
,.

CJ I:'\ CONTl\.OL DATA
~·r::J CO~OR{\TION

60256010

~~--
CDC® CYBER 200 MODEL 203
COMPUTER SYSTEM

(___ __
(.

(~

c
(

(

(

Preliminary Edition
HARDWARE REFERENCE MANUAL

COMPUTER INSTRUCTION INDEX

Instruction Page Instruction Page Instruction Page Instruction Page Instruction Page
Code Number Code Number Code Number Code Number Code Number

00 6-244 34 6-34 68 6-37 9B 6-80 CFt 6-200

03 6-241 35 6-57 69 6-37 9C 6-82 DO 6-110

04 6-241 36 6-57 6B 6-37 AOt 6-94 Dl 6-108

I 05 6-242.. 1 37 6-196 6C 6-3 7 Alt 6-94 D4 6-110

06 6-243 38 6-32 6D 6-35 A2t 6-94 D5 6-108

08 6-244 39 6-198 6E 6-36 A4t 6-94 D6tt 6-165

09 6-58 3A 6-198 6F 6-37 A5t 6-94 D7ttt 6-174

OA 6-247 3B 6-54 70 6-38 A6t 6-94 D8t 6-224

oc 6-245 3C 6-195 71 6-38 A8t 6-98 D9t 6-224

OD 6-245 3D 6-195 72 6-38 A9t 6-98 DA 6-105

OE 6-245 3E 6-30 73 6-42 ABt 6-98 DB 6-106

OF 6-246 3F 6-30 74 6-47 Act 6-98 DC 6-124

10 6-42 40 6-37 75 6-47 AFt 6-9S DD 6-213

11 6-42 41 6-37 76 6-42 BO 6-60,62, DE 6-113

12 6-196 42 6-37 77 6-42 216,217
DF 6-116

13 6-196 44 6-37 78 6-3S Bl 6-60, 62.
EO 6-135 216,217

14 6-205 45 6-37 '19 6-3S
B2 6-60, 62, El 6-135

15 6-207 46 6-37 7A 6-3S 216,217 E2 6-135
16 6-207 4S 6-37 7B 6-41 B3 6-60, 62, E3 6-135
17 6-211 49 6-37 7C 6-42 216,217

E4 6-151

lS 6-231 4B 6-37 7D 6-19.7 B4 6-60, 62,
E5 6-151 216,217

19 6-234 4C 6-37 7E 6-196
B5 6-60, 62, E6 6-151

lA 6-23S 4D 6-30 7F 6-196 216,217 E7 6-151

lB 6-23S 4E 6-30 sot 6-73 B6 6-64 ES 6-190

lC 6-23S 4F 6-37 Slt 6-73 B7 6-122 E9 6-190

lD 6-23S 50 6-3S S2 t 6-73 BS 6-111 EA 6-161

lE 6-23S 51 6-3S S3 6-74 B9 6-226 EB 6-176
lF 6-241 52 6-3S S4t 6-73 BA 6-119 EC 6-13S

20 6-50 53 6-42 S5t 6-73 BB 6-19S ED 6-13S

21 6-50 54 6-47 S6t 6-73 BC 6-199 EEttt 6-170
22 6-50 55 6-47 S7 6-74 ED 6-203 EFttt 6-173
23 6-50 5S 6-3S SSt 6-73 BE 6-31 FO 6-192
24 6-50 59 6-3S S9t 6-73 BF 6-31 Fl 6-192
25 6-50 5A 6-3S SBt 6-73 co 6-102 F2 6-192

26 6-50 5B 6-41 set 6-73 Cl 6-102 F3 6-192

27 6-50 5C 6-42 SFt 6-73 C2 6-102 F4 6-192

2S 6-234 5D 6-42 90 6-75 C3 6-102 F5 6-192

29 6-234 5E 6-196 91 6-75 C4 6-2 lS F6 6-192
2A 6-4S 5F 6-196 92 6-75 C5 6-218 F7 6-192

2B 6-4S 60 6-37 93 t 6-S2 C6 6-2 lS FSttt 6-15S
2C 6-33 61 6-37 94 6-S6 C7 6-2 lS F9ttt 6-15S
2D 6-33 62 6-37 95 6-S6 cs 6-221 FA 6-154
2E 6-33 63 6-3S 96 6-82 C9 6-221 FE 6-140

2F 6-51 64 6-37 97 6-S2 CA 6-221 FC 6-140

30 6-33 65 6-37 9S 6-75 CB 6-221 FDttt 6-163
31 6-57 66 6-37 99 6-75 CD 6-31 FEtt 6-165

32 6-54 67 6-38 9A 6-75 CE 6-31 FFtt 6-165

33 6-52

tThese instructions have sign control capability.
tt Automatic index incrementing takes place on these instructions. (Refer to the individual instruc-

tion descriptions.)
ttt Delimiters may be used on these instructions; automatic index incrementing also takes place,

(Refer to the individual instruction descriptions.)

0 60256010

0 ~ ~ CONTRPL DATA

0
CO~O~TION

0

0

0

0 CDC® CYBER 200 MODEL 203
COMPUTER SYSTEM

0

0

0

0
0

0

0

0

0

• •
0

0 Preliminary Edition
HARDWARE RE.FER.ENCE MANUAL

•

REVISION RECORD
REVISION DESCRIPTION

01 Preliminary manual.

(04-15-78)

02 Manual revised; makes miscellaneous technical and editorial corrections. Revised pages are:

(05-15-79) Front Cover. Inside Front Cover, Title Page. ii through xvi. 1-1 through 1-4. 2-2. 2-5 through

2-7. 3-1. 3-3, 3-5 through 3-7, 3-9, 3-12 through 3-14, 3-16 through 3-24, 3-30, 3-32, 3-35,

3-36, 3-49, 3-50. 4-1, 4-2, 4-12. 4-16. 4-21, 4-22. 4-36, 4-37. 5-1, 5-10 through 5-12, 5-39,

6-10, 6-11, 6-28, 6-60, 6-61. 6-62, 6-92. 6-94, 6-95, 6-99, '6-100. 6-101, 6-107, 6-117. 6-216,

6-217, 6-221, 6-241, AB, All, B14, B15, C2, and Comment Sheet. Added pages are: xvii.

xviii, 6-60.1/6-60.2, 6-100.1/6-100.2, 6.;.216.1, 6-216.2. and 6-242.1/6-242.2. This manual

contains preliminary information which is subject to change without notification to manualholders.

....

Publication No.
60256010

REVISrON LETTERS I, 0, Q AND X ARE NOT USED

© 1978, 1979
by Control Data Corporation

Printed in the United States of America

ii

Address comments concerning this
manual to:
Control Data Corporation
Publications and Graphics Division
4201 North Lexington Avenue
St. Paul, Minnesota 55112

or use Comment Sheet in the back of
this manual.

0

0

0

0
,G.,,
\ - .j

.nr~
'1<11,J)

./--\.
\iL_y

C\
I

()

(}

(
.. ·--11\

. . i'

0
0

0

0
0
0

0
0

0
0

0
.

'

0
0

0
0
0

0

0

0

0

•

LIST OF EFFECTIVE PAGES

New features, as well as changes, deletions, and additions to information in this manual, are indicated by bars in the margins or by a dot
near the page number if the entire page is affected. A bar by the page number indicates pagination rather than content has changed.

PAGE REV PAGE REV PAGE REV PAGE REV PAGE REV

Front Cover -
Inside Front

3-26 01
3-2 7 01

4-30 01
4-31 01

6-7 01
6-8 01

6-65 01
6-66 01

Cover -
Title Page -
ii 02
iii 02

3-28 01
3-29 01
3-30 02
3-31 01

4-32 01
4-33 01
4-34 01
4-35 01

6-9 01
6-10 02
6-11 02
6-12 01

6-67 01
6-68 01
6-69 01
6-70 01

iv 02
v 02

3-32 02
3-33 01

4-36 02
4-37 02

6-13 01
6-14 01

6-71 01
6-72 01

vi 02 3-34 01 Divider - 6-15 01 6-73 01

vii 02 3-35 02 5-1 02 6-16 01 6-74 01

viii 02 3-36 02 5-2 01 6-17 01 6-75 01
ix 02 3-37 01 5-3 01 6-18 01 6-76 01

x 02 3-38 01 5-4 01 6-19 01 6-77 01

xi 02 3-39 01 5-5 01 6-20 01 6-78 01

xii 02
xiii 02

3-40 01
3-41 01

5-6 01
5-7 01

6-21 01
6-22 01

6-79 01
6-80 01

xiv 02 3-42 01 5-8 01 6-23 01 6-81 01

xv 02 3-43 01 5-9 01 6-24 01 6-82 01

xvi 02 3-44 01 5-10 02 6-25 01 6-83 01

xvii 02
xviii 02

3-45 01
3-46 01

5-11 02
5-12 02

6-26 01
6-2 7 01

6-84 01
6-85 01

Divider -
1-1 02

3-47 01
3-48 01

5-13 01
5-14 01

6-28 02
6-29 01

6-86 01
6-87 01

1-2 02 3-49 02 5-15 01 6-30 01 6-88 01

1-3 02 3-50 02 5-16 01 6-31 01 6-89 01

1-4 02 3-51 01 5-17 01 6-32 01 6-90 01

Divider -
2-1 01
2-2 02
2-3 01
2-4 01
2-5 02

3-52 01
3-53 01
3-54 01
3-55 01
Divider -
4-1 02

5-18 01
5-19 01
5-20 01
5-21 01
5-22 01
5-23 01

6-33 01
6-34 01
6-35 01
6,-36 01
6-37 01
6-38 01

6-91 01
6-92 02
6-93 01
6-94 02
6-95 02
6-96 01

2-6 02 4-2 02 5-24 01 6-39 01 6-97 01

2-7 02 4-3 01 5-25 01 6-40 01 6-98 01

Divider - 4-4 01 5-26 01 6-41 01 6-99 02

3-1 02
3-2 01

4-5 01
4-6 01

5-27 01
5-28 01

6-42 01
6-43 01

6-100 02
6-100.1/

3-3 02
3-4 01

4-7 01
4-8 01

5-29 01
5-30 01

6-44 01
6-45 01

6-100.2 02
6-101 02

3-5 02 4-9 01 5-31 01 6-46 01 6-102 01

3-6 02 4-10 01 5-32 01 6-47 01 6-103 01

3-7 02 4-11 01 5-33 01 6-48 01 6-104 01

3-8 01
3-9 02
3-10 01
3-11 01

4-12 02
4-13 01
4-14 01
4-15 01

5-34 01
5-35 01
5-36 01
5-37 01

6-49 01
6-50 01
6-51 01
6-52 01

6-105 01
6-106 01
6-107 02
6-108 oi

3-12 02 4-16 02 5-38 01 6-53 01 6-109 01

3-13 02
3-14 02

4-17 01
4-18 01

5-39 02
5-40 01

6-54 01
6-55 01

6-110 01
6-111 01

3-15 01 4-19 01 5-41 01 6-56 01 6-112 01

3-16 02 4-20 01 5-42 01 6-57 01 6-113 01

3-17 02 4-21 02 5-43 01 6-58 01 6-114 01

3-18 02
3-19 02

4-22 02
4-23 01

5-44 01
Divider -

6-59 01
6-60 02

6-115 01
6-116 01

3-20 02 4-24 01 6-1 01 6-60.1/ 6-117 02

3-21 02 4-25 01 6-2 01 6-60.2 02 6-118 01
3-22 02 4-26 01 6-3 01 6-61 02 6-119 01

3-23 02 4-27 01 6-4 01 6-62 02 6-120 01

3-24 02 4-28 01 6-5 01 6-63 01 6-121 01

3-25 01 4-29 01 6-6 01 6-64 01 6-122 01 -
iii

PAGE REV PAGE

6"."123 01 6-194
6-124 01 6-195
6-12 5 01 6-196
6-126 OL 6-197
6-127 01 6"." 198
6-128 01 6-199
6-129 01 6-200
6-130 01 6-201
6d31 01 6-202
6"'.'132 01 6-203
6-133 01 6-204
6-134 01 6-205
6-135 01 6-206
.6-136 01 6-207
6-137 01 6-208
6-138 01 6-209
6-139 01 6-210
6-140 01 6-211
6-141 01 6-212
6-142 01 6-213
6-143 01 6-214
6-144 01 6-215
6-145 01 6-216
6-146 01 6-216.1
6-147 01 6-216.2<
6-148 01 6-217
6-149 01 6-218
6-150 01 6-219
6-151 01 6-220
6-152 01 6-221
6-153 01 6-222
6-154 01 6-223
6-155 01 6-224
6-156 01 6-225
6-157 01 6-226
6-158 01 6-227
6-159 01 6-228
6-160 01 6-229
6-161 01 6-230
6-162 01 6-231
6-163 01 6-232
6-164 01 6-233
6-165 01 6-234
6-166 01 6-235
6-167 01 6-236
6-168 01 6-237
6-169 01 6-238
6-170 01 6-239
6:-171 01 6-240
6-172 01 6-241
6-173 01 6-242
6-174 01 6-242. 1 I
6-175 01 6-242.2
6-176 01 6-243
6-177 01 6-244
6-178 01 6-245
6-179 01 6-246
6-180 01 6-247
6-181 01 Divider,
6-182 01 A-1
6-183 01 A-2
6-184 01 A-3
6-185 01 A-4
6-186 01 A-5
6-187 01 A-6
6-188 01 A-7
6-189 01 A-8
6-190 01 A-9
6-191 01 A-10
6-192 01 A-11
6-193 01

iv

REV PAGE

01 A-12
01 A-13
01 A-14
01 A-15
01 A-16
01 A-17
01 A-18
01 A-19
01 Divider
01 B-1
01 B-2
oi B-3
01 B-4
01 B-5
01 B-6
01 B-7
01 B-8
01 B-9
01 B-10
01 B-11
01 B-12 -
01 B-13
02 B-14
02 B-15
02 B-16
02 B~17

01 B-18
01 B-19
01 B-20
02 B-21
01 B-22
01 B-23
01 B-24
01 Divider
01 C-1
01 C-2
01 C-3
01 C-4
01 C-5
01 C-6
01 C-7
01 Divider
01 D-1
01 D-2
01 D-3
01 D-4
01 Comment
01 Sheet
01 Back
02 Cover
01

02
01
01
01
01
01
-
01
01
01
01
01
01
01
02
01
01
02

REV

01
01
01
01
01
01
01
01
-
01
01
01
01
01
01
01
01
01
01
01
01
01
02
02
01
01
01
01
01
01
01
01
01
-
01
02
01
01
01
01
01
-
01
01
01
01

02

-

PAGE REV PAGE REV

60256010 02

'0 ... ' I '

0

0

0

.·~
\.-4,j

,r-"
(~
l,it. .) ,_,,lo

0

0

0
0
0

0
0

0

0

0

0

0
0

0

0
0
0

0

0
0

0

PREFACE

This manual contains hardware reference information for the CDC® CYBER 200 Model

2 03 Computer System.

RELATED PUBLICATIONS

Other manuals applicable to the CDC CYBER 200 Model 203 Computer System and

associated equipment include the following.

Control Data Publication Publication Number

CYBER 200 Model 203 Computer System

Refrigeration System

Hardware Maintenance Manual

INTEBRID® Circuits

Customer Engineering Manual

Motor-Generator Sets

Electric Machinery

Hardware Maintenance Manual, Volume 1 of 2

Motor-Generator Sets

Electric Machinery

Hardware Maintenance Manual, Volume 2 of 2

Large- and Medium-Scale Computer Systems

Site Preparation Manual

Section 1 - General Information

CYBER 200 Model 203 Computer System

Site Preparation Manual

Section 2 - System Data··

STAR Peripheral Stations

Hardware Reference Manual

STAR Peripheral Stations

Hardware Maintenance Manual (General Description,

Maintenance,, Installation, Cabling, and Power Distribution

Diagrams)

60256010 02

60329810

60201000

60166800

60423100

60275100

60381610

60405000

60325300

v •

Control Data Publication

STAR Peripheral Stations

Hardware Maintenance Manual (Diagrams)

Station Buffer Unit Chassis 0 (Core Control)

Station Buffer Unit Chass is 1 (Interfaces)

Station Control Unit

Station Display Unit

Publication Number

60382000 and

60406700

60382100 and

60406800

60362900

60382 500

These manuals are available on a controlled distribution basis only from:

01$Cl.AIMERS

Control Data Corporation

CYBER 200 Publications Distribution

42 90 Fernwood A venue

St. Paul,, Minnesota 55112

This manual contains preliminary information which is subject to change without

notification to manual holders.

This product is intended for use only as described in this document. Control Data

cannot be responsible for the proper functioning of undescribed features or undefined

parameters.

• vi 60256010 02

('') I 1t1

0 ,
'

0

10,','.' 1
11 I

0

<~
:'(_)')

. ./

;f·-...

:.'l __ ,,;'

(f-,.,,

,,,_,,.,'

·C· ·'~, · .. #

<~"
Ca .·.
'-"

()

(_)

0

0

0
CONTENTS

0

0
1. GENERAL DESCRIPTION 1-1 Load/Store Unit 3-21

0

0

General 1-1 Scalar Floating Point 3-22 I

I Central Computer Characteristics 1-3 Scalar Microcode Memories 3-30

Central Processor 1-3 Vector Processor 3-34

Central Memory 1-4 Vector Stream 3-35

0
Input/Output 1-4 Microcode (VMIC) 3-43

Vector Floating Point 3-46

2. CENTRAL MEMORY 2-1 Input/Output Channels 3-50

0 Memory Operation 2-1
Assembly /Disassembly 3-50

I/O Data 3-50

0
Memory Access and Control 2-3

I/O Addressing
Stack Request 2-4

3-51

I/ 0 Channel Priority 3-53
Bank Address 2-4 System Communications 3-54

(] I .

I
I

Absolute Address 2-4

Clock 2-4
4. MAINTENANCE CONTROL

Write Control 2-4 UNIT 4-1

Write Data 2-4
Description 4-1

0
Sync 2-4

Master Clear
MCU /CPU Interface 4-1

2-4
MCU /Microcode Memory Interface 4-21

Read Data 2-5
Microcode Memory Channel

0 Memory Interface 2-5 Programming 4-21

Memory Degradation 2-7 Microcode Switches 4-23

0
Stream Microcode Status 4-25

3. CENTRAL PROCESSOR UNIT 3-1 MCU Monitoring 4-25

0
Description 3-1 Display Registers 4-27

Scalar Processor 3-1 Monitoring Counters 4-30

Priority Unit 3-4 Logic Fault Monitoring 4-36

0 Single Error Correction Double Temperature and Dew Point

Error Detection (SECDED) 3-7 Monitoring 4-36 I

0
SECDED Error Latching Power Fail Monitoring 4-37

Hardware 3-10 Compressor Monitoring 4-37

Associative Unit 3-13

0 I
Instruction Issue 3-17 5. PROGRAMMING

Register File 3-20 CON SID ERA TION S 5-1

Branch/Instruction Stack 3-21 General 5-1

0 Monitor and Job Modes 5-1

0 60256010 02 vii

(

-)t

.J

()

Exchange from Monitor Mode Illegal Instructions 5-40
.to Job Mode 5-2

Instructions Which Cause c
Illegal Instruction in Monitor Undefined Results or
Mode 5-2 Operations 5-40

Exchange from Job Mode to Item Count 5-41
Monitor Mode 5-3

Field Length and Offset 5-41
Interrupts 5-4

Index 5-42
Storage Access Interrupts 5-4

Data Fault 5-42
cl

External Interrupts 5-6 Operand Size Definitions 5-42
I/0 Channel Interrupt Lines 5-6 Restrictions on Self-Modifying c
Monitor Interval Timer Programs 5-43
Interrupt 5-7 Result Vector 64-Sword

Invisible Package 5-7 Lookahead 5-44

Addressing Modes 5-10
(-~,

Virtual Addressing 5-10 6. INSTRUCTIONS 6-1 \'-.)
Operation of Virtual Addressing 5-17

General 6-1
Absolute Address 5-17

Instruction Word Formats 6-1
Real-time Counters 5-19 Instruction Designators 6-1

Free Running Clock Counter 5-19
Unused Bit Areas 6-1

Monitor Interval Timer 5-19 Instruction Types 6-10
Job Interval Timer 5-20

Instruction Descriptions 6-29
Register File 5-20

Index Instructions 6-30
Register File Restrictions 5-21 3E Enter (R) with I (16 Bits) 6-30
Common Register File for

5-29 3F Increase (R) by I Monitor and Job Modes (16 Bits) 6-30
Data Flag Branch Register 5-30

4D Half Word Enter (R)
Data Flags 5-31 with I (16 Bits) 6-30

Mask Bits 5-31 4E Half Word Increase (R)

Product Bits 5-31 by I (16 Bits) 6-30 /,--.°",

CD Half Word Enter (R) Dynamic Inclusive OR for with I (24 Bits) 6-31 Product Bits 5-32

"l._j

CE Half Word Increase (R) Data Flag Branch Enable Bit 5-32 with I (24 Bits) 6-31
Free Data Flags 5~32

BE Enter (R) with I (48 Bits) 6-31
Monitoring Counter Enable Flags 5-32

BF Increase (R) by I
SCALAR Register Instruction (48 Bits) 6-31 C,1 ·1

,_)!

Flag 5-32 38 Transmit (R Bits 00-15)
Data Flag Branch Operation 5-38 to (T Bits 00-15) 6-32

Data Flag Branch Timing Register Instructions 6-32
Considerations 5-39

2C Logical Exclusive OR
General Definitions and Programming (R), (S), to (T) 6-33

11!""',
1-l_,_/

Guides 5-40
2D Logical and (R), (S), to

Overlap Operand and Result (T) 6-33
Fields 5-40

I viii 60256010 02

f i

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

2E Logical Inclusive OR
(R), (S), to (T)

30 Shift (R) Per (S) to (T)

34 Shift (R) Per (S) to (T)

6D Insert Bits from (R) to
(T) Per (S)

6E Extract Bits from (R)
to (T) Per (S)

40/60 Add U; (R) + (S) to (T)

41/61 Add L; (R) + (S) to (T)

42/62 Add N; (R) + (S) to (T)

44/64 Sub U; (R) - (S) to (T)

45/65 Sub L; (R) - (S) to (T)

46/66 Sub N; (R) - (S) to (T)

48/68 Mpy U; (R) e (S) to (T)

6-33

6-33

6-34

6-35

6-36

6-37

6-37

6-37

6-37

6-37

6-37

6-37

49/69 Mpy L; (R) e (S) to (T) 6-37

4B/6B Mpy S; (R) e (S) to (T) 6-37

4C/6C Div U; (R) I (S) to (T) 6-37

4F /6F Div S; (R) I (S) to (T) 6-37

63 Add Address (R) + (S)
to (T) 6-38

67 Sub Address (R) - (S)
to (T) 6-38

58/78 Transmit (R) to (T) 6-38

59/79 Absolute (R) to (T) 6-38

51/71 Floor (R) to (T) 6-38

52/72 Ceiling (R) to (T) 6-38

5A/7A Exponent of (R) to (T) 6-38

50/70 Truncate (R) to (T) 6-38

5B/7B Pack (R), (S) to (T) 6-41

5C Extend 32 Bit (R) to
64 Bit (T) 6-42

5D Index Extend 32 Bit (R) to
64 Bit (T) 6-42

76 Contract 64 Bit (R) to
32 Bit (T) 6-42

77 Rounded Contract 64 Bit
(R) to 32 Bit (T) 6-42

7C Length of (R) to (T) 6-42

53 I 73 Significant Square Root
of (R) to (T) 6-42

60256010 02

10 Convert BCD to Binary,
Fixed Length 6-42

11 Convert Binary to BCD,
Fixed Length 6-42

54/ 74 Adjust Significance of
(R) Per (S) to (T) 6-47

55/ 75 Adjust Exponent of (R)
Per (S) to (T) 6-47

2A Enter Length of (R) with
I (16 Bits) 6-48

2B Add to Length Field 6-48

Branch Instructions 6-50

20/24 Branch if (R) =(S)
(32/64 Bit FP) 6-50

21I25 Branch if (R) f (S)
(32/64 Bit FP) 6-50

22/ 26 Branch if (R) > (S)
(32/64 Bit FP) - 6-50

23/27 Branch if (R) < (S)
(32 /64 Bit FP) 6-50

2F Register Bit Branch
and Alter 6-51

33 Data Flag Register Bit
Branch and Alter 6-52

3B Data Flag Register Load/
Store 6-54

32 Bit Branch and Alter 6-54

36 Branch and Set (R) to
Next Instruction 6-57

31 Increase (R) and Branch
if (R) f 0 6-57

35 Decrease (R) and Branch
if (R) f 0 6-57

09 Exit Force 6-58

BO Compare Integer, Branch
if (A) + (X) = (Z) 6-60

Bl Compare Integer, Branch
if (A) + (X) f (Z) 6-60

B2 Compare Integer, Branch
if (A) + (X) ~ (Z) 6-60

B3 Compare Integer, Branch
if (A)+ (X) < (Z) 6-60

B4 Compare Integer, Branch
it" (A) + (X) $'; (Z) 6- 6 0

ix I

(J

01

0
B5 Compare Integer, Branch 92 Ceiling A-C 6-75
if (A) + (X) > (Z) 6-60 oj

9A Exponent of A-+C 6-75
BO Compare FP, Branch if
(A) = (X) 6-62 90 Truncate A-C 6-75

Bl Compare FP, Branch if 9B Pack A, B-C 6-BO 0
(A) /: (X) 6-62 9C Extend 32 Bit A-64

B2 Compare FP, Branch if Bit C 6-B2 O;
(A)~ (X) 6-62 96 Contract 64 Bit A-+ 32

B3 Compare FP, Branch if Bit C 6-B2

(A) < (X) 6-62- 97 Rounded Contract 64 Bit c~
B4 Compare FP, Branch if

A-32 Bit C 6-B2

(A)~ (X) 6-62 93 Significant Square Root

B5 Compare FP, Branch if
of A-C 6-B2 0

(A) > (X) 6-62 94 Adjust Significance of

B6 Branch to Immediate
A Per B-C 6-B6

Address (R) + I (4B Bits) 6-64 95 Adjust Exponent of
,,.:f""'-

Vector Instructions 6-64 A Per B-C 6-B6
l,'i.\._,:V)

Instruction Formats 6-64 Sparse Vector Instructions 6-B9

Subfunetion Bits 6-65 Sparse Vector Instruction
Format 6-91

Field Lengths, Base Address,
and Offsets 6-67 Base Addresses and Field

Lengths 6-91
Control Vector 6-68 Sparse Vector Instruction
Vector Instruction Termination 6-91
Termination 6-69 Instructions A 0 through AF 6-94 ~j

Example of Vector
Instruction Operation 6-70 AO Add U; A +B-C 6-94

BO Add U; A+ B-C 6-73 Al Add L; A +B-C 6-94

Bl Add L; A+ B-C 6-73 A2 Add N; A + B-C 6-94

B2 Add N; A+ B-C 6-73 A4 Sub U; A - B-C 6-94

B4 Sub U; A - B-C 6-73 A5 Sub L; A - B- C 6-94

B5 Sub L; A - B-C 6-73 A6 Sub N; A - B- C 6-94 ,/!·_,...--~..,,\

B6 Sub N; A - B-C 6-73 AB Mpy U; A eB-C 6-9B " __ /

BB Mpy U; A e B-C 6-73 A9 Mpy L; A e B-C 6-9B

B9 Mpy L; A e B-C 6-73 AB Mpy S; A eB...;.C 6-9B
rr~-. , _ _,,.,

BB Mpy S; A eB-C 6-73 AC Div U; A/B-t-C 6-98

BC Div U; A/B-C 6-73 AF Div S; A/B-C 6-98 0
BF Div S; A/B-C 6-73 Vector Macro Instructions 6-102

83 Add A; A+ B-C 6-74 CO Select EQ; A = B, C' Item Count to (C) 6-102 _,fl

87 Sub A; A - B-C 6-74 Cl Select NE; A f B,
98 Transmit A-C 6-75 Item Count to (C) 6-102 {"\
99 Absolute A-C 6-75 C2 Select GE; A ~ B, \ _;)

91 Floor A-c 6-75 Item Count to (C) 6-102

0

I x 60256010 02 C·
(-~---

__ -,J.J-:

0

0

0

0

0

0

0
o;
()::

0

0

0

0

0

0

0

0

0

0

C3 Select LT; A< B,
Item Count to (C)

DA Sum (AO + A 1 + A2 +
... An) to (C) and (C + 1)

DB Product (AO, Al, A2,
... An) to C

D5 Delta (An+l - An)-Cn

Dl Adj. Mean (An+l+An)
/2-Cn

DO Average (An+ Bn)/2-Cn

D4 Ave. Diff. (An - Bn)/2-
Cn

BS Transmit Reverse A-C

DE Polynomial Evaluation

DF Interval A Per B-C

BA Transmit Indexed
List-c

6-102

6-105

6-106

6-108

6-108

6-110

6-110

6-111

6-113

6-116

6-119

B7 Transmit List-Indexed C 6-122

DC Vector Dot Product to
(C) and (C + 1)

String Instructions

String Instruction Data
Code and Formats

String Instruction Format

EO Binary Add; A·+ B-C

El Binary Sub; A - B-C

E2 Binary Mpy; A • B-C

E3 Binary Div; A/B-C

EC Modulo Add A + B- C

ED Modulo Sub A - B- C

FB Pack Zoned to BCD;
A-C

FC Unpack BCD to Zoned;
A-C

E4 Decimal Add; A+ B-C

E5 Decimal Sub; A - B-C

E6 Decimal Mpy; A e B-C

E7 Decimal Div; A/B-C

FA Move and Scale; A-C

F8 Move Bytes Left; A-C

F9 Move Bytes Left,
Ones Comp. A-C

6-124

6-125

6-126

6-129

6-135

6-135

6-135

6-135

6-138

6-138

6-140

6-140

6-151

6-151

6-151

6-151

6-154

6-158

6-158

EA Merge Per Byte Mask A 6-161
B Per G-c

FD Compare Bytes A,
B Per Mask Field C

FE Search for Masked
Key Byte; A, B Per C, G

FF Search for Masked Key
Word; A, B Per C, G

D6 Search for Masked Key
Bit; A, B Per C, G

EE Translate A Per B- C

EF Trans late and Test Per
B-C

D7 Translate and Mark A
Per B-C

EB Edit and Mark A Per
B-C

E8 Compare Binary A, B

E9 Compare Decimal A; B

Logical String Instructions

FO Logical Exclusive OR
A, B-C

Fl Logical AND A, B-C

F2 Logical Inclusive OR
A, B-C

F3 Logical Stroke, A,
B-C

F4 Logical Pierce A,
B-C

F5 Logical Implication
A, B-C

F6 Logical Inhibit A, B-C

F7 Logical Equivalence
A, B-C

Nontypical Instructions

3D Index Multiply (R) e (S)
to (T)

3C Half Word Index Multiply

6-163

6-165

6-165

6-165

6-170

6-173

6-174

6-176

6-190

6-190

6-192

6-192

6-192

6-192

6-192

6-192

6-192

6-192

6-192

6-195

6-195

(R) • (S) to (T) 6-195

5E/ 7E Load (T) Per (S), (R) 6-196

5F/7F Store (T) Per (S), (R) 6-196

12/ 13 Load/Store Byte (T)
Per (S), (R) 6-196

3 7 Transmit Job Interval
Timer to (T) 6-196

60256010 02 xi I

xii

7D Swap S-T, R-S

39 Transmit Real"".time
Clock to (T)

3A Transmit (R) to Job
Interval Timer

BB Mask A, B-C Per Z

BC Compress A-C Per Z

CF Arith. Compress A- C
Per B

BD Merge A, B-C; Per Z

14 Bit Compress

15 Bit Merge

16 Bit Mask

17 Character String Merge

DD Sparse Dot Product to
(C) and (C + 1)

Compare Instructions (BO
through B5)

BO Compare Integer, Set
Condition If (A) + :(X) = (Z)

Bl Compare Integer, Set
Condition If (A) + (X) f (Z)

B2 Compare Integer, Set
·Condition If (A) + (X) ~ (Z)

B3 Compare Integer, Set
Condition If (A) + (X) < (Z)

B4 Compare Integer, Set
Condition If (A) + (X) ~ (Z)

B5 Compare Integer, Set
Condition If (A) + (X) > (Z)

BO Compare FP, Set
Condi ti on If (A) = (X)

B 1 Compare FP, Set
Condition If (A) -f (X)

B2 Compare FP, Set
Condition If (A) ~ (X)

B3 Compare FP, Set
Condition If (A) < {X)

B4 Compare FP, Set
Condition If (A) < (X)

B5 Compare FP, Set
Condition If (A) > (X)

C4 Compare EQ; A = B,
Order Vector-Z

6-197

6-19B

6-19B

6-19B

6-199

6-200

6-203

6-205

6-207

6-207

6-211

6-213

6-216

6-216

6-216

6-216

6-216

6-216

6-216

6-217

6-217

6-217

6-217

6-2i 7

6-217

6-21B

C5 Compare NE; A f B,
Order Vector-z

C6 Compare GE; A ~ B,
Order Vector- Z

C7 Compare LT; A < B,
Order Vector- Z

CB Search EQ; A = B,
Index .List-c

C9 Search NE; A f B,
Index List- C

CA Search GE; A ~ B,
Index List-c

CB Search LT; A < B,
Index List-c

DB Max. of A to (C)
Item Count to (B)

D9 Min. of A to (C)
Item Count to (B)

B9 Transpose I Move

1 B Move Bytes Right

19 Scan Right

6-21B

6-21B

6-21B

6-221

6-221

6-221

6-221

6-224

6-224

6-226

6-231

6-234

2B/29 Scan Equal/Unequal 6-234

lA Fill Field T with Byte R 6-23B

lB Fill Field T with
Byte (R) 6-23B

lC Form Repeated Bit Mask
with Leading Zeros 6-238

lD Form Repeated Bit Mask
with Leading Ones · 6-23B

lE Count Leading Equals R 6-239

lF Count Ones in Field R,
Count to T

03 Keypoint - Maintenance

6-241

6-241 . I
04 Breakpoint - Maintenance 6 -2 41

05 Void Stack and Branch 6-242. 1 I
06 Fault Test - Maintenance 6-2 43

Monitor Instructions

00 Idle

OB Input/Output Per R

OC Store Associative
Registers

OD Load Associative
Registers

OE Translate External
Interrupt

6-244

6"".244

6-244

6-245

6-245

6-245

60256010 02

0
'lil lu

.~"

\<\,,;.J

/ ·- "

/~---... \

I

"G''

()

()

(...

0
0
0

OF Load Keys From (R), OA Transmit (R) to Monitor

0 Translate Address (S) to (T) 6-246 Interval Timer 6-247

0 APPENDIXES

0 A. NUMBER SYSTEMS AND c. G BITS AND TERMINATING
TABLES A-1 CONDITIONS C-1

0
B. FLOATING-POINT ARITHMETIC B-1 D. DATA FLAG APPLICATIONS

TO INSTRUCTIONS D-1 o,
0 FIGURES

0 I
1-1 Basic Central Computer 5-2 Invisible Package Format 5-8

Configuration 1-2 5-3 Virtual Address Formats 5-11
2-1 Section Configuration 2-2 5-4 Associative Word Formats 5-12
2-2 Superword (sword) 5-5 Virtual Address Key 0 Configuration 2-2 Register Format 5-13

I 2-3 Memory Interface I Stack
I 5-6 Page Table Format 5-16
I Connections 2-3

2-4 Memory Interface Configuration
5-7 Virtual Address to Absolute

Address 5-18
and Connections 2-5

0 2-5 Memory Sections Configuration 2-7
5-8 Register File 5-21

5-9 Virtual/ Absolute Address
3-1 Functional Components of Zero 5-22

0
Scalar Processor 3-4

3-2 Page Table Search Examples
5-10 DFB Register Format 5-30

3-15

3-3 Basic Vector Stream Block
6-1 Instruction Formats 6-3

0 Diagram 3-36 6-2 Instruction Listing Format 6-10

3-4 String Block Diagram 3-40 6-3 Example of Register Content

3-5 Operand Formats 3-47
for an Insert Bits from (R)

0 to (T) Per (S) Instruction 6-35
3-6 Floating-Point Pipe 1 3-47 6-4 Example of Register Content
3-7 Floating-Point Pipe 2 3-48 for an Extract Bits from (R)

0 3-8 I/O Data Formats 3-51
to (T) Per (S) Instruction 6-36

3-9 I/O Address Formats 3-52
6-5 Example of Register Content

for a Ceiling (R) to (T)

0 4-1 Maintenance Control Unit Instruction 6-40
Interface 4-2 6-6 Example of Register Content

4-2 Block Diagram of Counter for a Truncate (R) to (T)

0 Logic Lines 4-31 Instruction 6-41

4-3 Block Diagram of Counter A 4-32 6-7 Example of Register Content

5-1 Invisible Package Word
for an Extend 32 -Bit (R) to

0 64-Bit (T) Instruction 6-43
xx ... xxEl6 Format for
Access In errupt 5-5

0 60256010 02 xiii

e

0

0

0
6-8 Example of Register Content 6-28 Example of Compressing

for a Contract 64 Bit (R) to Initial Vector Field into 01 32 Bit (T) Instruction 6-44 Sparse Vector Field 6-90

6-9 Example of Register Content 6-29 General Sparse Vector
for a Rounded Contract 64 Bit Instruction Format 6-92 f) (R) to 32 Bit (T) Instruction 6-46 6-30 Sparse Vector Field Length

6-10 Example of Register Content and Base Address Formats 6-93
for a Convert BCD to Binary, 6-31 Example of an Add U; A + B 0 Fixed Length Instruction 6-46 -c Sparse Vector Instruction

6-11 Example of Register Content when G Bit 1 = 0 and G Bit
for an Adjust Exponent of (R) 2 = 1 6-96 01 Per (S) to (T) 6-49 6-32 Example of an Add U; A+ B

6-12 Example of Bit Branch and -c Sparse Vector Instruction
Alter Instruction 6-56 when G Bit 1 = 1 and G Bit {) 6-13 Address Formats for Exit 2 = 0 6-97

Force Instruction (Monitor 6-33 Example of a Div or Mpy U
to Job) 6-59 Sparse Vector Instruction ,.!"'\

6-14 General Vector Instruction when G Bit 1 = 0 and G Bit \1'")
Format 6-64 2 = 1 6-100.11

6-15 Operand Field Length, Base 6-34 Example of a Div or Mpy U

Address, and Offset Formats 6-68 Sparse Vector Instruction
when G Bit 1 = 1 and G Bit

6-16 Vector Field Address Format 6-68 2 = 1 6-101

6-17 Control Vector Base 6-35 Example of Select EQ; A=B
Address Format (Z) 6-69 Item Count to C 6-104

6-18 Vector Instruction Example 6-36 Example of a Delta
of Register Content and Instruction 6-109 _j
Instruction Format 6-71 6-37 Example of a Transmit

6-19 Vector Address Fields for Reverse A - C Instruction 6-112
Vector Instruction Example 6-72 6-38 Basic Arithmetic Sequence for

6-20 Example of an Add A; Polynomial Evaluation
A + B "- C Instruction 6-74 Instruction 6-115

6-21 Example of Floor A- C 6-39 Example of a Transmit
Instruction with Negative Indexed List - C Instruction 6-121
Exponent 6-76

6-40 Example of General Format
6-22 Example of a Ceiling A - c of a Data String Field 6-125

Instruction with Negative
6-41 Example of the Packed Exponent 6-78

Decimal Format 6-127 r"·
6-23 Example of Source and Result

I •

6-42 Example of the Zoned BCD "'--"'
Elements for a Truncate
A - C Instruction 6-80 Format 6-128

(~
6-24 Example of Pack A, B - c 6-43 General String Instruction)

Format 6-129 .)
Instruction 6-81

6-25 Example of Extend 32 Bit 6-44 String Instruction Register
er~

A-64 Bit C Instruction 6-83 Formats 6-129 ~---)
6-26 Example of Vector Elements 6-45 Example of Index and Field

for a Rounded Contract 64 Bit Length Applied to a Data Field 6-130

() A-32 Bit C Instruction 6-85 6-46 Example of Delimiter

6-27 Example of Adjust Exponent Termination of a Data Field 6-131

of A Per B - C Operation 6-88 0
xiv 60256010 02 0

('~,
jJ

0

0

0
6-47 Example of a Binary Add; 6-65 Example of Translate A

0 A+ B - C Instruction 6-136 Per B - C Instruction 6-172

6-48 Format of a Binary Divide . 6-66 Example of Field Formats
Result Field 6-137 for the Edit and Mark A Per

0 6-49 Example of Zoned to BCD B - C Instruction 6-177

Format Conversion 6-67 Example 1 of Edit and Mark
(G Bit O=O and ASCII Selected) 6-140 A Per B - C Instruction

0 6-50 Example of Zoned to BCD (Single Source Field, Sign+) 6-184

Format Conversion (G Bit 6-68 Example 2 of Edit and Mark
O=O and EBCDIC Selected) 6-143 A Per B - C Instruction

0 6-51 Example of Zoned to BCD (Single Source Field, sign -) 6-185

Format Conversion (G Bit 6-69 Example 3 of Edit and Mark
O=l and G Bit l=O) 6-144 A Per B - C Instruction

0 6-52 Example of Zoned to BCD (Field Separator Specified,

Format Conversion (G Bit No Second Field) 6-186

0=1 and G Bit 1 = 1) 6-145 6-70 Example 4 of Edit and Mark

0 6-53 Example of BCD to Zoned A Per B - C Instruction

Format Conversion (G Bit (Multiple Field Editing) 6-187

O=O and G Bit l=O ASCII Mode) 6-147 6-71 Example 5 of Edit and Mark

0 6-54 Example of BCD to Zoned A Per B - C Instruction

Format Conversion (G Bit (Result Field Shorter than

O=O and G Bit l=O EBCDIC Pattern Field) 6-188

c
Mode) 6-148 6-72 Example 6 of Edit and Mark

5..;55 Example of BCD to Zoned A Per B - C Instruction

Format Conversion (G Bit (Decimal Data Fault -

O=l and G Bit 1 =O) 6-149 Undefined Results) 6-189

6-56 Example of BCD to Zoned 6-73 Example of Field Formats

Format Conversion (G Bit for the Compare Binary A,

0
O=l andG Bit 1=1) 6-150 B Instruction 6-191

6-57 Example of Decimal Add A + B 6-74 Example of Field Formats for

- C Instruction 6-152 the Compare Decimal A, B
Instruction 6-191

0 6-58 Format of Decimal Divide
Result Field 6-153 6-75 Example of Logical String

Instruction (Logical Exclusive
6-59 Example of a Move and Scale; oi A - C Instruction with a

OR) 6-194

Negative Scale Count 6-156 6-76 Example of Arithmetic
Compress A - C Per B

6-60 Example of Move and Scale;

0 A - C Instruction with
Instruction 6-202

Positive Scale Count 6-157 6-77 Examples of BD Merge
Instruction 6-204

6-61 Example of Move Bytes Left;

0 A-C Instruction 6-160 6-78 Example of Bit Compress

6-62 Example of Merge Per Byte
Instruction 6-206

Mask A, B Per G - C 6-162 6-79 Example of Bit Merge

0 6-63 Basic Field Formats for
Instruction 6-208

Compare Bytes A, B Per 6-80 Example of Bit Mask

Mask Field C Instruction 6-164 Instruction 6-210

·o 6-64 Example of Search for Masked 6-81 Example of the Character

Key Byte; A, B Per C, G String Merge Instruction 6-212

Instruction 6-168

0
0 602 56010 02 xv I

ft

' U
-I\

0

0
6-82 Example of Sparse Dot 6-89 Example of a Move Bytes

Product to (C) and (C+l) Right Instruction with a
Instruction 6-215 Negative S Index 6-233

6:-83 Example of Compare GE; 6-90 Example of Scan Right
A ~ B; Order Vector - Z Instruction with a Positive
Instruction 6-220 Scan Index 6-235

6-84 Example of Search EQ; 6-91 Example of Scan Right
A = B, Index List - C 6-223 Instruction with a Negative

6-85 Example of Initial 1 Ox 10 Scan Index 6-236

Matrix 6-228 6-92 Example of Repeated Bit Mask

6-86 Example of Transposed 8 x 8 Data Format (Leading Zeros) 6-239

Segment in a 10 x 10 Matrix 6-228 6-93 Example of Count Leading

6-87 Example of Transpose I Equals Data and Register

Move Instruction Code·s 6-229 Format 6-240

6-88 Example of a Move Bytes 6-94 Breakpoint Register Format 6-241

Right Instruction with a 6-95 Register Formats for the OF
Positive S Index 6-232 Instruction 6-247

TABLES

2-1 Memory Port Transfer Modes 2-6 4-8 Channel ATB8

2-2 Memory Degradation Codes 2-7 (Connector ATB78) 4-10

3-1 Unique Syndrome Words for 4-9 Channel BTAl

Single Bit Failures 3-9 (Connector BTA12) 4-11

3-2 Scalar/Vector Processor 4-10 Channel BTA2

Instruction Responsibility 3-18 (Connector BTA12) 4-13

I 3-3 Central Computer Parallel 4-11 Channel Register fro:di

Operations 3-19 Channel BTA3
(Connector BTA34) 4-15 /- --........,

3-4 Instruction Codes 3-25
4-12 Channel Register from

3-5 Channel Flag Assignments 3-55 Channel BT A4

4-1 Channel ATBl (Connector BTA34) 4-16

(Connector ATB12) 4-3 4-13 Channel BTA5 (Connector

4-2 Channel A TB2 BTA56) 4-17

(Connector ATB12) 4-4 4-14 Channel BTA6 _,,,.-~,

4-3 Channel A TB3 (Connector BTA56) 4-18 '"'-.YI

(Connector ATB34) 4-5 4-15 Channel BTA 7
(Connector BTA 78) 4-19 r~ 4-4 Channel A TB4 (\!

< .)

(Connector ATB34) 4-6 4-16 Channel BTA8
.::>'

4-5 Channel ATB5 (Connector BTA 78) 4-20

(Connector ATB56) 4-7 4-17 B- and A- Coupler Function
,r\
i..,_)

4-6 Channel A TB6 Codes 4-23

(Connector ATB56) 4-8 4-18 Microcode Switch Functions 4-24 ;;(----..,.,,

4-7 Channel ATB 7 4-19 Microcode Status Functions 4-26 l\l_jJ
(Connector ATB78) 4-9

()
xvi 60256010 02 ()

(')
.T

0

0

0 4-20 Display Register Select Codes 4-27 6-19.3 Results of the Logical I 4-21 Counter Events 4-33 Operations (AC, AF) 6-100

0 5-1 External Interrupt Lines 5-6 6-20 DF Interval A per B - c
Ins true ti on 6-117

5-2 Page Size Specification 5-10 6-21 DF Interval Instruction with

0 5-3 Associative Word Usage Codes 5-13 Interrupt 6-118

5-4 Lockout Codes 5-14 6-22 Decimal Data Codes 6-126

0 5-5 Page Table Restri.ctions 6-23 Result Signs 6-127
and Requirements 5-15 6-24 G Designators for String

5-6 Results for Specified Instructions 6-132

0
Register Zero 5-25 6-25 DFB Conditions for the EC

5-7 Data Flag Register Bit Instruction 6-138
Assignments 5-33 6-26 DFB Conditions for the ED

0 5-8 Free Data Flag Bit Instruction 6-139
Assignments 5-36 6-27 Pack Zoned to BCD Digit and

6-1 Instruction Designators 6-6 Sign Codes 6-141

0 6-2 Instruction List by Function 6-28 Pack Zoned to BCD Sign and
Code 6-11 LSD Translation Table (ASCII

6-3 Instruction List by Mode) 6-142

0 Instruction Type 6-21 6-29 Pref erred Sign Codes 6-143

6-4 Bit Branching Conditions 6-51 6-30 Zone Bits and Sign Codes 6-144

0
6-5 Bit Altering Conditions 6-51 6-31 Unpack BCD to Zoned Sign and

6-6 DFBR Bit Branch Conditions 6-52 LSD Translation Table (ASCII
Mode) 6-147

6-7 DFBR Bit Altering Conditions 6-53 6-32 Index Increments for A and C I

6-8 DFBR Branch Address Fields for F8 and F9
Source Conditions 6-53 Instructions 6-159

0 6-9 Bit Branching Conditions 6-55 6-33 Index Increments for

6-10 Bit Altering Conditions 6-55 Compare Bytes A, B, Per
Mask Field C Instructions 6-165

0
6-11 Branch Address Source 6-34 DFB Conditions for the FD Conditions 6-55

Instruction 6-165
6-12 Index Branch Instruction 6-35 Index Increments for Search

0
Designators 6-61

for Masked Key Byte; A,
6-13 Integer Ranges 6-61 B Per C, G Instruction 6-166

6-14 Index Branch Instruction 6-36 Index Increments for Trans-

0 Designators 6-62 late A Per B - C Instruction 6-171

6-15 Vector Instruction Designators 6-65 6-37 Index Increments for Trans-

6-16 Subfunction Bits 6-66 late and Test A Per B - C

0 Instruction 6-174
6-17 Sign Control Subfunction Bits 6-67 6-38 DFB Conditions for the EF
6-18 Sparse Vector Instruction Instruction 6-174

0 Designators 6-92 6-39 Pattern Select Characters 6-179
6-19 G Bit 1 and 2 Operations 6-94 6-40 DFB Conditions for the EB

0
6-19. 1 Results of the Logical Instruction 6-181

Operations (AO through A6) 6-95 6-41 Operation of Edit and Mark
6-19. 2 Results of the Logical A Per B - C Instruction 6-183

0
Operations (AS through AB) 6-99 6-42 DFB Conditions for EB and

E9 Instructions 6-190

0 60256010 02 xvii

a

6-43 Truth Table for Logical 6-47
String Instructions 6-192

6-44 DFB Conditions for FO
Through F7. Instructions 6-193 6-48

6-45 Search Iteration Starting 6-49
Designator Conditions 6-222

6-46 Transpose/Move Instruction
Designators 6-227

I xviii

Example of Storage and
Register Mapping for Trans-
pose I Move Instruction 6-230

Breakpoint Conditions 6-242

R Designator Bit Definitions 6-243

60256010 02

()

0

0
()

c
,,fl!.\

("-~;

r1'\
'".__pl

,If--"'

"·"~~·

0

{f~.
·~,;

()

0

0
0
0

0

0
0

0

0

0

0
0

0
0

0

0
0
0

0
0

•

GENERAL DESCRIPTION 1

GENERAL
The CDC CYBER 200 Model 203 Computer System (central computer) is a large-scale, I
high-speed computer containing features such as stream processing, virtual addressing,

and hardware macro instructions. The central computer uses large-scale integrated (LSI) I
circuits in a new scalar processor to improve scalar performance. The central computer

contains separate scalar and vector processors specifically designed for sequential and

parallel operations on single bits, 8-bit bytes, and 32- or 64-bit floating-point operands

and vector elements. The central memory is a high-performance semiconductor memory

with single error correction double error detection (SECDED) on each 32 -bit half-word for

high storage integrity. The virtual addressing method employs a high-speed mapping

technique to convert a logical address to an absolute storage address.

The instruction issue rate is one every 2 0 nanoseconds.

The basic central computer consists of a central processor unit (CPU), one-half million

64-bit words of central memory, 12 input/output (I/O) channels, and a maintenance control

unit (MCU). Figure 1-1 shows the basic central computer configuration.

The central memory is field-expandable to one or two million 64-bit words by adding units

of one-half million words.

The CPU contains the vector and scalar processors and the I/O channels.

The vector processor contains a stream unit that peforms vector streaming and instruction

control, operand alignment, buffering, and addressing. The stream unit receives vector

instructions from the scalar processor, executes instructions not in conflict with the scalar

processor, manages the data streams of the vector floating-point pipes, and performs

string processing.

60256010 02 1-1

I

I

r
I
t
I
I
I

CENTRAL PROCESSOR UN IT (CPU)

VECTOR PROCESSOR

VECTOR FLOATING POINT VECTOR FLOATING POINT
PIPE I (VF I) PIPE 2 (VF2)

VECTOR STREAM (VST)

MCU/CPU INTERFACE (VIO)

INPUT/OUTPUT (VIO)

MCU/MICROCODE

SCALAR PROCESSOR

SCALAR FLOATING POINT (SCF)

'--.:a.J'r-MlcROCOOE~
I, MEMORY l

- SCALAR CONTROL (SCC)

fE--J I
I r-MiCRocooE:

j MEMORY -1

MEMORY
INTERFACE

(VIO)
:: ~ ~ MiCROCOOE ~

MEMORY 1

'~ '~ L_ - - - ...
tw

12 I/O
CHANNELS

SCALAR ONLY

VECTOR 8i
SCALAR DATA
8i CONTROL __!o.

NOTES:

ATBI_.... . -• •
ATBS~

.,.

MAINTENANCE
CONTROL UN IT

(MCU)

CENTRAL w MEMORY

MEMORY INTERFACE (MEM)

HALF
MILLION

WORD
MEMORY

(MEM)

HALF ONE
MILLION MILLION

WORD WORD
MEMORY MEMORY

(OPTIONAL) (OPTIONAL)

• OUTPUT CHANNELS
: TO PERIPHERAL

~ } 8 STANDARD MCU

--~~.- EQUIPMENT
CHANNELS 0-7

CHANNELS 8-F

• • • }

8 STANDARD MCU
INPUT CHANNELS
F .. ROM P. ER. I PH ER AL

E-"";:-·-- EQUIPMENT

& 8 PULSED NORMAL MCU OUTPUT CHANNELS.

£ 8 PULSED NORMAL MCU INPUT CHANNELS.

Figure 1-1. Basic Central Computer Configuration

--,
I
I
I
I
I
I
I

_J

60256010 02

(,)

0

0

0
()

'O \

ir'\
\,_,,/

,..<-~
' I

"""-"""

0
/.D '1_, -
"Ir -

..4-"'-.,

~

0

0

0

0

0
0

0
0

0

0

0
0
0

0
0
0
0
0
0

•

The scalar processor receives and decodes instructions from central memory, directs

decoded vector I string instructions to the vector processor for execution, provides an

orderly buffering and execution of load I store instructions, and controls communication

with central memory by the CPU and I/0 channels.

Microcode memories in both the scalar and vector processors control setup, interrupt, and

termination of instructions.

The I/O channels consist of control units for 16-bit data communications between the

scalar processor and the MCU and between the scalar processor and the peripheral stations.

Any one of the I/O channels connects to the MCU and the other channels connect to the

peripheral stations.

The MCU provides special maintenance control and monitoring capabilities.

Cooling for the basic central computer, including the first one-half million words of mem

ory, consists of two 30-ton water-cooled condensing units. A one-million-word system

configuration requires a total of 90 tons of cooling, and a two-million-word configuration

requires a total of 12 0 tons of cooling.

One 250-kVA 400-Hz motor-generator set provides power for a one-half-million-word or

one-million-word configuration. A two-million-word configuration has an additional

80-kVA 400-Hz motor-generator set. Each system configuration has a 250-kVA 400-Hz

standby motor-generator set.

CENTRAL COMPUTER CHARACTERISTICS

CENTRAL PROCESSOR

• Two's complement arithmetic

• Parallel/ dual segmented arithmetic units

• Hardware register file composed of 256 64-bit addressable registers

• Integrated and LSI circuits

• Hardware macro instructions

• Sequential stream processing

• Synchronous internal logic with 40-nanosecond clock period (minor cycle) for

vector and 20-nanosecond clock period (minor cycle) for scalar

602 56010 02 1-3

I

I

I

I

CENTRAL MEMORY

• lK, bipolar semiconductor memory chips

• Virtual addressing

• 16 memory stacks of 65, 536 32-bit halfwords each obtaining a total storage of

524, 288 64-bit words

• Optional one or two million 64-bit words

• Stack arrangement in eight phased banks

• Data transferred to/from memory ports in 32-bit halfwords, 64-bit words,

and 512-bit swords

• Two levels of memory degradation

INPUT/OUTPUT.·

e Four 16-bit I/O channels

• 12 I/0 channels

• Highly flexible peripheral stations

1-4 60256010 02

0

'0

"~~I
~J

0

,r<--~-\

'"'-/

0

11_f ~ .. i'l.)

0

()

0
0

0
0

0

0
0

0

0

0
0

0

0

0
0

0

0
0

• •

CENTRAL MEMORY 2

The central memory is a random-access memory using lK bipolar semiconductor cir

cuits. A memory word has 78 bits: a 64-bit data word and 14 bits for single error

correction double error detection (SECDED). The cycle time for the semiconductor

memory is 80 nanoseconds. The memory is directly addressable in monitor mode and

via hardware virtual relocation in job mod-e.

The central memory size is one-half million words with field upgrade options allowing

expansion to one or two million words.

Each one-half million words of central memory contains 16 memory stacks, each having

64K 39-bit halfwords (32 data bits plus 7 SECDED bits). Each 64K stack is arranged

in eight phased banks. Memory can assign sequential addresses to different banks by

using bank phasing. Because the banks are independent, a bank can begin a memory

cycle before adjacent banks have completed previously initiated cycles. In streaming

mode, a reference is made simultaneously to the same address in each of the 16 mem

ory stacks obtaining a superword (sword) of 512 data bits. Each one-half million words

of memory contains 128 phased halfword banks. Figure 2-1 shows the chassis con

figuration for one-half million words of memory.

MEMORY OPERATION

A memory word can be a sword, a word, or a halfword. One sword contains eight

78-bit (64 bits for data and 14 bits for SECDED) words addressed from left to right.

The 624 bits (512 data bits, 112 SECDED bits) of one sword transfer to/from central

memory during each write I read operation, although only part of the sword may actually

be stored or used. When the memory interface performs a write I read operation on a

sword, it addresses each of the 16 memory stacks (figure 2-2). For write I read opera

tions on a word, the memory interface addresses only two of the 16 stacks and for a

halfword, the memory interface addresses only one of the 16 stacks. In addition, the

memory interface sends a bank address signal that selects only one of the eight banks

within a stack. The data signals go through 39-bit data trunks which go to each of the

16 memory stacks. During a write operation, the memory interface sends a write

control signal for each halfword (32 bits). Depending on the write control, any or all

of the halfwords within the sword may be written into memory.

60256010 01 2-1

I

I

SECTION A MEMORY INTERFACE SECTION H

.... ~---------- 1-------------a 1 ST~CK 1 1 ST~CK I I ST~CK I

....._---------------1/2 MILLION WORDS--------------__..

NOTES:
I. EACH SECTION HAS 8 STACKS.

2. TWO SECTIONS COMPRISE A HALF MILLION WORDS OF MEMORY.

Figure 2-1. Section Configuration

r----------------------------1 SWORD

NOTES:

I I I
......... ,

..........
..........

..........
..........

.........
31 32 38 39 70 71 ',77

SE SE
DATA CD DATA CD

;, E
D

L-1 HALFWORD __J

-------1 WORD -----

I. EACH SWORD CONTAINS 16 HALFWORDS.

I I

2. EACH HALFWORD CONTAINS 39 BITS (32 DATA BITS, 7 SECDED BITS).

3. MEMORY TRANSFERS MAY BE IN SWORDS, WORDS, OR HALFWORDS.

Figure 2-2. Superword (sword) Configuration

2-2 60256010 02

c.

i{~\
~)'i

\ .. /

()
rr~:
\L.:P•

0

r<' -.~., .. '
\~ .. ,

0

0
0

0

0

0

0

0

0

0
0
0

0
0
0
0
0

0

•

The memory size determines the number of memory stacks available. For the basic

one-half million words of memory, 16 memory stacks are available; for one million

words of memory, 32 memory stacks are available; and for two-million words of mem

ory, 64 memory stacks are available.

SECDED checking and generating is accomplished in the scalar processor (refer to

section 3).

MEMORY ACCESS AND CONTROL

Figure 2-3 shows the control signals sent to each memory stack. All signals except

the read data are sent from the memory interface to the stacks. The read data signal

is sent back to the memory interface.

STACK REQUEST

BANK ADDRESS

ABSOLUTE ADDRESS

CLOCK

WRITE CONTROL

WRITE DATA

SYNC

MASTER CLEAR

MEMORY
STACK

READ DATA

Figure 2-3. Memory Interface /Stack Connections

60256010 01

TO
MEMORY

INTERFACE

2-3

STACK REQUEST

There are two identical stack request lines for each memory stack. This signal deter

mines which stack has been selected.

BANK ADDRESS

There are six (two sets of three) bank address lines for each memory stack. This

signal determines which bank of the eight banks within a. stack has been selected.

ABSOLUTE ADDRESS

There are 13 bits that determine the absolute address; three bits determine which of

the eight ranks of memory chips has been selected and 10 bits determine the address

in memory selected.

CLOCK

There are two identical clock lines for each memory stack. This signal synchronizes

the memory stack to the memory interface.

WRITE CONTROL

There are two identical write control lines for each memory stack. This signal in

forms the memory stack of a write memory cycle.

WRITE DATA

There are 39 write data bit lines for each memory stack: 32 for data and 7 for

SECDED.

SYNC

This signal provides a point of reference for maintenance purposes.

MASTER CLEAR

There are two identical master clear lines for each memory stack. The memory inter

face pulses the master clear signal continuously whenever a master clear is present in

the CPU.

2-4 60256010 01

()

0

0

····_/

(',.(---;..,\

'j

[~

~-)

if'"\.
\j\~..MJ,i

0

{--"".
' ·,

;/

0

0
0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

• •

READ DATA

The 39 read data bits are obtaJned from the read data registers on the output, and the

information is sent back to the memory interface.

MEMORY INTERFACE

The memory interface provides ports for access to central memory. The scalar

processor, vector processor, and I/O channels are connected to central memory through

the memory interface as shown in figure 2-4. Data transmissions are controlled by

the priority unit in the scalar processor. SECDED for each 32 bits of data on the I
memory ports is done in the scalar processor. Data can be transferred to and from

the memory ports in 32 -bit halfwords, 64-bit words, or 512 -bit swords (refer to

table 2 -1).

1/2 MILLION
WORDS
(BASIC)

1/2 MILLION
I WORDS ~
L(O!~O~~!J

r-----,

: I MILLION i
WORDS

I (OPTIONAL) I
I ~

L-----'

MEMORY
INTERFACE
I SWORD
BUFFERS

READ I

READil

READfil

WRITE I

WRITEir

I/O
CHANNELS

SCALAR PROCESSOR

1/4 SWORD/ 20 NSEC

SECDED
NETWORK

r----
PRIORITY

UNIT

~IE-l~E-+E-+l&!-+IE--- I I 4 SWORD/

VECTOR
PROCESSOR

40 NSEC

Figure 2-4. Memory Interface Configuration and Connections

60256010 02

I

2-5

Each memory port is connected to memory through a one sword buffer located in the

I memory interface. If a buffer is shared by multiple ports, the priority unit

provides proper port selection to the memory interface selection network. Data is

transmitted between the buffers and the processor in quarter swords at a rate of one

quarter-word per minor cycle. For the scalar processor, the rate is one quarter

word per 20 nanoseconds; for the vector processor_ and I/0 channels, the rate is one

quarter-word per 40 nanoseconds.

TABLE 2-1. MEMORY PORT TRANSFER MODES

Memory Interface
Buffer Memory Port Transfer Mode

Read 1 Scalar processor Halfword
Word
Sword

Vector processor Sword

Read 2 Vector processor Sword

Read 3 Read next sword Sword
(RNS) (scalar
processor)

I/O channels Sword

Vector processor Sword

Write 1 Scalar processor Halfword
Word
Sword

Vector processor Sword

Write 2 I/0 channels Sword

Vector processor Sword

2-6 60256010 02

0

0

0
()

()

()

0

(f...--~\

,"l_" __ ,,)

,f"''\
);·l1 ,1/ ,_

0

0

0
0
0
0
0
0

0
0

0

r u
0
0
0

0

0
0

0
0
0

•

MEMORY DEGRADATION

If more than one-half million words of memory are present, degradation may be

selected. Degradation allows the amount of usable memory_ to be less than the total

memory in the system. Three degradation bits from the MCU and a strobe bit control

the amount of usable memory. Table 2-2 shows the memory degradation codes and

their descriptions.

TABLE 2-2. MEMORY DEGRADATION CODES

System 3-bit Memory
Memory Code Size Description

O. 5 Meg 000 O. 5 Meg

1. 0 Meg 001 O. 5 Meg Force section 1-section 0

2. 0 Meg 010 O. 5 Meg Force section 2-section 0

2. 0 Meg 011 0. 5 Meg Force section 3- section 0

1. 0 Meg 100 1. 0 Meg

2. 0 Meg 101 1. 0 Meg Force upper Meg- lower Meg

2. 0 Meg 110 2. 0 Meg

I
For example, if the system has one million words of memory, the upper O. 5 Meg words of I
memory can be forced to the lower O. 5 Meg words of memory by selecting code 001.

Figure 2-5 shows the four O. 5 Meg sections comprising a two-million-word memory system.

.5MEG
SECTION 0
(0+.5 MEG)

.5 MEG
SECTION 2
(1•1.5 MEG)

.5 MEG
SECTION I
(.5•1 MEG)

.5MEG
SECTION 3
(1.5+2 MEG)

LOWER MEG

UPPER MEG

Figure 2- 5. Memory Sections Configuration

60256010 02 2-7

I

I

()

0

0

,~i
''lit,,_,

r'f~

''---~

(f''"',1
~

0

0 -

0
rl~,;,' \fL J

0

0

0
0

0

0

0

0

0

0

0

0

0
0

0

0

0

• •

CENTRAL PROCESSOR UNIT

DESCRIPTION

The central processor unit (CPU) consists of the following functional areas:

• Scalar processor

• Vector processor

• Input/output (I/O)

SCALAR PROCESSOR

The scalar processor receives and decodes all instructions from central memory,

directs decoded vector/ string instructions to the vector processor for execution, and

provides orderly buffering and execution of the load and store instructions. To attain

high scalar performance, the processor contains independent functional units.

The scalar processor contains the central computer instruction control. The instruc

tion issue pipe receives and decodes instructions from central memory. A semicon

ductor instruction stack provides buffering for eight virtually addressed swords (512

bits), which can contain up to 128 32-bit instructions, 64 64-bit instructions, or a

combination of both. The instruction stack can contain up to six nonadjacent swords

with two swords lookahead. The read next sword (RNS) portion of the RNS /branch

3

unit provides the control for loading the instruction stack. The branch portion performs

branch condition testing and executes the branch instructions.

The instruction issue pipe is capable of issuing instructions. at a rate of one instruc

tion every 20 nanoseconds. The instruction issue pipe decodes instructions and directs

decoded vector I string instructions to the vector processor for execution. Therefore,

with independent vector and scalar instruction controls operating on a single instruc

tion stream, the scalar processor can execute scalar instructions in parallel with most

vector instructions if there are no memory references generated by the scalar instruc

tion.

There are two exceptions to the parallel execution of vector and scalar instructions on

a single instruction stream:

60256010 02 3-1

I

•

•

The scalar processor can make memory references to load the
instruction stack in parallel with vector operations.

A vector instruction will not issue until a scalar instruction has

placed the results in the register file. A scalar instruction that

follows a vector instruction must wait until the vector instruction

has completed its use of the register file.

The load/ store unit provides orderly buffering and execution of the load and store

instructions. The unit acts as a pipeline and is capable of accepting a new request

rate of one load every minor cycle or one store every two minor cycles, if a memory

busy, access interrupt, or register file write-bus busy does not occur. A circular

buffer containing six registers provides buffering for up to six load requests, three

store requests, or a combination of loads and stores.

The load/store unit is capable of loading a randomly accessed word of data from

central memory into the register file in 300 nanoseconds after reading the base address

and item count of the data. This time assumes a memory busy, access interrupt, or

register file write-bus busy does not occur. A memory busy would add up to 80 nano-

0

()

·~
,,.i._.,J

seconds to the load time. , -,,,

The scalar floating-point contains independent functional units to attain high scalar per

formance. The following times (in nanoseconds) are required to produce a 32- or

64-bit result in each functional unit. These times correspond to the shortstop times.

Shortstop is the process by which a result from any arithmetic unit may be returned

directly to either input of any arithmetic unit. This occurs in parallel with the storing

of the result in the register file. Shortstop eliminates the time necessary to store

the result in the register file and retrieve it for use in the next arithmetic operation.

Unit Time (nanoseconds)

Add/Subtract pipe 100

Multiply pipe 100

Logical pipe 60

Single cycle pipe 20

Divide/square root/convert 1120
unit

The pipe units are segmented and capable of accepting new operands every 20 nano-

seconds. The divide/ square root/ convert unit must complete each operation before a

new one can begin. All units are capable of being shortstopped. The scalar processor

contains a semiconductor register file providing 256 64-bit registers for use in instruc

tion and operand addressing, indexing, field lengths, and as source and destination

registers for scalar instruction operands and results. The register file is capable of

two reads and one write every 20 nanoseconds.

3-2 60256010 01

(f-~\

~~-,/

,.(""',
l

"~;./

(r'\,
''-~')

.rr\
'\~j

,ct~--
_;)

0

()

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0
0

0

0

The central computer virtual memory feature allows the use of advanced techniques of mem- I
ory management and user program protection. Some of these features are:

• Key and lock for memory protection and user separation

• Hardware mapping from virtual to physical addresses

• An ordered page table to minimize operating system overhead

•

•
•

•

Program overlays at execution time formed by the hardware system trans parent

to the user's program

Sharing of user programs or data with other users

Small page sizes of 512,, 2048,, and 8192 64-bit words selectable by an operating

system software installation parameter. Only one small page size can reside in

the associative page table at a time. The default is a small page size of 512 words

Large page size of 65, 536 64-bit words

The associative unit in the scalar processor contains the page table virtual addressing

mechanism .. which is composed of 16 associative registers and a space table (located in a

restricted area of central memory) with sufficient entry space for up to two million words

of central memory.

The page table is an ordered list of the associative words necessary to define the pages in

absolute memory. The most frequently used associative words are at the top of the table.

The space table is an extension of the page table containing the associative words necessary

to define pages in memory that have not been in recent use. The associative unit is capable

of comparing the associative registers in one minor cycle with the space table entries at

the rate of two entries per minor cycle.

For the user .. the paging mechanism and the operating system software permit the most

active portions (pages) of a user program to reside in the central memory. These program

portions can reside in nonadjacent areas of the central memory. The virtual addressing

facility, through the page table,, makes these areas of memory appear to be adjacent. The

paging mechanism ensures that a large number of users can have simultaneous access to

the central computer with minimum page swapping overhead.

The scalar processor has synchronous internal logic implemented with LS I circuits. This

synchronous internal logic has a clock period of 2 0 nanoseconds. Figure 3 -1 shows the

functional components of the scalar processor.

60256010 02 3-3

I

VECTOR
PROCESSOR

._.

KE y;

-+

r

~

PRIORITY
~ UNIT
i...

SE CD ED

(""'

DATA OR ADDRESS

---+ CONTROL

i

RNS/
BRANCH
UNIT

) t

""

. , , ~ , ..
ASSOCIATIVE
UNIT

~

TO VECTOR PROCESSOR

~~

J

INSTRUCTION INSTRUCTION
~ STACK ~ ISSUE

(8 SWORD) PIPE

~~

""I

,,
~ ~, .._

~ LOAD/ REGISTER
STORE l+-i FILE

...._
UNIT (64X256)

.....-

l T
VECTOR PROCESSOR

Figure 3-1. Functional Components of Scalar Processor

PRIORITY UNIT

SCALAR FLOATING
POINT

EJ
E

EJ _.. -- E

LOGICAL
PIPE

SINGLE
CYCLE
PIPE

DIVIDE/
_., SQRT/ -... CONVERT

UNIT

The priority unit receives memory requests from various units within the CPU. There

are two categories of requests: scalar processor requests and vector processor-1/0

(VST /IO) requests. If simultaneous requests arrive in the priority unit, only the

request with the highest priority is processed further.

3-4 60256010 01

()

0

0 '

,,f~\
114_;;

(J

,.<-..,,

'"lli, ... J"/

/.(['"~--........,\

\ly

.-1"-.'\

'~,)

(r",.
~/

lf--.,.-.
'_JJ

()

('\.
.JI

0
0

0

0

0
0
0
0 .

0

0

e
0

0

0
0

0
0
0

•

The bank address (bits 50 through 58) associated with the surviving request is then gated

into the priority unit, enabling various bank checks to be performed. Since memory is

banked to the halfword level, a sword request causes 16 memory banks to go busy. The

bank busies do not begin until the request issues. Once initiated, a memory is busy for

four minor cycles. All requests are scalar or vector processor-I/O (VST/IO).

Each VST I IO request has an implied data quantity of one sword. A delay of nine minor

cycles occurs between the priority unit's receipt of a VST I IO request and the transmission

of the stack request strobe to the memory interface unit (c~us ing the appropriate memory

banks to cycle). The VST /IO request is issued when the stack request strobe is trans-

mitted. For a VST /IO write, this delay is necessary to enable the sword buffer in the mem

ory interface to accumulate four quarter-swords of data before the memory is cycled. All

VST /IO data is transmitted at a rate of one quarter-sword every 40 nanoseconds.

Each scalar processor request except load/ store (L /S) has an implied data quantity of one

sword. The L /S request is accompanied by a signal that indicates whether the data quantity

I
I

is a halfword or word. A delay of two minor cycles occurs between the receipt of the re

quest in the priority unit and the transmission of the stack request strobe. An exception is I
a scalar processor sword write which is delayed an additional three minor cycles to enable

the sword buffer in the memory interface to accumulate four quarter-swords of data. All

scalar processor data ~s transmitted at a rate of one quarter-sword every 2 0 nanoseconds. I

BANK BUSY CHECKS

When the surviving memory request is from the VST I IO, th.e only bank busy check required

is to determine if another VST I IO request with the same sword address has been processed

in the three previous minor cycles.

When the surviving memory request is from the scalar processor, the bank busy checks

are more complex. Because VST I IO requests do not issue until nine minor cycles after

arrival in the priority unit, the sword portion of the bank address associated with a scalar

processor request must be different from the bank addresses of any VST /IO request

arriving 10, 11, or 12 minor cycles earlier. If it is not, the scalar processor request

issues to a busy bank. Also, a check is made to ensure that no VST I IO requests to any

bank were honored nine minor cycles earlier. If they were, an attempt to honor the scalar

processor request means a conflict on the single address bus from the priority unit to the

memory interface due to the issuing of a VST I IO request.

602 56010 02 3-5

The sword portion of the bank address associated with the scalar processor request must

be d{fferent from the bank addresses of any VST./IO requests arriving six, seven, or eight

minor cycles earlier. If it is not, the issuing VST /IO requests are directed to a busy bank,

violating a nonbusy bank guarantee by the VST I IO accept.

Additionally, a check is performed to ensure that the scalar processor request will not en

counter bank busies due to other scalar processor requests having been honored during the

previous three minor cycles. When checking a scalar processor request against a prior

scalar processor request honored one, two, or three minor cycles earlier, the larger of

the two data quantities involved· determines the number of banks tested for busies. If the

larger of the two data quantities is a sword, 16 banks are checked; if the larger is a word,

two banks are checked; and if the larger is a halfword, only one bank is checked.

MEMORY INTERFACE BUFFER CHECKS

The memory interface contains three read buffers and two write buffers for assembling and

disassembling data. A request is checked to ensure that it does not require the use of an

active buffer and does not interfere with the buffer requirements of a previous request not

yet issued.

If a request passes all memory and buffer busy checks, an accept signal is returned to the

requesting source. t This accept signal guarantees the requested data will be transferred

to or from memory.

I Requests caused by a space table search or an exchange are not sent unless the source is

certain no busies will be encountered. Therefore, accepts are not necessary for these

requests.

MEMORY INTERFACE SIGNALS

After an accept signal is honored by the priority unit, appropriate control signals are sent

to the memory interface allowing the requested data transf~r to be performed. These con

trol signals are grouped as follows:

•

•

Buffer control signals

Provide the data buffer in the memory interface with information concerning the

direction, rate, and quantity of data flow.

Nine bank address bits

Define the lowest-numbered memory bank involved in the data transfer.

t If the request requires virtual addressing, a match is also required for an accept to be
returned.

3-6 60256010 02

0
()

0
0

,11.-,'\

"'--,.i;)

()

,;1C'\

'~,,

()

0

0

0

0

0

0

0
0

0
0

0
e
0

0
0

0
0

0

0

•

• Stack request strobe I
Causes the preselected memory banks to cycle.

The buffer control signals are sent as soon as the signal request is honored in the

priority unit. The bank address signals are sent one minor cycle before the request

issues. The read buffer control signals and the stack request strobe are sent at issue I
time.

AUXILIARY PRIORITY UNIT FUNCTIONS

The priority unit also performs a number of auxiliary functions. For example, the

absolute address produced by the associative register is stored in the priority unit

until the request issues. After a memory read, the priority unit strobes the SECDED

checkers as the data is processed. The address of the original request is also saved,

so if a SECDED error occurs, the failing address is recorded.

SINGLE ERROR CORRECTION DOUBLE ERROR DETECTION (SECDED)

The central computer has 10 SECDED units within the scalar processor: four write

and six read units. The four write or generate units are:

• Write 1 VST

• Write 2 VST

• Write I/O

• Write scalar

The six read or checker units are:

• Read 1 VST

• Read 2 VST

• Read 3 VST

• Read I/O

• Read next instruction (RNI)

• Read scalar

The SECDED error information is stored by the maintenance control unit (MCU). The

stored information is the syndrome word, single error, double error, read bus code,

and CPU word address bits 37 through 58.

602 56010 02 3-7

I

SYNDROME WORD

The error correcting code generates the seven syndrome bits. There are 39 (odd bit)

unique syndrome words; only the 32 data bit codes toggle a bit when error correction

is enabled. Other odd bit codes stored in SECDED; differing from the 39 unique

syndrome words, are flagged by the MCU as multiple add bit errors. Double error

syndrome words have an even number of bits.

SINGLE ERROR

Bit 5 of channel ATES is the single error bit and sets if there is a single error not

preceded by a double error.

DOUBLE ERROR

This MCU display register sets unconditionally on a double error.

READ BUS CODES

The read bus codes are MCU display registers defining _the read bus on which the

S ECDED error occurs.

Code

0

1

2

3

4

5

Read Bus

I/O

Read 1

Read 2

Read 3

Scalar

RNI

The error logging priority for simultaneous SECDED errors on multiple buses is:

1. RNI

2. Scalar

3. R2

4. Rl

5. 1/0

6. R3

3-8 60256010 01

0
--.

'

0

0

0

'0' ""

' L'

\,...._ . ___ .,r'

(', .. ·---.\

''-·j

~~\
: I

~u"

(f"\\
'1\J

0

0

0
0

0
0

0

0

0

0

0

0
e
0

0
0
0

0
0

0

•

CPU WORD ADDRESS BITS (37 THROUGH 58).

The CPU word address bits are divided into the halfword and word address bits.

The halfword address bits (bits 57 and 58) decode the four 32-bit groups within one

quarter-sword. The word address bits (bits 37 through 56) indicate the following:

Bit Description

37-39

40-49

50

51

52-.54

Select 1 of 8 memory chips/bank

Select 1 of 102 4 words I chip

1024K select

512K select

Bank select

55-56 Quarter sword select

Address bits 37 through 58 in SECDED are always the CPU word address bits.

Table 3-1 shows the unique syndrome words for single bit failures.

TABLE 3-1. UNIQUE SYNDROME WORDS FOR SINGLE BIT FAILURES

Bit Data Syndrome Word

0 Check Bit 0 40

1 Check Bit 1 20

2 Check Bit 2 10

3 Check Bit 3 08

4 Check Bit 4 04

5 Check Bit 5 02

6 Check Bit 6 01

7 80000000 70

8 40000000 68

9 20000000 58

10 10000000 64

11 08000000 54

12 04000000 7C

13 02000000 7A

14 01000000 76

15 00800000 lC

16 00400000 lA

60256010 02 3-9

I

TABLE 3-1. UNIQUE SYNDROME WORDS FOR SINGLE BIT FAILURES (Contd)

Bit Data Syndrome Word

17 00200000 16

18 00100000 19

19 00080000 15

20 00040000 lF

21 00020000 5E

22 00010000 5D

23 00008000 07

24 00004000 46

25 00002000 45

26 00001000 26

27 00000800 25

28 00000400 67

29 00000200 57

30 00000100 37

31 00000080 61

32 00000040 51

33 00000020 31

34 00000010 49

35 00000008 29

36 00000004 79

37 00000002 75

38 00000001 6D

The syndrome word is stored (latched) if the bit shown in the data pattern in table 3-1

is in error. For example, if only bit 0 failed on any data pattern, the syndrome

word would be 40.

SECDED ERROR LATCHING HARDWARE

The SECDED error latching hardware has two modes of operation: mode 1 and mode 2.

Mode selection is accomplished through the MCU /CPU maintenance line called select

SECDED error log mode 2.

For simultaneous SECDED errors in both modes, the error latch information to be

latched is dependent on the relative priority of the data buses or halfwords containing

the errors. It is possible to encounter a single and double error simultaneously and

latch the single error; the double error flag sets unconditionally. Therefore, if the

3-10 60256010 01

()

0
r(' .. . 1
'~.Jr!

·c· \
' I

' ';/

---_,
/ \

()

i' : ((' ..,,\
,J ·~;

0

0
0

0

0

0

0

0

0

0

0

0

0

[
0

0

0

0

0

0

0

0

•

double error flag sets,, the syndrome bits must be checked to determine if a single

or double error was latched. If the single error flag sets and no double error,, the

error is a single error.

MODE 1

The first error occurring after a master clear or error clear has its error informa

tion latched. The information is correct regardless of subsequent errors. If a

double error follows a single error without an error clear,, the double error informa

tion is lost.

MODE 2

Mode 2 operation is identical to mode 1 except an attempt is made to latch the error

information for the first double error encountered regardless if a single error has

previously been latched. The double error flag sets unconditionally when a double

error is encountered. Other aspects of mode are less certain and conditions which

may result are listed.

• If simultaneous errors,, mode 2 is the same as mode 1. If the

double error flag is set,, the syndrome bits must be checked to

determine if a single or double error was recorded.

•

•

•

•

60256010 01

If the SECDED unit encounters one or more single errors,, and

the double error flag is absent,, the error information is that of the

first single error. All information is correct as in mode 1.

If the SECDED unit encounters a double error followed by other

double or single errors,, the error information is that of the

first double error and the syndrome bits must be checked.

If the SECDED unit encounters a single error and less than eight

minor cycles later a double error is encountered,, address bits

37 through 54 for either the single or double error may be

latched. Bits 55 and 56 are undeterminable and the remaining

error information is that of the double error.

If the SECDED unit encounters a single error and more than eight

minor cycles later a double error is encountered,, the double error

information is correct. However,, the MCU cannot distinguish this

case from the previous case.

3-11

• If the SECDED unit encounters a double error and one or more minor cycles later

encounters a single or double error, the first double error information is latched.·

DOUBLE ERROR LOG (MODE 2A)

After a master clear or error clear, the MCU creates a single error using the maintenance

function to toggle a check bit. This is not cleared, thereby blocking detection of all subse

quent single errors. Therefore, when the MCU detects the double error flag, the error

log information is correct for that double error.

SECDED FAUL TS

Executing an 06 instruction with bits 9 through 15 of the R designator selected, causes

SECDED faults to be generated on all read buses. This allows checking of the read SECDED

hardware and also the fault recording hardware for type and address of the fault.

BLOCK WRITE ENABLES

The MCU can enable block write enable if a SECDED error occurs. Depending on the mode,

there are two options:

• Mode 1

The write enable is blocked when SECDED receives its first single or double error.

• Mode 2

The write enable is blocked when SECDED receives its first double error.

SECDED USAGE

The SECDED design best suited for a system is based on the error rate of the memory.

Mode 1 is a good SECDED latch design for a memory with a low error rate. All error log

information is correct, but mode 1 does not latch a double error if it follows a single error

within the cycle time of the MCU.

Mode 2 is a good SECDED latch design for a memory with a high error rate~ All single

errors latched are correct, and all double errors following a single error by more than

eight minor cycles are correct. A double error occurring before a single error is also

latched correctly.

I 3-12 60256010 02

()

0

0

()

/,,,,.----~\

\,~_ ,,:i/

I
;\~

'1~_)

,ef~,

,,,,,l

10
'~
',~ _ _)

I \ c \ I

0
0

0

0
0

0
0
0

0

0
0

0

c
0
e
0

0

0

0

0

0

0

•

Mode 2A is a double error logging system used when single errors are to be ignored. This

mode misses the double error only if there is a simultaneous single error with a higher

latching priority.

ASSOCIATIVE UNIT

The associative unit contains the 16 associative address registers and corresponding con

trol circuits. When the CPU is in job mode, all addresses sent from the stream unit and

scalar processor units are virtual addresses. The associative unit compares a virtual

address with the virtual address identifier of the associative registers. If a match occurs

and one of the four keys compares with the locks of the associative address registers, the

virtual address control circuits convert the virtual address into the corresponding absolute

memory address from which the reference is made. If a match is not found in the associa

tive address registers, the virtual address control circuits read additional associative

words from the space table. The space table is a restricted area of the central memory.

SEARCH ING THE PAGE TABLES

The 16 associative registers (ARs), labeled 00 through 15, are loaded from absolute ad

dresses 4000 16 through 43CO 16 by a load AR (OD) instruction. They can also be stored into

the same absolute addresses by a store AR (OC) instruction.

The associative words in the ARs are moved dynamically using the following scheme. When

ever a virtual address is presented for association and a hit is made, the content of the AR

containing the hit is moved to AROO. Simultaneously, the content of each AR, from AROO

to (but not including) the hit AR, is moved down one AR (for example, 00 to 01, 01 to 02,

02 to 03, and so on). Thus, the associative words in AROO through AR15 are in descending

order of most recent use. If the end-of-table (END) is contained in the ARs and no hit is

made, the contents of the ARs remain unchanged and access interrupt is taken, unless the

request is for a read-ahead sword of instructions negated by the branch. Whenever an ad

dress is presented, no hit is made, and no END is contained in the ARs, a search through

the space table is begun using a ripple method. Each AR from AROO through 14 is moved

down one AR and AR16 is placed in a buffer register. A null is entered into AROO and then

AROO through AR15 are stored in memory locations 4000 16 through 43C0 16 • The content

of the space table is rippled through the ARs. The first associative word of the space table

is read and examined; its spot in storage is filled by the old content of the buffer register.

If the first word read from the space table is not a hit, the second word is read, is replaced

in storage by the first word read, and so on, until a hit is made or an end-of-table is

reached.

60256010 02 3-13

I
I

I
If during the search a hit is made, the content of the hit address is temporarily stored in

the buffer register and is replaced in memory by the associative word which precedes it in

the space table. The contents of locations 4000 16 through 43C0 16 are loaded into the ARs,

and the content of the buffer register (content of the hit address) is transferred to AROO.

Entries in the. space table beyond the hit address are not modified.

I

I

If an end-of-table is read before a hit is made, the entire space table, including the sword

containing the END, is pushed down by one word position, and a NULL is placed in AROO.

However, if the unsuccessful search was initiated by a memory reference in job mode, the

NULL may be pushed out of AROO before the exchange to monitor mode is performed. This

unsuccessful search condition and the cause bits are sent to the main control and an access

interrupt results.

If a NULL exists in the ARs and no hit is made in the ARs, the space table is not pushed

down. A read and compare takes place until a hit is made and the NULL replaces that word

in the space table.

If a hit is not made in the ARs and a NULL is encountered in the space table, the operation

changes from a ripple to a read only (no push down); if no hit is found, the NULL remains

in AROO, as before, If a hit is made deeper in the space table, the NULL replaces it.

Thus, only one NULL need exist at any given time in the page table.

If the monitor sets up the page table with one NULL, and it does not add or delete a NULL,

the END remains at a fixed address for any given number of associative words in the page

table.

At the termination of an unsuccessful space table search, there is a NULL in AROO if the

unsuccessful search was initiated by an OF (load keys, translate address) instruction.

Figure 3 -2 is an example of a page table search. The content of the ARs and the contiguous

I entries in the space table are depicted as Pl, P2, and so on, NULL, and END, where Pl

represents the associative word for page L NULL is a NULL associative word, and END

is an end-of-table entry.

The example shows seven consecutive virtual address page references and the resulting

page table transfers.. Assume that there are 21 associative words in the page table (16 in

the associative registers and 5 in the space table) and that no lockout bits are set; the last

entry is an end-of-table.

3-14

1. The first reference is to page 3. P3 is in AR02 and is moved to AROO; the content

of AROO through ARO 1 is moved down one word. The space table is not altered.

60256010 02

()

()

0
,o~. \ I I

0

!"''''\
i.," __ i

;;·-"\

\,,_.,,;

0
Al~

:'.")

0

0
·'.o. \ ... 1:

0

0

0
0

0
0

0

0

0
0

0

u
0
e
0

0

0
0
0
0

• •

REFEREN'CE
"1AOE TO PAGE P3 PIS P21 Pl Pl

ASSOCIATIVE

REG I STER 00
AFTER 2 AFTER 3 AFTER 4 AFTER 5 AFTER 6 AFTER 7

;,

01

02

03

•
•
•
•

12

13

14

15

P2

P3

P4 P2

P14 P14 P13

P15 P15 P14

PIG P16 PIS

P20

Pl PIG

Pl Pl

P9

P12 P12 PIO

P13 Pl3 P13 Pl2 P 11

P14 P14 P13 P12

ABSOLUTE
A.OD RESS 4400

(SPACE TABLE) IG
p 17 P15 P15

NOTE: I .

2.

60256010 01

4440 PIS PIG

44SO P19 P17

44CO P20 P20 P20 P19 P19 Pl9 P19

4500 ENO END END P20 P20 P20 NULL

4540 xx xx xx ENO ENO END END

PAGE TABLE IS MADE UP OF ASSOCIATIVE REGISTERS AND THE

SPACE TABLE.

3AP6A

Figure 3-2. Page Table Search Examples

P17

P19

END

The next reference is to page 18. No hit is made in the ARs so the

ARs are pushed down one and the content of AR15 (Pl6) is pushed

down into the space table. Pl 7 is read and replaced with P16.

Since P 1 7 is not a hit,, it is swapped with the next entry in the

space table,, P18. P18 caused a hit so it is replaced by Pl 7 and

moved to AROO.

3-15

I

3. The third reference is to P21, which is not in the page table. The result is that

the entire page table, including the END, is examined arid pushed down, AROO is

set to a NULL, and an access interrupt is generated.

4. Assume that the access interrupt is properly handled by the monitor program and

the page table is not altered. The next storage reference in job mode is to P 1.

Since Pl is in AR03 when the reference is made, it is moved to AROO, and AROl

through AR02 are moved down one word.

5. The fifth reference is to P16 which is now the second entry of the space table. This

time there is a NULL in the ARs. The NULL is moved to AROO and AROO is moved

down one word. P14 is not moved into the space table and the space table is not

pushed down. A read and compare takes place until the hit is found; the NULL

then replaces the selected associative word in the space table.

6. The next reference is to P20. Since there is no hit or NULL in the ARs, the page

table is pushed down until the NULL is encountered. Push down ceases and read

and compare takes place until P2 0 is read, causing a hit. P2 0 is moved to AROO

and is replaced by a NULL.

7. The last reference is to P2 l which is not in the page table. The page table is

pushed down until the NULL is encountered. Push down and searching cease when

the END is read.

AROO is set to a NULL and an access interrupt is generated.

I For page table restrictions and requirements, refer to table 5- 5.

MULTIPLE-MATCH FAULT

I In the central computer, any given combination of lock and virtual page identifier in an

associated word may occur in only one associative word in the page table. Whenever a

violation of the rule is detected, a multiple-match fault occurs and the CPU is stopped.

When two keys are identical, their lockout bits must be the same. Otherwise, a reference

to the differing lockout bits generates a multiple-match fault, resulting in an undefined con

dition. There are two types of multiple-match faults.

3-16

• One virtual address, lock, and key matches more than one register in the associa

tive registers.

• A virtual address makes a successful match with the associative registers, and at

least one additional match combination exists, but the reference is locked out by

the key lockout bits.

60256010 02

0
0

'1()
(~,;,;-11

(C' :, ,.j

0 -' ,!

()

(
't:,
i

0

0

0
0

0

0

0

0

0

0

0

e
0

0

0

0

0

0

• •

INSTRUCTtON ISSUE

The instruction issue unit issues instructions at a rate of one instruction per minor cycle.

unless it is blocked by instruction or memory conflicts. The unit must resolve three

conflicts:

Source operand conflict

Output operand conflict

Register file write conflict

An instruction requiring the result of a previous in

struction as an input operand must wait until the

operand is available.

An instruction result. destined for the same register

file location as a previously is sued but slower instruc

tion. must wait until the previous instruction stores

its result into the register file.

An instruction result. arriving at the register file at

the same minor cycle as the result of a previously

issued but slower instruction. cannot issue.

To resolve these conflicts. 16 result address registers (RARs) hold the register file ad

dresses for the output operands of previously issued instructions. Before an instruction is

issued. its source operand addresses are simultaneously checked against all 16 RARs

(source operand conflict) and its output operand address is checked against the operand re

sult position timing chain (output operand and register file write conflicts) for possible con

flicts. If a conflict exists, the issue is blocked until the conflict is resolved.

Any vector or string instruction modifying the register file (such as an index update, field

length, or an operand result) blocks further issues in the scalar unit.

The instruction issue unit allows parallel operation of scalar and vector/ string instructions

provided there are no register file reference conflicts and no central memory references

made by the scalar instruction. However, the scalar processor can make memory refer

ences to load the instruction stack in parallel with vector operations.

This parallel load operation requires two separate program address counters: one for

vector/ string instructions and one for scalar instructions. On interrupt, these counters

are stored in the invisible package along with the operation code and G-bits designator of

the vector in process. The content of the scalar unit's current instruction register is also

stored in the invisible package. This allows for program restart following an interrupt.

The parallel operation of the scalar and vector processors is controlled by the instruction

issue unit as follows: when the instruction control unit in the scalar processor decodes a

vector instruction and the vector unit is not busy, the scalar unit supplies the vector unit

60256010 02 3-17 •

As soon as the vector unit is finished

I• with the decoded instruction with all the descriptors.

• with the register file, the scalar unit is free to continue with the next instruction in the in

struction control unit while the vector unit completes the vector instruction.

I

Table 3-2 indicates which instructions are executed in the scalar processor and which in the

vector processor. Table 3-3 lists the instructions executed in the vector processor and

indicates whether parallel execution is possible.

TABLE 3-2. SCALAR/VECTOR PROCESSOR INSTRUCTION RESPONSIBILITY

First Digit of Instruction Code

0 1 2 3 4 5 6 7 8 9 A B c D E F

0 s s s s s s s s v v v s v v v v
1 I s s s s s s s v v v s v v v v
2 I s s s s s s s v v v .s v I v v
3 s s s v I s s s v v I s v I v v

Second 4 v v s s s s s s v v v s v v v v
Digit 5 s v s s s s s s v v v s v v v v
of 6 s v s s s I s s v v v s v v v v
Instruction 7 I v s v I I s s v v I v v v v v

Code 8 v v v s s s s s v v v v v v v v
9 v v vv s s s s v v v v v v v v
A v v s v I s I s I v I v v v v v
B I v s v s s s s v v v v v v v v

c s v s s s s s s v v v v I v v v
D s v s s s s s v I I I v s v v v
E v v s s s s s s I I I s s v v v
F s v s s s s s s v I v s v v v v

s Executed within the scalar processor. (Note that data flag information is

passed to the data flag register in the vector processor for appropriate

instructions.)

v The scalar processor initiates the vector processor to execute portions (or

all) of the instructions.

I Illegal instruction (processed by scalar in monitor mode, by vector in job

mode).

3-18 602 56010 02

l,f"'>,

\'''""i

CJ

\, __ /

--"

CENTRAL COMPUTER PARALLEL OPERATIONS

Paralle 1 Operation

yes

yes

yes

yes

yes

no, updates index

yes

yes

yes

yes

no, stores count in R. F. at exit

no, stores count in R. F. at exit

no, updates index at exit

no, updates index at exit

no, always reads/writes R. F.

yes, if no broadcast A+B

yes., if no broadcast A+B

yes, after first pass is completed

no, reads C from R. F.

yes

no,, always reads/writes R. F.

no, reads B from R. F.

yes, if no broadcast A+B (C is stored
at start of instruction.)

no,, stores c in R.F. on exit

yes,, if no broadcast A+B (C is stored
at start of instruction.)

no., reg C stored in R. F. on exit

yes., if no broadcast A+B

in R.F.

in R.F.

no,, reads B from R. F. after interrupt re.start

I

3-19

I TABLE 3-3. CENTRAL COMPUTER PARALLEL OPERATIONS (Contd)

Instruction

CF

DO

Dl

D4

D5

D6

D7

D8-D9

DA-DD

DE

DF
EO,El

E2

E3

E4, E5

E6

E7
EB, E9, EA

EB

EC,ED

EE,EF

FO,F7

F8,F9

Fi\

FB,FC

FD, FE, FF

REGISTER FILE

Parallel Operation

no, stores C in R. F. at exit

yes, if no broadcast A+ B

yes

yes, if no broadcast A+B

yes

no, updates index

no, updates index

no, stores B in R. F.

no, result stored in R. F.
no,, reads A from R. F. after interrupt restart

no, broadcasts B from R. F. after interrupt restart

yes

no,, reads C from R. F. during third pass

yes

yes

no.. reads C from R. F. during third pass

yes

yes

no,,

yes

writes mark pointer in R. F. at end of instruction

no, updates index

yes

no, updates index

yes

no, updates index

I The register file of .the central computer contains 2 56 64-bit words. This register

file is capable of accomplishing two read operations and one write operation every

minor cycle. The register file operations can be exchanged at the rate of two regis

ters in and two registers out every minor cycle.

3-20 60256010 02

()

0

;0\ \1, . .,,

;11(·"'·
, I
"'""-.:;,/

,,-~

1,\.)

tf ~\

\iJ

()

C.\ ,,)

0

0
0
0
0
0

0
0

0

[
'

0

0

0
0

0

0
0

A scalar result written into the register file can be used by subsequent scalar instructions

before the result is available in the register file. An exclusive OR of the read and write

addresses is performed, thereby setting all bits. of a register if equality exists. The scalar

result bypass (shortstop) of the register file may occur at the same time the result is I
written into the file, if equality exists.

BRANCH/INSTRUCTION STACK

The instruction stack implemented in the central computer accommodates up to eight swords I
(512 bits per sword), six of which need not be adjacent. To sustain the instruction issue

rate, a two-sword lookahead is done by reading the two swords following the sword being

executed. Issue of instructions is not blocked if the swords following lookahead are not in

the stack.

An address is maintained for each of the eight swords, allowing out-of-the-stack jumps to be

taken without voiding the stack. For example, it is possible to call a subroutine of up to

three swords (48 instructions of 32 bits each) several times from a three-sword instruction

stream and never jump out of the stack.

LOAD/STORE UNIT

The load/ store unit (L /S) executes the 12, 13, 32, 5E, 5F, 7E, and 7F instructions. Six

address registers in the load I store unit enable requests to be stacked and executed in the

proper order. The 12, 5E, and 7E instructions require one register and can be executed

(with no memory conflicts) at a rate of one load per minor cycl.e. The 5F and 7F instruc

tions require two address registers and can be executed at one store per two minor cycles.

The 13 and 32 instructions require two address registers which are busy for 1 7 minor

cycles after selection.

The L/S is capable of streaming L/S instructions (other than 13 and 32) at one minor

cycle per load and two minor cycles per store assuming no memory busy, access

interrupt, or register file write bus busy conflicts exist. For example, a stream of

n loads executes in n+l4 minor cycles from the issue of the first load until the

operand from the last load available in the register file. A stream of n stores executes

in 2n + l.i: minor cycles from issue of the first store until issue of the last st~re.

60256010 02 3-21

SCALAR FLOATING-POINT

I The central computer has an arithmetic unit dedicated to scalar operations. This unit is

divided into five separate functional elements:

• Add /subtract pipe

• Multiply pipe

• Logical pipe

• Single cycle pipe

• Divide/ square root I convert pipe

All elements of the arithmetic unit are separately and independently controlled allowing

concurrent operation. However, only one operand pair is issued to the arithmetic unit,

each minor cycle becoming the limiting factor in determining the result rate from concur

rent operations.

The first four functional elements are segmented pipeline units that accept a new pair of

operands every minor cycle and produce a 64- or 32-bit result. The divide/ square root I
convert element is not segmented and accepts operands only at completion of the previous

I ~:::::°F:~ATING-POINT UNIT CONTROL INTERFACE
There are three input and two output trunks to the scalar floating-point unit. All input

operands are 64- or 32-bit floating-point quantities, except where otherwise specified. If

an indefinite or machine-zero floating-point operand is received, the coefficient is set with

zeros.

A INPUT TRUNK

This 64-bit trunk receives data bits from register location R in the follmving format:

64-BIT MODE
0 15 16 63

I EXPONENT I COEFFICIENT

32-BIT MODE
0 7 -8 15 16 39 40 63

I ZERO I EXPONENT I COEFFICIENT ZERO

3-22 60256010 02

/f -.~\

ll_)

·o_.1 ~ '

···~ ~ 1 i

(1 _y

{

!,,.,

'

.

.)'
,,,;

0

0

0

0

0

0

0

0

0

c
0

0

0

0

0

0

0

0

0

•

B INPUT TRUNK

The ·B input trunk, identical to the A trunk, receives data from register S.

CONTROL TRUNK

The control trunk carries the signals that control the scalar floating-point unit. It is com

posed of the following signals.

CONTROL ADDRESS

The control address bits select the set of internal control signals for the floating-point in

struction being executed. A set of unique codes exists for each instruction (refer to table

3-4). Using the input data to the floating-point unit as a reference, these control bits must

arrive at the floating-point logic 1. 5 cycles before the data and must be valid for 2 0

nanoseconds.

MODE CONTROLS

The mode controls are Mode 64 In, Mode 64 Out, G-bit, and Divide. The Mode 64

and G-bit signals must lead the input data by one minor cycle and the Divide signal

must lead by 1. 5 minor cycles.

ISSUE CONTROLS

The issue controls are S-shortstop, R-shortstop, S-clockgate, R-clockgate, S-shortstop

Enable, R-shortstop Enable, and Go. All these controls must be valid one minor

cycle before the data. Shortstop is the process by which a result from any arithmetic

unit may be returned directly to either input of any arithmetic unit. The shortstop

enable signals enable the setting or clearing of the shortstop control flip-flops. The

clockgate signals cause data to be clocked into the floating-point input registers. The

Go signal allows processing of operands in the input registers.

60256010 02 3-23 I

I

OUTPUT T~UNK

The output trunk is 64 bits and transmits output data to the stream unit. The formats

for the output trunk are as follows. Data remains on this trunk for 20 nanoseconds.

0

EXPONENT

0 7 8

64-BIT MODE

32-BIT MODE

31 32

63

COEFFICIENT

39 40 63

EXPONENT COEFFICIENT EXPONENT COEFFICIENT

J v
Copy of O through 31

OUTPUT CONTROL TRUNK

The output control trunk transmits control or fault bits associated with results generated by

the scalar floating-point unit. These signals come up with data and are held up for 2 0

nanoseconds. The following signals are transmitted on the output trunk.

Signal

Branch Condition Met

Exit Condition Met

Divide Timing Pulse

Divide Unit Busy

Data Flags 39,, 41,, 42,,

43,, 45,, 46

Data Flag 58

Meaning of a 1 on Signal Line

The operands meet the compare condition. This line is

zero when a compare is not being done.

The operands do not meet the compare condition. This line

is zero when a compare is not being done.

Divide operands follow this timing pulse by 14 cycles.

The divide unit cannot accept new operands during the time

this signal is 1.

Refer to appendix D.

Logical OR of all the scalar floating-point data flags.

Data flags 39,, 41,, 42,, 43,, 45,, 46,, and 58 are held up for 40 nanoseconds for transmission

to (transistor current switch) hardware.

3-24 60256010 02

()

0
-~\ \v

/~.
\,_)

[°" (u

(~.\ ,[,!

()

.o
0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

•

Ins true-
tion

10

11

20

21

22

23

24

25

26

27

2A

2B

2C

2D

2E

2F

30

31

60256010 01

TABLE 3-4. INSTRUCTION CODES

M64
1

M64 Control Div- A
In ,.,. dut Address G-Bits cide Trunk

1 1 01 1 0

1 1 02 1 0

0 0 10 0 ·R

0 0 11 0 R

0 0 12 0 R

0 0 13 0 R

1 0 14 0 R

1 0 15 0 R

1 0 16 0 R

1 0 17 0 R

1 1 18 0 I

1 1 19 0 I

1 1 lA 0 R

1 1 lB 0 R

1 1 lC 0 R

1 1 lD G2.G3 0 0

1 1 lE 0 R

1 1 lF 0 R

B Output
Trunk Control

R DT. DB.
DFLG39.
58

R DT.DB

s EXCM.
BRCM.
DFLG46.
58

s EXCM.
BRCM.
DFLG46.
58

s EXCM.
BRCM.
DFLG46.
58

s EXCM.
BRCM.
DFLG46.
58

s EXCM.
BRCM,
DFLG46,,
58

s EXCM,
BRCM,,
DFLG46.
58

s EXCM,
BRCM,
DFLG46,,
58

s EXCM.
BRCM,
DFLG46,,
58

R

R

s
s
s
T

s
+1

3-25

~nstruc- M64
ti on In

34 1

35 1

36 1

38 1

3C 0

3D 1

3E 1

3F 1

40 0

41 0

42 0

44 0

45 0

46 0

48 0

49 0

4B 0

4C 0

4D 0

4E 0

4F 0

50 0

51 0

52 0

3-26

TABLE 3-4. INSTRUCTION CODES (Contd)

M64 Control Div- A B
Out Address G-Bits ide Trunk Trunk

1 20 0 R s
1 21 0 R -1

1 22 0 CIAR +20

1 23 0 R T

0 24 0 R s
1 25 0 R s
1 26 0 R I

1 27 0 R I

0 28 0 R s

0 29 0 R s

0 2A 0 R s

0 2B 0 R s

0 2C 0 R s

0 2D 0 R s

0 2E 0 R s

0 2F 0 R s

0 30 0 R s

0 31 1 R s

0 32 0 I 0

0 33 0 R I

0 34 1 R s

0 35 0 0 -· R

0 36 0 0 R

0 37 0 0 R

Output
Control

DFLG42,
43,, 46,, 58

DFLG42,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG42,,
43,, 46,, 58

DFLG41,,
42,, 43, 46,,
5

DFLG41,,
42,, 43,, 46,,
4

DFLG46,,
58

DFLG46,,
58.

DFLG46,,
58

60256010 01

0

0
(11'':',
,.,_Jii"1

;f ~
~i-__ ,;.I

/(t(~--...,,..\

·~/

0

0

0

0

0

0

0

0

0

0

[
0

0

0

0

0

0

0

0

0

Instruc- M64
tion In

53 0

54 0

55 0

58 0

59 0

5A 0

5B 0

5C 0

5D 0

60 1

61 1
,

62 1

63 1

64 1

65 1

66 1

67 1

68 1

69 1

6B 1

6C 1

6D(l)t 1

6D(2)t 1

6E 1

60256010 01

TABLE 3-4. INSTRUCTION CODES (Contd)

M64 Control Div- A B Output
Out Address G-Bits ide Trunk Trunk Control

0 38 1 0 R DFLG43,,
45,, 46,, 58

0 39 0 s R DFLG42,
43, 46, 58

0 3A 0 s R DFLG42,
46, 58

0 3B 0 R 0

0 3C 0 0 R DFLG42,
43, 46, 58

0 3D 0 0 R

0 3E 0 R s
0 3F 0 0 R DFLG43,

46, 58

1 40 0 0 R DFLG43,
46, 58

1 41 'O R s DFLG42,
43, 46, 58

1 42 0 R s DFLG42,
43, 46, 58

1 43 0 R s DFLG42,
43, 46, 58

1 44 0 R s
1 45 0 R s DFLG42,

43, 46, 58

1 46 0 R s DFLG42,
43, 46, 58

1 47 0 R s DFLG42,
43, 46, 58

1 48 0 R s
1 49 0 R s DFLG42,

43, 46, 58

1 4A 0, R s DFLG42,
43, 46,, 58

1 4B 0 R s DFLG42,
43, 46, 58

1 4C 1 R s DFLG41,
42, 43, 56,,
58

1 4D 0 R s
1 4E 0 T 0

1 4F 0 R s

3-27

Instruc- M64
tion In

6F 1

70 1

71 1

72 1

73 1

74 1

75 1

76 1

77 1

78 1

79 1

7A 1

7B 1

7C 1

BO,,Gl=O 1

BO,,Gl=l 1

Bl,, G 1=0 1

Bl,, Gl=l 1

B2""Gl=O 1

B2,, G 1=1 1

B3,, Gl=O 1

B3,,Gl=l 1

B4,,Gl=O 1

B4,, Gl=l 1

3-28

TABLE 3-4. INSTRUCTION CODES (Contd)

M64 Control Div- A B
Out Address G-Bits ide Trunk Trunk

1 50 1 R s

1 51 0 0 R

1 52 0 0 R

1 53 0 0 R

1 54 1 0 R

1 55 0 s R

1 56 0 s R

1 57 0 0 R

0 58 0 0 R

0 59 0 R 0

1 5A 0 0 R

1 5B 0 R 0

1 5C 0 R s
1 5D 0 R 0

1 60 Gl,, 2,, 0 A x
3,,4

1 70 Gl,, 2,, 0 A x
3,, 4

1 61 Gl,, 2,, 0 A x
3,,4

1 71 Gl,, 2,, 0 A x
3,,4

1 62 Gl,, 2,, 0 A x
3,, 4

1 72 Gl,, 2,, 0 A x
3,,4

1 63 Gl,, 2,, 0 A x
3,,4

1 73 Gl,, 2,, 0 A x
3,,4

1 64 Gl,, 2,, 0 A x
3,, 4

1 74 Gl,, 2,, 0 A x
3, 4

Output
Control

DFLG41,,
42, 43,, 46,,
58

DFLG54,,
58

DFLG64,,
58

DFLG64,,
58

DFLG43,,
45,, 46,, 58

60256010 01

0

,r,,~I

\~~,,

,~ \.

('01
"l./

/C~,

:\'l..J''

C' I

()

0

0

0

0

0

0

0

0

0

0

0 .

I

0

e
0

0

0

0

0

0

0

TABLE 3-4. INSTRUCTION CODES (Contd)

Instruc- M64 M64 Control Div- A B Output
tion In Out Address G-Bits ide Trunk Trunk Control

B5,,Gl=O 1 1 65 Gl,, 2,, 0 A x
3,,4

B5,,Gl=l 1 1 75 Gl,, 2,, 0 A x
3,,4

BE 1 1 76 0 0 I

BF 1 1 77 0 I R
CD 0 0 78 0 0 I
CE 0 0 79 0 I R

t The 6D instruction requires three references to the ref2ister file; this
takes two minor cycles. The (1) is the first and the 2) is the second.

ABSOLUTE BOUNDS ADDRESS

The absolute bounds address mechanism notifies the MCU of a memory reference (read

or write) to a specified block of memory. The block of memory is specified by an

upper bounds sword address and a lower bounds sword address. The addresses are

absolute physical sword addresses and are transmitted from the MCU on channel BTA5

(refer to section 4). The bounds addresses are not included in the block of memory.

There are two classes referenced: read and/ or write requests and CPU and/or I/O

requests. Bounds checking is disabled if either (or both) classes have neither

possibility selected (channel BT AB, bits 0 through 5).

The checker can selectively test various classes of requests for inbounds conditions.

Any combination of classes may be selected (channel BTA6,, bits 0 through 5).

If the CPU is stopped by a bounds hit,, the hit is cleared by the clear fault signal

from the MCU before the CPU restarts. The CPU restarts by setting bit 3 of MCU

output channel BT A 1. Bit 3 of BT A 1,, if set,, causes the CPU to execute the next

instruction in sequence.

60256010 01 3-29

A bounds hit (a selected memory reference inside bounds) is sent to the MCU on bit

3 of channel ATBB. To identify a second bounds hit, the MCU must clear the first

bounds hit signal via the clear fault signal (bit 7, channel BT A 1).

When a bounds hit occurs, the sword address of the request is saved in the bounds

hit register until a master clear or fault clear occurs.

The bounds limits and the bounds hit address refer to physical addresses independent

of memory degradation modes. (The bounds test is applied to the address after any

degradation mode manipulation is applied.)

SCALAR MICROCODE MEMORIES

The scalar microcode consists of five memories: PMOO, PMOl, HMOO, DMOO, and

GMOO. Each memory operates independently during CPU instruction execution and are

addressed simultaneously during writing or sweeping operations. The MCU loads the

microcode memories via a second block transfer channel.

0

Q:

,'1'·~

~~>'

(~
"~o.:.i·'

SCALAR MICROCODE MEMORIES (PMOO, PMOl) ',,

Scalar microcode (SMIC) is composed of two memories: PMOO and PMOl. Both memories

operate simultaneously with a cycle time of 20 nanoseconds, and each memory contaihs

256 120-bit words.

SMIC memory is a read-only memory; writing into SMIC is reserved for loading systems

or diagnostic microcode programs. SMIC provides the starting address for SMIC,

FMIC, DMIC, and AMIC during the load operation.

I The central computer uses microcode memories to start all instructions.

SMIC OPERATION

When the instruction stack has an instruction ready for execution, the function (F) code

is sent to the PMOO address register. If the issue unit is ready to execute an instruc

tion, the SMIC output is switched to PMOO and the execution is started.

If the instruction has one cycle of issue, SMIC output remains switched to PMOO and

the next instruction begins execution (assuming the instruction stack has the next

instruction available).

3-30 60256010 02

·"~ !u)

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

If the instruction has multicycles of issue,, SMIC output is switched to PMOl where

the remaining cycles of that instruction are executed. When the remaining cycles are

completed,, SMIC output switches back to PMOO and the next instruction begins execution

(assuming the instruction stack has the next instruction available).

If the instruction has variable cycles of issue (for example,, vector processor instruc

tions,, some of which execute in the associative unit,, and so on),, SMIC output is

switched to PMO 1 and the remaining cycles of SMIC control are executed. When PM 01

has completed its functions,, it waits for the conditions indicating the end of the

operation and switches to PMOO to execute the next instruction.

SMIC controls the flow of data from the instruction word to the functional unit. For

example,, SMIC:

•

•

Selects designators to and from their points of use (register file

read address,, register file write address,, address adder inputs,,

and so on)

Selects register file data to functional areas,, such as scalar pipeline

and address adder

SMIC also controls the operations performed by other functional units. For example,,

SMIC:

• Provides starting addresses for scalar floating-point microcodes,,

FMIC and DMIC

• Informs load/ store unit which operation to perform

SMIC ADDRESS CONTROL

PMOO addresses are controlled by the instruction stack.

PMOl addresses are controlled by SMIC bits. The next address to be used can be:

• The next sequential address (via incrementer)

•
•

The address contained in the MOl field

An address made from the MOl field (most significant four bits)

and an index based on sense condition status (least significant

four bits)

60256010 01 3-31

I

SMIC PARITY

SMIC has five parity bits forming odd parity.

ASSOCIATIVE MICRODE MEMORY (HMOO)

The associative microcode (AMIC) is a 256-word by 96-bit memory with a 20-nano

s econd cycle time.

AMIC OPERATION

AMIC is active during the following associative operations:

• Space table search

• Load associative registers (OD instruction)

• Store associative registers (OC instruction)

The AMIC memory is initialized into an idle loop and waits for a load; store, space

table search, or an exchange operation. The memory supplies control to the

associative registers (ARs), branches on conditions from ARs, and returns to the

idle loop upon completion of an operation.

AMIC ADDRESS CONTROL

AMIC bits control HMOO addresses. The next address to be used is one of the following:

• The starting address

• The address from the AD 1 field

• The address from the space table mode address register

AMIC PARITY

AMIC has four parity bits forming odd parity.

FLOATING-POINT AND DIVIDE MICROCODE MEMORIES (DMOO, GMOO)

The floating-point and divide microcodes (FMIC and DMIC) control scalar floating

point pipeline segment operations and iterative operations such as divide, square root,

and BCD/binary conversion.

3-32 60256010 02

;'"1' • ._),,

i,l.Ji

0

0

,~\

\<\ . .Ji!

,;f'-"'
I

'"ii,,_,,;·"

/--"
' J '\._.,,.

" :

(f·--.,,,
·~j

0

0

0

0

0

0

0

0

0

0
0

e
0

0

0

0

0

0

0

•

The floating point microcode memory (DMOO) and the divide microcode memory (GMOO)

contain 256 48-bit memory words each. Both memories are read only memories.

Writing is reserved for loading systems or diagnostic microprograms.

The main functions of FMIC and DMIC are as follows:

FMIC

DMIC

FMIC OPERATION

Selects data paths for operand processing

Provides constants for exponent correction and coefficient

shifting

Enables hardware checks for end case conditions such as

machine zero operands. overflow conditions. and so on

Selects data paths for operand processing

Preconditions logic properly for divide. square root, and

BCD /binary convert algorithms

Notifies machine when unit is processing operands and the

results are available

FMIC receives its address from an 8-bit field (M02) in scalar microcode memory. If

an instruction requires the scalar floating-point unit, the issue unit causes one 48-bit

microinstruction word to be read from FMIC. This word controls the segments of the

floating-point pipeline as the operands are processed. Floating-point operations of

differing lengths may cause conflicts within the pipeline segments. It is the issue unit's

responsibility to prevent this by issuing instructions at the proper rate.

DMIC OPERATION

If the floating-point operation is divide. square root, or BCD/binary conversion. DMIC

microcode memory is used with FMIC to control the iterative segments of the pipeline

that perform these operations. The 8-bit field (M02)- sent from SMIC to the floating

point unit is used for the starting address. Each iterative operation controlled by

DMIC requires the execution of several microinstructions. There is a field in each

DMIC microinstruction (GMA) that points to the next microinstruction. This linkage

continues until the last microinstruction required is completed. The G MA field of the

last microinstruction points to location 0 of DMIC. a one instruction idle. loop. DMIC

remains in this idle loop until the next divide. square root, or BCD/binary conversion

instruction is received. at which time a new starting address is received from SMIC.

60256010 01 3-33

VECTOR PROCESSOR

The vector processor contains a stream unit, two floating-point pipelines, and a string

unit.

The vector processor instruction and streaming control is contained in the stream unit.

The stream unit receives decoded instructions from the scalar processor and executes

these instructions while the scalar processor is free to execute scalar instructions not

in conflict with the vector operation.

The stream unit manages the data streams between central memory and the vector

pipelines.

Pipe 1 (VF 1) is used for vector add/ subtract and multiply operations. Pipe 2 (VF2)

is used for vector add/ subtract, multiply, and divide/ square root operations. For

vector addition, subtraction, and multiplication, the computer contains four 32-bit

or two 64-bit pipelines, while for divide and square root, only two 32-bit or one 64-

bit pipeline exists.

Each pipeline is segmented allowing a portion of the total operation on the two operands

to be done in the first segment. The result is moved to the next segment of the

operation, allowing a new set of operands to be moved into the first segment. For

example, if an instruction takes six segments or cycles to complete, it takes six

cycles for the first result, but each additional result is available every cycle there

after to the end of the vector operation. Therefore, the upper limit on vector per

formance becomes the time increment of each segment, while the lower limit is the

sum of time increments of all segments.

The maximum operational speed of the pipeline during streaming operations is:

Operation 32-bit Result 64-bit Result

Add/Subtract 100 x 106/seconds 50 x 106 /seconds
l\tr •• 1+~-1~~ 1 "" x

1n6/,..., ____ ...J,...,
25 x

1n61 ______ ...J_

.J.V.LU.L!..Lp.L.Y .LUU .LU I ;::)C\,;U.UU;::; .LU /l::it::\,;UUUl::i

Divide I Square root 50 x 106/seconds 12. 5 6 x 10 -I seconds

The vector processor contains a string unit to process strings of decimal and binary

numbers and perform all of the nonregister bit logical and character operations. The

results formed in a vector operation are selectable for storage by means of a program

specified bit string called a control vector. The string unit is the processing unit for

control vectors during streaming operations. It contains a facility for BCD and binary

arithmetic, zoned BCD processing, address arithmetic, and boolean operations.

3-34 60256010 01

rfT" ··;,

1v

0\
I

fl''•· ..
\,..),

(~\

'"·"i_ ___)/

I""-"\
\l__j;

0

0
0

0
0
0

0

0

0

0
0

e
0
0

0
0

0

0
0

VECTOR STREAM

The vector stream unit provides basic control for the central computer. Figure 3 -3 is a

basic block diagram of stream. The stream unit performs the following functions:

•

•

•

•

•

Initiates all storage reference requests for vector instructions

and operands.

Translates vector instructions and transmits control signals to

the arithmetic units.

Provides addressing for all source operands and arithmetic

results for vector instructions.

Buffers and positions all operands and arithmetic results between

central storage and the arithmetic units for vector instructions.

Performs binary and decimal arithmetic operations on byte strings .

It also performs other bit or byte string type operations such as

edit,, pack,, unpack,, compare,, merge,, modulo arithmetic,, logical,,

and search with or without delimiter.

The vector stream unit interfaces with vector floating-point pipes 1 and 2 and the scalar

processor. It also interfaces with the MCU interface for loading the microcode memory,,

maintenance,, and fault monitoring.

Instruction control receives all vector instructions from the scalar processor via a

64-bit trunk from the scalar instruction issue unit.

ADDRESSING

Addressing is done in stages; that is,, the addressing circuits break the address down

into groups of bits and send these bits to the various areas of the CPU and memory

where they control the selection or shifting of data.

The following are examples of address bits sent to the various areas of the CPU and

memory. Address bits 0 through 15 are not used for addressing.

1.

2.

Bits 16 through 54 are the virtual sword address. Addressing sends

these bits to the load/ store unit for comparison with the page table.

Bits 55 and 56 select the quarter-sword. These bits are sent to

the stream input and buffer control area for selection of operands.

They are also sent to the instruction control area for selection of

the control vector. Bits 55 and 56 also control the selection of

the quarter-sword sent to memory from the write bus 1 output

buffer area.

60256010 02 3-35

I

~
'C~

C;.:i
I

C;.:i
~

m
0
l:\J
C,Jl
m
0
.......
0

0
l:\J

0 0

SCALAR
PROCESSOR

c

WRITE BUS I
WRITE ENABLES

VIRTUAL SWORD
ADDRESS

READ BUS 3

0

STREAM INPUT,
BUFFER CONTROL,
AND 16 SWORD
INPUT BUFFER

WRITE BUS I
16 SWORD
OUTPUT BUFFER
AND CONTROL

ADDRESSING, FIELD
LENGTH CONTROL,
AND REGISTER FILE
ADDRESSING

ri
~y

f-')
\ l

X AND Y STREAM
CONTROL,
STRING INTERFACE

SCALAR PROCESSOR

C- STREAM
OPERAND SHIFT
NETWORK

READ 3 MASK

VECTOR INSTRUCTION
CONTROL

FROM {· MAINTENANCE
CONTROL
UNIT

SCALAR {
PROCESSOR .

A STREAM

LOWER REG. FILE

B STREAM

READ BUS I

CONTROL
TC STREAM

Figure 3-3. Basic Vector Stream Block Diagram

~r·-,,._
I I

l J
'(/

(
\c

\
/

!-' '"'
~~)

:~--'i

~-j

OPERAND SHIFT
AND SELECTION
NETWORK

DATA INTERCHANGE

'64) (64

P SECTION
INTERCHANGE

INCREMENT/DECREMENT COUNT

C) C)

.64.

INTERRUPT' COUNT
REGISTERS

0 0

I

0 0 ~\
~j

0

0

0

0

0

0

0

0

0

e
0

0

0

0

0

0

0

•

3.

4.

5.

6.

Bits 57 and 58 are sent to the operand shift network where they

control the operand alignment shift from quarter-sword to word or

half-words. Bits 57 and 58 also control the C stream operand

shift network where they control the half-word/word to quarter

sword shift of the result.

Bits 5 7 through 63 control the selection and shifting of the A and

B stream operands from the quarter-sword level to the byte and

bit level in the X and Y stream control and string interface.

Bits 55 through 59 select read bus 3 from the sword level to the

quarter-word level for the string output interface. This selection

takes place in the instruction control area.

Bits 60 through 63 control the shifting in the string output interface.

If the output goes back into the string unit (read 3 path), the shift

is from quarter-word to byte or bit. If the output is to the data

interchange, the shift is from bit or byte to quarter-word.

STREAM INPUT AND BUFFER CONTROL

This hardware consists of two 128-bit data paths between memory (read bus 1 and

read bus 2) and the quarter-sword to item count addressing interfaces (X and Y

stream control, string interface, register file, and operand shift network). This area

handles quarter-swords and supplies them to the item count addressing interfaces at a

usable rate. There is an 8K buffer (128 bits x 64) which is used to buffer the data

reducing the data rate of a sword from memory in some operations and to align the

two operand vectors for streaming in other operations.

OPERAND SHIFT AND SELECTION NETWORK

The operand shift network performs the final pairing of the operands before they enter

the floating-point pipes.; A and B stream buses (128 bits wide) enter the operand

shift network from either the scalar processor or the stream input network. The

operand shift network is capable of any shifting on 32-bit boundaries. After pairing,

the operands are sent to the floating-point pipes via two 64-bit trunks to each pipe.

60256010 01 3-37

DAT A INTERCHANGE

The data interchange performs the following functions:

• Receives and routes all data from ·the floating-point pipes,, string

unit,, and the B7 I BA unit.

• Routes all data going out write buses 1 and 2.

• Routes all data going to and from the vector setup adders .

C-STREAM OPERAND SHIFT NETWORK

The C-stream operand shift network realigns data to its proper position for writing

into memory. The shift network is capable of any shifting on 32-bit boundaries.

WRITE BUS 1 OUTPUT BUFFER AND CONTROL.

This hardware consists of one 128-bit data path between the item count to quarter

sword addressing and memory. This area handles quarter-swords (or 64- or 32-bit

quantities aligned to the proper quarter-sword bits) and assembles them into swords

for storage. There is an SK buffer (128 bits x 64) which is used to buffer the data

increasing the data rate of a sword to memory in some operations and to align the

output vector for streaming in other operations.

WRITE BUS 2 AND CONTROL

Write bus 2 and control consists of a 128-bit wide data path into memory (write bus 2)

and a large OR gate fed by all the registers which are saved in the invisible package.t

These registers feed into their appropriate bit positions for storage in the invisible

package. Also,, a full 128-bit path from the data interchange is ORed in for storage

of the register file in memory during an exchange operation.

X- AND Y-STREAM CONTROL AND STRING INPUT INTERFACE

This hardware consists of three 128-bit wide input data paths (read 1,, read 2, and

read 3) addressed to the quarter-sword level,, and two 16-bit wide output data paths

addressed to the bit level. For one type of operation,, two inputs (read 1 and read 2)

t Section 5 of this manual contains a description of the invisible package.

3-38 60256010 01

0

0

/,(,)·'. ~I'

,,,,,.--"\
' ',

\,111 ... >1

\..,.,

"0'·, \

~~
i \

\'l,;_.,i

0

0

0

0

0

0
0

0

0

0

0

0

0
e
0

0
0
0
0

0

0

•

supply operands to the string unit via the two output paths. For another operation,, one

input (read 3} supplies control vector bits via one of the 16-bit outputs to be used as

output vector write enables.

STRING UNIT

The string unit (figure 3-4) processes strings of decimal and binary numbers. The

X-stream,, Y-stream,, and data interchange areas of stream perform the bit boundary

addressing required for the string instructions.

EDIT CONTROL

The edit control processes strings of numbers in packed binary coded decimal (BCD}

format according to the control characters in the pattern field. Source characters are

transferred to the result field with commas, decimal point,, fill (check suppress}

characters, and messages inserted as specified by the pattern field.

LOGICAL INSTRUCTION CONTROL

This control performs the exclusive OR, AND, inclusive OR, stroke, pierce,, implica

tion, inhibit,, and equivalence operations on the input data fields.

BINARY ARITHMETIC CONTROL

This control performs the binary add, subtract, multiply, and divide operations on

operand strings. The add, subtract, and divide operations are executed in one 16-bit

adder. The multiply operation uses four consecutive 16-bit half adders and a 20-bit

full adder to generate partial products. The partial product from one pass is added

to the partial product of the previous pass in the 16-bit adder.

•

•

Binary Add and Subtract

The two operand fields are processed through the adder in 16-bit

groups from right to left. A register overflow (carry) out of the

adder from one 16-bit group is presented as a carry into the adder

for the next 16-bit group.

Binary Divide

The hardware executes the divide instruction using an algorithm

similar to the pencil and paper method of solution. The B field

operand is subtracted from the left end of the A field operand

60256010 01 3-39

NOTE

READ 2 DATA
VIA Y-STREAM
CONTROL

A FIELD
FAN-INS ANO

REGISTERS

8 FIELD
fAN-INS ANO
REG:STERS

I THIS DIAGRAM IS A GENERAL

REPRESENTATION OF THE

STRING UNIT ANO DOES

NOT SHOW ALL DETAIL.

3-40

MULTIPLICAND/

DIVIDEND

MULTIPLIER

LOGICAL

EDIT
CONTROL

INSTRUCTION L._ _______ _.,

CONTROL

BINARY MULTIPLY

2 BITS

DECIMAL AOD,SUBTRACT,MPLY ANO DIVIDE

Figure 3-4. String Block Diagram

A ANO 8
FIELDS

16

STORE
RESULTS
(PARTIAL
OR FINALI

60256010 01

0

0

0
()

(}

()

,~r~

,._,,)

/'-""
~-""j

,r'f~\
\"=J

i , c ,
[~
, I

'"=..i

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

e
0

0

0

0

0

0

• •

•

generating one bit of quotient and a partial remainder that is stored.

The hardware subtracts the two fields in 16-bit groups until the first

pass is complete. On the second pass, the B field operand is sub

tracted from this partial remainder (shifted one bit) to generate a new

partial remainder and the second quotient bit. The process continues

until the division is complete. The hardware uses a nonrestoring

type divide operation.

Binary Multiply

The binary multiply is accomplished similar to the pencil and paper

method of solution. The A field operand is streamed through in 16-

bit groups which are multiplied by the rightmost four bits of the B

field operand. The second pass uses the next four bits of the multiplier

with the partial results of this pass being added to the partial results

of the previous pass. This process continues until the B field is.

exhausted.

The multiplication by the 4-bit multiplier occurs in the four half

adders, one multiplier bit per half adder. The partial sum and

carry bits from the four half adders, together with the upper four

carry bits from the previous 4- by 16-bit multiply, are combined in

the 20-bit full adder. The lower 16 bits of the partial product are

combined with the partial products of the previous passes in the 16-

bit binary adder used for binary add, subtract, and divide.

The binary multiply unit multiplies only positive operands. Negative

operands are complemented at the inputs to the various adders. If

a negative result is required, the final product is complemented in

a separate pass.

DECIMAL ARITHMETIC CONTROL

This control performs the decimal add, subtract, multiply, and divide operations

through the use of two 16-bit decimal adders,, a divide table,, and a 4-digit multiply

table. The add and subtract operations are performed in the second adder which also

combines the partial results of the successive passes on multiply and divide operations.

• Decimal Multiply

The A field operand is divided into 4-digit groups which are multiplied

by the rightmost digit of the multiplier on the first pass. The multiply

lookup table generates a product digit and a carry digit for each digit

60256010 01 3-41

•

of the 4-digit group. The product and carry digits. together with

the most significant carry digit from the previous 4-digit group.

are combined in the first 4-digit decimal adder and are then stored.

The other multiplier digits are processed on the second and successive

passes. The partial products of a pass are combined with the partial

products of the previous passes in the second decimal adder.

Decimal Divide

The hardware executes the decimal divide instruction by examining

the most significant divisor digit and the two most significant dividend

digits. The divide table generates the largest quotient digit possible

for this input combination. The divlsor,, divided into 4-digit groups,,

and the trial quotient digit are multiplied in the multiply table. This

product is subtracted from the dividend yielding a partial remainder

(similar to the pencil and paper method of solution). Since only one

digit of the divisor is examined in determining the quotient,, the re

mainder may be negative (as when 080 is divided by 19 for which a

quotient of 8 is generated by the divide table). A negative partial

remainder forces the hardware into a correction cycle which adds the

divisor to the partial remainder and decreases the value of the trial

quotient digit by one. The correction cycle is repeated until the

partial remainder is positive.

The second pass generates the second quotient digit using the divisor

and the partial remainder from the first pass (plus the next dividend

digit). Additional passes occur until all digit positions of the dividend

are processed.

MISCELLANEOUS OPERATIONS

The string unit also performs move,, compare. merge. pack. and unpack operations not

specifically identified by controls in figure 3- 4.

INTERRUPT COUNTERS.

The interrupt counters function as follows:

•

3-42

Hold addresses. delimiters. field lengths. which are necessary to

restart vector-type instructions after an interrupt.

60256010 01

0

0
()

,.-~

:,~ J)

f)

(('\
''4..__J)

()

(' ... ·"' i.

0
0
0
0
0
0

0

0

0

0
0

e
0

0
0

0
0

0
0

•

• Keeps track of pass counts and termination conditions for multipass

instructions.

P SECTION INTERCHANGE

The P section interchange performs the following:

•

•

87 /BA UNIT

Receives data from the data interchange, B7 /BA unit.; interrupt count

registers,, and microcode memory control registers.

Routes data to the data interchange,, B7 /BA unit, and addressing .

This unit is used to process B7 /BA instructions.

MICROCODE (VMIC)

The computer uses microcode (VMIC) to start up and shut down vector type operations.

For most other operations microcode is not used. The MCU loads the microcode

memory via a second block transfer channel. This channel between the MCU and the

microcode is also used to read VMIC memory,, VMIC status,, and set conditions

(switches) in VMIC.

VMIC memory is used as a read-only memory. Writing into VMIC memory is re

served exclusively for loading systems or diagnostic microcode programs.

VMIC memory is composed of two memories: memory 0 and memory 1. Each

memory operates on a cycle time of 80 nanoseconds but offset by 40 nanoseconds.

Memory 0 leads memory 1 by 40 nanoseconds. Every read from memory 0 is un

conditionally followed by a read from memory 1 at the same address,, even if the

memory 0 word forced a branch.

Each of these memories has 1536 words. Memory 0 has 128 bits (0 through 127) per

word and memory 1 has 96 bits (128 through 223) per word. The memory access

time of each memory is about 65 nanoseconds.

VMIC OPERATION

When the scalar processor initiates an instruction requiring microcode control,, the

vector unit sends a function codet and go pulse to the microcode unit. The microcode

t Section 6 of this manual describes the instructions.

60256010 01 3-43

go pulse forces the F code into bits 3 through 10 of the microcode program address

(P) register (bits 0 through 2 are forced to zero) and starts the memory control

timing chain. The F code of the instruction thus forms the starting address of the

microcode program for that instruction. An exception to the above startup process

occurs if the interrupt flag is set when the microcode unit receives the microcode

go pulse. In this case,, only the timing chain starts,, and the F code does not go to

the microcode P register. The microcode P register was set previously with the P

address contained in the invisible package.

This type of operation is used when the microcode program is restarted after an

interrupt.

After the CPU starts the microcode program,, the microcode unit takes control of the

startup and termination of the instruction,, and in the case of an interrupt,, saves all

the operands and parameters necessary to resume execution of the instruction after an

interrupt. Once initiated,, the microcode program continues to execute until the KIL

bit is read in a microcode word or until the MCU stops execution by sending a KILL

signal.

The microcode program performs the following operations in a typical instruction start

up.

1. Reads the addresses from the register file in the scalar processor

according to the instruction designators.

2. Makes the necessary address modifications.

3. Transfers the addresses to the appropriate interrupt count registers.

4. Sets up the usage and mode of operation of the read and write buses

~/from ma~ memory.

After startup,, the microcode program waits for the conditions indicating the end of

the operation and terminates. The program also monitors the external or access

interrupt conditions,, and if an interrupt occurs during instruction execution,, the pro

gram saves the information needed to restart the instruction at the point it was

interrupted. The microcode program initiates the exchange to monitor mode,, sets

the interrupt flag,, and terminates.

CONTROL LINES

The control lines from VMIC memory,, defined for both memory 0 and memory 1,, are

transmitted in turn. The memory 0 bit is transmitted for 40 nanoseconds and the

memory 1 bit is transmitted for the next 40 nanoseconds.

3-44 60256010 01

0
0
0

0

·"'1\
i'\..~)

((--...,

,_,. • .1

I~\

~_,,)

0

0

0

0

0

0

0

0

0

0

(J
0

0

0

0

0

0

Those bits defined for only one memory are transmitted for the same relative 40

nanosecond period as the doubly defined bits. In some cases. the singly defined bits

are . transmitted for 80 nanoseconds.

When VMIC is not running. all control lines transmitted to the vector stream unit are

forced to conditions not affecting operation. The MCU can disable these control lines

with switch 5 (refer to section 4).

VMIC INTERRUPT

When the microcode program senses an interrupt condition. it continues execution until

it comes to an appropriate point to stop and allows the interrupt to proceed. At that

point. the microcode sets the interrupt flag. initiates the exchange to monitor mode.

and stops. During the exchange. pertinent microcode control information is stored

into word 3 of the invisible package. This information is used later to restart micro

code execution at the point it was stopped.

When the microcode program is restarted. the initial address depends on the state of

the interrupt flag as reloaded from the invisible package. If the interrupt flag from

the invisible package is set, the P address contained in the invisible package is forced

into the VMIC P register. The P address from the invisible package is one plus the

address when the KIL bit terminated the microcode control to process the interrupt.

If the interrupt flag from the invisible package is clear, the F code is forced into the

VMIC P register.

VMIC PARITY

Each 224-bit microcode word has two parity bits forming odd parity: parity bit 0

(PBO) for memory 0 and parity bit 1 (PBl) for memory 1. Software generates the

parity bits before loading the word into the microcode memory.

Each microcode memory has hardware which tests the parity as it reads each micro

code instruction for execution. A parity fault in either memory stops microcode and

CPU instruction execution. Instruction execution stops with the microcode memory P

register containing the address 2 words beyond the word causing the parity fault. Bit

1 of MCU channel ATBB indicates the occurrence of a VMIC memory parity fault stop.

Each VMIC memory also has a separate VMIC memory parity fault status bit available

to the MCU via the display register (bits 6 and 7 of display register code 4). The

clear faults signal sent from the MCU clears all three VMIC memory parity fault

status bits.

60256010 01 3-45

There is no VMIC memory parity fault during loading or storing VMIC memory from

the MCU.

VMIC PARITY FAULT ISOLATION

Two tools are available to isolate VMIC memory parity faults. The MCU is able to

read the contents of VMIC memory and compare it with the data loaded into the VMIC

memory. MCU is also able to read the VMIC memory P register. The P register

points to the second instruction beyond the VMIC instruction containing the parity

fault causing the stop.

CHECKPOINT

The checkpoint bit (CPT field in VMIC memory 1) is a maintenance aid used for

microcode program debugging and oscilloscope triggering. During execution of a

microcode word,, the checkpoint flip-flop sets if the CPT microcode bit in that word is

equal to 1. The checkpoint flip-flop is sensed and cleared by the MCU. The MCU

senses the checkpoint flip-flop via bit 0 of microcode status word 1 and clears the

checkpoint flip-flop via microcode switch bit O.

MICROCODE WRITE LOCKOUT

A lock and key located on the same chassis as the microcode memory enables or dis

ables the writing of data into microcode memory. If the key is in the disable position,,

the block transfer channel from the MCU acts as though it made a normal microcode

load but no data is written into memory. This protects the microcode program from

alteration once the program is loaded.

VECTOR FLOATING-POINT

Floating-point numbers in the computer are two lengths: 32 bits and 64 bits. The

32-bit format has an 8-bit exponent and a 24-bit coefficient (figure 3-5). The 64-bit

format has a 16-bit exponent and a 48-bit coefficient. The leftmost bit of each

exponent and coefficient is the sign bit. A detailed description of floating arithmetic

is presented in the instruction specification.

Pipe 1 and pipe 2 work together to perform all vector arithmetic instructions except

divide and square root. Pipe 2 alone performs divide and square root (figures 3-6

and 3-7). This organization of hardware allows optimum performance for both register

and vector divide operations. For vector operations common to both pipe 1 and pipe 2,,

3-46 60256010 01

0

0

0

0
()

~
1.,,,)

/,-1\
('tc._R

,~

'--lii,_,,,)

4------..,\

·'--.)

0

0

0
()

()

0

0

0

0

0

0

0

0

0

0

[
.

.

0

e
0

0

0

0

0

0

0

•

0

0

60256010 01

78

(8)

UPPER
EXPONENT

(16)

EXPONENT

EXPONENT

COMPARE

(24)

UPPER
COEFFICIENT

15 16

Figure 3-5.

SHORTSTOP

COEFFICIENT COEFFiCIENT

ALIGNMENT ADO

SHIFT

31 32 39 40

I (8) I
'--v---'

LOWER
EXPONENT

(48)

COEFFICIENT

Operand Formats

NORMALIZE

COUNT

NORMALIZE

SHIFT

HIGH SPEED MULTIPLY UNIT

32-BIT FORMAT

63

(24) I
LOWER

COEFFICIENT

64 -Bl T FORMAT

63

TRANSMIT

64

MULTIPLY I MULTIPLY 2 MERGE 64 MERGE I MERGE 2

3AP20B

Figure 3-6. Floating-Point Pipe 1

RESULT

3-47

EXPONENT COEFFICIENT COEFFICIENT NORMALIZE NORMALIZE
A OPERAND

COMPARE ALIGNMENT ADD COUNT SHIFT

BOPERAND SHIFT

MULTIPURPOSE UN IT

(24 SEGMENTS)

Figure 3-7. Floating-Point Pipe 2

DIVIDE

UNIT

TRANSMIT

3AP19A

RESULT

64

the data is divided in half with every second pair of 64-bit operands going to pipe 2

(first pair, third pair, and so on) and every second pair (second pair, fourth pair, and

so on) to pipe 1. In 32-bit mode, each pipe divides in half to become two 32-bit

pipes. Therefore, two pair of operands go alternately to each pipe.

PIPE 1

Floating-point pipe 1 receives operands from the vector stream unit, performs the

instructed operation, and returns the results to the vector stream unit. Pipe 1 per

forms arithmetic operations on operands in floating-point format and address operations

on nonfloating-point numbers. Arithmetic operations include such operations as add,

subtract,, multiply, truncate, adjust exponent, contract, extend, and compare. Refer

to figure 3-6 for the following description of some basic operations of pipe 1.

For addition and subtraction operations, the input exponents are compared in the

exponent compare circuit. The difference in the two exponents is used as a shift count

determining the amount the coefficient with the smaller exponent is right-shifted in

,the coefficient alignment section. The coefficients are added in the add section. If

the operation being performed specifies normalization, the result of the add operation

is fed to the normalize count. This circuit produces a shift count which -controls the

normalize shift network and modifies the result exponent. The transmit circuit returns

the shifted result to the stream unit.

3-48 60256010 01

0

0

0

,f'.'. ''') '·"'

,/~\

\.,_j

(0. i "l .. "1

/'.""·
\i1t;_/'

~':-.
1 • .t._;

lo I'• .. \ ,, I

0

0

0

0

0

0

0

0

0

0

[
0

0

0
()

0

0

0

0

0

If normalization is not specified,, the result of the add operation is the des ired result

and is transmitted to stream.

If the instruction is a multiply,, the operands are multiplied in the high-speed multiply

unit. The result of the multiply is either returned directly to the transmit section or

to the normalize count logic for normalization. The normalize count functions only

for the multiply significant instructions.

Any result from pipe 1 may be returned directly to either of the inputs of pipe 1 if

the result is needed as an input operand. This process is called shortstopping.

PIPE 2

Floating-point pipe 2 (figure 3 -7) receives operands from the vector stream unit,, per

forms the instructed operation,, and returns the results to the vector stream unit.

Pipe 2 performs arithmetic operations on operands in floating-point format and address

operations on nonfloating-point numbers. Arithmetic operations include such operations

as add,, subtract,, multiply,, divide,, truncate,, adjust exponent,, contract,, extend,, and

compare. Pipe 2 performs only two address type operations. These are the vector

add and subtract address instructions (83 and 87 instructions). Pipe 1 and pipe 2 are

similar except pipe .2 has a high-speed register divide unit (not used) and a multipurpose

unit.

MULTIPURPOSE

The multipurpose unit performs the vector square root,, vector divide,, and vector

multiply instructions. The multipurpose unit contains 24 segments. Each segment

performs an add type operation. The segments are arranged in four groups of six

segments per group. In 64-bit mode,, the operands loop on each group,, going through

each group twice. In 32-bit mode,, the operands proceed from segment to segment

going through all of them only once. The multipurpose unit delivers its results to the

normalize or transmit portions of pipe 2.

60256010 02 3-49

I

I

INPUT /OUTPUT CHANNELS

I The central computer CPU contains 12 I/O channels. Channel 12 is reserved for the MCU.

The MCU provides the interface to the operator for maintenance, system control, and

monitoring. The MCU can disable any or all I/O channels from reading or writing into

central memory. The peripheral station on a disabled channel can carry on all functions,

except the transmission of data to/from central memory, with the I/O channel of the

I central computer. This feature is useful for maintaining the I/O channels and peripheral

stations.

A typical I/0 channel connects to a peripheral station. The periphe.ral station may

connect to various peripheral devices or to another second-level peripheral station.

ASSEMBLY/DISASSEMBLY

Each I/O channel contains a 32-bit assembly /disassembly register and address register

circuits. Addresses are sent to the channel from the peripheral station. In addition,

the I/O channels share a high-density logic (HDL) storage unit. The HDL storage unit

has a capability of 32 quarter-swords of data (128 bits each). The I/O buffer is used for

assembly, disassembly, and buffer operations. An I/0 channel is allocated a quarter,

half, or whole sword in the I/O buffer. The amount of I/O buffer space that is allocated

to an I/0 channel is predetermined and may be altered only by specific contractual

arrangement.

The allocation for each I/0 channel is:

Channels 1 through 5

Channels 6 through 10

Channels 11 and 12

Four quarter-swords each

Two quarter-swords each

One quarter-sword each

The data trunk between the assembly/ disassembly buffer (ADE) and central memory is

128 bits wide. The data trunk between the ADE and the channel assembly/ disassembly

registers is 32 bits wide. The data trunks between the peripheral stations and the

assembly I disassembly registers are 16 bits wide.

1/0 DATA

Figure 3-8 shows that in I/O write operations, each 32-bit half-word consists of two

successive 16-bit transmissions from the peripheral station. The two 16-bit portions

are assembled in the assembly/ disassembly register for transmission to the I/O buffer.

3-50 602 56010 02

0

0

lo··I ' '

()

rf'"~\

(~~-";)

(C·1 \ JI

0
()

0

0

0

0

0

0

0

0
0

c
0

0

0

0

0

0

0

DATA SENT FROM PERIPHERAL STATION

0 1 2 3 4 5 6 7 8 9 10 1112 13 1415

I I I I I I I I I I I I I I I I I

0 1 2 3 4 5 6 7 8 9 10 1112 131415

I I I I I I I I I I I I I I I I I

FIRST TRANSMISSION

(UPPER 16 BITS)

SECOND TRANSMISSION

(LOWER 16 BITS)

1/0 CHANNEL
AD REGISTER

0 1 2 3 4 5 6 7 8 910111213141516171819202122232425262728293031

~t I l:7~
UPPER 16-BITS LOWER 16-BITS

HIGHEST ORDER BIT LOWEST ORDER BIT

3AP7A

Figure 3-8. I/O Data Formats

I /0 ADDRESSING

Figure 3- 9 shows that the starting address for an I/O read or write operation is sent

from the peripheral station as two 16-bit transmissions. The first 16 bits contain the

upper or lower lOOOK memory selection bit and the high-order 5 bits of the sword

address. The second 16 bits contain the low-order 7 sword bits, the 5-bank selection

bits+, the quarter-sword address, and the half-word address. The 12 sword address

and 6 bank address bits are transmitted to the channel address register where they

are incremented as sword boundaries and are crossed during central storage references.

The quarter-sword address bits are sent to I/O control where they determine the

t The bank selection bits and the lOOOK MCS selection bit are combined to form the
6-bit bank address as sbown in figure 3-8.

60256010 01 3-51

3-52

[

SELECT UPPER I MILLION, OPTIONAL

HIGH-ORDER 5 BITS OF
NOT USED SWORD ADDRESS

0 I 2 3 4 5 6 7 8 9 10~
I I I I I I I I I I I I I I I I I FIRST TRANSMISSION

LOW-ORDER 7 BITS OF BANK rl/4 SWORD ADDRESS

SWORD ADDRESS SELECT HALF- WORD ADDRESS

> I 0 I 2 ~ 4 5 6 \/ 7 8 ~ 10 11\~~
I I I I I I I I I I I I I I I I I SECOND TRANSMISSION

'--~~--~~--J~

I/O BUFFER
ADDRESS COUNTERS

. O ~! 6 7 8 9 10 II "12 13 14 15 16 17 \

I I I I I I I I I I I I I I I I I I I~~~~~~~ ~~:i~;:R

t\ ~ II ~
SWORD

ADDRESS
BANK

ADDRESS

Figure 3-9. 1/0 Address Formats

3APIA

60256010 01

0

()

,o

;~

f~ti

/ \

\ , .. ,,./

.~

\.~)

()

0
0
0
0
0
0

0

0

0
0
e
0
0
0
0
0
0

0

quarter-sword that is loaded into or transmitted from the I/O buffer. The half-word

address bits determine the 32-bit half-word that is loaded into or transmitted from the

I/O buffer.

1/0 CHANNEL PRIORITY -

The I/O channels have priority over scalar operations. There are two modes of op

eration to determine priority, random mode, and stream or slot mode.

1.

2.

Random Mode

When a channel needs a memory access, the request goes through

a channel priority. Channel 1 has the highest priority and channel

12 the lowest priority. After channel priority is granted, the request

goes through a system priority. Before the access is allowed, no

read next instruction (RNI) request can be present. At this point, the

memory busy is checked and if not busy, the access is granted. If

the memory is busy, the requesting channel is limited to making re

quests on alternate I/O timing signals, thus allowing a lower priority

channel to make a request while the higher priority channel waits for

the memory to go not busy. The requesting channel requests memory

on alternate access cycles (I/O timing signals) until the access is granted

or until a higher priority channel makes an access request .

. Stream or Slot Mode

When a channel needs a memory access, the first check is to ensure

that the bank requested is in the slot. When the selected memory bank

is in the slot, the channel makes a request. This request goes through

the channel priority where channel 1 has the highest priority and channel

12 has the lowest priority. After channel priority grants the request,

the request goes through the system priority. Before the access is

allowed, no RNI request can be present. At this point, the memory

busy t is checked and if not busy, the memory request is granted. If

the memory bank is busy, the channel waits until the next time the banks

go not busy.

tMemory busy is unlikely in slot mode.

60256010 01 3-53

SYSTEM COMMUNICATIONS

The CPU (A) and first level stations (B) communicate by exchanging control and

interrupt information. Signals sent from the CPU are called control from A (CF A)

and signals sent to the CPU are B to A interrupts.

The control from A function codes are defined as follows:

Channel Flag

External Flag

Suspend

3-54

A channel flag is transmitted by the execution of an

08 instruction. Twelve channel flags are available

in the computer,, one for each I/O channel. The 08

instruction designates the I/O channel. Table 3-5

shows the assignment of the channel flags. A typical

use of a channel flag is to indicate the CPU has a

message concerning normal communication from

system software placed in a prearranged area of

storage.

An external flag directs B to master clear and enter

an autoload sequence. The external flag is initiated

through the maintenance control unit.

A suspend code directs B to cease transmission on

the channel and go into a stand-by mode. Any

master clear involving the scalar processor causes

a suspend code. The suspend code is transmitted

to all stations simultaneously.

60256010 01

()

0

~~.

''<it: __ ,;?

/,.,,,...-~\

rf-), ,, '.

0
(-,".·.·'

,,'/

'-'"

0
0

0 TABLE 3-5. CHANNEL FLAG ASSIGNMENTS

0 Channel Flagt Assignment

0 Not available

0 1 I/0 channel 1

~ I/O channel 2

0 3 I/O channel 3

0
4 I/O channel 4

5 I/O channel 5

6 I/O channel 6

0 7 I/O channel 7

8 I/O channel 8

9 I/O channel 9

A I/O channel 10

0 B I/O channel 11

c I/O channel 12

0 D Not used

E Not used

F Not used

0
tRefer to the 08 instruction in section 6.

e

0
0
0
0

0
0 60256010 01 3-55

•

0

"\

f--,,

.,_.il

C\
I I

0

0 I -

(--):,
·i

;/'

0

0

0

0

0
0

0
0

0

0

c
e

0

0

0
0
0
0

MAINTENANCE CONTROL UNIT

DESCRIPTION

The maintenance control unit (MCU) provides system autoload and system performance

monitoring capabilities. The MCU also provides the capability of loading, controlling,

and monitoring the central processor unit (CPU) diagnostics. The MCU consists of a

control unit, line printer, disk drive, and 3000-channel interface. Connections from the

MCU to the central computer are made through central computer I/O channel 12 and

special internally connected interfaces (figure 4-1). The interfaces allow the MCU to

monitor CPU status and gather performance statistics.

The primary purpose of the MCU is to support the reliability, availability, and maintain

ability of the central computer. Customer Engineering has priority use of the MCU for

these purposes. The MCU provides operators with the means of autoloading the operating

system, checking the CPU status, and gathering event counter data.

The MCU operates in off-line and on-line software modes.

• In an off-line mode, the MCU loads CPU diagnostic routines from the disk drive.

•

The MCU then controls and monitors the diagnostic operations and furnishes the

results of the operations to a display unit or a line printer.

In an on-line mode, the MCU performs real-time monitoring of the CPU and

displays its status.

MCU/CPU INTERFACE

The MCU connects to the CPU via eight, pulsed, normal channels in each direction (BTA

and ATB). The channels that carry information from the CPU to the MCU (referred to

as ATB) are numbered ATB 1 through ATB8 and connect to MCU input channels 8 through

F. The channels that carry information from the maintenance station to the CPU

(referred to as BTA) are numbered BTA 1 through BTA8 and connect to MCU output

channels 8 through F.

Tables 4-1 through 4-8 list the ATB channel bits and their functions; tables 4·-9 through

4-16 list the BTA channel bits and their functions. The connector for each channel is

contained in the table title.

4

602 56010 02 4-1

I

I

I

I

VECTOR PROCESSOR SCALAR PROCESSOR 112 MILLION
WORD MEMORY

MICROCODE
MEMORY

r

r

,, ,,
MCU/CPU
INTERFACE

...-MICROCODE
r--- MEMORIES

-

... ~---· ...

-1-------------
1/0

•
• • •

,, ,~ ~ .
'~~~----------

MAINTENANCE
CONTROL UN IT

1/2 MILLION -
WORD OPTIONAL
MEMORY

I MILLION-WORD
OPTIONAL
MEMORY

CHANNELS 0-7 -- >a STANDARD INPUT CHANNELS TO

~ ®{ __.. ~ J>CHANNELS 8-F
ATBS

. --

.,.~-- PERIPHERAL EQUIPMENT AND 8 STANDARD
OUTPUT CHANNELS FROM PERIPHERAL
EQUIPMENT.

NOTES:

I 0 CHANNEL 12 IS CONNECTED TO THE MCU

© 8 PULSED NORMAL OUTPUT CHANNELS NUMBERED BTAl-BTAS CONNECT TO MCU OUTPUT
CHANNELS 8- F

@ 8 PULSED NORMAL INPUT CHANNELS NUMBERED ATBl-ATB8 CONNECT TO MCU INPUT
CHANNELS 8- F

Figure 4 -1. Maintenance Control Unit Interface

4-2 60256010 02

(~o

0

,A "·

''11;,_j

/11~ ..
''(j

. 0

(f''h\
\/i, 11'

0

0

0

0

0

0

0

0
0

0

0
0

e
0

0

0

0

0

e
0

•

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

60256010 01

TABLE 4-1. CHANNEL ATBl .{CONNECTOR ATB12)

Function

Bit 0 Current instruction address register

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15·

4-3

TABLE 4-2. CHANNEL ATB2 (CONNECTOR ATB12)

Bit No. Function

0 Bit 16 Current instruction address register

1 1T
..

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25
A 26

B 27

c 28

D 29

E 30

F 31

4-4

I

60256010 01

()l

()

0

0

/~·-··""

~j

;r-,,\
'~_,;

0

I O
~

0

C i
.. ,,·

0

0

0
0
0
0

0

0

0

0

0

(Ji, I

i

j

0
e
0

0
0

• • • • •

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

60256010 01

TABLE 4-3. CHANNEL ATB3 (CONNECTOR ATB34)

Function

Bit 32 Current instruction address register

33

34

35

36

37

38

3;9

40

41

42

43

44

45

46

47

4-5

TABLE 4-4. CHANNEL ATB4 (CONNECTOR ATB34)

Bit No. Function

0 Bit 0 Display register; displays the register selected by

1 1 bits C through F of channel BTAl in the MCU.

2 2

3 3 ,.

4 4

5 5

6 6

7 7

8 8

9 9

A 10

B l1

c 12

D 13

E 14

F 15

4-6 60256010 01

0 \
•'

0
0

iG;,
.. Y

r1':",
'\illliwJ~·

;! .. ·---,,,

"_i)
.r,(-'"·,
'_""";,'

C.
I •
\ ;

·'

.. f"'·
~\._,y

} c
0

0
0
0
0
0

0

0

0

0

0

0
0
e
0
0

0

•
0

• • •

TABLE 4-5. CHANNEL ATB5 (CONNECTOR ATB56)

Bit No. Function

0 Bit 16 Display register; displays the register selected by

1 17 bits C through F of channel BTAl in the MCU.

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

A 26

B 27

c 28

D 29

E 30

F 31

60256010 01 4-7

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

4-8

TABLE 4-6. CHANNEL ATB6 (CONNECTOR ATB56)

Function

Bit 32 Display register

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

60-256010 (}1

0

0

0

0
()

0
()

.ti~

\,:, '
\, I

='

0

0

0

0 1

'

0

0

0

0

0

0

0

0

0

0

0 I

)

I
J

0

e
0

0

0

•
0

• • •

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

60256010 01

TABLE 4-7. CHANNEL ATB7 (CONNECTOR ATB78)

Function

Bit 48 Display register

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

4-9

TABLE 4-8. CHANNEL ATB8 (CONNECTOR ATB78)

Bit No. Function

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

4-10

These lines Memory SECDED fault or instruction stack parity

indicate MIC memory parity fault

why the Multiple match

CPU has Absolute sword bounds hit

stopped. Event stop

Single SECDED error

--------------- CPU clock; used for gating data back to the CPU.

The MCU buffer controller cannot read

this line.

--------------- Monitor mode

Temperature / dewpoint alarm

Not used

Section power fail

60 Hz input power fail, mainframe-memory MG

60 Hz input power fail, optional memory MG

Not used

CPU idle

CPU stopped

6025&01o-0-1

0

c.,

,,,.--~.,_

i
''--:-"'

c
/""'_,·--..,, ... ,
,_,,.._:

l~----,\i

~;ii

0 \

f ---"'-
\. ,,: / '~

"'-''"

(_~_)
\l ·"

0

0

0

0

0

0

0

0

0

0

0
0

e
0

0

0

0

0

0

0

•

TABLE 4-9. CHANNEL BTAl (CONNECTOR BTA12)

Bit No. Function

0

1

2t

3t

4t

6

MAC master clear; master clear to memory access control and cen

tral memory only. This includes the I/0 channels. This signal

must be set a minimum of 3 microseconds.

Stop; CPU stops before next instruction issues.

Step; execute one instruction. Store the register file and the invisible

package (job mode only); then stop. Faults must be cleared before

the computer can be stepped.

Run; start CPU from manual stop or fault stop. Faults must be

cleared before computer can be started.

Store associative registers and register file; associative registers

are stored starting at absolute address 4000 16 . The register file is

stored starting at absolute address 0000 16 in monitor mode and

virtual address 000016 in job mode. This operation destroys the

contents of the associative registers. Therefore, after this opera

tion, they must be reloaded by executing a load associative register

command (BTAl bit 5).

Load associative registers and register file; associative registers

are loaded starting from absolute address 400015. The register file

is loaded starting at absolute address 000016 in monitor mode and

virtual address 000016 in job mode.

CPU master clear; master clear to scalar unit, stream, associ

ating, and floating-point only. MAC, I/O channels, and central

memory are not included. This signal must be set a minimum of

3 microseconds.

tComputer must be stopped before executing these commands.

60256010 01 4-11

I

4-lZ

Bit No.

7

8

9

A

B

c
D

E

F l

TABLE 4-9. CHANNEL BTAl (CONNECTOR BTA12) (Contd)

Function

Clear fault conditions; this signal clears the following conditions

and allows the computer to be restarted with a run signal (bit 3):

• SECDED double error condition

• MIC memory parity fault

• Multiple match

• Absolute sword bounds hit

• Bounds hit address is released

• Reference to illegal address in microcode

• Instructional stack parity error

Clear, SECDED single error, SECDED fault address and syndrome

bits.

MCU sync; this signal is used in the CPU to gate the CPU data back

to the MCU. When reading the display r~gisters, the MCU sync

signal must be set after the read signal is set.

Not used.

Read; transfer selected regJster and current instruction address

register into the display register.

Display register selection; see display registers in this section.

6025&010 02

()

0

!'--,""
!,,_,,.;"'

\,. _ _ /

0
()

0

0
~~-·-\ \I ,,;

'""

0

0

0
0

0

0

0

0

0

0

0: .. I
I

i
I

)

0

0

0

0

0

0

0

• •

Bit No.

Ot

1t

2t

3t

4t

5t

6t

7t

St

9t

60256010 01

TABLE 4-10. CHANNEL BTA2 (CONNECTOR BTA12)

Static

Static

Static

Static

Static

Static

Function

Latch memory size code

Interrupt gate; when this signal is a 1.

time interrupts and external interrupts will

only be processed between instructions.

Memory time degrade code

000 512K memory

001 512K memory; force section 1 to

section 0

010 512K memory; force section 2 to

section 0

011 512K memory; force section 3 to

section 0

100 1 meg memory

101 1 meg memory; force upper meg

to lower meg

110 2 meg memory
-

Select mainframe clock frequency tt
000 Nominal

001 Increase clock frequency (1)

010 Decrease clock frequency (1)

011 Select variable frequency (adjustment

on oscillator pak)

100 Increase clock frequency (2)

101 Increase clock frequency (3)

110 Decrease clock frequency (2)

111 Decrease clock frequency (3)

Delay trailing edge; delay the trailing edge

of all of the clocks on the panel which are

specified by bits B through F of channel

BTA2. If bits 8 and 9 are set. only the

odd or even clocks on a panel are moved

depending on bit A.

Delay leading edge; delay the leading edge of

all the clocks on the panel which are specified

by bits B throughF of channel BTA2. If bits

8 and 9 are set, only the odd or even clocks on

a panel are moved, depending on bit A •.

4-13

Bit No.

At

B (24)

c (23)

D (22)

E (21)

F (20)

TABLE 4-10. CHANNEL BTA2 (CONNECTOR BTA12) (Contd)

Static

Function

0; move even clocks (see description for bit 8 or 9).

1; move odd clocks.

Panel designator for clock margins; bit B is the left

most bit of the designator. The designators are de

fined as follows:

Designator 16
Panel(s)

00 All panels
01 All floating point panels
02 All MAC panels
03 All stream and string panels
o~ Not used
05 Not used

06 Panel AA
07 Panel AB
08 Panel BA
09 Panel BB
OA Panel CA Floating point
OB Panel CB
oc Panel DA
OD Panel DB
OE Panel EA
OF Panel EB

10 Panel KA } Memory Access Control 11 Panel KB
12 Not used
13 Not used
14 Not used
15 Not used

16 ·Panel PA
17 Panel PB
18 Panel FA
19 Panel FB
lA Panel GA
lB Panel GB Stream, string
lC Panel HA
lD Panel HB
lE Panel JA
lF Panel JB

tComputer must be stopped before executing these commands.

ttlf clock frequency codes 4 through 7 are used, code 3 is not available. Either

code 0 through 3 or 0 through 2 and 4 through 7 are available.

4-14 60256010 01

0

0

0

0)

0 \
t'

/I

c

0

0

0
0

0

0

0

0

0
0

0

0

(]

1',

I
i

i

0
e
0
0
0
0

0
0

• •

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c
D

E

F

TABLE 4-11. CHANNEL REGISTER FROM CHANNEL

BTA3 (CONNECTOR BTA34)

Function

Not used

Send external flag on the channel specified by the channel

select code in bits 4 through 8. t, t t
Set channel disable on the channel specified by the channel

select code in bits 4 through 8. t, t t t
Clear channel disable on the channel specified by the

channel select code in bits 4 through 8. t, t t t

Channel select code. A code of 116 through c 16 selects

a channel (1
10

through 12
10

) for the operation specified in

bits 1, 2, and 3. t Bit 7 of BTA3 is bit 3 of the select

code.

Select all channels for the operation specified in bits 1,

2, and 3.t

Stop on SECDED single error detection.

Disable stop on SECDED double error detection.

Block external interrupt.

Disable error correction on all read buses.

Swap register file read on exchange.

Not used

Not used

t The channel select code in bits 4 through 8 must be set before any commands

are sent on bits 1,, 2, and 3, and it must remain set until after the command

has dropped.

t t The external flag is transmitted to the device on the I/ 0 channel corresponding

to the code in bits 4 through 8. External flag instructs the device to autoload.

Refer to Systems Communications, section 3, for a description of external flag.

t t t If the disable line for a channel is set, no central memory references are

allowed from that channel. Data transfers proceed in and out of the channel

buffer in an end around type operation.

60256010 01 4-15

Bit No.

0

1

2

3

4

5

6

7

I 8

9

A

B

c
D

E

F

4-16

TABLE 4-12. CHANNEL REGISTER FROM CHANNEL

BTA4 (CONNECTOR BTA34)

Checkword bit 0

1

2

Function

Used for toggling I/0

3 checkword bits 0 through

4

5

6

6.

Block write enable on SECDED error

Complement memory add hit 3 9

Select S ECDED error log mode 2

Force register file store at bit address 20, 000 on initial

exchange

Force instruction stack parity

Enable I/ 0 simulator

Initiate I/ 0 simulator on channel flag

Not used

Not used

602 56010 02

0

0

0
0
(J

/f".i

""'·""''
,,<~,

·~~,;

\,

1r·~-

\\._,""'

/f-'t>..

\~..:;/

()

C'1

\i -i

0

0

0

0

0

0

0

0

0

0

0

0\ I

i' I

i

0

e
0

0

0

•
0

0

• •

Bit No.

0

1

2

3

4

8

9

A

B

c
D

E

F

60256010 01

TABLE 4-13. CHANNEL BTA5 (CONNECTOR BTA56)

Function

Not used

Bounds limit load code

0 Null

1 Load bits (35-42) upper bounds

2 Load bits (51-58) upper bounds

3 Load bits (43-50) upper bounds

4 Null

5 Load bits (51-58) lower bounds

6 Load bits (35-42) lower bounds

7 Load bits (43-50) lower bounds

Due to the operational characteristics of the maintenance

interface, only one bit of the code can be changed at one

time. Address bits must be loaded leaving the load code

bits undisturbed. Address bits are transferred on the

leading edge of a code change, the address bits must be

set up before a code change occurs.

Address bits are loaded as follows, starting and ending

with a null code:

Code 0 Null

1 Set up bits (35-42) upper bounds

3 Set up bits (43-50) upper bounds

2 Set up bits (51-48) upper bounds

6 Set. up bits (35-42) lower bounds

7 Set up bits (43-50) lower bounds

5 Set up bits (51-58) lower bounds

4 Null

Bound limits are absolute, physical halfword addresses .

Bits (35-36) and (55-58) must be zero.

4-17

Bit No.

4-18

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

TABLE 4-14. CHANNEL BTA6 (CONNECTOR BTA56)

Function

Check bounds on memory reads

Check bounds on memory writes

Check bounds on CPU references

Check bounds on channel references

Stop CPU on bounds hit

Not used.

If bits 0
and 1 or
bits 2 and
3 are zero,
no bounds
hits can
occur.

Count A; monitoring counter A is enabled while this

line is a 1 and held clear when this line is a 0. The

proper counter specification and bits 8 through E of

channel BTA6 must not be changed while this line is

enabled.

Count B; monitoring counter B is enabled while this

line is a 1 and held clear when this line is a 0. The

proper counter specification and bits 8 through E of

channel BTA6 must not be changed while this line is

enabled.

Clear counter overflow bits only [see monitoring with

counters (code 6) in this section]

Stop CPU on Counter A increment ,

Stop CPU on Counter B increment

Enable carry into Al

Enable carry into A2

Enable carry into Bi

Enable carry into B2

See monitoring
with counters in
this section.

0; bits 0 through F of channel BT A 7 are the count

specification for counter A.

1; bits 0 through F of channel BTA7 are the count

specification for counter B.

This bit should be set to the proper counter before the

count specification is set into channel BTA 7.

60256010 01

0

0

0

0

r(1',
1il'U)

,.,.-"'""'
;'\~Ji/

,.,<-'>.,

\~__,.,

.. .ff--"'\

i.~;1

(
~\

I
.ii'

rtr"",

''""'"'

C:
1,,, ·?'

0

0)
'

0

0

0

0

0

0

0

0
0

0

O'.'···,
!

0

e
0

0

0

0

0

0

• •

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

60256010 01

TABLE 4-15. CHANNEL BTA7 (CONNECTOR BTA78)

J Function

Event select for counters Al and B 1;
see monitoring with counters in this section for codes.

Event select for counters A2 and B2;
see monitoring with counters in this section for codes.

Not used

Selected job gate

Monitor mode gate

Job mode gate

Data flag 56 gate

Data flag 57 gate

Event counter gates;
see monitoring with
counters in this
section

4-19

Bit No.

0

1

2

3

4

5

6

7

8

9

A

B

c

D

E

F

4-20

TABLE 4-16. CHANNEL BTA8 (CONNECTOR BTA78)

I

Function

8-bit function select code. Bit 0 is the leftmost bit

of the code. See event number 12 1~ monitoring with

counters in this section.

8-bit mask. Bit 8 is the leftmost b-it of the mask.

See event number 12 in monitoring with counters
16

in this section.

60256010 01

()

0
()

0 '

'

('\\

,__)'

0 \
I

'

()

(!('-.,..,\

~. _ _)~71

0
(_)

C'.)

0

C\
.} ...,,

()

0
0

0

0
0

0
0

0
0
0

0
0

0
0

0

0

•
0

0

• •

MCU/MICROCODE MEMORY INTERFACE

A 16-bit channel, similar to an I/O channel, connects the MCU to the microcode

memory, providing the MCU with the ability to load and store the microcode and load

microcode diagnostic routines. The channel also provides control for running the

routines under MCU control.

The MCU interface to this channel is connected to the MCU as a second coupler. The

programming is the same as the other block transfer channel except different normal

MCU channels are used for control.

The microcode memory interface to this channel is similar to an A-coupler with channel

control and fan-ins and fan outs between the 16-bit data channel and the 224-bit micro

code words.

The A-coupler does not use the following lines, normally found on a standard central

computer channel.

• Parity error from A

The A-coupler does not check parity on any function from the B-coupler

and does not send a parity error on a microcode parity error. The MCU

can check for a microcode parity error on the normal channel maintenance

lines between the MCU and the CPU just as for any other CPU parity error.

• Illegal from A

• Interrupt from B

• System control

MICROCODE MEMORY CHANNEL PROGRAMMING

The B-coupler uses the MCU block transfer channel for the transfer of data and MCU

normal channel 6 for function codes and coupler control. The following is a description

of the setup and use of the channel.

60256010 02 4-21

I

I

8-COUPLER SETUP

The following steps are taken to set up the B- coupler:

1.

2.

Select the B- coupler by clearing bit' 9 and setting bit A of channel 2.

Connect channel 6 to the B-coupler by setting bit 8 and clearing bit 9 of

channel 5.

CHANNEL 6 FUNCTIONS

The following control bits are sent to the B-coupler via channel 6:

BU Definition

0 Initiate functions

1 Function bit O (22)

2 Function bit 1 (21)

3 Function bit 2 (20)

4 Interrupt (not used)

5- Clear fault

6-F Not used

8-COUPLER TO A-COUPLER FUNCTION CODES

I The functions normally found on a central computer channel are redefined for this
interface. For all _channel functions. the null function and the address that accom-

panies the channel function are ignored. Table 4-17 shows three bit function codes

and their functions for control of microcode memory.

4-22 60-2 56010 02

(: G·

0

r.,..
~.~;

0

0

0
0

0
0
0
0
0

0
0
0

0
\
i

I

j

0

0
0

0
0

•
0

• • •

TABLE 4-17. B- AND A-COUPLER FUNCTION CODES

Bit 0 Bit 1

0 0

0 0

0 1

0 1

1 0

1 0

1 1

1 1

MICROCODE SWITCHES

Bit 2

0

1

0

1

0

1

0

1

Function

Null ·- Automatically sent by the B

interface as the second half of any other

function.

Read Memory - Read a block of micro

code memory from the current micro

code P address.

Write Memory - Write a block of micro

code memory from the current microcode

P address.

Not normally used but will perform the

same as a EOP in the J=> section.

Data - Automatically sent with the data

during a write microcode memory

operation.

Read Status - Read the current microcode

status.

Write Switches - The switches provide

control of microcode execution.

EOP - End of Operation clears the

interface of all previous functions and

also clears the counter that c·ontrols

the data fan - in and fan - out to I from

the channel.

Microcode switches are 1-bit terms controlling the microcode memory. Each switch

is one bit of the write switch control word. The 110
2

function code (write switch)

causes the microcode memory to store the write switch control word in a register .

The B- coupler receives this data from the block transfer channel and sends it to the

microcode control. Table 4-18 describes the microcode switch functions.

60256010 01 4-23

4-24

TABLE 4-18. MICROCODE SWITCH FUNCTIONS

Bit Function

0

1

2

3

4

5

6

7

8

9

A

B

Go microcode; strobin·g this bit causes microcode to start

execution at the current microcode P address.

Kill; setting this bit stops any microcode instructions

executing at the time the bit is set. The instruction comes

to a normal halt with P pointing to the next word to be

executed. Execution can be resumed by setting bit O.

Sense switch; any microcode program can sense the condi

tion of this switch for program control (used mainly by

diagnostics).

P to 0; strobing this bit forces the P register to 0. Kill

should be set previously or in the same word to proceed

to a normal halt.

Clear checkpoint; strobing this bit clears the checkpoint

flip-flop.

Drop control-setting; this bit disables control of the CPU

and the ICs from microcode preventing undefined CPU

operation due to a microcode memory test.

Change status word 2 definition; bits 8 through F of status

word 2 become bits 0 through 7 of an IC register (refer

to table 4-19) ..

Enable control of the register logical pipe from microcode.

Function for scalar microcode not yet defined.

Sweep scalar microcode.

Write scalar microcode; must be set to write. Scalar

microcode disables P-section write enables ..

1; enables scalar microcede to sweep PMOO.

O; enables scalar microcode to ·sweep PMOl.

Functions for scalar microcode not yet defined.

60256010 01

0

0

(o~
/

C
-,,,,

, I

,,,f),

\._,._I

/111~"lm-\

'··""")"

·· .•. _ >

/f~,

l"·~·P

c
"-...,,
\(,_;;

(""· ' I \ ,Ii

(}

0 1
'

0

0

0
0

0

0

0

c
0

6

0

0
0
0
0
0
0

"

The switch functions have the following uses.

1.

2.

3.

Switch functions 0, 3, and 4 are one-shot functions having the required bit

set in the even 16-bit word of a transfer and clear in the odd 16-bit word.

For example, if the bit is set into both halves of a 32-bit transfer, the

function is performed in that transfer but is ignored if sent in the next

transfer.

Switch functions 0 and 3 are delayed by one cycle so other functions sent

in the same data word have time to propagate. For example, kill and P

to 0 together are legal as are sense switch and go microcode. Other

combinations are also legal.

Switch functions 1, 2, 5, 6, 7, 9, A, and B are latching functio-ns that are

caught and held until another function is sent. However, a single function

consists of two or more data transfers, each clearing and loading over

previous data transfers so a switch that is meant to be valid during and

after the function must be sent in both halves of a 32-bit data transfer.

Any latching function that is supposed to remain valid through another send

switch function must be sent again with that function present in both halves

of the 32-bit data word.

STREAM MICROCODE STATUS

The input of status to the MCU can be a number of words; but all words after the

first are word 2 of status. The input of status does not have an effect on microcode

or microcode controls. Table 4-19 shows the status words loaded in the channel when

the A interface receives a channel function code of 1012.

MCU MONITORING

The MCU monitors the output of two display registers as its main monitoring of system

activity. One display register contains the output of the current instruction address

register (CIAR). The other display register contains the output of the register selected

by the MCU. A 4-bit code sent from the MCU (channel BTAl, bits C through F)

selects the appropriate display register. In addition to monitoring the display registers,

the MC U can also monitor the microcode memory status and other CPU status.

60256010 01 4-25

TABLE 4-19. MICROCODE STATUS FUNCTIONS

Bits Function

0

ii
5
6
7
8
9
A
B
c
D
E
F•

0

il
5
6
7
8
g-
A
B
c
D
E
F

~

WORD 1

Checkpoint; software uses this bit to indicate to the MCU

that the microcode has reached a predefined status, found

an error, or reached a predefined address for debugging.

Flags; the current state of flags 0, 1, 2, and 3.

P; the current state of the P (microcode address)

register. t-

WORD 2

Run; this bit is used to indicate the microcode is executing.

Jl; the current state of the least significant 4 bits of the

Jl register.

J2; the current state of the J2 register (see bit 6 of the

switch function control word).

fThe contents of P do not indicate . the address at which microcode has stopped

until the second minor cycle after the run bit has gone to 0. Thus, it is

necessary to read the status word twice: once to determine that microcode

is not running, and once to read P.

4-26 60256010 01

r·).·.
u·~

!!'."'"'·

\.\..Jll'i

ff" -,,\

\'-~·''

0

0

0
0
0

0

0
0

[
0
e
0

0

0

0
0
0

DISPLAY REGISTER

The MCU sends a read signal to enable the CIAR and the selected register into the two

64-bit display registers. The read signal is defined as bit B on channel BTAl, and its

leading edge simultaneously transfers both registers into the display registers. The

MCU determines the register select code (table 4-20) before transmitting the read

signal to the CPU. All unaccounted for bits coming into and going out of the display

registers are undefined.

The MCU receives the CIAR on channels ATBl through ATB3, and receives the selected

register on channels A TB4 through A TB7.

The CIAR and the event counters may be read anytime. Other displays are examined

only when the CPU is not running.

TABLE 4-20. DISPLAY REGISTER SELECT CODES

Code 16 Register(s) Bits

0 Current instruction register 0-63

1 Data flag register 3-15,, 19-31,,

35-47,, 51-58

2 Invisible package address 0-22
(absolute sword address)

Page zero address 38-48
(absolute small page address)

3 External interrupt register 17-31

Channel 1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

Not used 29

Not used 30

Monitor interval timer 31

60256010 01

4

4-28

TABLE 4-20. DISPLAY REGISTER SELECT CODES (Contd)

Register(s)

Channel read active - write active

Channel 1

2

3

4

5

6

7

8

9

10-

11

12
. SECDED Fault Read Bus Code

IfO Bus = Code 0

RI Bus = Code 1

R2 Bus = Code 2

R3 Bus = Code 3

Scalar Bus = Code 4

RNS Bus = Code 5

Space Table Search in Process

This line is to be used in conjunction
with SECDED Error to determine if the
error occurred while doing a Space
Table Search.

Instruction Stack Parity Fault

MIC Memory 0 Parity Fault

MIC Memory 1 Parity Fa u1 t

Scalar MIC Parity Fault

Double SECDED Error. Syndrome Bits
must be checked to determine if address
and bus code are valid.

Syndrome Bits

Parity Fault on Auxiliary Board 0

Parity Fault on Auxiliary Board 1

Parity Fault on Auxiliary Board 2

Parity Fault on Auxiliary Board 3

Parity Fault on Auxiliary Board 4

Bits

32-55

32-33

34-35

36-37

38-39

40-41
42--43

44-45

46-47

48-49

50-51

5-2-53
54-55-

0-2

3

4

5

6

7

8

9-15

16

17

18
19

20

60256010 01

()

()'

0

(11'~

\,~ j;)

~

'j
{)

0
,<~\
(~. ' ,.#",

0

0

0

0 Code 16

0

0

0

0

0

0

c
0

0 5

0

0

0
6

0
0

0 60256010 01

0

TABLE 4-20. DISPLAY REGISTER SELECT CODES (Contd)

Register(s)

Parity Fault on A uxili~ry Board 5

Parity Fault on Auxiliary Board 6

Parity Fault on Auxiliary Board 7

Parity Fault on Auxiliary Board 8

PMO 1 Enabled for Parity Checking

Scalar Microcode Address - Bit 0

Scalar Microcode Address - Bit 1

Scalar Microcode Address - Bit 2

Scalar Microcode Address - Bit 3

Scalar Microcode Address - Bit 4

Scalar Microcode Address - Bit 5

Scalar Microcode Address - Bit 6

Scalar Microcode Address - Bit 7

NOTE: All Fault/Error conditions are
cleared by the Clear Fault
signal from the MC U except the
SECDED Error and the Syndrome
bits. These are cleared/released
by the Clear Single Error signal
from the MCU.

SECDED Fault Address
(Absolute physical bit address,
significant to the half-word level)

The address of the first SECDED error
is retained in this register.

The SECDED Fault Address is released
by the Clear Single Error Condition
Signal from the MCU.

Bounds Hit Address
(Absolute physical bit address, right
justified)

The address of the first bounds hit is
retained in this register. The bounds
hit address is released by the Clear
Fault Condition signal from the MCU.
The bounds checking is performed on
half-word boundaries only.

Counter Al

Counter A2

Counter Bl

Counter B2

Bits

21

22

23

24

25

26

27

28

29

30

31

32

33

34-63

0-31

0-15

16-31

32"'.'47

48-63

4-29

TABLE 4.;.20. DISPLAY REGISTER SELECT CODES (Contd)

Register(s)

If bit 8 of channel BT,A6 in the
MCU is a 0,, both counters will be
cleared after the read signal is
received and after both counters are
transferred into the display register.
If bit 8 is a 1,, the counters will not
be cleared.

To ensure proper initialization of the
counters,, the count lines must be
made zero prior to the new count
selection.

Bits

MONITORING COUNTERS

For m9nitoring purposes, the CPU has four 16-bit counters (figure 4-2). Each of

these counters can be connected to an event line selected by a command from the MCU.

Table 4-21 contains a list of events which can be counted and their corresponding

select codes. There are two pairs of 16-bit counters: Al, A2 and Bl, B2. The A

and B counters are completely independent and cannot be tied together. However, they

do share the same input event lines (figure 4-3). The counters are selected for

display via the MCU display register. They can also be combined in various ways to

form one or two 32-bit counters. This configuration is accomplished via the carry

lines from the MCU. The counters are enabled by hardware and software gates

selected with a mask from the MCU. The MCU has the option of stopping the CPU on

a count condition by enabling the stop lines.

COUNT GAGES AND CPU LINES

The event counters are incremented when the selected event occurs,, the count line is

up,, and one or more of the following gate-line conditions are satisfied.

4-30

1. The event counter enable bit is set in the invisible package of the job

currently being executed and the selected job gate from the MCU is set.

This allows counts to be made during selected jobs only.

2. The CPU is in job mode and the job mode gate from the MCU is set.

3. The CPU is in monitor mode and the monitor mode gate from the MCU is

set.

60256010 01

()

0

ff~

(l)

rf .,,.
\lTp

0

0

0

0

0

0

0
()\

I

0

0

0

0

0

0

0

FROM

INPUT-------~~.-

EVENTS Al/Bl •
• _,,,, --..

INPUT------+-+~,~~

•
EVENTS A2 /B2 • •

--""'
COUNTERS Al AND A2 ~• 32-A COUNTER BITS

TO MAINTENANCE
e CONTROL UNIT

CPU EVENT COUNTER

INEv~:1~i~ 8~Ic~~i~----+_._+-+?-...-i
JOB MODE ----+-+-+-+-+_,-""' ,.-.

MONITOR MODE---t-+-+-+-+-+7-_,... .._A LINES

DATA FLAG BIT 56 --;';:'

DAT A FLAG BIT 51.-+..+-+-+-+-+-+4---....;N A GATES

__[1

IA •• •J '" ... "' '" "' I 11\ "' EVENTJ
SELECT Al

EVENT·
SELECT A2-

1 lSTOP CPU ON COUNTER
A INCREMENT

ENABLE CARRY INTO A2
LENABLE CARRY INTO A I

SELECTED JOB GATE - LCOUNT A

JOB MODE GATE- '-DATA FLAG 57 GATE

• •
~

~
•
~

--,,,..

MONITOR MODE GATE- L-DATA FLAG 56 GATE
\

-y
FROM MAINTENANCE CONTROL UNIT

COUNTERS Bl AND 82

.._----~- t- B LINES

_,,,,, ..
--3- B G1TES, ~----'"-----..,

J···J "'···'1\ ~ EVENT

SELECT 81

132-B COUNTER BITS
• TO MAINTENANCE

CONTROL UNIT
•

1 1STOP CPU ON COUNTER
B TNCREMENT

ENABLE CARRY INTO 82
EVENT- '-ENABLE CARRY INTO Bl

SELECT 82 -

SELECTED JOB GATE

JOB MODE GATE-

._COUNT B

'-DATA FLAG 57 GATE

MONITOR MODE GATE - '-DATA FLAG 56 GATE

. v
FROM MAINTENANCE CONTROL UNIT

3APl5A

Figure 4-2. Block Diagram of Counter Logic Lines

4-31

MCU
INPUTS

4-32

SPECIFY
COUNT

FOR
COUNTER

A

CPU INPUTS

CPU LINES

~~--~~--~-'-' -~~-~~~
EVENT COUNTER ENABLE BIT

FROM INVISIBLE PACKAGE
r--

JOB MODE

MONITOR MOOE

DATA FLAG BIT56

DAT.ll FLAG BIT !17

B

EVENT t 1
SELECT . :;

Al >-~o--~-+~

JOB

B 8

MODE >--..--+-~~1-----+-~
GATE

MCU MONITOR
GATES MODE >--+----+~

GATE

DATA
FLAG

56
GATE

DATA
FLAG

ih

COUNT >-----J
A

ENABLE CARRY
INTO Al

ENABLE CARRY
INTO A2

STOP CPU ON >----:~
COUNTER A
INCREMENT

CARRY

y l

B

INPUT EVENTS
COUNTER A2/82

B2

SELECTION
NETWORK A2

EVENT
COUNT
LINE

EVENTS

l I
INPUT EVENTS
COUNTER Al/Bl

Bl

EVENT MASK

TO MCU

• • • • •
SELECTION
NETWORK Al

EVENT
COUNT
LINE

3AP21A

-,

Bl

Figure 4-3. Block Diagram of Counter A

60256010 01

0
/~,·-·'II',.

("''"
,-"'I>\

'"·~~~,J"'

/1·~l

~.,~ _#:

_-;;."/

'·-....-

,11f->
l\Y

f''
'l :·

0

0
0

0

0

0

0

c
0

[
0

0

0
0
0

0
0
0

Codes 16
Counter Counter
A 1/Bl t A2 /B2

04

05

11

12

12

13

13

TABLE 4-21. COUNTER EVENTS

Events

Number of times microcode MON = 1 is selected

Number of space table searches

Number of minor cycles from selected instruction
issue to next nonselected issue. The counter will
begin counting when an instruction whose function
code meets the conditions described in code 12
is loaded into IRO. It will stop counting when
the next instruction not meeting the conditions
is loaded into IRO.

Number of times a particular function code or
particular category of function codes is execute-0.
The count condition is determined by an 8-bit
select code and an 8-bit mask sent to the CPU
on channel BTA8. If the select code bits and
the corresponding instruction function code bits··
are equal wherever there is a 1 in the mask,
the counter is incremented. If the mask contains
all zeros, all instructions are counted.

Time - 1 MHz

Time between selecting microcode monitor field,
MON=2 and selecting MON=3.

Number of cycles where data is not available at
the output of a functional unit (string or floating:..
point) once data has been requested for all input
streams. This time does not include the time
required for initial setup (preceding requests for
memory) or shutdown (following the input of the
last operands to a functional unit) of vec.tor or
string instructions. This count thus permits the
programmer to analyze the amount of time
required for startup memory accesses, pipeline/
functional unit length, space table searches, and
memory conflicts for a specific instruction.

t Due to differences in clock rates for the scalar unit and maintenance interface

unit, counter-event codes 11 and 12 (counter Al/Bl) may not be accurate or

available.

60256010 01 4-33

4. Data flag bit 56 or 57 is set in the data flag register of the CPU, the data

flag 56 or 57 gate from the MCU is set, and the CPU is in monitor mode.

5. Data flag bit 56 or 57 is set in the data flag register of the CPU, the

data flag -56 or 57 gate from the MCU is set, and the event counter enable

bit is set in the invisible package of the job currently being executed.

There is one set of gate-line enable logic for counters Al and A2 and one

set for counters Bl and B2; therefore, the A counters may be enabled by

different gates than the B counters.

The CPU lines are:

• Data flag bit 56

• Data flag bit 57

• Monitor mode

• Job mode

• Job enable of monitoring counters from invisible package.

The MCU gates are:

• Data flag 56

• Data flag 57

• Monitor mode

• All jobs mode

• Selected jobs mode

4-34 60256010 01

(J

()

0

_!"'--,\
\iJ,,, _);1

"'

()

0

0

0

0

0

0

0

O:,'
'

0 ,
I

Oi
~

0 '

'

e
0

0

0

0

0

0

CARRY LINES

There is one enable carry line associated with each 16-bit counter. Enable carry line

Al enables the carry into counter Al from counter A2. Enable carry line A2 enables

the carry into counter A2 from counter A 1. There are equivalent lines for the B coun

ter. A zero on carry lines Al and A2 allows the counters to operate as two 16-bit

counters. Orily half of the total number of events are available at the selection network

for one counter Al or A2; therefore,, if a 32-bit count is desired, either counter may

contain the lower bits. For example, if an event is enabled to counter Al and a 32-bit

count is desired,, then enable carry line Al must equal 0 and enable carry line A2

must be a 1. In this example,, counter Al has the least significant bits and counter A2

has the most significant.

STOP LINES

There is one stop line associated with each counter pair: one for the A counters and

one for B counters. When the stop line is a 1,, an event incrementing either 16-bit

counter stops the computer. Mode line event stop is returned to the MCU (bit 4,,

channel A TBS) to show why the CPU has stopped. The MCU,, after sending a clear

fault signal,, may restart the CPU.

COUNTER SETUP

Typically,, the four counters would be set up by the MCU as follows:

1. Set the following bits as required.

• Stop CPU on A increment (bit 9, channel BTA6)

• Stop CPU on B increment (bit A,, channel BTA6)

• Enable carry into Al (bit B,, channel BTA6)

• Enable carry into A2 (bit c .. channel BTA6)

• Enable carry into Bl (bit n .. -channel BTA6)

• Enable carry into B2 (bit E,, channel BTA6)

2. With bit F (channel BTA6) set to 0, set event and mask selection for

counter A into channel BTA 7.

60256010 01 4-35

3.·

4.

Set bit F ~ channel BTA6 to a 1.

Set event and mask s.election for counter B into channel BTA 7.

5. If Al /B 1 event code 12 for function counting has been selected, set channel

BTA8 to the desired function and mask.

6. Set count line A or B (bit 6 or 7, channel BTA6) as desired.

The counters are now counting events and will continue to count until their respective

count lines are dropped.

LOGIC FAULT MONITORING

There are three types of logic faults detected in the computer.

• Memory SECDED

• MIC memory parity

• Multiple match

When a logic fault is detected, the computer stops between instructions. The type of

fault may be sensed on channel A TBS.

After sensing the logic. fault, the MCU clears the fault via bit 7 of channel BTAl. The

MCU determines the appropriate response to the fault and has the option of restarting

the CPU by setting bit 3 of channel BTAl.

Information on memory SECDED faults may be found in section 3 of this manual.

Information on MIC memory parity faults may be found in the microcode description

in section 3 of this manual.

Information on multiple match faults may be found in section 3 of this manual.

·TEMPERATURE AND DEW POINT MONITORING

I The system contains a monitoring unit which monitors critical chassis temperatures

and the room dew point. If the temperature or dew point exceeds the safe limits set

for the system, the monitor circuit rings an audible alarm and sends a signal to the

MCU (bit 8, channel ATB8).

4-36 60256010 02

I ·, 0,
'~ ~

0

0 .

;""-··'\

\~y

'""'-. ..)'

(f '°'
\~..;-~,111·

0
0

0
0

0

0
0
0

0

0

0
0

e
0

0
0

•
0

0

0

•

For memory and scalar processor sections, the temperature is monitored within the

chassis. If the temperature exceeds the safe limits set for the chassis, a 15-second

delayed shutdown of the chassis occurs. Simultaneously, a temperature fault signal

is sent to the system power control which initiates a 20-second delayed system shut

down. If the chassis co~~tes its shutdown in 15 seconds, a normal signal is sent

to the system power control which returns the system to normal operation.

In all sections if no action is taken to correct the fault within 2.0 seconds, the moni

toring circuit disconnects system power and locates the source of the fault.

In addition to the monitoring unit, the vector section contains a thermostat (thermisters

in the scalar and memory sections). If the temperature in a particular machine section

exceeds the safe upper limit, the corresponding thermostat (or thermisters) immediately

disconnects power in that section.

POWER FAIL MONITORING

If the input power to the motor-generator drops for more than 100 milliseconds, the

60-Hz power fail signal is transmitted to the MCU (bit 9, channel ATES). The system I
power remains up for approximately 500 milliseconds after the 60-Hz input power

drops.

If 400:-Hz power drops in any section of the central computer, the section power fail

signal is sent to the MCU (bit A, channel ATES). For the vector processor section,

a short circuit in 'any section trips the corresponding circuit breaker and lights an

indicator, locating where the short exists in the section. This set of indicators is

contained on the annunciator panel in each section. A test switch on each panel tests

the indicators.
1::-·

COMPRESSOR MONITORING

High head pressure, low oil pressure, or a compressor motor fault on either condens

ing unit lights an indicator on the temperature monitor box, initiates an alarm, and

initiates a power-down sequence. Each fault also causes an audible alarm on the con

densing units.

A refrigerant liquid line temperature fault or a condenser cooling water fault lights

an indicator on the monitor box. This is a warning device and is not connected into

the alarm and power-down circuits.

602 56010 02 4-37

0
..

'

'

0

0

(r··,,,,\
':(.J)

11'."-

\iL_,..'

C) ,.

0

0

0

0

0

0

0

0

0

0

0: J

e
0

0

0

0

0

0

•

PROGRAMMING CONSIDERATIONS

GENERAL

This section describes the various registers and operations of the central computer

that are of particular interest to the programmer. Included are descriptions of job

and monitor modes, interrupts, the invisible package, addressing modes, real-time

counters, the- register files, the data flag branch register, addressing modes, and

general definitions and programming guides.

MONITOR AND JOB MODES

The central processor unit (CPU) operates in, one of two programming modes:

• Monitor mode

• Job mode

5

The CPU automatically exchanges the job mode for the monitor mode when it receives

an interrupt or when a job program executes an exit force (09) instruction. The

monitor mode disables all interrupts and virtual addressingt and permits absolute ad

dressingt to central storage. Any interrupts that occur during the monitor mode

temporarily store until the monitor program executes an idle (00) or an exit force (09)

instruction. The idle instruction causes the CPU to wait until an interrupt occurs.

The exit force (09) instruction switches the CPU to the job mode and starts executing

the selected job program. Switching to the job mode enables the interrupts and

virtual addressing.

The purpose of the exchange is to change the prime role of the CPU. In job mode,

job tasks are performed. In monitor mode, the system decisions are made and the

page table is altered.

Some instructions in progress may be interrupted prior to their completion. The flags

stored in the invisible package are used to restart the interrupted instruction exactly

where it left off.

t Absolute and virtual addressing are described later in this section.

60256010 02 5-1

I

EXCHANGE FROM MONITOR MODE TO JOB MODE

This is always accomplished with an exit force (09) instruction. The monitor program

must set up the invisible packaget for the job prior to changing modes for that job

via the exit force (09) instruction. The exit force operation is as follows:

1. The register file for monitor is stored into absolute memory locations · 0

through 3FC0
16

• The register file for the job is loaded from the job's virtual

memory locations 0 through 3FCO
16

• Any job mode reference to this area of

a job's virtual memory causes the executing instruction to be treated as an

illegal instruction. The absolute bit address of the job's virtual page zero is

in the monitor's register S specified by the exit force instruction.

2. The CPU's major control registers and flags are loaded from the invisible

package which is located starting at the absolute bit address in the monitor• s

register T specified by the exit force instruction. This starting address is

saved in a register to provide for storing the current invisible package . when

returning to the monitor program.

3. The CPU's mode is changed from monitor mode to job mode. This enables the

virtual address mechanism and the interrupts.

4. The contents of P (program address register) is then read up using virtual

addressing, and either the initial start or the restart sequence is executed.

An initial start is executed if the program is at the beginning of an instruc

tion; a restart is executed if the program is in the middle of an instruction,

that is, continuing an interrupted vector or string instruction.

ILLEGAL INSTRUCTION IN MONITOR ·MODE

If an attempt is made by the monitor program to perform an illegal instruction code,

an automatic branch is made to the absolute address contained in the monitor's -register

4. This hardware trap is to aid in the debugging of the monitor software and to trap

some hardware failures. This trap is not to be utilized by the monitor software as a

norm al branch.

tThe invisible package is described in detail later in this section.

5-2 6025-6010 01

((J

0

,,,,~-~,

'"'"'

,,..,-~

'v,4,.~_ .. .7'

A·-.,,,

\J
"'"'-"",.

0

0

0

0

0
0
0

0

0

0

c
0

0
0

0

0
0
0
0

•

EXCHANGE FROM JOB MODE TO MONITOR MODE

The exit force (09) instruction, channel interrupt.. and access interrupt are the three

normal ways of getting from job mode to the monitor program in monitor mode.

Attempting to execute either a monitor-type instruction in job mode or an illegal in

struction is the fourth way into the monitor. Except for the starting point in the moni

tor program, the operations performed in getting to the monitor are identical for the

four.

The operation is as follows.:

1. The current invisible registers and flags are stored into the invisible package

starting at the same address used to load the invisible package when the job was

entered.

2. The register file for the job is stored in virtual memory locations 0 through 3FCO
16

•

Absolute memory locations 0 through 3FC0 16 are read into the register file.

3. The CPU is changed from job to monitor mode and the virtual addressing

mechanism is disabled. Any external interrupts that occur after this point are

honored only if the CPU executes an idle instruction. Otherwise, the interrupts

are saved until the CPU reverts to job mode, or until the monitor program

clears the interrupts with a translate external interrupt (OE) instruction.

4. The monitor program executes starting at the absolute address contained in the

rightmost 48 bits of registers 3, 5, 6, or 7 in the monitor's register file.

The method used to enter monitor mode determines the register selection.

The address in the selected register transfers to the program address register

(P register).

Method of Getting
to the Monitor

1. Illegal instruction, monitor-type
instruction in job mode, or a
reference to the register file as
memory (bit address 0000 -
3FFF

16
).

60256010 01

Register in Monitor's Register File
used for Starting Address (P Address)

Register 3

5-3

Method of Getting
to the Monitor

2. Illegal instruction in
monitor or reference to the
register file as memory (bit
address 0000 - 3FFF 16).

3. Exit force

4. External interrupt

5. Storage access interrupt

INTERRUPTS

Interrupts consist of two main types:

Storage access

• External

Register in Monitor's Register File
used for Starting Address (P Address)

Register 4

Register 5

Register 6

Register 7

The occurrence of either type of interrupt during the job mode causes the CPU to

switch to monitor mode. The monitor program then processes the interrupt.

During the monitor mode, the interrupt system is disabled except during the idle (00)

instruction. Any external interrupts that occur are stored until the CPU switches back

to the job mode or until the monitor program clears the interrupts with the translate

external interrupt (OE) instruction.

STORAGE ACCESS INTERRUPTS

A storage access interrupt occurs when a job program attempts to reference a central

storage page that does not contain the corresponding word in the page table. A storage

access interrupt also occurs when a job program attempts a storage reference that

violates the corresponding lockout code.

5-4 60256010 01

l""c""'·

~Lj

"\

;f-~

'l_)

0

0

0

0
0
0

0

0

0 1
.

0

0

0

0

0

0

0

0

0

•

Any CPU storage reference can cause an access interrupt even if it occurs in the middle

of a vector or string instruction. The virtual address of the reference causing the

interrupt and bits indicating the reason for the access interrupt {cause bits) are stored

in word address xx ••• xxE16 of the invisible package for the corresponding job (figure

5-1). Refer to the invisible package explanation in this section.

0

WILL BE SET
TO ZEROS

11 12 15 16

CAUSE
BITS VIRTUAL BIT ADDRESS CAUSING INTERRUPT

Figure 5-1. Invisible Package Word xx .•• xxE16 Format for Access Interrupt

The condition of the cause bits indicate the type of storage reference that initiated the

access interrupt as shown below:

Cause

12 13

0 1

1 0

1 1

0 0

0 0

Bits

14 15

0 0

0 0

0 Ot

1 0

0 1

Type of Access Attempted

Write operand violation

Associative word not in the page table

Associative word not in the page table and reference
attempted was a write operation

Read operand violation

Read instruction violation

Following the access interrupt,, the CPU switches to the monitor mode. The program then

branches to the absolute address contained in the rightmost 48 bits of register 7 in the

register file for the monitor program. The monitor program proceeds to allocate space

63

for the requested page and/or procures the requested page directly. The monitor program

can restart the job where it was interrupted by using the exit force (09) instruction. If the job

is to be restarted,, however,, the monitor program must alter the page table and central

storage to include the new page.

t This is the only case where more than one cause bit is set at one time.

60256010 01 5-5

EXTERNAL INTERRUPTS

Each input/output (I/0) channel and the monitor interval timer can interrupt the CPU by

transmitting an interrupt signal on the assigned interrupt line. The interrupt signal

sets the corresponding flag bit in the external interrupt register. The external line

assignments are listed in table 5-1.

1/0 CHANNEL INTERRUPT LINES

As shown in table 5-1, each I/O channel has an external interrupt line assignment.

The transmission of the interrupt from B (IFB) signal on the corresponding external

interrupt line sets the corresponding external interrupt register flag bit. The setting

of this bit indicates to the CPU that the I/O device (pe.ripheral station) has stored a

message in a predetermined location in central storage.

TABLE 5-1. EXTERNAL INTERRUPT LINES

External
Interrupt Line Assignment

0 Not available

1 I/O channel 1

• 2 2

3 3

4 4

5 5

'6 6

7 7

8 8

9 9

10 10

11 11 ,,
12: I/O -channel 12

13 Not used

14 Not used

15 Monitor interval timer

5-6 60256010 01

(-·---,,,,

~ . .:.P

0

0

0
0

0
0
0

0

0

c

0

0
0
0

0
0

•

MONITOR INTERVAL TIMER INTERRUPT

When the monitor interval timer (described in this section) decrements to a zero count,

an external interrupt signal is transmitted on- line 15. The resultant setting of external

register flag bit 15 indicates to the CPU that the specified period initially set in the

monitor interval timer has elapsed, requiring processing by the monitor program.

INVISIBLE PACKAGE

The invisible package contains the address and control information necessary to begin

a new job or to continue a job interrupted during execution. Each invisible package is

associated with a job. The invisible package for a particular job is stored at 16

consecutive word addresses in central storage beginning at the initial address assigned

by the· monitor program. The invisible package is always stored starting at an even

numbered sword address. Therefore, the rightmost 10 bits of the starting address of

the invisible package must be zeros. Refer to the exit force (09) instruction in the

instructions section of this manual.

The monitor must set up an invisible package for each job. There is no invisible

package for the monitor program itself.

When the CPU switches from monitor to job mode, the invisible package for the

corresponding job is automatically loaded from central storage beginning at the address

assigned to that job. The invisible package data is loaded into the appropriate registers

in the CPU.

When the CPU switches from job to monitor mode, as in an interrupt, the contents of

the corresponding registers are automatically stored in central storage as the invisible

package for that job.

If a job is to be reentered, the monitor should not alter the job's invisible package

except for possibly the keys.

Both the vector and scalar processors load and store the invisible package. The scalar

processor stores in memory first. The write enables must be controlled by the vector

processor to ensure that current information from the scalar processor is not written

over by the vector processor.

Figure 5-2 shows the invisible package format.

60256010 01 5-7

PROGRAM ADDRESS 2

16 DATA FLAG BRANCH REGISTER

PFll

16 VECTOR'S PROGRAM ADDRESS 58

PFl2 8

63

63

63

WORD 0

I

2

3

4

5

6

7

012

II

00 CUR.RENT

00 PF04 8 15 16 PFl4 8

00 STRING DATA 4 31 32 47 48

00 15 16

00 15 16 ACCESS INTERRUPT ADDRESS 14

00 15 16 PFl6 8

f1$/'///b'.& = CONTENTS UNDEFINED

NOTES:

· @ Bits 0 through 15 and 59 through 63 are not used and must be set to zeros.

@ Quantity is loaded or read/ stored or written by the scalar processor only.

@ Usage bits for breakpoint register.

© Quantity is loaded/ stored by vector processor only.

@ Usage lockout bits for each key.

Bit O of the first two key words (bit O and bit 16 of word 2) specify the small
page size.

5-8

Bit 1, if set, locks out CPU write operation.

Bit 2, if set, locks out CPU read operation.

Bit 3, if set, locks out CPU instruction references.

Quantity is loaded by the scalar processor and not stored by either processor.

.. Figure 5-2. Invisible Package Format

60256010 01

,'/'-~ .. ,,

\..au/

r(~'

\l'· -· - ,,

0

0

0

0

0

0

0

0

0)
I

(
',

j

0

0

0

0

0

0

0

• •

©

©
@

@
@
@

@
@

Bit 16 Flag 0
Bit 17 Flag 1
Bit 18 Flag 2
Bit 19 Flag 3
Bit 20 Interrupt flag
Bit 21 Not used
Bit 22 Load/ store 1
Bit 23 Load/ store 2
Bit 24 Subfunction bit 0
Bit 25 Subfunction bit 1
Bit 26 Subfunction bit 2
Bit 27 Subfunction bit 3

Quantity is loaded/ stored by the vector processor only.

Words 5, 7, 9, B, D, and F are loaded by both the scalar and vector proc
essors. These words are stored by the vector processor if the vector restart
bit (word 8 bit 0) equal to 1 and by the scalar processor if the bit equal to 0.

Bits 59 through 63 are not used and must be set to zeros.

Bit 0 vector restart bit. The vector processor's instruction register receives
bits 0 through 15, word 6 and bits 16 through 63, word A. A vector restarts
without reloading the vector instruction from memory only if bits 16 through
63, word A are not needed to restart (bit 0, word 8 equal to 1).

Bit 1 Register file's scalar enable (bits O and 1 are loadec;l. by the scalar
processor and stored by the vector processor).

Bits 2-11 are not used; bits 8-11 are reserved for possible use as a small

Bit 12
Bit 13
Bit 14
Bit 15

page size mask.
Stall bit. This is 1 if no data is processed.
Not used.
Monitoring counters enable.
ASCII=O, EBCDIC=l (bits 12 through 15 are loaded/ stored by the
vector processor only.)

Job interval timer. Quantity is loaded/ stored by the vector processor only.

Quantity is stored by the scalar processor and loaded by neither.

Access interrupt cause bits (address X 0 and XE) 0 through 11 are not used
and are set to zeros.
Bit 12 associative word not in page table.
Bit 13 write operand violation attempted.
Bit 14 read operand violation attempted.
Bit 15 read instruction violation attempted.

Quantity is stored by the scalar processor and loaded by neither.

String internal data and control. The data control saved in bits 32 through 63
of invisible package word C is dependent on the instruction being interrupted.

Figure 5-2. Invisible Package Format (Contd)

60256010 01 5-9

ADDRESSING MODES

The computer system uses two modes of addressing central storage.

•
•

Virtual addressing

Absolute addressing

VIRTUAL ADDRESSING

Virtual addressing provides an efficient. dynamic method of allotting portions of central

storage to each job program by the monitor program. Virtual addressing is used exclusive

ly when the CPU is in job mode. The switching of the CPU to monitor mode automatically

disables virtual addressing. However. central storage recognizes all addresses as being

absolute. Thus. the virtual addressing control circuits convert virtual addresses to the

corresponding absolute addresses.

PAGES

I Portions of central memory are logically partitioned into pages; the central computer has

small and large page sizes. A small page contains either 512. 2048. or 8192 64-bit words

selected by bits 0 and 16 in the third word (keys) of the invisible package. The bits are

interpreted as follows:

I
0

0
1
1
0

16

0
0
1
1

Description

Small pages are 512 words
Small pages are 2 048 words
Small pages are 8142 words
Undefined

Only one small page size may reside in the associative page table. The default size is

512 words. A large page contains 65. 536 64-bit words.

The monitor program allots a page or pages to each job program. All of the words in a page

are identified by a common page identifier. The common page identifier is an absolute ad

dress which locates the page in central memory.

VIRTUAL ADDRESS FORMAT

Figure 5-3 shows the virtual address formats for the 512-. 2K-. 8K-. and 6~K-word pages.

respectively. Note that the size of the virtual page identifier varies depending on the word

page size. Table 5-2 shows the page size and the virtual page and word identifiers' bit sizes

for each word page. This difference results from the number of bits needed to locate the

word in the page.

5-10 602 56010 02

,1\'
\,0,

,r1"--i'\

\"~>

0

,_..---"""

,~<l..Y

/.,.----.,,,

\~'-'''/

'"'i<..:: .. ·.;r

0

0
0

0

0
0

0
0
C>,

;)

0

[·.:,

'

0

0
0

0

0

0

0
0
0

The bit, byte, halfword, and word identifier portions of the virtual address are absolute.

Thus, when the virtual page identifier is converted into an absolute page identifier, these

portions of the virtual address are substituted directly into the absolute address.

60256010 02

16

16

16

TABLE 5-2. PAGE SIZE SPECIFICATION

Page
Size

512
2048
8192
65,536

Virtual Page Word
Identifier (bits) Identifier (bits)

33 9
31 11
29 13
26 16

512-WORD PAGE

4849 5758 6061 63

{33)

'---v---1jYLv-1
VIRTUAL PAGE WORD IDENTIFIER__J I I

IDENTIFIER HALFWORD

BYTE
2K-WORD PAGE BIT

4647 5758 6061 63

(31) I (1l) I l'2)I (J) I
VIRTUAL PAGE WORD IDENTl:IER__J -'llT

IDENTIFIER HALFWORD_j

BYTE

SK-WORD PAGE BIT

(29)

VIRTUAL PAGE
IDENTIFIER

44 45 5758 60 61 63

WORD IDEN:IFIER HJLFWORDJIT

· BYTE

65K-WORD PAGE BIT

16 4142 5758 6061 63

I (26) l ,,6, J ~

5-11

I
I
I

I

I

I

ASSOCIATIVE WORDS

The associative words contain the information necessary to convert a virtual address

into an absolute address. The monitor program must assemble the associative words

into a page table as necessary for a given run. Figure 5-4 shows the formats of the

associative words fo~ the 512-word page and 65K-word page, respectively.

If a page has been referenced with code bits in table 5-3, a job program has made at

least one storage reference to the page defined by the . associative word. If a page is

5-12

512-WORD PAGE
0 3 4 l!I Ill 18 19 30 31 t3

0

I ©

0

I ©

0

(12) I ", I (12) . (33) I
~----------------''-v-1---------~---------J~----------------------------~----------------------------J

34

ABSOLUTE \
PAGE ADDRESS 8 .

(10)

USAGE CODE
(SEE TABLE 5-3)

13141!1111 18 19

rq (3) I
'-----v-----1 LV-1

ABSOLUTE
PAGE ADDRESS 0 \

USAGE CODE
(SEE TABLE 5-3)

3. II 12 1!116 1819

I (8)

I 0 I 131

1
'-----v---1 '-y-J

ABSOLUTE
PAGE ADDRESS 0 \

USAGE CODE.
(SEE TABLE 5-3l-

3 4 8 9 1!116 1819

LOCK

2K-WORD PAGE

S031

(12) I
LOCK

SK-WORD PAGE

3031

(12) I
LOCK

65K - WORD PAGE

3031

VIRTUAL PAGE
IDENTIFIER

(31)

VIRTUAL PAGE
IDENTIFIER

(29)

VIRTUAL PAGE
IDENTIFIER

616263

~

5960 H

!01

!56 5"7 H

1°1 (5) I © I 131 I (12) I (26) I © I
"-v--1 '--r
ABSOLUTE USAGE CODE LOCK VIRTUAL PAGE

PAGE ADDRESS 0 (SEE TABLE 5-3) IDENTIFIER

0 IF 500K WORD TOTAL CENTRAL STORAGE IS USED, BITS 4 AND 5 MUST BE A 0 •.
IF IOOOK WORD TOTAL CENTRAL STORAGE IS USED, BIT 4 MUST BE A 0.

® BITS MUST BE SET TO ZEROS.

Figure 5-4. Associative Word Formats

60256010 02

;.;;---/

'-.,

:;,.;/

~

'-,,

c

0

0

0

0

0

0

0

c
0

0
e
0

Oi
r'

0

0

0

0

0
0

0

TABLE 5-3. ASSOCIATIVE WORD USAGE CODES
Code Bits

(16 17 18) Definition

000 End of page table
001 Null associative word
010 Small page has not been referenced by the CPU
011 Large page has not been referenced by the CPU
100 Small page has been referenced by the CPU
101 Large page has been referenced by the CPU
110 Small page has been altered by the CPU
111 Large page has been altered by the CPU

altered. a job program has performed a write operation on at least one bit in the page

defined by the associative word. In the monitor mode. the CPU does not use the asso

ciative words in addressing. Thus. alteration or referencing storage by the monitor

program is not recorded in the associative words.

LOCK

A lock is a 12-bit quantity contained in each associative word (figure 5-4). The lock

associates a page of central storage with a job program or several job programs.

KEYS

The monitor assigns four 12-bit keys to each job. The keys for a particular job are

read from central storage as part of the invisible packag~ for that job. . The monitor

program. transfers the keys to the virtUal address key register (figure 5-5). After the

virtual page address portion of an associative word matches with the corresponding

portion of a virtual address. one of the four keys for the job must match the lock in

the associative word before the storage reference can take place.

34 15 16 1920 3132 35 36 47 48 SI IS2 63

I , 4 ; 1 (12) I 141 I (12) l (4) I (12) I ,4 , I (12)

L.y--1' I~ ~' ''-v--1' v v v
0 Q) KEY 0 IQ) KEY 1 2CD KEY 2 3(1) KEY 3

(D LOCKOUT CODES FOR CORRESPONDING KEY

Figure 5- 5~ Virtual Address Key Register Format

Figure 5- 5 shows that each key is associated with a four-bit lockout code. The setting

of a particular bit in this code locks out the corresponding type of storage reference.

Table 5-4 lists each bit of the lockout code and the type of storage reference locked out

if the bit is set.

60256010 01 5-13

If a key matches the lock of an associative word for a particular storage reference,

but the operation is disabled by the lockout code for that type of reference, a storage

access interrupt takes place.

monitor mode.

A storage acce~s interrupt causes an exchange to the

TABLE 5-4. LOCKOUT CODES

Bit Position

0 1 2 3 Type of Storage Reference Locked Out

1 x x x t
x 1 x x CPU write operations

x x 1 x CPU read operations

x x x 1 CPU instruction references

INOTESI

1. The actual bit number depends on the key field to which it corre-
spends (figure 5-5).

2. X denotes that the bit can be 0 or 1.

tBits 0 and 16 define the small page size; bits 32 and 48 must be set to zero.

ASSOCJA TIVE REGISTERS

The scalar processor contains 16 64-bit associative registers (ARs). Each AR contains

one associative word. The ARs contain the first 16 associative words in the page

table. For example, if the computer system consists of one million words of central

storage and if only 65K-word pages are selected, the asso~ciative words for all 16 pages

would be contained in the ARs. In the monitor mode, the contents of the ARs can be

stored into or loaded from central storage with the store associative registers (OC) or

load associative registers (OD) instructions, respectively.

The contents of the ARs cannot be referenced directly for read or write operations

except through the OC and OD instructions ..

5-14 60256010 01

O·

,,-::--'"\ ., __ ,;;~'

\W.:.:._ __ j .. -

if~.,

\.~l.~/

(f '"•
--~j

0
0
0
0

0
0

0
0
0
0

0: ...
:

i

'

0
e
0
0

0

0

0

0

0

•

SPACE TABLE

The space table (figure 5-6) consists of the locations in central storage that contain the

list of associative words. The space table st.arts at absolute bit address 440016 (word

address 011016) and may continue to 1FFE0016• The space table extends into central

storage until an end of page table code is found in the usage bits (table 5-3) of the

corresponding associative word. If no end of page table entry is found before location

3FFC016 , the search hardware will loop between addresses 20, 00016 and 3FFC016 ,

resulting in a CPU hang. Thus, the space table serves as an extension of the ARs to

make up a complete page table.

PAGE TABLE

The page table contains the complete list of associative words and includes both the

associative registers and space table. The associative words contained in the page

table define the pages currently allotted space in central storage. Figure 5-6 shows

the format of the page table. Note that if the associative words in the associative

registers are stored in central storage with the store associative registers (OC)

instruction, they are stored in 16 consecutive 64-bit storage locations of absolute bit

addresses 4000 16 through 43CO 16 .

Table 5-5 lists page table restrictions and requirements.

TABLE 5-5. PAGE TABLE RESTRICTIONS AND REQUIREMENTS

Number

1

2

3

4

60256010 01

Restrictions and Requirements

There must be at least one END in the page table.

A page must appear only once in the page table. If a
page appears more than once, the results are undefined,
and the multiple match fault may be set.

Before looking at the page table, the ARs must be stored
in memory. The page table, in memory, starts at
address 40oo16 .

Data words, after the end of table word in the same
sword and in the sword following, may be altered during
space table searches.

5-15

ASSOCIATIVE
REGISTER
NUMBER

AROO

AROI

AR02

AR03

ARl4

ARl5

ABSOLUTE
BIT
ADDRESSES
(BASE 16)

4400

4440

4480

4000+40(N-f)

4000+40N

0

0

-z. --

·ASSOC WORD 0

ASSOC WORD

ASSOC WORD 2

ASSOC WORD 3

ASSOC WORD 15

ASSOC WORD 16
l

I

ASSOC WORD 17

ASSOC WORD 18

--.
, ~ - -z- -- --z....-

-
ASSOC WORD (N-1)

ASSOC WORD N

(D END OF PAGE TABLE USAGE CODE

Figure 5-6. Page Table Format

5-16

H

ASSOCIATIVE
REGISTERS

SPACE TABLE
(CENTRAL STORAGE)

60256010 01

()

0 \
j

0

11·---,,,
~_J.:'

(-"",
~ ,,/

0

0

0
0
0
0
0
0

0
0

c
0

0

0
0
0
0

0
0
0

OPERATION OF VIRTUAL ADDRESSING

In the processing of a job program, each virtual address is transmitted from the stream

unit to the scalar processor. The scalar processor compares the virtual page identifier

in the virtual address (figure 5-3) with the corresponding portion of each associative

word (figure 5-4) in the page table. If the virtual page identifiers match and the lock

matches one of the four keys, a match condition occurs. If a match results, the

absolute page address associated with the match-producing entry in the page table is

combined with the applicable portion of the word identifier sent from stream. The

upper 1 7 bits of this combined address references one sword (eight 64-bit words) from

central storage. The remaining word, half-word, byte, and bit identifiers remain in

stream and select the word, half-word, byte, and/ or bit from the words transmitted

from the scalar processor. If the end of the page table is detected with no preceding

match condition, or if a match results but the operation is disabled by the lockout code,

a storage access interrupt results.

For a description of a page table search, refer to the scalar processor area of the

central processor section of this manual (section 3).

ABSOLUTE ADDRESS

The absolute address formed by page table translation receives the page address portion

from bits 4 through 15 of the associative word (figure 5-7). For 512 word pages, 12 bits

(4 through 15) are placed in bit locations 37 through 48 of the absolute address allowing use

of 4096 possible pages in job mode with two million word memory size configuration~ Bits

49 through 54 of the absolute address receive the corresponding bits from the virtual ad

dress. For 2K word pages, only 10 bits (4 through 13) are placed in bit locations 3 7 through

46 of the absolute address. Bits 47 through 54 of the absolute address receive the corre

sponding bits from the virtual address. For 8K word pages, only 8 bits (4 through 11) are

placed in bit locations 37 through 44 of the absolute address. Bits 45 through 54 of the ab

solute address receive the corresponding bits from the virtual address. For 65K word

pages, only five bits (4 through 8) are placed in bit locations 37 through 41 of the absolute

address. Bits 42 through 54 of the absolute address receive the corresponding bits from

the virtual address; this allows 32 large pages usable with a two millioff word memory.

60256010 01 5-17

In a two million memory configuration,, bit 3 7 of the absolute address indicates which upper

or lower million word portion of memory is referenced. In a one million memory configu

ration.,, bit 38 of the absolute address indicates w~ich upper or lower half-million portion of

memory is referenced. If bit 4 of the absolute page address in the associative word is set

for either page size,, the absolute address formed attempts to reference nonexistent upper

words of memory. This type of memory reference is undefined,, and an illegal reference

to memory occurs. In a 512K word memory configuration,, if bit 4 or bit 5 of the absolute

page address in the associative word is set for either page size,, the absolute address

formed attempts to reference nonexistent upper words of memory. This type of memory

reference is undefined,, and an illegal reference to memory occurs.

ASSOCIATIVE WORD
4 I 9 II IZ 13 14 15 ll II 19 3011 5157 5H011•a

ABSOLUTE
PAGE ADDRESS

I
--.f LARGE 1.-- :

I PAGE I I I I
f.--512 WORD PAGE--..f

I-- 2K WORD PAGE -.f I
1--eK WORD PAGE--1 I I
I I I I t

VIRTUAL PAGE IDENTIFIER SMALL PAGf

VIRTUAL PAGE IDENTIFIER LARGE PAGE_____...

,._ ____ LARGE PAGE COMPARE ------; I I I
,._ ______ 512 WORD PAGE COMPARE ------7·
------ 2K WORD PAGE COMPARE ---

1
--

1
-./.

----- 8K WORD PAGE COMPARE .; I I
I I I I I

ABSOLUTE ADDRESS TO MEMORY I I I I I
I I I I I

I I I I I
I I I I I

' , ' , ' /, I I I I
', '..:::~~I..... ', I I I I

....... I 4 .. < ~12 WORD PAGE I I I I
...... ' -· '

' 'I 4 • < 2K WORD PAGE I I I I ' ,,,, '
' I '~~ ~~ PAGE4' I I I I

/ '' -..-~u~7~.~~ I I I I
I ' ' ' '' /,I I I

I ' ' ' ' ' I 1 ' 1 I ' ',, ,
. '.IRTUAL ADDRESS "'- :'.::.. '- ::-r ;:.,(-::.P,('- '-.,,
l ~ i stat H BANK ~1-i BYTE' BIT I
11 31'7 4142 444Me,47414el0 M• 5751 8091 13

Figure 5-7. Virtual Address to Absolute Address

5-18 60256010 01

u
()

0
()

re--}., 1,_,

4· ""',
(~:.:JI

()

(}

0

0

0

0

0

0
0

0
0

0

0
0

0

0
0
0
0
0

•

REAL-TIME COUNTERS

The CPU contains three counters that can be .used for real-time programming applica

tions:

• Free running clock

• Monitor interval timer

• Job interval timer

Each of these counters is described in the following paragraphs.

FREE RUNNING CLOCK COUNTER

This counter consists of a free running 47-bit counter that is incremented at a 1-MHz

rate, and a positive sign bit for a total of 48 bits. The free running clock counter

is never cleared. The con~ents of this counter can be stored in a designated register

T with the transmit real-time clock to T (3 9) instruction.

MONITOR INTERVAL TIMER

This 24-bit counter is decremented at a 1-MHz rate. The transmit (R) to monitor

interval timer (OA) instruction loads the contents of the designated register R into the

monitor interval timer counter when the computer is in the monitor mode. The timer

can be activated by loading it with any quantity other than all zeros. Once it is activated,

the timer decrements at a 1-MHz rate until it reaches an all zero count. When the

counter reaches a zero count, it causes an external interrupt on channel 15 which is

processed like any other external interrupt. At this point the timer is deactivated until

it is loaded with some value other than zero.

The monitor interval timer is deactivated by any one of the following three methods.

1. Master clear.

2. Loading it with all zeros.

3. Decrementing it to a zero count.

60256010 01 5-19

JOB INTERVAL TIMER

This 24-bit counter is decremented at a 1-MHz rate and can be loaded (job mode only)

from a designated register R using the transmit R to job interval timer (3A) instruction.

Once loaded, the job interval timer continues to decrement until either· an exchange to

monitor mode occurs, the timer decrements to zero, or the timer is loaded with zeros.

If an exchange to monitor mode occurs, the job interval timer stops decrementing and

the operation stores the current contents of the timer in the invisible package for that

job. · When the execution of that job resumes, the operation loads the job interval timer

from the invisible package and resumes decrementing it. When the timer is decremen

ted to zero, the CPU sets bit 36 in the DFB register. Refer to the data flag branch

register description in this section.

Loading zeros deactivates the timer. This action does not set bit 36 of the data flag

branch register. Master clear also deactivates the timer.

The job interval timer is deactivated by any one of the following three methods.

• Master Clear.

• Loading it with all zeros.

• Decrementing it to a zero count.

REGISTER FILE

For register operations, the 8-bit instruction designators directly address the 256
10

registers of the register file. During program execution (monitor or job), these

registers reside in the CPU's register file. When an exchange operation occurs, the

registers are stor,ed into the first 2_5610 memory locations of the particular job or

monitor mode program beginning at bit address zero (absolute address if in monitor

mode and virtual if in job mode). The registers may not be referenced as memory by

their associated monitor or job program. The only exceptions to this rule are the B7

and BA instructions with G-bit 7 set. (Refer to B7 and BA. . instructions in section

6 of this manual.)

5-20 60256010 01

.. u:~·. \ ,.

((-,,...,,

\14.~,;

;£-: J:

"~-"'"7

1f'"'\
\,Ii• .1
.,~ ·

/,-,,,,
•,.,(.,,, '"

~ ·•"'

't
r·, · !, .''.

""_71'

0
0

0
0
0
0

0

0

0

0

r_,:· lJ
0
0

0
0
0
0

0
0
C>

•

Figure 5-8 shows a map of the register file and the relationship between the register,

its st_orage address, and its 8-bit designator. The number on the right is the bit

address and the number on the left is the valtie of the 8-bit designator for the 64-bit

operand. The number inside the register represents the value of the 8-bit designator

for the 32-bit operand.

0
I
2

BIT
0

~L/

7F
80

FF1st

0
2
4

FE

REGISTER FILE RESTRICTIONS

3132

I
3
5

FF

Figure 5-8.

BIT ADDRESS
WHEN Fl L£ IS STORED
1N CENTRAL MEMORY.
VIRTUAL IN A JOB~

63 ABSOLUTE IN A MONITOR
0-0000,6
0-004015
o-ooao16

rl../

O-IFC015
O-r-200015

To-· -3Fco16

3AP17A

Register File

Certain registers within the register file have programming restrictions. The restrictions

are grouped according to the instruction designator number of the register.

60256010 01 5-21

REGISTER 0. (TRACE REGISTER) RESTRICTIONS

Register file address zero .(figure 5-9) is used as the trace register in the 64-bit mode

only. The trace register contains the address from which the most recent branch was

taken. Register zero can be referenced by executing a 7D instruction. Refer to the

instruction section for. the mode of the 7D instruction which moves register zero to

central memory. The maintenance station reads register zero by storing the register

file and reading virtual/ absolute zero in central memory. After a job to monitor ex

change, the job's virtual address zero in memory contains the address of the last

branch taken prior to the exchange operation. After a monitor to job exchange,

monitor's address zero (absolute zero) contains the address of the last branch taken

prior to the exchange operation. The B9 and BA instructions can also read register zero

for data.

Undefined Virtual/ Absolute Trace Address
0 15 16

Figure 5-9. Virtual/Absolute Address Zero

REGISTER 0 CONTENTS RESULTING FROM AN EXCHANGE OPERATION

During a monitor to job exchange, the content of the trace register and the

appropriate memory location for register zero exchange as follows:

Absolute address zero

Virtual address zero

Trace register

Content Before
Exchange

A

B

c

Content After
Exchange

c
B

B

63

5-22 60256010 01

()

0

(J

0

0
0

0
0

0

0

0

0

0

c
I

I
i

i
I

'··

0

9

0
0
0
0

0
0
0

•

During a job to monitor exchange, the content of the trace register and the appropriate

memory location for register zero exchange (swap) as follows:

Absolute address zero

Virtual address zero

Trace register

Content Before
Exchange

A

B

c

Content After
Exchange

A

c
A

If monitor and job mode share a common register file (refer to common register

files for job and monitor modes in this section), the following will occur upon a

monitor to job or job to monitor exchange.

Absolute address zero

Virtual address zero

Trace register

Content Before
Exchange

A

A

B

Content After
Exchange

B

B

B

REGISTER 0 CONTENT RESULTING FROM A SWAP (7D) INSTRUCTION

During a swap (7D) instruction involving register zero as part of the register field,

note a required peculiarity. Although the current content of the trace register is

sent to the appropriate memory location for register zero, the current content of the

trace register is not altered.

Memory location for
register zero

· Trace register

60256010 01

Content Before
7D

A

B

Content After
7D

B

B

5-23

REGISTER 0 WHEN REFERENCED BY AN INSTRUCTION DESIGNATOR

When referenced by an instruction designator. register zero provides machine zero as

an operand except when used as a source register for a base address or other de

scription for a vector or string instruction. In this case. register zero appears to

contain 64 zero bits. The use of a zero address may cause the instruction to be

treated as an illegal instruction. The use of a zero field length may cause the instruc

tion to become undefined as when used in the AO to AF instruction. If register zero is

specified as the destination register, the instruction typically performs normally with

data flags being set, if warranted, but no data is stored. Some instructions become

undefined if register zero is specified as a destination register.

Table 5-6 shows which operand is obtained when register zero is specified for a

source operand. To simplify the table, the specifying of register zero as a destination

register is ignored since it causes the result to be lost. A blank in the table indicates

that register zero cannot be specified or that register zero may only be specified as a

destination register. The instruction designators R, s. T. G, X, A, Y, B, z. and C

are used for convenience, although they do not apply to all instructions. The following

list contains definitions of symbols in the table.

Symbol

A

5-24

c

M

N

0

z

Result When Register Zero is Used ·as an Operand

All zeros are provided.

No control vector is used.

Machine zero is provided.

8000 0000 0000 000016

8000 000016

64-bit mode

32-bit mode

Instruction performs as a no-op.

A mask of all ones is provided.

All zeros in the used portion. In this instance,

the leftmost bit is not used; thus,_ machine zero

and all zeros are undistinguishable.

60256010 01

(.)

()

0
c)

;t,_,_\
'\ilj/

(__ \ __ II'

(_)

0
(f~:
'-J

0

0

0

0

0

0

0

0

0

0

0 '

I

0

0

0

0

0

0

0

0

0

•

Op
.Code

00

04

06

08
09
OA

oc
OD
OE
OF

10
11
12
13

14
15
16
17

18
19
lA
lB

lC
lD
lE
lF

60256010 01

TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO

Instruction Instruction
Designators Op Designators
R s T Code R s T

20 M M z
21 M M z
22 M M z
23 M M z

z 24 M M z
25 M M z
26 M M z
27 M M z

28 z A
z z 29 z A

z 2A
2B M z

2C M M
2D M M

z z 2E M M
z A 2F z z

M 30 M
z 31 z z z
z z 32 z z
z z z 33 z

A A A 34 M z
A A A 35 z z z
A A A 36 z z
A A A 37

z z A 38 M
z A 39
z A 3A z

z z A 3B z

A A A 3C z z
A A A 3D z z
A z 3E
A z 3F z

5-25

TABLE S-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code R s T Code R s T

40 M M 60 M M
41 M M 61 M M
42 M M 62 M M

63 M z

44 M M 64 M M
45 M M 65 M M
46 M M 66 M M

67 M z
48 M M 68 M M
49 M M 69 M M

4B M M 6B M M

4C M M 6C M M
4D 6D M z
4E z 6E M z
4F M M 6F M M

50 M 70 M
51 M 71 M
S2 M 72 M
53 M 73 M

54 M z 74 M z
5S M M 7S M z

76 M
77 M

58 M 78 M
59 M 79 M
5A M 7A M
5B z z 7B z z
5C M 7C M
SD M 7D A t A
5E z z 7E z z
SF z z M 7F z z M

~ Ref er to the swap 7D instruction in section 6 of this manual.

5-26 60256010 01

,
0

.... '11'

\ '

0 -

0

G.
I :

/.r·--·,.,

\,~,.,,,

r-o
\cc. ·- -
'o~''

")(·- .. ,

0

tf"l
\'l_,.-

0

0

0

0

0

0

0

0

0

0

[
.

.. ,.~
;

0

0

0

0

0

0

0

0

0

0

TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators Op Designators
Code G x A y B z c Code .G x A y B z c

80 z At z At c A AO A zt A Zt A z
81 z At z At c A Al A Zt A Zt A z
B2 z At z At c A A2 A Zt A Zt A z
B3 z At z At c A

B4 z At z At c A A4 A Zt A Zt A z
B5 z At z At c A A5 A Zt A Zt A z
B6 z At z At c A A6 A Zt A Zt A z
B7 z At z At c A

BB z At z At c A AB A Zt A Zt A z
B9 z At z At c A A9 A Zt A Zt A z

BB z At z At c A AB A Zt A Zt A z

BC z At z At c A AC A zt A zt A z

BF z At z At c A AF A zt A zt A z

90 z At c A BO z M z z z
91 z At c A Bl z M z z z
92 z At c A B2 z M z z z
93 z At c A B3 z M z z z

94 z At z At c A B4 z M z z z
~5 z At z At c A B5 z M z z z
96 z At c A B6 z
97 z At c A B7 z A z At z A

9B z At c A BB z A c A
99 z At c A B9tt z z z z
9A z At c A BAtt z z z z z A
9B z At z At c A BB At At A z

9C z At c A BC z A z
BD z z At A
BE
BF

t If register zero is selected to broadcast a constant, machine zero is that constant.
t t The B9 and BA instructions can read register zero for data.

60256010 01 5-27

TABLE 5-6. RESULTS FOR SPECIFIED REGISTER ZERO (Contd)

Instruction Instruction
Op Designators OP Designators
Code G x A y B z c Code G x A y B z c
co z At z At c EO z A z A z A
Cl z At z ·At c El z A z A z A
C2 z At z At c E2 z A z A z A
C3 z At z At c E3 z A z A z A

C4 z At z At A E4 z A z A z N
C5 z At z At A E5 z A z A z N
C6 z At z At A E6 z A z A z N
C7 z At z At A E7 z A z A z N

CB A A c z EB z A z A
C9 A A c z E9 z A z A
CA A A c z EA z A z A z A
CB A A c z EB z A z A z A

EC z A z A z A
CD ED z A z A z A
CE z EE z A z z z A
CF z A z At z z EF z A z z z A

DO z At z At c A FO z A z A z A
Dl z A c A Fl z A z A z A

F2 z A z A z A
F3 z A z A z A

D4 z At z At c A F4 z A z A z A
D5 z A c A F5 z A z A z A
D6 z z A z A A 0 F6 z A z A z A
D7 z A z z z z F7 z A z A z A

DB z A c F8 z A z A
D9 z A c F9 z A z A
DA z A c FA z A. z z A
DB z A c FB z A z A

DC z At z At c FC z A z A
DD A At A At FD z A z A z 0
DE z At z A c A FE z A z A z 0
DF M M c A FF z A z A z 0

t If register zero is used t6 broadcast a constant, machine zero is that constant.

5-28 60256010 01

u
O·

0

0

/"("-~,\

"'-.Jll'

(f-..,,

~~~j 

0 



0 
0 
0 
0 
0 

0 
0 
0 
0 

0 

[]

II 

l 
. 

I 

I 

J 

0 
0 
0 
0 
0 
0 
0 
0 
0 

• 

REGISTERS 1 AND 2 (64-BIT), 2 THROUGH 5 (32-BIT) RESTRICTIONS. 

If data flag branches are used, 64-bit registers 1 and 2 must be reserv:ed exclusively 

for that function. Register 1 stores the data flag branch exit address and register ,2 

the data flag branch entry address. Refer to the data flag branch register description 

in this section. 

REGISTERS 0 THROUGH 7 (64-BIT), 0 THROUGH F (32-BIT) MONITOR MODE RESTRICTIONS 

In 64-bit mode, registers 0, 1, and 2 (or in 32-bit mode registers 0 through 5) have the 

restrictions during monitor mode as previously described. In 64-bit mode.. registers 3 

through 7 (or in 32-bit mode registers 6 through F) are used for the undefined instruc

tions, exit force, external interrupt, and storage access interrupt entry points. Refer 

to the exchange from job mode to monitor mode description in this section. 

REGlSTER 1 (32-BIT) RIGHTMOST HALF OF 64-BIT REGISTER 0 

Any reference to 32-bit register one is undefined • 

COMMON REGISTER FILE FOR MONITO·R AND JOB MODES 

Monitor and job modes have perfectly overlapping register files if monitor executes an 

exit force instruction (09) with either designator S or the contents of register S equal to 

zero. In an exchange from monitor to job mode, the monitor's register file is stored 

starting at absolute bit address zero. The job's register file is then loaded from the 

first 256 locations of its virtual page zero. Since register S contains the absolute ad

dress of the job's virtual page zero (refer to exit force instruction) and in this case S 

is equal to zero, the register file for the job is loaded from the same memory locations 

as the monitor's register file was stored. Also, since the rightmost 15 bits of register 

S must contain zeros (refer to exit force instruction), only a perfect overlap occurs. 

Thus, following the exchange, the job's register file is identical to the monitor's regis

ter file. 

60256010 01 5-29 



When exchanging from job mode back to monitor mode, the job's register file is stored 

wher·e it came from; in this case, starting at absolute bit address zero. The monitor's 

register file is then loaded from the same locations causing it to be identical to the 

job's register file. 

DATA FLAG BRANCH REGISTER 

The data flag branch (DFB) register is a 64-bit register (figure 5-10) that provides 

the programmer with an automatic branching feature to a special subroutine for certain 

operands, results, conditions, etc. The DFB register eliminates the time penalty of 

explicitly checking for special programming conditions. If a condition previously 

selected to cause an automatic branch occurs during the execution of an instruction, 

the computer completes the instruction, stores the address of the next instruction 

that would have been executed in the address portion of register 01, and branches 

to the address contained in register 02. 

Many register instructions are executed in parallel, and there may be some uncertainty 

as to which instruction caused the data flag condition. The data flag set condition may 

have occurred during an instruction which was issued a number of instructions before 

the one just completed. A flag on a scalar register instruction (divide, square root 

and convert BCD to binary) could have occurred 0 to 35 instructions earlier. A flag 

on the other register instructions could have occurred 0 to 5 instructions earlier. 

0 23 1516 18 19 . 

© PRODUCT BITS 

NOTE: 

©THESE ARE UNDEFINED BITS. 
ANY J:NSTRUCTION THAT ATTEMPTS 
TO SET,CLEAR,OR SAMPLE THESE 
BITS PRODUCES UNDEFINED RESULTS. 

'31 32 

MASK BITS 

3435 474.8 50 53 55 

DATA FLAGS 

DYNAMIC 
INCLUSIVE OR FOR-------' 
PRODUCT BITS 

DATA 
FLAG BRANCH----' 
ENABLE BIT 

FREE DATA FLAGS---

MONITORING COUNTER 
ENABLE FLAGS 

SCALAR 
REGISTER 

INSTRUCTION 
FLAG 

Figure 5-10. DFB Register Format 

59 63 

5-30 60256010 01 

() 

0 

0 



0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

(J1.I 

i 
; 

y 

0 

0 
0 
0 

0 
0 
0 
0 
0 

• 

DATA FLAGS 

Data flag bits are bits 35 through 47 of the DFB register. These bits indicate con

ditions that have occurred. For example, the machine sets bit 37 at the end of a 

search for masked key word (FF), byte (FE), or bit (D6) instruction if the operation 

detects no match. If a subsequent search for masked key instruction detects 

a match, the machine does not clear DFB bit 37. Bits 35 through 47 of the DFB 

register are cleared only by the data flag register bit branch and alter (32) and the data 

flag register load/ store (3B) instructions. 

Refer to appendix D for a complete list of data flag applications to instructions. 

Data flag bit 36 is applicable only to the job interval timer rather than a specific 

instruction and therefore not listed. 

If a control vector (refer to Control Vector under Vector Instruction in section 6) is 

being used, the current control vector bit must be permissive for the operation 

to set any of the data flags. For example, if a divide fault occurs but the control 

vector bit for that result element is not permissive, that result element would not 

set the divide fault data- flag bit. 

Table 5-7 lists the data flag register bit assignments and associated mask and product 

bits described in the following paragraphs. 

MASK BITS 

The mask bits are bits 19 through 31 of the DFB register. They select the conditions 

that cause the automatic data flag branch to occur when the selected condition takes 

place. 

The 33 or 3B instruction sets and clears the mask bits. A mask bit need not be set 

for its corresponding data flag bit to be set when the condition occurs. The mask bits 

enable the setting of a corresponding bit in the product field when the associated masked 

data flag bit is set. A product bit is set regardless of the order the mask bit and its 

associated data flag bit are set. 

PRODUCT BITS 

Products bits are bits 3 through 15 of the DFB register. Each is the dynamic logical 

product of a data flag bit and associated mask bit being set. The computer executes a data 

flag branch when there is at least one bit set in the product field and the data flag branch 

enable bit is set. 

60256010 01 5-31 



DYNAMIC INCLUSIVE OR FOR PRODUCT BITS 

The dynamic inclusive OR for product bits is bit· 51 of the DFB register. This bit is set by 

setting any one of the product bits. It cannot be cleared directly. 

DATA FLAG BRANCH ENABLE BIT 

The data flag branch enable bit is bit 52 of the DFB register. This bit must be set for an 

automatic data flag branch to take place. When bits 51 and 52 are both set, (setting may 

occur in either order) the -data flag branch takes place at the end of the current instruction. 

The computer automatically clears bit 52 when a data flag branch takes place. The data flag 

register bit branch and alter or a data flag register load/ store instruction resets the data 

flag branch enable bit which reenables the data flag branch operation. 

FREE DATA FLAGS 

Free data flag bits are bits 53 through 55 of the DFB register. Table 5-8 lists each of the 

free data flag bits and the corresponding assignments. There are no product or mask 

bits associated with these bits. Each of the bits are cleared automatically, unless the 

instruction is a no-operation (no-op), during the initial phase of the instruction which may 

set them.. If applicable, these bits must be sampled before executing another instruction 

which would clear them. The setting of the bits does not cause a data flag branch operation. 

MONITORING COUNTER ENABLE FLAGS 

Monitoring counter enable flags are bits 56 and 57 of the DFB register. These flags enable 

the monitoring counters under certain conditions. (Refer to Count Gates in section 4.) 

SCALAR REGISTER lNSTRUCTtO N FLAG 

The scalar register instruction flag is bit 58 of the DFB register. This flag indi

cates that one of the other data flags has been set by a scalar instruction.. The flag 

is cleared by the 3 3 or 3B instructions. 

5 ... 32 60256010 01 

0 

0 

0 

(" "\, 
\ .. ~~. _;;.;"' 

0 

(} 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

• 

Product 
Bit 

3 

4 

5 

6 

7 

8 

TABLE 5-7. DATA FLAG REGISTER BIT ASSIGNMENTS 

Mask 
Bit 

19 

20 

21 

22 

23 

24 

Data Flag 
Bit Assignment I Description 

3 5 Soft interrupt: Monitor software can set bit 
35 of a job 1·s DFB register while the register 
is stored in the job1 s invisible package. If, 
after exchanging back to job mode, bit 35 and 
its corresponding mask bit are set, a normal 
data flag branch occurs following completion 
of the current instruction. 

36 Job interval timer. 

37 Selected condition not met. 

38t 

39t 

40 

Search for masked key - no match. 

Count of nonzero translated bytes > 2
16

-1. 

Decimal data fault: A sign is found in a 
digit position or a digit is found in a sign 
position. If data flag bit 38 is set, DFB 
3 9 is undefined. 

Leading nonzero digits have been truncated. 

Leading nonzero bits have been truncated. 

Divide by zero; E3 and E7. The binary 
result exceeds the range of ± 24 7 - 1. 

Bit 40 is the inclusive OR of bits 37, 38, 
and 39. Bit 24 masks bit 40. Bit 8 is 
the logical product of bits 24 and 40. 

t For those instructions which may set with data flag bit 38 and 39 (E4, E5. E6 and 
E7), the following is true. If both a data fault and nonfloating-point arithmetic over
flow exist in the data, either one or the other or both of these flags are set, depend
ing on the algorithm used in the particular machine. 

60256010 01 5-33 



Product 
Bit 

9 

10 

11 

12 

5-34 

TABLE 5-7. DATA FLAG REGISTER BIT ASSIGNMENTS (Contd) 

Mask 
Bit 

25 

26 

27 

28 

Data Flag 
Bit Assignment I Description 

41 Floating point divide fault: The divisor has 

42 

43 

44 

an all zero coefficient or the divisor, as 
read from the register file or from central 
storage, is machine zero. If the divisor 
and/or dividend is indefinite, no divide fault 
exists. If a divisor causes a divide fault, 
the quotient is set to indefinite. The ex
ponent overflow and result machine zero data 
flags are not set by a divide operation whose 
divisor caused a divide fault. 

Exponent overflow: The exponent of the 
result is larger than 6FFF (6F for 32-bit 
arithmetic). Results are not checked for 
exponent overflow until after the exponent 
adjustment for normalization or significance 
has taken place. In the adjust exponent 
instructions, if a left shift exceeds the num
ber of places required for normalization, 
this data flag bit is set. Exponent overflow 
causes the result to be set to indefinite; 
thus, the indefinite flag is always set 
on an exponent overflow. The exponent 
overflow data flag bit is not set if either 
source operand from central storage or the 
register file is indefinite or by a divide 
instruction whose division causes a divide 
fault. 

Result machine zero: The exponent of 
the result returned to central storage or to 
the register file is less than 9000 (90 for 
32-bit arithmetic). Exponent underflow 
causes the result to be set to machine zero. 
Results are not checked for exponent under
flow until after the exponent adjustment for 
normalization is completed. This data flag 
bit is not set by a divide whose divisor 
causes a divide fault. 

Bit 44 is the inclusive OR of bits 41, 42, 
and 43. Bit 28 masks bit 44. Bit 12 is the 
logical product of bits 28 and 44 .. 

60256010 01 

u 
lo·,,, 
\ ' 

0 

0 

("-""· \U,: 

(,--t-. 

1.~ •. c.Ji 

;\f'. 
"4.,~_;) 

c 
tr·"'. 
'jt' 

(

··li,_ 

\ ; 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

r.: u 
0 

0 

0 

0 

0 

0 
0 
0 

0 

• 

Product 
Bit 

13 

14 

15 

TABLE 5-7. 

Mask 
Bit 

29 

30 

31 

60256010 01 

DATA FLAG REGISTER BIT ASSIGNMENTS (Contd) 

Data Flag 
Bit 

45 

'46 

47 

Assignment/ Description 

Square root result imaginary: A negative 
source operand was detected in a square root 
instruction. The square root of the absolute 
value of the operand is formed and the two's 
complement of this square root is stored as 
the result. 

1 Indefinite result: An indefinite result was 
placed in central storage or into the register 
file. Bit 46 is also set if either or both oper
ands of a floating point compare were indefinite. 

An indefinite result may be caused by one 
or both operands of a floating point arith
metic operation being indefinite or by the 
occurrence of either a divide fault or an 
exponent overflow. 

Breakpoint: DFB bit 47 is set on the 
breakpoint instruction if breakpoint address 
and usage conditions are met. Applicable 
instruction: 04 

5-35 



Free Data 
Flag Bit 

5-36 

53 

54 

55 

53 

54 

55 

53 

54 

55 

53 

54 

55 

TABLE 5-8. FREE DATA FLAG BIT ASSIGNMENTS 

Assignment 

Result field all zeros. 

Result field mixed. 

Result field all ones. 

Equal operands 

First operand high 

Fir st operand low 

Last edited field is zero 

Last edited field nonzero with negative 
sign or unsigned (T flip-flop set) 

Last edited field nonzero with positive 
sign (T flip-flop clear) 

Termination due to length br delimiter 
rather than nonzero translated byte 

Termination due to nonzero translated 
byte which is not the last data byte in 
the A field 

Termination due to nonzero translated 
byte which is the last data byte in the 
A field 

Applicable 
Instructions 

Logical string 
(FO through F7) 

String compares 
(E8, E9, and FD) 

Edit and mark 
(EB) 

Translate and test 
(EF) 

60256010 01 

(J 

() 

0 

"'~". \4 .. c>:' 

:··---.. 
I \< _/ 

0 



0 

0 

0 

0 
0 
0 
0 

0 , 
I 

0 

0 

Ci 
! 

' 

0 
0 

0 
0 

0 

0 
0 

0 

TABLE 5-8. FREE DATA FLAG BIT ASSIGNMENTS (Contd) 

Free Data 
Flag Bit 

53 

54 

55 

53 

54 

55 

53 

54 

55 

53 

54 

55 

53 

54 

55 

53 

54 

55 

53 

54 

55 

60256010 01 

Assignment 

Ones were counted 

Undefined 

Undefined 

Undefined 

Multiple hits 

Undefined 

Whole field scan, no hit 

Undefined 

Undefined 

All translated bytes are equal 

Undefined 

Undefined 

A byte plus B byte < G for all bytes 

A byte plus B byte > G for one or more 
but not all bytes -

A byte plus B byte ~ G for all bytes 

A byte < B byte for all bytes 

A byte > B byte for one or more but not 
all bytes 

A byte ~ B byte for all bytes 

No equal/unequal found 

Undefined 

Undefined 

Applicable 
Instructions 

Count leading 
equals (lE) 

Maximum (DB) 

Minimum (D9) 

Scan right (19) 

Scan equal (28) 

Scan unequal. (29) 

Translate and 
mark (D7) 

Modulo add (EC) 

Modulo subtract 
(ED) 

Scan equal (28) 

Scan unequal (2 9) 

5-37 



DATA FLAG BRANCH OPERATION 

If a ·mask field bit and the associated data flag bit are set. the corresponding product 

field bit is set. Free data flag field bit 51 is also set since this bit is the dynamic 

inclusive OR of all bits in the product field. Under these conditions. the setting of bit 

52 (data flag branch enable bit) initiates an automatic data flag branch operation. 

The data flag branch operation begins at the termination of the instruction that caused 

the data flag branch condition. The execution of the data flag branch transfers the bit 

address of the next instruction into the rightmost 48 bits of register 01 of the register 

file. A branch takes place to the bit address in the rightmost 48 bits of register 02. 

The data flag branch operation automatically clears bit 52 at this time. The data flag 

branch also clears the leftmost 16 bits of register 01. 

I NOTE I 
The clearing of bit 52 disables the data flag branch 
operation. Caution must be used to ensure 
that all data branch conditions are eliminated before 
resetting bit 52 or the program may enter a tight 
loop operation. The sampling of bit 51 for a zero be
fore setting bit 52 prevents this situation in all cases 
except those involving the job interval timer. 

When using the job interval timer. the setting of DFB bit 36 occurs asynchronously 

with respect to instruction execution once the job interval timer is loaded. Thus, the 

timer may set bit 36 after ·the check of bit 51 and before the branch to the content of 

register 01. 

This situation can be programmed by exammmg the content of register 01 upon entering 

the routine for processing data flag branches. If register 01 indicates that the branch 

occurred outside the DFB routine, the content of register 01 could be transferred to a 

temporary. storage location. 

If register 01 indicates that the branch occurred within the DFB routine. the content of 

register 01 would not be transferred to a temporary storage location. At the end of the 

DFB routine. the program would branch to the content of the temporary storage loca

tion. 

A simpler method of programming the above condition is to combine the setting of bit 

52 and the branch to the content of register 01 into a single 33 instruction (3-3603401). 

5-38 6025-6010 01 

(J 

0 
() 

() 

~1~\, 
~t,,j\;I 

0 

;it"'\ 

~.J 

0 

( --, . .-.,' ,,, 

•,,;:/ 



0 

0 

0 

0 
0 
0 

0 
0 
0 

0 

0 

0 
0 
0 

0 

0 

• • 

DATA FLAG BRANCH TIMING CONSIDERATIONS 

The automatic data flag branch· (ADFB) can occ_ur up to 35 instructions after the instruction 

which caused it. The point at which the branch occurs can vary between executions of the 

same program as a result of the asynchronous I/O activity affecting the load/ store 

operations. 

The following points pertain to the central computer use of the data flag register (DFR). I 

• 

• 

• 

• 

The content of the DFR, as stored into the register file by a 3 B instruction, re

flects all previous activity on it. Also, activity prior to the 3 B instruction does 

not affect the new contents of the DFR. 

ADFBs caused by a 3B instruction or any instruction previous to it may occur 

after the next one or two instructions, but no later. 

Sampling or altering a data flag bit with a 33 instruction may occur out of sequence 

with a previous pipeline instruction, up to 3 5 instructions earlier. 

If a 33 instruction alters a bit which causes an ADFB, the branch may occur up 

to two instructions later, even though all previous pipeline instructions may have 

finished. If the ADFB is contingent on the completion of a pipeline instruction, 

the ADFB may occur up to 35 instructions after the instruction which caused it. 

When registers 1, 2, or 4 in the central computer register file are altered by an instruction, I 
and this instruction is followed by an automatic data flag branch or illegal monitor mode 

instruction branch, the store operation may occur out of sequence with the branch operation. 

For example, if a 7E instruction loads register 4, and this instruction is followed by an 

illegal monitor mode instruction, the automatic branch is to the address specified by 

either the old or new contents of register 4, depending on the timing of the 7E and the 

instruction stream. 

60256010 {)2 5-39 



GENERAL DEFINITIONS AND PROGRAMMING GUIDES 

The· following paragraphs provide general definitions and guides to aid in the program

ming of the computer system. 

OVERLAP OF OPERAND AND RESULT FIELDS 

If (in instructions such as vector,, string,, etc.) the result field overlays a source field 

such that elements of the result are stored in the source field before elements in this 

portion of the source field are read,, undefined results may occur. The source elements 

may be the original elements or they may be the newly-stored elements. In the latter 

case,, the instruction results become undefined. Some instructions prohibit any overlap 

of source and destination fields. This restriction is included in the instruction descrip
tions. 

ILLEGAL INSTRUCTIONS 

Illegal instructions are those with function codes that are not part of the computer 

instruction set listed in the instruction list table in section 6. An illegal instruction,, 

when used in job mode, causes an exchange to the monitor mode. Instruction exe

cution then begins at the address specified by the content of the register file absolute 

register 3. An illegal instruction, when used in monitor mode, causes a branch to 

the register file absolute register 4. Instruction execution then begins at the address 

specified by the content of the register file absolute register 4. 

INSTRUCTIONS WHICH CAUSE UNDEFINED RESULTS OR OPERATIONS 

Instructions which contain unused bits must have those bits set to zero or 

instructions cause undefined results or operations. The unused bit areas of the 

instructions are shown with cross-hatched lines in the instruction word formats in 

section 6. 

The job mode of operation protects memory from any undefined results or operations 

with the key-lock virtual addressing mechanism. This mechanism permits memory 

storage only to pages assigned to the current job for which the write lockout bits are 

not set. 

The monitor mode of operation does not have the protection against undefined results or 

operations because it makes all memory references with absolute addresses. 

5-40 60256010 01 

IU''' I ,.1 

0 
(J 

rr--,.,., 

~.;;!'' 

/,;-....... "' 

l'\_,,,· 

·"-.'Ir-, 
\(~~/ 



0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

(j' i 

i 
i 

0 
0 

0 

0 
0 

0 
0 
0 

• • 

String instructions EO through E7 and EB use data flag bits 38 and/ or 39 to indicate data 

fault _and overflow conditions, r_espectively. During instruction exection, the contents of 

result field C is undefined for these instructions. when data flag bit 38 or 39 is set. 

ITEM COUNT 

Item count is a term used in the instruction descriptions (section 6) to highlight the 

fact that certain instructions perform operations on a number of it_ems. The term is 

general and refers to items which may be in bits, bytes, half-words, or words. 

Descriptions which use the term are those which specify instruction field lengths, offsets, 

indexes, and/ or shift counts. 

The size of the items in an item count is specified for applicable instructions in the 

instruction list tables (located near the front of section 6). The item size is listed 

under the table heading, number of bits in the operand. In an example from the tables 

(shown below), the operand size is 8 which indicates that the field lengths and indexes for 

the El instruction are expressed in bytes. 

El 3 8 ST Binary Sub; A-B-C 

In another example (shown below), the operand is E. This indicates that the instuction uses 

32-bit or 64-bit items, depending on the status of instruction bit 8 (G bit O). An item count 

for a field length of this instruction means that the field contains 100 32-bit items or 100 

64-bit items, depending on instruction bit 8. 

80 1 E VT ADD U; A+B - C 

When an item count (other than a field length) is contained in a 16-bit field, at least one sign 

bit must be present. Item counts in 16-bit fields are therefore limited to the range of 2 15 -1 

to -2
15

. (Refer to the following description of field length, ) When an item count other than 

an index consists of 48 bits, the leftmost 33 bits of the item count must be identical sign bits. 

Sign bits must always be extended to the left to fill the 16-bit or 48-bit field that contains it. 

FIELD LENGTH AND OFFSET 1 

Vector, vector macro, sparse vector, logical string, and some nontypical instructions use 

a field length. An offset is used in vector, vector macro, and some nontypical instructions. 

60256010 01 5-41 



The field length as read from the register file before possible offset modification, is 

alw.ays interpreted as a positive number in the range of 0 to 2
16

-1 (65, 535). 

If a vector or other data field has no offset, the field is considered terminated before 

the reading of the first operand if the specified field length is zero. 

Instructions having offsets must have 32 identical sign bits. The offsets are in the 

range -216 to 216-i. If the offset is not in this range, the operation of the instruction 

is undefined. The resulting field length after subtracting. the off set from the field 

length (read from register A, B, or C) must be positive and less than 2
16

-1 or the 

field length is treated as zero. 

INDEX 

String, some branch, and some nontypical instructions use an index. The sign of an 

index may be either positive or negative. The maximum magnitude of an index depends 

on its use as defined in the instruction descriptions. The machine left shifts the indexes 

end-off zero, three, five, or six positions before the index is added to the base address. 

The number of positions shifted depends on whether the unit for the index is bits, bytes, 

half-words, or words, respectively. 

DATA FAULT 

A data fault occurs when a sign code is detected in an unexpected position of a packed binary 

coded decimal (BCD) number. A sign code in the leftmost four bits of any byte always pro

duces a data fault. When only one BCD number is expected in a field, a sign code in any 

position other than the rightmost bits of the rightmost byte is a data fault. If a data fault 

is detected, the instruction operation is undefined. 

OPERAND SIZE DEFINITIONS 

Following is a listing of operand sizes which apply throughout this manual unless other

wise stated. 

5-42 60256010 01 

0 

0 

!11·-"·1 

\tt.,.JI 

/1r··,.,\ 

i"\.Jl 

//--...., 

<::.. _,/ 

() 

() 



0 
0 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 

• 

Word 

Half-word. 

Byte 

Character 

Digit 

Sword 

A 64-bit quantity having the address of the leftmost bit always 

being a multiple of 64
10

• 

A 32-bit quantity having the address of the leftmost bit always 

being a multiple of 3 2
10

• 

An 8-bit quantity having the address of the leftmost bit always 

being a multiple of s10 • 

An 8-bit quantity, generally having some particular significance 

associated with the particular bit pattern or code. 

A 4-bit binary coded decimal number or sign. In zoned format 

there is one digit per byte and in packed BCD format there are 

two digits per byte (refer to the string instructions description for 

more detail). 

512 bits (or eight 64-bit words). 

RESTRICTION ON SELF-MODIFYING PROGRAMS 

It is difficult to use self-modifying programs properly in machines utilizing high-speed· 

parallel architecture. Therefore, it is necessary to serialize the operation of the 

machine. This usually results in reduced performance. 

Sophisticated methods requiring intimate familiarity with the machine can be utilized to 

execute self-modifying routines with less negative impact on performance. Guidelines 

are presented here to provide a basic method for satisfying most system requirements. 

The following operations must be performed in the order indicated. 

1. Program modification must be performed only with the 13, 32, 5F, or 7F instruc

tions. 

2. An instruction must be executed which will guarantee that the former 13, 32, 5F, 

or 7F instruction is completed before the latter 03 instruction starts. One such 

instruction is the 3284XX01, where XX is any register containing a valid memory 

address .. 

3. An 03 instruction must follow the instruction given in step 2, and precede the 

modified code. This voids the instruction stack and initiates an out-of-stack 

branch. 

60256010 01 5-43 



RESULT VECTOR 6.4-SWORD LOOK!AHEAD 

The length of the result vector for the following instructions is input data dependent: 

• Sparse vector (AO through AF)- and the compress (CF) instruction; the length 

the result vector (C) depends on the number of 1 bits in the output order 

vector (Z). 

• Compress (BC) instruction; the length of the result vector (C) depends on the 

number of 1 bits in the order vector (Z). 

• Translate (D7, EE, FB, and F9) instructions where termination is on 

of 

the input and the input is delimiter limited; the length of the result vector (C) 

depends on the position of the delimiter in the input field. 

As the computer proceeds through the execution of the above instructions, it checks 

that an extra 64-sword page (small page) of result field is available if needed (64-sword 

lookahead). Therefore, it is necessary to provide one more small page for the result 

vector beyond the expected length. 

For the sparse vector (AO through AF) instructions, it is not necessary to provide an 

extra small page beyond the maximum possible result field length. The maximum 

possible length of result vector C is equal to the field length of output order vector Z. 

5-44 60256010 01 

lJ 
() 

0 

0 

0 
(~ 

~·-.J',.i 

,4-~ 

I 

·~.> 

ff-~ 

~. __ ,,.-ill'/ 

0 



) 

) 

) 

0 
0 
0 

0 
0 

0 ' 

0 
0 
0 
0 
0 
0 
0 

0 

• 

INSTRUCTIONS 6 

GENERAL 

This section describes instruction word formats,, instruction types,, and instruction 

descriptions. The instruction word format description explains the content of 32-bit 

and 64-bit instruction formats used in the computer. The instruction type descript~on 

explains the instruction groups according to the operations they perform. The instruc

tion description gives detailed explanations and examples of individual instructions. 

As an aid in finding instruction designator information and individual instruction 

descriptions,, refer to: 

• Table 6-1 for instruction designators. 

• Table 6-2 or inside front cover for locating instructions by function code. 

• Table 6-3 for locating instructions by instruction type. 

INSTRUCTION WORD FORMATS 

The 32-bit and 64-bit instruction words have 12 types of formats (figure 6-1). The 

formats have hexadecimal numbers,, 1 through C,, which are used as references in 

tables 6-2 and 6-3. The bits in the instruction word formats number from left to 

right,, 0 through 31 or 0 through 63. 

INSTRUCTION DESIGNATORS 

Each instruction word format is divided into bit groups that have assigned instruction 

designators shown in figure 6-1. The designator letters (such as F,, R,, S,, and Tin 

format 4) and their definitions are listed in table 6-1. The definitions ".re general 

and may vary between instructions. The instruction descriptions give more specific 

designator information as it applies to individual instructions. 

When the c + 1 designator is used,, the c designator must specify an even-numbered 

register. If the C designator specifies an odd-numbered register,, the results of the 

instruction become undefined. 

60256010 01 6-1 



Bits 0 through 7 are commonly used by each instruction word as the function code 

designator (F). The computer uses function codes in the range of 00 through FF. 

The function codes in the range of 00 through. 7F use 32-bit instruction word formats. 

The function codes in the range of 80 through FF use 64-bit instruction word formats. 

UNUSED BIT AREAS 

Cross-hatched lines like those shown in formats A. B. and C of figure 6-1 indicate 

unused bit areas. These areas must be cleared to all zeros or the instructions will 

cause undefined results or operations. 

6-2 60256010 01 

( 

( 

/' 
I 

' °":\ f I 

~ .... -"' 

ff-"\ 
~,]i 



0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

O
,! 

', 

' 

:,·,. 

: 
I 

0 

0 

0 

0 

0 
0 
0 

0 

• • 

0 

F 
(FUNCTION) 

G 
(SUB-
F UNCTION) 

CD c v DENOTES CONTROL VECTOR 

I C+ I I 
(OFFSET I 

LFOR ~83J 

FORMAT 1- USED FOR VECTOR, VECTOR MACRO, AND SOME NONTYPICAL INSTRUCTIONS 

7 8 15 f6 23 24 31 32 39 40 47 48 55 56 

G x A y B z c 
F (SUB- (OV(i)L~~TH (BASE (0 V ~LENGTH {BASE <ov(IJ LENGTH (RESULT 

FUNCTION a BASE a BA E 
foBo\StssJ 

LENGTH a 
FUNCTION) ADDRESS) ADDRESS) ADDRESS) ADDRESS) BASE AODREssi 

CD 0 v DENOTES ORDER VECTOR 

FORMAT 2 - USED FOR SPARSE VECTOR AND SOME NONTYPICAL INSTRUCTIONS 

0 7 8 15 16 23 24 31 32 39 40 47 48 55 56 63 
--~-F--------T"""""~-G:------.-~~x~~-.---~A---------y-:--~~----:B~---r------z~---------=c-----

( FUN CT ION) {SUB- (INDEX (~l~~TH a) {INDEX (~~~~TH a (INDEX (~i~~TH a 

0 

FUNCTION) FOR A) A R SS FOR 8) A DRESS FOR C) R S) 

FORMAT 3 USED FOR LOGICAL STRING AND STRING INSTRUCTIONS 

78 15 16 n 24 31 

F R s T 
(FUNCTION) (SOURCE I) (SOURCE 2) (DESTINATr ON) 

FORMAT 4 USED FOR SOME REGISTER, ALL MONITOR, THE 30 AND 04 NONTYPICAL 
INSTRUCTIONS 

Figure 6- 1. Instruction Forrna ts 

60256010 01 
6-3 



O 78 USll 

I (FUN6TION l ~EST~ATION)I I (48 ~ITS) 

FORMAT 5 USED FOR THE BE,BF,CD,ANO CE INDEX INSTRUCTIONS AND FOR THE 86 BRANCH 
INSTRUCTION 

0 78 fl II If 

F R I 
(FUNCTION) ~DESTINATION) ( l6 BITS) 

FORMAT 6 USED FOR THE 3E, 3F,4D1 ANO 4E INDEX lNSTRUCTIONS AND 
THE 2A REGISTER INSTRUCTION 

0 71 1111 nu 3l 

R s T 

DESCRIBED WHERE USED 

FORMAT 7 USED FOR SOME BRANCH ANO NONTYPICAL INSTRUCTIONS 

0 71 re tt 2124 II 

F R s T 
(FUNCTION) (REGISTER) CREGrSTER) 

(BASE 
ADDRESS) 

FORMAT 8 USED FOR SOME BRANCH INSTRUCTIONS 

Figure 6-1. Instruction Formats (Contd} 

5 ... 4 60256010 01 

() 

0 

0 
() 

13 

(~' ... .i 

(} 
;1('-,,, 
~lj 

;r"-·~. 

~ .. ) 

() 

(
·~ 

.J~" 



0 

0 
0 

0 

0 

0 
0: 

0 
0 

0 

r u 
0 

0 

0 
0 

0 

0 

0 
0 

• • 

0 

G DESIGNATOR 
~ 

0 7 8 9 10 H516 23 24 5 I 

I _<_Fu_N_c_FT_i_o_~-d~'·~l ______ ...._ ___ 

5~~-----T~---' . 

DESCRIBED WHERE USED 

FORMAT 9 USED FOR THE 32 BRANCH INSTRUCTION 

0 78 151e 23 24 51 

F R T 
(FUNCTION OLD STATE) (NEW STATE) 

FORMAT A USED FOR SOME INDEX, BRANCH, ANO REGISTER INSTRUCTIONS 

0 

G DESIGNATOR 
~ 

7 8 9 10 15 I& t7 II 

F 
(FUNCTION) d e 

25 24 . 

T 
(BASE 

ADDRESS) 

31 

DESCRIBED WHERE USED 

FORMAT 8 USED FOR THE 33 BRANCH INSTRUCTION 

G DESIGNATOR 

7~16 23 24 31 32 

F ~ 
39 40 47 48 55 56 

(FUNCTION) 
X A y (BAS~ Z C 

(REGISTER) (REGfSTER) (INDEX) ADDRESS) (REGISTER) (REGISTER) 

\'-C_GBITS 5-7: 
\ BRANCH CONTROL BITS 

GBtT4 
SEE B0-85 INSTRUCTIONS 

FORMAT C. USED FOR THE B 0 - B 5 BRANCH INSTRUCTIONS 

Figure 6-1. Instruction Formats (Contd) 

60256010 01 6-5 



Designator 

A 

B 

c 

C+l 

d 

e 

6-6 

TABLE 6-1. INSTRUCTION DESIGNATORS 

Format Type 

1 & 3 

2 

c 

1 & 3 

2 

c 

1, 2, &3 

c 

1 

9 & B 

9 & B 

Definition 

This 8-bit designator specifies a register that con

tains a field length and base address for the corre

sponding source vector or string field. 

This 8-bit designator specifies a register that con

tains the base address for a source sparse vector 

field. 

Specifies a register that contains a two's complement 

integer in the rightmost 48 bits. 

This 8-bit designator specifies a register that contains 

a field length and base address for the corresponding 

source vector or string field. 

This 8-bit designator specifies a register that contains 

the base address for a source sparse vector field. 

This 8-bit designator specifies a register that contains 

the branch base address in the rightmost 48 bits. 

This 8-bit designator specifies a register that contains 

the field length and base address for storing the re

sult vector, sparse vector,. or string field. 

Specifies the register that contains the two's 

complement sum of (A) + (X) in the rightmost 48 bits. · 

The leftmost 16 bits are cleared. 

This 8-bit designator specifies a register that contains 

the offset for the C and Z vector fields. 

This 2-bit designator is contained within the G desig

nator and specifies the branch conditions for the 

corresponding branch instructions. 

This 2-bit designator is contained within the G desig

nator and specifies the object bit altering conditions 

for the corresponding branch. instructions. 

60256010 01 

' u 
0 

0 

rf""', 
'.Jl,, 

,,-('·-..,, 

~~l-- !) 

/r·" 

"t,.)··· 

' \ C" \ .) 
•' 

r'f''o 

\,~L.j/ 

C', ' 
/ 



0 

0 

0 
0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

• • 

Designator 

F 

G 

I 

60256010 01 

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd) 

Format Type 

1 - c 

1,2,3, 
9, B, &C 

5 

6 

B 

Definition 

This 8-bit designator is used in all instruction 

form at types to specify the instruction function 

code. This designator is always contained in the 

leftmost eight bits of the instruction and is ex

pressed in hexadecimal for all instruction de

scriptions. Thus, the function code range is 

OO-FF16 . However, not all of the possible 

function codes are used. 

This 8-bit designator specifies certain subfunction 

conditions for the corresponding instruction. The 

subfunctions include the length of the operands 

{32- or 64-bit), normal or broadcast source vectors, 

etc. The number of bits that are used in the G 

designator vary with individual instructions. 

(Appendix C lists the G bit usage codes according 

to function code. ) 

The G designator bits have bit positions 8 through 

15 .in the word format. The manual references 

these bits as G bits 0 through 7. G bit 0 corre

sponds to bit position 8 in the word format. 

Other G bits follow, in order, from left to right. 

This 48-bit designator functions as an index used 

to form the branch address in a B6 branch 

instruction. In the CD and CE index instructions, 

operand I is contained in the rightmost 24 bits. 

In the BE and BF index instructions, I is a 48-bit 

operand. 

In the 3E, 3F, 4D, and 4E index instructions, 

I functions as a 16-bit operand. 

In the 33 branch instruction, the 6-bit I designa

tor specifies the number of the data flag branch 

register bit used in the branching operation. 

6-7 



Designator 

s 

T 

6-8 

TA13LE 6-:t~ IN,STlHJCTlON DESIGNATORS (Cotitd.) 

Forrnat Type 

4 

5 & 6 

7, 8,& A 

4 

7' 8,& 9 

4 

7, 8,9,& B 

A 

Definition 

This 8-:bit designator specifies a register that 

contains an operand to be used in an arithmetic 

operation in the register and 30 instru~tions~ 

In the BEi! BF. CD, CE, 3E" 3F" 4D. and 4E 

index instructions, R functions as a destination 

register for the transfer of an operand or operand · 

sum. In the B6 branch instruction, H specifies a 

register that contains an item count which is used 

to form the branch address. 

In these format types, R specifies registers and 

branching conditions that are described in the 

individual instruction descriptions. 

This 8-bit designator specifies a register that 

contains an operand to be used in an arithmetic 

operation in the register and 3D instructions. 

In these format types, S specifies registers and 

branching conditions that are described in .the 

individual instruction descriptions. 

This 8-bit designator specifies a destination 

register for the transfer of the arithmetic results. 

In these formats, T specifies a register that con

tains the base address, and in some cases, the 

field length of the corresponding result field or 

branch address. 

In this formatl! T specifies a register that 

contains the old state of a :register, data flag 

branch register, etc.; in an inde)C, branch or 

interregister transfer operation. 

60256010 01 

0 

0 

o· 
0 

0 

u 

'If-~ 

~.~; 

r 
\41l..,,iv' 

c 
c: 



0 

0 

0 

0 

0 x 

Designator 

0 

0 

0 

0 
y 

0 

0 
0 z 

0 

0 

0 

0 

0 

0 

• 60256010 01 

• 

TABLE 6-1. INSTRUCTION DESIGNATORS (Contd) 

Format Type 

1 & 3 

2 

c 

1 & 3 

2 

c 

1 

2 

3 

c 

Definition 

This 8-bit designator specifies a register that contains 

the offset or index for vector or string source field A. 

In this case, X specifies a register that contains the 

length and base address for the order vector corre -

sponding to source sparse vector field A. 

In the BO through B5 branch instructions, X specifies 

a register that contains a signed, two's complement 

integer in the rightmost 48 bits which is used as an 

operand in the branching operation. 

This 8-bit designator specifies a register that contains 

the offset or index for vector or string field B. 

In this format, Y specifies a register that contains the 

length and base address for the order vector corre -

sponding to source sparse vector field B. 

In the BO through B5 branch instructions, Y specifies 

a register that contains an index that is used to form 

the branch address. 

This 8-bit designator specifies a register that contains 

the base address for the control vector used to control 

the result vector in field C. 

In this case, Z specifies a register that contains the 

length and base address for the order vector corre -

sponding to source sparse vector field C. 

In this format, Z specifies a. register that contains the 

index for result field C. 

In the BO through B5 branch instructions, Z specifies 

a register that contains a signed two's complement 

integer in the rightmost 48 bits. This integer is used 

as the comparison operand in determining whether the 

branch condition is met. 

6-9 



INSTRUCTION TYPES 

The following 10 types of instructions are grouped according to the operations they perform. 

• Index (IN) • Vector macro (VM) 

• Register (RG) • String (ST) 

• Branch (BR) • .Logical string (LS) 

• Vector (VT) • Nontypical (NT) 

• Sparse vector (SV) • Monitor (MN) 

Table 6-2 lists each instruction code in the central computer instruction repertoire; the list 

is in the numerical order (hexadecimal) of the function code. Table 6-3 lists the instruction 

codes according to general type; the general types are in the same order as previously 

listed. The unused and illegal function codes are omitted from tables 6-2 and 6-3. 

A page number is given for each instruction code in tables 6-2 and 6.,-3. These page 

I numbers refer to the description of the corresponding instruction. Figure 6-2 provides 

additional explanations for using the tables. 

6-10 

Instr 
Code 

Page 
No. 

INSTRUCTION 
FUNCTION 
CODES 
DESIGNATED 
00-FF16 

Format 
Type 

No. of Bits 
in Operand 

INSTRUCTION 
WORD 
FORMAT TYPES 
DESIGNATED 
1 - c 16 

Instr 
Type 

NUMBER OF BITS 
IN OPERAND 

INSTRUCTION TYPE 

1 - SINGLE BIT 

8 - BYTES 

BR - BRANCH 

IN - INDEX 

32 - HALF-WORDS LS - LOGICAL STRING 

64 - FU LL-WORDS NT - NONTYPICAL 

E - EITHER 32- OR 64- BIT RG - REGISTER 

B - BOTH 32- AND 64- BIT ST - STRING 

NA - NOT APPLICABLE SV - SPARSE VECTOR 

VM - VECTOR MACRO 

VT - VECTOR 

MN - MONITOR 

Instr Title 

INSTRUCTION TITLE 
DESIGNATORS WITHIN 
PARENTHESES .,( ), INDI
CATE REGISTER LOCATIONS. 
DESIGNATORS WITHOUT 
PARENTHESES INDICATE 
QUANTITIES. 
DESIGNATORS SEPARATED 
BY AN ARROW, --. , INDICATE 
FIELDS. 
BRACKETS, [ ],. INDICATE 
ALGEBRAIC QUANTITIES. 

Figure 6-2. Instruction .Listing Format 

60256010 02 

0 

0 
0 

~o',"J .,Ii, 

(r --,,,, 

\1,._,_,1/ 

/ff".,,,, 

\~l.~)1>-

!~--...... 

\~''/ 

,.#"''I», 

~~-

!,.--, 
'~,;IYI 



0 

0 

0 

0 

0 

0 

0 

0' 

0 

O
; 
I 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

Instr Page 
Code No. 

00 6-244 

03 6-241 

04 6-241 

05 6-242. 1 

06 6-243 

08 6-244 

09 6-58 

OA 6-247 

oc 6-245 

OD 6-245 

OE 6-245 

OF 6-246 

10 6-42 

11 6-42 

12 6-196 

13 6-196 

14 6-205 

15 6-·2{)7 

16 6-207 

17 6-211 

18 6-231 

19 6-234 

lA 6-238 

lB 6-238 

lC 6-238 

lD 6-238 

lE 6-239 

lF 6-241 

--

20 6-50 

21 6-50 

22 6-50 

602 56010 02 

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE 

Format No. of Bits Instr 
Type in Operand Type Instr Title 

4 NA MN IDLE 

4 64 NT KEYPOINT - MAINTENANCE I 
4 64 NT BREAKPOINT - MAINTENANCE 

4 64 NT VOID STACK AND BRANCH I 
7 NA MN FAULT TEST - MAINTENANCE 

4 64 MN INPUT /OUTPUT PER R 

4 64 BR EXIT FORCE 

4 64 MN TRANSMIT (R) TO MONITOR 
INTERVAL TIMER 

4 64 MN STORE ASSOCIATIVE REGISTERS 

4 64 MN LOAD ASSOCIATIVE REGISTERS 

4 64 MN TRANSLATE EXTERNAL 
INTERRUPT 

4 64 MN LOAD KEYS FROM (R), TRANS-
LATE ADDRESS (S) TO (T) , 

A 64 RG CONVERT BCD TO BINARY, 
FIXED LENGTH 

A 64 RG CONVERT BINARY TO BCD, 
FIXED LENGTH 

7 64 NT LOAD BYTE (T) PER (S), (R) 

7 64 NT STORE BYTE (T) PER (S), (R) 

7 1 NT BIT COMPRESS 

7 1 NT BIT MERGE 

7 1 NT BIT MASK 

7 8 NT CHARACTER STRING MERGE 

7 8 NT MOVE BYTES RIGHT 

7 8. NT SCAN RIGHT 

7 8 NT FILL FIELD T WITH BYTE R 

7 8 NT FILL FIELD T WITH BYTE (R) 

7 1 NT FORM REPEATED BIT MASK 
WITH; LEADING ZEROS 

7 1 NT FORMREPEATED BIT MASK 
WITH LEADING ONES 

7 1 NT COUNT LEADING EQUALS 

7 1 NT COUNT ONES IN FIELD R, 
COUNT TO (T) 

8 32 BR BRANCH IF (R)=(S)(32 BIT FP) 

8 32 BR BRANCH IF (R)#(S)(32 BIT FP) 

8 32 BR BRANCH IF (R)_::(S)(32 BIT FP) 

6-11 



Instr 
Code 

23 

24 

25 

26 

27 

28 

29 

2A 

2B 

2C 

2D 

2E 

2F 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

3A 

3B 

3C 

3D 

3E 

6-12 

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd)· 

Page Format No. of Bits Instr 
No. Type in Operand Type Instr. Title 

6-50 8 32 BR BRANCH IF (R)<(S)(32 BIT FP) 

6-50 8 64 BR BRANCH IF (R)=(S)(64 BIT FP) 

6-50 8 64 BR BRANCH IF (R)r(S)(64 BIT FP) 

6-50 8 64 BR BRANCH IF (R)>(S)(64 BIT FP) -
6-50 8 64 BR BRANCH IF (R)<(S)(64 BIT FP) 

6-234 7 8 NT SCAN EQUAL 

6-234 7 8 NT SCAN UNEQUAL 

6-48 6 64 RG ENTER LENGTH OF (R) WITH 
I (16 BITS) 

6-48 4 64 RG ADD TO LENGTH FIELD 

6-33 4 64 RG LOGICAL EXCLUSIVE OR (R). 
(S), TO (T) 

6-33 4 64 RG LOGICAL AND (R), (S) TO (T) 

6-33 4 64 RG LOGICAL INCLUSIVE OR (R), 
(S). TO (T) 

6-51 9 1 BR REGISTER BIT BRANCH AND 
ALTER 

6-33 7· 64 RG SHIFT (R) PER S TO ('0 

6-57 7 64 BR INCREASE (R) AND BRANCH 
IF (R) f 0 

6-54 9 1 BR BIT BRANCH AND ALTER 

6-52 B 1 BR DATA FLAG REGISTER BIT 
BRANCH AND ALTER 

6-34 4 64 RG SHIFT (R) PER (S) TO (T) 

6-57 7 64 BR DECREASE (R) AND BRANCH 
IF (R) f 0 

6-57 7 64 BR BRANCH AND SET (R) TO NEXT 
INSTRUCTION 

6-196 A 64 NT TRANSMIT JOB INTERVAL 
TIMER TO (T) 

6-32 A 64 IN TRANSMIT (R BITS 00-15) TO 
(T BITS 00-15) 

6-198 A 64 NT TRANSMIT REAL-TIME CLOCK 
TO (T) 

6-198 A 64 NT TRANSMIT (R) TO JOB INTERVAL 
TIMER 

6-54 A 64 BR DATA FLAG REGISTER LOAD/ 
STORE 

6-195 4 32 NT HALF WORD INDEX MULTIPLY 
(R)-(S) TO (T) 

6-195 4 64 NT INDEX MULTIPLE (R)o(S) TO (T) 

6-30 6 64 IN ENTER (H) WITH I (16 BITS) 

60256010 01 

u 
0 . 
' ~l 

c 
;fl\ 
i,4tJi·; 

/1'-""""·. 

,,,,, _ _,;;' 

rr~ :v 
[l:\ 
·,l__,p· 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(}'_: 

I 
i 
I 
! 

0 
o~ 

0 

0 

0 

0 

0 

0 

• • 

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd) 

Instr Page Format No. of Bits Instr 
Code No. Type in Operand Type Instr Title 

3F 6-30 6 64 IN INCREASE (R) BY I (16 BITS) 

40 6-37 4 32 RG ADD U; (R) + (S) TO (T) 

41 6-37 4 32 RG ADD L; (R) + (S) TO (T) 

42 6-37 4 32 RG ADD N; (R) + (S) TO (T) 

44 6-37 4 32 RG SUB U; (R) - (S) TO (T) 

45 6-37 4 32 RG SUB L; (R) - (S) TO (T) 

46 6-37 4 32 RG SUB N; (R) - (S) TO (T) 

48 6-37 4 32 RG MPY U; (R)· (S) TO (T) 

49 6-37 4 32 RG MPY L; (R)e(S) TO (T) 

4B 6-37 4 32 RG MPY S; (R)-(S) TO (T) 

4C 6-37 4 32 RG DIV U; (R) /(S) TO (T) 

4D 6-30 6 32 IN HALF WORD ENT ER (R) 
WITH I (16 BITS) 

4E 6-30 6 32 IN HALFWORD INCREASE (R) 
BY I (16 BITS) 

4F 6-37 4 32 RG DIV S; (R) / (S) TO (T) 

50 6-38 A 32 RG TRUNCATE (R) TO (T) 

51 6-38 A 32 RG FLOOR (R) TO (T) 

52 6-38 A 32 RG CEILING (R) TO (T) 

53 6-42 A 32 RG SIGNIFICANT SQUARE ROOT 
OF (R) TO (T) 

54 6-47 4 32 RG ADJUST SIGNIFICANCE OF (R) 
PER (S) TO (T) 

55 6-47 4 32 RG ADJUST EXPONENT OF (R) 
PER (S) TO (T) 

58 6-38 A 32 RG TRANSMIT (R) TO (T) 

59 6-38 A 32 RG ABSOLUTE (R) TO (T) 

5A 6-38 A 32 RG EXPONENT OF (R) TO (T) 

5B 6..;.41 4 32 RG PACK (R) .. (S) TO (T) 

5C 6-42 A B RG EXTEND 32 BIT (R) TO 64 
BIT (T) 

- --

5D 6-42 A B RG INDEX EXTEND 32 BIT (R) TO 
64 BIT (T) 

5E 6-196 7 32 NT LOAD (T) PER (S) .. (R) 

5F 6-196 7 32 NT STORE (T) PER (S),, (R) 

60 6-37 4 64 RG ADD U; (R) + (S) TO (T) 

61 6-37 4 64 RG ADD L; (R) + (S) TO (T) 

60256010 01 6-13 



Instr 
Code 

62 

63 

64 

65 

66 

67 

68 

69 

6B 

6C 

6D 

6E 

6F 

70 

71 

72 

73 

74 

75 

76 

77 

78 

79 

7A 

7B 

7C 

7D 

7E 

7F 

sot 

I 8lt 

6-14 

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd) 

Page Format No. of Bits Instr 
No. T__.Y_Q_e in Operand Type Instr Title 

----

6-37 4 64 RG ADD N; (R) + (S) TO (T) 

6-38 4 64 RG ADD ADDRESS (R) + (S) TO (T) 

6-37 4 63 RG SUB U; (R) - (S) TO (T) 

6-37 4 64 RG SUB L; (R) - (S) TO (T) 

6-37 4 64 RG SUB N; (R) - (S) TO (T) 

6-38 4 64 RG SUB ADDRESS (R) - (S) TO (T) 

6-37 4 64 RG MPY U; (RH S) TO (T) 

6-37 4 64 RG MPY L; (R)-(S) TO (T) 

6-37 4 64 RG MPY S; (R)e(S) TO (T) 

6-37 4 64 RG DIV U; (R) / (S) TO (T) 

6-35 4 64 RG INSERT BITS FROM (R) TO (T) 
PER (S) 

6-36 4 64 RG EXTRACT BITS FROM (R) TO 
(T) PER (S) 

6-37 4 64 RG DIV S; (R) / (S) TO (T) 

6-38 A 64 RG TRUNCATE (R) TO (T) 

6-38 A 64 RG FLOOR (R) TO (T) 

6-38 A 64 RG CEILING (R) TO (T) 

6-42 A 64 RG SIGNIFICANT SQUARE ROOT 
OF (R) TO (T) 

6-47 4 64 RG ADJUST SIGNIFICANCE OF (R) 
PER (S) TO (T) 

6-47 4 64 RG ADJUST EXPONENT OF (R) 
PER (S) TO (T) 

6-42 A B RG CONTRACT 64 BIT (R) TO 32 
BIT (T) 

6-42 A B RG ROUNDED CONTRACT 64 BIT (R) 
TO 32 BIT (T) 

6-38 A 64 RG TRANSMIT (R) TO (T) 

6-38 A 64 RG ABSOLUTE (R) TO (T) 

6-38 A 64 RG EXPONENT OF (R) TO (.T) 

6-41 4 64 RG PACK (R), (S) TO (T) 

6-42 A 64 RG LENGTH OF (R) TO (T) 

6-197 7 64 NT SWAPS - T AND R - S 

6-196 7 64 NT LOAD (T) PER (S), (R) 

6-196 7 64 NT STORE (T) PER (S), (R) 

6-73 

I 
1 I E I VT ADD U; A+ B - C 

6-73 1 I E I VT ADD L; A+ B - C 

60256010 01 

0 

0 

0 

,,"'· 
''l_.:;oi? 

{ ,_ ... \ , 



0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

O!':' i 
I 
,I 

0 

0 

0 
0 

0 

0 

0 

0 

• • 

L\BLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd) 

Instr Page Format No. of Bits Instr 
Code Xo. Type in Operand Type Instr Title 

82 t 6-73 1 E VT ADD N; A+ B - C 

83 6-74 1 64 VT ADD A; A+ B - C 

8-1 t 6-73 1 E VT SUB U; A - B - C 

85 t 6-73 1 E VT SUB L; A - B - C 

86 t 6-73 1 E VT SUB N; A - B - C 

87 6-74 1 64 VT SUB A; A - B - C 

88 t 6-73 1 E VT MPY U; A· B - C 

89 t 6-73 1 E VT MPY L; A· B - C 

8Bf 6-73 1 E VT MPY S; A· B - C 

8Ct 6-73 1 E VT DIV U; A/B - C 

BFt 6-73 1 E VT DIVS; A/B - C 

90 6-75 1 E VT TRUNCATE A - C 

91 6-75 1 E VT FLOOR A - C 

92 6-75 1 E VT CEILING A - C 

93 t 6-82 1 E VT SIGNIFICANT SQUARE ROOT 
OFA-C 

94 6-86 1 E VT ADJUST SIGNIFICANCE OF A 
PER B- C 

95 6-86 1 E VT ADJUST EXPONENT OF A PER 
B-C 

96 6-82 1 B VT CONTRACT 64 BIT A - 32 BIT C 

97 6-82 1 B VT ROUNDEDCONTRACT64BIT 
A - 32 BIT C 

98 6-75 1 E VT TRANSMIT A - C 

99 6-75 1 E VT ABSOLUTE A - C 

9A 6-75 1 E VT EXPONENT OF A - C 

9B 6-80 1 E VT PACK A, B - C 

9C 6-82 1 B VT EXTEND 32 BIT A - 64 BIT C 

Ao·t 6-94 2 E sv ADD U;A +B-C 

Alt 6-94 2 E sv ADD L; A + B - C 

A2t 6-94 2 E sv ADD N; A +B-C 

A4 t 6-94 2 E sv SUB U; A - B-C 

A5t 6-94 2 E sv SUB L; A - B - C 

A6t 6-94 2 E sv SUB N; A - B - C 

A8t 6-98 2 E sv MPY U; A • B~C 

A9t 6-98 2 E sv MPY L; A • B-C 

AB 6-98 2 E sv MPY S; A • B-C 

60256010 01 6-15 



Instr 
Code 

Act 

AFt 

BO 

Bl 

B2 

B3 

B4 

B5 

BO 

Bl 

B2 

B3 

B4 

B5 

BO 

Bl 

B2 

B3 

B4 

B5 

6-16 

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd) 

Page Format No. of Bits Instr 
No. Type in Operand Type Instr Title 

6-98 2 E sv DIV U; A/B - C 

6-98 2 E sv DIV S; A/B - C 

6-60 c 64 BR COMPARE INTEGER, BRANCH IF 
(A) + (X) = (Z) 

6-60 c 64 BR COMPARE INTEGER, •BRANCH IF 
(A) + (X) # (Z) 

6-60 c 64 BR COMPARE INTEGER, BRANCH IF 
(A) + (X) ~ (Z) 

6-60 c 64 BR COMPARE INTEGER, BRANCH IF 
(A) + (X) <: (Z) 

6-60 c 64 BR COMPARE INTEGER, BRANCH IF 
(A) + (X) ~ (Z) 

6-60 c 64 BR COMPARE INTEGER, BRANCH IF 
(A) + (X) > (Z) 

6-62 c 64 BR COMPARE FP, BRANCH IF 
(A) = (X) 

6-62 c 64 BR COMPARE FP, BRANCH IF 
(A) :f (X) 

6-62 c 64 BR COMPARE FP, BRANCH IF 
(A) ~ (X) 

6-62 c 64 BR COMPARE FP, BRANCH IF 
(A) < (X) 

6-62 c 64 BR COMPARE FP, BRANCH IF 
(A) ~ (X) _ 

6-62 c 64 BR COMPARE FP, BRANCH IF 
(A) > (X) 

6-216 c 64 NT COMPARE INTEGER, SET 
CONDITION (A) + (X) = (Z) 

6-216 c 64 NT COMPARE INTEGER, SET 
CONDITION (A) + (X) # (Z) 

6-216 c 64 NT COMPARE INTEGER, SET 
CONDITION (A) + (X) ~ (Z) 

6-216 c 64 NT COMPARE INTEGER, SET 
CONDITION (A) + (X) < (Z) 

6-216 c 64 NT COMPARE INTEGER, SET 
CONDITION (A) + (X) ~ (Z) 

6-216 c 64 NT COMPARE INTEGER, SET 
CONDITION (A) + (X) > (Z) 

60256010 01 

0 

0 

0 
0 

4-)r\ 

~\".>) 

) C
-~ 

0 

(

.--,lit. 

-

:1\ 
·'( 

;:..-•• 1~.::i· 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd) 

Instr Page Format No. of Bits Instr 
Code No. Type in Operand Type Instr Title 

BO 6-217 c 64 NT COMPARE FP, SET CONDITION 
(A) = (X") 

Bl 6-217 c 64 NT COMPARE FP, SET CONDITION 
(A) 'f (X) 

B2 6-217 c 64 NT COMPARE FP,, SET CONDITION 
(A) > (X) 

B3 6-217 c 64 NT COMPARE FP, SET CONDITION 
(A) < (X) 

B4 6-217 c 64 NT COMPARE FP, SET CONDITION 
(A)~ (X) 

B5 6-217 c 64 NT COMPARE FP,. SET CONDITION 
(A) > (X) 

B6 6-214 5 NA BR BRANCH TO IMMEDIATE 
ADDRESS (R) + I (48 BITS) 

B7 6-122 1 E VM TRANSMIT LIST -+ INDEXED c 
BB 6-111 1 E VM TRANSMIT REVERSE A .... C 

B9 6-226 1 E NT TRANSPOSE/ MOVE 

BA 6-119 1 E VM TRANSMIT INDEXED LIST - C 

BB 6-198 2 E NT MASK A, B .... C PER Z 

BC 6-198 2 E NT COMPRESS A - C PER Z 

BD 6-203 2 E NT MERGE A,, B - C PER Z 

BE 6-31 5 64 IN ENTER (R) WITH I (48 BITS) 

BF 6-31 5 64 IN INCREASE (R) BY I (48 BITS) 

co 6-102 1 E VM SELECT EQ; A = B, ITEM 
COUNT TO (C) 

Cl 6-102 1 E VM SELECT NE; A # B, ITEM 
COUNT TO (C) 

C2 6-102 1 E VM SELECT GE; A~ B, ITEM 
COUNT TO (C) 

C3 £-102 1 E VM SELECT LT; A < B, ITEM 
COUNT TO (C) 

C4 6-218 1 E NT COMPARE EQ; A = B, ORDER 
VECTOR-+ Z 

C5 6-218 1 E NT COMPARE NE; A # B, ORDER 
VECTOR- Z 

C6 6-218 1 E NT COMPARE GE; A~. B, ORDER 
VECTOR-+ Z 

C7 6-218 1 E NT COMPARE LT; A < B,. ORDER 
VECTOR-+ Z 

60256010 01 6-17 



TABLE 6-2. INSTRUCTION LIST BY FUNCTION CODE (Contd) 

Instr 
Code 

C8 

C9 

CA 

CB 

CD 

CE 

CFt 

DO 

Page Format 
No. Type 

6-221 1 

6-221 1 

6-221 1 

6-221 1 

6-31 5 

6-31 5 

6-200 1 

6-110 1 

Dl 6-108 1 

D4 6-110 

D5 6-108 

D6 tt 6-165 

D7ttt 6-174 

DB t 6-224 

D9 t 6-224 

DA 

DB 

DC 

DD 

DE 

DF 

6-105 

6-106 

6-124 

6-213 

6-113 

6-116 

1 

1 

3 

3 

1 

1 

1 

1 

1 

2 

1 

1 

No. of Bits 
in Operand 

E 

E 

E 

E 

32 

32 

E 

E 

.E 

E 

E 

1 

8 

E 

E 

E 

E 

E 

E 

E 

E 

Instr 
Type 

NT 

NT 

NT 

NT 

IN 

IN 

NT 

VM 

VM 

VM 

VM 

ST 

ST 

NT-

NT 

VM 

VM 

VM 

NT 

VM 

VM 

t These instructions have sign control capability. 

Instr Title 

SEARCH EQ; A = B, INDEX 
LIST - C 

SEARCH NE; A :/= B, INDEX 
LIST - C 

SEARCH GE; A ~ B, INDEX 
LIST - C 

SEARCH LT; A < B, INDEX 
LIST - C 

HALF WORD ENTER (R) WITH 
I (24 BITS) 

HALF WORD INCREASE (R) BY 
I (24 BITS) 

ARITH. COMPRESS A - C PER B 

AVERAGE (An +Bn/2-Cn 

ADJ. MEAN (A +lA )/2-C n n n 

AVE. DIFF. (A -B )/2-C 
n n n 

DELTA (A +l-A )-C n n n 

SEARCH FOR MASKED KEY; 
BIT, A, B PER C, G 

TRANSLATE AND MARK A PER 
B.- C 

MAX. OF A TO (C), ITEM 
COUNT TO (B) 

MIN. OF A TO (C), ITEM 
COUNT TO (B) 

SUM (Ao+Al+A2+ ... An) TO (C) 

AND (C + 1) 

PRODUCT (A 0, A 1, A 2 , ... An) 

TO (C) 

VECTOR DOT PRODUCT TO (C) 
AND (C + 1) 

SPARSE DOT PRODUCT TO (C) 
AND (C + 1) 

POLYNOMINAL EVALUATION 

INT ERV AL A PER B - C 

tt Automatic index incrementing takes place on these instructions. (See the individual 
instruction descriptions. ) 

ttt Delimiters may be used on these instructions, automatic index incrementing also 
takes place. (Refer to the individual instruction descriptions.) 

6-18 60256010 01 

0 

0 

f''r~ 
\<l)r 

~--·" 
( 

\\,,._,.,., 

i,<G·_~··-:Y 

/•f'~-- ..... , ..... 

;·r ,__,, 

1'' -, 

"L) 

.1··" 
·-t, __ ~·; 



0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

• 

Instr 
Code 

EO 

El 

E2 

E3 

E4 

E5 

E6 

E7 

ES 

E9 

EA 

EB 

EC 

ED 

EE t 
EF t 

FO 

Fl 

F2 

F3 

F4 

F5 

F6 

F7 

F8 t 

F9 t 

FA 

FB 

FC 

FD t 

T_·\ HT .E 6-') 

P~1ge Fornwt 
:\o. T\]~e 

6-135 3 

6-135 3 

6-135 3 

6-135 3 

6-151 3 

6-151 3 

6-151 3 

6-151 3 

6-190 3 

6-190 3 

6-161 3 

6-176 3 

6-138 3 

6-13-8 3 

6-170 3 

6-173 3 

6-192 3 

6-192 

6-192 

6-192 

6-192 

6-192 

6-192 

6-192 

6-158 

6-158 

6-154 

6-140 

6-140 

6-163 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

I:\'STRCCTION LIST BY FUNCTION CODE (Contd) 

>Jo. of nits 
in Operand 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

1 

1 

1 

1 

1 

1 

1 

1 

8 

8 

8 

8 

8 

8 

~ 

Instr 
Tvpe 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

ST 

LS 

LS 

LS 

LS 

LS 

LS 

LS 

LS 

ST 

ST 

ST 

ST 

ST 

ST 

Instr Title 

BINARY !\DD; A ·t· B - C 

BINARY SUB; A - B - C 

BINARY MPY; A • B - C 

BINARY DVD; A/B - C 

DECIMAL ADD; A + B - C 

DECIMAL SOB; A - B - C 

DECT\T:\I. \!PY; :\ B -~ C 

DECT\T:\I. DI\·; .-\ / H _,.. C 

CO\TP:\RE BT:\:\RY .·\, B 

COMPARE DECT\l:\L .-\, H 

MERGE PER BYTE \L\ Sh~ .\, 
B PEH G _,.. C 

EDIT AND \L\IU..:. :\ PFH B _,.. C 

l\IODULO :\DD :\ t B - C 

MODULO sen :\ - B - c 
TRANSJ,ATE _.\ PER B _,.. c· 
TRANSLATE AND TEST :\ l'EH 
B TO C 

LOGICAL EXCLCSI\"E OH:\, 
B-C 

LOGICAL AND A, B - C 

LOGICAL INCLUSIYE OR:\, 
B-C 

LOGICAL STROKE A, n - C 

LOGICAL PIERCE A, B - C 

LOGICAL IMPLICATION A, B - C 

LOGICAL INHIBIT A, B - C 

LOGICAL EQUIVALENCE_.\, 
B, - C 

MOVE BYTES LEFT A - C 

MOVE BYTES LEFT ONES 
COMP. A - C 

MOVE AND SCALE; A - C 

PACK ZONED TO BCD, /\ _,.. C 

UNPACK BCD TO ZONED; /\ _,.. C 

COMPARE BYTES/\, H PER 
MASK FIELD C 

t Automatic index incrementing takes place on these instructions. (See the individual 
instruction descriptions. ) 

6-19 



TABLE 6.;.2. INSTRUCTION LIST BY FUNCTIO'.\" CODE (Contd) 

Instr Page Format No~ of Bits Instr 
Code No. Typ~ in Operand Type Instr Title 

FE t 6-165 3 8 ST SEARCH FOR l\1ASKED KEY 
BYTE; A, B PER C, G 

FF t 6-165 3 64 ST SEARCH FOH MASKED KEY 

= 
WORD; A, B PER C, G 

tAutomatic index incrementing takes place on these instructions. (See the individual 
instruction· descriptions• ) 

...::. · . 

6-20 60256010 0-1 

0 

0 
(J 

0 
() 

0 
() 

' \ 

,1f'-..., 
/\" \ 

~-"/ 

0 
;t..-,\ 

'"-~>'' 



0 
0 

0 

0 
0 
0 
0 

0 
0 

0 

0 
0 

0 
0 
0 
0 

0 
0 

• • 

Instr Page 
Code No. 

3E 6-30 

3F' 6-30 

4D 6-30 

4E 6-30 

CD 6-31 

CE 6-31 

BE 6-31 

BF 6-31 

38 6-32 

2C 6-33 

2D 6-33 

2E 6-33 

30 6-33 

34 6-34 

6D 6-35 

6E 6-36 

40/60 6-37 

41/61 6-37 

42/62 6-37 

44/64 6-37 

45/65 6-37 

46/66 6-37 

48/68 6-37 

49/69 6-37 

4B/6B 6-37 

4C/6C 6-37 

4F/6F 6-37 

63 6-38 

67 6-38 
58/78 6-38 
59/79 6-38 
51/71 6-38 

60256010 01 

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE 

Format No. of Bits 
Type in Operand Instr Title 

INDEX INSTRUCTIONS (IN) 

6 64 ENTER (R) WITH I (16 BITS) 

6 64 INCREASE (R) BY I (16 BITS) 

6 32 HALF WORD ENTER (R) WITH I (16 BITS) 

6 32 HALF WORD INCREASE (R) BY I (16 BITS) 

5 32 HALF WORD ENTER (R) WITH I (24 BITS) 

5 32 HALF WORD INCREASE (R) BY I (24.BITS) 

5 64 ENTER (R) WITH I (48. BITS) 

5 64 INCREASE (R) BY I (48. BITS) 

A 64 TRANSMIT (R BITS 00-15) TO (T BITS 
00-15) 

REGISTER INSTRUCTIONS (RG) 

4 64 LOGICAL EXCLUSIVE OR(R),(S), TO(T) 

4 64 LOGICAL AND(R),(S), TO(T) 

4 64 LOGICAL INCLUSIVE OR(R),(S), TO(T) 

7 64 SHIFT( R) PER S TO(T) 

4 64 SHIFT(R) PER (S) TO (T) 

4 64 INSERT BITS FROM (R) TO (T) PER (S) 

4 64 EXTRACT BITS FROM(R)TO(T)PER(S) 

4 32/64 ADD "Q; (R) + (S) TO (T) 

4 32/64 ADD L; (R) + (S) TO (T) 

4 32/64 ADD N; (R) + (S) TO (T) 

4 32/64 SUB U; (R) - (S) TO (T) 

4 32/64 SUB L; (R) - (S) TO (T) 

4 32/64 SUB N; (R) - (S) TO (T) 

4 32/64 MPY U; (R) • (S) TO (T) 

4 32/64 MPY L; (R) • (S) TO (T) 

4 32/64 MPY S; (R) • (S) TO (T) 

4 32/64 DIV U; (R) / (S) TO (T) 

4 32/64 DIV S; (R) / (S) TO (T) 

4 64 ADD ADDRESS (R) + (S) TO (T) 

4 64 SUB ADDRESS (R) - (S) TO (T) 

A 32/64 TRANSMIT (R) TO (T) 

A 32/64 ABSOLUTE (R) TO (T) 

A 32/64 FLOOR (R) TO (T) 

6-21 



Instr 
Code 

52/72 

5A/7A 

50/70 

5B/7B 

5C 

5D 

76 

77 

7C 

53/73 

10 

11 

54/74 

55/75 

2A 

2B 

20/24 

21/25 

22/26 

23/27 

2F 

33 

3B 

32 

3·6 

31 

35 

09 

BO 

6-22 

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd) 

Page Format No. of Bits 
No. Type in Operand Instr Title 

6-38 A 32/64 CEILING (R) TO (T) 

6-38 1 A 32/64 EXPONENT OF (R) TO (T) 

6-38 A 32/64 TRUNCATE(R)TO(T) 

6-41 4 32/64 PACK (R), (S) TO (T) 

6-42 A B EXTEND ~32 BIT (R) TO 64 BIT (T) 

6-42 A B INDEX EXTEND 32 BIT (R) TO 64 BIT (T) 

6-42 A B CONTRACT 64 BIT (R) TO 32 BIT (T) 

6-42 A B ROUNDED CONTRACT 64 BIT (R) TO 32 
BIT (T) 

o-42 A 64 LENGTH OF (R) TO (T) 

6-42 A 32/64 SIGNIFICANT SQUARE ROOT OF (R) TO 
(T) 

6-42 A 64 CONVERT BCD TO BINARY, FIXED 
LENGTH 

6-42 A 64 CONVERT BINARY TO BCD, FIXED 
LENGTH 

6-47 4 32/64 ADJUST SIGNIFICANCE OF (R) PER (S) 
TO (T) 

6-47 4 32/64 ADJUST EXPONENT OF (R) PER (S) TO (T) 

6-48 6 64 ENTER LENGTH OF (R) WITH I (16 BITS) 

6-48 4 64 ADD TO LENGTH FIELD 

BRANCH INSTRUCTIONS (BR) 

6-50 8 32/64 BRANCH IF(R) =(S) (32/64 BIT FP) 

6-50 8 32/64 BRANCH IF(R) #{S){32/64 BIT FP) 

6-50 8 32/64 BRANCH IF(R)~(S)(32/64 BIT FP) 

6-50 8 32/64 BRANCH IF(R) <(S) (32/64 BIT FP) 

6-51 9 1 REGISTER BIT BRANCH AND ALTER 

6-52. B 1 DATA FLAG REGISTER BIT BRANCH AND 
ALTER 

6-54 A 64 DATA FLAG REGISTER LOAD/STORE 

6-54 9 1 BIT BRANCH AND ALTER 

6-57 7 64 BRANCH AND SET (R) TO NEXT INSTRUC-
TION 

6-57 7 64 INCREASE (R) AND BRANCH IF (R) # 0 

6-57 7 64 DECREASE (R) AND BRANCH IF (R) # 0 

6-58 4 64 EXIT FORCE 

6-60 c 64 COMPARE INTEGER, BRANCH IF 
A + X = Z ( ) ( ) t ) 

60256010 01 

I 

O·:.' ,, 

0) 

0 
(), 

(J 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

G: I 
I 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

L-\BLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd) 

Instr Page Format No. of Bits 
Code ~o. Type in Operand Instr Title 

Bl 6-60 c 64 COMPARE INTEGER, BRANCH IF (A) + (X) :f (Z) 
B2 6-60 c 64 COMPARE INTEGER, BRANCH IF (A)+(Z)~(Z) 
B3 6-60 c 64 COMPARE INTEGER, BRANCH IF (A)+(X)<(Z) 
B4 6-60 c 64 COMPARE INTEGER, BRANCHIF (A)+(X)~(Z) 
B5 6-60 c 64 COMPARE INTEGER, BRANCHIF ~)+(X)> (Z) 
BO 6-62 c 64 COMPARE FP, BRANCH IF (A) = (X) 
Bl 6-62 c 64 COMPARE FP, BRANCH IF (A) f (X) 
B2 6-62 c 64 COMPARE FP, BRANCH IF (A) > (X) 
B3 6-62 c 64 COMPARE FP, BRANCH IF (A) < (X) 
B4 6-62 c 64 COMPARE FP, BRANCH IF (A) < (X) 
B5 6-62 c 64 COMPARE FP, BRANCH IF (A) > (X) 
B6 6-64 5 NA BRANCH TO IMMEDIATE ADDRESS 

(R) + I (48 BITS) 

VECTOR INSTRUCTIONS (VT) 

sot 6-73 1 E ADD U; A+ B-C 

81t 6-73 1 E ADD L; A+ B-C 

82t 6-73 1 E ADD N; A+ B - C 

84t' 6-73 1 E SUB U; A - B-C 

85t 6-73 1 E SUB L; A - B - C 

86t 6-73 ' 1 E SUB N; A - B - C 

88t 6-73 1 E MPY U; A •, B - C 

89t 6-73 1 E MPY L; A· B-C 

8Bt 6-73 1 E MPY S; A· B - C 

set 6-73 1 E DIV U.; A/B - C 
8Ft 6-73 1 E DIV S; A/B - C 

83 6-74 1 64 ADD A; A+ B - C 

87 6-74 1 64 SUB A; A - B - C 
98 6-75 1 E TRANSMIT A - C 

99 6-75 1 E ABSOLUTE A - C 
91 6-75 1 E FLOOR A-C 

92 6-75 1 E CEILING A - C 
9A 6-75 1 E EXPONENT OF A - C 
90 6-75 1 E TRUNCATE A - C 
9B 6-80 1 E PACK A, B - C 
9C 6-82 1 B EXTEND 32 BIT A - 64 BIT C 
96 6-82 1 B CONTRACT 64 BIT A - 32 BIT C 

97 6-82 1 B ROUNDED CONTRACT 64 BIT A - 32 BIT 

93t 6-82 1 E SIGNIFICANT SQUARE ROOT OF A - C 

94 6-86 1 E ADJUST SIGNIFICANT OF A PER B - C 

95 6-86 1 E ADJUST EXPONENT OF A PER B - C 

60256010 Ol 6-23 



Instr 
code 

AOt 
Alt 
A2t 
A4t 
A5t 
A6t 
A8t 
A9t 
ABt 
ACf 
AFt 

co 
Cl 

C2 

C3 

DA 

DB 

D5 

Dl 

DO 
D4 

BB 
DE 

DF 

BA 

B7 

DC 

6-24 

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd) 

Page 
No. 

6-94 

6-94 

6-94 

6-94 

6-94 

6-94 

6-98 

6-98 

6-98 

6-98 

6-98 

6-102 

6-102 

6-102 

6-102 

6-105 

6-106 

6-108 

6-108 

6-110 

6-110 

6-111 

6-113 

6-116 

6-119 

6-122 

6-124 

Format 
Type 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

No. of Bits 
in Operand Instr Title 

SPARSE VECTOR INSTRUCTIONS (SV) 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

ADD U; A+ B - C 

ADD L; A+ B - C 

ADD N; A+ B - C 

SUB U; A - B - C 

SUB L; A - B - C 

SUB N; A - B - C 

MPY U; A • B - C 

MPY L; A • B - C 

MPY S; A • B - C 

DIV" U; A / B - C 

DIV S; A / B - C 

VECTOR MACRO INSTRUCTIONS (VM) 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

SELECT EQ; A = B. ITEM COUNT TO ( C) 

SELECT NE; A f. B. ITEM COUNT TO ( C) 

SELECT GE; A ~ B. ITEM COUNT TO(C) 

SELECT LT; A < B. ITEM COUNT TO( C) 

SUM Ao + A 1 + A 2 + ••• A ) TO ( C) 
AND (C + 1) . n 

PRODUCT (Ao· A 1 • A2 •••• An) TO (C) 

DELTA { An+l-An }. - Cn 

ADJ •. MEAN { An+l +An} /2 - Cn 

AVERAGE{ A + B.} /2 - C 
n n n 

AVE. DIFF.{ An - Bn} /2 - Cn 

TRANSMIT REVERSE A - C 

POLYNOMIAL EVALUATION 

INTERVAL A PER B - C 

TRANSMIT INDEXED LIST - C 

TRANSMIT LIST - INDEXED C 

VECTOR DOT PRODUCT TO (C) AND( C + 1) 

60256010 01 

u 
0) 

0 

0 

( '\ 
\Jl_ __ , 

Af·'· 
f, 

""c~•,il'/ 

0 



0 

0 

0 

0 

0 

0 

0 
o· 
0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

• • 

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd) 

Instr Page 
Code No. 

EO 
El 

E2 

E3 

EC 

ED 

FB 

FC 

E4 

E5 

E6 

E7 

FA 

F8tt 

F9tt 

EA 

FDtt 

6-135 

6-135 

6-135 

6-135 

6-138 

6-138 

6-140 

6-140 

6-151 

6-151 

6-151 

6-151 

6-154 

6-158 

6-158 

6-161 

6-163 

FEttt 6-165 

FFttt 6-165 

D6ttt 6-165 

EEtt 6-170 

6-173 
) 

EFtt 

D7tt 

EB 

EB 
E9 

6-174 

6-176' 

6-190 

6-190 

FO 
Fl 

F2 

6-192 

6-192 

6-192 

60256010 01 

Format 
Type 

·3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

No. of Bits 
in Operand Instr Title 

STRING INSTRUCTIONS (ST) 

8 BINARY ADD; A + B - C 

8 BINARY SUB; A - B - C 

8 BINARY MPY; A • B - C 

8 BINARY DVD; A / B - C 

8 MODULO ADD A + B - C 

8 MODULO SUB A - B - C 

8 PACK ZONED TO BCD; A - C 

8 UNPACK BCD TO ZONED; A - C 

8 DECIMAL ADD; A + B - C 

8 DECIMAL SUB; A - B - C 

8 

8 

8 

8 

8 

8 

8 

8 

64 

1 

8 

8 

8 

8 

8 

8 

DECIMAL MPY; A • B - C 

DECIMAL DVD; A / B - C 

MOVE AND SCALE; A - C 

MOVE BYTES LEFT; A - C 

MOVE BYTES LEFT, ONES COMP. A - C 

MERGE PER BYTE MASK A, B PER 
G-c 
COMPARE BYTES A, B PER MASK FIELD 
c 
SEARCH FOR MASKED KEY BYTE; A, B 
PER C, G 

SEARCH FOR MASKED KEY WORD; A, B 
PER C, G 

SEARCH FOR MASKED KEY BIT; A, B 
PER C, G 

TRANSLATE A PER B - C 

TRANSLATE AND TEST PER B - C 

TRANSLATE AND MARK A PER B - C 

EDIT AND MARK A PER B - C 

COMPARE BINARY A, B 

COMPARE DECIMAL A, B 

LOGICAL STRING INSTRUCTIONS (LS) 

1 

1 

1 

LOGICAL EXCLUSIVE .OR A, B - C 

LOGICAL AND A, B - C 

LOGICAL INCLUSIVE OR A; B - C 

6-25 



TABLE 6-3. INST-RUCTION LIST BY INSTRUCTION TYPE (Contd) 

Instr 
Cope 

F3 

F4 

F5 
.F6 

F7 

3D 

3C 

Page 
No. 

6-192 

6-192 

6-192 

6-192 

6-192 

6-195 

6-195 

5E/7E 6-196 

5F/7F 6-196 

12/13 6-196 

37 

7D 

39 

3A 

BB 

BC 

CFt 
BD 

14 

15 

16 

17 

DD 

BO 

Bl 

B2 

B3 

B4 

6-26 

6-196 

6-197 

6-198 

6-198 

6-198 

I 6-199 

6-200 

6-203 

6-205 

6-207 

6-207 

6-211 

6-213 

6-216 

6-216 

6-216 

6-216 

6-216 

Format 
Type 

3 

3 

3 

3 

3 

4 

4 

7 

7 

7 

A 

7 

A 

A 

2 

2 

1 

2 

7 

7 

7 

7 

2 

c 

c 

c 

c 

c 

No. of Bits 
in Operand 

1 

1 

1 

1 

1 

Instr Title 

LOGICAL STROKE A, B - C 

LOGICAL PIERCE A, B ,.. C 

LOGICAL IMPLICATION A, B - C 

LOGICAL INHIBIT A, B - C 

LOGICAL EQUIVALENCE A, B -c 
NONTYPICAL INSTRUCTIONS (NT) 

64 INDEX MULTIPLY (R) • (S) TO (T) 

32 HALF WORD INDEX MULTIPLY (R) . 
(S) TO (T) 

32 

32 

64 

64 

64 

64 

64 

E 

E 

E 

E 

1 

1 

1 

8 

E 

64 

64 

64 

64 

64 

LOAD (T) PER (S), (R) 

STORE (T) PER (S), (R) 

LOAD/STORE BYTE (T) PER (S), (R) 

TRANSMIT JOB INTERVAL TIMER TO 
(T) 

SW AP S4' and R-S 

TRANSMIT REAL-TIME CLOCK TO (T) 

TRANSMIT (R) TO JOB INTERVAL 
TIMER 

MASK A, B - C PER Z 

COMPRESS A - C PER Z 

ARITH. COMPRESS A - C PER B 

MERGE A, B - C PER Z 

BIT COMPRESS 

BIT MERGE 

BIT MASK 

CHARACTER STRING MERGE 

SPARSE DOT PRODUCT TO (C) AND 
(C + 1) 

COMPARE INTEGER, SET CONDITION 
(A) + (X) = (Z) 

COMPARE INTEGER, SET CONDITION 
(A) + (X) -/= (Z) 

COMPARE INTEGER, SET CONDITION 
(A) + (X) ~ (Z) 

COMPARE INTEGER, SET CONDITION 
(A) + (X) < (Z) 

COMPARE INTEGER, SET CONDITION I (A) + (X) ~ (Z) 

60256010 01 

0 
() 

0 

r···-,"\ 

'YI 

0 
~-\,, ,_,,., 

(

'""'111\ 

,,,J'" 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

(Ji 
\I 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd) 

Instr Page Format No. of Bits 
Code No. Type in Operand Instr Title 

BS 6-:-216 c 64 COMPARE INTEGER, SET CONDITION 
(A) > (X) 

BO 6-217 c 64 COMPARE FP, SET CONDITION 
(A) = (X) 

Bl 6-21 7 c 64 COMPARE FP, SET CONDITION 
(A) f: (X) 

B2 6-217 c 64 COMPARE FP, SET CONDITION 
(A) ~ (X) 

B3 6-217 c 64 COMPARE FP, SET CONDITION 
(A) < (X) 

B4 6-217 c 64 COMPARE FP, SET CONDITION 
(A) < (X) 

B5 6-217 c 64 COMPARE FP, SET CONDITION 
(A) > (X) 

C4 6-218 1 E COMPARE EQ; A = B, ORDER VECTOR 
-z 

C5 6-218 1 E COMPARE NE; A I B, ORDER VECTOR 
-+z 

C6 6-218 1 E COMPARE GE; A~ B, ORDER VECTOR 
-z 

C7 6-218 1 E COMPARE LT; A <B, ORDER VECTOR 
-z 

CB 6-221 1 E SEARCH EQ; A = B, INDEX LIST ~ C 

C9 6-221 1 E SEARCH NE; A F B, INDEX LIST ~ C 

CA 6-221 1 E SEARCH GE; A ~ B, INDEX LIST ~ C 

CB 6-221 1 E SEARCH LT; A < B, INDEX LIST .,. C 

D8t 6-224 1 E MAX. OF A TO (C) ITEM COUNT TO 
(B) 

D9t 6-224 1 E MIN. OF A TO (C) ITEM COUNT TO 
(B) 

B9 6-226 1 E TRANSPOSE/MOVE 

18 6-231 7 8 MOVE BYTES RIGHT 

19 6-234 7 8 SCAN RIGHT 

28 6-234 7 8 SCAN EQUAL 

29 6-234 7 8 SCAN UNEQUAL 

lA 6-238 7 8 FILL FIELD T WITH BYTE R 

lB 6-238 7 8 FILL FIELD T WITH BYTE (R) 

lC 6-238 7 1 FORM REPEATED BIT MASK WITH 
LEADING ZEROS 

60256010 01 6-27 



I 

I 

TABLE 6-3. INSTRUCTION LIST BY INSTRUCTION TYPE (Contd) 

Instr Page Format 
Code No. Type 

lD 6-238 7 

lE 6-239 7 

lF 

03 

04 

05 

06 

00 

08 

oc 
OD 

OE 

OF 

OA 

6-241 

6-241 

6-241 

6-242.1 

6-243 

6-244 

6-244 

6-245 

6-245 

6-245 

6-246 

6-247 

7 

4 

4 

4 

7 

4 

4 

4 

4 

4 

4 

4 

No. of Bits 
in Operand 

1 

1 

1 

64 

64 

64 

Instr Title 

FORM REPEATED BIT MASK WITH 
LEADING ONES 

COUNT LEADING EQUALS 

COUNT ONES IN FIELD R. COUNT TO (T) 

KEYPOINT - MAINTENANCE 

BREAKPOINT - MAINTENANCE 

VOID STACK AND BRANCH 

NA FAULT TEST - MAINTENANCE 

MONITOR INSTRUCTIONS (MN) 

NA IDLE 

64 INPUT /OUTPUT PER R 

64 STORE ASSOCIATIVE REGISTERS 

64 

64 

64 

64 

LOAD ASSOCIATIVE REGISTERS 

TRANSLATE EXTERNAL INTERRUPT 

LOAD KEYS FROM (R), TRANSLATE 
ADDRESS (S) TO (T) 

TRANSMIT (R) TO MONITOR INTERVAL 
TIMER 

t These instructions have sign control capability. 
tt Delimiters may be used on these instructions, and automatic index incrementing 

also takes place. (Refer to the individual instruction descriptions.) 
ttt Automatic index incrementing takes place on these instructions. (Refer to the 

individual instruction descriptions.) 

6-28 60256010 02 

0 

0 

0 

0 
() 

,rf--'lli\ 

"""=-'~,/ 

"\ 
\'-t:_:.-/ 

1lf~-1--

,'l_1 

() 

0 

'(' __ .·'\ Ii 



0 
0 

0 
0 
0 
0 

0 
0 

0 
0 

0:,1, ' 
I 

I 

i 
I 
l 

0 
0 

0 

0 

0 
0 

0 
D 

• • 

INSTRUCTION DESCRIPTIONS 

The instruction descriptions are grouped in the following order. 

• Index Instructions 

• Register Instructions 

• Branch Instructions 

• Vector Instructions 

• Sparse Vector Instructions 

• Vector Macro Instructions 

• String Instructions 

• Logical String Instructions 

• Nontypical Instructions 

• Monitor Instructions 

The description of each of the general types of instructions contains the instruction formats, 

operating parameters, and instruction termination conditions that are applicable to the 

instruction. The individual instructions within a general type are grouped according to 

the specific functions they perform within that group. Instructions that differ slightly in the 

functions they perform have a common description. For example, the index branch instruc

tions (BO through B5) differ only by the sign or magnitude of the branch quantity. Thus, 

these instructions have a common description. 

Each description begins with a listing of the function code (hexadecimal) and title of the 

instruction. This listing is followed by the instruction format. The formats specifi

cally apply to the listed instructions and show the variations from the general format 

types shown in the beginning of this section •. 

Where applicable, the instruction descriptions include examples. These examples show 

a simplified illustration of the instruction operation using arbitrarily assumed operands, 

register contents, indexes, etc. The assumed operands and operating parameters are 

selected mainly to illustrate the instruction operation and are not necessarily typical 

operating values. The numbers used in the examples are in hexadecimal notation un

less otherwise noted. 

60256010 01 6-29 



INDEX INSTRUCTIONS · 

The index instructions manipulate sixteen 24- or 48-bit operands in the designated 

operational registers. These instructions are.used primarily in performing numerical 

calculations on field lengths and addresses. 

3E ENTER (R) WITH I (16 BITS) 
3F INCREASE (R) WITH I (16 BITS) 
4D HALF WORD ENTER (R) WITH I (16 BITS) 
4E r HALF WORD INCREASE (R) BY I (16 BITS} 

0 7 8 15 16 31 

I (3E~3F, I 
4D,4E) 

R I 

(16 ens) 

3E ENT ER (R) WITH I (16 BITS) 

This instruction enters the 16-bit operand I into the rightmost 48 bits of the 64-bit register 

designated by R. The sign bit of the immediate 16-bit operand is extended thr.ough bit 16 

of the destination register R. Register R is cleared before the transfer of I. 

3F INCREASE (R) WITH I (16 BITS) 

This instruction replaces the rightmost 48 bits of the 64-bit register designated by R with 

the sum of these bits and the 16-bit operand I. The leftmost 16 bits of register R are 

unaltere_d. The sign bit of the immediate 16-bit operand is extended through bit 16 in the 

addition. Arithmetic overflow is ignored if it occurs. 

4D HALF WORD ENTER (R) WITH I (16 BITS) 

This instruction enters the 16-bit operand I into the rightmost 24 bits of the 32-bit register 

designated by R. The sign of the immediate 16-bit operand is extended through bit 8 of the 

destination register R. Register R is cleared before the transfer of I. 

4E HALF WORD INCREASE (R) BY I (16 BITS) 

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with 

the sum of these bits and the 16-bit operand I. The leftmost 8 bits of register R are 

unaltered. The sign of the operand is extended through bit 8 for the addition. Arithmetic 

overflow is ignored if it occurs. 

6-30 60256010 01 

0 

0 

(-~. y 

;1(-1\ 

~l _ _,,: 

,,,. "· 
\ ...... •. .-Y' 

11-''\ 

'"--../ 

0 

,-~ 

~~#' 

0 
() 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

• • 

CD HALF WORD ENTER (R) WITH I (24 BITS) 
CE , HALF WORD INCREASE (R) WITH I (24 BITS) 

0 78 63 
R I 

(24 BITS) 

CD HALF WORD ENTER (R) WITH I (24 BITS) 

This instruction clears the 32-bit register designated by R and enters the operand I. 

contained in the rightmost 24 bits of this instruction .. into the rightmost 24 bits of register 

R. 

CE HALF WORD INCREASE (R) WITH I . (24 BITS) 

This instruction replaces the rightmost 24 bits of the 32-bit register designated by R with 

the sum of these bits and operand r .. contained in the rightmost 24 bits of this instruction. 

The leftmost 8 bits of register R are unaltered. Arithmetic overflow is ignored if it occurs. 

BE ENTER (R) WITH I (48 BITS) 

BF INCREASE (R) WITH I (48 BITS) 

0 7 8 15 16 63 
R I 

{48 BITS) 

J 

The BE instruction enters the 48-bit operand I into the rightmost 48 bits of the R 

register. Register R is cleared before the transfer of I. 

The BF instruction replaces the rightmost. 48 bits of·· the R register with. the sum of · 

these bits and the 48-bit operand I. The leftmost 16 bits of R. are unaltered. Arith:

metic overflow is ignored. 

60256010 01 6-31 



38 TRANSMIT (R BITS 00-15} TO (T BITS 00-15} 

(~8) 7 i R 15illf 31 
T 

This instruction replaces the leftmost 16 bits of register T with the leftmost 16 bits 

of register R. The remaining bits of register T are unaltered. 

REGISTER INSTRUCTIONS 

The source and result operands of register instructions are contained in specified 

registers in the register file. The 8-bit R, S, and T designators, contained in the 

instructions, denote the numbers of the registers to be used in the operation. For 

example, if a 64-bit, floating point, add upper instruction is executed (instruction code 

60) with R = 02, S = 03, and T = 7F,, the content of register 02 is added to the con

tents of register 03 (floating point format), and the upper result is stored in destination 

7F. 

A register may contain one or both source operands as well as the result. Register 00 

provides a special case. If this register is designated as containing the source operand, 

the instruction uses machine zero as the source operand (8X 000000 for 32-bit operands 

and 8XXX 000000 000000 for 64-bit operands where X represents any hexadecimal digit). 

If the instruction specifies 00 as the destination register, no result is stored. However, 

the instruction sets the corresponding data flags if applicable. 

Unless the individual instruction description states differently, register-to-register 

operations do not change the content of the source registers. These operations clear 

the destination register before the result is transferred into it. 

6-32 60256010 01 

0 

0 

4··-, 

~l..Y 

.1f'"' 
\l. 



0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

01, 

i 

i 
! 
J 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

2C LOGICAL EXCLUSIVE OR (R),(S),TO (T) 
r 

20 _LOGICAL AND (R),(S), TO (T) 

2F -LOGICAL INCLUSIVE OR (R),(S),TO (T) 

0 78 1516 2324 31 

F R s T 
(2C,2D, (SOURCE I) (SOURCE2) ~DESTINATION 
OR,2E) 

These instructions perform the following logical functions. The function occurs bit by bit 

on the 64-bit operands contained in the registers designated by R and S. The result in each 

case is stored in the register designated by T. 

Exclusive Inclusive 
OR AND OR 

R s R-S R•S R+S 

0 0 0 0 0 

0 1 1 0 1 

1 0 1 0 1 

1 1 0 1 1 

If the R or S designators equal zero~ register zero contains machine zero. 

30 SHIFT (R) PER S TO (T) 

71 1511 23 24 31 

F R s T 
(30) (ORIGIN) (SHIFT) (DESTINATION 

This instruction shifts the 64-bit operand from the register designated by R and stores 

the result into the register designated by T. The S designator specifies the type and 

amount of the shift. 

If the S designator is in the range from 0 through 3F 16 (0 through 63 10), the operand 

from register R shifts left end-around the number of specified places and then stores 

in register T. 

60256010 01 6-33 



If the S designator is in the range from FF 16 through c1 16 (-1 through -63
10

), the 

operand from register R shifts right with sign extension and then stores into register 

T. . For this case, bit zero of the operand from register R is considered to be the 

sign bit of the shifted operand. The number· of right shifts is equal to the two's 

complement of the S designator. 

If, for example, S is equal to FE16• the operand from register R shifts right two 

places. 

If the S designator is greater than 3F 16 or less than C 116• the results of this in

struction are undefined. 

If the R designator is equal to zero, register zero provides machine zero. 

This instruction does not test for machine zero, indefinite or does not set any data flags. 

34 SHtFT (R) PER (S) TO (T) 

0 78 1516 23 24 31 

F R s T 
(34) (ORIGIN) (SHIFT) ~DESTINATION) 

This instruction shifts the 64-bit operand from the register designated by R and stores 

the result into the register designated by T. The register designated by S specifies 

the type and amourit of the shift. 

If the rightmost byte of register S is in the range from 0 through 3F 
16 

(0 through 

63 10), the operand from register R shifts left end-around the number of specified 

places and then stores into register T. 

If the rightmost byte of register S is in the range from FF 16 through Cl 16 (-1 through 

-63
10

), the operand from register R shifts right with sign extension and then stores into 

register T. For this case, bit zero of the operand from register R is considered to be 

the sign bit of the shifted operand. The number of right shifts is equal to the two's com

plement of the rightmost byte of register S. 

If the rightmost byte of register S is greater than 3F 
16 

or less than c1
16

, the results 

of this instruction are undefined. 

6-34 60256010 01 

0 

0 

rll'--~, 

''<.f.Jf 

11·--,,, 

\l.>J 

/,-,,,,, 
'\4,. __ )l•' 

cf-~

'"'-·';y' 

0 

1f __ ."'i: .... ·.·. 
\ •• :..-11'1 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

01 

i 
I 

0 

0 
0 

0 

0 

0 

0 
0 

• • 

The leftmost seven bytes of register S are ignored. 

If the R designator is equal to zero, register zero provides machine zero. 

This instruction does not cause a test for machine zero, indefinite or does not set any data 
flags. 

60 INSERT BITS FROM (R) TO (T) f>ER (S) 

0 78 1516 2324 

F R s T 
(6D) (REGISTER) (REGISTER) (DESTINATION 

-

This instruction inserts a number of rightmost bits (m) from the register designated R to 

the register designated T (figure 6-3). In the register designated S, bits 10 through 15 

specify the number of bits (m) to be inserted, and bits 58 through 63 specify the location (n) 

in register T for the leftmost bit of the inserted bits. Bits 0 through 9 and 16 through 57 

of register S are undefined and must be set to zeros. 

REGISTER R .... I ____________ ..... li.-·_e_~_s_ ..... 1 
~ 

INSERT I 

UNALTERED 
BITS 

O 9 10 ti t• Sf 11 •s 

REGISTER s _lo= ____ o,_m_....__lo~~---o__._l _n____,I 
Figure 6-3. Example of Register Content for an Insert, 

Bits from (R) to (T) Per (S) Instruction 

If the R designator is equal to zero, register zero provides machine zero. If m plus n is 

greater than 6410, of if m is equal to zero, the results of this instruction are undefined. 

The maximum number of bits specified by mis 63 10 . 

60256010 01 6-35 



6E EXTRACT BITS FROM (R) TO (T) PER (S) 

0 71 1516 '2324 31 

F R s T 
(6E) (REGISTER) (REGISTER) ~f?ESTI NATION) 

This instruction extracts a number of bits (m-) from the register designated R and stores 

them in the rightmost part of the register designated T ( figure 6-4). Register T is cleared 

before receiving the extracted bits. In the register designated S,, bits 10 through 15 con

tain the number of bits (m) to be extracted and bits 58 through 63 specify the leftmost bit 

number of the extracted bits in register R. Bits 0 through 9 and 16 through 57 of register 

S are undefined and must be set to zeros. 

REGISTER R H 
m 

BITS 

EXTRACT 

REGISTER T I O -----------o L m j _ r BITS_ 1 

0 • 10 •••• 17 •• •• 
REGISTERS m n 

Figure 6-4. Example of Register Contents for an Extract,, 
Bits from (R) to (T) Per (S) Instruction 

If the R designator is equal to zero,, register zero provides machine zero. If m plus n is 

greater than 64 10,, of if m is equal to zero,, the results of this instructic;m are undefined. 

The maximum number of bits specified by m is 63 10• 

6-36 60256010 01 

Ol I 

0 

0 

(.} 

/lf-~'

\"'j 

0 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 
() 

• • 

4(. 

41/61 
42/62 

44/64 

45/65 

46/66 

48/68 
49/69 

4B/6B 

4C/6C 
4F/6F 

ADD U; (R) + (S) TO (T) 

ADD l; (R) + (S) TO (T) 

ADO N; (R) + (S) TO (T) 

SUB U; (R) - (S) TO (T) 

SUB l; (R) - (S) TO (T) 

SUB N; (R) - (S) TO (T) 

MPV U; (R) • (S) TO (T) 

MPY l; (R) • (S) TO {T) 

MPV S; (R) • (S) TO (T) 

DIV U; (R)/(S) TO (T) 

DIV S; (R)/(S) TO (T) 

0 7 8 15 16 23 24 31 

F 

(4X OR 6X) 
R S T 

DESIGNATES 
SOURCE OPERAND--,,,,. 
REGISTERS 

DESIGNATES RESULT 
DESTINATION REGISTER 

These instructions perform the indicated floating-point arithmetic operation on the 32-bit 

(4X function codes) or 64-bit (6X function codes) operands contained in the registers desig-

. nated by R and S. Appendix B describes the floating .. point operations and operand formats. 

This appendix also describes how certain instructions are order-dependent and will result 

in unexpected answers unless the execution order is known. An example is shown in the 

appendix under Order-Dependent Result Considerations. The arithmetic operation is the 

same for the 32-bit or 64-bit operands with adjustment for bit length of the result. The 

instruction, in each case, stores the arithmetic result in destination register T. 

Designator U signifies that the upper result is stored, L signifies that the lOwer result is 

stored, N signifies that the normalized upper result is stored, and S signifies the significant 

result is stored. Appendix B of this manual defines the U, L, N, and S results. 

Data flag bits 41 (floating-point divide fault), 42 (exponent overflow), 43 (result machine 

zero), and 46 (indefinite result) are set by the applicable instructions if the necessary 

operating and result conditions are present. 

60256010 01 6-37 



63 

67 

0 

ADD ADDRESS (R) + (S) TO (T) 

SUB ADDRESS (R) - (S) TO (T) 

7 8 15 16 
F R s 

(63 OR 67) 
(SOURCE. (SOURCE 

OPERAND OPERAND 

23 24 3J 
. T 
(RESULT 
DESTINATION 

REGISTER) REGISTER) REGISTER} 

These instructions .add/ subtract bits 16 through 63 in register S to/from bits 16 through 63 

in register R. The instructions then store the result in corresponding bits of register T. 

The instructions operate on bits 16 through 63 as 48-bit. positive. unsigned integers. Arith

metic overflow is ignored if it occurs. The instructions transmit bits 0 through 15 of regis

ter R to corresponding bit positions of register T without modification. 

58/78 TRANSMIT (R) TO (T) 

59/79 ABSOLUTE (R) TO (T} 

51/71 FLOOR (R) TO (T) 

52/72 CEILING (R} TO (T) 

5A/7A EXPONENT OF (R} TO (T) 

50/70 TRUNCATE (R) TO (T} 

0 7 8 31 
F R T 

(SX OR 7X) (ORIGIN) DES TI NAT ION 

58/78 TRANSMIT (R) TO (T) 

This instruction transmits the 32-bit (58) or 64-bit (78) operand in the register designated 

by R to the register designated by T. 

59/79 ABSOLUTE (R) TO (T) 

This instruction transmits the absolute value of the 32-'"bit (59) or 64-bit (79) floating-point 

operand in register R to register T. If the coefficient of the initial operand is negative, the 

operand is complemented and is transmitted to register T. If the initial coefficient is posi

tive. it is sent to register T as it is. Applicable data flag bits are 42 (exponent overflow), 

43 (result machine zero). and 46 (indefinite result). 

6-38 60256010 01 

' 0 ~! 

()1 

() 

(); 

/'.--.._, 

\11 __ _,,i 

{. -.---......\ 
' J 

_)II" 

0
-~ 

' 

(
·--,,,, 

I :· 
\ .,~ 



0 

0 

0 
0 

0 

0 

0 
0 

C• ' 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

51/71 FLOOR (R) TO (T) 

This instruction transmits the closest integer less than or equal to the 32-bit (51) or 6 4-bit 

(71) floating point operand in register R to register T. This integer '(T) is expressed by 

an unnormalized 3i-bit or 64-bit floating-point number with a positive exponent. 

If the exponent of the source operand is positive (greater than or equal to zero), the operand 

is transmitted directly to register T. If the exponent of the source operand is negative, the 

machine right-shifts the coefficient end-off and increases the exponent by one for each shift. 

Sign bits are extended on the left during the shift. When the exponent becomes zero, the 

shifting stops and the machine transmits the shifted coefficient and zero exponent to register 

T. If machine zero is used as the source operand, 3 2 I 64 zeros are transmitted 

to register T. 

The applicable :data flag bit is 46 (indefinite result). 

52/72 GEILING (R) TO (T) 

This instruction transmits the closest integer greater than or equal to the 32-bit (64-bit for 

72 function code) operand in origin register R to destination register T. This integer is 

represented as an unnormalized 32-bit (64-bit) floating point number with a positive ex

ponent. 

If the source operand exponent is positive (greater than or equal to zero), the instruction 

transmits the source operand directly to register T. 

If the source operand exponent is negative, the machine right-shifts the two's complement of 

the coefficient end-off and increases the exponent by one for each position shifted until the 

exponent becomes zero. The shift operation extends the sign. The instruction then recomple

ments the shifted coefficient and transmits it with zero exponent to register T. Figure 6--5 

shows the results of a ceiling (R) to (T). 52/72. instruction with a source operand having a negative 

exponent. In this example. a shift of four was necessary to reduce the exponent to zero. The 

example shows the complement of the shifted coefficient with zero exponent in register T. 

If machine zero is used as the source operand. the machine transmits 32/64 zeros as a 

result. The applicable data flag bit is 46 (indefinite result). 

60256010 01 6-39 



0 34 78 II 12 15 II II 20 21 24 27 28 II 

I 

I I II I 100 010 00 0000 0000 0000 1000 00 00 

( F) (C) l<o> (0) (Ol ( 0) ( 8) ( 0) 

'----v----1\ v 
EXPONENT COEFFICIENT 

0 14 7 8 II 12 15 II 19 20 21 24 27 28 It 

0000 000 0 o:ooo 00 00 0000 0000 0000 10 00 

( 0) ( 0) ,<o > (0) ( 0) ( 0) ( 0) ( 8) 

ORIGIN OPERAND (R) 

(80X2-4 ) 

RESULT OPERAND(T) 

( 8 x 2 0) 

NUMBERS IN PARENTHESES REPRESENT HEXADECIMAL DIGITS FOR 

EACH BINARY GROUP .. 

Figure 6-5. Example of Register Content for a Ceiling (R) to (T) Instruction 

5A / 7 A EXPONENT OF (R) TO (T) 

This mstruction transmits the exponent in the leftmost 8 bits (16 bits for 64-bit 

operands) of register R to the rightmost 8 bits (16 bits for 64-bit operands) of regis

ter T. The instruction extends the sign of the exponent through bit 8 of register T. 

The exponent portion (leftmost 8 or 16 bits) of register T is cleared. 

50/70 TRUNCATE (R) TO (T) 

This instruction transmits the closest integer the magnitude of which is less than or equal 

to the 32-bit (64-bit for 70 function code) operand in origin register specified by R to desti

nation register T. This integer is represented by an unnormalized 32-bit (64-bit) floating 

point number with a positive exponent. 

If the origin operand exponent is positive (greater than or equal to zero). the instruction 

transmits the origin operand directly to register T. 

If the origin operand exponent is negative, the machine right-shifts the magnitude of the coef

ficient end-off and increases the exponent by one for each position shifted until the exponent 

becomes zero. The operation extends zeros on the left during the shift. If the coefficient of 

the origin operand was positive, the shifted coefficient with zero exponent is transmitted to 

the destination register. If the coefficient of the origin operand was negative. the two's 

complement of the shifted coefficient and zero exponent is transmitted to the destination 

register. If machine zero is used as the origin operand, 32 /64 zeros are transmitted as a 

result. 

6-40 60256010 01 

0 

0 

0 

0 
() 

Cl 

,i 

0 

() ........., 

0 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• 

0 

Figure 6-6 shows the results of a truncate (R) to (T), 50 I 70, instruction with an origin 

operand having a negative exponent and positive coefficient. A right shift of eight is required 

to reduce the negative exponent to zero. 

The applicable data flag bit is 46 (indefinite result). 

0 34 78 11 12 15 16 19 20 23 24 27 28 31 

111 I I 1000 olooo 0000 0001 I I II 11 11 II I I 
I I 

(F) (F) j(F) (8) 1(0) (0) ( I) (F) 

~\ J 
v 

EXPONENT. COEFFICIENT 

0 78 II 12 15 II It 20 H 24 27 28 3 I 

01000 0000 01000 0000 0000 0000 0001 111 I 

j j 
'-----.r---''--~~-----~~---

EXPONENT COEFFICIENT 

ORIGIN OPERAND (R) 
(OOIFFFX2 '-8 ) 

RESULT OPERAND (T) 
(OOOOIFX20) 

Figure 6-6. Example of Register Content for a Truncate (R) to (T) Instruction 

58/78 PACK (R), (S) TO (T) 

7 8 15 .. 23 24 II 

F R s T 
(58 OR 78) (ORIGIN I) (ORIGIN 2) (DESTINATION) 

'--v------1 '--v------1 
EXPONENT COEFFICIENT 

This instruction transmits a 32-bit (64-bit for the 7B function code) floating-point 

number to the destination register T. The instruction transmits the exponent of the 

number from the rightmost 8 bits (16 bits for 7B) of register R and the coefficient 

from the rightmost 24 bits (48 bits for 7B) of register S. 

60256010 01 6-41 



SC 

SD 

76 
77 

7C 

53/73 

10 

11 

EXTEND 32 BIT (R) TO 64 BIT (T) 

INDEX EXTEND 32 BIT (R)TO 64 BIT (T) 

CONTRACT 64 BIT (R) TO 32 BIT (T) 
ROUNDED CONTRACT 64 BIT (R) TO 32 BIT (T) 

LENGTH OF (R) TO (T) 

SIGNIFICANT SQUARE ROOT OF (R) TO (T) 

CONVERT BCD TO BINARY, FIXED LENGTH 
CONVERT BINARY TO BCD, FIXED LENGTH 

0 71 IS II 1114 at 

F R 
( 5C, 76, 53, (ORIGIN) 
73,10 OR II) 

T 
.,,,,,,,,,,,,,,,,_,,,,/HDESTINATION) 

5C EXTEND 32 BIT (R) TO 64 BIT (T) 

This instruction extends the 32-bit floating point number from register R into a 64-bit 

floating point number and transmits the result to 64-bit register T. (figure· 6-7). The 

value of the resulting exponent is 2410 less than the exponent of the origin operand. 

The result coefficient results from the transmission of the origin coefficient to bits 16 

through 39 of register T. The instruction clears the rightmost 24 bits of the destina

tion register. 

If the contents of register R is indefinite, the result in register T is also indefinite 

and data flag bit 46 (indefinite result) is set. If the contents of register R is machine 

zero, register T contains machine zero, and data flag bit 43 (result machine zero) is 

set. 

5D INDEX EXTEND 32 BIT (R) TO 64 BIT (T) 

This instruction extends the 32-bit floating point number from register R into a 64-bit 

floating. point number and transmits the result to 64-bit register T. The value of the 

resulting 16-bit exponent is the same as the origin operand's exponent with the sign bit 

extended through bit 0 of the result exponent. 

The result coefficient results from the transmission of the rtghtmost 24 bits of the 

origin register into bits 40 through 63 of the destination register. Bits 16 through 39 

of the destination register are set to the sign of the origin coefficie_nt. 

If the contents of register R is indefinite, the result in register T is also indefinite 

and data flag bit 46 (indefinite result) is set. If the contents of register R is machine 

. zero, 

set. 

6-42 

register T contains machine zero and data flag bit 43 (result machine zero) is 

60256010 01 

()' 

() 

(J 

All'~ 

\) 

/1~,'1\ 
( 

'<Iii..__,+'' 

;.:·~--., 

,\, ....... )~-: 

( ·".· .. ·· ·! 
;}•.' 



0 

• 
0 
0 
0 
0 
0 

0 
0 
0 

[jl 

i 

i' I 

0 
0 
0 
0 
0 

0 
0 
0 
0 

• 

i 6 'i 4 'i 0 .. •• 0 .. r · 6 r 8 ·r A T 6 r ORIGIN REGISTER (R) 

'--v--'----~--~~~~-
EXPONENT COEFFICIENT 

DESTINATION REGISTER (T) 

o.-~~•r•~~7r'~__;.;,"r'1~-'~'r"~_.;.••r1~0__;;2~1~2~•__;;2~7r1~•~•~·r•2;:_~•~1r1•;:_~s~•r•o;:_~~~·r••.:.....~•~7r••=--~'~'~'z=--~·~·~··=--~·~·~·o=--~·~· 

I 0 0 4 I c 0 I 0 I 6 I 8 I A I 6 I 0 I 0 I 0 I 0 I 
EXPONENT 

( 6416 - 24 10 = 
TRANSFERRED FROM 
ORIGIN REGISTER 

CLEARED BY 
INSTRUCTION 

0 0 

64 16 - I 8 16 = 4C 

COEFFICIENT 

Figure 6-7. Example of Register Content for an Extend 
32-Bit (R) to 64-Bit (T) Instruction 

76 CONTRACT 64-BIT (R) T0-32 BIT (T) 

This instruction (figure 6-8) · contracts the 64-bit floating point number from register R into 

a 32-bit floating-point number. The instruction then transmits the result to a 32-bit register 

designated by T. The resulting 8-bit e_xponent represents the sum of the least-significant 

eight bits of the origin exponent and 24 10• If the result exponent cannot be contained in eight 

bits, exponent overflow or underflow is detected. 

The following input exponent conditions are listed with the corresponding results of the 76 

instruction execution. 

Input 
Exponent 

7FFF 

. 
7000 

6FFF 

0058 

0057 

FF78 

FF77 

8000 

60256010 01 

Result 

Result indefinite 

Indefinite data flag bit 46 (indefinite result) is set. 

Result indefinite 

Data flag bits 42 (exponent overflow) and 46 (indefinite result) are set. 

Result exponent is 241o larger than the input exponent. The leftmost 
24 bits of the input coefficient are transferred. 

Result is machine zero. Data flag bit 4~ (result machine zero) is set. 

6-43 



Bits 16 through 39 of the origin are transmitted directly to the rightmost 24 bits of 

register T as the result coefficient. This operation contracts all source operands having 

a negative coefficient with an absolute value of Jess than 224 to -1 (figure 6-8) and positive 

coefficients with an absolute value of less than 224 to zero. 

ORIGIN REGISTER (R) 

0 14 .,. 1111 .... It 10 1114 l'PH 1111 HI• H40 4144 4741 1111 .... ... o 

I 0 I 0 4 c F F F I F I F I F I F I F I 9 I 7 I 5 I A 

EXPONENT 

. ( 4C 16 + 24 10 = 
4C16+l816 =6416) DESTINATION REGISTER (T) 

I 
t 

0 S4 .,. 1111 .... 1110 2514 2711 II 

I 6 I 4 I F I F I F I F I F I F I 
'--v---1 

EXPONENT COEFFICIENT 

Figure 6-8. Example of Register Content for a Contract 64-Bit (R) to 32-Bit (T) 
Instruction 

II 

I 

6-44 60256010 01 

('-"'\ 

\t_;,j 

'\ 

/" "-., 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0\ 

0 

0 

0 

0 

0 

0 

0 

77 ROUNDED CONTRACT 64 BIT (R) TO 32 BIT (T) 

This instruction performs a rounded contract operation on the 64-bit, floating-point operand 

in origin register R and transmits the 32-bit floating point result to destination register T 

(figure 6-9). The resulting 8-bit exponent represents the sum of the least-significant eight 

bits of the origin exponent and 2410• If the result exponent cannot be contained in eight bits, 

exponent overflow or underflow is detected. The instruction then adds a +1 to bit position 

40 of the origin operand and coefficient. If overflow occurs, the instruction increases the 

exponent by one and right-shifts the coefficient one place. The leftmost 24 bits of the 

shifted result coefficient are transmitted to the corresponding bits of the destination register. 

The 8-bit exponent of each nonend case result element is 2410 (25 10 if overflow occurred) 

greater than the exponent of the corresponding source element. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(indefinite result). 

7C LENGTH OF (R) TO (T) 

This instruction transmits the leftmost 16 bits of origin register R to the rightmost 16-bit 

positions of destination register T. The leftmost 48 bits of register T are cleared. 

53/73 SIGNIFICANT SQUARE ROOT OF (R) TO (T) 

This instruction transmits the square roott of a 32-bit (53 function code) or 64-bit (73 function 

code) operand in register R to register T. The result contains the same number of significant 

bits as the source operand. Applicable data flag bits are 45 (square root result imaginary), 

46 (indefinite result), and 43(result machine zero). 

10 CONVERT BCD TO BINARY. FIXED LENGTH 

This instruction converts the packed BCD number in register R to a signed (two's complement) 

binary number and transfers the result to the rightmost 48 bits of register T. Figure 6-10 

shows an example of the register contents following a convert BCD to binary, fixed length 

instruction. The leftmost 16 bits of register T are cleared by this instruction. The con

version is undefined for binary results greater than +(247 -1) or less than -(247 
-1). Thus, 

the largest decimal number that this instruction can convert is ± 140, 737, 488, 355, 327. 

The instruction sets data flag bit 39 (refer to data flag register bit assignments in section 

5) for numbers outside this range. 

If the input number is not a valid BCD number, the results are undefined. 

11 CONVERT BINARY TO BCD, FIXED LENGTH 

This instruction converts the rightmost 48 bits (two's complement, binary number) of register 

R to a packed BCD number and transfers the result to register T. The result is a number 

containing 15 packed BCD digits {four bits per digit and the sign in bits 60 through 63). Figure 

6-10 shows the packed BCD format; the binary range is ::i: {247 -1). 

t Appendix B describes the floating-point square root operation. 

.60256010 01 6-45 



0 

0 

ORI GIN REGISTER ( R) 
5 4 7 I II 12 Ill II It 20 H 24 27 21 51 52 511 H H 40 45 44 47 41 51 52 55 Ill 59 60 15 

1111 11 11 1100 1111 I I 11 11 11 11 11 11 11 11 11 1111 I I 11 I I 11 I I 11 1111 1111 1100 
(F) (F) (F) (C) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F) (F) (C) 

EXPONENT(-4) COEFFICIENT (-4) 

COEFFICIENT AFTER -t I ADDED TO BIT 40 
II 19 20 25 24 27 21 51 52 511 H 59 40 45 44 47 41 Ill 112 Ill H H •o H 

(FC16+ 2410= 
FC1s+ ie1s=+141s 

0 54 

0000 0000 0000 00 00 0000 0000 o, 111 

I 
I 

-----J*-1 ---' \ 78 II 12 111 1• 19 20 H 24 17 21 51 

I 

0001 0101 0000 0000 0000 0000 0000 0000 
( I) ( 5) 

DESTINATION REGISTER (T) 

14 

'---v--'--~~~--~~~---
EXPONENT COEFFICIENT 

Figure 6-9. Example of Register Content for a Rounded 
Contract 64-Bit (R) to 32-Bit (T) Instruction 

ORIGIN REGISTER ( R) 

.,. 1111 II le 19 10 IS 14 17 le II SI H le S9 40 4S 44 47 48 llH 

4 0 5 

PACKED BCD NUMBER 

DESTINATION REGISTER (T) 

HH Heo 

9 9 ... 
•s 

14 .,. 1111 Ille 1910 1114 2711 llH Hae 5140 4544 4748 11 H IJIH 1910 •S 

UNCHANGED 48-BIT BINARY EQUIVALENT 

Figure 6-10. Example of Register Content for a Convert 
BCD to Binary,, Fixed-Length Instruction 

6-46 
60256010 01 

0 
() 

() 

(J 

"'-" iU''' ' _, 

~-)'-, 

'1t. ... ~-

.f' 
i' 
''4.,__,, 

,rJl'·---, 

"""---"''-

,,~ __ ·_·_,, \I ., 
""-"' 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

0 

54/7 4 ADJUST SIGNIFICANCE OF (R) PER (S) TO (T) 

55/75 . ADJUST EXPONENT OF (R) PER (S) TO (T) 

78 1516 23 24 31 

F R S T 
(54/74 

OR 55175 ) (SOURCE I ) (SOURCE 2 (DESTINATION) 

SOURCE OF 
FLOATING 
POINT 
OPERAND 

INTEGER 
SHIFT COUNT 

54/74 ADJUST SIGNIFICANCE OF (R) PER (S) TO (T) 

This instruction adjusts the significance t of the floating-point operand in register R and 

transmits the adjusted result to register T. The rightmost 24 bits (48 bits for 74 function 

code) of register S contains a signed,, two's complement integer. The absolute value of this 

integer is a shift count. 

If the shift count is positive,, the machine shifts the coefficient of the operand left the number 

of positions specified by the shift count or the number of positions needed to normalizet the 

coefficient,, whichever is the smaller number. 

In either case,, the instruction reduces the exponent of the operand by one count for each 

position shifted. ·The instruction left-shifts an all zero coefficient the number of positions 

specified. 

If the shift count is negative,, the instruction shifts the coefficient of the operand right the 

number of positions specified by the shift count and increases the exponent of the operand by 

one count for each position shifted. If (R) is indefinite,, the machine sets the (T) to indefi-

nite and sets data flag bit 46 (indefinite result). If (R) equals machine zero,, the machine 

sets (T) to machine zero but does not set data flag bit 42 (exponent over.flow). 

Ths instruction is undefined if the absolute value of the shift count is greater than 23 10 for 

the 54 or 47 10 for the 7 4 instruction. The addition of the shift count can cause either 

exponent overflow or exponent underflow. 

Applicable data flag bits are 42 (exponent over.flow),, 43 (result machine zero),, and 46 

(indefinite result). 

t Appendix B describes the process, of adjusting a floating point operand for significance and 
of normalizing a floating-point number. 

60256010 01 6-47 



55/75 ADJUST EXPONENT OF (R) PER (S) TO (T) 

This instruction transmits the adjusted operand from register R to result register T. The 

instruction sets the result exponent equal to the exponent of the operand in register S. The 

machine forms the coefficient of the result by shifting the coefficient of the operand from 

register R. 

The shift count is the difference between the exponents in registers Rand S. If the exponent 

in register R is greater than the exponent in register S, the machine shifts the coefficient 

left. The shift is to the right if the exponent in register R is less than the exponent in regis

ter S. If register R contains a zero coeffieient, the exponent in register S is transferred to 

register T with an all zero coefficient. Figure 6-1 l shows that the exponent in register S 

exceeds the exponent in register R by 4 (62 - 5E = 4); thus, the machine right-shifts the 

coefficient in register R four positions. 

If a left shift exceeds the number of positions required for normalization, the machine sets 

the result to indefinite and sets data flag bit 42 (exponent overflow). If either or both operands 

are indefinite or machine zero, the machine also· sets the result to indefinite. ·However, in 

this case, data flag bit 46 (indefinite result) is set and data flag bit 42 (exponent overflow) is 
not set. 

2A ENTER LENGTH OF (R) WITH I (16 BITS) 

J (~) R T I 
(16 BllS) 

This instruction transfe·rs operand I contained in the rightmost 16 bits of the instruction 

word to the leftmost 16 bits of the 64-bit register specified by R. The rightmost 48 bits 

of register R are left unchanged. 

28 ADD TO LENGTH HELD 

0 78 1516 2324 31 
F R s T 

(28) (SOURCE 1) (SOURCE 2) (DESTlNATlCJti 

This instruction adds bits 0 through 15 of the 64-bit register specified by R to bits 48 through 

63 of 64-bit register S and stores the result in bits 0 through 15 of register T. Overflow is 

ignored if it occurs. Bits 16 through 63 of register R are transferred to bits 16 through 63 

of register T. 

6-48 60256010 01 

0 

0 

ff'' 

'.Ji,~;V 

' ( -" 
-+7 

f. 

(-~ ... · .. 
i 



0 
0 

0 

0 
0 
0 

0 

0 

0 

0 

0 
0 

0 

0 
0 
0 

0 
0 
0 
0 60256010 01 

0 

0 34 71 1112 1511 1120 2324 2721 31 

0101 1110 IJO 11 0000 0110 1110 11 I I 1110 
( 5) ( E) Ice l ( 0) 

l 
( 6) (E) ( F) ( E) 

~\[ J 

EXPONENT \_ 
y 

COEFFICIENT 

-SIGN BIT ( ) 

0 3 4 78 11 12 . 10 16 19 20 23 24 27 21 31 

'--v----1--~~-----~~~~-

EXPONENT COEFFICIENT 
(THESE BITS HAVE NO EFFECT ON 

ORIGIN OPERAND I (R) 
(INITIAL VALUE) 

ORIGIN OPERAND 2 (S) 

THE EXECUTION OF THE INSTRUCTION) 

0 34 78 1112 15 II 19 20 U 24 27 H 31 
T 

0110 0010 ll I 11 I 0 II 0000 0110 1110 I I I I 
( 6) ( 2) l(F) (8) (0) (6) ( E ) ( F ). 

'---v---' '--------r--------
EXPONENT COEFFICIENT 

NOTE: NUMBERS IN PARENTHESES REPRESENT 
HEXADECIMAL EQUIVALENTS OF BINARY GROUPS 

RESULT OPERAND (T) 
(FINAL VALUE) 

Figure 6-11. Example of Register Content for an Adjust 
Exponent of (R) Per (S) to (T) 

6-49 



BRANCH INSTRUCTIONS 

The branch instructions compare or examine .single bits, a 48-bit index, 32-bit floating

point operands, or 64-bit operands. The results of the comparison or examination de

termine whether the program continues with the next sequential instruction (branch con

dition not met) or branches to a different instruction sequence (branch condition met). 

The different instruction sequence may consist of a single instruction or a series of 

instructions beginning at the branch address specified in the branch instruction format. 

A special branch instruction provides for entering or leaving the monitor program. 

20/24 BRANCH IF (R) = (S) (32/ 64 BIT FP) 

21/25 BRANCH IF (R) '#. (S) (32/ 64 BIT FP) 

22/26 BRANCH IF (R) ~ (S) (32/ 64 BIT FP) 

23/27 BRANCH lF (R) < (S) (32/ 64 BIT FP) 

0 7 8 15 16 23 24 
F R s T 

(20 - 27) (ORIGIN (ORIGIN (BRANCH 
OPERAND 1} OPERAND 2} ADDRESS} 

3J 

These instructions perform the indicated comparison of the 32-bit (64-bit for the 24 through 

27 function codes) floating•point (FF) operands in the registers designated by R and S. 

If the specified comparison condition is met, the next instruction is read from the branch 

address, contained in the rightmost 48 bits of 64-bit register T. Register T is a 64-bit 

register for the 20 through 27 instruction codes. The byte and bit portions of the address 

(bits 59 through 63) are ignored in the reading of an instruction. If the specified comparison 

condition is not met, the next instruction is read from the next sequential program address. 

The comparison of (R) and (S) is based on the floating point compare rules in appendix B. 

An example of a 22 instruction is also in appendix B. 

If either or both of the compared operands are indefinite, data flag bit 46 is set. 

6-50 60256010 01 

\ 
;, 0 

.. 

0 i 

() 

,F-11>·. 

"'~"Ji 

_/ 

() 



0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

r''. : 
I 

, I 

0 

0 

0 

0 
() 

0 

0 

• • 

2f REGISTER BIT BRANCH AND ALTER 

G DESIGNATOR 

~ 

yy 
G BITS O, I: :J 

BRANCH CONDITION 
G BITS 2, 3: 

BIT AL TERI NG 

s T 

This instruction examines hit 63 of register T as specified by the G designator. A 

branch is made to the address contained in the rightmost 48 bits of register S. The 

branch occurs according to G bits 0 and 1. (table 6-4) .. 

TABLE 6-4. BIT BRANCHING CONDITIONS 

G Designator Branch Conditions 

Bit 0 Bit 1 

0 0 No branch 

0 1 Unconditional branch 

1 0 Branch if object bit = 1 

1 1 Branch if object bit = 0 

After the branch decision has been made and regardless of the decision, the object bit · 

is altered according to G· bits 2 and 3 .(table 6-5 ). , 

TABLE 6-5. BIT ALTERING CONDITIONS 

G Designator Altering Conditions 

Bit 2 Bit 3 

0 0 No altering 

0 1 Toggle the bit 

1 0 Set the bit 1 

1 1 Clear the bit 0 

60256010 01 6-51 



33 DAT A FLAG REGISTER BIT BRANCH AND ALTER 

G 

~ 
0 7 8 15 16 17 18 23 24 31 

F d e T 
(33) (BRANCH 

ADDRESS) ------ \y~~ NUMBER ~F DFBR 
G BITS O, 1: BIT (00-3F) 

BRANCH CONDIT ION . G 8 ITS 5, 6; 

SOURCE OF BRANCH ADDRESS 

G BITS 2, 3: 
BIT ALTERING 

This instruction examines the state of a specified bit in the data flag branch register (DFBR). 

If the designated branch condition is met, the next instruction is read from the half-word, 

address as specified by G designator bits 5 and 6. If the designated branch condition is not 

met, the next instruction is read from the next sequential program address. In either case, 

the state of the DFBR bit is altered as specified by G bits 2 and 3. 

The 6-bit designator I specifies the number of the DFBR bit. The bit numbers range from 

00 through 3F (00 through 63 10). The 2-bit designator denotes the branch condition 

(table 6-6). 

TABLE 6-6. DFBR BIT BRANCH CONDITIONS 

G Designator Branch Condition 

Bit 0 Bit 1 

0 0 No branch 

0 1 Unconditional branch 

1 0 Branch if selected DFBR bit = 1 

1 1 Branch if selected DFBR bit = 0 

After the branch decision is made,, the instruction alters the DFBR ·bit according to G 

designator bits 2 and 3 (table 6-7).. The bit altering occurs regardless 9f the branch 

decision. 

6-52 60256010 01 

() 

0 

0 

0 

/'(""\ 
'\il\.,,_1) 

/(~, 

·,_'° .. ) 

(----,,,\. 
I 

y 

C' 
'I 



0 

0 

0 
0 

0 
0 

0 

0 
0 

0 

C: .i 

0 

0 

0 

0 

0 

0 

0 

• • 

TABLE 6-7. DFBR BIT ALTERING CONDITIONS 

G Designator 

Bit 2 Bit 3 Altering Conditions 

0 

0 

1 

1 

0 No altering 

1 Toggle the bit 

0 Set the bit 1 

1 Clear the bit 

I NOTE I 
Do not attempt to alter bits in the DFBR product 
field since the altering of these bits is only a 
function of the corresponding data flag and flag 
mask bits. 

0 

Since the 33 instruction begins execution without waiting until the machine has completed all 

operations, the data flag bits may set on any minor cycle during execution of this instruction. 

Therefore, the object bit is sampled two minor cycles after the 33 instruction is loaded into 

instruction register 0 (IRO). This sampled object bit is used to control the decision to branch 

and the altering of the actual object bit in the data flag register. Consequently, any data flag 

bits setting after the object bit is sampled will not affect the decision to branch. Also, if 

the sampled object bit is a zero, any data flag bits setting afterwards will not be cleared or 

toggled to a zero. 

The source of the branch address is determined by the state of G designator bits 5 and 6 

(table 6-8). 

TABLE 6-8. DFBR BRANCH ADDRESS SOURCE CONDITIONS 

G Designator 

Bit 5 Bit 6 Branch Address Source Conditions 

0 0 or 1 Register T contains the branch address. 

1 0 
Branch address is formed by addition of the T 
designator, used as a halfword item count, to 

1 1 
the content of the program address register. 

Branch address is formed by the subtraction 
of the T designator, used as a halfword item 
count, from th,e contents of the program address 
register • 

60256010 01 6-53 



3B DATA FLAG REGISTER LOAD/STORE 

F 
(38) 

31 
T 

~ ~ 
NEW STATE 

OF DFB 
OLD STATE 

OF OFB 

This instruction transfers the content of register R to the DFB register. The 3B 

instruction also transmits the previous content of the DFB to the T register. Since 

the DFB is a 64-bit register, both R and T must be 64-bit registers. The R and T 

designators may be equal which exchanges data flag values. 

I NOTE I 
An immediate data nag branch results at the ter
mination of this instruction if the new content of 
the DFB register meets the appropriate branch con
ditions. 

32 BIT BRANCH AND ALTER . 

0 

F 
(32) 

G 

7~16 
d e 

2324 
s T 

tJBJECT BIT {$RANCH 
ADDRESS) ADDRESS) 

y 
G BITS 5, 6: 

31 

--~ G BITS O, 1: 
BfT BRANCHING . . BRANCH ADDRESS SOURCE DESIGNATOR BITS 

G BITS 2, 3: 
BIT ALTER ING 

This instruction reads the word from the address contained in the register designated 

by S and examines the specified object bit. The remaining bits are not used in the 

instruction. If the object bit meets the ~ranch condition specified by- G designator bits 

O and 1, the next instruction is read f.r0m the branch address contained in the T 

register. If the branch condition is not met, the next instruction is read· from the 

next sequential program address. In either case, G designator bits 2 and 3 determine 

the final state of the object bit. Tables 6-9 and 6-10 list the bit branching and altering con

ditions, respectively. Table 6-11 lists branch address source conditions. 

6-54 60256010 01 

0 
() 

0 

0 

14'-~\ 

\~ ... ;:>/' 

(~ .. ' ,j) 



0 

0 

0 

0 

0 

0 
0 

0 
0 

0 

0 
0 

0 
0 

0 
0 
0 
0 
0 
0 

60256010 01 

0 

TABLE 6-9. BIT BRANCHING CONDITIONS 

G Designator 

Bit 0 Bit 1 Branch Conditions 

0 0 No branch 

0 1 Unconditional branch 

1 0 Branch if object bit 

1 1 Branch if object bit 

TABLE 6-10. BIT ALTERING CONDITIONS 

G Designator 

Bit 2 Bit 3 Altering Conditions 

0 

0 

1 

1 

0 No altering 

1 Toggle the bit 

0 Set the bit 1 

1 Clear the bit 0 

I NOTE I 
If G bits o. 2. and 3 = 0, the word containing 
the object bit is not read and the object bit 
is not altered. 

= 

= 

If G ·bit 0 = 1 and G ·bits 2 and 3 = 0, the word 
is read but the object bit is not written. 

1 

0 

TABLE 6-11. BRANCH ADDRESS SOURCE CONDITIONS 

G Designator 

Bit 5 Bit 6 Branch Address Source Conditions 

0 0 or 1 Register T contains the branch address. 

1 0 Branch address is formed by addition of the 
T designator, used as a halfword item count, 
to the contents of the program address register. 

1 1 Branch address is formed by the subtraction 
of the T designator, used as a halfword item 
count, from the contents of the program 
address register. 

6-55 



0 

Figure 6-12 shows an example of the bit branch and alter instruction with assumed 

register content and branch conditions. The object bit is located in bit 7 of byte 3 of 

word iooooo. Since G bit O equals 1 and G bit 1 equals O and the object bit is a 1, · 

a branch takes place to the assumed branch address which is contained in the T 

register as specified by G designator bits 5 and 6. 

71 15 II 25 24 II 
32 INSTRUCTION 

F s T 
( 32) ( 07) ( 1 0) 

BRANCH IF 
OBJECT BIT:a I ~~NCH ADDRESS 

\. BIT ADDRESS TOGGLE OBJECT 
BIT 

S=07 

(000000000400001F) 
0 

0 

0 

3 4 7 I 1112 1516 1920 2!124 2721 3132 5511 3940 4344 4741 5152 HH 5910 11 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0100 0000 0000 0000 0000 0001 1111 REG 07 

34 

BITS NOT USED 
IN ADDRESS 

HALF-WORD ADDRESS BYTE ADDRESS= 3 JY 
BIT ADDRESS =7 ~ 
(000000005000000) T=IO 7. 1112 15 16 It 20 U 24 .2721 31 12 Hll 1940 4144 47 41 5152 115 H 59 60 61 

0000 0000 0000 0000 0000 0000 0000 0000 0000 0101 0000 0000 0000 0000 00000000 REG 10 

~~~~~~~~~~~-~~~~~~~~~~--...--~~~~~~~~~~~~___,~ 

34

BITS NOT USED
IN ADDRESS

HALF-WORD ADDRESS

WORD READ FROM BIT ADDRESS

BITS NOT USED
IN INSTRUCTION
WORD ADDRESS

71 II 12 15 16 19 20 23 24 27 H 31 32 H 31 19 40 43 44 47 41 51 52 H 51 59 10 13

BYTE 0 BYTE I BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 BYTE 7

31
ri

'o• I I

OBJECT BIT

l[_ OBJECT BIT
(AFTER TOGGLING)

Figure 6-12. Example of Bit Branch and Alter Instruction

6-56 60256010 01

0

0)
i

0

0

.<-,"
'-·''

,,,. ---
(

ii(-"'·

"'=-''

C~, .. I .\

I

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0
0

0

0

36

31

35

F
(36, 31

OR 35)

BRANCH AND SET (R) TO NEXT INSTRUCTION

INCREASE (R) AND BRANCH If (R) t 0

DECREASE (R) AND BRANCH If {R) '/; 0

7 8 15 16 23 24 31
R s T

(INDEX) (BASE
ADDRESS}.

36 BRANCH AND SET (R) TO NEXT INSTRUCTION

This instruction first stores the address of the next sequential instruction into register

R. The program then branches to (S) + (T),, where (S) represents an item count (index)

of half-words and (T) specifies the base address. The machine forces bits 0 through

15 of register R to zeros. Bits 59 through 63 are undefined. If the instruction desig

nator R is equal to the designator S, the results of this instruction are undefined.

If S = 0 and R = T, this instruction sets register R to the half-word address of the

next instruction. The program then continues at the next instruction. This method

provides a means of sampling the Program address register.

31 INCREASE (R) AND BRANCH IF (R) F 0

35 DECREASE (R) AND BRANCH IF (R) F 0

This instruction first increments (31 function code) or decrements (35 function code) the

rightmost 48 bits of register R by one. The leftmost 16 bits of register R are not

altered and arithmetic overflow (if it occurs) is ignored.

If the increment/ decrement operation produces zeros in the rightmost 48 bits of R, the

program reads the next sequential instruction. If the rightmost 48 bits of R are not

all zeros, the program branches to (S) + (T). where (S) represents an item count in half

words and (T) specifies the base address.

60256010 01 6-57

09 EXIT FORCE

This instruction provides a means of exchanging program control between a job and monitor

program. For example, if the machine is operating in the job mode, the exit force instruc

tion causes a branch to the beginning address of a portion of the monitor program. Similarly.

in a monitor program, the exit force performs a branch to a job program. The starting

address of the invisible package and register file for 'the job is defined by the content of the

register designated by T and s. respectively. For either type of exchange (job to monitor

or monitor to job). the invisible package and register file for the current job are transferred

to/from central storage. (Refer to section 5 for a more comprehensive descripti6n of

monitor and· job operations.)

JOB TO MONITOR

The following exit force instruction format is an exchange from a job to a monitor program.

The R, S, and T designators are unused and must be zeros. In this case, the instruction

switches the machine to the monitor mode and unconditionally branches to the address speci

fied by the rightmost 48 bits of register 05 in the register file. Register 05 address is an

absolute bit address since the machine was switched to the monitor mode. The monitor

program then proceeds from this beginning address.

R s T r (O~) . 7

MONITOR TO JOB

The following instruction format is an exchange from the monitor to a job program. The

R designator is unused and must be zeros.

f
(09)

6-58 60256010 01

0
0
0
()

0

(,.---..... ... 'Ji

0

0

0

0

0

0

0

0

0

0

0

0

0

(}

!
I

I

'

0

0

0

0

0

0

0

0

•

0

When exchanging from the monitor mode to a job, this instruction loads the registers from

the register file stored in central storage, beginning at the address contained in the register

specified by S. The instruction also loads the invisible package for the applicable job from

central storage, beginning at the address in the register specified by T. The S and T

addresses are absolute bit addresses. Figure 6-13 shows formats of the addresses in

the S and T registers.

In the S register, bits 38 through 63 define the starting address in central storage for

loading the 256
10

words in the register file. The starting address is the same as the

first address of the page and must be on a small page boundary. In a small page starting

address, bits 4 9 through 63 are always zeros. This means that the absolute bit range of the

register file starting address is 0000000
16

through 3FF8000 16 . Since the register file is

loaded from central storage in sequential 64-bit words, the bit, byte, and half-word bits of

the address are not advanced. Thus, from an assumed starting address of XXOOOOO 16, the

sequence of loading the register file advances the address of a value of XX3FC0 16• If either

the S designator or the content of register S is equal to zero, the job's register file and the

monitor's register file are identical.

In the T register, bits 3 8 through 63 define the starting address in central storage for loading

the invisible package into 16 sequential word locations.

S REGISTER

15 16

MUST BE o's

T REGISTER

36 37 4149

(12 BITS)

DEFINES FIRST
ADDRESS OF
REGISTER
FILE

MUST BE o's

57 51596061 13

WORD
LOCATION
IN PAGE

I I

MUST BE ·o's
I A \

0 15 16 36 37 H 54 57158596061 63

MUST BE o's DEFINES FIRST
ADDRESS OF
INVISIBLE

PACKAGE

. ·'---v-1J · [yl ~
WORD BYTE
.LOCATION HALF
IN WORD
INVISIBLE
PACKAGE

Figure 6-13. Address Formats for Exit Force Instruction (Monitor to Job)

60256010 01 6-59

BO COMPARE INTEGER, BRANCH IF (A) + (X) = (Z)

Bl COMPARE INTEGER, BRANCH IF (A) + (X) I- (Z)

B2 COMPARE INTEGER, BRANCH IF (A) + (X) ~ (Z)

B3 COMPARE INTEGER, BRANCH IF (A) + (X) < (Z)

B4 COMPARE INTEGER, BRANCH IF (A) + (X) S (Z)

BS COMPARE INTEGER, BRANCH IF (A) + (X) > (Z)

0

G
G

0

G
(SU BFUNCT I ON}

A

7 's 15' 16 23 24 31 32 39 40 47 48 55 56 63
B

F x c
(BO-B5) (REG I STER)

A
(REG I STER)

y
(INDEX

REGISTER

(BASE ADRS Z
REGISTER OR (REGISTER) (REG I STER)

BIT O_j
BIT 3 I~ BRANCH CONTROL (G BITS 5, 6) ~GBIT4

INDEX

For these instructions, G bit 1 and 2 are O. If G bit 0 is cleared (0), registers A, X, C,

and Z are 64 bits. If G bit 0 is set (l)_, registers A, X, C_, and Z are 32 bits. Registers

B and Y are 64 bits.

If G bit 0 is 0, the sum of the rightmost 48-bit integers from registers A and X is formed,

ignoring overflow. The sum is compared to the rightmost 48 bits of register Z, according

to the specified branch condition. The original content of register Z is read before the sum

of registers A and X is stored in the rightmost 48 bits of register C. The leftmost 16 bits

of register A are copied into the leftmost bits of register C. Register C contains the

following:

LEFTMOST 16 BITS
FROM REGISTER A

1516

SUM OF THE RIGHTMOST 48 BITS FROM REGISTERS
A ANO X

63

Then the sum of the rightmost 48 bits of registers A and X is compared to register Z, based

on the following G bit 3 and 4 values:

G bit 3 = 0

G bit 3 1

G bit 4 = 0

G bit 4 = 1

The integers compared are the 48-bit result of registers A and X

and the rightmost 48 bits read from register Z.

The integers compared are the 64 bits stored in register C and the

64 bits read from register z.
and Bl instructions only.

This compare is defined for the BO

The integers compared are interpreted as signed two's complement

numbers.

The integers compared are interpreted as unsigned numbers •

• 6-60 60256010 02

U
....

i

0

0

,"f~_,." Iv;

(1--~, .,, ..

0
0
0

0
0
0
0
0
0
0

U: i

I
i

0
0
0
0

0

0
0
0
0

•

If G bit 0 is 1, the sum of the rightmost 24-bit integers from registers A and X is formed,

ignoring overflow. The sum is compared to the rightmost 2 4 bits of register Z,, according

to the specified branch condition. The original content of register Z is read before the

sum of registers A and X is stored in the rightmost 24 bits of register C. The leftmost 8

bits of register A are copied into the leftmost bits of register C. Register C contains the

following:

0 78
LEFTMOST
8 BITS FROM
REGISTER A

SUM OF THE RIGHTMOST
24 BITS FROM REGISTERS

A AND X

31

Then the sum of the rightmost 24 bits of registers A and X is compared to register Z,

based on the following G bit 3 and 4 values:

G bit 3 = 0

G bit 3 = 1

G bit 4 = 0

G bit 4 1

The integers compared are the 24-bit result of registers A and X

and the rightmost 24 bits read from register Z.

Undefined.

The integers compared are interpreted as unsigned two's complement

numbers.

The integers compared are interpreted as signed numbers.

If the specified branch condition is met, the program address branches to the address

specified by the branch control bits in the G designator (table 6-12). In all cases,, the

index is an item count in halfwords that is left-shifted five places before the addition or

subtraction.

60256010 02 6-60. 1/6-60.2 •

()

0

0
()

()

()

(_)

0

0
0

0

0 TABLE 6-12. INDEX BRANCH INSTRUCTION DESIGNATORS

G Designator
Bit State Branch Address

Bit 5 = 0 Branch to address formed by adding the item count in 0
register Y to the base address in register B. The item

0 count is left-shifted five places before the addition.
Overflow, if any, is ignored. If the Y or B designator
is equal to the C designator, the instruction is undefined. I

Bit 5 = 1 Branch according to the state of G designator bit 6 as
follows: 0

Bit 6 = 0 Branch to address formed by adding 16-bit item count
designators Y and B (bits 32 through ·47) to the address of
this instruction. The item count is left-shifted five places 0
before addition.

Bit 6 = 1 Branch to address formed by subtracting 16-bit item count
designators Y and B (bits 32 through 47) to the address of 0
this instruction. The item count is left-shifted five places

0
before subtraction.

c
If the branch condition is not met, the program reads the next sequential instruction.

If one of the following conditions occur, the operation becomes undefined.

• G bit 0 is 1 and G bit 3 is 1

• G bit 3 is 1 for instructions B2, B3, B4, and B5

0 • G bit 5 is 0 and G bit 6 is 1

0 Table 6-13 relates integer ranges to the state of G bit 4.

0 TABLE 6-13. INTEGER RANGES

48-bit hexadecimal quantities in descending order from the
largest to the smallest, from top to bottom. 0
G bit 4 = 0 G bit 4 = 1

Largest 7F ------ FF FF ------ FF

I
7F ------ FE FF ------ FE
00 ---·--·- 01 80 ------ 01
00 ------ 00 80 ------ 00
FF ------ FF 7F ------ FF

0

0
0

Smallest 80 ------ 01 00 ------ 01
80 ------ 00 00 ------ 00

• • 60256010 02 6-61

•

BO COMPARE FP, BRANCH IF (A) = (X)

Bl COMPARE FP, BRANCH IF (A) 1 # (X)

B2 ·coMPARE FP, BRANCH IF (A) ~ (X)

B3 COMPARE FP,- BRANCH IF (A) < (X)

B4 COMPARE FP, BRANCH IF (A) S (X)

BS COMPARE FP, BRANCH IF (A) > (X)

G
(SU BFUNCT I ON}

A

0 1 1a
F

(B0-85)

23 24 31 32 39 40

x
(REG I STER)

A
(REGISTER)

y
(INDEX

REGISTER

B
(BASE ADRS
REGISTER OR

INDEX
'-y.J

'----,BRANCH CONTROL (G BITS 5, 6)
G BI.T

If G bit 1 is 1 and G bit 2 is 0,, these instructions compare the two floating-point

operands from registers A and X according to the floating-point compare rule in

appendix B. If G bit 0 is clear (0),, the registers contain 64 bits. If G bit 0 is set

(1),, the registers contain 32 bits. Registers B and Y are always 64 bits.

If the specified branch condition is met,, the program address branches to the address

specified by the branch control bits in the G designator (table 6-14). In all cases,, the

index is an item count in halfwords that is left-shifted five places before the addition

or subtraction.

6-62

TABLE 6-14. INDEX BRANCH INSTRUCTION DESIGNATORS

G Designator
Bit State

Bit 5 = 0

Bit 5 = 1

Bit 6 = 0

Bit 6 = 1

Branch Address

Branch to address formed by adding the halfwords item count
in register Y to the base address in register B. The item
count is left-shifted five places before the addition. Over
flow .. if any,, is ignored. If the B or Y designator is equal
to the C designator,, the instruction is undefined.

Branch according to the state 9f G designator bit 6 as
follows:

Branch to address formed by adding 16-bit item count
designators Y and B (bits 32 through 47) to the address of
this instruction. The item count is left-shifted five places
before addition. ·

Branch to address formed by subtracting 16-bit item count
designators Y and B (bits 32 through 47) to the address of
this instruction. The item count is left-shifted five places
before subtraction~

60256010 02

0

0

0

0
()

0

·O'·l I ,•

(I G
-°)\

0
01

0

0

0
0
0
0

0
0

0

0

n u
0
0

0
0
0

0
0
0

0

•

If the branch condition is not met, the program reads the next sequential instruction.

If one of the following conditions occur, the operation becomes undefined.

• G bit 3=1, G bit 4=1, or G bit 7=1

• Designator C and/ or Z not equal to O.

• G bit 5=0 and G bit 6=1

The applicable data flag bit 'is 46 (indefinite result).

60256010 01 6-63

86 BRANCH TO IMMEDIATE ADDRESS (R) + I (48 BITS)

0 7 8 15 16

0

(~) I (IM~X) I I
(BASE ADDRESS)

This instruction branches unconditionally to the address formed by the sum of the right

most 48 bits of register R as the index and I as the base address. The index repre

sents an item count of half-words which is shifted left five positions before being added

to the base address. Overflow, if any, is ignored.

The instruction makes a direct branch to the base address if the R designator is zero

or if the rightmost 43 bits of register R are zeros.

VECTOR INSTRUCTIONS

The vector instructions perform operations on ordered scalars. Generally, the vector

instructions read the scalars, which are in the form of 32-bit or 64-bit floating point

operands, from consecutive storage locations over a specified address range (field).

These instructions perform the designated operation on each set of operands and store

the results in consecutive addresses of a result field, beginning at a specified starting

address. Thus, a single vector instruction can perform operations on two source fields

of vector operands and automatically store the results in a result field of storage.

INSTRUCTION FORMATS .

All vector instructions use the same general instruction format (figure 6-14).

Table 6-15 lists each of the 8-bit designators in the vector instructions and gives a

brief description of the function.

7 8 15 16 21 24 II !2 1940 47 48 ea

F G x A y B z c
(8X,9X) (OFFSET ~FIELD .LENGTH. (OFFSET (FIELD 'LENGTH (CV BASE (FIELD LENGTH

(SUB FUNCTION) 8 8 a
FORA } BASE ADDRESS} FOR BJ BASE ADDRESS ADDRESS) BASE ADDRESS)

C+I
!<OFFSET FOR

NOTE: CV DENOTES CONTROL VECTOR L :_a~>-

Figure 6-14. General Vector Instruction Format

6-64
60256010 01

()

0

0
0

;f~\
\"<ii. • ..• :i

·"\.

0

II'~,

~--"!

()

0

0

0

0

0

0

0

0

0

0

0
.
I

I

I

j

0

0

0

0

0

0

0

0

• •

TABLE 6-15. VECTOR INSTRUCTION DESIGNATORS

Designator Function

F Function code

G Subfunction code

x. y Specify registers that hold address offsets for corresponding
source operand fields

A, B Specify registers that hold base addresses and field lengths for
source operand fields

z Specifies register that contains the base address of the control
vector (CV)

c Specifies register that contains the base address and field length
of the result field

If C+l is used by the instruction, C must be an even number
since the machine forms C+t by forcing the rightmost bit of
C to a 1. If the C designator specifies an odd-numbered register,
the results of the instruction become undefined.

C+l Specifies register that holds off set for the control vector and the
result field; C+l always references an odd register

SUBFUNCTION BITS •

Table 6-16 lists the subfunction bits and their general usage. Table s~ 17 gives the

sign control subfunction bits.

If the Z designator is zero, no control vector is used; thus, G-bit 1 becomes undefined.

If G bit 3 and/ or G .bit· 4 : = 1, the A and/ or B designator denotes a constant which is

used as each element of the respective vector field. The instruction ignores the asso

ciated offsets in this case. The registers specified by A and B, respectively, contain

these constants. Registers A and B are always 64-bit registers except when G bits 3 and 4

indicate a broadcast. When broadcasting, the size of registers A and B track the size speci

fied by G bit 0 (refer to table 6-16).

Appendix C gives a composite listing of the G designator bits usage according to function

code.

60256010 01 6-65

If bit 3 of G, 4 of G, or both are ones, then the A, B, or both source fields are

constants used as each element of the respective vect0r stream and the associated

offsets are ignored. These constants are found in the registers specified by A and B,

respectively. If bit 3, 4, or both are ones and bit 0 of G is a one, register A, B,

or both are 32-bit registers. For all other cases, registers A and B are 64-bit registers.

TABLE 6-16. SUBFUNCTION BITS

Bit
No. State Su bf unction

0 0 64-bit operands (words)

1 32-bit operands (half-words)

1 0 Control vector operates on ones

1 Control vector operates on zeros

2 0 No offset for result field and control vector

1 Off set for result field and control vector

3 0 Normal source vectors A

1 Broadcast repeated (A)

4 0 Normal source vectors B

1 Broadcast repeated (B)

5 x

6 x Sign control (ref er to table 6-17)

7 x

6-66 60256010 01

0

0

0

'("\ I ,

\ ~'"

/c-~

\1i. __ j-·

.c.i
c '1 ,

,("''· ., __ _,;

0 -
()

0

0

0
0

0
0
0

0
o-
0

0
0
0
0

0

0

0

0
0

0

0

Bit 5

0

0

1

1

x

x

TABLE 6-1 7. SIGN CONTROL SUBFUNCTION BITS

Bit 6 Bit 7 Control Operation

0

1

0

1

x

x

x

x

x

x

0

1

The operands from the A stream are used in the
normal manner.

The coefficients of the operands from the A stream
are complemented before they are used.

The magnitude of the operands from the A stream is
used.

The coefficients of all positive operands from the
A stream are made negative before they are used.
Negative operands are not altered.

The operands from the B stream are used in the
normal manner.

The magnitude of the coefficients of the operands
from the B stream is used.

I NOTE I
1. X denotes that the bit can be either a 0 or a 1.

2. Any required complementing is two's complement.
Complementing is performed before the operand is
used in the specified arithmetic operation. If the
complement of the coefficient 8000 0000 0000 is
required, the operand is used as · 4000 0000 0000
with 1 added to the exponent.

3. Any necessary significance calculation is performed before the
previous complementing is performed.

FIELD LENGTHS, BASE ADDRESS, AND OFFSETS

Figures. 6-15 and 6-16 show the formats of the register contents for the field lengths.

base addresses, and offsets. The computer allows 16-bit field lengths to be specified
16

and assumes them to be positive. The field lengths are in the range of 0 through 2 -1

before any offset adjustments. The offsets are taken from a 48-bit register and must

have at least 32 identical sign bits. The offsets are in the range of -216 .to 216-1.

The operation of subtracting the offset from the field length must result in a field length

which is positive and less than 216. If the resulting vector length is not positive and less

than 2 16• it is treated as a zero vector length. The instruction obtains· the beginning ad

dress by adding the offset (including sign extension) to the base address (figures 6-16 and.

6-19). In the (offset +base address) addition, the offset is first shifted left five (half-words)

or six (words) places since the bit and byte bits are not used in the vector operand field

address.

60256010 01
6-67

A O.R B

0 ••
[. FIELD LENGTH BASE ADDRESS

)(OR Y
0 47 48 ..
- 32 BITS FOR SIGN EXTENSION OFFSET

Figure 6-15. Operand Field Length, Base Address. and Offset Formats

The C and C+l registers are identical in format to the A or B and X or Y content.

respectively. If bit 2 specifies that vector field C is to be offset. register C+l con

tains the offs et.

FIELD
LENGTH

CONTROL VECTOR .

32-BIT OR 64-BIT OPERAND
"· _") BASE ADDRESS

~ l POSITIVE OFFSET
L--------------------------------------1

BEGINNING ADDRESS
(BASE ADDRESS + OFFSET)

VECTOR FIELD
> (USED PORTION)

Figure 6-16 ·~ Vector Field Address Format

When the instruction specifies a control vector (Z designator I= O), a single bit from the

control vector controls the storing of each element in the result field. When a bit from the

control vector prohibits the storing of a result element, the instruction does not alter the

previous content of the corresponding storage address. Thus, the nth bit read from the

control vector prohibits or allows the storing of the nth result in the result vector field.

6-68 60256010 01

0

0

0

0
()

()

()

/,r· '"

\~c.J}

/(--,,,\,
\l_,j

0

0
()

()

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bit 1 of the G designator selects whether a 0 or a 1 control vector bit allows the

storing of the result (table 6-11). If bit 1 of the G designator is a O or a 1, the in

structfon stores the nth result if the nth bit of the control vector is a 1 or a 0, respec

tively.

The rightmost 48 bits of the register designated by Z contains the base address of the

control vector (figure. 6-17). The control vector uses the same field length as result

vector C.

The addition of the offset and base address provides the starting bit address of the

control vector. Since offsets are item counts, the result vector and control vector use

the same offset; however, the control vector offset represents a bit offset.

·-· BASE ADDRESS

Figure 6·17,. Control Vector Base Address Format (Z)

VECTOR INSTRUCTION TERMINATION

Vector instructions terminate when the result vector field is exhausted.

1. Exhausting a vector which has an offset.

A vector is deemed exhausted prior to the first operand fetch if the result

of subtracting the offset from the field length is zero or negative.

For cases of zero field length, the resulting vector length used is the

rightmost 16 bits of the two's complement of the offset. If this 16-bit

quantity is zero or negative, the vector is deemed exhausted prior to the

first operand fetch.

A vector is exhausted when the result of subtracting both the offset and the

number of operands encountered thus far, from the field length, is zero.

2. Exhausting a vector which has no offset and exhausting other data fields or

data strings.

The string, field, ,or vector is deemed exhausted prior to the .first operand

fetch if its length is zero. These strings, fields, and vectors are exhausted

when the result of subtracting the number of elements encountered thus far

from the field length is zero.

t Appendix C provides a complete listing of the various vector instruction field conditions
and the resulting termination conditions.

H

60256010 01 6-69

EXAMPLE OF VECTOR INSTRUCTION OPERATION

Figure 6-18 shows the register content and .figure 6-19 shows the resulting vector address

fields. of an assumed add U,, A+B-C (80) vector· instruction. Although an 80 instruction is

used,, the general sequence of operations is the same for all vector instructions.

The G designator bits used in the example specify the following conditions for the operation

of the instruction.

G-Designator Bit

0 = ·1

1 = ·o

2 = 1

3 = 0

4= 0

5= 0

6 = 0

7= 0

}

Condition

32-bit, floating point operands

Control vector operates on ones (ones in control

vector enable storage of corresponding control

vector)

Result vector and control vector fields are

offset (C+l designator is used)

Normal vector source stream A

Normal vector source stream B

Use the operands from the A stream in the normal

manner

Use the operands from the B stream in the normal

manner

The X, A, Y, B, Z, and C register designator numbers are shown in parentheses. Thus,

register 10 contains the offset for vector field A, register 11 contains the base address for

vector field A, etc.

Since the bit and byte address bits are not used in the vector field addresses,, successive

half-word addresses are shown. Thus,, incrementing address 1000016 by a half-word count

gives 1002016 as the next successive address.

With the A vector offset equal to +4 and the B vector offset equal to -4 (figures 6-18 and

6-19),, the first vector add U, A+B-C operation adds the A and B operands from the re

spective addresses 1008016 and 1FF8016• The result of the first add operation does not

store,, because bit 7 of the addressed control vector field is a zero. Successive add opera

tions add successive A and B operands,, storing the results only when a corresponding one

appears in the control vector.

6-70 60256010 01

0
()

0

0
()

()

!'~\
\il . .-P

'-.

_,.,,---""
.\ll,.~,,

(~\
.I

0

0

0

0

0

0

0

0

0

0

0

0
0

0 ,
!

0

0

0

0

0

0

0

•

F
(80)

S4

71

71

15"

G

INSTRUCTION FORMAT

x
(10)

23 24 SI ll2

A
(11 l

INDICATES USE OF
32-BIT OPERANDS

{ x = 10)

y
(12)

H 40

B
(13)

47 41

z
(14)

llH

c
(16)

C + I
(17)

1112 1116 1120 2524 2"tH SIU HH 5140 4S44 4741 5152 51551 5910 I!
~"7~'77''77:'7F'.'777'7777Y7'

0000 0000 0000 0000 0000 0000 0000 0000 00000000000001 00

32 SIGN BITS OFFSET FOR A

(A= 11 l
S4 71 1112 1516 1920 2S24 2721 SIS2 HSI 1940 4S44 4741 1152 11551 1910 IS

IO'li---i---+--~:>11 1 o o·o o oo o o o o o o o o oo o o o o o o oo o o ooo o o o o 1 o o o o oo oo oo o:o o o o o

0

0

0

FIELD LENGTH BASE ADDRESS BIT
ADDRESS
NOT USED (y = 12)

54 7 I II 12 1516 1920 2524 27 28 5152 SSH 3940 4S44 4741 51 52 H 56 H 60 15

I I I I I I I I I II I II II I I I I I I II I I I I II 0 0

~----------~~----------J'------·r------'
32 SIGN BITS OFFSET FOR 8

{ B= 131
S4 71 1112 15 II 19 20 25 24 27 21 31 32 31 H H 40 4S 44 47 41 II 52 SI II 1910 15

FIELD LENGTH BASE ADDRESS

{ z = 141
S4 71 1112 1511 1910 2S24 2721 3132 HH 5940 4S44 4741 5152 5556 5960 15

BASE ADDRESS

c = 16 I

54 7 I 11 12 15 16 19 20 25 24 21 21 SI 32 35 36 H 40 45 44 47 48 51 52 51 56 19 10 IS

104:---+--+--·-.;o() I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 ~ 0 0 0 0

FIELD LENGTH BASE ADDRESS

(C +I = 17}

0 34 7 .8 11 12 1516 19 20 23 24 27 28 SI 32 35 36 39 40 45 44 47 48 5152 5556 59 60 13

1()1;:---i---+----t--~IO 0 00 000 0 0000 0 000 00 00 0 000 0 000 0 0 00 0000 0000 0000 00 I I

32 SIGN BITS OFFSET FOR Z ANO C

Figure 6-18. Vector Instruction Example of Register Content·
and Instruction Format

60256010 01 6-71

6-72

ADDRESS

10000

10020

10040

10060

10080

I OOAO

IOOCO

IOOEO

10100

10120

10140

10160

IFF80

IFFAO

IFFCO

IFFEO

20000

20020

20040

20060

20080

20 OAO

200CO

200EO

0

A VECTOR
SOURCE FIELD

OPERANDS

Ao
Al

A2

A3

A4

A5

A6

A7

Aa

Ag

A10

A11

B VECTOR
SOURCE FIELD

o OPERANDS

9_4

8_3

8_2

B-1

Bo
a,
82

83

84

85

B6

87

C VECTOR
RESULT Fl ELD

31

31

BASE ADDRESS

+4 OFis ET

t
STARTING ADDRESS

STARTING

(

FIELD
LENGTH

NO OFFSET)

FIEL D
LENG

(WITH OFF
TH
SET}

ADDRESS l
-4 OFFSE T

1
BASE ADDRESS

FIELD
LENGTH

FIELD
LENGTH

(WIT H OFFSET)

(NO OFFSET)

t

OPERANDS BEFORE OPERANDS OPERANDS AFTER
ADD OPERATION -o--r-"---'1----. r-"---'I 31 ADO OPERATION --~--

Co Co BASE ADDRESS 40000

40020 c, c, +3 OFFSET

C2 C2

c3 C3 STARTING

C4 A5+ 8_3

C5 C5

ADDR ESS FIELD
LENGTH

(NO OFFSET)
FIELD
LENGTH

40040

40060

400 eo

400AO

400CO

400EO

c6 A7 +e_ 1 (WITH OFFSET}

C7 Aa+Bo

Z CONTROL VECTOR
FIELD

0 I 2 3 4 !I G 7 8 9 10 II

30 O O O lxlx!xlxj. lo! 1lol1lol1I1 I\
BASE ADDRESS f t BASE ADDRESS 30007

30004 ~ WITH OFFSET
+3 OFFSET

Figure 6-19. Vector Address Fields for
Vector Instruction Example

60256010 01

0

0

0

0
(,)

0

(~,,.--·\

IJ,,_.,;

,,, .. "'
:;'-.JI/

:!'-
\1.1, _:

""-'-.,_:;i--

c
o~

0

0

0

0

0

0

0

0

0

0

r u
0

0
0

0

0
0
0
0
0
0

80 ADD U; A+ B•C
81 ADD l; A + B-+C
82 _ADD N; A + B •c
84 SUB U; A - B,..C
85 SUB l; A - B..,.C

86 SUB N; A - s~c

88 MPV U; A• B'+C

S9 MPV l; A• B..,C

SB MPV S; A• B..,.C

SC DIV U; A/B+C

SF DIV. S; A/B..,C

0 23 24 31 32 39 40 47 48 55 56 63
F x A y B z c

(80 - 8F) (OFFSET (FIELD LG {OFFSET (FIELD LG {C V BASE (FIELD LG
FOR A) & BASE ADRS) FOR B) & BASE ADRS ADRS) & BASE ADRS

I

BITO:__Jl
YL.vJ c + 1

1(0FFSET I LGBITS 5,6,7: I FOR C & Z) I G
0
I

G

= 64 BIT OPERAND
= 32 BIT OPERAND

BIT 1: 1
-0- CONTROL VECTOR

OPERATES ON I'S
I =CONTROL VECTOR

OPERATES ON O'S

SIGN CONTROL

G BITS 3,4
BROADCAST

G BIT 2.
O= DO NOT OFFSET RESULT FIELD
I= OFFSET RESULT FlELD

L _____ J

These instructions perform the indicated fioating point 't arithmetic operations on the

elements of vector fields A and B. The instructions store the result elements in

vector field C. · All of the vector elements are in the form of 32-bit or 64-bit floating-

point operands. The u. L, N, and S designators specify the upper, lower, normal-
ized upper, or significant results, respectively.

Applicable data nag bits are 41 (fioating point divide fault), 42 (exponent overfiow), 43
.(result machine zero),: and 46 (indefinite result).

t Appendix B describes the floating point arithmetic operations.

60256010 01
6-73

83 ADD A; A + .B+C
87 SUB A; A -8...,.C

G
~

0 7 8 1516
F

(83 & 87)
x

(OFFSET
FOR A)

23 24 31 32
A

(FIELD LG
BASE ADRS)

y

{OFFSET
FOR B)

39 40 47 48 55 56
B

{FIELD LG
& BASE ADRS

z
{C V BASE
ADDRESS)

63

. _J. tLG BITS 5,4

+ I
I {OFFSET I .

~~o~ :_ ~ :_~ BROADCAST
G BIT r G BIT 2
CONTROL VECTOR OFFSET

These instructions add/subtract bits 16 through 63 of the B vector elements to/from bits

16 through 63 of the A vector elements (figure 6-20). The instructions store the re-

sults in bits 16 through 63 of the C vector elements. Bits 16 through 63 of the source

vector elements are treated as 48-bit .. positive integer~.· Arithmetic overflow is ignored

if it occurs.

The instructions transmit bits 0 through 15 of the A ·vector elements to corresponding

portions of the C vector elements. As shown in the previous instruction format .. bit 0

of the G designator must be zero since o~y 64-bit operands are used.

0 S 4 7 8 II 12 II II II 20

I 0 I 0 I 0 I c I 0
TRANSFERRED DIRECTLY

TO C VECTOR
, ELEMENT (BITS 0-15)

0

A VECTOR ELEMENT

ZS 24 27 H SI SI SI H SI 40 4S 44 47 48 II II II II 11 10

0 0
I 5 I c I 0 I 0 I 0 I 9 I F

ADDED TO B VECTOR EL~MENT
B VECTOR ELEMENT

0 s 4 7 8 II 12 II II •• ao II 14 27 H II 12 SI H H 40 41 44 47 48 II 12 II II H 10

0 01413101 olo lo lol olol ol 0 0

4

0

0 S 4 7 • 11 12 II II .. 20

C VECTOR RESULT ELEMENT
21 24 27 H SI 12 II H H 40 41 44 47 48 1112 llR 1910 H

0 0 c 0 0 0 0 5 c 0 0

Figure 6-20. Example of an Add A; A + B - C Instruction

6-74 60256010 01

0

0

0
()

0

0

()

()

,["'
~j

,{~

'",)

0

0 . .

()

0

0
0

0

0

0

0
0
0
0

(J'
k;,·.

'
I

i

0
0
0
0

0
0

0
0
0

•

98 TRANSMIT A ~c

99 ABSOLUTE A-+ C

91 FLOOR A_.C

92 CEILING A ~c

9 A EXPONENT OF A -.c
90 TRUNCATE A.-C

G

0 7~16 23 24
"'"",.,.....~~~X------r--~~A~---~~""""1""""-

((FIELD

55 56 63
z c

(C V BASE (FIELD LG OFFSET LENGTH &
FOR A) BASE ADRS ADRS) BASE ADRS)

G BIT o: ____/
O= 64-BIT OPERAND
I= 32-BIT OPERAND

G BIT 3:
BROADCAST

G BIT 2:
0 = DO NOT OFFSET RESULT FIELD
I = OFFSET RESULT FIELD

G BIT 1:
0 = CONTROL VECTOR OPERATES ON I'S
I= CONTROL VECTOR OPERATES ON O'S

98 TRANSMIT A - C

I C + 1 I

I (OFFSET :

L ::o~ ~ ~!~

This instruction transmits each element of the source field A to successive elements of

result field C throughout the modified field length.

99 ABSOLUTE A - C

This instruction transmits the absolute value of each element of the source field A to

successive elements of result field C throughout the modified field length. All vector

elements are 32- or 64-bit,, floating-point operands. If the coefficient of the source

operand is positive,, the element is transmitted directly to the result vector field; if

the coefficient is negative, the coefficient is complemented before transmission.

Applicable data flag bits are 42 (exponent overflow). 43 (result machine zero). and 46

(indefinite result).

91 FLOOR A - C

This instruction converts each floating point element of source field A to the nearest integer

less than or equal to it. The resulting integers are transmitted to corresponding elements

of result field C throughout the modified field length. The resulting integer is always an un

normalized, floating point number with a positive exponent.

If the exponent of the source element is positive (greater than or equal to zero). the instruction

transmits the element directly to the result field. If the exponent of the source element is

negative .. the instruction right-shifts the coefficient end-off and increases the exponent by one

for each position shifted until the exponent becomes zero. Sign bits are extended on the left

during the shift. The instruction then transmits the shifted coefficient with zero exponent to

the corresponding element of result field C.

60256010 01 6-75

The Y and B designators and G bits 4 through 7 are unused and must be zeros.

If zero is used as a source element,, the instruction transmits all zeros as the

corresponding result element.

Figure 6-21 shows an example of a floor A - C (91) operation with one assumed

·source vector element. Since the exponent of the source element is negative; the

instruction right-shifts the coefficient three places and increments the exponent plus

three. The sign bits are extended on the left. The result element becomes a minus

one. Thus, the floor A - C (91) instruction provides a means of converting positive

fractions to zero and negative fractions to a minus one.

The applicable data flag bit is 46 (indefinite result).

0 3 4 7. II ll 15 lS 19 20 23 24 27 21 31

I
1
1
1 I 1,1 I I I I 01 I II I II I I I I I I I I 11 I I I I I 0

I I

J 1\l J v l
EXPONENT

LEXPONENT
SIGN BIT

0 78

L

y

COEFFICIENT

COEFFICIENT
SIGN BIT

1112 IS 16 19 20 23 24 . 27 28 31

o;o 0 0 0 0 0 0 I ~I 0
I I L~

~---'------""----L.----..,..._ __ _._ __ _._ __ _._ __ ___.-Y-

A SOURCE VECTOR
ELEMENT

(FD FFFFFE)
v~
-3 "-2

C RESULT VECTOR
ELEMENT

'-----v---1~
EXPONENT SIGN

BITS SHIFTED
END OFF

(00 FFFFFF)
y '---y--.J

INCREMENTED BtTS
TO o· EXTENDED

(-3+3=0) COEFFICIENT SHIFTED
RIGHT 3 POSITIONS

0 -I

Figure 6-21. Example of Floor A - C Instruction with Negative Exponent

6-76 60256010 01

0

0

0

0

0

0

0
()
;'f'"'-\

\,LJ~/

~-··-....,

/' .

\,_'"··-"''

(<·---,,.\

'~c •. ..>'I

0

0

0

0
0

0
0

0
0

0

0

0

0

G
0

0

0
0
0
0

0

• •

92 CEILING A - C

This· instruction converts each floating point element of source field A to the nearest

integer greater than or equal to it. The resulting integers are transmitted to corre

sponding elements of result field C throughout the modified field length. The resulting

integer is always an unnormalized floating-point number with a positive exponent.

If the exponent of the source element is positive, the instruction transmits the element

directly to the result field. If the exponent of the source element is negative, the

instruction right-shifts the two's complement of the coefficient end-off and increases the

exponent by one for each position shifted until the exponent becomes zero. Sign bits

are extended on the left during the shift. The instruction then recomplements the

shifted coefficient and transmits it with zero exponent to the corresponding element of

the result field.

The Y and B designators and G bits 4 through 7 are undefined and must be zeros.

If machine zero is used as a source element, the instruction transmits all zeros as

the corresponding result element.

Figure 6-22 shows an example of a ceiling A - C (92) operation with one assumed

source vector element. Since the exponent of the source element is negative, the

instruction right-shifts the two's complement of the coefficient three places and in

crements the exponent by plus three. The zero sign bits are extended on the left

The result element becomes all zeros. Thus,, zero is the closest integer greater than

the A source vector element. The ceiling A - C (92) instruction provides a means

of converting negative fractions to zero and positive fractions to plus one.

The applicable data flag bit is 46 (indefinite result).

60256010 01 6-77

6-78

0 34 78 II 12 15 II It 20 23 24 27 21 31

1:1 I I I I 01 111
I

I I I I I I I I I I 11 I I 11 11 1110
I I
l _J_

0 34 7 8 1112 1511 1920 2324 2728 31

i: I I I I I 0 I o:ooo 0000 0000 0000 0000 0010
I I
l _J_

~--~~~--~~~~
EXPONENT COEFFICIENT

0 34 7 8 1112 15 II 19 20 2324 27 28 31

oiooo 0000 oiooo 0000 0000 0000 0000 0000
I I

_l _J_

010

"-v-'

A SOURCE VECTOR
ELEMENT

(FD FFFFFE)
y~
-3 -2

A SOURCE VECTOR
ELEMENT (Two's
COMPLEMENT OF
COEFFICIENT)

C RESULT VECTOR
ELEMENT (UNCOM
PLEMENTED)

\

_BITS SHIFTED
- END OFF

- - COEFFICIENT SHIFTED

~'-v-1
EXPONENT SIGN

BITS
INCREMENTED EXTENDED

TO 0
(-3+3=0} RIGHT 3 POSITIONS

0 3 4 78 II 12 15 II II 20 23 24 27 28 31
T I

l<>iOOO 0000 OiOOO 0000 0000 0000 0000 0000
I I
l __l_

~--~~~--~~~--
EXPONENT COEFFICIENT

NOTE: 32- BIT OPERANDS ARE ASSUMED.

C ·RESULT VECTOR
ELEMENT (TW0

1

S
COMPLEMENT OF
COEFFICIENT)

Figure 6-22. Example of Ceiling A - C Instruction with Negative Exponent

60256010 01

0

0
(.)

0

0

/,--,,\
~l .. Ji/

,,,,---.,,,
/ '
I I ,,..,_>'

1.-.·-'t-.,

~--!

(

--'lh_
I ·:\
I j

"'

0
0

0
0

0
0

0
0
0
0

0
0
0

0
0
0
0

0

0

• •

9A EXPONENT OF A - C

The ·elements of result vector C are formed by storing the exponents from input vector

A into the rightmost position of the coefficients of vector C. The sign of the exponent

is extended left to the coefficient sign bit position. The exponent portion of each ele

ment of vector C is cleared to zero.

The Y and B designators and bits 4 through 7 of the G designator are unused and

must be set to zeros.

90 TRUNCATE A - C

This instruction transmits to elements of vector C the nearest integer the magnitude of

which is less than or equal to the corresponding elements of source vector A. These

integers are represented by unnormalized floating point numbers having positive ex

ponents.

If the origin-operand exponent is positive (greater than or equal to zero). the instruction

transmits the source element directly to the corresponding result elements.

If the source-element exponents are negative,, the machine right-shifts the magnitude of

the corresponding coefficients end-off and increases the exponent by one for each posi

tion shifted until the exponent becomes zero.

The operation extends zeros on the left during the shift after complementing if the coef

ficient is negative. If the coefficient of a source element is positive,, the shifted coef

ficient with zero exponent is transmitted to the corresponding result element. If the

coefficient of a source element is negative,, the two's complement of the shifted coef

ficient and zero exponent are transmitted to the corresponding result element. If

zeros are transmitted as a source element,, zero is also transmitted as the corre.

sponding· result element.

Figure 6-23 shows a typical source element and the corresponding result element for a

truncate A - C (90) instruction. A 32-bit source element with a positive coefficient and

negative exponent is assumed. A right shift. of eight is required to reduce the negative

exponent to zero.

The applicable data flag bit is 46 (indefinite result).

60256010 01 6-79

0

0 14 78 II 12 111• 1110 1114 27 H II

I~ I I I 1000 opoo 0000 0001 I I I I I I I t I I I I

l<F) (8) j_o> (O) (I) (F) (F) (F)

'----y---J'- v
EXPONENT COEFFICIENT

0 14 78 9 II 12 1511 1920 2124 2728 II

(A}

TYPICAL SOURCE
ELEMENT

(OOIFFF X 2- 8)

(C)

o:ooo 0000 o:ooo 0000

l<O) (0) ~(0) (0)

0000 0000

(0) (O)

0001

(I)

I I I I

(F)
RESULT ELEMENT

(OOOOIF X 20)
'----y---J\ v

EXPONENT COEFFICIENT

Figure 6-23. Example of Source and Result Elements for a Truncate A - C Instruction

98 PACK A,B_. C

F
(9 B)

8

~
7. 15 16

x
(OFFSET

FOR A)

BROADCAST

n 24 1112

A
(FIELD LENGTH

8 BASE
ADDRESS)

J ~
_G BITS 3,4:

G BIT 0· G BIT 2:
0=64-BlT OPERAN_D 0= DO NOT OFFSET RESULT FIELD
t =32-BIT OPERAND I= OFFSET RESULT FIELD

G BIT I'.

y
(OFFSET
FOR Bl

0 =CONTROL VECTOR OPERATES ON (S
I= CONTROL VECTOR OPERATES ON dS

3940 47 48

B z
(FIELD LENGTH (C V BASE

a Acrt~tssl ADDRESS)

63

c
(FIELD LENGTH

a BASE
ADDRESS)

C +I
I C OFFSET I
I FOR Ca Z) I L _____ J

This instruction moves an exponent from an element of source vector A and a coefficient

from an element of source ve~tor B into the corresponding exponent and coefficient posi

tions of result vector C.

This instruction forms the elements of a floating point r.esult vector C. The elements

of result vector C consist of exponents from the rightmost 16 bits (64-bit operands) or

8 bits (32-bit operands) of source vector A elements and coefficients from the rightmost

· 48 bits /24 bits of the corresponding elements of source vector B.

Figure 6-24 shows an example of an assumed A source and B source vector element

used in forming a C ·result vector element in a pack A. B - ~ instruction.

6-80 60256010 01

0

0

0

0

0

()

({----..'\

'v"

() C
--,,,

0

0

0

0
0

0
0

0

0

0

0

0

0

0
0
0

0
0

0
0

•

0 3 4 7. II 12 115 II 1120 H 24 27 21 51

0000 0000 0000 0000 0000 0000 0100 0000
(4) (0)

\ .1

~ -
0 34 78 1112 15 16 19 20 2524 27 21 II

0010 0010 0101 11 I I 0001 1100 0111 0000
(2) (I) (5) (F) (I) (C) (7) (0)

t
\ J

~

r ' 0 34 71 1112 15.. 1120 2324 2721 51

0100 0000 010 I 111 I 0001 1100 0111 0000
(4) (0) (5) (F) (I) (C) (7) (0)

"---v---'\. -v
EXPONENT COEFFICIENT

A SOURCE VECTOR
ELEMENT

B SOURCE VECTOR
ELEMENT

C RESULT VECTOR
ELEMENT

Figure 6- 24. Example of Pack A. B - C Instruction

60256010 01 •6-81

9C EXTEND ·32 BIT A•6-4 BIT C

96 CONTRACT 6-4 BIT A +32 BIT C

97 ROUNDED CONTRACT 6-4. BIT A+ 32 BIT C

93 SIGNIFICANT SQUARE ROOT OF A-+C

0 23 24
F z

55 56
c

(FIELD LG

63

(9C, 96
93' 97)

G
(SUB
FUNCT

x
(OFFSET

FOR A)

A
(LENGTH &
BASE ADRS)

(C V BASE
ADRS) & BASE ADRS)

\-G BITS 5, 6:
SIGN CONTROlt

9C EXTEND 32 BIT A - 64 BIT C

: c + 1 :
1 (OFFSET FOR I
I C & Z) I
L------J

t.IN THIS GROUP OF INSTRUCTIONS, THE SIGN CONTROL
BITS ARE USED IN .INSTRUCTION 93 ONLY. IN ALL
OTHER CASES, THESE BITS MUST BE ZERO.

tfo BIT O MUST BE A ZERO FOR THE 9C, 96, AND 97
INSTRUCTION BUT MAY BE A ZERO OR A ONE FOR THE
93 INSTRUCT! ON.

This instruction forms the elements of result vector C by extending the 32-bit, floating

point operands of vector field A into. 64-bit, floating point operands. The instruction

reduces the exponent of the result elements by 24
10

• The 9C instruction transmits the

rightmost 24 bits of the corresponding source elements to bits 16 through 3 9 of the

result elements. The rightmost 24 bits of each result element are cleared.

If an element of vector A is indefinite, the instruction sets the corresponding element

of vector C to indefinite and sets data flag bit 46. If an element of vector A is machine

zero, the instruction stores machine zero as the corresponding element of vector C and

sets data flag bit 43 (result machine zero).

If bit 3 of the G designator is set, indicating broadcast of the A register, the 8-bit A

designator is a 32-bit register designator.

Since the instruction- uses only one source field, the Y and B designators and bits 0,

and 4 through 7 of the 'G designator are not used. These bits must be zeros.

Figure 6.;.25 shows an example of the extension of one assumed source element into the

corresponding result element. The instruction reduces the exponent of the assumed

source element (4F15) by 2410 to 3716. The sign of the result exponent is extended in

bits 0 through 7. The 9C instruction always clears bits 40 through 63 of the result

element coefficients.

6-82 60256 010 01

0

0

0

0

0

0

~--,_

~-"#

C)
,_;JIY

0

()

0
0

0

0

0

0

0

0

0

0

0
0
0

0

0

•
0

0

• •

0 3 4 7 8 II 12 15 11 19 20 23 24 27 H 31

0100 I I I I 01 I I 0100 1110 0110 1000 0000 SOURCE ELEMENT
VECTOR FIELD A (4) (F) (7) (4) (E) (6) (8) (0)

'----.r---''--~~~~~~r-~~~~~.-J

0

EXPONENT
(4F1s -2410)=

(4F1s-l81s)=

(3715)

34 7 8

0000 0000 001 t
(0) (0) (3)

\
v

EXPONENT

COEFFICIENT

t RESULT ELEMENT

]·------~VECTOR FIELD C
~ THESE BITS ARE CLEARED

,~~~~~~~---' ,--~~~~~~~~~~~~~~---

15 II 19 20 23 24 27 21 31 32 35 36 39 40 43 44 47 41 51 52 55 5e 59 60 II 12
I

0111 011 I 0100 1110 0110 1000 0000 0000 0000 0000 0000 0000 0000
(7) (7) (4) (E) (6) (8) (0) (0) (0) (0) (0) (0) (0)

-y

COEFFICIENT

Figure 6-25. Example of Extend 32 Bit A - 64 Bit C Instruction

96 CONTRACT 64 BIT A - 32 BIT C

This instruction contracts each 64-bit., floating-point element of vector field A into its cor

responding 32-bit floating point result. The result element becomes the corresponding ele

ment of result vector field C. The instruction increases each non-end case source-element

exponent by 24 10 in forming the 8-bit exponent for the result element.

The following is a list of input exponents and the corresponding result of the 96 instruction

execution.

60256010 01

Input -Exponent

7FFF

7000
6FFF

0058
0057

FF78
FF77

8000

Result

Result indefinite

Data fiag bit 46 (indefinite result) is set.

Data flag bits 42 (exponent overflow) and 46
(indefinite result) are set.
Result exponent is 2410 larger than the input
exponent. The leftmost 24 bits of the input
coefficient are transferred .

Result is machine zero. · Data fiag bit 43
(re·sult machine zero) is set.

6-83

The coefficient of the result element becomes the leftmost 24 bits of the source element

coefficient. This operation contracts the coefficients of all elements with an absolute

value of less than 224 (neglecting the exponent) to minus one for negative coefficients

and zero for positive coefficients.

The Y and B designators and bits 0 and 4 through 7 of the G designator are not used

and must be zeros. Applicable data nag bits are 42 (exponent overflow). 43 (result

machine zero). and 46 (indefinite result).

97 ROUNDED CONTRACT 64 BIT A - 32 BIT C

This instruction performs a rounded contract operation on the 64-bit. floating point

elements of vector field A and transmits the 32-bit. floating point results to elements

of vector field C (figure 6-26). Each resulting 8-bit exponent represents the sum of

the least significant eight bits of the source element and 2410• If the result exponent

cannot be contained in eight bits. exponent overflow or underflow is detected.

The instruction then adds a plus one to bit positions 40 of the source-element coefficients.

If overflow occurs (figure 6-26), the instruction increases the exponent by one' and -~
right-shifts the coefficient· one. plac~; (Since the result coefficient in figure 6-26

contains all zeros~ the example does not show the right-shift of one place.) The leftmost

24 bits of the shifted result coefficient are transmitted to the corresponding bits of re-

sult element C. The exponent of each non-end case result element is 24 10 (25 10 if

overflow occurred) greater than the exponent of the corresponding source element.

The Y and B designators and bits 0 and 4 through 7 of the G designator are not used

and must be zeros. Data nag bits 42 (exponent overflow). 43 (result machine zero).

and 46 (indefinite result) conditions are probed by the execution of this instruction.

6-84 60256010 01

0
0
()

0
()

0

0
,-Ir""
\\ . .>'

1'<'°"'
(Lji

;;·~,.----,...,

~~>''

(
--~\

,,i

('ii_,\
J

0

0

0

0

0

0

0

0

0

0

c
0

0

0

0

0

0

0

0

0

TYPICAL SOURCE ELEMENT

0 3 4 7 8 II 12 15 II II 20 23 24 27 21 31 52 . 35 36 39 40 43 44 47 41 51 52 H 56 H 60 13

I l I I I I I I I I I I I I 00 I I I I I I I I I I I I I I I I I I 11 I 1100
{ F) {F} {F} (C} { F} { F} { F} { F) {F) { F) {F) {F) { F) (F) {F} (C)

EXPONENT(-4) COEFFIClENT (-4)

COEFFICIENT AFTER + I - ADDED TO BIT 40 (F C 16 + 24 1 O =
FC15+l815=+141s> " 19 20 23 24 27 21 31 52 35 36 19 40 43 44 47 41 51 52 H H 59 60 H

0000 0000 0000 0000 0000 0000

OVERFLOW +-'"-~~~~~--.--~~~~~~
{ADD + I TO EXPONENT)

0 3 4 7 ,,

I
I
I
I

* II 12 15 II It 20 23 24 27 21 31\

I

0:1 I I I I I I I I I I I I I I

I

0001 010 I 0000 0000 0000 0000 0000 0000
(I) (5)

RESULT ELEMENT C

'-----v----'~~~~--.......... -~~~~~~--
EXPONENT COEFFICIENT

Figure 6-26. Example of Vector Elements for a Rounded
Contract 64-Bit AC-32-Bit C Instruction

93 SIGNIFICANT SQUARE ROOT OF A -c

I I I I I I I I

This instruction forms the square roott of each element of vector field A and places the

result in each corresponding element of vector field C. Each result element contains

the same number of significant bits as the corresponding source element.

Since the instruction uses only one source field, the Y and B designators and bits 4

and 7 of the G designator are not used and must be zeros. Bits 5 and 6 of the G

designator perform sign control functions as given in table 6-17. Applicable data

flag bits are 43 (result machine zero), 45 (square root result imaginary), and 46

(indefinite result).

t Appendix B describes the floating-point square root operation.

60256010 01 .6-85

0

94 ADJUST SIGNIFICANCE OF A PER B +C

95 ADJUST EXPONENT OF A PER B+C

23 24 31 32 39 40 47 48 55 56 63
F

(94 OR 95)
x

(OFFSET
FOR A)

A.

(FIELD LG
& BASE ADRS)

y

(OFFSET
FOR B)

B
(FIELD LG
& BASE ADRS

z c
(C V BASE (FIELD LG
ADRS) & BASE AD R

C + 1 I
G BIT 0 . ----G BIT 3,4:
0: 64 B.IT OPERAND BROADCAST G BIT 2;

·1~-w I (OFFSET FOR I
I C & Z) I

I: 32 BIT OPERAND -----------o= DO NOT OFFSET RESULT FIELD
· - l-= OFFSET RESULT FIELD

6 BIT 1:
0 =CONTROL VECTOR OPERATES ON I'S
I= CONTROL VECTOR OPERATES ON o's

94 ADJUST SIGNIFICANCE OF A PER B - C

L _____ J

This instruction adjusts the significancet of floating point elements from vector field A

and transmits the adjusted elements to corresponding elements of vector field C. The

rightmost 48 (64-bit operands)/24 (32-bit operands) bits of the elements in vector field

B contain signed., two's complement integers. The absolute values of these integers

are shift counts.

If a shift count is positive, the instruction left- shifts the coefficient of the element from

vector field A the number of positions specified by the shift count or by the number of

positions necessary to normalize the coefficient, whichever is smaller. In either case,

the instruction reduces the exponent of the source element by one for each position

shifted. The instruction left- shifts an all zero coefficient by the specified number of

positions.

If a shift count is negative, the instruction right- shifts the coefficient of the source

element by the shift count. The instruction increases the exponent by. one for each

position shifted. If the absolute value of the shift count is greater than 47
10

, the shift

operation is undefined. The addition of the· shift count can cause either exponent over

flow or underflow.

If the source element is indefinite, the instruction sets the corresponding result element

to indefinite and sets data flag bit 46 (indefinite result). If the source element is

machine zero, the instruction sets the corresponding result element to machine zero (re

sult machine zero) and sets data flag bit 43. Data flag bit 42 (exponent overflow) is also

applicable.

tAppendix B describes the operation of adjusting floating7poi:ht operands •.

6-86 60256010 01

0

0

0
()

()

0

0
,(!'""'

(~._,)

;11'-'\

~-y

()

0
()

()

()

0

0

0

0

0

0

0

0

0

0 I

I

I

0

0

0

0

0

0

0

0

• •

95 ADJUST EXPONENT OF A PER B-C

This instruction transmits adjusted source ele~ents from vector field A to corresponding

result elements in vector field C. The instruction sets the exponent of a result element

equal to the exponent of the associated source element in vector field B. The coeffi

cients of the result elements are formed by shifting the coefficients of the source

elements from vector field A.

The difference between the exponents of associated elements from vector fields A and

B forms the shift count. If the exponent from A is greater /less than the exponent of

the element from B, the shift is to the left/right, respectively. If A contains a zero

coefficient, the exponent of the corresponding element of B is transferred to the

corresponding element of C with an all zero coefficient. If a left shift exceeds the

number of positions required for normalization, the corresponding result element is

set to indefinite, and data flag bit 42 (exponent overflow) is set.

If either or both source elements are indefinite or machine zero, the instruction sets

the result element to indefinite. In this case, data flag bit 46 (indefinite result) is

set and data flag bit 42 (exponent overfiow) is not set.

Figure 6-27 shows one adjust exponent of A per B- C operation with assumed 32-bit

source elements for vector fields A and B. The exponent of the source element in

vector field B is greater than the source element from field A by eight. As a result,

the instruction right-shifts the coefficient eight positions end-off. The vacated positions

on the left are filled with zeros.

60256010 01 6-87

6-88

0 34 7 I II 12 15 II II 10 II 14 17 H 31

0011 0000 0010 11 I I 0101 1100 0001 1001
{3) (0) (2) (F) (5) (C) (I) (9)

'---v---'\ v
EXPONENT COEFFICIENT

0 34 71 II 12 15 II 19 20 23 24 27 28 31

I
0~311'1'~a~0 I I I I
'---v---'

EXPONENT COEFFICIENT

1-.·
(NOT USED)

0 34 78 1112 15 II 1920 2324 27 28 31

0011 lOOO 0000 0000 0010 11 I I 0101 1100

{3) {8) {O) (0) (2) { F) (5) (C)

'---v---'
0 FILL

COEFFICIENT SHIFTED
8 POSITIONS (30-38= -8)

NOTE: 32- BIT OPERANDS ARE ASSUMED.

SOURCE ELEMENT
VECTOR FIELD A

SOURCE ELEMENT
VECTOR FIELD B

RESULT ELEMENT
VECTOR FIELD C

Figure 6-27. Example of Adjust Exponent of A Per B-C Operation

60256010 01

0

0

0

0
()

0

0
(}
'f~
~>
(,/··~"'\

\l__j/

.111r·-~"-,

I

'~o .•. Y-'

0
·f":
~\""~(

0
()

0

0

0

0
0
0
0
0

0

0
0

01

I

'

0
0
0
0
0

0
0

0
0

•

SPARSE VECTOR INSTRUCTIONS,

Arithmetic operations may reduce many elem.ents of a vector field to a zero or near

zero value. Except for positional significance. the near zero values need not occupy

storage locations as floating point operands in the vector field. In order to conserve

storage space and calculating time, the sparse vector instructions make possible the

expansion and compression of vectors of this type into sparse vectors.

A sparse vector consists of a vector pair [one of which is a bit string, identified as an

order vector, and the other is a floating point array (32- or 64-bit) identified as the

data vector]. Sparse order vectors determine the positional significance of the segments

of the corresponding sparse data vector.

Typically, a sparse vector is formed by the following procedure.

l. The compare instructions generate an order vector.

2. The compress A - C per Z (BC) instruction reduces the . corresponding

vector to a sparse vector.

3. The BC instruction uses the generated order vector as a means of discarding

all near- zero elements and still maintain. their positional significance through

the order vector.

Figure 6-28 shows an example of compressing an initial vector into a sparse vector.

Initial vector elements A 0 through A8 are contained in consecutive, half-word addresses,

beginning at arbitrary address m. A compare instruction first generates an order

vector from the initial vector. The compare instruction sets the bits in the order

vector corresponding to vector elements that are to be retained in the data vector.

Conversely, zeros in the order vector designate the near zero elements that are to be

discarded in the sparse vector field.

The compress A - C per Z instruction stores the vector elements in consecutive

addresses of the data vector corresponding to ones in the order vector. Thus, the

initial vector is now represented or the sparse vector consisting of the order vector

and data vector.

60256010 01 6-89

INITIAL VECTOR FIELD A
HALF-WORD

ADDRESS o

m Ao

m+I A 1 {NEAR i!ERO)

m+2 A2

m+3 A3

m+4 A4(NEAR i!ERO)

m+5 As

m+6 As (NEAR i!ERO)

m +7 A7

m+8 Aa(NEAR i!ERO)

GENERATED ORDER VECTOR l

A,---,
Ao9 ~ rAa

0123456789

GENERATED DATA VECTOR A
HALF-WORD

31

31

ELEMENTS DISCARDED

IN FORMING THE
SPARSE VECTOR FIELD

ADDRESS ~o _____________________________ a1 GENERATED

h Ao SPARSE VECTOR

n+I A2

n +2 A3 ------------------------------n +3 A5 ------------------------------
n +4 A7

NOTE: 32 - BIT OPERANDS

Figure 6-28. Example of Compressing Initial Vector Field into Sparse Vector Field

6-90 60256010 01

0

0

0

0

()

0
(~'

, _ _)

0

0

0
()

0

0

0
0
0
0
0

0

0
0

0

0
'1

'

:'•,

i

'

0
0
0

0

0

0

0
0

0

SPARSE VECTOR INSTRUCTION FORMAT

All sparse vector instructions use the same general format as shown in figure 6-29.

Table 6-18 lists each of the 8-bit designator portions of the sparse vector instruction

format and the corresponding definition.

BASE ADDRESSES AND FIELD LENGTHS

Figure 6-30 shows that the base addresses and field lengths for the sparse data vectors

are the same format as the corresponding field lengths and base addresses of the

normal vectors. However, the field lengths associated with source sparse data vectors

are not used; thus, figure 6- 30 shows bits 0 through 15 of the registers designated

by A, B, and C as not used. The field lengths for these vectors are determined by

the number of ones in the corresponding order vectors. The field lengths of the

source order vectors (X and Y) and the result order vector (Z) are item counts in

bits. The addresses to these order vectors are bit addresses.

SPARSE VECTOR INSTRUCTION TERMINATION

.Sparse vector instructions terminate when the result order vector, as defined by

corresponding field length, is filled. If the Z designator is zero or if the Z field

length is zero, the instructions set no data flag bits and become no-operation (no-op)

instructions. The sparse vector instructions terminate differently from the vector or

vector macro instructions.

Source order vectors with a zero or short field length are extended with zeros as

required. If vector Z contains a nonzero field length and the C designator is zero,

the results of the instruction are undefined.

60256010 01 6-91

I
I

I

G

0

(SU BFUNCT I ON)
7'a .. 1S16 2324 3i32 5556 63 3940 4748

F x A y B z c
(FUN CTI ON) (0 V LENGTH · (BASE ADRS) (0 V LENGTH (BASE ADRS) (0 V LENGnl (LENGTH &

& BASE ADRS~ & BASE ADRS) & BASE ADRS) BASE ADRS)

/Yv-'Y~---G BITS 5-7:
G BTT 0: SIGN CONTROL (SEE TABLE 6-16)

0 = 64-BIT OPERANDS G BITS 3
1 = 32-BIT OPERANDS (SEE TAB~~ 6-15) NOTE: 0 V DESIGNATES ORDER VECTOR

---G BITS I, 2:
(SEE TABLE 6-19)

Figure 6-29. General Sparse Vector Instruction Format

TABLE 6-18. SPARSE VECTOR INSTRUCTION DESIGNATORS

8-Bit
Designator

F

G

X,Y

A,B

c

z

Definition

Instruction code

Suboperation code; the state of G bit 0 denotes the following:

State Designation

0 64-bit operands
1 32-bit operands

G bits 1 and 2 are as defined by table 6-19. When bit 3
is set, the function is broadcast A. When bit 4 is set,
the function is broadcast B. G bits 5 through 7 function
as sign control bits (refer to table 6-1 7). t

Specify the register that contains the base address and field
length of the source order vector associated with source
sparse data vectors A and B, respectively

Specify the register that contains the base address of the corre
sponding source sparse data vector

Specifies the register that contains the base address of the
result sparse data vector

Specifies the register that contains the base address and the
field length of the result sparse order vector associated with
result sparse data vector C

t Appendix C provides a composite listing of the G designator bits usage according to
function code.

6-92 60256010 02

0

0

0
(~)

0

!"---"',
li,_y

.4'--~\

~J

(-" 1'\

~j)

0

0

0

0

0

0

0

0

0
0

0

0

0

0
0

0

0

0

0
0

•

0 1518

NOT USED©

0 15 1•

FIELD LENGTH

Figure 6-30.

60256010 01

(A),(B) OR (C)

BASE ADDRESS

(X), (Y) OR (j!)

BASE ADDRESS

CD AT THE COMPLETION OF THE SPARSE
VECTOR INSTRUCTIONS, THE LENGTH
OF THE RESULTING SPARSE VECTOR
IS TRANSFERRED TO THIS PORTION
OF REGISTER C.

Sparse Vector Field Length and Base Address Formats

6-93

I

0

INSTRUCTIONS AO THROUGH AF

These instructions have different forms depending on G bits 1 and 2. Table 6-19

shows the operations associated with the values assigned to G bits 1 and 2.

TABLE 6-19. G BIT 1 AND 2 OPERATIONS

G Bit 1 G

0

0

1

1

AO ADD U; A + B ~c

Al ADD l; A + e+c
A2 ADD N; A+ 8-+C

A4 ·sue U; A - B~C

AS SUB l; A - B ~c

A6 SUB N; A -B~C

Bit

0

1

0

1

G
(SUBFUNCTION)

7 8 15 16

F

2 Operation

Normal order vector generation (logical
ADD /SUB,, logical AND for MULT /DIV)

OR for

Reverse logical operation (AND instead of OR for
ADD/SUB,, OR instead of AND for MULT /DIV)

Exclusive OR

Implication

23 24 31 32 39 40 47 48 55 56

x y z c
(AO-A2; (OV LENGTH A (0 V LENGTH B (O V LENGTH (RESULT LG

63

A4-A6) & BASE ADAS) (BASE ADAS) & BASE ADAS)
(BASE ADAS) & BASE ADAS) & BASE ADAS)

____.

~
-G BITS 5-7: I

SIGN CO~TROL (SEE TABLE 6-17)

G BIT 0: G BITS 3, 4.
(SEE TABLE 6-16) 0=64-BIT OPERANDS

1=32-BIT OPERANDS G BITS 1, 2:
(SEE TABLE 6-19)

These instructions perform the indicated floating ... point operations on elements of sparse

data vectors A and B. The instructions return the results to elements of sparse data

vector C. The instructions read an element from sparse data vector A and/ or B when

the corresponding sparse order vector X and/ or Y contains a one in the associated bit

position. A zero in a source order vector causes machine zero to be used as the

associated A and/ or B element. The instructions generate an element in the C field

when a one is in the corresponding bit position of order vector X and/ or 'y. Each bit

position of order vector Z is the bit-by-bit inclusive OR of order vectors X and Y.

The instruction transfers the resulting field length of sparse vector C to bits 0 through

15 of register C.

6-94 60256010 02

0

0

0

0

0
()

("~
:., __)>)

r<~',

\~If'!

()

()

0 '

0

0

0
0
0
0

0

0

0

C
\
:

:
j

0
0
0

0
0
0
0

0

• •

In the previous sparse vector instructions, U, L, and N denote that upper, lower,

and .normalized floating-pointt results are generated, respectively. Applicable data flag

bits for the sparse vector instructions are 42· (exponent overflow), 43 (exponent under

flow), and 46 (indefinite operand). However, the instructions set the data flag bits only

when an element is actually stored in the result vector.

Figures 6-31 and 6-32 show examples of an add U; A + B - C sparse vector instruction

operation with assumed register contents and vector address fields for specific values

of G bit 1 and 2. Although an AO instruction is used in the examples, the general

execution sequence is the same for all the previous instructions. The dashed lines in

figures 6-31 and 6-32 connect the elements of the sparse data vector with the corre

sponding order vector bits. The results of the logical operations for instru.ctions AO

through A6 are shown in table 6-19. 1.

TABLE 6-19.1. RESULTS OF THE LOGICAL OPERATIONS (AO THROUGH A6)

Order Sparse Data G Bit 1 = 1
Vector Vector Element G Bit 1 = 0 G Bit 1 = 0 G Bit 2 = 0 G Bit 1 = 1

G Bit 2 = 0 G Bit 2 = 1 Exclusive G Bit 2 = 1
x y A B OR AND OR Implication

0 0 MZ MZ N N N MZ

0 1 MZ B ±B N ±B N

1 0 A MZ A N A A

1 1 A B A±B A±B N A±B

NOTES:

A A stream operand
B B stream ope rand
N No result produced
MZ Machine zero

t Appendix B describes the normalized floating-point operations •

60256010 02 6-95

I

·o

I

6-96

1 I 15 II H 14 II 11

F G

I
x

I
A

I
y

AO 80 03 04 05

'-SPECIFIES 32-BIT OPERANDS

BEFORE EXECUTION

REGISTER

DATA VECTOR

39 40 47 41 55 51

B ii!

06 07

ADD U; A+B-+ C
INSTRUCTION

I FIELD 1 BASE I

1LENGTH1 ADDRESS 1
I I

03= : 0007 :000000004000:

04= 1 0000 1oooooooosoool

05=: 0008 :oooooooosooo:

06 = I 0000 I0000000070001
I

01= 1 0009 10000000080001
I I I

08= 1 0000 1oooooooo9000j

ORDER VECTOR
HALF-WORD

0 II ADDRESSES 0 I 2 I 4 5 • 1 x A

I
Ao ~-----i1IOJ0!1§lol1I 5000 I I

1-----..,.--A-3 __ _,_ __ -1 - 5Q2o - - - _ _, : Bl T ADDRESSES'
.___ _____ A_G _____ _, -

5040
--------l 4000-4006

0

DATA VECTOR

B

B1

B3

B4

B5

Bs

B1

DATA VECTOR

c

le
le
~

~

~

fc

ORDER VECTOR

y
012145171

- 7000, @1lof1l1l1l1 l1I
L- _J I I : I I

- - - - - - - -...J I I I BIT ADDRESSES
7020 I : I :

- 7o"4o - - - - - ..J : : : sooo- 6001

-----------.JI I
7060 : :

- 7080 - - - - - - -_ ...J :

- - - - - - - - - - - - - _J
70AO

ORDER VECTOR

O 51 0 I I I 4 S I 1 I t

~I ---(-A3-+-B3-) ----~ - - -- , fo_lolol 1lo!ol1 lolol
90001 · I •

(A6f86) -----1-----1---J 90201_ ____ .J BIT ADDRESSES

8000-8008

.C

08

FIELD BASE
AFTER EXECUTION

13

II

51

REGISTERS 03, 04,05,06 AND 07 ARE UNCHANGED.
1LENGTH1 AOORESS

08= I 0002 1000000009000:

Figure 6-31. Example of an Add U; A+ B -c Sparse Vector Instruction when
G Bit 1 = 0 and G Bit 2 = 1

60256010 01

0

0

0
0 ,

;

.~·
1\4.., .. J;I

/"f''•"'
~'=.,.t!l~'

0
0
0
0

0
0
0

0

0

0

[}

:_!

'

I

0
0

0
0
0
0

0

0
0

•

0

1

F

AO

0

.7 • IS II H 24 II SI

G

I
x

I
A

I
y

80 03 04 05

'-SPECIFIES 32-BIT OPERANDS

BEFORE EXECUTION

REGISTER

DATA V£CTOR
HALF-WORD

s• 40 47 41 55 SI

I
B

I
i!

06 07

ADO U; A+B-+ C
INSTRUCTION

1 FIELD t BASE 1
1LENGTH1 ADDRESS 1

I 1

03= : 0007 :000000004000!.

04= I 0000 100000000500()1

05= : 0008 :000000006000:

06= I 0000 loo00000070001

o 1 = 1 oo 09 ~ooooaooo9oool
I J I

08= I 0000 10000000090C>q

ORDER VECTOR

A
SI ADDRESSES 0 I 2 s 4 5 • T.

x
Ao

5000 I I

I
A3 t

-----i 1IC~oJ1§IOJ1 lol• I
---- -- --.J I

----------------------- 5020 I
Bl T ADDRESSES·

4000-4006 ------------' A6
-----------------------~ 5040

0

0

DATA VECTOR

B

Bt

B3

84

85

Bs
87

DATA VECTOR

c
Ao
81

B4

85

B7

AS

SJ

~

I«
14

le
i-
le

ORDER VECTOR

y
012S45671

- 7000, ltj 1IOJ1I1I1J 111 I
L_ J I I I I I

- - - - - - ---' I I J I
7020 I: I :

---------..JI I I
7040 l 1 I

-----------j l I
7060 : :

-10-ao-- -- -----' :
- - - - - - - - - - - - - _J

70AO

BIT ADDRESSES
6000-6007

ORDER VECTOR

SI 0 I I I 4 5 I T I I

~

~

~

le
~

~

- - - - - - ~ 1 I 1loloJ1 I 1Joi1I1)
9000 I I I I.

--------' I I I I
9020 'I I I

- - - - - - - - - __ .J I I I
9040 1

1 I
- - - - - - - - - - _.J I I

9060 I
------------_JI

9080 I
------ ________ _J

90AO

BIT ADDRESSES
8000-8008

FIELD BASE

c
08

St

SI

SI

AFTER EXECUTION
REGISTERS 03, 04,05,06 AND 07 ARE UNCHANGED.

1LENGTH1 ADDRESS
1

08 =I 0006 1000000009000 t

•s

Figure 6-32. Example of an Add U; A + B -c Sparse Vector Instruction when
G Bit 1 = 1 and G Bit 2 = 0

60256010 01 6-97

In an AO instruction operation,, an actual addition of an element from data vector A to an

element from data vector B takes place only when the corresponding source order vector

bitsare both ones. For example,, the A 3 + B
3

~ddition takes place because bit 3 of X and Y

order vectors is a one. In cases where a source order vector bit is a one and the

corresponding bit for the other source order vector bit is a zero,, machine zero is

essentially added to the sparse vector element.

At the end of the sparse vector operation,, the resulting output data vector length is inserted

in the corresponding portion of the register designated by C. In the example, the instruction

transfers a 0007
16

to the leftmost 16 bits of register 08. The 0007 denotes the number of

elements in the result data vector C.

0

A8 MPV U; A• B•C
A9 MPV l; A • B-+C .

AB MPV S; A • B +C ·

AC DIV U; A/B+C
AF DIV S; A/B+C

G
. (SUBFUNCTION)
~

7 8 1516 3940 3132 47 48 55 56 63 2324

F x A y B z c
(A8,A9,AB (0 V LENGTH (SASE ADRS) (0 V LENGTH (BASE ADRS) (0 V LENGTH (RESULT LG

AC, AF) & BASE ADRS, & BASE ADRS~ & BASE ADRS & BASE ADRS)

6-17)

G BITS 1, 2:
(SEE TABLE 6-19}

These instructions perform the indicated floating-point t,, multiply,, and divide operations

on elements of sparse data vectors A and B. The instructions store the results in elements

of sparse data vector C. The instructions read an element from vector A andior B if the

bit position of the corresponding order vector X and/or Y is a one. An element is generated

for sparse data vector C when both the X and Y order vectors contain a one in the corre

sponding bit position. Result order vector is the bit-by-bit,, logical AND of order vectors

X and Y.

t Appendix B describes the floating point arithmetic operations.

6-98 60256010 01

0

r,
I(__ ;;·

i~
,~_. ...

,if·-~.,

'L~,·

C°'\
' ; .

G·
(
~

I .' .,

(-~-

"'

0

0

0

0

0

0

0

0

0

0

0 '

'

I

'

0

0

0

0

•
0

0
0

•

In the sparse vector instructions previously listed, U, L, and S denote that upper, lower,

and significant upper floating-point results are generated, respectively. Applicable data

flag bits for the multiply and divide sparse vector instructions are 41 (floating-point divide

fault), 42 (exponent overflow), 43 (result machine zero), and 46 (indefinite result).

However, the instructions set the data flag bits only when an element is actually stored

in the result vector.

Figures 6-33 and 6-34 show examples of multiply U; A • B - C sparse vector instruction

operation with assumed register contents and vector address fields with specific values for

G bits 1 and 2. Although an AS instruction is used, the general execution sequence is the

same for all instructions of this type. Dashed lines connect the elements of the sparse

data vector with the corresponding order vector bits.

In an AS operation, an actual product is generated as an element of data vector C only

when the corresponding order vector bits for the A and B data elements are both ones.

In cases where one or both of the source order vector bits are zero, no multiplication

takes place, and the corresponding result order vector bit is cleared. In Figures 6-33

and 6-34, only three products are generated by the instruction (A
3

• B
3

), (A6 • B
6

),

and (A 7 • B 7).

At the end of the sparse vector operations, the resulting output data vector length is in

serted in the corresponding portion on the register designated by C. In the example, the

instruction transfers a 0003 to the leftmost 16 bits of register 09. The 0003 denotes the

number of elements in result data vector C. The results of the logical operations for

instructions AS through AF are shown in tables 6-19.2 and 6-19. 3.

TABLE 6-19.2. RESULTS OF THE LOGICAL OPERATIONS (AS THROUGH AB)

Order Sparse Data G Bit 1 = 1
Vector Vector Element G Bit 1 = 0 G Bit 1 = 0 G Bit 2 = 0 G Bit 1 = 1

G Bit 2 = 1 G Bit 2 = 0 Exclusive G Bit 2 = 1
x y A B OR AND OR Implication

0 0 MZ MZ N N N MZ

0 1 MZ B MZ N MZ N

1 0 A MZ MZ N MZ MZ

1 1 A B A>:<B A>:<B N A>:<B

NOTES:

A A stream operand
B B stream operand
N No result produced
MZ Machine zero

60256010 02 6-99

I

Order
Vector

x y

0 0

0 1

1 0

1 1

NOTES:

A
B
N
MZ
IND

• 6-100

TABLE 6-19. 3. RESULTS OF THE LOGICAL OPERATIONS (AC, AF)

Sparse Data G Bit 1 = 1
Vector Element G Bit 1 = 0 G Bit 1 = 0 G Bit 2 = 0 G Bit 1 = 1

G Bit 2 = 1 G Bit 2 = 0 Exclusive G Bit 2 = 1
A B OR AND OR Implication

-

MZ MZ N N N IND

MZ B MZ N MZ N

A MZ IND N IND IND

A B A/B A/B N A/B

A stream operand
B stream, operand
No result produced
Machine zero
Indefinite

60256010 02

0

0

0

0

0

0

0
-o

-- /f-~,

~,/

/,-~,,

,,,;:

0

0

0

0

0

0

0

0

0

0

~ u
0

0

0

0

0

0

0

0
0
A

0 7 8 15 16 23 24 31 32 59 40 47 48 5556

F G x A y B r c

I AS I 80 I 04 I 05 06 I 07 I 08 I 09

DATA VECTOR

'-_SPECIFIES 32-BIT OPERANDS MPY U ; A • B -+ C

BEFORE EXECUTION

REGISTER

HALF-WORD

INSTRUCT JON
1 FIELD 1 BASE
~ENGTH 1 ADDRESS
I I I

04= I 0 0 0 8 1
1000000005000 I

I I

0 5 = l O O 0 0 !000000006000 I
I I

06 = I 0 0 0 8 1000000007000 I
I I

07 =I 0 0 0 0 1000000008000 l

08 = ! 0 0 0 9 :000000009000:
I

09 =: 0 0 0 0 ~OOOOOOOOAOOO:
ORDER VECTOR

x 0 A

I

..-----------------.3' ADDRESSES o 1 2 s 4 s' 7 a

~
------11 lolol 1 lolol 1 / 1 I Ao
6000 I I I
-----------' 11 A3

1---------------~ 6020 I I
BIT ADDRESSES
5000-5007 ------------..JI AG

A1
1-----------------1 604 0 : ___________ ,__,

DATA VECTOR
,__---------~----- 6060 ORDER VECTOR

0

0

B
B1

B3

B4

85

BG

B1

DATA VECTOR

DIVIDE
c MULT

INDEFINITE MACHINE i!ERO

MACHINE rERO MACHINE rERO

A3/B3 A3•B3

MACHINE i!ERO MACHINE ZERO

MACHINE rERO MACHINE ZERO

A6/B6 A6•B6

A7/B7 A7•B7

AFTER EXECUTION

31

IE-

IE-
IE-
IE

IE-
IE

31

~

~

IE

1-e

1-e

~

012345678

- 000 -, jg 1lol1 I 1I1 J 1 ! 1 I
8 L ___ j I I I I I
--------- --' I I I I
8020 I I I I

-----------~ 11 •
8040 t I I

- - - - - - -- - - -J t I
8060 I I

-------------•I 8080 I

- - - - - - - - - - - - _J
SOAO

012345678

y

BIT ADDRESSES

7000-7007

ORDER VECTOR
i!

------1dilol1I1 l1 I 1 lol
AOOO I I I I I _______ _J I I I
A020 I 1 I I
A040 _____ J I I I
"Aoso ______ J I I
__________ J I
A080 I AOAO _______ I

BIT ADDRESSES
9000- 9008

IE-
_________ _J

AOCO

REGISTERS 04,05,06,07 AND 08 ARE UNCHANGED.

FIELD BASE
:LENGTH: ADDRESS I

I
09 =: 0 0 0 7 ! OOOOOOOOAOOO I

Figure 6-33. Example of a Div or Mpy U Sparse Vector Instruction when
G Bit 1 = 0 and G Bit 2 = 1

13

I

31

I

31

,

60256010 02 6-100.116-100.2 I

()

()

(J

()
(~
1,J)

0

0

0

0

0

0

0

0

0

0

0

0

n u
0

0

0

0

0

0

0

0

•

0 7 8 15 16 23 24 31 52 59 40 47 48 MH

I
F

I AS

G

I
x

I
A

I
y

I
B

I
i!

80 04 05 06 07 08

'-_SPECIFIES 32-BIT OPERANDS MPY U ; A • B --+ C

BEFORE EXECUTION

REGISTER

HALF-WORD

INSTRUCT ION
1 FIELD 1 BASE
lENGTH 1 ADDRESS
I I I

04= to 0 0 8 1
1000000005000 I

I I

o s =: o o o o !ooooooooGooo 1
I I

06='0 0 0810000000070001
I I

07 = J 0 0 0 0 1000000008000 I

08 = : 0 0 0 9 : 000000009000 :
I

09=: 0 0 0 O~OOOOOOOOAOOO:
ORDER VECTOR

x .------------------.31 ADDRESSES o t 2 3 4 s s 1 a

~
- - - - - - ~ 1 lolol 1 lolol 1 J 1 I
6000 I I I

-----------' I I
....,_-------------~ 6020 I I

-------------1 I
1---------------~ 604 0 :

-----------~

BIT ADDRESSES
5000-5007

....._ ______________ __, 60GO ORDER VECTOR

0

a,
83

B4

85

Bs
87

DATA VECTOR

DIVIDE MULT

INDEFINITE MACHINE -tERO

INDEFINITE MACHINE ~ERO

A3/B3 A3• 83

A6/86 AG• 86

A7/87 A7• 87

AFTER EXECUTION

31

fE-

~

IE-
IE
IE-

IE

31

012345678

-aooo -, 19 i Joi 1 I 1 I 1 I 1 I 1 I
L ___ J I I I I I

-----------' 11 I I
8020 I It I
------------'I 1 I
8040 I I I
-----------'I I

8060 I I
I -SOSO- - - - - - - - - - I I

_____________ J

SOAO

012345678

y

BIT ADDRESSES

7000-7007

ORDER VECTOR
t

IE -----+lol1 J1lolol1 l1 lol
AOOO I I I

fE
IE-

"A02o ____ _J I l 1
________ _J I I
A040 I I

IE- -----------1 I
A060 I

fE·
____ _._ ______ _J

AOBO

BIT ADDRESSES
9000- 9008

REGISTERS 04,05,06,07 AND 08 ARE UNCHANGED.

FIELD BASE 1

:LENGTH: ADDRESS I
I

09=: o o o s !ooooooooAooo 1

I

Figure 6-34. Example of a Div or Mpy U Sparse Vector Instruction when
G Bit 1 = 1 and G Bit 2 = 1

6S

c

I 09

31

I

31

31

60256010 02 6-101

VECTO.R MACRO INSTRUCTIONS

Vector macro instructions perform operations similar to vector instructions. However,

some vector macro instructions do not form result vector fields, but store the results

in one or two registers which are specified by the instruction. In these instructions,

the control vector contains neither length nor offset, but controls the use of elements

of the source vectors. . Bit 2 of the G designator is undefined and must .be a zero.

Designators C and C + 1 denote 32-bit registers when bit 0 of the G designator t
specifies 32-bit operands. In the vector macro instructions that produce result vector

fields, the control vector performs the same function as in the vector instructions.

Vector macro instructions with result fields (as opposed to result registers) extend

short source fields with machine zeros or normalized ones and terminate in an identical
'

fashion to the vector instructions. The other vector macro instructions do not extend

short source vectors but terminate when either source vector is exhausted. For in

structions of this type, broadcasting both source fields causes an undefined condition

to exist. Appendix C gives a complete listing of the various field conditions and the

resulting termination condition.

CO SELECT EQ; A = B, ITEM COUNT TO(C)

Cl SELECT NE; A¢ B, ITEM COUNT TO (C)

C2 SELECT GE; A::! B, ITEM COUNT TO (C)

C3 SELECT LT; A< B, ITEM COUNT TO(C)

These instructions compare each element of vector field A with its corresponding ele

ment of vector field B by subtracting vector B from vector A. The conditions for

comparing floating point operands are described in the Floating-Point Compare Rules,

appendix B. The comparing operation proceeds until the compare condition is met

(for a pair of elements not inhibited by the corresponding bit of the control vector)

or the shorter of the two vector fields is exhausted. If broadcast is selected for field

A or B (but not both), the instruction will terminate when the nonbroadcast field ter

minates.

G
(SUBFUNCTION)

0 78 1516 23 24 31 32 39 40 47 48 55 56 63
F

(CO - C3)

GBITO: I
0 = 64-B IT OPERAND
1 = 32-BIT OPERANDS

x
(OFFSET
FOR A)

A
(LENGTH &
BASE ADRS)

y
(OFFSET

FOR B)

B
(LENGTH &
BASE ADRS)

G BITS3 4:
~----- O = NORMAL A/ B SOURCE VECTOR

1 = BROADCAST REPEATED (A)/(B)

GBITI:
0 = CONTROL VECTOR OPERA TES ON 1 'S
1 = CONTROL VECTOR OPERATES ON 0 1S

z c
(CV. BASE (ITEM COUNT
ADRS) REGISTER)

fAppendix C provides a comprehensive listing of the G designator bits usage according
to function code.

6-102 60256010 01

/f···.,~\

i,~/

c:,
tr--·~\

\ill~_,,/

0

0

0

0

0

0

0

0

0

c
0

0

0
o·
0

0

0

0

If the compare condition is met, the item count equals the number of pairs of elements

encountered up to (but not including) the pair meeting the specified condition,, including

the pairs inhibited by the control vector. If the compare condition is not rnet, the item

count equals the length of the shorter vector after the offset adjustment. The instruction

stores the item count into the rightmost 48 bits of a cleared register C. t

The control vector. if used, determines which pairs of elements are compared. For

example, if G designator bit equals zero, a one bit in the control vector enables the

comparison of the corresponding pair of source elements. A zero bit in a control vec

tor disables the comparison of the corresponding pair of source elements. The item

count, as previously described, includes all pairs of elements encoµntered, including the

pairs for which the comparison was inhibited. If a control vector is used and either

source vector A or B is exhausted before a permissive control vector bit is encountered,

the instruction makes no comparisons. In this case, the item count represents the

length of the shorter vector field minus the offset. Applicable data flag bits are 3 7

(select condition not met) and 46 (indefinite result).

Figure 6-35 shows an example of a select EQ; A=B; itern count - C(CO) instruction

with assumed instruction codes, register contents, and vector fields. The G designator

specifies 32-bit operands and broadcast source vector A 0• Since the B offset equals

3, the first comparison takes place between source element B 3 and broadcast vector

Ao; this comparison is not met. Element B 5 satisfies the comparison condition, but

the zero in bit 5 of the control vector disables the comparison. Element B6 satisfies

the comparison condition, and the control vector enables the comparison. Thus, the

item count of three is transmitted to the rightmost 48 bits of register OA. The item

count includes the B5 comparison although the control vector disabled this comparison.

tlf the C designator is zero, this instruction produces undefined results.

60256010 01
6-103

0

F
(CO)

., .
G

(90)

INSTRUCTION CODES

19 •• 25 24 11 H 1940 47 48

X A y B ~

(00) (02) (04) (06) (08)

BEFORE EXECUTION

REGISTER 02= BROADCAST VECTOR Ao

B VECTOR FIELD

(Ao= 32-BIT FLOATING-POINT OPERAND)

04= 0000 poooooooooo3,
v

FIELD LENGTH B OFFSET

06=~ 000000005000
'---v-----1

B BASE ADDRESS

oa=oooo pooooooosooo,
v

CONTROL VECTOR BASE ADDRESS
OA= 0000 000000000000

(32-BIT FLOATING POINT OPERAND)
0

6-104

31

Bo

85 =Ao

86 =Ao

AFTER EXECUTION

5000

~~E~~H ff H '.ff ff
CONTROL VECTOR

(ADDRESS 6000)

STARTING '-y-1 l
~~~~1ss ' - DISABLE COMPARISON 

COMPARISON 
DISABLED 

REGISTER 02,04,06.AND 08 ARE UNCHANGED 
OA = 0000 ,000000000003 I 

v 
ITEM COUNT 

Figure 6-35 Example of Select. EQ; A=B, Item Count to C 

;:r' 

HH •s 

'"· 

31 

___ ,7 

60256010 01 



0 
0 

0 
0 
0 

0 

0 

0 

0 

0 

[]·.,· 
' I 

0 

0 

0 
0 

0 
0 
0 

0 
0 

DA SUM (A0 + A1 + A2 + ••••An ) TO (C) AND (C+l) 

0 
F 

(DA) 

G SITO: 
O = 64-BIT OPERANDS 
1 = 32-B IT OPERANDS 

x 
(OFFSET 

FOR A) 

GBITI: 

23 24 
A 

(LENGTH & 
BASE ADRS) 

0 =CONTROL VECTOR OPERATES ON 1 1S 
1 =CONTROL VECTOR OPERATES ON 0 15 

47 48 55 56 63 
. z c 

(C V BASE (U-SUM) 
ADRS) 

C + 1 I 

I (L-SUM) I 
I l 
L._ _____ J 

NOTE: U DENOTES THE UPPER RESULT. 
L DENOTES THE LOWER RESULT. 

This instruction forms the double-precision, unnormalized, floating-point sum t of all 

the elements of vector field A. The instruction is executed in the following manner. 

Ao + A2 + A4 + A5 + 

Ai + A3 + As + A7 + 

Where A 0, Av A2,, 

=sum X 

sum Y 

• are elements of vector A. 

If necessary, the instruction right normalizes the partial sums after each addition. 

Sums X and Y (both double-precision quantities) are then added to form the final sum. 

·The instruction transmits the upper result portion of the sum to the register specified 

by C and the lower result to the register designated by C+l. 

Registers C and C + 1 are either 32- or 64-bit registers, depending on the state of 

G bit 0 in the instruction. Register C must be even; if register C is odd or Z'ero, 

the instruction results are undefined. 

The Y and B designators (bits 32 through 47) and bits 2 through 7 of the G designator 

are not used and must be zeros. There is no length specification for control vector z. 
The instruction terminates when the source vector field A is exhausted. If the control 

vector allows no elements to be summed, the instruction sets the result to machine 

zero. 

If a control vector (CV) is specified and contains no permissive elements, the result 

is machine zero. The instruction does not specify control vector length or offset. 

t Appendix B describes the double-precision addition of floating .. point operands and 
order-dependent result considerations. 

60256010 01 6-105 



Applicable data fiag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(inde~inite result). Data flag bits 43 and 46 are determined only by the final upper and 

lower results; if the upper result is indefinite,. the lower result is undefined. Data 

nag bit 43 is set if the exponent of the lower result is less than 900016 for 64-bit 

mode and 9016 for 32-bit mode. In this case, the exponent of the upper result may 

be greater than 900016 and will be stored as is and will not be forced to machine zero. 

The instruction sets flag bit 42 if any of the add operations overflow. 

DB PRODUCT (A0 A 1, A2, • • • •An) TO C 

0 
F 

(DB) 

GBITO: 
0 = 64-B IT OPERANDS 
1 = 32-BIT OPERANDS 

23 24 31 32 
x 

(OFFSET 
FOR A) 

G BITI: 

A " 
(LENGTH & 
BASE ADRS) 

O = CCJllTROL VECTOR OPERATES ON l 1S 
1 ; CONTROL VECTOR OPERATES ON 0 1S 

55 56 63 
z 

(C V BASE 
ADRS 

c 
S IGNIFICAN 
PRODUCT) 

This instruction forms the significant product t of successive, floating-point elements 

in source field A. The instruction is executed in the following manner. 

Ao • A2 = Xi 

Xi • A4 = X2 

X2 • A6 = X3 

Ai • As = Yi 

Yi• As = Y2 

Y2 • A7 = Y3 

Where Ao. Ai. A2, ••• are elements of source field A, and X and Y are 
pal'tial products. 

Sums X and Y are then multiplied to form the final product. The instruction then 

stores the final significant product in the register specified by c. ;Register C is either 

a 32- or 64-bit register, depending on whether 32- or 64-bit operands are used, re
spectively. 

t Appendfx B describes the floating point multiplication operation and order-dependent 
result considerations. · 

6-106 60256010 01 



0 

0 

0 

0 

0 

0 

0 

0 

0 

[ •. ,:·· i 

I 

/ 

0 
() 

0 

0 

0 

0 

0 

0 

0 

In the execution of the DB instruction,, the following result differences may occur. The 

central computer may multiply the partial products (X and Y) by a normalized one 

(EA40 0000 in 32-bit mode or FFD2 4000 0000 0000 in 64-bit mode) an indeterminate 

number of times,, depending on discontinuities iri the input data stream. If the coefficients 

of the partial products are nonzero,, the partial products are unchanged by the additional 

multiply. However,, if the coefficient is all zeros,, EA or FFD2 is added to the exponent. 

This is normal under the definition of significant multiply. If the interruptions last long 

enough,, the exponent may decrease to machine zero,, setting data flag 43. 

Input Stream Partial Products 

OOFF FFFF 1800 0000 1st 

0080 0000 

Interruption 0200 0000 2nd 
occurs here ---+ (First normalized one) ECOO 0000 3rd 

D600 0000 4th 

cooo 0000 5th 

AAOO 0000 6th 

94-00 0000 7th 

8EOO 0000 8th 

All of the above products are equal under the floating-point compare rules. The last 

product,, however,, sets data flag 43 and 46. Data flag 42 sets if any multiply operation 

overflows. 

These discontinuities may be caused by hardware-generated gaps in the input data or by 

machine interrupts. 

The Y and B designators (bits 32 through 47) and bits 2 through 7 of the G designator are 

not used and must be zeros. Applicable data flag bits are 42 (exponent overflow),, 43 (re

sult machine zero),, and 46 (indefinite result). 

If bit 1 of the G designator is a zero,, for example,, a zero bit in the control vector dis -

ables the multiplication of the corresponding source element and the partial product. 

Thus,, the multiplication of a source element and the partial product takes place only when 

the corresponding control vector bit is enabled. This instruction contains no length 

specification for the control vector. The instruction terminates when the A source field 

is exhausted. If the control vector contains no enabling elements,, the result is a ·' 

normalized one. 

Applicable data flag bits are 42 (exponent overflow),, 43 (result machine zero),, and 46 

(indefinite result). 

60256010 02 6-107 

I 



05 DELTA (An + 1 - An )-.Cn . 

Dl ADJ. MEAN (An+l+An) /2 ~Cn 

G 

0 

F 
(D5 OR D1) 

7 8 15 16 

x 
(OFFSET 
FOR A) 

23 24 31 32 

A 
(LENGTH AND 

BASE ADRS) 

L GBIT2: 
O=DO NOT OFFSET RESULT FIELD 
1=0FFSET RESULT FIELD 

G BIT 1: 
O=CONTROL VECTOR OPERATES ON 1's 
1=CONTROL VECTOR OPERATES ON O's 

------ G BIT 0: 
0=64-BIT OPERANDS 
1=32-BIT OPERANDS 

39 40 47 48 55 56 63 

z 
(CV BASE 

ADRS) 

c 
(LENGTH AND 
BASE ADRS) 

I c + 1 I 
I (OFFSET I 

L~~~!-~J 

This instruction forms the nth element of result vector field C by subtracting the nth 

element of source field A from the n+l th element of A. Normalized, floating-point 

arithmetic is used in the subtraction. Figure 6-36 shows an example of a delta instruc

tion with assumed instruction codes, operands, and register contents. 

The example shows that since there is no offset of the A vector, the first subtraction 

consists of A1 -A0 which produces result element c
0

• The subtraction of the A vector 

elements continues in this manner until element C 4 is reached. The corresponding Z 

control vector bit is a zero which prohibits the storing of the result element C 4 and 

leaves the C 4 result field location unchanged. 

Since the source field is one element shorter than the result field, c 5 becomes minus 

A5 and c
6 

becomes zero. The delta (D5) instruction terminates when the result field is 

exhausted. 

The Y and B designators and bits 3 through 7 of the G designator are unused and must 

be zeros. 

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46 

(indefinite result). 

6-108 60256010 01 

() 

() 
;f~~ 

~t) 

(ff"l, 

~·--" 

G 
~\ 

\(,_)/ 

(- '"" 

"1 

( -"". 
-i 

"lr 



0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

0 

~ 

0 

F 
(OS) 

G 
(80) 

x 
(0 0) 

A VECTOR SOURCE FIELD 

Ao 

Al 

A2_ 

A_3_ 

A4 

A~ 

C VECTOR RESULT FIELD 

Co<A1-Ao> 
c 1 (A 2-A 1) 

C2CA3-A2> 

:C3 (A4-A3) 

C4 NO CHANGE 

C5 (0-~) 

c6 co> 

SI 

_lj 

INSTRUCTION CODE 

A 
(O 2) 

ADDRESS 

6000 

6020 

6040 

6060 

6080 

60A-O 

ADDRESS 

8000 

8020 

8040 

8060 

8080 

SOAO 

aoco 

y 
(00) 

B 
(00) 

z 
(03) 

REGISTER CONTENTS 

02=0006 000000006000 

03=0000 000000007000 
04=ooo7 ooooooooeooo 

Z CONTROL VECTOR 

NOTE: VALUES IN PARENTHESES INDICATE 
A VECTOR ELEMENTS SUBTRACTED 
FOR CORRESPONDING C VECTOR ELEMENT. 

Figure 6 -36. Example of Delta Instruction 

60256010 01 

c 
(04) 

1 
ADDRESS 

7000 

6-109 



This instruction forms the nth element of result vector field C by the normalized addi

tion of the nth and n+lth elements of source field A. The instruction then divides the 

result element by two, producing the mean of the two source elements. The mean re

sult is stored as the corresponding result el~ment in vector C. All operands and 

arithmetic operations are expressed in floating point. 

The division by two is accomplished by subtracting one from the exponent of the result 

element. 

The Y · and B designators and bits 3 through 7 of the G designator are not used and 

must be zeros. 

Applicable data flag bits are 43 (result machine zero) and 46 (indefinite result). 

DO AVERAGE {An+ B n} I 2 ~en 

04 AVE. DIFF. {An - Bn} /2-+Cn 

0 23 24 31 32 39 40 47 48 55 56 63 
F 

(DO OR 04) 
x 

(OFFSET 
FOR A) 

__/ ~GBITS 3,4: 
G BIT o: BROADCAST 
0 = 64 BIT OPERAND G BtT 2: 

A 
(LENGTH & 

BASE ADRS) 

I : 32 BIT OPERAND 0 = DO NOT OFFSET RESULT FIELD 
I= OFFSET RESULT FIELD 

G BIT 1: 

y 
(OFFSET 

FOR A) 

0 = CONTROL VECTOR OPERATES ON I' S 
I : CONTROL VECTOR OPERATES ON O'S 

B 
(LENGTH & 
BASE ADRS) 

z 
{C V BASE 
ADRS) 

c 
{LENGTH & 

BASE ADRS) 

C + 1 I 
I (OFFSET I 

I FOR C & Z)I L _____ J 

These two instructions form the normalized average and normalized average difference, 

respectively, of elements AN and BN in the A and B vector fields. The sum (DO) or 

difference (D4) of elements A(N) and B(N) is divided by two. The result elements be

come corresponding elements of result vector field C. The division by two is accom

plished by subtracting one from the exponent: 

In all other respects, these instructions function the same as the normal vector in

structions described under Vector Instructions in this section. Thus, short source 

fields are extended with machine zeros. These instructions terminate when the result 

field is exhausted. 

Applicable data flag bits are 43 (result machine z'ero) and 46 (indefinite result). 

6-110 ! 60256010 01 

/(""11\ 
~,_,)) 

-""' 



0. 

0 

0 
0 
0 
0 

0 

0 

0 
0 

c 
0 

0 
0 
0 

0 
0 

0 
0 

BS TRANSMIT REVERSE A .. C 

0 
F 

( B8) 
x 

(OFFSET 
FOR A) 

2324 
A 

(LENGTH & 
BASE ADRS) 

/ ~G ~I:~~ NOT OFFSET RESULT FIELD 
1 = OFFSET RESULT FIELD 

G BIT 0: G BIT 1: 
0 = 64-BIT OPERANDS 0 =CONTROL VECTOR OPERATES ON l 1S 
1 = 32-BIT OPERANDS 1 =CONTROL VECTOR OPERATES ON 01s 

8 55 63 
z 

(C V BASE 
ADRS) 

c 
(LENGTH & 
BASE ADRS) 

I C + 1 
I (OFFSET FOR I 
I C & Z) I 
L - -- _.....J 

This instruction transmits the elements of vector source field A to vector result field C. 

The elements are transmitted in reverse order from A to C. Thus, the last element of 

vector A becomes the first element of vector C, the next to the last element of vector A 

becomes the second element of vector C, etc. 

This instruction terminates when the result field is exhausted. Short source fields are 

extended with machine zero elements. If the source and result fields overlap in storage, 

the results of the instruction are undefined. 

The Y and B designators and bits 3 through 7 of the G designator are not used and 

must be zeros. This instruction sets no data nag bits. 

Figure 6-37 shows an example of the operation of a transmit reverse A - C instruction 

with assumed instruction codes, addresses, field lengths, and vector fields. 

Since the offsets for the A and C vector fields are equal (+3), the first operation trans-

mits element A7 to c 3• 

trol vector is reached. 

The operations continue in this manner until bit 5 of the con

Since bit 5 = zero, the transmission of A5 to c 5 is disabled, 

and c 5 remains unaltered. 

The last three elements of vector field C (C8, c 9, and CA) are set to machine zero 

since the result field length is three elements longer than the source length. The dashed 

lines show the order of tr an sf er of elements from the A vector source fie.Id to the C 

vector result field. 

60256010 01 6-111 



. 0 

F 

(88) 

'' 

REGISTERS 

02= 

03= 

04= 

06= 

07= 

FIELD 
LENGTH 

FIELD 
LENGTH 

G 

(AO) 

.... 
x 

(02) 

INSTRUCTION CODES· 

A 

(03) 

1111 

y 

(00) 

B 

(OO) 

z 
(04) 

.... 
c 

(06) 

Ct I I 
I I 
L J~!_ _J 

0000 000000000003 

0008 00000000 5000 Z CONTROL VECTOR FIELD 

0000 00000 000 6000 
FIELD LENGTH ADDRESS 

I A \ 6000 
0008 00000000 7000 

0000 000000000003 

0111411711AI 11 

l+l1l1l1HHl+I ~ D 
~T \_DISABLE TRANSMIT A-+C 

A SOURCE VECTOR FIELD ADDRESS 
0 

OFFSET { 

STARTING~ 
ADDRESS 

0 

OFFSET { 

STARTING__. 
ADDRESS 

Ao 
Al 

At 
A3 

A4 

A5 
A6 

A1 

C RESULT VECTOR FIELD 

Co 
c, 
C2 

C3 (A7) 

C4 (A6) 

C 5 (UNALTERED) 

c6 (A 4) 

C7 (A 3) 

Ce (0) 

C9 (0) 

CA (0) 

II 

II 

5000 

~ - - ...., 
...._ - ..., 

.._ 

5020 

5040 

5Q.6Q_ 

5Q..8Q_ 

50AO 

5Q..CQ_ - ~ 

.._ 5Q_EQ.. ..., 

I 

ADDRESS 

7000 

1020 I 
7040 I 

i.-7Q..6Q.. .J I 
7Q_8Q_ _ _J I I 

70AO I I 
7Q.CQ_ __ _J I 
7Q_EQ_ __ _J 

i.· 

i.-
i.-' 

7100 

7120 

7140 

NOTE= VALUES IN PARENTHESES DENOTE 

FINAL VALUES OF RESULT ELEMENTS. 

Figure 6-37. Example of Transmit Reverse A -c Instruction 

6-112 60256010 01 

0 

r-~ 

l~L,_Ji 

( -. 
. ;;.I 

(' '"' 
\:.. .. / 

\,. _-:I' 

() 

( ""' .ill' 



\ O" 

0 

0 

0 

0 

0 

0 

Q: 

0 \ 
) 

0 

0 

0 
0 

0 

0 
0 

0 

DE POLYNOMIAL EVALUATION 

0 
F 

(DE) 
x 

(OFFSET 
FOR A) 

23 24 31 32 
A 

(LENGTH & 
BASE ADRS) 

y 

(OFFSET 
FOR B) 

39 40 47 48 55 56 63 
8 

(LENGTH & 
BASE ADRS) 

z 
(C V BASE 
AORS) 

c 
(LENGTH & 
BASE AORS) 

I C + 1 
1( OFFSET I 

a·a~T o~ ------- G BIT 3: 
I FOR C & Z) I 
'-- -· - __ J 

0 • 6._BIT OPERANDS 
1 = 32-B IT OPERANDS 

GBITI: I 
0 = CONTROL VECTOR OPERATES ON 
1. = CONTROL VECTOR OPERATES ON 

o· =NORMAL VECTOR A 
1 = BROADCAST VECTOR A 

GBIT2: 
l 1S 0 =DO NOT OFFSET RESULT· FIELD 
0 1S 1 = OFFSET RESULT FIELD 

This instruction forms result elements. each of which represents a polynomial evalua

tion of the repeated product of an element from vector field A and the constants from 

vector field B. All operands are. in floating point format. The elements of source 

vector A contain the arguments while the elements of source vector B contain the con

stants necessary for the polynomial evaluation. The instruction forms each result ele

ment by evaluating the polynomial at each argument of source vector A. The instruction 

uses significant upper multiplication and unnormalized addition t (add upper) in perform

ing the evaluation. All arithmetic operations are performed in floating point format. 

Bits 4 through 7 of the G designator are not used and must be zeros. 

This instruction evaluates polynomials of the following general form. 

y = ~XO + Kn-lxl + Kn-2X2 + ••• + K2Xn-2 + KiXn-1 + KoXn 

The grouping of terms produces the expression of the same polynomial of the following 

form. 

The DE instruction evaluates the polynomials expressed in the previous general form. 

t Appendix B describes the significant upper and unnormalized floating-point operations. 

60256010 01 6-113 



The substitution of vector- element terms in the preceding polynomial expression yields 

the following. 

co= Bn +Ao Bn-1 +Ao [Bn-2 + ••• Ao (B2 +Ao (Bl +_BoAoJ )] ) 

• 
• 

Cm= Bn +Am { Bn-1 +Am (Bn-2 + • • • Am(B2 + ~ (Bl+ BoAm.J )] } 

In the previous polynomial expressions: 

B
0 

represents the first element of vector field B (the highest order constant in the 

polynomial Bx) and Bn denotes the lowest order element. 

A
0 

represents the first element and Am the last element of vector field A. 

c
0 

denotes the first element and Cm the last element of result vector field C. 

The DE instruction forms each element of result vector field C (polynomial evaluation) 

by performing the series of floating point multiplications and additions indicated in the 

preceding polynomial exp~essions. Figure 6-38 illustrates the basic sequence of arith

metic operations in the execution of the polynomial evaluation DE, instruction. 

Figure 6-38 shows that the first pass multiplies each element of field A by the first 

element of field B. The computer stores the result from the first pass and all suc

cessive passes in field C. The second pass adds each element of field C to the second 

element of field B and stores the result in field C. The third pass multiplies each 

element of field C by its respective element of field A and stores the results in field C. 

The rest of the passes are like the second and third.: add, multiply, add, multiply, etc·. 

Each add pass decrements field B to the next lower order field B operand. The in

struction terminates when field B is exhausted. 

Short A vector source fields are extended with normalized ones. If in Figure 6-38, for 

example, the A vector source field was only two elements in length, c2 would equal the 

sum of all the B vector elements (B
0 

+ B1 + B2 + B3 + B 4) since all of the A ·vector 

source elements in the evaluation would equal one. As indicated by the instruction for

mat, the A vector can be a single broadcast element. 

The B ·vector cannot be broadcast. In regard to control vectors and offsets, the DE 

instruction functions are the same as normal vect0r instructions. 

6-114 60256010 t>l 

.,-;( ·~ 

~u.: 

(}; 

/A(·-··"r\ 

i~il.J!" 

(Ill'~ 

-~-~/ 

'- ... __ ,,,::;' 

./ 

/.·r-·- ..... ,. 
\t _ _,P 



() 

0 

0 

0 

0 

0 
() 

0 

c 
,,.\ 
~/ 

c 
0 

0 

0 

0 

0 

0 

0 

If the B vector length (length minus offset) equals zero before the reading of the first 

operand, the instruction operates as a no-operation (no-op). If the B field length equals 

one, two, or three, the results are as follows:· 

B field Length Result 

One Undefined 

Two Bl + AB0 

Three B2 +A (Bl + AB
0

) 

Applicable data flag bits are 42 (exponent overflow). 43 (result machine zero), and 46 

(indefinite result). The setting of data flag bits 43 and 46 is determined only by each 

result stored into field C and not by any partial result in forming that element. Data 

flag bit 42 (exponent overflow) is set if overflow occurs in any add or multiply operation. 

Co= BJi + 

c, = Bn + 

C2 = Bn+ 

C3 = Bn+ 

CM= Bn+ 

PASS 

N 

Ao { 8n-1 + Ao ( 8n-2+ AO (82 + Ao (e, + 

Al { Bn-1+ Al [ Bn_-2+ Al (82 + A1 (a,+ 

A2 { Bn-1+ A2 ( 8n-2+ A2 (82 + A2 (e, + 

A3 {en-1 + A3 (en.-2+ 

• 
A3 (82 + A3 (01 + 

• 
• 
• 

AM { Bn-1 + AM [ Bn-2+ ... AM (B2+ AM (e,+ 

PASS PASS PASS PASS ff PASS PASS PASS PASS 

N-1 N-2 N-3 N-4 5 4 3 2 

Figure 6-38. Basic Arithmetic Sequence for Polynomial 
Evaluation· Instruction 

BoAo) >]} 
BoA1 J >J} 
B0A2] l]} 
BoA3 J l]} 

Bif-M) >l} 

PASS 

60256010 01 6-115 



OF INT ERV Al A PER B -.c : 

0 
F 

(OF) 

·---G 8fT z: . 

31 32 
A 

(SCllRCE 
ELD£NT) 

B 
(SOURCE 

· ELEt-ENT) 

z c 
(C V BASE {LENGTH & 
ADRS) BASE ADRS) 

I C + 1 
1{0FFSET I 
I FOR C & Z) I 
L..- - - - _.J 

GBITO: 
O = 64-B IT OPERf'ND 

0 · : DO NOT OFFSET RESULT FIELD 
1 a OFFSET RESULT FIELD 

· 1 = 32-B IT OPERAND 
G BITI: 
0 : CONTROL VECTOR OPERATES ON 
1 = CONTROL VECTOR OPERATES ON 

l's 
ors 

This instruction forms a result vector field D. The initial element of vector field D 

is the constant from the register designated by B . The instruction forms each suc

ceeding result element by adding the constant in register B to the preceding element. 

Thus,, the second element of vector D equals the first element plus the content of 

register B. The third element 0f vector D equals the second element plus the content 

of register B, etc. The instruction us.es unnormalized,, floating point addition. t Thus,, 

the first element of D = B and the succeeding elements are D = U 1. + B. o n n-

If the instruction uses a control vector,, an element is generated for each control bit of 

the field length,, although it may not be stored in the result field. If the instruction 

detects a nonpermissive bit in the control vector, the addition operation is performed,, 

but the result element is not stored in the result field. If the control vector disables 

the storing of a result element and this element is indefinite,, data flag bit 46 (indefinite 

result) is not set until a permissive bit is detected in the control vector. Similarly,, 

data flag bit 42 (exponent overflow) or, 43 (result machine zero) is set on the next per

mitted store although· the iterative step which overflowed was not stored. 

The X and Y designators and bits 3 through 7 of the G designator are not used and 

must be zeros. 

t Appendix B describes floating point arithmetic and order-dependent result considerations. 

6-116 60256010 01 

{} 

/''t,. 
~J) 

./ 



0 
0 

0 
0 
0 
0 

0 

0 

[
i 
' 

0 
0 
0 

0 
0 

• 

The central computer executes the DF instruction (table 6-20) with the pipelines performing I 
an add operation. 

TABLE 6-20. DF INTERVAL A PER B - C INSTRUCTION 

I NOTE I 
A is A operand. B is B operand. MZ is machine 
zero. SSA is short stop A, and SSB is short stop B. 

Pipeline 1 Pipeline 2 

Cycle A Input B Input Output B Input A Input Output 

1 B 

~'\ ~ 
x x x 

2 B x x x 
3 B : ~ ~ B 

~~ 
x 

4 B MZ MZ X 
5 2B ._SSA- 2B ~ssB-2B B 

MZ ~ X 
6 2B 2B 2B B B X 
7 2B 2B 2B B 2B ..-SSA--2B 

8 2B 2B 2B A MZ MZ 
9 MZ 4B~SSB-4B A B B 

10 MZ 4B 4B A 2B 2B 

11 MZ 4B 4B A 3B 3B 

12 MZ 4B 4B _.. 4B A r--A 

13 MZ 4B 4B 4B A+B A+B 

14 MZ 4B 4B 4B A+2B A+2B 

15 MZ 4B 4B 4B A+3B A+3B 

16 MZ 4B 4B 4B A+4B A+4B 

17 MZ 4B 4B 4B A+5B (A+B)+4B 

18 MZ 4B 4B 4B A+6B (A+2B)+4B 

l l l l ~Results 
to 

• t' Stream 

60256010 02 6-117 



The results to stream may be modified slightly if an interrupt occurs. For example. if an 
interrupt occurs at cycle 12, the instruction progresses as shown in table 6-21. 

Cycle 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

l 

6-118 

TABLE 6-21. DF INTERVAL INSTRUCTION WITH INTERRUPT 

A Input 

MZ 
MZ 

I NOTE I 
A is A operand. B is B operand. MZ is machine 
zero, SSA is short stop A. and SSE is short stop B. 

Pipeline 1 Pipeline 2 

B Input Output B Input A Input 

4B 4B 4B 3B 

4B 4B 4B A 

Interrupt Held in Stream~ 
during Interrupt 

B x x 
B B X x x 
B B X B B 

Output 

3B 

A 

A+B 

x 
x 
x 

B~X 
B B X MZ MZ"' 

~~ 2B~SSA-2B ...-. SSB-2B B MZ 
2B 2B 2B B B 

2B 2B 2B B 2B~SSA-2B 

2B 2B 2B A+B MZ MZ 

MZ 4B ~ssB-4B A+B B B 

MZ 4B 4B A+B 2B 2B 

MZ 4B 4B A+B 3B 3B 

MZ 4B 4B ..... 4B A+B A+B 

MZ 4B 4B 4B A+B+B (A+B)+B 

MZ 4B 4B 4B A+B+2B (A+B)+2B 

l 1 l l l Results 
to 

Stream 

60256010 01 

0 

1(--""ll-\ 

<41._ _ _)17 

!,-·~ .. 
'\.._,,_, 

,,;f'\ 
\t__,.;;! 

0 
.. 

C. 
; 

. 



0 

0 

0 

0 

0 

0 

0 

0 

0 

[
, 

, 

0 

0 

0 

0 

0 

0 

0 

0 

0 

• 

After an interrupt, the instruction is restarted in a manner similar to its initial startup 

but with the next result after the interrupt used in place of A. In table 6-21, A +B is 

the first valid result after the interrupt followed by A+B+B etc. (A+B)+B would cor

respond to the result A+2B in the case where no interrupt occurred. Since add is order 

dependent, these two quantities may not be equal. 

Example: 

A= 01 000001 

B = 00 000001 

A+B = 01 000001 

+B = 00 000001 

(A+B)+B = 01 000001 
~Not Equal 

B = 00 000001 

+B = 00 000001 

2B = 00 000002 

A= 01 000001 

+2B = 00 000002 

A+2B = 01 000002 

BA TRANSMIT INDEXED LIST•C 

0 2324 63 
F 

(BA) 
X A 

(OFFSET , (LENGTH & 
B 

GROUP LENGT 
& BASE ADRS 

c 
(BASE ADRS) 

I 
G BIT 0: 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

FOR A) BASE ADRS) 

"-._G BIT 7: 
0 = VECTOR B RESIDES IN CENTRAL MEMORY 
1 = ALL ELEMENTS OF INPUT VECTOR B MUST 

RES IDE WITH IN THE RANGE OF ABSOLUTE OR 
VIRTUAL BIT ADDRESS 0 THROUGH 3FCO 

G BIT 6: 
0 = SINGLE ELEMENT CASE 
1 = GROUP CASE 

This instruction forms an indexed list of result elements in vector field C by trans

ferring elements from addresses in vector field B as indexed by the item counts in the 

A-vector field. The rightmost 48 bits (no half-word option) of each elerp.ent of vector 

A contains an item count. The instruction adds the first item count in vector A to the 

base address of the first element of vector B. The element at the new address is 

60256010 01 6-119 



transferred to result vector C. Before the addition of the item count (index) to the 

base address, the index is left-shifted five places (32-bit operands) or six places (64-

bit operands) to form the half-word or full-word address, respectively. 

The instruction then adds the next element of vector A to the base address of the first 

element of vector B. The resulting address indexes the second element of vector B. 

This process continues until vector A is exhausted. 

The elements of vector A are always 64-bit operands, while G bit 0 specifies the B 

and C vector element size. 

Bits 1 through 5 of G designator are not used and must be set to zero. 

If G bit 6 is a zero, the instruction transmits single elements as previously described. 

If G bit 6 is set, a group of elements is transmitted from vector B to vector C for 

each element of vector A. The group length is specified in the upper 16 bits of 

register B. All groups are of equal length. 

If G bit 7 is set,, all elements of input vector B must reside in the register file within 

the range of absolute or virtual bit addresses 0 through 3FCO. Reference to the reg

ister file as central memory is normally not allowed. This instruction and the B7 

instruction are the only instructions which permit this type of reference to occur. Re

fer to section 5 for other register file restrictions. If all the addresses for vector B 

are not contained in the register file, this instruction is undefined. This instruction 

is also undefined if G bits 6 and 7 are both set. 

The search: index list- C (CB through CB) instructions may be used to produce the 

index list for the BA instruction. 

Figure 6-39 shows an example of a transmit indexed list-c instruction with assumed 

instruction codes,, register content, and vector fields. The first item count is read 

from address 4000., . This value indexes the B vector base address by five half-words 

after the left shift ·of five. Thus, the instruction transfers the first B vector element 

from address 70AO to the C vector element address 9000. Six B vector elements are 

transferred to the C vector. 

No data flag bits are set by the BA instruction. 

6-120 60256010 01 

(J 
(). 

,-]\ , _ _,. 



0 

0 

0 

0 

0 

0 

0 

c 
0 

0 

[ 
C\ 

) 

C· 

0 

0 

0 

0 

0 

0. 

0 

F 
(BA) 

Ao 

A1 

A2 

A3 

A4 

A5 

0 

Bo 
81 

B2 

83 

84 

85 

7 • 

A 

(0000 

(0000 

(0000 

(0000 

(0000 

(0000 

INSTRUCTION CODE 
1$ .. 25 24 SI H H 40 

G 
(80) 

x 
(02) 

VECTOR SOURCE 

000000000005) 

000000000001 

0 0 0000000000) 

000000000002) 

000000000003) 

000000000004) 

A 
(03) 

y 
(00) 

REGISTER CONTENT 

B 
( 04) 

03 = 0006 000000004000 
04= 0005 000000007000 

06 = 0006 000000009000 

FIELD 
65 

4040 

4080 
Fl ELD LENGTH 

40CO 

4100 

COUNTS 

3RD ELEMENT 
8 VECTOR SOURCE FIELD L ADDR ESS 

0 

II 

IJ 700 
702 0 

704 0 

706 0 

708 0 

0 
IST ELEMENT ~ 

NOTE: 

VALUES IN PARENTHESES 
INDICATE C VECTOR ELEMENTS 
AFTER TRANSFER OF INDEXED 
LIST. B AND C VECTOR ELEMENTS 
ARE IN HALF- WORDS. 

0 

Co 

c, 
C2 

C3 

C4 

C5 

C VECTOR RESULT FIELD 

(85) 

(B j) 

(Bo) 

(8 2> 

(83) 

(84) 

z 
(05) 

M H 

Figure 6-39. Example of Transmit Indexed List -c Instruction 

60256010 01 

c 
(06) 

" ADDRESS 
9000 

9020 

9040 

9060 

19080 

190AO 

FIELD. 
LENGTH 

6-121 



87 TRANSMIT LIST• INDEXED C 

0 

F 
( B7) 

G BIT 0: 

7~16 
x 

(OFFSET 
FOR A) 

23 24 

A 
(LENGTH & 
BASE ADRS) 

B 
(BASE ADRS) 

---G BIT 7: 
0 = VECTOR C RE$'IOES IN CENTRAL tvEMORY 
1 = ALL ELEtvENTS OF OUTPUT VECTOR C M.JST 

RESIDE WITHIN THE RANGE OF ABSOLUTE OR 
VIRTUAL BIT ADDRESS O THROUGH 3FCO 

G BIT 6: 

63 

NOTE: 0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

G BIT 4: 

0 =SINGLE ELEtvENT CASE 
1 = GROUP ELEtvENT CASE 

O = NORMAL VECTOR B 

THE C+l 
DESIGNATOR IS 
NOT USED 

1 = BROADCAST VECTOR B 

This instruction adds the rightmost 48 bits of the first element of vector field A to the 

base address in register C to form the address of the first element of result vector 

field C. The instruction then transmits the first element of vector field B to the com

puted address in C. The rightmost 48 bits of each element of vector field A is an 

item count. Before the addition of the. item count (index) to the base address, the in

dex is left-shifted five places (32-bit operands) or six places (64-bit operands) to form 

the half-word or full-word address, respectively. 

6-122 60256010 01 

.10···.> \' . -/ 

0 

(~-~\ 

·tJ~~ 

',\!it_./. 

;i]··:, ·. 
I 

\"'-""'"'': 

rf."': 
\l_j 

_4-~---. 

v 



0 

0 

0 

0 

0 

()
II, 
/ 

0 

[ 
0 

c 
0 

0 

0 

0 

0 

0 

0 
0 

Similarly, the instruction forms the address of the second element of vector field C by 

adding the second element of vector field A to the base address in register C. The 

second element of vector field B is then transmitted to. the computed address in the 

result vector field C. The instruction continues in this manner until the A vector field 

length is exhausted. 

The Y, Z, and C+l designators are not used and must be zeros. The elements of 

vector field A are 64 bits while the elements of vectors B and C are 64 bits or 32 

bits as specified by G designator bit O. 

Bits 1, 2, 3, and 5 of the G designator are not used and must be set to zero. Vector 

B is broadcast when bit 4 of the G designator is set and bit 6 is a zero. 

If G bit 6 is a zero, the instruction transmits single elements as previously described. 

If G bit 6 is set, a group of elements is transmitted from vector B to vector C for 

each element of vector A. The group length is specified in the upper 16 bits of reg

ister C. All groups are of equal length. 

If G bit 7 is set, all elements of output vector C must reside in the register file, 

within the range of absolute· or virtual bit addresses 0 through 3FCO. Reference to 

the register file as central memory is normally not allowed. This instruction and the 

BA instruction are the only instructions which permit this type of reference. Refer to 

section 5 for other register file restrictions. If all the addresses for vector C are 

not contained in the register file, the instruction is undefined. This instruction is also 

undefined if either G bits 4 and 6 or G bits 6 and 7 are set. 

60256010 01 6-123 



DC VECTOR DOT PRODUCT TO (C) ANO (C+ 1) 

0 

F 
(DC) 

x 
(OFFSET 

FOR A) 

2324 3132 

A 
( LENGll-1 & 
BASE ADRS) 

y 

(OFFSET 
FOR B) 

O =CONTROL VECTOR OPERATES ON 1 1S 

3940 47 48 

B z 
(LENGll-1 & (C V BASE 
BASE ADRS) ADRS) 

NOTE: 

55 56 63 
c 

(U RESULT 
REGISTER) 

c + 1 
(L RESULT 

I REGISTER) I 
L- - - __ J I ~GB!Tl: 

G BIT O: 1 =CONTROL VECTOR OPERATES ON ors U DENOTES THE UPPER RESULT. 
L DENOTES THE LOWER RESULT. 

0 = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

This instruction multiplies corresponding elements of vector fields A and B and forms 

the sum of the products. This instruction uses double-precision. unnormalized. float

ing~ point t arithmetic in the operation. The sum of the double-precision products is of 

the following form. 

(AO •BO) + (A2 • B2) + + (An • Bn) x 

(Al •Bl) + (A3 • B3) + + (An • Bn) y 

where:. An are elements of vector A. 

BJ:i are elements of vector B. 

and X and Y are partial sums 

of the product. 

Sum X and sum Y (both double precision quantities) are then added to form the final 

sum. The instruction transmits the upper result portion of the sum to the register 

specified by C and the lower result to the register designated by C+l. The DC in

struction terminates when the shorter of the two source fields is exhausted. If the 

control vector contains no enabling elements. the result is set to machine zero. 

Bits 2 through 7 of the G designator are not used and must be zeros. The instruction 

contains no length designator for the control vector Z. 

C must specify an even-numbered register. If C specifies an odd-numbered register. 

the instruction results are undefined. 

t Appendix B describes floating•point arithmetic and order-dependent result 
considerations. 

6-124 60256010 01 

0 
~\ 
(-\)) 

1("' 
\;lr\_,_ji'; 

/'(' ~\ 
'~y 



0 

0 

0 

0 

0 

0 

0 

0 

c " 

0 
0 
0 
0 

0 

0 

0 

0 

The DC instruction probes the setting of data flag bits 42 (exponent overflow), 43 (re

sult machine zero), and 46 (indefinite result). Data flag bits 43 and 46 are determined 

only by the final upper and lower results ; if. the upper result is indefinite. the lower 

result is undefined. Data flag bit 43 is set if the exponent of the lower result is less 

than 9000 16 . In this case, the exponent of the upper result may be greater than 

9000 16 and will be stored as is and will not be forced to machine zero. The instruction 

sets data flag bit 42 if any of the multiply operations overflow. 

STRING INSTRUCTIONS 

The string instructions typically perform arithmetic and logical operations on strings of 

data in the form of 8-bit bytes. The 8-bit byte size allows handling large alphabets; 

this size is also compatible with ASCII and EBCDIC codes. The data strings are in 

the general format shown in figure 6-40. 

The field length of the data string can extend beyond one 64-bit word. The field length 

of the data string can also be less than one data word. 

0 78 1516 23 24 3132 3940 4748 5556 63 

BYTE BYTE BYTE BYTE BYTE FIRST WORD ADORES$ 

BYTE BYTE BYTE BYTE BY TE BYTE BYTE BYTE SECOND WORD ADDRESS 

BYTE BYTE BYTE BYTE BYTE BYTE THIRD WORD ADDRESS 

Figure 6-40. Example of General Format of a Data String Field 

60256010 01 
_6-_1?5 



The order of processing the bytes in the string instructions may be from right to left 

or left to right as described in the instruction descriptions in this section. For string· 

instruction terminations, refer to the descriptions of the individual instructions. 

STRING INSTRUCTION DATA CODE AND FORMATS 

String instructions perform operations on data strings using decimal data codes in 

packed binary coded decimal (BCD), zoned BCD, and binary formats. The following 

paragraphs describe these codes and formats. 

DECIMAL DATA CODES 

The string instructions represent decimal numbers as signed magnitudes. Four bits 

represent the sign. Each group of four succeeding bits represents a decimal digit. 

Table 6-22 lists each decimal digit and sign representation and the corresponding binary 

code. 

TABLE 6-22. DECIMAL DATA CODES 

Decimal Binary Binary 
Digit Code Sign Code 

0 0000 + 1010 
1 0001 - 1011 
2 0010 + 1100 
3 0011 - 1101 
4 0100 + 1110 
5 0101 + 1111 
6 0110 
7 0111 
8 1000 
9 1001 

Although several binary codes represent the decimal sign in string instruction opera

tions, the four plus sign codes are equal. Similarly, the two minus signs equal each 

other. 

During the job mode, the sign and zone bits (table 6-23)) are generated by the decimal 

string instructions and are conditioned by the ASCII/EBCDIC bit in the job invisible 

package. During monitor mode, only ASCII codes are generated. The move and scale 

A - C (FA) instruction, which transmits the sign bits directly, represents the only 

exception to this principle. 

6-126 60256010 01 

:0., ', ': ,J, 

r1-~. 

~--'-··"'/ 

( .. -.)';\ 
\,~,;/ 



I 0 

0 

0 

0 

0 

0 

0 

0 

0' 
0 

c 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TABLE 6-23. RESULT SIGNS 

ASCII ·EBCDIC 
Sign Selected Selected 

+ 1010 1100 

- 1011 1101 

Zone 0011 1111 

PACKED BCD 

The string instructions perform decimal arithmetic on data in the packed format in 

figure 6 -41 .• 

Figure 6-41 shows that the rightmost four bits of the rightmost byte in the field con

tain the sign. The leftmost four bits of the rightmost byte contain the least significant 

digit of the number. All other bytes in the field contain two 4-bit digits. 

MOST 
SIGNIFICANT 

BYTE 
~ 

IOI I+ Oil! 
'-v--1 
MOST 

SIGNIFICANT 
DIGIT 

6 

DIGIT 

LEAST 
SIGNIFICANT 

BYTE 
~~ l looooEoo 1 j1 oo+ oo 1loo11l1o1 oj 

ADDITIONAL 
BYTES 
IN STRING 

~· 
LEAST SIGN 

SIGNIFICANT 
DIGIT 

THIS EXAMPLE ASSUMES AN 
ASCII SELECTION. 

Figure 6-41. Example of the Packed Decimal Format 

60256010 01 6-127 



ZONED BCD 

The .zoned BCD is used mainly in input/output operations. In the zoned BCD format. 

each ·byte contains one BCD digit (figure 6-42) .• 

MOST 
SIGNIFICANT 

BYTE 
~ 

loo 11l1001ll 
~ 

ZONE MOST 
SIGNIFICANT 

DIGIT 

LEAST 
SIGNIFICANT 

BYTE 
~ 

00110000001101 © 
110011010010111000 

~ 
ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN LEAST 

SIGNIFICANT 
ADDITIONAL DIGIT 
BYTES 
IN STRING 

Q) THIS EXAMPLE ASSUMES AN 

ASCII SELECTION. 

8 

Figure 6-42. Example of the Zoned BCD Format 

Figure 6-42 shows that the left four bits of the rightmost byte in the field contain the 

sign. The leftmost four bits of all other bytes contain the zone designator for the 

corresponding digit. Since an ASCII selection is assumed in the example. a zone code 

of 0011 corresponds to a decimal digit. Refer to the ASCII conversion table in appendix 

A. Some string instructions pack zoned numbers into the packed decimal f©rmat and 

unpack packed decimal numbers into the zoned fermat. 

BINARY FORMAT 

String instructions represent binary numbers as strings of 8-bit bytes. The least sig

nificant bit is the rightmost bit of the rightmost byte. The leftmost bit of the leftmost 

byte contains the sign bit. Positive numbers have a zero sign bit. Negative numbers 

are expressed in two's complement form and have a one for the sign bit. All binary 
,/ 

numbers in string instructions must have the sign extended through the sign bit. The 

length of the binary numbers is dependent upon the specified field length as described 

in the following paragraphs. 

6-128 
60256010 01 

(). 

:···"\ 
\i,,,,.,,: 

'" ...... ' 



0 

0 

0 

0 

0 

0 

0 

0 
0 
0 

0 

0 

0 

0 

0 

0 

0 

0 

• • 

STRING INSTRUCTION FORMAT 

The string instructions use the general format shown in Figure 6-43. 

0 

F 
(FUNCTION) 

G 
(SUB-

15 " 

FUNCTION 

x 
(INDEX 
FOR A 

A 
(LENGTH 8 
BASE ADRS 

y 
(INDEX 
FOR B 

JI 40 

B 
(LENGTH 8 
BASE ADRS 

z 
(INDEX 
FOR C 

c 

F = a- BIT INSTRUCTION CODE '----y---J 
(RESULT LENGTH 

G =a- BIT DIRECT OPERAND,TWO .8BASE ADRS) 
2- BIT DESIGNATORS, OR AN 8-BIT REGISTER DESIGNATOR 

X,A,Y, 
B,Z,C =a- BIT DESIGNATORS; THE REGISTERS 

CONTAIN ADDRESSING INFORMATION FOR 
THE FIELDS TO BE USED. 

Figure 6-43. ·General String Instruction Format 

FIELD LENGTHS, BASE ADDRESSES, AND INDEXES 

Figure 6-44 shows the format of the registers containing the field length, base address, 

and index for a given data string. 

FIELD LENGTH 
(OR DELIMITER) 

X,Y,ANO Z 

--
BASE ADDRESS 

REGISTER FORMAT 

INDEX 

Figure 6-44. String Instruction Register Formats 

•• 

60256010 01 6-129 



If any of the 8-bit design~tors X, Y, or Z are 00 16, the instruction does not use in

dexing for that string but obtains the address of the initial byte from the base address. 

Figure 6-45 shows an example of the additiol1: of the index to an initial address to ob

tain the initial byte and field length for the data string. 

Figure 6-45 shows that the effective length of the data field is the same as the field 

length contained in the specified register. Indexing does not affect the effective field 

length as does offsetting in the vector instructions. 

INDEX • 02
16 A 

1o 1 a 

'- BASE 
ADDRESS 

23 24 

'- .BASE ADDRESS 
+ INDEX 

{DATA FIELD_USED) 
F J£LD LENGTH - 0006

16 A 

31 32 47 48 

Figure 6-45. Example of Index and Field Length Applied to a Data Field 

. If the specified length of a string source field is zero, that field is identical to a nor

mal field containing positive zero. If the specified length of the result field is zero, 

the instruction functions as a no-op. 

STRING INDEXES 

In all string instructions, indexes are item counts in bytes except for the search for 

masked key bit (D6) and masked key word (FF) instructions. String indexes differ from 

vector offsets in that the range of vector offsets is limited to :1: 216_ 1 while string 

indexes have any value up to :1: 245_ 1 for byte item counts. Since byte indexes are 

left-shifted three places before they are added to the base address~ the leftmost three 

bits of a string index are not used. The sign bit of negative indexes must be extended 

through bit 16 (figure 6-44). 1 overflows are ignored when indexes are added to base 

addresses. 

6-130 
60256010 01 

()). 

() 

;ii(~.,.,\ 

ct:-J· 

,~,,_,,_·.\.· 
~l '{ ··"-·'·. 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

• 

DELIMITERS 

The following six instructions can use delimiter termination. 

1. Move bytes left; A - C (F8) 

2. Move byte left, one's complement (F9). 

3. Compare bytes A, B per mask field C (FD). 

4. Translate A per B - C (EE). 

5. Translate and test A per B- C (EF). . 

6. Translate and mark (D7). 

All other string instructions contain fields that are limited by the specified field length. 

Delimiters are contained in the field length specification (bits 0 through l!U of the des-

ignated register as shown in figure 6-44. When a delimiter character is used, the 

field terminates when a character matching the delimiter is reached in the data field. 

Figure 6-46. shows an example of a delimiter used in a data field. The subfunction 

(G designator bits) controls the selection of field length or delimiter character as 

follows: 

d (G bits 0 and 1) designator for fields A and B 

e 

I INITIAL. 
BYT~ 

(G bits 2 and 3) 

(G bits 4 and 6) = 
(G bits 5 and 7) 

designator for field C 

undefined, must be zeros except for instructions D7 and FD 

when used, these bits control the incrementing of the A and 
C field indexes, respectively 

A DATA SOURCE FIELD 

LAST 
BYTE 

BYTES IN NEXT 
DATA FIELD 

,----A-----..-----~....n.--~~--

DELIMITER 
CHARACTERS 
MATCH 

55 56 63 

REGISTER I I : 1 · s 
~~S~GNATEO . I I I I 11 I I ' 

--~~~~'-----v---1~~~__...._ __ ~ looooooooi 
SPECIFIED 
DELIMITER 
CHARACTER 

Figure 6-46. Example of Delimiter Termination of a Data Field 

60256010 01 6-131 



Table 6-24 lists the bit values for the G bit d and/or e designators and ·the corresponding 

functions. 

TABLE 6-24. G DESIGNATORS FOR STRING INSTRUCTIONS t 

Designator 

d and/or e 

d and/or e 

d and/or e 

d 

d/e 
Bit 

Value 

00 

10 

11 

01 

Function 

The 16-bit length specification in A, B, and/ or C 

represents an item count of the number of items 

in the field (field length). This item count has the 
16 range of +2 -1. 

The rightmost eight bits of the length specification 

in -A, B, and/ or C are used as a delimiter character. 

The entire 16 bits of the length specification in A, 

B, and/ or C are used as a delimiter character. 

The rightmost eight bits of the length specification 

function as a delimiter character. The leftmost 

eight bits serve as a mask on the comparison. Bits 

in the delimiter character and the operand byte are 

compared only where ones exist in the mask. This 

specification applies only to ·source fields. Any in

struction becomes undefined if this specification is 

used for a result field. 

If a delimiter is specified for a source field, the instruction does not use the delimiter 

character as an operand. In the case of a 16-bit delimiter, the field terminates when 

the leftmost eight bits and the rightmost eight bits of the 16-bit delimiter character 

match two consecutive source bytes. 

If an 8-bit or 16-bit delimiter is specified for the result field, the instruction stores 

the delimiter character at the end of the result field. The delimiter does not specify 

a field length in this case since the instruction does not search the result field for the 

delimiter. If a 16-bit delimiter is used, ·the instruction stores the leftmost eight bits 

and rightmost eight bits in consecutive order at the end of the result field. 

tAppendix C provides a comprehensive listing of the G designator bits usage according 
to function code. 

6-132 60256010 01 

((1;'· v· 

o-

,-~--, 

( 
-~.;)I'' 

f('f--,. 

\'°'-"" 

1f').". 

i~ •• i 



0 

0 

0 

0 
(j 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

In the translate A per B - C (EE) instruction, the use of a delimiter character for the 

result field causes the instruction to terminate when the A field is exhausted. 

INDEX INCREMENTS 

The following instructions contain index incrementing capabilities. 

1. Move bytes left: A - C (F8). 

2. Move bytes left, one's complement (F9). 

3. Compare bytes A, B per mask field C (FD). 

4. Search for masked key, byte A, B per C (FE). 

5. Search for masked key, word A, B per C (FF). 

6. Search for masked key bit A, B per C (D6 ) •. 

7. Translate A per B - C (EE). 

8. Translate and test A per B - C (EF). 

9. Translate and mark A per B - C (D7). 

At the termination of these instructions, the index registers associated with the fields 

will be in no increment, ·partial increment, or full increment, as described in the follow-

ing paragraphs. 

NO INCREMENT 

In this state, the index register remains at the initial value. Index registers associated 

with a translate table provide an example of this state. In this case, the instruction 

adds the characters to be translated to the indexed address of the table to obtain the 

translated charaCter. The index associated with the table does riot change during the 

instruction execution. 

PARTIAL INCREMENT 

In this case, the index register is incremented to specify a particular character or 

word in its associated field. The compare bytes A, B per mask field C (FD) instruc

tion, which searches two byte strings for inequality, provid~s an example of this type 

of indexing. When the instruction finds an inequality, the search terminates and the 

number of no-hit byte compares is added to each index; the fields may not have reached 

the end of their specified lengths. However, the storage location of the characters that 

were unequal can be found by manipulating the incremented index register and the base 

address. 

60256010 01 6-133 



FULL INCREMENT 

In this case.. the index register is incremented by one for each byte from the 

corresponding field. When the translate A per B to C instruction terminates.. for 

example .. the index associated with source field A is incremented throughout the length 

of field A. Thus .. this index indicates the starting point of the next consecutive field. 

If a delimiter character specifies a field length., the instruction searches the field for 

the delimiter character. The instruction then increments the index of the associated 

field so that the starting point of the next field is one byte beyond the delimiter charac

ter. 

Where appropriate.. each instruction description contains a table providing information 

concerning indexing. Each of these tables specifies the state of the index for each 

field following the termination of the instruction. 

6-134 60256010 01 

() 

.() 

!"""'· 
~~,_.J) 



0 

0 

0 
0 

0 

0 
0 

0 

0 

0 

0 

0 

0 

D 
D 

EO BINARY ADO; A + B ~c 

El BINARY SUB; A - B • C 

E2 BINARY MPY; A• s-.c 
E3 BINARY DIV; A I B ~c 

F x 
{EO - E3) (INDEX 

23 24 31 32 
A y 

(LENGTH & (INDEX 

39 40 47 48 55 56 63 

B z c 
(LENGTH & {INDEX (LENGTH & - FOR A) BASE ADRS) FOR B) BASE ADRS} FOR C) BASE ADRS) 

These instructions use the instruction format shown; the G designator is not used and 

must be all zeros. All indexing is in bytes. 

If the length of the destination field C is too short to correctly contain the result of the 

operation., overflow occurs. This causes data flag 39 (string arithmetic overflow) to be 

set and the contents of output field C is undefined. 

EO BINARY ADD; A + B .;.. C and El BINARY SUB; A - B - C 

These instructions add/subtract binary field B to/from binary field A. The instructions 

use two's complement arithmetic in the operation. If the source field lengths are un- · 

equal, the instruction automatically extends the sign bit of the shorter field. 

These instructions produce a result binary field C with the sign bit extended., if neces

sary .. to fill out the specified field length. 

Figure 6-47 shows an example of a binary add; A + B - C (EO) operation with assumed 

instruction codes, register contents., and source fields. The sign bit of the A source 

field is extended in the addition operation. The addition operation is a conventional., 

two" s co·mplement add. 

60256010 01 6-135 



0 

6-136 

F 

(EO) 

7 • 

G 

(00) 

19 II 

x 
(02) 

INSTRUCTION CODE 

2S24 SI SI 

A 

(03) 

y 

(04) 

3940 

B 

(05) 

NOT USED I INDEX I 

REGISTER 
. A 11 "---,I 

02 = 0000 I 000000000002 
04 = 0000 I 00000000000 I I 
06 = 0000 I 000000000001 I 

REGISTER 

FIELD I BASE 
LENGTH I ADDRESS 

r-"-l 11 " " 03 = 0002 000000005000 
05 = '0003 I 000000006000 I 
07 =0003 I 000000007000 I 

STRING SOURCE FIELD A 

47 41 

0 S 4 7 I 11 12 1711 

'\_ v INDEX 
BASE ADDRESS 

( 5000) 

FIELD LENGTH 
STARTING ADDRESS 

(50 I 0) 

STRING SOURCE FIELD B 

0 S 4 7 I II II 19 II It 20 2S 24 27 21 SI 

l 

(06) 

HH 

I I I 11 11!11 1 + 1 1 ,,, ooolooool11 o, (FFFBOCl 

~\!.,~FIELD vLENGTH I 

~;~~~ ADDRESS~STARTING ADDRESS 

SIGN EXTENSION 
~ 
00000000 
11111111 
00000000 

(6000) (6008) 

0100 1000 1100 0001 
I I I I I 000 0000 I I 00 
0 I 00 0000 I I 00 I I 0 I 

STRING RESULT FIELD C 

SOURCE FIELD A 
SOURCE FIELD B 
RESULT FIELD C 

O S 4 7 I 11 II 1111 19 10 2S 14 17 H SI I I loo ooloooolo 1 oo looool 11 o o I 1 1 o 1 I (0040 col 

~'''(FIELD vLENGTH 
/ 

~~~~~ ADDRES~STARTING ADDRESS 
(7000) (7008)

Figure 6-47.' Example of Binary Add; A+ B - C Instruction

c
(07)

H

60256010 01

u

0
j' _1 ,n·· ... ' \

tf~,
~1~, ,,

ti_~-"

'~-

,11·-,,.
I

''Iii, __ .~/

/("'
\L,_:.

c
(~.'

_)

0

0

0
0
0
0

0
0

c

0
0
0
0
0
0
0
0
0

0
D

E2 BINARY MPY; A • B - C

This instruction multiplies binary field A by binary field B, using two's complement

arithmetic. The instruction produces a binary product which is stored as result field

C with the sign bit extended, if necessary, to fill out the specified field length. If the

C field overlaps the A or B field, the instruction results are undefined.

E3 BINARY DVD; A/B - C

This instruction divides binary field A by binary field B, using two's complement

arithmetic. The result is a remainder, having a field length equal to the field length

of B and a quotient with a field length equal to the specified length of C minus the

specified length of B. Figure 6-48 shows that the remainder is stored at the B length

portion of the C field, beginning at the starting address. The quotient is stored in the

remaining portion of the C field length. The sign of the quotient is extended, if neces

sary, to fill the specified field length of C. If the C field overlaps the A or B field,

the results of the instruction become undefined.

BIT

REMAINDER

RESULT FIELD C
SPECIFIED LENGTH OF C

QUOTIENT I I I
~

SPECIFIED FIELD
LENGTH OF B

(EAST SIGNIFICANT
BYTE OF QUOTIENT

STARTING ADDRESS OF C

60256010 01

I NOTE I
The sign of the remainder conforms to (quotient
x divisor) + remainder = dividend; that is, the
sign of the remainder is the same as the sign of
the dividend unless the remainder is 0 and the
dividend is negative.

Figure 6-48. Format of Binary Divide Re&ult Field

6-137

EC MODULO ADD A +·e~c

ED MODULO SUB A - B -.c

0 7 8 15 _16
F G

23 24
x A

31 32 39 40 A7 48 55 56 63
y B z c

(EC OR ED) COMPARE (INDEX (LENGTH & (INDEX (LENGTH & (INDEX (LENGTH &
BYTE FOR A) BASE ADRS) FOR B) BASE ADRS) FOR C) BASE AORS) .

EC MODULO ADD A + B - C

This instruction performs a modulo add on the bytes in two binary strings. A and B.

The source strings are considered positive. The instruction performs the add on a

byte-by-byte basis from left to right and does not permit carries to propagate across

byte boundaries. Each byte sum is compared to the byte in the G portion of the in-

"· struction code on the following basis.

Compare Condition

(A byte + B byte)< G byte

(A byte + B byte)~ G byte

Result

(A byte + B byte) - C byte

(A byte + B byte - G byte) - c byte

The G field may be assigned any value in the range of 0 through FF 16 with 0 acting as

though it were 100
16

• Therefore, if the A byte plus the B byte is greater than or equal

to 100
16

,, A byte plus B byte minus G is stored into the C byte.

If the A or B source string is shorter than the C string,, the length of the A or B

source string is extended with zero bytes until the length of the corresponding source

string equals the length of the C string.

The compare byte in G may have any value in the range of 0 through 25510 = 0 through

FF15. A zero Q. value functions as a 25£10 value.

At the termination of this instruction,, data flag bits 53., 54., and 55 are set according to

the results of the byte compare operation (table 6-25)~

TABLE 6-25. DFB CONDITIONS FOR THE EC INSTRUCTION

DFB Bit Conditions

53 (A byte + B byte)< G byte for all bytes

54 (A byte + B byte)> G byte
but not for all bytes

for one or more bytes

55 (A byte + B byte)~ G byte for all bytes

6-138 60256010 01

()

()

()
r·-~r',

\~"'~>"

;f "' I

\,., __ ;ril

\

fi""',
~)

0

0

0

0

0

0
01

c

0

0

0

0

0

0

0

0

ED MODULO SUB A•B - C

This instruction performs a modulo subtract on the bytes in two binary source strings,,

A and B. The binary source strings are considered positive. The instruction per

forms the subtracts on a byte-by-byte basis from left to right and does not permit bor

rows to propagate across byte boundaries. As part of each subtract operation,, the A

byte is compared to the B byte on the following basis.

Compare Conditions

A byte 2: B byte

A byte < B byte

Results

(A byte - B byte) - C byte

(A byte - B byte + G byte) - C byte

If the A and/ or B source string is shorter than the C string,, the A and/ or B source

string is extended with zero bytes until the length of the corresponding source string

equals the length of the C string.

Table 6-26 gives the conditions for setting data flags 53,, 54, and 55.

TABLE 6-26. DFB CONDITIONS FOR THE ED INSTRUCTION

DFB Bit Conditions

53 A byte < B byte for all bytes

54 A byte ~ B byte for one or more bytes but not
for all bytes

55 A byte ~ B byte for all bytes

The byte in G may have any value in the range of 0 through 25510 (0 through FF16)• A

zero G value functions as a 25610 value.

At the termination of this instruction, data flag bits 53,, 54, and 55 are set according to

the results of the byte compare operation (refer to table 6-23).

60256010 01 6-139

FB PACK ZONED TO BCD; A -.c
FC UNPACK BCD TO ZONED; A ~c

0

G

7~16 2324 55 56 63
F

(FB OR FC)

GBITSOJ7
S I GN INSERTION
CONTROL BITS

A
{LENGTH & :
BASEADRS)

z
(INDEX
FOR C)

c
(LENGTH &
BASE ADRS)

FB PACK ZONED TO BCD; A - C

This instruction converts a string data field in the zoned format into a result field C that is

packed in the BCD format. All zone bits in the source field are discarded except the bits

in the least significant byte which constitute the sign. Both the source and result fields must

be specified by a field length. The operation proceeds from right to left. The Y and B

designators and bits 2 through 7 of the G designator are not used and must be zeros. Bits

0 and 1 of the G designator control the translation and insertion of the sign bits.

If the source field contains fewer digits than the result field, the instruction inserts zeros

in the high order digit positions of the result field (figure 6-49). The lengths of the source

and result fields are item counts in bytes.

If the source field contains more digits than the result field can contain, .the instruction

truncates the result field by discarding the necessary number of high order digits in the

source field.

DISCARDED

6-140

A SOURCE FIELD 4-BITS

~

ZONE DIGIT ZONE DIGIT Z~ DIGIT Zat<E DIGI ZONE DIGIT OVERPUNCHED DIGIT

DIGIT D I G IT D I GIT D I GIT DI G IT DI G'IT : C.SO . S I GN

INSERTED ZERO
C -RESULT FIEl&

1-llT
IYTE

Figure 6-49. Example of Zoned to BCD Format Conversion
(G Bit 0 = 0, G Bit 1 = 0 and ASCII Selected)

60256010 01

(jJ

0

(r''\

~ .. ,)J

I'""
~t . .>)

11,--r,,

~-. .J)

0

l -".1 .
. ~I

_IT '

0

0

0

0

0

0

0

0

0

0

[
\

i

0

0

0

0

0

0

0

0

Table 6-27 lists the digit and sign codes that are used in the pack operation. Six

sign codes are recognized as valid codes.

TABLE 6-27. PACK ZONED TO BCD DIGIT AND SIGN CODES

Digit Code Sign Code

0 0000 + 1010

1 0001 - 1011

2 0010 + 1100

3 0011 - 1101

4 0100 + 1110

5 0101 + 1111

6 0110

7 0111

8 1000

9 1001

60256010 01 6-141

G DESINATOR BIT 0 = 0, BIT 1 = 0 (ASCII MODE)

The . rightmost byte of the A field is assumed to contain an overpunched digit which is

translated into a sign and least· significant digit (LSD) according to a translate table

(table 6-28)., For the remaining bytes., the FB instruction discards the zone bits and

copies the data bits without checking the validity of the codes (figure 6-49).

6-142

TABLE 6-28. PACK ZONED TO BCD SIGN AND LSD
TRANSLATION TABLE (ASCII MODE)

Character Code LSD Signt

0 30 0 A (+)

1 31 1 A

2 32 2 A

3 33 3 A

4 34 4 A

5 35 5 A

6 36 6 A

7 37 7 A

8 38 8 A

9 39 9 A

{ 7B 0 A

A 41 1 A

B 42 2 A

c 43 3 A

D' 44 4 A

E 45 5 A

F 46 6 A
G 47 7 A

H 48 8 A

I 49 9 A
} 7D 0 B (-)

J 4A 1 B

K 4B 2 B

L 4C 3 B

M 4D 4 B

N 4E 5 B

0 4F 6 B
p 50 7 B

Q 51 8 B

R 52 9 B

tThe preferred signs are shown in hexadecimal notation
(for example, A = 1010 and B = 1011).

60256010 01

()

()

0

~--lk.

\.t.J11'

;f~.

~='j

0

0

0

0

0

0

0

C\
J./

0

c
·c \ I

0

0

0

0

0

0

0

0

0

G DESIGNATOR BIT 0 = 0, BIT 1 = 0 (EBCDIC MODE)

As in the previous operation,, the operation discards the zone bits and copies the data

bits without checking the validity of the codes. (figure 6-50).. The operation then samples

the sign (assumed to be the ieftmost four bits of the least significant byte of the A field)

and inserts the appropriate preferred sign code in the C field according to table 6-29.,

If the sign position of the A field does not contain one of the recognized six sign codes

(table 6-23),. the rightmost four bits of the C field become undefined.

DISCARDED \

~
\
~

A SOURCE FIELD

\
~

\
~

SAMPLED

~~
ZONED

FORMAT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN DIGIT

BCD
FORMAT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

'---v-1 ~
INSERTED

ZERO
C R£SULT FIELD

Figure 6-50. Example of Zoned to BCD Format Conversion
(G Bit 0 = 0 and EBCDIC Selected)

TABLE 6-29. PREFERRED SIGN CODES

Sign ASCII Mode EBCDIC Mode

Positive 1010 1100

Negative 1011 1101

G DESIGNATOR BIT 0 = 0 AND G DESIGNATOR BIT 1 1

The instruction becomes undefined.

60256010 01

8-BJT
BYTE

6-143

G DESIGNATOR BIT 0 = 1 AND BIT 1 = 0

The operation assumes that the rightmost byte of the A field contains a sign character

according to the ASCII or EBCDIC selection (table 6-30). If the byte does not contain

a sign character or a zoned digit, the content of the C field becomes undefined. The

instruction discards the zone bits in the remaining bytes of the A field and copies the

digits in the C field without checking for validity.

TABLE 6-30. ZONE BITS AND SIGN CODES

Character
Types ASCII Code EBCDIC Code

Zone bits OOllXXXXt 1111 XXXXt
Sign positive 0010 1011 0100 1110
Sign negative 0010 1101 0110 0000

t X's denote a digit code.

If the rightmost byte of the A · fieid contains the proper representation for a sign charac

ter, the instruction inserts the preferred 4-bit positive/negative sign code in the right

most four bits of the C field when it detects a positive/negative sign character in the

rightmost byte of the A field (figure 6-51).

6-144

ZONED SIGN
FORMAT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT CHARACTER

BCD

PRE
FERRED

SIGN

FORMAT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

'---v---1
·INSERTED

·ZERO
C RESULT FIELD

~
8-BIT
BYTE

Figure 6-51. Example of Zoned to BCD Format Conversion
(G Bit 0 = 1 and G Bit 1 = 0)

60256010 01

(l

0 1

'

,r"-°""c,
~Jt.~JJ

/,.--"'
I I
\~_.I'

rf-""'

~·-"

0

0

0

0

0

0

0

0

C
'

I

' :
0

0

0

0

0

0
0
0
0

G DESIGNATOR BIT 0 = 1 AND BIT 1 = 1

The pack operation inserts the preferred positive sign in the least significant four

bits of the rightmost byte of the C field (figure 6-52). The instruction then discards

the zone digits and copies the digit bits in the C field as previously described.

DISCARDED \

~
\
~

A SOURCE FIELD

\ \
~ ,--A-:--...

ZONED . ·
FORMAT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT

60256010 01

FO:~~T DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

'-v-1
INSERTED

ZERO
C RESULT FIELD

~
8-BIT
BYTE

Figure 6-52. Example o(Zoned to BCD Format Conversion
(G Bit . 0 = 1 and G Bit 1 = 1)

6-145

FC UNPACK BCD TO ZONED; A - C

This instruction converts a string source field A in packed BCD format to result field

C that is in the zoned format. The sign of the C field is determined by sampling

the sign portion of the packed BCD number. The instruction inserts the preferred sign

character in the corresponding portion of the C field under the control of G designator

bits O and 1. The operation proceeds from right to left.

If the source field contains fewer digits than the result field can store, the instruction

fills out the result field with characters consisting of the zone code with a zero digit.

If the source field contains more digits than the result field can store, the necessary

number of digits are discarded from the source field, truncating the result field.

The instruction must contain length specifications for both the source and result fields.

The Y and B designators and bits 2 through 7 of the G designator are undefined and

must be zeros.

The instruction generates the zone bits, sign characters, and preferred sign bits accord

ing to the ASCII or EBCDIC selection (tables 6-29 and 6-30).

The following paragraphs describe the translation and insertion of the sign bits for each

condition of G designator bits 0 and 1. In each case, the digits are copied and the zone

bits generated in the result field as previously described. These operations are not

described individually for each case.

G DESIGNATOR BITS 0 0 AND BIT 1 = 0 (ASCII MODE)

The operation translates the sign and LSD and places the appropriate overpunched digit

in the rightmost byte of the C field (figure 6-53) according to the translations listed

in table 6 -3 l. If the rightmost four bits of the A field do not contain one of the six

sign codes,, the rightmost byte of the C field becomes undefined.

6-146 60256010 01

' U
...

()

()
(-"\
~--'/

r·-"'\
\~_,,;,'

(-~,

"*<>

,/

,4''\
1,l)

I! '"'
~~)

0

0

0

0

0

0

0

0

C
',
i

;

0

c
0

0

0

0

0

0

0

0

Sign

+

+

+

+

+

+

+

+

+

+

ZONED
FORMAT

BCD
FORMAT

A SOURCE FIELD
4-BITS

r-"---l

DIGI LSD IGN

r - - 1
(TRANSLATION I
L - - _J

ZONE !GIT ZONE DIGIT ZONE DIGIT ZON DIGIT OVERPUNCHE
DIGIT

INSERTED '---v---1
8-BIT

ZONE CODE ______ ___ --'-_______ ___ ~

LSD

0

1

2

3

4

5

6

7

8

9

C RESULT FIELD BYTE

Figure 6-53. Example of BCD to Zoned Format Conversion
(G Bit 0 = 0 and G Bit 1 = 0 ASCII Mode)

TABLE 6-31. UNPACK BCD TO ZONED SIGN AND LSD
TRANSLATION TABLE (ASCII MODE)

Character Code S~n LSD Character

{ 7B - 0 }
A 41 - 1 J

B 42 - 2 K

c 43 - 3 L

D 44 - 4 M

E 45 - 5 N

F 46 - 6 0

G 47 - 7 p

H 48 - 8 Q

I 49 - 9 R

60256010 01

Code

7D

4A

4B

4C

4D

4E

4F

50

51

52

6-147

G DESIGNATOR BIT 0 = 0 AND BIT 1 = 0 (EBCDIC MODE)

The sign in the rightmost four bits of the A field is sampled and the appropriate pre-

ferred sign code is inserted in the C field (figure 6-54). If the rightmost four bits of

the A field do not contain one of the six recognized sign codes (table 6-27), the four

bits in the sign position are undefined.

6-148

ZONED

FORMAT

A SOURCE FIELD SAMPLED

~~
BCD

FORMAT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

ZONE DIGIT ZONE DIGIT ZONE DIGIT ZONE DIGIT SIGN DIGIT

INSERTED ZONE~~~~~~'--~~~--''--~~~-J '---v--'
CODE C RESULT FIELD 8-BIT

BYTE

Figure 6-54. Example of BCD to Zoned Format Conversion
(G Bit 0 = 0 and G Bit 1 = 0 EBCDIC Mode)

60256010 01

,.f (

',\~)'''

1f'-1',

·Ui

/~-'""-.

"t ... >)

If'

'~./

(
.-1.
. Ji'

0

0

0

0

0

0

0

0

0

c·

[,:

'

0

0

0

0

0

0
0

0

G DESIGNATOR BIT 0 = 0 AND BIT 1 = 1

The instruction becomes undefined.

G DESIGNATOR BIT 0 = 1 AND BIT 1 = 0

The instruction assumes that the rightmost four bits of the A field 1(figure 6-55) contain

one of the six valid sign codes. The operation inserts the appropriate 8-bit sign char

acter for the positive or negative sign code according to the ASCII or EBCDIC selection

(table 6-30) in the rightmost byte of the C field. If the sign position of the A field

does not contain one of the six recognized sign codes, the rightmost byte of the C field

becomes undefined.

'DISCARDED

f---A------1

DIGIT DIGIT

A ·SOURCE FIELD

8-BIT SAM.PLED
BYTE 4 BITS t
~~~ 

DIGIT DIGIT DIGIT DIGIT DIGIT SIGN 

SIGN 
CHARACTER 

ZONED ZONE DIGIT ZONE DIGIT SIGN FORMAT ZONE DIGIT ZONE DIGIT ZONE DIGIT , CHARACTER 

INSERTEO~..L-~~~~-'-~~~~...J-~~~~--~~~~~ 

ZONE CODE 

Figure 6-55. 

60256010 01 

C RESULT FIELD 

Example of BCD to Zoned Format Conversion 
(G Bit 0 = 1 and G Bit 1 = 0) 

6-149 



G DESIGNATOR BIT 0 = 1 AND BIT 1 = 1 

The instruction (figure 6-56), samples the rightmost four bits of the A field, inserts the 

appropriate 8-bit sign character for the positive or negative sign code. and sets data flag 

bit 38 (decimal data fault) if the sign code is negative. If the sign position of the A field 

contains no recognized sign code,, the state of data flag bit 38 and the rightmost byte of the 

C field become undefined. The digits in the A field are copied and the zone codes are 

generated in the C field as previously described. 

(SETS DFB 38 IF 
A SOURCE FIELD SIGN IS NEGATIVE) 

8-BIT SAMPLED 

BYTE ' BITS t 
~~~ 

~8~MAT DIGIT DIGIT DIGIT DIGIT DIGIT SIGN

ZONED ZONE DIGIT ZONE DIGIT ZONE DIGIT ZON~ DIGIT ZONE DIGIT
FORMAT

INSERTED ZONE
CODE

Figure 6-56.

6-150

C RESULT FIELD

Example of BCD to Zoned Format Conversion
(G Bit O = 1 and G Bit 1 = l)

60256010 01

()

()

rf 'l-,,

\11 .. ""-'

,~.

rr· ·",
\i .. .P

rl"",
\.(."";;>

' 0

0

0

0

0

0

0

0

0
(J

0

0

0

0

0

0

0

0

E4 DECIMAL ADD; A+ B+C

ES DECIMAL SUB; A - 8-+C

E6 DECIMAL MPV; A • B ~c

E7 DECIMAL DIV ; A / B ~c

x
(INDEX

FOR A)

23 24 . 31 32
A

(LENGTH &
BASE ADRS)

y
(INDEX

FOR B)

39 40 47 48
B

(LENGTH &
BASE ADRS)

z
(INDEX

FOR C)

55 56 63
c

(LENGTH &
BASE ADRS)

The decimal add,, subtract,, multiply.. and divide instructions perform the indicated

arithmetic operations on the A and B source fields which are in the BCD packed for

mat. The result field is ,also in the packed BCD format. All of the indexes and field lengths

are item counts in bytes. These instructions extend the sum,, difference,, product,, and

quotient to the left with zero digits,, if necessary,, to fill the specified result field length.

If the C designator or the C field length is zero,, the instruction sets no data flag bits

and becomes a no-op. If the A and/ or B designator is a zero or if the Held length of A

and/ or B is a zero,, the instruction uses a positive zero for the corresponding source

field.

If the instruction detects a sign in a digit position or a digit in a sign position,, data flag 38

(decimal data fault) is set. When this condition occurs,, the state of data flag bit 39 (string

arithmetic overflow) becomes undefined. Data flag bit 39 sets if the instruction truncates

nonzero result digits (too small a result field) or attempts a divide with a zero divisor. The

contents of output field C is undefined whenever data flag bit 38 or 39 sets.

The G designator is not used and must be all zeros.

E4 DECIMAL ADD; A + B - C -and E5 DECIMAL SUB;- A - B - C

These instructions add/subtract source field B to/from source field A. The sum/dif

ference is stored in result field C. All data fields are in the packed BCD format.

The arithmetic operations proceed from right to left. These instructions force a zero

result positive. The field lengths are specified in bytes. Figure 6-57 shows an

example of a decimal add; A + B-C (E4) operation with assumed instruction codes,,

register contents,, and string data fields. The index values are shifted three positions

before they are added to the base addresses,, and the result field is extended with one

zero digit to fill out the specified field length.

60256010 01 6-151

0

F

(E4)

6-152

71

G

(00)

0

IS II

14

x
(02)

1114

INSTRUCTION CODE

A

(03)

1111 It 40

y

(04)

NOT
USED INDEX
~I A \

REGISTER 02=·0000:0000000000021
04=0000 000000000003 1

06=0000: 000000000001:
FIELD1 I

LENGTH1BASE ADDRESS
1

~II A \f
03= 00031 000000004000 I
0·5= 00021 000000005000 I
07=00041 0000000060001

STRING SOURCE FIELD A
1111

·t\~ v
INDEX

BASE ADDRESS
(4000)

''-STARTING
ADDRESS
(4010)

STRING SOURCE FIELD B

I I I I I T
.,~BASE AD:::~:

(5000)

STRING RESULT FIELD C
0 14 71

0 0

B
(05)

47 41

~

(06)

~'-v-1
LEAST SIGN

SIGNIFICANT
DIGIT

v
FIELD LENGTH

3 0 +

I~
f BASE
ADDRESS
(6000)

FIELD LENGTH
EXTENDED ZERO DIGIT

STARTING
ADDRESS
(6008)

Figure 6-57. Example of Decimal Add; A + B -c Instruction

c
(07)

60256010 01

()

()
{r~,
'JV

~""
(~j~

1f~

~".>·:

/,,:-~

\ .. ~.:ir·

0

' 0

0

0
0

0

0

0

0

C''i
:

j

c
0

0

0

0

0

0

0

E6 DECIMAL MPY; A • B - C

This ihstruction multiplies source field A by source field Band stores the product in re

sult field C. All data fields are in the packed BCD format. The sign of the product follows

the rules of algebra. If the field lengths of either or both source fields are initially equal

to zero, the result is forced to a positive zero. If the result field overlaps either source

field, the instruction produces undefined results. The field lengths are expressed in bytes.

E7 DECIMAL DVD; A/B-C

This instruction divides the dividend in source field A by the divisor in source field Band

stores the quotient and remainder in result field C (figure 6-58). All data fields are in

the packed BCD format. The sign of the quotient follows the rules of algebra. The sign

of the remainder equals the sign of the dividend. If the result field overlaps either source

field, the instruction produces undefined results. The field lengths are expressed i1_1 bytes.

SPECIFIED FIELD
LENGTH OF B

SPECIFIED LENGTH OF C

I REMAINDER I QUOTIENT

'--y-l~~DER SIGN DIGIT

STARTING LEAST SIGNIFICANT
ADDRESS REMAINDER DIGIT

(C . BASE ADDRESS
+ l INDEX)

'-v-''-r-1
UOTIENT
IGN DIGIT

LEAST SIGNIFICANT
QUOTIENT DIGIT

Figgre 6-58. Format of Decimal Divide Result Field
-,'-.·' t,..,.;;..°"'.'h

60256010 01 6-153

FA . MOVE AND SCALE; A -.c

0
F

(FA)
x

(INDEX
FOR A)

23 24
A

(LENGTH &
BASE ADRS)

47 48
B

(SCALE
COUNT)

z
(INDEX

FOR C)

55 56 63
c

(LENGTH &
BASE ADRS)

This instruction moves source field A to result field C and scales the source field within

the result field right or left by as many decimal positions as specified by the scale count

contained in register B. The scale count represents an item count of the number of

4-bit. decimal digits. to be shifted. The scale count is expressed as a two's comple

ment. signed integer. contained in the rightmost 48 bits of register designated by B.

The shift is relative to the right end of the result field. The G and Y designators are

not used and must all be zeros.. The source and result fields are in the packed decimal

format.

If the scale count is positive. the instruction shifts the source field left within the result

field. The instruction inserts zeros in the rightmost. decimal digit positions of the result

field that are vacated by the left shift. However. the sign digit remains in the rightmost

four bits of the result field. With a positive scale count, the operation is equivalent to mul

tiplying an integer by the positive power of 10
10

•

The scaling operation proceeds from right to left. The overlapping of fields produces un

defined results.

If the scale count is negative. the instructfon shifts the source field right within the result

field. This shift is end-off; thus, digits that are shifted into the sign position are discarded.

The original sign of the source field is always retained in the sign position of the result field.

The instruction inserts BCD zeros in the leftmost digit positions of the result field vacated

by the right shift.

If the source-field length is shorter than the length of the result field. the instruction extends

the result field with zero digits. If the relative magnitudes of the source and result field
.,. •)l

lengths and a positive scale count (left shift) prohibit the storage of the BCD number in the

result field. the necessary number of high order digits of the result field are truncated. If

any nonzero digit is truncated. the instruction sets data flag bit 39 (string arithmetic

overflow).

6-154 60256010 01

r"-"·
!'''·'/

(,.,..--.,,,._.

~~'.,.,Ji/

(,,----..,.

\i.~_.i;t

tif'),\

\l,)1

0

0

0

0

0

0

0

(}

0

[·.,

I

I

0

0

0

0

0

0

0

0

The indexes and field lengths are expressed in bytes. The instruction terminates when the

result field is filled and after checking the remaining source-field characters on a right

shift for a nonzero character.

Figure 6-59 shows an example of a move and scale instruction with assumed instruction

codes, register content:, and source field. The negative scale count in register B denotes

a right shift of two. As a result, the instruction shifts the low order, two BCD digits off

the right end. The instruction extends the field length with BCD zeros and retains the

original sign in the sign position of the result field.

Figure 6-60 shows an example of a move and scale instruction; however, _a positive

scale count is used. Thus, the instruction left-shifts the field two BCD positions and

inserts zero BCD digits in the low order, two BCD positions. Since the length of the

result field is set at four bytes, the high order, two BCD digits are truncated. The

instruction sets data flag bit 39 (string arithmetic overflow), indicating that nonzero

digits of the result field were truncated.

60256010 01 6-155

0

I

F
(FA)

I 4

I

7.

G
(0 0)

REGISTER

7 • II II

I I

.INSTRUCTION CODE

x
(0 2)

NOT

A
(0 3)

USED I INDEX

y
(0 0)

~I/ A \
02 = 0000 000000000002

05 = 0000: 00000000000 I
FIELD

LENGTH I BASE ADDRESS
f'""\11 A \

03 = 0004 I 000000004000

06 = o o o 5 I o o o o o o o o 5 o o o
NOT
USED I SCALE COUNT

B
(0 4)

~I/ A \

04 = 0 0 0 0 1 F F F F F F F F F F F E (- 2 - RIG HT SH I FT)

SOURCE FIELD A ltlO II 14 1111 1111 Hll lt40 47

I 3 I 5 I 6 I 7 I 0 I o· I 8 I + I

z
(0 5)

c
(0 6)

'

'\STARTING

v I

_ v INDEX FIELD LENGTH

BASE ADDRESS ADDRESS

0

(4000) (4010)

r - --,--.,
I 0 I 8 I

I I
L - L - .J

RESULT FIELD C

FIELD LENGTH ~
-------'------""''------------~ DIGITS

14 7. II II II .. 17 H II H It 40 41.... 47 SHIFTED

0 0 0 0 5

ND EX ZERO DIGITS
INSERTED

BASE ADDRESS STARTING ADDRESS
(5000) (5008)

6 7 0 + ENO OFF

ORIGINAL SIGN
RETAINED

Figure 6-59. Example of Move and Scale; A -c Instruction
with Negative Scale Count

II

6-156 60256010 01

-o-\ !'~'- I
\' ,1

0
/-f""\
\ilJi•'

,,,,.--~-

\,y

.,,--~

(~l,,):'

(11- '',

\,ij._"";Y

()

u
0

0
0

0

0

0

0

C\
;r

c

0

c
0

0

0

0

0

0
0

0

.INSTRUCTION CODE
0

0

I

F
(FA)

14

G
(00)

REGISTER

., . II 12

I

D 14 SI SI

x
(07)

A
(08)

y
(00)

NOT
USED

1
INDEX

~II A \
07= 0000 000000000002

OA= 0000: 000000000002
FIELD

LENGTH I BASE ADDRESS
~II A \

oa= 0004 I oooooooosooo

08=00041000000006000
NOT
USED I SCALE COUNT

09= ~ 1booooo~oooo2'
I ,

SOURCE Fl E LO A

IS II 1920 II 14 2?H • SI HSI

I 7 I 4 I 0 I 9 I 8 I
' I _ . ~STARTING INDEX FIELD LENGTH

BASE ADDRESS ADDRESS
(5000) (50 I 0)

RESULT FIELD C

r - T - ~----TRUNCATED DIGITS
I 7 I 4 I"'"
L_.i _ _J

FIELD LENGTH

I 4 SI 12

0 9 8 2 0

' v
J:NOEX

.. 40

8
(09)

4? 41

z
(QA)

(+2 - LEFT SHIFT)

1940 4144 4?

2 0 I I

.. 40 4144 4?

HSI

BASE ADDRESS
(6000)

\ STAR'TI NG ADDRESS
(6010)

ORIGINAL SIGN
RETAINED

60256010 01

Figure 6-60. Example of Move and Scale; A -c Instruction
with Positive Scale Count

c
(08)

6-157

F8 MOVE BYTES LEFT; A ~c :
F9 MOVE BYTES LEFT, ONES COMP . A~ C

G y

0 7 8 23 24 31 ~40 47 48 55 56 63 A """'"'~~---~-s~---....------z------r-----~c------. F
(F8 OR F9) d e

x
(INDEX
FOR A)

(LENGTH t & REPEATED (INDEX (LENGTH t &
BASE ADRS) BYTE FOR C) BASE ADRS}

~ ~
G BITS o~3: \ ~

(SEE TABLE .6-22) G BIT 7:
. 0 = INCREtvENT C FIELD INDEX

1 =NOT INCREtvENT C FIELD INDEX
G BIT 5:

0 = INCREtvENT A FIELD INDEX
1 = NOT INCREtvENT A FIELD INDEX

F8 MOVE BYTES LEFT; A-C

tTHE LENGTH SPEC IF I CATION MAY
BE REPLACED WITH A DELIMITER
CHARACTER

This instruction moves source field A to result field C. The bytes in the field are

considered from left to right. Thus,, the most significant byte of the source field is

moved to the most significant byte position of the result field.

The d and e designators in the instruction indicate whether field lengths or delimiting

is specified for the A and C fields.

When the destination field is delimited by a length rather than a delimiter character,

the following rules apply.

1. If the origin field is shorter than the destination field, the destination field is

filled in with the repeated byte found in the B designator of the instruction.

2. If the origin field is longer than the destination field, the operation is truncated

when the destination field is exhausted. For this case, if the origin field was

character delimited, the origin field is searched for the delimiter character so

that its associated index may be properly incremented. If the origin field was

length delimited, its associated index is incremented by the length rather than

the actual number of bytes transferred.

When the destination field is delimited by a character rather than a length, the move

continues until the origin field reaches its length specification. The .operation is then

terminated, and the delimiter character specified for the destination is stored as the

last byte of the destination ·field. The delimiter character is stored even if the A

field length is initially zero.

6-158 60256010 01

c

(/-, .. ,

\t,p

(~"\

\\»i. .. o>"

,..-··----..._
/ '

0

0

0

0

0

0

0

0

0

0

[

· .. ! ..

I

J

0

0

0

0

0

0

0

The index increments allowed for the A and C fields are specified by G designator bits 5

and 7 in table 6-32 ..

Field

A

A

c
c

TABLE 6-32 .• INDEX INCREMENTS FOR A AND C FIELDS
FOR FB AND F9 INSTRUCTIONS

G Bit 5 G Bit 7 Index Incrementt

0 - Full increment

1 - No increment

- 0 Full increment

- 1 No increment

t For a complete definition of index incrementing, ref er to Index Inc re-
ments at the beginning of the string instructions.

The Y designator and G· designator bits 4 and 6 are not used and mqst be zeros. .

Figure 6-61 shows an example of a move bytes left instruction with assumed instruction

codes, register content, and source field. The G designator gives d and e values of

102• Thus, the rightmost eight bits of the length specification for A and C denote the

delimiter character for the respective field. In the example, G designator bits 5 and
J

7 are both zeros. Thus, the A and C fields are incremented.

The instruction moves the bytes in field A to the corresponding positions of field C,

beginning at the starting address of both fields. When the delimiter character (FF) is

detected in field A, the operation terminates with the insertion of the delimiter char

acter (EE) in the result field. Before termination, the instruction increments the

indexes for A and C by their respective field lengths.

F9 MOVE BYTES LEFT, ONES COMP. A-C

This instruction operates identically to the move bytes left; A-C instruction except that

the one's complement of field A is moved to field C. If a delimiter field is specified

for the source field, the instruction searches the uncomplemented field for the delimiter

character. The instruction complements only the data in the source field. Neither the

repeated byte (when used) nor the delimiter character specified for the result field is

complemented.

60256010 01 6-159

0 ., •

F G
(F8) (AO)

x
(02)

INSTRUCTION CODE

II II

A y
(03) (00)

BEFORE EXECUTION
NOT USED I INDEX
~ I A . \

0 5 4

I

·REGISTER 02= 0000 I 000000000002

04=oooolooooooooooo1

DELIMITER CHARACTER I BASE ADDRESS

~ 1, " \
03=00FF 1000000005000

05=00EEj000000006000

SOURCE Fl E LO A
., . II 12 11!111 It 20 H 24 27 21 5112

I 4 I 3 I 9 I 8 I 7

HH

I +

41. 41

B Z
(00) (04)

It 40 4144 47

I
F I F I

'
I . Ly-JL-y----1

_ v
_STARTING

INDEX SIGN DELIMITER
CHARACTER

BASE ADDRESS ADDRESS
(5000) (5010)

c
(05)

••

\\IN~EX _STARTING ADDRESS \ .rm~~n~ '_STARTING ADDRESS(.5028)
(5008) OF NEXT FIELD IN C

BASE ADDRESS
(5000)

AFTER EXECUTION

REGISTER 0 3 AND 05 = SAME

6-160

NOT INCREMENTED
USED I INDEX

~I/ A \
02 = 0000 000000000006

04= ooool 000000000005
I

Figure :6-61. Example of Move Bytes Left; A -c Instruction

60256010 01

0

;~,.

\\t>·

0

0

0

0

0

0

0

0

0

0

Cl

'

.

I

I

0

0

0

0

0

0

0

0
0

•

EA MERGE PER BYTE MASK A, B PER G -.c

0 7 8 15 _16 23 2 4 3 1 32 39 40 AI. 48 55 56 __6_3
F G x A y B z c

(EA) MASK FOR (INDEX (LENGTH & (INDEX (LENGTH & (INDEX (LENGTH &
A & B FOR A) BASE ADRS) FOR B) BASE ADRS) FOR C) BASE ADRS)

This instruction merges the bits from the bytes in source field A with the bits from the

bytes in source field B according to the 8-bit mask in the G designator portion of the

instruction word. The result is stored in corresponding bytes of result field C. The

instruction uses bits of A corresponding to one bits in the mask byte and bits of B

corresponding to zero bits in the mask byte. The operation proceeds from left to

right; thus, the leftmost byte of field A is merged with the leftmost byte of field B

and is stored in the leftmost byte of field C.

If one of the two source fields is shorter than the other, the instruction extends the

shorter source field with null bytes (00
16

). If the result field is shorter than the longer

source field, the operation terminates when the ·result field is filled. If the result field

is longer than either source field, the instruction fills out the result field with null bytes.

Figure 6-62 is an example of a merge byte mask instruction used to convert zoned

ASCII to zoned EBCDIC formats. The example uses assumed instruction codes, regis

ter content, and source fields. The mask (G designator) is expanded below the instruc

tion code. Positions 8 through 11 of the mask contain zero bits while positions 12

through 15 contain one bits.

Thus, the instruction substitutes the zone bits of source field B for the zone bits in

source field A in corresponding positions of result field C. Similarly, the one bits in

the mask enable the transfer of the digit bits in source field A to corresponding posi

tions of result field C. As a result, the zone bits from field B are merged with the

digit bits from field A and are stored in corresponding bytes of field C.

Since the assumed length of result field C is one byte longer than either source field,

the instruction inserts a null byte to fill the field. No index incrementing takes place

for this instruction.

60256010 01 6-161

INSTRUCTION CODE

0 7. 1114 474e HSI IS

F
(E A)

X A y B Z C
(02) (03) . (04) (05) (06) (07)

NOT
USED INDEX
~I A \

REGISTER 02= 0000 000000000002
04=0000 OOOOOOOOQ002
06=0000 000000000001

FIELD
LENGTH BASE ADDRESS
~I A \

03=0004 000000005000
05=0004 000000006000

07=0005 000000007000

SOURCE FIELD A
ZONE DIGIT SIGN DIGIT

IS II It 20 23 24 27 H :SI~~~~

'.--~~~~~~~----~~~~~~~~-

_
FIELD LENGTH

STARTING ADDRESS
(501 O)

SOURCE FIELD B
ZONE SIGN ZONE

. ~,--"--..~
IS II It 20 II 14 rt H 31 32 H H :st 40 43 44 47

l1 1 11l1111l1 1 11l1111l111 1l11 11l11 ool11 111

'.--~~~~~~~~~-~~~~~~~~-

' FIELD LENGTH

_STARTING ADDRESS
(6010)

RESULT FIELD C
ZONE DIGIT SIGN DIGIT NULL BYTE

0 :s 4 1. ~~~~~
1112 ISll lt20 2324 2711 3132 3940 4144 47

~~~~~~~~~~~~--~~~~~~~~~--

\

INDEX \_STARTING ADDRESS 
(7008) 

FIELD LENGTH 

BASE ADDRESS 
('3000) 

Figure 6-62. Example of Merge Per Byte Mask A 1 B Per G-C Instruction 

6-162 
60256010 01 

i \ u 
0 
() 

/'!'"""' 

··~~_;Ii' .. 

;('""''. 

"<(j 



0 

0 

0 

0 

0 0 

0 

0 

0 . 

0 ' 

0 

G·.:,, 
: 

: 

0 

0 

0 

0 

0 
0 
0 

FD COMPARE BYTES A, B PER MASK FIELD C . 

F 
(FD) 

7 8 
G 
A 

23 24 31 32 39 40 47 48 55 56 63 
c x 

(INDEX 
FOR A) 

At 
(LENGTH & 
BASE ADRS) 

y 
(INDEX 

FOR B) 

st 
(LENGTH & 
BASE ADRS) 

z 
(INDEX 
FOR C) (AASE ADRS) 

BITS 5, 6: 
A AND B INDEX INCREMENT CONTROL BITS 

BITS O, 1: 
(SEE TABLE 6-22) 

This instruction compares the bytes in field A with the bytes in field B for masked 

inequality. The instruction compares the bits in the pair of bytes only where corre

sponding bits in mask field C are ones. The comparison continues byte-by-byte from 

left to right until the instruction detects inequality of a byte pair or one of . the follow

ing occurs. 

l. Both of the source fields terminate 

2. A and B field delimiter comparison tt 

The shorter source field is extended with blanks. Figure 6-61 shows the basic format 

of the data source and mask fields for the compare bytes A, B per mask field C in

struction. 

If the C designator portion of the instruction is zero, the instruction uses a mask con

taining all ones. The length of this mask is extended until one of the termination con

ditions is detected. If a mask field is used,, the length specification is undefined. As 

shown in figure 6-63, the mask field must be at least as long as the longer of the two 

source fields. 

I NOTE I 
If the mask field is shorter than the longer source 
field, the instruction will continue to read consecutive 
bytes of field C until a normal terminating condition 
is detected. Thus, the results of such an operation 
would be undefined. 

t The length specification may be replaced with a delimiter character. 

tt Termination of the instruction does not occur with one field delimiter hit. Instead,, begin
ning with this field delimiter byte,, the input field is extended with blank bytes. 

6-163 
60256010 01 



A SOURCE FIELD DATA STRING 
FIELD LENGTH 

BYTE 0 BYTE I BYTE 2 BYTE 3 

CD @ @ 

t. ,, 
IL -*-

BYTE 0 BYTE I BYTE 2 BYTE 

FIELD LENGTH 
B SOURCE FIELD DATA STRING 

C MASK FIELD 

t ASCII MODE = 20 
EBCDIC MODE= 40 

© 

~ 

BYTE 4 BYTE 5 

@ @ 

..Y .Y 
EXTENDED WITH 

BLANKSt 

/: 
OPERATION TERMINATES 
AT THIS POINT 

NOTE: ---~ 
IF SPECIFIED, MASK FIELD 
MUST BE AT LEAST AS 
LONG AS THE SHORTER 
SOURCE FIELD. 

Figure 6-63. Basic Field Formats for Compare Bytes A. B 
Per Mask Field C Instruction 

TERMINATION DUE TO MASKED INEQUALITY 

If the instruction terminates because it detects masked inequality of a byte pair. the in

dexes of the two source fields are incremented by the same value if enabled by the 

corresponding A. B index control bit (table 6-32). This value equals the number of 

masked byte compares made before (but not including) the compare that caused termin

ation. 

TERMINATION DUE TO EXHAUSTING A SOURCE FIELD 

If the instruction terminates because the source fields are exhausted, the instruction 

increments each source field index by the corresponding field length (table 6-33). In 

this case, the masked operands (source fields) are equal. If delimiter characters are 

used, the instruction searches each source field for the corresponding delimiter charac

ter. The index associated with each source field is incremented so. that the corre

sponding base address plus the index locates the first byte of the next fiel~. The 

types of length specification O.ength, single character delimiter, or 16-bit delimiter) 

for fields A and B are equal since the d designator in the instruction word governs 

the termination of both fields (table 6-24) •. 

6-164 
60256010 01 

·O· ... 
I . ~ 

(~'l!·1 
''4._)/ 

·""\ 
~l,._)v 

f(", 
l,, ) ..• ..__,,, 

.<(~---... 
/, 

\<l_,,;' 

It··.'''\ I I 

I• · .. :.J/ 

1f"t-. 
\J. i 



0 

0 

0 
0 

0 

0 

0 

0 : 
j 

0 

C\'i 

; 

0 

0 

0 

0 

0 

0 

• • 

TABLE 6-33. INDEX INCREMENTS FOR COMPARE BYTES A, B 
PER MASK FIELD C INSTRUCTION 

Field G Bit 5 G Bit 6 Index Incrementt 

A 0 - Full increment if equal 
Partial increment if not 

1 - No increment 

B - 0 Full increment if equal 
Partial increment if not 

- 1 No increment 

c No increment 

tFor a complete definition of index increment, ref er to Index Increments 
at the beginning of the string instructions. 

DATA FLAG BITS 

equal 

equal 

Before the instruction exits,, data flag bit 53, 54, or 55 is set according to the result 

of the byte compare operationso Table 6-34 lists the three data flag bits and the con

dition for setting the corresponding bit. 

TABLE 6-34. DFB CONDITIONS FOR THE FD INSTRUCTION 

DFB Bit Condition 

53 Masked operands are equal 

54 First masked operand is greater 
55 First masked operand is less (A 

FE SEARCH FOR MASKED KEY BYTE; A, B PER C, G 

FF SEARCH FOR MASKED KEY WORD; A, B PER C, G. 

D6 SEARCH FOR MASKED KEY BIT; A, B PER C,G, 

(A > B) 

< B) 

0 7 8 15 16 2 3 24 31 32 39 40 Al_ 48 
F G x A y B z· 

(FE,FF ( D IFFERENCE (INDEX (LENGTH & (INDEX (LENGTH & (INDEX 
OR D6) THRESHOLD 

FOR A) BASE ADRS) FOR B) BASE ADRS) FOR C) COUNT REG_._ 

60256010 01 

55 56 
c 

(BASE 
ADRS) 

6-165 

63 



FE SEARCH FOR MASKED KEY BYTE; A, B PER C, G 

This instruction searches source field A (reference field) for a match with source field 

B (key field). The first search compares the first byte of field A with the first byte 

of field B. If there is no difference in the comparison, the instruction compares the 

second byte of field A with the second byte of field B. This process continues until 

the key field is exhausted or the instruction detects a difference in the comparison of 

a pair of bytes. If the entire key field is compared with a portion of the reference 

field with no differences in the byte compares, a match results and the instruction 

terminates. If a compare difference is found, the instruction terminates that search 

and begins a new search by comparing the first byte of field B with the second byte of 

field A, the second byte of field B with the third byte of field A. and so on. This pro

cess continues until the key field B is exhausted or a compare difference is detected. 

The instruction continues this process of repeated searches until it detects a match or 

searches the reference field for all possible matches. If no match is made, the maxi

mum number of searches is equal to the length of A minus the length of B plus one 

(A-B+ 1 ). If no match is detected, data flag bit 3 7 (select condition not met} is set. 

The A index is incremented by one after each search not resulting in a match. However, if 

no match is found, the A index is increased by the length of the A field. When a match is 

found, the A index provides a means of locating the portion of the reference field matching 

the key field. Table 6-35 lists index increments for the instruction. 

TABLE 6-35. INDEX INCREMENTS FOR SEARCH FOR 
MASKED KEY BYTE; A, B PER C, G INSTRUCTION 

Field Index Increment t 
A Full increment (no match) 

A Partial increment (match) 

B No increment 

t For a complete definition of index increment, refer to 
Index Increments at the beginning of the string instruc-
tions. 

6-166 60256010 01 



0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

c 
0 

0 

0 

0 

0 

0 

0 

0 

0 

Field C serves as a mask such that the instruction makes a byte-by-byte comparison 

only when there are ones in the corresponding bit positions of the mask. Bits of the 

reference field and the key field are considered to match wherever there is a zero bit 

in the mask field. The mask field C is assumed to be as long as the key field B. 

There is no length specification for field C; the instruction represents field C as being 

at least as long as key field B. The mask field is associated with the key field such 

that on the second search,, the instruction compares the first byte of B with the second 

byte of A, using the first byte of C as a mask. If the C designator is 0016, the instruc

tion generates a mask of all ones. 

Figure 6-64 is an example of search for masked key,, byte; A, B per C, G instruction 

with assumed instruction codes,, register content, and data fields. Although the C 

designator specifies a particular register, the mask field is set to all ones. Thus, 

all bits are compared in the byte compare operations. 

In figure 6-64, the solid arrows indicate the first complete search and the dashed 

arrows indicate the second complete search although a complete search does not actually 

take place in these cases. The third and subsequent searches follow the same pattern. 

The bytes in fields A and B are assumed to contain representations of alphabetical charac

ters. 

If no match is detected, the maximum number of complete searches equals the length of 

field A minus the length of field B plus one (A - B + 1), which in the example would be 

6 - 3 + 1 = 4. In the example, a match is detected on the fourth and final search. 

If any of the following conditions are present, the results of the instruction become 

undefined. 

1. Any or all of the A, B. or X designators are 0016 . 

2. The length of the A and/or B field is 0016 

3. The B field is longer than the A field. 

For certain applications, it is desirable to allow a match in two strings of bytes in which 

there are no more than a specified number of compare differences. For example, if 

one difference is allowed, the key field. (MINNEAPOLIS) would match the portion of the 

reference field (MINNZAPOLIS ). The character Z represents the one allowed difference 

in the reference field for a match. The maximum number of allowed compare differ

ences is termed the difference threshold count. This count is contained in the rightmost 

16 bits of the register designated by G (figure 6-64). Only a positive, two's comple-

ment number is meaningful as a difference threshold count. 

60256010 01 6-167 



0 

INSTRUCTION CODE 

F 
(FE) 

7. 
G 

(02) 
x 

(03) 

2124 

A 
(04) 

NOT DIFFERENCE 
BEFORE EXECUTION USED I THRESH~LD COUNT 

REGISTER 02 = ~ 
1
booooooooooo' 

NOT 
USED I INDEX 

03= ~ tbooooo~oooo2' 
05= 0000 1000000000002 

07= 0000 1000000000002 
FIELD I BASE 

LENGTH ADDRESS 
~I A 

04 = 0006 
1
'oooooooosooo' 

06 = 0003 000000006000 
08 = ~ 1000000001000 

NOT I 
USED I 

y 

(05) 

REFERENCE FIELD A 

B 

(06) 

4741 

z 
(07) 

SIM 

INDEX FIELD LENGTH 

0 

T 

t t 
BASE ADDRESS (5000) STARTING 

0 

ADDRESS(5010) 
INDEX 

7 8 1511 

5940 55M 

H T H 

/ MATCH 
//KEY FIELD B (4TH SEARCH) 

/ AFTER EXECUTION 

c 
(0 8) 

E 

T E 
REGISTER 02, 04-08= UNCHANGED 

NOT USE~ 
03=~ 000000000005 

+ ~ v 
BASE ADDRESS (6000) I Fl ELD LENGTH 

INDEX STARTING ADDRESS (6010) FIELD LENGTH MASK FIELD C 

T FF T FF T FF i 
t 
BASE ADDRESS (7000) i I 

v 
ALL I'S 

STARTING ADDRESS (7010) 

Figure 6-64. Example of Search for Masked Key Byte; 
A, B Per C, G Instruction 

6-168 60256010 01 

{J 

0 
;$~ 

~li,_J,! 

/C'\ 
~-~ 

~,-·--...., 

~l _ _,.,;· 



0 

0 

0 

0 

0 

0 

o· 
0 

0 

c 
0 

0 

0 

0 

0 

0 

0 
ft 

If the C designator is zero, the operation is identical to that with a mask of all ones. 

If the A and/ or· B designator is zero, if the length of field A and/ or B is zero, or 

if the B field is longer than the A field, the results of this instruction are undefined. 

The difference threshold count indicates the number of allowed differences on any one 

search. In figure 6-64,, the instruction compares the character T in the key field with 

the same character in the reference field in the first search. Since there is no differ

ence in this comparison,, the instruction compares the character H in the key field with 

the character T in the reference field,, and a difference occurs. Thus,, the first search 

terminates. The instruction would then initiate the second search which would not 

detect a difference until the third byte comparison (E in the key field is compared with 

T in the reference field). The instruction initiates successive searches until it detects 

a match which,, in the example,, occurs on the fourth search. 

If the difference threshold count is set to one, the instruction allows one difference on 

any one search, if the difference threshold is set to two, the instruction allows two 

differences, etc. In the example, a difference threshold of one gives a match on the 

second search,, and a threshold of two gives a match on the first search. 

FF SEARCH FOR MASKED KEY, WORD; A, B PER C, G 

This instruction is identical in operation to the search for masked key, bytes (FE) in

struction, except masked words are compared rather than bytes. The length specifica

tions and indexes are expressed in words instead of bytes. The instruction compares 

masked full words. The only possible matches take place at word boundaries and the 

instruction initiates new searches at word boundaries. As in the FE instruction,, the 

FF instruction sets data flag bit 3 7 if no match is found. 

D6 SEARCH FOR MASKED KEY, BIT; A, B PER C, G 

This instruction is identical in operation to the search for masked key,, bytes (FE) in

struction,, except masked bits are compared rather than bytes. The length specifications 

and indexes are expressed in bits rather than bytes; the instruction compares masked 

bits. The only possible matches take place at bit boundaries and the instruction ini- \. 

tiates new searches at bit boundaries. As in the FE instruction, the D6 instruction 

sets data flag bit 3 7 if no match is found. 

60256010 01 6-169 



EE TRANSLATE A PER B -+C 

0 
F 

(EE) 

G 
{SUBFUNCTION) 
~ 

78 1516 
d e ~ x 

(INDEX 

23 24 31 32 39 40 47 48 55 56 63 

(LENG~t& 
y 8 z (LENG~t& (INDEX (BASE (INDEX 

FOR A) BASE ADRS) FOR B) ADRS) FOR C) BASE ADRS) 

'--y-J \..__\ ___ G BITS 5, 7: 
G BITS 0-3: {SEE TABLE 6-34) 

{SEE TABLE 6-22) 

tTHE LENGTH SPECIFICATION MAY 
BE REPLACED WITH A DELIMITER 
CHARACTER 

This instruction translates the bytes (from left to right) in field A. A translate table,, 

which is stored in field B, controls the translation. The instruction stores the trans

lated bytes in result field C. 

The bytes read from field A serve as item counts. The instruction first shifts each 

item count left three places and then adds it, after indexing, to the starting address of 

the B field to form a new address. The byte at this new B field address is trans

mitted to a position in the C field that corresponds to the item count that produced 

the shift. Thus, the C field contains the translated bytes. Fie~d B is not incre

mented although the Y designator specifi~s an index in bytes for the B field. 

No field length or delimiter may be specified for the B field (translate table). How

ever, - the effective length of the table cannot exceed 256
10 

bytes, because a byte (8 bits) 

is used to index the translate table. The computer loads the entire translate table 

into a buffer memory at the beginning of the instruction execution. If this table crosses 

a page boundary (but the portion actually used by the programmer is contained in the 

first page),_ it is possible for the computer to generate an unnecessary access interrupt 

while loading what will become the unused portion of the table. 

When field C is length::-limited and field A is exhausted before field C is exhausted, 

field C is filled out with null (00
16

) bytes. If fields A and C are iength-limited and 

field C is filled before A is exhausted, the index associated with the A field will be 

incremented by the A length rather than the actual munber of bytes translated. 

If field C is length-limited. field A is delimiter-limited, and field C is exhausted 

before field A, then field A is seGt.rched for its delimiter character. so its index may be 

properly incremented. When field C is delimiter-limited, the instruction prc:>ceeds until 

field A is exhausted. The delimiter for field C is then stored immediately following the last 

translated byte which was stored. 

initially zero. 

6-170 

The delimiter is stored even if the A field length is 

60256010 01 

0 
,01 
\..''' _____ .. / 

.rr-,\ 
'.,,-1.\"_;! 

;1f--'"\ 
l. ; 
'-..Y 

;-#!----,,, 

\L->" 

.!-"' I, . ·.-



0 

0 

0 

0 

0 

0 

0 

C,, 
;' 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
n 

Index incrementation takes place for the A and C fields as specified by bits 5 and 7 

of the G designator (table 6-36); the B field index is not incremented. 

TABLE 6-36. INDEX INCREMENTS FOR TRANSLATE 
A PER B - C INSTRUCTION 

Field G Bit 5 G Bit 7 Index Increment t 
A 0 - Full increment 
A 1 - No increment 
B - - No increment 
c - 0 Full increment 
c - 1 No increment 

t For a complete definition of index increment,, refer fo 
Index Increment at the beginning of the string instructions. 

Figure 6-65 is an example of a translate A per B- C (EE) instruction with assumed 

instruction codes, register contents, and A and B fields. The example uses a de

limiter character for the A field and a length specification for the C field. G desig

nator bits 5 and 7 are zeros. Thus, both the A and C index are incremented. 

In the example, each byte in the A field represents a digit of a decimal number. The 

consecutive bytes of the translate table in the B field contain the translation code for 

the corresponding digits. The example translates the digits in the A field into trans

lated characters and transmits them to consecutive bytes of the C field. For example, 

the digit 3 is shifted left three places and is added to the starting address of the B 

field: 

0110 0000 

0000 0000 

0110 0000 

0000 

0001 

0010 

1000 

1000 

0000 

(600816) 

(001816) 

(202016) 

Thus, 2020 16 becomes the address in the B field of the translation for character 3 

in the A field. This translation is then transmitted to the leftmost byte of the C field. 

This process continues until the C field is filled. The A index (register 02) is incre

mented by seven. The C index is incremented by six. 

60256010 01 6-171 



6-172 

• 
INSTRUCTION CODE 

7 8 II It II 14 II 11 10 40 47 48 • H II 

F G X A Y B Z C 
(EE) ( 801 (02) (03) (04) (05). (06) (07) 

~ 
0: 10- DELIMITER CHARACTER 
E=OO-FIELD LENGTH SPECIFIED 

BEFORE EXECUTION 
NOT 

BASE 

USED INDEX 
~I A 

REGISTER 02: 00001000000000002 
04= 0000100000000000 I 
06: 0000:000000000000 

DELIMITER' BASE ADDRESS 
~:/ A \ 

03=005A~00000005000 
I 

NOTI 
USED: 
~I 

05: XXXX1000000006000 
FIELD1 

LENGTH: 

~· 07=0006~00000007000 

A FIELD (INITIAL CHARACTER SET> 

0 .,, 15 II 13 24 II H H 40 47 41 H H II 0 

'--v---1 
INDEX 

7 8 9 

FIELD LENGTH 

STARTING ADDRESS (5010) 

4 

DELIMITER 

ADDRESS (5000) 

8 FIELD (TRANSLATE TABLE) 

0 .,, 1511 2114 3111 1940 4741 HSI HO IS II 21 

A c D E F 

STARTING 6020 
ADDRESS (6008) 

C FIELD (TRANSLATED CHARACTER SET> 

0 71 " .. 2124 1112 It 40 47 

I D I H I I I J I B I E I 
\_ BASE ADDRESS: 

STARTING ADDRESS ( 7000) 

G H I J 

\_NEW WORD 
ADDRESS(6040) 

AFTER EXECUTION 

REGISTER 03,04,05, 07 - UNCHANGED 
02=000~000000000009 
06=0000~00000000006 

Figure 6-65. Example of Translate A Per B -c Instruction 

60256010 01 

() 

0 
ff "" ~,,,.)''! 

;r-.,\ 
\..\_).' 

c· ,,,/ 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

() 

0 

0 

0 

0 

0 

0 

0 

0 

EF TRANSLATE AND TEST A PER B ~c 

0 
F 

{EF) 

G 
(SUBFUNCTION) 
~ 

7 8. 1516 23 24 31 32 
x 

(INDEX 
FOR A) 

At 
(LENGTH & 
BASE ADRS) 

\__G BIT 5: 
(SEE TABLE 6-37) 

BITS b, 1: 
(SEE TABLE 6-24) 

y 
(INDEX 

FOR B) 

3940 
B 

{BASE 
ADRS) 

47 48 55 56 
z 

ASSOCIATED 
A VECTOR 

BYTE 

··- c NONZERO 
VECTOR 

BYTE 

This instruction translates the bytes (from left to right) in field A. A translate table, 

which is stored in field B. controls the translation. 

The bytes read from field A serve as item count~. The instruction first shifts each 

item count left three places and then adds it. after indexing. to the starting address of 

the B field to forni a new address. The new address references a byte in the trans

late table (B field). If the byte in the ·translate table is zero. the next byte to the 

right of the one referenced in the A field is referenced and translated. This process 

continues until the instruction reads a nonzero byte from the translate table or exhausts 

the A field. 

63 

No field length or delimiter may be specified for the B field (translate table). How

ever, the effective length of the table cannot exceed 256 10 bytes, because a byte (8 bits) 

is used to index into the translate table. The computer loads the entire translate 

table into a buffer memory at the beginning of the instruction execution. If this table 

crosses a page boundary (but the portion actually used by the programmer is contained 

in the first page), it is possible for the computer to generate an unnecessary access 

interrupt while loading what will become the unused portion of the table. 

If the A field is delimiter limited, the delimiter character is not translated. When 

a nonzero translated byte is found, it is stored in register C and the associated byte 

from field A is stored in register Z. The bytes are stored in the rightmost 8 bits, and 

the leftmost 56 bits in these two. registers are cleared. If no nonzero translated byte 

is foundJ registers C and Z are not altered. The X (when G bit 5 = O)J C, and Z 

register results are undefined if the C and Z designators are equal in this instruction. 

The instruction terminates if a nonzero byfe fs referenced from the translate table or if field 

A is exhausted, whichever occurs first. The instruction increments the A index according to 

whether a nonzero byte is referenced as specified by G designator bit 5 (table 6-37).. Field 

B is not incremented. although the Y designator specifies an index in bytes for the B field. 

t The length specification may be replaced with a delimiter character.· 

60256010 01 6-173 



TABLE 6-37. INDEX INCR.EMENTS FOR. TRANSLATE AND 
TEST A PER B-C INSTRUCTION 

Field G Bit 5 Index Increment t 

A 0 Partial increment (nonzero byte) 

A 0 Full increment (all bytes zero) 

A 1 '.No increment 

B - No increment 

t For a complete definition of index increment, refer to Index 
Increments at the beginning of the stI_'ing instructions. 

The instruction sets the data flag bits according to the results of the instruction 

(table 6-38). 

TABLE 6-38. DFB CONDITIONS FOR THE EF INSTRUCTION 

DFB Bit Condition 

53 Termination due to length or delimiter rather than nonzero 

translated byte 

54 Termination due to nonzero translated byte which is not the 

last data byte in the A field 

55 Termination due to nonzero franslated byte which is the last 

data byte in the A field 

07 TRANSLATE AND MARK A PER B+C 

·a 
F 

( 07) 

G 
(SUBFUNCTION) 
i---A--\ 

7 8 1516 23 24 31 32 
A 

(LENGTH & 
BASE ADRS) 

y 
(INDEX 
FOR B) 

1 = PROHIBIT A FIELD INDEX / i 
'-G BIT 5: 

G BITS O, 1: G BIT 4 :. 
SEE TABLE 6-22 o = 64-BIT RESULT ELEtvENTS 

1 = 32-BIT RESULT ELEMENTS 

39 40 

B 
(BASE 
ADRS) 

47 48 

z 
(INDEX 
TOR C) 

55 56 63 
c 

(RESULT LG 
& BASE ADRS) 

This instruction translates the bytes (from left to right) in field A. A previously stored 

translate table in the B field controls the translation. 

6-174 60256010 01 

() 

() 

() 
;(l\ 

\t. Jr' 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

[ ''' 

! 

0 

0 

0 

0 

0 

0 

0 

0 

0 

The bytes read from field A are item counts. The instruction first shifts each item count 

three places and then adds it to the starting address of the B field to form a new address. 

The new address references a byte in the translate table (B field). If the byte in the 

translate table is zero, the next byte to the right of the one referenced in the A field is 

referenced and translated. This process continues until the instruction reads a nonzero 

byte from the translate table or exhausts the A field. Field B is not incremented although 

the Y designator specifies an index in bytes for the B field. 

No field length or delimiter may be specified for the B field (translate table). However, 

the effective length of the table cannot exceed 25610 bytes, because a byte (8 bits) is used 

to index into the translate table. The computer loads the entire translate table into a buffer 

memory at the beginning of the instruction execution. If this table crosses a page boundary 

(but the portion actually used by the programmer is contained in the first page), it is pos

sible for the. computer to generate an unnecessary access interrupt while loading what will 

'become the unused portion of the table. 

If the A field is delimiter limited, the delimiter character will not be translated. When a 

nonzero translated byte is found, it is stored (right justified) in the cleared exponent 

portion of result vector C. The partially incremented A field index is stored (right 

justified) in the cleared coefficient portion of result vector C. The translate then con

tinues with every nonzero translated byte and its associated index being stored in 

vector C until the A field is exhausted. 

When the A field is exhausted, the operation enters the number of nonzero translated bytes 

into the field length portion of the register designated by C and terminates the instruction. 

When the number of nonzero translated bytes exceeds 216 -1, the instruction sets data flag 

bit 37 (select condition not met). The instruction makes no further indication if the count 
16 

exceeds 2 -1 more than once. If all the translated bytes are zero, data flag bit 53 is set. 

If G bit 4 is cleared~ register Z specifies a word index for the result vector C which consists 

of 64-bit elements. If G bit 4 is set, register Z specifies a half-word index for the result 

vector C which consists of 32-bit elements. In forming the 32-bit element, the rightmost 

24 bits of the partially incremented A field index are stored in bits 8 through 31 of each 

element. The leftmost 24 bits of that A field index are ignored for this case. 

. If G bit 5 is not used, the instruction full indexes the A field index. If. G bit 5 is a one, 

the A field is prohibited from being indexed. G bit 5 controls only the updating of the A 

field index at the termination of the instruction. Thus, if G bit 5 is not set, the A field 

index retains appropriate updated index of the translated bytes. 

The Band C field indexes are not incremented; the C field is in half words. 

60256010 01 6-175 



EB EDIT AND MARK A PER 8 + C 

0 7 8 15 _l_6 23 24 31 32 39 40 Al_ 48 55 56 -63 
F G x A y B z c 

(EB) {INDEX' FOR (BASE (INDEX FOR (LENGTH &. (INDEX FOR (LENGTH &. 
A) ADRS) B) BASE ADRS) C) BASE ADRS) 

'----y----J 
'- REGISTER THAT STORES ADDRESS OF 

THE BYTE PRECEDING EACH FIRST 
SIGNIFICANT RESULT DIGIT 

This instruction edits field A under the control of pattern field B and stores the result 

in field c. The editing operation proceeds from left to right. Figure 6-6 6 shows the 

general format of the fields for the EB instruction. Source field A is in packed BCD 

format while pattern field B and result field C are in the zoned format. 

Each of the characters in the pattern field and result field are contained· in one 8-bit 

byte. The bytes are processed from left to right. The instruction examines the pat

tern characters in conjunction with the corresponding source digits and determines the 

result characters. The d~finitions and zoned codes for the pattern characters are listed 

in figure 6-66.. Subsequent paragraphs describe the pattern characters in more detail. 

The field length specifications for fields B and C are item counts in bytes. The field 

length specification for field A is not used. Delimiter characters are not allowed in 

this instruction. This instruction permits the editing of multiple source fields with the 

use of a field separation character in the pattern field. As shown in the instruction 

format,, the instruction stores the address of the byte preceding each first significant 

result digit of field C in the register designated by G. 

The instruction determines the character to be stored in the result field by an examin

ation of the pattern character and then, if necessary, the state of that T flip-flop and/ or 

the digit read from the source field. The instruction stores characters in the result 

field according to one of the following conditions. 

1. The source digit (A field) is expanded to zoned format and transmitted to the result 

field. 

2. The pattern character is transmitted to the result field. 

3. The fill character is transmitted to the result field. 

6-176 60256010 01 

0-\ 
;! 

{) 

{) 

(

'h 
I 

' ,~./ 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

C,,',:,., ' I 
i 

I 
J 

0 

0 

0 

0 

0 

0 

0 

0 

BASE 
ADDRESS 

MOST 

SOURCE FIELD A (PACKED BCD) 

MOST 
INDEX SIGNIFICANT BYTE 

~~ 

01539+ 34 5-

STARTING 
ADDRESS 

PATTERN FIELD B (ZONED FORMAT) 

SIGNIFICANT BYTE 
~ 

BASE. 
ADDRESS= 
STARTING 
ADDRESS 

(ZERO INDEX 
ASSUMED) 

60256010 01 

I D D D t F 

v 
SPECIFIED FIELD LENGTH 

RESULT FIELD C (ZONED FORMAT) 

5 3 • 9 * 3 4 5 

SPECIFIED FIELD LENGTH 

NOTE: 
IN THIS EXAMPLE AN ASCII SELECTION IS ASSUMED. 

PATTERN FIELD CHARACTER DEFINITIONS 

S = SIGNIFICANT START CHARACTER 
(I I 10 0001) 

D = DIGIT SELECT CHARACTER 
(I I 10 0000) 

* • MESSAGE INSERTION CHARACTER .. -

~. : ~GNOR~ -DIGIT CHARACTER ( 11I0 0011) 

F = FIELD SEPARATION CHARACTER 
(1110 0010) 

Figure 6-66. Example of Field Formats for Edit and Mark 
A Per B -C Instruction 

D 

6-177 



T FLIP-FLOP 

The T flip-flop controls the placement of source digits, fill characters, and pattern 

characters in the result field. Initially., the instruction clears the T flip-flop. Sub

sequently, pattern characters and source digits direct the setting and clearing of the 

T flip-flop. 

The detection of a plus sign in the proper position of the source field clears the T flip

flop although it was previously set by a nonzero digit in the same source byte. This 

operation is described further in Source Digits. 

The address of the byte that precedes each first significant result digit stored in output 

field C is recorded in the rightmost 48-bii register designated by G. The leftmost 16 

bits are cleared to zero. The first significant result digit is defined as the first digit 

stored following a significance. start character before a field separator. The first sig

nificant result digit may also result from a digit being stored as the result of a digit

select character when the T flip-flop is cleared and the digit is nonzero. This condition 

may occur several times during the execution of a single EB instruction. If no first 

significant result digit. is stored, the contents of the G register is not altered. 

PATTERN CHARACTERS 

Any 8-bit byte may appear in the pattern field. The instruction interprets all bytes as 

message insertion characters except for the four special pattern characters. The four 

pattern characters with special significance are the digit-select, significance-start., field

separation, and ignore-di'git characters. 

Table 6-39 lists each of the pattern characters and the conditions in which they function. 

DIGIT-SELECT CHARACTER 

This character causes either a source digit or the fill character to be transmitted to 

the result field. 

SIGNIFICANCE-START CHARACTER 

This character sets the T flip-flop which permits only source digits to be transmitted for 

digit select characters until the occurrence of a field separator. Nothing is transmitted to 

the result field. 

FIELD-SEPARATION CHARACTER 

This character identifies individual fields in a multiple source-field operation. When 

the instruction detects a field-separation character, it clears the T flip-flop and nothing 

is transmitted to the result field. 

6-178 60256010 01 

U
··-

( i 

0 

0 

/~·~ 
/ ', 

'\1.._)/ 

\.1.,_.P 

!"-' 

\i."-,...,, 

C·· .... 'L\ 
·.,# 

r·, <I .,. 



0 

0 

0 

0 

0 

0 

0 

0 

0 

C·,I, I 
I 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TABLE 6-39. PATTERN SELECT CHARACTERS 

Initial Source Resulting 
Examine State of · Digit Result State of 

Character Code Digit T Flip-Flop Status Character T Flip-Flop 

Digit-select XXlO 0000 Yes t = 1 Digit t = 1 
t = 0 d # 0 Digit t = 1 
t = 0 d = 0 Fill t = 0 

Significance-
start XXlO 0001 No t = 1 None t = 1 

t = 0 None t = 1 

Field-
separation XXlO 0010 No t = 0 or 1 - None t = 0 

Ignore-digit XXlO 0011 Yes t = 0 - None t = 0 
t = 1 - None t = 1 

Message- Any other 
insertion character No t = 1 - Pattern t = 1 

t = 0 - Fill t = 0 

Symbols: 

d - Represents a source digit. 
t - T flip-flop (cleared- by plus signs or field separation characters). 

digit - The source digit is expanded to eight bits (zoned and is stored in the result field). 
fill - The fill character is stored in the result field. 

pattern - The pattern character is stored .in the result field. 
xx - 11 in ASCII mode 

00 in EBCDIC mode 

IGNORE-DIGIT CHARACTER 

This character causes the next source digit to be skipped. The digit is not sampled 

for a zero/nonzero status and nothing is transmitted to the output field. Since the 

normal samples for sign codes are made, the ignore-digit character could result in a 

data fault or the clearing of the T flip-flops. 

MESSAGE-INSERTION CHARACTERS 

The instruction does not examine a source digit when it reads a message-insertion 

character from the pattern field. If the T flip-flop is a 1 at this time, the instruction 

transmits the message-insertion character to the result field. If the T flip-flop is a 

0, the fill character is transmitted. The exception is if a message-insertion character 

appears as the first character of the pattern field (T=O), the message-insertion charac

ter defines the fill character for the instruction. No character is transmitted to the 

result field for this first pattern field character. 

60256010 01 6-179 



SOURCE DIGIT 

When the instruction stores the source digit in the result field, it expands the source digit 

code from the packed BCD format to the zoned format by attaching a zone code as the 

leftmost four bits of the byte. The zone code is conditioned by the ASCII/ EBCDIC bit in 

the job's invisible package. If ASCII is selected, the zone code is 0011. If EBCDIC 

is selected, the zone code is 1111. 

Each byte in a source field contains two digits or a digit and a sign. When a byte con

tains a sign, the sign is in the rightmost four bits. The sign is processed in conjunc

tion with the digit in the leftmost four bits of the same byte. A positive sign clears 

the T flip-flop. If a sign should be in the leftmost four bits of a source byte, data 

flag 38 (decimal data fault) sets. 

The source digits are examined once during an editing operation. The instruction examines 

the leftmost four bits of the byte first. The rightmost four bits are then checked for sign. 

If these bits are not a sign, they are available for the next pattern character that calls for a · 

digit examination. 

If the instruction detects a data fault in the source field, the contents of the result field 

and data flag bits 53, 54, and 55 are undefined. The instruction also sets data flag bit 

3 8 for this condition. 

Any of the plus sign codes (1010, 1100, 1110,,or 1111) clear the T flip-flop after the 

preceding digit is examine do The minus sign codes (1011 and 1101) do not affect the 

state of the T flip-flop. When one of the sign codes is encountered in the rightmost 

bits, the bits are no longer treated as a digit. In this case, the next digit to be ex

amined is in the leftmost bits of the next character. Digits in the source field 

are only examined for digit-select and ignore-digit pattern characterso 

FILL CHARACTER 

The fill character is the first character of the pattern field unless that character is 

one of the four special pattern characters. When the instruction reads the fill character 

from the pattern field, it retains this character for later use. It is not transmitted to 

the first character position of the result field. The instruction continues with an exam

ination of the second character in the pattern field to determine the first character in 

the result fieldo 

If one of the four special pattern characters is the first character of the pattern field, 

the instruction uses the blank character (20 16 for ASCII or 4016 for EBCDIC) as the 

fill character. The instruction continues with a reexamination of the first character 

of the pattern field to determine the first character of the result field. 

When the instruction detects a field-separation character in the pattern field, the fill 

character is neither changed nor is a source digit examined. In this case, the instruction 

clears the T flip-flop and continues with an examination of the next pattern character. 

6-180 
60256010 01 

(·!i .. 0(. \ 

(0\ 
\ i 

<'-'It·, 

i..,..,y.1 

(·-l'-. 

\1..__)/ 

_,/ 

/~-,\ 

u . 
'll_ ...... 

'*""'· ( !~ .• 
~- , .. 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

[.'. 

\ 

! 

f 

0 
() 

0 

0 

0 

0 

0 

0 

0 

DATA FLAG BITS 

The EB instruction uses data flag bits to indicate the sign and zero status of the last 

source field edited. The state of the data flag bits pertains to fields specified by the 

field-separation characters, regardless of the number of signs contained within the field. 

For multiple field editing operations, the data flag bits indicate only the field following 

the last field-separation character. Thus, when the last character of the pattern field 

is a field-separation character, the data flag bits indicate an all zero field. Figure 

6-66 shows that the last source field contains a negative sign code; thus, data flag bit 

54 is set. 

The instruction examines all source digits in a field for the zero code (00002 ) because 

of a digit-select. At the termination of the instruction, the data flag bits indicate 

whether the field edited after the last field-separation character contained all zero digits. 

When the last edited field contains all zero digits, the instruction sets data flag bit 53. 

If the T flip-flop is cleared and the last edited field contains at least one nonzero digit, 

the instruction sets data flag bit 55. Table 6-40 lists the data flag bits affected by 

the EB instruction and the corresponding conditions under which they are set. 

TABLE 6-40. DFB CONDITIONS FOR THE EB INSTRUCTION 

DFB Bit Condition 

38 Decimal data fault 

53 Last edited field is zero 

54 Last edited field nonzero with negative sign or unsigned (T flip-flop set) 

55 Last edited field nonzero with positive sign (T flip-flop clear) 

DATA FAULT 

The instruction sets data fault flag bit 38 whenever the operation encounters a sign code 

in the leftmost four bits of a byte in the A field. The flag is also set whenever more 

than one numeric field is encountered by a single pattern field (that is, between the 

start of the pattern field and the first field-separator or between any two field-separator 

characters in the pattern). This condition occurs when a digit-select or ignore-

digit character is detected in the pattern field after a sign code was examined and be

fore a field-separator. If a data fault occurs, the contents of the output field C is 

undefined, data flags 53.. 54.. and 55 are undefined, and data flag 38 is set. 

60256010 01 6-181 



TERMINATION 

The instruction terminates by filling result fie~d C or by attempting to read beyond 

pattern field B. At termination, the instruction sets the data flag bits as listed in 

table 6-40. 

EXAMPLES 

In the following examples, the character codes are used as defined.. In each 

of case, the starting address for the result field C is 40000 16, ~nd the initial content 

register G is 1000016 • For purposes of clarity, all field indexes are assumed to be 

zero. All field lengths are assumed to equal the lengths actually shown in the examples. 

In the source fields, the BCD digits are shown in their normal decimal notation in the 

corresponding byte positions. The pattern and result fields are shown marked off in 

bytes with digit or symbolic representation of the character in each byte position. No 

bit, word, or byte addresses are shown for the fields and all fields are to be processed 

left to right. In the examples, solid lines (with arrows) show the actual transfer of a 

character or digit to the result field, while a dashed line indicates the pattern character 

that controlled the transfer of a digit from the source field· or the fill character. 

The following symbols are defined for use in the examples. 

Symbol 

B 

D 

s 
F 

I 

EXAMPLE 1 

Definition 

Blank character 

Digit- select character 

Significance- start character 

Field-separation character 

Ignore-digit character 

Figure 6-67 shows an example of an edit/mark A per B - C instruction with a single 

source field containing a positive sign. Table 6-41 lists the step-by-step operation of 

the instruction for example 1. 

Figure 6-67 shows the retaining of the fill character (*) and its transfer to the 'corre

sponding byte positions in the result field. The final content of G represents the ad

dress of the byte preceding the first significant result digit (3) stored in output field c. 
This address occupies the rightmost 48 bits of G; the leftmost 16 bits of G are cleared 

to zero. 

6-182 60256010 01 

(' ,J 

() 

() 

£-l0 
\Ji .. ; ' _)fr 

/f-~ 

\(..>' 

ff-~ 

.,_)} 

~-~ 

\~. __ )/ 

0 
r(h··· T) 

"'-Ji 



0 

0 

0 
TABLE 6-41. OPERATION OF EDIT AND MARK A PER B - C INSTRUCTION 

Pattern Source T Flip-Flop 
Character Digit State Conditions for Result Field 0 

* 0 This character is retained as 
the fill character. 

D 0 0 Fill character (*) 

D 0 0 Fill character (~:~) 0 
~ 0 Fill character (>:~) 

D 3 1 Digit (3) - First nonzero digit 
sets the T flip-flop. 

D 6 1 Digit (6) 

0 

0 
D 3 1 Digit (3) 

s 1 Significance-start character 
0 

would have set T flip-flop if 
not already set. 0 

• 1 Pattern (.) 

D 2 1 Digit (2) 

D 9 1 Digit (9) 

+ 0 No output to result field. Plus c 
sign clears T flip-flop. 

0 B 0 Fill character (*) 

c 0 Fill character (*) 

R 0 Fill character (*) 

0 

0 

0 

0 

0 

0 

0 
60256010 01 6-183 



( 

* 
-c 
RESULT 
FIELD C 

(ZONED) 

SOURCE 
FIELD A 

(PACKED 
BCD) 

6-184 

FILL 
CHARACTER 

~ 

* 0 

J \ 

\ 
\ 

00 

D 

\ 
\ 
\ 

\ \ 
\ \ \ 

\ 
\ 

1\ 

* 
/ 

/ 

36 

PATTERN FIELD B (ZONED) 

' D 0 D s • D 

\ \ ~ ~ l 
\ \ \ \ 

\ \ \ I 
\ 

\ \ \ 
\ I 

\ \ 
\ \ \ I 

\ \ \ \ \ 
\ I \ \ \ \ 

l'.i )~ .~ 
\ \ ! ~ .~ , 

* * 3 6 3 . 2 

J J • -. 
...,, 

/ ~ 

/ 

32 9+ 

CLEAR T FLIP- FLOP 
SET DFB 55 

FINAL CONTENTS OF ( G) = 400 I 0
16 

D B c 

1 l l 
I I I 
I I I 
I I I 
I I I 

_L 

! 1i 1; 
9 * * 
~ 

,,) 

Figure 6-67. Example 1 of Edit and Mark A Per B. - C Instruction 

(Single Source Field, Sign +) 

8 BITS 
~ 

R 

r 
I 
I 

I 
I 

)! 
* 

60256010 01 

() 

0 
;'[), 

\\ .. JJ! 

r·~. 

''llt~ll' 

r<---111;, 

:(_)/ 

:··~, 

""·~ _,;;/ 

_./ 

~ 
ll ·'.I '-"'f 



0 

0 

0 
0 
0 
0 

0 

0 

[1'···. i i i I 

I 

0 
0 
0 
0 

0 
0 
0 
0 
0 

EXAMPLE 2 

Example 2 (figure 6-68) shows a pattern field. identical to the pattern field shown in Figure 

6;,.f\'7. However, in example 2, only one fill character is used in the result field since the 

source field contains only one leading zero digit. As a result, the T flip-flop is set by the 

first significant digit (1 ). 

Example 2 shows that the T flip-flop remains set due to the negative sign in the source field. 

Thus, the instruction transfers pattern characters blank (B), C, and R to the result field in

stead of the fill characters that are transferred in example 1. 

{ 

* 
-c 

RESULT 
FIELD C 
(ZON~D) 

FILL 
CHARACTER 
,-A--.. 

* 0 

) \ 

D I 

\ 

\ \ 

\ \ 
\ \ 

\ \ 

\ \ 

1\, 
\ 
\ 
_jl_ 

* I 

J r r 

PATTERN FIELD B {ZONED) 

D 0 D s • D D e c 

\ \ \ T T 
\ \ \ I I 

\ \ \ I I 
\ \ I I 
\ \ \ 

\ \ \ I I 
\ \ \ I I 
~ \ \ 

_t _i_ -1 • ,, ,~ 

' 5 6 3 • 2 9 B c 

J 
~ ' .- ~ 

.) 
r .) 

SOURCE 
FIELD A 

(PACKED 
0 I 5 6 

BCD) 

Figure 6-68. 

60256010 01 

r ..I r ...) 

[ 
3 2 9 -

c_ T FLIP-FLOP REMAINS SET 
SET DFB 54 

FINAL CONTENT OF G = 40000 16 

Example 2 of Edit and Mark A Per B - C Instruction 
(Single Source Field, Sign -) 

8 BITS 

~ 

R 

• 
R 

6-185 



EXAMPLE 3 

The first character of the pattern field in example 3 (figure 6-69) is significance- start 

character (S). 

As a result. the blank character (B) is retained as the fill character. The pattern 

field also contains a field- separation character in the last byte of the field. Since 

there is no second BCD field in field A (following the sign). the T flip-flop is cleared 

and a blank character is stored as the last character in the result field. Thus. the 

instruction sets data flag bit 53. indicating that the last field edited contained all zero 

digits. 

PATTERN FIELD B (ZONED) 

8 BITS 
,--A-.. 

s D D D D D D D F CLEAR T FLIP- FLOP 

FILL 
SET DFB 53 

CHARACTER I. I. 
~ 

8-_j I I 

I I 

RESULT 
FIELD C 

(ZONED) 

SOURCE 
FIELD A 

(PACKED 
BCD) 

6-186 

12 9- FINAL CONTENT OF (G) = ~FFF8 l& 

Figure 6-69. Example 3 of Edit and Mark ,A Per B - C Instruction 
. (Field Separator Specified. No Second Field) 

60256010 01 

() 

,,<~~

\.t~,,,· 



0 

0 
0 

0 

0 
0 

0 

0 

0 

0 
0 

0 

0 
0 

0 

0 
0 
0 

EXAMPLE 4 

Example 4 (figure 6-70) shows a multiple source field editing operation. The first 

field is edited in the usual manner with the fill character (>!{) being retained. When the 

plus sign of the first field is detected, the instruction clears the T flip-flop. Thus, 

the fill character is inserted in the bytes of the result field corresponding to the two 

blank characters (B) and the two digit-select (D) characters which correspond to the 

two leading zero digits in the second source field. The detection of the first nonzero 

digit in the second source field sets the T flip-flop. The T flip-flop remains set 

since the sign of the second source field is negative. As a result, the instruction sets 

data flag bit 54 and transmits the byte address (40048 16) to register G. 

* 

RESULT 
FIELD C 
(ZONED) 

PATTERN FIELD B (ZONED) 

D • 

0 I 5 3 FINAL CONTENT OF (G) = 40048 16 

SOURCE 
FIELD A T FLIP- FLOP REMAINS SET 

(PACKED BCD) SET DFS 54 

I 

I 
I 

I 

Figure 6-70. Example 4 of Edit and Mark A Per B - C Instruction 
(Multiple Field Editing) 

60256010 01 
6-187 



EXAMPLE 5 

Example 5 (figure 6-71)1 shows the results of a result field termination before the 

pattern field. The pattern and source fields in example 5 are identical to the corre

sponding fields in example 4. However,, in example 5 the result field is three bytes 

shorter than the pattern field. As a result,, the last three characters of the pattern 

and source fields are not examined. Since no significant characters of the second 

source field are examined in this case,, the T flip-flop remains cleared,, and the in

struction sets data flag bit 53,, indicating that the second source field contains all zero 

digits. 

s D 

FILL I 
CHARAC

-.--.- TER I 

RESULT 
FIELD C 
(ZONED) 

0 

SOURCE 
·FIELD A 
(PACKED BCD) 

D 

PATTERN FIEL.D B (ZONED) 

0 D • D B B 

SOURCE DIGITS NOT EXAMINED 
~ 

CLEAR T FLIP-FLOP 

F D 

I 
I 

D 

I 
I 

D D 

I BITS 

~· 

D 

v 
PATTERN 

CHARACTERS 
NOT EXAMINED 

RESULT FIELD 
---TERMINATES 

DFB 53 SET 
FINAL CONTENT OF (G)=3FFF8t6 

Figure 6-71. Example 5 of Edit and Mark A Per B - C Instruction 
(Result Field Shorter than Pattern Field) 

6-188 60256010 01 

Q: 

,,,..--·~-,.__, 

I\'"' 

rf----,~-. 

\.t,, 

\~...,-- ___ ,;.J 

r-~ 
(\._;:/ 

() 



0 

0 

0 

0 

0 

0 

O· 

0 

0 

[ 
• 

0 

0 

0 

0 

0 

0 

0 

EXAMPLE 6 

Example 6 (figure 6-72) shows a source field with the sign character in the wrong position 

of the last byte. Thus, the contents of the result. field and the contents of register G become 

undefined. In addition, the instruction sets data flag bit 38 (decimal data fault). 

c 
FILL 

HARACTER 
~ 

:f_ 

B 

RESULT 
(FIELD C 
ZONED) 

SOURCE 
FIELD A 

, 

PATTERN FIELD B (ZONED) 

B D D D • 

) 

UN DEF I NED 
A 

D 

8 BITS 

~ 

D 

~ 

0 I 5 3 + 9 

SIGN IN WRONG 
POSITION OF BYTE- SET DFB 38 (DECIMAL DATA FAULT) 

FINAL CONTENTS OF {G) =UNDEFINED 

Figure 6-72. Example 6 of Edit and Mark A Per B - C Instruction 
(Decimal Data Fault, Undefined Results) 

60256010 01 6-189 



ES COMPARE BINARY A, B 

E9 COMPARE DECIMAL A, B 

G 

0 7~16 

{ES O~ E9) ·- {IND~X 
~ FOR A) 

23 24 31 32 
A 

{LENGTH & 
BASE ADRS) 

y 
(INDEX 

FOR B) 

39 40 
B 

{LENGTH & 
BASE ADRS) 

These two instructions compare source fields A and B for inequality. The comparison 

is from right to left. If the A and/ or B designator is zero or if the length of one or 

both of the source fields is zero, the instruction generates a corresponding source field 

containing positive zero. 

In the E8 instruction, source fields A and B contain two's complement, signed numbers 

(figure 6-73). If the source fields are unequal in length, the shorter of the two fields 

is extended with sign bits to equal the length of the other field. 

At the termination of the E8 instruction, data flag bits 53, 54, and 55 are set according 

to the results of the compare operation as listed in table 6-42. 

TABLE 6-42. DFB CONDITIONS FOR EB AND E9 INSTRUCTIONS 

DFE Bit Condition 

53 Equal operands (A = B) 

54 Operand A is high 

55 Operand A is low 

6-190 60256010 01 

0 

0 
,{.,, 

((,, 

('I~\ 

'~.>) 

r·""' 
"-ili, •• Jii 

c 
{""'\ I 
. ...... >i 



0 

0 

0 

0 

0 

0 

0 
o· 
C\, 

) 

0 

c 

0 

0 

0 

0 

0 

0 

0 

0 

A SOURCE FIELD 

FIELD LENGTH 

0000011000000000000I00100II0001 IOI I 001I01010010 

""---STARTING ADDRESS 

r---r---

B SOURCE FIELD LENGTH 

FIELD LENGTH 

10000000010000000010 I I 000 I 0 0 I I I 0000 0000 I I I I 0 I I I 00 I 0 
L ___ L __ _ 

NOTE: 

SIGN BIT 
EXTENTION ~ STARTING ADDRESS 

A ZERO INDEX IS ASSUMED FOR BOTH FIELDS 

Figure 6-73. Example of Field Formats for the Compare Binary 
A, B Instruction 

In the E9 instruction, source fields A and B contain packed BCD numbers (figure 6-74)·. 

If the two source fields are unequal in length, the shorter field is extended with zero 

digits to equal the other field. The E9 instruction compares the numbers from right 

to left and makes the comparison on the signed magnitudes of the two fields. Applicable 

data flag bits are 38 (decimal data fault), 53, 54, and 55 (table 6-41). 

60256010 01 

\_ STARTING A~DRESS 
I • • l . . 3 

A SOURCE FIELD 
FIELD LENGTH 

2 0 

B SOURCE FIELD 

6 

FIELD LENGTH 

0 0 0 0 3 0 4 I 2 I 
\_ STARTING ADDRESS 

NOTE! 

7 

9 

A ZERO INDEX ·IS ASSUMED FOR ALL FIELDS 

3 + 

6 

Figure 6-74. Example of Field Formats for the Compare 
Decimal A, B Instruction 

6-191 



LOGICAL STRING INSTRUCTIONS 

The logical string instructions function in the same general manner as corresponding 

string instructions. Logical string instructions operate with indexes and data fields 

identical to those of the string instructions except that the item counts and indexes are 

expressed in bits instead of bytes. Thus, the logical string instructions perform bit 

operations on bit boundaries while string instructions perform byte operations on byte 

boundaries. 

FO LOGICAL EXCLUSIVE OR A, B •C 
Fl LOGICAL AND A, B~ C 

f 2 LOGICAL INCLUSIVE OR A, B -+C 

f 3 LOGICAL STROKE A, B +C 

f 4 LOGICAL PIERCE A, B +C 

f 5 LOGICAL IMPLICATION A, B •C 

f 6 LOGICAL INHIBIT A, e~c 

f 7 LOGICAL EQUIVALENCE A, e~c 

47 48 55 56 63 
F 

{FO - F7) 
x 

{INDEX 
FOR A) 

A 
{LENGTH & 
.BASE ADRS) 

y 

(INDEX 
FOR B) 

B 
{LENGTH & 
BASE ADRS) 

z 
{INDEX 

FOR C) 

c 
{LENGTH & 
BASE ADRS) 

These instructions perform bit-by-bit logical functions on binary source fields A and B and 

store the results in binary field C. Table 6-43 lists the variations of source bits A and B 

with the corresponding result bit for each of the logical string instructions. 

TABLE 6-43. TRUTH TABLE FOR LOGICAL STRING INSTRUCTIONS 

Source OR AND Exclusive Stroke Pierce 
Impli-

Inhibit 
Equ:i,va-

Bits OR cation ,lence 

A B (A+B) (A•B) (A-B) (A•B) (A+B) (A+B) (A·B) (A-B) 

0 0 0 0 0 1 1 1 0 1 
0 1 1 0 1 1 0 0 0 0 
1 0 1 0 1 1 0 1 1 0 
1 1 1 1 0 0 0 1 0 1 

6-192 60256010 01 

() 
('1-·'t' 

'•~,J" 

_,/ 

{1-·"', 
~/ 

(~ 
( .:, 

,I/' 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 
0 
0 

0 

Fields A, B, and C are strings of bits. The instruction proceeds from left to right 

and terminates when the result field C is filled. The instruction extends source fields 

A and/ or B with zeros if they are shorter than field C. The G designator is not used 

and must be all zeros. 

Data flag bit 53, 54, or 55 is set according to the condition of the result field as shown 

in table 6-44. 

TABLE 6-44. DFB CONDITIONS FOR FO THROUGH F7 INSTRUCTIONS 

DFB Bit Condition 

53 Result field all zeros 

54 Result field mixed 

55 Result field all ones 

Figure 6-75 shows an example of a logical string instruction operation. A logical 

exclusive OR (FO) instruction is used for the example. In the example, source field B 

contains a mask of all ones which is used to complement the binary number in source 

field A through the exclusive OR function. All indexes and field lengths are item 

counts, expressed in bits (for example, the source and result field lengths equal 28 16 
bits). The operation proceeds from the starting addresses of A, B, and C to the end 

of the result field (to address 703016 ). Each operation forms the exclusive OR or the 

corresponding bits in source fields A and B and stores the result in the corresponding 

position of field c. 

60256010 01 6-193 



6-194 

0 71 II II 1114 1111 1940 4741 1111 II 

INSTRUCTION CODES 

0 71 

NOT USED INDEX 
REGISTERS ~I A ' 

02 = 00001000000000008 
0 4 = 0 0 00 10 0 0 0 0 0 0 0 0 0 0 8 
06 = 0000100 00 0000 0008 

FIELD 1 
LENGTH I BASE ADDRESS 
~'--~_,.J''--~~---

03= 002eloooooooo5000 
05= o 02a100000 ooosooo 
07 = 0 0 2810 0 0 0 0 0 0070 0 0 

A SOURCE FIELD 
II II II 14 1111 1140 47 

0101101001IOI10111000110110100010010001 

BASE ~~ FIELD LENGTH 
ADDRESS= \_STARTING 

5000 . ADDRESS =5008 

B SOURCE FIELD (MASK) 
0 7• II 1• as a4 SIH 1940 47 

I I I I I I I I I I I 11 I I I 11 I I I I_ I I I I I I I I 111 II 

BASE _/'--v----'\-
ADORESS= INDEX \_ STARTING FIELD LENGTH 

6000 ADORESS=6008 

C RESULT FIELD (ONE'S COMPLEMENT OF A) 
0 7. 111• as 14 II SI st40 47 

I I 0 I 00 I 0 I I 00 I 00 I 000 I I I 00 I 001 0 I I I 0 I I 0 I I I 0 

BASE._)~'-~ 
ADDRESS= · \_ STARTING 

7000 ADDRESS=7008 

FIELD LENGTH 

Figure 6-75. Example of Logical String Instruction 
(Logical Exclusive OR) 

60256010 01 

U
- . 

. 

(l 

0 

/(~> 

\~• .. _.,Ii 

11'--"\ 

·\\_~/ 

ic--_-,· ' -l 

1(·. "."\ 
Y' 



0 

0 

0 

0 

0 

0 

0 

0 1 
' 

0 

0 

[ ' 

! 
I 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

NONTYPICAL INSTRUCTIONS . 

These instructions perform operations such as register to storage transfers, formation 

of repeated bit masks, and maximum/minimum determinations that do not fall into any 

of the preceding categories of instructions. The separate instruction descriptions define 

the format and operation for these instructions. Appendix C provides a complete listing 

of the various nontypical instruction fields and the resulting termination conditions. 

3D INDEX MULTIPLY (R) • (S) TO (T) 

3C HALF WORD INDEX MULTIPLY (R) • (S) TO (T) 

0 7 8 15 16 23 24 31 

F R s T 
(3 D ) (SOURCE (SOURCE (DESTI-

NO. I) NO. 2) .NATION) 

3D INDEX MULTIPLY (R) • (S) TO (T) 

This instruction forms the product of the two's complement integers contained in the 

rightmost 48 bits of the registers specified by the R and S designators, respectively. 

The instruction stores the product in the rightmost 48 bits of register T and clears the 

leftmost 16 bits. 

47 
If the product or either operand exceeds ± 2 -1, the result is undefined. 

3C HALF WORD INDEX MULTIPLY (R) • ,(S) TO (T) 

This instruction forms the product of the two's complement integers contained in the 

rightmost 24 bits of the registers specified by the R and S designators, respectively. 

The instruction stores the product in the rightmost 24 bits of register T and clears the 

lef:tmost eight bits. 

23 If the product or either operand exceeds ± 2 -1, the result is undefined. 

60256010 01 6-195 



5E/7E LOAD (T) PER (S),(R) 

SF /7F STORE (T) PER (S),(R) 

12/13 LOAD/STORE BYTE (T) PER (S), (R} 

0 7 8 15 16 23 24 
F R s 

(FUNCTION) (BASE · (INDEX) 
ADDRESS) 

5E/7E Load (T) Per (S), (R) 

31 
T 

These instructions load the 32 / 64-bit register T with the content of the address specified 

by (S) + (R), where (R) is the base address. For the 5E instruction, (S) is an item count in 

half-words, arid for the 7E instruction, (S) is an item count in words. The index in Sis 

shifted five I six places to the left before it is added to the base address. S and R are 

64-bit registers. Overflow resulting from this addition has no effect if it occurs. 

5F /7F Store (T) Per (S), (R) 

These instructions store the content of the 32/64-bit register Tin the address specified by 

(S) + (R), where (R) is the base address. For the 5F instruction, (S) is an item count in 

half-words, and for the 7F instruction, (S) is an item count in words. The index in Sis 

shifted five/ six places to the left before it is added to the base address. S and Rare 

64-bit registers. These instructions do not detect overflow if it occurs. 

12I13 Load/Store Byte (T) Per {S), (R) 

These instructions load/store a byte from/into the address specified by (R) + (S), where (R) 

is the base address and (S) is an item count in bytes. The index in S is shifted three places 

to the left before it is added to the base address. The byte is transmitted into/from bits 56 
through 63 of register T. The remaining bits in T are cleared on a load and ignored on a store. 

37 TRANSMIT JOB INTERVAL TIMER TO (T) 

0 

R S 

7 24 31 
F 

(FUNCTION) 
T 

( DEST I NAT ION 
REGISTER) 

This instruction transmits the contents of the job interval timer into bits. 40 through 

63 of register T and clears bits 0 through 39 to zero. The designators R and S are 

undefined and must be set to zero. When executed in monitor mode, the operation of 

this instruction is undefined. This instruction does not deactivate the timer. 

6-196 60256010 01 

,I U·' .. 

.tf),' \\. 1,.; 

0 

(''. ~11'-, 

\~'"'"" 

tf·-.,..,, 

~-.>" 

\'....-, _,-/' 

//~' 

(~_' y 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

[
\ 

I 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

70 SWAP S~T AND R +S 

7 8 15 16 23 24 31 
F R s T 

(SOURCE (DEST I NATI ON 
LENGTH & LENGTH & 
BASE ADRS) BASE ADRS) 

L DESIGNATES STARTING REGISTER 

This instruction moves to destination field T, a portion of the register file beginning at 

the 64-bit register specified by the rightmost eight bits of register S. The instruction 

also transmits source field R to the register file beginning at the 64-bit register speci

fied by the rightmost eight bits of register S. 

The leftmost 16 bits of registers R and T specify the field length in words for the 

source and destination fields, respectively. The field lengths of the source and destina

tion fields may be different, but each must be even. A zero field length indicates no 

transfer for that field. Any transfer of words into or out of the register file that be

comes exhausted of registers (beyond the bounds of the register file) causes the in

struction to become undefined. 

The rightmost 48 bits of registers R and T specify the base address of the source and 

destination fields, respectively. These addresses must specify an even 64-bit word in 

central storage. Bits 57 through 63 of registers R and T are undefined and must be set 

to zero. Overlap of the source and destination fields is allowed only if the base ad

dresses for both fields are equal. 

There are no restrictions relating to registers R, S, or T being in the range of the 

registers being swapped. 

The starting register in the file specified by the rightmost eight bits of the register 

specified by S must be an even register. 

If the source field from the register file includes register zero, the computer trans -

mits the trace register, However, new data from memory is never written into reg .. 

ister zero by the swap (7D) instruction." 

60256010 01 6-197 



39 TRANSMIT REAL TIME CLOCK TO (T) 

R S 

0 7~~24 .31 

1~9> ~DEST1~~,~1 
REGISTER) . 

This instruction transmits the contents of the real-time clock to bits 16 through 63 of the 

register designated by T. Bits 0 through 15 of register T are cleared. 

3A TRANSMIT (R) TO JOB INTERVAL TIMER 

0 7 8 15 
F R 

{3A) {SOURCE 
REGISTER) 

This instruction transmits bits 40 through 63 of the register designated by R to the job 

interval timer. When executed in the monitor mode, this instruction functions as a no-op. 

BB MASK A, B ~c PER Z 

G 

0 
F 

{BB) 

47 48 55 56 
z c 

{O V LG (RESULT LG 

63 
A 

{BASE 
ADRS)· 

B 
(BASE 
ADRS) & BASE ADRS) BASE ADRS) 

G BIT o: I . ~ GOBIT=4~oRMAL SOURCE VECTOR B 
0 = 64-B IT OPERANDS 1 = BROADCAST VECTOR ( B) 
1 = 32-BIT OPERANDS 

G BIT 3: 
0 = NORMAL SOURCE VECTOR A 
1 = BROADCAST VECTOR (A) 

'This instruction combines elements of vectors A and B to form result vector C as controlled 

by order vector Z. The general operation of this instruction follows the process described 

for sparse vector instructions in this section. When a one is detected in order vector Z, 

the next element of vector A is inserted into result vector C and the corresponding element 

6-198 60256010 01 

u 

('-·Tc· 
I 

\,,,-.:.Ii) 

f-..,,,,\ 
'-t .. J/ 

,r-~ ""',,\ 
I 
\ . .._ __ ,.,/ 



0 

0 

0 
0 

0 

0 

0 

0 

0 \ 
' 

0 

[
. 

' 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

of vector B is skipped. When the instruction detects a zero in order vector Z, the instruction 

inserts the next element of vector B and skips the corresponding element of vector A. When 

all elements of A and B have been merged, the instruction transmits the resulting length of 

vector C to the length specification portion of register C as shown in figure 6-32 .. 

The instruction format shows that bit 0 of the G designator determines whether 64- or 

32-bit operands are used for the A and B vectors. The X and Y designators and bits 

1, 2, and 5 through 7 of the G designator are not used and must be zeros. G bits 

3 and 4 determine whether normal vector elements or broadcast elements are used for 

vectors A and B, respectively. The use of normal or broadcast source vectors are 

described in Vector Instructions in this section. 

This instruction terminates when all bits of the order vector have been examined. The instruc

tion recognizes no lengths for vectors A and B. 

BC COMPRESS A~C PER Z 

G 

0 
F 

(BC) 

7 8 

I 

lGem: 

x 

GBITO: 

O· = TRANSMIT ON 0 V 
·1 = TRANSMIT ON 0 V 

1 = 32-BIT OPERANDS 
0 = 64-B IT OPERANDS . 

A 
(BASE 
AD'R$) 

55 56 63 
z c 

0 V LG (RESULT LG 
BASE ADRS) & BASE ADRS 

This instruction forms a sparse data vector field C by compressing vector field A. 

Sparse data vector field C consists of elements of vector field A corresponding to ones 

in sparse order vector z. Thus, the elements of vector field A that correspond to the 

positions of ones in sparse order vector Z transfer in order to corresponding elements 

of sparse data vector field C if G designator bit 1 equals zero. If this bit is one, the 

elements of vector field A that correspond to zeros in sparse order vector Z are 

transferred to corresponding elements of sparse data vector field C. 

In a typical operation, one of the compare instructions first generates sparse order 

vector Z. The BC instruction uses the generated order vector as a mean~ of dis

carding all near-zero elements of vector field A and still maintaining their positional 

significance through the order vector. 

60256010 01 6-199 



The instruction transfers the resulting length of sparse data vector C to the length 

specification portion of the, register designated by C in the instruction word. If bit 0 

of the G designator is zero/one,, the operand. size (elements of vectors A and C) is 

64/ 32 bits,, respectively. As shown in the instruction format,, the X,, Y,, and B desig

nators and bits 2 through 7 of the G designator are not used and must be zeros. 

O': 
I 

The instruction terminates when all bits of sparse order vector Z are used. The length ,,~) 
specification portion of registers A and C (ini~ial) is not used. 

Figure 6-30 shows a simplified example of compressing a vector field into a sparse 

vector field. 

CF ARITH. COMPRESS A ~c PER B 

G 

0 7~16 23 24 31 32 
F 

(CF) 

GBIT4: 

x 
(OFFSET 

FOR A) 

G BITS 5-7 

A 
(LENGTH & 
BASE ADRS) 

9'Gff CONTROL BITS 

0 = NORMAL SOURCE VECTOR B 
1 = BROADCAST SOURCE VECTOR ( B) 

G!IT=Ob.-BIT OPERANDS 
1 = 32-BIT OPERANDS 

y 
(OFFSET 

FOR B) 

39 40 47 48 55 56 63 
z c B 

(LENGTH & 
BASE ADRS) 

(RESULT (RESULT LG 
0 V LG 

& BASE ADRS) &. BASE ADRS) 

This instruction forms sparse data vectort C and the associated sparse order vector Z 

by performing a floating point compare operation between elements of vector A and the 

elements of, vector B. Each element of vector B is subtracted from the corresponding 

element of vector A. The conditions for comparing floating point operands are de

scribed in 'the Floating Point Compare Rules, appendix B. If an element of vector A is 

greater than or equal to the corresponding element of vector B (An ~ Bn),, the instruc

tion stores the element of A as the corresponding element of sparse data vector C and 

sets the associated order vector bit. If the element of vector A is less than the 

corresponding element of vector B (An < Bn). the element of A is not stored in sparse 

data vector C and the associated order· vector bit is cleared. The element of C is not 

skipped if An < Bn. Thus.. in the case of broadcast vector (B) .. this instruction. pro

vides a means of generating a sparse vector field by comparing the elements of a source 

vector field with a fixed threshold element. 

The registers designated by X and Y contain the offsets for vectors A and B,, respectively. 

t The sparse vector part of this section describes the general format of sparse vectors. 

6-200 60256010 01 

ff'"' 
~.Jli 

.r··· " 
'-"··-''"/ 

_ _; .. / 

0 



0 

0 

0 

0 

0 

0 

0 

0 ' 

O') 
I 

c~) 

0 

0 

0 

0 

0 

0 

0 

0 

The elements of vectors A and B are in floating point format. t The sign control bits of the 

G field may specify operations on the elements of vector A and/ or B before the floating 

point compare is made. However, the element of A, if stored in C, will be the original 

element as read from A. The compare operation follows the floating point compare condi

tions as described in the branch instruction section. In the comparison, only (R.) ~ (S) 

condition is detected where,, in this case,, An and Bn are substituted for (R) and S),, respec

tively. If the instruction detects an indefinite operand for vector A and/or B,, the indef

inite operand is stored as the corresponding element of vector C and the associated bit of 

the order vector is set. 

The instruction format shows that if bit 0 of the G designator is a zero/ one, the 

vector elements are 64-bit/32-bit operands, respectively. If bit 4 of the G designator 

is a one, a constant element is broadcast for vector B as described in Vector Instruc

tions in this section. In this case, the Y designator is not used. G bits 1 through 

3 are not used and must be zeros. G bits 5 through 7 function as sign control bits 

as described in Vector Instructions. 

This instruction terminates when all the elements of vector A have been compared. At 

termination, the instruction stores the length (in bits) of the generated order vector into 

the length portion (bits 0 through 15) of the register specified by Z. The number of 

elements stored in vector C is stored in the length portion of register C, thus providing 

the field length of the generated sparse vector. If the length of vector B is shorter 

than the length of vector A, the instruction extends the B field with machine zero elements 

to equal the A field length. The applicable data flag bit is 46 (indefinite result). 

Figure 6-76 is an example of an arithmetic compress instruction with assumed instruction 

code, register contents, and source vector field A. In this example, a broadcast floating 

point constant B is compared with source vector elements A 
1 

through A6 . Element A 0 is 

not compared because of the offset. The A vector elements are indicated as being An~ B 

or An< B. Thus, the instruction in this example generates a 4-element result vector C 

and a 6-bit order vector Z. The 6 and 4 values are stored in the field length portions of 

registers 08 and 09, respectively. 

t Appendix B describes the floating point format. 

60256010 01 6-201 



6-202 

F 
(CF) 

B Z C 
( 07) (08) (09) INSTRUCTION CODE 

32- BIT OPERANDS BROADCAST ELEMENT (B) t Y NOT USED 

ADDRESS o 

5000 

50 20 

5040 

506 0 

5080 

50AO 

50CO 

ADDRESS 

7000 

7020 

7040 

70SO 

NOT USED OFFSET 
BEFORE EXECUTION 

REGISTER 

,..y~ 
05 = 0000 100000000.000 I 

I 

' 
SOURCE VECTOR 
FIELD A 

Ao (NOT COMPARED) 

A1 2: B 

A2 < B 

A 3 2: B 

A4 < B 

A5 2: B 

As 2: B 

RESULT VECTOR 
FIELD C 

Co = A1 

C1 = A3 

C2 = A5 

C3 =As 

:SI 

} OFFSET 

FIELD 
LENGTH I BASE ADDRESS 
~l~~-"~~~-

06= 00011000000005000 
I 

07 = .FLOATING POINT CONSTANT B 

FIELD I 
LENGTH! BASE ADDRESS 

~I~ 
08= 00001000000006000 

09= 0 00 010 00000007000 

'STARTING ADDRESS 

ADDRESS 

6000 

ORDER VECTOR 
FIELD Z 

0 I I I 4 I I 

-
AFTER EXECUTION 

REGISTER 05,06, AND 07 UNCHANGED 

FIELD 
LENGTH1 BASE ADDRESS 
~I~ 

08= 0006100000000SOOO 

09 = 0 0041000000 007000 

Figure 6-76. Example of Arithmetic Compress A-.:..c Per B Instruction 

60256010 01 

I 

() 

0 

ff"-~ 

"'4~ ... Y 

'-~, __ ;r' 

/~ 
'\•t_,J) 

0 -



0 
0 

0 
0 
0 
0 

(1 

0 
0 

[ 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 

BD MERGE A, B-.c PER Z 

0 

F 
(BD) 

G 
~ 

7 8 1516 

G BIT 0: 
O = 64-BIT OPERANDS 
1 = 32-BIT OPERANDS 

2324 3132 39 40 47 48 55 56 63 

B Z C A 
(BASE ADRS) (BASE ADRS) (O V LENGTH(RESULT LENGTH 

& BASE ADRS) & BASE ADRS) 

0 = MERGE A & B, SKIP NONE 
1 =.OECOMPRESS A & B, SKIP B 

G BIT 4: 
WHEN USING ELEMENT OF VECTOR A 

0 = f\JORMAL SOURCE VECTOR B 

G BIT 3: 
1 =BROADCAST SOURCE VECTOR (B)-EXPAND 

O = NORMAL SOURCE VECTOR A 
1 = BROADCAST SOURCE VECTOR (A)-EXPAND 

This instruction merges the elements of vector field A with the elements of vector field 

B to form result vector field C as controlled by order vector Z. Thus. this instruction 

could be used to reform a vector field from a sparse vector with a broadcast near-zero 

element. When the order vect9r Z contains a one in a given position. the instruction 

inserts the next element from vector field A into ve·ctor field C. If the order vector 

contains a zero. the instruction inserts the next element from vector field B in the result 

field (figure 6 -77). The instruction transmits the resulting length of vector C to the length 

specification portion (bits 0 through 15) of register c. 

Field B vector elements are controlled by G bit 7. When G bit 7 is a zero, the 

operation (called merge) combines vectors A and B. When G bit 7 is set (decompress), 

an element of vector B is skipped for each element of vector A used. No elements of 

vector A are skipped when elements of vector B are used. 

The instruction format diagram shows that if bit 0 of the G designator is a zero/one, 

the operand size (vector A and B elements) is 64/32 bits, respectively. The X and Y 

designators and G bits 1, 2, and .5 through 7 are not used and must be zeros. Bits 3 

and 4 of the G designator determine whether a constant element is broadcast from the 

registers designated by A and B, respectively. If G bit 3 or 4 is a one# the operation 

is called expand. 

The BD instruction terminates when all of the bits of the order vector have been pro

cessed. The field length specifications for vectors A and B are not used. 

60256010 01 6-203 



6-204 

THE Z-BIT STRING IS USED FOR ALL THREE EXAMPLES. G BITS NOT 
INDICATED ARE ZEROS. 

z 0 0 ( I 0 0 I I 0 

EXAMPLE I-BO MERGE A 

c 

B BO BI B2 B3 B4 

EXAMPLE 2 - BO DECOMPRESS A AO A I A2 A3 
G BIT 7= I 

c 

B BO BI B2 83 84 B5 86 B7 88 

EXAMPLE 3 - BO EXPAND 
G BIT 3=1 

A BROADCAST {A) 

c 

B BO BI 82 B3 84 

Figure 6-77. Examples of BD Merge Instruction 

60256010 01 

ff} 
U' 

0 

fif--1'.. 

~--"'' 

c 



0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

14 BIT COMPRESS 

0 7 8 15 16 23 24 31 
F R s T 

( 14) (LG OF R {LENGTH OF 
1

,LENGTH & 
SEGMENTS & S SEGfENTS) BASE ADRS) BASE ADRSl 

This instruction compresses specified segment lengths (in bits) of source field R into re

sult field T. The R designator code in the instruction specifies a 64-bit register which 

contains the length of the R segments in the leftmost 16 bits and the base address of 

the source field in the rightmost 48 bits (figure 6-78). The register denoted by S 

contains the length of the segments in the source field to be skipped in the compress 

operation. The rightmost 48 bits of register S are not used. 

Register T contains the destination field length in the leftmost 16 bits and the base 

address of the destination field in the rightmost 48 bits. 

The bit compress operation successively transmits the segment lengths of the source 

field, as specified by R, to corresponding lengths of the destination field. The in

struction moves from left to right in the source and destination fields. The 

instruction skips the segment lengths of the source field as specified by S. 

Figure 6-78 shows that the instruction transfers segments R 1, R2, and R3 in the source 

field to corresponding segment lengths of the result field. Source field segments s
1 

and s2 are skipped. The operation continues until the T field length is filled. If the 

field length specified by R or T is zero, the instruction functions as a no-op. 

60256010 01 6-205 



LENGTH 
OF R 
SEGMENTS 

R BASE ADDRESS 

_A_____ A 

~~~ "' 
REGISTER R I 0 0 0 81 0 0 0 0 0 0 0 0 5 0 0 0 I

REGISTER S

REGISTER T

LENGTH LENGTH
OF R OF S

BASE SEGMENTS SEGMENTS

LENGTH
OF S
SEGMENTS

T FIELD
LENGTH

NOT USED

T BASE ADDRESS

~,.-~~~~~~~A.__~~~~~~

SOURCE FIELD R

ADDRESS="\~~

SOOO I° Rt l St 'l 39 40

I ~
BASE

RESULT FIELD T
FIELD LENGTH

ADDRESS:;""\ r..

6000 r 71 15 II u\24

R1 I R2
I

R3 15

Figure 6-78.. Example _of Bit Compress Instruction

6-206 60256010 01

!(', ····--.,'.

i"l..oi'

If''· ,_,;

0

0

0

0

0

0

0

0

c

c
0

0

0

0

0

0

0

0

15 BIT MERGE

16 BIT MASK

0 7 8 15 16 23 24 31
F R s T

{15) (LGTH OF R (LGTH OF S (LENGTH &
SEGt-ENTS & SEGtvENTS & BASE ADRS)
BASE ADRSJ BASE AO R_fil_

15 BIT MERG~

The bit merge instruction merges specified segment lengths (in bits) of source fields

R and S into result field T. The 64-bit register specified by R contains the length of

the R segments in the leftmost 16 bits and the base address of the R source field in

the rightmost 48 bits (figure 6•79). The register denoted by S contains the length of

the S segments in the leftmost 16 bits and the base address of the S source field in the

rightmost 48 bits. Register T contains the destination field length in the leftmost 16

bits and the base address of the destination field 'in the rightmost 48 bits.

The bit merge operation successively merges the segment lengths of the R source field

with segment lengths of the S source field into corresponding lengths of the destination

field. The instruct:j.on moves from left to right in the source and destination fields.

Figure 6-79 shows that the 15 instruction merges segments R1, R2, and R3 in source

field R with segments s1 and s2 into corresponding segment lengths of the destination

field. The operation continues until the T field length is filled.

If bits 16 through 63 of the S register are cleared, the instruction transmits zeros to

the corresponding segment lengths in the destination field. If the field length specified

by the R, S, or T registers is zero, the instruction functions as a no-op.

60256010 01 6-207

REGISTER R

REGISTER S

REGISTER T

LENGTH OF
R SEGMENTS

too ·o ~T:

LENGTH OF
S·SEGMENT

'[0 0. I ~T~

T FIELD
LENGTH

R BASE ADDRESS

A

0000000500

S BASE ADDRESS

0000000 600

T BASE ADDRESS

'j o o• 3 a09lr..,::--o-o--_0_0_"·0--0-0_1_0 __ 0_0..,.,~,i

BASE\ I LENGTH OF
AOD~cfg~- \~

SOURCE FIELD R

ADD~~~~\-
6000

r R. ·r

LENGTH OF
S SEGMENTS

15 ..

------------~

ZS

Ii
SOURCE FIELD S

-0 15 II SI

1

------S-1 --52-11
RESULT FIELD T

FIELD LENGTH
BASE\ ADDRESS=

7000 r-----,---------~,...-----"·~---__,,..,--------_,,,,......,......--~~ 1 O ? I H 24 SI H 4? 41 H \ -1---R-1 ________ S_1 _________ R_2 _________ S_2 ___________ R_3---1-1

Figure 6-79. Example of Bit Merge Instruction

6-208 60256010 01

u
0

0

·· •... .../

;~·

\~,

11""-,.,

14.=i

c ' i
·(··'I\

. v. ~.:P

0

0

0

0

0

0

0

0

0

[
0

C' '1

/

0

0

0

0

0

0

0

16 BIT MASK

The bit mask instruction is similar to the bit merge instruction. The specified

R., S, and T registers contain segment lengths, base address, and field length in the

same manner. However, the bit mask instruction (figure 6-80), moving from left to

right, transmits a segment equal to the length specified by R to the corresponding seg

ment length in the destination field. The 16 instruction then transmits a segment of

field S equal to the segment length specified by the S register starting at an address

equal to the base address plus the R segment length. The next segment of the R source

field to be transmitted to the destination field starts at an address equal to the R base

address plus the R segment length plus the S segment length. As in the bit merge

instruction, if bits 16 through 63 of the S register are cleared, the instruction trans

mits zeros to the corresponding segment lengths in the destination field. In the same

manner, if the field lengths specified by the R, S, or T register is zero, the instruc

tion becomes a no-op. The bit mask operation continues in this manner until the

destination field is filled.

60256010 01 6-209

REGISTER R

REGISTER s

REGISTER T

LENGTH OF
R SEGMENTS

[o
II II

0 0 8 I 0

LENGTH OF
S SEGMENT
0 II II

Io o I o Io

T FIELD
LENGTH

~'··

BASE LENGTH OF SOURCE FIELD R

5000
~

R BASE ADDRESS ..
000000 0 500 0 I

S BASE ADDRESS

.,
0000000 600 0

I

T BASE ADDRESS

A

00000 00700

ADDRESS=~R SEGMENTS

~o~~----~1~1------~--~----~'~'~1~4~-----•~•~'''-----------------41-.--41 _______ 1~1

BASE
ADDRESS=\

6000

6-210

R I (MASKED SEGMENT) R 2

0 71

(MASKED
SEGMENT)

LENGTH OF
S SEGMENT

S1

II 14

(MASKED
SEGMENT)

(MASKED SEGMENT) R 3

JI JI 47 41 H

S2
(MASKED
SEGMENT)

Figure 6-80. Example of Bit Mask Instruction

60256010 01

(,)

()

!f-"I·\

~c • .>)

(]\
lllt,,~

(····-._,,

\~..J/

(),,

>

0

0

0

0

0

0

0

0

0 !

c
0

0

0

0

0

0

0

0
0

17 CHARACTER STRING MERGE

0 7 8 15 16 23 24 3j
F R s T

(17) (SOURCE (SOURCE (RESULT
STRING REG) STRING REG) STRING REG

This instruction merges records t in the string specified by R with the records in the

string specified by S in ascending order. The resulting merged records are stored in

the string specified by T. Bits 0 through 15 of register T contain an item count of

the number of bytes in a record. Bits 16 through 63 contain the starting address of

the result string.

The registers specified by R and S specify the two source strings. Bits 0 through 15

of these registers contain the number of records in the corresponding string. Bits 16

through 63 specify the starting address of the string.

The instruction merges the R and S strings by comparing the leading records of each

string and by tr an sf erring the numericallyt t smaller of the two records to the result

field,, starting at the base address. The next record in the string from which the

record was transferred becomes the new leading record. The comparisons continue in

this manner until one of the source strings is exhausted. The instruction then moves

the remainder of the unexhausted string to the end of the result string.

If the record length specified by T is zero,, or the number of records specified by both

R and S are zero. this instruction becomes a no-op.

Figure 6-81 shows an example of the character string merge instruction. Note that in

the example, alphabetical characters are used to denote the relative size of the records.

Each character represents one 8-bit byte of data. For example in the first comparison,,

leading record AA (R string) is smaller than leading record AB (S string). As a result,,

record AA transfers to the result string and the next record in the R string (BA) be

comes the leading record which is compared with AB in the second comparison.

The comparisons continue as shown in :figure 6-81 until the R string is exhausted in

the eleventh comparison. Following this comparison,, the remainder of the S string

(record MN) transfers as the last record of the result string.

tin this case, a record is defined as a number of 8- bit bytes.

t iThe records are all assumed to be positive. The R record is transferred when identi
cal records are compared.

60256010 01 6-211

BASE ADDRESS
=8000

BASE ADDRESS
=AOOO

ORDER OF
COMPARISONS
R STRING

S STRING

BASE ADDRESS
=COOO

6-212

NO. OF RECORDS
IN R STRING

0 1516

REGISTER R I 0 0 0 71 0 0 0 0

NO. OF RECORDS
IN S STRING

REGISTER S 0 0 0 0 0 0

RECORD
LENGTH

15 16

REGISTER T 0 0 2 I 0 0 0 0

SOURCE STRING R

3132 4748 63 0 1516 31 32

A A I B A IC C I D D I J c I K K I L D
I

SOURCE STRING S

3132 47 48 63 0 15

A 8 E F I G H I J K IM N

COMPARISONS

I 2 3 4 5 6 7 8

A At 8 A B At c. c·t D Dt J c J c J ct

A B A at E F E F E F E Ft G Ht J K

t DENOTES RECORD TRANSFERRED TO RESULT STRING.

RESULT STRING T,

1516 31 32 47 48 63 0 1516 31 32 4748 63

R BASE ADDRESS

0 0 0 0 8 0

S BASE ADDRESS

0 0 0 0 A 0

T BASE ADDRESS

0

9

K

J

0 0 0

10

K K Kt

Kt M N

ADDRESS
C040

c 0

II

L ot
i(MN)

31 32

A Al A els Ale clo DIE FIG HIJ c J KIK KIL
I I I I I I

Figure 6-81. Example of the Character String Merge Instruction

63

0
0 I
63

0 cl

63

0 ol

60256010 01

~l!\.
"'t .. Jv'

\,,,_;;.J;·

/',.,.----.......\

\"!!i._'11')

\ ... _ --~?

-.-/'

0
0
0
0
0

0

0 1
'

0

[
0

c
0
C',: !

0

0
0

0

DD SPARSE DOT PRODUCT TO (C} AND (C+l)

0

F
(DD)

23 24 31 32 39 40

x
(OV LENGTH
& BASE ADRS

A y
(BASE ADRS) (OV LENGTH

& BASE ADRS)

B
(BASE ADRS)

c
(UPPER
RESULT)

63

I C + 1 , I
I (LOWER I
I RESULT) I
L. - - - - _.J

G BIT 0:
0 = 64-BIT OPERANDS
1 = 32-BIT OPERANDS

This instruction multiplies the elements of sparse vector A by the elements of sparse

vector B and forms the sum of the products. This instruction functions much like a

sparse vector multiply instruction,, except rather than producing a sparse vector as a

result, the DD instruction forms the sum of all the individual products as a result.

f'he operation uses double precision, unnormalized, floating-point arithmetic t for both

the multiply and subsequent addition. Vector A and B each are associated with an

order vector as in the sparse vector instructions. The product of a given pair of

vector A and B elements is added to the accumulating sum only when the corresponding,

bit-by-bit, logical AND of the two source order vectors is a one. The instruction

stores the upper and lower result in the registers denoted by C and C + 1, respectively.

The instruction code shows that if G bit 0 is a zero/ one, the operands (vector elements)

are 64/32 bits, respectively. The Z designator and G bits 1 through 7 are not used

and must be zeros. Registers X and Y contain the addresses and lengths of the A and

B source order vectors in the rightmost 48 and leftmost 16 bits, respectively.

This instruction terminates when all of the bits of the shorter of the two source order

vectors have been examined. The C designator must be an even number. If this num

ber is odd or zero, the results of the instruction are undefined. If the order vectors

disable any multiply operations, the corresponding result is machine zero.

t Appendix B describes floating-point arithmetic and order-dependent result considera
tions.

60256010 01 6-213

Applicable data flag bits are 42 (exponent overflow), 43 (result machine zero), and 46

(indefinite result). Data flag bits 43 and 46 are determined only by the final upper and lower

result. If the upper result is indefinite, the lower result is less than 9000 16 . In this case,

the exponent of the upper result may be greater than 9000 16 and will be stored as is and will

not be forced to machine zero. The instruction sets data flag bit 42 if any of the multiply

operations overflow.

The computer forms two partial products, X and Y. The sum of the products are ac

cumulated in the following manner, dependent upon the logical AND of the two source

order vectors. The order vectors used in this example correspond to figure 6-83.

Match Match ~ Order
--~-----------.1..---~---~------..._---->:=> Vector

(Ao • Bo) + (A2 • B2) + • • • + (An • Bn) = x

fuo Match B Exhaustedl ~ Order
~-----------------------------------1.------....;>$ Vector

(A1 • B1) + (A3 • B3) + ••• + (An • Bn) = Y

where: An are elements of vector A

Bn are elements of vector B,, and

X and Y are partial sums of the product

Sum X and sum Y (both double precision quantities) are then added to form the final

sum.

Figure 6-82 is an example of a sparse dot product instruction with assumed instruc

tion code,, register content,, and vector source fields. In this example,, the B source

field and order vector is one element shorter than the A source field and A order

vector. Thus,, the instruction terminates after the A2 • B2 product is added to the

sum.

Since bit 1 of the B order vector is a zero,, the bit-by-bit AND does not enable the

additon of the Ai • B 1 product to the accumulating sum. The final sum of the prod

ucts (Sf) is stored in registers C(OA) and C + l(OB),, respectively.

' 6-214
60256010 01

f ~
".U,.".Jli'

rr">
\~•..;...:',t1."''

0

0

0

0

0

0

c

[
0

0

0

0

0

0

0

0

0 1516 3132 3940 5& 56 63

F G X A Y B Z C INSTRUCTION CODE
(OD) (00) (05) (06) (07) (08) (001 (OA)

FIELD

C+I
'cos l

1
L _ _J

BEFORE EXECUTION LENGTHj ORDER VECTOR ADDRESS
r--A-l1~

ADDRESS o

7000

7040

7080

7000

REGISTER 05= 00041000000005000
07 = 0003 ,000000006000

NOT I
USED BASE ADDRESS

~'~ 06 = 0000 0000 0000 7000
08 = 0000 10000 00008000

EXPONENT I COEFFICIENT
~I~

OA = 00001000000000000
OB= 000 OjOOO 00 000000 O

A SOURCE FIELD B SOURCE
63 0

-=~
Bo

B1

B2

Ao 14-

A1 ~

A2 ~

A3

FIELD

A ORDER VECTOR B ORDER VECTOR

63

I

ADDRESS

8000

8040

8080

ADDRESS o 1 2 s o 1 2 ADDRESS

50-00 rnTI

0

(UPPER) So =

(UPPER) s, =

(UPPER) sf =

AFTER ~XECUTIQN

~ 6000

~Ill SABLES ADDITION OF (A I * Bl l
TO PARTIAL SUM

PARTIAL suMs cs 0 , s 1, sf>

4S •• 127

<Ao•1so> (LOWER)

So+ICA2•B2 (LOWER I
I

T

So +I SI
J_

(LOWER)

REGISTER 05-08 ARE UNCHANGED o 63

OA I Sf UPPER I
0 63

OB I Sf LOWER I

Figure 6-82. Example of Sparse Dot Product to (C) and (C+l) Instruction

60256010 01
6-215

I
I

0

COMPARE INSTRUCTIONS (BO THROUGH 85)

The central computer has expanded capabilities for the BO through B5 instructions (refer to

Branch Instructions in this section for other use of these instructions). Which set of BO

through B5 instructions to use depends on the values given to G bits 0 through 3.

BO COMPARE INTEGER, SET CONDITION IF (A) + (X) = (Z)

Bl COMPARE INTEGER, SET CONDITION IF (A) + (X) ! (Z)

B2 COMPARE INTEGER, SET CONDITION IF (A) + (X) ~ (Z)

B3 COMPARE INTEGER, SET CONDITION IF (A) + (X) < (Z)

B4 COMPARE INTEGER, SET CONDITION IF (A) + (X) ~ (Z)

BS COMPARE INTEGER, SET CONDITION IF (A) + (X) > (Z)

0

F

G
(SUBFUNCTION)

7~16 23 24 31 32

X A Y

47 48 55 56 63

z c
(80-85) (REG I STER) (REG I STER) (FLAG (REG I STER) (REG I STER)

G BIT O_j
G BIT 3----

REGISTER

I L BRANCH CONTROL (G BITS 5' 6)
G BIT 4

If G bit 1 is 0 and G bit 2 is 1., these instructions compare two integer operands from

register A and X. If G bit 0 is clear (0), registers A, X, Y, C, and Z are 64 bits. If G

bit 0 is set (1), these registers are 32 bits. Register Bis not used and must be set to

zero.

For these instructions, G bit 1 and 2 are O. If G bit 0 is cleared (0), registers A, X, C,

and Z are 64 bits. If G bit 0 is set (1), registers A, X, C, and Z are 32 bits. Registers

B and Y are 64 bits.

If G bit 0 is 0, the sum of the rightmost 48-bit integers from registers A and X is formed,

ignoring overflow. The sum is compared to the rightmost 48 bits of register Z according

to the specified condition. The original content of register Z is read before the sum of

registers A and X is stored in the rightmost 48 bits of register C. The leftmost 16 bits

of register A are copied into the leftmost bits of register C. Register C contains the

following:

LEFTMOST 16 BITS
FROM REGISTER A

6-216

1516

SUM OF THE RIGHTMOST 48 BITS FROM REGISTERS
A ANOX

602 56010 02

63

0 \
,i

0
()
~-~

~l . .-JV

,r:--,,·,
~/

()

0
0
0
0

0
0
c
0
0

c

0

0

0

0
0

0
0

The sum of the rightmost 48 bits of registers A and X is compared to register Z, based

on the following G bit 3 and 4 values:

G bit 3 = 0

G bit 3 1

G bit 4 = 0

G bit 4 1

The integers compared are the 48-bit result of registers A and

X and the rightmost 48 bits read from register Z.

The integers compared are the 64 bits stored in register C and the

64 bits read from register Z. This compare is defined for the BO

and Bl instructions only.

The integers compared are interpreted as signed two's complement

numbers.

The integers compared are interpreted as unsigned numbers.

If G bit 0 is 1, the sum of the rightmost 24-bit integers from registers A and X is formed,

ignoring overflow. The sum is compared to the rightmost 24 bits of register Z, according

to the specified condition. The original content of register 7 is read before the sum of

registers A and X is stored in the rightmost 24 bits of register C. The leftmost 8 bits of

register A are copied into the leftmost bits of register C. Register C contains the

following:

0 78

LEFTMOST
8 BITS FROM
REGISTER A

SUM OF THE RlGHTMOST
24 BITS FROM REGISTERS

AANO X

31

Then the sum of the rightmost 24 bits of registers A and X is compared to register Z,

based on the following G bit 3 and 4 values:

G bit 3 = 0

Git bit 3 = 1

G bit 4 = 0

G bit 4 1

The integers compared are the 24-bit result of registers A and X

and the rightmost 24 bits read from register Z.

Undefined.

The integers compared are interpreted as unsigned two's comple

ment numbers.

The integers compared are interpreted as signed numbers.

Refer to table 6-13 for integer ranges.

60256010 02 6-216.1 •

I

If the specified compare condition is met. a 64- or 32 -bit quantity (depending on G bit 0)

00. ~ •• 0001 is stored in register Y and the program reads the next sequential instruction.

If the specified compare condition is not met. a 64- or 32-bit quantity (depending on G bit O)

00 •.•• 000 is stored in register Y and the program reads the next sequential instruction.

If one of the following conditions occurs. the operation becomes undefined •

•
G bit 0 is 1 and G bit 3 is 1

• G bit 3 is 1 for B2. B3, B4, and B5

• G bit 5 is 1. G bit 6 is 1. or G bit 7 is 1

• The C designator is equal to the Z designator

6-2J6.2 60256010 02

/,,-"'
(~,

{~-·-::>

\14._J'

('''·,

\t,J

;{-"'·,,

!__,;

0

0

0
0

0

0

0

0 ,
)

0 1
I

c
Ci

'

0
0

0

0
0

0
0
0

BO COMPARE FP, SET CONDITION IF {A) = (X)

Bl COMPARE FP, SET CONDITION IF {A) f- (X)

B2 COMPARE FP, SET CONDITION IF {A) ~ (X)

83 COMPARE FP, SET CONDITION IF {A) < {X)

B4 COMPARE FP, SET CONDITION IF {A) ~ (X)

BS COMPARE FP, SET CONDITION IF {A) > (X)

G
(SU BFUNCT I ON)

0 7~16 23 24 31 32

F X A Y
(B0-85)

G BIT O_j
G BIT 3-----'

(REG I STER) (REG I STER) (FLAG
REGISTER

I I BRANCH CONTROL (G BITS s, 6)
G BIT 4

If G bit 1 is 1 and G bit 2 is 1. these instructions compare two floating-point operands

from register A and X according to the floating-point compare rule in appendix B. If

G bit 0 is clear (O). registers A. x. and Y are 64 bits. If G bit 0 is set (1). these

registers are 32 bits. Registers B. C, and Z are not used and must be set to zero.

If the specified compare condition is met. a 64- or 32-bit quantity (depending on G bit

0) 00 .••• 0000 is stored in register Y and the program reads the next sequential

instruction.

If the specified compare condition is not met. a 64- or 32-bit quantity (depending on

G bit 0) 00 •••• 001 is stored in register Y and the program reads the next sequential

instruction.

If one of the following conditions occurs, the operation becomes undefined.

• Any one of G bits 3 through 7 is set (1) •

• Designators B. · z. and/or C are not equal to zero •

Applicable data flag bit is 46 (indefinite result).

60256010 02 6-217

I
I

C4 COMPARE EQ; A = B, ORDER VECTOR-..z

CS . COMPARE NE; A 'I= B, ORDER VECTOR ~z

C6 COMPARE GE; A 2 B, ORDER VECTOR ~z

Cl COMPARE LT; A<_ B, ORDER VECTOR -.z

G
{SU BFUNCTI ON) c

0 18 A 1s' 16 23 24 31 32 39 40 47 48 55~
x

(OFFSET
FOR A)

A
(LENGTH &
BASE ADRS)

y
(OFFSET

FOR B)

GBITO:J

-------G BIT 4:

0 = 64-BIT OPERANDS
1 = 32-BIT OPERANDS

O : NORMAL SOURCE VECTOR B
1 = BROADCAST SOURCE VECTOR {B)

GBIT 3:
0 = NORMAL SOURCE VECTOR A
1 = BROADCAST SOURCE VECTOR {A)

NOTE: THE C + 1 DESIGNATOR IS NOT USED BY THIS INSTRUCTION.

These instructions compare successive elements of vector A with corresponding elements

of vector B by subtracting vector B from vector A. The elements of the vectors are in

floating-point format. t The conditions for comparing floating-point operands are

described in the Floating-Point Compare Rules, appendix B. If the specified compare

condition is met (A =, -/:-, ~, or < B),. the instruction sets the corresponding bit of order

vector Z. If the condition is not met, the instruction clears the corresponding bit of z.
The instruction terminates when the order vector Z field is filled. Thus, the compare

instructions provide a means of generating an order vector for reducing a vector field

to a sparse vector field.

The instruction format shows that G bits 1,, 2,, 5 through 7, and the C designator are

not used and must be zeros. The C + 1 designator is not used. Thus, no offset can

be assigned to order vector z. The floating-point compare conditions as described in

branch instructions are used in the comparisons of the vector elements.

t Appendix B describes the floating-point formats.

6-218 60256010 01

G

0
(J

4-·~~,

I'
,,J;i

,11'-~·,

\t__,.,

/11'·-· '•

i'-l".~7

1C· \' . ;l•'

\(· ... - ...)..:.'
-•'

()

0

0

0

0

0

0
()

0

0

c
0

c
0

0

0

0
0

0

0

The registers specified by X and Y contain the offsets for vectors A and B, respec

tively. When a constant is broadcast for either source vector, no field length is

specified for that vector, and the offset is not used.

The field lengths and base addresses for vectors A, B, and Z are contained in the

registers specified by A, B, and Z, respectively. The lengths of vectors A and B are

in words (64-bit operands) or half-words (32-bit operands). and the length of order

vector Z is in bits.

The applicable data flag bit is 46 (indefinite result).

Figure 6-83 is a simplified example of a compare instruction (C6) with assumed

instruction codes. register contents, and source vector field A. In the example. a

broadcast constant of +1 is used for vector field B. The elements of vector field A

at addresses 504011 5060, 50EO, and 5100 set the corresponding bits of order vector z.
while the elements at addresses 508011 50AO, and 50CO clear the corresponding bits.

Although the coefficients of the elements at addresses 5080 and 50AO are larger than

the coefficient of constant B. the negative exponents cause the results of the floating

point subtract operation (normalized upper) to be negative (A < B).

60256010 01 6-219

6-220

F
(C6)

71 H 14 SI 32 3940 HH

G X A Y 8 Z C
(88) (02) (03) (04) . (QA) (06J (00)

NOT I
USED!
~,

REGISTERS 02 = 0000 1000000000002
04 = 0000 ,00000000 0000

FIELD I
LENGTHI BASE ADDRESS
~1----'~-----

03 = 00091000000005000
06 = 0 0 07100 00 00 006000

EXPONENT COEFFICIENT

INSTRUCTION CODES

~~ CD OA = 0 0 0 0 0 0 0 I VECTOR FIELD B (BROADCAST>

VECTOR FIELD A
EXPONENT COEFFICIENT

ADDRESS

5000

5020

,.---A-.. /\..__ __

o ,.. 1, 1112 1s Hi 1920 2324 2121 sJI OFFSET

1. · 1

5040 O IO 14 I 7 I A IE I 0 I I

5060 olololol3IOIAl7

5080

50AO Fl714IOIOIOl 1 IA

50 co o I o I o I o I o I o I o I o

50 EO

51 00

ADDRESS

6000

0101515lolo1011

ORDER VECTOR ~
011341• 7

I · I · I+ I+ I · If

FIELD
LENGTH

NOTE:

CD REGISTER OA IS
A 32-BIT REGISTER.

Figure 6-83. Example of Compare GE; A~ B; Order Vector -z Instruction

60256010 01

()

()

()
;:::'~

~ ..)/

(.. --,,..,
~. __ _))

__ ,.,,/

0

0

0

0

0

0

0

0

0

c
0

0

0

0

0

0

0

0
0

0

ca SEARCH EQ; A = B, INDEX LIST-. c
C9 .SEARCH NE; A'#= B, INDEX LIST ~c

CA SEARCH GE; A 2' B, INDEX LIST~ C

CB SEARCH LT; A< B, INDEX LIST~ C

F
(CB - CB)

y

31·~40 47 48 55 56 63
A

•
B z c

(LENGTH & (LENGTH & (C V BASE (BASE
BASE ADRS) BASE ADRS) ADRS) ADRS)

~
"-G BIT 2:

SEE TABLE 6-43
G BIT 1:

NOTE: THE C + 1 DESIGNATOR
IS NOT USED.

G BIT 0:

0 =CONTROL VECTOR OPERATES ON l's
1 =CONTROL VECTOR OPERATES ON Qts

0 = 64-B IT OPERANDS
1 = 32-BIT OPERANDS

These instructions search and compare each element of vector field A with the succes

sive elements of vector field B by subtracting vector B from vector A. The conditions

for comparing floating-point operands are described in the Floating-Point Compare

Rules. appendix B. The comparison and search of a given element of A with the

elements of B. as specified by G designator bit 2, is defined as one search iteration.

Each search iteration terminates when the condition specified by the instruction is

found (A =. f:. • .2:. or < B) or when each element of B has been searched.

After each interation, the instruction clears the corresponding element of result vector

c. if the control vector bit is permissive. and transfers to this element an item count I
of the number of elements of B that were searched without the specified condition

being found (no hit). The item count does not include the hit condition if one is found.

Regardless of the operand size (32- or 64-bit elements), the resulting item count is

contained in the rightmost 48 bits of a 64-bit word. The leftmost 16 bits of each C

vector element are cleared. If no element in the B vector causes a hit condition,

the item count equals the field length of the B vector. The control vector controls

the storing of the elements of vector C as specified by bit 1 of the -C designator.

The function of the control vector is described in Vector Instructions in this section.

60256010 02 ·5-221

These instructions use the floating point compare conditions as described in Branch

Instructions in this section. The conditions specified by bits 0 and 1 of the G designator

are shown in the previous instruction format. The conditions specified by bit 2 of the

G designator are listed in table 6-45. The instruction format also shows that the X

and Y designators and G bits 11 through 15 are not used and must be zeros. These

instructions use no field lengths or offsets for vectors C and Z. Thus, the C + 1

designator is not used.

TABLE 6-45. SEARCH ITER.ATION STAR.TING DESIGNATOR. CONDITIONS

G Bit 2 Conditions

0 Start at the beginning of vector B for each
each element of vector A

1 Start at the location of the last hit in vector B
for each element of vector A

These instructions terminate when each element of vector A has been compared with

each element of vector B. The applicable data flag bit is 46 (indefinite result).

Figure 6-84 is an example of a search equal (C 8) instruction with assumed instruction

codes, register content, and vector fields. In the example, two search iterations

compare the two elements of the A vector with the four elements of the B vector. The

comparisons in the first iteration are represented by solid lines while those in the second

iteration are indicated by dashed lines. Since bit 2 of the G designator is a zero for

this case, each search iteration starts at the beginning of vector B. If the B vector

becomes exhausted and G bit 2=1. all search iterations start and end with the end of

the B vectoro If the length of vector B is initially zero, all indexes stored are zero.

In the first iteration, three comparisons take place before the hit condition (A = B) is

detected. As a result, an item count of three is entered into the first result element.

No hit is detected in the second iteration; thus, the second result element equals the

field length of the B vector (4). Since the two corresponding bits of the control vector

are set, both result elements are stored.

6-222 60256010 01

()

{)

,4'~

\"4;._p'

(,.-.".

\i.1.J

0

0

0

0

0

0

0

0 \
I

0:

0

0

c
0

0

0

0

0

0

0

0

0

ADDRESS

5000

5020

0 78 1!516 2324 3132 3940 4748 !5!5!56 63

F G X A Y B Z C
(CS) (80) (00) (02) (00) (03) (04) (05) INSTRUCTION CODES

A VECTOR FIELD

FIELD
LENGTH BASE ADDRESS ,-J\-+ "

REGISTERS 02 = 00021000000005000
03-= o 004

1
00 ooo ooo 6000

NOT USED I BASE ADDRESS
~1,--~ n~~~~

04 = 00001000000001000
05 = 0-000/000000008000

B VECTOR FIELD

EXPONENT COEFFICIENT EXPONENT COEFFICIENT
~ ~
0 34 78 1112 1!516 1920 23242728 31 0 34 78 1112 1516 192023242728 31

010101010111010
FIRST ITERATION

01014IOIAIF1FIF

010101011101010 6121FIF1810l317 ""- -$."::-.. -ec. ~
011101010141010 ol\la

ll':~
~'94-r;-

IOI\!'
010101010111010

C RESULT FIELD

NOT USED LNDEX LIST (ITEM COUNTS)
~--~~~--~~~~-

ADDRESS o 1s 1• u

800 O ~ FIRST ITERATION RESULT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

ADDRESS

€000

6020

6040

6060

8040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 • - - -SECOND ITERATION RESULT

ADDRESS

7000

60256010 01

Z CONTROL VECTOR m-
~ONTROLS STORING OF SECOND RESULT

LcoNTROLs STORING OF FtRST RESULT

Figure 6-84. Example of Search EQ; A = B, Index List -.C

6-223

08 MAX. OF A TO (C) ITEM COUNT TO (8) .

09 MIN. OF A TO (C) ITEM COUNT TO (8)

0
F

(08 OR
09}

1a

I
GBITO:

G
A

x
(OFFSET
FOR A}

GBIT5:

23 24
A

(LENGTH &
BASE ADRS)

SIGN CONTROL BIT

"-G BIT t: ·
0 = CONTROL VECTOR OPERATES ON

0 = 64-B IT OPERANDS · 1 = CONTROL VECTOR OPERATES ON
1 = 32-BIT OPERANDS

47 48 55 56 63
B z

(ITEM COUNT (CV BASE
REGISTER) ADRS}

c
(MIN /MAX
ELE~NT

These instructions search and compare the successive elements of vector A for the

maximum/minimum element, using floating-point rules. The instructions then transmit

the element to the register designated by C. The number of elements in vector A

before, but not including, the maximum/minimum element is the item count which is

stored in the rightmost 4 8 bits of a cleared register designated by B. The instructions
I

terminate when vector A is exhausted.

If multiple maximum/minimum elements occur, the instruction sets data flag bit 54 and

the first multiple maximum/minimum element examined is the one recorded. When

this happens, the elements, although equal, are not necessarily identical.

If an indefinite element is encountered and examined, the register designated by C sets

to indefinite and data flag bit 46 (indefinite result) sets. When this happens the content

of the register designated by B and data flag bit 54 is undefined.

The Z designator of the instructions provides the base address for a control vector. If

used, the control vector determines which of the vector A elements the instruction

compares. This is possible by the association of individual control vector bits with

single elements of vector A. Only permissive control vector bits permit compares for

their associated vector A elements. If a control vector is used without any permissive

elements, none of the content of the register designated by C is undefined. In this

case the item count stored in the register designated by B is the length of the vector A

minus the A offset. The instruction does not use an offset for the control vector.

6-224 60256010 01

(·, 0 I I

(}

1.:!""1.::
\,\...)'

,--1"'"~\

I

~ .. Ji!

.4 .. -.,,,.

\
..... JV

;~·

,~-""
't_j'

0

0

0

0

0

0

c
0

0

0

0

0

0

0

0

0

0

Bit 0 of the G bits determines the size of the A operands and register C. Bit 5 of the

G bits provides sign control. When bit 5 is set. the magnitude of the elements of A

vector are compared. The unaltered element as read from A vector stores in the reg

ister designated by C.

Applicable data flag bits are 46 (indefinite result) and free data flag bit 54.

The instruction format shows that the Y designator and G bits 2 through 4,. 6,. and 7 of

the G designator are not used and must be zeros. Bit 5 provides sign control for

vector A as described in Vector Instructions. There is no B vector sign control for

this instruction; thu~.. bit 7 of the G designator is undefined and must be a zero.

If the instruction specifies a control vector and the control vector contains no enabling

bits. the instruction examines no elements of vector A. and the contents of register C

becomes undefined. In this case, the item count in register B equals the field length

of vector A minus the A offset.

If the instruction examines (enabling bit in control vector) an indefinite element, the

instruction sets register C to indefinite and sets data flag bit 46 (indefinite result).

In this case,. data flag bit 54 is undefined. The instruction also probes the setting

of data flag bit 43 (result machine zero).

The operands are compared by subtracting the current element _of vector A from the

next element of vector A and checking the result coefficient. If the result is not

equal to zero, the maximum or minimum operand (depending upon the instruction) is

used for the next compare with a new element of vector A. If the result is equal to

zero,. the most recent element of A is used for the next compare. The relative

positions of the elements within the vector dictate the order of the subtract. Since

this type of compare operation is order dependent, t the final maximum or minimum

can be affected by the order of the elements within the vector.

tAppendix B describes floating point compare rules.

60256010 01 6-225

89 TRANSPOSE/MOVE

0
F

(B9)
x

(OFFSET
FOR A)

23 24
A

(BASE
ADRS)

31 32 39 40
y

FIRST C
REG ADRS

B
FIRST A

REG ADRS

47 48 55 56
z

(ROW SIZE
FOR A & C)

c
(BASE
ADRS)

63

I C + 1 I

_/ ~
~GBIT4:

1 = MOVE NOT PERFOR~D; O
G BIT O: . · .. G BIT3:
0 = 64-BIT OPERANDS 1 =TRANSPOSE NOT PERFORMED·

.} BITS 3 AND4 I (OFFSET I
= MOVE . EQUAL TO ONE L _F~R..:) __ J

IS A NO-OP
·1 = 32-B IT OPERANDS . '

G BfT 2:
0 = NO OFFSET FOR C
'1 = OFFSET FOR C IN (C + 1)

0 = TRANSPOSE
NOTE: REGISTER C ~ST BE AN

EVEN NUMBERED REGISTER OR
C + 1 BECO~S UNDEFINED.

This instruction transposes an 8 row by 8 column segment of matrix A and enters the

transposed matrix into 64 consecutively numbered registers beginning at the register

designated by B. The instruction then moves the matrix segment from 64 consecutively

numbered registers beginning at the register specified by Y to matrix c. The register

specified by Z contains the row size of matrices A and C. This row size is an item

count contained in the rightmost 48 bits of register Z. The leftmost 16 bits are

cleared. The instruction completes the transpose operation before the move operation

begins. Thus,, it is possible to return a transposed 8 by 8 matrix segment to its orig

inal location with a single instruction.

Matrix A must be located at consecutive storage locations. The base address in register

A locates the first word of the first row. If an A offset is used,, the instruction adds

-'"'"\
i'I~. ,11, 'vv

0

/" ~-~\
I I

\:~l -;,;J/P

the rightmost 48 bits to the base address in register A to locate the first element of "'·· /

the first row. Successive elements of the first row are stored at consecutive storage

locations.

The address of the first element of each of the following rows is the address of the

first element of the previous row plus the row size (register Z). For example,, the

address of the first element in row 2 is the base address (register A) plus the row

size (register Z). The address for the first element of row 3 is the address of

the first element of row 2 plus the row size. Since the instruction transposes ma

trix segments of eight rows by eight columns,, a row size of less than eight gives un

predictable results. If used,, the register designated by C + 1 contains the C matrix

offset in the rightmost 48 bits. The C designator must be an even number. or C + 1

becomes undefined.

6-226 60256010 01
rr"''. '01

0

0

0

0

0
()

0

C\
'

0

[
0

0

0

0

0

0

0

0

The instruction uses no length specification or control vector. The instruction termin

ates· when the last transposed segment is stored in result vector C.

Any transfer of words into or out of the register file that becomes exhausted of registers

(that is, beyond the bounds of the register file) causes the instruction to become

undefined.

Table 6-46 lists each of the instruction designators, the corresponding register length,

and function of the contents.

TABLE 6-46. TRANSPOSE/MOVE INSTRUCTION DESIGNATORS

Register Register
Designator Length (Bits) Function

A 64 Base address of matrix A

x 64 Item count (rightmost 48 bits) of the offset
which locates the first element in the first
row of the matrix segment read from
matrix A

B Either First of 64 consecutive registers used to
(operand size) hold the transposed segment of matrix A

c 64 Contains the base address of matrix C

c + 1 64 Item count (rightmost 48 bits) of the offset
which locates the first element in the first
row of the matrix segment to be stored
into matrix C

y Either First of 64 consecutive registers used to
(operand size) hold the transposed segment of matrix C

z 64 Contains (rightmost 48 bits) the item count
of the row size for matrix A and matrix C I

60256010 01 6-227

EXAMPLES OF TRANSPOSE/MOVE INSTRUCTION

Figur.e 6-85 is an example of an assumed 10 row by 10 column matrix.

segment to be transposed is outlined by heavy lines.

The matrix

For clarity of illustration., consecutive decimal numbers represent the elements of the

matri.r" which., in the case of this example, would be 32-bit operands. In this example,

the outlined 8 by 8 segment is transposed (row exchanged for column and column ex

changed for row) and is restored in the same matrix shown in figure 6-86. Rows 8

and 9 and columns 8 and 9 are not affected by the transpose operation since they are

outside the outlined segment.

0

I

2

3

ROWS 4

5

6

7

8

9

COLUMNS

0 2 3 4 5 6 7 8 9

01 II 21 31 41 51 61 71 09 10

02 12 22 32 42 52 62 72 19 20

03 13 23 33 43 53 63 73 29 30

04 14 24 34 44 54 64 74 39 40

05 15 ~5 35 45 55 65 75 49 50
06 16 26 36 46 56 66 76 59 60

07 17 27 37 47 57 67 77 69 70

08 18 28 38 48 58 68 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

NOTE

8 X 8 SEGMENT OUTLINED

WITH HEAVY LINES.

Figure 6-85. Example of Initial 10 x 10 Matrix

COLUMNS

0 2 3 4 5 6 7 8 9

0 01 02 03 04 05 06 07 08 09 10

II 12 13 14 15 16 17 18 19 20
2 21 22 23 24 25 26 27 28 29 30

3 31 32 33 34 35 36 37 38 39 40
ROWS 4 41 42 43 44 45 46 47 48 49 50

5 51 52 53 54 55 56 57 58 59 60

6 61 62 63 64 65 66 67 68 69 70

7 71 72 73 74 75 76 77 78 79 80

8 81 82 83 84 85 86 87 88 89 90

9 91 92 93 94 95 96 97 98 99 100

Figure 6-86. Example of Transposed 8 x 8 Segment in 10 x 10 Matrix

6-228 60256010 01

{)

ff .. --,,

~ .. ,.,

_y

/- ""'\

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

Figure 6-87 is an example of the transpose/move instruction codes used to perform

the transposition of the 8 by 8 segment of the matrix shown in Figures 6- 83 and 6- 84.

No offsets are specified for the matrices.

Since the segment is transposed and returned to the original matrix. the A and C

designators are equal. Thus. the base address for both the A and C matrices is

5000 16. In a similar manner. the Y and B designators are equal. Thus. the first

register address in each case is 06 16.

0 78

5
(89)

15 16 23 24 31 32 39 40 4748 55 56 63

G
(80)

x A y 8 z
(00) (02) (06) (06) (03)

NOT USED BASE ADDRESS

c
(02)

C+I
l(NOT I
LU~~DlJ

,--~, ,__-------
REGISTERS 02 = 00001oooooooosooo

I
NOT USED ROW SIZE
~:--~-~~~~~

03 = 0000100000000 00 0 A
I
I

Figure 6-87. Example of Transpose/Move Instruction Codes

Table 6-47 lists the storage and register address mapping for the example.

60256010 01 6-229

Row
No.

0

I

1

-

9

TABLE 6-47. EXAMPLE OF STORAGE AND REGISTER
MAPPING FOR TRANSPOSE/MOVE INSTRUCTION

Matrix A Matrix A Matrix C
(Initial) (Transposed Segment) (Result)

Storage Row Register Row Storage
Address Content No. Address Contents No. Address

500016 01 0 0616 01 0 500016

5020 02 07 11 5020

5040 03 08 21 5040

5060 04 09 31 5060

5080 05 OA 41 5080

50AO 06 OB 51 50AO

50CO 07 oc 61 50CO

50EO 08 OD 71 50EO

5100 09 1 OE 02 5100

5120 10 OF 12 5120

5140 11 10 22 1 5140

5160 12 11 32 5160

5180 13 12 42 .5180

51AO 14 13 52 51AO

51CO 15 14 62 51CO

51EO 16 15 72 51EO

5200 17 2 16 03 5200

5220 18 17 13 5220

5240 19 18 23 5240

5260 20 19 33 5260

5C20 98 7 43 76 9 5C20

5C40 99 44 77 5C40

5C60 100 45 78 5C60

6-230

Content.

01

11

21

31

41

51

61

71

09

10

02

12

22

32

42

52

62

72

19

20

98

99

100

60256010 01

0

ff·---..,

\.i,,,,jlii

0

0

0

0

0

0

0

0

['

I
I

0

0

0

0

0

0

0

0
0

18 MOVE BYTES RIGHT

0 7 8 15 16 23 24 31

F R s T
{18) (SOURCE (RESULT {LENGTH &

INDEX) INDEX) BASE ADRS)

This instruction moves source field T starting with the rightmost byte and terminating

with the leftmost byte. The register designated by T contains the field length and

base address of field T in the leftmost 16 bits and rightmost 48 bits,, respectively.

The rightmost 48 bits of registers R and S contain signed,, two's complement indexes.

The R and S indexes are item counts in bytes and offset the source and result fields,,

respectively. The instruction left-shifts these indexes three positions before adding

them to the base address.

The instruction determines the address of the first byte of the source field by adding

the T length and R index to the T base address and subtracting one .(byte) from the

sum. The address of the first byte of the result field is found by adding the T length,,

the R index,, and the S index and then subtracting one byte. The instruction then

moves the first source byte to the first result field address. The instruction continues

to move successive source bytes to consecutive result field byte addresses until the

result field is filled. The length of the result field equals the length of the source

field (T length). If the T length is zero,, the instruction functions as a no -op.

EXAMPLES OF MOVE BYTES RIGHT OPERATIONS

Figure 6-88 shows an example of a move bytes right operation with a positive S index.

In this example,, the T base address is 5000
16

and the R index is set to two. The bytes are

numbered in the order in which they are moved. The address of the first source byte be

comes 104816 (TBA+ TL+ RI - 1 = 5000 + 8 + 2 - 1 = 5048 16).

where: TBA = T - base address

TL = T length

RI = R index

SI = S index

TL" Rr and 1 (byte) are shifted left three positions before the addition~ The instruc

tion determines the address of the first result byte in a similar manner except that the

S index is added to the preceding sum. A positive S index may be less than the T

length since the rightmost byte of the source field is moved first.

60256010 01 6-231

INSTRUCTION CODE

0 ., 1114 II

F R S T
(18) (04) (05) {06)

REGISTERS

(J'4, i 06 ·i ooToo ... :o .. j.oo.Too .. j.oo To2 .. I
'----v----J'--~~~~~-~~~~~~~--

NOT USED R INDEX

(Os5) i 00 'j ooToo ... ~o Too ·r·00
4

r00 ·r09 .. I
~'-~~~~~--~~~~~~

NOT USED S INDEX

O .71 1511 2324 3152 3940 4741 SSH H

ADDRESS OF FIRST
BYTE OF SOURCE --

FIELD =5048

T
(06) I oo I 08 I 00 I oo I o o I o o I 50 I 00
~--------·--------

T LENGTH T BASE ADDRESS
ADDRESS =5040

i T T 8 ·r 7 r 6 T 5 ·r 4 T 3 .. , 2 ·i r ·r 8 T 7 ·r 6 •••• 5 ·r 4 T 3

7 I

2

~

R INDEX \~--~-~--T __ L_E_N,~G_T_H--~---~~~f
v

S INDEX

T LENGTH
ADDRESS OF
FIRST BYTE
OF RESULT
FIELD=5090

Figure 6-88. Example of a Move Bytes Right Instruction with a Positive S Index

6-232 60256010 01

' c
0
£".::
\\, . .Jli'

,,-:(.-':--.

(

\\,o,I/

,'("-~.

~ .. -~

\'··· ;-,;:

0

0

0

0

0

0

0

0

c
0

0

0

0

0

0

0

0
0

•

Figure 6-89 is an example of a move bytes right instruction with a negative S index.

The negative S index causes the instruction to move the source field left. In this

example, the T length remains at eight,. but the T base address is now 504816• Thus,.

the address of the first byte in the source field becomes TBA + TL + R.I - 1 = 509016 .

Since S index is B 16• the address of the first byte in the result field becomes TBA +

TL + R.I + SI - 1 = 5048 + 8 + 2 - B - 1 = 503 816• With a negative index. an over

lap of result and source field causes the instruction results to become undefined. For

example,. if the S index is set to -7 in Figure 6-87. the address of the first result

byte would be 5048 + 8 + 2 - 7 - 1 = 505816. Thus,. the first s~urce byte would be

stored in the eighth source byte position. producing undefined results.

ADDRESS OF FIRST
BYTE OF RESULT

FIELD =5038

ADDRESS= 5000
RESULT FIELD

T LENGTH
y

S INDEX

INSTRUCTION CODE

0 71 II.. 1114 SI

REGISTERS

NOT USED R INDEX

0 71 1111 ISl4 llSI St40 4741 1111 IS

< 0\ 1 I oo I oo I FF I FF I FF I FF I FF I F 5 I
'----v---'----------------~-----------------

NOT USED

r ADDRESS= 5040

r
~o::sE' ADDRESS=

S INDEX (-B)

,---~ ADDRESS=5080
SOURCE FIELD J .

A I '

T LENGTH

ADDRESS OF
FIRST BYTE
OF SOURCE
FIELD=5090

Figure 6-89. Example of a Move Bytes Right Instruction with a Negative S. Index

60256010 01 6-233

19 SCAN RIGHT

28/29 SCAN EQUAL/UNEQUAL

0 7 8 15 16 23 24 31
F R s T

19,28 SCAN (SIGNED (LENGTH &
OR 29 BYlE INDEX) BASE ADRS)

19 SCAN RIGHT

This instruction (figure 6-90) scans ·the bytes in source field T, from right to left, until the

scan operation locate~ the first byte not equal to byte R, contained in the instruction word.

The scan operation is indexed by the signed scan index, contained in the rightmost 48 bits of

the register denoted by S. When the operation locates the first unequal byte, the instruction

stops the scanning and decrements the scan index by the number of bytes scanned before the

unequal byte was found.

The register specified by T contains the field length and base address of the source field in

the leftmost 16 bits and rightmost 48 bits, respectively. The address of the first byte read

from the source field is determined as follows:

TBA + TL + Sr - 1 (byte) = SA

where: T base address

T length

scan index

starting address

In figure 6-90, the starting address becomes SA = TBA + TL + SI - 1 = 5000 + 4 + 4

-1 = 503816• Since TL and SI are item counts in bytes, these values are left-shifted

three places before the addition.

The instruction sets data flag bit 53 if no unequal. byte is found in the source field. In

this case, the instruction terminates when the entire source field length is scanned.

Figure 6-90 is an example of a scan right instruction with a postive scan index. In

this case, three equal bytes are scanned before the first unequal byte is detected. Thus,

the scan index is decremented by three, giving a final value of + l.

Figure 6-91 is an example of a scan right instruction with a negative scan index. The

same instruction codes and T register values are used as in Figure 6-90,, however, in

this case, the scan index is set to a -7. Thus, the starting address becomes

SA = TBA + TL + SI - 1 = 5000 + 4 - 7 - 1 = 4FE016• Since three equal bytes are

again scanned before the unequal byte is detected, the final scan index is (-7-3) = -A 16•

6-234 60256010 01

(}

,,.~-,\

''-""'/
:·--",
~.>··

;~'

0

0

0

0

0

C,

0

0

0
0 1,

'

0

0

0

0

0

0

0

INSTRUCTWN CODE
0 7 t 15 1e . 21 24 II

F R S T
(19) (FF) (04) (05)

REGISTERS (BEFORE EXECUTION)

0 71 II It 2124 1112 1940 4741 HH 61

s (04) I 00 I 00 I oo I 00 I 00 J 00 I 00 04

'----y---J~~~~~~---~~~~---~-J

NOT USED SCAN INDEX

0 7 t II It 21 24 II S2 It 40 47 41 H le IS

T(05) I 00 I 04 I 00 I 00 I 00 I 00 I 50 00

'----y---J~~~~~~--.p~~~~~~~

FIELD LENGTH BASE ADDRESS

BASE STARTING
ADDRESS=~ SOURCE FIELD T /----ADDRESS =5038

5000 \o 71 IS It 2124 1112 1940 4741 1511 H

1.--------1 --.1..--...--1 <-di) ...----I (F ~----.-) 1-(/F)--.-I (F-1FI I
SCAN INDEX FIELD LENGTH

REGISTERS (AFTER EXECUTION)
0 7. II It 21 24 II 12 19 40 47 ••

S(04) I 00 I 00 I 00 I 00 I 00 I 00 I 00

'----r----1
NOT USED SCAN INDEX

T{05) - UNCHAN(;EO

NOTES: IN SOURCE FIELD T

CD NUMBERS NOT IN PARENTHESES
DENOTE ORDER OF BYTES SCANNED.

(ID NUMBERS IN PARENTHESES
DENOTE BYTE VALUES.

Hit

I 01

••

I

Figure 6-90. Example of Scan Right Instruction with a
Positive Scan Index

60256010 01 6-235

6-236

INSTRUCTION CODE

0 71 15 1• n 24 "

F R s T
(19} (FF) (04) (05)

REGISTERS (BEFORE EXECUTIONr

0 7 I 15 1e U 24 31 52 H 40 47 41 55 51 H

5(04) I 00 I 00 I FF I FF I FF I FF I FF I F9

'-------v----'--~~~~~--.1~~~~~~_,

NOT USED SCAN INDEX (-7)

0 71 1511 2324 3132 3940 4741 5551 13

T (05) I 00 I 04 I 00 I 00 I 00 I 00 , , 0 I 00 I
~--~~~~~~~~~~~~--

BASE ADDRESS FIELD LENGTH

STARTING
ADDRESS=

4FEO
BASE

\ SOURCE FIELD T I ADDRESS =5000

0 1 e 15 16 2324 3132 39 40 4748 55 56 n/o

FIELD LENGTH
v

SCAN INDEX

REGISTERS AFTER EXECUTION
0 7 8 15 16 23 24 3132 39 40 4748 5556 63

s (04 I I 0 0 I 0 0 I FF I F F I FF I FF I F F I F 6

NOT USED SCAN INDEX (-A)

NOTES: IN SOURCE FIELD T
T (05) - UNCHANGED CD NUMBERS NOT IN PARENTHESES

DENOTE ORDER OF BYTES SCANNED.

@ NUMBERS IN PARENTHESES
DENOTE BYTE VALUES.

Figure 6-91,. Example of Scan Right Instruction with a
Negative Scan Index

60256010 01

,,,-1'!c,
;,(),.

r1°"
·~~_;;r'I

;1~

l~lf

/f"'
\,.'J

~c

0

0

0

0

0

0

0

C'·
)

0

0

0

0

0

0

0

0

0

0

28/29 SCAN EQUAL/UNEQUAL

These instructions scan the bytes in field T, from left to right, until the scan operation

locates the first byte equal/unequal to byte R, contained in the instruction word. The

scan operation is indexed by the signed scan index, located in the rightmost 48 bits of

the register denoted by S. When the operation locates the first equal/unequal byte, the

instruction stops scanning and increments the scan index (S) by the number of bytes

scanned before the equal/unequal byte was found. ,

The register specified by T contains the field length and base address of the source

field in the leftmost 16 bits and rightmost 48 bits, respectively. Since the T field

length and S index are item counts in bytes., they are left-shifted three places before

they are added to the base address.

The instruction sets data flag bit 53 if no equal/unequal byte is found., and the S index

is incremented by the number of bytes in the T field. In this case, the instruction

terminates when the entire source field is scanned.

60256010 01 6-237

lA Fill FrELD T WITH BYTE R

0 7 8 15 16 23 24 31

F R s T
(lA) FILL {INDEX) {LENGTH &

BYTE BASE ADRS)

This instruction fills field T /1 from left to right 11 with bytes identical to the R portion

of the instruction word. The register designated by T contains field length (number of

bytes) and base address in the leftmost 16 and rightmost 48 bits, respectively. Regis-

ter S contains an index. The instruction adds the index to the base address (after

left-shifting three positions). The resulting sum is the starting address of the T field.

The instruction terminates when the T field is filled.

lB FILL FIELD T WITH BYTE (R)

0 7 8 15 16 23 24 3_l

F R s T
{lB) (REGISTER _ (INDEX) (LENGTH &

CONTAIN ING BASE ADRS) FILL BYTE)

This instruction fills field T, from left to right, with bytes identical to the byte con

tained in the rightmost eight bits of the register designated by R. Bits 0 through 55

of register R are not used. The register designated by T contains the field length

(number of bytes) and base address in the leftmost 16 and rightmost 48 bits, respec

tively. Register S contains an index in bytes which is added to the base address (after

left-shifting three places). The resulting sum is the starting address of the T field.

The instruction terminates when the T field is filled.

lC FORM REPEATED BIT MASK WITH LEADING ZEROS

1D FORM REPEATED BIT MASK WITH LEADING ONES

0 7 8 15 16 23 24

F R s T
{LENGTH OF (LENGTH OF (LENGTH &

31

{lC OR 10)
LEAD O'I REPE1TED BASE ADRS)

MASK OR .-1. 15

These left to right instructions form a repeated mask in field T. The mask consists

of a string of zeros/ones followed by a string of ones/zeros. The repeated mask con

sists of one combined string of zeros and ones or ones and' zeros as shown in figure

6-92. All length specifications shown in figure 6-92 are in bits.

6-238 60256010 01

(' u t '

f"'~

!,~..._.;)

/,,,.,---..,,,.,

:,~:;#/

rr'tr-
1

~-'

!f-"lo,
\l, i
' ..)/

0

0

0

0

0

0

0

0 '

0
()

0

C'
)

0

0

0

0

0

0

0

r STARTITNG

FIELD LENGTH
A,_ ______ _

1i

BIT ADDRESS

00 00 00 I I I I 10 00 00 01 I I I I 01<>

'1---v---' }----v---1
t R LENGTH OF 1 R
I LEADING o's I
I I

' v n v
S LENGTH OF S

REPEATED
BIT MASK

Figure 6-92. Example of Repeated Bit Mask Data Format (Leading Zeros)

The register specified by R (instruction format) contains the length of the string of zeros I
ones in the leftmost 16 bits. The length of the repeated mask is contained in the leftmost

16 bits of register s. The rightmost 48 bits of registers R and S are undefined and require

clearing before execution of the instruction. If the field length specified by the S register

is zero, the instruction becomes a no-op. The register specified by T contains the length

and starting bit address of the T field in the leftmost 16 bits and rightmost 48 bits, respec

tively. The instruction terminates when the T field is filled. If length R is equal to length

S, a string of zeros (lC) or ones (lD) is formed. If length R is zero, a string of ones I zeros

is formed.

lE COUNT LEADING EQUALS

0 7 8 15 16 23 24 31
F R s T

(lE) (LENGTH & (INDEX) (COUNT OF
BASE ADRS) EQ.JAL BITS)

This instruction scans the bits in field R, from left to right, until a bit unequal to the leftmost

bit in the field is detected. The scanning operation starts with the bit immediately to the

right of the leftmost bit in the field (figure 6-93). The instruction stores the count of the

number of bits equal to the leftmost bit of the binary field in the rightmost bits of the register

designated by T. The entire T re~ister is cleared before the count is stored into it.

The register designated by R contains the length (in bits) and the base addres~ in the leftmost

16 bits and rightmost 48 bits, respectively. Register S contains an index (in bits) which is

added to the base address to form the starting address of the field. The instruction terminates

when it either detects a bit unequal to the leftmost bit in the field or scans the entire

60256010 01 6-239

field. In the latter case, the instruction stores a count equal to the field length minus

one •. In figure 6-93,, a count of B 16 is stored in register T.

The instruction sets data flag bit 53 if the leftmost bit of the binary field is a one.

0 15 1• H

REGISTER R lo 0 0 c I o 0 0 0 0 0 0 0. 5 0 0 0

'-----v--'
FIELD LENGTH BASE ADDRESS

o 15 11 es

REGISTER s I 0 0 0 0 · I 0 0 0 0 0 0 0 0 0 0 0 8

INDEX

0 1516

REGISTER T I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 B

COUNT OF EQUAL BITS

BINARY FIELD R

STARTING ADDRESS
(LEFTMOST BIT)

BASE ADDRESS =5000 \ FIELD LENGTH

0 I 2 3 4 5 6 7 8 9 10 II 1213 1415 16171819 2021222324252827

I I
000 I I I I 11111 I I I I I I I I

I I

'-----y---J v

I
1101I01I00

I

INDEX COUNT STORED

Figure 6-93. Example of Count Leading Equals Data and Register Format

6-240
60256010 01

(}

()

(f~.,.,

\(J'

0

0

0

0

0

0

0

0
0

0

()

0

0

0

0

1 F COUNT ONES IN FIELD R, COUNT TO T

0 7 8 15 16 23 24 31
F R s T

{lF) {LENGTH &. {INDEX) {COUNT OF
BASE ADRS) l 1S)

This instruction scans left to right, counts the number of binary ones in field R, and trans

mits this count to the rightmost bits of the register specified by T. The entire T register

is cleared before receiving the count of ones. The register specified by R contains the

length and base address of the R field in the leftmost 16 and rightmost 48 bits, respectively.

The rightmost 48 bits of register S contain an index (in bits), which the instruction adds

to the base address to form the starting address of the R field. The instruction terminates

when all bits in the R field have been scanned.

03 KEYPOINT - MAINTENANCE
R s T

0 7 8 15 16 23 24

F
(03) -This instruction is a one-cycle no-operation instruction.

are undefined and must be set to zero.

04 BREAKPOINT - MAINTENANCE
s

0
F

{04) (DESI~NATES
REG TO BE
TRANSFERRED

T

The designators R, S, and T

The breakpoint instruction is a special instruction reserved as a maintenance and program

debugging aid. This instruction transfers the content of the 64-bit register designated by

R into the breakpoint register. The format of the breakpoint register is shown in figure

6-94. The breakpoint register is initially loaded from the invisible package of a job and

is not sensed on any scalar memory references.

0

BREAKPOINT
USAGE BREAK PO INT ADDRESS

BITS

Figure 6-94. Breakpoint Register Format

60256010 02 6-241

The breakpoint address is compared with the addresses listed in table · 6-48. If the

breakpoint address matches one of these addresses and the proper usage bit is set,

bit 4 7 of the data flag branch register is set, ~ndicating a breakpoint condition. Any

combination of usage bits is permissible. Therefore, the breakpoint address can be

checked against any or all of the addresses listed in the table.

Space table search or I/O channel references cannot cause a breakpoint match condition.

Clearing the R. designator bits to zeros and executing the instruction causes the instruc

tion to stop.

In job mode, virtual addresses are compared with breakpoint, and in monitor mode,

absolute addresses are compared with breakpoint. Since the monitor program does not

have an invisible package, the breakpoint register must be loaded each time the moni

tor program is entered. During the exchange to monitor mode, the breakpoint register

is automatically cleared. Program address compares are made on half-word boundaries,

and all other compares are made on sword boundaries.

6-242

TABLE 6-48. BR.EAKPOINT CONDITIONS

Usage
Bit No. Breakpoint Condition

9

10

11

12

13

14

15

Breakpoint on half-word content of the program address register
(P) immediately after the execution of the instruction at that
location

Breakpoint on the A operand address for a vector or the read
operand on a random addressing instruction

Breakpoint on the B operand address for a vector instruction

Breakpoint on the C operand address for a vector or string in
struction, or the write operand on a random addressing instruc
tion

Breakpoint on the Z control vector or operand address for a
vector or string instruction

Breakpoint on the X order vector address or operand addres.s
for a string instruction

Breakpoint on the Y order vector address or operand address
for a string instruction

I NOTE I
The breakpoints occur just after execution of the instruction at the breakpoint
address.

60256010 01

1--) 1v1

0
(}

(~'

i"·"'i

,Al'"

i,'l_,;;/

C,J
'I

c.

0

0

0
0

0

0

0

0

0

0

c
0

0 ,

0
0

0

0

0
0

•
0

05 VOID ST ACK AND BRANCH

0

F
(05)

R S

7 8 I 5 I 6 23 24 3 I

-T
This instruction voids the instruction stack and branches out-of-stack to the contents

of the register designated by T. The designators Rand S are undefined and must be

set to zero.

60256010 02 6-242.1/6-242.2

I

I

t _)t,

.. >

0 1
I

0

(---,_
~/

;<---....,,
l"'j/

0
0

0

0

0
0
0

0
0
0

[
0
0

0

0

0

0
0

0
0

0

06 FAULT TEST MAINTENANCE

R s T

I° (O~)
7 8 9 101lJ2l3141516 23 24 31

This instruction is used to complement checkword bits on the scalar write bus so the

read SECDED circuitry may be checked. It can also be used to disable the error

correction circuitry on all read buses allowing data to be passed through the SECDED

hardware without any correction taking place.

This instruction is enabled during monitor mode only: in job mode it is a no-op.

The modes are set by executing the instruction with 1 in the appropriate R designator

bit and cleared by a 0 in the same bit location. Table 6-49 shows the R designator

bit definitions.

TABLE 6-49. R DESIGNATOR BIT DEFINITIONS

R Designator Bit Definition

8 Disable error correction on all read buses.

9-15 Checkword bit to be complemented.

The R designator bits must be set to zero before any monitor to job exchange operation.

If these bits are not set to zero via this instruction, the connection network could

produce invalid data on the read and invalid data could be written into memory.

SECDED FAULT TESTING

In this test, R designator bits 9 through 15 are selected to complement the respective

checkword bits of halfwords 0, 1, 2, and 3 on the write scalar bus to central memory.

By selection of data bits and complementing checkword bits, SECDED fault generation

on all read buses is possible allowing complete checking of the read SECDED hardware

and the fault recording hardware for type and address of fault.

The forced complementing of the checkword bits is discontinued by executing the

instruction with bit 9 through 15 of the R designator set to 0.

60256010 01 6-243

MONITOR INSTRUCTIONS

The monitor instructions function only during the monitor mode of operation. When the

machine is in the job mode, the attempt to execute a monitor instruction is detected in the

same way as an attempt to execute an undefined instruction code. The result of such an

attempt is that the function code (F) and virtual program address (P) of the current instruction

are stored in the appropriate positions of the invisible package. The machine then exchanges

to the monitor program starting at the address contained in register 03. Refer to section 5

for a more detailed description of job to monitor exchange operations.

00 IDLE
R s T

I (~) 7

If in the monitor mode,· this instruction enables the external interrupt and halts pro

gram operation until an external interrupt occurs. The R, S, and T designators are

not used and must be zeros.

08 INPUT /OUTPUT PER R

0 7 8
F

(08}
R

CHANNEL
FLAG~

T

In the monitor mode, this instruction sets the channel flag bit in the I/ 0 channel des

ignated by the hexadecimal code in the designator R. The setting of this bit indicates

that the CPU has stored data at a predetermined location in central storage for the

designated channel. The corresponding I/ 0 channel then processes the stored data. If

the R designator specifies a non-existent channel other than I/O 1 through 12, the in

struction becomes undefined. The S and T designators are not used and ~ust be zeros.

6-244 60256010 01

u i
()

0

i~
\41t,_)

(~.\.
'

~>'

()

0

0

0

0
('~

j)

0

c

c
0

0

0

0

0

0

0

0

0

OC STORE ASSOCIATIVE REGISTERS

OD LOAD ASSOCIATIVE REGISTERS

R s T

These instructions store (OC)/load (OD) the contents of the 16 associative registers into/

from consecutive absolute addresses of central storage beginning at 4000 16 • The transfer

is an ordered operation; thus, associative register 0 transfers to/from address 400016.

The contents of associative register 1 transfers to/from address 404016, etc. The content

of the associative registers are undefined following the execution of the OC instruction.

The R, S, and T designators are not used and must be zeros.

OE TRANSLATE EXTERNAL INTERRUPT

0 7 8 15 16 23 24 31

F R s T
(OE) (BASE (INDEX) (CHANNEL

DESIGNATOR ADDRESS) TRANSLATION

This instruction translates the lowest numbered bit set in the external interrupt register

(EIR) into its associated, 4-bit code and transmits the code to the rightmost four bits of the

register designated by T. The leftmost 60 bits of register Tare cleared to zeros. If only

one bit in EIR is set, the program branches to the address formed by the sum of the content

of the registers designated by S and R. The rightmost 48 bits of register S contain an

index in half-words and the rightmost 48 bits of register R contain the base address. If

more than one bit in EIR is set, the program executes the next instruction.

Whether the branch condition is met or not, the instruction clears the EIR bit corresponding

to the channel designator that was transmitted to register T. If the T and S designators

are equal, the interrupting channel designator is the branch index.

60256010 01 6-245

If no bit in EIR is set, the instruction cleai:s register T and performs no branch operation.

Bit .zero of EIR is never set since this bit is reserved for maintenance purposes.

Each bit in the EIR is associated with one of the I/ O channels or the monitor interval timer.

The EIR bit assignments are as follows:

Bits Assignments

0 Not available

1-12 I/ 0 channels 1 through 12

13 Not assigned

14 Not assigned

15 Monitor interval timer

OF LOAD KEYS FROM (R), TRANSLATE ADDRESS (S) TO (T)

0 7 8 15 16 . 23 24 31
F R s T

{OF) {KEYS) (VIRTUAL (ABSOLUlE
ADDRESS) ADDRESS)

This instruction loads the four keys found in the register designated by R into the virtual

address key registers. The instruction then translates the virtual address t located in the

rightmost 48 bits of register S into an absolute bit address, using the four keys loaded from

R and the associative words from the page table. The resulting absolute bit address is

transmitted to the rightmost 48 bits of the register designated by T. If no translation is

possible before the end of the page table is reached, the instruction clears the rightmost

48 bits of register T. The leftmost 16 bits of register S are transmitted to the correspond

ing portion of register T. The associative word used to make the translation is placed at

the top of the page table (associative register O). The instruction moves the position of

the associative words down in the page table, if necessary, when searching for the associa

tive word used to make the translation. The 3-bit usage code in the associative word is not

altered by this instruction. Figure 6-95 shows the formats for the R; S, and T registers

as they are used for this instruction.

t Virtual addressing operation is described in section 4.

6-246 60256010 01

0

0

,t(-""
"\:.,,,,V

0

0

0

0

0

0

c
0

c
0

0

0

0

0

0

• •

REGISTER R

0 I 34 15 1617 19 20 3132. 3536

KEY 0 II KEY I
••

KEY2

ii
BITS 0 ANO 16 OF REGISTER R MUST BE APPROPRIATELY SET/CLEAR
TO INDICATE THE DESIRED SMALL PAGE SIZE (REFER TO SECTION 5).

REGISTER T
0 15 16

4748 5152

• KEY 3

65

:~1----------------~------A_e_s_o_L_u_T_E __ e_1T ___ A_D_D_R_Es_s ______________ _,,_ ____________ ___

REGISTER S
0 15 16

VIRTUAL ADDRESS

Figure 6-95. Register Formats for the OF Instruction

OA TRANSMIT {R) TO MONITOR INTERVAL TIMER

s T

7 8 15 16 23 24 31

(OA) (SOURCE ~ FIR-
REGISTER)~

In the monitor mode, this instruction transmits bits 40 through 63 of the 64-bit register

specified by the R designator to the monitor interval timer. The function of the monitor

interval timer is described in section 5. The leftmost. 40 bits of register R are ignored.

60256010 01 6-247

I..

()

0

/1'···~""'\

~y

!""~
I •
~,JI

/,,,--·"'
\· .. ~,,)/

-"""

(l---c ..

\l_~)

Cl

.P:

0

0

0
0
0

0
0

0

0
0

0

0

0
0

0
0
0
0
0

•

NUMBER SYSTEMS AND TABLES A

GENERAL

Any number system may be defined by the radix or base. The radix or base is the number

of unique symbols used in the system. The decimal system has ten symbols, 0 through 9.

Modulus is the number of unique quantities or magnitudes a given device can distinguish.

For example, an adding machine with 10 digits, or counting wheels, has a modulus of 1010-i.

The adding machine has a modulus because the highest number which this machine can ex

press is 9, 999, 999, 9f)9.

Most number systems are positional; that is, the relative position of a symbol determines its

magnitude. In the decimal system, a 5 in the units column represents a different quantity

than a 5 in the 101 s column. Quantities equal to or greater than 1 may be represented by

using the 10 symbols as coefficients of ascending powers of the base 10. The number 98410
becomes:

B x 102 = 9 x 100 = 900

+8 x 101 = 8 x 10 = 80

+4 x io0 = 4 x 1 = 4

98410

Quan~ities less than 1 may be represented by using the 10 symbols as coefficients of ascending

negative powers of the base 10. The number O. 593 10 may be represented as:

5 x 10- 1 = 5 x • 1 = • 5

9 x 10-2 = 9 x . 01 = • 09

3 x 10-3 = 3 x . 001 = • 003
• 59310

BINARY NUMBER SYSTEM

Internal operations in the computer use the binary number system. This system uses two

symbols, 0 and 1; the base is 2. Because of the two-state characteristics, the binary system

lends itself well to representation by the electronic switching circuits in the computer. The

following numbers show the positional value of the binary number system:

25 24 23 22 21 20

32 16 8 4 2 1 Binary point

60256010 01 A-1

The binary number 011010 represents:

0 x 25 = 0 x 32 = 0

+1 x 24 = 1 x 16 = 16

+1 x 23 = 1 x 8 = 8

+o x 22 = o x 4 = o
+1 x 21 = 1 x 2 = 2

+ox 20 =ox 1 o
2610

Fractional binary numbers may be represented by using the symbols as coefficients of as

cending negative powers of the base.

rl 2..:.2 2-3 r4 r5
Binary point 1I2 1 I 4 1 I a 1I16 1 / 32

The binary number O. 10110 may be represented as:

1 x rl = 1 x 1/2 = 1/2 = s/16

ox r2 =ox 1/4 = o = o

lx2-3=1xl/8 =1/8 =2/16

1x2-4=1x1/16 = 1/16 = 1/16

o x r 5 = o x 1 / 32 = o = o

11/1610

HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system uses 16 discrete symbols (base 16). Table A-1 shows the

16 hexadecimal symbols with the decimal and binary equivalents. Note that the first 10 hexa

decimal symbols are identical to the corresponding decimal symbols. The remaining six

symbols are represented by alphabetical characters A..,.F.

I NOTE I
To avoid confusion between hexadecimal and decimal num
bers in the instruction manuals, all numbers shown
without the base number affixed are hexadecimal numbers.
Decimal numbers are shown with the base designator 10
affixed in the conventional manner. For example, the num
ber 79847 represents a hexadecimal number. Conversely~
7984710 represents a decimal number.

With base 16, the positional value of hexadecimal numbers is:

A-2 60256010 01

;r·"
~ ... #

.Y'

{
~.

'

"''

0

0

0

0

0

0

0

0

0

[
.',

i
'

0
0

0
0

0
0

0
0
0

•

165
1, 048, 57610

164
65,53610

163
4,09610

The hexadecimal number 859F is:

8 x 163 = 8 x 4, 09610 = 32, 76810

5 x 162 = 5 x 25610 = 1, 28010

9 x 161 = 9 x 1610 = 14410

F x 160 =Ftx 1 = 1510

34,20710

162
25610

Fractional hexadecimal numbers may be represented by using the sumbols as coefficients of

ascending negative powers of the base.

16-2
1/25610

16-3

1/409610

16-4
1I6553610

TABLE A-1. HEXADECIMAL EQUIVALENTS

Binary Decimal Hexadecimal

00000 00 00

00001 01 01

00010 02 02

00011 03 03

00100 04 04

00101 05 05

00110 06 06

00111 07 07

01000 08 08

01001 09 09

01010 10 OA

01011 11 OB

01100 12 oc
01101 13 OD

01110 14 OE

01111 15 OF

10000 16 10

tTo perform this multiplication, the hexadecimal symbol F is first converted to its decimal
equivalent 15 (table A-1).

60256010 01 A-3

The hexadecimal number . 48CO represents:

4 x 16-1 = 4 x 1/16 = 1024
409610

8 x 16-2 = 8 x 1/256 = 128
409610

C x 16-3 =C x 1/4096 = 12
409610
1164 291
409610 = 102410 = • 284

Since a group of four bits can represent any one of the 16 hexadecimal symbols, this notation

is used throughout the instruction manuals for instruction codes, operands, addressing,

etc. Table A-1 show~ the hexadecimal equivalents for each unique group of four bits.

The hexadecimal number system enables direct substitution of a hexadecimal symbol for a

group of four bits. Figure A-1 illustrates the substitution of a hexadecimal number for a

32-bit operand. Thus, the equivalent hexadecimal symbol is substituted for each successive

group of four bits, producing the complete hexadecimal equivalent.

0 3 4 7 8 11 12 15 16 19 20 23 24 27 28 31

1111 1100 0101 0000 1001 0010 1010 0100

c 5 6 g A 4

Equivalent Hexadecimal Number = FC5092A4

Figure A-1. Example of Hexadecimal Substitution for a Binary Number

A-4 60256010 01

0 1

'

()

,4[Jl,.,

~'- ... J)

~-,,.,\

(.~_))

('(,_'",

~~)Y

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

•
"

Figure A-2 provides an easy way to add or multiply hexadecimal numbers.

60256010 01

0

2

3

4

5

6

7

8

9

A

8

c

D

E

F

0

0

I

2

3

4

5

6

7

8

9

A

-9

c

D

E

F

2

3

4

5

6

7

8

9

A

B

c

0

E

F

ADDITION

23456 789A8C DEF

I 2 3 4 5 6 7 8 9 A 8 c D E F

2 3 4 5 6 7 8 9 A B c D E F 10

3 4 5 6 7 8 9 A 8 c D E F 10 II

4 5 6 7 8 9 A 8 c 0 E F 10 II 12

5 6 7 8 9 A 8 c D E F 10 II 12 13

6 7 8 9 A 8 c D E F 10 II 12 13 14

7 8 9 A B c 0 E F 10 II 12 13 14 15

8 9 A 8 c D E F 10 II 12 13 14 15 16

9 A 8 c D E F 10 II 12 13 14 15 16 17

A B c D E F 10 II 12 13 14 15 16 17 18

8 c D E F 10 II 12 13 14 15 16 17 18 19

c D .E F 10 II 12 13 14 15 16 17 18 19 IA

D E F 10 II 12 13 14 15 16 17 18 19 IA 18

E F 10 II 12 13 14 15 16 17 18 19 IA 18 IC

F 10 II 12 13 14 15 16 17 18 19 IA 18 IC ID

10 II 12 13 14 15 16 17 18 19 IA 18 IC ID IE

MULTIPLICATION

2 4

3 6 9

4 8 c JO

5 A F 14 19

6 c 12 18 IE 24

7 E 15 1C 23 2A 31

8 10 18 20 28 30 38 40

9 12 18 24 20 36 3F 48 51

A 14 IE 28 32 3C 46 50 5A 64

B 16 21 ZC 37 42 40 58 63 6E 79

c 18 24 30 3C 48 54 60 6C 78 84 90

0 IA 27 34 41 4E 58 68 75 82 8F 9C A9

E IC 2A 38 46 54 62 70 7E ec 9A A8 B 6 C4

F IE 20 3C 48 5A 69 78 87 96 A5 84 C3 02 El

2 3 4 5 6 7 8 9 A B c 0 E F

Figure A-2. Hexadecimal Matrices

A-5

BINARY ARITHMETIC

The· following subparagraphs present a brief description of binary arithmetic, including the

one's and two's complement systems.

ADDITION AND SUBTRACTION

Binary numbers are added according to the following rules:

1 + 1 = 0 with a carry of 1

O+O=O

0 + il = 1

1 + 0 = 1

The addition of binary numbers proceeds as follows (the hexadecimal and decimal equivalents

verify the result):

Augend 1001 (9)

Addend .Q!Q!_ (5)

Partial Sum 1100

Carrys .Q.Q1Q

Sum 1110 = E16 = 1410

Binary numbers are subtracted according to rules shown as follows:

0 - 0 = 0

0 - 1 = 1 with a borrow of 1

1 - 0 = 1

1 - 1 = 0

An example of binary subtraction is shown as follows:

Minuend 1001 (9)

Subtrahend 0101 (5)

Partial
Difference 1100

Borrows ..!Q.QQ
Difference 0100 (4)

A-6 60256010 01

{)

01
;tt'"o""'

("'---"

/(1',

\.~_,-,'

rf~
\:l. __ _...:1

~- '"
('~""'

0

0

0

0

0

0

0

0

0

0

C
'
;

i

I

:

0

0

0

0

0

0

0

0

0

•

Numbers can also be subtracted by adding the complement of the addend as shown below:

Aug end 1010 (A) (1010)

Addend 1100 (-3) One's complement of +3.

Partial Sum 0110

Carrys .QQQ1. (End around carry)

Sum 0111 (+7)

The example above shows that the carry generated by the most significant stage of the add is

added to the least significant stage (end around carry). The procedure for obtaining the one's

complement of a binary number is described in the following subparagraphs.

ONE's COMPLEMENT

In this system, positive numbers are represented by the binary equivalent. The negative

numbers are represented in one's complement notation of the corresponding positive number.

The one's complement of a number is found by subtracting each bit of the number from 1.

For example:

1111
-0101 (5)

1010 (One's complement of 5)

The substitution of ones for zeros. and zeros for ones also produces the one's complement

representation of a negative number.

In general, a negative number in the one's complement system contains a 1 in the most

significant bit (sign bit). Conversely, a positive number contains a 0 in the most signifi

cant bit. This feature divides the range (modulus) of numbers that a given machine can

represent into two halves. One half of the range represents positive numbers while the other

half represents negative numbers. A machine with modulus of 8 has the following range of

numbers:

SIGN BIT

(-7F16) (-12710) 100000002 (Maximum negative number)

(+7F 16) (+12710) 01111111 2 (Maximum positive number)

Figure A-2. Example of a Modulus 8 System

Thus, this machine has a modulus of± (27 -1).

60256010 01 A-7

If a 1 is added to the maximum positive number shown in the example, the result equals

the m,aximum negative number as shown in figure A ... 3.

Such a result is termed an overflow because the result exceeds the modulus of the machine.

Partial Sum
Carrys

Sum

01111111
+1

01111110
11111110
10000000
t....ovERFLOW

Figure A-3. Example of Overflow

In a similar manner, ·figure A-4 shows that the subtraction of a one from the maximum nega•

ti,ve number produces a result that exceeds the modulus of the machine in a negative direction.

This result is termed an underflow.

Partial Difference
Borrows

10000000
-1

10000001
11111110
01111111
'LuNDERFLOW

Figure A-4. Example of Underflow

I In the central computer, underflows and overflows are detected. In most cases, the

detection of an overflow or underflow causes forced results. The type of forced results

caused by the detection is included with the applicable instruction description •.

TWO's COMPLEMENT

I The two's complement system is used exclusively in central computer arithmetic opera

tions. The system is similar to the one's complement system. Positive numbers are

represented identically in the two systems. Negative numbers differ by one count.

Table A-2 shows a comparison of one's and two's complement representations of counts

0-9. In the one's complement system, there are two representations for zero: a +0 and

-0. Table A-2 shows the -0 as all ones in parentheses. This feature causes negative

numbers in the one's and two's complement systems to vary by one count.

A-8 60256010 02

t)

()

0
()
1f~\. v

(;

0

0

0

0

0

0

0

0

0

0

C'.!

.i

0

0

0

0

0

0

0

0
0

•

TABLE A-2. COMPARISON OF ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS

Two 1 s Complement One's Complement
Count Representation Representation

+9 01001 01001

+8 01000 01000

+7 00111 00111

+6 00110 00110

+5 00101 00101

+4 00100 00100

+3 00011 00011

+2 00010 00010

+1 000-01 00001

0 00000 00000 (11111)

-1 11111 11110

-2 11110 11101

-3 11101 11100

-4 11100 11011

-5 11011 11010

-6 11010 11001

-7 11001 11000

-8 11000 10111

-9 10111 10110

Positive numbers in the two's complement system can be converted to the equivalent negative

numbers by first taking the one's complement of the positive number and then adding +1 to the

result. Figure A-5 shows an example of the -procedure.

Figure A-5.

60256010 01

00111 (+7)

11000

+l

11001

(One's complement :a -7)

(Add one)

{Two's Complement = -7)

Example of Converting a Positive Number to a Negative
Number in Two's Complement

A-9

Addition and subtraction in the two's complement system are performed in the same way as

in the one's complement system. However, the end-around carry and borrow features, used

in the one's complement system, do not apply to the two's complement system. Figure A-6

shows a comparison of adding a -1 to a +8 in the one's and two's complement systems,

respectively.

One's Complement

01000 (+8)
11110 (-1)
iOiTO (Partial Sum)
10001"- (Carrys)
--''-End .. Around Carry
00111 (Sum = +7)

Two's Complement

01000 (+8)
11111 (-1)
10111 (Partial Sum
100<.)0f\ (Carrys)

LNo End-Around Carry
00111 (Sum = +7)

Figure A-6. Comparison of Addition in the One's
and Two's Complement Systems

MULTIPLICATION

Binary multiplication proceeds according to the following rules.

0 x 0 =,O

0 x 1 = 0

1 x 0 = 0

1 x 1 = 1

Multiplication is always performed on a bit-by-bit basis.

Decimal example:

Multiplicand 14
Multiplier g

Partial Products
{

28
!.!_ (shifted left one place)
16810 Product

Binary example:

A-10

Multiplicand
Multiplier

Partial Products

Product

(1410>
(1210>

1110
1100

{
ogggo shift to place

1110 digits in proper
1110 columns

(16810> 101010002

60256010 01

(J

0, I' 1·1' 1'

0

0
'f' "\, (,' I

Vtt,J

1F"
'~-"

r'f''t;\ v

['•
'~.,)

0

0

0
0

0

0

0

0

0

0

0
0
0

0
0

0
0

0
0

•

The following example is one method of computer multiplication. The central

computer uses variations of this method. However., the following example is valid

for _ explanation.

I
The computer determines the running subtotal of the partial products. Rather than shifting

the partial product to the left to position it correctly, the computer right-shifts the summa

tion of the partial products one place before the next addition is made. When the multiplier

bit is a 1 , the multiplicand is added to the running total and the result is shifted to the right

one place. When the multiplier is a 0 , the running total is shifted to the right, effectively

multiplying the quantity by 102. Figure A-7 shows an example of the multiplication procedure

used in the computer.

DIVISION

Multiplicand

Multiplier

1110

1100

{Multiplier Bit = uo")

{Multiplier Bit = t10 11
)

(Multiplier Bit = "1")

0000

00000
1110

111000
1110

10101000

First Running Total
{Shifted Right One)

Second Running Total
(Shifted Right One)

Third Running Total
{Shifted Right One)
Product {16810)

Figure A-7. Example of Computer Multiplication Procedure

The following examples show the familiar method of decimal division.

14 Quotient
Divisor 13 rI85 Dividend

il_
55 Partial Dividend

..§!..
3 Remainder

The computer performs division in a similar manner {using binary equivalents):

Divisor

602 56010 02

1110
1101 l 10111001

1101
10100
..l.lJll..
01110

1101
11

Quotient (14)
Dividend

Partial Dividends

Remainder (3)

A-11

However, instead of shifting the divisor right to position it for subtraction from the partial

--, dividend (shown above), the computer shifts the partial dividend left, accomplishing the same

result. Following each left shift, the divisor is subtracted from the dividend. If the result

is positive, the corresponding bit of the quotient is set (1) and the resulting partial dividend

is shifted left one position. If the result is negative, indicating_ that the divisor cannot be

contained in the partial dividend, the corresponding bit of the quotient is cleared (0) and the

previous partial dividend is shifted left one place. The process continues until the proper

number (determined by the number of bits in the dividend) of subtraction and left-shift opera

tions take place.

Figure A-8 shows an example 9f the division procedure used in the computer. Note that the

first subtraction in the example would produce a negative result. Thus, the most significant

bit of the quotient is cleared and the previous partial dividend (in this case, the initial divi

dend) is shifted left one position.

Dividend
Divisor
Quotient

10111001
1101

01110
ho111001 First subtraction would produce
llOl ~~-~-negative result

10111001
1101
1010001~ c .

lOlOOOl ~ec?~d subtraction produces

1101 positive result ,

111101
111101

1101
00011 ~--Remainder
1101 < Subtraction would produce

negative result

Figure A-8. Example of Computer Division Procedure

The second subtraction produces a positive result. Thus, the next most significant bit of the

quotient is set and the result of the subtraction (partial dividend) is left shifted one place.

Note that the result of the third subtraction is retained as the remainder since the fourth

(final) subtraction would produce a negative result.

NUMBER-CONVERSIONS

The procedures that may be used when converting a number from one number system to

another are power addition, radix arithmetic, and substitution. Table A-3 lists the recom

mended conversion procedures.

A-12 60256010 01

0 \
!

;I

()

()

111f-l\I\

'"'---~·

(iii-"
'<l,__y'

0

0

0
0

0

0

0

0

0

0

Ci,·

:

!

0

0

0

0

0

0

0

0
0

•

TABLE A-3. RECOMMENDED CONVERSION PROCEDURES
(INTEGER AND FRACTIONAL)

Conversion

Binary to Decimal

Decimal to Hexadecimal t

Decimal to Binary

Hexadecimal to Decimal t

Binary to Hexadecimal

Hexadecimal to Binary

Recommended Method

Power Addition

Power Addition

Radix Arithmetic

Radix Arithmetic

Substitution

Substitution

General Rules

ri > rf: Use Radix Arithmetic, Substitution

ri < rf: Use Power Addition, Substitution

ri = Radix of initial system

rf = Radix of final system

tThe Programming Reference Aids Manual (Control Data
Pub. No. 60158600) lists the decimal to hexadecimal con
versions for decimal numbers 0-40959.

POWER ADDITION

To convert a number from ri to rf (ri < rf), write the number in its expanded ri polynomial

form and simplify using rf arithmetic.

Example 1: Binary to Decimal (Integer)

0101112 JC 1(24) + 0(23) + 1(22) + 1(21) + 1(20)

= 1(16) + 0(8) + 1(4) + 1(2) + 1(1)

= 16 + 0 + 4 + 2 + 1

= 2310

Example 2: Binary to Decimal (Fractional)

• 0101 2 = oc2-1> + 1cr2> + ocr3> + ic2-4>

=0+1/4+0+1/16

: 5/ 1610

60256010 01 A-13

Example 3: Decimal to Hexadecimal (Integer)

= 8.(102) + 7(101) + 5(100)

= 8(A~6) + 7(At 6) + 5(A ~6)
= 8(6416) + 7(A16) + 5(1)

= 32016 + 4616 + 5

= 36B16

I NOTE I
The base 10 is changed to the hexadecimal equivalent (A).
The subsequent arithmetic is then performed in the hexa
decimal system.

Example 4: Decimal to Hexadecimal (Fractional)

= 2c10- 1> + 5(10-2>

= 2<AiA> + 5(Ai~>
= 2/A15 + 5/6416

= 1916/6416

~ • 4/ 16

RADIX ARITHMETIC

To convert a whole number from ri to rf (ri > rf):

1. Divide the number to be converted by re as expressed in r i notation, using r i

arithmetic.

2. The remainder is the lowest-order digit 1n the new expression.

3. Divide the integral part from the previous step by. r r• as expressed in r i notation.

4. The remainder is the next higher-order digit in the new expression.

5. The process continues until the division produces only a remainder which will be

the highest-order bit in the r f expression.

To convert a fractional number from r. to rf:
. 1

1. Multiply the number to be converted by rf, as expressed in ri notation, using ri

arithmetic.

2. The integral part is the highest-order bit in the new expression,.

3. Multiply the fractional part from the previous operation by r r• as expressed in r i

notation.

4. The integral part is the next lower-order bit in the new expression.

5. The process continues until sufficient precision is achieved or the process

terminates.

A-14 60256010 01

0

0
0

(--,_:
'-~•F

r'f" . ._._\

-~ .iY

ff-,,.

\t~I

()

0

0

0

0

0

0

0

0

0

0

C;.
I

!

0

0

0

0

0

0

0

0
0

•

EXAMPLE 1 Decimal to Binary (Integer)

45-i- 2 = 22 remainder 1; record

22 + 2 = 11 remainder 0; record

11 ~ 2 = 5 remainder 1; record

5 + 2 = 2 remainder 1; record 1

2+ 2 = 1 remainder 0; record 0

1 + 2 = 0 remainder 1; record 1
1 0 1

Thus 4510 = 1011012

EXAMPLE 2 Decimal to Binary (Fractional)

• 25 x 2 = O. 5; record O

• 5 x 2 = 1. O; record 1

. 0 x 2 = O. O; record

Thus • 25 10 = . 0102

0
"010

1

1

EXAMPLE 3 Hexadecimal to Decimal (Integer)

9FC + 1010 (A16) =OFF remainder 6; record

OFF~ A16 = 19 remainder 5; record

019+A16 = 2 remainder 5; record

1

0

0 1

6

5

5

2 ~A16 = 0 remainder 2; record ~
2556

Thus 9FC l6 = 255610

EXAMPLE 4 Hexadecimal to Decimal (Fractional)

• 2AC x 1010 (A 16) = LABS; record 1

• ABB x A 16 = 6. B30; record 6

. B30 x A 16 = 6. FEO; record 6

• FEO x A16 = 9. ECO; record 9

.1669--
Thus • 2AC16 ~. 166910

60256010 01 A-15

SUBSTITUTION

This method permits easy conversion between hexadecimal and binary nwnbers. If a binary

nwnber is partitioned into groups of four bits to the left and right of the binary point, each

group of fou~ bits converts into a hexadecimal digit. Similarly, each hexadecimal digit con

verts directly into a group of four bits. Table A-1 lists the hexadecimal digits and the cor

responding binary equivalents.

Example 1: , Binary to Hexadecimal

Binary= 1110 0000 0101.

Hexadecimal = E 0 5

Example 2: Hexadecimal to Binary

Hexadecimal = 5 F 8 .
0101 1111 1000.

A-16

1011

B

7

0111

0010

2

c
1100

1001

9

A

1010

60256010 01

0
()

0

rr··""
'"• .. ., ... /

11··~,

l"'l~'"'""i

0

0

0

0

0

0

0

0
0

(]'

:

0
0
0
0

0

0

0

0

• •

Tables A-4 and A-5 are translation tables for extended binary coded decimal interchange

code (EBCDIC) and American National Standard Code for Information Interchange (ASCII).

The double row of squares around the top and left edge of each table show the binary and

hexadecimal codes for the characters in the table. The following list gives a description of

the control characters in the tables.

Null DLE Data Link Escape (CC)

Start of Heading (CC) DCl Device Control 1

Start of Text (CC) DC2 Device Control 2

End of Text (CC) DC3 Device Control 3

End of Transmission (CC) DC4 Device Control 4 (Stop)

Enquiry (CC) NAK Negative Acknowledge (CC)

Acknowledge (CC) SYN Synchronous Idle (CC)

NUL

SOH

STX

ETX

-EOT

ENQ

ACK

BEL

BS

HT

Bell (audible or attention signal) ETB End of Transmission Block (CC)

LF

VT

FF

CR

so
SI

Backspace (FE) CAN Cancel

Horizontal Tabulation EM End of Medium
(punched card skip) (FE)

SUB Substitute
Line Feed (FE)

ESC Escape
Vertical Tabulation (FE) FS File Separator (IS)
Form Feed (FE)

GS Group Separator (IS)
Carriage Return (FE)

RS Record Separator (IS)
Shift Out us Unit Separator (IS)
Shift In DEL Deletet

I NOTE I
(CC) Communication Control
(FE) Format Effector
(IS) Information Separator

Bits in the tables are identified by b 8, b 7, b6 , •••• b
1

where b8 is the highest order or most

significant bit. Their numerical significance in binary is as follows:

Bit Identification b 8 h 7 b6 b 5 b 4 b 3 b 2 b 1

Significance 2 7 2
6

2
5

2
4

2
3

2
2

2
1

2°

tin the strict sense, DEL is not a control character.

60256010 01 A-17

TABLE A-4. EBCDIC TRANSLATION TABLE

I 1

• 0 0 0 0 0 0 0 0 1 1 1

!I 0 0 0 0 1 1 1 1 0 0 0

!I 0 0 1 1 0 0 1 1 0 0 1

I 0 1 0 1 0 1 0 1 0 1 0

b5 b4b3 b2 bt

WS:J l ! ! ! 0 1 2 3 4 5 6 7 8 9 10

~ (A)

0 0 0 0 0 NUL OLE SP a -
0 0 0 I I SOH DCI I a j ,.,

0 0 1 0 2 STX DC2 SYN b k s

0 0 1 1 3 ETX DC3 c 1 t

0 1 0 0 4 d m u

0 1 0 , 5 Ht LF e n v

0 1 , 0 6 BS ETB f 0 w

0 1 1 1 7 DEL ESC EOT g p x

1 0 0 0 8 CAN h q y

1 0 0 1 9 EM ' i r z

1 0 1 0 10 (A) [J I .
I . , 0 , 1 II (B) VT . $, #

1 1 0 0 12 (C) FF FS DC4 < * O/o ®
1 1 0 1 13 (0) CR GS ENQ NAK ()

,
-

1 1 1 0 14 (E) so RS ACK + . > = ,
1 1 1 1 15 (F) SI us BEL SUB ! /\ ? II

A-18

1 1 1

0 1

1 0

1 0

11 12

(B) (C)

{
A

B

c

0

E

F

G

H

I

1 1

1 1 1

0 1 1

1 0 1

13 14 15

(0) (E) (F)

} \ 0

J 1

K s 2

L T 3

M u 4

N v 5

0 w 6

p x 1

Q y 8

R z 9

EO

60256010 01

()

0
(}

t''c'-~'\

~~->/

1~'
·~j

0

0

0
TABLE A-5. ASCII TRANSLATION TABLE

0

0
• 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

• 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

"' 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 r - 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

"TiTf1~. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

{A) (8) {C) {D) {El {F)

0 0 0 0 0 0 NUL DLE SP 0 @ p ' p

0 0 0 I 1 SOH DCI ! 1 A Q a q

0
0 0 1 0 2 STX DC2

II
2 8 R b r

0 0 1 , 3 ETX DC3 # 3 c s c s

0 1 0 0 4 EOT DC4 $ 4 D T d T

0 0 , 0 1 5 ENQ NAK O/o 5 E u e u

0 1 1 0 6 ACK SYN a 6 F v f v

0 0 1 1 1 7 BEL ETB
,

7 G w g w

1 0 0 0 8 BS CAN { 8 H x h x

C'i
.\

1 0 0 1 9 HT EM) 9 I y i y

1 0 1 0 10 (A) LF SUB *
. J z j z .

1 0 1 1 11 {B) VT ESC + .
K [k {

'
1 1 0 0 12 (C) FF FS , < L \ 1 I

I

1 1 0 1 13 (0) CR GS - = M] m }

0
1 1 1 0 14 (E) so RS . > N /\ n ,..,

1 1 1 1 15 (F) SI us I ? 0 - 0 DEL EO

0

0

0

0

0

0

0

0 60256010 01 A-19

e

()1

0

0
(J

~)

()

,~,

· . ..)

(--::

0

0

0

0

0
()

0

0

0

c

0

0
0
0

0

0

•

FLOATING-POINT ARITHMETIC

GENERAL

Most programmed arithmetic in the computer system ta,kes place using two's complement,

floating point procedures. The following paragraphs describe the formats and procedures

used in performing floating-point operations. Unless otherwise specified, numbers are

expressed in hexadecimal notation (base 16).

FLOATING POINT TECHNIQUE

B

The floating point technique allows. the computer to represent numbers with variable radix

points and to perform computations on these numbers. Using floating-point procedures, the

computer automatically places the radix point of the result at the proper position following

a computation. Thus, by shifting the radix point and increasing or decreasing the exponent,

computations on widely varying quantities which do not exceed the capacity of the machine

can be performed.

Floating-point numbers within the computer are represented in a form similar to scientific

notation, that is, a coefficient multiplied by a number raised to a power. Since the computer

operates only on binary numbers, the numbers are multiplied by powers of two.

C • 2E Where: C = coefficient

E =exponent

In floating-point, different coefficients need not relate to the same power of the base as do

fixed point numbers. Therefore, the format of a floating point number includes both the

coefficient and exponent. All coefficients and exponents represented in the equipment are

signed integers ..

OPERAND FORMATS

Floating-point operations are performed on 32-bit and 64-bit operands. · The function codes

of the corresponding instructions specify whether 32-bit or 64-bit operands are to be used.

The following subparagraphs describe the 32-bit and 64-bit formats.

60256010 01 B-1

32-BIT FORMAT

Figure B-1 shows the format of the 32-bit floating point operands. Note that the bit positions

of all operands are numbered left to right with the least significant bits in the rightmost bit

positions of the word.

LEAST S16NIFICANT
EXPONENT BITS \

EXPONE.NT·' rCOEFFI CI ENT
SIGN BIT ~ SIGN BIT

rr .. ff
EXPONENT\ . COEFFICIENT
(8 81 TS) (2 4 B ITS)

EXPONENT
BI NARY POI NT

LEAST SIGNIFICANT d COEFFICIENT BITS

Tl
_COEFFICIENT

BINARY POI NT

Figure B-1. 32-Bit Floating-Point Operand Format

The range of useful coefficients in the 32-bit format is from 800000 to 7FFFFF which provides
23 . 23 a range of -(2). 10 through +2 -1)

10
•

Useful exponents range from 90 to 6F which gives a range of -112 10 to +111 10 . Numbers 70

through 8F fall into a special end-case range as listed in table B-1.

TABLE B-1. SPECIAL END CASE RANGE FOR THE 32-BIT FORMAT

Number Definition

8XXXXXXX Machine Zero

7XXXXXXX Indefinite

Note: X = Any Hexadecimal Digit

Table B-2 lists some floating point numbers in the 32-bit format. Unless otherwise indicated,

rf~.-,· l,v

D'
\ :.;

0

r'.',.....1·-,

~~;

#'"""
I

'. ·"''~'

all numbers are in two's complement, hexadecimal notation. (f "'.

v

B-2 60256010 01

0
0

0

0

0
0
0

0

0
0

0
0
0

0
0
0

0
0

• •

TABLE B-2. FLOATING-POINT NUMBERS IN 32-BIT FORMAT

Number (Base 10)

+1

+1 Normalized t

-1

-1 Normalizedt

+26790.0

+1I4 = +. 25 = +. 4016 Normalized t

256

Floating Point Format

Exponent Coefficient

00 000001

EA 400000

00 FFFFFF

E9 800000

00 0068A6

EB 400000

00 000100

tin these examples, the coefficients are left shifted (normalized) until the
sign bit is unequal to the bit immediately to its right. The exponent is
reduced by one for each left shift.

Note that in two's complement notation, a negative number is one more than the corresponding

one's complement notation for the same number. For example, in two's complement, -1 =

FFFFFF (all ones) while in one's complement -1 = FFFFFE. Positive numbers in two's

complement are identical to the corresponding one's complement notation for the same num

ber.

64-BIT FORMAT

Figure B-2 shows the format of the 64-bit floating point operands.

r EXPONENT
SIGN BIT

n
EXPONENT
(16 BITS)

60256010 01

LEAST SIGNI Fl CANT

£- EXPONENT BITS·

COE FF I Cl ENT
SIGN BIT

~EXPONENT
BINARY POI NT

COEFFICIENT
(48 BITS)

LEAST SIGNI Fl CANT~
COEFFICIENT BITS \\i

Tl
COEFFICIENT _/
BINARY ·POINT

Figure B-2. 64-Bit Floating-Point Operand Format

B-3

'j.

The range of useful coefficients in the 64-bit format is from 8000 0000 0000 to 7FFF FFFF

FFFF which provides a range of -(2 47)10 through +(2 47 -1)
10

•

Useful exponents range from 9000 to 6FFF which gives a range of -28, 672
10

to +28, 671 10•

Numbers 7000 through 8FFF fall into a special end case range as listed in table B-3.

TABLE B-3. SPECIAL END CASE RANGE FOR THE 64-BIT FORMAT

Number Definition

8XXX x:xxx x:xxx :xxxx Machine Zero

7X:XX XX.XX XXXX XX:XX Indefinite

Note: X = Any Hexadecimal Digit.

The use of an undefined exponent in an arithmetic operation produces undefined results.

Table B-4 lists some floating point numbers in the 64-bit format.

B-4

TABLE B-4. FLOATING-POINT NUMBERS IN 64-BIT FORMAT

Number
Base 10

+1

+1 Normalized t

-1

-1 Normalized t

+26790.0

+1/4 = +. 25 = +.4016

+25610

Floating Point Format

Exponent Coefficient

0000 0000 0000 0001

FFD2 4000 0000 0000

0000 FFFF FFFF FFFF

FFDl 8000 0000 0000

0000 0000 0000 68A6

FFDO 4000 0000 0000*

0000 0000 0000 0100

tin these examples, the coefficients are left shifted (normalized) until
the sign bit is unequal to the bit immediately to its right. The exponent
is reduced by one for each shift.

60256010 01

.r1t.,

('41.,_J•'

rf"·-,,,
I
'~c ... /V·

/. "'-,

(... ~--.......,

'"'l, ... iVJ

0

,~.

'·(

0

0

0

0

0

0

0

0

0

G!

I

I

0

0

0

0

0

0

0

• •

FLOATING POINT OPERATIONS

In the following descriptions of floating point operations, the 32-bit format is used for all

exam_ples. All descriptions and definitions of the operations apply to 64-bit operands with

the adjustment for bit length. The following bit. length substitutions are made for opera

tions using 64-bit operands.

Bit Lengths For
32-Bit Operands

DOUBLE PRECISION RESULTS

22

23

46

47

11

Bit Lengths For
64-Bit Operands

46

47

94

95

23

Several instructions produce double prec1s1on results. The double precision add opera

tion is a floating point add producing both an upper and a lower result simultaneously

and retaining both of these results for the next floating point add operation. Thus

the partial result in 64-bit arithmetic consists of 94 coefficient bits plus sign informa

tion. The partial result in 32-bit arithmetic consists of 46 bits plus sign information.

Dot Product instructions add both the upper and lower results of the multiply operations

to the partial results of the add operations as described above.

UPPER AND LOWER RESULTS

Floating point add, subtract, and multiply instructions generate result coefficients twice the

length of the source-operand coefficients. The left. and right halves of the result operands

are called the upper (U) result and lower (L) result, respectively. Figure B-3 shows the

format of the result operands.

U EXPONENT
SIGN BIT \

rr
U COEFF I Cl ENT r SIGN BIT

U EXPONENT U COEFFICIENT

L EXPONENT
SIGN BIT \

ff
L EXPONENT

L COEFFICIENT
~SIGN SIT (FORCED

I POSITIVE- 0)

L COEFFI Cl ENT

Figure B-3. Add, Subtract and Multiply Result Format

60256010 01 B-5

The sign bit of the lower result coefficient is forced positive. ·The remaining bits of the

lower coefficient are the normal results of the computations. Since the sign bit of the lower

result coefficient is forced positive, the lower .result is not meaningful alone, but must be

used in conjunction with the upper result.

END CASES

If an indefinite operand is used in a floating point o.peration, the upper and lower re

sults are indefinite. Table B-5 lists each of the end case conditions and the result

of each condition. In table B-5, 0 represents machine zero and N represents an

op·erand that is not machine zero or indefinite. The coefficient of N is not all zeros.

TABLE B-5. END CASE CONDITIONS AND RESULTS

Condition Result Condition Result

0±0 0 N . 0 0

O±N ±N 0 0 Indefinite

N ± 0 N 0 N 0

0 • 0 0 N+ 0 Indefinite

0 . N 0

FLOATING-POINT COMPARE RULES

(
)1
Ji

0 '

,,,---"'
~i_:ij,J

The rules governing the comparison of floating point operands are described on the following ··,._j

pages.

B-6 60256010 01

(C',.
'0

(1'! °"\
_.:.#!

(f .. ,,,.,

\J.

0

0
0
0
0
0

0

0 \
'

0

0

[

'',·I'

'

:
"

0

0
0
0
0
0
0
0
0

•

Neither Operand Indefinite or Machine Zero

If the signs of the coefficients of the two operands are unlike, the operands are unequal.

The. operand with the positive exponent is the larger of the two. · If the signs of the

coefficient are alike, the machine performs a floating point subtract upper. This op

eration subtracts operand (S) from operand (R). Each of the arithmetic results are

listed below with the corresponding compare results.

Arithmetic Result

Coefficient upper 24 bits all zeros
(48 bits for 24 through 27 instructions)

Coefficient upper 24 bits not all zeros
(48 bits for 24 through 27 instructions)

Coefficient positive

Coefficient negative

Compare Result

(R) = (S)

(R) ~ (S)

{R) > (S)

(R) < (S)

The compare results (R) = (S) and (R) -f (S) do not guarantee that (S) = (R) when (R) = (S).

The order of events of the floating point subtract upper is first to complement the sub

trahend, then align the coefficient associated with the smaller exponent, and finally to

perform a floating point add operation. The following is an example of (R) = (S) but

(S) -f (R) for 64-bit compares.

Operand (R) 0104 0000 0000 0001
(S) 0100 0000 0000 0001

Complement (S) 0100 FFFF FFFF FFFF
Align (S) 0104 FFFF FFFF FFFF F

Add (R) and 0104 0000 0000 0001
complemented, 0104 FFFF FFFF FFFF F
aligned (S) 0104 0000 0000 0000 F

Since the upper 48 bits of the result coefficient are all zeros, the pair of operands are

considered equal. However, if the operands are interchanged, the following happens:

Operand (R) 0100 0000 0000 0001
(S) 0104 0000 0000 0001

Complement (S) 0104 FFFF FFFF FFFF
Align R 0104 0000 0000 0000 1

Add aligned 0104 FFFF FFFF FFFF 1
(R) and complemented
(S)

Since the upper 48 bits of the result coefficient are not all zeros, the pair of operands

are considered unequal.

60256010 01 B-7

Figure B-4 shows an example of the results of a branch if (R)2 (S) (32/64 bit FP). 22

instruction with the assumed instruction codes and register content.. Note that in the initial

comparison of the coefficient signs of (R) and (S) that they are alike. Thus a floating point

subtract operation contains a positive sign which indicates that (R) > (S). Since this result

satisfies the assumed branch condition. the program branches to the indicated branch address.

• 7'. ••II II 14 a1

·-l~c_2_~_, ______ ,_~_1_>~---~'-;_,._, ____ ~c1_~_>___, . BRANCH INSTRUCTION

0

0

1101 0000 01000 0000 00 I 0 0000 0000 0000 R=07
I

•4 7.

COEFFICIENT

SIGNS ARE ALIKE

II II II II 19 10 H14 27 H al

11 11

COEFFICIENT

(50 002000)

s = 08
(4FOOIFFF)

T= 10
(OOOOOOOOOFFFFFEO)

II II II II 19 10 ZS 14 27 21 II SI SS SI H 40 4S 44 47 41 II II. II II 19 10 IS

0000 00 00 0000 0000 0000 0000 0000 0000 0000 I

"--------------------"--'---v---'
BITS NOT USED BRANCH ADDRESS

14 7' I II II II II 1910 1a 14 17 H al

COEFFICIENT

SIGN (+>

00 00 0000 RESULT OF FLOATING POINT
SUBTRACT R-S-NORMALIZE
UPPER (45 400400)

THUS, R >S; BRANCH TO VIRTUAL ADDRESS OOOOFFFFFEO

BITS
NOT USED IN
INSTRUCTION

ADDRESS

Figure B-4. Example of Branch if(R)~(S) (32/64 Bit FP) Instruction

B-8 60256010 01

0

0
()

()

- ·-'\

tf -""
'·i</, "

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

•

One or Both Operands Indefinite

If one operand is indefinite, the compare condition is not met since indefinite is not

greater than, less than, equal to, or not equal to any other operand. If both operands

are indefinite, the (R) = (S) and (R) > (S) conditions can be met since indefinite equals

indefinite.

Neither Operand Indefinite But One or Both Operands Are Machine Zero

Und'er this condition, the following definitions apply to the comparison.

1. Any nonindefinite, nonmachine zero operand with a positive, nonzero coefficient

is greater than machine zero.

2. Any nonindefinite, nonmachine zero operand with a negative coefficient is less

than machine zero.

3. Machine zero is considered equal only to itself and to any number having a

finite exponent and an all zero coefficient.

RIGHT NORMALIZATION

When the upper result coefficient overflows, the machine shifts the entire 47-bit result

(with sign extension) one place to the right. The upper exponent is increased by one.

The machine performs this operation, termed right normalization, when necessary, al

though normalization may not have been specified by the instruction.

Figure B-5 shows an example of right normalization. In this example, assume that the

following floating point numbers are added, causing the upper result coefficient to over

flow.

60256010 01 B-9

B-10

EXPONENT

~
00
00

. EXPONENT I SIGN BIT

0 • 4

0 I 4 7

11:11ol1o1 ol

I 1 I l
•

COEFFICIENT

I 5F:AFF ~ Operand 1
479FF2. Operand 2
A 73AF 1. Result (Unnormalized)

'OVERFLOW
DETECTED

COE FF IC I ENT I SIGN 81.T

I IS II II 10 II 14 If H II

I I I 00 I I 0 I 0 I I I I I I I I

IS II II 20 13 24

111001111111

OPERAND I
(00 5F9AFF)

OPERAND 2
(00 479FF2)

RESULT (UNNORMALIZED)

7 I II 12 Ill II Z7 H II II U H It 40 41 44 47

(RIGHT SHIFT I) RESULT (NORMALIZED)

27 ZI II 12 55 II It 40 41 44 47

UPPER

II II IS II II 20 ZI 14 27 ZI II

II II Ill II II 10 H 14 27 H II

0,100 0000 0000 0000 0000 0000
I

UPPER RESULT
(01 539078.)

LOWER RESULT
(EA 400000)

Figure B-5. Example of Right-Normalization

60256010 01

()

()

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

•

Note in the example that the sign bit of the lower result is forced positive (O) and bit 23 is

shifted around it.

ADD AND SUBTRACT OPERATIONS

Before the computer adds or subtracts floating-point numbers, the exponents are made equal

by a procedure calle~ alignment. The alignment procedure successively right shifts the co

efficient of the operand with the smallest exponent one bi.t and increases the exponent by one

until the two exponents are equal. The sign of the shifted coefficients is extended from the

left to the right during the shift. Negative coefficients approach a minus one and positive

coefficients approach zero as they are shifted.

Figure B-6 shows an example of floating-point addition with both operands positive. In

figure B-6,. the exponent of operand 2 is one less than the exponent of operand 1. The align

ment procedure right shifts the coefficient of operand 2 one place to the right and increases

its exponent by one, making it equal to the exponent of operand 1. Note that the least signi

ficant bit of operand 2 is shifted into bit 25 of the lower result (around the sign bit).

The addition of the coefficients takes place, using conventional binary addition procedures.

After right normalization, if required, the result is 46 bits (not including the sign bits). The

leftmost 23 bits contain the coefficient for the upper result and the rightmost 23 bits con-

tain the coefficient for the lower result.

The exponent for the upper result equals the larger of the two source operand exponents. Note

that right normalization (not necessary in the example) increases this exponent by one. The

exponent for the lower result equals the upper result exponent -23 10 (17 16) in all but the fol

lowing three conditions.

1. Right normalizat.ion causes the upper result exponent to overflow. In this case, the

computer sets the upper result to indefinite. The lower exponent will equal 5916
(6FD1 16 for 64-bit operands).

2. If the subtraction of 2310 from the upper result exponent causes the lower result

exponent to underflow, the computer sets the lower result to machine zero.

3. If one or both operands were indefinite, the computer sets the upper and lower

results to indefinite.

Figure B-7 shows an example of floating-point addition with one operand nega~ive and the

other positive.

60256010 01 B-11

. r E_ XPONENT
I Sl8N BIT

e I 4 T

ffi •
e I 4 T

ffi •
INCREASE

BY I ~-
4 '

•

e I 4 T

ffi
~

r COEFF.ICI ENT
I SIGN BIT

e II 1a tS le 19 ae H 14 17 H ..

5000,0000,001 too,ooo jooool ·

•

.... ,.
11111111

SIGN BIT
EXTENDED

UPPER

II II . ..

....

..... l?H

•

..

EQUALS THE EXPONENT
.. OF THE LAR8ER OF TWO
SOURCE OPERANDS

ii,.
fio•fo;I 10000000000000000000000

I

~ •
50-17 = 39

(5710>

OPERAND I
(50 002000.)

OPERAND 2 -UNALIGNED
(4F OOIFFF.)

OPERAND 2-ALIGNED
(SHIFTED ONE RIGHT
EXPONENTS EQUAL-50 OOOFFF)

RESULT (SUM)
.,. --

y
LOWER

FORCED
POSITIVE

UPPER .,£SULT
(50 002FFF.)

LOWER RESULT
(39 400000)

41'

000

Figure .B-6. Example of Floating-Point Addition (Both Operands Positive)

B-12· 60256010 01

()

0

1.._ ___ ;JJ/

1·~ .

rr~

\l.f

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

•

INCREASE
BY TWO

A

.,

ffi
~

50- 17= 39

(5710)

COEFFICIENT
/SIGN BIT

. IS 1• 19 to U &4 11' H II

•

II 12 15 16 19 20 23 24 27 28 31

II 1111 100000000000

\..yl
Ls1GN BIT EXTENDED

OPERAND I
(50 002000)

OPERAND 2
(4E FFEOOI)

OPERAND 2 - ALIGNED
(SHIFTED TWO RIGHT -
EXPONENTS EQUAL -50 FFFSOO)

RESULT (SUM)
0 s .. 7 0 II It IS t• 19 tO tS 24 I? tO II It IS M 19 40 41 44 4"

UPPER LOWER

FORCED POSITIVE

UPPER RESULT
(50 001800)

LOWER RESULT
(39 200000)

Figure B-7. Example of Floating-Point Addition (One Operand
Negative and One Operand Positive)

60256010 01 B-13

A floating-point subtraction consists of complementing the coefficient of the subtrahend and

performing a floating-point addition. In 32-bit format, a 24-bit two's complement operation

is performed before the operands are shifted. The complement of an 800000 coefficient is

400000 with one added to the value of the exponent associated with the coefficient.

I The central computer hardware used for floating-point add or subtract operations has an

extra (or extended)- coefficient sign bit. This means that 8000 is complemented without the

specified right shift of one and increase of the exponent by one. This causes a result

which, although not mathematically incorrect, may differ from the specified result when

all of the following conditions are met for any given pair of operands.

• The operand having the larger exponent must have a coefficient of 8000. If the

exponents of the two operands are equal, one of the two must have a coefficient

of 8000.

• The operand described in condition 1, having a coefficient of 8000, must be

complemented. This may be due to the operand being the subtrahend in a subtract

operation or because of sign control in either a subtract or add operation.

• The other operand must have a negative coefficient.

Figure B-8 shows two examples of floating-point subtraction using an extra coefficient

sign bit.

If this operation is a subtract upper, the specified result is indefinite (with the appropriate

I data flags). The central computer result did not overflow. If this operation is a subtract

normalized, the following results occur.

I
Result of
Subtract
Upper

Normalize the
upper result
by shifting
zeros into the
co efficient from
the right and
decrementing the
exponent.

B-14

C YBER 2 00 Method

6F (O) 7 F F F F F

6F 7FFFFF

t

Right Shift and Add Method

70 3 F F F F F

6F 7 F F F F E

t

60256010 02

I tj \ I

0

/f-.),\

\.ui...J>

~--.,,. ..

·-,~ ... >·':

0

0
0

0

0
0

0

0

0

0

G
!

'

'

0

0
0

0
0
0

0

0
0

•

EXAMPLE I A - B
A 60 F F F 0 0 0
B 64 8 0 0 0 0 0

RIGHT SHIFT AND ADD I
CYBER 200 METHOD TO EXPONENT METHOD
EXTRA SIGN BIT • COMPLEMENT B B (64 (I) 8 0 0 0 0 0 64 8 0 0 0 0 0

8 64 (0) 8 0 J> 0 0 0 65 4 0 0 0 0 0
ALIGN OPERAND ,60 (I) F F F 0 0 0 (60 F F F 0 0 0
WI TH SMALLER 64 (I) F F F F 0 0 65 F F F F 8 0 EXPONENT
ADD A PLUS A 64 (I) F F F F 0 0 65 F F F F 8 0
COMPLEMENT +8 64 (0) 8 0 0 0 0 0 65 4 0 0 0 0 0 OF B

64 (0) 7 F F F 0 0 65 3 F F F 8 0
64 7 F F F 0 0 65 3 F F F 8 0

EXAMPLE 2 A - B
A 50 F F F 0 0 0
B 6F 8 0 0 0 0 0 RIGHT SHIFT AND ADD t

CYBER 200 METHOD TO EXPONENT METHOD

EXTRA SIGN BIT
COMPLEMENT B B (6F ct> 8 0 0 0 0 0 6F 8 0 0 0 0 0

8 6F (0) 8 0 0 0 0 0 70 4 0 0 0 0 0
ALIGN OPERAND (50 (I) F F F 0 0 0 50 F F F 0 0 0
WI TH SMALLER 6F (I) F F F F F F 70 F F F F F F EXPONENT
ADD A PLUS A 6F (I) F F F F F F 70 F F F F F F
COMPLEMENT +8 6F (0) 8 0 0 0 0 0 70 4 0 0 0 0 0 OF B

6F (0) 7 F F F F F 70 3 F F F F F

Figure B-8. Examples of Floating-Point Subtraction Using
an Extra Coefficient Sign Bit

60256010 02 B-15

I

I

The normalized add and subtract instructions generate an intermediate result identical to

the final result of the add U and the subtract U instructions. Normalizing of the intermediate,

24-bit result then takes place. In this operation (figure B-9), the computer left shifts the

· 24 upper result bits until the sign bit and the bit immediately to the right of the sign bit are

different.

The machine attaches zeros to the right of the result as. it is shifted. The result exponent

is reduced by the number of places shifted. If reducing the exponent by one causes exponent

underflow, the result is set to machine zero. If the original coefficient consists of 24 zero
bits, the result of the normalization becomes machine zero. If normalization is not specified

in an add or subtract instruction, a zero coefficient and any exponent may result, and if

reducing the exponent during shifting causes an exponent underflow, the machine sets the

result to machine zero.

B-16

EXPONENT
/SIGN BIT

0 • 4 '

I I I

COEFFICIENT I SIGN BIT

I 11 II ta 11

'-y.I

••

LSIGN BIT AND ADJACENT BIT
ARE DIFFERENT

ASSUM£D UPPER RESULT
(4F FOD584.)

o's ADDED TO "RIGHT END OF
SH I FTED RESULT.

NORMALIZED UPPER RESULT
(LEFT-SHIFTED 3 PLACES)
(4C 86AC20)

Figure B-9. Example of Normalized lJpper Result

60256010 01

0 ,
I j

0

rf~
(1' \ v
r'""' _____ "'"\

v

4 '"·
'·~

0

0

0

0

0

0

0

0

0

0

[J·.:
I

.

0

0

0

0

0

0

0

0

0

•

ORDER DEPENDENT RESULT CONSIDERATIONS

The result of any sequence of floating point operations may be operand-order dependent

[for instance, (A + B) + C f A + (B + C)J •

The following example using 32-bit operands demonstrates this effect.

A 00 000001

B 00 000003

c = 01 000001

A 00 000001

+B 00 000003

A+B 00 000004

+C 01 000001

(A+B)+C 01 000003~
B 00 000003

+C 01 000001

B+C 01 000002~
Coefficients not equal

+A 00 000001

A+(B+C) 01 000002

It is important that this characteristic of floating point arithmetic be considered when

predicting the results of the DA, DB, DC, DD, and DF instructions.

60256010 01 B-17

MULTIPLY OPERATIONS

The multiplication of two floating-point operands .produces a result coefficient with the least

significant 23 product bits in the lower result and the higher order 23 product bits in the

upper result (figure B-10). Note that as in addition and subtraction, the sign bit of the lower

·result is cleared, forcing the lower result positive. The sign bit of the upper result is de

termined using the usual procedures of algebraic multiplication. Thus, in the example

shown in figure B-10, the sign bit of the upper result is a zero (+) since both source operands

are positive.

In the multiply operation, the positive forms of the input operands are used. The signs of

the foput operands are recorded to determine the sign of the upper result and whether the

resultant coefficient should be complemented. If either of the input operands contains a

coefficient of 800000,, the operation changes the operand to a positive form by right shifting

its coefficient by one (with sign extension) and adding one to its exponent. This gives a co

efficient of COOOOO which will then be complemented to 400000.

The lower result exponent is the sum of the exponents for the two source operands and the

upper result exponent equals the lower result exponent plus 1716 or 23 10 with the following

exceptions.

1. The sum of the source operands 1 exponents (plus 23
10

, if upper result) exceeds

6F
16

, in which case the result e~ponent is set to .indefinite.

2. The sum of the source operands' exponents (plus 23 10, if upper result) is less than

90
16

, in which case the result exponent is set to machine zero.

3. Either or both operands are indefinite, in which case the result exponent is set to

indefinite.

4. Neither operand is indefinite but either or both operands are machine zero, in

which case the result exponent is set to machine zero.

DIVIDE OPERATIONS

In divide operations,, a floating point dividend is divided by a prenormalized divisor, pro

ducing a 23-bit coefficient (not including sign bit) of the quotient which appears as the upper

result. If one or both source operands are negative,, they are complemented and the absolute

values are used in the divide operation. The signs of the original source operands determine

the sign of the final coefficient according to the normal procedures of algebraic divisons.

Figure B-11 shows an example of floating point division with both dividend and· divisor positive.

Note that prenormalization left shifts the divisor until the most significant one bit is adjacent

to the sign bit. The normalize count (NC) is stored and will partially determine the exponent

of the quotient.

B-18 60256010 01

0
()' ,J

()

/!"--,,,,,

~1tc1·'

r'"'
'~ .. ;IJI

C\
·-)

0

0

0

0

0

0

0

0

0

0

G
i

i

'

I,

i
'

0

0

0

0

0

0

0

0

0

•

r EXPONENT
I SIGN BIT

0 I 1'

0 I 4 1'

t:ooi°o 1 'I
~

(-1411> + IT1e =
(-2010> + 2310 = +3

• • • 1'

ffi
<-c,e> +<-•1e>

= -1411

r COEFFICIENT
I SIGN BIT

It II II It 19 10 D &4 11' &O II

II

OPERAND I= 1128.)(2-C = 1.128

(F4 001128.)

OPERAND 2 = OACD.)(2-8 = OA. CD
(F8 OOOACD)

MOST SIGNIFICANT

f
BIT OF PRODUCT

RESULT (PRODUCT)
(00000139 4008)

al H 11' 10 II II II H H 40 .. 44 41'

UPPER

FORCED POSITIVE

I 11 ta II 11 II H II H 11' 11 ai

1o:ootoojooototoolooo11
•

LOWER

UPPER RESULT

(03 000001.)

LOWER RESULT

(EC 394008.)

Figure B-10. Example of Floating Point Multiply

60256010 01 B-19

r EXPONENT
I SIGN BIT

• • 4 ?

r COEFFICIENT
I SIGN BIT

e II II .. 11 19 10 1114 I? H II

Booojoo ool 0000001000000000000 OPERAND I (DIVIDEND)=

~

• • 4 ?

f:oojooool
•

?

I II II II II 19 10 IS 14 11 II It

SHIFT (NC)= 1810 r------
I

..J

tt ti II 11 19 H II 14 11 U II

,10000000000000000000000

II 11 1111 11

00 001000.16 = 4096.10

OPERAND 2 (DIVISOR)=
00 0000 l 0-16 = 16.10

DIVISOR
(PRE-NORMALIZED)

0000000 QUOTIENT=
Fe 001000. 16 = 256.to

• •
EXPONENT OF OUOTI ENT= EXPONENT
OF DIVIDEND-EXPONENT OF DIVISOR
-2210 + NC= 0-0-2210 + 18 = -4

Figure B•ll. Example of Floating Point Divide
·(Dividend and Divisor Both Positive)

The prenormalized divisor is then subtracted from the dividend and the corresponding bit

of the quotient is determined. After each subtraction, the partial dividend is left shifted

one position and the subtraction is repeated as in a conventional binary division operation.

After 23 subtract and 22 shift operations have been completed, the absolute value of the quotient

coefficient appears as tJ::ie upper result. If either the original dividend or divisor (but not

both) were negative, the coefficient of the quotient is complemented. The rightmost bit of

the quotient is neither rounded nor adjusted. The remainder is not retained.

The exponent of the quotient is determined by the equation shown in figure B-·11.

B-20 60256010 01

(}

()

0
(}

·()

!'-'\
\•it.._,,;/

;1(-"\

~0

~ '-·

~l./

0

0

0

0

0

0

0

0

c
0

0
0

0

0

0

0

0

0

Figure B-12 shows another example of floating-point division. However, in this case, the

dividend is positive and the divisor is negative. As a result, the original divisor is comple

mented before the prenormalization takes place. Note that the quotient is complemented to

form the negative final quotient.

SIGNIFICANT RESULTS

Certain multiply and ·divide instructions specify that the significant results of the product or

quotient be obtained. The significant bit count for a floating point number equals the number

of bit positions in the number (excluding sign bit) minus the left shift count necessary to nor

malize the number. Refer to example in figure B-13.

A coefficient containing all zeros or all ones has a significant bit count of zero. Note that

in a nonzero coefficient that is an exact power of two, the positive form of the coefficient

results in a significant bit count that is one greater than the significant bit count of the neg

ative form of the same coefficient. The operation determines the significance of an input

operand as originally read from a register or from MCS before any operations such as sign

control or the left shift for odd exponents in square root are performed.

Significant arithmetic determines which of the source operands contains the smaller signif

icant bit count and records that count. After the following arithmetic operation, the sequence

determines the significant bit count of the result after any necessary sign correction. The

input significant bit count and the result significant bit count are then compared. If the signif

icant bit count of the result is less than the significant bit count of the input, the sequence

left-shifts (with zeros shifted in) the result coefficient according to the difference in signif

icant bit counts and reduces the exponent accordingly. If the result and input significant bit

counts are equal, the sequence does not shift the coefficient and does not adjust the exponent.

If the result significant bit count is greater than the input significant bit count, the operation

right-shifts (end off with sign extension) and increases the exponent accordingly. Note that

for multiply, the entire 95-bit result (47 bits for 32-bit multiply) is shifted as required.

Exponent overflow, exponent underflow, and divide fault cause forced results as previously

described. Adjusting for significance can cause exponent overflow or underflow or it can

take a result out of the exponent overflow or underflow condition.

60256010 01 B-21

B-22

EXPONENT
QUOTIENT =

I

II II II 1e 19 10 II 14 II

...
.. ti 19 IO U 14 11 H II

11 II II 1e

00000000101

I
I

SHI Fr1 ~CJ=_! J

1• ao as l4 11 ae 11

I I 000000000000

II II II le 19 IO II 14 11 H II

..
0-0-2210 +8 = -1410 = -E16

• II II II 1• 19 ao as .. 11H II

OPERAND I (DIVIDEND)=

00 002260.16 = +8800.10

OPERAND 2 (DIVISOR)=
00 FFAAI0. 16 = -00~5F0.16 =
-22000.10

DIVISOR (COMPLEMENTED)

DIVISOR
(PRE- NORMALIZED)

QUOT I ENT= F2 001999.
(U NCOMPLE ME NT ED)

FINAL
QUOTIENT= F2 FFE667.16 =
-0.4 1o (COMPLEMENTED)

Figure B-12. Example of Floating Point Divide (Dividend
Positive, Divisor Negative)

60256010 01

()

(}

(-'1>-\

<-r, ... Jr"

\
"< ..

0

0

0

0

0

0

0

0

0

0

[I
'

0

0

0

0

0

0

0

0

0

•

0 • 4 .,

loiooof oo ol
A

.,

COEFFICIENT
rslGN BIT

e II II II le 19 IO II 14 IT II

I •

LEFT SHIFT COUNT
TO NORMA}IZE = 1810

II II II II

II

• 11 II 11 11 19 10 II 14 IT 11 II

DIVI DENO= 00 00 I 000.16

DIVISOR= 00 000010. 16

INITIAL QUOTIENT=
Fe oo 1 ooo. 16

SIGNIFICANT BIT
COUNT= 2310-1810=5

• • 4 '

ffi
~

EXPONENT
INCREASED
BY 8 = +4.

~

SIGNIFICANT QUOTIENT=
04 000010.16

NO. OF SIGNIFICANT
BITS = 5

Figure B-13. Example of Significant Results of Floating Point Divide

SQUARE ROOT OPERATIONS

In floating point, square root operations, the following steps are performed.

1. The significance of the coefficient of the input operand is determined and recorded.

2. If negative, the input operand is complemented to its positive form.

3. If the exponent of the input operand is odd, it is reduced by one and the coefficient

obtained in step 2 is multiplied by two. If the exponent is even, no modification is

performed.

60256010 01 B-23

4. The machine now obtains the square root of the coefficient from step 3. Note that

enough zeros are attached to the right end of the coefficient to produce 23 result bits

(47 for 64-bit operands).

5. If the original input operand was negative, the result coefficient is complemented.

If the input operand was positive, no modification takes place.

6. The result ~xponent is formed by dividing the exponent by two and subtracting 11
10

from the exponent obtained in step 3. (Subtract. 231 0 for 64-bit square root.)

7. The result coefficient is adjusted to produce a coefficient with the same significance

as the input operand. The significance count obtained in step 1 is used in the opera

tion. The exponent of the result is also adjusted to compensate for the change in

magnitude of the result coefficient.

8. A source operand having an all zero coefficient will produce a result with an all

zero coefficient. The operand exponent effectively divides by two by right shifting

one place with sign extension. If the source operand is negative. data flag bit

45 is set. If the source_ operand is indefinite or machine zero, the result is

indefinite or machine zero. respectively. In these two cases, data flag bit

45 is not set.

Figure B-14 shows an example of a floating point, square root operation. In this example

a positive input source operand is used. Thus, no complementing is necessary.

•
EXPONENT+2
(+4-:-2 =+2)

II II 1• 10 n 14 11 aa ••

34 7

000 00 I 0
I

8 1112 1616 1920 2324 2728 31

0:00-0 0000 1000 000 0000 0000

A

RESULT EXPONENT
(+2-11s-9)

I

II II II t• te 10 U 14 11 H

INPUT OPERAND 04 000100 16 =
25~ 0 x 24 = 409&. 10

RESULT COEFFICIENT (NOTE THAT THERE
rs A ZERO SIGN BIT AND 12 RESULT BITS
TO THE LEFT OF THE BINARY POINT,
AND II RESULT BITS TO THE RIGHT
OF THE llHARY PotNT.)

·RESULT COEFFICIENT(BINARY POINT
1o O O O 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MOVED TO RIGHT END OF

B-24

COEFFICIENT)

RESULT (ADJUSTED FOR
Sl&NIFICANCE)
(FE 000100) = 25610 X .2-2 = 6410

Figure B- 14. Example of Floating Point Square Root

60256010 01

,,O· i\ \"' !

0

(4-lt.

"(,__,.V

t--1>,
\o11.o.- .. P

,~.

~.>'

0

0

0
0

0
0

0

0

0
0

: 0,
0

0

0
0

0
0
0

0
0

•

G BITS AND TERMINATING CONDITIONS c

G BIT USAGES

The following tables-provide the instruction G bit usages in a condensed form. Thus, these

tables provide quick look-up charts for determining the G bit control configuration for a

particular instruction to which they apply. Note that the G bit usages tables are arranged

according to instruction type (vector[VTJ, sparse vector [SVJ, etc.) and according to

function code within that type of instructions.

The key to the abbreviations used to designate the G bit usage conditions is given below:

G Bit

0

1

2

3, 4

5, 6; 7·

5, 6, 7

O; 1, 2, . 3

Any

Abbreviation

E

c
0

B

s
I

D

x

Meaning

Either 32- or 64-bit operands

Control vector

Offset

Broadcast

Sign control t

Optional index increment

Delimiter control

Defined in individual instruction
description

tThe operand flow chart {figure C-1) illustrates the order of operations when sign control
is selected.

60256010 01 C-1

\

Function
Code 0

BO E

Bl E

82 E

83

84 E

85 E

86 E

87

BB E

B9 E

BB E

BC E

BF E

TABLE C-1. G BIT USAGES FOR VECTOR (VT) INSTRUCTIONS

1

c

c

c

c

c

c

c

c
c

c

c

c

c

I NQTE I
A blank space in the tables indicates that the corre
sponding G bit does not apply for that instruction and
must be a zero.

G Bit/Usage G Bit/Usage
Function

.2 3 4 5 6 7 Code 0 1 2 3 4

0 B B s s s 90 E c 0 B

0 B B s s s 91 E c 0 B

0 B B s s s 92 E c 0 B

0 B B 93 E c 0 B

0 B B s s s 94 E c 0 B B

0 B B s s s 95 E c 0 B B

0 B B s s s 96 c 0 B

0 B B 97 c 0 B

0 B B s s s 9B E c 0 B

0 B B s s s 99 E c 0 B

0 B B s s s 9A E c 0 B

0 B B s s s 9B E c 0 B B

0 B B s s s 9C c 0 B

5 6 7

s s

TABLE C-2. G BIT USAGES FOR SPARSE VECTOR (SV) INSTRUCTIONS

Function G Bit/Usage Function G Bit/Usage

Code 0 1 2 3 4 5 6 7 Code 0 1 2 3 4 5 6 7

AO E x x B B s s s AB E x x B B s s s
Al E x x B B s s s A9 E x x B B s s s

A2 E x x B B s s s AB E x x. B B. s s s
A4 E x x B B s s s AC E x x B B s s s
A5 E x x B B s s s AF E x x B B s s s
A6 E x x B B s s s

C-2 60256010 02

0
()

0
()
,~-\

\~~J

lf"'-
14. ____ i

0

0
0

0
0
0
0

0
0
0

C~.',···. i .
i

0
0
0
0

0
0
0
0
0

•

Function
Code 0

BO x
Bl x
B2 x
B3 x
B4 x
B5 x

TABLE C-3. G BIT USAGES FOR BRANCH (BR) INSTRUCTIONS

G Bit/Usage

1 2 3 4

x x x x

x x x x
x x x

x x x

x x x

x x x

5 6

x x

x x

x x

x x

x x

x x

7

x

x

x

x

x

x

I NOTE I
Instructions 2F. 32 11 and 33 are

not listed in this table because

their G bits are used for control

purposes and do not follow the bit

definitions at the beginning of this

section.

TABLE C-4. G BIT USAGES FOR VECTOR MACRO (VM) INSTRUCTIONS

Function G Bit/Usage Function G Bit/Usage

Code 0 1 2 3 4 5· 6 7 Code 0 1 2 3 4 5 6

B7t E B x x Dl E c 0

BB E c 0 D4 E c 0 B B

BAtt E x x D5 E c 0

co E c B B DA E c

Cl E c B B DB E c

C2 E c B B DC E c

C3 E c B B DE E c 0 B

DO E c 0 B B DF E c 0

7

tThis instruction is undefined if G bits 4 and 6 are both set 11 or if G bits 6 and 7 are both set.

t tThis instruction is undefined if G bits 6 and 7 are both set.

60256010 01 C-3

Function
Code

B9

BB.

BC

BD

·C4

C5

C6

C7

Function
Code

D6

D7

EA

EB

EC

ED

EE

EF

C-4

TABLE C-5. G BIT USAGES FOR NONTYPICAL (NT) INSTRUCTIONS

G Bit/Usage G Bit/Usage
Function

0 1 2· 3 4 5 6 7· Code 0 1 2 3 .4 5 6 7

E x x x CB E c x

E B B C9 E c x
E x CA E c x
E B B x CB E c x

E B B CF E B s s s

E B B DB E c s

E B B D9 E c s

E B B. DD E

TABLE C-6. G BIT USAGES FOR STRING (ST) INSTRUCTIONS

G Bit/Usage G Bit/Usage
Function

0 1 2 3 4 5 6 7. Code 0 1 2 3 4 5 6 7

DEsmJATok FB D D D D I I

D D x I F9 D D D D I I

MASK FB
I

x x
DESIGNATOR

I
FC x x

I . I
MODULUS FD D D I I
I I I MODULUS FE DESIGNATOR

I D D I
I I I

D D I FF D~SIG~AT£R

D D I

60256010 01

0

0
()

0
,4~.

l~ J/

~~ ..

\~i..J.''

('(~

\~c .. .J-"

0

0

0

0

0

0

0

0

0

0

C
'

.
I

0

0

0

0

0

0

0

0

0

•

REGISTER Fll-E

TEST FOR
IN

DEFINITE

CENTRAL STORAGE

f .

NOTE:

YES

PERFORM
SIGNIFICANCE
COUNT IF
NECESSARY
(8B, 8F, 93,
AB, AF)

SET OF 46

©A 7000 EXPONENT CAUSED
BY APPLICATION OF SIGN
CONTROL IS NOT TRE'ATED
AS AN OPERAND INDEFINITE
BY THE FLOATING PQl"NT COMPARE.

APPLY SIGN
CONTROL
(INPUT .EXP.
MAY BE
INCREMEN
TED TO
7000)

PERFORM F. P.
OPERATION
I. SET OF 41
IF DIVIDE
FA.ULT.
2. SET OF 45
IF NEGATIVE
OPERAND AT
THIS POINT CD
ON SQRT

ADJUST
SIGNIFICANCE
IF NECESSARY
(8B, SF, 93,
AB, AF)

CF, 08, 09
ONLY

SET RESULT

INDEFINITE

COMPARE RESULT
ANO DATA FLAG
INFORMATION
RETURNED TO

,_C_F __ ,_D_e __ ,_D_9_0_N_L_Y _____ ALGORITHM

TEST1
RESULT
EXPONENT
I. IF 7X
SET OF 42

OF 46
2. 1F ex
SET OF 43

Figure C-1. Operand Flow For Instructions Having Sign Control

INSTRUCTION TERMINATING CONDITIONS

CENTRAL
STORAGE

For instructions which terminate upon exhausting the length of a data field, data string

or a vector: if that item is exhausted prior to the first operand fetch, the instruction

becomes a no-op; no data is fetched and no data flags are altered.

The following paragraphs and tables address the termination of multiple operand instructions.

Sparse vector instructions terminate as follows:

Sparse vector instructions terminate when vector Z (the result order vector) is exhausted.

If the Z designator is zero or if the Z length is zero, no data flags are set and the instruction

is a no-op. Zero length or short source order vectors are extended, as required, with zero

bits. If vector Z has a nonzero length and the C designator is zero, the results of the in

struction are undefined.

For string instruction terminating conditions see the individual instruction descriptions in

section 6 of this manual.

The tables are arranged according to the general instruction types and that the instruction

codes within that type are grouped, as much as possible, according to common data field

terminating conditions.

Note that in the tables, M-zero and N-one designate machine zero and normalized one,

respectively. In addition, the availability of a control vector for the re.sult field is (C or

Z) designated by a yes or no and in the case of the vector macro or nontypical instructions,

the yes condition is followed by an I or 0 designator if the control vector applies to an input

or output, respectively.

60256010 01 C-5

TABLE C-7. VECTOR INSTRUCTION TERMINATING CONDITIONS

Instruction A Field :S Field C Field
Code

Result if Type of A field Result if Type of B field Result if C field
A field is extension length init- B field is extension length init- C field is length init- Control
exhausted if any ially zero exhausted if any ially zero exhausted ially zero Vector

BO, Bl, B2 Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op Yes

B3, B4, B5

B6 & B7

BB, B9, BB Extend N-One Extend Extend N-One Extend Terminate No-Op Yes

.8C & BF
_;__

90, 91, 92 Extend M-Zero Extend NA NA NA Terminate No-Op Yes

& 93

94 & 95 Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op Yes

96, 97, 9B Extend M-Zero Extend NA NA NA Terminate No-Op Yes

99 & 9A

9B Extend M-Zero Extend Extend M-Zero Extend · Terminate No-Op Yes

9C Extend M-Zero Extend NA NA NA Terminate No-Op Yes

TABLE C-B. VECTOR MACRO INSTRUCTION TERMINATING CONDITIONS

Instruction
Code

Result if
A field is
exhausted

B7 Terminate

BB Extend

BA Terminate

CO, Cl, C2 Terminate

& C3

DO & D4 Extend

Dl & D5 Extend

DA & DB Terminate

DC Terminate

DE Extend

DF NA

0 = Output vector

I = Input vector

C-6

A Field

Type of
extension
if any

NA

M-Zero

NA

NA

M-Zero

M-Zero

NA

NA

N~One

NA

A field Result if
length init- B field is
ially zero exhausted

No-Op NA

Extend NA

No-Op NA

No-Op Terminate

Extend Extend

Extend NA

No-Op NA

No-Op Terminate

Extend NA

NA NA

B Field C Field

Type of B field Result if C field
extension length init- C field is length init- Control
if any ially zero exhausted ially zero Vector

NA NA NA NA No

NA .NA Terminate No-Op Yes(O)

NA NA iNA NA No

NA No-Op NA NA Yes (I)

M-Zero Extend Terminate No-Op Yes(O}

NA NA Terminate No-Op Yes.(O)

NA NA NA NA Yes (I)

NA No-Op NA NA Yes (I)

NA No-Op Terminate No-Op Yes(O)

NA NA Terminate No-Op Yes(O)

60256010 01

()

()

0

_/

0
0

0

0
0

0

0
0

0

r u
0

0

0
0

0
0

• •

TABLE C-9. TERMINATING CONDITIONS FOR NONTYPICAL (32-BIT FORMAT).
INSTRUCTIONS HAVING MULTIPLE OPERANDS

Instruction R Field s Field T Field
Code

Result if R Field Result if S Field Result if T Field
R Field is length init- S Field is length init- T Field is length init-
exhausted ially zero exhausted ially zero exhausted ially zero

14 NA No-Op NA Zero R bits Terminate No-Op
Skipped

15 & 16 NA No-Op NA No-. Op Terminate No-Op

17 NA No-Op NA No-Op NA No-Op

18, lA & 1B NA NA NA NA Terminate No-Op

NA
.

NA NA NA Terminate t No-Op 19

lC & lD NA String of all NA No-Op Terminate No-Op

1 's

lE Terminatet No-Op NA NA NA NA

lF Terminate No-Op NA NA NA NA

28 & 29 NA NA NA NA Terminatet No-Op

7D Terminate No data NA NA Terminate No data
data transfer transfer to data transfer transfer
to Reg file. Reg file. from Reg file. from Reg

file.

tThese instructions may terminate for reasons other than the exhausting of the field length.

TABLE C-10. NONTYPICAL (64-BIT FORMAT) INSTRUCTION TERMINATING CONDITIONS

Instruction A Field B Field Z Field
Code

Result if Type of A field Result if fType of B field Result if Z field
A field is extension length init- B field is jextension length init- Z field is length init- Control
exhausted if any ially zero exhausted if any ially zero exhausted ially zero Vector

B9 NA NA NA NA NA NA NA NA No

BB, BC NA NA NA NA NA NA Terminate No-Op No
& BD

C4, C5, Extend M-Zero Extend Extend M-Zero Extend Terminate No-Op No
C6 & C7

CB, C9, Terminate NA No-Op Exit search NA Exit search NA NA Yes (0'
CA& CB iteration iteration

CF Terminate NA No-Op Extend M-Zero Extend NA NA No

D8&D9 Terminate NA No-Op NA NA NA NA NA Yes (I)

I = Input vector

0 = Output vector

60256010 01 C-7

'"

{ ·J-,.
'"

0
·QI I~, I f

"'

,,,.--~

l,l;_,.

:,.,---r,
\ll __ .;/

-~
\~_.,./

/(·~"""-.

"'v~

0

0
0
0

0
0

0
0

0

0

u
0

0
0
0

0
0
0
0

0

•

DATA FLAG APPLICATIONS TO INSTRUCTIONS 0

INSTR 53 INSTR 53
CODE DATA FLAG BITS 54 CODE DATA FLAG BITS 54

' 37 38 39 41 42 43 45 46 47 55 ' 37 38 39 41 42 43 45 46 47 55

00 20 x
01 21 x
02 22 x
03 23 x
04 x 24 x
05 25 x
06 26 x
07 27 x
08 28 x
09 29 x
OA 2A
OB 2B

oc 2C
OD 2D
OE 2E
OF 2F

10 x 30
11 31
12 32
1.3 33

14 34
15 35
16 36
17 37

13 38
19 x 39
lA 3A
lB 3B

lC 3C
lD 3D
lE x 3E
lF 3F

60256010 01 D-1

INSTR 53
CODE DATA FLAG BITS 54

'. 37 38. 39 41 42 43 45 46 47 55

40 x x x
41 x x x
42 x x x
43

44 x x x
45 x x x
46 x x x
47

48 x x x
49 x x x
4A
4B x x x

4C x x x x
4D
4E
4F x x x x
50 x
51 x
52 x
53 x x x
54 x x x
55 x x
56
57

58
59 x x x
5A
5B

5C x x
5D x x
5E
5F

D-2

-INSTR 53
CODE DATA FLAG BITS 54

' 37 38 39 41 42 43 45 46 47 55

60 x x x
61 x x x
62 x x x
63

64 x x x
65 x x x
66 x x x
67

68 x x x
69 x x x
6A
6B x x x

6C x x x x
6D
6E
6F x x x x
70 x
71 x
72 x
73 x x x
74 x x x
75 x x
76 x x x
77 x x x
78
79 x x x
7A
7B

7C
7D
7E
7F

60256010 01

()

0

0

/

0

0

0

0
0
0

0

0
0

0

0 j
I

01

0
0

0
0

0

0
0
0

•

INSTR 53
CODE DATA FLAG BITS 54

~ 37 3B 39 41 42 43 45 46 47 55

BO x x x
Bl x x x
B2 x x x
B3

B4 x x x
B5 x x x
B6 x x x
B7

-=-

BB x x x
B9 x x x
BA
BB x x x

BC x x x x
BD
B~
BF x x x x

90 x
91 x
92 x
93 x x x

94 x x x
95 x x
96 x x x
97 x x. x

9B
99 x x x
9A
9B

9C x x
9D
9E
9F

t G bit 1 = 1.

60256010 01

INSTR 53
CODE DATA FLAG BITS 54

~ 37 3B 39 41 42 43 45 46 47 55

AO x x x
Al x x x
A2 x x x
A3

A4 x x x
A5 x x x
A6 x x x
A7

I----

AB x x x
A9 x x x
AA
AB x x x

AC x x x x
AD
AE
AF x x x x

BO x xt
Bl x xt
B2 x xt
B3 x xt

B4 x xt
B5 x xt
B6
B7

BB
B9
BA
BB

BC
BD
BE
BF

D-3

INSTR 53
CODE DATA FLAG BITS 54

' 37 38 39 41 42 43 45 46 47 55

co x x
Cl x x
C2 x x
C3 x x
C4 x
C5 x
C6 x
C7 x
C-8 x
C9 x
CA x
CB x
cc
CD
CE
CF x

DO x x
Dl x x
D2
D3

D4 x x
D5 x x x
D6 x
D7· x x
DB x x
D9 x x
DA x x x
DB x x x
DC x x x
DD x x x
DE x x x
DF x x x

D-4

INSTR 53
CODE DATA FLAG BITS 54

• 37 38 39 41 42 43 45 46 47 55

EO x
El x
E2 x
E3 x

E4 ·x x
E5 x x
E6 x x
E7 x x

EB x
E9 x x
EA
EB x x
EC x
ED x
EE
EF x
FO x
Fl x
F2 x
F3 x
F4 x
F5 x
F6 x
F7 x
F8
F9
FA x
FB

FC x
FD x
FE x
FF x

60256010 01

0

0

0

U
-~

\ I

0 I J

rcfl·,
\"l . .Jli;

/f.-lir->.

\.J.

0 .
'

0

0

0

0

0

0

0

0

0

0

C
l

;
.

0

0
0
0

0

0
0

•
Cb -....
C")

c:(

<

COMMENT SHEET

MANUAL TITLE CDC CYBER 200 Model 203 Computer System

Hardware Reference Manual

PUBLICATION NO. 60256010 REVISION _ _...0 2...._ __ _

FROM: NAME=-------------.;..._--------------
BUSINESS
ADDRESS=-------------------------

COMMENTS:
This form is not intended to be used as an order blank. Control Data Corporation welcomes your
evaluation of this manual. Please indicate any errors, suggested additions or deletions, or general
comments below (please include page number references).

NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.
FOLD ON DOTTED LINES AND STAPLE

.STAPLE STAPLE

OLD FOLD

·--~

)LO

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE Will BE PAID BY

CONTROL DATA CORPORATION

Publications and Graphics Division

ARH219
4201 North Lexington Avenue

Saint Paul, Minnesota 55112

FIRST CLASS
PERMIT NO. 8241

MINNEAPOLIS, MINN.

FOLD

w
z
~

C>
z
9
~
....
:::>
u

0

0
()

;r~,

l(_J'

0

,(

·f

CORPORATE HEADQUARTERS, P.O. BOX 0, MINNEAPOLIS, MINN. 55440 LITHO IN U.S.A.

SALES OFFICES AND SERVICE CENTERS IN MAJOR CITIES THROUGHOUT THE WORLD

~~
CONTl\.OL DATA CO~OR(\TION

