
CDC CYBER 200/MODEL 205

TECHNICAL DESCRIPTION

CONTROL DATA CORPORATION

CYBER 200 MARKETING SUPPORT DEPARTMENT

October 1980

1

2

3

CONTENTS

Title

GENERAL INFORMATION
INTRODUCTION
ARCHITECTURAL CONCEPTS
HARDWARE

SCALAR PROCESSOR
VECTOR PROC:.:SSOR
MEMORY
INPUT/OU f?UT POR-rs
LiNK HARD\NJ\RE

SOFTI"IARE
OPERATING SYSTEM (CYBER 200-0S)
CYBER 200 FORTRAN
META ASSEMBLER
LOADER PROGRAM
LINK SOF1WARE

HARDWARE DESCRIPTION
CDC CYBER 200/MODEL 205 COMPUTER OVERVIEW

SYSTEM CHARACTERISTICS
SYSTEM ARCHITECTURE
MAINTENANCE CONTROL UNIT
DISTRIBUTED PERIPHERAL NEW~ORK

SOfTVVARE DESCRIPTION
CDC CYBER 200/MODEL 205 OPERATING SYSTEM

CHARACTERISTICS
Fl LE SU8SYSTEM
ACCOUNTING
MULn-·rA5KING
JOB PROCESSING CONTROLS
CYBER 200-0S OVERVIEW
SUMMARY OF OPERATING SYSTEM

LANGUAGE PHOCESSORS
CYBER 200 FORTRAN
CYBER 200 ASSEMBLER
CYBER 200 LOADER
CYBER 200 SOFTWARE MAINTENANCE AIDS

CYBER 200 FRONT-END LINK

Page

1
1
2
3
3
3
3
4
4
4
4
5
5
5
5

6
6
9

10
18
18

20

20
21
23
24
24
26
31
31
31
33
33
33
34

·.

PREFACE

This document describes the basic hardware and software characteristics of the super-scale CDC CYBER 200/

Model 205 Computer System. Section 1 provides a general description of the system, including the basic

architecture of the Model 205 and its hardware and software components. Section 2 covers the hardware

of the Model 205 in more detail. A detailed description of the software is contained in Section 3.

iii/iv

Section 1

GENERAL INFORMATION

INTRODUCTION

Control Data Corporation is committed to development, manufacture and support of large-scale high-perform

an~~ ;;..;icr;~i~ic cornpT:.ers. The CDC CYBER 200/r-~.Ael 205 Computer System wiil satisfy the needs of

users with high-parform.:ince cornputer requirem<:;nts. This effort Legan with the design of the COC $T AR-i 00, .

continued with the identifi~tion several ye2rs ago of promising technology developments for high,performance

computing and now provides enhanced meP10ry and scalar processing performance and the devP.fopment of

forter vector processing and increased input/output capacity.

As early c:s 1973, Control Data began investigating Large Scale Integration (LSI) technology for use in large

digital computers. Control Data also developed computer-aided design and simulation tochniques which now

enable LSI technology to be utilized in the largest digital system. The design of a 6400 Class LSI test

vehicle was initiated in 1974; LSI components and design simulation tools were selected; and a working

model \NJS demonstrated in 1976. The success of these efforts led to further study and development in

the are3s of iY•ckaging and cooling technology. During this sarne timcfrarM, Control DMa was also studying

'Nays of expanding the performance of the CDC ST AR-100 computer.

These activities led to a Coq:il)rate cu1rn:iitmrnt in 1975 to design and imple.nGnt semiconductor memory

y,;dl oil tSI ... ~~.:;~r U::tt .. !\ <he enc STr'\R-100 ;;ind to replnce the ve!..."tor processor on the CDC STAR-100

with LSI circuitry. This new computer system is known as the CYBER 200 Series.

Control Data's commitm1:nt is to dusign, dc·:2lop, mar11facture and rntHket a vector comput~r technology

which substantially improves the CDC STAR-100 series in terms of reliability, performance and maintainability.

The goal of the simulator and test vehicle construction was not to develop a new computer architecture

but solely to prove the feasibility of new circuit technology that was not available when the CDC STAR-100

was developed. The proven architecture of the CDC ST AR-100 system continues in the enhanced CDC

CYBER 200 series computers.

The first mt!rnber of the CY3ER 200 Series was the CYB ER 200/ Model 203 which was announced early in

1979. CYBER 200/Modd 203 deliveries stnrted in the fourth q~1;;1t..;r of 1979. The Model 203 ·

featured a high performance scalar processing unit employing large-scale integration (LSI} circuit technology, a

Lip•.Jar semiconductor memory of one-half to two million 64-bit words, and a. vector processing unit utilizing

medium-scale integrated circuitry.

The second model of the CYBER 200 Series Syst2ms, the Model 205, features a new LSI vector unit integrated

with the Model 203 LSI Scalar processing unit.

1

The Model 205 yses LSI circuitry throughout. High density chips (168 gates per chip), improved packaging,

and subnanosecond switching time result in exceptional performance and high reliability. High levels of

reliability and maintainability are enhanced by dense integrated circuitry reducing interconnects and a cooling

system which maintains a low semiconductor junction temperature. Fewer than 30 different pluggable LSI

circuit types are used in the central processor.

ARCHITECTURAL CONCEPTS

From a user's point of view, many operations in the Model 205 are performed in a serial fashion; other

operations are performed in a parallel mode; but all operations are issued in strict sequence from a single

instruction stream. The serial or scalar processing mode is common to almost all computer systems today.

The paraHel or vector processing mode allows the manipulation of many operands by a single instruction.

Functional C!>ncurrency is permitted wherever possible while retaining logical integrity of the user's program.

In super-scale computer systems such as the Model 205 computer system, a distribution of the many tasks among

specialized units is the key element for speed and for economic functioning. Within the Model 205 system, this

is achieved by assigning various numerical, input/output, and nonnumerical operations to a variety of specialized

sections and units such as input/output ports, the functional units of the scalar processor, and the stream, string

and array sections of the vector processor.

The Model 205 is assigned primarily to the computational aspects, leaving input/output operations and

many other support tasks to front-end and station computers. This ufunctional hardware concept" or

distributive processing concept is the cornerstone of the Model 205 system architecture. Functional and

distributed hardware means economy, controlled growth and i:>xpansion capability, and better overall

availability and total performance. The Model 205 provides high performance in computing and in

associated disk and high density (6250 cpi) tape input/output. The front-end computer can provide

input/output for tapes, unit record equipment, and remote devices as well as data management and network

control.

The Model 205 hardware supports floating point, integer, bit and byte and character data types. These

data formats are demanded by many scientific applications and are supported by commonly used compilers

and more advanced programming languages.

The extensive instruction repertoire allows computation and data processing both in the traditional serial or

scalar processing mode, requiring at least one instruction to perform an operation on a single operand or

operand pair, and in the vector processi~g mode, producing many arithmetic results on multiple operands

or operand pairs. Vector processing is, in essence, a parallel processing mode. The speed of serial or

scalar processing is dictated by the circuit speed and, hence, restricted by the speed of light. In vector

mode, as many as 800 million 32-bit operations ·~per second may be computed by the Model 205.

Vector processing is quite adaptable to :nany scientific and engineering computational processes where

vectors are a common notion. The instruction set supports many simple and complex vector operations

and even provides application primitives which must be expressed as program loops on other computers.

2

·,.

"More computation per issued instruction" and the parallelism of multiple functional units, which is trans·

parent to the user, are the key architectural concepts in achieving the computational performance that the

Model 205 system offers.

HARDWARE

SCA LAA PROCESSOR

The scalar processor features multiple segmented functional units which are pipelined to accept new

operands every clock cycle. A 64-word instruction stack permits 11.any large !oops of code, once loaded

into the stack, to be executed without repeated memory references to reload the instructions. The 256

general-purpose registers are provided to greatly simplify programming as any register can be used for any

operation. ~JI.any variables can be permanently resident in this register file. In the case of memory-resident

data, the large number of registers and the design of the load/store unit combine to permit an essentiaUy

unlimited number of load (memory fetch) instructions to be issued with minimum time penalty, as

ne~ssary to complete the computations required within any program.

VECTOR PROCESSOR

The vector unit can operate in parallel with the scalar unit. Each operand in a vector operation can

cuntain data in sets of up to 65,535 elements. Vectors are defined as contiguous sets of data elements.

An array is a vector of floating point elements. A string is a vector of bit or byte elements. The

control vector is a bit string used in the control of array operations. Control vectors make it possible to

imbed decisions within array operations by inhibiting the store operation on selected elements of the

array. Special vector operations such as dot product and square root provide the equivalent of complete

subroutines on other computers. The benefit of these features is that more code can be vectorized with·

out intervening scalar instructions, thereby simplifying programming and increasing performance.

MEMORY

The Model 205 provides both a large, real memory and essentially unlimited virtual memory. The hardware

address space provides a virtual memory of 2 trillion words per user, eliminating the need for programmer

concern about running out of space. (The 2 trillion words of virtual memory address space is a theoretical

maximum. Actual virtual address space is limited by the number of CDC 819 disk drives connected to

the system.) The Model 205 provides real memory sizes of 1 million, 2 million and 4 million 64-bit

words. Memory can be addressed in full word, half word, byte, and bit units. To enhance reliability,

circuitry is provided to correct single bit errors and to detect double bit failures for each 32-bit half word;

thus, aUtomatic correction for even two memory failures in a logical wo"rd will occur when the failures are

in different half words.

3

•·
INPUT/OUTPUT PORTS

Sixteen input/output ports can be connected through channel couplers to disk drives and front-end processors

or stations. The purpose of the stations is to remove the burden of peripheral input/output from the

central processor. The Model 205 central processor is devoted to computational tasks while the station

processors handle device communications.

LINK HARDWARE

The hardware link between the Model 205 computer and the front-end station processors consists of the

channel couplers. The channel coupler provides the compatible interface which allows direct connection

of the data channels and controls the transfer of all data between the two mainframes.

SOFTVVARE

Standard Model 205 software components include the operating system (CYBER 200-0S), CYBER 200

FORTRAN, META assembler, Loader, and link software.

OPERATING SYSTEM (CYBER 200-0S)

CYBER 200-0S is a multiprogramming opernting system which provides a file system with security and

hack-up facilities, a foll job and file rerovery system, and a well-defined interface for computer-to-computer

linkages. The operating system and FORTRAN combine to provide facilities which are adequate not only

to support efficient production usage of the Model 205 but also to facilitate conversion and new code

development; interactive and symbolic debugging capabilities are examples. Support codes include an

a:ssembler, a loader, source and object c.;ude 111'1inte11a11ce uti:iti..:s, ai-1d file ~tilities.

CYBER 200-0S is designed to support all Model 205 hardware features. The virtual memory implemen

tation in the FORTRAN environment removes one of the most limiting factors imposed on scientific users.

In this environment, all input/output operations can be performed implicitly by the system. However,

where real-time limitations are of paramount importance, the user may employ explicit input/output calls

which efficiently overlap computation and input/output for a given job. Another advantage of virtual

memory is that large codes can be accommodated without the necessity for using an overlay facility.

To allow efficient multiprogramming and support, CYBER 200-0S was designed as a task-oriented system.

System resources are shared among system and user tasks. System integrity is maintained through the

use of virtual memory hardware protection.

CYBER 200-0S is file-oriented, with all jobs, tasks, and data existing as files. The file mechanism allows

definition of selective read and write access to files. The file system defines files as private to a particular

user, oommon to all users, or shared among a ._specific pool of users managed by a pool boss. The file

technique is also an integral part of the recovery which the operating system provides since temporary

and input files which were transmitted by front-end stations are not destroyed until after job execution

and output files are retained until successfully transmitted to front-end stations.

4

CYBER 200 FORTRAN

CYBER 200 FORTRAN implements the standard FORTRAN (as defined by Ame6can National Standards

X.9-1966, FORTRAN) with many extensions. These extensions already provide many of the capabilities

that are in the FORTRAN 1977 standard. CYBER 200 FORTRAN also provides vector language

extensions and direct access to all central processor instructions which makes efficient machine utilization

possible without the necessity for assembly language programming. Efficient code development is aided

by a symbolic cross-reference map and a symbolic debugging package.

CYBER 200 FORTRAN takes advantage of the hardware capabilities by using the registers for intermediate

operands and results, vector descriptors, and particularly for FORTRAN scalar variables. At the time that

a subprogram is invoked, local variables are block-transferred to the register file where they may be rapidly

accessed and updated. In this way, the potential for high performance, which is inherent in the large

general-purpose register file, is realized by the CYBER 200 FORTRAN implementation which automatically

assigns most scalar variables to registers during their active life.

META ASSEMBLER

META is the assembly language for the Model 205 central processor .. The assembler generates relocatable

binary output which is linked and loaded by the Loader under operating system control. META provides:

• Conditional assembly capability for selective assembly.

• Set capability to define, reference, and extend the list of expressions.

• Procedure and function capability.

• Attribute assignment for symbols end elements.

LOADER PROGRAM

The Loader program provides the user with a means of collecting and linking relocatable programs and

subprograms to produce an executable program. The final product is a file ready for execution under

control of the operating system.

LINK SOFTWARE

Control Data has software packages available for controlling the hardware link from the Model 205 computer

to front-end processors and high speed disk and tape stations. These packages opP.rate in conjunction with

the Model 205 operating system (CYBER 200-0S) and the front-end processor's operating system. CDC

CYBER 170 series mainframe running under the Network Operating System (NOS) or the NOS Batch

Environment (NOS/BE) system are examples of sv.stems used to front-end the Model 205. This approach

offers the availability of each system's software- product set to the programs residing in the other system.

5

Section 2

HARDWARE DESCRIPTION

CDC CYBER 200 MODEL 205 COMPUTER OVERVIEW

The Model 205 ;:;omputer is a super-scale, high-speed, logical and arithmetic computing system. It utilizes

LSI circuits in both the scalar and vector processors that improve performance to complement the many

advanced features that were implemented in the STAR-100 and CY8ER 203, such as stream processing,

virtual addressing, and hardware rnacroinstructions. The Modal 205 contains separate scalar and vector

processors specifically designed for sequential and parallel operations on single bits, 8-bit bytes, and 32-bit

or 64-bit floating-point operands and vector elements. The central memory of the Model 205 is a high

performance semiconductor memory with single-error correction, double-error detection (SECDED) on each

32-bit half word, providing extremely high storage integrity. Virtual addressing uses a high-sped mapping

technique to ronvert a logical to an absolute storage address to allow programs to appear logically

contiguous while being physically discontiguous in the storage system.

The basic Model 205 computer consists of the central processor unit (CPU), 1 million 64-bit words of

central memory with SECDED, 6 input/output ports, and a maintenance control unit (MCU). The CPU

contains the scalar processor and a vector processor with one vector pipeline. Central memory is field

expandable from 1 million 64-bit words to 2 or 4 million words of semiconductor memory. The vector

pipelines can be ex~anded to 2 or 4 and the input/output perts are expandable to 16.

The Model 205 central processor contains all instruction and streaming control, scalar and vector arithmetic

processors, and control for communication with central memory by the CPU and the input/output channels.

Figure 2-1 shows the basic functional areas of the Model 205 CPU:

• Scalar Processor

• Vector Processor

• Memory Interface

• Maintenance Control Unit

The physical layout of the CPU and the central memory is shown in Figure 2-2.

The LSI scalar processor contains a scalar arithmetic unit with independent high-speed scalar arithmetic

functional units. The scalar processor also contains a semiconductor register file of 256 64-bit words

used for instruction and operand addressing, indexing and storing constants and field length counts, in

addition to holding operands and results for s~lar instructions. The scalar processor performs instruction

control and virtual address comparison and translation. A feature is provided to select, via an operating

system software installation parameter, a small page size of 512, 2048, or 8192 words. A large page

size of 65,536 words is also provided.

6

-- -- - ·~- -

CYBER 205

SCALAR

ARITHMETIC
SCALAR k- ---~:--> UNlT
UN IT b,.__..~ ·• · ~~-........i

1/2 MILLION ~ - -- -- :J_ WORDS

--

r------- ---.. • I
I

I

I I MILLION . -
I I

• OPTION •
I

• ~

• •
t... ------- - - . J

,---- ----- -.,
Z MILLION

OPTION

• I
I

I · --I ._
I I

L---------.J

-

....

I
N
T
E
R
F
A
c
E

-~

-

·~
~

I/O {16)
PORTS

- -""' -- ~

--
_.

STREAM f--E-

UNIT
VECTOR
ARITHMETIC PIPES

I PIPE I J

I~ • - -· - - - - - • I

r-.._ ~J

..... , .--------,
I<-__________________________ ,J ! Pl PE 3 :

IL-------~

I<- - -- - - - - - -- - - - - - - - - - I- - - ~·
I ,--------.,

j

---- l STRING
UNIT
(16- BIT)

. : ! PIPE 4 :
I'-······-··~ •
L----------~ -

--..e--------------iMAINTENANCE 1-----~
CONTROL

{25M-BYTE) UNIT

Figure 2-1. Model 205 Computer System Configuration

7

; '

512K McMORY
SECTION B SECTION

J iNTERFACE K

512K MEMORY
SECTION G

MEMORY I SECT!ON

SCALAR
PROCESSOR

1/0 & VECTOR SETUP ANO
RECOVERY
SECTION N

~

cc:z
<o
~< 1-u u
(/J UJ

(/J

VECTOR
PROCESSOR

VECTOR STREAM & STRING
SECTICN P

CYBER 205

Figure 2-2. Model 205 Computer System Floor Plan

8

; '
The vector processor contains one, two or four parallel, segmented pipelines to facilitate high-speed vector

processing. The vector processor control is contained in the stream unit. The string and all logical

operations are performed in the string unit.

The memory interface provides the read and write ports of central memory for the scalar and vector

processors. Each port contains a one-SWORD (512-bit Super WORD) buffer to facilitate high transfer

rates.

The CPU processes input and output by issuing relatively simple high-level messages to high-speed peripheral

stations or a front-t:nd processor connected to the input/output ports.

SYSTEM CHARACTERISTICS

The general characteristics of the Model 205 hardware are summarized below. The hardware characteristics

are described in detail in the following sections.

CPU Characteristics

• Minor cycle of 20 nanoseconds for both scalar and vector operations.

• Two's complement arithmetic.

• One, two or four parallel vector pipelines.

• Hardware macroinstructions.

• Sequential stream processing.

• Bit, byte, half-word, or 64-bit word floating-point operations.

• Independent s~lar and vector instruction execution for no-conflict operations.

• Semiconductor high-speed register file - 256 64-bit registers (two reads and one write
per clock period).

• Sixty-four 64-bit word instruction stack for the optimization of programmed scalar
loop iteration.

Virtual Addressing Mechanism

• 48-bit virtual address. Actual virtual address space is limited by the number of
CDC 819 disk drives connected to the system.

• Program protection via lock and key.

• 16 registers for simultaneous virtual _to- physical mapping.

• Selectable page sizes - small page sizes of 512, 2048, and 8192 words and large
page size of 65,536 words.

9

. '
Extensive Instruction Repertoire

• 32-bit and 64-bit floating-point arithmetic.

• Vector and sparse vector.

• Vector macros.

• Dot product.

• Square root instructions.

Reliable Central Memory Structure

• Semiconductor memory with SO-nanosecond access time.

• SECDED for each 32 bits for high reliability.

• Memory sizes of 1, 2, and 4 million 64-bit words.

• High memory bandwidth of 512 bits per 20-nanosecond minor cycle for a
1 million word system and 1024 bits per 20-nanosecond minor cycle for a
2 million word system, and 2048 bits per 20-nanosecond minor cycle for a
4 million word system.

Flexi~~ _Hig~=~peed Input/Output

• 6-16 input/output ports.

• Each port is capable of 200 million bits per second maximum transfer rate.

• Wildt: ct ion to a CDC 6000 or CYB ER 170 fi ont-er.d cor••iJUtt:r (and some
non-CDC computers) in a computational facility configuration.

• One channel is used for the maintenance control unit (MCU).

SYSTEM ARCHITECTURE

Central Processor

The Model 205 CPU contains a scalar processing unit and a vector processing unit.

Scalar Processor

In addition to providing for the execution of scal~u operations, the scalar processor performs the primary

system control functions of the Model 205.

The scalar unit contains a sixty-four word discontiguous instruction stack segmented into eight super-words

(SWORDs). The instruction stack is capable of holding up to 128 32-bit Model 205 instructions, 64 64-bit

10

i'

instructions or a combination of both, and provides a sixteen word instruction read ahead. The instruction

issue pipe decodes all instructions, initiates scalar operations with the appropriate functional unit, and directs

decoded vector/string instructions to the vector processor for execution. The instruction issue pipe is

capable of issuing instructions at the rate of one instruction every 20 nanoseconds. Thus, with independent

vector and sc:!lar instruction controls operating on a single instruction stream, the scalar processor can

execute scalar instructions in parallel with most vector instructions provided there are no memory references

generated by the scalar instructions. A block diagram of the functional components of the scalar processor

is shown in Figure 2-3.

The load/store unit provides special handling of the load and store instructions. The unit acts as a pipe

!ine and is capable of initiating one load every minor cycle or one store every two minor cycles, provided

a memory busy, access interrupt, or register file write-bus busy does not occur. A circular buffer containing

six registers provides buffering for up to six load· requests, three store requests, or a .mixture of Io;;ds and

stores.

The load/store unit is capable of loading a randomly accessed word of data from central memory in the

register file in 300 nanoseconds after reading the base address and item count of the data. This time

assumes a memory busy, access interrupt, or register file write-bus busy does not occur. A memory busy

would add 80 nanoseconds to the load time.

The scalar arithmetic unit contains completely independent functional units to attain high scalar performance.

Table 2-1 contains the times in nanoseconds to produce a 32-bit or 64-bit result in each functional unit.

These times correspond to the short-stop times. Short-stop is the process by which a result from any

arithmetic uriit may be returned directly to either input of any arithmetic unit. This occurs in pdrallel

with the storing of the result in the register file. Short-stop eliminates the time necessary to store the

result in the register file and then retrieve it for use in the next arithmetic operation.

11

. ' SCALAR

~--c
RNS/
BRANCH
UNIT

~

'--- _,) / -
MEMORY

-> ACCESS ~

CONTROL

--
""""

..__ ____

,11 ' It ' II ~

~

ASSOCI- -
ATIVE
UNIT --~-

J~

----~~ DATA OR ADDRESS

-_;>~ CONTROL

PROCESSOR

.----=-=-
J __ ~

INSTR INSTR

-"' ST.A_CK -;. ISSUE ...,.

tt9 SWORDSi PIPE

d\

-~

/

_.__.-t.,......
'"-~-~

111 'II It

... LOAD/ REGISTER

SCALAR
ARITHMETIC
UNIT

~ ..

... .,,.

- -

~
EJ

LOGICAL
UNIT

I- .

SINGLE

CYCLE
UNIT

-

STORE ~ -116--~ Fl LE)11111~~--::.~
DIVIDE/

SQRT/
CONVERT
UNIT

UNIT (64 x 256)

'LI - - - - -

Figure 2-3. LSI Scalar ProcPssor Block Diagram

12

. ' TABLE 2-1. SCALAR PERFORMANCE

SCALAR UNIT

INCREMENT/INTEGER

SH I FT /LOG I CAL/PACK

FLOATING POINT ADD/SUBTRACT

FLOATING POINT MULTIPLY

FLOATING POINT DIVIDE

FLOATING POINT SQUARE ROOT

LOAD

STORE

BRANCH FALL THROUGH

BRANCH INSTRUCTION-ST ACK

BRANCH OUT OF INST-STACK

BRANCH TO SUBROUTINE (CALL)

ISSUE

1

1

1

1

1

1

1

2

8

9

24

INTO INSTRUCTION STACK 8

OUT OF INSTRUCTION STACK :l3

1 MINOR CYCLE = 20 NANOSECONDS

MINOR CYCLES

SHORT-
STOP

1

3

5

5

54

53

REGISTER
FILE

WRITE

4

6

8

8

57

56

15

SHORT-STOP = "EXPRESS" TIMING FOR FIRST FUNCTIONAL UNIT USE OF RESULT

REGISTER FILE WRITE = TIMING FOR LOAD, STORE AND SUBSEQUENT FUNCTIONAL
UNIT USE

13

The functional units are segmented and capable of accepting new operands every 20 nanoseconds except
- -

for the Divide/SORT /Convert Unit which must complete each operation before a new one can begin. All

units are capable of being short-stopped.

The scalar proc.::ssor contains a semiconductor register file which provides 256 64-bit registers for use in

instruction and operand addressing, indexing, field lengths, and as source and destination registers for

scalar instruction operaods and results. The register file is capable of two reads and one write every

20 nanoseconds.

The Model 205 virtual memory feature provides the facilities for axploiting advanced techniques of memory

management· and user program protection. Some of these features are:

• Key and lock provide memory protection and user separation.

• Hardware mapping from virtual to physical addresses.

• An ordered page table to minimize operating system overhead.

• Program overlays at execution time formed by the hardware system transparent
to the user's program.

• Sharing of user programs or data with other users.

• Small page sizes: 512, 2048, or 8192 64-bit words selectable by an operating system
software installation parameter. The default is a small page size of 512 words.

• Large page size: 65,536 64-bit words.

The associative unit in the scalar processor contains the page table virtual addressing mechanism which is

composed of 16 associative registers and a space table (located in a restricted area of central memory)

with sufficient entries for up to four million words of central memory.

The page table is an ordered list of associative words necessary to define the pages in absolute memory.

The 16 associative registers allow for immediate transformation of the most recently used 16 page table

entries into real memory addresses. The ordering is done so that the most frequently used associative

words tend to stay at the top of the table. The space table is an extension of the page table containing

associative words necessary to define pages in absolute memory that have not been in recent use. The

associative unit is capable of comparing all the associative registers in one clock cycle and the space table

entries at the rate of two entries per clock cycle.

The paging mechanism of the Model 205 plus the operating system software· permit the most active portions

(pages) of a user program to reside in central memory. The virtual addressing facility, through the page

table, makes these areas of physical memory appear to be contiguous in a manner invisible to the user.

The paging mechanism ensures that a large number of users can have simultaneous access to the Model 205

computer, with minimum page swapping overhead.

14

'.
Vector Processor

The vector processor unit consists of an operand streaming unit to control, buffer, and manipulate data to

and from memory, a string unit for processing bit and byte operands, and general purpose segmented

vector functional units called vector pipelines. The Model 205 has one vector pip~fine in its basic offering

and an option to increase the number of vector pipelines to two or four.

The vector processor functional unit is an integral part of the C.YBER 200 Model 205 central processor,

and designed to process vector hardware instructions issued by the scalar unit. The vector processor is

r.apable of manipulating vectors with 1-bit elements, 8-bit elements, 32-bit floating point elements and

64-bit floating point elements.

The vector processor achieves extremely high performance based on its segmented operations synchronized

with the basic 20 nanosecond clock period of the system and -its method of streaming vector source and

result operands directly from and to the broad bandwidth memory.

Additional refinements in the performance and capability of many of the CYBER 200 vector instructions,

particularly those associated with the refeit:ncing of non-contiguous data, has prnvided the CYBER 205

with performanee improvements over the earlier CYBER 203 signifiC3ntly beyond the factor of two through

the use of the LSI technology. These improvements include a 20 nanosecond versus 40 nanosecond clock

cycle and up to four vector pipes.

Mega FLOPS (Millions of Floating Point Operations Per Second) performance rates attainable with the

CYBER 205 vector processor are depicted in Table 2-2.

15

'

l. TABLE 2-2 PEAK VECTOR INSTRUCTION PERFORMANCE

FLOATING PT.
OPERAND PEAK PERFORMANCE

SIZE (MEGA FLOPS)

NUMBER OF VECTOR PIPELINES 32-BITS AND
64-BITS 1* -2 4

VECTOR ADD/SUBTRACT 32-BITS 100 200 400
64-BITS 50 100 200

VECTOR MULTIPLY 32-BlTS 100 200 400
64-BITS 50 100 200

VECTOR LINKED MUL TIPLV AND 32-BITS 200 400. -- 800
ADD OR SUBTRACT 64-BITS 100 200 400

VECTOR DIVIDE/SQUARE ROOT 32-BITS 15.3 30.6 61.2
64-BITS 8 16 32

VECTOR DIVIDE/SQUARE ROOT 32-BITS 61.2 122.4
(HIGH SPEED OPTION) 64-BITS 32 64

•FOR MODl7L 2C5-411 ONLY

16

Memory Interface Unit

The memory interface unit provides five ports for access to central memory. The scalar proces~or, vector

processor and input/output ports are connected to o:ntral memory through this unit. The control of all

data transmissions is pro'Jided by the memory access control in the scalar processor. Single Error Correction

and Double Error Det0ction (SECDED) of each 32-bits of the data on the memory ports is performed in

the scalar processor, and SECDED checking of vector operands is performed in the vector processor.

Data can be transferred to and from the memory ports in 32-bit half words, 64-bit words, or 512-bit

SWORDS.

Each of the memory ports is connected to memory through a one SWORD buffer located in the memory

interface. Wh&re a buffer is shared by multiple ports, the memory access control prov ides propar port

selection to the memory interface selection networks. Data is transmit1ed to and· from the buffers in

quarter swords at the rate of one-quarter sword per minor cycle (20 nanoseconds).

~ntra_l Memory

Central memory is a single-level, random-access memory using bipolar integrated circuits. The memory

words are 78 bits which provide a 64-bit data word and 14 bits of SECDED (7 bits for each 32-bit

half-word). The semiconductor memory access time is 80 nanoseconds. This memory is directly address

able in monitor mode and via hardware virtual relocation in job mode.

The basic central memory size is one million words with expansions to two or four million words available

as field upgrade options.

Each one million words of central memory contains 16 memory modules each h;wing 128 K 39-bit half

·:vords (32 data bits plu~ 7 SECOFD bits). Each module is amml)ed in eight phased banks. In streaming

mode, a reference is made simultaneously to the same address in each of the 16 memory modules to obtain

a super word {sword) of 512 data bits. Memory busy conflict rules take into account the 16 physically

independent modules and the eight-bank phasing within each module to treat the bank address in each of

the 16 modules as a separate entity. Thus, each million words of central memory contains 128 phased

half-word banks when utilized in 32-bit mode and 64 banks as utilized in 64-bit mode.

The eight-bank phasing plus the physical distribution of the memory modules allows memory references

to be made at a maximum rate of one every 20 nanosecond clock cycle. Thus, central memory has a

high data transfer bandwidth of 512 bits per minot cycle in one million word configuration as required

to support the operand request rate and the result request rate for two vector pipelines.

Input/Output Ports

The CYoER 205 has optionally 6, 8, 10, 12, ~r -16 Input/Output ports,· each of which has a transfer rate

of up to 200 megabits. Since the high speed transfer of data is so frequently a critical element in the

effective execution of applications requiring a super-seals system, the CYBER 205 is designed to support

the full bandwidth of data movement from all of these channels to central memory while vector and

scalar op•~rati0ns are proceeding at their maximum rate. Also, the high individual bandwidth of each

17

. ' channel provides excess capacity for future incorporation of new higher performance secondary storage

devices as their technologies advance.

l'tAINTENANCE CONTROL UNIT

An important element contributing to maximization of reliability and availability of the Model 205 computer

is the Maintenance Control Unit (MCU). The MCU, through hardware interfaces and sense lines tbgether

with sophisticated maintenance diagnostic programs and a complete set of interface tools for the maintenance

engineer, provides a full range of maintenance and monitoring activities. The MCU is a dedicated Model

205 station providing a focal point for maintenance activities of the CPU. The MCU provides monitoring/

logging/recovery of CPU faults, control of the ·CPU diagnostic system, man<1gement of CPU microcode memory,·

and system deadstart.

DISTRIBUTED PERIPHERAL NETWORK

Control Data utilizes a distributed peripheral network, specifically designed to solve the problems of inter

processor and peripheral connections and to provide an efficient approach to interfacing a variety of main

frames and peripherals in a local netvvork. Control Data's solution to the local networking problem

encompasses not only the hardware interconnection media, but also rornprehensive software and diagnostic

capabilities.

The system is comprised of several different hard\'-Jare components. The tr2 nsr.:ission medium in the system

includes one or more coaxial cable data trunks. These trunks provide reliable communication between

attached devices at rates up to 50 million bits per second at 1000 feet. Communications over these

trunks at longer distances are possible by reducing the number of attached d~vices. Each trunk has the

capability of supporting multiple drops, thus providing for interconnection of many dt::vices in a common

network. Access Devices are used to interface various devices to the coaxial trunk network via a 50-megabit

per second Data Set.

The architecture of the peripheral network is a generalized 1/0 system for multiple levels of independent

communication control between multiple computer systems and/or peripheral devices attached to the

computer systems. Each level has a well-defined functional task and well-defined interfaces to the adjacent

levels. Three functional communication levels have been defined: data set communications, trunk interface

communications, and attached device/processor communications.

The lower level of communication occurs between the data sets. The primary responsibility of the data

sets is to transport data bits between trunk interface units via the trammission medium. The interface

between the data set and trunk interface unit is· defined so as to isolate the data set characteristics from

the trunk interface unit logic. This defined interface will allow improved coaxial or other kinds of trans

mission systems (for example, light fibers, cable television, or microwave) to be used when appropriate.

The next higher level of communication occurs between trunk interface units. The primary responsibility

of the trunk interface unit is to transport data and control messages and responses between the buffer

areas of the Access Devices using the data set communivitions link. Since the transmission medium may

18

be shared among several data sets, a predefined trunk protocol must be followed. The trunk interface

unit is responsible for generating and checking the channel protocol as well as maintaining the channel

inte-grity.

The highest level of communications occurs at the attached device level. The Access Device processor is

n:~ponsible for ei;tablishing, maintaining, and closing communications links between attached devices.

Components of the Distributed Peripheral Network hardware and- software are utilized by the CYBER 205

system to provide appropriate interfaces between peripheral devices (such as the 819 disk subsystem or

6250 CPI tape) and the 200 megabit port! of the CYBER 205. It also provides the interface to other

romputer systems providing the front-end function to the Model 205.

19

· ..

Section 3

SOFTWARE DESCRIPTION

CDC CYBER 200 MODEL 205 OPERATING SYSTEM CHARACTERISTICS

The Model 205 Operating System, called CYBER 200-0S, was designed to provide the user with comenient

access to the CYBER 200 computational facility either fro~ a remote batch or interactive terminal or

peripheral devices via the front-end computer. The objective of the total syst~m is to make a·.;Jil3b!e to

the user the computational capability and the many ad\ianced_ Model_ 205 hardware features combined with

the large product set available on the CDC CYBER 170 series product line. CYBER 200-0S accommodates

the large multiprogramming base during one time of the day as well as the very large production jobs run

at another time during the day. Such an environment is encountered in many industry areas _.such as -

atomic/nuclear, reservoir simulation and seismic data processing, numerical weather prediction and meteoro

logical research, and structural analysis.

The operating system is the result of many years of design and development effort. Since mid- 1974, the

software system has been employed in a user's environment in which all features and aspects of the system

have been explored and extensively tested. Enhancements have been -provided since the initially released

version for the CDC STAR-100, and additional enhancements are planned to support new hardware capa

~ilities and features offered in the CYBER 200 product line.

The 5et of software av'lilable with the Model 205 computer system, ranging from sofi'Nare and file

maintenance aids to basic mathematical functions, may be categorized in the following groups:

• CYBER 200 operating system

• bnguage proc...essors; FORTRAN and META Assembler

• Software maintenance aids

• External CYBER 200-0S characteristics

CYBER 200-0S permits concurrent and parallel operations of many computational and input/output

activities. The user interfaces with the system via the front-end computer. The CDC CYBER 170 series

front-end provides access via interactive or remote batch terminals as well as through local unit record

equipment. Information is passed between the front-end computer and the Model 205 computational

facility using the distributed netv"lork described in Section 2. Any required data conversion of binary

and coded information is handled by the access devices within the network prior to transmission, between

computer systems.

Since a distributive concept 'hrCIS the major guidaline in the hardware design . of the CY BER 200 computer,

a distributed system and processing approach is also the most logical choice in the software design to

achieve economic functioning within the total CYBER 200 data processing complex. Thus, a major

attribute of the sofn..,are system is its high modularity and task-oriented structure, based on an efficient

file concept.

20

IV'..ajor characteri~ics and features of CYBER 200-0S include:

• File oriented system with security and backup facilities based on high performance
random access mass storage.

• Support of virtual memory addressing.

• Input/output may be performed implicitly or explicitly.

• Implementation of a multi-tasking concept.

• Extensive accounting and resource utilization information.

• Job and file recovery.

• User and system checkpoint/restart.

Fl LE-SUBSYSTEM

A portion of CYBER 200-0S with which the user is very concerned is the file system. There are the

following two major aspects in looking at the file system.

• A differentiation of the files based on the file ownership category.

• A differentiation based on the method in which the input/output operation
is performed.

Based on the first aspect, CYBER 200-0S recognizes three file ownership categories. The user has the

following access capabilities under each:

• Public Files

The p1~'1lic fi!.,s (':;Jnt~in :1';'.;emh!ers, compilers, and o!her general purp1Jse routines and
utilities. These files are managed by the system's privileged users who have Read/Write/
Execute access to these files. These files are available to all users with the access rights
granted by the system privileged user, generally Read and Execute.

• Shared Files

Shared files or pool files are accessible to a subset of users as specified by the owner,
user or administrator of the pool. The owner specifies the type of access (any
combination of Read/Write/Execute). The members of the pool can access a pool file
with any access that is granted by the administrator.

• Private Files

Private files can only be accessed by the originating user. They may be local files
existing only for the- duration of a job or terminal session, or permanent files which
are rntained bet'vVeen jobs or sessions.

The second aspect in looking at the file system is. based on the file input/output method. To perform

file input/output operations the user can choose between two methods:

• Implicit input/output supported by the virtual memory system leaving the data
manipulation and "overlay" handling task up to the operating system and supporting
hardware.

21

• Explicit input/output to provide the user with maximum control over essential system
resources during the execution of certain time dependent tasks.

Since CYBER 200-0S supports the virtual memory hardware concept allowing the user to address more

than 2 trillion (2X10 12) 64-bit words directly, the user does not have to consider overlay techniques.

The operating system manages 1:.dloe<ition of storage between main memory and mass storage, moves

information from mass storage to main memory as needed, and, by setting values in the page table,

permits the hardware to translate virtual memory addresses to physical addresses in main memory.·

CYBER 200-0S considers every program to be executable only in '.'irtual memory which means that every

page in virtual memory has a corresponding space on the disk storage system. Executable code exists first

as a file on mass storage. This file, called a program file, is built by the loader and contains a n.ap at

the beginning of the file called the mi:1us page. This map co1resµunds i.o the virtu'.11 p<1ge 2ddr<>sses and

relates them to corresponding logical disk addiessas.

The program file exists as read only. and the integrity of the program file is never violated. At the

beginning of execution the system automatically creates another file, called the drop-file. The- purpose of -

the drop-file is for program swap-out by the system and allows the user to terminate at any time and

reconvene at any time. Also, the drop-file can be saved and used for recovery purposes. The drop-file

is automatically updated by the system to contain memory pages containing any program data modified

during program execution. If a program is modified dynamically- during execution, the modified portions

are swapped in and out from the drop-file; the original program file is never modified. If a user wishes

to modify the program file, then a new program file must be created to contain the modified program.

The user may then release the original file.

The code and the data of the program need not be in contiguous physical memory locations. The

original user code is kept on the program file which is swapped into virtual memory when required but

never swapped out to that file since it allows "read-only" access. The data associated with the program

file can be swapped in and out of memory as necessary to execute the proy1 a1n. T:1a ~ ... <lpi:-:og of

program code as previously mentioned occurs with the drop file so that the integrity of the program-file

is maintained. By allowing .. read-only" access to the program-file. it can be executed o~er and over

again by the user. The drop-file provides a snapshot of the execution stage in the program and can be

used as an aid in debugging the program. CYBER 200-0S provides a checkpoint restart capability consisting

of saving the drop-file and restarting the saved file.

During program execution the program can either open ex1stmg file space or create new file space and

assign the type of access it desires to that file. It can assign a read-only type access to the file in which

case the programmer would be notified if any attempt wsre to be made to write into that file. It can

assign a read/write access to the file in which case the data is swapped into memory and back to the

file. It can also assign a type of access termed write-temporary access in which case the data file is

treated like program-files; that is, pages that are modified are never swapped back to the original file,

but rather to the drop-file. The user never needs. to issue any input or· output commands with this

virtual memory scheme. The only thing the user needs to do is reference data. The operating system

intervenes to bring the referenced data into main memory if it is not already there. This type of input/

output is called implicit 1/0. In other words, when implicit input/output is being used the user never

issues a read or write command, ~!lowing greatly simplified program structures to be developed. Using

22

implicit 1/0, ~owever, the iob's execution is interrupted until ~he appropriate page has been transferred

from mass storage to central memory. For most jobs this is acceptable, especially in multiprogramming

mode, because another job can have access to the central processor while the interrupted program is

waiting until the implicit 1/0 is completed. However, when there is one large production type code

that is using all the resources of the machine, or a job is to be processed in the shortest possible elapsed

time, CYBER 200-0S offers two methods of minimizing program interruptions. The first is the ADVISE

request by which the user informs the system, in advance, of the next pages of data which are required,_

1nd the system, in parallel with the job execution, streams the data from mass storage to central memory.

Then when the job references the data, it is available in central memory and no program interruption

takes place. The second is an alternative method of performing input/output ~lied explicit 1/0. This is

the type of input/output that all programmers are accustomed to, that is, the programmer explicitly uses

read and write statements to acquire or store his d3ta. With _!xplici~ 1/0, a prn_g~am may be ieading,

writing and executing simultaneously. This ~n be important for the effective utilization of the machine

in the previously mentioned environments.

With these two file input/output methods, it is possible, bClsed on the user's particular needs, -to trade - _

off convenie.1ce _and efficiency depending on wh:.:tner the processing time reduction by overlapping input/~

output and computation for a given job is essential or not.

ACCOUNTING

To provide the elements for the implemPntation of an appropriate accounting system, CYBER 200-0S

generates statistical information about resources used by each task or job step. These statistics, which

include a summary of the central processor, central memory and input/output resources used by a job,

are appended to the job output as part of the dayfile for that job. All entries are time-stamped and

identified by source (user, job, or system operator). Statistics related to the task and its environment

frequency. .~dditionally, as an installation option, the statistical records may be written to an accounting

file maintained and protected by CYBER 200-0S. An installation supplied privileged program is able to

extract all accumulated accounting information from the system at any time. The accounting file contains

sufficient information to define the scope of a job, so that an accounting program which processes the

file can compute a charge by job. At the conclusion of every job, the dayfile information is provided

to the user. The information contained in the dayfile includes the resources used, time of day the job

started and ended processing, and error messages and informative messages from the operating system

and language processors, along with operator actions related to the job.

Accounting and statistical information for the file system is also included. Each file in the system is

accounted for by user number, with options for division code and ac~11nt number.

The following are some file activity statistics which are maintained by the operating system:

• Number of explicit disk accesses and volume of data transferred.

• Number of disk accesses and amount of data transferred due to page faults.

• File creation date.

• File dt::.tru1...'tion date.

23

MULTI-TASKING

The operating system supports the distributive processing concept in two ways. First, the operating

system itself is divided into small segments which perform specific tasks upon request, ~nd second, the

central computer portion of the operating system communicates with the peripheral stations and front-:rnd

!>ystern(s) using simple commands to effect data and status transfers. The concept is extended to the

individual jobs and tasks submitted by users. Each fun~ion which the operating system completes is

signaled to the user in the form of a standard message.

A job consists of one or more tasks plus the control information. A job starts with the first control

card or statement and ends at the end-of-information. Tasks are the execute modules within jobs. Each

task can initiate another task. The initiating task, referred to as controller, may pass messages and

parameters to the called task, referred to as (;on Ucdlee, and vi\;e ·hrsa {see Figure 3-1).

Requests are also int~rchanged between the user program and the operating system which may in turn

generate another request for a disk station or front-end computer to p:=rform, for example, a disk input/

output operation.

This mechanism allowing the communication betvveen different user tasks, the operating system's tasks, the

front-end, and peripheral tasks, represents an efficient parallelism in program E:Xt:l..ution, matching the

distributed hardware with an equivalent software concept.

JOB PROCESSll\!G CONTROLS

The user is provided with sufficient flexibility to control the way the application is to be processed. The

user may ke~p control over the execution of a specific job or leave it up to the system to advance the

job u;;der the normal multiprogramming scher.uling constraint!. Each h~1ch job processed by the system

e<~:mta!ns a uniflue job identification. This allows all output and status inforrnotion to be co!"'rectly associ

ated with the job. As part of the job deck, the usar is able to specify resource parameters which indude

job class, job priority, memory requirements, and total processing time. The user may change the initial

memory requirements during each task via job control statements. Thesa resource parameters specified

in the job deck are used and enforced by CYBER 200-0S. If either the processing time or memory

limits are exceeded during execution, the job will be aborted and an appropriate message returned in the

user's dayfile. Users will be allocated real memory up to the amount requested and execution delayed

if the requested amount is unavailable. If the memory parameter is not specified, the user's memory

space will be dynamically adjusted based upon other activity in the system and the page fault frequency

of the job.

CYBER 200-0S allows formal parameters to be specified in stored job control language statements. The

u~er can ieplace these formal parameters during ex~cution of a job.

Under CYBER 200-0S, the user is also able to obtain control after ce~ain program errors which cause

abnormal termination. A user program trying ·to execute an illegal instruction is an example of this

type of error.

24

. ·;,_· I

G:NTROLL.ER] I

[~1:1E~ 1

CONTROLLEE 2

CONTROLLEE 3

I
I
I
I
I
I
I
I
I.
I
I

TASK COMMUNICATION I
AS 1T ts SEEN I
BY THE USER I

.--------,
I I
I [,_~~:-~R 1 I ...--=----es(. ~ - - I

I SYSTEM I
I I

L--_~_--_-I _______J
CONTROL LEE

r~~~:R~:L~E]

TASK cor.1MUN!CATION AS IT IS
.A.CTUALL Y ENABLED THROUGH

THE OPERATING SYSTEM

Figure 3-1. Task Communication

25

The resource parameters associated with user jobs may also be changed through system operator commands.
- -

Operator commands are available to change the priority, the amount of virtual memory, program pages

and processor time limit of a job. The system operotor may also change parameters in the scheduling

algorithm such as number of jobs per each priority or job class allowed in execution. These operator

commands provide control of job or system resources in order to provide .:;ffective processir.g for all

the users of the system.

CYBER 200-05 OVERVIEW

The CYBER 205 operating system (CYBER 200-05) is divided into three parts. The interactions 3mong

the tasks are ilft..:stra!ed in F!;ure 3-2.

• The small resident system runs in monitor mode; it resides in core and references
memory by absolute addresses, rather than through the virtual paging mechanism.
vVhen the processor is in monitor mode, interrupts are inhibited and extra instructions
are enabled.

• The _virtual system tasks, which run in user mode, are c<illed as neeced and reference
m~mory by virtual addresses. These tasks communicate with the re!:ident system by
using reserved messages and by modifying system tables. They handle non-time-critical
tasks such as resource allocation, file management and terminal messages.

• The privileged user tasks have the same characteristics as virtual system tasks but may
not modify system tables directly. They perform the physical - input/output on devices
and p:iss messages from and to the operator to be acted upon.

Figure 3-3 is a more detailed depiction of the major sections of the 01-J::;1.:;ting :;y~tem and their interaction.

26

-~ .

}
TO MAKE VIRTUAL
SYSTEM CALLS ONLY

-- u·~ VIRTUAL
SYSTEM

---_.TA~~~~-~.--

PRIVILEGED TO MAKE
RESIDENT SYSTEM CALLS

____ ___.._ ____
RESIDENT SYSTEM

KERNEL PAGER

TO STATION AND FRONT-END

Figure 3·2. Basic System Overview

27

'·

~n•m•~~~RN~H~~-~ou~mu~am~~~i~~M•m~~rnmrn~•~~~~
I

I MAINTENANCE 819 819 1 FRONT-ENO I
I CONTROL UNIT DISK STATION DISK STATION : 1rHERFACE I
I I STATION I
I ·1 -=---.--~ I
I MCU DISK DISK : FRONT-END I
I OVERLAYS OVERLAYS OVERLAYS I OVERLAYS I

I STATION STATION STATION . ! -sTirlON I
: NUCLEUS NUCLEUS NUCLEUS : l'WCLEl!S :.

i~~~~-:~~,·~~-~--------t-=-----j~=~1==~--l_-~-----:~--------:~~,:~~;!
: ----- ------ Gor:~~~;~~NnoN ---- !
I I
I I

: r-_-_-_--~~_··_E R-• ___ ·-1__ PAGE FAULT PAGE :
: l~~-~-~~l~N~f -- KERNEL ROUTINE TABLE :

I ! I I I
I I
I [.SH;REDJ.. I
I TABLES I
I I I ~ ... ,,~--k- -~ ... ~--. I

1------------~--~-~-~-
I PAGABLE
I CODE
I
I
I
I
I
I
I
I

USER
CODES

--~--· ------~--------~----~--~--~-~~-1

SYSTEM
TASKS

TASK
TABLES

USER I
MODE I

I
I
I
I
I
••
I
I

Figure 3-3. Organization and Communication Paths of Operating System

28

·,

Resident System

The resident portion of the operating system consists of the KERNEL, which handles time slicing of

active jobs and message communication, and the PAGER, which handles memory allocation and page

s-.·,rapping.

User jobs, privileged user tasks, and virtual system tasks communicate messages to the KERNEL through

a hardware intr:rrupt. PAGER communicates with the KERNEL_. by setting pointers in the queuing

structure without using external interrupts. The KERNEL communicates with the peripheral system by

setting pointers and channel flags. All communications between the various portions of the system are

by messages. Messages either pass through the KERNEL, in which case it acts as a message switdler,

or a:e pr,:.::~.:-=,_d d1r2ctfy by the KERNEL.

The PAGER dynamically allvcates both large and small pagas.-- It pt.rforrns all required implicit input/

output, thereby freeing m~mory pages and obtaining the required pages from disk storage. PAGER

operates in a demand mode. The PAGER routine provides a local paging strategy. Two distinct

strate::jies are used, one for sma!I pages and the other for large pages.

The small pge str?.tegy is b~-:ed on variation of both the common working set and page fault frequency

philosophies. A working set is established by noting the distance a marker page miyrates downward in

the page table over a predetermined time interval. The time interval varies according to the locality

and the fault-frequency. Pages which are below the marker page are not part of the working set.

The large page strategy is intimately bound to the envrionment created by the job lo3d and the rules

governing the scheduling algorithm for the various priority da$Ses. A job will be 21f0cdted a new l~rge

p:>ge up to its job class maximum, with lower priority jobs being disconnected to make large pages

a\lailable. Once the maximum is reached, the PAGER will use a "local least recently used" strategy to

::::3tisfy large p::oge ri:oquests for that program.

The local paging strategy, rather than a "global least recently used eviction" strategy is known as the

working set pager; it allows installation definition of applic;able parameters.

Associated with paging, the scheduler can control the level of multiprogramming such that page faults are

minimized. The scheduler which is tied to the pager maintains four queues for different types of jobs

and employs a scheduling algorithm whose behavior may be almost completely controlled by external,

locally set parameters. The intent is to provide a given installation with maximum flexibility in scheduling

and resource utilization with a minimum amount of page swapping.

Virtual System Tasks

The virtual portion of the system controls the entering of users and jobs into the system, ordering jobs

by priority, and entering and removing jobs from the time-slice loop. In addition, it contains routines

for system file manag~ment, explicit · input/output; and terminal message handling.

29

Virtual system tasks are queued by one of three occurre:nces:

• Communication from a station requiring processing.

• A user job requesting a system service not provided by the resident system.

• An entry in the periodic table indicating that it is time to run a virtual
system task.

During job processing, virtual system tasks connect a user to the system via control cards in batch mode.

Virtual system tasks process the messages of the job and perform the end-of-iob functions.

Mass.ages from programs and tasks to parform input/output are r-1ssed to the virtual system where they

are prncessed and s~nt to the ;:"rGiJ'.?r st2tion 1:vhere the requested input/output takes place. In addition,

disk sp2ce is allocated through the virtual system, and iobs oc tasks __ are schedule_d. in to the time-~lice

mechanism.

Several accounting tasks such as those associated with the file system and system usage accounting are

also performed through the virtual system.

All proyrarns .,;hare the same virtual system _tasks, whi~h are call~ into memory only upon demand and

only to the extent required.

Privileged User Tasks

Privilegt:d user tctsks rnn und8r spcd1I us~r idi:>ntification; they can make either normal user calls or

privileged system calls and can modify tables only through calls. The system operator under the current

CYBER 200-0S is an example of a privileged user.

The :>y:,i.c:.n o~c:;·~tor ;r; ~ n;tnrs ;~d cor;trols intrr~ctive :rnd b~tch tnc;ks running under CY BER 200-0S. The

operator communicates interactively with the OPERATOR program to:

• Display user, task, and accounting information

• Terminate tasks

• Suspend and resume tasks

• Enter and display system date and time

• Display virtual system memory or view system tables

• Create and modify user and account information and,

• Logicaf!y turn disks and on-line tapes on and off.

Other examples of privileged user tasks are those associated with sys-tern file maintenance, and transferring

information betwaen a CYBER 200 computer a[ld- a front-end computer.·

30

P~ripheral System Tasks ------
Each peripheral station contains a resident portion and a set of overlays for execution of its specified

tasks. In the case of a front-end wmputer, the soft\vare is the entire operating system and related

software plus a portion of software used for communicating with a CYBER 200 computer system.

Cornrnwikation bt:tv.een CYB ER 200-0S a11d the peripheral st<:tions is by mezsages and data transfers.

Although related to the recovery and availability of the CDC CYBER 200 computer system, the _

l\'1aintenance Control Unit (MCU) is part of the peripheral system.

The MCU rea!-t1me monitor dc;tects all hardware logic faults, along with temperature, pressure, dew point, and

power failures. For catastrophic sofuvare f~ilures, the ce;nt1al 1T12mory ri:;sident processor informs the MCU that

a softvmre fai!!!:-e h~s or.curr~d. Prosram opera!!on ~!ien is h?.!t~d ::!rid con~rol slven to the MCU. Station or

channel malfunctions a;e detected by the MCU. This is accornplfshd by the MCU rrionitoring the station com-

munication paths, through a series of messages and expected responses, whHe the system is running.

Faifures which require operator attention are reported to the system operator, as well as logged on the_
--

MCU mass storage disk. Failures w·hich do not require the operator are dmply logged. The error file

on the MCU is· designed to be dumped at regular intervals and the failures analyzed.

SUMMARY OF OPERATING SYSTEM

The operating system provides the user of a CYBER 200 computer system with numerous features which

allow access to the entire range of hardware capabilities in either batch or interactive mode. It manages

the distributed processing attributes of the system with a minimal amount of user intervention. Capabilities

are provided for user files with saveral categories of access, defined by the 11owner" of the files. Recove~

is provided in two forms: one through the operating system if a system hardware or softi.vare catastrophic

error occurs, and a seMnd, crilled Checkpoi11t/Rest~rt, for 11~~rs.

During operation, statistics and accounting information are gathered and maintained for user and file

activity. Provisions are made for a single task to start and communicate with several other user tasks

and for jobs. and tasks to share fifes.

LANGUAGE PROCESSORS

CYBER 200 FORTRAN

The source language for CYBER 200 FORTRAN is ANSI {ASA document X3.9-1966) with extensions.

The extensions provide vector Jangu3ge syntax and direct access to all central processor instructions which

make efficient machine utilization possible without the necessity for assembly language programming. The

FORTRAN compiler, object time library and generated object programs ~re ~ocation independent.

The CYBER 200 FORTRAN compiler provides code optimization, loop collapsing into vector instructions

and effective utilization of the large CYBER 200 register file. Programmers can write in traditional

FORTRAN allowing the compiler to optimize and collapse loops; or, they may utilize the extensions

31

.......
which permit direct access to the hardware capa!Jilities of vector and string manipulation. Efficient code

development is aided by a symbolic cross reference and a symbolic debugging package.

The CYBER 200 FORTRAN library ;JiOvides the stc.nd::;rd and extended mathematical and input/output

functions. Althc~gh defined primarily for the FORTR~,N user, those who Jre coding in another language

may wish to take advantage of the functions in the library. The following sets of routines are included:

• Intrinsic Functions (Scalar and Vector Sets)

Absolute Value

Truncation

Remaindering

Choosing Largest or Smallest Value

Conversion

Difference

· Prsdsion

Complex Factors

• External Functions (Scalar and Vector Sets)

Exponential

Logarithms

Trigonometric

Square Root

Double Precision Remaindering

Modulus

System Routines {Tl ME, DATE~ SECOND)

• Input/Output Functions

Fixed and Variable Format

NAME LIST

BUFFER

ENCODE/DECODE

Unformatted

Unit Control {REWIND, BACKSPACE, etc.)

In addition, the Model 205 application user is provided access to the powerful automatic-branching-on

special-conditions facility with the Model 205 computer. This facility is provided for the purpose of

detecting and processing unexpected data faults or contingency situations. The user. may exercise an

32

... option to provide own code processing of fault conrlitions or may elect to allow all faults to be handled

by the standard error processing routines.

An implementation of ANSI 1917 st<lndards for FORTRAN is curiently under devF:!opment for the CYBER

200 S<}ries. Hovv.:ver, many of the FORTRAN '77 extensions are provided in the curr~nt FORTRAN.

Examples of this are the PARAMETER and CHARACTER st::itements.

CYBER 200 ASSEMBLER

META is the machine language assembler for the Model 205 central processor. The a·ssembler generates

relocatable binary output which is linked and loaded by the L01\D~R under CYBER 200-0S control.

!":1ETA provides:

• Conditional assembly capabiiity for selective a~s:3mbly.

• Set capability to define, reference and extend the list of expressions.

• Procedure and function c..,pability.

• Attril.Jute assignment for symbols and elements.

CYBER 200 LOADER

LOADER provides the user with a means of collecting and linking relocatable programs and subprograms

to produce an executable program. The final product is a file ready for execution under control of the

operating system. The loading process involves loading relocatable object modules from one or more user's

files and satisfying any unresolved externals from user libraries, if specified, and then from the system

library.

LOADER provides many features which c011trnl the charact:::ristics of the execut2ble program file. One of

the more important features of LOADER is that the user may specify certain routines to be loaded as a

group on either a small or large virtual memory page. In a similar fashio~, the user may specify data

blocks to be grouped on small or large pages, to optimize paging strategies. The virtual memory scheme

of the hardware provides each user program with an address space of two trillion words, thus eliminating

the traditional use of program overlays, and minimizing memory management constraints on the user.

CYBER 200 SOFTWARE MAINTENANCE AIDS

The source images of the CYBER 200 software system, including compiler and assemblers, are contained

in a nurnbt:r of files referred to as program library files. The!:e files, plus other user progr::im and data

files, may be created and maintained with a utility program called CYBER 200 UPDATE. The user may

choose to maintain these library files usiog CYBER 200 UPDATE or the CYBER 170 UPDATE on the

front-end computer system.

OLE, Object Library Editor, performs s.;:veral basic functions in the rn2int'"::na __ nce of the softvvare system.

OLE creates CYBER 200 library files by combining files containing binary object modules. It also edits

library files by adding or deleting object modules. And, finally it combines files containing object modules

producing a non-library formatted file in output.

33

' "

\.

EDITPUB is the Public File Editor. It allows authorized users to list existing public file names and make

additions or deletions to the public files.

The following file ut:ilities are available to all users. These can also be used in the maintenance of the

CYBER 200 operating system and library. Control is through the file Jccess permission.

DEFINE

PURGE

GIVE

FILES

COPY

SWITCH

COMPARE

TCOPY

Create a disk file

Destroy all or a subset of user private files

Give files to another user or pool

List of user's files along with their attributes

Copy all or part of one disk file to another

Ch2nges certain file attributes

Compare all or part of one disk file with another

Copy files or records between tapes and disks

These utilities, along with the ones previously mentioned, may be arranged in batch jobs. Using these

utilities and by following a well-defined procedure, an authorized user can regenerate the operating system

and its product set.

The CYBER 200 operating system which supports these language proce5sors <tnd maintenance aids is a

sophisticated system 'Nhich prcvides c1pabilities necpssary to control the flow of programs and data in an

advanced high-speed computer.

CYBER 200 FRONT-END LINK

The software which interfaces a CYBER 200 through the Distributed Peripheral Network hardware .:.md

software to a front-end computer system is called Rernote Host Facility (RHF). A front-end system such

as the CYBER 170 computer system under co~trol of the Netvvork Operating System (NOS) includes the

RHF software. The full set of strindard software products provided on both systems are available to -the

user. This RHF software resides in the CDC CYBER 170 and allows the CYBER to link to another

mainframe. Also available is the CYBER 170 series product set which includes FORTRAN, COBOL,

ALGOL, data management software, standard utilities, etc., as well as diagnostics. The Model 205 runs

the standard CYBER 200-0S as well as another portion of the RHF software, the complement of the

CYBER 170 software. On the Model 205, there is also a full set of diagnostics which run either on-line

or off-line.

One of the bene:fits gained using RHF software is a multi-mainfrarne environment. If desired, the user

has a choice of different mainframes. A standard large-scale computer such as the CYBER 170 series

works very well at editing and job preparations by doing this work on the front-end processor; the Model

205 is free for large computational tasks and, thetefore, better utiliz'1tion is 'made of the Model 205

computer. Another advantage is that one set of peripherals can serve the needs of both the Model 205

and the front-end system. All the slower peripherals, tape drives, card readers, printers, etc., can be

on-line to the front-end system, but the Model 205 still has access to these peripheral devic~s via RHF.

34

...
'II.

Note that high-speed random access s!orage devices, the CDC 819 High C?pch~ity Disks, ond the CDC 679

high-speed tapes, are on-line to the Model 205. Using CDC-supplied softv."are for the front-end system

and the Model 205 system allows use of the mature CDC CYBER 170 software as well as access to the

new software and new features of the Model 205 computer.

RHF offers spooling, staging and interactive capabilities. Spooling is defined as a loc<ll or remote job file

being submittf:d to the front-end system input queue for execution on the Model 205. A parameter on

the job card specifies the destination mainframe in this case and the job file is transferred to that main

frame for execution. Output generated during execution of the job is automatically returned to the

originating mainframe and terminal unless explicitly diverted by the job.

The staging capaL;i!ity 3llows the files to be ~i;:mferrsd fr,""'m th~ front-end system to the l\fodel 205 and

from the Model 205 to the front-end system. The Model 205. user_ can request_ \Lia ccntrol card that a

mass storage file located on the front-end system be staged to the Model 205 or that a mass storage file

located on the Model 205 be staged to the front-end system.

One of the comiderations in data transmission betvveen the Model 205 and the system front-ehd is file

conversion. A job file is transferr~d over to Medel 205 and converted into a sequential structured file,

recognizable by the Model 205 batch processor. When the output is transported back to the front-end

system, it is then converted to a printable or punchable file. A coded file is converted on the Model

205 to an ASCII file. A front-end system binary file located either on mass storuge or tape is transferred

with or without conversion to the Model 205 mass storage. With conversion, the binary files are converted

from front-end system format to Mociel 205 61-bit format. f n a sir:1 i!;;ir f ashk:.n, d1ta conversion is

performed in a reverse manner when the file is tronsfern:d from the MoJcl 205 to the front-end system.

The Model 205 software can also be accessed interactively at a front-end system terminal. The int:;ractive

meso.ages· input at the termina! are transferred to the Model 205 system across the link, compietely trans·

parent to the froHt-end system. In addition, th~ i11put, rrint, 1-'"j,(.h, .,,.·,J ;;c-::i>~ :',':ode! 2n5 qlf 0 U'.·S cm be

displayed on a terminal.

The Model 205 interactive user has all the same Job Control Language ~nd other capabilities as the Model

205 batch user. In addition, the Model 205 interactive user has available utilities for testing and debugging

correctly compiled programs that execute unsatisfactorily. For example, the DEBUG utility allows a user

to breakpoint at a place in the program, display and then alter data in the program, and finally continue

execution from the last user breakpoint. This process of breakpointing, displaying data, and then continuing

execution can be used to speed the calendar time associated with obtaining a correctly executing program.

DEBUG intt:afaces to the symf'vl tJble g::n!)rzt~d by FORTRAN. Other utilities, such as LOOK which

display or alter the contents of mass storage files, are al~o available to help the user in daveloping new

programs in an interactive mode.

Production programs, as well, can be run in interactive mode. A user may wish to observe the effects

of paramater cl:10ices on program execution. Parameters can be entered at q terminal, and ~ig'1ific"~nt data

displayed, allov:ing the user to control the processing.

35

The RHF software design is such that standrird utilities exist intunal to i1self to handle all file, comm<-mds,

and d<lta communication requirements. These utilities are the small virtual tJsks v'JhiCh handle the special·

iz(;d requirements, while the n~sident tasks h<rndle the generalized or ~lobal re41irem::nts. The re5ident

t;:isk runs the communic3tion buffers and the utility tasks handle data conversion, file re::id and write

r,-quests, message formatting and p<iram~ter gath,ering.

The design of the RHF software permits multiple front-end computers to be attached and in operation

.:oncurrentfy. This multiple front-end configuration to the Modei 205 can grow, limited only by the

number of front-end systems devoted to computer linkage.

36

