
NOS/VE ANALYSIS

Student Handout

REVISION RECORD
REVISION DESCRIPTION

A Manual released. This course reflects the state of the as as it is expected to be

(3-1-81) when released in 1983.

i

Publication No.

REVISION LETTERS I. O. Q AND X ARE NOT USED

ASF Part No: RW4100

Copyright © 1982 by Control Data Corporation

All rights reserved. No part of this material may
be reproduced bv any means without
permission in writing from the publisher.
Printed in the United States of America
1 234 5 6 789

ii

Address comments concerning this
manual to:

CONTROL DATA CORPORATION
Southgate Office Plaza
5001 West 80th Street
Bloomington, MN 55437

or use Comment Sheet in the back of
this manual.

HA3010

TABLE OF CONTENTS

LESSON

In t r 0 du c t ion .
Course Chart
Course Outline .
Mate rials.

Lesson 1 . Ob jecti v es
Lesson 2. NOS/VE Structure
Lesson 3. Job Flow
Lesson 4. File Flow . · Lesson 5. Materials . . ·

·
·
· · · Lesson 6. Inte rna1 Communication

Lesson 7. External Communication
Lesson 8 Job Control · · · Lesson 9. Program Execution · Lesson 10. SCl Interpreter
Lesson 11 . Permanent Files · Lesson 12. Logical I/O
Lesson 13. Physical I/O ·
Appendix A Packaging

iii

· ·

· ·

· ·

· · · · · · ·
· · · · · ·

· · ·
· · ·
· · · · · ·

·
·

· ·

·
·

· ·

PAGE

iv
v

vi
· viii

I-I
2-1
3-1
4-1
5-1

· 6-1
7-1
8-·1
9-1

· 10-1
11-1

· 12-1
13-1

A-I

INTRODUCTION

TITLE

NOS/VE Analysis

DESCRIPTION

NOS/VE Analysis is a "detailed overview" of the CIBO virtual
state operating system. The course will cover system
structure thoroughly. Other topics will be covered in
somewhat less detail, for example, the executive, SCL
interpreter, task manager and logical I/O. This course will
also cover the tools, resources and techniques needed to
extend, maintain and support NOS/VE.

Note that it is the purpose of this course to provide a
solid base for further study and work on NOS/VE, not to make
any student an expert in any particular area of the system.

The course will be 5 days long. There will be projects and
exercises but no "hands-on" experiments.

PREREQUISITES

The student should be comfortable with CYBIL, the Program
Interface and the Command Interface. All three are offered
as courses by the Seminar Division as part of the NOS/VE -
ClaD curriculum.

iv

COURSE CHART
HOUR DAY 1 DAY 2 DAY 3 DAY 4 DAY 5

I
Rev i ew Rev iew Review Review

1
INTRO

5 9

2
Resources 7 Program 12

2 External Execution Logical
Concepts Communication 10

< 3 Exercise
3

Job Flow

10
SCL Exercise

4 8
Job Control

4
File Flow 6

5
Internal 11

Communication Permanent 13
Files Physical

10

6 Exercise Exerc. ~c Exercise

PART I

PART II

PART I II

COURSE OUTL INE

CONCEPTS
1 • Ob j e c t i v es

a. Course Objectives
b • C 0 ur s e S tr u c t ur e
c. NOS/VE Objectives

2. NOS/VE Structures
a. Packaging
b. Table Se gments
c • Com p on en t s
d. Memory Layout

3. Job Flow
a. Initiation
b. Comman d Pro cess in g
c. Term ina tion

4. File Flow
a. Ope n
b. Tr ans fer
c. C los e

COMMUN I CAT 10 N
s. Res ources

a. Documentation
b. Sys tem Ini t ial iza t ion
c. Load Ma p

6. Internal Communication
a • Call / Re t ur n
b. Interrupts
c. Mon i tor
d. Traps

7. External Commun i ca t ion
a • Du a 1 S tat e
b. Logs and Statistics
c. Messa ge Gen era tor
d. Keypoint

JOB IPRO GRAM M ANA GEM EN T
8 • Job Con tr 01

a • Que u e d F i 1 e M an age m en t
b • Job In i tia t ion
c. Job Termina tion

9. Program Execution
a. Task Management
b. Loader
c. Condi tion Handl ing

10. SCL Interpre ter
a. C ont rol
b. Command Processors

vi

PART IV FILES
11 . Permanent Files

a. Control
b. Set Management
c. PF Mana gem en t

12. Lo gi cal liD
a. File Management
b. Basic Access Method
c. Dev i ce Management

13. Physical liD
a. Page Fault Handling
b. Dev ice Queue Management
c. PP Drivers

vii

MATERIALS

PRIMARY REFERENCES

• STUDENT HANDOUT

• NOS/VE PROCEDURES AND CONVENTIONS

• DESIGN SPECIFICATION
PART II - INTERNAL INTERFACE
PART III - PACKAGING

SECONDARY REFERENCES

• DESIGN SPECIFICATION
PART 1 - STRUCTURE CHARTS

• COMMAND INTERFACE (ARH3609)

• PROGRAM INTERFACE (ARH3610)

• GENERAL INTERNAL DESIGN

• INTEGRATION NOTEBOOK

viii

LESSON PREVIEW

COURSE OBJECTIVES
COURSE STRUCTURES
NOS/VE OBJECTIVES
NOS/VE RELEASE SCHEDULE

REFERENCES

LESSON 1
OBJECTIVES

ARCHITECTURAL OBJECTIVES/REQUIREMENTS (SO/R) - ARH1688.
SECTIONS 1.3 and 3.3

GID-PART 1, CHAPTER 2

OBJECTIVES

After completing this lesson the student should be able to --

o STATE THE GENERAL OBJECTIVES OF THE COURSE

o UNDERSTAND ENOUGH ABOUT THE STRUCTURE OF THE COURSE TO ·NOT
BE SURPRISED BY ANY NEW TOPIC

o OUTLINE THE MAIN OBJECTIVES OF NOS/VE AND THE STRATEGIES TO
MEET THEM

a OUTLINE THE RELEASE SCHEDULE FOR NOS/VE

EXERCISES

NONE

1-1
Control Data Private

COURSE OBJECTIVES

EXTEND Careful Survey

Selected Detail

FIX--------------------~ Available Resources

Use of Tools

SUPPORT Methods & Procedures

1-2
Control Data Private

COURSE STRUCTURE

PART I CONCEPTS
1. Objectives
2. NOS/VE Structure
3. Job Flow
4. File Flow

PART II COMMUNICATION
1. Materials
2. Internal Communication
3. Memory Management
4. External Communication

PART III JOB/PROGRAM MANAGEMENT
1. Permanent Files
2. Logical I/O
3. Device Management
4. Physical I/O

PART IV FILES
1. Permanent File
2. Logical I/O
3. Device Management
4. Physical I/O

1-3
Control Data Private

NOS/VE OBJECTIVES

OBJECTIVES

RAM

CONFIGURABILITY

EXPANDABILITY

USABILITY

CONSISTENCY

EFFICIENCY

SECURITY

MIGRATION EASE

1-4

STRATEGIES

HARDWARE

SASD

CYBIL

STANDARDS

COMMAND INTERFACE

PROGRAM INTERFACT

DUAL STATE

CP OPERATING SYSTEM

CODE ISOLATION

SYSTEM USING ITSELF

ON-LINE DEVELOPMENT

Control Data Private

R2

PHASED RELEASES

Bas. A"
D" ~c Operat" · ~sk and T ~ng Sy stem a 1-
FOR T RAN a n ~ p e Dr i v e r s f.tf V D

Dual-State COBOL
Converse lon Aids

Stand-AI ~
Unit Rec~~~ Sy~tem Interact" Dn vers fo~V q,.f .
products1Ve Facility and Utilit·
Competit" ~es
Networkslve System
~~Plications f:jIP ~ r;

c.

R3

LESSON PREVIEW

MONITOR VS JOB STATE

LESSON 2
NOS/VE STRUCTURE

FUNCTIONAL DIVISION OF NOS/VE

MAP OS TO HARDWARE

REFERENCES

MIDGS
GID-PART 1, CHAPTERS 3

OBJECTIVES

After completing this lesson the student should be able to--

o DISTINGUISH BETWEEN A MONITOR STATE AND A JOB STATE XP

o EXPLAIN HOW SYSTEM PACKAGING TAKES ADVANTAGE OF THE RING
STRUCTURE TO EFFECT COMPONENT ISOLATION

o LIST THE MAIN FUNCTIONAL AREAS OF THE SOFTWARE, INDICATE
WHERE THE CODE AND TABLES FOR EACH RESIDES

EXERCISES

NONE

2-1
Control Data Private

a

a

a

HARDWARE CONSIDERATIONS

JOB STATE vs MONITOR STATE
Instruction Privilege
Interrupts

VIRTUAL ADDRESS SPACE ~J~ 2 3(p~tA/~~~.
Large - 1ft?' C '-7' - ~ 7- --/' -- -
Segmented
Protected

COMMUNICATION

I
/

-(-
Call/Return ~ .\
Exchange .-' Gtlt..f::e (/'fD~/:t-rfjlt).) ~p./
Traps

I /!-()f] t t'P I

~. J)L-{;i

fA.,yl.,4e r'

~ &Jt"r'eI datil
51'~h4/

2-2
Control Data Private

as HIERARCHY

code data code data code dat'a

as Moaules as Modules User modules

Task Task •••. Task Task •.••

System Job User Job User Job ...

Job state
Monitor State

Monitor

code data

2-3
Control Data Private

Rll

Rl

User Segments

X
code

NOS/VE Segments

R3

R2 I I
X
code

111'1<
USERflADDRESS SPACE

RW RW
Data Stack

I
I I

RW RW
Data Stack

2-4
Control Data Private

\
I,

I

. .

. . .

PACKAGING

Rll

"USER"

Code & Data R ~! U
N

R3 A
N
Y

Task Related Code and Data W
H
E
R

(E
R2

I

Job Related Code and Data /
----~----.. f----_._--

Rl

System Related Code & Data

(1-7 '.11'
-ft-rvo
~ t JOB {!!JJYi

MTR I

I I

(

MONITOR)

2-5
Control Data Private

SHARED DATA

code data code data code data

as Modules as Modules User modules

Task Task ..•. Task Task

System Job User Job User Job •..

Job State
Monitor State

/itor
code data

2-6
Control Data Private

\
\

TABLE RESIDENCE

Job

~---------------------, I T~sk. I
I I

I I II
I I
I I I _ .. __ .. __ . __ .. _-------- -_ .. ---i----
~-- I
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I
I
I

I
I

Co:'\.
Pageable

'--J

I I
I I

I I
I I L _____________________ ~

~
Pageable

'--J
Job @ === W~~ed ================== Mtr

MONITOR

2-7
Control Data Private

TABLE SEGMENT ATTRIBUTES

Segment Name Rings

(1 ,3) 1

2

3

4

5

6

7

OSV$MAINFRAME-WIRED

OSV$MAINFRAME-PAGEABLE

OSV$JOB-FIXED

OSV$JOB-PAGEABLE

OSV$TASK-PRIVATE

OSV$TASK-SHARED

OSV$TASK-PRIVATE-Rll

2-8

(1,3)

Always in real
memory. One per
system. Monitor
read and write.

Pageable. One per
system.

(1,3) Wired when the job
is active; swapped
when the job is
swapped. One per
job. Monitor read
and write.

(2,3) One per job.

(3 , 3) 0 nt / -to r, I:<

(3,13) One per ~1('b
Pageable. Shared
with other tasks of
the same job.

(11,11) One per task.
Pageable. Not
shared.

Control Data Private

FUNCTIONS

User Job System Job

~t - - Job Moni tor or Job r-t1oni tor or
tVI1 User Progr am Job Scheduler

Task Task

as
RI,2,3

• Record Mgr • Record Mgr

• Loader • Loader

• File Mgr • File Mgr

• Command • Command
Interpreter Interpreter

• Trap Handler • Trap Handler

JOB
MTR

MONITOR

• Task Dispatcher

• Physical 1/0

• Page Manager

2-9
Control Data Private

User Task

Job State

Monitor State

COMMUNICATIONS

Calli
Return

Exchange
Signal

MONITOR

2-10
Control Data Private

System Task

Ring N

Ring M

mIn

STACK

var
---- params

Save Area

var
params

call

var
params

2-11
Control Data Private

EXCHANGE

Job r-----------------,

8

JOB
MTR

in XO

2-12
Control Data Private

EXCHANGE/INTERRUPT

* EXCHANGE JUMP
The exchange jump instruction is used to change state.

Job state programs will exchange to monitor at the PYA in
the monitor state XP P register. The system call bit in
the MCR is set and the request will be in xo.
Monitor will find the XP of the appropriate task in the XCS
entry for that task and exchange to the XP address. A
system signal, a system flag or a MeR condition might
indicate a special reason for the entry. In that case,
monitor will set the free flag in the job state XP and
execute the exchange jump. A trap will occur immediately
in job state.

* EXCHANGE INTERRUPT
Exchange interrupts occur in job state when a selected
monitor condition occurs. Monitor runs at the PYA in the
monitor state XP.

* TRAP INTERRUPT
If traps are enabled, a trap interrupt will occur when a
selected user condition occurs in the job state or a
selected monitor condition occurs in monitor state. In
either case there is no exchange. A stack frame is built
and the trap handler is executed.

2-13
Control Data Private

n
0
:J
rt-
t-j

0
~

0"'->
Ol I
rt- ~
Ol.j:::o-

-0
t-j
<
I»
rt-
ro

ANY
RING

RING l

§ Logs

RING 2

RING l

MONITOR

NOS/VE TARGET
RELEASE 1

(1,0,0)

(2,0 OJ

(2,2,H

~NV JOB

T~SK SERVICES - RING 3

TASK MONITOR _ RING 2

TASK MONITOR 1 - RING 1

CPU MONITOR

control Data corporation Document Mach

Sortware Oocument
Class Type

Samp le Code 0 Document
Tit 1e

flowchart 0 Page

Decisi.on Tattle 0 Number tssue
Date

otner 0 Drawn By
.THW Date

NOS/VE TARGET (Cant.)

Document Abstrect
Project No.

Project Mgr. ;V05 {/£ TJrKfrcr
of Project Name REL..tYt5E 1-

Task No.

7- If, Task Name

2-15
Control Data Private

SYSTEM JOB
MAINTENANCE

JOB

LESSON PREVIEW

JOB ENTRY
JOB INITIATION
COMMAND PROCESSING
PROGRAM EXECUTION
JOB TERMINATION

REFERENCES

LESSON 3
JOB FLOW

GID-PART 1, CHAPTER 3.1, 3.2, 3.3, 3.6, 3.10, 3.11

OBJECTIVES

After completing this lesson the student should be able to--

• DISTINGUISH BETWEEN JOB AND TASK

• TRACE A JOB FROM INITIATION TO TERMINATION

• EXPLAIN HOW THE SCL INTERPRETER FINDS THE PROCESSOR FOR A
COMMAND

• DISTINGUISH BETWEEN JOB SCHEDULING AND TASK DISPATCHING

• LIST THE MAIN TABLES THAT CONTROL JOBS AND TASKS

EXERCISE

NONE

3-1
Control Data Private

/collect text
login JHW81
execute DEF
Logout
** /submit ABC

ABC

SUBMIT JOB

-----PMP#EXECUTIVE

-----JMP$ROUTE

3-2
Control Data Private

(I "

o

MTR

1
JOB ENTRY

R3

NOS/VE

Command
Processor
"SUBMIT"

Queued File
Mgr

R2

I~
Queued File

Mgr

3-3
Control Data Private

*

*

*

JOB QUEUEING

Queued file manager is part of task services. It processes
the jmp$route request.

Queued files are validated and registered in the $SYSTEM
catalog and queued through the known job list (KJL).

The KJL entry for a job is linked into a thread which
represents one of the following states.

"Deferred"
"Queued"
"Initiated"

"Terminated"

waiting for a time interval to elapse
waiting to be initiated
active, inactive or swapped out but
available for execution
completed but output files queued for
disposition

3-4
Control Data Private

*

*

JOB SCHEDULER

Job scheduler executes as a task in the system job.

Job scheduler determines:

-Order in which jobs in the input queue should be initiated
-When a job should be swapped into or out of memory

* Some examples of scheduling criteria are:

-Current priority within job class
-Job resource requirements
-Job class and status
-Current system resource availability

* Job scheduler monitors the available mix of queued and
initiated jobs and prioritizes them based on current system
usage.

3-5
Control Data Private

System Job

2
INITIATE JOB

rS;;;;dul;r-------.,

RI I
I
I
I
I
I
I

JOB
MTR

Task

i
JMP$INITIATE-JOB , ,

I
Dispatcher
JMP$CREATE-JOB
I I

3-6
Control Data Private

User Job r--------------, Job Monitor
Task

SCL

Interpreter i
I
I
I
I
I
I
I
I
I
I
I

I I I
JMP$JOB-BEGIN I , , I

I
I
I
I
I
I --------.1

Dispatch
Table
'--./

*

*

*

*

*

JOB INITIATION

.When a job is selected, it is given
an entry in the Active Job List (AJL)

Initiate job with the help of monitor
initialized the OSS$job_fixed segment
for the new job. The Job Control Block
(JCB) is built. The Execution Control
Block (XCB) is initialized with the XP
for the first task to run (Job Monitor)

Monitor creates a Primary Task List (PTL)
entry and logs the job monitor task into
the dispatch table. The new job waits
its turn. Eventually the dispatcher
gives the new job its first time slice.

Job begin initializes OSS$job_pageable
and OSS#task-shared segments. The
command file, output file, and job log
are also initialized.

The SCL interpreter interprets the first
command (LOGIN). The user is validated
and the prolog is executed.

3-7
Control Data Private

SYSTEM JOB
Scheduler Task
Scheduler

SYSTEM JOB
Scheduler Task
Initiate Job

Monitor

USER JOB
Job Monitor
Job Begin

USER JOB
Job Monitor
SCL
Interpreter

o
••••• • • • • ••• ••

\
\
\
\ ,
"

3
COMMAND PROCESSING

JOB
MONITOR

3-8
Control Data Private

t I B
--'

sel I I
I I
L_....I

NOS/VE

ABC

*

*

SCL INTERPRETER

.SCL reads the command from the $COMMAND file.

SCL searches for the command in the command list, by
default -

$LOCAL
$SYSTEM

* If SCL finds the command it runs the CYBIL procedure which
must have been provided to process it. This procedure can
run as part of the current task or as a new task.

* If the command is a file name call, it might be a program
or an SCL procedure file.

* In all cases, the SCL Interpreter passes the command
parameter list to a processor. The processor can now use
other SCL interfaces to crack the command.

3-9
Control Data Private

JOB
MTR

PROGRAM EXECUTION EXAMPLE

Caller Task

Job Monitor

Job Begin

SCL
Interpreter
- EXECUTE

Task
Initiator

Task
Terminator

Loader

MONITOR

3-10

Called Task

User Program

• Entry Point

• Exit

• Task
Initiator

Task
Terminator

Control Data Private

*
*

*

*

*

*

*
*

*

*

*
*

*

*

PROGRAM EXECUTION FLOW

Program or command
requests program execution
Calls task initiator

Builds tables for
the new task

Exchanges to system
monitor to request
task initiation

Links new task into
CPU dispatch list

CPU is dispatched to
new task

Loader loads object module
Loader passes control to
initial entry point

New task executes
asynchronously to
caller task

New task calls exit
interface

Cleans up task
Exchanges to system
monitor to request
task termination

Remove task entries
from dispatch list
Informs caller that
cal lee has terminated

3-11
Control Data Private

Caller Task

Caller Task
Services
.Task initiator

System Monitor

Cal lee Task
Services
.Program loader

Cal lee Task

Cal lee Task
Services
.Task terminator

System Monitor

Rl

JOB
MTR

4
JOB TERMINATION

System Job User Job r-------------,
Job Terminator 1
Task 1

I
I Command I
1 I
1 Processor I
I "LOGOUT" I
I 1
I I
I I
I SCL ! ii

r--------------,
Job Monitor I
Task I.

I

I ; i Interpreter I
1 I 1 1
1 I I I
I I I I
I I I I

I I ! I
i ; ! I I / __
I I

I "
I

I I I (JCB)
I

I I
I

I ! 1\ ,/ I
I -- !

; I ; 1 , ,
1

I JMP$TERMINATE I KOL I JMP$END-JOB I
I -JOB I I

I ~\ 10
I \ 1

8. /-" // I

O 1\ xes J 1
I '- / I I \ I L ___________ ~..J

"

'\
\
\

L-__ _ _________ J

....... ~....-pat-che r /0
JMP$END-JOS 0

3-12
Control Data Private

ANY RING
RING 3

RING 2

RING 1

JOB

i i
Queued
Files

Queued
Files

JOB FLOW
PACKAGING

Job Task
Mgmt Mgmt

I i SCL I Program Inter-starter preter

SCL
Inter-11tljr

Command

~

Loader Segment
I I Mgmt

I i
Command
Processor
I I

I
Inter-
active
Mgmt

---- -

-----------------------P------~~_.----._-----------------MONITOR STATE

Job Manager
I I

3-13
Control Data Private

JOB FLOW TABLES

COMMAND LIST

KJL-jmv$known-job-list
(JMDKJL)

KOL-KNOWN OUTPUT LIST
(JMDKOL)

AJL-ACTIVE JOB LIST
(JMDAJL)

XCB-EXECUTION CONTROL BLOCK
(OSDXCB)

SOT-SEGMENT DESCRIPTOR TABLE
(OSDSTBL)

DISPATCH CONTROL TABLE
(TMDDCT)

PTL-PRIMARY TASK LIST
(TMDPTL)

I v J 1()~_&fj.,i~,I .. }PI,.,,,,
1"- '11

JCB-JOB CONTROL BLOCK
(JMDJCB)

() Common Deck Name

THIS LIST WILL BE SEARCHED BY
SCL INTERPRETER. IF THE COMMAND
IS FOUND, A COMMAND PROCESSOR
WILL BE CALLED.

ALL JOBS IN THE SYSTEM HAVE AN
ENTRY ON THIS TABLE.

ALL OUTPUT FILES WAITING FOR
ROUTING HAVE ENTRIES ON THIS
TABLE.

ALL JOBS THAT HAVE BEEN INITIATED
AND ARE NOT SWAPPED HAVE ENTRIES
ON THIS LIST.

EVERY TASK IN A JOB HAS AN XCB.
THIS TABLE CONTAINS THE TASKS
EXCHANGE PACKAGE.

ONE SOT PER TASK. EVERY
SEGMENT IN EVERY TASK HAS AN
ENTRY IN AN SOT. THE STD IS
USED BY HARDWARE TO RELATE VM
ADDRESS TO REAL MEMORY ADDRESSES.

THE DISPATCHER ORGANIZES TASKS
IN THIS TABLE BY PRIORITY AND
CHOOSES THE APPROPRIATE
CANDIDATE FOR EXECUTION.

THIS MONITOR TABLE CONTAINS
GLOBAL INFORMATION ABOUT EVERY
TASK IN THE SYSTEM.

THERE IS ONE JCB PER JOB. THE
JCB CONTAINS LIMITS, STATISTICS,
ETC., FOR THE JOB.

3-14
Control Data Private

LESSON PREVIEW

OPEN FILE
LOGICAL I/O
PHYSICAL I/O
CLOSE FILE

REFERENCES

LESSON 4
FILE FLOW

GID-PART 1, CHAPTER 3.4, 3.5, 3.7, 3.8

OBJECTIVES

After completing this lesson the student should be able to--

o TRACE A FILE FROM THE FIRST REFERENCE TO THE FILE TIL IT IS
RETURNED

o DISTINGUISH BETWEEN RECORD AND SEGMENT LEVEL ACCESS TO FILES

o DESCRIBE THE FLOW OF INFORMATION BETWEEN MEMORY AND DISK OR
TAPE

o LIST THE MAIN TABLES THAT CONTROL FILE

EXERCISES

NONE

4-1
Control Data Private

CREATE FILE

.. f ~ (;E
(Jf;..~{~ ,

Cr-- •
~ file = EX
CYBIL
LGO

.
AMP$FILE (lfn, attributes ...
AMP$OPEN (lfn, amc$record,

attributes, fid •..

AMP$PUT-NEXT (fid, ...

AMP$CLOSE (fid, ..•
PMP$EXIT (status)

RETURN EX 'j .gf" 1",',/ "f lu (1-(y; Ie "0-0(1

4-2
Control Data Private

1
INITIATE FILE

Define----------------------~
CYBIL
LGO

.
AMP$FILE
AMP$OPEN
AMP$PUT_NEXT

AMP$CLOSE
AMP$EXIT .

RETURN ·
R3

R2

r-{
Catalog
'-../

Rl

JOB
MTR

PF

Manager
,(

8

~

4-3
Control Data Private

SCL

Command
Processor

File

Manager

~

Device
Manager

" G

*

FILE INITIATION

If the first mention of the file is on a command, then the
Job File Table (JFT), the Local Name Table (LNT), and the
System File Table (SFT) are built. The commands are:

REQUEST - TAPE
REQUEST - TERMINAL
PRINT
FILE
Any PF Command

* For amp$file and some other requests, an auxiliary request
table is built. The file tables are built when the file is
opened for the first time.

4-4
Control Data Private

Define
CYBIL
LGO .

AMP$FILE
AMP$OPEN

AMP$PUT_NEXT

AMP$CLOSE
AMP$EXIT

RETURN ·
R3

I
/

--Gkf'\

R2

Rl

JOB
MTR

2
OPEN FILE

8",

User

Access
Method

Open

(File
Manager)

r 0J 1
I

J

I

~

e~

4-5

Device
Manager

Physical
I/O

Control Data Private

~

=, FAPs I

File
Label

OPEN

* . When the file is opened, the information from commands,
program interface requests and AMP$OPEN will be used. The
precedence is:

1. AMP$OPEN
2. Commands
3. Requests

* Open entails various processing depending on the file
residence and direction of transfer. For example:

DISK
TAPE
TERMINAL

File attributes are read or written
Labels are checked or created (R2)
Attributes are sent to the interactive facility

4-6
Control Data Private

DEFINE
CYBIL
LGO

.
AMP$FILE
AMP$OPEN

CAMP$PUT _NEXT

AMP$CLOSE
AMP$EXIT

RETURN
R3

R2

Rl

JOB
;

MTR I Allocate I
Page
Manager

I
I

3
WRITE FILE

FAPs r--
'>

Dev ice
Manager

Physical
I/O

4-7

<
"

User

l
Access
Method

Basic
Access
Method

Control Data Private

~
Record
'-./

U!
fAP

*

*

*

ACCESS LEVELS

PUT-NEXT
The access method gets records from the user's buffer and
puts them in the file segment that is opened for that
purpose (i.e., the system does segment level access). The
paging mechanism will take care of real memory and device
manager will make sure that space is allocated on the
disk. When the filled pages are needed by the system, page
manager will instruct the physical I/O component to
transfer them.

GET-NEXT
Again the access method opens a file segment. Page faults
will occur when the needed data is not in real memory. But
the access methods is not aware of that; it simply copies
the records from the file segment to the user's record
buffer.

Segment Level Access
If the user opens the file for segment level access, the
file segment is directly addressable by the user.

4-8
Control Data Private

Define
CYBIL
LGO

AMP$FILE
AMP$OPEN

4
CLOSE FILE

I

User
I

AMP$PUT NEXT L I

RETURN •

--~A;M;P~$C~L-;:;O~SE~----ll .I1V"Access 1---1
AM~$EXIT V I Method...J .

...i. ---
R3

Ir-
z

Task
Manager

I Close

(File ~

FAPs J

I Manager ~J, \ - de
~

JOB

MTR

I _I -

I _

Ir- 0 I

Dispatcher

4-9
1 Dat a Private Contra

-

-

I

Label -,

FILE
r--

CLOSE/RETURN

* AMP$CLOSE is a request to close this instance of open. The
Task File Table (TFT) will be dismantled if there are no
other opens. At task termination (PMP$EXIT, for example)
all files in the task will be closed once for each instance
of open. Job and System File Tables WITT remain.

* RETURN will cause all references to the file to be
deleted. Examples of file disposition are:

DISK Temporary files will no longer be
accessible. Permanent files will be known
through the user's catalog only.

TAPE Trailer labels will be processed (R2). The
volume will be returned.

TERMINAL Disconnected and returned.

* At job termination all files are closed and returned.

4-10
Control Data Private

FILE FLOW
PACKAGING

R
A

un
nywhere

Command ~
proce~sors

R3 + ~

File
PF Manager
Manager (Open/

Close)

R2 r 'f r'\ 8 Catalogs

'-..../

Rl \7
Device
Manager

MTR /

~r

8 ,
8

Allocate/ Physical
Deallocate I/O

~ t
Page

Manager

4-11
Control Data Private

Basic
Access
Method

FILE FLOW TABLES

TFT-bat$task file_table
(BADTFT) -

LNT-Local Name Table
(FMDLNT)

JFT-Job File Table
(BADJFT)

Catalogs

SFT-System File Tables
(DMDSFT)

FMD-File Medium
Descriptor
(DMDFMD)

FAT-File Allocation Table
(DMDFAT)

(Common Deck Name)

All files opened by a task are
controlled by this table. Entries
contain pointers to record and
block descriptors, file attributes
and user request tables.

This table controls the files known
to a job by name. It keeps track
of the request and attribute info
which is global to the job.

This table has information about
all the files known to the job
including unnamed segments like
stack and binding.

Each user has a master permanent
fil~ catalog.

These tables have entries for all
files in the system at a given
time. Entries point to tables
which describe the file on the
device.

This table lists the volumes on
which a file has been allocated.

There is one FAT per file. It
describes the physical location of
the file on the device.

4-12
Control Data Private

LESSON PREVIEW

LESSON 5
MATERIALS

ORGANIZATION OF THE NOS/VE PROJECT
DOCUMENTATION
STRUCTURE AND CONTENT OF SOURCE LIBRARIES
LOAD MAP
SYSTEM INITIALIZATION

OBJECTIVES

After completing this lesson the student should be able to--

• GET COPIES OF ALL IMPORTANT NOS/VE DOCUMENTS.
• FIND AND LIST NOS/VE SOURCE DECKS
• DESCRIBE HOW THE SOURCE LIBRARIES ARE ORGANIZED
• FIND THE PEOPLE IN THE DEVELOPMENT ORGANIZATION WHO HANDLE

CERTAIN AREAS OF THE SYSTEM
• INTERPRET A LOAD MAP
• DESCRIBE NOS/VE DEVELOPMENT ORGANIZATION
• OUTLINE THE SYSTEM INITIALIZATION PROCESS

EXERCISES

1. GIVEN COMMON DECKS AND AN IDENTIFIED TABLE, INTERPRET SOME FIELDS
IN THE TABLE.

2. GIVEN AN ADDRESS, FIND THE NAME OF THE MODULE IN A LOAD MAP AND
FIND THE CODE IN THE SOURCE LIBRARY

5-1
Control Data Private

NOS/VE PROJECT ORGANIZATION

DEVELOPMENT

DESIGN TEST &
TEAM INTEGRATI ON

Proj ect
Leader
Design

/ ..
Te~Rep

T&I
~ -- L

Members
· · ·

DESIGNERS DEVELOPMENT GROUPS

• Job Mgmt • PFs
• Prog ram Mg mt • Physical 1/0
• lID • Logical 1/0
• Dual State • Dual State Communication
• Deadstart • Logs

• Program Control
• Program Execution
• Job Mgmt
• Command Language
• Monitor
• Maintenance
• Deadstart

5-2
Control Data Private

ERS

· Prog. Int.

· Com. Int.
(")
0 SIS
::J
rI" Project t; NOS/VE a
I-' AO/R Procedure &: Conv.*
0\]1
Q).

MIGDS CYBIL
rI"\J..I
Q)

-u GID
t; Direction I-J. · < · Design Analysis
P>
rI" DFDs
CD

SES

User's Guide ~

Ref. Man.

MATERIALS

Data Dictionary

Design Specification
· Structure Charts
· Packaging*
· Internal Interface*

I IMS

~ Prog. Lib

*Class Handout

Object Lib.

--... Load Map

Integration
Notes

IInstallat ion HB .1

NOTE: Annotated bibliography in appendix.

NOS/VE PROCEDURES & CONVENTIONS

1. Int roduction

2. Design Team

3. Document Review Process

4. Product Identifiers

5. Design Documentation

6. Procedure Interface Conventions

7. NOS/VE Program Library Conventions

8. CYBIL Coding Conventions

9. Keypoint Usage

10. Code Submittat Process

11. NOS/VE Document Maintenance

12. Data Dictionary Conventions

13. Yourdon Methodology

14. Code Review Process

5-4
Control Data Private

PREFIX NOMENCLATURE

SYNTAX:

XXC$ = Constant

XXT$ = Type

XXE$. = Error Code

XXP$ = Procedure

XXM$ = Module

XXV$ = Variable

XXK$ = Keypoint

10 CODE (XX) :

AM = Access Methods MS = Maintenance Services

CL = Command Language DB = Debug

IC = Interstate Communication SH = Signal Handler

IF = Interactive Facility BA = Basic Access

JM = Job Management RH = Remote Host

OF = Operator Facility ML = Memory Link

OS = Operating System II = Interactive Interface

PF = Permanent Files QF = Queued File

PM = Program Management DP = Display

RM = Resource Management SY = System

SF = Statistics Facility ST = Sets

MM = Memory Management TM = Task Management

FM = File Management OM = Device Management

MT = Monitor LG = Logs

LO = Loader LN = Local Name

CI = Common I/O AV = Accounting/Validation

CY = CYBIL LU = Link User

10 = Input/output HP = Heap Processor

5-5
Control Data Private

DECK NAMING CONVENTION

pptzzzz

pp = two character identifier

t = deck type

zzzz = mnemonic !? name

DECK TYPES

M = CYSIL

P = PP Assembler

A = CP Assembler

x = XREF declarations*

D = Type and Constant declarations*

H = Documentation Header*

I = In-line procedure*

E = Example

* = common deck

5-6
Control Data Private

INTERNAL INTERFACE

• Chapter Descriptions

• Procedure Descriptions

-Request Description
-Parameter Description
-XREF Declarations
-Common Deck Calls

• Common Deck Expansions

• Topics

CP MONITOR PF Mgmt
Job Management SCL
Resource Management Interstate Com.
Segment/Memory Mgmt Memory Link
Memory Mgmt Log Mgmt
Queued Files System Access
Program Mgmt Accounting
Preemptive Communication
File Mgmt

Operator Facility

• Intrinisics

5-7
Control Data Private

INTRINSICS
1 'CALLER 10 (10)
2 'CALL MONITOR (REQBLK)
3 'COMP~RE (51,52): RESULT
4 'COMPARE COLLATED (51, 52, TABLE): RESULT
5 'COMPARE-SWAP (LOCK, INITIAL, NEW, ACTUAL, RESULT
6 'DISABLE-TRAPS (OLD TE)
7 'ENABLE TRAPS (OLD TE)
8 'FREE RUNNING CLOCK (PORT): INTEGER
9 'HASH-SVA (SVA, INDEX, COUNT, FOUND)
10 /IINTERRUPT PROCESSOR ("PORT SELECTOR)
11 'KEYPOINT TCLASS, EXPRESSION, CODE)
12 'MOVE (SOURCE, DESTINATION, LENGTH)
13 'OFFSET (PVA): INTEGER
14 'PREVIOUS SAVE AREA: POINTER
15 'PROGRAM !RROR-
16 'PTR: (DISP, BASE POINTER): CELL
17 'PURGE BUFFER (OPiION, ADDRESS)
18 /IREAD ltEGISTER (REGID): REGISTER VALUE
19 'REAL-MEMORY ADDRESS (PVA,RMA) -
20 'REL TpOINTER, BASE POINTER): INTEGER
21 'RING (PVA): 0 .. 15
22 , RESTORE TRAPS (OLD TE)
23 'SCAN (SELECT, STRING, INDEX, FOUND)
24 'SEGMENT (PVA):) .. 4995
25 'STORE BIT (BIT VALUE, BIT VARIABLE)
26 IITEST ALTER CONDITIO-N REG TSELOPT, BITNUM, BRANCH EXIT)
27 'TEST-SET BIT (BIT VARIABLE, PREVIOUS VALUE) -
28 'TRANSLATE (TABLE,-SOURCE, DESTINATION)
29 'WRITE_REGISTER (REGID, REGISTER_VALUE)

Note: see Internal Interface

5-8
Control Data Private

SYSTEM INITIALIZATION PROCESS

1. Library Generation

2. System Generation

3. System Initialization

4. System Library and Task Initialization

5-9
Control Data Private

0\.11
0>,
r1"r--
0>0

-0
t;
<
0>
r1"
CD

ASSEMBLER

CYBIL

GENERATE LIBRARY

GENERATE
OBJECT LIBRARY

CODE SEGMENTS

I I
1,0,0

I I
I

R7-0 I
I

I
R4-6

J

R3

R2

Rl

JOB

MTR

I
I I

I I
I

1,3,0 1,3,3 I
I

I
I
I
I

I
I
I
I
I

1,1,3

STATE

STATE

CP
MONITOR
XLMMTR

SYSTEM CORE
(TASK MONITOR & CP MONITOR)

XLSnnn

I
2,0,0 r

I
I
I

I
I
I
I

I

I
I
I
I .
I
I
I
I

...

5-11

I

I
I
I

I I
2,6,61 I

I I
I I
I I
I I

2,3,0 2,3,6

,

JOB TEMPLATE
(TASK SERVICES)

XLJnnn

Control Data Private

I
I
I
I
I

I I
I I
I I
I

I I
I

2,2,3

0\)1
0>.
("t'~

O>N

-0
t;
<
0>
c-r
CD

Link
Monitor

LINKCOR CORE IO=xx

VEGEN

OSTSJxx OSTSMxx

SYSTEM GENERATION

DSBUILO Jobid=uu
COREID=xx

Build OS
Tape

LINKJOB JOBID=yy COREID=xx

Link
Job Template VEGEN

Notes:
* - Temporary library, will be deleted.
@ - directive file.

FILE DESCRIPTIONS

NAME AREA TYPE

NOSVEPL PL

OSLPI PL

XLMMTR Monitor Object Lib.

XLSnnn System Core Object Lib.

XLJnnn Job Template Object Lib.

SCMLCB Monitor Directives

SCJLCB System Core Directives

JOBLCB Job Template Directives

OST

OSTSJxx System Core OST

OSTSMxx Monitor OST

COMMENTS

Contains all code & data source
for NOS/VE except program
interface.

Program Interface

Library of monitor modules

Library to run in rings (n,n,n)
Task monitor.

Library to run in rings (n,n,n)
Task services.

System Core/Monitor State Linker
Control Block

System Core/Job State Linker
Control Block

Linker Control Block

Outboard Symbol Table. List of
gated entry points.

System Core/Job state OST. System
with id=xx.

System Core/Monitor State OST.
System id=xx.

MTRHDR Monitor Segment Files This HDR describes a collection
of "seed" files with names
MTRIOI, MTRI02, etc.

SYSHDR System Core Segment Files This HDR file describes a
collection of "seed" files with
names SYSIOI, SYS102, etc.

JOBHDR Job Template Segment Files This HDR file describes a
collection of "seed" files with
names JOBIOI, JOBI02, etc.

5-13
Control Data Private

FILE DESCRIPTIONS
(Continued)

NAME AREA TYPE COMMENTS

LDSYSC System Core Directives Load Directives for use by the
Virtual Environment Generator .
(VEGEN) to build the system core
memory image.

LDJOB

SYSxx

Job Template Directives Load Directives for use by VEGEN
to build a job template memory
image.

System Core Memory Image This core is sufficient to
initialize a system with id=xx in
1M bytes.

JOBxxyy Job Template Memory Image This template will run under the
system with id=xx. The id of the
template is yy.

CMR

PP Code

DSDIR

DSxxyy

Directives

OS Tape

Set of peripheral drivers to run
in the PPs.

Control the building of the OS
Tape.

5-14
Control Data Private

DEADSTART/RECOVERY
STAND ALONE MODE

r------------------------------, I Common test and ini tialization :
~------------------------------~
: MCU deadstart monitor : L ______________________________ ~

: Configuration records :
~------------------------------~
: Basic 0/5 deadstart job :
I (CM i m ag e) I
I I
~------------------------------1
: System RMS controlware I

~------------------------------l
: System RMS driver :
~------------------------------J
I Other system dri vers and 1
: controlware :
~------------------------------,
; Balance of NOS/VE I
I (load modules) :
I I

I
I
I·
I

I I r------------------------------,
: Product set libraries I
I I

I
I
I

I ,

I I

.-------------------------------~

CYBER 180 deadstart file format

5-15
Control Data Private

DEADSTART/RECOVERY

• Deadstart function activates NOS/VE to the state in which it is
ready to execute user workloads

• Includes recovery or initialization of

Permanent file bases

System log files

I/O queues

Hardware configuration information

User/system jobs and their transient files

• Deadstart/recovery function supports both dual-state and
stand-alone CYBER 180 operation

• Deadstart levels

1 Installation

2 Recovery

3 Continuation

5-16
Control Data Private

LEVEL 1 DEADSTART

5-17
Control Data Private

Object
Library

Directory

___ inary
Tables

LINK

l

LINKMAP

----------------- For each module
· Name

Section Description
Entry Point List

· External List

------------------------ For each file

SEGMENT
FILES

· Name
· Segment Attributes
· Length
· Address

8

5-18
Control Data Private

LOAD MODULE

MftOUl E .: l .. , " f) G ~ 1 lit • f • E CUT I 1 .. _ : f) ~ '14 .. 0 S l j .. G " \ ~ E • ~ y a I l
F Il F • r L J Z 0 ') ;) " I 0 7 I .. i Z . ~ t .\ ~ I '3 J

~-.---------~-------~ .. ~~~-~-~--~-~-~~----~~---~--~--~. cno~ - Rf.'')O
.£AO ErE CtJTE Z~F\,; 1 i..'l~ ')J~Z&C~~

"('iOllfr; - ~"_.Ir
~eAO ~1~rr~G 21~ 1 lee)"CF~40
W~iKI~; ~Tl~A~~ - QE_2~)
'EAD 7C4 1 ll~ ~~~Z~~~O
wl~~r~~ ~T1QA;E - lS~lJ'1_~~;E'.LITEoAL
RF.AO Q,_ .. ~.~~)"";~.l)4Q

waQ(t~~ ~TJ~~Jt - :Ll.?1T
~ E A 0 1 ? A '. 1 (. ~ ~ r: j -, r ~!''' ~
WIJRKI~~ 5T1QA'')F' - ":l)'A1T
REA£'

ENTRY P1INT nEFr~rTI1~S
CL~SSET_J~J~CT_LrST_Ca~M~~)
CLP'5El_PQOGPA~_lprr1~~_Cn~MA~)

C L p 'E)(EC IJ T E _ C J"1 ".\ N I)
CL~'TE~~I~ATE_TASK_CQ1~AND
C ll) , II A IT • ~ ') ~ MAN ~
Cl~"T~5<.tJ~PLETE
C let,s T ~S I(_ S TAT U S
ClDSOISPLAY_PQ,)G~AM_Ca~~ANu

EXTERN4L ENTQ1 paI~TS REFERE~CEO
Cl)'CREAT:_~A~EO_TAS<_~NTQY
ClP'~I~O_~A~EO_TAS~_~~rQY

Cll) SGE T_VAL'JE
ClPSSC~N.~R~U~E"T_LIST
ClPSCO~VE~T_VAlU:_TJ_ST~r~~
ClPSClCSE.OIsol4Y
ClPSPU1.OISC)LAY
OS~'APPE~O.STATUS_PA~A~ETE~
P f1 P 'r: 4 ~N G E .!) E F 4 U L T _ P w 1 G _ I) P T I '1 't S
PMP'ES1AqLIS~_C3NOITIJ~_YA~DLEQ

PMP'~E'_Jl~_LId~A~1_LI5T
P~~'GE1_~J~3EQ_oc_J03_LldRAQIES

p~P'G~'_OE~AULT_PR1G~~~_OPTll~5

Pf1 et 'TE Ji~t"'ATE
p~osca~TtiuE_TQ_CAJSE

5-19

~~ 1 (('A '))~r&4"'~

A:)O~:S5

1 c l~ ":)VZ&~~::

1 r • " ... j.t.) ')'':2~:)C,)

1 (18 ,')':,', 2" ~ 4~
1 (1d :') :) .J zeit C 0
1 Clg J J '1?~ 5 cD
1 ~18 ,)J·j2::q~O

1 (' l~ ,)O'j?'~ Ar:O
1 Cl~ O"12~c4~

ClP$OELFT~.~A~EO_TAS~_E~TRY

CLP'GET.SET.:OIJ'lr
CLD\SC4N_oA~A~F.T~~_LT~T

CLPsca~VERT_tNTEG~D_TJ_STRr~G
CLP\OPEN_I)I~'LAV

CLPSPUT_PA~TIAl_~T~PlA1

OSP$SET_STATU~_AqN~QMAL

QSP~AW~IT_A~TlvtTv_~1~PLETIO~

P~P'C4~NGE_JJ~_lI~QAPV_LI~T
p,.,p \~)(ECUTF
P"1? $GET .DE q!JG.l r~QAQV _L t~ T
P iw1 P 10 GET _ N U ~ q E ~ _ '1 C _ 1') E ~ 'J G _ L I ~ S
O~V'PQ~SET_~1~V~Q~T"N_T4~LE
C1PtEQ~CR

C1P$NIL

Control Data Private

SEGMENT DESCRIPTION
PART 1

SES/C180 Lr~~ER ~UTP~T
FILE NA~fl

Se:TIOf' ~A'1'=S

HOWXIOl
READ W~ I TE

RW.113
OS5S~4INF~A~E_PAGEA~LE

HDwxlOZ
WRIT= EX'E~Sr~lE

H()WX103
RE AD YI ~ I TE

ass \J f) P_P ~G'= Af3LE

HO.X~04

RE AD W~ I lE
as 4) 'T A 51(_ P ~ t V AT:

HOWX105
~EAO \.10 I lE

Q S SST A SK. S ... ~ ~ E ')

H')WX106
~EAO
OSS'~AINe~A~E_PAGEn_LITEQAL
aS5lJ~e_PA~ED_LtTE~AL

CLSSPOT
ClS SAD T

HOWX107
REAO EX E CUT E-l JC 4L PQ I V

~E_113

HOWX1J8
BI"DI'i~

Re_'l(X~

5-20

1721

Z328

3C; E A

1~3A

1 71A~

2J:487

1~542

Control Data Private

lJAOI

SEGMENT DESCRIPTION
PART 2

HOWX1Q~

'lEAD i,f ~ 1 If. F.~TF.NSI~lE 4~~.'

HD~xll':;

READ W~ I lE EXTENSliLc: g ~,:

HDWX111
READ ~ ~ I Tt: c~TE~St~l~ 2v~'

HO"XI1Z
READ .,R I TE EXTE~SIqLE 8

HOWXl13
READ E)(E CUT E -L DC A l PQ IV

~E.123

HOWXl14
READ WR I TE EXTENSI~LE q

HD"Xl15
READ E ~ E CU T E - LOt; A l PR I V 370~

6lE.13X

HOIII)(11~
READ W~ I TE 1 gl~

RW .13'(

HOWXl17
~EAO EX E CIJ T E -l ac A l p~tV 2~49

~E.l!)O

HOWXl18
READ EXE CUTE-laC ~L P~IV ?730C'

QE.Z23

HDWXl19
PEAO E x E CU T E -L 0 C ~ l p~ IV 7754~

RE.23X

HOWX1Z:
READ E)(E CU T F - L (1 CAL P~I\j 7f)Q.,E

RE.~,)D

5-21
Control Data Private

* ~Ol) '\" "\, "t" '" ," 'J .. ' •

• C i:JE J"JCI~(:~O

* (,:0F I.) j., C , V J ~

• ~1~ ')0 ·)O~ C: 0

* (,11)')-')('':)r;~

* (12 J'or~O'J

• u13 o:)r;c,Jvt)G

• 014 !'~=-c·Jnj)

• t15 "",'000"C'

• C16 Ol"C'~C-:' 0

• \)17 , j ., 0 ,) .) , C

• C 1 ~ ')~I::C~ ,,:·~o

LESSON PREVIEW

LESSON 6
INTERNAL COMMUNICATION

REGISTERS AND EXCHANGE PACKAGES
INTERPRET THE STACK
SIGNALS, SYSTEM FLAGS, AND MONITOR FAULTS
INTERRUPTS AND TRAPS
CP MONITOR
Trap Handler

REFERENCES

MIGDS
GID-PART 3 (PACKAGING)

OBJECTIVES

After completing this lesson the student should be able to--

• INTERPRET THE CONTENTS OF EXCHANGE PACKAGE REGISTERS
• INTERPRET THE SAVE AREA, AUTOMATIC VARIABLES AND PARAMETERS IN A

STACK
• EXPLAIN HOW THE EXCHANGE INTERRUPT IS PROCESSED AND HOW THE

SIGNALS, SYSTEM FLAGS AND MONITOR CONDITIONS ARE PASSED~ TO A TASK
• EXPLAIN HOW A TRAP INTERRUPT IS- PROCESSED
• GIVEN A CRASH DUMP, DETERMINE WHAT WAS RUNNING WHEN THE CRASH

OCCURRED
• OVERVIEW THE CP MONITOR FUNCTIONS
• EXPLAIN WHAT ACTION IS TAKEN BY CP MONITOR ON EACH OF THE MONITOR

CONDITIONS
• SHOW HOW A MONITOR REQUEST IS MADE FROM JOB STATE
• LIST THE REQUESTS THAT MONITOR IS PREPARED TO PROCESS

EXERCISES
1. GIVEN A DUMP, DETERMINE WHERE THE SYSTEM WAS PROCESSING WHEN THE

DUMP WAS TAKEN.
2. GIVEN A STACK, FIND THE CURRENT FRAME AND TRACE THE CALL CHAIN.
3. DETERMINE WHAT PARAMETERS WERE PASSED TO A PROCEDURE AND WHAT THE

VALUE OF EACH PARAMETER IS.

6-1
Control Data Private

MECHANISMS

Call
Return
Exchange Jump
Exchange Interrupt
Trap Interrupt

PROCESSORS

COMMUNICATION

Monitor Interrupt Processor (MIP)
Request Processors

Trap Handler
Signal Handler
System Flag Handler
Monitor Fault Handlers

6-2
Control Data Private

STACK DATA MAPPING

1. SFSA-stack frame save area

• Typically words 0-4. length in word 2
• See diagram and CYBIL definition

2. Automatic Variables

• First two words not used
• Each variable starts a new word
• Array and record components are byte aligned unless packed
• Packed components are bit aligned except characters,

integers, and pointers

3. Parameters

• Each parameter starts a new word
• VAR parameters are passed 'as pointers
• The pointer to the parameters is in A4

6-3
Control Data Private

o
o
:J
r+
I-i
o
~

~~ ~
MINIMUM
SAVE

ARE';

MAXIMUM
SAVE

AREA

STACK FRAME SAVE AREA

Word

0 P REGISTER

1 VMID AO REGISTER (DYNAMIC SPACE POINTERt

2 FRAME DESCRIPTION A1 REGISTER (CURRENT STACK FRAME POINTER.

3 USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER)

4 A3 REGISTER (BINDING SECTION POINTER)

5 USER CONDITION A4 REGISTER (ARGUMENT POINTER)

6 MONITOR CONDITION A5 REGISTER

7 A6 REGISTER

8 A7 REGISTER

• s: ~~ • s:
•

16 00 ~15 AF REGISTER

17 XO REGISTER

• rl.# ~~ •
32 I XF RE:ISTER J

OO------------~------------------------------------~~·63

I CONlROL DATA
.·IUVA'n;

MODULE x;
PROCEDURE ABC,

VAR
i: 1 .. 10,

DATA MAPPING
EXAMPLE

c: string(lO),
a: array 1 .. 3 of string(6),

XYZ(i,c);

PROCEND ABC;

PROCEDURE XYZ (i:l .. 10; VAR s:string(lO»;

.

SFSA

variables

a

f

parameters {~c
I

SFSA

6-5
Control Data Private

L

J
r~

I

~ ...

.. ~
...

USER STACK

SFSA

frame

SFSA

MONITOR STACK

frame

TRANSFER OF CONTROL

[AMP&OPEN I

R3 STACK

frame

SFSA

MONITOR
XP

r:-l
~

R2 STACK

frame

HARDWARE
XP

B II off
3 II off
2 II off
3 II of f
B II off

JOB
XP

no
change

Rl STACK

1. User makes a request using program
interface e.g. AMP$OPEN.

2. AMP$OPEN checks parameters and calls
BAP$OPEN

3. BAP$OPEN creates task tables and calls
FMP$OPEN to update job files.

4. FMP$OPEN returns
5. BAP$OPEN returns
6. AMP$OPEN returns

6-6
Control Data Private

EXCHANGE PACKAGE
Word
No.

o
1
2

3
4

5

6
7

S
9

10

11

12

13

14

15
16

17

P

VMIO* UVMIO**
Flags Traps Enables

User Mask

Monitor Mask

User Condition

Monitor Condition
Kypt Class LPID*

Keypoi nt Mask

Keypoint Code

Process Int. Timer

Base Constant

Model Dependent Flags
Segment Table Length

XO

~~

32
33
34

35

36

37

XF
Model Dependent Word

Segment Table Address

Debug Indexl Debug Mask

Largest Ring Number

~~

51

AO
A1

A2

A3

A4

A5
AS

A7

AS

A9

AA

AS

AC

AD
AE

AF

Untranslatable Pointer

Trap Pointer

Debug List Pointer

Top of Stack Ring No.1

Top of Stack Ring No. 15
J

00 07'08 15 16

* Virtual Machine Identifier
** Untranslatable Virtual Machine Identifier

*** Last Processor Identification

6-7

COIUROL DATA
ltRIVATE

Control Data Private

. ~~

$~

63

USER STACK

SFSA

frame

SFSA

MONITOR STACK

frame

frame

TRANSFER OF CONTROL

IDMP&DELAyl

R3 STACK

frame

MONITOR
XP

M II off

R2 STACK

HARDWARE
XP

B II off
3 II off
M II off
M II off
3 II off
B II off

1. User calls PMP$DELAY.

JOB
XP

B II off
3 II off

RI STACK -

2. DELAY processor exchanges with an RB
request.

3. Monitor Interrupt processor delays the
task.

.
4. Monitor returns to the task.
5. Delay processor returns.

6-8
Control Data Private

n
a
::l
rt
t;
a
.......

I I I Task Moni tor G \Jen. i-
Hardware Rll R3 R2 Rl Monitor XP XP

~~ ~;~~ ~~:;, '~~ __ ;~::; ::; ___ ~~~~_ -= ;;~;jt~~~og_~~- i~~erface Requestl

TIl j:#: t\ I S F5A ~.froK\t P. L (P~ U t".st ~g AmP+ A ETU flU
----~-----------------.----.- -- .. ------~- -_._--- --------. ----- .------- -----

T 2 ,11=- t\ I I ~f"5A I. frattte
1-----j

T3 31f ~ 3.{ro III f, R I returns

T 4 I 13# n l8.fr4lt1t, --+._----+--_._----- ----- ---1------ -----.--. -----+-- ----1~- -f-----------------

I I I I

---l I l---
T6 ~# ~ ~ __ _

T .t I

tl\.fro.WI~,

6FSA

Po qe -fo.u.Lt

T: ,,---- ------t--- ___ _ ____ ._ [!.frattte ~
-----------t--.

:: O--~----I ------~----t--
-·-·--t----------t-----·-------L----··------·
TIl ~
--_._._-. __ ._----- _._.----_ .. _--- .-.------.-- ---.---- .. ----

----1----
.5fSA

________ ~~~ r~

;1\. {r o.M\R ,

------ ------ --

---+----------

--+-----.-l---- -----.--

-- -------+-

EXTERNAL
INTERRUPT

n
a
:J CHECK CONSOLE c-t-

PERIODIC INPUT _ DISPATCHER ti
a ACTIVITIES MESSAGE
I--'

00\
1»1
c-t-
0>0 MCU

RESPONSES
-0
ti
1-'.
<
I»
c-t-
CD

DISPATCHER IS CALLED IF
• CALL FLAG IS SET
• TIME SLICE HAS ELAPSED
• SIT HAS RUN OUT

EXAMINE EXCHANGE JOB MCR

EXCHANGE MIGHT BE
TO NOS 170 IN
DUAL STATE.

DETECTED
UNPROTECTED
HOWR ERRORS

SHORT
WARNING

EXCHANGE
REQUEST

EXTERNAL
INTERRUPT

JOB SELECTED
MCR
CONDITIONS

PAGE
FAULT

SYSTEM
CALL

BROKEN
TASK

3:
0
Z
H
-t
0
::0

H
Z
-t
I'll
::0
::0
c:
-u
-t

-u
::0
0
n
I'll
V>
V>
0
::0

Job

Monitor REQUEST
CODE
TABLE

· · ·

SYSTEM CALL PROCESSING

i#call_monitor (REQBLK)

code --'" high-ring

MONITOR
INTERRUPT
PROCESSOR

local
priv.
Aproc
count
time

· ·
·

SYSTEM
CALL
MGR

XP

I

code
status RB: Request Block
params

processors

PROCEDURE [XDCL] xxp$yyyy (VAR rb:request-block)

6-11
Control Data Private

REQUEST BLOCK

MEMORY MANAGER REQUEST DEFINITIONS
1 MMT$RB ADVISE
2 MMT$RS-ASSIGN FLAWED MEMORY
3 MMT$RB-ASSIGN-REAL PAGE
4 MMT$RB-FLAW PAGE -
5 MMT$RS-FREE-FLUSH
6 MMT$RS-UNFLAW PAGE

TASK MANAGER REQUEST DEFINITIONS
1 TMT$RB INITIATE JOB
2 TMT$RB-INITIATE-TASK
3 TMT$RS-CYCLE -
4 TMT$RB-OELAY
5 TMT$RB-EXIT JOB
6 TMT$RB-EXIT-TASK
7 TMT$RB-SENO-SIGNAL
8 TMT$RB-WAIT-SIGNAL
9 TMT$RB:CHANGE_SEGMENT_TABLE

Note: see Internal Interface.

6-12
Control Data Private

(J
o
:J
rt-
t1
o
I-'

00\
tn.
rt-I-'
D>\.IJ

"1J
t1
<
D>
rt-
CD

Time

TO

TI

T2

T3

T4

TS

T6

T7

Ta

T9

TIO

TIl

TI2

TI3

Hardware RII
XP Stack

r--------- . _-_._ ... _----.-

6:ft Vl, BfrQM\R
I

t--------------.

Mtt: t\,

"

B~ f\t

~1f:
SFSA

tl,. &.frontfJ,

31f f1, SFSA

;1f n).

5tf n,.. CZ(
M4f n,

M~ n,.

t---------.. ------. t-----------

R3 R2
Stack Stack

---~.-----~.-.-
.. ___ .. ____ M._

eWlpt~ etkpt~
------.--.. ---.-- _ .. -_ _-._-_._---.

3.fromf
t

5F5A
3fra.me l.

X ><

r---

Task Monitor ~ v@n t (A(!~e.ss Violati' Otl l
RI Monitor XP XP

Stack Stack Area Event
1-- - .. --- . - "--" - .. - "'-" ---. -- --.~-. - .- f··- ... --------- - ,"-----" -- .. - .

et4tflt~ l1I.fro.tttt,
Pr-oqralh
st-o..Vter ¥hI ~

----. -.----~-.--- .. -- -----

6:tf n l A Cc.es 5 \} io/atiern

Set free -fla9 It\ Lte~

ml P l x.c nan ge

Trap

&tJJ~o..oJ.;t~ri.iff::-d.W..

~on Pm P.:$ A6D~ T
-_. -----_._-----_.---._--_ .. _---_.----

Pop RII 5to.c../<

31t tlJ. Re~lIes+ T os k T e ,,"Wl' M 0.. ti01\.

[>(C><
--

"Sf5A
~0J.9 SqsteWt e 0-1J p roel5S(> r M.{ rGtM\ll-

trt . ftOM\U , RetUhM tt6fu ferttti"af.ng 4d<

~a1J disraWhet -1-0 pICk -fa k V\ew S

TASK A

Rl,2,3

1

RB

PMP$SEND-SIGNAL

JOB
MTR

SIGNAL HANDLING

TASK B

SUSPENDED ~ TRAP
PROGRAM O+----H:I HANDLER

t

SIGNAL
PROCESSOR

6-14
Control Data Private

SIGNAL
HANDLER

ANY RING
Rl,2,3

1

SIGNAL

DISPOSE OF
MONITOR
FAULTS

SEGMENT
ACCESS
CONDITIONS

MERGE

MCR
CONDITIONS

USER
CONDITIONS

USER
CONDITION
HANDLER

DEFAULT
CONDITION
HANDLER

PMP$ABORT

TRAP HANDLER

TRAP
HANDLER

DISPOSE OF
TRAPS

DISPOSE OF
PREEMPTIVE
CONDITIONS

SIGNAL
PROCESSOR

SYSTEM FLAG
PROCESSOR

6-15
Control Data Private

DISPOSE OF
CRITICAL
FRAME FLAG

BLOCK
EXIT
CONDITION

USER
CONDITION
HANDLER

DELAYED
PREEMPTIVE
CONDITION

TRAP HANDLING

• Trap Handler runs at the ring of the interrupted program.

• Dispose-of-traps runs in ring 1.

• Dispose-of-traps checks the reason for entry in this order:
1. Monitor Faults

Segment Access Conditions, MCR conditions and User conditions
are merged together. If a user condition handler exists it
will be found in the stack. The default condition handler
will abort the task in all cases.

2. Preemptive Conditions
All signals and flags will be processed if the free flag is
set. If the ring of execution is lower than the recognition
ring, the critical frame flag will be set in the first stack
frame above the recognition ring. In all other cases the
signal or flag handler will be called.

3. Critical Frame Flag
If the critical frame flag indicates a delayed signal or flag
it will be resolved by dispose-of-preemptive-conditians. If
the user has established a block exit handler, the handler
will be found in the stack frame and called.

• A Daley diagram of these modules is included in the chapter on
program management.

6-16
Control Data Private

SIGNAL PROCEDURES

SEND SIGNAL

PMP$SEND_SIGNAL(recipient,signal, status)

SIGNAL HANDLER

ppP$HANDLE_SIGNAL_xxx(originator,signal)

DEFINE HANDLER (for test only)

SIGNALS

PMP$DEFINE_SIGNAL_HANDLER(id,handler,recog_ring,status)

Memory Link

Interactive

Callend
Scheduler

MLP$ handle_signal interprets 'sub_signals'
and calls a handler.
IFP$hande signal passes info between the
interactive exec., job monitor, and user
tasks.
PMP$child terminator handler.
JMP$ handle gfm ia sIgnal processes the
signal from-QF manager that interactive job
has been routed.

6-17
Control Data Private

SYSTEM FLAGS

SET FLAG

PMP$SET_SYSTEM_FLAG(flag_id,recipient,status)

FLAG HANDLER

ppP$HANDLE_FLAG_xxx(flag_id)

DEFINE HANDLER (for test only)

FLAGS

PMP$DEFINE_SYSTEM_FLAG_HANDLER(id,handler,recog_ring,st)

Statistics
Terminate
Drop
Linked Signals

AVP$monitor statistics handler
PMP$terminate flag handler
JMP$handle drop job flag
TMP$dispose mainframe signals
This flag indicates that a signal occurred
while the task was swapped.

6-18
Control Data Private

MONITOR FAULTS

FAULT HANDLER

DEFINE HANDLER (for test only)

FAULTS

PMP$DEFINE_MONITOR_FAULT(id,handler,status)

Instruction Specification Error
Address Specification Error
Access Violation
Environment Specification Error
Outward Call/Inward Return

SEGMENT ACCESS CONDITIONS
Read beyond EOI
Write beyond msl
Segment access error
Key lock violation
Ring violation
I/O read error

6-19
Control Data Private

n
o
::J
c-t-
t;
o .-.
00\
Ol.
c-t-N
010

-0
t;
1-"
<
Ol
c-t
CD

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

MONITOR CONDITION REGISTER
TRAPS ENABLED TRAPS DISABLED

TRAP ENABLE F IF SET TRAP ENABLE F IF CLEAR
AND OR

TRAP ENABLE DELAY TRAP ENABLE DELAY
F/F CLEAR F/F SET

AND AND
MASK BIT SET MASK BIT SET

BIT NUMBER AND DEFINITION
JOB MONITOR JOB MONITOR

MODE MODE MODE MODE

Processor Detected Malfunction Mon EXCH TRAP EXCH HALT

Memory Detected Malfunction Mon EXCH TRAP EXCH HALT

Power Warning Sys EXCH TRAP EXCH STACK

-Instruction Specification Error Mon EXCH TRAP EXCH HALT

• Address Specification Error Mon EXCH TRAP EXCH HALT

Exchange Request Sys EXCH TRAP EXCH STACK

• Access Violation Mon EXCH TRAP EXCH HALT

- Environment Specification Error Mon EXCH TRAP EXCH HALT

External Interrupt Sys EXCH TRAP EXCH STACK

Page Table Search Without Find Mon EXCH TRAP EXCH HALT

System Call Status - This bit is a flag only and does not cause any hardware action.

System Interval Timer Sys EXCH TRAP EXCH STACK

Invalid Segment Mon EXCH TRAP EXCH HALT

. Outward Call/Inward Return Mon EXCH TRAP EXCH HALT

Soft Error Log Sys EXCH TRAP EXCH STACK

Trap Exception Status - This bit is a flag only and does not cause any hardware' action.

MASK BIT
CLEAR

JOB
OR

MONITOR
MODE

HALT

HALT

STACK

HALT

HALT

STACK

HALT

HALT

STACK

HALT

STACK

HALT

HALT

STACK

00\
0>1
eT",
0>1-'

-0
I-i
<
0>
eT
CD

0

1

2

3

4

5

6

7

8

I !1
I 10

11

12

1~

114

115

USER CONDITION REGISTER
TRAPS ENABLED TRAPS DISABLED.

TRAP ENABLE F/F SET TRAP ENABLE F/F CLEAR MASK BIT
AND OR CLEAR

TRAP ENABLE DELAY TRAP ENABLE DELAY
F/F CLEAR F/F SET JOB

AND AND OR
MASK BIT SET MASK BIT SET MONITOR

JOB MONITOR JOB MONITOR MODE
BIT NUMBER AND DEFINITION

MODE MODE MODE MODE

Privileged Instruction fault Mon TRAP TRAP EXCH HALT

Unimplemented Instruction Mon TRAP TRAP EXCH HALT
These

Free Flag User TRAP TRAP STACK STACK mask bits
Process I nterval Timer User TRAP TRAP STACK STACK are

Inter-ring Pop Mon TRAP TRAP EXCH HALT
permanently

set.
Critical Frame Flag Mon TRAP TRAP EXCH HALT

Keypoint User TRAP TRAP STACK STACK

Divide Fault User TRAP TRAP STACK STACK STACK

Debug User TRAP TRAP Debug bit will not set when traps disabled.

Arithmetic Overflow User TRAP TRAP STACK STACK STACK

Exponent Overflow User TRAP TRAP STACK STACK STACK

Exponent Underflow User TRAP TRAP STACK STACK STACK

F. P. Loss of Significance User TRAP TRAP STACK STACK STACK

F. P. Indefinite User TRAP TRAP STACK STACK STACK ,
Arithmetic Loss of Significance User TRAP TRAP STACK STACK STACK

Invalid BOP Data User TRAP TRAP STACK STACK STACK

LESSON PREVIEW

LESSON 7
EXTERNAL COMMUNICATION

• MEMORY LINK (DUAL STATE)
• INTERACTIVE FACILITY
• OPERATOR FACILITY
• STATISTICS FACILITY
• MESSAGE GENERATOR
• KEYPOINTS
• LOGS

REFERENCES

PROGRAM INTERFACE

OBJECTIVES

After completing this lesson the student should be able to--

• DESCRIBE THE MEMORY LINK INTERFACE
• EXPLAIN HOW THE MEMORY LINK IS USED BY THE INTERACTIVE FACILITY,

THE OPERATOR FACILITY AND THE REMOTE HOST FACILITY
• OUTLINE HOW THE NOS DEPENDENT CAPABILITIES WILL BE CHANGED TO BE

INDEPENDENT OF NOS
• EMIT, ENABLE, AND ESTABLISH SYSTEM STATISTICS
• ADD MESSAGE TEMPLATES TO THE TEMPLATE TABLE
• GENERATE KEYPOINT DATA
• USE THE LOG MANAGER INTERFACES TO MANIPULATE LOG FILES

EXERCISES
1. ADD A MESSAGE TEMPLATE TO THE SYSTEM. USE IT.
2. ESTABLISH, ENABLE, AND EMIT A NEW STATISTICS
3. INTERPRET KEYPOINT OUTPUT.

7-1
Control Data Private

DUAL STATE CONFIGURATION

Cl70 CIBO CPU Inst. Inst.

NOS NTH NOS/VE

I I I I I II
/N/l.::1Ut(!.TIVIi E>'~~ 0 Pr::2.ATCR. TAPE UNn

R.~D /V! vAi' ~()N$OL~

7-2
Control Data Private

Real
Memory

I .. ~

DIS#£.

VIRTUAL ENVIRONMENT PARTITIONING

• The system resources are partitioned between CYBER 170 and CYBER
180 logical machines

• CPU is partitioned using the VMID field in the exchange package.
Determines how the CPU will

Fetch and interpret instructions
Interpret the register file
Interpret interrupts

• CPU access to central memory

CYBER 170 addresses map into real memory addresses 0-N
CYBER 180 addresses map into (N+l) - (memory size-I)

• PPU access to central memory

PPUs are assigned to either 170 system or NOS/VE
IOU bounds register limits write access to CM

• Channels are software partitioned to access only CYBER 170 or
CYBER 180 peripheral devices (except maintenance channel).

7-3
Control Data Private

NOS

I NAM

QUEUE
FILE
JOBS

PF
PARTNER
JOBS

--

I PASS ON ,-

K-DISPLAY
DR I VER ~_r--------i

PARTNER
JOB

LINK FACILITY

MEMORY LINK

MLI
MLI HELPER

NOS
TRAP

HANDLER

ML SUBSYSTEM

7-4

NOS/VE

INPUT FILES
OUTPUT FILES -

RHF180
TASKS

C170 '"
PERM. FILES - L..--_--'

~ ______ ~"'~ INTERACTIVE
EXEC

.. INTERACTIVE
USER
(SCL)

K-DISPLAY ... OPERATOR
~~T~R~AF~F~I~C~~~ FACILITY

INTERSTATE ~
COMMUNICATION ~I~

Control Data Private

MEMORY LINK
INTERNAL INTERFACES

MLP$SIGN ON
-(name,max_msgs,unique_name,status)

MLP$SIGN OFF
-(name,status)

MLP$ADD SENDER
- (name,sender_name,status)

MLP$DELETE SENDER
(name,sender_name, status)

MLP$CONFIRM SEND
(name,destination_name,status)

MLP$SEND MESSAGE
-(name,info,signal,message area,message length,destination

name, status) - -

MLP$FETCH RECEIVE LIST
Tname,sender_name,list,count,status)

MLP$RECEIVE MESSAGE
(name,info,signal,message_area,msg length,msg_area
length,receive_index,sender_name,status)

I
7-5

Control Data Private

MLI -PROTOCOL

sign on NO 5 NOS/VE

A add sender
confirm M

sign on
~

-
......-

L-- N M add sender (A+B)
sign on 5 T L

add sender 5 H I confirm (A+B)
x

~

B confirm -
-

'----

.---
fetch list

A receive H

L..-.....I
E send (A+B)

r---
N L M

fetch list
T P L confirm x

B
... H E I

receive R

r---

send
A confirm H

~
N E fetch list

r---
L M ~

T L
send

p receive (A+8) x
H I

~

E
8 confirm R

~

r---

A sign off -
r---

~ M M sign off
- L N

5 T L
x

B 5 H I

sign off

- 7-6
Control Data Private

n
o
:::J
rt'
t;
o
I-'

o~
Ol I

~~
-0
t;
~.

<
Ol
rt'
(1)

NOS
PROGRAM

NOS
TRAP

017 HANDLER

MESSAGE

LINK HELPER TASK

MLM$
INVOICE
MLI_HELPER

ready-task MLP$
C170
HELPER

MLI

MW

USER TASK OR SYSTEM TASK

NOS/VE
PROGRAM

e MLM&
HANDLE
SIGNAL

MLI ~
IT1

Requests ~
0
:::0
-<
1-
H
z

MLI A

MEMORY LINK SOFTWARE

• The NOS program uses CYBIL procedures or COMPASS macros to
communicate with the NOS/VE job. These translate to 017
instruction which are trapped by the NOS trap handler (NOS T.H.).

• When an 017 instruction is executed, the NOS trap handler runs' in
NOS/VE instruction mode. It moves the message into a circular
buffer. The entries are called request blocks. Trap handler
issues a monitor request to ready the link_helper task.

• MLI helper transfers the message from the circular buffer to the
mainframe pageable segment using MLI transfer requests. Some
NOS/VE applications are signaled when there is a message received
for that application.

• MLI manages the queue and services the requests issued by MLI
helper, Interactive Facility, and so on.

• The NOS/VE program transfers the message into its buffer using
MLI requests. Applications which use the facility are:

RHFl80
Interactive Exec.
Interactive Facility
Operator Facilty
Interstate Communication (users)

7-8
Control Data Private

MEMORY LINK TABLES

ANT
1

n lock

application name

max msg=lO ,.", 1 -
A receive list n

---- 1 Sender ~

A permit list Arbitrary-
info

system name A message "., I
Sender length -n msg

unique id
10 message

A signal handler
10

4095

50

ANT=Application_name_table

All tables are in mainframe pageable segment.

7-9
Control Data Private

Ml M$ INVOKE Ml I HEL.PER (2,3. OJ
Ml P$INVOKE:Ml I:HEL.PER

ML HELPER

MLP$
INITIALIZE
HELPER -

/

MLP$
HELP
C170-

MLP$C170_HELPER (l,l,B) !'
MLP$HELP C170 __ - -

/
/

-~--
./'"

/
/

/

/
/

/

MLP$FRONT_ END

Get param
CALL address from

req. block

NOTE - The request block
is a circular buffer
in C17D memory.

Increment
request block
our pointer

MLP$
FRONT END

/'
/'

,,/

/

/'
/"

/'

Check
function

MLP$
SIGN ON

MLP$
ADD
SENDER

MLP$
DELETE
SENDER-

MLP$
CONFIRM
SEND -

Form
Addresses

Form
Address

Verify RAof
NOS T.H.

MLP$
SEND
MESSAGE

MLP$
FETCH
RECEIVE
LIST -

MLP$
RECEIVE
MESSAGE-

MLP$KILL

NAME/ALL

7-10

PMP$WAIT

1000

Flag
NOS T.H.

Set length
in words

Fix
lengths

Control Data Private

Oocument
Block
Count

(')
o
:l
c-t-
t;
o
~

O'-J
Ol.
c-t- ~
Ol~

-0
t;
<
Ol
c-t
CD

PF
Exec
Job

PF

1
I
I route
I
I
I
I

NOS User Task

start partner
--

NOS
TRAP
HAND
LER

get-file J --

Command
Processor

Remote
Host
Facility

Rll

I--___ Msq.

Partner - R3
-- Job ~ rePlace-fileL-__________________ r-________ t-____ __ L-____________ ~

Message

C170
File

ANT 1----1

Msq~

MLI conversion
possible

CIBO
File

'---

RI

:::0
:r:

" I
-0
m
:::0
~

......
H
r
m
(f)

NOS/VE REMOTE HOST FACILITY

• Users must be validated for access to the remote host facilty

NOS/VE uses family name for mainframe 10.
Requests to access permanent files via the RHF include user
validation.

• File size limitations will be associated with each linked family
to restrict transfers via the RHF

• NOS/VE remote host facility job

Communicates with the linked system
Receives input jobs and sends output files

• Linked communication services

User interface for permanent file handling via the link (get,
save, replace, purge, permit and catist commands)

• Linked file conversion

Link files are interchange format
Queue files and permanent files are converted before and after
transfer

7-12
Control Data Private

O"'-l
0>.
rt"
0>\).1

"1J
I"i
<
0>
rt"
CD

Cl70
Output
Queue

RH
Input
Job

RH
Output
Job

NOS
T.H.

REMOTE
HOST
FACILITY

RII
R3

CIBO
Queues

;0
:I:

" • (J)

-u
o
o
r
rn
o
."
H
r
rn
(J)

NOS Interactive User
Task Task SCL

Access
Method

Rll

Inter- H

n NOS active z

0

-t

:J T.H. LOGIN Exec Inter-
rn

rt PASSON
::0

~
active

)::)

0 Break (")

...... User -t

FAP
H

CJ....j
R3 < rn

III I
rt R2
Ill+::-

(")
0
~

-0
~

~

.....
c

<
Z

III
H

rt" NAM
n

CD

)::)
-t
H
0

Rl z

INTERACTIVE PROCESSING

• NOS/VE interactive terminal access is performed through the
Network Access Method (NAM). Its interactive facilities are a
superset of those of NOS/170. The terminal user may:

Enter commands

Enter data to programs

Interrupt the execution of interactive jobs

Define terminal attributes

Receive command status messages

Receive program output data

Disconnect a terminal from a running interactive job thus
freeing the terminal for other work

Recover an interactive job that was disconnected from its
terminal

• NOS/VE treats terminal I/O as normal file I/O through Basic
Access Methods (BAM). BAM allows the name of an I/O processing
(FAP) to be substituted into the file attributes at open time.
This is done for terminal I/O.

• NOS/VE treats NAM as an external interface. The basic handling of
terminals will not change whether it is done through CYBER 170
NAM or through future versions of NAM on the CYBER 180 side.

7-15
Control Data Private

("')
0
::J
cT
t-;
0
I-"

O-.....J
III I
cT I-"
1»0\

-0
t-;
I-J.

<
I»
cT
CD

Header
Output
Response
Prompt

K-DISPLAY
DRIVER

Input
Buffer
Display
Buffer

NOS
T.H.

NOS Operator
Task

",.'"

SCL &
Command
Processors

Access
Method

Interactive
User

commands FAP

k-diSPlay

MLI

Rll
0
-u
rn
:::0 Screen):)

-t FAP
0
:::0

."
):)
("')
H K-Display r
H FAP -t

R3 -<

Rl

OPERATOR COMMUNICATION OVERVIEW

• Supports communication between:

NOS/VE and system operators
User jobs and system operators

• An operator console is a terminal "logged-in" with system
operator privileges

Operator commands and displays are processed by NOS/VE
interactive jobs having system operator privileges granted by
the NOS/VE user validation

The installation may distribute access privileges between users

Status and control of hardware components

Status and control of NOS/VE user jobs and their resource
allocation

Status and control for the operating system, system jobs and
special applications

Allows NOS/VE to request operator assistance for tape mounts

Provides visible information on system operation, current
parameter values, etc.

Reports hardware and software problems

Allows operator-job and operator-terminal communication

Supports on-line system debugging

Supports on-line diagnostic initiation and control

7-17
Control Data Private

· OPERATOR FACILITY
INTERNAL INTERFACE (CH17)

OFP$SET_DATE(m,d,y,status)

OFP$SET_TIME(h,m,s,status)

OFP$SET SYSTEM STATE(type,value,status)
Types: security

attended
maintenance
debug

OFP$SET JOB CLASS LIMIT(class,limit,status)
Classes: interactive

batch

OFP$GET SYSTEM INFORMATION(info,status)
Info: header

version
batch count and limit
interactive count and limit

OFP$GET OPERATOR ACTIONS(actions,status)
Action entry: ordinal

job name and id
task id
response boolean
message

7-18
Control Data Private

NOS User Task
User
Program

Memory
Link Access H

Subsystem Method z
("") --I
0 rn
::J Rll ::0
cT Ul
t; --I
0)::I
....... --I

Iroute NOS rn
CJ-..J
g) I I T.H. ("")

cT a
g)\O I Interstate ~

~
-0 Communication c
t; FAP z H
< Partner ("")
g))::I

cT Job --I
CD R3 H

0
Z

MLI

Rl

(")
o
::J
c+
t;
o
.......

0
rol
c+N
roo

-U
t;
1-'-
<
Ql
c+
(tl

Rll

USER

PRODUCT

R3

R2

Rl

MONITOR

S
T
A
T
I
S

L.... T
I
C
S

F
A
C

.
M
E
S
S
A
G
E

G
E
N
.

L
0
G

M
A
N
A
G
E
R

CDC~

USER

BINARY LOGS

N
USER

SYSTEM

ASCII LOGS

SITE

r
o
G')
U>

LOG MANAGER

LGM$
DISPLAY
LOG_COMMAND

SCL

LGM$
INTERNAL
LOGGING
INTERFACE

LGM$
..----.. LOCAL

2, 3 LOG MANAGER

LGM$
TERMINATE
LOG COMMAND

LGM$
---..... GLOBAL

1,3 LOG MANAGER 1,3

7-21
Control Data Private

(2,0,0)

(2,3,0)

(2,2,3)

(1,1,3)

LOG MANAGER
INTERNAL INTERFACE

LGP$ADD ENTRY TO BINARY LOG
(log,entry_address,Iog_address,cycle,status)

LGP$APPEND JOB LOG TO OUTPUT
(status) - --

LGP$BUILD DISPLAY OF ASCII LOG
(log,scroll_slze~status)

LGP~INTERCEPT_LOG_IO_REQUEST

(fid,call block,layer no,status)
This is a-FAP. -

LGP$SETUP_ACCESS_TO_LOCAL_LOGS(status)

LGP$SETUP_ACCESS_TO_GLOBAL_LOGS(logs,status)

7-22
Control Data Private

PROBE

A PROBE IS THAT PORTION OF SOFTWARE RESPONSIBLE FOR COLLECTING AND
EMITTING A STATISTIC TO THE STATISTICS FACILITY.

• PROBES ARE EMBEDDED IN KEY AREAS OF THE SYSTEM, BUT ARE NOT
SUBJECT TO GUIDELINES LIKE KEYPOINTS.

• THE PRECISE LOCATION OF PROBES AND THE INFORMATION REPORTED
WILL BE DETERMINED BY THE REQUIREMENTS OF THE COMPONENTS IN
WHICH THEY LIE.

• THE FREQUENCY AT WHICH A PROBE EMITS A STATISTIC TO THE
STATISTICS FACILITY IS DETERMINED BY THE SUPERORDINATE
COMPONENT.

• A PROBE DOES NOT ASCRIBE ANY INHERENT QUALITIES TO A
STATISTIC.

• THERE SHOULD BE A ONE-TO-ONE CORRESPONDENCE BETWEEN A PROBE
AND STATISTIC.

NOS/VE STATISTIC

A NOS/VE STATISTIC HAS THREE COMPONENTS:

• STATISTIC CODE AN ORDINAL THAT UNIQUELY IDENTIFIES THE
STATISTIC.

• DESCRIPTIVE DATA: A STRING INDICATING THE OCCURRENCE OF A
SYSTEM OR JOB EVENT.

• COUNTERS A SEQUENCE OF COUNTERS CONTAINING REPORTED
VALUES OF SYSTEM OR JOB VARIABLES.

7-23
Control Data Private

PRODUCT STATISTICS COLLECTED BY NOS/VE

In general, the 0/5 is responsible for collecting job step
statistics that can be determined external to the product, that is
statistics that the 0/5 is capable of determining.

For each product identified in SIS section 4.1 that is directly
invoked by the user, e.g., via command or as a program initiated
task, NOS/VE will record resources used per invocation. Resources
accounted for include:

• Total CP-time

• Maximum virtual memory used

• Maximum real memory used

• Average working set size

• CP-time per memory size used

• Number of I/O requests

• Number of data read/written to files

Additional data to be collected for each invocation of a product
include:

• Origin of job step - batch command, terminal command,
procedure file, executing job.

• Type of termination - normal, product error, time limit,
invalid memory request, operator drop, and so on. A recovered
condition does not cause product termination.

• Abnormal conditions recovered from.

• Average interactive response time for interactive products -
the average elapsed time between input data available and
output data issued to terminal.

• The fact that the product was invoked (added to count of the
number of separate invocations).

• Number of modules loaded (input units for the loader)

• Source languages of modules loaded (added to language usage
count).

7-24
Control Data Private

STATISTICS MANAGER

Job
Statistics
Manager

Local
Statistics
Manager

Global
--------~ Statistics

Manager

7-25

System
Statistics
Manager

Control Data Private

2,3,0

2,2,3

1,1,3

STATISTICS MANAGER TABLES

GLOBAL BINARY LOG FORMAT

BINARY DATE AND TIME

STATISTIC CODE

STATISTIC IDENTIFIER

JOB SEQUENCE NUMBER

GLOBAL TASK 10

CONDENSING FREQUENCY

NUMBER OF COUNTERS

DESCRIPTIVE DATA SIZE

COUNTER 1

COUNTER 2

·
·
·

COUNTER N -
DESCRIPTIVE DATA

·
·
·
·

7-26

ACCUMULATION CONTROL

STATISTIC CODE

ACCUMULATION CONTROL TYPE

ACCUMULATION ADDRESS

FREQUENCY ADDRESS

THRESHOLD

FORWARD LINK

BACKWARD LINK

GLOBAL AND LOCAL ROUTING
CONTROL TABLE

STATISTIC CODE

IDENTIFIER

ROUTING CONTROL TYPE

ENABLED

CONDENSING ADDRESS

THRESHOLD

INTERVAL SIZE

INTERVAL END TIME -
LOG CYCLE -

FORWARD LINK

BACKWARD LINK

Control Data Private

FEATURES

CONDENSING

The first counter of a statistic can be condensed, that is, the
information will be collected in the counter until either time runs·
out or a certain number occur. When the condensing threshold is
reached, a new entry is logged and collecting starts again. This
might be used to count page faults or total monitor time.

ACCUMULATING

Accumulation also involves collecting occurrences of an event. When
the threshold (limit) is reached, some action is taken. Typically
the job monitor will be signaled and will take further action.
Currently this is being used for CP time and SRUs.

BREAKOUT

Sometimes it is necessary to seek local and global statistics of the
same thing. An example might be job time. It would be necessary to
have total job time as well as the time for individual jobs to
compute standard deviation. If breakout is established, the
statistics manager will enter in both the local and the global logs.

7-27
Control Data Private

INTERNAL PROGRAM INTERFACE REQUESTS

PROCEDURE [XREF] sfp$establish system statistic (identifier:
sft$statistic_identifier; - -

statistic_code: sft$statistic_code;

log_name: pmt$global_binary_logs;

breakout: boolean;

condensing control: sft$condensing_control;

VAR status: ost$status);

PROCEDURE [XREF] sfp$enable system statistic (statistic_group:
sft$statistic_group; - -

VAR status: ost$status;

PROCEDURE [XREF] sfp$disable system statistic (statistic_group;
sft$statistic_group; - -

VAR status: ost$status);

PROCEDURE [XREF] Sfp$disestablish system stat (identifier:
sft$statistic_identifier; - -

statistic_code: sft$statistic_code;

log_name: pmt$global_binary_logs;

breakout: boolean;

VAR status: ost$status);

PROCEDURE [XREF] sfp$emit system statistic (identifier:
sft$statistic_identifler; -

statistic_code: sft$statistic_code:

descriptive_data: sft$descriptive_data;

counter: sft$cQunters;

VAR status: ost$status);

7-28
Control Data Private

ACCOUNTING

AVP$BEGIN_ACCOUNT

- Establish Accounting Stats

AVP$MONITOR_STATISTICS_HANDLER

Accumulation
Control

- Emit Accounting Stats--------------
- Emit System Stats
- If Accounting Stat exceeds

signal job monitor

AVP$END_ACCOUNT

- Call AVP$MONITOR STATISTICS HANDLER
- Establish Local Statistic--------~
- Emit System Statistic------~~ __
- Disestablish Local Statistic

7-29
Control Data Private

Validation
File

ime Limi

RU Limit

Routing
Control

page
faults
working
set-size
ready
task-count

Accounting
Log

MESSAGE
GENERATOR

STATUS:

PRODUCT 10

CONDITION

TEXT - -TEXT
•
• •

JOB LOG

PROGRAM

SCl -
MESSAGE

GENERATOR

7-30
Control Data Private

MESSAGE
LIBRARY

TERMINAL

MESSAGE GENERATION

S"TATUS

'AM

- amc$conflicting-8ccess-'evel

MYPHY
AMP$READ
AMC$RECORD

MESSAGE LIBRARY

E File +F1: +P2
..... _______ ~ __ issued but opened

~ for +P3 access. -

TEMPLATE CODES

+ Fn
+ Pn
+T

+ I
+C
+S

+Xn

+Nn
+En
+-

++

7-31

" \

ERROR File MYPHY:
AMP$READ issued but
opened for AMC$RECORD
access.

Control Data Private

MESSAGE GENERATOR PROCS

• OSP$GENERATE MESSAGE
(message_status, status)

• OSP$FORMAT MESS ATE
(message status, message_level, max_message_line, message,
status) -

• OSP$GET STATUS SEVERITY
(condition,-severity, status)

• OSP$SET STATUS ABNORMAL
(id,-conditTon, text, status)

• OSP$APPEND STATUS PARAMETER
(delimiter, text, status)

• OSP$APPEND STATUS INTEGER
(delimiYer, inY, radix, include_radix_specifier, status)

• Parameters

Message-level: full, brief, explain
Severity: informative, warning, error, fatal
Message: sequence, , lines, , char/line, text
Delimiter: osc$status parameter delimiter or any other
Include radix specifier: radix will be part of text added to
status - -

7-32
Control Data Private

NOS/VE

(')
o
::J
rT
t;
o
......
O-...J
0>1
rTVJ
O>VJ

-0
1-1
~.

<
0>
rT
CD

KEYPOINT FLOW

@I
----~~~ CYBIL ~----~~~ LGO

----,---SOURCE

24
#INLINE(keYPointjsection,data*256,id) clock

200
Trap Word

t--H-'-a-n-d~l:--e-r----tl~ C i rc u 1 a r
Buffer

4 20
sec data

D-OSK$data
l-OSK$unusual
2-0SK$entry
3-0SK$exit
4-OSK$debug
5-14 reserved

l5-PMF

_S_O_U_R_C_E __ -----~ ®...----.... ~~ __ LG_0_-----~ ... 81----iII~ .. CPF I LE

See Procedures and Conventions CH.9.

SESSMKF

KEYPOINT FILES

SESSMKF

KEYDESC --------~

PNOSKEY

KEYDESC

Section id
Section II
Proc id
Special Marks
Length of Data
Data Description
Format
Text

RNOSKEY

CV maxprocid n
CV undefined
CV defined
CV ident
RUN
END

7-34
Control Data Private

LIST

LIST

a Summary
a Itemized List

clock
elapsed time
data
text
mode
task id
section id

LESSON PREVIEW

QUEUED FILE MANAGEMENT
JOB MANAGEMENT
JOB RELATED TABLES
SCHEDULING JOBS
DISPATCHING TASKS

OBJECTIVES

LESSON 8
JOB CONTROL

After completing this lesson the student should be able to--

• EXPLAIN THE LINKAGE AND HANDLING OF THE KJL AND KOL

• EXPLAIN THE LINKAGE AND HANDLING OF THE MAJOR JOB
TABLES--AJL & JCB

• EXPLAIN HOW BATCH AND INTERACTIVE JOBS ARE VALIDATED

• EXPLAIN THE JOB SCHEDULING ALGORITHM

• EXPLAIN THE TASK DISPATCHING ALGORITHM

• EXPLAIN THE PROCESS OF BEGINNING AND TERMINATING JOBS.

EXERCISE

GIVEN A DUMP, DETERMINE THE STATUS OF JOBS IN THE SYSTEM.

8-1
Control Data Private

00)
OJ I
rt'N
OJ

lJ
I-i
.......
<
ro
rt'
CD

SYSTEM or USER JOB

Rll

R3

IF

R2

Rl

RHF

QUEUE FILE
INTERNAL
INTERFACES

QUEUED FILE
MODULE-

SCL

QUEUE FILE
PROGRAM
INTERFACES

TMM$
DISPATCHER

JOB ENTRY

SYSTEM JOB
Scheduler Task

(JMP$)
SCHEDULER

I
$JOB
INPUT
QUEUE

I

QUEUED FILES

$SYSTEM

$SYSTEM

I
I

$JOB
OUTPUT -QUEUE

I

I
$JOB
SWAP-
FILES

I
One file per
KJL entry.

One file per
KOL entry.

One file per
initiated
KJL entry.

FILE NAMES: 1. user_job_name

RECOVERY:

2. system_job name
AAAA$,AAAB$, ... '

The $SYSTEM catalog is recovered like any PF
catalog. Information in the system file labels
(SFL) of the files is sufficient to reconstruct
the KJL and the KOL.

8-3
Control Data Private

SCHEDULING OVERVIEW

1) Jobs can be divided into (currently) one of three classes:
system, batch, and interactive. Scheduler's class attribute
table is used to delineate the classes.

Low, high, and initial priorities are defined as are memory
values. The exclude class flag will inhibit the initiation
of jobs from this class. The self-terminating capability
will allow queued jobs of a class to be initiated even
though the maximum active jobs for that class have been
exceeded. The job will be up long enough to bring itself
down. Currently interactive class jobs have this capability.

The initiator is within the Job Scheduler task. When a job
is routed, it will be queued and the scheduler is signaled.

2) Job swapping is controlled by two parameters:

a) The maximum number of swapped jobs in a class.

b) The maximum overall number of swapped jobs.

Swapping is initiated as a result of three conditions:

a) If the scheduler determines that the system is
thrashing, a candidate will be chosen and swapout will
be performed. The two rules given above will be
overridden.

b) The scheduler will periodically examine the input and
active job queues., If a job in input has a higher
priority than one executing, a swap request will be
issued for the active job. This swap request obeys the
two parameters governing the swap function.

c) If memory contention is high and a terminal break
occurs, that job will be swapped.

8-4
Control Data Private

SCHEDULING OVERVIEW (Continued)

3) Job priority adjustment is limited to aging queued jobs,
aging swapped jobs, and adjusting the priorities of
executing jobs.

The aging function will increment job priority based on
values local to the class. There are two aging increments
for each class: one for input list and the other for swap
list. The aging function will be performed on a periodic
basis.

Executing jobs will have their priorities adjusted according
to several factors. If the job has just been swapped in, it
will be given a priority boost to prevent it from being
swapped out immediately. If the job's ready task count
falls to zero, it will lose priority points. (This mayor
may not initiate swapping.) If the job's time or memory
limits are exceeded, it will be switched to another internal
class. Currently there are secondary interactive and batch
classes.

When a swapped job receives a signal, the scheduler will
increase that job's priority which will result in the job
being activated sooner.

8-5
Control Data Private

SCHEDULING TABLES

adjust priority timing

age timing

page fault

WS max

WS min

max AJL entries

max swapped jobs

jmt$class_list

System Attributes

Interactive Attributes

Batch Attributes

8-6
Control Data Private

Total Pages

90%

60%

Zero Pages

Priority range

Initial priority

Max jobs

Working set size

Page fault size

Time slice

Aging

Swap priority

SCHEDULING PROCESS

1. Check for Thrashing

• Add Working Set (ws) from all AJL entries.

• If the sum is in the thrashing range, swap jobs til the
sum is out of that range. Start with the job with
largest ws.

• stop.

2. Check page fault rate (R2)

• If page fault rate> page fault max in
jmt$job scheduler table, increase memory manager's aging
internal. -

3. Fill Free Memory

• Built temporary queues for each state (active, queued,
swapped) for each class (batch, interactive, system,
etc.).

• Calculate the number of free pages between the current
value and ws max.

-. Select the algorithm (Aproc). The only Rl algorithm gets
the highest priority queued job from each class and
compares it with the highest priority swapped job. If
the queued job wins it is initiated, otherwise swap.
Continue until ws min ~ ws ~ ws max.

• stop.

8-7
Control Data Private

00:>
0) I
rt-o:>
0>

-u
I-i
1-"
<
0>
rt
m

R3

R2

Rl

Scheduler
(JMM$)

INITIALIZE JOB ENVIRONMENT

Task
Initiation
(PMM$)

TMM$DISPATCHER

tmm$create_job

PMM$TASK
INITIATION

JMP$
INITIATE JOB
ENVIRONMENT

OSM$
HEAP
MANAGER

JOB TEMPLATES

MP

jmr$task private
template_p

jmr$system job
template_p -

Heap Control

Initial XCS

Task Private Rll

Task Private Heap

SDT,SOTX
and static
data for
template
segments

Scheduler creates all segments.

JF

JCB
Static Data

Heap Control

XCS

SOT

SOTS

JP,TS,TP

Static Data

Heap Control

Scheduler initializes Job Fixed.
Initialize_Jab_Environment initializes other segments.

8-9
Control Data Private

I
I

I
I

JOB CONTROL TABLES

MP
jmt$known_job_list_entry

" /

Name
AJL Ordinal
Scheduling Thread
Job Type
Job Class
Job Mode
Priority
Drop Attribute
Input Source
Label Info
Time Stamp

Label
~----~ $system catalog

MW
jmt$active_job_list_entry

Lock
Entry Status
KJL Ordinal
Swap Status
Statistics

8-10
Control Data Private

JF
jmt$job control block - -

Lock
Names/id.
AJL Ordinal
Sense Switches
Input Source
" Keyboard bfr

Accounting Info
Statistics

EXECUTION CONTROL BLOCK

JF
ost$execution_control block TCB

XCS

XCS

Exchange Package
MCR Selections
Lock
Flags
Wait Inhibited
Task Rethreaded
Give up CPU
Task 10
Priority

A XCS
A TCS
A ST
A STX

End Time Out
Quantum
Quantum Left
Monitor Faults
Paging Stats

8-11

o - Page Table
1 - Mainframe Wired
2 - Mainframe Paged
3 - Job Fixed
4 - Job Pageable
5 - Task Private
6 - Task Shared
7 - Task Private Rll
8 - System Dayfile
9 - Job Dayfile

. Control Data Private

TASK DISPATCHING TABLES

MW
tmt$primary_task_list

PTL

tmt$primary_task_list_entry

t-----I~ PTL Thread
status (task)
AJL Ordinal

XCB
AJL Thread

~ Swap Status
~~------'

MW PTL
tmt$dispatch_control_table

OCT
1

2

3

4

5

6

7

8

9

10

8-12
Control Data Private

AJL

XCS

AJL

*

*

*

*

TASK DISPATCHING

Currently (Rl) all tasks are on DCT thread 4
unless they have a system table locked. Tasks
with a system table locked are put on thread 2,
and the rethreaded field in the XCS is marked
true.

All tasks on the highest priority thread get 50
m-sec time slice in a round robin fashion as long
as there are active tasks on that thread.

In future releases, all 10 threads will be used.
Different threads will have different time
slices. These algorithms have not been defined
yet.

NOS - NOS/VE scheduling is done in NOS and MIP.
If the current NOS job has higher priority, NOS
runs; if the current NOS/VE task has higher
priority, NOS/VE runs. If the priorities are
equal (NOS job default = NOS/VE task = 30) then
the CPU is toggled between states. Currently 50
ms are awarded to each side but that can be
changed to favor one side or the other. NOS trap
handler does the timing. Idle is in NOS.

8-13
Control Data Private

00)
0.> I
rt-
o.>~

-0
~
<
0>
rt-
0>

/
L

TMM$/
DISPATCHER

PMP$TASK
INITIATE

I
I I

I I

LOADER
(LOM$)

JOB MONITOR

JMM$INITIAL
JOB BEGIN -

t '\.
I

PMP$
- OUTWARD -CALL

SET MGR
(STP$)

LOG MGR
(LGP$)

CLM$
II CLP$LOGIN INTERPRET II COMMAND -

COMMANDS -

'\.

JUMP$ JOB FILE MGR.
BEGIN - (LNP$)

I
ACCOUNTING MEM. LINK
(AVP$) (MLP$)

oro
OJ I
M-
OJ\.Jl

l)
1"1
~.

<
Q)

M
m

jmp$job_begin

CALL)-

Ini tialize
System
Initialization
Line

mlp$
ini tialize ~

lnp$
initialize

stp$
ini tialize -sets

t--

lqp$
setup access
to_Ioeal_logs

avp$
initialize -

lqp$ setup
access to
local_stars

lqp$setup
access to
globa()ogs

f--

Initiate
COMMAND
INPUT and
OUTPUT files

IQP$setup
access to
global-stats

~

jmp
execute
system -
job_tasks

pmp$execute
-

JOB
TERMINATOR

I
pmp$execute

-
MLI
HELPER

I
pmp$execute

-
EMS

1
pmp$execute

-
JOB
SCHEDULER

H RETURN

n
o
::J
rt
t;
o
I-'

oCX>
0>1
rtl-'
0>0\

-u
t;
1-'-
<
0>
rt
CD

SCL
CLP$
LOGOUT
COMMAND

PMP$TASK
TERMINATE

JMP$
JOB END

QFP$

JOB TERMINATION

'NEW' JOB SYSTEM JOB
Job Monitor Task Job Terminator Task

TMM$DISPATCHER

tmp$exit_job

JMM$JOB
TERMINATOR

Do:>
0.> I
rt" I-'
0.> ---J

"'()
1-1
<
III
rt"
CD

JMM$JOB MONITOR (2,2,3)
jmp$job=:end

TMM$DISPATCHER
tmp$exit_job

I
CALL

tmp$exit_job

I
tmp$set_
task-:::eady

TERMINATOR

JMM$JOB TERMINATE
jmp$terminate_job

Find AJL

(y~ entry of START terminating
job

r--

-

qfp$kjl
rethread

fmp$purge

$INPUT

Remove Free the -from OCT PTL entry

ill call mmp$job
monitor delete -

f----get-JF inherited
segment SOT

, ,

~
egment is added

to terminator's
SOT, used to
delete segments
and then deleted
itself •

-

r--

f--

JOB END

lqp$append
job log to
output -

jmp$,:oute

OUTPUT

mm$delete
non_inherIted
segs

fmp$/n
job_ex it

stp$set
end_job-

'ob -------
$re eJ(i t_J _-------_-:i.:.-..:::-------

j$call
monitor

,
_-----J

---------r--,
MONITOR_
INTERRUP
PROCESSOR

Set call Set bit in -{ AJL - dispatcher RETURN
flag

J mmp$delete gfp$set gfp$kjl
segment gfp$unlink ajl_status rethread pmp$wait

f-- ,....- ,.- I--- ajl_kjl - - 1000
Old JF FREE UNDEFINED

LESSON PREVIEW

TASK INITIATION

LESSON 9
PROGRAM EXECUTION

SYNCHRONOUS AND ASYNCHRONOUS EXECUTION
JOB LOCAL QUEUES
DEBUGGER
LOADER

OBJECTIVES

After completing this lesson the student should be able to--

• OVERVIEW THE MODULES AND TABLES THAT CONTROL TASK
INITIATION AND EXECUTION

• EXPLAIN THE LINKAGE AND HANDLING OF THE TCB AND XCB

• DESCRIBE THE STRUCTURE OF OBJECT MODULES AND OBJECT
LIBRARIES

• OUTLINE THE PROCESSING OF THE CATEGORIES OF CONDITIONS

EXERCISE

NONE

9-1
Control Data Private

PROGRAM CONTROL AND LOADER

DEBUGGER USER PROG.

13,13,13

.-------.~ ~ PMM$ PMM$
TASK OUTWARD
TERMINATION CALLER -

~
PPM$
STACK FRAME
POPPER -

1,13,13

PMM$TASK
TERMINATION
RING 3

PMM$
"'---1 PMM$TASK I--~ CHILD TASK

INITIATION MANAGEMENT

2,3,13

-TCB

2,2,3

XCB -.....

1,1,3

PMM$
TASKING
SUPPORT--RING n

9-2

LOM$
LOADER ",.-
EXECUTIvE
etc.

LOM$
LINKAGE
GENERATION

-~

Control Data Private

LOR
TABLES

BINDING

PARENT/CHILD/SIBLING

9-3
Control Data Private

TASK CONTROL BLOCK

Parent
TCB

pmt$task_control_block

task id
A parent
A child
A sibling
A prog. desc.
A prog. params.
A termination st.
A parent status
parent ring
flag exec. ring
signal exec. ring
task signal list

Parent
Status

Termination
Status

Child
TCB

9-4

xca

Sibling
TCa

Program
Parameters

Program
Description

Control Data Private

TASK WAIT

PMP$CYCLE (status)

PMP$DELAY (ms,status)

PMP$WAIT (ms)

PMP$READY_TASK (task,status)

9-5

Task waits till the next
cycle of the dispatcher.

Task waits ms
milliseconds.

Task waits for signal,
flag, PMP$READY TASK
or ms milliseconds.

Cause a waiting task to
be made ready for
execution.

Control Data Private

TASK IDENTIFICATION

PMP$TASK_STATE

9-6
Control Data Private

0\0 0).
rr...J
Q)

lJ
t'i
...... '
<
OJ
rr
en

TASK INITIATION

PMM$TASK INITIATION-2,3,D
PMP$EXECUTE(prog_desc,prog_parameters,walt,task_id,task_status,status)j

PMP$TASK_BEGINj

NEW
TASK

JMP$
INITIALIZE
JOB
ENVIRON .

PMP$
INITIALIZE
TASK
TABLES

parent ring

osc$tsrv

---,.--- -_ -

Validate
Program
Description

---- -.-.------

PMP$
CREATE
TASK -
ENVIRON.

PMP$
INITIATE
CHILD
TASK -

I
_J

PMP$
AWAIT
TASK -
TERM:-

fix
Loader
Options

OLD
TASK

from Program Descriptor or null name

From Program Descriptor or NIL or 'LGO'

From Program Oescriptor or NIL

from Program Description or
job library list or NIL

LOP$
LOAD
PROGRAM

OSP$
SYSTEM
ERROR -

should not return

"Outward call error"

n
0
::J
rt
1"1
0
.......

0\0
ID I
rtoo
ID

"""0
1"1 POP
1-'-

<
Ol
rt-
m

TASK INITIATION (Continued)

PMM$TASK INITIATION-2,3,D
CAlL_USER_PROGRAM (code_base_po in te r. pa rame te rs)

PMP$
EXIT_

ring error

STACK

PMP$TASK
BEGIN

CALL USER
PROGRAM -

PMP$OUTWARD
CALL -

PMP$RETURN TO
OUTWARD_CALL_SFSA

Parameters -------
SFSA for
PMP$ORIGINAL
CALLER

USER
PROGRAM

PMP$
ORIGINAL
CALLER

OUTWARD
CALLER
RING
(eg,3)

CALLEE
RING
(eg 11)

PMP$
FIND
STACK
SEGMENT

Put param
list in
stack

/

/
/

/

/

PMP$
OUTWARD -
CALL

/
/

/

OUTWARD CALL

PMM$OUTWARD CALL-2,D,D
PMP$OUTWARO:CALL(caller,ring,params,Apreceeding_SFSA,stack,segment)

PMP$
BUILD
OUTWARD
CALL_SFSA

PMP$
RETURN TO
OUTWARD
CALL_SFSA

~sembler program pops task services frames
- ~d returns. Caller runs in the target ring.

caller PMP$ORIGINAL_CALLER(user, parameters)

PMP$
LOAD
DEBUG
PROCS-

PMP$
CALL
BEGIN
DEBUG-

USER
PROGRAM

PMP$
EXIT

TASK TERMINATION LEVELS

1. Unwinding

2 •

3 .

• Revoke program termination (Debugger)

• Pop stock frames--block exit processing

• Close files at each 'active ring' to ring 3

• Child Task Cleanup

Abnormal--kill all child tasks

Normal--await child termination

• Clean up task environment

Unwinding Impossible

• Stack, for example, is bad

• Child task cleanup

• Clean up task environment

Broken Task

• Monitor detects monitor fault with
traps disabled

• Fix trap handler tables to see
broken task flag

4. Monitor Kill.

9-9
Control Data Private

PROGRAM
STARTER

TMM$
TASK
INITIATOR

BAM

MMM$
SEGMENT
MANAGER-

LOADER CONTEXT

LOM$
LOADER
EXECUTIVE
etc.

LOM$
LINKAGE
GENERATOR

9-10
Control Data Private

Rll

R3

R2
Rl

LOADER EXECUTIVE

LOM$LOADER EXECUTIVE
LOP$LOAD-fROGRAM (object file list,

module-list-;
CALL

I

determine
initial -ring

I

add prog
load -
libraries

I
load
object_
files

I

load
module -list

I
establisll.
transfer -symbol

I

satisfy_
externals

I
fix -program_
seq_
attr.

I
finish -load -map

I
RETURN

~

execute library list,
job library list,
starting procedure,
parent rIng,
loader-options,
code base pointer,
status) -

~cute libraries ---e libraries

-- {

. Loaded Modules
2. Job Libraries

-- 3. Execute Libraries
4. OSP$TASK_SERVICES_LIBRARY

f- i Ode - X/Ring ____ Data _ R,N Key/Lock
Binding etc.
etc.

9-11
Control Data Private

LOADER OPTIONS

PMP$CHANGE_DEFAULT_PROG_OPTIONS (change,status)

PMP$CHANGE_JOB_LIBRARY_LIST (change,status)

PMP$GET_JOB~LIBRARY_LIST (list,status)

9-12
Control Data Private

*

*

OBJECT MODULE INTERNAL FORMAT

Each object module is a set of records on the object file

The object record descriptor contains

• Item type

• Record length

* Item types

lOR: Identification of module and attributes

~IB: Libraries from which to satisfy external references

soc: Length and attributes of each section, code, working
storage, binding, and all common blocks

TEX: Text to be placed in each section

RPL: Text to be repetitively placed in each section

BIT: Inserts bit-level data into a section

EPT: Defines an address in a section as an entry point

RIF: Identifies addresses that must be relocated by the
library generator when binding modules together

ADR: Allows PYAs to be built at load time (when ring,
segment number, and offset are known)

XRL: List of external references to be satisfied

BTl: Binding template describes the contents of a location
in the binding section

TRA: Terminates the object module and gives the primary
entry point

9-13
Control Data Private

USER
COMMAND
STREAM

(VALIDATED FOR
RI NG 11)

• • •
FTN,I=MAIN,B=LGO
FTN,I=SUB,B=LGO
LGO

• • •

LOCAL FILE LGO Rl=ll, R2=11, R3=11

• NAME
lOR • TIME & DATE CREATED

• ETC.

LIB • FTNLIB

SOC CODE SECT ION

SOC BINDING SECTION

SOC WORKING STORAGE
SECTION

SOC COMMON BLOCKS

TEX, RPL BIT, REL ADR,
XRL EPT, BIN

RECORDS FOR CODE, BINDING
AND WORKING STORAGE
SECTIONS

TRA • STARTING ADDRESS
• END OF MODULE

lOR

LIB • FTNLIB

SOC • CODE

SOC • BINDING

SOC • WORKING STORAGE

SOC • COMMON BLOCKS

TEX, RPL BIT, REL ADR,
XRL EPT, BIN

RECORDS FOR CODE BINDING
AND WORKING STORAGE
SECTIONS

TRA

9-14
Control Data Private

OBJECT
MODULE

FOR
MAIN

OBJECT
MODULE

FOR
SUB

OBJECT LIST (1)

:2

" . ~ r"1 I !\J
ro

,:(,:) >: -- .-::~ {', n
' ,

1 .:1 ~ ! l\!:;t
.l. ,_, 't I "i ~ ~

19 PROCEND SQU~RER~

21 PROGRAM MAIN~

28 FOR I :~ MIN TO MnX DO

32 PROCEND MA!N;
33 MODEND SQAC!~

9-15
Control Data Private

!s0s_cybil s9~ci b+bbb ci
* COMPILING SQACI

OBJECT LIST (2)

* END CYBIL SQACI -> LISTING1 8BB
/ :;;. ~:: :;" .. (! b.j 'I 1 ::.~ t b b b
lIDR RN~ 1 SQACI V1.2 MVS 10=02:14 10/13/81

GREATEST SECTION ORD= 2 GEN ID=CYBIL
GEN NAME VERS=C180 CYBIL 1.0 LEVEL 81188
C IJ 1"1 r'l E N 1 (i F;~ Y ::::

LIB RN~ 2 CYBILIB

SDC RN~ 3 KIND=CODE ATTRIBUTES~RX ORDINAL= 0 LENG'fH=00000118
OFFSET~ 0 ALIGNMENT= 8

::::[1(: RN:::: iI 1< I ND~::B I ND I NG (')TTR I BUTE:3~::RB OHD I NAL:~:: 1 LENCrTH:;:()0000020
OFFSET= 0 ALIGNMENT= 8

~:;DC: RN::;:: ~:; ~::: 1 ND:~~t¥JHK I NO n TTF: I BlJrE~:::~::F;~ OHD I NAL"~: "~. LE''.JD'ni::':OOOOOO 1 F
OFFSET= 0 ALIGNMENT= 8

[PT RN= 6 SECTION= 0 OFFSET=OOOOOOB8 ATTRIBUTES=
NAME~MAIN LANGUAGE=CYBIL

DE·:CL,(.)Hfyr 1 ON !'1(~TCH:r NG: REC!U I I::;:ED-Tf;:UE \/(iLUE"-O{i9('~ 1 OEC~5:201T/

Err I HN:::: '/ BIND I NCi OF'~-:'~::;ET:::~(H)(H)()(H)tl CUF:HENT r·1CJDULE
SECTION= 2 OFFSET=OOOOOOOO KIND=POINTER

ADR RN= 8 VALUE SECTION= 2 DEST. SEC1ION~ 1
r< I I\IIJ:::PO I NTEF: V(iL.UE OFF::;E'r:~:ooOO()OOO [lEST.. OFF~::ET:;:':(}()CH)O(H)()

BTl H~J::::; ''? BINDING OFF:~~;ET~:::00000010 EX'TEF:N{'IL I:;:EF
f\I PilvlE ~:;: C '(P':;i E HF<OF: riD DHE :::3 ~:: ~~: EXT F'!:;: U C

E. ~~r Rt·..j::':: 10 N?\lvIE::CYP$EHF.:OH L{\NUur'!CiE>:':C\' B 1 L.
DECLARATION MATCHING: REQUIRED-FALSE VALUE-OOOOOOOOOOOOOO
::;:ECT ION CJF~DINtlL::~ 1 OFF:::ET::::(H)OOOOlO KIND:~~EXT PHOC CJFF:::;E r tJPLH(ir.![I.:·;GUOu.JUOO

n
o
::J
rl
M
o
I-'

0\0
0>1
rI- I-'
00

"U
M
<
00
rl
m

OBJECT LIST (3)

RIF RN= 12 SECTION= 0 OFFSET=000000B2 R-SECTION= 1 CONlAINER~Q FIELD ADDRESS~WORO-

lEX RN= 13 LENGTH=OOlF SECTION~ 2 OFFSET~OOOOOOOO
53514143 49202020 20202020 20202020 20202020 20202020
20202020 202020

'rEX RN::· 1 it- L.ENGTH=OOBll :::::ECT I ON~::: 0 OFF::;El':~~OOOOOOOO

8E100020 84450000 09068EOO OOF08516 00127656 09FOOOOO
09FOOOOO 3D128D03 00lE8DOE 00103D14 96Q20036 9623003Q
83120003 D015001F 84450008 A9560003 8D5E0011 96450025
96530023 D015001F 84160012 A9570003 9645001B 96530019
D015001F 84170012 A9580003 96450011 9653000F 1187D765
70001188 D7778000 26571186 DF576000 9C32FFCD OQ323D2D
94000003 3D3D09~5 8(000018 835DOOOO 835E0001 8436000A
85560012 B30000FF 85350002

T~X RN= 15 LENGTH=005A S8:TION~ 0 OFFSET=OOOOOOB8
8El00208 3D128D(G 001E8DOE 00lC3D14 9642FfE6 9623FFE4
:;:::::;: 1200:31::'
[10 1 ~:I() 1 F7
~:::E 1 t;.o 1. 00

DU1501F/ A9~60003 8D5E001D
DF156008 9C32FFE9 8E1501F8
85560008 8D000020 B035FFDF

964!:;FFD7
::::1::: 1 bUO 1. 0

OtJ:3!5

':I b!:;:3FFD!j
::3~I~.:)f::..OOOO

()
0
:J
rt-
t-j

0
~

O\D
0> I
rr~
0>00

""U
t-j
......
<
Q)

rt-
CD

13,13,13

2,13,13

TMM$ALLOCATE
EXECUTION -
RINGS -

I
I

TMM$MANAGE_
SIGNALS
AND FLAGS

PREEMPTIVE COMMUNICATION AND CONDITIONS

TRAP
PROCESSOR

/
TMM$OISPOSE -PREEMPTIVE -COMMO

'/ 1
TMM$DISPOSE -OF RING 3
PREEMPTS -

OF RING 2 - r-- PREEMPTIVE-
PREEMPTS - BUFFERS-

r--

DEBUGGER

t

PMM$
DISPOSE
OF TRAPS

TMM$OISPOSE -OF MONITOR
FAULT

TMM$MANAGE
MONITOR
FAULTS

TMM$GET
MONITOR
FAULT -

r--

TMM$DISPOSE TMM~ANAGE \

~----------~~ ~----------~

XCB

........... \
TMM$DISPOSE
OF RING 1
PREEMPTS

PMM$
DISPOSE OF
CONDITIONS

PMM$MANAGE
CONDITION
STACKS

S2
J

PMM$COND. -I-- STACK
PROCESSOR

~ STACK

2,3,13

2,2,3

1,1,3

PARENT/CHILD REQUESTS

PMP$VERIFY_CURRENT_CHILD (tid,current)

PMP$REVOKE_PROGRAM_TERMINATION

9-19
Control Data Private

PSA (A2)

CSF (AI)

DSP (AO)

CONDITION HANDLING

DESCRIPTOR I

DESCRIPTOR 2

OCF=TRUE
AD
Al
A2

9-20
Control Data Private

SF SA

SFSA

0\0
0) I
(TN
0)

DESCRIPTION

USER Selector
name

A handler

INTERACTIVE Selector
id:O .. 255
,.. handler

SYSTEM Selector
Set of MCR, UCR
Loop Prevention
,.. handler

BLOCK Selector
Set of reason
CFF

A handler

JOB RESOURCE Selector
id:O .. 255

A handler

SEGMENT Selector
ACCESS id:O .. 255

Segment Number
Loop Prevention

A handler

COMBINATION Selector
Set of category
,.. handler

NOTE: See Program Interface

CONDITIONS

SCOPE INFO RETURNED

Current Ring Condition
Condition Descriptor passed

on PMP$CAUSE_CONDITION

All Rings Condition

Current Ring Condition
Save Area of frame that

caused the condition

Frame Condition
Save Area of frame attempting

Return, Pop or non-local
exit

All Rings Condition

Current Ring Condition
Save Area of frame that

caused the condition

- -

LESSON 10
SCl INTERPRETER

LESSON PREVIEW

COMMAND VS PROGRAM INTERFACE
LOGIN, LOGOUT PROCESSING
COMMAND SEARCH
COMMAND PROCESSING
SUB COMMANDS
PROLOG AND EPILOG PROCESSING

OBJECTIVES

After completing this lesson the student should be able to--

• ADD A COMMAND PROCESSOR THAT WILL RUN IN THE CURRENT TASK;
IN A NEW TASK

• EXPLAIN THE USE OF THE BLOCK STACK AND THE INPUT STACK TO
CONTROL THE PROCESSING OF COMMANDS

• OUTLINE THE PROCESSING OF LOGIN AND LOGOUT

EXERCISE

ADD A COMMAND PROCESSOR TO THE SYSTEM

10-1
Control Data Private

0
roo
(""t" I
roN

'1J
I-i
<
OJ
(""t"

ID

READ COMMAND

- Initial
• Interactive
• Batch

- Changed by
• Include
• SCl Proc Call
• utility

ClI BASIC lOOP

lOCATE COMMAND

INVOKE
COMMAND

- SCl Proc
- CYBIl Procedure

- Type
• Control or Assignment
• Command

- Command list
• $lOCAl
• $SYSTEM
• Any Catalog

- File
• Binary
• SCl Pioe
• Program Descriptor

COMMAND PROCESSING

FILE

"'" ~ //
,,/

COMMAND INTERFACE

CONTROL COMMAND ASSIGNMENT

$LOCA L $SYSTEM ANY CATALOG

. . . COpy DROP FORTRAN ...

---------~ COMMAND FILE PF QUEUED FILE
LANGUAGE MANAGER MANAGER MANAGER ...

10-3
Control Data Private

0
IDO
rI- I
ID+::-

-U
t-:I
1-"
<
Q)

rl
m

{ PDT c.:.p _pdt (
{ from:FILEREF = $required
{ to:FILEREF = $output
{ count: INTEGER O •• amc$file_bvte_limit
{ unit:KEY file,partition~record
{ st;a.tIJS)

VAR

COMMAND PROCESSOR (1)

copy_pdt: [STATIC, READ. cls$pdtl clt$parameter_descriptor_table .- [Acopy_pdt_names, Acopy_pdt_params];

VAR
copy_pdt_names: [STATIC. READ. cls$pdtJ array [1 •• 5] of clt$parameter_oame_descriptor := [['FROM'. 1],

[.' TO"·, 2] , [" COUNT" 1 :3], [., UN IT" 1 4] , (.• STATUS", 5]];

VAR
copy_pdt_params: [STATIC. READ, cls$pdtJ array [1 •• 5] of clt$parameter_descriptor := [

{ FROM }
[[c'lc$r'equir'edL 1, 1, 1·, L c1c$va·IIJe_r·anSe_n.::.t_allowed, [NIL, ch:$file_value. ch:$position_a,l1oUled]],

{ TO }
[[clc$optional_with_default. Acopy_pdt_dv2J, 1. 1, 1. 1. clc$value_ranse_not_alloUled, [NIL,

clc$file_value. clc$positioo_al1oUled]],

{ COUNT }-
[[.:lc$IJPtic.nal_with_default·, ··· .. cIJp··.··_pdt_dv3J, 1. I. 1, 1, clc$vallJe_r'anSe_not_al1oUled, [NIL.

clc$inteser_value, 0, amc$file_byte_limitJJ.

{ UNIT)-
[[clc$optional]. 1. 1. 1. 1. clc$value_ranse_not_allowed. [Acopy_pdt_kv4. clc$kevword_va1uell,

{ STATUS }
[[c 1 c$opt i ona 1 J, 1. 1. 1. 1, c 1 c$va lIJe_r'an!:h:!_not_a 11 owed , [NIL. c l.:$var· iab 1 e_refer'enCth

clc$arra.y_not_allowed~ clc$status_valueJ]];

VAI~
copy_pdt_kv4: [STATIC. READ. cls$pdt] array [1 •• 3] of ost$name .- ['FILE', 'PARTITION', 'RECORD'];

VAR
copy_pdt_dv2= [STATIC. READ. cls$pdt] string (7) := '$output';

VAR
copy_pdt_dv3: [STATIC. READ, cls$pdtl strins (1) .- '1';

o~
IDO
rt- I
Q.)\J1

lJ
I-i,.
<
Q)

rt-
en

COMMAND PROCESSOR (2)

PROCEDURE [XDCLJ Gl1'$~op~_command (paramet2r_li~t~ clt$Pdram2ter_l1st7
~./(iH ~. t d. t u:;:·: (l::;. t: ~~i::;. t:1 t IJ:;;·) ~;

(; I) U n t ~_ !.:; F' (;.' I~: 1 fie d : b l) (II (2·'J. i i.'

unlt __ !:;.Pf::cifi::::d:: boo·!e:.lI"lJ
f r' (;0 rn ••. './ :.1 '1 U2 ~ cit $ V ~i. '1 Ij~' I

t (: ._ V;.1 ., tj '2 ~ c·\ t ~f; V ;;i 1 Ij ~~, ~

:;:. {.:: t __ :~l. t t /". i b Ij t '2 :;~. ~ d. r' j" ·3. ..•. [1

::: '1 p $ ~:. r::: a. 1'1._ .. r:' :;j. r· :l1Tl2 t :::: r' __ 1 i :.:c. t (F' :J. r' ;.1 al ~, t :;:.,' r· ._.'1 i s ti C I) P _ pdt I ~;; t .:1 t !J:;:.) ';

IF NOT status. normal THEN
h:E'rUF\I\! ~

1 FEJ-ID ~

:::: 1 F'~~i t;;~·:.; t .. _ Pd. r' .:1.1'1'1 ;~'"I:: ;;:: r' (.. , UN IT'"
I F /\10''1'' :~'. t d. t t.t !:.' • n I) 1'" rn ~i '! THE I\i

eE:'rUI::;:N ~
1 FEr\;[! ~
IF' u 1'1 i t _. :~:. F';,: ~~ i i: i (: d 'I"H!::::!\!

(l ::.'. r:' ~j; ~.>:; .. .' t __ . ~:. t .:i t lJ !:.'..._ d. b II (: \". 1lI·.1 '1" C L c: 12 ~$ n I) t: "_ .. (-2 t ._. i In ,;..! .~:: I'll ~:: n t c: d " 1...11\11 r 1" d. j'" ·;J.ll i;;: t :;.: 1'.', :;:. t :J. t 1..1:;.:) ';

F;:E"!'I.JHN ;;
I F'E.ND~;

.::1 f' ~t; t ·2 ~, t .. _. P . ..1. (. d.ITI ;:: t (:: r' (.. , CO!...' j'-.l-r ", C (: lJ 1"1 L ,_. ~::. f' c, ::: i ·F i c: d 'j !~ t ·:l t Ij :,:.) ~

IF r-·IO T' :.:.: t <.i. t U;;:· • (i 0 r' Ina! 'fl"'!E!\!
I .. ~: !:: . r 1...1 P r·.! ~

IFEND 'J

IF:::: (I!J n t ... ::. p;;! C i '1,]. c: d ·THE!'..I
I) :: I;" ~:. :.;·::t ._. ~:. L >:i t u :~ .'. ;;:L b n (: r" If: :,1 '!
F:t:·r!'.JH~\l ~.~

o~
0) 0
rr I
0)0\

-0
t-j
.......
<
0)
rr
CD

COMMAND PROCESSOR (3)

.:·lp$Siet_valIJe (···FROM····, 1'1 11 ch:$low·, fr'orn_valIJe, status);
IF NOT status. normal THEN

RETURN;
IFEND;
IF from_valueufile.open_position.specified THEN

set_attributes [ll.key := amc$open_position;
set_attributes [1].open_position := froffi_value.file.open_position.value;
amp$file (from_value.file.local_file_namel set_attributesl status);
IF NOT status. normal THEN

RETURN;
IFEND;

IFEND;

clp$get_v.rilIJ\~ ("'TO", 11 1·, ch:$low, to_valuel status);
IF NOT status. normal THEN

HETURN;
IFEND;
IF to_value.file.open_position.specified THEN

set_attributes [ll.key := amc$open_position;
set_attributes [il.open_position := to_value.file.open_position.value~
amp$file <to_value.file.local_file_name, set_attributes, status);
IF NOT status. normal THEN

RETURN;
IFEND;

IFEND;

amp$copy_file (froffi_value.file.local_file_name, to_value.file.local_file_name, status);
IF NOT status. normal THEN

RETURN;
IFEND;

PROCEND clp$copy_command;

MODEND clm$copy_command;

SCL CONTEXT

USER

JMM$
SCL COMMAND INITIAL

JOB BEGIN INTERPRETER PROCESSORS

n
0
::J
rt
I-i
0
I--'

01--'
roo
rt I
ro-.....J

lJ
I-i Rll,.
< ro
rt
ill

INTERACTIVE SCL VARIABLE
FACILITY INTERPRETER MANAGER

R3

0
0)0

M" I
0) (X)

-u
t;
r"
<
0)

rt"
CD

CALL

t
I
I
I
I
I
I
I
t
I
I
l.,. , ,

)-

CLM$INTERPRET COMMAND
CLP$INTERPRET:COMMAND

CLP$ADD
TO JOB
COMMAND r--

-LIST

$SYSTEM

CLP$ADD -TO JOB
COMMAND -LIST

$LOCAL

fILE TYPE

INTERPRET COMMAND

CLP$
DECLARE Establish

~ VARIABLE I-- Job
files OS V'fS'TAT US

i
I
I
I

INTERACTIVE
NAME CONNECTION

job_command_response $RESPONSE Job Output, Log
,
" ,

"

JMP$
JOB
BEGIN

echo

error output

JMP$
INTERPRET
COMMAND -

JMM$INITIAL JOB BEGIN (2,0,0)
JMP$INITIAL:JOB:BEGIN

$ECHO $NULL

$ERRORS Job Output

$LIST $NULL

$OlJ'TPUT Job Output

$INPUT Job Input

"Welcome to NOS/VE . DATE . TIME"

CLP$ Put SCAN
I-- Welcome - COMMAND Banner -

fILE
"COMMAND"

I
OSP$
GENERATE

BATCH MESSAGE -
CONNECTION

$NULL I
$NULL

RETURN
OUTPUT

OUTPUT

OUTPUT

INPUT

BLOCK STACK

THE PRIMARY PURPOSE OF THE BLOCK STACK IS TO MAINTAIN:

CURRENT PARAMETER VALUES (PVT)

COMMAND LANGUAGE VARIABLES

TASK LOCAL
PROC OR WHEN LOCAL

BLOCK STRUCTURE

INFORMATION FOR LOOPNG STATEMENTS

INPUT STACK

THE INPUT STACK IS USED TO MANAGE THE COMMAND STREAM KNOWN AS
$COMMAND.

FILE NAME
BYTE ADDRESS OF CURRENT LINE
COMMAND LINE
LINE INDEX
FILE 10 (PER TASK)

EXAMPLES:

IINCLUDE FILE file = abc
ICREATE_OBJECT_LIBRARY

10-9
Control Data Private

LESSON PREVIEW

PF CAPABILITIES
PF TABLES
SETS

OBJECTIVES

LESSON 11
PERMANENT FILES

After completing this lesson the student should be able to--

• OUTLINE THE CAPABILITIES OF THE PF SYSTEM

• DESCRIBE THE RELATIONSHIPS BETWEEN PF MANAGEMENT AND OTHER
FUNCTIONAL AREAS OF THE SYSTEM

• DESCRIBE THE CON"TENTS AND LINKAGE OF THE PF TABLES

EXERCISE

NONE

11-1
Control Data Private

NAME
AC

SUB
CATALOG

I

CATALOG/PERM FILE

I

AC

MASTER
CATALOG

NAME
CYCLE
AC
ATTRIBUTES

ALLOCATION

NAME
CYCLE
AC

NAME ATTRIBUTES

NAME
AC

SUB
CATALOG

I

AC 1-----
SUB
CATALOG

11-2

NAME
AC

SUB
CATALOG

I

Control Data Private

ALLOCATION

FILES

FILES

FAMILY
1

FILE
1

FILE
A

FILE
A

CATALOG TREE STRUCTURE

USER
1

FILE
3

FILE
5

SYSTEM

SET
1

FAMILY
2

USER
2

FILE
2

FILE
6

11-3
Control Data Private

USER
N

FILE
4

FILE
7

FAMILY
N

FILE
A

FILE
A

FILE
N

PF

MM

SET MANAGER

STM$
REQUEST '-,--I

PROCESSORS

R2
REQUEST
PROCESSORS

AST
MANAGER

11-4

STM$

Control Data Private

R3

R2

OM

Rl

SET MANAGER TABLES

AST
stt$active set table
STDAST -

JAST
stt$job_active_set_table
STDJAST

VST
stt$vol_set table
STOVST

11-5

Name
Master VSN

A Member VSNs
Set Owner
Number of Jobs Using Set
Root object list locator

Name
Set Owner
Root object list locator

VSN
Name
Member

Master VSN
Master

Set Owner
Root object list locator

A Member VSNs
VST heap
Segment size fixer

Control Data Private

SET INTERNAL INTERFACES

FROM OUTSIDE SET MGR.

STP$CREATE_SET

STP$ADD_MEMBER_VOL TO SET

STP$PURGE_SET

STP$REMOVE_MEMBER_VOL_FROM_SET

STP$ASSOCIATE_CATALOG

FROM WITHIN SET MGR.

STP$CREATE_VOL~SET_TABLE

STP$GET_ROOT_OBJECT_LOCATOR

STP$GET_SET_OWNER

STP$CHECK_CATALOG_ASSOCIATION

STP$CHANGE_ACCESS_TO_SET

STP$SET_END_JOB

11-6
Control Data Private

PFM$
ATTACHED
PF TABLE-

PF MANAGER

USER

PFM$PROGRAM
INTERFACE -
PROCESSOR-

PFM$R2
REQUEST
PROCESSOR

PFA$CATALOG
SEGMENT -
DEFINITIoN

11-7
Control Data Private

Rll

R3

R2
Rl

OM

or-
o.>r-
IT t
0.>0::>

-0
t-i
1-'-
<
OJ
rt
ro

PF CATALOG STRUCTURE

Object_list_file Permit list

Interlock V V Initialized
A object_list

~--------t ~a~: rmi t Lis t '-CA-O-------~

Object
Heap

Type (Catalog) charge id
A CAD I-------I~ A object list

Permit list

Name
A Permit List t------I~
Type (File)

A PFO

I\,....-------,PFO

I ~ Password V
Charge id
PF Status

A log list
A cycle_list --------~

~ _________ ~~CYCle-list (
Name

Number IV'J Expiration VI
A FMO
A SFL

FMO

SFL

LESSON PREVIEW

OPENICLOSE

LESSON 12
LOGICAL 1/0

RECORD VS. SEGMENT LEVEL ACCESS
DEVICE MANAGEMENT
FAPS
FILE ATTRIBUTES
FILE TABLES

OBJECTIVES

After completing this lesson the student should be able to--

• TRACE THE PROCESSING OF A RECORD LEVEL FILE FROM OPEN TO
CLOSE

• TRACE THE PROCESSING OF A SEGMENT LEVEL FILE FROM OPEN TO
CLOSE

• EXPLAIN HOW FAPS ARE HANDLED

• EXPLAIN THE USE OF THE MAIN FILE TABLES-LNT,JFT,TFT,SFT

• DESCRIBE THE ALGORITHMS FOR ASSIGNING DEVICES AND
ALLOCATING SPACE ON DEVICES

• EXPLAIN THE USE OF THE MAIN DEVICE MANAGEMENT TABLES-FMD,FAT

EXERCISE

TRACE THE DISK ALLOCATION OF A FILE

12-1
Control Data Private

OM

FILE MANAGEMENT COMPONENTS

TP

FM
JOB FILES

USER

AM

BA

10

PP DRIVER

12-2

FM
LOCAL NAME

Control Data Private

MM

BASIC ACCESS METHOD

USER

------- USER
FAP

FM
JOB FILE

MGR

AM

SA
FAP

OM

SYSTEM
FAP

--.----

FM
LOCAL FILE

MGR

12-3
Control Data Private

-- -..-

FILE ACCESS PROCEDURES

1. USER

2. SYSTEM

Advanced Access Method
Connected File
Operator Facility
Interactive Facility
Interstate Communication
Logging

3. BASIC ACCESS METHOD

12-4
Control Data Private

*

*

*

*

ATTRIBUTES

Permanent attributes are established
on the first open of a new file.

Permanent attributes are never changed (Rl).

Source of permanent attributes:

FAP Request
Open Request
Commands
Other program interface requests
Defaults

Source of temporary attributes:

Store request
Open
Commands
Other program interface requests
SFL
Defaults

12-5
Control Data Private

TASK FILE TABLES

TFT FAP CONTROL
1

FAP
structure A

exec bracket
·
· ·

4ft ART Seg
n

FAP control A - 1 fn Error Exit
• A reg desc.

lfn
A label desc. ART A

FTO A

FPI A FTO
Label exit - Attributes Access Mode

A block desc. 1ft of layers
boi sfid
A disk bfr. desc.

· current byte

· eoi

· error status
A tape bfr. desc.

FPI
- Open Count

Block info
Current byte
eoi
vol. info

6 4

12-6
Control Data Private

1

n

640

FILE MANAGER TABLES

JFT

fid
tid
global name
permit options
sfid
usage selections
ring attr.
open count
file type

12-7

LNT
1

n~----------------~
lnt
A segment
device class
pf
global name
sfid
jfid
A request desc.
A label desc.
A file desc.
A route desc.
A SFL
A FPI
ring attr.

32~ ________________ ~

~ A LNT

LNT

Control Data Private

FILE MANAGER INTERNAL INTERFACE

Local Name Mgr.

FMP$GET_JFID_SFID (lfn,jfid,sfid,status)

FMP$LN_ATTACH (lfn,sfid,usage_mode,share_mode,rings,status)

FMP$LN OPEN CHAPTER (lfn,chapter number,validation ring,
-segment_attr,pointer_type~pointer,status) -

FMP$LN_RENAME (old,new,validation ring,status)

FMP$LN_RETURN (lfn,ring,returned,status)

FMP$LN OPEN NAME TABLE (lfn,ring,chapter,access level,
-request_desc,label_desc, file_desc ,new_file_desc ,

system attr,position info,status) - -

FMP$LN_CREATE (lfn,file_attr,sfid,global_name,status)

FMP$GET_FILE_ATTRIBUTES (lfn,request_desc,lable_desc,file_desc,
new_file_desc,system_attr,position_info,status)

12-8
Control Data Private

FILE MANAGER INTERNAL INTERFACE

Job File Manager

FMP$CREATE_OPEN_CHAPTER (attributes,ring,access_mode,chapter,
jfid,sfid,status)

.
FMP$CREATE JOB FILE ENTRY (attributes,global_name,jfid,sfid,

status)- -

FMP$RETURN_JOB_FILE (jfid,ring,returned,status)

FMP$ATTACH_JOB_FILE (sfid,attributes,jfid,status)

FMP$OPEN_PHYSICAL (jfid,ring,access_mode,status)

FMP$CLOSE_PHYSICAL (jfid,ring,status)

FMP$OPEN_CHAPTER (jfid,ring,access~mode,chapter,sfid,status)

FMP$CLOSE_CHAPTER (jfid,ring,chapter,status)

12-9
Control Data Private

MASS STORAGE DEVICES

CPU

MEMORY

CONTROLLER

844-4x
885-1x
885-4x

12-10
Control Data Private

DEFINITIONS

MAU--The minimum addressable unit is the quantum of data
transfer between a driver and a mass storage device. It
is a constant 2048 bytes in length. Standard software is
released with page size ~ 2048 bytes (MAU). Special
systems could have page size < 2048 bytes but page size
could never be changed without file conversion.

DAU--The device allocation unit is the quantum of device
allocation. It is a device dependent, integral multiple
of MAU.

ALLOCATION UNIT--A power of 2 multiples of contiguous DAUs on a
device. An allocation unit does not span cylinders on a
device. A physical I/O request does not span allocation
units. Expressed as AI, A2, A4, A8, A16, A32, A64, A128,
A256.

844-4x 885-lx

Capacity
Cylinders/Spindle 823 843
Tracks/Cylinder 19 40
MAU/DAU (by:tes) (4096) 2 (4096) 2
Total (*100 bytes) 151.6 552.5

Performance
Seconds/Revolution .0167 .0167
Transfer rate

(bytes/sec)

Allocation

DAU/Al (Bytes)
DAU/A2 (Bytes)

·
·
· DAU/A32 11

DAU/ A64 "
DAU/A128 11

DAU/A256 "

.589xl06 .98lxl06

·(4096) 1 (4096) 1
(8192) 2 (8192) 2

· .
·
· .

32 32
(180224) 44 64

44 128
44 (655360)160

12-11
Control Data Private

885-4x

843
10

(4096) 2
552.5

.0167
3.924xl06

(4096) 1
(8192) 2

·
·
· 32

64
128

(655360)160

DEVICE MANAGER CONTEXT

PF ST

OM

12-12
Control Data Private

FM

SFT

FMD

FAT

DVL

DFD

DFL

OAT

AVT

MFL

MAT

OM TABLES

SYSTEM FILE TABLE

FILE MEDIUM DESCRIPTOR

FILE ALLOCATION TABLE

DEVICE LABLE

DEVICE FILE DIRECTORY

DEVICE FILE LIST

DEVICE ALLOCATION TABLE

ACTIVE VOLUME TABLE

MAINFRAME FILE LIST

MAINFRAME ALLOCATION TABLE

12-13
Control Data Private

1 entry/file

1 entry/subfile

1 entry/allocation

l/volume

1 entry/device file

1 entry/sub file

1 entry/AU

1 entry/volume

1 entry/new file

1 entry/available AU

DEVICE MANAGER USERS

• FILE MANAGER
Locally Named File Mgr.

File Allocation
Set Mass Storage Limit

Job File Mgr.
Create File
Assign File to Device
Destroy File

• MEMORY MANAGER
Store ASID in SFT for Sharing
Provide transfer unit offset and length

• PHYSICAL 10
Device Address for 10 transfers
Check initial write of new allocation
Flaws

• MANAGE SETS

• MANAGE PFs

Add volume to Set
Remove volume from Set

Get FMD for storage in PF Catalog
Manage FMD on attach/detach
Destroy PF
Lock and Unlock Catalog File

12-14
Control Data Private

n
o
::J
rt-
ti
o
......
0""'"
W N
rt- I
W

VI

-0
ti
<
Q)

rt
CD

MW

JF

GLOBAL SFT

lock
global id
ASID

I eoi
file limit
A FMD

LOCAL SFT

OM FILE TABLES

FMD

Header
file type
lock

FAT preset
requested ~ r style

Subfile 1 FAT
AVT index

I I DFL index
A FAT

· · FAT

·
Subfile n

FMD FAT

n
o
::J
M"
I-i
o ,.....

0"""
ruN
M"'
00"""

0\

\J t,
......
<
OJ
M"
CD

DVL

AVT

A MFL
A OAT

A DFD

OM DEVICE AND MANAGEMENT TABLES

DFD

A Login Table
A DFL
A OAT

MF
TABLES

DFL

DEVICE
TABLES

DEVICE LOG

OAT

LESSON PREVIEW

MEMORY MANAGEMENT
SEGMENT MANAGEMENT
PAGE FAULTS
PP COMMUNICATION
WORKING SET

OBJECTIVES

LESSON 13
PHYSICAL 1/0

After completing this lesson the student should be able to-

• TRACE THE PROCESS OF RESOLVING PAGE FAULTS

• DESCRIBE THE WORKING SET ALGORITHMS

• TRACE THE PHYSICAL 1/0 PROCESSES FROM INITIAL REQUEST TIL
THE TRANSFER IS COMPLETE

EXERCISE

NONE

13-1
Control Data Private

JOB

MTR

IOU

MEMORY MANAGER CONTEXT

DMM$
DEVICE
MANAGER

TASK

I
Ipage
I faul t
I

MTA$ TMM$
MIP DISPATCHER ----

MMM$
MEMORY
MANAGER

IOP$
PHYSICAL
10

PP Driver

13-2
Control Data Private

CST

PTL

OCT

PT

PFT

PQL

AST

FMD

FAT

LUT

UIr

PPIT

TABLES

CPU State Table-MT
AXCB, JCB,statistics

Primary Task List-TM

Dispatch Control Table-TM

Page Table-SY
Hardware

Page Frame Table
Software

Page Queue List
PFT tops of threads

Active Segment Table
AST index -.. ASID

File Medium Descriptor

File Allocation Table

Logical Unit Table

Unit Information Table
10 request queue

PP Interface Table

13-3
Control Data Private

l/CPU

1 entry/task

l/mainframe

1 entry/active page

1 entry/page

l/mainframe

l/active segment

1/ file

l/subfile

l/drive

l/drive

l/drive

MODULES

MONITOR INTERRUPT HANDLER

• Receive Page Fault

• Call Memory Manager to process fault

• Call Physical 10 Mgr to process completion

DISPATCHER

• Adjust wait status

• Pick next task to execute

MEMORY MANAGER

• Process Page Fault

• Manage Working Set

• Lock/Unlock pages

PHYSICAL 10

• Link requests

• Alert pp

• Process 10 completion status

DEVICE MANAGER

• Provide physical addresses

• Allocate space

PP DRIVER

• Function and status the device

• Read/Write the device

• Read/Write Real Memory

13-4
Control Data Private

PHYSICAL 10

1. PROCESS PAGE FAULT

2. INITIATE PHYSICAL 10

3. PROCESS 10 COMPLETION

13-5
Control Data Private

JOB

MTR

TMM$
DISPATCHER

DMP$
FETCH
CHAPTER
INFO

PROCESS PAGE FAULT

TASK

I
I page
: fau 1 t

MTA$
MONITOR
INTERRUPT
HANDLER

MMM$
MEMORY MGR
MONITOR
MODE

IOP$
QUEUE
REQUEST

13-6
Control Data Private

AST

in use
SWAPPING in
big segment
page frame gid
II pages in-mem.
segment:kind

o

i -

2000

SEGMENT TABLES

SOT

.- I ASIOI

PT

I
t

,

SOTX

j - - pointer kind
chapter-II
error exit proc.
attribute set
segment - . orJ.gJ.n
segmeht state

Software hashes the AST index to assign the ASID.

j

Hardware hashes the ASID and page offset to find the page table
index. A sequential search of the next 24 entries might follow.

13-7
Control Data Private

PAGING TABLES

PFT

PT PQL

FREE o

AVAIL. 1

AVAIL. MOD 2

,,-- SHARED 3
I
I WIRED I 4
)

link r--
queue index
AJL ordinal

" age

r PT index
Active 10 count
time stamp
locked page

In task queue
SVA (for debug) FIXED AJLO*4+5

J In
SHARED AJLO*4+6

In
10 ERROR AJLO*4+7

In
WORKING AJLO*4+8

AJL

\. ordinal (AJLO)

13-8
Control Data Private

n
o
::J
rt"
t;
o
I-'

01-'
ID~
rt" I
ID'D

LJ
t;
1-'-
<
ID
rt"
CO

r--

-

MMM$MEMORY_MANAGER_MONITOR_MODE
PR_PF

-
CALL

I
GET PULL UNTRANSLATABLE r-- PAGE i--~
POINTER

-

-

-

RECLAIMED
-

AVAIL. MOD
AVAIL

NEW
-

FREE

ACCESS
VIOLATION

LOCKED
OR
ON DISK

10
TEMPORARY
REJECT

PAGE
TABLE
FULL

NO
MEMORY

PROCESS PAGE FAULT

r-- UPDATE
STATS r--

r-- UPDATE
STATS f--

TMP$

r-- SEND
i--MONITOR -FAULT

TMP$ UPDATE kY CHECK UPDATE SET - TASK_ r-- r-- PAGE FAULT WS ~ FREE r-- WS

WAIT STATS ? QUEUE STATS

Y I
TMP$ JOB
CAUSE WORKING RESTORE - TASK - - - UNTRANSLATABLE
SWITCH

SET POINTER SCAN

I
TMP$ RETURN
CAUSE - TASK - "'-

SWITCH

TMP$

- SET r--TASK -WAIT

DMM$
BUILD DEVICE
ADDRESSES

DMM$
ALLOCATE
FILE SPACE

INITIATE PHYSICAL 10

MMM$

IOP$QUEUE
REQUEST

MMM$MEM.
MGR. MTR MODE

LOCK

PP DRIVER

13-10
Control Data Private

TMM$
DISPATCHER

DMP$
WRITE
INITIALIZE
TERM -

NO ERRORS--Ready Task

COMPLETE 10 REQUEST

TASK

MTA$
MONITOR
INTERRUPT
HANDLER -

IOP$
PROCESS IO
COMPLETIoNS

MMM$MEM.
MGR. MTR. MODE
UNLOCK

PP DRIVER

PF ERROR--Notify PF Manager
READ ERROR--Abort Task
WRITE ERROR--Leave page in memory

13-11
Control Data Private

NOS/VE DESIGN SPECIFICATION

PART III

SYSTEM PACKAGING

TABLE OF CONTENTS

1.0 SYSTEM STRUCTURE • • • • ••
1.1 GENERAL STRUCTURE ELEMENTS ••

1.1.1 JOB ELEMENT •
1.1.2 TASK ELEMENT • • • • ••
1.1.3 MODULE ELEMENT • • • • •

1.2 NOS/VE STRUCTURE • • • • ••
1.2.1 CPU MONITOR ENVIRONMENT

1.2.1.1 CPU Monitor Request Handling
1.2.2 NOS/VE MODULES ENVIRONMENT •••

1.2.2.1 Task Services Modules ••••••
1.2.2.1.1 TASK SERVICES REQUEST HANDLING
1.2.2.2 Task Monitor Modules ••••••

1.2.3 OPERATING SYSTEM TASKS •••••.•
1.2.4 OPERATING SYSTEM COMMUNICATION • • • •
1.2.5 OPERATING SYSTEM ENVIRONMENT SUMMARY
1.2.6 SEGMENT USAGE •• • • • • • • • • • .

1.2.6.1 Ring Assignment for a User Task .•
1.2.6.2 Segment Assignments for User Modules

2.0 SYSTEM TABLES AND INTERFACES •
2.1 GENERAL GUIDELINES • • .•• • •
2.2 TABLES AREAS • • • • • • • • • ••.
2.3 TABLES AREA GUIDELINES • • . • •••

2.3.1 JOB PRIVATE FIXED • • • • • • • • • . • • • • .
2.3.1.1 Job Private Fixed Static Section •
2.3.1.2 Job Private Fixed Dynamic Section

2.3.2 JOB PRIVATE PAGEABLE • • • • • • • • . • •
2.3.2.1 Job Private Pageab1e Static Section
2.3.2.2 Job Private Pageab1e Dynamic Section

2.3.3 TASK PRIVATE • . • • • • • • • • • • .
2.3.3.1 Task Private Static Section •• • •
2.3.3.2 Task Private Dynamic Section .•••.•••

2.3.4 MAINFRAME PAGEABLE • • • • • • • • • • .
2.3.4.1 Mainframe Pageab1e Static Section
2.3.4.2 Mainframe Pageab1e Dynamic Section . . • • .

2.3.5 MAINFRAME WIRED • • • • • • • . • •
2.3.5.1 Mainframe Wired Static Section •.
2.3.5.2 Mainframe Wired Dynamic Section

A-I

1-1
1-1
1-2
1~
1-5
1-7
1-7
1~
1~
1-8
1-9
1-9
1-9

1-10
1-11
1-12
1-12
1-13

2-1
2-1
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-6
2-6
2-6

1.0 SYSTEM STRUCTURE

A basic objective is to provide a well defined system structure which will
result in a highly reliable system and one that can grow over time in an
orderly and cost effective manner.

In order to meet this objective, a set of hardware and software conventions
are imposed on both user and system code. This allows the normal protection,
debugging, loading, code maintenance, accounting, and error handling methods
of the user and the system to be the same. This also facilitates movement of
services between user and system.

1.1 GENERAL STRUCTURE ELEMENTS

Jobs, tasks and modules represent the basic structure elements for all
services provided by NOS/VE. They have the general relationship shown in
figure 1. Each element has a set of unique execution attributes, interface
conventions and resource requirements. System and application programmers
make services available to users with combinations of these elements.

System
I T'--------,-, · · · · · · · · · · · · · · · i

I I I
Job(l) Job(2) Job(N)

I
.,..-____ 1 •••••••••••

I I I
Task(l) Task(2) Task(N)

I
-,--_____ 1 •••••••••••• •

I I I
Module(l) Module(2) Module(N)

Figure 1 - Structure Elements

Each level contains a system element which monitors the progress of other
elements within that level. The job level contains a system job which
schedules, initiates, and terminates (normal or abnormal) user and system
jobs. Within each job resides a system task which initiates and terminates
tasks of the job. Within each task resides a collection of system modules
which assist in the initiation and termination of the task.

Company Private Rev 4 October 1980

A-2

1.1.1 JOB ELEMENT

The general facility for presenting work to the system is a job. Jobs run on
behalf of a specific user whose identification is the basis of the system
access control mechanisms. In addition to batch or interactive jobs that are
submitted by end users, the operating system and various subsystems not
initiated by end users also run as jobs. Since all jobs are protected and
compete for resources via the same mechanism, it is anticipated that the
addition of new subsystem jobs will be quite straightforward.

Every job consists of multiple tasks. An important characteristic of a job is
that all tasks esecuting within the job share a common set of operating
system services that are determined at the time of job initiation. These
service modules, called task services, are the mechanism through which
operating system functions are made available. They are constructed from a job
templete that is selected based on job type. This allows different jobs to
have different services.

1.1.2 TASK ELEMENT

A task is the execution of a program. A program is a set of modules organized
to perform some specific function (e.g. compile COBOL statements, copy a
file). Tasks are protected from one another, can be dynamically created and
destroyed, can communicate with other tasks and can execute asynchronous with
other tasks. Tasks are the only asynchronous execution unit supported by
NOS/VE.

Tasks then are the environment for providing functions that are natural to
place outside of the requesting environment. Tasks are requested via an
operating system request. They have their own (clock) accounting, scheduling,
and execution characteristics. Tasks can come and go independently and
represent a mechanism which is used to control memory usage (e.g., each pass
of a compiler as a separate task). Protection is enforced by different segment
descriptor tables for the caller and callee.

Tre figure below illustrates a task environment.

Company Private Rev 4 October 1980

A-3

ANY
TASK

+-----------+
\ I
\ USER \
\ MODULES \
\ \

\-----------1-----------+ I PROTECTED \ \
I RUN TIME \ \ RING BOUNDARY
\ MODULES I 1
I I I
1-----------1-----------+ I I
1 OS 1
I MODULES 1

1 \

+-----------+ A A A

+------+ +-------+
\
v

+----------+
\ I
\ EXCHANGE I
I PACKAGE \
1 \

\ \

+----------+
EXECUTION

v
+----------+ \' \

\ SEGMENT 1
I DESCRIPTOR \
I TABLE I
I I
+----------+

PROTECTION

v
+----------+
\ 1
\ \
\ QUEUE \
\ \
\ \

+----------+
COMMUNICATION

Every task looks similar to NOS/VE in that it has an exchange package which
defines execution status, a segment descriptor table which defines protection,
a queue which defines a communication path and a collection of modules which
define the program. The collection of modules can include "user" modules,
application or run time service modules and operating system modules. The
address space of each task is subdivided by a ring protection hierarchy. An
attribute of a module is its ring of execution. Each task will include
modules which are protected from each other by executing in different ring
brackets.

Company Private Rev 4 October 1980

A-4

All tasks, regardless of the type of function they perform, have the same
appearance as illustrated below.

USER PRODUCT SET OS
TASK TASK TASK

+------------+ +------------+ +------------+
I I I I I I
I USER PROGRAM I I COMPILER I lOS PROGRAMI
I I I I I I
I MODULES I I MODULES I I MODULES I

I
I

+------------+ +------------+ +------------+
I PROTECTED I I PROTECTED I I PRO TE CTED I

I I I
I RUN TIME I I RUN TIME RUN TIME
I I I
I MODULES I I MODULES MODULES

I
I

+------------+ +------------+ +------------+
I I I I I I
I OS I I OS I I OS I
I MODULES I I MODULES I I MODULES I

+------------+ +------------+ +------------+

1.1.3 MODULE ELEMENT

Modules are the environment for the set of services that are natural to place
within the environment of the caller. These services are provided as
procedures and are interfaced via the standard procedure call. They have the
same (clock) accounting, scheduling, and execution characteristics as the
caller. Examples include file access methods, loading, table handling and
Fortran object time. The available services can be added dynamically by
explicit requests of the loader. Protection enforced by the ring hardware may
exist between the caller and callee.

Company Private Rev 4 October 1980

A-S

1.2 NOS/VE STRUCTURE

NOS/VE utilizes the task and module structure elements to package the
operating system services. Some of its tasks execute as part of the "user"
jobs and some execute as part of NOS/VE system jobs. NOS/VE also collects
together a set of modules that perform the lowest level operating system
functions into a special environment called the CPU Monitor. The operating
system services are provided within three basic environments:

CPU Monitor (one per system)
NOS/VE Modules (modules within each task)
Operating System Tasks (executing within "user" jobs, and executing within
"system" jobs)

Every request a user makes of the system is translated into communication with
one or more of these environments. Whenever operating system extensions are
being implemented, the conventions and interfaces of these environments must
be understood and used.

1.2.1 CPU MONITOR ENVIRONMENT

CPU Monitor is that portion of the operating system that is most directly
related to the hardware environment. It provides:

• Basic intertask communication (signals)
• CPU Dispatching
• Basic CPU Scheduling
• Changing Task Status
• Interrupt Handling
• Page Management
• Basic Physical I/O Management

CPU Monitor is interrupt driven, nonpageable, and represents the most
thoroughly debugged, least frequently changed code within the operating system.

1.2.1.1 CPU M~nitor Request Handling

CPU monitor requests are only made by Task Services and Task Monitor
functions. These requests are made using the hardware exchange instruction.
Parameters are passed in the hardware registers.

Company Private Rev 4 October 1980

A-6

1.2.2 NOS/VE MODULES ENVIRONMENT

NOS/VE modules are the set of operating system modules that execute within the
environment of a task. These modules perform the operating system functions
that are most directly related to the requestor's environment. To provide for
maximum protection and RAM these modules are divided into Task Services
modules and Task Monitor modules.

1.2.2.1 Task Services Modules

Task services modules provide the user interface to NOS/VE capabilities for:

• File Management
• Access Methods
• Program Management
• Job Management
• Resource Allocation

Task services is a collection of protected procedures. These procedures are
directly callable by user code via the call instruction. The call causes a
change in privilege for the called procedure, allowing these operating system
services to execute with more or different privileges than the calling
procedure. This type of structure allows protected operating system services
to execute within the user environment. Task services provide a central
interface for all requests and responses made and received by a task. If the
requested service is not supported directly by task services, the request is
passed on to CPU Monitor or to an operating system task. Task services
occupies rings 3 to 6 within each address space. Only ring 3 is used for
release 1 of NOS/VE.

1.2.2.1.1 TASK SERVICES REQUEST HANDLING

There are multiple task service entry points gated to requestors. Every call
to a task service must supply a status variable of type ost$status. The
parameter rules will conform to those of CYBIL.

1.2.2.2 Task Monitor Modules

Task monitor modules perform the more privileged functions of NOS/VE and
execute at rings 1 and 2. These modules are a collection of procedures that
interface to NOS/VE basic system tables (e.g. segment table, system file
tables, catalogs, execution control tables) and to the CPU Monitor. The ring 2

Company Private Rev 4 October 1980

A-7

procedures manage job global tables (i.e. accessible in all tasks of a job).
The ring 1 procedures manage system wide tables (i.e. accessible in all tasks
of all jobs) and are more privileged and critical to the integrity of the
system. Task Monitor procedures are not directly callable by "users"; only
NOS/VE Task Services procedures can directly interface to Task Monitor
procedures.

1.2.3 OPERATING SYSTEM TASKS

Operating system tasks are those portions of the operating system that are
relatively independent of the requestor's environment. They may execute
asynchronous to the requestor and provide major portions of:

• Job Management
• Job Scheduling
• Operator Communications
• Device Drivers
• Hardware Maintenance

Execution of a system task is triggered by a signal passed into its
communication queue. Tasks may execute in different processors. The device
drivers, for example, are system tasks which execute on the IOU.

1.2.4 OPERATING SYSTEM COMMUNICATION

The operating system functions communicate using a basic signal handling
service. The signals have a fixed format, a maximum size and are used by the
operating system primarily for communication between address spaces. CPU
Monitor is responsible for placing signals into the proper signal queue and
for notifying the proper Task Monitor that a signal exists. Task Monitor is
responsible for taking signals out of the communication queue and passing it
to a Task Services signal handler. Routing, based on signal type, to a signal
processor within Task Services will be effected by the Signal Handler.

Company Private Rev 4 October 1980

A-8

1.2.5 OPERATING SYSTEM ENVIRONMENT SUMMARY

The following figure summarizes the basic environments and interfaces of
NOS/VE.

TASK(l) TASK(N)

+---------------+ +---------------+ I USER I I I
I MODULES I I I

1 +---------------+ +---------------+ I PROTECTED RUN I I I
I TIME MODULES I I I

1 +---------------+ +---------------+
I TASK SERVICES I -----TRAP I I -----TRAP
I TASK MONITOR I I I
+---------------+ +---------------+ A2 A

I
I
+--------------------+--------------+

I
2v

+---------------+
I

CPU -------INTERRUPTS 3
I MONITOR
+---------------+

1 - INTERFACED VIA THE CALL INSTRUCTION, CYBIL PARAMETERS FOR COMMUNICATION,
RINGS FOR PROTECTION

2 - INTERFACED VIA THE SYSTEM CALL, SIGNALS FOR COMMUNICATION, SEGMENT TABLES
FOR PROTECTION

3 - INTERRUPTS ARE PROCESSED BY CPU MONITOR OR ARE TRANSLATED INTO SIGNALS

Company Private Rev 4 October 1980

A-9

1.2.6 SEGMENT USAGE

1.2.6.1 Ring Assignment for a User Task

I AREA DATA PORTION I CODE PORTION WHEN CREATED I

I I I
+-------------+-------------------+-----------------+---------------------+
I USER I WORKING STORAGE, I APPLICATION I AT LOAD TIME I
I APPLICATION I STACK, I PROGRAM I ACCORDING TO I

I PROGRAM I USER DATA I I LIBRARY LIST IN I
+-------------+-------------------+-----------------+ PROGRAM DESCRIPTOR I
I PROTECTED I WORKING STORAGE, I DATA BASE I I

I RUN TIME I STACK I MANAGER I I

I MODULES I I I I

+-------------+-------------------+-----------------+---------------------+
I TASK I WORKING STORAGE, I RECORD MANAGER I A JOB TYPE TEMPLATE I
I SERVICES/ I STACK, I LOADER, I SUPPLIED BY SYSTEM I

I TASK I TABLES FOR JOB, I PROGRAM COMM., I GENERATION WHICH IS I

I MONITOR I TABLES FOR SYSTEM I TRAP HANDLING I USED BY JOB I

I MODULES I I I INITIATION I
+-------------+-------------------+-----------------+---------------------+

This diagram illustrates:

1. Examples of code which exist at each ring bracket

2. Examples of private data at each ring bracket

3. When the data and code segments are created

Entry points to task services are created by
system generation within the loader symbol table
and are dynamically linked to external references
from user and protected run time procedures by the
loader.

c

Company Private Rev 4 October 1980

A-lO

1.2.6.2 Segment Assignments for User Modules

The following example demonstrates how the loader allocates and
initializes segments based on information contained in compiler generated
object text.

Object Text Topology

RECORD TYPE

(identificaton record)

(section definition)

(interpretive text)

(transfer ••• end of text)

- Generated Object Text

SAMPLE CONTENTS

name, date, generator name

code, binding, working storage, protection

text, replication, bit, entry, external

CODE SECTION (R,X) STATIC SECTION (R,W)

• Non selfmodifying instructions • Modifiable data

BINDING SECTION (8) LITERAL SECTION (R)

• Base address of other sections • Constant data
• All procedure descriptions

DYNAMIC WORKING STORAGE SECTIONS (R,W)

Common blocks
• Data allocated at run time

Company Private Rev 4 October 1980

A-II

Mapping sections to segments (assume 2 modules) providing an executable
entity.

Segment N (R,X)
Code Section M(l)
Code Section M(2)

seiment N+3 (R)
Li erals M(l)
Literals M(2)

LGO file Module 1
Module 2
EOF

Segments

Segment N+l (B)
Binding Section M(l)
Binding Section M(2)

Segment N+4 (R,W,E)
Universal Heap

(Grow)

Segment N+2 (R,W)
Static Data M(l)
Static Data M(2)
Any Named Common

Segment N+5 (R,W,E)
Run Time Stack

(Grow)

The binding segment contains pointers to static, literals, code and other
binding sections. The advantages of using segments include:

• Independent growth
• Integrity by separation
• Supports code sharing
• Non rewrite of code and constants (paging or swapping)

R - Read
E - Extensible
B - Binding
W - Write
X - Execute

Company Private Rev 4 October 1980

A-12

2.0 SYSTEM TABLES AND INTERFACES

2.1 GENERAL GUIDELINES

The operating system is dependent on the use of tables to provide interfaces
between different system modules and between the system and the user, and to
describe the basic objects supported by the system and how these objects are
related. When a table is defined within the system, consideration must be
given to the following six general characteristics.

• Protection - Should the information be protected by hardware from
inadvertent write operations? Must the information be protected from
malicious write/read operations?

• Scope - Should the information be local to a user or should it be made
global and shareable by other users? In general, information should be
globally defined only when required. Keeping information local to a user
has two advantages: 1) this information is private and no other user can
interfere with it, and 2) if most of the tables required by a Job are
collected locally, it is easier for the system to keep track of a user
(swapping, restart, paging critical tables, etc.).

• Residence - Should the information be pageable or locked down? Whenever
pOSSible, information should be pageable. It should be locked down only
when an obvious efficiency case exists. Three points can be made: 1)
System Monitor cannot tolerate access interrupts, so any information
referenced by System Monitor must be in real memory at the time of
reference, 2) I/O channels use absolute addresses and require that real
memory exists when in operation, and 3) there are degrees of paging, that
is, some information must be present if a task is to use the CPU and can
only be explicitly removed.

• Life Cycle - When will the table come into existence and when will it
disappear? The data to describe a job is divided into environments which
will go away, when the job terminates, when a task terminates, when the
system crashes, and environments which will live forever unless explicitly
removed.

• Crash Resistance - When the system crashes, how will the tables be
reconstructed? What impact will there be on recovery if the tables cannot
be reconstructed? Will the corrupting of the tables cause a system crash?
What protection will be provided to detect corruption?

Company Private Rev 4 October 1980

A-13

• structure - The general structure of each of the NOS/VE Tables Area is the
same and allocation of entries within a particular table is the same.

The contents (entries) of NOS/VE are position independent, that is,

a) the order and number of static entries in tables areas can vary from build
to build;

b) the order and number of static entries in tables areas (task and job
private) can vary among job types; and

c) the order and number of dynamic entries in the tables areas can vary among
instances of execution.

The allocation of entries in NOS/VE tables should require minimal interaction
among development projects; is controlled at the source level; via CYBIL; and
is managed by execution and the system generator.

The general structure, allocation technique or order, value assignment tactics
of NOS/VE tables should not impose undue constraints on the structure of
entries contained in tables areas.

The allocation of entries and the assignment of values to entries in NOS/VE
tables should be postponed as long as is feasible - priority order:

a) execution time
1) first use time
2) task initiation time
3) job initiation time
4) system initiation time

b) system generation time
c) source (compile) time.

2.2 TABLES AREAS

TABLES AREA

TASK SHARED
TASK PRIVATE
JOB PRIVATE PAGEABLE
JOB PRIVATE FIXED
MAINFRAME PAGEABLE
MAINFRAME WIRED

Rl, Rl

3, 13
3, 13
2, 13
1, 3
1, 3
1, 3

Company Private Rev 4 October 1980

A-14

2.3 TABLES AREA GUIDELINES

2.3.1 JOB PRIVATE FIXED

The Job Private Fixed tables area is the container for tables shared among
monitor and all tasks of a job. Job Private Fixed tables reside in
non-pageable memory because of monitor access. Therefore, care should be
exercised to minimize the amount of space allocated to entries which are not
accessed by monitor.

2.3.1.1 Job Private Fixed Static Section

The Job Private Fixed static section is the container for statically allocated
tables entries. Static entries are allocated at compile time, via CYBIL static
variable declarations, which specify the Job Private Fixed tables area.
Statically allocated table entries are those which are somewhat constant in
nature for the duration of the job. Such entries may also be "root" pointers
to dynamically allocated entries in the Job Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.1.2 Job Private Fixed Dynamic Section

The Job Private Fixed dynamic section is the container for dynamically
allocated (CYBIL allocate or next statements) tables entries. Dynamic entries
vary in number and size - their lifetime is often less than the life of the
job. DynamiC entries whose lifetime is less than that of the job must be freed
(CYBIL free statement) when their lifetime expires - the responsibility for
freeing lies with the ultimate allocator.

2.3.2 JOB PRIVATE PAGEABLE

The Job Private Page able tables area is the container for tables shared among
all tasks of a job. Table entries residing in this tables area are not
accessible by monitor.

Company Private Rev 4 October 1980

A-IS

2.3.2.1 Job Private Pageable Static Section

The Job Private Pageable static section is the container for statically
allocat.ed table entries. Static entries are allocated at compile time, via
CYBIL static variable declarations, which specify the Job Private Pageable
tables area.

Statically allocated table entries are those which are somewhat constant in
nature for the duration of the job. Such entries may also be "root" pointers
to dynamically allocated entries in the Job Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.2.2 Job Private Pageable Dynamic Section

The Job Private Pageable dynamic section is the container for dynamically
allocated (CYBIL allocate or next statements) table entries. Dynamic entries
vary in number and size - their lifetime is often less than the life of the
job. Dynamic entries whose lifetime is less than that of the job must be
freed (CYBIL free statement) when their lifetime expires - the responsibility
for freeing lies with the ultimate allocator.

2.3.3 TASK PRIVATE

The Task Private tables area is the container for tables shared among
procedures in task services and task monitor of a task. Task Private is
pageable. Table entries residing in this tables area are not accessible by
other tasks or monitor.

2.3.3.1 Task Private Static Section

The Task Private static section is the container for statically allocated
tables entries. Static entries are allocated at compile time, via CYBIL static
variable declarations, which specify the Task Private tables area.

Statically allocated table entries are those which are somewhat constant in
nature for the duration of the task. Such entries may also be "root" pointers
to dynamically allocated entries in the Task Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

Company Private Rev 4 October 1980

A-16

2.3.3.2 Task Private Dynamic Section

The Task Private dynamic section is the container for dynamically allocated
(CYBILallocate or next statements) table entries. Dynamic entries vary in
number and size - their lifetime is often less than the life of the task.
Dynamic entries whose lifetime is less than that of the task must be freed
(CYBIL free statement) when their lifetime expires - the responsibility for
freeing lies with the ultimate allocator.

2.3.4 MAINFRAME PAGEABLE

The Mainframe Page able tables area is the container for tables shared among
all jobs in the system. This tables area is writable by Rl task monitor and
readaole up to task services. The mainframe page able tables area is not
accessible to monitor.

2.3.4.1 Mainframe Pageable Static Section

The Mainframe Pageable static section is the container for statically
allocated table entries. Static entries are allocated at compile time, via
CYBIL static variable declarations, which specify the Mainframe Pageable
tables area.

statically allocated table entries for those which are somewhat constant in
nature for the duration of the system. Such entries may also be "root"
pointers to dynamically allocated entries in the System Private tables area.

The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.4.2 Mainframe Pageable Dynamic Section

The Mainframe Pageable dynamic section is the container for dynamically
allocated (CYBIL allocate or next statements) table entries. Dynamic entries
vary in number and size - their lifetime is often less than the life of the
system. Dynamic entries whose lifetime is less than that of the system must be
freed (CYBIL free statement) when their lifetime expires - the responsibility
for freeing lies with the ultimate allocator.

Company Private Rev 4 October 1980

A-17

2.3.5 MAINFRAME WIRED

The Mainframe Wired tables area is the container for tables shared among
monitor and all jobs in the system. The Mainframe Wired tables reside in wired
memory due to monitor access. Therefore, care should be exercised to minimize
the amount of space allocated to entries which are not accessed by monitor.

2.3.5.1 Mainframe Wired Static Section

Only monitor software can allocate static table entries in the Mainframe Wired
static section.

The Mainframe Wired static section is the container for statically allocated
table entries. Static entries are allocated at compile time, via CYBIL static
variable declarations, which specify the Mainframe Wired tables area.

Statically allocated table entries are those which are somewhat constant in
nature for the duration of the system. Such entries may also be "root"
pointers to dynamically allocated entries in the System Private tables area.
The allocator of a static entry is responsible for the initial value
assignment to that entry.

2.3.5.2 Mainframe Wired Dynamic Section

The Mainframe Wired dynamic section is the container for dynamically allocated
(CV8IL allocate or next statements) table entries. Dynamic entries vary in
number and size - their lifetime is often less than the life of the system.
Dynamic entries whose lifetime is less than that of the system must be freed
(CYBIL free statement) when their lifetime expires - the responsibility for
freeing lies with the ultimate allocator.

Company Private Rev 4 October 1980

A-IS

CLASS EVALUATION

Cfj 1:\ CONTR..OL DATA
'::I r=J CORJ'O~nON

CLASS CYBIL DATE
-- --------------INSTRUCTOR __ __

CLASS OBJECTIVES ____ U po __ n_c_o_m p ... l_e_ti_o_n_o_f_t_h_is_co_u_r_s_e_t_h_e_st_ll_de_n_t_w_i_l_l_b_e ___ _

prepared to implement software designs in CYBIL.

I. OBJECTIVES

A. Were the stated objectives the same as your objectives in attending this class?

_ Yes _ No - Please explain the differences.

B. In your opinion, did you attain the stated objectives?

_ Yes _ No - Please explain.

C. What topics do you feel were the most important?

D. What topics do you feel were the least important?

E. In your opinion, were any topics omitted? If so, what are they?

ll. INSTRUCTION

A. Was the instructor effective in presenting the class material? Please explain.

10118

CONTROL DATA PRIVATE
A-20

B. Was the instructor knowledgeable in the subject material? Please explain.

C. In your opinion, were the instructor's examples effective in clarifying topic areas?

III. REFERENCE :MATERIALS

How do you rate the reference materials and handouts used in the class?

IV. COURSE IN GENERAL

A. Were the assigned projects meaningful, and were they good exercises for the material
covered?

B. List any suggestions you have for improvement concerning' classroom facilities and,
materials.

C. What changes in the class would you make if you were the instructor?

D. Would you recommend this class to others in your company or department? vVhy?

Optional:
Name and/or Company

A-21
CONTROL DATA PRIVATE

	001
	002
	003
	004
	005
	006
	007
	008
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-20
	A-21

