
IGEM Engineering Data Library
Customization Guide for NOS

(52)
CONT~OL

DATA

60000168

'''------

ICEM Engineering Data Library

Customization Guide for NOS

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60000168

Manual History

Revision A printed in January 1987 describes customization techniques for EDL version
1.2.5 running under the Network Operating System (NOS) version 2.5.1 at PSR level
664.

©1987 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 EDL Customization for NOS Revision A

I

I"

Contents
About This Manual

Audience ...
Organization

5

5
6

Conventions . 6
Related Publications 7
Required Equipment 8
Ordering Manuals 8
Submitting Comments 8

System Administration Overview. 1·1

Customizing EDL.
System Administrator Tasks

Menu
Concurrent Database Operations
Setting up the EDL Procedure
Creating Alternate Procedures
Adding a Directory to E125PRC
Upgrading from EDL 1.2.3 to

EDL 1.2.5
Customizing the Plotting

Interface

Customizing the Message and
Task Database. . .

Using MENUMOD

Figures

1-1

1-3
1-6
1-7
1-7
1-8

1-8

1·9

2·1

2-2

1-1. Sample EDL Execution Stack. 1-3
1-2. Sample Current EDL Variable

Display. 1-4
1-3. System Administrator Tasks

and Secondary Menus 1-5
2-1. Using MENUMOD to Extract a
Task. 2-4

2-2. Using MENUMOD to Extract a
Task Menu 2-5

Revision A

Keeping Track of Your Changes
Examples

Manipulating the Engineering
Data Database.

Customizing EDL Using
Engineering Data Records.

Records Updated by EDL
EDL Global Variables . . .
Using FORTRAN Interface

Modules.
Examples

Adding aNew Application

Application Coding Guidelines
Example

EDL Schema Definitions

Information Base Routines

Standard EDL OVCAP

2-8
2-9

3·1

3-1
3-3
3-5

3-6
3-22

4·1

4-1
4-3

A-I

B-1

Subroutines C-l

Index Index-l

2-3. Using MENUMOD to Extract
an Option Menu. 2-6

2-4. Using MENUMOD to Extract a
Message 2-6

3-1. Unique Keys are Identified by
the Solid Arrow Line. 3-8

3-2. Sample Batch Transaction File
for Implementing a Site-Defined
Retrieval. 3-37

Contents 3

\"

About This Manual

CDC@ ICEM Engineering Data Library (EDL) is an application designed to provide a
user-friendly interface to Control Data's CAD/CAM products and to manage the
engineering data produced by these products. The EDL system runs under Control
Data's Network Operating System (NOS).

EDL interfaces to the following application packages:

• ICEM DDN 1.62

• ICEM Solid Modeler 1.13

• PATRAN 1.5

• UNISTRUCT II

• ICEM Schematics

• XEDIT Text Editor

• Full Screen Editor (FSE)

The software product IMF is included with EDL.

Other software products are required to use EDL:

• Network Operating System (NOS)

o FORTRAN 5 is required to perform some kinds of customization operations.

This manual describes how to customize EDL. Information about installing EDL is
provided with your release tapes.

Audience

This manual is intended for system and database administrators whose duties include
the maintenance and modification of the EDL database. You should have a thorough
understanding of EDL, NOS, FORTRAN, and QUERY UPDATE before attempting to
customize your EDL database.

Revision A About This Manual 5

Organization

The organization of this manual is as follows:

Chapter 1 Provides an introduction to the EDL file structure and the duties of the
System Administrator.

Chapter 2 Describes customization of the Message and Task Database using the
interactive MENUMOD utility.

Chapter 3 Describes more complex customization and manipulation of the EDL
databases involving the use of OVCAPS, Information Base (IB) routines,
and other EDL subroutines.

Chapter 4 Describes adding an application to EDL.

Appendix A Contains complete database schemata for the Message and Task
Database and the Engineering Data Database.

Appendix B Provides the pseudo QU/DML format for the IB routines used to
manipulate data records in EDL databases.

Appendix C Lists descriptions and parameter information for standard EDL
subprograms used in database customization.

Conventions

The word "system" when used in this manual refers to the ICEM EDL software
system. When the Control Data Network Operating System is referred to, it is called
either NOS or the operating system.

All text that the system displays is shown in uppercase letters and highlighted with a
special typeface, as shown below:

SYSTEM ADMINSTRATOR TASKS

1. EXIT E,EXIT
2. UPDATE THE MESSAGE AND TASK DATABASE MENUMGMT
3. UPDATE THE DATABASE WITH BATCH INPUT QUBATCH
4. INTERACTIVE QUERY UPDATE QU
5. INTERACTIVE MENU MODIFICATION MENUMOD
6. DISPLAY THE CURRENT EDL EXECUTION STACK STACK
7. DISPLAY THE CURRENT EDL VARIABLES DISVAR

6 EDL Customization for NOS Revision A

Related Publications
The following manuals contain information about ICEM Engineering Data Library
(EDL), the NOS Operating System, and related applications.

EDL Manuals

EDL DBA Manual for NOS

EDL Instant for NOS

EDL Reference Manual for NOS

EDL User's Guide for NOS

Operating System Manuals

NOS Full Screen Editor User's Guide

NOS Version 2 Information Management Facility Version 2
Reference Manual

NOS Version 2 Reference Set, Volume 1 Introduction to Interactive
Usage

NOS Version 2 Reference Set, Volume 3 System Commands

NOS Version 2 Reference Set, Volume 4 Program Interface

Query Update Version 3 Reference Manual

XEDIT Version 3 Reference Manual

ICEM Applications Manuals

CYBERNET UNISTRUCT II Reference Manual

ICEM Advanced Design for NOS

ICEM DDN Instant for NOS

ICEM Design/Drafting Basic Construction for NOS

ICEM Design/Drafting Data Management for NOS

ICEM Design/Drafting Drafting Functions for NOS

ICEM DesignlDrafting GRAPL Programming Language for NOS

ICEM Design/Drafting Introduction and System Controls for NOS

ICEM DesignlDrafting User's Guide for NOS

ICEM GPL for NOS

ICEM Numerical Control for NOS

ICEM Schematics Reference Manual

Revision A

Publication
Number

60458880

60000166

60459740

60000167

Pu blication
Number

60460420

60484600

60459660

60459680

60459690

60498300

60455730

Publication
Number

76079600

60461430

60457140

60461420

60461410

60461440

60461460

60457130

60456940

60462520

60461450

60456540

About This Manual 7

ICEM Applications Manuals (Cont)

IGES Translator for NOS

PATRAN User's Guide, Volume 1

PATRAN User's Guide, Volume 2

UNIPLOT Version 3 User's GuidelReference Manual

UNISTUCT II User's Guide

Required Equipment

Publication
Number

60463050

60459330

60459340

60454730

60457550

You can use any alphanumeric terminal for the EDL customization procedures
described in this manual. You need extended terminal capabilities only if you access an
application that requires them. For example, the ICEM Solid Modeler application
requires a graphics capability.

Ordering Manuals

Control Data manuals are available through Control Data sales offices or through
Control Data Corporation Literature Distribution Services (308 North Dale Street, St.
Paul, Minnesota 551{)3).

Submitting Comments

The last page of this manual is a comment sheet. Please use it to give us your opinion
of the manual's usability, to suggest specific improvements, and to report technical or
+-.......... .-.-,.. k.", ... l "9090 90... T~ +-k" ", n +- ... knn+ 'hn ... nl90nnrin kOO" .,.,ori 'Tn" ,.13 ,.....,13;1 un",. "J P V 6J. CJ.1"J.J..I."'CIoJ. ~J..I. VJ.., • .1.1. "J.J.~ "'VJ.J.J.J.J.J.~&&" "J.J.~~" J.&Q,., Q,&& ~Q,\..&J u && \..& ... "'~, J v "' ,," """ " J "'

comments to:

Control Data Corporation
Technology and Publications Division ARH219
4201 Lexington Avenue North
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a written response.

8 EDL Customization for NOS Revision A

I
\

(

\

System Administration Overview

Customizing EDL

System Administrator Tasks Menu

Concurrent Database Operations

Setting up the EDL Procedure.

Creating Alternate Procedures.

Adding a Directory to E125PRC .

Upgrading from EDL 1.2.3 to EDL 1.2.5 .

Customizing the Plotting Interface

1

1-1

1-3

1-6

1-7

1-7

1-8

1-8

1-9

',---

"_.-

System Administration Overview

This chapter provides an overview of the EDL file structure. It introduces the duties of
the system administrator and concepts of EDL customization.

Customizing EDL
The ICEM Engineering Data Library is a flexible system that can be modified in many
different ways. To successfully customize EDL you must be thoroughly familiar with
EDL, NOS 2, FORTRAN, IMF, CYBER Control Language (CCL), and Query Update.
You are responsible for ensuring that your customizations are well designed and tested.
Customizations that work incorrectly (or fail to consider all potential impacts) can
seriously damage your EDL databases or your applications data.

NOTE

Control Data cannot guarantee that the customizations you make to one version of
EDL will automatically operate on subsequent versions of EDL or ICEM applications.
We consider the impact of changes to customizations and provide conversion procedures
to upgrade data maintained by standard code. However, normal enhancement, bug fixes,
and product evolution may result in changes to the database structure and the function
of code supplied by Control Data. These changes mean that you should re-adapt and
retest your site-specific code, transaction files, Query Update directives, and CCL
procedures at every EDL release.

Revision A System Administration Overview 1·1

Customizing EDL

There are several ways to customize EDL to fit your site. Each of the following
customization techniques is described in this manual.

• Changing. the text displayed by prompts, messages, and menus

• Reorganizing the EDL task menu structure

• Adding new applications, file types, and data types

• Adding or changing engineering categories and their standard attributes

• Creating new reports or modifying standard ones

• Creating new FORTRAN modules to perform site-specific functions

• Creating new procedures to be invoked by EDL

To change the tasks .performed by EDL, you must first change the databases as
required and then create CCL procedure files and/or a new version of the EDL
program.

• Changes to the Message and Task Database (MDB) affect the verbage, structure,
content, and operation of the user interface.

• Changes to the Engineering Data Database (DDB) define site-specific notions of data
and allow you to integrate new applications.

The EDL system consists of the following four basic files that you can modify to fit
your needs.

File Name

E125ABS

E125MDB

E125DDB

CAUTION

Description

Standard EDL procedure file

EDL absolute program

Message and Task Database

Engineering Data Database

To prevent serious damage to your EDL database, you should first make all changes to
a copy of the working database.

1. Copy your EDL directory structure into a working area.

2. Make your changes to this copy and test them out.

3. Mter testing your changes, implement them on your current databases.

1·2 EDL Customization for NOS Revision A

I

~

(

',---

System Administrator Tasks Menu

System Administrator Tasks Menu

The System Administrator Tasks menu lists the tasks used for EDL customization.

SYSTEM ADMINSTRATOR TASKS

1. EXIT E,EXIT
2. UPDATE THE MESSAGE AND TASK DATABASE MENUMGMT
3. UPDATE THE DATABASE WITH BATCH QU INPUT QUBATCH
4. INTERACTIVE QUERY UPDATE QU
5. INTERACTIVE MENU MODIFICATION MENUMOD
6. DISPLAY THE CURRENT EDl EXECUTION STACK STACK
7. DISPLAY THE CURRENT EDl VARIABLES DISVAR

The following table summarizes the functions of these system administrator tasks:

Task Name

EXIT

UPDATE THE MESSAGE AND TASK DATABASE

UPDATE THE DATABASE WITH BATCH QU INPUT

INTERACTIVE QUERY UPDATE

INTERACTIVE MENU MODIFICATION

DISPLAY THE CURRENT EDl EXECUTION STACK

DISPLAY THE CURRENT EDl VARIABLES

TASK
lAST EDl
USER
SYSADMIN

TASK NAME
LAST EDl
USER
SYSADMIN

SEQUENCE
10
10
10

Description

Terminates EDL processing of the current
task and returns control to the previous
task.

Lets you customize tasks and messages in
batch mode. Examples of this type of
customization are included in chapter 3.

Allows you to update the application
database in batch mode. This procedure is
discussed in chapter 3.

Allows you to update the application
database interactively using Query Update.

Accesses the interactive MENUMOD utility
for customizing the Menu and Task
database. This utility is described in
chapter 2.

Displays the current tasks in the execution
stack. Figure 1-1 shows a sample execution
stack.

Displays variables created by PUTVAR and
accessible by GETVAR. The PUTVAR
subroutine is described in chapter 3. Figure
1-2 shows a sample display produced in
response- to this selection.

TYPE
TASK MENU
TASK MENU
TASK MENU

NAME
lASTEDl
USER
SYSADMIN

Figure 1-1. Sample EDL Execution Stack

Revision A System Administration Overview 1-3

System Administrator Tasks Menu

NAME VALUE
USR EDLID
HOST
AUN
MOB E125MDB
MUN E125PRC
DDB E125DDB
DUN
EDITOR FSE
DDNVER 1.62

Figure 1·2. Sample Current EDL Variable Display

1-4 EDL Customization for NOS Revision A

System Administrator Tasks Menu

Figure 1-3 shows the hierarchy of tasks you can select from the System Administrator
Tasks menu.

SYSTEM ADMINISTRATOR TASKS

1. EXIT E,EXIT
2. UPDATE THE MESSAGE AND TASK DATABASE IENUMGMT
3. UPDATE THE DATABASE WITH BATCH au INPUT OUBATCH
4. INTERACTIVE QUERY UPDATE 00-
5. INTERACTIVE MENU MODIFICATION MENUJDl
6. DISPLAY THE CURRENT EDL EXECUTION STACK STACK
7. DISPLAY THE CURRENT EDL VARIABLES DISVAR

~
SELECT DATA RETRIEVAL METHOD QUERY UPDATE

1. EXIT E,EXIT
2. DATA NAME N,NAIIE
3. CREATOR OF THE DATA C,CREATOR
4. DATA TITLE KEYWORD T ,TITLE
5. DESCRI PTCR D,DESCRIPTOR
6. STATUS S,STATUS
7. ENGINEERING CATEGORY CAT
8. APPLICATION DATA TYPE ADT
9. FILE INFORMATION F,FILE

10. OWNER OF THE FILE O,(MNER rr 11

.

PART INFORMATION P.PART
r-12. DATES DATES

SELECT PAR~ INFORMATION TYPE

1. EXIT E.EXIT
2. PART NUMBER N.NUIIBER
3. PART VENDOR V ,VENDOR
4. PART FAMILY F,FAMILY
5. PART TITLE KEYWORD T,TITLE
6. WHERE USED W,WHERE

SELECT DATt INFORMATION TYPE

1. EXIT E,EXIT
2. CREATION DATE C,CREATION
3. DATE LAST MODIFIED M.IIlDIFY
4. DATE LAST ACCESSED A,ACCESS
5. RELEASE DATE R,RELEASE

Figure 1-3. System Administrator Tasks and Secondary Men us

Revision A System Administration Overview 1·5

Concurrent Database Operations

Concurrent Database Operations
Concurrent access allows multiple users to access a database at the same time. To
provide optimum system performance; the EDL databases handle concurrent access
, differently:

• The Engineering Data Database permits concurrent access by all users in both
READ and WRITE modes.

o The Message and Task Database permits concurrent access only in READ mode.
Any operations that require changes to the MDB - add, change, or delete - cannot
be performed while any EDL user is active. Conversely, no normal EDL usage is
possible until a change operation is completed.

1-6 EDL Customization for NOS Revision A

I

'",

System Administrator Tasks Menu

Figure 1-3 shows the hierarchy of tasks you can select from the System Administrator
Tasks menu.

1.

2.
3.
4.
5.
6.
7.
8.
9.

10.

,....12. ir 1

1.

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.

SYSTEM ADMINISTRATOR TASKS

1. EXIT
,.....--2. UPDATE THE MESSAGE AND TASK DATABASE
t---3. UPDATE THE DATABASE WITH BATCH au INPUT

4. INTERACTIVE QUERY UPDATE
5. INTERACTIVE MENU MODIFICATION
6. DISPLAY THE CURRENT EDL EXECUTION STACK
7. DISPLAY THE CURRENT EDL VARIABLES

~

E ,EXIT
IENUIIGMT
QUBATCH
QU­
MENUIIlO
STACK
DISVAR

SELECT DATA RETRIEVAL METHOD QUERY UPDATE

EXIT E.EXIT
DATA NAME N.NAME
CREATOR OF THE DATA C.CREATOR
DATA TITLE KEYWORD T • TITLE
DESCR I PTOO D.DESCRIPTOR
STATUS S.STATUS
ENGINEERING CATEGORY CAT
APPLICATION DATA TYPE ADT
FILE INFORMATION F.FIlE
OWNER OF THE FILE O.c*NER
PART INFORMATION P.PART
DATES DATES

SELECT PAR~ INFORMATION TYPE

EXIT E.EXIT
PART NUMBER N.NUMBER
PART VENOOR V.VENDOR
PART FAMILY F.FAMIlY
PART TITLE KEYWORD T.TITLE
WHERE USED W.WHERE

SELECT DATt INFORMATION TYPE

EXIT E.EXIT
CREATION DATE C,CREATION
DATE lAST MODIFIED M,IIIlOIFY
DATE lAST ACCESSED A, ACCESS
RELEASE DATE R,RELEASE

Figure 1·3. System Administrator Tasks and Secondary Menus

Revision A System Administration Overview 1-5

Concurrent Database Operations

Concurrent Database Operations
Concurrent access allows multiple users to access a database at the same time. To
provide optimum system performance, the EDL databases handle concurrent access
differently:

• The Engineering Data Database permits concurrent access by all users in both
READ and WRITE modes.

• The Message and Task Database permits concurrent access only in READ mode.
Any operations that require changes to the MDB - add, change, or delete - cannot
be performed while any EDL user is active. Conversely, no normal EDL usage is
possible until a change operation is completed.

1-6 EDL Customization for NOS Revision A

'''--

Setting up the EDL Procedure

Setting up the EDL Procedure

The procedure EDL in E125PRC is the base procedure for all EDL operations. Its basic
purpose is to attach the EDL program file, execute it, execute the procedure calls
written on EEEDL2, and loop until the user chooses to quit EDL.

The procedure header has several parameters, which are all passed to the E125ABS
execution statement .

. PROC,EDL,I=INPUT/INPUT,IT=O/IT,OT=O/OT,HOST=,AUN=.

I

IT

OT

HOST

AUN

Alternate Input File: Specifies an alternate file for input. Default file name:
INPUT.

Input Trace File Name: Specifies the trace file that records all input entered
by the user. Default file name: IT. If not specified or IT= 0, no input trace is
created.

Output Trace File Name: Specifies the trace file for all EDL output displayed
at the terminal and all input entered by the user. Default file name: OT. If
not specified or OT= 0, no output trace is created.

Host Identification Code: Specifies the mainframe where this version of EDL
resides. Default is blank.

Alternate User Name: Specifies the user name for the EDL procedure file
E125PRC and the absolute E125ABS. If not specified, EDL assumes these
files are located under the user's own account. It is good practice to edit the
procedure header to include a -default value here so that users do not need to
include the AUN parameter on their BEGIN statements.

You can also include the following parameters on the E125ABS statement:

L Alternate Output File: Specifies an alternate file for output. Default file
name: OUTPUT.

DUN Data Database: Specifies the user name for the Engineering Data Database.
If not specified, EDL assumes the value specified by the AUN parameter.

MUN Menu Database: Specifies the user name for the Message and Task Database.
If not specified, EDL uses the value specified by the AUN parameter.

ECHO If specified, user input is included in the output file. This parameter is
generally used for debugging purposes when the output file is renamed.

Creating Alternate Procedures
You can write your own procedures to be invoked by EDL. It is suggested that you put
them on a separate procedure file other than E125PRC. To allow the user to invoke
them, you need to set up ED~ tasks and task processes as explained later.

Revision A System Administration Overview 1-7

Adding a Directory to E125PRC

Adding a Directory to E125PRC
The system can find procedures from a proc file faster if the file has a random access
directory. We recommend that you use LIBEDIT to build a directory on E125PRC after
you edit it for any reason. The following example illustrates this procedure. Refer to
volume 3 of the NOS Version 2 Reference Manual for additional information.

ATTACH,E125PRC/M=W.
GTR,E125PRC,TEMP.PROC/*
FSE,TEMP.

(enter full screen editor commands)
(exit the editor)

LIBEDIT,P=TEMP,N=NEW.
*BUILD DIR
REWIND,*.
COPVEI,NEW,E125PRC,V.

Upgrading from EDL 1.2.3 to EDL 1.2.5

The following steps outline the procedure you should follow to apply your customization
of EDL 1.2.3 to version EDL 1.2.5. Subsequent chapters of this manual provide
additional detail about these database customization techiniques.

1. Install the default EDL 1.2.5 database according to the installation instructions
provided with your release tapes.

2. Rerun all Message and Task Database transactions using the MENUMGMT task.
The structure of the Message and Task Database has not changed. The TITYP field
is used to control whether a task is allowed to run on a subordinate host in a
network. Set this field to MASTER on any site-defined administrative tasks that
can only run on the master machine.

3. Edit all QU directive files as needed. A few records in the Engineering Database
have changed, as documented in the database schema definitions listed in appendix
A. Rerun the QU directives files using the QUBATCH task.

4. Run the EDL database conversion procedure CONV123.

5. Edit the source programs for any site-defined OVCAPS. You must replace the
COMMON block definitions of all DDB records with the new definitions found on
the EDLCOM file. Several COMMON blocks have changed format and names.

6. Use the LOADEDL procedure to recompile and load the OVCAPS.

7. Test everything.

1·8 EDL Customization for NOS Revision A

\

I

\~ ..

Customizing the Plotting Interface

Customizing the Plotting Interface
You must modify the plotting interface supplied on the EDL release tape in order for it
to work correctly at your site.

The option menu named PLOTNI shows users which plotters are available at your site.
You can use the interactive MENUMOD utility described in chapter 2, or the batch
transaction method descibed in chapter 3 to update this menu. The OVVAL field should
contain a site-defined destination code that is eventually passed to procedure PLOTN as
the DEST parameter when a user chooses a plot destination.

Procedure PLOTN in E125PRC is designed to convert a neutral picture file (NPFILE)
to a plotter-specific representation and route it to the plotter. You must edit this
procedure to execute UNIPOST with the correct directives for the specific plotters at
your site, and to route the plot file to the correct plotter based on the value of the
DEST parameter. Refer to the UNIPLOT manual for details about the appropriate
directives for your plotters.

Revision A System Administration Overview 1-9

I

\....

('
'-..

Customizing the Message and Task
Database
Using MENUMOn

Modifying a Task
Modifying a Task Menu
Modifying an Option Menu
Modifying a Message
Using MASSMOn for Batch Modifications

Keeping Track of Your Changes

Examples
Changing a Prompt
Removing a Prompt from a Task .
Adding aNew Task
Adding a Task with an OVCAP .

2

2-2
2-3
2-4
2-5
2-6
2-7

2-8

2-9
2-9
2-9

2-10
2-11

"'-

Customizing the Message and Task
Database 2

The overall. control and user dialog in EDL is defined by the Message and Task
Database, also called the Menu Database (MDB). The records in this database contain
the definitions of all messages, prompts, menus, and tasks used by EDL.1

Record
Name

MH

MI

OK

OM

OV

TC

TI

TM

TP

TV

Description

Message help records specify the help text for a message.

Message information records are the header record for all prompts, menus,
and error messages.

Option keyword records specify keywords that may be used to select an
option menu line.

Option menu records contain the text displayed on option menu lines.

Option value records specify the value returned to the program when a
user selects an option from an option menu.

Task command records specify the commands used to invoke tasks.

Task information records serve as headers for EDL tasks.

Task menu records contain the text displayed on task menus.

Task process records specify the processes executed sequentially when a
task is invoked.

Task parameter value records specify the parameters passed to CCL
procedures and overlay capsules (OVCAPS) when they are executed as EDL
task processes. There are six types of parameters, differentiated by the
TVTYP field of the TV record:

CONSTANT

PROMPT

NULL

VARIABLE

Passes a constant to the process.

Prompts the user for the value of the parameter to be
passed to the process.

Passes the process a null value. (Simulates a carriage
return.)

Passes the value of an- EDL global variable to the process.
An EDL global variable must be previously set by a
subprogram that uses the PUTVAR subroutine.

1. Refer to record schemata in appendix A for a complete description of EDL record types.

Revision A Customizing the Message and Task Database 2·1

Using MENUMOD

CONFIG Passes a parameter value based on the contents of the
application configuration (AC) records, application
information (AI) status (must be ACTIVE), and the user's
current terminal configuration.

TRANSFER Passes the set of all variables required for a transfer.

There are two ways to modify the Message and Task Database. Which method you
choose depends somewhat on the complexity of the changes you want to implement.

o You can use the interactive MENUMOD utility described in this chapter for simple
modification of menus, prompts, and messages.

o More complex customization may require the preparation of a batch transaction data
file, OVCAP, and procedure files; this method is described in chapter 3.

Using Query Update, you can invoke several report tasks to produce listings of the
contents of the MDB.

Using MENUMOD
MENUMOD is an interactive utility for modifying the EDL Message and Task
Database. You invoke it by selecting 5. INTERACTIVE MENU MODIFICATION from
the System Administrator Tasks menu or by entering the MENUMOD command from
any task menu. This produces the Interactive Menu Modification menu shown below.

INTERACTIVE MENU MODIFICATION
1. EXIT . E,EXIT
2. MODIFY OR ADD A TASK TASKMOD
3. MODIFY OR ADD A TASK MENU TMENUMOD
4. MODIFY OR ADD AN OPTION MENU OMENUMOD
5. MODIFY A MESSAGE MESSAGE MOD
6. BATCH MENU MODIFICATION MASSMOD

ENTER TASK

?------

The tasks selectable from this menu let you add, change, or delete tasks, task menus,
option menus, error messages, prompts, and informative messages. A local file called
MASSMOD records the final image of any changes you make using MENUMOD.

CAUTION

In order to use MENUMOD, your database must be opened exclusively. To avoid
damaging your current system, you should first make all changes to a copy of the
working database.

The following steps outline the general procedure for using MENUMOD.

1. Select one of the MENUMOD tasks.

2. Enter the name of the structure you want to change. In response, the system writes
the current information of the structure to a file and invokes your editor to display
this file for modification.

2·2 EDL Customization for NOS Revision A

Modifying a Task

3. Use your cursor keys and text editor commands to make your changes to the file.
Modifications made using MENUMOD do not require a strict fixed-column format;
however, you must separate fields by at least two spaces. You can create new tasks,
menus, or messages by renaming an existing structure and modifying it accordingly.

4. If you elect to save your modified information, MENUMOD changes the EDL
Message and Task Database, replacing the previous information. The system
automatically appends images of your changes to the file MASSMOD.

The remaining sections in this chapter provide additional information about each of the
MENUMOD tasks and examples of their use. The descriptions of the MENUMOD
screen lines reference corresponding record fields (TITNA, TIDSC, and so on). Refer to
the database schemata in appendix A for a complete description the EDL record
formats.

Modifying a Task

When you select 2. MODIFY OR ADD A TASK from the Interactive Menu Modification
menu or enter the TASKMOD command, MENUMOD extracts a task in the following
format:

taskname
DESCRIPTION: task description
SECURITY CATEGORY: category
TYPE: MASTER or blank
COMMANDS: command 1 command2
PROCESS: process type process name
PARAMETER: parameter name parameter type parameter value

Line Description

1 lO-character task name (TITN A).

2 70-character task description (TIDSC). The labels on lines 2 through 5 are only
for ease in task modification. If the line contains a colon (:), the system
ignores everything up to that colon and interprets the remaining text
(excluding leading blanks) as your input.

3 lO-character task security code (TISEC). If TISEC is blank, this task is
available to all users. If this field is not blank, users can only execute this
task if they are members of a group with the specified security code.

4 lO-character task type (TITYP). This field reads MASTER if EDL is running in
a network and if the task is one that should only be run on the master host;
otherwise, the field is blank. Even if blank, MENUMOD reserves line 4 of the
task image for the task type.

5 lO-character task commands (TCCMD) used to invoke the procedure. Each
command must be separated by at least two spaces.

6+ Subsequent lines list task processes (TP records) such as OVCAPS, eCL
PROCS, task menus or tasks, or task parameter values (TV records). These
two records are differentiated by the first two letters of the line (excluding
leading blanks). Task processes require a lO-character process type (TPTYP)
and lO-character process name (TPNAM); optionally, they can also include a
lO-character file name (TPFNA) and lO-character user name (TPFUN).

Revision A Customizing the Message and Task Database 2·3

Modifying a Task Menu

For example, if you chose to modify the task for retrieving ICEM DDN data
(RETDDN), MENUMOD would extract and display the image in figure 2-1.

CAUTION

nCTnn .. 1
nLluun

DESCRIPTION: RETRIEVE ICEMDDN DATA
SECURITY CATEGORY:
TYPE (MASTER OR BLANK)
COMMANDS: RETDDN
PROCESS: OVCAP
PARAMETER: ADT
PARAMETER: ADT
PARAMETER: SELECT
PARAMETER: INTENT
PROCESS: OVCAP

XRETREV
CONSTANT
CONSTANT
CONSTANT
CONSTANT

XGETAPN

DRAWING
GLOBAL DRAWING
LOCAL
W

Figure 2-1. Using MENU MOD to Extract a Task

If your modification of a standard EDL task significantly changes its function, you
might encounter compatibilty problems on subsequent releases of EDL or ICEM
applications. Instead, we recommend that you create new tasks to satisfy your
requirements; refer to "Adding a New Task" in the examples at this end of this
chapter.

Modifying a Task Menu

When you select 3. MODIFY OR ADD A TASK MENU from the Interactive Menu
Ivlodification menu or enter the TlviENUlvl0D command, IviENUlviOD extracts a task
menu in the following format:

task. menu name
task. menu header
task. menu text task. name

Because the format of a task menu is simpler than that of a task, there are no labels.

Line Description

1 lO-character task menu name (TMMNA).

2 70-character task menu header (MITTL).

3 + Each subsequent line contains two fields:

• 40-character menu text (TMTXT).

• lO-character task name (TMTNA) separated from the menu text by at least
two spaces.

NOTE

Be sure to use the actual task name here, not the name of the command
that calls the task.

2-4 EDL Customization for NOS Revision A

I

~-

I

~-

Modifying an Option Menu

For example, if you chose to modify the USER task menu, ~ENUMOD would extract
and display the image shown in figure 2-2.

USER
USER TASKS
EXIT EXIT-TASK
ICEM APPLICATIONS ICEM
RETRIEVE ENGINEERING DATA RETRIEVE
TRANSFER ENGINEERING DATA TRANSFER
RELEASE ENGINEERING DATA RELEASE
FILE MANAGEMENT FIMGMT
UPDATE EDl FOR ENGINEERING DATA UPDATE
USER PROFILE USERINFO
REPORTS REPORTS
JOB QUEUE CONTROL QUEUE
PART STRUCTURE MANAGEMENT STRUCTURE

Figure 2-2. Using MENUMOD to Extract a Task Menu

Modifying an Option Menu

When you select 4. MODIFY OR ADD AN OPTION MENU from the Interactive Menu
Modification menu or enter the OMENUMOD command, MENUMOD extracts an option
menu in the following format:

option menu name
option menu header
option menu text option keyword option value

The option menu extraction format is much like the task menu format.

Line Description

1 lO-character option menu name (OMMNA).

2 70-character option menu header (MITTL).

3+ Each subsequent line contains menu detail consisting of three different fields:

• 40-character option menu text (OMTXT).

• lO-character option keyword(s) (OKKEY) separated from the menu text by
at least two spaces. If there are multiple keywords, separate them by
commas, just as they appear on the menu display.

• 40-character option value (OVVAL) separated from the option keyword(s) by
at least two spaces.

For example, if you chose to modify the option menu for retrieval methods (EXTRAC),
MENUMOD would extract and display the image shown in figure 2-3.

Revision A Customizing the Message and Task Database 2·5

Modifying a Message

EXTRAC
SELECT DATA RETRIEVAL METHOD

EXIT
DATA NAME

CREATOR OF THE DATA
DATA TITLE KEYWORD
DESCRIPTOR
STATUS
ENGINEERING CATEGORY
APPLICATION DATA TYPE
FILE INFORMATION
OWNER OF THE FILE
PART INFORMATION
DATES

E,EXIT EXIT
N,NAME NAME
C,CREATOR CRE
T,TITLE TITLE
0, DESCRIPTOR DESC
S,STATUS STA
CAT EDT
ADT ADT
F,FILE FILE
O,OWNER OWNER
P,PART PART
DATES DATE

Figure 2-3. Using MENUMOD to Extract an Option Menu

Modifying a Message

When you select 5. MODIFY A MESSAGE from the Interactive Menu Modification
menu or enter the MESSAGEMOD command, MENUMOD extracts a message in the
following format:

message name message type
message text
message help

Line Description

1 1 O~character message name CMIM:N A) followed by the 10-character message
type (MITYP). The message type can be PROMPT, ERROR, or MESSAGE.

2 70-character message text (MITTL).

3 + Subsequent 70-character lines of text (MHTXT) specify HELP text for the
message.

For example, if you chose to modify the EXTNAMI prompt, MENUMOD would extract
and display the image shown in figure 2-4.

EXTNAM1 PROMPT
ENTER THE DATA NAME OR CR TO RETURN
EDL WILL GENERATE A LIST OF ALL DATA NAMES WHICH BEGIN WITH THE
CHARACTERS YOU ENTER. FOR EXAMPLE, IF YOU. ENTER "ENGINE", EDL WILL
INCLUDE DATA NAMES "ENGINE-HOUSING" AND "ENGINEER".
A CARRIAGE RETURN WILL RETURN TO THE RETRIEVAL METHODS MENU.

Figure 2-4. Using MENU MOD to Extract a Message

2-6 EDL Customization for NOS Revision A

',--_/

Using MASSMOn for Batch Modifications

Using MASSMOD for Batch Modifications

MENUMOD uses a local file named MASSMOn to record the images of your
interactive Menu Database modifications. A one-line header ····type identifies the
image as a TASK, OMENU, TMENU, or MESSAGE modification. You can save
MASSMOD in EDL under the application data type MDB Images. This allows you to
re-apply your customizations of the Menu Database when you upgrade to a new version
of EDL, or allows you to apply the same changes to other copies of the Menu Database
running on your system.

The MASSMOD command functions in the same manner as the MENUMGMT
command. When you select 6. BATCH MENU MODIFICATION from the Interactive
Menu Modification menu or enter the MASSMOD command, you are asked to select the
file of images from the standard retrieval list. As MASSMOD executes, it displays the
header lines on your terminal.

The following steps describe the procedures involved in batch modification using
MASSMOD.

1. EDL must know about the image file. Use the ADDINFO command to update the
EDL database using the application data type: EDL MDB IMAGES.

2. Enter the MASSMOD command.

3. Select the image data from the standard retrieval list. EDL displays the ····type
header for each image processed. When complete, EDL returns to the previous task
menu.

Revision A Customizing the Message and Task Database 2·7

Keeping Track of Your Changes

Keeping Track of Your Changes
Mer modifying the Message and Task Database you might want to generate a new
EDLLIST file to reflect your changes. The following example shows how to add the
EDLLIST generator to your EDL system.

1. The source for the EDLLIST generator is supplied to you in the file MOUT.
Compile this file using the following commands:

GET,MOUT.
FTN5,I=MOUT,B=MOUTB,L=MOUTL.

The compiled routine is put on the file MOUTB.

2. Create and save the following OVCAP:

OVCAP.
SUBROUTINE XMOUT
CALL MOUT
RETURN
END

For this example, the file is saved on OVMOUT.

3. Put the MOUT routine (on file MOUTB) into a library using the following
command:

LIBGEN,F=MOUTB,P=LIBR

4. Enter the following statement to create a new EDL program:

BEGIN,LOADEDL,E125PRC,OVMOUT,LIBR

This generates the new file E125ABS.

5. Create a task to generate the EDLLIST file using TASKMOD. This example uses
the existing task called STACK.

The original task looks like this:

STACK
DESCRIPTION: DISPLAY THE EDL EXECUTION STACK
SECURITY CATEGORY:
TYPE (MASTER OR BLANK):
COMMANDS: STACK
PROCESS: OVCAP XDISSTK

Use your editor to modify the task as follows:

EDLLIST
DESCRIPTION: LIST THE EDL MENU DATABASE
SECURITY CATEGORY: SYSADMIN
TYPE (MASTER OR BLANK):
COMMANDS: EDLLIST

. PROCESS: OVCAP XMOUT

6. When you execute the EDLLIST task it generates a local file called EDLLIS. The
file is called EDLLIS to avoid confusion with the EDLLIST file supplied with the
EDL release.

2·8 EDL Customization for NOS Revision A

\

\...., ..

Examples
The following examples illustrate the use of MENUMOD tasks in database
customization.

Changing a Prompt

Examples

You might want to change the wording of an EDL prompt to satisfy site-specific needs.
For example, if your site uses the term Engineering Change Notice (or ECN) rather
than Engineering Change Order (ECO) as used in EDL Part Structure, you would take
the following steps to change it:

1. Select 5. MODIFY A MESSAGE from the Interactive Menu Modification menu, or
enter the MESSAGEMOD command from any task menu.

2. When prompted for the name of the message to modify, enter the message name
PSADD3. In response, the system invokes your editor and displays the following
file:

PSADD4 PROMPT
ENTER THE ECO FOR THE REVISION OR CR TO RETURN
ENTER THE ENGINEERING CHANGE ORDER IDENTIFIER WHICH CAUSES THIS
PART REVISION TO BE CREATED. THIS FIELD IS REQUIRED.

3. Use your editor to change ECO to ECN, and the phrase ENGINEERING CHANGE
ORDER IDENTIFIER to ENGINEERING CHANGE NUMBER. The resulting file
looks like this:

PSADD4 PROMPT
ENTER THE ECN FOR THE REVISION OR CR TO RETURN
ENTER THE ENGINEERING CHANGE NUMBER WHICH CAUSES THIS
PART REVISION TO BE CREATED. THIS FIELD IS REQUIRED.

4. Mter you exit your editor, the system asks:

DO YOU WISH TO CONTINUE WITH THIS MESSAGE MODIFICATION?

Your changes are added to the Menu Database only if you enter YES.

Removing a Prompt from a Task

If you are not running EDL in a network, you might not want to be prompted for a
host name every time you update EDL with new data. The following example shows
you how to remove that prompt.

1. Select 2. MODIFY OR ADD A TASK from the Interactive Menu Modification menu,
or enter the TASKMOD command from any task menu.

Revision A Customizing the Message and Task Database 2·9

Adding aNew Task

2. When prompted for the name of the task to modify, enter the task name
ADDINFO. In response, the system invokes your editor and displays the following
file:

DESCRIPTION: ADD EDl INFORMATION FOR ENGINEERING DATA
SECURITY CATEGORY:
TYPE (MASTER OR BLANK):
COMMANDS: ADDINFO
PROCESS: OVCAP XUPDADD

3. Use your editor to add a task parameter with the same name as the prompt you
want to remove, and a parameter type of NULL. The resulting file looks like this:

ADDINFO
DESCRIPTION: ADD EDL INFORMATION FOR ENGINEERING DATA
SECURITY CATEGORY:
TYPE (MASTER OR BLANK):
COMMANDS: ADDINFO
PROCESS: OVCAP XUPDADD
PARAMETER: UPADD3 NULL

4. After you exit your editor, the system displays the following prompt:

DO YOU WISH TO CONTINUE WITH THIS TASK MODIFICATION?

Your changes are added to the Menu Database only if you enter YES.

Adding a New Task

The TASKMOD task is used to modify or add a task. By modifying TASKMOD, you
can create a task that allows a user to look at the structure of a task, but not to
change it. The following steps describe how to implement this change.

1. Select 2. MODIFY OR ADD A TASK from the Interactive Menu Modification menu,
or enter the TASKMOD command from any task menu.

2. When prompted for the name of the task to modify, enter the task name
TASKMOD. In response, the system invokes your editor and displays the following
file:

TASK MOD
DESCRIPTION: MODIFY OR ADD AN EDL TASK
SECURITY CATEGORY: SYSADMIN
TYPE (MASTER OR BLANK)
COMMANDS: TASKMOD
PROCESS: OVCAP XDISTSK
PROCESS: CCl PROC EDIT
PARAMETER: EDITOR
PARAMETER: lFN
PROCESS: OVCAP

VARIABLE
VARIABLE

XADDTSK

EDITOR
EDITF

3. Use your editor to make the following changes:

a. Change the name and command from TASKMOD to TASKLOOK. By changing
the task name, you create a new task; the old task (TASKMOD) remains
unchanged.

2·10 EDL Customization for NOS Revision A

I

"'---

Adding a Task with an OVCAP

b. Remove the last OVCAP (ADDTSK), which is the one that actually performs the
update of the Menu Database.

The resulting file looks like this:

TASKLooK
DESCRIPTION: LOOK AT AN EDL TASK
SECURITY CATEGORY: SYSADMIN
TYPE (MASTER OR BLANK)
COMMANDS: TASK LOOK
PROCESS: OVCAP XDISTSK
PROCESS: CCL PROC EDIT
PARAMETER: EDITOR
PARAMETER: LFN

VARIABLE
VARIABLE

EDITOR
EDITF

4. Mter you exit your editor, EDL asks you:

DO YOU WISH TO CONTINUE WITH THIS TASK MODIFICATION?

Your changes are added to the Menu Database only if you enter YES.

Adding a Task with an OVCAP

A slightly more complex task might involve adding a user defined OVCAP.2 For
example, to add a task that would list all EDL IDs and their names sorted by last
name, you would take the following steps.

NOTE

Before beginning this example, make sure that you first back up the current E125ABS.

1. Write the OVCAP and include the UI COMMON block from file EDLCOM, as
shown in the following example.

C
C
C
C

OVCAP.
SUBROUTINE LISTID

THIS ROUTINE LISTS ALL EDL USER ID'S SORTED BY THE USER'S
LAST NAME

COMMON / UI / UIUSR ,UIPWD ,UISTA ,UIFIN ,UIMIN
*,UILNA ,UISTR ,UICTY ,UIPHO ,UITTL ,UIDPT ,UICMD
*,UIDELD ,UIDELS ,UIEDT

CHARACTER UIUSR *10,UIPWD *10,UISTA *10,UIFIN *10
*,UIMIN *10,UILNA *10,UISTR *70,UICTY *70,UIPHO *20
*,UITTL *40,UIDPT *20,UICMD *10,UIDELD *1,UIDELS *1,UIEDT *10

LOGICAL OK
CALL IBFUI1(OK)

100 IF(OK)THEN
PRINT*,UIUSR,UILNA,UIFIN,UIMIN
CALL IBNUI1(OK)

2. OVCAPS are further explained in chapter 3 of this manual.

Revision A Customizing the Message and Task Database 2·11

Adding a Task with an OVCAP

GO TO 100
ENDIF

RETURN
END

2. Run the procedure LOADEDL to insert your routine into the EDL program. For
example, if you placed the OVCAP on file LISTID, you would type:

BEGIN,LOADEDL,E125PRC,LISTID

This procedure is described in greater detail in the example "Adding a Task to
EDL" in chapter 3.

3. Select 2. MODIFY OR ADD A TASK from the Interactive Menu Modification menu,
or enter the TASKMOD command from any task menu.

4. When prompted for the name of the task to modify, enter an existing task name;
for example, RETDDN. In response, the system invokes your editor and displays the
following file:

RETDDN
DESCRIPTION: RETRIEVE ICEMDDN DATA
SECURITY CATEGORY:
TYPE (MASTER OR BLANK)
COMMANDS: RETDDN
PROCESS: OVCAP XRETREV
PARAMETER: ADT CONSTANT DRAWING
PARAMETER: ADT CONSTANT GLOBAL DRAWING
PARAMETER: SELECT CONSTANT LOCAL
PARAMETER: INTENT CONSTANT W
PROCESS: OVCAP XGETAPN

5. Use your editor to change the task name and remove all but the first OVCAP,
which you rename LISTID. You would probably also want to set the security
category to at least ADMIN. The resulting file looks like this:

LISTID
DESCRIPTION: LIST EDL ID'S
SECURITY CATEGORY: ADMIN
TYPE (MASTER OR BLANK)
COMMANDS: LISTID
PROCESS: OVCAP LISTID

6. Mter you exit your editor, EDL asks you:

DO YOU WISH TO CONTINUE WITH THIS MESSAGE MODIFICATION?

Your changes are added to the Menu patabase only if you enter YES.

2·12 EDL Customization for NOS Revision A

I
'"",

(
'-

Manipulating the Engineering Data
Database
Customizing EDL Using Engineering Data Records .

Ordering Your Changes
Setting Engineering Categories and Standard Attributes

Records Updated by EDL.

EDL Global Variables ..

U sing FORTRAN Interface Modules
Creating an OVCAP
U sing Information Base (IB) Routines

Declaring Variables . .
Obtaining Records . . .

Using IBO Routines
U sing Access Paths .
Obtaining Approximate Records (IBA)
Obtaining Equivalent Records (lBE)
Obtaining the First Record (lBF) . . .
Obtaining the Next Record (IBN) . . .
Using Cosets to Obtain Record (lBF - IBN) .

Storing Records (lBS) . .
Modifying Records (IBM) ..
Deleting Records (lBD) . . .

Using Standard EDL Routines
Error and Status Messages Routines
User Input Routines.
Utility Routines
Additional EDL Subroutines

Examples
Adding a Task to EDL
Creating a Site-Defined Retrieval

Building Routine EXTSIT .. .
Building Routine EXFSIT .. .
Updating the Message and Task Database

3

3-1
3-2
3-2

3-3

3-5

3-6
3-6
3-6
3-7
3-7
3-8
3-8
3-9
3-9

3-10
3-10
3-11
3-11
3-11
3-11
3-11
3-12
3-14
3-16
3-21

3-22
3-22
3-24
3-25
3-34
3-37

"'---

Manipulating the Engineering Data
Database 3

This chapter discusses customizations to EDL that involve the Engineering Data
Database (DDB). This database contains all the information about EDL users,
applications, files, and data. In addition to the changes made to the Engineering Data
Database in the course of normal EDL operation, you can use Query Update to update
certain DDB records. You can also write customized EDL code to read and manipulate
the data contained in these records.

Customizing EDL Using Engineering Data Records

This section describes the DDB record types that you can update with Query Update to
customize EDL. Other record types in the Engineering Data Database are updated by
the system when users run EDL; refer to "Records Updated by EDL" later in this
chapter for a description of these records. Refer to appendix A for a complete
description of EDL record types.

Record
Name

AC

AI

AT

CL

EA

ET

Description

Application configuration records define parameters to be passed to an
application depending on the terminal's configuration.

Application information records define the application systems under EDL
and indicates which version is active.

Application data type records describe the types of data managed by EDL.

Communication link records specify RHF connections.

Engineering attribute records specify the standard attributes your users
will be prompted for when updating EDL information for engineering data.

Engineering category records define the engineering categories that you
establish at your site. Engineering categories provide a way to describe
and separate your engineering data based on how it is used.

FT File type records describe the types of files managed by EDL.

HI Host information records specify the host family codes of computer systems
that contain data you want to record in EDL.

RT Release transfer records specify allowable transfers during the engineering
data release process.

TT Transfer and translation task records specify allowable data transfers and
the tasks used to perform the transfer.

UM Units of measure records define valid codes or abbreviations for the units
of measure field in PS records.

Revision A Manipulating the Engineering Data Database 3·1

Ordering Your Changes

Ordering Your Changes

The definition of the database imposes constraints on the records and requires that you
make your changes in a definite order.' Appendix A contains the database schemata for
EDL; these schema diagrams specify the record interdependencies that control the order
of changes. You must be aware of these database constraints and record
interdependencies before making changes that involve the Engineering Data Database.
The order for adding entries is as follows:

AI
AC
ET
EA
FT
AT
TT
RT
HI
CL
UM

Reverse the order for this list when deleting entries.

Setting Engineering Categories and Standard Attributes

Before data can be added to EDL, it must have an engineering category code. This
code is stored in the ETEDT field of the engineering category (ET) record. These
20-character engineering category codes are completely site-defined. Their purpose is to
enhance the description and retrieval of engineering data. EDL and its application
programs function the same regardless of the category assigned to the data.

You can also set up data descriptors to aid in describing and retrieving the data. A
descriptor is a pair of character strings associated to the data, a 20-character attribute
name and a 40-character attribute value. For example, a user may ask for attribute
name = PROJECT CODE and attribute value = TII0 to retrieve all permitted data

. for the TII0 project.

You can associate one or more standard attribute names to an engineering category.
The system can then prompt your users to enter values for each of these attributes
when they update EDL data descriptors. Setting up standard attributes does not restrict
users to just those standards. In special cases, users may want to enter a descriptor
with a nonstandard attribute name. In general, however, users should be encouraged to
use the standard attribute prompting feature and to take some care to use consistent
attribute values. Attributes are a means of keeping track of data; your operational
policies are the only means of keeping track of attributes.

The following example shows how you can set up engineering categories and standard
attributes by using Query Update to update the ET and EA records in the database.

STORE SETTING ETEDT
$ $
$EDL SYSTEM$
$PREPRODUCTION$
$PRODUCTION$
$TOOLING$
-END

3-2 EDL Customization for NOS Revision A

"---

STORE SETTING EAEDT EAATR
$PREPRODUCTION$ $PROJECT CODES
$PRODUCTION$ $PRODUCT LINE$
$TooLING$ $TooL TYPE$
-END

Records Updated by EDL

Mter these records have been added, the system automatically prompts the user for the
corresponding attributes (ATR) of the specified engineering category. For example, if
the user specified the engineering category PRODUCTION, EDL prompts for a
descriptor value for the attribute name PRODUCT LINE. These trivial categories and
attributes are installed as part of standard EDL and should be adapted to fit the
environment at your site.

Records Updated by EDL

The DDB records described in this section are updated by the system in the course of
normal EDL usage. Although you cannot directly update these records, you can write
customized code to read and manipulate the data they contain. You can also use Query
Update to invoke several report tasks that produce listings of the contents of these
records.

Record
Name

DD

DF

DI

DR

DS

FD

FI

FM

FP

GI

GM

GP

Revision A

Description

Data descriptor records establish attribute/value pairs for EDL data.

Default file records specify files that must automatically attach when a
user enters the specified application.

Engineering data information records establish data managed by EDL.

Data required records relate data sets that must be available to complete
the current data.

Data source records relate data sets from which the current data was
derived.

Family definitjon records relate family codes and engineering data.

File information records establish files to be managed by EDL.

Family information records associate family codes to part numbers.

File permit records are produced by Group Permit and User Permit
records.

Group information records define groups of EDL users.

Group member records establish members for previously defined EDL
groups.

Group permit records establish file permits for groups.

Manipulating the Engineering Data Database 3-3

Records Updated by EDL

Record
Name

GS

HI

ME

ML

MN

PD

PF

PI

PP

PR

PS

PV

RA

RP

RR

RS

RU

UC

UI

UP

UV

VI

Description

Group security authorization records specify task category authorization for
,.... 1...,._,.. oj. vup UJ.CUJ.UCJ. i:).

Host information records.

Message records define messages sent by a user.

Message line records define user message text.

Message instance records define users receiving messages and indicate
whether the message has been read.

Parts data records relate engineering data and part revisions.

Parts family records relate part numbers to family codes.

Parts ~nformation records establish EDL part numbers.

Pending permit records contain file access information and issue operating
system permits when the owner of the file logs into EDL.

Part revision records define revision levels for each part.

Part structure records define the structure of part assemblies.

Parts vendor records relate part numbers and vendor codes.

Release authorization records establish release information for engineering
data sets.

Release procedure records establish the site-defined release procedures for
engineering data.

Review responsibility records define reviewers and review order for each
release procedure.

Release signature records establish the stamp that each reviewer puts on
data after completing review.

Releaser records define releasers for each release procedure.

User configuration records define valid terminal configuration attribute
states.

User information records establish EDL users and all relevant information
about them.

User permit records establish individual user file permits.

User validation records track which users are validated to use EDL on
each host.

Vendor information records associate vendor names and vendor codes to
EDL part numbers.

3-4 EDL Customization for NOS Revision A

I
\

" ~.

EDL Global Variables

EDL Global Variables
A global variable is a mechanism that EDL uses to pass values between subprograms.
Each variable is identified with a lO-character name and can contain an SO-character
value. You set the value of a variable using the PUTVAR subroutine. The value of the
global variable stays in effect until the variable is redefined or EDL ends. Refer to
"Utility Routines" later in this chapter for additional information about the PUTVAR
subroutine.

The following table lists the global variables that EDL defines at startup.

Variable Description

USR EDL ID of the running user

HOST Host code of the computer system on which the user is running

AUN User name of the EDL absolute (El25ABS)

MDB File name of the Message and Task Database

DDB File name of the Engineering Data Database

MUN User name of the Message and Task Database

DUN User name of the Engineering Data Database

Other global variables are s'et by data retrieval and transfer subprograms; these are
listed in the following table.

Variable Description

EDN

PFN

UN

NAMEl

Internal engineering data number (EDN) of the last data selected to be
retrieved or transferred

Path file name of the last data selected

Operating system user name

70-character data name

SHEET Secondary ID

I Name of a file containing the data name and secondary ID

PFN2 Path file name of the destination file

UN2 Operating system user name of the creator of the destination file

RENAME Y if the user wants to give the transferred data a different name,
otherwise N

NAMEl2 70 characters of the new data name

SHEET2 New secondary ID

J Name of a file containing the new data name and secondary ID

Other parts of the EDL system use other global variables to communicate data between
subprograms and procedures.

Revision A Manipulating the Engineering Data Database 3-5

Using FORTRAN Interface Modules

Using FORTRAN Interface Modules
This section describes the interface modules you can call from your own OVCAPS.
OVCAPS are FORTRAN programs called by the task protocol of an EDL task to
perform the following functions:

• Make calls to display messages, prompts, or option menus

• Store data in the Engineering Database

• Manipulate existing data in the Engineering Database

Creating an OVCAP

You must create an OVCAP that specifies the name of the routine you want to add.
For example, if you were adding a routine call MYROUT, the relevant OVCAP would
appear as follows:

OVCAP.
SUBROUTINE XMYROUT
CALL MYROUT
RETURN
END

This procedure is illustrated in the example "Adding a Task to EDL" at the end of this
chapter.

Using Information Base (IB) Routines

Information Base routines allow EDL overlay capsules to perform database accesses and
updates at . the record level. All IE routines communicate with the EDL databases via
COMMON blocks. For example, you need to take the following steps before storing a
file information (FI) record:

1. Copy the FI COMMON block into your routine from the file EDLCOM.

2. Set all values (FIFIL, FIPFN, FIFUN, FIUSR, FISTA, and FIVSN).

3. Call the appropriate IB routine for storing the FI record: IBSFI.

IB routines can be grouped according to their function as follows:

IBSxx Store record xx

IBMxx Modify record xx

IBDxx Delete record xx

IBOxxn Obtain record xx via access path xxn

IBAxxn (Approximate) Obtain record xx or next higher via access path xxn

IBExxn (Equivalent) Obtain the next duplicate record xx via access path xx

IBFxxn Obtain the first xx record ordered by access path xxn

IBNxxn Obtain the next xx record ordered by access path xxn

3·6 EDL Customization for NOS Revision A

IBFxxyy

IBNxxyy

Obtain the first member within coset xxyy

Obtain the next member within coset xxyy

Using Information Base (IB) Routines

Replace the xx value in your IB calls with the 2-character name of the database table
you want to refer to. Replace the nand yy values with the names of the access path or
coset. Appendix B contains detailed definition of the EDL IB routines.

Additional IB routines with specific functions include the following:

IBCCMT

IBCDRP

Commit a concurrency parcel

Drop a concurrency parcel

All IB routines return a logical argument STATOK that is TRUE if the operation
succeeded, FALSE if it failed. .

Declaring Variables

If you call an IB routine, you must declare the variables used to contain the data
fields managed by that module. The file EDLCOM contains a set of FORTRAN
COMMON decks that simplify variable declaration.

• There is a file for each type of data record. Each file is named with the 2-character
name of the record. You must include the appropriate file for every record· you
reference.

o There is a variable for every data field of the record. The variables are allocated to
a labeled COMMON with the same name as the 2-character record name. Any of
your own code that accesses the database variables, whether it calls an IB module
or not, must include the appropriate COMMON deck.

When you retrieve data, you only need to set those variables that make up the
retrieval key. For example, if you retrieve a user information (UI) record, you need
only set the UIUSR field. Mter you call IBOUIO, all of the other fields in the UI
common block will be filled.

The following sections of this chapter describe the use of IB routines in obtaining,
storing, modifying, and deleting records.

Obtaining Records

You cannot unconditionally add a record to the EDL database. You must first attempt
to obtain a record with the desired key fields, then call either an IBS routine if the
record doesn't exist, or an IBM routine if the record does exist. For example, if you
want to associate DIEDN number 27 to PROJECT 1031518 via the data description
(DD) record, you would take the following steps: -

1. Set DDEDN to 27 and DDATR to PROJECT.

Revision A Manipulating the Engineering Data Database 3·7

Using Information Base (IB) Routines

2. Call IBODD3 to determine if another PROJECT is already assigned to DDEDN
number 27.

a. If a PROJECT already exists for record 27, the logical status code (STATOK)
will be TRUE.

1) Set DDVAL to 1031518.

2) Call IBMDD to modify the existing data description.

b. If DDEDN number 27 does not already have a PROJECT, STATOK is returned
as FALSE.

1) Set DDVAL to 1031518.

2) Call IBSDD to store the new data description.

Five types of IB routines let you obtain records from the database: lBO, IBA, IBE,
IBF, and IBN. Each of these obtain routines accesses records differently. The following
paragraphs describe these obtain routines in detail.

Using IBO Routines

The record retrieved by an IBO routine is the first record in the database that meets
the retrieval criteria. If you continue to call an IBO using the same key, you will
continue to get the same record. Instead, you should use an IBE routine to move
through the database. Access path IBOxxO is always the primary key for the record.
An IBOxxO call retrieves only that record in the database that meets the criteria set
by the xxO path; therefore, an IBExxO will always return a STATOK value of FALSE.

Other access paths may retrieve more than one dataset, depending on whether those
fields have been constrained to be uniqUe. For example, you could associate the data in
the preceding example to more than one project, and retrieve each by calling IBODD3
followed by IBEDD3 until STATOK is returned as FALSE.

An example of a secondary, but unique, key is made up by the DIFIL, DINAM, and
DISID fields. The schema charts in appendix A indicate unique fields by the solid
arrow lines above them. These arrows (called "uniqueness constraints") mean that the
fields taken together form a unique key for a record, as shown in figure 3-1.

MI

Message
Info

MIMNA
Message
Name

10

I

MITYP
Message
Type

10

MISTA MITTL
Status Title MIO=MNA

10 70

Figure 3-1. Unique Keys are Identified by the Solid Arrow Line

Using Access Paths

Each access path retrieves records via a different key. For example, if you set DIUSR
equal to JONES and called IBODI6, you would obtain the first data record in the
database where the DIUSR field is equal to JONES. To obtain further records related
to JONES, you would use the equivalent call: IBEDI6.

3-8 EDL Customization for NOS Revision A

\

"---

(
'''--

(
"'---

Using Information Base (lB) Routines

Refer to schema charts in appendix A for record access paths. In order to use an
access path, you must set each field used in the access path to the desired value. If
you do not set the value of a field, you will most likely be using an old value, and you
will not get the results you expect. On the schema chart, an access path containing
fields in parentheses indicates that these fields need not be preset. The fields in
parentheses are there to indicate the order in which duplicate records along the access
path are sorted; the system ignores any preset values for these fields.

Obtaining Approximate Records ([BA)

IBA routines obtain the specified record or the next higher record via access path xxn.
You should use IBA routines to initialize database retrievals at a given position in the
database.

For example, you could call IBADIl to retrieve data by data name.

1. Enter a partial data name.

2. Set DINAM to that value.

3. Call IBADIl.

The IBA routine merely finds the record that begins with, or is higher alphabetically
than, the DINAM field. Your program must go on to determine whether or not the
returned record meets the entered criteria. The program should next call an IBN
routine to get the next record in the database, and again check against the entered
criteria. In this example, you could not use an IBE routine because IBE, like lBO,
looks for exact matches against the key values.

A loop to print the names of all pieces of data in the database that begin with the
characters PA would look like this:

C
C STATOK IS A LOGICAL VARIABLE
C

CALL IBADI1(STATOK)
100 IF(STATOK)THEN

IF(DINAM(1:2).EQ.'PA')THEN
PRINT*,DINAM
CALL IBNDI1(STATOK)
GO TO 100

ENDIF
ENDIF

Obtaining Equivalent Records ([BE)

IBE routines obtain the next duplicate record via access path xxn. You call IBE
routines to continue retrieving records along an access path. An IBE call differs from
an IBN call in that IBE stops returning records when they no longer match the desired
key. IBN routines continue to return records along an access path until there are no
more records in the database.

For example, you could start a loop with an IBO call and continue with calls to IBE
routines to obtain a group of records with like keys.

Revision A Manipulating the Engineering Data Database 3·9

Using Information Base (IB) Routines

C
C USR IS THE EOLID OF THE USER WHOSE DATA WE ARE LISTING
C STATOK IS A LOGICAL VARIABLE
C

DIUSR=USR
CALL IBODI6(STATOK)

100 IF(STATOK)THEN
PRINT*,DINAM
CALL IBEDI6(STATOK)
GO TO 100

ENDIF

Obtaining the First Record (IBF)

IBF routines obtain the first record ordered by access path xxn. You should use these
routines only when you want to get the first record in the database, sorted on a
particular access path. IBF routines ignore all preset fields.

Obtaining the Next Record (IBN)

IBN routines obtain the next record ordered by access path xxn. An IBN call is similar
to an IBF in that it ignores any preset fields, and returns the next record in the .
database, sorted by the specified access path.

You will probably never use an IBN call in conjunction with an IBO. Using an IBF
routine in a loop with an IBN call gives you all records in the database. For example,
a loop to list the names and EDL IDs of all users validated on the EDL database
sorted by EDL ID would look like the following example.

C
C STATOK IS A LOGICAL VARIABLE
C

CALL IBFUIO(STATOK)
100 IF(STATOK)THEN

PRINT*,UIUSR,UILNA
CALL IBNUIO(STATOK)
GO TO 100

ENDIF

The following loop lists the names and EDL IDs of all users validated on the EDL
database sorted by last name. (The only difference here is the use of access path un
instead of UID.)

C
C STATOK IS A LOGICAL VARIABLE
C

CALL IBFUI1(STATOK)
100 IF(STATOK)THEN

PRINT*,UIUSR,UILNA
CALL IBNUI1(STATOK)
GO TO 100

ENDIF

3-10 EDL Customization for NOS Revision A

Using Standard EDL Routines

Using 90sets to Obtain Records (lBF - IBN)

Cosets work in the same manner as IBOxxn and IBExxn. The only difference is that
co sets work implicitly with the current occurrence of the owner (xx) record. In general,
you may find it less confusing to use IBO - IBE loops.

IBFxxyy

IBNxxyy

Obtains the first member within coset xxyy.

Obtains the next member within coset xxyy.

Storing Records (IBS)

To store records, set the variables that match the fields in the record's COMMON
block with legal values, and call the IBS routine for the record. If the store was
successful, the status code (STATOK) is returned as logical TRUE. An IBS routine
returns a FALSE status code if a record with the same key field(s) already exists in
the database, or if a necessary setting is not made. A call to ERRIB provides an
explanation when STATOK is returned as FALSE.

NOTE

When storing new records, you need to be aware of owner-member relationships. For
example, a data information (DI) record cannot be added until its corresponding file
information (FI) record has been added. This is for reasons of database integrity; an FI
record can exist without data having yet been put on it, but data cannot exist without
a file. Refer to the database schemata in appendix A to determine owner-member
relationships.

Modifying Records (IBM)

To modify an existing EDL record, call an IBM routine after first setting all fields. An
IBM routine will fail if a record with corresponding key fields does not exist. You
cannot use an IBM routine if it changes an identifier for a record; use an IBS routine
instead.

Deleting Records (lBD)

To delete records, first obtain the record then call the appropriate IBD routine. Only
the primary key fields need be set for this call. Before deleting a record you need to
be aware of the owner-coset relationships. For example, in order to delete a user
information (UI) record, you must first delete all of that user's data information (DI)
records. The user's DI records are those in which the DIUSR field is the same as the
UIUSR field of the UI record you are deleting. The database schemata in appendix A
specify all owner-coset relationships.

Using Standard EDL Routines

This section of chapter 3 describes standard EDL subroutines that you can include in
your OVCAPS.

• Error and status message routines

• User input routines

Revision A Manipulating the Engineering Data Database 3-11

Using Standard EDL Routines

• Miscellaneous utility routines

Appendix C contains a description of the standard EDL subroutines.

Error and Status Messages Routines

The following subroutines allow you to display error and status messages.

SUBROUTINE ERR (MNA)

Displays an error message on the user's terminal. If no error message with the given
message name is found in the menu database, the system displays the following
message:

EDlDOOl EDl INTERNAL ERROR CODE sys

Call Parameters:

Argument Type I/O Description

MNA C*(*) I Message name of the error message

SUBROUTINE ERRSTR (MNA,MSG)

Returns a character string containing an external error code and message. If no error
message with the given system code is found in the menu database, the system
displays the following message:

EDlDOOO EDl INTERNAL ERROR CODE sys

Call Parameters:

Argument

MNA
MSG

Type

C*(*)
C*(*)

I/O

I
o

Description

Message name of the error
External error message string

CHARACTER*(*) FUNCTION EDBE (NERR)

Returns an EDL internal error code corresponding to the IMF diagnostic for the error
that occurred on the last database operation. The value of the function may be used as
the error code parameter on a call to the ERR or ERRSTR routine.

Call Parameters:

Argument Type I/O Description

NERR I I Diagnostic number (usually = 1)

3·12 EDL Customization for NOS Revision A

I
\ "- ..• -

Using Standard EDL Routines

SUBROUTINE ERRIB

Prints an error message corresponding to the IMF diagnostic for the error which
occurred on the last database operation.

No parameters.

Example:

CALL IBSDI (OK)
IF (.NOT. OK) THEN

CALL ERRIB
ENDIF

SUBROUTINE MSG (MNA)

Displays a message on the user's terminal. If MNA is not the message name of a valid
message in the database, the system displays an error message.

Call Parameters:

Argument Type I/O Description

MNA C*(*) I Message name of desired message

SUBROUTINE MSGSTR (MNA,MSG)

Returns the message text string. If MNA is not a valid message name, the system
returns an error message.

Call Parameters:

Argument

MNA
MSG

Revision A

Type

C*(*)
C*(*)

I/O

I
o

Description

Menu name of desired message
Message text

Manipulating the Engineering Data Database 3-13

Using Standard EDL Routines

User Input Routines

You can include the following routines in your OVCAPS to control user input.

SUBROUTINE INP (OUTTXT ,ICH,HELPV)

Returns the user's input to the program. INP manages the EDL type-ahead buffer by
returning only a single delimited response per call, and by issuing a read request when
the input buffer is empty. INP does not prompt the user; use the INTXT, INYN, or
ININT routine when you need to prompt the user before returning a response.

Call Parameters:

Argument Type

OUTTXT C*(*)

ICH I
HELPV L

1/0

0

0
0

Description

User-entered text returned to the calling program
response
N umber of characters in response
TRUE if the user requested help; otherwise FALSE

SUBROUTINE ININT (MNA,IRESP,OK)

Displays a prompt asking the user to enter an integer and returns the value entered.
If the parameter MNA is not the message name of a valid prompt in the menu
database, the system displays an error message instead of the prompt, but still requires
an integer response. If the user enters anything other than an integer or null carriage
return, the system displays an error message and asks the user to re-enter a response.

Call Parameters:

Argument Type

MNA C*(*)
IRESP I
OK L

1/0

I
0
0

Description

Message name for the prompt
Integer response from the user
TRUE if the user entered a positive integer; FALSE
if the user entered a null response

SUBROUTINE INTXT (MNA,TXT ,ICH)

Prompts the user and returns a text string to the calling program. MNA may be the
name of either a prompt or an option menu. If MNA is a prompt, the user enters a
text string. If MNA is an option menu, the system returns the first variable value of
the selected menu line to TXT.

ICH indicates the number of characters returned in TXT. If the user enters a null
carriage return, TXT is blanked and ICH is set to 0_. If the user enters a blank line,
ICH is set to 1. If MNA is not a valid prompt or option menu, the system displays an
error message but still requires a text response.

Call Parameters:

Argument

MNA
TXT
ICH

Type

C*(*)
C*(*)
I

1/0

I
o
o

3·14 EDL Customization for NOS

Description

Message name of the desired prompt
User response string
N umber of characters in the response

Revision A

(
"'-

Using Standard EDL Routines

SUBROUTINE INYN (MNA,YES)

Prompts the user for a YES or NO response. If MNA is not a valid prompt message,
the system displays an error message but still requires a Y or N response. Any
response other than a null carriage return, Y, YES, N, or NO causes the system to
display an error message and reprompt the user.

Call Parameters:

Argument

MNA
YES

Type

C*(*)
L

1/0

I
o

SUBROUTINE INOPT (MNA,OK)

Description

Message name of the desired prompt
TRUE if Y or YES; FALSE if N, NO, no answer, or
null return

Displays an option menu and prompts the user for a selection. If the user enters a null
response, the system selects the IIrst line of the menu by default. This routine
positions the option menu line record to the line selected by the user. After
successfully calling INOPT, you can call the OPTVAL routine to retrieve the variable
values corresponding to the selected option.

If the option menu has only one set of variables (parameters), you should use INTXT
instead of INOPT and OPTVAL to display the menu and return the single variable
value.

Call Parameters:

Argument

MNA
OK

Type

C*(*)
L

1/0

I
o

Description

N arne of the option menu to be displayed
TRUE if the user selected an option; FALSE if the
user entered a null return, or· if the menu could not
be displayed

SUBROUTINE OPTVAL (POS,VAL,OK)

Returns the value of the option variable associated with the option menu line selected
by the user. A successful call to INOPT is needed before you call OPTVAL. If no
option variable exists in the indicated position, VAL remains unchanged and OK is set
to FALSE.

Call Parameters:

Argument

POS
VAL
OK

Revision A

Type

I
C*(*)
L

1/0

I
o
o

Description

Option variable position
Value of the option variable
TRUE if a variable value was returned; FALSE if no
variable in the position

Manipulating the Engineering Data Database 3-15

Using Standard EDL Routines

Utility Routines

You can include the following EDL routines in your OVCAPS to perform a variety of
utility functions.

SUBROUTINE POPT

Pops and discards all remaining processes of the current task from the execution stack.
This routine inhibits processing of succeeding processes when an error or condition is
found that makes subsequent task processing meaningless. (No parameters.) For
example, if you design a task process that runs an OVCAP that passes parameters to a
procedure, an error condition in the OVCAP should call a POPT so that the procedure
is not run.

SUBROUTINE CSCRN

Clears the screen of a nonscrolling terminal or resets the number of lines available for
a scrolling terminal. (No parameters.)

SUBROUTINE PAUSE

Displays the message ENTER CR TO CONTINUE and waits' for a user response. The
system ignores any input other than a carriage return. You can use the PAUSE routine
to allow users time to read a screen of information before it is scrolled off by
subsequent information. (No parameters.)

SUBROUTINE COPYF (l,J)

Copies the contents of the source file (I) to the destination file (J) and erases file (I).

Call Parameters:

Argument

I
J

Type

I
I

1/0

I
o

Description

File number of the file to be copied from
File number of the file to be copied to

FUNCTION CUTNAM (NAME,SHEET)

Creates a field CUTNAM consisting of a partial drawing name and a sheet number
separated by a space, a slash, and a space (/). The calling program specifies the field
size of CUTNAM. For example, if CUTNAM is declared as 20 characters long in the
calling program, and the sheet name consists of 2 characters, the function returns the
first 15 characters of the drawing name, followed by , / ' and the sheet number. If the
drawing name does not have 15 significant characters, CUTNAM compresses the result.

Call Parameters:

Argument

NAME
CUTNAM
SHEET

Type

C*(*)
C*(*)
I

1/0

I
o
I

3-16 EDL Customization for NOS

Description

EDL data name
Partial drawing name / sheet #
Sheet number to be appended

Revision A

Using Standard EDL Routines

SUBROUTINE CUTSTR (lNSTR,REMSTR,LENGTH,ALIGN)

Cuts the input string (INSTR) at a blank so that the resulting input string is less than
the specified LENGTH. The remainder of the string is returned in REMSTR. ALIGN is
farthest position to left to check for a blank. If no blank is found, the line is split at
the specified length.

The following example illustrates the use of CUTSTR.

INSTR = 'THIS IS A SAMPLE OF AN INPUT STRING'
ALIGN = 10
LENGTH = 26
RESULTING INSTR = 'THIS IS A SAMPLE OF AN'
RESULTING REMSTR = 'INPUT STRING'

Call Parameters:

Argument

INSTR
REMSTR
LENGTH
ALIGN

Type

C*(*)
C*(*)
I
I

110

I/O
o
I
I

FUNCTION FULLNM (USR)

Description

Input string
Remainder of the string
Length the input string should be cut to
Farthest left position to check for a blank

Reads the UI record of the specified EDL ID, and returns the corresponding last, first,
and middle names in the form: Adams, John Quincy. If the first or middle name
consists of only one character (that is, an initial) FULLNM places a period after that
character: Adams, John Q.

Call Parameters:

Argument

USR
FULLNM

Type

C*(*)
C*(*)

110

I
o

FUNCTION FULPER (MODE)

Description

EDL ID
First, middle, and last names

Spells out a single-character permission mode (W, R, I, or N) to (WRITE, READ,
INFO, or NONE).

Call Parameters:

Argument

MODE
FULPER

Revision A

Type

C*(*)
C*(*)

I/O

I
o

Description

One-character file permission
Spelled-out file permission

Manipulating the Engineering Data Database 3-17

Using Standard EDL Routines

SUBROUTINE GETPRM (PRM,VAL,FOUND)

Gets the value of a task process parameter and returns it to the program. The
parameter (from the TV record) may be a constant, variable, or prompt.

Call Parameters:

Argument Type I/O Description

Task process parameter name
Value of the parameter

PRM
VAL
FOUND

C*(*)
C*(*)
L

I
o
o TRUE if a parameter was returned, FALSE if a

parameter was not found

SUBROUTINE GETPRN (VAL,FOUND)

Gets the next value of the task process parameter defined by GETPRM and returns it
to the program. The parameter (from the TV record) may be a constant, variable, or
prompt.

Call Parameters:

Argument Type I/O Description

Value of the parameter VAL
FOUND

C*(*)
L

o
o TRUE if a parameter was returned, FALSE if a

parameter was not found

CHARACTER FUNCTION LEFTJ (NUMBER)

Converts a number into a left-justified character string.

Call Parameters:

Argument

NUMBER
LEFTJ

Type

I
C*(*)

I/O

I
o

Description

N umber to be left-justified
Resulting left-justified character string

SUBROUTINE LIST (MNA,lNFO)

Concatenates a title and its description from the menu database and prints it as a list.
LIST only lists one line each time it is called. The position of the alignment is
determined by the end of the title in the menu database.

The following example shows a list created by four calls to LIST.

EDL USER ID CADDATDEV
PASSWORD GDS43L

USER NAME GL0234F
DEPARTMENT 9087

Call Parameters:.

Argument

MNA
INFO

Type

C*(*)
C*(*)

I/O

I
I

3·18 EDL Customization for NOS

Description

N arne of message menu for title
Text to be concatenated to message

Revision A

Using Standard EDL Routines

FUNCTION LSTCHR (STR)

Finds the last nonblank character working backward from the end of a string. This
function is useful for concatenating strings.

Call Parameters:

Argument

STR
LSTCHR

Type

C*(*)
I

1/0

I
o

Description

String to be examined
Position of the last nonblank character in STR

SUBROUTINE NXTEDN (HOS,EDN,OK)

Finds the next available data identifier for the host. It is used to find the correct
DIEDN value before adding a new DI record.

Call Parameters:

Argument

HOS
EDN
OK

Type

C*(*)
I
L

1/0

I
o
o

Description

Host identifier
N ext unused data identifier for the host
TRUE if no error

SUBROUTINE NXTFIL (HOS,FIL,OK)

Finds the next available file identifier for the host. It is used to find the correct FIFIL
val ue before adding a new FI record.

Call Parameters:

Argument

HOS
FIL
OK

Type

C*(*)
I
L

110

I
o
o

Description

Host identifier
N ext unused file identifier for the host
TRUE if no error

SUBROUTINE PUTNAM (NAME,SHEET)

Uses PUTVAR to store DINAM in parameter NAME and DISID in parameter SHEET.

Call Parameters:

Argument

NAME
SHEET

Revision A

Type

C*(*)
I

110

I
I

Description

Data name
Sheet number

Manipulating the Engineering Data Database 3-19

Using Standard EDL Routines

SUBROUTINE PUTVAR (NAM,VALJ

Stores the value VAL in EDL global variable NEXT. VALUE is returned when EDL
looks for a VARIABLE type parameter.

Call Parameters:

Argument

NAM
VAL

Type

C*(*)
C*(*)

1/0

I
I

Description

Parameter name to store
Parameter value to store

SUBROUTINE RETLIS (IMAX,MSGT,VAR,OK)

RETLIS displays a selection list and prompts for a choice. The selection list must be
prepared by the calling program on FORTRAN unit 12. RETLIS processes the
information on file EEEDL12 in the following manner:

1. The system displays the following message:

n SELECTIONS

where n is the number of records on EEEDL12.

2. The system displays the message specified by HEADER.

3. The system reads each record on EEEDL12.

4. The system ignores the first I characters on each line where 1= len(value).

5. The system displays the next 132 characters on the line preceded by a sequence
number. For example:

"1. ADAMS, JOHN Q"

6. EDL prints the following message after displaying NL lines (where NL is the
number of lines on a screen), or when the end of the list is encountered:

"ENTER A NUMBER, E OR EXIT TO EXIT, OR CR FOR MORE"

7. Depending on the user input, EDL responds as follows:

a. If the user enters a number J, EDL rewinds EEEDL12 and reads VALUE from
the Jth line of the file.

b. If the user enters a null response, EDL prints more of the list. If the list was
ended, it is started over.

c. If the user enters E, OK is set to FALSE and EDL returns to the calling
routine.

Call Parameters:

Argument Type 1/0

IMAX I I
MSGT C*(*) I
VAR C*(*) 0
OK L 0

3-20 EDL Customization for NOS

Description

Number of records on EEEDL12
Message identifier for the table header
Contents of the line to be returned
TRUE if the user inade a selection, FALSE if the
user chose EXIT

Revision A

'--

Using Standard EDL" Routines

Additional EDL Subroutines

Appendix C contains a list of the standard subroutines used by EDL. To see a complete
task definition showing how each is used in the Message Database, use the RTASKS
procedure on E125PRC (BEGIN,RTASKS,E125PRC). You can call the standard EDL
subprograms from task protocols that you create, but you cannot modify or read them;
source code is not provided.

Revision A Manipulating the Engineering Data Database 3-21

Examples

Examples

This section provides examples of EDL customization involving the manipulation of the
Engineering Data Database.

Adding a Task to EDL

Depending on its complexity, adding a task to EDL can involve creating a new CCL
procedure and changing the Message and Task Database to use it, or it can mean
writing a new FORTRAN subroutine. Chapter 2 of this manual provides an example of
the simple task addition using the interactive MENUMOD utility.

CAUTION

You should always make your changes to a copy of the working databases to avoid
damaging your current system. EDL prevents modification of the Message and Task
Database while any user is active; the database is opened for reading, shared with all
readers.

1. Use the NOS command COPYEI to make a copy of EDL.

2. Make your changes against the copy and test them out.

3. After successfully testing your modifications, implement them on your working
databases.

The following example shows how to create a batch transaction data file that adds both
a procedure and new code.

1. Use your text editor to prepare a batch transaction data file to change the Message
and Task Database as shown in the following example.

A TI
A TC
A TP
A TP
A TV

MYTASK
MYTASK
MYTASK
MYTASK
MYTASK

MYCOMMAND
CUSTOMIZED TASK

10VCAP XMYCODE
2CCL PROC MYPROC MYPROCF
2 1MYPARM VARIABLE MYPARM

This transaction file creates a task called MYTASK that is called with the
command MYCOMMAND. The task MYTASK consists of two steps:

a. It runs an OVCAP named XMYCODE.

b. It executes a procedure called MYPROC from file MYPROCF. EDL passes a
parameter called MYPARM to procedure MYPROC.

2. Create an OVCAP like the following exampl~. (You omit this step if you are adding
a task that contains only a CCL procedure.)

OVCAP.
SUBROUTINE XMYCODE
CALL MYCODE
RETURN
END

3·22 EDL Customization for NOS Revision A

Adding a Task to EDL

NOTE

Although the OVCAP could actually contain the code for the subroutine, we
recommend that you keep your code in a separate library for ease of modification,
testing, and maintenance.

3. Create a subroutine to call any necessary IB routines. You can also include any of
the standard EDL routines described in this chapter to display messages, prompts,
menus, or selection lists. (You omit this step if you are adding a task that contains
only a CCL procedure.)

In the following example, subroutine MYCODE prompts the user for a character
string to be put into variable MSG. If the user enters a string, the PUTVAR
routine is called to put the reply into a variable called MYPARM. The value in
MYPARM is then available .to any part of EDL and can be passed to the CCL
procedure. (Remember that CCL can only handle parameters up to 40 characters in
length.)

SUBROUTINE MyeODE
e THIS ROUTINE PROMPTS THE USER FOR A MESSAGE, AND WRITES IT IN A NOTE
e TO THE TERMINAL WITH eCl PROCEDURE MYPROC ON FILE MYPROCF.

CHARACTER MSG*30
C 'ENTER THE MESSAGE FOR A NOTE OR CR TO RETURN'

CAll INTXT('MYCODE1' ,MSG,ICH)
IF(ICH.NE.O)THEN

CAll PUTVAR('MYPARM' ,MSG)
ENDIF
RETURN
END

This code should be put into a library. You must also remember to copy the
corresponding COMMON blocks from file EDLCOM if you use any of the IB
routines.

4. Create the Message and Task Database transactions needed for the MYCODE
routine as shown in the following example. (You omit this step if you are adding a
task that only contains a CCL procedure.)

A MI
A MH
A MH

MYCODE1 PROMPT
MYCODE1
MYCODE1

ENTER THE MESSAGE FOR A NOTE OR CR TO RETURN
1WHAT YOU ENTER HERE WILL BE DISPLAYED IN A
2NOTE ON YOUR TERMINAL AND IN YOUR DAYFILE.

5. Create the CCL procedure as follows. CYou omit this step if you are adding a task
that only contains an OVCAP.)

.PROC,MYPROe,MYPARM.
NOTE"NR./MYPARM
REVERT. MYPROC
EXIT.
REVERT,ABORT. MYPROe

Save the procedure in the file named in the menu database transaction file created
in step 1. The file should be permitted in the same manner as the file E125PRC.

Revision A Manipulating the Engineering Data Database 3·23

Creating a Site-Defined Retrieval

.
6. Load the routines. CY ou o~it this step if you are adding a task that contains only a

CCL procedure.)

For example, if the OVCAP you created was written onto a file called MYOVCAP,
and the routine :MYCODE was put on library :MYLIB, the call to Lo.A.DEDL would
look like this:

BEGIN.LOADEDL.E125PRC.F=MYOVCAP.ULIB=MYLIB.

LOADEDL creates a new E125ABS absolute by combining the OVCAPs and routines
from your original release of EDL with the OVCAPs in file MYOVCAP and the
routines in library MYLIB.

NOTE

Keep in mind that any routines and/or OVCAPs that you have previously added
will not be in this load unless they are included in the OVCAP and library files
loaded here.

7. Update the Message and Task Database.

Put the transactions you created in the preceding steps into the same file, and
update EDL for those transactions as follows:

a. Enter EDL using an ID with SYSADMIN privileges (for example, EDLID).

b. Select the ADD INFORMATION FOR ENGINEERING DATA task (or enter
command ADDINFO).

c. Specify the application data type: EDL MDB TRANSACTIONS.

d. Give the data a meaningful name, like MDB TRANSACTIONS TO ADD A
MYT'ASK.

e. Enter the MENUMGMT command.

f. Retrieve the data that you just entered into EDL.

g. When you select the data, the changes are automatically entered into EDL.

Creating a Site-Defined Retrieval

This example of EDL customization shows how to create a site-defined retrieval
method. This modification requires the addition of reserved subroutines and menu lines.
In order to actually implement this example, you must have FORTRAN 5 installed on
your system. .

This example alters the retrieval selection routine ili EDL to process an additional
option value called SITE in option menus EXTRAC and EXFRAC. When a user selects
SITE, EDL calls a routine called EXTSIT. The following steps outline the procedure
used to create and add this routine:

1. Write and compile a routine named EXTSIT.

2. Use the procedure LOADEDL to establish a new EDL program and link your code.

3. Change the Message and Task Database to use the your new menu changes,
prompts, error messages, and help information.

3-24 EDL Customization for NOS Revision A

I

'"

Creating a Site-Defined Retrieval

4. Test and archive your work.

Building Routine EXTSIT

The EXTSIT routine retrieves data based on the type of the file that the data resides
on. The line numbers in EXTSIT are for reference only (they are not part of the
program). The tables that follow the program listing provide descriptions for the
referenced lines.

NOTE

This example shows program statements derived from the EDLCOM data file. Though
they were accurate at the time of this document's printing, they might have changed.
Treat this as an example and refer to the files in EDLCOM for the current contents.

Revision A Manipulating the Engineering Data Database 3-25

Creating a Site-Defined Retrieval

1 SUBROUTINE EXTSIT(NUM)
2 CXX
3 CXX
4
5
6
7

8
9

10
11
12

13

14

CXX
CXX
CXX
CXX
CXX
CXX
CXX
CXX
CXX
CXX
CXX

PURPOSE - RETRIEVE BY FILE TYPE CODE

CALL PARAMETERS -
ARQUMENT TYPE I/O DESCRIPTION
NUM I 0 NUMBER OF RECORDS RETRIEVED

DATABASE USAGE -
01 DATA INFORMATION RECORD
FT FILE TYPE RECORDS
FI FILE INFO RECORDS

15 CXX
16 C ENTER FILE TYPE
17 C
18 C

19 C
20 C
21 C

22 C

23 C
24 C
25 C
26 C

IF 'LIST' CALL LISFTC
SET FIFTC TO THE FILE TYPE
OBTAIN AN FI RECORD
WHILE THERE ARE FI RECORDS

USE THE FIDI COSET TO GET A DI RECORD
WHILE THERE ARE DI RECORDS

CALL EXTWRI(NUM) TO WRITE THE RECORD TO EEEDL9 IF
THE DATA IS PERMITTED

GET ANOTHER 01 RECORD
GET ANOTHER FI RECORD

27 CXX

3-26 EDL Customization for NOS Revision A

Lines

1

2-15

16-27

(
"

Revision A

Creating a Site-Defined Retrieval

Description

EDL is coded to look for the routine EXTSIT, with the parameter NUM
where NUM is the number of records found. This counter is incremented
by the routine called EXTWRI.

Prologue. The database usage area is the names of the database records
used in this routine. These record types correspond to the common blocks
which are included from the file EDLCOM.

Explanation of how EXTSIT processes.

Manipulating the Engineering Data Database 3-27

Creating a Site-Defined Retrieval

28 C
29 C
30 C
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

EDL_COMMON BLOCK
EDL PRIMARY COMMON BLOCK
COMMON /ECOM1/ HOST, USR, PWD, MDISP,'SCLOCK,

+CHELP, CLIST, CEXIT, CMENU, CCLEAR,
+CWORK, CREL, CSUBM, CPEND,
+CPAUSE1, CPAUSE2, CINOPT1, CEXTM1,
+CYES, CNO,
+NOSUN, STRDEL, INPDEL,
+AUN, DUN, DDB, MUN, MOB, AC, IT, aT

CHARACTER*10 HOST, USR, PWD, MDISP, SCLOCK
CHARACTER*10 CHELP, CLIST, CEXIT, CMENU, CCLEAR
CHARACTER*10 CWORK, CREL, CSUBM, CPEND
CHARACTER*70 CPAUSE1, CPAUSE2, CINOPT1, CEXTM1
CHARACTER*3 CYES,CNO
CHARACTER*7 NOSUN
CHARACTER*1 STRDEL, INPDEL
CHARACTER*7 AUN, DUN, DDB, MUN, MOB

46 CHARACTER*2 AC
47 CHARACTER*7 IT,OT
48 COMMON /ECOM2/ NSYNC, PW, PL, NL, SCROLL, ECHO
49 INTEGER NSYNC, PW, PL, NL
50 LOGICAL SCROLL, ECHO
51 C
52 C
53 C
54
55
56
57

01 COMMON BLOCK

COMMON / 01 / DIEDN
COMMON / R600701 / DINAM
COMMON / R600702 / DISID
COMMON / R600703 / DIREV

,DIFIL
,DIEDT ,DIADT ,DIUSR ,DITTL

58 ~,OISTA ,OIOATC ,OIOATM ,OIOATR ,OITIMC ,OITIMM ,OiTiMR
59 INTEGER DIEDN ,DISID ,DIFIL
60
61
62

CHARACTER DINAM *70,DIREV *10,DIEDT *20,DIADT *20
*,DIUSR *10,DITTL *100,DISTA *10,DIDATC *10,DIDATM *10
*,DIDATR *10,DITIMC *10,DITIMM *10,DITIMR *10

63 C
64 C
65 C
66
67
68
69

FI COMMON BLOCK

COMMON / FI / FIFIL
COMMON / R601601 / FIHOS

*,FIUSR ,FIVSN ,FICT
INTEGER FIFIL

,FIFUN
,FIMOD

,FIPFN ,FIFTC

70 CHARACTER FIHOS *10,FIFUN *31,FIPFN *100

,FISTA

71 *,FIFTC *20,FISTA *10,FIUSR *10,FIVSN *6,FICT *2
72
73 C
74 C
75 C

*,FIMOD *1

FT COMMON BLOCK

76 COMMON / FT /. FTFTC .FTNAM .FTAPN .FTLFN
77 COMMON / R602201 / FTLFNR .FTMUL .FTPRT
78 COMMON / R602202 / FTCHR
79 LOGICAL FTLFNR .FTMUL .FTPRT
80 CHARACTER FTFTC *20.FTNAM *21.FTAPN *20.FTLFN *7
81 *.FTCHR *1
82 C

3-28 EDL Customization for NOS Revision A

Lines

28-82

Revision A

Creating a Site· Defined Retrieval

Description

COMMON Blocks. These declarations are included from the EDLCOM file.
Blocks DI, FI, and FT are used by the IB routines. Include the
corresponding file for each record type used. EDL_COMMON is the
primary common block in EDL and contains constants used throughout
EDL. In this example, the block must be included to provide the constant
CLIST.

Manipulating the Engineering Data Database 3·29

Creating a Site-Defined Retrieval

83 LOGICAL OK
84 CHARACTER FTC*20
85 100 CONTINUE
86 NUM=O
87 C
88 C
89 C
90 C
91
92
93
94
95
96

GET THE FILE TYPE

'ENTER THE FILE TYPE TO BE RETRIEVED OR LIST OR CR TO RETURN'
CALL INTXT('EXTSIT1',FTC,ICH)
IF(ICH.NE.O)THEN

IF(FTC.EQ.CLIST)THEN
CALL LISFTC(FTC,OK)
FTFTC=FTC

ELSE

3-30 EDL Customization for NOS Revision A

I
~-

Lines

83

84

86

91

92

93-100

93-95

Revision A

Creating a Site-Defined Retrieval

Description

The logical variable OK monito~s the status of the calls to lB· routines.

Character variable FTC stores the user's choice of file type code.

NUM is the count of records found. If NUM is returned to the calling
routine as 0, the routine displays a message indicating that no records
were found. This count is updated by routine EXTWRI.

Prompt for input. The INTXT routine prompts with the message named
EXTSIT1 found in the message database, and puts the response in variable
FTC. ICH is the character length of the response. .

If the response was a carriage return, ICH is set to 0, the routine skips to
the ENDIF on line 118, and it returns to the calling routine.

An explanation of file type (FT) records. There are two identification fields
in the FT record: FTFTC and FTN AM. When EDL is released, these fields
contain identical information. FTFTC is the file type code that EDL uses
internally; do not change this field. FTNAM is the external name that the
user sees; you can customize this field to reflect the terminology of your
particular site. LISFTC is a routine that lists all FTNAM fields. When the
user makes a selection, the value of the corresponding FTFTC field is
returned to EDL.

If the response is equal to the constant CLIST (set to LIST when EDL is
released), then the LISFTC routine is called. LISFTC lists the available
FTNAM values, and prompts the user to select one. If the user chooses
EXIT, OK is set to FALSE. If the user selects one of the file names, OK
is set to TRUE and the FTFTC value corresponding to the FTNAM chosen
by the user is put into variable FTC.

Manipulating the Engineering Data Database 3-31

Creating a Site-Defined Retrieval

97 FTNAM=FTC
98 CALL IBOFT1 (OK)
99 IF(.NOT.OK)THEN

100 C 'THE FILE TYPE IS NOT RECOGNIZED BY EDL'
101 CALL ERR (, EXTSIT2')
102 ENDIF
103 ENDIF
104 IF(OK)THEN
105 FIFTC=FTFTC
106 CALL IBOFI4(OK)
107 200 IF(OK)THEN
108 CALL IBFFIDI(OK)
109 300 IF(OK)THEN
110 CALL EXTWRI(NUM)
111 CALL IBNFIDI(OK)
112 GO TO 300
113 ENDIF
114 CALL IBEFI4(OK)
115 GO TO 200
116 ENDIF
117 ENDIF
118 ENDIF
119 900 CONTINUE
120 RETURN
121 END

3·32 EDL Customization for NOS Revision A

Lines

97-102

104

105

106

107

Creating a Site-Defined Retrieval

Description

If the response is not CLIST, FTNAM is set equal to the response and
IBOFT1 is called to obtain the the FT record via access path FTl. If no
FT record is found, the system displays error message EXTSIT2. If the
matching FT record is found, the system fills all fields in the common
block FT with information from the matching record.

If OK was set to FALSE, either because no FT record was found or
because the user exited routine LISFTC, processing skips to the ENDIF in
line 117 and returns to the calling routine.

FIFTC (a key for the FI record) is set equal to the FTFTC value
determined in line 95.

IBOFI4 obtains the first FI record via access path FI4 (FIFTC). OK is set
to TRUE if records are found; otherwise FALSE.

If OK is FALSE, control goes to the ENDIF in line 116 and returns to the
calling routine.

108 IBFFIDI obtains the first DI record corresponding to the FI record obtained
either in line 106 or 114. OK is set to TRUE if records are found;
otherwise FALSE.

109 If OK is FALSE, control goes to the ENDIF in line 113.

110

111-112

114-115

Revision A

EXTWRI with the parameter NUM checks the DI record to see if the data
should be in the user's retrieval list. This routine checks file permissions,
application data types, and engineering categories, depending on the ADT
or EDT task parameters on the task that called this routine. If the record
is acceptable, the program writes data information to file EEEDL9 and
increments NUM.

IBNFIDI obtains the next DI record corresponding to the current FI record.
OK is set to TRUE if a record is found; otherwise FALSE. Control then
goes to line 109 (statement number 300).

Once all of the corresponding DI records are found for an FI record,
IBEFI4 finds any other FI record with the same FIFTC field. OK is set to
TRUE if a record is found; otherwise FALSE. Control then goes to line 107
(statement number 200).

Manipulating the Engineering Data Database 3-33

Creating a Site-Defined Retrieval

Building Routine EXFSIT

The EXFSIT routine performs further extractions (option 5 of the RETRIEVAL OPTION
menu). This routine functions like EXTSIT with the exceptions as noted in lines 224 -
240.

122 SUBROUTINE EXFSIT(NUM)
123 CXX
124 CXX
125 CXX PURPOSE - FURTHER RETRIEVE BY FILE TYPE CODE
126 CXX
127 CXX
128 CXX

CALL PARAMETERS -
ARQUMENT TYPE I/O DESCRIPTION

129 CXX NUM
130 CXX

I o NUMBER OF RECORDS RETRIEVED

131 CXX
132 CXX
133 CXX
134 CXX
135 CXX

DATABASE USAGE -
DI DATA INFORMATION RECORD
FI FILE INFO RECORD
FT FILE TYPE RECORD

136 CXX
137 C ENTER FILE TYPE
138 C IF 'LIST' CALL LISFTC
139 C
140 C
141 C
142 C
143 C
144 C
145 C

SET FIFTC TO THE FILE TYPE
READ A RECORD OFF EEEDL9
GET THE CORRESPONDING Dl RECORD
GET THE CORRESPONDING FI RECORD

. IF THE FTC'S MATCH
WRITE THE RECORD TO EEEDL10

READ ANOTHER RECORD FROM EEEDL9
146 CXXXxxxxxxxxxxxxxxx
147 C
148 C
149 C
150
151
152

EDL_COMMON BLOCK
EDL PRIMARY COMMON BLOCK
COMMON /ECOM1/ HOST, USR, PWD, MDISP, .sCLOCK,

+CHELP, CLIST, CEXIT, CMENU, CCLEAR,
+CWORK, CREL, CSUBM, CPEND,

153 +CPAUSE1, CPAUSE2, CINOPT1, CEXTM1,
154 +CYES, CNO,
155 +NOSUN, STRDEL, INPDEL,
156 +AUN, DUN, DDB, MUN, MOB, AC, IT, OT
157 CHARACTER*10 HOST, USR, PWD, MDISP, SCLOCK
158 CHARACTER*10 CHELP, CLIST, CEXIT, CMENU, CCLEAR
159 CHARACTER*10 CWORK, CREL, CSUBM. CPEND
160 CHARACTER*70 CPAUSE1, CPAUSE2, CINOPT1, CEXTMl
161 CHARACTER*3 CYES,CNO
162 CHARACTER*7 NOSUN
163 CHARACTER*1 STRDEL, INPDEL
164 CHARACTER*7 AUN, DUN, DDB, MUN, MOB
165 CHARACTER*2 AC
166 CHARACTER*7 IT,OT
167 COMMON /ECOM2/ NSYNC, PW, PL, NL, SCROLL, ECHO
168 INTEGER NSYNC, PW, PL, NL
169 LOGICAL SCROLL. ECHO
170 C
171 C 01 COMMON BLOCK

3-34 EDL Customization for NOS Revision A

112 C
113
114

COMMON / 01 / DIEDN
COMMON / R600101 / DINAM

Creating a Site-Defined Retrieval

115 COMMON / R600102 / DISID ,DIFiL
116 COMMON / R600103 / DIREV ,DIEDT ,DIADT ,DIUSR ,DITTL,DISTA
111 *,DIDATC ,DIDATM ,DIDATR ,DITIMC ,DITIMM ,DITIMR
118 INTEGER DIEDN ,DISID ,DIFIL
119 CHARACTER DINAM *70,DIREV *10,DIEDT *20,DIADT *20
180 *,DIUSR *10,DITTL *100,DISTA *10,DIDATC *10,DIDATM *10
181 *,DIDATR *10,DITIMC *10,DITIMM *10,DITIMR *10
182 C
183 C
184 C
185
186
181
188
189
190
191
192 C
193 C
194 C
195
196
197

FI COMMON BLOCK

COMMON / FI / FIFIL
COMMON / R601601 / FIHOS ,FIFUN ,FIPFN ,FIFTC ,FISTA

*,FIUSR ,FIVSN ,FICT ,FIMOD
INTEGER FIFIL
CHARACTER FIHOS *10,FIFUN *31,FIPFN *100

*,FIFTC *20,FISTA *10,FIUSR *10,FIVSN *6,FICT *2
*,FIMOD *1

FT COMMON BLOCK

COMMON / FT / FTFTC ,FTNAM ,FTAPN ,FTLFN
COMMON / R602201 / FTLFNR ,FTMUL ,FTPRT
COMMON / R602202 / FTCHR

198 LOGICAL FTLFNR ,FTMUL ,FTPRT
199
200
201 C
202
203
204 100
205
206 C
207 C
208 C
209 C
210
211
212
213
214
215
216
217
218
219 C
220
221
222
223

Revision A

CHARACTER FTFTC *20,FTNAM *21,FTAPN *20,FTLFN *7
*,FTCHR *1

LOGICAL OK
CHARACTER FTC*20,LINE*80
CONTINUE
NUM=O

GET THE FILE TYPE

'ENTER THE FILE TYPE TO BE RETRIEVED OR LIST OR CR TO RETURN'
CALL INTXT(~EXFSIT1',FTC,ICH)
IF(ICH.NE .O)THEN

IF(FTC.EQ.CLIST)THEN
CALL LISFTC(FTC,OK)
FTFTC=FTC

ELSE
FTNAM=FTC
CALL IBOFT1(OK)
IF(.NOT.OK)THEN

'THE FILE TYPE IS NOT RECOGNIZED BY EDL'
CALL ERR('EXFSIT2')

ENDIF
ENDIF
IF(OK)THI;N

Manipulating the Engineering Data Database 3-35

Creating a Site-Defined Retrieval

224 REWIND 9
225 200 READ(9,5000,END=900)DIEDN,LINE
226 5000 FORMAT(I10,A)
227 CALL IBODIO(OK)
228 IF(.NOT.OK)CALL ERRIB
229 FIFIL=DIFIL
230 CALL IBOFIO(OK)
231 IF(.NOT.OK)CALL ERRIB
232 IF(FIFTC.EQ.FTFTC)THEN
233 WRITE(10,5000)DIEDN,LINE
234 NUM=NUM+1
235 ENDIF
236 GO TO 200
237 ENDIF
238 ENDIF
239 900 CONTINUE
240 RETURN
241 END

Lines Description

224-226

227

228

232-235

240

Rather than obtaining data records based on criteria, subsequent
extractions read the current list of data records and compare them against
the criteria given. All retrievals write records to the file EEEDL9. This
routine reads record information from EEEDL9.

EDL obtains the DI record based on the DIEDN read from EEEDL9. The
only reasons a record would not be there are if it had been purged, or if
there was something wrong with the database. If the record cannot be
found, OK is set to FALSE by the IBODIO routine.

If OK was set to FALSE, the ERRIB routine is called to display the reason
for the error. ERRIB is used in EDL to assist the tracking of unexpected
problems in code or in the database.

If the FIFTC field for the data file matches the user entry, the program
writes the record to EEEDLIO and increments NUM.

File EEEDLIO is copied over EEEDL9, giving a new selection list, if NUM
is returned as greater than 0 when the routine terminates. If NUM is zero
(meaning that no records met the new criteria), the original EEEDL9 file
is left unchanged.

3-36 EDL Customization for NOS Revision A

I
"-

~ ..

Creating a Site-Defined Retrieval

Updating the Message and Tas~ Database

Mter creating the new subroutine EXTSIT, you need to update your Message and Task
Database to include the new option. The sample batch transaction file shown in figure
3-2 performs the following updates:

1. Adds another line to the retrieval option menu. Note that the option value (OV) is
SITE. EDL checks for this value when processing the retrieval menu.

2. Adds the following prompt:

ENTER THE FILE TYPE CODE, LI.ST, OR CR TO RETURN

Associated HELP messages are added if the user enters HELP in response to this
prompt.

3. Adds the following error message:

THE FILE TYPE IS NOT KNOWN TO EDL

4. Adds the same features for secondary retrievals (EXFRAC).

A OM
A OK

EXTRAC
EXTRAC

13FILE TYPE CODE
13FTC

A OV EXTRAC 13 1SITE
A MI EXTSIT1 PROMPT ENTER THE FILE TYPE CODE, LIST, OR CR TO RETURN
A MH
A MH
A MH
A MH
A MI
A OM
A OK
A OV

A MI
A MH
A MH
A MH
A MH
A MI

EXTSIT1
EXTSIT1
EXTSIT1
EXTSIT1
EXTSIT2 ERROR
EXFRAC
EXFRAC
EXFRAC

1THE FILE TYPE CODE IS DEFINED BY THE SITE TO DESCR
2USE OF A PARTICULAR TYPE OF FILE. ENTER ULIST" TO
3A LIST OF POSSIBLE FILE TYPES.
4A CARRIAGE RETURN WILL RETURN TO THE RETRIEVAL MET

THE FILE TYPE IS NOT KNOWN TO EDL
13FILE TYPE CODE
13FTC
13 1SITE

EXFSIT1 PROMPT ENTER THE FILE TYPE CODE, LIST, OR CR TO RETURN
EXFSIT1 1THE FILE TYPE CODE IS DEFINED BY THE SITE TO DESCR
EXFSIT1 2USE OF A PARTICULAR TYPE OF FILE. ENTER "LIST" TO
EXFSIT1
EXFSIT1
EXFSIT2 ERROR

3A LIST OF POSSIBLE FILE TYPES.
4A CARRIAGE RETURN WILL RETURN TO THE RETRIEVAL MET

THE FILE TYPE IS NOT KNOWN TO EDL

Figure 3-2. Sample Batch Transaction File for Implementing a Site-Defined
Retrieval

Revision A Manipulating the Engineering Data Database 3·37

(
"

Adding a New Application

Application Coding Guidelines .
Data Naming
Application Command Line
Application Scripts ..
User Profile Tasks . .
EDL Log File
Batch Mode Operation
File Locking. . .
File Creation ..
Data Hierarchies

Example

4

4-1
4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2

4-3

'---

Adding a New Application 4

Adding a new application to EDL involves modifying' nearly every part of the EDL
system. You need an application header record in the database, CCL procedures, tasks,
menus, and commands to invoke the application, tasks to retrieve application data,
tasks to perform data transfers and translations, new file type and data type
definitions, and perhaps application terminal configuration records to pass parameters
to the application. EDL contains a procedure that automatically performs all these
steps for the ICEM applications.

Application Coding Guidelines
Applications controlled by EDL must conform to certain conventions. The following
paragraphs describe the coding conventions you should follow when adding new EDL
applications to the database.

Data Naming

Keep the following points in mind when defining application data names.

• All file names and directory names accepted by an application should be a
maximum of 100 characters long.

• Do not hard-code file names within your application.

• Your application should preserve the name assigned to a piece of data regardless of
its storage format.

Application Command Line

EDL can start an application procedure and specify all parameters as parameter
values. For example, /PARTS=:udd:user :parts might indicate the name of the user's
database of parts. The application start procedure is responsible for supplying default
values for parameters not specified and converting parameters into arguments, if
necessary.

The CCL command line has a limit of 80 characters. If this proves to be too small,
create an EDL subprogram to provide a file containing a list of parameters and values,
then pass the name of this file to the application procedure.

Application Scripts

You can run your application from an input script to control certain data
transfer/retrieval operations started by EDL. For example, the retrieval of a DDN
drawing from the global part file is accomplished by running DDN with a script that
restores the named data from the GPARTS file and makes it the working part. EDL
maintains both the application data name and the actual system file name for the data.
EDL can then use either name as directed by the input script.

Revision A Adding a New Application 4·1

User Profile Tasks

User Profile Tasks

EDL provides a user profile default files task to preset the names of default application
filesllibraries. The default files list contains the preset names that are passed to CCL
procedures as parameters. The value assigned to any parameter in this task must be
the name of a file known to EDL .. EDL ensures that the user has the appropriate
permission to the named files, but does not ensure a file is exclusively open to the
user; your application must handle file opening.

EDL Log File

All application filing operations should be logged in the EDLLOG file.

Batch Mode Operation

EDL may run applications as a batch task to perform certain data translations. Any
application you create must be capable of running in batch. This means the NOS
UPROC must not execute any operations not appropriate to batch mode.

File Locking

Because multiple users may share data, and a single user may have multiple copies of
an application executing, all data files used in WRITE mode should be opened for
exclusive access. Your applications must be able to detect a file already opened to
another process and shut down gracefully.

File Creation

EDL can create certain files at the user's request. If your application allows EDL to
create its input files, the application must be able to recognize an empty, uninitialized
file and complete its creation.

Data Hierarchies

EDL manages one level of file hierarchy. Files may be designated as containing the
following elements:

• One piece of engineering data (for example, a script file within the working
directory)

• Multiple data, each in its own record (for example, the TAPES file)

• Multiple data, each in its own system file (for example, the PATTERN library)

EDL is able to identify the data name, and the file name for a piece of data stored in
organization type S. Each application must decide what information is required for it to
recognize the data/file being referred to.

4-2 EDL Customization for NOS Revision A

(
\,

Example

Example

The rest of this chapter provides an example of adding a new application to EDL. Use
the following steps as an outline for adding your own site-specific applications to EDL.

1. Create the application header.

For example, the application header for a data analyzer application might appear as
follows:

INSERT INTO AI
SET AIAPN = 'DATA ANALYZER',

AIAPV = ' 1 .0' ,
AISTA = 'ACTIVE'

2. Define new file types and data types.

To add new types of data to EDL, you must define the new file types (FT) on
which the data resides, and then define the application data types. For example,
here is how ICEM DDN drawing files and drawing data are defin~d in the standard
EDL database.

INSERT INTO FT
SET FTFTC = 'DRAWING FILE',

FTNAM = 'DRAWING FILE',
FTLFN = 'TAPE3',
FTLFNR = -1,
FTAPN = 'ICEM DON',
FTMUL = -1,
FTCHR = 'B',
FTPRT = 0

INSERT INTO AT
SET ATADT = 'DRAWING',

ATNAM = 'DRAWING',
ATFTC = 'DRAWING FILE',
ATSIDR = -1,
ATTNA = 'RET-DRW'

3. Specify terminal configuration.

EDL stores terminal configuration data for each user in the user configuration (UC)
records. By matching the user's configuration with the application configuration
(AC) records and the application information (AI) records, EDL decides what
configuration parameter value to pass to the CCL procedures which execute
application programs.

Like all parameters, configuration parameters are controlled by task parameter
value (TV) records for the CCL procedure task process. If the TVTYP field is
CONFIG, EDL looks for all the AC records with ACPRM fields that match the
TVVAL field of the TV record. If the ACATR and ACSTA fields match the user's
current UCATR and UCSTA fields and the application version is active, the value
in ACVAL is passed to the CCL procedure.

EDL terminal configuration information resides in the EDL user configuration (UC)
and application configuration (AC) records. ICEM DDN and ICEM Solid Modeler
and Analysis applications also use the terminal configuration data in these records.

Revision A Adding a New Application 4-3

Example

4. Include the EDL log file.

When a standard ICEM application creates, modifies, or deletes data, it makes a log
entry on file EDLLOG to inform EDL that it should update the database and
prompt for additional descriptive information. The following t.able shows t.he format
for each record in EDLLOG. Type e refers to character strings, type I to integer
data. There are no record terminators in this format. e entries are left-justified and
blank- or zero-filled; I entries are right-justified and blank-filled.

Pos Len Type Description

1 1 e Action code, A (added), e (changed), D (deleted), F
(file copied), P (purged file), R (retrieved).

2 100 C Path name of data file
102 31 C Operating system user name
133 20 e File Type code
153 20 C Application Data Type code
173 100 C Data Name
273 10 110 Secondary Identifier (e. g. Sheet Number)

If you want EDL to automatically track the data operated by your application, you
must modify the application to create the EDLLOG file. Then you must modify EDL
to include your application. Include a task process (TP) step to execute the XLOG
subprogram at the end of each task that executes your application.

5. Create a default working file list.

EDL creates a list of files for use by an application. The ATTACH subprogram can
create this list. Initially, this list would contain the files specified by the user
through the Default Files task. Other subprograms may add additional files to the
list. The list is passed to the CeL procedure as a set of parameters in the form
1 fn=pfn, where lfn is the logical file name of the file and pfn is the path name of
4-1..._ ~_4-•• ~1 .t':1_ 4-~ 1..._ •• ~~..3 rn1...:~ 1:_4- :_ ..3~1~4-~..3 ... 1...~ 4-1..._ (""I(""Iy _"..3 " .. ,,+ ,. +-"
liUt: (1~liUa.l .l.l1t: liU ut: uot:u. ~U.lO !.lOli.lO Ut:lt:::lit:::U VVUt:::ll lillt: vv.u PIU\..CUU.lC .lCIIU.l1l0 IIV

EDL.

6. Provide for application data retrieval.

Write a retrieval task for each type of data processed by your application. Include
the name of the task in the ATTNA field when you define the data type, to enable
EDL to retrieve the data with the RETRIEVE task.

4-4 EDL Customization for NOS Revision A

EDL Schema Definitions A

(

(~

I

"'-

I
"-

EDL Schema Definitions

This appendix lists the external schemas for the EDL Message and Task Database
(EDLMENUR and EDLMENUW) and the EDL Engineering Data Database
(EDLDATAW and EDL).

EXTERNAL SCHEMAS EDLMENUR and EDLMENUW of
CONCEPTUAL SCHEMA EDLMENU for EDL V1.2.S

MI

Message
Info

• •
MIMNA
Message
Name

10

-~
MHMNA
Message
Name

MITYP MISTA
Message Status
Type

10 10

..

MHLIN MHTXT
Line Text
Number

MH
Message

Help
10 I 70

OM

Option
Menu
Lines

OMMNA OMMLN OMTXT
Menu Menu Text
Name Line

10 40

OK
OKMNA

Option Menu
Keywords Name

OKKEY OKMLN
Keyword Menu

Line
10 10

..... e ~ ...

OV

Option
Variable
Values

OVMNA
Menu
Name

10

I

OVMLN
Menu
Line

OVPOS
Variable
Position

I I

MITTL
Title MIO=MNA

70

MHO= MNA,L1N
MH1= MNA, (LIN) Coset MIMH

OMO=MNA, MLN
OM1 =MNA, (MLN) Coset MIDM

OKO=MNA, KEY
OK1=MNA, MLN, (KEY) Coset OMOK

OVVAL
OVO=MNA, MLN, POS
OV1 =MNA, MLN, (POS)

Coset OMOV Variable
Value

40

A

Revision A EDL Schema Defmitions A-I

TI

Task
Info

TC

Task
Command

TM

Task
Menu LIne

TP

Task
Processes

TV
Task
Parameter
Value

• •
TITNA TISEC
Talk Security
Name Code

10 10

.....

TCCMD
Command

10

TCTNA
Talk
Name

TMMNA TMMLN
Menu Menu
Name LIne

10

~ ..

10

TITYP TIOSC
Talk Oescrlp.
Type

10 70

TMTNA TMTXT
Ta.k Text
Name

10 40

TPTNA TPSEO TPTYP TPNAM TPFNA
Task Sequence Process Process File
Name Type Name Name

10 I 10 10 31

..... ~ ..
I

TVTNA TVSEO TVPOS TVPRM TVTYP
Task Proce .. Parameter Parameter Parameter
Name Sequence Position Name Type

10 I I 10 10

A·2 EDL Customization for NOS

TIO.,TNA
TI1.SEC

TCOsCMD
TC1=TNA
Coset TITC

TMO=MNA, MLN
TMhMNA,TNA
TM2.TNA
TM3.MNA, (MLN)
Co.et MITM (MLN)
COlet TITM

TPFUN
User
Name

31

T
T
C

PO=TNA, SEC
P1=TNA, (SEC)
018t TITP(SEO)

TVVAL
Parameter

TVO .. TNA,SEO,POS
TV1.TNA,SEO(POS)

Value

40

TV2 .. TNA, SEO, PRM (POS)
Coset TPTV

Revision A

"

1",-- .

External Sch.ma. EDlDATAW and EDl of
Conceptual Schema EDLDATA V1.2.S

USERS AND GROUPS

UIPWD . UISTA UIDPT UICMD I UIUSR
Usar 10 10 Paasword,o Statue 10 Dept. 20

Firat Task
Command 10

UIFIN UIMIN UILNA UIDELS UIDElD
Firat Nama Mlddl. or Laat Nam. UITTl String Dialog

UI
User
Inform

GI

UIO

atlon

Group
Information

or Initial

UISTR
Street
Addraa.

~ •
GIGRP
Group 10

20

GM GMGRP
Group Group
Members

20

GS GSGRP
Group Group
Security
Authority

20

Revision A

Initial lJtle Delimiter Delimiter
10 10 20 40 , 1

UleTY UIPHO UIEDT
City. State Phone Editor UIO.USR

70 Zip Cod'ro Number 20 10
UI1 =lNA,FIN,MIN(USR)

GIGRPO GIUSRA GITTl GIO=GRP
Owning Admlnl· Group GI1=GRPO(GRP)Coset GIG I
Group strator Title GI2=USRA Cosat UIGI

20 10 70

GMUSR
Member

GMO.GRP, USR eo .. t GIGM(USR)

10

GSSEC
T •• k Security

Category

GM1aGRP, (USER) Coset UIGM(GRP)
GM2=USR. (GRP)

GSO=SEC,GRP Coset GIGS
GS1.GRP

10

EDL Schema Definitions A·3

PARTS, FAMILIES, VENDORS

PI PIPRT
Part Part
Information Number

PITTL
Part
Title

70 100

FM
FMFAM

Family Family
Information Code

FMTTL
Family
Title

PF

Part
Family

VI

Vendor
Information

PV

Part
Vendors

04

40 70

PFPRT
Part
Number

70

.~

PFFAM
Family
Code

•
VIVEN VINAM
Vendor Vendor
Code Name

20 70

PVPRT PVVEN
Part Vendor
Number

70 20

A-4 EDL Customization for NOS

PIAUX
Reeerved
for the
Customer

100

PIO=PRT

FMO:FAM

PFO=PRT, FAM
PF1 =FAM, (PRn Coset FMPF
PF2=PRT, (FAM) Coset PIPF

40

VIO=VEN
VISTR VICTY VIPHO VI1=NAM
Vendor City Phone
Stre.t State and Numb.r

ZIP
70 70 20

PVO=PRT, VEN
PV1 =PRT, (VEN) Coset PIPV
PV2=VEN, (PRT) Coset VIPV

Revision A

I

"--

\~--

I
\
'-----

PR
Part
Structure

PS
Part
Structure

UM
Units of
Measure

Revision A

PART STRUCTURE

PRPRT
Part
Number

PRREV
Part
Revision

PRECO PRSTA
Engineering Status
Change
Order

70 10 20 10

PRAUX
Auxiliary
(Custom
usage)

100

PRO=PRT, REV
PR1=PRT, (REV) Coset PIPR
PR2=ECO, (PTR, REV)

•
PSPRTP PSREV PSPRTC PSSEQ PSUMC
Parent Part Parent Component Sequence Units of
Number Part Part Measure

Revision
70 1 70 10

PSQTY PSAUX
PSO=PRTP, REV, PRTC Quantity Auxiliary
PS1 =PRTC(PRTP ,REV) Coset PIPS
PS2=PRTP, REV(PRTC)
PS3=PRTP, (REV)
PS4=PRTP, REV, SEa 100
PS5=PRTP ,REV(SEQ) Coset PRPS

UMO=UMC
UMUMC
Units of Measure Code

10

EDL Schema Definitions A·5

AI
Application
Information

AC
Application
Configuration

APPLICATIONS AND ENVIRONMENT

I AIAPN I AIAPV I AISTA I AILIC I AILICF
Application Application Application Number of Llcen.ed
Name Veralon Status Licensed Control Fill

20 10

AIO

... -
ACAPN ACAPV
Application Application
Naml Vera Ion

20 10

10

ACATR

Usera Prefix

AIO:APN, APV
AI1.APN, (APV)

ACSTA ACPRM

5

..
Attribute State Parameter

20 20

ACO.APN, APV, STA, PRM
AC1.APN. APV
ACbAPN, APV, ATR

10

AC3.PRM
AC4.APN,APV,ATR,STA, (PRM)

UCO.USR, ATR

ACVAL
Input

40

UC UCUSR UCATR
Attribute

UCSTA
State

UC1.USR Coaet UIUC
User User
Configuration

DF
Default
Flies

.. 'T'" ... - I

DFUSR
Ua.r

10 20

DFAPN
Application

10 20

A-6 EDL Customization for NOS

20

y~ ..
DFFIL DFLFN
File to bl Logical
Retrieved Fill Name

I

DFO.USR, APN, LFN
DF1.USR, APN, FIL
DF2=USR,APN. (LFN)
DF3:USR, (APN,LFN)
DF4.FIL

7

DFMOD
Syatlm
Modi

1

Revision A

''-----

ET

Engineering
Data Type
(Category)

EA
Engineering
Data
Attribute

FT

File
Types

AT

Application
- Data Type

Revision A

FILE AND DATA TYPES

ETEDT
Engineering
Category

EAEDT
Engineering
Data Type

40

ETDSC
De.crlptlon

EAATR
Attribute

70

20 20

FTFTC FTNAM FTAPM
File Type External Application
Code Name

20 20 20

FTO=FTC
FT1=NAM

~
FT2=LFN
FT3=APN(NAM)

• r
ATADT ATNAM ATFTC
Application Externa' File Type
Data Typ. Name Code

20 20 20 -

6

ETO.EDT

EAO=EDT, ATR
EAbEDT, (ATR) Co.at ETEA (ATR)
EA2J:ATR

FTLFN FTCHR
Logical File Character
Name Code

:n 1

FTLFNR FTPRT
Standard Printable
LFN
Required

L L

ATTNA ATSIDR
Taak Name Secondary
for Retrieve Required

10 L

FTMUL
Multiple
Data

L

-FTTVP

10

AOS/VS
Flletypo

I

ATO.A DT
AM
TC

AT1=N
AT2:aF

EDL Schema DefInitions A·7

TRANSFER and TRANSLATE

1T
Transfer
Task

RT
Release
Transfer

----- ./

TTADT1
AST of
origin

20

I

...
I

RTADT1
ADT of
Origin

20

........
TTADT2
ADT of
Result

20

I
.~

I
I

RTADT2
ADT of
Result

20

A-8 EDL Customization for NOS

...
TTTNA
Task
Name

10

..

RTO=

TTO=ADT1,ADT2
TT1 =ADT1 Coset A TT1
TT2=ADT2 Coset ATT2

ADT1,ADT2

Revision A

I

"'-.

HI
Host

Information

FI
Fllo

Information

Revision A

••
HIHOS
Host
Family 10

10

FIFIL
Fllo
Number

HIOFF
Host File
Identifier
Offset

FIHOS
File
Host

10

FILES

HIOS

Operating
System

10

HIEDL
Does this
Host run
EDL?

L

HIO=HOS
HI1=OFF
HI3.0S(HOS)
HI4=HOS5, (HOS)

FIFUN FIPFN
O. S. File
Uaorname Name

31 100

FICT FIMOD
Is file Permission
Public or Mode RIW
Privata?
PU or PR 2

FIO=FIL
FI1 =HOS,FUN,PFN

HIOSS
Superordinate
Host

10

FIFTC FIUSR
File Typo File
Code Owner

20

FISTA FIVSN
File VSN of
Status Tape

10

FI2=USR, (HOS,FUN,PFN) Cosat UIFI
FI3=HOS,FUN
FI4=FTC
FI5=HOS Coset HIFI

10

6

EDL Schema Defmitions A·9

FILE SHARING

GP
Group
Permits

~~ Cl/
I GPFIL GPGRP l GPMOD

GPO=FIL, GRP

UP
User
Permits

FP
File Permit
Result of
GP and UP

PP
Pending
Permits

File

UPFIL
File

FPFIL
File

.... I
I

PPFIL
File

I

Group

20

UPUSR
User

FPUSR
User 10

PPUUN
User's

10

10

.... -

Username

7

A·tO EDL Customization for NOS

File Access
Mode

1

UPMOO
File Access
Mode

FPMOO
File Access
Mode

PPMOO
Mode

1

GP1 =FIL (GRP) Coset FIGP
GP2=GRP coset GIGP

UPO=FIL, USR
UP1 =FIL, (USR) Coset FIUP
UP2=USR Coset UIUP

FPO=FIL,USR
FP1 =FIL Coset FIFP
FP2=USR Coset UIFP

PPFUN
PPO=FIL, UUN
PP1=UUN
PP2=FUN
PP3=FIL

File's
Root
Catalog

7

Revision A

'-

\

'''-.

/

,/

(
'-

DI
Data
Information

OIEON
Engineering
data number

Revision A

ENGINEERING DATA

DIFIL OINAM DISID DIADT
File Data Name Socondary Appllc.

Data Type

70 20

DIREV DISTA DIDATC DIATM
Revision Status Date of Date of Last
Level Creation Modification

10 10 10 10

DITMC DITIMM
Time of Time of Last
Creation Modification

10 10
010 = EON
DI1=NAM 1 (S10 1 REV)
DI2=FIL1 (NAM 1 SI0 1 REV) Coset FIOI
013=NAM I SID 1 FIL
014=EDT Coset ETDI
DI5=ADT Coset ATDI
016=USR

DIEDT OIUSR
Engineering Creator
Data Type

20 10

DIDATR DITTL
Date of Last Data
Retrieval Tille

10 100

DITIMR
Time of Last
Retrieval

10

EDL Schema Definitions A-ll

ENGINEERING DATA RELATIONSHIPS

<Q~J~-----~
I

DO OOEON OOATA
Data Engineering Data
Descriptor Data Attribute

PO
Parts
Data

FD
Family
Data

DR
Data
Required

OS
Data
Source

Number

PDPRT
Part
Number

70

FDFAM
Family
Code

40

DREDN
Engineering
Data
Number

DSEDN
Data's
E. D. N.

A·12 EDL Customization for NOS

20

PDREV
Part
Revision

10

FDEDN
Eng Ineerlng
Data Numbe

DREDNR
Required
Data
E. D. N.

DSEDNS
Source of
Data

DO VAL
Attribute
Value

40

PDEDN
Date

OD1=EDN, (ATR)
Coset DIDO

D02=ATR, VAL
003=EON, ATR

PDO=PRT, REV, EON
Coset PRPD

PD1=PTR(REV)
Coset PIPD

P02=EDN(PTR,REV)
Coset DIPD

PD3=PRT, REV

FDO=FAM,EDL
FD1=FAM Coset FMFD
FD2=EDN Coset DIFD

DRO=EDN, EDNC
DR1=EDN Coset DDR1
OR2=EONR Coset DDR2

DSO=EDN, EONS
OS1 =EON Coset DDS1
DS2=EDNS Cos~ DDS2

Revision A

"'--

,-

I

"-

ENGINEERING DATA RELEASE

RP RPREL
R.I.... R.I ••••
Proc.dures PROC 10

20

RUREL RUUSR
RU
Releas.rs

R.lease Releas.r
Proc.dure

20 10

RR
Revl.w RRREL RRUSR
Ruponslbility R.le.se UBer

Proc.
10

RAREL RAEDN
RA Release E.D.
Release Proc. Number
Authorization

20

RSEDN RSREL
RS E. Date Relaaae
Release Number Proc.
Signature

20

RUO=REL,USR COB.t RPRU
RU1=REL
RU2=USR Coset UIRU

RRTTL RRSEQ RRPRI
Review Sequence Priority
Title

20 10

RRO=REL,USR, TTL
RRl =REL,(SEQ) Cosat RPRR
RR2=REL,SEQ(TTL)
RR3.USR eos.t UIRR

RAEDNC RAUSR RASTA RADAT
E.D.N. of Releaser Release Rel.ase
Working Status Date
Copy

10 10 10

RAO=REL,EDN RA3=USR Co •• t UIRA
RA1=EDN Co •• t DIRaA4=EDNC CONt D2RA
RA2.REL Coset RPFaAS.REL,STA

RSUSR RSTTL RSDAT RSSTP
User Title Slgn.tur. Stamp
Signing Date

10 20 10 10

RSO=EDN,REL, USR, TTL RS1=EDN,REL,(DAT) Coset RARS RS2=USR COSlt UIRS

Revision A EDL Schema DefInitions A·13

CL
Commun Icatlon
Link

UV
Usor
Validation

......
"L.nv~~

Host
Sending

10

NETWORKING

~.
,..
"L.nv~n

HOlt
Receiving

10

UVHOS UVUSR UVDUN
Host U.er O.S

U.ernam.
10 10 31

A-14 EDL Customization for NOS

CLO=HOSS,HOSR
CL 1 =HOSS(HOSR)
CL2=HORS(HOSS)

UVO=HOS,USR
UV1 cHOS,USR,OUN
UV2=HOS,OUN
UV3=USR{HOST) COSET UIUV
UV4=HOS{USR) COSET HIUV

Revision A

\

'ME
Message

MN
Message
Instance

ML
Message
Lines

Revision A

MEMSG
Mes •• ge
Number

MNMSG
Massage
Number

MLMSG
Me.sage
Number

NOTE FACILITY

MEUSER
U.er
Sending

10

MNUSR
User
Receiving

MLLIN
Line
Number

10

MEDAT
Creation
Oat.

MNSTA
Status

10

Not Read II F
Read = T L

MLTXT
Text

13 79

METIM
Creation
Time

10

MEO=MSG
ME1.USR(MSG)

Coset UIME

MNO=MSG,USR
MN1 =USR(MSG)
MN2aUSR,STA,(MSG)
MN3=MSG,(USR)

Cos.t MEMN

MLO=MSG,LIN
ML 1 =MSG(L 1 N)

Cos.t MEML

EDL Schema Definitions A-15

\

Information Base Routines
Application Configuration (AC) Routines
Application Information (AI) Routines
Application Data Type (AT) Routines
Data Descriptor (DD) Routines
Default Files (DF) Routines
Engineering Data Information (DI) Routines
Data Required (DR) Routines
Data Source (DS) Routines
Engineering Attributes (EA) Routines
Engineering Categories (ET) Routines
Family Data (FD) Routines
File Information (FI) Routines ..
Family Information (FM) Routines
File Permits (FP) Rou.tines . . .
File Types (FT) Routines
Group Information (GI) Routines
Group Members (GM) Routines.
Group Permits (GP) Routines . .
Group Security Authorization (GS) Routines
Host Information (HI) Routines . . .
Message Help (MH) Routines
Message Information (Ml) Routines
Option Keyword (OK) Routines .
Option Menu (OM) Routines
Option Value (OV) Routines .
Parts Data (PD) Routines . .
Part Family (PF) Routines .
Part Information (PI) Routines
Pending Permits (PP) Routines
Part Vendors (PV) Routines. .
Release Authorization (RA) Routines .
Release Procedure (RP) Routines . . .
Review Responsibility (RR) Routines .
Release Signature (RS) Routines
Release Transfers (RT) Routines
Releasers (RU) Routines
Task Command (TC) Routines .
Task Information (TI) Routines .
Task Menu (TM) Routines. . . .
Task Process (TP) Routines . . .
Transfer and Translation Tasks (TT) Routines
Task Parameter Value (TV) Routines
User Configuration (UC) Routines
User Information (UI) Routines . .
User Permits (UP) Routines ...
Vendor Information (VI) Routines

B

B-1
B-6
B-8

B-11
B-15
B-20
B-28
B-32
B-36
B-39
B-40
B-44
B-51
B-52
B-56
B-60
B-64
B-68
B-72
B-75
B-78
B-81
B-83
B-86
B-89
B-92
B-96

B-100
B-101
B-105
B-109
B-115
B-116
B-121
B-126
B-128
B-132
B-135
B-137
B-141
B-l44
B-148
B-152
B-155
B-159
B-163

• I

~,

Information Base Routines B

This appendix lists the EDL Information Base Routines sorted by table type. The
routines are described in psuedo-SQL-DML format; the WHERE clause indicates which
columns are key to the access, the ORDER BY clause indicates method of sorting the
result set.

Application Configuration (AC) Routines

The AC table contains terminal configuration parameters that can be passed to an
application.

IBSAC

STORE A NEW ROW IN TABLE AC.
INSERT INTO AC IN ENGINEERING_DATA_DATABASE
SET ACAPN = : ACAPN,

ACAPV = : ACAPV ,
ACATR = : ACATR ,
ACSTA = : ACSTA,
ACPRM = : ACPRM,
ACVAL = : ACVAL

IBMAC

MODIFY AN EXISTING ROW IN TABLE AC.

IBDAC

UDPATE AC IN ENGINEERING_DATA_DATABASE
WHERE ACAPN = :ACAPN AND

ACAPV = :ACAPV AND
ACATR = :ACATR AND
ACSTA = :ACSTA AND
ACPRM = :ACPRM

SET ACAPN = :ACAPN,
ACAPV = : ACAPV,
ACATR = : ACATR,
ACSTA = :ACSTA,
ACPRM = :ACPRM,
ACVAL = : ACVAL

DELETE AN EXISTING ROW IN TABLE AC.

Revision A

DELETE FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACAPN :ACAPN AND

ACAPV :ACAPV AND
ACATR :ACATR AND
ACSTA :ACSTA AND
ACPRM = :ACPRM

Information Base Routines B-1

Application Configuration (AC) Routines

IBOACO

OBTAIN A ROW IN TABLE AC VIA ACCESS PATH ACO.

IBOAC!

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACAPN = :ACAPN AND

ACAPV = :ACAPV AND
ACATR = :ACATR AND
ACSTA = :ACSTA AND
ACPRM = :ACPRM

ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC, ACSTA ASC, ACPRM ASC

OBTAIN A ROW IN TABLE AC VIA ACCESS PATH AC1.

IBOAC2

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACAPN = :ACAPN AND

ACAPV = :ACAPV
ORDER BY ACAPN ASC, ACAPV ASC

OBTAIN A ROW IN TABLE AC VIA ACCESS PATH AC2.

IBOAC3

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACAPN :ACAPN AND

ACAPV = :ACAPV AND
ACATR = : ACATR

ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC

OBTAIN A ROW IN TABLE AC VIA ACCESS PATH AC3.

IBOAC4

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACPRM = :ACPRM
ORDER BY ACPRM ASC

OBTAIN A ROW IN TABLE AC VIA ACCESS PATH AC4.
SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACAPN = :ACAPN AND

ACAPV = :ACAPV AND
ACATR = :ACATR AND
ACSTA = :ACSTA

ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC, ACSTA ASC, ACPRM ASC

B·2 EDL Customization for NOS Revision A

\"

\

'-

· Application Configuration (AC) Routines

IBAACO

OBTAIN A ROW IN TABLE AC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH ACO.

IBAACl

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE (ACAPN > :ACAPN)

OR «ACAPN = :ACAPN) AND (ACAPV > :ACAPV»
OR «ACAPN = :ACAPN AND ACAPV = :ACAPV) AND (ACATR > :ACATR»
OR «ACAPN = :ACAPN AND ACAPV = :ACAPV AND ACATR = :ACATR) AND

(ACSTA > :ACSTA»
OR «ACAPN = :ACAPN AND ACAPV = :ACAPV AND ACATR = :ACATR AND

ACSTA = :ACSTA) AND (ACPRM > :ACPRM»
OR (ACAPN = :ACAPN AND ACAPV = :ACAPV AND ACATR = :ACATR AND

ACSTA = :ACSTA AND ACPRM = : ACPRM)
ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC, ACSTA ASC, ACPRM ASC

OBTAIN A ROW IN TABLE AC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AC1.

IBAAC2

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE (ACAPN > :ACAPN)

OR «ACAPN = :ACAPN) AND (ACAPV > :ACAPV»
OR (ACAPN = :ACAPN AND ACAPV = : ACAPV)

ORDER BY ACAPN ASC, ACAPV ASC

OBTAIN A ROW IN TABLE AC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AC2.

IBAAC3

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE (ACAPN > :ACAPN)

OR «ACAPN = :ACAPN) AND (ACAPV > :ACAPV»
OR «ACAPN = :ACAPN AND ACAPV = :ACAPV) AND (ACATR > :ACATR»
OR (ACAPN = :ACAPN AND ACAPV = :ACAPV AND ACATR = : ACATR)

ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC

OBTAIN A ROW IN TABLE AC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AC3.

Revision A

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE ACPRM >= :ACPRM
ORDER BY ACPRM ASC

Information Base Routines B-3

Application Configuration (Ae) Routines

IBAAC4

OBTAIN A ROW IN TABLE AC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AC4.

IBEACI

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
WHERE (ACAPN > :ACAPN)

OR «ACAPN = :ACAPN) AND (ACAPV > :ACAPV»
OR «ACAPN = :ACAPN AND ACAPV = : ACAPV) AND (ACATR > :ACATR»
OR «ACAPN = :ACAPN AND ACAPV = :ACAPV AND ACATR : ACATR) AND

(ACSTA > :ACSTA»
OR (ACAPN = :ACAPN AND ACAPV = :ACAPV AND ACATR = :ACATR AND

ACSTA = :ACSTA)
ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC, ACSTA ASC, ACPRM ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE AC VIA ACCESS PATH AC1.
SAVE THE CURRENT POSITION IN TABLE AC.
FETCH THE NEXT ROW FROM TABLE AC.

SET :ACAPN, :ACAPV, : ACATR , :ACSTA, :ACPRM, :ACVAL

IBEAC2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE AC VIA ACCESS PATH AC2.
SAVE THE CURRENT POSITION IN TABLE AC.
FETCH THE NEXT ROW FROM TABLE AC.

SET :ACAPN, :ACAPV, : ACATR, :ACSTA, :ACPRM, :ACVAL

IBEAC3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE AC VIA ACCESS PATH AC3.
SAVE THE CURRENT POSITION IN TABLE AC.
FETCH THE NEXT ROW FROM TABLE AC.

SET :ACAPN, :ACAPV, : ACATR, : ACSTA, :ACPRM, :ACVAL

IBEAC4

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE AC VIA ACCESS PATH AC4.
SAVE THE CURRENT POSITION IN TABLE AC.
FETCH THE NEXT ROW FROM TABLE AC.

SET : ACAPN , :ACAPV, : ACATR, :ACSTA, :ACPRM, :ACVAL

IBFACO

OBTAIN THE FIRST ROW OF TABLE AC, ORDERED BY ACCESS PATH ACO.
SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE

ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC, ACSTA ASC, ACPRM ASC

B-4 EDL Customization for NOS Revision A

Application Configuration (AC) Routines

IBFACI

OBTAIN THE FIRST ROW OF TABLE AC, ORDERED BY ACCESS PATH AC1.

IBFAC2

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
ORDER BY ACAPN ASC, ACAPV ASC

OBTAIN THE FIRST ROW OF TABLE AC, ORDERED BY ACCESS PATH AC2.

IBFAC3

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC

OBTAIN THE FIRST ROW OF TABLE AC, ORDERED BY ACCESS PATH AC3.

IBFAC4

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
ORDER BY ACPRM ASC

OBTAIN THE FIRST ROW OF TABLE AC, ORDERED BY ACCESS PATH AC4.

IBNACO

SELECT ACAPN, ACAPV, ACATR, ACSTA, ACPRM, ACVAL
FROM AC IN ENGINEERING_DATA_DATABASE
ORDER BY ACAPN ASC, ACAPV ASC, ACATR ASC, ACSTA ASC, ACPRM ASC

OBTAIN THE NEXT ROW OF TABLE AC, ORDERED BY ACCESS PATH ACO.
SET :ACAPN, : ACAPV, :ACATR, :ACSTA, :ACPRM, :ACVAL

IBNACI

OBTAIN THE NEXT ROW OF TABLE AC, ORDERED BY ACCESS PATH AC1.
SET : ACAPN , :ACAPV, : ACATR, : ACSTA, : ACPRM, :ACVAL

IBNAC2

OBTAIN THE NEXT ROW OF TABLE AC, ORDERED BY ACCESS PATH AC2.
SET : ACAPN , : ACAPV, : ACATR, :ACSTA, :ACPRM, :ACVAL

IBNAC3

OBTAIN THE NEXT ROW OF TABLE AC, ORDERED BY ACCESS PATH AC3.
SET : ACAPN , :ACAPV, : ACATR , : ACSTA, :ACPRM, :ACVAL

IBNAC4

OBTAIN THE NEXT ROW OF TABLE AC, ORDERED BY ACCESS PATH AC4.
SET : ACAPN , : ACAPV , : ACATR, :ACSTA, :ACPRM, :ACVAL

Revision A Information Base Routines B-5

Application Information (AI) Routines

Application Information (AI) Routines

The AI table defines applications under control of EDL.

IBSAI

STORE A NEW ROW IN TABLE AI.

IBMAI

INSERT INTO AI IN ENGINEERING_DATA_DATABASE
SET AIAPN = :AIAPN,

AIAPV = :AIAPV,
AISTA = :AISTA,
AIlIC = :AIlIC,
AIlICF = :AIlICF

MODIFY AN EXISTING ROW IN TABLE AI.

IBDAI

UDPATE AI IN ENGINEERING_DATA_DATABASE
WHERE AIAPN = :AIAPN AND

AIAPV = :AIAPV
SET AIAPN = :AIAPN,

AIAPV = :AIAPV,
AISTA = :AISTA,
AIlIC = :AIlIC,
AIlICF = :AIlICF

DELETE AN EXISTING ROW IN TABLE AI.

IBOAIO

n~1 ~T~ ~Dnu AT T~ ~~r-T~~~DT~r- nATA nATA~AC~ ____ I _ • """.1' ,"' ... 1 w __ \ioII_ .. ,..,. "_ .. ,,. "..,""""~

WHERE AIAPN :AIAPN AND
AIAPV = :AIAPV

OBTAIN A ROW IN TABLE AI VIA ACCESS PATH AID.

IBOAII

SELECT AIAPN, AIAPV, AISTA, AIlIC, AIlICF
FROM AI IN ENGINEERING_DATA_DATABASE
WHERE AIAPN = :AIAPN AND

AIAPV = :AIAPV
ORDER BY AIAPN ASC, AIAPV ASC

OBTAIN A ROW IN TABLE AI VIA ACCESS PATH AI1.
SELECT AIAPN, AIAPV, AISTA, AIlIC, AIlICF
FROM AI IN ENGINEERING_DATA_DATABASE
WHERE AIAPN = :AIAPN
ORDER BY AIAPN ASC, AIAPV ASC

B-6 EDL Customization for NOS Revision A

',-- --

Application Information (AI) Routines

IBAAIO

OBTAIN A ROW IN TABLE AI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AID.

IBAAII

SELECT AIAPN, AIAPV, AISTA, AILIC, AILICF
FROM AI IN ENGINEERING_DATA_DATABASE
WHERE (AIAPN > :AIAPN)

OR «AIAPN = :AIAPN) AND (AIAPV > :AIAPV»
OR (AIAPN = :AIAPN AND AIAPV = :AIAPV)

ORDER BY AIAPN ASC, AIAPV ASC

OBTAIN A ROW IN TABLE AI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH A11. 0

IBEAII

SELECT AIAPN, AIAPV, AISTA, AILIC, AILICF
FROM AI IN ENGINEER lNG_OAT A_DATABASE
WHERE AIAPN >= :AIAPN
ORDER BY AIAPN ASC, AIAPV ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE AI VIA ACCESS PATH AI1.
SAVE THE CURRENT POSITION IN TABLE AI.
FETCH THE NEXT ROW FROM TABLE AI.

SET :AIAPN, :AIAPV, :AISTA, :AILIC, :AILICF

IBFAIO

OBTAIN THE FIRST ROW OF TABLE AI, ORDERED BY ACCESS PATH AID.

IBFAII

SELECT AIAPN, AIAPV, AISTA, AILIC, AILICF
FROM AI IN ENGINEERING_DATA_DATABASE
ORDER BY AIAPN ASC, AIAPV ASC

OBTAIN THE FIRST ROW OF TABLE AI, ORDERED BY ACCESS PATH A11.

IBNAIO

SELECT AIAPN, AIAPV, AISTA, AILIC, AILICF
FROM AI IN ENGINEERING_DATA_DATABASE
ORDER BY AIAPN ASC, AIAPV ASC

OBTAIN THE NEXT ROW OF TABLE AI, ORDERED BY ACCESS PATH AID.
SET :AIAPN, :AIAPV, :AISTA, :AILIC, :AILICF

IBNAII

OBTAIN THE NEXT ROW OF TABLE AI, ORDERED BY ACCESS PATH AI1.
SET :AIAPN, :AIAPV, :AISTA, :AILIC, :AILICF

Revision A Information Base Routines B-7

· Application Data Type (AT) Routines

Application Data Type (AT), Routines

The AT table defines the types of data controlled by' EDL.

IBSAT

STORE A NEW ROW IN TABLE AT.

IBMAT

INSERT INTO AT IN ENGINEERING_DATA_DATABASE
SET ATADT = :ATADT.

ATNAM = :ATNAM.
AT FTC = :ATFTC.
ATTNA = :ATTNA.
ATSIDR = :ATSIDR

MODIFY AN EXISTING ROW IN TABLE AT.

IBDAT

UDPATE AT IN ENGINEERING_DAT~_DATABASE
WHERE ATADT = :ATADT
SET ATADT = :ATADT.

ATNAM = :ATNAM.
ATFTC = :ATFTC.
ATTNA = :ATTNA.
ATSIDR = :'ATSIDR

DELETE AN EXISTING ROW IN TABLE AT.

IBOATO

DELETE FROM AT IN ENGINEERING_DATA_DATABASE
brueD£: ATAnT _ • ATAnT
"II~I'L- "',",UI - .",r\UI

OBTAIN A ROW IN TABLE AT VIA ACCESS PATH ATD.

IBOATI

SELECT ATADT. ATNAM. ATFTC. ATTNA. ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATADT = :ATADT
ORDER BY ATADT ASC

OBTAIN A ROW IN TABLE AT VIA ACCESS PATH AT1.

IBOAT2

SELECT ATADT. ATNAM. AT~TC. ATTNA. ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATNAM = :ATNAM
ORDER BY ATNAM ASC

OBTAIN A ROW IN TABLE AT VIA ACCESS PATH Al2.
SELECT ATADT. ATNAM. AlFTC. ATTNA. ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATFTC = :ATFTC
ORDER BY ATFTC ASC

B·8 EDL Customization for NOS Revision A

I

~

(

I
\

'",--

~.

Application Data Type (AT) Routines

IBAATO

OBTAIN A ROW IN TABLE AT USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH ATD.

IBAATI

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATADT >= :ATADT
ORDER BY ATADT ASC

OBTAIN A ROW IN TABLE AT USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AT1.

IBAAT2

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATNAM >= :ATNAM
ORDER BY ATNAM ASC

OBTAIN A ROW IN TABLE AT USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH AT2.

IBEAT2

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATFTC >= :ATFTC
ORDER BY ATFTC ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE AT VIA ACCESS PATH AT2.
SAVE THE CURRENT POSITION IN TABLE AT.
FETCH THE NEXT ROW FROM TABLE AT.

SET : ATADT , :ATNAM, : ATFTC , :ATTNA, :ATSIDR

IBFATO

OBTAIN THE FIRST ROW OF TABLE AT, ORDERED BY ACCESS PATH ATD.

IBFATI

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
ORDER BY ATADT ASC

OBTAIN THE FIRST ROW OF TABLE AT, ORDERED BY ACCESS PATH AT1.

IBFAT2

SELECT ATADT, ATNAM, AT FTC , ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
ORDER BY ATNAM ASC

OBTAIN THE FIRST ROW OF TABLE AT, ORDERED BY ACCESS PATH AT2.

Revision A

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
ORDER BY ATFTC ASC

Information Base Routines B-9

Application Data Type (AT) Routines

IBNATO

OBTAIN THE NEXT ROW OF TABLE AT, ORDERED BY ACCESS PATH ATO.
SET :ATADT ,. :ATNAM, :ATFTC, :ATTNA, :ATSIDR

IBN AT 1

OBTAIN THE NEXT ROW OF TABLE AT, ORDERED BY ACCESS PATH AT1.
SET :ATADT, :ATNAM, :ATFTC, :ATTNA, :ATSIDR

IBNAT2

OBTAIN THE NEXT ROW OF TABLE AT, ORDERED BY ACCESS PATH AT2.
SET : ATADT , :ATNAM, :ATFTC, :ATTNA, :ATSIDR

I BOFTAT

USING COSET FTAT, OBTAIN THE ROW FROM TABLE FT THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE AT

FTPRT,

IBFFTAT

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR,

FTTYP
INTO :FTFTC, :FTNAM, :FTAPN, :FTLFN, :FTCHR, :FTMUL, : FTLFNR ,

: FTPRT, : FTTYP
FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTFTC = :ATFTC

OBTAIN THE FIRST ROW FROM MEMBER TABLE AT WITHIN COSET FTAT, USING
ACCESS PATH AT2.

IBNFTAT

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATFTC = :FTFTC
ORDER BY ATFTC ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE AT WITHIN COSET FTAT.
SET :ATADT, :ATNAM, :ATFTC, :ATTNA, :ATSIDR

B·IO EDL Customization for NOS Revision A

Data Descriptor (DD) Routines

Data Descriptor (DD) Routines .

The DD table contains attributes and values of data descriptors.

IBSDD

STORE A NEW ROW IN TABLE DO.

IBMDD

INSERT INTO DO IN ENGINEERING_DATA_DATABASE
SET DOE ON = :OOEDN,

DDATR = : DDATR ,
DDVAL = :DDVAL

MODIFY AN EXISTING ROW IN TABLE DO.

IBDDD

UDPATE 00 IN ENGINEERING_DATA_DATABASE
WHERE DOEDN = :DDEON AND

DDATR = :DDATR AND
DDVAL = :DDVAL

SET DDEDN = :DDEDN,
DDATR = :DDATR,
DDVAL = :DDVAL

OELETE AN EXISTING ROW IN TABLE DO.

IBODDO

DELETE FROM DO IN ENGINEERING_DATA_DATABASE
WHERE DOE ON :DDEON AND

ODATR :DDATR AND
DOVAL :DDVAL

OBTAIN A ROW IN TABLE DO VIA ACCESS PATH 000.

IBODDI

SELECT ODEDN, DDATR, DOVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE DDEDN ~DDEDN AND

DDATR = :DDATR AND
DDVAL = :DDVAL

ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

OBTAIN A ROW IN TABLE DO VIA ACCESS PATH 001.

Revision A

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE DDEDN = :DDEON
ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

Information Base Routines B-U

Data Descriptor (DO) Routines

IBODD2

OBTAIN A ROW IN TABLE DO VIA ACCESS PATH 002.

IBODD3

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE DDATR = :DDATR AND

DDVAL = :DDVAL
ORDER BY DDATR ASC, DDVAL ASC

OBTAIN A ROW IN TABLE DO VIA ACCESS PATH 003.

IBADDO

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE DDEDN = :DDEDN AND

DDATR = :DDATR
ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

OBTAIN A ROW IN TABLE DO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 000.

IBADDI

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE (DDEDN > :DDEDN)

OR «DDEDN = :DDEDN) AND (DDATR > :DDATR»
OR «DDEDN = :DDEDN AND DDATR = :DDATR) AND (DDVAL > :DDVAL»
OR (DOE ON = :DDEDN AND DDATR = :DDATR AND DDVAL = :DDVAL)

ORDER BY DOE ON ASC, DDATR ASC, DDVAL ASC

OBTAIN A ROW IN TABLE DO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 001.

IBADD2

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE DOE ON >= :DDEDN
ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

OBTAIN A ROW IN TABLE DO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 002.

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE (DDATR > :DDATR)

OR «DDATR = :DDATR) AND (DDVAL > :DDVAL»
OR (DDATR = :DDATR AND DDVAL = :DDVAL)

ORDER BY DDATR ASC, DDVAL ASC

B·12 EDL Customization for NOS Revision A

I

"'-

i
"'--- '

Data Descriptor (DO) Routines

IBADD3

OBTAIN A ROW IN TABLE DO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 003.

IBEDDI

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
WHERE (DDEDN > :DDEDN)

OR «DDEDN = :DDEDN) AND (DDATR > :DDATR»
OR (DDEDN = :DDEDN AND DDATR = :DDATR)

ORDER BY DDEDN'ASC, DDATR ASC, DDVAL ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE DO VIA ACCESS PATH 001.
SAVE THE CURRENT POSITION IN TABLE DO.
FETCH THE NEXT ROW FROM TABLE DO.

SET :DDEDN, : DDATR , :DDVAL

IBEDD2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE DO VIA ACCESS PATH 002.
SAVE THE CURRENT POSITION IN TABLE DO.
FETCH THE NEXT ROW FROM TABLE DO.

SET :DDEDN, :DDATR, :DDVAL

IBEDD3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE DO VIA ACCESS PATH 003.
SAVE THE CURRENT POSITION IN TABLE DO.
FETCH THE NEXT ROW FROM TABLE DO.

SET :DDEDN, :DDATR, :DOVAL

IBFDDO

OBTAIN THE FIRST ROW OF TABLE DO, ORDERED BY ACCESS PATH 000.

IBFDDI

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

OBTAIN THE FIRST ROW OF TABLE DO, ORDERED BY ACCESS PATH 001.

IBFDD2

SELECT DDEDN, DDATR, ODVAL
FROM DO IN ENGINEERING_DATA_DATABASE
ORDER BY DDEDN ASC, DDATR ASC, ODVAL ASC

OBTAIN THE FIRST ROW OF TABLE DO, ORDERED BY ACCESS PATH 002.

Revision A

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
ORDER BY ODATR ASC, DDVAL ASC

Information Base Routines B·13

Data Descriptor (DO) Routines

IBFDD3

OBTAIN THE FIRST ROW OF TABLE DD, ORDERED BY ACCESS PATH DD3.

IBNDDO

SELECT DDEDN, DDATR, DDVAL
FROM DO IN ENGINEERING_DATA_DATABASE
ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

OBTAIN THE NEXT ROW OF TABLE DD, ORDERED BY ACCESS PATH ODD.
SET :DDEDN, :DDATR, :DDVAL

IBNDDI

OBTAIN THE NEXT ROW OF TABLE DO, ORDERED BY ACCESS PATH DD1.
SET :DDEDN, :DDATR, :DDVAL

IBNDD2

OBTAIN THE NEXT ROW OF TABLE DO, ORDERED BY ACCESS PATH 002.
SET :DDEDN, : DDATR , :DDVAL

IBNDD3

OBTAIN THE NEXT ROW OF TABLE DO, ORDERED BY ACCESS PATH 003.
SET :DDEDN, :DDATR, :DDVAL

IBODIDD

USING COSET DIDO, OBTAIN THE ROW FROM TABLE Dl THAT O~NS SPECIFIC
ROWS IN MEMBER TABLE DO

IBFDIDD

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, : DIDATR , :DITTL, :DITIMC,
:DITIMM, :DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :DDEDN

OBTAIN THE FIRST ROW FROM MEMBER TABLE DO WITHIN COSET DIDO, USING
ACCESS PATH 001.

IBNDIDD

SELECT DDEDN, DDATR, DDVAL
FROM DD IN ENGINEERING_DATA_DATABASE
WHERE DDEDN = :DIEDN
ORDER BY DDEDN ASC, DDATR ASC, DDVAL ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE DO WITHIN COSET DIDD.
SET :DDEDN, : DDATR , :DDVAL

B·14 EDL Customization for NOS Revision A

'''--

Default Files (DF) Routines

Default Files (DF) Routines

The DF table contains the logical and actual file name pairs that are passed as
parameters to an application. EDL users can specify their own set of such pairs for
every application.

IBSDF

STORE A NEW ROW IN TABLE OF.

IBMDF

INSERT INTO OF IN ENGINEERING_DATA_DATABASE
SET DFUSR :DFUSR.

DFAPN = :DFAPN.
DFFIL = :DFFIL.
DFMOD = :DFMOD.
DFLFN = :DFLFN

MODIFY AN EXISTING ROW IN TABLE OF.

IBDDF

UDPATE OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR = :DFUSR AND

DFAPN = :DFAPN AND
DFLFN = :DFLFN

SET DFUSR = :DFUSR.
DFAPN = :DFAPN.
DFFIL = :DFFIL.
DFMOD = :DFMOD.
DFLFN = :DFLFN

DELETE AN EXISTING ROW IN TABLE OF.

IBODFO

DELETE FRO~ OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR :DFUSR AND

DFAPN :DFAPN AND
DFLFN :DFLFN

OBTAIN A ROW IN TABLE OF VIA ACCESS PATH DFO.

Revision A

SELECT DFUSR. DFAPN. DFFIL. DFMOD. DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR = :DFUSR AND

DFAPN = :DFAPN AND
DFLFN = :DFLFN

ORDER BY DFUSR ASC. DFAPN ASC. DFLFN ASC

Information Base Routines B·15

Default Files (DF) Routines

IBODFI

OBTAIN A ROW IN TABLE OF VIA ACCESS PATH DF1.

IBODF2

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFAPN = :DFAPN AND

DFFIL = :DFFIL AND
DFUSR = :DFUSR

ORDER BY DFAPN ASC, DFFIL ASC, DFUSR ASC

OBTAIN A ROW IN TABLE OF VIA ACCESS PATH DF2.

IBODF3

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR = :DFUSR AND

DFAPN = :DFAPN
ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

OBTAIN A ROW IN TABLE OF VIA ACCESS PATH DF3.

IBODF4

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR = :DFUSR
ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

OBTAIN A ROW IN TABLE OF VIA ACCESS PATH DF4.

IBADFO

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFFIL = :DFFIL
ORDER BY DFFIL ASC

OBTAIN A ROW IN TABLE OF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DFO.

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE (DFUSR > :DFUSR)

OR «DFUSR = :DFUSR) AND (DFAPN > :DFAPN»
OR «DFUSR = :DFUSR AND DFAPN = :DFAPN) AND (DFLFN > :DFLFN»
OR (DFUSR = :DFUSR AND DFAPN = :DFAPN AND DFLFN = :DFLFN)

ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

B·16 EDL Customization for NOS Revision A

I

\
'-

~-

Default Files (DF) Routines

IBADFI

OBTAIN A ROW IN TABLE OF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DF1.

IBADF2

SELECT DFUSR. DFAPN. DFFIL. DFMOD. DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE (DFAPN > :DFAPN)

OR «DFAPN = :DFAPN) AND (DFFIL > :DFFIL»
OR «DFAPN = :DFAPN AND DFFIL = :DFFIL) AND (DFUSR > :DFUSR»
OR (DFAPN = :DFAPN AND DFFIL = :DFFIL AND DFUSR = :DFUSR)

ORDER BY DFAPN ASC. DFFIL ASC. DFUSR ASC

OBTAIN A ROW IN TABLE OF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DF2.

IBADF3

SELECT DFUSR. DFAPN. DFFIL. DFMOD. DFLFN
FROM OF IN ENGINEERING_OAT A_DATABASE
WHERE (DFUSR > :DFUSR)

OR «DFUSR = :DFUSR) AND (DFAPN > :DFAPN»
OR (DFUSR = :DFUSR AND DFAPN = :DFAPN)

ORDER BY DFUSR ASC. DFAPN ASC. DFLFN ASC

OBTAIN A ROW IN TABLE OF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DF3.

IBADF4

SELECT DFUSR. DFAPN. DFFIL. DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR >= :DFUSR
ORDER BY DFUSR ASC. DFAPN ASC, DFLFN ASC

OBTAIN A ROW IN TABLE OF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DF4.

IBEDF2

SELECT DFUSR, DFAPN. DFFIL, DFMOD. DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFFIL >= :DFFIL
ORDER BY DFFIL ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OF VIA ACCESS PATH DF2.
SAVE THE CURRENT POSITION IN TABLE OF.
FETCH THE NEXT ROW FROM TABLE OF.

SET :DFUSR. :DFAPN. :DFFIL, :DFMOD. :DFLFN

IBEDF3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OF VIA ACCESS PATH DF3.
SAVE THE CURRENT POSITION IN TABLE OF.
FETCH THE NEXT ROW FROM TABLE OF.

SET :DFUSR. :DFAPN, :DFFIL. :DFMOD, :DFLFN

Revision A Information Base Routines B·17

Default Files (DF) Routines

IBEDF4

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OF VIA ACCESS PATH DF4.
SAVE THE CURRENT POSITION IN TABLE OF.
FETCH THE NEXT ROW FROM TABLE OF.

SET :DFUSR, :DFAPN, :DFFIL, :DFMOD, :DFLFN

IBFDFO

OBTAIN THE FIRST ROW OF TABLE OF, ORDERED BY ACCESS PATH DFO.

IBFDFI

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

OBTAIN THE FIRST ROW OF TABLE OF, ORDERED BY ACCESS PATH DF1.

IBFDF2

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
ORDER BY DFAPN ASC, DFFIL ASC, DFUSR ASC

OBTAIN THE FIRST ROW OF TABLE OF, ORDERED BY ACCESS PATH DF2.

IBFDF3

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

OBTAIN THE FIRST ROW OF TABLE OF, ORDERED BY ACCESS PATH DF3.

IBFDF4

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

OBTAIN THE FIRST ROW OF TABLE OF, ORDERED BY ACCESS PATH DF4.

IBNDFO

SELECT DFUSR, DFAPN, DFFIL, DFMOD, DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
ORDER BY DFFIL ASC

OBTAIN THE NEXT ROW OF TABLE OF, ORDERED BY ACCESS PATH DFO.
SET :DFUSR, :DFAPN, :OFFIL, :DFMOD, :DFLFN

IBNDFI

OBTAIN THE NEXT ROW OF TABLE OF, ORDERED BY ACCESS PATH OF1.
SET :DFUSR, :DFAPN, :OFFIL, :DFMOO. :DFLFN

B-18 EDL Customization for NOS Revision A

I

\"

Default Files (OF) Routines

IBNDF2

OBTAIN THE NEXT ROW OF TABLE OF. ORDERED BY ACCESS PATH DF2.
SET :DFUSR. :DFAPN. :DFFIL. :DFMOD. :DFLFN

IBNDF3

OBTAIN THE NEXT ROW OF TABLE DF. ORDERED BY ACCESS PATH DF3.
SET :DFUSR. :DFAPN, :DFFIL, :DFMOD, :DFLFN

IBNDF~

OBTAIN THE NEXT ROW OF TABLE OF, ORDERED BY ACCESS PATH DF4.
SET :DFUSR, :DFAPN, :DFFIL, :DFMOD, :DFLFN

IBOUIDF

USING COSET UIDF. OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE OF

IBFUIDF

SELECT UIUSR. UIPWD, UISTA. UIUUN, UIDPT, UICMD. UIFIN. UIMIN,
UILNA, UITTL. UIDELS. UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR. :UIPWD. :UISTA, :UIUUN. :UIDPT. :UICMD, :UIFIN,
:UIMIN. :UILNA. :UITTL. :UIDELS. :UIDELD, :UISTR. :UICTY,
:UIPHO. :UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :DFUSR

OBTAIN THE FIRST ROW FROM MEMBER TABLE OF WITHIN COSET UIDF, USING
ACCESS PATH DF3.

IBNUIDF

SELECT DFUSR, DFAPN. DFFIL. DFMOD. DFLFN
FROM OF IN ENGINEERING_DATA_DATABASE
WHERE DFUSR = :UIUSR
ORDER BY DFUSR ASC, DFAPN ASC, DFLFN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE OF WITHIN COSET UIDF.
SET :DFUSR, :DFAPN, :DFFIL, :DFMOD, :DFLFN

Revision A Information Base Routines B·19

Engineering Data Information (DI) Routines

Engineering Data Information (DI) Routines

The DI table contains the basic information for each user's engineering data.

IBSDI

STORE A NEW ROW IN TABLE 01.

IBMDI

INSERT INTO 01 IN ENGINEERING_DATA_DATABASE
SET DIEDN = :DIEDN,

DIFIL = :DIFIL,
DINAM = :DINAM,
DISID = :DISID,
DIADT = :DIADT,
DIEDT = :DIEDT,
DIUSR = :DIUSR,
DIREV = :DIREV,
DISTA = :DISTA,
DIDATC = : DIDATC ,
DIDATM = :DIDATM,
DIDATR = :DIDATR,
DITTL = :DITTL,
DITIMC = :DITIMC,
DITIMM = :DITIMM,
DITIMR = :DITIMR

MODIFY AN EXISTING ROW IN TABLE DI.

IBDDI

UDPATE 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :DIEDN
SET DIEDN = :DIEDN,

DIFIL = :DIFIL,
DINAM = :DINAM,
DISID = :DISID,
DIADT = :DIADT,
DIEDT = :DIEDT,
DIUSR = :DIUSR,
DIREV = :DIREV,
DISTA = :DISTA,
DIDATC = :DIDATC,
DIDATM = :DIDATM,
DIDATR = : DIDATR ,
DITTL = :DITTL,
DITIMC = :DITIMC,
DITIMM = :DITIMM,
DITIMR = :DITIMR

DELETE AN EXISTING ROW IN TABLE DI.
DELETE FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :DIEDN

B·20 EDL Customization for NOS Revision A

I

I
1,,----

~

Engineering Data Information (DI) Routines

IBODIO

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH 010.

IBODII

SELECT OIEON, OIFIL, OINAM, OISIO, OIAOI, OIEOT, OIUSR, OIREV,
OISTA, OIOATC, DIOATM, OIOATR, OITTL, OITIMC, OITIMM, OITIMR

FROM 01 IN ENGINEERING_DA!A_DATABASE
WHERE DIEDN = :DIEON
ORDER BY OIEDN ASC

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH 011.

IBODI2

SELECT OIEON, OIFIL, OINAM, OISIO, OIAOT, DIEOT, OIUSR, OIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE OINAM = :OINAM
ORDER BY DISID ASC, DIREV ASC

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH 012.

IBODI3

SELECT DIEDN, DIFIL, DINAM, DISIO, OIAOT, DIEOT, OIUSR, OIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE OIFIL = :DIFIL
ORDER BY OINAM ASC, DISID ASC, DIREV ASC

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH 013.

IBODI4

SELECT OIEDN, OIFIL, OINAM, DISIO, OIAOT, DIEOT, OIUSR, DIREV,
OISTA, OIDATC, DIDATM, OIDATR, OITTL, DITIMC, DITIMM, OITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE OINAM = :DINAM AND

OISID = :OISIO AND
OIFIL = :DIFIL

ORDER BY DINAM ASC, DISID ASC, DIFIL ASC

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH 014.

IBODI5

SELECT OIEON, DIFIL, OINAM, OISIO, OIAOT, OIEDT, DIUSR, OIREV,
OISTA, OIDATC, DIOATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_OATABASE
WHERE OIEOT = :DIEDT
ORDER BY DIEDT ASC

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH DIS.

Revision A

SELECT DIEDN, OIFIL, DINAM, DISID, OIAOT, OIEDT, DIUSR, DIREV,
OISTA, OIDATC, DIOATM, DIDATR, DITTL, DITIMC, OITIMM, OITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE OIAOT = :DIADT
ORDER BY OIAOT ASC

Information Base Routines B-21

Engineering Data Information (DI) Routines

IBODI6

OBTAIN A ROW IN TABLE 01 VIA ACCESS PATH 016.

IBADIO

SELECT DIEDN, DIFIl, DINAM, 01510, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTl, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIUSR = :DIUSR
ORDER BY DIUSR ASC

OBTAIN A ROW IN TABLE 01 USING AN APPROXIMATE KEY VALUE AND ACCESS PATH DID.

IBADII

SELECT DIEDN, DIFIl, DINAM, 01510, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTl, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE OIEON >= :OIEON
ORDER BY OIEDN ASC

OBTAIN A ROW IN TABLE 01 USING AN APPROXIMATE KEY VALUE AND ACCESS PATH 011.

IBADI3

SELECT DIEON, DIFIl, OINAM, OISID, OIAOT, OIEOT, OIUSR, OIREV,
DISTA, OIDATC, OIOATM, DIOATR, DITTl, DITIMC, DITIMM, OITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE OINAM >= :DINAM
ORDER BY OINAM ASC, OISIO ASC, OIREV ASC

OBTAIN A ROW IN TABLE 01 USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 013.

IBADI4

SELECT OIEON, OIFIl, OINAM, OISID, OIAOT, DIEDT, OIUSR, OIREV,
DISTA, OIOATC, OIOATM, DIDATR, DITTl, DITIMC, DITIMM, OITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE (OINAM > :OINAM)

OR «OINAM = :DINAM) AND (OISIO > :OISIO»
OR «OINAM = :OINAM AND OISIO = :OISID) AND (OIFIl > :OIFIl»
OR (OINAM = :OINAM AND DISID = :DISIO AND DIFIl = :DIFIl)

ORDER BY DINAM ASC, DISID ASC, DIFIl ASC

OBTAIN A ROW IN TABLE 01 USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 014.

SELECT OIEDN, DIFIl, DINAM, OISID, OIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTl, OITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_OATABASE
WHERE OIEDT >= :DIEDT
ORDER BY DIEDT ASC

B·22 EDL Customization for NOS Revision A

I"

Engineering Data Information (DI) Routines

IBADI5

OBTAIN A ROW IN TABLE 01 USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 015.

IBADI6

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIADT >= :DIADT
ORDER BY DIADT ASC

OBTAIN A ROW IN TABLE 01 USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH 016.

IBEDI!

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIUSR >= :DIUSR
ORDER BY DIUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE 01 VIA ACCESS PATH 011.
SAVE THE CURRENT POSITION IN TABLE 01.
FETCH THE NEXT ROW FROM TABLE 01.

IBEDI2

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE 01 VIA ACCESS PATH. 012.
SAVE THE CURRENT POSITION IN TABLE 01.
FETCH THE NEXT ROW FROM TABLE 01.

IBEDI4

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE 01 VIA ACCESS PATH 014.
SAVE THE CURRENT POSITION IN TABLE 01.
FETCH THE NEXT ROW FROM TABLE 01.

IBEDI5

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

OBTAIN THE NEXr DUPLICATE ROW FROM TABLE 01 VIA ACCESS PATH 015.
SAVE THE CURRENT POSITION IN TABLE 01.
FETCH THE NEXT ROW FROM TABLE 01.

Revision A

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, : DIDATC , :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

Information Base Routines B-23

Engineering Data Information (DI) Routines

IBEDI6

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE DI VIA ACCESS PATH DI6.
SAVE THE CURRENT POSITION IN TABLE DI.
FETCH THE NEXT ROW FROM TABLE DI.

IBFDIO

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, : DIDATC , :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

OBTAIN THE FIRST ROW OF TABLE DI, ORDERED BY ACCESS PATH DIO.

IBFDI26

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
ORDER BY DIEDN ASC

OBTAIN THE FIRST ROW OF TABLE 01, ACCESS PATH 016
ORDER BY ACCESS PATH 012

IBFDI3

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE :DIUSR = DIUSR
ORDER BY DINAM ASC, DISID ASC, DIREV ASC

OBTAIN THE FIRST ROW OF TABLE 01, ORDERED BY ACCESS PATH 013.

IBFDI4

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
ORDER BY DINAM ASC, DISID ASC, DIFIL ASC

OBTAIN THE FIRST ROW OF TABLE 01, ORDERED BY ACCESS PATH DI4.

IBFDI5

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
ORDER BY DIEDT ASC

OBTAIN THE FIRST ROW OF TABLE 01, ORDERED BY ACCESS PATH DI5.
SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,

DISTA, DIDATC, ~IDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR
FROM 01 IN ENGINEERING_DATA_DATABASE
ORDER BY DIADT ASC

B-24 EDL Customization for NOS Revision A

(
"'----

Engineering Data Information (DI) Routines

IBFDI6

OBTAIN THE FIRST ROW OF TABLE 01. ORDERED BY ACCESS PATH 016.

IBNDIO

SELECT DIEDN. DIFIl. DINAM. DISID. DIADT. DIEDT. DIUSR. DIREV.
DISTA. DIDATC. DIDATM. DIDATR. DITTl. DITIMC. DITIMM. DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
ORDER BY DIUSR ASC

OBTAIN THE NEXT ROW OF TABLE 01. ORDERED BY ACCESS PATH 010.

IBNDI26

SET :DIEDN. :DIFIL. :DINAM. :DISID. :DIADT. :DIEDT. :DIUSR.
:DIREV. :DISTA. :DIDATC. :DIDATM. :DIDATR. :DITTL. :DITIMC.
:DITIMM. :DITIMR

OBTAIN THE NEXT ROW OF TABLE DI. ACCESS PATH DIS ORDER BY DI2

IBNDII

SET :DIEDN. :DIFIL. :DINAM. :DISID. :DIADT. :DIEDT. :DIUSR.
:DIREV. :DISTA. :DIDATC. :DIDATM. :DIDATR. :DITTL. :DITIMC.
:DITIMM. :DITIMR

OBTAIN THE NEXT ROW OF TABLE DI. ORDERED BY ACCESS PATH DID.

IBNDI3

SET :DIEDN. :DIFIL. :DINAM. :DISID. :DIADT. :DIEDT. :DIUSR.
:DIREV. :DISTA. :DIDATC. :DIDATM. :DIDATR. :DITTL. :DITIMC.
:DITIMM. :DITIMR

OBTAIN THE NEXT ROW OF TABLE DI. ORDERED BY ACCESS PATH 013.

IBNDI4

SET :DIEDN. :DIFIL. :DINAM. :DISID. :DIADT. :DIEDT. :DIUSR.
:DIREV. :DISTA. :DIDATC. :DIDATM. :DIDATR. :DITTL. :DITIMC.
:DITIMM. :DITIMR

OBTAIN THE NEXT ROW OF TABLE 01. ORDERED BY ACCESS PATH 014.

IBNDI5

SET :DIEDN. :DIFIL. :DINAM. :DISID. :DIADT. :DIEDT. :DIUSR.
:DIREV. :DISTA. :DIDATC. :DIDATM. :DIDATR. :DITTL. :DITIMC.
:DITIMM. :DITIMR

OBTAIN THE NEXT ROW OF TABLE DI. ORDERED BY ACCESS PATH 015.

Revision A

SET :DIEDN. :DIFIL. :DINAM. :DISID. :DIADT. :DIEDT. :DIUSR.
:DIREV, :DISTA, : DIDATC , :DIDATM, : DIDATR , :DITTL, :DITIMC,
:DITIMM. :DITIMR

Information Base Routines B·25

Engineering Data Information (DI) Routines

IBNDI6

OBTAIN THE NEXT ROW OF TABLE 01, ORDERED BY ACCESS PATH 016.

IBOETDI

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM; :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

USING COSET ETDI, OBTAIN THE ROW FROM TABLE ET THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE 01

IBOATDI

SELECT ETEDT, ETDSC
INTO :ETEDT, :ETDSC
FROM ET IN ENGINEERING_DATA_DATABASE
WHERE ETEDT = :DIEDT

USING COSET ATDI, OBTAIN THE ROW FROM TABLE AT THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE 01

IBOFIDI

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
INTO :ATADT, :ATNAM, :ATFTC, : ATTNA , :ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATADT = :DIADT

USING COSET FIDI, OBTAIN THE ROW FROM TABLE FI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE 01

IBFETDI

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

INTO :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :DIFIL

OBTAIN THE FIRST ROW FROM MEMBER TABLE 01 WITHIN COSET ETDI, USING
ACCESS PATH 014.

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDT = :ETEDT
ORDER BY DIEDT ASC

B-26 EDL Customization for NOS Revision A

Engineering Data Information (D!) Routines

IBFATDI

OBTAIN THE FIRST ROW FROM MEMBER TABLE 01 WITHIN COSET ATDI, USING
ACCESS PATH 015.

IBFFIDI

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIADT = :ATADT
ORDER BY DIADT ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE 01 WITHIN COSET FIDI, USING
ACCESS PATH 012.

IBNETDI

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIFIL = :FIFIL
ORDER BY DIFIL ASC, DINAM ASC, DISID ASC, DIREV ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE 01 WITHIN COSET ETOI.

IBNATDI

SET :OIEDN, :OIFIL, :OINAM, :DISIO, :DIADT, :DIEDT, :OIUSR,
:DIREV, :OISTA, :OIOATC, :OIOATM, :OIDATR, :DITTL, :OITIMC,
:DITIMM, :OITIMR

OBTAIN THE NEXT ROW FROM MEMBER TABLE 01 WITHIN COSET ATDI.

IBNFIDI

SET :OIEDN, :OIFIL, :OINAM, :DISID, :OIADT, :DIEDT, :DIUSR,
:OIREV, :OISTA, :OIOATC, :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

OBTAIN THE NEXT ROW FROM MEMBER TABLE 01 WITHIN COSET FIOI.

Revision A

SET :DIEDN, :DIFIL, :DINAM, :DISID, :DIAOT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM. :DIDATR. :DITTL. :DITIMC.
:DITIMM. :DITIMR

Information Base Routines B-27

Data Required (DR) Routines

Data Required (DR) Routines

The DR table identifies all the data sets that must be available in order for a given
data set to be correctly interpreted.

IBSDR

STORE A NEW ROW IN TABLE DR.

IBMDR

INSERT INTO DR IN ENGINEERING_DATA_DATABASE
SET DREDN = :DREDN,

DREDNR = :DREDNR

MODIFY AN EXISTING ROW IN TABLE DR.

IBDDR

UDPATE DR IN ENGINEERING_DATA_DATABASE
WHERE DREDN = :DREDN AND

DREDNR = :DREDNR
SET DREDN = :DREDN,

DREDNR = :DREDNR

DELETE AN EXISTING ROW IN TABLE DR.

IBODRO

DELETE FROM DR IN ENGINEERING_DATA_DATABASE
WHERE DREDN = :DREDN AND

DREDNR = :DREDNR

OBTAIN A ROW IN TABLE DR VIA ACCESS PATH ORO.

IBODRI

SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE DREDN = :DREDN AND

DREDNR = :DREDNR
ORDER BY DREDN ASC, DREDNR ASC

OBTAIN A ROW IN TABLE DR VIA ACCESS PATH DR1.

IBODR2

SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE DREDN = :DREDN
ORDER BY DREDN ASC

OBTAIN A ROW IN TABLE DR VIA ACCESS PATH DR2.
SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE DREDNR = :DREDNR
ORDER BY DREDNR ASC

B·28 EDL Customization for NOS Revision A

Data Required (DR) Routines

IBADRO

OBTAIN A ROW IN TABLE DR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH ORO.

IBADRI

SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE (DREDN > :DREDN)

OR «DREDN = :OREON) AND (DREONR > :DREONR»
OR (OREON = :DREDN AND OREDNR = :OREDNR)

ORDER BY OREON ASC, DREONR ASC

OBTAIN A ROW IN TABLE DR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DR 1.

IBADR2

SELECT DREON, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE ORE ON >= :OREON
ORDER BY OREON ASC

OBTAIN A ROW IN TABLE DR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DR2.

IBEDRI

SELECT OREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE OREDNR >= :DREDNR
ORDER BY OREDNR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE DR VIA ACCESS PATH DR1.
SAVE THE CURRENT POSITION IN TABLE DR.
FETCH THE NEXT ROW FROM TABLE DR.

SET :DREDN, :DREONR

IBEDR2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE DR VIA ACCESS PATH DR2.
SAVE THE CURRENT POSITION IN TABLE DR.
FETCH THE NEXT ROW FROM TABLE DR.

SET :DREDN, :DREDNR

IBFDRO

OBTAIN THE FIRST ROW OF TABLE DR, ORDERED BY ACCESS PATH DRO.

Revision A

SELECT DREDN, DREDNR
FROM DR IN ENGINE~RING_OATA_DATABASE
ORDER BY DREON ASC, DREONR ASC

Information Base Routines B·29

Data Required (DR) Routines

IBFDRI

OBTAIN THE FIRST ROW OF TABLE DR, ORDERED BY ACCESS PATH DR1.

IBFDR2

SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
ORDER BY DREDN ASC

OBTAIN THE FIRST ROW OF TABLE DR. ORDERED BY ACCESS PATH DR2.

IBNDRO

SELECT DREDN. DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
ORDER BY DREDNR ASC

OBTAIN THE NEXT ROW OF TABLE DR. ORDERED BY ACCESS PATH ORO.
SET :DREDN. :DREDNR

IBNDRI

OBTAIN THE NEXT ROW OF TABLE DR. ORDERED BY ACCESS PATH DR1.
SET :DREDN. :DREDNR

IBNDR2

OBTAIN THE NEXT ROW OF TABLE DR. ORDERED BY ACCESS PATH DR2.
SET :DREDN, :DREDNR

IBODDR2

USING COSET DDR2, OBTAIN THE ROW FROM TABLE DI· THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE DR

IBODDRI

SELECT DIEDN, DIFIL, DINAM, DISID. DIADT. DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR. DITTL, DITIMC, DITIMM. DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM. :DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :DREDN

USING COSET DDR1. OBTAIN THE ROW FROM TABLE 01 THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE DR

SELECT DIEDN. DIFIL. DINAM. OISIO, -DIAOT. DIEOT. DIUSR. OIREV.
DISTA. OIOATC, OIDATM. OIDATR, DITTL. DITIMC, OITIMM. DITIMR

INTO :OIEON. :OIFIL. :OINAM. :DISIO. :DIAOT, :DIEOT. :OIUSR.
:OIREV, :DISTA, :DIDATC. :DIDATM. :DIOATR, :DITTL, :DITIMC,
:OITIMM. :OITIMR

FROM 01 IN.ENGINEERING_OATA_OATABASE
WHERE OIEON = :DREON

B-30 EDL Customization for NOS Revision A

\
'-.

Data Required (DR) Routines

IBFDDR2

OBTAIN THE FIRST ROW FROM MEMBER TABLE DR WITHIN COSET DDR2, USING
ACCESS PATH DR2.

IBFDDRI

SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE DREDNR = :DIEDN
ORDER BY DREDNR ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE DR WITHIN COSET DDR1, USING
ACCESS PATH DR1.

IBNDDR2

SELECT DREDN, DREDNR
FROM DR IN ENGINEERING_DATA_DATABASE
WHERE DREDN = :DIEDN
ORDER BY DREDN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE DR WITHIN COSET DDR2.
SET :DREDN, :DREDNR

IBNDDRI

OBTAIN THE NEXT ROW FROM MEMBER TABLE DR WITHIN COSET DDR1.
SET :DREDN, :DREDNR

Revision A Information Base Routines B-31

Data Source (OS) Routines

Data Source (DS) Routines

The DS table defines the data sets from which a new data set was derived. Such a
data set is said to be the "source" for the new data.

IBSDS

STORE A NEW ROW IN TABLE DS.

IBMDS

INSERT INTO DS IN ENGINEERING_DATA_DATABASE
SET DSEDN = :DSEDN,

DSEDNS = :DSEDNS

MODIFY AN EXISTING ROW IN TABLE DS.

IBDDS

UDPATE DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDN = :DSEDN AND

DSEDNS = :DSEDNS
SET DSEDN = :DSEDN,

DSEDNS = :DSEDNS

DELETE AN EXISTING ROW IN TABLE DS.

IBODSO

DELETE FROM DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDN = :DSEDN AND

DSEDNS = :DSEDNS

OBTAIN A ROW IN TABLE DS VIA ACCESS PATH DSO.

IBODSI

SELECT DSEDN, DSEDNS
FROM DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDN = :DSEDN AND

DSEDNS = :DSEDNS
ORDER BY DSEDN ASC, DSEDNS ASC

OBTAIN A ROW IN TABLE DS VIA ACCESS PATH DS1.

IBODS2

SELECT DSEDN, DSEDNS
FROM DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDN = :DSEDN
ORDER BY DSEDN ASC

OBTAIN A ROW IN TABLE DS VIA ACCESS PATH DS2.
SELECT DSEDN, DSEDNS
FROM DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDNS =\ :DSEDNS
ORDER BY DSEDNS ASC

B·32 EDL Customization for NOS Revision A

(

',,-.-

Data Source (DS) Routines

IBADSO

OBTAIN A ROW IN TABLE OS USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DSO.

IBADSI

SELECT DSEDN. DSEDNS
FROM OS IN ENGINEERING_DATA_DATABASE
WHERE (DSEDN > :DSEDN)

OR «DSEDN = :DSEDN) AND (DSEDNS > :DSEDNS»
OR (DSEDN = :DSEDN AND DSEDNS = : DSEDNS)

ORDER BY DSEDN ASC. DSEDNS ASC

OBTAIN A ROW IN TABLE OS USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DS1.

IBADS2

SELECT DSEDN. DSEDNS
FROM OS IN ENGINEERING_DATA_DATABASE
WHERE DSEDN >= :DSEDN
ORDER BY DSEDN ASC

OBTAIN A ROW IN TABLE OS USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH DS2.

IBEDSI

SELECT DSEDN. DSEDNS
FROM OS IN ENGINEERING_DATA_DATABASE
WHERE DSEDNS >= :DSEDNS
ORDER BY OSEONS ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OS VIA ACCESS PATH OSl.
SAVE THE CURRENT POSITION IN TABLE OS.
FETCH THE NEXT ROW FROM TABLE OS.

SET :OSEDN. :DSEONS

IBEDS2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OS VIA ACCESS PATH OS2.
SAVE THE CURRENT POSITION IN TABLE OS.
FETCH THE NEXT ROW FROM TABLE OS.

SET :DSEDN. :DSEONS

IBFDSO

OBTAIN THE FIRST ROW OF TABLE OS. ORDERED BY ACCESS PATH OSO.

Revision A

SELECT OSEON. DSEDNS
FROM OS IN ENGINEERING_DATA_DATABASE
ORDER BY OSEDN ASC. DSEONS ASC

Information Base Routines B·33

Data Source (DS) Routines

IBFDSI

OBTAIN THE FIRST ROW OF TABLE OS, ORDERED BY ACCESS PATH DS1.

IBFDS2

SELECT OSEDN, DSEDNS
FROM OS IN ENGINEERING_OATA_DATABASE
ORDER BY OSEDN ASC

OBTAIN THE FIRST ROW OF TABLE OS, ORDERED BY ACCESS PATH DS2.

IBNDSO

SELECT DSEDN, DSEDNS
FROM OS IN ENGINEERING_OATA_DATABASE
ORDER BY DSEDNS ASC

OBTAIN THE NEXT ROW OF TABLE OS, ORDERED BY ACCESS PATH DSO.
SET :OSEDN, :OSEDNS

IBNDSI

OBTAIN THE NEXT ROW OF TABLE OS, ORDERED BY ACCESS PATH DS1.
SET :DSEDN, :DSEDNS

IBNDS2

OBTAIN THE NEXT ROW OF TABLE OS, ORDERED BY ACCESS PATH DS2.
SET :DSEDN, :DSEDNS

IBODDS2

USING COSET DDS2, OBTAIN THE ROW FROM TABLE 01 THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE OS

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, OIOATR, DITTL, DITIMC, DITIMM, DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, : DIDATC , :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

FROM 01 IN ENGINEERING_OATA_DATABASE
WHERE DIEDN = :DSEON

B-34 EDL Customization for NOS Revision A

'-~-

Data Source (OS) Routines

IBODDS!

USING COSET DDS1, OBTAIN THE ROW FROM TABLE DI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE DS

IBFDDS2

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, : DIDATR , :DITTL, :DITIMC,
:DITIMM, :DITIMR

FROM DI IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :DSEDN

OBTAIN THE FIRST ROW FROM MEMBER TABLE OS WITHIN COSET DDS2, USING
ACCESS PATH DS2.

IBFDDSI

SELECT DSEDN, DSEDNS
FROM DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDNS = :DIEDN
ORDER BY DSEDNS ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE OS WITHIN COSET DDS1, USING
ACCESS PATH DS1.

IBNDDS2

SELECT DSEDN, DSEDNS
FROM DS IN ENGINEERING_DATA_DATABASE
WHERE DSEDN = :DIEDN
ORDER BY DSEDN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE DS WITHIN COSET DDS2.
SET :DSEDN, :DSEDNS

IBNDDSI

OBTAIN THE NEXT ROW FROM MEMBER TABLE DS WITHIN COSET DDS1.
SET :DSEDN, :DSEDNS

Revision A Information Base Routines B-35

Engineering Attributes (EA) Routines

Engineering Attributes (EA) Routines

The EA table defines the standard attributes used to describe data at the site. Users
are prompted for these attributes when they choose to describe engineering data.

IBSEA

STORE A NEW ROW IN TABLE EA.

IBMEA

INSERT INTO EA IN ENGINEERING_DATA_DATABASE
SET EAEDT = :EAEDT,

EAATR = :EAATR

MODIFY AN EXISTING ROW IN TABLE EA.

IBDEA

UDPATE EA IN ENGINEERING_DATA_DATABASE
WHERE EAATR = :EAATR AND

EAEDT = :EAEDT
SET EAEDT = :EAEDT,

EAATR = :EAATR

DELETE AN EXISTING ROW IN TABLE EA.

IBOEAO

DELETE FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAATR :EAATR AND

EAEDT = : EAEDT

OBTAIN A ROW IN TABLE EA VIA ACCESS PATH EAO.

IBOEAl

SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAATR = :EAATR AND

EAEDT = :EAEDT
ORDER BY EAATR ASC, EAEDT ASC

OBTAIN A ROW IN TABLE EA VIA ACCESS PATH EA1.

IBOEA2

SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAEDT = :EAEDT
ORDER BY EAEDT ASC, EAATR ASC

OBTAIN A ROW IN TABLE EA VIA ACCESS PATH EA2.
SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAATR = :EAATR
ORDER BY EAATR ASC

B·36 EDL Customization for NOS Revision A

"'-----

("

Engineering Attributes (EA) Routines

IBAEAO

OBTAIN A ROW IN TABLE EA USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH EAO.

IBAEAl

SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE (EAATR > :EAATR)

OR «EAATR = :EAATR) AND (EAEDT > :EAEDT»
OR (EAATR = :EAATR AND EAEDT = :EAEDT)

ORDER BY EAATR ASC, EAEDT ASC

OBTAIN A ROW IN TABLE EA USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH EA1.

IBAEA2

SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAEDT >= :EAEDT
ORDER BY EAEDT ASC, EAATR ASC

OBTAIN A ROW IN TABLE EA USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH EA2.

IBEEAl

SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAATR >= :EAATR
ORDER BY EAATR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE EA VIA ACCESS PATH EA1.
SAVE THE CURRENT POSITION IN TABLE EA.
FETCH THE NEXT ROW FROM TABLE EA.

SET :EAEDT, :EAATR

IBEEA2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE EA VIA ACCESS PATH EA2.
SAVE THE CURRENT POSITION IN TABLE EA.
FETCH THE NEXT ROW FROM TABLE EA.

SET :EAEDT, :EAATR

IBFEAO

OBTAIN THE FIRST ROW OF TABLE EA, ORDERED BY ACCESS PATH EAO.

Revision A

SELECT EAEDT, EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
ORDER BY EAATR ASC, EAEDT ASC

Information Base Routines B·37

Engineering Attributes (EA) Routines

IBFEAl

OBTAIN THE FIRST ROW OF TABLE EA. ORDERED BY ACCESS PATH EA1.

IBFEA2

SELECT EAEDT. EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
ORDER BY EAEDT ASC. EAATR ASC

OBTAIN THE FIRST ROW OF TABLE EA. ORDERED BY ACCESS PATH EA2.

IBNEAO

SELECT EAEDT. EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
ORDER BY EAATR ASC

OBTAIN THE NEXT ROW OF TABLE EA. ORDERED BY ACCESS PATH EAO.
SET :EAEDT. :EAATR

IBNEAl

OBTAIN THE NEXT ROW OF TABLE EA. ORDERED BY ACCESS-PATH EA1.
SET :EAEDT. :EAATR

IBNEA2

OBTAIN THE NEXT ROW OF TABLE EA. ORDERED BY ACCESS PATH EA2.
SET :EAEDT. :EAATR

IBOETEA

USING COSET ETEA. OBTAIN THE ROW FROM TABLE ET THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE EA

IBFETEA

SELECT ETEDT. ETDSC
INTO :ETEDT. :ETDSC
FROM ET IN ENGINEERING_DATA_DATABASE
WHERE ETEDT = :EAEDT

OBTAIN THE FIRST ROW FROM MEMBER TABLE EA WITHIN COSET ETEA. USING
ACCESS PATH EA 1.

IBNETEA

SELECT EAEDT. EAATR
FROM EA IN ENGINEERING_DATA_DATABASE
WHERE EAEDT = :ETEDT
ORDER BY EAEDT ASC. EAATR ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE EA WITHIN COSET ETEA.
SET :EAEDT. :EAATR

B·38 EDL Customization for NOS Revision A

Engineering Categories (ET) Routines

Engineering Categories (ET) Routines

The ET table defines the categories of engineering data descriptions used by the site.
Categories provide a way of organizing and separating data based on how it is used.

IBSET

STORE A NEW ROW IN TABLE ET.

IBMET

INSERT INTO ET IN ENGINEERING_DATA_DATABASE
SET ETEDT = :ETEDT,

ETDSC = :ETDSC

MODIFY AN EXISTING ROW IN TABLE ET.

IBDET

UDPATE ET IN ENGINEER I NG_DAT A_DATABASE
WHERE ETEDT = :ETEDT
SET ETEDT : ETEDT ,

ETDSC = :ETDSC

DELETE AN EXISTING ROW IN TABLE ET.

IBOETO

DELETE FROM ET IN ENGINEERING_DATA_DATABASE
WHERE ETEDT = :ETEDT

OBTAIN A ROW IN TABLE ET VIA ACCESS PATH ETO.

IBAETO

SELECT ETEDT, ETDSC
FROM ET IN ENGINEERING_DATA_DATABASE
WHERE ETEDT = :ETEDT
ORDER BY ETEDT ASC

OBTAIN A ROW IN TABLE ET USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH ETO.

IBFETO

SELECT ETEDT, ETDSC
FROM ET IN ENGINEERING_DATA_DATABASE
WHERE ETEDT >= :ETEDT
ORDER BY ETEDT ASC

OBTAIN THE FIRST ROW OF TABLE ET, ORDERED BY ACCESS PATH ETO.

IBNETO

SELECT ETEDT, ETDSC
FROM ET IN ENGINEERING_OAT A_DATABASE
ORDER BY ETEDT ASC

OBTAIN THE NEXT ROW OF TABLE ET, ORDERED BY ACCESS PATH ETO.
SET :ETEDT, :ETDSC

Revision A Information Base Routines B-39

Family Data (FD) Routines

Family Data (FD) Routines

The FD table defines the family-engineering data relationships.

IBSFD

STORE A NEW ROW IN TABLE FD.

IBMFD

INSERT INTO FD IN ENGINEERING_DATA_DATABASE
SET FDFAM = :FDFAM,

FDEDN = :FDEDN

MODIFY AN EXISTING ROW IN TABLE FD.

IBDFD

UDPATE FD IN ENGINEERING_DATA_DATABASE
WHERE FDFAM = :FDFAM AND

FDEDN = :FDEDN
SET FDFAM = :FDFAM,

FDEDN = :FDEDN

DELETE AN EXISTING ROW IN TABLE FD.

IBOFDO

DELETE FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDFAM = :FDFAM AND

FDEDN = :FDEDN

OBTAIN A ROW IN TABLE FD VIA ACCESS PATH FDD.

IBOFDI

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDFAM = :FDFAM AND

FDEDN = :FDEDN
ORDER BY FDFAM ASC, FDEDN ASC

OBTAIN A ROW IN TABLE FD VIA ACCESS PATH FD1.
SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDFAM = :FDFAM
ORDER BY FDFAM ASC

B-40 EDL Customization for NOS Revision A

IBOFD2

OBTAIN A ROW IN TABLE FD VIA ACCESS PATH FD2.

IBAFDO

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDEDN = :FDEDN
ORDER BY FDEDN ASC

Family Data (FD) Routines

OBTAIN A ROW IN TABLE FD USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FDO.

IBAFDI

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE (FDFAM > :FDFAM)

OR «FDFAM = :FDFAM) AND (FDEDN > :FDEDN»
OR (FDFAM = :FDFAM AND FDEDN = :FDEDN)

ORDER BY FDFAM ASC, FDEDN ASC

OBTAIN A ROW IN TABLE FD USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FD1.

IBAFD2

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDFAM >= :FDFAM
ORDER BY FDFAM ASC

OBTAIN A ROW IN TABLE FD USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FD2.

IBEFDI

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDEDN >= :FDEDN
ORDER BY FDEDN ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FD VIA ACCESS PATH FD1.
SAVE THE CURRENT POSITION IN TABLE FD.
FETCH THE NEXT ROW FROM TABLE FD.

SET :FDFAM, :FDEDN

IBEFD2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FD VIA ACCESS PATH FD2.
SAVE THE CURRENT POSITION IN TABLE FD.
FETCH THE NEXT ROW FROM TABLE FD.

SET :FDFAM, :FDEDN

Revision A Information Base Routines B-41

Family Data (FD) Routines

IBFFDO

OBTAIN THE FIRST ROW OF TABLE FD, ORDERED BY ACCESS PATH FDO.

IBFFDI

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
ORDER BY FDFAM ASC, FDEDN ASC

OBTAIN THE FIRST ROW OF TABLE FD, ORDERED BY ACCESS PATH FD1.

IBFFD2

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
ORDER BY FDFAM ASC

OBTAIN THE FIRST ROW OF TABLE FD, ORDERED BY ACCESS PATH FD2.

IBNFDO

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
ORDER BY FDEDN ASC

OBTAIN THE NEXT ROW OF TABLE FD, ORDERED BY ACCESS PATH FDO.
SET :FDFAM, :FDEDN

IBNFDl·

OBTAIN THE NEXT ROW OF TABLE FD, ORDERED BY ACCESS PATH FD1.
SET :FDFAM, :FDEDN

IBNFD2

OBTAIN THE NEXT ROW OF TABLE FD, ORDERED BY ACCESS PATH FD2.
SET :FDFAM, :FDEDN

IBODIFD

USING COSET DIFD, OBTAIN THE ROW FROM TABLE DI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE FD

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

INTO : DIEDN, : DIFIL, :DINAM, : DISID, : DIADT, : DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, :DIDATR, :DITTL, :DITIMC,
:DITIMM, :DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :FDEDN

B-42 EDL Customization for NOS Revision A

Family Data (FD) Routines

IBOFMFD

USING COSET FMFD, OBTAIN THE ROW FROM TABLE FM THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE FD

IBFDIFD

SELECT FMFAM, FMTTL
INTO :FMFAM, :FMTTL
FROM FM IN ENGINEERING_DATA_DATABASE
WHERE FMFAM = :FDFAM

OBTAIN THE FIRST ROW FROM MEMBER TABLE FD WITHIN COSET DIFD, USING
ACCESS PATH FD2.

IBFFMFD

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDEDN = :DIEDN
ORDER BY FDEDN ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE FD WITHIN COSET FMFD, USING
ACCESS PATH FD1.

IBNDIFD

SELECT FDFAM, FDEDN
FROM FD IN ENGINEERING_DATA_DATABASE
WHERE FDFAM = :FMFAM
ORDER BY FDFAM ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE FD WITHIN COSET DIFD.
SET :FDFAM, :FDEDN

IBNFMFD

OBTAIN THE NEXT ROW FROM MEMBER TABLE FD WITHIN COSET FMFD.
SET :FDFAM, :FDEDN

Revision A Information Base Routines B-43

File Information (FI) Routines

File Information (FI) Routines

The FI table contains the definitions of all user files known to EDL.

IBSFI

STORE A NEW ROW IN TABLE Fl.

IBMFI

INSERT INTO FI IN ENGINEERING_DATA_DATABASE
SET FIFIL = :FIFIL,

FIHOS = :FIHOS,
FIFUN = :FIFUN,
FIPFN = :FIPFN,
FILNA = :FILNA,
FIFTC = :FIFTC,
FIUSR = :FIUSR,
FICT = :FICT,
FIMOD = :FIMOD,
FISTA = :FISTA,
FIVSN = :FIVSN

MODIFY AN EXISTING ROW IN TABLE Fl.

IBDFI

UDPATE FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :FIFIL
SET FIFIL :FIFIL.

FIHOS = :FIHOS.
FIFUN = :FIFUN.
FIPFN = :FIPFN,
FILNA = :FILNA.
FIFTC = :FIFTC.
FIUSR = :FIUSR.
FICT = :FICT.
FIMOD = :FIMOD.
FISTA = :FISTA.
FIVSN = :FIVSN

DELETE AN EXISTING ROW IN TABLE Fl.

IBOFIO

DELETE FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :FIFIL

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FlO.
SELECT FIFIL. FIHOS. FIFUN. FIPFN. FILNA. FIFTC. FIUSR. FICT.

FIMOD. FISTA. FIVSN
FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :FIFIL
ORDER BY FIFIL ASC

B-44 EDL Customization for NOS Revision A

(
~.

File Information (FI) Routines

IBOFIl

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FI1.

IBOFI2

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIHOS :FIHOS AND

FIPFN = :FIPFN AND
FIFUN = :FIFUN AND
FILNA = :FILNA

ORDER BY FIHOS ASC, FIPFN ASC, FIFUN ASC, FILNA ASC

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FI2.

IBOFI3

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FlMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIUSR = :FIUSR
ORDER BY FIHOS ASC, FIFUN ASC, FIPFN ASC, FILNA ASC

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FI3.

IBOFI4

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIHOS = :FIHOS AND

FIFUN = :FIFUN
ORDER BY FIHOS ASC, FIFUN ASC, FIPFN ASC

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FI4.

IBOFI5

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFTC = :FIFTC
ORDER BY FIFTC ASC, FIPFN ASC

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FIS.

Revision A

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FlMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIHOS = :FIHOS
ORDER BY FIHOS ASC, FIPFN ASC

Information Base Routines B-45

File Information (FI) Routines

IBOFI6

OBTAIN A ROW IN TABLE FI VIA ACCESS PATH FI6.

IBAFIO

SELECT FIFIL, FIHOS. FIFUN. FIPFN~ FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

INTO :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR, :FICT,
:FIMOD, :FISTA, :FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIPFN = :FIPFN

OBTAIN A ROW IN TABLE FI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FlO.

IBAFIl

SELEC~ FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL >= :FIFIL
ORDER BY FIFIL ASC

OBTAIN A ROW IN TABLE FI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FI1.

IBAFI2

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE (FIHOS > :FIHOS)

OR «FIHOS = :FIHOS) AND (FIPFN > :FIPFN»
OR «FIHOS = :FIHOS AND FIPFN = :FIPFN) AND (FIFUN > :FIFUN»
OR «FIHOS = :FIHOS AND FIPFN = :FIPFN AND FIFUN = :FIFUN) AND

(FILNA > :FILNA»
OR (FIHOS = :FIHOS AND FIPFN = :FIPFN AND FIFUN = :FIFUN AND

FILNA = :FILNA)
ORDER BY FIHOS ASC, FIPFN ASC, FIFUN ASC, FILNA ASC

OBTAIN A ROW IN TABLE FI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FI2.

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIUSR >= :FIUSR
ORDER BY FIUSR ASC, FIHOS ASC, FIFUN ASC, FIPFN ASC, FILNA ASC

B-46 EDL Customization for NOS Revision A

\,,-_.

\

'- ..

File Information (FI) Routines

IBAFI3

OBTAIN A ROW IN TABLE FI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FI3.

IBAFI4

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE (FIHOS > :FIHOS)

OR «FIHOS = :FIHOS) AND (FIFUN > :FIFUN»
OR (FIHOS = :FIHOS AND FIFUN = :FIFUN)

ORDER BY FIHOS ASC, FIFUN ASC

OBTAIN A ROW IN TABLE FI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FI4.

IBAFI5

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFTC >= :FIFTC
ORDER BY FIFTC ASC

OBTAIN A ROW IN TABLE FI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FIS.

IBEFI2

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIHOS >= :FIHOS
ORDER BY FIHOS ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FI VIA ACCESS PATH FI2.
SAVE THE CURRENT POSITION IN TABLE Fl.
FETCH THE NEXT ROW FROM TABLE Fl.

IBEFI3

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FI VIA ACCESS PATH F13.
SAVE THE CURRENT POSITION IN TABLE Fl.
FETCH THE NEXT ROW FROM TABLE Fl.

Revision A

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

Information Base Routines B·47

File Information (FI) Routines

IBEFI4

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FI VIA ACCESS PATH FI4.
SAVE THE CURRENT POSITION IN TABLE Fl.
FETCH THE NEXT ROW FROM TABLE Fl.

IBEFI5

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN. :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FI VIA ACCESS PATH FIS.
SAVE THE CURRENT POSITION IN TABLE Fl.
FETCH THE NEXT ROW FROM TABLE Fl.

IBFFIO

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN. :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

OBTAIN THE FIRST ROW OF TABLE FI, ORDERED BY ACCESS PATH FlO.

IBFFIl

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
ORDER BY FIFIL ASC

OBTAIN THE FIRST ROW OF TABLE FI, ORDERED BY ACCESS PATH FI1.

IBFFI2

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FlMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
ORDER BY FIHOS ASC, FIPFN ASC, FIFUN ASC, FILNA ASC

OBTAIN THE FIRST ROW OF TABLE FI, ORDERED BY ACCESS PATH FI2.

IBFFI3

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
ORDER BY FIUSR ASC, FIHOS ASC, FIFUN ASC, FIPFN ASC, FILNA ASC

OBTAIN THE FIRST ROW OF TABLE FI, ORDERED BY ACCESS PATH FI3.

IBFFI4

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FlMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
ORDER BY FIHOS ASC, FIFUN ASC

OBTAIN THE FIRST ROW OF TABLE FI, ORDERED BY ACCESS PATH FI4.
SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,

FIMOD, FISTA, FIVSN
FROM FI IN ENGINEERING_DATA_DATABASE
ORDER BY FIFTC ASC

B-48 EDL Customization for NOS Revision A

'''---

-'--- .'

File Information (FI) Routines

IBFFI5

OBTAIN THE FIRST ROW OF TABLE FI, ORDERED BY ACCESS PATH FIS.

IBNFIO

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, .FICT,
FlMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
ORDER BY FIHOS ASC

OBTAIN THE NEXT ROW OF TABLE FI, ORDERED BY ACCESS PATH FlO.

IBNFII

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FlMOD, :FISTA, :FIVSN

OBTAIN THE NEXT ROW OF TABLE FI, ORDERED BY ACCESS PATH F11.

IBNFI2

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

OBTAIN THE NEXT ROW OF TABLE FI, ORDERED BY ACCESS PATH FI2.

IBNFI3

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FlMOD, :FISTA, :FIVSN

OBTAIN THE NEXT ROW OF TABLE FI, ORDERED BY ACCESS PATH FI3.

IBNFI4

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC. :FIUSR.
:FICT. :FIMOD. :FISTA. :FIVSN

OBTAIN THE NEXT ROW OF TABLE FI, ORDERED BY ACCESS PATH F14.

IBNFI5

SET :FIFIL, :FIHOS. :FIFUN, :FIPFN, :FILNA. :FIFTC. :FIUSR.
:FICT. :FlMOD. :FISTA. :FIVSN

OBTAIN THE NEXT ROW OF TABLE FI, ORDERED BY ACCESS PATH FIS.

IBOUIFI

SET :FIFIL. :FIHOS, :FIFUN, :FIPFN. :FILNA, :FIFTC. :FIUSR.
:FICT. :FIMOD. :FISTA. :FIVSN

USING COSET UIFI. OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE FI

Revision A

SELECT UIUSR. UIPWD. UISTA. UIUUN. UIDPT. UICMD, UIFIN. UIMIN,
UILNA. UITTL. UIDELS. UIDELD. UISTR. UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD. :UISTA. :UIUUN. :UIDPT. :UICMD, :UIFIN.
:UIMIN. :UILNA. :UITTL, :UIDELS. :UIDELD, :UISTR. :UICTY.
:UIPHO, :UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :FIUSR

Information Base Routines B-49

File Information (FI) Routines

IBOHIFI

USING COSET HIFI, OBTAIN THE ROW FROM TABLE HI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE FI

IBFUIFI

SELECT HIHOS, HIOFF, HIOS
INTO :HIHOS, :HIOFF, :HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIHOS = :FIHOS

OBTAIN THE FIRST ROW FROM MEMBER TABLE FI WITHIN COSET UIFI, USING
ACCESS PATH FI2.

IBFHIFI

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIUSR = :UIUSR
ORDER BY FIUSR ASC, FIHOS ASC, FIFUN ASC, FIPFN ASC, FILNA ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE FI WITHIN COSET HIFI, USING
ACCESS PATH FIS.

IBNUIFI

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIHOS = :HIHOS
ORDER BY FIHOS ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE FI WITHIN COSET UIFI.

IBNHIFI

SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

OBTAIN THE NEXT ROW FROM MEMBER TABLE FI WITHIN COSET HIFI.
SET :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,

:FICT, :FIMOD, :FISTA, :FIVSN

B·50 EDL Customization for NOS Revision A

',,--

!
\
'-

I

"'--

(

I

"'--

Family Information (FM) Routines

Family Information (FM) Routines

The FM record contains the part family codes associated with part numbers ..

IBSFM

STORE A NEW ROW IN TABLE FM.

IBMFM

INSERT INTO FM IN ENGINEERING_DATA_DATABASE
SET FMFAM = :FMFAM,

FMTTL = : FMTTL

MODIFY AN EXISTING ROW IN TABLE FM.

IBDFM

UDPATE FM IN ENGINEERING_DATA_DATABASE
WHERE FMFAM = :FMFAM
SET FMFAM = :FMFAM,

FMTTL = : FMTTL

DELETE AN EXISTING ROW IN TABLE FM.

IBOFMO

DELETE FROM FM IN ENGINEERING_DATA_DATABASE
WHERE FMFAM = :FMFAM

OBTAIN A ROW IN TABLE FM VIA ACCESS PATH FMO.

IBAFMO

SELECT FMFAM, FMTTL
FROM FM IN ENGINEERING_DATA_DATABASE
WHERE FMFAM = :FMFAM
ORDER BY FMFAM ASC

OBTAIN A ROW IN TABLE FM USING AN APPROXIMATE KEY VALUE AND ACCESS PATH FMO.

IBFFMO

SELECT FMFAM, FMTTL
FROM FM IN ENGINEERING_DATA_DATABASE
WHERE FMFAM >= :FMFAM
ORDER BY FMFAM ASC

OBTAIN THE FIRST ROW OF TABLE FM, ORDERED BY ACCESS PATH FMO.

IBNFMO

SELECT FMFAM, FMTTL
FROM FM IN ENGINEERING_DATA_DATABASE
ORDER BY FMFAM ASC

OBTAIN THE NEXT ROW OF TABLE FM, ORDERED BY ACCESS PATH FMO.
SET :FMFAM, :FMTTL

Revision A Information Base Routines B·51

File Permits (FP) Routines

File Permits (FP) Routines

The FP table defines group and user permits to files.

IBSFP

STORE A NEW ROW IN TABLE FP.

IBMFP

INSERT INTO FP IN ENGINEERING_DATA_DATABASE
SET FPFIL = :FPFIL,

FPUSR = :FPUSR,
FPMOD = : FPMOD

MODIFY AN EXISTING ROW IN TABLE FP.

IBDFP

UDPATE FP IN ENGINEERING_DATA_DATABASE
WHERE FPFIL = :FPFIL AND

FPUSR = :FPUSR
SET FPFIL = :FPFIL,

FPUSR :FPUSR,
FPMOD = : FPMOD

DELETE AN EXISTING ROW IN TABLE FP.

IBOFPO

DELETE FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPFIL = :FPFIL AND

FPUSR = :FPUSR

OBTAIN A ROW IN TABLE FP VIA ACCESS PATH FPO.

IBOFPl

SELECT FPFIL, FPUSR, FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPFIL = :FPFIL AND

FPUSR = :FPUSR
ORDER BY FPFIL ASC, FPUSR ASC

OBTAIN A ROW IN TABLE FP VIA ACCESS PATH FP1.
SELECT FPFIL, FPUSR, FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPFIL = :FPFIL
ORDER BY FPFIL ASC

B·52 EDL Customization for NOS Revision A

.......... -'"

','---- '

IBOFP2

OBTAIN A ROW IN TABLE FP VIA ACCESS PATH FP2.

IBAFPO

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPUSR = :FPUSR
ORDER BY FPUSR ASC

File Permits (FP) Routines

OBTAIN A ROW IN TABLE FP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FPO.

IBAFPl

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE (FPFIL > :FPFIL)

OR «FPFIL = :FPFIL) AND (FPUSR > :FPUSR»
OR (FPFIL = :FPFIL AND FPUSR = :FPUSR)

ORDER BY FPFIL ASC. FPUSR ASC

OBTAIN A ROW IN TABLE FP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FP1.

IBAFP2

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPFIL >= :FPFIL
ORDER BY FPFIL ASC

OBTAIN A ROW'IN TABLE FP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH FP2.

IBEFPl

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPUSR >= :FPUSR
ORDER BY FPUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FP VIA ACCESS PATH FP1.
SAVE THE CURRENT POSITION IN TABLE FP.
FETCH THE NEXT ROW FROM TABLE FP.

SET :FPFIL. :FPUSR. :FPMOD

IBEFP2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FP VIA ACCESS PATH FP2.
SAVE THE CURRENT POSITION IN TABLE FP.
FETCH THE NEXT ROW FROM TABLE FP.

SET :FPFIL. :FPUSR. :FPMOD

Revision A Information Base Routines B-53

File Permits (FP) Routines

IBFFPO

OBTAIN THE FIRST ROW OF TABLE FP. ORDERED BY ACCESS PATH FPO.

IBFFPl

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
ORDER BY FPFIL ASC. FPUSR ASC

OBTAIN THE FIRST ROW OF TABLE FP. ORDERED BY ACCESS PATH FP1.

IBFFP2

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
ORDER BY FPFIL ASC

OBTAIN THE FIRST ROW OF TABLE FP. ORDERED BY ACCESS PATH FP2.

IBNFPO

SELECT FPFIL. FPUSR. FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
ORDER BY FPUSR ASC

OBTAIN THE NEXT ROW OF TABLE FP. ORDERED BY ACCESS PATH FPO.
SET :FPFIL. :FPUSR. :FPMOD

IBNFPl

OBTAIN THE NEXT ROW OF TABLE FP. ORDERED BY ACCESS PATH FP1.
SET :FPFIL. :FPUSR. :FPMOD

IBNFP2

OBTAIN THE NEXT ROW OF TABLE FP. ORDERED BY ACCESS PATH FP2.
SET :FPFIL. :FPUSR. :FPMOD

IBOFIFP

USING COSET FIFP. OBTAIN THE ROW FROM TABLE FI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE FP

SELECT FIFIL. FIHOS. FIFUN. FIPFN. FILNA. FIFTC. FIUSR. FICT.
FIMOD. FISTA. FIVSN

INTO :FIFIL. :FIHOS. :FIFUN. :FIPFN. :FILNA. :FIFTC, :FIUSR.
:FICT. :FIMOD, :FISTA, :FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :FPFIL

B-54 EDL Customization for NOS Revision A

\.

File Permits (FP) Routines

IBOUIFP

USING COSET UIFP, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE FP

IBFFIFP

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
:UIPHO, :UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :FPUSR

OBTAIN THE FIRST ROW FROM MEMBER TABLE FP WITHIN COSET FIFP, USING
ACCESS PATH FP1.

IBFUIFP

SELECT FPFIL, FPUSR, FPMOD
FROM FP IN ENGINEERING_DATA_DATABASE
WHERE FPFIL = :FIFIL
ORDER BY FPFIL ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE FP WITHIN COSET UIFP, USING
ACCESS PATH FP2.

IBNFIFP

SELECT FPFIL, FPUSR, FPMOD
FROM.FP IN ENGINEERING_DATA_DATABASE
WHERE FPUSR = :UIUSR
ORDER BY FPUSR ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE FP WITHIN COSET FIFP.
SET :FPFIL, :FPUSR, :FPMOD

IBNUIFP

OBTAIN THE NEXT ROW FROM MEMBER TABLE FP WITHIN COSET UIFP.
SET :FPFIL, :FPUSR, :FPMOD

Revision A Information Base Routines B·55

File Types (FT) Routines

File Types (FT) Routines

The FT table defines all application types known to EDL. Each type of engineering
data is stored on a file. Every file must be known as one of these types.

IBSFT

STORE A NEW ROW IN TABLE FT.

IBMFT

INSERT INTO FT IN ENGINEERING_DATA_DATABASE
SET FTFTC = :FTFTC.

FTNAM = :FTNAM,
FTAPN = :FTAPN.
FTLFN = :FTLFN.
FTCHR = :FTCHR.
FTMUL = :FTMUL.
FTLFNR = :FTLFNR.
FTPRT :FTPRT.
FTTYP = :FTTYP

MODIFY AN EXISTING ROW IN TABLE FT.

IBDFT

UDPATE FT IN ENGINEERING_DATA_DATABASE
WHERE FTFTC = :FTFTC
SET FTFTC = :FTFTC,

FTNAM = :FTNAM.
FTAPN = :FTAPN,
FTLFN = :FTLFN.
FTCHR = :FTCHR.
FTMUL = :FTMUL,
FTLFNR = :FTLFNR.
FTPRT = :FTPRT.
FTTYP = :FTTYP

DELETE AN EXISTING ROW IN TABLE FT.

IBOFTO

DELETE FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTFTC = :FTFTC

OBTAIN A ROW IN TABLE FT VIA ACCESS PATH FTO.
SELECT FTFTC. FTNAM. FTAPN. FTLFN, FTCHR. FTMUL. FTLFNR. FTPRT.

FTTYP
FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTFTC = :FTFTC
ORDER BY FTFTC ASC

B-56 EDL Customization for NOS Revision A

File Types (FT) Routines

IBOFTI

OBTAIN A ROW IN TABLE FT VIA ACCESS PATH FT1.

IBOFI'2

SELECT FTFTC," FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT.
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTNAM = :FTNAM
ORDER BY FTNAM ASC

OBTAIN A ROW IN TABLE FT VIA ACCESS PATH FT2.

IBOFT3

SELECT FTFTC, FTNAM, FTAPN. FTLFN. FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTLFN = :FTLFN
ORDER BY FTLFN ASC

OBTAIN A ROW IN TABLE FT VIA ACCESS PATH FT3.

IBAFTO

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTAPN = :FTAPN
ORDER BY FTAPN ASC, FTNAM ASC

OBTAIN A ROW IN TABLE FT USING AN APPROXIMATE KEY VALUE AND ACCESS PATH FTO.

·IBAFTI

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTFTC >= :FTFTC
ORDER BY FTFTC ASC

OBTAIN A ROW IN TABLE FT USING AN APPROXIMATE KEY VALUE AND ACCESS PATH FT1.

IBAFT2

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTNAM >= :FTNAM
ORDER BY FTNAM ASC

OBTAIN A ROW IN TABLE FT USING AN APPROXIMATE KEY VALUE AND ACCESS PATH FT2.

Revision A

SELECT FTFTC, FTNAM, FTAPN. FTLFN. FTCHR. FTMUL. FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTLFN >= :FTLFN
ORDER BY FTLFN ASC

Information Base Routines B-57

File Types (FT) Routines

IBAFT3

OBTAIN A ROW IN TABLE FT USING AN APPROXIMATE KEY VALUE AND ACCESS PATH FT3.

IBEFT2

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
WHERE FTAPN >= :FTAPN
ORDER BY FTAPN ASC, FTNAM ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FT VIA ACCES'S PATH FT2.
SAVE THE CURRENT POSITION IN TABLE FT.
FETCH THE NEXT ROW FROM TABLE FT.

IBEFT3

SET :FTFTC, :FTNAM, :FTAPN, : FTLFN , :FTCHR, :FTMUL, :FTLFNR,
: FTPRT, : FTTYP

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE FT VIA ACCESS PATH FT3.
SAVE THE CURRENT POSITION IN TABLE FT.
FETCH THE NEXT ROW FROM TABLE FT.

IBFFTO

SET :FTFTC, :FTNAM, :FTAPN, :FTLFN, :FTCHR, :FTMUL, :FTLFNR,
: FTPRT, : FTTYP

OBTAIN THE FIRST ROW OF TABLE FT, ORDERED BY ACCESS PATH FTO.

IBFFTI

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
ORDER BY FTFTC ASC

OBTAIN THE FIRST ROW OF TABLE FT, ORDERED BY ACCESS PATH FT1.

IBFFT2

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
ORDER BY FTNAM ASC

OBTAIN THE FIRST ROW OF TABLE FT, ORDERED BY ACCESS PATH FT2.
SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,

FTTYP
FROM FT IN ENGINEERING_DATA_DATABASE
ORDER BY FTLFN ASC

B-58 EDL Customization for NOS Revision A

'''---

(
\ -

File Types (FT) Routines

IBFFT3

OBTAIN THE FIRST ROW OF TABLE FT, ORDERED BY ACCESS PATH FT3.

IBNFTO

SELECT FTFTC, FTNAM, FTAPN, FTLFN, FTCHR, FTMUL, FTLFNR, FTPRT,
FTTYP

FROM FT IN ENGINEERING_DATA_DATABASE
ORDER BY FTAPN ASC, FTNAM ASC

OBTAIN THE NEXT ROW OF TABLE FT, ORDERED BY ACCESS PATH FTO.

IBNFTI

SET :FTFTC, :FTNAM, :FTAPN, :FTLFN, :FTCHR, :FTMUL, :FTLFNR,
: FTPRT, : FTTYP

OBTAIN THE NEXT ROW OF TABLE FT, ORDERED BY ACCESS PATH FT1.

IBNFT2

SET : FTFTC , :FTNAM, :FTAPN, :FTLFN, :FTCHR, :FTMUL, :FTLFNR,
: FTPRT, : FTTYP

OBTAIN THE NEXT ROW OF TABLE FT, ORDERED BY ACCESS PATH FT2.

IBNFT3

SET :FTFTC, :FTNAM, :FTAPN, :FTLFN, :FTCHR, :FTMUL, :FTLFNR,
:FTPRT, :FTTYP

OBTAIN THE NEXT ROW OF TABLE FT, ORDERED BY ACCESS PATH FT3.

Revision A

SET :FTFTC, :FTNAM, :FTAPN, :FTLFN, : FTCHR , :FTMUL, :FTLFNR,
:FTPRT, :FTTYP

Information Base Routines B-59

Group Information (GI) Routines

Group Information (GI) Routines

The GI table defines the groups of EDL users.

IBSGI

STORE A NEW ROW IN TABLE GI.

IBMGI

INSERT INTO GI IN ENGINEERING_DATA_DATABASE
SET GIGRP = :GIGRP,

GIGRPO = :GIGRPO,
GIUSRA = :GIUSRA,
GITTL = :GITTL

MODIFY AN EXISTING ROW IN TABLE GI.

IBDGI

UDPATE GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GIGRP
SET GIGRP = :GIGRP,

GIGRPO = :GIGRPO,
GIUSRA = :GIUSRA,
GITTL = :GITTL

DELETE AN EXISTING ROW IN TABLE GI.

IBOGIO

DELETE FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GIGRP

OBTAIN A ROW IN TABLE GI VIA ACCESS PATH GIO.

IBOGII

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GIGRP
ORDER BY GIGRP ASC

OBTAIN A ROW IN TABLE GI VIA ACCESS PATH Gl1.

IBOGI2

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRPO = :GIGRPO AND

GIGRP = :GIGRP
ORDER BY GIGRPO ASC, GIGRP ASC

OBTAIN A ROW IN TABLE GI VIA ACCESS PATH GI2.
SELECT GIGRP, GIGRPO, GIUSRA, GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIUSRA = :GIUSRA
ORDER BY GIUSRA ASC

B-60 EDL Customization for NOS Revision A

I

\

"

Group Information (GI) Routines

IBAGIO

OBTAIN A ROW IN TABLE GI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GIO.

IBAGI!

SELECT GIGRP. GIGRPO. GIUSRA. GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP >= :GIGRP
ORDER BY GIGRP ASC

OBTAIN A ROW IN TABLE GI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GI1.

IBAGI2

SELECT GIGRP. GIGRPO, GIUSRA, GITTl
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE (GIGRPO > :GIGRPO)

OR «GIGRPO = :GIGRPO) AND (GIGRP > :GIGRP»
OR (GIGRPO = :GIGRPO AND GIGRP = :GIGRP)

ORDER BY GIGRPO ASC, GIGRP ASC

OBTAIN A ROW IN TABLE GI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GI2.

IBEGIl

SELECT GIGRP. GIGRPO, GIUSRA, GITTl
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIUSRA >= :GIUSRA
ORDER BY GIUSRA ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GI VIA ACCESS PATH GIl.
SAVE THE CURRENT POSITION IN TABLE GI.
FETCH THE NEXT ROW FROM TABLE GI.

SET :GIGRP, :GIGRPO. :GIUSRA, :GITTl

IBEGI2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GI VIA ACCESS PATH GI2.
SAVE THE CURRENT POSITION IN TABLE GI.
FETCH THE NEXT ROW FROM TABLE GI.

SET :GIGRP, :GIGRPO. :GIUSRA, :GITTl

IBFGIO

OBTAIN THE FIRST ROW OF TABLE GI. ORDERED BY ACCESS PATH GIO.

Revision A

SELECT GIGRP. GIGRPO, GIUSRA, GITTl
FROM GI IN ENGINEERING_DATA_DATABASE
ORDER BY GIGRP ASC

Information Base Routines B-61

Group Information (GI) Routines

IBFGII

OBTAIN THE FIRST ROW OF TABLE GI, ORDERED BY ACCESS PATH GIl.

IBFGI2

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
ORDER BY GIGRPO ASC, GIGRP ASC

OBTAIN THE FIRST ROW OF TABLE GI, ORDERED BY ACCESS PATH GI2.

IBNGIO

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
ORDER BY GIUSRA ASC

OBTAIN THE NEXT ROW OF TABLE GI, ORDERED BY ACCESS PATH GIO.
SET :GIGRP, :GIGRPO, :GIUSRA, :GITTL

IBNGII

OBTAIN THE NEXT ROW OF TABLE GI, ORDERED BY ACCESS PATH GIl.
SET :GIGRP, :GIGRPO, :GIUSRA, :GITTL

IBNGI2

OBTAIN THE NEXT ROW OF TABLE GI, ORDERED BY ACCESS PATH GI2.
SET :GIGRP, :GIGRPO, :GIUSRA, :GITTL

IBOUIGI

USING COSET UIGI, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE GI

IBOGIGI

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :GIUSRA

USING COSET GIGI, OBTAIN THE ROW FROM TABLE GI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE GI

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
INTO :GIGRP, :GIGRPO, :GIUSRA, :GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GIGRP

B-62 EDL Customization for NOS Revision A

Group Information (GI) Routines

IBFUIGI

OBTAIN THE FIRST ROW FROM MEMBER TABLE GI WITHIN COSET UIGI. USING
ACCESS PATH G12.

IBFGIGI

SELECT GIGRP. GIGRPO. GIUSRA. GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIUSRA = :UIUSR
ORDER BY GIUSRA ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE GI WITHIN COSET GIGI. USING
ACCESS PATH G11.

IBNUIGI

SELECT GIGRP. GIGRPO. GIUSRA. GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRPO = :GIGRPO AND

GIGRP = :GIGRP
ORDER BY GIGRPO ASC, GIGRP ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE GI WITHIN COSET UIGI.
SET :GIGRP, :GIGRPO, :GIUSRA, :GITTL

IBNGIGI

OBTAIN THE NEXT ROW FROM MEMBER TABLE GI WITHIN COSET GIGI.
SET :GIGRP, :GIGRPO, :GIUSRA, :GITTL

Revision A Information Base Routines B-63

Group Members (GM) Routines

Group Members (GM) Routines

The GM table lists the individual EDL users that compose a given group.

IBSGM

STORE A NEW ROW IN TABLE GM.

IBMGM

INSERT INTO GM IN ENGINEERING_DATA_DATABASE
SET GMGRP :GMGRP,

GMUSR = :GMUSR

MODIFY AN EXISTING ROW IN TABLE GM.

IBDGM

UDPATE GM IN ENGINEERING_DATA_DATABASE
WHERE GMGRP = :GMGRP AND

GMUSR = :GMUSR
SET GMGRP :GMGRP,

GMUSR = :GMUSR

DELETE AN EXISTING ROW IN TABLE GM.

IBOGMO

DELETE FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMGRP :GMGRP AND

GMUSR = :GMUSR

OBTAIN A ROW IN TABLE GM VIA ACCESS PATH GMO.

IBOGMI

SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMGRP = :GMGRP AND

GMUSR = :GMUSR
ORDER BY GMGRP ASC, GMUSR ASC

OBTAIN A ROW IN TABLE GM VIA ACCESS PATH GM1.

IBOGM2

SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMGRP = :GMGRP
ORDER BY GMGRP ASC, GMUSR ASC

OBTAIN A ROW IN TABLE GM VIA ACCESS PATH GM2.
SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMUSR = :GMUSR
ORDER BY GMUSR ASC, GMGRP ASC

B-64 EDL Customization for NOS Revision A

',,--

"

(",

I

~-

Group Members (GM) Routines

IBAGMO

OBTAIN A ROW IN TABLE GM USING AN APPROXIMATE KEY VALUE AND ACCESS PATH GMO.

IBAGMI

SELECT GMGRP. GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE (GMGRP > :GMGRP)

OR «GMGRP = :GMGRP) AND (GMUSR > :GMUSR»
OR (GMGRP = :GMGRP AND GMUSR = :GMUSR)

ORDER BY GMGRP ASC. GMUSR ASC

OBTAIN A ROW IN TABLE GM USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GM1.

IBAGM2

SELECT GMGRP. GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMGRp >= :GMGRP
ORDER BY GMGRP ASC. GMUSR ASC

OBTAIN A ROW IN TABLE GM USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GM2.

IBEGMI

SELECT GMGRP. GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMUSR >= :GMUSR
ORDER BY GMUSR ASC. GMGRP ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GM VIA ACCESS PATH GM1.
SAVE THE CURRENT POSITION IN TABLE GM.
FETCH THE NEXT ROW FROM TABLE GM.

SET :GMGRP. :GMUSR

IBEGM2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GM VIA ACCESS PATH GM2.
SAVE THE CURRENT POSITION IN TABLE GM.
FETCH THE NEXT ROW FROM TABLE GM.

SET :GMGRP, :GMUSR

IBFGMO

OBTAIN THE FIRST ROW OF TABLE GM, ORDERED BY ACCESS PATH GMO.

Revision A

SELECT GMGRP. GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
ORDER BY GMGRP ASC, GMUSR ASC

Information Base Routines B-65

Group Members (GM) Routines

IBFGMI

OBTAIN THE FIRST ROW OF TABLE GM, ORDERED BY ACCESS PATH GM1.

IBFGM2

SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
ORDER BY GMGRP ASC, GMUSR ASC

OBTAIN THE FIRST ROW OF TABLE GM, ORDERED BY ACCESS PATH GM2.

IBNGMO

SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
ORDER BY GMUSR ASC, GMGRP ASC

OBTAIN THE NEXT ROW OF TABLE GM, ORDERED BY ACCESS PATH GMO.
SET :GMGRP, :GMUSR

IBNGMI

OBTAIN THE NEXT ROW OF TABLE GM, ORDERED BY ACCESS PATH GM1.
SET :GMGRP, :GMUSR

IBNGM2

OBTAIN THE NEXT ROW OF TABLE GM, ORDERED BY ACCESS PATH GM2.
SET :GMGRP, :GMUSR

IBOUIGM

USING COSET UIGM, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE GM

IBOGIGM

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :GMUSR

USING COSET GIGM, OBTAIN THE ROW FROM TABLE GI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE GM

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
INTO :GIGRP, :GIGRPO, :GIUSRA, :GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GMGRP

B-66 EDL Customization for NOS Revision A

Group Members (GM) Routines

I~FUIGM

OBTAIN THE FIRST ROW FROM MEMBER TABLE GM WITHIN COSET UIGM, USING
ACCESS PATH GM2.

IBFGIGM

SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMUSR = :UIUSR
ORDER BY GMUSR ASC, GMGRP ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE GM WITHIN COSET GIGM, USING
ACCESS PATH GM1.

IBNUIGM

SELECT GMGRP, GMUSR
FROM GM IN ENGINEERING_DATA_DATABASE
WHERE GMGRP = :GIGRP
ORDER BY GMGRP ASC, GMUSR ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE GM WITHIN COSET UIGM.
SET :GMGRP, :GMUSR

IBNGIGM

OBTAIN THE NEXT ROW FROM MEMBER TABLE GM WITHIN COSET GIGM.
SET :GMGRP, :GMUSR

Revision A Information Base Routines B-67

Group Permits (GP) Routines

Group Permits (GP) Routines

The GP table deimes the file permits for groups.

IBSGP

STORE A NEW ROW IN TABLE GP.

IBMGP

INSERT INTO GP IN ENGINEERING_DATA_DATABASE
SET GPFIL = :GPFIL,

GPGRP = : GPGRP,
GPMOD = : GPMOD

MODIFY AN EXISTING ROW IN TABLE GP.

IBDGP

UDPATE GP IN ENGINEERING_DATA_DATABASE
WHERE GPFIL = :GPFIL AND

GPGRP = :GPGRP
SET GPFIL :GPFIL,

GPGRP : GPGRP ,
GPMOD : GPMOD

DELETE AN EXISTING ROW IN TABLE GP.

IBOGPO

DELETE FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPFIL :GPFIL AND

GPGRP = :GPGRP

OBTAIN A ROW IN TABLE GP VIA ACCESS PATH GPO.

IBOGPI

SELECT GPFIL, GPGRP, GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPFIL = :GPFIL AND

GPGRP = :GPGRP
ORDER BY GPFIL ASC, GPGRP ASC

OBTAIN A ROW IN TABLE GP VIA ACCESS PATH GP1.

IBOGP2

SELECT GPFIL, GPGRP, GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPFIL = :GPFIL
ORDER BY GPFIL ASC, GPGRP ASC

OBTAIN A ROW IN TABLE GP VIA ACCESS PATH GP2.
SELECT GPFIL, GPGRP, GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPGRP = :GPGRP
ORDER BY GPGRP ASC

B-68 EDL Customization for NOS Revision A

I
\

\

"

,-

(

Group Permits (GP) Routines

IBAGPO

OBTAIN A ROW IN TABLE GP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GPO.

IBAGPI

SELECT GPFIL. GPGRP. GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE (GPFIL > :GPFIL)

OR «GPFIL = :GPFIL) AND (GPGRP > :GPGRP»
OR (GPFIL = :GPFIL AND GPGRP = :GPGRP)

ORDER BY GPFIL ASC. GPGRP ASC

OBTAIN A ROW IN TABLE GP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GP1.

IBAGP2

SELECT GPFIL. GPGRP. GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPFIL >= :GPFIL
ORDER BY GPFIL ASC. GPGRP ASC

OBTAIN A ROW IN TABLE GP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH GP2.

IBEGPI

SELECT GPFIL. GPGRP. GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPGRP >= :GPGRP
ORDER BY GPGRP ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GP VIA ACCESS PATH GP1.
SAVE THE CURRENT POSITION IN TABLE GP.
FETCH THE NEXT ROW FROM TABLE GP.

SET :GPFIL, :GPGRP, :GPMOD

IBEGP2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GP VIA ACCESS PATH GP2.
SAVE THE CURRENT POSITION IN TABLE GP.
FETCH THE NEXT ROW FROM TABLE GP.

SET :GPFIL, :GPGRP. :GPMOD

IBFGPO

OBTAIN THE FIRST ROW OF TABLE GP, ORDERED BY ACCESS PATH GPO.

Revision A

SELECT GPFIL, GPGRP, GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
ORDER BY GPFIL ASC, GPGRP ASC

Information Base Routines B-69

Group Permits (GP) Routines

IBFGPI

OBTAIN THE FIRST ROW OF TABLE GP. ORDERED BY ACCESS PATH GP1.

IBFGP2

SELECT GPFIL. GPGRP. GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
ORDER BY GPFIL ASC. GPGRP ASC

OBTAIN THE FIRST ROW OF TABLE GP. ORDERED BY ACCESS PATH GP2.

IBNGPO

SELECT GPFIL. GPGRP. GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
ORDER BY GPGRP ASC

OBTAIN THE NEXT ROW OF TABLE GP. ORDERED BY ACCESS PATH GPO.
SET :GPFIL. :GPGRP, :GPMOD

IBNGPI

OBTAIN THE NEXT ROW OF TABLE GP, ORDERED BY ACCESS PATH GP1.
SET :GPFIL, :GPGRP, :GPMOD

IBNGP2

OBTAIN THE NEXT ROW OF TABLE GP, ORDERED BY ACCESS PATH GP2.
SET :GPFIL, :GPGRP, :GPMOD

IBOFIGP

USING COSET FIGP, OBTAIN THE ROW FROM TABLE FI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE GP

IBOGIGP

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT.
FlMOD, FISTA, FIVSN

INTO :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT,' :FlMOD, :FISTA, :FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :GPFIL

USING COSET GIGP. OBTAIN THE ROW FROM TABLE GI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE GP

SELECT GIGRP, GIGRPO. GIUSRA, GITTL
INTO :GIGRP, :GIGRPO, :GIUSRA, :GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GPGRP

B-70 EDL Customization for NOS Revision A

Group Permits (GP) Routines

IBFFIGP

OBTAIN THE FIRST ROW. FROM MEMBER TABLE GP WITHIN COSET FIGP, USING
ACCESS PATH GP1.

IBFGIGP

SELECT GPFIL, GPGRP. GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPFIL = :FIFIL
ORDER BY GPFIL ASC. GPGRP ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE GP WITHIN COSET G1GP. USING
ACCESS PATH GP2.

IBNFIGP

SELECT GPFIL. GPGRP, GPMOD
FROM GP IN ENGINEERING_DATA_DATABASE
WHERE GPGRP = :GIGRP
ORDER BY GPGRP ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE GP WITHIN COSET FIGP.
SET :GPFIL. :GPGRP. :GPMOD

IBNGIGP

OBTAIN THE NEXT ROW FROM MEMBER TABLE GP WITHIN COSET GIGP.
SET :GPFIL. :GPGRP. :GPMOD

Revision A Information Base Routines B·7!

Group Security Authorization (GS) Routines

Group Security Authorization (GS) Routines

The as table defines the task categories that a user can use.

IB8G8

STORE A NEW ROW IN TABLE GS.

IBMGS

INSERT INTO GS IN ENGINEERING_DATA_DATABASE
SET GSGRP : GSGRP ,

GSSEC = :GSSEC

MODIFY AN EXISTING ROW IN TABLE GS.

IBDGS

UDPATE GS IN ENGINEERING_DATA_DATABASE
WHERE GSSEC = :GSSEC AND

GSGRP = :GSGRP
SET GSGRP :GSGRP,

GSSEC = :GSSEC

DELETE AN EXISTING ROW IN TABLE GS.

IBOGSO

DELETE FROM GS IN ENGINEERING_DATA_DATABASE
WHERE GSSEC :GSSEC AND

GSGRP = :GSGRP

OBTAIN A ROW IN TABLE GS VIA ACCESS PATH GSO.

IBOGS!

SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
WHERE GSSEC = :GSSEC AND

GSGRP = :GSGRP
ORDER BY GSSEC ASC, GSGRP ASC

OBTAIN A ROW IN TABLE GS VIA ACCESS PATH GS1.
SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
WHERE GSGRP = :GSGRP
ORDER BY GSGRP ASC

B·72 EDL Customization for NOS Revision A

I

"-

Group Security Authorization (GS) Routines

IBAGSO

OBTAIN A ROW IN TABLE GS USING AN APPROXIMATE KEY VALUE AND ACCESS PATH GSO.

IBAGS!

SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
WHERE (GSSEC > :GSSEC)

OR «GSSEC-= :GSSEC) AND (GSGRP > :GSGRP»
OR (GSSEC = :GSSEC AND GSGRP = :GSGRP)

ORDER BY GSSEC ASC, GSGRP ASC

OBTAIN A ROW IN TABLE GS USING AN APPROXIMATE KEY VALUE AND ACCESS PATH GS1.

IBEGS!

SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
WHERE GSGRP >= :GSGRP
ORDER BY GSGRP ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE GS VIA ACCESS PATH GS1.
SAVE THE CURRENT POSITION IN TABLE GS.
FETCH THE NEXT ROW FROM TABLE GS.

SET :GSGRP, :GSSEC

IBFGSO

OBTAIN THE FIRST ROW OF TABLE GS, ORDERED BY ACCESS PATH GSO.

IBFGSI

SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
ORDER BY GSSEC ASC, GSGRP ASC

OBTAIN THE FIRST ROW OF TABLE GS, ORDERED BY ACCESS PATH GS1.

IBNGSO

SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
ORDER BY GSGRP ASC

OBTAIN THE NEXT ROW OF TABLE GS, ORDERED BY ACCESS PATH GSO.
SET : GSGRP, :GSSEC

Revision A Information Base Routines B·73

Group Security Authorization (GS) Routines

IBNGSI

OBTAIN THE NEXT ROW OF TABLE GS, ORDERED BY ACCESS PATH GS1.
SET : GSGRP, :GSSEC

IBOGIGS

USING COSET GIGS, OBTAIN THE ROW FROM TABLE GI THAT OWNS SPECIFIC ROWS IN
MEMBER TABLE GS

IBFGIGS

SELECT GIGRP, GIGRPO, GIUSRA, GITTL
INTO :GIGRP, :GIGRPO, :GIUSRA, :GITTL
FROM GI IN ENGINEERING_DATA_DATABASE
WHERE GIGRP = :GSGRP

OBTAIN THE FIRST ROW FROM MEMBER TABLE GS WITHIN COSET GIGS, USING
ACCESS PATH GS1.

IBNGIGS

SELECT GSGRP, GSSEC
FROM GS IN ENGINEERING_DATA_DATABASE
WHERE GSGRP = :GIGRP
ORDER BY GSGRP ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE GS WITHIN COSET GIGS.
SET :GSGRP, :GSSEC

B-74 EDL Customization for NOS Revision A

;'
\

'-

Host Information (HI) Routines

Host Information (HI) Routines

The HI table defines all host machines known to EDL. Every file known to EDL must
reside on a known host.

IBSHI

STORE A NEW ROW IN TABLE HI.

IBMHI

INSERT INTO HI IN ENGINEERING_DATA_DATABASE
SET HIHOS = :HIHOS,

HIOFF = :HIOFF,
HIOS = :HIOS

MODIFY AN EXISTING ROW IN TABLE HI.

IBDHI

UDPATE HI IN ENGINEERING_OAT A_DATABASE
WHERE HIHOS = :HIHOS
SET HIHOS = :HIHOS,

HIOFF = :HIOFF,
HIOS = :HIOS

DELETE AN EXISTING ROW IN TABLE HI.

IBOHIO

DELETE FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIHOS = :HIHOS

OBTAIN A ROW IN TABLE HI VIA ACCESS PATH HIO.

IBOHII

SELECT HIHOS, HIOFF, HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIHOS = :HIHOS
ORDER BY HIHOS ASC

OBTAIN A ROW IN TABLE HI VIA ACCESS PATH HI1.

IBOHI3

SELECT HIHOS, HIOFF, HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIOFF = :HIOFF
ORDER BY HIOFF ASC

OBTAIN A ROW IN TABLE HI VIA ACCESS PATH HI3.

Revision A

SELECT HIHOS, HIOFF, HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIOS = :HIOS
ORDER BY HIOS ASC, HIHOS ASC

Information Base Routines B-75

Host Information (HI) Routines

IBAHIO

OBTAIN A ROW IN TABLE HI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH HIO. .

IBAHII

SELECT HIHOS. HIOFF. HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIHOS >= :HIHOS
ORDER BY HIHOS ASC

OBTAIN A ROW IN TABLE HI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH HI1.

IBAHI3

SELECT HIHOS. HIOFF. HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIOFF >= :HIOFF
ORDER BY HIOFF ASC

OBTAIN A ROW IN TABLE HI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH HI3.

IBEHI3

SELECT HIHOS. HIOFF, HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
WHERE HIOS >= :HIOS
ORDER BY HIOS ASC, HIHOS ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE HI VIA ACCESS PATH HI3.
SAVE THE CURRENT POSITION IN TABLE HI.
FETCH THE NEXT ROW FROM TABLE HI.

SET :HIHOS. :HIOFF, :HIOS

IBFHIO

OBTAIN THE FIRST ROW OF TABLE HI. ORDERED BY ACCESS PATH HIO.

IBFHII

SELECT HIHOS. HIOFF, HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
ORDER BY HIHOS ASC

OBTAIN THE FIRST ROW OF TABLE HI. ORDERED BY ACCESS PATH HI1.
SELECT HIHOS. HIOFF. HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
ORDER BY HIOFF ASC

B-76 EDL Customization for NOS Revision A

Host Information (HI) Routines

IBFHI3

OBTAIN THE FIRST ROW OF TABLE HI, ORDERED BY ACCESS PATH HI3.

IBNHIO

SELECT HIHOS, HIOFF, HIOS
FROM HI IN ENGINEERING_DATA_DATABASE
ORDER BY HIOS ASC, HIHOS ASC

OBTAIN THE NEXT ROW OF TABLE HI, ORDERED BY ACCESS PATH HIO.
SET : HIHOS , :HIOFF, :HIOS

IBNHII

OBTAIN THE NEXT ROW OF TABLE HI, ORDERED BY ACCESS PATH HI1.
SET :HIHOS, :HIOFF, :HIOS

IBNHI3

OBTAIN THE NEXT ROW OF TABLE HI, ORDERED BY ACCESS PATH HI3.
SET :HIHOS, :HIOFF, :HIOS

Revision A Information Base Routines B-77

Message Help (MH) Routines

Message Help (MH) Routines

The MH table contains the help text associated with a message in the MI table.

IBSMH

STORE A NEW ROW IN TABLE MH.

IBMMH

INSERT INTO MH IN MENU_DATABASE
SET MHMNA = :MHMNA,

MHLIN = :MHLIN,
MHTXT = :MHTXT

MODIFY AN EXISTING ROW IN TABLE MH.

IBDMH

UDPATE MH IN MENU_DATABASE
WHERE MHLIN = :MHLIN AND

MHMNA = :MHMNA
SET MHMNA = :MHMNA,

MHLIN :MHLIN,
MHTXT = :MHTXT

DELETE AN EXISTING ROW IN TABLE MH.

IBOMHO

DELETE FROM MH IN MENU_DATABASE
WHERE MHLIN = :MHLIN AND

MHMNA = :MHMNA

OBTAIN A ROW IN TABLE MH VIA ACCESS PATH MHO.

IBOMHI

SELECT MHMNA, MHLIN, MHTXT
FROM MH IN MENU_DATABASE
WHERE MHLIN = :MHLIN AND

MHMNA = :MHMNA
ORDER BY MHLIN ASC, MHMNA ASC

OBTAIN A ROW IN TABLE MH VIA ACCESS PATH MH1.
SELECT MHMNA, MHLIN, MHTXT
FROM MH IN MENU_DATABASE
WHERE MHMNA = :MHMNA
ORDER BY MHMNA ASC, MHLIN ASC

B·78 EDL Customization for NOS Revision A

\

"'----

~-.

Message Help (MH) Routines

IBAMHO

OBTAIN A ROW IN TABLE MH USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH MHO.

IBAMHI

SELECT MHMNA. MHLIN. MHTXT
FROM MH IN MENU_DATABASE
WHERE (MHLIN > :MHLIN)

OR «MHLIN = :MHLIN) AND (MHMNA > :MHMNA»
OR (MHLIN = :MHLIN AND MHMNA = :MHMNA)

ORDER BY MHLIN ASC. MHMNA ASC

OBTAIN A ROW IN TABLE MH USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH MH1.

IBEMHI

SELECT MHMNA. MHLIN. MHTXT
FROM MH IN MENU_DATABASE
WHERE MHMNA >= :MHMNA
ORDER BY MHMNA ASC. MHLIN ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE MH VIA ACCESS PATH MH1.
SAVE THE CURRENT POSITION IN TABLE MH.
FETCH THE NEXT ROW FROM TABLE MH.

SET :MHMNA. :MHLIN. :MHTXT

IBFMHO

OBTAIN THE FIRST ROW OF TABLE MH. ORDERED BY ACCESS PATH MHO.

IBFMHI

SELECT MHMNA. MHLIN. MHTXT
FROM MH IN MENU_DATABASE
ORDER BY MHLIN ASC. MHMNA ASC

OBTAIN THE FIRST ROW OF TABLE MH. ORDERED BY ACCESS PATH MH1.

IBNMHO

SELECT MHMNA. MHLIN. MHTXT
FROM MH IN MENU_DATABASE
ORDER BY MHMNA ASC, MHLIN ASC

OBTAIN THE NEXT ROW OF TABLE MH. ORDERED BY ACCESS PATH MHO.
SET :MHMNA. :MHLIN. :MHTXT

Revision A Information Base Routines B-79

· Message Help (MH) IWutines

IBNMHI

OBTAIN THE NEXT ROW OF TABLE MH, ORDERED BY ACCESS PATH MH1.
SET :MHMNA, :MHLIN, :MHTXT

IBOMIMH

USING COSET MIMH, OBTAIN THE ROW FROM TABLE MI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE MH

IBFMIMH

SELECT MIMNA, MITYP, MISTA, MITTL
INTO :MIMNA, :MITYP, :MISTA, :MITTL
FROM MI IN MENU_DATABASE
WHERE MIMNA = :MHMNA

OBTAIN THE FIRST ROW FROM MEMBER TABLE MH WITHIN COSET MIMH, USING
ACCESS PATH MH1.

IBNMIMH

SELECT MHMNA, MHLIN, MHTXT
FROM MH IN MENU_DATABASE
WHERE MHMNA = :MIMNA
ORDER BY MHMNA ASC, MHLIN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE MH WITHIN COSET MIMH.
SET : MHMNA , :MHLIN, :MHTXT

B·80 EDL Customization for NOS Revision A

Message Information (MI) Routines

Message Information (MI) Routines

The MI table contains all the prompts, menus, and error messages.

IBSMI

STORE A NEW ROW IN TABLE MI.

IBMMI

INSERT INTO MI IN MENU_DATABASE
SET MIMNA = :MIMNA,

MITYP = :MITYP,
MISTA = :MISTA,
MITTL = :MITTL

MODIFY AN EXISTING ROW IN TABLE MI.
UDPATE MI IN MENU_DATABASE
WHERE MIMNA = :MIMNA
SET MIMNA = :MIMNA,

MITYP = :MITYP,
MISTA = :MISTA,
MITTL = :MITTL

IBDMI

DELETE AN EXISTING ROW IN TABLE MI.

IBOMIO

DELETE FROM MI IN MENU_DATABASE
WHERE MIMNA = :MIMNA

OBTAIN A ROW IN TABLE MI VIA ACCESS PATH MIO.

IBAMIO

SELECT MIMNA, MITYP, MISTA, MITTL
FROM MI IN MENU_DATABASE
WHERE MIMNA = :MIMNA
ORDER BY MIMNA ASC

OBTAIN A ROW IN TABLE MI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH MIO.

Revision A

SELECT MIMNA, MITYP, MISTA, MITTL
FROM MI IN MENU_DATABASE
WHERE MIMNA >= :MIMNA
ORDER BY MIMNA ASC

Information Base Routines B-81

Message Information (MI) Routines

IBFMIO

OBTAIN THE FIRST ROW OF TABLE MI, ORDERED BY ACCESS PATH MID.

IBNMIO

SELECT MIMNA, MITYP, MISTA, MITTL
FROM MI IN MENU_DATABASE
ORDER BY MIMNA ASC

OBTAIN THE NEXT ROW OF TABLE MI, ORDERED BY ACCESS PATH MID.
SET :MIMNA, :MITYP, :MISTA, :MITTL

B-82 EDL Customization for NOS Revision A

I

"'-

Option Keyword (OK) Routines

Option Keyword (OK) Routines

The OK table contains the keywords for choosing option menu lines.

IBSOK

STORE A NEW ROW IN TABLE OK.

IBMOK

INSERT INTO OK IN MENU_DATABASE
SET OKMNA = :OKMNA,

OKKEY :OKKEY,
OKMLN = :OKMLN

MODIFY AN EXISTING ROW IN TABLE OK.

IBDOK

UDPATE OK IN MENU_DATABASE
WHERE OKKEY = :OKKEY AND

OKMNA = :OKMNA
SET OKMNA = :OKMNA,

OKKEY = :OKKEY,
OKMLN = :OKMLN

DELETE AN EXISTING ROW IN TABLE OK.

IBOOKO

DELETE FROM OK IN MENU_DATABASE
WHERE OKKEY = :OKKEY AND

OKMNA = :OKMNA

OBTAIN A ROW IN TABLE OK VIA ACCESS PATH OKO.

IBOOK!

SELECT OKMNA, OKKEY, OKMLN
FROM OK IN MENU_DATABASE
WHERE OKKEY = :OKKEY AND

OKMNA = :OKMNA
ORDER BY OKKEY ASC, OKMNA ASC

OBTAIN A ROW IN TABLE OK VIA ACCESS PATH OK1.

Revision A

SELECT OKMNA, OKKEY, OKMLN
FROM OK IN MENU_DATABASE
WHERE OKMNA = :OKMNA AND

OKMLN = :OKMLN
ORDER BY OKMNA ASC, OKMLN ASC, OKKEY ASC

Information Base Routines B·83

Option Keyword (OK) Routines

IBAOKO

OBTAIN A ROW IN TABLE OK USING AN APPROXIMATE KEY VALUE AND ACCESS PATH OKO.

IBAOKI

SELECT OKMNA, OKKEY, OKMLN
FROM OK IN MENU_DATABASE
WHERE (OKKEY > :OKKEY)

OR «OKKEY = :OKKEY) AND (OKMNA > :OKMNA»
OR (OKKEY = :OKKEY AND OKMNA = :OKMNA)

ORDER BY OKKEY ASC, OKMNA ASC

OBTAIN A ROW IN TABLE OK USING AN APPROXIMATE KEY VALUE AND ACCESS PATH OKlo
SELECT OKMNA, OKKEY, OKMLN

IBEOKI

FROM OK IN MENU_DATABASE
WHERE (OKMNA > :OKMNA)

OR «OKMNA = :OKMNA) AND (OKMLN > :OKMLN»
OR (OKMNA = :OKMNA AND OKMLN = :OKMLN)

ORDER BY OKMNA ASC, OKMLN ASC, OKKEY ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OK VIA ACCESS PATH OKlo
SAVE THE CURRENT POSITION IN TABLE OK.
FETCH THE NEXT ROW FROM TABLE OK.

SET : OKMNA , :OKKEY, :OKMLN

IBFOKO

OBTAIN THE FIRST ROW OF TABLE OK, ORDERED BY ACCESS PATH OKO.

IBFOKI

SELECT OKMNA, OKKEY, OKMLN
FROM OK IN MENU_DATABASE
ORDER BY OKKEY ASC, OKMNA ASC

OBTAIN THE FIRST ROW OF TABLE OK, ORDERED BY ACCESS PATH OKlo
SELECT OKMNA, OKKEY, OKMLN
FROM OK IN MENU_DATABASE
ORDER BY OKMNA ASC, OKMLN ASC, OKKEY ASC

IBNOKO

OBTAIN THE NEXT ROW OF TABLE OK, ORDERED BY ACCESS PATH OKO.
SET :OKMNA, :OKKEY, :OKMLN

B-84 EDL Customization for NOS Revision A

\,,--

/

Option Keyword (OK) Routines

IBNOKI

OBTAIN THE NEXT ROW OF TABLE OK, ORDERED BY ACCESS PATH OKl.
SET :OKMNA, :OKKEY, :OKMLN

IBOOMOK

USING COSET OMOK, OBTAIN THE ROW FROM TABLE OM THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE OK

IBFOMOK

SELECT OMMNA, OMMLN, OMTXT
INTO :OMMNA, :OMMLN, :OMTXT
FROM OM IN MENU_DATABASE
WHERE OMMNA :OKMNA AND

OMMLN = :OKMLN

OBTAIN THE FIRST ROW FROM MEMBER TABLE OK WITHIN COSET OMOK, USING
ACCESS PATH OK 1.

IBNOMOK

SELECT OKMNA, OKKEY, OKMLN
FROM OK IN MENU_DATABASE
WHERE OKMNA = :OMMNA AND

OKMLN = :OMMLN
ORDER BY OKMNA ASC, OKMLN ASC, OKKEY ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE OK WITHIN COSET OMOK.
SET :OKMNA, :OKKEY, :OKMLN

Revision A Information Base Routines B-85

Option Menu (OM) Routines

Option Menu (OM) Routines

The OM table contains lines displayed on option menu lines.

IBSOM

STORE A NEW ROW IN TABLE OM.

IBMOM

INSERT INTO OM IN MENU_DATABASE
SET OMMNA = :OMMNA.

OMMLN = :OMMLN.
OMTXT = :OMTXT

MODIFY AN EXISTING ROW IN TABLE OM.

IBDOM

UDPATE OM IN MENU_DATABASE
WHERE OMMNA = :OMMNA AND

OMMLN = :OMMLN
SET OMMNA = :OMMNA.

OMMLN : OMMLN ,
OMTXT = :OMTXT

DELETE AN EXISTING ROW IN TABLE OM.

IBOOMO

DELETE FROM OM IN MENU_DATABASE
WHERE OMMNA :OMMNA AND

OMMLN = :OMMLN

OBTAIN A ROW IN TABLE OM VIA ACCESS PATH OMO.
SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
WHERE OMMNA = :OMMNA AND

OMMLN = :OMMLN
ORDER BY OMMNA ASC. OMMLN ASC

B·86 EDL Customization for NOS Revision A

IBOOM!

OBTAIN A ROW IN TABLE OM VIA ACCESS PATH OM1.

IBAOMO

SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
WHERE OMMNA = :OMMNA
ORDER BY OMMNA ASC, OMMLN ASC

Option Menu (OM) Routines

OBTAIN A ROW IN TABLE OM USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH OMO.

IBAOM!

SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
WHERE (OMMNA > :OMMNA)

OR «OMMNA = :OMMNA) AND (OMMLN > :OMMLN»
OR (OMMNA = :OMMNA AND OMMLN = :OMMLN)

ORDER BY OMMNA ASC, OMMLN ASC

OBTAIN A ROW IN TABLE OM USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH OM1.

IBEOM!

SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
WHERE OMMNA >= :OMMNA
ORDER BY OMMNA ASC, OMMLN ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OM VIA ACCESS PATH OM1.
SAVE THE CURRENT POSITION IN TABLE OM.
FETCH THE NEXT ROW FROM TABLE OM.

SET :OMMNA, :OMMLN, :OMTXT

Revision A Information Base Routines B-87

Option Menu (OM) Routines

IBFOMO

OBTAIN THE FIRST ROW OF TABLE OM, ORDERED BY ACCESS PATH OMO.

IBFOMI

SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
ORDER BY OMMNA ASC, OMMLN ASC

OBTAIN THE FIRST ROW OF TABLE OM, ORDERED BY ACCESS PATH OM1.

IBNOMO

SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
ORDER BY OMMNA ASC, OMMLN ASC

OBTAIN THE NEXT ROW OF TABLE OM, ORDERED BY ACCESS PATH OMO.
SET : OMMNA , :OMMLN, :OMTXT

IBNOMI

OBTAIN THE NEXT ROW OF TABLE OM, ORDERED BY ACCESS PATH OM1.
SET : OMMNA , :OMMLN, :OMTXT

IBOMIOM

USING COSET MIOM, OBTAIN THE ROW FROM TABLE MI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE OM

IBFMIOM

SELECT MIMNA, MITYP, MISTA, MITTL
INTO :MIMNA, :MITYP, :MISTA, :MITTL
FROM MI IN MENU_DATABASE
WHERE MIMNA = :OMMNA

OBTAIN THE FIRST ROW FROM MEMBER TABLE OM WITHIN COSET MIOM, USING
ACCESS PATH OM1.

IBNMIOM

SELECT OMMNA, OMMLN, OMTXT
FROM OM IN MENU_DATABASE
WHERE OMMNA = :MIMNA
ORDER BY OMMNA ASC, OMMLN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE OM WITHIN COSET MIOM.
SET : OMMNA , :OMMLN, :OMTXT

B-88 EDL Customization for NOS Revision A

(
"-

Option Value (OV) Routines

Option Value (OV) Routines

The OV table contains the values returned to the program when an option menu line is
selected.

IBSOV

STORE A NEW ROW IN TABLE OV.

IBMOV

INSERT INTO OV IN MENU_DATABASE
SET OVMNA

OVMLN
'OVPOS
OWAL

:OVMNA.
:OVMLN.
:OVPOS.
:OWAL

MODIFY AN EXISTING ROW IN TABLE OV.

IBDOV

UDPATE OV IN MENU_DATABASE
WHERE OVMNA = :OVMNA AND

OVMLN = :OVMLN AND
OVPOS = :OVPOS

SET OVMNA :OVMNA.
OVMLN : OVMLN •
OVPOS : OVPOS •
OWAL :OWAL

DELETE AN EXISTING ROW IN TABLE OV.

IBOOVO

DELETE FROM OV IN MENU_DATABASE
WHERE OVMNA = :OVMNA AND

OVMLN = :OVMLN AND
OVPOS = :OVPOS

OBTAIN A ROW IN TABLE OV VIA ACCESS PATH OVO.

IBOOVI

SELECT OVMNA. OVMLN. OVPOS. OWAL
FROM OV IN MENU_DATABASE
WHERE OVMNA = :OVMNA AND

OVMLN = :OVMLN AND
OVPOS = :OVPOS

ORDER BY OVMNA ASC. OVMLN ASC. OVPOS ASC

OBTAIN A ROW IN TABLE OV VIA ACCESS PATH OV1.

Revision A

SELECT OVMNA, OVMLN. OVPOS. OWAL
FROM OV IN MENU_DATABASE
WHERE OVMNA = :OVMNA AND

OVMLN = :OVMLN
ORDER BY OVMNA ASC. OVMLN ASC. OVPOS ASC

Information Base Routines B·89

Option Value (OV) Routines

IBAOVO

OBTAIN A ROW IN TABLE OV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH ovo.

IBAOVI

SELECT OVMNA, OVMLN, OVPOS, OVVAL
FROM OV IN MENU_DATABASE
WHERE (OVMNA > :OVMNA)

OR «OVMNA = :OVMNA) AND (OVMLN > :OVMLN»
OR «OVMNA = :OVMNA AND OVMLN = :OVMLN) AND (OVPOS > :OVPOS»
OR (OVMNA = :OVMNA AND OVMLN = :OVMLN AND OVPOS = :OVPOS)

ORDER BY OVMNA ASC, OVMLN ASC, OVPOS ASC

OBTAIN A ROW IN TABLE OV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH OV1.

IBEOVI

SELECT OVMNA, OVMLN, OVPOS, OVVAL
FROM OV IN MENU_DATABASE
WHERE (OVMNA > :OVMNA)

OR «OVMNA = :OVMNA) AND (OVMLN > :OVMLN»
OR (OVMNA = :OVMNA AND OVMLN = :OVMLN)

ORDER BY OVMNA ASC, OVMLN ASC, OVPOS ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE OV VIA ACCESS PATH OV1.
SAVE THE CURRENT POSITION IN TABLE OV.
FETCH THE NEXT ROW FROM TABLE OV.

SET : OVMNA , :OVMLN, :ovPos, :OVVAL

IBFOVO

OBTAIN THE FIRST ROW OF TABLE OV, ORDERED BY ACCESS PATH ovo.

IBFOVI

SELECT OVMNA, OVMLN, OVPOS, OVVAL
FROM OV IN MENU_DATABASE
ORDER BY OVMNA ASC, OVMLN ASC, OVPOS ASC

OBTAIN THE FIRST ROW OF TABLE OV, ORDERED BY ACCESS PATH OV1.
SELECT OVMNA, OVMLN, OVPOS, OVVAL
FROM OV IN MENU_DATABASE
ORDER BY OVMNA ASC, OVMLN ASC, OVPOS ASC

B-90 EDL Customization for NOS Revision A

"'--..

Option Value (OV) Routines

IBNOYO

OBTAIN THE NEXT ROW OF TABLE OV, ORDERED BY ACCESS PATH ovo.
SET :OVMNA, :OVMLN, :OVPOS, :OVVAL

IBNOVI

OBTAIN THE NEXT ROW OF TABLE OV, ORDERED BY ACCESS PATH OV1.
SET :OVMNA, :OVMLN, :OVPOS, :OVVAL

IBOOM.OV

USING COSET OMOV, OBTAIN THE ROW FROM TABLE OM THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE OV

IBFOMOV

SELECT OMMNA, OMMLN, OMTXT
INTO : OMMNA , :OMMLN, :OMTXT
FROM OM IN MENU_DATABASE
WHERE OMMNA = :OVMNA AND

OMMLN = :OVMLN

OBTAIN THE FIRST ROW FROM MEMBER TABLE OV WITHIN COSET OMOV, USING
ACCESS PATH OV1.

IBNOMOV

SELECT OVMNA, OVMLN, OVPOS, OVVAL
FROM OV IN MENU_DATABASE
WHERE OVMNA = :OMMNA AND

OVMLN = :OMMLN
ORDER BY OVMNA ASC, OVMLN ASC, OVPOS ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE OV WITHIN COSET OMOV.
SET : OVMNA , :OVMLN, :OVPOS, :OVVAL

Revision A Information Base Routines B-91

Parts Data (PD) Routines

Parts Data (PD) Routines

The PD table contains the association between part number and engineering data.

IBSPD

STORE A NEW ROW IN TABLE PD.

IBMPD

INSERT INTO PO IN ENGINEERING_DATA_DATABASE
SET PDPRT = :PDPRT,

PDEDN = :PDEDN

MODIFY AN EXISTING ROW IN TABLE PD.

IBDPD

UDPATE PO IN ENGINEERING_DATA_DATABASE
WHERE PDPRT = :PDPRT AND

PDEDN = :PDEDN
SET PDPRT = :PDPRT,

PDEDN = :PDEDN

DELETE AN EXISTING ROW IN TABLE PD.
DELETE FROM PD IN ENGINEERING_DATA_DATABASE
WHERE PDPRT :PDPRT AND

PDEDN = :PDEDN

IBOPDO

OBTAIN A ROW IN TABLE PD VIA ACCESS PATH POD.

IBOPDl

SELECT PDPRT, PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE PDPRT = :PDPRT AND

PDEDN = :PDEDN
ORDER BY PDPRT ASC, PDEDN ASC

OBTAIN A ROW IN TABLE PO VIA ACCESS PATH P01.
SELECT PDPRT, PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE PDPRT = :PDPRT
ORDER BY PDPRT ASC

B·92 EDL Customization for NOS Revision A

'~.

Parts Data (PD) Routines

IBOPD2

OBTAIN A ROW IN TABLE PO VIA ACCESS PATH PD2.
SELECT PDPRT. PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE PDEDN = :PDEDN
ORDER BY PDEDN ASC. PDPRT ASC

IBAPDO

OBTAIN A ROW IN TABLE PO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PD~.

IBAPDl

SELECT PDPRT. PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE (PDPRT > :PDPRT)

OR «PDPRT = :PDPRT) AND (PDEDN > :PDEDN»
OR (PDPRT = :PDPRT AND PDEDN = :PDEDN)

ORDER BY PDPRT ASC. POE ON ASC

OBTAIN A ROW IN TABLE PO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH POl.

IBAPD2

SELECT PDPRT. PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE PDPRT >= :PDPRT
ORDER BY PDPRT ASC

OBTAIN A ROW IN TABLE PO USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PD2.

IBEPDl

SELECT PDPRT. PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE PDEDN >= :PDEDN
ORDER BY PDEDN ASC. PDPRT ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PO VIA ACCESS PATH POl.
SAVE THE CURRENT POSITION IN TABLE PD.
FETCH THE NEXT ROW FROM TABLE PD.

SET :PDPRT. :PDEDN

Revision A Information Base Routines B·93

Parts Data (PD) Routines

IBEPD2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PO VIA ACCESS PATH PD2.
SAVE THE CURRENT POSITION IN TABLE PD.
FETCH THE NEXT ROW FROM TABLE PD.

SET :PDPRT. :PDEDN

IBFPDO

OBTAIN THE FIRST ROW OF TABLE PD. ORDERED BY ACCESS PATH PDQ.

IBFPDl

SELECT PDPRT. PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
ORDER BY PDPRT ASC. POE ON ASC

OBTAIN THE FIRST ROW OF TABLE PD. ORDERED BY ACCESS PATH PD1.

IBFPD2

SELECT PDPRT. POE ON
FROM PO IN ENGINEERING_DATA_DATABASE
ORDER BY PDPRT ASC

OBTAIN THE FIRST ROW OF TABLE PO, ORDERED BY ACCESS PATH PD2.

IBNPDO

SELECT PDPRT, PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
ORDER BY PDEDN ASC, PDPRT ASC

OBTAIN THE NEXT ROW OF TABLE PD, ORDERED BY ACCESS PATH POD.
SET :PDPRT, :PDEDN

IBNPDl

OBTAIN THE NEXT ROW OF TABLE PO, ORDERED BY ACCESS PATH PD1.
SET :PDPRT, :PDEDN

IBNPD2

OBTAIN THE NEXT ROW OF TABLE PD. ORDERED BY ACCESS PATH PD2.
SET :PDPRT. :PDEDN

B·94 EDL Customization for NOS Revision A

'-.

(
'''"-- ..

Parts Data (PD) Routines

IBODIPD

USING COSET DIPD, OBTAIN THE ROW FROM TABLE 01 THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE ~D

IBOPIPD

SELECT DIEDN, DIFIL, DINAM, 01510, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA, :DIDATC, :DIDATM, : DIDATR , :DITTL, :DITIMC,
:DITIMM, :DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
,WHERE OIEDN = :PDEDN

USING COSET PIPD, OBTAIN THE ROW FROM TABLE PI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE PO

IBFDIPD

SELECT PIPRT, PITTL
INTO :PIPRT, :PITTL
FROM PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT = :PDPRT

OBTAIN THE FIRST ROW FROM MEMBER TABLE PO WITHIN COSET DIPD, USING
ACCESS PATH PD2.

IBFPIPD

SELECT PDPRT, PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE PDEDN = :DIEDN
ORDER BY PDEDN ASC, PDPRT ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE PO WITHIN COSET PIPD, USING
ACCESS PATH PD1.

IBNDIPD

SELECT PDPRT, PDEDN
FROM PO IN ENGINEERING_DATA_DATABASE
WHERE POPRT = :PIPRT
ORDER BY PDPRT ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE PO WITHIN COSET DIPD.
SET : PDPRT , :PDEDN

IBNPIPD

OBTAIN THE. NEXT ROW FROM MEMBER TABLE PO WITHIN COSET PIPD.
SET : POPRT , :PDEDN

Revision A Information Base Routines B·95

Part Family (PF) Routines

Part Family (PF) Routines

The PF table contains the association between part numbers and part family codes.

IBSPF

STORE A NEW ROW IN TABLE PF.

IBMPF

INSERT INTO PF IN ENGINEERING_DATA_DATABASE
SET PFPRT = :PFPRT,

PFFAM = :PFFAM

MODIFY AN EXISTING ROW IN TABLE PF.

IBDPF

UDPATE PF IN ENGINEERING_DATA_DATABASE
WHERE PFFAM = :PFFAM AND

PFPRT = :PFPRT
SET PFPRT = :PFPRT,

PFFAM = :PFFAM

DELETE AN EXISTING ROW IN TABLE PF.

IBOPFO

DELETE FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFFAM = :PFFAM AND

PFPRT = :PFPRT

OBTAIN A ROW IN TABLE PF VIA ACCESS PATH PFO.

IBOPFI

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFFAM = :PFFAM AND

PFPRT = :PFPRT
ORDER BY PFFAM ASC, PFPRT ASC

OBTAIN A ROW IN TABLE PF VIA ACCESS PATH PF1.

IBOPF2

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFFAM = :PFFAM
ORDER BY PFFAM ASC, PFPRT ASC

OBTAIN A ROW IN TABLE PF VIA ACCESS PATH PF2.
SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFPRT = :PFPRT
ORDER BY PFPRT ASC, PFFAM ASC

B·96 EDL Customization for NOS Revision A

Part Family (PF) lWutines

IBAPFO

OBTAIN A ROW IN TABLE PF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PFO.

IBAPFI

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE (PFFAM > :PFFAM)

OR «PFFAM = :PFFAM) AND (PFPRT > :PFPRT»
OR (PFFAM = :PFFAM AND PFPRT = :PFPRT)

ORDER BY PFFAM ASC, PFPRT ASC

OBTAIN A ROW IN TABLE PF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PF1.

IBAPF2

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFFAM >= :PFFAM
ORDER BY PFFAM ASC, PFPRT ASC

OBTAIN A ROW IN TABLE PF USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PF2.

IBEPFI

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFPRT >= :PFPRT
ORDER BY PFPRT ASC, PFFAM ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PF VIA ACCESS PATH PF1.
SAVE THE CURRENT POSITION IN TABLE PF.
FETCH THE NEXT ROW FROM TABLE PF.

SET :PFPRT, :PFFAM

IBEPF2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PF VIA ACCESS PATH PF2.
SAVE THE CURRENT POSITION IN TABLE PF.
FETCH THE NEXT ROW FROM TABLE PF.

SET :PFPRT, :PFFAM

IBFPFO

OBTAIN THE FIRST ROW OF TABLE PF, ORDERED BY ACCESS PATH PFO.

Revision A

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
ORDER BY PFFAM ASC, PFPRT ASC

Information Base lWutines B·97

Part Family (PF) Routines

IBFPFI

OBTAIN THE FIRST ROW OF TABLE PF, ORDERED BY ACCESS PATH PF1.

IBFPF2

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE .
ORDER BY PFFAM ASC, PFPRT ASC

OBTAIN THE FIRST ROW OF TABLE PF. ORDERED BY ACCESS PATH PF2.

IBNPFO

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
ORDER BY PFPRT ASC, PFFAM ASC

OBTAIN THE NEXT ROW OF TABLE PF. ORDERED BY ACCESS PATH PFO.
SET :PFPRT, :PFFAM

IBNPFI

OBTAIN THE NEXT ROW OF TABLE PF. ORDERED BY ACCESS PATH PF1.
SET :PFPRT, :PFFAM

IBNPF2

OBTAIN THE NEXT ROW OF TABLE PF, ORDERED BY ACCESS PATH PF2.
SET :PFPRT, :PFFAM

IBOPIPF

USING COSET PIPF, OBTAIN THE ROW FROM TABLE PI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE PF

IBOFMPF

SELECT PIPRT, PITTL
INTO :PIPRT, :PITTL
FROM PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT = :PFPRT

USING COSET FMPF, OBTAIN THE ROW FROM TABLE FM THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE PF

SELECT FMFAM, FMTTL
INTO :FMFAM, :FMTTL
FROM FM IN ENGINEERING_DATA_DATABASE
WHERE FMFAM = :PFFAM

B-98 EDL Customization for NOS Revision A

"

I

\"-., ,

Part Family (PF)· Routines

IBFPIPF

OBTAIN THE FIRST ROW FROM MEMBER TABLE PF WITHIN COSET PIPF, USING
ACCESS PATH PF2.

IBFFMPF

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFPRT = :PIPRT
ORDER BY PFPRT ASC, PFFAM ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE PF WITHIN COSET FMPF, USING
ACCESS PATH PF 1.

IBNPIPF

SELECT PFPRT, PFFAM
FROM PF IN ENGINEERING_DATA_DATABASE
WHERE PFFAM = :FMFAM
ORDER BY PFFAM ASC, PFPRT ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE PF WITHIN COSET PIPF.
SET :PFPRT, :PFFAM

IBNFMPF

OBTAIN THE NEXT ROW FROM MEMBER TABLE PF WITHIN COSET FMPF.
SET :PFPRT, :PFFAM

Revision A Information Base Routines B·99

Part Information (PI) Routines

Part Information (PI) Routines

The PI table defines the part numbers known to EDL.

IBSPI

, STORE A NEW ROW IN TABLE PI.

IBMPI

INSERT INTO PI IN ENGINEERING_DATA_DATABASE
SET PIPRT = :PIPRT,

PITTl = :PITTl

MODIFY AN EXISTING ROW IN TABLE PI.

IBDPI

UDPATE PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT = :PIPRT
SET PIPRT = :PIPRT,

PITTl = :PITTl

DELETE AN EXISTING ROW IN TABLE PI.

IBOPIO

DELETE FROM PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT = :PIPRT

OBTAIN A ROW IN TABLE PI VIA ACCESS PATH PIO.

IBAPIO

SELECT PIPRT, PITTl
FROM PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT = :PIPRT
ORDER BY PIPRT ASC

OBTAIN A ROW IN TABLE PI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PIO.

IBFPIO

SELECT PIPRT, PITTl
FROM PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT >= :PIPRT
ORDER BY PIPRT ASC

OBTAIN THE FIRST ROW OF TABLE PI, ORDERED BY ACCESS PATH PIO.

IBNPIO

SELECT PIPRT, PITTl
FROM PI IN ENGINEERING_DATA_DATABASE
ORDER BY PIPRT ASC

OBTAIN THE NEXT ROW OF TABLE PI, ORDERED BY ACCESS PATH PIO.
SET :PIPRT, :PITTl

B·I00 EDL Customization for NOS Revision A

Pending Permits (PP) Routines

IBSPP

STORE A NEW ROW IN TABLE PP.

IBMPP

INSERT INTO PP IN ENGINEERING_DATA_DATABASE
SET PPFIL = :PPFIL,

PPUUN = :PPUUN,
PPMOD = :PPMOD,
PPFUN = :PPFUN

MODIFY AN EXISTING ROW IN TABLE PP.

IBDPP

UDPATE PP IN ENGINEERING_DATA_DATABASE
WHERE PPFIL = :PPFIL AND

PPUUN = :PPUUN
SET PPFIL = :PPFIL,

PPUUN = :PPUUN,
PPMOD = :PPMOD,
PPFUN = :PPFUN

DELETE AN EXISTING ROW IN TABLE PP.

IBOPPO

DELETE FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPFIL :PPFIL AND

PPUUN = :PPUUN

OBTAIN A ROW IN TABLE PP VIA ACCESS PATH PPO.

IBOPPI

SELECT PPFIL, PPUUN, PPMOD, PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPFIL = :PPFIL AND

PPUUN = :PPUUN
ORDER BY PPFIL ASC, PPUUN ASC

OBTAIN A ROW IN TABLE PP VIA ACCESS PATH PP1.

Revision A

SELECT PPFIL, PPUUN, PPMOD, PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPUUN = :PPUUN
ORDER BY PPUUN ASC

Pending Permits (PP) Routines

Information Base Routines B·I0l

Pending Permits (PP) Routines

IBOPP2

OBTAIN A ROW IN TABLE PP VIA ACCESS PATH PP2.

IBOPP3

SELECT PPFIL. PPUUN. PPMOD. RPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPFUN = :PPFUN
ORDER BY PPFUN ASC

OBTAIN A ROW IN TABLE PP VIA ACCESS PATH PP3.

IBAPPO

SELECT PPFIL. PPUUN. PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPFIL = :PPFIL
ORDER BY PPFIL ASC

OBTAIN A ROW IN TABLE PP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PPO.

IBAPPI

SELECT PPFIL. PPUUN, PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE (PPFIL > :PPFIL)

OR «PPFIL = :PPFIL) AND (PPUUN > :PPUUN)}
OR (PPFIL = :PPFIL AND PPUUN = :PPUUN)

ORDER BY PPFIL ASC. PPUUN ASC

OBTAIN A ROW IN TABLE PP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PP1.

IBAPP2

SELECT PPFIL, PPUUN. PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPUUN >= :PPUUN
ORDER BY PPUUN ASC

OBTAIN A ROW IN TABLE PP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PP2.

IBAPP3

SELECT PPFIL. PPUUN. PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPFUN >= :PPFUN
ORDER BY PPFUN ASC

OBTAIN A ROW IN TABLE PP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PP3.

SELECT PPFIL. PPUUN. PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
WHERE PPFIL >= :PPFIL
ORDER BY PPFIL ASC

B·I02 EDL Customization for NOS Revision A

~-.

Pending Permits (PP) Routines

IBEPPI

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PP VIA ACCESS PATH PP1.
SAVE THE CURRENT POSITION IN TABLE PP.
FETCH THE NEXT ROW FROM TABLE PP.

SET :PPFIL. :PPUUN. :PPMOD. :PPFUN

IBEPP2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PP VIA ACCESS PATH PP2.
SAVE THE CURRENT POSITION IN TABLE PP.
FETCH THE NEXT ROW FROM TABLE PP ..

SET :PPFIL, :PPUUN, :PPMOD. :PPFUN

IBEPP3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PP VIA ACCESS PATH PP3.
SAVE THE CURRENT POSITION IN TABLE PP.
FETCH THE NEXT ROW FROM TABLE PP.

SET :PPFIL, :PPUUN, :PPMOD, :PPFUN

IBFPPO

OBTAIN THE FIRST ROW OF TABLE PP, ORDERED BY ACCESS PATH PPO.

IBFPPI

SELECT PPFIL, PPUUN, PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
ORDER BY PPFIL ASC, PPUUN ASC

OBTAIN THE FIRST ROW OF TABLE PP, ORDERED BY ACCESS PATH PP1.

IBFPP2

SELECT PPFIL, PPUUN, PPMOD, PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
ORDER BY PPUUN ASC

OBTAIN THE FIRST ROW OF TABLE PP, ORDERED BY ACCESS PATH PP2.

IBFPP3

SELECT PPFIL, PPUUN. PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
ORDER BY PPFUN ASC

OBTAIN THE FIRST ROW OF TABLE PP, ORDERED BY ACCESS PATH PP3.

Revision A

SELECT PPFIL, PPUUN. PPMOD. PPFUN
FROM PP IN ENGINEERING_DATA_DATABASE
ORDER BY PPFIL ASC

Information Base Routines B-I03

Pending Permits (PP) Routines

IBNPPO

OBTAIN THE NEXT ROW OF TABLE PP, ORDERED BY ACCESS PATH PPO.
SET :PPFIL, :PPUUN, :PPMOD, :PPFUN

IBNPPI

OBTAIN THE NEXT ROW OF TABLE PP, ORDERED BY ACCESS PATH PP1.
SET :PPFIL, :PPUUN, :PPMOD, :PPFUN

IBNPP2

OBTAIN THE NEXT ROW OF TABLE PP, ORDERED BY ACCESS PATH PP2.
SET :PPFIL, :PPUUN, :PPMOD, :PPFUN

IBNPP3

OBTAIN THE NEXT ROW OF TABLE PP, ORDERED BY ACCESS PATH PP3.
SET :PPFIL, :PPUUN, :PPMOD, :PPFUN

B·I04 EDL Customization for NOS Revision A

'.

Part Vendors (PV) Routines

Part Vendors (PV) Routines

The PV table contains the associations of part numbers with vendors.

IBSPV

STORE A NEW ROW IN TABLE PV.

IBMPV

INSERT INTO PV IN ENGINEERING_DATA_DATABASE
SET PVPRT :PVPRT.

PWEN = :PWEN

MODIFY AN EXISTING ROW IN TABLE PV.

IBDPV

UDPATE PV IN ENGINEERING_DATA_DATABASE
WHERE PVPRT = :PVPRT AND

PWEN = :PWEN
SET PVPRT = :PVPRT.

PWEN = :PWEN

DELETE AN EXISTING ROW IN TABLE PV.
DELETE FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVPRT = :PVPRT AND

PWEN = :PWEN

IBOPVO

OBTAIN A ROW IN TABLE PV VIA ACCESS PATH PVO.

IBOPVl

SELECT PVPRT. PWEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVPRT = :PVPRT AND

PWEN = :PWEN
ORDER BY PVPRT ASC. PWEN ASC

OBTAIN A ROW IN TABLE PV VIA ACCESS PATH PV1.

IBOPV2

SELECT PVPRT. PWEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVPRT ~ :PVPRT
ORDER BY PVPRT ASC. PWEN ASC

OBTAIN A ROW IN TABLE PV VIA ACCESS PATH PV2.

Revision A

SELECT PVPRT. PWEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVVEN = :PWEN
ORDER BY PWEN ASC. PVPRT ASC

Information Base Routines B·I05

Part Vendors (PV) Routines

IBAPVO

OBTAIN A ROW IN TABLE PV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PVO.

IBAPVl

SELECT PVPRT, PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE (PVPRT > :PVPRT)

OR «PVPRT = :PVPRT) AND (PVVEN > :PVVEN»
OR (PVPRT = :PVPRT AND PVVEN = :PVVEN)

ORDER BY PVPRT ASC, PVVEN ASC

OBTAIN A ROW IN TABLE PV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PV1.

IBAPV2

SELECT PVPRT, PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVPRT >= :PVPRT
ORDER BY PVPRT ASC, PVVEN ASC

OBTAIN A ROW IN TABLE PV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH PV2.

IBEPVl

SELECT PVPRT, PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVVEN >= :PVVEN
ORDER BY PVVEN ASC, PVPRT ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PV VIA ACCESS PATH PV1.
SAVE THE CURRENT POSITION IN TABLE PV.
FETCH THE NEXT ROW FROM TABLE PV.

SET :PVPRT, :PVVEN

B·I06 EDL Customization for NOS Revision A

I
\

"'---

Part Vendors (PV) Routines

IBEPV2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE PV VIA ACCESS PATH PV2.
SAVE THE CURRENT POSITION IN TABLE PV.
FETCH THE NEXT ROW FROM TABLE PV.

SET :PVPRT. :PVVEN

IBFPVO

OBTAIN THE FIRST ROW OF TABLE PV. ORDERED BY ACCESS PATH PVO.

IBFPVl

SELECT PVPRT. PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
ORDER BY PVPRT ASC. PVVEN ASC

OBTAIN THE FIRST ROW OF TABLE PV. ORDERED BY ACCESS PATH PV1.

IBFPV2

SELECT PVPRT. PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
ORDER BY PVPRT ASC. PVVEN ASC

OBTAIN THE FIRST ROW OF TABLE PV. ORDERED BY ACCESS PATH PV2.

IBNPVO

SELECT PVPRT. PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
ORDER BY PVVEN ASC. PVPRT ASC

OBTAIN THE NEXT ROW OF TABLE PV. ORDERED BY ACCESS PATH PVO.
SET :PVPRT. :PVVEN

IBNPVl

OBTAIN THE NEXT ROW OF TABLE PV. ORDERED BY ACCESS PATH PV1.
SET :PVPRT. :PVVEN

IBNPV2

OBTAIN THE NEXT ROW OF TABLE PV. ORDERED BY ACCESS PATH PV2.
SET :PVPRT. :PVVEN

IBOVIPV

USING COSET VIPV. OBTAIN THE ROW FROM TABLE VI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE PV

Revision A

SELECT VIVEN. VINAM. VISTR. VICTY. VIPHO
INTO :VIVEN. :VINAM. :VISTR. :VICTY. :VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
WHERE VIVEN = :PVVEN

Information Base Routines B-I07

Part Vendors (PV) Routines

IBOPIPV

USING COSET PIPV, OBTAIN THE ROW FROM TABLE PI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE PV

IBFVIPV

SELECT PIPRT, PITTL
INTO :PIPRT, :PITTL
FROM PI IN ENGINEERING_DATA_DATABASE
WHERE PIPRT = :PVPRT

OBTAIN THE FIRST ROW FROM MEMBER TABLE PV WITHIN COSET VIPV, USING
ACCESS PATH PV2.

IBFPIPV

SELECT PVPRT, PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVVEN = :VIVEN
ORDER BY PVVEN ASC, PVPRT ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE PV WITHIN COSET PIPV, USING
ACCESS PATH PV1.

IBNVIPV

SELECT PVPRT, PVVEN
FROM PV IN ENGINEERING_DATA_DATABASE
WHERE PVPRT = :PIPRT
ORDER BY PVPRT ASC, PVVEN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE PV WITHIN COSET VIPV.
SET : PVPRT , :PVVEN

IBNPIPV

OBTAIN THE NEXT ROW FROM MEMBER TABLE PV WITHIN COSET PIPV.
SET :PVPRT, :PVVEN

B·108 EDL Customization for NOS Revision A

I ".

Release Authorization (RA) ROutines

Release Authorization (RA) Routines

The RA table contains the release information for engineering data.

IBSRA

STORE A NEW ROW IN TABLE RA.

IBMRA

INSERT INTO RA IN ENGINEERING_DATA_DATABASE
SET RAREL = :RAREL,

RAEDN = :RAEDN.
RAEDNC = :RAEDNC,
RAUSR :RAUSR,
RASTA :RASTA,
RADAT :RADAT

MODIFY AN EXISTING ROW IN TABLE RA.

IBDRA

UDPATE RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL = :RAREL AND

RAEDN = :RAEDN
SET RAREL = :RAREL.

RAEDN = :RAEDN,
RAEDNC = :RAEDNC,
RAUSR = :RAUSR,
RASTA : RASTA ,
RADAT = :RADAT

DELETE AN EXISTING ROW IN TABLE RA.

IBORAO

DELETE FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL = :RAREL AND

RAEDN = :RAEDN

OBTAIN A ROW IN TABLE RA VIA ACCESS PATH RAO.

IBORAI

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL = :RAREL AND

RAEDN = :RAEDN
ORDER BY RAREL ASC, RAEDN ASC

OBTAIN A ROW IN TABLE RA VIA ACCESS PATH RA1.

Revision A

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAEDN = :RAEDN
ORDER BY RAEDN ASC

Information Base Routines B-I09

Release Authorization (RA) Routines

IBORA2

OBTAIN A ROW IN TABLE RA VIA ACCESS PATH RA2.

IBORA3

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL = :RAREL
ORDER BY RAREL ASC

OBTAIN A ROW IN TABLE RA VIA ACCESS PATH RA3.

IBORA4

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAUSR = :RAUSR
ORDER BY RAUSR ASC

OBTAIN A ROW IN TABLE RA VIA ACCESS PATH RA4.

IBARAO

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAEDNC = :RAEDNC
ORDER BY RAEDNC ASC

OBTAIN A ROW IN TABLE RA USING AN APPROXIMATE KEY VALUE AND ACCESS PATH RAO.

IBARAI

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE (RAREL > :RAREL)

OR «RAREL = :RAREL) AND (RAEDN > :RAEDN»
OR (RAREL = :RAREL AND RAEDN = :RAEDN)

ORDER BY RAREL ASC, RAEDN ASC

OBTAIN A ROW IN TABLE RA USING AN APPROXIMATE KEY VALUE AND ACCESS PATH RA1.

IBARA2

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAEDN >= :RAEDN
ORDER BY RAEDN ASC

OBTAIN A ROW IN TABLE RA USING AN APPROXIMATE KEY VALUE AND ACCESS PATH RA2.
SELECT RAREL, RAEDN, RAEDNC, RAUSR. RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL >= :RAREL
ORDER BY RAREL ASC

B·ll0 EDL Customization for NOS Revision A

(\.

Release Authorization (RA) Routines

IBARA3

OBTAIN A ROW IN TABLE RA USING AN APPROXIMATE KEY VALUE AND ACCESS PATH RA3.

IBARA4

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAUSR >= :RAUSR
ORDER BY RAUSR ASC

OBTAIN A ROW IN TABLE RA USING AN APPROXIMATE KEY VALUE AND ACCESS PATH RA4.

IBERAO

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAEDNC >= :RAEDNC
ORDER BY RAEDNC ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RA VIA ACCESS PATH RAO.
SAVE THE CURRENT POSITION IN TABLE RA.
FETCH THE NEXT ROW FROM TABLE RA.

SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, : RASTA , :RADAT

IBERAI

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RA VIA ACCESS PATH RA1.
SAVE THE CURRENT POSITION IN TABLE RA.
FETCH THE NEXT ROW FROM TABLE RA.

SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBERA2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RA VIA ACCESS PATH RA2.
SAVE THE CURRENT POSITION IN TABLE RA.
FETCH THE NEXT ROW FROM TABLE RA.

SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBERA3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RA VIA ACCESS PATH RA3.
SAVE THE CURRENT POSITION IN TABLE RA.
FETCH THE NEXT ROW FROM TABLE RA.

SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, : RASTA , :RADAT

IBERA4

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RA VIA ACCESS PATH RA4.
SAVE THE CURRENT POSITION IN TABLE RA.
FETCH THE NEXT ROW FROM TABLE RA.

SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

Revision A Information Base Routines B-l11

Release Authorization (RA) Routines

IBFRAO

OBTAIN THE FIRST ROW OF TABLE RA, ORDERED BY ACCESS PATH RAO.

IBFRAI

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
ORDER BY RAREL ASC, RAEDN ASC

OBTAIN THE FIRST ROW OF TABLE RA, ORDERED BY ACCESS PATH RA1.

IBFRA2

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
ORDER BY RAEDN ASC

OBTAIN THE FIRST ROW OF TABLE RA, ORDERED BY ACCESS PATH RA2.

IBFRA3

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
ORDER BY RAREL ASC

OBTAIN THE FIRST ROW OF TABLE RA, ORDERED BY ~CCESS PATH RA3.

IBFRA4

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
ORDER BY RAUSR ASC

OBTAIN THE FIRST ROW OF TABLE RA, ORDERED BY ACCESS PATH RA4.

IBNRAO

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
ORDER BY RAEDNC ASC

OBTAIN THE NEXT ROW OF TABLE RA, ORDERED BY ACCESS PATH RAO.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBNRAI

OBTAIN THE NEXT ROW OF TABLE RA, ORDERED BY ACCESS PATH RA1.
SET :RAREL, :RAEDN, : RAEDNC , :RAUSR, :RASTA, :RADAT

IBNRA2

OBTAIN THE NEXT ROW OF TABLE RA, ORDERED BY ACCESS PATH RA2.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, : RASTA , :RADAT

IBNRA3

OBTAIN THE NEXT ROW OF TABLE RA, ORDERED BY ACCESS PATH RA3.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, : RASTA , :RADAT

B·1l2 EDL Customization for NOS Revision A

Release Authorization (RA) Routines

IBNRA4

OBTAIN THE NEXT ROW OF TABLE RA, ORDERED BY ACCESS PATH RA4.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBD2RA

USING COSET D2RA, OBTAIN THE ROW FROM TABLE DI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RA

IBOUIRA

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT, DIUSR, DIREV,
DISTA, DIDATC, DIDATM, DIDATR, DITTL, DITIMC, DITIMM, DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR,
:DIREV, :DISTA. :DIDATC, :DIDATM. :DIDATR. :DITTL. :DITIMC,
:DITIMM, :DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :RAEDN

USING COSET UIRA, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RA

IBORPRA

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA. :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :RAUSR

USING COSET RPRA, OBTAIN THE ROW FROM TABLE RP THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RA

IBODIRA

SELECT RPREL
INTO :RPREL
FROM RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL = :RAREl

USING COSET DIRA, OBTAIN THE ROW FROM TABLE 01 THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RA

Revision A

SELECT DIEDN, DIFIL, DINAM, DISID, DIADT, DIEDT. DIUSR. DIREV,
DISTA, DIDATC, DIDATM, DIDATR. DITTl. DITIMC, DITIMM, DITIMR

INTO :DIEDN, :DIFIL, :DINAM, :DISID, :DIADT, :DIEDT, :DIUSR.
:DIREV. :DISTA. :DIDATC, :DIDATM, : DIDATR , :DITTL, :DITIMC.
:DITIMM, :DITIMR

FROM 01 IN ENGINEERING_DATA_DATABASE
WHERE DIEDN = :RAEDN

Information Base Routines B-113

Release Authorization (RA) Routines

IBFD2RA

OBTAIN THE FIRST ROW FROM MEMBER TABLE RA WITHIN COSET D2RA, USING
ACCESS PATH RA4.

IBFUIRA

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAEDNC = :DIEDN
ORDER BY RAEDNC ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE RA WITHIN COSET UIRA, USING
ACCESS PATH RA3.

IBFRPRA

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAUSR = :UIUSR
ORDER BY RAUSR ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE RA WITHIN COSET RPRA, USING
ACCESS PATH RA2.

IBFDIRA

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL = :RPREL
ORDER BY RAREL ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE RA WITHIN COSET DIRA, USING
ACCESS PATH RA 1.

IBND2RA

SELECT RAREL, RAEDN, RAEDNC, RAUSR, RASTA, RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAEDN = :DIEDN
ORDER BY RAEDN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE RA WITHIN COSET D2RA.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBNUIRA

OBTAIN THE NEXT ROW FROM MEMBER TABLE RA WITHIN COSET UIRA.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBNRPRA

OBTAIN THE NEXT ROW FROM MEMBER TABLE RA WITHIN COSET RPRA.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

IBNDIRA

OBTAIN THE NEXT ROW FROM MEMBER TABLE RA WITHIN COSET DIRA.
SET :RAREL, :RAEDN, :RAEDNC, :RAUSR, :RASTA, :RADAT

B-l14 EDL Customization for NOS

/

Revision A

\ ,-

''''-- '

Release Procedure (RP) Routines

Release Procedure (RP) Routines

The RP table contains the names of procedures used to release engineering data.

IBSRP

STORE A NEW ROW IN TABLE RP.

IBMRP

INSERT INTO RP IN ENGINEERING_DATA_DATABASE
SET RPREL = :RPREL

MODIFY AN EXISTING ROW IN TABLE RP.

IBDRP

UDPATE RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL = :RPREL
SET RPREL = :RPREL

DELETE AN EXISTING ROW IN TABLE RP.

IBORPO

DELETE FROM RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL = :RPREL

OBTAIN A ROW IN TABLE RP VIA ACCESS PATH RPO.

IBARPO

SELECT RPREL
FROM RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL = :RPREL
ORDER BY RPREL ASC

OBTAIN A ROW IN TABLE RP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RPO.

IBFRPO

SELECT RPREL
FROM RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL >= :RPREL
ORDER BY RPREL ASC

OBTAIN THE FIRST ROW OF TABLE RP, ORDERED BY ACCESS PATH RPO.

IBNRPO

SELECT RPREL
FROM RP IN ENGINEERING_DATA_DATABASE
ORDER BY RPREL ASC

OBTAIN THE NEXT ROW OF TABLE RP, ORDERED BY ACCESS PATH RPO.
SET :RPREL

Revision A Information Base Routines B-115

Review Responsibility (RR) Routines

Review 'Responsibility (RR) Routines

The RR table defines the responsibility of the reviewers involved in a given release
procedure and the order in which they review the data.

IBSRR

STORE A NEW ROW IN TABLE RR.

IBMRR

INSERT INTO RR IN ENGINEERING_DATA_DATABASE
SET RRREL :RRREL,

RRUSR = :RRUSR,
RRTTL = :RRTTL,
RRSEQ = :RRSEQ,
RRPRI = :RRPRI

MODIFY AN EXISTING ROW IN TABLE RR.
UDPATE RR IN ENGINEERING_DATA_DATABASE
WHERE RRREL :RRREL AND

RRUSR = :RRUSR AND
RRTTL = :RRTTL

SET RRREL :RRREL,
RRUSR = :RRUSR,
RRTTL = :RRTTL;
RRSEQ = :RRSEQ,
RRPRI = :RRPRI

IBDRR

DELETE AN EXISTING ROW IN TABLE RR.

IBORRO

DELETE FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRREL :RRREL AND

RRUSR :RRUSR AND
RRTTL :RRTTL

OBTAIN A ROW IN TABLE RR VIA ACCESS PATH RRO.

IBORRI

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRREL = :RRREL AND

RRUSR = :RRUSR AND
RRTTL = :RRTTL

ORDER BY RRREL ASC, RRUSR ASC, RRTTL ASC

OBTAIN A ROW IN TABLE RR VIA ACCESS PATH RR1.
SELECT RRREL,RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRREL = :RRREL
ORDER BY RRREL ASC, RRSEQ ASC

B·1l6 EDL Customization for NOS Revision A

Review Responsibility (RR) Routines

IBORR2

OBTAIN A ROW IN TABLE RR VIA ACCESS PATH RR2.

IBORR3

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRREL = :RRREL AND

RRSEQ = :RRSEQ
ORDER BY RRREL ASC, RRSEQ ASC, RRTTL ASC

OBTAIN A ROW IN TABLE RR VIA ACCESS PATH RR3.

IBARRO

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRUSR = :RRUSR
ORDER BY RRUSR ASC

OBTAIN A ROW IN TABLE RR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RRO.

IBARR!

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE (RRREL > :RRREL)

OR «RRREL = :RRREL) AND (RRUSR > :RRUSR»
OR «RRREL = :RRREL AND RRUSR = :RRUSR) AND (RRTTL > :RRTTL»
OR (RRREL = :RRREL AND RRUSR = :RRUSR AND RRTTL = :RRTTL)

ORDER BY RRREL ASC, RRUSR ASC, RRTTL ASC

OBTAIN A ROW IN TABLE RR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RR 1.

IBARR2

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRREL >= :RRREL
ORDER BY RRREL ASC, RRSEQ ASC

OBTAIN A ROW IN TABLE RR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RR2.

Revision A

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE (RRREL > :RRREL)

OR «RRREL = :RRREL) AND (RRSEQ > :RRSEQ»
OR (RRREL = :RRREL AND RRSEQ = :RRSEQ)

ORDER BY RRREL ASC, RRSEQ ASC, RRTTL ASC

Information Base Routines B-117

Review Responsibility (RR) Routines

IBARR3

OBTAIN A ROW IN TABLE RR USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RR3.

IBERRI

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRUSR >= :RRUSR
ORDER BY RRUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RR VIA ACCESS PATH RR1.
SAVE THE CURRENT POSITION IN TABLE RR.
FETCH THE NEXT ROW FROM TABLE RR.

SET :RRREL, :RRUSR, :RRTTL, :RRSEQ, :RRPRI

IBERR2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RR VIA ACCESS PATH RR2.
SAVE THE CURRENT POSITION IN TABLE RR.
FETCH THE NEXT ROW FROM TABLE RR.

SET :RRREL, :RRUSR, :RRTTL, :RRSEQ, :RRPRI

IBERR3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RR VIA ACCESS PATH RR3.
SAVE THE CURRENT POSITION IN TABLE RR.
FETCH THE NEXT ROW FROM TABLE RR.

SET :RRREL, :RRUSR, :RRTTL, :RRSEQ, :RRPRI

IBFRRO

OBTAIN THE FIRST ROW OF TABLE RR, ORDERED BY ACCESS PATH RRO.

IBFRRI

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
ORDER BY RRREL ASC, RRUSR ASC, RRTTL ASC

OBTAIN THE FIRST ROW OF TABLE RR, ORDERED BY ACCESS PATH RR1.

IBFRR2

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
ORDER BY RRREL ASC, RRSEQ ASC

OBTAIN THE FIRST ROW OF TABLE RR, ORDERED BY ACCESS PATH RR2.
SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
ORDER BY RRREL ASC, RRSEQ ASC, RRTTL ASC

B·118 EDL Customization for NOS Revision A

Review Responsibility (RR) Routines

IBFRR3

OBTAIN THE FIRST ROW OF TABLE RR, ORDERED BY ACCESS PATH RR3.

IBNRRO

SELECT RRREL, RRUSR, RRTTL, RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
ORDER BY RRUSR ASC

OBTAIN THE NEXT ROW OF TABLE RR, ORDERED BY ACCESS PATH RRO.
SET :RRREL, :RRUSR, :RRTTL, :RRSEQ, :RRPRI

IBNRRI

OBTAIN THE NEXT ROW OF TABLE RR, ORDERED BY ACCESS PATH RR1.
SET :RRREL, :RRUSR, : RRTTL , :RRSEQ, :RRPRI

IBNRR2

OBTAIN THE NEXT ROW OF TABLE RR, ORDERED BY ACCESS PATH RR2.
SET :RRREL, :RRUSR, :RRTTL, :RRSEQ, :RRPRI

IBNRR3

OBTAIN THE NEXT ROW OF TABLE RR, ORDERED BY ACCESS PATH RR3.
SET :RRREL, :RRUSR, :RRTTL, :RRSEQ, :RRPRI

IBOUIRR

USING COSET UIRR, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RR

IBORPRR

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD. :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
:UIPHO, :UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :RRUSR

USING COSET RPRR, OBTAIN THE ROW FROM TABLE RP THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RR

Revision A

SELECT RPREL
INTO :RPREL
FROM RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL = :RRREL

Information Base Routines B-119

Review Responsibility (RR) Routines

IBFUIRR

OBTAIN THE FIRST ROW FROM MEMBER TABLE RR WITHIN COSET UIRR. USING
ACCESS PATH RR3.

IBFRPRR

SELECT RRREL. RRUSR. RRTTL. RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA_DATABASE
WHERE RRUSR = :UIUSR
ORDER BY RRUSR ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE RR WITHIN COSET RPRR. USING
ACCESS PATH RR 1.

IBNUIRR

SELECT RRREL. RRUSR. RRTTL. RRSEQ, RRPRI
FROM RR IN ENGINEERING_DATA~DATABASE
WHERE RRREL = :RPREL
ORDER BY RRREL ASC. RRSEQ ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE RR WITHIN COSET UIRR.
SET :RRREL. :RRUSR. :RRTTL. :RRSEQ. :RRPRI

IBNRPRR

OBTAIN THE NEXT ROW FROM MEMBER TABLE RR WITHIN COSET RPRR.
SET :RRREL. :RRUSR. :RRTTL. :RRSEQ. :RRPRI

B·120 EDL Customization for NOS Revision A

",-" .. "

Release Signature (RS) Routines

Release Signature (RS) Routines

The RS table contains the release signatures and stamps made by a reviewer of
engineering data.

IBSRS

STORE A NEW ROW IN TABLE RS.

IBMRS

INSERT INTO RS IN ENGINEERING_DATA_DATABASE
SET RSEDN :RSEDN,

RSREL :RSREL,
RSUSR :RSUSR,
RSTTL :RSTTL,
RSDAT :RSDAT,
RSSTP :RSSTP

MODIFY AN EXISTING ROW IN TABLE RS.
UDPATE RS IN ENGINEERING_DATA_DATABASE
WHERE RSEDN :RSEDN AND

RSREL :RSREL AND
RSUSR :RSUSR AND
RSTTL : RSTTL

SET RSEDN :RSEDN,
RSREL :RSREL,
RSUSR :RSUSR,
RSTTL :RSTTL,
RSDAT : RSDAT ,
RSSTP :RSSTP

IBDRS

DELETE AN EXISTING ROW IN TABLE RS.

Revision A

DELETE FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSEDN :RSEDN AND

RSREL
RSUSR

:RSREL AND
:RSUSR AND

RSTTL : RSTTL

Information Base Routines B-121

Release Signature (RS) Routines

IBORSO

OBTAIN A ROW IN TABLE RS VIA ACCESS PATH RSO.

IBORSI

SELECT RSEDN, RSREL, RSUSR. RSTTL. RSDAT. RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSEDN = :RSEDN AND

RSREL = :RSREL AND
RSUSR = :RSUSR AND
RSTTL = :RSTTL

ORDER BY RSEDN ASC. RSREL ASC. RSUSR ASC. RSTTL ASC

OBTAIN A ROW IN TABLE RS VIA ACCESS PATH RS1.

IBORS2

SELECT RSEDN, RSREL. RSUSR. RSTTL. RSDAT. RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSREL = :RSREL AND

RSEDN = :RSEDN
ORDER BY RSREL ASC. RSEDN ASC, RSDAT ASC

OBTAIN A ROW IN TABLE RS VIA ACCESS PATH RS2.

IBARSO

SELECT RSEDN, RSREL. RSUSR, RSTTL. RSDAT. RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSUSR = :RSUSR
ORDER BY RSUSR ASC

OBTAIN A ROW IN TABLE RS USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RSO.

SELECT RSEDN, RSREL, RSUSR, RSTTL. RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE (RSEDN > :RSEDN)

OR «RSEDN = :RSEDN) AND (RSREL > :RSREL»
OR «RSEDN = :RSEDN AND RSREL :RSREL) AND (RSUSR > :RSUSR»
OR «RSEDN = :RSEDN AND RSREL = :RSREL AND RSUSR :RSUSR) AND

(RSTTL > :RSTTL»
OR (RSEDN = :RSEDN AND RSREL = :RSREL AND RSUSR = :RSUSR AND

RSTTL = :RSTTL)
ORDER BY RSEDN ASC, RSREL ASC, RSUSR ASC, RSTTL ASC

B-122 EDL Customization for NOS Revision A

I
\

"--

Release Signature (RS) Routines

IBARSI

OBTAIN A ROW IN TABLE RS USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RS1.

IBARS2

SELECT RSEDN, RSREL, RSUSR, RSTTL, RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE (RSREL > :RSREL)

OR «RSREL = :RSREL) AND (RSEDN > :RSEDN»
OR (RSREL = :RSREL AND RSEDN = :RSEDN)

ORDER BY RSREL ASC, RSEDN ASC, RSDAT ASC

OBTAIN A ROW IN TABLE RS USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RS2.

IBERSI

SELECT RSEDN, RSREL, RSUSR, RSTTL, RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSUSR >= :RSUSR
ORDER BY RSUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RS VIA ACCESS PATH RS1.
SAVE THE CURRENT POSITION IN TABLE RS.
FETCH THE NEXT ROW FROM TABLE RS.

SET :RSEDN, :RSREL, :RSUSR, : RSTTL , :RSDAT, :RSSTP

IBERS2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RS VIA ACCESS PATH RS2.
SAVE THE CURRENT POSITION IN TABLE RS.
FETCH THE NEXT ROW FROM TABLE RS.

SET :RSEDN, :RSREL, :RSUSR, :RSTTL, :RSDAT, :RSSTP

IBFRSO

OBTAIN THE FIRST ROW OF TABLE RS, ORDERED BY ACCESS PATH RSO.

IBFRSI

SELECT RSEDN, RSREL, RSUSR, RSTTL, RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
ORDER BY RSEDN ASC, RSREL ASC, RSUSR ASC, RSTTL ASC

OBTAIN THE FIRST ROW OF TABLE RS, ORDERED BY ACCESS PATH RS1.

IBFRS2

SELECT RSEDN, RSREL, RSUSR, RSTTL, RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
ORDER BY RSREL ASC, RSEDN ASC, RSDAT ASC

OBTAIN THE FIRST ROW OF TABLE RS, ORDERED BY ACCESS PATH RS2.

Revision A

SELECT RSEDN, RSREL, RSUSR, RSTTL, RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
ORDER BY RSUSR ASC

Information Base Routines B-123

Release Signature (RS) Routines

IBNRSO

OBTAIN THE NEXT ROW OF TABLE RS, ORDERED BY ACCESS PATH RSO.
SET :RSEDN, :RSREL, :RSUSR, :RSTTL, :RSDAT, :RSSTP

IBNRSI

OBTAIN THE NEXT ROW OF TABLE RS, ORDERED BY ACCESS PATH RS1.
SET :RSEDN, :RSREL, :RSUSR, :RSTTL, : RSDAT , :RSSTP

IBNRS2

OBTAIN THE NEXT ROW OF TABLE RS, ORDERED BY ACCESS PATH RS2.
SET :RSEDN, :RSREL, :RSUSR, :RSTTL, : RSDAT , :RSSTP

IBOUIRS

USING COSET UIRS, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RS

IBORARS

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :RSUSR

USING COSET RARS, OBTAIN THE ROW FROM TABLE RA THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RS

IBFUIRS

SELECT RAREL, RAEDN, RAEDNC. RAUSR, RASTA, RADAT
INTO :RAREL, :RAEDN, :RAEDNC, :RAUSR. :RASTA. :RADAT
FROM RA IN ENGINEERING_DATA_DATABASE
WHERE RAREL = :RSREL AND

RAEDN = :RSEDN

OBTAIN THE FIRST ROW FROM MEMBER TABLE RS WITHIN COSET UIRS, USING
ACCESS PATH RS2.

IBFRARS

SELECT RSEDN, RSREL, RSUSR, RSTTL. RSDAT. RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSUSR = :UIUSR
ORDER BY RSUSR ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE RS WITHIN COSET RARS, USING
ACCESS PATH RS 1 .

SELECT RSEDN, RSREL, RSUSR, RSTTL. RSDAT, RSSTP
FROM RS IN ENGINEERING_DATA_DATABASE
WHERE RSREL = :RAREL AND

RSEDN = :RAEDN
ORDER BY RSREL ASC. RSEDN ASC, RSDAT ASC

B·124 EDL Customization for NOS Revision A

Release Signature (RS) Routines

IBNUIRS

OBTAIN THE NEXT ROW FROM MEMBER TABLE RS WITHIN COSET UIRS.
SET :RSEDN, :RSREL, :RSUSR, :RSTTL, :RSDAT, :RSSTP

IBNRARS

OBTAIN THE NEXT ROW FROM MEMBER TABLE RS WITHIN COSET RARS.
SET :RSEDN, :RSREL, :RSUSR, :RSTTL, : RSDAT, :RSSTP

Revision A Information Base Routines B-125

Release Transfers (RT) Routines

Release Transfers (RT) Routines

The RT table defines which data transfers are usable for releasing engineering data.

IBSRT

STORE A NEW ROW IN TABLE RT.

IBMRT

INSERT INTO RT IN ENGINEERING_DATA_DATABASE
SET RTADTl :RTADT1,

RTADT2 = :RTADT2

MODIFY AN EXISTING ROW IN TABLE RT.

IBDRT

UDPATE RT IN ENGINEERING_DATA_DATABASE
WHERE RTADTl = :RTADTl AND

RTADT2 = :RTADT2
SET RTADTl :RTADT1,

RTADT2 = :RTADT2

DELETE AN EXISTING ROW IN TABLE RT.

IBORTO

DELETE FROM RT IN ENGINEERING_DATA_DATABASE
WHERE RTADTl :RTADTl AND

RTADT2 = :RTADT2

OBTAIN A ROW IN TABLE RT VIA ACCESS PATH RTO.
SELECT RTADT1, RTADT2
FROM RT IN ENGINEERING_DATA_DATABASE
WHERE RTADTl = :RTADTl AND

RTADT2 = :RTADT2
ORDER BY RTADTl ASC, RTADT2 ASC

B-126 EDL Customization for NOS Revision A

Release Transfers (RT) Routines

IBARTO

OBTAIN A ROW IN TABLE RT USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RTO.

IBFRTO

SELECT RTADT1, RTADT2
FROM RT IN ENGINEERING_DATA_DATABASE
WHERE (RTADTl > :RTADT1)

OR «RTADTl = :RTADT1) AND (RTADT2 > :RTADT2»
OR (RTADTl = : RTADT 1 AND RTADT2 = :RTADT2)

ORDER BY RTADTl ASC, RTADT2 ASC

OBTAIN THE FIRST ROW OF TABLE RT, ORDERED BY ACCESS PATH RTO.

IBNRTO

SELECT RTADT1, RTADT2
FROM RT IN ENGINEERING_DATA_DATABASE
ORDER BY RTADTl ASC, RTADT2 ASC

OBTAIN THE NEXT ROW OF TABLE RT, ORDERED BY ACCESS PATH RTO.
SET : RTADT 1 , :RTADT2

Revision A Information Base Routines B-127

Releasers (RU) Routines

Releasers (RU) Routines

The RU table defines the releasers involved in a release procedure.

IBSRU

STORE A NEW ROW IN TABLE RU.

IBMRU

INSERT INTO RU IN ENGINEERING_DATA_DATABASE
SET RUREL :RUREL,

RUUSR = :RUUSR

MODIFY AN EXISTING ROW IN TABLE RU.

IBDRU

UDPATE RU IN ENGINEERING_DATA_DATABASE
WHERE RUREL = :RUREL AND

RUUSR = :RUUSR
SET RUREL :RUREL,

RUUSR = :RUUSR

DELETE AN EXISTING ROW IN TABLE RU.

IBORUO

DELETE FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUREL = :RUREL AND

RUUSR = :RUUSR

OBTAIN A ROW IN TABLE RU VIA ACCESS PATH RUO.
SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUREL = :RUREL AND

RUUSR = :RUUSR
ORDER BY RUREL ASC, RUUSR ASC

B-128 EDL Customization for NOS Revision A

IBORUI

OBTAIN A ROW IN TABLE RU VIA ACCESS PATH RU1.

IBORU2

SELECT RUREL,·RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUREL = :RUREL
ORDER BY RUREL ASC

OBTAIN A ROW IN TABLE RU VIA ACCESS PATH RU2.

IBARUO

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUUSR = :RUUSR
ORDER BY RUUSR ASC

Releasers (RU) Routines

OBTAIN A ROW IN TABLE RU USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RUO.

IBARUI

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE (RUREL > :RUREL)

OR «RUREL = :RUREL) AND (RUUSR > :RUUSR»
OR (RUREL = :RUREL AND RUUSR = :RUUSR)

ORDER BY RUREL ASC, RUUSR ASC

OBTAIN A ROW IN TABLE RU USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RU1.

IBARU2

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUREL >= :RUREL
ORDER BY RUREL ASC

OBTAIN A ROW IN TABLE RU USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH RU2.

IBERUI

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUUSR >= :RUUSR
ORDER BY RUUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RU VIA ACCESS PATH RU1.
SAVE THE CURRENT POSITION IN TABLE RU.
FETCH THE NEXT ROW FROM TABLE RU.

SET :RUREL, :RUUSR

Revision A Information Base Routines B-129

Releasers (RU) Routines

IBERU2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE RU VIA ACCESS PATH RU2.
SAVE THE CURRENT POSITION IN TABLE RU.
FETCH THE NEXT ROW FROM TABLE RU.

SET :RUREL, :RUUSR

IBFRUO

OBTAIN THE FIRST ROW OF TABLE RU, ORDERED BY ACCESS PATH RUO.

IBFRUI

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
ORDER BY RUREL ASC, RUUSR ASC

OBTAIN THE FIRST ROW OF TABLE RU, ORDERED BY ACCESS PATH RU1.

IBFRU2

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
ORDER BY RUREL ASC

OBTAIN THE FIRST ROW OF TABLE RU, ORDERED BY ACCESS PATH RU2.

IBNRUO

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
ORDER BY RUUSR ASC

OBTAIN THE NEXT ROW OF TABLE RU, ORDERED BY ACCESS PATH RUO.
SET :RUREL, :RUUSR

IBNRUI

OBTAIN THE NEXT ROW OF TABLE RU, ORDERED BY ACCESS PATH RU1.
SET :RUREL, :RUUSR

IBNRU2

OBTAIN THE NEXT ROW OF TABLE RU, ORDERED BY ACCESS PATH RU2.
SET :RUREL, :RUUSR

IBOUIRU

USING COSET UIRU, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RU

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
:UIPHO, :UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :RUUSR

B-130 EDL Customization for NOS Revision A

Releasers (RU) Routines

IBORPRU

USING COSET RPRU. OBTAIN THE ROW FROM TABLE RP THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE RU

IBFUIRU

SELECT RPREL
INTO :RPREL
FROM RP IN ENGINEERING_DATA_DATABASE
WHERE RPREL = :RUREL

OBTAIN THE FIRST ROW FROM MEMBER TABLE RU WITHIN COSET UIRU. USING
ACCESS PATH RU2.

IBFRPRU

SELECT RUREL. RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUUSR = :UIUSR
ORDER BY RUUSR ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE RU WITHIN COSET RPRU. USING
ACCESS PATH RU1.

IBNUIRU

SELECT RUREL, RUUSR
FROM RU IN ENGINEERING_DATA_DATABASE
WHERE RUREL = :RPREL
ORDER BY RUREL ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE RU WITHIN COSET UIRU.
SET :RUREL. :RUUSR

IBNRPRU

OBTAIN THE NEXT ROW FROM MEMBER TABLE RU WITHIN COSET RPRU.
SET :RUREL, :RUUSR

Revision A Information Base Routines B-131

Task Command (TC) Routines

Task Command (TC) Routines

The TC table contains the commands that start the tasks defined in TI.

IBSTC

STORE A NEW ROW tN TABLE TC.

IBMTC

INSERT INTO TC IN MENU_DATABASE
SET TCCMD = : TCCMD ,

TCTNA = :TCTNA

MODIFY AN EXISTING ROW IN TABLE TC.

IBDTC

UDPATE TC IN MENU_DATABASE
WHERE TCCMD = :TCCMD
SET TCCMD : TCCMD ,

TCTNA = :TCTNA

DELETE AN EXISTING ROW IN TABLE TC.

IBOTCO

DELETE FROM TC IN MENU_DATABASE
WHERE TCCMD = :TCCMD

OBTAIN A ROW IN TABLE TC VIA ACCESS PATH TCO.

IBOTCI

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
WHERE TCCMD = :TCCMD
ORDER BY TCCMD ASC

OBTAIN A ROW IN TABLE TC VIA ACCESS PATH TC1.

IBATCO

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
WHERE TCTNA = :TCTNA
ORDER BY TCTNA ASC

OBTAIN A ROW IN TABLE TC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TCO.

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
WHERE TCCMD >= :TCCMD
ORDER BY TCCMD ASC

B·132 EDL Customization for NOS Revision A

Task Command (TC) Routines

IBATCI

OBTAIN A ROW IN TABLE TC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TC1.

IBETCI

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
WHERE TCTNA >= :TCTNA
ORDER BY TCTNA ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TC VIA ACCESS PATH TC1.
SAVE THE CURRENT POSITION IN TABLE TC.
FETCH THE NEXT ROW FROM TABLE TC.

SET :TCCMD, :TCTNA

IBFTCO

OBTAIN THE FIRST ROW OF TABLE TC, ORDERED BY ACCESS PATH TCO.

IBFTCI

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
ORDER BY TCCMD ASC

OBTAIN THE FIRST ROW OF TABLE TC, ORDERED BY ACCESS PATH TC1.

IBNTCO

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
ORDER BY TCTNA ASC

OBTAIN THE NEXT ROW OF TABLE TC, ORDERED BY ACCESS PATH TCO.
SET :TCCMD, :TCTNA

IBNTCI

OBTAIN THE NEXT ROW OF TABLE TC, ORDERED BY ACCESS PATH TC1.
SET : TCCMD, :TCTNA

Revision A Information Base Routines B-133

Task Command (TC) Routines

IBOTITC

USING COSET TITC, OBTAIN THE ROW FROM TABLE TI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TC

IBFTITC

SELECT TITNA, TISEC, TITYP, TIDSC
INTO :TITNA, :TISEC, :TITYP, :TIDSC
FROM TI IN MENU_DATABASE
WHERE TITNA = :TCTNA

OBTAIN THE FIRST ROW FROM MEMBER TABLE TC WITHIN COSET T.ITC, USING
ACCESS PATH TC1.

IBNTITC

SELECT TCCMD, TCTNA
FROM TC IN MENU_DATABASE
WHERE TCTNA = :TITNA
ORDER BY TCTNA ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE TC WITHIN COSET TITC.
SET :TCCMD, :TCTNA

B·134 EDL Customization for NOS Revision A

I
"'--- --

(

!
\,,--

Task Information (TI) Routines

The TI record contains the headers for EDL tasks.

IBSTI

STORE A NEW ROW IN TABLE TI.

IBMTI

INSERT INTO TI IN MENU_DATABASE
SET TITNA = :TITNA,

TISEC :TISEC,
TITYP :TITYP,
TIDSC :TIDSC

MODIFY AN EXISTING ROW IN TABLE TI.

IBDTI

UDPATE TI IN MENU_DATABASE
WHERE TITNA = :TITNA
SET TITNA = :TITNA,

TISEC :TISEC,
TITYP
TIDSC

:TITYP,
:TIDSC

DELETE AN EXISTING ROW IN TABLE TI.

IBOTIO

DELETE FROM TI IN MENU_DATABASE
WHERE TITNA = :TITNA

OBTAIN A ROW IN TABLE TI VIA ACCESS PATH TID.

IBOTII

SELECT TITNA, TISEC, TITYP, TIDSC
FROM TI IN MENU_DATABASE
WHERE TITNA = :TITNA
ORDER BY TITNA ASC

OBTAIN A ROW IN TABLE TI VIA ACCESS PATH TI1.

IBATIO

SELECT TITNA, TISEC, TITYP, TIDSC
FROM TI IN MENU_DATABASE
WHERE TISEC = :TISEC
ORDER BY TISEC ASC

Task Information (TI) Routines

OBTAIN A ROW IN TABLE TI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TID.

Revision A

SELECT TITNA, TISEC, TITYP, TIOSC
FROM TI IN MENU_DATABASE
WHERE TITNA >= :TITNA
ORDER BY TITNA ASC

Information Base Routines B·135

Task Information (TI) Routines

IBATII

OBTAIN A ROW IN TABLE TI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TI1.

IBETII

SELECT TITNA, TISEC. TITYP, TIDSC
FROM TI IN MENU_DATABASE
WHERE TISEC >= :TISEC
ORDER BY TISEC ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TI VIA ACCESS PATH TI1.
SAVE THE CURRENT POSITION IN TABLE TI.
FETCH THE NEXT ROW FROM TABLE TI.

SET :TITNA, :TISEC, :TITYP, :TIDSC

IBFTIO

OBTAIN THE FIRST ROW OF TABLE TI, ORDERED BY ACCESS PATH TID.

IBFTII

SELECT TITNA, TISEC, TITYP, TIDSC
FROM TI IN MENU_DATABASE
ORDER BY TITNA ASC

OBTAIN THE FIRST ROW OF TABLE TI, ORDERED BY ACCESS PATH TI1.

IBNTIO

SELECT TITNA, TISEC, TITYP, TIDSC
FROM TI IN MENU_DATABASE
ORDER BY TISEC ASC

OBTAIN THE NEXT ROW OF TABLE TI, ORDERED BY ACCESS PATH TID.
SET :TITNA, :TISEC, :TITYP, :TIDSC

IBNTII

OBTAIN THE NEXT ROW OF TABLE TI, ORDERED BY ACCESS PATH TI1.
SET :TITNA, :TISEC, :TITYP, :TIDSC

B-136 EDL Customization for NOS Revision A

Task Menu (TM) Routines

The TM table contains the task menu lines

IBSTM

STORE A NEW ROW IN TABLE TM.

IBMTM

INSERT INTO TM IN MENU_DATABASE
SET TMMNA :TMMNA,

TMMLN :TMMLN,
TMTXT : TMTXT ,
TMTNA : TMTNA

. MODIFY AN EXISTING ROW IN TABLE TM.

IBDTM

UDPATE TM IN MENU_DATABASE
WHERE TMMNA = :TMMNA AND

TMMLN = :TMMLN
SET TMMNA :TMMNA,

TMMLN : TMMLN ,
TMTXT :TMTXT,
TMTNA : TMTNA

DELETE AN EXISTING ROW IN TABLE TM.

IBOTMO

DELETE FROM TM IN MENU_DATABASE
WHERE TMMNA :TMMNA AND

TMMLN = :TMMLN

OBTAIN A ROW IN TABLE TM VIA ACCESS PATH TMO.

IBOTMI

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMMNA = :TMMNA AND

TMMLN = :TMMLN
ORDER BY TMMNA ASC, TMMLN ASC

OBTAIN A ROW IN TABLE TM VIA ACCESS PATH TM1.

Revision A

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMMNA = :TMMNA AND

TMTNA = :TMTNA
ORDER BY TMMNA ASC, TMTNA ASC

Task Menu (TM) Routines

Information Base Routines B-137

Task Menu (TM) Routines

IBOTM2

OBTAIN A ROW IN TABLE TM VIA ACCESS PATH TM2.

IBOTM3

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMTNA = :TMTNA
ORDER BY TMTNA ASC

OBTAIN A ROW IN TABLE TM VIA ACCESS PATH TM3.

IBATMO

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMMNA = :TMMNA
ORDER BY TMMNA ASC, TMMLN ASC

OBTAIN A ROW IN TABLE TM USING AN APPROXIMATE KEY VALUE AND ACCESS PATH TMO.

IBATMI

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE (TMMNA > :TMMNA)

OR «TMMNA = :TMMNA) AND (TMMLN > :TMMLN»
OR (TMMNA = :TMMNA AND TMMLN = :TMMLN)

ORDER BY TMMNA ASC, TMMLN ASC

OBTAIN A ROW IN TABLE TM USING AN APPROXIMATE KEY VALUE AND ACCESS PATH TM1.

IBATM2

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE (TMMNA > :TMMNA)

OR «TMMNA = :TMMNA) AND (TMTNA > :TMTNA»
OR (TMMNA = :TMMNA AND TMTNA = :TMTNA)

ORDER BY TMMNA ASC, TMTNA ASC

OBTAIN A ROW IN TABLE TM USING AN APPROXIMATE KEY VALUE AND ACCESS PATH TM2.

IBATM3

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMTNA >= :TMTNA
ORDER BY TMTNA ASC

OBTAIN A ROW IN TABLE TM USING AN APPROXIMATE KEY VALUE AND ACCESS PATH TM3.
SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMMNA >= :TMMNA
ORDER BY TMMNA ASC, TMMLN ASC

B-138 EDL Customization for NOS Revision A

Task Menu (TM) Routines

IBETM2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TM VIA ACCESS PATH TM2.
SAVE THE CURRENT POSITION IN TABLE TM.
FETCH THE NEXT ROW FROM TABLE TM.

SET :TMMNA, : TMMLN , : TMTXT , :TMTNA

IBETM3

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TM VIA ACCESS PATH TM3.
SAVE THE CURRENT POSITION IN TABLE TM.
FETCH THE NEXT ROW FROM TABLE TM.

SET :TMMNA, :TMMLN, :TMTXT, :TMTNA

IBFTMO

OBTAIN THE FIRST ROW OF TABLE TM, ORDERED BY ACCESS PATH TMO.

IBFTMI

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
ORDER BY TMMNA ASC, TMMLN ASC

OBTAIN THE FIRST ROW OF TABLE TM, ORDERED BY ACCESS PATH TM1.

IBFTM2

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
ORDER BY TMMNA ASC, TMTNA ASC

OBTAIN THE FIRST ROW OF TABLE TM, ORDERED BY ACCESS PATH TM2.

IBFTM3

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
ORDER BY TMTNA ASC

OBTAIN THE FIRST ROW OF TABLE TM, ORDERED BY ACCESS PATH TM3.

IBNTMO

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
ORDER BY TMMNA ASC, TMMLN ASC

OBTAIN THE NEXT ROW OF TABLE TM, ORDERED BY ACCESS PATH TMO.
SET : TMMNA , :TMMLN, : TMTXT , :TMTNA

IBNTMI

OBTAIN THE NEXT ROW OF TABLE T~, ORDERED BY ACCESS PATH TM1.
SET : TMMNA , :TMMLN, :TMTXT, :TMTNA

Revision A Information Base Routines B-139

Task Menu (TM) Routines

IBNTM2

OBTAIN THE NEXT ROW OF TABLE TM, ORDERED BY ACCESS PATH TM2.
SET :TMMNA, : TMMLN , :TMTXT, :TMTNA

IBNTM3

OBTAIN THE NEXT ROW OF TABLE TM, ORDERED BY ACCESS PATH TM3.
SET :TMMNA, :TMMLN, : TMTXT , :TMTNA

IBOTITM

USING COSET TITM, OBTAIN THE ROW FROM TABLE TI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TM

IBOMITM

SELECT TITNA, TISEC, TITYP, TIDSC
INTO :TITNA, :TISEC, :TITYP, :TIDSC
FROM TI IN MENU_DATABASE
WHERE TITNA = :TMTNA

USING COSET MITM, OBTAIN THE ROW FROM TABLE MI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TM

IBFTITM

SELECT MIMNA, MITYP, MISTA, MITTL
INTO :MIMNA, :MITYP, :MISTA,:MITTL
FROM MI IN MENU_DATABASE
WHERE MIMNA = :TMMNA

OBTAIN THE FIRST ROW FROM MEMBER TABLE TM WITHIN COSET TITM, USING
ACCESS PATH TM2.

IBFMITM

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMTNA = :TITNA
ORDER BY TMTNA ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE TM WITHIN COSET MITM, USING
ACCESS PATH TM3.

IBNTITM

SELECT TMMNA, TMMLN, TMTXT, TMTNA
FROM TM IN MENU_DATABASE
WHERE TMMNA = :MIMNA
ORDER BY TMMNA ASC, TMMLN ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE TM WITHIN COSET TITM.
SET :TMMNA, : TMMLN , :TMTXT, :TMTNA

IBNMITM

OBTAIN THE NEXT ROW FROM MEMBER TABLE TM WITHIN COSET MITM.
SET : TMMNA , : TMMLN , :TMTXT, :TMTNA

B·140 EDL Customization for NOS Revision A

Task Process (TP) Routines

Task Process (TP) Routines

The TP table defines the individual steps (task processes) that compose a task.

IBSTP

STORE A NEW ROW IN TABLE TP.
INSERT INTO TP IN MENU_DATABASE
SET TPTNA = :TPTNA,

TPSEQ = :TPSEQ,
TPTYP = :TPTYP,
TPNAM = :TPNAM,
TPFNA = :TPFNA

IBMTP

MODIFY AN EXISTING ROW IN TABLE TP.

IBDTP

UDPATE TP IN MENU_DATABASE
WHERE TPTNA = :TPTNA AND

TPSEQ = :TPSEQ
SET TPTNA = :TPTNA,

TPSEQ = :TPSEQ,
TPTYP = :TPTYP,
TPNAM = :TPNAM,
TPFNA = :TPFNA

DELETE AN EXISTING ROW IN TABLE TP.

IBOTPO

DELETE FROM TP IN MENU_DATABASE
WHERE TPTNA = :TPTNA AND

TPSEQ = :TPSEQ

OBTAIN A ROW IN TABLE TP VIA ACCESS PATH TPO.

IBOTPI

SELECT TPTNA, TPSEQ, TPTYP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
WHERE TPTNA = :TPTNA AND

TPSEQ = :TPSEQ
ORDER BY TPTNA ASC, TPSEQ ASC

OBTAIN A ROW IN TABLE TP VIA ACCESS PATH TP1.

Revision A

SELECT TPTNA, TPSEQ, TPTYP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
WHERE TPTNA = :TPTNA
ORDER BY TPTNA ASC, TPSEQ ASC

Information Base Routines B-141

Task Process (TP) Routines

IBATPO

OBTAIN A ROW IN TABLE TP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TPO.

IBATPI

SELECT TPTNA, TPSEQ, TPTVP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
WHERE (TPTNA > :TPTNA)

OR «TPTNA = :TPTNA) AND (TPSEQ > :TPSEQ»
OR (TPTNA = :TPTNA AND TPSEQ = :TPSEQ)

ORDER BY TPTNA ASC, TPSEQ ASC

OBTAIN A ROW IN TABLE TP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TP1.

IBETPI

SELECT TPTNA, TPSEQ, TPTVP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
WHERE TPTNA >= :TPTNA
ORDER BY TPTNA ASC, TPSEQ ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TP VIA ACCESS PATH TP1.
SAVE THE CURRENT POSITION IN TABLE TP.
FETCH THE NEXT ROW FROM TABLE TP.

SET :TPTNA, :TPSEQ, :TPTVP, :TPNAM, :TPFNA

IBFTPO

OBTAIN THE FIRST ROW OF TABLE TP, ORDERED BY ACCESS PATH TPO.

IBFTPI

SELECT TPTNA, TPSEQ, TPTVP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
ORDER BY TPTNA ASC, TPSEQ ASC

OBTAIN THE FIRST ROW OF TABLE TP, ORDERED BY ACCESS PATH TP1.

IBNTPO

SELECT TPTNA, TPSEQ, TPTVP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
ORDER BY TPTNA ASC, TPSEQ ASC

OBTAIN THE NEXT ROW OF TABLE TP, ORDERED BY ACCESS PATH TPO.
SET : TPTNA , :TPSEQ, :TPTVP, :TPNAM, :TPFNA

IBNTPI

OBTAIN THE NEXT ROW OF TABLE TP, ORDERED BV ACCESS PATH TP1.
SET :TPTNA, :TPSEQ, :TPTVP, :TPNAM, :TPFNA

B-142 EDL Customization for NOS Revision A

Task Process (TP) Routines

IBOTIT:?

USING COSET TITP, OBTAIN THE ROW FROM TABLE TI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TP

IBFTITP

SELECT TITNA, TISEC, TITVP, TIDSC
INTO :TITNA, :TISEC, :TITVP, :TIDSC
FROM TI IN MENU_DATABASE
WHERE TITNA = :TPTNA

OBTAIN THE FIRST ROW FROM MEMBER TABLE TP WITHIN COSET TITP, USING
ACCESS PATH TP1.

IBNTITP

SELECT TPTNA, TPSEQ, TPTVP, TPNAM, TPFNA
FROM TP IN MENU_DATABASE
WHERE TPTNA = :TITNA
ORDER BV TPTNA ASC, TPSEQ ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE TP WITHIN COSET TITP.
SET :TPTNA, :TPSEQ, :TPTVP, :TPNAM, :TPFNA

Revision A Information Base Routines B-143

Transfer and Translation Tasks (TT) Routines

The TT table defines how data is transferred from one application to another.

IBSTT

STORE A NEW ROW IN TABLE TT.

IBMTT

INSERT INTO TT IN ENGINEERING_DATA_DATABASE
SET TTADT1 = :TTADT1.

TTADT2 = :TTADT2.
TTTNA = :TTTNA

MODIFY AN EXISTING ROW IN TABLE TT.

IBDTT

UDPATE TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT1 = :TTADT1 AND

TTADT2 = :TTADT2
SET TTADT1 = :TTADT1.

TTADT2 = :TTADT2.
TTTNA = :TTTNA

DELETE AN EXISTING ROW IN TABLE TT.
DELETE FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT1 :TTADT1 AND

TTADT2 = :TTADT2

IBOTTO

OBTAIN A ROW IN TABLE TT VIA ACCESS PATH TTO.

IBOTTI

SELECT TTADT1. TTADT2. TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT1 = :TTADT1 AND

TTADT2 = :TTADT2
ORDER BY TTADT1 ASC. TTADT2 ASC

OBTAIN A ROW IN TABLE TT VIA ACCESS PATH TT1.

IBOTT2

SELECT TTADT1. TTADT2. TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT1 = :TTADT1
ORDER BY TTADT1 ASC

OBTAIN A ROW IN TABLE TT VIA ACCESS PATH TT2.
SELECT TTADT1, TTADT2. TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT2 = :TTADT2
ORDER BY TTADT2 ASC

B-144 EDL Customization for NOS Revision A

Transfer and Translation Tasks ITT) Routines

IBATTO

OBTAIN A ROW IN TABLE TT USING AN APPROXIMATE KEY VALUE AND ACCESS PATH TTO.

IBATTI

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE (TTADTl > :TTADT1)

OR «TTADT1 = :TTADT1) AND (TTADT2 > :TTADT2»
OR (TTADTl = :TTADTl AND TTADT2 = :TTADT2)

ORDER BY TTADTl ASC, TTADT2 ASC

OBTAIN A ROW IN TABLE TT USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TT1.

IBATT2

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADTl >= :TTADTl
ORDER BY TTADTl ASC

OBTAIN A ROW IN TABLE TT USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TT2.

IBETTI

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT2 >= :TTADT2
ORDER BY TTADT2 ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TT VIA ACCESS PATH TTl.
SAVE THE CURRENT POSITION IN TABLE TT.
FETCH THE NEXT ROW FROM TABLE TT.

SET :TTADT1, :TTADT2, :TTTNA

IBETT2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TT VIA ACCESS PATH TT2.
SAVE THE CURRENT POSITION IN TABLE TT.
FETCH THE NEXT ROW FROM TABLE TT.

SET : TTADT 1 , :TTADT2, :TTTNA

IBFTTO

OBTAIN THE FIRST ROW OF TABLE TT, ORDERED BY ACCESS PATH TTO.

IBFTTI

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
ORDER BY TTADTl ASC, TTADT2 ASC

OBTAIN THE FIRST ROW OF TABLE TT, ORDERED BY ACCESS PATH TTl.

Revision A

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
ORDER BY TTADTl ASC

Information Base Routines B·145

Transfer and Translation Tasks (TT) Routines

IBFTT2

OBTAIN THE FIRST ROW OF TABLE TT, ORDERED BY ACCESS PATH TT2.

IBNTTO

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
ORDER BY TTADT2 ASC

OBTAIN THE NEXT ROW OF TABLE TT, ORDERED BY ACCESS PATH TTO.
SET :TTADT1, :TTADT2, :TTTNA

IBNTTI

OBTAIN THE NEXT ROW OF TABLE TT, ORDERED BY ACCESS PATH TTl.
SET : TTADT 1 , : TTADT2 , :TTTNA

IBNTT2

OBTAIN THE NEXT ROW OF TABLE TT, ORDERED BY ACCESS PATH TT2.
SET :TTADT1, :TTADT2, :TTTNA

IBOATT2

USING COSET ATT2, OBTAIN THE ROW FROM TABLE AT THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TT

IBOATTI

SELECT ATADT, ATNAM, ATFTC, ATTNA, ATSIDR
INTO :ATADT, :ATNAM, : ATFTC , :ATTNA, :ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATADT = :TTADT2

USING COSET ATT1, OBTAIN THE ROW FROM TABLE AT THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TT

IBFATT2

SELECT ATADT, ATNAM, AT FTC , ATTNA, ATSIDR
INTO :ATADT, :ATNAM, : ATFTC , :ATTNA, :ATSIDR
FROM AT IN ENGINEERING_DATA_DATABASE
WHERE ATADT = : TTADT 1

OBTAIN THE FIRST ROW FROM MEMBER TABLE TT WITHIN COSET ATT2, USING
ACCESS PATH TT2.

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADT2 = :ATADT
ORDER BY TTADT2 ASC

B·146 EDL Customization for NOS Revision A

Transfer and Translation Tasks (TT) Routines

IBFATTI

OBTAIN THE FIRST ROW FROM MEMBER TABLE TT WITHIN COSET ATT1, USING
ACCESS PATH TTl.

IBNATT2

SELECT TTADT1, TTADT2, TTTNA
FROM TT IN ENGINEERING_DATA_DATABASE
WHERE TTADTl = :ATADT
ORDER BY TTADTl ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE TT WITHIN COSET ATT2.
SET :TTADT1, :TTADT2, :TTTNA

IBNATTI

OBTAIN THE NEXT ROW FROM MEMBER TABLE TT WITHIN COSET ATT1.
SET :TTADT1, :TTADT2. :TTTNA

Revision A Information Base Routines B-147

Task Parameter Value (TV) Routines

Task Parameter Value (TV) Routines

The TV table defines the parameters that are passed to eLI macros and EDL
subprograms when they are executed as task processes. Task parameters can also be
used to answer prompts issued by EDL subprograms.

IBSTV

STORE A NEW ROW IN TABLE TV.
INSERT INTO TV IN MENU_DATABASE
SET TVTNA :TVTNA,

TVSEQ :TVSEQ,
TVPOS : TVPOS ,
TVPRM :TVPRM,
TVTYP : TVTYP ,
TWAL : TWAL

IBMTV

MODIFY AN EXISTING ROW IN TABLE TV.

IBDTV

UDPATE TV IN MENU_DATABASE
WHERE TVPOS :TVPOS AND

TVSEQ = :TVSEQ AND
TVTNA = : TVTNA

SET TVTNA :TVTNA,
TVSEQ :TVSEQ,
TVPOS : TVPOS ,
TVPRM :TVPRM,
TVTYP : TVTYP,
TWAL : TWAL

DELETE AN EXISTING ROW IN TABLE TV.

IBOTVO

DELETE FROM TV IN MENU_DATABASE
WHERE TVPOS = :TVPOS AND

TVSEQ = :TVSEQ AND
TVTNA = :TVTNA

OBTAIN A ROW IN TABLE TV VIA ACCESS PATH TVO.
SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TWAL
FROM TV IN MENU_DATABASE
WHERE TVPOS = :TVPOS AND

TVSEQ = :TVSEQ AND
TVTNA = : TVTNA

ORDER BY TVPOS ASC, TVSEQ ASC, TVTNA ASC

B-148 EDL Customization for NOS Revision A

Task Parameter Value (TV) Routines

IBOTVI

OBTAIN A ROW IN TABLE TV VIA ACCESS PATH TV1.

IBOTV2

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
WHERE TVTNA = :TVTNA AND

TVSEQ = :TVSEQ
ORDER BY TVTNA ASC, TVSEQ ASC, TVPOS ASC

OBTAIN A ROW IN TABLE TV VIA ACCESS PATH TV2.

IBATVO

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
WHERE TVTNA = :TVTNA AND

TVSEQ = :TVSEQ AND
TVPRM = :TVPRM

ORDER BY TVTNA ASC, TVSEQ ASC, TVPRM ASC, TVPOS ASC

OBTAIN A ROW IN TABLE TV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TVO.

IBATVI

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
WHERE (TVPOS > : TVPOS)

OR «TVPOS = :TVPOS) AND (TVSEQ > :TVSEQ»
OR «TVPOS = :TVPOS AND TVSEQ = :TVSEQ) AND (TVTNA > :TVTNA»
OR (TVPOS = :TVPOS AND TVSEQ = :TVSEQ AND TVTNA = :TVTNA)

ORDER BY TVPOS ASC. TVSEQ ASC, TVTNA ASC

OBTAIN A ROW IN TABLE TV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TVl.

Revision A

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
WHERE (TVTNA > :TVTNA)

OR «TVTNA = :TVTNA) AND (TVSEQ > :TVSEQ»
OR (TVTNA = :TVTNA AND TVSEQ = : TVSEQ)

ORDER BY TVTNA ASC, TVSEQ ASC, TVPOS ASC

Information Base Routines B-149

Task Parameter Value (TV) Routines

IBATV2

OBTAIN A ROW IN TABLE TV USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH TV2.

IBETVI

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
WHERE (TVTNA > :TVTNA)

OR «TVTNA = :TVTNA) AND (TVSEQ > :TVSEQ»
OR «TVTNA = :TVTNA AND TVSEQ = :TVSEQ) AND (TVPRM > :TVPRM»
OR (TVTNA = :TVTNA AND TVSEQ = :TVSEQ AND TVPRM = :TVPRM)

ORDER BY TVTNA ASC, TVSEQ ASC, TVPRM ASC, TVPOS ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TV VIA ACCESS PATH TV1.
SAVE THE CURRENT POSITION IN TABLE TV.
FETCH THE NEXT ROW FROM TABLE TV.

SET :TVTNA, :TVSEQ, :TVPOS, :TVPRM, :TVTYP, :TVVAL

IBETV2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE TV VIA ACCESS PATH TV2.
SAVE THE CURRENT POSITION IN TABLE TV.
FETCH THE NEXT ROW FROM TABLE TV.

SET : TVTNA, :TVSEQ, :TVPOS, :TVPRM, :TVTYP, :TVVAL

IBFTVO

OBTAIN THE FIRST ROW OF TABLE TV, ORDERED BY ACCESS PATH TVO.

IBFTVI

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
ORDER BY TVPOS ASC, TVSEQ ASC, TVTNA ASC

OBTAIN THE FIRST ROW OF TABLE TV, ORDERED BY ACCESS PATH TV1.

IBFTV2

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
ORDER BY TVTNA ASC, TVSEQ ASC, TVPOS ASC

OBTAIN THE FIRST ROW OF TABLE TV, ORDERED BY ACCESS PATH TV2.
SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
ORDER BY TVTNA ASC, TVSEQ ASC, TVPRM ASC, TVPOS ASC

B-150 EDL Customization for NOS Revision A

Task Parameter Value (TV) Routines

IBNTVO

OBTAIN THE NEXT ROW OF TABLE TV, ORDERED BY ACCESS PATH TVO.
SET : TVTNA, : TVSEQ , : TVPOS , :TVPRM, : TVTYP, :TVVAL

IBNTVI

OBTAIN THE NEXT ROW OF TABLE TV, ORDERED BY ACCESS PATH TV1.
SET : TVTNA , : TVSEQ , :TVPOS, :TVPRM, : TVTYP, :TVVAL

IBNTV2

OBTAIN THE NEXT ROW OF TABLE TV, ORDERED BY ACCESS PATH TV2.
SET :TVTNA, : TVSEQ , : TVPOS , :TVPRM, : TVTYP, :TVVAL

IBOTPTV

USING COSET TPTV, OBTAIN THE ROW FROM TABLE TP THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE TV

IBFTPTV

SELECT TPTNA, TPSEQ, TPTYP, TPNAM, TPFNA
INTO :TPTNA, :TPSEQ, :TPTYP, :TPNAM, :TPFNA
FROM TP IN MENU_DATABASE
WHERE TPTNA = :TVTNA AND

TPSEQ = :TVSEQ

OBTAIN THE FIRST ROW FROM MEMBER TABLE TV WITHIN COSET TPTV, USING
ACCESS PATH TV1.

IBNTPTV

SELECT TVTNA, TVSEQ, TVPOS, TVPRM, TVTYP, TVVAL
FROM TV IN MENU_DATABASE
WHERE TVTNA = :TPTNA AND

TVSEQ = :TPSEQ
ORDER BY TVTNA ASC, TVSEQ ASC, TVPOS ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE TV WITHIN COSET TPTV.
SET : TVTNA, : TVSEQ , : TVPOS, :TVPRM, :TVTYP, :TVVAL

Revision A Information Base Routines B-151

User Configuration (UC) Routines

User Configuration. (UC) Routines

The UC table contains the terminal configuration attributes of a given EDL user.

IBSUC

STORE A NEW ROW IN TABLE UC.

IBMUC

INSERT INTO UC IN ENGINEERING_DATA_DATABASE
SET UCUSR = :UCUSR,

UCATR = :UCATR,
UCSTA = :UCSTA

MODIFY AN EXISTING ROW IN TABLE UC.

IBDUC

UDPATE UC IN ENGINEERING_DATA_DATABASE
WHERE UCATR = :UCATR AND

UCUSR = :UCUSR
SET UCUSR = :UCUSR,

UCATR = :UCATR,
UCSTA = :UCSTA

DELETE AN EXISTING ROW IN TABLE UC.

IBOUCO

DELETE FROM UC IN ENGINEERING_DATA_DATABASE
WHERE UCATR :UCATR AND

UCUSR = :UCUSR

OBTAIN A ROW IN TABLE UC VIA ACCESS PATH UCO.

IBOUCI

SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING_DATA_DATABASE
WHERE UCATR = :UCATR AND

UCUSR = :UCUSR
ORDER BY UCATR ASC, UCUSR ASC

OBTAIN A ROW IN TABLE UC VIA ACCESS PATH UC1.
SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING~DATA_DATABASE
WHERE UCUSR = :UCUSR
ORDER BY UCUSR ASC

B-152 EDL Customization for NOS Revision A

User Configuration (UC) Routines

IBAUCO

OBTAIN A ROW IN TABLE UC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UCO.

IBAUCI

SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING_DATA_DATABASE
WHERE (UCATR > :UCATR)

OR «UCATR = :UCATR) AND (UCUSR > :UCUSR»
OR (UCATR = :UCATR AND UCUSR = :UCUSR)

ORDER BY UCATR ASC, UCUSR ASC

OBTAIN A ROW IN TABLE UC USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UC1.

IBEUCI

SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING_DATA_DATABASE
WHERE UCUSR >= :UCUSR
ORDER BY UCUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE UC VIA ACCESS PATH UC1.
SAVE THE CURRENT POSITION IN TABLE UC.
FETCH THE NEXT ROW FROM TABLE UC.

SET :UCUSR, : UCATR , :UCSTA

IBFUCO

OBTAIN THE FIRST ROW OF TABLE UC, ORDERED BY ACCESS PATH UCO.

IBFUCI

SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING_DATA_DATABASE
ORDER BY UCATR ASC, UCUSR ASC

OBTAIN THE FIRST ROW OF TABLE UC, ORDERED BY ACCESS PATH UC1.

IBNUCO

SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING_DATA_DATABASE
ORDER BY UCUSR ASC

OBTAIN THE NEXT ROW OF TABLE UC, ORDERED BY ACCESS PATH UCO.
SET :UCUSR, :UCATR, :UCSTA

IBNUCI

OBTAIN THE NEXT ROW OF TABLE UC, ORDERED BY ACCESS PATH UC1.
SET :UCUSR, :UCATR, :UCSTA

Revision A Information Base Routines B-153

User Configuration (UC) Routines

IBOUIUC

USING COSET UIUC, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE UC

IBFUIUC

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :UCUSR

OBTAIN THE FIRST ROW FROM MEMBER TABLE UC WITHIN COSET UIUC, USING
ACCESS PATH UC1.

IBNUIUC

SELECT UCUSR, UCATR, UCSTA
FROM UC IN ENGINEERING_DATA_DATABASE
WHERE UCUSR = :UIUSR
ORDER BY UCUSR ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE UC WITHIN COSET UIUC.
SET :UCUSR, : UCATR , :UCSTA

B-154 EDL Customization for NOS Revision A

User Information (Ul) Routines

User Information (UI) Routines

The UI table defines EDL users and contains related profile information.

IBSUI

STORE A NEW ROW IN TABLE UI.

IBMUI

INSERT INTO UI IN ENGINEERING_DATA_DATABASE
SET UIUSR = :UIUSR,

UIPWD :UIPWD,
UISTA :UISTA,
UIUUN :UIUUN,
UIDPT :UIDPT,
UICMD :UICMD,
UIFIN :UIFIN,
UIMIN :UIMIN,
UILNA :UILNA,
UITTL :UITTL,
UIDELS = :UIDELS,
UIDELD = :UIDELD,
UISTR :UISTR,
UICTY :UICTY,
UIPHO :UIPHO,
UIEDT :UIEDT

MODIFY AN EXISTING ROW IN TABLE UI.

Revision A

UDPATE UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :UIUSR
SET UIUSR :UIUSR,

UIPWD
UISTA
UIUUN
UIDPT
UICMD
UIFIN
UIMIN
UILNA

:UIPWD,
:UISTA,
:UIUUN,
:UIDPT,
:UICMD,
:UIFIN.
:UIMIN,
:UILNA,

UITTL = :UITTL,
UIDELS = :UIDELS,
UIDELD = :UIDELD,
UISTR :UISTR,
UleTY :UICTY,
UIPHO :UIPHO,
UIEDT :UIEDT

Information Base Routines B·155

User Information (UI) Routines

IBDUI

DELETE AN EXISTING ROW IN TABLE UI.

IBOUIO

DELETE FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :UIUSR

OBTAIN A ROW IN TABLE UI VIA ACCESS PATH UIO.

IBOUIl

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :UIUSR
ORDER BY UIUSR ASC

OBTAIN A ROW IN TABLE UI VIA ACCESS PATH UI1.

IBOUI2

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UILNA = :UILNA AND

UIFIN = :UIFIN AND
UIMIN = :UIMIN

ORDER BY UILNA ASC, UIFIN ASC, UIMIN ASC, UIUSR ASC

OBTAIN A ROW IN TABLE UI VIA ACCESS PATH UI2.

IBAUIO

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUUN = :UIUUN
ORDER BY UIUUN ASC

OBTAIN A ROW IN TABLE UI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UIO.

IBAUIl

SELECT UIUSR, UIPWD, UISTA, UIUUN. UIDPT, UICMD, UIFIN, UIMIN.
UILNA, UITTL. UIDELS, UIDELD. UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR >= :UIUSR
ORDER BY UIUSR ASC

OBTAIN A ROW IN TABLE UI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UI1.

SELECT UIUSR. UIPWD, UISTA. UIUUN. UIDPT. UICMD, UIFIN. UIMIN.
UILNA, UITTL. UIDELS. UIDELD. UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE (UILNA > :UILNA)

B·156 EDL Customization for NOS Revision A

IBAUI2

User Information (UI) Routines

OR «UILNA = :UILNA) AND (UIFIN > :UIFIN»
OR «UILNA = :UILNA AND UIFIN = :UIFIN) AND (UIMIN > :UIMIN»
OR (UILNA = :UILNA AND UIFIN = :UIFIN AND UIMIN = :UIMIN)

ORDER BY UILNA ASC, UIFIN ASC, UIMIN ASC, UIUSR ASC

OBTAIN A ROW IN TABLE UI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UI2.

IBEUIl

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUUN >= :UIUUN
ORDER BY UIUUN ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE UI VIA ACCESS PATH UI1.
SAVE THE CURRENT POSITION IN TABLE UI.
FETCH THE NEXT ROW FROM TABLE UI.

IBEUI2

SET :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE UI VIA ACCESS PATH UI2.
SAVE THE CURRENT POSITION IN TABLE UI.
FETCH THE NEXT ROW FROM TABLE UI.

IBFUIO

SET :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL,· :UIDELS, :UIDELD, :UISTR, :UICTY,
:UIPHO, :UIEDT

OBTAIN THE FIRST ROW OF TABLE UI, ORDERED BY ACCESS PATH UIO.

IBFUIl

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
ORDER BY UIUSR ASC

OBTAIN THE FIRST ROW OF TABLE UI, ORDERED BY ACCESS PATH UI1.

Revision A

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
ORDER BY UILNA ASC. UIFIN ASC, UIMIN ASC, UIUSR ASC

Information Base Routines B-157

User Information (UI) Routines

IBFUI2

OBTAIN THE FIRST ROW OF TABLE UI, ORDERED BY ACCESS PATH UI2.

IBNUIO

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
ORDER BY UIUUN ASC

OBTAIN THE NEXT ROW OF TABLE UI, ORDERED BY ACCESS PATH UIO.

IBNUIl

SET :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

OBTAIN THE NEXT ROW OF TABLE UI, ORDERED BY ACCESS PATH UI1.

IBNUI2

SET :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

OBTAIN THE NEXT ROW OF TABLE UI, ORDERED BY ACCESS PATH UI2.
SET :UIUSR, :UIPWD, :UISTA, :UIUUN, :UIDPT, :UICMD, :UIFIN,

:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

B·158 EDL Customization for NOS Revision A

User Permits (UP) Routines

User Permits (UP) Routines

The UP table defines file permissions granted to individual EDL users.

IBSUP

STORE A NEW ROW IN TABLE UP.

IBMUP

INSERT INTO UP IN ENGINEERING_DATA_DATABASE
SET UPFIL

UPUSR
UPMOD

:UPFIL,
:UPUSR,
:UPMOD

MODIFY AN EXISTING ROW IN TABLE UP.

IBDUP

UDPATE UP IN ENGINEERING_DATA_DATABASE
WHERE UPFIL = :UPFIL AND

UPUSR = :UPUSR
SET UPFIL

UPUSR
UPMOD

:UPFIL,
:UPUSR,
:UPMOD

DELETE AN EXISTING ROW IN TABLE UP.

IBOUPO

DELETE FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPFIL :UPFIL AND

UPUSR = :UPUSR

OBTAIN A ROW IN TABLE UP VIA ACCESS PATH UPO.

IBOUPI

SELECT UP.FIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPFIL = :UPFIL AND

UPUSR = :UPUSR
ORDER BY UPFIL ASC, UPUSR ASC

OBTAIN A ROW IN TABLE UP VIA ACCESS PATH UP1.

IBOUP2

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPFIL = :UPFIL
ORDER BY UPFIL ASC, UPUSR ASC

OBTAIN A ROW IN TABLE UP VIA ACCESS PATH UP2.

Revision A

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPUSR = :UPUSR
ORDER BY UPUSR ASC

Information Base Routines B-159

User Permits (UP) Routines

IBAUPO

OBTAIN A ROW IN TABLE UP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UPO.

IBAUPI

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE (UPFIL > :UPFIL)

OR «UPFIL = :UPFIL) AND (UPUSR > :UPUSR»
OR (UPFIL = :UPFIL AND UPUSR = :UPUSR)

ORDER BY UPFIL ASC, UPUSR ASC

OBTAIN A ROW IN TABLE UP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UP1.

IBAUP2

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPFIL >= :UPFIL
ORDER BY UPFIL ASC, UPUSR ASC

OBTAIN A ROW IN TABLE UP USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH UP2.

IBEUPI

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPUSR >= :UPUSR
ORDER BY UPUSR ASC

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE UP VIA ACCESS PATH UP1.
SAVE THE CURRENT POSITION IN TABLE UP.
FETCH THE NEXT ROW FROM TABLE UP.

SET :UPFIL, :UPUSR, :UPMOD

IBEUP2

OBTAIN THE NEXT DUPLICATE ROW FROM TABLE UP VIA ACCESS PATH UP2.
SAVE THE CURRENT POSITION IN TABLE UP.
FETCH THE NEXT ROW FROM TABLE UP.

SET :UPFIL, :UPUSR, :UPMOD

IBFUPO

OBTAIN THE FIRST ROW OF TABLE UP, ORDERED BY ACCESS PATH UPO.
SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
ORDER BY UPFIL ASC, UPUSR ASC

B-l60 EDL Customization for NOS Revision A

User Permits (UP) Routines

IBFUPI

OBTAIN THE FIRST ROW OF TABLE UP, ORDERED BY ACCESS PATH UP1.

IBFUP2

SELEC~ UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
ORDER BY UPFIL ASC, UPUSR ASC

OBTAIN THE FIRST ROW OF TABLE UP, ORDERED BY ACCESS PATH UP2.

IBNUPO

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
ORDER BY UPUSR ASC

OBTAIN THE NEXT ROW OF TABLE UP, ORDERED BY ACCESS PATH UPO.
SET :UPFIL, :UPUSR, :UPMOD

IBNUPI

OBTAIN THE NEXT ROW OF TABLE UP, ORDERED BY ACCESS PATH UP1.
SET :UPFIL, :UPUSR, :UPMOD

IBNUP2

OBTAIN THE NEXT ROW OF TABLE UP, ORDERED BY ACCESS PATH UP2.
SET :UPFIL, :UPUSR, :UPMOD

IBOFIUP

USING COSET FIUP, OBTAiN THE ROW FROM TABLE FI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE UP

IBOUIUP

SELECT FIFIL, FIHOS, FIFUN, FIPFN, FILNA, FIFTC, FIUSR, FICT,
FIMOD, FISTA, FIVSN

INTO :FIFIL, :FIHOS, :FIFUN, :FIPFN, :FILNA, :FIFTC, :FIUSR,
:FICT, :FIMOD, :FISTA, :FIVSN

FROM FI IN ENGINEERING_DATA_DATABASE
WHERE FIFIL = :UPFIL

USING COSET UIUP, OBTAIN THE ROW FROM TABLE UI THAT OWNS SPECIFIC
ROWS IN MEMBER TABLE UP

Revision A

SELECT UIUSR, UIPWD, UISTA, UIUUN, UIDPT, UICMD, UIFIN, UIMIN,
UILNA, UITTL, UIDELS, UIDELD, UISTR, UICTY, UIPHO, UIEDT

INTO : UIUSR, : UIPWD, : UISTA, : UIUUN, : UIDPT, : UICMD, : UIFIN,
:UIMIN, :UILNA, :UITTL, :UIDELS, :UIDELD, :UISTR, :UICTY,
: UIPHO, : UIEDT

FROM UI IN ENGINEERING_DATA_DATABASE
WHERE UIUSR = :UPUSR

Information Base Routines B-161

·User Permits (UP) Routines

IBFFIUP

OBTAIN THE FIRST ROW FROM MEMBER TABLE UP WITHIN COSET FIUP, USING
ACCESS PATH UP1.

IBFUIUP

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPFIL = :FIFIL
ORDER BY UPFIL ASC, UPUSR ASC

OBTAIN THE FIRST ROW FROM MEMBER TABLE UP WITHIN COSET UIUP, USING
ACCESS PATH UP2.

IBNFIUP

SELECT UPFIL, UPUSR, UPMOD
FROM UP IN ENGINEERING_DATA_DATABASE
WHERE UPUSR = :UIUSR
ORDER BY UPUSR ASC

OBTAIN THE NEXT ROW FROM MEMBER TABLE UP WITHIN COSET FIUP.
SET :UPFIL, :UPUSR, :UPMOD

IBNUIUP

OBTAIN THE NEXT ROW FROM MEMBER TABLE UP WITHIN COSET UIUP.
SET :UPFIL, :UPUSR, :UPMOD

B·162 EDL Customization for NOS Revision A

Vendor Information (VI) Routines

The VI table defines vendor names and vendor codes.

IBSVI

STORE A NEW ROW IN TABLE VI.
INSERT INTO VI IN ENGINEERING_DATA_DATABASE
SET VIVEN :VIVEN,

VINAM :VINAM,
VISTR :VISTR,
VICTY :VICTY,
VIPHO :VIPHO

IBMVI

MODIFY AN EXISTING ROW IN TABLE VI.
UDPATE VI IN ENGINEERING_DATA_DATABASE
WHERE VIVEN = :VIVEN
SET VIVEN :VIVEN,

VINAM :VINAM,
VISTR :VISTR,
VICTY :VICTY,
VIPHO :VIPHO

IBDVI

DELETE AN EXISTING ROW IN TABLE VI.

IBOVIO

DELETE FROM VI IN ENGINEERING_DATA_DATABASE
WHERE VIVEN = :VIVEN

OBTAIN A ROW IN TABLE VI VIA ACCESS PATH VIO.

IBOVII

SELECT VIVEN, VINAM, VISTR, VICTY, VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
WHERE VIVEN = :VIVEN
ORDER BY VIVEN ASC

OBTAIN A ROW IN TABLE VI VIA ACCESS PATH VI1.

IBAVIO

SELECT VIVEN, VINAM, VISTR, VICTY, VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
WHERE VINAM = :VINAM
ORDER BY VINAM ASC

Vendor Information (VI) Routines

OBTAIN A ROW IN TABLE VI USING AN APPROXIMATE KEY VALUE AND ACCESS'
PATH VIO.

Revision A

SELECT VIVEN, VINAM, VISTR, VICTY, VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
WHERE VIVEN >= :VIVEN
ORDER BY VIVEN ASC

Information -Base Routines B-163

Vendor Information (VI) Routines

IBAVII

OBTAIN A ROW IN TABLE VI USING AN APPROXIMATE KEY VALUE AND ACCESS
PATH VI1.

IBFVIO

SELECT VIVEN, VINAM, VISTR, VICTY, VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
WHERE VINAM >= :VINAM
ORDER BY VINAM ASC

OBTAIN THE FIRST ROW OF TABLE VI, ORDERED BY ACCESS PATH VIO.

IBFVII

SELECT VIVEN, VINAM, VISTR, VICTY, VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
ORDER BY VIVEN ASC

OBTAIN THE FIRST ROW OF TABLE VI, .oRDERED BY ACCESS PATH VI1.

IBNVIO

SELECT VIVEN, VINAM, VISTR, VICTY, VIPHO
FROM VI IN ENGINEERING_DATA_DATABASE
ORDER BY VINAM ASC

OBTAIN THE NEXT ROW OF TABLE VI, ORDERED BY ACCESS PATH VIO.
SET :VIVEN, :VINAM, :VISTR, :VICTY, :VIPHO

IBNVII

OBTAIN THE NEXT ROW OF TABLE VI, ORDERED BY ACCESS PATH VI1."
SET :VIVEN, :VINAM, :VISTR, :VICTY, :VIPHO

B-164 EDL Customization for NOS Revision A

Standard EDL· OVCAP Subroutines C

(

r'
\,

(

(",

',-

Standard EDL OVCAP Subroutines C

Routine

ATTACH

DDNPRE

DDNPRE2

DFMAIN

DISPLY (POP)

EDITF

EDITR

EDLOGN

EQUIT

FIACQ

FIARCH

FICORR

FIDEFI

FIDEL

FIEDIT

FILOWN

FILPER

FIRECL

FIREQ

FIROUT

FIRST

Revision A

Description

Prepares the user for entry into a particular application, attaches
default files, ensures that required files are attached, and allows
the user to attach other files.

Prepares for entry into DDN.

Prepares for a DDN transfer.

Allows the user to list, add, and delete the names of files that are
to be attached automatically when an ICEM application is
entered.

Displays records on EEEDL9, and provides a variety of user
options.

Calls up a file selected through RETRIEVE DATA and places the
user in the appropriate editor.

Returns the edit file called by EDITF and removes it from the list
of local files.

Establishes the name for the EDL log file.

Performs any required processing before ending the EDL session.

Acquires a file within EDL (same as ATTATT).

Archives files.

Displays the file correction menu.

Allows a user to define a file.

Prompts for the host information to delete a file.

Prompts for the file name to edit, ensures that it is editable, and
performs the PUTVARS.

Displays all files in a retrieval list and allows the user to select
from the list for a detailed listing.

Creates a retrieval list consisting of all permitted files on the
current host, and allows the user to select from the list for a
detailed listing.

Reclaims files.

Requests a tape.

Routes a local file known to EDL to the printer.

Initializes the stack and pushes the user's first task.

Standard EDL OVCAP Subroutines C-l

Routine

FMUPD

FPMENU

GETAPN

GMMGMT

GPLIST

GPMGMT

GTMGMT

ISM LOG

ISMNEW

LOG

PATPRE

PERSON

PFUPD

PIUPD

POSTRP

PVUPD

RDATAF

RDATFU

RELACC

RELADM

RELCHG

Description

Displays the Family Management menu and the load option menu
from the selection entered by the user.

Displays the File Permission menu.

Pushes a retrieval task onto the stack based on the APN in the
DI record.

Allows the user to list all members within a group, and add
members to or delete members from a group.

Lists all groups within EDL.

Allows the user to list all information about a group, and add,
delete, or change groups.

Allows the user to list authorized task categories for a group, and
to allow or remove access privileges.

Translates the Solid Modeler log file into the standard log file
format.

Prepares for entering the Solid Modeler when creating a new
model.

Processes an application log file.

Prepares for entry into PATRAN.

Allows users to change their profiles.

Displays the Part Family Relationship Management menu and the
load option menu from the selection entered by the user.

Displays the Part Management menu and the load option menu
from the selection entered by the user.

Performs general postprocessing for reports.

Displays the Part Vendor Relationship Management menu and the
load option menu from the selection entered by the user.

Prepares for production of the full data report. The report is
actually created by the EDL task names in the global variable
RDATFU.

Displays the full data report.

Creates a list of all submitted data in a specified release
procedure that may be accepted by the current user.

Allows the user to list, add, or delete release procedures, and to
manage releasers and reviewers.

Allows reviewers to change the review signature for a pending
data.

C-2 EDL Customization for NOS Revision A

Routine

RELCS

RELF

RELFIN

RELR

RELREV

RELRS

RELS

RELSUB

RLPRE

SAVLOC

I

',,- TASKS

TRANSF

TRMCON

UPDATA

UPFILE

USMGMT

VIUPD

Revision A

Description

Changes a review signature.

Dislays the option menu for finalizing data and then calls the
appropriate routine to release or reject the data.

Creates a list of all pending data that the user may finalize for a
specll1ed release procedure.

Prompts for whether to display the data to be reviewed, and
displays the data if necessary.

Creates a list of all pending data for a specll1ed release procedure
for which the user is a releaser.

Displays the Review Disposition option menu and stores the
specll1ed release signature.

Submits data for review/release.

Creates a list of all of the current user's data that may be
submitted for review/release.

Prepares for entry to the Solid Modeler when retrieving an object
from a library or when retrieving a workspace.

Lists local file and asks the user whether or not any of them
should be saved.

Displays a list of task commands available to the user.

Transfers data from one application data type to another.

Updates the user's terminal configuration.

Loads or updated engineering data information.

Updates data information for a file.

Allows the DBA to manipulate users.

Displays the Vendor Management menu and the Load Option
menu from the selection entered by the user.

Standard EDL OVCAP Subroutines C-3

(

(

("

Index

Index

A

Access paths 3-8
Adding tasks 2-10,11; 3-22
Additional publications 7,8
Application configuration (AC) record

Description 3-1
Routines B-1
Schema A-6

Application data type (AT) record
Description 3-1
Routines B-8
Schema A-7

Application information (AI) record
Description 3-1
Routines B-6
Schema A-6

Applications

B

Adding 4-1
Batch mode 4-2
Coding guidelines 4-1
Command line 4-1
Data hierarchies 4-3
Defining data names 4-1
File creation 4-2
File locking 4-2
Log file 4-2
Packages 5
Scripts 4-1

Batch mode operation 4-2
Batch modifications 2-7

c

Coding guidelines 4-1
Commands

MASSMOD 2-7
MESSAGEMOD 2-6,9
OMENUMOD 2-5
TASKMOD 2-3,10
TMENUMOD 2-4

Comments 8
COPYF subroutine 3-16
Cosets 3-11
CSCRN subroutine 3-16
Customization techniques 1-1
CUTN AM function 3-16
CUTSTR subroutine 3-17

Revision A

D

Data descriptor (DD) record
Description 3-3
Routines B-ll
Schema A-12

Data hierarchies 4-2
Data names 4-1
Data required (DR) record

Description 3-3
Routines B-28
Schema A-12

Data source (DS) record
Description 3-3
Routines B-32
Schema A-12

Database schemata A-I
DDB (see Engineering data database)
Declaring variables 3-7
Default files (DF) record

Description 3-3
Routines B-15
Schema A-6

Deleting records 3-11
Directories 1-8

E

EDBE character function 3-12
EDLLIST generator 2-8
Engineering attributes (EA) record

Description 3-1
Routines B-36
Schema A-7

Engineering categories (ET) record
Description 3-1
Routines B-39
Schema A-7

Engineering categories 3-2
Engineering data database

Adding tasks 3-23
Customization 3-1
Engineering categories 3-2
Obtaining records 3-8
Order of changes 3-2
Record descriptions 3-1,3; A-3
Sample customizations 3-22
Schema definitions A-3
Standard attributes 3-2
Using IB routines 3-7

Engineering data information (DI)
record

Description 3-3
Routines B-20
Schema A-II

EDL Customization for NOS Index-!

ERR subroutine 3-12

ERR subroutine 3-12
ERRIB subroutine 3-13
Error and status message routines 3-12
ERRSTR subroutine 3-12
Examples

Adding a task 2-10,11; 3-22
Adding an application 4-3
Changing a prompt 2-9
Creating a site-defined retrieval 3-24
Removing a prompt 2-9

Execution stack 1-3

F

Family data (FD) record
Description 3-3
Routines B-40
Schema A-12

Family information (FM) record
Description 3-3
Routines B-51
Schema A-4

File creation 4-2
File information (FI) record

Description 3-3
Routines B-44
Schema A-9

File locking 4-2
File permits (FP) record

Description 3-3
Routines B-52
Schema A-I0

File types (FT) record
Description 3-1
Routines B-56
Schema A-7

FORTRAN interface modules 3-7
FULLNM function 3-17
FULPER function 3-17
Functions

G

CUTNAM 3-16
EDBE 3-12
FULLNAM 3-17
FULPER 3-17
LEFTJ 3-18
LSTCHR 3-19

GETPRM subroutine 3-18
GETPRN subroutine 3-18
Global variables 3-5
Group information (GI) record

Description 3-3 .
Routines B-60
Schema A-3

Index-2 EDL Customization for NOS

Information base (IB) routines

Group members (GM) record
Description 3-3
Routines B-64
Schema A-3

Group permits (GP) record
Description 3-3
Routines B-68
Schema A-3

Group security authorization (GS)
record

Description 3-4
Routines B-72
Schema A-3

H

Hierarchies 4-3
Host information (HI) record

Description 3-4
Routines B-75
Schema A-9

I

Information base (lB) routines
Access paths 3-9
Application configuration (Ae) B-1
Application data type (AT) B-8
Application information (AI) B-6
Data descriptor (DD) B-ll
Data required (DR) B-28
Data source (DS) B-32
Declaring variables 3-7
Default files (DF) B-15
Deleting records 3-11
Engineering attributes (EA) B-36
Engineering categories (ET) B-39
Engineering data information (Dl)

B-20
Family data (FD) B-40
Family information (FM) B-51
File information (Fl) B-44
File permits (FP) B-52
File types (FT) B-56
Group information (Gl) B-60
Group members (GM) B-64
Group permits (GP) B-68
Group security authorization (GS)

B-72
Host information (Hl) B-75
Message help (MH) B-78
Message information (MI) B-81
Modifying records 3-11
Obtaining records 3-7,9,10,11
Option keyword (OK) B-83
Option menu (OM) B-86
Option value (OV) B-89

Revision A

I

'"

IN1NT subroutine 3-14

Part family (PF) B-96
Part information (PI) B-I00
Part vendors (PV) B-I05
Parts data (PD) B-92
Pending permits (PP) B-I01
Release authorization (RA) B-I09
Release procedure (RP) B-115
Release signature (RS) B-121
Release transfers (RT) B-126
Releasers (RU) B-128
Review responsibility (RR) B-116
Storing records 3-11
Task command (TC) B-132
Task information (TI) B-135
Task menu (TM) B-137
Task parameter value (TV) B-148
Task process (TP) B-141
Transfer and translation tasks (TT)

B-144
Usage 3-6
User configuration (UC) B-152
User information (UI) B-160
User permit (UP) B-159
Using cosets 3-11
Vendor information (VI) B-163

ININT subroutine 3-14
INOPT subroutine 3-15
INP subroutine 3-14
Interactive menu modification 2-2
INTXT subroutine 3-14
INYN subroutine 3-15

L

LEFTJ function 3-18
LIBEDIT 1-8
LIST subroutine 3-18
LOADEDL 2-12; 3-24
Log file 4-2,4
LSTCHR function 3-19

M

MASSMOD 2-2,7
MDB (see Message and task database)
Menu database (see Message and task

database)
MENUMOD 2-2
Message and task database

Adding tasks 2-10
Batch modifications 2-7
Customization 2-1
MASSMOD 2-2,7
MENUMOD utility 2-2
Message modification 2-6
Option menu modification 2-5
Record descriptions 2-1; A-I

Revision A

Part family (PF) record

Sample customizations 2-9
Schema definitions A-I
Task menu modification 2-4
Task modification 2-3,9

Message help (MH) record
Description 2-1
Routines B-78
Schema A-I

Message information (MI) record
Description 2-1
Routines B-81
Schema A-I

Message modification 2-6
MESSAGEMOD command 2-6,9
Modifying records 3-11
MSG subroutine 3-13
MSGSTR subroutine 3-13

N

NXTEDN subroutine 3-19
NXTFIL subroutine 3-19

o

Obtaining records 3-7
OMENUMOD command 2-5
Option keyword (OK) record

Description 2-1
Routines B-83
Schema A-I

Option menu (OM) record
Description 2-1
Routines B-86
Schema A-I

Option value (OV) record
Description 2-1
Routines B-89
Schema A-I

OPTVAL subroutine 3-15
Order of changes 3-2
Ordering manuals 8
OVCAPS

p

Adding a Task 2-11
Creation 3-6
Standard subroutines C-l

Part family (PF) record
Description 3-4
Routines B-96
Schema A-4

EDL Customization for NOS Index-3

Part information (PI) record

Part information (PI) record
Description 3-4
Routines B-I00
Schema A-4

Part vendors (PV) record
Description 3-4
Routines B-I05
Schema A-4

Parts data (PD) record
Description 3-4
Routines B-97
Schema A-12

PAUSE subroutine 3-16
Pending permits (PP) record

Description 3-4
Routines B-I0l
Schema A-I0

POPT subroutine 3-16
Procedures

Alternate 1-7
EDL 1-7
RTASKS 3-21

Prompt modifications 2-9
PUTNAM subroutine 3-19
PUTVAR subroutine 3-20

R

Related publications 7
Release authorization (RA) record

Description 3-4
Routines B-I09
Schema A-13

Release procedure (RP) record
Description 3-4
Routines B-115
Schema A-13

Release signature (RS) record
Description 3-4
Routines B-121
Schema A-13

Release transfers (RT) record
Description 3-4
Routines B-126
Schema A-13

Releasers (RU) record
Description 3-4
Routines B-128
Schema A-13

RETLIS subroutine 3-20
Retrieval methods 3-25
Review responsibility (RR) record

Description 3-4
Routines B-116
Schema A-13

Index-4 EDL Customization for· NOS

Task modification 2-3 t lO

s

Schema definitions A-I
Standard attributes 3-2
Standard EDL routines 3-11; C-l
Status message routines 3-12
Storing records 3-11
Submitting comments 8
Subroutines

COPYF 3-16
CSCRN 3-16
CUTSTR 3-17
ERR 3-12
ERRIB 3-13
Error and status message 3-12
ERRSTR 3-12
GETPRM 3-18
GETPRN 3-18
ININT 3-14
INaPT 3-15
INP 3-14
INTXT 3-14
INYN 3-15
LIST 3-18
MSG 3-13
MSGSTR 3-13
NXTEDN 3-19
NXTFIL 3-19
OPTVAL 3-15
PAUSE 3-16
POPT 3-16
PUTNAM 3-19
PUTVAR 3-20
RETLIS 3-20
Standard 3-11; C-1
User input 3-14
Utility 3-16

System administration overview 1-1
System administrator tasks menu 1-7

T

Task command (TC) record
Description 2-1
Routines B-132
Schema A-2

Task information (Tn record
Description 2-1
Routines B-135
Schema A-2

Task menu modification 2-4
Task menu (TM) record

Description 2-1
Routines B-137
Schema A-2

Task modification 2-3,10

Revision A

Task parameter value (TV) record

Task parameter value (TV) record
Description 2-1
Routines B-148
Schema A-2

Task process (TP) record
Description 2-1
Routines B-141
Schema A-2

TASKMOD command 2-3,9
TMENUMOD command 2-4
Transfer and translation tasks (TT)

record
Description 3-1
Routines B-144
Schema A-8

u

Upgrading 1-8
User configuration (UC) record

Description 3-4
Routines B-152
Schema A-6

Revision A

Vendor information (VI) record

User information (UI) record
Description 3-4
Routines B-155
Schema A-3

User input routines 3-14
User permit (UP) record

Description 3-4
Routines B-159
Schema A-I0

User profile tasks 4-2
Utility routines 3-16

v

Variable declaration 3-7
Variable display 1-3,4
Vendor information (VI) record

Description 3-4
Routines B-163
Schema A-4

EDL Customization for NOS Index-5

Comments (continued from other side)

Please fold on dotted line;
~e~l _e«!g~s _ ~tE .!-B.P~ ~n!!:..

FOLD

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technology & Publications Division
ARH219
4201 N. Lexington Avenue
Arden Hills, MN 55126-6198

1.1.1111.1111111111.1.11.111111 ••• 111.1 •• 1111.1.1111

NO POSTAGE
NECESSARY
IF MAILED

FOLD

FOLD

IN THE
UNITED STATES

M

AN
G Wi;; RiM';"'·'

EDL Customization for NOS 60000168 A

We value your comments on this manual. While writing it, we made some assumptions about who would use
it and how it would be used. Your comments will help us improve this manual. Please take a few minutes
to reply.

Who are you? How do you use this manual?

o Manager o As. an overview
o Systems analyst or programmer o To learn the product or system
o Applications programmer o For comprehensive reference
o Operator o For quick look-up
o Other ________________________________ _

What programming languages do you use? ___ _

How do you like this manual? Check those questions that apply.

Yes Somewhat No
0 0 0 Is the manual easy to read (print size, page layout, and so on)?

0 0 0 Is it easy to understand?

0 0 0 Does it tell you what you need to know about the topic?

0 0 0 Is the order of topics logical?

0 0 0 Are there enough examples?

0 0 0 Are the examples helpful? (0 Too simple? o Too complex?)

0 0 0 Is the technical information accurate?

0 0 0 Can you easily find what you want?

0 0 0 Do the illustrations help you?

Comments? If applicable, note page and paragraph. Use other side if needed.

Would you like a reply? 0 Yes 0 No

From:

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

