CDC® CYBER 200 |
FORTRAN VERSION 3

FOR USE WITH
CDC® CYBER 200
OPERATING SYSTEM

VERSION 1

REFERENCE MANUAL 5

CONTROL
DATA

60457040

REVISION RECORD

REVISION DESCRIPTION

A Original release.

(7-2-79)

B This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.

(8-22-80)

C This revision documents the CDC CYBER 200 FORTRAN language at release 1.5.1.

(11-15-80)

D This revision documents the CDC CYBER 200 FORTRAN Ilanguage at release 1.5.2.

(2-16-81)

Publication No.
60457040

Address comments concerning
REVISION LETTERS I, O, Q AND X ARE NOT USED this manual to:

CONTROL DATA CORPORATION
Publications and Graphics Division
215 MOFFETT PARK DRIVE
SUNNYVALE, CALIFORNIA 94086

© COPYRIGHT CONTROL DATA CORPORATION 1979, 1980, 1981
All Rights Reserved or use Comment Sheet in the

Printed in the United States of America back of this manual

ii

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual are indicated by bars

in the margins or by a dot near the page number if the entire page is affected.
indicates pagination rather than content has changed.

Page

Revision

Page

Revision

Front Cover
Title Page
ii

iii/iv

v/vi

vii thru x
xi/xii

xiii

1-1 thru 1-3
2-1 thru 2-7
3-1 thru 3-4

thru 10-3

»—n—n—u—n—uoool\laxmmmmh-b

sy g oy

-1
-1
-2
-3
-4
11-5 thru 11-7

11-8 thru 11-14
12-1

12-2
13-1 thruy 13-17
14-1 thru 14-4
14-5
14-6

WOTOWIOROXOOTRIOIIEIOIRIEOERIIPOODOONODD 1 1

nnnwmw?wwo:wmw

14-7 thru 14-25
15-1

15-2 thru 15-12
16-1 thru 16-7
A-1

A-2
B-1
B-2
B-3
B-4

thru B-20

1
W WNEFEWNINDNNN NN,

or N

.

hru B-28

QW WMNIN N =

thru D-16

rnrnrlnc

F-1 thru F-4
G-1 thru G-3.
Index-1 thru -5
Comment Sheet
Mailer

Back Cover

1 1 O0WODUOOUOEPEITOIOTOODODOIOTPIOWODOOIOO

60457040 D

A bar by the page number

iii/iv @

CONTENTS

i rorarzons

1. INTRODUCTION

Program Form
END. Lines
- Comnments
Statements
Statement Labels
Continuation of Statements
Ordering of Statements
Columns 73 through End of Source Line
Program Data

2. STATEMENT ELEMENTS

Character Set
Data Elements
Constants
Symbolic Constants
Variables
Arrays
Subscripts and Array Declarators
Subscript Interpretation
Data Element Forms
Integer Elements
Real Elements
Double-Precision Elements
Complex Elements
Logical Elements
Hollerith Elements
Character Elements
Hexadecimal Elements
Bit Elements

3. SCALAR EXPRESSIONS

Arithmetic Expressions
Exponentiation
Evaluation of Arithmetic Expressions
Type of an Arithmetic Expression
Character Expressions
Relational Expressions
Logical Expressions

4. SCALAR ASSIGNMENT STATEMENTS

Arithmetic Assignment Statement
Character Assignment Statement
Logical Assignment Statement

5. FLOW CONTROL STATEMENTS

GO TO Statement
Unconditional GO TO
Assigned GO TO
ASSIGN Statement
Assigned GO TO Statement
Computed GO TO
IF Statement
Arithmetic IF

60457040 D

n-r—r-—r-d»-l-t-r-n-n—
WWLWWNN -

N
1
p—

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-5
2-6

2-6

2-6
2-7

4-2

w
1
—

Yo m GG @
NN N b

Logical IF
Block IF
ELSE
ELSE IF
END IF
Block IF Structures
Nesting Block IF Structures
DO Statement
Defining a DO Loop
Nesting DO Loops
CONTINUE Statement
PAUSE Statement
STOP Statement
RETURN Statement
CALL Statement

6. SPECIFICATION AND DATA INITIALIZATION
STATEMENTS

Type Statements
IMPLICIT Statement
Explicit Typing
DIMENSION Statement
ROWWISE Statement
COMMON Statement
EQUIVALENCE Statement
EXTERNAL Statement
DATA Statement
Implied DO in DATA Statement
Rules for Initializing Values
PARAMETER Statement

7. DEFINING PROGRAM UNITS AND STATEMENT
FUNCTIONS

The Main Program
PROGRAM Statement
File Information Parameters
Declaration of Files for Input/Output
Statement Functions
Defining Statement Functions
Referencing Statement Functions
Subprograms
Passing Arguments Between Subprograms
Function Subprograms
Subroutine Subprograms
Block Data Subprograms
Multiple Entry Subprograms
Function Subprogram Entry Point Names
Secondary Entry Point Argument Lists
Referencing Secondary Entry Points

8. 1INPUT, OUTPUT, AND MEMORY TRANSFER
STATEMENTS

Sequential Input Statements
Formatted READ Statement
Transfer on End-of-File
Data Transfer Errors
READ with Implied Device
Unformatted READ Statement
Sequential Output Statements

TITEYYLY
WweNeN

ocoouvuvubuunPeesesWw

o
[}
[

AUV WWNNNF ==

-~
1
-

U L)

\J\l\l\l\l\[\l\ll\l\l\l\l\l\l\l\l
NNNOOUVMUVMEWWRNDN - -

©
[}
—

oooaooolooooooo
NN NN ==

vii

Formatted WRITE

PRINT

PUNCH

Unformatted WRITE
Memory-to-Memory Transfer

ENCODE Statement

DECODE Statement
Namelist Input and Output

Namelist Input Data

Namelist Output Data
Unit Positioning

REWIND

BACKSPACE

ENDFILE

9. INPUT/OUTPUT LISTS AND DATA FORMATTING

Input/Output Lists
List Items
Implied DO in Input/Output List
FORMAT Statement
Format Control
Data Conversion
Conversion Specification
Conversion
and F Conversions
Conversion
Conversion
Conversion
and R Conversions
Conversion
Conversion
Editing Codes
X Specification
H and ' Specifications
T Specification
Scale Factors
Printer Carriage Control
Execution-Time Format Specification

HNPHOTOM A

10. ARRAY ASSIGNMENT

Subarray References
Conformable Subarrays
Array Expressions

Array Assignment Statement

11. VECTOR PROGRAMMING

Automatic Vectorization
General Characteristics of Vectorizable
DO Loops
Assignment Statements in Vectorizable
DO Loops '
Loop-Dependent Array References in
Vectorizable Loops
. Automatic Recognition of
STACKLIBABLE Loops
Automatic Vectorization Messages
Explicit Vectorization
Vectors
Descriptors
Expressions
Vector Arithmetic Expressions
Vector Relational Expressions
Bit Expressions
Executable Statements
Descriptor ASSIGN Statement
FREE Statement
Vector Arithmetic Assignment Statement
Bit Assignment Statement

viii

8-2
8-2
8-2
8-3
8-3
8-3
8-3
8-4
8-4
8-5
8-5
8-5
8-5
8-5

-]
1
—

U Vol
W W WN = s

]
~Nooooc oLV BE B

\oxoxo\c\csosp\o\o\c\?so\om\asoso\a\oo\o\o

10-1
10-1
10-2
10-2
10-2

11-1

11-2

11-3

11-4
11-4
11-4
11-5
11-6
11-6
11-6
11-7
11-8
11-8
11-8
11-9
11-9
11-10

WHERE statement

Block WHERE statement

OTHERWISE statement

END WHERE statement

Block WHERE Structures

Nesting Block WHERE Structures
Declarations

DESCRIPTOR Statement
Initializing Descriptors and Vectors
Vector Function Subprograms

Referencing Vector Functions

Secondary Entry Points

12. SUBPROGRAM LINKAGE

Prologue and Epilogue
Standard Calling Sequence

Fast Calls
File Initialization

13. CYBER 200 FORTRAN-SUPPLIED SUBROUTINES

CYBER 200 FORTRAN Special Calls
Arguments
Label References
Symbolic References
Literals
Examples of Special Call Usage
Data Flag Branch Manager
Data Flag Branch Hardware
Default Conditions
Branches
Data Flag Branch Software
Interrupt Classes
Multiple Interrupts
Default Interrupt Processing
Class III Interrupts
Interrupt-Handling Routines
Q7DFSET
Q7DFLAGS
Q7DFOFF
Class I Interrupts
Interrupt-Handling Routines
Q7DFCL1
MDUMP
System Error Processor (SEP)
Concurrent Input/Output Subroutines
Array Alignment Considerations
Subroutine Calls
Q7BUFIN
Q7BUFOUT
Q7WAIT
Q7SEEK
Q8WIDTH Subroutine
Q8 NORED Subroutine
Supplied Subroutines
DATE
RANGET
RANSET
SECOND
TIME
VRANF
STACKLIB Routines

14. CYBER 200 FORTRAN-SUPPLIED FUNCTIONS

In-Line and External
Scalar and Vector
Function Descriptions
ABS(a)
AcoS(a)

11-10
11-11
11-11
11-11
11-11
11-13
11-13
11-13
11-13
11-13
11-14
11-14

12-1

12-1
12-1
12-2
12-2

13-1

13-1
13-1
13-1
13-2
13-2
13-2
13-3
13-3
13-4
13-5
13-5
13-5
13-5
13-6
13-6
"13-7
13-8
13-8
13-8
13-9
13-9
13-9
13-10
13-10
13-11
13-12
13-12
13-12
13-13
13-13
13-13
13-14
13-14
13-14
13-14
13-14
13-14
13-14
13-14
13-14
13-14

14-1

14-1
14-1
14-5
14-5
14-6

60457040 D

AIMAG(a)

AINT(a)

ALOG(a)

ALOG10(a)
AMAX0(aj,ag,...)
AMAX1(ay,ag,...)
AMINO(ay,a89,...)
AMIN1(aj,ag,...)
AMOD(a},a,...)
ASIN(ag and ACOS(a)
ATAN(a)

ATAN2(a,b)

CABS(a)

ccos(a)

CEXP(a)

CLOG(a)

CMPLX(al,az)

CONJG(a)

cos(a)
 COSH(a)

COTAN(a)

CSIN(a)

CSQRT(a)

DABS(a)

DACOS(a)

DASIN(a) and DACOS(a)
DATAN(a) and DATAN2(a,b)
DATAN2(a,b)

DATE(d)

DBLE(a)

DpCOS(a)

DCOSH(a)

DDIM(aj,as)

nExp(as

DFLOAT(a)

DIM(aj,as)

DINT(a)

DLOG(a)

DLOG10(a)
DMAX1(aj,az,...)
DMINl(al 239,00 J)
DMOD(a} ,a3)

DPROD(al ,82)
DSIGN(a;,aq)

DSIN(a) and DCOS(a)
DSINH(a)
DSQRT(a)
DTAN(a)
DTANH(a)
EXP(a)
FLOAT(a)
IABS(a)
IDIM(aj,as)
IDINT(a)
IF1X(a)
INT(a)
ISIGN(aj,ag)
MAXO0(aj} ,az,...
MAX].(&]_ 989300
MINO(aj,ag,...
MIN1(aj,as,...
MOD(a1,32%
Q8SCNT (v)
Q8SDFB(a,b)
Q8SDOT(vy,v))
Q8SEQ(vy,v))
Q8SEXTB(a,m,n)
Q8SGE(vy,vy)
QSSINSB}a,m,n,b)
Q8SLEN(v)

Q8SLT(vy,vy)

Q8SMAX(v) or Q8SMAX(v,c)
Q8SMAXI(v) or Q8SMAXI(v,c)

Nt N N N

60457040 D

14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-6
14-7
14-7
14-7
14-7
14-8
14-8
14-8
14-8
14-8
14-8
14-9
14-9
14-9
14-9
14-10
14-10
14-10
14-10
14-10
14-10
14-11
14-11
14-11
14-11
14-11
14-11
14-11
14-11
14-11
14-12
14-12
14-12
14-12
14-12
14-12
14-12
14-12
14-13
14-13
14-13
14-13
14-13
14-13
14-13
14-13
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-14
14-15
14-15
14-15
14-15
14-15
14-15
14-15

Q8SMIN(v) or Q8SMIN(v,c)
Q8SMINI(v) or Q8SMINI(v,c)
Q8SNE(v),v7)
Q8SPROD(v) or Q8SPROD(v,c)
Q8SSUM(v) or Q8SSUM(v,c)
Q8VADJIM(v;u)
Q8VAVG(v),vq;u)
Q8VAVGD(v) ,vp;u)
Q8VCMPRS(v,c;u)
Q8VCTRL(v,c;u)
Q8VDELT(v;u)
Q8VEQI(vy,va;u)
Q8VGATHP(v,i,n;r)
Q8VGATHR(v,i;u)
Q8VGEIL(v).,vy;u)
Q8VINTL(aj,az;u)
Q8VLTI(vy,vy;u)
Q8VMASK(v] ,vg,c;3u)
Q8VMERG(vj ,vg,c3u)
Q8VMKO(aj,as;u)
Q8VMKZ(aj] ,az;u)
Q8VNEIL(vjy,vp;u)
Q8VPOLY(v] ,vg;u)
Q8VREV(v;u)
Q8VSCATP(v,i,n;r)
Q8VSCATR(v,i;u)
Q8VXPND(v,c;u)
RANF(d)

REAL(a)

SECOND(d)
SIGN(a),as)

SIN(a) and cOS(a)
SINH(a)

SNGL(a)

SQRT(a)

TAN(a)

TANH(a)

TIME(d)

VABS(v;u)
VACOS(v;u)
VAIMAG(v;u)
VAINT(v;u)
VALOG(vju)
VALOG10(v;u)
VAMOD (v ,vp3u)
VASIN(v;u)
VATAN(v;u)
VATAN2(vy,vg;u)
VCABS(v;u)
veccos(v;u)
VCEXP(v;u)
VCLOG(v;u)
VCMPLX(v],vo;u)
VCONJG(v;u)
vcos(v;u)
VCSIN(v;u) and VCCOS(v;u)
VCSQRT(v;u)

VDBLE (v;u)
VDIM(v),vg;u)
VEXP(v;u)

VFLOAT (v;u)
VIABS(v;u)
VIDIM(vy,vp;u)
VIFIX(v;u)
VINT(v;u)
VISIGN(v),vp;u)
VMOD(v1 ,vp;u)
VREAL(v;u
VSIGN(vy,vg3u)
VSIN(v;u) and VCOS(v;u)
VSNGL(v;u)
VSQRT(v;u)
VIAN(v;u)

14-15
14-15
14-16
14-16
14-16
14-16
14-16
14-17
14-17
14-17
14-17
14-17
14-17
14-18
14-18
14-18
14-18
14-18
14-18
14-19
14-19
14-19
14-19
14-19
14-20
14-20
14-20
14-20
14-20
14-20
14-20
14-21
14-21
14-21
14-21
14-21
14-22
14-22
14-22
14-22
14-22
14-22
14-23
14-23
14-23
14-23
14-23
14-23
14-23
14-23
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-24
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25
14-25

15. PROGRAM COMPILATION

FORTRAN Statement

RERHEHOW >

YO

oow>

TR
W

[V RV X
[
W N =

7y
wv &

Ty
~ O

~ Mﬁ?&ﬂ
N =~

m-Tvq
- W

10-1
11-1
11-2
11-3
11-4

<ca

- Assembly Listing

- Build Object File

~ Cross-Reference Listing

- Extended Basic Block Optimization

- Instruction Scheduling

- 64-Bit Compare

- Source Listing Suppression

- Map of Register File and Storage
Assignments :

- Optimization

- Propagation

- Redundant Code Elimination

- Suppress Debug Symbol Table
Creation

~ Unsafe Vectorization

Vectorization and Automatic

Recognition of STACKLIB Loops

Character Sets
Diagnostics

Glossary

Special Call Statements

Sample Coded FORTRAN Program

Ordering of Statements

Conventional Ordering of Elements in
a 3-Dimensional Array, A(2,3,4)

ROWWISE-Declared Array, A(2,3,4)

Integer Data Representation

Real Data Representation

Logical Data Representation

Simple Block IF Structure

Block IF Structure with ELSE Statement

Block IF Structure with ELSE IF
Statements

Nested Block IF Structure

Incorrect: Entering Range of DO
Before DO Execution

DO Control Variable Reinitialization

Example of Incorrect Sharing of
Terminal Statement

Example of RETURN Statement

COMMON and EQUIVALENCE Statements

Subprogram Name as Actual Argument

Subprogram Reference as Actual
Argument

Multiple Entry Subroutine

Multiple Entry Function

Example Using ENCODE and DECODE
Statements

Example of Inputting Formatted Data

Meaning of a Subarray

Form of Vectorizable DO Loops

Vectorizable Loop #1

Vectorizable Loop #2 (U Option)

Vectorizable Loop #3

15-1 Y - Syntax Check 15-2
Z - DO Loop Optimization 15-3
15-1 1 - STAR-100 Optimization 15-3
15-1 2 - CYBER 203 Optimization 15-3
15-2 3 - CYBER 205 Optimization 15-3
15-2 Compiler—Generated Listings 15-3
15-2 Cross—-Reference Maps 15-3
15-2 Assembly Listing 15-11
15-2 Register Map and Storage Map 15-12
15-2 Execution-Time File Reassignment 15-12
Control of Drop File Size 15-12
15-2
15-2
15-2
15-2 16. EXAMPLES 16-1
15-2 Program PASCAL 16-1
15-2 Data Initialization 16-2
Program ADD '16-2
15-2 Program CPVECT 16-6
APPENDIXES
A-1 E CYBER 200 FORTRAN-Supplied Functions
B-1 List E-1
c-1 F - CYBER 200 FORTRAN Statement Summary F-1
D-1 G Compatibility Features : G-1
INDEX
FIGURES
1-3 11-5 Vectorizable Loop #4 11-3
1-3 11-6 Vectorizer Output 11-5
11-7 Descriptor Representation 11-6
2-4 11-8 Example of Descriptor ASSIGN 11-9
2~4 11-9 Simple Block WHERE Structure 11-12
2-4 11-10 Block WHERE Structure With
2-5 OTHERWISE Statement 11-12
2-6 13-1 Special CALL Statement 13-2
5-3 13-2 Q8ES Usage 13-2
5-3 13-3 Additional Q8 Usage 13-2
13-4 Generated Machine Code 13-2
5-3 13-5 Additional Generated Code 13-2
5-4 13-6 Data Flag Branch Register Format 13-3
13-7 DFB Register Dump Example 13-7
5-4 13-8 Scope of Selected Conditions 13-7
5-5 13-9 MDUMP Output 13-10
15-1 Statement Label Map Format 15-3
5-5 15-2 Compiler Output Example 15-4
5-6 15-3 Variable Map Format 15-9
6~4 15-4 Symbolic Constant Map Format 15-10
7-4 15-5 Procedure Map Format 15-11
16-1 Program PASCAL 16-1
7-4 16-2 Examples of Initializing Simple
7-7 Variables and Array Elements . 16-2
7-8 16~3 Examples of Initializing Simple Arrays 16-3
16-4 Examples of Vector Initialization 16-3
8-3 16-5 Example of Descriptor Initialization 16-3
9-1 16-6 Example of Descriptor Array Element
10-2 Initialization 16-3
11-1 16-7 Example of Descriptor Array
11-2 Initialization 16-4
11-3 16-8 Program ADD 16-4
11-3 16-9 Program CPVECT 16-7
60457040 D

1-1 Column Conventions

1-2 Types of Statements

2-1 FORTRAN Character Set

2-2 Array Element Succession Formulas

2-3 Subscripting Order for a Three-
Dimensional Array A(2,3,4)

3-1 Logical Operator Truth Tables

3-2 Operator Precedences

4-1 Conversion for Arithmetic Assignment

6-1 External Declaration of a Supplied
Function

6-2 Data Initialization Conversions

7-1 Digtinguishing Functions and
Subroutines

60457040 D

TABLES
7-2

8-1
9-1
11-1
11-2

11-3
13-1
13-2
13-3
13-4
14-1

Correspondence of Actual to Dummy
Arguments

Legal Record Types

Input/Output Conversions

Criteria for Vectorizable Loops

Expression Types That Can Appear in
an Assignment Statement

Conversion Rules for Vector Assignment

Data Flag Branch Conditions

Multiple Interrupt Processing

STACKLIB Calls with Forward Count

STACKLIB Calls with Backward Count

FORTRAN-Supplied Functions

13-4
13-6
13-15
13-16
14-1

xi/xii |

NOTATIONS

Certain notations are used throughout this manual that
have consistent meanings. The notations are:

UPPERCASE

lowercase

60457040 D

Uppercase letters in language forms
indicate actual keywords.

Lowercase letters in language forms
indicate user-supplied character
strings.

Numbers preceded by the pound sign
are hexadecimal numbers.

numbers

1A

Shading

All numbers in this manual are
decimal unless preceded by a pound

sign or otherwise denoted as
hexadecimal numbers.

Delta represents a blank.

Control - Data extensions . to “the
standard FORTRAN language. The"
parts’of example programs that use

_ language extensions are also shaded.

xiii]

The ELSE statement can be used with a bloek IF statement
to provide an alternate path of execution for a block IF
statement. An ELSE statement can. have a statement
label, but the label cannot be referenced in any other
statement.

ELSE IF ’
The ELSE IF statement has the following form:
. ELSETF (expr) THEN

: e_Xpr
The ELSE IF statement cen be used w1th a block IF
statement to provide an alternate path of execution for a
block IF statement or another ELSE IF statement, and to:
perform a conditional test. An ELSE IF statement can
_have a statement label, but the label cannot be referenced.
‘in any other statement. The effect of execution of an.

ELSE IF statement is: the same -as. for ‘the block IF
jstatement. ;

Any logical expressxon. ’

;END IF : o e
!The END IF statement has the fo].lowmg form' -
. ‘ENDIF = el

vThe END [F statement term1 ates a block F structuref
_Each bloek TF statement must have a correspondmg END F
1statement. -

:BI.OCK IF STRUCTURE)

;‘Block TF structures provxde for alternate ~executxon of
blocks of statements. A block IE. structure; begms w1th a

can contam an 'ELSE statement or. one
‘statements. Each IF, ELSE, or ‘ELSE IF. state
followed by & block of ,executa

60457040 D

A block IF structure that contains an ELSE statement is
If the expression in the block IF

shown in figure 5-2.

statement is true, execution continues with the first

executable statement in the if-block. If a statement in the

if-block does not transfer control elsewhere, control
transfers to the statement following the END IF statement
after execution of the if-block.

IF (expr) THEN
if-block
ELSE
else-block

END IF:

Figure 5-2. Block |F Structure With ELSE Statement

‘If the expressnon in the block IF statement is false, controliﬁ
If a
statement in the. else-block does not transfer :control:
elsewhere, control transfers to the statement following the

transfers. to the first statement in the else-block.

END IF statement after executlon of: the else—block.

A block IF statementcan have no more than one assocxatedyf

ELSE statement. :

.A block IF structure tha contams ELSE IF statements is
If the “expression in the block IF
executlon continues with the first
‘executable statement in the’ 1f— ock.: If a statement in the:
“control

shown in flg'ure 5-3.
statement is “true,

if-block . does -not. transfer “control elsewhere,

transfers to the statement followmg the END IF statement'[
gafter exeeutxon of the 1t‘-block., o

- ||:‘t(éx"‘pr)f THEN B

5-3

DO STATEMENT

Execution of a group of statements can be repeated a
specified number of times through use of the DO
statement.. The range of a DO statement is the set of
executable statements beginning with the first executable
statement following the DO and ending with the terminal
statement associated with the DO. A DO statement along
with its range is referred to as a DO loop.

DEFINING A DO LOOP
The DO statement has the following form:

DOni=my,mg,m3

n The label of the terminal statement.

i The control variable, a simple integer
variable.

mq The initial value parameter of i, an integer

constant or a simple integer variable with a
value greater than zero.

my The terminal value parameter of i, an integer
constant or a simple integer variable with a
value greater than zero.

mg3 Optional. The inecrementation value
parameter for i, an integer constant or a
simple integer variable with a value greater
than zero. Default value is 1.

The terminal statement of a DO loop can be any
assignment statement and almost any input or output
statement. However, any flow control statement other
than a CONTINUE is either highly restricted or must not
appear as the terminal statement of a DO. The terminal
statement must not be any of the following:

e A RETURN, STOP, or PAUSE statement

e A GO TO statement of any form

e An arithmetic IF statement

e A logical IF statement containing any of these
restricted forms

The terminal statement must physically follow and be in
the same program unit as the DO statement that refers
to it.

Example:

DO 10 I=1,11,3
IF(ALIST(I)-ALIST(1+1))15,10,10
15 ITEMP=ALIST(1)
10 ALIST()=ALIST(1+1)
300 WRITE(6,200)ALIST

The statements following DO up to and including
statement 10 are executed four times. The DO loop is
executed with I equal to 1, 4, 7, 10. Statement 300 is
then executed.

A DO loop can be initially entered only through the DO
statement. That is, the group of statements in figure 5-5
are incorrect. The GO TO statement in figure 5-5
transfers control into the range of the DO before the DO
statement has been executed.

GO TO 100
DO 100 I1=1,50
100 A(l)=I

Figure 5-5. Incorrect: Entering Range of
DO Before DO Execution

Execution of a DO statement causes the following
sequence of operations:

1. iis assigned the value of mq,

2. The range of the DO statement is executed.

60457040 D

3. iis incremented by the value of mg,

4. 1is compared with mg, If the value of i is less than
or equal to the value of mg, the sequence of
operations starting at step 2 is repeated. If the value
of i is greater than the value of my the DO is said
to have been satisfied, the control variable becomes
undefined (has an unpredictable value), and control
passes to the statement following the statement

labeled n. If mj is greater than mz,xthe range of
_the DO is still executedonce. .~ .. o

A transfer out of the range of a DO loop is allowed at any
time. When such a transfer occurs, the control variable
remains defined at its most recent value in the loop. If
control eventually is returned to the same range without
entering at the DO statement, the statements executed
while control is out of the range are said to define the
extended range of the DO. The extended range of a DO
must not contain a DO that has its own extended range.

The control variable, initial parameter, terminal
parameter, and inerementation parameter of a DO must
not be redefined during the execution of the range of that
DO. However, the group of statements in figure 5-6 are
correct. If ever an element of the array RA is zero or
negative, it is set to 1 and the DO statement is reentered,
which reinitializes the control variable 1.

K=0

GO TO 300
200 RA(I)=1.
300 DO 100 1=1,50

K=K+1

IF (RA(I).LE.O.) GO TO 200
100 RA(l)=K

Figure 5-6. DO Control Variable Reinitialization

NESTING DO LOOPS

When a DO loop contains another DO statement, the
grouping is called a DO nest. DO loops can be nested to
any number of levels. The range of a DO statement can
include other DO statements only if the range of each
inner DO is entirely within the range of the containing DO
statement. When DO loops are nested, each must have a
different control variable.

The terminal statement of an inner DO loop must be either
the same statement as the terminal statement of the
containing DO loop or must occur before it. If more than

one DO loop has the same terminal statement, a branch to .

that statement can be made only from within the range or
extended range of the innermost DO. Figure 5-7 gives an
example of an incorrect transfer into the range of an inner
DO. Since statement 500 in figure 5-7 is the terminal
statement for more than one DO loop, if the first element
of any row in array A is less than or equal to zero, the
consequent branch to the CONTINUE statement will be an
entrance into the range of the inner DO.

If the nested loops in figure 5-7 did not share a terminal
statement or if the outer loop did not reference the
terminal statement, the loops would be correctly nested.

60457040 D

DO 500 1=1,5
IF (A(l1,1).LE.0.) GO TO 500
DO 500 K=1,10
A{1,K)=SQRT(A(l,K))

500 CONTINUE

Figure 5-7. Example of Incorrect Sharing
of Terminal Statement

The - range of a DO 1oop can contain a block IF strueture.f

but the entire block IF structure must appear in the DO

‘1loop range. ‘An END IF statement cannot be the termmal‘;

statement. of ‘a DO loop. A DO loop can appear in an:

‘if-block, else-block, or elseif-bloek, but the entire range of

.the DO loop. must appear in the lf-block else-block, or

f’elself—block. ‘

’,The range of a DO loop can contam a block WHERE :
5’structure, but the entire block WHERE structure must
.appear in. the DO loop range. An END WHERE statement]
_ean be the terminal statement of a DO loop. = :

CONTINUE STATEMENT
The CONTINUE statement has the following form:
CONTINUE

The CONTINUE statement performs no operation. It is an
executable statement that can be placed anywhere in a
program without interrupting the flow of control. The
CONTINUE statement is generally used to carry a
statement label. For example, it can provide DO loop
termination when a GO TO or IF would otherwise be the
last statement of the range of the DO.

PAUSE STATEMENT

The PAUSE statement has the following form:

PAUSE n

STOP STATEMENT
The STOP statement has the following form:
STOP n

n

Upon execution of the STOP stateinent, program execution
unconditionally termmatesk and control is returned to the
operating [.
. Jdayf ;

5-5

RETURN STATEMENT

Subroutine and funetion subprograms contain one or more
RETURN statements that when executed cause immediate
return of control to the referencing program unit. The
RETURN statement must not appear in 2 main program.

In a function subprogram, execution of a RETURN causes
the function value to be returned to the referencing
program unit and to be substituted for the most recently
executed function reference in that program unit.
Evaluation of the expression that contained the function
reference continues. The integer n must not appear after a
RETURN statement in a function subprogram.

In a subroutine subprogram, when n is not given, execution
of a RETURN returns control to the first executable
statement following the CAL

CALL STATEMENT

The CALL statement is used to transfer control to a
subroutine subprogram, System Input/Output (SIO) module,
System Request Language (SRL) module, assembly
language subroutine, or any other external subroutine. The
execution of a CALL statement is not complete until the
subroutine designated in the statement completes
execution and returns control to the calling program unit.

Form:

CALL s (a3,a9, .« . « ,a)

s The symbolic name of a subroutine, or an
entry point name in a subroutine.

aj Optional. An act
an expression, I3
external procedur

When the argument list 'is omitted,” the
parentheses and commas must also be
omitted. n must equal the number of dummy
arguments in the SUBROUTINE or ENTRY
statement for s.

Execution of the CALL statement transfers control to
entry point name s. See the heading Passing Arguments
Between Subprograms in section 7 for a further description
of actual arguments in CALL statements.

" the appropriate range, the
subroutine continues executing until the RETURN
statement is reached, at which time control transfers back
to the main program statement that immediately follows
the call to the subprogram.

60457040 B

~——

VECTOR PROGRAMMING 11

R

Detailed in this sectlon are the ways ‘that a user can
-introduce ‘machine veetor instructions into the object code"
“for a FORTRAN program. Any of the forms described here |

. deseribed FORTRAN features.. .

.can be used. in the same program w1th the prevxously;

AUTOMATIC VECTORIZATION

Automatic vectorization is a process by which the
FORTRAN compiler translates an iterative, sequential
procedure into parallel procedures. The aim of the process
is to utilize the capabilities of the CYBER 200 hardware to
produce optimal object code, without requiring alteration
of FORTRAN programs that do not use the extensions of
CYBER 200 FORTRAN, and without necessitating that a
problem be reconceptualized in terms of parallel
processes. Automatic vectorization of a FORTRAN
program is selected by including the V compile option in
the FORTRAN system control statement that requests
compilation of the program.

Under the V option, CYBER 200 vector instructions are
generated for DO loops that have certain characteristics.
The object code generated for a loop that is accepted by
the vectorizer consists of vector instructions rather than
scalar instructions. If a loop is rejected by the vectorizer,
the compiler attempts to transform the loop into a call to
one of the supplied STACKLIB routines.

Automatice veectorization can be used with any FORTRAN
program, including FORTRAN programs that do not use
any of the extensions of CYBER 200 FORTRAN. However,
because of the restrictiveness of the conditions for
vectorization, summarized in table 11-1, it might not be
possible for the vectorizer alone to achieve the degree of
vectorization desired. As an alternative, the programmer
can elect to use other methods, in conjunction with the V
compile option or not, to specify vector operations
explicitly.

GENERAL CHARACTERISTICS OF
VECTORIZABLE DO LOOPS

A simple vectorizable DO loop is shown at@ in
figure 11-1. The range of a vectorizable loop can contain
assignment statements, CONTINUE statements, and DO
statements. An input/output statement or IF statement,
for example, is not acceptable in a loop that is to be
vectorized.

The initial, terminal, and incrementation parameters of the
DO statement of a vectorizable loop must have certain
characteristies. The incrementation parameter, if present,
must be 1; an incrementation value of 2, for example,
causes the loop not to be vectorized. Secondly, FORTRAN
allows the parameters to be constants or variables;
however, ‘a variable initial, terminal, or incrementation
parameter does prohibit the vectorization of any
containing DO loop. For instance, the vectorizable loop
defined at @ has a variable terminal parameter. Loop

contains loop @ and, consequently, cannot be
vectorized. Thirdly, the iterative count of a loop or entire

60457040 C

A.
DO 222 KEM=1,300 e O)
DO 100 1=1,10)
DO 200 J=1,N e ©)|
200 ALN=XN)
100 CONTINUE
222 CONTINUE
B.

DO 300 MM=1,11
DO 200 JJ=1,30
DO 400 IN=1,200 —=——(7)

400 CONTINUE
200 CONTINUE
300 CONTINUE

Figure 11-1. Form of Vectorizable DO Loops

nest of loops must be less than or_equal to 216-1 (that is,
65535). By this criterion, loops and in part B of
figure 11-1 can be vectorized, depending on the range of
the innermost loop; but loop cannot be vectorized
(because 30 * 200 * 11 =66000).

When the initial or terminal parameter of a loop is a
variable, the dimensions of the loop-dependent array
references within the loop are used to determine the
largest possible iterative count through which the loop can
pass, and this count is used to decide if the loop can be
vectorized.

The U compile option can be selected for unsafe
vectorization.- When U is selected, the compiler vectorizes
loops that contain dummy arrays, even if the terminal
value of the loop is variable. The optimization is
considered unsafe because the presence of a variable
dimension might cause the iterative loop count to exceed
65535.

The U compile option also enables vectorization of loops
that contain an equivalenced data element on the left side
of an assignment statement.

If a loop cannot be vectorized (loop @ in figure 11-1, for
instance), then a loop containing the nonvectorizable loop
cannot be vectorized either. By this criterion, loop @ is
nonvectorizable.

11-1

TABLE 11-1. CRITERIA FOR VECTORIZABLE LOOPS

Can Appear in DO Loop

Must Not Appear in Any Part of DO Loop

Vectorizable loops nested within the loop.

Nonvectorizable loop nested in the loop.

Loop incrementation value of 1.

Loop incrementation value that is not 1 (this does
not apply to the CYBER 200 Model 205).

. . 16
Total iteration count less than 2 for a nest of

loops.

. s . 16
Total iteration count greater than or equal to 2

for a nest of loops.

CONTINUE statement.

Any control statement besides DO and CONTINUE.

Arithmetic operators +, =, *, /, and **, logical
operators.

Relational operators.

Real, integer, and logical data elements.

Any data element that has a type other than real,
integer, or logical.

Any input, output,. or memory transfer statements.

References or calls to the following functions and
subroutines: ABS, ACOS, ALOG, ALOGl10O, ASIN, ATAN,
€OS, EXP, FLOAT, IABS, IFIX, SIN, SQRT, and TAN.

References and calls to functions and subroutines
other than ABS, ACOS, ALOG, ALOG10, ASIN, ATAN, COS,
EXP, FLOAT, IABS, IFIX, SIN, SQRT, and TAN.

Any data elements appearing on the left side of an
assignment statement that appear in an EQUIVALENCE
statement if the U compile option is selected.

Any data elements appearing on the left side of an
assignment statement which have appeared in .
EQUIVALENCE statements if the U compile option is
not selected.

Any scalar assignment statement whose right side
is a real, integer, or logical expression.

Vector assignment statements,

Loop-dependent subscripts having one of the forms c,
c+n, ¢-n, or c*n, where ¢ is a control variable and
n is an integer constant. The c*n form is not valid
on the STAR 100 or the CYBER 200 Model 203.

Loop-dependent subscripts not of one of the forms c,
c+n, c-n, or c*n, where ¢ is a control variable and
n is an integer constant. The c*n form is not valid
on the STAR 100 or the CYBER 200 Model 203.

References to dummy arrays, so long as the terminal
value of the loop is constant.

References to any dummy array when the terminal
value of the loop is variable (can be vectorized if
the U option is selected).

Loop~independent subscripts.

ASSIGNMENT STATEMENTS IN
VECTORIZABLE DO LOOPS

Operators in assignment statements in a vectorizable loop
can be any of the arithmetic or logical operators. The use
of relational operations within a loop causes the loop not to
be vectorized.

The type of an operand occurring in the range of a
vectorizable loop can be integer, real, or logical. A
vectorizable loop containing a logical assignment
statement is shown in figure 11-2.

11-2

LOGICAL A,C,R

DIMENSION A(50000), C(50000), R(49999)

DO 999 X=2,50000

R(X-1) = (A(X-1) .AND. A(X)) .OR. (C(X-1) .AND. C(X))
999 CONTINUE .

Figure 11-2. Vectorizable Loop #1

60457040 D

:For complex vector arithmetic expressions, the. followmg
‘restnctlons apply.

4’.' Operands can be 1nteger, reel or
Double-precxsmn operands: are not allowed. ;

‘e, Exponentiation is not a]lowed- the operators in a
complex vector expression can be only +, -, ¥, and /.

For . double-precision vector arithmetic expressions, the
following restrietions apply:

‘must consist of
vector or a

‘e The expression
double-precision

‘No operators are allowed.

@ The expression can appear only in a vector arxthmetlc

o a551gnment statement of type double-preclslon.
':leen the declaratlons. :

DESCRIPTOR D1, SCRP, RZLT -

' DIMENSION SCRP(3,3), VR(100), R(100)
- DATA D1/VR(1;50)/, SCRP(3,1)/ VR(1; 5100)/
‘the followmg are arlthmetlc

examples, of
iexpressmns. - : 5

vectorf

o VRGO 100)

‘Current values of the 100 consecutxve elements in the
array VR. - :

' : the array,VR. :

60457040 B

complex.

either a
reference to a
FORTRAN-supplied double-preexslon vector function.

f'Current values of the fu'st 50 consecutlve elements m’

The penods are part of the operators and must appear.

]

A vector relational expressmn has one of the followmg
forms:

sae op 'vael
vae; op sae

- 'vaej op vaeg

sae . A scalar arithmetic expression of type real or
integer, . but not of type complex: or:
double-preclsxon. s

op .. One of the relatlonal operatozs.

veei
or -integer, but not of type complex or
o double—preclslon. : :

A vector relatnonal expressxon, whlch always contmns one
‘or more vector data elements, evaluates to a bit vector of
‘truth values represented by bits 0 and'1. (In contrast,
‘evaluation of a scalar relatxonal expressmn results in a.
smgle loglcal value.) S , «

When both operands for a relatlonal operatlon are veetors,
the operation compares successive elements of one vector
‘operand with corresponding ‘elements of the other vector
‘operand. ‘If the speclfxed relation holds between the pair of
elements, " ‘the - operatlon sets . (assxgns 1 to) the
correspondmg bit in the result blt ‘vector. If the relation
‘does not hold, the operation clears (a551gns 0 to) the
correspondmg ‘bit in the 'result bit ‘vector. ' When one.
‘operand is' a vector and the other a sealar, the sealar is

evaluatlon of the expressmn. G

DESCRIPTOR D1

11-7

3

A vector arithmetic’ expression’ of type i-ealv

‘compared with. each element of the veetor durm ;

11-8 60457040 D

10

DIMENSION Y(15),A(64.8)

BIT YA
DESCRIPTOR Y
DATA A/ ...
DO 10 1=1,8
ASSIGN Y(1),A(1,1;64)
ASSIGN Y(16-1), Y(I)
CONTINUE

points 'to A(1,1;64)

“points to A(1,2; 64)

. points to A{1,3;64) -

points to A(1,4;64)

‘points to. A(1,5;64)

' points to A(1,6;64)

~ points to A(1,7;64)

o o N o e s N

" ‘points to _A(1,4;64) |

points toA(1,3;64) |

| points

o A(1,2;64)

- points 1o A(1,1;

o 'v:e‘;;_ :’

_points to A(18;64) |
:“points to A(1,7;64) C R
__points to A(16:64) |
~ points to A(15;64) |

;The value of
g‘double-preclslon,
‘or & reference to a predefined CYBER 200 FOR'I‘RAN;
;double-preclsxon vector functlon (hsted in appendlx E)

?"element of v; but if e evaluates to a vector, the first
element of e is stored into the first element .of v, the
second eleme

60457040 D

FREE STATEMENT

‘Execution of the FREE sthtement (or completion of :

program unit execution) reverses the effect of a descriptor
ASSIGN statement. in" which a reference .DYN. to the
dynamic space pointer ‘appears. The FREE statement

resets the dynamie space pointer to the value it had before :
‘execution of the first desecriptor ASSIGN statement in the

program unit. All space assigned through the use of:
descriptor ASSIGN statements is released; if more than one:
such assignment was made, all are reversed,

Form:

jVECTOR ARITHMETIC el
iASSIGNMENT STATEMENT

A veetor: arithmetic assngnment statement has the
,_followmg form. ' : , o |

AL vector of type mteger, real, complex, or
,double-preclslon- ‘or a descriptor or descrlptor
array element of type mteger, real, or complex. o

arlthmetlc ‘expressxon, or a scalar

_arithmetic expression,

e can only be a dbuble-preclsmn vector

e evaluates to a scalar, that scalax' is stored mto every

of e is stored into the second element of
f the type of v dxffers from that of e,

11-9

11-10 60457040 D

_can contain‘ enly ﬁaddition, ‘sul)tx;aetiyon, multiplieatien, and i
division operations, and references to the vector functions.
VFLOAT, VIFIX, VINT, VAINT VSQRT VABS, and
VIABS. .

When the WHERE statement is executed, the vector bit -
. expression is evaluated. The evaluation produces a control
~vector. A control vector is a bit vector that controls the
~storing of values into a vector. This control vector is used

for the vector assignment statement that appears in the’

WHERE statement. ‘

~The " vector 'expressien that - appears in " the veetor
“assignment statement is evaluated. Each value of the
result vector is assigned to the corrésponding vector
“element on the left side of the vector assignment.
_statement only if the correspondmg element in the control
. vector contalnsaI bxt. o 1

A value is’ not assxgned to the correspondmg vector'
‘element on the left side of the vector assignment
_statement if the correspondmg element. in the control:
~veector contams a 0 bit. If a value is not. assigned to a
~vector element, data flag branches are, dlsabled for.: the .
;operatlons that compute that value. . ‘ ;

;';,Given the declaratlons -

QREAL A(5) B(5) C(5)
BIT CA(5), CB(5)
DATA A/3.0,9.0,12.0, 2.
DATA B/6.0 6.0, 10.0, 5.

'_Causes ‘the value the value 3.0 to be a351gned to the;
first and fourth elements of vector C(l 5) e :
- f :

Cause the values 9.0 and 15.0 to | e assigned to the
vector C)(l 35)

60457040 D

Q END WHERE STATEMENT S il
he‘ END WHERE statement has the followmg form~

structure. .
;correspondmg ND WHERE statement.

acontrol vector. o
: controls the stormg of values mto a veetor

_fA block WHERE structure begms w1th a block WHERE i
;statement and ends with-an END WHERE statement, it can
contain one OTHERWISE statement. The block WHERE
;statement can be followed by a block of Vector assxgnmentgyL
'statements called a where—block. -~ An RWISE
‘statement can be t‘ollo d by a block of ector assignment

fstatementscaned an otherwise-block.

;that appear between the block WHERE statement and the

next END WHERE statement.

OTHERWISE STATEMEN‘[:;
The OTHERWISE statement has the following form:
OTHERWISE ' '

The - OTHERWISE statement can -be used with a block
WHERE statement to reverse the effect of the control

‘vector established in the block- WHERE statement.
‘Reversing the effect of the control. vector causes a value

to be assigned to a vector element only if the
corresponding - element: in the control vector contains a

‘0 bit, rather than a 1 bit. An OTHERWISE statement :
‘affeets all- vector assignment statements' that appear
-between the OTHERWISE: statement and the next END
LWHERE statement. : ;

“Each block WHERE statement must haveone;,

A ‘control vector is

11-11 o

e 11-12 60457040 D

" The statements in the where-block cause the values
25.0, 100.0, and 400.0 to be assigned to the first, third,"

and fifth elements of vector E(1;5) respectively. They
also cause the values 5.0, 10.0, and 20.0 to be assigned
to the first, third, and fifth elements of vector C(1;5)
respectively, and cause the values 6.0, 24.0, and 96.0
to be assigned to the first, third, and flfth elements of
veetor D(1;5) respectively.

The statements in the otherwise-block cause the

value 16.0 to be assigned to the second and fourth

elements of vectors C(1;5) and D(1;5).

NESTING BLOCK WHERE STRUCTURES

A block WHERE structure can appear in an
else-block, or elseif-block of a block IF structure, but the

‘entire block WHERE structure -must appear in- the 1f—block)

else-block or elseif-block.

A block WHERE structure can appear in the range of a DO.:
loop, but the entire block WHERE structure must appear in.
‘the range of the DO loop. An END WHERE statement can‘.

be the termmal statement of a DO loop

DECLARATIONS

Vector programmmg adds one speclt'lcatlon statemen to,,
‘thelist of nonexecutable statements that can appear at the }:

begmmng of a CYBER 200 FORTRAN program unit,

DESCRIPTOR STATEMENT

The DESCRIPTOR statement has the.followmg form

h DESCRIPTOR v1 vz,...,vn ;

60457040 D

if-block, |

f;Examples of mmahzmg
section 16,

f(As descmbed 1n sectlon 6 a data 1mt1ahzat10n statement 3

consists of pairs of lists; a list of variables is paired with a
list of constants used as the initial values for the
variables. Besides scalar list elements, the list of variables
can include vectors,

contain only integer constant subseript expressions and

- vector length specification. The number of constant list
“elements corresponding to the name must be equal to the

descriptors, descriptor arrays, and
descriptor array elements.

For vectors, a vector name in the variable list must

length of the vector. For example, if a vector name in the .

. variable list is A(1;10), then 10 consecutive constant list
-elements must correspond to the vector name.
‘similar to the way that arrays can be 1mt1ahzed in a DATA :
- statement.) - :

(This is

For descriptors and descrlptor array elements, a descriptor -
in the variable list must correspond only to a vector, which :

functlon‘ ‘name :

11-13

‘must contain only integer constant subsempt expressxons
; and vector length speclﬁcatlon. : : .

The repeat count speclflcatlon in a. DATA statementz
.(section 6) can be ‘used to specify the repeated use of a
“vector for initialization of ‘more than one descriptor ‘or
_descriptor array element. The data. types of correspondmg*»
7var1able list and constant list 1tems must, in the above'*
;cases, be the same. o =

ors “ar'le'f gi\.%e'n in:-

fsame way that.. other t‘unctlon subprograms are defmed .
The differences lie in the argument list form, the number -
of data types avatlable for vector functxon results and, the !

f 1114 60457040 D

TABLE 14-1. FORTRAN-SUPPLIED FUNCTIONS (Contd)

Type of
Function g:;cilzﬁe Arguments
ere (other than Result
¢ and i)TTt
Arcsine ASIN(a) -~ "Real | Real
' DASIN(a) - Double Double
VASIN(v,u) Real ‘Real .
 §r¢cosine ‘ACOS(a) Real Real
. DACOS(a) Double Double
VACOS(v3u) ' REal Real:
Hyperbolic sine siNH(a) "Real | Real
« R DSINH(a) - Double | Double -
Hyperbolic cosine ~ COSH(a) Real ‘
e Doosi(a) Dowble | D
Hyperbolic tangent _TANH(a)Real Real
" DTANH(a) " "Double ‘Double =
Square root SQRT(a) Real Real
DSQRT(a) Double Double
CSQRT(a) Complex Complex
VSQRT(v;u) Real Real
VCSQRT(v;u) Complex Complex
Modulus: (x2+y2)1/2 yhere x is the real part and y is CABS(a) Complex Real
imaginary part of the argument VCABS(v;u) Complex Real
Typeless
Typeless

tt

t1t

t
[x] is defined as the sign of x times the largest integer less than or equal to Ixl.
defined when the second argument is zero.

Provides the same effect as the implied conversion in assignment statements.

Each control vector c is type bit, and each index vector i is type integer.

The results are not

FUNCTION DESCRIPTIONS

'gumént cari be a vector, i
escript i

functions alters the values of its arguments. The
mathematical values of some of the mathematical
functions can be indefinite.

60457040 D

For a real number X, ABS(x) computes the absolute

value IX!.

14-5

AIMAG(a)

This returns the imaginary part of a complex number as a
real number; if x+iy is the complex number, AIMAG
returns y.

AINT(a)
For a real number x, AINT(x) computes [x], where [A] is
the sign of A times the largest integer less than or equal

to 1Al. AINT returns a real result even though its value is
always integral.

ALOG(a)

This computes the natural logarithm of a real number
greater than zero. The result is a real number accurate to
approximately 45 bits. :

For a.given real number x, ALOG(x) is calculated sas
follows. :

For x outside the range:
(2)1/2/2<x<(2)1/2)
let:
x=2Nsy
where: |
1/28w<1
and n is an integer that satisfies the equation.
Alsolet:
t = (w - (2)1/2/2)/(w + (2)1/2/2)
Then:
1oge(x) = (n - 1/2) * loge(2) + 10ge((1 + /(1 - 1))
For x in the range:
(21/2/2<x<(2)1/2)
let:
t=(x-1)/(x+1)
Then:
10ge(X) = loge((1 + 1)/ (1 - 1)

In either case:

6
loge((1 +t)/(1-t)) =2t 20 cpt2n
. n=

14-6

where:

cp = 1.000000000000000172016224 * 100

eq = 3.333333333327618176885283 * 10-1

¢g = 2,000000003098077890899307 * 10-1

c3 = 1.428570799460827347261398 * 101

¢4 = 1.111171831154342806719000 * 10-1

e5 = 9.060935658179353717214254 * 10-2

cg = 8.419186575863053137534817 * 10-2
If a zero or negative argument is received, a data flag
braneh oceurs inside the routine.

ALOG10(a)

This computes the logarithm of ‘a real number. The result
is a real number that is accurate to approximately 45 bits.

For a given real number x greater than zero:
logy o(x) = logy g(e) * loge(x)

where the natural logarithm is computed as.desecribed for
the function ALOG.

If a zero or negative argument is received, a data flag
branch oceurs inside the routine. '

AMAXO(Cj,Gz, P ..)

This searches a list of integer numbers for the list element
having the maximum value. The integer found is returned
as a real number.

AMAXl(ﬂl,ﬂz, o o)

This searches a list of real numbers for the list element
having the maximum value and returns that value.

AM'NO(O:,O:, PR)

This searches a list of integer numbers for the list element
having the minimum value. The integer found is returned
as a real number. '

AMINT(ay,09, . . .)
This searches a list of real numbers for the list element

having the minimum value and returns the number when
found.

‘AMOD(Ol,Oz, PR)

This computes one real number modulo a second real
number and produces a real result. AMOD(x,y) is defined
as x-[x/y] *y, where [A] is the sign of A times the largest
integer l€ss than or equal to 1Al.

60457040 B

PROGRAM COMPILATION ' 15

The system control statements accompanying a
CYBER 200 FORTRAN program must include a call to the
FORTRAN compiler. The parameters for this call
optionally declare files for input and output, and optionally

include instructions to the compiler to (for example) output
storage maps. Additional control statements are required
‘to load and to execute the compiled program, and can be.
-used to change at run time the file declarations made in a

‘PROGRAM statement, ..~ ...

FORTRAN STATEMENT

The FORTRAN system control statement is used to
execute the CYBER 200 FORTRAN compiler. In the
statement parameter descriptions that follow, underlining
indicates the minimum number of characters that can be
used in specifying the parameter.

Forms:
FORTRAN.

FORTRAN(INPUT=f; BINARY=f9/l9,

LIST=f3/13/d3,0BTIONS=o0list)
INPUT=f; Optional; f; is the name of
the file containing the
FORTRAN source program to
be compiled. When the param-
eter is omitted, the default
file name INPUT is used.

BINARY=fo/lj Optional; fg is the name of
the file that is to receive the
compiler-generated object
modules. 19 is a specifi-
cation of the length of fg,
and can be either an integer
constant or a hexadecimal
number prefixed with a #.
I3 can be omitted along with
the slash. When the entire
parameter is omitted, the
default file name BINARY is

used. When 13 or the entire.

parameter is omitted, the
default file length of 16 small
pages is used.

Optional; f3 is the name of
the file that is to receive the
compiler-generated listings
and program output. 13 is a
specification of the length of
f3. Like 1y, 13 can be
either an integer constant or a
hexadecimal number prefixed
with a #. d3 is the routing
disposition of f3 and must
be PR (the line printer) or can
be omitted (in which case no

LIST=f3/13/d3

60457040 D

routing is performed). 13
and d3 can oceur in either
order. When 13 is omitted,
the default file size of 336
small pages is used. When the
entire parameter is omitted,
the default is OUTPUT.

OPTIONS=olist Optional; olist is some logical
combination of the compile
option letters ABCEIKLMOR
SUVYZ12, with the restriction
that Y must not oceur with
any other option except L.
Default olist is B. When
O=olist is omitted, or when B
is included in olist, the object
file for the program is built.
The object file is not built
when the O=olist parameter
without the B option appears
in the parameter list for the
FORTRAN system control
statement.

Alternative delimiters for the parameter list are a comma
or blank instead of the left parenthesis, and a period
instead of the right parenthesis. When communicating
interactively with the system, the user can replace a
period with a carriage return.

The FORTRAN system control statement parameters must
be separated by commas or blanks. Partial parameter lists
are acceptable, with default values used for the omitted
parameters. The first form of the FORTRAN statement
selects all defaults for the parameters. The I=, B=, and L=
parameters can be interchanged without consequence; the
O= parameter must occur last.

The object and output files (specified by the B= and L=
parameters of the FORTRAN system control statement) do
not have to exist when the control statement is executed.
If the file does not exist, it is automatically created on a
unit assigned by the operating system and with the length
specified in the control statement. If the file does exist
and has write access, it is automatically destroyed and
recreated on the same unit with the length specified in the
control statement. If the file does exist but does not have
write access, a request is made to interactive users for
permission to destroy the file. If permission is granted, the
procedure followed is the same as for files that exist with
write access. If permission is not granted, or if the user is
in batch mode, the job is aborted.

When a compile option letter appears in the O=olist
parameter, certain actions are performed during
compilation that would not be performed otherwise. The L
option is an exception in that the listing of the source
program is inhibited rather than initiated by its appearance
in olist.

A - ASSEMBLY LISTING

An assembly listing of the object code can be placed in the
output file by selecting the A option.

B - BUILD OBJECT FILE

An object file is required for the loading and execution of
the FORTRAN program. A request that the file be built is
made by selecting the B option.

C - CROSS-REFERENCE LISTING

All mentions in the source program to labels and symbolic
names are listed in tabular form in the output file by
selecting the C option.

E - EXTENDED BASIC BLOCK
OPTIMIZATION

The E_option selects optimization of extended basie
blocks. This optimization involves compile-time
computable result propagation, redundant code elimination,
and instruction scheduling. The E option is included in the
O option. The E option effectively selects options P, R,
and I.

I - INSTRUCTION SCHEDULING

The I option selects optimization of object instructions
according to the results of a critical path analysis. The
I option is included in the O and E options.

K - 64-BIT COMPARE

This option enables fullword (64-bit) integer compares for
.EQ. and .NE. operators in logical IF statements.
Otherwise, 48-bit compares are performed for the .EQ. and
.NE. operations (integers are 48 bits).

L - SOURCE LISTING SUPPRESSION

The first part of the output file for a CYBER 200
FORTRAN program is normally the source program
listing. This can be omitted from the file by selecting the
L option.)

M - MAP OF REGISTER FILE AND
STORAGE ASSIGNMENTS

A listing in the output file of all variables, constants,
externals, arrays, and descriptors, along with a map of the
contents of the register file, is produced when the
M option is selected.

O - OPTIMIZATION

The O option selects all available optimization of sealar
object code. More efficient objeet code is produced at the
expense of increased compilation time., The O option
effectively selects options Z, E, R, I, and P.

15-2

P - PROPAGATION

The P option selects compile-time-computable result
propagation.

R - REDUNDANT CODE ELIMINATION

The R option selects elimination of redundant code. The
R option is included in the O and E options.

S - SUPPRESS DEBUG SYMBOL TABLE
CREATION

The effect of this option is to suppress generation in the
binary output of a debug symbol table for each program
unit. The symbol table makes it possible for the
system-provided debugging utility DEBUG to recognize
names in the FORTRAN program and for a FORTRAN
run-time routine to identify the source line in a user
routine at which a run-time error occurred. The user must
not select this option if DEBUG is going to have to
interpret variables, names, and symbolic addresses; if only
absolute addresses will be used in commands to DEBUG,
the S option can be selected.

U - UNSAFE VECTORIZATION

The U option enables unsafe vectorization of certain DO
loops. If the terminal value of a DO loop is variable and
the loop contains any references to dummy arrays, the
compiler cannot determine the number of iterations of the
loop. Vectorization of such loops is considered unsafe
because the loop count might exceed 65535, which is the
maximum length of a vector. If a DO loop contains an
assignment statement that has an equivalenced data
element on the left side, the loop can be vectorized only if
the U compile option is selected.

V - VECTORIZATION AND AUTOMATIC
RECOGNITION OF STACKLIB LOOPS

Vectorization of certain CYBER 200 FORTRAN language
constructs and automatic recognition and conversion of
certain DO loops into calls to a stacklib routine are
requested with the V compile option. The language
constructs that fall under these categories are deseribed in
section 11.

Y - SYNTAX CHECK

A partial compilation can be performed to check the
syntax of a FORTRAN program and any resulting
diagnostics can be produced by selecting the Y compile
option. The Y option can appear alone or with the L or
S options (such as LY or SY); all other option combinations
using Y are invalid compile option lists and produce an
error accompanied by a dayfile message.

60457040 C

DIAGNOSTICS

This appendix describes the four groups of diagnostic

compiler failure messages, compilation error

messages:
run-time error messages, and vectorizer

messages,
messages.

COMPILER FAILURE AND
COMPILATION ERRORS

Compiler failure messages are messages generated because
of compiler failure. Compilation error messages are

messages generated because of errors in the program. The
seriousness of the error is indicated by the error type.

COMRPILER FAILURE

Error messages produced when the compiler fails are listed
in table B-1. The compiler failure error type is:

A (abort) Compilation was terminated because of
compiler failure. The return code is 8

(RC=8)

COMPILATION ERRORS

Error messages produced when the compiler detects errors
in the source program are listed in table B-2. Some of the
error numbers have no messages currently assigned to
them. These error numbers are reserved for future use by
CDC. Compilation error types are:

The statement in error was compiled.
Compilation continued, but part of the
statement might not have been
processed. The return code is 4 (RC=4).

W (warning)

F (fatal) The statement in error was not
compiled. Objeect code generation is
inhibited. The return code is 8 (RC=8).

TABLE B-1. COMPILER FAILURE MESSAGES
Error T .
Number Type Message Significance Action
93 A COMPILER FAILURE - REFERENCE FOR | The subscript processor detected Follow site-defined
NON-DIMENSIONED ARRAY a bad symbol table entry. procedure.
9 A COMPILER FAILURE - ALL FULL REG The doubleword register assignment | Follow site~defined
TABLE ENTRIES ARE CLASS 4 table became invalid during the procedure.
generation phase.
95 A COMPILER FAILURE - HALF REG The fullword register assignment Follow site-defined
TABLE ENTRIES ARE CLASS 4 table became invalid during the procedure.
generation phase.
96 A COMPILER FAILURE - VARIABLE The storage class table became Follow site-defined
EQUIVALENCED TO COMMON BLOCK invalid during the allocation procedure.
THAT HAS NO ELEMENT phase.
97 (Currently unassigned) - -
98 A COMPILER FAILURE - I/O STACK The input/output list stack that Follow site-defined
FORMED INCORRECTLY was built by the IOLIST processor procedure.
became invalid during the parse
phase.
99 A COMPILER FAILURE - ILLEGAL The descriptor table became Follow site-defined
DESCRIPTOR ENCOUNTERED IN invalid. procedure.
ALLOCATION PHASE(2)
100 A COMPILER FAILURE - TABLE AREA One of the compiler table areas Follow site-defined
OVERFLOW reached its maximum size. Possi- procedure.
bly the program was too big to be
compiled.
101 A COMPILER FAILURE Compiler detected an internal Follow site-defined
: inconsistency. procedure.

60457040 D

TABLE B-2.

COMPILATION ERROR MESSAGES

Error s ses :
Number Type Message Significance Acthn

102 F ILLEGAL SUBPROGRAM NAME The subprogram is compiled Correct error;j recompile.
as a main program.

103 F FUNCTION CANNOT BE CALLED AS A A function is called with a Replace the CALL state-

SUBROUTINE CALL statement. ment with a statement
that contains a function
reference; recompile.

104 W CANNOT TYPE SUBROUTINE NAME A type is specified for the Verify that a subroutine,
subroutine namej the type rather than a function,
was ignored by the compiler. was intended.

105 F ILLEGAL SUBROUTINE REFERENCE A subroutine name is used Correct error; recompile.
improperly.

106 F MISSING OPERATOR OR DELIMITER An operator or delimiter is Supply missing operator
required. or delimiter; recompile.

107 F ILLEGAL OPERAND An expression contains an Correct error; recompile.
illegal operand.

108 F ILLEGAL OR MISSING DELIMITER A delimiter is required. Supply missing delimiter
or correct error in exist-
ing delimiter; recompile.

109 F ILLEGAL USE OF ARRAY NAME An array name appears with- Supply subscript for

' out a subscript. array reference; recompile.

110 F MISSING LEFT PARENTHESIS A left parenthesis is ‘Supply missing left
required. parenthesis; recompile.

111 F ILLEGAL USE OF HEXADECIMAL A hexadecimal constant is Correct error; recompile.

CONSTANT used improperly.

112 F RECURSIVE SUBPROGRAM REFERENCE A subprogram calls itself. Remove recursive sub-

IS ILLEGAL programre ferences from
the program; recompile.

113 F ILLEGAL ARGUMENT DELIMITER Arguments must be delimited Correct error; recom-
by commas. pile.

114 F ILLEGAL USE OF SUBPROGRAM NAME A subroutine or function Correct error; recompile.
name is used improperly.

115 F ILLEGAL ARGUMENT IN INTRINSIC The arguments are not what Correct error; recompile.

OR BASIC FUNCTION REFERENCE the function requires.
116 W FUNCTION NAME USED AS ARGUMENT The function name is not Declare function name in
NOT DECLARED EXTERNAL declared in an EXTERNAL an EXTERNAL statement;
statement. recompile.

117 F INTRINSIC FUNCTION CANNOT BE An intrinsic function name Remove intrinsic function

ACTUAL ARGUMENT ’ appears in the argument name from the argument
list of a function or sub- list; recompile.
routine reference.

118 F ILLEGAL OPERATOR IN EXPRESSION The operator cannot be used Correct error; recompile.
in the expression.

119 F PARENTHESES DO NOT MATCH OR A one-to-one correspondence Check all parentheses in

ILLEGAL ASSIGNMENT STATEMENT does not exist between left the expression. Correct
and right parentheses. errors; recompile.
B-2 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error T M e g .
Number ype essage Significance Action
120 F INCORRECT NUMBER OF ARGUMENTS The argument list for an Check the requirements
FOR INTRINSIC OR BASIC intrinsic function refer-— of the intrinsic or basic
FUNCTION ence or a basic function function. Add missing
reference contains a dif- arguments or delete extra
ferent number of arguments argwmuents from the argu-
than the function requires. ment list of the func-
tion reference; recompile.
121 F INCORRECT ARGUMENT TYPE FOR An argument that appears Check the requirements
INTRINSIC OR BASIC FUNCTION in the argument list of an of the intrinsic or basic
intrinsic function refer- function. Change the
ence or a basic function type of the erroneous
reference is of the wrong argument; recompile.
type.
122 F ILLEGAL TYPE MIXING IN The data types of two Correct error; recompile.
STATEMENT " entities that appear in a
statement are incompatible.
123 F ILLEGAL ARRAY MODE IN VECTOR Correct error; recompile.
REFERENCE
124 F ILLEGAL MODE USAGE IN Correct error; recompile.
RELATIONAL OR ARITHMETIC
EXPRESSION
125 F MORE THAN 19 CONTINUATION All continuation lines Restructure the statement
LINES after line 19 are not so that no more than 19
compiled. continuation lines are
used; recompile.
126 W THIS STATEMENT CANNOT BE The previous statement does Check for an error in
EXECUTED not allow execution of this logic. Check for a
statement. missing label on
the current statement.
127 w INDEFINITE RESULT, PRODUCT TOO The multiplication of two Verify that an indefinite
LARGE constants produces a result result does not affect
that is too large. the logic of the program.
128 W DIVIDE FAULT IN CONSTANT The division of one Verify that the divide
ARITHMETIC constant by another pro- fault does not affect the
duces a divide fault. logic of the program.
129 W EXPONENT OVERFLOW IN CONSTANT Constant arithmetic Verify that exponeat
ARITHMETIC produces exponent overflow. overflow does not affect
the logic of the program.
130 F ILLEGAL DELIMITER IN A VECTOR Correct error; recompile.
REFERENCE
131 F SUBSCRIPT FOR NON-DIMENSIONED The array that appears on Correct error; recompile.
ARRAY, OR STMT FUNCTION DEF the left side of an assign-
DOES NOT PRECEDE ALL ment is not dimensioned, or
EXECUTABLE STATEMENTS this is a statement func-
tion definition that does
not precede all executable
statements.
132 F THIS SYMBOL MAY NOT BE DEFINED The symbol is already Correct error; recompile.
TO BE A STATEMENT FUNCTION defined.

60457040 D

B-3

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error T .
Number Type Message Significance Action
133 F ILLEGAL STATEMENT FUNCTION An illegal argument appears Correct error; recompile.
ARGUMENT in a statement function
reference.
134 F ILLEGAL STATEMENT FUNCTION A statement function is Correct error; recompile.
DEFINITION defined improperly.
135 F ILLEGAL LABEL A label must be numeric and Supply numeric label;
between 1 and 99999. recompile.
136 F DESCRIPTOR MODE IS NOT A descriptor must be of one Change the type of the
INTEGER, REAL, BIT, OR COMPLEX of these types. descriptor; recompile.
137 F ILLEGAL DELIMITER FOR HEX OR Hexadecimal and bit con- Change delimiters to
BIT CONSTANT stants must be delimited by apostrophes; recompile.
apostrophes.
138 F DOUBLY DEFINED LABEL The same label appears on Change one of the
more than one statement in occurrences of the label.
a program. Also, check all refer
ences to the label that
is changed in order to
maintain correct logic;
recompile.
139 F (Currently unassigned) - -
140 F ILLEGAL DELIMITER IN STATEMENT Statement function argu- Correct error; recompile.
FUNCTION ARGUMENT LIST ments must be delimited by
commas .
141 F INCORRECT NO. OF ARGUMENTS FOR The argument list for a Check the statement func—
STATEMENT FUNCTION statement function refer- tion definition to find
ence contains a different out how many arguments
number of arguments than the function requires.
the function requires. Add missing arguments or
delete extra arguments
from the argument list
of the function refer-
ence; recompile.
142 F COMPLEX MAY NOT BE USED AS A complex number appears as Change the type of the
POWER an exponent. exponent; recompile.
143 F COMPLEX MAY ONLY BE RAISED TO Exponentiation of a complex Change the type of the
INTEGER OR REAL POWER number involves an exponent exponent to real or
that is not real or integer. integer; recompile.
144 F SUBSCRIPT MUST BE INTEGER The subscript is not an Change the subscript to
CONSTANT integer constant. integer constant; recom-
pile.
145 F SPECIFICATION STATEMENTS A specification statement Move all specification
MUST PRECEDE ALL EXECUTABLE appears after an executable statements in front of
STATEMENTS statement. all executable state
ments; recompile.
146 F ILLEGAL VARIABLE IN DATA A symbol that appears in a Remove the symbol from the
STATEMENT DATA statement cannot be DATA statement; recompile.
initialized.
147 F SYNTAX ERROR IN DATA LIST An error appears in a DATA Correct error; recompile.
statement.
B-4 60457040 B

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

60457040 B

Error s gt .
Number Type Message Significance Action
148 F SUBSCRIPT MAY NOT BE AN An expression is used as a Correct error; recompile.
EXPRESSION subscript.
149 F TOO MANY SUBSCRIPTS The array is declared to Correct error; recompile.
have fewer dimensions than
there are subscripts.
150 F SYNTAX ERROR IN HEXADECIMAL OR An error appears in a hexa- Correct error; recompile.
BIT CONSTANT decimal or bit constant.

151 F ILLEGAL DATA ITEM Correct error; recompile.

152 F ILLEGAL VECTOR REFERENCE MODE Correct error; recompile.
IN DATA STATEMENT

153 F CHARACTER, HEX OR BIT CONSTANT Constant is too large to be Reduce size of constant;
TOO LARGE represented. recompile.

154 F ILLEGAL USE OF VECTOR Correct errorj recompile.
REFERENCE MODE IN DATA
STATEMENT

155 W TOO MANY DATA CONSTANTS There are more values in a Verify that the proper
DATA statement than there number of variables and
are variables. The extra constants are specified.
values are not used.

156 F SYNTAX ERROR A language construct is Correct error; recompile.
written improperly.

157 F SPECIFICATION STATEMENTS MUST A specification statement Move all specification

PRECEDE STATEMENT FUNCTION appears after a statement statements in front of
DEFINITIONS function definition. all statement function
definitions; recompile.

158 F ILLEGAL ELEMENT IN Correct error; recompile.

SPECIFICATION LIST
159 F ILLEGAL OPERATOR IN Correct error; recompile.
SPECIFICATION
160 F ILLEGAL LENGTH SPECIFICATION The length specification Correct error; recompile.
OF CHARACTER VARIABLE that appears in a CHARACTER
statement is illegal.
161 W NAMELIST NAME IN TYPE A type is given to a Check user—defined names
STATEMENT name listname; this action to find out if a name is
is ignored by the compiler. used as both a namelist
name and a variable or
array name.

162 W VARIABLE TYPED MORE THAN ONCE The first type is used. Verify that the first
The additional type speci- type is intended. Check
fications are ignored. user-defined names to

find out if two differ-
ent variables are
intended.

163 F LENGTH OF ADJUSTABLE CHARACTER The length specification Correct error; recompile.

MUST BE TYPE INTEGER that appears in a CHARACTER
statement is not an integer.
164 F ZERO LENGTH FOR CHARACTER The length specification Correct error; recompile.
VARIABLE for a character variable is)
zero.

B-5

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)
Error T M Signifi Action
Number ype essage ignificance io
165 F ERROR IN DATA LIST OF TYPE Correct error; recompile.
STATEMENT
166 F ILLEGAL STATEMENT ON LOGICAL The consequent statement Correct error; recompile.
IF on a logical IF is not
allowed.
167 W NO LABELED COMMON IN BLOCK No labeled common blocks Verify that all state
DATA SUBPROGRAM are declared in the BLOCK ments appear in the BLOCK
DATA subprogram. DATA subprogram as
intended.
168 F ILLEGAL STATEMENT IN BLOCK This statement cannot Correct error; recompile.
DATA SUBPROGRAM appear in a BLOCK DATA sub-
program.
169 \ MAIN PROGRAM HAS NO EXECUTABLE Verify that all state-
STATEMENTS ments in the main program
appear as intended.
170 (Currently unassigned) - -
171 (Currently unassigned) - -
172 w FUNCTION NAME IS NOT DEFINED A function returns a value Check the function for a
through its name. The name missing assignment
statement.
must be assigned a value
during execution of the
function.
173 W NO RETURN STATEMENT A RETURN statement was Verify that a RETURN
generated by the compiler. statement was intended.
174 F ENTRY IN RANGE OF DO OR IN An ENTRY statement appears Remove the ENTRY state-
BLOCK IF in the range of a DO loop nent from the range of
or in a block IF. the DO loop or block IF;
recompile.
175 F NO ARGUMENTS FOR FUNCTION The subprogram is compiled Supply the argument list
as a main program. for the FUNCTION state-
ment; recompile.
176 F ILLEGAL DUMMY ARGUMENT An argument that appears in Correct error; recémpile.
a FUNCTION or SUBROUTINE
statement is illegal.
177 F MISSING NAMELIST NAME A NAMELIST statement does Supply the namelist name
not contain a namelist name. enclosed in slashes;
recompile.
178 F ILLEGAL NAMELIST NAME A namelist name is illegal. Corvect error; recompile.
179 F MISSING SLASH AFTER NAMELIST A namelist name must be Supply the missing slash
NAME enclosed in slashes. after the namelist name;
recompile.
180 F LIST ITEM MUST BE A VARIABLE Correct error; recompile. -
181 F ILLEGAL OPERATOR Correct error; recompile.
182 F ILLEGAL OR MISSING VARIABLE Correct error; recompile.

60457040 D

60457040 D

TABLE B-2. COMPILATION ERROR MESSAGES (Contd)

Error T M Signifi Acti

Number ype essage ignificance ction

403 F A SYMBOLIC CONSTANT MAY NOT BE A type statement for a sym- Move the type statement

TYPED AFTER ITS DECLARATION bolic constant must appear in front of the PARAMETER
before its declaration in statement that defines
the PARAMETER statement. the symbolic constant;
recompile.
404 F DUPLICATE OR CONFLICTING A letter must not be Correct error; recompile.
IMPLICIT TYPE assigned more than one
implicit type.
405 W ILLEGAL INSTRUCTION FOR TARGET The program cannot be cor- Verify that the correct
MACHINE) rectly executed on the target machine is speci-
machine for which it is fied in the FORTRAN
compiled. control statement.

406 F ILLEGAL BLOCK IF NESTING A nested block IF must be Correct error; recompile.
entirely contained in an
outer block IF,

407 W FUNCTION NOT AVAILABLE ON The program cannot be cor- Verify that the correct

TARGET MACHINE rectly executed on the target machine is speci-
machine for which it is fied in the FORTRAN
compiled. control statement.

408 F BRANCH INTO BLOCK IF Control cannot transfer Rewrite the statement so
into an if-block, else— that it does not transfer
block, or elseif-block. control into an if-block,

else-block, or elseif-
block.

409 F MISSING ENDIF Each block IF statement Supply the missing END IF
must have a corresponding statement; recompile.

END IF statement.
410 (Currently unassigned) - -
411 W MISSING THEN IN ELSE IF The keyword THEN must Supply the missing THEN.
STATEMENT follow the keyword ELSE IF.

412 (Currently unassigned) - -

413 (Currently unassigned) - -

414 (Currently unassigned) - -

415 (Currently unassigned) - -

416 (Currently unassigned) - -

417 (Currently unassigned) — -

418 (Currentiy unassigned) - -

419 (Currently unassigned) - -

420 (Currently unassigned) - -

421 (Currently unassigned) - -

422 (Currently unassigned) - -

423 (Currently unassigned) - -

424 (Currently unassigned) - -=

425 (Currently unassigned) - -

B-21

COMPILATION ERROR MESSAGES (Contd)

Significance

Action.

Control must not transfer
into a where-block or
otherwise-block.

A vector assignment state-
ment that appears in a
WHERE statement, where-—
block, or otherwise-block
contains an invalid opera-
tor or function reference.

Each block WHERE statement
must have a corresponding
END WHERE statement.

The expression in the WHERE
statement or block WHERE
statement is not of type
bit.

An OTHERWISE statement or
an END WHERE statement
appears without a corre-
sponding block WHERE
statement.

Only one OTHERWISE state-
ment can appear in a block
WHERE structure.

Only vector assignment
statements of type integer
or real can appear in a
where-block an otherwise-
block or the vector assign-—
ment statement portion of a
WHERE statement.

If a block WHERE structure
appears in the range of a
DO statement, the entire
block WHERE structure must
appear in the range of the
DO statement.

Rewrite the program so
that it does not transfer
control into a where-
block or otherwise-block;
recompile.

Remove or rewrite the
statement; recompile.

Supply the missing
END WHERE statement;
recompile.

Supply an expression of
type bit; recompile.

Check for mismatched or
missing block WHERE
statement; recompile.

Rewrite block WHERE
structure using no more
than one OTHERWISE state-
ment; recompile.

Remove or rewrite the
illegal statements;
recompile.

Move the terminal state-
ment of the DO loop so
that it is on or after
the END WHERE statement
of the block WHERE struc-
ture; recompile.

TABLE B-2.
Error
Number Type Message
426 (Currently unassigned)
427 (Currently unassigned)
428 F BRANCH INTO THE RANGE OF A
WHERE
429 F ILLEGAL VECTOR OPERATION IN
THE RANGE OF A WHERE
430 F MISSING ENDWHERE
431 F WHERE EXPRESSION MUST BE OF
TYPE BIT
432 F MISSING BLOCK WHERE
433 F EXTRA OTHERWISE
434 F ILLEGAL STATEMENT IN THE
RANGE OF A WHERE
435 F TERMINAL STATEMENT OF DO
WITHIN RANGE OF A WHERE
RETURN CODES

The user has control over the execution of a batch job in
that the user can determine whether to initiate error exit
processing or to allow batech job processing to continue.
The TV control statement allows a termination value to be
entered with the program to be executed. The termination
value is used to determine when error exit processing is to
occur. All return codes having a value less than or equal to
the termination value are ignored and job processing
continues. All return codes having a value greater than the
termination value cause error processing specified by the
EXIT control statement to take place.

© B-22

For example, a termination value of 8 would allow all
warning and fatal errors to be ignored, andeause error exit
processing to occur for abort errors. A termination value
of 0 would trap all errors, including warning codes. The
termination value control statement is discussed in the
Operating System reference manual.

RUN-TIME ERRORS

Error messages listed in table B-3 are produced when error
conditions are detected during the execution of a

previously compiled program. Some of the error numbers
have no messages currently assigned to them.

60457040 D

These error numbers are reserved for future use by CDC.
The system error processor (SEP) can be called upon to
change the attributes of certain run-time errors. Run-time
error types are:

W (warning) Nonfatal error. A warning is
issued and execution continues.
The return code is 4 (RC=4).

F (fatal) Execution is terminated abnor-

mally when this error condition
exists, The return code is 8
(RC=8).

C (catastrophic) Condition is nonalterable by SEP
and not subject to user control,

60457040 D

other than replacement of the
standard message. The return code
is 8 (RC=8),

All errors having a warning classification can be made
fatal, Those errors which are designated as fatal can be

altered to warning level. Catastrophic errors cannot be
altered to fatal or warning level; however, the standard
message can be replaced.

Error messages for mathematical routines have the
CYBER 200 FORTRAN library function name appended to
the message. In like manner, input/output error messages
have the file name appended to the message.

The form of a run-time error message is:

ERROR xxx IN subr AT LINE nn

B-22.1 |

TABLE B-3.

RUN-TIME ERRORS

Error ¢ s .
Number Type Message Significance Action
1 c SYNTAX ERROR IN PROGRAM A compilation error exists in Correct compilation
STATEMENT FILE DECLARATION the PROGRAM statement. error. Rerun.
2 c UNIT NUMBER IS MULTIPLY DEFINED The same unit number is Change the PROGRAM
IN PROGRAM STATEMENT assigned to more than one statement so that
file.) each unit number is
assigned to only one
file. Correct all
references to unit
numbers accordingly.
Rerun.
3 Cc RUNTIME TABLE ERROR OVERFLOW
4 C ERROR IN CREATE FILE
5 C ERROR IN OPEN FILE
6 c MAXIMUM NUMBER OF FILES (70) No more than 70 files can Reduce the number of
EXCEEDED be used in a program. files to no more
than 70. Rerun.
7 C SYSTEM ERROR IN CLOSE FILE
8 (Currently unassigned) - -
9 (Currently unassigned) - -

10 (Currently unassigned) - -

11 C FILE NOT LARGE ENOUGH FOR OUTPUT The amount of output to a Increase the size of
file exceeds the capacity of the file or reduce
the file. the amount of output

to the file. Rerun.

12 (Currently unassigned) - -

13 [END OF FILE IN INPUT STREAM An input statement attempted Use a REWIND or

-- file name to read data from the file BACKSPACE statement
indicated, pbut that file is to reposition the
positioned at the end of the file before the input
file. statement is execu-

ted, or supply miss-
ing data on the input
file. Rerun.

14 F A CALL TO Q8WIDTH MUST PRECEDE Call Q8WIDTH before

THE ACCESS TO A FILE first file access.

Rerun.

15 F TRANSMISSION ERROR DURING READ

16 C ILLEGAL I/0 UNIT "NUMBER Unit numbers can be integers Change the unit num-
from 1 through 99. ber to an integer

from 1 through 99.
Rerun.

17 C ATTEMPT TO PERFORM SEQUENTIAL Use the proper type

FORMATTED I/0O ON A FILE OPENED of input/output

FOR ANOTHER FORM OF 1/0 statements, or open

the file for sequen-
tial formatted input/
output, Rerun.

l B-22.2 60457040 D-

TABLE B-3. . RUN-TIME ERRORS (Contd)

60457040 D

gﬁ;ﬁ:r Type Message Significance Action
106 F UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFCL1
107 F END OF RECORD ENCOUNTERED A binary input statement Use a REWIND or
DURING BINARY INPUT attempted to read binary data BACKSPACE statement
from a file, but the file is to reposition the
positioned at the end of the file before the input
file. statement is executed
or supply missing
data on the input
file. Rerun.
108 F UNDOCUMENTED ERROR DURING
BINARY INPUT
109 F BIT DATA PRINTED WITH NON B The B format specification Use the B format
FORMAT--file name must be used for bit data. specification in the
FORMAT statement.
Rerun.
110 F B FORMAT USED FOR OTHER THAN The B format specification Change the B format
BIT DATA--file name is used for data that is of specification to the
a type other than bit. appropriate format
specification. Rerun.
111 F DESCRIPTOR PRINTED WITH NON Z The Z format specification Use the Z format
FORMAT--file name must be used for descriptors. specification in the
FORMAT statement.
Rerun.
112 F ILLEGAL RECORD TYPE FOR Use a file of the
BUFFER I/0 correct record
type. Rerun.
113 C Q7BUFIN OR Q7BUFOUT WAS CALLED
WITH ILLEGAL PARAMETER--
file name
114 C Q7SEEK WAS CALLED WITH ILLEGAL
PARAMETER--file name
115 C ARRAY SPECIFIED AS BUFFER
IS NOT ON PAGE BOUNDARY
(Q7BUFIN/Q7BUFOUT)—file name
116 C UNEXPECTED ERROR IN Q7BUFIN OR
Q7BUFOUT—file name
117 C TOO MANY OUTSTANDING REQUESTS
FOR Q7BUFIN/Q7BUFOUT (MUST CALL
Q7WAIT)——-file name
118 (Currently unassigned) - --
119 F UNRECOGNIZABLE PARAMETER
ENCOUNTERED IN Q7DFOFF
120 C ROUTINES CALLING Q7DFSET NESTED
TOO DEEP
121 W DATA FLAG BRANCH - ORX -
REGISTER 1 ADDRESS address

B-29

TABLE B-3. RUN-TIME ERRORS (Contd)

Error s e .
Number Type. Message Significance Action
122 W DATA FLAG BRANCH - ORD -
REGISTER 1 ADDRESS address
123 F DATA FLAG BRANCH - IMAGINARY
SQUARE ROOT - REGISTER 1
ADDRESS address
124 F DATA FLAG BRANCH -~ INDEFINITE
RESULT - REGISTER 1 ADDRESS
address :
125 F DATA FLAG BRANCH - ZERO
DIVISOR - REGISTER 1 ADDRESS
address
126 w DATA FLAG BRANCH - EXO -
REGISTER 1 ADDRESS address
127 W DATA FLAG BRANCH - RMZ -
REGISTER 1 ADDRESS address
128 W DATA FLAG BRANCH - SSC -
REGISTER 1 ADDRESS address
129 w DATA FLAG BRANCH - DDF -
REGISTER 1 ADDRESS address
130 w DATA FLAG BRANCH - TBZ -
REGISTER 1 ADDRESS address
131 C CLASS I DATA FLAG BRANCH - NO
INTERRUPT ROUTINE PROVIDED -
REGISTER 1 ADDRESS address
132 Cc CLASS III INTERRUPT IN CLASS
II1 INTERRUPT HANDLING ROUTINE
- REGISTER 1 ADDRESS address
133 (Currently unassigned) - -
134 (Currently unassigned) - -
135 c DATA FLAG BRANCH, NO PRODUCT
BITS ON — REGISTER 1 ADDRESS
XXXKXXXXX
136 C RLP VALUE MISSING OR INVALID IN
PROGRAM STATEMENT
137 (Currently unassigned) - -
138 F Q8WIDTH CALLED WITH WIDTH
NEGATIVE OR TOO LARGE
139 C SI0O ERROR
This is preceded by the text
of the SIO error message.
140 F FORTRAN SECOND USE OF Q7DFCL1
CONFLICTS WITH USER
141 F - USER USE OF Q7DFCLl CONFLICTS
WITH FORTRAN SECOND
B-30 60457040 B

GLOSSARY | c

Terms used in the main text of this manual are described in
this section. The definitions give the general meanings of
the terms. Precise definitions are given in the main text.
Also, most general terms regarding computers and terms
defined in the American National Standards documents
regarding the FORTRAN language have been excluded.

Array -
An ordered set of variables identified by a single
symbolic name. Referencing a single element of an
array requires the array name plus a subscript that
specifies the element's position in the array.

Array Declarator -
Specifies the dimensions of an array. It consists of an
array name followed by a parenthesized list of integer
constants or simple integer variables that specify the
largest value of each dimension.

ASCII Data -
Characters, each of which has a standard internal
representation. One byte (8 bits) is required for each
character.

ASCII File -
A type of file that can be manipulated with formatted
READ statements, formatted WRITE statements,
PRINT statements, and PUNCH statements.

Binary File -
A type of file that can be manipulated by unformatted
input/output routines.

Bit Data -
A binary value represented in a FORTRAN program as
a binary number in the format B'bb...b' where each b
isa0ora l. Each 0 or 1 becomes a 0 bit or a 1 bit in
the internal representation for the binary value.

Buffer Input/Output -
Input and output statements that cause data to be
transferred between binary files and a buffer area in
main memory.

_Character Data -
An ASCII value represented in a FORTRAN program
by a character string in the format 'ce...c' where
each ¢ is in ASCII. Each character becomes a byte of
ASCII data in the internal representation for the ASCI
value.

Colon Notation -
The notation used to express implied DO subseript
expressions in a subarray. The colons separate the
initial, terminal, and incrementation values for the
implied DO.

Columnwise -
The ordering of the elements in an array declared in a
DIMENSION, COMMON, or explicit type statement
(the other ordering is rowwise). The succession of
subseripts corresponding to the elements of a
columnwise array is with the value of the leftmost
subscript expression varying the fastest.

60457040 D

Compile Time -
The period of time during which the FORTRAN
compiler is reading with the user's program and
producing the relocatable module for the program.
Compilation is initiated by the FORTRAN system
control statement.

Conformability -
Determines whether two subarrays can occur in the
same expression. Two subarrays are conformable if
they contain the same number of implied DO
subscripts and if corresponding implied DO subscript
expressions are identical.

Control Vector -
A bit vector that controls the storing of values into a
vector. The control vector elements are set to a
configuration of 0s and 1s. Control vectors are used in
WHERE statements, block WHERE structures, and
some FORTRAN-supplied funetions.

Controllee File -
A file that consists of object code generated by the
loader. The loader builds a controllee file from
relocatable object code produced by a compiler, plus
relocatable object code of any externally-defined
routines.

Data Element -
A constant, variable, array, or array element.

Data Flag Branch Manager (DFBM) -
A FORTRAN run-time and CYBER 200 library routine
that processes data flag branches when they oceur in
an executing program. A data flag branch is a
hardware funetion of the CYBER 200 computers.

Data Flag Branch (DFB) Register -
Part of the data flag branch hardware. It is a 64-bit
register located in the CYBER 200 central processor.

Declaration -
‘A specification statement that declares attributes of
variables, arrays, or funetion names.

Defining -
Process whereby a variable or array element acquires
a predictable or meaningful value. Definition can take
place . through data initialization, parameter
association, DO statement execution, input statement
execution, or assignment statement execution.
Defining contrasts with naming and referencing.

Descriptor -
A pointer to a vector. In several FORTRAN forms,
the descriptor can be used instead of the vector.

Dominance -
A conventional data type hierarchy determining the
data type of the result of expression evaluation.
Dominated operands are converted during evaluation
to the dominant type. The type complex dominates all
other types, with types double-precision, real, and
integer following in order of decreasing dominance.

Drop File -
A file that is created and maintained for each
executing program. Contains any modified pages of
the program file, any free space attached, and any
read-only data space defined to have temporary write
access.

Dynamic Space -
Virtual memory space available for allocation and
deallocation at execution time. In particular, space
for vectors can be assigned in the dynamie space area
by using the descriptor ASSIGN statement.

Explicit Typing -
Specification of the data type of a variable or array by
means of one of the explicit type statements (the
INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
BIT, CHARACTER, and LOGICAL statements).
Explicit typing overrides any implicit typing.

External Function - .
A function that is defined outside of the program unit
that references it. A reference to an external
funetion generates code in the user's object program
that causes control to transfer to the external
function during program execution. External functions
contrast with in-line funections.

File -
A collection of information that can be defined by
output statements, or referenced by input statements.
Depending on the type of output used to create it, a
file can be either implicit or explicit.

First-Letter Rule -
Default type association for data names according to
the first letter of the name. Type assignment made is
type integer to any name beginning with the letter I,
J, K, L, M, or N, and type real to all others. The
IMPLICIT statement is used to alter these defaults.

Floating-Point -
Refers to the internal representation for real,
double-precision, and complex data.

Generic Funetion -
A function whose result mode depends on the mode of
the argument.

Hexadecimal Data -
A value represented in a FORTRAN program as a
hexadecimal number in the format X'hh...h' where
each h is a hexadecimal digit (one of the digits 0
through 9 or one of the letters A through F). Each
digit becomes the 4-bit binary equivalent in the
internal representation for the value. ‘

Implicit Typing -
Specification of the data type of a variable or array by
means of the first-letter rule for data names.

Index Vector -
An integer vector whose elements are indexes into
another veetor. An index is an ordinal number
indicating element position in a vector. Some of the
FORTRAN-supplied functions use index vectors.

In-Line Funetion -
A type of predefined function. Referencing an in-line
function causes the function's object code to be
inserted directly into the relocatable object code of
the wuser's program during compilation. In-line
functions contrast with external funetions.

Input -
The name of the file read with FORTRAN READ
statements that do not specify a unit number. To be
used, INPUT must be declared in the PROGRAM
statement or in the execution line.

Large Page -
A block of 65536 words in memory starting on a large
page boundary. A loader call parameter can be used
to tell the operating system that the specified modules
are to be placed within a large page loaded on a large
page boundary.

Loader -~

A utility that links relocatable object modules,
together with modules from user libraries or the
system library as needed to satisfy external
references. It then converts external references and
relocatable addresses into the virtual address
constants. Thus, relocatable modules are transformed
into a virtual code controllee file with the (default)
name of GO.

Logical Unit Number -
Integer between 1 and 99 associated with a file by
means of the PROGRAM statement declarations or
execution line declarations, and used to refer to the
file when performing FORTRAN input/output.

Loop-Dependent -

Describes a variable whose value changes as the value
of the control variable of a DO loop passes through the
range specified in the DO statement. A
loop-dependent variable is defined within the range of
the loop, while a loop-independent variable is defined
“(or could be defined with the same effect) outside the
range of the loop.

Loop-Independent -
Describes a variable whose value remains constant
within the range of a DO loop.

Naming -
Identifying data (or a procedure) without necessarily
implying that its current value is to be made available
(or, for procedures, that the procedure actions are to
be made available) during the execution of the
statement in which it is identified. Naming contrasts
with referencing and defining.

Object Module -
The relocatable representation of a program unit
created by compilation of the program unit.. Consists
of object code.

Output -
The name of the file to which all run-time error
messages and records output with PRINT statements
are written. WRITE statements can also be used to
write on OUTPUT if OUTPUT is given a logical unit
number in the PROGRAM statement,

Precedence -
A conventional arithmetic, relational, and logical
operator hierarchy determining the order in which
operations are performed during expression
evaluation. Operator precedence in FORTRAN
corresponds to the mathematical notion of the
precedence of mathematical operations.

Predefined Function -
FORTRAN-supplied code that performs common
manipulations. Predefined functions can be in-line
funetions, external functions, or both in-line and
external functions.

60457040 B

CYBER 200 FORTRAN-SUPPLIED FUNCTIONS LIST E

This appendix contains a list of the funections that are
available for reference for any CYBER 200 FORTRAN
program, as discussed in section 14, For each function,

table E-1 indicates what type of code (in-line, external, or
both) is generated during compilation as a result of
referencing the function.

TABLE E-1. SUPPLIED FUNCTIONS

CSIN

60457040 B

FT_XATAN

DSQRT

Function Category Fast Call Name Function Category Fast Call Name
ABS NX -
Cmes ol b emmees || s x
AIMAG NX - DATAN2 X
AINT NX - DATE o
ALOG X FT_XALOG DBLE NX -
ALOG10 X FT_XLOGT
AMAXO NX -
AMAX1 NX -
AMINO NX -
AMIN1 NX -

ATAN X DLOG X FT_XDLOG
ATAN2 X FT_XATN2 DLOGLO X FT_XDLGT
CABS NX FT_XCABS DMAX1 X -
CCos X FT_XCCOS DMINL X -
CEXP X FT_XCEXP

CLOG X FT_XCLOG

CMPLX NX -

CONJG NX - DSIN X FT_XDSIN
Cos X FT_XCOS

FT_XDSQT

X FT_SCSIN
CSQRT X FT_XCSQT
DABS NX - FLOAT NX -
IABS NX -

TABLE E-1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Name Function Category Fast Call Name

FT_XSIN

E-2 60457040 D

TABLE E-1. SUPPLIED FUNCTIONS (Contd)

Function Category Fast Call Name Function Category Fast Call Name

VATAN2 x| FT_XVAT2 : VELOAT NX FT_XVFLIT

VCABS X ~ FT_XVCAB VIABS NX FT_XVIAB

vCeos X | FT_XVCCS VIDIM X FT_XVDIM

VCEXP X - FI_XVCXP VIFIX M FT_XVFIX

VCLOG X FT_XVCLN VINT B FT_XVINT

VCMPLX X FT_XVCPX ; VISIGN X FT_XVISN

'VCONIG X | . FT_XVCIG6 : VMOD X FT_XVMOD
veos X FT_XVCOS VREAL X FT_XVREL

VCSIN X , FT_XVCSN VSIGN X FT_XVSGN
© VCSQRT X © FT_XVOSR VSIN x FT_XVSIN
VDBLE X ~ FT_XVDBL S VSNGL X FT_XVSGL
~ vpn Rt FT_XVDIM ' vsrt | m | Fxvsar
VEXP g | Fr_xvexe v x | rr_xvoa
; . ‘F,_xvnxz’rj” : i : N

N = 1In-Line

X = External

NX = In-line and external

TThis entry point is used only when the 3 compile option is selected.

60457040 D

CYBER 200 FORTRAN STATEMENT SUMMARY F

This appendix contains a summary of the statement forms described in the main text. Given are the entities
that compose each statement; refer to the main text for the detailed specifications for these entities.
Abbreviations used in this appendix are the following:

v = variable or array element

va= = variable, array element, or ‘array’

s = statement label

iv= = integer variable

n = integer constant, integer symbolic constant, or integer variable
type = INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, ;B‘MII;_' \oj-wCHQBAE‘T“EgEi
p = variable, array, or array declarator

bf = variable, array, function name, or array declarator

k = length of a type character pf

K- = length of all type character pf in statement

a = array declarator

arg = argument (dummy or actual)

/_element

or descriptor array element’

 notation), descriptor,
u = logical unit number
fmt = format designator
jolist = 1input/output Llist

Brackets around an item indicates that the item is optional.

ASSIGNMENT STATEMENTS

Page
integer v = arithmetic expression . 4-1
real v = arithmetic expression 41
comp Lex v = arithmetic expression 4-1
doubEeT‘ v = arithmetic expression : 4-1
precision
4-2
Logical v = logical expression 4-2
11-10

60457040 D F-1 @

FLOW CONTROL STATEMENTS

Page
5-1
(sCyeee,s] 5-1
ASSIGN s TO iv
G0 TO0 (s[,...,s] 5-2
IF (arithmetic expression) s,s,s 5-2
IF (logical expression) statement - 5-2
5-2
D0 s iv = n,nC,n] 5-4
CONTINUE 5-5
PAUSE- Tfi ve-d1g1 5-5
¥ hai
5-5
Page
6-1
6-1
: 6-1
DIMENSION al,...,al 6-2
6-2
COMMON pC,...,p] [.../common block name/p(,...,pll 6-2
COMMON /common block name/ p [,...,p1 [.../common block name/ p[C,...,p1]
COMMON / / pL,ee.,p] [.../common block name/ p C,...,p]]
EQUIVALENCE (va,val,...,val) [,...,(va,val,...,val)] 6-3
EXTERNAL procedure name [,..., procedure namel 6-3
DATA variable l1st/data List/ E,..., variable List/data List/] 6-4
lement is a variable, array element,
; and a data List element is a constant
6-6
PROCEDURE DEFINITION -
Page
-1
statement function name (argl,...,argl) = expression 7-2
Ctypel FUNCTION procedure name (arg[,...,arg]), ' 7-2

@ F-2 60457040 D

Page

CHARACTER FUNCTION procedure name *K (argl,...,argl 7-2
SUBROUTINE procedure name C(argl,...,argl)] 7-6
BLOCK DATA cs”b”‘“’ namej 7-6

'ENTRY procedure name E(argt,...,arg])] 7-6
-~ for subnout1nes,*“v‘ e £
;ENTRY procedure name (argt' o

“.for functions i

RETURN [n]) 5-6
for ‘subroutines

RETURN
for functions

CALL procedure name [(argl,...,arg])] 5-6

INPUT/OUTPUT STATEMENTS

Page
READ (ul,fmt] ' [,END=s] [,ERR=s1) Ciolistl 8~1

1 | L. io -
WRITE (u) iolist v 8-2

WRITE (u,fmt)Liolist]
PRINT fntC,olist] o ; 8-2
- o oo
8-1
8-1
;ENCODE (record Length fmt,name of buffer of records) 4 , "4‘f };,if \ &tf;’ ,f_’if 8-3
:DECODE (record length fmt,name of‘buffer of;records)?;f"'f : i ’; " ! v 8-3
4 ! ' ' s 84
8-4
8-4
8-4
8-4
8-4
REWIND u 8-5
BACKSPACE u , 8-5
ENDFILE u 8-5
s FORMAT (L/...] field spec sep field spec sep eeul/ee.]) 9-2
where sep is a separator (a comma or one or more slashes),
and field spec is a field specification for data conversion

6-2
G-2

60457040 D -3 @

Page
10-2

10-2

Page
11-8

11-9

11-9

11-10
11-10
11-1
11-1
1M1-11
11-13
11-13
11-14

11-13

® F-i 60457040 D

A conversion, input and output 9-5
Actual arguments 7-3
Adjustable dimensions 2-2
Ampersand
Actual arguments 5-6
Namelist input/output 8-4
.AND, 3-3
Apostrophe specification 9-6
Arguments
Actual 7-3
Correspondence of 7-4
Dummy or formal 7-3
Passing of 7-4
Arithmetic
Assignment statement (array) 10-2
Assignment statement (scalar) 4-1
Assignment statement (vector) 11-9
Expressions (scalar) 3-1
Expressions (vector) 11-6
IF statement 5-2
Operators 3-1
Array
Assignment statement 10-2
Declarators 2-2
Dimensions 2-2
Element location 2-3
EQUIVALENCE 6-3
Expression 10-2
In subprogram 7-4
NAMELIST 8-4
Storage 2-2
Subscripts 2-2
Transmission 9-2
Assembly listing 15-1, 15-11
ASSIGN statement
Descriptor 11-8
GO TO 5-1
Assigned GO TO 5-1
Assignment statement, array 10-2
Assignment statement, scalar 4-1
Arithmetic 4-1
Character 4-2
Form in vectorizable loop 11-2
Logical 4-2 :
Assignment statement, vector
Arithmetic 11-9
Bit 11-10
Asterisk
Dummy label 7-4

Dummy vector function result 7-4, 11-13

Specification G-2

Automatic
STACKLIB loop recognition 11-4
Vectorization 11-1 .
Vectorization messages 11-4, B-31

B bit constant . 2-7
B conversion, output 9-5
BACKSPACE statement 8-5
Basic external, see FORTR AN-supplied
Bit
Array initialization 6-4
Assignment statement 11-10
Constants 2-7
Expressions 11-8
Logical operators 11-8
Statement 6-1

60457040 D

Blank common 6-2

Block

Common block 6-2

Data subprogram 7-6

IF statement 5-2

IF structures

WHERE statement 11-10

WHERE structures 11-11
Brackets in PROGRAM statement 7-2
Buffer

And program statement 7-2

Input/output 8-1, G-1

C comment line 1-1
CALL statement 5-6
Calling
Fast calling sequence 12-2
Standard calling sequence 12-1
Subroutine subprogram 5-6
Carriage control 9-6
Character
Assignment statement 4-2
Constants 2-6
Expressions 3-3
Set 2-1, A-1
Type statement 6-1
Coding column significance 1-1
Colon notation 10-1
Column usage 1-1
Columnwise arrays 2-2
Comment line 1-1
Common
Blocks 6-2
EQUIVALENCE 6-3
Statement 6-2
Compatibility G-1
Compilation listings 15-3
Compiler
Call 15-1
Diagnosties B-1
Options 15-1
Supplied functions 14-1
Complex
Constants 2-5
Conversion 9-2
Type statement 6-1
Variables 2-5
Computed GO TO 5-2
Concurrent I/O 13-11

Constants
Bit 2-7
Character 2-6
Complex 2-5

Double-precision 2-5

Hexadecimal 2-6

Hollerith 2-6, G-1

Integer 2-4

Logical 2-6

Real 2-5

Symbolic 2-1, 6-6
Continuation 1-3
CONTINUE statement 5-5
Control

Carriage 9-6

Column (Tn) 9-6

Vector 11-11

Control statement
Flow control 5-1
FORTRAN 15-1
System control 15-1
Conversion :
Data conversion on input/output 9-3
During assignment 4-1
During expression evaluation 3-1
Mixed mode during initialization 6-5
Specifications for input/output 9-3
Cross-reference map 15-3

D conversion, input and output 9-5

Data conversion on input/output 9-3

Data flag branch manager 13-3

DATA statement 6-4

Data type, see Type

Declarations
File declaration 7-1, 12-2, 15-12
Scalar 6-1

. Vector 11-13

DECODE statement 8-3

Descriptor
Data elements 11-6
Statement 11-13

DFBM 13-3

Diagnosties
Compiler failure B-1
Program compilation B-1
Return codes B-1, B-21
Run-time B-21
Vectorizer messages 11-4, B-31

Dimension
Adjustable 2-2, 7-4
Statement 6-2

Division 3-1

DO loops 5-4
Implied in DATA statement 6-5
Implied in I/0 list 9-1
Nested 5-5
Range 5-4

DO statement 5-4

Double-precision
Constants 2-5
Conversion 9-5
Type statement 6-1
Variables 2-5

Drop file 15-12

Dummy arguments 7-3

Dynamie space 11-9

E conversion, input and output 9-4
Editing codes 9-6
ELSE IF statement 5-3
ELSE statement 5-2
ENCODE statement 8-3
END
Line 1-2
Parameter 8-1, 8-2, 8-4
END IF statement 5-3
END WHERE statement 11-11
End-of-file check 8-1
ENDFILE statement 8-5
ENTRY statement 7-6
.EQ. 3-3
EQUIVALENCE statement 6-3
ERR parameter 8-1, 8-2, 8-4
Error codes
Compilation B-1
Run-time B-21

Index-2

Error processing 13-3
Evaluation of expressions 3-2
Example programs 16-1
Execution-time

Diagnosties B-21

File name handling 15-12

Format specification 9-7
Explicit

Type statements 6-1

Vectorization 11-4

‘Exponentiation 3-2

Exponents 2-5
Expressions, array 10-2
Expressions, scalar
Arithmetic 3-1
Character 3-3
Logical 3-3
Relational 3-3
Subseript 2-2
Type of 3-3
Expressions, vector
Arithmetic 11-6
Bit 11-8
Relational 11-7
Extended range of DO loop 5-3
External
Effect of declaration on call 6-3, 12-2
Procedures 7-3
Statement 6-3

F conversion, input and output 9-4

FALSE. 2-6
Fast calls 12-2
File

Declaration 7-1, 12-2, 15-12
Name handling at execution-time 15-12
Tape 7-2 :
First-letter rule 2-2
Flow control statements 5-1
Format
Conversion codes 9-3
Execution-time format specification 9-7
Repeat specification 9-3 :
Slash 9-3
Statement 9-2
Format argument (parameter), see Dummy argument
Formatted input/output
Read 8-1
Write 8-2
FORTRAN
Compiler call 15-1
Supplied funetions 14-1
System control statement 15-1
FREE statement 11-9
Funetion
As actual argument 7-4
FORTRAN-supplied 14-1
Function subprogram 7-5
Referencing a 7-5, 7-7
Statement funetion 7-2
Statement (scalar) T7-2
Statement (vector) 11-13
Vector function 11-13

G conversion, input and output 9-4
.GE. 3-3
GO TO statements
Assigned GO TO 5-1
Computed GO TO 5-2
Unconditional GO TO 5-1
.GT. 3-3

60457040 D

H specification

Format specification 9-6

Hollerith constant 2-6, G-1
Hexadecimal constants 2-6

In bit array initialization 6-4
Hierarchy in expressions 3-1, 3-4
- Hollerith

Constant 2-6, G-1

Format element 9-6

I conversion, input and output 9-4
IF statements

Arithmetic 5-2

Block 5-2

Logical 5-2
Implicit statement 6-1
Implied DO in

DATA statement 6-5

Input/output list 9-1
Index for DO loop 5-4
Initialization

In DATA statement 6-4

In type statement 6-1
Input

BUFFER IN statement G-1

File 7-1

List 9-1

Namelist 8-4

Program data 1-3
Input/output

Lists 9-1

Statements 8-1
Integer

Constants 2-4

Conversion 9-4

Type statement 6-1

Variables 2-4
Intrinsic, see FORTRAN-supplied

L conversion, input and output 9-5
Labeled common 6-2
Use of block data subprogram to initialize 7-6
Labels
In actual argument lists 5-4
In flow control statements 5-1
Map 15-3
Of statements 1-2
.LE. "3-3
Length
Function for buffered I/0 G-2
Specification for character data 2-6, 6-1, 7-4
Library functions 14-1
Listings 15-3
Logiecal
Assignment statement 4-2
* Constants 2-6
Expressions 3-3
IF statement 5-2
Type statement 6-1
Unit numbers 7-1
Variables 2-6
Loops, DO 5-4
Nested 5-5
Vectorizable 11-1
.LT. 3-3 :

Main program 7-1
Map, symbolic or cross-reference 15-3
MDUMP 13-10

60457040 D

Memory-to-memory data transfer 8-3

DECODE 8-3
ENCODE 8-3

Messages

Compiler failure B-1
Program compilation B-1
Run-time B-21
Vectorizer 11-4, B-31

Mixed mode

Arithmetic conversion 3-1, 3-3
In data initialization 6-5

Multiple entry subprograms 7-6

Nam

e
Common block 6-2
File 7-1

Length 2-1
Program 7-1
Variable 2-2

Namelist

.NE.

. Nest

Input data format 8-4
Output data format 8-5
READ 8-4
Statement 8-4
WRITE 8-4

3-3
ing
Block IF structures 5-4
Block WHERE structures 11-13
DO loops 5-5
Parentheses 9-2

Nonstandard RETURN 5-6
NOT. 3-3

Num|

bers

Formats, see Constants
Logical unit 7-1
Statement label 1-2

Object file 15-1
Operators

Arithmetic 3-1
Logical 3-3
Precedence 3-4
Relational 3-3

Optimization 15-3

Options, FORTRAN statement 15-1

.OR.

Order of statements in program unit 1-3

OTH

3-3

ERWISE statement 11-11

- Output

BUFFER OUT statement G-1
File 7-1

List 9-1

Namelist data form 8-4

Of bit data 9-5

Of descriptors 9-5

Record length 8-1
Vectorizer 11-4, B-31

P scale factors 9-6
Parameter, see Argument
PARAMETER statement 6-6

Pare
PAU

ntheses, nesting 9-2
SE statement 5-5

Precedence of operators 3-4
Print

Control characters 9-6
Namelist 8-4
Statement 8-2

Index-3

Procedure communication
Passing values 7-4
Using arguments 7-4
Using common 6-2

Procedure map 15-11

Program

: Assembly language main 12-2
Data for 1-3
IMPL main 12-2
Maps 15-3
Sample 16-1
Statement 7-1
Units 1-1

Punch
File 7-1, 8-2
Namelist 8-4
Statement 8-2

Q7BUFIN 13-12
Q7BUFOUT 13-13
Q7DFCL1 13-9
Q7DFLAGS 13-8
Q7DFOFF 13-8
Q7DFSET 13-8
Q7SEEK 13-13
QTWAIT 13-13
QSWIDTH 13-14
Q8m 13-1

R conversion, input and output 9-5
Range of DO loop 5-4
READ statements
And PROGRAM statement 7-1
Formatted 8-1
Namelist 8-4
Unformatted 8-2
With implied device 8-2
Real
Constant 2-5
Conversion - 9-4
Type statement 6-1
Variable 2-5
Reassignment of file name at execution time 15-12
Record
Length 8-1
Types 8-1
Reference
Function reference 7-5
Reference maps 15-3
Register file
Conventions, FORTRAN 12-1
Map 15-12
Relational
Expressions (scalar) 3-3
Expressions (vector) 11-7
Operators 3-3
Return
Codes B-1, B-21
Statement 5-6
REWIND statement 8-5
Rowwise
Arrays 2-2
Statement 6-2

Sample)
Coding form 1-2
Programs 16-1

Index-4

Secalar
Assignment statements 4-1
Declarations 6-1
Expressions 3-1
Functions 7-5, 14-1
Scale factors 9-6
Semicolon notation 11-5
SEP 13-10
Separator
Colon 10-1
Semicolon 11-5
Slash 6-2, 6-4, 9-2
Slash in FORMAT statement 9-2
Source listing 15-1
Special calls 13-1, D-1
Specification statements 6-1
STACKLIB 13-14
Standard, FORTRAN ANSI 1-1
Statement
Continuation 1-3
Format 1-1

FORTRAN (see individual statement names) ,

Functions 7-2
Label map 15-3
Labels 1-2
Order in program unit 1-3
Summary F-1
STOP statement 5-5
Structure
IF 5-3
Program 1-1
Program unit 7-1
WHERE 11-11
Subarrays 10-1
Subprograms 7-3
Block data 7-6
Function 7-5
Linkage 12-1
Miscellaneous utility 13-1
Multiple entry 7-6
Subprogram communication 7-4
Subroutine 7-5
Subroutine
Making call to 5-6
Statement 7-6
Supplied 13-14
Subscripts
Conventional succession of 2-2
Rowwise succession of 2-2
Subscript expressions 2-2
Symbolic
Constant 2-1, 6-6
Constant map 15-10
Name 2-1
Or cross-reference map 15-3
Syntax F-1
Cheek 15-2
System error processor 13-10

T specification 9-6
Tape files 7-2 .
TAPEn=f parameter 7-1
LJTRUE. 2-6
Type dominance 3-1
Type of
Arithmetic expression 3-3
Function 7-5
Variable 2-2

60457040 D

Type statement

Dimension and length information in

Explicit 6-1
Implicit 6-1

- Unary operators and evaluation 3-1

Unconditional GO TO 5-1
Unformatted
READ 8-2
WRITE 8-3
UNIT G-2
Unit numbers 7-1
Unit positioning
BACKSPACE 8-5
ENDFILE 8-5
REWIND 8-5
UNITn=f parameter 7-1
Utility subprograms 13-1

Variable

6-1

Array dimensions in a subprogram 2-2

FORMAT statements 9-7
Map 15-9
Names and types 2-2

V ariables
Bit 2-7
Character 2-6
Complex 2-5
Double-precision 2-5
Integer 2-4
Logical 2-6
Real 2-5

Vector
Declarations 11-13
Expressions 11-6
Semicolon notation 11-5
Statements 11-8

60457040 D

Vectorization 11-1
Vectorizer messages 11-4, B-31

WHERE statement 11-10

WRITE statement
Formatted 8-2
Namelist 8-4
Unformatted 8-3

X hexadecimal constant 2-6
X specification 9-6
.XOR. 3-3

Z conversion, input and output 9-5

.AND, 3-3

.EQ. 3-3
FALSE., 2-6
.GE. 3-3

.GT. 3-3

.LE., 3-3

LT, 3-3

.NE. 3-3

.NOT. 3-3

.OR. 3-3
.TRUE. 2-6
XOR. 3-3

* 7-4,11-13, G-2
/ 6-2, 6-4, 9-2
& 5-6, 8-4

! specification 9-6

Index-5

CUT ALONG LINE

AA3419 REV. 4,79 PRINTED IN US.A.

COMMENT SHEET

MANUAL TITLE: CYBER 200 FORTRAN Version 3 Reference Manual
PUBLICATION NO.: 60457040) REVISION: D

NAME:

COMPANY:

STREET ADDRESS:

CITY: STATE: ZIP CODE:

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

D Please reply D No reply necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.
FOLD ON DOTTED LINES AND TAPE

APE TAPE
oD FOLD
NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.
POSTAGE WILL BE PAID BY
CONTROL DATA CORPORATION
Publications and Graphics Division
215 Moffett Park Drive
Sunnyvale, California 94086
JLD - B -

CUT ALONG LINE

