difference (d)	2
	34	STD	d	Store (d)	2
	35	RAD	d	Replace add (d)	3
	36	AOD	d	Replace add one (d)	3
	37	SOD	d	Replace subtract one (d)	3
	40	LDI	d	Load ((d))	3
	41	ADI	d	Add ((d))	3
	42	SBI	d	Subtract ((d))	3
	43	LMI	d	Logical difference ((d))	3
	44	STI	d	Store ((d))	3
	45	RAI	d	Replace add ((d))	4
	46	AOI	d	Replace add one ((d))	4
-	47	SOI	d	Replace subtract one ((d))	4
	50	LDM	m d	Load (m + (d))	3-4
	51	ADM	md	Add (m + (d))	3-4
	52	SBM	md	Subtract (m + (d))	3-4
	53	LMM	md	Logical difference ($\mathrm{m}+(\mathrm{d}$))	3-4
	54	STM	md	Store (m + (d))	3-4
	55	RAM	md	Replace add (m+(d))) 4-5
	56	AOM	md	Replace add one (m + (d))	4-5
	57	SOM	md	Replace subtract one ($\mathrm{m}+(\mathrm{d}$))	4-5

F	Mnemonic	Address	Name	Time (major cycles)
60	CRD	d	Central read from (A) to d	minor_{6}
61	CRM	md	Central read (d) words from (A) to m	5 plus 5/word
62	CWD	d	Central write to (A) from d	$\begin{aligned} & \text { minor } \\ & 6 \end{aligned}$
63	CWM	md	Central write (d) words to (A) from m	5 plus 5/word
64	AJM	md	Jump to m if channel d active	2
65	IJM	md	Jump to m if channel d inactive	2
66	FJM	md	Jump to m if channel d full	2
67	EJM	md	Jump to m if channel d empty	2
70	IAN	d	Input A from channel d	2
71	IAM	md	Input (A) words to m from channel d	4 plus 1/word
72	OAN	d	Output from A on channel d	2
73	OAM	md	Output (A) words from m on channel d	4 plus 1/word
74	ACN	d	Activate channel d	2
75	DCN	d	Disconnect channel d	2
76	FAN	d	Function (A) on channel d	2
77	FNC	md	Function m on channel d	2

Mnemonic	F	Ad- dress	Name	Time (major cycles)
ACN	74	d	Activate channel d	2
ADC	21	dm	Add dm	2
ADD	31	d	Add (d)	2
ADI	41	d	Add ((d))	3
ADM	51	md	Add (m + (d))	3-4
ADN	16	d	Add d	1
AJM	64	md	Jump to m if channel d active	2
AOD	36	d	Replace add one (d)	3
AOI	46	d	Replace add one ((d))	4
AOM	56	md	Replace add one (m + (d))	4-5
CRD	60	d	Central read from (A) to d	$\min _{6}$
CRM	61	md	Central read (d) words from (A) to m	5 plus 5/word
CWD	62	d	Central write to (A) from d	mingr 6
CWM	63	md	Central write (d) words to (A) from m	5 plus 5/word
DCN	75	d	Disconnect channel d	2
EJM	67	md	Jump to m if channel d empty	2
EXN	260	d	Exchange jump CPU d	1
FAN	76	d	Function (A) on chan:nel d	2
FJM	66	md	Jump to m if channel d full	2
FNC	77	md	Function m on channel d	2
IAM	71	md	Input (A) words to m from channel d	4 plus 1/word
IAN	70	d	Input to A from channel d	2

Mnemonic	F	Address	Name	Time (major cycles)
IJM	65	md	Jump to m if channel d inactive	2
LCN	15	d	Load complement d	1
LDC	20	m	Load dm	2
LDD	30	d	Load (d)	2
LDI	40	d	Load ((d))	3
LDM	50	md	Load (m + (d))	3-4
LDN	14	d	Load d	1
LJM	01	md	Long jump to m + (d)	2-3
LMC	23	dm	Logical difference dm	2
LMD	33	d	Logical difference (d)	2
LMI	43	d	Logical difference ((d))	3
LMM	53	md	Logical difference (m + (d))	3-4
LMN	11	d	Logical difference d	1
LPC	22	dm	Logical product dm	2
LPN	12	d	Logical product d	1
MAN	262	d	Monitor exchange jump CPU d to (MA)	1
MXN	261	d	Monitor exchange jump CPU d	1
MJN	07	d	Minus jump d	1
NJN	05	d	Nonzero jump d	1
OAM	73	md	Output (A) words from m on channel d	$\begin{aligned} & 4 \text { plus } \\ & 1 / \text { word } \end{aligned}$
OAN	72	d	Output from A on channel d	2
PJN	06	d	Plus jump d	1
PSN	00		Pass	1
PSN	24		Pass	1
PSN	25		Pass	1
RAD	35	d	Replace add (d)	3
RAI	45	d	Replace add ((d)).	4
RAM	55	md	Replace add $(\mathrm{m}+(\mathrm{d}))$	4-5

Mnemonic	F	Ad- dress	Name	Time (major cycles)
RJM	02	md	Return jump to m + (d)	3-4
RPN	27	d	Read program address of CPU d	1
SBD	32	d	Subtract (d)	2
SBI	42	d	Subtract ((d))	3
SBM	52	md	Subtract (m + (d))	3-4
SBN	17	d	Subtract d	1
SCN	13	d	Selective clear d	1
SHN	10	d	Shift d	1
SOD	37	d	Replace subtract one (d)	3
SOI	47	d	Replace subtract one ((d))	4
SOM	57	md	Replace subtract one ($\mathrm{m}+(\mathrm{d})$)	4-5
STD	34	d	Store (${ }^{\text {d }}$)	2
STI	44	d	Store (${ }_{\text {d }}$)	3
STM	54	md	Store (m + (d))	3-4
UJN	03	d	Unconditional jump d	1
ZJN	04	d	Zero jump d	1

CENTRAL PROCESSOR (CPU) INSTRUCTION FORMATS

CPU INSTRUCTION FORMATS

SYMBOLS USED IN CPU INSTRUCTION LISTINGS

A One of eight address registers (18 bits)
B One of eight index registers (18 bits); $\mathrm{B0}$ is fixed and equal to zero
$\mathrm{fm} \quad$ Instruction code (6 bits)
i Specifies which of eight designated regis ters (3 bits); is also used in $03 x$ instructions as part of a 9 -bit operation code.
j Specifies which of eight designated registers (3 bits)
jk Constant, indicating number of shifts to be taken (6 bits)
k Specifies which of eight designated regis ters (3 bits)
K Constant, indicating branch designation or operand (18 bits)
$\mathrm{X} \quad$ One to eight operand registers (60 bits)

CPU INSTRUCTIONS

NUMERICAL LISTING
The functional unit designation applies only to $6600 / 6700$.

BRANCH UNIT \dagger

fm (i)	Mnemonic	Address	Name
00	PS		Program stop
010	RJ	K	Return jump to K
011	RE	$B j \pm K$	Read extended core storage
012	WE	$B j \pm K$	Write extended core storage
013	XJ	$B j+K$	Exchange jump to $(\mathrm{Bj})+\mathrm{K}$
02	JP	$\mathrm{Bi}+\mathrm{K}$	Go to (Bi) + K
030	ZR	Xj, K	Go to K if $(\mathrm{Xj})=0$
031	NZ	Xj, K	Go to K if $(\mathrm{Xj}) \neq 0$
032	PL	Xj, K	Go to K if $(X j)=$ positive
033	MI	Xj, K	Go to K if $(X j)=n e g-$ ative
033	NG	Xj, K	Go to K if $(X j)=n e g-$ ative
034	IR	Xj, K	Go to K if (Xj) is in range
035	OR	Xj, K	Go to K if (Xj) is out of range
036	DF	Xj, K	Go to K if (X j) is definite
037	ID	Xj, K	Go to K if $(X j)$ is indefinite
04	EQ	K	Go to K
04	EQ	Bi, Bj, K	Go to K if $\mathrm{Bi}=\mathrm{Bj}$
04	ZR	K	Go to K

[^2]| $\begin{aligned} & \mathrm{fm} \\ & (\mathrm{i}) \\ & \hline \end{aligned}$ | Mnemonic | Address | Name |
| :---: | :---: | :---: | :---: |
| $04 \dagger$ | ZR | Bi, K | Go to K if (Bi) $=\mathrm{B0}$ |
| 05 | NE | $\mathrm{Bi}, \mathrm{Bj}, \mathrm{K}$ | Go to K if (Bi) $\ddagger(\mathrm{Bk})$ |
| $05 \dagger$ | NZ | Bi, K | Go to K if (Bi) $\neq \mathrm{B} 0$ |
| 06 | GE | Bi, Bj, K | Go to K if (Bi) $\geq(\mathrm{Bj})$ |
| 06 | GE | Bi, K | Go to K if (Bi) ≥ 0 |
| 06 | LE | Bj, Bi, K | Go to K if $(B j) \leq(B i)$ |
| 06 | LE | Bj, K | Go to K if $(\mathrm{Bj}) \leq 0$ |
| $06 \dagger$ | PL | Bi, K | Go to K if $\mathrm{Bi}>\mathrm{B0}$ |
| 07 | GT | Bj, Bi, K | Go to K if $(\mathrm{Bj})>(\mathrm{Bi})$ |
| 07 | GT | Bj, K | Go to K if $(\mathrm{Bj})>0$ |
| 07 | LT | Bi, Bj, K | Go to K if $(\mathrm{Bi})<(\mathrm{Bj})$ |
| 07 | LT | Bi, K | Go to K if $(\mathrm{Bi})<0$ |
| 07 | MI | Bi, K | Go to K if (Bi) < 0 |
| $07 \dagger$ | NG | Bi, K | Go to K if (Bi) < B0 |

BOOLEAN UNIT

fm (i)	Mne- monic	$\underline{\text { Address }}$	

\dagger For these instructions, COMPASS packs the instruction so Bi is compared with $\mathrm{B0}$ rather than Bj .

| fm
 (i) | Mne
 monic | $\frac{\text { Address }}{\text { LXi }}$ | jk |
| :--- | :--- | :--- | :--- | | Left shift (Xi), \pm jk |
| :--- |

| fm
 (i) | Mne-
 monic | Address | Name |
| :--- | :--- | :--- | :--- |, | Round and normalize |
| :--- |
| 25 |

$\begin{aligned} & \mathrm{fm} \\ & (\mathrm{i}) \\ & \hline \end{aligned}$	Mnemonic	Address	Name
40	FXi	$\mathbf{X j} \mathbf{*} \mathbf{X k}$	Floating product of (Xj) and (Xk) to Xi
41	RXi	$\mathbf{X j * X k}$	Round floating product of (Xj) and (Xk) to Xi
42	DXi	$\mathbf{X j}$ *Xk	Floating DP product of (Xj) and (Xk) to Xi
42	LXi	$\mathbf{X j * X k}$	Integer product of (Xj) and (Xk) to Xi

DIVIDE UNIT

fm (i)	Mne- monic	$\underline{\text { Address }}$	Name

INCREMENT UNIT

$\begin{aligned} & \mathrm{fm} \\ & \text { (i) } \\ & \hline \end{aligned}$	Mnemonic	Address	Name
50	SAi	$A j+K$	Set $A i$ to $(A j)+K$
$50 \dagger$	SAi	Aj-K	Set $A i$ to $(A j)+$ comp. of K
51	SAi	$\mathrm{Bj}+\mathrm{K}$	Set Ai to $(\mathrm{Bj})+\mathrm{K}$
$51 \dagger$	SAi	Bj-K	Set Ai to $\mathrm{Bj}+$ comp. of K
51	SAi	K	Set Ai to K +0
52	SAi	$\mathbf{X} \mathbf{j}+\mathrm{K}$	Set Ai to (X j$)+\mathrm{K}$
$52 \dagger$	SAi	Xj-K	Set $A i$ to $(X j)+$ comp. of K

\dagger If the sign in the address field is minus, COMPASS complements the 18 -bit quantity K .

$\begin{aligned} & \mathrm{fm} \\ & \text { (i) } \\ & \hline \end{aligned}$	Mnemonic	Address	Name
53	SAi	Xj+Bk	Set Ai to $(\mathrm{Xj})+(\mathrm{Bk})$
53	SAi	Bk+Xj	Set $A i$ to $(\mathrm{Bk})+(\mathrm{Xj})$
53	SAi	Xj	Set Ai to (Xj)
54	SAi	$A j+B k$	Set $A i$ to $(A j)+(B k)$
54	SAi	$B k+A j$	Set A i to (Bk$)+\left(\mathrm{A}_{\mathrm{j}}\right)$
54	SAi	Aj	Set $A i$ to $\left(\mathrm{Aj}_{\mathrm{j}}\right)+0$
55	SAi	$\mathrm{Aj}-\mathrm{Bk}$	Set $A i$ to $(A j)-(B k)$
55	SAi	$-\mathrm{Bk}+\mathrm{Aj}$	Set $A i$ to (Aj_{j}-(Bk)
56	SAi	Bj+Bk	Set Ai to (Bj$)+(\mathrm{Bk})$
56	SAi	Bj	Set $A i$ to (Bj) +0
57	SAi	Bj-Bk	Set A i to (Bj$)-(\mathrm{Bk})$
57	SAi	-Bk	Set Ai to $0-(\mathrm{Bk})$
57	SAi	$-\mathrm{Bk}+\mathrm{Bj}$	Set $A i$ to ($\mathrm{Bj}_{\mathbf{\prime}}$-(Bk)
60	SBi	$\mathrm{Aj}_{\mathrm{j}} \mathrm{K}$	Set Bi to $(\mathrm{Aj})+\mathrm{K}$
$60 \dagger$	SBi	Aj-K	Set Bi to (Aj) +complement of K
61	SBi	$\mathrm{Bj}+\mathrm{K}$	Set Bi to $(\mathrm{Bj})+\mathrm{K}$
$61 \dagger$	SBi	Bj-K	Set Bi to $(\mathrm{Bj})+$ complement of K
61	SBi	K	Set Bi to K+0
62	SBi	$\mathbf{X j}+\mathrm{K}$	Set Bi to (Xj) +K
$62 \dagger$	SBi	Xj-K	Set Bi to (Xj)+complement of K
63	SBi	$B k+X j$	Set Bi to (Bk) $+(\mathrm{Xj})$
63	SBi	Xj	Set Bi to $(\mathrm{Xj})+0$
64	SBi	Aj+Bk	Set Bi to (Aj$)+(\mathrm{Bk})$
64	SBi	$B k+A j$	Set Bi to (Bk) $+\left(A_{j}\right)$
64	SBi	Aj	Set Bi to $\left(\mathrm{Aj}_{\mathrm{j}}\right)+0$
65	SBi	Aj-Bk	Set Bi to ($\mathrm{Aj}_{\mathbf{j}}$-(Bk)
65	SBi	$-\mathrm{Bk}+\mathrm{Aj}$	Set Bi to $(\mathrm{Aj})-(\mathrm{Bk})$
66	SBi	Bj+Bk	Set Bi to $(\mathrm{Bj})+(\mathrm{Bk})$
66	SBi	Bj	Set Bi to $(\mathrm{Bj})+0$

[^3]| fm (i) | Mnemonic | Address | Name |
| :---: | :---: | :---: | :---: |
| 67 | SBi | $\mathrm{Bj}-\mathrm{Bk}$ | Set Bi to (Bj$)-(\mathrm{Bk})$ |
| 67 | SBi | -Bk | Set Bi to 0-(Bk) |
| 67 | SBi | $-\mathrm{Bk}+\mathrm{Bj}$ | Set Bi to (Bj$)-(\mathrm{Bk})$ |
| 70 | SXi | $\mathrm{A}_{\mathrm{j}}+\mathrm{K}$ | Set Xi to $\left(\mathrm{A}_{\mathrm{j}}\right)+\mathrm{K}$ |
| $70 \dagger$ | SXi | Aj-K | Set Xi to (Aj)+complement of K |
| 71 | SXi | $B j+K$ | Set Xi to $(\mathrm{Bj})+\mathrm{K}$ |
| $71 \dagger$ | SXi | Bj-K | Set Xi to $(\mathrm{Bj})+$ complement of K |
| 71 | SXi | K | Set Xi to K+0 |
| 72 | SXi | Xj+K | Set Xi to $(\mathrm{Xj})+\mathrm{K}$ |
| $72 \dagger$ | SXi | Xj-K | Set Xi to (Xj)+complement of K |
| 73 | SXi | Xj+Bk | Set Xi to (Xj) $+(\mathrm{Bk})$ |
| 73 | SXi | Xj | Set Xi to $(\mathrm{Xj})+(\mathrm{B} 0)$ |
| 73 | SXi | $B k+X j$ | Set Xi to $(\mathrm{Bk})+(\mathrm{Xj})$ |
| 74 | SXi | Aj+Bk | Set Xi to $(\mathrm{Aj})+(\mathrm{Bk})$ |
| 74 | SXi | $\mathrm{Bk}+\mathrm{Aj}$ | Set Xi to (Bk) $\mathrm{C}(\mathrm{Aj})$ |
| 74 | SXi | Aj | Set $X i$ to $(A j)+(B 0)$ |
| 75 | SXi | $\mathrm{Aj}-\mathrm{Bk}$ | Set $X i$ to $\left(A_{j}\right)-(B k)$ |
| 75 | SXi | $-\mathrm{Bk}+\mathrm{Aj}$ | Set Xi to $(\mathrm{Aj})-(\mathrm{Bk})$ |
| 76 | SXi | $B \mathrm{j}+\mathrm{Bk}$ | Set Xi to $(\mathrm{Bj})+(\mathrm{Bk})$ |
| 76 | SXi | Bj | Set Xi to $(\mathrm{Bj})+(\mathrm{B} 0)$ |
| 77 | SXi | $\mathrm{Bj}-\mathrm{Bk}$ | Set Xi to (Bj)-(Bk) |
| 77 | SXi | -Bk | Set Xi to (B0)-(Bk) |
| 77 | SXi | $-\mathrm{Bk}+\mathrm{Bj}$ | Set Xi to $(\mathrm{Bj})-(\mathrm{Bk})$ |

[^4] complements the 18 -bit quantity K .

ALPHABETICAL LISTING

Mnemonic	fm (i)	Address	Name
AXi	21	jk	Arithmetic right shift (Xi), $\pm \mathrm{jk}$ places
AXi	23	Bj, Xk	Arithmetic right shift (Xk) nominally (Bj) places to Xi
AXi	23	Bj	Arithmetic shift (Xi) by (Bj) to Xi
AXi	23	Xk	Transmit (Xk) to Xi
AXi	23	Xk, Bj	Arithmetic shift (Xk) by (Bj) to Xi
BXi	10	Xj	Transmit (Xj) to Xi
BXi	11	Xj*Xk	Logical product of (Xj) and (Xk) to Xi
BXi	12	$\mathrm{Xj}+\mathrm{Xk}$	Logical sum of (Xj) and (Xk) to Xi
BXi	13	Xj-Xk	Logical difference of (X j) and (Xk) to Xi
BXi	14	-Xk	Transmit the complement of (Xk) to Xi
BXi	15	$-\mathrm{Xk} * \mathrm{Xj}$	Logical product of (Xj) and (Xk) complement to Xi
BXi	16	$-\mathrm{Xk}+\mathrm{Xj}$	Logical sum of (Xj) and (Xk) complement of Xi
BXi	17	-Xk-Xj	Logical difference of (Xj) and (Xk) complement to Xi
CXi	47	Xk	Count number of 1 's in (Xk) to Xi
DF	036	X ${ }^{\text {, }} \mathrm{K}$	Go to K if Xj is definite
DXi	32	Xj+Xk	Floating DP sum of Xj and Xk to Xi
DXi	33	Xj-Xk	Floating DP difference of Xj and Xk to Xi
DXi	42	Xj*Xk	Floating DP product of Xj and Xk to Xi
EQ	04	K	Go to K
EQ	04	Bi, Bj, K	Go to K if $\mathrm{Bi}=\mathrm{Bj}$
FXi	30	$\mathrm{Xj}+\mathrm{Xk}$	Floating sum of (Xj) and (Xk) to Xi
FXi	31	Xj-Xk	Floating difference of (Xj) and (Xk) to Xi

Mnemonic	$\begin{aligned} & \mathrm{fm} \\ & \text { (i) } \\ & \hline \end{aligned}$	Address	Name
FXi	40	Xj*Xk	Floating product of (X j) and (Xk) to Xi
FXi	44	Xj/Xk	Floating divide (Xj) by (Xk) to Xi
GE	06	$\mathrm{Bi}, \mathrm{Bj}, \mathrm{K}$	Go to K if $(\mathrm{Bi}) \geq(\mathrm{Bj})$
GE	06	Bi, K	Go to K if $(\mathrm{Bi}) \geq 0$
GT	07	$\mathrm{Bj}, \mathrm{Bi}, \mathrm{K}$	Go to K if $(\mathrm{Bj})>(\mathrm{Bi})$
GT	07	Bj, K	Go to K if $(\mathrm{Bj})>0$
ID	037	Xj, K	Go to K if Xj is indefinite
IR	034	Xj, K	Go to K if Xj is in range
IXi	36	$\mathrm{Xj}+\mathrm{Xk}$	Integer sum of Xj and Xk to Xi
IXi	37	Xj-Xk	Integer difference of Xj and Xk to Xi
LXi	42	Xj*Xk	Integer product of (Xj) and (Xk) to Xi
JP	02	$B i+B k$	Go to $\mathrm{Bi}+\mathrm{K}$
LE	06	$\mathrm{Bj}, \mathrm{Bi}, \mathrm{K}$	Go to K if $(\mathrm{Bj}) \leq(\mathrm{Bk})$
LE	06	Bj, K	Go to K if $(\mathrm{Bj}) \leq 0$
LT	07	Bi, Bj, K	Go to K if $(\mathrm{Bi})<(\mathrm{Bj})$
LT	07	Bi, K	Go to K if (Bi) < 0
LXi	22	Bj, Xk	Logical shift (Xk) nominally (Bj) places to Xi
LXi	22	Bj	Logical shift (Xi) by (Bj) to Xi
LXi	22	Xk	Transmit (Xk) to Xi
LXi	22	Xk, Bj	Logical shift (Xk) by (Bj) to Xi
MI	033	Xj, K	Go to K if $(\mathrm{Xj})=$ negative
MI	07	Bi, K	Go to K if (Bi) < 0
MXi	43	$\pm \mathrm{jk}$	Form mask in Xi, $\pm \mathrm{jk}$ bits
NE	05	Bi, Bj, K	Go to K if $\mathrm{Bi} \neq \mathrm{Bj}$
NG	033	Xj, K	Go to K if $\mathrm{Xj}=$ negative
NG	07	Bi, K	Go to K if $\mathrm{Bi}<\mathrm{B0}$
NO	46		No operation
NXi	24	Bj, Xk	Normalize (Xk) in Xi and Bj

Mne monic	$\underset{(\mathrm{i})}{\mathrm{fm}}$	Address	Name
NXi, Bj	24	Xk	Normalize (Xk) to Xi and Bj
NXi	24		Normalize (Xi) to Xi
NXi, Bj	24		Normalize (Xi) to Xi and Bj
NXi	24	Xk	Normalize (Xk) to Xi
NXi	24	Xk, Bj	Normalize (Xk) to Xi and Bj
NZ	031	X j, K	Go to K if $\mathrm{Xj} \neq 0$
NZ	05	Bi, K	Go to K if $\mathrm{Bi} \neq \mathrm{B0}$
OR	035	X $\mathrm{j}^{\prime} \mathrm{K}$	Go to K if Xj is out of range
PL	032	Xj, K	Go to K if $\mathrm{Xj}=$ positive
PL	06	Bi, K	Go to K if $\mathrm{Bi} \geq \mathrm{B0}$
PS	00		Program stop
PXi	27		Pack (Xi) to Xi
PXi	27	Bj, Xk	Pack (Xk) and (Bj) to Xi
PXi	27	Bj	Pack (Xi) and (Bj) to Xi
PXi	27	Xk	Pack (Xk) to Xi
PXi	27	Xk, Bj	Pack (Xk) and (Bj) to Xi
RE	011	$B j+K$	Read extended core storage
RJ	01	K	Return jump to K
RXi	34	$\mathbf{X j}+\mathrm{Xk}$	Round floating sum of Xj and Xk to Xi
RXi	35	Xj-Xk	Round floating difference of Xj and Xk to Xi
RXi	41	$\mathbf{X j}+\mathrm{Xk}$	Round floating product of Xj and Xk to Xi
RXi	45	X J / Xk	Round floating divide Xj by Xk to Xi
SAi	50	$\mathrm{Aj}^{+} \mathrm{K}$	Set Ai to (Aj) +K
SAi	$50 \dagger$	Aj-K	Set $A i$ to $(A j)+$ comp. of K
SAi	51	$B j+K$	Set $A i$ to (Bj^{\prime}) +K
SAi	$51 \dagger$	Bj-K	Set Ai to $\mathrm{Bj}+$ comp. of K

\dagger If the sign in the adतress field is minus, COMPASS complements the 18-bit quantity K .

Mnemonic	$\underset{(\mathrm{i})}{\mathrm{fm}}$	Address	Name
SAi	51	K	Set Ai to K+0
SAi	52	Xj+K	Set Ai to $(\mathrm{Xj})+\mathrm{K}$
SAi	52 †	Xj-K	Set Ai to (Xj$)+\mathrm{comp}$. of K
SAi	53	Xj+Bk	Set $A i$ to $(X j)+(B k)$
SAi	53	Bk+Xj	Set Ai to (Bk) $+(\mathrm{Xj}$)
SAi	53	Xj	Set Ai to (Xj)
SAi	54	$A j+B k$	Set $A i$ to $(A j)+(B k)$
SAi	54	Bk+Aj	Set Ai to (Bk)+(Aj)
SAi	54	Aj	Set $A i$ to (A_{j})+0
SAi	55	Aj-Bk	Set $A i$ to $(A j)-(B k)$
SAi	55	$-\mathrm{Bk}+\mathrm{Aj}$	Set $A i$ to $(A j)-(B k)$
SAi	56	$B j+B k$	Set $A i$ to $(\mathrm{Bj})+(\mathrm{Bk})$
SAi	56	Bj	Set Ai to (Bj) +0
SAi	57	Bj-Bk	Set Ai to (Bj)-(Bk)
SAi	57	-Bk	Set Ai to 0-(Bk)
SAi	57	$-\mathrm{Bk}+\mathrm{Bj}$	Set Ai to (Bj$)-(\mathrm{Bk})$
SBi	60	Aj+K	Set Bi to (Aj) +K
SBi	$60 \dagger$	$\mathrm{Aj}-\mathrm{K}$	Set $B i$ to (Aj) complement of K
SBi	61	Bj+K	Set Bi to $(\mathrm{Bj})+\mathrm{K}$
SBi	$61 \dagger$	Bj-K	Set Bi to (Bj)+complement of K
SBi	61	K	Set Bi to K+0
SBi	62	$\mathbf{X j}+\mathrm{K}$	Set Bi to $(\mathrm{Xj})+\mathrm{K}$
SBi	62	Xj-K	Set Bi to (Xj)+complement of K
SBi	63	$B k+X j$	Set Bi to (Bk$)+(\mathrm{Xj})$
SBi	63	Xj	Set Bi to (Xj) +0
SBi	64	Aj+Bk	Set Bi to (Aj$)+(\mathrm{Bk})$
SBi	64	$B \mathbf{k}+\mathrm{Aj}$	Set Bi to (Bk$)+(\mathrm{Aj})$
SBi	64	Aj	Set Bi to (Aj$)+0$
SBi	65	Aj-Bk	Set Bi to ($\mathrm{Aj}_{\mathbf{j}}$-(Bk)
SBi	65	$-\mathrm{Bk}+\mathrm{Aj}$	Set Bi to $(\mathrm{Aj})-(\mathrm{Bk})$

[^5]| Mnemonic | fm (i) | Adतress | Name |
| :---: | :---: | :---: | :---: |
| SBI | 66 | $B j+B k$ | Set Bi to $(\mathrm{Bj})+(\mathrm{Bk})$ |
| SBi | 66 | Bj | Set Bi to $(\mathrm{Bj})+0$ |
| SBi | 67 | Bj-Bk | Set Bi to $(\mathrm{Bj})-(\mathrm{Bk})$ |
| SBi | 67 | -Bk | Set Bi to 0-(Bk) |
| SBi | 67 | $-\mathrm{Bk}+\mathrm{Bj}$ | Set Bi to $(\mathrm{Bj})-(\mathrm{Bk})$ |
| SXi | 70 | $A_{j}+\mathrm{K}$ | Set Xi to $(\mathrm{Aj})+\mathrm{K}$ |
| SXi | $70 \dagger$ | $\mathrm{Aj}_{\mathrm{j}} \mathrm{K}$ | Set Xi to ($\mathrm{A} j$) +complement of K |
| SXi | 71 | $B j+K$ | Set Xi to $(\mathrm{Bj})+\mathrm{K}$ |
| SXi | $71 \dagger$ | $\mathrm{Bj}-\mathrm{K}$ | Set Xi to (Bj)+complement of K |
| SXi | 71 | K | Set Xi to K+0 |
| SXi | 72 | $\mathrm{Xj}+\mathrm{K}$ | Set Xi to $(\mathrm{Xj})+\mathrm{K}$ |
| SXi | $72 \dagger$ | Xj-K | Set Xi to (Xj)+complement of K |
| SXi | 73 | $\mathrm{Xj}+\mathrm{Bk}$ | Set Xi to $(\mathrm{Xj})+(\mathrm{Bk})$ |
| SXi | 73 | Xj | Set Xi to $(\mathrm{Xj})+(\mathrm{B} 0)$ |
| SXi | 73 | $B k+X j$ | Set Xi to (Bk) $+(\mathrm{X} \mathrm{j})$ |
| SXi | 74 | Aj+Bk | Set Xi to ($\left.\mathrm{Z}_{\mathrm{j}}\right)+(\mathrm{Bk})$ |
| SXi | 74 | $B k+A j$ | Set Xi to (Bk) $+\left(\mathrm{A}_{\mathrm{j}}\right)$ |
| SXi | 74 | Aj | Set Xi to $(\mathrm{Aj})+(\mathrm{BO})$ |
| SXi | 75 | Aj-Bk | Set $X i$ to $(A j)-(B k)$ |
| SXi | 75 | $-\mathrm{Bk}+\mathrm{Aj}$ | Set $X i$ to $(A j)-(B k)$ |
| SXi | 76 | $B j+B k$ | Set Xi to $(\mathrm{Bj})+(\mathrm{Bk})$ |
| SXi | 76 | Bj | Set Xi to $(\mathrm{Bj})+(\mathrm{B0})$ |
| SXi | 77 | Bj-Bk | Set Xi to (Bj$)-(\mathrm{Bk})$ |
| SXi | 77 | -Bk | Set Xi to (B0)-(Bk) |
| SXi | 77 | $-\mathrm{Bk}+\mathrm{Bj}$ | Set Xi to (Bj)-(Bk) |
| UXi | 26 | Bj, Xk | Unpack (Xk) to Xi and Bj |
| UXi, Bj | 26 | Xk | Unpack (Xk) to Xi and Bj |
| UXi | 26 | | Unpack (Xi) to Xi |
| UXi, Bj | 26 | | Unpack (Xi) to Xi and Bj |
| UXi | 26 | Xk | Unpack (Xk) to Xi |

3

Mnemonic	fm (i)	Address	Name
UXi	26	Xk, Bj	Unpack (Xk) to Xi and Bj
WE	012	$\mathrm{Bj}+\mathrm{K}$	Write extended core storage
XJ	013		Exchange jump
ZR	030	Xj, K	Go to K if $\mathrm{Xj}=0$
ZR	$04 \dagger$	Bi, K	Go to K if $\mathrm{Bi}=\mathrm{B0}$
ZXi	25	Bj, Xk	Round and normalize (Xk) to Xi and Bj
ZXi, Bj	25	Xk	Round and normalize (Xk) to Xi and Bj
ZXi	25		Round and normalize (Xi) to Xi
ZXi, Bj	25		Round and normalize (Xi) to Xi and Bj
ZXi	25	Xk	```Round and normalize (Xk) to Xi```
ZXi	25	Xk, Bj	Round and normalize (Xk) to Xi and Bj

EXIT MODE

$$
\begin{array}{rlr}
\mathrm{EM} & =000000 & \\
& =010000 & \begin{array}{l}
\text { Normal stop } \\
\text { Address out of range; an attempt } \\
\text { to reference memory outside } \\
\text { established limits }
\end{array} \\
& =020000 & \begin{array}{l}
\text { Operand out of range; floating } \\
\text { point arithmetic generated or } \\
\text { regenerated an infinite result }
\end{array} \\
& =030000 & \begin{array}{l}
\text { Address or operand out of range }
\end{array} \\
& =040000 & \begin{array}{l}
\text { Indefinite operand; floating point } \\
\text { arithmetic generated or regen- } \\
\text { erated an indefinite result }
\end{array} \\
& =050000 & \begin{array}{l}
\text { Indefinite operand or address } \\
\text { out of range }
\end{array} \\
& =060000 & \begin{array}{l}
\text { Indefinite operand or operand } \\
\text { out of range }
\end{array} \\
& =070000 & \begin{array}{l}
\text { Indefinite operand or operand or } \\
\text { address out of range }
\end{array}
\end{array}
$$

[^6]
INSTRUCTION EXECUTION TIMES - CDC CYBER 70/MODELS 72,73,74

All times are given the minor cycles: one minor cycle equals 100 nanoseconds

tal					
code	Description	M72	M73	CPU0	CPU1
00	Stop	-	-	-	-
01	Return jump to K	24	21	13	21
011	Read extended core storage	- \dagger	- \dagger	- \dagger	- \dagger
012	Write extended core storage	- \dagger	- \dagger	- \dagger	- \dagger
013	Central exchange jump	49	46	-	-
02	Go to $\mathrm{K}+(\mathrm{Bi})$	$16 \dagger \dagger$	$13 \dagger \dagger$	14	15
030	Go to K if $(\mathrm{Xj})=$ zero	$16 \dagger \dagger$	$13 \dagger \dagger$	9	15
031	Go to K if $(\mathrm{Xj}) \neq$ zero	$16 \dagger \dagger$	$13 \dagger \dagger$	9	15
032	Go to K if $(X j)=$ positive	16† \dagger	$13 \dagger \dagger$	9	15
033	Go to K if $(\mathrm{Xj})=$ negative	16† \dagger	$13 \dagger \dagger$	9	15
034	Go to K if (Xj) is in range	16† \dagger	$13 \dagger \dagger$	9	15
035	Go to K if (Xj) is out of range	$16 \dagger \dagger$	$13 \dagger \dagger$	9	15
036	Go to K if (Xj) is definite	$16 \dagger \dagger$	$13 \dagger \dagger$	9	15
037	Go to K if (Xj) is indefinite	16†t	$13 \dagger \dagger$	9	15
04	Go to K if $(\mathrm{Bi})=$ (Bj)	16†t	$13 \dagger \dagger$	8	15
05	Go to K if (Bi) \neq (Bj)	16†t	$13 \dagger \dagger$	8	15
06	Go to K if (Bi) \geq (Bj)	$16 \dagger \dagger$	$13 \dagger \dagger$	8	15
07	$\begin{aligned} & \text { Go to } K \text { if }(\mathrm{Bi})< \\ & (\mathrm{Bj}) \end{aligned}$	$16 \dagger \dagger$	$13 \dagger \dagger$	8	15
10	Transmit (X_{j}) to Xi	8	5	3	5
11	Logical product of (Xj) and (Xk) to Xi	8	5	3	5
12	Logical sum of (Xj) and (Xk) to Xi	8	5	3	5
13	Logical difference of (Xj) and (Xk) to Xi	8	5	3	5

[^7]

Octal code	Description	M 72	M 74		
			M73	CPU0	CPU1
40	Floating product of (Xj) and (Xk) to Xi	60	57	10	57
41	Round floating product of (Xj) and (Xk) to Xi	60	57	10	57
42	Floating DP product of (Xj) and (Xk) to Xi	60	57	10	57
44	Floating divide (Xj) by (Xk) to Xi	60	57	29	57
45	Round floating divide (Xj) by (Xk) to Xi	60	57	29	57
46	Pass	6	3	1	3
47	Sum of 1 's in (Xk) to Xi	71	68	8	68
50	Sum of (Aj) and K to Ai	- \dagger	- \dagger	3	- \dagger
51	Sum of (Bj) and K to Ai	- \dagger	- \dagger	3	- \dagger
52	Sum of (Xj) and K to Ai	- \dagger	- \dagger	3	- \dagger
53	Sum of (Xj) and (Bk) to Ai	- \dagger	- \dagger	3	- $\dagger \dagger$
54	```Sum of (Aj) and (Bk) to Ai```	- \dagger	- \dagger	3	- \dagger †
55	Difference of (Aj) and (Bk) to Ai	$-\dagger$	- \dagger	3	- \dagger
56	Sum of (Bj) and (Bk) to Ai	- \dagger	- \dagger	3	- \dagger †
57	Difference of (Bj) and (Bk) to Ai	- \dagger	- \dagger	3	- $\dagger \dagger$
60	Sum of (Aj) and K to Bi	8	5	3	5
61	Sum of (Bj) and K to Bi	8	5	3	5
62	Sum of (Xj) and K to Bi	8	5	3	5
63	Sum of (Xj) and (Bk) to Bi	8	5	3	5
64	$\operatorname{Sum}_{\text {to }} \mathrm{Bi}$ of (Aj) and (Bk)	8	5	3	5
65	Difference of (Aj) and (Bk) to Bi	8	5	3	5
66	Sum of (Bj) and (Bk) to Bi	8	5	3	5
67	Difference of (Bj) and (Bk) to Bi	8	5	3	5

[^8]| Octal | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Code | Description | M72 | M73 | CPU0 | CPU 1 |
| 70 | Sum of (Aj) and K to Xi | 9 | 6 | 3 | 6 |
| 71 | Sum of (Bj) and K to Xi | 9 | 6 | 3 | 6 |
| 72 | Sum of (Xj) and K to Xi | 9 | 6 | 3 | 6 |
| 73 | $\begin{aligned} & \text { Sum of }(X j) \text { and }(B k) \\ & \text { to } X i \end{aligned}$ | 9 | 6 | 3 | 6 |
| 74 | $\begin{aligned} & \text { Sum of }(\mathrm{Aj}) \text { and }(\mathrm{Bk}) \\ & \text { to } \mathrm{Xi} \end{aligned}$ | 9 | 6 | 3 | 6 |
| 75 | Difference of (Aj) and (Bk) to Xi | 9 | 6 | 3 | 6 |
| 76 | Sum of (Bj) and (Bk) to Xi | 9 | 6 | 3 | 6 |
| 77 | Difference of (Bj) and (Bk) to Xi | 9 | 6 | 3 | 6 |

INSTRUCTION EXECUTION TIMES - 6400/6500/6600

All times are given in minor cycles; one minor cycle equals 100 nanoseconds.

Octal Code	Description	6500 and 6400	6600
00	Stop	-	-
01	Return jump to K	21	13
011	Read extended core storage	$\dagger \dagger$	$\dagger \dagger$
012	Write extended core storage	$\dagger \dagger$	$\dagger \dagger$
02	Go to $\mathrm{K}+(\mathrm{Bi})$	13	14
030	Go to K if $(\mathrm{Xj})=$ zero	$13 \dagger \dagger \dagger$	$9 \dagger$
031	Go to K if (Xj) \neq zero	$13 \dagger \dagger \dagger$	$9 \dagger$
032	Go to K if $(\mathrm{Xj})=$ positive	$13 \dagger \dagger \dagger$	$9 \dagger$
033	Go to K if $(\mathrm{Xj})=$ negative	$13 \dagger \dagger \dagger$	$9 \dagger$
034	Go to K if (Xj$)$ is in range	$13 \dagger \dagger \dagger$	$9 \dagger$
035	Go to K if (Xj) is out of range	$13 \dagger \dagger \dagger$	$9 \dagger$

\dagger Modify the execution time (T) according to this table.

	Branch	No Branch
Loop (in stack)	T	$\mathrm{T}+2$
Jump (out of stack)	$\mathrm{T}+6$	$\mathrm{~T}+5$

$\dagger \dagger$ Refer to ECS Description/Programming manual. $\dagger \dagger \dagger$ No branch condition requires five minor cycles.

Octal Code	Description	6500 and 6400	6600
036	Go to K if (Xj) is definite	$13 \dagger \dagger$	$9 \dagger$
037	Go to K if (Xj) is indefinite	$13 \dagger \dagger$	$9 \dagger$
04	Go to K if $(\mathrm{Bi})=(\mathrm{Bj})$	$13 \dagger \dagger$	$8 \dagger$
05	Go to K if $(\mathrm{Bi}) \neq(\mathrm{Bj})$	$13 \dagger \dagger$	$8 \dagger$
06	Go to K if (Bi) $\geq(\mathrm{Bj})$	$13 \dagger \dagger$	$8 \dagger$
07	Go to K if (Bi$)<$ (Bj)	$13 \dagger \dagger$	$8 \dagger$
10	Transmit (Xj) to Xi	5	3
11	Logical product of (Xj) and (Xk) to Xi	5	3
12	Logical sum of (Xj) and (Xk) to Xi	5	3
13	Logical difference to (Xj) and (Xk) to Xi	5	3
14	Transmit (Xk) comp. to Xi	5	3
15	Logical product of (Xj) and (Xk) comp. to Xi	5	3
16	Logical sum of (Xj) and (Xk) comp. to Xi	5	3
17	Logical difference of (Xj) and (Xk) comp. to Xi	5	3
20	Shift (Xi) left jk places	6	3
21	Shift (Xi) right jk places	6	3
22	Shift (Xk) nominally left (Bj) places to Xi	6	3
23	Shift (Xk) nominally right (Bj) places to Xi	6	3
24	Noramlize (Xk) in Xi and Bj	7	4
25	Round and normalize (Xk) in Xi and Bj	7	4
26	Unpack (Xk) to Xi and Bj	7	3
27	Pack Xi from (Xk) and Bj	7	3
43	Form jk mask in Xi	6	3
30	Floating sum of (Xj) and (Xk) to Xi	11	4
31	Floating difference of (Xj) and (Xk) to Xi	11	4
32	Floating DP sum of (Xj) and (Xk) to Xi	11	4
33	Floating DP difference of (Xj) and (Xk) to Xi		4

\dagger Modify the execution time (T) according to this
table.

	Branch	No Branch
Loop (in stack)	T	$\mathrm{T}+2$
Jump (out of stack)	$\mathrm{T}+6$	$\mathrm{~T}+5$

$\dagger \dagger$ No branch condition requires five minor cycles.

Octal Code	Description	6500 and 6400	6600
34	Round floating sum of (Xj) and (Xk) to Xi	11	4
35	Round floating difference of (Xj) and (Xk) to Xi	11	4
36	Integer sum of (Xj) and (Xk) to Xi	6	3
37	Integer difference of (Xj) and (Xk) to Xi	6	3
40	Floating product of (Xj) and (Xk) to Xi	57	10
41	Round floating product of (Xj) and (Xk) to Xi	57	10
42	Floating DP Product of (Xj) and (Xk) to Xi	57	10
44	Floating divide (Xj)	57	29
45	Round floating divide (Xj) by (Xk) to Xi	57	29
46	Pass	3	1
47	Sum of 1's in (Xk) to Xi	68	8
50	Sum of (Aj) and K to Ai	\dagger	3
51	Sum of (Bj) and K to Ai	\dagger	3
52	Sum of (Xj) and K to Ai_{i}	\dagger	3
53	Sum of (Xj) and (Bk) to Ai	\dagger	3
54	Sum of (Aj) and (Bk) to Ai	\dagger	3
55	Difference of (Aj) and (Bk) to Ai	\dagger	3
56	Sum of (Bj) and (Bk) to Ai	\dagger	3
57	Difference of (Bj) and (Bk) to Ai	\dagger	3
60	Sum of (Aj) and K to Bi	5	3
61	Sum of (Bj) and K to Bi	5	3
62	Sum of (Xj) and K to Bi	5	3
63	Sum of (Xj) and (Bk) to Bi	5	3
64	Sum of (Aj) and (Bk) to Bi	5	3
65	Difference of (Aj) and (Bk) to Bi	5	3
66	Sum of (Bj) and (Bk) to Bi	5	3
67	Difference of (Bj) and (Bk) to Bi	5	3
70	Sum of (Aj) and K to Xi	6	3
71	Sum of (Bj) and K to Xi	6	3
72	Sum of (Xj) and K to Xi	6	3
73	Sum of (Xj) and (Bk) to Xi	6	3
74	Sum of (Aj) and (Bk) to Xi	6	3
75	Difference of (Aj) and (Bk) to Xi	6	3
'76	Sum of (Bj) and (Bk) to Xi	6	3
77	Difference of (Bj) and (Bk) to Xi	6	3
\dagger Whe 6040	$\begin{aligned} & i=0, \text { time }=6 \text { minor cycles } \\ & i=1-5, \text { time }=12 \text { minor cycles } \\ & i=6-7, \text { time }=10 \text { minor cycles } \\ & 200 \mathrm{~A} \end{aligned}$		5-27

EXTERNAL FUNCTION CODES

EXTERNAL FUNCTION CODES AND STATUS RESPONSES \dagger

STATUS/CONTROL REGISTERS

DESCRIPTOR WORD FORMAT
The descriptor word has 12 bits and defines a word or bit address and a function code.

Descriptor Word

function code	0	word or bit address
11	9	8

Function Code
0

1

2
3
4
5
6
7

Description
Read word
Test bit
Clear bit
Test/clear bit
Set bit
Test/set bit
Clear all bits
Test error bits
\dagger NOS does not support all of the equipment presented in this section. For a list of devices supported by NOS, refer to the NOS Operator's Guide, publication no. 60435600.

BIT ASSIGNMENTS

The significance of each column, in the following list, is as follows:
Column Description

Word	Register word listed in octal
Bit No.	Register bit listed in decimal

Mod CDC CYBER 170 models that bit is applicable to (All = all models, $2=172,3=173,4=174,5=175$)

S/C Status (S) or control (C) bit
Prgm Fetn Applicable programming functions:

$$
\left.\begin{array}{cl}
\mathrm{TE} & \begin{array}{l}
\text { Read, test, clear, test/clear, } \\
\text { set, test/set, clear all, and } \\
\text { test error (status bit included }
\end{array} \\
\text { in test error) }
\end{array}\right\}
$$

Notes Applicable notes follow list
The channel $36 \mathrm{~S} / \mathrm{C}$ register is available for 20 PPU systems and is applicable to bits 0, 6, 7, 12-35, 37, $38,60-83,85,95,120-126,174,175,188$, and 189.

Word	Bit No.	Description	Mod	S/C	$\begin{aligned} & \text { Prgm } \\ & \text { Fctn } \\ & \hline \end{aligned}$	Notes
0	0	Read pyramid parity error	All	S	TE	
	1	CSU-0 address parity error	All	S	TE	
	2	CSU-1 address parity error	All	S	TE	
	3	SECDED error	All	S	TE	1
	4	Not used				
	5	CMC parity error	All	S	TE	2
	6	PE on data received from external channel	All	S	TE	
	7	PE on data transmitted from external PP	All	S	TE	
	8	CSU-0 fault	All	S	TE	
	9	CSU-1 fault	All	S	TE	
	10	Error in second PPS	All	S	TE	3
	11	ECS error	All	S	TE	4
1	12	```CP-0 P register parity error```	All	S	TE	
	13	```CP-1 P register parity error```	4	S	TE	
	14	PP0 memory parity error	All	S	TE	
	15	PP1 memory parity error	All	S	TE	
	16	PP2 memory parity error	All	S	TE	
	17	PP3 memory parity error	All	S	TE	
	18	PP4 memory parity error	All	S	TE	
	19	PP5 memory parity error	All	S	TE	
	20	PP6 memory parity error	All	S	TE	
-6-4					604492	00 B

	Word	Bit No.	Description	Mod	S/C	Prgm Fctn	Notes
		21	PP7 memory parity error	All	S	TE	
		22	PP8 memory parity error	All	S	TE	
		23	PP9 memory parity error	All	S	TE	
	2	24	Channel 0 parity error	All	S	TE	5
		25	Channel 1 parity error	All	S	TE	5
,		26	Channel 2 parity error	All	S	TE	5
		27	Channel 3 parity error	All	S	TE	5
		28	Channel 4 parity error	All	S	TE	5
		29	Channel 5 parity error	All	S	TE	5
		30	Channel 6 parity error	All	S	TE	5
		31	Channel 7 parity error	All	S	TE	5
		32	Channel 10 parity error	All	S	TE	5
		33	Channel 11 parity error	All	S	TE	5
		34	Channel 12 parity error	All	S	TE	5
-		35	Channel 13 parity error	All	S	TE	5

Word	Bit No.	Description	Mod	S/C	Prgm Fctn	Notes
7	82	Not used				
	83	PPS breakpoint mode select	All	C	D	10
	84	All PPs 500nsec major cycle	All	C	D	14
	85	Inhibit PPS request to CMC	All	C	D	
	86	Not used				
	87	Not used				
	88	Not used				
	89	Not used				
	90	Not used				
	91	Not used				
	92	Not used				
	93	Not used				
	94	Not used				
	95	Stop on PPM parity error	All	C	D	15
10	96	Breakpoint address bit 0	All	C		16
	97	Breakpoint address bit 1	All	C		16
	98	Breakpoint address bit 2	All	C		16
	99	Breakpoint address bit 3	All	C		16
	100	Breakpoint address bit 4	All	C		16
	101	Breakpoint address bit 5	All	C		16
	102	Breakpoint address bit 6	All	C		16
	103	Breakpoint address bit 7	All	C		16
	104	Breakpoint address bit 8	All	C		16
	105	Breakpoint address bit 9	All	C		16

Word	Bit No.	D	Mod		Prgm	Not
	125	Force exit on selected PP	All	C	D	13
	126	Force PP dead start on selected PP		C	D	20
	127	CSU, CMC, CPU master clear	All	C	D	
	128	Force zero SECDED code and parity CMC to CM	All	C		
	129	Force zero address parity CMC to CM	All	C		
	130	Not used				
	131	Not used				
13	132	Force zero parity code 0	All	C		21
	133	Force zero parity code 1	All	C		21
	134	Refresh margin slow		C		
	135	Refresh margin fast		C		
	136	ECS transfer error code 0	All	S	R	4
	137	ECS transfer error code 1	All	S	R	4
	138	ECS transfer error code 2	All	S	R	4
	139	CMC adrs/data parity error		S	R	
	140	Not used				
	141	Clock frequency magnitude 0	All	C	D	22
	142	Clock frequency magnitude 1	All	C	D	22
	143	Clock frequency slow/fast	All	C	D	23

	Word	Bit No.	Description	Mod	S/C	Prgm Fctn	Notes
	14	144	RVM address bit 0 status	5	S		24
		145	RVM address bit 1 status	5	S		24
		146	RVIM address bit 2 status	5	S		24
		147	RVM address bit 3 status	5	S		24
		148	RVM address bit 4 status	5	S		24
		149	RVM address bit 5 status	5	S		24
		150	RVIM hi/lo	5	S		25
		151	RVIM all/one	5	S		26
		152	Clock pulse width narrow	5	C		
		153	Clock pulse width wide	5	C		
		154	Select hi/lo RVM	5	C		25
		155	Select all/one RVM	5	C		26
	15	156	RVIM quadrant 0 select	5	C		
		157	RVIM quadrant 1 select	5	C		
		158	RVM quadrant 2 select	5	C		
		159	RVM quadrant 3 select	5	C		
		160	RVM quadrant 4 select	5	C		
		161	RVIM quadrant 5 select	5	C	,	
		162	RVM quadrant 6 select	5	C		
		163	RVM quadrant 7 select	5	C		
		164	RVM quadrant 8 select	5	C		

1. Loads and blocks bits 40 through 53
2. Loads and locks bits 54, 55, and 139
3. Tests 0 through 39 of PPS-1
4. Bit. 11 loads and locks bits 136 through 138
5. For channel 36, channel numbers 20 through 33 (octal) apply
6. Power/environmental abnormal condition
7. Loaded and locked by bit 3
8. From CMC, identifies port, loaded and locked by bit 5
9. Loaded and locked by bit 77
10. If bit 83 is clear, bits 60 through 71 display P of the PPU selected by bits 120 through 123 , and bits 72 through 75 display selected PP. If bit 83 is set, the content of P register is latched and retained on every CM breakpoint bit. If bit 76 sets when bit 83 is set, bits 60 through 75 are held until bit 76 is cleared.
11. Loads and locks bits 56 through 59
12. Clear busy FF in PPS
13. One-shot operation
14. Controls PPS-0 and PPS-1
15. Applies to all PPUs
16. Absolute 18 -bit address (Bits 96 through 113 are sent to and used by CMC to establish breakpoint address when bits 116 and/or 117 are set.)
17. Select function RD/WT/RNI or all three to CMC for port selection
18. Select 1 of 10 PPUs for forced exit, deadstart, or display
19. Clear $=$ manual
20. Set forces deadstart (PPU remains in deadstart condition until bit is cleared.)
21. ECS coupler
22. Bits 141 through 143 are coded bits for selecting clock margins
23. Clear $=$ fast
24. Indicates module with reference voltage margins (RVIM) applied
25. Clear $=10$
26. \quad Clear $=$ one
27. Diagnostic aids
28. PPS select
29. Single errors are not recorded in SCR when set

SYSTEM CONSOLE DISPLAY

Select Word

[^9]
SELECT CODES

Console 0	Console 1			
7000	7200	Select 64 characters/line, left screen		
7001	7201	Select 32 characters/line, left Screen		
7002	7202	Select 16 characters/line, left screen		
7010	7210	Select 512 dots/line		
7020	7220	Select keyboard input		
7100	7300	Select 64 characters/line, right screen Select 32 characters/line, right screen Select 16 characters /line,		
7101	7301	7302		Selenright screen
:---				

Data Word

Dot Mode

Character mode

first character	second character
11	5

6681/6684 DATA CHANNEL CONVERTER (3000 SERIES INTERFACE)

Equipment Select

Mode I Connect Word

	y		xxx
11	9	8	0

$$
\begin{aligned}
\mathrm{y} & =4 & & \text { Connect external equipment 4. } \\
& =5 & & \text { Connect external equipment } 5 . \\
& =6 & & \text { Connect external equipment } 6 . \\
& =7 & & \text { Connect external equipment } 7 .
\end{aligned}
$$

xxx = Unit to be connected

Mode I Function Word

Equipment Select

sss		ccc	0	
11	9	8	6	5

sss $=$ Select code established at installation for the 6682/6683.
$c c c=0 \quad$ Output
$=1$ Input
$=2 \quad$ Status request

Status

	0	sss
11		2
sss $=1$	Output channel request	
$=2$	Input channel request	
$=4$	Busy	

Data Word

6411/6414 AUGMENTED I/O BUFFER AND CONTROLLER

All instructions are the same as 6000 peripheral processors except:

26 ETN d Extended core transfer; initiate extended core storage operation
27 ESN d Read extended core coupler status
Status Reply: (Read into upper 3 bits of peripheral processor A register)
Bit 17 Extended core storage transfer in progress
Bit 16 Parity error occurred during last read extended core storage operation
Bit 15 At least one address of the last extended core storage transfer was not available (power off, in maintenance mode, address not in system).

6671 DATA SET CONTROLLER
Function Select Word

xxx	0	SSS		
11	9	8	3	2

$x x x=$ Setting of the equipment number switches
sss = $1 \quad$ Select output
$=2$ Select status request
$=3 \quad$ Select input

Controller Data Word Function Codes

f	ddd
11	9

$\mathrm{f}=0 \quad$ Do nothing.
= 1 Enables receiver section of the DSC to resync.
$=2$ Turns off carrier.
= 3 Turns off carrier and allows receiver to resync.
$=4$ Turns on the carrier. Must be appended to all data words.
$=5$ Turns on the carrier and resyncs the reciever.
$=6$ Resyncs the receiver and enables the carrier, and disconnects the telephone connection.
$=7$ Resyncs the receiver and enables the telephone connections for data transmissions.
ddd $=$ Data to be transmitted if f is equal to 4 or 6.

If only bit 8 of the controller data word is set, a modem is disconnected. This is used when output operation has failed in the middle of a character.

Status Word

Bit $0=$ Lost data
1 = Input required
2 = Channel A selected (always 1)
$3=$ Not used
$4=$ Output failure
5 = Memory parity

6676 DATA SET CONTROLLER

Function Select Word

xxx		0	sss	
11	9	8	3	2

xxx = Equipment select switch setting
sss $=1 \quad$ Select output
$=2 \quad$ Select status request
$=3$ Select input

I/O Control Codes

	x		ddd	
11	9	8	0	

$x=6 \quad$ Disconnect modem
$=4$ Output required
ddd = Data, when x is set to 4 ; otherwise, it is zero

Status Word Format

Bit $0=$ Service failure
1 = Input required
2 = Channel A reserved

External Function Code Word

equip	1	0	1		f		

```
equip \(=\) Equipment number
    \(\mathrm{f}=0 \quad\) Request status-all
            \(=1 \quad\) Request status
            \(=2\) Select
            = 3 Clear
            \(=4\) Select transmit
            = 5 Select receive
            = 6 Clear interrupt word received
            status bit
\(\mathrm{x}=\) Number assigned to the selected DSC,
        except in status-all request where \(x=4\).
```

Status DSCx Word


```
Bit \(0=\) Interrupt received
            1 = DSC busy
            2 = Sync word not acknowledged
            3 = Cyclic error
            4 = Receive and \(\overline{\mathrm{COO}}\)
            \(5=\) Transmit and \(\overline{\mathrm{CS}}\)
            \(6=I T+\overline{\mathrm{COO}}\)
            7 = This bit added when DSC is selected, but
                is physically disconnected
            8 = Not used
            \(9=\) Not used
            \(10=\) Full and receive
            11 = Empty and transmit
```

 Status-all Word
 DSC3 DSC2 DSC1 DSC0
 | xxx | xxx | xxx | xxx |
| :---: | :---: | :---: | :---: |

$x x x=1 \quad$ Full and receive
$=2$ Empty and transmit
= 4 Error

7054 DISK STORAGE CONTROLLER

FUNCTION CODES

0000 Connect

0001 Seek, 1:1 interlace
0002 Seek, 2:1 interlace

0003 I/O length
0004
0005
0006 Write verify
0007 Read checkword
0010 Operation complete
0011 Disable reserve
0012 General status
0013 Detailed status
0014 Continue
0015 Drop seeks
0016 Format packs
0017 On-sector status
0020 Drive release
0021 Return cylinder address
0022 Set/clear flow
0024 Gap sector - read
0025 Gap sector - write
0026 Gap sector - write verify
0027 Gap sector - read checkword
0030 Read factory data
0031 Read utility map
0414 Start memory load

GENERAL STATUS WORD

$\frac{1}{\text { Bit }}$	Description
11	Abnormal termination
10	Dual access coupler reserved
9	Nonrecoverable error
8	Recovery in progress
7	Checkword error
6	Correctable address error
5	Correctable data error
4	DSU malfunction
3	DSU reserved
2	Miscellaneous error
1	Busy
0	Noncorrectable data error

Word	Bits	Description
1	11-4	Strobe/offset retry count
	3	Disk address specified by PP does not compare with address field read from disk sector
	2	Incorrect cylinder number read
	1	Incorrect track number read
	0	Incorrect sector number read
2	11	Checkword error occurred reading address field
	10	Address field read from disk sector cannot be corrected
	9	Checkword error occurred reading data field
	8	Data field read from disk sector cannot be corrected
	7-0	Number of sectors within current data block that were successfully processed
3	11-4	Lower eight bits of PP command causing detailed status block
	3	Compare operation for address field or data field did not complete
	2	Write verify operation failed; data field is in error
	1	Not used
	0	Channel parity error (6TPP only)
4	11-6	Controlware revision number (6 TPP only)
	5-0	DSU number
5	11-3	Cylinder number
	2-0	Track number (continues in word 6)
6	11-10	Track number (continued from word 5)
	9-5	Sector number
	4	Sector flaw bit
	3	Track flaw bit
	2	Factory data sector
	1	Utility map
	0	Zero

Word	Bits	Description
7	11	Invalid command
	10	Sector length error
	9	Lost data
	8	Sync error (address field)
	7	DSC memory parity error
	6	DSC hardware error
	5	Defective factory sector
	4	Defective track
	3	Defective sector
	2	Sync error (data field)
	1	Deadman timer expired
	0	Utility flaw map overflow
8	11	Zero
	10-0	11-bit correction vector
9	11	Sector alert
	10	DSU seek error
	9	DSU busy
	8	DSU selected
	7	DSU ready
	6	DSU on-line
	5	Not used
	4	Amplitude monitor 3
	3	Amplitude monitor 2
	2	DSU end of cylinder
	1	Amplitude monitor 1
	0	Track index
10	11	On cylinder
	10	Seek error
	9	Disk pack unsafe
	8	Sector mark
	7	Seek error
	6	DSU negative voltages more positive than normal
	5	DSU positive voltages more negative than normal
	4	Current fault
	3	Read and write operation attempted simultaneously
	2	DSC attempted a data transfer when DSU was not on cylinder
	1	Not used
	0	DSU logic temperature is normal

Word	Bits	Description
11	11	DSU power supply temperature is normal
	10	Spindle motor is on
	9	DSU power sequencing is not under control of DSC
	8	DSU start switch is on
	7	Disk pack brush cycle is in progress
	6	Heads are loaded
	5	Sector block is in position to sense sector disk
	4	Disk pack is mounted
	3-0	Upper 4 bits of 16 -bit address of the first bit of a correctable read error
12	11-0	Lower 12 bits of 16 -bit address of a correctable read error

DISTRIBUTIVE DATA PATH

Function	Code	Address Bit 23	Address Bit 22	Address Bit 21	
Block read ECS	5001	0		0	
Block write ECS	5002				

Status Bits (Function Code 5004):

$\frac{\text { Bit }}{0}$	Description
	ECS abort
1	ECS accept
2	
3	ECS parity error
4	ECS write selected
5	Channel parity error
	6640 parity error

7021-21/7021.22 MAGNETIC TAPE CONTROLLER

f $=$ Function code
s = Subfunction code
General Status Word

al	cs	nu	noi	wr	ut	oc	tm	eot	lp	ub	ur
11	10	9	8	7	6	5	4	3	2	1	0

Field	Value	Description		
al - Alert	1	Error detected cs - Coupler status		
nu - No unit	1	Status originated in coupler		
noi - Noise	1	No unit connected Block shorter than		
wr - Write ring	1	minimum Write ring in tape reel		
ut - Unit type	0,1	$0=7-$ track, 1=9-track		
oc - Odd count	1	Odd number of entries read Tapemark read or written		
tm - Tapemark	1	1		Tape at end of tape
:---				
marker				

$\begin{gathered} \text { Function } \\ \text { Code } \\ \hline \end{gathered}$	$\begin{gathered} \text { Subfunction } \\ \text { Code } \\ \hline \end{gathered}$	Function Name	General Status Returned
01		Release Unit	
02		Clear All	
		Reserves	
03		Clear Opposite	
		Reserve	
05	0	Opposite Parity	
		Mode	
05	1	Opposite Density	
06	0	Select Normal	
		Read Clip	
06	1	Select High Read	
		Clip	
06	2	Select Low Read	
		Clip	
06	3	Select Hyper	
		Read Clip	
07	0	Nominal Read	
		Sprocket Delay	
07	1	Increase Read	
		Sprocket Delay	
07	2	Decrease Read	
		Sprocket Delay	
10	0	Rewind	Yes
10	1	Rewind/Unload	Yes
		Stop Motion	Yes
12	0	General Status	Yes
12	1	Detailed Status	
12	2	Cumulative	
		Status	
12	3	Units Ready	
		Status	
13	0	Forespace	Yes
13	1	Backspace	Yes
13	2	Long Forespace	Yes
13	3	Long Backspace	Yes
14	0	Controlled	
		Forespace	Yes
14	1	Controlled	
		Backspace	Yes
15	0	Search Tapemark	
		Forward	Yes
15	1	Search Tapemark	
		Backward	Yes
16	0	Erase Reposition	Y Yes
16	1	Erase Reposition to Erase	
17	0	Write Reposition	Yes
17	1	Write Reposition to Erase	Yes

Function Code	Subfunction Code	Function Name	General Status Returned
2 x	0	Connect Unit	
30		Format Unit	Yes
31	1	Code Translation	
		Table 1 to Processor Memory	Yes
31	2	Code Translation	
		Table 2 to Processor Memory	Yes
31	3	Code Translation	
		Table 3 to Proc-	
		essor Memory	Yes
32	1	Load Read RAM	Yes
32	2	Load Write RAM	Yes
32	3	Load Read/Write	
		RAM	Yes
33	1	Copy Read RAM	
33	2	Copy Write RAM	
34		Format TCU Status	Yes
35		Copy TCU Status	
36		Send TCU Command	d Yes
40	0	Read Forward	Yes
40	1	Read Backward	Yes
40	3	Read Backward with Odd Length	
		Parity	Yes
41	0	Reread Forward	Yes
41	1	Reread Backward	Yes
41	3	Reread Backward with Odd Length	
		Parity	Yes
42		Repeat Read	Yes
50	0	Write	Yes
50	2	Write Odd Length	Yes
51		Write Tapemark	Yes
52	0	Erase	Yes
52	1	Erase to End of	
		Tape	Yes

Word	Bits	Description
1	11	During read, EOR signal was not received before next frame and all data registers were full or during write, an EOR signal was not received and data was not available for writing next frame
	10	Unerased flux changes were detected at a low read clip setting
	9	Error detected requiring that block be reread or rewritten
	8	Unerased flux changes were detected in interlock gap prior to current operation
	7	Unerased flux changes detected at low read clip setting after write operation or normal clip setting after read
	6	Data not available at write access time and within next 0.4 inch of tape
	5-0	Nonzero indicates fatal error code detected
2	11	Too many frames written before first frame was read
	10	More frames were read than were written
	9	Fewer frames read than written
	8	Frame containing all zeros was read (7-track NRZI only)
	7	LRCC had even vertical parity (9-track NRZI only)
	6	One or more frames have incorrect vertical parity
	5	One or more tracks had odd longitudinal parity (NRZI only)
	4	CRCC parity error (9-track NRZI only)
	3	Unexpected frames detected before longitudinal check character or postamble

Word	Bits	Description
5	11	Forward tape motion if zero, backward if set
	10-8	Tape speed; $1=100 \mathrm{ips}, 2=150 \mathrm{ips}$, $4=200 \mathrm{ips}$
	7-6	Tape density; $0=200$ or 556 cpi , $1=800 \mathrm{cpi}, 2=1600 \mathrm{cpi}$
	5	Access error
	4	Unit write and erase currents are on
	3-0	Unit cable connector address in the tape control unit
6	11-9	Not used
	8-4	- Largest noise block length in frames
	3-0	Number of blocks passed over during the last operation
7, 8	11-0	24-bit frame count field

6603 DISK SYSTEM

Function Word

$$
\begin{array}{rlr}
\mathrm{f} & =0 & \\
& \text { Read sector xx (sectors 00-77) } \\
& =1 & \\
\text { Read sector xx (sectors 100-177) } \\
& =3 & \\
& \text { Write sector xx (sectors 00-77) } \\
& =4 & \\
& \text { Write sector xx (sectors 100-177) } \\
& =5 & \\
& \text { Select track xx (tracks 00-77) } \\
& =7 & \\
\text { Select track xx (tracks 100-177) } \\
& & \text { Select head group x }
\end{array}
$$

Status Reply Word

	00			xy			sector	
11				8	7	6		0
	$\mathrm{x}=0$			Ready				
	$=1$			Not ready				
$\begin{aligned} y & =0 \\ & =1\end{aligned}$				No parity error Parity error				

Data Word

11	0

[^10] are the read sample time. Normal sampling occurs when these bits are cleared.

6638 DISK SYSTEM (6639 DISK CONTROLLER)

Connect and Status

				1	y	1		0	0	0		0	0		x	x
			9	8												0

$x=u n i t$
$y=0 \quad$ Second status word
$=1 \quad$ First status word

Position Select

0	0	1	1	0	0	r	position address				
11	9								0	5	4

\mathbf{r}	$=0$		No retract
	$=1$		Retract

Head Group Select

Write

0	0	1	0	1	sector address		
11	9						8

Read

First Status Word

Bit 11 = Lost data
Bit $10=$ Not connect
Bit $9=$ Not ready
Bit 8 = Parity error
Bit 7 = Stack

Second Status Word

$$
\begin{aligned}
\text { Bit } 11 & =\text { Retract } 1 \\
\text { Bit } 5 & =\text { Retract } 0
\end{aligned}
$$

7618/7628 MAGNETIC TAPE CONTROLLER

FUNCTION CODES
xx00 Release
$x \times 01 \quad$ Odd parity
xx02 Even parity
$x x 03 \quad 556$ CPI density
xx04 200 CPI density
xx05 Clear •
$\mathrm{xx} 06 \quad 800$ CPI density
$\mathrm{xx} 07 \quad 1600$ CPI density
xx10 Rewind
xx11 Rewind unload
xx12 Backspace
xx13 Search file mark forward/search tape mark forward
xx14 Search file mark backward/search tape mark backward
xx15 Write end-of-file mark/write tape mark
xx16 Skip bad spot
$x \times 2 u^{-} \quad$ Select unit u
xx40 Clear reverse read
xx41 Set reverse read
$\mathrm{xx} 42 \quad$ Clear memory mode
xx43 Set memory mode
xx44 Clear conversion mode
xx45 Set conversion mode
xx46 Select write
xx47 Select read
xx50 Clear read
xx51 Clear opposite control (used in 2×8 only)
xx52 Clear character discard
xx 53 Select character discard
xx54 Clear CPU mode
xx55 Select CPU mode
xx56 Clear status 2 - return to status 1
xx57 Select status 2

STATUS CODES

STATUS 1

xxx 1	Ready
xxx 2	R / W control and/or tape unit busy
xxx 4	Write enable
xx 1 x	File mark/tape mark detected
xx 2 x	Load point
xx 4 x	End of tape
x 1 xx	Density
x 2 xx	Density
x 4 xx	Lost data
1 xxx	End of operation
2 xxx	Alert
4 xxx	Tape unit reserved (2x8 only)

STATUS 2

xxx 1	Vertical and/or longitudinal parity error
xxx 2	Memory parity error
xxx 4	Memory flag bit error
xx 1 x	CRCerror
xx 2 x	Multitrack phase error or uncorrect- able CRC error (NRZI)
xx 4 x	Character fill (7/9 track)
x 1 xx	Character crowding or droupout, or false postamble detection
x 2 xx	Phase error correction
x 4 xx	Discard error
1 xxx	End of operation
2 xxx	Alert
4 xxx	Tape unit reserved (2x8 only)

3000 SER ES PERIPHERAL EQUIPMENT CODIS

3518/3528 MAGNETIC TAPE CONTROLLER

FUNCTION CODES
0000 Release

0001 Binary
0002 Coded
$0003 \quad 556$ cpi density
$0004 \quad 200$ cpi density
0005 Clear
$0006 \quad 800$ cpi density
$0007 \quad 1600 \mathrm{cpi}$ density
0010 Rewind
0011 Rewind unload
0012 Backspace
0013 Search filemark forward/search tapemark forward
0014 Search filemark reverse/search tapemark reverse
0015 Write end-of-file mark/write tape mark
0016 Skip bad spot
0020
Interrupt on ready
0021
0022
Release interrupt on ready

0023
Interrupt on end of operation

0024
Release interrupt on end of operation
Interrupt on abnormal end of operation

0025 . Release interrupt on abnormal end of operation
0040
0041
0042
0043
0044 Clear reverse read Set reverse read Clear memory mode Set memory mode Clear conversion mode

STATUS 2
$\mathbf{x x x} 1$
xxx2
xxx4
xx1x
xx 2 x
xx4x
$x \mid x \times$
$x 2 x x$
$x 4 \times x$
1 xxx
2xxx
$48 x x$

60449200 B

Transverse and/or longitudinal parity error
Memory parity error
Memory flag bit error
CRC error
Multitrack phase error or uncorrectable CRC error (NRZI)
Character fill 7/9 track
Not used Crowd, Droport, false bis Not used phase error corrected Not used falge postomide
End of operation
Alert
Tape unit reserved for other control (not used in 1×8) or 'old Stant?

3446/3654 CARD PUNCH CONTROLLER
FUNCTION CODES
0000 Release and disconnect

0001 Negate BCD to Hollerith conversion
0002 Release negate BCD to Hollerith conversion
0003 Select offset stacker \dagger
0004 Check last card
0005 Clear
0020 Select interrupt on ready and Busy
0021 Release interrupt on ready and Busy
0022 Select interrupt on end of operation
0023 Release interrupt on end of operation
0024 Select interrupt on abnormal end of operation
0025 Release interrupt on abnormal end of operation

STATUS CODES

xxx 1	Ready
$\mathrm{xxx2}$	Busy
x 1 xx	Fail to feed
x 2 xx	Ready and $\overline{\text { Busy }}$ interrupt
x 4 xx	End of operation interrupt
1 xxx	Abnormal end of operation interrupt
2 xxx	Compare error
4 xxx	Reserved (by other channel) $\dagger \dagger$

\dagger Applicable to 415 Card Punch
$\dagger \dagger 3644$ only

3447/3649 CARD REACER CONTROLLER

FUNCTION CODES
0000 Release and disconnect
0001 Negate Hollerith to internal BCD conversion

Release negate Hollerith to internal BCD conversion

Set gate card
Clear
Select interrupt on ready and Busy
Release interrupt on ready and Busy
Select interrupt on end of operation
Release interrupt on end of operation

0024 Select interrupt on abnormal end of operation
0025 Release interrupt on abnormal end of operation

STATUS CODES

xxx 1	Ready
xxx2	Busy
xxx4	Binary card
xx1x	File card
xx2x	Fail to feed or stacker full or jam
xx 4 x	Input tray empty
x 1 xx	End of file
x 2 xx	Ready and Busy interrupt
x 4 xx	End of operation interrupt
1 xxx	Abnormal end of operation interrupt
2xxx	Read compare or preread error or illegal suppress assembly
4xxx	Reserved (for other channel) \dagger

[^11]FUNCTION CODES
$0000,0040 \dagger$ Release and disconnect
0001 Single space
0002 Double space
0003 Advance to last line
0004 Page eject
0005 Auto page eject
0006 Suppress space
0010 Clear format selection
Select format tape level for postprint spacing:

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Select preprint spacing
Select format tape level for preprint spacing:
0021 Level 1
0022 Level 2
0023 Level 3
0024 Level 4
0025 Level 5
0026 Level 6
0030 Select interrupt on ready and Busy
0031 Release interrupt on ready and Busy
0032 Select interrupt on end-of-operation
0033 Release interrupt on end-of-operation
0034 Select interrupt on abnormal end-ofoperation
0035 Release interrupt on abnormal end-of-operation

STATUS CODES

xxx1	Ready
xxx 2	Busy
xx 1 x	Paper out
xx 2 x	Last line of form
x 2 xx	Ready and busy interrupt
x 4 xx	End-of-operation interrupt
1 xxx	Abnormal end-of-operation interrupt
2xxx	Error \dagger
4 xxx	Reserved (by other channel) $\dagger \dagger$

3555-1 LINE PRINTER CONTROLLER/580 LINE PRINTER

FUNCTION CODES	
0000	Release and disconnect
0001	Single space
0002	Double space
0003	Advance to last line
0004	Page eject
0005	Auto page eject
0006	Suppress space
0007	Conditional clear format
0010	8 line setect
0011	6 line select
0012	Fill image memory
0013	Select extended array
0014	Clear extended array
0020	Select interrupt on ready and not
	busy
0021	Clear interrupt on ready and not
0022	busy

[^12]| 0023 | Clear interrupt on end-of-operation |
| :---: | :---: |
| 0024 | Select interrupt on abnormal end-of-operation |
| 0025 | Clear interrupt on abnormal end-of-operation |
| 0026 | Reload memory enable |
| 0030 | Clear format selections (postprint spacing mode) |
| 0031 | Select format level 1 for postprint, line spacing |
| 0032 | Select format level 2 for postprint line spacing |
| 0033 | Select format level 3 for postprint line spacing |
| 0034 | Select format level 4 for postprint line spacing |
| 0035 | Select format level 5 for postprint line spacing |
| 0036 | Select format level 6 for postprint line spacing |
| 0037 | Select format level 7 for postprint line spacing |
| 0040 | Select format level 8 for postprint line spacing |
| 0041 | Select format level 9 for postprint line spacing |
| 0042 | Select format level 10 for postprint line spacing |
| 0043 | Select format level 11 for postprint line spacing |
| 0044 | Select format level 12 for postprint line spacing |
| 0050 | Preprint spacing mode |
| 0051 | Select format level 1 for preprint line spacing |
| 0052 | Select format level 2 for preprint line spacing |
| 0053 | Select format level 3 for preprint line spacing |
| 0054 | Select format level 4 for preprint line spacing |
| 0055 | Select format level 5 for preprint line spacing |

Clear interrupt on abnormal end-of-operation

Reload memory enable
Clear format selections (postprint Select format level 1 for postprint, he spacing line spacing
Select format level 3 for postprint line spacing

Select format level 4 for postprint Select format level 5 for postprint line spacing

Select format level 6 for postprint line spacing line spacing
$0040 \quad$ Select format level 8 for postprint line spacing
0041 Select format level 9 for postprint line spacing

Select format level 10 for postprint line spacing line spacing line spacing

Preprint spacing mode line spacing preprint Select format level 3 for preprint line spacing

Select format level 4 for preprint line spacing line spacing

0056	Select format level 6 for preprint line spacing
0057	Select format level 7 for preprint line spacing
0060	Select format level 8 for preprint line spacing
0061	Select format level 9 for preprint line spacing
0062	Select format level 10 for preprint line spacing
0063	Select format level 11 for preprint line spacing
0064	Select format level 12 for preprint line spacing
0065	Maintenance status mode. Refer to Maintenance Status Codes for signals sent over the status lines when in this mode. \dagger
0066	Clear maintenance status mode \dagger
STATUS CODES	
xxx1	Ready
xxx 2	Busy
xxx4	Compare fault
xx 1 x	Paper fault
xx 2 x	Last line of form
xx 4 x	Format tape level 9
x 1 xx	Memory busy
x 2 xx	Ready and $\overline{\text { Busy interrupt }}$
x 4 xx	End-of-operation interrupt
1 xxx	Abnormal end-of-operation interrupt
2xxx	Print error
4 xxx	6/8 line coincident

[^13]MAINTENANCE STATUS CODES \dagger

xxx 1	Internal train home signal
xxx	Internal train subscan signal
xxx 4	Six line-per-inch emitter pulse
xx 1 x	Eight line-per-inch emitter pulse
xx 4 x	Paper motion in low speed slew
xx 2 x	Internal timing emitter signal
x 1 xx	Start paper motion
x 2 xx	Stop paper motion
x 4 xx	Printer busy

3553 DISK STORAGE CONTROLLER

CONNECT CODES
n0du $\dagger \dagger$ Connect 3553 and storage unit

[^14]
FUNCTION CODES

0000	Channel release
0001	Restore
0005	Clear
0007	Drive release
0010	Load address at 1:1 interlace
0011	Return address
0012	Load address at $2: 1$ interlace \dagger
0014	Load address at 4:1 interlace \dagger
0016	Load address at 8:1 interlace \dagger
0020	Select interrupt on ready and
0021	Busy
	Release interrupt on ready and

0022
0023

0024

0025

0026

0027

0030
0031
0040
0041
0042
0043
0044
0045
0050
0051
0052
0053
0054
$\overline{\text { Busy }}$
Select interrupt on end-of-operation
Release interrupt on end-of-operation

Select interrupt on abnormal end-of-operation
Release interrupt on abnormal end-of-operation
Select interrupt on opposite channel release
Release interrupt on opposite channel release
Select interrupt on end-of-seek
Release interrupt on end-of-seek
Read
Write
Search compare
Masked search compare
Checkword verify
Read checkword
Magnitude search (record \leq buffer)
Magnitude search (record \geq buffer)
Equality search (record=buffer)
Buffer mode
End-of-record mode

STATUS CODES

xxx 1	Ready
xxx 2	Busy
xxx	Abnormal/unavailable
$\mathrm{xxx6}$	Unit reserved
xx 10	On sector
xx 14	Address error
xx 20	No compare
xx 24	Operation error (3553-2)
	Lost data (3553-1)
xx 40	End-of-record
xx 44	Checkword error
x 1 x 0	Write lockout on read (normal)
x 1 x 4	Write lockout on write (abnormal)
x 2 xx	Positioner ready
x 4 xx	End-of-operation interrupt
1 xxx	Abnormal end-of-operation interrupt
$2 \times x x$	Seek interrupt
4 xx 0	Reserved
4 xx 4	Defective track

3127/322X/342X/362X MAGNETIC TAPE CONTROLLER

FUNCTION CODES	
0000	Release
0001	Binary
0002	Coded
0003	556 cpi
0004	200 cpi
0005	Clear
0006	$800 \mathrm{cpi} \dagger$
0010	Rewind
0011	Rewind unload
0012	Backspace \dagger
0013	Search forward to filemark
0014	Search backward to filemark
0015	Write file mark
0016	Skip bad spot
0020	Select interrupt on ready and Busy
0021	Release interrupt on ready and $\overline{\text { Busy }}$
0022	Select interrupt on end of operation
0023	Release interrupt on end of operation
0024	Select interrupt on abnormal end of
0025	operation
	Release interrupt on abnormal
0040	end of operation
0041	Clear reverse read $\dagger \dagger \dagger$
Set reverse read $\dagger \dagger$	

[^15]$\dagger \dagger \dagger 362 x, 342 x$ only.

StATUS CODES

xxx 1	Ready xxx
$\mathrm{xxx4}$	Channel and/or read/write control and/or unit busy
xx 1 x	Write enable
xx 2 x	Filemark
xx 4 x	Loadpoint
x 1 xx	End of tape
x 2 xx	Density \dagger
x 4 xx	Density $\dagger \dagger$
1 xxx	Lost data
2 xxx	End of operation
4 xxx	Vertical or longitudinal parity error
	Reserved (by other channel) $\dagger \dagger \dagger$

[^16]
3436/3637 DRUM CONTROLLER

CONNECT CODES

$\mathrm{n} 00 \mathrm{u} \quad$ Connect drum
n Equipment number of drum controller
u Drum storage unit number

[^17]STATUS CODES

3234 MASS STORAGE CONTROLLER

CONNECT CODES

n0du Connect 3234
$\mathrm{n}=$ equipment number of controller
$\mathrm{d}=$ device type ($1=$ disk drive, $2=$ disk file, and
3 =data cell)
$u=$ unit number of storage device
$\dagger 3637$ drum controller only

FUNCTION CODES

0000	Release and Disconnect
0001	Restore
0005	Clear
0010	Load address
0011	Return address
0020	Select interrupt on ready and Busy
0021	Release interrupt on ready and Busy
0022	Select interrupt on end-of-operation
0023	Release interrupt on end-of-operation
0024	Select interrupt on abnormal end-of-operation
0025	Release interrupt on abnormal end-of-operation
0026	Select interrupt on opposite channel release
0027	Release interrupt on opposite channel release
0030	Select interrupt on end-of-seek
0031	Release interrupt on end-of-seek
0040	Read
0041	Write
0042	Search compare
0043	Masked search compare
0044	Checkword verify
0045	Read checkword
0050	Magnitude search (record \leq buffer)
0051	Magnitude search (record \geq buffer)
0052	Magnitude search (record=buffer)
0053	Buffer mode
0054	End-of-record mode

STATUS CODES

xxx 1	Ready
xxx 2	Busy
$\mathrm{xxx} 4 \dagger$	Abnormal/unavailable

$\mathrm{xx} 1 \mathrm{x} \quad$ On sector
$\mathrm{xx} 14 \dagger$ Address error
xx 2 x No compare
$\mathrm{xx} 24 \dagger$ Lost data
xx4x End-of-record
xx44 $\dagger \quad$ Checkword error
$x 1 x x \quad$ Write lockout on read (normal)
$x 1 x 4 \dagger \quad$ Write lockout on write (abnormal)
$\mathrm{x} 2 \mathrm{xx} \quad$ Positioner ready
$x 4 x x \quad$ End-of-operation interrupt
1xxx Abnormal end-of-operation interrupt
2xxx Seek interrupt
4xxx Reserved
$4 \times x 4 \dagger \quad$ Defective track

814 Disk Files:

853/854 Disk.Drives:

\dagger On an unsuccessful connect, xxx4 indicates equipment or unit unavailable. On any function, an abnormal condition is indicated by xxx 4 and xx 1 x , $\mathrm{xx} 2 \mathrm{x}, \mathrm{xx} 4 \mathrm{x}, \mathrm{x} 1 \mathrm{xx}$, or 4 xxx .

CORPORATE HEADOUARTERS

P.O.BOXO

MINNEAPOLIS, MINNESOTA 55440

SALES OFFICES AND SERVICE CENTERS

IN MAJOR CITIES
THROUGHOUT THE WORLD

[^0]: \dagger This display is control-point oriented. Paging forward and backward through the display for each control point is achieved with the + and - keys, respectively.

[^1]: \dagger If an asterisk follows the file type mnemonic, the file is locked.
 $\dagger \dagger$ This display is control-point oriented. Paging forward and backward through the display for each control point is achieved with the + and - keys, respectively.

[^2]: \dagger Go to $\mathrm{K}^{\mathrm{R}} \mathrm{Bi}$ and Go to K if Bi ; tests made in increment unit.
 ' Go to K if Xj ; tests made in long add unit.

[^3]: \dagger If the sign in the address field is minus, COMPASS complements the 18 -bit quantity K .

[^4]: \dagger If the sign in the address field is minus, COMPASS

[^5]: \dagger If the sign in the address field is minus, COMPASS complements the 18-bit quantity K .

[^6]: \dagger For this instruction, COMPASS packs the instruction so Bi is compared with BO rather than Bj .

[^7]: \dagger Refer to ECS Description/Programming Manual.
 $\dagger \dagger$ If the jump conditions are not present, requires only n cycles (for M72, $\mathrm{n}=8$ and for M73, $\mathrm{n}=5$).

[^8]: \dagger When $\mathrm{i}=0$, time $=6$ minor cycles; $\mathrm{i}=1-5,12$ minor $\mathrm{cy}-$ cles; $\mathrm{i}=6$ or 7,10 minor cycles.
 $\dagger \dagger$ When $i=0$, time $=6$ minor cycles; $i=1-5,14$ minor cycles; $\mathrm{i}=6$ or 7,12 minor cycles.

[^9]: \dagger Applicable to CDC CYBER 170 series only.

[^10]: \dagger When $\mathrm{f}=6$, bits $0-2$ are head group and bits $3-5$

[^11]: $\dagger 3649$ only

[^12]: $\dagger 3256$ equipped with error checking option only. $\dagger \dagger 3659$ only

[^13]: \dagger Applicable to 580 Line Printer only.

[^14]: \dagger Applicable to 580 Line Printer only.
 $\dagger \dagger$ n=equipment number of controller
 $\mathrm{d}=$ device type ($1=$ disk drive and $2=$ disk file)
 $u=$ logical unit number of storage device.

[^15]: $\dagger 602,604$, and 607 tape units only.
 \dagger † Backspace moves tape forward if reverse read is selected.

[^16]: $\dagger 1$ in bit $6=556 \mathrm{cpi} ; 0$ in bits 6 and $7=200 \mathrm{cpi}$ $\dagger \dagger 1$ in bit $7=800 \mathrm{cpi}$
 $\dagger \dagger \dagger 362 x, 342 x$ only

[^17]: $\dagger 3637$ drum controller only

