
60256020

CDC® CYBER 200 MODEL 205
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL @:~
CONT~OL

DATA

•

COMPUTER INSTRUCTION INDEX

Instruction Page Instruction Page Instruction Page Instruction Page Instruction Page
Code Number Code Number Code Number Code Number Code Number

00

03

04

OS

06

Oil
d9
OA

oc
OD

OE

OF

10

11

12

13

14

lS

16

lC

1D

lE

lF

20

21

22

23

24

2S

26

27

28

2A

2B

2C

2D

2E

2F

30

31

32

33

4-lSS

4-1S3

4-1S3

4-1S4

4-lSS

4-1S6

4-SS

4-1S9

4-1S7

4-1S7

4-1S7

4-1S8

4-42

4-42

4-122

4-122

4-131

4-133

4-133

4-lSO

4-lSO

4-lSl

4-1S3

4-SO

4-SO

4-SO

4-SO

4-SO

4-SO

4-SO

4-SO

4-lSO

4-SO

4-SO

4-34

4-34

4-34

4-Sl

4-3S

4-SS

4-SS

4-S2

34

3S

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

44

4S

46

48

49

4B

4C

4D

4E

4F

so
Sl

S2

S3

S4

SS

S6

SS

S9

SA

SB

SC

SD

SE

SF

60

61

4-3S

4-S8

4-SS

4-123

4-33

4-124

4-124

4-SS

4-122

4-122

4-32

4-32

4-38

4-38

4-38

4-38

4-38

4-38

4-38

4-38

4-38

4-38

4-32

4-32

4-38

4-39

4-39

4-39

4-42

4-47

4-47

4-137

4-39

4-39

4-39

4-42

4-42

4-42

4-122

4-122

4-38

4-38

62

63

64

6S

66

67

68

69

6B

6C

6D

6E

6F

70

71

72

73

74

7S

76

77

78

79

7A

7B

7C

7D

7E

7F

80 t
81 t
82 t
83

84 t
SS t
86 t
87

sat
89t

BA

8Bt

BC t

tThese instructions have sign control capability

4-38

4-39

4-38

4-38

4-38

4-39

4-38

4-38

4-38

4-38

4-36

4-37

4-38

4-39

4-39

4-39

4-42

4-47

4-47

4-42

4-42

4-39

. 4-39

4-39

4-42

4-42

4-123

4-122

4-122

4-73

4-73

4-73

4-74

4-73

4-73

4-73

4-74

4-73

4-73

4-7S

4-73

4-73

SF t
90

91

92

93

94

9S

96

97

98

99

9A

9B

9C

9D

AO t
Alt

A2 t
A4 t
A5 t
A6 t
AS t
A9 t
ABt
AC t
AF t
BO

Bl

B2

B3

B4

BS

B6

B7

BS

BA

BB

BC

4-73

4-76

4-76

4-76

4-83

4-86

4-86

4-83

4-83

4-76

4-76

4-76

4-81

4-83

4-81

4-93

4-93

4-93

4-93

4-93

4-93

4-97

4-97

4-97

4-97

4-97

4-60,63
140,142

4-60,63
140,142

4-60,63
140,142

4-60,63
140,142

4-60,63
140,142

4-60,63
140,142

4-64

4-114

4-110

4-113

4-12S

4-12S

BD

BE

BF

co
Cl

C2

C3

C4

cs
C6

C7

cs
C9

CA

CB

cc
CD

CE

CF t
DO

Dl

D4

DS

D8 t
D9 t
DA

DB

DC

DF

FO

Fl

F2

F3

F4

FS

F6

F7

F8

4-129

4-33

4-33

4-101

4-101

4-101

4-101

4-143

4-143

4-143

4-143

4-144

4-144

4-144

4-144

4-148

4-33

4-33

4-126

4-109

4-107

4-109

4-107

4-149

4-149

4-104

4-lOS

4-116

4-112

4-119

4-119

4-119

4-119

4-119

4-119

4-119

4-119

4-118

602S6020 B

60256020

CDC® CYBER 200 MODEL 205
COMPUTER SYSTEM

HARDWARE REFERENCE MANUAL @:~
CONT~OL

DATA

REVISION RECORD
REVISION DESCRIPTION

01 Preliminary manual.

(09-29-80)

A Manual released. This edition obsoletes all previous editions.

(03-02-81)

B Manual revised to make miscellaneous technical and editorial changes.

(10-15-82)

c Manual revised to include the Series 600 computer system and to document metal-oxide semiconductor

(ll-ll-83) (MOS) memory.

Publication No.
60256020

REVISION LETTERS I, 0, Q, S, X AND Z ARE NOT USED.

IC 1980, 1981, 1982, 1983

by Control Data Corporation

All rights reserved

Printed in the United States of America

ii

Address comments concerning this
manual to:

Control Data Corporation
Publications and Graphics Division
4201 North ~exington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

LIST OF EFFECTIVE PAGES

New features, 11 well 81 changes, deletions, and additions to Information In this manual, are Indicated by bars In the margins or by a dot
near the page number If the entire page 11 affected. A bar by the page number lndlcatea pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover - 2-28 A 4-7 A 4-66 A 4-125 A
Inside Front 2-29 A 4-8 A 4-67 B 4-126 A

Cover B 2-30 A 4-9 B 4-68 A 4-127 B
Title Page - 2-31 A 4-10 A 4-69 B 4-128 A
ii c 2-32 A 4-11 A 4-70 A 4-129 A
iii c 2-33 A 4-12 A 4-71 A 4-130 A
iv c 2-34 A 4-13 A 4-72 A 4-131 A
v c 2-35 A 4-14 A 4-73 A 4-132 A
vi c 2-36 A 4-15 A 4-74 A 4-133 A
vii c 2-37 A 4-16 B 4-75 A 4-134 A
viii c 2-38 A 4-17 A 4-76 A 4-135 A
ix c 2-39 A 4-18 A 4-77 A 4-136 A
x c 2-40 B 4-19 A 4-78 A 4-137 A
xi c 2-41 A 4-20 A 4-79 A 4-138 A
xii c 2-42 B 4-21 A 4-80 A 4-139 B
xiii c 2-43 c 4-22 A 4-81 A 4-140 A
xiv c 2-44 B 4-23 A 4-82 A 4-141 A
Divider - 2-45 A 4-24 A 4-83 A 4-142 A
1-1 c 2-46 B 4-25 B 4-84 A 4-143 A
1-2 c 2-47 c 4-26 A 4-85 A 4-144 A
1-3 c 2-48 c 4-27 B 4-86 A 4-145 A
1-4 c 2-49 c 4-28 A 4-87 A 4-146 A
1-5 c 2-50 c 4-29 B 4-88 A 4-147 A
1-6 c 2-51 c 4-30 A 4-89 A 4-148 B
1-7 c 2-52 c 4-31 A 4-90 A 4-149 A
1-8 c 2-53 c 4-32 A 4-91 A 4-150 B
1-9 c 2-54 c 4-33 A 4-92 A 4-151 A
1-10 c 2-55 c 4-34 A 4-93 A 4-152 A
1-11 c 2-56 c 4-35 B 4-94 A 4-153 A
1-12 c 2-57 c 4-36 A 4-95 A 4-154 B
1-13 c 2-58 c 4-37 A 4-96 A 4-155 B
Divider - 2-59 c 4-38 A 4-97 A 4-156 B
2-1 A 2-60 c 4-39 A 4-98 A 4-157 A
2-2 A 2-61 c 4-40 A 4-99 A 4-158 A
2-3 A 2-62 c 4-41 A 4-100 B 4-159 A
2-4 A 2-63 c 4-42 A 4-101 A Divider -
2-5 A 2-64 c 4-43 A 4-102 A 5-1 A
2-6 A 2-65 c 4-44 A 4-103 A 5-2 A
2-7 c 2-66 c 4-45 A 4-104 A 5-3 A
2-8 A 2-67 c 4-46 A 4-105 A 5-4 A
2-9 A 2-68 c 4-47 B 4-106 A 5-5 A
2-10 A 2-69 c 4-48 A 4-107 A 5-6 A
2-11 A 2-70 c 4-49 A 4-108 A 5-7 A
2-12 A 2-71 c 4-50 A 4-109 A 5-8 A
2-13 A 2-72 c 4-51 A 4-110 A 5-9 A
2-14 B 2-73 c 4-52 A 4-111 A 5-10 A
2-15 B Divider - 4-53 A 4-112 A 5-11 A
2-16 B 3-1 A 4-54 A 4-113 A 5-12 A
2-17 B 3-2 A 4-55 B 4-114 A 5-13 B
2-18 A 3-3 A 4-56 B 4-115 A 5-14 A
2-19 A 3-4 B 4-57 A 4-116 A 5-15 A
2-20 A 3-5 A 4-58 A 4-117 A 5-16 B
2-21 A Divider - 4-59 A 4-118 A 5-17 A
2-22 A 4-1 A 4-60 A 4-119 A 5-18 A
2-23 A 4-2 A 4-61 A 4-120 A 5-19 A
2-24 A 4-3 A 4-62 A 4-121 A 5-20 A
2-25 A 4-4 A 4-63 A 4-122 A 5-21 B
2-26 A 4-5 A 4-64 A 4-123 A 5-22 A
2-27 A 4-6 A 4-65 A 4-124 A 5-23 A

60256020 c iii

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

5-24 B C-8 A
5-25 A C-9 A
5-26 A C-10 A
5-27 A Divider -
5-28 A D-1 A
5-29 A D-2 A
5-30 A D-3 A
5-31 A D-4 A
5-32 A Index-1 B
5-33 A Index-2 B
5-34 B Comment
5-35 A Sheet c
5-36 A Back Cover -
5-37 A
5-38 A
5-39 A
5-40 A
5-41 A
5-42 A
5-43 A
Divider -
A-1 A
A-2 A
A-3 A
A-4 A
A-5 A
A-6 A
A-7 A
A-8 A
A-9 A
A-10 A
A-11 B
A-12 A
A-13 A
A-14 B
A-15 B
A-16 A
A-17 A
A-18 A
A-19 A
Divider -
B-1 A
B-2 B
B-3 A
B-4 B
B-5 A
B-6 A
B-7 A
B-8 B
B-9 A
B-10 A
B-11 A
B-12 A
B-13 A
B-14 A
B-15 A
B-16 A
B-17 A
B-18 A
B-19 A
B-20 A
B-21 A
B-22 A
Divider -
C-1 A
C-2 A
C-3 A
C-4 A
C-5 A
C-6 A
C-7 B

iv 60256020 c

PREFACE

This manual contains hardware reference information for the CDC ® CYBER 200 Model 205
Computer System, Series 400 and Series 600.

RELATED PUBLICATIONS
Other manuals applicable to the CYBER 200 Model 205 Computer System and associated equipment
include the following:

Control Data Publication

CYBER 200 Model 205 Maintenance Software System Reference Manual

CYBER 200 Model 205 General Physical Description Manual

CYBER 200 Model 205 Power and Temperature Protect Systems Manual

CYBER 200 Model 205 Refrigeration System Manual

CYBER 200 Model 205 16K MOS Hardware Maintenance Manual

CYBER 200 Model 205 MOS Memory Cooling Hardware Maintenance Manual

CYBER 18 Computer Systems Overview Manual (section 3 contains a
list of applicable documents)

Programming Reference Aids Manual

These manuals are available from:

Control Data Corporation
Literature and Distribution
308 North Dale Street
St. Paul, MN 55103
(612) 292-2100

60256020 c

Services

Publication Number

60457200

60256120

60433220

60329820

60430030

60430050

60475000

60158600

v

I

SYSTEM PUBLICATION INDEX
THE SYSTEM PUBLICATION INDEX PROVIDES A
LISTING OF THE RELATED CDC CYBER 200 MODEL 205
SERIES 400/600 HARDWARE MANUALS. THIS INDEX ALSO
INCLUDES CYBER 205 DIAGRAM BACKUP CHARTS.

CDC CYBER 200
MODEL 205

HARDWARE MAINTENANCE MANUALS

DIAGRAMS
PUB NO.

BACKUP CHARTS
PART NO.

SCALAR CONTROL (SCC)
2 VOLUMES

60430l20 : 37103049

SCALAR FLOATING POINT (SCF)

' • 371Cl30!2

VECTOR AllDRESS PIPELINE (APL)

' I 37103090

VECTOR STREAM INPUTS (VST)
2 \oOLUllES

60430920 : 37!03074

VECTOR STREAM OUTPllTS (VSW)
VECTOR STRING UNIT (VSS)
60430620 : 371030&>

VECTOR SETUP a RECOVERY
CONTROL (VSU) 2 VOUJllES
60430720 : 371030!53

VECTOR FLOATING POINT (FPL)

60431020 : 37!03093

VECTOR FLOA.TING POINT 1 (Fpt)

&Oell20 : 37mo92

VECTOR FLOATING POINT 2 (FP2)

60431220 : 37103091

MEMORY AND MEMORY INTERFACE (MEM)

60430320 : 37103048

INPllT I OUTPllT a MAINTENANCE (IOMJ
SYSTEM CH-EL ADAPTER {SCA)
60430920 : 37103061

t AVAILABLE FROM:
ADVANCED DESIGN LABS
4290 FERNWOOD STREET
ST. PAUL 1 MINNESOTA !55112

SERIES 400/600
HARDWARE MANUALS

HA- MAINTENANCE MANUALS

GENERAL FUNCTIONAL DESCRIPTION

&

GENERAL PHYSICAL DESCRIPTION

OPERATION

INSTALLATION AND QtECKOUT

604ll420

THEDRY OF OPERATION
(NOT AVAILABLE)

MAJNTENANCE

MOS MEMORY MAINTENANCE

60430030 &

SYSTEM CHANNEL
ADAPTER (SCA)/SYSTEM CHANNEL
EXPANDER(SCX)
60430040

PARTS DATA
(SEE MAINTENANCE, POWER AND
TEMP PROTECT SYSTEM 1 AND
REFRIGERATION SYSTEM MANUALS)

WIRE LISTS
(COMPUTER LISTING)

MOS MEMORY COOLING

60430050

It

tt

SYSTEM MANUALS

CDC CYBER 18 cnFtJT'ER SYSTEMS
OVERVIEW
60479000

ECL I0,000 SERIES MICROCIRCUITS

60417700

CYBER 200 SERIES ANSI CIRCUTS
2 VOLIJllES
602118150

SITE PREPARATION-GENERAL

6027!5!00

SITE PREPARATION- CYBER 20!

60381620

SITE PREA\RATION-PERIPHERAL

602~

MOTOR GENERATOR
(40KV)
60454720

M010R GENERATOR
180KVJ
604558!0

tt CONTACT LITERATURE AND DISTRIBUTION SERVICES
FOR AVAILABILITY OF THIS MANUAL.

vi

SYSTEM MANUALS

CYllER 200 MODEL 205
HARDWME REFERENCE MAM.JAL

s=&020

NAO
HARDWARE IEFEREHCE MANUAL
60458570

NAO
HARDWARE MAINTENANCE MANUAL
2 VOLUMES
60459760

CYBER 200 MODEL 205 MAINTENAN
SOFTWARE SYSTEM REFERENCE

60457200

CY BER 205 POWER AND
TEMPERATURE
Ga~mlosYSTEM

161< MOS MEMORY POWER AND
TEMPERATURE
~s~mli SYSTEM &

REFRIGERATION SYSTEM

60329820

007a4

NOTES

_& CONTAINED IN CYBEFi 205 HARDWARE
REFERENCE MANUAL 60256020.

~ CONTAINED IN CYBER 205 HARDWARE
MAINTENANCE MANUAL 60457220.

& APPLICABLE CYBER 18 DOCMENTATION
LIST IS CONTAINED IN SECTION 3 OF
THIS MANUAL.

& APPLICABLE TO SERIES 800 ONLY.

REVISED 11/ I/ 83

60256020 c

CONTENTS

1. SYSTEM DESCRIPTION 1-1 Associative Microcode Memory
(HMOO) 2-16

Introduction 1-1 Floating-Point and Divide

I
Series 400 1-4 Microcode Memories (DMOO,
Series 600 1-4 GMOO) 2-17

Physical Characteristics 1-4 Vector Processor 2-18
Series 400 1-4 Vector Setup and Recovery
Series 600 1-4 Control (VSU) 2-18
Measurements and Weight 1-7 Inputs to VSU 2-20
Power System 1-7 VSU Operation 2-21
Cooling 1-7 Interrupt and Branch Control 2-22

Functional Characteristics 1-7 Timers 2-23
CPU Characteristics 1-7 Data Flag Register and Control 2-24
Virtual Addressing Mechanism 1-8 VSU Microcodes 2-26
Instruction Repertoire 1-8 Stream Addressing Pipeline (APL) 2-26
Central Memory 1-8 Stream Input Operation 2-28
I/O Ports 1-8 Stream Output Operation 2-28

Major System Component Description 1-9 Vector Stream Input (VST) 2-29
CPU 1-9 VST SECDED I 2-29

Scalar Processor 1-10 VST Expansion Networks 2-29
Vector Processor 1-12 VST Scale Network 2-29
I/O Ports 1-13 Field Length Registers 2-30

Central Memory 1-13 Register File Reads/Writes 2-30
MCU 1-13 Halts/Interrupts 2-30

Vector Floating-Point Pipeline 2-31
Pipeline Data Interchange 2-33
Add Unit 2-33

2. FUNCTIONAL DESCRIPTIONS 2-1 Multiply/Divide Unit 2-34
Shift Unit 2-35

General 2-1 Logical Unit 2-35
CPU Description 2-1 Delay Unit 2-35
Scalar Processor Description 2-2 Vector Floating-Point Control 2-37

Priority Unit 2-2 Vector Stream Output (VSW) 2-37
Bank Busy Checks 2-3 Write One (Pipelines and
Memory Interface Buffer Checks 2-4 Register File) 2-37
Memory Interface Signals 2-4 Write Two (String, VSS) 2-38
Absolute Bounds Address 2-5 Single Error Correction Double Error
Retry Unit 2-5 Detection (SECDED) 2-40

RNS/Branch Unit 2-6 CPU Word Address Bits (36
Instruction Stack 2-6 through 58) 2-40
Instruction Issue Unit 2-6 SECDED Error Latching Hardware 2-41
Associative Unit 2-8 SECDED Usage 2-41

Searching the Page Tables 2-9 Mode 1 2-41
Multiple-Match Fault 2-12 Mode 2 2-41

Load/Store Unit 2-12 Double Error Log (Mode 2A) 2-41
Register File 2-12 SECDED Faults 2-42
Scalar Floating Point 2-13 Block Write Enables 2-42

Scalar Floating-Point Unit Input/Output 2-42
Control Interface 2-13 I/O Ports 2-42

Scalar Processor Microcode System Channel Adapter 2-43
Memories 2-15 CYBER 205 Interface Lines 2-43

Scalar Microcode Memories External Device Transmission
(PMOO, PMOl) 2-15 Sequence 2-45

60256020 c vii

System Communication 2-4S
Storage and Maintenance Access 2-47
I/O Priority 2-47

Central Memory - Series 400 2-47
Central Memory - Series 600 2-48
Memory Operation 2-48
Memory Access and Control 2-S2

Stack Request - Series 400 2-S3
Stack Request - Series 600 2-S3
Bank Address - Series 400 2-S3
Bank Address - Series 600 2-S3
Absolute Address - Series 400 2-S3
Absolute Address - Series 600 2-S3
Clock - Series 400 2-S3
Clock - Series 600 2-S3
Write Control - Series 400 2-S4
Write Control - Series 600 2-S4
Write Data 2-S4
Sync - Series 400 2-S4
Sync - Series 600 2-S4
Master Clear - Series 400 2-S4
Master Clear - Series 600 2-S4
Read Data 2-S4

Memory Interface 2-SS
Memory Degradation 2-SS
Maintenance Control Unit 2-S8
System Channel Interface (SCI) 2-S8

Interfacing Between SCA and SCI 2-S8
Control From A 2-60
Functions From B 2-61

Status Words 2-62
Function Word 2-63

Maintenance Data Transfers 2-64

3. OPERATING INSTRUCTIONS

Controls and Indicators
Startup Procedures
Operating Procedures
System Stop (Normal)
Emergency Stop

4. INSTRUCTION DESCRIPTIONS

~1

3-1
3-1
3-4
3-4
3-S

4-1

General 4-1
Instruction Word Formats 4-1
Instruction Designators 4-1
Unused Bit Areas 4-1
Instruction Types 4-9

Instruction Descriptions 4-31

viii

Index Instructions 4-32
3E Enter (R) with I (16 Bits) 4-32
3F Increase (R) by I (16 Bits) 4-32

4D Half-Word Enter (R) with
I (16 Bits)

4E Half-Word Increase (R)
by I (16 Bits)

CD Half-Word Enter (R) with
I (24 Bits)

CE Half-Word Increase (R)
with I (24 Bits)

BE Enter (R) with I (48 Bits)
BF Increase (R) with I

(48 Bits)
38 Transmit (R Bits 00-lS)

to (T Bits 00-lS)
Register Instructions

2C Logical Exclusive OR (R),
(S) to (T)

2D Logical AND (R), (S), to
(T)

2E Logical Inclusive OR (R),
(S) to (T)

30 Shift (R) Per (S) to (T)
34 Shift (R) Per (S) to (T)
6D Insert Bits from (R) to

(T) Per (S)
6E Extract Bits from (R) to

(T) Per (S)
40/60 Add U; (R) + (S) to (T)
41/61 Add L; (R) + (S) to (T)
42/62 Add N; (R) + (S) to (T)
44/64 Sub U; (R) - (S) to (T)
4S/6S Sub L; (R) - (S) to (T)
46/66 Sub N; (R) - (S) to (T)
48/68 Mpy U; (R) • (S) to (T)
49/69 Mpy L; (R) • (S) to (T)
4B/6B Mpy s; (R) • (S) to (T)
4C/6C Div U; (R) I (S) to (T)
4F/6F Div S; (R) I (S) to (T)
63 Add Address (R) + (S) to

(T)
67 Sub Address (R) - (S) to

(T)
S8/78 Transmit (R) to (T)
S9/79 Absolute (R) to (T)
Sl/71 Floor (R) to (T)
S2/72 Ceiling (R) to (T)
SA/7A Exponent of (R) to (T)
S0/70 Truncate (R) to (T)
SB/7B Pack (R), (S) to (T)
SC Extend 32 Bit (R) to 64

Bit (T)
SD Index Extend 32 Bit (R) to

64 Bit (T)
76 Contract 64 Bit (R) to 32

Bit (T)
77 Rounded Contract 64 Bit

(R) to 32 Bit (T)
7C Length of (R) to (T)

4-32

4-32

4-33

4-33
4-33

4-33

4-33
4-34

4-34

4-34

4-34
4-3S
4-3S

4-36

4-37
4-38
4-38
4-38
4-38
4-38
4-38
4-38
4-38
4-38
4-38
4-38

4-39

4-39
4-39
4-39
4-39
4-39
4-39
4-39
4-42

4-42

4-42

4-42

4-42
4-42

602S6020 c

S3/73 Significant Square Root BS Compare FP, Branch if (A)
of (R) to (T) 4-42 > (X) 4-63

10 Convert BCD to Binary B6 Branch to Immediate Address
Fixed Length 4-42 (R) + I (48 Bits) 4-64

11 Convert Binary to BCD, Vector Instructions 4-64
Fixed Length 4 ... 42 Instruction Formats 4-64

54/74 Adjust Significance of Subfunction Bits 4-66
(R) Per (S) to (T) 4-47 Field Lengths, Base Address,

SS/7S Adjust Exponent of (R) and Offsets 4-68
Per (S) to (T) 4-47 Control Vector 4-69

2A Enter Length of (R) with Vector Instruction Termination 4-70
I (16 Bits) 4-SO Example of Vector Instruction

2B Add to Length Field 4-SO Operation 4-70
Branch Instructions 4-SO 80 Add U; A + B - C 4-73

20/24 Branch if (R) + (S) 81 Add L; A +.B-.C 4-73
(32/64 Bit FP) 4-SO 82 Add N; A+ B.:.....c 4-73

21/2S Branch if (R) • (S) 84 Sub U; A - B-C 4-73
(32/64 Bit FP) 4-SO 8S Sub L; A - B-C 4-73

22/26 Branch if (R) ~ (S) 86 Sub N; A - B-C 4-73
(32/64 Bit FP) 4-SO 88 Mpy U; A e B-C 4-73

23/27 Branch if (R) < (S) 89 Mpy L; A• B-C 4-73
(32/64 Bit FP) 4-SO 8B Mpy S; A e B-C 4-73

2F Register Bit Branch and 8C Div U; A/B-C 4-73
Alter 4-Sl 8F Div S; A/B-C 4-73

33 Data Flag Register Bit 83 Add A; A+ B-C 4-74
Branch and Alter 4-S2 87 Sub A; A - B-C 4-74

3B Data Flag Register Load/ 8A Shift; A/B -c 4-7S
Store 4-SS 98 Transmit A -c 4-76

32 Bit Branch and Alter 4-SS 99 Absolute A-c 4-76
36 Branch and Set (R) to 91 Floor A-c 4-76

Next Instruction 4-58 92 Ceiling A- C 4-76
31 Increase (R) and Branch if 9A Exponent of A- C 4-76

(R) + 0 4-S8 90 Truncate A- C 4-76
3S Decrease (R) and Branch if 9B Pack A, B -c 4-81

(R) + 0 4-58 9D Logical, A, B-c 4-81
09 Exit Force 4-58 9C Extend 32 Bit,A-64
BO Compare Integer, Branch if Bit C 4-83

(A) + (X) • (Z) 4-60 96 Contract 64 Bit A- 32
Bl Compare Integer, Branch if Bit C 4-83

(A) + (X) + (Z) 4-60 97 Rounded Contract 64 Bit
B2 Compare Integer, Branch if A-32 Bit C 4-83

(A) + (X)) (Z) 4-60 93 Significant Square Root of
B3 Compare Integer, Branch if A-C 4-83

(A) + (X) < (Z) 4-60 94 Adjust Significance of A
B4 Compare Integer, Branch if Per B-C 4-86

(A) + (X) < (Z) 4-60 9S Adjust Exponent of A Per
BS Compare Integer, Branch if B-C 4-86

(A) + (X)) (Z) 4-60 Sparse Vector Instructions 4-88
BO Compare FP, Branch if (A) Sparse Vector Instruction

• (X) 4-63 Format 4-91
Bl Compare FP, Branch if (A) Base Addresses and Field
+ (X) 4-63 Lengths 4-92

B2 Compare FP, Branch if (A) Sparse Vector Instruction
~ (X) 4-63 Termination 4-92

B3 Compare FP, Branch if (A) Instructions AO through AF 4-93
< (X) 4-63 AO Add U; A+ B- C 4-93

B4 Compare FP, Branch if (A) Al Add L; A + B- C 4-93
i (X) 4-63 A2 Add N; A + B- C 4-93

602S6020 c ix I

A4 Sub U; A - B-c
A5 Sub L; A - B-C
A6 Sub N; A - B -c
A8 Mpy U; A • B -c
A9 Mpy L; A • B - C
AB Mpy S; A e·B-C
AC Div U; A/B-C
AF Div S; A/B-C

Vector Macro Instructions
CO Select EQ; A • B, Item

Count to (C)
Cl Select NE; A ;. B, Item

Count to (C)
C2 Select GE; A > B, Item

Count to (C) -
C3 Select LT; A < B, Item

Count to (C)
DA Sum (Ao + A1 + A2 +

••• An) to (C) and (C + 1)
DB Product (AQ, A1, A2,

••• An> to C
DS Delta [A(n+l) - An]

-en
Dl Adj. Mean [A(n+l) +An]/

2-cn
DO Average (An + Bn)/

2-cn
D4 Ave. Diff (An - Bn)/

2-Cn
B8 Transmit Reverse A-C
DF Interval A Per B-C
BA Transmit Indexed List-C
B7 Transmit List-Indexed C
DC Vector Dot Product to (C)

and (C + 1)
String Instruction

F8 Move Bytes Left; A-C
Logical String Instructions

FO Logical Exclusive OR A,
B-C

Fl Logical AND A, B-C
F2 Logical Inclusive OR A,

B-C
F3 Logical Stroke, A, B- C
F4 Logical Pierce A, B-C
FS Logical Implication A,

_ B-C
F6 Logical Inhibit A, B-C
F7 Logical Equivalence A,

B-C
Nontypical Instructions

3D Index Multiply (R) • (S)
to (T)

3C Half-Word Index Multiply
(R) • (S) to (T)

SE/7E Load (T) Per (S), (R)
SF/7F Store (T) Per (S), (R)
12/13 Load/Store Byte (T)

Per (S), (R)

4-93
4-93
4-93
4-97
4-97
4-97
4-97
4-97
4-101

4-101

4-101

4-101

4-101

4-104

4-lOS

4-107

4-107

4-109

4-109
4-110
4-112
4-113
4-114

4-116
4-118
4-118
4-119

4-119
4-119

4-119
4-119
4-119

4-119
4-119

4-119
4-122

4-122

4-122
4-122
4-122

4-122

37 ~ransmit Job Interval
Timer to (T)

7D Swap s-T, R-S
39 Transmit Real-Time Clock

to (T)
3A Transmit (R) to Job Inter-

val Timer
BB Mask A, B -c Per Z
BC Compress A ""-C Per Z
CF Arith. Compress A-C

Per B
BD Merge A, B-C; Per Z
14 Bit Compress
lS Bit Merge
14 Bit Mask
S6 Select Link

Compare Instructions (BO through
BS)

BO Compare Integer, Set Condi
tion if (A) + (X) = (Z)

Bl Compare Integer, Set Condi
tion if (A) + (X) ; (Z)

B2 Compare Integer, Set Condi
tion if (A) + (X) > (Z)

B3 Compare Integer, Set Condi
tion if (A) + (X) < (Z)

B4 Compare Integer, Set Condi
tion if (A) + (X) ((Z)

BS Compare Integer, Set Condi
tion if (A) + (X) > (Z)

BO Compare FP, Set Condition
if (A) = (X)

Bl Compare FP, Set Condition
if (A) /< (X)

B2 Compare FP, Set Condition
if (A) > (X)

B3 Compare FP, Set Condition
if (A) < (X)

B4 Compare FP, Set Condition
if (A) < (X)

BS Compare FP, Set Condition
if (A) > (X)

C4 Compare EQ: A = B, Order
Vector-z

CS Compare NE: A ;. B, Order
Vector-z

C6 Compare GE: A~ B, Order
Vector-z

C7 Compare LT: A < B, Order
Vector-z

CB Search EQ; A = B, Index
List-c

C9 Search NE; A f B, Index
List-c

CA Search GE; A ~ B, Index
List-c

CB Search LT; A (B, Index
List-c

4-123
4-123

4-124

4-124
4-12S
4-12S

4-126
4-129
4-131
4-133
4-133
4-137

4-140

4-140

4-140

4-140

4-140

4-140

4-140

4-142

4-142

4-142

4-142

4-142

4-142

4-143

4-143

4-143

4-143

4-144

4-144

4-144

4-144

602S6020 c

..

CC Mask Binary Compare;
(A EQ/NE (B) Per (C)

D8 Max. of A to (C) Item
Count to (B)

D9 Min. of A to (C) Item
Count to (B)

28 Scan Equal
lC Form Repeated Bit Mask

with Leading Zeros
lD Form Repeated Bit Mask

with Leading Ones
lE Count Leading Equals R
lF Count Ones in Field R,

4-148

4-149

4-149
4-150

4-150

4-150
4-151

Count to T 4-153
03 Keypoint - Maintenance 4-153
04 Breakpoint - Maintenance 4-153
05 Void Stack and Branch 4-154

Monitor Instructions 4-155
00 Idle 4-155
06 Fault Teat - Maintenance 4-155
08 Input/Output Per R 4-156
OC Store Associative Registers 4-157
OD Load Associative Registers 4-157
OE Translate External Inter-

rupt
OF Load Keya from (R), Trans

late Address (S) to (T)
OA Transmit (R) to Monitor

Interval Timer

4-157

4-158

4-159

5. PROGRAMMING INFORMATION 5-1

General 5-1
Monitor and Job Modes 5-1

Exchange from Monitor Mode to
Job Mode 5-1

Illegal Instruction in Monitor
Mode 5-2

Exchange from Job Mode to Monitor
Mode 5-2

Interrupts 5-3
Storage Access Interrupts 5-4
External Interrupts 5-5
I/O Channel Interrupt Linea 5-5
Monitor Interval Timer Interrupt 5-6

Invisible Package 5-6
Addressing Modes 5-13

Virtual Addressing 5-13
Pages 5-13
Virtual Address Format 5-14
Associative Words 5-16
Page Table 5-19
Associative Registers 5-19
Space Table 5-19

60256020 c

Operation of Virtual
AddreBBing

Absolute Address
Real-time Counters

Free-Running Clock Counter
Monitor Interval Timer
Job Interval Timer

Register File
Register File Restrictions

Register 0 (Trace Register)
Restrictions

Register 0 Content Resulting

5-21
5-21
S-22
S-23
5-23
S-23
S-24
S-24

S-25

from an Exchange Operation 5-25
Register 0 Content Resulting

from a Swap (7D) Instruction 5-26
Register 0 when Referenced by

an Instruction Designator
Registers 1 and 2 (64-Bit),

2 through 5 (32-Bit)
Restrictions

Registers 0 through 7
(64-Bit), 0 through F
(32-Bit) Monitor Mode
Restrictions

Register 1 (32-Bit) Rightmost
Half of 64-Bit Register 0

Comm.on Register File for Monitor
and Job Modes

Data Flag Branch Register
Data Flags
Mask Bits
Product Bits
Dynamic Inclusive OR for Product

Bits
Scalar Divide, Square Root,

5-26

5-32

5-32

S-32

S-33
S-33
S-34
5-36
5-36

S-37

Convert Instruction Flag 5-37
Data Flag Branch Enable Bit 5-37
Free Data Flags S-37
Data Flag Branch Operation 5-39
Data Flag Branch Timing

Considerations S-39
General Def initiona and Programming

Guides 5-40
Overlap of Operand and Result

Fields 5-40
Illegal Instructions 5-40
Instructions which Cause Undefined

Results or Operations 5-41
Item Count 5-41
Field Length and Offset S-42
Index 5-42
Operand Size Definition 5-42
Restriction on Self-Modifying

Programs S-43
Result Vector 64-Sword Look-Ahead S-43

xi I

A. NUMBER SYSTEMS AND TABLES
B. FLOATING-POINT ARITHMETIC

1-1

1-2

1-3

1-4

1-5
1-6
1-7

2-1

2-2
2-3
2-4
2-5

2-6
2-7

2-8
2-9
2-10
2-11
2-12
2-13
2-14

2-15

2-16

2-17

2-18

2-19

2-20
2-21
4-1
4-2
4-3

xii

CYBER 205 Central Computer
(Series 400)

CYBER 205 Central Computer
(Series 600)

CYBER 205 Central Computer
Floor Plan (Series 400)

CYBER 205 Central Computer
Floor Plan (Series 600)

CYBER 205 Block Diagram
Scalar Processor Block Diagram
Simplified Diagram - Vector

Processor
Functional Components of

Scalar Processor
Page Table Search Examples
Vector Processor
VSU Block Diagram
Floating-Point Pipeline Basic

Block Diagram
Add Unit Block Diagram
Multiply/Divide Unit Block

Diagram
Shift Unit Block Diagram
Logical Unit Block Diagram
Delay Unit Block Diagram
String Unit Old Data
System Channel Adapter
I/O Transmission Sequence
Section Configuration

(Series 400)
Section Configuration

(Series 600)
Two-Sword, Sword, and Word

Configuration
Memory Interface Stack Connec

tions (Series 400)
Memory Interface Module

Connections (Series 600)
Memory Interface Configuration

and Connections for a Two
Pipeline Configuration

System Channel Interface (SCI)
Status Words 2 and 3
Instruction Formats
Instruction Listing Format
Example of Register Content

for an Insert Bits from (R)
to (T) Per (S) Instruction

APPENDIXES

A-1
B-1

C. G BITS AND TERMINATING CONDITIONS C-1
D. DATA FLAG APPLICATIONS TO

FIGURES

1-2

1-3

1-5

1-6
1-10
1-11

1-12

2-3
2-10
2-19
2-20

2-32
2-33

2-34
2-35
2-36
2-36
2-39
2-43
2-45

2-49

2-50

2-51

2-52

2-52

2-55
2-59
2-63
4-2
4-9

4-36

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15
4-16

4-17

4-18

4-19

4-20

4-21

INSTRUCTIONS D-1

Example of Register Content
for an Extract Bits from (R)
to (T) Per (S) Instruction

Example of Register Content
for a Ceiling (R) to (T)
Instruction

Example of Register Content
for a Truncate (R) to (T).
Instruction

Example of Register Content
for an Extend 32-Bit (R)
to 64-Bit (T) Instruction

Example of Register Content
for a Contract 64 Bit (R)
to 32 Bit (T) Instruction

Example of Register Content
for a Rounded Contract 64
Bit (R) to 32 Bit (T)
Instruction

Example of Register Content
for a Convert BCD to Binary,
Fixed-Length Instruction

Example of Register Content
for an Adjust Exponent of
(R) Per (S) to (T)

Example of Bit Branch and
Alter Instruction

General Vector Instruction
Format

Operand Field Length, Base
Address, and Offset Formats

Vector Field Address Format
Control Vector Base Address

Format (Z)
Vector Instruction Example of

Register Content and
Instruction Format

Vector Address Fields for
Vector Instruction Example

Example of an Add A; A + B
- C Instruction

Example of Floor A-C In
struction with Negative
Exponent

Example of a Ceiling A- C
Instruction with Negative
Exponent

4-37

4-40

4-41

4-43

4-44

4-45

4-47

4-49

4-57

4-65

4-68
4-68

4-69

4-71

4-72

4-75

4-77

4-79

60256020 c

4-22 Example of Source and Result
Elements for a Truncate
A- C Instruction

4-23 Example of Pack A, B- C
Instruction

4-24 Example of Extend 32 Bit
A- 64 Bit C Instruction

4-25 Example of Vector Elements for
a Rounded Contract 64 Bit
A-32 Bit C Instruction

4-26 Example of Adjust Exponent of
A Per B-c Operation

4-27 Example of Compressing Initial
Vector Field into Sparse
Vector Field

4-28 General Sparse Vector Instruc
tion Format

4-29 Sparse Vector Field Length and
Base Address Formats

4-30 Example of an Add U; A + B
-c Sparse Vector Instruc
tion when G Bit 1 • 0 and G
Bit 2 • 1 (AND)

4-31 Example of an Add U; A + B
- C Sparse Vector Instruc
tion when G Bit 1 • 1 and G
Bit 2 • 0 (Exclusive OR)

4-32 Example of a Div or Mpy U
Sparse Yector Instruction
when G Bit 1 • 0 and G Bit
2 • 1 (OR)

4-33 Example of Seiect EQ; A•B
Item Count to C

4-34 Example of Delta Instruction
4-35 Example of a Transmit Reverse

A-C Instruction
4-36 Example of a Transmit Indexed

List-C Instruction
4-37- Example of General Format of

a Data String Field

2-1

2-2
2-3
2-4
2-5

2-6

2-7
2-8
2-9

Scalar/Vector Processor
Instruction Responsibility

Data Flag Register
Channel Flag Assignments
Memory Port Transfer Modes
Series 400 Memory Degradation

Bits (4K Chips)
Series 600 Memory Degradation

Bits
Control From A
Functions From B
Status Word 1 Bits and

Descriptions

60256020 c

4-80

4-82

4-84

4-86

4-88

4-90

4-91

4-92

4-95

4-96'

.4-100

4-103
4-108

4-111

4-115

4-118

4-38

4-39

4~40

4-41

4-42

4-43

4-44
4-45

4-46

4-47

4-48

4-49
4-50

5-1

5-2
5-3
5-4
5-5

5-6
5-7

5-8
5-9
5-10

TABLES

2-8
2-24
2-46
2-56

2-56

2-57
2-60
2-61

2-62

2-10

2-11
2-12
3-1
3-2
3-3
4-1
4-2

4-3

4-4

Example of Logical String In
struction (Logical Exclusive
OR) 4-121

Example of Arithmetic Compress
A-C Per B Instruction

Examples of BD Merge Instruc
tion

Example of Bit Compress In
struction

Example of Bit Merge Instruc
tion

Example of Bit Mask Instruc
tion

Link Selection
Example of Compare GE; A~ B;

Order Vector-z Instruction
Example of Search EQ; A • B,

Index List -c
Example of Repeated Bit Mask

.Data Format (Leading Zeros)
Example of Count Leading

Equals Data and Register
Format

Breakpoint Register Format
Register Formats for the OF

Instruction
Invisible Package Word

xx ••• xxE16 Format for
Access Interrupt

Invisible Package Format
Virtual Address Formats
Associative Word Formats
Virtual Address Key Register

Format
Page Table Format
Virtual Address to Absolute

Address
Register File
Virtual/Absolute Address Zero
DFB Register Format

Function Word Bits and
Descriptions

MCU to CPU Data
CPU to MCU Data
Startup Procedures
System Stop
Emergency Stop
Instruction Designators
Instruction List by Function

Code
Instruction List by Instruc

tion Type
Bit Branching Conditions

4-128

4-130

4-132

4-134

4-136
4-138

4-145

4-147

4-151

4-152
4-153

4-158

5-4
5-7
5-15
5-16

5-18
5-20

5-22
5-24
5-25
5-33

2-63
2-65
2-71
3-1
3-4
3-5
4-5

4-10

4-21
4-51

xiii

I

4-5
4-6
4-7
4-8

4-9
4-10
4-11

4-12

4-13
4-14

4-15
4-16
4-17
4-18

4-19
4-20

4-21

4-22

4-23

4-24

I xiv

Bit Altering Conditions
DFBR Bit Branch Conditions
DFBR Bit Altering Conditions
DFBR Branch Address Source

Conditions
Bit Branching Conditions
Bit Altering Conditions
Branch Address Source Condi-

tions
Index Branch Instruction

Designators
Integer Ranges
Index Branch Instruction

Designators
Vector Instruction Designators
Subfunction Bits
Sign Control Subfunction Bits
Sparse Vector Instruction

Designators
G Bit 1 and 2 Operations
Results of the Logical

Operations (AO through A6)
Results of the Logical

Operations (AS through AB)
Results of the Logical

Operations (AC, AF)
Truth Table for Logical String

Instructions
DFB Conditions for FO through

F7 Instructions

4-52
4-53
4-53

4-54
4-56
4-56

4-56

4-62
4-62

4-63
4-65
4-66
4-67

4-91
4-93

4-94

4-98

4-99

4-119

4-120

4-25

4-26

4-24

4-25

4-26

4-27
4-28

4-29
5-1
5-2
5-3
5-4
5-5

5-6

5-7

5-8

Destruction Used in a Link
Operation

Combinations of R, Gl, and G2
Bits 3 and 4 that can be
Selected

DFB Conditions for FO through
F7 Instructions

Instructions Used in a Link
Operation

Combinations of R, Gl and G2
Bits 3 and 4 that can be
Selected

Input Configurations
Search Iteration Starting

Designator Conditions
R Designator Bit Definitions
External Interrupt Lines
Page Size Specification
Associative Word Usage Codes
Lockout Codes
Page Table Restrictions and

Requirements
Results for Specified Register

Zero
Data Flag Register Bit Assign

ments
Free Data Flag Bit Assignments

4-138

4-139

4-120

4-138

4-139
4-139

4-146
4-156
5-5
5-14
5-17
5-18

5-19

5-27

5-34
5-37

60256020 c

SYSTEM DESCRIPTION

INTRODUCTION

The CYBER 205 central computer is a large-scale, high-speed, arithmetic -computing system.
The basic central computer consists of the following components.

• Central processing unit (CPU)

• One million 64-bit words of central memory

• Eight input/output (I/O) ports

• Maintenance control unit (MCU)

The CPU is available in models with 1, 2, or 4 vector pipelines, and 8 I/O ports that are
expandable to 16 I/O ports.

Large-scale integrated (LSI) circuits are used in the CPU to provide high performance and
reliability. The CPU contains separate scalar and vector processors that operate on a
single instruction stream to provide sequential and parallel operations on single bits,
8-bit bytes, and 32-bit or 64-bit operands and vector elements. The central memory is a
high-performance semiconductor memory with single-error correction and double-error
detection (SECDED) on each 32-bit half-word for high-storage integrity. The CYBER 205 uses
a virtual addressing high-speed mapping technique to allow programs to appear logically
contiguous while not being physically contiguous in the storage system.

There are two series of the CYBER 205 computer: the Series 400 and the Series 600. Both
series share the same operating features; the main difference is in the physical
construction of the memories.

Figures 1-1 and 1-2 show the CYBER 205 Central Computer, Series 400 and Series 600,
respectively.

60256020 c 1-1 •

I Figure 1-1. CYBER 205 Central Computer (Series 400)

1-2 60256020 c

Figure 1-2. CYBER 205 Central Computer (Series 600)

60256020 c 1-3 •

SERIES 400

The Series 400 central memory is composed of 4K bipolar random-access memory (RAM) chips.
The basic memory size is 1 million words. The memory is field-expandable to 2 million or 4
million words.

SERIES 600

The Series 600 central memory is composed of 16K metal-oxide semiconductor (MOS) RAM chips.
The basic memory size is 1 million words. The memory is field-expandable to 2, 4, or 8
million words.

I NOTE I
Because of the similarities of the Series
400 and the Series 600 central computers,
hereafter when a feature is discussed that
is common to both series, a general heading
appears at the beginning of the paragraph.
However, when a feature is discussed that is
peculiar to only one series, the heading
Series 400 or Series 600 appears.

PHYSICAL CHARACTERISTICS

Figure 1-3 shows the physical layout of the CYBER 205 Series 400 central memory. Figure 1-4
shows the physical layout of the CYBER 205 Series 600 central computer only. The scalar and
vectors of the Series 400 and the Series 600 are identical.

SERIES 400

Central memory is contained in individual sections around the memory interface (sections J
and K). The basic 1 million, 64-bit words of central memory are contained in sections A and
H. A 1-million-word option is located in sections B and G, and a 2-million-word option is
located in sections C, F, D, and E.

The scalar processor is located in section L. The basic vector processor is located in
sections N, P, and R. Vector floating-point pipeline 2 (optional) is located in section R.
Section S contains optional vector floating-point pipelines 3 and 4. Sections T and U
contain the optional divide enhancements for vector floating-point pipelines 1 and 2, and 3
and 4, respectively.

SERIES 600

Central memory is contained in two or four individual cabinets located on either side of the
memory interface cabinets (section J and K). The basic 1 million, 64-bit words of central
memory are contained in two cabinets (sections A and H). The cabinets are field-expandable
to 2 million words. Four million and 8 million words of central memory are contained in
four cabinets; sections A, B, G, and H •

• 1-4 60256020 c

60256020 c

NOTE:

SECTION
J

SCALAR
PROCESSOR

SECTION
K

SCALAR AND VECTOR FLOORPLAN OF SERIES 400 IDENTICAL TO
FLOORPLAN OF SERIES 800.

Figure 1-3. CYBER 205 Central Computer Floor Plan (Series 400)

1-5 •

MOS
MEMORY

MEMORY
INTERFACE

r--------.....,.-ME_MO_R_Y__, ______ M_E_MO_R_Y ______ - ---,

I MEMORY MEMORY INTERFACE INTERFACE MEMORY MEMORY I I SECTION SECTION SECTION SECTION SECTION SECTION I
I B A J K H GI
I I .. _____ _ ________ .J

SCALAR
PflOCESSOR

MAINTENANCE
CONTROL

UNIT t..._ ____ __.

1/0 & VECTOR SETUP AND
RECOVERY
SECTION N

NOTES:

VECTOR
PROCESSOR

VECTOR STREAM AND
STRING

SECTION P

SECTIONS A AND H - 1-MI LLION WORDS AND
2-MI LLION WORDS OPTION

SECTIONS A, B, G, AND H - 4-MILLION WORDS OPTION AND ~D
8-MI LLION WORDS OPTION

tMAINTENANCE CONTROL UNIT NOT DRAWN TO SCALE.
LOCATION OPTIONAL.

00004-1

Figure 1-4. CYBER 205 Central Computer Floor Plan (Series 600)

• 1-6 60256020 c

MEASUREMENTS AND WEIGHT

For a complete physical description of the CYBER 200 Model 205 central computer, refer to
the CYBER 205 General Physical Description manual listed in the preface.

POWER SYSTEM

For a description of the power system, refer to the CYBER 200 Model 205 Power and
Temperature Protect Systems manual listed in the preface.

COOLING

For a description of the cooling system, refer to the CYBER 200 Model 205 Refrigeration
System manual (Series 400) or the CYBER 200 Model 205 MOS Memory Cooling Hardware
Maintenance manual (Series 600) listed in the preface.

FUNCTIONAL CHARACTERISTICS
The functional characteristics of the CYBER 205 are summarized below. The functional
characteristics are described in detail in sections 2 and 4.

CPU CHARACTERISTICS

• Synchronous internal logic with a 20-nanosecond clock period (minor cycle).

• Two's complement arithmetic.

• One, two, or four parallel vector pipelines.

• Hardware macro instructions.

• Sequential stream processing.

• Bit, byte, half-word, or 64-bit floating-point operations.

• Independent scalar and vector instruction execution for no-conflict operations.

• High-speed register file with 256 64-bit registers (2 reads and 1 write per clock
period).

• Sixty-four 64-bit word instruction stack for the optimization of programmed scalar
loop iteration.

• Monitor and job modes.

60256020 c 1-7

VIRTUAL ADDRESSING MECHANISM

• Forty-eight-bit virtual address.

• Program protection via lock and key.

• Sixteen registers for simultaneous virtual to physical mapping.

• Selectable page sizes - small page sizes of 512, 2048, and 8192 words and large page
size of 65 536 words.

INSTRUCTION REPERTOIRE

• Thirty-two-bit and 64-bit floating-point arithmetic.

• Vector and sparse vector.

• Vector macros (for example, dot products, inner products, and so on).

• Dot product.

• Square root instructions.

• Integer arithmetic.

CENTRAL MEMORY

• SO-nanosecond access time.

• SECDED for each 32 bits for high reliability.

• Memory sizes of 1, 2, and 4 million 64-bit words (Series 400).

• Memory sizes of 1, 2, 4, and 8 million 64-bit words (Series 600).

• High memory bandwidth to support scalar, and simultaneous vector and I/O operations.

• Data transferred to/from memory in 32-bit half-words, 64-bit words, 512-bit super
words (sword), or 1024-bit two-sword quantities.

1/0 PORTS

• I/O ports expandable to 16.

• Each port capable of 200 x 106 bits per second maximum transfer rate.

• Front-end computer for communications and job entry.

• One channel used for MCU.

1-8 60256020 c

MAJOR SYSTEM COMPONENT DESCRl~TION
The following are the CYBER 205 major system components. They are described in detail in
the following paragraphs.

• CPU

• Central memory

• MCU

Figure 1-5 shows the CYBER 205 basic block diagram.

The CPU contains the scalar processor, vector processor, and I/O ports.

60256020 c 1-9

I

CENTRAL PROCESSOR
UNIT

CENTRAL i... VECTOR
~ MEMORY .

PROCESSOR

I PIPELINE I 1
MILLION ~

:-- ~

WORDS :--

MEMORY ~IPELIN~
INTERFACE

I I r-,
1 14- - ___, -1 :!IPELIN~ I I MILLION r- --i ~

WORDS

~O~N~ I 'P1PruNEI I LJ- :.J r-, (O~N!.J
2 I MILLION r-

WORDS
(OPTION)

L - .:.J ..._ SCALAR H PROCESSOR

r-;--,
I MILLION l

WORDS I (OPTION- I ~ EIGHT SERIES 600 ~NPUT/OUTPUT ~ Lo~~ PORTS

EIGHT
rNPUT/OUTPUTI

PORTS

MAINTENANCE
LO~N~

CONTROL i.._
~

UNIT

I Figure 1-5. CYBER 205 Block Diagram

Scalar

The scalar processor performs the primary system control functions of the CPU in addition to I providing the execution of scalar operations. Figure 1-6 shows the scalar processor block
diagram.

The scalar processor contains a 64-word instruction stack segmented into 8 superwords
(swords). The instruction stack is capable of holding up to 128 32-bit instructions, 64
64-bit instructions, or a combination of both, and provides a 16-word instruction read ahead.

1-10 60256020 c

VECTOR PROCESSOR

'

-"" INSTRUCTION ·ISSUE

l STACK UNIT
FUNCTIONAL

UNITS

MEMORY
MEMORY
CONTROL l

t -""
LOAD/

i... -"" REGISTER
~ STORE i-- ~ FILE -

UNIT

~

~
VECTOR PROCESSOR

Figure 1-6. Scalar Processor Block Diagram

The issue unit retrieves instructions from the instruction stack. The issue unit decodes
all instructions. initiates scalar operations with the appropriate functional unit. and
directs decoded vector/string instructions to the vector processor for execution. The issue
unit is capable of issuing instructions at the rate of one instruction every minor cycle.

The register file provides 256 64-bit registers for use in instruction and operand
addressing. indexing. field lengths. and as source and destination registers for the
functional unit operands and results. The register file is capable of two reads and one
write every minor cycle.

The scalar arithmetic unit contains independent functional units to attain high scalar
performance. These units are used for floating-point arithmetic and logical operations.
The functional units can accept a new pair of operands every minor cycle. The functional
units receive their operands from and transmit their results to the register file.

The load/store unit receives instructions from the issue unit. It controls data transfers
between central memory and the register file. It is capable of accepting one load request
every minor cycle or one store request every two minor cycles.

Included in the memory control area are the virtual memory addressing mechanism and the
priority unit. Virtual addressing converts a logical address to an absolute storage address
to allow programs to appear logically contiguous to the user while not being physically
contiguous in the storage system. The priority unit receives memory requests from various
sections of the system and resolves memory conflicts.

60256020 c 1-11

I

Vector Processor

The CYBER 205 vector processor is used to process arrays or strings of data. High
performance is achieved by specialized hardware operating in parallel to accomplish what
otherwise would require issuing a sequence of machine instructions. Thus, for example, two
sets of operands can be multiplied to produce a third set of results by issuing a single
instruction to the vector processor.

I A simplified functional diagram of the vector processor is shown in figure 1-7. Vector
instructions are received from the issue unit of the scalar processor. These instructions
specify the operation to be performed and the addresses of the operands and results. The
vector processor uses buffers in the vector stream input and output units to position
operands and results for transmission between the processing elements and memory.

I

SCALAR
PROCESSOR

MEMORY

.....

..... -..-

~

w

MEMORY
CONTROL

~

VECTOR CONTROL UNIT

' ~

~. ~

VECTOR
...... STREAM

INPUT

VECTOR

I PIPELINES

STRING
UNIT

I
VECTOR
STREAM i....

UNIT

Figure 1-7. Simplified Diagram - Vector Processor

The vector processor has two types of processing elements. The first uses one, two, or four
vector pipelines, depending upon the model. When more than one vector pipeline is included,
these units operate in parallel on alternating data elements. With the exception of divide
and square root, these pipelines each accept a new pair of operands every minor cycle for
64-bit floating-point operations. For 32-bit floating-point operations, the rate is doubled.

The second type of processing element is the string unit. The string unit performs logical
operations on strings of data to allow bit operations on bit boundaries.

1-12 60256020 c

1/0 Ports

The I/O ports provide the control and data paths for communication between central memory
and the external devices. The standard configuration provides eight I/O ports, with an
option for eight more. Each I/O port has a maximum transfer rate of 200 megabits.

Channel interfaces for attachment of the MCU, peripherals, and front end computers are
accomplished by the use of SCA.

CENTRAL MEMORY

Central memory is a random-access memory using bipolar, lK-bit or 4K-bit integrated circuits I
(Series 400) or 16K MOS circuits (Series 600). The memory words are 78 bits providing a
64-bit data word with 7 bits of SECDED for each 32-bit half-word. The basic memory size is
1 million words with expansions to 2 and 4 million words (Series 400), and 2, 4, or 8
million words (Series 600 only).

MCU

The primary purpose of the MCU is to support the reliability, availability, and
maintainability of the system. MCU provides system autoload and system performance
monitoring capabilities. The MCU also provides the capability of loading, controlling, and
monitoring the central processing unit. It is connected to the CPU through a standard I/O
channel by the SCA.

60256020 c 1-13

FUNCTIONAL DESCRIPTIONS 2

GENERAL
This section provides a detailed description of the CYBER 205 major system components.

This section starts with a general description of the CPU and then gives a detailed
description of the scalar processor, the vector processor, SECDED, I/O ports, central
memory, and the MCU.

When reading this section, it should be noted that the following references appear
throughout the text.

Half-word

Word

Superword (sword)

Two-sword

CPU DESCRIPTION

32 bits

64 bits

512 bits (eight words)

1024 bits

The CPU contains all string and streaming_ instruction control, arithmetic units, storage
control, and I/O communication control. The CPU consists of the following functional areas.

• Scalar processor

• Vector processor

• I/O ports

The scalar processor is physically contained in a cabinet next to the central memory in
order to reduce transfer delays and gain performance. The scalar processor contains the
initial instruction decode, five independent arithmetic functional units, a semiconductor
register file, and the high performance load/store pipeline unit.

The vector processor performs multioperand instruction by streaming data through functional
units. The vector processor contains setup and recovery control, stream addressing
pipelines, stream inputs and outputs, input/output control, and one floating-point pipeline
with an option of one or three additional pipes.

The eight I/O ports (with an option of eight additional ports) provide the CPU with the
physical connection to the external devices.

60256020 A 2-1

The scalar and vector processors each contain independent instruction controls. Therefore,
operating on a single instruction stream, the scalar processor can execute scalar
instructions in parallel with most vector instructions if there are no memory references to
load or store operands from the register file. There are two exceptions to the parallel
execution of vector and scalar instructions on a single instruction stream.

• The scalar processor cannot execute any scalar register file load or store
instructions in parallel with a vector operation requiring references to memory (OF,
12, 13, 5E, 5F, 7E, and 7F instructions).

• The scalar processor cannot
executes an instruction that
instructions).

issue any
actively

instruction while
uses the register

the
file

vector processor
(7D, B7, or BA

Register conflict within the register file always delays the issue of a vector or scalar
instruction.

SCALAR PROCESSOR DESCRIPTION

The scalar processor provides the central computer instruction control. The
processor receives and decodes all instructions from central memory, directs
vector/string instructions to the vector processor for execution, and provides
buffering and execution of the load and store instructions.

scalar
decoded
orderly

Figure 2-1 shows the functional units of the scalar processor. Each functional unit is
described in this section.

PRIORITY UNIT

The priority unit receives memory requests from the various functional units of the
machine. After screening out nonvalid requests, the priority unit interprets the requests
and drives the memory interface to produce the proper memory activity. A memory request
consists of a request line and a set of control bits defining the amount of data to be
transferred and whether a read or write is to be performed.

The priority unit upon receiving a valid memory request, responds with an accept to the
requesting source to indicate that memory activity is initiated. If, due to a memory busy,
the request is not immediately honored, the source or the retry unit in priority repeats the
request.

If two requests arrive at the priority unit simultaneously, only one is processed, the other
request receives no accept. In all cases of simultaneous request, I/O initiates one of the
requests and is always given the accept. Because the I/O request has the highest priority,
and is always honored immediately, an I/O accept line is not needed.

When a request has passed the simultaneous request check, an accept is returned to the
source, provided the following two conditions are met.

1. The request has an absolute address or virtual address for which a match exists in
the associative register. (Refer to the associative unit description for the
requirements of a virtual address match.)

2. There is no bank busy conflict.

2-2 60256020 A

TO VECTOR PROCESSOR SCALAR FLOATING

·~
POINT

~
.I)_

RNS/ INSTRUCTION INSTRUCTION

T

BRANCH f-- STACK ~ ISSUE
UNIT (64WORDS) UNIT

EJ ~

J \: ~t-
T

· MEMORY
PRIORITY i.-... UNIT

I.& LOGICAL
UNIT

SINGLE
CYCLE

' ·~
UNIT

J l • •
LOAD/ REGISTER DIVIDE/

ASSOCIATIVE 14- -- _. SQRT/
UNIT STORE FILE CONVERT UNIT \2!56 WORDS) UNIT

-{ l EY: 1 K
..... DATA OR ADDRESS

- CONTROL
VECTOR PROCESSOR

Fil'lr• 2-1. Functional Coaponents of Scalar Processor

Requests into the priority unit are either immediate issue or delayed issue. Immediate
issue requests consist of all read requests (except I/O read) and short write requests
(half-word or word). Delayed issue requests are the long writes (sword or two-sword) which
issue out of the priority unit four minor cycles later than an immediate issue request.
This extra delay allows the data buffers in the memory interface to accumulate a full sword
or two-sword of data before cycling memory. The priority unit also delays I/O read making
I/O issue time independent of the read/write nature of the. request. The priority unit
immediately returns an accept, if necessary, even if it is delaying the issue of the request.

Bank Busy Checks

Because the memory busy time is four minor cycles, the priority unit issues a request to a
particular bank of memory at intervals of no less than four minor cycles.

The priority unit conducts two bank busy checks termed the preissue check and the postissue
check to prevent an immediate issue request from being honored if the request occurs during
a bank busy.

60256020 A 2-3

When the priority unit accepts a delayed issue request, the banks of memory to be activated
by that request are immediately reserved for three minor cycles. The preissue check
compares the banks required by immediate issue requests against the banks reserved by
pending delayed issue requests; a match prevents the immediate issue request from being
honored.

The postissue check detects requests of a particular issue type attempting to reference a
bank which has been referenced, within three minor cycles, by another request of the same
issue type. An immediate issue request to bank X will be checked against bank X reference
by other immediate issue requests within the preceding three minor cycles. Similarly, a
delayed issue request will have its bank compared against the banks of other delayed issue
requests arriving in the preceding three minor cycles. Detection by the postissue check of
a bank conflict prevents a request from being honored.

A third check performed by the bank busy hardware is actually an address bus busy test.
There is only one address bus from the priority unit to the memory interface, so if an
immediate issue request follows a delayed issue request by four minor cycles, the immediate
issue request will not be honored since it would require the address bus at the same time
that the delayed issue request is utilizing the bus.

A single request may activate more than one memory bank. Since each successive half-word
resides in a different bank, a word, sword, or two-sword request will activate 2, 16, or 32
banks of memory, respectively. If a write request specified a sword of data, then all 16 of
the referenced banks must be found clear for both the preissue and postissue busy checks.
Only those banks activated by a request are made busy, and only those banks required by a
request are checked for busy.

Load/store (L/S) operands must be processed in the correct sequence. Any L/S request
occurring in the three-minor cycle period following the initial request that was not
accepted will be ignored by the priority unit.

Memory Interface Buffer Checks

The memory interface contains three read buffers and two write buffers for assembling and
disassembling data. The scalar and vector processors control these read and write buffers.
However, because a conflict can exist at read buffer three, the priority unit checks all
read buffer three requests to ensure it will not be in conflict with a prior I/O request.

Memory Interface Signals·

After an accept signal is honored by the priority unit, appropriate control signals are sent
to the memory interface causing the requested data transfer to be performed. These control
signals are grouped as follows:

2-4

• Buffer control signals Provide the data buffer in the memory interface with
information concerning the direction and quantity of data flow.

• Nine bank address bits - Define the lowest-numbered memory bank involved in the data
transfer.

• Cycle memory signal - Causes the preselected memory banks to cycle •

60256020 A

Absolute Bounds Addreu

The absolute bounds address unit notifies the MCU of a memory reference (read or write) to a
specified block of memory. The block of memory is specified by an upper bounds sword
address and a lower bounds sword address. The addresses are absolute sword addresses. The
bounds unit provides resolution to the sword level for a one or two-pipeline machine and
resolution to the two-sword level for a four-pipeline machine.

There are two classes referenced: read and/or write requests and CPU and/or I/O requests
(all non-I/O requests are CPU requests). None of the requests are mutually exclusive.

The MCU transmits the false state of the upper bounds limit and the true state of the lower
bounds limit on two separate 24-bit trunks, DFW4 and DFW5 (refer to Maintenance Data
Transfers in this section for a listing of the channel bits). The 24 bits correspond to
address bits 35 through 58. Referring to the true state of both limits, bits 55 through 58
must always be zero. Also, bit 54 must be a zero if the CPU is configured for a
four-pipeline operation.

An address is in bounds if it is greater than or equal to lower bounds, and less than upper
bounds. Any bounds hit is latched until the occurrence of a master clear or an error clear
from the MCU.

Retry Unit

All vector memory requests originate in the vector APL unit. When an APL request is not
honored (no accept returned), it is the function of the retry unit to automatically
reinitiate the request to the priority unit. The APL unit has seven separate requests which
it transmits to the priority unit. They are: Read 1, Read 2, Read 3, RNS, Look-ahead,
Write 1, and Write 2.

When an APL request is not honored, the retry unit immediately directs the APL unit to
terminate the request stream. Because as many as three additional requests may arrive
before the flow ceases, the retry unit contains a retry buffer with capacity to hold four
requests, along with their control bits and addresses. In order to prevent operands from
being processed in the wrong sequence, the retry unit directs the associative unit and
priority unit to ignore all APL requests received during the three minor cycles after the
initial unhonored request.

During the fourth minor cycle, the retry unit retransmits the initial request and bank
address (via the load/store unit) to the priority unit, and transmits (via the load/store
unit) the nonbank address to the associative unit. The remaining requests in the retry
buffer flow out to the priority unit and the associative unit in successive minor cycles,
unless the original request again receives no accept. In this case, the entire retry
sequence will be repeated.

When the initial request eventually receives an accept, the request stream hold to APL is
dropped, and the first new request arrives just after the last stored request is transmitted
from the retry buffer.

After the initial request is honored, any subsequent request, including those in the retry
buffer, may cause a retry sequence comprised of the request itself and any other requests
arriving in the next three minor cycles.

60256020 A 2-5

When a virtual APL request cannot be mapped into absolute memory by the associative unit, no
accept will be received and the retry sequence is initiated. Before the unhonored request
is retransmitted the associative unit may inform the retry unit that a space table search is
required. In this case, the retry sequence is suspended, and the address of the original
request is locked into a register which presents that address to the associative unit (via
the load/store unit) for the duration of the space table search. If a match is found in the
space table, the retry sequence is resumed.

If an end of table is encountered in the space table before a match is found, the
associative unit sends the retry unit an access interrupt signal, and terminates the space
table search. The retry sequence is resumed for write requests only; no read requests
residing in the retry buffer, or received later from APL, are processed. Also, if a B7
instruction is being executed, no write requests will be processed. This access interrupt
mode of processing continues until all of the buffer busy lines from APL drop, indicating
that the exchange operation is iunninent.

RNS/BRANCH UNIT

The read next sword (RNS) portion of the RNS/BRANCH unit provides the control for loading
the instruction stack. To maintain the instruction issue rate, a two-sword look-ahead is
done by reading the two swords following the sword being executed. Issue of instructions is
not blocked if the swords following the look-ahead are not in the stack.

The branch portion performs branch condition testing and executes the branch instructions.
An address is maintained for each of the eight swords in the instruction stack, allowing
out-of-the-stack jumps to be taken without voiding the stack. For example, it is possible
to call a subroutine of up to three swords (48 instructions of 32 bits each) several times
from a three-sword instruction stream and never jump out of the stack.

INSTRUCTION STACK

The semiconductor instruction stack provides the buffering for eight virtually addressed
swords (512 bits), which can contain up to 128 32-bit instructions, 64 64-bit instructions
or a combination of each. The instruction stack can contain up to six nonadjacent swords
with two swords lookahead.

INSTRUCTION ISSUE UN IT

The instruction issue unit decodes all instructions and directs decoded vector/string
instructions to the vector processor for execution. The instruction issue unit knows the
length of scalar operations and schedules operands to and from the register file in the
scalar processor. This is accomplished over a three minor cycle pipelined period.

The instruction issue unit issues instructions at a rate of one instruction per minor cycle,
unless it is blocked by instruction or memory conflicts. The instruction issue pipe must
resolve three register file conflicts:

Source operand conflict

2-6

An instruction requiring the result of a previous
instruction as an input operand must wait until the
operand is available in register file.

60256020 A

Output operand conflict

Register file write conflict

An instruction result, destined for the same register
file location as a previously issued instruction must
wait until the previous instruction stores its result
into the register file, unless it also has a source
operand conflict; then it will go at the shortstop
time.t

An instruction result, arriving at the register file
at the same minor cycle as the result of a previously
issued but slower instruction, cannot issue.

To resolve these conflicts, 16 result address registers (RARs) hold the register file
addresses for the output operands of previously issued instructions. Before an instruction
is issued, its source operand addresses are simultaneously checked against all 16 RARs
(source operand conflict) and its output operand address is checked against the operand
result position timing chain (output operand and register file write conflicts) for possible
conflicts. If a conflict exists, the issue is blocked until the conflict is resolved.

The instruction issue unit allows parallel operation of scalar and most vector/string
instructions provided there are no register file reference conflicts and no central memory 1 references made by the scalar instruction.

The register instructions 7D and B7/BA with G bit 7 set do not permit parallel operation.
This parallel load operation requires two separate program address counters: one for
vector/string instructions and one for scalar instructions. On interrupt, these counters
are stored in the invisible packagett along with the operation code and G bits designator of
the vector in process. The content of the scalar processor's current instruction register
is also stored in the invisible package. This allows for program restart following an
interrupt.

The parallel operation of the scalar and vector processors is controlled by the instruction
issue unit as follows: when the instruction control unit in the scalar processor decodes a
vector instruction and the vector processor is not busy, the scalar processor immediately
supplies the vector processor with the decoded instruction function code and the contents of
all register file locations per the instruction descriptors. As soon as the vector
processor is not busy, it begins to process the vector instruction and releases the scalar
processor. The scalar processor reserves any register file locations that the vector
instruction may want to use as index, field length, and so forth, and continues with the
next instruction in the instruction control unit.

Table 2-1 indicates which instructions are executed in the scalar processor and which in the
vector processor.

tshortstop is defined in this section under scalar floating point.
ttThe invisible package contalns the address and control information necessary to begin a

new job or to continue a job interrupted during execution in job mode. Refer to section 5
for description.

60256020 c 2-7

TABLE 2-1. SCALAR/VECTOR PROCESSOR INSTRUCTION RESPONSIBILITY

First Digit of
Instruction Code Second Digit of Instruction Code

0 1 2 3 4 5 6 7 8 9 A B c D E F

0 s I I s s s s I v v v I s s v s
1 s s s s v v v I I I I I v v v v
2 s s s s s s s s v I s s s s s s
3 s s s v s s s v s v v v s s s s

4 s s s I s s s I s s I s s s s s
5 s s s s s s s I s s s s s s s s
6 s s s s s s s s s s I s s s s s
7 s s s s s s s s s s s s s v s s

8 v v v v v v v v v v v v v I I v
9 v v v v v v v v v v v v v v I I
A v v v I v v v I v v I v v I I v
B s s s s s s s v v I v v v v s s

c v v v v v v v v v v v v v s s v
D v v I I v v I I v v v v v I I v
E I I I I I I I I I I I I I I I I
F v v v v v v v v v I I I I I I I

s Executed within the scalar processor. (Note that data flag information is
passed to the data flag register in the vector processor for appropriate
instructions.)

v The scalar processor initiates the vector processor to execute portions (or
all) of the instructions.

I Illegal instruction (processed by scalar in monitor mode, by vector in job
mode).

ASSOCIATIVE UNIT

The associative unit provides the page table virtual addressing mechanism consisting of 16
associative address registers and a space table extension (located in a restricted area of
central memory). Virtual addressing converts a logical address to an absolute storage
address to allow programs to appear logically contiguous to the user while being physically
not contiguous in the storage system.

The page table is an ordered list of the associative words necessary to define the pages in
absolute memory. The page table uses a last used push down algorithm, thus the most
recently used associative words are at the top of the table. The space table is an
extension of the page table containing the associative words necessary to define pages in
memory that have not been in recent use. l'he associative unit is capable of comparing the
associative registers in one minor cycle and the space table entries at the rate of two
entries every minor cycle.

2-8 60256020 A

For the user, the paging mechanism and the operating system software permit the most active
portions (pages) of a user program to reside in the central memory. These program portions
can reside in nonadjacent areas of the central memory. The virtual addressing facility,
through the page table, makes these areas of memory appear to be adjacent. The paging
mechanism ensures that a large number of users can have simultaneous access to the central
computer with minimum page swapping overhead.

Searching the Page Tables

The 16 associative registers (ARs), labeled 00 through 15, are each one word in length.
They are loaded from absolute bit addresses 400016 through 43FF16 (word addresses
10016 through 10Fl6) of memory by a load AR (OD) instruction. They can also be stored
into the same abso ute addresses by a store AR (OC) instruction.

The associative words in the ARs are moved dynamically using the following scheme. Whenever
a virtual address is presented for association and a match (hit) is made, the content of the
AR containing the hit is moved to the top AR (AROO). Simultaneously, the content of each
AR, from AROO to (but not including) the hit AR, is moved down one AR (for example, 00 to
01, 01 to 02, 02 to 03, and so on). Thus, the associative words in AROO through AR15 are in
descending order of most recent use. If the end-of-table (END) is contained in the ARs and
no hit is made, the contents of the ARs remain unchanged and access interrupt is taken,
unless the request is for a read-ahead sword of instructions negated by the branch.
Whenever an address is presented with no hit made and no END is contained in the ARs, a
search through the space table is begun using a ripple method. Each AR from AROO through 14
is moved down one AR and AR15 is placed in a buffer register, A NULL (vacant location, no
entry) is placed into AROO and then AROO through AR15 are stored in memory locations
400016 through 43FF16• The content of the space table is rippled through the ARs. The
first associative word of the space table is read and examined; its spot in memory is filled
by the old content of the buffer register (AR15). If the first word read from the space
table is not a hit, the second word is read, is replaced in memory by the first word read,
and so on, until a hit is made or an end-of-table is reached.

When a hit is made, the content of the hit address is temporarily stored in the buffer
register and is replaced in memory by the associative word which precedes it in the space
table. The contents of locations 400016 through 43FFl6 are loaded into the ARs, and the
content of the buffer register (content of the hit address) is transferred to AROO. Entries
in the space table beyond the hit address are not modified.

If an end-of-table is read before a hit is made, the entire space table, including the sword
containing the END, is pushed down by one word position, and a NULL is placed in AROO. If
the unsuccessful search was initiated by a memory reference in job mode, the NULL may be
pushed out of AROO before the exchange to monitor mode is performed. This unsuccessful
search condition and the cause bits are sent to the main control and an access interrupt
results.

If a NULL exists in the ARs and no hit is made in the ARs, the space table is not pushed
down. A read and compare takes place until a hit is made and the NULL replaces that word in
the space table.

If a hit is not made in the ARs and a NULL is encountered in the space table, the operation
changes from a ripple to a read only (no push down); if no hit is found, the NULL remains in
AROO, as before. If a hit is made deeper in the space table, the NULL replaces it. Only
one NULL need exist at any given time in the page table.

60256020 A 2-9

If the monitor sets up the page table with one NULL, and it does not add or delete a NULL,
the END remains at a fixed address for any given number of associative words in the page
table.

At the termination of an unsuccessful space table search, there is a NULL in AROO if the
unsuccessful search was initiated by a OF (load keys, translate address) instruction.

Figure 2-2 is an example of a page table search.
entries in the space table are depicted as Pl,
represents the associative word for page 1, NULL
end-of-table entry.

The contents of the ARs and the contiguous
P2, and so on. NULL and END, where Pl
is a NULL associative word, and END is an

REFERENCE
MADE TO PAGE P3 Pl p I Pl

ASSOCIATIVE INl"TIALAFTER AFTER 2 AFTER 3 4 AFTER 5 AFTER 6 AFTER 7
REGISTEROO Pl

01

02

03

•
•
•
•

12

13

14

15

ABSOLUTE
ADDRESS 4400

(SPACE TABLE) 16

4440

44SO

44CO

4500

4540

P2

P3

P4

P14

P15

P16

p 17

PIS

P19

P20

END

xx

P14 P13

P15 P14

P17

PIS

P20 P20

END END

xx xx

P20

Pl

P3 P3 P18

PI I

P12 P12 P12

P13 P13 P13 P12

P14 P14

P15 P15

P16 Pl6

P17 P17

P19 P19 P19 P19

P20 P20 P20 NULL

END END END END

NOTE: I. PAGE TABLE IS MADE UP OF ASSOCIATIVE REGISTERS AND THE
SPACE TABLE.

!APIA

Figure 2-2. Page Table Search Examples

P20

P16

Pl

P9

PIO

P 11

Pl2

Pl7

P19

END

2-10 60256020 A

The example shows seven consecutive virtual address page references and the resulting page
table transfers. Assume that there are 21 associative words in the page table (16 in the
associative registers and 5 in the space table) and that no lockout bits are set; the last
entry is an end-of-table.

1. The first reference is to page 3. P3 is in AR02 and is moved to AROO; the content
of AROO through AROl is moved down one word. The space table is not altered.

2. The next reference is to page 18. No hit is made in the ARs so the ARs are pushed
down one and the content of AR15 (Pl6) is pushed down into the space table. Pl7 is
read and replaced with Pl6. Since Pl7 is not a hit, it is swapped with the next
entry in the space table, Pl8. Pl8 caused a hit so it is replaced by Pl7 and moved
to AROO.

3. The third reference is to P21, which is not in the page table. The result is that
the entire page table, including the END, is examined and pushed down, AROO is set
to a NULL, and an access interrupt is generate~.

4. Assume that the access interrupt is properly handled by the monitor program and the
page table-is not altered. The next storage reference in job mode is to Pl. Since
Pl is in AR03 when the reference is made, it is moved to AROO, and AROl through AR02
are moved down one word.

5. The fifth reference is to Pl6 which is now the second entry of the space table.
This time there is a NULL in the ARs. The NULL is moved to AROO and AROO is moved
down one word. Pl4 is not moved into the space table and the space table is not
pushed down. A read and compare takes place until the hit is found; the NULL then
replaces the selected associative word in the space table.

6. The next reference is to P20. Since there is no hit or NULL in the ARs, the page
table is pushed down until the NULL is encountered. Push down ceases and read and
compare takes place until P20 is read, causing a hit. P20 is moved to AROO and is
replaced by a NULL.

7. The last reference is to P21 which is not in the page table. The page table is
pushed down until the NULL is encountered. Push down and searching cease when the
END is read.

AROO is set to a NULL and an access interrupt is generated.

For page table restrictions and requirements, refer to section 5.

60256020 A 2-11

Multiple-Match Fau It

In the central computer, any given combination of lock and virtual page identifier in an
associated word may occur in only one associative word in the page table. Whenever a
violation of the rule is detected, a multiple-match fault occurs and the CPU is stopped.
When two keys are identical, their lockout bits must be the same (refer to section S for a
description of locks and keys). Otherwise, a reference to the differing lockout bits
generates a multiple-match fault, resulting in an undefined condition. There are two types
of multiple-match faults.

1. One virtual address, lock, and key matches more than one register in the associative
registers.

2. A virtual address makes a successful match with the associative registers, and at
least one additional match combination exists, but the reference is locked out by
the key lockout bits.

LOAD/STORE UNIT

The load/store (L/S) unit accepts addresses and transfers data between its registers and
main memory. The L/S unit provides orderly buffering and execution of the load and store
instructions; 12, 13, 32, SE, SF, 7E, and 7F. Six address registers in the L/S unit enable
requests to be stacked and executed in the proper order. The load instructions 12, SE, and
7E require one register and can be executed (with no memory conflicts) at a rate of one load
per minor cycle. The store instructions SF and 7F require two address registers and can be
executed at one store per two minor cycles. The 13 and 32 instructions require two address
registers which are busy for 17 minor cycles after selection.

The L/S is capable of streaming L/S instructions (other than 13 and 32) at one minor cycle
per load and two minor cycles per store assuming no memory busy, access interrupt, or
register file write bus busy conflicts exist. For example, a stream of n loads executes in
n+l4 minor cycles from the issue of the first load until the operand from the last load is
available in the register file. A stream of n stores executes in 2n + 1~-l minor cycles
from issue of the first store until issue of the last store. I!.

REGISTER FILE

The register file of the central computer contains 2S6 64-bit words. This register file is
capable of accomplishing two read operations and one write operation every minor cycle.

A scalar result written into the register file can be used by subsequent scalar instructions
before the result is available in the register file when the read and write addresses are
equal. The scalar result bypass of the register file occurs at the same time the result is
written into the file.

The scalar arithmetic result for one scalar instruction is often used as an input operand
for the next scalar (arithmetic) instruction. A special data path (shortstop) between the
output and input areas of the scalar arithmetic unit permits immediate use of an arithmetic
result operand prior to it being written into the register file.

2-12 602S6020 A

SCALAR FLOATING POINT

Scalar floating point performs all nonvector arithmetic and logical operations in the CYBER
205. Scalar floating point contains five arithmetic units. The following table lists each
unit and the time (in minor cycles) required to produce a 32- or 64-bit result.

Unit -
Add/Subtract
Multiply
Logical
Single Cycle
Divide/Square Root/Convert

Time (Minor Cycles)

5
5
3
1
21-54

All times listed are shortstop times. Shortstopping saves time by making it unnecessary to
store a unit's result in the register file before the result is used in the next arithmetic
operation. Instead, the result is returned directly to the input of any of the arithmetic
units (the result is also stored in the register file).

The first four units listed above are segmented, and each segment is independently
controlled by microcode. Microcode data bits are read out from the scalar floating-point
microcode memories and transmitted through timing chains in parallel with the movement of
the operands through the segments of the arithmetic unit. This allows one arithmetic unit
to accept a new pair of operands, and to issue a result of a previous pair of operands every
minor cycle. The divide/square root/convert unit is not segmented and can accept operands
only when it completes the previous operation.

Scalar Floating-Point Unit Control Interface

There are three input and two output trunks to the scalar floating-point unit. All input
operands are 64- or 32-bit floating-point quantities, except where otherwise specified. If
an indefinite or machine-zero floating-point operand is received, the coefficient is set
with zeros.

A-Input Trunk

This 64-bit trunk receives data bits from register location R in the following format.

84-BIT MODE
0 16 16 63

I EXPONENT I COEFFICIENT I
32-BIT MODE

0 78 1& 16 39 40· 63

I ZERO I EXPONENT I COEFFICIENT I ZERO I

60256020 A 2-13

B-Input Trunk

The B-input trunk, identical to the A trunk, receives data from register S.

Control Trunk

The control trunk carries the signals that control the scalar floating-point unit. It is
composed of the following signals.

Control Address - The control address bits select the set of internal control signals for
the floating-point instruction being executed. A set of unique codes exist for each
instruction (refer to table 3-4). Using the input data to the floating-point unit as a
reference, these control bits must arrive at the floating-point logic 1.5 cycles before the
data and must be valid for 20 nanoseconds.

Mode Controls - The mode controls are Mode 64 In, Mode 64 out, G-bit, and Divide. The Mode
64 and G-bit signals must lead the input data by one minor cycle and the Divide signal must
lead by 1.5 minor cycles.

Issue Controls - The issue controls are Shortstop, R-shortstop, S-clockgate, R-clockgate,
s-shortstop Enable, R-shortstop Enable, and Go. All these controls must be valid one minor
cycle before the data. Shortstop is the process by which a result from any arithmetic unit
may be returned directly to either input of any arithmetic unit. The shortstop enable
signals enable the setting or clearing of the shortstop control flip-flops. The clockgate
signals cause data to be clocked into the floating-point input registers. The Go signal
allows processing of operands in the input registers.

Output Trunk

The output trunk is 64 bits and transmits output data to the stream unit. Data remains on
this trunk for one minor cycle. The formats for the output trunk are as follows:

0 15 16

EXPONENT

0 78

EXPONENT COEFFICIENT

Output Control Trunk

64....;BIT MODE

32-BIT MODE

31 32

COEFFICIENT

39 40

EXPONENT COEFFICIENT

y ·'

COPY OF 0 THROUGH 31

63

J
63

The output control trunk transmits control or fault bits associated with results generated
by the scalar floating-point unit. These signals come up with data and are held up for one
minor cycle. The following signals are transmitted on the output trunk.

2-14 60256020 B

Signal

Branch Condition Met

Exit Condition Met

Divide Timing Pulse

Divide Unit Busy

Data Flags 39, 41, 42, 43, 45, 46

Data Flag 58

Meaning of a 1 on Signal Line

The operands meet the compare condition. This line
is zero when a compare is not being done.

The operands do not meet the compare condition.
This line is zero when a compare is not being done.

Divide operands follow this timing pulse by 14
cycles.

The divide unit cannot accept new operands during
the time this signal is 1.

Refer to appendix D.

A divide, square root, or convert operation
occurred and resulted in data flag 39, 41, 42, 43,
45, or 46 being set.

SCALAR PROCESSOR MICROCODE MEMORIES

The central computer uses microcode memories to start and control the execution of all
intructions. The scalar processor contains five microcode memories: scalar microcode
memories PMOO and PMOl; associative microcode memory HMOO; and floating-point and divide
microcode memories DMOO and GMOO. Each memory operates independently during CPU instruction
execution and is addressed simultaneously during writing or sweeping operations. The MCU
loads the microcode memories via a block transfer. All microcode memories operate at the
computer clock cycle rate.

Scalar Microcode Memories (PMOO, PMOl)

Scalar microcode (SMIC) is composed of two memories: PMOO and PMOl. Both memories operate
simultaneously, and each memory contains 256 120-bit words.

SMIC memory is a read-only memory; writing into SMIC is reserved for loading systems or
diagnostic microcode programs. SMIC provides the starting address for SMIC, FMIC, DMIC, and
AMIC during the load operation.

SMIC Operation

When the instruction stack has an instruction ready for execution, the function (F) code is
sent to the PMOO address register. If the issue unit is ready to execute an instruction,
the .SMIC output is switched to PMOO and the execution is started.

If the instruction has one cycle of issue, SMIC output remains switched to PMOO and the next
instruction begins execution (assuming the instruction stack has the next instruction
available) •

If the instruction has multicycles of issue, SMIC output is switched to PMOl where the
remaining cycles of that instruction are executed. When the remaining cycles are completed,
SMIC output switches back to PMOO and the next instruction begins execution (assuming the
instruction stack has the next instruction available).

60256020 B 2-15 I

If the instruction has variable cycles of issue (for example, vector processor instructions,
some of which execute in the associative unit, and so on), SMIC output is switched to PMOl,
and the remaining cycles of SMIC control are executed. When PMOl has completed its
functions, it waits for the conditions indicating the end of the operation and switches to
PMOO to execute the next instruction.

SMIC controls the flow of data from the instruction word to the functional unit. For
example, SM! C:

• Selects designators to and from their points of use (register file read address,
register file write address, address adder inputs, and so on).

• Selects register file data to functional areas, such as scalar pipeline and address
adder.

• Selects register file data, such as address and field lengths, to the vector
processor.

SMIC also controls the operations performed by other functional units. For example, SMIC:

• Provides starting addresses for scalar floating-point microcodes FMIC and DMIC.

• Informs load/store unit which operation to perform.

SMIC Address Control

PMOO addresses are controlled by the instruction stack.

PMOl addresses are controlled by SMIC bits. The next address to be used can be:

• The next sequential address (via incrementer).

• The address contained in the MOl field.

• An address made from the MOl field (most significant 4 bits) and an index based on
sense condition status (least significant 4 bits).

SMIC Parity

SMIC has five parity bits forming odd parity.

Associative Microcode Memory (HMOO)

The associative microcode (AMIC) is a 256-word by 96-bit memory.

AMIC Operation

AMIC is active during the following associative operations.

• Space table search.

• Load associative registers (OD instruction).

• Store associative registers (OC instruction).

I 2-16 60256020 B

The AMIC memory is initialized into an idle loop and waits for a load, store, space table
search, or an exchange operation. The memory supplies control to the associative registers
(ARs), branches on conditions from ARs, and returns to the idle loop upon completion of an
operation.

AMIC Address Control

AMIC bits control HMOO addresses. The next address to be used is one of the following:

• The starting address.

• The address from the ADl field.

• The address from the space table mode address register.

AMIC Parity

AMIC has two parity bits forming odd parity.

Floating-Point and Divide Microcode Memories (DMOO, GMOO)

The floating-point microcode (FMIC) and divide microcode (DMIC) control scalar floating
point pipeline segment operations and iterative operations such as divide, square root, and
BCD/binary conversion.

The floating-point microcode memory (DMOO) and the divide microcode memory (GMOO) contain
256 48-bit memory words each. Both memories are read-only memories. Writing is reserved
for loading systems or diagnostic microprograms.

The main functions of FMIC and DMIC are as follows:

FMIC Selects data paths for operand processing.

Provides constants for exponent correction and coefficient shifting.

Enables hardware checks for end case conditions such as machine zero
operands, overflow conditions, and so on.

DMIC Selects data paths for operand processing.

FMIC Operation

Preconditions logic properly for divide, square root, and BCD/binary convert
algorithms.

Indicates that the divide unit is busy processing operands and enters the RAR
number into the result timing chain when results are available.

FMIC receives its address from an 8-bit field (M02) in scalar microcode memory. If an
instruction requires the scalar floating-point unit, the issue unit causes one 48-bit
microinstruction word to be read from FMIC. This word controls the segments of the
floating-point pipeline as the operands are processed. Floating-point operations are
initiated only when result output bus conflicts cannot occur.

60256020 B 2-11 I

DMIC Operation

If the floating-point operation is divide, square root, or BCD/binary conversion, DMIC
microcode memory is used with FMIC to control the iterative segments of the pipeline that
perform these operations. The 8-bit field (M02) sent from SMIC to the floating-point unit
is used for the starting address. Each iterative operation controlled by DMIC requires the
execution of several microinstructions. There is a field in each DMIC microinstruction
(GMA) that points to the next microinstruction. This linkage continues until the last
microinstruction required is completed. The GMA field of the last microinstruction points
to location 0 of DMIC, a one instruction idle loop. DMIC remains in this idle loop until
the next divide, square root, or BCD/binary conversion instruction is received, at which
time a new starting address is received from SMIC.

VECTOR PROCESSOR

The vector processor executes most multioperand instructions in parallel with the scalar
processor and certain scalar operations. The vector processor processes data at the rate of
four words, two words, one word, one half-word, or 16 bits per minor cycle, depending on the
type of operation. The vector processor consists of the following sections (refer to figure
2-3).

VSU Vector Setup and Recovery Control

APL Stream Addressing Pipeline

VST Vector Stream Inputs

VSW Vector Stream Output

FPL Floating-Point Pipeline

VSS String

!OM - Input-Output Ports and Maintenanc,e

VECTOR SETUP AND RECOVERY CONTROL (VSU)

The vector setup and recovery control unit controls the execution of all nonscalar processor
instructions including vector instructions, string instructions, data flag register
instructions, job and monitor interval timer instructions, and real-time clock
instructions. The VSU unit contains three microcode memories to control the VSU hardware.
They are the VSU microcode, the VEX microcode and the VSC microcode. For a description
refer to VSU microcodes later in this section.

The VSU unit is divided into two sections, setup and execute. Figure 2-4 shows the VSU
block diagram. The setup section calculates all starting addresses, extension field length
and an overall field length. As soon as the execute section is able to take on data for
another operation, a continue is sent back to the scalar processor which can now proceed to
the next instruction. When the execute section of VSU takes over an instruction, it is in
control until completion of the operation. The execute section sends out decode and control
information to the rest of the units in the vector processor. Along with starting address
and lengths being sent to the APL units, the overall length is transmitted to VST.

2-18 60256020 A

SCALAR ~

p ROCESSOR -...

vsu ~

UNIT
.....

ISSUE (FUNCTIONS) ~

ALL VECTOR
PROCESSOR

CENTRAL
MEMORY ~

VST
UNIT

T

~

~ -...

INPUT· OUTPUT .,.-1o----1-M
SECTION

CONTROL __ _

DATA---

UNITS

L._.

FPL ~

UNIT
......

vss -UNIT

TO ALL VECTOR
PROCESSOR UNITS

t
MAINTENANCE

SECTION

APL
UNIT

vsw
UNIT

ADDRESS TO
CENTRAL

MEMORY VIA
SCALAR

PROCESSOR

f-+i

1--

~
CENTRAL
MEMORY

CENTRAL
M'-~___,-~MEMORY VIA

PRIORITY
UNIT

Figure 2-3. Vector Processor

60256020 A 2-19

l
A

REGISTEt
FILE

DATA B
VECTOR

FROM { SCALAR FNC CODE SETUP

VIN BIT

JJ
VEX

MICROCODE

~
VSU

MICROCODE

vsc
MICROCODE

IC
FROM

VECTOR
UPDATE

ALAR FROM SC

FROM{
IOM

RVR BIT AND RAR NUMBER

CHANNEL INTERRUPT

STOP, RUN, ETC.

I
N
T
E
R
F
A c
E

....

....

OUTPUT
SELECT

J

•
TIMING

AND
CONTROL

CHANNEL FLAG
-""TO

ADDRESS, FIELD LENGTH, EXTENSION

J~i FIELD LENGTH, ADDRESS

DYNAMIC CONTROL

INTERRUPT

~
COUNTERS

FOR
VECTOR

EXECUTION
REGISTER EXCHANGE

FILE
VSC MICROCODE UPDATE

OUT

:>
CONTROL

INVISIBLE PACKAGE LOAD
~

DATA

IOM

0
TOR

TO
VECTOR

Figure 2-4. VSU Block Diagram

The VSU unit contains nine interrupt counters that are incremented/decremented during a
vector processor instruction execution. The counters contain the current field lengths,
addresses, and broadcast or extension data required to restart the instruction execution
after an interrupt.

Inputs to VSU

Upon translation of a vector processor type of instruction, the scalar processor
issue/decode unit immediately transmits the function code and required register contents
from the register file to the VSU hardware in the vector processor. Machine zero or all
zero extension data required by the instruction is included in the transfer. The
information is transmitted through two 64-bit buses from the register file fanout to two
sets of input registers in the VSU hardware. The register file data transfer occurs two
registers at a time for up to six cycles depending upon the ty~e of instruction. If
broadcast is specified by the instruction, then the appropriate broadcast data is
transferred in lieu of the extension data. The VSU hardware forces normalized-one extension
when applicable. During an instruction execution, all broadcast data is treated as
extension data by the vector hardware.

2-20 60256020 A

The issue/decode unit controls the transfer of data into the VSU input registers by means of
the vector increment (VIN) control line. The VIN bit is sent for each cycle of register
data transfer to the VSU. The VIN bit controls the input register addressing and gates the
function code into the VSU function code register (SRFC) and, using the function code as a
starting address, instructs the VSU microcode to begin operation.

The format of registers transferred from the
input registers is instruction dependent.
completion of the instruction execution are
update time.

scalar processor to the vector processor VSU
Registers that are to be updated at the
all preread to assure their availability at

Depending upon the instruction, there may be one, two, three, five, or six cycles of
register transfer to the vector processor. A typical 80 instruction uses six cycles to
transfer all the required register file data with the broadcast or extension data transfer
occurring during the fifth and sixth cycle. In order to provide some standardization and to
minimize decode unit microcode requirements, the register transfers for some instructions
are padded out to five or six cycles. In the case of an FO instruction, registers C and Z
are transferred twice to permit use of a counnon routine.

The scalar processor issues instructions to the VSU unit without waiting for instructions
already in progress to be completed. It conflict checks, reads, and transmits register file
registers to the VSU unit at a rate of two every minor cycle until all descriptor data is
transmitted. The scalar processor sends function data and a timing bit (VIN), then waits
for a continue (release) from VSU.

VSU Operation

Most vector processor instructions process data using two data input streams, one control
vector input stream, and one data output stream. The instructions specify these streams in
terms of field lengths, base addresses, and offsets or indexes. All address and field
length calculations occur under VSU microcode control. All of the VSU microcode control
bits for one operation are read at the same time and applied through delay chains as
required.

Vector Setup

To generate the field length used for instruction execution, the offset is subtracted from
the field length. Field length calculations that produce negative results or results
greater than a 16-bit count are forced to zero. The correctly shifted offset or index, is
added to the base address to generate the address used for instruction execution. The field
length and address are combined and loaded into the selected output register.

The VSU microcode checks field lengths and addresses for instruction no-op or instruction
illegal. The VEX microcode takes appropriate action as required. The VSU microcode selects
the field length, base address, and offset for a calculation from the appropriate input
registers.

All field lengths and addresses that go to the APL, VSS, and VST units must pass through the
output registers. Multipass instructions and restart of a vector processor instruction
after an interrupt both require transfer of the interrupt counter register contents into the
output registers. A 64-bit data path from the interrupt counters is used for this transfer.

60256020 A 2-21

Vector Termination

The scalar processor, upon sending an instruction to the vector processor,
released by the vector processor. The vector processor sends a release code
full bit (SMIC-GO) to the scalar processor, and a signal to increment
instruction address register (CIAR).

waits to be
(REL) and a
the current

Most vector processor instructions release the scalar processor for parallel operation as
soon as the instruction is interruptible. The 7D, B7, and BA instructions with G bit 7 set
release the scalar processor when instruction execution is complete. These instructions
actively use the register file during instruction execution; parallel operation is not
permitted.

Some vector processor instructions require the update of an index, or the storing of an
arithmetic result, in register file at the completion of an instruction. The scalar
processor, upon receiving the release code, reserves the appropriate register file
location(s) for the vector processor instruction. The vector processor records the RAR
number(s) for later transmission to the scalar processor result timing chain.

The release (REL) code sent by the vector processor to the scalar processor specifies which
instruction designators are to be used for reserving register file locations.

The termination of most vector instructions occurs in two steps: the data inputs go empty
and the output buffer goes empty. For most vector instructions, the VEX microcode status
becomes not busy when all input data is used. VEX microcode can begin processing the next
instruction as soon as it is not busy. However, the output for one vector instruction must
be complete through APL output deactive before VEX microcode initiates the output for the
next instruction.

Interrupt and Branch Control

The vector processor contains the hardware to recognize conditions that cause an interrupt
or branch. The vector processor sends the indicated GET code to the scalar processor which
responds accordingly.

An interrupt operation occurs in job mode while a branch operation can occur in either job
mode or the monitor mode.

A branch operation, once begun, yields only to a branch with a higher priority. Similarly,
an interrupt operation yields only to an interrupt of higher priority. The occurrence of a
simultaneous branch and interrupt results in an interrupt. An interrupt is always completed
regardless of the time delay. A branch, once recognized, is rejected after a 25-cycle
delay. The branch or an interrupt can then be recognized again.

2-22 60256020 A

Interrupt Counters

The vector processor contains interrupt counters to record current field lengths and
addresses of an executing vector processor instruction. Upon interrupt, the interrupt
counter contents are stored in the invisible package for that job. The interrupted
instruction restarts from the point of interrupt using the interrupt counters when the job
is reloaded.

Tpere are nine 64-bit interrupt counters in the vector processor (ICO through IC7 and ninth
IC). ICO through IC5 each have a 16-bit adder for field length update of bits 0 through 15
and a 48-bit adder for address update of bits 16 through 63. The IC update consists of an
update count and full bit from the VSS, VST, or VSW units. VEX microcode also can update
the ICs. The VSC microcode enables the increment/decrement control on each of the ICs per
the instructon requirements. IC6 and IC7 do not have update capability, but are used for
extension data or other instruction related constants. The ninth IC is used only for the
AX, CC, and CS through CB instructions.

Timers

The monitor interval timer, job interval timer, and real time clock are located in the
vector processor. The VEX microcode is required to load or store any of these timers.

The three timers all operate at a 1-MHz rate, but each timer has its own 1-MHz timing
clock. The 1-MHz timing clock for the monitor interval timer is synchronized (set to zero)
when the OA instruction load occurs. The job interval timer operates similarly.

Real Time Clock

The real time clock is a 47-bit (with a positive sign bit for a total of 48 bits) counter
incremented at a 1-MHz rate. The clock runs continuously and cannot be cleared. The clock
time is sampled with the 39 instruction which stores it in the register file.

60256020 A 2-23

Monitor Interval Timer

The monitor interval timer is a 32-bit counter loaded from the register file by the OA
instruction in monitor mode. It is decremented at a 1-MHz rate, and causes an external
interrupt when counted down to zero. No interrupt occurs when it is loaded to zero.

Job Interval Timer

The job interval timer is a 32-bit counter loaded from the register file by the 3A
instruction in job mode, and stored into the register file by the 37 instruction. The
counter is decremented at a 1-MHz rate, and sets data flag bit 36 when counted down to
zero. The data flag bit does not set when the job interval timer is loaded to zero.

Data Flag Register and Control

The data flag register is a 48-bit register containing hardware status bits with associated
mask bits, free data flag bits, and miscellaneous bits. The data flag register is set,
stored, or swapped with a register file location(s) by the 3B instruction. The 33
instruction can set, clear, or toggle a selected data flag register bit or can cause a
conditional branch depending upon the state of a selected bit (or both). Both instructions
require the use of VEX microcode for instruction execution. VEX microcode releases the
scalar processor with either a branch or no-branch GET code for both instructions.

The data flag register can produce automatic branch operations, in both job and monitor
modes, when properly enabled.

Table 2-2 defines the bits in the data flag register.

2-24

TABLE 2-2. DATA FLAG REGISTER

Bit Assignment/Description

0-15

16-31

32-34

35

36

37

38

39

Product bits that are automatically set when the corresponding mask
and hardware status bits are both set. Example: Bit 4 is set when
both bits 20 and 36 are set.

Mask bits for bits 32 through-47 respectively.

Undefined bits. Must be set to zero.

Soft interrupt. The operating system can set this bit in the job's
invisible package.

Set by the job interval timer counting down to zero.

Selected condition not met (CO through C3 and CC instructions).

Not used and must be set to zero.

The 10 instruction binary exceeds 48 bits.

60256020 A

TABLE 2-2. DATA FLAG REGISTER (Contd)

Bit Assignment/Description

40 Inclusive OR of bits 37. 38. and 39.

41 Floating-point divide fault.

42 Exponent overflow.

43 Machine zero result.

44 Inclusive OR of bits 41. 42. and 43.

45 Square root result imaginary.

46 Indefinite result.

47 Breakpoint compare occurred.

48-50 Undefined. Must be set to zero.

51 Dynamic exclusive OR of all the bits in the product field (bits 0
through 15).

52 Enable bit for an automatic data flag branch (ADFB). An ADFB can
occur when both bits 51 and 52 are set. Bit 52 is cleared
automatically when an ADFB is processed.

53-·55

56

57

58

59

60

61

62

63

Free data flags used by several instructions to indicate the result
of the instruction. Every instruction using these bits clears them
prior to selectively setting any of them. These bits are sampled
with the 33 instruction.

Not used and must be set to zero.

Not used and must be set to zero.

A scalar divide. square root, or convert fault occurred.

Vector processor floating-point divide fault.

Vector processor exponent overflow.

Vector processor machine zero result.

Vector processor square root result imaginary.

Vector processor indefinite result.

Data flag bits 41, 42, 43. 45. and 46 are set from both the scalar and vector
arithmetic units. Data flags 59-63 are corresponding bits set only from the
vector arithmetic unit.

60256020 A 2-25

VSU Microcodes

The VSU Unit contains three microcode memories to control the VSU hardware for address and
field length calculations, for instruction start and execution monitoring, and for function
decode purposes.

VSU Microcode

VSU microcode (Vector Setup) - Performs address and field length calculations. The VSU
microcode is 1024 addresses by 120 bits.

VEX Microcode

VEX microcode (Vector Execution) - Provides execution monitoring. The VEX microcode is 1024
addresses by 120 bits.

VSC Microcode

VSC microcode (Vector Static Control) - Provides microcoded function decode bits to all
vector units for vector instruction execution. The VSC microcode is 512 addresses by 96
bits.

STREAM ADDRESSING PIPELINE (APL)

The APL unit's function is to manage the memory to maintain a maximum flow of data between
memory and the vector processor. The APL unit takes the address and length parameters and
redefines them on a sword or two sword basis, then along with control information (such as
starting quarter/half sword, element, and so forth) makes memory references via the priority
and associative units. The read data and control information is then transmitted to the VST
unit after the memory cycle.

The APL unit is physically located in the vector processor. It schedules the memory and
register file for data used during the operation of the nonscalar instructions. A list of
these types of operations is as follows:

• A - vector, sword/two-sword input on read one.

• B - vector, sword/two-sword input on read two.

• C - vector, sword/two-sword output on write one.

• CS - string, sword output on write two.

• Z - string, sword input on read three (first request on R2)·

• CSLA - small page, look-ahead for CS output.

• CLA - small page, look-ahead for C output.

2-26 60256020 A

• X - string, sword input on read three.

• Y - string, sword input on read three.

• Random load, word/half-word input on read one (BA instruction).

• Random store, word/half-word output on write one (B7 instruction).

• First/last old data, half-word input on read one.

• RNS, sword input on read three.

During the operation of a general vector/string instruction, all the above types of input,
outputs, and look-ahead& are in operation together depending on instruction types. CSLA,
CLA, and the first/last old data operations occur only once or twice per instruction
execution where applicable.

The type of operations used by a particular instruction are determined by the VEX microcode
of the VSU unit. For each of the types of operations necessary in a particular instruction,
a unique control word is received by APL. The control word contains all the information
needed to define the operation of the particular type of input/output during the entire
instruction (or entire pass of multipass instructions). A control word contains the
following:

• Virtual address - 48 bits.

• Termination field length - 22 bits.

• Extension field length - 22 bits.

• GO active code - 9 bits.

• Number of control lines:

60256020 A

Request size.

Operand size.

Register file address (consecutive).

Delta, field length, and address for random load/store.

Field length equal zero or infinity.

Right to left addressing.

Override output before input.

Override read lockout.

Force abort.

2-27

Stream Input Operation

For each input setup, there is a buffer in the VST unit for the data to be entered.
Associated with each buffer is a counter in APL which counts quarter swords requested by
counting up from zero. It counts quarter swords used by counting down as quarter swords are
removed from the buffer for use. The size of the buffers are such that they can hold all
the data requested but not used. The APL unit starts entering requests for an input at a
maximum rate of one for every four cycles for sword/two-sword or one every cycle for
word/half-word. The maximum rate is reduced by competition for the same bank of memory and
by competition for the same request phase time. If the counter shows the buffer is full,
then the requests must wait.

Stream Output Operation

Similar to the inputs, each output setup has a buffer in VSW and a counter in APL. APL
sends a request for each sword/two-sword, word/half-word in the buffer/counter. Requests
run at a maximum of one for every four cycles for sword/two-sword, and one per each cycle
for word/half-word. The maximum rate is reduced by competition for memory banks and the
request phase time. The output is also reduced by the rate of data into the buffer.

The APL unit is designed to receive and start each input/output as an independent
operation. The requests of the separate operations avoid each other such that (except for a
short time after a successful space table search when I/0 may cause bank busies) no bank
busies are caused. A request of lower priority must look both before and after the request
time it wants to use to make sure there are no requests of higher priority to the same bank
within three cycles.

To accomplish this, a request of higher priority must pass through a timing chain before
being sent to memory. The chain must be seven cycles long; three cycles before, the one
cycle and three cycles after.

Some types of operations have requests of equal priority. They operate on a first come,
first served basis.

The chart below shows the priority (highest on top) of all the types of operations listed
earlier. I/O is listed because, even though it does not originate in APL, it passes through
APL's conflict timing chain because it is the top priority request.

• I/O·

• A-vector, B-vector •

• c-vector •

• CS-string •

• CSLA, CLA, X-string, Y-string, z-string •

• Random load, FOD, LOD, RNS •

2-28 60256020 A

VECTOR STREAM INPUT (VST)

All input buffers write data iDDllediately upon receiving data from the appropriate SECDED
nets. The input buffers read data only if their read/write address registers are not equal
and if there is a data request from the appropriate input alignment net. When the input
buffers read data, they generate a data full bit and send it to the input alignment networks
along with the data. The following list describes the buffers.

• Input data buffers are provided for all input (A,B,X,Y,Z) data streams.

• A and B buffers each are 48 addresses in length by 256 bits wide.

• X and Y buffers each are 12 addresses in length by 128 bits wide.

• The Z buffer is 48 addresses in length by 128 bits wide.

• The A and B buffers receive data directly from the Rl and R2 SECDED networks.

• The X and Y buffers receive data directly from the R3 SECDED network.

• The Z buffer receives data directly from either R2 or R3 SECDED networks.

VST SECDED

Read 1, Read 2, and Read 3 in VST use SECDED as described earlier in this section. The
characteristics of Rl, R2, and R3 are as follows:

• Rl, R2, and R3 are 128 bits wide (one- and two-pipeline machines).

• Rl, R2, and R3 are 256 bits wide (four-pipeline machine).

• Rl, R2, and R3 SECDED networks and error recording are physically located in VST.

VST Expansion Networks

The A and B data streams each contain an expansion network between the input shift network
and the transmission to the register file or pipelines.

Expansion is used for the 7D, BC, BD, and AX instructions, and on the exchange operation
with 1 million words of memory.

VST Scale Network

The scale network processes control vector and input order vector data. The scale network
provides the following:

• Control vector and order vector data, Wl size, W2 size (use count), and leading
zeros count to the backend (VSW).

• Shift and expansion data to the A and B data streams in VST.

60256020 A 2-29

• Wl size and W2 size to increment the Wl and W2 buffer size counters in VST.

• Element count to decrement field length counter 1 (in VST) for sparse vector
instructions.

• Interrupt count updates to the VSU unit, for all input data streams for nonstring
type instructions.

This network processes one, two, four, or eight control vector bits per minor cycle,
depending on the instruction and pipe size.

It processes from 1 to 16 input order vector bits per minor cycle, depending on instruction
type, pipeline size, and the population of one bits in the OR of the X/Y order vectors.

Field Length Registers

VST contains two 16-bit field length registers. These two registers are referred to as FLl
and FL2.

FLl and FL2 are set up at the beginning of an instruction via VEX microcode. They always
contain an element length. They are decremented by VST at the time it sends data to any
functional unit. When they are decremented to zero, the VST unit stops sending data to the
functional uni ts, clears all fulls in VST, sends an empty signal to VEX microcode in VSU,
and sends a terminate signal to VSW and APL.

I NOTE I
FLl and FL2 are used only for nonstring
instructions.

Register File Reads/Writes

VST contains a 9-bit register file read address register/incrementer. VST also contains an
8-bit register file write enable register.

All register file references for the 7D, B7, BA, and exchange operations use the VST
register file hardware.

Ha Its/ Interrupts

Any halt caused by a vector memory reference is sent to VST by the associative unit. The
halt causes an immediate space table search by associative, and it stops VST from sending
any more data to the functional units.

If the space table search results in a find (hit), then the associative unit sends a clear
halt signal to VST. VST then resumes sending data to the functional units and data
processing continues.

2-30 60256020 A

If the space table search results in no find, an access interrupt occurs.

VST receives one interrupt line from VSU. This line includes all interrupts {access,
external, illegal, and so forth).

The VST unit stops sending data to the functional units upon receipt of an interrupt
signal. It then checks to see if a termination occurred prior to the interrupt. If a
termination occurred prior to the interrupt, then the VST unit ignores the interrupt.

If a termination has not occurred prior to the interrupt, then the interrupt forces a
termination and sends an interrupt signal to VSU, VSW, and APL. All data in the input
buffers is discarded, and VST prepares to receive the next instruction {an exchange is just
another instruction to VST).

I NOTE I
Halts, interrupts, and termination are
handled by the VSS unit {not VST) for all
string instructions.

VECTOR FLOATING-POINT PIPELINE

The vector floating-point pipeline provides logical and arithmetic operand processing for
vector instructions. The vector floating-point pipelines have three configurations; one
pipeline, two pipelines, and four pipelines. The one- and two-pipeline configurations are
structured as shown in figure 2-5. The pipeline contains five operand processing units, a
data interchange to connect these units, and control logic.

The bus width for the A and B operands is 128 bits for the one-pipeline and two-pipeline
versions. The four-pipeline version is essentially two two-pipeline processors, thereby
providing a data path of 256 bits. The one-pipeline processor can process one 64-bit mode
operand for A and B or two 32-bit mode operands for A and B. The two-pipeline processor can
process two 64-bit mode operands for A and B or four 32-bit mode operands for A and B and
the four-pipeline processor can process four 64-bit mode operands for A and B or eight
32-bit mode operands for A and B at the same time.

The minimum interval required between operands supplied to the vector floating-point
pipeline is less than the time required to produce a result; therefore, at any given time,
the segmented operand processing logic can contain a number of operands in various stages of
processing. The amount of operand logic used depends on the type of vector instruction.
The required operand processing logic unit .is connected between the input and output of the
vector floating-point pipeline by selecting the appropriate data interchange path. More
complex instructions, such as the DC instruction which requires more arithmetic capabilities
than a single operand processing unit possesses, may pass through several operand processing
units from input to output.

The following descriptions of the components of the vector floating-point pipeline assume
the typical two-pipeline version.

60256020 A 2-31

A OPERAND RESULT
(128) -- (128)

DATA
B OPERAND INTERCHANGE

(;28) __..
~

.......
ADD UNIT 1---

--
~

MULTIPLY 1---UNIT
~

--
.......

SHIFT
UNIT 1---

...,..

--
~ ...

LOGICAL
UNIT 1--

.....

--
~ -...

DELAY
UNIT

!------"

"

CONTROL - __., ~

Figure 2-5. Vector Floating-Point Pipeline Basic Block Diagram

2-32 60256020 A

P i p e Ii n e D a ta I n te r c h a n g e

For normal vector instructions, the data interchange is configured to connect the input and
output trunks to the appropriate processing unit. A link operation causes the data
interchange to connect the output of one unit to the input of a second unit. For the CF,
DB, D9, DA, DB, DC, and DF instructions, more complex connections are utilized and may be
switched dynamically.

Add Unit

The add unit receives operands from and delivers results to the data interchange over
128-bit data paths. A block diagram of the add unit is shown in figure 2-6.

D
A

OPE RAN
-(128) ~

ND
B

OPERA
(128)---+

EX· SIGN PONE NT CONTROL COMPARE

ALIGN·
MENT
SHIFT

OF INSTRUCTION
ADDER LOOP

r---

...... -
ADD

-...

....___

NORMAL·
~ IZE

COUNT

DA-DC INSTRUCTION ADD UNIT LOOP PATH

NORMAL·
IZE

SHIFT

Figure 2-6. Add Unit Block Diagram

END RESULT
CASE r-DETEC·

(128)---....

TION

For instructions with sign control, the appropriate complementing is done in the sign
control segment. This segment also complements the B operand for subtract operations.

The A and B exponents are compared in the exponent compare segment. The difference between
the two exponents is used as a shift count which determines the amount the coefficient with
the smaller exponent is right shifted in the alignment shift segment.

A one-cycle adder loop path is provided around the add segment for the DF (interval)
instruction.

The normalize count segment produces a shift count which controls the normalize shift
segment and modifies the result exponent if normalization is required.

The end case detection segment determines if an end case has been encountered and forces the
result accordingly.

60256020 A 2-33

An eight-cycle add unit loop path is provided for use by the DA and DC instruction.

The 90, 91, and 92 (truncate, floor, and ceiling) instructions are implemented by forcing
the exponent of the B operand to zero.

Multiply/Divide Unit

The multiply/divide unit receives operands from and delivers results to the data interchange
over 128-bit data paths. A block diagram of the multiply/divide unit is shown in figure 2-7.

OPERAND
--(128)

OPERAND
--(128)

--

~

.......
~

DB INSTRUCTION PIPELINE LOOP --
PARTIAL SUM

~

MULTIPLY
PARTIAL CARRY MERGE/ SIGNIFICANCE

COMPLEMENT SHIFT

r-.i

INPUT DIVIDE SIGNIFICANCE
COMPLEMENT - COUNT

Figure 2-7. Multiply/Divide Unit Block Diagram

RESULT
(128)---.

The multiply segment performs the coefficient multiply for the 88, 89, 8B, A8, A9, AB, DB,
and DC instructions. It also serves as a pass through for the adjust significance (94) and
adjust exponent (95) instructions.

For divide and square root instructions (8C, 8F, 93, AC, AF), the operands are made positive
in the input complement segment. The coefficient divide or square root is performed in the
divide segment.

The merge/complement segment has two functions. It merges the partial sums and carries from
the multiply segment and selectively complements the result coefficient as required by the
input sign bits and the sign control specification in G bits 5, 6, and 7.

The significance shift segment adjusts the significance of the result coefficient and
modifies the result exponent for those operations specifying significant results. A
seven-cycle short stop is provided for the DB instruction.

2-34 60256020 A

Shift Unit

The shift unit receives a 128-bit A operand and a 14-bit B operand (two 7-bit shift counts)
and returns 128 bits of result to the data interchange. A block diagram of the shift unit
is shown in figure 2-8.

A OPERAND
---(1281

B OPERAND
---11281

......
~

1ST RANK REGISTER 2ND RANK
SHIFT SHIFT

RESULT
(1281--..

--

Figure 2-8. Shift Unit Block Diagram

The low order 3 bits of the shift count control the shift in the first rank shift segment.
The next three higher order shift count bits control the shifting in the second rank shift
segment.

Logical Unit

The logical unit receives operands from and delivers results to the data interchange over
128-bit data paths. In addition, a 2-bit path is used for the result of the masked compare
(CC) instruction. A block diagram of the logical unit is shown in figure 2-9.

The 9A and 9B instructions are performed in the pack/unpack network. The vector logical
instruction (9D) is performed in the Boolean network. For the masked compare instruction
(CC), an exclusive OR operation is performed in the Boolean network and then combined with a
broadcast mask in the masked compare network. For certain other instructions, the logical
unit provides a pass through path.

Delay Unit

The delay unit receives operands from and delivers results to the data interchange over
132-bit data paths. The 132 bits consists of 128 bits of data and four control bits. A
block diagram of the delay unit is shown in figure 2-10.

The delay function is implemented by offsetting the read and write addresses of the buffer
memory by the required number of cycles of delay.

60256020 A 2-35

2-36

A OPERAND
--(128)

B OPERAND
--(128)

MASK
--(128)

--""'
~

PACK/ --UNPACIC ~

~

--""'
~

BOOLEAN (128)

--""'

~ MASK MASKED t--~

REGISTER COMPARE

Figure 2-9. Logical Unit Block Diagram

16-WORD

RESULT

HIT
(2)-.

RESULT INPUT OPERAND
(1321----I 132-BIT I--

BUFFER
(132)--....

MEMORY

• " ~

~

READ WRITE
ADDRESS OFFSET t--
COUNTER ADDER ...

DELAY AMOUNT

Figure 2-10. Delay Unit Block Diagram

60256020 A

Vector Floating-Point Control

The vector floating-point control contains the necessary logic to manage the operand
processing. This includes interconnection of operand processing units, unit startup,
interruption of processing operations, resumption of processing operations after
interruption, and processing operation shut down.

VECTOR STREAM OUTPUT (VSW)

The CYBER 205 has two output streams: write one (pipelines and register file output) and
write two (string output). The pipes and register file output stream accepts word/half-word
data from the functional units and aligns it on a 32-bit address for storage to memory. The
string output accepts bit data from the functional units and aligns and merges the data to
form a half-word for storing to memory.

Write One (Pipelines and Register File)

The pipes and register file output stream can process up to 256 bits of data per minor cycle
(four-pipeline machine) or 128 bits of data per minor cycle (one- or two-pipeline machine).
The function of the pipes and register file output is to accept data from the functional
units, compress out the unwanted data (sparse vector), align and buffer the data for storing
into memory. The pipes and register file output are separated into five subunits. They are
referred to as the output selection, compression, alignment, buffers, and SECDED.

Output Selection

The data for the pipes and register file output stream may be transmitted from three
functional units. They are the pipelines with up to 256 bits for a four-pipeline system,
register file output of 256 or 128 bits, and the vector setup unit output of 128 bits. The
pipeline bus is used for all pipeline type vector instructions creating a word or half-word
result. The register file bus will be used for the exchange operation and storing (in
memory) of a single register file read operand. The vector setup unit bus is used for the
storing of the invisible package information and instructions that create an index output.

Compression

The compress networks main purpose is to compress out unwanted data for the sparse vector
instructions. This is accomplished by examining the sparse vector instruction order
vector. Where a one appears in the sparse vector, the data is stored into central memory.
Where a zero is examined, the data is discarded. The register file input may use the
compress network to align the data starting at bit zero for a half-word, word and quarter
sword register file address.

60256020 A 2-37

Alignment

The alignment network consist of a 256-bit bus allowing alignment of any half-word of data
into any one of eight locations for storing into memory. A secondary purpose of the
alignment network is to broadcast a 32/64-bit quantity over the entire 256-bit bus during
one cycle.

Buffers

The pipes and register file output stream buffer is 264 bits by 64 words. The 256 bits are
used for data and 8 bits are for memory write enables. (The VST unit complements control
vector bits sent to the output when zeros are permissive.) Normal operation accumulates a
sword or two-sword quantity of data in the buffer before it is read and sent to the priority
unit for storing into central memory. During a space table search operation, the buffer
must accumulate the data that was in the pipelines when the space table search operation
started. This may be up to several swords/two-sword quantities depending on the pipeline
length.

Write Two (String, VSS)

The string output receives from 0 to 16 bits of data from the functional units, and aligns
and assembles the data into 32-bit groups for storage into the buffer. In the string
buffer, 128 bits are assembled for storage into central memory. The string output unit
consists of six subunits; old data, selection, alignment, merge, buffer, and SECDED.

Old Data

Data written into central memory must be in multiples of 32-bit quantities. The string unit
data can begin and end anywhere within 32-bit groups. The nonstring data within a 32-bit
group is referred to as old data.

The old data consists of FOD/IOD, (first old data/interrupt old data) and 'LOD (last old
data). FOD/IOD is used to assemble from the half-word address to the string output starting
address. LOD is used to fill out the half-word from the point where the string output data
ended (refer to figure 2-11). IOD is similar to FOD except that it refers to the partial
output data existing at the time an exchange occurs due to an interrupt.

Data Selection

The data selection subunit of the string output is used to select the data from the three
functional units, string, FOD/LOD and the front end. Each of these units can send from 0 to
16 bits per cycle.

2-38 60256020 A

00

Alignment

STRING OUTPUT
STARTING ADDRESS

~

END OF STRING
DATA

31

Figure 2-11. String Unit Old Data

STRING UNIT
DATA

The string alignment network shifts the string data to the correct bit address, allowing the
merge network to assemble 32 bits of data for storage.

Merge

The merge network receives from 0 to 16 bits of data from the alignment network and
assembles it into a 32-bit half-word for storage in the string output buffer.

Buffer

The string output buffer is 16 words by 132 bits, 128 bits of data and four memory write
enables. The buffer assembles 32-bit half-words into a sword of data for storage into
central memory. The buffer is also used to accumulate data when a space table search is in
progress.

60256020 A 2-39

SINGLE ERROR CORRECTION DOUBLE ERROR DETECTION (SECDED)
· SECDED provides automatic correction of a single bit error in a memory word and optional
latching of the single bit error and multiple bit errors. SECDED checking and generating is
done in both the scalar processor and vector processor. SECDED generates seven check bits I for each 32 bits of data. These data and check bits are then transmitted to the scalar
priority unit for storing into central memory. When the data and check bits are read from
central memory, the check bits are used for error correction and detection.

There are eight SECDED units within the CPU; three write and five read units. The three
write or generate units are:

1. Write 1 vector

2. Write 2 vector

3. Write scalar

The five read or checker units are:

1. Read 1 vector

2. Read 2 vector

3. Read 3 vector

4. Read next sword {RNS) for next instruction

5. Read scalar

The SECDED error information is stored by the maintenance control unit {MCU). The stored
information is the syndrome word, single error or double error bits, read bus code, and CPU
physical address bits 36 through 58. The I/O ports have no SECDED generators and checkers.
Equipment attached to the I/O ports perform SECDED.

CPU WORD ADDRESS BITS (36 THROUGH 58)

The word address bits {bits 36 through 58) indicate the following:

Bit Description

36-37 Select 1 of 4 memory chip/bank

38-49 Select 1 or 4096 words/chip

50 2048K select

51 1024K select

52-54 Bank select

55-56 Quarter sword select

57-58 Half-word select

2-40 60256020 B

SECDED ERROR LATCHING HARDWARE

The SECDED error latching hardware has two modes of operation; mode 1 and mode 2 • Mode
selection is accomplished through the MCU/CPU maintenance line called Select SECDED Error
Log Mode Two.

In modes 1 and 2 for simultaneous SECDED errors, the error latch information to be latched
is dependent on the relative priority of the data buses or half-words containing the
errors. It is possible to encounter a single and double error simultaneously and latch the
single error; the double error flag sets unconditionally. Therefore, if the double error
flag sets, the syndrome bits must be checked to determine if a single or double error was
latched.

SECDED USAGE

The SECDED mode best suited for a system is based on the error rate of the memory.

Mode 1

Mode 1 is normally used during system processing for a memory with a low error rate. All
error log information is correct, but mode 1 does not latch a double error if it follows a
single error within the cycle time of the MCU. The first error occurring after a master
clear or error clear has its error information latched. The information is correct
regardless of subsequent errors. If a double error follows a single error before an error
clear, the double error information is lost.

Mode 2

Mode 2 is used for a memory with a higher error rate. All single errors latched are
correct, and all double errors following a single error by more than eight minor cycles are
correct. A double error occurring before a single error is also latched correctly.

Double Error Log (Mode 2A)

Mode 2A should be used to locate defective storage after a high error rate has occurred.
This mode misses the double error only if there is a simultaneous single error with a higher
latching priority.

After a master clear or error clear, the MCU creates a single error using the maintenance
function to toggle a check bit. This single error is not cleared, and blocks detection of
all subsequent single errors. Therefore, when the MCU detects the double error flag, the
error log information is correct for that double error.

60256020 A 2-41

SECDED FAULTS

Executing an 06 instruction with bits 9 through 15 of the R designator selected, causes a
word or words to be written into memory with incorrect SECDED code. This allows checking
the SECDED networks on any or all read buses. All read bus SECDED networks are disabled by
setting bit 8.

Block Write Enables

The MCU can block write enable if a SECDED error occurs. Depending on the mode, there are
two options:

• Mode 1 - The write enable is blocked when SECDED receives its first single or double
error.

• Mode 2 - The write enable is blocked when SECDED receives its first double error.

INPUT /OUTPUT

The CPU provides data, function, maintenance, and status coDDDUnication between the CPU and
other external system elements through I/O channels. A channel is made up of a number of
devices and networks and at least one I/O port. The I/O port is physically located in the
CPU chassis. The device outside of the CPU and cabled directly to the I/O port is referred
to as the system channel adapter.

1/0 PORTS
There are eight bidirectional I/O ports in the CPU. Another eight ports with identical
performance, timing, and equal priorities may be added as an option. Any port may be used
as a maintenance control channel by setting the maintenance line coming into that particular I port. This causes data transfers with the System Channel Adapter (SCA) to be made with the
!OM maintenance registers rather than with the CYBER 205 memory. The maintenance port can
disable· the capability of any or all ports from making central memory transfers or sending
interrupts. The maintenance port does not disable the maintenance control channel operation.

A portion of the memory bandwidth is dedicated to the I/O ports and is unaffected by other I system activities. All other memory requests yield to I/O requests. This bandwidth is
equally divided among the ports providing 200-egabit transfer rates on any or all ports
simultaneously. The transfer length limits are: minimum transfer length of one sword and a
maximum transfer of 4096 swords. All data transfers start and terminate on sword address
boundaries.

2-42 60256020 B

SYSTEM CHANNEL ADAPTER

The system channel adapters (SCA) are located in a stand-alone cabinet. This cabinet
contains a maximum of six SCAs. The minimum number of SCAs in a system is 6 and the maximum
number is 16 when the system has the optional 8 I/O ports. Each SCA interfaces an I/O port
with an external device for transfer of data and maintenance information. (Refer to figure
2-12.) Each SCA operates independently and consists of an A interface for transfer of
16-bit parallel data (with two parity bits) to/from the external device and a CYBER 205
interface for transfer of 32-bit parallel data to/from the CPU. Two internal buffer
memories allow simultaneous data transfers with the external device and CPU. Each memory
has a capacity of 128 data words (8 swords). Word size is 37 bits (32 data bits, 4 parity
bits, and 1 SECDED error bit). SECDED is provided and checkbits are generated and accompany
each 32-bit data word sent to the CPU. Checkbits received with each word are used for error
detection and correction. A loop mode feature allows testing of the buffer memories, by the
external device, without initiating a transfer request to the CPU.

EXTERNAL
DEVICE

18 SITS PARALLEL
DATA

CYBER 205 Interface LinH

SYSTEM CHANNEL ADAPTER
CABINET

A
INTERFACE

SCAt

CYBER
206

INTERFACE

~---------------, I SCA (OPTIONALlt t '--------1·-- --- --"'
[-------- --------~ SCA (OPTIONALlt I --------- --------~

tSIX SCA'1 PER CABINET MAXIMUM

32 BITS (+6 CHECK BITSI
PARALLEL DATA

Figure 2-12. System Channel Adapter

CPU

110
PORT

The interface lines from the SCA to the I/O port (46 lines) are defined as follows:

• Write Enable (one line).

The corresponding half-word is written into the CPU memory or maintenance interface.

• Write Data (32 lines).

Write data is a group of 32 lines containing the starting memory address and the
field length for a read or write. Following the start address is the data in
half-words to be written into the CPU memory or maintenance interfaces.

• Write SECDED check bits (seven lines).

Write data check bits, with write data, for checking SECDED operation. The data and
check bits are written into the CPU memory where later reads of the same data and
check bits will exercise the SECDED hardware.

60256020 c 2-43

• write (one line).

This signal indicates a transfer of data from the I/O port to the SCA if a logical 0
(read) or a transfer fran the SCA to the I/O port if a logical 1 (write).

SCA to the I/O port if a logical 1 (write).

• Initiate (one line).

This signal is sent at the beginning of any data transfer to indicate that the sword
address, sword count, and the write and maintenance signals are available. Initiate
must remain a logical 1 until a data valid signal is returned.

• Write Strobe (one line).

A timing pulse that strobes all other signals sent to the I/O port. It is derived
fran and synchronized with the read strobe.

• Maintenance (one line).

A logical 1 indicates that data will be read from or written into the IOM
maintenance registers. A logical 0 indicates a data transfer with CPU memory.

• Interrupt (one line).

This line signals an interrupt is being sent to the CPU. If the interrupt signal is
received during a write operation, it is not sent to the CPU until the write is
complete.

• Master Clear (one line) not used.

The interface lines from.the I/O port to the SCA (45 lines) are defined as follows:

• Read Data (32 lines).

Read data is a group of 32 lines containing half-word read data being sent from the
CPU memory to the channel device.

2-44

• Read SECDED check bits (seven lines).

Read data check bits used by SECDED to check read data and correct and record errors.

• Data Valid (one line).

Notifies the SCA it can begin sending data during a write operation or that the I/O
port is sending data during a read operation.

• Read Strobe (one line).

This is a timing pulse that strobes all other signals (except control function and
control function strobe) sent fran the I/O port to the channel device. It is also
used to synchronize the write strobe.

• Control Function (two lines).

A 2-bit code used to indicate system control functions.

60256020 B

• Control Function Strobe (one line).

Used as a timing pulse to strobe the control function.

• Inactive (one line).

Notifies the SCA that the I/O port is not active and will not respond to any signals
sent by the SCA.

EXTERNAL DEVICE TRANSMISSION SEQUENCE

Data transfers from the external device occur in multiples of 32-bit words consisting of two
transfers of 16 bits each. Operations are initiated by the external device sending a 32-bit
address field accompanied by a function code. Data transfers occur in either direction as
determined by the function code.

The address field is transferred in two 16-bit words (figure 2-13), The upper portion of
the address is sent in the first 16-bit word and the lower portion is sent in the second
word. Data transfers occur in the same sequence with the upper half of a 32-bit word
appearing in the first 16-bit word and lower half in the second word,

00

ADDRESS FROM I
EXTERNAL DEVICE

ADDRESS TO
CPU

v v
SWORD COUNT SWORD ADDRESS

Figure 2-13. I/O Transmission Sequence

SYSTEM COMMUNICATION

The CPU communicates with the SCA's through two encoded control lines that specify channel
flag, external flag, and suspend functions.

These functions are defined as follows:

Channel Flag

60256020 A

A channel flag is transmitted by the execution of a 08 instruction.
The 08 instruction designates which port the flag will be sent
through. Table 2-3 gives R designator to port correspondence.

2-45

Suspend

2-46

TABLE 2-3. CHANNEL FLAG ASSIGNMENTS

08 Instruction R
Designator Port

00 NONE

01 Port 1

02 Port 2

03 Port 3

04 Port 4

05 Port 5

06 Port 6

07 Port 7

08 Port 8

09 Port 9

OA Port 10

OB Port 11

oc Port 12

OD Port 13

OE Port 14

OF Port 15

10 Port 16

11 through FF UNDEFINED

A suspend is transmitted by all ports when a master clear is
performed.

60256020 B

STORAGE AND MAINTENANCE ACCESS

The SCA sends the start address for a CPU memory reference to the I/O port on the right 20
bits (bits 12 through 31) of the write data lines. The address is a sword address with the
capability of addressing up to 1 million swords of memory. All transfers are in sword
increments with half-word writes controlled by write enables.

The left 12 bits (bits 00-ll)on the write data lines received at the I/O port contain the
data transfer length in swords. The maximum data transfer size is 4096 swords specified by
a 12-bit data transfer length of zero. The actual usable maximum data transfer is
determined by the external peripheral devices. A data transfer with the maintenance
interface uses a length of one sword.

A write enable is sent on the write enable line with each 32 bits of write data. A logical
1 on the write enable line causes that half-word to be written into CPU memory or the
maintenance interface. A logical zero prevents a write.

An access function accompanies each start address. The access functions are defined as
follows:

Write/Read - Data is written into the CPU memory or maintenance interface if the write
line is a logical one. Data is read from the CPU memory or maintenance interface if the
write line is a logical zero.

Maintenance - Write or read the maintenance interface within the CPU through the I/O
port if the maintenance line is a logical one. Write or read the CPU memory if the
maintenance line is a logical zero.

For maintenance access the 20-bit sword address is not used, but the field length must be
set to one sword.

1/0 PRIORITY

The top memory access priority in the CPU is assigned to I/O operations. All other memory
requests yield to I/O requests.

The CPU I/O control sequentially services all 8 or 16 I/O ports for memory requests. The
I/O control can maintain maximum data transfer rates on all I/O ports simultaneously with
vectors running in parallel on any CPU operation.

CENTRAL MEMORY - SERIES 400

Each 1 million words of central memory contains 16 memory stacks, each having 128K 39-bit
half-words (32 data bits plus 7 SECDED bits). Each 128K stack is arranged in eight phased
banks. Memory can assign sequential addresses to different banks by using bank phasing.
Because the banks are independent 1 a bank can begin a memory cycle before adjacent banks
have completed previously initiated cycles. In streaming mode, a reference is made
simultaneously to the same address in each of the 16 memory stacks obtaining a superword
(sword) of 512 data bits (one, two, or four pipelines) or 32 memory stacks obtaining a
two-sword quantity of 1024 data bits (four pipelines). Each 1 million words of memory
contains 128 phased half-word banks. Figure 2-14 shows the chassis configuration for 1
million words of memory.

60256020 c 2-47

CENTRAL MEMORY - SERIES 600

The basic I million words of the Series 600 central memory contain I6 memory modules. Each
module contains I28K 39-bit half-words (32 data bits plus 7 SECDED bits) called a rank. An
additional I-million word option can be added to the memory by installing one additional
rank to the I6 modules. Another 2 million words can be added by installing two additional
memory cabinets. The full complement of 8 million words is reached by adding two ranks to
the four cabinets of memory. Memory modules are divided into eight phased banks. A
I-million-word memory contains I28 phased half-word banks (I6 modules times 8 banks).

Memory can assign sequential addresses to different banks by using bank phasing. Because
the banks are independent, a bank can begin a new memory cycle before adjacent banks have
completed a previously initiated cycle. In the streaming mode, a reference made
simultaneously to the same address in each of the I6 memory modules obtains a superword
(sword) of 5I2 data bits (I, 2, and 4 pipeline machines) or 32 memory modules obtaining a
two-sword quantity of I024 data bits (four pipeline machines only). Figure 2-I5 shows the
chassis configuration for I million words of memory.

MEMORY OPERATION

The memory request determines the amount of data that is transferred. A memory request can
be for a two-sword, a sword, a word, or a half-word quantity. One sword contains 8 words, I
word contains 78 bits (68 data bits, I4 SECDED bits) addressed from left to right (refer to
figure 2-I6).

When the memory interface performs a write/read operation in sword mode, it addresses a
half-word in each stack (Series 400) or a half-word in each of the modules (Series 600).
For a write/read operation in word mode, the memory interface addresses 2 of the stacks
(Series 400) or 2 of the I6 modules (Series 600), and in half-word mode only I stack or
module is addressed. In addition to the memory stack or module addresses, the memory
interface sends a bank address signal to select one of eight banks within a stack or module.

Depending upon the mode selected, all of the bits are transferred to and from central memory
even though not all the bits are used. For example: in sword mode, all 624 bits of one
sword are transferred to and from the central memory during each write and read operation
although only part of the sword may actually be stored or transferred. The memory interface
enables the proper control line for each half-word of the sword that is to be stored or
transferred.

• 2-48 60256020 c

60256020 c

MEMORY
INTERFACE

SECTION A SECTION J SECTION K SECTION H

I sr:cK I I ST~CK I I ST~C~ I I sT:cK f

I ST~CK I 5:J BB ~
~----------- 1--i---------- -I ST~CK I I sT:cK I I sT;cK I I ST~CK I
I ST~CK I ~ 6:) Ba

NOTES:

1. EACH SECTION HAS EIGHT STACKS.

2. TWO SECTIONS COMPRISE 1 MILLION WOADS OF MEMORY.

Figure 2-14. Section Configuration (Series 400)

2-49 •

MODULE
0

MODULE
1

MEMORY
SECTION A

MODULE MODULE
4 8

MODULE MODULE
5 9

NOTES:

MODULE
12

MODULE
13

MEMORY
INTERFACE

SECTION J SECTION K

1. EACH SECTION HAS EIGHT MODULES.

MODULE
2

MODULE
3

MEMORY
SECTION H

MODULE MODULE
6 10

MODULE MODULE
7 11

2. TWO SECTIONS CAN COMPRISE 1, 2, OR 4 MILLION WORDS OF MEMORY DEPENDING
UPON THE NUMBER OF RANKS INSTALLED.

Figure 2-15. Section Configuration (Series 600)

MODULE
14

MODULE
15

• 2-50 60256020 c

00

TWO-SWORD

SWORD SWORD

.......

.......................................

SWORD
-,

I WORD WORD I WORD WORD WORD WORD WORD WORD

\ ---
\ ------\ ---

\ WORD -,
--~~~~~--~~~~~-

\ oo

\
\
\
\

60256020 c

HALF-WORD

\oo

NOTES:

'
HALF-WORD

' ' ' HALF·WORD "')·

31 38

77

1. EACH TWO-SWORD QUANTITY CONTAINS 2 SWORDS.

2. EACH SWORD CONTAINS EIGHT WORDS OR 18 HALF-WORDS.

3. EACH WORD CONTAINS TWO HALF-WORDS.

4. A HALF-WORD CONTAINS 39 BITS (32 DATA BITS AND 7 SECDED BITS).

6. MEMORY TRANSFERS MAY BE IN TWO·SWORD, SWORD, WORD, OR
HALF-WORD DATA QUANTITIES.

Figure 2-16. Two-Sword, Sword, and Word Configuration

. 1247

I

2-51

MEMORY ACCESS AND CONTROL
Figure 2-17 shows the control signals sent to each memory stack. Figure 2-18 shofS the
control signals sent to each module. All signals except read data are sent from the memory
interface to the stacks or modules. The read data signal is sent back to the memory
interface.

• 2-52

STACK REQUEST

BANK ADDRESS

ABSOLUTE ADDRESS

CLOCK

WRITE CONTROL

WRITE DATA

SYNC

MASTER CLEAR

MEMORY
STACK

(SERIES 400)

READ DATA

Figure 2-17. Memory Interface Stack Connections (Series 400)

STACK REQUEST

BANK ADDRESS

ABSOLUTE ADDRESS

CLOCK

WRITE CONTROL

WRITE DATA

MEMORY
MODULE

(SERIES 600)
READ DATA

Figure 2-18. Memory Interface Module Connections (Series 600)

TO
MEMORY

INTERFACE

60256020 c

STACK REQUEST . SERIES 400

There are two stack request lines for each memory stack. This signal determines which stack
has been selected.

STACK REQUEST. SERIES 600

There is one stack request line for each memory module. This signal determines which module
to select.

BANK ADDRESS ·SERIES 400

There are six (two sets of three) bank address lines for each memory stack. This signal
determines which bank of the eight banks within a stack has been selected.

BANK ADDRESS · SERIES 600

There are three bank address lines for each memory module. This signal determines which
bank with a module has been selected.

ABSOLUTE ADDRESS. SERIES 400

There are 14 bits that determine the absolute address; 2 bits determine which of the four
banks of memory chips has been selected and 12 bits determine the address in memory selected.

ABSOLUTE ADDRESS · SERIES 600

There are 16 bits that determine the absolute address; 2 bits determine which of the 4 ranks
of memory has been selected and 16 bits determine the address in memory selected.

CLOCK . SERIES 400

There are two identical clock lines for each memory stack. This signal synchronizes the
memory stack to the memory interface.

CLOCK • SERIES 600

There is one clock line for each memory module. This signal synchronizes the memory module
to the memory interface.

60256020 c 2-53 •

WRITE CONTROL - SERIES 400

There are two identical write control lines for each memory stack. This signal informs the
memory stack of a write memory cycle.

WRITE CONTROL - SERIES 600

There is one write control line for each memory module. This signal informs the memory
module of a write memory cycle.

WRITE DATA

There are 39 write data bit lines for each memory stack or module: 32 for data and 7 for
SECDED.

SYNC - SERIES 400

This signal provides a point of reference for maintenance purposes.

SYNC - SERIES 600

None.

MASTER CLEAR - SERIES 400

There are two identical master clear lines for each memory stack. The memory interface
pulses the master clear signal continuously whenever a master clear is present in the CPU.

MASTER CLEAR - SERIES 600

None.

READ DATA

The 39 read data bits are obtained from the read data registers on the output, and the
information is sent back to the memory interface •

• 2-54 60256020 c

MEMORY INTERFACE

The memory interface provides ports for access to central memory. The scalar processor,
vector processor, and I/O ports are connected to central memory through the memory interface
as shown in figure 2-19. Data transmissions are controlled by the priority unit in the
scalar processor. SECDED for each 32 bits of data on the memory ports is done in the scalar
or vector processor. SECDED for data through the I/O ports is done externally to the
central computer. Data can be transferred to and from the memory ports in 32-bit half-word,
64-bit word, 512-bit sword, or 1024-bit two-sword quantities (refer to table 2-4).

Each memory port is connected to memory through a one sword/two-sword buffer located in the
memory interface. If a buffer is shared by multiple ports, the priority unit provides
proper port selection to the memory interface selection network. Data is transmitted
between the buffers and the processor in sword/two-sword quantities at a rate of one
half-word, word, or quarter-sword/half sword per minor cycle.

SECDED SCALAR
MEMORY NETWORK PROCESSOR

INTERFACE

1 SWORD ~
rl

BUFFERS

H READ1} ~ -
H READ2} -

MEMORY ~

r--l_READ3.} SECDED VECTOR - NETWORK PROCESSOR

H WRITE 1}--

l--{WRITE2j --
.....
~

1/0
tEQUIPMENT ATTACHED TO 1/0 PORTSt
PORTS PROVIDES SECDED.

Figure 2-19. Memory Interface Configuration and Connections
for a Two-Pipeline Configuration

MEMORY DEGRADATION

If more than 1 million words of memory are present, degradation may be selected.
Degradation allows the amount of usable memory to be less than the total memory in the
system. The amount of usable memory is controlled by a degradation code from the MCU along
with a strobe bit. Tables 2-5 and 2-6 shows the memory degradation codes and their
descriptions for Series 400 and Series 600, respectively.

60256020 c 2-55

I

I

TABLE 2-4. MEMORY PORT TRANSFER MODES

Memory Interface Buffer Memory Port Transfer Mode

NOTE:

A,

c,

A,

D,

c,

B,

A,

Read 1 Scalar processor

Vector processor

Read 2 Vector processor

Read 3 Read next sword (RNS) (scalar processor)

I/O ports

Vector processor

Write 1 Scalar processor

Vector processor

Write 2 I/O ports

Vector processor

Half-word, word,
sword, two-sword

Half-word, word,
sword, two-sword

Sword, two-sword

Sword

Sword

Sword

Half-word, word,
sword, two-sword

Half-word, word,
sword, two-sword

Sword

Sword

Although the I/O ports have a sword transfer mode, this mode is modified to
be synchronized with vector streams operating in two-sword mode (four
pipelines) with minimal effect to the I/O transfer rates.

TABLE 2-5. SERIES 400 MEMORY DEGRADATION BITS (4K CHIPS)

Memory Sections Usedt Degradation Code Usable Memory

H and B, G and C, F and D, E 6 4 million words

F and D, E 5 2 million words

H and B, G 4 2 million words

E 3 1 million words

F 2 1 million words

G 1 1 million words

H 0 1 million words

tRefer to figure 1-2.

2-56 60256020 c

TABLE 2-6. SERIES 600 MEMORY DEGRADATION BITS

Ranks Used Degradation Sections A and H Sections A,H,B and G
Code Usable Memory Usable Memory

Rank 0 0 l million words 2 million words

Rank l l l million words 2 million words

Rank 2 2 l million words 2 million words

Rank 3 3 l million words 2 million words

Ranks 0, l 4 2 million words 4 million words

Ranks 2,3 5 2 million words 4 million words

Ranks 0,1,2,3 6 8 million words

60256020 c 2-57 •

MAINTENANCE CONTROL UNIT
The maintenance control unit (MCU) provides system autoload and system performance
monitoring capabilities. The MCU also provides the capability of loading, controlling, and
monitoring the central processor unit (CPU) diagnostics. Connections from the MCU to the
central computer are made through I/O ports. Any I/O port may be used by setting the
maintenance line for that particular port. The interfaces allow the MCU to monitor CPU
status.

The primary purpose of the MCU is to support the reliability, availability, and
maintainability of the central computer. The MCU provides operators with the means of
autoloading the operating system and checking the CPU status.

The MCU operates in offline and online software modes.

• In an offline mode, the MCU loads CPU diagnostic routines and then controls and
monitors the diagnostic operations and furnishes the results of the operations to a
display unit or a line printer.

• During normal online site operation the CYBER 18 system used as the MCU on the CYBER
205 provides the operator with the means of autoloading the operating system and
checking CPU status.

• During periods of degraded or intermittent system operation, the primary purpose of
the MCU is to support the reliability, availability, and maintainability (RAM) CPU
standards. To minimize repair time during these periods, the customer engineers
supporting the site must be given top priority in using the MCU.

SYSTEM CHANNEL INTERFACE (SCI)

The System Channel Interface (SCI) provides the interface between the MCU and the SCA.
Refer to the section on Input/Output for a description of the SCA. The SCI occupies two
printed circuit board slots in the MCU chassis. Control logic and input/output buffering
are contained on one board and the receiving and transmitting circuits necessary to
interface with the SCA are contained on the second board.

INTERFACING BETWEEN SCA AND SCI

There are 51 lines, not counting the maintenance line, used to transfer the data and control
functions between the SCA (which contains an A interface) and the SCI (which contains a B
interface). Refer to figure 2-20. The interface lines from the SCA to the SCI (25 lines)
are defined as follows: (References to A apply to the A interface and references to B apply
to the B interface.) The same lines and transfer sequences are used between the other SCAs
and other external devices except that there is no maintenance line.

I 2-58 60256020 c

MCU SCA CPU

SCI
r-~

CYB ER
I 1NTER8FACE

~ __. A i... _.
206 1/0

INTERFACE- --.. PORT

L-~
INTERFACE

Figure 2-20. System Channel Interface (SCI)

• Data from A (DFA, 16 lines).

A group of 16 pulsed lines, DFAO through DFA15, that transmit data to the SCI. DFAO
is the most significant.

• Data Parity from A (DPFA, two lines).

Two pulsed lines, DPFAO and DPFAl. DPFAO forms odd parity with DFAO through DFA7,
and DPFAl forms odd parity with DFA8 through DFA15. DPFA is transmitted with DFA.

• Request from A (RFA, one line).

Signals the subsequent presence of data and error information.

• Accept from A (AFA, one line).

Acknowledges the receipt of a request from B (RFB) and associated information and
also signals the subsequent presence of error information. On transmission of AFA,
A can accept a new RFB.

• Parity Error from A (PEFA, one line).

Indicates that one or more of the following errors has been detected.

SECDED error
Buffer memory parity error
Transmission parity error
Function parity error

• Illegal from A (IFA, one line)

Indicates an illegal or invalid function code has been detected.

• Control Strobe from A (CSFA, one line).

Signals the subsequent presence of control information.

• Control from A (CFA, two lines).

Two pulsed lines, CFAO and CFAl, that are coded to indicate control functions.
Refer to table 2-6 and Control From A in this section for codes.

60256020 c 2-59

I

The interface lines from the SCI to the SCA (26 lines) are defined as follows:

• Data from B (DFB, 16 lines).

A group of 16 pulsed lines, DFBO through DFB15, that transmit data, address fields,
and function words to the SCA. DFBO is the most significant.

• Data Parity from B (DPFB, two lines).

Two pulsed lines, DPFBO and DPFBl. DPFBO forms odd parity with DFBO through DFB7
and DPFBl forms odd parity with DFB8 through DFB15. DPFB is transmitted with DFB.

• Request from B (RFB, one line).

Signals the subsequent presence of function, data, or address information.

• Accept from B (AFB, one line).

Acknowledges the receipt of an RFA and associated information. On transmission of
AFB, B can accept a new RFA.

• Function from B (FFB, three lines).

Three pulsed lines, FFBO through FFB2 that are coded to indicate the type of
operation to be performed. FFB is transmitted with DFB. Refer to function from B
in this section for further explanation.

• Function Parity from B (FPFB, one line).

FPFB forms odd parity with FFBO through FFB8. FPFB is transmitted with FFB.

• Interrupt from B (IFB, one line).

Single pulsed line that is passed on to the CPU.

• Master Clear from B (MCFB, one line).

Single pulsed line that master clears the SCA.

Control From A

I Control from A (CFA) is generated by the CPU and is passed on to the SCI via the SCA along
with the CSFA signal. Table 2-7 lists CFA codes.

I TABLE 2-7. CONTROL FROM At

CFAO CF Al Function

0 0 Control Flag tt
0 1 Channel Flag
1 0 External Flag tt
1 1 Suspend

tRef er to system communication (section 2 of this manual) for definition of
terms in Function column of this table.

ttNot used with CYBER 205 system.

2-60 60256020 c

Functions From B

Functions from B (FFB) are transmitted with data from B (DFB) and indicate the type of CYBER
205 memory access operation to be performed. Table 2-8 lists FFB codes.

TABLE 2-8. FUNCTIONS FROM B

FFBO FFBl FFB2 Function

0 0 0 Null
0 0 1 Readt
0 1 0 Write
0 1 1 Status read
1 0 0 Data
1 0 1 Block read t
1 1 0 Function write
1 1 1 End of operation

tThese functions perform the same operation.

The following is a description of FFB functions:

• Null (FFB 000)

Null accompanies the second half of an address field or data word and follows the
end of operation FFB.

• Read/Block Read (FFB 001/101)

These functions indicate that DFB contains the most significant 16 bits of the
address field and that one or more words are to be transferred from the CYBER 205 to
the MCU starting at the specified address. The least significant 16 address bits
are accompanied by a null FFB.

• Write (FFB 010)

This function indicates that DFB contains the most significant 16 bits of the
address field and that one or more words are to be transfe.rred from the MCU to the
CYBER 205 beginning at the specified address. The least significant 16 address bits
are accompanied by a null FFB.

• Status Read (FFB 011)

The status read function initiates the transfer of three 16-bit status words to the
MCU from the SCA. A null FFB follows the status read.

• Data (FFB 100)

This function indicates that DFB contains the most significant 16 bits for a write
data transfer. The least significant 16 bits are accompanied by a null FFB.

60256020 c 2-61 I

• Function Write (FFB 110)

This function indicates that DFB contains a 16-bit function word from the MCU. A
null FFB follows the function write.

• End of Operation (FFB 111)

This function indicates that the current read or write operation has ended. The end
of operation FFB is followed by null FFB.

Status Words

The status read function (FFB 011) initiates transfer of three 16-bit status words from the
SCA to the MCU. Error status bits are cleared by the SCA internal master clear signal
generated at the beginning of a read or write operation. A null function (FFB 000) must
follow the status read.

I Table 2-9 is a bit description of the status word:

I

I

TABLE 2-9. STATUS WORD 1 BITS AND DESCRIPTIONS

Bit Description

00-06 Syndrome bits 00-06.

07

08

09

10

11

12

13

14

15

•

2-62

When set, this bit indicates detection of SECDED single error.

When set, this bit indicates detection of SECDED double error.

When set, this bit indicates detection of a parity error (PEO) on bits
00-07 read from the SCA buffer memory.

When set, this bit indicates detection of a parity error (PEl) on bits
08-15 read from the SCA buffer memory.

When set, this bit indicates detection of a parity error (PE2) on bits
16-23 read from the SCA buffer memory.

When set, this bit indicates detection of a parity error (PE3) on bits
24-31 read from the SCA buffer memory.

When set, this bit indicates a transmission parity error was detected
in data or an address received from the MCU.

When set, this bit indicates the CYBER 205 I/O port is disabled
(inactive) and will not recognize any data transfer requests.

Not used.

Status Words 2 and 3

Status word 2 contains the upper 8 address bits of the 32-bit word which had a SECDED
error. Status word 3 contains the lower 16 address bits of the 32-bit word which had
a SECDED error. Refer to figure 2-21.

60256020 c

STATUS WORD 2 STATUS WORD 3

16 0807 00 16 00 1------11 ~ _ ____,I
23 18 16 00

._ _____ -11 '-------------"'\r------------V
NOT USEO ERROR ADDRESS

Figure 2-21. Status Words 2 and 3

Function Word

The function write function (FFB 110) indicates that the channel contains a 16•bit function
word fr-0m the MCU. A null function (FFB 000) must follow the function write.

Table 2-10 is a bit description of the function word.

Bit

00-06

07

08

09

10

11

12

13

14

15

60256020 c

TABLE 2-10. FUNCTION WORD BITS AND DESCRIPTIONS

Description

Complement SECDED checkbits 0-6 sent to the CYBER 205 during a write
operation.

When set, this bit disables the error correction logic during a read
operation.

When set, this bit inhibits sending a PEFA signal to the MCU.

When set, this bit disables access to SCA buffer memory 1.

When set, this bit disables access to SCA buffer memory 2.

When set 1 this bit allows writing or reading the SCA buffer memories
without initiating a request to the CYBER 205.

When set, this bit prevents setting the SECDED double error bit when a
double error is detected.

When set, this bit enables setting the SECDED single error bit when a
single error is detected.

When set 1 this bit limits the capacity of each buffer memory to one
sword (16 words).

When set• this bit sends maintenance signal to the CYBER 205 upon
initiation of a data transfer to indicate transfer of maintenance
information. This bit also limits the capacity of each buffer memory
to one sword (16 words).

2-63

I

I

I

MAINTENANCE DATA TRANSFERS
Maintenance data transfers occur over the same lines as the CPU memory access and use the
same transfer sequences. The difference is one additional line, the maintenance signal.
The maintenance signal must accompany all maintenance data transfers. When data are read or
written through an I/O port and the maintenance line is a logical one, the data will pass to
or from the maintenance data registers instead of central memory. There are two one-sword
maintenance data registers; one input register (consisting of DFWO through DFWD), and one
output register (consisting of DFRO through DFR3). The input register connects to various
parts of the . CPU to provide control. The output register holds status information to be
monitored by the MCU.

The input register is loaded in 32-bit segments through the use of the write enable line
sent with each 32-bit half-word of maintenance control data. The output register is
connected statically to the CPU and is constantly updated. The MCU software reads this
status at the appropriate time.

I Tables 2-11 and 2-12 show the bit assignments for the input and output maintenance
registers. The first 16 bits of the input register are pulse shaped within the maintenance
hardware. All other bits must be set and cleared by alternate transfers of ones and zeros
into the register by the maintenance software.

2-64 60256020 c

Bit

00
01
02 t
03 t
04 t
05 t
06
07
08

09
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

TABLE 2-11. MCU TO CPU DATA

DFWO (Sword Bits 00-31)

Master clear
Stop
Step
Run
Store associative registers
Load associative registers
CPU master clear
Clear faults
Clear external interrupt initial
exchange

Notr·

Not used
Pulse clear (after 1 microsecond
DFWO bits 00-15)
Not used
Not used
Not used
Not used
Test mode loop count Bit 00

•

01
02
03
04
05
06
07
08
09
10

Test mode loop count Bit 11

Bit

00
01
02
03
04
05 t
06 t
07 t
08
09
10
11
12
13 t
14 t
15 t
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

DFWl (Sword Bits 32-63)

Hot r•d
Not used
Clock frequency select code Bit 00
Clock frequency select code Bit 01
Clock frequency select code Bit 02
Not used
Increment B.TC per minor cycle
Increment JIT per minor cycle
Increment MIT per minor cycle
Not used
Memory size select code Bit 00
Memory size select code Bit 01
Memory size select code Bit 02
Stop on single SECDED error
Stop on double SECDED error
SECDED correction enable
Block write enables on error
Select SECDED mode 2
Clear SECDED single error
Complement memory address bit 39
Not used

Not used

tcPU must be stopped before executing these commands.

60256020 c

I

2-65

I
Bit

00
OI
02
03
04
05
06
07
08
09
10
11
I2
13
I4
IS
I6
I7
I8
I9
20
2I
22
23
24
25
26
27
28
29
30
3I

TABLE 2-II. MCU TO CPU DATA (Contd)

DFW2 (Sword Bits 64-95)

Send external flag CHI
CH2
CH3
CH4
CHS
CH6
CH7
CH8
CH9
CHIO
CHll
CHI2
CHI3
CHI4
CHIS

Send external flag CHI6
Channel enable CHI

CH2
CH3
CH4
CHS
CH6
CH7
CH8
CH9
CHIO
CHU
CHI2
CHI3
CHI4

1 CHIS
Channel enable CHI6

Bit

00
OI
02
03
04
05
06
07
08
09

10
11
I2
I3
I4
IS
I6
I7
I8
I9 t
20 t

2I t
22t
23
24
25
26
27
28
29
30
3I
32

DFW3 (Sword Bits 96-I27)

Not used

•
Not used
Stop on microcode parity error
Stop on instruction stack parity
error
Stop on multiple match
Stop on bounds hit
Check bounds on CPU references
Check bounds on I/O references
Check bounds on read
Check bounds on write
Not used
Not used
Block external interrupt
Interrupt gate
Force instruction stack parity
error
Swap register file on exchange
Store register file 20000
Not used

,
Not used

tThe CPU must be stopped before executing these commands.

2-66 60256020 c

TABLE 2-11. MCU TO CPU DATA (Contd) I
Bit DFW4 (Sword Bits 128-1S9) Bit DFWS (Sword Bits 160-191)

00 Not used 00 Not used
01 Not used 01 Not used
02 Not used 02 Not used
03 Upper bounds address 3st 03 Lower bounds address 3S
04 36 04 36
OS 37 OS 37
06 38 06 38
07 39 07 39
08 40 08 40
09 41 09 41
10 42 10 42
11 43 11 43
12 44 12 44
13 4S 13 4S
14 46 14 46
lS 47 lS 47
16 48 16 48
17 49 17 49
18 so 18 so
19 Sl 19 Sl
20 S2 20 S2
21 S3 21 S3
22 S4 22 S4
23 SS 23 SS
24

1
S6 24 S6

2S S7 2S S7
26 Upper bounds address S8 26 Lower bounds address S8
27 Not used 27 Not used
28

J
28

J 29 29
30 30
31 Not used 31 Not used

tThe MCU transmits the false state of the upper bounds address, DFW4 bits 03 through 26.

60256020 c 2-67

TABLE 2-ll. MCU TO CPU DATA (Contd)

Bit DFW6 (Sword Bits 192-223) Bit DFW7 (Sword Bits 224-255)

00 Not used
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 Not used

2-68

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Not used

Not used

60256020 c

TABLE 2-11. MCU TO CPU DATA (Contd)

Bit DFW8 (Sword Bits 256-287)

~ Awdli•ry ~·4 •elect code ·r· ~
05 Auxiliary board select code Bit 05
06 t Write enable select code Bit 00
07 t Write enable select code Bit 01
08 t Write microcode
09 t Sweep microcode •
10 t Cle•r microcode addreaa
11 t Enable PMOl
12 t Read microcode
13 Hot used
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 '
31 Hot used

Bit

00
01
02
03
04

. 05
06
07
08
09
10
11
12
13
14
lS
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Drw9 (Sword Bits 288-319)

Write microcode data word 1 Bit 00
01
02
03
04
05
06
07
08
09
10

Write microcode data word 1 Bit 11
Write microcode data word 2 Bit 00

01
02
03
04
OS
06
07
08
09
10

Write llicrocode data word 2 Bit 11
Write microcode data word 3 Bit 00 I g~ 03

04
OS
06

Write microcode data word 3 Bit 07

tcPU must be stopped before executing these c011111&nda.

60256020 c

I

2-69

I TABLE 2-11. MCU TO CPU DATA (Contd)

Bit DFWA (Sword Bits 320-351) Bit DFWB (Sword Bits 352-383)

00 Write microcode data word 3 Bit 08 00 Write microcode data word 6 Bit 04
01 ~ ~ 09 01

l
05

02 10 02 06
03 Write microcode data word 3 Bit 11 03 07
04 Write microcode data word 4 Bit 00 04 08
05 01 05 09
06 02 06 10
07 03 07 Write microcode data word 6 Bit 11
08 04 08 Write microcode data word 7 Bit 00
09 05 09 01
10 06 10 02
11 07 11 03
12 08 12 04
13 09 13 05
14 10 14 06
15 Write microcode data word 4 Bit 11 15 07
16 Write microcode data word 5 Bit 00 16 08
17 01 17 • 09
18 02 18 10
19 03 19 Write microcode data word 7 Bit 11
20 04 20 Write microcode data word 8 Bit 00
21 05 21 01
22 06 22 02
23 07 23 03
24 08 24 04
25 • ~

09 25 05
26 10 26 06
27 Write microcode data word 5 Bit 11 27 07
28 Write microcode data word 6 Bit 00 28 08
29 ~ ~

01 2'1 09
30 02 30 10
31 Write microcode data word 6 Bit 03 31 Write microcode data word 8 Bit 11

I NOTE: Half-words DFWC and DFWF are not used.

2-70 60256020 c

TABLE 2-12. CPU TO MCU DATA I

Bit DPRO (Sword Bits 00-127) Bit DPRO (Sword Bits 48-127)
(If DFW8 Bit 12 is a Zero) (If DFW8 Bit 12 is a One) (Contd)

00 SECDED fault 60 DMOO Bit 02
01 Microcode parity error 61 DMOO Bit 03
02 Instruction stack parity error 62 GMOO Bit 00
03 Multiple match fault 63 GMOO Bit 01
04 Bounds hit 64 GMOO Bit 02
05 Not used 65 GMOO Bit 03
06 Not used 66 HMOO BRDl Bit 00
07 Not used 67 BMOO Bl.Dl Bit 01
08 Temperature dewpoint alara 68 HMOO BRDl Bit 02
09 Section power failure 69 BMOO Bl.Dl Bit 03
10 Main memory 60-Rz power 70 HMOO BRD2 Bit 00
11 Optional memory 60-Rz power 71 BMOO BllD2 Bit 01
12 Not used 72 RMOO BRD2 Bit 02
13 Monitor mode 73 BMOO BllD2 Bit 03
14 Idle 74 Not used
15 Stopped

,9 t 16 CIAI. bit 00 Not used

i ~ 90 SMOO BRDl
91 SMOO BRD2

63 CIAI. bit 47 92 SMOO BRD3
64 CIR bit 00 93 SHOO Bl.D4

~ ~ 94 SMOO BIDS
95 SMOO BRD6

127 CII. bit 63 96 SMOO Bl.D7
97 SHOO BRD8

Bit DPRO Bits 48-127 98 SMOO BRD9
(If DFW8 Bit 12 is a One) 99 SMOO BllDlO

100 VMOO BllDl
101 VMOO BRD2

48 PM00/01 Bl.Dl Bit 00 102 VMOO BB.D3
49 PM00/01 BllDl Bit 01 103 VMOO Bl.D4
so PM00/01 Bl.D2 Bit 00 104 VMOO BRDS
51 Pll>0/01 BllD2 Bit 01 105 VMOO Bl.D6
52 PM00/01 Bl.D3 Bit 00 106 VMOO Bl.D7
53 PM00/01 BllD3 Bit 01 107 VMOO BRD8
54 PM00/01 Bl.D4 Bit 00 108 VMOO Bl.D9
55 PM00/01 Bl.D4 Bit 01 109 VMOO BRDlO
56 PM00/01 Bl.DS Bit 00 110 WMOO Bl.Dl Bit 00
57 PM00/01 BllD5 Bit 01 111 WMOO Bl.Dl Bit 01
58 DMOO Bl.D5 Bit 00
59 DMOO BRD5 Bit 01

60256020 c 2-71

I TABLE 2-12. CPU TO MCU DATA (Contd)

Bit DFRO (Sword Bits 48-127) Bit DFR2 (Sword Bits 256-383) (Contd)
(If DFW8 Bit 12 is a One) (Contd)

112 WMOO BRD2 Bit 00 04 External interrupt register CH5
113 WMOO BRD2 Bit 01 05 CH6
114 WMOO BRD3 Bit 00 06 CH7
115 WMOO BRD3 Bit 01 07 CHS
116 WMOO BRD4 Bit 00 08 CH9
117 WMOO BRD4 Bit 01 09 CHlO
118 Not used 10 CHU

l l 11 CH12
12 CH13
13 • CH14

127 Not used 14 CH15
15 External interrupt register CH16
16. Monitor timer interrupt

Bit DFRl (Sword Bits 128-255) 17 Not used
18 SECDED double error

00 Data flag register Bit 00 19 SECDED single error

t t t 20 Space table search in process
63 Data flag register Bit 63 21 Bus code Bit 00
64 Not used 22 Bus code Bit 01
65 Not used 23 Bus code Bit 02
66 Not used 24 Not used

6(
Invisible package address Bit 00 25 Syndrome Bit 00

t t 26

1 1
01

86 Invisible package address Bit 19 27 02
87 Not used 28 03

' l 29 04
30 05

98 Not used 31 Syndrome Bit 06
99 Page zero address Bit 35 32 Not used

t t t 33 Not used
112 Page zero address Bit 48 34 Not used
113 Not used 35 SECDED fault address Bit 35

t + t ui 63 127 Not used 63 SECDED fault address

Bit DFR2 (Sword Bits 256-383)

00 Exter~l interrupt register CHl
01 CH2
02 CH3
03 External interrupt register CH4

2-72 60256020 c

TABLE 2-12. CPU TO MCU DATA (Contd) I
Bit DFlU (Sword Bits 256-383) (Contd) Bit DPR3 (Sword Bits 384-511)

64 Channel read active CHl 00 Microcode parity error Board 00
65 CR2

J8
t BoJrd 08 66 CR3 Microcode parity error

67 CH4 09 Not used
68 CHS I t
69 CR6 12 Not used
70 CR7 13 Microcode parity error Board 13
71 CH8

16 t t
72 CR9 Microcode parity error Board 36
73 CRlO 37 Not used
74 CRll 38 Microcode address Bit 00
75 CR12 39 01
76 CR13 40 02
77 CR14 41 03
78 CR15 42 04
79 Channel read active CR16 43 05
80 Channel write active CRl 44 06
81 CR2 45 07
82 CR3 46 1 08
83 CH4 47 Microcode address Bit 09
84 CR5 48 PMOl
85 CH6 49 Scalar microcode parity error
86 CR7 so Not used
87 CHS

' J 88 CR9
89 CRlO 127 Not used
90 CRll
91 CH12
92 CR13
93 CR14
94 CR15
95 Channel write active CR16
96 Not used
97 Not used
98 Not used
99 Bounds hit address Bit 35

' J ' 127 Bounds hit addrees Bit 63
--·

60256020 c 2-73

OPERATING INSTRUCTIONS 3

CONTROLS AND INDICATORS

All of the controls and indicators necessary to operate the CYBER 205 are located on the MCU
console and wall box. Refer to the appropriate manual listed in the preface for a
description of the MCU controls and indicators.

STARTUP PROCEDURES

The system startup procedures are explained in table 3-1.

TABLE 3-1. STARTUP PROCEDURES

Step Action Required Result

1. Press SYSTEM START button at wall a. Applies 400 Bz, 208 V ac to system.
box.

b. POWEil ON light illuminates.

c. SYSTEM START button remains energized
for 1 to 2 seconds.

d. Power is applied to intersection 24 V
de power supply. The 24 VDC light
illuminates

e. After a 3- to 5-minute delay, motor
generator lights. MG 1, 2, 3, and 4
illuminate.

2. Run command buffer diagnostics Verifies that machine is operational and
(provided by site customer capable of taking autoload.
engineer).

60256020 A 3-1

TABLE 3-1. STARTUP PROCEDURES (Contd)

Step Action Required

3. Autoload MCU as follows:

I NOTE I
The control terminal is the
terminal connected to CLA port
0 of the MCU.

a. Press control terminal keyboard
PAGE key so that key stays up.

b. Perform either step 3c or 3d
depending on which is more
convenient.

c. Press the following MCU console
switches in specified order.

STOP
MASTER
AUTO LOAD
RUN

I NOTE I
In order to use the control
terminal, MCU-OS must have been
previously loaded and reside,
intact, in MCU memory.

d. Use control terminal keyboard to
perform the following activity
in specified order.

Press: ESC key

I NOTE I
Press SHIFT and
simultaneously.

Enter: ?

Press: ESC key
Enter: JllG

HG
K8000G
I@

? keys

Result

3-2 60256020 A

TABLE 3-1. STARTUP PROCEDURES (Contd)

Step

4.

Action Required

e. Press ECS key at control terminal
and enter the following:

J28@

f. Enter date and time in following
format:

mmddyyhhmm (mm-month, 01-12;
dd•day, 01-31; yy•year, 00-99;
hh•hour, 00-23; and minute,
00-59)

g. Press CARRIAGE RETURN key.

h. Press CONTROL key and G key
simultaneously.

i. Press control terminal PAGE
key so that key stays down.

j. At control terminal enter
the following:

C205,x

x • 0 to enable line 0/1
and SECDED monitor
(default).

• 1 to disable line 0/1
display.

• 2 to disable SECDED
monitor (RSR, CRE,
and SLOG commands
made inoperative).

• 3 to disable line 0/1
display and SECDED
monitor.

k. Press CARRIAGE RETURN key.

Master clear the system from MCU.

60256020 A

Result

Causes manual interrupt.

C205,x

MCU commands are now executable from
the terminals.

Initializes CPU (clears all control flip
flops, data flags, interrupts, and error
flip-flops). Sets monitor mode in CPU
(Job Mode flip-flop cleared by master
clear).

3-3

TABLE 3-1. STARTUP PROCZDURES (Contd)

Step

5.

Ac ti on Required

Load microcode into the vector setup
unit and the scalar unit from MCU.

OPERATING PROCEDURES
I

Result

MCU sends an external flag via CPU 1/0
ports to 1/0 devices required on-line.
1/0 devices receiving this flag will auto
load and enter an idle loop waiting for a
channel flag from the CPU. An alterna
tive approach is to manually autoload
each of the 1/0 devices required on-line.

MCU loads operating kernel into central
memory, and then interrupts the CPU.
CPU recognizes the interrupt and exe
cutes a partial exchange to start execu
tion in monitor mode. This exchange is
the same as a normal job to monitor ex
change except the contents of the register
file and invisible package are not
stored. Program execution starts at the
address contained in monitor's register
six just as it does after a normal 1/0
interrupt.

Refer to the appropriate manual listed in the preface for operating procedures.

SYSTEM STOP (NORMAL)
Table 3-2 describes procedures for a normal system stop.

TABLE 3-2. SYSTEM STOP

Step Action Required Result

1. Press SYSTEM STOP button at wall a. SYSTEM STOP button remains illumi-
box. nated for 1 to 2 seconds.

b. Power is removed from motor generators.
MG 1, 2, 3, and 4 and POWER ON lights
go out.

c. Power is removed from the peripherals.

d. Power is removed from the 24 V de
power supply. The 24 VDC light re-
mains energized for approximately 3
minutes.

3-4 60256020 B

EMERGENCY STOP
Table 3-3 gives the procedure for an emergency system stop.

TABLE 3-3. EMERGENCY STOP

Step Action Required Result

1. Press SYSTEM OFF button at wall box. Removes 400 Hz, 208 V ac power from wall
box. All systems power down without
delay.

60256020 A 3-5

INSTRUCTION DESCRIPTIONS 4

GENERAL
This section describes instruction word formats, instruction types, and instruction
descriptions. The instruction word format description explains the content of 32-bit and
64-bit instruction formats used in the computer. The instruction type description explains
the instruction groups according to the operations they perform. The instruction
description gives detailed explanations and examples of individual instructions.

As an aid in finding instruction designator information and individual instruction
descriptions, refer to:

• Table 4-1 for instruction designators.

• Table 4-2 or inside front cover for locating instructions by function code.

• Table 4-3 for locating instructions by instruction type.

INSTRUCTION WORD FORMATS

The 32-bit and 64-bit instruction words have 12 types of formats (figure 4-1). The formats
have hexadecimal numbers, 1 through C, which are used as references in tables 4-2 and 4-3.
The bits in the instruction word formats number from left to right, 0 through 31 or 0
through 63.

INSTRUCTION DESIGNATORS

Each instruction word format is divided into bit groups that have assigned instruction
designators shown in figure 4-1. The designator letters (such as F, R, S, and T in format
4) and their definitions are listed in table 4-1. The definitions are general and may vary
between instructions. The instruction descriptions give more specific designator
information as it applies to individual instructions.

When the C + 1 designator is used, the C designator must specify an even-numbered register.
If the C designator specifies an odd-numbered register, the results of the instruction
become undefined.

Bits 0 through 7 are conanonly used by each instruction word as the function code designator
(F). The computer uses function codes in the range of 00 through FF. The function codes in
the range of 00 through 7F use 32-bit instruction word formats. The function codes in the
range of 80 through FF use 64-bit instruction word formats.

UNUSED BIT AREAS

Cross-hatched lines like those shown in formats A, B, and C of figure 4-1 indicate unused
bit areas. These areas must be cleared to all zeros or the instructions may cause undefined
results or operations.

60256020 A 4-1

O 71 Ill II 2114 II II II 40 47 41 Ill II II
--~~~~~G~~..--___,..,x~___,..-----.,.~--.,..--__,..,,Y~--.~--..___,--.~_,,,z~--.._..._..c._......;.;;..

F (SUB- (OFFSET (OFFSET (LENGTH a (C v © (LENGTH a
(FUNCTION) FUNCTION) FOR A) FOR B) fAS~ BA~~ESS lti~ESS

CD c v DENOTES CONTROL VECTOR

I c+ I I
(OFFSET I

LFOR £_ a3 J
FORMAT I - USED FOR VECTOR, VECTOR MACRO, ANO SOME NONTYPICAL INSTRUCTIONS

0 T I Ill II 21 24 47 41 Ill II 11

G ri\X
F (SUB- OV \lJ LENGTH

FUNCTION FUNCTION) :o8AHs>
(BAS~ co.vafLENGTH (RESULT
ADDRESS, 8 BASE LENGTH 8

BASE ADORE

CD 0 v DENOTES ORDER VECTOR

FORMAT 2 - USED FOR SPARSE VECTOR AND SOME NONTYPICAL INSTRUCTIONS

0 T I Ill II 21 24 II II II 40 47 41 1111 II 11
....----F----"T""""--~G----......---~x.,...-----r----,..-----r---~Y,........---r-----=--------~z~----------....;..;,

0

(FUNCTiON) (SUB- (INDEX (INDE"..x (INDEX 8
FUNCTION I FOR A) FOR lJ) FOR C)

FORMAT 3 USED FOR LOGICAL STRING AND STRING INSTRUCTIONS

Tl IS II 21 14 II

F R s T
(FUNCTION) (SOURCE I) (SOURCE 21 (DESTINATION)

4-2

FORMAT 4 USED FOR SOME REGISTER, ALL MONITOR, THE 30 AND 04 NONTYPICAL
INSTRUCTIONS

Figure 4-1. Instruction Formats (Sheet 1 of 3)

60256020 A

0 ,, 1111 ..

l!FUN~TIONIFESJ.i.n01 1 !41 ~ITSI
FORMAT S USED FOR THE BE,BF,CO,AND CE INDEX INSTRUCTIONS AND FOR THE B6 BRANCH
INSTRUCTION

0 ' ' 1111 ••
l

(16 BITS)

FORMAT 6 USED FOR THE 3E, 3F, 40, AND 4E INDEX INSTRUCTIONS AND
THE 2A REGISTER INSTRUCTION

0 ' ' 1111 1114 II

R s T

DESCRIBED WHERE USED

FORMAT 7 USED FOR SOME BRANCH AND NONTYPICAL INSTRUCTIONS

0 ,, 1111 1114 II

F R s T
(FUNCTION) (REGISTER) (REGISTER) (BASE

ADDRESS)

FORMAT 8 USED FOR SOME BRANCH INSTRUCTIONS

Figure 4-1. Instruction Formats (Sheet 2 of 3)

60256020 A 4-3

G DESIGNATOR
~

0 1 I 9 IO 1112 115 II

s
23 24 II

T

DESCRIBED WHERE USED

FORMAT 9 USED FOR THE 32 BRANCH INSTRUCTION

0 71 115 II 2124

F R T
(FUNCTION) OLD STATE) (NEW STATE)

FORMAT A USED FOR SOME INDEX, BRANCH, AND REGISTER INSTRUCTIONS

0

0

G DESIGNATOR
,--A---..

7 8 9 10 1112 151817 II

F
(FUNCTION) d 8

I
(6)

21 24

T
(BASE

ADDRESS)

DESCRIBED WHERE USED

II

FORMAT B USED FOR THE 33 BRANCH INSTRUCTION

G DESIGNATOR

7~18 2! 24 II 12

F x A y

19 40 47 41

B z
55 56 81

c
(FUNCTION) (REGISTER) (REGISTER) (INDEX) (BASE (REGISTER) (REGISTER) ADDRESS)

~GBITS5-7:
"-... BRANCH CONTROL BITS

"G BITS 0-4:
SEE BO-B5 INSTRUCTIONS

FORMAT C USED FOR THE B 0 - B 5 BRANCH INSTRUCTIONS

Figure 4-1. Instruction Formats (Sheet 3 of 3)

4-4 60256020 A

Designator

A

B

c

C+l

d

60256020 A

TABLE 4-1. INSTRUCTION DESIGNATORS

Format Type

1 and 3

2

c

1 and 3

2

c

1,2, and 3

c

1

9 and B

Definition

This 8-bit designator specifies a register
that contains a field length and base
address for the corresponding source vector
or string field.

This 8-bit designator specifies a register
that contains the base address for a source
sparse vector field.

Specifies a register that contains a two's
complement integer in the rightmost 48 bits.

This 8-bit designator specifies a register
that contains a field length and base
address for the corresponding source vector
or string field.

This 8-bit designator specifies a register
that contains the base address for a source
sparse vector field.

This 8-bit designator specifies a register
that contains the branch base address in
the rightmost 48 bits.

This 8-bit designator specifies a register
that contains the field length and base
address for storing the result vector,
sparse vector, or string field.

Specifies the register that contains the
two's complement sum of (A) + (X) in the
rightmost 48 bits. The leftmost 16 bits
are cleared.

This 8-bit designator specifies a register
that contains the offset for the C and Z
vector fields.

This 2-bit designator is contained within
the G designator and specifies the branch
conditions for the corresponding branch
instructions.

4-5

Designator

e

F

G

I

4-6

TABLE 4-1. INSTRUCTION DESIGNATORS (Contd)

Format Type

9 and B

1 - c

1,2,3,9,B, and C

5

6

B

Definition

This 2-bit designator is contained
the G designator and specifies the
bit altering conditions for
corresponding branch instructions.

within
object

the

This 8-bit designator is used in all
instruction format types to specify the
instruction function code. This designator
is always contained in the leftmost 8 bits
of the instruction and is expressed in
hexadecimal for all instruction
descriptions. Thus, the function code
range is OO-FF16• However, not all of
the possible function codes are used.

This 8-bit designator specifies certain
subfunction conditions for the
corresponding instruction. The
subfunctions include the length of the
operands (32- or 64-bit), normal or
broadcast source vectors, etc. The number
of bits that are used in the G designator
vary with individual instructions.
(Appendix C lists the G bit usage codes
according to function code.)

The G designator bits have bit positions 8
through 15 in the word format. The manual
references these bits as G bits 0 through
7. G bit 0 corresponds to bit position 8
in the word format. Other G bits follow,
in order, from left to right.

This 48-bit designator functions as an
index used to form the branch address in a
B6 branch instruction. In the CD and CE
index instructions, operand I is contained
in the rightmost 24 bits. In the BE and BF
index instructions, I is a 48-bit operand.

In the 3E,
instructions,
operand.

3F, 4D, and 4E
I functions as a

index
16-bit

In the 33 branch instruction, the
designator specifies the number of
flag branch register bit used
branching operation.

6-bit I
the data
in the

60256020 A

Designator

:a.

s

T

60256020 A

TABLE 4-1. INSTRUCTION DESIGNATORS (Contd)

Format Type

4

5 and 6

7,8, and A

4

7,8, and 9

4

7,8,9, and B

A

Definition

This 8-bit designator specifies a register
that contains an operand to be used in
arithmetic operation in the register and 3D
instructions.

In the BE, BP, CD, CE, 3E, 3P, 4D, and 4E
index instructions, B. functions aa a
destination register for the transfer of an
operand or operand sum. In the B6 branch
instruction, B. specifies a register that
contains an item count which ia used to
form the branch address.

In these format types, B. specifies
registers and branching conditions that are
described in the individual instruction
descriptions.

Thia 8-bit designator specifies a register
that contains an operand to be used in an
arithmetic operation in the register and 3D
instructions.

In these format types, S specifies
registers and branching conditions that are
described in the individual instruction
descriptions.

This 8-bit designator specifies a
destination register for the transfer of
the arithmetic results.

In these formats, T specifies
that contains the base address,
caaea, the field length
corresponding result field
addreas.

a register
and in some

of the
or branch

In this format, T specifies a register that
contains the old state of a register, data
flag branch register, etc.; in an index,
branch or inter-register transfer operation.

4-7

Designator

x

y

z

4-8

TABLE 4-1. INSTRUCTION DESIGNATORS (Contd)

Format Type

1 and 3

2

c

1 and 3

2

c

1

2

3

c

Definition

This 8-bit designator specifies a register
that contains the offset or index for
vector or string source field A.

In this case, X specifies a register that
contains the length and base address for
the order vector corresponding to source
sparse vector field A.

In the BO through B5 branch instructions, X
specifies a register that contains a
signed, two's complement integer in the
rightmost 48 bits which is used as an
operand in the branching operation.

This 8-bit designator specifies a register
that contains the offset or index for
vector or string field B.

In this format, Y specifies a register that
contains the length and base address for
the order vector corresponding to source
sparse vector field B.

In the BO through B5 branch instructions, Y
specifies a register that contains an index
that is used to form the branch address.

This 8-bit designator specifies a register
that contains the base address for the
control vector used to control the result
vector in field C.

In this case, Z specifies a register that
contains the length and base address for
the order vector corresponding to sparse
vector field c.

In this format, Z specifies a register that
contains the index for result field c.

In the BO through B5 branch instructions, Z
specifies a register that contains a signed
two's complement integer in the rightmost
48 bits. This integer is used as the
comparison operand in determining whether
the branch condition is met.

60256020 A

INSTRUCTION TYPES

The following 10 types of instructions are grouped according to the operations they perform.

1. Index (IN) 6. Vector macro (VM)

2. Register (B.G) 1. String (ST)

3. Branch (BB.) s. Logical string (LS)

4. Vector (VT) 9. Hontypical (NT)

s. Sparse vector (SV) 10. Monitor (MN)

Table 4-2 lists each instruction code in the central computer instruction repertoire; the
list is in the numerical order (hexadecimal) of the function code. Table 4-3 lists the
instruction codes according to general type; the general types are in the same order as
previously listed. The unused and illegal function codes are omitted from tables 4-2 and
4-3.

A page number is given for each instruction code in tables 4-2 and 4-3. These page numbers
refer to the description of the corresponding instruction. Figure 4-2 provides additional
explanations for using the tables.

INSTRUCTION PAGE
CODE NUMBER

.INSTRUCTION
FUNCTION
.CODES
DESIGNATED
OO-FF16

INSTRUCTION
WORD
FORMAT TYPES
DESIGNATED
1-c16

FORMAT
TYPE

NUMBER OF BITS INSTRUCTION
IN OPERAND TYPE

NUMBER OF BITS---------------'
IN OPERAND

INSTRUCTION TYPE

1 - SINGLE BIT
8 - BYTES

32 - HALF-WORDS
84 - FULL-WORDS

E - EITHER 32· OR 84-BIT
B - BOTH 32· AND 84-BIT

NA - NOT APPLICABLE

BR - BRANCH
IN - INDEX
LS - LOGICAL STRING
NT - NONTYPICAL
RG - REGISTER
ST - STRING
SV - SPARSE VECTOR
VM - VECTOR MACRO
VT - VECTOR
MN - MONITOR

Figure 4-2. Instruction Listing Format

INSTRUCTION TITLE

INSTRUCTION TITLE
DESIGNATORS WITHIN
PARENTHESES ,(), INDI·
CATE REGISTER LOCATIONS.
DESIGNATORS WITHOUT
PARENTHESES INDICATE
QUANTITIES.
DESIGNATORS SEPARATED
BY AN-ARROW,-, INDICATE
FIELDS.
BRACKETS, [I, INDICATE
ALGEBRAIC QUANTITIES.

60256020 B 4-9

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

00 4-155 4 NA MN IDLE

03 4-153 4 64 NT KEYPOINT - MAINTENANCE

04 4-153 4 64 NT BREAKPOINT - MAINTENANCE

05 4-154 4 64 NT VOID STACK AND BRANCH

06 4-155 7 NA MN FAULT TEST - MAINTENANCE

08 4-156 4 64 MN INPUT/OUTPUT PER R

09 4-58 4 64 BR EXIT FORCE

OA 4-157 4 64 MN TRANSMIT (R) TO MONITOR
INTERVAL TIMER

oc 4-157 4 64 MN STORE ASSOCIATIVE REGISTERS

OD 4-157 4 64 MN LOAD ASSOCIATIVE REGISTERS

OE 4-157 4 64 MN TRANSLATE EXTERNAL
INTERRUPT

OF 4-157 4 64 MN LOAD KEYS FROM (R),
TRANSLATE ADDRESS (S) TO (T)

10 4-42 A 64 RG CONVERT BCD TO BINARY,
FIXED LENGTH

11 4-42 A 64 RG CONVERT BINARY TO BCD,
FIXED LENGTH

12 4-122 7 64 NT LOAD BYTE (T) PER (S), (R)

13 4-122 7 64 NT STORE BYTE (T) PER (S), (R)

14 4-131 7 1 NT BIT COMPRESS

15 4-133 7 1 NT BIT MERGE

16 4-133 7 1 NT BIT MASK

4-10 60256020 A

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

lC 4-150 7 1 NT FORM REPEATED BIT MASK WITH
LEADING ZEROS

lD 4-150 7 1 NT FORM REPEATED BIT MASK WITH
LEADING ONES

lE 4-151 7 1 NT COUNT LEADING EQUALS

lF 4-153 7 1 NT COUNT ONES IN FIELD R, COUNT
TO (T)

20 4-51 8 32 BR BRANCH IF (R)•(S)(32 BIT PP)

21 4-51 8 32 BR BRANCH IF (R);(S)(32 BIT FP)

22 4-51 8 32 BR BRANCH IF (R)1(S)(32 BIT FP)

23 4-51 8 32 BR BRANCH IF (R)({S)(32 BIT FP)

24 4-51 8 64 BR BRANCH IF (R)•(S)(64 BIT FP)

25 4-51 8 64 BR BRANCH IF (R);(S)(64 BIT FP)

26 4-51 8 64 BR BRANCH IF (R)~(S)(64 BIT FP)

27 4-51 8 64 BR BRANCH IF (R)<{S)(64 BIT FP)

28 4-150 7 8 NT SCAN EQUAL

2A 4-50 6 64 RG ENTER LENGTH OF (R) WITH I
(16 BITS)

2B 4-50 4 64 RG ADD TO LENGTH FIELD

2C 4-34 4 64 RG LOGICAL EXCLUSIVE OR (R), (S),
TO (T)

2D 4-34 4 64 RG LOGICAL AND (R), (S), TO (T)

2E 4-34 4 64 RG LOGICAL INCLUSIVE OR (R), (S),
TO {T)

2F 4-51 9 1 BR REGISTER BIT BRANCH AND
ALTER

30 4-35 7 64 RG SHIFT {R) PER S TO {T)

31 4-58 7 64 BR INCREASE (R) AND BRANCH IF
(R) ; 0

60256020 A 4-11

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Ope.rand Type Instr Title

32 4-55 9 1 BR BIT BRANCH AND ALTER

33 4-52 B 1 BR DATA FLAG REGISTER BIT
BRANCH AND ALTER

34 4-35 4 64 RG SHIFT (R) PER (S) TO (T)

35 4-58 7 64 BR DECREASE (R) AND BRANCH IF
(R) .f 0

36 4-58 7 64 BR BRANCH AND SET (R) TO NEXT
INSTRUCTION

37 4-123 A 64 NT TRANSMIT JOB INTERVAL TIMER
TO (T)

38 4-34 A 64 IN TRANSMIT (R BITS 00-15) TO
(T BITS 00-15)

39 4-124 A 64 NT TRANSMIT REAL-TIME CLOCK
TO (T)

3A 4-124 A 64 NT TRANSMIT (R) TO JOB INTERVAL
TIMER

3B 4-55 A 64 BR DATA FLAG REGISTER
LOAD/STORE

3C 4-122 4 32 NT HALF-WORD INDEX MULTIPLY
(R)•(S) TO (T)

3D 4-122 4 64 NT INDEX MULTIPLE (R)•(S) TO
(T)

3E 4-32 6 64 IN ENTER (R) WITH I (16 BITS)

3F 4-32 6 64 IN INCREASE (R) BY I (16 BITS)

40 4-38 4 32 RG ADD U; (R) + (S) TO (T)

41 4-38 4 32 RG ADD L; (R) + (S) TO (T)

42 4-38 4 32 RG ADD N; (R) + (S) TO (T)

44 4-38 4 32 RG SUB U; (R) - (S) TO (T)

45 4-38 4 32 RG SUB L; (R) - (S) TO (T)

46 4-38 4 32 RG SUB N; (R) - (S) TO (T)

4-12 60256020 A

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

48 4-38 4 32 RG MPY U; (R)•(S) TO (T)

49 4-38 4 32 RG MPY L; (R) "(S) TO (T)

4B 4-38 4 32 RG MPY S; (R) • (S) TO (T)

4C 4-38 4 32 RG DIV U; (R)/ (S) TO (T)

4D 4-32 6 32 IN HALF-WORD ENTER (R) WITH I
(16 BITS)

4E 4-32 6 32 IN HALF-WORD INCREASE (R) BY I
(16 BITS)

4F 4-38 4 32 RG DIV S; (R)/(S) TO (T)

50 4-39 A 32 RG TRUNCATE (R) TO (T)

Sl 4-39 A 32 RG FLOOR (R) TO (T)

S2 4-39 A 32 RG CEILING (I) TO (T)

S3 4-42 A 32 RG SIGNIFICANT SQUARE ROOT OF
(R) TO (T)

S4 4-48 4 32 RG ADJUST SIGNIFICANCE OF (R)
PER (S) TO (T)

SS 4-48 4 32 RG ADJUST EXPONENT OF (R) PER
(S) TO (T)

'
S6 4-137 7 NA NT SELECT LINK

S8 4-39 A 32 RG TRANSMIT (R) TO (T)

S9 4-39 A 32 RG ABSOLUTE (R) TO (T)

SA 4-39 A 32 RG EXPONENT OF (R) TO (T)

SB 4-42 4 32 RG PACK (R), (S) TO (T)

SC 4-42 A B RG EXTEND 32 BIT (R) TO
64 BIT (T)

SD 4-42 A B RG INDEX EXTEND 32 BIT (R) TO
64 BIT (T)

SE 4-122 7 32 NT LOAD (T) PER (S), (R)

SF 4-122 7 32 NT STORE (T) PER (S), (R)

602S6020 A 4-13

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Forlliat No. of Bits Instr
Code No. Type in Operand Type Instr Title

60 4-38 4 64 RG ADD U; (R) + (S) TO (T)

61 4-38 4 64 RG ADD L; (R) + (S) TO (T)

62 4-38 4 64 RG ADD N; (R) + (S) TO (T)

63 4-39 4 64 RG ADD ADDRESS (R) + (S) TO (T)

64 4-38 4 63 RG SUB U; (R) - (S) TO (T)

65 4-38 4 64 RG SUB L; (R) - (S) TO (T)

66 4-38 4 64 RG SUB N; (R) - (S) TO (T)

67 4-39 4 64 RG SUB ADDRESS (R) - (S) TO (T)

68 4-38 4 64 RG MPY U; (R)•(S) TO (T)

69 4-38 4 64 RG MPY L; (R)•(S) TO (T)

6B 4-38 4 64 RG MPY S; (R)•(S) TO (T)

6C 4-38 4 64 RG DIV U; (R) I (S) TO (T)

6D 4-36 4 64 RG INSERT BITS FROM (R) TO (T)
PER (S)

6E 4-37 4 64 RG EXTRACT BITS FROM (R) TO (T)
PER (S)

6F 4-38 4 64 RG DIV S; (R) / (S) TO (T)

70 4-39 A 64 RG TRUNCATE (R) TO (T)

71 4-39 A 64 RG FLOOR (R) TO (T)

72 4-39 A 64 RG CEILING (R) TO (T)
\

73 4-42 A 64 RG SIGNIFICANT SQUARE ROOT OF
(R) TO (T)

74 4-48 4 64 RG ADJUST SIGNIFICANCE OF (R)
PER (S) TO (T)

75 4-48 4 64 RG ADJUST EXPONENT OF (R) PER
(S) TO (T)

76 4-42 A B RG CONTRACT 64 BIT (R) TO 32 BIT
(T)

4-14 60256020 A

TABLE 4-2. INSTRUCTION LIST BY PUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

77 4-42 A B RG ROUNDED CONTRACT 64 BIT
(I) TO 32 BIT (T)

7S 4-39 A 64 RG TRANSMIT (I) TO (T)

79 4-39 A 64 RG ABSOLUTE (I) TO (T)

7A 4-39 A 64 RG EXPONENT OF (I) TO (T)

7B 4-42 4 64 RG PACK (I), (S) TO (T)

7C 4-42 A 64 RG LENGTH OF (I) TO (T)

7D 4-123 7 64 NT SWAP s- T AND I -s

7E 4-122 7 64 NT LOAD (T) PEI (S), (I)

7F 4-122 7 64 NT STOii (T) PEI (S), (I)

80 t 4-73 1 E VT ADD U; A+ B- C

81 t 4-73 1 E VT ADD L; A+ B -c

S2 t 4-73 1 E VT ADD N; A+ B-9

S3 •. 4-74 1 64 VT ADD A; A+ B-C

84 t 4-73 1 E VT SUB U; A- B-C

S5 t 4-73 1 E VT SUB L; A - B-C

86 t 4-73 1 E VT SUB N; A - B-C

S7 4-74 1 64 VT SUB A; A - B-C

SS t 4-73 1 E VT MPY U; A•B -c

S9 t 4-73 1 E VT MPY L; A•B-C

8A 4-75 1 64 VT SHIFT; A PEI B- C

SB 4-73 1 E VT MPY S; A•B-C

SC t 4-73 1 E VT DIV U; A/B -c

SF t 4-73 1 E VT DIVS; A/B-C

90 4-76 1 E VT TRUNCATE A - C

91 4-76 1 E VT FLOOR A-C

60256020 A 4-15

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

92 4-76 1 E VT CEILING A-C

93t 4-83 1 E VT SIGNIFICANT SQUARE ROOT OF
A-c

94 4-86 1 E VT ADJUST SIGNIFICANCE OF A PER
B-C

95 4-86 1 E VT ADJUST EXPONENT OF A PER
B-C

96 4-83 1 B VT CONTRACT 64 BIT A-32 BIT c

97 4-83 1 B VT ROUNDED CONTRACT 64 BIT
A~32 BIT C

98 4-76 1 E VT TRANSMIT A-C

99 4-76 1 E VT ABSOLUTE A-C

9A 4-76 1 E VT EXPONENT OF A-C

9B 4-81 1 E VT PACK A, B-C

9C 4-83 1 B VT EXTEND 32 BIT A-64 BIT C

9D 4-82 1 E VT LOGICAL; A, B-C

AOt 4-93 2 E sv ADD U; A+ B-c

Alt 4-93 2 E sv ADD L; A+ B-C

A2t 4-93 2 E sv ADD N; A+ B-c

A4t 4-93 2 E sv SUB U; A - B-C

ASt 4-93 2 E sv SUB L; A - B-C

A6t 4-93 2 E sv SUB N; A - B-C

A8t 4-97 2 E sv MPY U; A·B-C

A9t 4-97 2 E sv MPY L; A·B-C

ABt 4-97 2 E sv MPY S; A·B-C

ACt 4-97 2 E sv DIV U; A/B-C

AFt 4-97 2 E sv DIV S; A/B-C

4-16 60256020 B

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

BO 4-60 c 64 BB. COMPARE INTEGER, BRANCH IF
(A) + (X) • (Z)

Bl 4-60 c 64 BR COMPARE INTEGER, BRANCH IF
(A) + (X) ;. (Z)

B2 4-60 c 64 BR COMPARE INTEGER, BRANCH IF
(A) + (X) ~ (Z)

B3 4-60 c 64 BR COMPARE INTEGER, BRANCH IF
(A) + (X) < \(Z)

B4 4-60 c 64 BR COMPARE INTEGER, BRANCH IF
(A) + (X) ,S_ (Z)

BS 4-60 c 64 BR COMPARE INTEGER, BRANCH IF
(A) + (X) > (Z)

BO 4··63 c 64 BR COMPARE FP, BRANCH IF
(A) • (X)

Bl 4-63 c 64 BR COMPARE FP, BRANCH IF
(A) ;. (X)

B2 4-63 c 64 BR COMPARE FP, BRANCH IF
(A) ~ (X)

B3 4-63 c 64 BR COMPARE FP, BRANCH IF
(A) < (X)

B4 4-63 c 64 BR COMPARE FP, BRANCH IF
(A) ~ (X)

BS 4-63 c 64 BR COMPARE FP, BRANCH IF
(A)) (X)

BO 4-140 c 64 NT COMPARE INTEGER, SET
CONDITION (A) + (X) • (Z)

Bl 4-140 c 64 NT COMPARE INTEGER, SET
CONDITION (A) + (X) ;. (Z)

B2 4-140 c 64 NT COMPARE INTEGER, SET
CONDITION (A) + (X) L (Z)

B3 4-140 c 64 NT COMPARE INTEGER, SET
CONDITION (A) + (X) < (Z)

B4 4-140 c 64 NT COMPARE INTEGER, SET
CONDITION (A) + (X) ,S_ (Z)

602S6020 A 4-17

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

BS 4-140 c 64 NT COMPARE INTEGER, SET
CONDITION (A) + (X) > (Z)

BO 4'.""142 c 64 NT COMPARE FP, SET CONDITION
(A) = (X)

Bl 4-142 c 64 NT COMPARE FP, SET CONDITION
(A) 'I- (X)

B2 4-142 c 64 NT COMPARE FP, SET CONDITION
(A) 1 (X)

B3 4-142 c 64 NT COMPARE FP, SET CONDITION
(A) < (X)

B4 4-142 c 64 NT COMPARE FP, SET CONDITION
(A) ,S (X)

BS 4-142 c 64 NT COMPARE FP, SET CONDITION
(A) > (X)

B6 4-64 s NA BR BRANCH TO IMMEDIATE
ADDRESS (R) + I (48 BITS)

B7 4-114 1 E VM TRANSMIT LIST - INDEXED C

B8 4-110 1 E VM TRANSMIT REVERSE A - C

BA 4-113 1 E VM TRANSMIT INDEXED LIST - C

BB 4-12S 2 E NT MASK· A, B - C PER Z

BC 4-12S 2 E NT COMPRESS A - C PER Z

BD 4-129 2 E NT MERGE A, B - C PER Z

BE 4-33 s 64 IN ENTER (R) WITH I (48 BITS)

BF 4-33 s 64 IN INCREASE (R) BY I (48 BITS)

co 4-lOf 1 E VM SELECT EQ; A .. B, ITEM COUNT
TO (C)

Cl 4-101 1 E VM SELECT NE; A ;. B, ITEM COUNT
TO (C)

C2 4-101 1 E VM SELECT GE; A_? B, ITEM COUNT
TO (C)

4-18 602S6020 A

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

lns·tr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

C3 4-101 1 E VM SELECT LT; A < B, ITEM COUNT
TO (C)

C4 4-143 1 E NT COMPARE EQ; A• B, ORDER
VECTOR-z

C5 4-143 1 E NT COMPARE NE; A + B, ORDER
VECTOR-z

C6 4-143 1 E NT COMPARE GE; A ~ B, ORDER
VECTOR-z

C7 4-143 1 E NT COMPARE LT; A < B, ORDER
VECTOR'-z

cs 4-144 1 E NT SEARCH EQ; A • B, INDEX
LIST-C

C9 4-144 1 E NT SEARCH NE; A + B, INDEX
LIST-C

CA 4-144 1 E NT SEARCH GE; A~ B, INDEX
LIST-C

CB 4-144 1 E NT SEARCH LT; A < B, INDEX
LIST-C

cc 4-148 3 64 NT MASKED BINARY COMPARE:
A EQ/NE (B) PER (C)

CD 4-33 5 32 IN HALF-WORD ENTER (R) WITH
I (24 BITS)

CE 4-33 5 32 IN HALF-WORD INCREASE (R) BY
I (24 BITS)

CFt 4-126 1 E NT ARITH. COMPRESS A-C PER B

DO 4-109 1 E VM AVERAGE (~+Bn)/2-cn

Dl 4-107 1 E VM ADJ. MEAN [A(n+l)+Anl /2-cn

D4 4-109 1 E VM AVE. DIFF. (~-Bn)/2-cn

D5 4-107 1 E VM DELTA [A(n+l)-Aol-Cn

D8t 4-149 1 E NT MAX. OF A TO (C), ITEM COUNT
TO (B)

60256020 A 4-19

TABLE 4-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)

Instr Page Format No. of Bits Instr
Code No. Type in Operand Type Instr Title

D9t 4-149 1 E NT MIN. OF A TO (C), ITEM COUNT
TO (B)

DA 4-104 1 E VM SUM (Ao+A1+A2•••A))
TO (C) AND (C + 1

DB 4-105 1 E VM PRODUCT (Ao,A1,A2,•••An) TO (C)

DC 4-116 1 E VM VECTOR DOT PRODUCT TO (C)
AND (C + 1)

DF 4-112 1 E VM INTERVAL A PER B - C

FO 4-119 3 1 LS LOGipAL EXCLUSIVE OR A, B-C

Fl 4-119 3 1 LS LOGICAL AND A, B- C

F2 4-119 3 1 LS LOGICAL INCLUSIVE OR A, B-C

F3 4-119 3 1 LS LOGICAL STROKE A, B-C

F4 4-119 3 1 LS LOGICAL PIERCE A, B-C

F5 4-119 3 1 LS LOGICAL IMPLICATION A, B - C

F6 4-119 3 1 LS LOGICAL INHIBIT A, B - C

F7 4-119 3 1 LS LOGICAL EQUIVALENCE A, B-C

F8 4-118 3 8 ST MOVE BYTES LEFT A - C

t These instructions have sign control capability.

4-20 60256020 A

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

INDEX INSTRUCTIONS (IN)

3E 4-32 6 64 ENTER (R) WITH I (16 BITS)

3F 4-32 6 64 INCREASE (R) BY I (16 BITS)

4D 4-32 6 32 RALF-WORD ENTER (R) WITH I (16 BITS)

4E 4-32 6 32 RALF-WORD INCREASE (R) BY I
(16 BITS)

CD 4-33 5 32 RALF-WORD ENTER (R) WITH I (24 BITS)

CE 4-33 5 32 RALF-WORD I,NCREASE (R) BY I
(24 BITS)

BE 4-33 5 64 ENTER (R) WITH I (48 BITS)

BF 4-33 5 64 INCREASE (R) BY I (48 BITS)

38 4-34 A 64 TRANSMIT (R BITS 00-15) TO
(T BITS 00-15)

REGISTER INSTRUCTIONS (RG)

2C 4-34 4 64 LOGICAL EXCLUSIVE OR (R), (S),
TO (T)

2D 4-34 4 64 LOGICAL AND (R), (S), TO (T)

2E 4-34 4 64 LOGICAL INCLUSIVE OR (R), (S),
TO (T)

30 4-35 7 64 SHIFT (R) PER (S) TO (T)

34 4-35 4 64 SHIFT (R) PER (S) TO (T)

6D 4-36 4 64 INSERT BITS FROM (R) TO (T) PER (S)

6E 4-37 4 64 EXTRACT BITS FROM (R) TO (T) PER (S)

40/60 4-38 4 32/64 ADD U; (R) + (S) TO (T)

41/61 4-38 4 32/64 ADD L; (R) + (S) TO (T)

42/62 4-38 4 32/64 ADD N; (R) + (S) TO (T)

44/64 4-38 4 32/64 SUB U; (R) - (S) TO (T)

45/65 4-38 4 32/64 SUB L; (R) - (S) TO (T)

60256020 A 4-21

Instr
Code

46/66

48/68

49/69

4B/6B

4C/6C

4F/6F

63

67

S8/78

S9/79

Sl/71

S2/72

SA/7A

S0/70

SB/7B

SC

SD

76

77

7C

S3/73

10

11

4-22

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Page
No.

4-38

4-38

4-38

4-38

4-38

4-38

4·-39

4-39

4-39

4-39

4-39

4-39

4-39

4-39

4-42

4-42

4-42

4-42

4-42

4-42

4-42

4-42

4-42

Format
Type

4

4

4

4

4

4

4

4

A

A

A

A

A

A

4

A

A

A

A

A

A

A

A

No. of Bits
in Operand

32/64

32/64

32/64

32/64

32/64

32/64

64

64

32/64

32/64

32/64

32/64

32/64

32/64

32/64

B

B

B

B

64

32/64

64

64

Instr Title

SUB N; (R) - (S) TO (T)

MPY U; (R)•(S) TO (T)

MPY L; (R)•(S) TO (T)

MPY S; (R)•(S) TO (T)

DIV U; (R)/(S) TO (T)

DIV S; (R)/(S) TO (T)

ADD ADDRESS (R) + (S) TO (T)

SUB ADDRESS (R) - (S) TO (T)

TRANSMIT (R) TO (T)

ABSOLUTE (R) TO (T)

FLOOR (R) TO (T)

CEILING (R) TO (T)

EXPONENT OF (R) TO (T)

TRUNCATE (R) TO (T)

PACK (R), (S) TO (T)

EXTEND 32 BIT (R) TO 64 BIT (T)

INDEX EXTEND 32 BIT (R) TO
64 BIT (T)

CONTRACT 64 BIT (R) TO 32 BIT (T)

ROUNDED CONTRACT 64 BIT (R) TO
32 BIT (T)

LENGTH OF (R) TO (T)

SIGNIFICANT SQUARE ROOT OF
(R) TO (T)

CONVERT BCD TO BINARY, FIXED LENGTH

CONVERT BINARY TO BCD, FIXED LENGTH

602S6020 A

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

54/74 4-48 4 32/64 ADJUST SIGNIFICANCE OF (R) PER (S)
TO (T)

55/75 4-48 4 32/64 ADJUST EXPONENT OF (R) PER
(S) TO (T)

2A 4-49 6 64 ENTER LENGTH OF (R) WITH I (16 BITS)

2B 4-49 4 64 ADD TO LENGTH FIELD

BRANCH INSTRUCTIONS (BR)

20/24 4-51 8 32/64 BRANCH IF(R) • (S)(32/64 BIT FP)

21/25 4-51 8 32/64 BRANCH IF(R) + (S)(32/64 BIT FP)

22/26 4-51 8 32/64 BRANCH IF(R) ~ (S)(32/64 BIT FP)
I

23/27 4-51 8 32/64 BRANCH IF(R) < (S)(32/64 BIT FP)

2F 4-51 9 1 BEGISTER BIT BRANCH AND ALTER

33 4-53 B 1 DATA FLAG REGISTER BIT BRANCH
AND ALTER

3B 4-55 A 64 DATA FLAG REGISTER LOAD/STORE

32 4-55 9 1 BIT BRANCH AND ALTER

36 4-58 7 64 BRANCH AND SET (R) TO NEXT
INSTRUCTION

31 4-58 7 64 INCREASE (R) AND BRANCH IF (R) + 0

35 4-58 7 64 DECBEASE (R) AND BRANCH IF (R) r/t 0

09 4-57 4 64 EXIT FORCE

BO 4-60 c 64 COMPAU INTEGER, BRANCH IF
(A) + (X) • (Z)

Bl 4-60 c 64 COMPAU INTEGER, BRANCH IF
(A) + (X) r/t (Z)

B2 4-60 c 64 COMPAU INTEGER, BRANCH IF
(A) + (Z) 1 (Z)

B3 4-60 c 64 COMPAU INTEGER, BRANCH IF
(A) + (X) < (Z)

60256020 A 4-23

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

B4 4-60 c 64 COMPARE INTEGER, BRANCH IF
(A) + (X) $_ (Z)

B5 4-60 c 64 COMPARE INTEGER, BRANCH IF
(A) + (X)) (Z)

BO 4-63 c 64 COMPARE FP, BRANCH IF (A) = (X)

Bl 4-63 c 64 COMPARE FP, BRANCH IF (A) :f (X)

B2 4-63 c 64 COMPARE FP, BRANCH IF (A) Z, (X)

B3 4-63 c 64 COMPARE FP, BRANCH IF (A) < (X)

B4 4-63 c 64 COMPARE FP, BRANCH IF (A) ~ (X)

B5 4-63 c 64 COMPARE FP, BRANCH IF (A)) (X)

B6 4-63 5 NA BRANCH TO IMMEDIATE ADDRESS
(R) + I (48 BITS)

VECTOR INSTRUCTIONS (VT)

sot 4-73 1 E ADD U; A+ B-C

81t 4-73 1 E ADD L; A+ B-c

82t 4-73 1 E ADD N; A+ B-C

84t 4-73 1 E SUB U; A- B-c

85t 4-73 1 E SUB L; A - B-C

86t 4-73 1 E SUB N; A- B-c

sat 4-73 1 E MPY U; A·B-c

89t 4-73 1 E MPY L; A·B-C

8Bt 4-73 1 E MPY S; A·B-c

act 4-73 1 E DIV U; A/B-C

8Ft 4-73 1 E DIV S; A/B-C

83 4-74 1 64 ADD A; A+ B-c

87 4-74 1 64 SUB A; A - B-C

BA 4-75 1 64 SHIFT; A PER B-c

4-24 60256020 A

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

98 4-75 1 E TRANSMIT A -c

99 4-75 1 E ABSOLUTE A-C

91 4-75 1 E FLOOR A-C

92 4-75 1 E CEILING A-C

9A 4-75 1 E EXPONENT or A- c

90 4-75 1 E TRUNCATE A -c

9B 4-80 1 E PACK A, B-C

9D 4-80 1 E LOGICAL; A, B-C

9C 4-81 1 B EXTEND 32 BIT A-64 BIT C

96 4-81 1 B CONTIACT 64 BIT A-32 BIT C

97 4-81 1 B ROUNDED CONTRACT 64 BIT A -32 BIT C

93 t 4-81 1 E SIGNIFICANT SQUARE BOOT or A-c

94 4-85 1 E ADJUST SIGNIFICANT OF A PER B-C

95 4-85 1 E ADJUST EXPONENT OF A .PER B -c

SPARSE VECTOR INSTRUCTIONS (SV)

AOt 4-93 2 E ADD U; A+ B-C

Alt 4-93 2 E ADD L; A+ B-C

A2 t 4-93 2 E ADD N; A+ B-C

A4 t 4-93 2 E SUB U; A - B-C

A5t 4-93 2 E SUB L; A - B-C

A6 t 4-93 2 E SUB N; A - B-C

A8 t 4-97 2 E MPY U; A·B-C

A9 t 4-97 2 E MPY L; A•B-C

ABt 4-97 2 E MPY s; A·B-c

ACt 4-97 2 E DIV U; A / B-C

Art 4-97 2 E DIV s; A I B-c

60256020 B 4-25

Instr
Code

co

Cl

C2

C3

DA

DB

D5

Dl

DO

D4

B8

DF

BA

B7

DC

F8

4-26

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Page
No.

4-101

4-101

4-101

4-101

4-104

4-105

4-107

4-107

4-109

4-109

4-110

4-112

4-113

4-114

4-116

1 4-1181

Format
Type

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3 l

No. of Bits
in Operand Instr Title

VECTOR MACRO INSTRUCTIONS (VM)

E

E

E

E

E

E

E

E

E

·E

E

E

E

E

E

SELECT EQ; A • B, ITEM COUNT TO (C)

SELECT NE; A ; B, ITEM COUNT TO (C)

SELECT GE; A 2: B, ITEM COUNT TO (C)

SELECT LT; A < B, ITEM COUNT TO (C)

SUM (AcJ +Ai + A2 + •••An) TO
(C) AND (C + 1)

PRODUCT (AcJ,Ai,A2,•••An)
TO (C)

DELTA [Acn+l)-An1--Cn

ADJ. MEAN [Acn+l)+An]/2--Cn

AVERAGE (An+Bn)/2--Cn

AVE. DIFF. (An-Bn)/2--Cn

TRANSMIT REVERSE A -- C

INTERVAL A PER B -- C

TRANSMIT INDEXED LIST -- C

TRANSMIT LIST - INDEXED C

VECTOR DOT PRODUCT TO (C)
AND (C + 1)

STRING INSTRUCTION (ST)

8 MOVE BYTES LEFT; A -- C

60256020 A

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

LOGICAL STRING INSTRUCTIONS (LS)

FO 4-119 3 1 LOGICAL EXCLUSIVE OR A, B-C

Fl 4-119 3 1 LOGICAL AND A, B-C

F2 4-119 3 1 LOGICAL INCLUSIVE OR A, B-C

Fl 4-119 3 1 LOGICAL STROU A, B-C

F4 4-119 3 1 LOGICAL PIERCE A, B-C

FS 4-119 3 1 LOGICAL IMPLICATION A, B-C

F6 4-119 3 1 LOGICAL IRllIBIT A, B-C

F7 4-119 3 1 LOGICAL EQUIVALENCE A, B-C

NONTYPICAL INSTRUCTIONS (NT)

3D 4-122 4 64 INDEX MULTIPLY. (R)•(S) TO (T)

3C 4-122 4 32 HALF-WORD INDEX MULTIPLY (R)•(S)
TO (T)

5E/7E 4-122 7 32 LOAD (T) PER (S), (R)

5F/7F 4-122 7 32 STORE (T) PER (S), (R)

12/13 4-122 7 64 LOAD/STORE BYTE (T) PER (S), (R)

37 4-123 A 64 TRANSMIT JOB INTERVAL TIMER TO
(T)

7D 4-123 7 64 SWAP s-T AND R-s

60256020 B 4-27

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

39 4-124 A 64 TRANSMIT REAL-TIME CLOCK TO (T)

3A 4-124 A 64 TRANSMIT (R).TO JOB INTERVAL TIMER

BB 4-125 2 E MASK A, .B -c PER Z

BC 4-125 2 E COMPRESS A - C PER Z

CF 4-126 1 E ARITH. COMPRESS A --c PER B

BD 4-129 2 E MERGE A, B -c PER Z

14 4-131 7 1 BIT COMPRESS

15 4-133 7 1 BIT MERGE

16 4-133 7 1 BIT MASK

56 4-137 NA SELECT LINK

BO 4-140 c 64 COMPARE INTEGER, SET CONDITION
(A) + (X) = (Z)

Bl 4-140 c 64 COMPARE INTEGER, SET CONDITION
(A) + (X) '/: (Z)

B2 4-140 c 64 COMPARE INTEGER, SET CONDITION
(A) + (X) L (Z)

B3 4-140 c 64 COMPARE INTEGER, SET CONDITION
(A) + (X) < (Z)

B4 4-140 c 64 COMPARE INTEGER, SET CONDITION
(A) + (X) ~ (Z)

B5 4-140 c 64 COMPARE INTEGER, SET CONDITION
(A) > (X)

BO 4-142 c 64 COMPARE FP, SET CONDITION
(A) = (X)

Bl 4-142 c 64 COMPARE FP, SET CONDITION
(A) '/: (X)

B2 4-142 c 64 COMPARE FP, SET CONDITION
(A) ~ (X)

B3 4-142 c 64 COMPARE FP, SET CONDITION
(A) < (X)

4-28 60256020 A

•

Instr
Code

B4

B5

C4

cs

C6

C7

C8

C9

CA

CB

cc

D8

D9

28

lC

lD

lE

lF

60256020 B

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Page Format
No. Type

4-142 c

4-142 c

4-143 1

4-143 1

4-143 1

4-143 1

4-144 1

4-144 1

4-144 1

4-144 1

4-148 3

4-149 1

4-149 1

4-150 7

4-150 7

4-150 7

4-151 7

4-153 7

No. of Bits
in Operand

64

64

E

E

E

E

E

E

E

E

64

E

E

8

1

1

1

1

Instr Title

COMPARE FP, SET CONDITION
(A) ~ (X)

COMPARE FP, SET CONDITION
(A) > (X)

COMPARE EQ; A • B, ORDER VECTOR-z

COMPARE NE; A ; B, ORDER VECTOR-z

COMPARE GE; A > B, ORDER .VECTOR-z

COMPARE LT; A < B, ORDER VECTOR-z

SEARCH EQ; A • B, INDEX LIST-C

SEARCH NE; A; B, INDEX LIST-C

SEARCH GE; A > B, INDEX LIST-C

SEARCH LT; A (B, INDEX LIST-C

MASKED BINARY COMPARE: A EQ/NE (B)
PER (C)

MAX. OF A TO (C) ITEM COUNT TO (B)

MIN. OF A TO (C) ITEM COUNT TO (B)

SCAN EQUAL

FORM REPEATED BIT MASK WITH LEADING
ZEROS

FORM REPEATED BIT MASK WITH
LEADING ONES

COUNT LEADING EQUALS

COUNT ONES IN FIELD R. COUNT
TO (T)

4-29

TABLE 4-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd)

Instr Page Format No. of Bits
Code No. Type in Operand Instr Title

NONTYPICAL INSTRUCTIONS (NT)

03 4-153 4 64 KEYPOINT - MAINTENANCE

04 4-153 4 64 BREAKPOINT - MAINTENANCE

05 4-154 4 64 VOID STACK AND BRANCH

MONITOR INSTRUCTIONS (MN)

00 4-155 4 NA IDLE

06 4-155 7 NA FAULT TEST - MAINTENANCE

08 4-156 4 64 INPUT/OUPTUT PER R

oc 4-157 4 64 STORE ASSOCIATIVE REGISTERS

OD 4-157 4 64 LOAD ASSOCIATIVE REGISTERS

OE 4-157 4 64 TRANSLATE EXTERNAL INTERRUPT

OF 4-157 4 64 LOAD KEYS FROM (R), TRANSLATE
ADDRESS (S) TO (T)

OA 4-157 4 64 TRANSMIT (R) TO MONITOR
INTERVAL TIMER

tThese instructions have sign control capability.

4-30 60256020 A

INSTRUCTION DESCRIPTIONS
The instruction descriptions are grouped in the following order.

• Index Instructions

• Register Instructions

• Branch Instructions

• Vector Instructions

• Sparse Vector Instructions

• Vector Macro Instructions

• String Instructions

• Logical String Instructions

• Nontypical Instructions

• Monitor Instructions

The description of each of the general types of instructions contains the instruction
formats, operating parameters, and instruction termination conditions that are applicable to
the instruction. The individual instructions within a general type are grouped according to
the specific functions they perform within that group. Instructions that differ slightly in
the functions they perform have a common description.

Each description begins with a listing of the function code (hexadecimal) and title of the
instruction. This listing is followed by the instruction format. The formats specifically
apply to the listed instructions and show the variations from the general format types shown
in the beginning of this section.

Where applicable, the instruction descriptions include examples. These examples show a
simplified illustration of the instruction operation using arbitrarily assumed operands,
register contents, indexes, and so forth. The assumed operands and operating parameters are
selected mainly to illustrate the instruction operation and are not necessarily typical
operating values. The numbers used in the examples are in hexadecimal notation unless
otherwise noted.

60256020 A 4-31

INDEX INSTRUCTIONS

The index instructions manipulate 16 24- or 48-bit operands in the designated operational
registers. These instructions are used primarily in performing numerical calculations on
field lengths and addresses.

3E Enter (R) with I p6 Bits)
3F Increase (R) by I (16 Bits)
40 Half-Word Enter (R) with I P6 Bits)
4E Half-Word Increase (R) by I (16 Bits)

0 7 8

F
(3E, 3F,
40, 4EI

3E Enter (R) with I (16 Bits)

1516 31

I R (16 BITS)

This instruction enters the 16-bit operand I into the rightmost 48 bits of the 64-bit
register designated by R. The sign bit of the immediate 16-bit operand is extended through
bit 16 of the destination register R. Register R is cleared before the transfer of I.

3F Increase (R) with I (16 Bits)

This instruction replaces the rightmost 48 bits of the 64-bit register designated by R with
the sum of these bits and the 16-bit operand I. The leftmost 16 bits of register R are
unaltered. The sign bit of the immediate 16-bit operand is extended through bit 16 in the
addition. Arithmetic overflow is ignored if it occurs.

4D Half-Word Enter (R) with I (16 Bits)

This instruction enters the 16-bit operand I into the rightmost 24 bits of the 32-bit
register designated by R. The sign of the immediate 16-bit operand is extended through bit
8 of the destination register R. Register R is cleared before the transfer of I.

4E Half-Word Increase (R) by I (16 Bits)

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with
the sum of these bits and the 16-bit operand I. The leftmost 8 bits of register R are
unaltered. The sign of the operand is extended through bit 8 for the addition. Arithmetic
overflow is ignored if it occurs.

4-32 60256020 A

CD Half-Word Enter (RI with I (2°" Bits)

CE Half-Word Increase (RI with I (2"' Bits)

r ICD o"R CEI l R

CD Ralf-Word Enter (R) with I (24 Bits)

I
(24BITSI l

This instruction clears the 32-bit register designated by R and enters the operand I, '
contained in the rightmost 24 bits of this instruction, into the rightmost 24 bits of
register R.

CE Half-Word Increase (R) with I (24 Bits)

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with
the sum of these bits and operand I contained in the rightmost 24 bits of this instruction.
The leftmost 8 bits of register R are unaltered. Arithmetic overflow is ignored if it
occurs.

BE Enter (RI with I 1"'8 Bihl

BF Increase (RI with I 1"'8 Bihl

R r I
(48 BITS) 11•• o". BF) 'I'

The BE instruction enters the 48-bit operand I into the rightmost 48 bits of the R
register. Register R is cleared before the transfer of I.

The BF instruction replaces the rightmost 48 bits of the R register with the sum of . these
bits and the 48-bit operand I. The leftmost 16 bits of R are unaltered. Arithmetic
overflow is ignored.

38 Transmit (R Bits 00-15) to (T Bits 00-15)

r

60256020 A

F
(38) r R T ']

4-33

This instruction replaces the leftmost 16 bits of register T with the leftmost 16 bits of
register R. The remaining bits of register T are unaltered.

REGISTER INSTRUCTIONS

The source and result operands of register instructions are contained in specified registers
in the register file. The 8-bit R, S, and T designators, contained in the instructions,
denote the numbers of the registers to be used in the operation. For example, if a 64-bit,
floating-point, add upper instruction is executed (instruction code 60) with R ~ 02, S • 03,
and T 7F, the content of register 02 is added to the contents of register 03
(floating-point format), and the upper result is stored in destination 7F.

A register may contain one or both source operands as well as the result. Register 00
provides a special case. If this register is designated as containing the source operand,
the instruction uses machine zero as the source operand (8X 000000 for 32-bit operands and
8XXX 000000 000000 for 64-bit operands where X represents any hexadecimal digit). If the
instruction specifies 00 as the destination register, no result is stored. However, the
instruction sets the corresponding data flags if applicable.

Unless the individual instruction description states differently, register-to-register
operations do not change the content of the source registers. These operations clear the
destination register before the result is transferred into it.

'
2C Logical Exclusive OR (R), (S) to (T)
20 Logical AND (R), (S), to (T)
2E Logical Inclusive OR (R), (S) to (T)

0 78 !!! 16 23.K -31

F R s T
(2C, 20, 2E) (SOURCE 1) (SOURCE 2) (DESTINATION)

These instructions perform the following logical functions. The function occurs bit by bit
on the 64-bit operands contained in the registers designated by R and s. The result in each
case is stored in the register designated by T.

Exclusive Inclusive
OR AND OR

R s R-S R•S R+S

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 0 1 1

If the R or s designators equal zero, register zero contains machine zero.

4-34 60256020 A

30 Shift (R) Per S to (T)

F
(30)

R
(ORIGIN)

s
(SHIFT
COUNT)

T
(DEST1NA110NI

This instruction shifts the 64-bit operand from the register designated by R and stores the
result into the register designated by T. The S designator specifies the type and amount of
the shift.

If the S designator is in the range from 0 through 3F16 (0 through 6310), the operand
from register R shifts left end-around the number of specified places and then stores in
register T.

If the S designator is in the range from FF 16 through Cl16 (-1 through -6310), the
operand from register R shifts right with sign extension and then stores into register T.
For this case, bit zero of the operand from register R is considered to be the sign bit of
the shifted operand. The number of right shifts is equal to the two's complement of the S
designator.

If, for example, S is equal to FE16• the operand from register R shifts right two places.

If the S designator is greater than 3F16 or less than Cl16• the results of this
instruction are undefined.

If the R designator is equal to zero, register zero provides machine zero.

This instruction does not test for machine zero, indefinite or does not set any data flags.

3.4 Shift (R) Per (S) to (T)

0 78 115 18 ...D .li _.3.1

F R s T
(34) (ORIGIN) (REGISTER (DEST1NATIONI WITH SHIFT

COUNT)

This instruction shifts the 64-bit operand from the register designated by R and stores the
result into the register designated by T. The register designated by S specifies the type
and amount of the shift.

If the rightmost byte of register S is in the range from 0 through 3F16 (0 through
6310), the operand from register R shifts left end-around the number of specified places
and then stores into register T.

If the rightmost byte of register S is in the range from FF16 through Cl16 (-1 through
-6310), the operand from register R shifts right with sign extension and then stores into
register T. For this case, bit zero of the operand from register R is considered to be the
sign bit of the . shifted operand. The number of right shifts is equal to the two's
complement of the rightmost byte of register s.

60256020 B 4-3S

If the rightmost byte of register S is greater than 3F16 or less than Cl16. the results
of this instruction are undefined.

The leftmost seven bytes of register S are ignored.

If the R designator is equal to zero, register zero provides machine zero.

This instruction does not cause a test for machine zero, indefinite or does not set any data
flags.

60 Insert Bits from (R) to (T) Per (SJ

0 78 1616 __z;i 24 31

F R s T
(60) (REGISTER) (REGISTER) (DESTINATION)

This instruction inserts. a number of rightmost bits (m) from the register designated R to
the register designated T (figure 4-3). In the register designated S, bits 10 through 15
specify the number of bits (m) to be inserted, and bits 58 through 63 specify the location
(n) in register T for the leftmost bit of the inserted bits. Bits 0 through 9 and 16
through 57 of register S are undefined and must be set to zeros.

REGISTER TI H B~TS j
~lBITn

BITS

0 • 10 Ill 1•

t m ~ BITS

~
INSERT

UNALTERED
BITS

111' Ill

I

REGISTER sl o_-_-_o_._l __ m __ .._I o_-_-_-_-_-_-_-_o__,_l __ "_---1

Figure 4-3. Example of Register Content for an Insert
Bits from (R) to (T) Per (S) Instruction

0

4-36 60256020 A

If the R designator is equal to zero, register zero provides machine zero.
greater than 6410. or if m is equal to zero, the results of this
undefined. The maximum number of bits specified by m is 6310•

6E Extract Bits from (RI to {T) Per (S)

0

F
(&El

R
(REGISTER)

S T
(REGISTER) (DESTINATION)

If m plus n is
instruction are

This instruction extracts a number of bits (m) from the register designated R and stores
them in the rightmost part of the register designated T (figure 4-4). Register T is cleared
before receiving the extracted bits. In the register designated S, bits 10 through 15
contain the number of bits (m) to be extracted and bits 58 through 63 specify the leftmost
bit number of the extracted bits in register R. Bits 0 through 9 and 16 through 57 of
register S are undefined and must be set to zeros.

REGISTER R

REGISTER T

ti m

BITS

~

I EXTRACT

la-----ot e~s j
o • 10 11 11 11 11 n

REGISTER sl '-o--=-o~'--m--.L.lo_-_-_-_~~~-o..J.l __ " _ ____JI

Figure 4-4. Example of Register Contents for an Extract
Bits from (R) to (T) Per (S) Instruction

If the R designator is equal to zero, register zero provides machine zero.
greater than 6410• or if m is equal to zero, the results of this
undefined. The maximum number of bits specified by m is 63 10 •

60256020 A

If m plus n is
instruction are

4-37

40/ 60 Add U; (R) + (S) to (T)

41/61 Add L; (R) + (S) to (T)

42/ 62 Add N; (R) + (S) to (T)

44/64 Sub U; (R) - (S) to I)
45/65 Sub L; (R) - (S) to (to (T)

46/66 Sub N; (R) - (S) to (T)

48/68 Mpy U; (R) • (S) to (T)

49 I 69 Mpy L; (R) • (S) to (T)

48/ 68 Mpy S; (R) • (S) to (T)

4C/6C Div U; (R) I (S) to (T)

4F/6F Div S; (R) I (S) to (T)

0 r I 14xO:.ax1
R

DESIGNATES
SOURCE OPERAND
REGISTERS

DESIGNATES RESULTS
DESTINATION REGISTER

T s T T l
I

These instructions perform the indicated floating-point arithmetic operation on the 32-bit
(4X function codes) or 64-bit (6X function codes) operands contained in the registers
designated by R and S. Appendix B describes the floating-point operations and operand
formats. This appendix also describes how certain instructions are order-dependent and will
result in unexpected answers unless the execution order is known. An example is shown in
the appendix under Order-Dependent Result Considerations. The arithmetic operation is the
same for the 32-bit or 64-bit operands with adjustment for bit length of the result. The
instruction, in each case, stores the arithmetic result in destination register T.

Designator U signifies that the upper result is stored, L signifies that the lower result is
stored, N signifies that the normalized upper result is stored, and S signifies the
significant result is stored. Appendix B of this manual defines the U, L, N, and S results.

Data flag bits 41 (floating-point divide fault), 42 (exponent overflow), 43 (result machine
zero), and 46 (indefinite result) are set by the applicable instructions if the necessary
operating and result conditions are present.

4-38 60256020 A

63 Add Address (R) + (SJ to (T)

67 Sub Address (R) - (SJ to (T)

0

F
(63 OR 67)

78 1616

R
(SOURCE

OPERAND
REGISTER)

~ .1.4 _at

s T
(SOURCE (RESULT
OPERAND DESTINATION

REGISTER) REGIATER)

These instructions add/subtract bits 16 through 63 in register S to/from bits 16 through 63
in register R. The instructions then store the result in corresponding bits of register T.
The instructions operate on bits 16 through 63 as 48-bit, positive, unsigned integers.
Arithmetic overflow is ignored if it occurs. The instructions transmit bits 0 through 15 of
register R to corresponding bit positions of register T without modification.

58/78 Transmit (RI to (T)

59 /79 Absolute (R) to (T)

51/71 Floor (R) to (T)

52/72 Ceiling (R) to (T)

5A/7A Exponent of (R)to (T)

50/70 Truncate (R) to (T)

0

F
(5X OR 7XI

58/78 Transmit (R) to (T)

78

R
(ORIGIN)

T
(DESTINATION)

This instruction transmits the 32-bit (58) or 64-bit (78) operand in the register designated
by R to the register designated by T.

59/79 Absolute (R) to (T)

This instruction transmits the absolute value of the 32-bit (59) or 64-bit (79)
floating-point operand in register R to register T. If the coefficient of the initial
operand is negative, the operand is complemented and is transmitted to register T. If the
initial coefficient is positive, it is sent to register T as it is. Applicable data flag
bits are 42 (exponent overflow), 43 (result machine zero), and 46 (indefinite result).

51/71 Floor (R) to (T)

This instruction transmits the closest integer less than or equal to the 32-bit (51) or
64-bit (71) floating-point operand in register R to register T. This integer (T) is
expressed by an unnormalized 32-bit or 64-bit floating-point number with a positive exponent.

60256020 A 4-39

If the exponent of the source operand is positive (greater than or equal to zero), the
operand is transmitted directly to register T. If the exponent of the source operand is
negative, the machine right-shifts the coefficient end-off and increases the exponent by one
for each shift. Sign bits are extended on the left during the shift. When the exponent
becomes zero, the shifting stops and the machine transmits the shifted coefficient and zero
exponent to register T. If machine zero is used as the source operand, 32/ 64 zeros are
transmitted to register T.

The applicable data flag bit is 46 (indefinite result).

52/72 Ceiling (R) to (T)

This instruction transmits the closest integer greater than or equal to the 32-bit (64-bit
for 72 function code) operand in origin register R to destination register T. This integer
is represented as an unnormalized 32-bit (64-bit) floating-point number with a positive
exponent.

If the source operand exponent is positive (greater than or equal to zero), the instruction
transmits the source operand directly to register T.

If the source operand exponent is negative, the machine right-shifts the two's complement of
the coefficient end-off and increases the exponent by one for each position shifted until
the exponent becomes zero. The shift operation extends the sign. The instruction then
recomplements the shifted coefficient and transmits it with zero exponent to register T.
Figure 4-5 shows the results of a ceiling (R) to (T), 52/72, instruction with a source
operand having a negative exponent. In this example, a shift of four was necessary to
reduce the exponent to zero. The example shows the complement of the shifted coefficient
with zero exponent in register T.

If machine zero is used as the source operand, the machine transmits 32/64 zeros as a
result. The applicable data flag bit is 46 (indefinite result).

0

0

34 78 11 12 15 16 19 20 23 24 27 28 31

I

I I II I 100 OIO 0 0 0000 0000 0000 1000 00 00

(FI (cl 1< 01 I (0 l (0) (0 l (Bl (0 l

'----y----1 \. j
v

EXPONENT COEFFICIENT

34 78 II 12 15 16 1920 2324 2728 31

000 0 00 0 0 o;ooo 00 00 0000 0000 0000 I 0 0 0

(01 (0) ,101 10 I (0 l (01 (01 (81

ORIGIN OPERAND (R)

(80X2-4)

RESULT OPERAND(T)

(8X20)

NUMBERS IN PARENTHESES REPRESENT HEXADECIMAL DIGITS FOR

EACH BINARY GROUP.

Figure 4-5. Example of Register Content for a Ceiling (R) to (T) Instruction

4-40 60256020 A

5A/7A Exponent of (R) to (T)

This instruction transmits the exponent in the leftmost 8 bits (16 bits for 64-bit operands)
of register R to the rightmost 8 bits (16 bits for 64-bit operands) of register T. The
instruction extends the sign of the exponent through bit 8 (16 bits for 64-bit operands) of
register T. The exponent portion (leftmost 8 or 16 bits) of reg.ister T is cleared.

50/70 Truncate (R) to (T)

This instruction transmits the closest integer the magnitude of which is less than or equal
to the 32-bit (64-bit for 70 function code) operand in origin register specified by R to
destination register T. This integer is represented by an unnormalized 32-bit (64-bit)
floating-point number with a positive exponent.

If the origin operand exponent is positive (greater than or equal to zero), the instruction
transmits the origin operand directly to register T.

If the origin operand exponent is negative, the machine right-shifts the magnitude of the
coefficient end-off and increases the exponent by one for each position shifted until the
exponent becomes zero. The operation extends zeros on the left during the shift. If the
coefficient of the origin operand was positive, the shifted coefficient with zero exponent
is transmitted to the destination register. If the coefficient of the origin operand was
negative, the two's complement of the shifted coefficient and zero exponent is transmitted
to the destination register. If machine zero is used as the origin operand, 32/64 zeros are
transmitted as a result.

Figure 4-6 shows the results of a truncate (R) to (T), 50/70, instruction with an origin
operand having a negative exponent and positive coefficient. A right shift of eight is
required to reduce the negative exponent to zero.

The applicable data flag bit is 46 (indefinite result).

0 34 78 II 12 Ill II It 20 23 24 27 21 31

1 li I I 1000 01000 0000 0001 I I II 11 11 II I I
I
j(F) (8) 1(0) (0) (I) (F) (F) (F)
'----v----1'-~~~~~~·~~~~~~-.J

EXPONENT COEFFICIENT

0 54 78 II 12 11118 18 20 u 24 27 21 51

01000 0000 01000 0000 0000 0000 0001 1111

j l
\..___y---1....._~~~~-.,~~~~~-J

EXPONENT COEFFICIENT

ORIGIN OPERAND (R)
(OOIFFFX2 -8)

RESULT OPERAND (T)
(OOOOIFX20)

Figure 4-6. Example of Register Content for a Truncate (R) to (T) Instruction

60256020 A 4-41

SB/7B Pack (R), (S) to (f)

0

F
(58 OR 78)

R
(ORIGIN 11

S T
(ORIGIN 2) (DESTINATION)

'--v--1'--v---1
EXPONENT COEFFICIENT

This instruction transmits a 32-bit (64-bit for the 7B function code) floating-point number
to the destination register T. The instruction transmits the exponent of the number from
the rightmost 8 bits (16 bits for 7B) of register R and the coefficient from the rightmost
24 bits (48 bits for 7B) of register s.

SC Extend 32 Bit (R) to 64 Bit (T)

SD Index Extend 32 Bit (R) to 64 Bit (T)

76 Contract 64 Bit (R) to 32 Bit (T)

77 Rounded Contract 64 Bit (R) to 32 Bit (f)

7C Length of (R) to (T)

53/73 Significant Square Root of (R) to (T)

10 Convert BCD to Binary, Fixed Length

11 Convert Binary to BCD, Fixed Length

0 78
F

(5C, 5D, 76, 77, (ORl~IN)
7C, 53, 73, 10,

OR 11)

5C Extend 32 Bit (R) to 64 Bit (T)

T
(DESTINATION)

This instruction extends the 32-bit floating point number from register R into a 64-bit
floating-point number and transmits the result to 64-bit register T (figure 4-7). The value
of the resulting exponent is 2410 less than the exponent of the origin operand. The
result coefficient results from the transmission of the origin coefficient to bits 16
through 39 of register T. The instruction clears the rightmost 24 bits of the destination
register.

If the contents of register R is indefinite, the result in register T is also indefinite and
data flag bit 46 (indefinite result) is set. If the contents of register R is machine zero,
register T contains machine zero, and data flag bit 43 (result machine zero) is set.

4-42 60256020 A

0 14 .,, 1111 II II 1110 1114 IT II II

I 6 4 0 0 I 6 I 8 I A I 6

ORIGIN REGISTER (Rl

~
EXPONENT COEFFICIENT

DESTINATION REGISTER (Tl

0 14 .,, 1111 II II 1110 1114 IT II 1111 1111 H 40 4144 4741 1111 llH 1110 II

0 0 4 c

EXPONENT
(6416 - 24 10 =

641s- IB 16 =4C

0 I 0 I 6 I 8 I A

TRANSFERRED FROM
ORIGIN REGISTER

I 6 I o I o I o I o I o o

CLEARED BY
INSTRUCTION

COEFFICIENT

Figure 4-7. Example of Register Content for an Extend
32-Bit (R) to 64-Bit (T) Instruction

SD Index Extend 32 Bit (R) to 64 Bit (T)

This instruction extends the 32-bit floating-point number from register R into a 64-bit
floating-point number and transmits the result to 64-bit register T. The value of the
resulting 16-bit exponent is the same as the origin operand's exponent with the sign bit
extended through bit 0 of the result exponent.

The result coefficient results from the transmission of the rightmost 24 bits of the origin
register into bits 40 through 63 of the destination register. Bits 16 through 39 of the
destination register are set to the sign of the origin coefficient.

If the contents of register R is indefinite, the result in register T is also indefinite and
data flag bit 46 (indefinite result) is set. If the contents of register R is machine zero,
register T contains machine zero and data flag bit 43 (result machine zero) is set.

60256020 A 4-43

76 Contract 64-Bit (R) to 32-Bit (T)

This instruction (figure 4-8) contracts the 64-bit floating-point number from register R
into a 32-bit floating-point number. The instruction then transmits the result to a 32-bit
register designated by T. The resulting 8-bit exponent represents the sum of the
least-significant 8 bits of the origin exponent and 2410• If the result exponent cannot
be contained in 8 bits, exponent overflow or underflow is detected.

0 14 71

0 0 4

EXPONENT

(4C16 + 2410 =

1111
c

ORIGIN REGISTER (RI

F F I F F I F I F I F F

4741 1111 Ill.. 1110 .. lllO 1114 1711 1111 1140 41 44

I 7 5 I A I

4C16 +1816 = 6416 I DESTINATION REGISTER (Tl

0 14 71

I
t

II II 11 II II 10 U 14 27 H II

F F F F F I F I
'---v---1'------------.,------------J

EXPONENT COEFFICIENT

Figure 4-8. Example of Register Content for a Contract 64 Bit (R) to
32 Bit (T) Instruction

The following input exponent conditions are listed with the corresponding results of the 76
instruction execution.

Input
Exponent

7FFF

7000

6FFF

0058

0057

FF78

FF77

8000

4-44

Result

Result indefinite

Indefinite data flag bit 46 (indefinite result) is set.

Result indefinite

Data flag bits 42 (exponent overflow) and 46 (indefinite
result) are set.

Result exponent is 2410 larger than the input exponent.
The leftmost 24 bits of the input coefficient are trans
ferred.

Result is machine zero. Data flag bit 43 (result machine
zero) is set.

60256020 A

Bits 16 through 39 of the origin are transmitted directly to the rightmost 24 bits of
register T as the result coefficient. This operation contracts to minus one all source
operands having a negative coefficient with an absolute value of less than or equal to 224
and to zero source operands having positive coefficients with an absolute value of less than
224.

77 Rounded Contract 64-Bit (R) to 32-Bit (T)

This instruction performs a rounded contract operation on the 64-bit, floating-point operand
in origin register R and transmits the 32-bit floating-point result to destination register
T (figure 4-9). The resulting 8-bit exponent represents the sum of the least-significant 8
bits of the origin exponent and 2410• If the result exponent cannot be contained in 8
bits, exponent overflow or underflow is detected. The instruction then adds a +l to bit
position 40 of the origin operand and coefficient. If overflow occurs, the instruction
increases the exponent by one and right-shifts the coefficient one place. The leftmost 24
bits of the shifted result coefficient are transmitted to the corresponding bits of the
destination register. The 8-bit exponent of each nonend case result element is 2410
(2510 if overflow occurred) greater than the exponent of the corresponding source element.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result).

ORIGIN REGISTER (R)
I 4 7 I II II II II II 10 II 14 17 H II II H II II 40 41 44 47 41 51 II II H H 10 II

1111111111001111111111111111111111111111 11111111111111111111 1100
(Fl (Fl (Cl (Fl (Fl (Fl (Fl (Fl (Fl (Fl (Fl (Fl (Fl (Fl (Fl (Cl

EXPONENT (-4l COEFFICIENT (-41

COEFFICIENT AFTER .,. I ADDED TO BIT 40
II II 10 II 24 27 II 11 II 15 II It 40 41 44 47 41 II II II 10 II

(FC15+ 2410=
FC15+ 1815"'+1415

0000 0000 0000 00 00 0000 0000 01 111 I I I I I I I I I I I I I I I I I I 00

60256020 A

0 II II 11 II II 14 17 II II

0001 010 I 0000 0000 0000 0000 0000 0000
(I) (5)

'-----..---''--~~~~~~~~~~~

EXPONENT COEFFICIENT

DESTINATION REGISTER (Tl

Figure 4-9. Example of Register Content for a Rounded
Contract 64 Bit (R) to 32 Bit (T) Instruction

4-45

7C Length of (R) to (T)

This instruction transmits the leftmost 16 bits of origin register R to the rightmost 16-bit
positions of destination register T. The leftmost 48 bits of register T are cleared.

53/73 Significant Square Root of (R) to (T)

This instruction transmits the square root t of a 32-bit (53 function code) or 64-bit (73
function code) operand in register R to register T. The result contains the same number of
significant bits as the source operand. Applicable data flag bits are 45 (square root
result imaginary), 46 (indefinite result), and 43 (result machine zero).

10 Convert BCD to Binary, Fixed Length

This instruction converts the packed BCD number in register R to a signed (two's complement)
binary number and transfers the result to the rightmost 48 bits of register T. Figure 4-10
shows an example of the register contents following a convert BCD to binary, fixed length
instruction. The leftmost 16 bits of register T are cleared by this instruction. The
conversion is undefined for binary results greater than +(247-1) or less than -(247-1).
Thus, the largest decimal number that this instruction can convert is± 140, 737, 488, 355,
327. The instruction sets data flag bit 39 (refer to data flag register bit assignments in
section 5) for numbers outside this range.

If the input number is not a valid BCD number, the results are undefined. The ASCII/EBCDIC
sign code for the BCD number is in bits 60 through 63 of register R.

The following are signs recognized for BCD to binary conversion.

+ 1010 +llOO +lllO

-lOll -UOl +llll

11 Convert Binary to BCD, Fixed Length

This instruction converts the rightmost 48 bits (two's complement, binary number) of
register R to a packed BCD number and transfers the result to register T. The result is a
number containing 15 packed BCD digits (4 bits per digit and the sign in bits 60 through
63). Figure 4-10 shows the packed BCD format; the binary range is ± (241-1).

During job mode, the sign bits generated are conditioned by the ASCII/EBCDIC bit in the
job's invisible package. During monitor mode, only ASCII codes will be generated.

t Appendix B describes the floating-point square root operation.

4-46 60256020 A

ORIGIN REGISTER (RI

0 14 '' 1111 1111 1110 1114 lfll 1111 1140 4144 4f41 1111 1110 ..
0 0 o I o I o I o I o I o I o 4 0 9 9 +

PACKED BCD NUMBER

DESTINATION REGISTER (TI

0 14 '' 1111 1111 1110 1114 lfll 1111 1140 4144 4f41 1111 1110 ..

00000000000000000000000000000000 1001II1010010111

CLEARED 48-BIT BINARY EQUIVALENT

Figure 4-10. Example of Register Content for a Convert BCD
to Binary, Fixed-Length Instruction

The following are signs generated for binary to BCD conversion.

POSITIVE

NEGATIVE

ASCII MODE

1010

1011

54/7 4 Adjust Significance of (R) Per (S) to (T)

55/75 Adjust Exponent of (R) Per (S) to (T)

EBCDIC MODE

1100

1101

0 78 1118 2324 __3_1

F
IB4n4

OR &&n&I

60256020 B

R s
(SOURCE 1) (SOURCE 21

'--v--''---v--1
SOURCE OF INTEGER
FLOATING- SHIFT COUNT

POINT
OPERAND

T
(DESTINATION

4-47

54/74 Adjust Significance of (R) Per (S) to (T)

This instruction adjusts the significance of the floating-point operand in register R and
transmits the adjusted result to register T. The rightmost 24 bits (48 bits for 74 function
code) of register S contains a signed, two's complement integer. The absolute value of this
integer is a shift count.

If the shift count is positive, the machine shifts the coefficient of the operand left the
number of positions specified by the shift count or the number of positions needed to
normalizet the coefficient, whichever is the smaller number.

In either case, the instruction reduces the exponent of the operand by one count for each
position shifted. The instruction left-shifts an all zero coefficient the number of
positions specified.

If the shift count is negative, the instruction shifts the coefficient of the operand right
the number of positions specified by the shift count and increases the exponent of the
operand by one count for each position shifted. If (R) is indefinite, the machine sets the
(T) to indefinite and sets data flag bit 46 (indefinite result). If (R) equals machine
zero, the machine sets (T) to machine zero and data flag bit 43 will be set.

This instruction is undefined if the absolute value of the shift count is greater than
2310 for the 54 or 4710 for the 74 instruction. The addition of the shift count can
cause either exponent overflow or exponent underflow.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result).

55/75 Adjust Exponent of (R) Per (S) to (T)

This instruction transmits the adjusted operand from register R to result register T. The
instruction sets the result exponent equal to the exponent of the operand in register s.
The machine forms the coefficient of the result by shifting the coefficient of the operand
from register R.

The shift count is the difference between the exponents in registers R and S. If the
exponent in register R is greater than the exponent in register S, the machine shifts the
coefficient left. The shift is to the right if the exponent in register R is less than the
exponent in register s. If register R contains a zero coefficient, the exponent in register
S is transferred to register T with an all zero coefficient. Figure 4-11 shows that the
exponent in register S exceeds the exponent in register R by 4 (62 - SE = 4); thus, the
machine right-shifts the coefficient in register R four positions.

If a left shift exceeds the number of positions required for normalization, the machine sets
the result to indefinite and sets data flag bit 42 (exponent overflow). If either or both
operands are indefinite or machine zero, the machine also sets the result to indefinite.
However, in this case, data flag bit 46 (indefinite result) is set and data flag bit 42
(exponent overflow) is not set.

t Appendix B describes the process of adjusting a floating-point operand for significance
and of normalizing a floating-point number.

4-48 60256020 A

0 71 1111 1111 1110 1114 1711 II

0101 1110 11011 0000 0 110 1110 11 I I 1110
< 5 I (El Its I < o I (6) (E) (Fl (El

...1
'---y--J~ I

EXPONENT ~
-y

COEFFICIENT

-SIGN BIT (l

0 54 71 1112 1111 1120 2124 2721 11

EXPONENT COEFFICIENT
(THESE BITS HAVE NO EFFECT ON

ORIGIN OPERAND I (R)
(INITIAL VALUE)

ORIGIN OPERAND 2 (S l

THE EXECUTION OF THE INSTRUCTION)

0 54 71 II IZ II II II 10 II 14 17 II II
~I

0110 0010 Ii I I I 1011 0000 0110 I 110 I I I I
(6) (2) 1 (Fl (Bl (0) (6) (El (F)

~'--~~~~~~r-~~~~~~-J

EXPONENT COEFFICIENT

NOTE: NUMBERS IN PARENTHESES REPRESENT
HEXADECIMAL EQUIVALENTS OF BINARY GROUPS

RESULT OPERAND (Tl
(FINAL VALUE l

Figure 4-11. Example of Register Content for an Adjust Exponent
of (R) Per (S) to (T)

60256020 A 4-49

2A Enter Length of (R) with I P6 Bits)

0

F
(2A)

R I
(16 BITS)

This instruction transfers operand I contained in the rightmost 16 bits of the instruction
word to the leftmost 16 bits of the 64-bit register specified by R. The rightmost 48 bits
of register R are left unchanged.

2B Add to Length Field

0 78 _Hi _16_ -23143l

F R s T
(2BI (SOURCE 1) (SOURCE 2) (DESTINATION'

This instruction adds bits 0 through 15 of the 64-bit register specified by R to bits 48
through 63 of 64-bit register S and stores the result in bits 0 through 15 of register T.
Overflow is ignored if it occurs. Bits 16 through 63 of register R are transferred to bits
16 through 63 of register T.

BRANCH INSTRUCTIONS

The branch instructions compare or examine single bits, a 48-bit index, 32-bit
floating-point operands, or 64-bit operands. The results of the comparison or examination
determine whether the program continues with the next sequential instruction (branch
condition not met) or branches to a different instruction sequence (branch condition met).
The different instruction sequence may consist of a single instruction cir a series of
instructions beginning at the branch address specified in the branch instruction format.

A special branch instruction provides for entering or leaving the monitor program. All item
counts in branch instructions are in half-words.

20/24 Branch if (R) = (SJ (32/64 Bit FP)

21/25 Branch if (R) -;: (SJ (32/64 Bit FP)

22/26 Branch if (R) ~ (S) (32/64 Bit FP)

23/27 Branch if (R) < (S) (32/64 Bit FP)

0 7 8

F
(20-271

4-50

15 16 23 24 31

R s T
(ORIGIN (ORIGIN (BRANCH

OPERAND 11 OPERAND 21 ADDRESS)

60256020 A

These instructions perform the indicated comparison of the 32-bit (64-bit for the 24 through
27 function codes) floating-point operands in the registers designated by R and s. If the
specified comparison condition is met, the next instruction is read from the branch address,
contained in the rightmost 48 bits of 64-bit register T. Register T is a 64-bit register
for the 20 through 27 instruction codes. The byte and bit portions of the address (bits 59
through 63) are ignored in the reading of an instruction. If the specified comparison
condition is not met, the next instruction is read from the next sequential program
address. The comparison of (R) and (S) is based on the floating-point compare rules in
appendix B. An example of a 22 instruction is also in appendix B.

If either or both of the compared operands are indefinite, data flag bit 46 is set.

2F Register Bit Branch and Alter
G DESIGNATOR

0 ,,.-----, 18 2324 _3_1

F s T
(2F) d I

1' GBIT8

GBIT&

G BITS 2, 3: BIT ALTERIN G

G BITS 0, 1. BRANCH CONDITION

This instruction examines bit 63 of register T as specified by the G designator. A branch
is made to the address contained in the rightmost 48 bits of register s. The branch occurs
according to G bits 0 and 1 (table 4-4).

TABLE 4-4. BIT BRANCHING CONDITIONS

G Designator Branch Conditions

Bit 0 Bit 1

0 0 No branch

0 1 Unconditional branch

1 0 Branch if object bit • 1

1 1 Branch if object bit • 0

After the branch decision has been made and regardleaa of the decision, the object bit is
altered according to G bits 2 and 3 (table 4-5).

60256020 A 4-51

TABLE 4-5. BIT ALTERING CONDITIONS

G Designator Altering Conditions

Bit 2 Bit 3

0 0 No altering

0 1 Toggle the bit

1 0 Set the bit 1

1 1 Clear the bit 0

If the branch is to be taken, the branch address will be determined as follows:

G bit 5 = 0 Register S contains the branch address.

G bit 5 1 Branch to the address formed by adding (G bit 6 = 0) or subtracting (G bit 6
= 1) the S designator (used as a half-word item count) shifted left five
places to the program address register.

33 Data Flag Register Bit Branch and Alter

0

F
(33)

G

7 8 23 24 31

d e T
(BRANCH

ADDRESS)

LNUMBER OF DFBR
BIT (00 - 3F)

G BITS 5, 6: SOURCE OF BRANCH ADDRESS

~--------G BITS 2, 3: BIT AL TERI NG

'-----------G BITS 0, 1: BRANCH CONDITION

This instruction examines the state of a specified bit in the data flag branch register
(DFBR). If the designated branch condition is met, the next instruction is read from the
half-word address as specified by G designator bits 5 and 6. If the designated branch
condition is not met, the next instruction is read from the next sequential program
address. In either case, the state of the DFBR bit is altered as specified by G bits 2 and
3.

4-52 60256020 A

The 6-bit designator I specifies the number of the DFBR bit. The bit numbers range from 00
through 3F (00 through 6310>• The 2-bit designator denotes the branch condition (table
4-6).

TABLE 4-6 • DFBR BIT BRANCH CONDITIONS

G Designator Branch Conditions

Bit 0 Bit 1

0 0 No branch

0 1 Unconditional branch

1 0 Branch if selected DFBR bit -· 1

1 1 Branch if selected DFBR bit • 0

After the branch decision is made, the instruction alters the DFBR bit according to G
designator bits 2 and 3 (table 4-7). The bit altering occurs regardless of the branch
decision.

60256020 A

TABLE 4-7. DFBR BIT ALTERING CONDITIONS

G Designator Altering Conditions

Bit 2 Bit 3

0 0 No altering

0 1 Toggle the bit

1 0 Set the bit 1

1 1 Clear the bit 0

I NOTE I
Do not attempt to alter bits in the DFBR
product field since the altering of these
bits is only a function of the corresponding
data flag and flag mask bits.

4-53

Since the 33 instruction may begin execution without waiting until the machine has completed
all operations (for example, the scalar divide's data flags may not have reached the Data
Flag Register), the data flag bits (except free data flag bits 53, 54, and 55) may set on
any minor cycle during or after execution of the 33 instruction. Consequently, any data
flag bits that set after the object bit is sampled will not affect the operation of the 33
instruction, but will be retained in the Data Flag Register for follow on sampling.

Operations that alter free data flag bits 53, 54, and 55 are always completed before the 33
instruction checks or alters these bits.

The source of the branch address is determined by the state of G designator bits 5 and 6
(table 4-8).

TABLE 4-8. DFBR BRANCH ADDRESS SOURCE CONDITIONS

G Designator Branch Address Source Conditions

Bit 5 Bit 6

0 0 or 1 Register T contains the branch address.

1 0 Branch address is formed by addition of
the T designator, used as a half-word
item count, to the content of the
program address register.

1 1 Branch address is formed by the
subtraction of the T designator, used
as a half-word item count, from the
contents of the program address
register.

4-54 60256020 A

3B Data Flag Register Load/Store

[F
(3B)

~ ~
NEW STATE OLD STATE

OF DFB OF D.FB

This instruction transfers the content of register R to the DFB register. The 3B
instruction also transmits the previous content of the DFB to the T register. Since the DFB
is a 64-bit register, both Rand T must be 64-bit registers. The Rand T designators may be
equal which exchanges data flag values.

32 Bit Branch and Alter

0

F
(32)

The data flag bit 36 sets asynchronously in
the Data Flag Register (DFR); meaning that
it can set any time either prior to or after
the 3B instruction load/unload minor cycle.
This can cause a problem concerning the
retention of the original data from the
DFR. There is no problem if the data flag
bit sets after the load/unload minor cycle.
In this case the original data remains in
the DFR. However, if the data flag bit sets
prior to the load/unload cycle the original
data in the DFR moves into the T register.
The programmer must specify a nm.ber other
than 0016 in the T designator in order to
retain the data in this register. If 0016
is in the T designator the data will be lost.

I NOTE I
An immediate data flag branch results at the
termination of this instruction if the new
content of the DFB register meets the
appropriate branch conditions.

7L

d

Ill. _23.24_ -3:1 . ~ ~ s T
~ (OBJECT BIT (BRANCH

~
ADDRESS) ADDRESS)

I 't...._G BITS 6, 8: BRANCH ADDRESS SOURCE DESIGNATOR BITS

L_G BITS 2, 3: BIT ALTERING

G BITS O, 1: BIT BRANCHING

This instruction reads the word from the address contained in the register designated by s
and examines the specified object bit. The remaining bits are not used in the instruction.

60256020 B 4-55

If the object bit meets the branch condition specified by G designator bits 0 and l~ the
next instruction is read from the branch address contained in the T register. If the branch
condition is not met. the next instruction is read from the next sequential program
address. In either case. G designator bits 2 and 3 determine the final state of the object
bit. Tables 4-9 and 4-10 list the bit branching and altering conditions. respectively.
Table 4-11 lists branch address source conditions.

G Designator

Bit 5 Bit 6

0 0 or 1

1 0

1 1

TABLE 4-9. BIT BRANCHING CONDITIONS

G Designator Branch Conditions

Bit 0 Bit 1

0 0 No branch

0 1 Unconditional branch

1 0 Branch if object bit .. 1

1 1 Branch if object bit = 0

TABLE 4-10. BIT ALTERING CONDITIONS

G Designator Altering Conditions

Bit 2 Bit 3
0 0 No altering

0 1 Toggle the bit

1 0 Set the bit 1

1 1 Clear the bit 0

I NOTE I
If G bits o. 2. and 3 • o. the word
containing the object bit is not read and
the object bit is not altered. If G bit 0 •
1 and G bits 2 and 3 • o. the word is read
but ·the object bit is not written.

TABLE 4-11. BRANCH ADDRESS SOURCE CONDITIONS

Branch Address Source Conditions

Register T contains the branch address.

Branch address is formed by addition of the T designator. used
as a half-word item count. to the contents of the program
address register.

Branch address is formed by the subtraction of the T designator.
used as a half-word item count. from the contents of the program
address register.

4"."56 60256020 B

Figure 4-12 shows an example of the bit branch and alter instruction with assumed register
content and branch conditions. The object bit is located in bit 7 of byte 3 of word
100000. Since G bit O equals 1 and G bit 1 equals 0 and the object bit is a 1, a branch
takes place to the assumed branch address which is contained in the T register as specified
by G designator bits 5 and 6.

F d e
(321 (21(1) 0000

s
(07)

T
(10)

32 INSTRUCTION

BRANCH IF
OBJECT BITs I ~~NCH ADDRESS

\ BIT ADDRESS
TOGGLE OBJECT

BIT

S=07
(000000000400001FI

0 I 4 7 I 1111 II II 1110 II 14 2711 1112 H H !840 4144 4741 11 H IHI 1110 II

0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0001 1111 REG 07

BITS NOT USED
IN ADDRESS

HALF-WORD ADDRESS BYTE ADDRESS= 3 '-J'Y
BIT ADDRESS = 7 --:__/

(OOOOOOOO!SOOOOOOI T=IO
o,_~-'r4~~1r'~~11,11~_.:..;,.:-~1~•cr1~0--'1~1T1~4~~•1T1~•~~•~1 ~•a=--~11T1~•~~11~4~0~~·1~4~4=--4~7~4~1=--~1~11~a=--~11:.,.:.;•1=--~·•~•~o=--~1~1

0

0000 0000 0000 0000 0000 0000 0000 0000 0000 010 I 0000 0000 0000 0000 0000 0000 REG 10

--~~~-..~~~~~-'~~~~~~~~~~~._,..~~~~~~~~~~~~~-''---v--1

14

l

BITS NOT USED
IN ADDRESS

HALF-WORD ADDRESS

WORD READ FROM BIT ADDRESS

BI TS NOT USED
IN INSTRUCTION
WORD ADDRESS

7 I II II 11 11 II 10 U 14 IT II 1111 II SI H 40 4144 47 41 II II II II II 10 II

I

'---v--'~\ v L--y----1 '--v-----1 '--v-----1 '----..r--1

ADDRESS
10000016

BYTE 0 BYTE I BYTE 2 BYTE 3 BYTE 4 BYTE !S BYTE 6 BYTE 7

L..

31
ri
'ol
I I

OBJECT BIT

LL OBJECT BIT
(AFTER TOGGLING)

Figure 4-12. Example of Bit Branch and Alter Instruction

60256020 A 4-57

_36 Branch and Set (R) to Next Instruction

31 Increase (R) and Branch if (R) -:/. 0

35 Decrease (R) and Branch if (R) ~ 0

0 78

F R
(36, 31
OR 35)

36 Branch and Set (R) to Next Instruction

1516 2324 31

s T
(INDEX) (BASE

ADDRESS)

This instruction first stores the address of the next sequential instruction into register
R. The program then branches to (S) + (T), where (S) represents an item count (index) of
half-words and (T) specifies the base address. The machine forces bits 0 through 15 of
register R to zeros. Bits 59 through 63 are undefined. If the instruction designator R is
equal to the designator S, the results of this instruction are undefined.

If S = O and R = T, this instruction sets register R to the half-word address of the next
instruction. The program then continues at the next instruction. This method provides a
means of sampling the program address register. ·

31 Increase (R) and Branch if (R) ; 0

35 Decrease (R) and Branch if (R) ; 0

This instruction first increments (31 function code) or decrements (35 function code) the
rightmost 48 bits of register R by one. The leftmost 16 bits of register R are not altered
and arithmetic overflow (if it occurs) is ignored.

If the increment/decrement operation produces zeros in the rightmost 48 bits of R, the
program reads the next sequential instruction. If the rightmost 48 bits of R are not all
zeros, the program branches to (S) + (T), where (S) represents an item count in half-words
and (T) specifies the base address.

The resulting address for the branch is undefined if the R designator is equal to either the
S designator or the T designator.

09 Exit Force

This instruction provides a means of exchanging program control between a job and monitor
program. For example, if the machine is operating in the job mode, the exit force
instruction causes a branch to the beginning address of a portion of the monitor program.
Similarly, in a monitor program, the exit force performs a branch to a job program. The
starting address of the invisible package and register file for the job is defined by the
content of the register designated by T and S, respectively. For either type of exchange
(job to monitor or monitor to job), the invisible package and register file for the current
job are transferred to/from central storage. (Refer to section 5 for a more comprehensive
description of monitor and job operations.)

4-58 60256020 A

Job to Monitor

The following exit force instruction format is an exchange from a job to a monitor program.
The R, S, and T designators are unused and must be zeros. In this case, the instruction
switches the machine to the monitor mode and unconditionally branches to the address
specified by the rightmost 48 bits of register 05 in the register file. Register 05 address
is an absolute bit address since the machine was switched to the monitor mode. The monitor
program then proceeds from this beginning address.

i
Monitor to Job

. F
(09)

R s T

The following instruction format is an exchange from the monitor to a job program. The R
designator is unused and must be zeros.

0

F
(09)

T
(FIRST ADRS.
OF INVISIBLE

PACKAGE

When exchanging from the monitor mode to a job, this instruction loads the registers from
the register file stored in central storage, beginning at the address contained in the
register specified by s. The instruction also loads the invisible package for the
applicable job from central storage, beginning at the address in the register specified by
T. The S and T addresses are absolute bit addresses.

60256020 A 4-59

0

BO Compare Integer, Branch if (A) + (X) = (Z)
Bl Compare Integer, Branch if (A) + (X) t. (Z)
B2 Compare Integer, Branch if (A) + (X) ::::: (Z)
B3 Compare Integer, Branch if (A) + (X) < (Z)
84 Compare Integer, Branch if (A) + (X) :!: (Z)
BS Compare Integer, Branch if (A) + (X) > (Z)

I NOTE I
BO-B5 instructions also have nonbranch
compare capabilities. Refer to the
description of compare instructions in this
section.

G
(SUB FUNCTION)

~
78 1516 A li. -31.32.. 3940 47..D_

F ~ A y B z
(BO - B5) ~ (REGl~TERI (REGISTER) (INDEX (BASE ADRS. (REGISTER)

~ REGISTER) REGISTER OR
INDEX) rLl

11 G BITS S. 8• BRANCH CONTROL

G BIT 4

G BIT 3

G BIT 2

G BIT 1

G IT B 0

55 56

c
(REGISTER)

For these instructions, G bits 1 and 2 are O. If G bit 0 is cleared (O), registers A, X, C,
and Z are 64 bits. If G bit 0 is set (1), registers A, X, C, and Z are 32 bits. Registers
B and Y are 64 bits.

63

If G bit 0 is 0, the sum of the rightmost 48-bit integers from registers A and X is formed,
ignoring overflow. The sum is compared to the rightmost 48 bits of register Z, according to
the specified branch condition. The original content of register Z is read before the sum
of registers A and X is stored in the rightmost 48 bits of register c. The leftmost 16 bits
of register A are copied into the leftmost bits of register C. Register C contains the
following:

0

4-60

LEFTMOST 16 BITS
FROM REGISTER A

1516

SUM OF THE RIGHTMOST 48 BITS FROM REGISTERS
A AND X

63

60256020 A

Then the sum of the rightmost 48 bits of registers A and X is compared to register Z, based
on the following G bit 3 and 4 values:

G bit 3 • 0

G bit 3 • 1

G bit 4 • 0

G bit 4 • 1

The integers compared are the 48-bit result of registers A and X and
the rightmost 48 bits read from register z.
The integers compared are the 64 bits stored in register C and the 64
bits read from register z. This compare is defined for the BO and Bl
instructions only.

The integers compared are interpreted as signed two's complement
numbers.

The integers compared are interpreted as unsigned numbers.

If G bit 0 is 1, the sum of the rightmost 24-bit integers from registers A and X is formed,
ignoring overflow. The sum is compared to the rightmost 24 bits of register Z, according to
the specified branch condition. The original content of register Z is read before the sum
of registers A and X is stored in the rightmost 24 bits of register c. The leftmost 8 bits
of register A are copied into the leftmost bits of register c. Register C contains the
following:

0

LEFTMOST
8 BITS FROM
REGISTER A

78

SUM OF THE RIGHTMOST
24 BITS FROM REGISTERS

A AND X

Then the sum of the rightmost 24 bits of registers A and X is compared to register Z, based
on the following G bit 3 and 4 values.

G bit 3 • 0

G bit 3 • 1

G bit 4 • 0

G bit 4 • 1

The integers compared are the 24-bit result of registers A and X and
the rightmost 24 bits read from register z.
Undefined.

The integers compared are interpreted as signed two's complement
numbers.

The integers compared are interpreted as unsigned numbers.

If the specified branch condition is met, the program address branches to the address
specified by the branch control bits in the G designator (table 4-12). In all cases, the
index is an item count in half-words that is left-shifted five places before the addition or
subtraction.

If designators A and/or X equal zero, machine zero will be supplied. If designator Z is
equal to zero, 48 (24 for 32-bit operands) zeros are read as the rightmost bits.

60256020 A 4-61

TABLE 4-12. INDEX BRANCH INSTRUCTION DESIGNATORS

G Designator
Bit State Branch Address

Bit 5 = 0 Branch to address formed by adding the item count in register Y
to the base address in register B. The item count is
left-shifted five places before the addition. Overflow, if
any, is ignored. If the Y or B designator is equal to the c
designator, the instruction is undefined.

Bit 5 = 1 Branch according to the state of G designator bit 6 as follows:

Bit 6 = 0 Branch to address formed by adding 16-bit item count
designators y and B (bits 32 through 47) to the address of this
instruction. The item count is left-shifted five places before
addition.

Bit 6 = 1 Branch to address formed by subtracting 16-bit item count
designators Y and B (bits 32 through 47) to the address of this
instruction. The item count is left-shifted five places before
subtraction.

If the branch condition is not met, the program reads the next sequential instruction.

If one of the following conditions occur, the operation becomes undefined.

• G bit 0 is 1 and G bit 3 is 1

• G bit 3 is 1 for instructions B2, B3, B4, and BS

• G bit 5 is 0 and G bit 6 is 1

Table 4-13 relates integer ranges to the state of G bit 4.

TABLE 4-13. INTEGER RANGES

48-bit/24-bit hexadecimal quantities in descending order from
the largest to the smallest, from top to bottom.

G bit 4 = 0 G bit 4 = 1

Largest 7F - - - - FF FF - - - - FF

I
7F - - - - FE FF - - - - FE

00 - - - - 01 80 - - - - 01
00 - - - - 00 80 - - - - 00
FF - - - - FF 7F - - - - FF

Smallest 80 - - - - 01 00 - - - - 01
80 - - - - 00 00 - - - - 00

4-62 60256020 A

0

BO Compare FP, Branch if IA)= (X)
Bl Compare FP, Branch if (A) '* (X)
B2 Compare FP, Branch if (A) t!!::, (X)
B3 Compare FP, Branch if (A) < (X)
B4 Compare FP, Branch if (A) ~ (X)
BS Compare FP, Branch if (A)> (X)

G
(SUBFUNCTION)

~
78

F
(BO - B6)

2324

x
(REGISTER)

A
(REGISTER)

31 32

y
(INDEX

REGISTER)

3940

B
(BASE ADRS

REGISTER OR
INDEX)

------G BIT 0

If G bit 1 is 1 and G bit 2 is O, these instructions compare the two floating-point operands
from registers A and X according to the floating-point compare rule in appendix B. If G bit
O is clear (0), the registers contain 64 bits. If G bit 0 is set (1), the registers contain
32 bits. Registers B and Y are always 64 bits.

If the specified branch condition is met, the program address branches to the address
specified by the branch control bits in the G designator (table 4-14). In all cases, the
index is an item count in half-words that is left-shifted five places before the addition or
subtraction.

TABLE 4-14. INDEX BRANCH INSTRUCTION DESIGNATORS

G Designator
Bit State Branch Address

Bit 5 • 0

Bit 5 • 1

Bit 6 • 0

Bit 6 • 1

60256020 A

Branch to address formed by adding the half-words item count in
register Y to the base address in register B. The item count is
left-shifted five places before the addition. Overflow, if any, is
ignored. If the B or Y designator is equal to the C designator, the
instruction is undefined.

Branch according to the state of G designator bit 6 as follows:

Branch to address formed by adding 16-bit item count designators Y and
B (bits 32 through 47) to the address of this instruction. The item
count is left-shifted five places before addition.

Branch to address formed by subtracting 16-bit item count designators Y
and B (bits 32 through 47) to the address of this instruction. The
item count is left-shifted five places before subtraction.

4-63

0

If the branch condition is not met, the program reads the next sequential instruction.

If one of the following conditions occur, the operation becomes undefined.

• G bit 3=1, G bit 4=1, or G bit 7=1.

• Designator C and/or Z not equal to O.

• G bit 5=0 and G bit 6=1.

The applicable data flag bit is 46 (indefinite result).

B6 Branch to Immediate Address (R) + I (48 Bits)

F
(86)

7 8 15 16

I (IN~EX) I I
(BASE ADDRESS)

This instruction branches unconditionally to the address formed by the sum of the rightmost
48 bits of register R as the index and I as the base address. The index represents an item
count of half-words which is shifted left five positions before being added to the base
address. Overflow, if any, is ignored.

The instruction makes a direct branch to the base address if the R designator is zero or if
the rightmost 43 bits of register R are zeros.

VECTOR INSTRUCTIONS

The vector instructions perform operations on ordered scalars. Generally, the vector
instructions read the scalars, which are in the form of 32-bit or 64-bit floating-point
operands, from consecutive storage locations over a specified address range (field). These
instructions perform the designated operation on each set of operands and store the results
in consecutive addresses of a result field, beginning at a specified starting address.
Thus, a single vector instruction can perform operations on two source fields of vector
operands and automatically store the results in a result field of storage.

Instruction Formats

All vector instructions use the same general instruction format (figure 4-13). Table 4-15
lists each of the 8-bit designators in the vector instructions and gives a brief description
of the function.

4-64 60256020 A

0

F
(BX, 9X)

7

G
(SlSFU\IC'TlON I

x
(OFFSET
FOR A)

A
(FIELD LENGTH

&
BASE ADRS)

v
(OFFSET
FOR Bl

4748

B
(FIELD LENGTH)

&
BASE ADRS)

z
(CV BASE
ADDRESS)

615 6

c
(FIELD LENGTH)

&
BASE ADRS)

I c + 1 I
NOTE: C V DENOTES CONTROL VECTOR I (OFFSET FOR I

L_':_&_z _ _J

Figure 4-13. General Vector Instruction Format

TABLE 4-15. VECTOR INSTRUCTION DESIGNATORS

Designator Function

F

G

x, y

A, B

z

c

C+l

60256020 A

Function code.

Subfunction code.

Specify registers that hold address offsets for corresponding
source operand fields.

Specify registers that hold base addresses and field lengths
for source operand fields.

Specifies register that contains the base address of the
control vector (CV).

Specifies register that contains the base address and field
length of the result field.

If C+l is used by the instruction, C must be an even number
since the machine forms C+l by forcing the rightmost bit of C
to a 1. If the C designator specifies an odd-numbered
register, the results of the instruction become undefined.

Specifies register that holds offset for the control vector and
the result field; C+l always references an odd register.

4-65

Subfunction Bits

Table 4-16 lists the subfunc~ion bits and their general usage. Table 4-17 gives the sign
control subfunction bits. '

If the Z designator is zero, no control vector is used; thus, G-bit 1 becomes undefined. If
G bit 3 and/or G bit 4 = 1, the A and/or B designator denotes a constant which is used as
each element of the respective vector field. The instruction ignores the associated offsets
in this case. The registers specified by A and B, respectively, contain these constants.
Registers A and B are always 64-bit registers except when G bits 3 and 4 indicate a
broadcast. When broadcasting~ the size of registers A and B track the size specified by G
bit O (refer to table 4-16).

Appendix C gives a composite listing of the G designator bits usage according to function
~de. I

4-66

TABLE 4-16. SUBFUNCTION BITS

Bit
Number State Subfunction

0 0 64-bit operands (words)
1 32-bit operands (half-words)

1 0 Control vector operates on ones t
1 Control vector operates on zeros t

I

2 0 No offset for result field and control vector
1 Offset for result field and control vector

3 0 Normal source vectors A
1 Broadcast repeated (A)tt

4 0 I Normal source vectors B
1 I Broadcast repeated (B)tt

I

5 x

l 6 x Sign control (refer to table 4-17)

7 x

tif the 8-bit designator Z is zero, no control vector is used, so bit 1
of G is undefined. (All output operands are stored.)

ttif bit 3 and/or 4 of G is a 1, then either the A and/or B source field
is a constant used as each element of the respective vector stream and
the associated offsets are ignored. These constants are found in the
registers specified by A and B, respectively. If bit 3 and/or 4 is a 1
and bit O of G is a 1, register A and/or B is a 32-bit register. The
result of broadcasting both repeated constants A and B is undefined for
instructions which do not terminate due to filling the result field,
that is, the select instructions, CO, Cl, C2, and CJ.

60256020 A

TABLE 4-17. SIGN CONTROL SUBFUNCTION BITS

Bit 5 Bit 6 Bit 7 Control Operation

0 0 x

0 1 x

1 0 x

1 1 x

x x 0

x x 1

The operands from the A stream are used in the normal
manner.

The coefficients of the operands from the A stream
are complemented before they are used.

The magnitude of the coefficients of the operands
from the A stream is used.

The coefficients of all positive operands from the A
stream are made negative before they are used.
Negative operands are not altered.

The operands from the B stream are used in the normal
manner.

The magnitude of the coefficients of the operands
from the B stream is used.

INOTESI

1. X denotes that the bit can be either a 0
or a 1.

2. Any required complementing is two's
complement. Complementing is performed
before the operand is used in the
specified arithmetic operation. If the
complement of the coefficient 8000 0000
0000 is required, the operand is used as
4000 0000 0000 with 1 added to the
exponent.

3. Any necessary significance calculation
is performed before the previous
complementing is performed.

60256020 B 4-67

Field Lengths, Base Address, and Offsets

Figures 4-14 and 4-15 show the formats of the register contents for the field lengths, base
addresses, and offsets. The computer allows 16-bit field lengths to be specified and
assumes them to be positive. The field lengths are in the range of 0 through 216-1 before
any offset adjustments. The offsets are taken from a 48-bit register and must have at least
32 identical sign bits, otherwise the instruction is undefined. The offsets are in the
range of -216 to 216-1.

A ORB

r FIELD LENGTH T BASE ADDRESS

XOR Y

0 1516 4748

32 BITS FOR SIGN EXTENSION OFFSET

Figure 4-14. Operand Field Length, Base Address, and Offset Formats

FIELD
LENGTH

32-BIT OR 64-BIT OPERAND
~

Ip
...

I""

BASE ADDRESS

OSITIVE OFFSET

BEGINNING ADDRESS
(BASE ADDRESS + OFFSET l

>(~ ECTOR FIELD
SEO PORTION l

_..

Figure 4-15. Vector Field Address Format

1
~I

4-68 60256020 A

The operation of subtracting the offset from the field length must result in a field length
which is positive and less than 216. If the resulting vector length is not positive and
less than 216, it is treated as a zero vector length. The instruction obtains the
beginning address by adding the offset (including sign extension) to the base address
(figures 4-15 and 4-18). In the (offset + base address) addition, the offset is first
shifted left five (half-words) or six (words) places since the bit and byte bits are not
used in the vector operand field address.

The C and C+l registers are identical in format to the A or B and X or Y content,
respectively. If bit 2 specifies that vector field C is to be offset, register C+l contains
the offset.

Control Vector

When the instruction specifies a control vector (Z designator ~ 0), a single bit from the
control vector controls the storing of each element in the result field. When a bit from
the control vector prohibits the storing of a result element, the instruction does not alter
the previous content of the corresponding storage address and a data flag bit cannot be set
for that result element. Thus, the nth bit read from the control vector prohibits or allows
the storing of the nth result in the result vector field.

Bit 1 of the G designator selects whether a 0 or a 1 control vector bit allows the storing
of the result (table 4-11). If bit 1 of the G designator is a 0 or a 1, the instruction
stores the nth result if the nth bit of the control vector is a 1 or a O, respectively.

The rightmost 48 bits of the register designated by Z contains the base address of the
control vector (figure 4-16). The control vector uses the same field length as result
vector c.

The addition of the offset and base address provides the starting bit address of the control
vector. Since offsets are item counts, the result vector and control vector use the same
offset; however, the control vector offset represents a bit offset.

BASE ADDRESS

Figure 4-16. Control Vector Base Address Format (Z)

60256020 B 4-69

1

Vector Instruction Termination

Vector instructions terminate when the result vector field is exhausted.t

1. Exhausting a vector which has an offset.

A vector is deemed exhausted prior to the first operand fetch if the result of
subtracting the offset from.the field length is zero or negative.

For cases of zero field length, the resulting vector length used is the rightmost 16
bits of the two's complement of the offset. If this 16-bit quantity is zero or
negative, the vector is deemed exhausted prior to the first operand fetch.

A vector is exhausted when the result of subtracting both the offset and the number
of operands encountered thus far, from the field length, is zero.

A vector is exhausted prior to the first operand fetch if the field length is read
from register zero.

2. Exhausting a vector which has no offset and exhausting other data fields or data
strings.

The string, field, or vector is deemed exhausted prior to the first operand fetch if
its length is zero. These strings, fields, and vectors are exhausted when the
result of subtracting the number of elements encountered thus far from the field
length is zero.

Example of Vector Instruction Operation

Figure 4-17 shows the register content and figure 4-18 shows the resulting vector address
fields of an assumed add U, A+B- C (80) vector instruction. Although an 80 instruction is
used, the general sequence of operations is the same for all vector instructions.

The G designator bits used in the example specify the following conditions for the operation
of the instruction.

G-Designator

0 1

1 0

2 .. 1

3 0

4 0

5 0 } 6 0

7 = 0

Bit Condition

32-bit, floating-point operands.

Control vector operates on ones (ones in control vector enable
storage of corresponding control vector).

Result vector and control vector fields are offset (C+l designator
is used).

Normal vector source stream A.

Normal vector source stream B.

Use the operands from the A stream in the normal manner.

Use the operands from the B stream in the normal manner.

tAppendix C provides a complete listing of the various vector instruction field conditions
and the resulting termination conditions.

4-70 60256020 A

INSTRUCTION FORMAT
11·11 1114 1111 1140 4? 41 II

F G x A y B z c
(80) (10) (Ill (12) 113) (14) (18)

INDICATES USE OF ·c + I

32-BIT OPERANDS (171

(x • 10)

0 ltlO 1114 I? II II It 1111 .. 40 4144 4? 41 II II lllO ti

000 0000 0000 0000 0000 0000 0000 0000 0000000000000100

'--------ir--·-------------..J''" ---~.,--
32 SIGN BITS OFFSET FOR A

(A • 11)
14 lltl It 10 1114 I? 11 11 11 11 II It 40 4144 4? 41 II II II II

10-~+-~--011 1 o o·oooo o ooo o o o o oo o o oo oo oo o o 0000 o o o 1 oo oo oo oo oo 0:0000 o

0

FIELD LENGTH BASE ADDRESS

(y = 121

BIT
ADDRESS
NOT USED

II 10 1114 17 II 11 11 1111 II 40 4U4 4' 41 II II II II It IO II

II II 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1100

'----------v---------~ -----v----J
32 SIGN BITS OFFSET FOR B

(B • 131
14 ? I 1111 II II It 10 1114 I? 11 11 It II 11 It 40 4U4 4? 41 II II II II 1110 II

.,.--+---1--)11000 000000000000000000000000 0000001000000000000:00000

"-----.,.....---~~------------.1----------------'
FIELD LENGTH BASE ADDRESS

(z • 14)
0 14 ?I 1111 1111 ltlO 1114 1?11 1111 1111 1140 4144 4?41 1111 1111 HIO II

oooooooouooooooooooouooooooooo11ooooooooooooc100

BASE ADDRESS

(c • 16)

I 4 r I II II II II It 10 1114 I? II 1111 II II II 40 4144 4? 48 1111 II II

·--1---+---.. I() I 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 OCI 00 000 0 0 0 0 0 0 I 00 0 0 0 0 00 0 0 0 ooJo 0 0 0 0

FIELD LENGTH BASE ADDRESS

(C +I• 17)

I 4 " II 12 It 10 H 14 f'P II II II H H II •o 4144 4? 41 ti II II II II GO II

100--+---+---+---0IOOO'l OOOIJ 1)1)1)1) 0000 0000 0000 OOUO 0000 0000 OOOll 0000 UOl I

60256020 A

32 SIGN BITS OFFSET FpR Z AND C

Figure 4-17. Vector Instruction Example of Register
Content and Instruction Format

4-71

4-72

ADDRESS

10000

I 0020

10040

IOOSO

I 0080

I OOAO

IOOCO

IOOEO

10100

10120

10140

I 0 ISO

IFF80

IFFAO

IFFCO

IFFEO

20000

20020

20040

200SO

20080

20 OAO

200CO

200EO

0

0

A VECTOR
SOURCE FIELD

OPERANDS

Ao

Al

A2

A3

A4

A5

As

A1

A9

Ag

A10

A11

B VECTOR
SOURCE FIELD

OPERANDS

B_4

B_3

B_2

B-1

Bo

B1

82

B3

84

85
~·

Bs

B1

C VECTOR
RESULT Fl ELD

31

31

BASE ADDRESS 1
+4 OFFSET

STARTING ADDRESS

STARTING

FIEL D
LENG TH

SET) (NO OFF

FIELD
LENGTH

(WITH OFFSET)

J

ADDRESS

T
-4 OFFSET

l
BASE ADDRESS

FIEL D
LENG

(WITH OF
TH
FSET)

FIELD
LENGTH

(NO OFFSET)

t

OPERANDS BEFORE OPERANDS OPERANDS AFTER
ADD OPERATION 0 ,--JL.......... ,--JI.--.. 31 ADD OPERATION

co Co BASE ADDRESS I
C1 C1 +3 OFFSET

C2 C2

40000

40020

40040

400SO

400 80

400AO

400CO

400EO

c3 C3 STARTING ADDRESS FIEL D
LENG

C4 A5 + 8_3
TH
SET) (NO OFF

cs C5

Cs A 7 +B_ 1

C7 A0+eo

Z CONTROL VECTOR
FIELD

0 I 2 3 4 5 6 7 8 9 10 II

30000 !xlx!xJxjiJoJ1JoJ1JoJ1j1j\
BASE ADDRESS t t BASE ADDRESS 30007

30004 1------f WITH OFFSET
+3 OFFSET

FIELD
LENGTH

(WITH OlFSET)

Figure 4-18. Vector Address Fields for Vector
Instruction Example

60256020 A

0

The X, A, Y, B, Z, and C register designator numbers are shown in parentheses. Thus,
register 10 contains the offset for vector field A, register 11 contains the base address
for vector field A, and so forth.

Since the bit and byte address bits are not used in the vector field addresses, successive
half-word addresses are shown. Thus, incrementing address 1000016 by a half-word count
gives 1002016 as the next successive address.

With the A vector offset equal to +4 and the B vector offset equal to -4 (figures 4-17 and
4-18), the first vector add U, A+B - C operation adds the A and B operands from the
respective addresses 1008016 and 1FF8016• The result of the first add operation does
not store, because bit 7 of the addressed control vector field is a zero. Successive add
operations add successive A and B operands, storing the results only when a corresponding
one appears in the control vector.

so Add U; A+ B -c

Sl Add L;A + B-C

S2 Add N;A + B-C

8" Sub U; A. B -c

S5 Sub L; A. B -c

S6 Sub N; A. B -c

SS Mpy U; A• 1-c

89 Mpy L; A • 1-c

SB Mpy S; A • 1-c

SC Div U; A/B -c

SF Div S; A/B-c

G

,----A---..
78 16 18 2324 3132 3940 4748 &668 63

F
(80 - BF)

x
(OFFSET
FOR Al

A
(FIELD LENGTH
& BASE ADRSI

v
(OFFSET
FOR Bl

B
(FIELD LENGTH
& BASE ADRSI

z
(CV BASE
ADDRESS)

c
(FIELD LENGTH
& BASE ADRSI

60256020 A

V\,;.,.,.J
L__ G BITS 6, 8, 7: SIGN CONTROL

'-----G BITS 3, 4: BROADCAST

'------G BIT 2:
0 • DO NOT OFFSET RESULT FIELD
1 • OFFSET RESULT FIELD

-----G BIT 1:
0 •CONTROL VECTOR OPERATES ON 1'S
1 •CONTROL VECTOR OPERATES ON O'S

-------"-G-.., BIT 0:
0 • 84-BIT OPERAND
1 • 32-BIT OPERAND

I c + 1 I
I (OFFSET I
L~~c~~J

4-73

.o

These instructions perform the indicated floating-point t arithmetic operations on the
elements of vector fields A and B. The instructions store the result elements in vector
field c. All of the vector elements are in the form of 32-bit or 64-bit floating-point
operands. The U, L, N, and S designators specify the upper, lower, normalized upper, or
significant results, respectively.

Applicable data flag bits are 41 (floating-point divide fault), 42 (exponent overflow), 43
(result machine zero), and 46 (indefinite result).

83 Add A; A + B - C
87 Sub A; A + B - C

F
(83& 87)

~
7.8 1516

x
(OFFSET
FORA)

23 24

A
(FIELD

LENGTH

31 32

& BASE ADRS.)

v
(OFFSET
FOR B)

39 40

B
(FIELD

LENGTH

47 48

& BASE ADRS.)

z
(CV BASE
ADDRESS)

55 56

c
(FIELD

LENGTH

63

& BASE ADRS.)

I C+ 1 I
I (OFFSET I
L~~C&~~

These instructions add/subtract bits 16 through 63 of the B vector elements to/from bits 16
through 63 of the A vector elements (figure 4-19). The instructions store the results in
bits 16 through 63 of the C vector elements. Bits 16 through 63 of the source vector
elements are treated as 48-bit, unsigned, positive integers. Arithmetic overflow is ignored
if it occurs.

The instructions transmit bits 0 through 15 of the A vector elements to corresponding
portions of the C vector elements. G bits 0, 5, 6, and 7 are undefined and must be set to
zero.

tAppendix B describes the floating-point arithmetic operations.

4-74 60256020 A

0

A VECTOR ELEMENT

0 I 4 7 I II II II II II 10 .. 14 17 .. II II II II .. 40 41 44 47 41 II II 10 II

I 0 I 0 I 0 I c I 0 0 0 0 I 5 I c
I

0

I
0

I
0

I
9 F 4

TRANSFERRED DIRECTLY ADDED TO B VECTOR ELe;MENT
TO C VECTOR B VECTOR ELEMENT ELEMENT (BITS 0-15)

0 I 4 7 I II II II II 11 IO u 14 17 .. II II " 40 41 44 47 41 II II 1110 II

0 I 0 I 4 I 3 0 0 0 I 0 I 0

I
0 I 0 I 0 I I

0

C VECTOR RESULT ELEMENT
0 I 4 7 I II II II II II 10 II 14 17 II II II II II II 40 41 44 47 41 114 II
I

0 0 0 c 0 0 0 0 5 c
I

0

I
0

I
9

I
Figure 4-19. Example of an Add A; A + B- C Instruction

8A Shift, A/B- C

F
(BA)

x
(OFFSET
FOR Al

23 24 3132

A
(FIELD LENGTH
& BASE ADRS)

---G BIT 1: CONTROL VECTOR

v
(OFFSET
FOR B)

3840 4748

B
(FIELD LENGTH
& BASE ADRS)

z
(CV BASE
ADDRESS)

0 0

F

.. 10 ..
I

4

I

c
(OFFSET

& BASE ADRSI

I c +, I
I (OFFSET I
L~~~~'..J

This instruction shifts the 64-bit elements from source vector A by corresponding elements
from source vector B and stores them into result vector c. If the rightmost byte of the
element in vector B is in the range from 0 through 3F base 16 (0 through 63 base 10), the
element from vector A is shifted left end-around the number of specified places. If the
rightmost byte of the element in vector B is in the range from FF through Cl base 16 (-1
through -63 base 10), the element from vector A is shifted right with sign extension. Bit O
of operands in vector A is the sign bit for extension and the number for right shifts is
equal to the two's complement of the rightmost bytes of operands in vector B. If the
rightmost byte of elements from vector B is greater than 3F or less than Cl base 16, the
results are undefined. The leftmost seven bytes of elements in vector 8 are ignored.

G bits 0 and 5 through 7 are undefined and must be set to zero.

60256020 B 4-75

98 Transmit A - C
99 Absolute A - C
91 Floor A- C
92 Ceiling A-c

9A Exponent of A - C
90 Truncate A - C

G

~
0 78 2324 5556 63

F c
(98, 99, 91

92, 9A OR 90)

x
(OFFSET
FOR Al

A
(FIELD LENGTH
& BASE ADRSI

z
(CV BASE
ADDRESS)

(FIELD LENGTH
& BASE ADRSI

11 1
G Bin BROADCAST
G BIT 2:

0 = 00 NOT OFFSET RESULT FIELD
1 =OFFSET RESULT FIELD

G BIT 1:
0 =CONTROL VECTOR OPERATES ON 1'S
1 =CONTROL VECTOR OPERATES ON O'S

...._ ___ G BIT 0:

98 Transmit A - C

0 = 64-BIT OPERAND
1 = 32-BIT OPERAND

I c + 1 I I (OFFSET I
LFO~C& ~_J

This instruction transmits each element of the source field A to successive elements of
result field C. The Y and B designators and G bits 4 through 7 are unused and must be zeros.

99 Absolute A - C

This instruction transmits the absolute value of each element of the source field A to
successive elements of result field c. All vector elements are 32- or 64-bit,
floating-point operands. If the coefficient of the source operand is positive, the element
is transmitted directly to the result vector field; if the coefficient is negative, the
coefficient is complemented before transmission. The Y and B designators and G bits 4
through 7 are unused and must be zeros.

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46
(indefinite result).

91 Floor A-C

This instruction converts each floating-point element of source field A to the nearest
integer less than or equal to it. The resulting integers are transmitted to corresponding
elements of result field C. The resulting integer is always an unnormalized, floating-point
number with a positive exponent.

4-76 60256020 A

If the exponent of the source element is positive (greater than or equal to zero), the
instruction transmits the element directly to the result field. If the exponent of the
source element is negative, the instruction right-shifts the coefficient end-off and
increases the exponent by one for each position shifted until the exponent becomes zero.
Sign bits are extended on the left during the shift. The instruction then transmits the
shifted coefficient with zero exponent to the corresponding element of result field c.

The Y and B designators and G bits 4 through 7 are unused and must be zeros. If zero is
used as a source element, the instruction transmits all zeros as the corresponding result
element.

Figure 4-20 shows an example of a floor A - C (91) operation with one assumed source vector
element. Since the exponent of the source element is negative, the instruction right-shifts
the coefficient three places and increments the exponent plus three. The sign bits are
extended on the left. The result element becomes a minus one. Thus, the floor A-- C (91)
instruction provides a means of converting positive fractions to zero and negative fractions
to a minus one.

The applicable data flag bit is 46 (indefinite result).

0 54 7 • II 12 la II It 20 U 24 27 H :SI

I
Ill I 1,1 I I I I 0 I I II II I I I I I I I I I I I I I I I I 0

I I

~ -v
,J

COE~ICIENT
J

EXPONENT

lEXPONENT
SIGN BIT

0 :s 4 1 a

l COEFFICIENT
SIGN BIT

1112 15 11 II 20 21 24 27 21 :SI

o:o 0 0 0 0 0 0 I : I O
I '-y-'

A SOURCE VECTOR
ELEMENT

(FD FFFFFE)
y~
-3 -2

C RESULT VECTOR
ELEMENT

'--v----1'-v-'
EXPONENT

INCREMENTED
TO 0

(-3+3=0)

SIGN

BITS SHIFTED
END OFF

(00 FFFFFF)
y '-v--'

BITS
EXTENDED

COEFFICIENT SHIFTED
RIGHT 3 POSITIONS

0 -I

Figure 4-20. Example of Floor A- C Instruction with Negative Exponent

60256020 A 4-77

92 Ceiling A- C

This instruction converts each floating-point element of source field A
integer greater than or equal to it. The resulting integers are
corresponding elements of result field C. The resulting integer is always
floating-point number with a positive exponent.

to the nearest
transmitted to
an unnormalized

If the exponent of the source element is positive, the instruction transmits the element
directly to the result field. If the exponent of the source element is negative, the
instruction right-shifts the two's complement of the coefficient end-off and increases the
exponent by one for each position shifted until the exponent becomes zero. Sign bits are
extended on the left during the shift. The instruction then recomplements the shifted
coefficient and transmits it with zero exponent to the corresponding element of the result
field.

The Y and B designators and G bits 4 through 7 are undefined and must be zeros. If machine
zero is used as a source element, the instruction transmits all zeros as the corresponding
result element.

Figure 4-21 shows an example of a ceiling A - C (92) operation with one assumed source
vector element. Since the exponent of the source element is negative, the instruction
right-shifts the two's complement of the coefficient three places and increments the
exponent by plus three. The zero sign bits are extended on the left. The result element
becomes all zeros. Thus, zero is the closest integer greater than the A source vector
element. The ceiling A- C (92) instruction provides a means of converting negative
fractions to zero and positive fractions to plus one.

The applicable data flag bit is 46 (indefinite result).

9A Exponent of A - C

The elements of result vector C are formed by storing the exponents from input vector A into
the rightmost position of the coefficients of vector C. The sign of the exponent is
extended left to the coefficient sign bit position. The exponent portion of each element of
vector C is cleared to zero.

The Y and B designators and bits 4 through 7 of the G designator are unused and must be set
to zeros.

4-78 60256020 A

0 14 71 1111 Ill II 1120 2114 t7 H II

~II I I I 01 1:1 I I I I I I I I I I I I I I 11 11 1110
I I

_l
1\S:

~ EXPONENT

i.PON .. NT
1

-y

COEFFICIENT

COEFFICIENT
SIGN BIT

J

SIGN BIT

0 ll 4 7. II II Ill II II 10 Ill 14 1711 II

I: I I I I I 0 I oiooo 0000 0000 0000 0000 0010

1 I
l

'---y---1--~~~~~,-~~~~~~

EXPONENT COEFFICIENT

0 14 7. 1112 Ill II 1110 1324 17 21 II

01000 0000 oiooo 0000 0000 0000 0000 0000
I I
I

010
y

A SOURCE VECTOR
ELEMENT

(FD FFFFFE)
y '----y-J
-3 -2

A SOURCE VECTOR
ELEMENT (Two's
COMPLEMENT OF
COEFFICIENT)

C RESULT VECTOR
ELEMENT (UNCOM
PLEMENTED)

'---v---1'-r'
EXPONENT

INCREMENTED
TO 0
(-3+3=0)

SIGN
BITS
EXTENDED

\
_BITS SHIFTED

END OFF

COEFFICIENT SHIFTED
RIGHT 3 POSITIONS

0 I 4 71 11 11 111 11 1110 H 14 17 II II

ioiooo 0000 0~00 0000 0000 0000 0000 0000
I I

_l

'---v---1\ J -y

EXPONENT COEFFICIENT

NOTE: 32 - BIT OPERANDS ARE ASSUM ED.

C RESULT VECTOR
ELEMENT(TW01S
COMPLEMENT OF
COEFFICIENT)

Figure 4-21. Example of Ceiling A_.C Instruction with Negative Exponent

60256020 A 4-79

90 Truncate A- C

This instruction transmits to elements of vector C the nearest integer the magnitude of
which is less than or equal to the corresponding elements of source vector A. These
integers are represented by unnormalized floating-point numbers having positive exponents.

If the origin-operand exponent is positive (greater than or equal to zero), the instruction
transmits the source element directly to the corresponding result elements.

If the source-element exponents are negative, the machine right-shifts the magnitude of the
corresponding coefficients end-off and increases the exponent by one for each position
shifted until the exponent becomes zero.

The operation extends zeros on the left during the shift after complementing if the
coefficient is negative. If the coefficient of a source element is positive, the shifted
coefficient with zero exponent is transmitted to the corresponding result element. If the
coefficient of a source element is negative, the two's complement of the shifted coefficient
and zero exponent are transmitted to the corresponding result element. If zeros are
transmitted as a source element, zero is also transmitted as the corresponding result
element.

Figure 4-22 shows a typical source element and the corresponding result element for a
truncate A- C (90) instruction. A 32-bit source element with a positive coefficient and
negative exponent is assumed. A right shift of eight is required to reduce the negative
exponent to zero.

The Y and B designators and G bits 4 through 7 are undefined and must be set to zeros.

The applicable data flag bit is 46 (indefinite result).

0 S4 71 1112 1518 1920 2S24 2728 SI

1: I I I 1000 opoo 0000 0001 I I I I I I I I I I I I

_l(F) (8) Jo> (O) (I) (F) (Fl (F)

'--v--1"- y
EXPONENT COEFFICIENT

0 S4 7 I 9 II 12 1518 1920 2!124 2721 SI

o:ooo 0000 0~000 0000 0000 0000 0001 I I I I

j(O) (0) 1o> (0) (0) (0) (I) (F)
'--v--1\ v

EXPONENT COEFFICIENT

(A)

TYPICAL SOURCE
ELEMENT

(OOIFFF X 2-8)

(C}

RESULT ELEMENT

(OOOOIF X 20)

Figure 4-22. Example of Source and Result Elements for a
Truncate A - C Instruction

4-80 60256020 A

98 Pack A, B -c
90 Logical; A, B~

JI_ J_

F
(98&9Dl

9B Pack A, B- C

1UI_ 23 24 3132 3840 47

x A y B
(OFFSET (FIELD LENGTH (OFFSET (FIELD LENGTH

& BASE & BASE FOR Al ADDRESS) FOR Bl ADDRESS)

"[___ G BITS 15, 8, & 7: SEE TEXT FOR 9D LOGICAL CHOICES

G BITS 3, 4: BROADCAST

G BIT 2:
0 • DO NOT OFFSET RESULT FIELD
1 •OFFSET RESULT FIELD

BIT 1:
0 • CONTROL VECTOR OPERATES ON 1'S
1 • CONTROL VECTOR OPERATES ON O'S

G BIT 0 :
0 • 114-BIT OPERAND
1 • 32-BIT OPERAND

All 113114 113

z c
(CV BASE (FIELD LENGTH

& BASE ADDRESS) ADDRESS)

I C+1 I I (OFFSET I
L~-=~~_J

This instruction forms the elements of a floating-point result vector c. The elements of
result vector C consist of exponents from the rightmost 16 bits (64-bit operands) or 8 bits
(32-bit operands) of source vector A elements and coefficients from the rightmost 48 bits/24
bits of the corresponding elements of source vector B.

Figure 4-23 shows an example of an assumed A source and B source vector element used in
forming a C result vector element in a pack A, B-C instruction.

60256020 A 4-81

0 3 4 7 8 1112 15 II 19 20 23 24 27 28 31

0000 0000 0000 0000 0000 0000 0100 0000
(4) (0)

\.

~

0 3 4 78 1112 15 11 19 20 23 24 27 28 51

0010 0010 0101 11 I I 0001 1100 0111 0000
(2) (I) (5) (F) (I) (C) (7) (0)

\.: I

1
"'\

0 34 78 II 12 15 II 19 20 23 24 2728 31

0100 0000 010 I 111 I 0001 1100 011 I 0000
(4) (0) (5) (F) (I) (C) (7) (0)

~..____-----~~------~
EXPONENT COEFFICIENT

A SOURCE VECTOR
ELEMENT

B SOURCE VECTOR
ELEMENT

C RESULT VECTOR
ELEMENT

Figure 4-23. Example of Pack A, B - C Instruction

9D Logical; A, B - C

This instruction performs the bit-by-bit logical operation selected by G bits 5 through 7
between respective operand streams of source vectors A and B with results stored in vector c.

G Bits
5. 6. 000 001 010 Oll 100 101 llO lll
and 7

Exclusive Implica- Equiva-
OR AND OR Stroke Pierce ti on Inhibit lence

-- -·- - - -A B A-B A.B A+B (A.B) (A+B) A+B A.B A-B

0 0 0 0 0 1 1 1 0 1

0 1 1 0 1 1 0 0 0 0

1 0 1 0 1 1 0 1 1 0

1 1 0 1 1 0 0 1 0 1

4-82 60256020 A

0

9C Extend 32 Bit A - 64 Bit C

96 Contract 64 Bit A - 32 Bit C

97 Rounded Contract 64 Bit A - 32 Bit C

93 Significant Square Root of A - C

2324 158118 83

F
(9C, 96
93, 97)

x
(OFFSET
FOR Al

A
(LENGTH &

BASE ADRSI

z
(CV BASE

ADRS)

c
(FIELD LG

& BASE ADRS)

G BITS 6, 8: SIGN CONTROL t

t IN THIS GROUP OF INSTRUCTIONS, THE SIGN CONTROL BITS ARE USED
IN INSTRUCTION 93 ONL V. IN ALL OTHER CASES, THESE BITS MUST BE
ZERO.

tt G BIT 0 MUST BE A ZERO FOR THE 9C, 96, AND 97, INSTRUCTION BUT
MAV BE A ZERO OR A ONE FOR THE 93 INSTRUCTION.

9C Extend 32 Bit A - 64 Bit C

I c + 1 I
I (OFFSET I
t!~~~~~J

This instruction forms the elements of result vector C by extending the 32-bit,
floating-point operands of vector field A into 64-bit, floating-point operands. The
instruction reduces the exponent of the result elements by 2410• The 9C instruction
transmits the rightmost 24 bits of the corresponding source elements to bits 16 through 39
of the result elements. The rightmost 24 bits of each result element are cleared.

If an element of vector A is indefinite, the instruction sets the corresponding element of
vector C to indefinite and sets data flag bit 46. If an element of vector A is machine
zero, the instruction stores machine zero as the corresponding element of vector C and sets
data flag bit 43 (result machine zero).

If bit 3 of the G designator is set, indicating broadcast of the A register, the 8-bit A
designator is a 32-bit register designator.

Since the instruction uses only one source field, the Y and B designators and bits 0, and 4
through 7 of the G designator are not used. These bits must be zeros.

Figure 4-24 shows an example of the extension of one assumed source element into the
corresponding result element. The instruction reduces the exponent of the assumed source
element (4F16) by 2410 to 3716• The sign of the result exponent is extended in bits 0
through 7. The 9C instruction always clears bits 40 through 63 of the result-element
coefficients.

60256020 A 4-83

0 3 4 7 8 II 12 Ill 16 19 20 23 24 27 28

0100 I I I I 01 I I 0100 11 I 0 01 10 1000 0000 SOURCE ELEMENT
VECTOR FIELD A (4) (F)

~\
EXPONENT
(4F1s-2410)=

(4F1s-l81s) =

(3715)

(7) (4) (E) (6) (8) (O)

y .I

COEFFICIENT

t RESULT ELEMENT

~ ______ __,)~-------,VECTOR Fl ELD C
.. THESE BITS ARE CLEARED

I ,~~~~~~~~"---~~~~~~~~

0 3 4 7 8 II 12 Ill 16 19 20 23 24 27 28 3132 35 36 39 40 43 44 47 48 Ill 112 1111 !16 119 110 63

0000 0000 0011 0111 011 I 0100 1110 0110 1000 0000 0000 0000 0000 0000 0000 0000
(0) (0) (3) (7) (7) (4) (E) (6) (8) (0) (0) (O) (0) (0) (O) (0)

\ I\ y -y

EXPONENT COEFFICIENT

Figure 4-24. Example of Extend 32 Bit A- 64 Bit C Instruction

96 Contract 64 Bit· A- 32 Bit C

This instruction contracts each 64-bit, floating-point element of vector field A into its
corresponding 32-bit floating-point result. The result element becomes the corresponding
element of result vector field c. The instruction increases each non-end case
source-element exponent by 2410 in forming the 8-bit exponent for the result element.

The following is a list of input exponents and the corresponding result of the 96
instruction execution.

4-84

Input
Exponent

7FFF

7000

6FFF

0058

0057

FF78

FF77

8000

Result

Result indefinite.

Data flag bit 46 (indefinite result) is set.

Data flag bits 42 (exponent overflow) and 46 (indefinite
result) are set.

Result exponent is 2410 larger than the input exponent.
The leftmost 24 bits of the input coefficient are trans
ferred.

Result is machine zero. Data flag bit 43 (result machine
zero) is set.

60256020 A

J

The coefficient of the result element is the leftmost 24 bits of the source element
coefficient. This operation contracts the coefficients of all elements with an
absolute value of less than 224 (neglecting the exponent) to minus one for negative
coefficients and zero for positive coefficients.

The Y and B designators and bits O and 4 through 7 of the G designator are not used and
must be zeros. Applicable data flag bits are 42 (exponent overflow), 43 (result
machine zero), and 46 (indefinite result).

97 Rounded Contract 64 Bit A - 32 Bit C

This instruction performs a rounded contract operation on the 64-bit, floating-point
elements of vector field A and transmits the 32-bit, floating-point results to elements
of vector field C (figure 4-25). Each resulting 8-bit exponent represents the sum of
the least significant 8 bits of the source element and 2410• If the result exponent
cannot be contained in 8 bits, exponent overflow or underflow is detected.

The instruction then adds a plus one to bit positions 40 of the source-element
coefficients. If overflow occurs (figure 4-25), the instruction increases the exponent
by one and right-shifts the coefficient one place. (Since the result coefficient in
figure 4-25 contains all zeros, the example does not show the right-shift of one
place.) The leftmost 24 bits of the shifted result coefficient are transmitted to the
corresponding bits of result element c. The exponent of each non-end case result
element is 2410 (2510 if overflow occurred) greater than the exponent of the
corresponding source element.

The Y and B designators and bits 0 and 4 through 7 of the G designator are not used and
must be zeros. Applicable data flag bits are 42 (exponent overflow), 43 (result
machine zero), and 46 (indefinite result).

93 Significant Square Root of A- C

This instruction forms the square root t of each element of vector field A and places
the result in each corresponding element of vector field C. Each result element
contains the same number of significant bits as the corresponding source element.

Since the instruction uses only one source field, the Y and B designators and bits 4
and 7 of the G designator are not used and must be zeros. Bits 5 and 6 of the G
designator perform sign control functions as given in table 4-17. Applicable data flag
bits are 43 (result machine zero), 45 (square root result imaginary), and 46
(indefinite result).

tAppendix B describes the floating-point square root operation.

60256020 A 4-85

TYPICAL SOURCE ELEMENT

0 3 4 7 8 11 12 Ill 18 It 20 23 24 27 21 31 32 311 36 39 40 43 44 47 48 !II !12 11!1 !16 !19 60 63

I I I I I I I I I I I I I I 00 01 I 11 I I 00

{ F) {F) {F) { c) { 7) {F) (F) { F) (F) (F) {F) (F) { F) {F) (F) { c)
\ '\ .J -y -y

EXPONENT(-4) COEFFICIENT {7FFFFFFFFFFC)

(F C 16 + 24 1 o =

FC15+l815=+1415l is

COEFFICIENT AFTER + I ADDED TO BIT 40
19 20 23 24 27 21 31 32 3!1 36 39 40 43 44 47 41 !II 52 !l!I !16 !19 60 H

1000 0000 0000 0000 0000 0000

OVERFLOW ~--------~--------'
(ADD + I TO EXPONENT)

0 3 4

I
I

~~~~~~--'*~~~~~~~ 7 fl II 12 l!I II 19 20 23 24 27 21 31\ 

"T 

0:1 I I I I I I I I I I I I I I I I I I I I I I 
I 

I 

0001 010 I 0100 0000 0000 0000 0000 0000 
(5) 

RESULT ELEMENT C 
( I ) 

~'--~~~~~~~~~~~~--J 

EXPONENT COEFFICIENT 

Figure 4-25. Example of Vector Elements for a Rounded 
Contract 64 Bit A- 32 Bit C Instruction 

94 Adjust Significance of A Per B - C 

95 Adjust Exponent of A Per B - C 

0 

F 
(94 OR 951 

4-86 

78 1516 2324 31 32 3940 4748 

x 
(OFFSET 
FOR Al 

A 
(FIELD LENGTH 
&~EADRSI 

I y G BIT 3, 4: BROADCAST 

G BIT 2: 

v 
(OFFSET 
FOR Bl 

0 = DO NOT OFFSET RESULT FIELD 
1 =OFFSET RESULT FIELD 

G BIT 1: 
0 = CONTROL VECTOR OPERATES ON 1'S 
1 = CONTROL VECTOR OPERATES ON O'S 

~----G BIT 0: 
0 = 64-BIT OPERAND 
1 = 32-BIT OPERAND 

B 
(FIELD LENGTH 
&~EADRSI 

z 
(CV BASE 

ADRSI 

5556 63 

c 
(FIELD LENGTH 
&~EADRSI 

I c + 1 
I (OFFSET '1 

LOR-=~~_J 

60256020 A 



94 Adjust Significance of A Per B .... c 

This instruction adjusts the significance of floating-pointtelements from vector field 
A and transmits the adjusted elements to corresponding elements of vector field c. The 
rightmost 48 (64-bit operands)/24 (32-bit operands) bits of the elements in vector 
field B contain signed, two's complement integers. The absolute values of these 
integers are shift counts. 

If a shift count is positive, the instruction left-shifts the coefficient of the 
element from vector field A the number of positions specified by the shift count or by 
the number of positions necessary to normalize the coefficient, whichever is smaller. 
In either case, the instruction reduces the exponent of the source element by one for 
each position shifted. The instruction left-shifts an all zero coefficient by the 
specified number of positions. 

If a shift count is negative, the instruction right-shifts the coefficient of the 
source element by the shift count. The instruction increases the exponent by one for 
each position shifted. If the absolute value of the shift count is greater than 4710 
(2310 for 32-bit operands), the shift operation is undefined. The addition of the 
shift count can cause either exponent overflow or underflow. 

If the source element is indefinite, the instruction sets the corresponding result 
element to indefinite and sets data flag bit 46 (indefinite result). If the source 
element is machine zero, the instruction sets the corresponding result element to 
machine zero and sets data flag bit 43 (result machine zero). Data flag bit 42 
(exponent overflow) is also applicable. 

G bits 5 through 7 are undefined and must be set to zeros. 

95 Adjust Exponent of A Per B - C 

This instruction transmits adjusted source elements from vector field A to 
corresponding result elements in vector field c. The instruction sets the exponent of 
a result element equal to the exponent of the associated source element in vector field 
B. The coefficients of the result elements are formed by shifting the coefficients of 
the source elements from vector field A. 

The difference between the exponents of associated elements from vector fields A and B 
forms the shift count. If the exponent from A is greater/less than the exponent of the 
element from B, the shift is to the left/right, respectively. If A contains a zero 
coefficient, the exponent of the corresponding ialement of B is transferred to the 
corresponding element of C with an all zero coefficient. If a left shift exceeds the 
number of positions required for normalization, the corresponding result element is set 
to indefinite, and data flag bit 42 (exponent overflow) is set. G bits 5 through 7 are 
undefined and must be set to zeros. 

If either or both source elements are indefinite or machine zero, the instruction sets 
the result element to indefinite. In this case, data flag bit 46 (indefinite result) 
is set and data flag bit 42 (exponent overflow) is not set. 

tAppendix B describes the operation of adjusting floating-point operands. 

60256020 A 4-87 



Figure 4-26 shows one adjust exponent of A per B - C operation with assumed 32-bit source 
elements for vector fields A and B. The exponent of the source element in vector field B is 
greater than the source element from field A by eight. As a result, the instruction 
right-shifts the coefficient eight positions end-off. The vacated positions on the left are 
filled with zeros. 

0 3 4 7 8 II 12 15 18 19 20 23 24 27 28 31 

0011 0000 0010 I I I I 0101 I 100 0001 1001 

(3) (0) (2) (F) (5) (C) ( I ) (9) 

'----y-----1'- J -y 

EXPONENT COEFFICIENT 

0 3 4 7 8 II 12 15 I& 19 20 23 24 27 28 31 

~'--~~~~~v-~~~~~~ 

EXPONENT 

.----L 
COEFFICIENT 
(NOT USED) 

0 34 78 II 12 15 16 19 20 23 24 27 28 31 

0011 1000 0000 0000 0010 I I I I OIOI 1100 

( 3) ( 8) (0) (O) (2) ( F) ( 5) (C) 

~ 
0 FILL 

COEFFICIENT SHIFTED 
8 POSITIONS (30-38= -8) 

NOTE: 32- BIT OPERANDS ARE ASSUMED. 

SOURCE ELEMENT 
VECTOR FIELD A 

SOURCE ELEMENT 
VECTOR FIELD B 

RESULT ELEMENT 
VECTOR FIELD C 

Figure 4-26. Example of Adjust Exponent of A Per B - C Operation 

SPARSE VECTOR INSTRUCTIONS 

Arithmetic operations may reduce many elements of a vector field to a zero or near-zero 
value. Except for positional significance, the near zero values need not occupy storage 
locations as floating-point operands in the vector field. In order to conserve storage 
space and calculating time, the sparse vector instructions make possible the expansion and 
compression of vectors of this type into sparse vectors. 

A sparse vector consists of a vector pair [one of which is a bit string, identified as an 
order vector, and the other is a floating-point array (32- or 64-bit) identified as the data 
vector]. Sparse order vectors determine the positional significance of the segments of the 
corresponding sparse data vector. 

4-88 60256020 A 



Typically, a sparse vector is formed by the following procedure. 

1. The compare instructions generate an order vector. 

2. The compress A - C per z (BC) instruction reduces the corresponding vector to a 
sparse vector. 

3. The BC instruction uses the generated order vector as a means of discarding all 
near-zero elements and still maintain their positional significance through the 
order vector. 

Figure 4-27 shows an example of compressing an initial vector into a sparse vector. Initial 
vector elements Ao through As are contained in consecutive, half-word addresses, 
beginning at arbitrary address m. A compare instruction first generates an order vector 
from the initial vector. The compare instruction sets the bits in the order vector 
corresponding to vector elements that are to be retained in the data vector. Conversely, 
zeros in the order vector designate the near zero elements that are to be discarded in the 
sparse vector field. -

The compress A-C per Z instruction stores the vector elements in consecutive addresses of 
the data vector corresponding to ones in the order vector. Thus, the initial vector is now 
represented or the sparse vector consisting of the order vector and data vector. 

60256020 A 4-89 



INITIAL VECTOR FIELD A 
HALF-WORD 

ADDRESS o 
m Ao 

m+I A1 (NEAR lERO) 

m+2 Az 

m+3 A3 

m+4 A4(NEAR lERO) 

m+5 A5 

m+6 As (NEAR i!ERO) 

m +7 A1 

m+e As(NEAR i!ERO) 

GENERATED ORDER VECTOR l 

GENERATED DATA VECTOR A 
HALF-WORD 

31 

31 

ELEMENTS DISCARDED 

IN FORMING THE 
SPARSE VECTOR FIELD 

ADDRESS ro~~~~~~~~~~~~~~~31 GENERATED 
n Ao SPARSE VECTOR 

n +I A2 

n +2 A3 
I-~~~~~~--=:.._~~~~~~ 

n +3 A5 
1-~~"--~~~--=:.._~~~~~~ 

n +4 A7 

NOTE: 32 - BIT OPERANDS 

Figure 4-27. Example of Compressing Initial Vector Field into 
Sparse Vector Field 

4-90 60256020 A 



Sparse Vector Instruction Format 

All sparse vector instructions use the same general format as shown in figure 4-28. Table 
4-18 lists each of the 8-bit designator portions of the sparse vector instruction format and 
the corresponding definition. 

Jl_ 

F 

G 
(SUBFUNCTION) 

~ 
ia 11118 2324 

x A 

3132 3940 4748 85-111_ _u_ 

y B z c 
(FUNCTION) (0 V LENGTH (BASE ADAS) (0 V LENGTH (BASE ADAS) (0 V LENGTH (LENGTH & 

& BASE ADAS) & BASE ADAS) & BASE ADAS) BASE ADAS) 

8-Bit 

'
7 l't:::'.__: BITS 6-7• SIGN CONTROL !SEE TABLE 4-111 

BITS 3, 4: (SEE TABLE 4·17) 

G BITS 1, 2: (SEE TABLE 4·19) 

G Bl TO : 
0 • 84 BIT OPERANDS 
1 • 32 BIT OPERANDS 

Figure 4-28. General Sparse Vector Instruction Format 

TABLE 4-18. SPARSE VECTOR INSTRUCTION DESIGNATORS 

Designator Definition 

F Instruction code. 

G Suboperation code; the state of G bit 0 denotes the following: 

State 

0 
1 

Designation 

64-bit operands 
32-bit operands 

G bits 1 and 2 are as defined by table 4-19. When bit 3 is set, the function 
is broadcast A. When bit 4 is set, the function is broadcast B. G bits 5 
through 7 function as sign control bits (refer to table 4-17). t 

X, Y Specify the register that contains the base address and field length of the 
source order vector associated with source sparse data vectors A and B, 
respectively. 

A, B Specify the register that contains the base address of the corresponding 
source sparse data vector. 

C Specifies the register that contains the base address of the result sparse 
data vector. 

z Specifies the register that contains the base address and the field length of 
the result sparse order vector associated with result sparse data vector c. 

t Appendix C provides a composite listing of the G designator bits usage according to 
function code. 

60256020 A 4-91 



0 

0 

Base Addresses and Field Lengths 

Figure 4-29 shows that the base addresses and field lengths for the sparse data vectors are 
the same format as the corresponding field lengths and base addresses of the normal 
vectors. However, the field lengths associated with source sparse data vectors are not 
used; thus, figure 4-29 shows bits 0 through 15 of the registers designated by A, B, and C 
as not used. The field lengths for these vectors are determined by the number of ones in 
the corresponding order vectors. The field lengths of the source order vectors (X and Y) 
and the result order vector (Z) are item counts in bits. The addresses to these order 
vectors are bit addresses. 

15 16 (A),(B) OR (C} 63 

NOT USED Q) BASE ADDRESS 

15 16 (X),(Y)OR(i0 

FIELD LENGTH BASE ADDRESS 

Q) AT THE COMP LET ION OF THE SPARSE 
VECTOR INSTRUCTIONS, THE LENGTH 
OF THE RESULTING SPARSE VECTOR 
IS TRANSFERRED TO THIS PORTION 
OF REGISTER C 

Figure 4-29. Sparse Vector Field Length and Base Address Formats 

Sparse Vector Instruction Termination 

63 

Sparse vector instructions terminate when the result order vector, as defined by 
corresponding field length, is filled. If the Z designator is zero or if the Z field length 
is zero, the instructions set no data flag bits and become no-operation (no-op) 
instructions. The sparse vector instructions terminate differently from the vector or 
vector macro instructions. 

Source order vectors with a zero or short field length are extended with zeros as required. 
If vector Z contains a nonzero field length and the C designator is zero, the results of the 
instruction are undefined and an illegal operand will occur if a store in C vector is 
required. 

4-92 60256020 A 



0 

INSTRUCTIONS AO THROUGH AF 

These instructions have different forms depending on G bits 1 and 2. Table 4-19 shows the 
operations associated with the values assigned to G bits 1 and 2. 

G Bit 1 G Bit 

0 0 

0 1 

1 0 

1 1 

AO Add U; A+ B - C 

Al Add L; A + B - C 

A2 Add N; A + B - C 

A.4 Sub U; A • B - C 

AS Sub L; A • B - C 

A6 Sub N; A • B - C 

G 

2 

(SUB FUNCTION) 

~ 

TABLE 4-19. G BIT 1 AND 2 OPERATIONS 

Operation 

Normal order vector generation (logical OR for ADD/SUB, 
logical AND for MULT/DIV). 

Reverse logical operation (AND instead of OR for ADD/SUB, 
OR instead of AND for MULT/DIV). 

Exclusive OR. 

Implication. 

78 1618 23 24 31 32 3940 4748 6666 83 

F 
(ACJ.A2; 
A4-A6) 

v-, 

60256020 A 

x A 
y 

B (0 V LENGTH (BASE ADRS) (0 V LENGTH (BASE ADRS) & BASE ADRS) & BASE ADRS) 

7
y__G BITS 6-7: SIGN CONTROL (SEE TABLE 4-17) 

G BITS 3, 4: (SEE TABLE 4-16) 

G BITS 1, 2: (SEE TABLE 4-19) 

G BIT O. 
0 • 6'HIT OPERANDS 
1 • 32-BIT OPERANDS 

z c 
(0 V LENGTH (RESULT LG 
& BASE ADRS) & BASE ADRS) 

4-93 



These instructions perform the indicated floating-point operations on elements of sparse 
data vectors A and B. The instructions return the results to elements of sparse data vector 
c. The instructions read an element from sparse data vector A and/or B when the 
corresponding sparse order vector X and/or Y contains a one in the associated bit position. 
A zero in a source order vector causes machine zero to be used as the associated A and/or B 
element. The instructions generate an element in the C field when a one is in the 
corresponding bit position of order vector X and/or Y. Each bit position of order vector Z 
is the bit-by-bit logical function of order vectors X and Y as defined by G bits 1 and 2 in 
table 4-19. The instruction transfers the resulting field length of sparse vector C to bits 
0 through 15 of register C. 

In the previously listed sparse vector instructions, U, L, and N denote that upper, lower, 
and normalized floating-point results are generated, respectively. Applicable data flag 
bits for the sparse vector instructions are 42 (exponent overflow), 43 (exponent underflow), 
and 46 (indefinite operand). However, the instructions set the data flag bits only when an 
element is actually stored in the result vector. 

Figures 4-30 and 4-31 show examples of an add U; A + B -c sparse vector instruction 
operation with assumed register contents and vect~r address fields for specific values of G 
bits 1 and 2. Although an AO instruction is used in the examples, the general execution 
sequence is the same for all the previous instructions. The dashed lines in figures 4-30 
and 4-31 connect the elements of the sparse data vector with the corresponding order vector 
bits. The results of the logical operations for instructions AO through A6 are shown in 
table 4-20. 

TABLE 4-20. RESULTS OF THE LOGICAL OPERATIONS (AO THROUGH A6) 

Order Sparse Data G Bit 1 = 1 
Vector Vector Element G Bit 1 = 0 G Bit 1 = 0 G Bit 2 = 0 G Bit 1 = 1 

G Bit 2 = 0 G Bit 2 = 1 Exclusive G Bit 2 • 1 
x y A B OR AND OR Implication 

0 0 MZ MZ N N N MZ 

0 1 MZ B + B N +B N 

1 0 A MZ A N A A 

1 1 A B A+B A+B N A+B 

NOTES: 

A A stream operand 
B B stream operand 
N No result produced 
MZ Machine zero 

tAppendix B describes the normalized floating-point operations. 

4-94 60256020 A 



0 

I 
7 I 

F 

AO 

II 11 II 14 II II 

G 

I 
x A 

I 
y 

AO 03 04 05 

""--SPECIFIES 32-BIT OPERANDS 
AND LOGICAL AND 

BEFORE EXECUTION 

REGISTER 

HALF-WORD 

It 40 47 41 II H 

I 
B 

I 
i! 

06 07 

ADD u; A+B-c 
INSTRUCTION 

I FIELD 1 BASE 
1LENGTH1 ADDRESS 

I I 

0 3 = : 0 0 0 7 I 000000004000: 
I . 

04= I 0000 1000000005000I 

05=; 0008 :000000006000: 

06= I 0000 I0000000070001 

01= 1 ooos :ooooaoooaoool 
I I I 

08 = I 0000 1000000009000. 

DATA VECTOR 

A 
0 II ADORE SSES 0 I I I 4 I • ? 

~r----A-o ----.f-----11@ ii 1 §Ioli! 

ORDER VECTOR 

x 

5000 I I I 
A1 - - - - - - - • I I 

5020 : I 

~ --------~ I 5040 : 
A3 - - - ----- -----• 

Bl T ADDRESSES 
4000-4006 

DATA VECTOR 5060 ORDER VECTOR 

0 
B 

Bo 

B1 

B2 

B3 

B4 

II 011141171 

- 7000., ICfi lol ilol 1I1I1 I 
L.o:J ; I I I --------..J I I I 

7020 : I : -----------•I I 
704(1 : I 

- - - - - - - - - - - ••" I 
7060 : 

-7oeo ----------.. 

"' I" 

"' 
"' 
"' 

y 

BIT ADDRESSES 
6000-6007 

DATA VECTOR ORDEfl VECTOR 

c 
0 II 0111411711 

I.-----< -A2_+_B -, , ------.~ - - ., - , lololol 1lo!ol1 lolol 
90001 I I 

IA3+8'5l ----.+-----1---.J ,__ _________ __, 9020 t_ ____ .J 

i! 

BIT ADDRESSES 
8000-8008 

FIELD BASE 

c 
08 

•• 
I 

II 

II 

I 

AFTER EXECUTION 
REGISTERS 03, 04,05,06 ANO 07 ARE UNCHANGED, 

1LENGTH1 ADDRESS 1 
08: I 0002 1000000009000 I 

Figure 4-30. Example of an Add U~ A+ B--C Sparse Vector Instruction when 
G Bit 1 • 0 and G Bit 2 • 1 (AND) 

II 

I 

60256020 A 4-95 



0 

4-96 

7 • " 11 n 24 31 51 39 40 47 48 55 ,. 13 

F 

AO 

0 

G X A y B i! c 
co 03 04 05 06 07 08 

DATA 

""'--SPECIFIES 32-BIT OPERANDS 
AND LOGICAL EXCLUSIVE OR 

ADD U;A+B---+C 
INSTRUCTION 

VECTOR 

A 

Ao 

I FIELD 1 BASE 
BEFORE EXECUTION ILENGTH1 ADDRESS 

I I 

REGISTER 03= 11 0007 I0000000040001 
I I 

HALF-WORD 

04= I 0000 1000000005000 

05=: 0008 :000000006000: 

06= I 0000 I0000000070001 
I 

07= I 0009 10000Q0008000I 
I I I 

08= I 0000 1000000009000i 

ORDER VECTOR 

31 ADORE SSES o 1 2 3 4 5 • 1 1 
x 

5000 I I 
- - - - - - __ J I 

I 
A1 ~ -----i1i~oi 1 ioioi1 lol 

1--~~~~~~~~~~~---i 5020 I Bl T ADDRESSES 
4000-4006 --- ________ ...J A2 

~~~~~~~~~~~~~ 5040 

0

DATA VECTOR

B

Bo

B1

B2

B3

84

B5

DATA VECTOR

c

Ao

Bo

B2
-

B3

B5

le
~

14
le
fol
le

31

~

~

jc

jc

~

ORDER VECTOR

y
01234~S78

- 1000 l _ ~ 1°1 ~ I : I ~I: I~ I
- 70-20 - - - - _. : : : i
-1040 _____ __J : : I

-----------JI
7060 : ____________ __J

7080
I
I

- - - - - - - - - - - - - _J
70AO

BIT ADDRESSES

6000-6007

ORDER VECTOR

i!
0123451711

- - - - - -11 i 1 loloi 1 i 1 lol 1 I
9000 I I I I

-------...J I I
9020 I I

- - - - - - - - - - _ _J I

9040 I I
-----------J I

- ~o~~ - - - - - - - - J
9080

BIT ADDRESSES

8000-8008

FIELD BASE

31

31

AFTER EXECUTION
REGISTERS 03, 04,05,06 AND 07 ARE UNCHANGED.

1LENGTH 1 ADDRESS 1
08=1 0005 10000000090001

Figure 4-31. Example of an Add U; A+ B-- C Sparse Vector Instruction
when G Bit 1 = 1 and G Bit 2 = 0 (Exclusive OR)

60256020 A

0

In an AO instruction operation, an actual addition of an element from data vector A to an
element from data vector B takes place only when the corresponding source order vector bits
are both ones. For example, the A3+B3 addition takes place because bit 3 of X and Y
order vectors is a one. In cases where a source order vector bit is a one and the
corresponding bit for the other source order vector bit is a zero, machine zero is
essentially added to the sparse vector element.

At the end of the sparse vector operation, the resulting output data vector length is
inserted in the corresponding portion of the register designated by c. In the example,
figure 4-31, the instruction transfers a 000216 to the leftmost 16 bits of register 08.
The 0002 denotes the number of elements in the result data vector c.

AS Mpy U; A • B - C

A9 Mpy L; A • B - C

AB Mpy S; A • B - C

AC Div U; A/B -c
AF Div S; A/B - C

G
(SUB FUNCTION I

~
7S 161S

F

2324

x
3132 3840 4748 6668 83

A v B z c
(AS, A9, AB (0 V LENGTH (BASE ADRSI (0 V LENGTH (BASE ADRSI (0 V LENGTH (RESULT LG

AC, AF) Ill BASE ADRSI Ill BASE ADRSI Ill BASE ADRS) Ill BASE ADRS) 1 "--C.._ G BITS .. ,, SIGN CONTROL ISEE TABLE 4-171

G BITS 3, 4: (SEE TABLE 4-18)

G BITS 1, 2: (SEE TABLE 4-19)

G BIT O.
0 • 84-BIT OPERANDS
1 • 32-BIT OPERANDS

These instructions perform the indicated floating-point;t multiply, and divide operations on
elements of sparse data vectors A and B. The instructions store the results in elements of
sparse data vector c. The instructions read an element from vector A and/or B if the bit
position of the corresponding order vector X and/or Y is a one. An element is generated for
sparse data vector C according to the entries given in tables 4-21 and 4-22. Result order
vector is the bit-by-bit, logical function of order vectors X and Y as defined by G bits 1
and 2 in table 4-19.

tAppendix B describes the floating-point arithmetic operations.

60256020 A 4-97

In the sparse vector instructions previously listed, U, L, and S denote that upper, lower,
and significant upper floating-point results are generated, respectively. Applicable data
flag bits for the multiply and divide sparse vector instructions are 41 (floating-point
divide fault), 42 (exponent overflow), 43 (result machine zero), and 46 (indefinite
result). However, the instructions set the data flag bits only when an element is actually
stored in the result vector.

Figure 4-32 shows an example of multiply U; A B- C or divide upper A/B- C sparse vector
instruction operation with assumed register contents and vector address fields with specific
values for G bits 1 and 2. Although an A8 instruction is used, the general execution
sequence is the same for all instructions of this type. Dashed lines connect the elements
of the sparse data vector with the corresponding order vector bits.

In an A8 operation, an actual product is generated as an element of data vector C only when
the corresponding order vector bits for the A and B data elements are both ones. In cases
where one or both of the source order vector bits are zero, no multiplication takes place,
and the corresponding result order vector bit is cleared. In figure 4-32, only three
products are generated by the instruction (A1 • B1), (A2 • B4), and (A3 • Bs)·

At the end of the sparse vector operations, the resulting output data vector length is
inserted in the corresponding portion on the register designated by C. In the example, the
instruction transfers a 0007 to the leftmost 16 bits of register 09. The 0007 denotes the
number of elements in result data vector C. The results of the logical operations for
instructions A8 through AF are shown in tables 4-21 and 4-22.

TABLE 4-21. RESULTS OF THE LOGICAL OPERATIONS (A8 THROUGH AB)

Order Sparse Data G Bit 1 = 1
Vector Vector Element G Bit 1 = 0 G Bit 1 = 0 G Bit 2 = 0 G Bit 1 = 1

G Bit 2 = 0 G Bit 2 = 1 Exclusive G Bit 2 = 1
x y A B OR AND OR Implication

0 0 NO NO N N N NO * NO

0 1 NO B NO * B N NO * B N

1 0 A NO A* NO N A * NO NO * NO

1 1 A B A*B A*B N A* B

NOTES:

A A stream operand
B B stream operand
N No result produced
NO Normalized one

4-98 60256020 A

.
TABLE 4-22. RESULTS OF THE LOGICAL OPERATIONS (AC 1 AF)

Order Sparse Data G Bit 1 • 1
Vector Vector Element G Bit 1 • 0 G Bit 1 • 0 G Bit 2 • 0 G Bit 1 • 1

G Bit 2 • 0 G Bit 2 • 1 Exclusive G Bit 2 • 1
x y A B OR AND OR Implication

0 0 NO NO N N N NO I NO

0 1 NO B NO I B N NO I B N

1 0 A NO A I NO N A I NO NO I NO

1 1 A B A/B A/B N A I B

NOTES:

A A stream operand
B B stream operand
N No result produced
NO Normalized one
IND Indefinite

60256020 A 4-99

0 7.

I
F

I AB OR AC

15 18 n 24 31 32 39 40 47 41

G

I
x

I
A

I
y

I
B

I
i!

80 04 05 06 07 08

'--SPECIFIES 32-BIT OPERANDS MPY U; A• B -c
ANO LOGICAL"OR"

BEFORE EXECUTION

REGISTER

INSTRUCT ION
1 FIELD I BASE
LENGTH: ADDRESS 1

04= 00 08 :000000005000 I
I

05= o o o o !0000000050001
I I

06 = O O 0 8 :000000007000 I

07 = 0 0 0 0 1000000008000 I

08 = 0 0 0 9 : 000000009000 :
I

09= oo o o:ooooooooAooo:

118111

I

HALF-WORD
..-----------------:.;31 ADDRESSES o 123 4 5 • 7 a

~
6o - - - - ~ 1 lolOl 1 IOlol 1 I 1 I

DATA VECTOR
0 A

I

ORDER VECTOR
x

t------------------1 00 I I I
Ao

A1 1------------------1 -6020 ______ _, : : BIT ADDRESSES
------------.JI 5000-5007 1------------------1 6040 :

A2

A3

0

0

DATA VECTOR
B

Bo

B1

B2

B3

B4

B5

____ _, -SOSO- - - - - - - - _. ORDER VECTOR

31

I+
I+
I+
IE
IE-
IE --

012345878

-aooo• lq1lol1l1l1l1l1I
L ___ J 11111

----------~I I I I
8020 I I I I ------------1.,,
8040 I I I
-----------'I I
8060 I I

I -BOBO- - - - - - - - - - • I
_____________ J

80AO

y

BIT ADDRESSES

7000-]007

DATA VECTOR
c

DIVIDE MULT
ORDER VECTOR

i!

Ao/NOt

NO/Bo

A1/B1

N0/82

NO/B3

A2/B4

A3/B5

Ao•NO

NO•Bo

A1•B1

NO•B2

NO•~

A2•B4

A3•B5

AFTER EXE CUT ION

31 011345871

.:"Aooo---i 1l 1lol 1l 1l 1 I 1 lol
I I I I I

.:-------.J I I I
A020 I I I

~A040 _____ J I I l
~A060 ______ J I I
~----------J I

A080 I
~AoAo _______ I
+---------_J

AOCO

REGISTERS 04,05,06,07 AND 08 ARE UNCHANGED.

FIELD BASE
:LENGTH: ADDRESS 1

I
09=: 0 0 0 7 ~OOOOOOOOAOOOI

Bl T ADDRESSES
9000- 9008

NOTE St

A A STREAM OPERAND

B B STREAM OPERAND

N NO RESULT PRODUCED

NO NORMALIZED ONE

Figure 4-32. Example of a Div or Mpy U Sparse Vector Instruction when
G Bit 1 • 0 and G Bit 2 m 0 (OR)

•• c

I 09

SI

I

31

,

4-100 60256020 B

VECTOR MACRO INSTRUCTIONS

Vector macro instructions perform operations similar to vector instructions. However, some
vector macro instructions do not form result vector fields, but store the results in one or
two registers which are specified by the instruction. In these instructions, the control
vector contains neither length nor offset, but controls the use of elements of the source
vectors. Bit 2 of the G designator is undefined and must be a zero. Designators C and C +
1 denote 32-bit registers when bit O of the G designatort specifies 32-bit operands. In the
vector macro instructions that produce result vector fields, the control vector performs the
same function as in the vector instructions.

Vector macro instructions with result fields (as opposed to result registers) extend short
source fields with machine zeros or normalized ones and terminate in an identical fashion to
the vector instructions. The other vector macro instructions do not extend short source
vectors but terminate when either source vector is exhausted. For instructions of this
type, broadcasting both source fields causes an undefined condition to exist. Appendix C
gives a complete listing of the various field conditions and the resulting termination
condition.

CO Select EQ; A = B, Item Count to ICI
Cl Select NE; A ':t B, Item Count to (C)

C2 Select GE; A ~ B, Item Count to (C)

C3 Select LT; A< B, Item Count to (C)

These instructions compare each element of vector field A with its corresponding element of
vector field B by subtracting vector B from vector A. The conditions for comparing
floating-point operands are described in the Floating-Point Compare Rules, appendix B. The
comparing operation proceeds until the compare condition is met (for a pair of elements not
inhibited by the corresponding bit of the control vector) or the shorter of the two vector
fields is exhausted. If broadcast is selected for field A or B (but not both), the
instruction will terminate when the nonbroadcast field terminates.

t Appendix C provides a comprehensive listing of the G designator bits usage according to
function code.

60256020 A 4-101

0

G bits 2, 5, 6, and 7 are undefined and must be set to zeros.

F
(CO-C3)

G
(SUBFUNCTION)

~
78 1516 2324 3132 3940 4748

x
(OFFSET
FORA)

A
(LENGTH &

BASEADRS)

v
(OFFSET
FORB)

0 = NORMAL A/B SOURCE VECTOR
I y G BITS

1 •BROADCAST REPEATED (A)/(B)

G BIT 1:
0 =CONTROL VECTOR OPERATES ON 1'S
1 = CONTROL VECTOR OPERATES ON O'S

-----G BIT 0:
0 .. 64-BIT OPERANDS
1 = 32-BIT OPERANDS

B
(LENGTH&
BASEADRSI

z
(CV BASE

ADRS)

5556 63

c
(ITEM COUNT
REGISTER)

If the compare condition is met, the item count equals the number of pairs of elements
encountered up to (but not including) the pair meeting the specified condition, including
the pairs inhibited by the control vector. If the compare condition is not met, the item
count equals the length of the shorter vector after the offset adjustment. The instruction
stores the item count into the rightmost 48 bits of a cleared register c. t

The control vector, if used, determines which pairs of elements are compared. For example,
if G designator bit 1 equals zero, a 1 bit in the control vector enables the comparison of
the corresponding pair of source elements. A zero bit in a control vector disables the
comparison of the corresponding pair of source elements. The item count, as previously
described, includes all pairs of elements encountered, including the pairs for which the
comparison was inhibited. If a control vector is used and either source vector A or B is
exhausted before a permissive control vector bit is encountered, the instruction makes no
comparisons. In this case, the item count represents the length of the shorter vector field
minus the offset. Applicable data flag bits are 37 (select condition not met) and 46
(indefinite result).

Figure 4-33 shows an example of a select EQ; A=B; item count - C(CO) instruction with
assumed instruction codes, register contents, and vector fields. The G designator specifies
32-bit operands and broadcast source vector Ao· Since the B offset equals 3, the first
comparison takes place between source element BJ and broadcast vector Ao; this
comparison is not met. Element B5 satisfies the comparison condition, but the zero in bit
5 of the control vector disables the comparison. Element B6 satisfies the comparison
condition, and the control vector enables the comparison. Thus, the item count of three is
transmitted to the rightmost 48 bits of register OA. The item count includes the B5
comparison although the control vector disabled this comparison.

tif the C designator is zero, this instruction produces undefined results.

4-102 60256020 A

0

F
(CO)

7 •

G
(90)

II II

BEFORE EXECUTION

x
(00)

II 14

INSTRUCTION CODES

A
(02)

II II

y
(04)

1140

REGISTER 02= BROADCAST VECTOR Ao

B
(06)

(Ao=32-BIT FLOATING-POINT OPERAND)

B VECTOR FIELD

04= 0000 ,000000000003,
v

FIELD LENGTH B OFFSET

os ='005r pooo~oo05ooq
B BASE ADDRESS

oa=oooo poooooooeooo,
v

CONTROL VECTOR BASE ADDRESS
OA=OOOO 000000000000

47 41

i!
(08)

(32-BIT FLOATING POINT OPERAND)
0 JI

Bo

81

B2

83 f. Ao

B4 f. Ao

B15 =Ao

Bs =Ao

14-4--
?O

5000

FFSET

I~
"'FIE

? LE

1\-s
~~TH H~~: rn:r

CONTROL VECTOR

(ADDRESS 6000)

~ A
(

TARTING '-y-1 l
~~~1ss .......... - DISABLE COMPARISON 

COMPARISON 
DISABLED 

AFTER EXECUTION 

60256020 A 

REGISTER 02,04,06,AND 08 ARE UNCHANGED 
OA = 0000 ,000000000003, 

v 
ITEM COUNT 

Figure 4-33. Example of Select EQ; A•B, Item Count to C 

.... 
c 

(OA) 

.. 

JI 

4-103 



DA Sum (Ao+ Al + A2 + ... Anl to (C) and (C + 1) 

G 

0 

F 
(DAI 

~ 

x 
(OFFSET 
FOR Al 

2324 

A 
(LENGTH & 
BASE ADRSI 

z 
(CV BASE 

ADRSI 

5556 

c 
(U-SUMI 

63 

'-----G BIT 1: 
0 = CONTROL VECTOR OPERATES ON 1'S 
1 =CONTROL VECTOR OPERATES ON O'S 

I c + 1 I 
I (L-SUMI I 

-----G BIT 0: 
L ____ _J 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

NOTE: U DENOTES THE UPPER RESULT. 
L DENOTES THE LOWER RESULT. 

This instruction forms the double-precision, unnormalized, floating-point sum t of all the 
elements of vector field A. The instruction is executed in the following manner: 

Ao + As + A16 + 

A1 + A9 + A17 + 

A2 + A10 + A18 + 

A3 + A11 + A19 + 

sum Xo A4 + A12 + A20 + 

As + A13 + A21 + • 

A() + A14 + A22 + 

A1 + A15 + A23 + 

Where Ao. Ai, A2• ••• are elements of vector A. 

= sum X5 

• sum X6 

sum X7 

Sums Xo through X7 (all double precision quantities) are then added together as follows: 

~ + X2 =Yo 

X7 + X3 .. Y1 

These precision results are then further added as follows: 

A final double precision add to Zo and z1 forms the final sum C, C + 1. 

The instruction transmits the upper result portion of the sum to the register specified by C 
and the lower result to the register designated by C + 1. 

Registers C and C + 1 are either 32- or 64-bit registers, depending on the state of G bit 0 
in the instruction. Register C must be even; if register C is odd or zero, the instruction 
results are undefined. 

The Y and B designators (bits 32 through 47) and bits 2 through 7 of the G designator are 
not used and must be zeros. There is no length or offset specification for control vector 
z. The instruction terminates when the source vector field A is exhausted. If the control 
vector allows no elements to be summed, the instruction sets the result to machine zero. 

tAppendix B describes the double-precision addition of floating-point operands and 
order-dependent result considerations. 

4-104 60256020 A 



0 

If a control vector (CV) is specified and contains no permissive elements, the result is 
machine zero. The instruction does not specify control vector length or offset. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 
(indefinite result). Data flag bits 43 and 46 are determined only by the final upper and 
lower results; if the upper result is indefinite, the lower result is undefined. Data flag 
bit 43 is set if the exponent of the lower result is less than 900016 for 64-bit mode and 
90i6 for 32-bit mode. In this case, the exponent of the upper resu t may be greater than 
9000i6 and will be stored as is and will not be forced to machine zero. The instruction 
sets flag bit 42 if any of the add operations overflow. 

DB Product (Ao, Al, A2, ... Anl to C 

F 
(DBI 

x 
(OFFSET 
FOR Al 

2324 

A 
(LENGTH & 
BASE ADRSI 

L GBIT1: 
0 • CONTROL VECTOR OPERATES ON 1'S 
1 •CONTROL VECTOR OPERATES ON O'S 

G BIT 0: 
0 • 84-BIT OPERANDS 
1 • 32-BIT OPERANDS 

z 
(CV BASE 

ADRS 

&11158 83 

c 
(SIGNIFICANT 

PRODUCT) 

This instruction forms the significant product t of successive, floating-point elements in 
source field A. The instruction is executed in the following manner. 

• • product X4 Ao • A1 • Ai4 • • • • • product Xo 
Ai • As • Ai5 • • • • • product Xi 

• • product X2 

As • Ai2 • Ai9 • ••• • product X5 

A6 • Ai3 • A20 • • • • • product X6 

A3 • Aio • Ai7 • ••• • product X3 

Where Ao, Ai, A2, ••• are the elements of vector A. 

Products Xo through X6 are then multiplied together as follows: 

X5 • X2 • Yo 

~ • X3 • Yi 

Xo • X4 • Y2 

The results are further multiplied along with xi as follows: 

Xi • Yi • Zo 

Yo • Y2 • Zi 

tAppendix B describes the floating-point multiplication operation and order-dependent 
result considerations. 

60256020 A 4-i05 



A final multiply produces the result c. Register C is either a 32- or 64-bit register, 
depending on whether 32- or 64-bit operands are used, respectively. 

In the execution of the DB instruction, the following result differences may occur. The 
central computer may multiply the partial products (X and Y) by a normalized one (EA40 0000 
in 32-bit mode or FFD2 4000 0000 0000 in 64-bit mode) an indeterminate number of times, 
depending on discontinuities in the input data stream. If the coefficients of the partial 
products are nonzero, the partial products are unchanged by the additional multiply. 
However, if the coefficient is all zeros, EA or FFD2 is added to the exponent. This is 
normal under the definition of significant multiply. If the interruptions last long enough, 
the exponent may decrease to machine zero, setting data flag 43. 

Input Stream Partial Products 

OOFF FFFF 1800 0000 1st 

0080 0000 

Interruption 0200 0000 2nd 
occurs here (First normalized one) 

ECOO 0000 3rd 

D600 0000 4th 

cooo 0000 5th 

AAOO 0000 6th 

9400 0000 7th 

8EOO 0000 8th 

All of the above products are equal under the floating-point compare rules. The last 
product, however, sets data flag 43 and 46. Data flag 42 sets if any multiply operation 
overflows. 

These discontinuities may be caused by hardware-generated gaps in the input data or by 
machine interrupts. 

The Y and B designators and bits 2 through 7 of the G designator are undefined and must be 
zeros. Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 
46 (indefinite result). 

If bit 1 of the G designator is zero, for example, a zero bit in the control vector disables 
the multiplication of the corresponding source element and the partial product. Thus, the 
multiplication of a source element and the partial product takes place only when the 
corresponding control vector bit is enabled. This instruction contains no length 
specification for the control vector. The instruction terminates when the A field vector is 
exhausted. If the control vector contains no enabling elements, the result is a normalized 
one. If the C designator is zero, the results are undefined. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 
(indefinite result). 

4-106 60256020 A 



0 

05 Delta [A(n+l)"An ] - Cn 

Dl Adj. Mean [A(n+l)+An ] /2 - Cn 

F 
(D5 OR D1) 

x 
(OFFSET 
FOR A) 

---G BIT 2: 

2324 

A 
(LENGTH & 

BASEADRSI 

0 • DO NOT OFFSET RESULT FIELD 
1 •OFFSET RESULT FIELD 

'----G BIT 1: 
0 • CONTROL VECTOR OPERATES ON 1'S 
1 • CONTROL VECTOR OPERATES ON O'S 

----G BITO: 
0 • 64-BIT OPERANDS 
1 • 32·BIT OPERANDS 

D5 Delta <An + 1 - An) - Cn 

z 
(CV BASE 

ADRSI 

55 66 63 

c 
(LENGTH& 
BASE ADRSI 

I c+ 1 I 
II (OFFSET I 
LFO~=-~:_J 

This instruction forms the nth element of result vector field C by subtracting the nth 
element of source field A from the n+lth element of A. Normalized, floating-point 
arithmetic is used in the subtraction. Figure 4-34 shows an example of a delta instruction 
with assumed instruction codes, operands, and register contents. 

The example shows that since there is no offset of the A vector, the first subtraction 
consists of Ai -Ao which produces result element Co. The subtraction of the A vector 
elements continues in this manner until element C4 is reached. The corresponding Z 
control vector bit is a zero which prohibits the storing of the result element C4 and 
leaves the C4 result field location unchanged. 

Since the source field is one element shorter than the result field, c5 becomes minus As 
and C6 becomes zero. The delta (DS) instruction terminates when the result field is 
exhausted. 

The Y and B designators and bits 3 through 7 of the G designator are unused and must be 
zeros. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 
(indefinite result). 

60256020 A 4-107 



0 

IL 

0 

F 
(D5) 

71 

G 
(80) 

1111 

x 
(0 0) 

A VECTOR SOURCE FIELD 

Ao 

Al 

A_z_ 

A-3.. 

A4 

A5 

C VECTOR RESULT FIELD 

Co<A1-Ao> 

Cl (A2-A1) 

C2 (A3-A2) 

. C3 (A4-A3) 

C4 NO CHANGE 
c5 (O-A5 ) 

c6 co> 

II 

..ll 

INSTRUCTION CODE 

A 
(0 2) 

ADDRESS 

6000 

6020 

6040 

6060 

6080 

60AO 

ADDRESS 

8000 
8020 

8040 
8060 

8080 

80AO 

80CO 

••• 
y 

(00) 

REGISTER CONTENTS 

02=0006 000000006000 
03=0000 000000007000 
04=0007 000000008000 

Z CONTROL VECTOR 

NOTE: VALUES IN PARENTHESES INDICATE 
A VECTOR ELEMENTS SUBTRACTED 
FOR CORRESPONDING C VECTOR ELEMENT. 

Figure 4-34. Example of Delta Instruction 

l 
ADDRESS 

7000 

4-108 60256020 A 



0 

Dl Adj. Mean <An + 1 + An)/2 - Cn 

This instruction forms the nth element of result vector field C by the normalized addition 
of the nth and n+lth elements of source field A. The instruction then divides the result 
element by two, producing the mean of the two source elements. The mean result is stored as 
the corresponding result element in vector c. All operands and arithmetic operations are 
expressed in floating point. 

The division by two is accomplished by subtracting one from the exponent of the result 
element. 

The Y and B designators and bits 3 through 7 of the G designator are not used and must be 
zeros. 

Applicable data flag bits are 43 (result machine zero) and 46 (indefinite result). 

DO Average (An + Bn) I 2 -en 

0.4 Ave. Diff. (An - Bn) /2 -en 

G 

~ 
78 23 24 31 32 3840 4748 66158 83 

F 
(DO OR D4) 

x 
(OFFSET 
FOR A) 

A 
(LENGTH & 

BASE ADRSI 

G BITS 3, 4: BROADCAST 

"'-----G BIT 2: 

y 
(OFFSET 
FOR A) 

0 • DO NOT OFFSET RESULT FIELD 
1 •OFFSET RESULT FIELD 

----G BIT 1: 
0 • CONTROL VECTOR OPERATES ON 1'S 
1 •CONTROL VECTOR OPERATES ON O'S 

-----G BIT 0: 
0 • 84-BIT OPERAND 
1 • 32-BIT OPERAND 

B 
(LENGTH & 
BASE ADRS) 

z 
(CV BASE 

ADRS) 

c 
(LENGTH & 
BASE ADRS) 

I c + 1 I I (OFFSET I 
L~R_c~~...J 

These two instructions form the normalized average and normalized average difference, 
respectively, of elements An and Bn in the A and B vector fields. The sum (DO) or 
difference (D4) of elements A(n) and B(n) is divided by two. The result elements become 
corresponding elements of result vector field c. The division by two is accomplished by 
subtracting one from the exponent. 

In all other respects, these instructions function the same as the normal vector 
instructions described under Vector Instructions in this section. Thus, short source fields 
are extended with machine zeros. These instructions terminate when the result field is 
exhausted. 

G bits 5 through 7 are undefined and must be set to zeros. 

Applicable data flag bits are 43 (result machine zero) and 46 (indefinite result). 

60256020 A 4-109 



0 

88 Transmit Reverse A --c 

F 
(BS) 

x 
(OFFSET 
FOR A) 

2324 

A 
(LENGTH & 
BASE ADRS) 

L G ~I! ~O NOT OFFSET RESULT FIELD 
1 =OFFSET RESULT FIELD 

G BIT 1: 
0 =CONTROL VECTOR OPERATES ON 1'S 
1 •CONTROL VECTOR OPERATES ON O'S 

----li BIT 0: 
0 • 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

3940 4748 

z 
(CV BASE 

ADRS) 

5556 63 

c 
(LENGTH & 
BASE ADRS) 

I c + 1 1 I (OFFSET I 
LOR _:~.:_J 

This instruction transmits the elements of vector source field A to vector result field c. 
The elements are transmitted in reverse order from A to c. Thus, the last element of vector 
A becomes the first element of vector C, the next to the last element of vector A becomes 
the second element of vector C, and so forth. 

This instruction terminates when the result field is exhausted. A short source field is 
extended with machine zero elements. If the source and result fields overlap in storage, 
the results of the instruction are undefined. 

The Y and B designators and bits 3 through 7 of the G designator are undefined and must be 
zeros. This instruction sets no data flag bits. 

Figure 4-35 shows an example of the operation of a transmit reverse A- C instruction with 
assumed instruction codes, addresses, field lengths, and vector fields. 

Since the offsets for the A and C vector fields are equal (+3), the first operation 
transmits element A1 to c3• The operations continue in this manner until bit 5 of the 
control vector is reached. Since bit 5 = zero, the transmission of As to C5 is 
disabled, and C5 remains unaltered. 

The last three elements of vector field C (Cs, C9, and CA) are set to machine zero 
since the result field length is three elements longer than the source length. The dashed 
lines show the order of transfer of elements from the A vector source field to the C vector 
result field. 

4-110 60256020 A 



0 7. 

F 

(88) 

REGISTERS 

02 = 

03= 

04= 

0 6= 

07= 

FIELD 
LENGTH 

FIELD 
LENGTH 

60256020 A 

INSTRUCTION CODES 

1111 014 1111 1140 4741 .... 
G x A y B z 

(AO) (02) (03) (00) (00) (O 4) 

I 

0000 000000000003 
L 

0008 00000000 5000 z CONTROL VECTOR FIELD 

0000 00000000 6000 
FIELD LENGTH ADDRESS 

6000 
0008 00000000 7000 0111411711AI II 

0000 000000000003 l1l1l1l1l1l+l 1l1l1l1l ~ D 
Ly-I 

\_DISABLE TRANSMIT OFFSET A-c 

OFFSET { 

STARTING
ADDRESS 

0 

0 

OFFSET { 

STARTING
ADDRESS 

A SOURCE VECTOR FIELD 

Ao 

A1 

A_z 

A3 

A4 

A5 

A5 

A1 

C RESULT VECTOR FIELD 

Co 

C1 

C2 

C3 (A7) 

C4 (A5) 

C5 (UNALTERED) 

Ca (A 4 l 

C7 (A 3) 

Ca (0) 

Cg (0) 

CA (0) 

II 
ADDRESS 

I-

5000 

5020 

5040 

5Q..6Q.. 

5Q..8Q.. 

50AO 

5Q.C Q.. 

5Q.EQ. -, 

I-

r-
I-

I 

ADDRESS 
II 

7000 

14-

7020 

7040 I 

7Q..6Q.. ...J 
7Q..8Q.. 

70AO 

7Q..C Q_ 

7Q_E Q_ 

~ 

~ 

14-
71 00 

7120 

7140 

NOTE: VALUES IN PARENTHESES DENOTE 

FINAL VALUES OF RESULT ELEMENTS. 

..., 

I 
I 

-, 

-, 

_J I I 

I I 
_J I 

_J 

Figure 4-35. Example of Transmit Reverse A- C Instruction 

.. 
c 

(0 6) 

Ctl I 
I 

(07) ...J 

4-111 



0 

OF Interval A Per B..C 

F 
(DF) 

78 1616 

A 
(SOURCE 
ELEMENT) 

3132 

t G ~I! ~O NOT OFFSET RESULT FIELD 
1 = OFFSET RESULT FIELD 

G BIT 1: 
0 =CONTROL VECTOR OPERATES ON 1'S 
1 =CONTROL VECTOR OPERATES ON O'S 

---1G BITO: 
0 = 64-BIT OPERAND 
1 = 32-BIT OPERAND 

3940 

B 
(SOURCE 

ELEMENT) 

4748 

z 
(CV BASE 
ADDRESS) 

6656 63 

c 
(LENGTH 8t 
BASE ADRS) 

c + 1 
(OFFSET 

I FOR c 8t Z) I L _____ J 

This instruction forms a result vector C whose initial element is equal to the constant from 
register A and whose succeeding elements are greater than the preceding element of vector C 
by the constant in register B. If the exponent of the constant in register A is equal to or 
greater than the exponent of the constant in register B, the initial element of the result 
vector is identical to the constant in register A. If the exponent of the constant in 
register A is less than the exponent of the constant in register B, the initial element of 
the result vector is the constant from register A adjusted to have the same exponent as the 
constant in register B. The second element of vector C equals the first element plus the 
content of register B. The third element of vector C equals the second element plus the 
content of register B, and so forth. The instruction uses unnormalized, floating-point 
addition. t Thus, the first element of c0 = B and the succeeding elements are Cn = 
Cn-1+B. 

If the instruction uses a control vector, an element is generated for each control bit of 
the field length, although it may not be stored in the result field. If the instructon 
detects a nonpermissive bit in the control vector, the addition operation is performed, but 
the result element is not stored in the result field. If the control vector diables the 
storing of a result element and this element is indefinite, data flag bit 46 (indefinite 
result) is not set until a permissive bit is detected in the control vector. Similarly, 
data flag bit 42 (exponent overflow) or 43 (result machine zero) is set on the next 
permitted store although the iterative step which overflowed was not stored. 

The X and Y designators and bits 3 through 7 of the G designator are not used and must be 
zeros. 

If the A designator is zero, this is treated as a broadcast register and 8000---0 is read 
from register zero. 

tAppendix B describes floating-point arithmetic and order-dependent result considerations. 

4-112 60256020 A 



0 

BA Transmit Indexed List-C 

F 
(BAI 

x 
(OFFSET 
FOR Al 

2324 

A 
(LENGTH & 
BASE ADRSI 

0 • VECTOR B RESIDES IN CENTRAL MEMORY t GBIT7: 

1 • ALL ELEMENTS OF INPUT VECTOR B MUST RESIDE WITHIN 
THE RANGE OF ABSOLUTE OR VIRTUAL BIT ADDRESS 0 
THROUGH 3FCO (IN REGISTER FILE) 

G BIT 6: 
0 •SINGLE ELEMENT CASE 
1 • GROUP CASE 

----G BIT&: 
0 • USE A STREAM 
1 • FIXED INCREMENT (THE X DESIGNATOR MUST EQUAL ZERO) 

'"'------
1G BIT 0: 

0 • 64-BIT OPERANDS 
1 • 32-BIT OPERANDS 

c 
(BASE ADRSI 

This instruction forms an indexed list of result elements in vector field C by transferring 
elements from addresses in vector field .B as indexed by the item counts in the A-vector 
field. The rightmost 48 bits (no half-word option) of each element of vector A contains an 
item count. The instruction adds the first item count in vector A to the base address of 
vector B. The element at that address is transferred to result vector c. Before the 
addition of the item count (index) to the base address, the index is left-shifted five 
places (32-bit operands) or six places (64-bit operands) to form the half-word or full-word 
address, respectively. 

The instruction then adds the next element of vector A to the base address of vector B. The 
resulting address indexes the second element of vector B. This process continues until 
vector A is exhausted. Vector C is contiguous for this instruction. 

The elements of vector A are always 64-bit operands, while G bit 0 specifies the B and C 
vector element size. 

The Y and Z designators and bits 1 through 4 of G designator are undefined and must be set 
to zero. 

When G bit 5•1 vector A is replaced by a fixed increment specified by the rightmost 48 bits 
of register A. The X designator must equal zero. The addressing of vector B is then; 
B,B+A,B+2A, •••• ,B+(N-l)A where N is the field length specified by the leftmost 16 bits 
of register A and still determines the total number of groups. The fixed increment A is 
shifted left 6 (G bit 0•0) or 5 (G bit 0•1) places before it is added to B. 

If G bit 6 is a zero, the instruction transmits single elements as previously described. If 
G bit 6 is set, a group of elements is transmitted from vector B to vector C for each 
element of vector A. The group length is specified in the upper 16 bits of register B. All 
groups are of equal length. If the leftmost bits of register B are zero, this instruction 
is a no-op. 

60256020 A 4-113 



0 

If G bit 7 is set, all elements of input vector B must reside in the register file within 
the range of absolute or virtual bit addresses 0 through 3FCO. Reference to the register 
file as central memory is normally not allowed. This instruction and the B7 instruction are 
the only instructions which permit this type of reference to occur. Refer to section 5 for 
o~her register file restrictions. If all the addresses for vector B are not contained in 
the register file, this instruction is undefined. This instruction is also undefined if G 
bits 6 and 7 are both set. 

The search: index list- C (CS through CB) instructions may be used to produce the index 
list for the BA instruction. 

Figure 4-36 shows an example of a transmit indexed list- C instruction with assumed 
instruction codes, register content, and vector fields. The first item count is read from 
address 4000. This value indexes the B vector base address by five half-words after the 
left shift of five. Thus, the instruction transfers the first B vector element from address 
70AO to the C vector element address 9000. Six B vector elements are transferred to the C 
vector. 

No data flag bits are set by the BA instruction. 

87 Transmit List --Indexed C 

F 
(B7) 

G 

~ 
1516 

x 
(OFFSET 
FOR Al 

2324 

A 
(LENGTH & 
BASE ADRS) 

B 
(BASE ADRSI 

t GBIT7: 
0 = VECTOR C RESIDES IN CENTRAL MEMORY 
1 = ALL ELEMENTS OF OUTPUT VECTOR C MUST RESIDE WITHIN 

THE RANGE OF ABSOLUTE OR VIRTUAL BIT ADDRESS 0 
THROUGH 3FCO (IN REGISTER FILE) 

G BIT 6: 
0 = SINGLE ELEMENT CASE 
1 = GROUP ELEMENT CASE 

'-----G BIT 5: 
0 = USE A STREAM 
1 • FIXED INCREMENT (THE X DESIGNATOR MUST EQUAL ZERO) 

'------G BIT 4: 
0 "' NORMAL VECTOR B 
1 • BROADCAST VECTOR B 

'---------G BIT 0: 
0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

63 

c 
(GROUP LENGTH 
& BASE ADRSI 

NOTE: THE C+1 DESIGNATOR IS NOT USED 

This instruction adds th~ rightmost 48 bits of the first element of vector field A (no 
half-word option) to the base address in register C to form the address of the first element 
of result vector field c. The instruction then transmits the first element of vector field 
B to the computed address in c. The rightmost 48 bits of each element of vector field A is 
an item count. Before the addition of the item count (index) to the base address, the index 
is left-shifted five places (32-bit operands) or six places (64-bit operands) to form the 
half-word or full-word address, respectively. 

4-114 60256020 A 



0 

F 
(BA) 

0 

Ao 

A1 

A2 

A3 
A4 

A5 

0 

Bo 

B1 

B2 

83 

84 

85 

INSTRUCTION CODE 

7 I II 11 II 14 II II It 40 47 41 

G 
(80) 

x 
(02) 

A VECTOR SOURCE 

(0000 000000000005) 

(0000 000000000001 

(0000 

(0000 000000000002) 

(0000 000000000003) 

(0000 000000000004) 

A 
(03) 

y 
(00) 

REGISTER CONTENT 

B 
(04) 

03= 0006 000000004000 
04= 0005 000000007000 

06= 0006 000000009000 

FIELD 

FIELD LENGTH 

3RD ELEMENT 
8 VECTOR SOURCE FIELD L II ADDR ESS 

0 " 700 
702 0 

704 0 

706 0 
708 0 

0 
IST ELEMENT ~ 

NOTE; 

VALUES IN PARENTHESES 
INDICATE C VECTOR ELEMENTS 
AFTER TRANSFER OF INDEXED 
LIST. 8 AND C VECTOR ELEMENTS 
ARE IN HALF· WORDS. 

0 
C VECTOR 

Co 

C1 

C2 

C3 

C4 

C5 

RESULT FIELD 

(85) 

(8 I) 

(Bo) 

(82) 

(83) 

(84T 

z 
(05) 

.... 
c 

(06) 

II 

11 ADDRESS 
9000 

9020 

9040 

9060 

9080 

90AO 

Figure 4-36. Example of Transmit Indexed List- C Instruction 

60256020 A 

FIELD 
LE NOTH 

4-115 



0 

Similarly, 
adding the 
element of 
field C. 
exhausted. 

the instruction forms the address of the second element of vector field C by 
second element of vector field A to the base address in register C. The second 
vector field B is then transmitted to the computed address in the result vector 
The instruction continues in this manner until the A vector field length is 
Vector B is contiguous for this instruction. 

The Y and Z designators are undefined and must be zeros. The elements of vector field A are 
64 bits while the elements of vectors B and C are 64 bits or 32 bits as specified by G 
designator bit O. 

Bits 1, 2, 3, of the G designator are not used and must be set to zero. Vector B is 
broadcast when bit 4 of the G designator is set and bit 6 is a zero. 

When G bit 5=1, vector A is replaced by a fixed increment specified by the rightmost 48 bits 
of register A. The X designator must equal zero. The addressing of vector C is then: 
C ,C+A,C+2A, •••• , (C+(N-l)A where N is the field length specified by the leftmost 16 bits of 
register A and still determines the total number of groups or elements. The fixed increment 
A is shifted left 6 (G bit O=O) or 5 (G bit O=l) places before it is added to B. 

If G bit 6 is a zero, the instruction transmits single elements as previously described. If 
G bit 6 is set, a group of elements is transmitted from vector B to vector C for each 
element of vector A. The group length is specified in the upper 16 bits of register c. All 
groups are of equal length. If the sixteen leftmost bits of register C are zero, the 
instructon is a no-op. 

If G bit 7 is set, all elements of output vector C must reside in the register file, within 
the range of absolute or virtual bit addresses 0 through 3FCO. Reference to the register 
file as central memory is normally not allowed. This instruction and the BA instruction are 
the only instructions which permit this type of reference. Refer to section 5 for other 
register file restrictions. If all the addresses for vector C are not contained in the 
register file, the instruction is undefined. This instruction is also undefined if either G 
bits 4 and 6 or G bits 6 and 7 are set. 

DC Vector Dot Product to (C) and (C + 1) 

G 

~ 
78 1516 2324 31 32 3940 4748 

F 
(DC) 

x 
(OFFSET 
FOR A) 

A 
(LENGTH & 

BASE ADRS) 

y 
(OFFSET 
FOR Bl 

11 G BITS 3 AND 4, BROADCAST 

G BIT 1: 
0 = CONTROL VECTOR OPERATES ON 1'S 
1 = CONTROL VECTOR OPERATES ON O'S 

G BIT 0: 
0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

B 
(LENGTH & 
BASE ADRS) 

z 
IC V BASE 

ADRS) 

5556 63 

c 
(U RESULT 
REGISTER) 

NOTE: U DENOTES THE UPPER RESULT. 
L DENOTES THE LOWER RESULT. 

4-116 60256020 A 



This instruction multiplies corresponding elements of vector fields A and B and forms the 
sum of the products. This instruction uses double-precision, unnormalized, floating-pointt 
arithmetic in the operation. The sum of the double-precision products is as follows: 

(A() • Bo) + (As • Bs> + (Ai6 • Bi6) + ••• • sum Xo 

(Ai • Bi) + (Ag e Bg) + (A17 • B17) + ••• • sum Xi 

(A2 • B2) + (A10 • Bio) + CAis • Bis> + • sum X2 

(A3 • B3) + (A11 • Bu) + (Aig • Big) + • sum X3 

(A4 • B4) + (A12 • B12) + (A20 • B20) + . . . •sum~ 
(A5 • Bs) + (Ai3 • B13) + (A2i • B2i) + • sum X5 

(A6 • B6) + (Ai4 • B14) + (A22 • B22) + • sum X6 

(A7 • B1) + (Ai5 • Bi5) + (A23 • B23) + • sum X7 

Sums Xo through X7 (all double precision quantities) are then 

x6 + x2 • Yo 

X7 + X3 • Yi 

added together as follows: 

These double precision results are then further added as follows: 

A final double precision add to Zo and Zi forms the final sum C, c+i. The instruction 
transmits the upper result portion of the sum to the register specified by C and the lower 
result to the register designated by c+i. The DC instruction terminates when the shorter of 
the two source fields is exhausted. If the control vector contains no enabling elements, 
the result is set to machine zero. G bit 0 determines the size of the A and B operands and 
registers C and c+i. 

Bits 2, 5, 6, and 7 of the G designator are not used and must be zeros. The instruction 
contains no length designator for the control vector z. 
C must specify an even-numbered register. If C specifies an odd-numbered register, the 
instruction results are undefined. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 
(indefinite result). Data flag bits 43 and 46 are determined only by the final upper and 
lower results; if the upper result is indefinite, the lower result is undefined. Data flag 
bit 43 is set if the exponent of the lower result is less than 9000i6• In this case, the 
exponent of the upper result may be greater than 9000i6 and will be stored as is and will 
not be forced to machine zero. The instruction sets data flag bit 42 if any of the multiply 
operations overflow. 

tAppendix B describes floating-point arithmetic and order-dependent result considerations. 

60256020 A 4-117 



STRING INSTRUCTION 

The string instruction performs arithmetic and logical operations on strings of data in the 
form of 8-bit bytes. The 8-bit byte size allows handling large alphabets and is compatible 
with ASCII and EBCDIC codes. The data strings are in the general format shown in figure 
4-37. 

The field length of the data string can extend beyond one 64-bit word. The field length of 
the data string can also be less than one data word. 

0 78 1516 2324 31 32 3940 4748 5556 63 

BYTE BYTE BYTE BYTE BYTE FIRST WORD ADDRESS 

BYTE BYTE BYTE BYTE BYTE BYTE BYTE BYTE SECOND WORD ADDRESS 

BYTE BYTE BYTE BYTE BYTE BYTE THIRD WORD ADDRESS 

Figure 4-37. Example of General Format of a Data String Field 

F8 Move Bytes left; A-.C 

0 . 

F 
(FS) 

F8 Move Bytes Left; A - C 

x 
(INDEX 
FORA) 

2324 

A 
(LENGTH & 
BASEADRS) 

B 
REPEATED 

BYTE 

4748 

z 
(INDEX 
FORC) 

5556 63 

c 
(LENGTH & 
BASEADRS) 

This instruction moves source field A to result field c. The bytes in the field are 
considered from left to right. Thus, the most significant byte of the source field is moved 
to the most significant byte position of the result field. 

The Y and G designators are not used and must be zeros. 

If the origin field is shorter than the destination field, the destination field is filled 
in with the repeated byte found in the B designator of the instruction. 

If the origin field is longer than the destination field, the operation is truncated when 
the destination field is exhausted. 

The field lengths are expressed in bytes. 

The 48-bit indexes in the X and Z registers are left shifted 3 bits before being added to 
the A and C base addresses, respectively. 

4-118 60256020 A 



0 

LOGICAL STRING INSTRUCTIONS 

The logical string instructions function in the same general manner as the string 
instruction. Logical string instructions operate with indexes and data fields identical to 
those of the string instruction except that the item counts and indexes are expressed in 
bits instead of bytes. Thus, the logical string instructions perform bit operations on bit 
boundaries while the string instruction performs byte operations on byte boundaries. 

FO logical Exclusive OR A •. B -:+ C 

Fl logical AND A, B - C 

F2 logical Inclusive OR A, B. - C 

F3 logical Stroke, A, B - C 

F4 logical Pierce A, B -c 
F5 logical Implication A, B -c 
F6 logical Inhibit A, B - C 

F7 logical Equivalence A, B - C 

23 24 31 32 

F 
FO - F71 

x 
(INDEX 
FOR Al 

A 
(LENGTH & 
BASE ADRSI 

v 
(INDEX 
FOR Bl 

3940 4748 

B 
(LENGTH & 
BASE ADRSI 

z 
(INDEX 
FOR Cl 

116158 83 

c 
(LENGTH & 
BASE ADRSI 

These instructions perform bit-by-bit logical functions on binary source fields A and B and 
store the results in binary field c. Table 4-23 lists the variations of source bits A and B 
with the corresponding result bit for each of the logical string instructions. 

TABLE 4-23. TRUTH TABLE FOR LOGICAL STRING INSTRUCTIONS 

Source Exclusive 
Bits OR AND OR Stroke Pierce Implication Inhibit Equivalence 

A B (A+B) (A • B) (A-B) (A • B) (A+B) (A+i) (A. B) (A-B) 

0 0 0 0 0 1 1 1 0 l 

0 1 1 0 1 1 0 0 0 0 

1 0 1 0 1 l 0 1 l 0 

1 1 1 1 0 0 0 1 0 1 

60256020 A 4-119 



Fields A, B, and C are strings of bits. The instruction proceeds from left to right and 
terminates when the result field C is filled. The instruction extends source fields A 
and/or B with zeros if they are shorter than field C. The G designator is not used and must 
be all zeros. 

Data flag bit 53, 54, or 55 is set according to the condition of the result field as shown 
in table 4-24. 

TABLE 4-24. DFB CONDITIONS FOR FO THROUGH F7 INSTRUCTIONS 

DFB Bit Condition 

53 Result field all zeros. 

54 Result field mixed. 

55 Result field all ones. 

Figure 4-38 shows an example of a logical string instruction operation. A logical exclusive 
OR (FO) instruction is used for the example. In the example, source field B contains a mask 
of all ones which is used to complement the binary number in source field A through the 
exclusive OR function. All indexes and field lengths are item counts, expressed in bits 
(for example, the source and result field lengths equal 2816 bits). The operation 
proceeds from the starting addresses of A, B, and C to the end of the result field (to 
address 703016>• Each operation forms the exclusive OR or the corresponding bits in 
source fields A and B and stores the result in the corresponding position of field c. 

4-120 60256020 A 



0 71 1111 1114 1111 1140 4741 .... .. 

F G X A Y B Z C 
(FOi 1001 (021 (OJI (041 (0151 (061 (071 INSTRUCTION CODES 

0 7. 

NOT USED INDEX 
REGISTERS ~ ----"----

02 = 000010000 0000 0008 
04 = 00001000 0 0 00 0000 8 
06= OOOOI000000000008 

FIELD I 
LENGTH I BASE ADDRESS 
~1~-....l\.~-~-

03= 0021loooooooosooo 
05= 00291ooooooooeooo 
07 = 0 0 281000 0 0 0007000 

A SOURCE FIELD 
1111 1114 1111 1140 47 

0 I 0 11 0 I 0 I I 0 I I 0 I I I 000 I I 0 I I 0 I 000 I 00 I 000 I 

BASE ~~ . FIELD LENGTH 
ADDRESS• \_sTARTING 

5000 ADDRESS =5008 

BASE 
ADDRESS• 

6000 

60256020 A 

B SOURCE FIELD (MASKI 
0 71 II II 1114 1111 1140 4'1' 

I I II I I II 11111111 I I I II II I I 11 II I I I 11111111 

~~ -y 

INDEX STARTING FIELD LENGTH 

ADDRESS• 6008 

C RESULT FIELD (ONE'S COMPLEMENT OF Al 
71 1111 1111 1140 . ., 

I I 0 I 00 I 0 I I 00 I 00 I 000 I I I 00 I 001 0 I I I 0 I I 0 I I I 0 

FIELD LENGTH 

Figure 4-38. Example of Logical String Instruction 
(Logical Exclusive OR) 

4-121 



NONTYPICAL INSTRUCTIONS 

These instructions perform operations such as register to storage transfers, formation of 
repeated bit masks, and maximum/minimum determinations that do not fall into any of the 
preceding categories of instructions. The separate instruction descriptions define the 
format and operation for these instructions. Appendix C provides a complete listing of the 
various nontyp.,i.cal instruction fields and the resulting termination conditions. 

30 Index Multiply (R) • (S) to (T) 

3C Half-Word Index Mu·ltiply (R) • (S) to (T) 

0 78 1516 2324 31 

F R s T 
(3D, 3C) (SOURCE (SOURCE (DESTI-

NO. 1) NO. 2) NATION) 

3D Index Multiply (R) • (S) to (T) 

This instruction forms the product of the signed two's complement integers contained in the 
rightmost 48 bits of the registers specified by the R and S designators, respectively. The 
instruction stores the product in the rightmost 48 bits of register T and clears the 
leftmost 16 bits. 

If the product or either operand exceeds ! 247-1, the result is undefined. 

JC Half-Word Index Multiply (R) • (S) to (T) 

This instruction forms the product of the signed two's complement integers contained in the 
rightmost 24 bits of the· registers specified by the R and S designators, respectively. The 
instruction stores the product in the rightmost 24 bits of register T and clears the 
leftmost 8 bits. 

If the product or either operand exceeds ± 223-1, the result is undefined. 

5E/7E Load (T) Per (S), (R) 

5F/7F Store (T) Per (S), (R) 

12/13 Load/Store Byte (T) Per (S), (R) 

0 78 

F 
(FUNCTION) 

4-122 

1516 2324 31 

R s T (BASE 
ADDRESS) (INDEX) 

60256020 A 



SE/7E Load (T) Per (S), (R) 

These instructions load the 32/64-bit register T with the content of the address specified 
by (S) + (R), where (R) is the base address. For the SE instruction, (S) is an item count 
in half-words, and for the 7E instruction, (S) is an item count in words. The index in S is 
shifted five/six places to the left before it is added to the base address. S and R are 
64-bit registers. Overflow resulting from this addition has no effect if it occurs. 

SF/7F Store (T) Per (S), (R) 

These instructions store the content of the 32/64-bit register T in the address specified by 
(S) + (R), where (R) is the base address. For the SF instruction, (S) is an item count in 
half-words, and for the 7F instruction, (S) is an item count in words. The index in S is 
shifted five/ six places to the left before it is added to the base address. S and R are 
64-bit registers. These instructions do not detect overflow if it occurs. 

12/13 Load/Store Byte (T) Per (S), (R) 

These instructions load/store a byte from/into the address specified by (R) + (S), where (R) 
is the base address and (S) is an item count in bytes. The index in S is shifted three 
places to the left before it is added to the base address. The byte is transmitted 
into/from bits S6 through 63 of register T. The remaining bits in T are cleared on a load 
and ignored on a store. 

37 Transmit Job Interval Timer to (T) 

0 

F 
(FUNCTION) 

R S 
r---A--v--A-\ 

31 

T 
(DESTINATION 

REGISTER) 

This instruction transmits the contents of the job interval timer into bits 32 through 63 of 
register T and clears bits 0 through 31 to zero. The designators R and S are undefined and 
must be set to zero. When executed in monitor mode, the operation of this instruction is 
undefined. This instruction does not deactivate the timer. 

70 Swap S -r, R-S 

0 78 1616 23 24 31 

R T 
F (SOURCE s (DESTINATION 

LENGTH & LENGTH & 
BASE ADRSI BASE ADRSI 

L_DESIGNATES STARTING REGISTER 

This instruction moves to destination field T, a portion of the register file beginning at 
the 64-bit register specified by the rightmost 8 bits of register S. The instruction also 
transmits source field R to the register file beginning at the 64-bit register specified by 
the rightmost 8 bits of register s. 

602S6020 A 4-123 



The leftmost 16 bits of registers R and T specify the field length in words for the source 
and destination fields, respectively. The field lengths of the source and destination 
fields may be different, but each must be even. A zero field length indicates no transfer 
for that field. Any transfer of words into or out of the register file that becomes 
exhausted of registers (beyond the bounds of the register file) causes the instruction to 
become undefined. 

The rightmost 48 bits of registers R and T specify the base address of the source and 
destination fields, respectively. These addresses must specify an even 64-bit word in 
central storage. Bits 57 through 63 of registers R and T are undefined and must be set to 
zero. Overlap of the source and destination fields is allowed only if the base addresses 
for both fields are equal. 

There are no restrictions relating to registers R, S, or T being in the range of the 
registers being swapped. 

The starting register in the file specified by the rightmost 8 bits of the register 
specified by S must be an even register, or the instruction will be treated as an undefined 
instruction. 

If the source field from the register file includes register zero, the computer transmits 
the trace register. However, new data from memory is never written into register zero by 
the swap (7D) instruction. 

39 Transmit Real-Time Clock to (T) 

0 

F 
(39) 

31 

T 
(DESTINATION 

REGISTER) 

This instruction transmits the contents of the real-time clock to bits 16 through 63 of the 
register designated by T. Bits 0 through 15 of register T are cleared. 

3A Transmit (R) to Job Interval Timer 

r 
F 

(3A) 

s T 

7 8 15 16 23 24 31 

IR~ (SOURCE 
REGISTER! 

This instruction transmits bits 32 through 63 of the register designated by R to the job 
interval timer. When executed in the monitor mode, this instruction functions as a no-op. 

Loading the job interval timer with all zeros deactivates the timer without setting data 
flag bit 36. 

4-124 60256020 A 



0 

0 

BB Mask A, B -c Per Z 

F 
(BBi 

A 
(BASE 
ADRSI 

0 • NORMAL SOURCE VECTOR B I ' G BIT., 
1 • BROADCAST VECTOR (Bl 

G BIT 3: 
0 • NORMAL SOURCE VECTOR A 
1 • BROADCAST VECTOR (Al 

'------G BIT 0: 
0 • 64-BIT OPERANDS 
1 • 32-BIT OPERANDS 

B 
(BASE 
ADRSI 

4748 6656 83 

z c 
(0 V LG (RESULT LG 

& BASE ADRS) & BASE ADRSI 

This instruction combines elements of vectors A and B to form result vector C as controlled 
by order vector z. When a one is detected in order vector Z, the next element of vector A 
is inserted into result vector C and the corresponding element of vector B is skipped. When 
the instruction detects a zero in order vector Z, the instruction inserts the next element 
of vector B and skips the corresponding element of vector A. When all elements of A and B 
have been merged, the instruction transmits the resulting length of vector C to the length 
specification portion of register C as shown in figure 4-31. 

Bit 0 of the G designator determines whether 64- or 32-bit operands are used for the A, B, 
and C vectors. The X and Y designators and bits 1, 2, and 5 through 7 of the G designator 
are undefined and must be zeros. G bits 3 and 4 determine whether normal vector elements or 
broadcast elements are used for vectors A and B, respectively. The use of normal or 
broadcast source vectors are described in Vector Instructions in this section. 

This instruction terminates when all bits of the order vector have been examined. The 
instruction recognizes no lengths for vectors A and B. 

BC Compress A-c Per Z 

F 
(BC) 

G X 
,--A--v-..A~ 

78 

A 
(BASE 
ADRSI 

I ' G BIT ,, 0 ··TRANSMIT ON 0 V 1'S 
1 •TRANSMIT ON 0 V O'S 

G BIT 0: 
1 • 32-BIT OPERANDS 
0 • 64-BIT OPERANDS 

60256020 A 

66 66 83 

z c 
(0 V LG (RESULT LG 

& BASE ADRSI & BASE ADRSI 

4-125 



0 

This instruction forms a sparse data vector field C by compressing vector field A. Sparse 
data vector field C consists of elements of vector field A corresponding to ones in sparse 
order vector z. Thus, the elements of vector field A that correspond to the positions of 
ones in sparse order vector Z transfer in order to corresponding elements of sparse data 
vector field C if G designator bit 1 equals zero. If this bit is one, the elements of 
vector field A that correspond to zeros in sparse order vector Z are transferred to 
corresponding elements of sparse data vector field c. 

In a typical operation, one of the compare instructions first generates sparse order vector 
z. The BC instruction uses the generated order vector as a means of discarding all 
near-zero elements of vector field A and still maintaining their positional significance 
through the order vector. 

The instruction transfers the resulting length of sparse data vector C to the length 
specification portion of the register designated by C in the instruction word. If bit 0 of 
the G designator is zero/one, the operand size (elements of vectors A and C) is 64/32 bits, 
respectively. As shown in the instruction format, the X, Y, and B designators and bits 2 
through 7 of the G designator are undefined and must be zeros. 

The instruction terminates when all bits of sparse order vector Z are used. The length 
specification portion of registers A and C (initial) is not used. 

Figure 4-27 shows a simplified example of compressing a vector field into a sparse vector 
field. 

CF Arith. Compress A -c Per B 

F 
(CF) 

78 1516 

x 
(OFFSET 
FOR Al 

2324 31 32 

A 
(LENGTH & 
BASE ADRSI 

y 
(OFFSET 
FOR Bl 

I y G BITS 5-7: SIGN CONTROL BITS 

~GBIT4: 
0 = NORMAL SOURCE VECTOR B 

3940 4748 55 56 63 

B Z C 
(LENGTH & (RESULT 0 V (RESULT LG & 

BASE ADRS) BASE ADRSI BASE ADRS) 

1 = BROADCAST SOURCE VECTOR (Bl 
,__ ______ G BIT 0: 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

This instruction forms sparse data vector t C and the associated sparse order vector Z by 
performing a floating-point compare operation between elements of vector A and the elements 
of vector B. Each element of vector B is subtracted from the corresponding element of 
vector A. The conditions for comparing floating-point operands are described in the 
Floating-Point Compare Rules, appendix B. If an element of vector A is greater than or 
equal to the corresponding element of vector B (An L Bn), the instruction stores the element 
of A as the corresponding element of sparse data vector C and sets the associated order 
vector bit. If the element of vector A is less than the corresponding element of vector B 
(An < Bn), the element of A is not stored in sparse data vector C and the associated order 
vector bit is cleared. The element of C is not skipped if An < Bn. Thus, in the case of 
broadcast vector (B), this instruction provides a means of generating a sparse vector field 
by comparing the elements of a source vector field with a fixed threshold element. 

tThe sparse vector part of this section describes the general format of sparse vectors. 

4-126 60256020 A 



The registers designated by X and Y contain the offsets for vectors A and B, respectively. 

The elements of vectors A and B are in floating-point format. t The sign control bits of the 
G field may specify operations on the elements of vector A and/or B before the floating
point compare is made. However, the element of A, if stored in C, will be the original 
element as read from A. The compare operation follows the floating-point compare conditions 
as described in the branch instruction section. In the comparison, only (R) l (S) condition 
is detected where, in this case, An and Bn are substituted for (R) and (S), respectively. 
If the instruction detects an indefinite operand for vectors A and B, the indefinite operand 
is stored as the corresponding element of vector C and the associated bit of the order 
vector is set, 

The instruction format shows that if bit 0 of the G designator is a zero/one, the vector 
elements are 64-bit/32-bit operands, respectively. If bit 4 of the G designator is a one, a 
constant element is broadcast for vector B as described in Vector Instructions in this 
section. In this case, the Y designator is not used. G bits 1 through 3 are not used and 
must be zeros. G bi ts 5 through 7 function as sign control bi ts as described in Vee tor 
Instructions. 

This instruction terminates when all the elements of vector A have been compared. At 
termination, the instruction stores the length (in bits) of the generated order vector into 
the length portion (bits 0 through 15) of the register specified by z. The number of 
elements stored in vector C is stored in the length portion of register C, thus providing 
the field length of the generated sparse vector. If the length of vector B is shorter than 
the length of vector A, the instruction extends the B field with machine zero elements to 
equal the A field length. The applicable data flag bit is 46 (indefinite result). 

Figure 4-39 is an example of an arithmetic compress instruction with assumed instruction 
code, register contents, and source vector field A. In this example, a broadcast 
floating-point constant B is compared with source vector elements Ai through A6• 
Element AO is not compared because of the offset, The A vector elements are indicated as 
being An 2. B or An < B. Thus, the instruction in this example generates a 4-element result 
vector C and a 6-bit order vector z. The 6 and 4 values are stored in the field length 
portions of registers 08 and 09, respectively. 

tAppendix B describes the floating-point format. 

60256020 B 4-127 



B Z C 
(071 (081 (09) INSTRUCTION CODE 

32- BIT OPERANDS BROADCAST ELEMENT (Bl; Y NOT USED 

ADDRESS 

5000 

50 20 

5040 

50SO 

5080 

50AO 

50CO 

ADDRESS 

7000 

7020 

7040 

70SO 

NOT USED OFFSET 
BEFORE EXECUTION ~~ 

SOURCE VECTOR 
FIELD A 

0 ~ 

Ao (NOT COMPARED I 

A1 ~ B 

A 2 < B 

A 3 ~ B 

A4 < B 

As ~ B 

As ~ B 

RESULT VECTOR 
FIELD C 

Co =A I 

C1 = A3 

C2 =As 

C3 =As 

~ 

REGISTER 05 = 0000 100000000000 I 
I 

OFFSET 

FIELD 
LENGTH I BASE ADDRESS 
,_--A,.I ~---J'>---~ 

os= 00011000000005000 
I 

07= FLOATING POINT CONSTANT B 

FIELD I 
LENGTH! BASE ADDRESS 

~I~ 
08= oooo1oooooooosooo 

09= 0 0 0 010 00 00000700 0 

STARTING ADDRESS 

ADDRESS 

sooo 

ORDER VECTOR 
FIELD Z 

0111411 

ffiEIIl 

AFTER EXECUTION 
REGISTER 05,0S, AND 07 UNCHANGED 

FIELD 
LENGTH1 BASE ADDRESS 
r--"-.1~ 

08= ooos, oooooooosooo 

09 = 0 0041000000 007000 

Figure 4-39. Example of Arithmetic Compress A--C Per B Instruction 

4-128 60256020 A 



BO Merge A, B-C; Per Z 

0 

F 
(BDI 

G 

~ 
78 

A 
(BASE ADRSI 

4748 

c 
B Z (RESULT 

( E ADRSI (0 V LENGTH LENGTH 
BAS 8t BASE ADRSI 8t BASE ADRSI 

0 • MERGE A 8t B, SKIP NONE L GBIT7: 

1 • DECOMPRESS A 8t B, SKIP B WHEN USING ELEMENT OF VECTOR A 

G BIT 4: 
0 • NORMAL SOURCE VECTOR B 
1 • BROADCAST SOURCE VECTOR (Bl-EXPAND 

...._ ____ G BIT 3: 

0 • NORMAL SOURCE VECTOR A 
1 • BROADCAST SOURCE VECTOR (A)·EXPAND 

...._------G BIT 0: 
0 • 84-BIT OPERANDS 
1 • 32-BIT OPERANDS 

This instruction merges the elements of vector field A with the elements of vector field B 
to form result vector field C as controlled by order vector z. Thus, this instruction could 
be used to reform a vector field from a sparse vector with a broadcast near-zero element. 
When the order vector Z contains a one in a given position, the instruction inserts the next 
element from vector field A into vector field c. If the order vector contains a zero, the 
instruction inserts the next element from vector field B in the result field (figure 4-40). 
The instruction transmits the resulting length of vector C to the length specification 
portion (bits 0 through 15) of register c. 

Field B vector elements are controlled by G bit 7. When G bit 7 is a zero, the operation 
(called merge) combines vectors A and B. When G bit 7 is set (decompress), an element of 
vector B is skipped for each element of vector A used. No elements of vector A are skipped 
when elements of vector B are used. 

If bit 0 of the G designator is a zero/one, the operand size for vectors A, B, and C is 
64/32 bits, respectively. The X and Y designators and G bits 1, 2, and 5 through 6 are 
undefined and must be zeros. Bits 3 and 4 of the G designator determine whether a constant 
element is broadcast from the registers designated by A and B, respectively. If G bit 3 or 
4 is a one, the operation is called expand. 

The BD instruction terminates when all of the bits of the order vector have been processed. 
The field length specifications for vectors A and B are not used. 

60256020 A 4-129 



THE Z-BIT STRING IS USED FOR ALL THREE EXAMPLES. G BITS NOT 
INDICATED ARE ZEROS. 

z 0 0 I I 0 0 

EXAMPLE 1-BD MERGE A AO A I A2 A3 

B BO BI B2 B3 B4 

EXAMPLE 2 - BD DECOMPRESS A .AO A I A2 A3 
G BIT 7= I 

0 

B BO BI B2 B3 B4 B5 BG B7 BB 

EXAMPLE 3 - BD EXPAND 
G BIT 3=1 

A BROADCAST (A) 

C BO BI (A) (A) B2 (A) B3 (A) B4 

B BO BI B2 B3 B4 

Figure 4-40. Examples of BD Merge Instruction 

4-130 60256020 A 



14 Bit Compress 

0 78 115 18 23 .14 .1.1 
R s T F (LENGTH OF R (LENGTH OF (LENGTH & (14) SEGMENTS & S SEGMENTS) BASE ADRS) BASE ADRSI 

This instruction compresses specified segment lengths (in bits) of source field R into 
result field T. The R designator code in the instruction specifies a 64-bit register which 
contains the length of the R segments in the leftmost 16 bits and the base address of the 
source field in the rightmost 48 bits (figure 4-41). The register denoted by S contains the 
length of the segments in the source field to be skipped in the compress operation. The 
rightmost 48 bits of register S are not used. 

Register T contains the destination field length in the leftmost 16 bits and the base 
address of the destination field in the rightmost 48 bits. 

The bit compress operation successively transmits the segment lengths of the source field, 
as specified by R, to corresponding lengths of the destination field. The instruction moves 
from left to right in the source and destination fields. The instruction skips the segment 
lengths of the source field as specified by S. 

Figure 4-41 shows that the instruction transfers segments R1, R2, and RJ in the source 
field to corresponding segment lengths of the result field. Source field segments S1 and 
S2 are skipped. The operation continues until the T field length is filled. If the field 
length specified by R or T is zero, the instruction functions as a no-op. 

60256020 A 4-131 



REGISTER R 

REGISTER s 

LENGTH 
OF R 
SEGMENTS 

~'·· Io o o B 

I 
0 

LENGTH 
OF S 
SEGMENTS 
~ .. 
I 

0 0 0 B 

T FIELD 
LENGTH 

I 
0 

R BASE ADDRESS 

" n\ 

0 0 0 0 0 0 0 5 0 0 0 

I 

NOT USED 

n\ 

0 0 0 0 0 0 0 0 0 0 0 

I 

T BASE ADDRESS 

---A.__ ------___JA'---------. 
to - - "''•• n\ 

REGISTER T !001 •1000000006 oo oj 

LENGTH LENGTH 
OF R OF S 

BASE SEGMENTS SEGMENTS 
ADDRESS="'\~~ 

5000 , , R I ' , , S I "I" 

RESULT FIELD T 
BASE FIELD LENGTH 

ADDRESS=""\ " 6000 

1
. 7 8 15 II 

R1 I R2 
I 

SOURCE FIELD R 

lll ll2 

n\z4 

R3 u 
Figure 4-41. Example of Bit Compress Instruction 

4-132 

lll 40 

Ii 

60256020 A 



lS·Bit Merge 
16 Bit Mask 

15 Bit Merge 

0 

F 
(16,181 

78 11118 2324 31 

R s T (LENGTH OF R (LENGTH OF S (LENGTH Iii 
SEGMENTS Iii SEGMENTS Iii BASE ADRSI 
BASE ADRSI BASE ADRSI 

The bit merge instruction merges specified segment lengths (in bits) of source fields R and 
S into result field T. The 64-bit register specified by R contains the length of the R 
segments in the leftmost 16 bits and the base address of the R source field in the rightmost 
48 bits (figure 4-42). The register denoted by S contains the length of the S segments in 
the leftmost 16 bits and the base address of the S source field in the rightmost 48 bits. 
Register T contains the destination field length in the leftmost 16 bits and the base 
address of the destination field in the rightmost 48 bits. 

The bit merge operation successively merges the segment lengths of the R source field with 
segment lengths of the S source field into corresponding lengths of the destination field. 
The instruction moves from left to right in the source and destination field. 

Figure 4-42 shows that the 15 instruction merges segments R1, R2, and R3 in source 
field R with segments S1 and 82 into corresponding segment lengths of the destination 
field. The operation continues until the T field length is filled. 

If bits 16 through 63 of the S register are cleared, the instruction transmits zeros to the 
corresponding segment lengths in the destination field. If the field length specified by 
the R, S, or T registers is zero, the instruction functions as a no-op. 

60256020 A 4-133 



REGISTER R 

LENGTH OF 
R SEGMENTS 

to 0 ·o ~T: 

LENGTH OF 
S SEGMENT 

0 

R BASE ADDRESS 

" 19\ 

0 0 0 0 0 0 5 0 0 0 I 

S BASE ADDRESS 

REGISTER S '[ 0 0. I ~T: o o o o o o o so o 0°1 
" 

T FIELD T BASE ADDRESS 
LENGTH 
~/11 " 19\ 

REGISTER T loo 3 8 I 0 0 0 0 0 0 0 0 7 0 0 0 I 

ADD~~~~\- LENGTH OF 
5000 R SEGMENTS 

~ 
~O~~~~T~'~~~~-"~l-l~~~-11~ I RI I R2 R3 Ii 

SOURCE FIELD R 

BASE\ LENGTH OF SOURCE FIELD S ADDRESS= 
6000 

S SEGMENTS 

0 II II II 

I S1 S2 ll 
BASE\ RESULT FIELD T 

ADDRESS= FIELD LENGTH 
7000 . I\ 

'o Tl 1114 II II 47 41 

I R1 S1 R2 S2 

Figure 4-42. Example of Bit Merge Instruction 

4-134 

11\ 

R3 11 

60256020 A 



16 Bit Mask 

The bit mask instruction is similar to the bit merge instruction. The specified R, S, and T 
register contain segment lengths, base address, and field length in the same manner. 
However, the bit mask instruction (figure 4-43), moving from left to right, transmits a 
segment equal to the length specified by R to the corresponding segment length in the 
destination field. The 16 instruction then transmits a segment of field S equal to the 
segment length specified by the S register starting at an address equal to the base address 
plus the R segment length. The next segment of the R source field to be transmitted to the 
destination field starts at an address equal to the R base address plus the R segment length 
plus the S segment length. As in the bit merge instruction, if bits 16 through 63 of the S 
register are cleared, the instruction transmits zeros to the corresponding segment lengths 
in the destination field. In the same manner, if the field lengths specified by the R, S, 
or T register is zero, the instruction becomes a no-op. The bit mask operation continues in 
this manner until the destination field is filled. 

60256020 A 4-135 



BASE 
ADDRESS= 

5000 

REGISTER R 

REGISTER S 

REGISTER T 

LENGTH OF 
R SEGMENTS 
0 II 1• 

I 0 0 0 8 

LENGTH OF 
S SEGMENT 

T FIELD 
LENGTH 

I 0 

R BASE ADDRESS 

.. 
0000000500 0 I 

S BASE ADDRESS 

.. 
000000060001 

T BASE ADDRESS 

~,-,.~~~~~~A~~~~~~~~ 

I o o • • I o o o o o o o o 7 o o o .. [ 

LENGTH OF SOURCE FIELD R 
R SEGMENTS 

~ 
0 7• 1114 II II 47 41 .. 

R1 (MASKED SEGMENT) 

LENGTH OF 
S SEGMENT 

R2 (MASKED SEGMENT) R3 

BASE 

ADDRESS=\ 
6000 

~o~~~~-r-~~~~~~~~-r-~~~~"T"""'"~~~~~~~~4-7~4~•~~~.;....,'' 7. 1111 

BASE 

7000 

(MASKED 
SEGMENT) 

ADDRESS=\ 

r R1 

7. 

I S1 

(MASKED 
SEGMENT) 

1114 

I R2 

.... 
I S2 

Figure 4-43. Example of Bit Mask Instruction 

47 

(MASKED 
SEGMENT) 

.. 
R3 I 

4-136 60256020 A 



56 Select Link 

f 
F 

(661 

78 1~24 31 

~~MO-VALU9 
For certain vector operations (refer to table 4-25), this instruction provides the ability 
to combine two vector operations into one single operation. The link instruction 
accomplishes this by chaining the output of the first vector's function to one of the inputs 
for the second vector's function. The link instruction must be followed immediately by the 
two vector instructions (except when R equals zero, which is a pass operation) to be linked 
such as: 

66 INSTRUCTION 66 R s T 

1st VECTOR INSTRUCTION F1 G1 X1 A1 Y1 81 Z1 C1 (C+1)1 

2nd VECTOR INSTRUCTION F2 G2 X2 A2 Y2 82 Z2 C2 (C+1)2 

The entire operation will be done as one vector with function Fl preceding function F2. 
Designators Z2, C2, (c+l) 2 and G2 bits 1, 2 will be used to specify the output stream and 
designators Zl, Cl, (C+l)l and Gl bits 1, 2 will be ignored. Between the two vectors there 
can only be two input streams (one A and one B) and one broadcast value, or one input stream 
and two broadcast values (one A or one B). Refer to figure 4-44. 

The stream and broadcast values selected. are specified by Gl bits 3 and 4, G2 bits 3 and 4 
of the vector instructions and R bits 3 and 4 of the link instruction. Refer to table 4-26 
for possible combinations. 

The two inputs to the first function Fl are Al (selected by designators Xl, Al and Gl bit 3) 
and Bl (selected by designators Yl, Bl and Gl bit 4). The two inputs (12 and J2) to the 
second function (F2) are the output of Fl and either input A2 (selected by designators X2, 
A2, and G2 bit 3) or input B2 (selected by designators Y2, B2, and G2 bit 4). The input 
configuration to F2 is determined by R bits 3 and 4 of the link instruction (refer to table 
4-27). 

60256020 A 4-137 



TABLE 4-25. INSTRUCTIONS USED IN A LINK OPERATION 

First Vector (Fl) Second Vector (F2) 

t Instruction t Instruction 

1 8A 1 8A 

2 9D 2 9D 

3 88,89,8B 3 88,89,8B 

4 80,81,82,83,84,85, 4 80,81,82,83,84, 
86,87,90,91,92 85,86,87,90,91, 

92,C4,C5,C6,C7 

tFunctional unit number where: 

1. Array Shift 3. Array Multiply 
2. Array Logical 4. Array Add 

NOTES: 

The operation is undefined if the instructions 
selected for Fl and F2 have the same functional unit 
number. 

Gl bit 0 and G2 bit 0 must be equal. 

Gl bits 5-7 apply to Fl. 

G2 bits 5-7 apply to F2. 

S and T designators of link are undefined and must be 
set to zero • 

. STREAM A 
X1 A1 
G1 BIT 3 • 0 

BROADCAST A 
G1 BIT 3 = 1-

BROADCAST B 
G1 BIT 4 = 1 

STREAM B 
V1 B1 
G1 BIT 4 = 0 

F1 

t 

t 

.., X2 A2 
'G2 BIT 3 = 0 

L.: - -

BROADCAST_· A2 
G2 BIT 3 = 1 

BROADCAST B2 
G2 BIT 4 = 1 

rviBi -
...J G2 BIT 4 = 0 

F2 
STREAM C2 

tSAME STREAM BUS (A OR Bl BUT ONLY ONE 
SOURCE FILE CAN BE SELECTED AT ONE TIME. 

Figure 4-44. Link Selection 
4-138 60256020 A 



TABLE 4-26. COMBINATIONS OF R, Gl, AND G2 BITS 3 AND 4 THAT CAN BE SELECTED 

R Bits 3,4•01 R Bits 3,4•10 R Bits 3,4•11 

Gl Bit 3 • 0 1 1 1 0 0 0 0 1 1 0 0 1 1 

Gl Bit 4 • 0 0 0 1 1 0 1 1 1 0 0 1 0 1 

G2 Bit 3 • 1 0 1 0 1 0 0 0 0 0 0 0 0 0 

G2 Bit 4 • 0 0 0 0 0 1 0 1 0 1 0 0 0 0 

NOTE: Combinations other than above produce undefined results. 

TABLE 4-27. INPUT CONFIGURATIONS 

R Bits State Instructions 

00 Pass 

3,4 01 Select A2-I2, Fl-J2 and Ignore B2 

10 Select B2 -J2, Fl -I2 and Ignore A2 

11 Select Fl -I2 and Fl -J2 and Ignore B2 and A2 

0-2 Undefined and must be set to zero 

5-7 Undefined and must be set to zero 

Link instruction designators S and T and G bits 0, 1, 2, 5, 6, and 7 are undefined and must 
be set to zeros. 

A link instruction is a pass (no-op) when R bits 3 and 4 are both zeros. The two vector 
instructions following a no-op link instruction are executed as separate vectors. To 
operate similarly to a linked vector, the first vector's result field must be stored in 
memory where it is then read by the second vector instruction as an input vector. To be 
assured of identical results for the two vectors when unlinked as when linked, the two 
vectors must use a common control vector and the intermediate output and input field lengths 
must be equal to, or greater than, the second vector's output field length. When the second 
vector is a C4, CS, C6, or C7 instruction, the first vector must have all control vector 
bits permissive for identical linked and unlinked results. 

60256020 B 4-139 



0 

COMPARE INSTRUCTIONS (BO THROUGH 85) 

The central computer has expanded capabilities for the BO through BS instructions (refer to 
Branch Instructions in this section for other use of these instructions). Which set of BO 
through BS instructions to use depends on the values given to G bits. 0 through 3. 

I NOTE I 
For these instructions: 

G bit 1 = 0 
G bit 2 = 1 

BO Compare Integer, Set Condition if (A) + (X) = (Z) 

B 1 Compare Integer, Set Condition if (A) + (X) 'I- (Z) 

82 Compare Integer, Set Condition if (A) + (X)::: (Z) 

83 Compare Integer, Set Condition if (A)+ (X) < (Z) 

84 Compare lnteg er, Set Condit ion if (A) + (X) :s (Z) 

85 Compare Integer, Set Condition if (A)+ (X) > (Z) 

F 
(BO - B5) 

4-140 

G 
(SUBFUNCTION) 

~ 
78 2324 

X A 
(REGISTER) (REGISTER) 

------G BIT 1 

-------G BIT 0 

y 
(FLAG 

REGISTER) 

z c 
(REGISTER) (REGISTER) 

602S6020 A 



0 

For these instructions, G bit 1 is clear (0) and G bit 2 is set (1). These instructions 
compare two integer operands from register A and X. If G bit 0 is clear (0), registers A, 
X, Y, C, and z are 64 bits. If G bit 0 is set (1), these registers are 32 bits. Register B 
is not used and must be set to zero. 

If G bit 0 is 0, the sum of the rightmost 48-bit integers from registers A and X is formed, 
ignoring overflow. The sum is compared to the rightmost 48 bits of register Z according to 
the specified condition. The original content of register Z is read before the sum of 
registers A and X is stored in the rightmost 48 bits of register c. The leftmost 16 bits of 
register A are copied into the leftmost bits of register C. Register C contains the 
following: 

LEFTMOST 16 BITS 
FROM REGISTER A 

1& 18 

SUM OF THE RIGHTMOST 48 BITS FROM REGISTERS 
A AND X 

83 

The sum of the rightmost 48 bits of registers A and X is compared to register Z, based on 
the following G bit 3 and 4 values. 

G bit 3 • 0 

G bit 3 • 1 

G bit 4 • 0 

G bit 4 • 1 

The integers compared are the 48-bit result of registers A and X and the 
rightmost 48 bits read from register z. 
The integers compared. are the 64 bits stored in register C and the 64 
bits read from register z. This compare is defined for the BO and Bl 
instructions only. 

The integers compared are interpreted as signed two's complement numbers. 

The integers compared are interpreted as unsigned numbers. 

If G bit 0 is 1, the sum of the rightmost 24-bit integers from registers A and X is formed, 
ignoring overflow. The sum is compared to the rightmost 24 bits of register Z, according to 
the specified condition. The original content of register Z is read before the sum of 
registers A and X is stored in the rightmost 24 bits of register c. The leftmost 8 bits of 
register A are copied into .. the leftmost bits of register c. Register C contains the 
following: 

0 78 

LEFTMOST 
8 BITS FROM 
REGISTER A 

SUM OF THE RIGHTMOST 
24 BITS FROM REGISTERS 

A AND X 

31 

Then the sum of the rightmost 24 bits of registers A and X is compared to register Z, based 
on the following G bit 3 and 4 values: 

G bit 3 • 0 

G bit 3 • 1 

60256020 A 

The integers compared are the 24-bit result of registers A and X and the 
rightmost 24 bits read from register z. 
Undefined. 

4-141 



0 

G bit 4 0 The integers compared are interpreted as signed two's complement numbers. 

G bit 4 1 The integers compared are interpreted as unsigned numbers. 

Refer to table 4-13 for integer ranges. 

If the specified compare condition is met, a 64- or 32-bit quantity (depending on G bit 0) 
00 •••• 0001 is stored in register Y and the program reads the next sequential instruction. 

If the specified compare condition is not met, a 64- or 32-bit quantity (depending on G bit 
0) 00 •••• 000 is stored in register Y and the program reads the next sequential instruction. 

If one of the following conditions occurs, the operation becomes undefined. 

• G bit 0 is 1 and G bit 3 is 1. 

• G bit 3 is 1 for B2, B3, B4, and BS. 

• G bit 5 is 1, G bit 6 is 1, or G bit 7 is 1. 

• The C designator is equal to the Z designator. 

I NOTE I 
For these instructions: 

G bit 1 0 
G bit 2 1 

BO Compare FP, Set Condition if (A)= (X) 

Bl Compare FP, Set Condition if (A) '1- (X) 

B2 Compare FP, Set ·condition if (A) 2= (X) 

B 3 Co mp a re F P , S et C o n d i t i o n i f (A) < (X) 

B.4 Compare FP, Set Condition if (A) 5 (X) 

B5 Compare FP, Set Condition if (A) > (X) 

F 

G 
(SUBFUNCTION) 

~ 
78 2324 

X A 

31 32 

(BO - 85) (REGISTER) (REGISTER) 

4-142 

y 
(FLAG 

REGISTER) 

60256020 A 



0 

For these instructions, G bit 1 is set (1) and G bit 2 is set (2). These instructions 
compare two floating-point operands from registers A and X according to the floating-point 
compare rule in appendix B. If G bit 0 is clear (O), registers A, X, and Y are 64 bits. If 
G bit 0 is set (1), these registers are 32 bits. Registers B, C, and Z are unused and must 
be set to zero. 

If the specified compare condition is met, a 64- or 32-bit quantity (depending on G bit 0) 
00 •••• 0001 is stored in register Y and the program reads the next sequential instruction. 

If the specified compare condition is not met, a 64- or 32-bit quantity (depending on G bit 
O) 00 •••• 000 is stored in register Y and the program reads the next sequential instruction. 

If one of the following conditions occurs, the operation becomes undefined. 

• Any one of G bits 3 through 7 is set (1). 

• Designators B, Z, and/or C are not equal to zero. 

Applicable data flag bit is 46 (indefinite result). 

C4 Compare EQ; A= B, Order Vector -z 
CS Compare NE; A 'I- B, Order Vector -z. 
C6 Compare GE; A ~ B, Order Vector -z 
C7 Compare LT; A <;: B, Order Vector -z 

G 
(SUBFUNCTIONI 

~ 
78 23 24 3132 

F 
(C4 - C71 

x 
(OFFSET 
FOR Al 

A 
(LENGTH & 
BASE ADRSI 

..._ __ G BIT 4: 

y 
(OFFSET 
FOR Bl 

0 • NORMAL SOURCE VECTOR B 
1 • BROADCAST SOURCE VECTOR (Bl 

-----G BIT 3: 
0 • NORMAL SOURCE VECTOR A 
1 • BROADCAST SOURCE VECTOR (Al 

..._ _____ G BIT 0: 

0 • 84-BIT OPERANDS 
1 • 32-BIT OPERANDS 

3940 4748 

B Z 
(LENGTH & (0 V LENGTH 
BASE ADRS) & BASE ADRSI 

NOTE: THE C + 1 DESIGNATOR IS NOT USED BY THIS INSTRUCTION. 

60256020 A 4-143 



0 

These instructions compare successive elements of vector A with corresponding elements of 
vector B by subtracting vector B from vector A. The elements of the vectors are in 
floating-point format. The conditions for comparing floating-point operands are described 
in the Floating-Point Compare Rules, appendix B. If the specified compare condition is met 
(A =, #, >, or < B), the instruction sets the corresponding bit of order vector z. If the 
condition - is not met, the instruction clears the corresponding bit of z. The instruction 
terminates when the order vector Z field is filled. Thus, the compare instructions provide 
a means of generating an order vector for reducing a vector field to a sparse vector field. 

G bits 1, 2, 5 through 7, and the C designator are unused and must be zeros. The C + 1 
designator is not used. Thus, no offset can be assigned to order vector z. 

The registers specified by X and Y contain the offsets for vectors A and B, respectively. 
When a constant is broadcast for either source vector, no field length is specified for that 
vector, and the offset are undefined and must be set to zero. 

The field lengths and base addresses for vectors A, B, and Z are contained in the registers 
specified by A, B, and Z, respectively. The lengths of vectors A and B are in words (64-bit 
operands) or half-words (32-bit operands), and the length of order vector Z is in bits. 

The applicable data flag bit is 46 (indefinite result). 

Figure 4-45 is a simplified example of a compare instruction (C6) with assumed instruction 
codes, register contents, and source vector field A. In the example, a broadcast constant 
of +l is used for vector field B. The elements of vector field A at addresses 5040, 5060, 
50EO, and 5100 set the corresponding bits of order vector Z, while the elements at addresses 
5080, 50AO, and 50CO clear the corresponding bits. Although the coefficients of the 
elements at addresses 5080 and 50AO are larger than the coefficient of constant B, the 
negative exponents cause the results of the floating-point subtract operation (normalized 
upper) to be negative (A < B). 

CB Search EQ; A= 8, Index List -c 
C9 Search NE; A 'f. 8, Index List -c 
CA Search GE; A::::: 8, Index List-C. 

CB Search LT; A< 8, Index List-C 

F 
(CS-CB) 

A 
(LENGTH & 

BASE ADRS) 

CG BIT 2: SEE TABLE 4-28 

G BIT 1: 
0 =CONTROL VECTOR OPERATES ON 1'S 
1 =CONTROL VECTOR OPERATES ON O'S 

G BIT 0: 
0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

4748 

B 
(LENGTH & 
BASE ADRS) 

z 
(CV BASE 
ADDRESS) 

5656 63 

c 
(BASE ADRS) 

NOTE: THE C+1 DESIGNATOR IS NOT USED 

4-144 60256020 A 



60256020 A 

0 " .... 1114 1111 1140 4741 ...... 

F G X A YB Z C 
(C61 (881 (021 (031 (041 (OAI (061 (001 

NOT I 
USED! 
~I 

REGISTERS 02 = 00001000000000002 
04 = 0000 100000000 0000 

FIELD I 
LENGTHI BASE ADDRESS 
~Ir---"---"""" 

03 = 0 0 09100 000 0 0 05000 
06 = 00071000000006000 

EXPONENT COEFFICIENT 

INSTRUCTION CODES 

A~ 
(]) OA = 00 000001 VECTOR FIELD B (BROADCAST) 

ADDRESS 

5000 

5020 

5040 

5060 

5080 

VECTOR FIELD A 
EXPONENT COEFF19,IENT 

~· 1111 llll lllODl4111'H 111 

I I I I I I I J OFFSET 

I. I I I · 1 

OIOl4171AIEIOl 1 

010101ol3101A11 

FIELD 
LENGTH 

50AO F I 7 I 41 0 I 0 I 0 I I I A 

50CO ololo1ololololo 
NOTE: 

50 EO 0101e1slolo1011 
0 REGISTER OA IS 

A 32-BIT REGISTER. 

51 00 

ADDRESS 
ORDER VECTOR ~ 

6000 

Figure 4-45. Example of Compare GE; A~ B; Order Vector - Z Instruction 

4-145 



These instructions search and compare each element of vector field A with the successive 
elements of vector field B by subtracting vector B from vector A. The conditions for 
comparing floating-point operands are described in the Floating-Point Compare Rules, 
appendix B. The comparison and search of a given element of A with the elements of B, as 
specified by G designator bit 2, is defined as one search iteration. Each search iteration 
terminates when the condition specified by the instruction is found (A +. ), or < B) or 
when each element of B has been searched. ~ 

After each iteration, the instruction clears the corresponding element of result vector C, 
if the control vector bit is permissive, and transfers to this element an item count of the 
number of elements of B that were searched without the specified condition being found (no 
hit). The item count does not include the hit condition if one is found. Regardless of the 
operand size (32- or 64-bit elements), the resulting item count is contained in the 
rightmost 48 bits of a 64-bit word. The leftmost 16 bits of each C vector element are 
cleared. If no element in the B vector causes a hit condition, the item count equals the 
field length of the B vector. The control vector controls the storing of the elements of 
vector C as specified by bit 1 of the G designator. The function of the control vector is 
described in Vector Instructions in this section. 

These instructions use the floating-point compare conditions as described in Branch 
Instructions in this section. The conditions specified by bits 0 and 1 of the G designator 
are shown in the previous instruction format. The conditions specified by bit 2 of the G 
designator are listed in table 4-28. The instruction format also shows that the X and Y 
designators and G bits 3 through 7 are not used and must be zeros. These instructions use 
no field lengths or offsets for vectors C and z. Thus, the C + 1 designator is not used. 

TABLE 4-28. SEARCH ITERATION STARTING DESIGNATOR CONDITIONS 

G Bit 2 Conditions 

0 Start at the beginning of vector B for each element of 
vector A. 

1 Start at the location of the last hit in vector B for 
each element of vector A. 

These instructions terminate when each element of vector A has been compared with each 
element of vector B. The applicable data flag bit is 46 (indefinite result). 

Figure 4-46 is an example of a search equal (C8) instruction with assumed instruction codes, 
register content, and vector fields. In the example, two search iterations compare the two 
elements of the A vector with the four elements of the B vector. The comparisons in the 
first iteration are represented by solid lines while those in the second iteration are 
indicated by dashed lines. Since bit 2 of the G designator is a zero for this case, each 
search iteration starts at the beginning of vector B. If the B vector becomes exhausted and 
G bit 2 = 1, all search iterations start and end with the end of the B vector. If the 
length of vector B is initially zero, all indexes stored are zero. 

In the first iteration, three comparisons take place before the hit condition (A = B) is 
detected. As a result, an item count of three is entered into the first result element. No 
hit is detected in the second iteration; thus, the second result element equals the field 
length of the B vector (4). Since the two corresponding bits of the control vector are set, 
both result elements are stored. 

4-146 60256020 A 



0 11 11 II 14 11 II 1140 4? 41 1111 II 

F G X A YB Z C 
INSTRUCTION CODES (C81 (801 (001 (021 (001 (031 (041 (0!51 

A VECTOR FIELD 

FIELD 
LENGTH BASE ADDRESS ~1 _____ ,,__ __ _ 

I 
REGISTERS 02 = 00021000000005000 

03-= 0004 loo 000 000 6000 

NOT USECI BASE ADDRESS 
,.........._.1 __ ~_,,~~~-

04 = 00001000000001000 
0!5 = 0000/000000008000 

B VECTOR FIELD 

EXPONENT COEFFICIENT EXPONENT COEFFICIENT 
,.-A--..~~~....n.~~~ 

ADDRESS o 14 u 1111 1111111011141?1111 
,--A--.. 
0 14 u 11111111 IHOUl41?11 II 

5000 01014IO!AIF1FIF 

5020 010101011101010 6121FIFIBIOl317 

011101010141010 

010101010111010 

C RESULT FIELD 

NOT USED lNDEX LIST (ITEM COUNTS I 
~ _______ _,,, ______ _ 

ADDRESS 0 II II II 

8000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 - FIRST ITERATION RESULT 

ADDRESS 

6000 

6020 

6040 

6060 

8040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 • - - -SECOND ITERATION RESULT 

ADDRESS 

7000 

60256020 A 

Z CONTROL VECTOR 

m-
~ONTROLS STORING OF SECOND RESULT 

LcoNTROLS STORING OF FIRST RESULT 

Figure 4-46. Example of Search EQ; A• B, Index List -c 

4-147 



0 

CC Mask.Binary Compare; A EQ/NE (B) Per (C) 

F 
(CC) 

x 
(INDEX 
FOR A) 

l_GBIT7: 

2324 

A 
(LENGTH & 
BASE ADRS) 

0 = SEARCH EQUALITY 
1 = SEARCH IN EQUALITY 

B 
(MATCHWORD) 

This instruction searches source field A (Reference Field) for a match with the contents of 
the register specified by the B designator. The contents of the register specified by the C 
designator serves as a word mask such that the instruction makes a word-by-word comparison 
only when there are ones in the corresponding bit positions of the mask. Bits of the 
reference field and the contents of B are considered to match wherever there is a zero bit 
in the mask word. 

The Y and Z designators and G bits 0 through 6 are not used and must be zeros. G bit 7 
equals 0 and 1 to search for equality and inequality, respectively. Registers A, B, and C 
are 64-bit quantities. 

The A index (X) is incremented by one after each word searched not resulting in a match. 
However, if no match is found, the A index is increased by the length of the A field. When 
a match is found, the A index provides a means of locating the word of the reference field 
matching the contents of B. The leftmost bits of the index register are not altered. 

Index increments for mask binary compare. 

Field Data Flag Bit 37 Index Increment 

A 1 Full Increment 
(No Match) 

A 0 Partial Increment 
(Match) 

Data flag: bit 37 

4-148 60256020 B 



0 

D8 Max. of A to (C) Item Count to (B) 

D9 Min. of A to (C) Item Count to (B) 

F 
(08 OR D9) 

G 

~ 
7S 

x 
(OFFSET 
FOR A) 

2324 

A 
(LENGTH 8i 

BASE ADRS) 

G BIT 6: SIGN CONTROL BIT 

G BIT 1: 
0 •CONTROL VECTOR OPERATES ON 1'S 
1 •CONTROL VECTOR OPERATES ON O'S 

G BITO: 
0 • ~BIT OPERANDS 
1 • 32-BIT OPERANDS 

z 
(CV BASE 
ADDRESS) 

G 
(MIN/MAX 
ELEMENT 
REGISTER) 

These instructions search and compare the successive elements of vector A for the 
maximum/minimum element, using floating-point rules. The instructions then transmit the 
element to the register designated by c. The number of elements in vector A before, but not 
including, the maximum/minimum element is the item count which is stored in the rightmost 48 
bits of a cleared register designated by B. The instructions terminate when vector A is 
exhausted. 

If an indefinite element is encountered and examined, the register designated by C sets to 
indefinite and data flag bit 46 (indefinite result) sets. When this happens, the content of 
the register designated by B and data flag bit 54 is undefined. 

The Z designator of the instructions provides the base address for a control vector. If 
used, the control vector determines which of the vector A elements the instruction 
compares. This is possible by the association of individual control vector bits with single 
elements of vector A. Only permissive control vector bits permit compares for their 
associated vector A elements. The instruction does not use an offset for the control vector. 

Bit 0 of the G bits determines the size of the A operands and register c. Bit 5 of the G 
bits provides sign control. When bit 5 is set, the magnitude of the elements of A vector 
are compared. The unaltered element as read from A vector is stored in the register 
designated by c. 

Applicable data flag bits are 46 (indefinite result) and free data flag bit 54. 

The Y designator and G bits 2 through 4, 6, and 7 of the G designator are undefined and must 
be zeros. Bit 5 provides sign control for vector A as described in Vector Instructions. 

If the instruction specifies a control vector and the control vector contains no enabling 
bits, the instruction examines no elements of vector A, and the contents of register C 
becomes undefined. In this case, the item count in register B equals the field length of 
vector A minus the A offset. 

If the instruction examines (enabling bit in control vector) an 
instruction sets register C to indefinite and sets data flag bit 46 
this case, data flag bit 54 is undefined. Data flag bit 54 is set 
operands are encountered in the operand stream (multiple match), 
the first maximum/minimum operand of the pair, 

60256020 A 

indefinite element, the 
(indefinite result), In 
when two maximum/minimum 
The index stored is for 

4-149 



The operands are compared by subtracting the current element of vector A from the next 
element of vector A and checking the result coefficient. If the result is not equal to 
zero, the maximum or minimum operand (depending upon the instruction) is used for the next 
compare with a new element of vector A. If the result is equal to zero, the element of A 
previously determined to be the maximum or minimum (depending on the instruction) is 
retained and used for the next compare. The relative positions of the elements within the 
vector dictate the order of the subtract. Since this type of compare operation is order 
dependent, t the final maximum or minimum can be affected by the order of the elements within 
the vector. 

28 Scan Equal 

0 78 1516 2324 :u 
F R s T 

(28) SCAN (SIGNED (LENGTH 8t 
BYTE INDEX) BASE ADRS) 

This instruction scans the bytes in field T, from left to right, until the scan operation 
locates the first byte equal to byte R, contained in the instruction word. The scan 
operation is indexed by the signed scan index, located in the rightmost 48 bits of the 
register denoted by s. When the operation locates the first equal byte, the instruction 
stops scanning and increments the scan index (S) by the number of bytes scanned before the 
equal byte was found. The leftmost 16 bits of the register are not altered. 

The register specified by T contains the field length and base address of the source field 
in the leftmost 16 bits and rightmost 48 bits, respectively. Since the S index is an item 
count in bytes, it is left-shifted three places before being added to the base address. 

The instruction sets data flag bit 53 if no equal byte is found, and the S index is 
incremented by the number of bytes in the T field. In this case, the instruction terminates 
when the entire source field is scanned. 

lC Form Repeated Bit Mask with Leading Zeros 

10 Form Repeated Bit Mask with Leading Ones 

0 78 1516 

R 

2324 ..ll 

s F T 
(1C OR 1D) (LENGTH OF (LENGTH OF (LENGTH 8t LEAD O'S REPEATED BASE ADRS) OR 1'S) MASK) 

These left-to-right instructions form a repeated mask in field T. The mask consists of a 
string of zeros/ones followed by a string of ones/zeros. The repeated mask consists of one 
combined string of zeros and ones or ones and zeros as shown in figure 4-47. All length 
specifications shown in figure 4-47 are in bits. 

tAppendix B describes floating-point compare rules. 

4-150 60256020 B 



r STARTING BIT ADDRESS 

T FIELD LENGTH 
,..~~~~~~__,A~~~~~~~~-. 
I~ 

00 00 00 I I I I 

'i-v-' 
1 R LENGTH OF 
I LEADING o's 
I 

S LENGTH OF 
REPEATED 
BIT MASK 

10 00 00 01 I I I I olo 

s 

Figure 4-47. Example of Repeated Bit Mask Data Format (Leading Zeros) 

The register specified by R (instruction format) contains the length of the string of 
zeros/ones in the leftmost 16 bits. The length of the repeated mask is contained in the 
leftmost 16 bits of register S. The rightmost 48 bits of registers R and S are undefined 
and require clearing before execution of the instruction. If the field length specified by 
the S register is zero, the instruction becomes a no-op. The register specified by T 
contains the length and starting bit address of the T field in the leftmost 16 bits and 
rightmost 48 bits, respectively. The instruction terminates when the T field is filled. If 
length R is equal to length S, a string of zeros (lC) or ones (lD) is formed. If length R 
is zero, a string of ones/zeros is formed. 

lE Count Leading Equals R 

.ll 78 18 18 2324 31 

F R s T 
(1EI (LENGTH & (INDEX) (COUNT OF 

BASE ADRSI EQUAL BITS) 

This instruction scans the bits in field R, from left to right, until a bit unequal to the 
leftmost bit in the field is detected. The scanning operation starts with the bit 
immediately to the right of the leftmost bit in the field (figure 4-48). The instruction 
stores the count of the number of bits equal to the leftmost bit of the binary field in the 
rightmost bits of the register designated by T. The entire T register is cleared before the 
count is stored into it. 

The register designated by R contains the length (in bits) and the base address in the 
leftmost 16 bits and rightmost 48 bits, respectively. Register S contains an index (in 
bits) which is added to the base address to form the starting address of the field. The 
instruction terminates when it either detects a bit unequal to the leftmost bit in the field 
or scans the entire field. In the latter case, the instruction stores a count equal to the 
field length minus one. In figure 4-48, a count of B16 is stored in register T. 

The instruction sets data flag bit 53 if the leftmost bit of the binary field is a one. 

60256020 A 4-151 



4-152 

BASE 

0 15 II H 

REGISTER R lo 0 0 c I a 0000000 5 0 0 0 

"---v--1 
FIELD LENGTH BASE ADDRESS 

0 15 II •• 

REGISTER s I 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 8 I 
INDEX 

0 1511 H 

REGISTER T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B 

COUNT OF EQUAL BITS 

BINARY FIELD R 

STARTING ADDRESS 
(LEFTMOST BIT) 

ADDRESS •5000\ FIELD LENGTH 

0 I 2 a 4 5 I 7 I I 10 II 12151415II17 II II ZOZIZZHZ4252127 
"T"T I ~ 

0 0 0 I I I I I : I: I I I I I I I I I I I :o I I 0 I I 0 0 ~ 
ll l • 
~ '-~~--~--

IN DEX COUNT STORED 

Figure 4-48. Example of Count Leading Equals Data and Register Format 

60256020 A 



1 F Count Ones in Field R, Count to T 

0 78 1& 16 23 24 31 

F R s T 
(1F) (LENGTH & (INDEX) (COUNT OF 

BASE ADRSI 1'SI 

This instruction scans left to right, counts the number of binary ones in field R, and 
transmits this count to the rightmost bits of the register specified by T. The entire T 
register is cleared before receiving the count of ones. The register specified by R 
contains the length and base address of the R field in the leftmost 16 and rightmost 48 
bits, respectively. The rightmost 48 bits of register S contain an index (in bits), which 
the instruction adds to the base address to form the starting address of the R field. The 
instruction terminates when all bits in the R field have been scanned. 

03 Keypoint - Maintenance 

r 
F 

(03) 

This instruction is a one-cycle no-operation instruction. The designators R, S, and T are 
undefined and must be set to zero. 

04 Breakpoint - Maintenance 

0 

F 
(04) 

78 

R 
(DESIGNATES 
REG TO BE 

TRANSFERRED) 

The breakpoint instruction is a special instruction reserved as a maintenance and program 
debugging aid. This instruction transfers the content of the 64-bit register designated by 
R into the breakpoint register. The format of the breakpoint register is shown in figure 
4-49. The breakpoint register is initially loaded from the invisible package of a job. 

BREAKPOINT ADDRESS 

BREAKPOINT USAGE BITS----' 

Figure 4-49. Breakpoint Register Format 

60256020 A 4-153 



The breakpoint function compares the addresses of specified categories of requests with the 
breakpoint address. If a match occurs, bit 47 of the data flag branch register is set. 

Usage bits 61 and/or 62 may be set to specify the breakpoint function for CPU write operands 
and/or CPU read operands respectively. Usage bits 61 and 62 are defined as follows: 

61 Breakpoint on CPU write operands 

62 Breakpoint on CPU read operands 

In job mode, virtual addresses are compared with the breakpoint address, while in monitor 
mode, absolute addresses are compared. 

Since the monitor program has no invisible package, the breakpoint register is cleared by a 
job to monitor exchange. The monitor program may then reload the breakpoint register. 

The breakpoint logic nominally resolves addresses to half-word fineness. However actual 
resolution is blunted in direct proportion to the amount of storage activated by a 
particular memory request. This amount is a function of the CPU model and of the type of 
operation which the CPU is performing. 

The breakpoint specification of each job is saved in the invisible package. 

05 Void Stack and Branch 

r 
F 

(05) T 

This instruction voids the instruction stack and branches out-of-stack to the contents of 
the register designated by T. The designators R and S are undefined and must be set to zero. 

Progranmer note: This instruction should be used immediately after an instruction which 
stores modified code to ensure that the code executed is the modified code. 

4-154 60256020 B 



MONITOR INSTRUCTIONS 

The monitor instructions function only during the monitor mode of operation. When the 
machine is in the job mode, the attempt to execute a monitor instruction is detected in the 
same way as an attempt to execute an undefined instruction code. The result of such an 
attempt is that the function code (F) and virtual program address (P) of the current 
instruction are stored in the appropriate positions of the invisible package. The machine 
then exchanges to the monitor program starting at the address contained in register 03. 
Refer to section 5 for a more detailed description of job to monitor exchange operations. 

00 Idle 

F 
(00) 

If in the monitor mode, this instruction enables the external interrupt and halts program 
operation until an external interrupt occurs. The R, S, and T designators are not used and 
must be zeros. 

06 Fault Test. Maintenance 

r 
F 

(08) 

This instruction is used to complement checkword bits on the scalar write bus so the read 
SECDED circuitry may be checked. It can also be used to disable the error correction 
circuitry on all read buses allowing data to be passed through the SECDED hardware without 
any correction taking place. 

In this test, R designator bits 9 through 15 are selected to complement the checkword bits 
of half-words O, 1, 2, and 3 on the write scalar bus to central memory. By selection rf 
data bits and complementing checkword bits, SECDED fault generation on all read buses is 
possible allowing complete checking of the read SECDED hardware and the fault recording 
hardware for type and address of fault. 

The forced complementing of the checkword bits is discontinued by executing the instruction 
with bit 9 through 15 of the R designator set to O. 

60256020 B 4-155 



This instruction is enabled during monitor mode only; in job mode it is a no-op. 

The modes are set by executing the instruction with 1 in the appropriate R designator bit 
and cleared by a 0 in the same bit location. Table 4-29 shows the R designator bit 
definitions. 

TABLE 4-29. R DESIGNATOR BIT DEFINITIONS 

R Designator Bit Definition 

8 Disable error correction on all read buses. 

9-15 Checkword bit to be complemented. 

This instruction must be executed with the R designator bits set to zero before any monitor 
to job exchange operation. If these bits are not set to zero via this instruction, the 
connection network could produce invalid data on the read and invalid data could be written 
into memory. 

08 Input/Output Per R 

r 
F 

(08) 

In the monitor mode, this instruction sets the channel flag bit in the 1/0 channel 
designated by the hexadecimal code in the designator R. The setting of this bit indicates 
that the CPU has stored data at a predetermined location in central storage for the 
designated channel. The corresponding 1/0 channel then processes the stored data. If the R 
designator specifies a . nonexistent channel other than 1/0 1 through 16, the instruction 
becomes undefined. The S and T designators are not used and must be zeros. 

4-156 60256020 B 



OC Store Associative Registers 

OD Load Associative Registers 

These instructions store (OC)/load (OD) the contents of the 16 associative registers 
into/from absolute addresses of central storage beginning at 400016• The transfer is an 
ordered operation; thus, associative register 0 transfers to/from address 400016• and so 
forth. The content of the associative registers are undefined following the execution of 
the OC instruction. 

The R, S, and T designators are not used and must be zeros. 

OE Translate External Interrupt 

0 7S 11518 2324 31 

F R s T 
(OE) (BASE ADRS) (INDEX) (CHANNEL 

DESIGNATOR 
TRANSLATION) 

This instruction translates the lowest numbered bit set in the external interrupt register 
(EIR) into its associated, 5-bit code and transmits the code to the rightmost 5 bits of the 
register designated by T. The leftmost 59 bits of register T are cleared to zeros. If only 
one bit in EIR is set, the program branches to the address formed by the sum of the content 
of the registers designated by S and R. The rightmost 48 bits of register S contain an 
index in half-words and the rightmost 48 bits of register R contain the base address. If 
more than one bit in EIR is set, the program executes the next instruction. 

Whether the branch condition is met or not, the instruction clears the EIR bit corresponding 
to the channel designator that was transmitted to register T. If the T and S designators 
are equal, the interrupting channel designator is the branch index. 

If no bit in EIR is set, the instruction clears register T and performs no branch 
operation. Bit zero of EIR is never set since this bit is reserved for maintenance purposes. 

Each bit in the EIR is associated with one of the I/O channels or the monitor interval 
timer. The EIR bit assignments are as follows: 

Bits 

0 

1-16 

17 

60256020 A 

Assignments 

Not available 

I/O channels 1 through 16 

Monitor interval timer 

4-157 



OF Load Keys from (R), Translate Address (S) to (T) 

0 78 16 16 2324 --31 

F R s T 
(OF) (KEYS) (VIRTUAL (ABSOLUTE 

ADDRESS) ADDRESS) 

This instruction loads the four keys found in the register designated by R into the virtual 
address key registers. The instruction then translates the virtual addresst located in the 
rightmost 48 bits of register S into an absolute bit address, using the four keys loaded 
from R and the associative words from the page table. The resulting absolute bit address is 
transmitted to the rightmost 48 bits of the register designated by T. If no translation is 
possible before the end of the page table is reached, the instruction clears the rightmost 
48 bits of register T. The leftmost 16 bits of register S are transmitted to the 
corresponding portion of register T. The associative word used to make the translation is 
placed at the top of the page table (associative register 0). The instruction moves the 
position of the associative words down in the page table, if necessary, when searching for 
the associative word used to make the translation. The 3-bit usage code in the associative 
word is not altered by this instruction. Figure 4-50 shows the formats for the R, S, and T 
registers as they are used for this instruction. 

63 

KEV 0 KEV1 KEV2 KEV 3 

BITS 0 AND 16 OF REGISTER R MUST BE APPROPRIATELY SET/CLEAR 
TO INDICATE THE DESIRED SMALL PAGE SIZE (REFER TO SECTION 5). 

REGISTER T 

0 16 16 63 

I I ABSOLUTE BIT ADDRESS I 
REGISTERS 

0 1516 63 

I I VIRTUAL ADDRESS I 
Figure 4-50. Register Formats for the OF Instruction 

tvirtual addressing operation is described in section 5. 

4-158 60256020 A 



OA Transmit (R) to Monitor Interval Timer 

i F 
(OA) 

In the monitor mode, this instruction transmits bits 32 through 63 of the 64-bit register 
specified by the R designator to the monitor interval timer. The function of the monitor 
interval timer is described in section 5. The leftmost 32 bits of register R are ignored. 

Loading the monitor interval timer with zeros deactivates the timer without setting bit 17 
of the external interrupt register. 

60256020 A 4-159 



PROGRAMMING INFORMATION 5 

GENERAL 

This section describes the various registers and operations of the central computer that are 
of particular interest to the programmer. Included are descriptions of job and monitor 
modes, interrupts, the invisible package, addressing modes, real-time counters, the register 
files, the data flag branch register, addressing modes, and general definitions and 
programming guides. 

MONITOR AND JOB MODES 

The central processor unit (CPU) operates in one of two programming modes. 

1. Monitor mode. 

2. Job mode. 

The CPU automatically exchanges the job mode for the monitor mode when it receives an 
interrupt or when a job program executes an exit force (09) instruction. The monitor mode 
disables all interrupts and virtual addressingt and permits absolute addressingtt to central 
storage. Any interrupts that occur during the monitor mode temporarily store until the 
monitor program executes an idle (00), translate external interrupt (OE) or an exit force 
(09) instruction. The idle instruction causes the CPU to wait until an interrupt occurs. 
The exit force (09) instruction switches the CPU to the job mode and starts executing the 
selected job program. Switching to the job mode enables the interrupts and virtual 
addressing. 

The purpose of the exchange is to change the prime role of the CPU. In job mode, job tasks 
are performed. In monitor mode, the system decisions are made and the page table is altered. 

Some instructions in progress may be interrupted prior to their completion. The flags 
stored in the invisible package are used to restart the interrupted instruction exactly 
where it left off. 

EXCHANGE FROM MONITOR MODE TO JOB MODE 

This is always accomplished with an exit force (09) instruction. The monitor program must 
set up the invisible package for the job prior to changing modes for that job via the exit 
force (09) instruction. The exit force operation is as follows: 

1. The 256-word register file for monitor is stored into absolute memory locations 0 
through 3FC016 (bit address). The register file for the job is loaded from the 
job's virtual memory locations 0 through 3FC016• Any job mode reference to this 
area of a job's virtual memory causes the executing instruction to be treated as an 
illegal instruction. The absolute bit address of the job's virtual page zero is in 
the monitor's register S specified by the exit force instruction. This address is 
placed in a register for storing the register file on return to monitor mode. 

tAbsolute and virtual addressing are described later in this section. 
ttThe invisible package is described in detail later in this section. 

60256020 A 5-1 



2. The CPU's major control registers and flags are loaded from the invisible package 
which is located starting at the absolute bit address in the monitor's register T 
specified by the exit force instruction. This starting address is saved in a 
register to provide for storing the current invisible package when returning to the 
monitor program. 

3. The CPU's mode is changed from monitor mode to job mode. This enables the virtual 
address mechanism and the interrupts. 

4. The contents of P (program address register) is then read using virtual addressing, 
for the next instruction to be issued. If the invisible package contains 
information for the restart of an interrupted instruction, execution of that 
instruction is restarted. The instruction from the program address register is 
issued and executed if no restart of a vector or string instruction is located, or 
if parallel (scalar and vector/string) operation is permitted on a restart. 

ILLEGAL INSTRUCTION IN MONITOR MODE 

If an attempt is made by the monitor program to perform an illegal instruction code, an 
automatic branch is made to the absolute address contained in the monitor's register 4. 
This hardware trap is to aid in the debugging of the monitor software and to trap some 
hardware failures. This trap is not to be utilized by the monitor software as a normal 
branch. 

If an illegal instruction code is issued in job mode, an exchange to monitor mode is 
performed with monitor mode exectuion beginning at the address specified by the contents of 
absolute register 3. 

Any reference to the monitor or job mode register file via an absolute or virtual bit 
address will be treated as if an illegal instruction had been performed. This hardware trap 
is an aid to trap some hardware failures and software programming problems. This trap is 
not to be utilized by job mode software as a normal branch, or an early terminate of a 
vector/string instruction may occur due to the exchange. 

EXCHANGE FROM JOB MODE TO MONITOR MODE 

The exit force (09) instruction, channel interrupt, and accesss interrupt are the three 
normal ways of getting from job mode to the monitor program in monitor mode. Attempting to 
execute either a monitor-type instruction in job , mode or an illegal instruction is the 
fourth way into the monitor. Except for the starting point in the monitor program, the 
operations performed in getting to the monitor are identical for the four. 

The operation is as follows: 

1. The current invisible registers and flags are stored into the invisible package 
starting at the same address used to load the invisible package when the job was 
entered. 

5-2 60256020 A 



2. The 256-word register file for the job is stored in virtual memory locations 0 
through 3FC016. Absolute memory locations 0 through 3FC016 are read into the 
register file. 

3. The CPU is changed from job to monitor mode and the virtual addressing mechanism is 
disabled. Any external interrupts that occur after this point are honored only if 
the CPU executes an idle instruction. Otherwise, the interrupts are saved until the 
CPU reverts to job mode, or until the monitor program clears the interrupts with a 
translate external interrupt (OE) instruction. 

4. The monitor program executes starting at the absolute address contained in the 
rightmost 48 bits of registers 3, 5, 6, or 7 in the monitor's register file. The 
method used to enter monitor mode determines the register selection. The address in 
the selected register transfers to the program address register (P register). 

Method of Getting 
to the Monitor 

1. Job mode illegal: Illegal instruction, 
monitor type instruction in job mode, 
or a reference to the register file as 
memory (bit address 0000 - 3FFFl6) 

Register in Monitor's Register File 
used for Starting Address (P Address) 

Register 3 

2. Monitor mode instruction: Illegal instruction 
in monitor or reference to the register 

Register 4 

file as memory (bit address 0000 - 3FFF16) 

3. Exit force 

4. External interrupt 

5. Storage access interrupt 

INTERRUPTS 
Interrupts consist of two main types. 

1. Storage access 

2. External 

Register 5 

Register 6 

Register 7 

The occurrence of either type of interrupt during job mode causes the CPU to switch to 
monitor mode. The monitor program then processes the interrupt. 

During monitor mode, the interrupt system is disabled except during the idle (00) 
instruction. Any external interrupts that occur are stored until the CPU switches back to 
the job mode or until the monitor program clears the interrupts with the translate external 
interrupt (OE) instruction. 

60256020 A 5-3 



STORAGE ACCESS INTERRUPTS 

A storage access interrupt occurs when a job mode program attempts to reference a central 
storage page that does not have a corresponding word in the page table. A storage access 
interrupt also occurs when a job mode program attempts a storage reference that violates the 
corresponding lockout code. 

Any CPU storage reference can cause an access interrupt even if it occurs in the middle of a 
vector or string instruction. The virtual address of the reference causing the interrupt 
and bits indicating the reason for the access interrupt (cause ·bits) are stored in word 
address xx ••• xxE16 of the invisible package for the corresponding job (figure 5-1). Refer 
to the invisible package explanation in this section. 

0 

WILL BE SET 
TO ZEROS 

1112 1516 

CAUSE 
BITS 

63 

VIRTUAL BIT ADDRESS CAUSING INTERRUPT 

Figure 5-1. Invisible Package Word xx ••• xxE16 Format for Access Interrupt 

The condition of the cause bits indicate the type of storage reference that initiated the 
access interrupt is shown as follows: 

Cause Bits Type of Access Attempted 

12 13 14 15 

0 1 0 0 Write operand violation 

1 0 0 0 Associative word not in the page table 

1 1 0 ot Associative word not in the page table and reference 
attempted was a write operation 

0 0 1 0 Read operand violation 

0 0 0 1 Read instruction violation 

Following the access interrupt, the CPU exchanges and switches to the monitor mode. The 
program then branches to the absolute address contained in the rightmost 48 bits of register 
7 in the register file for the monitor program. The monitor program then allocates space 
for the requested page and/or procures the requested page directly. The monitor program can 
restart the job where it was interrupted by using the exit force (09) instruction. If the 
job is to be restarted, however, the monitor program must alter the page table and central 
storage to include the new page. 

t This is the only case where more than one cause bit is set at one time. 

5-4 60256020 A 



EXTERNAL INTERRUPTS 

Each input/output (I/O) channel and the monitor interval timer can interrupt the CPU by 
transmitting an interrupt signal on the assigned interrupt line. The interrupt signal sets 
the corresponding flag bit in the external interrupt register. The external line 
assignments are listed in table 5-1. 

1/0 CHANNEL INTERRUPT LINES 

As shown in table 5-1, each I/O channel has an external interrupt line assignment. The 
transmission of the interrupt signal on the corresponding external interrupt line sets the 
corresponding external interrupt register flag bit. The setting of this bit indicates to 
the CPU that the I/O device (station) has stored a message in a predetermined location in 
central storage. 

TABLE 5-1. EXTERNAL INTERRUPT LINES 

External Interrupt Line Assignment 

0 Not available 

1 I/O channel 1 

2 2 

3 3 

4 4 

5 5 

6 6 

7 7 

8 8 

9 9 

10 10 

11 11 

12 12 

13 13 

14 14 

15 
~ 

15 

16 I/O channel 16 

17 Monitor interval timer 

60256020 A 5-5 



MONITOR INTERVAL TIMER INTERRUPT 

When the monitor interval timer (described in this section) decrements to a zero count, an 
external interrupt signal appears on line 17. The resultant setting of external register 
flag bit 15 indicates to the CPU that the specified period initially set in the monitor 
interval timer has elapsed, requiring processing by the monitor program. 

INVISIBLE PACKAGE 
The invisible package contains the address and control information necessary to begin a new 
job or to continue a job interrupted during execution in job mode. Each invisible package 
is associated with a job. The invisible package for a particular job is stored at 40 
consecutive word addresses in central storage beginning at the initial address assigned by 
the monitor program. The invisible package is always stored starting at an even-numbered 
sword address. Therefore, the rightmost 10 bits of the starting address of the invisible 
package must be zeros. Refer to the exit force (09) instruction in the instructions section 
of this manual. 

The monitor program must set up an invisible package for each job. There is no invisible 
package for the monitor program itself. 

When the CPU switches from monitor to job mode, the invisible package for the corresponding 
job is automatically loaded into the appropriate CPU register from central storage beginning 
at the address assigned to that job. 

When the CPU switches from job to monitor mode, as in an interrupt, the contents of the 
corresponding registers are automatically stored in central storage as the invisible package 
for that job. 

If a job is to be reentered, the monitor should not alter the job's invisible package except 
for possibly the keys. 

If the job is being initialized or reentered by changing the program address from the value 
it was at the time it returned to monitor mode, the invisible package has to be cleared and 
the program address and keys set. The setting of the breakpoint, data flag register, and 
job interval timer is optional. 

Figure 5-2 shows the invisible package format. 

5-6 60256020 A 



0 

1 

2 

3 

4 

5 

8 

7 

8 

9 

OA 

OB 

oc 
OD 

OE 

OF 

10 

11 

12 

13 

14 

15 

18 

17 

60256020 A 

00 

F 

@_ 

00 

00 

00 

BREAKPOINT 

@ KEY1 KEY2 @ KEY3 

@ VFJ1 VFJ2 

07 08 115 18 118 &9 83 

DATA FLAG REGISTER 

JFL1 

] G l VECTOR PROGRAM ADDRESS ~ 
JFL2 

...1.1...U. 83 

@ l JOB INTERVAL TIMER 

JFL3 

CURRENT INSTRUCTION 

JFL4 

11518 3132 ~ 

© J (i) 
JFL5 

(i) ] ACCESS INTERRUPT ADDRESS 

JFL8 

-11 l..11. -83 

TFOO TF10 

TF01 TF11 

TF02 TF12 

TF03 TF13 

115.18 83 

TF04 TF14 

TF05 TF15 

TF08 TF18 

TF07 TF17 

Figure 5-2. Invisible Package Format (Sheet 1 of 2) 

5-7 



18 

19 

1A 

18 

1C 

1D 

1E 

1F 

20 

21 

22 

23 

24 

25 

26 

27 

00 ~ 

@ 
PARTIAL SUMS 

PARTIAL SUMS @ 
PARTIAL SUMS 

00 63 

PARTIAL SUMS 

PARTIAL SUMS 

PARTIAL SUMS 

PARTIAL SUMS 

00 63 

PARTIAL SUMS 

PARTIAL SUMS 

PARTIAL SUMS 

PARTIAL SUMS 

00 

PARTIAL SUMS 

PARTIAL SUMS 

PARTIAL SUMS 

PARTIAL SUMS 

~ = CONTENTS UNDEFINED (MUST BE ZEROS) 

Figure 5-2. Invisible Package Format (Sheet of 2 of 2) 

5-8 60256020 A 



Each word is explained as follows: 

• WORD 0 

Bits 00 through 15 are undefined and must be zeros. 

Bits 16 through 58 contain the program address. 

Bits 59 through 63 are undefined and must be zeros. 

• Word 1 

Bits 00 through 15 are undefined and must be zeros. 

Bits 16 through 58 contain the breakpoint. 

© Bits 59 through 63 are the breakpoint usage bits and are defined as follows: 

Bits 59 and 60 are not used and must be zero. 

Bit 61 is check for breakpoint, compare on write operands. 

Bit 62 is check for breakpoint compare on read operands. 

Bit 63 is not used and must be zero. 

e WORD 2 

Bits 04 through 15 contain key o. 

Bits 20 through 31 contain key 1. 

Bits 36 through 47 contain key 2. 

Bits 52 through 63 contain key 4. 

0 Usage lockout bits for each key: 

Bits 0 and 16 together define a small page size for all small pages; bits 32 
and 48 are not used and are set to zeros. 

Bits 0 and 16 

0 0 All small pages are 512 words. 
0 1 Undefined. 
1 0 All small pages are 2048 words. 
1 1 All small pages are 8192 words. 

Bit 1, if set, locks out CPU write operations. 

Bit 2, if set, locks out CPU read operations. 

Bit 3, if set, locks out CPU instruction references. 

60256020 A 5-9 



e WORD 3 

~ VEX microcode conditions are as follows: 

Bits 00 through 31 are not used and must be zero. 

Bit 32 is interrupt FF (signal to pipelines). 

Bit 33 is link instruction in execution. 

Bit 34 is link instruction R bit 3. 

Bit 35 is link instruction R bit 4. 

Bit 36 is CC instruction in execution. 

Bit 37 is not used and must be set to zero. 

Bit 38 is vector block scalar use of load/store registers. 

Bit 39 is flag 1. 

Bits 40, 41, 52, and 53 are undefined and must be zeros. Bits 42 through 51 and 
bits 54 through 63 contain VFJl and VFJ2. These are temporary address registers 
used by VEX microcode for restart and so forth. 

• WORD 4 

Bits 00 through 63 contain the data register. 

• WORD 5 

Bits 00 through 63 contain one of six load/store registers, JFLl. 

• WORD 6 

Bits 00 through 07 contain the vector function code. 

Bits 08 through 15 contain the G bits. 

Bits 16 through 58 contain the vector program address. 

Bits 59 through 63 are undefined and must be zeros. 

• WORD 7 

Bits 00 through 63 contain one of six load/store registers JFL2. 

5-10 60256020 A 



• WORD 8 

~ Job/vector instruction status bits are defined as follows: 

60256020 A 

Bit 00 is vector restart. 

Bit 01 is not parallel operation. 

Bits 02 through 11 are undefined and must be zeros. 

Bit 12 is stall bit (set for no data processed). 

Bit 13 is D8, D9, or DF execution started. 

Bit 14 is undefined and must be zeros. 

Bit 15 is EBCDIC when set, ASCII when clear. 

Bit 16 is SCR code bit 3 (exit at vector instruction termination). 

Bit 17 is select force of extension field length. 

Bits 18 through 19 are vector instruction register file update disable bits. 

Bit 20 is D8 or D9 multiple match flag. 

Bit 21 is string restart b.it (old data flag). 

Bit 22 is undefined and must be zeros. 

Bit 23 is undefined and must be zeros. 

Bit 24 is undefined and must be zeros. 

Bit 25 is undefined and must be zeros. 

Bit 26 is R-record FF. 

Bit 27 is DA-DC toggle code bit O. 

Bit 28 is DA-DC toggle code bit 1. 

Bit 29 is DA-DC toggle code bit 2. 

Bit 30 is undefined and must be zeros. 

Bit 31 is string invisible package data is valid. 

Bits 32 through 63 contain the job interval timer. 

5-11 



5-12 

e WORD 9 

Bits 00 through 63 contain one of six load/store registers JFL3. 

• WORD OA 

Bits 00 through 63 contain the current instruction. 

• WORD OB 

Bits 00 through 63 contain one of six load/store registers JFLA. 

• WORD OC 

~ String partial data or function codes. 

Bits 00 through 31 are string partial data for bit result field instructions. 

© Bits 32 through 47 are link (56) instruction F and R codes (for information 
purposes only) • 

Bits 48 through 63 are link Fl instruction F and G codes (for information 
purposes only) • 

• WORD OD 

Bits 00 through 63 contain one of six load/store registers JFL5. 

• WORD OE 

~ Access interrupt cause bits are defined as follows: 

Bits 00 through 11 are not used and must be zeros. 

Bit 12 is associative word not in page table. 

Bit 13 is write operand violation attempted. 

Bit 14 is read operand violation attempted. 

Bit 15 is read instruction violation attempted. 

Bits 16 through 63 contain the access interrupt address. 

• WORD OF 

Bits 00 through 63 contain one of six load/store registers JFL6. 

• WORDS 10 through 17 

Words 10 through 17 contain the vector instruction interrupt counter. 

Bits 00 through 15, TFOO through TF07 contain the field length. 

Bits 16 through 63, TFlO through TF17 contain the address. 

60256020 A 



e WORDS 18 thrugh 27 

Words 18 through 27 contain the partial sums. 

~ Partial sum or ninth IC: 

Bits 00 through 63 are the partial sum for DX instructions or special broadcast 
quantity for link or CC instruction. 

Bits 00 through 15 are output item count for AX or CS through CB instructions. 

Bits 16 through 63 are C base address for AX instructions. (These bits are 
undefined in all other applications.) 

(2) Pipelines function control for link instructions. 

ADDRESSING MODES 

The computer system uses two modes of addressing central storage. 

1. Virtual addressing. 

2. Absolute addressing. 

VIRTUAL ADDRESSING 

Virtual addressing provides an efficient, dynamic method of allotting portions of central 
storage to each job mode program by the monitor program. Virtual addressing is used 
exclusively when the CPU is in job mode. The switching of the CPU to monitor mode 
automatically disables virtual addressing. However, central storage recognizes all 
addresses as being absolute. Thus, the virtual addressing control circuits convert virtual 
addresses to the corresponding absolute addresses. 

Pages 

Portions of central memory are logically partitioned into pages; the central 
small and large page sizes. A small page contains either 512, 2048, or 8192 
selected by bits 0 and 16 in the third word (keys) of the invisible· package. 
interpreted as follows: 

Bits 

0 16 Description 

0 0 Small pages are 512 words. 

1 0 Small pages are 2048 words. 

1 1 Small pages are 8142 words. 

0 1 Undefined. 

60256020 B 

computer has 
64-bit words 
The bits are 

5-13 



Only one small page size may reside in the associative page table. The default size is 512 
words. A large page contains 65 536 64-bit words. 

The monitor program allocates a page or pages to each job program. All of the words in a 
page are identified by a common page identifier. The common page identifier is an absolute 
address which locates the page in central memory. 

Virtual Address Format 

Table 5-2 shows the page size and the virtual page and word identifiers' bit sizes for each 
word page. This difference results from the number of bits needed to locate the word in the 
page. Figure 5-3 shows the virtual address formats for the 512-, 2K-, SK-, and 65K-word 
pages, respectively. Note that the size of the virtual page identifier varies depending on 
the word page size. 

The bit, byte, half-word, and word identifier portions of the virtual address are absolute. 
Thus, when the virtual page identifier is converted into an absolute page identifier, these 
portions of the virtual address are substituted directly into the absolute address. 

TABLE 5-2. PAGE SIZE SPECIFICATION 

..., 
Page Size Virtual Page Identifier (Bits) Word Identifier (Bits) 

512 33 9 

2 048 31 11 

8 192 29 13 

65 536 26 16 

5-14 60256020 A 



60256020 A 

512-WORD PAGE 

16 4849 5758 606163 

(33) (9) l l2~ (3) 

~lYY -v 
VIRTUAL PAGE WORD IDENTIFIER_J I I 

IDENTIFIER HALF-WORD 

BYTE 
2K·WORD PAGE BIT 

16 4647 5758 6061 63 

[ 

l ____ (-29_, ___ -_.11, (1:1 l ~ 
65K-WORD PAGE 

16 4142 5758 6061 63 

VIRTU1L PAGE WORD IDENTIFIER_J I 1 I 
IDENTIFIER HALF-WORD 

BYTE 

BIT 

Figure 5-3. Virtual Address Formats 

5-15 



Associative Words 

The associative words contain the information necessary to convert a virtual address into an 
absolute address. The monitor program must assemble the associative words into a page table 
as necessary for a given run. Figure 5-4 shows the formats of the associative words for the 
512-word page, 2K-word page, BK-word page, and 65K-word page, respectively. 

512-WORD PAGE 
0 ZJ 15 16 1119 30 31 ll3 

© I (13) I ,3, I (12) (33) 

'--v-1 
ABSOLUTE \ LOCK VIRTUAL PAGE 

PAGE ADDRESS 0 IDENTIFIER 

USAGE CODE 
(SEE TABLE 5-3) 

2K-WORD PAGE 

0 ZJ 15 14 15 16 1819 3031 616Zll3 

© I (11) ~(3)1 (12) 131) lctj 
~ '-v-' 

ABSOLUTE \ LOCK VIRTUAL PAGE 
PAGE ADDRESS 0 IDENTIFIER 

USAGE CODE 
(SEE TABLE 5-3) 

SK-WORD PAGE 

0 n II 12 1516 1118 30 31 5960 63 

I © I (9) I 0 1,3,1 
(12) I (Z9) 1°1 

~ '--v-1 
ABSOLUTE \ LOCK VIRTUAL PAGE 

PAGE ADDRESS 0 IDENTIFIER 

USAGE CODE 
(SEE TABLE 5- 3) 

65K-WORD PAGE 

0 n 8. 1516 1119 30 31 56 57 63 

I 0 1 (6) © I ,3, I (12) (26) I © 
~ '--v-1 
ABSOLUTE USAGE CODE LOCK VIRTUAL PAGE 

PAGE ADDRESS (i) (SEE TABLE 5-3) IDENTIFIER 

CD If lOOOK word tota-1" central storage is used, bits 3 and 4 must be zeros. 

@ Bits not used. 

Figure 5-4. Associative Word Formats 

5-16 60256020 B 



If a page has been referenced with code bits in table 5-3, a job program has made at least 
one storage reference to the page defined by the associative word. If a page is altered, a 
job program has performed a write operation on at least one bit in the page defined by the 
associative word. In the monitor mode, the CPU does not use the associative words in 
addressing. Thus, alteration or referencing storage by the monitor program is not recorded 
in the associative words. 

TABLE 5-3. ASSOCIATIVE WORD USAGE CODES 

Code Bits 
(16 17 18) Definition 

000 End of page table 

001 Null associative word 

010 Small page has not been referenced by the CPU 

011 Large page has not been referenced by the CPU 

100 Small page has been referenced by the CPU 

101 Large page has been referenced by the CPU 

110 Small page has been altered by the CPU 

111 Large page has been altered by the CPU 

Lock 

A lock is a 12-bit quantity contained in each associative word (figure 5-4). The lock 
associates a page of central storage with a job program or several job programs. 

Keys 

The monitor assigns four 12-bit keys to each job. The keys for a particular job are read 
from central storage as part of the invisible package for that job. The monitor program 
transfers the keys to the virtual address key register (figure 5-5). After the virtual page 
address portion of an associative word matches with the corresponding portion of a virtual 
address, one of the four keys for the job must match the lock in the associative word before 
the storage reference can take place. 

Figure 5-5 shows that each key is associated with 4-bit lockout code. 
particular bit in this code locks out the corresponding type of storage 
5-4 lists each bit of the lockout code and the type of storage reference 
bit is set. 

The setting of a 
reference. Table 
locked out if the 

If a key matches the lock of an associative word for a particular storage reference, but the 
operation is disabled by the lockout code for that type of reference, a storage access 
interrupt takes place. A storage access interrupt causes an exchange to the monitor mode. 

60256020 A 5-17 



0 ll4 II 19 1920 lll llZ lllH 47 41 Ill 112 •ll 

I (41 I ( 121 I , 41 I ( 121 I , 41 I ( 12 I I (41 I (12 I 

~ "-v--' "-v--' '--v-1 
o CD KEY 0 I CD KEY I 2CD KEY 2 3 CD KEY 3 

CD LOCKOUT CODES FOR CORRESPONDING KEY 

Figure 5-5. Virtual Address Key Register Format 

TABLE 5-4. LOCKOUT CODES 

Bit Position 

0 1 2 3 Type of Storage Reference Locked Out 

1 x x x t 

x 1 x x CPU write operations 

x x 1 x CPU read operations 

x x x 1 CPU instruction references 

INOTESI 

1. The actual bit number depends on the key field to which it corresponds 
(figure 5-5). 

2. X denotes that the bit can be 0 or 1. 

tBits 0 and 16 define the small page size; bits 32 and 48 must be set to zero. 

5-18 60256020 A 



Page Table 

The page table contains the complete list of associative words and includes both the 
associative registers and space table. The associative words contained in the page table 
define the pages currently allotted space in central storage. Figure 5-6 shows the format 
of the page table. Note that if the associative words in the associative registers are 
stored in central storage with the store associative registers (OC) instruction, they are 
stored in 16 64-bit storage locations beginning at absolute bit addresses 400016• 

Table 5-5 lists page table restrictions and requirements. 

TABLE 5-5. PAGE TABLE RESTRICTIONS AND REQUIREMENTS 

Number Restrictions and Requirements 

l There must be at least one END in the page table. 

2 A page must appear only once in the page table. If a page appears 
more than once, the results are undefined, and the multiple match 
fault may be set. 

3 Before looking at the page table, the ARs must be stored in 
memory. The page table, in memory, starts at address 400016• 

4 Data words, after the end of table word in the same sword and in 
the sword following, may be altered during space table searches. 

Auociative Registers 

The scalar processor contains 16 64-bit associative registers (ARs). Each AR contains one 
associative word. The ARs contain the first 16 associative words in the page table. For 
example, if the computer system consists of 1 million words of central storage and if only 
65K-word pages are selected, the associative words for all 16 pages would be contained in 
the ARs. In the monitor mode, the contents of the ARs can be stored into or loaded from 
central storage with the store associative registers (OC) or load associative registers (OD) 
instructions, respectively. 

The contents of the ARs cannot be referenced directly for read or write operations except 
through the OC and OD instructions. 

Space Table 

The space table (figure 5-6) consists of the locations in central storage containing the 
list of associative words that follow the words loaded into the associative register. The 
space table extends into central storage until an end-of-page table code is found in the 
usage bits (table 5-3) of the corresponding associative word. If no end-of-page table entry 
is found, the search hardware will loop, resulting in a CPU hang. Thus, the space table 
serves as an extension of the ARs to make up a complete page table. 

60256020 A 5-19 



ASSOCIATIVE 
REGISTER 
NUMBER 

AROO 

AROI 

AR02 

AR03 

ARl4 

ARl5 

5-20 

0 

ASSOC WORD 0 

ASSOC WORD I 

ASSOC WORD 2 

ASSOC WORD 3 

----...,.- ~ - -z- -z- - -1,.- - .... 

-- -..... -
ASSOC WORD 14 

ASSOC WORD 15 

0 

ASSOC WORD 16 

ASSOC WORD 17 

ASSOC WORD- 18 

- - '""2.-

- ""Lo -,,. 

ASSOC WORD (N-1 l 

1tl ASSOC WORD N 

t END OF PAGE TABLE USAGE CODE. 

Figure 5-6. Page Table Format 

ASSOCIATIVE 
REGISTERS 

SPACE TABLE 
(CENTRAL STORAGE) 

60256020 A 



Operation of Virtual Addressing 

In the processing of a job mode program, each virtual address is processed by the scalar 
processor. The scalar processor compares the virtual page identifier in the virtual address 
(figure 5-3) with the corresponding portion of each associative word (figure 5-4) in the 
page table. If the virtual page identifiers match and the lock matches one of the four 
keys, a match condition occurs. If a match results, the absolute page address associated 
with the match-producing entry in the page table is combined with the applicable portion of 
the word identifier in the virtual address. The upper 19 bits of this combined address 
references one sword (eight 64-bit words) from central storage. If the end-of-the-page 
table is detected with no preceding match condition, or if a match results but the operation 
is disabled by the lockout code, a storage access interrupt results. 

For a description of a page table search, refer to the scalar processor area of the central 
processor section of this manual (section 3). 

ABSOLUTE ADDRESS 

The absolute address formed by page table translation receives the page address portion from 
bits 3 through 15 of the associative word (figure 5-7). For 512 word pages, 13 bits (3 
through 15) are placed in bit locations 36 through 48 of the absolute address allowing use 
of 8192 possible pages in job mode with 4-million-word memory size configuration. Bits 49 
through 54 of the absolute address receive the corresponding bits from the virtual address 
(for a sword address), For 2K word pages, only 11 bits (3 through 13) are placed in bit 
locations 36 through 46 of the absolute address. Bits 47 through 54 of the absolute address 
receive the corresponding bits from the virtual address. For SK word pages, only 9 bits (3 
through 11) are placed in bit locations 36 through 44 of the absolute address. Bits 45 
through 54 of the absolute address receive the corresponding bits from the virtual address. 
For 65K word pages, only 6 bits (3 through 8) are placed in bit locations 36 through 41 of 
the absolute address. Bits 42 through 54 of the absolute address receive the corresponding 
bits from the virtual address; this allows 64 large pages usable with a 4-million-word 
memory. 

In a 4-million-word memory configuration, bit 36 of the absolute address indicates which 
upper or lower 2-million-word portion of memory is referenced. In a 1 million memory 
configuration, bit 38 of the absolute address indicates which upper or lower half-million 
portion of memory is referenced. If bit 3 or 4 of the absolute page address in the 
associative word is set for either page size of a 1 million memory configuration, the 
absolute address formed attempts to reference nonexistent upper words of memory. This type 
of memory reference is undefined, and an illegal reference to memory occurs. In a 
2-million-word memory configuration, if bit 3 of the absolute page address in the 
associative word is set for either page size, the absolute address formed attempts to 
reference nonexistent upper words of memory. This type of memory reference is undefined, 
and an illegal reference to memory occurs. 

60256020 B 5-21 



ASSOCIATIVE WORD 
I 9 II 12 IJ 14 l!I II II II JOJI !II !17 !1910 .... 

------LARGE PAGE COMPARE ____ ., 
I 

-I LARGE J.- : I I I I PAGE I I I I 
l--512 WORD PAGE--j 

I- 2K WORD PAGE -I I 
1--BK WORD PAGE...! I I 
I I I I I 

------ 512 WORD PAGE COMPARE ------7· 
------ 2K WORD PAGE COMPARE-----'-./ 

----- 8K WORD PAGE COMPARE -----wt/ I I 

ABSOLUTE ADDRESS TO MEMORY 

I 
I 

I 

I I I / 
I I I / 

I I I I 
I I I I 

I I I I 
I 

I 
I I BANK 
I I 

!14 

' , -..... , ' !-..... I I I I 
', ':::-:::::.'::::.! ', I I I I 

" ' ' I ~~ ' ..... ' 512 WORD PAGE I I I I 
' ....... I ' ..... • .. ... 2K WORD PAGE I I I I ' ,....... ............ ' 

...... I " ......... ~ ~R~AGE4o.._ ' I I I I 
I ....... .._.._LARGE PAGE~ 

I '~AB~LUT~ A~RE~INGMOOE~ I I I I 
I "- '"-'"- /,/// ' ", ........... , ' 

I ' ' " .............. ! ........ I /'/., 

TTUAL ADDRESS ' 'l ' ~ ;:f :N; .. : :1-·++ .. I 
II llll H 4142 4441146474141150 !141111 !17!11 1011 H 

Figure 5-7. Virtual Address to Absolute Address 

REAL-TIME COUNTERS 
The CPU contains three counters that can be used for real-time programming applications. 

1. Free-running clock. 

2. Monitor interval timer. 

3. Job interval timer. 

Each of these counters is described in the following paragraphs. 

5-22 60256020 A 



FREE-RUNNING CLOCK COUNTER 

This counter consists of a free-running 47-bit counter that is incremented at a 1-MKz rate, 
and a positive sign bit for a total of 48 bits. The free-running clock counter is never 
cleared. The contents of this counter can be stored in a designated register T with the 
transmit real-time clock to T (39) instruction. 

MONITOR INTERVAL TIMER 

This 32-bit counter is decremented at a 1-MHz rate. The transmit (R) to monitor interval 
timer (OA) instruction loads the contents of the designated register R into the monitor 
interval timer counter when the computer is in the monitor mode. The timer can be activated 
by loading it with any quantity other than all zeros. Once it is activated, the timer 
decrements at a 1-MHz rate until it reaches an all zero count. When the counter reaches a 
zero count, it causes an external interrupt on channel 17 which is processed like any other 
external interrupt. At this point, the timer is deactivated until it is loaded with some 
value other than zero. 

The monitor interval timer is deactivated by any one of the following three methods. 

1. Master clear. 

2. Loading it with all zeros. 

3, Decrementing it to a zero count.. (When decremented to all zeros and causes an 
external interrupt, it is inactive until loaded with some value other than zero.) 

The monitor interval timer count is decremented by a one count 1 microsecond after it is 
loaded with a nonzero count. 

JOB INTERVAL TIMER 

This 32-bit counter is decremented at a 1-MHz rate and can be loaded (job mode only) from a 
designated register R using the transmit R to job interval timer (3A) instruction. Once 
loaded, the job interval timer continues to decrement until either an exchange· to monitor 
mode occurs, the timer decrements to zero, or the timer is loaded with zeros. If an 
exchange to monitor mode occurs, the job interval timer stops decrementing and the operation 
stores the current contents of the timer in the invisible package for that job. When the 
execution of that job resumes, the operation loads the job interval timer from the invisible 
package and resumes decrementing it. When the timer is decremented to zero, the CPU sets 
bit 36 in the data flag branch register. Refer to the data flag branch register description 
in this section. 

Loading zeros deactivates the timer. This action does not set bit 36 of the data flag 
branch register. Master clear also deactivates the timer. 

The job interval timer is deactivated by any one of the following three methods. 

1. Master clear. 

2. Loading it with all zeros. 

3. Decrementing it to a zero count. 

60256020 A 5-23 



The job interval timer count is decremented by a one count 1 microsecond after it is loaded 
with a nonzero count. 

REGISTER FILE . 

For register operations, the 8-bit instruction designators directly address the 25610 
registers of the register file. During program execution (monitor or job), these registers 
reside in the CPU's register file. When an exchange operation occurs, the registers are 
stored into the first 25610 memory locations of the particular job or monitor mode program 
beginning at bit address zero (absolute address if in monitor mode and virtual if in job 
mode). The registers may not be referenced as memory by their associated monitor or job 
program. The only exceptions to this rule are the B7 and BA instructions with Gbit 7 set. 
(Refer to B7 and BA instructions in section 4 of this manual.) 

Figure 5-8 shows a map of the register file and the relationship between the register, its 
storage address, and its 8-bit designator. The number on the right is the bit address and 
the number on the left is the value of the 8-bit designator for the 64-bit operand. The 
number inside the register represents the value of the 8-bit designator for the 32-bit 
operand. Note that any reference to 32-bit register one is undefined. 

REGISTER FILE RESTRICTIONS 

Certain registers within the register file have programming restrictions. The restrictions 
are grouped according to the instruction d.esignator number of the register. 

5-24 

0 
I 
2 

BIT 
0 

....J-..' 

7F 
80 

FF1sr 

3132 

0 I 
2 3 
4 5 

FE FF 

Figure 5-8. 

63 

BIT ADDRESS 
WHEN FILE IS STORED 
IN CENTRAL MEMORY. 
VIRTUAL IN A JOB; 
ABSOLUTE IN A MONITOR 

000015 
004016 
008015 

..-v 

IFC01s 
200015 

r 3FC01s 

3AP17A 

Register File 

60256020 B 



Register 0 (Trace Register) Restrictions 

Register file address zero (figure 5-9) is used as the trace register in the 64-bit mode 
only. The trace register contains the address from which the most recent branch was taken. 
Register zero can be referenced by executing a 7D instruction. Refer to the instruction 
section for the mode of the 7D instruction which moves register zero to central memory. The 
maintenance station reads register zero by storing the register file and reading 
virtual/absolute zero in central memory. After a job to monitor exchange, the job's virtual 
address zero in memory contains the address of the last branch taken prior to the exchange 
operation. After a monitor to job exchange, monitor's address zero (absolute zero) contains 
the address of the last branch taken prior to the exchange operation. The BA instruction 
can also read register zero for data. 

0 111 18 83 

UNDEFINED VIRTUAL/ABSOLUTE TRACE ADDRESS 

Figure 5-9. Virtual/Absolute Address Zero 

Register 0 Content Resulting from an Exchange Operation 

During a monitor to job exchange, the content of the trace register and the appropriate 
memory location for register zero exchange is as follows: 

Absolute address zero 

Virtual address zero 

Trace register 

Content Before Exchange 

A 

B 

c 

Content After Exchange 

c 
B 

B 

During a job to monitor exchange, the content of the trace register and the appropriate 
memory location for register zero exchange (swap) is as follows: 

Absolute address zero 

Virtual address zero 

Trace register 

Content Before Exchange 

A 

B 

c 

Content After Exchange 

A 

c 
A 

If monitor and job mode share a common register file (refer to common register files for job 
and monitor modes in this section), the following will occur upon a monitor to job or job to 
monitor exchange. 

Absolute address zero 

Virtual address zero 
Trace register 

60256020 A 

Content Before Exchange 

A 

A 

B 

Content After Exchange 

B 

B 

B 

5-25 



Register 0 Content Resulting from a Swap (70) Instruction 

During a swap (7D) instruction involving register zero as part of the register field, note a 
required peculiarity. Although the current content of the trace register is sent to the 
appropriate memory location for register zero, the current content of the trace register is 
not altered. 

Memory location for register zero 

Trace register 

Content Before 7D 

A 

B 

Content After 7D 

B 

B 

Register 0 when Referenced by an Instruction Designator 

When referenced by an instruction designator, register zero provides machine zero as an 
operand except when used as a source register for a base address or other description for a 
vector or string instruction. In this case, register zero appears to contain 64 zero bits. 
The use of a zero address may cause the instruction to be treated as an illegal 
instruction. The use of a zero field length may cause the instruction to become undefined 
as when used in the AO to AF instruction. If register zero is specified as the destination 
register, the instruction typically performs normally with data flags being set, if 
warranted, but no data is stored. Some instructions become undefined if register zero is 
specified as a destination register. 

Table 5-6 shows which operand is obtained when register zero is specified for a source 
operand. To simplify the table, the specifying of register zero as a destination register 
is ignored since it causes the result to be lost. A blank in the table indicates that 
register zero cannot be specified or that register zero may only be specified as a 
destination register. The instruction designators R, S, T, G, X, A, Y, B, Z, and C are used 
for convenience, although they do not apply to all instructions. The following list 
contains definitions of symbols in the table. 

Symbol 

A 

c 

M 

N 

0 

z 

5-26 

Result when Register Zero is Used as an Operand 

All zeros are provided. 

No control vector is used. 

Machine zero is provided. 

8000 0000 0000 000016 

8000 000016 

Instruction performs as a no-op. 

A mask of all ones is provided. 

64-bit mode. 

32-bit mode. 

All zeros in the used portion. In this instance, the leftmost bit 
is not used; thus, machine zero and all zeros are undistinguishable. 

60256020 A 



TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO 

Instruction Designators 

Op Code R s T G x A y B z c 

00 
03 
04 z 
05 z 

06 
08 
09 z z 
OA z 

oc 
OD 
OE z z 
OF z A 

10 M 
11 z 
12 z z 
13 z z z 

14 A A A 
15 A A A 
16 A A A 
lC A A A 

lD A A A 
lE A z 
lF A z 
20 M M z 

21 M M z 
22 M M z 
23 M M z 
24 M M z 

25 M M z 
26 M M z 
27 M M z 
28 z A . 
2A 
2B M z 
2C M M 
2D M M 

2E M M 
2F z z 
30 M 
31 z z z 

60256020 A 5-27 



TABLE S-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd) 

Instruction Designators 

Op Code R· s T G x A y B z c 

32 z z 
33 z 
34 M z 
3S z z z 

36 z z 
37 
38 M 
39 

3A z 
3B z 
3C z z 
3D z z 

3E 
3F z 
40 M M 
41 M M 

42 M M 
44 M M 
4S M M 
46 M M 

48 M M 
49 M M 
4B M M 
4C M M 

4D 
4E z 
4F M M 
50 M 

Sl M 
S2 M 
S3 M 
S4 M z 

SS M M 
S6 
S8 M 
S9 M 

SA M 
SB z z 
SC M 
SD M 

S-28 602S6020 A 



TABLE S-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd) 

Instruction Designators 

Op Code 'R s T G x A· y B z c 

SE z z 
SF z z M 
60 M M 
61 M M 

62 M M 
63 M z 
64 M M 
6S M M 

66 M M 
67 M z 
68 M M 
69 M M 

6B M M 
6C M M 
6D M z 
6E M z 
6F M M 
70 M 
71 M 
72 M 

73 M 
74 M z 
7S M z 
76 M 

71 M 
78 M 
79 M 
7A M 

7B z z 
7C M 

t 7D A A 
7E z z 
7F z z M 
80 z A tt z A tt c A 
81 z A tt z At t c A 
82 z A tt z A tt c A 

83 z A tt z At t c A 
84 z A tt z A tt c A 
8S z A tt z A tt c A 
86 z Att z Att c A 

602S6020 A S-29 



TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd) 

Instruction Designators 

Op Code R s T G x A y B z c 

B7 z A tt z A tt c A 
BB z A tt z A tt c A 
B9 z A tt z A tt c A 
BB z A tt z A 1t c A 

BC z A tt z A tt c A 
BF ' z A tt z A tt c A 
90 z A tt c A 
91 z A tt c A 

92 z A tt c A 
93 z A tt c A 
94 z A tt z A tt c A 
95 z A tt z A tt c A 

96 z A tt c A 
97 z A tt c A 
9B z A tt c A 
99 z A tt c A 

9A z A tt c A 
9B z A tt z A tt c A 
9C z A tt c A 
9D z A tt z A 1t c A 

AO A z tt A z tt A z 
Al A z tt A z tt A z 
A2 A z tt A z tt A z 
A4 A z tt A z tt A z 

A5 A z tt A z tt A z 
A6 A z tt A z tt A z 
AB A z tt A z tt A z 
A9 A z tt A z tt A z 

AB A z tt A z tt A z 
AC A z tt A z tt A z 
AF A z tt A z tt A z 
BO z M z z z 

Bl z M z z z 
B2 z M z z z 
B3 z M z z z 
B4 z M z z z 

BS z M z z z 
B6 z 
B7 z A z At z A 
BB z A c A 

5-30 60256020 A 



TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd) 

Instruction Designators 

Op Code R s T G x A y B z c 

BAttt z A A A 
BB ~ A tt A tt A z 
BC z A z 
BD A tt Att A A 

BE 
BF 
co z A tt z Att c 
Cl z A tt z Att c 

C2 z A tt z Att c 
C3 z A tt z Att c 
C4 z A tt z Att A 
cs z A tt z Att A 

C6 z A tt z A tt A 
C7 z A tt z A tt A 
ca A A c z 
C9 A A c z 

CA A A c z 
CB A A c z 
cc z A A A 
CD 

CE z 
CF z A z Att z z 
DO z A tt z Att c A 
Dl z A c A 

D4 z Att z Att c A 
D5 lz A c A 
D8 z A c 
D9 z A c 

DA z A c 
DB z A c 
DC z Att z Att c 
DF M M c A 

60256020 A 5-31 



TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd) 

Instruction Designators 

Op Code R s T G x A y B z c 

FO z A z A z A 
Fl z A z A z A 
F2 z A z A z A 
F3 z A z A z A 

F4 z A z A z A 
F5 z A z A z A 
F6 z A z A z A 
F7 z A z A z A 

F8 z A z A 

t Refer to the swap 7D instruction in section 6 of this manual. 
' t t If register zero is selected to broadcast a constant, machine zero is that constant. 
t t t The BA instruction can read register zero for data. 

Registers 1 and 2 (64-Bit), 2 through S (32-Bit) Restrictions 

If data flag branches are used, 64-bit registers 1 and 2 must be reserved exclusively for 
that function. Register 1 stores the data flag branch exit address and register 2 the data 
flag branch entry address. Refer to the data flag branch register description in this 
section. 

Registers 0 through 7 (64-Bit), 0 through F (32-Bit) Monitor Mode Restrictions 

In 64-bit mode, registers O, 1, and 2 (or in 32-bit mode, registers 0 through 5) have the 
restrictions during monitor mode as previously described. In 64-bit mode, registers 3 
through 7 (or in 32-bit mode, registers 6 through F) are used for the undefined 
instructions, exit force, external interrupt, and storage access interrupt entry points. 
Refer to the exchange from job mode to monitor mode description in this section. 

Register 1 (32-Bit) Rightmost Half of 64-Bit Register 0 

Any reference to 32-bit register 1 is undefined. 

5-32 60256020 A 



COMMON REGISTER FILE FOR MONITOR AND JOB MODES 

Monitor and job modes have perfectly overlapping register files if monitor executes an exit 
force instruction (09) with either designator S or the contents of register S equal to 
zero. In an exchange from monitor to job mode, the monitor's register file is stored 
starting at absolute bit address zero. The job's register file is not loaded for a common 
register file; the monitor's register file remains in the registers unaltered. 

When exchanging from job mode back to monitor mode, the job's register file is stored where 
it came from; in this case, starting at absolute bit address zero. The monitor's register 
file is not loaded for a common register file; the job's register file remains in the 
registers unaltered. 

DATA FLAG BRANCH REGISTER 
The data flag branch (DFB) register is a 64-bit register (figure 5-10) that provides the 
programmer with an automatic branching feature to a special subroutine for certain operands, 
results, conditions, and so forth. The DFB register eliminates the time penalty of 
explicitly checking for special programming conditions. The DFB register is stored in word 
four of the invisible package. If a condition previously selected to cause an automatic 
branch occurs during the execution of an instruction, the computer stores the address of the 
next instruction that would have been executed in the address portion of register 01, and 
branches to the address contained in register 02. 

Many register instructions are executed in parallel, and there may be some uncertainty as to 
which instruction caused the data flag condition. The data flag set condition may have 
occurred during an instruction which was issued a number of instructions before the one just 
completed. A flag on a scalar register instruction (divide, square root, and convert BCD to 
binary) could have occurred 0 to 35 instructions earlier. A flag on the other register 
instructions could have occurred 0 to 5 instructions earlier. A flag on a vector 
instruction could allow the issue of many scalar instructions before the automatic data flag 
branch occurs. For other data flag branch limitations, refer to the discussion under Data 
Flag Branch Operation later in this section. 

0 23 1& 181818 3132343& 4748&0 &3 83 

(!) PRODUCT BITS @ MASK BITS © DATA FLAGS © FREE 
DATA FLAGS 

NOTES: 

@ 

THESE ARE UNDEFINED BITS. 
ANY INSTRUCTION THAT ATTEMPTS 
TO SET, CLEAR, OR SAMPLE THESE 
BtTS PRODUCES UNDEFINED RESULTS. 

THESE ARE UNDEFINED BITS 
AND SHOULD BE SET TO ZERO. 

DYNAMIC :j 
INCLUSIVE OR FOR 
PRODUCT BITS 

DATA 
FLAG BRANCH 
ENABLE BIT 

Figure 5-10. DFB Register Format 

60256020 A 5-33 



DATA FLAGS 

Data flag bits are bits 35 through 47 of the DFB register. These bits indicate conditions 
that have occurred. For example, the CPU sets bit 37 at the end of a search for masked 
binary compare (CC) instruction if the operation detects no match. If a subsequent search 
for masked key instruction detects a match, the machine does not clear DFB bit 37. Bits 35 
through 47 of the DFB register are cleared only by the data flag register bit branch and 
alter (33) and the data flag register load/store (3B) instructions. 

Refer to appendix D for a complete list of data flag applications to instructions. Data 
flag bit 36 is applicable only to the job interval timer rather than a specific instruction 
and therefore not listed. Data bit 36 sets asynchronously. Note the CAUTION pertaining to 
the use of the 3B instruction in section 4 of this manual. 

If a control vector (refer to Control Vector under Vector Instruction in section 6) is being 
used, the current control vector bit must be permissive for the operation to set any of the 
data flags. For example, if a divide fault occurs but the control vector bit for that 
result element is not permissive, that result element would not set the divide fault data 
flag bit. 

Table 5-7 lists the data flag register bit assignments and associated mask and product bits 
described in the following paragraphs. 

Product Bit 

0-2 

3 

4 

5 

6 

7 

8 

5-34 

TABLE 5-7. DATA FLAG REGISTER BIT ASSIGNMENTS 

Mask Bit Data Flag Bit 

16-18 32-34 

19 35 

20 36 

21 37 

22 38 

23 39 

24 40 

Assignment/Description 

Undefined and must be set to zeros. 

Soft interrupt: Monitor software can set 
bit 35 of a job's DFB register while the 
register is stored in the job's invisible 
package. If, after exchanging back to job 
mode, bit 35 and its corresponding mask 
bit (19) are set, a normal data flag 
branch occurs. 

Job interval timer. 

Selected condition not met. Instructions 
CO through C3. No match on instruction CC. 

Undefined and must be set to zero. 

The binary 
+ [ (247) -1) 
instruction. 

result exceeds 
to - (247) 

the 
for 

range of 
the 10 

Bit 40 is the inclusive OR of bits 37, 38, 
and 39. Bit 24 masks bit 40. Bit 8 is 
the logical product of bits 24 and 40. 

60256020 B 



Product Bit 

9 

10 

11 

12 

60256020 A 

TABLE 5-7. DATA FLAG REGISTER BIT ASSIGNMENTS (Contd) 

Mask Bit 

25 

26 

27 

28 

Data Flag Bit 

41 

42 

43 

44 

Assignment/Description 

Floating-point divide fault: The divisor 
has an all zero coefficient or the 
divisor, as read from the register file or 
from central storage, is machine zero. If 
the divisor and/or dividend is indefinite, 
no divide fault exists. If a divisor 
causes a divide fault, the quotient is set 
to indefinite. The exponent overflow and 
result machine zero data flags are not set 
by a divide operation whose divisor caused 
a divide fault. 

Exponent overflow: The exponent of the 
result is larger than 6FFF (6F for 32-bit 
arithmetic). Results are not checked for 
exponent overflow until after the exponent 
adjustment for normalization or 
significance has taken place. In the 
adjust exponent instructions, if a left 
ahif t exceeds the number of places 
required for normalization, this data flag 
bit is set. Exponent overflow causes the 
result to be set to indefinite; thus, the 
indefinite flag is always set on an 
exponent overflow. The exponent overflow 
data flag bit is not set if either source 
operand from central storage or the 
register file is indefinite or by a divide 
instruction whose division causes a divide 
fault. 

Result machine zero: The exponent of the 
result returned to central storage or to 
the register file is leas than 900016 
(9016 for 32-bit arithmetic). Exponent 
underflow causes the result to be set to 
machine zero. Results ar.e not checked for 
exponent underflow until after the 
exponent adjustment for normalization is 
completed. Thia data flag bit is not set 
by a divide whose divisor causes a divide 
fault. 

Bit 44 is the inclusive OR of bits 41, 42, 
and 43. Bit 28 masks bit 44. Bit 12 is 
the logical product of bits 28 and 44. 

5-35 



Product Bit 

13 

14 

15 

MASK BITS 

TABLE 5-7. DATA FLAG REGISTER BIT ASSIGNMENTS (Contd) 

Mask Bit Data Flag Bit 

29 45 

30 46 

31 47 

48-50 

Assignment/Description 

Square root result imaginary: A negative 
source operand was detected in a square 
root instruction. The square root of the 
absolute value of the operand is formed 
and the two's complement of this square 
root is stored as the result. 

Indefinite result: An indefinite result 
was placed in central storage or into the 
register file. Bit 46 is also set if 
either or both operands of a 
floating-point compare were indefinite. 

An indefinite result may be 
or both operands of a 
arithmetic operation being 
by the occurrence of either 
or an exponent overflow. 

caused by one 
floating-point 
indefinite or 
a divide fault 

Breakpoint: DFB bit 47 is set on the 
breakpoint instruction if breakpoint 
address and usage conditions are met. 
Applicable instruction: 04. 

Undefined and must be set to zero. 

The mask bits are bits 16 through 31 of the DFB register. They select the conditions that 
cause the automatic data flag branch to occur when the selected condition takes place. 

The 33 or 3B instruction sets and clears the mask bits. A mask bit need not be set for its 
corresponding data flag bit to be set when the condition occurs. The mask bits enable the 
setting of a corresponding bit in the product field when the associated masked data flag bit 
is set. A product bit is set regardless of the order the mask bit and its associated data 
flag bit are set. 

PRODUCT BITS 

Product bits are bits 0 through 15 of the DFB register. Each is the dynamic logical product 
of a data flag bit and associated mask bit being set. The computer executes a data flag 
branch when there is at least one bit set in the product field and the data flag branch 
enable bit is set. 

5-36 60256020 A 



DYNAMIC INCLUSIVE OR FOR PRODUCT BITS 

The dynamic inclusive OR for product bits is bit 51 of the DFB register. This bit is set by 
setting any one of the product bits. It cannot be cleared directly. 

SCALAR DIVIDE, SQUARE ROOT, CONVERT INSTRUCTION FLAG 

This flag, bit 58 of the DFB register, indicates that one of the other data flags has been 
set by a scalar divide, square root, or convert instruction. The flag is cleared by the 33 
or 3B instructions. 

DATA FLAG BRANCH ENABLE BIT 

The data flag branch enable bit is bit 52 of the DFB register. This bit must be set for an 
automatic data flag branch to take place. When bits 51 and 52 are both set, (setting may 
occur in either order) the data flag branch takes place. The computer automatically clears 
bit 52 when a data flag branch takes place. To reset the data flag branch enable bit, refer 
to the discussion under Data Flag Branch Operation later in this section. 

FREE DATA FLAGS 

Table 5-8 lists each of the free data flag bits and the corresponding assignments. There 
are no product or mask bits associated with the free data flag bits 53 through 63 of the DFB 
register. 

TABLE 5-8. FIEE DATA FLAG BIT ASSIGNMENTS 

Free Data 
Flag Bit Assignment Applicable Instructions 

53 Ones were counted. Count leading equals 
(lE) 

54 Undefined. 

55 Undefined. 

53 Whole field scan, no hit. 

54 Undefined, Scan equal (28) 

55 Undefined. 

53 Undefined. Maximum (D8) 

54 Multiple hits. Minimum (D9) 

55 Undefined. 

60256020 A 5-37 



Free Data 
Flag Bit 

53 

54 

55 

56,57 

58 

59 

60 

61 

62 

63 

TABLE 5-8. FREE DATA FLAG BIT ASSIGNMENTS (Contd) 

Assignment 

Result field all zeros. 

Result field mixed. 

Result field all ones. 

Undefined and must be set to zero. 

A scalar divide/SQRT/convert operation 
set bits 39, 41, 42, 43, 45, and/or 46. 

Vector box floating-point divide fault, 
duplicate of bit 41 caused by a vector. 

Vector box exponent overflow, duplicate of 
bit 42 caused by a vector. 

Vector box machine zero result, duplicate 
of bit 43 caused by a vector. 

Vector box square root result imaginary, 
duplicate of bit 45 caused by a vector. 

Vector box indefinate result, duplicate 
of bit 46 caused by a vector. 

Applicable Instructions 

Logical string (FO 
through F7) 

The DFB register bits 53 through 55 are cleared automatically by instructions using 
these bits prior to selectively setting them. A no-operation (no-op) instruction does 
not alter these bits. If applicable, bits 53 through 55 must be sampled before 
executing another instruction which would clear them. The setting of the bits does not 
cause a data flag branch operation. 

The DFB register bits 58 through 63 assist software in determining what operation 
caused data flag bits 41, 42, 43, 45, and 46 to set. Bit 58 is set due to a scalar 
divide, square root, or convert instruction setting bits 39, 41, 42, 43, 46, or 46. 
Bits 59 through 63 are set due to a vector instruction setting bits 41, 42, 43, 45, or 
46 respectively. (Scalar instructions do not set bits 59 through 63.) An automatic 
data flag branch that occurs with any of the bits 58 through 63 being set indicates 
that many scalar instructions may have been issued since the issue of the instruction 
causing the automatic data flag branch. This is due to the longer execution times of 
these instructions. To have the DFB register bits 58 through 63 remain useful to the 
programmer, the programmer must clear these bits when the corresponding bits causing 
the automatic data flag branch are cleared. 

5-38 60256020 A 



DATA FLAG BRANCH OPERATION 

If a mask field bit and the associated data flag bit are set, the corresponding product 
field bit is set. Free data flag field bit 51 is also set since this bit is the dynamic 
inclusive OR of all bits in the product field. Under these conditions, the setting of bit 
52 (data flag branch enable bit) initiates an automatic data flag branch operation. 

The data flag branch operation begins immediately unless scalar instruction issue is stopped 
due to a register conflict or vector unit is executing a multipass instruction. The 
execution of the data flag branch transfers the bit address of the next instruction into the 
rightmost 48 bits of register 01 of the register file. A branch takes place to the bit 
address in the rightmost 48 bits of register 02. The data flag branch operation 
automatically clears bit 52 at this time. The data flag branch also clears the leftmost 16 
bits of register 01. 

I NOTE I 

The clearing of bit 52 disables the data 
flag branch operation. Caution must be used 
to ensure that all data branch conditions 
are eliminated before resetting bit 52 or 
the program may enter a tight loop 
operation. The sampling of bit 51 for a 
zero before setting bit 52 prevents this 
situation in all cases except those 
involving the job interval timer. 

When using the job interval timer, the setting of DFB bit 36 occurs asynchronously with 
respect to instruction execution once the job interval timer is loaded. Thus, the timer may 
set bit 36 after the check of bit 51 and before the branch to the content of register 01. 

This situation can be programmed by examining the content of register 01 upon entering the 
routine for processing data flag branches. If register 01 indicates that the branch 
occurred outside the DFB routine, the content of register 01 could be transferred to a 
temporary storage location. 

If register 01 indicates that the branch occurred within the DFB routine, the content of 
register 01 would not be transferred to a temporary storage location. At the end of the DFB 
routine, the program would branch to the content of the temporary storage location. 

A simpler method of programming the above condition is to combine the setting of bit 52 and 
the branch to the content of register 01 into a single 33 instruction (33603401). 

DATA FLAG BRANCH TIMING CONSIDERATIONS 

The automatic data flag branch (ADFB) can occur up to 35 instructions after the instruction 
which caused it. The point at which the branch occurs can vary between executions of the 
same program as a result of the asynchronous I/O activity affecting the load/store 
operations. 

60256020 A 5-39 



The following points pertain to the central computer use of the data flag register (DFR). 

• The content of the DFR, as stored into the register file by a 3B instruction, 
reflects all previous activity on it. Also, activity prior to the 3B instruction 
does not affect the new contents of the DFR. 

• ADFBs caused by any instruction previous to a 3B instruction will occur prior to the 
3B instruction or will be reflected by the DFR as stored off by the 3B instruction. 

• An ADFB caused by the 3B instruction data flag register load will occur before the 
next instruction is issued. 

• Sampling or altering a data flag bit with a 33 instruction may occur out of sequence 
with a previous scalar instruction, up to approximately 40 instructions earlier. 
However, the sampling of free data flags 53, 54, and 55 by the 33 instruction always 
occurs in sequence. 

• If a 33 instruction alters a bit which causes an immediate ADFB, the branch may 
occur up to six instructions later. 

When registers 1, 2, or 4 in the central computer register file are altered by an 
instruction, and this instruction is followed by an automatic data flag branch or illegal 
monitor mode instruction branch, the store operation may occur out of sequence with the 
branch operation. For example, if a 7E instruction loads register 2, and this instruction 
is followed by an automatic data flag branch, the automatic branch is to the address 
specified by either the old or new contents of register 2, depending on the timing of the FE 
and the branch. 

GENERAL DEFINITIONS AND PROGRAMMING GUIDES 

The following paragraphs provide general definitions and guides to aid in the programming of 
the computer system. 

OVERLAP OF OPERAND AND RESULT FIELDS 

If (in instructions such as vector, string, and so forth) the result field overlays a source 
field such that elements of the result are stored in the source field before elements in 
this portion of the source field are read, undefined results may occur. The source elements 
may be the original elements or they may be the newly-stored elements. In the latter case, 
the instruction results become undefined. Some instructions prohibit any overlap of source 
and destination fields. This restriction is included in the instruction descriptions. 

ILLEGAL INSTRUCTIONS 

Illegal instructions are those with function codes that are not part of the computer 
instruction set listed in the instruction list table in section 6. An illegal instruction, 
when used in job mode, causes an exchange to the monitor mode. Instruction execution then 
begins at the address specified by the content of the register file absolute register 3. An 
illegal instruction, when used in monitor mode, causes a branch to the register file 
absolute register 4. Instruction execution then begins at the address specified by the 
content of the register file absolute register 4. 

5-40 60256020 A 



INSTRUCTIONS WHICH CAUSE UNDEFINED RESULTS OR OPERATIONS 

Instructions which contain unused bits must have those bits set to' zero or instructions 
cause undefined results or operations. The unused bit areas of the instructions are shown 
with cross-hatched lines in the instruction word formats in section 6. 

The job mode of operation protects memory from any undefined results or operations with the 
key-lock virtual addressing mechanism. This mechanism permits memory storage only to pages 
assigned to the current job for which the write lockout bits are not set. 

The monitor mode of operation does not have the protection against undefined results or 
operations because it makes all memory references with absolute addresses. 

ITEM COUNT 

Item count is a term used in the instruction descriptions (section 4) to highlight the fact 
that certain instructions perform operations on a number of items. The term is general and 
refers to items which may be in bits, bytes, half-words, or words. Descriptions which use 
the term are those which specify instruction field lengths, offsets, indexes, and/or shift 
counts. 

The size of the items in an item count is specified for applicable instructions in the 
instruction list tables (located near the front of section 4). The item size is listed 
under the table heading Number of Bits in Operand. In an example from the tables (shown 
below), the operand size is 8 which indicates that the field lengths and indexes for the F8 
instruction are expressed in bytes. 

F8 3 8 ST Move Bytes Left; A- C 

In another example (shown below), the operand is E. This indicates that the instruction 
uses 32-bit or 64-bit items, depending on the status of instruction bit 8 (G bit O). An 
item count for a field length of this instruction means that the field contains 100 32-bit 
items or 100 64-bit items, depending on instruction bit 8. 

80 1 E VT ADD U; A+B- C 

When an item count (other than a field length) is contained in a 16-bit field, at least one 
sign bit must be present. Item counts in 16-bit fields are therefore limited to the range 
of 215-1 to -215. (Refer to the following description of field length.) When an item 
count other than an index consists of 48 bits, the leftmost 33 bits of the item count must 
be identical sign bits. Sign bits must always be extended to the left to fill the 16-bit or 
48-bit field that contains it. 

60256020 A 5-41 



FIELD LENGTH AND OFFSET 

Vector, vector macro, sparse vector, logical string, and some nontypical instructions use a 
field length. An offset is used in vector, vector macro, and some nontypical instructions. 
The field length as read from the register file before possible offset modification, is 
always interpreted as a positive number in the range of 0 to 216_1 (65 .535). 

If a vector or other data field has no offset, the field is considered terminated before the 
reading of the first operand if the specified field length is zero. 

Instructions having offsets must have 32 identical sign bits. The offsets are in the range 
-216 to 216-1. If the offset is not in this range, the operation of the instruction is 
undefined. The resulting field length after subtracting the offset from the field length 
(read from register A, B, C) must be positive and less than 216-1 or the field length is 
treated as zero. 

INDEX 

String, some branch, and some nontypical instructions use an index. The sign of an index 
may be either positive or negative. The maximum magnitude of an index depends on its use as 
defined in the instruction descriptions. The machine left shifts the indexes end-off zero, 
three, five, or six positions before the index is added to the base address. The number of 
positions shifted depends on whether the unit for the index is bits, bytes, half-words, or 
words, respectively. 

OPERAND SIZE DEFINITIONS 

Following is a listing of operand sizes which apply throughout this manual unless otherwise 
stated. 

Word A 64-bit quantity having the address of the leftmost bit always being a 
multiple of 6410• 

Half-word A 32-bit quantity having the address of the leftmost bit always being a 
multiple of 3210• 

Byte An 8-bit quantity having the address of the leftmost bit always being a 
multiple of 810• 

Digit A 4-bit binary coded decimal number or sign. In zoned format there is one 
digit per byte, and in packed BCD format there are two digits per byte 
(refer to the string instructions descriptions for more detail). 

Sword 512 bits (or eight 64-bit words). 

Two-sword 1024 bits (two swords). 

5-42 60256020 A 



RESTRl.CTION ON SELF-MODIFYING PROGRAMS 

It is difficult to use self-modifying programs properly in machines utilizing high-speed 
parallel architecture. Therefore, it is necessary : to serialize the operation of the 
machine. This usually results in reduced performance.· 

Sophisticated methods requir:l,ng intimate familiarity with the machine can be utilized to 
execute self-modifying routines with less negative impact on performance. Guidelines are 
presented here to provide a basic method for satisfying most system requirements. The 
following operations must be performed in the order indicated. 

1. Program modification must be performed only with the 13, 32, SF, or 7F instructions. 

2. An instruction must be executed which guarantees that the former 13, 32, SF, or 7F 
instruction is completed before the latter OS instruction starts. One such 
instruction is the 3284XX01, where XX is any register containing a valid memory 
address. 

3. A OS instruction must follow the instruction given in step 2, and precede the 
modified code. This voids the instruction stack and initiates an out-of-stack 
branch. 

RESULT VECTOR 64-SWORD LOOK· AHEAD 

The length of the result vector for the following instructions is input data dependent. 

• Sparse vector (AO through AF) and the compress (CF) instruction; the length of the 
result vector (C) depends on the number of 1 bits in the output order vector (Z). 

• Compress (BC) instruction; the length of the result vector (C) depends on the number 
of 1 bits in the order vector (Z). 

As the computer proceeds through the execution of the above instructions, it checks that an 
extra 64-sword page (small page) of result field is available if needed (64-sword 
look-ahead). Therefore, it is necessary to provide one more small page for the result 
vector beyond the expected length. 

For the sparse vector (AO through AF) instructions, it is not necessary to provide an extra 
small page beyond the maximum possible result field length. The maximum possible length of 
result vector C is equal to the field length of output order vector z. 

602S6020 A S-43 



NUMBER SYSTEMS AND TABLES A 

GENERAL 
Any number system may be defined by the radix or base. The radix or base is the number of 
unique symbols used in the system. The decimal system has 10 symbols, 0 through 9. Modulus 
is the number of unique quantities or magnitudes a given device can distinguish. For 
example, an adding machine with 10 digits, or counting wheels, has a modulus of 1010-1. 
The adding machine has a modulus because the highest number which this machine can express 
is 9,999,999,999. 

Most number systems are positional; that is, the relative position of a symbol determines 
its magnitude. In the decimal system, a 5 in the units column represents a different 
quantity than a 5 in the 10' s column. Quantities equal to or greater than 1 may be 
represented by using the 10 symbols as coefficients of ascending powers of the base 10. The 
number 98410 becomes: 

9 x 102 = 9 x 100 - 900 

+ 8 x 101 - 8 x 10 80 

+ 4 x 100 • 4 x 1 • 4 

98410 

Quantities less than 1 may be represented by using the 10 symbols as coefficients of 
ascending negative powers of the base 10. The number 0.59310 may be represented as: 

5 x 10-1 "' 5 x .1 .5 

9 x 10-2 .. 9 x .01 .09 

3 x lo-3 - 3 x .001 - .003 

.59310 

BINARY NUMBER SYSTEM 
Internal operations in the computer use the binary number system. This system uses two 
symbols, 0 and l; the base is 2. Because of the two-state characteristics, the binary 
system lends itself well to representation by the electronic switching circuits in the 
computer. The following numbers show the positional value of the binary number system. 

Binary point 

60256020 A A-1 



The binary number 011010 represents: 

0 x 25 - 0 x 32 - 0 

+l x 24 - 1 x 16 .. 16 

+l x 23 .. 1 x 8 .. 8 

+Ox 22 - 0 x 4 .. 0 

+l x 21 .. 1 x 2 = 2 

+Ox i0 - 0 x 1 .. 0 

Fractional binary numbers may be represented by using the symbols as coefficients of 
ascending·negative powers of the base. 

Binary Point 
rl 
1/2 

i-2 
1/4 

r4 
1/16 

i-5 
1/32 

The binary number 0.10110 may be represented as: 

1 x 2-l .. 1 x 1/2 - 1/2 - 8/16 

0 x r2 .. 0 x 1/4 .. 0 0 

1 x r3 .. 1 x 1/8 .. 1/8 - 2/16 

1 x 2-4 = 1 x 1/16 .. 1/16 1/16 

0 x r5 .. 0 x 1/32 - 0 0 

11/1610 

HEXADECIMAL' NUMBER SYSTEM 
The hexadecimal number system uses 16 discrete symbols (base 16). Table A-1 shows the 16 
hexadecimal symbols with the decimal and binary equivalents. Note that the first 10 
hexadecimal symbols are identical to the corresponding decimal symbols. The remaining six 
symbols are represented by alphabetical characters A through F. 

A-2 

I NOTE I 
To avoid confusion between hexadecimal and 
decimal numbers in section A, all numbers 
shown without the base number affixed are 
hexadecimal numbers. Decimal numbers are 
shown with the base designator 10 affixed in 
the conventional manner. For example, the 
number 79847 represents a hexadecimal 
number. Conversely, 7984710 represents a 
decimal number. 

60256020 A 



TABLE A-1. HEXADECIMAL EQUIVALENTS 

Binary Decimal Hexadecimal 

00000 00 00 

00001 01 01 

00010 02 02 

00011 03 03 

00100 04 04 

00101 05 05 

00110 06 06 

00111 07 07 

01000 08 08 

01001 09 09 

01010 10 OA 

01011 11 OB 

01100 12 oc 
01101 13 OD 

01110 14 OE 

01111 15 OF 

10000 16 10 

With base 16 1 the positional value of hexadecimal numbers is: 

165 
1,048,57610 

The hexadecimal number 859F 

8 x 163 • 8 x 4,09610 

5 x 162 • 5 x 25610 

9 x 161 - 9 x 1610 

F x 160 •Ft x 1 

is: 

32. 76810 

1,28010 

• 14410 

• 1510 

34,20710 

tTo perform this multiplication, the hexadecimal symbol F is first converted to its decimal 
equivalent 15 (table A-1). 

60256020 A A-3 



Fractional hexadecimal numbers may be represented by using the symbols as coefficients of 
ascending negative powers of the base. 

16-1 16-2 16-3 16-4 
1/1610 1/25610 1/409610 1/6553610 

The hexadecimal number .48CO represents: 

4 x 16-1 - 4 x 1/16 .. 1024 
409610 

8 x 16-2 - 8 x 1/256 128 
409610 

c x 16-3 .. c x 1/4096 12 
409610 

1164 291 - .284 
409610 102410 

Since a group of 4 bits can represent any one of the 16 hexadecimal symbols, this notation 
is used throughout the instruction manuals for instruction codes, operands, addressing, and 
so on. Table A-1 shows the hexadecimal equivalents for each unique group of 4 bits. 

The hexadecimal number system enables direct substitution of a hexadecimal symbol for a 
group of 4 bits. Figure A-1 illustrates the substitution of a hexadecimal number for a 
32-bit operand. Thus, the equivalent hexadecimal symbol is substituted for each successive 
group of 4 bits, producing the complete hexadecimal equivalent. 

EQUIVALENT HEXADECIMAL NUMBER • FC5092A4 

Figure A-1. Example of Hexadecimal Substitution for a Binary Number 

Figure A-2 provides an easy way to add or multiply hexadecimal numbers. 

A-4 60256020 A 



ADDITION 

O 2 3 4 5 6 7 8 9 A I C D E F 

0 

2 

3 

4 

!I 

6 

7 

8 

9 

A 

I 

c 
D 

E 

F 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

A 

I 

c 
D 

E 

F 

I 

2 

3 

4 

5 

• 
7 

8 

9 

A 

I 

c 
D 

E 

F 

10 

2 3 

3 4 

4 5 

5 • 
6 7 

7 8 

8 9 

9 A 

A I 

I c 
c D 

D E 

E F 

F 10 

10 II 

II 12 

4 5 • 
5 • 7 

• 7 8 

7 8 9 

8 9 A 

9 A I 

A I c 
I c D 

c D E 

D E F 

E F 10 

F 10 II 

10 II 12 

II 12 IS 

12 13 14 

13 14 l!I 

7 8 9 A 8 c 
8 9 A I c D 

9 A I c D E 

A I c D E F 

I c D E F 10 

c D E F 10 11 

D E F 10 II 12 

E F 10 II 12 13 

F 10 II 12 IS 14 

10 II 12 13 14 15 

II 12 13 14 15 18 

12 IS 14 15 16 17 

13 14 l!I 16 17 18 

14 l!I 18 17 18 19 

l!I 18 17 18 19 IA 

16 17 18 19 IA II 

MULTIPLICATION 

2 2 4 

3 5 I I 

4 4 • c 10 

II 5 A F 14 II 

I I C 12 II IE 24 

7 E 15 IC nu 31 

B 10 II 20 21 50 H 40 

I 12 18 24 2D H SI' 41 51 

A 14 IE 21 52 SC 41 50 5A 14 

B II 21 2C 57 42 40 58 15 IE 71 

c II 24 50 SC 48 54 10 IC 78 84 10 

D IA 27 S4 41 4E 58 .. 75 12 IF IC Al 

D 

E 

F 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

IA 

IB 

IC 

7 

I 

I 

A 

B 

c 
D 

E 

F 

E IC 2A SI 41 114 12 70 7E IC IA Al Bl C4 

F IE 20 SC 48 5A 19 71 17 H All 84 CS DZ 

E 

F 

10 

II 

12 

IS 

14 

15 

16 

17 

18 

19 

IA 

II 

IC 

ID 

Et 

2 5 4 5 I 7 I I A B C D E I' 

Figure A-2. Hexadecimal Matrices 

F 

10 

II 

12 

IS 

14 

15 

16 

17 

18 

19 

IA 

II 

IC 

ID 

IE 

60256020 A A-5 



BINARY ARITHMETIC 

The following subparagraphs present a brief description of binary arithmetic, including the 
one's and two's complement systems. 

ADDITION AND SUBTRACTION 

Binary numbers are added according to the following rules. 

1 + 1 = 0 with a carry of 1 

0 + 0 0 

0 + 1 1 

1 + 0 1 

The addition of binary numbers proceeds as follows (the hexadecimal and decimal equivalents 
verify the result). 

Aug end 1001 

Addend 0101 

Partial Sum 1100 

Carries 0010 

(9) 

(5) 

Sum 1110 = E16 = 1410 

Binary numbers are subtracted according to rules shown as follows: 

0 - 0 0 

0 - 1 1 with a borrow of 1 

1 - 0 1 

1 - 1 0 

An example of binary subtraction is shown as follows: 

Minuend 1001 

Subtrahend 0101 

Partial Difference 1100 

Borrows 1000 

Difference 0100 

A-6 

(9) 

(5) 

(4) 

60256020 A 



Numbers can also be subtracted by adding the complement of the addend as shown below. 

Augend 1010 (A) (1010) 

Addend 1100 (-3) One's complement of +3. 

Partial Sum 0110 

Carries 0001 (End around carry) 

Sum 0111 (+7) 

The example above shows that the carry generated by the most significant stage of the add is 
added to the least significant stage (end around carry). The procedure for obtaining the 
one's complement of a binary number is described in the following subparagraphs. 

ONE'S COMPLEMENT 

In this system, positive numbers are represented by the binary equivalent. The negative 
numbers are represented in one's complement notation of the corresponding positive number. 

The one's complement of a number is found by subtracting each bit of the number from 1. For 
example: 

1111 
- 0101 

1010 

(5) 

(One's complement of 5.) 

The substitution of ones for zeros and zeros for ones also produces the one's complement 
representation of a negative number. 

In general, a negative number in the one's complement system contains a 1 in the most 
significant bit (sign bit). Conversely, a positive number contains a 0 in the most 
significant bit. This feature divides the range (modulus) of numbers that a given machine 
can represent into two halves. One half of the range represents positive numbers while the 
other half represents negative numbers. A machine with the modulus of 8 has the following 
range of numbers (refer to figure A-3). 

SIGN BIT 

(-7F16) (-12710) 100000002 (Maximum negative number) 

(+7F16) (+12710) 011111112 (Maximum positive number) 

Figure A-3. Example of a Modulus 8 System 

Thus, this machine has a modulus of±. (21-1). 

60256020 A A-7 



If a 1 is added to the maximum positive number shown in the example, the result equals the 
maximum negative number as shown in figure A-4. 

Such a result is termed an overflow because the result exceeds the modulus of the machine. 

Partial Sum 
Carries 
Sum 

01111111 
+l 

01111110 
11111110 
10000000 

LoVERFLOW 

Figure A-4. Example of Overflow 

In a similar manner, figure A-5 shows that the subtraction of a one from the maximum 
negative number produces a result that exceeds the modulus of the machine in a negative 
direction. This result is termed an underflow. 

Partial Difference 
Borrows 

10000000 
-1 

10000001 
11111110 
01111111 

LUNDERFLOW 

Figure A-5. Example of Underflow 

In the central computer, underflows and overflows are detected. In most cases, the 
detection of an overflow or underflow causes forced results. The type of forced results 
caused by the detection is included with the applicable instruction description. 

TWO'S COMPLEMENT 

The two's complement system is used exclusively in central computer arithmetic operations. 
The system is similar to the one's complement system. Positive numbers are represented 
identically in the two systems. Negative numbers differ by one count. Table A-2 shows a 
comparison of one's and two's complement representations of counts 0 through 9. In the 
one's complement system, there are two representations for zero: a +o and -0. Table A-2 
shows the -0 as all ones in parentheses. This feature causes negative numbers in the one's 
and two's complement systems to vary by one count. 

A-8 60256020 A 



TABLE A-2. COMPARISON OF ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS 

Count Two's Complement Representation One's Complement Representation 

+9 01001 01001 

+8 01000 01000 

+7 00111 00111 

+6 00110 00110 

+5 00101 00101 

+4 00100 00100 

+3 00011 00011 

+2 00010 00010 

+l 00001 00001 

0 00000 00000 (11111) 

-1 11111 11110 

-2 11110 11101 

-3 11101 11100 

-4 11100 11011 

-5 11011 11010 

-6 11010 11001 

-7 11001 11000 

-8 11000 10111 

-9 10111 10110 

Positive numbers in the two's complement system can be converted to the equivalent negative 
numbers by first taking the one's complement of the positive number and then adding +l to 
the result. Figure A-6 shows an example of the procedure. 

60256020 A 

00111 
11000 

+l 
11001 

(+7) 
(One's complement • -7) 
(Add one) 
Two's complement • -7) 

Figure A-6. Example of Converting a Positive Number 
to a Negative Number in Two's Complement 

A-9 



Addition and subtraction in the two's complement system are performed in the same way as in 
the one's complement system. However, the end-around carry and borrow features, used in the 
one's complement system, do not apply to the two's complement system. Figure A-7 shows a 
comparison of adding a -1 to a +8 in the one's and two's complement systems, respectively. 

One's Complement Two's Complement 

01000 (+8) 01000 (+8) 
11110 (-1) 11111 (-1) 
10110 (Partial sum) 10111 (Partial sum) 
10001-,_ccarries) 

End-Around Carry 
~.., (Carries) 

L..No End-Around Carry 
00111 (.Sum = +7) 00111 (Sum = +7) 

Figure A-7. Comparison of Addition in the One's and 
Two's Complement Systems 

MULTIPLICATION 

Binary multiplication proceeds according to the following rules. 

0 x 0 .. 0 

0 x 1 .. 0 

1 x 0 - 0 

1 x 1 .. 1 

Multiplication is always performed on a bit-by-bit basis. 

Decimal example: 

Multiplicand 
Multiplier 

Partial Products 

Product 

Binary example: 

Multiplicand 
Multiplier 

Partial Products 

Product 

A-10 

l 14 
12 

28 
14 
16810 

0 410) 
0210> 

(16810> 
I 

(shifted left one place) 

lllO 
1100 

0000 
0000 shift to place 

1110 digits in proper 
1110 columns 
101010002 

60256020 A 



The following example is one method of computer multiplication. The central computer uses 
variations of this method. However, the following example is valid for explanation. 

The computer determines the running subtotal of the partial products. Rather than shifting 
the partial product to the left to position it correctly, the computer right-shifts the 
summation of the partial products one place before the next addition is made. When the 
multiplier bit is a 1, the multiplicand is added to the running total and the result is 
shifted to the right one place. When the multiplier is a O, the running total is shifted to 
the right, effectively multiplying the quantity by 102. Figure A-8 shows an example of 
the multiplication procedure used in the computer. 

Multiplicand 1110 (1410> 

Multiplier 1100 (1210) 

(Multiplier Bit • "O") 0000 First Running Total 
(Shifted Right One) 

(Multiplier Bit • "O") 00000 Second Running Total 
1110 (Shifted Right One) 

(Multiplier Bit• "l") 111000 Third Running Total 
1110 (Shifted Right One) 

10101000 Product (16810) 

Figure A-8. Example of Computer Multiplication Procedure 

DIVISION 

The following examples show the familiar method of decimal division. 

Divisor 
14 

131i8s' 
13 
55 

52 
3 

Quotient 
Dividend 

Partial Dividend 

Remainder 

The computer performs division in a similar manner (using binary equivalents): 

Divisor 

60256020 B 

1110 
1101 I 10111001 

1101 moo 
1101 

omo 
1101 

11 

Quotient (14) 
Dividend 

Partial Dividends 

Remainder (3) 

A-11 



However, instead of shifting the divisor right to position it for subtraction from the 
partial dividend (shown above), the computer shifts the partial dividend left, accomplishing 
the same result. Following each left shift, the divisor is subtracted from the dividend. 
If the result is positive, the corresponding bit of the quotient is set (1) and the 
resulting partial dividend is shifted left one position. If the result is negative, 
indicating that the divisor cannot be contained in the partial dividend, the corresponding 
bit of the quotient is cleared (0) and the previous partial dividend is shifted left one 
place. The process continues until the proper number (determined by the number of bits in 
the dividend) of subtraction and left-shift operations take place. 

Figure A-9 shows an example of the division procedure used in the computer. Note that the 
first subtraction in the example would produce a negative result. Thus, the most 
significant bit of the quotient is cleared and the previous partial dividend (in this case, 
the initial dividend) is shifted left one position. 

Dividend 
Divisor 
Quotient 

10111001 
1101 

01110 
I 10111001 

1101 --~~-First subtraction would produce negative result. 

10111001 
llOl 
1010001--~~- Second subtraction produces positive result. 

1010001 
llOl 
llllOl 

111101 
llOl 
OOOll ---- Remainder. 
1101 Subtraction would produce negative result. 

Figure A-9. Example of Computer Division Procedure 

The second subtraction produces a positive result. Thus, the next most significant bit of 
the quotient is set and the result of the subtraction (partial dividend) is left-shifted one 
place. 

Note that the result of the third subtraction is retained as the remainder since the fourth 
(final) subtraction would produce a negative result. 

NUMBER CONVERSIONS 

The procedures that may be used when converting a number from one number system to another 
are power addition, radix arithmetic, and substitution. Table A-3 lists the recommended 
conversion procedures. 

A-12 60256020 A 



TABLE A-3. RECOMMENDED CONVERSION PROCEDURES 
(INTEGER AND FRACTIONAL) 

Conversion 

Binary to Decimal 

Decimal to Hexadecimal t 

Decimal to Binary 

Hexadecimal to Decimalt 

Binary to Hexadecimal 

Hexadecimal to Binary 

General Rules 

Recommended Method 

Power Addition 

Power Addition 

Radix Arithmetic 

Radix Arithmetic 

Substitution 

Substitution 

Use Radix Arithmetic, Substitution 

Use Power Addition, Substitution 

ri ~ Radix of initial system 

rf = Radix of final system 

tRefer to the Programming Reference Aids Manual (listed in 
the preface) for decimal to hexadecimal conversions for 
decimal numbers 0 through 40959. 

POWER ADDITION 

To convert a number from ri to rf (ri < rf), write the number in its expanded ri 
polynomial form and simplify using rf arithmetic. 

Example 1: Binary to Decimal (Integer) 

0101112 1(24) + 0(23) + 1(22) + 1(21) + 1(20) 

1(16) + 0(8) + 1(4) + 1(2) + 1(1) 

16 + 0 + 4 + 2 + 1 

60256020 A A-13 



Example 2: Binary to Decimal (Fractional) 

.01012 0(2-1) + 1(2-2) + 0(2-3) + 1(2-4) 

0 + 1/4 + 0 + 1/16 

5/1610 

Example 3: Decimal to Hexadecimal (Integer) 

87510 8(102) + 7(101) + 5(100) 

8(A216) + 7(A116) + 5(A016) 

8(6416) + 7(A16) + 5(1) 

32016 + 4616 + 5 

36B16 

I NOTE I 
The base 10 is changed to the hexadecimal 
equivalent (A). The subsequent arithmetic 
is then performed in the hexadecimal system. 

Example 4: Decimal to Hexadecimal (Fractional) 

.2510 2(10-l) + 5(10-2) 

2(A-116) + 5(A-216) 

=2/ A16 + 5/ 6416 

=1916/6416 

.. .416 

RADIX ARITHMETIC 

To convert a whole number from ri to rf (ri > rf): 

A-14 

1. Divide the number to be converted by rf, as expressed in ri notation, using ri 
arithmetic. 

2. The remainder is the lowest-order digit in the new expression. 

3. Divide the integral part from the previous step by rf, as expressed in ri 
notation. 

60256020 B 



4. The remainder is the next higher-order digit in the new expression. 

5. The process continues until the division produces only a remainder which will be the 
highest-order bit in the rf expression. 

To convert a fractional number from ri to rf: 

1. Multiply the number to be converted by rf, as expressed in ri notation, using 
ri arithmetic. 

2. The integral part is the highest-order bit in the new expression. 

3. Multiply the fractional part from the previous operation by rf, as expressed in 
ri notation. 

4. The integral part is the next lower-order bit in the new expression. 

5. The process continues until sufficient precision is achieved or the process 
terminates. 

Example 1: Decimal to Binary (Integer) 

45 + 2 • 22, remainder l; record 1 

22 + 2 • 11, remainder O; record 0 

11 ..... 2 - 5, remainder l; record 1 

5 2 • 2, remainder l; record 1 

2 ..... 2 1, remainder O· , record 0 

1 2 - 0, remainder l; record 1 

1 0 1 1 0 1 

Thus: 4510 .. 1011012 

Example 2: Decimal to Binary (Fractional) 

.25 x 2 - 0.5; record 0 

.5 x 2 • 1.0; record 1 

.o x 2 - o.o; record 0 

.010 

Thus: .2510 •• 0102 

60256020 B A-15 



Example 3: Hexadecimal to Decimal (Integer) 

9FC 1010 (A16) m OFF remainder 6; record 6 

OFF A16 19, remainder 5; record 5 

019 ..,. Al6 = 2, remainder 5· • record 5 

2 A16 O, remainder 2; record 2 

2556 

Thus: 9FC16 = 255610 

Example 4: Hexadecimal to Decimal (Fractional) 

.2AC x 1010 (A16) = I.ABS; record 1 

.ABS x Al6 6.B30; record 6 

.B30 x A16 6.FEO; record 6 

.FEO x A16 = 9.ECO; record 9 

.1669- -

Thus: .2AC16 ; .166910 

SUBSTITUTION 

This method permits easy conversion between hexadecimal and binary numbers. If a binary 
number is partitioned into groups of 4 bits to the left and right of the binary point, each 
group of 4 bits converts into a hexadecimal digit. Similarly, each hexadecimal digit 
converts directly into a group of 4 bits. Table A-1 lists the hexadecimal digits and the 
corresponding binary equivalents. 

Example 1: Binary to Hexadecimal 

Binary = 1110 0000 0101. 1011 0010 1001 

Hexadecimal = E 0 5. B 2 9 

Example 2: Hexadecimal to Binary 

Hexadecimal = 5 F s. 7 c A 

0101 1111 1000. 0111 1100 1010 

A-16 60256020 A 



Tables A-4 and A-5 are translation tables for extended binary coded decimal interchange code 
(EBCDIC) and American National Standard Code for Information Interchange (ASCII). The 
double row of squares around the top and left edge of each table show the binary and 
hexadecimal codes for the characters in the table. The following list gives a description 
of the control characters in the tables. 

Bits 

NUL Null 

SOR Start of Heading (CC) 

STX Start of Text (CC) 

ETX End of Text (CC) 

EOT End of Transmission (CC) 

ENQ Enquiry (CC) 

ACK Acknowledge (CC) 

BEL Bell (audible or attention signal) 

BS Backspace (FE) 

HT Horizontal Tabulation (punched 
card skip) (FE) 

LF Line Feed (FE) 

VT Vertical Tabulation (FE) 

FF Form Feed (FE) 

CR Carriage Return (FE) 

SO Shift Out 

SI Shift In 

I NOTE I 
(CC) Communication Control 

(FE) Format Effector 

(IS) Information Separator 

in the tables are identified by b5, b1, 

DLE Data Link Escape (CC) 

DCl Device Control 1 

DC2 Device Control 2 

DC3 Device Control 3 

DC4 Device Control 4 (Stop) 

NAK Negative Acknowledge (CC) 

SYN Synchronous Idle (CC) 

ETB End of Transmission Block (CC) 

CAN Cancel 

EM End of Medium 

SUB Substitute 

ESC Escape 

FS File Separator (IS) 

GS Group Separator (IS) 

RS Record Separator (IS) 

us Unit Separator (IS) 

DEL Deletet 

b6, b1 where is the 
highest order or most significant bit. Their numerical significance in binary is 

bs 
as follows: 

Bit Identification bs b1 b6 b5 b4 bJ b2 b1 

Significance 27 26 25 24 23 22 21 20 

t In the strict sense, DEL is not a control character. 

60256020 A A-17 



FLOATING-POINT ARITHMETIC B 

GENERAL 

Most programmed arithmetic in the computer system takes place using two's complement, 
floating-point procedures. The following paragraphs describe the formats and procedures 
used in performing floating-point operations. Unless otherwise specified, numbers are 
expressed in hexadecimal notation (base 16). 

FLOATING-POINT TECHNIQUE 

The floating-point technique allows the computer to represent numbers with variable radix 
points and to perform computations on these numbers. Using floating-point procedures, the 
computer automatically places the radix point of the result at the proper position following 
a computation. Thus, by shifting the radix point and increasing or decreasing the exponent, 
computations on widely varying quantities which do not exceed the capacity of the machine 
can be performed. 

Floating-point numbers within the computer are represented in a form similar to scientific 
notation; that is, a coefficient multiplied by a number raised to a power. Since the 
computer operates only on binary numbers, the numbers are multiplied by powers of two. 

C • 2E Where: C • Coefficient. 

E .. Exponent. 

In floating-point, different coefficients need not relate to the same power of the base as 
do fixed point numbers. Therefore, the format of a floating-point number includes both the 
coefficient and exponent. All coefficients and exponents represented in the equipment are 
signed integers. 

OPERAND FORMATS 

Floating-point operations are performed on 32-bit and 64-bit operands. The function codes 
of the corresponding instructions specify whether 32-bit or 64-bit operands are to be used. 
The following subparagraphs describe the 32-bit and 64-bit formats. 

32-BIT FORMAT 

Figure B-1 shows the format of the 32-bit floating-point operands. Note that the bit 
positions of all operands are numbered left to right with the least significant bits in the 
rightmost bit positions of the word. 

60256020 A B-1 



--------EXPONENT SIGN BIT 

llLEAST SIGNIFICANT EXPONENT BITS 

'COEFFICIENT SIGN BIT 

I A~---LEAST SIGNIFICANT COEFFICIENT BITS 

f I "il ~il 
~~~~~~~~~~~~--1, 

(8 BITS) (24 BITS)
EXPONENT L COEFFICIENT L

EXPONENT BINARY POINT COEFFICIENT BINARY POINT

Figure B-1. 32-Bit Floating-Point Operand Format

The range of useful coefficients in the 32-bit format is from 800000 to 7FFFFF which
provides a range of -(223). 10 through +223_1) 10 •

Useful exponents range from 90 to 6F which gives an exponent range of -11210 to +11110.
Numbers 70 through 8F fall into a special end-case range as listed in table B-1.

TABLE B-1. SPECIAL END CASE RANGE FOR THE 32-BIT FORMAT

Number Definition

8XXXXXXX Machine zero

7XXXXXXX Indefinite

Note: X = Any hexadecimal digit.

Table B-2 lists some floating-point numbers in the 32-bit format.
indicated, all numbers are in two's complement, hexadecimal notation.

Unless otherwise

Note that in two's complement notation, a negative number is one more than the corresponding
one's complement notation for the same number. For example, in two's complement, -1 =
FFFFFF (all ones) while in one's complement -1 = FFFFFE. Positive numbers in two's
complement are identical to the corresponding one's complement notation for the same number.

B-2 60256020 B

TABLE B-2. FLOATING-POINT NUMBERS IN 32-BIT FORMAT

Floating-Point Format

Number (Base 10) Exponent Coefficient

+l 00 000001

+l Normalized t EA 400000

-1 00 FFFFFF

-1 Normalized t E9 800000

+26790.0 00 0068A6

+1/4 "' +.25 • +.4016 Normalizedt E8 400000

256 00 000100

hn these examples, the coefficients are left shifted (normalized)
until the sign bit is unequal to the bit immediately to its right.
The exponent is reduced by one for each left shift.

64-BIT FORMAT

Figure B-2 shows the format of the 64-bit floating-point operands.

LEAST SIGNIFICANT

r EXPONENT
SIGN BIT

i- EXPONENT BITS

COEFFICIENT
SIGN BIT

LEAST SIGNIFICANT""\
COEFFICIENT BITS ~\i

EXPONENT
(16 BITS)

... IT
~EXPONENT

BINARY POI NT

COEFFICIENT
(48 BITS)

Figure B-2. 64-Bit Floating-Point Operand Format

Tl
COEFFICIENT __/
Bl NARY POINT

The range of useful coefficients in the 64-bit format is from 8000 0000 0000 to 7FFF FFFF
FFFF which provides a range of -(247)10 through +(247-1)10•

60256020 A B-3

Useful exponents range from 9000 to 6FFF which gives an exponent range of -28,67210 to
+28, 6 7110. Numbers 7000 through 8FFF fall into a special end case range as listed in
table B-3.

TABLE B-3. SPECIAL END CASE RANGE FOR THE 64-BIT FORMAT

Number Definition

8XXX XXXX XXXX XXXX Machine zero.

7XXX XXXX XXXX XXXX Indefinite.

Note: X = Any Hexadecimal Digit.

The use of an undefined exponent in an arithmetic operation produces undefined results.

Table B-4 lists some floating-point numbers in the 64-bit format.

TABLE B-4. FLOATING-POINT NUMBERS IN 64-BIT FORMAT

Floating-Point Format

Number Base 10 Exponent Coefficient

+1 0000 0000 0000 0001

+1 Normalized t FFD2 4000 0000 0000

-1 0000 FFFF FFFF FFFF

-1 Normalized t FFDl 8000 0000 0000

+26790.0 0000 0000 0000 68A6

+1/4 = +.25 = +.4016 FFDO 4000 0000 0000*

+25610 0000 0000 0000 0100

tin these examples, the coefficients are left shifted (normalized)
until the sign bit is unequal to the bit immediately to its right.
The exponent is reduced by one for each shift·.

B-4 60256020 B

FLOATING-POINT OPERATIONS
In the following descriptions of floating-point operations, the 32-bit format is used for
all examples. All descriptions and definitions of the operations apply to 64-bit operands
with the adjustment for bit length. The following bit length substitutions are made for
operations using 64-bit operands.

Bit Lengths for 32-Bit Operands

22

23

46

47

11

DOUBLE PRECISION RESULTS

Bit Lengths for 64-Bit Operands

46

47

94

95

23

Several instructions produce double-precision results. The double-precision add operation
is a floating-point add producing both an upper and a lower result simultaneously and
retaining both of these results for the next floating-point add operation. Thus the partial
result in 64-bit arithmetic consists of 94 coefficient bits plus sign information. The
partial result in 32-bit arithmetic consists of 46 bits plus sign information.

Dot Product instructions add both the upper and lower results of the multiply operations to
the partial results of the add operations as described above.

UPPER AND LOWER RESULTS

Floating-point add, subtract, and multiply instructions generate result coefficients twice
the length of the source-operand coefficients. The left and right halves of the result
operands are called the upper (U) result and lower (L) result, respectively. Figure B-3
shows the format of the result operands.

L EXPONENT
L COEFFICIENT

U EXPONENT\ U COEFFICIENT ~SIGN BIT (FORCED
SIGN BIT r SIGN BIT Sl8N 81T ""\ POSITIVE- 0)

t I 1 I I II

rr
' I I ••

II 11 I 11 I
'---y---J '---y--J
U EXPONENT U COEFFICIENT L EXPONENT L COEFfl IC I ENT

Figure B-3. Add, Subtract, and Multiply Result Format

60256020 A B-5

The sign bit of the lower result coefficient is forced positive. The remaining bits of the
lower coefficient are the normal results of the computations. Since the sign bit of the
lower result coefficient is forced positive, the lower result is not meaningful alone, but
must be used in conjunction with the upper result.

END CASES

If an indefinite operand is used in a floating-point operation, the upper and lower results
are indefinite. Table B-5 lists each of the end case conditions and the result of each
condition. In table B-5, 0 represents machine zero and N represents an operand that is not
machine zero or indefinite. The coefficient of N is not all zeros.

TABLE B-5. END CASE CONDITIONS AND RESULTS

Condition Result Condition Result

0 + 0 0 N • 0 0 -
O+N +N 0 -:- 0 Indefinite - -

N+O N 0 N 0 -
0 • 0 0 N + 0 Indefinite

0 • N 0

FLOATING-POINT COMPARE RULES

The rules governing the comparison of floating-point operands are described on the following
pages.

Neither Operand Indefinite or Machine Zero

If the signs of the coefficients of the two operands are unlike, the operands are unequal.
The operand with the positive exponent is the larger of the two. If the signs of the
coefficient are alike, the machine performs a floating-point subtract upper. This operation
subtracts operand (S) from operand (R). Each of the arithmetic results are listed below
with the corresponding compare results.

B-6

Arithmetic Result

Coefficient upper 24 bits all zeros
(48 bits for 24 through 27 instructions)

Coefficient upper 24 bits not all zeros
(48 bits for 24 through 27 instructions)

Coefficient positive

Coefficient negative

Compare Result

(R) = (S)

(R) :F (S)

(R) ~ (S)

(R) < (S)

60256020 A

The compare results (R) • (S) and (R) ; (S) do not guarantee that (S) • (R) when (R) • (S).

The order of events of the floating-point subtract upper is first to complement the
subtrahend, then align the coefficient associated with the smaller exponent, and finally to
perform a floating-point add operation. The following is an example of (R) • (S) but (S) ;
(R) for 64-bit compares.

Operand (R) • 0104 0000 0000 0001
(S) • 0100 0000 0000 0001

Complement (S) 0100 FFFF FFFF FFFF
Align (S) 0104 FFFF FFFF FFFF F

Add (R) and 0104 0000 0000 0001
complemented, 0104 FFFF FFFF FFFF F
aligned (S) 0104 0000 0000 0000 F

Since the upper 48 bits of the result coefficient are all zeros, the pair of operands
considered equal. However, if the operands are interchanged, the following happens.

Operand (R) •
(S) •

Complement (S)
Align R

Add aligned
(R) and complemented
(S)

0100 0000 0000 0001
0104 0000 0000 0001

0104
0104

0104

FFFF
0000

FFFF

FFFF
0000

FFFF

FFFF
0000

FFFF

1

1

are

Since the upper 48 bits of the result coefficient are not all zeros, the pair of operands
are considered unequal.

Figure B-4 shows an example of the results of a branch if (R) > (S) (32/64 bit FP), 22
instruction with the assumed instruction codes and register content. Note that in the
initial comparison of the coefficient signs of (R) and (S) that they are alike. Thus a
floating-point subtract operation contains a positive sign which indicates that (R) > (S).
Since this result satisfies the assumed branch condition, the program branches to the
indicated branch address.

One or Both Operands Indefinite

If one operand is indefinite, the compare condition is not met since indefinite is no.t
greater than, less than, equal to, or not equal to any other operand. If both operands are
indefinite, the (R) • (S) and (R) > (S) conditions can be met since indefinite equals
indefinite.

60256020 A B-7

• 71 II II U 14 .,
F

(22)
R S T

(07) (08) (10) BRANCH INSTRUCTION

EXPONENT COEFFICIENT

BIT /
SIGN

0 14 II 10 ZI 14 17 21 Bl

0

14 1 I

00 I 0 0000 0000 0000

COEFFtCIENT

SIGNS ARE ALIKE

1111 1111 1110 1114 1711 II

11111111 1111

COEFFICIENT

R= 07
(50 002000)

s = 08
(4FOOIFFF)

T= 10
(OOOOOOOOOFFFFFEOI

II II II II ,. 10 za 14 27 ZI SI .. H H H 40 45 44 47 41 1111 II.. H 10 15

000000000000 0000 0000 00000000 0000 0000 I 111 11 11 111 I 11 I I 11 11 11

--~~~v-~~~~--'-~~~~~~~~~~v-~~~~~~~~~~~~~~--'\--y---1

BITS NOT USED BRANCH ADDRESS

14 1 I 1111 1111 1110 IS 14 17 II II

1100 0000 0000 0100 0000 0000

COEFFICIENT

SIGN (+l

RESULT OF FLOATING POINT
SUBTRACT R-S-NORMALIZE
UPPER (45 400000)

THUS, R > S; BRANCH TO VIRTUAL ADDRESS OOOOFFFFFEO

BITS
NOT USED IN
INSTRUCTION

ADDRESS

Figure B-4. Example of Branch if (R) 2 (S) (32/64 Bit FP) Instruction

Neither Operand Indefinite but One or Both are Machine Zero

Under this condition, the following definitions apply to the comparison.

1. Any nonindefinite, nonmachine zero operand with a positive, nonzero coefficient is
greater than machine zero.

2. Any nonindefinite, nonmachine zero operand with a negative coefficient is less than
machine zero.

3. Machine zero is considered equal only to itself and to any number having a finite
exponent and an all zero coefficient.

B-8 60256020 B

RIGHT NORMALIZATION

When the upper result coefficient overflows, the machine shifts the entire 47-bit result
(with sign extension) one place to the right. The upper exponent is increased by one. The
machine performs this operation, termed right normalization, when necessary, although
normalization may not have been specified by the instruction.

Figure B-5 shows an example of right normalization. In this example, assume that the
following floating-point numbers are added, causing the upper result coefficient to overflow.

Note in the example that the sign bit of the lower result is forced positive (0) and bit 23
is shifted around it.

ADD AND SUBTRACT OPERATIONS
Before the computer adds or subtracts floating-point numbers, the exponents are made equal
by a procedure called alignment. The alignment procedure successively right shifts the
coefficient of the operand with the smallest exponent one bit and increases the exponent by
one until the two exponents are equal. The sign of the shifted coefficients is extended
from the left to the right during the shift. Negative coefficients approach a minus one and
positive coefficients approach zero as they are shifted.

Figure B-6 shows an example of floating-point addition with both operands positive. In
figure B-6, the exponent of operand 2 is one less than the exponent of operand 1. The
alignment procedure right shifts the coefficient of operand 2 one place to the right and
increases its exponent by one, making it equal to the exponent of operand 1. Note that the
least significant bit of operand 2 is shifted into bit 25 of the lower result (around the
sign bit).

The addition of the coefficients takes place, using conventional binary addition
procedures. After right normalization, if required, the result is 46 bits (not including
the sign bits). The leftmost 23 bits contain the coefficient for the upper result and the
rightmost 23 bits contain the coefficient for the lower result.

The exponent for the upper result equals the larger of the two source operand exponents.
Note that right normalization (not necessary in the example) increases this exponent by
one. The exponent for the lower result equals the upper result exponent -2310 (1716) in
all but the following three conditions.

1. Right normalization causes the upper result exponent to overflow. In this case, the
computer sets the upper result to indefinite. The lower exponent will equal 5916
(6FDl16 for 64-bit operands).

2 • If the subtraction of 32 10 from the upper result exponent causes the lower result
exponent to underflow, the computer sets the lower result to machine zero.

3. If one or both operands were indefinite, the computer sets the upper and lower
results to indefinite.

Figure B-7 shows an example of floating-point addition with one operand negative and the
other positive.

60256020 A B-9

EXPONENT COEFFICIENT

~ I 5F:AFF ~ Operand 1
00
00

479FF2. Operand 2
A 73AF 1. Result (Unnormalized)
'OVERFLOW

DETECTED

COEFFICIENT I SIGN BIT

a II II 15 18 II IO U 14 IT H 11

I I I I I I OPERAND I
(00 5F9AFF)

• •
II II 15 II 19 ZO IS 14 IT H II

111001111111110010 OPERAND 2
(00 479FF2)

• •

Is I GN RESULT (UNNORMALIZED)

0 I 4 1 a II II II I• 19 10 II l4 &TH II II N H H 40 41 44 41

11 0011101011110001 000000000000000000000000

(RIGHT SHIFT I) RESULT (NORMALIZED)

•

l1 H II 12 IS H I• 40 41 44 41

UPPER '\:FORCED L~:ERO

II I& II 1• 19 IO H 14 zr H II

II II 15 1• II 10 H 14 l1 II II

UPPER RESULT
(01 539078.)

LOWER RESULT
(EA 400000)

Figure B-5. Example of Right-Normalization

B-10 60256020 A

rEXPONENT
I SllN BIT

e I 4 ' m •
e I 4 '

~
INCREASE
IY I \

'

e I 4 ' m
~

rCOEFFICIENT
I SIGN BIT

I 1111 1111 Ille 1114 1?11 II

ri000,00 00,00 I of 0 00,000 ,00 0 01

I

1111 1111 II• •M 11•

SIGN BIT
EXTENDED

UPPER

II II II II •••

1111 1111

1114 " ..

•

II

0 00 0000 00 I 0 I I I I I I I I I I I I

EQUALS THE EXPONENT
Of THE LARIER OF TWO
SOURCE OPERANDS

e I 4 '

ffi
\ A,

"' 50-17. 39
(5710>

1111 ... 1?• II

OPERAND I
(50 002000.)

OPERAND 2 -UNALIGNED
(4F OOIFFF.)

OPERAND 2-ALIGNED
(SHIFTED ONE RIGHT-
EX PONENTS EQUAL-50 OOOFFF)

RESULT (SUM)
"" 4144 4?

"' LOWER
FORCED
POSITIVE

UPPER RESULT
(50 OOZFFF.)

LOWER RESULT
(39 400000)

000

Figure B-6. Example of Floating-Point Addition (Both Operands Positive)

60256020 A B-11

INCREASE
BY TWO

COEFFICIENT
/SIGN BIT

8 II I& 11 18 19 10 II 14 IT 18 al

f :oo Jo oo of o 1ojooo0100 o too ol

•
II le 19 IO H 14 IT H II

10000000000001

II 12 15 16 19 20 ZI 24 27 21 51

11 1111 100000000000

'-v'
Ls1GN BIT EXTENDED

OPERAND I
{ 50 002000)

OPERAND 2
{4E FFEOOI)

OPERAND 2 - ALIGNED
{SHIFTED TWO RIGHT
EXPONENTS EQUAL -50 FFF800l

RESULT {SUM)
S 4 1 8 II 11 1a 1e 19 H II 14 tT H a1 aa H M H 40 4a 44 41

0 s 4 1

ETI
~

EQUALS THE EXPONENT
OF THE LARGER OF TWO
SOURCE OPERANDS

0 I 4 ?

EI:J
~

!50- 17= 39

{!5710>

UPPER

11 11 11 •• •• ao n 14 n H ••

000

LOWER

FORCED POSITIVE

UPPER RESULT
(50 001800)

LOWER RESULT

{ 39 200000)

Figure B-7. Example of Floating-Point Addition (One Operand
Negative and One Operand Positive)

B-12 60256020 A

A floating-point subtraction consists of complementing the coefficient of the subtrahend and
performing a floating-point addition. In 32-bit format, a 24-bit two's complement operation
is performed before the operands are shifted. The complement of an 800000 coefficient is
400000 with one added to the value of the exponent associated with the coefficient.

The central computer hardware used for scalar floating-point add or subtract operations has
an extra (or extended) coefficient sign bit. This means that 8000 is complemented without
the specified right-shift of one and increase of the exponent by one. This causes a result
which, although not mathematically incorrect, may differ from the specified result when all
of the following conditions are met for any given pair of operands.

• The operand having the larger exponent must have a coefficient of 8000. If the
exponents of the two operands are equal, one of the two must have a coefficient of
8000.

• The operand described in condition 1, having a coefficient of 8000, must be
complemented. This may be due to the operand being the subtrahend in a subtract
operation or because of sign control in either a subtract or add operation.

• The other operand must have a negative coefficient.

Figure B-8 shows two examples of floating-point subtraction using an extra coefficient sign
bit.

If this operation is a subtract upper, the specified result is indefinite (with the
appropriate data flags). The central computer result did not overflow. If this operation
is a subtract normalized, the following results occur.

Result of Subtract Upper

Normalize the upper result by
shifting zeros into the
coefficient from the right
and decrementing the exponent.

CYBER 200 Method

6F (O) 7 F F F F F

6F 7 F F F F F

t

Right-Shift and Add Method

70 3 F F F F F

6F 7 F F F F E

t

The normalized add and subtract instructions generate an intermediate result identical to
the final result of the add U and the subtract U instructions. Normalizing of the
intermediate,· 24-bit result then takes place. In this operation (figure B-9), the computer
left-shifts the 24 upper result bits until the sign bit and the bit immediately to the right
of the sign bit are different.

The machine attaches zeros to the right of the result as it is shifted. The result exponent
is reduced by the number of places shifted. If reducing the exponent by one causes exponent
underflow, the result is set to machine zero. If the original coefficient consists of 24
zero bits, the result of the normalization becomes machine zero. If normalization is not
specified in an add or subtract instruction, a zero coefficient and any exponent may result,
and if reducing the exponent during shifting causes an exponent underflow, the machine sets
the result to machine zero.

60256020 A B-13

EXAMPLE I A - B

A 60 F F F 0 0 0

B 64 8 0 0 0 0 0
RIGHT SHIFT AND ADD I

CYBER 200 METHOD TO EXPONENT METHOD

EXTRA SIGN BIT • COMPLEMENT B B (64 (I } 8 0 0 0 0 0 64 8 0 0 0 0 0

8 64 (0) 8 0 0 0 0 0 65 4 0 0 0 0 0

ALIGN OPERAND ,60 (I } F F F 0 0 0 ,60 F F F 0 0 0
WITH SMALLER

64 (I } F F F F 0 0 65 F F F F 8 0 EXPONENT

ADD A PLUS A 64 (I } F F F F 0 0 65 F F F F 8 0
COMPLEMENT +8 64 (0) 8 0 0 0 0 0 65 4 0 0 0 0 0 OF B

64 (0} 7 F F F 0 0 65 3 F F F 8 0

64 7 F F F 0 0 65 3 F F F 8 0

EXAMPLE 2 A - B

A 50 F F F 0 0 0

B 6F 8 0 0 0 0 0
RIGHT SHIFT AND ADD I

CYBER 200 METHOD TO EXPONENT METHOD

EXTRA SIGN BIT • COMPLEMENT B B (6F (I } 8 0 0 0 0 0 6F 8 0 0 0 0 0

8 6F (0) 8 0 0 0 0 0 70 4 0 0 0 0 0

ALIGN OPERAND ,50 (I } F F F 0 0 0 50 F F F 0 0 0
WITH SMALLER 6F (I } F F F F F F 70 F F F F F F
EXPONENT

ADD A PLUS A 6F (I } F F F F F F 70 F F F F F F
COMPLEMENT +B 6F (0) 8 0 0 0 0 0 70 4 0 0 0 0 0
OF B

6F (0) 7 F F F F F 70 3 F F F F F

Figure B-8. Examples of Floating-Point Subtraction Using
an Extra Coefficient Sign Bit

B-14 60256020 A

y
LSIGN BIT AND ADJACENT BIT

ARE DIFFERENT

ASSUMED UPPER RESULT
(4F FOD584.)

o's ADDED TO RIGHT END OF
SHIFTED RESULT.

NORMALIZED UPPER RESULT
(LEFT-SHIFTED 3 PLACES)
(4C 88AC20)

Figure B-9. Example of Normalized Upper Result

ORDER DEPENDENT RESULT CONSIDERATIONS

The result of any sequence of floating-point operations may be operand-order dependent [for
instance, (A+ B) + C •A+ (B + C)].

The following example using 32-bit operands demonstrates this effect.

A• 00 000001

B • 00 000003

c - 01 000001

A 00 000001
+B 00 000003

A+B 00 000004
+c 01 000001

(A+B)+C 01 000003

B 00 000003
+c 01 000001 ~oefficiente not equal

B+C 01 000002
+A 00 000001

A+(B+C) 01 000002 .

It is important that this characteristic of floating-point arithmetic be considered when
predicting the results of the DA, DB, DC, and DF instructions.

60256020 A B-15

MULTIPLY OPERATIONS

The multiplication of two floating-point operands produces a result coefficient with the
least-significant 23 product bits in the lower result and the higher order 23 product bits
in the upper result (figure B-10). Note that as in addition and subtraction, the sign bit
of the lower result is cleared, forcing the lower result positive. The sign bit of the
upper result is determined using the usual procedures of algebraic multiplication. Thus, in
the example shown in figure B-10, the sign bit of the upper result is a zero (+) since both
source operands are positive.

In the multiply operation, the positive forms of the input operands are used. The signs of
the input operands are recorded to determine the sign of the upper result and whether the
resultant coefficient should be complemented. If either of the input operands contains a
coefficient of 800000, the operation changes the operand to a positive form by right
shifting its coefficient by one (with sign extension) and adding one to its exponent. This
gives a coefficient of COOOOO which will then be complemented to 400000.

The lower result exponent is the sum of the exponents for the two source operands and the
upper result exponent equals the lower result exponent plus 1716 or 23 10 with the
following exceptions.

1. The sum of the source operands' exponents (plus 2310 , if upper result) exceeds
6F16• in which case the result exponent is set to indefinite.

2. The sum of the source operands' exponents (plus 23 10 , if upper result) is less
than 9016• in which case the result exponent is set to machine zero.

3. Either or both operands are indefinite, in which case the result exponent is set to
indefinite.

4. Neither operand is indefinite but either or both operands are machine zero, in which
case the result exponent is set to machine zero.

DIVIDE OPERATIONS

In divide operations, a floating-point dividend is divided by a prenormalized di visor,
producing a 23-bit coefficient (not including sign bit) of the quotient which appears as the
upper result. If one or both source operands are negative, they are complemented and the
absolute values are used in the divide operation. The signs of the original source operands
determine the sign of the final coefficient according to the normal procedures of algebraic
divisions.

Figure B-11 shows an example of floating-point division with both dividend and divisor
positive. Note that prenormalization left shifts the divisor until the most significant one
bit is adjacent to the sign bit. The normalize count (NC) is stored and will partially
determine the exponent of the quotient.

The prenormalized divisor is then subtracted from the dividend and the corresponding bit of
the quotient is determined. After each subtraction, the partial dividend is left shifted
one position and the subtraction is repeated as in a conventional binary division operation.

After 23 subtract and 22 shift operations have been completed, the absolute value of the
quotient coefficient appears as the upper result. If either the original dividend or
divisor (but not both) were negative, the coefficient of the quotient is complemented. The
rightmost bit of the quotient is neither rounded nor adjusted. The remainder is not
retained.

B-16 60256020 A

r EXPONENT
I SIGN BIT

t:··f I :1
~

(-1416>+ 1711 =

(-2010>+2310= +3

• • 4 ,

[TI
c-c11> +<-•11>

= -1416

r COEFFICIENT
I SIGN BIT

II II II It It It 11 II II

OPERAND 1=1128. X 2-C=l.128

(F4 001121.)

OPERAND 2 = OACD. X 2-I =OA.CD
(F8 OOOACD)

MOST SIGNIFICANT

RESULT I SIGN BIT
I BIT OF PRODUCT

RESULT (PRODUCT)
(000001394D08)

t I 4 1 I 1114 .,

0 00
I

FORCED POSITIVE

I 11 11 II It II II II 14 11 II 11

10:0 oof oo joo oof oo of o o 0100 o 'I
&

LOWER'

UPPER RESULT

(03 000001.)

LOWER RESULT
(EC 394DOI.)

Figure B-10. Example of Floating-Point Multiply

60256020 A B-17

The exponent of the quotient is determined by the equation shown in figure B-11.

r EXPONENT
I SIGN BIT

• • 4 '

T

0 • 4 '

rio 00100 0 01

&

• 4 T

COEFFICIENT I SIGN BIT

0 II II II 10 I• 10 Ill 14 IT IO al

SHIFT (NC)= 1810
r------

I
_J

A

II II II I• 1• IO H 14 IT 1• a1

,10000000000000000000000

A

II II II II I• 10 II 14 IT I• II

OPERAND I (DIVIDEND)=
00 001000.16 = 4096.10

OPERAND 2 (DIVISOR)=

00 000010.16 = 16.10

DIVISOR
(PRE-NORMALIZED)

11 1100 0000000 QUOTIENT=

A
EXPONENT OF QUOTIENT= EXPONENT
OF DIVIDEND-EXPONENT OF DIVISOR
-2210 + NC= 0-0-2210+18=-4

FC 00 I 000.16 = 256.10

A

Figure B-11. Example of Floating-Point Divide
(Dividend and Divisor Both Positive)

The prenormalized divisor is'then subtracted from the dividend and the corresponding bit of
the quotient is determined. After each subtraction, the partial dividend is left-shifted
one position and the subtraction is repeated as in a conventional binary division operation.

After 23 subtract and 22 shift operations have been completed, the absolute value of the
quotient coefficient appears as the upper result. If either the original dividend or
divisor (but not both) were negative, the coefficient of the quotient is complemented. The
rightmost bit of the quotient is neither rounded nor adjusted. The remainder is not
retained.

The exponent of the quotient is determined by the equation shown in figure B-11. Figure
B-12 shows another example of floating-point division. However, in this case, the dividend
is positive and the divisor is negative. As a result, the original divisor is complemented
before the prenormalization takes place. Note that the quotient is complemented to form the
negative final quotient.

B-18 60256020 A

0 I 4 f

o:ooo 0 000

_.1

I 4

I 00 I 0

• EXPONENT OF
QUOTIENT=

II II II II II IO II 14 If H II

I II II II II II IO U 14 If II II

1T1 I I I I I 111 0 I 0 I 0 I 0 0001 0000

I I

010111110000

I
I

SH1Fr1 (~CJ=,! .J

•

II II II II II IO II 14 If H II

11 000000000000

II II II II II 10 II 14 If II II

OPERAND I (DIVIDEND)=
oo 002260. 16 = +aeoo. 10

OPERAND 2 (DIVISOR)=
00 FFAAI0. 16 = -0055F0.16 =
-22000.10

DIVISOR (COMPLEMENTED)

DIVISOR
(PRE-NORMALIZED)

QUOTIENT= F2 001999.
(UNCOMPLEMENTED)

0-0-2210 + 8 = -1410 = -E11

I 4 f

I 00 I 0

60256020 A

I II 11 II II II 10 II 14 If II FINAL
QUOTIENT= F2 FFE667.16 =
-0.410 (COMPLEMENTED)

Figure B-12. Example of Floating-Point Divide
(Dividend Positive, Divisor Negative)

B-19

SIGNIFICANT RESULTS

Certain multiply and divide instructions specify that the significant results of the product
or quotient be obtained. The significant bit count for a floating-point number equals the
number of bit positions in the number (excluding sign bit) minus the left-shift count
necessary to normalize the number. Refer to example in figure B-13.

A coefficient containing all zeros or all ones has a significant bit count of zero. Note
that in a nonzero coefficient that is an exact power of two, the positive form of the
coefficient results in a significant bit count that is one greater than the significant bit
count of the negative form of the same coefficient. The operation determines the
significance of an input operand as originally read from a register or from MCS before any
operations such as sign control or the left shift for odd exponents in square root are
performed.

Significant arithmetic determines which of the source operands contains the smaller
significant bit count and records that count. After the following arithmetic operation, the
sequence determines the significant bit count of the result after any necessary sign
correction. The input significant bit count and the result significant bit count are then
compared. If the significant bit count of the result is less than the significant bit count
of the input, the sequence left-shifts (with zeros shifted in) the result coefficient
according to the difference in significant bit counts and reduces the exponent accordingly.
If the result and input significant bit counts are equal, the sequence does not shift the
coefficient and does not adjust the exponent. If the result significant bit count is
greater than the input significant bit count, the operation right-shifts (end off with sign
extension) and increases the exponent accordingly. Note that for multiply, the entire
95-bit result (47 bits for 32-bit multiply) is shifted as required.

Exponent overflow, exponent underflow, and divide fault cause forced results as previously
described. Adjusting for significance can cause exponent overflow or underflow or it can
take a result out of the exponent overflow or underflow condition.

SQUARE ROOT OPERATIONS

In floating-point, square root operations, the following steps are performed.

1. The significance of the coefficient of the input operand is determined and recorded.

2. If negative, the input operand is complemented to its positive form.

3. If the exponent of the input operand is odd, it
coefficient obtained in step 2 is multiplied by two.
modification is performed.

is reduced by one and the
If the exponent is even, no

4. The machine now obtains the square root of the coefficient from step 3. Note that
enough zeros are attached to the right end of the coefficient to produce 23 result
bits (47 for 64-bit operands).

5. If the original input operand was negative, the result coefficient is complemented.
If the input operand was positive, no modification takes place.

6. The result exponent is formed by di vi ding the exponent by two and subtracting 1110
from the exponent obtained in step 3. (Subtract 2310 for 64-bit square root.)

B-20 60256020 A

7.

COEFFICIENT r SIGN BIT
I 1111 1111 lllO 1114 ITll II

0 100000000001000000000000 DIVIDEND=OO 001000. 16

" "

0 I 4 ?

loiooor oo ol
"

'
I 00

' •

LEFT SHIFT COUNT
TO NORMA}IZE = 1810

II II II II ti II II 14 'n II II

ti 10 1114 IT 11 II

DIVISOR= 00 000010.16

INITIAL QUOTIENT=
FC 001000.16

SIGNIFICANT BIT
COUNT • 2310-1810 = 15

0 I 4 ?

f!ooolo 1 ool SIGNIFICANT QUOTIENT=
04 000010 ...

~
EXPONENT

INCREASED
BY 8 = +4.

Figure B-13.

" NO. OF SIGNIFICANT
BITS = 15

Example of Significant Results of Floating-Point Divide

The result coefficient is adjusted to produce a coefficient with
significance as the input operand. The significance count obtained in
used in the operation. The exponent of the result is also adjusted to
for the change in magnitude of the result coefficient.

the same
step 1 is
compensate

8. A source operand having an all zero coefficient will produce a result with an all
zero coefficient. The operand exponent effectively divides by two by right-shifting
one place with sign extension. If the source operand is negative, data flag bit 45
is set. If the source operand is indefinite or machine zero, the result is
indefinite or machine zero, respectively. In these two cases, data flag bit 45 is
not set.

60256020 A B-21

Figure B-14 shows an example of a floating point, square root operation. In this example a
positive input source operand is used. Thus, no complementing is necessary •

.,

•
EXPONENT-:-2
(+4.;.2=+2)

34 7

&

RESULT EXPONENT
(+2-11=-9)

.,
11

1'1' II SI

0000000

11 II 12 15 16 19 20 23 24 27 28 31

o:ooo 0000 1000000000000000

I

II II II 11 19 10 H 14 1'1' 11 SI

" .. ISl4 l'l'H •

00000000

INPUT OPERAND 04 000100 16 =
256.ro x 24 = 409&. 10

RESULT COEFFICIENT (NOTE THAT THERE
IS A ZERO SIGN BIT ANO 12 RESULT BITS
TO THE LEFT OF THE BINARY POINT,
AND II RESULT BITS TO THE RIGHT
OF THE BINARY POINT.)

·RESULT COEFFICIENT(BINARY POINT
MOVED TO RIGHT END OF
COEFFICIENT)

RESULT (ADJUSTED FOR
SIGNIFICANCE)
(FE 000100) = 25610 X 2-2= 64 10

&

Figure B-14. Example of Floating-Point Square Root

B-22 60256020 A

G BITS AND TERMINATING CONDITIONS c

G BIT USAGES
Tables C-1 through C-5 provide the instruction G bit usages in a condensed form. Thus,
these tables provide quick lookup charts for determining the G bit control configuration for
a particular instruction to which they apply. Note that the G bit usages tables are
arranged according to instruction type (vector VT, sparse vector SV, and so on) and
according to function code within that type of instructions.

The key to the abbreviations used to designate the G bit usage conditions is given below.

G Bit Abbreviation Meaning

0 E Either 32- or 64-bit operands

1 c Control vector

2 0 Off set

3, 4 B Broadcast

5, 6, 7 s Sign controlT

5, 6, 7 I Optional index increment

Any x Defined in individual instruction description

t The operand flowchart (figure C-1) illustrates the order of operations when sign control
is selected.

60256020 A C-1

TABLE C-1. G BIT USAGES FOR VECTOR (VT) INSTRUCTIONS

I NOTE I
A blank space in the table indicates that
the corresponding G bit does not apply for
that instruction and must be a zero.

G Bit/Usage

Function Code 0 1 2 3 4 5 6 7

so E c 0 B B s s s
Sl E c 0 B B s s s
S2 E c 0 B B s s s
S3 c 0 B B

S4 E c 0 B B s s s
S5 E c 0 B B s s s
S6 E c 0 B B s s s
S7 c 0 B B

SS E c 0 B B s s s
S9 E c 0 B B s s s
SA c 0 B B

SB E c 0 B B s s s
SC E c 0 B B s s s
SF E c 0 B B s s s
90 E c 0 B

91 E c 0 B

92 E c 0 B

93 E c 0 B s s
94 E c 0 B B

95 E c 0 B B

96 c 0 B

97 c 0 B

9S E c 0 B

99 E c 0 B

9A E c 0 B

9B E c 0 B B

9C c 0 B

9D E c 0 B B x x x

C-2 60256020 A

TABLE C-2. G BIT USAGES FOR SPARSE VECTOR (VT) INSTRUCTIONS

G Bit/Usage

Fune ti on Code 0 l 2 3 4 5 6 7

AO E x x B B s s s
Al E x x B B s s s
A2 E x x B B s s s
A4 E x x B B s s s
AS E x x B B s s s
A6 E x x B B s s s
A8 E x x B B s s s
A9 E x x B B s s s
AB E x x B B s s s
AC E x x B B s s s
AF E x x B B s s s

TABLE C-l. G BIT USAGES FOR BRANCH (BR) INSTRUCTIONS

G Bit/Usage

Function Code 0 l 2 3 4 5 6 7

BO x x x x x x x x
Bl x x x x x x x x
B2 x x x x x x x
B3 x x x x x x x
B4 x x x x x x x
BS x x x x x x x

I NOTE I

Instructions 2F, 32, and 33 are not listed
in this table because their G bits are used
for control purposes and do not follow the
bit definitions at the beginning of this
section.

60256020 A C-3

TABLE C-4. G BIT USAGES FOR VECTOR MACRO (VM) INSTRUCTIONS

G Bit/Usage

Function Code 0 1 2 3 4 5 6 7

B7t E B x x x
B8 E c 0

BA tt E x x x
co E c B B

Cl E c B B

C2 E c B B

C3 E c B B

DO E c 0 B B

Dl E c 0

D4 E c 0 B B

D5 E c 0

DA E c
DB E c
DC E c B B

DF E c 0

t This instruction is undefined if G bits 4 and 6 are both set, or if G bits 6
and 7 are both set.

tt This instruction is undefined if G bits 6 and 7 are both set.

C--4 60256020 A

TABLE C-5. G BIT USAGES FOR NONTYPICAL (NT) INSTRUCTIONS

G Bit/Usage

Fune ti on Code 0 1 2 3 4 5 6 7

BB E B B

BC E x
BD E B B x
C4 E B B
C5 E B B

C6 E B B
C7 E B B

cs E c x
C9 E c x
CA E c x
CB E c x
cc x
CF E B s s s
D8 E c s
D9 E c s

60256020 A C-5

REGISTER FILE

.._ HTEST FOR Fo PERFORM L... APPLY s1GNL...aJ PERFORM F.P.
IN- SIGNIFICANCE ,..... CONTROL 1 .., OPERATION

,_..., DEFINITE COUNT IF (INPUT EXP. I. SET OF 41

........... YES

CENTRAL STORAGE

NOTE:

NECESSARY MAY BE IF DIVIDE
(BB, BF, 93, INCREMEN- FAULT.
AB, AF) TEO TO 2. SET OF 45

7000) IF NEGATIVE
OPERAND AT

SET OF 46 i===:;

THIS POINT
ON SORT

ADJUST
f------1 SIGNIFICANCE~

IF NECESSARY
(BB, BF, 93,
AB,AF)

I--
CF, 08, 09
ONLY

SET RESULT

1 INDEFINITE

COMPARE RESULT
ANO DATA FLAG
INFORMATION
RETURNED TO

©A 7000 EXPONENT CAUSED
BY APPLICATION OF SIGN
CONTROL IS NOT TREATED
AS AN OPERAND INDEFINITE

,__C~F,,__D_8~,_D_9~0_N_LY~~~~~__.. ALGORITHM

BY THE FLOATING-POINT COMPARE.

TEST
RESULT
EXPONENT
I. IF 7X
SET OF 42

OF 46
2. 1F ex
SET OF 43

Figure C-1. Operand Flow For Instructions Having Sign Control

INSTRUCTION TERMINATING CONDITIONS

CENTRAL
STORAGE ,...,

For instructions which terminate upon exhausting the length of a data field, data string or
a vector: if that item is exhausted prior to the first operand fetch, the instruction
becomes a no-op; no data is fetched and no data flags are altered.

The following paragraphs and tables address the termination of multiple operand
instructions. Sparse vector instructions terminate as follows:

Sparse vector instructions terminate when vector Z (the result order vector) is exhausted.
If the Z designator is zero or if the Z length is zero, no data flags are set and the
instruction is a no-op. Zero length or short source order vectors are extended, as
required, with zero bits. If vector Z has a nonzero length and the C designator is zero,
the results of the instruction are undefined.

The string instruction terminates when vector C (the result string) is exhausted.

The tables are arranged according to the general instruction types and that the instruction
codes within that type are grouped, as much as possible, according to common data field
terminating conditions.

C-6 60256020 A

Note that in tables C-6 through c-12 1 M-zero and N-one designate machine zero and normalized
one 1 respectively. In addition 1 the availability of a control vector for the result field
is (C or Z) designated by a yes or no and in the case of the vector macro or nontypical
instructions. the yes condition is followed by an I or 0 designator if the control vector
applies to an input or output 1 respectively.

Instruction
Code

80, 81, 82,
83, 84, 85,
86, 87, and 8A

88, 89, 88,
8C, and 8F

90, 91, 92,
and 93

94 and 95

96, 97, 98,
99, and 9A

98 and 90

9C

M-Zero
N-One
No-Op
NA
I
0

I NOTE I
• Machine Zero 1

• Normalized One
• No Operation
• Not Applicable
• Input
• Output

TABLE C-6. VECTOR INSTRUCTION TERMINATING CONDITIONS

A Field 8 Field

A Field 8 Field
Result if Type of Length Result if Type of Length Result 1.f
A Field 1.s Extension Initially 8 Field is Extension Initially C Field is
Exhausted (If Any) Zero Exhausted (If Any) Zero Exhausted

Extend M-Zero Extend Extend M-Zero Extend Terminate

Extend N-One Extend Extend N-One Extend Terminate

Extend M-Zero Extend NA NA NA Terminate

Extend M-Zero Extend Extend M-Zero Extend Terminate

Extend M-Zero Extend NA NA NA Terminate

Extend M-Zero Extend Extend M-Zero Extend Terminate

Extend M-Zero Extend NA NA NA Terminate

C Field

C Field
Length

Initially Control
Zero Vector

No-Op Yes

No-Op Yes

No-Op Yes

No-Op Yes

No-Op Yes

No-Op Yes

No-Op Yes

60256020 B C-7

TABLE C-7. VECTOR MACRO INSTRUCTION TERMINATING CONDITIONS

A Field (I) B Field (I) c Field (0)

A Field B Field c Field
Result if Type of Length Result if Type of Length Result if Length

Instruction A Field is Extension Initially B Field is Extension Initially C Field is Initially Control
Code Exhausted (If any) Zero Exhausted (If any) Zero Exhausted Zero Vector

B7 Terminate NA No-Op NA NA NA NA NA tt No

B8 Extend M-Zero Extend NA NA NA Terminate No-Op Yes (0)

BA Terminate NA No-Op NAtt NA NA NA NA No

co, Cl, C2, Terminate NA No-Op Terminate NA No-Op NA NA Yes (I)
and C3 t t

DO and D4 Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op Yes (0)

Dl and DS Extend M-Zero Extend NA NA NA Terminate No-Op Yes (0)

DA and DB Terminate NA No-Op NA NA NA NA NA Yes (I)

DC Terminate NA No-Op Terminate NA No-Op NA NA Yes (I)

DF NA NA NA NA NA NA Terminate No-Op Yes (0)

tThese instructions may terminate for reasons other than the exhausting of field length,

ttThese multipath instructions no-op if Group Length equals zero.

TABLE C-8. STRING INSTRUCTION TERMINATING CONDITIONS

Instruction A Field (I} C Field (0)
Code

Result if A Field Type of Extension A Field Length Result if C Field C Field Length
is Exhausted (If Any) Initially Zero is Exhausted Initially Zero

F8 Extend B designator byte Extend Terminate No-Op

TABLE C-9. LOGICAL STRING INSTRUCTION TERMINATING CONDITIONS

Instruction A Field (I) B Field (I) c Field (0)

Code
Result if Type of A Field Result if Type of B Field Result if C Field
A Field is Extension Length Ini- B Field is Extension Length Ini- C Field is Length Ini-
Exhausted (If Any) tially Zero Exhausted (If Any) tially Zero Exhausted tially Zero

FO, Fl, F2, F3, Extend Zero bits Extend Extend Zero bits Extend Terminate No-Op
F4, FS, F6, F7

C-8 60256020 A

Instruction
Code

AO, Al, A2,
A4, AS, A6,
AS, A9, AB

AC, AF

Instruction
Code

14

15 and 16

lC and lD

lE

lF

28

7D

TABLE C-10. SPARSE VECTOR INSTRUCTION TERMINATING CONDITIONS

A Field (I) B Field (I) C Field (0)

Result if Type of A/X Field Result if Type of B/Y Field Result tf
A/X Field 1s Extension Length Ini- B/Y Field is Extension Length Ini- C/Z Field

Exhausted (If Any) tially Zero Exhausted (lf Any) tially Zero Exhausted

NA NA NA NA NA NA NA
X Field_J_I) Y Field _JI Z Fie

Extend Zero bits Extend Extend Zero bits Extend Terminate

TABLE C-11. TERMINATING CONDITIONS FOR NONTYPICAL (32-BIT FORMAT)
INSTRUCTIONS HAVING MULTIPLE OPERANDS

C/Z Field
Length Ini-
tially Zero

NA
]1ll

No-Op

R Field (I) S Field (I) T Field (0)

Result if R Field R Field Length Result if S Field S Field Length Result if T Field T Field Length
is Exhausted Initially Zero is Exhausted Initially Zero is Exhausted Initially Zero

Exit loop No-Op Exit loop Zero R bits Terminate No-Op
skipped

Exit loop No-Op Exit loop No-Op Terminate No-Op

Exit loop Strings of all Exit loop No-Op Terminate No-Op
O's or l's

Terminate t No-Op NA NA NA NA

Terminate No-Op NA NA NA NA

NA NA NA NA Terminate t No-Op

Terminate data No data trans- NA NA Terminate data No data trans-
transfer to fer to transfer from fer from
register file. register file. register file. register file.

tThese instructions may terminate for reasons other than the exhausting of the field length.

60256020 A C-9

TABLE C-12. NONTYPICAL (64-BIT FORMAT) INSTRUCTION TERMINATING CONDITIONS

A Field (I) B Field (I) z Field (0)

A Field B Field Z Field
Result if Type of Length Result if Type of Length Result if Length

Instruction A Field is Extension Initially B Field is Extension Initially Z Field is Initially Control
Code Exhausted (If Any) Zero Exhausted (If Any) Zero Exhausted Zero Vector

BB, BC, and NA NA NA NA NA NA Terminate No-Op No
BO (I) (I)

C4, cs, C6, Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op No
and Cl (0) (0)

C8, C9, CA, Terminate NA No-Op Exit search NA Exit NA NA Yes (0)
and CB iteration search

iteration

cc Terminate NA No-Op NA NA NA NA NA No

CF Terminate NA No-Op Extend M-Zero Extend NA NA No

08 and 09 Terminate NA No-Op NA NA NA NA NA Yes (I)

C-10 60256020 A

DATA FLAG APPLICATIONS TO INSTRUCTIONS D

msm "
CODE DATA FLAG BITS 54
' 37 38 39 41 42 43 45 46 47 55

00
01
02
03

04 x
05
06
07

08
09
OA
OB

oc
OD
OE
OF

10 x
11
12
13

14
15
16
17

13
19
lA
lB

lC
lD
lE x
lF

60256020 A

msm
CODE
l 37

20
21
22
23

24
25
26
27

28
29
2A
2B

2C
2D
2E
2F

30
31
32
33

34
35
36
37

38
39
3A
3B

3C
3D
3E
3F

53
DATA FLAG BITS 54

38 39 41 42 43 45 46 47 55

x
x
x
x

x
x
x
x

x

0-1

INSTR
CODE
+ 37

40
41
42
43

44
45
46
47

48
49
4A
4B

4C
4D
4E
4F

50
51
52
53

54
55
56
57

58
59
5A
5B

5C
5D
5E
5F

D-2

53
DATA FLAG BITS 54

38 39 41 42 43 45 46 47 55

x x x
x x

x x x

x x x
x x

x x x

x x x
x x x

x x x

x x x x

x x x x

x
x
x

x x x

x x x
x x

x x x

x x
x x

INSTR
CODE
~ 37

60
61
62
63

64
65
66
67

68
69
6A
6B

6C
6D
6E
6F

70
71
72
73

74
75
76
77

78
79
7A
7B

7C
7D
7E
7F

53
DATA FLAG BITS 54

38 39 41 42 43 45 46 47 55

x x x
x x x
x x x

x x x
x x x
x x x

x x x
x x x

x x x

x x x x

x x x x

x
x
x

x x x

x x x
x x
x x x
x x x

x x x

60256020 A

INSTR 53 INSTR S3
GODE DATA FLAG BITS 54 + 37 3S 39 41 42 43 4S 46 47 SS

~ODE DATA FLAG BITS S4 + 37 3S 39 41 42 43 4S 46 47 SS

so x x x AO x x x
Sl x x Al x x x
S2 x x x A2 x x x
S3 A3

S4 x x x A4 x x x
SS x x AS x x x
S6 x x x A6 x x x
S7 A7

SS x x x AS x x x
S9 x x x A9 x x x
SA AA
SB x x x AB x x x

SC x x x x AC x x x x
SD AD
SE AE
SF x x x x AF x x x x

90 x BO x
91 x Bl x
92 x B2 x
93 x x x B3 x

94 x x x B4 x
9S x x BS x
96 x x x B6
97 x x x B7

9S BS
99 x x x B9
9A BA
9B BB

9C x x BC
9D BD
9E BE
9F BF

602S6020 A D-3

INSTR
CODE
~ 37

co x
Cl x
C2 x
C3 x

C4
C5
C6
C7

C8
C9
CA
CB

cc
CD
CE
CF

DO
Dl
D2
D3

D4
D5
D6
D7

D8
D9
DA
DB

DC
DD
DE
DF

D-4

53
DATA FLAG BITS 54

38 39 41 42 43 45 46 47 55

x
x
x
x

x
x
x
x

x
x
x
x

x

x x
x x

x x
x x x

x x
x x

x x x
x x x

x x x

x x x

INSTR
CODE
+ 37

EO
El
E2
E3

E4
E5
E6
E7

E8
E9
EA
EB

EC
ED
EE
EF

FO
Fl
F2
F3

F4
F5
F6
F7

F8
F9
FA
FB

FC
FD
FE
FF

53
DATA FLAG BITS 54

38 39 41 42 43 45 46 47 55

x
x
x
x

x
x
x
x

60256020 A

INDEX

Absolute bounds address 2-25
Add unit 2-33
Addressing modes 5-13
Associative unit 2-8
Associative microcode memory 2-16
Assoc ia ti ve registers 5-19

Bank address 2-50
Bank busy checks 2-3
Branch instructions 4-50

Central memory operation 2-48
Central processor unit (CPU) 2-1
Chassis power 1-2
Clock 2-51
Compare instructions 4-140
Cooling 1-2
Common register file for monitor and job

modes 5-33
CPU characteristics 1-4
CPU word address (bits 37 through 58) 2-40

Data flag branch register
Data flag register control
Delay unit 2-35

5-33
2-24

External interrupts 5-5

Field length registers
Floating-point pipeline
Functional descriptions

2-30
2-31
2-1

General definitions and programming
guides 5-40

Halts/interrupts 2-30

60256020 B

Index instructions 4-32
Inputs to VSU 2-20
Instruction descriptions 4-1
Instruction issue unit 2-6
Instruction stack 2-6
Interfacing between SCA and SCI 2-54
Interrupt counters 2-23
Interrupt and branch control 2-22
Interrupts 5-3
Invisible package 5-6
I/O ports 2-42
I/O priority 2-47

Job interval timer 5-23

Load/store unit 2-12
Logical string instructions 4-118
Logical unit 2-35

Maintenance control unit (MCU) 2-54
Major system components description 1-5
Measurements and weights 1-2
Memory degradation 2-52
Memory interface 2-52
Monitor and job modes 5-1
Monitor instructions 4-155

Nontypical instructions 4-122

Operating instructions 3-1

Priority unit 2-2
Programming information 5-1

Real-time counters 5-22
Register file 5-24

Index-1

Register file read/writes 2-30
Register instructions 4-34
Retry unit 2-25
RNS/branch 2-6

Scalar 2-2
Scalar floating-point 2-13
Scalar microcode memories 2-15
SECDED 2-40
SECDED error latching hardware 2-41
Shift unit 2-35
Sparse vector instructions 4-88
Startup procedures 3-1
Storage and maintenance access 2-47
Stream input operation 2-28
Stream addressing pipeline (APL) 2-26
Stream output operation 2-28
String instruction 4-118
System channel adapter (SCA) 2-13

Index-2

System channel interface (SCI)
System stop 3-4
Systems communication 2-45

Timers 2-23
Vector instructions 4-64

4-101

2-54

Vector macro instructions
Vector processor 2-18
Vector setup and recovery
Vector stream input (VST)
Vector stream output (VSW)
VSU operation 2-21

unit (VSU)
2-29

2-37

VSU microcodes 2-26

Write one (pipelines and register file)
2-37

Write two (VSS,string) 2-38

2-18

60256020 B

w z
::;

~
9
<1
I
::>
u

COMMENT SHEET

MANUAL TITLE: CDC CYBER 200 Model 205 Computer System
Hardware Reference Manual

PUBLICATION NO.: 60256020 REVISION: C

STREET ADDRESS=------------------------------

CITY: ______________ STATE: _______ ZIP CODE: _______ _

This form is not intended to be used as an order blank. Control Data Corporation welcomes your evaluation of
this manual. Please indicate any errors, suggested additions or deletions, or general comments below (please
include page number references).

0 Please Reply C No Reply Necessary

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

rorn rorn
---~

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MINN.

POSTAGE WILL BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

ARH219
4201 North Lexington Avenue

Saint Paul, Minnesota 55112

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

---~ FOLD FOLD I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t

UJ z
::::;

<..'.)
z
9
<(

......
:::::>
u

CORPORATE HEADQUARTERS P.O. BOX 0 MINNEAPOLIS. MINNESOTA 55440

~~
CONT~OL

DATA

./

	0000
	0001
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	3-01
	3-02
	3-03
	3-04
	3-05
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	4-075
	4-076
	4-077
	4-078
	4-079
	4-080
	4-081
	4-082
	4-083
	4-084
	4-085
	4-086
	4-087
	4-088
	4-089
	4-090
	4-091
	4-092
	4-093
	4-094
	4-095
	4-096
	4-097
	4-098
	4-099
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-148
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	4-156
	4-157
	4-158
	4-159
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	B-21
	B-22
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	Index-01
	Index-02
	replyA
	replyB
	xBack

