CONTROL DATA CYBER 180.

. Doc. No. Aﬁ'ﬁtg@o o
Rev.AE

BCCB/gpproved D, mber 19 1989: o

T. C Boos H T Koppen

D M- Powers

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

- DOC. ARH1700

REV. AE

DATE December 19, 1989
PAGE ii

Record of Revisions

A-G ‘Revisions A through G of this document are identical to revisions A through G
(03/12/76) - of the Integrated Product Line (IPL) Processor-Memory Model-Independent
- General Design Specification, Doc. No. ASL00211, which is now obsolete.
H-Y " Revisions H through Y incorporated changes approved between March 1976 and
(12/18/85) 'December 1985.. Contact AD&C (ARH293) for a detailed listing of these changes.
| Z This revision mcorporates DAP Nos. ARH6723, ARH7085, ARH7185, ARH7195,
(06/01/86) and ARH7248; and mlscellaneous editorial and clanﬁcatxon changes.
AA . 'This revision incorporates DAP Nos. ARH7251, ARH7266, ARH7269, ARH7402
(03/18/87) ARH7425, ARH7426, ARH7525, ARH7571, ARH7611, ARH7612, and ARH7648;
- and miscellaneous editorial and clarification changes. ~
~ AB This revision incorporates DAP Nos. ARH7569, ARH7570, ARH7613, ARH7645,
(12/18/87) ARH7657, ARH7665, ARH7822, ARH7836, ARH7837 ARH7839 ARHT 847,
'ARHT7 849 and ARH7899 and mlscellaneous editorial "and clarification changes
AC ‘This revision 1ncorp_orates DAP Nos. ARH7855, ARH7987, ARH7996, ARH8108,
(07/15/88) ARHS8259, ARH8260, ARH8261, ARH8267, and ARH8268; and miscellaneous
~ editorial and clarification changes. This edition obsoletes all previous editions.
AD Thié revision incorporates DAP Nos. ARH8290, ARH8391, ARH8510, ARH8728,
(09/01/89) and ARH8786; and miscellaneous editorial and clarification changes. Due to
‘strategy changes, approved DAP Nos. ARH8257, ARH8258, and ARH8262 were
not incorporated in this revision; similarly, approved DAP Nos. ARH8259,
ARH8260, ARH8261, ARH8267, and ARH8268 (previously incorporated in
- Rev. AC) were w1thdrawn from the MIGDS, removmg all references to the I4CC
- and 940 systems , ,
AE o k'I‘hxs revision 1ncorporates DAP Nos. ARH8732 ARHB8877, ARH8895 and
(12/19/89)

ARH8910 and miscellaneous edxtorxal and clarific cation clganges

- . s s o A v

CONTROL'DATA vama

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC .
- DATE July 15, 1988
Architectural Design and Control | PAGE iii
Table of Contents
1.0 INTRODUCTION.........ccccormmerrrmrnnresrsisssscssssemsesnsesessssssssssssssssssssssssenssssesessensesssnes 1-1
1.1 SCOPE.......outeetirtirnisitesiesensssscssssansssssssasssssssssessssssessesssssssssssssssssssssssesssssssssessenne 1-1
1.2 APPLICABLE DOCUMENTScovvnrnnrrninsisimessescessseesssssnsesssassssasssssssssssssesesses 1-1
121 Control DOCUMENLS .uu.cvecusicrsisnsscrsresnsssssnssassssssssissesosssssssessssssans peeresierneesaessnanes 1-1-
12.2 Reference Documents.........cceereveruraces Kttt e na s enens et s as s e bbb e e tessbe e e anerans 1-1
1.3 CONFIGURATIONS..........cuue.. 020seraegzsasersanssnssissesrestsbsssaiesnerssensaasasurerassessaressasenass 1-2
13.1 Interelement Transfer Paths...........cccvuuevurernrennce R sennessnsonsarsasserssasarsas 1-2
13.2 Interelement Clock......... vosusngenssassussassssstssssstserssresaenei bosnnesnroes eviasassessisssainsasisersessen 1-2
1.3.3 Interelement Connection AlLernatives.........eeeeeeeverereeriseessresresserssosessssonsenns 1-2
14 GENERAL TIMING CONSIDERATIONS.......cvveevuerrosreseeressiosressserssessesssssesen. 1-3
1.5 SYSTEM ELEMENTS........ccccovunmmummrnnesressssnsssssessessssesesssssssssssssssssossssesssesessmseno. L odh
151 Element Identifiers (EID)......c.ccocvvueiuverecriersmnenseeseseesssesessessesssssssssess s s 1-4
1.5.2 Options Installed (OI)........ccoorurvveurvrerennnn. reiesresrene e be s e erenaenas eessessssnsiseeranns 1-5
1.5.3 Microcode Naming Convention.............ceeveeveeerernssessssssssnnes TR S RCIN 1.5
154 Configuration GUIdElINeSevueurveecescensenssssesscessesseessesesessseses s eensees, 1-
155 Systems SUPPOTLEd........c.cerrevmrreerrrrurcrnrsssernseesssesseessiosesssessessas. vesssniennssesissnsinsa 1-7
1.6 MODEL DIFFERENCESoccevvtnituiuieninereseesesssssessssssssesessssssesse oo een 1-10
21 GENERAL DESCRIPTIONevvvuruuriesceneeeesersssessessssesssosessess e seeeee oo 2-1
211 GeneTal REISLETSouuveereennrrnnrtnsisnieeneseensessssssessesssses s e e 2-1
21.1.1 P REGISLET c.ucvuuveciirrecrsrerncasin s esssssscneeessssesses s ssessessss e e Veorseions 2-2 .
2.1.1.2 A REEISEOTS ...ttt ccetesseesssansssessesss s w22
21.13 X REBISLOTS cuovvenvvecitecreiceeries st seessnesssssssess s e s 2-3
212 Programming ReStriCtiONSevvueevvevveenereneeeossesssssees oo 2-3
213 INSEIUCLIONS cocvovurirvievocirecceeneesete st ceossceeneesss s e 2-4
2.13.1 Formats jkiD and SjKiDccouuervenriiuneceniesesesrssessresssessses s 2-4
2.1.32 FOIMAL JK ittt osaeesseeseseess s 2-4
2133 Format jkQ.......... Shesteesinsnrenas it asat s sssansanersesransaentonnsemn T2 |
2.1.34 P Address Access. eeesrerernecsaeanensesereesssesannnl eirieresereresennreseosessnnnanee 2-5
2135 Unused Bits, ...l i B oo 2-7
2.1.3.6 Nomenclatur L esrsacienverernacessnnensosinnneses eerevenenseeionnee 2-9
214 Address AFtHIMELic..... ... vceeememrveenirreeseeeseeesss e JUTUR 2-10
215 Address EXCEPtON .uuuuvnuuuvrvvveseesssssssnnnssssesssssssensssssessessssess oo 2-10
216 Instruction Reference NUMDeTS......uuvvvcvoeceemeeesnsesoesessoosoossooiin 2-10
2.1.7 Zero Field LENEtR c...ovuuuun..vcevveencecerionensesoseeeseeseesssss s 2-10
2.2 GENERAL INSTRUCTIONSoeeeeeeeeeeeeeeeomeessseoe oo 2-11
221 L08d AN SEOTE ...vvvvvvvvvstsssiumsssssseessassessseseneees e eeeeeeeessesesssees oo 2-11
221.1 Load/Store Bytes, Xk; Length Per S..........couevveveeeemmsrroeosooooooooo 2-11
2212 L0ad/Store Word, XK..........ccuuvcecrruermmnnsrrusmsenseesmmmsssssssossss oo 2-12
2213 Load/Store Bytes, Xk; Length Per XO0..........coovovooon et 2-13
2214 Load Bytes Xk; Length Per j......covvvuueevvoueeeeremeessesessssesss oo 2-13
2215 Load/Store Bit, XK.......o...ceecermrrumnssiosicssonneeceesssssssssses s 2-14
2.2.1.6 L0ad/Store Address, AK...........cc.ovruemmrruneiseeensesessssessssssss oo 2-15
2217 Load/Store MUMIPIEccoveeuumrrumrrennireeceneeeseemesesssses oo oo 2-16

CONTROL DATA PRIVATE . |

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE v
222 Integer Arithmetic crersesassasssersenaenene seesessusntrrarsasases sessnresserersaseninnne 2-19
2221 Integer SUM, XKccocvuveniinnnieriensnnnernessersssssssessesssessssssesssssssssssessessssssssssons 2-20
2222 Integer Difference, XKccccorvururunnne rreneseensnese s ssa st saessssbsnesaeneees 2-20
2223 Integer Product, XKcuvreeernrnnnnnnsnesssusssnssssssssssssssssssssscsssssssonsessasssssaes 2-21
2224 Integer Quotient, Xk........oeccoerurernrnnn. sassssssesssenseassassassassasereseieassbarioisos 2-21
2225 Half Word Integer Sum, XKR........cocevcerruerremrnnercrersscrsssessnssasesssssssssssssssesssenes 2-22
2226 Half Word Integer Difference, XKR.........c.covvuervererseusinessusesssscssssesosessssessseses 2-22
2227 Half Word Integer Product, XKkR.........coueerenreerenrinensessensesssncnsescssessessesssssesasns 2-23
2228 Half Word Integer Quotient, XKR.........coeerererersrersescssessssessesesseesssssenssessssssens 2-23
2229 Integer COMPATe........c.ciiceierecrenneescs s e ssnsesesases e esesseensessssassasns 2-24
223 BIanCh ...t sessssesssssssssssssssssssnsessnsssssssssesasseses 2-24
2231 Conditional, X.......cciveiriirenisiestisesssessssssssssessessssssssssssssssssessessssies 2-25
2232 Conditional, X Right.......cccccviiirnininrenirennricecsssesesesseessssssssssssssessenesesssses 2-25
2233 Branch and INCIement.........cccvvernrecneeescriisceieicseeseesesssssesesssessssesesesssssse 2-26
2234 Branch on Segments Unequal..........curcineeiverucniunensesescsessseessesssssssssessens 2-26
2235 Branch Relative..... ..ot eeaeesssesseseseesssssssssse e sesessesssssnns 2-27
2236 Intersegment Branch.........ccccoivveceniieeriniiineeeseeeessseesessssssssesesssssssses 2-27
224 CODY tirrerrr ittt sttt e et s e s e s 2-28
2241 Copy, Xk Replaced Dy Xj......cocvrcermrnrrerrerrersereiseesessensessessssssssessesssssssessesssssssens 2-28
2242 Copy, Xk Replaced BY Aj.....ccoccerevmreeerererrerireseesessesessessssssssssssesssssssssssssssessns 2-28
2243 Copy, Ak Replaced BY Aj.....c.cceuvueeeueeereenerecesieeeeeseesessssesssessesssssossssssssessses 2-28
2244 Copy, Ak Replaced by Xj.....cooevurervirirnieceneeeeneeseessssessessiesiessesses s, 2-28
2245 Copy, XkR Replaced by XjRcccvvurervernireerrneneeneeeeesssssesessessessessessessessesssons. 2-28
225 Address ATithIMeticccveeernriierneieiriiseisese et sesessesssssesesseesse s oo 2-29
2.25.1 Address Increment, Signed Immediatec.coovvvevereveveresonns erseneesssrssnenans 2-29
2252 Address Relative..........cvcecnivnivninnrecinsnesniiceeseeeceeesesseessesssssess s, 2-29
2253 Address Increment, Indexed...........ccvvuevveeeeeiereeeereeeeseneeees s oo 2-29
2254 Address Increment, Moduloc.uevcevecveeeicerssneeseseeesessessesoseseessees e 2-30
226 EDETc it ees e e e 2-30
226.1 Enter IMMediatecccocvermmircres e eeeee e ee e 2-30
2.2.6.2 Enter Xk, Signed Immediate................eo.eeveeeveeereereseersesosssoossooooooosososoooe 2-30
2.2.6.3 Enter X0 or X1, Immediate Logical........cco.ou......... essbeseeseesensanivensensensassnsns 2-31
2264 EDer Signs oo eeseeessess et 2-31
226.5 Enter X0 or X1, Signed Immediatec..ccoveeemrereveressessoseossooooooooo 2-31
221 SHIfL 1ottt seee s sesesees e et 2-32
2271 SHift CIPCUIAT.......cvoviveecteneeiinnireei s eeseceseesssssssssees s 2-33
2272 Shift EN-Off....ucoviniiiecenrinneinniniis e ceecsressnsesesssessssessess s s 2-33
2.2.8 LOGICAL oottt 2-34
2281 Logical Sum, Difference, and Productcooeeeeeerverserversvorososooooooooso 2-34
2282 Logical COMPIEMENLceveuerrrruerrnrieeresesseeesseesssesssesssses s 2-34
2283 Logical INRIDit ...t seeeess s oo 2-35
229 Register Bit SHNg ..ot eessees e s 2-35
2.29.1 Is0late Bit Maskcocuurcuennireninnerecrnenseeneseeesesnssesesssses e esenn 2-36
2292 ISOIALE couvee ettt ettt e 2-36
2293 INSETL vttt sstesesses et st e 2-36
2.2.10 Mark t0 BOOIEAN.ccvvvrurrenrreteisetiaseeeseesessersssessesssese s sses e s 2-37

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE v
2.3 BUSINESS DATA PROCESSING INSTRUCTIONScvuvvereereereeesrssrssnsssones 2-38
23.1 General DesCriptioncvecsrenrunereeesesisenessessssssssssesessessessssssesssesssssssessssssssens 2-38
23.1.1 OPEration Codescoueuervmruermnrunernnrsisssnemmssssesessesssessssssssessssessassesssesssssssssssne 2-39
2.3.1.2 ACCESS TYPES....cuciuircrcrnnennrnsinesessasssssssnsssssssssssssssssessesssssnsssessssssssassssssssssoes 2-39
2.3.1.3 Undefined Results for Invalid BDP Dataccceouevuemereeeesmnseesssssiessssssnsns 2-40
2314 OVETIAD c..etritiiiiris st sstessssesssssssssssesssessesasessees e 2-40
232 Data DESCIIPLOrS.......cvcuverimreiesenrereierrersersesssimsscssssssessssesssssssessesssssssssesssssesssens 2-40
2321 Data Descriptor INterpretation...........vueivereceniecesseoeessessessssssssssssesssssoses 2-40
23.2.1.1 BDP Operand Address, 0 Fieldcocoovuennnn..... teestsetsstessneeteereesteeraessenes 2-40
23212 BDP Operand Type, T Field........ccccceceemurereinernersirsessencsssnsensesessssssessessesnns 2-41
232.13 BDP Operand Length, F and L Fields.........coveeeieeeereeeresreseresessessssessessens 2-42
2322 Data and Sign Conventions.........ouuueererecensnencisnesenesesssseesssssssssssessessessonns 2-43
2.3.3 BDP NUIMETICuucuuininirniinsissiunesnsnnesress s ssssesssesssssssssssesssssessessssssssssssessessssssssssans 2-46
2.3.3.1 ATIERIMELIC .vuvevtereitiecicerestssess e sseae st aeeese e s s s s s s e 2-47
2.3.3.2 SRIft.cuririieeieteitiicc s s sttt s e st s s s s s s 2-49
2.3.3.3 MOVE ottt ettt sb s ese st sesessseas s sesesss e ss e s s s e sssemsenes 2-51
2334 COMPATISON .ucvuieriiinineeeneieetseis st et e eessessesse s ses s s s s ens 2-52
234 BYLE o b ettt s s st 2-52
234.1 COMPATISONoocveritiececeeeersee ettt sese s sseasssssenstes s esses s ses s e esseas 2-52
2.3.4.2 BYte SCAN....ouctiiiieisctccrnt sttt s 2-54
2.34.3 TIANSIALE ...oovvitiettcccee e e rssee e s ee e s oo n s 2-54
2344 MOV ..ottt et sces s es s e saes 2-55
2.3.4.5 Bttt ettt 2-55
235 Calculate SUDSCTIPLceerrirrrnrereiereeitecsesceeeeeeeeessssssessesses s ses s es s 2-61
2.3. Immediate Data..........c..cvuueucenennrinsiineeceesseeesesesesessssssss s e 2-62
23.6.1 Move Immediate Data, D(Ak) replaced by XiR plus D 5153 o RO 2-62
2.3.6.2 Compare Immediate Data, XiR plus D to D(Ak) per j, result to X1R.......... 2-63
2.3.6.3 Add Immediate Data, D(Ak) replaced by D(Ak) plus XiR plus D perj........ 2-64
24 FLOATING POINT INSTRUCTIONSooeveueeremeeresresseeseesesseos oo 2-65
241 FOrmat: 64-Bilccoveuureeeerinnrneresiccisseeseessceesessesssesesses oo eeseesens, 2-65
24.1.1 Standard NUIMDETSc.cocevreruerueineeeieeeineseeessssessesses s oo 2-66
24.1.1.1 Z3.oosttririestne e ettt et et e e sttt 2-67
24.1.1.2 N, ettt e bbbt et e s ebe et et ntoresaesnenes 2-67
2.4.1.2 Nonstandard NUMDEES..........c.uveiurieeenceceeeeesesecessessesseessees oo oo, 2-68
24121 FZL, 22 oottt s st e st et et 2-68
24122 EINF ottt s s s et 2-68
24123 FINDEF .oittctsrtectsssssnesssanssss s sssssssssssssesssssssssesssessssssssssss s 2-68
2413 Exponent Arithmetic.......o.ouueuerurivecieeeeecneeeecresseesissesies oo, 2-70
2414 NOIMALIZALION ..cocveireeireteneten et s e 2-70
24.15 ERCEDPLIONS ..ottt sesssessees s 2-70
24.1.6 Double Precision Register Designators..........coocevveveevervessorssrossesoeosoooons 2-70
2.4.1.7 USEr Mask Bits.......coccviueeenirininnrensisinesis s eeeesseseesssesssssssesreesesese s 2-71
2.4.1.8 Conversion (INE/FP) u......ccveevermruerueeeesinieiecereeseeesssessessss oo 2-71
24181 Convert from Integer to Floating Point..........coecevvvevveeresrsseseoooisooo 2-71
24182 Convert from Floating Point to Integer.............oceeeevemveveeerosreercercosoon, 2-72

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE i

24.1.9 ArithmetiC....cceimrnsersnsssncsnesnesnsenssnines assansssnssassatssinarsoniossassens 2-73
24191 Floating Point Sum/Differenceoveiuesnsenssisnsssssnsssesasssesssasssasisiscas 2-73
2.4.19.2 Floating Point Product........ccincimniennmissnssennmessssissns 2-76
24193 Floating Point QUotient........iiiimiminineiiiaien, 2-77
24194 Double Precision Floating Point Sum/Difference........ccceeceeervvrenccenrecnenes 2-79
2.4.1.9.5 Double Precision Floating Point Product.........ccoveeevenvenernersennennesnnnenenne 2-82
2.4.1.9.6 Double Precision Floating Point Quotientcceveinenivecinieniesnnennnenne 2-84
2.4.1.10 Branch..ciieiiiiiiessssies s ssssssssssssssssess 2-86
2.4.1.10.1 Compare and Branch.........cceruvurrurnie reetereenesssnnenesesassnsrtstsnisieaersersarene 2-87
2.4.1.10.2 Exception Branch ... 2-88
2.4.1.11 COMPATE..ccovuriisisrirismsnssesisissisessesisnsassismssenssnsssssssssssssssasssssssssssssssassassssesssssssssssnane 2-89
2.4.1.12 Results.......unviiirnrnsnsnnsensescncnnne reenrereeeteesarsensrtsb et st sae R SRt s R s s e nsRE s R e R senaan s 2-90
242 FOrmat: 32-Bit ..ccvcrireererecaneriesssenssssssssssesisissssesesmssssisassssesssssssasssssnossssssensssssenes 2-102
2.5 LOGICAL ENVIRONMENTcccoccerininininsisisinsissesnisassesnssesassnsssssesssssassssosesaass 2-102
25.1 Processor State RegiSters. ... 2-102
2511 Job Process State (JPS)....cc.eiiviiinenininnniinnnnnninnninscssessssissees 2-103
2.5.1.2 Monitor Process State (MPS)ccccereinininnsnnnenennninenienensssseesaissoens 2-103
2.5.1.3 Page Table Address (PTA)cccccoevrienernesnnsnsesesnscnsisisiiiisisssiesissiens 2-103
25.14 Page Table Length (PTL)....ccoccvieineeniiiinnmennnnnnsinnnsnssiisssnss s 2-104
25.15 Page Size Mask (PSM)......ccocveiiininreriininnissnismsssssssssssissssssssssssssssssasssasass 2-104
2.5.1.6 Element Identifier (EID)......ccccocerininrminineninninniennmensonisnesemssscnss 2-104
2.5.1.7 System Interval Timer (SIT).....cccoerinerniniivierinnninnnsesscsnsiei 2-105
25.1.8 Processor Identifier (PID)......cccovvieviniinininiiiciinnnininesscnesessso 2-105
2.5.1.9 Virtual Machine Capability List (VMCL) ...coovvviiierinirinieninncninninneseenences 2-105
2.5.1.10 Keypoint Buffer Pointer (KBP).......ccccvviiriinniinininiiennnsinnncsiiniis 2-105
252 Process State RegIStersccvieeiineniveicinnninsinnnsesneinnesssssen et 2-106
2521 Program Address Register (P)ccovevivivniinenninnnenscceiiissninnen 2-109
2.5.2.2 A ReGIStOIS covvuirrrcenisnerisiiniiiiiiistenistenss s sssss s ssestssssstssssssensesisnessas s 2-109
2.5.2.3 X REZISEETS oerviriiisriirissirisisiteisias s srs s sssassessestssssesssnssestesssesssststsssssusnsness 2-109
2524 Nt ASSIZNEd.cvcrireriiriiririinininririiiiissessessssnsss e sesesesess s st ssasssssssass 2-109
2525 FLAGS «ovoviveriinriecesesnsisiticsisenssersssnssssssmsssssenssssesssssessssssnsssnsssssssssssssssssassensasns 2-109
2.5.2.6 User Mask (UM)...cceereninmnuresssisisisismsisminisissiesmsassssssssssssesssnsssssssssssses 2-110
2.5.2.7 Monitor Mask (MM) c.cceceecrnereceresesssssssesisissesssissssesssserssessosssnsassssssnsssssssessss 2-110
2528 User Condition Register (UCR)......cccvieiiirnerninnmnniieinenenesessssisesies 2-111
2529 Monitor Condition Register (MCR) ...ccovuvvivninninniecninnevennesieiincen 2-111
2.5.2.10 Debug Mask (DM)cccouvierimiinienseisersunsenssessssssssssssssssssassssssssasssssessiessisiense 2-111
2.5.2.11 Keypoint Mask (KM)c.coteerernriverannns inessaesesrssasasrentestasasyaUsPROIS N AR S St e s 00 2-111
25212 Keypoint Code (KC)....couvurireriminrisimsmiiniinnsssnsinissssssnssssssnsesssssssssssessssisssisens 2-111
2.5.2.13 Process Inverval Timer (PIT) ..., 2-111
2.52.14 Base Constant (BC)cceveninnninsnnininiiniininenenieiimsmsneniessemseions 2-112
2.5.2.15 Model-Dependent Flags (MDF)c.coooiiinniinnncnnini. 2-112
2.5.2.16 Segment Table Length (STL)ccccuuvruriminnnnnnnciensesssiesinniie. 2-112
2.5.2.17 Untranslatable Pointer (UTP) ..o, 2-112
2.5.2.18 Segment Table Address (STA).....ccccuveenineneeiennisiisiiies 2-113
2.5.2.19 Last Processor Identification (LPID)......cccooivinniniencnnicneninniiiiiiininn 2-113
2.5.220 Trap Enables (TE) ... 2-113
25221 Trap Pointer (TP) ... 2-113
25222 DebugIndex (DI)......coumimiuniinsmiiminnesinsmnsssissisnsseessssesssssssisis s 2-113
25223 Debug List Pointer (DLP).................. eeeteree e bbb bbb e 2-114
25224 Top of Stack (TOS)....cceuiureirmnrinissiirnsisnseeisiss e 2-114
2.5.225 Model-Dependent Word (MDW) ..o 2-114

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. ~ AC
DATE July 15, 1988
Architectural Design and Control PAGE vil
2.5.226 Virtual Machine Identifier (VMID)..........ccconnmeuercassseseressassessssssessssssssnsssasess 2-114
25.227 Untranslatable Virtual Machine Identifier (UVMID).........ccecetrurururururunnee 2-114
2.5.2.28 Largest Ring Number (LRN)ccccecevreererraesereranees veestensesesasnsneneentne 2-114
25.2.29 Sample Program Instruction (SPI) Identifiercccosuseeureersusurusacacssesonsoncs 2-114
2.5.3 THINETS c.ocecveencercersensresressnasesssssesssssssesssasasssessasassssasessessesssnsssssses ..2-115
2.5.3.1 Process Interval Timer......ccciciicnnsnnncicsssennsorssnissssssssssssssssssnssassssssssssssnsses 2-115
2.5.3.2 System INterval TImMerc.ccccceerrrerrersnerereiereressesessesssesessessesssssassasesssassssens 2-115
254 Stacks . cestssneussessessssssastsnsasssssessasessnne 2-116
25.4.1 Stack Frames..... X reeaesisessessatsnnessensnssetentesaessensassnassas 2-116
255 Binding Section Segment.......cuvceesuensersersrsssscssenessessssssssessssnsssserssesesasasesssenes 2-119
2.5.5.1 Code Base Pointer SRRSO 2-119
25.6 Virtual Machine.......cccnimnnnniiensisscnnsisssssssinnsnsnssesisssssassasssssssssssssssesssssssssasses 2-120
2.5.7 System Deadstart.........ccccuecessssssuscncsssssescssssissscnsressesesesesensssasasssesesensssasasesssenes 2-120
2.6 SYSTEM INSTRUCTIONS.......ccounsusessrnssesssesssssssssssssssssosasesesssssssssessssessssssnsssasess 2-121
26.1 Nonprivileged System INStructions.......cccceeviersceereseeresrssesssereeseesessesessereesrenees 2-122
26.1.1 Program EITOTuiniiimisiiimsissiissssssssssassosisss 2-122
26.1.2 Call INIPECL.....ccoricirirrrinsarasnnssesisssnsnsesssrsssssssssessssssssssssssssssssssssssssesasnssssass 2-122
2.6.1.3 Call Relative....ciiiisininiiiisissiniiniisssinaiossesisessisissessssessssssssssssssssss 2-125
26.14 REUITcciiiriiicncinininssennnisessssasseissssinsssnsssonssssssssssssssssssasasnssesssasssssssss 2-127
2.6.1.5 POP cuririintinininienissiesesiesssssnssnsssesensesssssessassssstsssstssesessensesestessssessssensssesessenens 2-129
2.6.1.6 EXChANGE «..covrieirinrisiisissnsnsssisassnsnsnssessssisisssassssssssssssssssssssssssssasssssssssssssnsssnes 2-132
2.6.1.7 KeYPOINt ...ccicciinniriiiicnssinnssanssnssnscssnssassnssssssessssssssnssssssesssssassnssessssssssssases 2-133
2.6.1.8 Compare Swap........ eesetsasesebeitasenet srasasstenesessnesbenstssneseinaananion 2-134
26.19 Test and Set Bit.....c.cviiiiecenrcnrecininunencsiisrsssnsmsisssssesessesssessassssssssssesssssssens 2-136
2.6.1.10 Test and Set Page.......cccecererecerrrernnrencseseniseessessessesesessssssssessssssesesassssesesssssns 2-137
2.6.1.11 Copy Free RUnning CoUNLer........ccoceevtereuenennererenseresessnssnssaseesssessssassessssssses 2-137
2.6.1.12 Execute AIOTithImccocineninuneninesssonincniininiunissssonessssesesessasssasssssssssnsss 2-137
2.6.1.13 Unimplemented Instructions - Reserved Op Codes......c.cceceverenerrerenrrrrrenenes 2-138
2.6.1.14 Scope LOOP SYNCcrucureeeenniriesesisssassssssssssssssssasssssasasessssssssssasssasesesssssssnsssnsassss 2-138
2.6.1.15 Purge SFSA PUShAOWN......cccineiveninrnrnennnniesncsssecramenessssssesssassessssassesssssnsseses 2-138
2.6.2 Local Privileged MOde......cccceereririurusismnnnunsssnmmsesessesesssssssassssssssssssesesessssssasens 2-139
26.2.1 Load Page Table INdeX......ccccecerunirennernrencsenerenunsessseesecsssassneessessssssssssssessnes 2-139
2.6.3 Global Privileged MOde.......cccvuruieesennnessensnsessiosssesssesensesesesassssasesesssnssasasssaessseas 2-141
26.3.1 Processor INtEITUPL ..c.cuccceccicenenincninrnernnncscseesiesssssesesassessssseseessssesssessesesennes 2-141
2.6.4 MOnNItOr MOde.....ccreieissiriniinnsssesisssissssenssmnimasssssssssssssusasssssssssesssssssssssssssssssses 2-142
2.6.5 Mixed MOdEcueriniincnicnnrnnnnisesnisensesnsnsussissssmsssssssssassssssssssssesssessssssssssssesssassens 2-142
2.6.5.1 Branch on Condition Register.........cccccovirmeninernrennssenecsenensessesesssnensesenens 2-142
2.6.5.2 COPY wreniesreniassssssisssssnsnssssesresssossassasssnssssaressiosssnsessasessssssessssssssnssssessassassssesesans 2-144
2.6.5.3 PUTZE.ceiiiicncrcrinnnssnssnsnsesssssssasnssssenssssssssssssassssssssssssssssssnsssasssnsanssenssens 2-147
2.7 PROGRAM MONITORINGcccoccrnvenusecversnemansasessssenssnssssesassssesessassssnesassssasess 2-149
2.7.1 KEYPOINL cucvviririiriinininninisnsissisnisssisisessessasmesssassessssssssssssnssssessasssesssnsasssssss 2-149
2.7.2 DebUG .cuveciiiitiinieiesisnssisissiesessisissssisissssisssssssesssnssssssssssssnsnsssssssssresassensesesss 2-149
2.12.1 DEbUG LISt cu.ecurvrinirsiiiniicsentsnsiiesnnnisnsssssssssesssssscsssessssessssssssesessessssssssssssssans 2-150
2.72.2 Debug Code (DC) ...ceceuireriniceenasesesnsensiserescnssesesssassessesssesssssssssssssssessssssssssesans 2-151
2.72.3 Debug OPerationiisisiceensieresssescsissessassssssesssssssessssssses ... 2-152
2.724 Software INtErface.....cueieicierecrecrserrnsrrrseseniesesesessssssesesesssssssssssessassesesenssnes 2-154
27241 Defined Interactions - Debug Enabled..........cccoccvvienenrrruenerreesenrensenernens 2-154
2.72.42 Defined Interactions - Debug Not Enabled.........ccccccecvreerirenrrnevercennne. 2-155
2712421 Interactions with Debug.......ccoievinininieienninrcncenieneneesees e 2-155
212422 Enabling Debug.......ccviieisinriisssesisisniesissesssessnsnsessssssssesssnsssesssnsossses 2-156

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS

ARH1700
AE
December 19, 1989

Architectural Design and Control PAGE viii
2.8 PROGRAM INTERRUPTIONS.......ccocentmriniesurrerireranansniseserasnans et rasaens 2-157
28.1 Monitor Condition RegiSterccvererenrneiisnnrinnesniinsnrienieinneneniesessnesessssncens 2-166
28.1.1 Detected Uncorrectable Error (MCRA48)covviviiininnenenninnneniennnnnnnnneciuenes 2-166
2.8.1.2 Not Assigned (MCRAYI)ccccuvvururnniinnnressusnsussnsesennsensssssssssssssssossassesssesss 2-166
2.8.1.3 Short Warning (MCR50)....c.cccceusrsuensesusssunssusssrsssnsnsssssssusssssassessassssasssssssassens 2-167
2.8.14 Instruction Specification Error (MCR51)....cccueeiereneennnereninnnnsesninssnisnscaneas 2-167
2.8.15 Address Specification Error (MCRS52)......cccevenrerennnrenrnensnsenresinesiesenesesennns 2-167
2.8.1.6 CYBER 170 Exchange Request (MCR53)....cccccvrerunmirmnnnrenrenticnenieniesaessennes 2-168
2.8.1.7 Access Violation (MCR54)ccivieiineninsnnnsnisisininiimeinesssssnssseses 2-168
28.1.8 Environment Specification Error (MCR55)c.cenu... reereensenesasassasberenee 2-169
2.8.1.9 External Interrupt (MCRS56)....cccoicriirinncrnnnrissnsnsniesussesnssssssssssssssesssessenens 2-170
2.8.1.10 Page Table Search Without Find (MCR57)....c.cerveemreveninieicnniininneennne 2-170
2.8.1.11 System Call (MCRS8)......cevriririsnsreririsnsrsncnsessesssssasssssssessnesssssssssessssssssssasasas 2-170
2.8.1.12 System Interval Timer (MCR59)cccceeuvmrirmiiniiernniniinisnieesinesnessssesienenns 2-170
2.8.1.13 Invalid Segment/Ring Number Zero (MCRG0).......cceveveriiiivneniivciinennns 2-171
2.8.1.14 Outward Call/Inward Return (MCRB1)......cccceruvurunrererennnrirennnininissinencscsnns 2-171
2.8.1.15 Soft (or Corrected) Error (MCRGB2)ccccervrirmrvunenisnesinsninnnecrenienensessennennes 2-172
2.8.1.16 Trap Exception (MCRB3)cccceuvrirurerrnirismresnsensennsnsnsanseseesssseessssssessssssssnse 2-172
2.8.2 Monitor Mask Registercccuvvrninnnsniininiiesinninisniesenenseesesseeens 2-173
2.8.3 User Condition RegISterccinniieinniiiinnniiennnnneiennnsisnissessesnnessessonss 2-173
2831 Privileged Instruction Fault (UCR48)............ vessssssnesassresessastsesessisirbssasasarans 2-173
2.8.3.2 Unimplemented Instruction (UCR49)cccoueurevurinnrerinnninenneneceisenncnenns 2-173
2.8.3.3 Free Flag (UCRS0) ...cccceruererernnssnissssssssesnsesssssssesssssssssssssssssssssssesessonsssssensase 2-174
2.8.34 Process Interval Timer (UCRB1)cccvvvnminnininineneinnesieneeenisessessssnens 2-174
2.8.35 Inter-ring Pop (UCRS2)ccvieniisensinininiiisinenisieniennsennsessesssnessesens 2-174
2.8.3.6 Critical Frame Flag (UCRBS3)cccccevreireirnmsmvissnncseriensennssiensinsssessessessesens 2-174
2.8.3.7 Not Assigned (UCRB4)ccoccvvnnniisreiisnsisisiinneeissesinssssssssssnsans 2-174
2.8.3.8 Divide Fault (UCRSES) ...c.cciveeerricrninincnninisisnsiissnsissessrsesneesmesssnissssssssesssss 2-175
2.8.3.9 Debug (UCRSEE)....ccucvereerrnenerernieneesnenssssssssssessssssessssesseressssmsssssssssssssssessensens 2-175
2.8.3.10 Arithmetic Overflow (UCRBT)cccovrivmrisnnisnsisininsisierennnsnssesnnssnnesassesnssenns 2-175
2.8.3.11 Exponent Overflow (UCRS58)cccceeevrrininrniirucrriuerennenes Teerressensetereieeares 2-175
2.8.3.12 Exponent Underflow (UCRB9)ccccevmierinmiinininiiniiniinnesienicscnsesinnnns 2-175
2.8.3.13 Floating Point Loss of Significance (UCRB0)cccouvvevmnirvreninnvienicnninnnes 2-176
2.8.3.14 Floating Point Indefinite (UCRE1).......ccccevvvvvimmninriieiniiriiriniciiiieiee, 2-176
2.8.3.15 Arithmetic Loss of Significance (UCR62)......ccovuemnrerirnnininrinenienienreniennans 2-176
2.8.3.16 Invalid BDP Data (UCRB3)......cccovsuviivimriisinrnniireiniesistinsseinennessnesnssesenes 2-176
2.84 User Mask Registerccccceveinninininniicnnniiiiiniiiiness e 2-177
2.8.5 Exchange Operation and Interrupts.......coieennnennninecen, 2-177
2851 Job Process to Monitor Process Exchangeccooveviivcininenniinininnienne 2-178
2.8.5.2 Monitor Process to Job Process Exchangecccvveeveviiieininininniniinennnne. 2-178
2.8.6 Trap Interrupt Operation........cuceii . 2-179
2.8.7 Multiple INEEITUPLS c.oviiirciiiiiniiniiire st ese s 2-181
2.8.8 Enabling INterruptsccccvimnnnninennieniniiieseneeeneseseeseens 2-182
2.8.9 Interrupt Flowchart ... 2-183
2.8.10 FlAES.cuiierirecrrrneieeisneseennennenenesssieseesesssssesestssssessesestssssessessssssseseseessssssnssssseans 2-186
2.9 BUFTFERS ... otitereetneceneiereenstesesesisnssssnsssnssesnsssssssestssessorsssssessessostsissessensans 2-187
29.1 Map BUSTEE ...cviirecrirenrinnennnnnnnioninnsssisisissisisissisiniseniesesssemessseasossses 2-187
2.9.2 Cache BUSTer.....ccoceeeeceeieeintetectesiese et st s e et e e et b e e s e e eaesassna s 2-187
293 Instruction Stack ..., erreress et nresaeaes 2-188
294 Stack Frame Save Area (SFSA) Pushdownccvevviniiiiniiiiinienniiininnn, 2-188
2941 General Operation of SFSA Pushdownccoevivvvniininninnnnnennieieennns 2-189

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC. ARH1700
REV. AC

DATE July 15, 1988
PAGE ix

INTERFACES.......ccocevmrrmmmmrmnnssssnnsssassssssnssssssmnesasesess

CONTROL DATA PRIVATE

210 INTERFACES.........irrerrrenrerererereessssssssesssssisesesssessasssssesessasssssescaesassonsnssssssses 2-190
2.10.1 Central MEmOTY.....cccoeecererenenerrressesnsnssssssssssnsensssssserssssesssesesssssnsssssassssssasenses 2-190
2.10.1.1 Processor Central Memory Port Selectioncceceurureeresrrenrensseserensaenes 2-190
2.10.2 Maintenance ACCESS.........ceererrerenereererssnsssssessesesssssssassssssssessassssssesssesssssessssseses 2-190
2.11 PERFORMANCE MONITORING FACILITY (PMF).....cccccceeesununrereresnsseseenens 2-191
2.11.1 PMF Initialization/Operationcnmirsescssssensesesmsasssssssssnssssssssssones 2-193
2.11.2 PMF Status (Register 22 Byte 0)ccceevureivsvecesusssenusissesuscssnssssssassssasssssass 2-193
2.11.3 PMF Control (Register 22 Bytes 1-7)cccovrermerrnernresseresesesssrerensessesensenans 2-194
2.11.3.1 PMF Control Bits (Bytes 1-3)ccccevevevererenserureeseresasnsaesessssssssessassssesessssseens 2-194
2.11.3.2 PMF Control (BYtes 4-7)cccceerervrieencsrermnanssiesessssssssssnessssessesasssassnssssssass 2-194
2114 PMF Counters (Register 22 Bytes 8-47)cccecerervrernrereerererereseerereenivessassens 2-195
2115 Events and States.........nnnnnnnincnnines ettt es e saaenaen 2-198
212 VECTOR INSTRUCTIONS.......cccccemmrnrermeneremnsesssseseasassesesensssssesssessssssssssessses 2-199
2.12.1 General DescriPtioncuvcerevenesesenreneeverensiasisssssnssssssssesessssssesssessassssssssssaes 2-199
2.12.1.1 FOIMALb....ciiiiiiiniiinisinissniisnessisesisssismasssisesssssssrsssssssssssssssssssssnssssasasses 2-199
2.12.1.2 Length (Number of Operatlons) ... 2-201
2.12.1.3 Broadeast.....ceiscninissinsnnssnnenseasisssismasissssesssesssrsssssssesssssssssssassesssssssass 2-201
2.12.1.4 INLEITUPES ..oviiinccinsieneisssnsesseesnssenesasnssesmresessessesssnssssssssnssosesissesssssssssssesans 2-202
2.12.1.5 Results (Scalar/VeCtor)cccccvevieereresrericeneeresrensneesessssessesersessssessssesoasessenes 2-202
021216 Condition Register Bitsccucurcrrnnirisesniinnersiseesssssessssssssssssesssssssssssssssssssns 2-205
2.12.1.7 OVETIaD wcciiiiiininniiniinnsssiosessisssssieseiresisssssssssesssnsssossasesssssssnssssssessesess 2-206
2.12.1.8 Page Size......cccievnerisinniiniiniiinsnie s sesissssesessstssssssssassssssssases 2-206
2.12.2 Integer Vectors - Arithmetic.......ccovvcveerrreieereienrerennenssneenecnssesrsenessesesnesesnesssens 2-207
2.12.3 Integer Vectors - COMPATe.........cocverercsusunrerisirensessensiosissosssssssorosssessessssssesssssens 2-207
2.12.4 Shift Vector CIircular..........ccieirnininnncsnnacnreresissessssssssssssassssssssssssrssassns 2-208
2.12.5 Logical VECLOTS....cccvverruerrrrenresreerenssssssessessessessnressessesssssessassasssessissessesssssssssesessans 2-209
2.12.6 CONVEIt VECLOTS ...c.veerirreienirtisenresicrisissssassesaesiassssssesesssssessssssseseossessssssssssasasssses 2-209
2.12.7 Floating Point Vectors - Arithmetic.........cocouevvrisninininncrninivncnnniinnine 2-209
2.12.8 Floating Point Vector SUMmMAtioncoccvverrenernesnierienennnsninssiesssssessssnsnes 2-210
2.12.9 Merge VECLOT ...cueerecniiiririninnisinreeseisssssesssssssnssesssesssssssesssssassatonsssssesessossensans 2-210
2.12.10 Gather/Scatter VECLOTSccvivcrirrirrrenieeenninrnieseessessssetssssesseseessssesssssssessensans 2-211
2.12.11 Floating Point Vectors - Triad......c.ccceviiivncrnsionininnninniicnnnecne. 2-216
2.12.12 Floating Point Vector Dot Productccccevvereneivinieenenenenessensessnessessesensnens 2-216
2.12.13 Gather/Scatter Vectors - Index Listcccccoveeviresininnnneiniinnnnininicnsinennen. 2-217
3.0 VIRTUAL MEMORY MECHANISM .. 3-1
3.1 GENERAL DESCRIPTIONcccocviesiennineneseessessassessanssssssesssssosssssessessssensasessssesesens 3-1
311 Level Of AQAIessescccovvivvrieeiiecrenenieneeiiinesiosinseciesicssessessesiesssuesssssessessessssaesss 3-1
3.1.2 Address COMPONENLS.......cvierecriieismrrerssesnrneesiisssssssesessssssessssessesssssssssssessessessessess 3-1
3121 Segmentscvnveesiininsorensens S TS CO RN 3-2
3.1.2.2 Paes.....ciiiiiiiis i b 3-2
3.1.3 Real Memory AQAress.......ceciiciminniinisennimisenessiiniesomimesmme 3-3
3.2 PROCESS VIRTUAL ADDRESScccecvminnnmninesionssnsnismsesiisiosmsesesssssiines 3-3
321 Formatcoccvvivinvennnrnninninncniensnnnsssnecnmneoasesenes rsrtesunsersssnssnsisssensssersisbasstsnnes 3-3
321.1 Ring NUMDET......ccviciiiiiniinintienneneiseiesceresnsnsstsssssesiessssesissuesessssiesessssenns 3-4
3.2.1.2 Segment NUMDET ..o eessnssssssessessssssssesssssssssesissesessenes 3-4
3.2.1.3 Byte NUMDETccovviitieiinrinininninnniiisninniesitiesse et enesnesssssessssees 3-4

DOC. ARH1700

| CONTROL DATA CYBER 180 MIGDS REv. AC

DATE July 15, 1988

Architectural Design and Control PAGE x
3.3 PROCESS SEGMENT TABLEccccconsusiesensnsssesassssssssesesassnsssssssssssssssasssssassasseses 3-5
33.1 Segment DeBCIIPLOTS....cccuuerrsmrrssissesssisssessssmssssssssssssnsssssstusssasssssansssnssenssssscnssssscsss 3-5
3311 Control Fields....iienninnnsisneresssssisssesesnsssnns eseenesesiesrensreastaessessnsaeseers 3-6
3312 Access Validation Fields.....cuiecencenninsnsiininineinni. eressssasinsstesesnesasassaserss 3-6
3.3.13 Active Segment Identifierciereesinirnsmsitinniensensnssisisietsnsiensssressenese 3-6
33.14 Conversion to System Virtual Address.......c.coieveenimnnminecssisissisnenniiinee: 3-6
34 SYSTEM VIRTUAL ADDRESSccceinriseerusessnnrsnsesssssssesssesssnssssasassnsssssssssssssssansses 3-8
34.1 Active Segment Identifiers......cemescssrestssmciienssrinmsnsssssesseiissniseesse 3-8
342 BYte NUMDET....ccoiirmirinsissssssssssessissasnisssssssssssssssssasssssssssssssssisssisssussensesssssssssssenes 3-9
3421 Page NUIMDET c...cvveernrnmsssrsssssssssssstistiisssrssssssssessessstassins st essstsissesssss 3-9
3422 Page Size Mask Register .ot 3-9
3.4.23 Page OffSet....ccovircrsicrceisrississssesssensssssinssmsiisssssssssisssssssssisssissssss s sssenssnsesses 3-10
3.5 SYSTEM PAGE TABLE (SPT) ...ccceuiteinnisnnnsinsninssssssssisssisesssmsnsssssssasissnsises 3-11
351 Page DesCriPLOrs i eiieinisissessesssisasisssssensssssassssssssas s srseseess 3-13
35.1.1 Control and Status FIelds ... 3-13
3.5.1.2 Segment/Page Identifier (SPID).....cocovuiumsrmmmissssusssssssssssmasssssssissmsssnienesss 3-13
35.13 Page Frame AdAressceersecciserssissmmisssssssssssissisisssnsssssssss: 3-13
352 Allocation of Page Descriptorsccovererseuecssissrsssssnsimmssisesssssssisssnitssnsisssussssess 3-14
3521 Location of a Page Descriptor in the Page Table ..o 3-14
3522 Search for Page Descriptor in the Page Table......cooviviiiicnsinsnnccncnicassinnnnn: 3-18
3.5.2.3 Formation of the Real Memory Address (RMA)cooevuninniveniienenncncninnes 3-18
3.6 ACCESS PROTECTIONccvicenerensssesistssssasssssssassossussissssssssssssssssssssnssssissssssnsnsane -19
3.6.1 AccesS CONEIOl FIEldS....covuiirereennesisessesinisnissisnesmssnsscsisissississssnsssnsnsenssssssssacaes 3-19
3.6.2 11020 3 (15221 00 o) NPT LR S 3-19
3621 Execute Ring Bracket ... 3-20
3.6.2.2 Read and Write Limits....cocveererrenceiseriinnsninininneisssiiismesmsimasssissiae 3-20
3.6.2.3 Call RiNG LiMit..cceceiniriiririnmnrnsisnssescsersinsinissssisssisessssississssinsssssssssscsess 3-20
3.6.3 Key/LOCK FaCIIIEY wuucvvevrrerrinrissssensseissimsisssiisnnssississssssssens s issessess 3-21
3.6.3.1 Format of Key/Lock Fields......cccouviinrssseninmmmniineisinssssie 3-21
3.6.32 AcCeSS ValIdAtIONS. .coeeeerrerrerrirriresnsrsssreressisssinsessesassesessnsstssissiisissssssnssssseiins 3-22
3.6.3.3 Software CONVENTIONSveeireecreressersisessissssnssassessesssssssrssssesssssisssssssssssssssons 3-22
4.0 CENTRAL MEMORYcccovriiiriiiierenininsnestsestsssisssisissstsssssssssssstssss s 4-1
4.1 GENERAL ...oovevveeeessteriosesessesssssssssesessssessestosssssssssssssssssstssssssssstsssosssssssssssasssssssssssassss 4-1
4.2 STANDARD MEMORY PORT INTERFACE ... 4-2
421 IO FACE LUINIOS. eeeceirrerecrriresserarsaesessssnsssessesscsnsassnssassnesessesssssssnsssassassassnsosssnssssstsnons 4-2
4.2.2 Memory Functions, Responses, and Operations ... 4-5
4221 MemOTy FUNCLIONS c.cuuvuciiierererieissssssssissnsisis sttt s 4-5
4222 MemOTY ReSPONSES...viierrnirsrrsessnssessessissisiiss sttt 4-5
4223 MemOTy OPErationscuuiiesessssesssecssisisassisummrismssssesstisssssmsissasi s sssesseeses 4-6
42231 REAG coveveveeeeeeressesessssissessssesssesesssssssssssssssessssssssassenssnssssssstossasssasnssaessmsssessesesesss 4-6
42232 WVTIEE cuveneaecrevesesesessssssenesesessesssssnasasssassssssesestsssssasssssssesassssssssssessessonsynssatasssnsssnsatss 4-6
4.2.2.33 Read and Set Lock; Read and Clear Lock; Exchangeccooeececciinniinnn. 4-6
42234 Read Free RUNNIing Counter.....eiensesssciinssmeisssscsiii 4-7
42235 Refresh Counter ReSYNC.....comieninrnnssssesessisisissisisismsssisisessssassississniaisnss 4-7
42236 o173 1 o3 TS R R R LR R 4-7
4224 Function and Response Code Interrelationshipscveeoveneviisinniinsissiinnnns 4-8

CONTROL DATA PRIVATE

_é\
N S

L
1

~

(W

e

‘»k /}

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE
' DATE December 19 1989
Architectural Design and Control PAGE «xi
4.3 MEMORY PERFORMANCE REQUIREMENTS........cccoceseniiruransssusunsassnresseseens 4-10
43.1 POTLS c.ceciiticneinnnnnnseniaisnsisisasssssssassasssssssssassistssssssssssssssisssosesssssessnsssensssssssressenns 4-10
4.3.2 717 9141014 T) + OO 4-10
4.3.3 Access Time eeoFhensetsssEeRESINaRNERNRULRELAISSERNS LIS RS EISERRRIRRISPRSSISRSRIRES LIS R TR RS 4-10
434 Bank Cycle Timecccvecereneneseesensessesaessesnsansssessrsssssssnsssssassssssosassssssssssasssssnsnes 4-10
44 RAM FEATURES (SEE ALSO SECTION 8) ...ccccovvisunnsncsicsisunsnsncsussesiesisnesessenes 4-10
44.1 PaTity .cciiiccnisnsnssninsninnsnsnnnsisnsnsisisssrssnsassmsssssessesssnssnessssissasssiesnsssesessessssassssans 4-10
442 Single Error Correctxon/Double Error Detection - SECDEDoo....coorooee 4-10
4.4.3 Noninterleaved Mode......ccocvuinrienivissesnssssnsasnsrosssrssesssssissecsnosssesseosessissssniassasenes 4-10
444 Memory Configuration Switches........ciiccsnninisninniiniiioneninin. 4-11
4.44.1 OI Bit 23 Clear (Three-position SWitChes)c..ccecererureruirisrennrerissresnenssennesens 4-11
4.4.42 OI Bit 23 Set (Two-position SWItChes).....ccierecriueresnnecsesssssssssassssessesssnpassnsass 4-13
4.5 MAINTENANCE REGISTERS......cccccesinmnnnnsnsesscsssnesssssissisessessesessesssssssssesasssns 4-14
45.1 Maintenance Registers Accessible by the Maintenance Accessccoccvene.e. 4-15
4.5.2 Maintenance Registers Accessible by Memory Ports........cccoovvvvnriinnenencnnnne, 4-15
4.5.2.1 Free RUNNING COUNLET .coveeerieirreerrenecrcsnraneressnssnssnessensseesnsessssnssesssesssossesssssess 4-15
4.6 BOUNDS REGISTERccccrnernininnsunsisnncssssssssacsosasssesssssessossessssssssssiessosssssenssssssess 4-16
- 5.0 INPUT/OUTPUT UNIT........ccciininninninnisnncssisanresisssssesssssesessasssssssssessessssesssssessessans 5-1
5.1 GENERAL ...ccoviniiinniinnssnnanisnssssnssssissonsssssssssssrsssssssssssssssssssssossssssssssssesssssssssssessosss 5-1
5.2 PERIPHERAL PROCESSOR.......cccoersmnnisinnisnissnisissssesnsissessssssssissesseosssscssssssssans 5-2
52.1 OrZaNIZALION...cciiiiciertnincnnresaessssnsristsesssssssenssssanssssssssonssssssssssstsssssssssssssssssssassessusons 5-2
52.1.1 MEINOTY cevicrensecrnnssrorssssosnssassasssassesssossesssssnsssssssasssssssossssssssssssssssssssssasssssssessessesnsssns 5-2
5212 Arithmetic Regxster ... 5-2
5.2.1.3 Arithmetic Logic Unit.....ccvevninininininniimiims. 5-3
52.14 AdAress regiSters ...t e 5-3
5.2.2 INSErUCLION Set..iviiiciiinicernnninientiinnniiinensinnenierestsnseeesesseeseesesesessessessessessans 5-4
5.2.2.1 Instruction FOrmats......iiciieiiimmmeniemreseseeseossees 5-4
5.2.2.2 Address Modes......cocemnniinnensniniissinsniissesiessesseimieeiaimissesssn 5-5
5.2.2.2.1 No-Address Mode.......... eresessssntesatetsstssaesbs st st s e s e s b e b e s a e bt e b e b b s 5-5
5.2.2.2.2 Constant Modeccccccerireeniennnessenieneressessssornsneessesedassasnsessssessassessassosssssosesssssass 5-5
5.2.2.2.3 DIrect MOde ...ccciererierinninnnnanseneseisnssenaessesssssisessossesssssssessssssssssassssasssssssssessessosses 5-6
52224 Indirect Mode.....coccvnicrinnnsecsircsnncsesiininisessnssieerssisesesisssessssesissssseens 5-6
52225 MeEmMOTY MOGE.....cciiirinricinnirerisnesnesnssenressinessesssssssssssessesssssnsonssssssessassossessennes 5-6
5.2.23 NOMENCLALUTE c.veureniercirnsieaneerensssasnsssnersasissesasmsassnssessestsseseestsnssnssesssncssssesonss 5-7
5224 General Instruction NOLESccuvmiveniennniicniserinneninissnensnesissseseioes 5-8
5.2.24.1 Short Word (12-Bit) Stores......ccecceercereeriscsresnienssessesessonisessssessesessesseseesssnes 5-8
5.2.24.2 Usage of PP Location 0 During Instruction Execution...........ccccovvennnnne. 5-8
5.2.2.4.3 UNUSEA BitS cvieveriiiinicrineirennienenienseisseseessisesssnesesssessesssessessesssessesssesseesessnesseess 5-8
52244 Compass MNEMONIC ...ccevuiniererresersennnriseeeorssesnesesessassessessessessesssseonsssesasssessaens 5-8
52.2.4.5 IO aNd I4 PPS ccceiiiiiniicrininnininnnssnnsssssisnnnsissssassmssssssssssessssessssssessssessssessssessnns 5-8
5.2.2.4.6 I0 Instruction Usage Restriction.....c.cccvccviienienrninincncncnennninnncnnenieinnnens 5-8
5.2.2.4.7 10 Interrupt Processor InStruction ... 5-8
5.2.2.5 Load and StOTecivieierininnnniniiisiissismiissesossimisioesisssseessesons 5-9
5.2.2.6 ATIERIMELIC vttt ittt ssssessessssssssessessesassassssans 5-11
5.2.2.7 LOGICAL cucviiirirniicccninnisinniesnnnesrennssssessenesessessssesenssesnsansassnensssssassssessessssesesens 5-13
5.2.2.8 REPIBCE covverinniirirniitierinnenienisecieneninensessesassseesessssessassseesessassssssnessesssesrnsssessssstossens 5-17
5.2.2.9 Branch... i iinncniincninieiieesessnsssisesssstssssessssssassssssaeserees 5-21

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AE
DATE December 19, 1989
Architectural Design and Control PAGE xii
52210 Central Memory Access ererrtsasasesssonssnsrasssssssnssess D22
5.2.2.10.1 R Register teesstseseesesennssnsesensnressreratesasessaaerasearerans 5-22
5.2.2.10.2 Relocation Flag.. veeerenes veresnriaesnensassssnsasrensssrannenese D= 22
5.2.2.11 Input/Output iaeeneasossnrssssessntnniensetsnseissnsetsassusereasessestasasssesesipsassaseossnses 5-36
52212 Other. rrecereranissessassstassne vvvecessreesessresesnnasesesraraessrares 5-44
5.3 J/O CHANNELS......couvtereercreerrensseesssessssesssanesssessssessasssssesssnessssasessesssssssssaasesssssssesns 5-47
5.3.1 INternal INtETFACE ..ovecveerieeerrictnssnesnnesnessiessessessnasasesssessressseessesssesssesrsseessasssesans 5-47
53.1.1 ACEIVE DIbuceiiereiienieeerenieeirenniesresseessessriessesssesssessesssssssesssesssessseessessassssasssassssessses 5-47
5.3.1.2 FULL DL coeviurerereeereeernressnessansssanessreesssessarssssssssssessassssasssssssssessssnssssssessssessnsesssnsessses 5-47
5.3.1.3 FIag Dit.uccreseisncrsencecsasseorinrensssessenensenseereesassssnenssssssssnssessessessessessessessesasnsesnssssscses 5-48
53.14 Channel Error Flag.......iniiiomomes. 5-48
5.3.2 Real Time Clock . vereeessseeressriesssarnesssanesssnnrsaevansrresseniD =48
5.3.3 Two Port Multiplexer ereessnssutntsasebnbossTRteas RsRtISToReRTR LSS IRR LR RS A s SRR SRS RS Sn bt s 5-49
533.1 General Description reesesesasaeasessasas st st sa s s a SRSt b r s b s b bbb 5-49
5.3.3.2 INterface DefINItIONS ..ccccereisseeessseesssssnnessnnsssaressssssesssassesessanssssssansssssaiasessases 5-50
5.3.3.2.1 Channel 15B t0 PPS ...uuciiieerecneiriensesaessiessesssessaesssesssesssssssesssssssesssnsasssssaes 5-50
- 53322 RS-232 INterface.....cccvvecrrrersrersneresrerssseressresseesssisesssessssesssasssssassssesssnsssssssosssens 5-50
5.3.3.2.3 RS-366A TNLEIfACE ..ccvvrerreerrrrrirererrniernressrasssneesressanessssssssesssssasasessassssssesssesns 5-51
5.3.3.3 AT ACEETISEICS cuveerreerierrnrirsresirerinressreecsssessnressesssseeoseessssessrsesersessssaessessesresossess 5-53
5.3.3.3.1 PP to Two Port Mux Function Codesceeeeuvrrivernievenrveeininreeesssseesersneens 5-53
5.3.3.3.2 External Device to Two Port Mux Functionsc.cceeveeeveenrneeeineecniereninenns 5-67
5.3.3.3.3 AULO ANISWET ...uveereeerirerisresssneessaesssseessansssesssssssssesssesessessssrossssssssssssssesssssessrssssnes 5-67
5.3.3.34 Remote Power Control........ueeieinieenneennnnreninseeisenssescssenseersssesisssrseens 5-68
5.3.3.3.5 Remote Deadstart....cccceeeeriierissriesisreriseseniessseessssresssssreessseesssssssesssssesssssrsens 5.71
5.3.3.4 Performance..... reerreeesteeesteesasesneseeneetsatesntsesrasessesasraasarsnessen 5-73
5.3.3.4.1 Function Response TImesccccueiruernrnsnrensecnreresnnsisressesssseeseesesssssesacssenees 5-73
5.3.3.4.2 Data Transfer RAtes.......cuieeririieeereensnsneessneesssesssessssseserssessasesssasassssenss 5-74
5.3.3.4.3 Calendar Clock ACCUTACYcveeunriieensininsunnsessssnsssesssseseesssesssssesssnessssssserssrones 5-75
5.3.3.5 Programming Considerations.........ccceveienisnnnnicnnnsensinnseesseessesennninessessesnnnes 5-75
5.3.3.5.1 RS-232 INEIfACES cuevvreerrenrerrreernirnirresisesnessessuesssesssnsssessaesssesssesssassaesssasssaessens 5-75
5.3.3.5.2 RS-366A Interface (Auto Dial-Out).....c.evvververrreennnnns eeeeesereesaresssetreseiras 5-78
5.3.3.5.3 Calendar ClIOCK......coucveicreinreerierrineieiesrienreereesseesssesseesssssseesseesssessesssuessssonseons 5-79
5.3.3.5.4 LoOP BaCK..iiiiiiriiiininniniininnnnnieineisiesisisnennssesssesessessostessesnsnsessssessessessosens 5-80
534 Maintenance Channel........ieecieieieerreceeireressneesseensesessssessessrseesessesssseesns 5-81
5.3.5 External INerfaceceeerieenreenieenneeenrenieesssesssseessersssessssesssssessssssssasssssesens 5-81
5.3.5.1 GENETAL ..ueeevrierertenteererresersresssssresseessessseessessesssessrsosseossesssesnsessssssesssssessessnesnns 5-81
5.3.5.1.1 CYBER 170 External INterface.......coeveeeeineenrenresrenrenvensenssesssesssecssessaees 5-81
5.35.1.2 CYBER 180 External INterface....c.cccevreeiveenerenserinnenenveresseenseeerssesesessssnsense 5-81
5.3.56.2 CYBER 170 and CYBER 180 Channel Control Signals........cccceceevenierrerunnnen 5-82
5.3.5.2.1 ACKIVE conecrerieerrerieesieessneecssesssaeessresssesssnsessessssasssssssssesssasesssesssssosssassssesesssnssssesns 5-82
5.3.56.2.2 TNACEIVE it crectetceeete st eesaesseesesesestesssesessessbsassrrsosabssssresensaessressasesnne 5-82
5.3.5.2.3 FULL et seeniesssessnesnresssssssesseissessesssssssssssessasessessnsssssensessnsesssssssss 5-82
5.3.5.2.4 EINPLY cocciiiiiicnnnniiniiiiiinneninsnnisnentesessseses s sssssesssssasiessssssessessaessesasassassensens 5-82
53.5.2.5 FUNCHION everteceecrecrtecntereirenaeeeeestresserssssessneesnresssesssesesesessasessseessnsessrsesnnes 5-82
5.3.5.2.6 MASLET ClEAT...uuecireirrerreerirensrrenireessressareesssesssesssseesssesssasessssorsnsessssosssnsesssessanes 5-82
5.3.5.2.7 Error (CYBER 180 Channel Only).......ccccvvenenrverneeennnierenncsnneereennsessesens 5-82
5.3.5.2.8 © 10 MHz Clock (CYBER 170 Channel Only)cececeveecivreveneneeenenrnnrenrereens 5-82
5.3.5.29 1 MHz Clock (CYBER 170 Channel Only)cccccocevvevenenininceeienrvieseeennns 5-82

CONTROL DATA PRIVATE

N
hY

' £

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE xiil
5.3.6.3 (Section intentionally left blank)..................... casessasereressnssssrnsnsisssras 5-82
5.3.5.4 Data 8IgNAIS.......cccviiiiiiniisiiseninicnsiissisnsnnsssssnessessssssssssssssssssssssssssssesens 5-83
5.3.6.5 PP and Channel INteraction.........ccceeceeescenreersnseneseenenessessesssssnsassesssesserssssnnes 5-83
53.56.5.1 ACEIVE Bit.oucoiiriiieiiiinnrneniennerisineinesennnseessenissarsessssessssessesesssssssesssssssssessssssesns 5-83
5.3.56.5.2 FUIl Bit.o.occiiniininnnnsinniininiennisienseensssssssssssessssssssesesssssssssssasases 5-83
5.3.6.5.3 Function INStructions.........ccccevcvvievennnensesseseesesesennssessssesssssssisossesossesesns 5-83
5.3.5.6 Transmission CharacteriStiCseierrerererereerssererertessseeseseressussesessessseseressons 5-86
5.3.5.6.1 CYBER 170 Chanmnel.........cceceeeerrernrrererrrereseraneessirsseessssesssessossssssssssssesessnes 5-86
5.3.5.6.2 CYBER 180 Chanmnel........ccceeerernsersrnensessisssareseesseresssssessssssssssssessssassonssessass 5-86
5.3.5.6.2.1 Signal.....ccceccrernene reeetetetste et ersesssrater et s est s aesenebasassnsernerasenasrssraseneren 5-86
5.3.5.6.2.2 CBDIE ..ttt s sese b e as s e ssasa s satane 5-86
5.3.6 Data Transmission EITOrs.......cccvninninernncnsssnnsessssessssssessossssssssssssssssessssns 5-87
5.3.6.1 Data-In TransmiSSioncccecveirevenreeerseinisriseressssessssssesesseseessssesesesssssossses 5-87
5.3.6.2 Data-Out TransmiSSionsc..ccceceeveeeereeeneeenseesesecesesesessesesessseseesssescssssesssssenns 5-87
54 CACHE INVALIDATION.......ccoecrirenrerennnreressssesesessssessssesessnssssonsessnsassssssssssasnens 5-88
5.4.1 Central Write from d t0 (A)cccccveiiriinrerennieesensnesessseseseosesssssssssssssssssssssssaes 5-88
5.4.2 Central Write (d) Words from m t0 (A)c.cvimviensiriiniieeieenenesssenesensesnesenes 5-88
5.5 INITIALIZATION......coveimrrreninirirnnenesinssesesssesessesssesssssssssssessensssesassetasssasasssssseses 5-88
5.6 MAINTENANCE REGISTERSccoceuruititreineieseseseesessessssssessssssssssssssssssssses 5-89
5.6.1 OS Bounds (OSB)c.cceuveerrerrnrnrrrnsenesesesesssssssessesssssssnsnssssssssssssssssssssasssssesas 5-90
5.7 RAM FEATURES ..ottt seiness s tstssscssasoessnsssesassessssssssssssssesaes 5-91
5.7.1 ETITOT DeteCtion.......cciuiininreineieininieeneeeecesesessistesesessssesassssssssesssesesssesssssnsssssns 5-91
5.7.1.1 PPttt e st sttt n et e e e r e 5-91
5.7.1.2 J/O Chanmnelscccrrueiciniirirnieniectcee v eeesessesesesesssesssssssssssssssssesessssans 5-91
5.7.1.3 Central MemOry ACCess......ccvurrrnrunrrniniiressseinsesiscsesssseoseesssssssessssssssesssssessns 5-91
5.7.2 EITOT RECOVETY ..ottt cetcscreesesae e sssss s e e e sesssese s ses s sess e 5-91
5.8 INTERFACES TO OTHER SYSTEM ELEMENTS ...ovvuveeeeeeeeee e, 5-92
5.8.1 MemOTrY/IOU ...ttt sssaseesseseassssss e sessesessessssseess s esesess 5-92
5.8.1.1 SHGNALS.....ciivitcresne et s st s er e e eer e e et 5-92
58.1.1.1 MaArk LiNesouiiiirerinceinecetesceceee s cessnssnsssssssssssesssssssssssssse e s 5-92
5.8.1.2 FUDCHIONS. ...ttt e ssesses s sses e 5-92
5.8.2 CPU/OU ...ttt seseaseesess s sesesses s s st 5-92
5821 S2 SIGNAIS ...ttt s et e s e e et 5-93
582.1.1 AGAIESS ..ottt ee s e e et 5-93
5.8.2.1.2 BUSS..cc.o et e st e 5-93
58213 Exchange Code...........ccouuiimmmirivieieeieeceeeseeeeeessesesies oo e 5-93
58214 ExXChange ACCept..........ccvcuermerneiiriesriesineesseeeeereeseeseessess oo 5-93
5.8.2.1.5 BUSY oottt e e e e 5-93
5.8.2.2 S3 SIGNALS ..ottt sseesseseseee s ettt e e 5-94
5.8.2.2.1 AdAIeSS ...ttt e ess s et 5-94
5.8.2.2.2 EXChange Code.......ccccosumummrerrerinerneenieessseseeeeseesessessessessssss s 5-94
58.2.2.3 Invalidate.........ccoouvreuennnee. Seseassnrentesteetaaehesniatessteaeesaeeseeasaesssenaneratestansennaens 5-94
5.8.224 Exchange AcCept.......coiiieniieiiiniieninesenicece e ssseesessssesss s 5-94
5.8.2.3 General Signals........covveneninrinnneinerinee et es e e 5-94
58.2.3.1 SUMMATY STALUS c.ucvvcvvivisiieecieireiresssess s sssssssstssssssssssssssesssssssssssans 5-94
5.9 PERFORMANCE MONITORINGccccoeoevienririsrensiceeseneesesesssssssssssesssssessns 5-95
59.1 Test Points Provided for Performance Monitoring.........ccoevevevvereeerueeseenenn. 5-95
5.9.1.1 Channel ACtivity......ccccovvirerirnenrnennesrnsrnrniininnisnsesesssssesesssesesesesssssssssssssesseseens 5-95
5.9.1.2 PP Program Activitycueevinniiiiiinenennssnns 5-95
5.9.1.3 PP to Central Memory Activity ...c.ccccvnvmncnnenniiniininnnesniinnesseoesnns 5-95

CONTROL DATA PRIVATE

, DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS | REV. AC
e DATE July 15, 1988
Architectural Design and Control PAGE xiv

6.0 MAINTENANCE CHANNEL...........counou... SR toreeseniseiasaesnsneansannnstsinebisasasnesasere 6-1
6.1 NOS, NOS/BE SUPPORT................... Voesenersruanessiassansasassssnsssoisntbanisinsasntaiansansserserens 6-4
6.2 MAINTENANCE PROCESSOR FEATURES...........ccoouuvtunnirsssssssssssssssssnsssnnenss 65
6.2.1 Stop/Start Capabilities................ S besesaensnssssssssntinsensssnssasniinsnsaesase 6-5
6.2.2 Exchange.............. . seeaivaeneestbabensaeaesssbesasateesssserenintsererasnassasetessstoraens 6-7
6.2.3 Read/Write FUNCHIONS....ccocvcvvveeressestessssssssiscsssssecsssssssssossessssssessessesssssssssssssassans 6-9
6.3 OPERATIONS...... vessebsnssesasanrones seebtsesasiassentabssnerebasasasebeanerseseres 6-10
6.3.1 Initializationccevrieneiernenennniinneeenennsens beerbsassanssssnsnnssrsasontsssnsrnstos 6-10
6.3.2 Monitor and Report EITOrs.......cccvmemirnernsnnnnssnsiessenssssssssssesssssssssssessessssssenes 6-10
6.3.3 Fault Toleranceinerineneensinenenescsessssssssssssssens seessesnsesisnssnnsarosas 6-10
6.3.4 DiAGNOSLICS. ...cucirrecririesisisrasssesiansasaeanninseessesersssesesessssassessessessssssssssonsssssssensssases 6-10
6.3.5 Fault INJECtion ...cucuccuiccinininnninnnneesinnnssneesisnsessissssesessssssssssssssssssssesensesessssssenes 6-10
6.4 RAM ..ot sssessssssssssessisssssssssssssessssssssssnsassassessssanon 6-10
7.0 CYBER 170 STATE...........cocovrrrrresrrernsrernnsssnsssesssssssssssssssssssesssssssesssasssssesasasessens 7-1
7.1 CYBER 180 OPERATING SYSTEM.......ccceeerrerrrernerercssessisssesessmessssesesssssssssessens 7-1
7.2 CYBER 170 STATE MEMORY......... esrsssssesienereriasaitnshasseasansassobeteshanaseinssernsessansenns 7-2
721 WOTId FOTMAL ..ottt sssessssessesessesessesssnsssenssssesssssssssssssesnens 7-2
722 RAC, FLC, RAE and FLE.........c.cocouninrnnennnnenensensenssssssssssessesssssessssssssesssssssssssoses 7-2
723 C170 P REGISLET ...ucuivrineivincreersrrensissssesssersessssnsssessesessessssssesssnssssssssssssssssessnsoses 7-2
724 CYBER 170 MemOry Facilitiescccveueureveeuivsrsceseesenecsssesssesseessssssesssssssssssosns 7-3
724.1 C170 Central MemOry (CM).......cooeuvureruerreruinerseseesssesssssssssssssssssssssesssssessesses 7-3
7242 Extended MEmMOTYccvuiinrrinenerennnerninescsessessesssssssssssssessssssesssssssessssens 7-4
72421 Extended Core Storage (ECS)eeuueueeeieinienrceeeeeeseseessesesssessssessosss s 7-5
72.4.22 Extended Semiconductor Memory (ESM).......c.oceeereerverreeresssosserseessssessen. 7-5
72423 Unified Extended Memory (ECS M0de)eoereeeirrerreresreeeroressesesesensoon, 7-6
72424 Unified Extended Memory (ESM Mode)cvvuevveerveroeeosoeoeoseesooooooo 7-6
725 CYBER 170 Memory Image Segmentooeeeeeeerueeresersesressosssesoesoeoossosos, 7-7
7.2.5.1 P Ring/Segment NUIMDETco..cvuiveceeeeeeeeeeeseeseeesee oo oo 7-7
72.5.2 Page Table Search Without Find (Page Fault)...........o..ooovvovvoeooosooooo 7-8
7253 Address Spec Error, Invalid Segment, Access Violation................................ 7-8
7.2.5.4 CACHE PUTE.....vvvveiirceetiecinisneerisnesisseen s cessseeesessss s oo 7-8
725.5 MAEDDINGoovrirririiiitteceriecttee st ees s sessee s 7-9
7.3 CENTRAL PROCESSOR INSTRUCTION SET ..o 7-10
731 Compare/Move INSEIUCLIONS.......cvvvvurerrrverreeereeeeseseeesessses oo 7-10
732 Trap 180 INSLIUCLION «..ouvuucveevccevenriannsteeceeesecesessesess e 7-10
733 Direct Read/Write Central Memorycoueeeeveroeeesssossooooooo 7-10
7.3. Block Copy INStIUCIONS ..vuu..vvveeneeeesnnnst st ceeseeeeesse e 7-11
7.34.1 ECS oottt 7-13
7.3.4.2 UEM (ECS MOde).........ooirirceesensinnnianesssnnsssesesnsesssssssses s 7-20
7.3.4.3 UEM (ESM MOde).....c.coouureunneermserensriinnsrissesesseesssseessssessssosss oo 7-22
7.3.5 Direct Read/Write Extended MemOTy..............vweeemeeeesmmreemsreesosooooooooo 7-23
7.3.6 Read Free RUNNING COUNter........ovuuviiuniveciineeeeeeeeeseeesesess oo 7-25
7.3.7 Central Exchange Jump to (Bj)+K (C170 Monitor Flag Set)

Central Exchange Jump to MA (C170 Monitor Flag Clear)...............ooo....... 7-25
74 STATE SWITCHING BETWEEN CYBER 180 & CYBER 170 (C180/C170)..7-26
74.1 VMID it sssssssssssssessssessssssssssssssssenessns 7-26

CONTROL DATA PRIVATE

\g\“

ﬁ
.

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE xv

742 CYBER 180 Monitor to CYBER 170 State Exchange........ccocouvrvneerericneennnn, 7-26
7421 P REGIBLET ..ourvoctrteietstseciensssss st sssss s esssssssssssssassssssassssssnesns s e 7-29
7422 SEACK POINEETS.......couieevcrnecrenereneriesssssnsssssesssnsessesssssssssssessssesssesseen e 7-29
7423 RAG, FLC, MAoirenrernsisesnessessssissesssessessessssnssssssssssssssssesssess s o 7-29
7424 Exit Modecccevuen.... seesessastaesaesaineesnsaesate st s aesaseae st aesneasesn e eteeneenns 7-29
7425 RAE, FLE ..uiitcesscnennennsinsssssssssssissssssssssnssnssessssssss s sssessens s e 7-30
7426 AD-AT ettt cssssssss s ssessssssssssssssesssassass s sesssesssos st ses e 7-30
7.4.2.7 BI-BT ottt sssssassssssesssensssas s s 7-30
7.4.2.8 XO-XT covrrrrarrenremrenssisisscessessessssssssssesssessssssmsssssssesssssessssssssssssssssnsesssensens s oo 7-30
7429 COnLIOl FIAgs..........ouvveneeereererestensresssssneisesssessnssssesssssssossossssssses e 7-31
7.42.10 CYBER 180 RiNG NUIMDETS c.....ovvecreeecrreeneeeesenssnssssessssess oo 7-31
743 CYBER 170 State to CYBER 180 Monitor Exchange........cccoeevvrerrrrererencnnnce 7-32
744 Call to a CYBER 170 State Procedure from a CYBER 180 Job..................... 7-32
745 Trap from CYBER 170 State to CYBER 180 State A..........oooeooooooooo 7-34
7.4.6 Return t0 8 CYBER 170 ProcCess...........uuiuemeereeseeesssessssesssssssssssess oo 7-34
7.5 CYBER 170 EXCHANGEccosmmrummrrrrrencsessesensesessssssssses s 7-35
7.5.1 CYBER 170 Exchange Packages.................eeeoeeeessveesseessoososossososoosososooo 7-35
7.5.2 CYBER 170 EXChange JUMDP.......ou..vueereueueeeereeesensemenssssessssossosossoosssooe 7-36
753 Undefined Fields.........iuuceeernnniineseonncionesseeseeesessssssss s oo oo 7-37
754 RAE, FLEoooviiimiiinnniuiinnenesssnnssssaesssssssssssscesesssnsssssssssssossssesoss oo 7-37 .
7.6 ERROR HANDLING IN CYBER 170 STATEoooeerrvreeoooooooooooosooo 7-38
7.6.1 Program Errors which Cause CPU Haltu............oovvvereoeroooooii 7-38
7.6.2 HArdWAre EITOIS...........ovvoveeeeneneseesesesvossssnsnessseseeesessss oo 7-38
7.6.3 Error Exit - C173/C170 State of C180.....uuuuuuummeeeeeeessossrrooooooooioionn 7-38
7.6.4 Address QUL Of RANGE........uuuuuccrereereeormeneieeeeeeeessesessoosss oo oo 7-47
7.6.5 Parcel BOUNALIes.............uuuuvvceeeereecernnnsnneeeeensse e 7-50
7.7 CODE MODIFICATION IN CYBER 170 STATE ... 7-51
7.8 CEJ/MEJ 7-51
7.9 DEBUG . .coooeseeeeete e eeeeeeessesessssseen 7-51
.10 CYBER 170 BREAKPOINTccoccoommmvrrmmmrsseseoossoosssmmsssonsssen 7-51
711" READ CYBER 170 P REGISTERo....ooocoo..oooooorommmmmmenen 7-52
7.12 CYBER 170 PP EXCHANGE REQUESTSoosvmmrenrieeeeeeseeseoeeooooo 7-52
7121 EXCRANGE JUMP...covvrvrorsesceeecresersseseosossossessensen 7-54
7122 Monitor Exchange JUID ittt oo 7-54
7.12.3 Monitor Exchange JUMP £0 MA.....oonoveeveererer oo 7-54
7.13 EXTENDED CORE STORAGE (ECS) COUPLER.......uuererreeeresere, 7-55
7.13.1 Interface to Central MEMOTY ..oovvirnnrrritteiecnneesiese s 7-55
7132 Interface t0 CPU.....ocooovvovrivrsenscecresessesssossossossssossen 7-55
7.13.3 Initiating or Terminating from CPUcooooocvvveveseeeeessseorsoooo 7-56
7134 CAChE PUTGE ..o eoesvssenssssesoeosossosssesen 7-57
7.13.5 Maintenance Channel and Registers........o.ccocommmuvnmmmunnrooioneeeseo 7-57
7.14 = DUAL PROCESSOR C170 OPERATIONoocoooroomoooossooooomeeee 7-57
7141 Cache Purge on C170 EXChANGEcccooovvvvvreereeeeeeenemeeeesooooossossos 7-57
7142 Concurrent C170 Monitor Interlock Flag........oo..ovovovveeeeeennnnnnooo 7-58
7143 PP Generated INterTUPLS......uuucccvevemmrrrssevonssene e 7-59
7144 PP Initiated Cache Invalidations.........c..eecvemeeroeeceeeeeemeeeseeesoooo 7-59

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988
Architectural Design and Control PAGE xvi
8.0 RELIABILITY, AVAILABILITY, MAINTAINABILITY (RAM) ..o, 8-1
8.1 DEFINITIONSconrisirncsssensssnssesssnsnsssssessassssesesssnssssssssssssssssesssssssossmsennemnssnssons 8-1
B.11 SyBtem SLALEScccverusscssesesserssnsasnssssssessssnsssssssssssessesssssssssssessomsssmmensen e 8-1
8111 Fully Operational...........iecmmmeennenneinescsnesssssssssssnesssssssessssssosmoosmsensennnss 8-1
8.1.1.2 Fault-tolerant OPerationceeceeeeecesseeessssssssessessssssessensesns s 8-1
8.1.1.3 Degraded OpPeration......uwcemecmnssnisessmscssescsssessssssssssessessossssssesnensennon.. 8-1
8.1.14 Down . cereesastesstresaaressaneessanresserassessarassnns 8-1
8.12 INEEITUPL .ottt sesseesossisssssssesessasensenssssossossossssmnsens e, 8-1
8.1.3 Deferred MaintenanCeccovuererresnnsresressinserssssssssesssssssssnssssssossesssessessssmen e, 8-1
8.2 MINIMUM RAM FEATURES.ccocovuneueinrinirncereessesessessnssssssesssssssssensemsensessms s, 8-2
8.2.1 Maintenance Processor cesesenitsre e es s as ettt s st sResaesaesbe e snebassebennan 8-2
822 SECDEDcovvnmiinisisecsssssssssssssssssasssssssssssasssssssssssssssssssssssaesssssssssssssessennemses e ses. 8-2
8.2.3 Parity ChecKing......oucciceorersernsresnsssssnsssscsssssssssssesensssesssessesssossssssssessnsess oo 8-2
8.24 Degradable Cache and Map.............cuuenreeivcienceneencnssssesssssnssssssosssss s ses oo, 8-2
8.2.5 Fault IS0IAtIONuvverveireircscnrerectnntnsreessscsessssssessesenssessssses s sessees s 8-2
8.2.6 Reconfiguration and Degradation..............eeeeeeeeeeeevesressesesssosssosoesoos oo 8-3
8.2.7 INSLIUCLION RELTY w.ovvuiuiieeiecrirrenstnneessesisesncesesssesssessssesssessessss st 8-3
8.2.8 MiCT0 Step MOde......uuccuuireriieeriesssnsrnsnssssisscsssesessssrsssssessassssssss s e s 8-4
8.2.9 TiIME-0UL ...ttt s ssesssss st 8-4
8.2.10 POWET SUPPLIES...uunrvvvuiieeseceeeserisnsssennssssssssssseesessessssssssssssess e 8-4
8211 PACKAGING.....crrtiierrrrrisinnniccesissesnsisnessssssassssassnssenensesssnessssssssss oo 8-4
8.2.12 FOTCEA EITOTB..ccuummnnnnnrivverrrieiisssnnnnsssssssssssssssseeeessesssmessssssssssssssseone 8-5
8.2.13 Programmable CIOCK MAIgINSccuuuuuuusunneeeeeeeeeessesssssssssossooossnsne 8-6
8214 Component FAilure RALeSuuuumueuomeeesereeesmsssssossosssossssoossoss o 8-6
8.215 Remote Technical Assistance (RTA)........uuuuuummeeeomsrsosoooosssossssossim 8-6
8216 Hardware ReUNAANCYccovmemmeesseisssesoceoooseensoooossosssssssssoss 8-7
8.3 ENVIRONMENTAL FAILURES............oovvovvvvuvmmmessesssssosooooooossssssssssesen 8-7
8.4 PERFORMANCE MONITORINGccvccvvvvurvvnrersemnneneeneeemermesss oo 8-7
9.0 DEDICATED FAULT TOLERANCE (DFT).....ooooooooooooooooooooooooooooooooo 9-1
9.1 ELEMENT STATUS SUMMARY.........oovoovmemurerrereeeessssssossosssssssssn 9-1
9.1.1 System Error Summary RePOTtINg c..ucoevrreertteecteeeeees e 9-1
91.1.1 LONG WAIDING.......oovvtiioscceec e 9-1
911.2 ShOTt WAIING ..o eeevens s esnnsssseeeeossssssssssssesennnee 9-2
9113 UNCOTTECted EITOT.....vvooivvvvrnsinvccecssinssesnssssseeseessssessossosssssonnn 9-3
91.14 COTTECLEd EXTOTccovoorvressosseeeneessnsessesnaesssooseesesssossoesnn 94
9.12 Element Error Status REPOTtINg....omvonvtcete oo 9-4
9.121 Process Not Damaged (PND)........cccccccccvmssvmvveesosoeeoosssssossmssnn 9-4
9122 HAIE sttt 9-5
9.123 Operating State 8Nd MOGe..............cccccervmmuvvrerssssemmeeessssseons 9-7
9.124 Static CONMIGUIALION ..vvvcvvvrressessssseceenesssansseeesseeneseossososseess 9-7
9.125 Dynamic CONfIGUIBLION...........cccvvevercccesesesseennnneneens e 9-7
9.12.6 Element Identification...............coooovcccveevevverrrenrnnrrseeeseeesmmnnessessssoosooss 9-7
9.1.2.7 Processor ENVIrONmEeNt. ... sesnnssos oo 9-7
9.2

DETAILED ERROR REPORTINGccoouueermmrmnnrrnneenseeeosmsressssees oo 9-8

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE Juliy 15, 1988

Architectural Design and Control PAGE

Appendix A:
Appendix B:
Appendix C:
Appendix D:
Appendix E:
Appendix F:
Appendix G:
Appendix H:

Appendix I:
Appendix J:

Index

CP Instructions in Reference Number Sequencecceevevvreveiucineane A-1
CP Instructions in Operation Code Sequence B-1
Edit Examples . resasersnsnenesnesens C-1
Interrupt Conditions. ressssnsenseserasatsatssttsnsserassssnesns D-1
PP INStructions.....ccccsesccssiseisesmssnsesssssecsssasssssassessessesassasssnssssesssesnssns E-1
PP Instruction Address Modes..... reeesusenssnsnetsssstentorsssasesasses F-1
Debug Conditions . reesesnesatsnsassssasssrsaesnens G-1
Edit FIoWChartscccoviininninnisrnsssisssissessissessissessiseesesssessssessssnsassasssnsanes H-1
Exception Conditions - UTPccvvrvsrnnnennsinssenssessssssisesssssnsenes I-1
Hardware/Software Interaction.......iiimn. J-1

.......... Index-1

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AE
: DATE December 19, 1989
Architectural Design and Control PAGE xviii
List of Figures
2.2-1 Register Selectivity Correspondence. ersrssassassesensinssussrtssssasersens 2-18
2.5-1 CYBER 180 Exchange Package (C180 Process)cecsueusseresuracsernsasanasssenens 2-108
2.5-2 Stack Frame Save Aref........coieisessssssssssnissanisimsisiiiss 2-117
2.6-1 Call/Return/Pop, Post-execution Stack Frame SEALES 1ovoverersnseressssrnserrs 2-131
2.8-1 Interrupt FIowchart......ciiiiininnnnniinneee. 2-185
2.11-1 PMF Register FOrmatscocovvnrinrinsnnnnnncseessnnecnsinenenninoniinnnieeenons 2-192
2.11-2 PMF Input Selectors and Counters.......oiemeearensnniniiininnniiiniiininienineo. 2-196
2.12-1 Gather INStruCtion ...cccccverceieiniirinninsnssnnicssseenstsisesissisniessesssssssssssssessesssees 2-213
2.12-2 Scatter Instruction......ccecvureee. eresserssssrtsnesasasantsasststensonsrarsasines 2-215
3.1-1 Address Component Hierarchy.........cuceesececesessnsnesnnsnsnsninininsseeesesesnsesessesesssnes 3-2
3.3-1 Conversion of PVA to SVA......inminnmmimmmims 3-7
3.4-1 System Virtual Address ... s, 3-8
3.4-2 Formation of Page Number and Page Offsetcccoccevevuiveiercnrenrencnicninnennenne. 3-10
3.5-1 Transformation of SVA to RMAcccivemnmnninsmninininiinnsnsimm. 3-15
3.5-2 Eight-bit Page Table Length.........civnninnsennnnesnsnnisnssiim. 3-16
3.5-3 Fourteen-bit Page Table Lengthccccvuivvrninninniericnsnsnnnnsiniesiiescnineenneens 3-17
4.1-1 Memory System EIeMents.......ccccveriiccniensensnnscenssniisnnssnsssssionssssessseessesme: 4-1
5.2-1 CYBER 170 Mode R-Register (I1, 12, I4 and I0)cceevvvuvvirvinninccinnnennncnnnn. 5-24
5.2-2 CYBER 180 Mode R-Register (I0 only).....covrnirniivnnisiiineiinninineneinnnenes 5-25
5.3-1 Data Output SEqUENCE........cccuvirirerinririreisiienietessneeres et 5-84
5.3-2 Data INPUL SeQUENCE...ccirierieierirecrisncrisrssnssessnssssisesasssessssssssssssecsessessossersessesses 5-85
6.0-1 CYBER 180 Maintenance Architectureccocueeenccrinenrereninsnnnincsercnnsneeennne. 6-4
72-1 CYBER 170 MEIMOTIES «..couvuireriisenrnisnssnsnescssssnsissssnssisisassessesissesssssssssossesssesssnssseses 7-3
7.3-1 011, 012 INStIUCLIONS .eeerverrerereerreesuerseesseessasssnssasessessaesssssanssssesseessnsssassssesssssssassns 7-12
7.3-2 014, 015 INStrUCLIONS .eeceeverererireieesrerereeneeserereseneseeessessesssesssesssesssessssesses seseeses 7-24
7.4-1 CYBER 170 State Exchange Package Mapping.......ccooeeeevererurneonerecererersenaeenns 7-27
7.4-2 C180 Stack Frame Save Area Containing C170 Environment.......ccceceueunnes 7-33
7.5-1 CYBER 170 Exchange Package.......c.ccuvvcrvnnrenisinenenencninisniiinneninniie e 7-35
T.13-1 ECS Protocol.....cccreccerssesisnranncseseesessresassesassesseressssssassssasens et s neeaes 7-56
9.1-1 CPU Error Recovery with CPU Stop on Error.......cvcnnnninnncncnennne, 9-6
List of Tables
1.3-1 Interelement Connection AILernativeseceeiseneniieniincerenensneinennienne 1-3
1.5-1 Typical Serial NUMDETISccccveveererrerrerriernireeieseessessesesiesssessesesssessisssesserssessensees 1-4
1.5-2 S SEEIMS ..eeereererarraensenerseesersnesesssesaessessrensessesseessessessesensesssesassassssssasssansenns 1-7,1-8, 1-9
1.5-3 Central Memory Capacities. ... ererersserenrsunsesesessanssenessenssssencessssscssesesessesenns 1-10
1.6-1 Central Memory Port AsSignments......cccuvceveeerereereseesnireerensessessesneressssseesessenne 1-12
1.6-2 Purge Buffer Instruction Sub-Ops.......cccceviineencinsennenniesinnsonissesscsnnesinecsieseens 1-14
2.1-1 P Exception Testing....cccoinereerininiirenncrenoesnesiesenesessestsresesersessessessessessessessaees 2-6
2.1-2 Unused Bits.....coriniiiniiiiiicciitieiennsenneinssesesesnesesesesessesssssssenes 2-8
2.4-1 64-Bit Floating Point Representationccecccoinniiininnncncninnnnnncninnnns 2-69

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988

Architectural Design and Control PAGE xvii
Appendix A: CP Instructions in Reference Number Sequencec.ccoceeeeerirerucncne. A-l
Appendix B: CP Instructions in Operation Code Sequence..........cocerriresurcscnnncens B-1
Appendix C: Edit EXamples.....cccciceicninrccnsnssscsnssssionssssessscssessssssassossosssassssssssssossasseses C-1
Appendix D: Interrupt Conditions.............. ceestsassessssssssntsassssastsaasasaasasae D-1
Appendix E: PP INStructions........cucveienininensenisnensnisissisimsnininisnenssisesossn E-1
Appendix F: PP Instruction Address Modes........ccoveerennereesnsnsssssasssssssssssssssssssssoses F-1
Appendix G: Debug Conditions.........ccmiiccnininiineinissn. G-1
Appendix H: Edit FIOWCRATILSccceivirernicninenseeninseninissssssssssssssssssssssssssssassesssssssssssssones H-1
Appendix I: Exception Conditions - UTPcccinnnrinnsisencsnsnssernssinnesinscssnsnnes I-1
Appendix J: Hardware/Software Interaction........cieeiiisencrincsresnnueiecsenncsnnnnns J-1
INdex s s se s b e s asss s e b b s Index-1

CONTROL DATA PRIVATE

6.0-1

VNN
= OV I o o o

I Y Yy R

: ’ DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AD
DATE September 1, 1989
Architectural Design and Control . PAGE xviii
List of Figures
Register Selectivity Correspondence........cceummniscsrssisissesnsssssnsessssssessssssssnsses 2-18
CYBER 180 Exchange Package (C180 Process) .. 2-108
Stack Frame Save Area...........cienesnissssisssmisisissssssmosssssssssssssssssssasass 2-117
Call/Return/Pop, Post-execution Stack Frame STALES ... 2-131
Interrupt FIOWChart.......cccovciiinicninscnncssnicsnsnsennsnsnssecsssssessssssssssssssssssasassessns 2-185
PMF Register Formats 2-192
PMF Input Selectors and Counters .. 2-196
Gather INStructionccccvccnnininsinnnseninisnisssssnsneiisssissssssestosessssssns 2-213
Scatter INStrUCLIONc.ccvviiiniitiiennsinnrnnisisssensisssssnsiosssssssssssssesssssas 2-215
Address Component Hierarchy............cccovesnnnserennene rsesssaersssas et bt s s anenes 3-2
Conversion of PVA to SVA.......iiiinieomemsssmsmse 3-7
System Virtual Address.........cccveveriseerereseniceniniesinssssnesenssssssssssssssssssesssnssssssssasses 3-8
Formation of Page Number and Page Offsetccceeveuvenrcrncninrrcninncnnee 3-10
Transformation of SVA to RMAcciiiinnnininnininneisnsicssssens 3-15
Eight-bit Page Table Length...........cccccoeivnivrnnncrnisnnininscsesmnesnenesssnsenns 3-16
Fourteen-bit Page Table Lengthcccocveevininnnnirininniennenncnscsreneernenssnnsessnees 3-17
Memory System Elements........oceivviiinivinninnnnncnnnnesneoiseasss. 4-1
CYBER 170 Mode R-Register (I1, 12,14 and I0)ccceoervreviiviniinnensccsscnnessnnnes 5-24
CYBER 180 Mode R-Register (I0 only)......cccocenrerercecensnsenseessaesassessssessassesssans 5-25
Data Output SEQUENCE........ccuvuruicirtrcireciristsininissssscnssesisssessssssssesssseniosne 5-84
Data INPut SeQUENCE.....ccvvrveiriiiiinsinisinsisinsiisiesisesssssississsssssssssssssssssssssassssses 5-85
CYBER 180 Maintenance Architecture..........ccccccererrerrennene resvesnerseessesanestennsenaas 6-4
CYBER 170 MEIMOTIES ..vvvuceerisersnierenssnssnsssnssssssssessanssnossssssssassssssanssasssnssnnossassssssass 7-3
011, 012 INSEIUCLIONSeeeveeereeereerseeesrensaneereessseesaessacsssessssessssssssessessssessansersassnsens 7-12
014, 015 INSEIUCLIONS ..coverreeeneecireicnernsernnneesescnniessarsncsssessnsessscssssssnsssasassasssssassnsoss 7-24
CYBER 170 State Exchange Package Mapping.........oeecevvenesrssnnnsensecoresesnnans 7-27
C180 Stack Frame Save Area Containing C170 Environmentcccoeerveven. 7-33
CYBER 170 Exchange Package........cccceeeeiererrennicerenerensnesaesnesnessscaessesancnsessesserae 7-35
ECS Protocol.....cccieececnscncresensasnnsesaesesseseensossassssessssssssssnssassessssssnsenssssnsonsansssansens 7-56
CPU Error Recovery with CPU Stop on Error.........ceiiinnncnncnnseensescsnessenss 9-6
List of Tables
Interelement Connection AlLernativescceveerereneverrecrensnsesneseneesssnssnssanes 1-3
Typical Serial NUMDETSccviviiiiniieiininnincnneinieeneeenesnesseessesssssssssissesses 1-4
SYSLEIMS ..cviriruicriesnsisinisissestsissssssiesssassassessssasssresssssssenssensessssensessssensesssssssssns 1-7,1-8
Central Memory Capacities.........cccvierrerenrrrinerennsenenessesseresessssessessssessessssassosses 1-9
Central Memory Port Assignments........cc.eeevevinecennenieineenressessnsesreseessesssssses 1-11
Purge Buffer Instruction Sub-Ops.........ccccveenirceneerecrininrennninessesesnssiessssesinsess 1-13
P Exception Testing.......cocevuuivinniniiniiinniniiicnessnseiesose 2-6
Unused Bits......ccininininininiiiiiniesisseseseens S RN 2-8
64-Bit Floating Point Representationc...ccceeveerereeninreniensnesnsessessesassssensens 2-69

DO DD DD bid bk ok ot ok

N R e e W E o e RN

= DD = DD = GO DN =

CONTROL DATA PRIVATE

P

......

%

CONTROL DATA CYBER 180 MIGDS

Architectural Design and Control

DOC. ARH1700

REV. AD

DATE September 1, 1989
PAGE xix

2.4-2 Floating Point Compare Results.........cccoveunnnneienniiinnennesinsscsieisnine, 2-91
2.4-3 Floating Point Sum Results, UM Clear........ccccoeiieveninrncccscsiisicsnninicnins 2-92
2.4-4 Floating Point Sum Results, UM Setcccovieivnnnnnnnincnsiinsininieini, 2-93
2.4-5 Floating Point Difference Results, UM Clear.........ccocvereicnsnnccicnnnnicnnns 2-94
2.4-6 Floating Point Difference Results, UM Setccovnivenecenniiscicseniniinnnnins 2-95
2.4-7 Floating Point Product Results, UM Clear........coccoeerrenecninisniiniisnninninniininens 2-96
2.4-8 Floating Point Product Results, UM Setccocovevnnniiiencnnninicnncsnienininin 2-97
2.4-9 Floating Point Quotient Results (scalar), UM Clear.........cccooevevciicncnnninnnn. 2-98
2.4-10 Floating Point Quotient Results (scalar), UM Set.......ccccoeeiininiinnninines 2-99
2.4-11 Floating Point Quotient Results (vector), UM Clearcocoevniimncncnnnnn. 2-100
2.4-12 Floating Point Quotient Results (vector), UM Set......cccccerniisccsnriiiinnns 2-101
2.5-1 Bit Positions of Processor State Registers. . . oo 2-102
2.5-2 Real Memory AdAressescieenuininnnssinnnessnsessesssssessssisnsiesnsine s 2-104
2.6-1 Register Definitions for "Copy” ..o 2-145
2.6-2 Register Access Privilege.......einnnnniinnnnncciiii s 2-146
2.8-1 Monitor Condition Register.........cocoviiniiiiinniiinnniiennesieeesnsissssins 2-158
2.8-2 User Condition Register........comiiinieniiinnenineeieninninesesesnsssiscsnssins 2-158
2.8-3 Condition Registers, Bit Grouping.......ccceevemvenennsensnieniniiiiinien e 2-165
2.11-1 Definition of PMF Counter AcCtions.........cocevimenienienienvinsinnnisincncninini, 2-197
2.12-1 Vector INStructions......cueccenienineniinneiiinriineinsenssesseseesssessssssonseens 2-200
2.12-2 Vector Instruction Input and Output Fields........ccocoveiinncnnnnnne 2-203, 2-204
3.5-1 Theoretical Maximum Central Memory (100% full Page Table)................... 3-12
3.5-2 Practical Maximum Central Memory (25% full Page Table)........cccc....c....... 3-12
4.1-1 Standard Memory Port. ... 4-2
4.2-1 Function vs. Response Code for a Given Failure.......ccccooeevevniniininninn 4-8
4.2-2 Hardware Action Taken for Function vs. Failure.......cccooviinininininnnnnn, 4-9
4.4-1 Memory Configuration Switches (three-position) ..o 4-11
4.4-2 Memory Reconfigurations.........simienmneinsiiisii. 4-12
4.4-3 Memory Configuration Switches (tWo-position)eveesssiiinnenninnniis 4-13
4.5-1 Memory Register Access Privileges......c.cveimmeniiincnennninniniein. 4-14
5.3-1 CYBER 180 Channel Signal Definitions.......cccccovvvemennnnnnincnnnnnininiiniinen 5-86
5.6-1 Maintenance Registers ... viieniniennscinissnicssiiiiinieise. 5-89
5.6-2 OS Bounds Register.....cceovruiiiiiniiinniniennieninnisnienstsnssesntssssssssssisisnisisnsns 5-90
6.0-1 Maintenance Channel Interface.......c.ccoccvvinininiinieenininneinec . 6-1
6.0-2 Processor State Registers......cocoviiennininniincncncc 6-2
6.0-3 Central Memory Maintenance Registers........cccocoveeininncnnnninniinn, 6-2
6.0-4 IOU Maintenance RegisSterscccueieiiimniinnininiessiniesinnsssesssssenissnsienns 6-3
7.2-1 C170 State Extended Memory......... Aeessesesessssreasebertertarieteatb LSt sE s Re SR e RSt e e s R e b et 7-4
7.2-2 Extended Memory FIags.......ccovniciniinininiiesescsssiiniinsenssnns 7-5
7.3-1 ECS BIOCK COPY .vvrvenerensrcresssirissisesissiseessssssmisssssssssssssssssssssssssssssesssnsanas 7-14 - 7-19
7.3-2 UEM (ECS Mode) BIoCk COPY ...corerererunririsnnminrnnisnssssienisnsisesssusessssnsisisnainses 7-20
7.3-3 UEM (ESM Mode) Block COPY ...cccerreerinisresrirmnenisriresnsisiesssssssesssesisniisasse 7-22
7.4-1 Exchange Package Flags......ccccniiiiiiinneniies 7-28
7.6-1 Error Exits, C170 Monitor and Job Modescccueurenreinrinvinnsinncininnnns 7-39 - 7-46

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 1-1

1.0 INTRODUCTION
1.1 SCOPE

This General Design Specification is intended to define the common properties and characteristics of
Central Processor models, Central Memory models, and Input/Output units which constitute major
firmware/hardware components of the CDC CYBER 180 product line.* See table 1.5-2.

Included in this model-independent specification is the description of the Virtual Memory Mechanism
commonly applicable to these major system components.

The use of italic font in this specification is explained in section 1.6, Model Differences: Machine
States.

1.2 APPLICABLE DOCUMENTS

1.2.1 Control Documents

CYBER 180 Architectural Objectives/Requirements, Doc. No. ARH1688
CYBER 180 Configuration Notebook, Doc. No. ARH3386

CYBER 180 IT Assembler ERS, Doc. No. ARH3945

CTI Interface Specification, Doc. No. ARH2948

DFT/OS Interface Specification, Doc. No. ARH6853

Q 1.2.2 Reference Documents

- CYBER 180 Clock System Specifications, Doc. Nos. 11896089/11896090
- CYBER 180 Performance Monitoring Facility Interface Specification
- CYBER 180 Processor/Memory Transmission Scheme Specification

CYBER 170/173 Engineering Specification, Doc. No. 19063000
CYBER 180 ECS Coupler Interface Requirements Specification, Doc. No. 11896624
CYBER 170 I/O Channel Transmission Circuit Specification, Doc. No. 19063800

* 1In this internal specification, the term CYBER 180 also extends to components of the CYBER 900
product line.

O

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS RV AG o0
‘ DATE July 15, 1988
Architectural Design and Control PAGE 1-2

1.3 CONFIGURATIONS

The architecture shall allow flexibility in the interconnection of the basic computer system elements.
These elements shall consist of central processors, central memories and 1/O units.

This specification addresses the ability to connect various system elements together, but does not
define supported configurations.

For the purpose of this specification, the processors will be referred to as the five models PO, P1, P2,
P3 or THETA processor. The central memory units will be referred to as the models MO, M1, M2, M3,
or THETA memory. The Input/Output units will be referred to as the models 10, I1, 12, 14 or I4C. The
systems will be referred to as S0, S1, 52, S3, or THETA.

A comprehensive list of system configurations is shown in table 1.5-2.

1.3.1 Interelement Transfer Paths

All data transfers between two central processors or between the I/O Unit and a central processor
shall be via central memory. Transmission of data between central memories M2, M3 or THETA and
the I2 or 14 Unit shall occur over logically compatible, 64-bit wide interfaces. The electrical interface
and clocking are not necessarily compatible between all central memories and IOU models.

1.3.2 Interelement Clock

A detailed description of the clock system is included in the Clock System Specification listed in
paragraph 1.2.2.

1.3.3 Interelement Connection Alternatives

Each processor shall provide one processor port (termed the local processor port) to access the central:

memory within its system. P2 shall also provide one processor port (termed the external processor
port) to access a central memory in another system. Both processor ports on P2 shall be designed to
interface to a standard memory port (4.1.7). The requirement for two processor ports on the P2 is
implemented by providing both ports directly from the processor.

The I2 and 14 shall also be designed to interface to a standard memory port. An 14 attached to port 3
of a memory need not support the cache invalidation for C170 central memory writes (7.2.4) nor the
C170 Exchange Request (7.12).

M3 and THETA memory ports 0 and 2 shall be appropriately designed (with regard to performance

requirements) to interface the local processor port for P3 and THETA respectively. M3 and THETA
memory ports 1 and 3 and all M2 memory ports shall be standard memory ports. Of these standard
memory ports, port 3 of each memory shall not only be a standard memory port but also shall be
capable of interfacing an element which is not within the same EMC boundary as the memory. The
other standard memory ports may assume that the element attached is within the same EMC

boundary as the memory.

An SO or S1 system and elements therein are not required to directly interface any other elements on
other systems.

These interconnection requirements are summarized in table 1.3-1. Note that any required
resynchronization of clocks shall be performed by the element connecting to the standard memory port
rather than by the memory.

CONTROL DATA PRIVATE

<
Nl

NS

_ DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 1-3
CYBERPLUS
MEMORY PORT P2 P3 THETA PROC. 12 14/14C] & MAP V
{0 (std) | Yes (local)
M2 {1 (std) Yes*
2 (std) | Yes (local) 1
L 3 (std) || Yes (ext'1) Yes
(0 Yes (local)
M3 {1 (std) Yes* Yes*
2 Yes (local)
| 3 (std) Yes | Yes
[0 Yes (local)
THETA {1 1 (std) Yes*
MEMORY| 2 Yes (local)
L 3 (std) Yes

*This 10U must be inside the same EMC boundry as the memory.
Table 1.3-1. Interelement Connection Alternatives

Interconnection alternatives between the 12, 14, CYBERPLUS or MAP V and central memories M2,
M3 or THETA shall include options for one way electrical distances of one or two clock cycles of
propagation delay.

There shall be a special processor termed the Maintenance Control Unit (MCU) which will form part
of the I/O unit. Each of the central processors shall provide a Maintenance Channel (6.0) interface for
the MCU. The MCU shall serve as the programmable maintenance facility for these processors.

1.4 GENERAL TIMING CONSIDERATIONS

Within each processor, instruction execution shall be "conceptually serialized." Although .central
memory and register references may occur out of order, (to whatever degree required by a processor’s
model-dependent implementation in the achievement of its cost/performance goals), the results from
each of the associated instructions, as observed by the processor performing their execution, shall be
the same as if such instructions were actually executed in a serialized fashion (i.e., each instruction’s
execution would be completed before the execution of any subsequent instructions would begin). The
single exception to this concept shall occur in the case of self-modifying programs as stated in
paragraph 2.1.2 of this specification.

Processor operations shall be further serialized, as observed by other processors, only to the extent
that the function referred to as "serialization" is included within the execution of certain instructions
as described in section 2.6 of this specification.

Program interruptions shall occur between the execution of instructions, and with timing precision
relative to the cause of such interruptions, to the extent specified in section 2.8 of this specification.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 14

)
~

1.5 SYSTEM ELEMENTS

Each element on CYBER 180 has two registers-which identify that element uniquely. These registers
are the Element Identifier (EID) and the Options Installed (OI). They are used during system
initialization to determine the mainframe configuration. These two registers shall be constructed
such that software shall not be able to change their contents.

Also discussed in this section are microcode naming conventions and system configuration
information.

1.5.1 Element Identifiers (EID)
The EID has the following format:

32 40 48 63

Element No. Mode1 No. Serial No.

The element number identifies the equipment as a processor, memory, IOU, etc. Element number
assignments are as follows: '

00 central processor
01 central memory
02 input/output unit

The hexidecimal model number further catagorizes elements. For example, a processor could be a P2, 7N
as distinguished from a P1 or a P3. See Table 1.5-2. S

The serial number field is written in packed decimal notation (see 2.3.2.2). In this way, the console
displays the literal EID.

SERIAL NO. I PACKED DECIMAL EQUIVALENT (48-63)

0101 0000 0001 0000 0001
1019 0001 0000 ooo1 1001
0110 0000 0001 0001 0000
1489 0001 0100 1000 1001
1490 0001 0100 1001 0000

Table 1.5-1. Typical Serial Numbers

See table 1.5-2 for a list of supported system configurations.

x‘\‘ -

- CONTROL DATA PRIVATE

Qo

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 1-5

1.5.2 Options Installed (OI)

The OI identifies the options installed on a given element. Examples are: channels and barrels on the
IOU; cache or control store extensions on a processor; various memory increments on memory; various
processor/memory/IOU configurations on the S1 system. The exact bit definitions of the OI are model-
dependent and are specified in the appropriate engineering specification for each element. The range
of central memory is shown in table 1.5-3.

1.5.3 Microcode Naming Convention

M

It

Mrrstxx

First character of the seven digit name to be M (microcode) to distinguish this name from
the prior naming convention which used U.

Hexidecimal numeric field (00-FF) to indicate the model number of the processor for which
this microcode is intended.

Alphanumeric configuration descriptor to indicate on a model-dependent basis different
microcodes with different capabilities.

Alpha descriptor to indicate specific microcode memory within the processor for which this
microcode file is intended.

Alphanumeric field to indicate the level of the microcode.

01 to 99 for released levels.
AA, AB...for specific "patches” to specific levels of microcode.

CONTROL DATA PRIVATE

DOC. ARH13
CONTROL DATA CYBER 180 MIGDS RV AG %0

DATE July 15, 1988
Architectural Design and Control ‘ PAGE 16

1.5.4 Configuration Guidelines

The specific microcode (rr and s) required for a specific processor is completely specified by the
processor Model Number and Options Installed register. The required level (xx) of this microcode is
not specified by anything within the processor.

The model number for a processor will change whenever hardware changes (as opposed to switch
settings) are required within the processor such that the resulting processor is "different” from its
predecessor model in a manner not achievable by the addition or deletion of options or FCOs.

Additional model numbers must be specified via an approved DAP.

The maintenance channel must be able to read the Options Installed register without any microcode
support because the OI register helps specify which microcode will be loaded.

The setting of a bit in the OI may require a number of changes or other switch settings to provide the
- capability indicated. (For example, the setting of "C170 state available" on the second THETA
processor might require recabling the cache invalidation buss to the second processor.)

When a capability is added to a processor which requires a different microcode, the impact may require
including the ability to manually switch the associated bit in the OI register.

The addition of a capability which will be a permanent change to that processor merely requires that
the OI be appropriately altered, not necessarily switchable. Any capability which must be switched

periodically in or out will require an appropriately switchable bit in the OI register. No bits in the OI
register will be software alterable.

Additions to the OI register must be specified via an approved DAP. This DAP must include a
statement as to whether the bit requires a switch or may be "hard-wired".

Dynamic degradations of the processor as part of soft-fail procedures do not change the OI register.

The VMCL defines the environments in which a processor may execute. It does not define which
microcode shall be loaded by the initialization software. For this reason, the VMCL does not need to
be available via the maintenance channel until after the microcode has been loaded.

CONTROL DATA PRIVATE

4

(o

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.
REV.

DATE
PAGE

ARH1700

AE

December 19, 1989
1-7

1.5.5 Systems Supported

The CYBER 180 systems supported by Control Data are itemized in table 1.5-2. The range of central
memory capacities by CM model number is itemized in table 1.5-3. See section 1.6 for a list of systems
supporting C170 state only, C180 state only, and dual C170/180 state operations.

The following
s3 =
S3CR =

$3 Cost Reduced

annotation is used in this table:
$3 Sn = System n

Pn = Central Processor n

S3CR- = S3 Cost Reduced Minus Mn = Central Memory n

S3CR-- = S3 Cost Reduced Minus Minus In = Input/Output Unit n

$3s = 538

Element 00 Element 01 Element 02
System CPU 0 (model)|CPU 1 (model)|CM (mode1)|I0U 0 (model)]IOU 1 (model)
(optional)* (optional)

S0~ 930-A |PO- (58) MO- (58)]10- {5B)
S0- 930-B |PO- (5D) MO~ (50){10-~ (5D)
S0- 930-11}P0- (53) MO- (53)}10- (53)
S0 930-31{P0 (52) MO (52)|10 (52)
SOe~ 932-A |POe- (sC) MOe- (5C)|10e- (5C)
SOe- 932-B |PQe- (5F) MOe- (5F) | 10e- (5F)
SOe- 932-11|P0e- (55) MOe- (55)|10e- (55)
SOe 932-31{P0e (54) MOe (54)|10e (54)
SOe 932-32|P0e (54) [POe* (54) |MOe (54)|10e (54)
S1 Slowedt P1 Slowed(10) M1 Slowed (10){11 Slowed(10)
S1CR- 810 |PICR- (14) M1CR- (14){I11CR- (14)
S1CR- 810A |PICR- (14) M1CR- (14)[I11CR- (14)
S1CR-S 8158 [PICR-S (15) MICR-S (15)|I1CR-S (15)
S1- 815 |Pl1- (11) M1- (11)411- (11)
Sl 825 (Pl (12) M1 (12)|11 - (12)
S1CRS 8255 |[P1CRS (186) M1CRS (16)] I11CRS (16)
SICR 830 |PICR (13)|P1CR (13) [MICR (13)|I1CR (13)
S1CR 830A |PICR (13)|P1CR (13) |MICR (13)|I1CR (13)
s2 835 |P2 (20) M2 (20) (12 (20)

* 932-32 is a dual processor system only.
t A1l S1 Slowed systems, model number 10, have been upgraded to model 11 or 12.

Table 1.5-2. Systems (part 1 of 3)

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS

Architectural Design and Control

DOC.
REV.

DATE
PAGE

ARH1700

AE

December 19, 1989
1-8

The following annotation is used in this table:

S3 = S3 Sn = System n
S3CR. = S3 Cost Reduced
S3CR- = S3 Cost Reduced Minus

S3CR-- = S3 Cost Reduced Minus Minus

Pn = Central Processor n
Mn = Central Memory n
In = Input/Output Unit n

3 = §3S I4AC = 14 (air-cooled)
Element 00 Element 01 Element 02
System CPU 0 (model)|CPU 1 (model)| CM (mode1) | 10U 0 (model)|IOU .1 (model)
(optional)* {optional)

S3CR-- 840 |P3CR-- (34) M3CR (31)12 (20)

S3CR-- 840 |P3CR-- (34) M3CR (31)|14 (40)

S3CR-~ 840A |P3CR-- (34) M3CR (31)[14 (40}|14 (40)

$38-- 840S |P3S-- (37) M3CR (31)]14 (40)

$3- 845 (P3- (31) M3 (30) {12 (20)

$3- 845 |P3- (31) M3 (30))14 (40)

$3- 845 |P3- (31) M3CR (31)112 (20)

$3- 845 |P3- (31) M3CR (31)114 (40)

§38- 845S |P3S- (35) M3CR (31){14 (40)

S3CR- 850 |P3CR- (33) M3CR (31){12 (20)

S3CR- 850 |[P3CR- (33) M3CR (31)]14 (40)

S3CR- 850A |P3CR- (33) M3CR (31)j14 (40)(14 (40)

S3 855 |[P3 (30) M3 (30)|12 (20)

$3 855 {P3 (30) M3 (30)|14 (40)

S3 855 |P3 (30) |P3CR (32)] M3CR (31))12 (20) SN

S3 855 |P3 (30) |P3CR (32)} M3CR (31)|14 (40) e ”@

S3s 8555 |P3S (36) M3CR (31)]14 (40)

S3CR 860 |P3CR (32){P3CR (32)| M3CR (31)]12 (20)

S3CR 860 |P3CR (32) |P3CR (32)| M3CR (31)[14 (40)

S3CR 860A [P3CR (32) M3CR (31){14 (40) 114 (40)

S3CR 870A [P3CR (32)|P3CR* (32)] M3CR (31)114 (40)i14 (40)

* 870A is a dual processor system only.

Table 1.5-2. Systems (part 2 of 3)

‘A‘[’ ‘\\\\
i

CONTROL DATA PRIVATE

' ‘ DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE
, DATE December 19, 1989
Architectural Design and Control PAGE 1-9

The following annotation is used in this table:

S3 = S3 Sn = System n

S3CR = S3 Cost Reduced Pn = Central Processor n

S3CR- = S3 Cost Reduced Minus Mn = Central Memory n

S3CR-- = S3 Cost Reduced Minus Minus In = Input/Output Unit n

Element 00 Element 01 Element 02
System CPU 0 (model) CPU 1 (model) | CM (mode1) | 10U 0 (model)]I0U 1 (model)
(optional)* {optional)

PIP3~ 960-11 {PIP3- (38B) PIM3 (34)|14AC (40){14C (44)
PIP3- 960-11S|PIP3- (38) PIM3 (34)]14s (42))14C (44)
PIP3- 962-11 |PIP3- (38) PIM3 (34)]14C (44)|14C (44)
PIP3 960-31 |PIP3 (3A) PIM3 (34)]14AC (40)[14C (44)
PIP3 960-31S|PIP3 (34) PIM3 (34) 1148 (42)]14C (44)
PIP3 960-32 |PIP3 (3A) |PIP3* (3A)| PIM3 (34) | 14AC (40)|14C (44)
PIP3 960-32S|PIP3 (3A)|PIP3* (3A)| PIM3 (34)]14S (42)]14C (44)
PIP3 962-31 |PIP3 (34) PIM3 (34)|14C (44)]14C (44)
PIP3 962-32 |PIP3 (3A) |PIP3* (3A)] PIM3 (34)|14C (44){14C (44)
Theta 930 (40) (40)| 16K ECL (40)|14 (40) 114 {40)
Theta 990 (40) (40)| 64K CMOS (41)[14 (40) 114 (40)
Theta 990 (40) [(w/dp)t (41)] 16K ECL (40)]14 (40)]14 (40)
Theta 9380 (40) | (w/dp)t (41)] 64K CMOS (41)]14 (40) |14 (40)
Theta 990 |(w/dp)t (41)](w/dp)t (41)] 16K ECL (40)]|14 (40) {14 (40)
Theta 990 |(w/dp)t (41){(w/dp)t (41)] 64K CMOS (41)|14 (40)]14 (40)
Theta 990E |{w/dp)t (41) 64K CMOS (41)(14 (40)[14/14C(40/44)
Theta 995 |(w/dp)t (41) | (w/dp)t* (41)] 64K CMOS (41)|14 (40){14/14C(40/44)
Theta 830E |(w/dp)t (41) 256K CMOS (42)]14 (40) | 14/14C(40/44)
Theta 995E {(w/dp)t (41) | (w/dp)t* (41)[256K CMOS (42)114 (40) I4/14C(40/44)
Theta 992-31 (42) (42) (256K CMOS (42)|14C (44)|14C (44)
Theta 992-32 (42)} * (42)|256K CMOS (42)]14C (44)114C (44)
Theta 994-31 (44) (44) 256K CMOS (42)|14AC (40)114/14C(40/44)
Theta 994-32 (44)] * (44)}256K CMOS (42)|14AC (40) {14/14C(40/44)
Theta-E- 2000S-1xx|{wo/vect)} (46)|(wo/vect)} (46) DRAM (46)]|14CE (46) | 14CE (46)
Theta-E 2000V-1xx|(w/vect) (48)|(w/vect) (48)| BIMOS (48)|14CE (46)|14CE (48)

* The 960-32, 960-32A, 962-32, 992-32, 994-32 and 995E are dual processor systems only.
t Theta CPU model 41 includes the high performance double precision floating point unit.
} Theta-E Minus CPU model 46 does not include vector instructions.

Table 1.5-2. Systems (part 3 of 3)

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.
REV.

DATE
PAGE

ARH1700

AE

December 19, 1989
1-10

Table 1.5-3 states the capacitiés in megabytes (MB) of the Central Memories listed in Table 1.5-2.

Model System Mem. Chip Mem. Range
{11; M1- 815 64K 2-8 MB
11) M1- 815 256K 16-32 M8
{12; M1 825 84K 2-8 MB
12) M 825 256K 16-32 MB
{13; MICR 830 84K 2-16 MB
13) MICR 830/830A 256K 16-64 M8
(14) MICR- 810 64K 2-16 M8
14) MICR- 810 256K 16-64 MB
14) MICR- 810A 256K 8-64 MB
(15) MICR-S 8155 64K 2-8 MB
(16) MICRS 8255 64K 2-8 M8
(20) M2 835 16K 4-16 M8
(30) M3 . 845/855 16K 4-16 M8
(31) M3CR 840/840A/840S 256K DRAM 16-128 MB
(31) M3CR 845/8455 o " MB
(31) M3CR 850/850A o " MB
(31) M3CR 855/8555 . o. " MB
(31) M3CR 860/860A/870A "o " MB
(34) PIM3 960/962 1M DRAM 64-256 MB*
(40) Theta 990 , 16K ECL 8-32 MB
(41) Theta 990/990E /995E 84K CMOS 16-128 M8
(42) Theta 990E/995E/992/994 256K CMOS 64-256 MB
" (46) Theta-E- 2000S 1M DRAM 128-512 MB
(48) Theta-E 2000V 256K BIMOS 128-256 MB
(52) Mo 930-31 256K 8-64 MB
(52) MO 930-31 M 64-128 MB
(53) Mo- 930-11 256K 8-64 MB
(53) Mo- 930-11 M 64-128 MB
(54) Moe 932-31/-32 256K 8-64 MB
(54) MOe 932-31/-32 M 64-128 MB
(55) MOe- 932-11 256K 8-64 M8
(55) MOe- 932-11 M 64-128 MB
(sB) Mo- 930-A 256K 8-16 M8
(5C) Mo- 932-A 256K 8-16 MB
(s0) Mo- 930-B 256K 8-16 MB
(5F) Mo- 932-8 256K 8-16 MB

* 962-11 comes with a 32 MB capacity.

Table 1.5-3. Central Memory Capacities

CONTROL DATA PRIVATE

AN

\E;;

‘ DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE
DATE December 19, 1989
Architectural Design and Control PAGE 1-11

1.6 MODEL DIFFERENCES

The following difference between models shall be noted.

Machine States

All of the CYBER 180 mainframes (with the exception of the 815S and 825S) support the C180 state
machine, the definition of which constitutes the majority of this specification. Some mainframes also
execute CYBER 170 code (or contain a C170 state machine). Chapter 7 describes the C170 state
machine. Because references to the C170 state machine appear in other chapters as well, all C170
specific material is printed in italics to aid the reader. These two are the only supported machine
states and are assigned identifiers as specified in 2.5.1.12.

C170 State
The following systems support C170 state operations:

S1 (810, 815, 825, 830) Note: 8158 and 8258 are C170 state only.

S2 (835)

S3 (840, 845, 850, 855, 860, 870)

PIP3 (960) [Note: the PIP3 model 962 is a C180 state system only]
Theta (990 and 990E)

Only the SICR processor (model number 13) supports concurrent C170 execution in dual processor
systems. (See 7.14.)

CMU

The S1 and S3 execute the C170 Compare Move Unit (CMU) instructions (Op codes 464 through 467) in
the hardware. All other models having C170 State detect these as Unimplemented Instructions. (See
7.3.1.) - '

Performance Monitoring Facility (PMF)

Initially, PMF was required as an option on all C180 models. Subsequently this requirement was
removed from all models except THETA (990, 990E), where it remains a standard feature. For
THETA-E, the PMF is included neither in the standard system nor as an option; however, the PMF
has been documented for THETA-E as a tool for development and manufacturing. Some early
non-THETA models may still exist that were manufactured with the PMF option. (See 2.11.)

CONTROL DATA PRIVATE

| DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE
DATE December 19, 1989
Architectural Design and Control PAGE 1-12
Bounds Register

‘The CYBER 180 architecture originally specified a 64-bit Bounds Register. This is the format found
in all processors of the S1 (810-830), S2 (835), S3 (840-870), and THETA (990, 990E).

This 64-bit register has 4 bits reserved for the Bit Vector for Port Bounds, 16 bits reserved for the
Upper Bounds, and 16 bits reserved for the Lower Bounds. Figure 1.6-1 illustrates the 64-bit Bounds
Register format.

0 34 3132 47 48 63

Not assigned Upper Bounds Lower Bounds

LBit Vector for Port Bounds (bit 0 indicates port 0, etc.)
Figure 1.6-1. Bounds Register (64 bits)

Setting a bit in the Bit Vector for Bounds confirms the corresponding port in the following way.
Writes are inhibited for all addresses greater than or equal to the Upper Bounds or less than the
Lower Bounds. An Uncorrectable Error Response (table 4.2-1) is returned and an entry is placed in
Uncorrected Error Log 1. A read operation is not tested for bounds.

The 16 bits of the Upper Bounds and Lower Bounds represent bits 36 through 51 of the Real Memory
Address (RMA bits 34 and 35 are reserved). This provides a maximum bounds of 256 megabytes with
the address bounds represented in modulo 4K bytes.

The S0 (930), PIP3 (960, 962), and all subsequent processors use the Bounds Register format defined
in section 4.6.

Debug on the Branch on Condition Register

The debug test on the Branch on Condition Register instruction has been temporarily removed from
the 840, 845S and 855S processors. It shall be reinstated as soon as microcode space permits. (See
2.1.2.2, Appendix D [D-10], and Appendix G [G-5]). .

CONTROL DATA PRIVATE

£
e’

D

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC. ARH1700

REV. AE

DATE December 19, 1989
PAGE 1-13

Memory Configuration Switches

Memory configuration switches as specified in paragraph 4.4.4 are implemented in the following
central memory models only:

M1l Models 10, 11,12, 13, 14

M3 Models 30, 31

M2 Model 20 THETA Model 40
No other models contain these switches.

Central Memory Port Assignments

Model | Port Number | Type Assignments

MO 0 Nonstandard | 10
1 Nonstandard | 10
2 Nonstandard | Processor
3 Nonstandard | Processor

M1 0 Nonstandard Frimary Processor - Pl
1 Nonstandard | 11(Interface A)
2 Nonstandard | Optional Processor - Pl
3 Nonstandard | I1(Interface B)

M2 0 Nonstandard | Primary Processor - P2
1 Standard 10U
2 Nonstandard | Optional Processor - P2
3 Standard *(21 address bits)

"M3 0 Nonstandard | Primary Processor - P3
1 Standard 10U
2 Nonstandard | Optional Processor - P3
3 Standard *(27 address bits)

THETA 0 Nonstandard | Primary Processor - THETA
1 Standard 10U
2 Nonstandard | Optional Processor - THETA
3 Standard *{27 address bits)

*

External port available for MAP-V, CYBERPLUS or other future
hardware meeting the Standard Memory Interface reguirements.

Table 1.6-1. Central Memory Port Assignments

Standard Memory Port Interface
The standard port shall be capable of accepting memory requests as follows:

M2 - one request every 56 ns
M3 - one request every 64 ns
PIP3 - one request every 80 ns

THETA - one request

every 64 ns

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE .

DATE December 19, 1989
Architectural Design and Control PAGE 1-14
Page Table Length Register

There are two versions of the PTL Register as described in 2.5.1.4. All C180 models have the 8-bit
PTL except as noted below, all of which have the 14-bit PTL:

S0-E (932)

PIP3 (960, 962)

THETA-E (997)

and all subsequent systems

Monitor Condition Register, Bit 48

MCRA48 is implemented either as DUE Software Flag or as Detected Uncorrectable Error, as described
in 2.8.1.1 and shown in Table 2.8-1.

CPU models 10-14, 20, 30-37, 3A, 3B, 40-41 and 50-53 (see Table 1.5-2) implement MCR48 as Detected
Uncorrectable Error. See 2.8.1.1.2. Within this group, CPU models 3A, 3B, 40 and 41 have
implemented Stop on Error along with MCR48. See 2.8, Group 0. On these four models, MCR48, if
set on Stop on Error, indicates that an uncorrected, nonretryable error condition has been detected.
On processor restart, the Maintenance Processor restores MCR48 to the definition specified in
2.8.1.1.2.

All other CPU models implement MCR48 as DUE Software Flag. See 2.8.1.1.1.

Vector Instructions

Vector instructions are implemented only on Theta systems. System models 990 and 995 implement
only the standard vector instructions as listed in table 2.12-1. System model 997 implements both the
standard and the extended vector instructions as listed in table 2.12-1.

Global Key and SPI Identifier

The following systexfxs implemented a global key lock mechanism defined in this document prior to
DAP ARH5792: ’

S1 (810, 815, 825, 830)

S2 (835)

S3 (840, 845, 850, 855, 860, 870)
PIP3 (960, 962)

Theta (990 and 990E)

DAP ARH5792 specified a simplified key lock structure as defined in 3.6.3.1. This redefines the global
key field in the P register as the SPI identifier. The models listed above support the SPI field as a
subset of the original key lock definition.

S0 systems (930) support neither the global key lock mechanism nor the SPI identifier field.

The SO0-E (932), Theta-E (997), Vanguard, and all subsequent models shall support the SPI field as
defined in 2.5.2.29.

CONTROL DATA PRIVATE

O

A/

in,
]

' DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE
. DATE December 19, 1989
Architectural Design and Control PAGE 1-15
Instruction Stack Purge

Several of the sub-ops (specifically k=4 through 6, and k=C through E) of the Purge Buffer
instruction (Op. 05) have been changed during the course of the C180 product line development.
While these were changed in a manner to preserve compatibility at the time of the change, there are
some performance considerations for any situation utilizing the k=4, purge instruction stack sub-op.
Additionally, any future changes in this instruction require careful consideration of these differences.

ksu-op | so | st | sz | s3 | THETA | THETA-E

0-2 Per Specification

3 Per Specification

4 . Purge Inst Stack

As if k=7

5-6 No-op

7 Per Specification
8-8 Per Specification
C-E As if k=F* No-op

F Per Specification

*Local Privilege is required
Table 1.6-2. Purge Buffer Instruction Sub-Ops

Ring Number Zero

The 932 and the Theta-E do not test for ring number zero at any point. All other models perform the
ring number zero test as specified in paragraphs 2.2.1.6, 2.2.1.7, 2.6.1.4, 2.6.1.5, 2.8.1.13, and 3.2.1.1.
No future C180 models will perform the ring number zero test.

SFSA Pushdown

Theta-E is the only C180 processor to contain an implementation of the Stack Frame Save Area
(SFSA) Pushdown as described in section 2.9.4. The SFSA Pushdown in Theta-E stores the P register,
the VMID and the SFSA Descriptor.

Short Warning

On the Theta-E, the Short Warning bit (MCR50) is permanently forced to zero. MCR50, therefore,
cannot be set implicitly by an environmental failure or explicitly by the Branch on Condition Register
instruction or by exchanging to a process having MCR50 set in the exchange package. Environmental
failures on Theta-E are managed by the Service processor.

All C180 models other than Theta-E have implemented the Short Warnmg bit as per the description in
section 2.8 and elsewhere in this specification. .

CONTROL DATA PRIVATE

O

o

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-1

2.0 PROCESSOR

Central processor models P1-P3 and Theta shall provide the means for reading and translating each of
the instruction codes contained in the instruction repertoire, as well as performing the corresponding
execution of these instructions as defined by the descriptions contained in this specification.

In order to accomplish instruction fetch and execution, each processor shall additionally provide the
means for referencing central memory. Central memory references shall be performed in virtual mode,
which shall include the address translation and protection facilities as described in Sections 3.0
through 3.6 of this specification.

2.1 GENERAL DESCRIPTION

For the purposes of this specification the operation codes from the instruction repertoire shall be
divided into four groups of instructions referred to as the General Instructions, the Business Data
Processing Instructions, the Floating Point Instructions, and the System Instructions. In addition to
central memory, addressed in virtual mode, the execution of the instructions within the first three of
these instruction groups, namely the General, BDP, and Flt. Pt. Instructions, shall require the means
to reference general containers referred to as the P Register, the A Registers, and the X Registers.
Also, the means for detecting and indicating exceptional conditions, which may occur in the course of
executing these instructions, shall be provided in accordance with the appropriate instruction
descriptions contained in this specification.

The fourth group, namely the System Instructions, shall additionally require the means to reference
special containers referred to as the Processor State Registers, Process State Registers, and Memory
Maintenance Registers in accordance with the appropriate descriptions contained within sections 2.5,
2.6, and 4.5 of this specification, respectively.

2.1.1 General Registers
The means for referencing a total of 33 General Registers shall be provided.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS REv hG o0
DATE July 15, 1988
Architectural Design and Control PAGE 2-2

2.1.1.1 P Register

The Program Address Register, referred to simply as the P Register, shall consist of 64 bits, numbered
from left to right, beginning with bit position 00. Conceptually, the P Register shall contain the
Process Virtual Address, PVA, of an instruction in central memory during the time it is read,
interpreted, and executed by the processor. Similarly, the P Register shall contain a Key to central
memory during each instruction’s execution. The contents of the P Register shall be formatted as
follows: where the RN (Ring Number), SEG (Segment) and BN (Byte Number) fields are individually
described within section 3.2 of this specification, and the Key field is described within paragraph 3.6.3,

and SPI in section 2.5.2.29 of this specification.

Bits 0, 1, 8 and 9 of the P register shall be set to zeros by the software responsible for generation of
exchange packages. Any software writing the P register via the maintenance access is responsible to
write zeros in bits 0, 1, 8 and 9. Failure to provide zeros either in the exchange package or via the
maintenance access write or via a copy instruction shall result in undefined operation.

0 |2 8 |10 16 20 32 63

(] SPI 00 Key RN SEG BN

2 6 2 6 4 12 32
<- - PVA ----mmmomoocnconmeaon >

The processor shall provide zeros for bits 0, 1, 8, and 9 when the P register is read or stored into the
exchange package or into the Stack Frame Save Area (SFSA). Bits 32 and 63 are copied from the
input on loads of P and copied into output on stores and reads of P. See table 2.1-2.

2.1.1.2 A Registers

The sixteen A Registers, referred to as the A0 Register through the AF Register (using hexadecimal
notation), shall consist of 48 bits each, identical in format to the rightmost 48 bits of the P Register as
just previously described.

Note: Although these address registers are intended for general use in explicitly supplying such
PVA’s as may be required for branch (jump) and operand references to central memory, an aggregate
of five A Registers, (namely, AO through A4), shall be implicitly utilized during CALL instruction
executions as described in section 2.6 of this specification.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC. ARH170D
i DATE July 15, 1988
Architectural Design and Control PAGE 2-3
' 2.1.1.3 X Registers

The sixteen X Registers, referred to as the X0 Register through the XF Register (using hexadecimal
notation), shall consist of 64 bits each with their bit positions numbered from left to right, beginning
with bit position 00, as follows:

00 31132 63

X Register Left (32 bits) X Register Right (32 bits)

|< §4-Bit X Register --- 5|

The 64-bit contents of an X Register may be treated as a logical quantity, a signed binary integer, or a
signed floating point number. Bit string, byte string, 32-bit halfword (right-justified in bit positions
32 through 63), and 64-bit word operations shall be provided for the contents of the X Registers.

Store operations to Xk left (XkL) shall not alter Xk right (XkR) and store operations to Xk/X0/X1 right
shall not alter Xk/X0/X1 left.

Note: Although these operand registers are intended for general use in explicitly supplying such
operands as may be required for accomplishing the execution of a majority of instructions, the first
two X Registers, (namely, X0 and X1), shall be implicitly utilized during certain instructions which
require additional input arguments or execution results. In these cases, Register X0 Right shall
normally be used to supply additional input parameters to instruction execution and Register X1
Right shall be utilized to receive additional results from instruction execution. Whenver applicable,
the instruction descriptions contained in this specification will fully define all register utilizations
which shall be implicit in nature, including those cases in which the contents of Register X0 shall be
interpreted as consisting, partially or entirely, of zeros.

2.1.2 Programming Restrictions

Programmed modification of the instructions comprising a stored program in central memory may
lead to undefined results for instructions in the instruction stack (buffer). On exchange operations,
the instruction stack is cleared as described in paragraph 2.8.5.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS ~ Rov paniroo
DATE July 15, 1988
Architectural Design and Control PAGE 24

2;1.3 Instructions

Instructions shall be 16 bits or 32 bits in length, according to one of the four formats described in the
following subparagraphs.

2.1.3.1 Formats jkiD and SjkiD

Operation Code b k i D

8 4 4 4 12

Operation S J k i D
Code

5 3 4 4 4 12

Nonvector instructions: the j, k and i fields shall provide register designations, the D field shall
provide either a signed shift count, a positive displacement or a bit-string descriptor, and the S field
shall provide a suboperation code.

Within the BDP instruction group, one or two descriptors shall be appended to instruction format
jkiD. (See section 2.3.)

Vector instructions: the j, k and i fields shall provide register designations (A registers containing the
starting address of a vector or X registers containing an immediate operand) and the D field
containing both the length of the vector operation and the broadcast selection.

2.1.3.2 Format jk

Operation Code J k-

8 4 4

For this 16-bit instruction format, the j field shall provide a register designation, a suboperation code,
or an immediate operand value and the k field shall provide a register designation or an immediate
operand value. Within the BDP instruction group, two descriptors shall be appended to this
instruction format. (See section 2.3.) :

2.1.3.3 Format jkQ

Operation Code J k Q

8 4 4 16

For this 32-bit instruction format, the j and k fields shall provide register designations, suboperation
codes, or an immediate operand value. The 16-bit Q field shall provide a signed displacement or an
immediate operand value.

CONTROL DATA PRIVATE

PR
-/

Y.

DOC. ARH
CONTROL DATA CYBER 180 MIGDS Rev. ac T

DATE July 15, 1988
Architectural Design and Control PAGE 25

2.1.3.4 P Address Access

The P address may produce any of the four exception conditions described below. The P exception
testing and handling on exchange operations is described in paragraph 2.8.8. The following
paragraphs and table 2.1-1 describe the exception testing for sequential instruction fetches and for
C180 branch instruction and Trap operations:

Invalid Segment

Four operations (Return, Inter-segment Branch, Call Indirect, Trap) are capable of generating a new
segment number for P. When any of these four attempts to load P with an invalid segment number,
an Invalid Segment shall be recorded; the instruction or operation shall be inhibited and the
corresponding program interruption shall occur.

Access Violation

For the purpose of establishing central memory access validation, the reading of every instruction
shall be an Execute type access. When specifically included within an instruction’s description, the
appropriate central memory access, performed for the purpose of fetching the instruction to be
subsequently executed, shall be execute validated. Execute type accesses shall use the ring number
contained in the P Register for access validation. The access validation procedure, which requires the
classification of central memory accesses into read, write, execute, and call types, is described in
section 3.6 of this specification.

Four operations (Return, Inter-segment Branch, Call Indirect, Trap) are capable of generating a P
with an access violation. When any of these four attempts to do this, an Access Violation shall be
recorded, the instruction or operation shall be inhibited and the corresponding program interruptions
shall occur.

Address Specification Error

With the exception of the 9X instructions, when any of the instructions or operations listed in table
2.1-1 attempts to write a byte number having bit 32=1 into P, an Address Specification Error shall be
recorded, this instruction or operation shall be inhibited and the corresponding program interruption
shall occur. For all 9X instructions, the processors shall be allowed to either inhibit or complete
execution as necessary to maximize performance. If no clear performance or cost advantage is present
for either solution, the processor shall inhibit the 9X instructions for bit 32=1 Address Specification
Errors.

Instruction accesses shall be confined to byte addresses which are 0, modulo 2. (The 32-bit
instructions are not restricted to be in a single central memory word.) Four operations (Return, Inter-
segment Branch, Call Indirect, Trap) are capable of generating a P with bit 63=1. When any of these
four attempts to do this, an Address Specification Error shall be recorded, the instruction or operation
shall be inhibited and the corresponding program interruption shall occur.

When any of the instructions or operations listed in table 2.1-1 writes an address having bit 32=0 into
P while another parcel or BDP descriptor associated with the new instruction sets bit 32, the branch
operation shall complete and the Address Specification Error shall be recorded as part of the
attempted fetch of the new instruction.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.

DATE
PAGE

ARH1700
AC

July 15, 1988
2-6

" Page Table Search Without Find

When any of the instructions or operations listed in table 2.1-1 writes an address into P such that the
corresponding page is not in memory, the processors shall be allowed to either inhibit or complete the
branch operation as necessary to maximize performance. The entries in table 2.1-1 represent the

current implementation.

When any of the instruction or operations listed in table 2.1-1 writes an address into P such that the
first parcel of the new instruction is in memory but another parcel or BDP descriptor associated with
the new instruction is not, the processor shall complete the branch operation and the Page Table
Search Without Find shall be recorded as part of the attempted fetch of the new instruction.

KEY:

INHIBIT
COMPLETE
(SEE NOTE)
INSTRUCTION
04 ALL ALL ALL ALL - "pr2 -
RETURN - - - - ALL | P38 ALL
b3
ALL - rip2 -
sﬂ::frnvs - ALL | P30 ALL
?:TER-SEGMENT ALL ALL ALL ALL - r1p2 -
BRANCH - - - - ALL r3.6 ALL
90-9E
P = P1.P2 -
AN AL r2r30| A | P36 | A
oF
P - P1P2 -
EFCONDITION REG. P2P38| ALL | P36 | AL
BO ALL - P1,p2 -
CALL RELATIVE - AL | 3,6 ALL
B4 ALL - P1,P2 -
COMPARE SWAP - ALL p3,6 ALL
85 ALL ALL ALL ALL - P1P2 -
CALL INDIRECT - - - - aLL | P38 ALL
- ALL ALL ALL ALL - P1p2 -
TRAP - - - - ALL | P38 ALL
INHIBIT — P IN EXCHANGE PACKAGE OR STACK FRAME SAVE

AREA WILL POINT AT THE BRANCH INSTRUCTION.
COMPLETE -~ P WiLL POINT AT THE DESTINATION INSTRUCTION,

*Fi{nal P has bit 32«0 but the address of a
latter portion of the instruction or of the
BDP descriptor has bit 32«1.

Table 2.1-1. P Exception Testing

CONTROL DATA PRIVATE

A
=

e

W

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS | REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 2-7

2.1.3.6 Unused Bits

a. Instructions
When one or more bits from an instruction are unused, i.e., their value(s) and associated
function(s) are not specified within the instruction description, the execution of these
instructions shall not be affected by the values of these bits. However, it is recommended
that such bits are equal to zeros.
b. Processor Registers and Process Registers
Table 2.1-2 summarizes definitions for the unused bits in processor and process registers.
Note that this table describes loading and storing operations for:
Copy Instructions
Maintenance Access Read/Wntes
Exchange Operations
Stack Frame Save Area References
Notes for Table 2.1-2
a. UNUSED/ZERO - These bits are unused (ignored by the processor) and are defined in such

a manner as to ensure that these bits will be zero when read while allowing several different

hardware implementations. The writing of any value other than zero into these bits by the

software shall cause undefined operation with respect to the subsequent value of these bits.

The processor shall always provide zero when reading these bits (assuming that the

previous write into these bits consisted of zero). This definition allows the following

hardware implementations:

1. The unused bits are copied into register locations when the registers are written and
then read out on register reads. -

2. The unused bits are not implemented in hardware and zeros are provided when the
registers are read with regeneration of parity.

b. UNUSED/ZERO* - These bits are identical to the above definition except that some systems
have the following implementation:

1. These unused bits are not implemented in hardware and zeros are provided along with
the original parity when the registers are read. This implementation can in effect cause
parity errors on the read when the unused bits were not written as zeros.

c. UNDEFINED - These bits have no specified state.

d. "__"- The operation indicated by the column is not applicable to the entry for this row.

e. COPY - These bits copy out on a read whatever was last written into them.

f. ONES - These bits will always be ones on a read regardless of previous writes.

g ZEROS - These bits will always be zeros on a read regardless of previous writes.

h. REQ-ZERO - These bits are required to be zero or the processor operation will be undefined.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC. ARH1700
REV. AC

DATE July 15, 1988
PAGE 2-8

COPY FROM
STATE STATE
REGISTER

WRITE VIA
MAINT.
ACCESS

READ VIA
MAINT.

ACCESS

STORE INTO
EXCHANGE
PACKAGE

READ FROM
EXCHANGE
PACKAGE

STORE INTO

READ FROMM
SFSA SFSA
{CALL/TRAP)

{RETURN}

PROCESS
INTERPRETATION

PROCESSOR STATE REGISTERS
KEYPOINT BUFFER POINTER

BITS 0-15 UNUSED/ZERO | UNUSED/ZERO | UNUSED/ZERO
UNUSED/ZERO /ZERO

ZERQ

BITS

UNL

ERO

UNL > o
UNL 0 { UNL 0
UNUSED/ZERO
UNUSED/ZERO
UNL

61-63
JOB PROCESS STATE (JPS) BIT 32
BITS 60-63
MONITOR PROCESS STATE (MPS) ::T 32

UNUSED/ZERO
UNUSED/ZERO
UNUSED/ZERO

0

4

TS 60-63
PAGE TABLE ADDRESS BIT 32 UNUSED/ZERO*
BITS 33-51 COPY
BITS 52-63 UNUSED/ZERO
VMCL BITS 50-83

PMF REG 22817 1 .

cory
UNUSED/ZERO
ZERO

cory
UNUSED/ZERO
ZERO

121 .

IGNORED
ZERO
IGNORED
ZERO
IGNORED
ZERO
IGNORED
SEE 25.1.3

SEE 25.1.3
ZERO

REG 22BITS 3-23
BYTES 4,5 WHEN NOT USED L
BYTES 6,7 L
LEFTMOST BIT OF BYTES 9.11,13,15 UNL

ERO!

PROCESS STATE REGISTERS

P REG BIT5 0,1,8,
BIT 32,63

REG BITS 2-7

USER MASK REGISTER BITS 0-6

UNTRANSLATABLE POINTER BITS 32,61-63

TRAP POINTER BITS 32,61-63

DEBUG LIST POINTER BITS 32,61-63

A REGISTERS BIT

ZERO
COPY
REQ-ZERO
ONES
cory

coPy
cory

REQ-ZERO
ONES

CcoPY
CoPY

UNUSED/ZERO*

32
SEGMENT TASLE ADDRESS BIT 32
B8IT 61,62,63

UNUSED/ZERO"® | UNUSED/ZERO*
UNL

EXCHANGE PACKAGES

UNUSED/ZERO*
UNUSED/ZERO

€180 EXCHANGE PACKAGE - C180 P
UNUSED BITS LISTED IN

RARAGRAPH 2.5.20
€180 EXCHANGE PACKAGE - C170 P!

UNUSED BITS DESCRIBED IN
SECTION 7.4

€170 EXCHANGE PACKAGE
UNUSED BITS DESCRIBED IN
SECTION 7.5

STACK FRAME SAVE AREAS
SFSA - C180 PROCESS - TRAP

COoPY
UNUSED/ZERO*
UNL

ZERO ZERO
CoPY cory
REQ-ZERO
ONES

COPY
ONES

WGNORED

coPY COPY

Y
UNUSED/ZERO*
UNL

UNDEFINED

UNDEFINED

ZERO

ASE, IF NON-ZERO
ASE, IF NON-ZERO
ASE, IF NON-ZERO
IGNORED

ZERO

IGNORED

UNDEFINED | IGNORED

UNUSED BITS DESCRIBED IN
PARAGRAPH 2.5.4.1
$FSA - C180 PROCESS - CALL

UNDEFINED | IGNORED

UNUSED BITS DESCRIBED IN
PARAGRAPH 2.5.4.1
$FSA - C170 PROCESS - TRAP

UNUSED BITS DESCRIBED IN
SECTION 7.4

Table 2.1-2. Unused Bits

CONTROL DATA PRIVATE

N

\ !
L

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 29

2.1.3.6 Nomenclature

Throughout the instruction descriptions contained in this specification, the following conventions
shall be used with respect to nomenclature.

a.

The expressions "Register Aj" and "the Aj Register” shall be used interchangeably to denote
the 48-bit A Register specified by the 4-bit j field from an instruction. Thus, "Aj" shall
denote one of the sixteen A Registers, A0 through AF (in hexadecimal notation)
corresponding to j field values of 0 through 15 (in decimal notation), respectively.

The 4-bit k field from an instruction shall be interpreted in a manner identical to the j field
(as just described) with respect to the interchangeable expressions "Register Ak" and "the Ak
Register." ‘

The expressions "Register Xj" and "the Xj Register” shall be used interchangeably to denote
the 64-bit X Register specified by the 4-bit j field from an instruction. Thus, "Xj" shall
denote one of the sixteen X Registers, X0 through XF (in hexadecimal notation)
corresponding to j field values of 0 through 15 (in decimal notation), respectively.

The 4-bit k field from an instruction shall be interpreted in a manner identical to the j field
(as just described) with respect to the interchangeable expressions "Register Xk" and "the Xk
Register."

With respect to the X Registers, the terms "Left" and "Right" shall be used to denote the
leftmost and rightmost 32-bit positions, respectively. Thus, "Register Xk Left" shall denote
the leftmost 32-bit positions, 00 through 31, of the Xk Register and "Register Xk Right" shall
denote the rightmost 32-bit positions, 32 through 63, of the Xk Register.

Parentheses shall be used within instruction names to denote "the contents of."

Units of information shall be referred to as bytes (8 bits), parcels (16 bits), halfwords (32
bits) or words (64 bits) with the following numbering conventions (always numbered
consecutively from left to right):

Bits 00 -—|08 --=[16 --=+{24 --=|32 --+|40 ~-+[48 --=|56 -~
Bytes 0 1 2 3 4 5 6 7
Parcels 0 1 2 3
Halfwords 0 1
Word 0

foo ---- e — 63|

Note: Alphanumeric (including decimal) and floating point data formats are illustrated in
sections 2.3 and 2.4, respectively of this specification.

Bits within registers are numbered consecutively from left to right with the rightmost bit
always equal to 63. For CYBER 170 bit numbering, see 7.2.1.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC. ARH1700
' DATE July 15, 1988
Architectural Design and Control PAGE 2-10

2.71.4 Address Arithmetic

Address arithmetic operations, referred to as "indexing” and "displacement,” shall be performed on
signed, 32-bit integers using two’s complement addition without overflow detection.

2.1.5 Address Exception

When the leftmost bit of the BN field, (position 32), in any PVA is equal to a one at the time it is used
to access central memory, an Address Specification error shall be recorded, the central memory access
shall be inhibited, and the corresponding program interruption shall occur. See subparagraph 2.8.1.5
of this specification.

2.1.6 Instruction Reference Numbers

Prior to the assignment of operation codes, each instruction was identified by a three-digit reference
number. These reference numbers are shown in this specification now only for historical continuity.

Appendix A lists CP instructions in reference number sequence. All other tabulations, however,
emphasize the operation code of the instruction, which has become the preferred instruction
identifier.

2.1.7 Zero Field Length

The following instructions make memory references controlled by a field length. When the controlling
field length is zero, these instructions are no-ops. All of the normal address exception detection for
data fields (including the field with zero field length) may but need not be performed. This address
exception detection includes: Access Violation, Invalid Segment, Address Specification Error, and Page
Fault as described in section 2.8.1.

The normal debug scan for addresses associated with data fields (including the field with zero field
length) shall be performed as per section 2.7.2.

Load/Store Multiple (Op. 80, 81)

Decimal Sum, Difference, Product, Quotient (Op. 70, 71, 72, 73)
Decimal Scale and Scale Rounded (Op. E4, D5)
Decimal Compare (Op. 74)

Numeric Move (Op. 75)

Byte Compare and Compare Collated (Op. 77, E9)
Byte Scan While Nonmember (Op. F3)

Byte Translate (Op. EB)

Move Bytes (Op. 76)

Move, Compare, Add Immediate Data (Op. F9, FA, FB)
All Vector Instructions (Op. 4X-5X)

CONTROL DATA PRIVATE

'
.

SN

A

i

e

CONTROL DATA CYBER 180 MIGDS | peF AR
DATE July 15, 1988
Architectural Design and Control PAGE 2-11

2.2 GENERAL INSTRUCTIONS

For the purpose of this specification, the instructions comprising the General Instruction group shall
be further classified, according to function, as described by the titles for paragraph numbers 2.2.1°
through 2.2.10 of this specification. '

2.2.1 Load and Store

This subgroup of instructions shall provide the means for transferring data, in the form of a single bit,
a byte string, a 64-bit word, or multiple 64-bit words between one or more registers and one or more
locations in central memory as specified by the individual operation codes.

For the purpose of establishing operand access validity for the associated central memory read and
write accesses, the ring number used for validation shall be the value of the ring number contained in
bit positions 16 through 19 of the associated A Register. ‘

The central memory operand access type for the Load Bytes to Xk from (P) displaced by Q, (Op. 86)
shall be execute-access (see subparagraph 2.2.1.4). For all other load and store instructions in this
subgroup, the central memory operand access types shall be read-access for any instruction which
loads an A or X register, and write-access for any instruction which stores an A or X register.

Instructions which transfer data from one or more registers to central memory, (namely, Store
instructions), shall not alter the contents of any register which serves as a source of the data to be
transferred to central memory.

2.2.1.1 Load/Store Bytes, Xk; Length Per S

a. Load Bytes to Xk from (Aj displaced by D and indexed by XiR), Length per S
DSjkiD (Ref. 001)

b. Store Bytes from Xk at (Aj displaced by D and indexed by XiR), Length per S
DSjkiD (Ref. 003)

Operation: These instructions shall transfer a field of bytes between Register Xk and a byte field in
central memory with the direction of transfer determined by the operation code. The length of the
byte field in central memory shall be determined from the instruction’s S field as follows:

Load Bytes... @ S =0-7 Length = 1-8
Store Bytes... S =8-F Length = 1-8

The bytes in Register Xk shall be right-justified, so that the appropriate leftmost byte positions in
Register Xk shall be cleared for load instructions with lengths less than eight, and the appropriate
leftmost byte positions within the Xk Register shall not be transferred for store instructions with
lengths less than eight.

Addressing: The beginning (the leftmost byte position) of the byte string in central memory shall be
determined by means of the PVA obtained from the Aj Register, modified by byte item counts as
follows:

Displacement and Indexing: The 32-bit halfword obtained from register Xi Right and the 32-bit
quantity obtained by left-extending the D field with zeros shall be added to the rightmost 32 bits of the
PVA obtained from the Aj Register. In this context, the contents of the X0 Register shall be
interpreted as consisting of all zeros.

CONTROL DATA PRIVATE '

'CONTROL DATA CYBER 180 MIGDS BEy A o0
DATE July 15, 1988
Architectural Design and Control PAGE 2-12

2.2.1.2 Load/Store Word, Xk

a. Load Xk from (Aj displaced by 8*D and indexed by 8*XiR)
A2jkiD (Ref. 005)

b. Load Xk from (Aj displaced by 8*Q)
82kQ (Ref. 006)

c. Store Xk at (Aj displaced by 8*D and indexed by 8*XiR)
A3jkiD (Ref. 007)

d. Store Xk at (Aj displaced by 8*Q)
83jkQ (Ref. 008)

Operation: These instructions shall transfer a word between Register Xk and a word location in
central memory. The direction of transfer shall be determined by the operation code.

Addressing: The item location in central memory shall be determined by means of the PVA obtained
from register Aj modified by a 32-bit quantity calculated as follows:

Displacement and Indexing: The 32-bit halfword obtained from register Xi Right shall be shifted left 3.

bit positions, end-off with zeros inserted; the 12-bit quantity obtained from the D field of the
instruction shall be expanded to 29 bits by extending zeros on the left and shall then be shifted left 3-
bit positions with zeros inserted on the right. The two 32-bit quantities resulting from these
operations shall then be added to the rightmost 32 bits of the PVA obtained from the Aj register. In
this context, the contents of register X0 shall be interpreted as consisting of all zeros.

Displacement: The Q field from the instruction shall be expanded to 29 bits by means of sign
extension and shall then be shifted left 3-bit positions with zeros inserted on the right. The 32-bit
result shall then be added to the rightmost 32 bits of the PVA obtained from the Aj register.

Notes: Unless the PVA from the Aj register consists of a byte address which is 0 modulo 8, an Address
Specification error shall be detected, the execution of the instruction shall be inhibited, and the
corresponding program interruption shall occur. See subparagraph 2.8.1.5 of this specification.

CONTROL DATA PRIVATE

PN

k“‘\'_“/;

-

| | AR
CONTROL DATA CYBER 180 MIGDS | Y adntTo0
~ . DATE July 15, 1988
Architectural Design and Control PAGE 2-13

2.2.1.3 Load/Store Bytes, Xk; Length Per X0

a. Load Bytes to Xk from (Aj diéplaced by D and indexed by XiR), Length Per X0
A4jkiD (Ref. 009)

b. Stores Bytes from Xk at (Aj displaced by D and indexed by XiR), Length Per X0
Ab5jkiD (Ref. 011) v

Operation: These instructions shall transfer a field of bytes between Register Xk and a byte field in
central memory with the direction of the transfer determined by the operation code. The length of the
byte field in central memory shall be determined by adding one to the value of the rightmost 3 bits
contained in Register XO0.

In all other respects, these operations shall be identical to those described in subparagraph 2.2.1.1 of
this specification.

2.2.1.4 Load Bytes Xk; Length Per j

Load Bytes to Xk from (P displaced by Q), Length per j
86jkQ (Ref. 013)

Operation: This instruction shall transfer a field of bytes from central memory to register Xk. The
length of the byte field in central memory shall be determined by adding one to the value of the
rightmost 3 bits of the j field from the instruction. The byte(s) loaded into Register Xk shall be right-
justified so that the appropriate leftmost byte position(s) in Register Xk shall be cleared for lengths
less than eight. ‘

Addressing: The beginning (the leftmost byte position) of the byte field in central memory shall be
determined by expanding the Q field to 32 bits by means of sign extension and then adding the result
to the rightmost 32 bits of the PVA obtained from the P Register.

Notes: The read operation for the field of bytes from central memory shall be tested for access
validity as if it were an instruction fetch, thus requiring execute-access rather than read-access
validity.

The read operation for the field of bytes from central memory shall not be tested for read access.
Testing for execute access could be tested but need not since instruction execution already has tested
this.

CONTROL DATA PRIVATE

' D
CONTROL DATA CYBER 180 MIGDS | oy aarhioo
DATE July 15, 1988
Architectural Design and Control PAGE 2-14

2.2.1.5 Load/Store Bit, Xk

a. Load Bit to Xk from (Aj displaced by Q and bit-indexed by XOR)
88jkQ (Ref. 014)

b. Store Bit from Xk at (Aj displaced by Q and bit-indexed by XOR)
89jkQ (Ref. 015)

Operation: These instructions shall transfer a single bit between Register Xk Right, bit position 63,
and a bit position in central memory, with the direction of the transfer determined by the operatlon
code. Additionally, the load instruction shall clear the Xk Register in its leftmost 63 bit positions, 00
through 62.

Addressing: The byte in central memory, containing the bit position to be loaded from or stored into,
shall be addressed by means of the PVA contained in the Aj Register modified as follows: The 32-bit
halfword obtained from Register X0 Right shall be shifted right three bit positions, end-off with sign
extension on the left, and the Q field from the instruction shall be expanded to 32 bits by means of
sign extension. These two 32-bit results shall then be added to the rightmost 32 bits of the PVA
obtained from the Aj Register.

Bit Selection: The bit position within the addressed byte in central memory shall be selected by means
of the rightmost three bits obtained from Register X0 Right, bit positions 61 through 63. Values from
0 through 7 for these three bits shall select the corresponding bit position, 0 through 7 within the
central memory byte.

Notes: The instruction which transfers a bit to central memory shall accomplish the associated
central memory operations in a nonpreemptive manner, i.e., the byte containing the bit to be stored
shall be read, modified in the appropriate bit position to the extent required, and then written such
that no other accesses from any port to the addressed byte shall be permitted between these read and
write accesses. When clearing a synchronization "lock” with this instruction, preserialization is
required. This should be achieved by issuing a "Test and Set Bit" instruction (124) immediately prior
to the Store Bit. Since the 124 instruction postserializes, this sequence effectively preserializes the
clearing of the "lock."

For the instruction which transfers a bit to central memory, operand access validation shall consist of
write access validation only.

CONTROL DATA PRIVATE

R

(.

AN

/é:« -

N

1\/ /‘.

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE

DATE December 19, 1989
Architectural Design and Control PAGE 2-15

'2.2.1.6 Load/Store Address, Ak

a. Load Ak from (Aj displaced by D and indexed by XiR)
AOjkiD (Ref. 016)

b. Load Ak from (Aj displaced by Q)
84jkQ (Ref. 017)

c. Store Ak at (Aj displaced by D and indexed by XiR)
AljkiD (Ref. 018)

d. Store Ak at (Aj displaced by Q)
85jkQ (Ref. 019)

Operation: These instructions shall transfer six bytes between the Ak register, right-justified, and a
six byte field in central memory, with the direction of transfer and the addressing of central memory
determined by the operation code.

Addressing: For the A0 and Al instructions, the leftmost byte position of the six byte field in central
memory shall be addressed by means of the PVA initially contained in register Aj, modified by byte
item counts in a manner identical to that described in section 2.2.1.1. =

For the 84 and 85 instructions, the leftmost byte position of the six byte field in central memory shall
be addressed by means of the PVA initially contained in Register (Aj), modified in its rightmost 32-bit
positions by the addition of the 32-bit quantity obtained by left extending the sign of the 16-bit Q field
from the associated instruction.

Special Load Conditions: The instructions which load Register Ak shall unconditionally transfer only
the rightmost 44 bits of the six byte field from central memory to bit positions 20 through 63 of
Register Ak. ’

When the instructions which load Ak are executed, the larger value of 1) the leftmost 4 bits of the six
byte field from central memory, 2) the leftmost 4 bits in bit positions 16 through 19 of the Aj Register,
and 3) the R1 field contained in the 4-bit positions 08 through 11 of the segment descriptor associated
Xi:th the PVA obtained from Register Aj, shall be transferred to bit positions 16 through 19 of Register

(For the format of a segment descriptor and the definition of its R1 field, see paragraphs 3.3.1 and
3.6.2 of this specification, respectively.)

Ring Number Zero Test: [See section 1.6 for a list of the C180 models that do not perform this test.]
When the leftmost 4 bits of the six byte field from central memory are all equal to zero, a Ring Number
Zero condition shall be detected and, following the completion of the associated Load instruction’s
execution, the corresponding program interruption shall take place. See subparagraph 2.8.1.13 of this
specification.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS RO Apreo
DATE July 15, 1988
Architectural Design and Control PAGE 2-16

2.2.1.7 Load/Store Multiple

a. Load Multiple Registers from (Aj displaced by 8*Q), Selectivity Per XkR
80jkQ (Ref. 020)

b. Store Multiple Registers at (Aj displaced by 8*Q), Selectivity Per XkR
81jkQ (Ref. 021)

Operation: These instructions shall transfer data between the general registers and central memory
with the direction of the transfer determined by the operation code. Central memory address
formation and general register selections shall be performed as follows:

Address Formation. The beginning address in central memory, of the contiguous word locations to
~ which, or, from which, as determined by the operation code, the designated transfers shall take place,
shall be formed by means of displacement addressing. The 16-bit Q field from the instruction shall be
expanded to 29 bits by means of sign extension, these 29 bits shall be shifted left three bit positions
with zeros inserted on the right, and this 32-bit shifted result shall be added to the rightmost 32 bits of
the PVA initially contained in the Aj Register. The resulting PVA shall be used as the beginning
address of the word field in central memory referenced by these instructions.

Register Selection. Selectivity of transfers between general registers and central memory shall be
accomplished by interpreting the rightmost 16 bits initially contained in Register Xk Right as four
fields of 4 bits each in the following manner:

<====--------- Register Xk Right ------------- >
48 51152 55156 59160 63
4 4 4 4
1 1 t t
t 1 t Number of the last X Register
1 t t to be transferred
1 1 1
t 1 Number of the last A Register
1 1 to be transferred
-t 1
t Number of the first X Register to be transferred
1

Number of the first A Register to be transferred

When the first register number is greater than the associated last register number, none of the
registers from the corresponding A or X Register groups shall be loaded or stored.

Transfers between registers and central memory shall begin with the A Register Group and end with
the X Register Group to the extent that the Registers within these groups are designated by the
rightmost 16 bits of Register Xk Right. A positive offset, applied to the PVA designating the first word
location of the central memory field, shall begin with zero and shall be increased by eight for each
designated transfer as it is accomplished during the course of instruction execution.

CONTROL DATA PRIVATE

PN

NS

. DOC. ARH
CONTROL DATA CYBER 180 MIGDS RV, AR
DATE December 19, 1989
Architectural Design and Control PAGE 2-17

The relationship between the bits contained in positions 48 through 63 of Register Xk Right, the 16
registers contained in each of the general register groups A and X, and the positive offset values
applied to the beginning address of the word field in central memory, are illustrated in figure 2.2-1 for
the case in which all 32 Registers are transferred.

The leftmost 16 bits of the word locations in the central memory field, which are associated with A
Registers to the extent designated, shall not be used by the instruction which loads multiple registers
and shall be cleared by the instruction which stores multiple registers.

Special Load A Conditions: The instruction which loads A Registers shall unconditionally transfer
only the rightmost 44-bit positions 20 through 63 of each appropriate word from central memory to
the corresponding bit positions of the designated A Registers.

As part of the execution of the Load Multiple instruction, the larger value of 1) the 4 bits in bit
positions 16 through 19 of each appropriate word from central memory, 2) the leftmost 4 bits in bit
positions 16 through 19 of the Aj Register, and 3) the R1 field contained in the 4-bit positions. 08
through 11 of the segment descriptor associated with the PVA obtained from Register Aj, shall be
transferred to bit positions 16 through 19 of each of the appropriately designated A Registers.

Ring Number Zero Test: [See section 1.6 for a list of the C180 models that do not perform this test.]
With respect to the designated A Registers, when all 4 bits in positions 16 through 19 of any associated
word from central memory are equal to zero, a Ring Number Zero condition shall be detected and,
following the completion of the Load Multiple instruction’s execution, the associated program
interruption shall occur. See subparagraph 2.8.1.13 of this specification.

Notes: For both of these operation codes, unless the PVA initially contained in the Aj Register
consists of a byte address which is equal to 0, modulo 8, an Address Specification error shall be
detected, all transfers associated with the execution of these instructions shall be inhibited, and the
corresponding program interruption shall occur. See subparagraph 2.8.1.5 of this specification.

“For the instruction which loads multiple registers, (reference number 20), the PVA resulting from the
addition of (Aj) and the Q field from the instruction, shall constitute the only Data Read argument for
this instruction with respect to a Debug List Scan operation. (See paragraph 2.7.2.)

For the instruction which stores multiple registers, (reference number 21), the PVA resulting from the
addition of (Aj) and the Q field from the instruction shall constitute the only Data Write argument for
the instruction with respect to a Debug List Scan operation. (See paragraph 2.7.2.)

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-18
General Positive Offset to (Aj)
Register displaced by 8*Q
J S S e I V] 0
t A3 8
1 A4 16
t A5 24
t A6 32
1 A7 40
1 A8 48
1 A9 56
1 AA 64
1 AB 72
1 AC 80
1 AD 88
1 “ bbb bbb AE 96
1 N
/ \ / \
48 51|52 55|56 59{60 63
Register
0010/0000{1210j1111 Xk Right
Il i
! i
@ b dp st wss s+ X0 104
1 X1 112
1 X2 120
1 X3 128
{ X4 136
i X5 144
i X6 152
{ X7 160
! X8 168
{ X9 176
i XA 184
{ X8 192
- l XC 200
l XD 208
i XE 216
-o-o-ona-.»d-‘-o-‘xf-' 224

Figure 2.2-1. Register Selectivity Correspondence

(Applicable only to
Load/Store Multiple)

CONTROL DATA PRIVATE

O

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.
REV.

DATE
PAGE

ARH1700

AC

July 15, 1988
2-19

2.2.2 Integer Arithmetic

Integer arithmetic operations shall be performed on words and halfwords contained in Register Xk and

Register Xk Right, respectively, as described in the following subparagraphs.

Binary integers contained in the X Registers shall consist of signed, two’s complement, 32-bit or 64-bit
quantities. The leftmost bit, (in position 00 for 64-bit integers and in position 32 for 32-bit integers),
shall constitute the sign bit. Positive quantities shall consist of a sign bit in the zero state with the 31
or 63 contiguous bits immediately to the right of the sign bit, expressing the magnitude of the number.
Negative quantities shall be expressed as the two’s complement of their positive representations,
resulting in a sign bit in the one state. Conceptually, the two’s complement of a binary integer shall
be formed by adding one to its one’s complement representation. (Conceptually, the one’s complement
of a binary integer shall be formed by subtracting it, bit-for-bit, from another number consisting

entirely of one bits).

00j01 63

S

Register Xk: 64-bit integer
00 31/32{33 63
1111171011111147) s

Register Xk Right: 32-bit integer

The ranges in magnitude, M, covered by binary integers in each of the two fixed point formats, shall be

as follows:

32-bit Integer: =231 <M < 231-1 64-bit Integer: =263 <M < 263-1

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS By a0
DATE July 15, 1988
Architectural Design and Control PAGE 2-20

2.2.2.1 Integer Sum, Xk

a. Integer Sum, Xk replaced by Xk plus Xj
24jk (Ref. 022)

b. Integer Sum, Xk replaced by Xj plus Q
8BjkQ (Ref. 143)

c. Integer Sum, Xk replaced by Xk plus j
10jk (Ref. 166)

These instructions shall obtain a 64-bit addend from the initial contents of Register Xj, or from the 16-
bit sign-extended Q field of the instruction, or from the 4-bit zeros extended j field of the instruction,
as determined by the operation code. The 64-bit addend thus derived shall be added to the 64-bit word
initially contained in Register Xk or Xj, as correspondingly determined by the operation code, and
shall transfer the 64-bit sum to Register Xk. Each 64-bit word shall be treated as a signed two’s
complement integer.

When the augend and addend are identically signed, and their addition produces a sum with a sign
opposite that of the addend and augend, an Arithmetic Overflow condition shall be detected. When
the corresponding user mask bit is set and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur. See subparagraph 2.8.3.10 of this specification.

2.2.2.2 Integer Difference, Xk

a. Integer Difference, Xk replaced by Xk minus Xj
25jk (Ref. 023)

b. Integer Difference, Xk replaced by Xk minus j
11jk (Ref. 167)

These instructions shall obtain a 64-bit subtrahend from the initial contents of Register Xj or from the
4-bit zeros extended j field of the instruction, as determined by the operation code. The 64-bit
subtrahend thus derived shall be subtracted from the 64-bit word initially contained in Register Xk
and the difference shall be transferred to Register Xk. Each 64-bit word shall be treated as a signed
two’s complement integer.

When the minuend and subtrahend are oppositely signed and the subtraction produces a difference
with a sign opposite that of the minuend, an Arithmetic Overflow condition shall be detected. When
the corresponding user mask bit is set and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur. See subparagraph 2.8.3.10 of this specification.

CONTROL DATA PRIVATE

A

;

&

. ARH
CONTROL DATA CYBER 180 MIGDS v
DATE July 15, 1988
Architectural Design and Control PAGE 2-21

2.2.2.3 Integer Product, Xk

a. Integer Product, Xk replaced by Xk times Xj
26jk (Ref. 024)

b. Integer Product, Xk replaced by Xj times Q
B2jkQ (Ref. 168)

These instructions shall obtain a 64-bit multiplier from the initial contents of Register Xj, or from the
16-bit sign-extended Q field of the instruction, as determined by the operation code. The 64-bit
multiplier thus derived shall be taken times the 64-bit word initially contained in Register Xk or
Register Xj as determined by the operation code. The result of this multiplication shall consist of a
128-bit intermediate product, algebraically signed. The rightmost 64 bits of this intermediate product
shall be transferred to the Xk Register.

Unless the leftmost 65 bits of the properly signed intermediate product are all in the same state, an
Arithmetic Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap is enabled, instruction execution shall be inhibited and program interruption shall occur. See
subparagraph 2.8.3.10 of this specification.

2.2.2.4 Integer Quotient, Xk

Integer Quotient, Xk replaced by Xk divided by Xj
27jk (Ref. 025)

This instruction shall divide the 64-bit word initially contained in the Xk Register by the 64-bit word
initially contained in the Xj Register. Provided the divisor is not equal to zero, the results of the
division, consisting of a 64-bit quotient algebraically signed, shall be transferred to Register Xk.

When the divisor is equal to zero, the contents of Register Xk shall not change and a Divide Fault
condition shall be detected. When the corresponding user mask bit is set and the trap is enabled,
instruction execution shall be inhibited and program interruption shall occur. See subparagraph
2.8.3.8 of this specification.

For the case in which -263 is divided by -29, the quotient result shall have the form of -263, an
Arithmetic Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap is enabled, instruction execution shall be inhibited and program interruption shall occur. See
subparagraph 2.8.3.10 of this specification.

Note: The division shall produce a quotient result which, in its absolute form, shall not have been
rounded upwards. Thus, when the absolute value of the quotient result is concatenated to a single
zero bit, that quantity shall be equal to or less than the absolute value of the quotient computed to one
additional bit of precision in the rightmost position. Moreover, when the absolute value of the
quotient result is increased by one and concatenated to a single zero bit, that quantity shall be greater
than the absolute value of the quotient computed to one additional bit of precision in the rightmost
position.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS | DOC. ABH1700
DATE July 15, 1988
Architectural Design and Control PAGE 2-22

2.2.2.5 Half Word Integer Sum, XkR

a. Integer Sum, XkR replaced by XkR plus XjR
20jk (Ref. 027)
b. Integer Sum, XkR replaced by XjR plus Q
8AjkQ (Ref. 028)
c. Integer Sum, XkR replaced by XkR plus j
28jk (Ref. 029)
Operation: These instructions shall obtain a 32-bit addend from the initial contents of Register Xj

Right, from the 16-bit sign extended Q field of the instruction, or from the 4-bit zeros extended j field
of the instruction, as determined by the operation code.

The 32-bit addend thus derived, shall be added to the 32-bit halfword initially contained in Register Xk
Right or Register Xj Right, as determined by the operation code and the sum shall be transferred to
Register Xk Right. Each of these 32-bit halfwords shall be treated as signed two’s complement
integers.

When the augend and addend are identically signed, and their addition produces a sum with a sign
opposite that of the addend and augend, an Arithmetic Overflow condition shall be detected. When
the corresponding user mask bit is set and the trap is enabled, instruction execution shall be inhibited
and program interruption shall occur. See subparagraph 2.8.3.10 of this specification.

2.2.2.6 Half Word Integer Difference, XkR

- a. Integer Difference, XkR replaced by XkR minus XjR
21jk (Ref. 030)
b. Integer Difference, XkR replaced by XkR minus j
295k (Ref. 031)

Operation: These instructions shall obtain a 32-bit subtrahend from the initial contents of Register Xj
Right or from the 4-bit zeros extended j field from the instruction, as determined by the operation
code.

The 32-bit subtrahend thus derived shall be subtracted from the 32-bit halfword initially contained in
Register Xk Right and the difference shall be transferred to Register Xk Right. Each of these 32-bit
halfwords shall be treated as signed two’s complement integers. When the minuend and subtrahend
are oppositely signed and the subtraction produces a difference with a sign opposite that of the
minuend, an Arithmetic Overflow condition shall be detected. When the corresponding user mask bit
is set and the trap is enabled, instruction execution shall be inhibited and program interruption shall
occur. See subparagraph 2.8.3.10 of this specification.

CONTROL DATA PRIVATE

I A:‘A,
. l

S

CONTROL DATA CYBER 180 MIGDS oy ABn1700
DATE July 15, 1988
Architectural Design and Control PAGE 2-23

2.2.2.7 Half Word Integer Product, XkR

a. Integer Product, XkR replaced by XkR times XjR
22jk (Ref. 032)

b. Integer Product, XkR replaced by XjR times Q

| 8CikQ (Ref. 033)

These instructions shall obtain a 32-bit multiplier from the initial contents of Register Xj Right or
from the 16-bit sign extended Q field of the instruction, as determined by the operation code.

The 32-bit multiplier thus derived shall be taken times the 32-bit halfword initially contained in
Register Xk Right or Register Xj Right as determined by the operation code. The result of the
multiplication shall consist of a 64-bit intermediate product, algebraically signed. The rightmost 32
bits of this intermediate product shall be transferred to Register Xk Right.

Unless the leftmost 33 bits of the properly signed intermediate product are all in the same state, an
Arithmetic Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap is enabled, instruction execution shall be inhibited and program interruption shall occur. See
subparagraph 2.8.3.10 of this specification.

2.2.2.8 Half Word Integer Quotient, XkR

Integer Quotient, XkR replaced by XkR divided by XjR
23jk (Ref. 034)

This instruction shall divide the 32-bit halfword initially contained in Register Xk Right by the 32-bit
halfword initially contained in Register Xj Right. Provided the divisor is not equal to zero, the results
of the division, consisting of a 32-bit quotient, algebraically signed, shall be transferred to Register Xk
Right.

When the divisor is equal to zero, the contents of Register Xk shall not be changed and a Divide Fault
condition shall be detected. When the corresponding user mask bit is set and the trap is enabled,
instruction execution shall be inhibited and program interruption shall occur. See subparagraph
2.8.3.8 of this specification.

For the case in which =23! is divided by =29, the quotient result shall have the form of -23!, an
Arithmetic Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap is enabled, instruction execution shall be inhibited and program interruption shall occur. See
subparagraph 2.8.3.10 of this specification. '

Note: The division shall produce a quotient result which, in its absolute form, shall not have been
rounded upwards. Thus, when the absolute value of the quotient result is concatenated to a single
zero bit, that quantity shall be equal to or less than the absolute value of the quotient computed to one
additional bit of precision in the rightmost position. Moreover, when the absolute value of the
quotient result is increased by one and concatenated to a single zero bit, that quantity shall be greater
than the absolute value of the quotient computed to one additional bit of precision in the rightmost
position.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS ROs- AlH1T00
DATE July 15, 1988
Architectural Design and Control PAGE 224

2.2.2.9 Integer Compare

a. Integer Compare, Xj to Xk, result to X1R
2Djk (Ref. 035)

b. Integer Compare, XjR to XkR, result to X1R
2Cjk (Ref. 036)

Operation: These instructions shall perform an algebraic comparison of the signed, two’s
complement, binary integer initially contained in Register Xj to the signed, two’s complement, binary
integer initially contained in Register Xk. These compared values shall consist of 64 bits or 32 bits
(right-justified in positions 32 through 63) as determined by the operation code. In this context the
contents of the X0 Register shall be interpreted as consisting entirely of zeros.

Results: When the comparison finds these quantities equal, Register X1 Right shall be cleared in all

32 bit positions. When the comparison finds the quantity obtained from Register Xj greater than the
quantity obtained from Register Xk, Register X1 Right shall be cleared in bit positions 32 and 34
through 63, and shall be set in bit position 33. When the comparison finds the quantity obtained from
Register Xj less than the quantity obtained from Register Xk, Register X1 Right shall be cleared in bit
positions 34 through 63 and shall be set in bit positions 32 and 33.

2.2.3 Branch

The instructions within this subgroup shall consist of both conditional and unconditional branch
instructions.

Each conditional branch instruction shall perform a comparison between the contents of two general

- registers. Then, based on the relationship between the results of that comparison and the branch
condition as specified by means of the instruction’s operation code, each conditional branch
instruction shall perform either a normal exit or a branch exit.

Normal exit: When the results of a comparison do not satisfy the branch condition as specified by the
operation code, a normal exit shall be performed. A normal exit for all conditional branch instructions
shall consist of adding four to the rightmost 32 bits of the PVA obtained from the P Register with that
32-bit sum returned to the P Register in its rightmost 32-bit positions.

Branch exit: When the results of a comparison satisfy the branch condition as specified by the
operation code, a branch exit shall be performed. A branch exit shall consist of expanding the 16-bit Q
field from the instruction to 31 bits by means of sign extension, shifting these 31 bits left one bit
position with a zero inserted on the right, and adding this 32-bit shifted result to the rightmost 32 bits
of the PVA obtained from the P Register with the 32-bit sum returned to the P Register in its
rightmost 32-bit positions.

Unconditional branch instructions shall perform branch exits according to the appropriate instruction
descriptions contained in subparagraphs 2.2.3.5 and 2.2.3.6 of this specification.

CONTROL DATA PRIVATE

A

s
ke
h S

CONTROL DATA CYBER 180 MIGDS oy panhioo
DATE July 15, 1988
Architectural Design and Control PAGE 2-25

2.2.3.1 Conditional, X

a. Branch to P displaced by 2*Q if Xj equal to Xk

| 94jkQ (Ref. 037)

b. Branch to P displaced by 2*Q if Xj not equal to Xk
95jkQ (Ref. 038)

c. Branch to P displaced by 2*Q if Xj greater than Xk
96jkQ (Ref. 039)

d. Branch to P displaced by 2*Q if Xj greater than or equal to Xk
97jkQ (Ref. 040) '

Each of these instructions shall perform an algebraic comparison of the 64-bit word obtained from
Register Xj to the 64-bit word obtained from Register Xk. Each of these 64-bit words shall be treated
as signed, two’s complement, binary integers. The contents of Register X0 shall be interpreted as
consisting entirely of zeros.

These instructions shall perform a normal exit or a branch exit in the manner previously described in
paragraph 2.2.3 of this specification.

2.2.3.2 Conditional, X Right

a. Branch to P displaced by 2*Q if XjR equal to XkR
90jkQ (Ref. 041)
b. Branch to P displaced by 2*Q if XjR not equal to XkR
91jkQ (Ref. 042)
c. Branch to P displaced by 2*Q if XjR greater than XkR
92jkQ (Ref. 043)
d. Branch to P displaced by 2*Q if XjR greater than or equal to XkR
93jkQ (Ref. 044)

Each of these instructions shall perform an algebraic comparison of the 32-bit halfword obtained from
Register Xj Right with the 32-bit halfword obtained from Register Xk Right. Each of these 32-bit
halfwords shall be treated as signed, two’s complement, binary integers. The contents of Register X0
shall be interpreted as consisting entirely of zeros.

These instructions shall perform a normal exit or a branch exit in the manner previously described in
paragraph 2.2.3 of this specification.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS oy e 700
; DATE July 15, 1988
Architectural Design and Control PAGE 2-26

2.2.3.3 Branch and Increment

Branch to P displaced by 2*Q and increment Xk if Xj greater than Xk
9CikQ (Ref. 045)

This instruction shall perform an algebraic comparison of the 64-bit word initially contained in
Register Xj with the 64-bit word initially contained in Register Xk. Each of these 64-bit words shall be
treated as signed, two’s complement, binary integers. With respect to the Xj Register only, Register
X0 shall be interpreted as consisting entirely of zeros.

When this comparison does not find the value initially contained in Register Xj greater than the value
initially contained in Register Xk, a normal exit shall be performed in the manner previously described
in paragraph 2.2.3 of this specification.

When this comparison finds the value initially contained in Register Xj greater than the value initially
contained in Register Xk, a branch exit shall be performed in the manner previously described in
paragraph 2.2.3 of this specification. In addition, the 64-bit word initially contained in Register Xk
shall be increased by one in value and the result returned to the Xk Register. Overflow will be
ignored.

2.2.3.4 Branch on Segments Unequal

Branch to P displaced by 2*Q if segments unequal; else compare byte numbers, result to X1R
9DjkQ (Ref. 046)

This instruction shall perform a bit-for-bit comparison between the 12-bit SEG field contained in bit
positions 20 through 31 of Register Aj and the 12-bit SEG field contained in bit positions 20 through
31 of Register Ak. When the comparison finds the SEG fields not equal, this instruction shall perform
a branch exit in the manner described in paragraph 2.2.3 of this specification.

When the comparison finds the SEG fields equal, this instruction shall perform an algebraic
comparison of the 32-bit BN field contained in bit positions 32 through 63 of Register Aj to the 32-bit
BN field contained in bit positions 32 through 63 of Register Ak and shall perform a normal exit in the
manner described in paragraph 2.2.3 of this specification.

The algebraic comparison of the BN fields shall treat each of these 32-bit quantities as signed two’s
complement binary integers and shall store the result of their comparison into Register X1 Right as
follows: when the BN fields are equal, Register X1 Right shall be cleared in all 32-bit positions.

When the BN field from Register Aj is greater than the BN field from Register Ak, Register X1 Right
shall be cleared in bit positions 32 and 34 through 63, and shall be set in bit position 33. When the BN
field from Register Aj is less than the BN field from Register Ak, Register X1 Right shall be cleared in
bit positions 34 through 63 and shall be set in positions 32 and 33.

CONTROL DATA PRIVATE

A

o

~

4

CONTROL DATA CYBER 180 MIGDS oy e 700
DATE July 15, 1988
Architectural Design and Contrql PAGE 2-27

2.2.3.56 Branch Relative

Branch to P indexed by 2*XkR
2Ejk (Ref. 047)

This instruction shall perform an unconditional branch exit by modifying the contents of the P
Register in its rightmost 32-bit positions as follows:

The 32-bit halfword obtained from Register Xk Right shall be shifted left one bit position, end-off with
a zero inserted on the right, and the 32-bit shifted result shall be added to the rightmost 32 bits
initially contained in the P Register. This 32-bit sum shall be returned to the P Register in its
rightmost 32-bit positions.

2.2.3.6 Intersegment Branch

Branch to Aj indexed by 2*XkR
2Fjk (Ref. 048)

In the absence of all associated Virtual Addressing Mechanism exceptions (other than a Page Table
Search Without Find condition at the branch address) this instruction shall perform a branch exit by
modifying the Key, SEG and BN fields contained in the P Register as follows:

The 12-bit Segment field, SEG, contained in bit positions 20 through 31 of Register Aj shall be
transferred to the corresponding 12-bit positions of the P Register.

The 32-bit halfword obtained from Register Xk Right shall be shifted left one bit position, end-off with
a zero inserted on the right, and the 32-bit shifted result shall be added to the rightmost 32 bits
obtained from Register Aj in bit positions 32 through 63. (In this context, the contents of Register X0
shall be interpreted as consisting entirely of zeros.) This 32-bit sum shall be transferred to the
rightmost 32-bit positions, 32 through 63, of the P Register.

The Key field initially contained in the P Register shall be altered according to the description
contained in subparagraph 3.6.3.2 of this specification.

Notes: The P(RN) field shall not be changed by the execution of this instruction.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS o A 00
-DATE July 15, 1988

Architectural Design and Control PAGE 2-28

2.2.4 Copy

The instructions within this subgroup shall provide the means for accomplishing inter-register
transfers to the extent defined by the following instruction descriptions.

2.2.4.1 Copy, Xk Replaced by Xj

ODjk (Ref. 049)
This instruction shall transfer the 64-bit word initially contained in Register Xj to the 64-bit positions
of Register Xk.

2.2.4.2 Copy, Xk Replaced by Aj

0Bjk (Ref. 050)

This instruction shall transfer the 48 bits contained in Register Aj to the rightmost 48-bit positions,
16 through 63, of Register Xk. The leftmost 16-bit positions, 00 through 15, of Register Xk shall be
cleared.

2.2.4.3 Copy, Ak Replaced by Aj

09jk (Ref. 051)
This instruction shall transfer the 48 bits contained in Register Aj to the 48-bit positions of Register
Ak.

2.2.4.4 Copy, Ak Replaced by Xj

0Ajk (Ref. 052)

This instruction shall unconditionally transfer the rightmost 44 bits contained in positions 20 through
63, of Register Xj to the corresponding 44-bit positions of Register Ak. The 4-bit field having the
larger value in bit positions 16 through 19 of the Xj Register or the P Register, shall be transferred to
the corresponding 4-bit positions of the Ak Register.

2.2.4.5 Copy, XkR Replaced by XjR

0Cjk (Ref. 053)

This instruction shall transfer the 32-bit halfword initially contained in Register Xj Right to the 32-bit
positions, 32 through 63, of Register Xk Right. The initial contents of Register Xk Left shall not be
changed.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS Do7 panoo
DATE July 15, 1988
Architectural Design and Control PAGE 2-29

' 2.2.5 Address Arithmetic

The instructions within this subgroup shall provide the means for accomplishing address arithmetic to
the extent defined by the following instruction descriptions.

2.2.5.1 Address Increment, Signed Immediate

Address Ak replaced by Aj plus Q
8EjkQ (Ref. 054)

This instruction shall transfer the leftmost 16 bits initially contained in bit positions 16 through 31 of
Register Aj to the corresponding 16-bit positions of Register Ak. In addition, the 16-bit Q field from
the instruction, expanded to 32 bits by means of sign extension, shall be added to the rightmost 32 bits
initially contained in bit positions 32 through 63 of Register Aj and the 32-bit sum shall be transferred
to the corresponding rightmost 32-bit positions of Register Ak.

2.2.5.2 Address Relative

Address Ak replaced by P plus 2*XjR plus 2*Q
8FjkQ (Ref. 055)

This instruction shall transfer the leftmost 16 bits contained in bit positions 16 through 31 of the P
Register to the corresponding 16-bit positions of the Ak Register. In addition, the 16-bit Q field from
the instruction shall be expanded to 31 bits by means of sign extension, these 31 bits shall be shifted
left one bit position with a zero inserted on the right, and this 32-bit shifted result shall be added to
the rightmost 32 bits obtained from the P Register. This 32-bit sum shall be added to the rightmost 32
bits obtained from Register Xj Right, shifted left one bit position with a zero inserted on the right, and
the final result shall be transferred to the rightmost 32-bit positions, 32 through 63, of Register Ak.
In this context, the contents of Register X0 shall be interpreted as consisting entirely of zeros.

2.2.5.83 Address Increment, Indexed

Address Ak replaced by Ak plus XjR

2Ajk (Ref. 056)

This instruction shall add the 32 bits contained in Register Xj Right to the rightmost 32 bits initially
contained in bit positions 32 through 63 of Register Ak and shall return the 32-bit sum to the
rightmost 32-bit positions of Register Ak.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC- . ARH170
DATE July 15, 1988
Architectural Design and Control PAGE 2-30

2.2.5.4 Address Increment, Modulo

Address Ak replaced by Ai plus D per j
ATikiD (Ref. 161)

This instruction shall transfer the leftmost 16 bits initially contained in bit positions 16 through 31 of
Register Ai to the corresponding 16-bit positions of Register Ak. In addition, the 12-bit D field from
the instruction, expanded to 32 bits by extending zeros on the left, shall be added to the rightmost 32
bits intially contained in bit positions 32 through 63 of Register Ai. The leftmost 29 bits of this 32-bit
sum shall be transferred to bit positions 32 through 60 of Register Ak. A logical product (AND)
between the rightmost 3 bits of this 32-bit sum and the rightmost 3 bits of the j field from the
instruction shall be performed, with the 3-bit result of the logical operation transferred to bit
positions 61 through 63 of Register Ak. '

Note: The truth table for the bit-by-bit logical product (AND) operation is provided in subparagraph
2.2.8.1 of this specification.

2.2.6 Enter

The instruction within this subgroup shall provide the means for entering immediate operands,
(consisting of logical quantities of signed, two’s complement binary integers), into the X Registers to
the extent defined by the following instruction descriptions.

2.2.6.1 Enter Immediate

a. Enter Xk with plus j
3Djk (Ref. 057)

b. Enter Xk with minus j
3Ejk (Ref. 058)

Operation: These instructions shall expand the 4-bit j field from the instruction to 64 bits by
extending 60 zeros on the left and shall transfer this 64-bit result or the two’s complement of this 64-
bit result, as determined by the operation code, to the Xk Register.

2.2.6.2 Enter Xk, Signed Immediate
Enter Xk with sign extended Q
8DjkQ (Ref. 059)

This instruction shall expand the 16-bit Q field from the instruction to 64 bits by means of sign
extension and shall transfer this 64-bit result to the Xk Register.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS v
DATE July 15, 1988
Architectural Design and Control PAGE 2-31

'2.2.6.3 Enter X0 or X1, Immediate Logical

a. Enter X0 with logical jk
3Fjk (Ref. 060)

b. Enter X1 with logical jk
395k (Ref. 164)

These instructions shall form a 64-bit result consisting of 4-bit k field from the instruction in bit
positions 60 through 63, the 4-bit j field from the instruction in bit positions 56 through 59 and zeros
in bit positions 00 through 55, and shall transfer this result to Register X0 or X1, as determined by the
instruction code.

2.2.6.4 Enter Signs

Enter XkL with signs per j
1Fjk (Ref. 061)
The value of the rightmost 2 bits of the j field from the instruction shall be translated as follows:

a. If = 00, the 32-bit positions, 00 through 31, of Register Xk Left shall be cleared.

b. If = 01, the 32-bit positions, 00 through 31, of Register Xk Left shall be set.

c. If = 10 or 11, the sign bit in position 32 of Register Xk Right shall be transferred to all 32
bit positions, 00 through 31, of Register Xk Left.

2.2.6.5 Enter X0 or X1, Signed Immediate

a. Enter X0 with sign extended jkQ
B3jkQ (Ref. 169)

b. Enter X1 with sign extended jkQ
87jkQ (Ref. 165)

These instructions shall expand the 24-bit concatenation of the j, k and Q fields from the instruction,
right-justified, to 64 bits by extension of the most significant bit of the j field through bits 00 - 39
inclusive, and shall transfer this 64-bit quantity to bits 00 - 63 of Register X0 or X1.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS oy ag M0
DATE July 15, 1988

Architectural Design and Control PAGE 2-32

2.2.7 Shift

The instructions within this subgroup shall provide the means for shifting the initial contents of the
Xj Register and transferring the result to the Xk Register, to the extent defined by the following
descriptions.

All of the instructions within this subgroup shall derive the computed shift count in the following
manner: the rightmost 8 bits of the D field from the instruction shall be added to the rightmost 8 bits
initially contained in bit positions 56 through 63 of Register Xi Right and the 8-bit sum shall
represent the computed shift count. Any overflow from the 8-bit sum is ignored. In this context, the
contents of Register X0 Right shall be interpreted as consisting entirely of zeros.

The instructions within this subgroup shall interpret the computed shift count as follows: the sign bit

in the leftmost position of the 8-bit computed shift count shall determine the direction of the shift.
When the computed shift count is positive, (sign bit of zero), these instructions shall left shift. When
the computed shift count is negative, (sign bit of one), these instructions shall right shift. For 32-bit
quantities, shifts shall be from 0 - 31 bits left and from 1 - 32 bits right. For 64-bit quantities, shifts
shall be from 0 - 63 bits left and from 1 - 64 bits right. Based on an 8-bit signed two’s complement
shift count, these shifts are as follows:

| 32-bit 64-bit
0111 1111 01111111
: + Left Shift 0- 31 : > LeftShift 0- 63
: (repeating) :
0010 0000 0100 0000
0001 1111 Left Shift 31 0011 1111 Left Shift 63
0000 0000 Left Shift 0 0000 0000 Left Shift 0
11111111 Right Shift 1 1111 1111 Right Shift 1
1110 0000 Right Shift 32 1100 0000 Right Shift 64
1101 1111 1011 1111
: + Right Shift 1- 32 : + Right Shift 1- 64
: (repeating) :
1000 0000 1000 0000

When these interpretations of the computed shift count result in an actual shift count of zero, the
associated instructions shall transfer the initial contents of the Xj Register to the Xk Register and no
shifting shall be performed.

CONTROL DATA PRIVATE

‘é - ;\\
p—

CONTROL DATA CYBER 180 MIGDS Ry AQTTo0
DATE July 15, 1988
Architectural Design and Control | PAGE 2-33

2.2.7.1 Shift Circular

Shift Circular, Xk replaced by Xj, direction and count per XiR plus D
A8jkiD (Ref. 062)

This instruction shall shift the 64-bit word initially contained in Register Xj, with the direction and
number of bit positions to be shifted determined by the computed shift count, and shall transfer the
‘result to Register Xk. The computed shift count shall be derived and interpreted in the manner
described in paragraph 2.2.7 of this specification.

This instruction shall shift circularly such that bits shifted out one end of the 64-bit word shall be
transferred into bit positions which become unoccupied at the opposite end of the 64-bit word as a
result of the shift.

2.2.7.2 Shift End-Off

a. Shift End-off, Xk replaced by Xj, direction and count per XiR plus D
A9jkiD (Ref. 063)

b. Shift End-off, XkR replaced by XjR, direction and count per XiR plus D
AAjkiD (Ref. 064)

Operation: These instructions shall shift the 64-bit word initially contained in Register Xj or the
32-bit halfword contained in Register Xj Right, as determined by the operation code, and shall transfer
the result to Register Xk or Register Xk Right as correspondingly determined by the operation code.
The direction and number of bit positions to be shifted shall be determined by the computed shift
count. The computed shift count shall be derived and interpreted in the manner described in
paragraph 2.2.7 of this specification.

Right Shift: Right shifts shall be performed end-off on the right and sign extended on the left. Thus,
bits shifted out of the rightmost bit position shall be lost and the leftmost bit position, which would
otherwise become unoccupied for each bit position shifted, shall be left unchanged.

Left Shift: Left shifts shall be performed end-off on the left with zeros inserted on the right. Thus,
bits shifted out of the leftmost bit position shall be lost and the rightmost bit position, which becomes
unoccupied for each bit position shifted, shall be cleared.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS vt
DATE July 15, 1988
Architectural Design and Control PAGE 2-34

2.2.8 Logical

The instructions within this subgroup shall provide the means for performing Boolean operations on
the 64-bit words contained in the X Registers to the extent defined by the following instruction
descriptions.

2.2.8.1 Logical Sum, Difference, and Product

a. Logical Sum, Xk replaced by Xk or Xj
18jk (Ref. 065)

b. Logical Difference, Xk replaced by Xk EOR XJ
19jk (Ref. 066)

c. Logical Product, Xk replaced by Xk AND Xj
1Ajk (Ref. 067)

These instructions shall perform a logical operation between the 64-bit word initially contained in the
Xj Register and the 64-bit word initially contained in the Xk Register and shall return the 64-bit
Boolean result to the Xk Register.

The logical operations performed by these instructions shall consist of a logical sum (OR), a logical
difference (EOR) or a logical product (AND), as determined by the operation code, and accomphshed
according to the following truth tables.

OR: 0011 EOR: 0011 AND: 0011
0101 0101 0101
0111 0110 0001

2.2.8.2 Logical Complement

Logical Complement, Xk replaced by Xj NOT
1Bjk (Ref. 068)

This instruction shall transfer the one’s complement of the 64-bit word initially contained in the Xj
Register to the 64-bit positions of the Xk Register.

Conceptually, taking the one’s complement of a 64-bit word shall be accomplished by subtracting it,
bit-for-bit, from a 64-bit word consisting entirely of one bits.

One’s Complement Truth Table; I’s: 1111
[Xjl: 0110
[Xk]: 1001

CONTROL DATA PRIVATE

G

,'(‘/4 \¥

NS

DOC. ARH
CONTROL DATA CYBER 180 MIGDS RV, A0

DATE - July 15, 1988
Architectural Design and Control PAGE 2-35

2.2.8.3 Logical Inhibit

Logical Inhibit, Xk replaced by Xk AND Xj NOT
1Cjk (Ref. 069)

This instruction shall perform a logical product between the one’s complement of the 64-bit word
initially contained in the Xj register and the 64-bit word initially contained in the Xk register and shall
return the 64-bit Boolean result to the Xk register.

The truth tables for the logical product and one’s complement operations are provided in
subparagraphs 2.2.8.1 and 2.2.8.2, respectively, of this specification.

2.2.9 Register Bit String

The instructions within this subgroup shall provide the means for addressing a contiguous string
(field) of bits, beginning and ending independently with any bit positions within a 64-bit word.

For each of the instructions in this subgroup, the bit strings shall be addressed by means of a 12-bit
field referred to as a bit string descriptor. This field of bits, including the field constituting a bit field
descriptor, shall be numbered from left to right, with the leftmost bit numbered 00. The 6-bit subfield
in bit positions 00 through 05 of a bit string descriptor shall designate the beginning, or leftmost, bit
position within a 64-bit word. The 6-bit subfield in bit positions 06 through 11 of the bit string
descriptor is a length designator that is interpreted as designating one less than the length (in bits) of
a bit string within a 64-bit word.

00 05|06 11

Leftmost Position Designator Length Designator (bit length -1)

Bit String Descriptor

For all instructions within this subgroup, indexing shall be carried out as follows: the bit string
descriptor obtained from the D field of the instruction shall be zero-extended on the left to 32 bits and
then added, without overflow detection, to the contents of register Xi Right (in this context, the
contents of register X0 shall be interpreted as all zeros); the rightmost 12 bits of the result shall then
be interpreted as a bit string descriptor, in the manner described above. For each of the instructions
in this subgroup, when, after indexing, the sum of the "Leftmost Position Designator"” and the "Length
Designator” is greater than 63 (decimal), an Instruction Specification error shall be detected, the
execution of the associated instruction shall be inhibited and the corresponding program interruption
shall occur.

CONTROL DATA PRIVATE

: C. H
CONTROL DATA CYBER 180 MIGDS | vl
DATE July 15, 1988
Architectural Design and Control PAGE 2-36

2.2.9.1 Isolate Bit Mask

Isolate Bit Mask into Xk per XiR plus D
ACjkiD (Ref. 070)

This instruction shall generate, in Xk, a bit mask consisting of a field of contiguous one bits whose
leftmost and rightmost bit positions are determined by the bit field descriptor calculated and
interpreted as specified in subparagraph 2.2.9. All bit positions to the left of the leftmost bit position
and all bit positions to the right of the rightmost bit position (leftmost bit position plus length
designator), if any, shall consist of zeros.

2.2.9.2 Isolate

Isolate into Xk from Xj per XiR plus D
ADjkiD (Ref. 071)

This instruction shall obtain a field of contiguous bits from the initial contents of the Xj register, shall
clear all 64-bit positions of the Xk register, and shall then transfer that field of contiguous bits, right-
justified, into the Xk register. The leftmost and rightmost bit positions of the field obtained from the
Xj register shall be defined by the bit field descriptor calculated and interpreted as specified in
subparagraph 2.2.9.

2.2.9.3 Insert

Insert into Xk from Xj per XiR plus D
AEjkiD (Ref. 072)

This instruction shall transfer a field of contiguous bits, initially contained right-justified in the Xj
register, to a field of contiguous bit positions in the Xk register. The length of the bit string obtained
from the Xj register, and the leftmost and rightmost bit positions of the Xk register shall be defined by
the bit string descriptor calculated and interpreted as specified in paragraph 2.2.9. All bit positions to
the left of the leftmost bit position, and all bit positions to the right of the rightmost bit position of the
Xk register, if any, shall be left unchanged.

CONTROL DATA PRIVATE

OC. A
CONTROL DATA CYBER 180 MIGDS B a0

DATE July 15, 1988
Architectural Design and‘Control _ PAGE 2-37

' 2.2.10 Mark to Boolean

Mark to Boolean, Set Xk per j and X1R
1Ejk (Ref. 145)

This instruction shall test the two bits initially contained in the leftmost two bit positions, 32 and 33,
of Register X1 Right according to the 4-bit j field from the instruction. When the yalue of the two
leftmost bits initially contained in Register X1 Right is equal to any of the one or more values specified
by the instruction j field, Register Xk shall be cleared in bit positions 1 through 63, and set in bit
position 0. When the value of the two leftmost bits initially contained in Register X1 Right is not
equal to any of the one or more values specified by the instruction’s j field, Register Xk shall be cleared
in all 64-bit positions, 0 through 63. The values of the j field and the leftmost two bits initially
contained in Register X1 Right shall be interpreted with respect to equality (EQ) as follows:

Binary Value of Bits 32 and 33 of X1 Right, respectively

i 00 | 01 | 10] 1
0000 Unconditional inequality
0001 EQ
0010 EQ
0011 EQ EQ
0100 EQ
0101 EQ EQ
0110 EQ EQ
0111 EQ EQ EQ
1000 EQ
1001 EQ £Q
1010 EQ EQ
1011 EQ EQ £Q
1100 EQ EQ
1101 EQ EQ EQ
1110 EQ EQ EQ
1111 Unconditional equality
111 1 1 1 1
11 1 1 t 1
| R B T T I T T I e e i
11l 1 t 1
J I B T T T R I I IR A
! 1 1
| e T T I I B S
l 1

L I

Note: The four individual bits of j can be visualized as individual pointers which are associated, from
left to right, with the four possible values (00, 01, 10 and 11) of the tested bit-pair (bits 32 and 33 of
Register X1 Right). For example, if j = 0101, equality shall be detected when the value of the tested
bit pair is 01 or 11.

CONTROL DATA PRIVATE

OC. R
CONTROL DATA CYBER 180 MIGDS REv. penro0
DATE July 15, 1988
Architectural Design and Control PAGE 2-38

2.‘3 BUSINESS DATA PROCESSING INSTRUCTIONS

The general form of execution for the instructions in this group shall involve the utilization of a first
data field in central memory, referred to as the "source,” to modify, replace, or compare with a second
data field in central memory referred to as the "destination." Both the source and destination fields
shall be individually described by means of independently designated Data Descriptors, with respect to
the types of representation, sign and zone conventions, lengths and relative locations of the data
fields.

The Data Descriptors shall be obtained from central memory at locations immediately following the
BDP instruction, as defined by the BDP instruction format and number of descriptors used by the
instruction. (See 2.3.1.) All descriptors consist of a 32-bit halfword, aligned to a parcel (16 bit)
boundary in central memory.

2.3.1 General Description

The instructions of this group utilize the jk and jkiD instruction formats in combination with one or
two descriptors in the following combinations:

(1) jk and two descriptors

Operation Code] k

P8 e 4]

Descriptor j

pe2 | | 32]
Descriptor k
pes | 32 |

(2) jkiD and two descriptors

Operation Code
Pl 8 | 4 | & | & | 12 |

[
-
[~}

Descriptor j
pea | 32 |

Descriptor k ‘
e | 32 |

(3) jkiD and one descriptor

.
x
-
o

Operation Code
P [8 [a4 4] 4] 12 |

Descriptor j or k
pes | 32 |

CONTROL DATA PRIVATE

-

=

1‘&;,/ g

CONTROL DATA CYBER 180 MIGDS REV, AG
DATE July 15, 1988
Architectural Design and Control PAGE 2-39

2.3.1.1 Operation Codes

A total of 18 operation codes shall be utilized by the instructions comprising the BDP instruction
group. These instructions are individually listed with their full names in appendix A of this
specification. For the purpose of this specification, the BDP Instruction group shall be further divided
into three subgroups, including "short" instruction names, as follows:

Note: For the order of exception sensing for these instructions, as well as all other instructions, see
paragraph 2.8.7 of this specification.

Subgroup Short Name

BDP Numeric Sum

Difference
Product
Quotient

Scale

Scale Rounded
Decimal Compare
Numeric Move

Byte Compare

Compare Collated

Scan While Non-Member
Translate

Move Bytes

Edit

Immediate Data Move Immediate Data
Compare Immediate Data
Add Immediate Data

2.3.1.2 Access Types

For the purpose of establishing operand access validity, every central memory operand access which is
performed for the purpose of reading source field data shall be a read type access.

For the purpose of establishing operand access validity, every central memory operand access which is
performed for the purpose of writing destination field data shall be a write type access.

For the purpose of establishing operand access validity, every central memory reference operand
access which is performed for the purpose of reading data descriptors shall be an execute type access.

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AD

DATE September 1, 1989
Architectural Design and Control PAGE 2-40

2.3.1.3 Undefined Results for Invalid BDP Data

For the execution of any applicable BDP instruction which results in the recording of an Invalid BDP
Data condition, if either the corresponding bit in the user mask is clear or traps are disabled, then the
results stored into the destination field in central memory shall be undefined for instructions other
than Decimal Compare (Op. 74) and Compare Immediate Data (Op. FA), and the results stored in X1
Right (X1R) shall be undefined for both instructions. '

2.3.1.4 Overlap

The execution of BDP Instructions shall be undefined with respect to the generated results, for every
case in which the source and destination fields overlap and are not coincident in their leftmost and
rightmost byte positions.

2.3.2 Data Descriptors

Data Descriptors shall consist of 32-bit halfwords and shall directly follow the BDP instructions
referring to them.

A Data Descriptor shall be formatted as follows:

Fl o T L 0
1] 3 4 8 16
00 32-bit Descriptor 31
F=0, Length=L
F =1, Length = (X0) for Descriptor associated with Aj

Length = (X1) for Descriptor associated with Ak

The D field is a 3-bit reserved field in bit positions 01, 02 and 03 of the data descriptor. Interpretation
of other Data Descriptor fields follows.

2.3.2.1 Data Descriptor Interpretation

For all BDP instructions, the term "D(Aj)" shall be used to denote "the contents of the source data
field," addressed by means of the components associated with the BDP instruction’s j field designator.
Similarly, the term "D(Ak)" shall be used to denote "the contents of the other source field or the
destination data field," addressed by means of the components associated with the BDP instruction’s k
field designator. '

2.3.2.1.1 BDP Operand Address, 0 Field

The PVA corresponding to the leftmost byte of a BDP source or destination field shall be obtained by
utilizing the 16-bit O field of the corresponding data descriptor (bit positions 16 through 31) as a byte
item count to be added as a sign extended 32-bit offset (two’s complement for negative offset) to the
byte number (BN) portion of the base PVA contained in Register Aj or Ak respectively.

CONTROL DATA PRIVATE

7N

!)
N ¥

S

CONTROL DATA CYBER 180 MIGDS Sl
DATE July 15, 1988
Architectural Design and Control PAGE 2-41

2.3.2.1.2 BDP Operand Type, T Field

The T field shall consist of 4 bits, in bit positions 04 through 07 of the Data Descriptor, and shall
describe the type of data representation used in the associated source or destination field. The 12
values of the T field are assigned data type representations as follows:

Maximum Length
Data Type (bytes)

-

Packed Decimal No Sign
Packed Decimal No Sign Leading Slack Digit 19
Packed Decimal Signed

Packed Decimal Signed Leading Slack Digit

Unpacked Decimal Unsigned

Unpacked Decimal Trailing Sign Combined Hollerith
Unpacked Decimal Trailing Sign Separate 38
Unpacked Decimal Leading Sign Combined Hollerith
Unpacked Decimal Leading Sign Separate

Alphanumeric 256

Binary Unsigned
Binary Signed . 8

-0 (-] @ N UY I WN = O

— gt

Reserved
Reserved Ignored
Reserved
Reserved

o bt Pt ot
e WwnN

As determined by the operation code, source and destination field data types shall be restricted to only
those combinations which are deﬁned as valid within the instruction descriptions. The designation of
invalid T field combinations within the associated Data Descriptors shall result in the detection of an
Instruction Specification Error, the instruction’s execution shall be inhibited and the corresponding
program interruption shall occur. (See 2.8.1.4.) The term "freely compatible” as used in the BDP
instruction descriptions, means that any allowable source field data type may be used with any
allowable destination field data type.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS S Sl
| DATE July 15, 1988
Architectural Design and Control PAGE 2-42

2.3.2.1.3 BDP Operand Length, F and L Fields

The length in bytes of a BDP source or destination field shall be obtained according to the value of the
1-bit F field (bit 00) of the corresponding descriptor as follows: .
F_ Length ‘
0 Obtained from the 8-bit L field (bits 08 through 15) of the corresponding descriptor)
1

Obtained from bits 55 through 63 of X0 Right for the descriptor associated with Aj, and
from bits 55 through 63 of X1 Right for the descriptor associated with Ak.

Although field lengths as long as 256 bytes are possible, the length of a BDP operand shall be
restricted to a smaller value for decimal and binary operations, according to the operand data type.
These inclusive limits are shown in paragraph 2.3.2.1.2.

When any BDP field length exceeds the specified maximum associated with a given data type, an
Instruction Specification Error shall be detected, the execution of that instruction shall be inhibited
and the corresponding program interruption shall occur. (See 2.8.1.4.)

If F equals 1, then only the rightmost 9 bits of X0 and X1 will be checked to determine whether or not
the field length exceeds the maximum allowed. The other bits of X0 and X1 will not be inspected and
will be assumed to be all zeros.

CONTROL DATA PRIVATE

7N

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. - AD

DATE September 1, 1889
Architectural Design and Control PAGE 2-43

2.3.2.2 Data and Sign Conventions

With respect to numeric data and sign conventions, interpretation shall be performed according to
Type (T) where applicable, for Characters (C), Digits (D) and Signs (S), using hexadecimal notation, as
follows:

Note: Data field examples are illustrated as three byte fields.
a. Type 0: Packed Decimal No Sign

D D D D D D

D: Hex (0) through hex (9); Decimal 0 through 9, respectively.
Note: This format corresponds to an even number of digits in the decimal number.

b. Type 1: Packed Decimal No Sign Slack Digit

0 D D D D]

0: Hex (0); Decimal 0 (see item q for handling of slack digit).
D: Hex (0) through hex (9); Decimal 0 through 9, respectively.
Note: This format corresponds to an odd number of digits in the decimal number.

c. Type 2: Packed Decimal Signed

D D D D] S

D: Hex (0) through hex (9); Decimal 0 through 9, respectively.

S: Hex (A), (B), (C), (E), or (F): positive [hex (C) is preferred];
Hex (D): negative.

Note: This format corresponds to an odd number of digits in the decimal number.

d. Type 3: Packed Decimal Signed Slack Digit

0 D D D D S

0: Hex (0); Decimal 0 (see item q for handling of slack digit).
Hex (0) through hex (9); Decimal 0 through 9, respectively.

S: Hex (A), (B), (C), (E), or (F): positive [hex (C) is preferred];
Hex (D): negative.

Note: This format corresponds to an even number of digits in the decimal number.

=

CONTROL DATA PRIVATE

| DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 244 P
\
e. Type 4: Unpacked Decimal Unsigned
)] D D
D: ASCII character 0 through 9 represented by hex (30) through hex (39), respectively.
f. Type5: Unpacked Decimal Trailing Sign Combined Hollerith
D . D c
D: ASCI character 0 through 9 represented by hex (30) through hex (39), respectively.
C: An ASCII character decoded as follows: ‘
ASCII 1 through 9 [hex (31) through hex (39)] either represents
ASCH A through I [hex (41) through hex (49)] +1 through +9
ASCII J through R [hex (4A) through hex (4F) represents
and hex (50) through hex (52)] - -1 through -9)
ASCII (, <, O, & [hex (7B), hex (3C), hex (30), hex (26)] represents +0. '
ASCII), !, - [hex (7D), hex (21), hex (2D)] represents -0.
Note: The underlined characters and codes are the preferred ones. o
g Type 6: Unpacked Decimal Trailing Sign Separate N
0 D s
D: ASCII character 0 through 9 represented by hex (30) through hex (39), respectively.
S: ASCII character + [hex (2B)]: positive sign;
ASCII character - [hex (2D)]: negative sign.
h. Type 7: Unpacked Decimal Leading Sign Combined Hollerith
c b D
C and D have the same meaning as for type 5 in subparagraph f.
(}'("
‘&-‘

N

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 245

2 '8 © BB

Type 8: Unpacked Decimal Leading Sign Separate

S D D

D and S have the same meaning as for type 6 in subparagraph g.

_Type 9: Alphanumeric

c c c

C: Any ASCII character code.
Type 10: Binary Unsigned
The field defined by the number of bytes contains the positive binary value of the operand.

(The unsigned numeric value is always considered to be positive. If negatively signed data is
moved to a type 10 receiving field, it too is considered positive.)

Type 11: Binary Signed
The field defined by the number of bytes contains the signed binary value of the operand,
negative values being represented in the two’s complement form.

. Type 12: Reserved

Type 13: Reserved
Type 14: Reserved
Type 15: Reserved
Slack Digit

For data types 1 and 3: The value of the slack digit as read from central memory shall be
ignored and treated as the value zero. The value of the slack digit as written into central
memory shall be forced to zero, remaining unaffected by any Arithmetic Overflow or
Arithmetic Loss of Significance conditions that may occur. (See 2.8.3.10 and 2.8.3.15.)

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS o Aa 1700
‘ DATE July 15, 1988
Architectural Design and Control PAGE 246

2.3.3 BDP Numeric

The instructions in this subgroup shall provide the means for performing arithmetic, shift, conversion
and comparison operations for byte fields in central memory consisting of numeric decimal data.

Unless the length and type fields with the Data Descriptors associated with the source and destination
fields conform to the restrictions defined within the following instruction descriptions, the detection of
a Length or Type error shall result in an Instruction Specification Error condition, the execution of
the associated instruction shall be inhibited and the corresponding program interruption shall occur.

Overflow into or other alteration of the slack digit of destination field types 1 and 3 is not allowed (see
2.3.2.2, subparagraph q).

The result shall be right justified in the destination field. If the decimal result is shorter than the
destination field, the destination field shall be zero filled to the left. If the result is longer than the
destination field, the result shall be truncated on the left as necessary. Thus, conceptually, these
instructions shall process the data fields from right to left.

Note that these conventions shall cover the end cases for numeric operands of length equal to 1 for all
numeric data types. For instance, a Numeric Move (Op. 75) from a type 5 operand to a type 3 or type 6
operand of length 1 would amount to an extraction of the source field sign.

A source BDP operand of numeric type (0 through 8) and a length zero, shall be interpreted as the
value zero.

A destination BDP operand of length zero shall transform the associated instruction into a no-op.
However, when the source field does not also have a length of zero, exception sensing for the source
field shall occur normally (including the testing for Arithmetic Loss of Significance or Arithmetic
Overflow condition) with the exception that Divide Fault shall not be detected. When both
destination and source fields are of length zero, no data exception testing is performed on either field.
(See 2.1.7.)

Minus zero shall be considered equivalent to plus zero by all the instructions in this subgroup, with
respect to decimal numeric data. These instructions shall not store minus zero as a result except when
truncation of a nonzero, negative field produces a negative zero which will result in negative zero
being stored and detection of an Arithmetic Loss of Significance.

The representation for zero, zones and signs shall be normally determined by interpreting the T field
from the Data Descriptor associated with the destination field.

Division by zero shall not be allowed to the extent that the destination field in central memory shall
not be changed and a Divide Fault condition shall be detected. When the corresponding mask bit is set
and the trap is enabled, instruction execution shall be inhibited and program interruption shall occur.
(See 2.8.3.8.)

Each source digit shall be checked for decimal digit validity. An invalid decimal digit shall cause an
Invalid BDP Data condition to be detected. When the corresponding mask bit is set and the trap is
enabled, instruction execution shall be inhibited and program interruption shall occur. (See 2.8.3.16.)

The sequence of exception sensing for the decimal quotient instruction is as follows:

1) Check D(Aj) for an invalid decimal digit (Invalid BDP Data condition).
2) Check D(A)) for either zero length or zero value (Divide Fault condition).
3) Check D(Ak) for an invalid decimal digit (Invalid BDP Data condition).

Thus, invalid data in D(Ak) shall result in an Invalid BDP Data condition only in the absence of a
Divide Fault condition.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control-

DOC.

DATE
PAGE

ARH1700
AC

July 15, 1988
2-47

2.3.3.1 Arithmetic

a. Decimal Sum, D(Ak) replaced by D(Ak) plus D(Aj)
70jk (2 descriptors) (Ref. 074)

b. Decimal Difference, D(Ak) replaced by D(Ak) minus D(Aj)
71jk (2 descriptors) (Ref. 075)

¢. Decimal Product, D(Ak) replaced by D(Ak) times D(Aj)
72jk (2 descriptors) (Ref. 076)

d. Decimal Quotient, D(Ak) replaced by D(Ak) divided by D(Aj)
73jk (2 descriptors) (Ref. 077)

Operation: These instructions shall arithmetically modify the initial contents of the destination field
in central memory, (treated as an augend, minuend, multiplicand or dividend as determined by the
operation code) by the contents of the source field in central memory (treated as an addend,
subtrahend, multiplier or divisor as determined by the operation code) and shall transfer the decimal
result consisting of a sum, difference, product or quotient, as determined by the operation code, to the

destination field in central memory.
Divide Fault shall be detected as specified in the following table.

K J
Field K Field J Divide
Length Value Length Value Fault
0 * 0 * No
0 * Nonzero 0 No
0 * Nonzero Nonzero No
Nonzero 0 0 * Yes
Nonzero 0 Nonzero 0 Yes
Nonzero 0 Nonzero Nonzero No
Nonzero Nonzero 0 * Yes
Nonzero Nonzero Nonzero 0 Yes
Nonzero Nonzero Nonzero Nonzero No

* Since field length is zero, the data is not examined.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS | ROV a0
. DATE July 15, 1988
Architectural Design and Control PAGE 2-48

Types: All'Packed decimal types and all Unpacked decimal types, except for the Leading Sign formats,
shall be freely allowed for decimal arithmetic; i.e., types 0 through 6, shall be compatible for these
instructions.

Unpacked Decimal Leading Sign (both conventions) shall not be supported in the decimal arithmetic.
A Numeric Move instruction must be generated to format the operands of those types prior to their
use in arithmetic operations.

Lengths: The maximum allowable lengths for the source and destination fields shall be determined
according to their respective decimal data types as defined in subparagraph 2.3.2.1.3 of this
specification.

Note: Decimal operands shall be treated as integer values.

When the results of these instructions exceed the capacity of the designated destination field such that
significant digits are not stored into central memory, an Arithmetic Overflow condition shall be
detected. When the corresponding user condition mask bit is set and the trap is enabled, instruction
execution shall be inhibited and program interruption shall occur. See subparagraph 2.8.3.10 of this
specification.

The results from these instructions shall be algebraically signed unless they are equal to zero in their
entirety and there is no arithmetic overflow, in which case their signs shall be made positive.

These instructions shall generate a result value in accordance with the type T of the destination field
and the preferred sign convention for that given type.

CONTROL DATA PRIVATE

U

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS : REV. AC

DATE July 15, 1988
Architectural Design and Control PAGE 249
2.3.3.2 Shift

a. Decimal Scale, D(Ak) replaced by D(Aj), scaled per XiR plus D
E4jkiD (2 descriptors) (Ref. 078)

b. Decimal Scale Rounded, D(Ak) replaced by rounded D(Aj), scaled per XiR plus D
E5jkiD (2 descriptors) (Ref. 079)

These Shift instructions shall move data initially contained in the source field to the destination field,
and shall provide shifting of the data under control of a shift count. The shift count shall be derived
in the following manner: the rightmost 8 bits from the instruction’s D field shall be added to the
rightmost 8 bits initially contained in bit positions 56 through 63 of Register Xi Right and the 8-bit
sum shall represent the computed shift count. Any overflow from the 8-bit sum is ignored. In this
context, the contents of Register X0 shall be interpreted entirely of zeros. A zero shift count shall
cause the instruction to act as a move only instruction.

The 8-bit shift count shall be interpreted as a signed, binary integer. When this 8-bit shift count is
positive, the direction of the shift shall be left with the number of decimal digit positions to be shifted
determined by the value of the shift count. When this 8-bit shift count is negative, the direction of the
shift shall be right with the number of decimal digit positions to be shifted determined by the value of
the two’s complement of the shift count with 1000 0000 being interpreted as right shift 128. Thus, -
positive shift counts shall provide the means for multiplying the source data field by powers of ten,
and negative shift counts shall provide the means for dividing the source data fields by powers of ten,
as the source data is moved to the destination field.

Shift counts shall be interpreted as follows:

0111 1111 Left Shift 127

0000 0000 Left Shift 0

1111 1111 Right Shift 1

1000 0001 :
1000 0000 Right Shift 128

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS ROy g 70
‘ DATE July 15, 1988
Architectural Design and Control PAGE 250

When nonzero digits are shifted left end-off, or truncated on the left, an Arithmetic Loss of
Significance condition shall be detected. If the corresponding user condition mask bit is set, and the

trap is enabled, instruction execution shall be inhibited and program interruption shall occur. (See
2.8.3.15.)

Shifting shall be accomplished end-off with zero fill on the appropriate end(s) as required to
accommodate the length and type of the receiving field. (For example, when the destination field is
longer than the source field, and the difference in field lengths is greater than the left shift count, such
a scale instruction shall provide zero fill, to the extent required, on both the right and left ends of the
destination field result.)

Types: Source field data shall be restricted to types 0 through 6, all of which shall be freely compatible
with allowable destination field data types of 0 through 6.

Lengths: The maximum allowable lengths for the source and destination fields shall be determined
according to their respective decimal data types as defined in subparagraph 2.3.2.1.3 of this
specification. '

Operation: These instructions shall move and scale the decimal data field initially contained in the
source field to the destination field. They shall transfer the sign of the source field to the destination
field without change, (unless the results consist entirely of zeros and there is no loss of significance, in
which case the sign of the destination field shall be made positive or unless the result would otherwise
contain a nonpreferred sign in which case the sign of the destination field shall contain the preferred

sign).

Scale Rounded: When specified by means of the operation code, rounding shall be performed for
negatively signed scale factors by adding five to the last digit shifted end-off and propagating carries, if
any, through the decimal result transferred to the destination field. Thus, the absolute value shall be
rounded upwards.

CONTROL DATA PRIVATE

AN
““{3: T »_‘/

CONTROL DATA CYBER 180 MIGDS ROV aaH1700
DATE July 15, 1988
Architectural Design and Control PAGE 2-51

2.3.3.3 Move

Numeric Move, D(Ak) replaced by D(Aj) after formatting
75jk (2 descriptors) (Ref. 092)

This instruction shall format the number obtained from the source field and shall transfer the result
to the destination field.

The source field shall be validated according to the T field from its associated descriptor; the source
field shall be reformatted according to the T field from the data descriptor associated with the
destination field and the result shall be transferred to the destination field.

The format of the different data types allowed in this instruction are described in subparagraph
2.3.2.2 of this document. The conversion and format operation shall be performed on any combination
of fields of type 0 through 8 or 10 or 11.

If the source has a decimal data type and the destination a binary data type, a conversion from decimal
to binary shall be performed. In this case, the maximum length for the source shall be determined by
the decimal data type: 19 bytes for types O through 3, and 38 bytes for types 4 through 8; the
maximum field length for the destination shall be 8 bytes. If the destination field is not long enough
to accommodate the entire binary number, truncation of the leftmost bytes shall occur. If the
destination field is longer than the result of the conversion, the sign bit shall be extended on the left. .

If the source has a binary data type and the destination a decimal data type, a conversion from bmary
to decimal shall be performed. The length restrictions on the operands are the same as in the previous
case. If the destination field is too short to accommodate the converted number, leading digits shall be
truncated according to the destination’s data type. If the receiving field is longer than the converted
number, leading zeros shall be supplied in accordance with the decimal data type: ASCII character
zero [hex(30)] or digit zero [hex(0)].

When truncation of data results in loss of significance, an Arithmetic Loss of Significance condition
shall be detected. When the corresponding user mask bit is set and the trap is enabled, program
interruption shall occur. Execution of this instruction (specifically storing into central memory) may
or may not be inhibited as determined on a model-dependent basis. However, when program
interruption occurs, the PVA in the P Register recorded in either the exchange package or the stack
frame save area shall point to this instruction.

When both operands are decimal, their maximum allowable lengths shall be determined according to
their respective decimal data types as defined in subparagraph 2.3.2.1.3, of this specification.

When both operands are decimal, the destination shall be filled from right to left. Unequal field
lengths shall result either in truncation of the leading digits or in insertion of leading zeros according
to the destination data type: ASCII character zero [hex(30)] or digit zero [hex(0)], for unpacked and
packed decimal data types, respectively.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS ROy paToo
DATE July 15, 1988
Architectural Design and Control PAGE 2-52

2.3.3.4 Comparison

Decimal Compare, D(Aj) to D(Ak), result to X1R
74jk (2 descriptors) (Ref. 083)

This instruction shall algebraically compare the decimal contents of the source field to the decimal
contents of the destination field and shall transfer a 32-bit halfword to Register X1 Right according to
the results of the comparison.

When the contents of the source and destination fields are equal, the entire 32-bit positions of Register
X1 Right shall be cleared.

When the contents of the source field are greater than the contents of the destination field, Register
X1 Right shall be cleared in bit position 32 and 34 through 63, and shall be set in bit position 33.

When the contents of the source field are less than the contents of the destination field, Register X1
Right shall be cleared in bit positions 34 through 63 and shall be set in bit positions 32 and 33.

Types: All Packed decimal types and all Unpacked decimal data types except for the Leading Sign
formats, shall be freely allowed in comparisons; i.e., types 0 through 6, shall be compatible for this
instruction.

Lengths: Lengths shall be confined to the same maximum values as for a Decimal Difference
instruction. Unequal field lengths shall be accommodated by providing zero fill in the leftmost
positions, as required, for the field having the shorter length. The maximum number of bytes occupied
by each operand is a function of its data type and is specified in subparagraph 2.3.2.1.3, of this
specification.

2.3.4 Byte

The instructions in this subgroup shall provide the means for comparing, scanning, translating,
moving, and editing byte fields in central memory to the extent defined by the following instruction
descriptions. '

These instructions shall utilize spaces for extending alphanumeric (type 9) fields, with the space being
represented by hex(20).

A source byte operand of length zero shall be functionally interpreted as a string of space characters
(ASCII character: hex(20)) for all the instructions in this subgroup except "Edit."

Decimal Significance Loss shall not be detected for the instructions in this subgroup.

2.3.4.1 Comparison

a. Byte Compare, D(Aj) to D(AKk), result to X1R, index to XOR
7Tk (2 descriptors) (Ref. 084)

b. Byte Compare Collated, D(Aj) to D(Ak), both translated per (Ai plus D), result to X1R, index to XOR
E9jkiD (2 descriptors) (Ref. 085)

These instructions shall compare the bytes contained in the source field to the bytes contained in the
destination field and shall transfer the results of that comparison to Register X1 Right.

The comparison shall proceed from left to right. When the field lengths are unequal, trailing space
characters shall be used for the field having the shorter length. The maximum length for each
operand shall be 256 bytes.

CONTROL DATA PRIVATE

O

DOC. ARH17
CONTROL DATA CYBER 180 MIGDS REV. Ac 1%
, DATE July 15, 1988
Architectural Design and Control PAGE 2-53

These instructions shall ignore the type field. Each byte from the source and destination field shall be
treated as an 8-bit quantity having an absolute value with respect to the comparison operation.

The comparison shall continue until the longer field has been exhausted or until an "inequality” is
detected between corresponding bytes from the source and destination fields according to the following
definitions. For the Compare instruction, inequality between the bytes obtained directly from the
source and destination fields shall result in the completion of the comparison. For the Collated
Compare instruction inequality of the bytes obtained directly from the source and destination fields
shall result in the translation of both bytes, by means of a translation table, and inequality of the post-
translation bytes shall result in the completion of the comparison. When the translated bytes are
equal, and the longer field has not been exhausted, comparison between the corresponding bytes
obtained directly from the source and destination fields shall be resumed.

When every byte associated with the source field is equal to every corresponding byte associated with
the destination field, (including the trailing space characters if any), the entire 32-bit positions of
Register X1 Right shall be cleared. When the first inequality between bytes occurs as a result of a byte’
associated with the source field having a greater value than the corresponding byte associated with
the destination field, Register X1 Right shall be cleared in bit positions 32 and 34 through 63, and
shall be set in bit position 33. When the first inequality between bytes occurs as a result of a byte
associated with the source field having a value less than the corresponding byte associated with the
. destination field, Register X1 Right shall be cleared in bit positions 34 through 63 and shall be set in
bit positions 32 and 33. In addition, the sequence number of the byte which caused the first inequality
will be placed in Register X0 Right. (Note: the sequence number shall be initialized to zero.
Moreover, when one of these instructions terminates as a result of inequality, the value of the
sequence number transferred to Register X0 Right, if added to the leftmost byte addresses of the
source and destination fields, will provide the addresses of the source and destination field bytes,
respectively, which caused the inequality.) If no inequalities are found, Register X0 Right shall remain
unchanged.

Translation table: The translation table used for each occurrence of direct inequality during Collated
Compare instructions, shall be addressed by a PVA whose Ring Number (RN) and Segment (SEG) are
obtained from Ai, and whose Byte Number (BN) is formed by the 32-bit sum (ignoring overflow) of the
rightmost 32 bits of Ai plus the instruction’s 12-bit D field extended to the left with 20 zeros. The
entire table, consisting of 256 bytes, may be loaded internally to the processor, on a model dependent
basis before any operation on the data is performed.

Each byte shall be translated by using its value as a positive offset to be added to the beginning
(leftmost) address of the Translation Table, (Ai) + D, for the purpose of addressing the translated byte
to be read from central memory,

Invalid Segment/Access Violation: The associated program interruption shall occur as described in
paragraph 2.8.1 and the execution of this instruction shall be inhibited when either an Inalid Segment
or an Access Violation is recorded. '

Address Specification Error/Page Table Search Without Find: The associated program interruption
shall occur as described in paragraph 2.8.1 and the execution of this instruction shall be inhibited
when either an Address Specification Error or a Page Table Search Without Find is recorded except
when the exception is associated with unneeded data. In this case the processor may but need not
report the exception condition. Not reporting one of the two exceptions can only occur when a source
field spans two pages and the exception is associated with the second page and a mismatch occurs
using the data from the first page.

CONTROL DATA PRIVATE

' DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AD
' DATE September 1, 1989
Architectural Design and Control PAGE 2-54

2.3.4.2 Byte Scan

Byte Scan While Nonmember, D(Ak) for presence bit in (Ai plus D), character to X1R, index to X0R
F3jkiD (1 descriptor) (Ref. 086) '

Operation: The operation shall proceed from left to right on the destination field addressed by D(Ak).
One character at a time shall be taken from this character string and used as a bit address into the
string addressed by a PVA whose Ring Number (RN) and Segment (SEG) are obtained from Ai, and

whose Byte Number (BN) is formed by the 32-bit sum (ignoring overflow) of the rightmost 32 bits of '

Ai plus the instruction’s 12-bit D field extended to the left with 20 zeros. The scan shall terminate if
the bit thus addressed is ON or if the destination field has been exhausted; otherwise the next
character in D(AK) is considered.

Source Field: The operand addressed by Ai+D shall be interpreted as a bit string consisting of 256
bits (32 bytes). The entire table, consisting of 256 bits, may be loaded internally to the processor, on a
model dependent basis, before any operation on the data is performed.

Destination Field: The type field in D(Ak) shall be ignored. The operand addressed by D(Ak) shall be
interpreted as a byte string, and restricted to no more than 256 characters.

The binary value of the sequence number in the string, of the byte which caused the scan to terminate
shall be placed right-justified into X0 Right.

The binary value of the character itself which caused the scan to terminate shall be placed right-
justified into X1 Right.

If the scan stops by exhaustion of the characters in the byte string, X0 Right shall contain the length
of the original byte string and X1 Right shall be set in bit position 32 and cleared in bit positions 33
through 63.

Note: The function Byte Scan While Member can be performed by means of the Byte Scan While
Non-Member if the bit string specifying the characters not allowed in the byte string has been
previously logically negated.

2.3.4.3 Translate

Byte Translate, D(Ak) replaced by D(Aj), translated per (Ai plus D)
EBjkiD (2 descriptors) (Ref. 088)

This instruction shall translate each byte contained in the source field, according to the translation
table in central memory and shall transfer the results of the byte-by-byte translation to the
destination field.

The translation table shall be addressed in a manner identical to that previously described for the Byte
Compare Collated instruction in subparagraph 2.3.4.1 of this specification. The Type fields in the
Data Descriptors associated with the source field and the destination field shall be ignored. Both
operands shall be restricted to no more than 256 bytes.

CONTROL DATA PRIVATE

e,

| DOC. ARH
CONTROL DATA CYBER 180 MIGDS REV. D °
: DATE September 1, 1989
Architectural Design and Control PAGE 2-55

The translation operation shall occur from left to right with each source byte used as a positive offset
to be added to the beginning (leftmost byte) address of the translation table for the purpose of
permitting each byte’s translation. Translated bytes, thus obtained from the translation table, shall
be transferred to the destination field. The translation operation shall terminate after the destination
field length has been exhausted. When the source field length is greater than the destination field
length, rightmost bytes from the source field shall be truncated, to the extent required, with respect to
the translation operation. When the source field length is less than the destination field length,
translated space characters shall be used to fill the rightmost byte positions of the destination field to
the extent required.

2.3.4.4 Move

Move Bytes, D(Ak) replaced by D(Aj)
76jk (2 descriptors) (Ref. 089)

This instruction shall move the bytes contained in the source field to the destination field. The
operation shall be performed from left to right with unequal field lengths accommodated by the
truncation of trailing characters from the source field or the insertion of trailing spaces into the
destination field. The type fields of the source and destination data descriptors shall be ignored. Field
lengths shall be restricted to a maximum of 256 bytes. ‘

Invalid Segment/Access Violation: The associated program interruption shall occur as described in
paragraph 2.8.1 and the execution of this instruction shall be inhibited when either an Inalid Segment
or an Access Violation is recorded.

Address Specification Error/Page Table Search Without Find: The associated program interruption
shall occur as described in paragraph 2.8.1 and the execution of this instruction shall be inhibited
(except that some portion of the destination field may have meen modified) when either an Address
Specification Error or a Page Table Search Without Find.

2.3.4.5 Edit

Edit, D(Ak) replaced by D(Aj) edited per (Ai plus D)
EDjkiD (2 descriptors) (Ref. 091)

This instruction shall edit the digits or characters contained in the source field according to an edit
mask in central memory and shall transfer the result to the destination field. The edit mask shall be
addressed by a PVA whose Ring Number (RN) and Segment (SEG) are obtained from Ai, and whose
Byte Number (BN) is formed by the 32-bit sum (ignoring overflow) of the rightmost 32-bit of Ai plus
the instruction’s 12-bit D field extended to the left with 20 zeros. The edit mask shall consist of a one
byte length indication followed by a string of micro-operations. The length indication shall include
the byte containing the length. (Also see appendixes C & H.)

The edit instruction shall terminate as a result of exhausting the edit mask or under control of the
edit mask, i.e., MOP15 with the zero flag FALSE. For both of these circumstances, no exception
conditions shall be associated with the completion of the edit instruction even though the source and
the destination fields may not have been exhausted. In the event that the destination field is not
filled, the remaining portion of the destination field shall not be altered. In the event that the source
field is not exhausted, the entire source field shall be checked for invalid BDP data and the sign
examined. However, when the interpretation of the edit mask would otherwise result in reading
beyond the end of the source field or would result in writing beyond the end of the destination field, an
Invalid BDP Data condition shall be detected. Thus a destination field length of zero allows the Edit
instruction to proceed until the first output is produced at which point an Invalid BDP Data condition

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC. ARH1700
REV. AC

DATE July 15, 1988
PAGE 2-56

shall be detected. When the corresponding user mask bit is set and the trap is enabled, instruction
execution shall be inhibited and program interruption shall occur. See paragraph 2.8.3.16 of this

specifieation.

Type: The Source Data Descriptor type field shall be confined to the following types: 0, 1, 2, 3, 4, 5, 6,
7,8, and 9. A type 9 source field is assumed zero (ZF, zero field = true) and positive. The Destination
Data Descriptor type field shall be ignored, and the output field formatted as per type 9. An
Instruction Specification Error shall be detected when the source data type is 10, 11, 14, or 15. This
condition shall be detected even if the edit mask has a length of 0 or 1.

Special Conventions: The edit operation shall utilize the tables and toggles listed below.

a. Special Characters Table (SCT): The SCT is an eight byte table that shall be initialized by
the machine at the start of each edit operation to contain the following:

lank fill character

suppression character

b

i

Il 1 positive sig
Pl

I |

| A

n

1 negative sign
i

14
Table Index 0j1]2|3|14|5|61{7
Character |[blb}+]- ${/
Hexadecimal Value 20| 20| 2B| 2D} 2C| 2E| 24| 2F

Entries in the SCT shall be readable/writable under control of certain micro-operations
comprising the mask.

The Symbol (SM): The symbol is a string of 0 to 15 characters that shall be created under
control of the edit mask and inserted into the destination field under control of the edit
mask. Once the SM has been inserted into the destination field, it must be recreated before
it can be inserted again. At the start of an edit operation, the SM shall have a zero length.

The SM shall be utilized for the floating sign and floating currency editing features. It shall
also be utilized for sign sensitive and significance sensitive character string insertion.

End Suppression Toggle (ES): This toggle controls zero suppression. At start of edit, the
ES shall be initialized FALSE. The ES shall be set TRUE when zero suppression ends.

Negative Sign Toggle (SN): This toggle signifies the sign of the source field. At start of edit,
the SN shall be initialized FALSE for an unsigned numeric or a positive numeric source
field. It shall be initialized TRUE for a negative numeric source field, only.

Zero Field Toggle (ZF): This toggle signifies whether the source field is zero or nonzero. It
shall be initialized TRUE.

CONTROL DATA PRIVATE

AN

DOC. ARH
CONTROL DATA CYBER 180 MIGDS Crdiviali

DATE July 15, 1988
Architectural Design and Control PAGE 2-57

Source Field Sign: For separately signed numeric data types, the bit positions in the source field
which are occupied by the sign shall be automatically skipped with respect to source field addressing
under control of the edit mask. For combined sign data types, only the numeric value shall be
interpreted with respect to read references of the source field sign byte position under control of the
edit mask.

Edit Micro-Operations: The mask shall be interpreted as a string of one byte micro-instructions with
the following format.

0o 34 7

Mop SV

The MOP is a micro-operator (MOP). It specifies an editing function. The SV is a specification value
(SV). Its meaning varies according to the specific MOP which it follows.

Edit control shall proceed from left to right on the mask, one character (or micro-operation) at a time.
After interpretation of the micro-operation, action shall be taken on the source and destination field
characters (or source digits) which shall also be operated from left to right.

Indexing through the source field shall be by bytes unless its data-type is packed numeric when
indexing shall be by half-bytes. Indexing through the destination field shall be by bytes.

Notation for MOP descriptions.

ES End suppression toggle.

SCT Special character table.

SCT(n) (n+1)th entry in the SCT (n must be 0-7).
3% Specification value.

Note: The one byte length indication contained in the leftmost byte position of the Edit Mask shall
include itself in specifying the length of the Edit Mask. (Thus, a maximum of 254 micro-operations
may be specified by this byte.)

When the value of the leftmost byte of the Edit Mask is equal to zero or one, the associated Edit
instruction shall result in no operation; however, the entire input field (except when type 9) is checked
for valid data.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS oy panaoo
| DATE July 15, 1988
Architectural Design and Control PAGE 2-58

Although not included in each description, prior to the execution of each micro-operation the edit

mask index shall be incremented by one.

Micro-operations - MOPs
MOP 0

1. End MOP if SV=0.

2. Set ES true.

3. Translate SV (1 to 15) digits from the source field to their equivalent ASCII characters and
copy them into the destination field. The source field must not be type 9 or an Invalid BDP
Data condition will be detected. When the corresponding user mask bit is set and traps
enabled, instruction execution shall be inhibited and program interruption shall occur.

4. Perform the translate as specified by the NUMERIC function.

MOP1
1. End MOP if SV=0.
2. Set ES true.

3. Move SV (1 to 15) characters from the source field to the destination field. The source field
must be type 9 or an Invalid BDP Data condition will be detected. When the corresponding
user mask bit is set and traps enabled, instruction execution shall be inhibited and program
interruption shall occur.

MOP2,3

No operation.

MOP 4

1. End MOP if SV=0.

2. Move SV (1 to 15) characters from the edit mask to the destination field. When execution of
this MOP would require reading beyond the end of the edit mask, an Invalid BDP Data
condition shall be detected. When the corresponding user mask bit is set and traps enabled,
instruction execution shall be inhibited and program interruption shall occur.

MOP 5
Set the symbol to a single character representing the sign of the source data field.
e Negative source data field
Copy SCT}; to the symbol field.
e Positive source data field

Copy the character (SCTgy) selected from the SCT indexed by the rightmost 3 bits of SV
into the symbol field.

CONTROL DATA PRIVATE

AN
NS

: DOC.
CONTROL DATA CYBER 180 MIGDS BRv aa e
DATE July 15, 1988
Architectural Design and Control PAGE 2-59
MOPG6

1. End MOP if SV=0.

2. Move SV (1 to 15) characters from the edit mask to the symbol. When execution of this
MOP would require reading beyond the end of the edit mask, an Invalid BDP Data condition
shall be detected. When the corresponding user mask bit is set and traps enabled,
instruction execution shall be inhibited and program interruption shall occur.

MOP 7
1. End MOP if SV=0.

2. Translate SV (1 to 15) digits from the source field to their equivalent ASCII characters and
copy them into the destination field. The source field must not be type 9 or an Invalid BDP
Data condition will be detected. When the corresponding user mask bit is set and traps
enabled, instruction execution shall be inhibited and program interruption shall occur.

o ES False AND zero digit
Copy SCT1 to the destination field.
e ES False AND nonzero digit
Set ES true and copy the symbol to the destination field followed by the translated digit.

e ESTrue
Copy the translated digit to the destination field.
MOP 8
e ESTrue
No operation.
e ESFalse
Set ES true and copy the symbol to the destination field.
MOP 9
e SV>1
Copy the Symbol to the destination field.
o SV«17

Copy the character (SCTgy) selected from the SCT indexed by the rightmost 3 bits of SV
into the destination field.

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-60 A
L
MOPA
e SV>T
e Source field positive
Copy the Symbol to the destination field.
e Source field negative
Copy the SCT character to the destination field once for each character in the Symbol.
¢ SV<7
e Source field positive

MOPB

Copy the character (SCTgy) selected from the SCT indexed by the rightmost 3 bits of SV
into the destination field.

Source field negative
Copy SCT into the destination field.

This MOP is identical to MOP A with the action caused by the source field sign being exactly
reversed.

MOPC

e SV>7 : Q,_,,»;

ES True
Copy the Symbol to the destination field.
ES False

Copy the SCT, character to the destination field once for each character in the Symbol.

e SV«7

ES True

Copy the character (SCTgy) selected from the SCT indexed by the rightmost 3 bits of SV
into the destination field.

ES False
Copy SCT, into the destination field.

‘; =

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-61
MOPD

Copy the next character from the edit mask into the SCT as indexed by the rightmost 3 bits of
Sv.

When execution of this MOP would require reading beyond the end of the edit mask, an Invalid
BDP Data condition shall be detected. When the corresponding user mask bit is set and traps
enabled, instruction execution shall be inhibited and program interruption shall occur.

MOPE
1. End MOPifSV =0.
2. Copy SCT, into the destination field SV (1 to 15) times.
MOPF
1. End MOPIifSV = 0.
2. IfZF False (Nonzero Source Field)
Terminate the Edit instruction.
3. IfZF True (Zero Source Field)

Reset to start of Destination field and copy SCT, into the destination field SV times.
Execution of this reset causes all characters previously transmitted to the destination field
to be, in effect, discarded (even when more than SV characters were previously transmitted).

Function NUMERIC

This function shall be used by micro-operations 0 and 7 to move a source digit into the destination
field.

Each source digit shall be checked; invalid decimal digits shall cause an Invalid BDP Data condition to
be detected. When the corresponding user mask bit is set and the trap is enabled, instruction
execution shall be inhibited and program interruption shall occur. See paragraph 2.8.3.16 of this
specification.

When the source field is packed numeric, appropriate ASCII zone bits shall be supplied for the
destination character.

A nonzero digit shall cause the ZF toggle to be set FALSE.

2.3.5 Calculate Subscript
This instruction (Op. F4) has been deleted from the CYBER 180 instruction set.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS RV, AC 0
DATE July 15, 1988
Architectural Design and Control PAGE 2-62

2;3.6 Immediate Data

Within this instruction group, the Immediate Data Byte is an 8-bit field formed by the two’s
complement addition of bits 56 - 63 (Xi) Right and the rightmost 8 bits of the instruction’s D field.
Overflow is ignored on this summation. In this context, the contents of Register X0 shall be
interpreted as consisting entirely of zeros.

2.3.6.1 Move Immediate Data, D(Ak) replaced by XiR plus D per j

F9jkiD (1 descriptor) (Ref. 154)

This instruction shall move the Immediate Data Byte to the destination field after format conversion
per the destination field type and the j field suboperation code. The Immediate Data Byte is described
in paragraph 2.3.6. The least significant 2 bits of the j field shall be used as an encoding of the
operation to be performed:

a. If = 00, the unsigned (considered positive) numeric value (type 10) contained in the
Immediate Data Byte shall be moved right-justified to the receiving field, which must be of
type 10 or 11. If necessary, the destination field is filled with zeros on the left.

b. If = 01, the decimal numeric value (type 4) contained in the Immediate Data Byte shall be
moved right-justified, to the receiving field after possible reformatting to match the data
type of the destination. If the format requires a sign, a positive sign shall be supplied. The
destination shall be restricted to one of the decimal data types 0 through 6. This move shall
be executed according to the rules of the numeric move for truncation, padding and
validation.

Each source digit shall be checked for decimal digit validity. An invalid decimal digit shall
cause an Invalid BDP Data condition to be detected. When the corresponding user mask bit
is set, and the trap is enabled, instruction execution shall be inhibited and program
interruption shall occur.

This operation will not alter the slack digit of destination field types 1 and 3 (see 2.3.2.2,
subparagraph q). When truncation of numeric data results in loss of significance, an
Arithmetic Loss of Significance condition shall be detected. If the corresponding user
condition mask bit is set and the trap is enabled, instruction execution shall be inhibited and
program interruption shall occur. (See 2.8.3.15.)

c. If = 10, the ASCII character contained in the Immediate Data Byte is repeated left to right
in the receiving field. The destination data type shall be ignored.

d. If = 11, the ASCII character contained in the Immediate Data Byte is moved left-justified
into the receiving field, the rest of that field is space filled. The destination data type shall
be ignored.

CONTROL DATA PRIVATE

=
{ 3

CONTROL DATA CYBER 180 MIGDS o - 700
DATE July 15, 1988
Architectural Design and Control PAGE 2-63

2.3.6.2 Compare Immediate Data, XiR plus D to D(AK) per j, result to X1R

FAjkiD (1 descriptor) (Ref. 155)

This command shall, depending on the value of the j field, compare the explicit value contained in the
Immediate Data Byte to D(Ak) after a possible reformatting to match the data type and shall transfer
a 32-bit halfword to Register X1 Right according to the result of the comparison. The Immediate Data
Byte is described in paragraph 2.3.6.

When the contents of the source and destination fields are equal, the entire 32-bit positions of Register
X1 Right shall be cleared.

The rightmost two bits of the j field shall be used as an encoding of the operation to be performed:

a. If j=00, the unsigned (considered positive) numeric value (type 10) contained in the
Immediate Data Byte shall be compared to the contents of field D(Ak), which must be of type
10 or 11. If field D(Ak) is longer than one byte, then the Immediate Data Byte will be zero-
filled to the left as necessary.

b. If j=01, the decimal numeric value (type 4) contained in the Immediate Data Byte shall be
compared to the contents of field D(Ak) after possible reformatting to match the data type of
field D(Ak). If the format requires a sign, a positive sign shall be supplied. The D(AKk) field
shall be restricted to one of the decimal data types 0 through 6. If field D(AK) is longer than
one byte, then the Immediate Data Byte shall be zero-filled to the left as necessary.

Each source digit shall be checked for decimal digit validity. An invalid decimal digit shall
cause an Invalid BDP Data condition to be detected. When the corresponding user mask bit
is set, and the trap is enabled, instruction execution shall be inhibited and program
interruption shall occur.

c. Ifj=10, the ASCII character contained in the Immediate Data Byte shall be compared left to
right with each successive byte contained in the D(Ak) field. The data type of field D(Ak)
shall be ignored.

d. Ifj=11, the ASCII character contained in the Immediate Data Byte shall be compared to the
leftmost byte in field D(Ak). If the comparison is equal and if field D(Ak) is longer than one
byte, then a space character shall be compared left to right with each successive remaining
byte contained in the D(AKk) field. The data type of field D(Ak) shall be ignored.

When the contents of the source field are greater than the contents of the destination field, Register
X1 Right shall be cleared in bit positions 32 and 34 through 63, and shall be set in bit position 33.

When the contents of the source field are less than the contents of the destination field, Register X1
Right shall be cleared in bit positions 34 through 63 and shall be set in bit positions 32 and 33.

The interpretation of the source and destination fields are analogous to those described under the
Move Immediate Data instruction, paragraph 2.3.6.1.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS o a0
DATE July 15, 1988
Architectural Design and Control PAGE 264

. 2.3.6.3 Add Immediate Data, D(Ak) replaced by D(Ak) plus XiR plus D per j

FBjkiD (1 descriptor) (Ref. 156)

Operation: This command shall add the explicit integer value contained in the Immediate Data Byte
to D(Ak) after a possible conversion to match the destination data type. The Immediate Data Byte is
formed as described in 2.3.6.

Source: The Immediate Data Byte is used to store the integer value of the addend. The j field is used
as an encoding of the type of the data contained in the Immediate Data Byte. The least significant bit
of the j field is decoded as follows:

a. If = 0, the Immediate Data Byte contains an unsigned (considered positive) blnary integer
value; Immedlate Data Byte = Data Type 10.

b. If = 1, the Immediate Data Byte contains one ASCII character representing a decimal digit;
if invalid decimal data is encountered in the Immediate Data Byte, an Invalid BDP Data
condition shall be detected. When the corresponding user mask bit is set, and the trap is
enabled, instruction execution shall be inhibited and program interruption shall occur.
Immediate Data Byte = Data Type 4.

If the source corresponds to case a. above, the destination shall be confined to types 10 and 11.
If the source corresponds to case b. above, the destination shall be confined to types 0 through 6.

If unauthorized data types are specified, an Instruction Specification error shall be detected, the
instruction’s execution shall be inhibited, and the corresponding program interruption shall occur.
(See 2.8.1.4.)

Overflow into the slack digit of destination field types 1 and 3 is not allowed (see 2.3.2.2, sub-
paragraph q). When the results of the add operation exceed the capacity of the destination field, an
Arithmetic Overflow condition shall be detected. If the corresponding user condition mask bit is set
and the trap is enabled, instruction execution shall be inhibited and the program interruption shall
occur. (See 2.8.3.10.)

CONTROL DATA PRIVATE

‘#A\

CONTROL DATA CYBER 180 MIGDS | RS AgToo
DATE July 15, 1988
Architectural Design and Control PAGE 2-65

2.4 FLOATING POINT INSTRUCTIONS

A floating point number shall consist of a signed exponent and a signed fraction. The signed fraction
shall also be referred to as the coefficient.

The quantity expressed by a floating point number shall be of the form (f’)iZ.x where f represents the
signed fraction and x represents the signed exponent of the base 2.

The exponent base of 2 shall be an implied constant for all floating point numbers and thus shall not
explicitly appear in any floating point format.

2.4.1 Format: 64-Bit

All 64-bit floating point data shall have one of two fixed length formats: a 64-bit word called single
precision, or a 128-bit word called double precision. :

In both the single and double precision formats, the leftmost bit position, 00, shall be occupied by the
sign of the fraction. The fifteen bit positions immediately to the right of bit 00, 01 through 15, shall be
occupied by the signed exponent.

The field immediately to the right of the signed exponent shall be occupied by the fraction which in
single precision format shall consist of 48 bits and in double precision format shall consist of 96 bits,
according to the following figures.

00}01 15|16 63

S Signed Exponent 48-bit Fraction

Single Precision Floating Point Number

00{01 15|16 63
S Signed Exponent Leftmost 48 bits of the 96-bit Fraction
\ / ‘

T :
64165 79180] 127
S Signed Exponent Rightmost 48 bits of the 96-bit Fraction

Double Precision Floating Point Number

A double precision floating point number shall consist of two single precision floating point numbers
located in consecutively numbered X Registers. The two single precision floating point numbers
comprising a double precision floating point number shall be referred to as the leftmost and rightmost
parts as contained in the Xn and Xn+1 Registers, respectively. The leftmost part may be any single
precision floating point number and when it is normalized, (the leftmost bit of the fraction, in bit
position 16, is equal to a one) the double precision floating point number shall be considered to be
normalized. The sign of the fraction and the exponent of the leftmost part shall constitute the sign of
the fraction and the exponent of the double precision number.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC- ARH1700
DATE July 15, 1988
Architectural Design and Control | PAGE 265

The fraction field of the leftmost part shall constitute the leftmost 48 bits of the 96-bit double
precision fraction. The fraction field of the rightmost part shall constitute the rightmost 48 bits of the
96-bit double precision fraction. The sign of the fraction and the exponent of the rightmost part shall
not be utilized from any number constituting an input operand (argument) to a double precision
floating point operation. However, the formation of a double precision floating point result shall
include making the sign of the fraction of the rightmost part the same as that of the leftmost part and
shall also include making the exponent of the rightmost part equal to the exponent of the leftmost
part.

2.4.1.1 Standard Numbers

The fraction field of a floating point number shall have its binary point immediately to the left of its
leftmost bit position, 16. Both positive and negative quantities shall have a true fraction with the sign
indicated solely by means of the sign bit. A number shall be positive or negative depending on
whether the sign is a zero or a one, respectively.

Cmmmmmms Exponent ------- El D True Fraction ------—------ >

00]01102 0304 15(16 63

-
-t
-

Tt
LI A B Binary Point
t t Exponent Out of Range (02, 03)

t Exponent Bias

Sign of the Fraction

The fraction shall be considered to be multiplied by the power of 2 expressed by the exponent which, in
encoded form, occupies bit positions 01 through 15. The exponent field shall be used to represent both
‘standard and nonstandard floating point numbers. Standard floating point numbers shall have an
actual exponent range from -4096 to +4095 inclusive, and shall be encoded into the exponent field by
adding a bias equal to 214. The effect of biasing the exponent is demonstrated in table 2.4-1 for
standard floating point numbers in which the ascending order from smallest to largest encoded
representations corresponds to the smallest to largest progression of multiplier values represented by
the actual exponents in the range of -4096 to +4095 inclusive.

The ranges in magnitude, M, covered by standard, normalized floating point numbers in each of the
two formats is as follows:

Single precision; 24097 < M < (1-2-48)24095
(Approximately 14.4 decimal digits of precision)

Double precision; 24097 < M < (1-2-96)24095
(Approximately 28.9 decimal digits of precision)

For both formats these ranges approximate to:
(4.8) 10-123¢ < M < (5.2) 101232

CONTROL DATA PRIVATE

A
et »"l‘

DOC. ARH
CONTROL DATA CYBER 180 MIGDS ~ Eoy: ‘ARhtro

DATE July 15, 1988
Architectural Design and Control PAGE 2-67
24.1.1.1 Z3

As shown in table 2.4-1, +Z3 and -Z3 are standard floating point numbers with zero coefficients. The
existance of -Z3 in the floating point number set plus the interpretation of +Z3 greater than -Z3 by
the floating point compare means that special consideration must be given to =Z3. Add and subtract
are the only floating point operations which can produce a Z3 result from normalized input operands
and will force any -Z3 result to a +Z3. Multiply and divide operations will only produce Z3 for
unnormalized input operands and will produce either +Z3 or -Z3 depending on the signs of the input
operands. This -Z3 gives rise to some anomalies. For example, when A = -Z3, and B and C are both
nonzero standard numbers in the following equation:

AB+C)=AB+AC
the comparison reduces to
-Z3 + +73
This is true because the floating point compare rules described in 2.4.5 interpret operands with
different signs to be unequal. These anomalies only occur when unnormalized operands are used. :

24112 N

As shown in table 2.4-1, +N and ~N are those standard floating point numbers which have nonzero
coefficients.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS o ARhto
DATE July 15, 1988
Architectural Design and Control PAGE 268

2.4.1.2 Nonstandard Numbers

The exponent field shall also be used to represent nonstandard floating point numbers referred to as
Zero (271, £Z2), Infinity (INF), and Indefinite (:INDEF).

Table 2.4-1 illustrates hexadecimal exponent codes for corresponding nonstandard as well as standard
floating point numbers.

2.4.1.2.1 71, 172

Nonstandard floating point numbers constituting input arguments to floating point operations shall
be treated as if they consisted entirely of zeros when bits 01 and 02 are equal to zeros and also when
bits 01 and 03 are equal to zeros.

The nonstandard zero floating point numbers are represented as +Z1 or +Z2 as shown in table 2.4-1.
The specific number in the +Z1 range which consists of all (64) zeros is termed +0. Thus, wherever
+Z1 is indicated, the +0 is also included since it is a member of +Z1.

2.4.1.22 +INF

Nonstandard floating point numbers constituting input arguments to floating point operations shall
be treated as infinite values when bit 01 is equal to one and bits 02 and 03 are not equal to each other.

The nonstandard floating point numbers in the Infinite range are represented as *INF as shown in
table 2.4-1. The specific number in the +INF range which consists of 500....000 is termed +». The
specific number in the =INF range which consists of D00....000 is termed —». Thus wherever tINF is
indicated, the numbers 1o are also included since they are members of tINF.

2.4.1.2.3 :INDEF

Nonstandard floating point numbers constituting input arguments to floating point operations shall
be treated as indefinite values when bits 01 through 03 are all equal to ones.

The nonstandard floating pbint numbers in the Indefinite range are represented as tINDEF as shown
in table 2.4-1. The specific number in the +INDEF range which consists of 700....000 is termed +IND.
Thus, wherever +INDEF is indicated, the number +IND is also included since it is a member of
tINDEF.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS oy pa 700
DATE July 15, 1988
Architectural Design and Control PAGE 2-69

Hexadecimal exponent including the coefficient sign

Actual exponent (to the base 2)

Standard or nonstandard numbers

Number Classification

Comments :
' The specific number
7XXX -—--- Nonstd Indefinite|+INDEF 7000...00 is termed +IND
6FFF| 212,287 The specific number
: : Infinite +INF 5000...00 is termed +«
Positive | 5000 24,096
4FFF| 24,095 ' Standard numbers
Numbers : : +N with a nonzero
4000 20 coefficient

Standard| Standard
3FFF| 2-1 { Standard numbers
: +73

: : with a zero
(Coeff’nt | 3000| 2-4,096 :

coefficient
2FFF| 2-4,097

sign = 0)

: : +22
1000| 2-12,288
2-12,289
OXXX1| : +71 The specific number
2-16,384 0000...00 is termed +0
Nonstd.| Zero ———
2-16,384
8XXX| : -71
2-12,289
9000| 2-12,288
Negative : : -12
AFFF| 2-4,097
Numbers B00O| 2-4,096 Standard numbers
: : -13 with a zero
BFFF| 2-1 coefficient
Standard| Standard
(Coeff’nt | CO00 20 Standard numbers
: : -N with a nonzero
sign = 1)| CFFF| 24,095 coefficient
Dooo| 24,096 The specific number

: : Infinite | -INF D000...00 is termed -o
EFFF| 212,287 | Nonstd.

FXXX ---- Indefinite|-INDEF

Table 2.4-1. 64-Bit Floating Point Representation

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC- . ARH1700
DATE July 15, 1988
Architectural Design and Control PAGE 2-70

2.4.1.3 Exponent Arithmetic

When the exponent fields from input arguments are added, as for floating point multiplication, or
subtracted, as for floating point division, the exponent arithmetic shall be performed algebraically in
two’s complement mode. Moreover, such operations shall take place, conceptually, as if the bias were
removed from each exponent field prior to performing the addition or subtraction and then restored
following exponent arithmetic so as to correctly bias the exponent result.

Exponent Underflow and Overflow conditions shall be detected for all single precision, but only for the
leftmost part of double precision floating point results.

2.4.1.4 Normalization

A normalized floating point number shall have a one in the leftmost bit position, 16, of the fraction
field. If the leftmost bit of the fraction is a zero, the number shall be considered unnormalized.
Normalization shall take place when intermediate results are changed to final results. Numbers with
zero fractions cannot be normalized and such fractions shall remain equal to zero.

For intermediate results in which coefficient overflow has not occurred and the initial operands were
normalized, the normalization process shall consist of left shifting the fraction until the leftmost bit
position contains a one and correspondingly reducing the exponent by the number of positions shifted.
For intermediate results in which coefficient overflow has occurred, the normalization process shall
consist of right shifting the fraction one bit position and correspondingly increasing the exponent by
one. For double precision floating point numbers, the entire fraction shall participate in the
normalization such that the rightmost part may or may not appear as a normalized single precision
number as determined by the value of the fraction.

For quotient and product instructions (Op. 32, 33, 36 and 37) if the operands are unnormalized, the
results may be unnormalized. (See the individual instruction descriptions.)

When exponent arithmetic operations on standard floating numbers generate an intermediate
exponent which is Out of Range, but normalization requirements generate an adjusted exponent
which is no longer Out of Range, then neither Exponent Overflow nor Exponent Underflow shall be
recorded for the final results.

2.4.1.5 Exceptions

With respect to floating point exceptions, (specifically Exponent Overflow, Exponent Underflow,
Indefinite, and Loss of Significance), bit position assignments within the User Condition and User
Mask Registers shall be in accordance with paragraphs 2.8.3 and 2.8.4 of this specification.

2.4.1.6 Double Precision Register Designators

The terms "Xk+1" and "Xj+1" shall be used to designate an X Register associated with the rightmost
part of a double precision floating point number. When the leftmost part of a double precision floating
point number, as designated by the terms "Xk" and "Xj" is associated with Register XF (in hexadecimal
notation) the terms "Xk+1" and "Xj+1" shall be interpreted as designating Register X0. Notation
designating the two registers holding the complete double precision floating point number is either
XXk or XXj. (See 2.4.3.4 through 2.4.3.6.)

CONTROL DATA PRIVATE

TN

,,
£
'&/

DOC.
CONTROL DATA CYBER 180 MIGDS o a0

DATE July 15, 1988
Architectural Design and Control v PAGE 2-71

2.4.1.7 User Mask Bits

The form of the result to be stored for certain arithmetic operations involving any of the three
exception conditions Exponent Overflow, Exponent Underflow and FP Loss of Significance is a
function of the user mask bit associated with the exception. Tables 2.4-3 through 2.4-12 specify the
results for each floating point operation (SUM, DIFF, PROD, QUOT) as a function of the input
operands. These tables are arranged in pairs -- user mask clear, user mask set -- for each operation.

When both input operands are standard numbers or, one is a standard number and the other +Z1 or
172:

user mask clear selects a predetermined form for the result

+0 for result tZ2 Exponent Underflow
+0 for result +Z3 FP Loss of Significance
+o for result +INF Exponent Overflow

- for result -INF Exponent Overflow
user mask set selects the generated result.

When both input operands are +Z1 or +Z2 or either operand is +INF:

the user mask does not affect the result and the forms +0, +® or == are stored.
(Note that when FP Indefinite is detected, the result stored is always of the form, +IND.)
2.4.1.8 Conversion (Int/FP)

The instructions within this subgroup shall provide the means for converting 64-bit words, contained
in the X Registers, between integer and floating point formats.

2.4.1.8.1 Convert from Integer to Floating Point

Convert, Floating Point Xk formed from Integer Xj
3Ajk (Ref. 097)

This instruction shall convert the signed, two’s complement, binary integer initially contained in the
64-bit positions of Register Xj to its equivalent, normalized floating point representation and shall
transfer this 64-bit result to Register Xk. Integers outside of the range of -248 through 248-1 shall be
truncated in the rightmost bit positions during conversion.

The integer initially contained in Register Xj shall be interpreted as having a magnitude (M) within
the following range:

. _263 < M < 263_1

When the integer initially contained in Register Xj consists entirely of zeros, it shall be transferred
without change to Register Xk.

CONTROL DATA PRIVATE

2.4.1.8.2 Convert from Floating Point to Integer

Convert, Integer Xk formed from Floating Point Xj
3Bjk (Ref. 098)

This instruction shall convert the 64-bit floating point number initially contained in the Xj Register to
a signed, two’s complement, binary integer and shall transfer this 64-bit result to Register Xk. (The
fractional part of the binary equivalent shall be lost as a result of truncation of the appropriate
rightmost bits).

When the 64-bit floating point number initially contained in the Xk register:

1. Has an actual (unbiased) exponent which is less than or equal to zero, the result shall
consist of 64 zeros. No exception conditions are recorded.

2. Has a coefficient consisting entirely of zeros, the result shall consist of 64 zeros. No
exception conditions are recorded.

3. Is indefinite, a Floating Point Indefinite condition shall be detected. @ When the
corresponding user mask bit is set and the trap enabled, execution of this instruction shall
be inhibited and program interruption shall occur (2.8.3.14). When the corresponding user
mask bit is clear and/or traps are disabled, a result consisting of 64 zeros shall be stored and
instruction execution completed. -

4. Is infinite, an Arithmetic Loss of Significance condition shall be detected. When the
corresponding user mask bit is set and the trap enabled, execution of this instruction shall
be inhibited and program interruption shall occur (2.8.3.15). When the corresponding user
mask bit is clear and/or traps are disabled, a result consisting of 64 zeros shall be stored and
instruction execution completed.

Floating point numbers with magnitude (M) shall be correctly converted provided such numbers are
within the following range:

-(263.215) <M< 263.915

For integers outside of this range, the number transferred to Register Xk shall represent only the least
significant, (rightmost) 64 bits of the actual result, and an Arithmetic Loss of Significance condition
shall be detected. When the corresponding user mask bit is set and the trap enabled, execution of this
instruction shall be inhibited and program interruption shall occur. (Thus, such numbers shall be
truncated to their leftmost positions). See subparagraph 2.8.3.15 of this specification.

CONTROL DATA PRIVATE

&

.

Vi

CONTROL DATA CYBER 180 MIGDS | ARy pentoo
DATE July 15, 1988
Architectural Design and Control PAGE 2-73

2.4.1.9 Arithmetic

The instructions within this subgroup shall provide the means for performing arithmetic operations
on floating point numbers to the extent described in the following subparagraphs.

2.4.1.9.1 Floating Point Sum/Difference

a. Floating Point Sum, Xk replaced by Xk plus Xj
30jk (Ref. 099)

b. Floating Point Difference, Xk replaced by Xk minus Xj
31jk (Ref. 100)

Inputs: For the execution of these instructions, when either or both of the input arguments initially
contained in Registers Xk and Xj consist of an Infinite (tINF) or Indefinite (INDEF) floating point
number, as defined in subparagraph 2.4.1.3 of this specification, the floating point result transferred
to Register Xk shall consist of a nonstandard floating point number as defined by tables 2.4-3, 2.4-4,
2.4-5 and 2.4-6. \

For the execution of these instructions, when both of the input arguments initially contained in
Registers Xk and Xj consist of zero (#Z1, tZ2) as described in 2.4.1.3, the floating point result.
transferred to Register Xk shall consist entirely of zeros (+0) and no Loss of Significance shall be-
recorded.

For those nonstandard input arguments for which an Infinite result is transferred to Register Xk, an
Exponent Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap enabled, execution of the instruction shall complete and program interruption shall occur. See
subparagraph 2.8.3.11 of this specification.

For those nonstandard input arguments for which an Indefinite result is transferred to Register Xk, a:
Floating Point Indefinite condition shall be detected. When the corresponding user mask bit is set and
the trap enabled, execution of the instruction shall be inhibited and program interruption shall occur.
See subparagraph 2.8.3.14 of this specification.

In the absence of either input argument being Infinite (INF) or Indefinite (:INDEF) or both input
arguments being zero (#Z1, tZ2), these instructions shall execute according to the following
descriptions.

Exponent Equalization: The exponents of the two floating point numbers initially contained in the
Xk and Xj Registers shall be algebraically compared and when they are equal, that common exponent
shall be used as the intermediate exponent with neither of the associated coefficients shifted prior to
coefficient arithmetic. However, when the exponents are not equal, the coefficient associated with the
smaller exponent shall be shifted right, end-off, the number of bit positions designated by the
difference between the exponents, up to a maximum of 48. Thus, the coefficients shall be aligned and
the larger exponent shall be used as the intermediate exponent.

When the exponent difference is greater than 48, the larger exponent and its associated coefficient
shall be used as the intermediate exponent and coefficient.

CONTROL DATA PRIVATE

k . DOC. ARH
CONTROL DATA CYBER 180 MIGDS ey oo
DATE July 15, 1988
Architectural Design and Control PAGE 2-74

Coefficient Arithmetic: The two aligned coefficients, each consisting of a sign and a 48-bit fraction
shall be added or subtracted, as determined by the operation code, with the coefficient associated with
the Xj Register correspondingly treated as the addend or the subtrahend. The algebraic result shall
consist of a signed coefficient having 48 bits of precision along with an overflow bit, and shall be
referred to as the intermediate coefficient. (The overflow bit shall provide the required allowance for
"true" addition, i.e., FP sum of coefficients having like signs and FP Difference between coefficients
having unlike signs.)

Coefficient Overflow: When the overflow bit associated with the intermediate coefficient is a one, the
48 bits of precision associated with the intermediate coefficient shall be shifted one bit position right,
end-off, with the overflow bit inserted into the vacated, leftmost bit position. The intermediate
exponent shall be increased by one to adjust for this right shift of the coefficient and, provided the
intermediate exponent does not overflow, the adjusted exponent along with its bias, and the
normalized coefficient along with its sign, shall be transferred to the 64-bit position of Register Xk as
the final result.

Exponent Overflow: When the adjustment of the intermediate exponent results in overflow, and
exponent overflow condition shall be recorded and the final result of the associated instruction shall
be determined according to the state of the Exponent Overflow mask bit contained in the User Mask
Register. (See subparagraph 2.8.3.11 and paragraph 2.8.4 of this specification.)

When the corresponding mask bit is a one at the time the Exponent Overflow condition is recorded,
the adjusted exponent along with its bias, and the normalized coefficient along with its sign (INF),
shall be transferred to the 64-bit positions of Register Xk as the final result. If the trap is enabled,
then the execution of the instruction shall complete and program interruption shall occur. See
paragraph 2.8.3.11 of this specification.

When the corresponding mask bit is a zero at the time the Exponent Overflow condition is recorded,
the nonstandard floating point number Infinite (t®), as defined in paragraph 2.4.1.3 of this
specification, shall be transferred to the 64-bit positions of Register Xk as the final result.

Loss of Significance: When the overflow bit and the 48 bits of precision associated with the
intermediate coefficient consist entirely of zeros and one or both of the input operands consisted of a
standard floating point number, then a Floating Point Loss of Significance condition shall be recorded
and the final result of the associated instruction shall be determined according to the state of the
Floating Point Loss of Significance mask bit contained in the User Mask Register. (See subparagraph
2.8.3.13 and paragraph 2.8.4 of this specification.)

When the corresponding mask bit is a one at the time the Floating Point Loss of Significance condition
is recorded, the intermediate exponent along with its bias, and the intermediate coefficient along with
its positive sign (+Z3), shall be transferred to the 64 bits of Register Xk as the final result. If the trap
is enabled, then the execution of the instruction shall complete and program interruption shall occur.
See paragraph 2.8.3.13 of this specification.

When the corresponding mask bit is a zero at the time the Floating Point Loss of Significance
condition is recorded, the nonstandard floating point number zero (+0) as defined in subparagraph
2.4.1.3 of this specification, shall be transferred to the 64-bit positions of Register Xk as the final
result.

CONTROL DATA PRIVATE

ﬁﬁﬁﬁﬁ

CONTROL DATA CYBER 180 MIGDS Aoy aaH7o0
| DATE July 15, 1988
Architectural Design and Control PAGE 2-75

Normalization: When the overflow bit associated with the intermediate coefficient is a zero and the 48
bits of precision associated with the intermediate coefficient do not consist entirely of zeros, these 48
bits of precision shall be left shifted to the extent required to achieve normalization, i.e., a one in the
leftmost bit position. Left shifting shall be accomplished end-off, with zeros inserted on the right, for
from O to 47 bit positions. For each bit position shifted left, the intermediate exponent shall be
decreased by one. Upon completion of normalization, provided the exponent has not underflowed, the
adjusted exponent along with its bias, and the normalized coefficient along with its sign shall be
transferred to the 64-bit positions of Register Xk as the final result.

Exponent Underflow: When the adjustment of the exponent results in underflow, an Exponent
Underflow condition shall be recorded and the final result of the associated instruction shall be
determined according to the state of the Exponent Underflow mask bit contained in the User Mask
Register. (See subparagraph 2.8.3.12 and paragraph 2.8.4 of this specification.)

When the corresponding mask bit is a one at the time the Exponent Underflow condition is recorded,
the adjusted exponent along with its bias, and the normalized coefficient along with its sign (+Z2),
shall be transferred to the 64-bit positions of the Xk Register as the final result. If the trap is enabled,
then the execution of the instruction shall complete and program interruption shall occur. See
paragraph 2.8.3.12 of this specification.

When the corresponding mask bit is a zero at the time the Exponent Underflow condition is recorded,
the nonstandard floating point number Zero (+0), as defined in paragraph 2.4.1.3 of this specification,
shall be transferred to the 64-bit positions of Register Xk as the final result.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS RV, AC T
DATE July 15, 1988
Architectural Design and Control PAGE 2.76

2.4.1.9.2 Floating Point Product

Floating Point Product, Xk replaced by Xk times Xj
32jk (Ref. 103) '

Nonstandard Inputs: For the execution of this instruction, when either or both of the input
arguments initially contained in Registers Xk and Xj consist of a Zero (1Z1, 1Z2), Infinite (:INF) or
Indefinite (:INDEF) floating point number, as defined in subparagraph 2.4.1.3 of this specification,
the floating point result transferred to Register Xk shall consist of a nonstandard floating point
number as defined by tables 2.4-7 and 2.4-8.

For those nonstandard input arguments for which an Infinite result is transferred to Register Xk, an
Exponent Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap enabled, execution of the instruction shall complete and program interruption shall occur. See
subparagraph 2.8.3.11 of this specification. :

For those nonstandard input arguments for which an Indefinite result is transferred to Register Xk, a
Floating Point Indefinite condition shall be detected. When the corresponding user mask bit is set and
the trap enabled, execution of the instruction shall be inhibited and program interruption shall occur.
See subparagraph 2.8.3.14 of this specification.

Standard Inputs: In the absence of nonstandard input arguments, this instruction shall execution
according to the following descriptions.

Exponent Arithmetic: The signed exponents initially contained in Registers Xk and Xj shall be
algebraically added and the result shall be used as the intermediate exponent.

Coefficient Arithmetic: The signed coefficient initially contained in Register Xk shall be multiplied by
the signed coefficient initially contained in Register Xj. The result shall consist of an algebraically
signed product having 96 bits of precision.

Normalization: When the leftmost bit of the 96 bits of precision associated with the product is a one,
the sign and leftmost 48 bits of the product shall be used as the intermediate coefficient. When the
leftmost bit of the 96 bits of precision associated with the product is a zero, that product shall be
shifted left end-off one bit position, the sign and leftmost 48 bits of the shifted result shall be used as
the intermediate coefficient and the intermediate exponent shall be decreased by one.

Exponent Overflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the overflow direction, an Exponent Overflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Overflow Mask bit contained in the User Mask register. See
subparagraph 2.8.3.11 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Overflow condition is recorded,
the adjusted exponent along with its bias, and the intermediate coefficient along with its sign, (:INF)
shall be transferred to the 64-bit positions of Register X as the final result. If the trap is enabled, then
the execution of the instruction shall complete and program interruption shall occur. See paragraph
2.8.3.11 of this specification.

When the corresponding mask bit is a zero at the time the Exponent Overflow condition is recorded,
the nonstandard floating point number Infinite (i®), as defined in subparagraph 2.4.1.3 of this
specification, shall be transferred to the 64-bit positions of Register Xk as the final result.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS oy hanhioo
, DATE July 15, 1988
Architectural Design and Control PAGE 2-77

Exponent Underflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the underflow direction, an Exponent Underflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Underflow mask bit contained in the User Mask register. See
subparagraph 2.8.3.12 and paragraph 2.8.4 of this specification.

2.4.1.9.3 Floating Point Quotient

Floating Point Quotient, Xk replaced by Xk divided by Xj
33jk (Ref. 104)

Nonstandard Inputs: For the execution of this instruction, when either or both of the input
arguments initially contained in Registers Xk and Xj consist of a Zero (+Z1, +Z2), Infinite (INF) or
Indefinite (:INDEF) floating point number, as defined in subparagraph 2.4.1.3 of this specification,
the floating point result transferred to Register Xk shall consist of a nonstandard floating point
number as defined by tables 2.4-9 through 2.4-12.

For those nonstandard arguments for which an Infinite result is transferred to Register Xk, an
Exponent Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap enabled, execution of the instruction shall complete and program interruption shall occur. See
subparagraph 2.8.3.11 of this specification.

For those nonstandard input arguments for which an Indefinite result is transferred to Register Xk, a
Floating Point Indefinite condition shall be detected. When the corresponding user mask bit is set and
the trap enabled, execution of the instruction shall be inhibited and program interruption shall occur.
See subparagraph 2.8.3.14 of this specification.

When the Xj contains a nonstandard value of Zero (+Z1, $Z2), the contents of Register Xk shall not be
changed and Divide Fault condition shall be detected. When the corresponding user mask bit is set
and the trap is enabled, instruction execution shall be inhibited and program interruption shall occur.
See subparagraph 2.8. 3.8 of this specification.

Standard Inputs: In the absence of nonstandard input arguments, these instructions shall execute
according to the following descriptions.

Exponent Arithmetic: The signed exponent associated with the Xj Register shall be subtracted from
the signed exponent associated with Xk Register and the signed result shall be referred to as the
intermediate exponent.

Divide Fault: When the coefficient associated with the Xj Register is unnormalized and can be divided
into the coefficient associated with the Xk Register by a factor equal to or greater than 2.0, the
contents of Register Xk shall not be changed and a Divide Fault condition shall be detected. Further,
when the coefficient of Xj consists entirely of zeros (+Z3), the contents of Register Xk shall not be
changed and a Divide Fault condition shall be detected. When the corresponding user mask bit is set
and the trap is enabled instruction execution shall be inhibited and program interruption shall occur.
See subparagraph 2.8.3.8 of this specification.

In the event that a pair of operands is such that a Divide Fault is detected and such that the exponent
arithmetic will produce Exponent Overflow or Underflow, the Divide Fault and only the Divide Fault
shall be reported.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS RV, AG
DATE July 15, 1988
Architectural Design and Control PAGE 2.78

Coefficient Arithmetic: The signed coefficient associated with the Xj Register shall be divided into the
signed coefficient associated with the Xk Register. The division shall be fractional, i.e., 48 zeros shall
be appended rightmost to the signed coefficient associated with the Xk Register in order to obtain a
dividend having 96 bits of precision. The results of the division shall consist of an algebraically signed
quotient having 48 bits of precision and an overflow bit. (The overflow bit shall provide the required
allowance for those cases in which the divisor can be divided into the dividend by a factor equal to or
greater than 1.0 but less than 2.0.) ‘

Normalization: When the overflow bit associated with the quotient is a zero, the sign and 48 bits of
precision associated with the quotient shall be used as the intermediate coefficient. When the
overflow bit associated with the quotient is a one, the 48 bits of precision associated with the quotient
shall be shifted one bit position right, end-off, with the overflow bit inserted into the vacated leftmost
bit position. The signed, 48-bit result shall be used as the intermediate coefficient and the
intermediate exponent shall be increased by one to adjust for the right shift of the quotient.

Exponent Overflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the overflow direction, an Exponent Overflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Overflow Mask bit contained in the User Mask register. See
subparagraph 2.8.3.11 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Overflow condition is recorded,
the adjusted exponent along with its bias, and the intermediate coefficient along with its sign, (:INF)
shall be transferred to the 64-bit positions of Register Xk as the final result. If the trap is enabled,
then the execution of the instruction shall complete and program interruption shall occur. See
paragraph 2.8.3.11 of this specification. ’

When the corresponding mask bit is a zero at the time the Exponent Overflow condition is recorded,
the nonstandard floating point number Infinite (=), as defined in subparagraph 2.4.1.3 of this
specification, shall be transferred to the 64-bit positions of Register Xk as the final result.

Exponent Underflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the underflow direction, an Exponent Underflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Underflow mask bit contained in the User Mask register. See
subparagraph 2.8.3.12 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Underflow condition is recorded,
the adjusted exponent along with its bias and the intermediate coefficient along with its sign (122)
shall be transferred to the 64-bit positions of the Xk Register as the final result. If the trap is enabled,
then the execution of the instruction shall complete and program interruption shall occur. See
paragraph 2.8.3.12 of this specification.

When the corresponding mask bit is a zero at the time the Exponent Underflow condition is recorded,
the nonstandard floating point number Zero (+0) as defined in subparagraph 2.4.1.3 of this
specification shall be transferred to the 64-bit positions of the Xk Register as the final result.

Result in Range: When the intermediate exponent, including the adjustment for normalization when
applicable, is not equal to an Out of Range value, that intermediate exponent along with its bias, and
the intermediate coefficient along with its sign, shall be transferred to the 64-bit positions of Register
Xk as the final result. This final result shall always consist of a normalized number when both
numbers initially contained in the Xk and Xj Registers consisted of normalized numbers.

CONTROL DATA PRIVATE

[Au\\

U

1
P

“‘L./'/

O

CONTROL DATA CYBER 180 MIGDS o AeTw00
DATE July 15, 1988
Architectural Design and Control PAGE 2-79

2.4.1.9.4 Double Precision Floating Point Sum/Difference

a. Floating Point Sum, XXk replaced by XXk plus XXj
34jk (Ref. 105)

b. Floating Point Difference, XXk replaced by XXk minus XXj
35jk (Ref. 106)

Inputs: For the execution of these instructions, when either or both of the input arguments initially
contained in Registers Xk and Xj consist of an Infinite (INF) or Indefinite (:INDEF) floating point
number, as defined in subparagraph 2.4.1.3 of this specification, the floating point result transferred
to Registers Xk and Xk+1 shall consist of nonstandard floating point numbers as defined by tables
2.4-3,2.4-4,2.4-5 and 2.4-6.

For the execution of these instructions, when both of the input arguments initially contained in
Registers Xk, Xk+1 and Xj, Xj+1 consist of zero (+Z1, +Z2) as described in paragraph 2.4.1.3, the
floating point result transferred to Registers Xk and Xk+1 shall consist entirely of zeros (+0) and no
Loss of Significance shall be recorded.

For those input arguments for which an Infinite result is transferred to Registers Xk and Xk+1, an
Exponent Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap is enabled, execution of the instruction shall complete and program interruption shall occur. See
subparagraph 2.8.3.11 of this specification.

For those input arguments for which an Indefinite result is transferred to Registers Xk and Xk+1 a
Floating Point Indefinite condition shall be detected. When the corresponding user mask bit is set and
the trap is enabled, execution of the interaction shall be inhibited and program mterruptxon shall
occur. See subparagraph 2.8.3.14 of this specification.

In the absence of either input argument being Infinite (INF) or Indefinite (:INDEF) or both input
arguments being Zero (2Z2, 1Z2) these instructions shall execute according to the following
descriptions.

Exponent Equalization: The exponents of the two floating point numbers initially contained in the
Xk and Xj Registers shall be algebraically compared and when they are equal, that common exponent
shall be used as the intermediate exponent with neither of the associated coefficients shifted prior to
coefficient arithmetic. However, when the exponents are not equal, the coefficient associated with the
smaller exponent shall be shifted right, end-off, the number of bit positions designated by the
difference between the exponents, up to a maximum of 96. Thus, the coefficients shall be aligned and
the larger exponent shall be used as the intermediate exponent.

Coefficient Arithmetic: The two aligned coefficients, each consisting of a signed fraction having 96

- bits of precision shall be added or subtracted, as determined by the operation code, with the coefficient

associated with Registers Xj and Xj+1 correspondingly treated as the addend or the subtrahend. The
algebraic result shall consist of a signed coefficient having 96 bits of precision along with an overflow
bit, and shall be referred to as the intermediate coefficient. (The overflow bit shall provide the
required allowance for "true” addition, i.e. FP Sum of coefficients having like signs and FP Difference
between coefficients having unlike signs.)

CONTROL DATA PRIVATE

’ DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
' DATE July 15, 1988
Architectural Design and Control PAGE 2-80

Coefficient Overflow: When the overflow bit associated with the intermediate coefficient is a one, the
96 bits of precision associated with the intermediate coefficient shall be shifted one bit position right,
end-off, with the overflow bit inserted into the vacated, leftmost bit position. The intermediate
exponent shall be increased by one to adjust for this right shift of the coefficient. If the intermediate
exponent does not overflow, the adjusted exponent along with its bias and the leftmost 48 bits of the
normalized coefficient along with its sign shall be transferred to the 64-bit positions of Register Xk as
the leftmost half of the final result; also, the adjusted exponent along with its bias and the rightmost
48 bits of the normalized coefficient along with its sign shall be transferred to the 64-bit positions of
Register Xk+1 as the rightmost half of the final result.

Exponent Overflow: When the adjustment of the intermediate exponent results in overflow, an
Exponent Overflow condition shall be recorded and the final result of the associated instruction shall
be determined according to the state of the Exponent Overflow mask bit contained in the User Mask
register. See subparagraph 2.8.3.11 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Overflow condition is recorded,
the adjusted exponent along with its bias, and the leftmost 48 bits of the normalized coefficient along
with its sign (:INF) shall be transferred to the 64-bit positions of Register Xk as the leftmost half of
the final result; also, the adjusted exponent along with its bias, and the rightmost 48 bits of the
normalized coefficient along with its sign (:INF) shall be transferred to the 64-bit positions of Register
Xk+1 as the rightmost half of the final result. When the corresponding user mask bit is set and the
trap is enabled, execution of the instruction shall complete and program interruption shall occur. See
paragraph 2.8.2.11 of this specification.

When the corresponding mask bit is a zero at the time the Exponent Overflow condition is recorded,
the nonstandard floating point number Infinite (tw) as defined in subparagraph 2.4.1.3 of this

specification shall be transferred to the 64-bit positions of both Register Xk and Register Xk+1 as the
final result.

Loss of Significance: When the overflow bit and the 96 bits of precision associated with the
intermediate coefficient consist entirely of zeros and one or both of the input operands consist of a
standard floating point number, then a Floating Point Loss of Significance condition shall be recorded
and the final result of the associated instruction shall be determined according to the state of the
Floating Point Loss of Significance mask bit contained in the User Mask register. See subparagraph
2.8.3.13 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Floating Point Loss of Significance condition
is recorded, the intermediate exponent along with its bias and the leftmost 48 bits of the intermediate
coefficient along with its positive sign (+Z3) shall be transferred to the 64 bits of Register Xk as the
leftmost half of the final result; also, the intermediate exponent along with its bias and the rightmost
48 bits of the intermediate coefficient along with its positive sign (+Z3) shall be transferred to the 64
bit positions of Register Xk+1 as the rightmost half of the final result. If the trap is enabled, then
execution of the instruction shall complete and program interruption shall occur. See paragraph
2.8.3.13 of this specification.

When the corresponding mask bit is a zero at the time the Floating Point Loss of Significance
condition is recorded, the nonstandard floating point number zero (+0) as defined in subparagraph
2.4.1.3 of this specification shall be transferred to the 64-bit positions of both Register Xk and Register
Xk+1 as the final result.

CONTROL DATA PRIVATE

!—A\"

-y

CONTROL DATA CYBER 180 MIGDS o om0
DATE July 15, 1988
Architectural Design and Control PAGE 2-81

Normalization: When the overflow bit associated with the intermediate coefficient is a zero and the 96
bits of precision associated with the intermediate coefficient do not consist entirely of zeros, these 96
bits of precision shall be left-shifted to the extent required to achieve normalization, i.e. a one in the
leftmost bit position. Left shifting shall be accomplished end-off, with zeros inserted on the right, for
from O to 95 bit positions. For each bit position shifted left, the intermediate exponent shall be
decreased by one. Upon completion of normalization, provided the exponent has not underflowed, the
adjusted exponent along with its bias and the leftmost 48 bits of the normalized coefficient along with
its sign shall be transferred to the 64-bit positions of Register Xk as the leftmost half of the final
result; also, the adjusted exponent along with its bias and the rightmost 48 bits of the normalized
coefficient along with its sign shall be transferred to the 64-bit positions of Register Xk+1 as the
rightmost half of the final result.

Exponent Underflow: When the adjustment of the exponent results in underflow, an Exponent
Underflow condition shall be recorded and the final result of the associated instruction shall be
determined according to the state of the Exponent Underflow mask bit contained in the User Mask
register. See subparagraph 2.8.3.12 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Underflow condition is recorded,
the adjusted exponent along with its bias and the leftmost 48 bits of the normalized coefficient along
with its sign (+Z2) shall be transferred to the 64-bit positions of the Xk Register as the leftmost half of
the final result; also, the adjusted exponent along with its bias and the rightmost 48 bits of the
normalized coefficient along with its sign (£Z2) shall be transferred to the Register Xk+1 as the
rightmost half of the final result. If the trap is enabled, then execution of this instruction shall
complete and program interruption shall occur. See paragraph 2.8.3.12 of this specification.

When the corresponding mask bit is a zero at the time the Exponent Underflow condition is recorded,
the nonstandard floating point number Zero (+0) as defined in subparagraph 2.4.1.3 of this
specification shall be transferred to the 64-bit positions of both Register Xk and Register Xk+1 as the
final result.

CONTROL DATA PRIVATE

DOC. ARH
CONTROL DATA CYBER 180 MIGDS eV haTo
- DATE July 15, 1988
Architectural Design and Control PAGE 282

2.4.1.9.5 Double Precision Floating Point Product

Floating Point Product, XXk replaced by XXk times XXj
36jk (Ref.107)

Nonstandard Inputs: For the execution of this instruction, when either or both of the input
arguments initially contained in Registers Xk and Xj consist of a Zero (2Z1, +Z2), Infinite (xINF) or
Indefinite (:INDEF) floating point number, as defined in subparagraph 2.4.1.3 of this specification,
the floating point result transferred to Registers Xk and Xk+1 shall consist of nonstandard floating
point numbers as defined by tables 2.4-7 and 2.4-8.

For those input arguments for which an Infinite result is transferred to Registers Xk and Xk+1, an

Exponent Overflow condition shall be detected. When the corresponding user mask bit is set and the

trap is enabled, execution of the instruction shall complete and program interruption shall occur. See
subparagraph 2.8.3.11 of this specification.

For those input arguments for which an Indefinite result is transferred to Registers Xk and Xk+1 a
Floating Point Indefinite condition shall be detected. When the corresponding user mask bit is set and
the trap is enabled, execution of the instruction shall be inhibited and program interruption shall
occur. See subparagraph 2.8.3.14 of this specification.

Standard Inputs: In the absence of nonstandard input arguments, this instruction shall execute
according to the following descriptions. :

Exponent Arithmetic: The signed exponents initially contained in Register Xk and Xj shall be
algebraically added and the result shall be used as the intermediate exponent.

Coefficient Arithmetic: The signed coefficient initially contained in Registers Xk and Xk+1 shall be
multiplied by the signed coefficient initially contained in Registers Xj and Xj+1. The result shall
consist of an algebraically signed product having 192 bits of precision.

Normalization: When the leftmost bit of the 192 bits of precision associated with the product is a one,
the sign and leftmost 96 bits of the product shall be used as the intermediate coefficient. When the
leftmost bit of the 192 bits of precision associated with the product is a zero, that product shall be
shifted left end-off one bit position, the sign and leftmost 96 bits of the shifted result shall be used as
the intermediate coefficient and the intermediate exponent shall be decreased by one.

Exponent Overflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the overflow direction, an Exponent Overflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Overflow Mask bit contained in the User Mask register. See
subparagraph 2.8.3.11 and paragraph 2.8.4 of this specification.

CONTROL DATA PRIVATE

A

\\L >

CONTROL DATA CYBER 180 MIGDS RDv Aapo0
DATE July 15, 1988
Architectural Design and Control PAGE 2-83

When the corresponding mask bit is a one at the time the Exponent Overflow condition is recorded,
the adjusted exponent along with its bias and the leftmost 48 bits of the intermediate coefficient along
with its sign (INF) shall be transferred to the 64-bit positions of Register Xk as the leftmost half of
the final result; also, the adjusted exponent along with its bias and the rightmost 48-bit positions of
the intermediate coefficient along with its sign (:INF) shall be transferred to the 64-bit positions of
Register Xk+1 as the rightmost half of the final result. If the trap is enabled, then execution of the
instruction shall complete and program interruption shall occur. See paragraph 2.8.3.11 of this
specification. '

When the corresponding mask bit is zero at the time the Exponent Overflow condition is recorded, the
nonstandard floating point number Infinite (iw) as defined in subparagraph 2.4.1.3 of this
specification, shall be transferred to the 64-bit positions of both Register Xk and Register Xk+1 as the
final result.

Exponent Underflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the underflow direction, an Exponent Underflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Underflow mask bit contained in the User Mask register. See
subparagraph 2.8.3.12 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Underflow condition is recorded,
the adjusted exponent along with its bias and the leftmost 48 bits of the intermediate coefficient along
with its sign (£Z2) shall be transferred to the 64-bit positions of Register Xk as the leftmost half of the
final result; also, the adjusted exponent along with its bias and the rightmost 48-bit positions of the
intermediate coefficient along with its sign (1Z2) shall be transferred to the 64-bit positions of
Register Xk+1 as the rightmost half of the final result. If the trap is enabled, then execution of the
instruction shall complete and program interruption shall occur. See paragraph 2.8.3.12 of this
specification. :

When the corresponding mask bit is a zero at the time the Exponent Underflow condition is recorded,
the nonstandard floating point number Zero (+0), as defined in subparagraph 2.4.1.3 of this
specification, shall be transferred to the 64-bit positions of both Register Xk and Register Xk+1 as the
final result.

Result in Range: When the intermediate exponent, including the adjustment for normalization when
applicable, is not equal to an Out of Range value, the intermediate exponent along with its bias and
the leftmost 48 bits of intermediate coefficient along with its sign shall be transferred to the 64-bit
positions of Register Xk as the leftmost half of the final result; also, the intermediate exponent along
with its bias and the rightmost 48 bits of the intermediate coefficient along with its sign shall be
transferred to the 64-bit positions of Register Xk+1 as the rightmost half of the final result.

CONTROL DATA PRIVATE

DOC. ARH
CONTROL DATA CYBER 180 MIGDS B AcT
. DATE July 15, 1988
Architectural Design and Control PAGE 2-84

2.4.1.9.6 Double Precision Floating Point Quotient
Floating Point Quotient, XXk replaced by XXk divided XXj
37k (Ref. 108)

Nonstandard Inputs: For the execution of this instruction, when either or both of the input
arguments initially contained in Registers Xk and Xj consist of a Zero (171, 72), Infinite (zINF) or
Indefinite (:INDEF) floating point number, as defined in subparagraph 2.4.1.3 of this specification,
the floating point result transferred to Registers Xk and Xk+1 shall consist of nonstandard floating
point numbers as defined by tables 2.4-9 through 2.4-12.

For those input arguments for which an Infinite result is transferred to Registers Xk and Xk+1, an
Exponent Overflow condition shall be detected. When the corresponding user mask bit is set and the
trap is enabled, execution of the instruction shall complete and program interruption shall occur. See
subparagraph 2.8.3.11 of this specification.

For those input arguments for which an Indefinite result is transferred to Registers Xk and Xk+1, a
Floating Point Indefinite condition shall be detected. When the corresponding user mask bit is set and
the trap is enabled, execution of the instruction shall be inhibited and program interruption shall
occur. See subparagraph 2.8.3.14 of this specification.

When the Xj Register contains a nonstandard value of Zero (+Z1, $Z2), the contents of Registers Xk
and Xk+1 shall not be changed and a Divide Fault condition shall be detected. When the
corresponding user mask bit is set and the trap is enabled, instruction execution shall be inhibited and
program interruption shall occur. See subparagraph 2.8.3.8 of this specification.

Standard Inputs: In the absence of nonstandard input arguments, this instruction shall execute
according to the following descriptions:

Exponent Arithmetic: The signed exponent associated with the Xj Register shall be subtracted from
the signed exponent associated with Xk Register and the signed result shall be referred to as the
intermediate exponent.

Divide Fault: When the coefficient associated with the Xj Register is unnormalized and can be divided
into the coefficient associated with the Xk Register by a factor equal to or greater than 2.0, the
contents of Registers Xk and Xk+1 shall not be changed and a Divide Fault Condition shall be
detected. Further, when the coefficients of Xj and Xj+1 consist entirely of zeros (1Z3), the contents of
Register Xk and Xk+1 shall not be changed and a Divide Fault condition shall be detected. When the
corresponding user mask bit is set and the trap is enabled, instruction execution shall be inhibited and
program interruption shall occur. See subparagraph 2.8.3.8 of this specification.

In the event that a pair of operands is such that Divide Fault is detected and such that the exponent
arithmetic will produce Exponent Overflow or Underflow, the Divide Fault and only the Divide Fault
will be reported.

Coefficient Arithmetic: The signed coefficient associated with the Xj Register shall be divided into the
signed coefficient associated with the Xk Register. The division shall be fractional, i.e., 96 zeros shall
be appended rightmost to the signed coefficient associated with the Xk Register in order to obtain a
dividend having 192 bits of precision. The results of the division shall consist of an algebraically
signed quotient having 96 bits of precision and an overflow bit. (The overflow bit shall provide the
required allowance for those cases in which the divisor can be divided into the dividend by a factor
equal to or greater than 1.0 but less than 2.0.)

CONTROL DATA PRIVATE

N

. AR
CONTROL DATA CYBER 180 MIGDS ROy pan0
DATE July 15, 1988
Architectural Design and Control PAGE 285

Normalization: When the overflow bit associated with the quotient is a zero, the sign and 96 bits of
precision associated with the quotient shall be used as the intermediate coefficient. When the
overflow bit associated with the quotient is a one, the 96 bits of precision associated with the quotient
shall be shifted one bit position right, end-off, with the overflow bit inserted into the vacated leftmost
bit position. The signed, 96-bit result shall be used as the intermediate coefficient and the
intermediate exponent shall be increased by one to adjust for the right shift of the quotient.

Exponent Overflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the overflow direction, an Exponent Overflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Overflow Mask bit contained in the User Mask register. See
subparagraph 2.8.3.11 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Overflow condition is recorded,
the adjusted exponent along with its bias and the leftmost 48 bits of the intermediate coefficient along
with its sign (:INF) shall be transferred to the 64 positions of Register Xk as the leftmost half of the
final result; also, the adjusted exponent along with its bias and the rightmost 48-bit positions of the
intermediate coefficient along with its sign (:INF) shall be transferred to the 64-bit positions of
Register Xk+1 as the rightmost half of the final result. If the trap is enabled, then execution of the
instruction shall complete and program interruption shall occur. See paragraph 2.8.3.11 of this
specification.

When the corresponding mask bit is zero at the time the Exponent Overflow condition is recorded, the
nonstandard floating point number Infinite (i) as defined in subparagraph 2.4.1.3 of this
specification shall be transferred to the 64-bit positions of both Register Xk and Register Xk+1 as the
final result.

Exponent Underflow: When the intermediate exponent, including the adjustment for normalization
when applicable, is equal to an Out of Range value in the underflow direction, an Exponent Underflow
condition shall be recorded and the final result of the associated instruction shall be determined
according to the state of the Exponent Underflow mask bit contained in the User Mask Register. See
subparagraph 2.8.3.12 and paragraph 2.8.4 of this specification.

When the corresponding mask bit is a one at the time the Exponent Underflow condition is recorded,
the adjusted exponent along with its bias and the leftmost 48 bits of the intermediate coefficient along
with its sign (+Z2) shall be transferred to the 64-bit positions of Register Xk as the leftmost half of the
final result; also, the adjusted exponent along with its bias and the rightmost 48-bit positions of the
intermediate coefficient along with its sign (£Z2) shall be transferred to the 64-bit positions of
Register Xk+1 as the rightmost half of the final result. If the trap is enabled, then execution of the
instruction shall complete and program interruption shall occur. See paragraph 2.8.3.12 of this
specification.

When the corresponding mask bit is a zero at the time the Exponent Underflow condition is recorded,
the nonstandard floating point number Zero (+0) as defined in subparagraph 2.4.1.3 of this
‘specification shall be transferred to the 64-bit positions of both Register Xk and Register Xk+1 as the
final result.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 286

2.4.1.10 Branch

The instructions in this subgroup shall consist of conditional branch instructions.

Each of these conditional branch instructions shall perform a comparison between two floating point
numbers. Then, based on the relationship between the results of that comparison and the branch
condition as specified by means of the instruction’s operation code, each conditional branch
instruction shall perform either a normal exit or a branch exit.

Normal Exit: When the results of a comparison do not satisfy the branch condition as specified by the
operation code, a normal exit shall be performed. A normal exit for all conditional branch instructions
shall consist of adding four to the rightmost 32 bits of the PVA obtained from the P Register with that
32-bit sum returned to the P Register in its rightmost 32-bit positions. :

Branch Exit: When the results of a comparison satisfy the branch condition as specified by the
operation code, a branch exit shall be performed. A branch exit shall consist of expanding the 16-bit Q
field from the instruction to 31 bits by means of sign extension, shifting these 31 bits left one bit
position with a zero inserted on the right, and adding this 32-bit shifted result to the rightmost 32 bits
of the PVA obtained from the P Register with the 32-bit sum returned to the P Register in its
rightmost 32-bit positions.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS Ro harT00
DATE July 15, 1988
Architectural Design and Control PAGE 2-87

2.4.1.10.1 Compare and Branch

a. Branch to P displaced by 2*Q if floating point Xj equal to Xk
98jkQ (Ref. 109)
b. Branch to P displaced by 2*Q if floating point Xj not equal to Xk
99kQ (Ref. 110)
c. Branch to P displaced by 2*Q if floating point Xj greater than Xk
9AjkQ (Ref. 111)
d. Branch to P displaced by 2*Q if floating point Xj greater than or equal to Xk
9BjkQ (Ref. 112)

Operation: Each of these instructions shall perform an algebraic comparison of the 64-bit word
obtained from Register Xj to the 64-bit word obtained from Register Xk. Each of these 64-bit words
shall be treated as a signed single precision floating point number as described in subparagraph 2.4.1.1
of this specification. The contents of Register X0 shall be interpreted as consisting entirely of zeros
with respect to both Xk and Xj.

Except for standard floating point numbers having like signs, the results of the comparisons for all of
these instructions are given in table 2.4-2 of this specification. All comparisons for which the results
are Indefinite, as indicated by "IND" in table 2.4-2, shall cause a Floating Point Indefinite condition to
be recorded. When the corresponding user mask bit is clear and/or the trap is not enabled, the
instruction shall perform a normal exit. When the trap is enabled and the corresponding mask bit is
set, execution of the instruction shall be inhibited and program interruption shall occur. The PVA
stored during the interrupt shall point to the Branch instruction that set the Floating Point Indefinite
condition bit. See subparagraph 2.8.3.14 of this specification.

For standard floating point number having like signs, a floating point subtract shall be performed in
the manner described in subparagraph 2.4.3.1 of this specification, with the exception that the
operation is performed as if the (FP Overflow, Underflow and Loss of Significance) User Mask bits
were set (Z2 not forced to zero, etc.) and that the result shall not be transferred to Register Xk but
shall be interpreted in its post-normalized form to determine the results of the comparison.

These instructions shall perform a normal exit or a branch exit in the manner previously described in
paragraph 2.2.3 of this specification. '

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC. ARH1700
REV. AC

DATE July 15, 1988
PAGE 2-88

2.4.1.10.2 Exception Branch

Branch to P displaced by 2*Q if floating point Xk is exception per j

9EKQ (Ref. 113)

This instruction shall perform a branch exit in the manner previously described in paragraph 2.4.4 of
this specification when the exception condition, as designated by the rightmost 2 bits of the j field
from the instruction, is applicable to the 64-bit floating point number contained in the Xk Register.

This instruction shall perform a normal exit in the manner previously described in paragraph 2.4.4 of
this specification when the exception condition, as designated by the rightmost 2 bits of the j field
from the instruction, is not applicable to the 64-bit floating point number contained in the Xk

Register.

The values of the rightmost 2 bits of the j field from the instruction shall be associated with exception

conditions as follows:
if 00, Exponent Overflow

nonstandard floating point numbers having biased exponents in the range: 5000 < exp < 6FFF

01, Exponent Underflow

nonstandard floating point numbers having biased exponents in the range: 0000 < exp < 2FFF

10 or 11, Indefinite

nonstandard floating point numbers having biased exponents in the range: 7000 < exp < 7FFF

CONTROL DATA PRIVATE

‘\\i’;}/

CONTROL DATA CYBER 180 MIGDS el il
DATE July 15, 1988
Architectural Design and Control PAGE 2-89

2.4.1.11 Compare

Compare floating point Xj to Xk, result to X1R
3Cjk (Ref.114)

This instruction shall perform an algebraic comparison of the 64-bit word initially contained in
Register Xj to the 64-bit word initially contained in Register Xk with the result transferred to Register
X1 Right. Each of these 64-bit words shall be treated as a signed single precision floating point
number as previously described in subparagraph 2.4.1.1 of this specification. The contents of Register
X0 shall be interpreted as consisting entirely of zeros with respect to both the Xk and Xj Registers.

Except for standard floating point numbers having like signs, the results of the comparison are given
in table 2.4-2 of this specification. All comparisons for which the results are indefinite shall cause a
Floating Point Indefinite condition to be detected. When the corresponding user mask bit is clear
and/or the trap is not enabled, register X1 Right shall be cleared in bit positions 33 through 63 and
shall be set in bit position 32. When the trap is enabled and the corresponding mask bit is set,
execution of the instruction shall be inhibited and program interruption shall occur. The PVA stored
during the interrupt, however, shall point to the Compare instruction that set the Floating Point
Indefinite condition bit. See subparagraph 2.8.3.14 of this specification.

For standard floating point numbers having like signs a floating point subtract shall be performed in
the manner described in subparagraph 2.4.3.1 of this specification, with the exception that the
operation is performed as if the (FP Overflow, Underflow and Loss of Significance) User Mask bits
were set (Z2 not forced to zero, etc.) and that the result shall not be transferred to Register Xk but
shall be interpreted in its post-normalized form to determine the result of the comparison.

When the initial contents of the Xj Register are equal to the initial contents of the Xk Register,
Register X1 Right shall be cleared in all 32 bit positions.

When the initial contents of the Xj Register are greater than the initial contents of the Xk Register,
Register X1 Right shall be cleared in bit positions 32 and 34 through 63 and shall be set in bit position
33.

When the initial contents of the Xj Register are less than the initial contents of the Xk Register,
Register X1 Right shall be cleared in bit positions 34 through 63 and shall be set in bit positions 32
and 33.

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-90 ‘ 4/%
2.4.1.12 Results _
The symbols used in tables 2.4-2 through 2.4-12 are defined in table 2.4-1 and as follows:
INDC - A result of indefinite returned by the floating point compare instruction. That is, a
value for X1-Right = (8000 0000),¢.
These symbols represent standard numbers with nonzero coefficients; N but not +Z3.
S - Algebraic sum of two floating point numbers.
D - Algebraic difference of two floating point numbers.
P - Algebraic product of two floating point numbers.
Q - Algebraic quotient of two floating point numbers.
DVF - The Divide Fault condition (UCR55).
OVL - The Exponent Overflow condition (UCR58).
UVL - The Exponent Underflow condition (UCR59).
LOS - The Floating Point Loss of Significance condition (UCR60).
IND - The Floating Point Indefinite condition (UCR61).
Key for Tables 2.4-3 through 2.4-12:
Result operand Associated
Xk or V(Ak) exczpt:‘on ~ \;
! i & .
1 1 . con I on \'kw “““ F.

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-91
i [“ STANDARD NUMBERS NONSTANDARD NUMBERS
t71
}k +N -N +73 -13 172 +INF -INF +INDEF
+D,+22 < +D,+722 < (See
N |-D,-22 5| < +13 = < | < > < Note)
s +13 =
T +D,+72 < -D,-722 > (See
A -N > -D,-22 5| > | +13 = > > < Note)
g +13 = ,
A -D,-22 > (See
R +13 +13 = < +13 = < < > < Note)
|
+D, 412 < | (See
-13 > +13 = > +I3 = > > < Note)
171 (See
N 72 > < > < = > < Note)
0
N " (See (See
% +INF < < | < < < Note) < Note)
A
N (See (See
R -INF > > > > > > Note) Note)
R
D (See (See (See (See (See (See (See (See
+INDEF Note) Note) Note) Note) Note) Note) Note) Note)

Note: For the floating point compares indicated, FP Branch instructions (2.4.4.1) perform normal exit and record FP
Indefinite (UCR61). FP Compare instructions (2.4.5) set X1 to (8000 0000);g and record FP Indefinite
(UCR61), except when UCR61 is set and Traps are enabled in which case X1 is not altered.

Table 2.4-2. Floating Point Compare Results

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control |

DOC.
REV.

DATE
PAGE

ARH1700

AC

July 15, 1988
2-92

NONSTANDARD NUMBERS

STANDARD NUMBERS

Xj,V(Ai) n o7
x‘l("l’(ll\jl +N -N +73 -13 72 +INF -INF +INDEF
+S S +S +S
+N 40 OVL{+0 UVL|{+0 UVL|+0 UVL[+N 4o OVL|-o» OVL|4IND IND
s +0 UVL{+0 LOS|+0 LOS|+0 LOS[+0 UVL
T -S -S -S
A -N - OVL|+0 UVL|+0 UVL}-N 40 OVL|-o OVL|+IND IND
g +0 UVL|+0 LOS{+0 LOS{{+0 UVL
A B
g +23 +0 LOS}|+0 LOS|j+0 LOS|+o OVL|-o OVL|+IND IND
-3 +0 LOS{{+0 LOS]4+o OVL|{-» OVL{+IND IND
t71
N 172 +0 4o OVL|-» OVL{+IND IND
:
'S[+INF 4o OVL|+IND IND|+IND IND
A |
R -INF -o OVL|+IND IND
R
D
+INDEF .1+IND IND
‘ Xk +~ Xk + Xj
Table 2.4-3. FP Sum Results UM Clear
V(Ak) «~ V(Aj) + V(Ai)

CONTROL DATA PRIVATE

N

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.
REV.

DATE
PAGE

ARH1700
AC

July 15, 1988
2-93

STANDARD NUMBERS NONSTANDARD NUMBERS
X3, V(Ai) 71
t
Xk,V(Ajl +N -N +73 -3 72 +INF -INF +INDEF
13l
+S 1S +S +S

+N +INF OVL|4Z2 UVL|+Z2 UVL|+Z2 UVL[+N 40 OVL|-» OVL|+IND IND
s +Z2 UVL|+Z3 LOS|{+Z3 LOS|+Z3 LOS[i+Z2 UVL
T -S -S -S
A -N -INF OVL|-Z2 UVL{-Z2 UVL|-N +o QVL]-o OVL|+IND IND
g -Z2 UVL{+Z3 LOS|{+Z3 LOS}-Z2 UuvL
A
5 +73 +Z3 LOS|{+Z3 LOS|{+Z3 LOS{+o OVL|-» OVL|+IND IND

-13 +Z3 LOS|i+Z3 LOS{+o OVL|-o OVL|+IND IND

171
N 172 +0 4o OVL|-o» OVL|+IND IND
g
% +INF 4o OVL|+IND IND|+IND IND
a .
R -INF -o OVL{+IND IND
R
D

+INDEF +IND IND
Xk « Xk + Xj
Table 2.4-4. FP Sum Results UM Set
V(Ak) « V(Aj) + V(Ai)

Traps Enabled:
Scalar - Replace +IND with Xk

Vector - Chart is as shown

Traps Disabled:
Scalar and Vector - Chart is as shown

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS

Architectural Design and Control

DOC. ARH1700

REV. AD

DATE September 1, 1989

PAGE 2-94

' STANDARD NUMBERS NONSTANDARD NUMBERS
Xj,V(Ai) - 71
+
Xk,V(AjI +N -N +13 -13 172 +INF - INF +INDEF
11
iD +D +D +D
+N 40 UVL|4o OVL|+0 UVL|+0 UVL|[|+N -0 QVL|+o OVL|+IND IND
S 40 LOS|{+0 UVL|[+0 LOS|+0 LOS|i+0 UVL
T -D 1D -D -D :
A -N - OVL{+0 UVL{+0 UVL|+0 UVL|-N -0 OVL|+o OVL|+IND IND
g +0 UVL{+0 LOS|+0 LOS|+0 LOS[{+0 UVL
A -D +D
R +73 +0 UVL[+0 UVL|+0 LOS|+0 LOS|{+0 LOS|-» OVL{+o OVL{+IND IND
D +0 LOS{+0 LOS
-D +D
-13 +0 UVL|+0 UVL|+0 LOS|+0 LOS[+0 LOS|-» OVL|+= OVL|+IND IND
+0 LOS|+0 LOS
171
172 -N +N +0 LOS|{+0 LOS[+0 -0 QVL|+o OVL[+IND IND
g +0 UVL|+0 UVL
N
% +INF fl4+o OVL|+o OVL|+® OVL|+o OVL|+o OVL|{+IND IND{+~ OVL|+IND IND
N
R -INF |-« OVL|-© OVL|-» OVL|-» OVL[j-®« OVL|-» OVL|+IND IND|+IND IND
D
+INDEF [[+IND IND|+IND IND|+IND IND|+IND IND[+IND IND|{+IND IND|+IND IND|+IND IND
Xk « Xk -Xj
Table 2.4-5. FP Difference Results UM Clear
V(Ak) « V(Aj) - V(A1)

CONTROL DATA PRIVATE

@

e

-

{

CONTROL DATA CYBER 180 MIGDS

Architectural Design and Control

DOC.
REV.
DATE
PAGE

AC

ARH1700

July 15, 1988
2-95

STANDARD NUMBERS NONSTANDARD NUMBERS
Xj,V(Ai) 71
b o
Xk,V(AjI +N -N +23 -13 72 +INF -INF +INDEF
11!
+D +D +D +D
+N +7Z2 UVL|[+INF OVL{+Z2 UVL|+Z2 UVL|+N - QOVL[+o OVL{+IND IND
s +Z3 LOS|+Z2 UVL|+Z3 LOS|+Z3 LOS|+Z2 UVL
T -D +D -D -D
A -N -INF OVL|*Z2 UVL|-Z2 UVL[-Z2 UVL|-N -o OVL|+o OVL|[+IND IND
g -Z2 UVL|+Z3 LOS{+Z3 LOS|+Z3 LOS|{-Z2 UuvL
A -D +D
R +Z3 -Z2 UVL|+Z2 UVL{+Z3 LOS|+Z3 LOS|[+Z3 LOS|-» OVL|+o OVL|[+IND IND
D +Z3 LOS|+Z3 LOS '
-D +D
-73 -Z2 UVL|[+Z2 UVL|+Z3 LOS|+Z3 LOS|[+Z3 LOS|-o OVL|+o OVL|+IND IND
+Z3 LOS|+Z3 LOS
71
172 -N +N +Z3 LOS|+Z3 LOS[j+0 -o QVL|+o OVL|+IND IND
g -22 UVL|+Z2 UVL ;
N
% +INF Jl40 OVL]+o OVL|{+® OVL|+o OVL[f+o» OVL|+IND IND|+o OVL|+IND IND
ﬁ
R -INF [[-o OVL|-» OVL]-® OVL|{-o OVL[-o OVL|-» OVL[+IND IND|{+IND IND
D
+INDEF [|+IND IND|+IND IND|+IND IND|+IND IND[l+IND IND|+IND IND|+IND IND|+IND IND
Xk « Xk -Xj
Table 2.4-6. FP Difference Results UM Set
V(Ak) « V(4)) - V(Ai)

Traps Enabled:
Scalar - Replace +IND with Xk

Vector - Chart is as shown

Traps Disabled:

Scalar and Vector - Chart is as shown

CONTROL DATA PRIVATE

' DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AD
i DATE September 1, 1989
Architectural Design and Control PAGE 2-96 (w)
' " STANDARD NUMBERS “ NONSTANDARD NUMBERS
Xj,V(Ai) - 7
t
X'l(’\ll(i\jl +N -N +73 -13 172 +INF -INF +INDEF
+P -P 40 QVL[-» OVL
+N +o OVL|{-» OVL{+0 UVL|+0 UVL[+0 40 OVL|-o OVL|+IND IND
+0 UVL|+0 UVL{+Z3 -3
s +73 -13
T +P -o QOVL[+o QVL
A -N +o OVL{+0 UVL|+0 UVL|{+0 -0 QOVL|+o OVL|+IND IND
N +0 UVL|-Z3 +Z3
R +73
R 40 OVL|{-o OVL
D +13 +0 UVL[{+0 UVL|+0O +o0 QVL|-o OVL|+IND IND
+13 -13
+o OVL
-13 +0 UVL{{+0 -0 QOVL{+o OVL|+IND IND
+73
171
N 172 +0 +IND IND!+IND IND|+IND IND
0 ",/”M\?}
N M
_Sr +INF +o OVL|-o» OVL|+IND IND
N
R -INF -0 QVL|+IND IND
R
D
+INDEF +IND IND
Xk « Xk x Xj
Table 2.4-7. FP Product Results UM Clear
V(AK) + V(Aj) x V(Ai)
£
iy

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.
REV.

DATE
PAGE

AD
297

ARH1700

September 1, 1989

STANDARD NUMBERS NONSTANDARD NUMBERS
Xj,V(Ai) -
+
Xk,V(Aji +N -N +73 -73 +72 +INF -INF | +INDEF
ULy
i +P -p +INF OVL|-INF oVL
+N |+INF OVL|-INF ovL|+Z2 UVL|-Z2 UOVL|[+0 4o OVL|-o» OVL|+IND IND
+72 UVL|-Z2 UVL|+Z3 -73
. +73 -23
| T +P -INF OVL|+INF ovL
A -N +INF OVL|-Z2 UVL|+Z2 UVL[+0 -o OVL|+o OVL|+IND IND
N +12 UVL|-I3 +13
R +13
I R +INF OVL|-INF ovL
D | +3 +22 UVL|-Z2 UVL[+0 +o OVL|-o» OVL|+IND IND
+73 -13
| +INF OVL
-13 +72 UVL[[+0 —© OVL|+o OVL|+IND IND
+73
+71
. 172 +0 +IND IND|+IND IND|+IND IND
0
% +INF 4o OVL|-o» OVL|+IND IND
A
N
R -INF +o OVL|+IND IND
R
D
+INDEF +IND IND
Xk « Xk x Xj
Table 2.4-8. FP Product Results UM Set
V(Ak) « V(Aj) x V(Ai)

Traps Enabled:
Scalar - Replace +IND with Xk

Vector - Chart is as shown

Traps Disabled:

Scalar and Vector - Chart is as shown

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS

Architectural Design and Control

DOC. ARH1700

REV. AC

DATE July 15, 1988

PAGE 2-98

% ﬂ STANDARD NUMBERS NONSTANDARD NUMBERS
J
‘ 171
{k +N -N +73 -3 72 +INF -INF +INDEF
+Q -Q
+N +o OV0L|-o OVL{Xk DVF|{Xk DVF[fXk DVF|+0 +0 +IND IND
+0 UVL{+0 UVL
s Xk DVF|Xk DVF
T -Q +Q
A -N f|-o OVL|+o OVL|Xk DVF|Xk DVFlXk DVF[+0 +0 +IND IND
N +0 UVL|+0 UVL
g Xk DVFi{Xk DVF
R +o QVL|-o OVL
D +73 +0 UVL|4+0 UVL{Xk DVF{Xk DVFliXk DVF|+0 +0 +IND IND
+13 -3
- OVL|+o OVL
-73 +0 UVL|+0 UVL{Xk DVF|Xk DVF|Xk DVF|+0 +0 +IND IND
-3 +73
71 '
N 172 +0 +0 +0 +0 Xk DVF|+0 +0 +IND IND
g
% +INF fl40 OVL|{-» OVL|[+o OVL{-o OVL[Xk DVF|+IND IND|+IND IND|+IND IND
ﬁ
R -INF |l-® OVL|[+o OVL|-o OVL{+o OVL|{Xk DVF|+IND IND|+IND IND|+IND IND
g
tINDEF fl+IND IND|+IND IND{+IND IND{+IND IND|IXk DVF|+IND IND|+IND IND[+IND IND

Table 2.4-9. FP Quotient Results Xk « Xk/Xj UM Clear

CONTROL DATA PRIVATE

2

S

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC.
REV.

DATE
PAGE

ARH1700
AD

September 1, 1989

2-99

CONTROL DATA PRIVATE

‘i STANDARD NUMBERS NONSTANDARD NUMBERS
J
t71
)l(k +N -N +73 -13 t72 +INF -INF +INDEF
| +Q -Q
+N +INF OVL|-INF OVL|Xk DVF|{Xk DVF||Xk DVF(+0 +0 +IND IND
+Z2 UVL|-Z2 UVL
S Xk DVF|Xk DVF
L e ol
A -N -INF OVL[+INF OVL{Xk DVF|Xk DVF|IXk DVF|+0 +0 +IND IND
N -2 UVL|+Z2 UVL
2 Xk DVF|Xk DVF
I R +INF OVL|-INF OVL
D +13 +Z2 UVL|-Z2 UVL{Xk DVF|Xk DVF{Xk DVF{+0 +0 +IND IND
+13 -13 ~
' -INF OVL[+INF OVL
-13 -Z2 UVL{+Z2 UVL{Xk DVF{Xk DVF|{Xk DVF{+0 +0 +IND IND
-13 +13
171 i
N t72 +0 +0 +0 +0 Xk DVF|+0 +0 +IND IND
O ¢
_? +INF jJl+o OVL|-» OVL|+o OVL|{-o OVL|{Xk DVF|+IND IND{+IND IND|+IND IND
A
2 -INF jf-o OVL{+® OVL|-o OVL{+o OVL[|Xk DVF|+IND IND[+IND IND|+IND IND
D
+INDEF [[+IND IND|+IND IND|+IND IND[+IND IND|{{Xk DVF|+IND IND|{+IND IND|+IND IND
Table 2.4-10. FP Quotient Results Xk « Xk/Xj UM Set
Traps Enabled:
Replace +IND with Xk
Traps Disabled:
‘Chart is as shown

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC
v DATE July 15, 1988
Architectural Design and Control ‘ PAGE 2-100 (}:
V(AT) ﬁ STANDARD NUMBERS NONSTANDARD NUMBERS
i) +
! +71
Y(?j} +N -N +3 | -13 t72 +INF ~INF +INDEF
+Q -Q
4o OVL[-o OVL DVF DVF DVF
+N +0 UVL|+0 UVL|+INDy & |+IND{ & [I+IND{ & |+0 +0 +IND IND
DVF DVF IND IND IND
+IND{ & [+IND{ &
IND IN
S
T - +Q
A -0 OQVL{-o OQVL v DVF DVF
N -N +0 UVL{+0 UVL|+IND{ & [+IND{ & [[+IND{ & [+0 +0 +IND IND
D DVF DVF N IND IND
A +INDy & [+INDY &
5 IND IND
+o OVL|-o OVL DVF ~ [(DVF DVF
+13 +0 UVL{+0 UVL|+IND{ & |+IN +IN +0 +0 +IND IND
+23 -13 IND IND IND

v
&
N
-0 OVL|+o OVL| DVF DVF
-13 +0 UVL|+0 UVL|+IN &D +IND ﬁ +IN +0 +0 +IND IND

-13 +73 D{
t71 D{D

o
™
3

l\v/!

v/{{ a

172 +0 +0 +0 +0 +IN +0 +0 +IND IND

DVF
-INF jf-0 OVL|4+o OVL|-» OVL[+o OVL +IND{I +IND IND|+IND IND[+IND IND

OX0>OTZ>-INn=202

N
v
&
N
DVF
+INF Jl+4o OVL|-o OVL|+o OVL|-» OVL +IND{ ﬁ +IND IND|{+IND IND|[+IND IND
v
&
N
v
&
N

DVF
+INDEF [|+IND IND|+IND IND{+IND IND|+IND IND +IND{ +IND IND|+IND IND[+IND IND

Note: See 2.12.1.5
Table 2.4-11. FP Quotient Results V(Ak) « V(4j) / V(Ai) UM Clear

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS

Architectural Design and Control

DOC.
REV.

DATE
PAGE

AD

ARH1700

September 1, 1989
2-101

Table 2.4-12. FP Quotient Results V(Ak) « V(Aj) / V(Ai) UM Set

Traps Enabled or Disabled:
Chart is as shown

CONTROL DATA PRIVATE

V(AT) STANDARD NUMBERS NONSTANDARD NUMBERS
i
71
Y(?jl +N -N +73 -3 172 +INF -INF +INDEF
+Q -?
+INF OVL|-INF OVL DVF DVF DVF
+N +22 UVL{-Z2 UVL|+IND{ & |+INDY & [[+INDY & |+0 +0 +IND IND
DVF DVF IND IND IND
+INDY & |+INDY &
s IND IND
T -Q +Q
A -INF OVL{+INF OVL DVF DVF DVF
N -N -Z2 UVL{+Z2 UVL|+INDY & |[+IND{ & [[+IND{Y & |+0 +0 +IND IND
D DVF DVF IND IND IND
A +INDY & |+IND{ &
5 IND IND
+INF OVL|-INF OVL DVF DVF DVF
+Z3 +Z2 UVL|-Z2 UVL|+IND{ & |+INDY & {|+INDS & |[+0 +0 +IND IND
+73 -13 IND IND IND
-INF OVL|[+INF OVL DVF DVF DVF
-13 -Z2 UVL|{+Z2 UVL|+INDY & [+INDY & l[+IND{ & |+0 +0 +IND 'IND
-13 +73 IND IND IND
/1 DVF
172 +0 +0 +0 +0 +INDY & |40 +0 +IND IND
N IND
0
N DVF
% +INF [4o OVL|-o OVL|+o OVL|[-o OQVL +IND{IﬁD +IND IND|+IND IND|+IND IND
A
N DVF
R -INF fl-o OVL|[+o OVL|-o OVL|+o OVL|+IND IﬁD +IND IND|+IND IND|{+IND IND
R
D DVF
+INDEF [[+IND IND|{+IND IND|+IND IND|+IND IND|+IND I%D +IND IND|+IND IND[+IND IND
Note: See 2.12.1.5

' DOC. ARH
CONTROL DATA CYBER 180 MIGDS ey g
DATE July 15, 1988
Architectural Design and Control PAGE 2-102

2.4.2 Format: 32-Bit

The 32-bit floating point format, called half-precision, is not implemented in the CYBER 180
architecture.

2.5 LOGICAL ENVIRONMENT

A logical environment shall be defined by two sets of registers. The first set shall be referred to as the
Processor State Register and shall include all items which are not unique to a process. Each processor
shall have one set of Processor State Registers.

The second set of registers shall be referred to as the Process State Registers and shall include all
items which are unique to a process. The act of going from one process state to another shall be
referred to as an exchange. The contents of the Process State Registers associated with the exchange
shall be referred to as an Exchange Package. Therefore, each process shall have one Exchange
Package to define its unique environment.

2.5.1 Processor State Registers

See Table 2.5-1 and the following paragraphs for the definition of each of the Processor State
Registers.

Processor State Register Bit Positions (inclusive)
Job Process State 32-63
Monitor Process State 32-63
Page Table Address 32-63
Page Table Length 56 - 63
Page Size Mask 57-63
Element Identifier 32 -63
System Interval Timer 32-63
Processor Identification 56 - 63
Virtual Machine Capability List 48 - 63
Keypoint Buffer Pointer 00 - 63

Table 2.5-1. Bit positions of Processor State Registers
when copied to or from a 64-bit X Register

2

CONTROL DATA PRIVATE

gg‘z “‘i
s

4

CONTROL DATA CYBER 180 MIGDS ROV AarToo
DATE July 15, 1988
Architectural Design and Control : PAGE 2-103

2.5.1.1 Job Process State (JPS)

The JPS shall consist of a 32-bit real memory byte address. It shall point to the first entry in the
exchange package for the job process. The JPS address shall be aligned with bits 32 through 63 of real
memory addresses. The JPS address shall be interpreted as zero, modulo 16. The processor shall
ignore bit 32 and shall interpret bits 60, 61, 62 and 63 as zero. The writing of any value other than
zero into these bits shall cause undefined operation with respect to the subsequent value of these bits.
The processor shall always return zero on a read of these bits assuming the previous write was zero as
described in 2.1.3.5b. (Also see table 2.5-2.)

A JPS which has bit 33 set causes undefined processor operation when this address is used.
Note: See 3.1.3 for the definition of a real memory address.

2.5.1.2 Monitor Process State (MPS)

The MPS shall consist of a 32-bit real memory byte address. It shall point to the first entry in the
exchange package for the monitor process. The MPS address shall be aligned with bits 32 through 63
of real memory addresses. The MPS address shall be interpreted as zero, modulo 16. The processor
shall ignore bit 32 and shall interpret bits 60, 61, 62, and 63 as zero. The writing of any value other
than zero into these bits shall cause undefined operation with respect to the subsequent value of these
bits. The processor shall always return zero on a read of these bits assuming the previous write was
zero as described in 2.1.3.5b. (Also see table 2.5-2.)

A MPS which has bit 33 set causes undefined processor operation when this address is used.

2.5.1.3 Page Table Address (PTA)

The PTA shall consist of a 32-bit real memory byte address. It shall point to the first entry in the Page
Table. The PTA address shall be aligned with bits 32 through 63 of real memory addresses. The
processor may assume, when performing virtual address translations, that the Page Table Address is
0, modulo the Page Table Length. A PTA which is nonzero, modulo the PTL will cause undefined
processor operation when virtual address translation is attempted. Note that the processor shall be
halted when writing these registers, thus, no virtual address translations will be attempted until the
processor is restarted. (See tables 2.1-2, 2.5-2.) The writing of any value other than zero into bits 52
through 63 shall cause undefined operation with respect to the subsequent value of these bits. The
processor shall return the following on read operations:

Bit 32 - zero, assuming zero on previous write
Bits 33 through 51 - the contents of PTA as written
Bits 52 through 63 - zero assuming zero on previous write

A PTA which has bit 33 set causes undefined process operation when this address is used.

CONTROL DATA PRIVATE

DOC.
CONTROL DATA CYBER 180 MIGDS eV -Ap 700
; DATE September 1, 1989
Architectural Design and Control | PAGE 2-104

2.5.1.4 Page Table Length (PTL)

The PTL shall consist of a mask which shall specify the length of the Page Table. The PTL mask shall
express the page table length 0, modulo 4096 bytes. The mask shall consist of a contiguous string of
one bits, beginning in the rightmost bit position of the PTL Register and extending towards the
leftmost bit position of the PTL Register.

There are two versions of the PTL register: 8 and 14 bits. The extended 14-bit PTL allows the smaller
page sizes to be used on central memories up to 2 gigabytes. (See 1.6 for a list of specific models, and
3.5.2.1 for a further description of PTL). Table 3.5-2 indicates the expected limits for operation with
the 8-bit PTL. The 4K pages can be used for 128 megabyte or smaller central memories, the 8K pages
can be used for 256 megabyte or smaller central memories, and so forth.

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

X Of€mmmmmm oo MPS --- -—-->lZ 7 71

X 0]< N -—-- >z 721712

X 0l<--- PTA-=mmmemmmm e >0 000 00O0O0O0O0 O 0 PTL=512))

X 0] e e 50000 00O0O0O0GO0CDOO0O0O0DO 1K

X 0€mmmmm o e >0 00000O0O0O0O0DOOO0O 2K

X Of€mcmmmm oo >0 00 000O0CO0GO0OO0DO0O0O0UO0O0 4K

X Of<cmmmmm- >0 0 00000O0O0GO0OOOTDO0O000 8 | t 8-bit

X Ol<mmemm——mmam ———- >0 00 00O0O0CO0OOOOGOOTD OO OO 16K PTL

X Ofcmmmmmmm o eem >0 0 000O0OO0OGOCOOCDOOO0O0O0O0O0 32K

X 0f< -- >0 0 00 00O0O0O0GO0OO0OO0O0O0O0CO O 64K

QR 1] R T —— PTA---=mmemmceee >0 0 000O0O0CO0COOCOO0O0D0O0O0O0TO0O0O 128K 1)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 b 14-bit
PTL

QN 1] P 1] N——— >0 0 0000O0O0O0O0OD0O0O0O0O0CO0 OO0 O 0 0PTL=256K

X 0f< ~-w---==>| 000 0 0 0 0 0 0 O 0 C O 0 0 0 0 O OCOC OO O 512K

X Qf<m—mcmmemmmeeeeee >0 00 00O0O0O0O0O0CDOO0O0OO0O0D0O0O00O0O0CO0 O M

X Of<-mmmmmmmeeeeee >0 0000O0O0O0COOOOO0OOO0O0O0DO0O0O0O0O0COC O 2M

X Ofc-mmmmmmmmee >0 000000O0OO0OOOO0OOOOO0O0O0O0O0O0 00 aM

X 0j<---PTA--->| 0 0 0 0 0 0 0 0 0 0 O 0 O 0 0 O 0 O 0 O 0 OC O O O O 8M

X 0c-mmeommomeee STA-=-==m-mmmmemn == memmmm e >lz2 71

X = Bit is ignored and not used by the processor
Z = Bit is ignored and zero is used by the processor
0 = Bit must be zero or processor operation is undefined

Table 2.5-2. Real Memory Addresses

2.5.1.5 Page Size Mask (PSM)

The PSM shall consist of a 7-bit mask which shall specify the page size used in allocating real central
memory. (See subparagraph 3.4.2.2.)

2.5.1.6 Element Identifier (EID)

The EID shall consist of 32 bits and shall uniquely identify each hardware element, worldwide. See
paragraph 1.5 for the format of the EID register.

CONTROL DATA PRIVATE

9]

' o

o~

CONTROL DATA CYBER 180 MIGDS Sl
DATE July 15, 1988
Architectural Design and Control PAGE 2-105

2.5.1.7 System Interval Timer (SIT)

The SIT shall be a 32-bit counter which the system may use to establish a maximum time interval for
job mode execution. See subparagraphs 2.5.3.2 and 2.8.1.12 of this specification.

2.5.1.8 Processor Identifier (PID)
The PID shall consist of 8 bits and shall uniquely identify the processors in a system as follows:

Processor PID (Hex)
Primary processor 00
Optional processor 01

2.5.1.9 Virtual Machine Capability List (VMCL)

The VMCL shall consist of 16 bits which reflect the processor’s virtual machine capabilities on a bit-
by-bit basis as follows:

Bit 48 : CYBER 180
Bit 49 : CYBER 170 Mode
Bit 50 : Reserved
I]
T | l
Bit 63 : Reserved

The processor shall provide zeros for bits 50 through 63 when VMCL is read via the maintenance
channel. :

2.5.1.10 Keypoint Buffer Pointer (KBP)

This 64-bit register shall contain the address (PVA) of the next location in central memory for writing
keypoint data. Bits 0-15 are unused (see 2.1.3.5). Bits 16-63 contain the PVA. The loading of this
register by means of the Copy to State Register instruction (OF) shall copy the rightmost bits of
register Xk directly. There is no special test performed on the ring number portion of the PVA.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS ~ RO paHiroo
DATE July 15, 1988
Architectural Design and Control PAGE 2-106

2.5.2 Process Staté Registers

Each Process State shall be defined by an individual Exchange Package. An Exchange Package shall
consist of 52 64-bit words in central memory at contiguous word locations. The contents of an
Exchange Package shall be formatted according to this specification such that corresponding
interpretation by a processor shall provide the means for establishing a unique Process State.

Each Exchange Package in central memory shall contain Process State information in sufficient
quantity and detail such that a processor may be dynamically switched between Exchange Packages.
Moreover, when a processor is switched from a first Exchange Package to a second Exchange Package
and at some later time is switched back to the first Exchange Package, the integrity of the processing
which occurs for the Process State represented by the first Exchange Package shall not be affected.

Processors may on a model-dependent basis load any or all of the Exchange Package from central

memory when a process is activated. To allow this freedom in implementation, the following items
must be noted concerning the Exchange Package area associated with an active process:

e The contents of the Exchange Package in central memory are undefined.

e The contents of the Exchange Package in central memory must not be altered by another
processor or I/O operation, or undefined processor execution will occur.

o The address register for the Exchange Package must not be altered while the associated
process is active.

Those items in the Exchange Package which shall exist in registers when an Exchange Package is
active shall be processor model-dependent. The processor model-dependent specifications shall define
those items.

- Figure 2.5-1 defines the contents of the first 52 words in an Exchange Package. The sections which
follow shall define the items contained in those words.

O

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988
Architectural Design and Control PAGE 2-107
a. The unused bits in the exchange package (see following list) are undefined when an

exchange package is created and are ignored when an exchange package is loaded into the
processor.

Word 1: Bits 00, 01, 08 and 09 (Unused)
Word 2: Bits 05 through 13 (Unused)
Word 7: Bits 00 through 07 (Unused)
Word 9: Bits 00 through156 (Unused)
Word 10: Bits 00 through 15 (Unused)
Word 16: Bits 00 through 03 (Unused)
Word 36: Bits 06 through 08 (Unused)
Word 37: Bits 00 through 11 (Unused)
Words 38-51: Bits 00 through 15 (Unused)

The statements made in item a. shall also apply to the Exchange Package, Word 3, Bits 00
through 06 (leftmost 7-bit positions of the User Mask) with the exception that these bits

- shall be treated as ones.

The modification of Process State Register values in a central memory exchange package by
one processor at the time that process is being executed by another processor, shall result in
undefined operation. Overlapped exchange packages in central memory may also result in
undefined operations. ’ ‘

The C180 Exchange operations use RMAs to address the exchange packages (at JPS and at
MPS) while cache, when present, is always addressed by SVA. The C180 exchange packages
may either be in:

e cache bypass segments thus preventing stale data from appearing in the cache, or in

e noncache bypass segments thus requiring the software to purge cache appropriately
to prevent stale data.

CONTROL DATA PRIVATE

'~ DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC
DATE July 15, 1988
Architectural Design and Control PAGE 2-108
SYTE(REX) WORD(DEC)
“ ”" "% K
]]]
8| vwio |uvmin . AD 1
10| Flag [Trap Emables Al 2
18| User Mask A2 3
20 | Momter Mask A3 .
28 | User Condition [Y) 5
38 | Woniter Conditren AS s
» W/////A LPID ' A6 7
"] Keypowt Mask A?]
o A s
] Ay 10
8 Pracess int. Timer AA "
] AB 12
68 | Base Constant) AC 13
0 AD "
78 | Mode! Dependent Fiogs AE 15
00 | Seqment Toble Leagth AF 1
" X0 7
[X1 "
[n
cs x8 F)
Do x8 3
o8 XA 2
€0 X8 n
1] xC 2
0 X0 30
1] XE n
190 XF 2
" WMede! Dependent Word kX
110 | Segment Table Address Pointer n
"s Teop Pointer 35
120 | Debuy Index Debuy Mask! Debuy Lest Pornte: »
A}] Lacgest Rung Numbes Top of Stack Ring Number 1 kY
W | | 4
// Yop of Stack Ring Number 15 5
5. o

DETAIL FOR C180 EXCHANGE PACKAGE

SYTE(HEX)

1

120
it

WORDIDEC)

SPI KEY

o |
V2 vmio ’ / / A
crejoce[xecfoml e 77777777

70 A ver 160 2

uvMID 1

VW zz007222222222 Lo

|

SEGMENT TABLE LENGTH

Wz

Ji0

LOWER PARY - SEGMENT TABLE ADDRESS

OEBUG INDEX

DEBUG MASK 3

oin 2

[o . |
,/////////////l//// /// /] \ARGEST RING WD. |31

Figure 2.5-1. CYBER 180 Exchange Package (C180 Process)

CONTROL DATA PRIVATE

O

Ner /

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 2-109

2.5.2.1 Program Address Register (P)
See paragraph 2.1.1.1 for the definition of the P Register’s contents.
P shall be located in bits 00 through 63 of word 0 in the Exchange Package.

2.5.2.2 A Registers

The 16 A Registers, A0 through AF, shall be located in bits 16 through 63 of words 1 through 16,
respectively, in the Exchange Package. See paragraph 2.1.1.2 for the definition of the A Register’s

contents.

2.5.2.3 X Registers

The 16 X Regxsters, X0 through XF, shall be located in bits 00 through 63 of words 17 through 32,
respectively, in the Exchange Package See paragraph 2. 1 1.3 for the definition of the X Register’s

contents.

2.5.2.4 Not Assigned
This paragraph is left blank intentionally.

2.5.2.5 Flags
The Flags field shall consist of five separate single bit flags which have the following definitions.

a.

Critical Frame Flag (CFF)

The CFF, if set, shall indicate that the currently active stack frame for the process defined
by this Exchange Package is a "critical frame.” In this context, software shall have exclusive
control over the state of CFF.

CFF shall be located in bit 0 of word 2 in the Exchange Package. (See 2.6.5.2 and 2.8.10.)
On Condition Flag (OCF)

The OCF is intended to facilitate the handling of "on condition" traps on the part of the

"process monitor." In this context, software shall have exclusive control over the state of
OCF.

OCF shall be located in bit 1 of word 2 in the Exchange Package. (See 2.6.5.2 and 2.8.10.)
Keypoint Enable Flag (KEF)

The KEF, if set, shall enable the recording of keypoint data into the central memory location
specified by the Keypoint Buffer Pointer. (See 2.5.1.15 and 2.6.1.7.)

KEF shall be located in bit 2 of word 2 in the Exchange Package. (See 2.8.10.)

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS | REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 2-110

Process Not Damaged (PND)

Process Not Damaged is the primary determination made during CPU uncorrected error
analysis. If Stop on Error is implemented, the most expeditious stop is executed in order to
preserve the accuracy of the error and environmental data. There may not be time for the
hardware to monitor all conditions that could result in a damaged process. Therefore,
additional model-dependent status may be required to make a software Process Not
Damaged decision.

For systems in which stop on error is not implemented, the PND flag is the result of a
complete hardware analysis.

In either case, the definition of Process Not Damaged means the same thing, i.e. the ability
of the process to be retried. If PND = true, software will retry the process to determine if
the error is transient/intermittent or solid. If PND = false, software will abort the process.

The PND, when set during a C180 Job to Monitor exchange operation caused by an

uncorrectable error, indicates that there is no evidence that the process being executed was

damaged, and that it may be restarted. The PVA in P of the Exchange Package is the proper

address to restart the process but is not necessarily the address of the instruction which

initiated the activity that resulted in the malfunction. This flag is intended to allow
recovery of job mode processes where possible.

Note that the default state of this flag is interpreted as process damaged. Thus, on a model-
dependent basis, the hardware may detect many, few, or none of the undamaged processes
and set PND accordingly. While a processor may report undamaged processes as damaged, it
shall be a design objective to never report damaged processes as undamaged. Thus a process
denoted as undamaged via PND shall be as likely to be correct as any process with no fault
indication. This flag shall be ignored by the hardware when loading a C180 Exchange
Package and is only defined in the Exchange Package resulting from a Detected
Uncorrectable Error Interrupt.

PND shall be located in bit 3 of word 2 in the Exchange Package.
ECS Authorized (EA)

The EA, if set, shall enable the currently active process when in C170 State to access the ECS
via the 011, 012, 014 and 015 instructions. An attempt to execute these instructions to access
ECS when the EA is clear shall cause an Error Exit (Illegal Instruction) to be executed in
C170 State. (See table 7.2-2.)

EA shall be located in bit 4 of word 2 in the Exchange Package.

2.5.2.6 User Mask (UM)

UM shall be used by user processes to enable trap interrupts. There shall be 16 bits in the UM. See

paragraph 2.8.4 for details.

The UM shall be located in bits 00 through 15 of word 3 in the Exchange Package.

2.5.2.7 Monitor Mask (MM)

MM shall be used by the monitor to enable exchange interrupts. There shall be 16 bits in the MM.

See paragraph 2.8.2 for details.

The MM shall be located in bits 00 through 15 of word 4 in the Exchange Package.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS R, AT
DATE July 15, 1988
Architectural Design and Control PAGE 2-111

2.5.2.8 User Condition Register (UCR)

UCR shall be a 16-bit register which records the occurrence of specified conditions within the
processor. See paragraph 2.8.3 for details. ,

UCR shall be located in bits 00 through 15 of word 5 in the Exchange Package.
2.5.2.9 Monitor Condition Register (MCR)

MCR shall be a 16-bit register which records the occurrence of specified conditions within the
processor and central memory. See paragraph 2.8.1 for details.

MCR shall be located in bits 00 through 15 of word 6 in the Exchange Package.

2.5.2.10 Debug Mask (DM)

The DM shall consist of two flag bits and five mask bits which control and condition the debug
operations as described in paragraph 2.7.2 of this specification.

The DM bits shall be located in bits 09 through 15 of word 36 in the Exchange Package. The
assignments are as follows:

-Bit 09 : End of List Seen flag
Bit 10 : Debug Scan in Progress flag
Bit 11: Data Read mask
Bit 12: Data Write mask
Bit 13 : Instruction Fetch mask
Bit 14 : Branching Instruction mask
Bit 15: Call Instruction mask

2.5.2.11 Keypoint Mask (KM)

KM shall consist of a 16-bit mask which is tested during the execution of a Keypoint instruction as
specified in paragraph 2.6.1.7.

The KM shall be located in bits 00 through 15 of word 8 in the Exchange Package.
2.5.2.12 Keypoint Code (KC)

This process state register is no longer implemented. See 2.6.1.7 for the current keypoint
implementation.

2.5.2.13 Process Interval Timer (PIT)

PIT shall be a 32-bit counter which a process shall use to determine time intervals. See paragraph
2.5.3.1 for details.

The PIT shall be located in bits 0 through 15 of words 11 and 12 in the Exchange Package. Word 11
shall contain the leftmost 16 bits of PIT.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOG. ARH1700
DATE July 15, 1988
Architectural Design and Control PAGE 2-112

2.5.2.14 Base Constant (BC)

The BC is intended to provide a means to communicate within the operating system. In this context,
software shall have exclusive control over the contents of BC.

The BC shall be located in bits 00 through 15 of words 13 and 14 in the Exchange Package. Word 13
shall contain the leftmost 16 bits of BC.

2.5.2.15 Model-Dependent Flags (MDF)

MDF shall consist of 16 bits. MDF shall be processor model-dependent and shall be defined in the
processor model-dependent specification.

MDF shall be located in bits 00 through 15 of word 15 in the Exchange Package.

2.5.2.16 Segment Table Length (STL)

STL, plus one, shall specify the number of 64-bit entries in the associated Segment Table. (See
25.2.18)

It shall be used to verify that references to the Segment Table are actually within the defined Segment
Table. STL shall be a positive 12-bit value. (See paragraph 3.3.)

The STL shall be located in bits 4 through 15 of word 16 in the Exchange Package.

2.5.2.17 Untranslatable Pointer (UTP)

When the processor sets MCR52, 54, 57 or 60 because of an exception detection, the processor shall
also load the address which could not be translated into the UTP. (See 2.8.1, 2.8.7 and appendix I.)
This occurs regardless of C170 or C180, Job or Monitor state. This address is always a PVA except for
the following cases. When a program interruption occurs as a result of Monitor Condition Register bit
52 being set because of an Address Specification Error either on the Purge Buffer instruction (2.6.5.3)
with K=0, 1, 8 or 9 or on the Load Page Table instruction, UTP will contain the SVA which was
associated with the Address Specification Error. The processor shall only alter the UTP when
MCR52, 54, 57 and/or 60 is being set due to detection of the associated exception.

When an Invalid Segment or Access Violation occurs, the UTP shall be loaded with the ring, segment,
and byte number of the address causing the exception detection. For those cases where the byte
number of the address is incremented or altered as part of the defined instruction execution, any of
the values which are allowed by the instruction definition are acceptable for the UTP.

When an Address Specification Error occurs, the UTP shall be loaded with the ring, segment and byte
number of the address causing the exception detection. For thoses cases where the byte number of the
address is incremented or altered as part of the defined instruction execution, any of the values which
are allowed by the instruction definition and which exhibit the Address Specification Error are
acceptable for the UTP.

When a Page Table Search without Find occurs, the UTP shall be loaded with the ring, segment and
byte number of the address causing the exception detection. For those cases where the byte number is
incremented or altered as part of the defined instruction execution, any of the values which are
allowed by the instruction definition and which reference the missing page are acceptable for the UTP.

Paragraph 2.8 describes the UTP definition when more than one of MCR bits 52, 54, 57 or 60 is set.
The UTP shall be located in bits 16 through 63 of word 34 in the Exchange Package.

CONTROL DATA PRIVATE

\\7

/ﬁ—

A

S

D RH
CONTROL DATA CYBER 180 MIGDS Boy panTo

DATE July 15, 1988
Architectural Design and Control PAGE 2-113

2.5.2.18 Segment Table Address (STA)

STA shall be a real memory byte address that points to the first entry in the Segment Table. (See
paragraph 3.3.) STA shall be interpreted as equal to 0 modulo 8. An STA which has bit 33 set causes
undefined processor operation when this address is used. STA shall be located in bits 00 through 15 of
words 34 and 35 of the Exchange Package. Word 34 shall contain the leftmost 16 bits of STA.

The processor shall ignore the state of bits 32, 61, 62 and 63 and operate as if these bits are zero. The
writing of any value other than zero into bits 32, 61, 62 and 63 shall cause undefined operation with
respect to the subsequent value of these bits. These bits (32, 61, 62 and 63) shall be zero when read
assuming the previous write was zero as noted in 2.1.3.5b. (Also see table 2.5-1.)

2.5.2.19 Last Processor Identification (LPID)

LPID shall consist of the 8-bit Processor Identification from the last processor which executed the
process defined by the Exchange Package. LPID shall be located in bits 08 through 15 of word 7 in the
Exchange Package. See 2.5.1.8 of this specification.

2.5.2.20 Trap Enables (TE)

TE shall consist of a 2-bit field that determines how traps shall be enabled. The bits in TE shall be set
by the "Copy from Xk per (Xj)" instruction (Op. OF). Although the bits in TE can be cleared by the
"Copy from Xk per (Xj)" instruction they shall normally be cleared by the hardware action described
below. See section 2.8.6 for a descrlptxon of the trap interrupt operation and section 2.8.10 for a
description of flag states.

a. Trap Enable Flip-flop (TEF)

TEF shall be the flip-flop which enables a trap interrupt operation to occur when it is set. It
shall be set as described above and shall be cleared by hardware whenever a trap interrupt
occurs.

TEF shall be located in bit 14 of word 2 in the Exchange Package.
b. Trap Enabled Delay (TED)

TED shall be a flip-flop which delays the enabling of trap interrupts until after the next Return
instruction (Op. 04) is executed. The trap enable shall be inhibited as long as TED is set. The
Return instruction clears TED. TED shall be set by the Copy instruction as just previously
described.

TED shall be located in bit 15 of word 2 in the Exchange Package.

2.5.2.21 Trap Pointer (TP)

TP shall consist of a PVA which points to a code base pointer in a binding section. The TP shall be
used whenever a trap interrupt occurs. (See 2.8.6.)

The TP shall be located in bits 16 through 63 of word 35 in the Exchange Package.

2.5.2.22 Debug Index (DI)

DI shall consist of a 6-bit word-index into the debug list. It shall record where the debug list search
must resume after a debug list find has been processed. (See 2.7.2.3.)

The DI shall be located in bits 00 through 05 of word 36 in the Exchange Package.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS o A 700
DATE July 15, 1988
Architectural Design and Control PAGE 2-114

2.5.2.23 Debug List Pointer (DLP)

DLP shall consist of a PVA that points to the first entry in the debug list. (See 2.7.2.1.)
The DLP shall be located in bits 16 through 63 of word 36 in the Exchange Package.

2.5.2.24 Top of Stack (TOS)

Each TOS shall consist of a PVA that points to the top of its associated stack. There shall be an
individual TOS pointer for each of the 15 rings. The TOS’s shall be located in bits 16 through 63 of
words 37 through 51 in the Exchange Package. The TOS for ring 1 shall be located in word 37, the
TOS for ring 2 shall be located in word 38, etc.

2.5.2.25 Model-Dependent Word (MDW)

MDW shall consist of 64 bits, shall be processor model-dependent and shall be defined in the processor
model-dependent specification. MDW shall be located in bits 00 through 63 of word 33 in the
Exchange Package.

2.5.2.26 Virtual Machine Identifier (VMID)

The VMID shall consist of 4 bits and shall reflect the virtual machine capability to be exercised, as well
as that most recently exercised, in the execution of the associated process. The VMID shall be located
in bit positions 04 through 07 of word 1 in the Exchange Package.

2.5.2.27 Untranslatable Virtual Machine Identifier (UVMID)

The UVMID shall consist of 4 bits and shall reflect the virtual machine capability that was required by
a process or procedure but was not included in the associated processor’s Virtual Machine Capability
List at the time an Exchange operation, a Call instruction or a Return instruction was executed. The
UVMID shall be located in bit positions 12 through 15 of word 1 in the Exchange Package. Values of
0-15 for this 4-bit field shall correspond to bit positions 48-63 respectively of the Virtual Machine
Capability List (VMCL); see subparagraph 2.5.1.12.

2.5.2.28 Largest Ring Number (LRN)

LRN shall consist of 4 bits and shall be equal in value to the largest ring number for which there is a
corresponding TOS entry in the associated Exchange Package. (See 2.5.2.24.) Usage of the LRN shall
be specified on a model-dependent basis. LRN shall be located in bits 12 through 15 of word 37 of the
Exchange Package.

2.5.2.29 Sample Program Instruction (SPI) Identifier
The SPI identifier shall consist of 6 bits in word 0 of the exchange package which may be:

e written into the exchange package,

e copied to/from the P register as part of the exchange,
e read by the PP as part of the P register read, or

e read by the CPU by the Copy instruction.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS REv. oo

- DATE July 15, 1988
Architectural Design and Control PAGE 2-115
2.5.3 Timers

The Process Interval Timer and the System Interval Timer shall be free-running timers to the extent
that, upon reaching a count of zero and recording the corresponding condition in the User or Monitor
Condition Register as described in subparagraphs 2.8.3.4 and 2.8.1.12 of this specification,
respectively, decrement operations shall continue to occur at the 1Mhz rate.

2.5.3.1 Process Interval Timer

The Process Interval Timer (PIT) shall consist of a 32-bit counter that shall decrement once each
microsecond. When it decrements to zero, it shall set the Process Interval Timer bit in the User
Condition Register and continue to decrement from zero to FFFF FFFF and so on. When traps are
enabled, execution of the current instruction shall complete and program interruption shall occur.
See paragraph 2.8.3.4 of this specification.

The PIT contains a different count for each User process. When a particular process is not in active
execution, its PIT value is stored in its Exchange Package. By this means, each User process may keep
track of time intervals within its own program execution.

PIT shall be set by the "Copy from Xk per (Xj)" instruction described in section 2.6.5.2, as well as
during an "Exchange" operation, described in 2.6.1.6 and 2.8.5.

An exchange operation (either to or from job mode) occuring when the PIT contains a value near zero
shall not be allowed to cause the processor to miss setting the appropriate UCR bit when the PIT
decrements to zero. .

2.5.3.2 System Interval Timer

The System Interval Timer (SIT) shall consist of a 32-bit counter that shall decrement once each
microsecond. When it decrements to zero, it shall set the System Interval Timer bit in the Monitor
Condition Register and continue to decrement from zero to FFFF FFFF and so on. When the
corresponding monitor mask bit is set, execution of the current instruction shall complete and
program interruption shall occur as described in paragraph 2.8.1 of this specification.

By this means, the Monitor process may keep track of time intervals within the processor. SIT shall
be set by the "Copy from Xk per (Xj)" instruction described in section 2.6.5.2.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC. ARHi1700
DATE July 15, 1988
Architectural Design and Control ' PAGE 2-116

254 Stacks

Each process shall have the means for addressing 15 stacks, one for each possible ring of execution as
determined by the value of the ring number contained in the P Register.

The beginning of each stack shall be defined by the PVA referred to as the Top of Stack pointer,
previously described in subparagraph 2.5.2.24 and illustrated in figure 2.5-1 of this specification.

Note: TOS pointers shall be addressed, using real addressing mode, as follows:

Address of TOS pointer = (Job Process State Register or Monitor Process State Register) plus (288)
plus (8 times the value of the ring number contained in the P Register).

2.5.4.1 Stack Frames

Each stack shall be comprised of one or more stack frames. The beginning of each stack frame shall be
defined by the PVA referred to as the Current Stack Frame Pointer. At the time a procedure is
activated (or called) the CSF pointer shall be obtained by using the TOS pointer which corresponds to
the procedure’s ring of execution. During the time a procedure utilizes a stack frame, its length, from
the beginning address, shall be defined as including each contiguous PVA up to, but not including, the
PVA referred to as the Dynamic Space Pointer.

When within a process, a procedure "calls” another procedure, with the intention that the "called"
procedure will "return” to its "caller,” the stack frame associated with the "calling” procedure is
intended to provide the means for preserving its environment so that its execution may be suspended,
(at the time the other procedure is "called”), and then resumed, (at the time the "called" procedure
"returns").

At the end of each stack frame, a "save area" shall be defined for that part of a procedure’s
"environment" which is implicit to the Call and Return instructions as defined in subparagraphs
2.6.1.2 through 2.6.1.4 of this specification. The stack frame save area shall consist of from four to
thirty-three contiguous 64-bit words, beginning at the address defined by the Dynamic Space Pointer
with respect to Call instructions and beginning at the address defined by the Previous Save Area
Pointer with respect to the Return instruction.

CONTROL DATA PRIVATE

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AD

DATE September 1, 1989
Architectural Design and Control PAGE 2-117

The Stack Frame Save Area shall be formatted as follows:

BYTE(HEX) WORD(DEC)
? 7 Y 0 ‘ P REGISTER . 0
;‘&’EMUM 8 {0000 vmiol 777777 a0 REGISTER (DYNAMIC SPACE POINTER) 1
AREA 10 SFSA DESCRIPTOR | A1 REGISTER (CURRENT STACK FRAME POINTER) | 2
v 18 [USER MASK A2 REGISTER (PREVIOUS SAVE AREA POINTER) 3
2 V. /7] A3 REGISTER (BINDING SECTION POINTER) a4
28 | USER CONDITION® A4 REGISTER (ARGUMENT POINTER) 5
30 [MONITOR CONDITION® | A5 REGISTER 6
38 7/ A6 REGISTER 7
40 A7 REGISTER 8
MAXIMUM / .
SAVE o &
AREA /é ®
80 /00— 15/] AF REGISTER 16
88 X0 REGISTER 17
[]
i : 7
100 XF REGISTER 32

00 P 63

® UCR AND MCR ARE STORED ON TRAP OPERATIONS. ON CALL
OPERATIONS, UCR AND MCR POSITIONS IN THE SFSA ARE UNDEFINED.

Figure 2.5-1. Stack Frame Save Area (SFSA)

Thus, the "environment” which is implicit to the Call and Return instructions shall include:

Minimally; P Register
Register A0 through A2 (DSP, CSF and PSA)
Frame Description (SFSA Descriptor)
User Mask
Virtual Machine Identifier (VMID, see 2.5.6)

Selectively; Register A3 through AF (contiguously numbered)
Register X0 through XF (contiguously numbered)

Notes: The PVA initially contained in the P Register shall be increased by four prior to writing the
entire P Register (including its Global and Local Key fields), into the Current Stack Frame Save Area,
Word 0, whenever such an operation occurs on the part of a Call instruction’s execution.

Bits 0-3 of word 1 of the SFSA shall be written as zero in memory as the SFSA is written on a Call or
Trap operation. These bits in the SFSA in memory are for use by applications and are not to be
modified by an operating system

Unused fields in the SFSA may be changed to undefined values during the execution of Call
instructions and shall be ignored during the execution of a Return instruction. This also includes bits
2 and 3 of the SFSA Descriptor. '

CONTROL DATA PRIVATE

: C.
CONTROL DATA CYBER 180 MIGDS REV. AD
DATE September 1, 1989
Architectural Design and Control PAGE 2-118

The Stack Frame Save Area Descriptor shall consist of 16 bits formatted as follows:

00 01 02 03 04 08 12 15
cloj//| P
Fl Ci//| N XS AT XT
F| Fi//}] D
CFF: Critical Frame Flag
OCF: On Condition Flag
PND: Process Not Damaged
XS: X Register, starting number (First X Reg. No.)
AT: A Register, terminating number (Last A Reg. No.)
XT: X Register, terminating number (Last X Reg. No.)

Bit 2 shall be ignored by the processor

Trap Ihterrupt shall generate a maximum Stack Frame Save Area (33 words), by definition.

For Call instructions, the A and X Registers to be stored into the Stack Frame Save Area shall be
interpreted according to the contents of Register X0 Right, in the manner described in subparagraph
2.2.1.7 of this specification, with the exception that bit positions 48 through 51 of Register X0 Right
shall be ignored and the storing of the A Register group shall unconditionally begin with Register A0.
When Xs is greater than X, none of the X Registers shall be stored by Call instructions, and none
shall be loaded by a Return instruction.

The execution of a Call instruction or a Trap Interrupt shall store the states of the Critical Frame and
On Condition Flags into the Frame Descriptor associated with the Stack Frame Save Area. The
execution of a Return instruction shall load these Flags from the Frame Descriptor contained within
the previous Stack Frame Save Area.

The execution of a Trap Interrupt but NOT a Call instruction shall store the contents of the User
Condition Register and Monitor Condition Register in bits 0-15 of words 5 and 6, respectively, of the
Stack Frame Save Area. The bit or bits causing the trap shall then be cleared in the User and Monitor
Condition Registers. That is, any bit set in a condition register, for which the corresponding bit is set
in the appropriate mask register, shall be cleared. The execution of a Return instruction shall not
restore the condition registers from the Stack Frame Save Area.

The execution of a Call Instruction or a Trap Interrupt shall store the Virtual Machine Identifier
(VMID) associated with the "calling” or "trapped" procedure into bits 04 through 07 of Word 1 in the
Stack Frame Save Area. The execution of a Return Instruction shall conditionally load bits 04
through 07 of Word 1 from the Previous Stack Frame Save Area to the VMID in the manner described
in2.5.6. ‘

The PND, when set during a C180 Monitor Mode trap interrupt operation caused by an uncorrectable
error, indicates that there is no evidence that the process being executed was damaged, and that it may
be restarted. The PVA in P of the stack frame is the proper address to restart the process but is not
necessarily the address of the instruction which initiated the activity that resulted in the malfunction.
This flag is intended to allow recovery of monitor mode processes where possible.

CONTROL DATA PRIVATE

O

VAN

S

i

CONTROL DATA CYBER 180 MIGDS Celiviai
DATE July 15, 1988
Architectural Design and Control PAGE 2-119

Note that the default state of this flag is interpreted as process damaged. Thus, on a model-dependent
basis, the hardware may detect many, few, or none of the undamaged processes and set PND
accordingly. While a processor may report undamaged processes as damaged, it shall be a design
objective to never report damaged processes as undamaged. Thus, a process denoted as undamaged via
PND shall be as likely to be correct as any process with no fault indication. This flag shall be ignored
by the hardware when loading a stack frame and is only defined in the stack frame resulting from a
Detected Uncorrectable Error Interrupt in C180 monitor mode.

2.5.5 Binding Section Segment

A Binding Section Segment shall be identified by the RP field within its associated Segment Descriptor
as described in 3.3.1.1 of this specification.

Binding Section Segments are intended to facilitate software linking of both code and data segments
from one procedure to another.

2.5.5.1 Code Base Pointer

With respect to the Call instruction, as described in subparagraph 2.6.1.2 of this specification, having
both inter-ring and inter-segment branching capabilities, a Binding Section Segment shall be used to
contain the Code Base Pointer to the "called" procedure. The Code Base Pointer shall be located on a
word boundary, shall consist of 64 bits and shall have the following format:

00 04 08 09 12 16 20 32 63
/1//7] cgp- 1111/
///1/] VMID|EPF|/////|CBP-R3|CBP-RN SEG BN

4 4 1 3 4 4 12 32

With respect to the "called” procedure these fields shall have the following interpretation:

CBP-VMID: Code Base Pointer, Virtual Machine Identifier
EPF: External Procedure Flag

CBP-R3: Code Base Pointer, Highest Ring Number for Call
CBP-RN: Code Base Pointer, Ring Number

SEG: Segment Number

BN: Byte Number

Bits 0-3 and 9-11 shall be ignored by the processor.

Note: When the External Procedure Flag is a one, the next contiguous word location from the Code
Base Pointer shall contain a PVA in its rightmost 48-bit positions, 16 through 63, referred to as a
Binding Section Pointer. Thus, a new Binding Section Pointer shall be provided (at the address of the
Code Base Pointer plus 8) when an "external procedure” is "called.”

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988

Architectural Design and Control PAGE 2-120

2.5.6 Virtual Machine

Virtual Machine support shall involve the VMCL defined in 2.5.1.12, the UVMID defined in 2.5.2.27,
as well as the 4-bit VMID fields from the Exchange Package defined in 2.5.2.26, the Stack Frame Save
Area defined in 2.5.4.1, and the Code Base Pointer defined in 2.5.5.1, of this specification. Values of 0
through 15 for these VMID fields shall correspond to bit positions 48 through 63, respectively, of the
VMCL. A match between VMID and VMCL shall exist whenever the corresponding bit position within
the VMCL is a one.

a.

Exchange operations shall include the check for VMID versus VMCL: when a match exists,
these operations shall occur as defined in 2.8.5. When a mismatch exists, an Environment
Specification Error shall be recorded along with the UVMID in the new (target) process’
Exchange Package and the processor shall exchange, trap, or halt according to table 2.8-1 of this

“specification. (Note that the job-to-monitor or monitor-to-job transition shall occur regardless of

the VMID/VMCL mismatch with respect to interpreting table 2.8-1.)

Call and Trap operations shall include the check for CBP-VMID versus VMCL: when a match
exists, these operations shall occur as defined in 2.6.1.2 and 2.8.6, respectively, including the
transfers of the initial contents of the VMID register to the Stack Frame Save Area, (Word 1,
Byte 0) and the CBP-VMID field to the VMID Register final. When a mismatch exists, an
Environment Specification Error shall be recorded along with the UVMID in the current
process’ Exchange Package and the processor shall exchange, trap or halt according to table
2.8-1 of this specification. (Note: A CBP-VMID/VMCL mismatch during a trap operation shall
include the setting of the Trap Exception bit.)

The return instruction shall include the check of the VMID contained in Word 1, Byte 0 of the
Stack Frame Save Area versus the VMCL: when a match exists, this operation shall occur as
defined in 2.6.1.4 including the transfer of the VMID from the Stack Frame Save Area to the
VMID Register associated with the current process. When a mismatch exists, an Environment
Specification Error shall be recorded along with the UVMID in the current process’ exchange
package and the processor shall exchange, trap, or halt according to table 2.8-1 of this
specification.

2.5.7 System Deadstart
The system deadstart procedure shall:

a.
b.

C.

Set Monitor Mode (this shall set bit 58 of the Status Summary Register).

Load the Monitor Process exchange package from the address pointed to by the Monitor Process
State Register.
Begin execution of the Monitor Process.

CONTROL DATA PRIVATE

R

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AC

DATE July 15, 1988
Architectural Design and Control PAGE 2-121

2.6 SYSTEM INSTRUCTIONS

Several of the system instructions require certain privileges as specified by the XP field in the segment
descriptor (3.3.1) or require the processor to be in Monitor mode. The following chart is a summary of
these requirements.

Code Segment Attribute Mode Requirement
Non- Local Global
Privileged | Privileged | Privileged Job Monitor
VA VA A)
A1l instructions other VA VA A |
than those following Execute Execute Execute // // // // // //
Interrupt Proc. (Op. 03)|Priv.Inst.Ft|Priv.Inst.Ft| Execute |/ // // ; / // // y
Return (0p.04) VAR AR AN N A B |
SFSA VMID = 0 Execute Execute Execute VAR B A VA A |
SFSA VMID # 0 Env.Spec.Err{Env.Spec.Err| Execute VAR YA Y A A
VAR B Y A A
Purge Buffer (op. 05) VARV A A VA A
K=0,1,2,8~F Priv.Inst.Ft| Execute Execute VAR A2 Y A A |
K=3-7 Execute Execute Execute V2R A A IV A A
Copy to Reg. (Op. OE)
Registers 00 - 5F No-op No-op No-op No-op No-op
Registers 60 -+ 7F / /1 /Y1 7/ 7 7/ [/ |Inst.Spec| Execute
V2RV AR AR A VRV A A A A A | Error
Registers 80 - BF Priv.Inst Ft|Priv.Inst.Ft| Execute VA A A
Registers CO -+ DF Priv.Inst.Ft| Execute Execute VR A A VA A |
Registers EQ - FF Execute Execute Execute // // /N /7 // //
/ 1/
Load Pg.Tb1.Index(0p.17)|Priv.Inst.Ft| Execute Execute N VA
Brch.on Cond.Reg.(0p.9F)| / [/ / VA A Y A A
K=0,1,8,89 /1 1 /Y1 /1 /7|1 [[[/ |Inst.Spec| Execute
VARV AR A VAR A A R VR A A | Error
o K=2-7,A>F Execute Execute Execute A A

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS | B ARt
‘ : DATE July 15, 1988
Architectural Design and Control PAGE 2122

2.6.1 Nonprivileged System Instructions

The following system instructions shall be permitted to execute for any executable segment with the
single exception described on the Return instruction (2.6.1.4). .

2.6.1.1 Program Error

00jk (Ref.121)

The execution of this instruction shall result in the detection of an Instruction Specification error and
the corresponding program interruption shall occur. (See 2.8.1.4.)

The operation code for this instruction shall consist entirely of zeros.

The j and k fields from this instruction shall not be translated and their values shall have no effect on
the execution of this instruction.

2.6.1.2 Call Indirect

Call per (Aj displaced by 8*Q), arguments per Ak
B5jkQ (Ref. 115)

Operation: This instruction shall save the environment (2.5.4.1) as designated by the contents of
Register X0 Right, in the Stack Frame Save Area (SFSA) pointed to by the Dynamic Space Pointer
initially contained in Register AO. The stack associated with the current ring of execution, as
determined by the RN field initially contained in the P Register, shall be "pushed"” by transferring the
Dynamic Space Pointer, modified in its rightmost 32-bit positions by the addition of 8 times the

number of words stored into the stack frame save area, to the appropriate Top of Stack entry in the
executing process’ Exchange Package. The PVA obtained from Register Aj shall be modified in its
rightmost 32-bit positions by the addition of the sign-extended Q field from the instruction, (shifted
left 3 bit positions with zeros inserted on the right), and the resulting PVA shall be used to address a
Code Base Pointer from a Binding Section Segment. This Code Base Pointer shall be translated into a
PVA used to address the first instruction to be executed in the "called” procedure. The ring of
execution of the called procedure, P(RN) final, shall be used to obtain a Top of Stack pointer from the
process’ Exchange Package to be used as the new Current Stack Frame Pointer.

The processor may assume a 33-word SFSA when prevalidating this instruction. This has the effect of
allowing a Page Table Search Without Find interrupt to occur at points where a SFSA actually
terminates within a page but a maximum SFSA extends across the page boundary. This also has the
effect of allowing an Address Specification Error interrupt to occur at points where a SFSA actually
terminates with bit 32=0 but a maximum frame extends into the range where bit 32=1. The actual
store into the SFSA during instruction execution shall only store into the SFSA as described by the
Stack Frame Descriptor.

The processor may but need not prevalidate Aj+8*Q+8 for Address Specification Error and Page
Table Search Without Find regardless of the state of the External Procedure Flag.

CONTROL DATA PRIVATE

o

CONTROL DATA CYBER 180 MIGDS Rov harTo0
~ DATE July 15, 1988
Architectural Design and Control PAGE 2-123

The A0, Al, and A2 Registers shall be altered to reflect changes with respect to the Current and
Previous Stack Frames and the A3, and A4 Registers shall be altered to reflect pertinent parameter
changes as required, in accomplishing this transfer of control from a "calling” procedure to a "called"
procedure.

Register assignments shall be as follows:

(A0) - Dynamic Space Pointer

(Al) - Current Stack Frame Pointer
(A2) - Previous Save Area Pointer
(A3) - Binding Section Pointer

(A4) - Argument Pointer

Virtual machine support shall be provided by the execution of this instruction to the extent previously
described in paragraph 2.5.6 of this specification.

For the purpose of referencing the 64-bit Code Base Pointer as previously described in subparagraph
2.5.5.1 of this specification, an Address Specification Error shall be recorded when the initial contents
of Register Aj are not 0, modulo 8.

The associated program interruption shall occur as described in paragraph 2.8.1 of this specification,
and the execution of this instruction shall be inhibited (except that portions of the environment may
be stored into the SFSA and A0 may be rounded up before the instruction is inhibited) when any of
the following exceptions are recorded.

Instruction Specification Error (See 2.5.4.1 and 2.8.1.4)

Value of the four bits in bit positions 56 through 59 of X0 Right is less than 2.
Environment Specification Error (See 2.8.1.8 and 2.5.6)

Code Base Pointer VMID mismatch with VMCL.

Outward Call/Inward Return (See 2.8.1.14)

Initial P Ring Number less than Segment Descriptor R1.

Invalid Segment

Access Violation

Address Specification Error
Page Table Search Without Find

See Appendix I for these four exception conditions.

Note: Steps a and b of the following execution sequence may occur out of order in relation to steps ¢
through s insofar as the rounding of Register A0 and the storing of the "Environment" into the SFSA
in central memory, (including the associated exception sensing), are concerned.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS
Architectural Design and Control

DOC. ARH1700
REV. AD
DATE September 1, 1989

PAGE 2-124 -
O

" In the absence of a program interruption, the following sequence of events shall accomplish the
execution of the instruction:

*a.
*b.
*c.
*d.

t1.

Operation
(A0) + n - 1 to A0, 0 modulo n result
"Environment" to Stack Frame Save Area
Copy P Left to X0 Left
Store (A0), all 48 bits, incremented by
8 times the number of save area words,
to Top of Stack pointer for current ring
number
Load P Key with Segment Descriptor Lock
for callee
If P Ring Number is less than callee
Segment Descriptor R2, go to step h
Set P Ring Number equal to callee
Segment Descriptor R2
Load P SEG and BN fields with Code Base
Pointer SEG and BN fields
If CBP-VMID+#0, go to step m

If Code Base Pointer EPF is 0, go to

step |
Load A3 with new Binding Section Pointer

Copy (Ak) to A4

Copy (A0) to A2

Clear On Condition Flag .
Load Al with new Top of Stack pointer
per final P Ring Number and clear
Critical Frame Flag

Copy (Al) to A0

Copy CBP-VMID to VMID Register

* Unconditionally included in a Trap Interrupt

t Unconditionally omitted from a Trap Interrupt (see 2.8.6)

Remarks

Round DSP upward
See paragraph 2.5.4.1
Copy Caller’s ID
Update TOS pointer
See paragraph 2.5.2.24

Intra-ring Call

Inward Call

Test destination machine
CYBER 180
Internal Procedure

Ring Number stored into A3 ~ \\}
shall be the larger of the ring &
number in the BSP from

caller’s Binding Section and the

new P ring number. See

paragraphs 2.5.5.1and 3.2.1.1.

Pass parameters.

When k is 0-3, the final contents

of A4 shall be undefined with

respect to which A register is
transferred into A4.

DSP from step a to PSA pointer

Clear OCF

TOS to CSF pointer

Clear CFF

CSF pointer to DSP
See 2.5.6

} In step a, n is any multiple of 8 greater than zero and less than 272.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS oy aem00
DATE July 15, 1988
Architectural Design and Control PAGE 2-125

2.6.1.3 Call Relative

Call to P displaced by 8*Q, Binding Section Pointer per Aj, arguments per Ak
B0jkQ (Ref. 116)

Operation: This instruction shall save the "environment," as designated by the contents of Register X0
Right, in the Stack Frame Save Area (SFSA) pointed to by the Dynamic Space Pointer initially
contained in Register A0. The stack associated with the current ring of execution, as determined by
the RN field initially contained in the P Register, shall be "pushed” by transferring the Dynamic Space
Pointer, modified in its rightmost 32 bit positions by the addition of 8 times the number of words
stored into the stack frame save area, to the appropriate Top of Stack entry in the executing process’
Exchange Package.

The P Register shall be modified in its rightmost 32 bit positions by the sign extended Q field from the
instruction, (left-shifted 3 bit positions with zeros inserted on the right). The final contents of the P
Register shall be made 0, modulo 8, by clearing the least significant 3 bit positions (61-63) and shall be
used to address the first instruction to be executed in the "called” procedure.

The processor may assume a 33-word SFSA when prevalidating this instruction. This has the effect of
allowing a Page Table Search Without Find interrupt to occur at points where a SFSA actually
terminates within a page but a maximum SFSA extends across the page boundary. This also has the
effect of allowing an Address Specification Error interrupt to occur at points where a SFSA actually
terminates with bit 32=0 but a maximum frame extends into the range where bit 32=1. The actual
store into the SFSA during instruction execution shall only store into the SFSA as described by the
Stack Frame Save Area Descriptor.

Registers A0, Al and A2 shall be altered to reflect changes with respect to the Current and Previous
Stack Frames and the A3 and A4 Registers shall be altered to reflect pertinent parameter changes as
required, in accomplishing this intra-ring, intra-segment transfer of control from a "calling” procedure
to a "called" procedure.

Register assignments shall be as follows:

(A0) - Dynamic Space Pointer

(Al) - Current Stack Frame Pointer
(A2) - Previous Save Area Pointer
(A3) - Binding Section Pointer

(A4) - Argument Pointer

Note: Steps a and b of the following execution sequence may occur out of order in relation to steps c
through i insofar as the rounding of Register A0 and the storing of the "environment" into the CSF
save area in central memory are concerned.

CONTROL DATA PRIVATE

CONTROL DATA CYBER 180 MIGDS DOC aprnro0
: ' DATE July 15, 1988
Architectural Design and Control PAGE 2126

The associated program interruption shall occur as described in paragraph 2.8.1 of this specification,
and the execution of this instruction shall be inhibited (except that portions of the environment may
be stored into the Stack Frame Save Area and A0 may be rounded up before the instruction is
inhibited) when any of the following exceptions are recorded:

Instruction Specification Error when the value of the 4 bits in positions 56 through 59 of Register
X0 Right is less than 2.

Invalid Segment

Access Violation

Address Specification Error
Page Table Search Without Find

See Appendix I for these four exception conditions.

In the absence of a program interruption, the following sequence of events shall accomplish the
execution of this instruction:

Operation Remarks
a. (A0) + n-1 to A0, 0 modulo n result* Round DSP upward
b. "Environment" to Stack Frame Save Area See paragraph 2.5.4.1
c. Copy P Left to X0 Left Copy Caller’s ID
d. Store rounded (A0), incremented by 8 Update TOS pointer
times the number of save area words, to See paragraph 2.5.2.24
Exchange Package per initial P Ring Number
e. (P) plus 8*Q, 0 modulo 8, to P Intra-ring, Intra-segment Call
f. Copy (Aj) to A3 and (Ak) to A4 Pass Parameters. When k is
' 0-3, the final contents of A4
shall be undefined with respect
to which A register is
transferred into A4. When j is
0-2, the final contents of A3
shall be undefined with
respect to which A register is
transferred into A3.
g. Copy rounded (A0) to A2 and clear DSP from step a to PSA
pointer.
Critical Frame Flag : Clear Flag.
h. Copy rounded (A0), incremented by 8 times the TOS to CSF pointer and DSP
number of save area words, to A0 and Al)
i Clear On Condition Flag Clear OCF

* In step a, n is any multiple of 8 greater than zero and less than 272.

CONTROL DATA PRIVATE

AN

MJU/
)

O

DOC. ARH1700
CONTROL DATA CYBER 180 MIGDS REV. AE
: DATE December 19, 1989
Architectural Design and Control PAGE 2-127

2.6.1.4 Return

04jk (Ref. 117)

Operation: This instruction shall reestablish the Stack Frame and "environment’ of a previous
procedure as defined by the Previous Save Area Pointer.

The j and k fields from this instruction shall not be translated. Thus, their values shall have no effect
on the execution of this instruction for which all execution parameters shall be implicit.

The Stack Frame Save Area from which a previous procedure’s "environment" shall be obtained, shall
be addressed by means of the PVA initially contained in Register A2. (See 2.9.4 for SFSA Pushdown
description.) The format of the previous procedure’s Stack Frame Save Area shall conform to the
description contained in paragraph 2.5.4.1 of this specification. This operation of loading the
environment does not include loading or altering either MCR or UCR.

Virtual machine support shall be provided by the execution of this instruction to the extent previously
described in paragraph 2.5.6 of this specification.

The processor may assume a 33-word Stack Frame Save Area when prevalidating the previous SFSA.
This has the effect of allowing a Page Fault interrupt to occur at points where an SFSA actually
terminates within a page but a maximum frame extends across the page boundary. This also has the
effect of allowing an Address Specification Error interrupt to occur at points where an SFSA actually
terminates below 232=1 but a maximum frame extends beyond 232=1. The actual load of the SFSA
during instruction execution shall only load the SFSA as described by the SFSA Descriptor.

- The associated program interruption shall occur as described in paragraph 2.8.1 of this specification,

and the execution of this instruction shall be inhibited or completed as specified when any of the
following exceptions are recorded:

Environment Specification Error

The value of thefield designating the last A Register to be loaded, as contained in the previous Stack
Frame Save Area Descriptor, is less than 2.*

Final (A0) would not equal initial (A2). This test may but need not be implemented.
Previous Save Area VMID mismatch with VMCL is per paragraph 2.5.6.+

Attempt to execute a Return instruction not having Global Privilege to a Previous Stack Frame Save
Area containing a VMID#0.

Attempt to execute a Return instruction with some data in the SFSA Pushdown but the SFSA is not
accessible in central memory. In this case, the processor may but need not also report the exception
condition which was encountered. If an Address Spec Error, Page Table Search Without Find, Invalid
Segment, or Access Violation is reported along with the Environment Spec Error, the UTP must be
appropriately loaded. Detection of an Environment Spec Error because the SFSA is not accessible
may cause the hardware to leave garbage in the A and X registers and in the TOS pointer for the
target ring. The hardware (including the Service Processor) shall leave the P of the process to which
control was being passed in the P register and shall not leave an A register with a ring number less
than the P ring number.

Outward Call (Inwgrd Return) if final P ring number would be less than initial A2 ring number.}

* This test is not required when the SFSA Descriptor is retrieved from the SFSA Pushdown.
1 This test is not required when the VMID is retrieved from the SFSA Pushdown.
} This test is not required when the P ring number is retrieved from the SFSA Pushdown.

CONTROL DATA PRIVATE

DOC. ARH1700

CONTROL DATA CYBER 180 MIGDS REV. AE

DATE December 19, 1989 .

Architectural Design and Control PAGE 2-128

Critical Frame Flag if the initial state of the Critical Frame Flag is equal to a one.

Invalid Segment

Access Violation

Address Specification Error
Page Table Search Without Find

See Appendix I for these four exception conditions.

In the absence of a program interruption, the following sequence of events shall accomplish the
execution of this instruction:

Operation:

a. Load the "environment" from the Stack Frame Save Area (SFSA) pointed to by the PVA initially
contained in Register A2. The "environment" consists of the following:

P register (64 bits) including Key.
This results in a Branch exit for the RETURN instruction (2.1.3.4).
VMID (4 bits)

Critical Frame Flag and On Condition Flag to be set/cleared as per the Stack Frame
Descriptor (2.5.4.1).

User Mask (16 bits)

Registers A0 through AT as specified in the SFSA Descriptor. As part of this load of the A
register, the larger value of the following shall be transferred to the Ring Number (bits
16-19) of each A register:

1) the ring number of the A register as obtained from the Stack Frame Save Area.
2) the initial ring number of the A2 register.

3) the Rl field contained in the segment descriptor associated with the initial A2.
X registers (64 bits each) as per the SFSA Descriptor.)

b. The ring number of the A registers not loaded in step a shall be unaltered by this instruction
except when step a causes th