
CYBERNET® SERVICES

CYBER 203/205

User Guide

@;;?)
CONTf\.OL

DATA

84002390

REVISION
A Manual released.

{7-17-81}

Publication No.
84002390

REVISION LETTERS I, O. Q AND X ARE NOT USED

© 1981

by Control Data Corporation

Printed in the United States of America

ii

REVISION RECORD
DESCRIPTION

Address comments concerning thi
manual to:

CONTROL DATA CORPORATION
Publication and Graphics Divisi
Headquarters Publications Writi
p.o. Box 0 HQC02C
Minneapolis, Minnesota 55440

or use Comment Sheet in the bac
of this manual.

PREFACE

The objective of this document is to provide an easily digestable
presentation of aspects of the usage of the CVBER 203 and the
CVBER 205 that would be of immediate interest to the application
programmer who has grown a little too big for conventional scalar
computers. The language is informal, and the sometimes unavoidabl
technical details are mostly presented in a simplified way, oc
casionally padded with a little white lie for honorable reasons.
Consequently, this document is not to be regarded as a Control
Data endorsed technical description·

In the current edition, references to the CVBER 205 is limited
to Part III {Chapters 12-17}, but that is only a reflection of
the time-span during which the text was written- The material
is equally valid for the CVBER 205 and changes will later be
made to that effect.

The current operating system is today OS 1.4, but an upgrade
to OS 1-5 will soon take place. Such an upgr~de will requir~
a significant updating of chapters 7 and 10, plus small correc
tions/additions to chapters 5, b, a, 9, and 11.

Timings of most code-sections' in chapters 8-14 are made on the
basis of compilationbythe CYBER 200 FORTRAN compiler, Release
1.4, but should not be e~pected to differ significantly in a
Release 1.5 environment· It should also be pointed out that
the CVBER 203 and the CVBER 205 will yield identical eYecution
times for scalar code. The vector processors, however, differ
significantly between the. two machines - a fact that should be
apparent from the timing information given in chapters 15-17·

iii/iv

TABLE OF CONTENTS

PART I - BASICS

1·0 INTRODUCTION - . .
2-0 THE CYBER 200 COMPUTER SYSTEM CONFIGURATION
2·1 THE FRONT-ENDS • · • • • · · · · • • · . · •
2.2 THE CYBER 203••..••••.

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE
3.1 TYPE 1 - PURE SYNTAX

.
3.2 TYPE 2 - MISSING OR DIFFERENT LANGUAGE COMPONENTS.
3.3 TYPE 3 - I/O RELATED ITEMS
3.4 TYPE 4 - RUN TIME DANGERS

. . .

. . .

.

.
3.5 TYPE 5 - MISSING AND DIFFERENT FUNCTIONS/SUBROUTINES . .
3-6 TYPE 6 - MACHINE DEPENDENT I TE MS

DATA REPRESENTATION •...
INTRODUCTION • • • . • • • •
THE INTEGER FORMAT •....

. . . .
4-0
4-1
4-2
4.3 THE FLOATING-POINT FORMAT .•• • • •

ZEROES AND INDEFINITES · · · · · · · · · • • ·
CONSEQUENCES Of THE DUAL ZERO REPRESENTATION · ·
THE HOLLERITH FORMAT · · · · · · · · · · ·

4.4
4.5
4-6
4.7 HOLLERITH VARIABLES IN IF-TESTS · • · · • · · ·

5.0
5.1
.5· 2
5.3
5.4
5.5
5-6

SOME BASIC CONTROL CARDS • · • ·
ST ORE. • • • . • • . • . . • •
TOC200/TOAS: INTERFACE WITH THE NOS FRONT-END
GETPF/SAVEPF: INTERFACE WITH THE SCOPE FRONT-END·
FORTRAN • • · . • • · • · • • • · ·
L 0 AD • • • • • • • • • • • • • • • • • •
G 0 • • • • • •

6·0 SAMPLE JOB DECKS • · • · · • • · • •
6·1 STRAIGHT FORWARD COMPILE AND RUN · · • · •
6·2 HOW TO ACCESS SOURCE FILES FROM THE FRONT-END
6-3 A FRONT-END AND A CYBER 203 JOB IN ONE · • · ·

v

. . .

1-1

2-1
2-1
2-1

3-1
3- 2
3-3
3-4
3-5
3-6
3-7

4-1
4-1
4-2
4- 3
4-4
4- 5
4-6
4-7

5-1
5-1
5-3
5- 3
5- 4
5-4
5-4

6-1
6-1
6- 2
6-4

PART II - THE OPERATING SYSTEM

7-0 THE CONCEPT OF FILES •.
7-1 INTRODUCTION · · · • · · • ·
7.2 OWNERSHIP · · · · · · · · · · · · ·

7-1
7-1

7.3 SEGMENTS AND EXTENSIONS · · · ·
, 7-1

7-2
7-3 7.4 LOCAL AND PERMANENT FILES · · ·

7.5 PHYSICAL AND VIRTUAL FILES ·
7-b FILES IN A FORTRAN PROGRAM •

8 · 0 VIRTUAL MEMORY · · · ·
8-1 INTRODUCTION · · · · • ·
8-2 RELOCATABLE ADDRESSES
8.3 VIRTUAL ADDRESSES
8-4 PHYSICAL ADDRESSES ·
8-5 THE DROP FILE · · ·
8-b THE CONTROLLEE FILE · · ·
8-7 BLANK COMMON · · · · · · ·

9-0 USER CONTROLLABLE PAGE MAPPING
9.1 INTRODUCTION · · · · · ·
9-2 THE GRLP PARAMETER · · · · ·
9 · 3 GRLPALL AND GRSP · · ·
9.4 GROS AND GROL · · ·
9.5 THE DYNAMIC STACK · · ·

. . .

10·0 IMPLICIT AND EXPLICIT I/O · · ·
10·1 INTRODUCTION · · · · · · · · · · ·
10·2 IMPLICIT I/O · · · · · · · · · · · · · ·
10·3 EXPLICIT I/O · · · · · · · · · · ·
10-4 WHICH IS BETTER - IMPLICIT OR EXPLICIT I/O?

11·0 TASKS • • • • · ·
11·1 INTRODUCTION · · · · · · · · ·
11·2 THE INPUT FILE · · · · • ·
11·3 THE OUTPUT FILE · · ·
11·4 THE DAVFILE · • ·

vi

7-4
7-5

8-1
8-1
8-2
8-2
8-4
8-5
8-b
8-7

9-1
9-1
9-2
9-3
9-3
9-4

• • • • • :LO- 1
. 10-1
. 10-1

. 10- 3
. . . . 10- 5

11-1
. 11-1
. 11-1
. 11- 2
. 11-2

PART III - OPTIMIZATION

12. [J THE SCALAR PROCESSOR 12-1
12.1 INTRODUCTION 12-1
12.2 THE REGISTER FILE· 12-2
12-3 THE INSTRUCTION STACK 12-4
12.-4 THE FUNCTIONAL UNITS 12-5

13-0 SCALAR OPT! MIZATION 13-1
13-1 INTRODUCTION 13-1
13-2 AUTOMATIC OPT! MIZ A TI ON 13-1
13-3 GENERAL TECHNIQUES 13-3
13.4 REGISTER FILE UTILIZATION 13-6
13.5 RECURSIVE DO-LOOPS 13-8
13-b THE MER GI NG OF SHORT DO-LOOPS· 13-10
13-7 THE UNROLLING OF DO-LOOPS 13-11
13-8 THE SPLITTING OF DO-LOOPS . . . 13-13

14. a HOW TO SPEED UP SUBPROGRAM CALLS 14-1
14-1 INTRODUCTION · 14-1
14. 2 REGISTER FILE SWAPPING 14-2
14-3 PARAMETER PASSING 14-4
14. 4 . PULL OR PUSH SUBROUTINES 14-7

~
14-5 VECTORIZE I/O 14-9

) 14-6 OTHER TECHNIQUES 14-10

15-0 VECTOR PROCESSING · . . - 15-1
1·5.1 INTRODUCTION 15-1
15 .. 2 THE DEFINITION OF A VECTOR 15-1
15-3 THE VECTOR PROCESSOR . . 15-3

1b·O AUTOMATIC VEC TORIZ A TI ON 16-1
16-1 INTRODUCTION · 16-1
16-2 GENERAL CONSIDERATIONS 16-1
16~3 DIFFERENT TYPES OF VECTOR INSTRUCTIONS . 16- 2
16-4 THE LINKED TRIAD - 16-5
16-5 FACTORIZATION OF DO-LOOPS 16-8
16-6 CONTIGUITY IN MEMORY . D 16-10
16-7 MAXIMUM VECTOR LENGTH 16-13
16-8 RECURSION 16-14
16-9 STACKLIB 16-16
16-10 CRITERIA FOR VECTORIZABILITY OF INNERMOST DO-LOOPS . 16-18
16-11 VECTORIZATION OF SECOND INNERMOST DO-LOOPS 16-19
16-12 AUTOMATIC VECTORIZATION - IS IT SUFFICIENT? 16-21

)

vii

17-0 EXPLICIT VECTORIZATION 17-1
17-1 INTRODUCTION . 17-1
17-2 VECTOR SYNTAX - THE EXPLICIT TYPE 17-2
17-3 VECTOR SYNTAX - THE IMPLICIT TYPE {DESCRIPTORS} 17-4
17-4 V- FU NC TI ONS 17-b
17-5 CONTROL VECTORS 17-9
17-b THE bJHERE STATEMENT. 17-13
11-7 QB-FUNCTIONS 17-15
17-8 SPECIAL CALL SYNTAX 17-19

APPENDICES

Appendix A - Reference manuals

Appendi>C B - Phone numbers and operating hours {C.S.T.}

Appendix c - CY BER 74/CYBER 203 information

Appendix D - CY BER 175/CYBER 203 information

Appendix E - Conversion aid program

Appendix F - CYBER 203 pool FTNUTIL

viii

PART I

BASICS

1.0 INTRODUCTION

1.0 INTRODUCTION

1-1
03/31/81

The CYBER 203 is a computer. The operating system provides you
with a compiler that can compile your FORTRAN program. A loader
is also available, so that you can get your object code loaded
and executed. You talk to the machine by feeding a card reader
with punched cards, and by looking at the output that comes off
the printer.

At first glance, the features mentioned above are exactly what
you need, and may be all that you need. With the additional
information that the CYBER 2~3 possesses vector processing
capability, implying execution speeds far above that of other
conventional computers, your immediate reaction might well be to
just take all your boxes of cards, read them in and start making
all your production runs on the CYBER 203 - with greatly enhanced
performance. And then you could of course also enlarge the size
of your model, because, as you may already know, the CYBER 203
works with virtual memory, which essentially removes all your
core size boundaries.

Well, at this point we have to make you a little disappointed.
Not that we don't think that the CYBER 203 is a great computer,
because we do indeed think that it is. But there are no free
lunches. To just try to make the move indicated above, without
expecting to have to learn new things, is not realistic.
Different ways of thinking have to be invoked when you deal with
the CYBER 203. It represents a new generation of computers, and,
as such, requires a new set of concepts in order to describe it -
and an understanding of these in order to deal with it.

Consequently, to try to talk to the CYBER 203 the way you used to
talk to other conventional computers is bound to get you into
trouble. On the other hand, if you take the time and try to
understand this new creature, it will most certainly reward you
by cheaper monthly bills for more work on larger probJ.ems.

2.0 THE CYBER 200 COMPUTER SYSTE~ CONFIGURATION

2.0 THE CYBER 200 COMPUTER SYSTEM CONFIGURATION

2-1
03/31/81

Although the CYBER 203 is the one that is going to do most of the
work for you, it's a much too sacred creature to be dealt with
directly. Instead your contact point will be either one of two
front-ends: a CYBER 74 or a CYBER 175. Both the front-ends are,
in turn, via a Link-station, connected to the CYBER 2~3. The
Link-station is the turnpike through which all your job cards,
source cards, input data and results have to pass. How the
Link-station works, you don't really need to know - just the
realization that it's there will be sufficient. The front-ends,
however, as your prime contact points, do require some attention
before we can start dealing with the CYBER 2~3 itself.

2.1 THE FRONT-ENDS

Two front-ends are currently in use. One of them is a CYBER 74
using the operating system NOS, while the other one is a CYBER
175, using SCOPE 3.4. The manuals pertinent to each of these two
machines are listed in Appendix A, and you are urged to obtain
the ones that are relevant to you. As you are probably aware,
Control Data has adopted NOS as "The" operating system, and you
are therefore encouraged to use the NOS rather than the SCOPE
front-end. Phone numbers with which to connect with either one
of the two are listed in Appendix B. Note, in particular, that
from most cities you can dial a local phone number and get in
touch with the NOS front~end. Clearly that is an additional
point in favor of NOS.

When you obtain an account number (charge number + username +
password) for CYBER 203 processing, you should make sure that you
also get validation for the front-end you plan to use, or,
better, for both of them. Note also that there is a difference
between batch and interactive validation - you need both. And by
all means, don't forget to obtain sufficient information about
connect and login procedures.

Each of the two front-ends can be treated as separate computers,
independent of each other and of the CYBER 203. When you submit

2.0 THE CYBER 200 COMPUTER SYSTEM CONFIGURATION
2.1 THE FRONT-ENDS

2-2
03/31/81

a NOS job to the CYBER 74 for instance, it will indeed behave
jus-t like an ordinary conventional machine. However, we will in
general think of the front-end as something that enables us to
process on the CYBER 203. With respect to that, the purpose of
any one of the two front-ends is to allow you to do the following
things:

1) Create and keep permanent files on the front-end itself.

2) Modify these files, primarily by means of UPDATE, XEDIT
(CYBER 74 NOS) I or the INTERCOM 5 Editor (CYBER 175
SCOPE).

3) Implement magnetic tape storage.

4) Submit jobs to the CYBER 203.

5) Receive output from the CYBER 203.

In this document we will only discuss the two last items, since
the ·Others are sufficiently treated in the corresponding
reference manuals.

2.2 THE CYBER 203

The CYBER 203 is going to be your actual number cruncher. It has
a FORTRAN compiler that closely adheres to the standards of
FORTRAN Extended, version 5. That will mean, in general, that
certain syntactical changes have to be performed. To help you
with most (but not all) of the necessary conversions, the "FTN4-5
Conversion Aid" program is available on the NOS, but not on the
SCOPE, front-end. Information on how to use that tool can be
found in Chapter 3 and Appendix E.

The storage space available on the CYBER 203 is primarily
intended for job duration files. With the possible exception of
some binary files, permanent files should be stored on the
front-end.

The two front-ends are both 60-bit machines with 10 characters
per word, while the CYBER 203 is a 64-bit machine with 8
characters per word. When you transfer coded files (such as
INPUT or OUTPUT) through the LINK station, an automatic,
reversible, conversion between the two formats takes place.

2.0 THE CYBER 200 COMPUTER SYSTEM CONFIGURATION
2.2 THE CYBER 203

2-3
03/31/81

Binary files, however, have to be used on the machine where they
were created - there is not a one-to-one correspondence between
60-bit and 64-bit floating-point formats. You may still transfer
a binary file through the LINK (without conversion), but it will
not be readable until it's transferred back to the machine that
created it.

There is currently no magnetic tape system on the CYBER 203, but
that creates no problem since you can always transfer a given
file over to one of the front-ends and store it on tape there.

The operating system currently used is o.s. 1.4, which of course
will be upgraded as new operating system releases become
available. The reference manual (Appendix A) comes in two
volumes, but only volume 1 will be of interest to you. The
second volume is geared more towards systems people, and contains
little useful information for the average FORTRAN programmer.

3-1
03/31/81

~~~~~~~-~~~~~~~~~~~~~~~~~~~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 

CYBER 200 FORTRAN is, if we disregard the parts that have to do 
with vectors, very close to FTN-5 (FORTRAN, version 5). 
Consequently, since your code probably is written to compile by 
an FTN-4 (FORTRAN Extended, version 4) compiler, some changes 
have to be made before you can run. In the remainder of this 
chapter you will find lists of various types of differences 
between FTN-4 and CYBER 200 FORTRAN, and short descriptions on 
how to perform the necessary changes. The items that need 
attention are, somewhat arbitrarily, divided into 6 different 
types. If you compile your code directly, without any 
conversion, the FORTRAN listing will contain error messages 
relating to most of the items of type 1-3 that need to be 
changed, and that is therefore often a good practical approach. 
The types 4-6 are of different nature, though, and the compiler 
will not help you with them. Note that aborts or erroneous 
answers may result if you ignore these items. 

On the NOS front-end (CYBER 74) there is a program installed that 
can help you with the conversion. Its primary purpose is to 
convert from FTN-4 to FTN-5, but it can also do a lot of good in 
converting from FTN-4 to CYBER 200 FORTRAN. The items in the 
lists below that will be appropriately converted by this "FTN4-5 
conversion aid" are marked with a double asterisk (**), while 
those that are only partly (or somewhat incorrectly) changed are 
marked with a single asterisk (*). A detailed description on how 
to use the program is given in Appendix E. 



3-2 
03/31/81 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 
3.1 TYPE 1 - PURE SYNTAX 

3.1 TYPE 1 - PURE SYNTAX 

** a) Remove the word TYPE preceding the words INTEGER, REAL 
etc., in type declaration statements. 

** 

** 

** 

b) Expand the abbreviation DOUBLE to DOUBLE PRECISION. 

c) Change numeric COMMON block names to alphanumeric names 
starting with a letter. 

d) Change the form (vlist=dlist) in DATA statements to 
standard form. 

e) Change the form rf* (dl ,d2, ••. ,dn) in DATA statements to 
standard form. 

f) Make sure that the number of items in the variable lists 
in DATA statements exactly match the number of items in 
the corresponding data lists (value lists). 

** g) Change the abbreviations .T., .F., .N., .A., .o., to 
.TRUE., .FALSE., .NOT., .AND., .OR •• 

h) Split multiple assignment statements: e.g. A=B=C has to 
be changed to two separate statements. 

** i) Only one statement per line is allowed: e.g. A=B$C=D 
must be split into two separate statements. 

** j) Change $ in column 1 to C for comments. 

k) Change * in column 1 to C for comments. 

** 1) No compiler directives are recognized. Delete cards with 
C$ and C/ in columns 1-2 (not necessary). 

m) Replace RETURN statements in main programs with STOP 
statements. 

** n) Remove continuations of END statements. 

o) Change $ to & in INPUT lists for NAMELIST. 



3-3 
03/31/81 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 
3.2 TYPE 2 - MISSING OR DIFFERENT LANGUAGE COMPONENTS 

3.2 TYPE 2 - MISSING OR DIFFERENT LANGUAGE CO~PONENTS 

a) 

b) 

Remove LEVEL statements. The CYBER 203 has no extended 
core storage (ECS) - everything is just one big virtual 
space. 

Remove all OVERLAY statements and make other appropriate 
changes - the OVERLAY concept does not exist in CYBER 200 
FORTRAN. 

** c) Change two-branch IF statements to one or three-branch IF 
statements. 

d) Replace integer expressions for the index in computed 
GOTO statements by integer variables. 

e) Complex exponents are not permitted. Change to real. 

** f) Complex operands in relational expressions are not 
permitted. Change to real. 

** g) Complex variables in arithmetic IF statements are not 
permitted. Change to real. 

h) Replace octal constants (e.g. 10B) by decimal or 
hexadecimal constants. A hexadecimal constant may only 
be specified in DATA statements, and there only in the 
form X'l23ABC'. 



3-4 
03/31/81 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 
3.3 TYPE 3 - I/0 RELATED ITEMS 

3.3 TYPE 3 - I/O RELATED ITEMS 

a) Octal (rOw) FORMAT conversions are illegal. 

b) FORMAT conversions specifying exponent length (srEw.dEe) 
or minimum number of digits (riw.z) are illegal. 

** c) Fw, Ew, Gw and Dw conversions in FORMAT statements are 
illegal, and must be replaced by Fw.0, Ew.0, Gw.0 and 
Dw.0 respectively. 

* d) Equal signs and variable type (V) conversions in FORMAT 
statements are not permitted. 

** e) nX and Tn in FORMAT statements may not be specified with 
n=0. Delete 0X and change T0 to Tl. 

** 

f) Replace 4stringt for Hollerith constants with 'string'. 
*string* is acceptable. 

g) Change STOP"MESSAGE" to STOP'MESSAGE'. 

h) Remove Hollerith constants in output lists, e.g. 
PRINT l,6HHELLO. 

i) Change list directed I/O statements to the type which 
reference FORMAT statements. 

j) The unit identifier in I/O statements must be changed 
from display code in L-format to integer variables or 
integer constants. 

k) The Hollerith L-format does not exist. Use R, H or A. 

** 1) Change PRINT and PUNCH with unit designators to WRITE. 

** m) Change WRITE without unit designator to PRINT. 



3-5 
03/31/81 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 
3.4 TYPE 4 - RUN TIME DANGERS 

3.4 TYPE 4 - RUN TIME DANGERS 

a) The file specifications on the program card must always 
be in the form "TAPEn=lfn", where n is a logical unit 
number (0-99) and lfn is a local file name. As an 
example, let's assume that you have a local file called 
TAPE7, and that you want to reference it with "READ(7)" 
or "WRITE(7)". Then you must declare "TAPE7=TAPE7" on 
your program card~ an attempt to get by with only "TAPE7" 
will cause an abort at run time. The files INPUT, OUTPUT 
and PUNCH constitute special cases, and may appear 
without the part "TAPEn=". However, no default unit 
numbers are assigned to these special files. 

* b) The number of parameters in a CALL statement must exactly 
match the number of parameters in the referenced entry 
point - secondary entry points do not automatically 
assume the parameter ·list defined in the SUBROUTINE 
statement. 

* c) 

Example: SUBROUTINE X(A,B,C) 
A=(B+C)**2 
RETURN 
ENTRY XX(A,B) 
A = B**2 
RETURN 
END 

This subroutine can be called with CALL X(R,S,T) or CALL 
XX(P,Q) but not with CALL XX(P,Q,R). 

Multiple RETURN's 
changed as in the 
page 5-4]: 

are handled differently, and must be 
following examples [FORTRAN manual, 

FTN-4 

CALL X(A,B), RETURNS(S,10) 

SUBROUTINE X(A,B), RETURNS(M,N) 

RETURN M 

RETURN N 

RETURN 
END 

CYBER 200 

CALL X(A,B,&5,&10) 

SUBROUTINE X(A,B,*,*) 

RETURN 1 

RETURN 2 

RETURN 
END 



3-6 
03/31/81 

3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 
3.4 TYPE 4 - RUN TIME DANGERS 

** d) Double exponentiation, e.g. A**B**C, 
A**(B**C) on the CYBER 203, rather than 
Insert parentheses appropriately. 

is evaluated as 
as (A**B) **C. 

* e) If, in a computed GOTO statement, the index is out of 
range, a transfer to the next executable statement will 
occur, rather than an abort. Insert your own error 
code. 

3.5 TYPE 5 - MISSING AND DIFFERENT FUNCTIONS/SUBROUTINES 

* 

a) In the statements "X=DATE(Y)", "X=SECOND(Y)" and 

b) 

"X=TIME(Y), only X receives the value requested - Y is a 
dummy parameter. 

The EDF-function is missing. Instead 
END-parameter in the READ statement. 
8.1-2) 

there is an 
(FORTRAN, page 

c) The LENGTH-function returns the number of 8-bit bytes 
(characters) rather than the number of words (FORTRAN, 
appendix G-2). 

d) The LOCF-function is not available, but can easily be 
simulated using descriptors. 

e) The mass storage I/O routines OPENMS, STINDX and others 
are missing, due to the nature of the operating system. 
Simulations of these routines are available on pool 
FTNUTIL for compatibility reasons only. See Appendix F. 

f) Debug routines like DUMP, STRACE and SYSTEM are not 
available. 

g) CYBER Record Manager routines like FILExx, STOREF and 
CLOSEM are not available. 

h) Other routines not included in the system are: 

CHEKPTX CONN EC DISCON DISPLA EXIT 

I OCH EC JDATE LABEL MOVLEV OVERLAY 

READEC RECOVR REMARK SLITE SLITET 

SMMERGE SMSEQ SM SORT SSWTCH WRIT EC 



3.0 REQUIRED CHANGES TO YOUR FORTRAN SOURCE CODE 
3.6 TYPE 6 - MACHINE DEPENDENT ITEMS 

3.6 TYPE 6 - MACHINE DEPENDENT ITEMS 

3-7 
03/31/81 

When software discrepancies, such as different compilers or 
system libraries, are not sufficient to explain the fact that a 
particular code produces different results when executed on two 
different computers, then the code could be categorized as a 
machine dependent code. Very often such a code manipulates data 
in a way that exploits the programmer's knowledge about the word 
size, the number representation or the data representation, and 
is in general quite acceptable to the compiler. It therefore 
becomes important to learn how to identify suspicious areas 
within your program - before you have wasted money on garbage 
runs. Look out for the following types of things: 

- Masking expressions 

- Shift operations 

- Logical operators used with intentions other than creating 
logical variables 

- Equivalenced real and integer variables 

- Initialization of real and integer variables, when the 
difference in data types is ignored 

- Plus and minus zero 

- Hollerith variables 

When you have read the next chapter, you should hopefully be 
capable of changing machine dependent code to a form that will 
produce correct results on the CYBER 203. 





4-1 
03/31/81 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4.0 DATA REPRESENTATION

4.0 DATA REPRESENTATION

4.1 INTRODUCTION

The CYBER 203 is, as previously mentioned, a 64-bit machine.
With a word length of 64 bits, it is no longer convenient to use
octal (base 8) notation. The hexadecimal (base 16) number system
serves our purposes much better, since a hex digit requires 4
bits, and we thus can fit an even 16 digits into a full word.
The 16 hex digits are 0123456789ABCDEF.

The bits are numbered from left to right, which is a consequence
of the bit addressing capability a great asset in vector
processing. The leftmost bit is bit number 0 and the rightmost
one is number 63.

The full word is subdivided by an imaginary line into two parts:
the leftmost 16 bits (0-15), often referred to as the length
field or exponent field, and the rightmost 48 bits (16-33),
usually called the address field or the coefficient field.

The number representation used is 2's complement, which among
other things has the nice feature that there is.no difference
between plus and minus zero. An integer consisting of n digits
would in 2's complement be negated by subtracting it from 2**n,
while in l's complement we would have subtracted it from
(2**n)-l. From that we can derive a quick and easy way of
negating numbers in 2's complement: Take l's ·complement (subtract
from all l's) and add one to get the result. Examples of how to
use the rule will appear later in this chapter.

4.0 DATA REPRESENTATION
4.2 THE INTEGER FORMAT

4.2 THE INTEGER FORMAT

4-2
03/31/81

Integer data occupies one word of storage in the following
format:

+---------------+--------------------------+
I binary zero I 2's complement integer I
+---------------+--------------------------+

0 15 16 63

The following table shows the range in hex notation
[±oo symbolize the largest and smallest integers representable in
this format] :

0000 7FFFFFFFFFFF + oO

0000 000000000002 +2
0000 000000000001 +l
0000 000000000000 0
0000 FFFFFFFFFFFF -1
0000 FFFFFFFFFFFE -2

0000 800000000000 - 00

Note that all positive numbers have bit 16 cleared (=0), while it
is set for negative numbers - we can therefore think of that bit
as a sign bit. Note also that the leftmost 16 bits are always
identically zero.

As an exercise in 2's complement negation, let us find the
representation of the integer -3:

1) Create integer +3: 0000 000000000003

2) Take l's complement: 0000 FFFFFFFFFFFC

3) Add 1 to get -3: 0000 FFFFFFFFFFFD

Now you may try to apply the same rules on the result to get back
the +3 we started with.

4-3
03/31/81

~~~~~~~~~-~~~~~~~~-----~---~---~~-------~-~------~~-~----~~~~--~~~~~ 

4.0 DATA REPRESENTATION 
4.3 THE FLOATING-POINT FORMAT 

4.3 THE FLOATING-POINT FORMAT 

Real (floating-point) data occupies one word of storage in the 
following format: 

+---------------+--------------------------+ 
I Exponent I Coefficient I 
+---------------+--------------------------+ 

0 15 16 63 

Both the exponent and the coefficient are integers in 2's 
complement representation. The dividing line is as usual between 
bits 15 and 16, so that their lengths are 16 and 48 bits 
respectively. An imaginary decimal-point is placed after bit 63, 
the rightmost bit. If bits 16·and 17 are different, the number 
is said to be normalized. There is no bias to the exponent, 
i.e., the value of a floating-point number with exponent E and 
coefficient C is exactly C*(2**E). 

To become familiar with the floating-point format, and also to 
get an exercise in hex arithmetic, let us construct the two 
numbers +1.0 and -1.0. 

1) Create the integers +l and -1: 

0000 000000000001 0000 FFFFFFFFFFFF 

2) Normalize these numbers. This is accomplished by 
shifting the coefficients left the number of bits (NB) 
required to make bit 16 different from bit 17. While 
shifting left, zeroes are coming in from the right, and 
we will end up with the following coefficients: 

400000000000 800000000000 

Note that a hex 4 has the bit pattern 0100, while hex 8 
looks like 1000. Hence, in each case, as required, the 
two leftmost bits are unequal. 

3) Since the shift operations made the coefficients larger, 
we have to compensate by entering negative exponents, 
i.e. subtract the bit counts NB from tne original 
exponents (0 in these cases) • If you counted properly 
you should have obtained an NB of 46 for the +l and 47 
for the -1 operation. So our next problem is to 



4.0 DATA REPRESENTATION 
4.3 THE FLOATING-POINT FORMAT 

4-4 
03/31/81 

construct -46 and -47 as 16 bit integers in 2's 
complement representation: 

a) Construct positive 16 bit integers 46 and 47: 

002E 002F 

b) Take l's complement to obtain: 

FFDl FFD0 

c) Add 1 to get -46 and -47: 

FFD2 FFDl 

4) Now we are ready to form the results by merging the 
exponents with the coefficients. 

+1.0 = FFD2 400000000000 -1.0 = FFDl 800000000000 

The permitted range of the exponent for a nonzero floating-point 
number is hex 9000 to hex 6FFF. The zero itself is discussed in 
the next paragraph. 

4.4 ZEROES AND INDEFINITES 

The exponent range given in the last section does not cover all 
possible 16-bit integers. This is to allow for two special 
numbers: the floating-point zero and the indefinite. The 
definitions are as follows: 

1) Any number whose leftmost hex digit is 7, is interpreted 
as an indefinite. 

2) Any number whose leftmost hex digit is an 8, is a valid 
floating point zero. 

That makes up for the unused portion of the exponent range. In 
hex notation we write the numbers as: 

7XXX XXXXXXXXXXXX = indefinite 
8XXX XXXXXXXXXXXX = 0.0 

An integer zero has the following format: 



4.0 DATA REPRESENTATION 
4.4 ZEROES AND INDEFINITES 

4-5 
03/31/81 

------------~-------------------------------------~~----------------

0000 000000000000 

Thus, although the 2's complement did rid us of the negative 
zero, we still have two different types of zeroes to play around 
with. 

Without going too much into details, the reason why the integer 
zero doesn't qualify as a floating-point zero is the following: 
To add two floating-point numbers A . and B together, their 
exponents must first be adjusted so that they are equal, 
whereafter their (adjusted) coefficients can be added and the 
result normalized. If B is an integer zero, i.e. has a zero 
exponent, and A has a negative exponent, then A is the one to be 
adjusted. Since an increase of the exponent corresponds to a 
right shift of the coefficient, that will result in a discarding 
of A's rightmost bits, and A+0· will in general not equal A. So 
the zero must have a smaller exponent than any other number, in 
order to guarantee that the zero is the one that gets 
right-shifted. 

4.5 CONSEQUENCES OF THE DUAL ZERO REPRESENTATION 

On most machines, there is no difference between an integer zero 
and a floating-point zero. But, as described in the previous 
section, here the difference is significant, and attention must 
be paid to that fact. Consider for instance the follo~ing code 
sequence: 

DIMENSION A(l0),IA(l0) 
EQUIVALENCE (A,IA} 
DO 10 K=l,10 

10 IA(K)=0 

As long as you use the array name IA, and perform integer 
arithmetic, you are in good shape. But, since you have the 
EQUIVALENCE statement, chances are that you at some point will 
want to do floating-point arithmetic using the array name A. If 
you then rely on the array being zeroed, you will not get the 
results you expect - because A is not zeroed. If you want A to 
be zeroed, you have to fill it with ffOating-point zeroes. 

To zero out a common block without paying attention to data types 



4.0 DATA REPRESENTATION 
4.5 CONSEQUENCES OF THE DUAL ZERO REPRESENTATION 

is also likely to get you into trouble: 

COMMON /BLK/ IQ(ll'J} ,N,A(l0} ,B 
DO ll'J K=l,22 

10 IQ(K} = 0 

4-6 
l'J3/31/81 

Like in the previous example, this will not put valid zeroes in 
array A and variable B. 

A third type of potential error source is the data initialization 
performed by the system. Most· (but not all} of your simple 
variables and arrays are zeroed out either at compile time or at 
load time. However, this is accomplished by clearing all the 
bits - which of course is worthless for floating-point data. In 
essence, you have to take care of all data initialization 
yourself, using DATA statements or executable assignment 
statements. Note that a DATA statement cannot be used to assign 
values to variables in blank common. 

Please realize that you have no right to expect the system to 
perform any kind of data initialization that is not explicitly 
requested by DATA statements. It is entirely possible and 
legal with respect to the FORTRAN language - that some day also 
the partial initialization with integer zeroes will disappear. 
So don't rely on what presently is standard procedure - neither 
on the CYBER 203 nor on any other machine. 

4.6 THE HOLLERITH FORMAT 

Hollerith data is stored as one character per byte, each byte 
being 8 bits long. That implies 8 characters per word, rather 
than the 10 on the front-end. 

When GETPF/SAVEPF ·(see next chapter} are used to transfer display 
code files back and forth between the CYBER 203 and the 
front-end, an automatic, reversible, conversion takes place 
unless CM=BI is specified. So the major part of the problems 
associated with the different byte size is taken care of by the 
system. However, in your FORTRAN program, you have to cnange all 
appearances of 10H ••• to SH ••• , and maybe also Al0 to A8. 
Instead of the changes indicated above, it may prove convenient 
to utilize the data type CHARACTER, which actually can handle 



4-7 
03/31/81 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

4.0 DATA REPRESENTATION
4.6 THE HOLLERITH FORMAT

byte strings of both 10 characters and more.

4.7 HOLLERITH VARIABLES IN IF-TESTS

Consider the following code sequence:

READ l,NAME1,NAME2
1 FORMAT (2A5)

IF (NAME1.EQ.NAME2) GO TO 10

If the data card has the characters HOUSEMOUSE in columns 1-10,
then the variables NAMEl and NAME2 will now contain [b stands for
blank]:

+----+--------+ +----+--------+
I HO I USEbbb I and I MO I USEbbb I
+----+--------+ +----+--------+

Since the IF-test compares two integers, the content of the two
leftmost bytes is of course irrelevant, and control will be
transferred to statement number 10 - contrary to what might have
been expected.

To ensure accurate treatment of Hollerith data, the data type
CHARACTER should be used. Please consult the FORTRAN manual
about usage.

As a temporary fix, all Hollerith variables could be declared
REAL. This will force full-word compares, but may introduce
other problems if and when the present ASCII character subset
(64) is extended.

Yet another temporary remedy is to include the letter K in the
string of options on the FORTRAN card. That will force all
integer .EQ. and .NE. to 64-bit compares, but will not affect
other relationals (like .GE., .LE. etc.). While the selection
of the K-option thus will cure the Hollerith compares, it will
also affect IF-tests containing "true" integer operan8s, and a
small price increase may therefore show up as a side effect.

5-1
03/31/81

5.e SOME BASIC CONTROL CARDS

5.e SOME BASIC CONTROL CARDS

Before you actually submit your first job to the CYBER 203, you
need to know something about the function of a few control
statements. The STORE, TOC200, and TOAS cards are documented in
the NOS Front-End Users Guide, the SCOPE version of the STORE
nowhere accessibly, and the others in the o.s. 1.4 Reference
Manual·, Volume 1. Note that TOC200 is a NOS control statement,
while all the others can appear in CYBER 203 job streams only.

5.1 STORE

This- card should be the first card in a CYBER 203 job that
originates on the NOS front-end. The parameters must all appear
in the proper columns, without separators. The format is as
follows:

STORE uuuuuuaaaaaaaajjjjjjjj x

Columns Contents

1- 5 STORE

6 blank

7-12 uuuuuu

13-20 aaaaaaaa

21-28 jjjjjjjj

Description

Statement name

This number is the CYBER 203 form of your
CDC-supplied, batch-validated NOS
front-end username. It's obtained by
adding a zero in the beginning and
removing the two trailing letters: 12345AA
becomes 012345.

This number, which may appear anywhere in
the field, should be your CDC-supplied
charge (account) number.

This character string, which may appear
anywhere in the field, wi11-·become the
name of your jobfile. The first 5
characters will appear on the banner page
of your output.

5-2
03/31/81

5.0 SOME BASIC CONTROL CARDS
5.1 STORE

29_-3 3

34

35-78

79-Bfll

blank

x

blank

(optional)

A single letter job priority indicator. A
blank or a B indicates normal batch
processing. S requests standby, i.e.
slower turnaround and lower charge.
Priority validated users (everyone except
CDC employees) may specify P for faster
turnaround. Currently the cost ratios are
P:B:S = 15:12:10.

Keypunch indicator: 26 or 29. Default is
26.

When a CYBER 203 job originates from the SCOPE front-end, the
first card will look a little different from the STORE card,
although almost the same information will appear. Note that the
format of this card more resembles ordinary control cards, with
no column counts or embedded blanks. The following form should
be used:

jjjjjjj,STSTR.U=uuuuuu,A=aaaaaaa,xx.

jjjjjjj

STSTR

uuuuuu

aaaaaaa

xx

Job identifier. Same function as on the STORE card.

The first two characters stand for station, the last 3
make up a logical station identifier. Currently APP
is used by CDC employees and STR by customers. A
third identifer,- OVN, that can be used by both
categories, requests OVerNight processing. Note the
period after STSTR.

Username as described for the STORE card.

Charge number as described for the STORE card.

Job priority indicator as described for the STORE
card. Here the abbreviations ST, B and PR are used
for standby, Batch and PRiority. Default is B.

5-3
03/31/81

~~~~~~~~~~~-~-~~~-~------~----~---------~---------------~-----------
5.0 SOME BASIC CONTROL CARDS 
5.2 TOC200/TOAS: INTERFACE WITH THE NOS FRONT-END 

5.2 TOC200/TOAS: INTERFACE WITH THE NOS FRONT-END 

TOC200 is a control statement that can appear in a NOS batch job, 
9r be issued interactively. It should be used to send job decks 
over to the CYBER 203, alone or together with other files. The 
following formats can be used: 

TOC200. or TOC200(I,lfnl, ••• ) 

In the_ first case, the default file INPUT (everything after the 
current position of the pointer) is sent over to the CYBER 203 as 
a job deck. In the second case the data files lfnl, lfn2 etc. 
are also sent over. They will be made local on the CYBER 203 -
in time to be accessed and used by the job in file INPUT. The I 
may be replaced by another file name if desired. Consult the 
manual for more details and options. 

The control statement TOAS can appear in a CYBER 203 job and 
works in the direction opposite to TOC200. The parameters are 
the same. 

5.3 GETPF/SAVEPF: INTERFACE WITH THE SCOPE FRONT-END 

GETPF,lfn,pfn,ID=id,ST=ADA. 

SAVEPF,lfn,pfn,ID=id,ST=ADA. 

lfn = local file name on the CYBER 203. (Default is lfn=pfn). 
pfn = permanent file name on the front-end. 
id = ID under which the file is (to be) stored. 
ADA = logical identifier for the front-end. 

GET~F obtains a copy of the front-end permanent file, and makes 
that copy a local file on the CYBER 203. A file that is attached 
on the front-end is not accessible to GETPF, unless the ATTACH 
was issued with MR=l (multiple read access) specified. 

SAVEPF makes a copy of a local or attached permanent file on the 
CYBER 203, and cataloges the copy as a permanent file on the 
front-end. Unfortunately the file is saved under a system 
account, and will therefore disappear at the end of the day, 



5.0 SOME BASIC CONTROL CARDS 

5-4 
03/31/81 

5.3 GETPF/SAVEPF: INTERFACE WITH THE SCOPE FRONT-END 

unless it's moved to your own account. Such a move could be 
accomplished by executing the following two control statements on 
the front-end ["ac" symbolizes the first five digits of your 
account number]: 

ATTACH,lfn,pfn,ID=id. 
RENAME,lfn,pfn2,ID=id2,AC=ac. 

5.4 FORTRAN 

FORTRAN,I=lfn,B=bfn. 

lfn = local file containing the source. (Default is INPUT) 

bfn = Local file to receive the object code. (Default is BINARY) 

5.5 LOAD 

LOAD,bfn-list,CN=cfn,OU=dfn. 

bfn-list = list of up to 10 object files. (Default is BINARY) 

cfn = control lee file name, i.e. the file to receive 
the executable loader output. (Default is GO} 

dfn = local file to receive the load map. (Default is 
OUTPUT). To suppress the map, make dfn a dummy 
name. 

5.6 GO 

GO. or GO(TAPEn=lfn) 

This is the execution statement - the name of the controllee file 
followed by a period will do the job. Optionally you may make 
one or several file name replacements of the form shown, e.g. 
TAPE6=0UTPUT. 



6-1 
03/31/81 

--------------------~------------------------------------~--------~-
6.0 SAMPLE JOB DECKS 

6.0 SAMPLE JOB DECKS 

6.1 STRAIGHTFORWARD COMPILE AND RUN 

The si~plest, but maybe not the most convenient, way to submit a 
job from the NOS front-end to the CYBER 203 is to prepare a batch 
deck as follows:· 

NOS: JOB. 
USER,12345AA,password. 
TOC200. 
7/8/9 
STORE 012345 88888AB MYJOB 
C203,T50. 
FORTRAN. 
LOAD. 
GO. 
7/8/9 

your program 
• 

7/8/9 

optional data cards . 
6/7/8/9 

p 

The first two cards are just the normal NOS job and account 
cards. The third card requests that everything after the current 
position of the pointer in the INPUT file should be sent over to 
the CYBER 203. In this case that means everything that appears 
after the first 7/8/9 card. 

The CYBER 203 job itself always (if originated from the NOS 
front-end) starts with a STORE card, which essentially contains 
accounting information. The next card is the actua~. CYBER 203 
job ca.rd, with a decimal time limit. The FORTRAN, LOAD, and GO 
statements are used with default values for all parameters. 
Refer to Chapter 5 for a discussion of the STORE card. 



6.0 SAMPLE JOB DECKS 
6.1 STRAIGHTFORWARD COMPILE AND RUN 

6-2 
03/31/81 

When using the SCOPE front-end, there is no need to have a SCOPE 
job card sequence preceding the CYBER 203 job. All that's needed 
is - the "distorted" STORE card, so that the whole job appears as 
follows: 

SCOPE: MYJOB,STSTR.U=012345,A=88888AB,PR. 
C203,T50. 
FORTRAN. 
LOAD. 
GO. 
7/8/9 

your program . 
7/8/9 

optional data cards . 
6/7/8/9 

6.2 HOW TO ACCESS SOURCE FILES FROM THE FRONT-END 

A more convenient way to run a CYBER 203 job is probably to use 
card images stored in a permanent file on the front-end. 
Assuming that you have a source file called MYSRC, the procedure 
would then be as follows: 

NOS: JOB. 
USER, ••• 
GET,MYSRC. 
TOC200(I,MYSRC) 
7/8/9 
STORE 012345 88888AB MYJOB 
C203,T50. 
FORTRAN,I=MYSRC. 
LOAD. 
GO. 
7/8/9 . 

optional data cards . 
6/7/8/9 

p 



6.8 SAMPLE JOB DECKS 
6.2 HOW TO ACCESS SOURCE FILES FROM THE FRONT-END 

SCOPE: MYJOB,STSTR.U=012345,A=88888AB,PR. 
C283,T58. 
GETPF,A,MYSRC,ID=MINE,ST=ADA. 
FORTRAN, I=A. 
LOAD. 
GO. 
7/8/9 . 

optional data cards . 
6/7/8/9 

6-3 
e.13/31/81 

With both source and data as permanent files on the front-end, 
the following decks could be used [your PROGRAM card is assumed 
to contain TAPES=INPUT]: 

NOS: JOB. 

SCOPE: 

USER, ••• 
GET,MYSRC. 
GET,MYDATA. 
TOC288(I,MYSRC,MYDATA) 
7/8/9 
STORE 812345 88888AB MYJOB P 
C283,T58. 
FORTRAN,I=MYSRC. 
LOAD. 
GO(TAPES=MYDATA) 
6/7/8/9 

MYJOB,STSTR.U=812345,A=88888AB,PR. 
C283,T50. 
GETPF,MYSRC,ID=MINE,ST=ADA. 
GETPF,MYDATA,ID=MINE,ST=ADA. 
FORTRAN,I=MYSRC. 
LOAD. 
GO(TAPES=MYDATA) 
6/7/8/9 

Note that TOC208, as well as GETPF, creates local files on the 
CYBER 283, contrary to what is stated in one of the reference 
manuals. The files will thus disappear at the end of the job, 
unless they are made permanent with DEFINE. 



6.0 SAMPLE JOB DECKS 
6.3 A FRONT-END AND A CYBER 203 JOB IN ONE 

6.3 A FRONT-END AND A CYBER 203 JOB IN ONE 

6-4 
03/31/81 

Often times you want to edit your source and make a CYBER 203 run 
without having to submit two separate jobs. If you use the NOS 
front-end, that only requires a slight modification of the jobs 
in the previous section: 

NOS: JOB. 
USER, ••• 
GET,OLDPL=MYPL. 
UPDATE,F,N. 
REPLACE,NEWPL=MYPL. 
GET,MYDATA. 
TOC200(I,COMPILE,MYDATA) 
7/8/9 . 

update directives . 
7/8/9 
STORE 012345 88888AB MYJOB P 
C203,T50. 
FORTRAN,I=COMPILE. 
LOAD. 
GO(TAPES=MYDATA) 
6/7/8/9 

First the old program library MYPL is attached under the local 
file name OLDPL. The OLDPL is modified by UPDATE, using the 
directives in the first record after the NOS control cards. The 
new program library NEWPL is saved as a new version of MYPL (the 
old version is erased by REPLACE), and then the data file MYDATA 
is attached. TOC200 takes the rest of the INPUT file (starting 
with STORE) plus the UPDATE generated local file COMPILE and the 
data file, and sends them over to the CYBER 203. 



6.0 SAMPLE JOB DECKS 
6.3 A FRONT-END AND A CYBER 203 JOB IN ONE 

6-5 
03/31/81 

To accomplish the same thing from the SCOPE front-end, the ROUTE 
statement must be used to place the job file in the input queue: 

SCOPE: JOB. 
USER, ••• 
ATTACH,OLDPL,MYPL,ID=MINE. 
UPDATE,F,N. 
CATALOG,NEWPL,MYPL,ID=MINE. 
PURGE,OLDPL. 
CATALOG,COMPILE,ID=MINE. 
COPYBF,INPUT,JOBDK. 
ROUTE,JOBDK,DC=IN. 
7/8/9 . 

update directives . 
7/8/9 
MYJOB,STSTR.U=012345,A=88888AB,PR. 
C203,T50. 
GETPF,COMPILE,ID=MINE,ST=ADA. 
GETPF,MYDATA,ID=MINE,ST=ADA. 
FORTRAN,I=COMPILE. 
LOAD. 
G0(TAPES=MYDATA) 
PURGE,COMPILE,ID=MINE,ST=ADA. 
6/7/8/9 





PART II 

THE OPERATING SYSTEM 





7-1 
83/31/81 

------------~-------------------------------------------------------
7.8 THE CONCEPT OF FILES 

7.8 THE CONCEPT OF FILES 

7.1 INTRODUCTION 

All CYBER 283 files are stored on disk - magnetic tape storage is 
currently not implemented. From the point of view of the 
operating system, a disk file has the following characteristics: 

a) Name: 1-8 
letter. 

b) Owner. 

alphanumeric characters, starting with a 

c) Length in blocks (1 block= 512 words). 

d) Type: physical (P) or virtual code (C). 

No logical or physical structure, such as a division in records, 
exists. Hence, no file positioning is possible, and commands 
like REWIND, COPYBR, and SKIPF etc. become meaningless. 

However, when the System Record Manager (SRM) writes a file, a 
logical structure (recognizable only by SRM) may be imposed. 
From inside a FORTRAN program most file references go through 
SRM, and the statements REWIND, BACKSPACE and ENDFILE are thus 
legal and meaningful in CYBER 288 FORTRAN. The FORTRAN file 
concept will be discussed in the last section of this chapter. 

7.2 OWNERSHIP 

There are three different ownership categories on the CYBER 283: 

a) Public files, which can be accessed by_.any user. 
Compilers, loaders and other system utilities belong to 
this category. 

b) Pool files, which can be accessed by users who have been 



7.0 THE CONCEPT OF FILES 
7.2 OWNERSHIP 

7-2 
03/31/81 

granted such permission by the owner. A pool is a 
collection of files under a common name, and can be 
created by any user. Please consult the reference manual 
(OS 1.4, V.l) for details, noting, in particular, the 
descriptions of all control statements starting with P 
(PCREATE, PATTACH etc.). 

c) Private files, which can be accessed by the owner only -
as defined by the user number of the job creating it. A 
private file can be either local or permanent. A 
permanent file can be either attached or unattached. 

7.3 SEGMENTS AND EXTENSIONS 

A file on the CYBER 203 can consist of up to four segments of 
contiguous disk space. Each of those segments must reside on the 
same disk drive. At creation time, the system tries to fit the 
whole file into one contiguous space, i.e. to use only one 
segment. If unable to do so, i.e., if the largest available 
space is smaller than the size of the file, it will split the 
file into two parts and create a two-segment file. More than two 
segments cannot be used at creation time: should the requested 
file length exceed the sum of the two largest available 
contiguous disk spaces, the system will abort and issue the error 
message "NO DISK SPACE AVAILABLE". 

Let us now assume that you want to execute a FORTRAN program 
which writes to a file A. That implies that your PROGRAM 
statement looks something like "PROGRAM X(OUTPUT,TAPE2=A)", and 
that prior to turning over control to your program, the system 
must allocate disk space for file A. How much? Well if nothing 
is specified, a default value is used: local FORTRAN files are 
created 128 blocks long. The terms block and small page are 
often used interchangeably, since with .the current system 
installation they both represent the same amount of storage, 
namely 512 words. 

The space needed in this case (128 blocks) is rather small, and 
file A will most certainly be created in one segment. The fact 
that a file can consist of up to four segments then indicates 
that A may be extended three times by the addition ~~ a new 
segment. The first axtension will be granted when your program 
attempts to write beyond the initial "end of file" (the end of 
the 128th block) • The length of the added segment depends on an 
installation parameter, and may vary between different computer 



7-3 
03/31/81 

~~~~~~~~-----------------~----~----~--------------------------------
7.0 THE CONCEPT OF FILES
7.3 SEGMENTS AND EXTENSIONS

systems. But currently the sum of all permitted extensions will,
~ubject to disk space availability, add up to 50% of the original
length of a given file. So file A above will (if necessary) be
extended three times with 22, 21 and 21 blocks respectively. Had
it been created in two segments, two 32 block extensions would
have been available. Note that a segment can never be extended.

7.4 LOCAL AND PERMANENT FILES

Suppose now that we know in advance that the file A needs to be a
lot bigger than the 192 (=128+64) blocks automatically
allocated. Then we clearly must make sure that adequate space,
say 1000 blocks, is reserved already at creation time. That can
be accomplished by creating the local file A prior to execution
of the program, using the following control statement:

REQUEST,A/1000.

The length may alternatively be given as a hexadecimal number:

REQUEST,A/t3E8.

When the time comes for your program to execute, the file A will
thus already exist, and need not be recreated.

All system utilities that need a write file (FORTRAN, LOAD, COPY
etc.) have the capacity of creating a local file, and will do so
if necessary. However, as we have seen, the default length may
sometimes be too small, and in those cases we must create the
file in question beforehand. The default lengths are, in
general, indicated in appropriate sections of the reference
manuals, and vary from task to task. For instance, the binary
object file generated by the FORTRAN compiler is created with
length 110, while 1102 blocks are allocated for the executable
file written by the loader.

Normally a local file A will disappear at the end of the job that
created it. To keep the file it has to be made permanent by
issuing the control statement:

DEFINE,A.

Since here A is assumed to already exist, the only effect of the
DEFINE control card is that the file name is entered into the
permanent file catalog. Any parameters appearing after the file

7.0 THE CONCEPT OF FILES
7.4 LOCAL AND PERMANENT FILES

7-4
03/31/81

name are thus irrelevant and will be ignored - the length, for
in~tance, cannot be changed.

DEFINE can also be used to create a permanent file, in which case
the parameter set is identical to the one used by REQUEST. The
default lengths for file creations by both DEFINE and REQUEST are
8 blocks.

When a file has been created and made permanent, it's considered
to be attached to the job until the last job card is processed.
However, a permanent file that was created in a previous job
cannot be used until it has been attached. One control card is
enough to attach several files:

ATTACH,A,B,C.

To attach all your files, you can use:

ATTACH,*.

7.5 PHYSICAL AND VIRTUAL FILES

A file that cannot be executed is called a physical file or a
data .file. An executable file is called a virtual file or a
controllee file. Currently the only utility (not counting COPY)
that can write a controllee file is the loader, and it uses the
default length #102 blocks and default name GO. Hence the
sequence:

FORTRAN.
LOAD.

will provide you with an executable local file GO. The length of
GO will automatically be decreased when the loader is done - the
#102 blocks is only a creation size. In fact, most utilities
shrink their output files when they have completed their task -
that way you won't be charged for empty file space in case you
decide to make the files in question permanent.

REQUEST and
addition of
"file/length"
file:

DEFINE will, by default, create physical files, but
the parameter "TYPE=C" or "T=C" after the
parameter causes the creation of an empty virtual

7.0 THE CONCEPT OF FILES
7.5 PHYSICAL AND VIRTUAL FILES

REQUEST,A/1100,T=C.

7-5
03/31/81

To inform the loader that a space is already reserved for the
controllee file, the CN parameter must be used:

LOAD,CN=A.

The length of the controllee file is often more conveniently
specified directly on the load card:

LOAD,CN=A/1100.

Note that in order to do that, A must not exist beforehand.

Most system utilities that create files allow the user to specify
the lengths of those files directly on the control card in
question. However, when many large files are needed for a job,
it is safer to first create all files using REQUEST. The reason
is that if not enough file space is available to accommodate all
of your files, then you probably want to abort at the beginning
of your job rather than at the end.

7.6 FILES IN A FORTRAN PROGRAM

A file that is declared on a program card (or added at execution
time in the GO statement), and referenced from within that
program, will be handled by the System Record Manager (SRM).
Although a file cannot possess any structure on the level of the
operating system, the SRM does impose an artificial structure on
files that it writes. That structure for binary files simply
consists of a key word in the beginning of each record,
indicating the number of words (actually the number of bytes)
contained in that record. In addition, a few other types of
informative key words may be put in the file by the SRM.
Formatted (ASCII) files have yet a different structure, but we
will not discuss its details here.

Thanks to
REWIND and
ENDFILE.
structure

you

the SRM, file positioning statements in FORTRAN, i.e.
BACKSPACE, still make sense. The same is· true for
It's important to realize, though, that the SRM

is recognizable only by the SRM, and not by the system
cannot backspace or rewind a file using control

7.0 THE CONCEPT OF FILES
7.6 FILES IN A FORTRAN PROGRAM

7-6
03/31/81

statements. On the other hand, the structure is very real to the
SRM-, so that a file written by program A can be read by any
FORTRAN program, including A. Making a file permanent will not
destroy the structure.

Before we can discuss different types of I/O, i.e. different
methods to transfer data between a program data area and a file,
we need some basic understanding of the concept of virtual
memory. Chapter 8 is therefore devoted to virtual memory, and
not until after that do we deal with implicit and explicit I/O,
the most important I/O choices available. For concurrent I/O
methods .(Q7BUFIN and Q7BUFOUT) we must refer to the FORTRAN
manual, page 14.11-13.

8-1
03/31/81

-~~-~--~--~-----~--~---~
8.0 VIRTUAL MEMORY

--
8.0 VIRTUAL MEMORY

8.1 INTRODUCTION

A conventional computer usually features a central memory of a
few hundred thousand words, plus, in some cases, a large core
memory (LCM or ECS) of comparable size. In a multiprogramming
environment that space is then to be shared between several
executing jobs, limiting the size of the code and data areas of a
single user to maybe 100K words or less.

On the CYBER 203 however, each user has access to a rather large
virtual address space, the size of which is limited only by the
size of the address field, i.e. the number of bits in a memory
word that could be used to hold an address. The word
partitioning for addressing purposes is 16/48 (the same as for
data storage), and the rightmost 48 bits constitute the address
field. Since all addresses are bit addresses (an individual bit
in central memory can be toggled!) and each word contains 64
bits, the total size of the virtual address space is:

42
2 = 4,398,046,511,104 words.

Currently the system does not permit negative addresses, but,
even so, the size of the space available to each user is
impressive - more than 2 trillion words!

Now, 2 trillion words - that sounds too good to be true. And, of
course, in a sense it is. Because what counts is not how many
addresses we can create, but rather how many words of data we can
store and manipulate. Our storage devices are of two types: a
central memory with 1 million words (expandable to 2 million) ,
and about a dozen disk packs, each having a capacity of about 33
million words. As will be explained in the followipg sections,
virtual memory is, in a sense, the same as disk space, and it
therefore makes perfect sense to say that the CYBER 203 has a
user accessible memory capacity of several hundred million words
- still an impressive number.

8.0 VIRTUAL MEMORY
8.2 RELOCATABLE ADDRESSES

8.2 RELOCATABLE ADDRESSES

There are (at least) three different types of
relocatable, virtual and physical. The latter type is
that actually describes where in central memory a
machine instruction or data element is stored, while
two more resemble a labeling scheme.

8-2
03/31/81

addresses:
the kind

particular
the other

When the compiler gets hold of the card images constituting your
program, it first divides it into modules. A module is a program
unit, a · subroutine or a function, and all such modules are
treated as independent items by the compiler. As a given module
is compiled, each machine instruction produced is assigned an
address - a relocatable address. This is nothing but a count
that keeps track of how much memory space will be required to
hold this code when it later executes. The address itself is
often referred to as the value of the location counter or program
counter, and can be· found in any assembly listing usually in
the leftmost column.

Since each module is treated independently, the first instruction
(i.e. the first entry point) in a given module will always
correspond to address zero. When all modules are later merged
(at load time), those addresses must be changed, or relocated, to
avoid confusion. That is, of course, the reason why we use the
term relocatable addresses.

8.3 VIRTUAL ADDRESSES

The next step towards program execution is to gather all of your
relevant modules (routines) together and build a controllee
file. That's handled by the loader and requires, among other
things, the relocation of all addresses into what's called
virtual addresses. That will establish a new labeling scheme
one that allows all modules to be concatenated into one large
chunk of code without address duplications.

As an example, if the code sections of the subroutines ~- B and C
were previously assigned the relocatable addresses 0-199, 0-299
and 0-99, they may now be assigned virtual addresses 35~1-3700,
3701-4000 and 4001-4100.

8.0 VIRTUAL MEMORY
8.3 VIRTUAL ADDRESSES

8-3
03/31/81

--
In the same manner, the loader will collect everything you need
for execution - your own routines, system routines, library
routines, FORTRAN error processing routines, etc. and
gradually fill up your own private virtual space. As you may
already have guessed, it's of course not sufficient to just
assign addresses - the stuff has to be kept somewhere as well.
s·o what we are really talking about is the creation of a disk
file, and the assignment of virtual addresses, starting with zero
at the beginning of the file and proceeding sequentially as far
as necessary. ·Since the file is going to be executable, we'll
refer to it as a controllee file, using the special terminology
of the CYBER 203.

In an effort to keep the concept simple, we have here only talked
about addresses with respect to code, or machine instructions.
Clearly something has to be done with the data areas as well, but
let's leave that aside until we talk about the structure· of the
controllee file in more detail.

At this point it should be clear that the size of your virtual
space by no means is limited by the size of the central memory of
the machine, but rather by the capacity of available storage
devices. We also note that the virtual address of a given
instruction does not tell us where in the machine it later will
be found - it only provides a means of describing it's location
in the disk file where it is stored, and then only relative to
the beginning of that file.

The loader-built controllee file thus constitutes the beginning
of your virtual space, but not necessarily th~ end. In fact,
when you really go into execution, a number of other files may
well be concatenated in virtual space with your controllee file -
thus expanding that space tenfold or more. Concatenation of two
files in virtual space simply amounts to assigning proper virtual
addresses - they need not be physically merged.

8.0 VIRTUAL MEMORY
8.4 PHYSICAL ADDRESSES

8.4 PHYSICAL ADDRESSES

8-4
03/31/81

The central processor can read the central memory but not
peripheral storage devices such as disks. So before a given
instruction can be executed, it has to reside in central memory,
where the processor can get at it. This means that, at some
point, the part of the controllee that contains that particular
instruction has to be copied into physical (=central) memory.
Since each user has his own virtual address space, starting at
zero, there is now, in a multiprogramming environment, a
possibility that the same virtual address will appear more than
once in physical memory. So yet another address scheme must be
introduced ~ physical addresses have to be assigned.

A physical address is simply an address describing a particular
location in physical memory. Your program will never be
concerned with physical memory locations - internally it can only
reference virtual addresses. So there must not be an
irreversible change from virtual to physical addresses; rather, a
rule of translation from one type to the other must be
established. That rule is called a mapping, and will simply be a
prescription to add or subtract a constant.

Let's take an example based on the current memory configuration
of the CYBER 203. The size of physical memory is 1,048,576
words, which in hex notation looks like #100000. Since all
addresses are bit addresses, we multiply by 64 to get #4000000
bits, and that gives us a proper physical address ranqe of 0 to
#3FFFFFF. Suppose now that you are about to execute the
instruction that has the virtual address #10000. The system
finds (we will assume) that that part of the controllee has yet
not been brought into memory. Hence, it locates a free space
there, say physical location.#410000 and onwards. As discussed
in the next section, only pages (a small page = 512 words = #8000
bits) can be moved, so the section #10000 - #17FFF of virtual
space will now be copied from the controllee into physical memory
locations #410000 #417FFF. The mapping will in this case
consist of the following rule:

physical address = virtual address + #400000

The system can now, using this rule, translate any virtual
address in that particular page to the correspoding physical
address. Note that the subsequent virtual page #18000 #lFFFF
may well, when referenced, end up in physical locations #400000 -

8.0 VIRTUAL MEMORY
8.4 PHYSICAL ADDRESSES

8-5
03/31/81

l407FFF, i.e. the order between pages in virtual space does not
at all have to be preserved in physical memory - each page is
mapped independently.

8.5 THE DROP FILE

When the system decides that a particular instruction has to be
moved into memory, it does not have a free choice about the
number of words to move. Data transfer between disk and memory
must t~ke place in units of either small or large pages. A small
page consists of 512 words (f 8000 bits) and a large page of 65536
words (#400000 bits). The address of the beginning of a small
(large) page is always zero modulo 18000 (#400000), i.e. it
starts on a small (large) page boundary - in both virtual and
physical space. That way it can be ascertained that a given
address always belongs unambiguously to one page only.

As soon as it is established that the page you need is not in
memory, you will incur a page fault. That implies that you will
stop processing, and a system request goes out for that page. In
general there is no free space in memory, and a decision has to
be made about which space you are going to steal. For such
decisions, the system uses an algorithm called the LRU (Least
Recently Used) algorithm, and the page that has been inactive
(unreferenced) for the longest time will be the one that has to
go to give you space.

Let's now assume that the page that has to go was one of your own
pages, and that it contains some code that you have used once,
and will use again later. The first question that arrises is:
Has the page been modified in memory or not? If the answer is
no, then we know that a replica of it is sitting out in the
controllee file, and that the area of memory which it currently
occupies can safely be overwritten. However, if it has been
modified, then its new image has to be saved somewhere for later
retrieval. The disk area to which the system writes modified
pages is called the drop file. It is a job duration file,
created just before your job goes into execution. If you, for
any reason, rolled out completely during execution, the drop file
together with the controllee file will hold all current page
images. A restart is thus a comparatively simple affair.

Note that when a page is dropped, the virtual/physical mapping is
also erased, so that the next time it's needed it may be read in

8.0 VIRTUAL MEMORY
8.5 THE DROP FILE

8-6
03/31/81

to a totally different area of memory. Hence, although the
vir~ual address of a given instruction never will change, the
physical address may very well do so.

8.6 THE CONTROLLEE FILE

As already discussed, the loader builds an executable file, which
we will call the controllee file. With the exception of the
first small page (the minus page), each location in that file
will be assigned a virtual bit address. In order of increasing
virtual addresses, the controllee will be made up of the
following constituents:

Minus Page
Virtual Page Zero
Relocated Code
Data Bases
Labeled Commons
Error Processing

(Not part of the virtual space)
(Virtual ·address 0-#8000)

Information

The first small page, called the Minus Page, contains information
that the system needs in order to execute the file. It takes up
space in your disk file, but is actually not part of your virtual
space.

The next small page represents your register file, i.e. your
working registers, and is the page that really constitutes the
beginning of your virtual space. At the level of this
presentation, we can ignore that page as well.

Next comes the relocated code which, as previously discussed, is
a concatenation of all your routines, plus whatever the loader
decided you will need from SYSLIB or other specified libraries.

The data base ·section is made up of all the data bases belonging
to the different routines. The data base of, say, _subroutine
SUBA, consists of an area in virtual space that is large enough
to accommodate all local variables of SUBA. That am9~nts to
those arrays that are neither in common nor are passed into SUBA
as parameters, as well as simple variables with the same
characteristics. If SUBA contains DATA statements for some of
these variables, the loader will satisfy those and write the

8.0 VIRTUAL MEMORY
8.6 THE CONTROLLEE FILE

8-7
03/31/81

requested values directly into the data base part of the
9ontrollee file.

Directly after the data bases we find the labeled commons. They
will also be initialized by the loader, if there are data
statements requesting that.

The last group of items in the controllee file consists of
FORTRAN error processing information, and is hardly anything that
concerns us.

To summarize, the controllee file consists essentially of code,
data bases and labeled commons, and its size is thus determined
by the size of those items.

When the loader is done, you may well choose to make the
controllee file permanent, using DEFINE, thereby cutting down on
overhead in subsequent runs. Since before each such run you will
expect to find the same initial values in data bases and labeled
common blocks, the controllee file is, for all practical
purposes, write-protected during execution - it will never be
altered.

Note that blank common is not accounted for above, i.e. it is
not part of the controllee file. One implication of that is that
the size of the controllee can be kept reasonably small even for
codes with large arrays, provided these arrays are placed in
blank rather than labeled common. Since initialization can only
take place for storage space represented in the controllee, we
also conclude that data statements are meaningless when they
refer to blank common - in accordance with standard FORTRAN.

8.7 BLANK COMMON

Blank common is the first extension of your virtual space beyond
the limits of the controllee. Before you are ready to execute,
i.e. before you are in a position to reference any data element
in blank common, there must be a virtual address associated with
that element. So the full blank common block, as dimensioned in
your program, must be assigned an area of virtual space.
However, at this point (i.e. prior to any reference), that
assignment is purely fictitious, and only amounts to bumping the

8.0 VIRTUAL MEMORY
8.7 BLANK COMMON

8-8
03/31/81

pointer that points to the last used address in your virtual
spa9e. This is so since there are no initial values associated
with blank common, and therefore the first meaningful reference
must be a WRITE - why should the system bother to reserve a
particular disk area, when the content of it would be immaterial
anyway?

Of course, when your program finally does write into blank
common, then some actual space (physical memory as well as disk)
has to be'reserved - at least for the part that's about to, be
modified. The required pages in physical memory are given to you
when you need them in the form of some uninitialized space, and
at some later time these pages will be written out to the drop
file. Hence the drop file has to be large enough to accommodate
all used blank common space, in addition to the space
corresponding to data bases and labeled common blocks (we will
always assume that you do not have self-modifying code).

Since the size of the drop file has to be determined at creation
time, .which is just prior to execution, the system has nothing
but dimension statements to go by. At that time it does not know
how many elements in blank common you will reference. A
consequence of this is that if you try to use more space than
your dimension statements indicate, then the drop file is likely
to overflow at some time. Although the system will grant you a
few extentions, as for any other file, that will probably not be
enough. Particularly not if you (as is common on other machines)
have only one array in blank common, and that array is
dimensioned to one! Note that a "drop file overflow" error is a
run time error, which will cause an abort.

Although it's no fun to cause an overflow of the drop file, there
are worse things. By overstepping the declared boundaries of
blank common, you will enter a part of virtual space that often
is reserved for other purposes. As we shall see in the next
section, the files are usually mapped immediately after blank
common so by walking across boundaries you may actually alter
the content of a file!

We thus conclude that blank common must be dimensioned to at
least as much as you plan to use. In fact, since the virtual
space in this case is fictitious, you might as well make. it as
big as you are ever going to need·! What counts, namely, is not
the size of blank common, but rather how much you use - the pages
will actually not exist until they are referenced. And you won't
be charged for them either. There is, however, one little catch:

8.0 VIRTUAL MEMORY
8.7 BLANK COMMON

8-9
03/31/81

the system has to reserve space in the drop file - and it doesn't
know how much you are going to use. So here, as well as anywhere
else, use moderation. A blank common dimensioned to a few
hundred thousand words will probably never hurt you, while if you
go up to several millions, it might be hard for the system to
find ample disk space for the drop file.

9-1
03/31/81

--~-~-~---
9.0 USER CONTROLLABLE PAGE MAPPING

9.0 USER CONTROLLABLE PAGE MAPPING

9.1 INTRODUCTION

A page fault will occur every time you reference a page that is
currently not in memory. Since you at that time will need
something that is not yet available, processing (of your code)
must be suspended until the page in question is mapped and read
into memory. If the page is a large page (65536 words), then
about .4 - .5 seconds wall clock (=real) time will pass from the
moment when the page is referenced until the data is available.
Some CP (central processor) time will also be consumed - maybe a
few microseconds. A small page fault takes about .1 - .2 seconds
wall · clock time, while the CP time is pretty much independent of
the page size.

Although the numbers given above are only rough estimates, they
clearly show that the difference between 1 large and 128 small
page faults is huge - both with respect to wall clock and CP
time. And yet a large page can hold the same amount of data as
128 small pages. It is therefore evident that a program that
manipulates large amounts of data will finish it's task much
faster if the data transfers between disk and memory take place
in units of large pages rather than small.

Not only data, but also code has to be transferred between disk
and memory. Although the size of your code may be substantial,
that does not, in itself, warrant a mapping of it onto large
pages. The reason is that code, in general, is processed much
slower than data, ~mplying that a large page in memory containing
code would display a very low activity. And low activity means
wasted space. In a virtual memory environment, the difference
between letting your code occupy 512 and 65536 words of real
memory may be the difference between getting your results back in
10 minutes and 10 hours! Although that comparison may be a bit
extreme, it is not unrealistic. However, the more "normal"
effect of wasting space is to decrease the available-· space for
other users when you are running, and thereby affecting, in a
negative way, the turnaround - even for yourself. Since system
resource utilization, such as paging, also costs, and since

9.0 USER CONTROLLABLE PAGE MAPPING
9.1 INTRODUCTION

9-2
03/31/81

wasting space generally means more frequent paging, your cost
wil~ probably also increase somewhat.

9.2 THE GRLP PARAMETER

The conclusion must be that data (in particular large arrays) is
better off being transferred in units of large pages, while code
should be moved a small page at a time. By default, the loader
maps your program (the controllee plus blank common) onto small
pages. However, you may override that, by specifying on the load
card that certain groups of items are to be mapped onto large
pages. In this context we recognize three different types of
items: modules (subroutines, functions), labeled common blocks
and blank common block. These may not be mixed, i.e. all items
in a group must have the same type. The format of the
specification-rs:

LOAD, ••• ,GRLP=groupl,GRLP=group2, •••

where groupl and group2 each symbolizes a list of items separated
by commas. For this purpose a module is identified by name only,
and a labeled common block by *name. A single * means blank
common. As an example, consider:

LOAD, ••• ,GRLP=~BK1,*BK2,*BK3,GRLP=*BK4,GRLP=*.

This would cause common blocks BKl, BK2 and BK3 to be mapped as
one group (with no space between them) onto large pages, while
common block BK4 and blank common each would be mapped by
itself. The virtual addresses are always aligned so that each
group starts on a large page boundary. The order within a group
will not necessarily be the order given on the load card, and the
order of the groups themselves may also be changed by the
loader.

Note that it's easy to waste space in memory by doing a careless
grouping. In the example above, consider the situation that the
four labeled common blocks each are a quarter of a large page
(16384 words) long. Then the two first groups will together
occupy 2 large pages. By grouping them in one group only, that
could be reduced by a factor of 2! Blank common must always
appear alone, though.

9.0 USER CONTROLLABLE PAGE MAPPING
9.3 GRLPALL AND GRSP

9.3 GRLPALL AND GRSP

9-3
03/31/81

When you
i.e. when
important
in handy.
sign) :

are just trying to get your program up and running,
producing correct results on a test case is more
than performance, then the GRLPALL parameter may come
The format is (note the blank field after the equal

LOAD, ••• ,GRLPALL= , . . .
If GRLPALL is specified, the loader will map both the controllee
and the blank common onto large pages. Note that that includes
code as well as data, and therefore is not the optimal choice.
The effect of GRLP is not changed by the presence of GRLPALL.

Note that it is not possible to exclude code from being mapped
onto large pages when GRLPALL is used. To specify
GRSP=module-list, for instance, will not have the desired effect

the group specified by module-list will be aligned to start on
a small page boundary, but the mapping will still be onto large
pages.

9.4 GROS AND GROL

As you remember, blank common is not part of the controllee, and
the disk space requirements are thereby reduced. A labeled
common block can be forced out of the controllee in much the same
way, by using GROS or GROL:

LOAD, ••• ,GROS=*A,GROL=*B,*C, •••

The effect of this is to force common blocks A, B and C out of
the controllee. A will be mapped starting on a small page
boundary, and the group consisting of B and C will be mapped
starting on a large page boundary. Note that GROL does not map B
and c on large pages - it only aligns the starting address to a
large page boundary. That fact cannot be changed by another
specification such as GRLP or GRLPALL. Note also that when a
common block is not part of the controllee, it cannot be
initialized with DATA statements.

9-4
03/31/81

--
9.0 USER CONTROLLABLE PAGE MAPPING
9.5 THE DYNAMIC STACK

9.5 THE DYNAMIC STACK

Although it's not transparent to the user, any FORTRAN program
makes use of a certain amount of scratch storage space during
execution. That space is taken out of what's called the dynamic
space (dynamic stack), which is a name for the part of virtual
space that begins just beyond the highest virtual address
assigned at the time you go into execution.

A program that does not contain any vector statement~ usually
requires comparatively little scratch storage - maybe a few small
pages. The main use in that case is for subroutine linkage,
which represents a very low frequency with respect to referencing
the dynamic stack pages utilized. A pure scalar code therefore
will not gain from having the dynamic stack mapped onto · large
pages - it may actually lose.

If your code is vectorized, and, in particular, if it was
compiled with the V-option (which requests automatic
vectorization), then a substantial utilization of the dynamic
stack may take place. To calculate a complicated vector
expression, it's namely often necessary to store intermediate
vector results somewhere. And although the dynamic space is
reused over and over again, a program that deals with very long
vectors stands a good chance to be noticably slowed down if the
stack is mapped onto small pages rather than large.

When appropriate, you may request the mapping of the dynamic
stack onto large pages. It's done by specifying. the RLP
parameter on the PROGRAM card (not LOAD card) :

PROGRAM X(••• ,RLP=2, •••)

In the example above, the first 2*65536 words of the dynamic
stack will be mapped on large pages. RLP=l may be abbreviated to
RLP only. The RLP parameter may, perhaps more conveniently, be
specified on the execute card:

GO(••• ,RLP=2, •••)

Note that a heavy use of the dynamic stack may increase the drop
file size requirements. The loader has namely no way of knowing
how much is going to be used, and he (she?) is the one who sets
the size of the drop file. So you may have to explicitly specify

9.8 USER CONTROLLABLE PAGE MAPPING
9.5 THE DYNAMIC STACK

that size, using the CDF parameter on the load card.

9-5
83/31/81

By unnecessarily specifying the RLP parameter, you may increase
the apparent use of the dynamic stack from maybe 2 small pages to
1 large page, since every time you reference it, the whole large
page has to be transferred (if not in memory already). It is
therefore an excellent way of wasting space if you don't use your
judgement. That wasted space may well degrade performance, and
it may also cause a drop file overflow (at run time!), as
mentioned above.

10-1
03/31/81

--
10.0 IMPLICIT AND EXPLICIT I/O

10.0 IMPLICIT AND EXPLICIT I/O

10.1 INTRODUCTION

Program initiated data transfer is always of the type memory to
memory~ That goes for READ's of and WRITE's to files, as well as
for ordinary arithmetic assignments. So a file, or at least the
relevant part of it, must be mapped and moved into physical
memory whenever an I/O statement is to be executed. There are
two different ways of performing that mapping, each of them
demanding its particular type· of I/O - implicit and explicit.
Note that when we talk below about implicit and explicit files,
we do not mean to imply that the files themselves are of
different types, because they are not. It's just a convenient
way of describing how the files in question are linked with your
program.

10.2 IMPLICIT I/O

An implicit file (or rather a file on which implicit I/O can take
place) will appear in your program statement as something like
TAPE3=TAPE3. Since that is the normal way to declare files on
the CYBER 203, you may think of implicit I/O as the default type
of I/O. The first step in linking an implicit file with your
program is to map it into your virtual space. Files are mapped
after blank common, and will normally start immediately after
it. Note that this mapping does not encompass any reallocation
of file space. The files stay where they are, and all that
really happens is that virtual addresses are assigned to their
content.

When, in the course of execution, you reference an implicit file,
then the corresponding page will be mapped and moved into
physical memory, in just the same way as when a p~rt of the
controllee is referenced. At some tirre later on, that particular
page will have to be dropped, because the space it occupies will
be needed to hold some other data. If it was never modified,
i.e., if the only references were via READ statements, then it

10-2
03/31/81

--
10.0 IMPLICIT AND EXPLICIT I/O
10.2 IMPLICIT I/O
---·--------------------------

can safely
out to disk
involved.
question.
right?

be erased. A modified page, though, must be written
somewhere. In this case the drop file is not
Instead the page is written directly to the file in

That's where you want the new information anyway

Let's now assume the following situation: You have just assembled
a particular matrix A, i.e., you have computed all of its
elements. Your plan is to go on with some further processing of
A, such as solving the system of linear equations that it
represents. But since A is quite big - it occupies 2/3 of
available memory - and it took quite a lot of work to assemble it
in the first place, you would like to save an image of A in a
file (TAPE3) before you proceed. The following FORTRAN statement
would accomplish that:

WRITE (3) A

In the transfer of the first half of A, no problems will be
encountered. Starting from the beginning of TAPE3 (or from
wherever the pointer currently is), a page will be read into
memory, and the corresponding part of A will be transferred to
it. Those steps will then be repeated until the last third of
memory is filled by pages representing the part of virtual space
that is associated with TAPE3. Since the memory at that point
will be completely filled up - two thirds is used for A and one
third for TAPE3 another page of TAPE3 cannot be brought in
without first dropping one of the others.

Clearly the least recently used pages are the ones representing
the second half of A. If we label those 1, 2, 3, ••• , then the
page that has to go is (2). When (1) has been transferred we
will need (2) plus a new page of the file, which means that (3)
and (4) have to be dropped to give room. And so on. The pager
does an excellent job in chasing its own tail. Whenever a new
page of A is about to be transferred, it has to be read into
memory~ since it was ju~t written out to the drop file.
Moreover, if you give it some thought, you will realize that
before the transfer is completed, the very first pages of A will
also have been forced out to the drop file. The content of
memory will, at that point, be the last 3/4 of A and the last 3/4
of the written file pages.

Now cdnsider the original formulation of the problem: Dump A to
TAPE3, and then go on and process A. The first thing you want to

10.0 IMPLICIT AND EXPLICIT I/O
10.2 IMPLICIT I/O

10-3
03/31/81

do after the write is thus to reference A, and then probably the
beginning of A. But the corresponding pages are sitting out in
the drop file, and before they are available in memory again we
will have incurred several page faults. Those page faults will
in turn probably force out more of A, so that the process becomes
even further prolonged.

The conlcusion must be that data transfer to and from an implicit
file can be very inefficient when the record size is large, and
we do indeed need an alternative way of handling the I/O. A
situation like the one described above must be considered
unacceptable.

Note that several I/O statements interleaved with regular data
processing may not have the effect described above, even if the
total data transfer is the same. What counts, namely, ·is the
order in which the pages are referenced, and obviously some extra
processing will alter that order. Let's also emphasize that
small amounts of data, or small records, can readily be
transferred using implicit I/O. It's really only the big moves
that can hurt us. And big means at least several large pages.

It should also be mentioned that implicit I/O will
totally when Operating System 1.5 is released.
probably happen during the first half of 1981 - but
the default is implicit I/O.

10.3 EXPLICIT I/O

disappear
That will

until then

As described in chapter 7 of the FORTRAN manual, there is an
alternate way of declaring a file on the program card, namely:

TAPE3[,,4]=TAPE3

The brackets indicate that all I/O on this file should be of type
explicit. The first three parameters within the brackets concern
the storage medium used. The combination given above - the first
two omitted and the third equal to 4 - specifies a disk file, ·-· which currently is our only option.

When explicit I/O is used, data transfers initiated by READ

HJ. 0 IMPLICIT AND EXPLICIT I/O ·
10.3 EXPLICIT I/O

(WRITE) statements are accomplished
(filling) of a buffer, which serves as
area. The size of the buffer is in
can be extended up to 24 small pages
parameter in the brackets, e.g.:

TAPE3[,,4,15]=TAPE3

10-4
03/31/81

by the gradual emptying
an intermediate storage

general 3 small pages, but
by specifying a fourth

The buffer is an area of virtual spac·e that is mapped into
physical memory whenever data transfer is taking place. The
buffer pages are no different from other virtual pages, i.e., if
they are not referenced for a while, the system may decide that

·the space they occupy is needed for some other purpose.
Therefore, at a given time, some buffer pages may be out in the
drop file, while the remaining ones reside in physical memory.

Assuming a buffer size of NP small pages, when the first file
reference is made, the first NP pages of the file will be mapped
onto t.he buffer and read into memory. Then, as READ's or WRITE's
are issued, an imaginary pointer moves from the beginning towards
the end of the buffer. When the end is reached, or rather when
the word following the last mapped word is referenced, the
content of the buffer will be written out to the part of the file
pointed to by the mapping. Immediately following that, a mapping
of the NP next pages is established, whereafter the buffer is
filled with the image of those.

Note that a "read from disk" or "write to disk" (which
corresponds to a swapping of the buffer content) is initiated by
the system, rather than by the program, and that it's triggered
by the crossing of a buffer boundary, rather than a page
boundary. A swap includes all buffer pages, and, thus, cannot
get started until all such pages are in memory. That means that
for each dropped page a page fault will be incurred, causing the
relevant image to be read into memory from the drop file. It
would therefore be to your advantage if the full buffer resided
in memory when a swap were about to take place, and that's one of
the concerns that governs the choice of buffer size.

The longer the time between references to the first and the last
page in the buffer, the higher the probability that the first
page has been dropp.~d when the last is referenced. -When the
record size is (almost) constant, i.e. when all I/O references
(READ/WRITE) to a given file request the transfer of about the
same number of words, the number of page faults can therefore be

10.0 IMPLICIT AND EXPLICIT I/O
10.3 EXPLICIT I/O

10-5
03/31/81

minimized by choosing a buffer size that is close to the record
size.

If the I/O on a file is dominated by the transfer of very large
iecords, then the number of page faults will automatically be
small, since, on the average, several swaps of the buffer content
will be associated with each READ/WRITE. For such a file the
main concern becomes to minimize the number of swaps, and that is
accomplished by specifying the largest possible buffer size, 24
small pages.

10.4 WHICH IS BETTER - IMPLICIT OR EXPLICIT I/O?

Let's first summarize the differences:

1) An implicit file is mapped in its entirety into virtual
space, while an explicit file at any given time has only
NP pages mapped, NP being the size of the buffer. Hence
an explicit file will never compete for space in physical
memory, while an implicit file may well do so, and
thereby force more important data out to the drop file.

2) The overhead required to initiate a READ or a WRITE is
almost zero for an implicit file, while it's substantial
for an explicit file.

3) An I/O request for a large amount of data will, in the
implicit case, probably be interrupted quite often (every
512 words) by page faults. On the other hand, explicit
I/O can, in the same situation, proceed uninterrupted
until the buffer needs to be swapped - which will happen
considerably less often. In addition, the swap of the
buffer content is done in a very efficient manner.

The conclusion must be that implicit I/O is to be preferred when
you are dealing with small records, and, in particular, when the
I/O statements are interleaved with other code. In other cases,
i.e., when the record sizes are large or .a lot of data is to be
transferred in at least moderately-sized records (several small
pages), explicit I/O is the way to go.

Note that the terms implicit and explicit I/O do not describe the
files themselves, but rathe~ how they are linked to your
program. Hence, the same physical file can appear as explicit

10.0 IMPLICIT AND EXPLICIT I/O
10.4 WHICH IS BETTER - IMPLICIT OR EXPLICIT I/O?

10-6
03/31/81

(with brackets) in program A, and as implicit (without brackets)
in program B even if A and B are executed in the same job
stieam. It is also possible to override the program card
declaration at execution time, simply by making a new declaration
in the GO-statement. For instance,

GO(TAPE3[,,4]=TAPE3)

will make TAPE3 explicit, regardless of the declaration on the
program card. In the same manner, files that are not even
defined in the program may be introduced at execution time.

11-1
93/31/81

--
11.8 TASKS

11.e TASKS

11.1 INTRODUCTION

Due to the fact that the operating system is task-oriented, the
three ·files INPUT, OUTPUT and DAYFILE do not behave quite like
they do on some other systems. Rather than presenting a detailed
description of the task-related features, we will here only
lightly touch on what's relevant for an understanding of how
these files must be handled - or rather not handled. we·will,
thereby, consider the performance of a task equivalent to the
execution of a controllee. It's also worth noting that each
control statement in your job stream names a controllee COPY,
DEFINE, SWITCH, etc., are all controllee's. Hence each of your
control cards requests the system to perform one particular
task.

11.2 THE INPUT FILE

The first step in the execution of a task is that an "overseer"
program called BATCHPRO gets hold of the controllee. BATCHPRO
then checks the job environment for the existence of file INPUT.
If INPUT does not exist (as a local or attached permanent file),
a file with that name is created, and the next record of the job
file is copied into it. The job file, which consists of your job
cards followed by a number of records separated by EOR's (7/8/9
cards), can be read only by BATCHPRO. When he copies a record
into INPUT, he also moves the job file pointer to the next EOR,
which makes the record irretrievable. When the task has
completed, the file INPUT is destroyed if, and only if, it was
opened. Otherwise it is kept alive to (perhaps) be used by the
next task. The user is affected as follows:

1) File INPUT cannot be read past the end of file.

2) Two programs cannot share a file with the name· INPUT.

11-2
03/31/81

-----~--
11.0 TASKS
11.3 THE OUTPUT FILE

11.3 THE OUTPUT FILE

When a task has completed, and control is r~turned to BATCHPRO,
it is determined whether the program generated a file named
OUTPUT. If such was the case, the file is renamed by BATCHPRO,
and tagged to indicate its origin. That has the following
implications:

1) The file OUTPUT generated by a given task (e.g. your
program) is not accessible to any other task. In
particular, OUTPUT cannot be copied or routed.

2) The print limit, i.e., the size of file OUTPUT, is
meaningful only on a task-by-task basis.

11.4 THE DAYFILE

The dayfile messages created by a particular task are given to
BATCHPRO. When the task has completed, those messages are
written into a job-duration file called QSDAYFLE, and the task is
terminated. The dayfile is thus accumulated in one place only,
in contrast to what happens with the different OUTPUT files,
which just get renamed and tagged. However, only BATCHPRO has
access to QSDAYFLE - an attempt by the user to copy the contents
will at best yield nothing and at worst confuse BATCHPRO by
messing up the dayfile.

At the end of the job, the different OUTPUT files are gathered
together and concatenated to one big OUTPUT file. As a last
item, the contents of QSDAYFLE gets copied there, and then
everything is sent away to the front-end, for further shipping to
your printer.

PART III

OPTIMIZATION

SCALAR PROCESSOR

' ' ~ , If r

ASSOCI- .
ATIVE
UNIT -~

' ~
VECTOR
PROCESSOR

_...ii,• DATA OR ADDRESS

----i~~ CONTROL

~

LOAD/
STORE
UNIT

VECTOR
PROCESSOR

',
REGISTER
FILE
(64X 256)

. ~
VECTOR
PROCESSOR

' If

LSI Sellar Proceaor Block Diagram

12-0

SCALAR
ARITHMETIC
UNIT

... -

SINGLE
CYCLE
UNIT

DIVIDE/
SQRT/
CONVERT
UNIT

12-1
03/31/81

~~---~-----~-------------~---------------------~--------------------
12.0 THE SCALAR PROCESSOR

12.0 THE SCALAR PROCESSOR

12.1 INTRODUCTION

The CYBER 203 and the CYBER 205 each have two distinctly
different central processors: one for scalar and one for vector
operations. Even such a fundamental characteristic of a computer
as the internal unit of time, the clock cycle, is independently
defined for the two types of processors: The CYBER 203 has a 20
ns (nanosecond) scalar and a 40 ns vector cycle length, while on
the CYBER 205 both are 20 ns. The scalar processors are, for all
practical purposes, identical on the two machines. Another
distinction concerns the workspaces utilized: the scalar
processors use mainly the register files, while the vector
processors mostly deal with main memory. As a result of these
and other differences, there are two distinctly different aspects
of the topic of performance improvement of your code: scalar
optimization, to which chapters 12-14 are devoted, and
vectorization, which is treated in chapters 15-17.

Before we go on, we must define what scalar processing really
is. Assuming that you are familiar with some "conventional"
scalar computer, that is a comparatively easy task. The CYBER
203 (CYBER 205) scalar processor can namely do anything that you
have become used to expect from a "conventional" computer: issue
instructions, perform integer and floating-point arithmetic,
perform logical operations, branch from one address to another,
plus a few other things. We could actually totally remove the
vector box, i.e. the physical part of the machine that houses
the vector processor, and still have a very good and functional
computer. For the purposes of the discussion in this chapter, we
will define a scalar instruction as an instruction that does not
utilize the vector processor for its execution.

It will prove convenient to perceive the scalar processor as
consisting of a central, organizing part, surrounde9. by several
functional units (arithmetic units, branch units etc.). The
central part deals with the locating, fetching and issuing of
instructions, thereby using and maintaining an instruction stack,
as discussed in section 12.3. The functional units are

12.0 THE SCALAR PROCESSOR
12.1 INTRODUCTION

12-2
03/31/81

responsible for the actual execution of the instructions, and
wi~l be discussed in section 12.4.

The material in this chapter is presented with the objective of
providing you with enough of an understanding of the scalar
processor to enable you to write good scalar code for the CYBER
203 and the CYBER 205. The same concepts can of course also be
applied towards hand optimization (rewriting) of already existing
code. If you feel that the content is too technical in nature,
you may well skip the rest of the chapter, and concentrate on the
actual examples given in chapter 13.

12.2 THE REGISTER FILE

The register file is a set of 256 64-bit working registers,
serving as a work space for the scalar processor when it executes
instructions. The source operands for any scalar instruction
(except LOAD) come from the register file, and that is also where
the result ends up (except for STORE). References to the main
memory are (in scalar mode) made exclusively by LOAD/STORE
instructions: LOAD fetches a value from memory and places it in
the register file, and STORE does the opposite.

By convention, 15 registers are reserved for special purposes,
and 17 serve as temporary registers, i.e., they are not expected
to be preserved across subroutine calls. When a particular
subroutine is entered, an image of all registers of importance to
the caller will be saved in memory. That frees up 224 registers
that can be used by the callee until it's time to return to the
caller. Just before the return, the previously saved image of
the register file will be loaded back into the appropriate slots,
so that the caller will not notice any change of the register
contents. We will return to this topic in the next chapter.

The compiler, in compiling a given subroutine, say SUBA, reserves
some (maybe a few dozen) registers for purposes of holding
addresses and intermediate results. But the largest part of the
register file is used to hold SUBA's local, scalar variables.
Each such variable gets assigned one register, and we can think
of it as if the register was named after the variable. Scalar
means in this context non-subscripted, and local means that it's
neither part of any COMMON block, nor passed to another routine
as a parameter. In the code below, Y, B, N, F, G are scalar, but
only Y and G are local and scalar.

12-3
03/31/81

~~~~----------------------------~-----------------------------------
12.0 THE SCALAR PROCESSOR 
12.2 TH~ REGISTER FILE 

SUBROUTINE SUBA (X,Y) 
DIMENSION X(l00) 
COMMON /BLKl/ A(l0),B,C(5),N 
F = X(N) - X(l) 
G = MYFUNC(F) 
Y = A(3)**2 + G*B 
RETURN 
END 

For a subroutine that contains more local, scalar variables than 
there is room for in the register file, the above scheme will 
clearly not work. In that case some variables will be assigned 
memory locations rather than register file slots. Local, scalar 
variables appearing in EQUIVALENCE statements or 
function/subroutine references, or that belong to COMMON blocks, 
are also forced to memory. Exceptions are the arguments to most 
SYSLIB (system library) functions. · 

One of the options on the FORTRAN control card is M. If chosen, 
the compiler will produce a register file map, which will tell 
you which variables in any one subroutine that were assigned a 
register, and which were not. That may sometimes be helpful when 
you are trying to find out which subroutines make efficient use 
of the register file and which would perform better if split up 
into more than one chunk. 

The importance of having scalar variables permanently assigned a 
slot in the register file is a consequence of the fact that a 
LOAD takes a comparatively long time, namely 15 cycles, to 
complete. If the variables A and B, but not C, have a slot 
assigned there, then A=C+l.0 takes 15 cycles longer to execute 
than A=B+l.0, since C has to be loaded from memory before the 
addition can take place. Fortunately the LOAD instruction takes 
only 1 cycle to issue, and while waiting for the result to arrive 
to the register file, other useful work can in general be 
performed but maybe not enough to completely bury the load 
time. Some more illuminating examples will be given when we have 
discussed the functional units. It should be stressed though, 
that to have frequently used scalar variables, such as loop 
indices, in memory, may well make your code run noticeably slower 
than it would if they had a slot in the register file. 



12-4 
03/31/81 

~---~~---------------------------------------------------------------
12.0 THE SCALAR PROCESSOR 
12.3 THE INSTRUCTION STACK 

12.3 THE INSTRUCTION STACK 

The set of instructions constituting the machine code 
representation of your program is stored prior to execution in 
the code section of the controllee file. The "central part" of 
the scalar processor is responsible for deciphering and issuing 
those instructions, while the actual execution is handled by an 
appropriate functional unit (c.f. section 12.4). We have 
previously learned that nothing can really be read while 
remaining on disk, so the first step towards processing must 
clearly be to move a page of code into memory. That is however 
not sufficient to make the code interpretable. Just like the 
functional units operate on the register file, the "central part" 
operates on an instruction stack, i.e. it can only read and 
decipher instructions residing there. 

The size of the instruction stack· is 8 swords, where "sword" is a 
contraction of "super word", a term used to describe 8 
consecutive words in memory. All swords start on sword 
boundaries, i.e. the address of a sword is always a multiple of 
8*64 = 512 = #200 (bits). Instructions are not loaded from 
memory one by one, but rather in units of 1 sword. In addition, 
there is a look-ahead feature that tries to maintain the content 
of the instruction stack two full swords ahead. To be more 
precise: whenever the first instruction in sword K is read, a 
load request for sword K+2 is issued, provided that sword is not 
already in the stack. 

Thanks to the look-ahead mechanism, the processing of sequential 
code always proceeds smoothly, with no extra delays for the 
loading of new instruction swords. If, however, a branch 
instruction is encountered, which points to a part of the code 
that is not currently in stack, then the appropriate sword must 
be loaded and a delay of 15-18 cycles is incurred. Given the 
information that an "in-stack" branch takes 8-9 cycles1 we see 
that an "out-of-stack" branch takes ~bout 3 times as long. Note 
that "in-stack" branches can go both forwards and backwards. 
It's also helpful to perceive the stack as being cyclic: when 
sword K is loaded, it will in general overwrite sword K-8. 

A do-loop represents a piece of (approximately) sequential code, 
which is traversed from top to bottom, and then reentered at the 
top by means of a backward branch. If the branch instruction is 
part of sword K, then swords K+l and K+2 are already loaded when 
the jump is about to take place. Hence the lowest numbered sword 



12-5 
e3/31/81 

~---~~-----~-------------~------------------------------------------
12.0 THE SCALAR PROCESSOR 
12.3 THE INSTRUCTION STACK 

present in the stack is sword K-5, and, if the branch should be 
an "in-stack" branch, the total span of the do-loop must not 
exceed 6 swords. Scalar instructions, excluding branches, each 
require one halfword of storage. Branch instructions and most 
vector instructions need a full word. Hence a sword contains 
8-16 machine instructions. The largest loop that is guaranteed 
to fit in stack is five full swords plus a halfword long, which 
amounts to 81 half words or 40-80 instructions. (82 half words 
will not fit when the first instruction is in the end of a 
sword). 

For a programmer who is concerned with even minute performance 
improvements, the question of whether a given do-loop, or for 
that matter a small subroutine, will fit in stack or not, may 
sometimes be of interest. On a machine with a small instruction 
stack that is indeed a relevant concern. However, with a stack 
size of 50 instructions or more, the potential gain from such 
considerations is in general negligible, and that pariicular 
issue does not deserve much attention. Moreover, as we will find 
later, longer loops are in general more efficient than short ones 
- for other reasons. 

12.4 THE FUNCTIONAL UNITS 

The issuing of an instruction, which includes reading it, 
deciphering it and feeding it to an appropriate functional unit, 
takes exactly 1 cycle in almost all cases. The only important 
exception is STORE, which issues in 2 cycles. When a given 
instruction has been issued, the central part of the scalar 
processor is free to start the process of issuing a new one, and 
we can thus ideally obtain an issue rate of 1 instruction per 
cycle. If that was the whole story, and also if each instruction 
produced one result, then we could classify the CYBER 203 and the 
CYBER 2es as 5e mflops (megaflops) machines in scalar mode. The 
unit mflops stands for "millions of floating-point operations per 
second" and has become the standard speed unit for super 
computers. 

In reality the average number of cycles between the issue of two 
consecutive scalar instructions is somewhat higher than 1 - maybe 
2-5 for well written codes, and even higher otherwise. Many 
factors are responsible for that slowdown, and a couvle of the 
important ones will be mentioned in this section. The discussion 
will neither be complete nor very detailed, since the objective 
is to enhance your FORTRAN programming skills rather than to make 



12-6 
03/31/81 

~~~~~~-~~~~~~~-~-----~-----------N----------------------------------
12.0 THE SCALAR PROCESSOR
12.4 THE FUNCTIONAL UNITS

you an expert in high performance assembly language coding.

Branch instructions, which are processed by the branch unit, make
decisions about where to jump, i.e. which instruction to execute
next. Clearly it doesn't pay to even look at the next
instruction until such a decision, if pending, is made - and that
takes 8 cycles. Should the branch also be an "out of stack"
branch, then an additional delay of 15-18 cycles will be
incurred, as previously discussed. In this model an actual
"in-stack" branch requires 1 cycle, while a "fall-through" (no
branch) takes no time at all. So we can summarize by saying that
a branch instruction takes 8-26 cycles to issue, and 0-1 cycle to
execute.

The L/S (load/store) unit handles memory references, i.e. LOAD
and STORE instructions, as discussed in section 12.2. A LOAD
issues in 1 cycle, but the loaded value is not available in the
register file until 14 cycles later. A STORE, which moves the
content of a register to memory, takes 2 cycles to issue, and an
additional 8 cycles to complete. For a FORTRAN programmer, the
relatively long load time is the most important thing to
consider, and some examples to illuminate that fact will be
presented in the next chapter.

The (scalar) computational work is per~ormed by the four
arithmetic units:

Type of Unit

Integer
Floating point
Divide
Logical

Type of Operations

Integer +,-
Floating point +,-,*
Floating point divide, square root
Logical operations

Length

1
5

54
3

If a given arithmetic instruction X is issued at cycle time t,
then a subsequent instruction Y, needing the result of X, can
issue at cycle time t+L, where L is the length of the appropriate
unit as given above. If Y does not need the result of X, then Y
can issue at cycle time t+l, since all arithmetic instructions
have a 1 cycle issue time. A special situation occurs when the
divide unit is involved, since that unit is busy for 50 cycles
after a pair of input operands are accepted. Thus a divide or
square root instruction issued at. time t, will prohibit-Any other
instruction directed to the divide u'nit from being issued until
time t+50.

12.0 THE SCALAR PROCESSOR
12.4 THE FUNCTIONAL UNITS

The things to remember from this section are:

12-7
03/31/81

1) An instruction requiring an input operand from memory
rather than from the register file must be preceded by a
LOAD, causing a delay of up to 15 cycles.

2) An instruction that needs the result from a previous
instruction cannot issue until that result is available.
That will in general cause a delay of eJ-4 cycles, but if
the awaited result is computed in the divide unit, up to
53 cycles is possible.

3) Instructions using the divide unit must be separated with
a minimum of 50 cycles. If necessary, the issues will be
delayed to satisfy this.

4) Branch instructions consume a disproportionate amount of
(issue) time: 8-27 cycles.

5) Items 1-4 above constitute the major (but not all)
exceptions to the rule that the scalar instructions can
issue (and produce results) at a rate of 1 per cycle (50
mflops).

13-1
03/31/81

~~~-----~----------~-------------------------------------~-------~--
13.0 SCALAR OPTIMIZATION 

13.0 SCALAR OPTIMIZATION 

13.1 INTRODUCTION 

Assuming that your code, which previously was used in production 
runs on some other machine, now is in satisfactory shape for the 
CYBER 2e3 and the CYBER 205, the time has come to consider 
performance improvements. Several approaches are available to 
you, but the ones that can be described as "automatic" will 
probably attract you the most. It's important to realize ~hough, 
that no optimizer in the world can convert a section of poorly 
written code to a masterpiece. ·The quality of the programmer is 
just as important as that of the optimizer. You are, therefore, 
urged to take an active interest in optimization - only when man 
is cooperating with machine can the optimum performance be 
achieved. 

The ideas expressed in this chapter will to some extent be based 
on materials developed in the previous cha~ter. However, if you 
are not interested in the underlying technical concepts, you may 
still proceed from here, in spite of the fact that you skipped 
the last chapter. Chances are that you will benefit from the 
material below anyway. 

13~2 AUTOMATIC OPTIMIZATION 

At compile time, the user has the option of selecting one of 
several types of automatic optimization. The last parameter on 
the FORTRAN card is "O= ••• ", and using that is how you specify 
your choice(s). The letters o, E, z, Rand I are relevant to 
scalar optimization, while U and V concern vectorization. The 
latter two will be discussed in a subsequent chapter. 

Three distinctive typPs of (scalar) optimization exist: z, R and 
I. To obtain them all (plus a little extra) the option O should 
be chosen (O=BO), while the letter E effectively selects R+I. 
Although the automatic optimization efforts are going to be 



13-2 
03/31/81 

--------------------------------------------------------------------
13.0 SCALAR OPTIMIZATION 
13.2 AUTOMATIC OPTIMIZATION 
--------------------------------------------------------··-----------

expended by the compiler, it might be interesting to know 
something about what the letters really mean. It's also easier 
to help the compiler (by writing better code) if you know a 
little about its methods. 

The R-option requests "redundant code removal" which essentially 
amounts to recognizing and removing the computation of already 
computed quantities. An example would the expression X=B/(C+D) 
followed by Y=R/(C+D), where the sum only needs to be computed 
once. 

The z-option moves loop independent code out of do-loops. It 
. also speeds up subscript calculations in loops, by treating 
multi-dimensional arrays as one-dimensional entities. ~ few 
other types of loop optimizations are also part of z. 

The I-option is mainly performirig instruction scheduling. Some 
examples would be: separate divide instructions as much as 
possible: move loads to as early a point in the code as possible, 
so th~t the loaded values are more likely to be available when 
needed: move stores down and away from the instruction producing 
the result to be stored: separate (in an appropriate way) 
instructions where a later instruction needs the result of a 
previous one. 

The first natural step after you have completed a successful test 
run using O=B, or no option at all, would thus be to recompile 
with O=BO and make a new run. If everything works smoothly, 
i.e. if no compilation problem occurs and if the new test 
results coincide with the ones initially produced, then you are 
obviously home free. And chances are that your SBU-number (cost) 
decreased quite a bit. However, life is sometimes tough, and 
maybe you are in bad luck. If such is the case, you may want to 
take one or several of the following actions. 

If the compiler fails in a particular subroutine, then your CDC 
analyst (or salesperson) is the right person to contact and dump 
the problem on. He or she will most likely submit a PSR (problem 
report) and you can take a vacation knowing that your problem is 
in good hands. Should you, however, be more interested in 
obtaining useful results than in perfecting the compiler, then 
you might want to turn to other life-sustaining activities. One 
such would be to split off the troublesome subroutine from the 
rest, and compile it separately and unoptimized. It could then 
be merged back in binary form at load time (a list of up to 10 



13-3 
03/31/81 

--------------------------------------------------------------------
13.0 SCALAR OPTIMIZATION 
13.2 AUTOMATIC OPTIMIZATION 

binary files can be specified on the LOAD card) or prior to that, 
using OLE. Another remedy might be to compile all routines with 
E instead of O, or, if that doesn't work either, with some other 
combination of z, R and I. Two examples of the split/merge 
method follows below. If a lot of computation will be done in 
subroutine X, then it may of course be worthwhile to try to 
compile X with E, z, R or I instead of just plain nothing. 

FORTRAN,B=Bl,O=BO. 
FORTRAN , B=B 2 • 
LOAD,Bl,B2, •••• 
• 

. 
7/8/9 

All routines except 
7/8/9 

Subroutine x only 
6/7/8/9 

x 

FORTRAN,B=Bl,O=BO. 
FORTRAN, B=B 2 • 
OLE,I=Bl,B2,M=Bl2. 
LOAD,Bl2, ••• 

. 
7/8/9 

All routines exc~pt 
7/8/9 

Subroutine x only 
6/7/8/9 

x 

Note that optimizers - on the CYBER 203 and the CYBER 205 as well 
as on other machines - are very sophisticated creations, and as 
such may sometimes go a little bit too far in their effort to 
produce optimal code. It's therefore important to compare the 
results generated by the unoptimized and the optimized code. If 
there is any discrepancy, then you must either abandon the 
particular optimization option chosen, or try to isolate the 
subroutine(s) in error. 

13.3 GENERAL TECHNIQUES 

a) Variable initialization is more effectively taken care of by 
data statements, which are satisfied once (by the loader), 
than by assignment statements, which are executed every time 
a particular subroutine is entered. This represents a small 
effect, not specific to the CYBER 203 or the CYBER 205. 

b) Avoid double-precision calculations - they are about 10 times 
as expensive as single precision. Moreover, they are in 
general not justified, since the CYBER 203 and the CYBER 205, 
with their 48-bit coefflcient fields, ca~· represent 
floating-point numbers with about 14 significant decimal 

~ digits in single precision mode - more than enough for most 
v practical purposes. The same considerations are valid on 



13-4 
03/31/81 

13.0 SCALAR OPTIMIZATION 
13.3 GENERAL TECHNIQUES 

60-bit CYBER-machines (like CYBER 
shall see later though, the CYBER 

· operations, namely vector sum and 
performed in double precision 
speed! 

74, 175, 176 etc.). As we 
203 hardware allows certain 
vector dot product, to be 
mode - at single precision 

c) ·Avoid EQUIVALENCE statements, since their existence has a 
detrimental effect on the compiler's ability to do a good 
optimization job. That's in general true for other machines 
as well. On the CYBER 203 and the CYBER 205, however, there 
is the additional aspect of the register file: equivalenced 
scalar variables are forced to memory, i.e. the load/store 
overhead will increase significantly. The equivalencing of 
arrays with each other is not as serious as when scalar 
variables are involved, and even then we are in general 
talking about a small to moderate effect. 

d) Scalar variables should preferably not be kept in GOMMON 
blocks, since that would increase load/store overhead. 

e) IF-statements are comparatively time consuming, and their use 
should be kept as low as possible. An intrinsic function, 
such as AMAXl, AMINl and SIGN, can often be used in place of 
one or several IF-tests, and thereby bring the execution time 
down. That's often true on other machines as well. 

f) A computed GOTO statement does not become favorable to use on 
the CYBER 203 or the CYBER 205 until the number of possible 
places to branch to exceeds 4. For 4 choices or less, a 
string of IF-tests is cheaper in particular since the 
individual tests can often be ordered in such a way, that the 
branch is more often taken early than late. 

g) Factorize arithmetic expressions. Consider, as an example, 
the evaluation of the polynomial Y=A+B*X+C*X**2+D*X**3, which 

h) 

requires 3 additions, 3 multiplications and 2 
exponentiations. By rewriting the statement as 
Y=A+X*(B+X*(C+D*X)) we can bring that down to 3 additions and 
3 multiplications - and that means money on any computer. 
(Many compilers, including CYBER 200 FORTRAN, will evaluate 
X**2 and X**3 as X*X and X*X*X respectively.) 

Group subexpressions together for easier compiler 
recognition. As an example, 

Change from: x = Y*Z/A 
T = Y*V/A 

to: x = Z*(Y/A) 
T = V*(Y/A) 



13-5 
03/31/81 

~-------~-------~----------------------------------------------~-~--
13.0 SCALAR OPTIMIZATION 
13.3 GENERAL TECHNIQUES 
-----------------------------------------------------·~----------~---

If the subexpressions appear sufficiently close to each 
other, then an action like the one above will be sufficient 
to make the compiler aware of the fact that Y/A only needs to 
be computed once. In other cases, however, it is 
recommendable to invent new scalar variables to hold the 
values of such subexpressions. As a rule of thumb, 
statements not separated by IF-statements or subroutine 
calls, or by statements carrying a label, could be considered 
being "close enough", but the concept is by necessity 
somewhat vague. When in doubt, invent new variables. 

i) The compiler preprocesses expressions containing constants. 
A ·helping hand from the programmer can therefore save time 
during the execution. If the statement in question will be 
executed often, that type of saving may be significant. As 
an example, 

Change from: 

to: 

Y = 180.0 * ACOS(V)/3.14 

Y = (180.0/3.14) * ACOS(V) 

The first form requires two multiplications at execution time 
(the compiler creates the reciprocal of 3.14), while the 
second only requires one. 

j) Minimize the number of divides. If the same denominator is 
used in several divide expressions, it's much faster to first 
compute the reciprocal, and then do multiplies instead. That 
will cause a marginal decrease in accuracy, due to the fact 
that the number of arithmetic operations per division will 
increase from one to two. However, other sources of errors 
will almost always dominate, and the method of reciprocals is 
indeed as computationally sound. Code on almost all machines 
will benefit from this type of change. 

k) Separate divides/square roots, so that no unnecessary delay 
occurs - remember that two instructions utilizing the divide 
unit must be issued no less than 50 cycles apart. The 
compiler will spread out such instructions as much as 
possible, but cannot cross barriers such as statement labels, 
IF-statements and subroutine calls - they have to be crossed 
by the programmer! An example would be to move one of two 
consecutive divides, possibly by computing the reciprocal, so 
that it is issued before a do-loop rather than after it. 
That would allow the first divide to complete while the 
do-loop executed, whereafter the Fecond could-· be issued 
immediately. Similarly, if the divide or square root part of 
an expression could be moved up before a do-loop or some 
other time-consuming section of code, then the 54 cycles 



13.0 SCALAR OPTIMIZATION 
13.3 GENERAL TECHNIQUES 

13-6 
03/31/81 

needed to produce a result would effectively reduce to 1. 

1) ~ Consolidate divides and square roots wherever possible. Such 
changes can sometimes speed up a code section by an order of 
magnitude! Examples: 

· Change from: A = B/C/D/E 
X = SQRT(F) * SQRT(G) 

to: A = B/(C*D*E) 
X = SQRT(F*G) 

13.4 REGISTER FILE UTILIZATION 

To save on load/store overhead, intermediate results should be 
kept in the register file rathe~ than in memory. The following 
loop is an example of poorly written code in that respect: 

Example al: DO leJ J=l,N 
X(J) = A(J)**2 
Y(J) = 1. + X(J) 

10 X{J) = T*X(J)+Y(J) 

One of the "flaws" is the redundant store of X(J) in the first 
line. The introduction of a temporary scalar variable will take 
care of that: 

ExamEle a2: DO 10 J=l,N 
TEMPl = A(J)**2 
Y(J) = l.+TEMPl 

10 X(J) - T*TEMPl + Y(J) 

We also notice that the loading of Y(J) in the last line is 
unnecessary, and could be made to disappear: 

ExamEle a3: DO 10 J=l,N 
TEMPl = A(J)**2 
TEMP2 = l.+TEMPl 
Y{J) = TEMP2 

10 X(J) = T*TEMPl + TEMP2 

The steps above illustrate the use of the register file. In 
addition, they serve as examples of the efficiency of the current 
FORTRAN compiler (1.4): all three loops will be assembled to 



13.0 SCALAR OPTIMIZATION 
13.4 REGISTER FILE UTILIZATION 

13-7 
03/31/81 

logically identical codes, provided the a-option is selected. 
That means that they all will execute at the same speed, and that 
nothing was gained by the hand optimization. Sometimes, though, 
a loop may contain logical ambiguities that the compiler cannot 
resolve. In such cases a small amount of effort expended by the 
programmer may pay off very nicely. As ari example, consider the 
two logically identical (?) code-sections below: 

ExamEle bl: DO 30 J=l,M 
DO 20 K=2,N 
A(J,1,1) = A(J,1,1) + A(J,K,l) 

20 A(J,1,2) = A(J,1,2) + A(J,K,2) 
30 CONTINUE 

ExamEle b2: DO 30 J=l,M 
Al = A(J,1,1) 
A2 = A(J,1,2) 
DO 20 K=2iN 
Al = Al + A(J,K,l) 

20 A2 = A2 + A(J,K,2) 
A(J,1,1) = Al 
A(J,1,2) = A2 

30 CONTINUE 

When O=BO is selected, the FORTRAN 1.4 compiler generates code 
with the following timings: 

t(bl) = (25+50N)M cycles 
t(b2) = (30+17N)M cycles 

The programmer introduced utilization of the register file thus 
cut the execution time by a factor of 3 for large values of Nl 
That could not have been done automatically by the compiler since 
the code (bl) is actually ambiguous. Suppose, namely, that A is 
dimensioned A(l00,10,3) and that N=ll. Then the last pass 
through the inner loop in (b4) will correspond to executing the 
following two statements: 

A(J,1,1) = A(J,1,1) + A(J,11,1) 
A(J,1,2) = A(J,1,2) + A(J,11,2) 

By applying the formula given in the FORTRAN manual., page 2-3, 
you can now convince yourself that A(J,11,1) and A(J,1,2) 
actually correspond to the same memory location; they are both 
the (J+l000)th element of array A. The step above will thus add 
to A(J,1,1) the value of the accumulated sum A(J,1,2). However, 



13.0 SCALAR OPTIMIZATION 
13.4 REGISTER FILE UTILIZATION 

13-8 
03/31/81 

the corresponding step in (b2) will add the old, unmodified value 
of ~(J,1,2), since the accumulated sum there is kept in A2 rather 
than in A(J,1,2). Thus, in this special case (bl) and (b2) give 
different results. You may very well be a nice person that never 
would even dream of exceeding the limits specified in the 
dimension statement, but the compiler doesn't know that, and 
consequently refuses to translate (bl) into (b2). 

13.S RECURSIVE DO-LOOPS 

If the Jth pass through a do-loop uses results calculated in pass 
. J-1 (or earlier), then the loop is said to be recursive. Such 

loops can often be speeded up significantly by keeping duplicates 
of some values in the register file. A typical example is the 
computation of the factorial of a number: F(J) = (J-1) ! •. The 
naive approach would be to write .the following loop [NMl = N-1]: 

Example cl: F(l) = 1. 
F(2) = 1. 
DO 10 J=2,NM1 

10 F(J+l) = J*F(J) 

A moment's thought reveals that the F(J) that is stored during 
pass J must be loaded again during pass J+l. So why not keep the 
value in the register file, and avoid the load? 

Example c2: F(l) = 1. 
F(2) = 1. 
FACT = 1. 
DO 10 J=2,NM1 
FACT = FACT*J 

10 F(J+l) = FACT 

The high performance programmer may want to go one step further, 
and do a little manual instruction scheduling: 

Example c3: F(l) = 1. 
F(2) = 1. 
FACT = 2. 
XVAL = 3. 
DO 10 J=3,N 
F(J) = FACT 
FACT = FACT * XVAL 

10 XVAL = XVAL + 1. 



13.0 SCALAR OPTIMIZATION 
13.S RECURSIVE DO-LOOPS 

13-9 
03/31/81 

The difference between (c2) and (c3) appears to be that a given 
pass through the loop in (c2) requires the execution of three 
recursive instructions (FLOAT, MULTIPLY, STORE), while in (c3) 
there is no recursion within a pass. To execute a sequence of 
recursive instructions is in general slower, since the issue of 
instruction K has to be delayed until the result of instruction 
l-1 is available, and we would therefore expect (c3) to be 
significantly faster. However, with a good compiler, that's not 
necessarily true, as the following timings show [FORTRAN 1.4, 
O=BO selected]: 

t(cl) = 18 + 29N cycles 
t(c2) = 18 + 15N cycles 
t(c3) = 9 + 14N cycles 

A factor of 2 was thus gained by going from (cl) to (c2), while 
the change to (c3) had almost no effect. That does not i~ any 
way invalidate the ideas expressed above, but rather tells us 
that the compiler also can think ~ and that's reassuring. Had 
the original loop been a little more complicated, it might well 
have proven to be too difficult for the compiler to find the 
optimum way of assembling the code. In that case the 
optimization steps corresonding to cl-c2 and c2-c3 would both 
have been very profitable. 

As an additional example of recursive loops, let's consider the 
calculation of the elements in a Fibonacci series, which are 
defined by: 

F(l) = F(2) = 1. 
F(J) = F(J-1) + F(J-2) (J.GE.3) 

The straightforward way of coding that would be the following: 

Example dl: F(l) = 1. 
F(2) = 1. 
DO 11 J=3,N 

11 F(J) • F(J-1) + F(J-2) 

-· 



13.0 SCALAR OPTIMIZATION 
13.5 RECURSIVE DO-LOOPS 

13-10 
03/31/81 

But by saving the values of the two lastly computed elements in 
the register file, we can create a much more efficient version: 

ExamEle d2: F(l) = 1. 
F(2) = 1. 
FJM2 = 1. 
FJMl = 1. 
DO 10 J=3,N 
FJ = FJMl + FJM2 
FJM2 = FJMl 
FJMl = FJ 

10 F(J) = FJ 

The timings are as follows [FORTRAN 1.4, O=BO]: 

t(dl) = 18 + 30N cycles 
t(d2) = 16 +·~6N cycles 

Also in this case the payoff was thus a reduction in execution 
time by a factor of 2. No additional speedup can be achieved 
without unrolling the loop (section 13.7). 

13.6 THE MERGING OF SHORT DO-LOOPS 

A load-bound loop is a loop that is dominated by -the 15 cycles 
needed to complete a load instruction, and which would not run 
significantly faster even if all other instructions executed in 
zero time. Similarly, a branch-bound loop is dominated by the 9 
cycles needed to do a "test and branch" in the end of each pass. 

Busy loops, i.e. loops in which a lot of work is performed 
during each pass, are never branch-bound. In general, they are 
not load-bound either, since load instructions often can be 
issued early, permitting useful work to be done while waiting for 
the loaded values to arrive to the register file. Even 
disregarding the loads, the automatic instruction scheduling 
becomes more efficient when the loop is busy1 the more 
instructions the scheduler can shuffle around, the better the 
results that can be achieved. 

In contrast, very short do-loops are almost always either 
branch-bound or load-bound. A way to capitalize on that fact is 
to merge small loops into bigger ones - an action that most of 



13.e SCALAR OPTIMIZATION 
13.6 THE MERGING OF SHORT DO-LOOPS 

13-11 
e3/31/Bl 

the time will boost scalar performance significantly. It's worth 
~oting though, that if the small loops are automatically 
vectorizable, and if you plan to select the V-option at compile 
time, then the merging into bigger loops won't buy you anything -
but it won't harm you either. [Refer to subsequent chapters for 
vectorization techniques]. Examples: 

Change from el: 

to e2: 

DO le J=l,N 
le X(J) = A(J)**2 + B(J)**2 

DO 2e J=l,N 
2e Y(J) = R(J) + S(J) 

DO le J=l,N 
X(J) = A(J)**2 + B(J)**2 

le Y(J) = R(J) + S(J) 

With O=BO selected, the FORTRAN 1.4 compiler generates code that 
executes as follows: 

t(el) = 31 + 37N cycles 
t(e2) = 16 + 25N cycles 

When N is large, this particular merging thus results in a 32% 
performance improvement. Such a gain is typical for similar 
actions. 

13.7 THE UNROLLING OF DO-LOOPS 

When merging is not feasible, you may want to consider the 
unrolling of a short loop to 2 or more levels. That will also 
reduce loop overhead and give the instruction scheduler more 
material to work with: performance improvements similar to those 
obtained from merging can therefore be expected. There is, 
however, one significant difference: by unrolling an 
automatically vectorizable loop, the vector property is always 
destroyed. As pointed out in the previous section, the merging 
of loops does not have that effect. In addition, it's usually a 
little messier to unroll a loop, because end cases will appear 
that must be taken care of. The examples below illustrate the 
unrolling of a loop to 2 and 3 levels respectively. 



13.0 SCALAR OPTIMIZATION 
13.7 THE U~ROLLING OF DO-LOOPS 

. Example fl: 

Example f2: 

Example f3: 

DO 10 J=l,N 
10 A(J) = X*B(J) + C(J) 

IF (N.EQ.l) GO TO 11 
NMl = N-1 
DO 10 J = l,NMl,2 
JJ = J 
A(J) = X*B(J) + C(J) 

10 A(J+l) = X*B(J+l) + C(J+l) 
IF (JJ.EQ.NMl) GO TO 12 

11 A(N) = X*B(N) + C(N) 
12 CONTINUE 

IF (N.GT.2} GO TO 9 
IF (N.EQ.l} GO TO 12 
GOTO 11 

9 NM2 = N-2 
NM3 = N-3 
DO 10 J = l,NM2,3 
JJ = J 
A(J) = X*B(J) + C(J) 
A(J+l) = X*B(J+l) + C(J+l) 

10 A(J+2) = X*B(J+2} + C(J+2} 
IF (JJ.EQ.NM2) GOTO 13 
IF (JJ.EQ.NM3) GOTO 12 

11 A(N-1) = X*B(N-1) + C(N-1) 
12 A(N) = X*B(N) + C(N) 
13 CONTINUE 

The timings are as follows lFORTRAN 1.4, O=BO selected]: 

t(fl) = 14 + 19.00N cycles 
t(f2) = 52 + 12.50N cycles 
t(f3) = 76 + ll.33N cycles 

13-12 
03/31/81 

Obviously the greatest gain (34%) was obtained by unrolling to 2 
levels, and, in light of the increased complexity, it does not 
seem justified to go beyond that. Typically you may expect 
30-40% performance improvement when unrolling to 2 levels, and 
40-50% when unrolling to 3. Note that longer loops would not 
benefit as much from unrolling. 



13-13 
03/31/81 

~--~-~----~----~---------~-------~-----------------~------~---------
13.0 SCALAR OPTIMIZATION 
13.8 THE SPLITTING OF DO-LOOPS 

13.8 THE SPLITTING OF DO-LOOPS 

A do-loop containing one or several loop-independent IF-tests 
will, in general, execute quite a bit faster if split into 
smaller loops, as in the following example: 

Change from gl: 

to g2: 

DO 10 J=l,N 
A(J) = X(J)**2 + Y(J)**2 
IF (IFLAG.EQ.e) A(J) = A(J) + DELTA 

10 CONTINUE 

DO 10 J=l,N 
10 A(J) = X(J)**2 + Y(J)**2 

IF (IFLAG.NE.e) GOTO 12 
DO 11 J=l,N 

11 A(J) = A(J) + DELTA 
12 CONTINUE 

Clearly (g2) must be faster when IFLAG=O, since then much less 
code is executed in (g2) than in (gl). But even when IFLAG=O the 
splitting is advantageous. Noting that there are 2N branch 
instructions to be executed in (gl), and 2N+l in (g2), that may 
at first sound a little bit surprising. As it turns out, though, 
a more important difference than the number of branch 
instructions is the fact that the loop in (gl) contains an 
IF-statement, while those in (g2) don't. The two loops in (g2) 
can therefore be better optimized by the compiler an 
IF-statement in the middle seriously affects the efficiency of 
the instruction scheduling. In particular, the loops in (g2) 
will both be assembled with "top store - bottom load", while the 
one in (gl) will not. The timings are as follows [FORTRAN 1.4, 
O=BO selected]: 

t(gl) = 10 + 59N.cycles 
t(g2) = 38 + 46N cycles 

t(gl) = 10 + 50N cycles 
t(g2) = 26 + 17N cycles 

(IFLAG.EQ.0) 
(IFLAG.EQ.0) 

(IFLAG.NE.0) 
(IFLAG.NE.0) 

Thus, for large values of N, the splitting gains us 66% if 
IFLAG=0, and 22% otherwise. It's also worth noting that the 
loops in (g2) will vectorize automatically, if the v-option is 
selected at compile time, while the one in (gl) won't-: That will 
be further clarified in the chapters about vector processing. 





14.0 HOW TO SPEED UP SUBPROGRAM CALLS 

14.0 HOW TO SPEED UP SUBPROGRAM CALLS 

14.1 INTRODUCTION 

14-1 
03/31/81 

A program usually consists of several independent program units: 
one main program and several subprograms (subroutines and/or 
functions). The interfaces between these units are handled by 
FORTRAN executable CALL statements, function references and 
RETURN statements, and essentially consists of the transfer of 
control (jumps or branches) in conjunction with the exchange of 
information (parameter passing). The usage of subprograms gives 
the programmer several advantages: fewer lines of code are 
needed, which in turn saves on punch-cards and eliminates some 
potential for typing errors; legibility is increased (the logic 
is easier to follow)1 debugging is facilitated1 the code is 
easier to maintain1 etc.. There is one drawback, though: a 
section of code, when split off and transformed to a subprogram, 
will execute slower than it did before. That is due to the fact 
that a certain amount of overhead is incurred every time that 
newly created routine is called. For routines that perform a lot 
of work, the time spent doing "useful" work will dominate, and 
the question of overhead. can be ignored. However, repeated calls 
to a subprogram that performs a trivial task may well cause the 
overhead associated with those calls to show up as a significant 
part of your total job-cost. 

The two dominating contributions to the overhead are register 
file swapping and parameter transfer. The swap-concept will be 
explained in the next section, and there we will also show how 
swaps might be avoided under certain conditions. In the section 
after that we will explain how the transfer of parameters works, 
and that will hopefully provide you with an understanding for why 
short parameter lists sometimes can be a lot cheaper than long 
ones. The remaining sections of this chapter contain examples of 
different ways to improve performance by reducing the number of 
subprogram calls. 



14-2 
03/31/81 

----------N-~--~--N-------~~---~-~·----~--~------~----N------~~-----

14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14.2 REGISTER FILE SWAPPING 

14.2 REGISTER FILE SWAPPING 

When compiling a particular subroutine, say SUBl, the compiler 
generates code which, assuming that neither option O or z is 
specified, has the 'following structure [minor bookkeeping tasks 
are omitted]: 

1) Prologue: Swap out (save) caller's registers. 
Swap in SUBl's scalar, local variables. 
Load dummy parameters. 

2) Compiled FORTRAN statements. 

3) Epilogue: Store dummy parameters. 
Swap out SUBl's scalar, local variables. 
Swap in (restore) callers registers. 
Return to caller. 

At execution time, when SUBl gets control, the execution of the 
callintj routine has just been interrupted, and a branch to SUBl 
has taken place (a CALL-statement has been executed). At that 
time, the contents of the register file is associated with the 
caller~ in particular, the values of the caller's local, scalar 
variables are stored in registers. SUBl's first task must 
therefore be to save an image of the callet-utilized part of the 
register file somewhere in memory. A machine instruction called 
SWAP is designed for just that purpose, and the procedure of 
saving registers is therefore often referred to as "swapping 
out". 

Chances are that there are a lot of scalar, local variables that 
got values assigned to them during the previous pass through 
SUBl, or, if this is the first time SUBl is called, still have 
the values specified in the DATA-statements. These'variables are 
kept stored in memory (in SUBl's data base) when SUBl is not 
executing. At this time, though, when SUBl has been entered and 
the caller's registers have all been saved, they can be brought 
up and stored into preassigned register locations. Thus, during 
the second phase of the prologue SUBl's scalar, local variables 
are swapped in from memory to the freed-up register file. From 
then on, until it's time to consider returning to the caller, 
SUBl can utilize the register file for its own purposes~ namely 
as a work space for the tasks it was designed to perform 
(arithmetic calculations, etc.). 



14.e HOW TO SPEED UP SUBPROGRAM CALLS 
14.2 REGISTER FILE SWAPPING 

-

14-3 
83/31/81 

Fortunately, the SWAP is "two-sided", i.e., it can both swap in 
and out at the same time. Only one machine instruction is thus 
needed to accomplish the saving of the caller's registers and the 
filling of the register file with the scalar part of SUBl's data 
base. That's the good news. The bad news is that it takes a 
comparatively long time to do a swap: N registers are swapped in 
about 148+N cycles (20 ns), which evaluates to 5-7 microseconds. 
Since, as part of the epilogue, one more two-sided SWAP has to be 
performed in order to restore the register file and save SUBl's 
variables, we are talking about 10-15 microseconds of overhead 
just from the SWAPs. 

As indicated in section 12.2, there are 17 temporary registers 
which always are available, i.e., the caller cannot expect them 
to be preserved over a subprogram call. A routine designed. to do 
only a small amount of work (just a few lines of FORTRAN) can 
often perform its task efficiently without utilizing the 
remaining registers, and would thus not benefit very much from 
swaps. Moreover, since very little work (besides overhead) would 
be performed by such a routine, its execution time would be 
totally dominated by the swaps - if present. In contrast, the 
lack of register space would cause most moderately-sized 
subroutines to perform very poorly, should the swaps be omitted. 
But for those routines, there is really no good reason to try to 
get. by without swaps in the first place, since the swap-time is 
trivial compared to the time spent doing other useful work. 

Swap-routines are the standard output from the FORTRAN compiler. 
Under certain circumstances, however, zero-swap-routines are 
generated usually leading to significant savings when they 
later are executed. Such routines are simply characterized by 
the fact that they do not contain any SWAP-instructions; they 
thus execute using only temporary registers. A set of sufficient 
conditions for zero-swap is the following: 



14-4 
03/31/81 

~--~~----------------~~----------N--------------------~---~-----~--~~ 
14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14.2 REGISTER FILE SWAPPING 

1) Option O or z was specified at compile time. 

2) There are no calls or function references other than to 
FORTRAN routines that can be generated in-line [FORTRAN, 
Appendix E]. 

3) There are no INPUT/OUTPUT statements. 

4) There are no explicit vector statements. 

5) There are no vector instructions generated by the 
automatic vectorizer. 

6) There are no special calls [CALL QS ••• ] • 

7) The code can be reasonably executed using only 17 (or 
possibly 20) working registers. 

14.3 PARAMETER PASSING 

The only practical way of passing an array in a subprogram call 
is to pass the base address of the array, i.e., the address of 
the first element. On the other hand, a scalar variable, say X, 
can be passed in either one of two different ways: by value or by 
address. The former method consists of storing the value of X in 
some predetermined register, where it is immediately available to 
the callee. The latter method requires that X first be stored 
somewhere in memory, whereafter the address of that location is 
passed. 

Although the method of calling by value appears to be simpler (it 
does indeed· require less overhead), it does have certain 
drawbacks; the most important one is that it limits the number of 
scalar parameters that can be passed. With the exception of some 
calls to system library (SYSLIB) routines, all subprogram 
references are therefore of the type "call by address". 

As far as the parameter passing is concerned, the caller has to 
go through the following steps of preparation to effectuate a 
call by address: 



14.9 HOW TO SPEED UP SUBPROGRAM CALLS 
14.3 PARAMETER PASSING 

14-5 
93/31/81 

1) Reserve table space in memory - 1 word per parameter to 
be passed. 

2) Store the scalar variables in the parameter list 
somewhere in memory (usually in the caller's database). 

3) Fill the table entries with the addresses of the scalar 
variables and the addresses of the first elements of the 
arrays. The addresses should be stored in the table in 
the same order as the parameters occur in the parameter 
list. 

4)· Load a special register (number 117) with the address of 
the first word of the table. 

5) Jump to the subroutine. 

When the callee gets control, the table address is thus available 
in register 117. If we consider the table as an array ITAB in 
memory, then register 117 contains the address of ITAB(l), while 
ITAB(K) contains the address of argument K. In particular, if 
the scalar variable X was passed as argument 4, then X could be 
loaded into the register file by first loading the value 
IADD=ITAB(4) into some temporary register, and then the value at 
memory location IADD into register file location X. To load a 
scalar dummy parameter thus requires two loads, which is usually 
referred to as a "double fetch". The same mechanism must, of 
course, be implemented when the value of an array element is 
desired, but since the base address (the address in the table) 
only needs to be loaded once and then can be used to access each 
element of that array, the average work per element is about half 
that required for a scalar variable. 

Another way of passing parameters is of course to use 
COMMON-blocks. An advantage of this method is that it allows a 
given parameter to be accessed with only a single fetch - which 
obviously is a little quicker than a double. The reason why only 
one fetch is requlred is that the compiler generates code that 
effectively treats the whole block as one long array. One base 
address therefore becomes sufficient to access any location in 
the block - be it a scalar variable or an array element. As an 
example, the declaration 

COMMON /BK/ A(l9),B(5),KA 

will cause the compiler to reference B(2) as A(l2) and KA as 
A(l6). 



14-6 
03/31/81 

14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14.3 PARAMETER PASSING 

-
As usual, the overhead associated with a particular process could 
(and should) be ignored whenever the "useful" work dominates. 
Therefore, we will never be concerned with the advantage of one 
way of passing parameters over the other when the subprogram in 
question is moderately sized and/or performs a significant amount 
of work. However, for very small subprograms, the question may 
be crucial. Consider, as an example, the following two cases: 

Example al: 

Example a2: 

DO 10 J = l,N 
A ( J ) = XN ORM ( X ( 1 , J ) ~ X ( 2 , J ) , X ( 3 ~ J ) ) 

10 CONTINUE 

FUNCTION XNORM (X,Y,Z) 
XNORM = SQRT (X**2+Y**2+Z**2) 
RETURN 
END 

DO 10 J = l,N 
A(J) = XNORM (X(l,J)) 

10 CONTINUE 

FUNCTION XNORM(X) 
DIMENSION X(3) 
XNORM = SQRT(X(l)**2 + X(2)**2 + X(3)**2) 
RETURN 
END 

The loop in (a2) executes 20% faster than that in (al), which, in 
some circumstances, may be considered significant. Another game 
to play with long argument lists to small subroutines is to 
invent a common-block especially for parameter passing, storing 
all scalar variables there prior to the call, thus passing only 
arrays as dummy parameters. Although the method is fairly messy 
to implement, it will buy you some cycles. Whether to use it or 
not is all a matter of how greedy you are and how 
much your time is worth. 

As a final note on this topic, it's worth mentioning that small 
subroutines often can benefit from being converted to functions. 
The reason is that the function return value is passed "b.y value" 
(i.e. in a register) rather than "by address", and therefore is 
accessible to the caller immediately upon return. Double 
precision and complex-valued functions return results in two 
registers. 



14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14.4 PULL OR PUSH SUBROUTINES 

14-7 
03/31/81 

--------------------------------------------------------------------
14.4 PULL OR PUSH SUBROUTINES 

The most obvious way to cut down on subprogram overhead is to 
reduce the number of calls or references. One way to accomplish 
that is to bring ("pull") the whole subprogram in line, i.e., to 
absorb the code into that of the caller. Example (al) would thus 
be transformed into: 

Example a3: DO 10 J = l,N 
A(J) = SQRT(X(l,J)**2+X(2,J)**2+X(3,J)**2) 

10 CONTINUE 

This method, as well as the others in this section, clearly 
sacrifices some of the benefits associated with having the code 
modularized. But everything has a price, and with the 
information that (a3) executes in only 47% of the time ·required 
for (al) you might well find similar actions worthwhile. It must 
be emphasized, though, that an essential condition for the high 
gain factor is that the "pulled" subprogram performs very little 
work. 

To justify the last statement, let's consider what would have 
happened if the amount of "useful" work performed by XNORM had 
been 10 or 100 times as large. The fact that (a3) executes 53% 
faster than (al), in conjunction with the observation that (a3) 
is all •useful" work, tells us that the subprogram overhead in 
(al) is about 53%. Therefore, pulling a 10 times more productive 
XNORM in-line would buy us about 

100 * 53/(53+470) = 10% 

Similarly, a "productiveness factor" of 100 results in a gain of 
only 1%. So don't bother with subprograms that perform 
significant amounts of work! 



14-8 
83/31/81 

---------------------------------------------------------~----------
14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14.4 PULL OR PUSH SUBROUTINES 
--------------------------------------------------------------------

To make the pulling of a subprogram in-line less cumbersome, a 
statement function can in many cases be utilized. To use 
statement functions does not affect the execution time per se, 
but it does cut down on programming efforts. The following code 
executes in a manner (and time) identical to the one in (a3): 

Example a4: XNORM(X,Y,Z) = SQRT (X**2 + Y**2 + Z**2) 

DO 10 J = l,N 
A ( J ) = XN ORM ( X ( 1 , J ) , X ( 2 , J ) , X ( 3 , J ) ) 

10 CONTINUE 

The method of pulling a subprogram in-line can also be reversed: 
the calling loop ~an be pushed out to the subprogram. The number 
of calls would thereby be reduced from N to 1, and, although a 
few more parameters may have to ·be passed, that will usually 
result in savings almost as large as if the pull-method had been 
used - provided, of course, that N is reasonably large. In our 
particular case, a "pushu would turn out something like: 

Example a5: CALL XNORM(N,A,X) 

SUBROUTINE XNORM (N,A,X) 
DIMENSION A(l) ,X(3,l) 
DO 10 J = l,N 
A(J) = SQRT(X(l,J)**2+X(2,J)**2+X(3,J)**2) 

10 CONTINUE 
RETURN 
END 



14-9 
03/31/81 

-------------------------------~------------------------------------
14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14-5 VECTORIZE I/O 

14.5 VECTORIZE I/O 

To a FORTRAN programmer a WRITE statement looks quite simple. To 
the machine, however, it represents a lot of work. We have 
previously discussed the actual data transfer (chapter 10), but 
there is, of course, more than that involved. It would carry too 
far to explain in detail which system routines were involved, and 
what they do, and we will here simplify the matter as follows: 
Each set of contiguous items in the output list of a WRITE 
statement represents a series of subprogram calls, while the 
length of a particular set of items only shows up at the level of 
the data transfer. A set of items is defined here as either a 
scalar variable, or (a part of) an array which is specified by an 
implied do-loop. Hence, if A is a two-dimensional array stored 
by columns, then A and (A(J,K),J=l,N) both specify sets of 
contiguous items, while (A(J,K),K=l,N) does not. 

The consequences of what's stated above is that the number of 
subprogram calls generated by a WRITE statement can be 
signi-f icantly reduced by decreasing the number of sets of 
contiguous items. The following three examples illuminate that 
method [A is dimensioned A(4,4)]: 

bl: WRITE (7) X,Y,Z,((A(J,K),K=l,3) ,J=l,3) 

b2: WRITE (7) X,Y,Z,((A(J,K),J=l,3),K=l,3) 

b3: TEMP(l) = X 
TEMP(2) = Y 
TEMP(3) = Z 
WRITE (7) (TEMP(J) ,J=l,3), ((A(J,K) ,J=l,3) ,K=l,3} 

In (bl) there are 12 sets of contiguous items, while in (b2) and 
(b3) that number is reduced to 6 and 4 respectively. Timing 
measurements for the three cases yield 679, 453, and 380 
microseconds respectively, which can be expressed as bl:b2:b3 = 
9:6:5. With formatted WRITEs (12El0.4), the execution times 
become 971, 712, and 627 microseconds, and the ratios 8.2:6:5.3. 
Obviously neither one of these two sets of ratios come all that 
close to the "predicted" 12:6:4, but we can at least conclude 
that the basic idea of decreasing the number of sets of 
contiguous items seems to be quite powerful as an optimization 
tool. In fact, ~hat very same idea forms the basts for the 
vector techniques that will be presented later in this document, 
and the method discussed in this section is therefore often 
referred to as the process of "vectorizing I/O". 



14.0 HOW TO SPEED UP SUBPROGRAM CALLS 
14.6 OTHER TECHNIQUES 

14.6 OTHER TECHNIQUES 

14-10 
03/31/81 

Let's assume that you have the following statement inside a 
do-loop: 

DO 10 J = l,N 

PI = ACOS(-1.0) 

10 CONTINUE 

Incidentally, this generates pi with an accuracy of 48 bits (95 
bits in double precision). The expression is clearly an 
invariant with respect to loop-counter, i.e., it can be moved out 
and executed once only before the loop. The programmer can thus 
easily save N-1 trigonometric function references - but can we 
expect the same cleverness from the compiler? The answer is no, 
but not because the compiler isn't smart enough on the 
contrary! Just try to imagine what would happen if the 
subprogram ACOS had a COMMON-block that was massaged every time 
ACOS was called! In that case the reduction of the number of 
calls from N to 1 would clearly be disastrous. The conclusion is 
that loop-invariant subprogram calls appearing inside loops must 
be moved out of the loop by the programmer - the compiler cannot 
do it. Note also that such actions generally result in 
substantial savings - N-1 executions of a subprogram rarely takes 
a trivial amount of time. 

Another money-saver,. which is based on the mathematical 
properties of some functions, is to consolidate references 
whenever possible. Some examples are the following: 

Example cl: A = SQRT(X)*SQRT(Y) 
B = EXP(X)*EXP(Y) 
c = ALOG10(X)+ALOG10(Y) 

Example c2: A = SQRT(X*Y) 
B = EXP(X+Y) 
c = ALOG10(X*Y) 

• Each statement in (cl) contains 2 subprogram references, while 
those in (c2) only contain 1. Talking dollars that means that 
(c2) runs for half price! 



15-1 
93/31/81 

~--N--------~---~-~~----------~-~NNNN~-~---------------~------------

15.B VECTOR PROCESSING 

----------------------------------------------------------------~---

15.e VECTOR PROCESSING 

15.l INTRODUCTION 

Up until now we have ignored the one feature of the CYBER 203 
that probably has contributed most to its fame: the vector 
processing capability. Why? Well, would you suggest that the 
education of pilots for supersonic airplanes started at 
supersonic speeds? Probably not. And although the interesting 
speed with respect to vector processing is the speed of light 
rather than that of sound, the philosophy of that·analogy 
certainly applies. 

Having studied the previous chapters you should now have a fairly 
good understanding of how the scalar processor operates, and how 
it interacts with the register file and physical memory. That in 
conjunction with your (similarly acquired) knowledge about files 
and virtual memory will now serve as the elevated launching pad 
from which you confidently can explore the function and 
usefulness of the vector processor. One special advice we would 
like to give you before you start: always keep in mind that the 
function and usefulness of any given part of a computer is highly 
dependent on similar characteristics of ·other parts, and of its 
interface with them - too narrow a focusing will always prevent 
you from utilizing the full potential. 

15.2 THE DEFINITION OF A VECTOR 

Programmers working with scalar code on scalar computers 
traditionally pay very little, if any, attention to how arrays 
are stored in memory. And looking at scalar FORTRAN code, it 
seems quite justified - nowhere does the formulation appear to be 
dependent on whether the memory location holding A(K) is adjacent 
to the one holding A(K+l). Therefore, how can a __ proficient 
FORTRAN programmer be t!Xpected to make an intelligent choice 
between the following two loops? 



15.0 VECTOR PROCESSING 
15.2 THE DEFINITION OF A VECTOR 

DO 10 J = l,N 
DO 10 K = l,N 

10 A(J,K) = 0. 

DO 20 K = l,N 
DO 20 J = l,N 

20 A(J,K) = 0. 

15-2 
03/31/81 

The fact is, that although the syntax of the language completely 
hides it, there is a significant difference in execution 
efficiency between the two loops on many scalar computers. If 
two-dimensional arrays are stored by the columns, i.e., if A(J,K) 
is immediately followed by A(J+l,K) in memory, then the 20-loop 
is the faster. Similarly, the 10-loop executes better on 
machines that implement rowwise storage (A(J,K), A(J,K+l), 
etc.). In short: a loop that accesses sequential storage 
locations in memory is always the better choice. That's 
particularly true on machines that, like the CYBER 203/205, 
feature virtual memory, since for large values of N the paging is 
minimized by sequential memory access. 

To write scalar code for a scalar processor totally ignoring the 
question about storage is usually not dramatically penalized. By 
changing from non-sequential data access to sequential, it is 
realistic to expect an increase in execution speed of 20-100%, 
but hardly more. On a vector processor, however, the difference 
between the two methods is indeed dramatic - speed increases of 
1000-2000% as the result. of going to sequential access are not 
unheard of. The reason why such impressive improvements are 
possible can be traced to the fact that a vector processor is 
actually designed to operate on sequential memory locations. 
That fact, in turn, provides us with a vector definition: 

DEFINITION: Vector = a set of contiguous memory locations. 

The above definition is appropriate for the CYBER 200 series of 
machines, but not necessarily for other architectures. Note also 
that contiguity is defined in terms of virtual addresses -
information about locations in physical memory is normally not 
accessible to the user. 

It cannot be enough stressed that contiguity of data is essential 
to all vector operations on the CYBER 203/205, and that your 
success therefore will be very dependent on how well you can 
absorb and utilize that idea. 



15-3 
03/31/81 

--------------------------------~-----------------------------------
15.0 VECTOR PROCESSING 
15.3 THE VECTOR PROCESSOR 

15.3 THE VECTOR PROCESSOR 

For pedagogical purposes, the vector processor on the CYBER 
203/205 can be perceived as consisting of segmented pipes. Each 
~egment can only perform a small part of an arithmetic operation, 
so that each pair of operands has to be processed in several 
steps. As an example, let's consider a floating point add, which 
can be split up into the following 6 independent operations 
[don't worry if you don't understand the details - you will not 
be tested on this]: 

1) Compare the two exponents. 

2) Right-shift the coefficient with the smaller exponent. 

3) Add the coefficients •. 

4) Count how many steps the result coefficient must be 
left-shifted to become normalized. 

5) Normalize and adjust the exponent. 

6) Transmit the result to a memory bus. 

These six steps represent just one possible subdivision, and do 
not necessarily reflect the one actually implemented. What is 
important from the user point of view is that there is a certain 
number of steps, and that the operands have to traverse the 
corresponding segments sequentially. A different vector 
operation may utilize a different set of segments within the same 
pipe, some of which may be identical to some in the list above. 
Each pipe can therefore be thought of as containing several 
arithmetic units, each of which functions as an independent 
pipe. 

The CYBER 203 has two unique pipes, differing mainly with respect 
to the divide function, which can only be peformed by one of 
them. The CYBER 205 has in its standard form two identical 
pipes, but a version with four identical pipes is also offered. 
When 2 pipes both can perform a given operation the data is 
evenly distributed, so that pipe 1 processes the odd. pairs of 
input operands, while pipe 2 takes care of the even ones. In the 
4-pipe case pipe 1 handles every fourth pair, etc •• The multiple 
pipe configuration can thus not be used to process two or more 
vector instructions in parallel. 



15.0 VECTOR PROCESSING 
15.3 THE VECTOR PROCESSOR 

15-4 
03/31/81 

--------------------------------------------·------------------~-----

To get a feeling for how the vector processor works, let's assume 
that only one pipe exists, and that we want to peform the 
addition of two vectors, as symbolized by the following scalar 
loop: 

DO 10 J = l,N 
10 A(J) = B(J) + C(J) 

The first step in the process will be to initiate a streaming of 
the elements in arrays B and C from memory to the beginning of 
the pipe. A certain number of clock cycles is required to 
transfer Bl and Cl into the first pipe segment, and that number 
represents the length of the input path. Arbitrarily fixing the 
length to 2 cycles, and assuming that the vector instructio~ was 
initiated at cycle time 1, we will have the following pictures at 
cycles 1, 2 and 3 respectively: 

Input path 

(Bl,Cl) 
(B2,C2) 
(B3,C3) 

(Bl,Cl) 
(B2,C2) 

SEGl SEG2 

(Bl,Cl) 

During the next cycle, (Bl,Cl) will be moved into segment 2 and 
processed there, allowing all other pairs to advance one step, 
and the pair (B4,C4) to enter the input stream. With 6 segments 
in total, the pipe will thus not be filled until cycle 8. When 
(Bl,Cl) has passed through segment 6, the first result, Al, 
enters the path back to memory. If the length of the output path 
also is 2 cycles, the picture at cycle times 9, 10 and 11 will 
thus be as follows: 

Input path SEGl 

( B9, C9) BB, CS) (B7,C7) 
(Bl0 ,CUJ) ( B9, C9) (B8,C8) 
(Bll ,Cll) (Bl0 ,cun (B9 ,C9) 

SEG6 Output path 

(B2 ,C2) Al 
(B3,C3) A2 
(B4,C4) A3 

Al 
A2 

The first result was thus stored in memory during cycfe 11, and 
from then on the other results will follow at a rate of 1 per 
cycle until the last element is stored. In this particular 
example we can thus specify the timing as: 



15.e VECTOR PROCESSING 
15.3 THE VECTOR PROCESSOR 

le + N cycles 

15-5 
eJ/31/81 

Two numbers are needed to describe the behavior: a startup value 
(here le cycles) which is independent of the vector length, and a 
stream rate which does depend on the length, N. Two pipes can 
process twice as many operands per cycle, which gives us N/2 
instead of N for the stream rate. In particular with respect to 
the startup procedure, the picture given here is greatly 
simplified, and the actual timing for a vector add on the CYBER 
2e3 is: 

82 + N/2 cycles 

The startup time for a given instruction can only be quoted as an 
average value, since it's affected by several "environmental" 
factors such as relative locations of the three vectors (two 
input and one output) in memory and their length modulo 64. The 
fluctuations are of the order of le%. The stream rates, however, 
are very exact, and any deviation from quoted values will be due 
to inaccuracies in the measurement method. 

On the CYBER 2e3, multiplication and division requires two passes 
through the pipes. Furthermore, only one of the pipes can 
perform division. The stream rates are thus N and 2N 
respectively. The clock cycle on the CYBER 2e3 is 2e ns for the 
scalar processor, but 4e ns for the vector processor. To avoid 
confusion, we will henceforth quote all timings in units of 2e ns 
cycles~ that will double the values for vector operations 
previously given in this section. On the CYBER 2e5, the clock 
cycle is 2e ns for both processors, and the vector processor is 
in addition quite a bit faster for several instructions. Using 
the unit 2e ns cycles, the timings for the four basic arithmetic 
floating point operations on the two machines are as follows: 

Add/Subtract 
Multiply 
Divide 

CYBER 2e3 

165 + N 
35e + 2N 
36e + 4N 

CYBER 2e5 (2 pipe) 

51 + N/2 
52 + N/2 
0e + 2SN/8 





16-1 
03/31/81 

-~~-~-~~---------~-----------------------~--------------------------
16.0 AUTOMATIC VECTORIZATION 

16.0 AUTOMATIC VECTORIZATION 

16.1 INTRODUCTION 

The CY~ER 203/205 offers the user two different ways of taking 
advantage of its vector processing capability: automatic and 
explicit vectorization. The automatic vectorizer is invoked by 
including the letter "V" in the string of options on the FORTRAN 
card, and can thus be regarded as a form of compiler 
optimization. Explicit vectorization, on the other hand, implies 
that the programmer makes use of a special vector syntax, 
available in CYBER 200 FORTRAN· as an extension of the language. 
Usage of one method neither requires nor prohibits the use of the 
other. This chapter will be devoted to the different aspects of 
automatic vectorization, while the explicit method is treated in 
chapter 17. 

16.2 GENERAL CONSIDERATIONS 

The nature of vector operations is such that the only types of 
code structures that can qualify for automatic vectorization are 
do-loops. For the greater part of this chapter we will only 
consider innermost or stand-alone do-loops, but a brief 
discussion of loops with embedded loops appears in section 
16.11. Specific characteristics of a given do-loop determines 
its vectorizability, and when the v-option is specified the 
compiler will either succeed or fail in its vectorization 
attempt. Part of the FORTRAN generated output listing will 
consist of a detailed account of the number of appearing loops in 
each subroutine, and also of the number of vectorizable 
(collapsable) loops, in conjunction with reasons why the others 
did not qualify. 

The complete set of criteria for vectorizable do-loopq_appears in 
the FORTRAN manual, pages 11.1-4, and a summary can a). so be found 
in section 10 of this chapter. Guided by that material you may 
now, with the output listing in hand, want to improve program 
performance by tinkering with the loops that did not vectorize. 



16.0 AUTOMATIC VECTORIZATION 
16.2 GENERAL CONSIDERATIONS 

16-2 
03/31/81 

Although such an effort may "save" a few loops, chances are that 
some of them just aren't possible to restructure when considered 
as separate pieces of code. The basic problem is that many codes 
are actually designed to be incompatible with vector processing. 
That is something you may have to live with if you are dealing 
with an already written scalar code, but which otherwise can be 
avoided by "thinking in vector mode" already in the design phase 
of a problem solution. 

The coding phase is the second best place to implement "vector 
thinking". In many cases a do-loop, or a set of nested such, can 
be written in several different ways, all of which at run time 
will produce the same results. The traditional approach when the 
code is aimed for a scalar machine is, at best, that the 
programmer chooses a way that minimizes the number of arithmetic 
operations. The reasoning behind that is of course that no other 
factor determines the actual execution speed. As has previously 
been pointed out, however, that is not even true for all scalar 
machines - in particular not for those that feature virtual 
memory. And it's definitely not true on machines capable of 
vector processing - regardless of their sophistication. Several 
other· factors, like array storage, sequential access, 
recursiveness, etc., must be understood and paid attention to in 
order to make the code vectorizable to the maximum extent. 

The remainder of this chapter is designed to provide you with a 
basic understanding of the vector concept, as applied to the 
CYBER 203/205. More explicitly, it will try to teach you how the 
automatic vectorizer "thinks", so that you can take full 
advantage of its power. That will, hopefully, improve your 
ability to make existing scalar code vectorizable {if necessary), 
but also enable you to write good, transportable, vectorizable 
code from scratch. 

16.3 DIFFERENT TYPES OF VECTOR INSTRUCTIONS 

With the exception of linked triads, treated in the next section, 
a general vector instruction can be expressed in the following 
form: 

VR = Vl {OP) V2 

VR is the result vector, Vl and V2 are two input vectors and {OP) 
stands for an arithmetic {+,-,*,/,**) or logical {.AND., .OR., 
.XOR.) operator. One of the two input operands may instead be a 



16.0 AUTOMATIC VECTORIZATION 
16.3 DIFFERENT TYPES OF VECTOR INSTRUCTIONS 

16-3 
03/31/81 

scalar, in which case we are talking about a vector operation 
with "broadcast". The scalar value is namely broadcast to 
simulate a vector with the same length as the other input 
operand. The following forms also exist: 

VR = Vl VR = - Vl VR = .NOT. Vl 

Each of the following scalar do-loops will be compiled as a 
single vector instruction if the v-option is specified: 

DO 10 J = l,N 
10 A(J) = B(J) - C(J) 

DO 20 J = l,N 
20 X(J,4) = 3.0*Y(J) 

DO 30 J = M,N 
30 R(J-1) = S(J-1).AND.S(J) 

(Vector Subtract) 

(Vector multiply 
with broadcast) 

(Vector logical AND. R and S 
must be of type logical) 

1· Certain scalar function references correspond directly to another 
type of vector instructions, namely the ones that only take one 
input vector. As of today (FORTRAN, Release 1.5.1) the scalar 
set consists of: 

ABS IABS FLOAT IFIX SQRT 

but an expansion is quite possible in future releases. The 
following do-loops will each be compiled as a single vector 
instruction, assuming that the V-option is specified: 

DO 10 J = L,N 
A(J) = SQRT (B(J,K)) 

10 CONTINUE 

DO 20 J = l,M 
A(J) = FLOAT(KA(J)) 

29 CONTINUE 

DO 30 J • 1,M 
30 A(J) = KA(J) 

Some of the more commonly used SYSLIB functions, namely: 



16.0 AUTOMATIC VECTORIZATION 
16.3 DIFFERENT TYPES OF VECTOR INSTRUCTIONS 

16-4 
03/31/81 

SIN COS TAN ASIN ACOS ATAN EXP ALOG ALOG10 

have been coded as special subroutines accepting a vector 
argument and delivering a vector result. The compiler knows 
that, and the above mentioned function references are thus 
"vectorizable" as a kind of pseudo vector instructions. In 
reality they are of course just subroutine calls. The following 
do-loops are all "vectorizable": 

DO 10 J = l,N 
A(J) = SIN (B(J)) 

10 CONTINUE 

DO 20 J = l,N 
X(J) = ALOG(Y(J,K)) 

20 CONTINUE 

DO 30 J = M,N 
T(J) = ACOS(T(J)) 

30 CONTINUE 

With respect to the function references mentioned in the last 
paragraph, the difference in execution speed between keeping the 
code in scalar mode and allowing it to vectorize is quite 
substantial. Assuming an iteration count of N, large enough to 
allow us to ignore startup times, the following approximate 
timings were obtained for the CYBER 203 [unit= 20 ns cycle]: 

Scalar loop Timing in Timing when 
containing scalar mode vectorized 

SIN/COS 230N 52N 
TAN 310N 79N 
ASIN/ACOS 317N 113N 
ATAN 281N 99N 
EXP 182N SlN 
ALOG/ALOG10 273N 98N 



16.6 AUTOMATIC VECTORIZATION 
16.4 THE LINKED TRIAD 

16.4 THE LINKED TRIAD 

The general form of a linked triad is 

SR= Sl(0Pl)S2(0P2)S3 

16-5 
63/31/81 

Sl, S2, and S3 are input operands, SR an output operand (result), 
and OPl and OP2 symbolize some type of operators. Some FORTRAN 
examples, using scalar operands are 

X = Y+Z+T 
X = Y*Z/T 

X = Y+Z*T 
R = S.AND.F.OR.G 

The CYBER 205 has the capacity of computing certain forms of 
linked triads in vector mode as if they each represented a single 
vector instruction. These forms are defined as follows: 

1) At least one, but no more· than two of the input operands 
are vectors. That implies that the output operand also 
must be a vector. 

2) One of the two operators is a floating point multiply, and 
the other is a floating point add or subtract. 

Using V for vector and S for scalar, we thus have the following 
forms: 

VR = Sl + Vl*V2 
VR = Sl + S2*V2 
VR = Vl + Sl*V2 
VR = Vl + Sl*S2 

VR = Sl - Vl*V2 
VR = Sl - S2*V2 
VR = Vl - Sl*V2 
VR = Vl - Sl*S2 

The computation in just about any linear algebra routine is 
dominated by operations of the forms given in the third line 
above, and only rarely will you encounter the others. The vector 
processor's capacity for linked triads actually extends somewhat 
beyond the limits given here, but to take advantage of that you 
have to deviate from conventional FORTRAN syntax - an action 
which the title of this chapter prohibits. The timing for any of 
the above linked triads on the CYBER 265 (2 pipe) is: 

84 + N/2 cycles 

·That is the same stream rate as that of all other floating point 
vector instructions (excluding the divide), and yet twice as many 
arithmetic operations are performed! It should be stressed that 
the CYBER 263 does not have linked triad capability. Since 
mathematicians traditionally think "rowwise" rather than 



16.0 AUTOMATIC VECTORIZATION 
16.4 THE LINKED TRIAD 

16-6 
03/31/81 

"columnwise", many FORTRAN coded algorithms that display linked 
tri~ds are not directly vectorizable. In such cases, however, a 
reordering of the sequence of arithmetic operations is often all 
that is needed to obtain the desired vector structure. Consider, 
as an example, the problem of multiplying a rectangular matrix A 
with a column matrix X, obtaining a column matrix B. In matrix 
notation that corresponds to performing the operation 

B = AX 

The elements of B are formed as inner products (dot products) as 
expressed by the following formula, where we have assumed that A 
has dimensions (M,N) : 

n 
b = SUM (a x ) (j = 1,2, ••• ,m) 

j k=l jk k 

The conventional approach to coding this algorithm in FORTRAN is 
to reproduce the mathematical formula as closely as possible: 

DO 10 J = 1,M 
B(J) = 0. 
DO 10 K = 1,N 

10 B(J) = B(J) + A(J,K)*X(K) 

That piece of code will, of course, execute properly, but it 
doesn't exhibit much of a vector structure. In the innermost 
loop only X is accessed sequentially, while A is accessed rowwise 
and B effectively represents a scalar. Thus, on the CYBER 203 
the automatic vectorizer can accomplish nothing, while on the 
CYBER 205 it may be smart enough to do a GATHER on the A-elements 
and then use QSSDOT for the dot-product. The latter solution is 
not very efficient, though, partly because thrashing (mortal 
paging) may occur if the size of A exceeds available memory. 
Note that although the innermost loop in each pass computes a 
scalar linked triad, a translation to a vector linked triad is 
not possible. To obtain vector structure we must effectively 
exchange the outer and inner loops: 



16-7 
93/31/81 

-~~-------------------------------------------------------------~---
16.8 AUTOMATIC VECTORIZATION 
16.4 THE LINKED TRIAD 

DO 28 J = l,M 
28 B(J) = 8. 

DO 39 K = l,N 
DO 30 J = l,M 

39 B(J) = B(J) + A(J,K)*X(K) 

We now have two loops with explicit vector structure: The 20-loop 
and the innermost 30-loop. The former will vectorize as one 
vector instruction on both machines: a vector assignment 
statement with broadcast (same speed as a vector add). To see 
that the latter also is vectorizable, we perform a complete 
factorization, which requires the introduction of a temporary 
array [the concept of factorization will be discussed in detail 
in the next section]: 

DO 79 K = l,N 
DO 50 J = l,M 

59 T(J) = A(J,K) * X(K) 
DO 60 J = l,M 

68 B(J) = B(J) + T(J) 
78 CONTINUE 

There is no longer any doubt that the 39-loop is vectorizable. 
On the CYBER 203 it will translate into a vector multiply, 
writing the result vector into temporary space in the dynamic 
stack, and a vector add of that result to (B(J), J=l,M). On the 
CYBER 205 the compiler will indeed make use of the vector linked 
triad instruction: the form is "VR = Vl + V2*Sl", where X(K) 
corresponds to the scalar. It may be of interest to compare the 
different timings of the entire matrix multiplication B = AX. 
For simplicity we will assume that M and N are large, so that we 
can disregard startup times. The compile card -presumably 
contains "O=BOV", and the unit used is as usual the cycle time, 
29 ns: 

Naive (10-loops) 
Fancy (20-39-loops) 

CYBER 203 

17MN 
3MN 

CYBER 205 (2 pipe) 

2.25MN 
8.50MN 



16.0 AUTOMATIC VECTORIZATION 
16.5 FACTORIZATION OF DO-LOOPS 

16.5 FACTORIZATION OF DO-LOOPS 

16-8 
03/31/81 

A "one-liner" is defined as a do-loop with exactly one FORTRAN 
statement, not counting the DO and CONTINUE statements. If a 
particular do-loop can be broken down into a sequence of 
one-liners, we say that the loop is "factorizable". An example 
would be: 

DO 18 J = l,N 
XX(J) = X(J)**2 
YY{J) = Y(J)**2 
SN(J) = SQRT{XX(J)+YY(J)) 

18 CONTINUE 

which could be factorized as: 

DO 11 J = l,N 
11 XX(J) = X(J)**2 

DO 12 J = 1,N 
12 YY(J) = Y(J)**2 

DO 13 J = 1,N 
SN(J) = SQRT(XX(J)+YY(J)) 

13 CONTINUE 

A "complete factorization" would result if each one-liner 
featured only one arithmetic operator (+,-,*,/,**) or logical 
operator (.AND., .OR., .XOR., .NOT.) or function reference. To 
make the factorization above complete we-would have to break down 
the 13-loop further; which in turn would require the introduction 
of a temporary array, say XY: 

DO 14 J = l,N 
14 XY(J) = XX(J)+YY(J) 

DO 15 J = l,N 
SN(J) = SQRT(XY(J)) 

15 CONTINUE 



16.0 AUTOMATIC VECTORIZATION 
16.5 FACTORIZATION OF DO-LOOPS 

16-9 
03/31/81 

we could of course have used SN as the temporary array, but that 
~ype of solution is not always possible. When a scalar appears 
on the left hand side of an equal sign, the introduction of a 
temporary array is often unavoidable, as in the following case: 

ORIGINAL 

FACTORIZED 

DO le.I J = l,N 
Sl = A(J,K+l) - A(J,K-1) 
S2 = B(J,K+l) - B(J,K-1) 
X(J) = ABS(Sl) + ABS(S2) 

10 CONTINUE 

DO 11 J = l,N 
11 STl(J) = A(J,K+l) - A(J,K-1) 

DO 12 J = l,N 
12 ST2(J) = B(J,K+l) - B(J,K-1) 

DO 13 J = 1,N 
X(J) = ABS (STl (J)) + ABS(ST2(J)) 

13 CONTINUE 

Complete factorization would differ only with respect to the 
13-loop, which would split into: 

DO 14 J = l,N 
STl(J) = ABS(STl(J)) 

14 CONTINUE 

DO 15 J = l,N 
ST2(J) = ABS(ST2(J)) 

15 CONTINUE 

DO 16 J = l,N 
16 X(J) = STl(J) + ST2(J) 

The point of this exercise is to synthesize it with the previous 
section, and make the following statement: 

A do-loop that is not completely 
factorizable is not vectorizable. 



16.0 AUTOMATIC VECTORIZATION 
16.5 FACTORIZATION OF DO-LOOPS 

16-10 
03/31/81 

The value of using this factorizability test as a first check for 
vectorizability lies in the fact that you thereby are forced to 
"se~" the vector structure, or lack of such, in a particular 
do-loop. The one-liner resulting from a complete factorization 
are namely exactly the entities that the automatic vectorizer on 
a one-for-one basis would compile as vector instructions if 
possible. The sometimes necessary vector temporaries are indeed 
created by the compiler - the dynamic stack comes in handy for 
that purpose. 

We can now state the criterion for vectorizability in the 
following simple form: 

A do-loop that is completely factorizable 
is vectorizable if, and only if, all of the 
resulting one-liners are vectorizable. 

Each one-liner must therefore not feature more than one operator 
(arithmetic or logical) or one· function reference, where the 
function is one from the set given in the previous section. 
Furthermore, the present compiler restricts the data types to 
real, integer and logical. Other requirements, such as 
contiguity of array references and lack of recursiveness are 
discussed in the remainder of this chapter, and a summary of the 
rules is given in the section 16.10. 

16.6 CONTIGUITY IN MEMORY 

Recall the definition of a vector: 

Vector = a set of contiguous storage locations in memory. 

The implication of this definition is that a do-loop that 
accesses arrays in a nonsequential manner lacks vector structure, 
and therefore is not directly vectorizable. The automatic 
vectorizer on the CYBER 203 will thus reject the following loop: 

DO 10 J = l,N,2 
10 A(J} = B(J) + C(J) 

On the CYBER 205, however, the compiler does not give -·up that 
easily. Two machine instructions, commonly referred to as GATHER 
and SCATTER, are namely available for the purpose of moving data 
elements from nonsequential to sequential locations (GATHER) or 



16.0 AUTOMATIC VECTORIZATION 
16.6 CONTIGUITY IN MEMORY 

16-11 
04/01/81 

--------------------------------------------------------------------
the reverse (SCATTER). The only type of nonsequential locations 
~hat the compiler can deal with in this manner are the ones where 
consecutive locations are separated by a constant stride (=number 
of words in memory). In the example above the stride is 2, since 
consecutive passes through the loop adds B(l)+C(l), B(3)+C(3), 
B(5)+C(5) etc., and B(l), B(3), B(5) can be expressed as B(l), 
B(l+2), B(l+2+2). A stride of 1 simply means that the elements 
are contiguous. The automatic vectorizer on the CYBER 2~~ will 
thus vectorize the loop above as follows: 

1) Gather (B(J) ,J=l,N,2) into the first N/2 locations of the 
dynamic stack. We will refer to that area as VB. 

2) Gather (C(J),J=l,N,2) into the next N/2 locations of the 
dynamic stack (VC). 

3) Perform the vector addition VB+VC, and store the result 
in the next N/2 locations of the dynamic stack (VA). 

4) Scatter VA into (A(J),J=l,N,2). 

The timing of the loop when run in scalar mode, and when 
automatically vectorlzed, is on the CYBER 205 [L=N/2): 

Scalar mode 

GATHER 
GATHER 
ADD 
SCATTER 

Vector mode 

17 + 19L 

39 + 
39 + 
51 + 
71 + 

SL/4 
5L/4 
L/2 

5L/4 

2HJ + 4. 25L 

By equating the timings for scalar and vector mode we obtain 
L=l2.4, which tells us that the vectorized version is faster when 
L is 13 or greater. That is, of course, quite satisfactory, but 
when GATHER/SCATTER are involved the break even point is often 
quite a bit higher. And by comparing the timings of the add 
instruction itself to that of the total operation we see that for 
large L-values another factor of 8 could have been gained, had 
tne data been contiguous in memory to start with. 

The conclusion must be that although it's nice to kq9w that the 
compiler can "vectorize" some code lacking explicit vector 
structure, it's not something we would want to take advantage of 
unless it's absolutely necessary. By the way, the GATtt~R/SCATTER 
instructions do indeed exist on the CYBER 203 as well. On that 



16.0 AUTOMATIC VECTORIZATION 
16.6 CONTIGUITY IN MEMORY 

16-12 
04/01/81 

--------------------------------------------------------------------
model, however, they are prohibitively slow (about 40 cycles 
stream rate} and the automatic vectorizer therefore does not use 
tnein. 

A simple exchange of loop indices is sometimes all that is needed 
to introduce the desired vector structure: 

DIMENSION A(80,120} ,X(80,120} 
DO 10 J = l,M 
DO 10 K = l,N 

10 A(J,K) = ABS(X(J,K)) 

·The innermost loop will not vectorize on the CYBER 203, while on 
the CYBER 205 the GATHER/SCATTER instructions (stride=80) will 
enable the compiler to perform the ABS in vector mode. However, 
the superior version is the following: · 

DO 10 K = l,N 
DO 10 J = l,M 

10 A(J,K) = ABS(X(J,K} 

Now the innermost loop with vectorize on both machines - and no 
GATHER/SCATTER are needed. The speedup is substantial. 

Often it is necessary to alter the way in which arrays are stored 
in order to obtain vector structure. Consider as an example the 
following situation: 

DIM ENS I ON X ( 2 , i 0 0 ) , A ( 2 0 0 } , B ( 2 0 "1 ) 
DO 10 J = 1,200 
X(l,J) = X(l,J) + A(J) 

10 X(2,J) = X(2,J) + B(J) 

Recalling that two-dimensional arrays are stored by the columns 
it's evident that the references to X are nonsequential in 
nature. The loop will still vectorize on the CYBER 205, but not 
in the most efficient manner. One way to achieve explicit vector 
stxucture is to change the columnwise storage mode to rowwise, 
something that can be accomplished by a type declaration 
statement: 



16.0 AUTOMATIC VECTORIZATION 
16.6 CONTIGUITY IN MEMORY 

ROWWISE X(2,200) 
DIMENSION A(200,B(200) 
DO HJ J = 1 , 2 0 0 
X(l,J) = X(l,J) + A(J) 

10 X(2,J) = X(2,J) + B(J) 

16-13 
04/01/81 

The loop is now completely vectorizable on both machines, since 
X(l,1), X(l,2), X(l,3), etc., are adjacent in memory. The 
drawback is that it is easy to forget that one, or a few, arrays 
are stored in a non-default mode. Difficulties may also arise 
when your subroutine is used by others who, no doubt, will assume 
that all storage is columnwise. A more attractive method is 
therefore to just swap dimensions in the DIMENSION statement: 

DIMENSION X(200,2),A(200),B(200) 
DO 10 J = 1,200 
X(J,l) = X(J,l) + A(J) 

10 X ( J, 2) = X ( J ,. 2) + B ( J) 

Both. solutions accomplish the same thing on the machine level, 
but the latter is more transparent to the user. 

16.7 MAXIMUM VECTOR LENGTH 

Another concern should be the maximum iteration count. The 
maximum allowed vector length is namely 65535, and unless the 
compiler with a reasonable certainty can establish that that 
length will not be exceeded, no vectorization will take place. 
"DO 10 J=l,60000" is thus OK, while "DO 10 J=l,701iH1to" is not. 
But what about "DO 10 J=l,N"? Well, in this case the compiler 
will check the dimensions of the arrays appearing in the loop, 
and if they are within limits the loop is considered 
vectorizable. Hence, 

DIMENSION A(50000,4),B(50000) 
DO 10 J = l,N 

10 A(J,2) = B(J)•*2 

·\s vector izable, regardless of the value of N, since 'tbe "50lHH1" 
in the DIMENSION statement is what forms the basis for the 
compiler decision - N is not even known at compile time. If 
"500!00" is replaced with "700~0", the loop will not vectorize. 



16-14 
04/01/Bl 

---------------------------------~----------------------------------
16.0 AUTOMATIC VECTORIZATION 
16.7 MAXIMUM VECTOR LENGTH 

A problem occurs when one or several of the arrays in the loop 
are dummy arrays at the same time as the loop count is unknown, 
as 1s the case in the following loop: 

SUBROUTINE SUB(A,B,M,K) 
DIMENSION A(M,l),B(M) 
DO 10 J = l,M 

10 A(J,K) = SQRT(B(J)) 

Here the compiler can not check for maximum vector length, and 
must thus refuse to vectorize. By specifying both V and U (U for 
Unsafe) on the FORTRAN card, however, you tell the compiler that 
you guarantee that no loop counts will ever exceed 65535. 
Relieved of the responsibility, the compiler will then vectorize 
loops like the one above. 

16.8 RECURSION 

A recursive do-loop is defined as a loop in which the result of 
the work performed in the Kth pass depends on the result of one 
or several previous passes, typically the (K-l)st. ~n example 
would be: 

DO 10 J=2,N 
10 L(J) = L(J) + L(J-1) 

If the elements of array L were initialized to 1, then the 
e~ecution of this scalar loop would look as follows: 

L(2) = L(2) + L(l) 
L(3) = L(3) + L(2) 

= 1 + 1 
= 1 + 2 

= 2 
= 3 

L(N) = L(N) + L(N-1) = 1 + (N-1) = N 

The result would thus be (L(J)=J, J=l,N). If an attempt were to 
be made to perform the same work in vector mode, the result would 
be completely different - probably L(l)=l and (L(J)=:l,, J=2,N). 
The reason for that is that the two input vectors have·to start 
streaming from memory to the vector pipes before any results are 
calculated, implying that the only operands available to perform 
additions with are "old" L-values. To clarify that, let's use 



lb.0 AUTOMATIC VECTORIZATION 
16.8 RECURSION 

16-15 
04/01/Bl 

the model introduced in section 15.3, and take a look at the 
situation at cycle 3: 

Input path SEGl 

(L3,L4) (L2,L3) (Ll,L2) 

The first pair of operands has here entered segment 1, but it 
will take an additional 6 cycles before the result, which will be 
the "new" L(2), pops out from the end of the pipe. By that time 
the second pair of input operands have almost finished its path 
through the pipe. It's clearly impossible that the "new" L(2) 
could be a member of that pair, since that has just barely been 
computed, and now is on its way back to memory. The situation at 
cycle 9 can be depicted as follows: 

Input path 

(L10,L9) (L9,L8) 
(old) (Old) 

SEGl 

(LB,L7) 
(old) 

SEG6 

(L3, L2) 
(old) 

Output path 

L2 
(new) 

The conclusion must be that recursive loops, such as the one 
discussed, cannot be vectorized. The compiler knows that, and 
does not fool around with such constructs. Note that the 
following loop is not recursive: 

This is an 
difficulties. 
vectorize: 

DO 10 J=2,N 
10 L(J-1) = L(J-1) + L(J) 

example of forward reference, and presents no 
On the other hand, the following loop will not 

KPl = K+l 
DO HUJ J=KPl,N 

10 L(J-K) = L(J-K) + L(J) 

If K is positive, this loop is of course not recursive. However, 
the valu~ of K is not known at compile time, and the compiler 
doesn't take any chances - it would be deadly if K turned out to 
be negative. 



16-16 
04/01/81 

--------------------------------------------------------------------
16.0 AUTOMATIC VECTORIZATION 
16.8 RECURSION 

The clever reader might here interject that if the length of the 
input and output paths were known, as well as the number of 
segments, then one could predict how large an offset was 
necessary to assure that "new" values rather than "old" were 
obtained. If the sum of the lengths were 50, for instance, then 
the following loop should vectorize: 

DO HJ J=52 ,N 
10 L(J) = L(J) + L(J-51) 

In principle that is of course true. In practice, however, the 
critical length varies with the relative storage locations of the 
~rrays appearing in the loop, and also with the architecture of 
the machine, to just name a few parameters. So the rule is that 
potential recursion is treated as absolute recursion by the 
compiler, and when you later learn how to perform explicit 
vectorization you are strongly urged to take the same position. 

At this point another warning might be appropriate: do not stake 
your .life on that the loop in the beginning of this section 
("L(J) = L(J)+L(J-1)") produces (L(J)=2, J=2,N). If, namely, a 
system interrupt (e.g. a page fault) occurs after, say, the 30 
first results are computed, then you will get L(l)=l, (L(J)=2, 
J=2,31) ,L(32)=3, (L{J)=2, J=33,N). Right? 

16.9 STACKLIB 

The automatic 
dealing with 
expanded, but 
handled: 

vectorizer has a certain, limited, capacity for 
recursive loops. That capacity may later be 
as of today only the following types can be 

1. X{J) = X(J-1) + Y(J) 
2. s = S + X{J) 
3. s = S + X{J)*Y{J) 
4. s = S + X(J)*X(J) 
5. s = S + X{J)**2 

Each example is to be perceived as a do-loop of type 
with loop-increment 1, where the order of the 
immaterial. Thus, the first example represents any 
following four loops [X and Y must be distinct]: 

"one-liner" 
operands is 

one of the 



16-17 
e4/e1;a1 

~~-~---------------------------~--------~---------~-----------~-----
16.e AUTOMATIC VECTORIZATION 
16 .• 9 STACKLIB 

DO le J = L,M 
le X(J) = X(J-1) + Y(J) 

DO 10 J = L,M 
X(J) = X(J-1) + Y(J) 

le CONTINUE 

DO le J = L,M 
10 X(J) = Y(J) + X(J-1) 

DO le J = L,M 
X(J) = Y(J) + X(J-1) 

10 CONTINUE 

On the CYBER 203, all 5 categories will be transformed into calls 
to highly optimized scalar subroutines, called STA~KLIB 
routines. The tasks are there performed in unrolled scalar 
loops, which take advantage of the large register file. On the 
CYBER ·20s, with the greatly enhanced vector processor, there are 
other options available for all but the first category. In 
addition to the "normal" vector instructions, namely, a number of 
more complicated vector-like operations can be performed in the 
pipes. Such tasks are initiated by a certain type of machine 
instructions called Vector Macros. Two of these were mentioned 
earlier in this chapter: GATHER-SCATTER, or Q8VGATHR-Q8VSCATR, 
which are their FORTRAN callable names. Two others are QBSSUM 
and QSSDOT, which compute the sum of the elements of a vector and 
the -dot product of two (distinct or. identical) vectors, 
respectively. Although also the CYBER 2~3 feature these macros, 
the timing specification below makes it obvious why the compiler 
prefers unrolled scalar loops there. 

QSSSUM 
QSSDOT 

CYBER 203 

260 + llN 
350 + 12N 

CYBER 20~ (2 and 4 pipe) 

96 + N 
107 + N 

(cycles) 
(cycles) 

Thus, on the CYBER 205 loops of category 2 will be translated 
with the machine instruction QBSSUM, while Q8SDOT will be used 
for those of categories 3, 4, ana 5 - assuming, of course, that 
the v-option is specified. 

Note that the categories 2-5 indeed represent recursive 
operations: the partial sum in step J can not be computed without 
knowledge of the partial sum computed in step J-1. 

It should be mentioned that most of the Vector Macros are 
directly accessibl-e to you in the form of FORTRAN-llKe function 
references, as described in Chapter 14 of the FORTRAN manual, and 
discussed in a later chapter of this document. 



16-18 
04/01/81 

------------------------------·--------------------------------------_, 
16.0 AUTOMATIC VECTORIZATION 
16.10 CRITERIA FOR VECTORIZABILITY OF INNERMOS1 DO-LOOPS 

16.10 CRITERIA FOR VECTORIZABILITY OF INNERMOST DO-LOO~S 

Below follows a list of the criteria that determine the 
vectorizability of an innermost do-loop. All conditions must be 
satisfied, but it should be emphasized that the set reflects the 
status of the FORTRAN compiler with release number 1.5.l and 
1.5.2. Future releases can be expected to relax some of the 
conditions, in particular those numbered 1, 3, and 7. 

The list is intended as a guide, and as a summary of the 
presentation given in the previous sections of this chapter. 
Conditions 4~7 deserve some extra attention since they are not 
discussed there. The question of vectorizability of second 
innermost do-loops has been ignored so far, but will be briefly 
discussed on in the next section. 

1) All data 
logical. 

elements must be of type real, 
More than one type may occur. 

integer or 

2) All appearing operators must belong to the following set: 
+ - * I ** .AND. .OR. .XOR. .NOT. 

In particular, relational operators are not permitted. 

3) No function or subroutine references may occur, except to 
the following functions: 

ABS 
SIN 
EXP 

IABS 
cos 
ALOG 

FLOAT 
TAN 
ALOG10 

IFIX 
ASIN 

SQRT 
ACOS ATAN 

4) Variables on the left hand side of an equal sign may not 
appear in EQUIVALENCE statements. (No longer a condition 
in FORTRAN, Release 1.5.2, provided the U-option is 
selected). 

5) No IF or GOTO statements may appear. 
(Otherwise factorization would not be possible). 

6) No explicit vector statements may appear. 
(Explicit vectorization is treated in Chapters 17-18). 

7) Loop-dependent array subscripts must be expresse.d in the 
form J, J+N, or J-N, where J is the loo~.-inoex and N is 
an integer constant (not a variable!). On the CYBER 205 
the form J*N is also permitted. 



16.0 AUTOMATIC VECTORIZATION 
16.10 CRITERIA FOR VECTORIZABILITY OF INNERMOST DO-LOOPS 

16-19 
04/01/81 

8) Array references must correspond to sequential memory 
access. This condition is somewhat relaxed on the CYBER 
205, as discussed in section 16.6. 

9) The loop must not be recursive (section 16.8). 
Exceptions are constructs that can be stacklibed (section 
16.9). 

10) The loop must be completely factorizable (section 16.5). 
This is automatically true if conditions (5) and (9) are 
satisfied. 

11) The iteration count must not exceed 655j5, as discussed 
in section 16.7. 

16.11 VECTORIZATION OF SECOND INNERMOST DO-LOOPS 

A do-loop containing a vectorizable do-loop is under certain 
circumstances vectorizable in the sense that the vector lengths 
established by the innermost loop can be extended, as in the 
following example: 

DIMENSION A(200,10),B(200,10),C(200,10) 
DO 10 K = 1,5 
DO 10 J = 1,200 

10 A(J,K) = B(J,K) + C(J,K) 

The innermost loop is clearly vectorizable, with a vector length 
of 200. Since the DIMENSION statement declares column lengths of 
exactly 200 for ~11 the arrays involved, it is now possible to 
perceive the doubly nested loop as one long vector addition of 
the first 5*200=1000 elements of arrays B and C. This is based 
on the knowledge of how the array elements are stored in memory: 
(B(J,l), J=l,200) is immediately followed by (B(J,2), J=l,200), 
etc.. If, however, any one of the arrays A, B, or Chad been 
dimensioned with a first dimension different from the iteration 
count in the innermost loop, the automatic vectorizer would not 
have been able to touch the outermost loop. The following 
example illustrates that: 

DIMENSION A(200,10) ,B(200,10) ,cc2ee.1·,10) 
DO 10 K = 1,5 
DO 10 J = 1,199 

10 A(J,K) = B(J,K) + C(J,K) 



16.0 AUTOMATIC VECTORIZATION 
16.11 VECTORIZATION OF SECOND INNERMOST DO-LOOPS 

16-20 
04/01/81 

The active elements in this doubly nested loop are the first 199 
elements of the first 5 columns of each array, or locations 
number 1-199, 201-399, 401-599, 601-799, 801-999. Clearly this 
does not represent contiguous locations in memory, and 
vectorization beyond the innermost level of loops is not to be 
exp~cted. 

A variable initial, terminal, or incrementation parameter in the 
innermost loop prohibits the vectorization of any containing 
loop. In such cases, namely, the compiler has no way of 
qetermining whether the innermost loop really operates on full 
columns. If, on the other hand, the outer loop has a variable 
loop parameter, vectorization can take place provided the 
question about maximum vector length (section 16.7) presents no 
hinder. The following loop is therefore "doubly" vectorizable if 
the arrays are dimensioned (200,10), but not if they are 
d i. Ille n s i 0 n e d ( 2 0 0 ' 3 3 0 ) : 

DO 10 K = l,N 
DO 10 J = 1,200 

10 A(J,K) = B(J,K) + C(J,K) 

When the vectorization of the innermost loop requires 
GATHER/SCATTER utilization (CYBER 205 only)' the problem with 
contiguity becomes too ditficult for the compiler, and the 
outermost loop in the following example is therefore not 
vectorizable (yet): 

DO 10 J = 1,200 
DO 10 K = l,lfl 

10 A(J,K) = B(J,K) + C(J,K) 

If, in a doubly nested loop, any statement appears between the 
two DO statements, the outermost loop is not vectorizable. This 
is fundamentally true, and does not reflect an incompetence of 
the compiler. Consider, namely, the following code: 

DIM ENS I ON A ( 5 0 , 8 0 ) , X ( 8 0 ) , Y ( 8 0 ) , R ( 5 0 ) , S ( 5 '1J ) 

DO 10 J = 1,80 
T = X(J)**2 + Y(J}**2 
DO 10 K = 1,50 

10 A(K,J) = T*R(K) + S(K)/T 



16.0 AUTOMATIC VECTORIZATION 
16.11 VECTORIZATION OF SECOND INNERMOST DO-LOOPS 

16-21 
04/01/81 

To display clearly the vector structure of this construct we must 
introduce a temporary array, F(80}, ana then split the loops: 

DO 20 J = 1,80 
20 F(J} = X(J)**2 + Y(J)*•2 

DO 21 J = l,a0 
DO 21 K = 1,50 

21 A(K,J} = F(J}*R(K} + S(K}/F(J} 

To split loops into separate blocks of code like this is not 
possible for the compiler. But for the programmer it's of course 
an easy task, and the result is that the computations of the 
squares and their addition now will be done in vector mode, since 
the 20-loop easily vectorizes. A closer look at the doubly 
nested 21-loop, however, reveals that there is still no easy way 
to handle these computations in vector mode if the vector length 
is required to be 50*80=4000. 

16.12 AUTOMATIC VECTORIZATION - IS IT SUFFICIENT? 

A programmer that well understands the vector concept and its 
implementation can, no doubt, write good, transportable, scalar 
code in such a way that use of the automatic vectorizer will 
greatly speed up the execution on the CYBER 203/205. That's an 
indisputable fact, and it goes without saying that the same is 
true on other vector processors with good automatic vectorizers. 
Nevertheless, arguments can be made for going a step further: 

l} The presence of a startup time in the general formula for 
a vector instruction (time=startup+N*stream rate} 
indicates that loops with small N-values may be more 
efficiently executed in scalar mode. But the automatic 
vectorizer cannot be enticed to avoid the vectorization 
of such loops it's all or nothing. Even if an 
"exclusion mechanism" did exist, it would probably not be 
very effective since most iteration counts are not known 
at compile time. (Subroutines can, of course, be 
compiled separately or in blocks, a method that partially 
solves the problem}. 



16.0 AUTOMATIC VECTORIZATION 
16.12 AUTOMATIC VECTORIZATION - IS IT SUFFICIENT? 

16-22 
04/01/81 

2) By totally relying on the automatic vectorizer the user 
is easily deceived into believing that he/she 
automatically obtains the maximum performance that the 
computer can offer. Su~h a conclusion is, of course, 
completely false - regardless of the advertised 
sophistication of the computer in question. Not only can 
the programmer "create" vector structure by manually 
reorganizing the data flow (primarily), as discussed in 
the previous sections of this chapter, but limitations of 
the FORTRAN language simply prevents any compiler from 
utilizing the full capacity ot today's super computers. 
In addition, FORTRAN is not complex (rich) enough to 
allow the user to furnish the compiler with all available 
information, resulting in the rejection of some otherwise 
vectorizable constructs. 

From the above, it is clear that any vector processor claiming to 
offer the state-of-the-art of vector computing must, in addition 
to an automatic vectorizer~ give the user convenient access to 
those of its capacities that are not available through standard 
FORTRAN. The CYBER 200 series of computers meets these demands 
by featuring a FORTRAN language containing vector 
extensions, giving the user complete access to its computing 
power. These vector extensions exist superimposed on the normal, 
scalar language syntax, and many are very "FORTRAN-like", making 
them convenient to use. The manual introduction of vector syntax 
into your code is termed "explicit vectorization", and is the 
subject of the next chapter • 



17-1 
04/01/81 

---------------~------~--------~-~-----~----------~-~----~--------~--
17.0 EXPLICIT VECTORIZATION 

17.0 EXPLICtT VECTORIZATION 

17.1 INTRODUCTION 

A simple fact of life is that sometimes you just won't be 
satisfied with what the automatic vectorizer produces. Maybe 
your do-loops predominantly have very small iteration counts, so 
that instead of having them all vectorized you would be much 
happier if only a selected few were run in vector mode. Maybe 
you have do-loops that to your trained eye clearly exhibit vector 
structure, but which don't qualify for automatic vectorization. 
Or maybe you simply belong to the school of programmers that 
likes to exercise as much power as possible over the machine. 

Regardless of the reason for your interest, the answer to your 
needs is provided by the CYBER 200 FORTRAN c=ompiler. Its main 
body functions much the same way as other FORTRAN compilers, 
accepting scalar FORTRAN code as input and producing scalar 
machine code as output. But in two ways it is greatly enhanced: 

1) A vector syntax is provided as an extension of the 
st•ndard scalar syntax, allowing the programmer to 
explicitly vectorize code structures at his/her own 
discretion. The vector syntax itself is in turn extended 

·by a large number of highly optimized SYSLIB functions 
(trigonometric and others) that accept vector arguments 
and deliver vector results. All such functions have 
convenient FORTRAN-like calling sequences. 

2) The complete set of machine instructions are available 
to the FORTRAN programmer in the form of a special 
call-syntax. That may well be more then you asked for, 
and if you don't do particularly tricky manipulations you 
will probably never need to make use of it. But it's 
nice to know that the power is there in case of 

. emergency • 



17.0 EXPLICIT VECTORIZATION 
17.2 VECTOR SYNTAX - THE EXPLICI~ TYPE 

17.2 VECTOR SYNTAX - THE EXPLICIT TYPE 

17-:l 
04/01/81 

To completely define a vector in CYBER 200 FORTRAN, three things 
must be specified: data type, starting address, and length. A 
vector is defined as contiguous storage locations in memory, and 
since arrays are also confined to memory, the starting address is 
conveniently represented by an array element. Eacn array in your 
code has a well defined data type, declared either implicitly or 
by use of type declaration statements, and the array element used 
as a pointer will therefore also automatically define the data 
type of the vector elements. The length, finally, is specified 
as an additional subscript preceded by a semicolon (;). Some 
examples to illustrate this: 

DIMENSION A(l00) ,KQ(50,5) 
COMPLEX C(l00,100) 
ROWWISE R(l000,2000) 

A(l;60) 

A(5;90) 

KQ(l,2;100) 

C(l,1;5*100) 

R(5,5;996) 

A real vector consisting of 
(A(J) ,J=l,60) 

A real vector consisting of 
(A(J),J=S,94) 

An integer vector consisting of 
((KQ(J,K),J=l,50),K=2,3) 

A complex vector consisting of 
((C(J,K),J=l,100),K=l,5) 
This represents 1000 words of memory. 

A real vector consisting of 
(R(5,J) ,J=5,1000) 

Legal data types are REAL, INTEGER, COMPLEX, DOUBLE PRECISION, 
and BIT. All subscripts, including the length, may be specified 
with integer expressions rather than integer constants. 

We now have the freedom to manually vectorize any loop displaying 
vector structure, regardless of whether the automatic vectorizer 
would have been happy with it or not. In particular, the data 
types COMPLEX and DOUBLE PRECISION are no longer .excluded, 
loop-dependent subscripts are allowed to be quite a bit more 
complicated, and EQUIVALENCE statements present no hinder. The 
following scalar loops, followed by their vector equivalents, 
illustrate the simple implementation of the vector syntax: 



"· 

17-3 
04/01/81 

17.0 EXPLICIT VECTORIZATION 
17.2 VECTOR SYNTAX - THE EXPLICIT TYPE 

Scalar(10) 

Vector(l0) 

Scalar(20) 

Vector(20a) 

Vector(20b) 

Scalar(30) 

Vector(30) 

Scalar(40) 

Vector(40) 

DO 10 J = 1,100 
10 R(J) = S(J) + T(J+KX) 

R(l:l00) = S(l:l00) + T(l+KX:l00) 

DIMENSION A(200,10),Y(200,10) ,Z(200,10) 
DO 20 K = 1,N 
DO 20 J = 1,200 

20 A(J,K) = Y(J,K) + Z(J,K) 

DO 2ft'J K = 1,N 
20 A(l,K:200) = Y(l,K:200) + Z(l,K:200) 

A ( 1 , 1 : 2 0 0 *N) = Y ( 1 , 1 : 2 0 0 *N) + Z ( 1 , 1 : 2 0 0 *N) 

COMPLEX CX(l00),CY(l00) 
DO 30 J = L,M 

30 CX(J) = CY(J) * CON 

CX(L:M-L+l) = CY(L:M-L+l)* CON 

DO 40 K = l,N 
DO 40 J = l,M 

40 B(J) = B(J) + A(J,K)*X(K)-

DO 40 K = l,N 
40 B(l:M) = B(l:M) + A(l,K:M)*X(K) 

With the exception of Vector(40), each vector statement above 
will be compiled as a single vector instruction, just as if the 
automatic vectorizer had vectorized the corresponding scalar 
loop. In the Vector(40) case, however, that is true only on the 
CYBER 205, where the linked triad instruction will be used. On 
the CYBER 203, the vector expression wil~ be split by the 
compiler into two instructions: one vector multiply with 
broadcast, placing the result vector in the dynamic stack, 
followed by a vector add. 

Since the semicolon notation explicitly displays all relevant 
characteristics of a given vector, it is often referrep to as the 
explicit vector notation. The most important other ty?e, which 
is the implicit, or descriptor notation, is discussed in the next 
section. 



17.0 EXPLICIT VECTORIZATION 
17.3 VECTOR SYNTAX - THE IMPLICIT TYPE (DESCRIPTORS) 

17.3 VECTOR SYNTAX - THE IMPLICIT TYPE (DESCRIPTORS) 

17-4 
04/01/81 

On the machine level a vector is represented as a 64-bit word 
containing the integer length in the leftmost 16 bits, the length 
field, and the address of the starting location in the rightmost 
48, the address field: 

+----------+----------------------------------------+ 
I length I starting address I 
+----------+----------------------------------------+ 

0 . 15 16 63 

Suen a word is called a descriptor, and may be considered as a 
scalar variable invented by the compiler. In general, the 
register file is used to hold its value. If array A starts at 
virtual address #400000, the vectors A(l;64) and A(2;64) are 
represented as follows: 

A(l;64) 
A(2;64) 

0040 000000400000 
0040 000000400040 

The information about data type is not present in the descriptor, 
but the compiler knows, and will implicitly forward its knowledge 
to the vector processor by choosing the right type of machine 
instruction. It is instructive to take a look on the assembly 
lan1uage (META) representation of the machine code that the 
compiler generates for a floating point vector add: 

FORTRAN A(l;N) = B(l;N) + C(l;N) 

META PACK N,ADDA,AD 
PACK N,ADDB,BD 
PACK N,ADDC,CD 
ADDNV BD,CD,AD 

All symbols represent registers. The PACK instruction strips off 
the rightmost 16 bits from the register corresponding to the 
first (integer) argument, N, and places them in the length field 
of the third, AD. The second register is assumed to co_qtain an 
address i11 the rightmost 48 bits, which is copied into the same 
field of the third. The so assembled descriptors are then used 
as arguments of the floating point vector add instruction, 
ADDNV. 



17.0 EXPLICIT VECTORIZATION 
17.3 VECTOR SYNTAX - THE IMPLICIT TYPE (DESCRIPTORS) 

17-5 
04/01/81 

Thus, each vector instruction requires a certain amount of 
overhead in the form of scalar instructions. That overhead, 
tiowever, usually executes in "zero" time, since while one vector 
instruction is running, the scalar processor can work to prepare 
for the next. Several vector instructions on the CYBER 203, and 
almost all on the CYBER 205, namely, permit overlapping scalar 
processing provided no memory references (LOAD/STORE) appear. 

One very important piece of information can be gathered from the 
META code above: no checking of the value of N is performed at 
execution time. The machine couldn't care less about how many 
bits are used to represent N in the register - the rightmost 16 
bits are just stripped off and regarded as the vector length. 
The largest number representable by 16 bits is 2**16-1=65535, 
which explains why no vector can be longer. But if the value of 
N happened to be greater, say 66000, the length actually used 
wou1d be MOD(65536,N), or 464. Explicit vectorization thus 
requires the programmer to ascertain that the maximum vector 
length is not exceeded. 

Descriptors exist in CYBER 200 FORTRAN as a special data type, 
and can be assembled and used directly by the programmer. The 
executable ASSIGN statement corresponds to the PACK instruction, 
and the descriptor to be assembled must appear in a 
non-executable DESCRIPTOR statement: 

DESCRIPTOR AD,BD,CD 

ASSIGN AD,A(l:N) 
ASSIGN BD,B(l:N) 
ASSIGN CD,C(l:N) 
AD = BD + CD 

This FORTRAN code directly corresponds to the META code discussed 
above. Each descriptor represents a vector~ and each statement 
(excluding ASSIGN) containing one or more descriptors is, 
therefore, automatically a vector statement. 

Descriptors must either implicitly or by explicit type 
declaration be declared to have the same data type as the arrays 
with which they are linked in ASSIGN statements. A descriptor 
can be defined once and for all in an ASSIGN statement and then 
be used several times, or it can be defined many· times with 
ditferent values. A given vector statement may contain both 
explicit and implicit (descriptor) notation in a mixture. For 
all practical purposes the two notations result in equally 



17-6 
04/01/81 

~----~~-------------------------~-----------------------------------
17.0 EXPLICIT VECTORIZATION 
17.3 VECTOR SY~TAX - THE IMPLICIT TYPE (DESCRIPTORS) 

efficient machine code the overhead saved by defining and 
reusing descriptors rather than using explicit vector notation i~ 
probably buried under vector instructions anyway. 

Descriptors are convenient to use, look nice, and save 
programming effort. To use them is also an excellent way of 
confusing the reader of your code, since the defining 
characteristics of the vectors appear only in the ASSIGN 
statements, and not in the vector statements themselves. Should 
you nevertheless choose to use the implicit notation, the 
legibility of your code can be enhanced if you abide by the 
following rules: 

1) Let all descriptor names end with the letter D, and avoid 
a trailing D for all other variables. If possible, let 
the descriptor name be the name of the array it's 
pointing into, and then append a D. 

2) Place all ASSIGN statements just prior to the 
statement(s) in which the descriptors are used. Don't 
hesitate to redefine a descriptor to the same value 
several times - clarity is worth a lot. 

17.4 V-FUNCTIONS 

Almost all of the standard scalar SYSLIB functions, oftered in 
any normal FORTRAN environment, are also available as vector 
functions on the CYBER 203/205. Those not available in vector 
mode are COTAN, SINH, COSH, TANH, RANF, SECOND, TIME, DATE plus 
all functions whose input arguments or value is of data type 
DOUBLE PRECISION, save for DBLE. With the exception of vector 
MAX/MIN (section 17.6), the name of the vector version of a given 
scalar function is simply the scalar name prefixed by a V, and we 
will refer to them as V-functions. A complete list of them is: 

VFLOAT VA INT VINT VI FIX VABS VIA BS VSQRT 
VSIGN VI SIGN VMOD VA MOD VI DIM VOIM 
VSIN vcos VTAN VAS IN VA COS VATAN VATAN2 
VEXP VA LOG VALOG10 
VSNGL VDBLE VREAL VAIMAG VCMPLX VCONJG 
VCABS VCSQRT VCSIN vccos VCEXP VCLOG 

The input arguments to a V-function is either one vector (Vl) , or 
two vectors (Vl and V2) , or one vector and one scalar. Vector 



17.0 EXPLICIT VECTORIZATION 
17.4 V-FUNCTIONS 

17-7 
04/01/81 

----------------------------------------------------------------~---

expressions may not be used. The result is always a vector (VR) 
and we must, therefore, think of the V-functions as vector 
~ntities, just as we think of scalar functions as scalar 
entities. Since a vector represents storage in memory, we must 
in the syntax of the V-functions also include a pointer to where 
the result, or its "value-vector", shall reside. That is done by 
making VR part of the V-function expression itself: 

VFUNC(Vl;VR) 
VFUNC (Vl, V2 ;VR) 

This syntax allows us to treat a V-function expression as a true 
vector with a data type determined by the data type of VR. Let A 
and B be real arrays and X complex. Then the following is true: 

VSIN(A(l;N) ; B(l;N)) 
VCMPLX(A(l;N),B(l;N) ; X(l;N)) 

is a real vector 
is a complex vector 

The V-functions can be used as vectors in vector expressions but 
may not appear as arguments of other V-functions. The most 
common usage is probably in vector assignment statements where 
the target vector (lett-hand side) coincides with the 
V-function's value-vector location, as in: 

B(l;N) = VEXP(A(l;N) ; B(l;N)) 

Had the target vector been different from B(l;N), the 
value-vector, then a copy to the target vector would have been 
required after the exponerttiation. The "redundancy" in the 
expression above tells the compiler that such a copy operation is 
not needed. 

we can now explicitly "vectorize" almost all SYSLIB function 
references not only those accepted by the automatic 
vectorizer. The following examples illustrate this. 

Scalar(l0) 

Vector(l0) 

Scalar(20) 

Vector(20) 

DO 10 J = l,N 
A(J) = ABS(B(J)) 

.10 CONTINUE 

A ( 1 ; N) = VABS ( B ( 1 ; N) ; A ( 1 ; N) ) 

DO 20 J = l,N 
B(J) = SQRT(l.0 - COS(A(J))**2) 

20 CONTINUE 

B(l;N) = 1.0 - VCOS(A(l;N) ; B(l;N))•A2 
B(l;N) = VSQRT(B(l;N) ; B(l;N)} 



17.0 EXPLICIT VECTORIZATION 
17.4 V-FUNCTIONS 

Scalar(30) DO 30J = l,N 
A (J) = TAN (X {J)) + TAN (Y {J)) 

30 CONTINUE 

17-8 
04/01/81 

Vector(30) A (1 :N} =VTAN (X (1 ;N) :T (1 :N)) +VTAN (Y (1 ;N): S (1 :N)} 

In Vector(3flJ) the two temporary arrays T and S were necessary to 
introduce, for obvious reasons. 

The vector length at · which the V-functions outperform their 
scalar counterpart is in general quite small - maybe 5 or less. 
The stream rate is about 3-6 times higher on the CYBER 203, and 
for most of them significantly more than that on the CYBER 205. 
Their introduction into your code will therefore almost always 
give you a substantial speedup. Performing all divides in vector 
mode and using V-functions wherever possible should be your first 
goal in terms of explicit vectorization. It may be all you 
need! 

Note that a loop containing a divide or a function reference may 
otten be partially vectorized: 

DO 40 J = l,N 
A(J) = SIN(X{J))/Y(J) 
IF(A{J)) 37,38,39 

• 

This loop is certainly not automatically vectorizable, and it may 
even be hard to do much the explicit way. However, assuming that 
arrays A, X, and Y are not unduly tampered with in the latter 
part of the loop, a partial vectorization is possible by 
extracting the first line of code. This time we will use 
descripto~s, to illustrate that they can be used interchangeably 
with explicit vector notation: 

DESCRIPTOR AD,XD,YD 

ASSIGN AD, A (1 ; N) 
ASSIGN XD,X(l;N) 
ASSIGN YD,Y{l;N) 
AD = VSIN{XD;AD}/YD 
DO 40 J = l,N 
IF (A{J)) 31,38,39 



17.0 EXPLICIT VECTORIZATION 
17.5 CONTROL VECTORS 

17.5 CONTROL VECTORS 

17-9 
04/01/81 

A logical constant or variable occupies one word of storage. 
This is true on the CYBER 203/205 as well as on most other 
machines. However, only the rightmost bit is used: 1 for .TRUE. 
and 0 for .FALSE •• Needless to say, this is a little wasteful 
why not pack 64 logical.values in each word? Indeed, that is 
what can be accomplished on the CYBER 203/205 by using the data 
type BIT. Arrays of type BIT are typically used to control 
vector operations, and we therefore often talk about control 
vectors rather than BIT vectors. A descriptor that is to be used 
to represent a BIT vector must also be declared as data type BIT, 
as in the following example: 

DESCRIPTOR BVD 
BIT BV(l00),BVD 
REAL A(ll0),B(l00). 
• • 
ASSIGN BVD,BV(l7100) 
BVD=A(l7100).GT.0. 
B(l7100)=Q8VCTRL(A(l7100) ,BVD7B(l7100)) 

The first vector statement compares each element of A with zero. 
If A(K).GT.0. the BIT element BV(K) is set to 1, and otherwise 
it is cleared to e. That provides us with a string of lee bits 
whose value reflects the outcome of the 100 comparisons. 
Subsequently, in the last line, a QBV-function is invoked, using 
A(l7100) as source vector, BVD as control vector, and B(l7100) as 
target. We will talk more about QB-functions (QBV and QBS) in a 
later section, but it doesn't hurt to have a preview. ·QBVCTRL 
copies the Kth element of the source vector into the Kth location 
of the target vector if the Kth bit of the control vector is set, 
and does nothing otherwise. The vector instructions above thus 
perform the same work as the following scalar loop, which without 
the use of a control vector clearly would not have been 
vectorizable: 

DO 10 J = 1,100 
IF (A(J).GT.0.) B(J) = A(J) 

10 CONTINUE 

QBVCTRL handles only real or integer vectors. It can, just like 
the V-functions, be perceived as a vector of the same data type 
as its value vector, and may thus appear in vector expressions. 



17.0 EXPLICIT VECTORIZATION 
17.5 CONTROL VECTORS 

17-10 
04/01/81 

Sometimes it can be convenient to compute both desired and 
undesired results, storing them in a temporary array, and then 
transfer only the former ones into the proper target array: 

Scalar DIMENSION A(l00) ,X(l00) 
DO 10 J = l,N 
IF ( X ( J ) • GT • 0 • ) A ( J ) = COS ( X ( J ) ) 
IF (X(J).LE.0.) A(J) = SIN(X(J)) 

10 CONTINUE 

Vector · DIMENSION A(l00) ,X(l00) ,T(l00) 
BIT BIT(l00) 
BIT(l;N) = X(l;N).LE.0. 
A(l;N) = VCOS(X(l;N) ; A(l;N)) 
T ( 1 ; N) = VS IN ( X ( 1 ; N) ; T ( 1 ; N) ) 
A(l;N) = Q8VCTRL(T(l;N),BIT(l;N) ; A(l;N)) 

An even more efficient solution would, of course, be to add pi/2 
to the elements of X that are positive, and then make only N 
trigonometric function references rather than 2N: 

PIHALF = ACOS(0.) 
BIT(l;N) = X(l;N).LE.0. 
T(l;N) = X(l;N)+PIHALF 
T(l;N) = Q8VCTRL(X(l;N),BIT(l;N) ; T(l;N)) 
A (1 ;N) = VSIN (T (1 ;N) ; A (1 ;N) 

Two Q8V-functions are available to produce cyclic patterns of 
bits. Q8VMKO creates a bit vector with leading l's and pads with 
0's to the full cycle length, whereafter it repeats the pattern 
until the length of the value vector (of type BIT) is exhausted. 
The first argument specifies the number of leading l's, and the 
second the cycle length, which need not be a divisor of N. 
QSVMKZ works the same way, but starts with leading 0's and pads 
with l's: 

BV(l;N)=Q8VMK0(2,3;BV(l;N)) 
BV(l;N)=Q8VMKZ(2,3;BV(l;N)) 

produces 11011011 ••• 
produces 0010~100 ••• 

Note that bit vectors can be perceived as strings of logical 
variables, indicating that they can be used in expressic)ns with 
logical operators: 



17-11 
04/01/81 

~~-~~-~~~~~~~-~-~~~---~~~~----~------~-~---~---~~-----~-------------

17.0 EXPLICIT VECTORIZATION 
17.S CONTROL VECTORS 

REAL X(l00),Y(l00),A(l00),B(l00) 
BIT Bl(l00),B2(100) ,B3(100) . . . 
Bl(l;N) = X(l;N).GT.Y(l;N) 
B2(1;N) = A(l;N).EQ.B(l;N) 
B3(l;N) = Bl(l;N) .OR.B2(l;N) 

Since an equal sign connects items of the same data type, we must 
perceive A(l;N).EQ.B(l;N) as a bit vector. The following 
expression is thus legal: 

B3(l;N) =,Bl(l;N).OR.A(l;N).EQ.B(l;N) 

How do you clear (zero) a bit vector? Well, try this one: 

B3(l;N) = B3(l;N).XOR.B3(l;N) 

To conclude this section we 
vectors with cyclic patterns 
vectorization problem: 

Problem 

will 
by 

illustrate 
solving 

the use· of bit 
the following 

Let X be dimensioned X(N,N), where N is less than 250, and 
perform the following operation in vector mode: 

DO 18 J = 2,N 
DO 18 K = l,N 

10 X(J-1,K) = X(J-1,K) + X(J,K) 

A translation to english is: For J=2,N, replace row(J-1) with 
row(j-1) + row(J). 

Solution 

First off, we observe that the loops can be switched. 
Furthermore, there is no recursion, not even with respect to J: 
X(J-1,K) and X(J,K) are both "old" values, since J is increasing 
(forward reference). 

DO 10 K = l,N 
DO 10 J = 2,N 

10 X(J-1,K) = X(J-1,K)+X(J,K) 

Now the vector structure is apparent, and the innermost loop is 
easily vectorized: 



17.0 EXPLICIT VECTORIZATION 
17.5 CONTROL VECTORS 

DO 10 K = l,N 
10 X(l,K;N-1) = X(l,K;N-1) + X(2,K;N-l) 

17-12 
04/01/81 

To clarify what's really happening, let's assume that N=3, and 
label the elements of X consecutively as l,2,3, ••• t9. The work 
performed by the loop above can now be depicted as follows: 

1 
+ 2 

2 
3 

3 
x 

4 
5 

5 
6 

6 
x 

7 
8 

8 
9 

9 
x 

1+2 2+3 x 4+5 5+6 x 7+8 8+9 x 

The picture makes it obvious that if we had a way of excluding 
every 3rd (Nth) element from the summation, we would only need 
one vector add. Such a solution is indeed possible: 

DESCRIPTOR BITD,XD,TD 
BIT BIT(N,N),BITD· 
DIMENSION X(N,N),T(N,N) 

L = N*N-1 
ASSIGN XD,X(l,l;L) 
ASSIGN TD,T(l,l;L) 
ASSIGN BITD,BIT(l,l;L) 
BITD = QSVMKO(N-1,N 7 BITD) 
TD= XO + X(2,l;L) 
XO = QSVCTRL(TD,BITD ; XD) 

This solution requires only 3 startup times but manipulates 
3*(N*N-l) vector elements, while the former requires N startup 
times and manipulates N*N-N vector elements. For small N, the 
startup times dominate, while for large N the work performed 
(proportional to N*N) becomes the t1mekiller. The bit vector 
solution is favorable for N less than 142 on the CYBER 203, and 
for N less than 84 on the CYBER 205. As we shall see later, a 
third solution is possible (using the special CALL-syntax or the 
WHERE statement) which will always be faster than performing the 
additions one column at a time. 



17-13 
04/01/81 

-~---------------------------------------------------~-----~~------~ 
17.0 EXPLICIT VECTORIZATION 
17.6 THE WHERE STATEMENT 
--------------------------------------------------------------------

17.6 THE WHERE STATEMENT 

As a standard feature on both the CYBER 203 and CYBER 205, almost 
all vector instructions accept an optional control vector. That 
provides a means of, figuratively, turning a given vector 
opera~ion on and off according to a specific bit pattern. In 
reality the operation in question is always performed for each 
vector element, but a 1 in the Kth position of the control vector 
says "store the result" while a 0 says "throw it away". We have 
already seen an example of that in Q8VCTRL, which moves an 
elemen~ from the source vector to the target vector only when the 
corresponding bit in the control vector is set, and does nothing 
otherwise. 

Some QB-functions (section 17.7) accept an optional control 
vector argument, but the syntax for basic arithmetic operations 
does not permit a similar usage·. If the current FORTRAN compiler 
has release number 1.5.l or less, then the use of control vectors 
will in many cases be possible only via the special call-syntax 
(CALL Q8 ••• ) introduced in section 17.8. In Release 1.5.2, 
however, which is scheduled for fall 1981, the use of control 
vectors has been greatly facilitated by the introduction of the 
WHERE statement. The general format of the basic structure is: 

WHERE (bitexp) vexp 

The bit expression, bitexp, can be either a bit vector (control 
vector) in explicit or descriptor form, or any expression that 
evaluates to a bit vector, such as A(l:N).NE.0., where A is a 
real or integer array. The vector expression, vexp, can be any 
vector assignment statement containing one or several of the 
operators +,-,*,/, and/or one or several of the function 
references VFLOAT, VIFIX, VINT, VAINT, VSQRT, VABS, VIABS. The 
only data types allowed are real and integer. Some examples will 
illustrate the use: 

Scalar(l0) 

Vector(l0) 

Scalar(20) 

DO 10 J = l,N 
IF (Y(J).NE.0.) A(J) = X(J)/Y(J) 

10 CONTINUE 

WHERE (Y(l:N).NE.0.) A(l:N)=X(l:N)/Y(l:N) 

DO 20 J = l,N 
IF (Y(J).GE.0.) X(J) = SQRT(Y(J)) 

20 CONTINUE 



17.0 EXPLICIT VECTORIZATION 
17.6 THE WHERE STATEMENT 

Vector(20) BIT BIT(N) ,BITD 
DESCRIPTOR BITD 
ASSIGN BITD,BIT(l;N) 
BITD = Y(l;N) .GE.0. 

17-14 
04/01/81 

WHRRE (BITD) X(l;N) = VSQRT(Y(l;N);X(l;N)) 

When operations are guided by control vectors in this manner, 
dividing by zero or taking the square root of a negative number 
will not cause abortions, since the produced indefinites are 
thrown away, and therefore ignored. 

We can now solve the problem ih the end of the previous section 
more efficiently. In fact, the vector code below always executes 
faster than when the additions are done a column at a time: 

Scalar 

Vector 

DIMENSION X(N,N) 
DO 10 J = 2,N 
DO 10 K = l ,N · 

10 X(J-1,K) = X(J-1,K) + X(J,K) 

BIT BIT(N,N) ,BITD 
DESCRIPTOR BITD,XD 
DIMENSION X(N,N) 
L = N*N-1 
ASSIGN BITD,BIT(l,l;L) 
BITD = QSVMKO(N-1,N ; BlTD) 
ASSIGN XD,X(l,l;L) 
WHERE (BITD) XD = XD + X(2,l;L) 

A more complicated situation occurs when the outcome of an 
IF-test determines which of two blocks of code that should be 
executed. In such cases the block WHERE and block OTHERWISE 
syntax is what you need. Two types of structures are permitted: 

WHERE (bitexp) 
vector statements 

END WHERE 

WHERE (bitexp) 
vector statements 

OTHERWISE 
vector statements 

END WHERE 

Any number of vector statements may appear in the blocks between 
the boundary statements WHERE, OTHERWISE, and END WHERE, but they 
must all abide by the rules for the single vector expression in 
the WHERE statement defined earlier. All operations in the WHERE 
block (between WHERE and END WHERE or between WHERE and 
OTHERWISE) will be performed for all elements, but a result is 
stor 0 a only when the corresponding bit in "bitexp" is set {=l). 



17-15 
04/01/81 

17.0 EXPLICIT VECTORIZATION 
17.6 THE WHERE STATEMENT 

Similarly, the statements in the OTHERWISE block (between 
OTHERWISE and END WHERE) will cause a result to be stored only 
when the corresponding bit is cleared (=0). When the OTHERWISE 
statement is present, the WHERE block may be empty. The 
following is a typical example [the vector 
temporary array T(N)]: 

version 

Scalar 

Vector 

DO 30 J = l,N 
Q = A(J) + SQRT(A(J)**2 + B(J)) 
IF (A(J).GT.0.) GOTO 20 
IF (Q.GT.0.) GOTO 20 
P(J) = A(J)*X(J)*(X(J)-B.)/16 
GOTO 30 

20 P(J) = Q/2 
30 CONTINUE 

T(l1N) = A(l1N)*A(l1N) + B(l1N) 
T(l1N) = VSQRT(T(l1N) 1 T(l;N)) 
T(l1N) = A(l1N) + T(l1N) 
WHERE (A(l1N).GT.0 •• OR. T(l1N).GT.0.) 

P(l;N) = .S*T(l1N) 
OTHERWISE 

P(l;N) = (1./16.)*A(l;N)*X(l;N) 
P(l1N) = P(l1N)*(X(l1N)-8.) 

END WHERE 

17.7 QB-FUNCTIONS 

uses a 

Many machine instructions performing vector operations that go a 
little beyond normal arithmetic have been made conveniently 
accessible to the FORTRAN programmer. That includes all so 
called Vector Macros, some of which have been mentioned earlier, 
but also many others. The established convention is that a name 
prefixed by QS indicates that the named function really 
corresponds to a direct machine instruction, and does not 
generate a subprogram call. OBS is used whenever a scalar result 
is computed, while Q8V means that the result is a vector. The 
arguments are usually one or two vectors (one of which may be a 
scalar), and in many cases a control vector may (or must} be 
specified to govern the operation in question. QBV-functions 
follow the same syntax as V-functions: the value vector must be 
specified as the last "argument", preceded by a semicplon. That 
is not true for OBS-functions - specifying storage for a scalar 
value would be somewhat meaningless. All QB-functions can be 
used in expressions; their data types are in general determined 
by their arguments. 



17-lb 
84/11/81 

-------------------------------------------~------------------------
17.0 EXPLICIT VECTORIZATION 
17.7 OS-FUNCTIONS 
--------~------------------------------~----------------------------

. 
The table below lists all OBS-functions. The descriptions are 
brief, and the manual (Chapter 14) should be consulted for 
details about usage. AD and BD symbolize vectors of length N, 
and point into arrays A and B respectively. The data type of A 
must agree with that of B, and may be either real ·or integer. X 
is a scalar of the same data type as A. K, N, and L are integer 
variables. An optional control vector can be used as an 
additional, last, argument in Q8SMAX, QSSMAXI, QSSMIN, QRSMINI, 
QSSSUM, and QBSPROD - consult your manual for details. 

X = QSSMAX(AD) 
K = Q8SMAXI(AD) 
X = Q8SMIN(AD) 
K = Q8SMINI(AD) 
X = Q8SDOT(AD,BD) 
X = Q8SSUM(AD) 
X = Q8SPROD(AD) 
N = Q8SCNT(BITD) 
L = Q8SLEN(AD) 
K = Q8SEQ(AD,BD) 
K = Q8SNE(AD,BD) 
K = f)PSGE(AD,BD) 
K = Q8SLT(AD,BD) 
Q8SEXTB 
Q8SINSB 
Q8SDFB 

X = MAXIMUM(A(J), J=l,N) 
A(K+l) = MAXIMUM(A(J), J=l,N) defines K. 
X = MINIMUM(A(J), J=l,N) 
A(K+l) = MINIMUM(A(J), J=l,N) defines K. 
X = SUM(A(J)*B(J), J=l,N) 
X = SUM(A(J), J=l,N) 
X = PRODUCT(A(J), J=l,N) 
N = # of l's in bit vector BITD. 
L = Length field of AD, converted to integer. 
(A(K+l) ,B(K+l)) first pair related by .EQ •• 
(A(K+l),B(K+l)) first pair related by .NE •• 
(A(K+l) ,B(K+l)) first pair related by .GE •• 
(A(K+l) ,B(K+l)) first pair related by .LT •• 
Extracts bits from a word - see manual. 
Inserts bits into a word - see manual. 
Tests data flag branch register -·see manual. 

'There are 10 Q8V-functions that perform some type of data motion, 
and 11 others doing miscellaneous work. We will first give the 
"calling sequences" to all of them. AD and BD symbolize real or 
integer source vectors, one of which may be a scalar. The arrays 
pointed into, A and B, must agree with each other in data type. 
X and Y are both either real or integer scalars while L, Kl, K2, 
and N are integers. IXD is an integer index vector, ZD is a 
control vector, and CD is a value vector (result) which agrees in 
data type with the first input argument - except in QSVMKO and 
08VMKZ, where CD is of type BIT. 



17-17 
04/01/81 

17.0 EXPLICIT VECTORIZATION 
17.7 QB-FUNCTIONS 
-------------------------· ------------------------------------------

Data Motion Others 

CD = Q8VCMPRS(AD,ZD:CD) CD = QBVINTL(X,Y:CD) 
CD = QBVCTRL (AD, ZD: CD) CD = QBVMKO (Kl,K2:CD) 
CD = Q8VGATHP(AD,L,N:CD) CD = Q8VMKZ (Kl,K2:CD) 
CD = Q8VGATHR(AD,IXD:CD) CD = QBVADJM(AD:CD) 
CD = Q8VMASK (AD,BD,ZD:CD) CD = Q8VAVG (AD,BD:CD) 
CD = Q8VMERG (AD,BD, ZD:CD) CD = Q8VAVGD(AD,BD:CD) 
CD = Q8VREV (AD: CD) CD = QBVDELT(AD:CD) 
CD = Q8VSCATP(AD,L,N:CD) IXD = Q8VEQI (AD,BD:IXD) 
CD = Q8VSCATR(AD,IXD:CD) IXD = Q8VGEI (AD,BD:IXD) 
rD = Q8VXPND (AD, ZD :CD) IXD = Q8VLTI (AD,BD:IXD) 

IXD = QBVNEI (AD,BD:IXD) 

A detailed description of how all of these Q8V-functions work 
appears in chapter 14 of your FORTRAN manual, and we will here 
only give a brief summary. Whenever a control vector (ZD) 
appears in the argument list, we will use .T. ana .F. to 
indicate what happens when the Kth bit, Z(K), is set and cleared 
respectively. In these cases, I and J are assumed to have the 
values 1 initially • 

Q8VCMPRS 
QBVCTRL 
Q8VGATHP 
QBVGATHR 
Q8VMASK 
QBVMERG 
QBVREV 
QBVSCATP 
Q8VSCATR 
QBVXPND 

Q8VINTL 
QBVMKO 
Q8VMKZ 
08VADJM 
QBVAVG 
Q8VAVGD 
QBVDELT 
QBVEQI 
QBVGEI 
QBVLTI 
Q8VNEI 

• T.: C(J)=A(K), J=J+l I .F.: no action. 
.T.: C(K)=A(K) I .F.: no action. 
(C(J)=A(l+(J-l)*L), J=l,N) 
(C(J)=A(IX(J)), J=l,N) 
.T.: C(K)=A(K) I .F.: C(K)=B(K) 
.T.: C(K)=A(I), I=I+l / .F.: C(K)=B(J), J=J+l 
(C(J)=A(N+l-J), J=l,N) 
(C(l+(J-l)*L)=A(J), J=l,N) 
(C(IX(J))=A(J), J=l,N) 
.T.: C(K)=A(I), I=I+l / .F.: C(K)=~ or 0.0 

(C(J)=X+(J-l)*Y, J=l,N) 
Cyclic bit pattern: Kl l's and (K2-Kl) 0's 
Cyclic bit pattern: Kl 0's and (K2-Kl) l's 
(C(J)=(A(J)+A(J+l))/2, J=l,N-1) 
(C(J)=(A(J)+B(J))/2, J=l,N) 
(C(J)=(A(J)-B(J))/2, J=l,N) 
(C(J)=(A(J)-A(J+l))/2, J=l,N-1) 
(IX(J) = QBSEQ(A(J) ,BO), J=l,N) 
(IX(J) = QBSGE(A(J),BD) I J=l,N) 
(IX(J) = Q8SLT(A(J) ,BO), J=l,N) 
(IX(J) = Q8SNE(A(J) ,BD), J=l,N) 



17-18 
14/11/81 

--------------------------------------------------------------------
17.0 EXPLICIT VECTORIZATION 
17.7 OS-FUNCTIONS 
----~--------------~------~-----------------------------------------

As you can see there is a vast body ot QB-functions available, 
many of which probably appear to perform somewhat peculiar 
tasks. Although at this point their usefulness may seem 
questionable, you will, no doubt, find that your appreciation 
increases gradually as you become more proficient in explicit 
vector programming. On the CYBER 20~ all of them represent 
significant time savings over scalar code, while that is true 
only for some on the CYBER 203. 

The execution time for a QB-function can be expressed as S+R*N, 
where S is a startup time, and R is a constant of 
proportionality. For Q8S-functions N is the length of the input 
vector(s), while for Q8V-tunctions it is the length of the result 
vector, CD. For non-iterative search functions, such as Q8SMAX 
and Q8SEQ, N represents the number of elements actually 
searched. For iterative search functions, such as Q8VEQI, the 
execution time must be expressed as S+(S'+R'~NN)*N, where NN is 
the average number of elements searched per iteration, and N is 
the length of AD and IXD. In these cases, thus, R=S'+R'*NN. 

The startup times can vary quite a bit from case to case, and it 
would be misleading to quote any "exact" values. As a general 
rule, though, they lie in the range 150-350 cycles on the CYBEF 
203, and 50-150 cycles on the CYBER 20~. The constant of 
proportionality, R, does in general not fluctuate very much, and 
we will therefore qoute typical and approximate R-values in the 
table below. Two R-values are given for each function: the first 
refers to the CYBER 2~3, and the second to the CYBER 205. As an 
example, the values given for Q8VGATHR are 40 and 5/4, which 
means that the time required to gather a vector of length N is 
40N cycles on the CYBER 203, and l.25N cycles on the CYBER 205 
plus relevant startup times. Remember: the timings are 
typical and approximate! 

Name 203 205 Name 203 205 Name 203 205 

Q8XMAX 13 1 Q8VCMPRS 2 1/2 Q8VINTL 2 1 
Q8SMAXI 13 1 Q8VCTRL 1 1/2 Q8VMKO 1/8-2 1/16-1 
Q8SMIN 13 1 Q8VGATHP 5/4 Q8VMKZ 1/8-2 i/16-1 
Q8SMINI 13 1 QBVGATHR 40 5/4 Q8VADJM 1 1/2 
Q8SDOT 1 :l 1 Q8VMASK 10 1/2 Q8VAVG 1 1/2 
Q8SSUM 11 1 Q8VMERG 8 1/2 Q8VAVGD 1 1/2 
QBSPROD 12 1 Q8VREV 8 1/2 QBVDELT 1 1/2 
Q8SCNT 1/8 1/16 Q8VSCATP 5/4 QAVEQI 160+NN 62+NN/2 
Q8SEQ 1 1/2 Q8VSCATR 38 5/4 

Q8VXPND 8 1/2 



17.0 EXPLICIT VECTORIZATION 
17.8 SPECIAL CALL SYNTAX 

17.8 SPECIAL CALL SYNTAX 

17-19 
04/~H/81 

At this point you probably feel quite saturated with all the 
special CYBER 200 FORTRAN features. Is there really no end to 
it? Well, for the average FORTRAN programmer there is, and if 
you belong to that category you may well skip this section. We 
(=the author of this document) can only think of two situations 
that would justify your hanging in there a little longer: either 
you enjoy trying to fool the compiler with some extra tricky 
turns, or Release 1.5.2 of the FORTRAN compiler is not yet made 
current, and you need the power of the WHERE statement. In the 
former - case you are probably in for some grief, unless you have 
substantial experience as an assembly language programmer. In 
the latter case, the situation is not that serious, since the 
rest of this section will focus on how to simulate the WHERE 
statement if you pay attention and exactly follow the 
"perscription" you should be alright. 

The Special Call Syntax has been invented to enable you to insert 
any machine instruction directly into the compiler generated 
machine code. FORTRAN triggers on the 7 characters "CALL Q8", 
whose only use should be to prefix mnemonics borrowed directly 
from META, the CYBER 200 assembly language. As an example, the 
floating point addition "A=B+C" would in META be coded as "ADON 
B,C,A", but could in FORTRAN be expressed as "CALL 
QBADDN (B,C ,A)". 

A very meager writeup of the usage of the Special Call Syntax can 
be found on pages 13.1-2 in your FORTRAN manual. It is 
complemented by a complete table of the "calling sequences" in 
Appendix D, where you can also find some additional information. 
The hardware manual, however, is the only place where you can 
find an adequate description of how each machine instruction 
really works - and that is something you need to know if you plan 
to create your own tricky code. The WHERE statement simulators, 
though, should find sufficient information below. 

The WHERE statement allows you to use a bit vector to control the 
operations +,-,*,/, and also in conjunction with the function 
references VFLOAT, VAINT, VIFIX, VINT, VABS, VIABS, and VSQRT. 
To accomplish the same you must first break down the vector 
expression that you wi~h to have evaluated under the control of a 
bit vector into a series of (dyadic) vector statements, each 
containing only one arithmetic operation or function reference. 
Each such statement can then be expressed as one or a few CALL Q8 



17.0 EXPLICIT VECTORIZATION 
17.8 SPECIAL CALL SYNTAX 

17-20 
04/01/81 

statements, according to the table below. Let's first define the 
conventions and set some rules. 

All ~achine instructions of the type considered have the same 
format, and will in FORTRAN appear as 

CALL Q8xxxxx{G,X,A,Y,B,Z,C) 

where xxxxx symbolizes the META mnemonic. All seven fields must 
be defined by the comma separators, but some of the arguments may 
be omitted. All arguments, except G, represent registers, and 
must always be specified with variables - never constants. The 
G-designator, if not omitted, should appear as a hexadecimal 
constant in the format X'nn', where nn is a two-digit hexadecimal 
number. The meaning and use of each argument {designator) is for 
our purposes as follows: 

G This is an ·instruction modifier, and should be omitted 
except when one of the two source operands is a scalar. 
X'l0' should be used when A is a scalar {broadcast A), and 
X'08' when the same is true for B. 

X Should always be omitted. 

A This is the first source operand. If A is a vector, it 
must be real or integer, and can be specified either with 
the explicit notation, e.g. A(l,l:N), or by using a 
descriptor, e.g. AD or KAD. No vector expressions are 
allowed. A scalar to be broadcast is specified with a 
real or integer scalar variable, and requires X'l0' in the 
G-field. 

Y Should always be omitted. 

B This is the second input operand, which sometimes will be 
omitted. The rules are the same as those for A, except 
that a scalar value requires the G-field to be X'08'. 

Z This is the control vector. An explicit vector or a 
descriptor of data type BIT should appear in this field. 
Note that an expression of type A(l:N).LE.B(l:N) is not 
permitted - the resulting bit vector must be created in a 
separate vector statement. 

c This is the result vector, and 
analogous to A and B, except that 
makes no sense. 

a 
should be specified 

scalar value here 



17.0 EXPLICIT VECTORIZATION 
17.8 SPECIAL CALL SYNTAX 

17-21 
04/01/81 

We will use the descriptor notation and symbolize the source 
vector with AD and BD when they are real, while KAO and KBD 
implie~ that they are of data type integer. Similarly, ZD (of 
type BIT) will be used for the control vector, and CD or KCD for 
the result vector. S is a real scalar while KS is an integer. 
In the case of the multiplication of two integer vectors, for 
which no direct machine instruction exists, a scratch vector QQD, 
of arbitrary data type, has been used. 

FORTRAN without 
Control vector 

CD = AD+BD 

CD = AD+S 

CD = S+BD 

CD = AD-BD 

CD = AD*BD 

CD = AD/BD 

KCD = KAD+KBD 

KCD = KAD-KBD 

KCD = KAD*KBD 

KCD = S*KBD 

KCD = KAD/KBD 

KCD = S/KBD 

FORTRAN with 
Control vector (ZD) 

CALL Q8ADDNV( , , AD, , BO-, ZD, CD) 

CALL Q8ADDNV(X'08', , AD, , S ,ZD, CD) 

CALL Q8ADDNV(X'l0', , S, , BD,ZD, CD) 

CALL QBS-UBNV ( 

CALL Q8MPYSV( 

CALL QBDIVSV( 

CALL Q8ADDXV( 

CALL Q8SUBXV( 

, , AD, , BO, ZD, CD) 

, , AD, , BD,ZD, CD) 

, , AD, , BD,ZD, CD) 

,KAO, ,KBD,ZD,KCD) 

, ,KAD, ,KBD,ZD,KCD) 

CALL Q8ADDNV(X'08', ,KAO, , ,ZD,QQD) 
CALL Q8ADDNV(X'08', ,KBD, , ,ZD,KCD) 
CALL Q8MPYSV( , ,QQD, ,KCD,ZD,KCD) 
CALL QBTRUV ( , , KCD, I , ZD, KCD) 

CALL QBADDNV ex• ea·, ,KBD, , , zo, KCD) 
CALL Q8MPYSV(X'l0', , S , ,KCD,ZD,KCD) 
CALL QBTRUV ( I , KCD, I , ZD, KCD) 

CALL Q8DIVUV( 
CALL QSTRUV ( 

, , KA D, I KB D, ZD , KC D) 
, ,KCD, I ,ZD,KCD) 

CALL Q8ADDNV(X'08', ,KBD, , ,ZD,KCD) 
CALL Q8DIVSV(X'l0', Is, ,KCD,ZD,KCD) 
CALL QBTRUV ( , ,KCD, I ,ZD,KCD) 



17.0 EXPLICIT VECTORIZATION 
17.8 SPECIAL CALL SYNTAX 

CD = VFLOAT(KAD;CD) 

CD = VAINT{AD;CD) 

KCD = VIFIX(AD;KCD) 

CD = VABS(AD;CD) 

KCD = VIABS{KAD;KCD) 

CD = VSQRT(AD;CD) 

CALL QBADDNV(X'08', 

CALL QBTRUV ( , 
CALL QBADDNV {X' 0 8' , 

CALL Q8TRUV ( , 
KS=0 
CALL Q8ADJEV(X'08', 

CALL Q8ABSV 

CALL Q8ABSV 

CALL Q8SQRTV( 

,KAD, 

, AD, 
, CD, , 
, AD, 

,KCD, , 
, AD, 

,KAO, 

, AD, 

17-22 
04/01/81 

,ZD, CD) 

,ZD, CD) 
,ZD, CD) 

,ZD,KCD) 

KS,ZD,KCD) 

,ZD, CD) 

,ZD,KCD) 

,ZD, CD) 

In a WHERE statement or a WHERE block, results are stored "on 
l's" and discarded "on 0's". The same is the case in all Special 
Calls above. In an OTHERWISE block, howeve-r, the situation is 
reversed: results are stored "on ·0's" and discarded "on l's'. To 
accomplish the same using the Special Call Syntax, the 
G-designator must be changed. The recipe is to add hex 40 to the 
value -already used: a previously blank G-field becomes X'40', 
X'08' changes to X'48' and X'l0' to X'50'. 

It should be emphasized that the Special Call Syntax really isn't 
a part of FORTRAN. It's more appropriate_ to describe it as a 
form of the assembly language META which the FORTRAN compiler has 
learned to understand. As a consequence, you are essentially in 
no man's land whenever you use it. Very little, if any, checking 
of the correctness of the CALL QB statements will take place 
the compiler couldn't care less, for instance, if you use wrong 
data types or forget to properly declare the descriptors. 



APPENDIX A - REFERENCE MANUALS 

Al 
04/01/81 

The manuals listed below can be ordered through your CDC sales 
representative, or directly from: 

Literature Distribution Services 
STP005 
308 North Dale Street 
St. Paul, Minnesota 55102 

The SCOPE Front-End 
CYBERNET Services CYBER 200 CYBERNET Center Users Guide 
CYBERNET Services SCOPE 3.4 Reference Manual 
COMSOURCE INTERCOM 5 R~ference Manual 
CYBERNET Services UPDATE Reference Manual 

The NOS Front-End 

CYBERNET Services CYBER 200 NOS Front-End Users Guide 
CYBERNET Services NOS, Volume 1 (Tutorial) 
CYBERNET Services NOS, Volume 2 (Interactive Usage) 
CYBERNET Services NOS, Volume 3 (Comprehensive Usage) 
CYBERNET Services XEDIT Reference manual 
CYBERNET Services UPDATE Reference Manual 

The CYBER 203/295 

CYBER 200 FORTRAN Version 3 
CYBER 200 Operating System Version 1, Volume 1 of 2 

The CYBER 293/205 - Advanced Usage 

CYBER 290 Assembler Version 3 
CYBER 209 Operating System Version 1, Volume 2 of 2 
CYBER 293 Hardware Reference Manual 
CYBER 295 Hardware Reference Manual 

84001330 
84000021 
60456510 
84000016 

84001990 
84000320 
84000360 
84000370 
76071000 
84000016 

60457040 
60457000 

69457050 
60457010 
60256010 
60256020 



APPENDIX B - PHONE NUMBERS AND OPERATING HOURS (C.S.T.) 

CYBER 74 - NOS 

~00 baud: (612) 482-6712 
4800 baud: (800) 328-9693 (612) 482-6710 

Bl 
04/01/81 

300 baud-lines to the CYBER 74 are available through the 
Cleveland Data Services Network. Consult the CYBERNET Network 
Access Guide (Pub. no. 201,603E) for local telephone numbers 
(your CDC sales representative should have one). 

Operating hours are 7 days a week, 02.00-20.00 • 

. CYBER 175 - SCOPE 3.4 

300 baud: (800) 328-9602 (612) 482-5734 
4800 baud: (800) 328-9606 (612) 482-4832 (612) 482-4~75 · 

The CYBER 175 is also accessible via CYBERLINK from the CYBER 176 
in Houston (KHE) - see SYSBULL 18 (Appendix C). 

Operating hours are MON, TUE, THU 00.00-20.30, 22.30-23.45 and 
WED, FRI, SAT, SUN 00.00-23.45. 

CYBER 203 

Accessed through either one of the two front-ends. 
Operating hours are MON-FRI 07.00-20.00 and SAT 12.00-16.00 

Customer Services 

The HOTLINE is open MON-FRI 08.00-17.00. 
(800) 328-9605 (612) 482-2830 



APPENDIX C - CYBER 74/CYBER 203 INFORMATION 

Cl 
04/01/81 

Important information 
interfaces via the NOS 
NOS EXPLAIN command 
batch-job. To obtain 
appears below), use the 

pertinent to the CYBER 203 user who 
front-end is available through use of the 
either interactively or in your NOS 
a list of the available topics (which 

following command: 

EXPLAIN,CYBER 200. 

To obtain the information in any one of the topics below, use the 
following format: 

EXPLAIN,CY200 topicname. 
(e~ample: •ExPLAIN,CY200 ASSIST.•) 

TOPIC 

ASSIST 
HOURS 
ACCESS 
COMMANDS 
APP LS 
MANUALS 
FTNUTIL 
ARCHIVE 
PROBLEMS 
INTERACT 
NEWS 

CONTENTS 

Service center phone numbers. 
Service hours. 
NOS front-end access phone numbers. 
CYBER 203 interface commands. 
Available NOS front-end applications. 
Relevant CYBER 203 manuals. 
See Appendix F. 
Rules for permanent file archiving. 
Current known problems. 
Interactive LOGON info for the CYBER 203. 
Whatever is new. 



Dl 
04/01/81 

APPENDIX D - CYBER 175/CYBER 203 INFORMATION 

System bulletins (SYSBULL) are maintained for informing CYBER 203 
users of temporary changes and updates to the operating system 
procedures. The SYSBULL contents is relevant to both the CYBER 
175- front-end and the CYBER 203, but not to the CYBER 74 
front-end. The bulletins are numbered 1 through 999 and may, or 
may not, contain information. When the information is outdated, 
it will be removed. An index is maintained, which reflects the 
last modification date of each non-empty bulletin. 

The SYSBULL control card may be inserted into the current SCOPE 
job-stream without making a separate run, and should have one of 
the following formats: 

SYSBULL,BATCH. 

SYSBULL,INDEX. 
SYSBULL,ALL. 

SYSBULL,xx. 

SYSBUL~,xx,yy,zz. 

Gets only the "BATCH" SYSBULL. This 
automatically (unsolicited) comes out on the 
first pages of each batch-job, and contains 
important notices. 
Gets only the index to all SYSBULLs. 
Gets all SYSBULLs (including "BATCH~ and 
"INDEX"). 
Gets only SYSBULL number xx (1-3 digit 
integer). 
Gets only SYSBULLs numbered xx, yy and zz. 

The following batch-job obtains all bulletins: 

JOB. 
USER,username,password. 
SYSBULL,ALL. 
6:/7/8/8 

N~TE: Users a-re held responsible for information published in 
the system bulletins. It is therefore recommended that 
each time a new bulletin appears, all users request a copy 
for future reference. 



APPENDIX E - CONVERSION AID PROGRAM 

El 
04/01/81 

The manual that· describes the FTN4-5 conversion aid program is 
"FORTRAN Extended Version 4 to FORTRAN Version 5 Conversion Aid 
Program" with publication number 60483000. B,elow follows a 
description of how to use it, and the intent is that you should 
be able to manage without acquiring the manual. Note that the 
program is installed on the NOS front-end (CYBER 74) only. 

The program is accessed via the control statement F45, which can 
be used with a number of parameters. We will here assume the 
following situation: your code resides on file SRC4, as 80-column 
card images1 you want the converted program, in a form suitable 
for direct input to the compiler,. on file SRCS1 you want an 
output listing consisting of a copy of SRC4 and SRCS plus related 
Conversion Aid messages1 you want all machine-dependent 
statements flagged on the output listing. If all of the above is 
true, then the following format will be adequate: 

F45,I=SRC4,P=SRCS,PO=F,LO,MD. 

Other names instead of SRC4 and SRCS can of course be used. If 
•,I=SRC4" is omitted, the program assumes "I=INPUT". If 
•,P=SRCS" is omitted, no converted file will be produced. If 
",LO" is omitted, . the listing produced will only contain 
translated and added lines, lines requiring manual action, and 
Conversion Aid messages and error diagnostics. If ",MD" is 
omitted, machine-dependent statements will not be flagged. 

With an UPDATE generated COMPILE file as input ("I" or 
"I=COMPILE") you may request an output file (called MODS below) 
consisting of the UPDATE modifications necessary to accomplish 
the desired conversion. In that case "PO=F" must be replaced by 
•po", and the CI-parameter must be used to specify correction 
ident (chosen as FIX below): 

F45,I,P=MODS,CI=FIX,PO,LO,MD. 

The following order-dependent steps need to be 
accomplish a successful conversion: 

taken to 

1) Remove all blank lines (if any) preceding continuation 
lines. 



E2 
04/01/81 

2) Manually convert the following items, as listed in 
chapter 3 of this document: 

3.1 e-f ,h,k,m 3.2 a-b.,d-e 3.3 a-b,d,h-k 3.5 a,c-h 

This step may be performed equally well after the next 
step. 

3) Invoke the FTN4-5 Conversion Aid Program, as described 
above (could be step 2 instead) • 

4) Manua~ly do the conversions listed below, paying 
attention to the partial changes already performed by the 
Conversion Aid: 

3.2h The Conversion Aid have changed the format of 
octal constants from leJB to O"leJ". Both 
formats are illegal, and must be removed. 

3.3f 

3.4a 

3.4b The Conversion · Aid has given all ENTRY 
statements the same argument list as that of 
the corresponding SUBROUTINE or FUNCTION 
statement. This must be changed only if the 
ENTRY points are called with a different number 
of arguments. 

3.4c The Conversion. Aid 
multiple RETURNS in 
appropriately. 

puts 
CALL 

* instead 
statements. 

of & for 
Change 

3.4e The Conversion Aid inserts the statement CALL 
GOTOER after each computed GOTO. Replace with 
something like STOP'message'. 

3.Sb The Conversion Aid inserts END=n in each READ 
statement, where n is the statement label of 
the next executable statement. If that 
statement doesn't have a label, the Conversion 
Aid gives it one. The action is probably 
adequate, unless you use the EDF-function. 

5) The Conversion Aid changes the Hollerith format nRstring 
to R" string", and RANF (DUMMY) to RANF () • It al so changes 
"READ fmt,io-list" to "READ (*,fmt,END=n} io-list", and 
inserts "BZ," in the beginning of all FORMAT statements. 
All these conversions must be reversed. 

6) Change machine-dependent statements to their proper form 
(read Chapter 4 first). Use of the MD parameter on the 
F45 card causes the Conversion Aid to flag these items. 



Fl 
94/91/81 

APPENDIX F - CYBER 293 POOL FTNUTIL 

FTNUTIL is a pool, residing on the CYBER 293, to which all users 
have access. It contains one controllee file (REQTEMP) and four 
libraries (PLOTLIB, MSSLIB, QQLIB, LINPACK). 

REQTEMP ean be used to allocate file space on scratch packs. 

PLOTLIB contains routines that simulate the UNIPLOT routines. 

MSSLIB contains SPY (a FORTRAN callable routine that measures 
execution time distribution in your code) and a set of simulated 
random I/O routines (OPENMS, STINDX, WRITMS, READMS, CLOSMS, 
RTNFILE). 

QQLIB contains a number of FORTRAN callable utility routines (dot 
products, gather/scatter, etc.) and mathematical algorithms 
(solvers, eigenvalue finders, inverters, etc.) especially 
written for the CYBER 293. They are all highly optimized 
(vectorized when applicable). 

LINPACK is a collection of linear algebra routines, as featured 
on several other computer systems. The package contains both 
real· and complex versions, and the routines perform such 
functions as decomposition, factorization and solution of 
general, banded or symmetric matrices. LINPACK also contains a 
computation kernel (about 29 small routines, essentially 
performing vector operations) which is often referred to as the 
BLAS. 

To obtain a complete documentation of REQTEMP, PLOTLIB and 
MSSLIB, plus a more detailed description of the content of QQLIB 
and LINPACK, please run the following front-end job: 

SCOPE 

JOB. 
USER, •••• 
ATTACH,FTNUTIL,ID=FTNUTIL. 
COPY,FTNUTIL,OUTPUT. 

NOS 

JOB. 
USER, •••• 
ATTACH,FTNUTIL/UN=DOCUMAA,NA. 
COPY,FTNUTIL,OUTPUT. 

To obtain a complete documentation of either QQLIB or LINPACK, 
please run the job above, but first replace FTNUTIL (all 
occurrences) with either QQLIB or LINPACK. The LINPACK 
documentation (about 140 pages) can be halved in si~e by using 
COPYBR instead of COPY, thereby omitting the documentation of the 
complex routines. 





• I 
I 
I 
I 
I 
I 
I 
f 

I-
I 
I 
I 
I 
I • • I 
I 

i 
I 
I 

' I t 
w I z• 
:::; : 
§i 
_,I 
Ct ..... 
:::>. 
uf 

I • f 
I 
I 
I 
I 
I 
I • J 
I 
J 
I 
I 
I 
I .. 
I • • I 

' 1 

·I ~1 
~: =>, 
z• -· o• w• .... 
z• -· Ckt 
4.1 

I 
0- I 
"I ,, 
•• . I 
>• WI 
111:1 

I 

°'I -· ... 
<">1 
c( I 
c( I 

I 

COMM.ENT SHEET 

MANUAL TITLE: CYB ER 203 /205 User Guide 

PUBLICATION NO.: 84002390 REVISION: A 

STREET ADDRESS:. ______________________________ _ 

OTY: ______________ STATE: _______ z. CX>DE: _______ _ 

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of 
this manual. Please indicate any erron, 1u99e1ted additions or deletions, or general comments below (please 
include pc11• number references). 

D ........ rep1y D No reply necessary 

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 
FOLD ON DOTTED UNIS AND STAN 



STAPLE STAPLE 

FOLD FOLD ! 
---------------------------------------------------------------------------------------------------------------, 

FOLD 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN. 

POSTAGE Will BE PAID BY 

CONTROL DATA CORPORATION 
Headquarters Publications Writing 
Publications and Graphics Division 
P.O. Box 0, HQC02C 
Minneapolis, Minnesota 55440 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

-----~--~-~K>iD--~ 

w 

~ 
C) 
z g 
~ 
.... 
:::> u 



IMPORTANT REGULATORY NOTICE 

Users of Control Data services should be aware that the rules and regulations of the United States and International 
Telecommunications Regulatory Agencies prohibit Control Data from using communications services it leases from 
domestic, international and foreign communications carriers to transmit information for its users which is not part of a 
"single integrated" data processing service. All information transmitted must be directly related to the data processing 
applications or service provided by Control Data and unprocessed information shall not be allowed through the 
service between user terminals, either directly or on a store and forward basis. Noncompliance with these rules and 
regulations may force Control Data to discontinue the users' data processing service. 



CORPORATE HEADQUARTERS 
8100 34TH AVENUE SOUTH 
MINNEAPOLIS, MINNESOTA 
MAILING ADDRESS• BOX 0, MPLS., MINN. 55440 

SALES OFFICES AND SERVICE CENTERS 
IN MAJOR CITIES THROUGHOUT THE WORLD 

(52) 
CONTRPL 

DATA 


