
CDC® CYBER 200 .
FORTRAN VERSION 3

FOR USE WITH
C D C® C Y B E R 2 0 0
OPERATING SYSTEM
VERSION 1

REFERENCE MANUAL

60457040

~~
CONT(\.OL

DATA

REVISION RECORD
REVISION DESCRIPTION

A Original release.

(7-2-79)

B This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.

(8-22-80)

c This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.1.

(11-15-80)

D This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.2.

(2-16-81)

Publication No.

60457040

REVISION LETTERS I, 0, Q AND X ARE NOT USED

Address comments concerning
this manual to:

©coPYRIGHT CONTROL DATA CORPORATION 1979, 1980, 1981

All Rights Reserved

Printed in the United States of America

ii

CONTROL DATA CORPORATION
Publications and Graphics Division

215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

or use Comment Sheet in the
back of this manual

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars
in the margins or by a dot near the page number if the entire page is affected. A bar by the page number
indicates pagination rather than content has changed.

Page Revis ion Page Revision

Front Cover - 14-7 thru 14-25 B
Tit le Page - 15-1 D
ii D 15-2 thru 15-12 c
iii/iv D
v/vi c 16-1 thru 16-7 B

A-1 c
vii thru x D A-2 c
xi/xii D
xiii D

B-1 D
B-2 B

1-1 thru 1-3 B B-3 D
2-1 thru 2-7 B
3-1 thru 3-4 B

B-4 B
8-5 B

4-1 B · B-6 D
4-2 B
5-1 B

8-7 thru 8-20 8
8-21 D

5-2 B 8-22 D
5-3 thru 5-5 D
5-6 B

8-22.l D
B-22.2 D

6-1 thru 6-7 B B-23 thru 8-28 B
7-1 thru 7-8 B B-29 D
8-1 thru 8-5 B 8-30 8
9-1 thru 9-7 B C-1 D
10-1 thru 10-3 B C-2 8
11-1 c C-3 8
11-2 D D-1 thru D-16 B
11-3 B E-1 B
11-4 c E-2 D
11-5 thru 11-7 B E-3 D
11-8 thru 11-14 D
12-1 B

F-1 thru F-4 D
G-1 thru G-3 B

12-2 B lndex-1 thru -5 D
13-1 thru 13-17 c
14-1 thru 14-4 B

Conment Sheet D
Mailer -

14-5 D Back Cover -14-6 B

60457040 D iii/iv •

I NOTATIONS

1. INTRODUCTION

Program Form
END-Lines

· Conments
Statements

Statement Labels
Continuation of Statements
Ordering of Statements

Columns 73 through End of Source Line
Program Data

2. STATEMENT ELEMENTS

Character Set
Data Elements

Constants
Symbolic Constants
Variables
Arrays

Subscripts and Array Declarators
Subscript Interpretation

Data Element Forms
Integer Elements
Real Elements
Double-Precision Elements
Complex Elements
Logical Elements
Hollerith Elements
Character Elements
Hexadecimal Elements
Bit Elements

3. SCALAR EXPRESSIONS

Arithmetic Expressions
Exponentiation
Evaluation of Arithmetic Expressions
Type of an Arithmetic Expression

Character Expressions
Relational Expressions
Logical Expressions

4. SCALAR ASSIGNMENT STATEMENTS

Arithmetic Assignment Statement
Character Assignment Statement
Logical Assignment Statement

5. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO
Assigned GO TO

ASSIGN Statement
Assigned GO TO Statement

Computed GO TO
IF Statement

Arithmetic IF

60457040 D

CONTENTS

xiii

1-1

1-1
1-1
1-1
1-2
1-2
1-3
1-3
1-3
1-3

2-1

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7

3-1

3-1
3-2
3-2
3-3
3-3
3-3
3-3

4-1

4-1
4-2
4-2

5-1

5-1
5-1
5-1
5-1
5-1
5-2
5-2
5-2

Logical IF
Block IF
ELSE
ELSE IF
END IF
Block IF Structures
Nesting Block IF Structures

DO Statement
Defining a DO Loop
Nesting DO Loops

CONTINUE Statement
PAUSE Statement
STOP Statement
RETURN Statement
CALL Statement

6. SPECIFICATION AND DATA INITIALIZATION

5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-4
5-4
5-5
5-5
5-5
5-5
5-6
5-6

STATEMENTS 6-1

Type Statements 6-1
IMPLICIT Statement 6-1
Explicit Typing 6-1

DIMENSION Statement 6-2
ROWWISE Statement 6-2
COMMON Statement 6-2
EQUIVALENCE Statement 6-3
EXTERNAL Statement 6-3
DATA Statement 6-4

Implied DO in DATA Statement 6-5
Rules for Initializing Values 6-5

PARAMETER Statement 6-6

7. DEFINING PROGRAM UNITS AND STATEMENT
FUNCTIONS 7-1

The Main Program 7-1
PROGRAM Statement 7-1

File Information Parameters 7-1
Declaration of Files for Input/Output 7-2

Statement Functions 7-2
Defining Statement Functions 7-2
Referencing Statement Functions 7-3

Subprograms 7-3
Passing Arguments Between Subprograms 7-4
Function Subprograms 7-5
Subroutine Subprograms 7-5
Block Data Subprograms 7-6

Multiple Entry Subprograms 7-6
Function Subprogram Entry Point Names 7-7
Secondary Entry Point Argument Lists 7-7
Referencing Secondary Entry Points 7-7

8. INPUT, OUTPUT, AND MEMORY TRANSFER
STATEMENTS

Sequential Input Statements
Formatted READ Statement

Transfer on End-of-File
Data Transfer Errors

READ with Implied Device
Unformatted READ Statement

Sequential Output Statements

8-1

8-1
8-1
8-2
8-2
8-2
8-2
8-2

vii

Formatted WRITE
PRINT
PUNCH
Unformatted WRITE

Memory-to-Memory Transfer
ENCODE Statement
DECODE Statement

Namelist Input and Output
Namelist Input Data
Namelist Output Data

Unit Positioning
REWIND
BACKSPACE
END FILE

9. INPUT/OUTPUT LISTS AND DATA. FORMATTING

Input/Output Lists
List Items
Implied DO in Input/Output List

FORMAT Statement
Format Control
Data Conversion
Conversion Specification

I Conversion
E and F Conversions
G Conversion
D Conversion
L Conversion
A and.R Conversions
Z Conversion
B Conversion

Editing Codes
X Specification
H and ' Specifications
T Specification

Scale Fae tors
Printer Carriage Control

Execution-Time Format Specification

10. ARRAY ASSIGNMENT

Subarray References
Conformable Subarrays
Array Expressions
Array Assignment Statement

11. VECTOR PROGRAHIING

Automatic Vectorization
General Characteristics of Vectorizable

DO Loops
Assignment Statements in Vectorizable

DO Loops
Loop-Dependent Array References in

Vectorizable Loops
Automatic Recognition of

STACKLIBABLE Loops
Automatic Vectorization Messages

Explicit Vectorization
Vectors
Descriptors

Expressions
Vector Arithmetic Expressions
Vector Relational Expressions
Bit Expressions

Executable Statements
Descriptor ASSIGN Statement
FREE Statement
Vector Arithmetic Assignment Statement
Bit Assignment Statement

viii

8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-5
8-5

9-1

9-1
9-1
9-1
9-2
9-3
9-3
9-3
9-4
9-4
9-4
9-5
9-5
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-6
9-6

. 9-7

10-1

10-1
10-2
10-2
10-2

11-1

11-1

11-1

11-2

11-3

11-4
11-4
11-4
11-5
11-6
11-6
11-6
11-7
11-8
11-8
11-8
11-9
11-9
11-10

WHERE statement 11-10

I Block WHERE statement 11-11
OTHERWISE statement 11-11
END WHERE statement 11-11
Block WHERE Structures 11-11
Nesting Block WHERE Structures 11-13

Declarations 11-13
DESCRIPTOR Statement 11-13

Initializing Descriptors and Vectors 11-13
Vector Function Subprograms 11-13

Referencing Vector Functions 11-14
Secondary Entry Points 11-14

12. SUBPROGRAM LINKAGE 12-1

Prologue and Epilogue 12-1
Standard Calling Sequence 12-1
Fast Calls 12-2
File Initialization 12-2

13. CYBER 200 FORTRAN-SUPPLIED SUBROUTINES 13-1

CYBER 200 FORTRAN Special Calls 13-1
Arguments 13-1

Label References 13-1
Symbolic References 13-2
Literals 13-2

Examples of Special Call Usage 13-2
Data Flag Branch Manager 13-3

Data Flag Branch Hardware 13-3
Default Conditions 13-4
Branches 13-5

Data Flag Branch Software 13-5
Interrupt Classes 13-5
Multiple Interrupts 13-5
Default Interrupt·Processing 13-6

Class III Interrupts 13-6
Interrupt-Handling Routines ·13-7
Q7DFSET 13-8
Q7DFLAGS 13-8
Q7DFOFF 13-8

C~ass I Interrupts 13-9
Interrupt-Handling Routines 13-9
Q7DFCL1 13-9

MD UMP 13-10
System Error Processor (SEP) 13-10
Concurrent Input/Output Subroutines 13-11

Array Alignment Considerations 13-12
Subroutine Calls 13-12

Q7BUFIN 13-12
Q7BUFOUT 13-13
Q7WAIT 13-13
Q7SEEK 13-13

Q8WIDTH Subroutine 13-14
Q8 NORED Subroutine 13-14
Supplied Subroutines 13-14

DATE 13-14
RAN GET 13-14
RAN SET 13-14
SECOND 13-14
TIME 13-14
VRANF 13-14

STACKLIB Routines 13-14

14. CYBER 200 FORTRAN-SUPPLIED FUNCTIONS 14-1

In-Line and External 14-1
Scalar and Vector 14-1
Function Descriptions 14-5

ABS(a) 14-5
ACOS(a) 14-6

60457040 D

AIMAG(a)
AINT(a)
ALOG(a)
ALOGlO(a)
AMAXO(a1,a2, •••)
AMAX1Ca1 ,a2, .••)
AMINO(a1 ,a2 , .••)
AMIN1Ca1 ,a2 , ••.)
AMOD(al ,a2, .••)
ASIN(a) and ACOS(a)
ATAN(a)
ATAN2(a,b)
CABS(a)
CCOS(a)
CEXP(a)
CLOG(a)
CMPLX(a1,a2)
CONJG(a)
COS(a)
COSH(a)
COTAN(a)
CS IN(a)
CSQRT(a)
DABS(a)
DACOS(a)
DASIN(a) and DACOS(a)
DATAN(a) and DATAN2(a,b)
DATAN2(a,b)
DATE(d)
DBLE(a)
DCOS(a)
DCOSH(a)
DDIM(a1,a2)
DEXP(a)
DFLOAT(a)
DIM(a1,a2)
DINT(a)
DLOG(a)
DLOGlO(a) ..
DMAX1Ca1 ,a2, •• ·)
DMINl(a1, a2,. ••)
DMOD(a1,a2)
DPROD(a1,a2)
DSIGN(a1,a2)
DSIN(a) and DCOS(a)
DSINH(a)
DSQRT(a)
DTAN(a)
DTANH(a)
EXP(a)
FLOAT(a)
IABS(a)
IDIM(a1,a2)
IDINT(a)
IFIX(a)
INT(a)
ISIGN(a1,a2)
MAXO(a1 ,a2, .••)
MAX1Ca1 ,a2, •••)
MINO(a1,a2, •••)
MIN1Ca1 ,a2, .••)
MOD(a1,a2)
Q8SCNT(v)
Q8SDFB(a,b)
Q8SDOT(v1,v2)
Q8SEQ(v1,v2)
Q8SEXTB(a,m,n)
Q8SGE(v1,v2)
Q8SINSB(a,m,n, b)
Q8SLEN(v)
Q8SLT(v1,v2)
Q8SMAX(v) or Q8SMAX(v,c)
Q8SMAXI(v) or Q8SMAXI(v,c)

60457040 D

14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-7
14-7
14-7
14-7
14-8
14-8
14-8
14-8
14-8
14-8
14-9
14-9
14-9
14-9
14-10
14-10
14-10
14-10
14-10
14-10
14-11
14-11
14-11
14-11
14-11
14-11
14-11
14-11
14-11
14-12
14-12
14-12
14-12
14-12
14-12
14-12
14-12
14-13
14-13
14-13
14-13
14-13
14-13
14-13
1°4-13
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-15
14-15
14-15
14-15
14-15
14-15
14-15

Q8SMIN(v) or Q8SMIN(v,c)
Q8SMINI(v) or Q8SMINI(v,c)
Q8SNE(v1,v2)
Q8SPROD(v) or Q8SPROD(v,c)
Q8SSUM(v) or QSSSUM(v,c)
Q8VADJM(v;u)
Q8VAVG(v1,v2;u)
Q8VAVGD(v1,v2;u)
Q8VCMPRS(v,c;u)
Q8VCTRL(v,c;u)
Q8VDELT(v;u)
Q8VEQI(v1,v2;u)
Q8VGATHP(v,i,n;r)
Q8VGATHR(v,i;u)
Q8VGEI(v1.,v2;u)
Q8VINTL(a1, a2 ;u)
Q8VLTI(v1,v2;u)
Q8VMASK(v1,v2,c;u)
Q8VMERG(v1,v2,c;u)
Q8VMKO(a1,a2;u)
Q8VMKZ(a1,a2;u)
Q8VNEI(v1,v2;u)
Q8VPOLY(v1,v2;u)
Q8VREV(v;u)
Q8VSCATP(v,i,n;r)
Q8VSCATR(v,i;u)
QBVXPND(v,c;u)
RANF(d)
REAL(a)
SECOND(d)
SIGN(a1,a2)
SIN(a) and COS(a)
SINH(a)
SNGL(a)
SQRT(a)
TAN(a)
TANH(a)
TIME(d)
VABS(v;u)
VACOS(v;u)
VAIMAG(v;u)
VAINT(v;u)
VALOG(v;u)
VALOGlO(v;u)
VAMOD(v1,v2;u)
VASIN(v;u)
VATAN(v;u)
VATAN2(v1,v2;u)
VCABS(v;u)
VCCOS(v;u)
VCEXP(v;u)
VCLOG(v;u)
VCMPLX(v1,v2;u)
VCONJG(v;u)
VCOS(v;u)
VCSIN(v;u) and VCCOS(v;u)
VCSQRT(v;u)
VDBLE(v;u)
VDIM(v1,v2;u)
VEXP(v;u)
VFLOAT(v;u)
VIABS(v;u)
VIDIM(v1, v2; u)
VIFIX(v;u)
VINT(v;u)
VISIGN(v1,v2;u)
VMOD(v1,vz;u)
VREAL(v;u)
VSIGN(v1,v2;u)
VSIN(v;u) and VCOS(v;u)
VSNGL(v;u)
VSQRT(v;u)
VTAN(v;u)

14-15
14:...15
14-16
14-16
14-16
14-16
14-16
14-17
14-17
14-17
14-17
14-17
14-17
14-18
14-18
14-18
14-18
14-18
14-18
14-19
14-19
14-19
14-19
14-19
14-20
14-20
14-20
14-20
14-20
14-20
14-20
14-21
14-21
14-21
14-21
14-21
14-22
14-22
14-22
14-22
14-22
14-22
14-23
14-23
14-23
14-23
14-23
14-23
14-23
14-23
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25

ix I

15. PROGRAM COMPILATION

FORTRAN Statement
A - Assembly Listing
B - Build Object File
C - Cross-Reference Listing
E - Extended Basic Block Optimization
I - Instruction Scheduling
K - 64-Bit Compare
L - Source Listing Suppression
M - Map of Register File and Storage

Assignments
0 - Optimization
P - Propagation
R - Redundant Code Elimination
S - Suppress Debug Symbol Table

Creation
U - Unsafe Vectorization
V - Vectorization and Automatic

Recognition of STACKLIB Loops

A Character Sets
B Diagnostics
C Glossary
D Special Call Statements

1-1
1-2
2-1

2-2
2-3
2-4
2-5
5-1
5-2
5-3

5-4
5-5

5-6
5-7

5-8
6-1
7-1
7-2

7-3
7-4
8-1

9-1
10-1
11-1
11-2
11-3
11-4

x

Sample Coded FORTRAN Program
Ordering of Statements
Conventional Ordering of Elements in

a 3-Dimensional Array, A(2,3,4)
ROWWISE-Declared Array, A(2,3,4)
Integer Data Representation
Real Data Representation
Logical Data Representation
Simple Block IF Structure
Block IF Structure with ELSE Statement
Block IF Structure with ELSE IF

Statements
Nested Block IF Structure
Incorrect: Entering Range of DO

Before DO Execution
DO Control Variable Reinitialization
Example of Incorrect Sharing of

Terminal Statement
Example of RETURN Statement
COMMON and EQUIVALENCE Statements
Subprogram Name as Actual Argument
Subprogram Reference as Actual

Argument
Multiple Entry Subroutine
Multiple Entry Function
Example Using ENCODE and DECODE

Statements
Example of Inputting Formatted Data
Meaning of a Subarray
Form of Vectorizable DO Loops
Vectorizable Loop #1
Vectorizable Loop #2 (U Option)
Vectorizable Loop #3

15-1

15-1
15-1
15-2
15-2
15-2
15-2
15-2
15-2

15-2
15-2
15-2
15-2

15-2
15-2

15-2

Y - Syntax Check
Z - DO Loop Optimization
1 - STAR-100 Optimization
2 - CYBER 203 Optimization
3 - CYBER 205 Optimization

Compiler-Generated Listings
Cross-Reference Maps
Assembly Listing
Register Map and Storage Map

Execution-Time File Reassignment
Control of Drop File Size

16. EXAMPLES

Program PASCAL
Data Initialization
Program ADD
Program CPVECT

15-2
15-3
15-3
15-3
15-3
15-3
15-3
15-11
15-12
15-12
15-12

16-1

16-1
16-2
·16-2
16-6

APPENDIXES

A-1
B-1
C-1
D-1

1-3
1-3

2-4
2-4
2-4
2-5
2-6
5-3
5-3

5-3
5-4

5-4
5-5

5-5
5-6
6-4
7-4

7-4
7-7
7-8

8-3
9-1

10-2
11-1
11-2
11-3
11-3

E CYBER 200 FORTRAN-Supplied Functions
List

F CYBER 200 FORTRAN Statement SU11111ary
G Compatibility Features

INDEX

FIGURES

11-5
11-6
11-7
11-8
11-9
11-10

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
15-1
15-2
15-3
15-4
15-5
16-1
16-2

16-3
16-4
16-5
16-6

16-7

16-8
16-9

Vectorizable Loop #4
Vectorizer Output
Descriptor Representation
Example of Descriptor ASSIGN
Simple Block WHERE Structure
Block WHERE Structure With

OTHERWISE Statement
Special CALL Statement
Q8ES Usage
Additional Q8 Usage
Generated Machine Code
Additional Generated Code
Data Flag Branch Register Format
DFB Register Dump Example
Scope of Selected Conditions
MDUMP Output
Statement Label Map Format
Compiler Output Example
Variable Map Format
Symbolic Constant Map Format
Procedure Map Format
Program PASCAL
Examples of Initializing Simple

Variables and Array Elements
Examples of Initializing Simple Arrays
Examples of Vector Initialization
Example of Descriptor Initialization
Example of Descriptor Array Element

Initialization
Exam~le of Descriptor Array

Initialization
Program ADD
Program CPVECT

E-1
F-1
G-1

11-3
11-5
11-6
11-9

11-12 I
11-12
13-2
13-2
13-2
13-2
13-2
13-3
13-7
13-7
13-10
15-3
15-4
15-9
15-10
15-11
16-1

16-2
16-3
16-3
16-3

16-3

16-4
16-4
16-7

60457040 D

TABLES

1-1 Column Conventions 1-1 7-2 Correspondence of Actual to Dummy
1-2 Types of Statements 1-2 Arguments 7-5
2-1 FORTRAN Character Set 2-1 8-1 Legal Record Types 8-1
2.;.2 Array Element Succession Formulas 2-3 9-1 Input/Output Conversions 9-4
2-3 Subscripting Order for a Three- 11-1 Criteria for Vectorizable Loops 11-2

Dimensional Array A(2,3,4) 2-4 11-2 Expression Types That Can Appear in
3-1 Logical Operator Truth Tables 3-3 an Assignment Statement 11-8
3-2 Operator Precedences 3-4 11-3 Conversion Rules for Vector Assignment 11-10
4-1 Conversion for Arithmetic Assignment 4-1 13-1 Data Flag Branch Conditions 13-4
6-1 External Declaration of a Supplied 13-2 Multiple Interrupt Processing 13-6

Function 6-4 13-3 STACKLIB Calls with Forward Count 13-15
6-2 Data Initialization Conversions 6-7 13-4 STACKLIB Calls with Backward Count 13-16
7-1 Distinguishing Functions and 14-1 FORTRAN-Supplied Functions 14-1

Subroutines 7-3

60457040 D xi/xii I

NOTATIONS

Certain notations are used throughout this manual that
have consistent meanings. The notations are:

UPPERCASE

lowercase

60457040 D

Uppercase letters in language for ms
indicate actual keywords.

Lowercase letters in language for ms
indicate user-supplied character
strings.

Numbers preceded by the pound sign
are hexadecimal numbers.

numbers

Shading

All numbers in this manual are
decimal unless preceded by a pound
sign or otherwise denoted as
hexadecimal numbers.

Delta represents a blank.

Shading indicates features that are
Control Data extensions to the
standard FORTRAN language. The:
parts of example programs that use
language exten,sion~ are also shaded~

xrn I

The ELSE statement can be used with a block IF statement
to provide an alternate path of execution for a block IF
statement. An ELSE statement can have a statement
label, but the label cannot be referenced in any other
statement.

ELSE IF

The ELSE IF statement has the following form:

ELSE IF (expr) THEN

expr Any logical expression.

The ELSE IF statement can be used with a block IF
statement to provide an alternate path of execution for a
block IF statement or another ELSE IF statement, and to
perform a conditional test. An ELSE IF statement can
have a statement label, but the label cannot be referenced
in any other statement. The effect of execution of an
ELSE IF statement is the same as for the block IF
statement.

END IF

The END IF statement has the fallowing form:

END IF

The END IF statement terminates a block IF structure.·
Each block IF statement must have a corresponding END IF
statement.

BLOCK IF STRUCTURES

Block IF structures provide . for alternate execution of
blocks of statements. A block IF structure begins with a
block IF statement and ends with an END IF statement; it
can contain an ELSE statement or one or more ELSE IF
statements. Each IF, ELSE, or ELSE IF statement can be·

·followed by a block ·of executable statements called an
I if-block, else-block, and elseif .;..block respectively.

I

An if.:..block, else-block, and elseif-block can contain any
number of executable statements or no statements.
Control can transfer out of an if-block, else-block, or.
else if-block. Control cannot transfer ·into an if-block,
.els~block, or elseif-block.

A simple block IF structure is shown in figure 5-1. If the
expression in the block IF statement is true, execution
continues with the first statement in the if-block. If the
expression is false, control transfers to the statement
followingthe END IF statement.

IF (expr). THEN

if-block

END IF

Figure 5.;..1. Simple Block . IF Structure

60457040 D

A block IF structure that contains an ELSE statement is
shown in figure 5-2. If the expression in the block IF
statement is true, execution continues with the first
executable statement in the if-block. If u statement in the I
if-block does not transfer control elsewhere, control
transfers to the statement following the END IF statement
after execution of the if-block.

IF (expr) THEN

if-block I
ELSE

else-block I
END IF

Figure 5-2. Block IF Structure With ELSE Statement

If the expression in the block IF statement is false, control
transfers to the first statement in the else-block. If a I
statement in the else-block does not transfer control
elsewhere, control transfers to the statement following the
END IF statement after execution of the else-block. I
A block IF statement can have no more than one associated
ELSE statement.

A block IF structure that contains ELSE IF statements is
shown in. figure 5-3. If the· expression in the block IF
statement is . true, execution continues with the first
executable statement in the if-block. If a statement in the I
if~block does not transfer control elsewhere, control
transfers to the statement following the END IF statement
after execution of the if-block. I

IF (expr) THEN

if-block

ELSE IF (expr) THEN

elseif-block-1

ELSE IF (expr) THEN

elseif-block-2

END IF

Figure 5-3. Block IF Structure With ELSE IF Statements

If the expression in the block IF statement is false, control
transfers to the first ELSE IF statement that is associated
with the block IF· statement. The expression in this ELSE

I

I

I

IF statement .··is evaluated. If. the expression. is. true,
execution continues with the first executable statement in
elseif-block-1. · If a ·statement in . elseif.;..block-1 does not I
transfer . control . elsewhere, control transfers· · to the
statement following the. END. IF. statement after execution I
of elseif-block-1.

If the. expression in the first ELSE IF statement is false,
control transfers to the second ELSE IF statement that is
associated . with the block IF statement •. The. expression. in
the second ELSE IF ·statement is. evaluat.ed . in .. th.e .. same
manner as in the first ELSE. IF statement~ .·Any number of
ELSEIF statements can appear in a blocklF structure.

5-3

>~A~n. ,ELSE ... siaten1enf ''can: a~./ #i>I>ear .ii{ th~, 'stru~tur~i
·howeyer, •... it.·mu~tJollo'W ·the last ELSE .. ·IF statelnent~<. The
· ~l~e.;.t>lockassOC,iated with·t~ ~LS,E statelJl.ent···~.executed
if all of the logical · .. expressions Jn the• blo~k IF' statem.ent

::and ELSE IF statements are false~
.•••.••.•. ·. ··•···••·•••· i< y \ . >) : . .. i i ... '. :; . : . : : : ·· .·... ? .· . ······ >• <;

'NESTING: BLOCK IF STRUCTURes.··•:
'· · .. · .·.: .,·.·· ... , · ·' ·· :.···.·.:·.··, .·: . . · ·.··: .. ·. ·.·. : :.,

; A •.• lles·t~d blpckIF struciwreis.·.··~·.···block .. IF .•. structure?th~t;
appears · in an if".'"block, else-block, . or elseif '.'"block o.f

. anoth~~ bloc~ IF.· structure~·•· •. A .nested·block .JF'. structure
must appear entirely within an . if-block, else-block, or
~lseif .,.block •.... ··Control can·.•· ~ran~fer ··.· from · · an .. ·.·· if-block,:
else-block; or elsE?if-.block ·of ·a. nested block. IF ·structure to

• the if ".'"block, else.-block, ()r elseif"'.'block of the outer block
IF structure in which ... the nested block IF. structure·

i appears. . Control · cannot• •transrer·.·.·.· from•••.•an····.· .. if-~lock,
:. else-block, or elseif"'.'block. of an outer blockIF structure to·.
: an if-block,. else-block, .. o.r else if-block ·.of. a· nested .. block IF l
·structure, however. Nested block IF structures. are shown
in·.figure. 5-4.

if-bfock-1

lf(expr) JHEN~····• < .•...
< · · ... :· Nested :

•·•.· ... · .. ·.·.·•.· .. ·•.•.• .. ···•·•··· ...•. i.· '.·.···.-.·.•.•.·.··.b······ .. ' ... ·.o····.·.·.:c····.· .. ··k·.·.-......•. 2 .•... ·.•.·.•··.···.•••···.•····.·.·.·.· •. •·.· .. ···.s···· ..•.. '.o·······.···.c··· .. ··k·.·.····.······· .• ·.· ... ·.' ... •.· ..• · .. F··.··.· '.
· .·. .. • • , < > Structure

END IF · .:: · .. ··.····.·.· .. ·· ·
>' ... :<·::<:'·,.·.: .. ·:.:-·>~>· .·:.<.<::::·::,::· .. ;, .'. ~'· .. '.=.'·.'>_;·<·'. . ."_<"·:.·:.'

if-block.;;1

•.••. END.·IF.·•

· ., 'figure5..4. ··~esied·:~1ock if StrlJJti~e ·
tA· ...• _b1ri~R···•·•··1F•.~~.ucf ~l'~····cElll· ..• ~t>pJiit .•.• \Yitttilitii~··rari~~·······~i·····a· •. ·~()·~
·loo~, b1Jt the entir~plQCk IF structur~ must appear in· the
. D() Joop ~ange. :An.<.END ... ·1p Sbitement can11ot. be. the;
, terminal statement of a DO 'loop. A DO loop can appear in

I : an if-block, else-block, or elseif-block bUt the entire range
,of the DO loop must appear in the if-block, else-block, or
.elseif-block.

h "• o y "h•<"• y~ y .N y • 4 • • ••• <.,. <•.n•.' N •• •• ~. ''" • _, h.h .,

DO ST A TEMENT
Execution of a group of statements can be repeated a
specified number of times through use of the DO
statement. The range of a DO statement is the set of
executable statements beginning with the first executable
statement following the DO and ending with the terminal
statement associated with the DO. A DO statement along
with its range is referred to as a DO loop.

DEFINING A DO LOOP

The DO statement has the following form:

n

5-4

The label of the terminal statement.

The control variable, a simple integer
variable.

The initial value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

The terminal value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

Optional. The incrementation value
parameter for i, an integer constant or a
simple integer variable with a value greater
than zero. Default value is 1.

The terminal statement of a DO loop can be any
assignment statement and almost any input or output
statement. However, any flow control statement other
than a CONTINUE is either highly restricted or must not
appear as the terminal statement of a DO. The terminal
statement must not be any of the following:

•
•

• ,.
•
•

•
•

A RETURN, STOP, or PAUSE statement

A GO TO statement of any form

AfiiOcltlF:':EEsE: ELS1fIF~ 'of END 1Fsta1:emenf .

A block WlfERE or OTHERWISE statement .
'··,:,.'.:.'.' .. ' .. :::· ·'

A special··· callstaternent

A DO statement

A,. READ statement cont~illing an ERRcir END bl'anch

A··.c~~~.• .. ~.~fi.~~~~.~~.t.~at .. P~.~~~ .•. a.·.r~~~-~· Jabe1···
An arithmetic IF statement

A logical IF statement containing any of these
restricted for ms

The terminal statement must physically follow and be in
the same program unit as the DO statement that refers
to it.

Example:

DO 10 I=l,11,3
IF(ALIST(I)-ALIST(I+ 1))15 ,10 ,10

15 ITEMP=ALIST(I)
10 ALIST(I)=ALIST{I+l)

300 WRITE(6,200)ALIST

The statements following DO up to and including
statement 10 are executed four times. The DO loop is
executed with I equal to 1, 4, 7, 10. Statement 300 is
then executed.

A DO loop can be initially entered only through the DO
statement. That is, the group of statements in figure 5-5
are incorrect. The GO TO statement in figure 5-5
transfers control into the range of the DO before the DO
statement has been executed.

GO TO 100
DO 100 1=1,50

100 A(l)=I

Figure 5-5. Incorrect: Entering Range of
DO Before DO Execution

Execution of a DO statement causes the following
sequence of operations:

1. i is assigned the value of ml.

2. The range of the DO statement is executed.

60457040 D

I

3. i is incremented by the value of m3•

4. i is compared with m2. If the value of i is less than
or equal to the value of m2, the sequence of
operations starting at step 2 is repeated.· If the value
of i is greater than the value of m2 the DO is said
to have been satisfied, the control variable becomes
undefined (has an unpredictable value), and control
passes to the statement following the statement
labeled n. If mi is greater than m2, 'the range of
the DO is still executed once. ·

A transfer out of the range of a DO loop is allowed at any
time. When such a transfer occurs, the control variable
remains defined at its most recent value in the loop. If
control eventually is returned to the same range without
entering at the DO statement, the statements executed
while control is out of the range are said to define the
extended range of the DO. The extended range of a DO
must not contain a DO that has its own extended range.

The control variable, initial parameter, terminal
parameter, and incrementation parameter of a DO must
not be redefined during the execution of the range of that
DO. However, the group of statements in figure 5-6 are
correct. If ever an element of the array RA is zero or
negative, it is set to 1 and the DO statement is reentered,
which reinitializes the control variable I.

K=O
GO TO 300

200 RA(I)=1.
300 DO 100 1=1,50

K=K+1
IF (RA(l).LE.O.) GO TO 200

100 RA(l)=K

Figure 5-6. DO Control Variable Reinitialization

NESTING DO LOOPS

When a DO loop contains another DO statement, the
grouping is called a DO nest. DO loops can be nested to
any number of levels. The range of a DO statement can
include other DO statements only if the range of each
inner DO is entirely within the range of the containing DO
statement. When DO loops are nested, each must have a
different control variable.

The terminal statement of an inner DO loop must be either
the same statement as the terminal statement of the
containing DO loop or must occur before it. If more than
one DO loop has the same terminal statement, a branch to
that statement can be made only from within the range or
extended range of the innermost DO. Figure 5-7 gives an
example of an incorrect transfer into the range of an inner
DO. Since statement 500 ih figure 5-7 is the terminal
statement for more than one DO loop, if the first element
of any row in array A is less than or equal to zero, the
consequent branch to the CONTINUE statement will be an
entrance into the range of the inner DO.

If the nested loops in figure 5-7 did not share a terminal
statement or if the outer loop did not reference the
terminal statement, the loops would be correctly nested.

60457040 D

DO 500 1=1,5
IF (A(l,1).LE.O.) GO TO 500
DO 500 K=1,10
A(l,K)=SQRT(A(l ,K))

500 CONTINUE

Figure 5-7. Example of Incorrect Sharing
of Terminal Statement

The range of a DO loop can contain a block IF structure,
but the entire block IF structure must appear in the DO .
loop range. An END IF statement cannot be the terminal
statement of a DO loop. A DO loop can appear in an
if-block, else-block, or elseif-block, but the entire range of
the DO loop must appear in the if-block, else-block,_ or
else if-block.

The range of a DO loop can contain a block WHERE
structure, but the entire block WHERE structure must
appear in the DO loop range. An END ·WHERE statement
can be the tern,ii_na~_stateme~t of a l)C~ loop.

CONTINUE STATEMENT
The CONTINUE statement has the following form:

CONTINUE

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere in a
program without interrupting the flow of control. The
CONTINUE statement is generally used to carry a
statement label. For example, it can provide DO loop
termination when a GO TO or IF would otherwise be the
last statement of the range of the DO.

PAUSE STATEMENT
The PAUSE statement has the following form:

PAUSE n

n 9pti()nf1l. A str!~~ of _()ne to five '.~~~jfil~iidigits,
1_()1\!l ~bti~!l~t~r· g()11$t®t~J

If a string is given, it· i$ displayed in· the job dayfile or at .
the terminal. The string.· is also . placed ... in the output. file
for the job. Program execution then continues with the ·
next executab~e statement .. following the PAUSE
statement. · If no string ~ given, ins~ead of. n being)
displayed and output, th~ stringPAUSB is displayed and_;
()U.~~t ~~.f()r~·.J?.~O~~tl"-1 ~~~~tl~~<?fl ... C()~~-ir,ttl~S~ .. , :

STOP ST A TEMENT
The STOP statement has the following form:

STOP n

n QP~i()mll. A s~~ing of ()!le to five d~g@aj,digits,
or aGh~ra~t~r.constant •.• ;

Upon execution of the STOP statement, program execution
unconditionally terminates ~d co11t~()l is returned to the
operating sy~t~m. If a string is given, it. is displayed in the
job. dayfile or at the· terminal. ·· The·. string·. is . also placed· in
the output file for the job. If nostring is given.insteadof
n ·being displayed·. and output,. the string STOP is displayed
~d otltput.

5-5

RETURN STATEMENT
Subroutine and function subprograms contain one or more
RETURN statements that when executed cause immediate
return of control to the referencing program unit. The
RETURN statement must not appear in a main program.

Form:

RETURN;~·

In a function subprogram, execution of a RETURN causes
the function value to be returned to the referencing
program unit and to be substituted for the most recently
executed function reference in that program unit.
Evaluation of the expression that contained the function
reference continues. The integer n must not appear after a
RETURN statement in a function subprogram.

In a subroutine subprogram, when n is not given, execution
of a RETURN returns control to the first executable
statement following the CALL statement last executed in
the. (!aHing .. program .. unit~ .:When··.·ri is given, c<>ritrol'returns'

·:·instead to a statement indicated in the argumentJist of the
CALL statement. The statement label to which control.
returns is giveri by the actual argument corresponding to

.·the nth .. asterisk dummy argument inthe SUBROUTINE or·
' ENTRY statement of the. called subroutine. If there are
: fewer than)1 such statement label arguments or if n o,
:· the return is as. if n had not been specified (that is, control
; returns ·to ... the first . executable statement following the:
'approp~iat~ CALL s~~tement). · ·

CALL ST A TEMENT
The CALL statement is used to transfer control to a
subroutine subprogram, System Input/Output (SIO) module,
System Request Language (SRL) module, assembly
language subroutine, or any other external subroutine. The
execution of a CALL statement is not complete tmtil the
subroutine designated in the statement completes
execution and returns control to the calling program unit.

Form:

s The symbolic name of a subroutine, or an
entry point name in a subroutine.

Execution of the CALL statement transfers control to
entry point name s. See the heading Passing Arguments
Between Subprograms in section 7 for a further description
of actual arguments in CALL statements.

·conirof norm any· returns to the··.· tirst ex~cutat>1e sfii~ement
:following the CALL statement. However, control can be
made tC) return to ·some ·other statement fo . the .. program
.unit by. appropriate selection . of the CALL statement's
actual arguments. If. the . dummy argument · ust in the
called·. subroutine.·. contains .. at least .. n · asterisks, .. and .. · if . the
called subroutine contains a RETURN . n statement, then
upon execution· of the .. ·· RETURN ·. n. ·statement,. control
•returns· to. the statement having· the. nth statement label in
the CALL statement actual argument list.

For example, .the program in figure 5-8 uses both the
. RETURN n and the RETURN statement for mats. If the ·
data read with the READ statement in the subroutine is :
)ess than 1.0 or greater than 10.0, controltransfers back to
the main program statement having the labellOO. .I\

. message is printed out ari<:l the ·p~ogralll. terininates •.. .9n the
other hand, ifthe dB.ta is within the appropriate range, the.

, subroutine ' continues executing until the RETURN
statement is reached, at which time control transfers back
to the main program statement that immediately follows
the call to the subprogram.

5-6 60457040 B

VECTOR PROGRAMMING 1 1

,.,., ' "' .. .,

Detailed in this section are the ways that a user can
introduce machine vector instructions into the object code
for a FORTRAN program. Any of the for ms described here
can be· used in the same program with the previously ;

: described.FORTRAN features.

AUTOMATIC VECTORIZATION

Automatic vectorization is a process by which the
FORTRAN compiler translates an iterative, sequential
procedure into parallel procedures. The aim of the process
is to utilize the capabilities of the CYBER 200 hardware to
produce optimal object code, without requiring alteration
of FORTRAN programs that do not use the extensions of
CYBER 200 FORTRAN, and without necessitating that a
problem be reconceptualized in terms of parallel
processes. Automatic vectorization of a FORTRAN
program is selected by including the V compile option in
the FORTRAN system control statement that requests
compilation of the program.

Under the V option, CYBER 200 vector instructions are
generated for DO loops that have certain characteristics.
The object code generated for a loop that is accepted by
the vectorizer consists of vector instructior.s rather than
scalar instructions. If a loop is rejected by the vectorizer,
the compiler attempts to transform the loop into a call to
one of the supplied STACKLIB routines.

Automatic vectorization can be used with any FORTRAN
program, including FORTRAN programs that do not use
any of the extensions of CYBER 200 FORTRAN. However,
because of the restrictiveness of the conditions for
vectorization, summarized in table 11-1, it might not be
possible for the vectorizer alone to achieve the degree of
vectorization desired. As an alternative, the programmer
can elect to use other methods, in conjunction with the V
compile option or not, to specify vector operations
explicitly.

GENERAL CHARACTERISTICS OF
VECTORIZABLE DO LOOPS

A simple vectorizable DO loop is shown at® in
figure 11-1. The range of a vectorizable loop can contain
assignment statements, CONTINUE statements, and DO
statements. An input/output statement or IF statement,
for example, is not acceptable in a loop that is to be
vectorized.

The initial, terminal, and incrementation parameters of the
DO statement of a vectorizable loop must have certain
characteristics. The incrementation parameter, if present,
must be 1; an incrementation value of 2, for· example,
causes the loop not to be vectorized. Secondly, FORTRAN
allows the parameters to be constants or variables;
however, a variable initial, terminal, or incrementation
parameter does prohibit the vectorization of any
containing DO loop. For instance, the vectorizable loop
defined at @ has a variable terminal parameter. Loop
® contains loop ® and, consequently, cannot be
vectorized. Thirdly, the iterative count of a loop or entire

60457040 c

A.

B.

DO 222 KEM=1,300

DO 100 1=1,10

DO 200 J=1,N

200 A(J,l)=X(J,I)

100 CONTINUE

222 CONTINUE

DO 300 MM=1,11

DO 200 JJ=1,30

DO 400 IN=1,200

400 CONTINUE
200 CONTINUE
300 CONTINUE

~-CD

--®
--@

--®
~-®
--(j)

Figure 11-1. Form of Vectorizable DO Loops

nest of loops must be less than or equal to 216-1 (that is,
65535). By this criterion, loops (i) and ® in part B of
figure 11-1 can be vectorized, depending on the range of
the innermost loop; but loop ® cannot be vectorized
(because 30 * 200 * 11=66000).

When the initial or terminal parameter of a loop is a
variable, the dimensions of the loop-dependent array
references within the loop are used to determine the
largest possible iterative count through which the loop can
pass, and this count is used to decide if the loop can be
vectorized.

The U compile option can be selected for unsafe
vectorization. When U is selected, the compiler vectorizes
loops that contain dummy arrays, even if the terminal
value of the loop is variable. The optimization is
considered unsafe because the presence of a variable
dimension might cause the iterative loop count to exceed
65535.

The U compile option also enables vectorization of loops
that contain an equivalenced data element on the left side
of an assignment statement.

If a loop cannot be vectorized (loop ® in figure 11-1, for
instance), then a loop containing the nonvectorizable loop
cannot be vectorized either. By this criterion, loop Q) is
nonvectorizable.

11-1

I

TABLE 11-1. CRITERIA FOR VECTORIZABLE LOOPS

Can Appear in DO Loop

Vectorizable loops nested within the loop.

Loop incrementation value of 1.

Total iteration
16

count less than 2 for a nest of
loops.

CONTINUE statement.

Arithmetic operators +, -' *, /, and **, logical
operators.

Real, integer, and logical data elements.

References or calls to the following functions and
subroutines: ABS, ACOS, ALOG, ALOGlO, ASIN, ATAN,
COS, EXP, FLOAT, IABS, !FIX, SIN, SQRT, and TAN.

Any data elements appearing on the left side of an
assignment statement that appear in an EQUIVALENCE
statement if the U compile option is selected.

Any scalar assignment statement whose right side
is a real, integer, or logical expression.

Loop-dependent subscripts having one of the forms c,
c+n, c-n, or c*n, where c is a control variable and
n is an integer constant. The c*n form is not valid
on the STAR 100 or the CYBER 200 Model 203.

References to dumny arrays, so long as the terminal
value of the loop is constant.

Loop-independent subscripts.

ASSIGNMENT STATEMENTS IN
VECTORIZABLE DO LOOPS

Operators in assignment statements in a vectorizable loop
can be any of the arithmetic or logical operators. The use
of relational operations within a loop causes the loop not to
be vectorized.

The type of an operand occurring in the range of a
vectorizable loop can be integer, real, or logical. A
vectorizable loop containing a logical assignment
statement is shown in figure 11-2.

11-2

Must Not Appear in Any Part of DO Loop

Nonvectorizable loop nested in the loop.

Loop incrementation value that is not 1 (this does
not apply to the CYBER 200 Model 205).

Total iteration count equal to 2
16

greater than or
for a nest of loops.

Any control statement besides DO and CONTINUE.

Relational operators.

Any data element that has a type other than real,
integer, or logical.

Any input, output, or memory transfer statements.

References and calls to functions and subroutines
other than ABS, ACOS, ALOG, ALOGlO, ASIN, ATAN, COS,
EXP, FLOAT, IABS, !FIX, SIN, SQRT, and TAN.

Any data elements appearing on the left side of an
assignment statement which have appeared in
EQUIVALENCE statements if the U compile option is
not selected.

Vector assignment statements.

Loop-dependent subscripts not of one of the forms c,
c+n, c-n, or c*n, where c is a control variable and
n is an integer constant. The c*n form is not valid
on the STAR 100 or the CYBER 200 Model 203.

References to any dunmy array when the terminal
value of the loop is variable (can be vectorized if
the U option is selected).

LOGICAL A, C, R
DIMENSION A(50000), C(50000), R(49999)
DO 999 X=2,50000
R(X-1) = (A(X-1) .AND. A(X)) .OR. (C(X-1) .AND. C(X))

999 CONTINUE

Figure 11-2. Vectorizable Loop #1

60457040 D

'For complex vector arithmetic expressions, the following
. restrictions apply:.

• Operands can be integer, real, or complex.
Double-precision operands are not allowed.

• Exponentiation is not allowed; the operators in a
complex vector expression can be only+,-, *,and /.

For double-precision vector arithmetic expressions, the
following restrictions apply:

• The expression must consist of either a
double-precision vector or a reference to a
FORTRAN-supplied double-precision vector function.
No operators are allowed.

• The expression can appear only in a vector arithmetic
assignment statement of type double-precision.

Given the declarations:

DESCRIPTOR Dl, SCRP, RZLT
DIMENSION SCRP(3,3), VR(lOO), R{lOO)
DATA Dl/VR(1;50)/, SCRP(3,l)/VR(l;100)/

the following are examples of vector arithmetic
expressions:

e VR(l;lOO)

Current values of the 100 consecutive elements in the
array VR.

e Dl

Current values of the first 50 consecutive elements in
the array V R.

e Dl + N

A vector formed by adding the value of the scalar N
to each element of VR(1;50).

.• -(Dl + N)/2.**M

A vector formed by adding N to Dl, negating, then
performing a divide by 2**M on each element of
VR(l;50).

• SCRP(3,l)

•

Current values of the 100 consecutive elements in the
array VR. ·

VEXP(R(lO; · 52); RZLT)

Vector function reference.

VECTOR RELATIONAL EXPRESSIONS

A. vector relational expression.·· consists of a relational
operator flanked by . two expressions. The relational:
opera tors are:

• EQ.
.GE •
• GT.
.LT.
.LE.
.NE.···

60457040 B

Equll.l to ..
Great.erthall()~~qual··to

Greater t~lit\<\ ·•··. ··•·•· ... ·
Less than
;L~ss ~hah or. ~qual to
'""~~t:9~~ .. ~~ .·.. . .·.... '

The periods are part of the operators and musfappear •

A vector relational expression has one of the following
forms:

sae op vae1

vae1 op sae

sae A scalar arithmetic expression of type real or
integer, but not of type complex or
double-precision.

op One.of the relational operators.

A vector arithmetic expression· of type real
or integer, but not of type complex or
double-precision.

A vector relational expression, which al ways contains one
or more vector data elements, evaluates to a bit vector of
truth values represented by bits 0 and 1. (In contrast,
evaluation of a scalar relational expression results in a.
single logical value.)

When both operands for a relational operation are vectors,
the operation compares successive elements of one vector
operand with corresponding elements of the other vector
operand. If. the specified relation holds between the pair of
elements, the operation sets (assigns 1 to) the
corresponding bit. in the result bit vector. If the relation
does not hold, the operation clears (assigns 0 to) the
corresponding bit in the result bit vector. ·· When one
operand is a vector and the other a scalar, the scalar is
compared with each element of the vector· during
evaluation of the expression.

Given the declaration;

DESCRIPTOR Dl

the following are examples of vector relational expressions:

e X+Y/3.*Z .LT~ VR(l;lOO)

Bit v~ctor having alength of 100 bits, where the ith
bit is 1 if the ith · element of the real vector
VR(l;lOO) is greater than or equal to thevalue of the
scalar arithmetic expression X+Y/3.*Z, and is O
otherwise.

e Dl .NE~ Dl *2

Bit vector having. the length of the vector that. Dl
points to, where the ith bit is 1 if an element ofthe
vector is nonzero, and is 0 otherwise.

e VR(1;89) ~EQ. VR(2;89)

Bit vector having a length of 89 bits, where the ith
bit is 1 if the ith element of the .. real vector
VR(1;89) equals ·the. ith element .. of the real vector
VR(2;89),and is .• o.otherwise •

R{l0;20).GE. 0~34

Bit vector having .. a .length of· 20·.bits, .. ·where theJthl
f)Itis l~f theJU'iel~ment.· .. of ·.the real vectorR(10;20)

,., ... J~,~:~!.:r.•~h?:~ .. ~M·;;.~qHl1:! • .. ~2;.~~~1~.,~.~~,i,~ .••. ~ . .:2~.~:~;~.!~~,~

11-7

I

A bif expression can be a vector relational expression, bit
vector, bit descriptor, bit vector function reference, bit
descriptor array element, bit constant, bit variable, bit
array element, or.· a bit· expression enclosed in parentheses.
If Band C are vector bit expressions, then B followed by a
logical operator followed by C is also a vector bit
expression~

The operators used in vector bit expressions are the logical'
operators interpreted so. that truth is the bit value l and
falsity is the bit value O. The mathematical definitions of
the . logical operators are given in section 3, the
precedences of the operators are the same as for logical
operators in logical expressions.

A vector relational expression evaluates to an entire bit
vector of logical results. Logical operations on bit vectors
are performed on either corresponding elements of two·
vector operands or a scalar operand paired with successive
elements of a vector operand.

11-8

Vector bit

tA vector arithmetic expression can be a
priniary in a vector relational expression
which in turn can be a primary in a vector
bit expression.

DESCRIPTOR ASSIGN STATEMENT

At execution time, the descriptor ASSIGN statement can
be used to associate a vector with a . descriptor.; The
descriptor ASSIGN statement has. two forms.

60457040 D

I

A.

B.

DIMENSION Y(15),A(64,8)
BIT Y,A
DESCRIPTOR Y
DATA A/ ...
DO 10 1=1,8

ASSIGN Y(l),A(1,1;64)
ASSIGN Y(16-l),Y(I)

10 CONTINUE

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

points to A(1,1;64)

points to A(1,2; 64)

points to A(1,3; 64)

points to A(1,4;64)

points to A(1,5; 64)

points to A(1,6; 64)

points to A(1,7;64)

points to A(1,8;64)

points to A(1,7; 64)

points to A(1,6; 64)

points to A(1,5; 64)

points to A(1,4;64)

points to A(1,3; 64)

points to A(1,2; 64)

points to A(1,1;64)

Array Y

Figure .11-8. Example. of.·. Descriptor ·ASSIGN

·Second farm:

ASSIGN p,.DYN•e

p A descriptor, or a descriptor array element.

e An integer. scalar expression that indicates a
quantity of dynamic spacein words or bits.

After execution of •.... this ·second ·form·· of· the descriptor
·ASSIGN. statement, p points •·•to. a vector ·consisting ·of
dynamic spacehaving a length of e words if p is real or
integer, e ~its if p is bit, or 2e words if e is complex.
Before the value of the dynamic space ·.· pointer is
incremented, the current value of the dynamic space
pointer · is ·assigned as . the base.·. address of the vector
pointed to by p.

; J)~amic space. is·· managed as. a. stack. After an assignment
to dynamic space·has.been made with a··descriptor ASSIGN

'statement, the dynamic space pointer (the location of· the
top of the stack) is incremented •. ·The next space available
is. ·made to begin· at the ·first.•· double.word boundary.
Subsequently, the execution of a FREE statement or. a
RETURN statement.· releases .. ·•• all •dynamic space allocated
~}1:. ~~~.~!?!<":>~•··· ~-~I9 .. ~ .. ~.~.~~~11l~ll.t~ ill. t,~~. I?.r0.~~~11l ... ~J!~ .

60457040 D

FREE STATEMENT

Execution .of the FREE statement (or completion of
program unit execution) reverses the effect of a descriptor
ASSIGN statement in which a reference .DYN. to the
dynamic space pointer appears. The FREE statement
resets the dynamic space pointer to the value it had before
execution of the first descriptor ASSIGN statement in the
program unit. All space assigned through the use of
descriptor ASSIGN statements is released; if more than one
such assignment was made, all are reversed.

Form:

FREE

VECTOR ARITHMETIC
.ASSIGNMENT STATEMENT

A vector arithmetic assignment statement has the
fallowing form:

v=e

v A vector ·of type integer, real, complex, or
double-precision; or a descriptor or descriptor
array element of type integer, real, or complex.

e A vector arithmetic expression, or a scalar
arithmetic expression.

The value of e is assigned to v ~ When v is
double-precision, e can only· be a double-precision vector
or a reference to a predefined CYBER 200 FORTRAN
double-precision vector function (listed in appendix E).

If e evaluates to a scalar, that scalar isstored into every
element of v; but if e evaluates to a vector, the first
element of e is stored into the first element . of v, the
second element of e is stored into the second element· of
v, and so on. If the type of v differs from that of e ,
type conversion takes place, during assignment, to the type
of v • Type conversion rules are given in table 11-3.

Examples, given the following declarations:

DOUBLE PRECISION.RES(30), DPN, EXN(30)
DESCRIPTOR Dl, DEX

. DATA DEX, Dl/RES{l;20), EXN(l;~5)/

e RES(1;30) = DSQRT(DPN)

Replace the vaiue .of the 'ith element of RES(l;30)
with the . value · returned by the predefined ·function
referericeDSQRT(DPN) •. The sequential equivalent is:

DO 31::: 1,30
3 RES(I) = DSQRT (DPN)

• RES(1;30) = EXN(1;30)

Replace the yaJ.ue of the Jth element of RES(1;30)
with the ith element. of EXN(1;30). The seque0:tial
equivalent .. is:

D03J:::l,30
3 RES(Il= f:XN°(I)

11-9

11-10 60457040 D

can contain only addition, subtraction, multiplication, and
division operations, and references to the vector functions
VFLOAT, VIFIX, VINT, VAINT, VSQRT, VABS, and
VIABS.

When the WHERE statement is executed, the vector bit
expression is evaluated. The evaluation produces a control ·
vector. A control vector is a bit vector that controls the
storing of values into a vector. This control vector is used
for the vector assignment statement that appears in the
WHERE statement.

The vector expression . that appears in the vector
assignment statement is evaluated. Each value of the
result vector is assigned to the corresponding vector
element on the left side of the vector assignment
statement only if the corresponding element in the control
vector contains a 1 bit.

A value is not assigned to the corresponding vector
element on the left side of the vector assignment
statement if the corresponding element in the control
vector contains. a O bit. If a value is not assigned to a
vector element, data flag branches are disabled for the
operations that compute that value.

: Given the declarations:

REAL A(5), B(5), C(5)
BIT CA(5), CB(5)
DATA A/3.0, 9.0, 12.0, 2.0, 16.0/
DATA B /6.0, 6.0, 10.0; 5.0, 4.0/
DATA C/9.0, 3.0, 0.0,7.0, 7.0/
DATA CA /B'lllOl'/, CB/B'UOOO'/

the following are examples of the WHERE statement:

• WHERE (A(1;5).LT.B(l;5)) C(1;5)=B(1;5):...A(1;5)

Causes the value. the. value 3.0 to be assigned to the ·
first and fourth elements of vector C(1;5). All other
elements of vector C(l;5) are unchanged.

e WHERE (CA(1;5).AND.CB(l;5))C(l;5)=A(1;5)+B(l;5)

Causes the Vll.lues 9.0. and 15.0 to be assigned to the
first .· and · second elements of vector C(1;5)
respectively. An· other elements of.vector. C(1;5) are
unchanged.

e WHERE (C(l;5).NE.O.O) A(1;5)=B(l;5)/C(l;5)

Causes the values .66667, 2~0, .71429, and .57143to be
assigned . to the first, · second, ·fourth,. and fifth
elements of vector. A(1;5) respectively. The division
of the third element of vector B(1;5) by the third
element of vector C(1;5) is a division by zero;
however, because the third element of the control
vector contains a O bit, no data flag branch occurs.

BLOCK WHERE STATEMENT

The block WHERE statement has the follqwing form:

WHERE(e)

e A vector bit expression•

When the block WHERE statement is executed, the vector
bit expression .. is evaluated. The evaluation produces a
control vector. A control vector is a bit vector that
controls the storing of . values· into a vector. This· control
vector is used for all ofthevector assignment statements

60457040 D

that appear between the block WHERE statement and the
next END WHERE statement.

OTHERWISE STATEMENT

The OTHERWISE statement has the following form:

OTHERWISE

The OTHERWISE statement (!an be used with a block
WHERE statement to reverse the effect of the control
vector established in the block WHERE statement.
Reversing the effect of the control vector causes a value
to be assigned to a vector element only if the
corresponding element in the control vector contains a
0 bit, rather than a 1 bit. An OTHERWISE statement
affects all vector assignment. statements that appear
between the OTHERWISE statement and the next END
WHERE statement.

END WHERE STATEMENT

The END WHERE statement has the following form:

END WHERE

The END WHERE statement terminates a block WHERE
structure. Each block WHERE statement must have one
corresponding.END WHERE statement.

BLOCK WHERE STRUCTURES

Block WHERE structures provide . for the execution.· of. any
·number of vector . assignment statements using a single
control vector. A control vector is a ·bit. vector that
controls the storing of values into a vector~

A block WHERE structure begins with a block WHERE
statement and ends with an END WHERE statement; it can
contain one OTHERWISE statement. The block WHERE
statement can be followed by a block of vector assignment
statements called a where-block. An OTHERWISE
statement can be followed by a block of.vector assignment
statements called an otherwise-block.

A where-block or an otherwise-block can contain any
number of vector assignment statements or it can contain
no statements. ·No other types of statements can appear in
a where-block or otherwise-block. All vector operands
that appear. in a where-block or. otherwise:hlock must have
the same lerigth as the controlvector that is established.in
the block> WHERE statement. All vectors and vector
expressions that appear in a where-block or
otherwise-block must be of type integer. or real. All vector
expressions that appear . in . a . where-block or
otherwise-block can contain only addition, subtraction,
multiplication,· ·and•· division· operations, •and references . to
the vector functions VFLOAT, VIFIX, VINT, VAINT,
VSQRT, VABS, and VIABS.

Control must not transfer· into a where-block ·· or
otherwise"'."block.

·A simple·. block WHERE structure is shown in figure n -:-9.
When the block WHERE statement is executed, the vector
bit expression in the block WHERE statement is evaluated.
The. evaluation produces a control v.ector. A control vector
is a bit .vector that controls the storing of values into a
vector. This control vector is used for all of the vector
assignment statements that appear between,. the block
WHERE statement and the next END WHERE statement.

11-11 •

Each value of the result . vector is assigned to . the ;
corresponding vector element on the left side of the .
veetor assignment statement only if the corresponding
element in the control vector contains a 1 bit. A·.
value is . not assigned to the corresponding vector
element on the left side of the. vector assignment.
statement. if the corresponding element in the control
vector contains a 0 bit. If a. value is not assigned to a •
vector element, data flag branches are disabled for
the operations thatucompute that value~

A · block WHERE . structure · that contains an OTHERWISE
statement is shown in figure u-10. When the block WHERE·

· statement is ~xecuted, the vector bit expression in the
·block WHERE statement is evaluated. The evaluation·
:: produces a control vector. A control vector is a bit vector .
'that· controls the storing·• of values irito, a vector. This .
control. vector is used. for. all of. the vector assignment :

: statements that appear between the block WHERE;
• statement and the riext END WHERE statement~

• 11-12

Each value. of •the result .· vector is assigned to .. the :
corresponding vector element on the left side of the
vector assignment statement only.if the corresponding
element in the control vector contains a O bit. A
v8.lue . is not assigned ··to . the corresponding vector
element on the left side of . the vector assignment
statement if the corresponding element in the control .
vector contains a 1 bit. If a value is not assigned to a

· vector element, data . flag branches are disabled ·for
the operations that compute that value.

60457040 D

The statements in the where-block cause the values
25.0, 100.0, and 400.0 to be assigned to the first, third,
and fifth elements of vector E(l;5) respectively. They
also cause the values 5.0, 10.0, and 20.0 to be assigned
to the first, third, and fifth elements of vector C(l;5)
respectively, and cause the values 6.0, 24.0, and 96.0
to be assigned to the first, third, and fifth elements of
vector D(l ; 5) re spec ti vely.

The statements in the otherwise-block cause the
value 16.0 to be assigned to the second and fourth
elements of vectors C(1;5) and D(1;5).

NESTING BLOCK WHERE STRUCTURES

A block WHERE structure can appear in an if"'.'block,
else-block, or elseif-block of a block IF structure, but the
entire block WHERE structure must appear in the if-block,
else-block, or elseif-block.

A block WHERE structure can appear in the range of a DO
loop, but the entire block WHERE structure must appear in
the range of the DO loop. An. END WHERE statement can
be the terminal statement of a DO loop.

DECLARATIONS
Vector programming adds one specification statement to
the list of nonexecutable statements that can appear at the
beginning of a CYBER 200 FORTRAN program unit.

DESCRIPTOR STATEMENT

The DESCRIPTOR statement has the following form:

DESCRIPTOR v1,v2, •.• ,vn

A variable, array declarator, or array name,
of type real, integer, bit, or complex.

All variables in . the DESCRIPTOR statement list are
declared to . be. descriptors, and . any . array or array
~eclarator list elementspecifies a descriptor array. For
example, the statement pair:

DESCRIPTOR A,B,C(3,4)
REAL A,B(6,2),C

specifies A to be a real descri{>tor, and B and C to be.
descriptor arrays having 12 type real descriptor array
elements each.

The type of Vi must be established with an explicit type
declaration statement, or by the first-letter rule.
Although vectors can . be double-precision, a· .descriptor
cannot be.double-precision.

INITIALIZING DESCRIPTORS
AND VECTORS
The nonexecutable l)ATA .· ... statenient, described.. in
section 6, can be used to place initialvaluesin vectors and
descriptors before the program < begin$ executing. i
Double::-precision vectors· cannot be initialized in a DATA;
statement, .. although .the .. double-precision array or;
individual· array elE!nients can .be so i11itialized.

60457040 D

As described in section 6, a data initialization statement
consists of pairs of lists; a list of variables is paired with a
list of constants used as the initial values for the
variables. Besides scalar list elements, the list of variables
can include vectors, descriptors, descriptor arrays, and
descriptor array elements.

For vectors, a vector name in the variable list must
contain only integer constant subscript expressions and
vector length specification. The number of constant list
elements corresponding to the name must be equal to the
length of the vector. For example, if a vector name in the
variable list is A(l;lO), then 10 consecutive constant list
elements must correspond· to the vector name. (This is
similar to the way that arrays can be initialized in a DATA
statement.)

For descriptors and descriptor array elements, a descriptor
in the variable list must correspond only to a vector, which
must contain only integer constant subscript expressions
and vector length specification.

The repeat count specification in a DATA statement
(section 6) can be used to specify the repeated use of a
vector for initialization of more than one descriptor or
descriptor array element. The data. types of corresponding
variable list and constant list items must, in the above
cases, be the same.

Examples of initializing vector descriptors are ·given in
section 16. ·

'VECTOR FUNCTION
SUBPROGRAMS

Vector function subprograms are defined in almost the
same way that other function subprograms are defined.
The differences lie in the argument list form, the number
of data types available for vector function results, and the
fact that the function name must appear in a
DESCRIPTORstatement in the function subprogram.

Form:

Optional declaration. of the type of.f. When
present, t can be INTEGER, REAL, BIT,>or
COMPLEX but cannot be DOUBLE
PRECISION.

The function's symbolic name.

Dummy argument. The possible dummy
arguments here are the same. as for scalar
functions, n must be greater than or equal
to 1.

The function name f must. appear .. in a ·.·DESCRIPTOR
statement within tile function subprogram. If t is not ,
specified, f .·· can appear. in 11 type statement or be typed
implicitly. The. ~emicolon in the dummy argument list is
required to separate the input list fr().mthe dummy output
argulDent, which is represented by the asterisk~

Refer to Function. Subprograms in section 7 for a more
detail~d. > discu55io11 of ·function. names . and function

:subprogr111D p~~gram units. ·

11-13

f .·.··~···········~~f ~r·····f~ncf.ibn•·• .. •is··.·~iere~ci~:,w~.en······flle{ •. h~·~·~···)of ...•. ~he
:· function, fol~ow~ by .an .• ·· act.ualargument)ist .enc1osec1 •. inl
i parenthese~, E1PPea~in,an<arithrnetic• expressio)l.,in. an,
· •... arith!ll.etic ..•• fi~Signmel1t·•• ~tatement •. /T.he actua.r·'¥°guments;
1 that.:ca.n .. correspond. ·to.·a dummy.·argument .. · are .showri in'

:··sectioD7. . ····. >·••• .·•. ·.· : <······· <·. . \\ : :'.
1: The actual argument·.·· list.·. in the •. functi.on.ref.eren~···•·.·is
· dividec1.··into~wo.·.parts··.by>a .• sem.icolo1l.lnput.arguments
precede. the semicolon and are separated by commas; they
can >be .··•• scalar expressions, i> veetors, .. ·. descriptors~ or.:

. descriptor array·. el~men~s •... A: single. ouwut argument .. of'.
:the furtction foUows .•. the ... semicolon .and can· .. be a. .vector,'
; descriptor, ·. or descriptor array . element •... The output·
i argument must be the ·same da~a type as the. function •.
; CYBER 200 FORTRAN.·. permits .. · .. double-precision · .. ·.out{>Uf

; ... ·.ar·······gu· m en .. t·s·· ... t.o b. e used in re. ferences. only to som. e .. predefined~ · CYBER200 FORTRAN·.· .. · vector ·functions ... (listed .. ··. in 1

• appendix E).
;· .·.>:·. >···:. ··:<·.::'.: ·. ...: : ·.: ::_· ... :. ,-..:... ,

jSEC()NDARY ENTRY·· POINTS

· v.eet()r .· function SUbprogl'ams, ... like .. scalar function··
subprograms, can have multiple entrypoints defined for
therri. The ENTRY> statement (described in section 7) ·

111-14

i:]:p~m~;·····m~tiH~>ri;st·;·~~~~lit~·t;1~.·,·~f;i;tt:~i''{iiii~~i~g't~~i
·EN''I'.J:t'Y.sta~ementj~. a.s~on~arY t?nJ.ry<point~\M()re than:
:·one.:entrypoint.·.•c~.•·.be µecla~ed it\.a•subprogra~; alS(.)1 ~:
. S(?al~ or •vector. function•.• subprogra~· ~an.·have. 9()th.· .• ~c'-¥a.l'·i
i filld. ye(? tor sec~n1darY. entry points. · · ·

; Form!··

~NTRY e ca.:t,a2, •.•• ~!\;*)
,, .,,

e '.fhe symbolic name ()f the entry point.
ai Dummy ·· .. 8fgulnellt. 'I'he possible (lur)lrri§;

arguments here . are the same as for scalar
EN"TRY statements, n must be greater than
or equal to .. · 1.

; ... : . . :. ·'

[Like the function name, the et\try poJrit llarrie lllustappear ;
Jn a· DESCRIPTOR·. statement within the scalar.•.· ()r ve.ctor :
function subprogram •.... Again, the semicol~n separates the •·

; dummy> input. argument list from the dummy output ·
: .argtJ. ment which is represented. by· the. asterisk.

< • • •• • •• : • •••• •• • • •• ·_,

: The statem~mts .. ·made.·· in section 7 .·.·. with ~espect . to
. ref ~rencing secondary entry point .·• names . app~y to the
: referencing of the entry point names clefined in a vector
[function· subprogram. ·

60457040 D

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Function

Arcsine

Arceo sine

Hyperbo lie sine

Hyperbolic cosine

Hyperbolic tangent

Square root

Modulus: (x2+y2)1/2 where x is the real part and y is
imaginary part of the argument

i~s~rt ~r ~~t:r~ct hits

Random number

Time of day

Date

CPU time in seconds since job start

Function
Reference

AS IN(a)
DASIN(a)
VASIN(v;u)

ACOS(a)
DACOS(a)
VACOS(v;u)

SINH(a)
DSINH(a)

COSlt(a)
DCOSI,l(a)

TANH(a)
DT~Ca>:

SQRT(a)
DSQRT(a)
CSQRT(a)
VSQRT(v;u)
VCSQRT(v;u)

CABS(a)
VCABS(v;u)

Q8SINSB(a,m,n,b)

QSSEXTB(a,m, n)

RANF(d)

Type of

Arguments
(other than Result
c and i)ttt

Real Real
Double Double
Real Real

Real Real
Double Double
REal Real

Real Real
Double Double

Real Real
Double Double

Real Real
·.DoubJe ijol:l~i,~

Real Real
Double Double
Complex Complex
Real Real
Complex Complex

Complex Real
Complex Real

Real Typeless
Integer Typeless

Real Typeless
Integer Typeless

(dummy) Real

(dummy) ·Character*S

(dummy) Character*8

Cd.ummy> Real

t[x] is defined as the sign of x times the largest integer less than or equal to lxl. The results are not
defined when the second argument is zero.

ttProvides the same effect as the implied conversion in assignment statements.

tttEach control vector c is type bit, and each index vector i is type integer.

FUNCTION DESCRIPTIONS
The following descriptions are listed in strict alphabetical
order. However, since a naming convention uses the
letter V as a prefix to scalar function names to produce
the corresponding vector function names, all functions with
vector results can be found under .v and QS V. If a vector
functfon input argument can b.e a vector, it is implied that
it can also be a descriptor or descriptor arrfiy el~ment.
Also, except for some oft he v~ctor fun~tions; none ()f the
functfons alters the values of its arguments. The
mathematical values of some of the mathematical I functions can be indefinite.

60457040 D

, .. · . .,., .. ,

A generic function generates a real or .. integer result,
depending on the mode of the argument. For instance, the
Q8SSUM function is a generic function:.

A typeless function ge11erates a result that is not converted
for use as an argument or for assignment. For -instance,
the. QSSINSB function is a typeless function.

ABS(a)

For a real number x, ABS(x) computes the absolute
value 1x1.

14-5

AIMAG(a)

This returns the imaginary part of a complex number as a
real number; if x+iy is the complex number, AIMAG
returns y.

AINT(a)

For a real number x, AINT(x) computes [x], where [A] is
the sign of A times the largest integer less than or equal
to 1A1. AINT returns a real result even though its value is
always integral.

ALOG(a)

This computes the natural logarithm of a real number
greater than zero. The result is a real number accurate to
approximately 45 bits.

For a given real number x, ALOG(x) is calculated as
follows.

For x outside the range:

((2)112 /~x<(2)1/2)

let:

where:

1/2Sw<l

and n is an integer that satisfies the equation.

Also, let:

t = (w - (2)112/2)/(w + (2)112/2)

Then:

loge(x) = (n - 1/2) * loge(2) + loge((l + t)/(1- t))

For x In the range:

{(2)112 /2Sx<(2)1/2)

let:

t = (x - 1) I (x + 1)

Then:

loge(x) = loge((l + t) I (1 - t))

In either case:

14-6

6
loge((l + t) I (1- t)) = 2t l: cnt2n

n=O

where:

co= 1.000000000000000172016224 * 100

c1 = 3.333333333327618176885283 * 10-l

c2 = 2.000000003098077890899307 • 10-1

c3 = 1.428570799460827347261398 * 10-l

c4 = 1.111171831154342806719000 * 10-l

c5 = 9.060935658179353717214254 * 10-2

c6 = 8.419186575863053137534817 • 10-2

If a zero or negative argument is received, a data nag
branch occurs inside the routine.

AlOGlO(a)

This computes the logarithm of a real number. The result
is a real number that is accurate to approximately 45 bits.

For a given real number x greater than zero:

where the natural logarithm is computed as-described for
the function ALOG.

If a zero or negative argument is received, a data fiag
branch occurs inside the routine.

AMAXO{a1,a21 • . ·-)

This searches a list of integer numbers for the list element
having the maximum value. The integer found is returned
as a real number.

AMAXl(a11a2, ..•)

This searches a list of real numbers for the list element
having the maximum value and returns that value.

AMINO(a11a2, .••)

This searches a list of integer numbers for the list element
having the minimum value. The integer found is returned
as a real number.

AMIN1 (a11a2, •..)

This searches a list of real numbers for the list element
having the minimum value and returns the number when
found.

This computes one real number modulo a second real
number and produces a real result. AMOD(x,y) is defined
as x-[x/y] * y, where [A] is the sign of A times the largest
integer less than or equal to IAI.

60457040 B

PROGRAM COMPILATION 15

The system control statements accompanying a
CYBER 200 FORTRAN program must include a call to the
FORTRAN compiler. The parameters for this call
optionally declare files for input and output, and optionally
include instructions to the compiler to. (for example) output
storage maps. Additional control statements are required
to load and. to· execute the compiled program, and can be.
used to change at run time the file declarations made in a
PROO RAM statement.

FORTRAN STATEMENT

The FORTRAN system control statement is used to
execute the CYBER 200 FORTRAN compiler. In the
statement parameter descriptions that follow, underlining
indicates the minimum number of characters that can be
used in specifying the parameter.

Forms:

FORTRAN.

FORTRAN(INPUT=f1 BINARY=f2/l2,
LIST=f3/l3/d3,0PTIONS=olist)

.!NPUT=f1

60457040 D

Optional; fl is the name of
the file containing the
FORTRAN source program to
be compiled. When the param­
eter is omitted, the default
file name INPUT is used.

Optional; f 2 is the name of
the file that is to receive the
compiler-generated object
modules. 12 is a specifi­
cation of the length of f 2,
and can be either an integer
constant or a hexadecimal
number prefixed with a #.
12 can be omitted along with
the slash. When the entire
parameter is omitted, the
default file name BINARY is
used. When 12 or the entire.
parameter is omitted, the
default file length of 16 small
pages is used.

Optional; f 3 is the name of
the file that is to receive the
compiler-generated listings
and program output. 13 is a
specification of the length of
f 3. Like 12, 13 can be
either an integer constant or a
hexadecimal number prefixed
with a #. d3 is the routing
disposition of f3 and must
be PR (the line printer) or can
be omitted (in which case no

OPTIONS=olist

routing is performed). 13
and d3 can occur in either
order. When 13 is omitted,
the default file size of 336
small pages is used. When the
entire parameter is omitted,
the default is OUTPUT.

Optional; olist is some logical
combination of the compile
option letters ABCEIKLMOR
SUVYZ12, with the restriction
that Y must not occur with
any other option except L.
Default olist is B. When
O=olist is omitted, or when B
is included in olist, the object
file for the program is built.
The object file is not built
when the O=olist parameter
without the B option appears
in the parameter list for the
FORTRAN system control
statement.

Alternative delimiters for the parameter list are a comma
or blank instead of the left parenthesis, and a period
instead of the right parenthesis. When communicating
interactively with the system, the user can replace a
period with a carriage return.

The FORTRAN system control statement parameters must
be separated by commas or blanks. Partial parameter lists
are acceptable, with default values used for the omitted
parameters. The first form of the FORTRAN statement
selects all defaults for the parameters. The I=, B=, and L=
parameters can be interchanged without consequence; the
O= parameter must occur last.

The object and output files (specified by the B= and L=
parameters of the FORTRAN system control statement) do
not have to exist when the control statement is executed.
If the file does not exist, it is automatically created on a
unit assigned by the operating system and with the length
specified in the control statement. If the file does exist
and has write access, it is automatically destroyed and
recreated on the same unit with the length specified in the
control statement. If the file does exist but does not have
write access, a request is made to interactive users for
permission to destroy the file. If permission is granted, the
procedure followed is the same as for files that exist with
write access. If permission is not granted, or if the user is
in batch mode, the job is aborted.

When a compile option letter appears in the O=olist
parameter, certain actions are performed during
compilation that would not be performed otherwise. The L
option is an exception in that the listing of the source
program is inhibited rather than initiated by its appearance
in olist.

A - ASSEMBLY LISTING

An assembly listing of the object code can be placed in the
output file by selecting the A option.

15-1

I

B - BUILD OBJECT FILE

An object file is required for the loading and execution of
the FORTRAN program. A request that the file be built is
made by selecting the B option.

C - CROSS-REFERENCE LISTING

All mentions in the source program to labels and symbolic
names are listed in tabular form in the output file by
selecting the C option.

E - EXTENDED BASIC BLOCK
OPTIMIZATION
The R..._option selects optimization of extended basic
blocks. This optimization involves compile-time

· computable result propagation, redundant code elimination,
and instruction scheduling. The E option is included in the
0 option. The E option effectively selects options P, R,
and I.

I - INSTRUCTION SCHEDULING

The I option selects optimization of object instructions
according to the results of a critical path analysis. The
I option is included in the 0 and E options.

K - 64-BIT COMPARE

This option enables fullword (64-bit} integer compares for
.EQ. and .NE. operators in logical IF statements.
Otherwise, 48-bit compares are performed for the .EQ. and
.NE. operations (integers are 48 bits).

L - SOURCE LISTING SUPPRESSION

The first part of the output file for a CYBER 200
FORTRAN program is normally the source program
listing. This can be omitted from the file by selecting the
L option.

M - MAP OF REGISTER FILE AND
STORAGE ASSIGNMENTS

A listing in the output file of all variables, constants,
externals, arrays, and descriptors, along with a map of the
contents of the register file, is produced when the
M option is selected.

0 - OPTIMIZATION

The 0 option selects all available optimization of scalar
object code. More efficient object code is produced at the
expense of increased compilation time. The 0 option
effectively selects options Z, E, R, I, and P.

15-2

P - PROPAGATION

The P option selects compile-time-computable result
propagation.

R - REDUNDANT CODE ELIMINATION

The R option selects elimination of redundant code. The
R option is included in the 0 and E options.

S - SUPPRESS DEBUG SYMBOL TABLE
CREATION

The effect of this option is to suppress generation in the
binary output of a debug symbol table for each program
unit. The symbol table makes it possible for the
system-provided debugging utility DEBUG to recognize
names in the FORTRAN program and for a FORTRAN
run-time routine to identify the source line in a user
routine at which a run-time error occurred. The user must
not select this option if DEBUG is going to have to
interpret variables, names, and symbolic addresses; if only
absolute addresses will be used in commands to DEBUG,
the S option can be selected.

U - UNSAFE VECTORIZATION

The U option enables unsafe vectorization of certain DO
loops. If the terminal value of a DO loop is variable and
the loop contains any references to dummy arrays, the
compiler cannot determine the number of iterations of the
loop. Vectorization of such . loops is considered unsafe
because the loop count might exceed 65535, which is the
maximum length of a vector. If a DO loop contains an
assignment statement that has an equivalenced data
element on the left side, the loop can be vectorized only if
the U compile option is selected.

V - VECTORIZATION AND AUTOMATIC
RECOGNITION OF ST ACKLIB LOOPS
Vectorization of certain CY·BER 200 FORTRAN language
constructs and automatic recognition and conversion of
certain DO loops into calls to a stacklib routine are
requested with the V compile option. The language
constructs that fall under these categories are described in
section 11.

Y - SYNTAX CHECK

A partial compilation can be performed to check the
syntax of a FORTRAN program and any resulting
diagnostics can be produced by selecting the Y compile
option. The Y option can appear alone or with the L or
S options (such as LY or SY); all other option combinations
using Y are invalid compile option lists and produce an
error accompanied by a dayfile message.

60457040 c

DIAGNOSTICS B

I
Th is appendix describes the four groups of diagnostic
messages: compiler failure messages, compilation error
messages, run-time error messages, and vectorizer
messages.

COMPILER FAILURE AND
COMPILATION ERRORS
Compiler failure messages are messages generated because
of compiler failure. Compilation error messages are
messages generated because of errors in the program. The
serioumess of the error is indicated by the error type.

COMPILER FAILURE

Error messages produced when the compiler fails are listed
in table B-1. The compiler failure error type is:

A (abort) Compilation was terminated because of
compiler failure. The return code is 8
(RC=B)

COMPILATION ERRORS

Error messages produced when the compiler detects errors
in the source program are listed in table B-2. Some of the I
error numbers have no messages currently assigned to
them. These error numbers are reserved for future use by
CDC. Compilation error types are:

W (warning)

F (fatal)

The statement in error was compiled.
Compilation continued, but part of the
statement might not have been
processed. The return code is 4 (RC=4).

The statement in error was not
compiled. Object code generation is
inhibited. The return code is 8 (RC=8).

TABLE B-1. COMPILER FAILURE MESSAGES

Error
Number

93

94

95

96

97

98

99

100

101

60457040 D

Type

A

A

A

A

A

A

A

A

Message

COMPILER FAILURE - REFERENCE FOR
NON-DIMENSIONED ARRAY

COMPILER FAILURE - ALL FULL REG
TABLE ENTRIES ARE CLASS 4

COMPILER FAILURE - HALF REG
TABLE ENTRIES ARE CLASS 4

COMPILER FAILURE - VARIABLE
EQUIVALENCED TO COMMON BLOCK
THAT HAS NO ELEMENT

(Currently unassigned)

COMPILER FAILURE - I/O STACK
FORMED INCORRECTLY

COMPILER FAILURE - ILLEGAL
DESCRIPTOR ENCOUNTERED IN
ALLOCATION PHASE(2)

COMPILER FAILURE - TABLE AREA
OVERFLOW

COMPILER FAILURE

Significance

The subscript processor detected
a bad symbol table entry.

The doubleword register assignment
table became invalid during the
generation phase.

The fullword register assignment
table became invalid during the
generation phase.

The storage class table became
invalid during the allocation
phase.

The input/output list stack that
was built by the IOLIST processor
became invalid during the parse
phase.

The descriptor table became
invalid.

One of the compiler table areas
reached its maximum size. Possi­
bly the program was too big to be
compiled.

Compiler detected an internal
inconsistency.

Action

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

Follow site-defined
procedure.

B-1

Error Type Number

102 F

103 F

104 w

105 F

106 F

107 F

108 F

109 F

110 F

111 F

112 F

113 F

114 F

115 F

116 w

117 F

118 F

119 F

B-2

TABLE B-2. COMPILATION ERROR MESSAGES

Message

ILLEGAL SUBPROGRAM NAME

FUNCTION CANNOT BE CALLED AS A
SUBROUTINE

CANNOT TYPE SUBROUTINE NAME

ILLEGAL SUBROUTINE REFERENCE

MISSING OPERATOR OR DELIMITER

ILLEGAL OPERAND

ILLEGAL OR MISSING DELIMITER

ILLEGAL USE OF ARRAY NAME

MISSING LEFT PARENTHESIS

ILLEGAL USE OF HEXADECIMAL
CONSTANT

RECURSIVE SUBPROGRAM REFERENCE
IS ILLEGAL

ILLEGAL ARGUMENT DELIMITER

ILLEGAL USE OF SUBPROGRAM NAME

ILLEGAL ARGUMENT IN INTRINSIC
OR BASIC FUNCTION REFERENCE

FUNCTION NAME USED AS ARGUMENT
NOT DECLARED EXTERNAL

INTRINSIC FUNCTION CANNOT BE
ACTUAL ARGUMENT

ILLEGAL OPERATOR IN EXPRESSION

PARENTHESES DO NOT MATCH OR
ILLEGAL ASSIGNMENT STATEMENT

Significance

The subprogram is compiled
as a main program.

A function is called with a
CALL statement.

A type is specified for the
subroutine name; the type
was ignored by the compiler.

A subroutine name is used
improperly.

An operator or delimiter is
required.

An expression contains an
illegal operand.

A delimiter is required.

An array name appears with­
out a subscript.

A left parenthesis is
required.

A hexadecimal constant is
used improperly.

A subprogram calls itself.

Arguments must be delimited
by commas.

A subroutine or function
name is used improperly.

The arguments are not what
the function requires.

The function name is not
declared in an EXTERNAL
statement.

An intrinsic function name
appears in the argument
list of a function or sub­
routine reference.

The operator cannot be used
in the expression.

A one-to-one correspondence
does not exist between left
and right parentheses.

Action

Correct error; recompile.

Replace the CALL state­
ment with a statement
that contains a function
reference; recompile.

Verify that a subroutine,
rather than a function,
was intended.

Correct error; recompile.

Supply missing operator
or delimiter; recompile.

Correct error; recompile.

Supply missing delimiter
or correct error in exist­
ing delimiter; recompile.

Supply subscript for
array reference; recompile.

Supply missing left
parenthesis; recompile.

Correct error; recompile.

Remove recursive sub­
programre ferences from
the program; recompile.

Correct error; recom­
pile.

Correct error; recompile.

Correct error; recompile.

Declare function name in
an EXTERNAL statement;
recompile.

Remove intrinsic function
name from the argument
list; recompile.

Correct error; recompile.

Check all parentheses in
the expression. Correct
errors; recompile.

60457040 B

Error
Number

120

121

122

123

124

125

126

127

128

129

130

131

132

60457040 D

Type

F

F

F

F

F

F

w

w

w

w

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

INCORRECT NUMBER OF ARGUMENTS
FOR INTRINSIC OR BASIC
FUNCTION

INCORRECT ARGUMENT TYPE FOR
INTRINSIC OR BASIC FUNCTION

ILLEGAL TYPE MIXING IN
STATEMENT

ILLEGAL ARRAY MODE IN VECTOR
REFERENCE

ILLEGAL MODE USAGE IN
RELATIONAL OR ARITHMETIC
EXPRESSION

MORE THAN 19 CONTINUATION
LINES

THIS STATEMENT CANNOT BE
EXECUTED

INDEFINITE RESULT, PRODUCT TOO
LARGE

DIVIDE FAULT IN CONSTANT
ARITHMETIC

EXPONENT OVERFLOW IN CONSTANT
ARITHMETIC

ILLEGAL DELIMITER IN A VECTOR
REFERENCE

SUBSCRIPT FOR NON~DIMENSIONED
ARRAY, OR STMT FUNCTION DEF
DOES NOT PRECEDE ALL
EXECUTABLE STATEMENTS

THIS SYMBOL MAY NOT BE DEFINED
TO BE A STATEMENT FUNCTION

Significance

The argument list for an
intrinsic function refer­
ence or a basic function
reference contains a dif­
ferent number of arguments
than the function requires.

An argument that appears
in the argument list of an
intrinsic function refer­
ence or a basic function
reference is of the wrong
type.

The data types of two
entities that appear in a
statement are incompatible.

All continuation lines
after line 19 are not
compiled.

The previous statement does
not allow execution of this
statement.

The multiplication of two
constants produces a result
that is too large.

The division of one
constant by another pro­
duces a divide fault.

Constant arithmetic
produces exponent overflow.

The array that appears on
the left side of an assign­
ment is not dimensioned, or
this is a statement func­
tion definition that does
not precede all executable
statements.

The symbol is already
defined.

Action

Check the requirements
of the intrinsic or basic
function. Add missing
arguments or delete extra
arguments from the argu­
ment list of the func­
tion reference; recompile.

Check the requirements
of the intrinsic or basic
function. Change the
type of the erroneous
argument; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Restructure the statement
so that no more than 19
continuation lines are
used; recompile.

Check for an error in
logic. Check for a
missing label on
the current statement.

Verify that an indefinite
result does not affect
the logic of the program.

Verify that the di~ide
fault does not affect the
logic of the program.

Verify that exponent
overflow does not affect
the logi.c of the program.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

B-3

I

Error
Number

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

B-4

Type

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ILLEGAL STATEMENT FUNCTION
ARGUMENT

ILLEGAL STATEMENT FUNCTION
DEFINITION

ILLEGAL LABEL

DESCRIPTOR MODE IS NOT
INTEGER, REAL, BIT, OR COMPLEX

ILLEGAL DELIMITER FOR HEX OR
BIT CONSTANT

DOUBLY DEFINED LABEL

(Currently unassigned)

ILLEGAL DELIMITER IN STATEMENT
FUNCTION ARGUMENT LIST

INCORRECT NO. OF ARGUMENTS FOR
STATEMENT FUNCTION

COMPLEX MAY NOT BE USED AS
POWER

COMPLEX MAY ONLY BE RAISED TO
INTEGER OR REAL POWER

SUBSCRIPT MUST BE INTEGER
CONSTANT

SPECIFICATION STATEMENTS
MUST PRECEDE ALL EXECUTABLE
STATEMENTS

ILLEGAL VARIABLE IN DATA
STATEMENT

SYNTAX ERROR IN DATA LIST

Significance

An illegal argument appears
in a statement function
reference.

A statement function is
defined improperly.

A label must be numeric and
between 1 and 99999.

A descriptor must be of one
of these types.

Hexadecimal and bit con­
stants must be delimited by
apostrophes.

The same label appears on
more than one statement in
a program.

Statement function argu­
ments must be delimited by
connnas.

The argument list for a
statement function refer­
ence contains a different
number of arguments than
the function requires.

A complex number appears as
an exponent.

Exponentiation of a complex
number involves an exponent
that is not real or integer.

The subscript is not an
integer constant.

A specification statement
appears after an executable
statement.

A symbol that appears in a
DATA statement cannot be
initialized.

An error appears in a DATA
statement.

Action

Correct error; recompile.

Correct error; recompile.

Supply numeric label;
recompile.

Change the type of the
descriptor; recompile.

Change delimiters to
apostrophes; recompile.

Change one of the
occurrences of the label.
Also, check all refer
ences to the label that
is changed in order to
maintain correct logic;
recompile.

Correct error; recompile.

Check the statement func­
tion definition to find
out how many arguments
the function requires.
Add missing arguments or
delete extra arguments
from the argument list
of the function refer­
ence; recompile.

Change the type of the
exponent; recompile.

Change the type of the
exponent to real or
integer; recompile.

Change the subscript to
integer constant; recom­
pile.

Move all specification
statements in front of
all executable state
ments; recompile.

Remove the symbol from the
DATA statement; recompile.

Correct error; recompile.

60457040 B

Error
Number

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

60457040 B

Type

F

F

F

F

F

F

F

w

F

F

F

F

F

w

w

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

SUBSCRIPT MAY NOT BE AN
EXPRESSION

TOO MANY SUBSCRIPTS

SYNTAX ERROR IN HEXADECIMAL OR
BIT CONSTANT

ILLEGAL DATA ITEM

ILLEGAL VECTOR REFERENCE MODE
IN DATA STATEMENT

CHARACTER, HEX OR BIT CONSTANT
TOO LARGE

ILLEGAL USE OF VECTOR
REFERENCE MODE IN DATA
STATEMENT

TOO MANY DATA CONSTANTS

SYNTAX ERROR

SPECIFICATION STATEMENTS MUST
PRECEDE STATEMENT FUNCTION
DEFINITIONS

ILLEGAL ELEMENT IN
SPECIFICATION LIST

ILLEGAL OPERATOR IN
SPEC IF I CAT ION

ILLEGAL LENGTH SPECIFICATION
OF CHARACTER VARIABLE

NAMELIST NAME IN TYPE
STATEMENT

VARIABLE TYPED MORE THAN ONCE

LENGTH OF ADJUSTABLE CHARACTER
MUST BE TYPE INTEGER

ZERO LENGTH FOR CHARACTER
VARIABLE

Significance

An expression is used as a
subscript.

The array is declared to
have fewer dimensions than
there are subscripts.

An error appears in a hexa­
decimal or bit constant.

Constant is too large to be
represented.

Th.ere are more values in a
DATA statement than there
are variables. The extra
values are not used.

A language construct is
written improperly.

A specification statement
appears after a statement
function definition.

The length specification
that appears in a CHARACTER
statement is illegal.

A type is given to a
name listname; this action
is ignored by the compiler.

The first type is used.
The additional type speci­
fications are ignored.

The length specification
that appears in a CHARACTER
statement is not an integer.

The length specification
for a character variable is
zero.

Action

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Reduce size of constant;
recompile.

Correct error; recompile.

Verify that the proper
number of variables and
constants are specified.

Correct error; recompile.

Move all specification
statements in front of
all statement function
definitions; recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

Check user-defined names
to find out if a name is
used as both a namelist
name and a variable or
array name.

Verify that the first
type is intended. Check
user-defined names to
find out if two differ­
ent variables are
intended.

Correct error; recompile.

Correct error; recompile.

8-5

I

Error
Number

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

B-6

Type

F

F

w

F

w

w

w

F

F

F

F

F

F

F

F

F

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

ERROR IN DATA LIST OF TYPE
STATEMENT

ILLEGAL STATEMENT ON LOGICAL
IF

NO LABELED COMMON IN BLOCK
DATA SUBPROGRAM

ILLEGAL STATEMENT IN BLOCK
DATA SUBPROGRAM

MAIN PROGRAM HAS NO EXECUTABLE
STATEMENTS

(Currently unassigned)

(Currently unassigned)

FUNCTION NAME IS NOT DEFINED

NO RETURN STATEMENT

ENTRY IN RANGE OF DO OR IN
BLOCK IF

NO ARGUMENTS FOR FUNCTION

ILLEGAL DUMMY ARGUMENT

MISSING NAMELIST NAME

ILLEGAL NAMELIST NAME

MISSING SLASH AFTER NAMELIST
NAME

LIST ITEM MUST BE A VARIABLE

ILLEGAL OPERATOR

ILLEGAL OR MISSING VARIABLE

Significance

The consequent statement
on a logical IF is not
allowed.

No labeled connnon blocks
are declared in the BLOCK
DATA subprogram.

This statement cannot
appear in a BLOCK DATA sub­
program.

A function returns a value
through its name. The name

must be assigned a value
during execution of the
function.

A RETURN statement was
generated by the compiler.

An ENTRY statement appears
in the range of a DO loop
or in a block IF.

The subprogram is compiled
as a main program.

An argument that appears in
a FUNCTION or SUBROUTINE
statement is illegal.

A NAMELIST statement does
not contain a namelist name.

A namelist name is illegal.

A namelist name must be
enclosed in slashes.

Action

Correct error; recompile.

Correct error; recompile.

Verify that all state
ments appear in the BLOCK
DATA subprogram as
intended.

Correct error; recompile.

Verify that all state­
ments in the main program
appear as intended.

Check the function for a
missing assignment
statement.

Verify that a RETURN
statement was intended.

Remove the ENTRY state­
ment from the range of
the DO loop or block IF;
recompile.

Supply the argument li~t
for the FUNCTION state­
ment; recompile.

Correct error; recompile.

Supply the namelist name
enclosed in slashes;
recompile.

Coccect error; recompile.

Supply the missing slash
after the namelist name;
recompile.

Correct error; recompile.

Correct error; recompile.

Correct error; recompile.

60457040 D

Error
Number

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

60457040 D

Type

F

F

w

F

w

F

F

w

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Message

A SYMBOLIC CONSTANT MAY NOT BE
TYPED AFTER ITS DECLARATION

DUPLICATE OR CONFLICTING
IMPLICIT TYPE

ILLEGAL INSTRUCTION FOR TARGET
MACHINE

ILLEGAL BLOCK IF NESTING

FUNCTION NOT AVAIIABLE ON
TARGET MACHINE

BRANCH INTO BLOCK IF

MISS ING ENDIF

(Currently unassigned)

MISSING THEN IN ELSE IF
STATEMENT

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

Significance

A type statement for a sym­
bolic constant must appear
before its declaration in
the PARAMETER statement.

A letter must not be
assigned more than one
imp licit type.

The program cannot be cor­
rectly executed on the
machine for which it is
compiled.

A nested block IF must be
entirely contained in an
outer block IF,

The program cannot be cor­
rectly executed on the
machine for which it is
compiled.

Control cannot transfer
into an if-block, else­
block, or elseif-block.

Each block IF statement
must have a corresponding
END IF statement.

-
The keyword THEN must
follow the keyword ELSE IF.

--
-
--

-
--
-
--
-
--
-
-
-
-
-

Action

Move the type statement
in front of the PARAMETER
statement that defines
the symbolic constant;
recompile.

Correct error; recompile.

Verify that the correct
target machine is speci­
fied in the FORTRAN
control statement.

Correct error; recompile.

Verify that the correct
target machine is speci­
fied in the FORTRAN
control statement.

Rewrite the statement so
that it does not transfer
control into an if-block,
else-block, or elseif­
block.

Supply the missing END IF
statement; recompile.

--
Supply the missing THEN.

--
--
--
--
--

--

--
--

--
--

--
--

--
--

B-21

I

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Error
Type Number

426

427

428 F

429 F

430 F

431 F

432 F

433 F

434 F

435 F

RETURN CODES

Message

(Currently unassigned)

(Currently unassigned)

BRANCH INTO THE RANGE OF A
WHERE

ILLEGAL VECTOR OPERATION IN
THE RANGE OF A WHERE

MISSING ENDWHERE

WHERE EXPRESSION MUST BE OF
TYPE BIT

MISSING BLOCK WHERE

EXTRA OTHERWISE

ILLEGAL STATEMENT IN THE
RANGE OF A WHERE

TERMINAL STATEMENT OF DO
WITHIN RANGE OF A WHERE

The user has control over the execution of a batch job in
that the user can determine whether to initiate error exit
processing or to allow batch job processing to continue.
The TV control statement allows a termination value to be
entered with the program to be executed. The termination
value is used to determine when error exit processing is to
occur. All return codes having a value less than or equal to
the termination value are ignored and job processing
continues. All return codes having a value greater than the
termination value cause error processing specified by the
EXIT control statement to take place.

e B-22

Significance

Control must not transfer
into a where-block or
otherwise-block.

A vector assignment state­
ment that appears in a
WHERE statement, where­
block, or otherwise-block
contains an invalid opera­
tor or function reference.

Each block WHERE statement
must have a corresponding
END WHERE statement.

The expression in the WHERE
statement or block WHERE
statement is not of type
bit.

An OTHERWISE statement or
an END WHERE statement
appears without a corre­
sponding block WHERE
statement.

Only one OTHERWISE state­
ment can appear in a block
WHERE structure.

Only vector assignment
statements of type integer
or real can appear in a
where-block an otherwise­
block or the vector assign­
ment statement portion of a
WHERE statement.

If a block WHERE structure
appears in the range of a
DO statement, the entire
block WHERE structure must
appear in the range of the
DO statement.

Action

Rewrite the program so
that it does not transfer
control into a where­
block or otherwise-block;
recompile.

Remove or rewrite the
statement; recompile.

Supply the missing
END WHERE statement;
recompile.

Supply an expression of
type bit; recompile.

Check for mismatched or
missing block WHERE
statement; recompile.

Rewrite block WHERE
structure using no more
than one OTHERWISE state­
ment; recompile.

Remove or rewrite the
illegal statements;
recompile.

Move the terminal state­
ment of the DO loop so
that it is on or after
the END WHERE statement
of the block WHERE struc­
ture; recompile.

For example, a termination value of 8 would allow all
warning and fatal errors to be ignored, andcause error exit
processing to occur for abort errors. A termination value
of 0 would trap all errors, including warning codes. The
termination value control statement is discussed in the
Operating System reference manual.

RUN-TIME ERRORS
Error messages listed. in table B-3 are produced when error
conditions are detected during the execution of a
previously compiled program. Some of the error numbers
have no messages currently assigned to them.

60457040 D

These error numbers are reserved for future use by CDC.
The system error processor (SEP) can be called upon to
change the attributes of certain run-time errors. Run-time
error types are:

W (waming) Nonfatal error. A warning is
issued and execution continues.
The return code is 4 (RC=4).

F (fatal) Execution is terminated abnor­
mally when this error condition
exists. The retum code is 8
(RC=S).

C (catastrophic) Condition is nonalterable by SEP
and not subject to user control,

60457040 D

other than replacement of the
standard message. The return code
is 8 (RC=S).

All errors having a warning classification can be made
fatal. Those errors which are designated as fatal can be
altered to warning level. Catastrophic errors cannot be
altered to fatal or warning level; however, the standard
message can be replaced.

Error messages for mathematical routines have the
CYBER 200 FORTRAN library function name appended to
the message. In like manner, input/output error messages
have the file name appended to the message.

The form of a run-time error message is:

ERROR xxx IN subr AT LINE nn

B-22.1 I

Error
Number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

I B-22.2

Type

c

c

c

c

c

c

c

c

c

F

F

c

c

TABLE B-3. RUN-TIME ERRORS

Message

SYNTAX ERROR IN PROGRAM
STATEMENT FILE DECLARATION

UNIT NUMBER IS MULTIPLY DEFINED
IN PROGRAM STATEMENT

RUNTIME TABLE ERROR OVERFLOW

ERROR IN CREATE FILE

ERROR IN OPEN FILE

MAXIMUM NUMBER OF FILES (70)
EXCEEDED

SYSTEM ERROR IN CLOSE FILE

(Currently unassigned)

(Currently unassigned)

(Currently unassigned)

FILE NOT LARGE ENOUGH FOR OUTPUT

(Currently unassigned)

END OF FILE IN INPUT STREAM
-- file name

A CALL TO Q8WIDTH MUST PRECEDE
THE ACCESS TO A FILE

TRANSMISSION ERROR DURING READ

ILLEGAL I/O UNIT ·NUMBER

ATTEMPT TO PERFORM SEQUENTIAL
FORMATTED I/O ON A FILE OPENED
FOR ANOTHER FORM OF I/O

Significance

A compilation error exists in
the PROGRAM statement.

The same unit number is
assigned to more than one
file.

No more than 70 files can
be used in a program.

The amount of output to a
file exceeds the capacity of
the file.

An input statement attempted
to read data from the file
indicated, riut that file is
positioned at the end of the
file.

Unit numbers can be integers
from 1 through 99.

Action

Correct compilation
error. Rerun.

Change the PROGRAM
statement so that
each unit number is
assigned to only one
file. Correct all
references to unit
numbers accordingly.
Rerun.

Reduce the number of
files to no more
than 70. Rerun.

Increase the size of
the file or reduce
the amount of output
to the file. Rerun.

Use a REWIND or
BACKSPACE statement
to reposition the
file before the input
statement is execu­
ted·, or supply miss­
ing data on the input
file. Rerun.

Call Q8WIDTH before
first file access.
Rerun.

Change the unit num­
ber to an integer
from 1 through 99.
Rerun.

Use the proper type
of input/output
statements, or open
the file for sequen­
tial formatted input/
output. Rerun.

60457040 D

Error
Number

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

60457040 D

Type

F

F

F

F

F

F

F

c

c

c

c

c

F

c

w

TABLE B-3 •. RUN-TIME ERRORS (Contd)

Message

UNRECOGNIZABLE PARAMETER
E~COUNTERED IN Q7DFCL1

END OF RECORD ENCOUNIERED
DURING BINARY INPUT

UNDOCUMENTED ERROR DURING
B !NARY INPUT

BIT DATA PRINTED WITH NON B
FORMAT--file name

B FORMAT USED FOR OTHER THAN
BIT DATA--file name

DESCRIPTOR PRINTED WITH NON Z
FORMAT--file name

ILLEGAL RECORD TYPE FOR
BUFFER I/O

Q7BUFIN OR Q7BUFOUT WAS CALLED
WITH ILLEGAL PARAMETER--
file name

Q7SEEK WAS CALLED WITH ILLEGAL
PARAMETER--file name

ARRAY SPECIFIED AS BUFFER
IS NOT ON PAGE BOUNDARY
(Q7BUFIN/Q7BUFOUT)--file name

UNEXPECTED ERROR IN Q7BUFIN OR
Q7BUFOUT--file name

TOO MANY OUTSTANDING REQUESTS
FOR Q7BUFIN/Q7BUFOUT (MUST CALL
Q7WAIT)--file name

(Currently unassigned)

UNRECOGNIZABLE PARAMETER
ENCOUNIERED IN Q7DFOFF

ROUTINES CALLING Q7DFSET NESTED
TOO DEEP

DATA FLAG BRANCH - ORX -
REGISTER 1 ADDRESS address

Significance

A binary input statement
attempted to read binary data
from a file, but the file is
positioned at the end of the
file.

The B format specification
must be used for bit data.

The B format specification
is used for data that is of
a type other than bit.

The Z format specification
must be used for descriptors.

Action

Use a REWIND or
BACKSPACE statement
to reposition the
file before the input
statement is executed
or supply missing
data on the input
file. Rerun.

Use the B format
specification in the
FORMAT statement.
Rerun.

Change the B format
specification to the
appropriate format
specification. Rerun.

Use the Z format
specification in the
FORMAT statement.
Rerun.

Use a file of the
correct record
type. Rerun.

B-29

I

TABLE B-3. RUN-TIME ERRORS (Contd)

Error Type. Message Significance Action Number

122 w DATA FLAG BRANCH - ORD -
REGISTER l ADDRESS address

123 F DATA FLAG BRANCH - IMAGINARY
SQUARE ROOT - REGISTER l
ADDRESS address

124 F DATA FLAG BRANCH - INDEFINITE
RESULT - REGISTER 1 ADDRESS
address

125 F DATA FLAG BRANCH - ZERO
DIVISOR - REGISTER 1 ADDRESS
address

126 w DATA FLAG BRANCH - EXO -
REGISTER 1 ADDRESS address

127 w DATA FLAG BRANCH - RMZ -
REGISTER 1 ADDRESS address

128 w DATA FLAG BRANCH - SSC -
REGISTER 1 ADDRESS address

129 w DATA FLAG BRANCH - DDF -
REGISTER 1 ADDRESS address

130 w DATA FLAG BRANCH - TBZ -
REGISTER 1 ADDRESS address

131 c CLASS I DATA FLAG BRANCH - NO
INTERRUPT ROUTINE PROVIDED -
REGISTER 1 ADDRESS address

132 c CLASS III INTERRUPT IN CLASS
III INTERRUPT HANDLING ROUTINE
- REGISTER l ADDRESS address

133 (Currently unassigned) -- --

134 (Currently unassigned) -- --
135 c DATA FLAG BRANCH, NO PRODUCT

BITS ON - REGISTER 1 ADDRESS
xxxxxxxx

136 c RLP VALUE MISSING OR INVALID IN
PROGRAM STATEMENT

137 (Currently unassigned) -- --
138 F Q8WIDTH CALLED WITH WIDTH

NEGATIVE OR TOO LARGE

139 c SIO ERROR

This is preceded by the text
of the SIO error message.

140 F FORTRAN SECOND USE OF Q7DFCL1
CONFLICTS WITH USER

141 F USER USE OF Q7DFCL1 CONFLICTS
WITH FORTRAN SECOND

B-30 60457040 B

GLOSSARY c

Terms used in the main text of this manual are described in
this sectiori. The definitions give the general meanings of
the terms. Precise definitions are given in the main text.
Also, most general terms regarding computers and terms
defined in the American National Standards documents
regarding the FORTRAN language have been excluded.

Array -
An ordered set of variables identified by a single
symbolic name. Referencing a single element of an
array requires the array name plus a subscript that
specifies the element's position in the array.

Array Declarator -
Specifies the dimensions of an array. It consists of an
array name followed by a parenthesized list of integer
constants or simple integer variables that specify the
largest value of each dimension.

ASCII Data -
Characters, each of which has a standard internal
representation. One byte (8 bits) is required for each
character.

ASCII File -
A type of file that can be manipulated with formatted
READ statements, formatted WRITE statements,
PRINT statements, and PUNCH statements.

Binary File -
A type of file that can be manipulated by unformatted
input/output routines.

Bit Data -
A binary value represented in a FORTRAN program as
a binary number in the for mat B'bb ••• b' where each b
is a 0 or a 1. Each 0 or 1 becomes a 0 bit or a 1 bit in
the internal representation for the binary value.

Buffer Input/Output -
Input and output statements that cause data to be
transferred between binary files and a buffer area in
main .memory.

Character Data -
An ASCII value represented in a FORTRAN program
by a character string in the format 'cc ••• c' where
each c is in ASCII. Each character becomes a byte of
ASCII data in the internal representation for the ASCII
value.

Colon Notation -
The notation used to express implied DO subscript
expressions in a subarray. The colons separate the
initial, terminal, and incrementation values for the
implied DO.

Columnwise -
The ordering of the elements in an array declared in a
DIMENSION, COMMON, or explicit type statement
(the other ordering is rowwise). The succession of
subscripts corresponding to the elements of a
columnwise array is with the value of the leftmost
subscript expression varying the fas test.

60457040 D

Compile Time -
The period of time during which the FORTRAN
compiler is reading with the user's program and
producing the relocatable module for the program.
Compilation is initiated by the FORTRAN system
control statement.

Conf ormability -
Determines whether two subarrays can occur in the
same expression. Two subarrays are conformable if
they contain the same number of implied DO
subscripts and if corresponding implied DO subscript
expressions are identical.

Control Vector -
A bit vector that controls the storing of values into a I
vector. The control vector elements are set to a
configuration of Os and ls. Control vectors are used in
WHERE statements, block WHERE structures, and
some FORTRAN-supplied functions.

Controllee File -
A file that consists of object code generated by the
loader. The loader builds a controllee file from
relocatable object code produced by a compiler, plus
relocatable object code of any externally-defined
routines.

Data Element -
A constant, variable, array, or array element.

Data Flag Branch Manager (DFBM) -
A FORTRAN run-time and CYBER 200 library routine
that processes data flag branches when they occur in
an executing program. A data flag branch is a
hardware function of the CYBER 200 computers.

Data Flag Branch (DFB) Register -
Part of the data flag branch hardware. It is a 64-bit
register located in the CYBER 200 central processor.

Declaration -
A specification statement that declares attributes of
variables, arrays, or function names.

Defining -
Process whereby a variable or array element acquires
a predictable or meaningful value. Definition can take
place through data initialization, parameter
association, DO statement execution, input statement
execution, or assignment statement execution.
Defining contrasts with naming and referencing.

Descriptor -
A pointer to a vector. In several FORTRAN forms,
the descriptor can be used instead of the vector.

Dominance -
A conventional data type hierarchy determining the
data type of the result of expression evaluation.
Dominated operands are converted during evaluation
to the dominant type. The type complex dominates all
other types, with types double-precision, real, and
integer following in order of decreasing dominance.

C-1

Drop File -
A file that is created and maintained for each
executing program. Contains any modified pages of
the program file, any free space attached, and any
read-only data space defined to have temporary write
access.

Dynamic Space -
Virtual memory space available for allocation and
deallocation at execution time. In particular, space
for vectors can be assigned in the dynamic space area
by using the descriptor ASSIGN statement.

Explicit Typing -
Specification of the data type of a variable or array by
means of one of the explicit type statements (the
INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
BIT, CHARACTER, and LOGICAL statements).
Explicit typing overrides any implicit typing.

External Function -
A function that is defined outside of the program unit
that references it. A reference to an external
function generates code in the user's object program
that causes control to transfer to the external
function during program execution. External functions
contrast with in-line functions.

File -
A collection of information that can be defined by
output statements, or referenced by input statements.
Depending on the type of output used to create it, a
file can be either implicit or explicit.

First-Letter Rule -
Default type association for data names according to
the first letter of the name. Type assignment made is
type integer to any name beginning with the letter I,
J, K, L, M, or N, and type real to all others. The
IMPLICIT statement is used to alter these defaults.

Floating-Point -
Refers to the internal representation for real,
double-precision, and complex data.

Generic Function -
A function whose result mode depends on the mode of
the argument.

Hexadecimal Data -
A value represented in a FORTRAN program as a
hexadecimal number in the for mat X'hh ••• h' where
each h is a hexadecimal digit (one of the digits 0
through 9 or one of the letters A through F). Each
digit becomes the 4-bit binary equivalent in the
internal representation for the value.

Implicit Typing -
Specification of the data type of a variable or array by
means of the first-letter rule for data names.

Index Vector -
An integer vector whose elements are indexes into
another vector. An index is an ordinal number
indicating element position in a vector. Some of the
FORTRAN-supplied functions use index vectors.

In-Line Function -

C-2

A type of predefined function. Referencing an in-line
function causes the function's object code to be
inserted directly into the relocatable object code of
the user's program during compilation. In-line
functions contrast with external functions.

Input -
The name of the file read with FORTRAN READ
statements that do not specify a unit number. To be
used, INPUT must be declared in the PROGRAM
statement or in the execution line.

Large Page -
A block of 65536 words in memory starting on a large
page boundary. A loader call parameter can be used
to tell the operating system that the specified modules
are to be placed within a large page loaded on a large
page boundary.

Loader -
A utility that links relocatable object modules,
together with modules from user libraries or the
system library as needed to satisfy external
references. It then converts external references and
relocatable addresses into the virtual address
constants. Thus, relocatable modules are transformed
into a virtual code controllee file with the (default)
name of GO.

Logical Unit Number -
Integer between 1 and 99 associated with a file by
means of the PROGRAM statement declarations or
execution line declarations, and used to refer to the
file when performing FORTRAN input/output.

Loop-Dependent -
Describes a variable whose value changes as the value
of the control variable of a DO loop passes through the
range specified in the DO statement. A
loop-dependent variable is defined within the range of
the loop, while a loop-independent variable is defined
(or could be defined with the same effect) outside the
range of the loop.

Loop-Independent -
Describes a variable whose value remains constant
within the range of a DO loop.

Naming -
Identifying data (or a procedure) without necessarily
implying that its current value is to be made available
(or, for procedures, that the procedure actions are to
be made available) during the execution of the
statement in which it is identified. Naming contrasts
with referencing and defining.

Object Module -
The relocatable representation of a program unit
created by compilation of the program unit.· Consists
of object code.

Output -
The name of the file to which all run-time error
messages and records output with PRINT statements
are written. WRITE statements can also be used to
write on OUTPUT if OUTPUT is given a logical unit
number in the PROGRAM statement.

Precedence -
A conventional arithmetic, relational, and logical
operator hierarchy determining the order in which
operations are performed during expression
evaluation. Operator precedence in FORTRAN
corresponds to the mathematical notion of the
precedence of mathematical operations.

Predefined Function -
FORTRAN-supplied code that performs common
manipulations. Predefined functions can be in-line
functions, external functions, or both in-line and
external functions.

60457040 B

CYBER 200 FORTRAN-SUPPLIED FUNCTIONS LIST E

This appendix contains a list of the functions that are
available for reference for any CYBER 200 FORTRAN
program, as discussed in section 14. For each function,

Function

ABS

ACOS

AI MAG

AINT

ALOG

ALOGlO

AMAXO

AMAXl

AMINO

AMIN!

AMOD

ASIN

ATAN

ATAN2

CABS

ccos

CEXP

CLOG

CMPLX

CONJG

cos

cosli

CO TAN

CSIN

CSQRT

DABS

60457040 B

Category

NX

x

NX

NX

x

x

NX

NX

NX

NX

NX

x

x

x

NX

x

x

x

NX

NX

x

x

x

NX

TABLE E-1.

Fast Call Name

FTXACOS

FT XALOG

FT XLOGT

FT_XASIN

FT XATAN

FT XATN2

FT XCABS

FT XCCOS

FT XCEXP

FT XCOS

FT_XCSQT

FTxDACS

table E-1 indicates what type of code (in-line, external, or
both) is generated during compilation as a result of
referencing the function.

SUPPLIED FUNCTIONS

Function

DAS IN

DATAN

DATAN2

DEXP

DIM

DLOG

DLOGlO

DMAXl

DMINl

EXP

FLOAT

!ABS

Category

x

x

x

x

NX

x

x

NX

x

NX

NX

x

x

x

x

x

NX

NX

Fast Call Name

FT XDASN -.,

FT XDATN

FT XDTN2

FT XDCOS

FT XDLOG

FT XDLGT

FT_XDMOD

FT•.·XDPRD

FT XDSIN

E-1

TABLE E-1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Name Function Category Fast Call Name

!DIM NX NX

!DINT N

!FIX N

INT N

!SIGN N

MAXO N

MAXl N

MINO N

MINl Q8VNEI N

MOD NX Q8VPOLY N

Q8SCNT N Q8VREV N

Q8SDFB N Q8VSCATP NX

Q8SOOT N Q8VSCATR NX

QSSEQ N Q8VXPND N

QSSEXTB N

Q8VADJM N VACOS x FT_XVACS

I
QSVAVG N VAIMAG x FT XVAIM

Q8VAVGD N VA INT NX FT_XVAIN

Q8VCMPRS N x FT_XVLOG

QSVCTRL N x FT.XVLGT

QSVDELT N

Q8VEQI N

Q8VGATHP NX

E-2 60457040 D

TABLE E-1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Name Function Category Fast Call Name

VATAN2 x FT XVAT2 VFLOAT NX FT_XVFLT

VCABS x FT XVCAB VIABS NX FT XVIAB

vccos x FT XVCCS VIDIM x FT XVDIM

VCEXP x FT XVCXP VIFIX NX FT XVFIX

VCLOG x FT XVCLN VINT NX FT XVINT

VCMPLX x FT_XVCPX VISIGN x FT XVISN

VCONJG x FT XVCJG VMOD x FT XVMOD

vcos x FT XVCOS VREAL x FT XVREL

VCSIN x FT XVCSN VSIGN x FT XVSGN

VCSQRT x FT XVCSR VSIN x FT XVSIN

VDBLE x FT XVDBL VSNGL x FT XVSGL

VDIM x FT_XVDIM VSQRT NX FT_XVSQT

VEXP x FT XVEXP VTAN x FT XVTAN

I F XVEXPt

N = In-Line

x = External

NX = In-line and external

tThis entry point is used only when the 3 compile option is selected.

·-

60457040 D E-3

CYBER 200 FORTRAN STATEMENT SUMMARY F

This appendix contains a summary of the statement forms described in the main text. Given are the entities
that compose each statement; refer to the main text for the detailed specifications for these entities.
Abbreviations used in this appendix are the following:

v = variable or array element

va= = variable, array element, or :'~tray i

s = statement label

iv= = integer variable

n integer constant, integer symbolic constant, or integer variable

type = INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, BIT, or CHARACTER

p = variable, array, or array declarator

pf = variable, array, function name, or array declarator

k = length of a type character pf

K = length of all type character pf in statement

a

arg

d

vr

u

f mt

iol ist

=
=

=

=

=
=

array declarator

argument (dummy or actual)

descriptor' or cfescriptor arrpy element

vect()~ Ce~pr~ss,ed ,in, se~i C()lon nota~io.n?, de~criptor '· ()r ·d,escri p~o~,. arr~y ~l~ment

logical unit number

format designator

input/output list

Brackets around an item indicates that the item is optional.

ASSIGNMENT STATEMENTS

integer v = arithmetic expression

real v = arithmetic expression

complex v = arithmetic expression

double- v = arithmetic expression
precision

logical v = logical expression

60457040 D

4-1

4-1

4-1

4-1

4-2

4-2

11-10

F-1 e

FLOW CONTROL STATEMENTS

GO TO s

GO TO ivrpCs[, ••• ,sJ)
ASSIGN s· TO iv

GO TO (s[, ••• ,sJ)[,J. iv

IF (arithmetic expression) s,s,s

IF (logical expression) statement

:ti:··1L09icar ex?ressionf.tHen·
iELSE ·.IF <logical expression) tHEt,I
!ELSE
;END IF

DO s iv = n,n[,nJ

CONTINUE

PAUSE [five-digit 'Jri'teger·:conslantl'i
;PAUSE tcharaet~f.~~.nst~!'tJ · ·

sToP rfive-digit linte'geF:'consia'r1't:'.f
'STOP' re:·h~fracter· ·constant]; · ·· ······· .··· · · ···

SPECIFICATION STATEMENTS

·1f.1Pi.ic±f "type· ·er; st §t feiiers<a~a. ran9e's>ot TE!fiersr·····
(, ••• ,type. Cli~~ .. >o~:letters. and f~nges (>f Jetter,s)]

type pf [/initial value/] [, ••• ,pf [/initial value/JJ

~CHARACTER r*i<l):>f ·.r~kl rtinifiaEvatue!l?r;~~~;·pf · C*kJ' ninifial valiJelJJ:

DIMENSION a[, ••• ,aJ

lRt5w±se··.·a·r;·::·:;;aJ'
COMMON p[, ••• ,pJ [••• /common block name/p[, ••• ,pJJ
COMMON /common block·name/ p [, ••• ,pJ [••• /common block name/ pC, ••• ,pJJ
COMMON I I pC, ••• ,pJ [••• /common block name/ p C, ••• ,pJJ

EQUIVALENCE Cva,vaC, ••• ,vaJ) C, ••• ,Cva,vaC, ••• ,vaJ)J

EXTERNAL procedure name [, ••• , procedure nameJ

DATA variable list/data list/ [, ••• , variable list/data list/J
where a variable list element is a variable, array element,
fa~fay··n~~·~~--·~r····]illp~i~~ ~~#I and a data list element is a constant
'or a repeat co'unt "ti mes a 'constant

[PAR.AMEfER., Cnam~1 =valueyt;·~":·:;na·m·e~·~vafue~ J? .
:, •... · .. ·.·· ..•... ·whe~e name;,· .• }s the .name .ot.~rsymbolic •• ·.co11stant, and·.vatue; is a constant •express; on.··

PROCEDURE DEFINITION

'.'piiooRAMtprocedu.re nallleJ· CCf1pE,~~~'fipJ>J
where.fi.P_,.js a file infor.rr1ation,parametef

statement function name CargC, ••• ,argJ) = expression

[typeJ FUNCTION procedure name Carg[, ••• ,argJ),
.:except :for 'type :~ CHARACTER :

e F-2

5-1

5-1

5-2

5-2

5-2

5-2

5-4

5-5

5-5

5-5

6-1

6-1

6-1

6-2

6-2

6-2

6-3

6-3

6-4

6-6

7-1

7-2

7-2

60457040 D

SUBROUTINE procedure name [Carg(, ••• ,arg])]

BLOCK DATA (subprogram name],

ENTRY- -procedure name [Carg[,~-•• ,argJ>r
for subroutines

ENTRY procedure name -Carg(,,. •• ,argJ)
for functions

RETURN tnJ·
for' subroutines

RETURN
for functions

CALL procedure name [(arg[, ••• ,arg])J

INPUT/ OUTPUT STATEMENTS

READ Cu[,fmtJ . C~END;·sJ _ C~~R_R_=:sJ> [iol i stJ
READ fmt C, ioliSt] ; ..

WRITE Cu) iolist
WRITE Cu,fmt)(iolist]

PRINT frllH,iolistJ

PUNCH fmt[,iolistJ

BUFFER IN Cu,data transfer mode) Cfi rst location in buffer, last location in buffer)

BUFFER OUT Cu, data transfer mode)(first location in buffer, last location in buffer>

ENCODE (record length,fmt,name of buffer of records) (iolistJ

DECODE (record length,fmt,name of buffer.of records) [iolistJ

NAHELIST /group name/list of variables and arrays [••• /group name/list of variables and arrays]

Namelist input: &group name A pn=constant list, pn=constant list, ••• &END

READ Cu,group name>
READ group name

WRITE Cu,group name)

;PUNCH.group
..

REWIND u

BACKSPACE u

ENDFILE u

s FORMAT ([/ ••• J field spec sep field spec sep ••• [/ •••])
where sep is a separator Ca cormna or one or more slashes>,
and field spec is a field specification for data conversion

60457040 D

7-2

7-6

7-6

7-6

5-6

5-6

8-1

8-2

8-2

8-2

8-1

8-1

8-3

8-3

8-4

8-4

8-4

8-4

8-4

8-4

8-5

8-5

8-5

9-2

G-2

G-2

F-3 e

1ARRAYASSIGNMENT

subarray•= arrayexpression

subarray = scalar expression

•A,SSIGN. d; vr
lASSIGN.·d, • DYN.

FREE

'vr = vector

bit'vr = ... vecfor bit expression

WHERE <vector bit expression>

WHERE (vector bit expression) ·
OTHERWISE .
END WHERE

,DESCRIPTOR p [, ••• ; ·· pJ

.type. FUNCTIONprocedure

.ENTRY procedure. name <arg(; ••• , argJ;*>

DATA<vadable l istldata l istlr, ••• , variable list/data l ist/J
where va'riable list can include vr and data list can>foclude
~~)(Pf~s~~~ Jf'l ~.emicoton .notation> ·· ··

e F-4

Page

10-2

10-2

Page

11-8

11-9

11-9

11-10

11-10

11-11
11-11
11-11

11-13

11-13

11-14

11-13
vectors

60457040 D

I

A conversion, input and output 9-5
Actual arguments 7-3
Adjustable dimensions 2-2
Ampersand

Actual arguments 5-6
Namelist input/output 8-4

.AND. 3-3
Apostrophe specification 9-6
Arguments

Actual 7-3
Correspondence of 7-4
Dummy or formal 7-3
Passing of 7-4

Arithmetic
Assignment statement (array) 10-2
Assignment statement (scalar) 4-1
Assignment statement (vector) 11-9
Expressions (scalar) 3-1
Expressions (vector) 11-6
IF statement 5-2
Operators 3-1

Array
Assignment statement 10-2
Declarators 2-2
Dimensions 2-2
Element location 2-3
EQUIVALENCE 6-3
Expression 10-2
In subprogram 7-4
NAMELIST 8-4
Storage 2-2
Subscripts 2-2
Transmission 9-2

Assembly listing 15-1, 15-11
ASSIGN statement

Descriptor 11-8
GO TO 5-1

Assigned GO TO 5-1
Assignment statement, array 10-2
Assignment statement, scalar 4-1

Arithmetic 4-1
Character 4-2
Form in vectorizable loop 11-2
Logical 4-2

Assignment statement, vector
Arithmetic 11-9
Bit 11-10

Asterisk
Dummy label 7-4
Dummy vector function result 7-4, 11-13
Specification G-2

Automatic
STACKLIB loop recognition 11-4
Vectorization 11-1
Vectorization messages 11-4, B-31

B bit constant . 2-7
B conversion, output 9-5
BACKSPACE statement 8-5
Basic external, see FORTRAN-supplied
Bit

Array initialization 6-4
Assignment statement 11-10
Constants 2-7
Expressions 11-8
Logical operators 11-8
Statement 6-1

60457040 D

INDEX

Blank common 6-2
Block

Common block 6-2
Data subprogram 7-6
IF statement 5-2
IF structures
WHERE statement 11-10
WHERE structures 11-11

Brackets in PROGRAM statement 7-2
Buffer

And program statement 1-2·
Input/output 8-1, G-1

C comment line 1-1
CALL statement 5-6
Calling

Fast calling sequence 12-2
Standard calling sequence 12-1
Subroutine subprogram 5-6

Carriage control 9-6
Character

Assignment statement 4-2
Constants 2-6
Expressions 3-3
Set 2-1, A-1
Type statement 6-1

Coding column significance 1-1
Colon notation 10-1
Column usage 1-1
Columnwise arrays 2-2
Comment line 1-1
Common

Blocks 6-2
EQUIVALENCE 6-3
Statement 6-2

Compatibility G-1
Compilation listings 15-3
Compiler

Call 15-1
Diagnostics B-1
Options 15-1
Supplied functions 14-1

Complex
Constants 2-5
Conversion 9-2
Type statement 6-1
Variables 2-5

Computed GO TO 5-2
Concurrent I/O 13-11
Constants

Bit 2-7
Character 2-6
Complex 2-5
Double-precision 2-5
Hexadecimal 2-6
Hollerith 2-6, G-1
Integer 2-4
Logical 2-6
Real 2-5
Symbolic 2-1, 6-6

Continuation 1-3
CONTINUE statement 5-5
Control

Carriage 9-6
Column (Tn) 9-6
Vector 11-11

I

I

Index-1

I

I

Control statement
Flow control 5-1
FORTRAN 15-1
System control 15-1

Conversion
Data conversion on input/output 9-3
During assignment 4-1
During expression evaluation 3-1
Mixed mode during initialization 6-5
Specifications for input/output 9-3

Cross-reference map 15-3

D conversion, input and output 9-5
Data conversion on input/output 9-3
Data flag branch manager 13-3
DATA statement 6-4
Data type, see Type
Declarations

File declaration 7-1, 12-2, 15-12
Scalar 6-1
Vector 11-13

DECODE statement 8-3
Descriptor

Data elements 11-6
Statement 11-13

DFBM 13-3
Diagnostics

Compiler failure B-1
Program compilation B-1
Return codes B-1, B-21
Run-time B-21
V ectorizer messages 11-4, B-31

Dimension
Adjustable 2-2, 7-4
Statement 6-2

Division 3-1
DO loops 5-4

Implied in DATA statement 6-5
Implied in 1/0 list 9-1
Nested 5-5
Range 5-4

DO statement 5-4
Double-precision

Constants 2-5
Conversion 9-5
Type statement 6-1
Variables 2-5

Drop file 15-12
Dummy arguments 7-3
Dynamic space 11-9

E conversion, input and output 9-4
Editing codes 9-6
ELSE IF statement 5-3
ELSE statement 5-2
ENCODE statement 8-3
END

Line 1-2
Parameter 8-1, 8-2, 8-4

END IF statement 5-3
I END WHERE statement 11-11

End;,f-file check 8-1
ENDFILE statement 8-5
ENTRY statement 7-6
.EQ. 3-3
EQUIVALENCE statement 6-3
ERR parameter 8-1, 8-2, 8-4
Error codes

Compilation B-1
Run-time B-21

Index-2

Error processing 13-3
Evaluation of expressions 3-2
Example programs 16-1
Execution-time

Diagnostics B-21
File name handling 15-12
Format specification 9-7

Explicit
Type statements 6-1
Vectorization 11-4

·Exponentiation 3-2
Exponents 2-5
Expressions, array 10-2
Expressions, scalar

Arithmetic 3-1
Character 3-3
Logical 3-3
Relational 3-3
Subscript 2-2
Type of 3-3

Expressions, vector
Arithmetic 11-6
Bit 11-8
Relational 11-7

Extended range of DO loop 5-3
External

Effect of declaration on call 6-3, 12-2
Procedures 7-3
Statement 6-3

F conversion, input and output 9-4
.FALSE. 2-6
Fast calls 12-2
File

Declaration 7-1, 12-2, 15-12
Name handling at execution-time 15-12
Tape 7-2

First-letter rule 2-2
Flow control statements 5-1
Format

Conversion codes 9-3
Execution-time format specification 9-7
Repeat specification 9-3
Slash 9-3
Statement 9-2

Format argument {parameter), see Dummy argument
Formatted input/output

Read 8-1
Write 8-2

FORTRAN
Compiler call 15-1
Supplied functions 14-1
System control statement 15-1

FREE statement 11-9
Function

As actual argument 7-4
FORTRAN-supplied 14-1
Function subprogram 7-5
Referencing a 7-5, 7-7
Statement function 7-2
Statement {scalar) 7-2
Statement (vector) 11-13
Vector function 11-13

G conversion, input and output 9-4
.GE. 3-3
GO TO statements

Assigned GO TO 5-1
Computed GO TO 5-2
Unconditional GO TO 5-1

.GT. 3-3

60457040 D

I

H specification
Format specification 9-6
Hollerith constant 2-6, G-1

Hexadecimal constants 2-6
In bit array initialization 6-4

Hierarchy in expressions 3-1, 3-4
Hollerith

Constant 2-6, G-1
Format element 9-6

I conversion, input and output 9-4
IF statements

Arithmetic 5-2
Block 5-2
Logical 5-2

Implicit statement 6-1
Implied DO in

DATA statement 6-5
lnput/oUtJ,Xlt list 9-1

Index for DO loop 5-4
Initialization

In DATA statement 6-4
In type statement 6-1

Input
BUFFER IN statement G-1
File 7-1
List 9-1
Namelist 8-4
Program data 1-3

Input/output
Lists 9-1
Statements 8-1

Integer
Constants 2-4
Conversion 9-4
Type statement 6-1
Variables 2-4

Intrinsic, see FORTRAN-supplied

L conversion, input and output 9-5
Labeled common 6-2

Use of block data subprogram to initialize 7-6
Labels

In actual argument lists 5-4
In flow control statements 5-1
Map 15-3
Of statements 1-2

.LE. 3-3
Length

Function for buffered 1/0 G-2
Specification for character data 2-6, 6-1, 7-4

Library functions 14-1
Listings 15-3
Logical

Assignment statement 4-2
· Constants 2-6

Expressions 3-3
IF statement 5-2
Type statement 6-1
Unit numbers 7-1
Variables 2-6

Loops, DO 5-4
Nested 5-5
V ectorizable 11-1

.LT. 3-3

Main program 7-1
Map, symbolic or cross-reference 15-3
MDUMP 13-10

60457040 D

Memory-to-memory data transfer 8-3
DECODE 8-3
ENCODE 8-3

Messages
Compiler failure B-1
Program compilation B-1
Run-time B-21
Vectorizer 11-4, B-31

Mixed mode
Arithmetic conversion 3-1, 3-3
In data initialization 6-5

Multiple entry subprograms 7-6

Name
Common block 6-2
File 7-1
Length 2-1
Program 7-1
Variable 2-2

Namelist
Input data format 8-4
Output data format 8-5
READ 8-4
Statement 8-4
WRITE 8-4

.NE. 3-3
Nesting

Block IF structures 5-4
Block WHERE structures 11-13
DO loops 5-5
Parentheses 9-2

Nonstandard RETURN 5-6
.NOT. 3-3
Numbers

Formats, see Constants
Logical unit 7-1
Statement label 1-2

Object file 15-1
Operators

Arithmetic 3-1
Logical 3-3
Precedence 3-4
Relational 3-3

Optimization 15-3
Options, FORTRAN statement 15-1
.OR. 3-3
Order of statements in program unit 1~3
OTHERWISE statement 11-11
Output

BUFFER OUT statement G-1
File 7-1 -
List 9-1
Namelist data form 8-4
Of bit data 9-5
Of descriptors 9-5
Record length 8-1
Vectorizer 11-4, B-31

P scale factors 9-6
Parameter, see Argument
PARAMETER statement 6-6
Parentheses, nesting 9-2
PAUSE statement 5-5
Precedence of operators 3-4
Print

Control characters 9-6
Namelist 8-4
Statement 8-2

I

I

Index-3

Procedure commtmication
Passing values 7-4
Using arguments 7-4
Using common 6-2

Procedure map 15-11
Program

Assembly language main 12-2
Data for 1-3
IMPL main 12-2
Maps 15-3
Sample 16-1
Statement 7-1
Units 1-1

Punch
File 7-1, 8-2
Namelist 8-4
Statement 8-2

Q7BUFIN 13-12
Q7BUFOUT 13-13
Q7DFCL1 13-9
Q7DFLAGS 13-8
Q7DFOFF 13-8
Q7DFSET 13-8
Q7SEEK 13-13
Q7WAIT 13-13
Q8WIDTH 13-14
Q8m 13-1

R conversion, input and output 9-5
Range of DO loop 5-4
READ statements

And PROGRAM statement 7-1
Formatted 8-1
Namelist 8-4
Unformatted 8-2
With implied device 8-2

Real
Constant 2-5
Conversion · 9-4
Type statement 6-1
Variable 2-5

Reassignment of file name at execution time 15-12
Record

Length 8-1
Types 8-1

Reference
Function reference 7-5
Reference maps 15-3

Register file
Conventions, FORTRAN 12-1
Map 15-12

Relational
Expressions (scalar) 3-3
Expressions (vector) 11-7
Operators 3-3

Return
Codes B-1, B-21
Statement 5-6

REWIND statement 8-5
Rowwise

Arrays 2-2
Statement 6-2

Sample
Coding form 1-2
Programs 16-1

lndex-4

Scalar
Assignment statements 4-1
Declarations 6-1
Expressions 3-1
Functions 7-5, 14-1

Scale factors 9-6
Semicolon notation 11-5
SEP 13-10
Separator

Colon 10-1
Semicolon 11-5
Slash 6-2, 6-4, 9-2

Slash in FORMAT statement 9-2
Source listing 15-1
Special calls 13-1, D-1
Specification statements 6-1
STACKLIB 13-14
Standard, FORTRAN ANSI 1-1
Statement

Continuation 1-3
Format 1-1
FORTRAN (see individual statement names)
Functions 7-2
Label map 15-3
Labels 1-2
Order in program unit 1-3
Summary F-1

STOP statement 5-5
Structure

IF 5-3
Program 1-1
Program unit 7-1
WHERE 11-11

Subarrays 10-1
Subprograms 7-3

Block data 7-6
Function 7-5
Linkage 12-1
Miscellaneous utility 13-1
Multiple entry 7-6
Subprogram communication 7-4
Subroutine 7-5

Subroutine
Making call to 5-6
Statement 7-6
Supplied 13-14

Subscripts
Conventional succession of 2-2
Rowwise succession of 2-2
Subscript expressions 2-2

Symbolic
Constant 2-1, 6-6
Constant map 15-10
Name 2-1
Or cross-reference map 15-3

Syntax F-1
Check 15-2

System error processor 13-10

T specification 9-6
Tape files 7-2
TAPEn=f parameter 7-1
.TRUE. 2-6
Type dominance 3-1
Type of

Arithmetic expression 3-3
Function 7-5
Variable 2-2

60457040 D

I

Type statement
Dimension and length information in 6-1
Explicit 6-1
Implicit 6-1

Unary operators and evaluation 3-1
Unconditional GO TO 5-1
Unformatted

READ 8-2
WRITE 8-3

UNIT G-2
Unit numbers 7-1
Unit positioning

BACKSPACE 8-5
ENDFILE 8-5
REWIND 8-5

UNITn=f parameter 7-1
Utility subprograms 13-1

Variable
Array dimensions in a subprogram 2-2
FORMAT statements 9-7
Map 15-9
Names and types 2-2

Variables
Bit 2-7
Character 2-6
Complex 2-5
Double-precision 2-5
Integer 2-4
Logical 2-6
Real 2-5

Vector
I Declarations 11-13

Expressions 11-6
Semicolon notation 11-5
Statements 11-8

60457040 D

Vectorization 11-1
Vectorizer messages 11-4, B-31

WHERE statement 11-10
WRITE statement

Formatted 8-2
Namelist 8-4
Unformatted 8-3

X hexadecimal constant 2-6
X specification 9-6
.XOR. 3-3

Z conversion, input and output 9-5

.AND. 3-3

.EQ. 3-3

.FALSE. 2-6

.GE. 3-3

.GT. 3-3

.LE. 3-3

.LT. 3-3

.NE. 3-3

.NOT. 3-3

.OR. 3-3

.TRUE. 2-6

.XOR. 3-3
* 7-4, 11-13, G-2
I 6-2, 6-4, 9-2
&. 5-6, 8-4
' specification 9-6

I

I

Index-5

UJ
z
::::i

()
z
0
~
I­
::>
u

<i
~
::::>

~
0
UJ
1-z
02
a.

>
UJ
0:::

COMMENT SHEET

MANUAL TITLE: CYBER 200 FORTRAN Version 3 Reference Manual

PUBLICATION NO.: 60457040 REVISION: D

STREET ADDRESS=--------------------------------

CITY: ______________ STATE: _______ ZIP CODE:--------

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

0 Please reply 0 No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AND TAPE

APE TAPE

)LO FOLD
--~

I II II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POST AGE Will BE PAID BY

CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, California 94086

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED ST A TES

--~)LO FOLD

w

~
~ z
0
.,.,j

<
.....
::i
u

