
Migration
From NOS to NOS/VE

Tutorial/Usage

<52>
CONTR.0L

DATA

60489503

Migration
From NOS to NOS/VE

Tutorial/U sage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60489503

Manual History

System Version/
Revision PSR Level Date

A 1.0.2/589 October 1983
B 1.1.1/613 June 1984
C 1.1.2/630 March 1985
D 1.1.3/644 September 1985
E 1.1.4/649 January 1986
F 1.2.2/678 June 1987

This revision:

Revision F was published in June 1987. This revision reflects the NOS/VE operating system at
release 1.2.2, PSR level 678. This revision documents the following new software capabilities:

Migration by using tape migration commands

The permanent file transfer facility

Miscellaneous technical and editorial changes and corrections have been made throughout the
manual.

~1983, 1984, 1985, 1986, 1987 by Control Data Corp. All rights reserved.
Printed in the United States of America.

2 Migration From NOS to NOS/VE Revision F

Contents

About This Manual •••••••••••••••••••••• 5

Using SCL and NOS/VE Commands From
a User's Viewpoint

Logging In and Out ••••••••••••••••••••• 1-1

Conventions for Commands, Names, and
Parameters ••••••••••••••••••••••••••• 2-1

Abbreviation Convention for SCL
Commands ••••••••••••••••••••••••• 2-1

Specifying Parameters in SCL
Commands ••••••••••••••••••••••••• 2-1

, Apostrophe for Alphabetic or
Alphanumeric Literals •••••••••••• 2-5

" Quotation Marks for Comments ••••• 2-5
•• Ellipsis for Continuation ••••••• 2-6
Rules for SCL Names •••••••••••••••• 2-6

Overview of the Permanent File
Mechanism ••••••••••••••••••••••••••••

Catalogs •••••••••••••••••••••••••••
File Position ••••••••••••••••••••••
Permanent File Cycles ••••••••••••••
Summary of Simple File References ••

Common NOS/VE Commands •••••• ' •••••••••••

Corresponding NOS-NOS/VE Commands ••
Commands for Transferring Files ••••
Commands for Using Files •••••••••••
Commands for Using File

Permissions ••••••••••••••••••••••
Using File Attributes ••••••••••••••
Interstate Connection Commands •••••
File Connection Commands •••••••••••
Miscellaneous Common Commands ••••••
NOS/VE STATUS Parameter ••••••••••••
CONTEXT Differences ••••••••••••••••
Debugging on NOS and NOS/VE ••••••••
Sort/Merge Differences •••••••••••••

3-1

3-1
3-5
3-7
3-7

4-1

4-1
4-9
4-11

4-16
4-22
4-25
4-27
4-31
4-34
4-35
4-38
4-49

Job Structure •••••••••••••••••••••••••• 5-1

SCL Language Elements •••••••••••••• 5-1
Controlling Job Flow ••••••••••••••• 5-6

Revision F

Using Procedures ••••••••••••••••••••••• 6-1

Procedure Structure •••••••••••••••• 6-1
Creating Procedures in NOS/VE •••••• 6-3
Passing Parameters to Procedures ••• 6-3
Parameter Prompting •••••••••••••••• 6-8
Calling Procedures ••••••••••••••••• 6-9
Displaying the Commands in a

Procedure •••••••••••••••••••••••• 6-10
Summary of NOS and NOS/VE

Procedure Differences •••••••••••• 6-11
Using the NOS/VE Full Screen

Editor •••••••••••••••••••••••••••• 6-12

Compiling, Loading, and Executing
Programs •••••••••••••••••••••••••••••

Compiling FORTRAN Programs •••••••••
Compiling COBOL Programs •••••••••••
Compiling Pascal Programs ••••••••••
Loading and Executing Programs •••••
Invoking the APL System ••••••••••••

7-1

7-1
7-3
7-6
7-7
7-17

Using Object Libraries ••••••••••••••••• 8-1

Using CREATE OBJECT LIBRARy ••••••••
Summary of U;ing Object Libraries ••

Submitting Batch Jobs ••••••••••••••••••

Batch Job Format •••••••••••••••••••
Creating a Batch Job •••••••••••••••
Command to Submit a Batch Job ••••••
Displaying Job Status Information ••
Summary of Submitting Batch Jobs •••

Migrating Files

File Interface Introduction

8-1
8-6

9-1

9-1
9-1
9-3
9-3
9-4

10-1

Sequential File Organization ••••••• 10-1
Byte Addressable File

Organization ••••••••••••••••••••• 10-2
Indexed Sequential File

Organization ••••••••••••••••••••• 10-3
Direct Access File Organization •••• 10-4
NOS/VE Record Types •••••••••••••••• 10-6
File Attributes •••••••••••••••••••• 10-7
File Attribute Defaults Used by

FORTRAN Programs ••••••••••••••••• 10-16
File Attribute Defaults Used by

COBOL Programs ••••••••••••••••••• 10-20

Contents 3.

General Facilities for Migrating
Files

Overview •••••••••••••••••••••••••••
GET FILE (GETF) and REPLACE_FILE

('RE:PF) •••••••••••••••••••••••••••
SCU Conversion Commands ••••••••••••
The Permanent File Transfer

11-1

11-1

11-2
11-3

Facility (PTF) ••••••••••••••••••• 11-3
File Management Utility (FMU) •••••• 11-5
Migrating COBOL Records •••••••••••• 11-18
Predefined Collation Tables •••••••• 11-29

FORTRAN and COBOL File Migration Aids ••• 12-1

FORTRAN File Migration Aid ••••••••• 12-1
COBOL File Migration Aid ••••••••••• 12-29
Migrating Tape Files ••••••••••••••• 12-53

Migrating Programs

Approaching COBOL and FORTRAN Program
Migration •••••••••••••••••••••••••••• 13-1

Similarities Between NOS and
NOS/VE Compilers ••••••••••••••••• 13-1

Major Hardware Differences ••••••••• 13-1
Using Dual State ••••••••••••••••••• 13-1
Migration Methods for COBOL and

FORTRAN Programs ••••••••••••••••• 13-2

Migrating FORTRAN Programs ••••••••••••• 14-1

General FORTRAN Guidelines ••••••••• 14-1
CYBER Record Manager ••••••••••••••• 14-2
FORTRAN Feature Differences •••••••• 14-15

Migrating COBOL Programs ••••••••••••••• 15-1

Differences in Statements,
Clauses, and Sections •••••••••••• 15-1

Differences Relating to Character
and Integer Data ••••••••••••••••• 15-5

Differences Relating to Files •••••• 15-9
Compiler Call •••••••••••••••••••••• 15-11

• 4 Migration From NOS to NOS/VE

Differences for Facilities,
Interfaces, and Routines •••••••••

Other Differences ••••••••••••••••••

Migrating APL Workspaces •••••••••••••••

Converting APL2 Workspaces and
Files •••••••••••••••••••••••••••••

File-Related Differences •••••••••••
Workspace Constraints
Discontinued Features ••••••••••••••
Special Functions ••••••••••••••••••
New Features •••••••••••••••••••••••
Other Changes ••••••••••••••••••••••

15-19
15-21

16-1

16-1
16-2
16-2
16-2
16-3
16-3
16-4

Migrating Pascal Programs •••••••••••••• 17-1

Predefined Routines •••••••••••••••• 17-1
Segmented File Operations •••••••••• 17-1
Type ALFA •••••••••••••••••••••••••• 17-1
EXTERNAL Directive ••••••••••••••••• 17-1
Compiler Directives •••••••••••••••• 17-2
Value Initialization ••••••••••••••• 17-2
Strings •••••••••••••••••••••••••••• 17-2
Collating Sequence ••••••••••••••••• 17-2
PASCAL Command ••••••••••••••••••••• 17-3

Appendixes

Glossary for NOS/VE Use A-I

Related Manuals •••••••••••••••••••••••• B-1

Character Sets and Collating
Sequences •••••••••••••••••••••••••••• C-l

Unsupported ANSI COBOL Features •••••••• D-l

FORTRAN Default FIT Field Values E-l

NOS and NOS/VE Similarities/
Differences Summary •••••••••••••••••• F-l

Index ••••••••••••••••••••••••••••••• Index- 1

Revision F

About This Manual

Aud ience •• 5

Organization •••.•••.•.•••...••••...•••••..••.•.•••.•••••.•••.•.•...•.•....•......•.•.•.... 5

Submitting Comments

In Case of Trouble

...
..

6

7

Conventions •........••••.•..••••••..•••....•.•.•••..••......•.•••••.................•..... 7

About This Manual

This manual is intended to help you migrate your files and programs from a CYBER computer I
operating under the CONTROL DATA® Network Operating System (NOS) to a CYBER 180 computer
operating under the CDC® Network Operating System/Virtual Environment (NOS/VE) executing in the
dual state configuration. Dual state NOS/VE has a NOS front end. Migrating refers to the
process of transferring files from NOS to NOS/VE and changing the files or program source code so
that they will \wrk on NOS/VE.

The manual provides an overview of migration requirements and resources available for migration.
The kinds of information provided are:

Detailed information about the differences between COBOL and FORTRAN on NOS and NOS/VE

Detailed information about file structure differences on the two systems

An overview of NOS/VE facilities available for migrating files and examples of using some of
the facilities

Simple explanations of NOS/VE features and command language essential in starting to migrate
applications

Audience

This manual assumes that you are a programmer who is familiar with NOS. Also, you have COBOL or
FORTRAN applications running on NOS that you wish to migrate to NOS/VE. For any feature
discussed about COBOL, FORTRAN, or files in general, you are assumed to be familiar with the
feature on NOS.

This manual assumes that you have NOS/VE manuals available. The related manuals diagram on the
back of the title page shows NOS/VE manuals that you might need. For a complete list of NOS/VE
publications and information on how to order them, see the NOS/VE System Information Manual (the
default online manual for the EXPLAIN command).

Organization
This manual focuses on information that is important in migrating files and programs. The
information in the manual logically divides into three major parts: using the NOS/VE System
Command Language (SCL) and NOS/VE commands from a NOS user's viewpoint, migrating files, and
migrating programs. The information in the chapters is interdependent. You might actually want
to look over the information on migrating programs first; however, some explanations in those
chapters depend on your familiarity with background information about NOS/VE files provided in
preceding chapters. The manual organizes information as follows:

Using Sr.L Commands from a NOS User's Viewpoint

These chapters provide information about using NOS/VE commands. Chapter 1 describes
logging in and out. Chapter 2 discusses SCL conventions for commands, for SCL names, and
for specifying parameters in SCL commands. Chapter 3 gives an overview of the permanent
file mechanism to help you establish and locate files on NOS/VE. Chapter 4 indicates
similar NOS and NOS/VE commands and discusses commonly used NOS/VE commands. Chapters 5
through 9 present more in-depth information about SCL commands and concepts. Topics
covered in these chapters include SCL job structure; SCL procedures; compiling, loading,
and executing programs under NOS/VE; NOS/VE object libraries; and batch job submission.

Revision F About This Manual 5

I

Migrating Files

These chapters focus on handling files. Chapter 10 indicates the differences in NOS and
NOS/VE file organizations and record types, and provides an introduction to the NOS/VE
file interface. Chapter 11 discusses general NOS/VE facilities that migrate files.
Chapter 12 describes the FORTRAN and COBOL File Migration Aid.

Migrating Programs

These chapters deal directly with coding changes required to migrate a program. Chapter
13 discusses ways to approach FORTRAN or COBOL program migration. Chapter 14 discusses
migrating FORTRAN programs. Chapter 15 discusses migrating COBOL programs. Chapter 16
discusses migrating APL workspaces. Chapter 17 discusses migrating Pascal programs.

Additional information is available in the following appendixes:

A. A glossary of terms relating to NOS/VE usage.

B. Character Sets and Collating Sequences

Lists all characters in the 7-bit ASCII character set and lists predefined collating
sequences available on NOS/VE.

C. NOS and NOS/VE Similarities/Differences Summary

Lists computer system differences for the computer systems supporting only NOS and the
dual-state systems supporting both NOS and NOS/VE.

D. Unsupported ANSI COBOL Features

Lists features described in ANSI 74 COBOL Standard but not implemented in NOS/VE COBOL.

E. FORTRAN Default FIT Field Values

Submitting Comments

The last page of this manual is a comment sheet. Please use this comment sheet to give us your
opinion of the manual's usability, to suggest specific improvements, and to report technical or
typographical errors. If the comment sheet has already been used, you can mail your comments to:

Control Data Corporation
Technology and Publications Division
P. O. Box 3492
Sunnyvale, CA 94088-3492

Please include this information with your comments:

The manual title, publication number, and revision level (for this manual, Migration From NOS
to NOS/VE Tutorial/Usage, 60489503 F)

Your system's PSR level (if you know it)

Your name, your company's name and address, your work phone number, and whether you want a
reply.

Also, if you have access to SOLVER, the CDC online facility for reporting problems, you can use
it to submit comments about this manual. When SOLVER prompts you for a product identifier for
your report, specify FA8.

6 Migration From NOS to NOS/VE Revision F

In Case of Trouble

Control Data's Central Software Support maintains a hotline to assist you if you have trouble
using our products. If you need help beyond that provided in the documentation or find that the
product does not perform as described, call us at one of the following numbers and a support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address questions about the physical
,packaging and/or distribution of printed manuals to Literature and Distribution Services at the
following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee, call (612) 292-2100.

Conventions
UPPERCASE

lowercase

Revision F

In command and statement formats, uppercase indicates words or keywords that must
appear exactly as shown. Uppercase is often used in examples of NOS control
statements.

In command and statement formats, lowercase indicates generic terms that represent
the words or symbols that you supply. Lowercase is often used in examples of NOS/VE
commands.

About This Manual 7 G

Using SCL and NOS/VE Commands From a
NOS User's Viewpoint

Chapter 1. Logging In and Out

Chapter 2. Conventions for Commands, Names, and Parameters

Chapter 3. Overview of the Permanent F:f.le Mechanism

Chapter 4. Common NOS/VE Commands

Chapter 5. Job Structure

Chapter 6. Using Procedures

Chapter 7. Compiling, Loading, and Executing Programs

Chapter 8. Using Object Libraries

Chapter 9. Submitting Batch Jobs

Logging In and Out 1

Logging In and Out 1

Sf s -s it

Your dual state CYBER computer can process with either NOS or NOS/VE. You can directly log in to I
either operating system by entering your usual family, user name, and so forth. Then specify the
application you want:

For NOS, specify: IAF

For NOS/VE, specify: VEIAF

You can change processing from one operating system to another. When you change, the system
terminates processing with one system and initializes processing with the other.

To switch from NOS to NOS/VE, specify:

The system associates your current NOS family
and user name with your NOS/VE job.

To terminate processing on NOS/VE or to switch to
processing on NOS, first you always specify:

The system then prompts for application. The choices are:

To begin processing on NOS, specify:

The system associates your current NOS family
and user name with your NOS/VE job.

To terminate processing, specify:

To log in to NOS with a different user name, specify:

To begin a new session on NOS/VE, specify:

HELLO, VEIAF

LOGOUT

IAF

BYE

HELLO

VEIAF

All commands can be specified in either uppercase or lowercase letters. To the system, the
commands:

logout and LOGOUT

are equivalent. This manual shows commands in uppercase letters to make them stand out in text.

At first, you may want to use your familiar text editor and prepare your NOS/VE programs,
procedures, and batch jobs on NOS and transfer them to NOS/VE for processing. If your job has
errors, you can return to NOS to make corrections. and transfer the job file back to NOS/VE to run
again. Special commands for transferring text files from one system to the other are available on
NOS/VE. These commands are described in the common NOS/VE commands discussion and in the
transferring files discussion.

There is one caution about switching from NOS to NOS/VE. Before logging in to NOS/VE, make
permanent all NOS files that you want to keep (use the SAVE, REPLACE, or DEFINE commands). All
your local files on NOS disappear when you login to NOS/VE. You can transfer only permanent files
(either direct or indirect access files) to NOS/VE.

Optionally, you can prepare or edit program, procedure, and job files on NOS/VE by using the Full
Screen Editor for NOS/VE. For information about the editor, see the File Editor Tutorial/Usage I
manual.

Revision F Logging In and Out 1-1

Conventions for Commands, Names, and Parameters

Abbreviation Convention for SCL Commands 2-1

Specifying Parameters in SCL Commands ••• 2-1
Space or Comma as Parameter Separator ••• 2-2
Identifying Parameters by Name or Position •• 2-2
Abbreviation Convention for Parameters •• 2-3
Parameters as Value Lists ..•.••.•.••.•••••.••••••..•.•.••••••..••.••••..•••..•.....••• 2-4
Specifying Parameters as a Range •• 2-4
Parameter Value Types ••• 2-5

, Apostrophe for Alphabetic or Alphanumeric Literals •••••••••••••••••••••••••••••••••••••• 2-5

" Quotation Marks for Comments 2-5

•• Ellipsis for Continuation •• 2-6

Rules for seL Names ••••••••••.••••••••••••••••••••••••.•••••••••••.•.••••••••••••••••••••• 2-6

2

Conventions for Commands, Names, and Parameters 2

.. n 5' ; § -

The System Command Language (SCL) controls job processing on NOS/VE. All NOS/VE commands follow
SCL conventions. This guide introduces SCL conventions as follows:

Abbreviation convention for SCL commands

Specifying parameters in SCL commands

, Apostrophe for alphabetic or alphanumeric literals (called strings)

" Quotation marks for comments

•• Ellipsis for continuation

Rules for SCL names (file names, variable names, and so forth)

Abbreviation Convention for SCL Commands
SCL commands have a verb-object structure. A command begins with a verb that indicates the
action. The object or object and modifiers follow the verb. Commonly used verbs are:

CHANGE
CREATE
DISPLAY
SET

Examples of commands are:

COpy FILE
SET FILE ATTRIBUTE or SET FILE ATTRIBUTES (Both singular and plural forms are valid.)

The underline character in the command separates the words in the command. Commands can be up to
31 characters in length.

The convention (with a few exceptions) for abbreviating commands is to use the first three
characters of the verb and the first character of each additional word. Examples of commands and
valid abbreviations are:

COpy FILE
CREATE FILE
CREATE~INTERSTATE CONNECTION
SET_FILE_ATTRIBUTE

COPF
CREF
CREIC
SETFA

Specifying Parameters in SCL Commands

Like NOS commands, NOS/VE commands consist of the command name and parameters. The following
equivalent commands show differences between NOS and NOS/VE commands:

NOS

ATTACH,FILEA/M=W.

Revision F

NOS/VE

attach file, $user.filea, access mode=(read write execute) I
attach-file $user.filea access mode=(read write execute)
attach-file file=$user.filea access_mode=(read,write,execute)

Conventions for Commands, Names, and Parameters 2-1

I

I

The commands attach your own permanent file FILEA with read, write, and execute permission. The
differences are:

Either a space or a comma can be a parameter separator.

Either position or optional name can identify a parameter.

A parameter can be a list of values.

A file name becomes a file reference on NOS/VE.

A period terminator is not used on seL commands.

Space or Comma as Parameter Separator

Either a space or a comma can separate parameters. One or more spaces are equivalent to a
space. Optionally, a comma can he preceded or followed by a space or spaces. The following
commands are equivalent:

/attach_file, file=$user.filea,access_mode=(read,write) Uses commas.

/attach_file, file=$user.filea, access_mode=(read, write) Uses commas and spaces.

file=$user.filea access_mode=(read write) Uses spaces.

Because spaces are separators, they are not ignored as they are in NOS commands. For example,
consider equivalent commands that request the sum of 12 + 34:

NOS command
Results:

NOS/VE command
Results:

NOS/VE command
Results:

/DISPLAY, 12 + 34.
46 56B

/display_value 12 + 34
-- ERROR -- Expecting value, found '+' for parameter OUTPUT.

/display value 12+34
46 -

On NOS, the spaces are ignored; on NOS/VE, the spaces separate parameters and result in an error
in the first NOS/VE example.

Identifying Parameters by Name or Position

You can specify parameters with or without the parameter name. Equivalent examples of the
GET FILE (GETF) command show both ways. (The commands obtain a copy of a NOS permanent file
NOSFILE and transfer it to NOS/VE as file NVEFILE.)

/get file to=nvefile from=nosfile
/get=file nvefile nosfile

Using names TO and FROM
Using position

When you specify parameters by position, the parameters are position (order) dependent, as
indicated in the format of the command. When you specify the name, position does not matter. A
parameter name, however, can mark a position so that you can list subsequent parameters in the
positional format. More examples of the GETF command explain these situations.

2-2 Migration From NOS to NOS/VE Revision F

The first five parameters of GET FILE are:

TO or T
FROM or F
DATA CONVERSION or DC
USER- or U
PASSWORD or PW

You can use either the full parameter name or the abbreviation in the command.

The GET_FILE (GETF) command format with the first five parameter positions is as follows:

Parameter
Position---) 1 2 3 4 5
Format: GETF T=nosvefile F=nosfile DC=option U=owner PW=pswd

The following three forms of the GETF command are equivalent: They transfer file FILEA of user
OWNERX to your working area on NOS/VE:

Example A.
Example B.
Example C.

/get file to=filea user=ownerx password=okay
/get-file filea",ownerx,okay
/get=file filea user=ownerx okay

Example A illustrates the parameter name specification.

Example B illustrates the positional specification. FILEA designates the value of the first
parameter. The first comma following FILEA is a parameter separator. The next two commas
indicate omitted parameters (parameters 2 and 3); therefore, OWNERX is the value of parameter 4
(USER). OKAY is the value of parameter 5.

Example C illustrates using mixed parameter name and positional form. FILEA is the value of
parameter 1. The U parameter name positions at parameter 4 so that parameter 5 can follow with
no parameter name specified.

Abbreviation Convention for Parameters

Parameters have a complete name and an abbreviated form. In the complete name, the underline
character () separates words in the name. Usually, the abbreviation is the first letters of
each word in the parameter name. Examples:

Full Parameter Name Abbreviation

ACCESS MODE AM
FILE F
TERMINATION ERROR LEVEL TEL - -

When specifying a parameter, you can specify either the complete or abbreviated form.

The following pairs of command specifications are equivalent:

/attach file file=$user.transaction file access mode=(read write)
/attach=file f=$user.transaction_file am=(read write)

Attaches your permanent file TRANSACTION FILE with access to read and write to the file.

Revision F Conventions for Commands, Names, and Parameters 2-3.

I /fortran input=$user.sourcfil binary object=binfile
/fortran i=$user.sourcfil b=binfile -

Calls the FORTRAN compiler and specifies the source code to be read from file your
permanent file SOURCFIL and the object code to be written to local file BINFILE.

Parameters as Value Lists

A parameter can specify a single value or a list of values (called a value list). The value list
can be a series of values separated by a comma or a space and enclosed in parentheses. For
example, the DETACH_FILE command has the following form:

I DETACH FILE FILE=file or DETACH FILE FILE=(list of files)

I
The following example shows the value list consisting of files: FILEl, FILE2,FILE3 and FILE4:

/detach_file file=(filel,file2,file3,file4)

/detach_file (filel,file2,file3,file4)

Name identifies the parameter.

Position identifies the parameter.

The ACCESS MODE (AM) parameter of the ATTACH FILE command can specify a list of values to gain
desired access. The possible modes are: -

READ
APPEND
MODIFY
EXECUTE

SHORTEN
WRITE
ALL

To attach your permanent file FILEA with read and write permission, specify the AM parameter as
follows:

o /attach_file file=$user.filea access_mode=(read write)

The list must be enclosed in parentheses.

Specifying Parameters as a Range

Some parameters can be specified as a range of values. The form for specifying range is:

n •• m

The n indicates the lowest value, the ellipsis (••) indicates the range, and m indicates the
highest value.

For example, the command to pass a range of numbers to a FORTRAN program could appear as follows
(the object code is on file LGO):

LGO 1000 •• 1999

This example assumes that the program is coded with parameter interface subroutines to
obtain and use the numbers 1000 through 1999 in the run. (See the discussion on Using
the NOS/VE Parameter Interface Subprograms in chapter 14 for more information.)

2-4 Migration From NOS to NOS/VE Revision F

Parameter Value Types

The System Command Language (SCL) ensures that each parameter is set to its proper type. The
common types of values for parameters are:

Name or key

Integer

String

Example

ALL
N2000

100
-5000

'This is a string'
'Names don"t have apostrophes, strings do'

Boolean

File

YES
TRUE
ON

NO
FALSE
OFF

MY FILE
$USER.MY FILE
$LOCAL.MY FILE
(File references are described in chapter 3.)

, Apostrophe for Alphabetic or Alphanumeric Literals

Apostrophes enclose alphabetic or alphanumeric literals in SCL commands. In SCL terminology,
these literals are called strings. Examples are:

/put_Iine ' This is a string.'

/put_Iine ' Use two apostrophes " within a string.'

Note that within a string, case is significant. That is, uppercase letters are not equivalent to
lowercase letters (an A is not an a).

" Quotation Marks for Comments

Quotation marks enclose comments in SCL command lines. An end-of-line also terminates a comment.

Comments can appear anywhere within a command where a space would be allowed. For example:

fortran input=infile "Diagnosing non-ANSI usage" list=listfil

Comments can also appear on a separate line. For example:

"This is a comment line

Revision F Conventions for Commands, Names, and Parameters 2-5.

I

I

· . Ellipsis for Continuation

An ellipsis (two or more contiguous periods ••) at the end of a command indicates continuation.
A command can be any length and can include several physical lines on your terminal. An ellipsis
at the end of a physical line specifies continuation to the next line. This applies to comment
lines as well. For example, the following two lines:

"This is ••
a comment line.

are the same as:

"This is a comment line.

For example, the SETFA (SET FILE ATTRIBUTE) command for file LOGFILE specifying a separate
parameter on each line appe~rs ~s follows:

NOTE

/set file attributes file=logfile ••
!file ~ontent=list "Character data with carriage control" ••
/file-organization=sequential
/stat~s=logstat

Ellipsis also indicates a range of values (discussed earlier in this chapter).

Rules for SCL Names
The names used for files, variables, and procedures in SCL commands:

- Must not exceed 31 characters in length

- Can be made from the following characters:

Digits:
Letters:
Other characters:

o through 9
a through z or A through Z

$ @ [\] ~ ,

- Must begin with a letter or one of the following: II $ @

The system does not distinguish between corresponding uppercase and lowercase letters in file,
procedure, and variable names. That is, an A is also an a.

NOTE

Names of special system procedures, variables, files, or functions (including user-written
functions) begin with the character $. System names usually have $ for the fourth character.
User-defined variable names must not begin with $.

2-6 Migration From NOS to NOS/VE Revision F

Overview of the Permanent File Mechanism

Ca ta logs •••.••••••••••••••••••••••
Using $LOCAL ••

,Using $USER •••
Determining and Changing the Working Catalog ••
Catalog Assumed for a File Opened by a FORTRAN or COBOL Program •••••••••••••••••••••••
Referencing Files Owned by Others •••
Su bca talogs .•..•••••..••.•.••••.•••...••..•.••..••.•••••.••••••.••...••...•.•••..•..••

File Position •••
Setting File Position With a File Reference •••
Setting File Position With the ATTACH FILE Command ••••••••••••••••••••••••••••••••••••
Optional File Position Specifiers ••• ~ •••

Permanent File Cycles •.•••..•.•.•.••..•.•••••••••••••••••.•••••••..•••••.•••..•..•••..••••

Summary of Simple File References •••

3

3-1
3-2
3-2
3-3
3-3
3-4
3-4

3-5
3-5
3-6
3-6

3-7

3-7

Overview of the Permanent File Mechanism
c .. ;:,.:

The NOS/VE permanent file mechanism differs from that of NOS. One difference is that the NOS
concept of direct and indirect access files does not apply to NOS/VE. Also, NOS/VE organizes
files hierarchically into catalogs. A catalog is a collection of files and other catalogs.

3

To reference a NOS/VE file, you use a file reference. A file reference can include a family
name, user name, optional catalog name or names, file name, cycle, and file position. These are
strung into a file reference like this:

:family.user.catalog.file.cycle.position

This manual assumes the use of a default family name, so the family name is not discussed. If
you are using a family in NOS/VE that is different from the family you are using in NOS, you
might need to use the SET LINK ATTRIBUTE command. The SCL System Interface Usage manual
discusses this command. Also,-some SCL commands, such as COpy FILE, can reference files having a
family name that is different from the one you logged in with.- Make sure that the references to
these files include the family name.

The topics discussed are:

Catalogs (every file is in a catalog)

File Position (usually at $BOlj you occasionally need to designate $EOl or $ASIS)

Permanent File Cycles (versions of a file)

Summary of Simple File References

CATALOGS
Each NOS/VE file belongs to a catalog. Two catalogs are important to remember: local and
master. Your local catalog contains temporary files and is referenced by using $LOCAL in place
of a catalog name in a file reference.

Your master catalog contains all of your permanent files and subcatalogs. The name of your
master catalog is your user name. You can also reference your master catalog by using $USER in
place of a catalog name in a file reference.

When processing on NOS/VE, you must be aware of your working catalog. The working catalog is the
catalog used if you don't specify a catalog on a file reference. The default working catalog is
$LOCAL when you log in. All the examples in this manual assume that the working catalog is
$LOCAL.

The discussion of catalogs deals with the following topics:

Using $LOCAL

Using $USER

Determining and Changing the Horking Catalog

Catalog Assumed for a File Opened by a COBOL or FORTRAN Program

Referencing Files Owned by Others

Subcatalogs

Revision F Overview of the Permanent File Mechanism 3-1

I

Using $LOCAL

$LOCAL is the default working catalog; that is, $LOCAL is the working catalog when you log in to
NOS/VE. You can change the working catalog by using the SET_WORKING CATALOG command, which is
discussed later.

If $LOCAL is the working catalog, any file you create in your job is assigned to catalog $LOCAL
unless you specify that it be assigned to another catalog. Files in catalog $LOCAL are temporary

I files; they are deleted when you log out or detach them.

The following example uses two local files. A FORTRAN command specifies compilation of a program
on file INFILE and designates a list file FTNOUT. The command appears as follows:

I /fortran input=infile list=ftnout

If $LOCAL is the working catalog, $LOCAL does not have to appear in a file reference. If the
catalog name appears in the file reference, it appears as follows: $LOCAL.INFILE and
$LOCAL.FTNOUT.

Using $USER

Permanent files are stored in a user catalog associated with your user name. The catalog
designation $USER specifies your user catalog, called your master catalog. The format of the file
reference for files in your master catalog is:

$USER.filename

For example, assume that you want to copy a permanent file MYFILE from your catalog to the
terminal screen. The command is:

I /copy_file input=$user.myfile

If permanent file MYFILE is a FORTRAN program that you want compiled, you can specify it in a
FORTRAN command as follows:

I /fortran input=$user.myfile

I

Both catalog and file name are required in this file reference because MYFILE is known only in
your permanent file catalog and $LOCAL is the working catalog.

However, if you do not want to type $USER every time you use the file, you can attach the file.
The attach process enters the file name (either the local file name you specify or the permanent
file name by default) in catalog $LOCAL. Subsequent use of the file requires that you type only
its local file name.

The following commands attach permanent file MYFILE and specify the file for FORTRAN compilation:

/attach_file file=$user.myfile

/fortran input=myfile

3-2 Migration From NOS to NOS/VE Revision F

Determining and Changing the Working Catalog

The working catalog is the catalog used if you do not specify a catalog on a file reference. To
find out which catalog is your working catalog, use the $CATALOG function with the DISPLAY VALUE
(DISV) command. For example:

/display_value value=$catalog

NOTE

If the catalog is $USER to you, the system shows the name with your family and username and not
as $USER.

To change the working catalog, use the SET_WORKING_CATALOG (SETWC) command. For example:

/set_working_catalog catalog=$user Sets the working catalog to your master catalog.

/set_working_catalog catalog=$local Sets the working catalog to $LOCAL.

SETWC any-catalog Sets the working catalog to the specified catalog.

If you change the working catalog to a catalog other than $LOCAL, the file reference for a file
in $LOCAL is as follows:

$LOCAL.filename

Catalog Assumed for a File Opened by a FORTRAN or COBOL Program

Catalog $LOCAL is assumed for any file opened by a COBOL or FORTRAN program, even though you set
another working catalog. Therefore, the file opened must be attached to $LOCAL if it does not
reside there.

For example, if the working catalog is $USER, the following ATTACH_FILE (ATTF) command attaches
file TRANFILE in your master catalog to $LOCAL:

/attach file file=tranfile ••
/ access mode=(read write)

•• / share_iode=(read write)

The access modes specify what operations you are allowed to do on a file. The share modes
specify what operations other jobs can do to a file while you have it attached. Both have values
from the list:

READ
APPEND
MODIFY
EXECUTE
SHORTEN
WRITE
ALL
NONE

Revision F Overview of the Permanent File Mechanism 3-3.

Referencing Files Owned by Others

To use files of other owners, you need to specify their user name for the catalog name. The
format of the file reference for another owner's files (assuming the other owner is in your
family) is:

.username.filename

For example, the file reference to specify user OWNERl's file PROGA as an input file appears as
follows:

I /fortran input=.ownerl.proga

NOTE

This format is also acceptable for files in your own master catalog. Actually, SCL converts the
$USER notation to this form.

Subcatalogs

Under NOS/VE, catalogs can have subordinate catalogs. The following diagram indicates a possible
I catalog and file structure for user OWNERl.

+----------+
I Master I

+--------------------+ Catalog +--------------------+
I OWNERl I
+-+------+-+

+------+-------+
I Subcatalog I

SUBl
+------+-------+

I
+------+-------+
I File \

PROCFILEA
+--------------+

I I +--+ +---+
I I +------+----+ +---+------+

I File I
PROGFILl I File I

DATAFIL
+-----------+ +----------+

+------+-------+
I Subcatalog I

SUB2
+------+-------+

I
+------+-------+
I Subcatalog I

COLLECTION
+------+-------+

I
and so forth

A reference to file PROCFILEA must indicate the catalogs associated with the file. In other
words, the reference provides a path to the file. For example:

I
/attach_file file=.ownerl.subl.procfilea Attaches PROCFILEA in subcatalog SUBl in user

catalog OWNERl of your family.

See the SCL Language Definition Usage manual and the SCL System Interface Usage manual for
detailed information about creating and using catalogs.

3-4 Migration From NOS to NOS/VE Revision F

File Position
On NOS, you often expect files to be at end-of-information (EOI). NOS/VE, however, usually
rewinds files when it opens them, which it does nearly every time a new command operates on a
file--not just when an application specifies opening the file. This open position concept is
important to understanding file position on NOS/VE. The usual open position is
beginning-of-information (BOI); therefore, the file is usually positioned at BOI for every new
command operating on it.

Here is an example comparing NOS and NOS/VE.
file Z. The commands for NOS are:

REWIND,A,B,C,Z.
COPY,A,Z.
COPY,B,Z.
COPY,C,Z.

Assume that you want to copy files A, B, and C to

The REWIND command positions files A, B, C, and Z at BOI. Because NOS never rewinds file Z, Z is
at EOI when the second and third COpy commands are executed.

NOS/VE, however, rewinds all files (A, B, C, and Z) before each copy operation unless you
explicitly prevent rewinding by controlling the open position. If you want a file positioned at
end-of-information before a copy, you must specify positioning to EOI.

I

The two ways to specify file position on an open operation are: by specifying file position in a
file reference and by using the ATTACH FILE (ATTF) command. Also, NOS/VE has several file I
positions that you can specify in these situations. The discussion of file position is divided
into the following topics:

Setting File Position With a File Reference

Setting File Position With the ATTACH FILE Command

Optional File Position Specifiers ($EOI, $BOI, $ASIS)

NOTE

File OUTPUT is automatically positioned at end-of-information on an open operation.

Setting File Position With a File Reference

The $EOI specification in a file reference positions the file at end-of-information. The
following command series uses $EOI:

/copy file
/copy-file
/copy=file

input=a
input=b
input=c

output=z.$boi
output=z.$eoi
output=z.$eoi

The second and third copies specify that file Z be positioned at end-of-information before the
operation. A period (.) separates the $EOI (or $BOI) specifier from the preceding item in the
file reference.

For an example of putting mUltiple program binaries on a single file, assume that you have
separate compilations for a main program and a subprogram but that you want them on the same
binary file. The commands are:

I

/fortran
/fortran

input=mainprog binary object=lgo I
input=subprog binary_object=lgo.$eoi

Revision F Overview of the Permanent File Mechanism 3-5

For another example, assume that you want all your program listings to go to a single listing
file. The commands are:

/fortran
/fortran

input=progl
input=prog2

list=listfil
list=listfil.$eoi

In each of these situations, the binary file and the listing file would have been rewound without
the $EOI specification.

Setting File Position With the ATTACH_FILE Command

You use an ATTACH FILE (ATTF) command to set the OPEN POSITION (OP) attribute to
end-of-information ($EOI). This parameter determines file position on an open operation unless
that position is otherwise specified.

For example, the following ATTACH FILE command determines the position for all three copies:

/attach file file=$user.z open-position=$eoi (-
/copy file input=a output=z (------------------
/copy-file input=b output=z (------------------
/copy-file input=c output=z (------------------
/copy=file input=z.$boi (------------------------

Optional File Position Specifiers

Sets file attribute for file Z.
Copies file A to file Z.
Copies file B to file Z.
Copies file C to file Z.
Copies the entire file Z to OUTPUT.

File position can be specified on both the file reference and ATTACH FILE (ATTF) command. The
following positions can be specified:

$BOI

$ASIS

$EOI

Position to beginning of information.

No file positioning.

Position to end-of-information.

These positions designate the file position when the file is opened.

For example, a file reference for the list file for FORTRAN compilation output specifying no file
positioning appears as follows:

/fortran input=infile list=listfile.$asis

• 3-6 Migration From NOS to NOSjVE Revision F

Permanent File Cycles

On NOS/VE, a permanent file can have different versions. These versions are known as cycles of a
file. A cycle is designated by a cycle number or a cycle reference (such as $HIGH for the latest
and $LOW for the earliest cycle). A cycle number can be an integer from 1 through 999.

When you specify a file reference without specifying cycle, the system usually assumes the
highest cycle ($HIGH) except when deleting a file, where $LOW is assumed.

For detailed information about using file cycles, see the SCL Language Definition Usage manual.

Summary of Simple File References

These formats assume that the default working catalog is $LOCAL.

A local file reference has the following format:

filename. file position <-- File position is optional.

A file reference for a permanent file has two forms: (1) files in your catalog and (2) files
owned by others.

1) $USER.filename.cycle.file position <------ Cycle and file position are optional.

2) .username.filename.cycle.file position <-- Cycle and file position are optional.

For more complex file references (that is, specifying family or subcatalogs), see the SCL
Language Definition Usage manual.

Revision F Overview of the Permanent File Mechanism 3-7

I

Common NOS/VE Commands 4

Corresponding NOS-NOS/VE Commands ••• 4-1

COmIIlands for Transferring Files •••.•••••••.•
GET FILE (GETF)

-GET FILE (GETF) Format ••
REPLACE-FILE (REPF) ...

REPLACE_FILE (REPF) Format ••

Commands for Using Files
CREATE FILE (CREF)

CREATE FILE (CREF) Format •••
Implicit Create .•.•..•.••.•.•••.••••...••..•••••••.•.••.•••.••..•...••••••••.•.•••••••
DELETE FILE (DELF) ••

DELETE FILE (DELF) Format
ATTACH FILE (ATTF)

ATTACH FILE (ATTF) Fo rma t •••
Implicit Attach •..••.•...•..•••••...••.••.•...••.•.•.•••••.•.•••..••..••........•••..•
DETACH FILE (DETF)

DETACH FILE (DETF) Format •••
COPY FILE (COPF) ••

COpy FILE (COPF) Format •••
DISPLAY CATALOG (DISC)

DISPLAY CATALOG (DISC) Format •••

Commands for Using File Permissions
CREATE FILE PERMIT (CREFP)

CREATE FILE PERMIT (CREFP) Examples •••
CREATE-FILE-PERMIT (CREFP) Format •••

DELETE FILE PERMIT (DELFP) ••
CHANGE-CATALOG ENTRY (CHACE) •••
DISPLAY CATALOG ENTRY (DISCE)

Using File Attributes
SET FILE ATTRIBUTE (SETFA)

-SET FILE ATTRIBUTE (SETFA) Format •••
CHANGE FILE ATTRIBUTE (CHAFA)

CHANGE FILE ATTRIBUTE (CHAFA) Format ••
DISPLAY FILE ATTRIBUTE (DISFA)

DISPLAY FILE ATTRIBUTE (DISFA) Format •••

Interstate Connection Commands ••
CREATE INTERSTATE CONNECTION (CREIC) ..
EXECUTE INTERSTATE COMMAND (EXEIC) ••
QUIT or-DELETE_INTERSTATE_CONNECTION (DELIC) ..

File Connection Commands ••
Standard Files ..
CREATE_FILE_CONNECTION (CREFC) Format •••
Example of the Dayfile Equivalent •••
Example of Designating Multiple Output Files ••
DELETE FILE CONNECTION (DELFC) ..

DELETE FILE CONNECTION (DELFC) Format •••
DISPLAY FILE CONNECTION (DISFC) ...

DISPLAY FILE CONNECTION (DISFC) Format ••

Miscellaneous Common Commands ...
COLLECT TEXT (COLT) ...

COLLECT TEXT (COLT) Format ••
DISPLAY VALUE (DISV) ••.•••••••••••••••••••••••

DISPLAY VALUE (DISV) Format ...
PUT LINE S (PUTL) ..

-PUT LINES (PUTL) Format •••

4-9
4-9
4-9
4-10
4-11

4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-16

4-16
4-16
4-17
4-17
4-19
4-20
4-22

4-22
4-22
4-23
4-24
4-24
4-24
4-25

4-25
4-26
4-26
4-26

4-27
4-27
4-28
4-29
4-29
4-30
4-30
4-31
4-31

4-31
4-31
4-33
4-33
4-33
4-34
4-34

NOS/VE STATUS Parameter ...
CONTEXT Differences •••

Reading an Online Manual •••••••••••••••••••.•••••••••••.•••••••••••••••••.••••••••••••
Creating an Online Manual •.•••.•••••

Directives•........•............•....•....••.....•..........•................
Binding an Online Manual ••

De bugg ing on NOS and NOS /VE •••
Basic Concepts •••••••••••••••••••• ~ •••
Full Screen Debugging •••
Command Format ••
Home Program ••
Steps for Using DEBUG and CID •••
Preparing for a Debug Session •••
Beginning and Ending a Debug Session ••
Suspending Program Execution ••
Displaying Program Values •••
Changing Program Values •••
Other Debug Features ••

Automatic Execution of Commands •••
Displaying Debug Status Information •••

Displaying a Subprogram Traceback List ••
Removing Breaks •••
CID and Debug Commands and Features •••
Where To Go for More Debug Information ••

Sort/Merge Differences ••
Summary of Major Differences ••

Byte Size •••
Character Data ••
Character Sets ••
Collating Sequences •••
Diagnostic Messages .••.••••..•......•......•..••.•...•..........•.•....•...•......
Equal Keys ••
Estimated Number of Records •••
Exception File Processing •••
FASTIO Processing •••
File Attributes •••
File Positioning ••
Interactive Prompting •••
Listing File••.••..•.••.•..................•••...•.....•......................
MERGE Command •••
Owncode Procedures ••
Procedure Calls •••
Sign Overpunch ••••••••••••••••••• ~ ••
Sort 4 Support ••
SORT Command ••
STATUS Parameter ••
Zero Comparison ••••••••••••••••••••••••••••••• • " •••••••••••••••••••••••••••••••••••

FORTRAN-Sort/Merge Procedure Call Differences •••
SMSE ••
SMSEL •••
SM5ENR ••
SM5FAST •••
SM5KEY ••
SM5NODA ...
SM50WNn •••
SM5 ST •••
SM5SlJM ••.•••••.•••••••••••••••••••
New FORTRAN Sort/Merge Procedure Calls ••

SORT and MERGE 'Command Difference ••••••••••••••••••••••••••••.•••••••••••••••••••••••••
Where To Go for More Information About Sort/Merge •••••••••••••••••••••••••••••••••••••

4-34

4-35
4-35
4-36
4-36
4-37

4-38
4-38
4-38
4-39
4-39
4-40
4-41
4-42
4-42
4-43
4-44
4-44
4-44
4-46
4-47
4-47
4-47
4-49

4-49
4-49
4-49
4-50
4-50
4-50
4-50
4-50
4-50
4-50
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-51
4-52
4-52
4-52
4-52
4-52
4-52
4-52
4-52
4-53
4-53
4-53
4-53
4-53
4-53
4-53
4-53
4-54
4-57

Common NOSjVE Commands

This chapter discusses commonly used NOS/VE commands from a NOS user's viewpoint. These
discussions introduce you to common commands and help you use the commands in simple situations
or in migration situations.

First commonly used NOS commands are listed with the corresponding NOS/VE commands. Then the
NOS/VE commands are discussed for operations as follows:

Transferring files

Using files

Using file permissions

Miscellaneous operations

Detailed descript.ions of the commands are available in the SCL System Interface Usage manual.

Corresponding NOS.NOSjVE Commands

4

Commonly used NOS commands are listed together with a NOS/VE command that performs the same
function in table 4-1. Knowledge of these equivalent commands is not enough to get your jobs
running on NOS/VE. The System Command Language (SCL) for NOS/VE is different from CYBER Control
Language (CCL) for NOS. Many useful NOS/VE commands have no NOS equivalents; therefore,
understanding and using some of these commands is essential to migrate jobs.

Table 4-1. Corresponding NOS and NOS/VE Commands

NOS Command NOS/VE Command and Comments

==

ASSIGN REQT

ATTACH ATTF

BATCH

REQUEST TERMINAL. Comparable commands are:
NOS: ASSIGN,TT,lfn
NOS/VE: REQT lfn

ATTACH FILE or an implicit attach when a file is referenced in a
command.

No equivalent command; no subsystems on NOS/VE.

I

BLANK No equivalent command; the operator must blank label the labeled tapes. I
BRIEF

CATALOG

No equivalent command. For messages, the SET_MESSAGE_MODE to BRIEF
command applies. Many SCL commands have a DISPLAY OPTION or
LIST_OPTION parameter that provides a similar function.

No equivalent command. However, the DISPLAY OBJECT LIBRARY command
~executed within the Object Code Utility (OCU) provides similar
operations for object library files. See the SCL Object Code
Management Usage manual for information. The SOURCE CODE UTILITY
subcommands DISPLAY DECK LIST and DISPLAY LIBRARY LIST provide
information about source-library files. See the SCL Source Code
Management Usage manual for more information.

--(Continued on next page)

Revision F Common NOS/VE Commands 4-1

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

==

CATLIST
CATLIST,FN=

CHANGE

CHARGE

CKP

CLEAR

COBOLS

COMMENT

COMMON

COpy or
COPYEI

COPYBF

COPYBR

COPYCF

COPYCR

COPYL
COPYLM

COPYSBF

COPYX

CSET

crIME

DAYFILE

DISC
DISCE

CREFP
DELFP
CRECP
DELCP
CHACE

COBOL

COPF

PRIF

DISJD

DISL
CREFC

DISPLAY CATALOG
DISPLAY-CATALOG ENTRY

CREATE FILE PERMIT
DELETE-FILE-PERMIT
CREATE-CATALOG PERMIT
DELETE CATALOG PERMIT
CHANG~CATALOG-ENTRY

Logging in gives charge information.

No equivalent command.

No equivalent command. To release files, each file must be specified
in a DETACH FILE command.

Calls COBOL compiler. Both NOS/VE COBOL and NOS COBOL are based on the
ANSI 1974 standard.

No equivalent command.
2 for more information
(DISM) writes a message

No equivalent command.

COpy FILE

No equivalent command.

No equivalent command.

No equivalent command.

No equivalent connnand.

Quotation marks specify comments. See chapter
on using quotation marks. DISPLAY MESSAGE

to the job log.

Similar operations with the CREATE OBJECT LIBRARY and REPLACE MODULE
connnand series. See Using Object Libraries in chapter 8 for iore
information.

For printing a file, use the PRINT FILE connnand.

No equivalent command.

No equivalent connnand. Your terminal always uses the full ASCII
character set.

DISPLAY JOB DATA

DISPLAY LOG
CREATE FILE CONNECTION with standard file $ECHO. For example, the
connnand for-a dayfile-like listing on file OUTFILE is:

/create file connection standard file=$echo file=outfile
File connection terminated by DELFC (DELETE_FILE_CONNECTION) command.

--(Continued on next page)

• 4-2 Migration From NOS to NOS/VE Revision F

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

==:=======

DEFINE

DIAL

DISPLAY

DMB
DMD

DMP

DMDECS
DMPECS

DOCMENT

DROP

DUP

ENQUIRE

EVICT

EXECUTE

CREF

DISV

CREATE FILE or an implicit create when a nonexisting permanent file is
referenced in a command.

No equivalent command.

DISPLAY VALUE

No dumps on NOS/VE. You can specify the ABORT_FILE parameter on an
EXECUTE TASK or SET PROGRAM ATTRIBUTES command for information if your
application fails. -Alternately, you can specify the DISPLAY MEMORY
command if you are using Debug.

No equivalent commands. Extended memory is not applicable to virtual
memory on NOS/VE.

No equivalent command.

TERMINATE JOB, TERMINATE TASK, or TERMINATE PRINT commands. See the
SCL Systei Interface Usage manual for more information.

Use the text editor (EDIT FILE) for similar operations. See the File
Editor Tutorial/Usage manual for more information.

Commands that provide some similar operations are:
DISPLAY JOB STATUS, DISPLAY CATALOG, and DISPLAY JOB DATA.

NOS/VE does-not-have registers,-but the same information-can be in
variables. To display values of variables, use the DISPLAY_VALUE
command.

No equivalent command.

No equivalent command; no subsystems on NOS/VE.

I

EXIT WHEN

EXPLAIN EXPLAIN

Use for error handling in procedures.

To learn the differences between NOS and NOS/VE online manuals,
CONTEXT Differences discussion later in this chapter.

see the I
FCOPY

FILE

FORM

FTN5

SETFA
ATTF

FMU

FORTRAN
or FTN

No equivalent command. To convert files between NOS and NOS/VE, use
GET FILE and REPLACE FILE (described following this table).

SET FILE ATTRIBUTE
ATTACH iILE

File Management Utility provides for converting and reformatting
files. FMU handles NOS/VE file conversions and NOS to NOS/VE
conversions or the reverse.

Calls FORTRAN compiler. Both NOS/VE FORTRAN and NOS FORTRAN 5 are
based on the ANSI 1977 standard.

--(Continued on next page)

Revision F Common NOS/VE Commands 4-3

I

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

==

GET

GTR

HELPME

HTIME

ITEMIZE

KRONREF

LABEL

LBC

LDI

LENGTH

LGO

LIB

LIMITS

ATTF

DISCI

H

DISOL

CREIC
REQMT
CHATLA

SUBJ

DISFA

WO

ATTACH FILE Also COPY FILE (COPF) creates a temporary copy of a
permanent file when used as follows:

copy file input=$user.permfile output=temp
TEMP is a temporary file. $USER.PERMFILE is file PERMFILE in.your
master catalog.

No equivalent command. However, to get a procedure out of an object
library into a listable file, use the following command series:

CREATE OBJECT LIBRARY
ADD MODULE MODULE=ocu-deck-to-list ••

-LIBRARY=library-file-where-deck-resides
GENERATE_LIBRARY new-library FORMAT=SCL PROC
QUIT

COpy FILE new-library
where new-library is the file that receives the copy of the procedure
you wish to list. See the SCL Object Code Management Usage manual for
more information.

DISPLAY COMMAND INFORMATION lists the parameters of the specified
command. For example, for the parameters of ATTACH FILE command, enter:

display command information command=attach file
The HELP co~and provides access to the SCL Qui~k Reference manual, or,
if you are in a utility, it gives you any existing help for that
utility. If an error just occurred, entering HELP gives you help on
that error. Full screen applications typically have a HELP function
key.

No equivalent time.

DISPLAY OBJECT LIBRARY displays modules in a library or object file.
See chapter 8 for more information.

No equivalent command.

CREATE 170 REQUEST references a labeled tape with NOS files.
REQUEST MAGNETIC TAPE command working with the
CHANGE TAPE LABEL ATTRIBUTES command.

No equivalent command.

SUBMIT JOB

DISPLAY FILE ATTRIBUTES

Default file to which compilers write object code. However, command
EXET (EXECUTE_TASK) is also available.

No equivalent command.

The following command series displays your validation information:
ADMINISTER USER

DISPLAY USER
QUIT

--(Continued on next page)

.4-4 Migration From NOS to NOS/VE Revision F

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

==

LIST

LISTLB

LOC

LOCK

L072

MACHINE

MERGE

MFL

MFLINK

MODE

MOVE

NEW

NOEXIT

NORERUN

NORMAL

NOSORT

NOTE

NULL

OFFSW

OLD

ONSW

COPF

DISTLA

ATTF

MERGE

SETPA

PUTt
COLT

SETSS

SETSS

COPY FILE

DISPLAY TAPE LABEL ATTRIBUTES lists much of the same tape label
information as does LISTLB.

No equivalent command.

Use the ACCESS_MODE parameter in the ATTACH FILE command.

No equivalent command.

No equivalent command.

Initiates the merge operation of the Sort/Merge Utility.

No equivalent command. This is not necessary on NOS/VE; however, the
operation can be simulated by:

CHANGE JOB ATTRIBUTE MAXIMUM_WORKING_SET=integer

See commands described under the Permanent File Transfer Facility in
chapter 11.

SET PROGRAM ATTRIBUTES can specify the handling for arithmetic and/or
BDP-(Business Data Processing) conditions.

You can perform this operation by using editor commands. See the File
Editor Tutorial/Usage manual for more information.

No equivalent command. Primary files do not exist on NOS/VE.

No equivalent command. Use WHEN command for error handling in
procedures.

No equivalent command.

No equivalent command. Your terminal always uses the full ASCII
character set.

No equivalent command.

PUT LINE
COLLECT TEXT

No equivalent command; no subsystems on NOS/VE.

SET SENSE SWITCH; see the SCL System Interface Usage manual for
information.

No equivalent command.

SET_SENSE_SWITCH; see the SCL System Interface Usage manual for
information.

--(Continued on next page)

Revision F Common NOS/VE Commands 4-5.

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

================~===

OPLEDIT

OUT

PACK

PACKNAM

PASSWOR

PAUSE

PERMIT

PRIMARY

PROTECT

PURGALL

PURGE

QGET

RBR

RECOVER

REPLACE

REQUEST

RERUN

PRIF

SETPW

CREFP
DELFP
CRECP
DELCP

DELF

ATTJ

COPF

REQ~

CRE1R

Use the Source Code Utility (SCU) commands DELETE MODIFICATION,
DELETE DECK, and EXTRACT MODIFICATION. See the SeL Source Code
Management Usage manual for more information.

PRINT FILE

No eqUivalent command.

No equivalent command.

SET_PASSWORD; see the SCL· System Interface Usage manual for information.

No equivalent command.

CREATE FILE PERMIT
DELETE-FILE-PERMIT
CREATE CATALOG PERMIT
DELETE-CATALOG-PERMIT

No equivalent command.

No equivalent command.

No equivalent command. To delete a catalog, specify:
BACKUP PERMANENT FILE BACKUP FILE=$NULL LIST=$OUTPUT

DELETE CATADDG CONTENT CATALOG=catalog name
QUIT - -

To delete all files except the high cycles, specify:
BACKUP PERMANENT FILE BACKUP FILE=$NULL LIST=$OUTPUT

EXCLUDE HIGHEST CYCLES NUMBER OF CYCLES=1
DELETE_CATALOG_CONTENT CATALOG=catalog name

QUIT

DELETE FILE

No eqUivalent command.

No equivalent command.

ATTACH JOB puts your job in a pause break state. To resume processing,
specify either TERMINATE_COMMAND (TERC) or RESUME_COMMAND (RESC).

COPY_FILE can rewrite a permanent file with a temporary modified copy
when used as follows:

/copy_file input=temp output=$user.permfile
This example assumes TEMP is a modified temporary copy of file PERMFILE
which resides in your master catalog.

REQUEST MAGNETIC TAPE to request NOS/VE tape; tape assignment does not
occur ~til the file is actually used.
CREATE 170 REQUEST to request NOS tape; tape assignment does not occur
until the file is actually used.

No equivalent command.

--(Continued on next page)

• 4-6 Migration From NOS to NOS/VE Revision F

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

==

RESEQ

RESOURC

RESTART

RETURN

RFL

ROLLOUT

RUN

S~VE

SCOpy

SETASL

SETCORE

SETFS

SET JOB

SETJSL

SETPR

SETTL

SKIP

SKIPEI

SKIPF

SKIPFB

SKIPR

SORTS

STlME

RESR
RELR

DETF

WAIT

COPF

CHAJL

SUBJ
LOGIN

CHAJL

CHAJA

CHAJL

SORT

In general, there is no equivalent command.. BASIC"'s RESEQUENCE utility
is comparable to RESEQ.

RESERVE RESOURCE
RELEASE-RESOURCE

No equivalent command.

DETACH FILE

No equivalent command. The operation is not needed on NOS/VE.

Suspend current task.

No equivalent command.

COpy FILE can create a permanent file from a local file. For example:
/copy file input=temp output=$user.permfile

Local file TEMP is copied and creates permanent file PERMFILE in your
master catalog.

No equivalent command.

CHANGE JOB LIMIT

Specify the PRESET VALUE attribute on either of the following commands:
EXECUTE TASK or SET PROGRAM ATTRIBUTES. See the SCL Object Code
Management Usage manual for-details.

No equivalent command.

JOB NAME parameter of the LOGIN and SUBMIT JOB (SUBJ) commands. This
applies only for batch jobs.

CHANGE JOB LIMIT

DISPATCHING PRIORITY parameter of CHANGE JOB ATTRIBUTES command.

CHANGE JOB LIMIT

IF ••• ,THEN sequence.

Use .$EOI on a file reference. See the file position discussion in
chapter 3 for more information.

No equivalent command.

No equivalent -command.

No equivalent command.

Initiates the sort operation of the Sort/Merge Utility.

No equivalent command.

--(Continued on next page)

Revision F Common NOS/VE Commands 4-7.

Table 4-1. Corresponding NOS and NOS/VE Commands

(Continued from previous page)--

NOS Command NOS/VE Command and Comments

==

SUBMIT

SUMMARY

SWITCH

TCOPY

TDUMP

TEXT

TIMEOUT

TRMDEF

UNLOAD

UNLOCK

UPROC

USECPU

USER

VERIFY

VFYLIB

WBR

WHATJSN

WRITE

WRITEF

WRITEN

WRITER

X

XMODEM

SUBJ

SETSS

DISF

COLT

SETTA

DETF

ADMU

SETMO

LOGIN
SETLA

COMF

COMOL

XMODEM

SUBMIT JOB

Commands that provide some similar operations are:
DISPLAY JOB STATUS, DISPLAY CATALOG, and DISPLAY JOB DATA.

NOS/VE does-not-have registers,-but the same information-can be in
variables. To display values of variables, use DISPLAY VALUE or
PUT_LINE commands.

SET SENSE SWITCH

No equivalent command.

DISPLAY FILE

COLLECT TEXT or use an editor.

No equivalent command.

SET TERMINAL ATTRIBUTE

DETACH FILE

ACCESS MODE parameter in commands as follows: for local files, use the
SET FILE ATTRIBUTE command; for permanent files, use the ATTACH FILE
command.- You would first detach your permanent file and then r~attach
it with a different access mode.

CHANGE USER and SET USER PROLOG subcommands of ADMINISTER USER command.

SET MULTIPROCESSING OPTION

Applies only to batch processing.
SET LINK ATTRIBUTE specifies user name to gain access to NOS permanent
files or-to execute NOS commands through EXECUTE_INTERSTATE_COMMAND.

COMPARE FILE

COMPARE OBJECT LIBRARY

No equivalent command.

No equivalent command.

Use the editor. See the File Editor Tutorial/Usage manual.

No equivalent command. However, in the Source Code Utility, the WEOP
directive can write end-of-partition marks to partition a file. You
can also use the editor. See the File Editor Tutorial/Usage manual.

No equivalent command.

No equivalent command.

No equivalent command.

TRANSFER FILE XMODEM

• 4-8 Migration From NOS to NOS/VE Revision F

Commands for Transferring Files

Transferring text files is handled easily with the GET FILE (GETF) and REPLACE FILE (REPF)
commands. GETF converts and transfers files from NOS to NOS/VE (GETF); REPF does the reverse
operation.

Do not use GET FILE or REPLACE FILE with a file that is not a text file. The converted file
might contain incorrectly formatted items. Processing the file can yield unpredictable results,
including program aborts in NOS/VE due to hardware errors.

Be sure that GET FILE and REPLACE FILE refer to the files properly. If there are any accounting
information (family name, user naie, etc.) differences between NOS and NOS/VE, you might need to
use the SET LINK ATTRIBUTE command. The SCL System Interface Usage manual discusses this command.

The text files can be either data or program source code. Files transferred with these commands
are typically files created with a text editor, COBOL DISPLAY statement, or FORTRAN PRINT or
formatted WRITE statements.

GET_FILE (GETF)

The NOS/VE command GET FILE transfers a copy of a NOS permanent file (direct or indirect access)
to NOS/VE and converts-it to NOS/VE format. The file can be a text or binary file; however, this
guide discusses only text files. The text file must have Z-type (zero-byte) records. (Files
created by text editors and by the COBOL DISPLAY statement and the FORTRAN PRINT and formatted
WRITE statements have Z-type records.)

GETF performs data conversion on the file transfer. The default conversion is NOS ASCII (in
6/12-bit display code format) to NOS/VE 7-bit ASCII code. NOS generates 6/12-bit display code
when you specify ASCII mode; otherwise, NOS generates 6-bit display code (NORMAL mode). To
transfer files in 6-bit display code, specify the parameter DATA CONVERSION=D64 (or DC=D64).

Simple examples:

/get_file to=myfile

Transfers NOS file MYFILE (in 6/12-bit display code) to NOS/VE as local file MYFILE.

/get_file to=joba data conversion=d64

Transfers NOS file JOBA (in 6-bit display code) to NOS/VE with the local file name JOBA.

/get_file to=$user.afile from=myfile

Transfers NOS file MYFILE (in 6/12-bit display code) to NOS/VE with permanent file name
AFILE. (For information about $USER, see Using $USER in chapter 3.)

GET_FILE· (GETF) Format

Below is a commonly used form of the GET FILE command:

GET FILE T=nos/ve file F=nos file DC=option. U=user PW=password

Revision F Common NOS/VE Commands 4-9

I

I

I

I

I

I

Parameters:

T (TO) Designates the NOS/VE file to which the file is copied. Required parameter.
Default characteristics are assumed about the file unless you specify the
characteristics in a SET FILE ATTRIBUTES command. See the File Attributes discussion
in chapter 10, File Inte~face-Introduction, for additional information.

F (FROM) Designates the NOS file to be copied. The default is the same name designated
for the TO parameter.

DC (DATA CONVERSION) Designates conversion to be done on the copy. The text conversion
options are:

A6 Each NOS ASCII character (in 6/12-bit display code) is converted to a 7-bit
ASCII character. This is the default option.

A8 Each NOS ASCII character (in 12-bit ASCII format) is converted to a 7-bit
ASCII character.

D63 Each NOS character in 6-bit display code (63-character set) is converted to
a 7-bit ASCII character.

D64 Each NOS character in 6-bit display code (64-character set) is converted to
a 7-bit ASCII character.

Parameters exist for converting binary data. See the SCL System Interface Usage manual
for more information.

U (USER) Specifies user name of the owner of the NOS file. Defaults to the user
identification you used to log in.

PW (PASSWORD) Specifies the NOS file password needed to access the file. The password is
required if you do not own the file and the file has a password.

REPLACE_FILE (REPF)

REPLACE FILE transfers a file from NOS/VE to a NOS direct or indirect access permanent file. If
the file exists, REPLACE_FILE rewrites the file. If the file does not exist, REPLACE FILE
performs a DEFINE operation. REPLACE FILE can handle either a text or binary file; however, this
manual discusses only text files.

The DATA CONVERSION parameter indicates data conversion. REPLACE FILE assumes ASCII characters
(in 6/12~bit display code format) for the NOS files. To convert a NOS/VE text file to 6-bit
display code for NOS, specify DATA_CONVERSION=D64. Examples:

/replace_file from=filea

Transfers NOS/VE file FILEA to NOS file FILEA with ASCII characters in 6/12-bit display
code.

I /replace_file from=nvefile to=nosfile

Transfers NOS/VE file NVEFILE to NOS file NOSFILE with ASCII characters in 6/12-bit
display code.

I /replace_file from=jobfile data conversion=d64

Transfers local NOS/VE file JOBFILE to NOS, with characters in 6-bit display code.

4-10 Migration From NOS to NOS/VE Revision F

REPLACE_FILE (REPF) Format

Below is a commonly used form of the REPLACE FILE command:

REPLACE FILE F=nos/ve file T=nos file DC=option U=user PW=password

Parameters:

F (FROM) Designates NOS/VE file to be copied. (Required.)

T (TO) Designates NOS indirect or direct access file to which the file is copied.
Defaults to file name on the FROM parameter. The text files are written with Z-type
records.

DC (DATA_CONVERSION) Designates conversion to be done on the copy. The NOS text files are
writen with Z type records.

A6 NOS/VE 7-bit ASCII characters are converted to NOS ASCII in 6/l2-bit display
code format. This is the default option.

AS NOS/VE 7-bit ASCII characters are converted to NOS l2-bit ASCII format.

063 NOS/VE 7-bit ASCII characters are converted to NOS 6-bit display code
(63-character set).

D64 NOS/VE 7-bit ASCII characters are converted to NOS 6-bit display code
(64-character set).

U (USER) Specifies user name of the owner of the NOS file. Defaults to your user
identification you used to log in.

PW (PASSWORD) Specifies the NOS file password needed to access the file. The password is
required if you do not own the file and the file has a password.

Commands for Using Files

The EDIT_CATALOG (EDIC) is a full screen utility that makes it easy to do a number of common
operations on files. This command is described in the SCL System Interface Usage manual.

The following discussion describes commands to create, delete, attach, detach, and copy files, as
well as commands to display information about files. Also, creating or attaching a file without
an explicit command is discussed.

CREATE_FILE (CREF)

I

CREATE FILE creates a new empty permanent file. The command also indicates the time period to I
retain the file and can specify a password and other information.

CREATE_FILE is equivalent to the DEFINE command on NOS. On NOS/VE files are not designated as I
direct or indirect access files. Consider the files as being direct access.

Simple example:

/create_file file=$user.data_file

This command creates a permanent file DATA FILE in your user catalog and attaches the file,
making it available to your job by local file name DATA FILE. No password is specified. No
retention period is specified; therefore, an indefinite-period is assumed.

I

The CREATE FILE command is not necessary to create all new permanent files. An implicit create I
can occur by using a file reference for a file that does not exist.

Revision F Common NOS/VE Commands 4-11

CREATE_FILE (CREF) Format

Below is a commonly used form of the CREATE FILE command:

CREATE FILE F=permfile TFN=temporary file name PW=password

Parameters:

F (FILE) File reference; for more information see the discussion of file reference in
chapter 3, Overview of the Permanent File Mechanism.

LFN (LOCAL_FILE_NAME) Local file name for the file; the default is the permanent file name.

PW (PASSWORD) Specifies password that must be used for all subsequent access to any cycle
of the file.

Implicit Create

An implicit create occurs when you specify a file reference for a permanent file when no
permanent file exists.

Example:

/get_file to=$user.myfile

This command transfers NOS permanent file MYFILE to NOS/VE as permanent file MYFILE under your
user name and adds it to your permanent file catalog.

DELETE_FILE (DELF)

DELETE FILE deletes a permanent file. If the file has cycles, DELETE FILE deletes one file cycle
(the earliest; that is, lowest cycle by default).

The DELETE FILE command is equivalent to the PURGE command on NOS.

Simple example:

/delete_file file=$user.myfile

This command deletes permanent file MYFILE in your user catalog if MYFILE has no cycles. If
MYFILE has cycles, the command deletes the earliest cycle of the file.

Notice that there is only one letter difference between the abbreviations for the DELETE FILE and
the DETACH FILE commands: DELF versus DETF. The one letter can have a p'owerful effect. If you
have a permanent file attached to your job and you specify DELF tfn (tfn is the temporary file
name for the permanent file), you delete your permanent file as well as your temporary file.

For example:

/attach_file file=$user.myfile local file name=infile

Gives permanent file MYFILE the temporary file name INFILE.

/delete_file file=infile

Deletes $USER.MYFILE as well as the temporary file INFILE.

Because of the only one character difference in the abbreviations, be careful deleting and
detaching local files when you have permanent files attached •

• 4-12 Migration From NOS to NOS/VE Revision F

DELETE_FILE (DELF) Format

Below is a commonly used form of the DELETE FILE command:

DELETE FILE F=file PW=password

Parameters:

F (FILE) Identifies the permanent file. Omission of cycle causes $LOW (the oldest) to be
used.

PW (PASSWORD) Specifies the file password.

ATTACH_FILE (ATTF)

ATTACH FILE attaches a permanent file to a job. In other words, ATTACH FILE gives the file an
alias by which it is known in the working catalog ($LOCAL is the default working catalog).
Permanent files used for input and output by COBOL or FORTRAN programs must be attached if the
program specifies the file names. The files must be attached because a file reference, which
indicates a permanent file catalog ($USER for example), cannot appear in a COBOL or FORTRAN
statement.

Once you have attached a file explicitly, any command that depends on the path name for a file is
affected. The command uses the temporary path name rather than the path specified in the
command. For example:

/attach file
/replace_file

file=$user.x local_file_name=y
from=$user.x

results in file Y, not file $USER.X, being transferred to NOS.

The ATTACH FILE command is equivalent to the ATTACH command and similar to GET command on NOS.

Simple example:

ATTF $USER.OUTDATA AM=(READ WRITE)

OPEN(2,FILE='OUTDATA')

ATTACH_FILE (ATTF) Format

Attaches permanent file OUTDATA in your user catalog
with read and write permission.

Subsequent FORTRAN open.operation using OUTDATA.

Below is a commonly used form of the ATTACH FILE command:

ATTACH FILE F=file LFN=temporary file name PW=password AM=access mode SM=share mode

Parameters:

F (FILE) Identifies the permanent file. If cycles exist, $HIGH is assumed.

LFN (LOCAL FILE NAME) Specifies the local file name to be used for the file within the
job. The default for lfn is the permanent file name. Avoid using this parameter.
Its use makes it difficult for you to track the status of the temporary file.

PW (PASSWORD) Specifies an optional file password.

AM (ACCESS MODE) Specifies how the file is to be used within the job. Values are: READ,
APPEND,-MODIFY, EXECUTE, SHORTEN, WRITE, or ALL. (WRITE is equivalent to specifying
APPEND, MODIFY, and SHORTEN.) The default values are READ and EXECUTE modes.

Revision F Common NOS/VE Commands 4-13'-'.

SM (SHARE MODE) Specifies how the file can be shared with other users while attached to
your job. (See the SCL System Interface Usage manual for details.)

Implicit Attach

An ATTACH FILE command is not necessary to make a permanent file available to your job. An
implicit attach occurs when you use a file reference for a permanent file in an SCL command. The
implicit attach automatically attaches the file in the appropriate access mode for use by your
job. Implicitly attached files are automatically detached when a program or command ends.

Examples:

/copy_file input=outfile output=$user.myfile

Copies the contents of local file OUTFILE to your permanent file MYFILE.

/execute_task file=$user.binfile

Executes permanent binary file BINFILE.

Avoid using an implicit attach in a batch job if the file could be busy. An implicit attach does
not wait for the file if the file is busy; the job aborts. Use the ATTACH FILE command to wait
for the file to be available.

NOTE

When NOS/VE accesses a file, it positions the file to $BOI unless you take measures to prevent
the automatic positioning. See the File Position discussion in chapter 3, Permanent File
Overview, for more information about file positioning.

DETACH_FILE (DETF)

DETACH FILE detaches one or more files from a job. A temporary file is deleted. A permanent
file no longer has the local alias name.

The DETACH FILE command is equivalent to the RETURN command on NOS.

Examples:

/detach-File file=list

Detaches local file LIST.

/detach_file files=(list errout temp)

Detaches the specified local files.

DETACH_FILE (DETF) Format

Below is a commonly used form of the DETACH FILE command:

DETACH FILE F=files

Parameters:

F (FILE or FILES) Specifies a local file or list of local files to be detached. A list of
files must be enclosed in parentheses •

• 4-14 Migration From NOS to NOS/VE Revision F

COPY_FILE (COPF)

COPY_FILE copies data from one file to another. It copies the file to end-of-information.

The COPY FILE command is equivalent to the COPYEI command on NOS except that it has no verify
option.

Simple examples:

/copy_file input=filea output=fileb

Copies the contents of local file FILEA to local file FILEB.

/copy_file input=$user.myfile output=newfile

Copies the contents of permanent file MYFILE to local file NEWFILE.

Usually, both input and output files are rewound before the copy. See the File Position
discussion in chapter 3, Permanent File Overview, for more information about controlling file
positioning.

COPY_FILE (COPF) Format

Below is a commonly used form of the COPY FILE command:

COpy FILE I=input file O=output file

Parameters:

I (INPUT) Specifies the file from which data is copied. The default file is $INPUT. Data
is copied from the open position until end-of-information is reached.

o (OUTPUT) Specifies the file to which data is copied. The default file is $OUTPUT.

If the copy creates a file, the new file generally inherits the attributes of the old; however,
exceptions exist. See the SCL System Interface Usage manual for details about file
compatibilities of the input and output files.

DISPLAY_CATALOG (DISC)

DISPLAY_CATALOG displays information about the files in a catalog (or catalogs in a catalog).

The DISPLAY CATALOG command is equivalent to the CATLIST command on NOS.

Examples:

/display_catalog

Displays a listing of the files in the working catalog, usually catalog $LOCAL.

/display_catalog catalog=$user

Displays a list of the files in your master catalog.

/display_catalog catalog=$user display_options=permits

Displays access control permissions.

Revision F Common NOS/VE Commands 4-15.

DISPLAY_CATALOG (DISC) Format

I Below is a commonly used form of the DISPLAY CATALOG command:

DISPLAY CATALOG C=catalog DO=option

I

Parameters:

C (CATALOG) Specifies the catalog from which information is being displayed.

DO (DISPLAY OPTION or DISPLAY_OPTIONS) Specifies the type of display being requested.
Values include:

ID

FILE

PERMITS

Display of the permanent file or catalog names in the catalog together
with its type (file or catalog). This is the default value (DO=ID).

Summary description of files in the catalog including the number of
cycles.

Previously specified permission for file access. For more infor- mation
see the discussion of CREATE FILE PERMIT in this chapter.

Commands for Using File Permissions

To he gin using file permissions, you should be familiar with the following commands:

CREATE FILE PERMIT

DELETE FILE PERMIT

I CHANGE CATALOG ENTRY

DISPLAY CATALOG ENTRY

This command establishes or modifies an access control entry for a specific permanent file. This
command is comparable to the PERMIT command on NOS.

Another command, CREATE_CATALOG PERMIT, provides for the same access control as this command
does, only at the catalog level~ Other associated commands briefly discussed in this manual are:

DELETE FILE PERMIT Deletes specified file permissions.

CHANGE CATALOG ENTRY Changes established permissions.

DISPLAY CATALOG ENTRY Shows established permissions.

You should be aware of the CREATE FILE PERMIT command if you want to protect your files by
granting limited access or if you-are having trouble accessing a file that you know exists.

Several access control entries can apply to a user requesting access. In this case, the access
control entry associated with the smallest group is used. For example, if a file has an access
control entry for a user and another access control entry for a user's family, then the access
control entry for the user is applied.

4-16 Migration From NOS to NOS/VE Revision F

If several access control entries specify the same group of users, then the entry referring to
the lowest level in the master catalog, subcatalog, and file hierarchy is used. For example, if
an account has an access control entry for a file and another access control entry for a catalog
containing that file, then the former access control entry is used.

For more information about this command, see the SCL System Interface Usage manual.

CREATE_FILE_PERMIT (CREFP) Examples

The following command gives user BOND007 permission to only read .or append your permanent file
SUPER RESOURCE:

/create_file-yermit file=$user.super_resource
/user=bond007 ••
/access_mode=(read append)

This command makes your permanent file SUPER RESOURCE available to anyone (PUBLIC) to read and
append:

/create_file-yermit file=$user.super_resource
/group=public ••
/access mode=(read append)
/share_iode=(read append)

Two parameters control access situations. ACCESS MODE (AM) specifies how the file can be used.
SHARE MODE (SM) specifies access when several users are accessing (sharing) the file.

A commonly used format of the CREATE_FILE_PERMIT command is:

CREATE FILE PERMIT or - -CREFP
FILE=file
GROUP=keyword
FAMILY NAME=name.
USER=name
ACCOUNT=name
PROJECT=name
ACCESS MODE=list of keyword
SHARE MODE=list of keyword

FILE or F

Required. Specifies the permanent file for which the access control entry is being established.

Revision F Common NOS/VE Commands 4-17.

GROUP or G

Optional.
is USER.

Specifies the kind of user group that the access permission applies to. Its default
Valid The GROUP parameter is similar to the file permit category (CT) in NOS.

selections are:

PUBLIC

FAMILY

ACCOUNT

PROJECT

USER

USER ACCOUNT

MEMBER

The permit entry applies to all users regardless of family, account, project,
or user identifications. This selection is comparable to the NOS PUBLIC file
permit category.

The permit entry applies to all users in the specified family.

The permit entry applies to all users associated with the specified family
and account identifications.

The permit entry applies to all users associated with the specified family,
account, and project identifications.

The permit entry applies to the specified family and user identifications.

The permit entry applies to the specified family, account, and user
identifications.

The permit entry applies to the specified family, account, project, and user
identifications.

The FAMILY NAME, USER, ACCOUNT, and PROJECT parameters identify the specific user group that the
access per;ission is for. If you omit one of these identifying parameters when the GROUP
selection indicates that it is applicable, then the identifier value associated with the
requesting job is used. For example, suppose that the GROUP selection is PROJECT, and that you
omit the FAMILY NAME, ACCOUNT, and PROJECT parameters. Then the access permission applies to all
users having th; family, account, and project associated with the requesting job.

If one of these identifying parameters is specified when the GROUP selection indicates that it is
not applicable, an abnormal status is returned.

FAMILY_NAME or FN

Optional. Specifies the family name to be permitted access.

USER or U

Optional. Specifies the user name to be permitted access. Its use here is similar to that of
usernamei in the NOS PERMIT command.

ACCOUNT or A

Optional. Specifies the account name to be permitted access.

PROJECT or P

Optional. Specifies the project name to be permitted access •

• 4-18 Migration From NOS to NOS/VE Revision F

ACCESS_MODE or ACCESS_MODES or AM

Optional. Specifies the kind of file access the user group is allowed. The default is READ and
EXECUTE. The ACCESS MODE parameter is similar to the user permission mode (M) for semiprivate
and public files in NOS. The selections are:

READ

APPEND

MODIFY

SHORTEN

WRITE

EXECUTE

ALL

CONTROL

CYCLE

NONE

Reading the file is allowed.

Appending information to the end of the file is allowed.

Altering data within the existing file is allowed.

Deleting information from the end of the file is allowed.

Access is permitted for SHORTEN, MODIFY, and APPEND.

Executing object code or an SCL procedure in the file is allowed.

Access is permitted for READ, APPEND, MODIFY, SHORTEN, WRITE, and EXECUTE.

Deleting a file or changing its file identity (file name, cycle number, password,
log selection, retention, and charge attributes) and/or file attributes is allowed.

Adding new file cycles is allowed.

File access is specifically prohibited.

SHARE_MODE or SHARE_MODES or SM

Optional. Specifies the share modes required of jobs that are allowed access to your file. The
default is READ and EXECUTE. The share modes are:

READ Sharing the file for READ access.

APPEND Sharing the file for APPEND access.

MODIFY Sharing the file for MODIFY access.

SHORTEN Sharing the file for SHORTEN access.

WRITE Sharing the file for SHORTEN, MODIFY, and APPEND access.

EXECUTE Sharing the file for EXECUTE access.

ALL Sharing the file for READ, APPEND, MODIFY, SHORTEN, WRITE, and EXECUTE access.

NONE No sharing requirements are imposed on jobs permitted to access your file.
can select exclusive access or any of the READ, MODIFY, SHORTEN, WRITE, and
EXECUTE share modes.

DELETE_FILE"::PERMIT (DELFP)

Deletes an access control permission that was established for a permanent file with the
CREATE_FlLE_PERMIT (CREFP) command. Corresponds to the PERMIT command on NOS.

They

Revision F Common NOS/VE Commands 4-19.

Examples show a CREATE FILE PERMIT command that creates a file permit for a file in your master
catalog and the DELETE=FILE=PERMIT command that cancels it.

/create_file-permit
/user=bond007 ••

•• /access_mode=(read

/delete_file-permit
•• /user=bond007

/create_file-permit
/group=public ••
/access mode=(read
/sharej;ode (read

/delete_file-permit
•• /group=public

file=$user.super_resource

append)

file=$user.super_resource

file=$user.super_resource

append)
append)

file=$user.super_resource

See the SCL System Interface Usage manual for more information.

The command DELETE CATALOG PERMIT provides the same function as DELETE_FILE_PEru!IT, only for a
catalog.

CHANGE_CATALOG_ENTRY (CHACE)

The CHANGE_CATALOG_ENTRY command alters the file name, cycle, password, log selection, retention
period, charge identification, and damage condition attributes associated with a file. This
command corresponds to the CHANGE command on NOS.

You can issue the CHANGE CATALOG ENTRY command only if you have CONTROL permission (see the
CREATE FILE PERMIT discussion earlier in this chapter for an explanation of CONTROL permission).
If the-file-has a password associated with it, you must also specify the password.

For example, the following statement changes the name, password, and cycle number for cycle
number 1 of file DATA_FILE_1 in subcatalog CATALOG_1 in the master catalog:

/change catalog entry file=$user.catalog 1.data file 1.1
/neW-file name=data file 0 •• - --
/new-cycl;=87 •• -
/new~assword=new_data_O-pw

The name of the file is changed from DATA FILE 1 to DATA FILE 0 for all cycles in the file, the
cycle number for cycle 1 is changed to 87-(oth;r cycle n~mbers remain unchanged), and the
password for the file is changed from null to NEW_DATA_O_PW.

For more information about this command, see the SCL System Interface Usage manual.

Below is a commonly used form of the CHANGE_CATALOG_ENTRY command:

CHANGE CATALOG ENTRY or
CHACE

FILE=file
PASSWORD=name or keyword
NEW FILE NAME=name - -NEW CYCLE=integer
NEW-PASSWORD=name or keyword
NEW-ACCOUNT PROJECT=boolean
DELETE_DAMAGE_CONDITION=keyword

• 4-20 Migration From NOS to NOS/VE Revision F

FILE or F

Required. Specifies the permanent file whose attributes are to be changed.

PASSWORD or PW

Optional. Specifies the current file password. It must match the file password stored with the
catalog entry or an abnormal status is returned. The keyword NONE indicates that no password has
been specified for the file. Omission of the PASSWORD parameter causes NONE to be used.

Optional. Specifies the new file name to be associated with the file. This parameter is like
the new file name (nfn) parameter in the NOS CHANGE command. All existing cycles of the file
will have the new name. If the new name already exists in the catalog, an abnormal status is
returned. Omission of this parameter causes the current name to be retained.

Optional. Specifies the new cycle number (from 1 through 999) to be associated with a file cycle.

NEW_PASSWORD or NPW

Optional. Specifies the new password to be associated with all cycles of the file. This
parameter is like the password (PW) parameter in the NOS CHANGE command. The keyword NONE
indicates that no password is to be associated with the file. Omission of the PASSWORD parameter
causes the current password to be retained.

Optional. Specifies whether new account and project identifiers are to be established for the
file. These identifiers are used for billing purposes and apply to all cycles of the file.
NOS/VE would take the new identifiers from the project and account identification associated with
the requesting job. The NEW ACCOUNT PROJECT parameter is like the CP parameter in the NOS CHANGE
command. Omission of this parameter-causes the current account and project identifiers
associated with the file to be retained.

DELETE_DAMAGE_ CONDITION or DDC

Optional. Specifies the damage condition information to be deleted from the catalog registration
of the file cycle. This parameter enables you to eliminate the exception condition reported when
the cycle is attached or opened. It is similar to the CE parameter in the NOS CHANGE command.

The system sets the damage state of the file cycle to indicate the damage condition and reports
this condition when the file is attached or opened. The DELETE DAMAGE CONDITION parameter
enables you to acknowledge that you understand that the damage has occurred and to complete
command processing. Once the outstanding damage condition has been deleted, you can attach the
file. If the file cycle is not in the specified condition, this command returns an abnormal
status, and the other parameters in the command are ignored.

The only allowable keyword is RESPF MODIFICATION MISMATCH (RMM). This keyword indicates that a
file cycle was restored even though-the last modification date and time were different from the
online cycle. If you omit this parameter and a cycle damage condition is present, the system
will display a diagnostic message.

Revision F Common NOS/VE Commands 4-21.

DISPLAY_CATALOG_ENTRY (DISCE)

This command displays catalog information about a permanent file--file use and file access
control. If the file belongs to another user, the display is granted only if the requesting user
is permitted access to the file. This command corresponds to the CATLIST command on NOS.

Example:

I /display_catalog entry file=$user.super_resource display_options=permits

Displays at the terminal the file permissions established for your permanent file
SUPER RESOURCE.

I
Notice that ALL is not an option for the DISPLAY OPTIONS parameter.
specified.

Below is a commonly used form of the DISPLAY_CATALOG_ENTRY command:

DISPLAY CATALOG ENTRY F=file DO=option

The options need to be

I

Parameters:

F (FILE) Specifies a file reference identifying the file that is the subject of the query.

DO (DISPLAY_OPTION or OPTIONS) Specifies the type of information. The options include:

LOG

PERMITS

DESCRIPTOR

Using File Attributes

Displays information about file use.

Displays information about established access control permits.

Displays information about the permanent file and file cycles.
Default value.

A file attribute is a characteristic of the file. File attributes describe the structure of the
file and define processing limitations for the file.

The three commands for using file attributes are:

SET FILE ATTRIBUTE (SETFA)

CHANGE_FILE_ATTRIBUTE (CHAFA)

DISPLAY FILE ATTRIBUTE (DISFA)

SET _FILE_ATTRIBUTE (SETFA)

I SET FILE ATTRIBUTES sets the attributes of a file.
content and processing of the file.

The file attributes are used to manage the

4-22 Migration From NOS to NOS/VE Revision F

Examples:

The command:

/set file attributes file=$user.result
/file ;rganization=sequential

•• /maximum_record_length=80

sets the file organization (FO) and maximum_record_length (MAXRL) for permanent sequential
file RESULT. -

The command:

/set file attributes file=ind seq file ••
/file ~rganization=indexed ;equ;ntial
/maximum record length=65 -
/key length=10 :.
/key-type=uncollated ••
/rec;rd type=fixed ••
/embedded_key=true

sets the file organization, maximum record length, key length (KL), key type (KT),
record type (RT) , and embedded_key TEK) for the temporary indexed sequential file
IND _SEQ_FILE.

SET_FILE_ATTRIBUTE (SETFA) Format

SETFA F=file list of file attributes

Parameters:

F (FILE) Identifies the file.

list of file
attributes

One file attribute or a series of attributes and values. Common file
attributes are listed below.

List of Common File Attributes

ACCESS_MODE = list of keyword value
CHARACTER CONVERSION = boolean
DATA PADDING = integer
EMBEDDED KEY = boolean
FILE CONTENTS = keyword value
FILE-LIMIT = integer
FILE-ORGANIZATION = keyword value
FILE-STRUCTURE = keyword value
INDEX PADDING = integer
INTERNAL CODE = keyword value
KEY_LENGTH = integer

KEY_POSITION = integer
KEY_TYPE = keyword value
MAXIMUM BLOCK LENGTH = integer
MAXIMUM-RECORD LENGTH = integer
MESSAGE-CONTROL = list of keyword value
OPEN POSITION = keyword value
PADDING CHARACTER = character
PAGE FORMAT = keyword value
PAGE-LENGTH = integer
PAGE-WIDTH = integer
RECORD_TYPE = keyword value

For more information about these attributes, see the discussion of File Attributes in chapter 10,
File Interface Introduction. See the SCL System Interface Usage manual for a detailed
description of the SET FILE_ATTRIBUTE command.

Revision F Common NOS/VE Commands 4-23.

CHANGE_FILE_ATTRIBUTE (CHAFA)

CHANGE_FILE_ATTRIBUTES changes the values of some file attributes for an existing file.

Simple examples:

/chafa file=$user.myfile file contents=list

Changes file contents (FC) to LIST for permanent file MYFILE.

/chafa file=current_file file structure=data

Changes file structure (FS) to DATA for local file CURRENT FILE.

CHANGE_FILE_ATTRIBUTE (CHAFA) Format

CHAFA F=file list of file attributes

Parameters:

F (FILE) Specifies the permanent or local file whose attributes are to be
changed.

list of file
attributes

One or more file attributes with their new values. Some of the file
attributes that can be changed are the following:

FILE CONTENTS = keyword value
FILE-PROCESSOR = keyword value
FILE-STRUCTURE = keyword value

For a complete list of file attributes whose values can be changed by the CHAFA command, see the
SCL System Interface Usage manual.

DISPLAY _FILE_ATTRIBUTE (DIS FA)

DISFA displays the values of attributes for one or more files.

Simple examples:

The command:

/display file attributes file=$user.sine file ••
•• /display_options=(maximum_record_length record_type file_o:.ganization)

displays to $OUTPUT (see the File Connection Commands discussion later in this chapter) the
maximum record length (MAXRL), record type (RT), and file organization (FO) of the permanent
file SINE FILE-in your user catalog. - -

The command:

/display file attributes file=new_temp ••
•• /output=my:result

sends information to the temporary file MY RESULT about a default set of attributes "for the
temporary file NEW TEMP.

• 4-24 Migration From NOS to NOS/VE Revision F

The command:

/display file attributes file=$user.old_test
/display options=all

•• /output=$user.keep

sends to the permanent file KEEP information on the entire set of attributes for the
permanent file OLD TEST.

DISPLAY_FILE_ATTRIBUTE (DISFA) Format

Below is a commonly used form of the DISPLAY FILE ATTRIBUTES command:

DISFA F=file DO=keyword O=file

Parameters:

F (FILE) Specifies the file for which the selected attributes are to be displayed; can be
a list of files. This parameter is required.

DO (DISPLAY OPTION) Specifies the attribute or attributes that should be displayed. Any
attribute specified in the SETFA command can be displayed using the DISFA command.
Specifying ALL lists all the attributes. Omission causes a default set of attributes
to be displayed.

° (OUTPUT) Specifies the file to which the display information is to be written. The
default is standard file $OUTPUT, which is usually connected to file OUTPUT.)

Interstate Connection Commands

The interstate connection allows you to execute commands through NOS while logged in on NOS/VE.
The commands of the interstate connection are: CREIC (CREATE INTERSTATE CONNECTION), EXEIC
(EXECUTE INTERSTATE COMMAND), and QUIT or DELIC (DELETE INTERSTATE CONNECTION). The following
example uses the interstate connection. A FORTRAN 5 program produces a file OUTFILE, which is
transferred to the NOS/VE state:

CREIC <---------------------------- Create interstate connection.
EXEIC 'GET,PROGIN.' <-------------- Execute NOS GET command.
EXEIC 'DEFINE,OUTFILE.' <---------- Execute NOS DEFINE command because only permanent files

can be transferred.
EXEIC 'FILE,OUTFILE,BT=C,RT=Z.' <-- Execute NOS FILE command that specifies a sequential CZ

file.
EXEIC 'FTNS,I=PROGIN.' <----------- Executes NOS FTN5 compiler.
EXEIC 'LGO.' <--------------------- Executes FORTRAN program
DELIC <---------------------------- Delete interstate connection.
GETF OUTFILE <--------------------- NOS/VE command to transfer OUTFILE.

The interstate connection is primarily intended for use with the NOS/VE File Management Utility
(FMU) to migrate files. These tasks require the GET, ATTACH, FILE, and REPLACE commands to be
processed by NOS while NOS/VE handles the conversion processing.

For examples of using the interstate connection and FMU to migrate files, see the examples of
using FMU in chapter 11, General Facilities for Migrating Files.

Revision F Common NOS/VE Commands 4-25

I

CREATE_INTERST ATE_ CONNECTION (CREIC)

The CREATE INTERSTATE CONNECTION command initializes the interstate connection. This command
does not affect your local files on NOS/VEj they do not disappear. The format of the command is:

CREATE_INTERSTATE_CONNECTION PARTNER_JOB_CARD='string' STATUS=variable

PARTNER JOB CARD (PJC) is an optional parameter that specifies Job statement parameters that
apply to NOS commands executed while the interstate connection is open. The syntax of the
specified string must conform to NOS rules for Job statements. Refer to Volume 3 of the NOS 2
Reference Set for details on the format and values of Job statement parameters. Your site
administrator might decide to have a default job card for every Interstate Communications job
that is run. In this case, the PARTNER_JOB_CARD parameter given by the user is ignored.

STATUS is an optional parameter for a status variable; see the discussion of the STATUS parameter
that appears later in this chapter.

When CREATE INTERSTATE CONNECTION is in effect, you can enter any NOS/VE command except commands,
such as GET FILE and REPLACE FILE, that request a link to NOS, or another CREATE INTERSTATE
CONNECTION command. You ent;r NOS/VE commands just as you would without CREATE INTERSTATE -
CONNECTION in effect. Only one interstate connection can be open at any given time.

The CREATE INTERSTATE CONNECTION command sets up a batch job in NOS to execute the NOS commands.
If there a~e any acco~nting information (family name, user name, etc.) differences between NOS
and NOS/VE, you might need to use the SET LINK ATTRIBUTE command. The SCL System Interface Usage
manual discusses this command.

EXECUTE_INTERSTATE_COMMAND (EXEIC)

The EXECUTE_INTERSTATE_COMMAND command precedes all NOS commands and can be specified only when
CREATE INTERSTATE CONNECTION is in effect. The NOS commands, along with any error messages
generated by those commands, are written to the NOS/VE job log. (You can display the' job log
with the DISPLAY_LOG command.) The format of the EXECUTE INTERSTATE CO}fr~ND command is:

EXECUTE INTERSTATE COMMAND COMMAND='command-string' STATUS=variable

Parameters:

Command-string

STATUS

Example:

A string of NOS commands. The string must not exceed 240 characters and
must be enclosed in apostrophes. You should generally specify only one NOS
command in command-string so that you can determine which NOS command
failed if an abnormal status is returned. However, to execute a NOS loader
sequence, you must include all loader commands in the command-string of a
single EXEIC.

Status variable.

/execute_interstate command command='GET,DATAFIL.'

QUIT or DELETE_INTERSTATE_CONNECTION (DELIC)

Either the QUIT or DELETE INTERSTATE CONNECTION command terminates the interstate connection.
Enter them as follows: - -

QUIT

DELIC

Optionally, the STATUS parameter can be used with DELETE INTERSTATE CONNECTION. See the
discussion of the STATUS parameter that appears later in-this chapter •

• 4·26 Migration From NOS to NOS/VE Revision F

File Connection Commands
NOS/VE automatically provides file connections for many files associated with your job. When you
understand the file connections, you can control them. File connections can do the following
things for you:

Provide a list like the NOS dayfile of the NOS/VE commands that have been processed. This
list is essential in debugging procedures. For example, the following CREATE FILE CONNECTION
command writes a list to the file MYFILE of all NOS/VE commands processed after the command:

/create file connection standard_file=$echo
•• /file=myfile

This action is similar to entering the following NOS DAYFILE statement which creates a list
of all NOS statements processed before the DAYFILE statement:

DAYFILE,L=MYFILE.

Let you specify the file or files that your program uses for input or output.

Let you specify the error or list file.

To use file connections you need to understand the concept of standard files on NOS/VE.

Standard Files

File connection works by connecting a standard file with a real file. Standard files are files
that the system assumes for various functions. A standard file represents a file but has no
space. To be used, a standard file must be connected to one or more real files (files with
space).

For example, consider a FORTRAN program. The compiler default value for the LIST (L) parameter
(which controls the listing of the source program) is the standard file $LIST. The real file to
which the system writes the listing depends on how the program executes.

If the program executes interactively, the system automatically connects $LIST to $NULL (which
causes information to disappear) so that you do not get excessive output written to your
terminal. If a program executes in batch mode, the system automatically connects $LIST to file
OUTPUT and writes the listing to OUTPUT.

All standard files have the dollar sign ($) for the first character of their names. The standard
files that can be connected with a CREATE_FILE_CONNECTION (CREFC) command are:

$COMMAND

COMMAND OF CALLER

$ECHO

$ERRORS

$INPUT

$LIST

$OUTPUT

$RESPONSE

Revision F

Specifies the file from which SCL commands are currently being read.

Specifies the $COMMAND file from which an SCL procedure was called.
(Once a procedure has been invoked, $COMMAND designates the file
containing the procedure.) Chapter 6, Using Procedures, describes SCL
procedures.

Receives command images as they are executed.

Receives error information.

Identifies an input file.

Receives output listings.

Receives output as designated by programs or commands.

Receives the responses (error or informative completion messages) from
processed commands.

Common NOS/VE Commands 4-27

Table 4-2 shows the real files to which the standard files are connected when you initially use
NOS/VE.

Table 4-2. Initial Connection of Standard Files

Standard File Interactive Connection Batch Connection

==

I $COMMAND
$COMMAND OF CALLER
$ECHO -

COMMAND
None
$NULL
OUTPUT
INPUT
$NULL
OUTPUT
OUTPUT
Job Log

COMMAND
None
$NULL
OUTPUT
INPUT
OUTPUT
OUTPUT
$NULL
Job Log

$ERRORS
$INPUT
$LIST
$OUTPUT
$RESPONSE

Notes:

$NULL is like a sink hole; information disappears in it.

Files INPUT and OUTPUT generally act the same as they do on NOS (the default files for input
or output). $INPUT and $OUTPUT are standard files; INPUT and OUTPUT are real files.
However, INPUT on NOS/VE is always an empty file in batch processing.

The job log contains log records of job processing. Use the job log by entering the SCL
command DISPLAY LOG (DISL). Procedure processing does not appear on the job log, just the
call to the procedure appears.

CREATE_FILE_CONNECTION (CREFC) Format

I
Below is a commonly used form of the CREATE_FILE_CONNECTION command:

CREATE FILE CONNECTION STANDARD FILE=standard file name FILE=file - -

I
I

Parameters:

SF (STANDARD FILE) can be one of the following (see preceding paragraphs for information
on the st~ndard files):

$ COMMAND
$COMMAND OF CALLER
$ECHO --
$ERRORS

$INPUT
$LI8T
$OUTPUT
$RESPONSE

F (FILE) specifies the file name of the actual file to be connected.

The command to terminate the connection is DELETE FILE CONNECTION (DELFC).

4-28 Migration From NOS to N08jVE Revision F

Example. of the Dayfile Equivalent

To get a listing comparable to a dayfile listing, use the CREFC (CREATE FILE CONNECTION) command
to connect standard file $ECHO to a file. $ECHO receives the images of-commands as they are
processed. Initially, this file is connected to $NULL and, therefore, contains no information.

Examples:

/create_file connection standard_file=$echo file=dayfile1

Causes information to be written to file DAYFILE1 (this could be any file name).

/create_file_connection standard_file=$echo file=output

Causes information to be written to file OUTPUT.

Recommendation: Use the connection to $ECHO when debugging interactive procedures. This is the
best way for you to determine where your procedure aborts.

The procedure below shows the CREFC command included in the command stream:

proc myproc <----------- Procedure header for MYPROC.
crefc $echo dayfile1 <-- Creates the file connection.

<------------------- Other commands.
delfc $echo dayfile1 <-- Deletes the connection.
procend myproc <-------- Terminates the procedure.

To list the contents of DAYFILE1 after the procedure executes, enter:

/copy_file input=dayfile1

Example of Designating Multiple Output Files

To get listings on multiple output files, use the CREFC (CREATE FILE CONNECTION) command to
connect standard file $OUTPUT to several files. Code your prog;am t; designate $OUTPUT as the
output file. In the command stream before executing the program, connect $OUTPUT to other
files. When the program executes, NOS/VE writes to each file connected to $OUTPUT.

A sample job that uses $OUTPUT to have three files written is shown in figure 4-1. The FORTRAN
program specifies writing to $OUTPUT. But $OUTPUT is connected to the following file: local file
OUTPUT, local file REPORT, and permanent file MSGLOG. The commands to create and delete the file
connections appear in the command stream.

Revision F Common NOS/VE Commands 4-29

I

I

I
I

+---+
"NOTE: OUTPUT connected." <-------- $OUTPUT/OUTPUT automatically connected.
crefc $output report <------------- Connection to local file REPORT.
crefc $output $user.msglog.$eoi <-- Connection to end-of-information position of permanent

file MSGLOG.

Program <-------------------------- FORTRAN program executes.

OPEN (2,FILE='$OUTPUT') <---- Designates output on file $OUTPUT.

WRITE (2, ('IX, <------- Writes to $OUTPUT.

CLOSE (2) <------------------ Program closes the file.

delfc $output report <------------- Deletes file connection.
delfc $output $user.msglog <------- Deletes file connection.
copf report <---------------------- Copies file contents to terminal.
copf $user.msglog <---------------- Copies file contents to terminal.

I

I

I

I

I
I

+---+
Figure 4-1. Sample FORTRAN Program Using $OUTPUT

DELETE_FILE_CONNECTION (DELFC)

DELETE FILE CONNECTION deletes the connection between one of the standard files and the real - -file. Remembering to delete file connections can be important and are easy to forget if a
procedure creates a file connection but aborts before deleting the connection.

If unexpected things happen when processing on NOS/VE,consider a forgotten file connection, and
delete it.

For example, assume that your executing program gets data through standard file $INPUT (which is
used on NOS/VE instead of file INPUT on NOS). $INPUT 1s empty in batch execution; it must be
connected to a real file with data. Assuming the real file is INDATA, the commands are:

/create file connection standard file=$input file=indata <-- Creates the file connecion.
/lgo <~----~--------------------~----------------------------- Executes the program.
/delete_file_connection standard_file=$input file=indata <-- Deletes the file connection.

DELETE_FILE_CONNECTION (DELFC) Format

Below is a commonly used form of the DELETE_FILE_CONNECTION command:

This is important because
other commands using $INPUT
will use data in INDATA until
the connection is deleted.

DELETE FILE CONNECTION STANDARD FILE=standard file name FILE=file - -
Parameters:

SF (STANDARD_FILE) can be one of the following:

$COMMAND
$COMMAND OF CALLER
$ECHO -
$ERRORS

$INPUT
$LIST
$OUTPUT
$RESPONSE

F (FILE) specifies the file name of the actual file to be disconnected •

• 4-30 Migration From NOS to NOS/VE Revision F

DISPLAY_FILE_CONNECTION (DISFC)

I
DISPLAY_FILE_CONNECTION displays the names of the file currently connected to the standard files.

For example:

Displays all standard files together with the files connected to them.

/display_file_connection standard_file=$errors I
Displays the files connected to standard file $ERRORS.

DISPLAY _FILE_ CONNECTION (DISFC) Format

DIS PLAY_F ILE_CONNECTION STANDARD FILE=standard file name OUTPUT=file I Below is a commonly used form of the DISPLAY_FILE CONNECTION command:

Parameters:

SF (STANDARD_FILE or FILES) Specifies any or all of the following standard files:
$ COMMAND , $COMMAND OF CALLER, $ECHO, $ERRORS, $INPUT, $LIST, $OUTPUT, $RESPONSE. The I
default is the keyword ALL, which causes the display of all standard file connections.

o (OUTPUT) Specifies the file to which information is written.
is usually connected to file OUTPUT.

Miscellaneous Common Commands

Default is $OUTPUT, which

The miscellaneous common NOS/VE commands discussed in this manual perform important functions in
debugging and structuring jobs. The commands are: >/-

COLLECT TEXT

DISPLAY VALUE

PUT LINE

COLLECT_TEXT (COLT)-

COLLECT TEXT provides NOS/VE users with a way to specify the NOS equivalent of an end-ot.-record
(EOR) i; your NOS/VE command stream. Actually, COLT causes subsequent text to be written to the
specified file. The text could be a program,data, commands--literally any text. COLT works
this way:

/collect_text file=myfile <-- Identifies the file to which text is written.
ct? text <-------------------- Text for file MYFILE.
ct? more text 1
ct? more text n
ct? ** <---------------------- Two asterisks terminate COLT operation.

COLLECT_TEXT is a very useful command for building jobs and procedures on NOS/VE.

Figure 4-2 shows a sample NOS procedure that you can create in NOS/VE by using COLLECT_TEXT. The
procedure executes a FORTRAN program that reads names from unit INPUT and then prints them. The
procecure executes in interactive mode.

Revision F Common NOS/VE Commands 4-31

I

I

I

+--+
.PROC,LSTNME. (--------------
FTN5. (---------------------
LGO. (----------------------
-EOR- (----------------------

10

-EOR
CHARLES
DIANA

PROGRAM FTNPG (------
CHARACTER *10 NAME
DO 10, 1=1,100
READ (*,'(A)') NAME
PRINT *, NAME
END

(---------------------
(--------------------

Identifies the NOS procedure.
Compiles program; NOS finds program file after EOR.
Executes program; NOS finds input file after EOR.
End-of-record indicator.
FORTRAN source program.

End-of-record indicator.
Data.

(----------------------- Represents more data.
-EOR- (---------------------- End-of-record indicator.

I

+--+
Figure 4-2. Sample NOS Procedure

There are several ways to use the COLLECT TEXT command to set up the sample NOS procedure to
execute on NOS/VE. The resulting NOS/VE procedure is shown in figure 4-3. The procedure
executes interactively and creat~sa file connection to $INPUT.

+--+
I proc list name (---------- Identifies the procedure. I

I
colt file;RO~~-;;~;~--~=: ;~~~~i:~u~~: !;!:r!~.WhiCh COLT writes the source program. I

CHARACTER *10 NAME

I
DO 10, 1=1,100 I
READ (*,'(A)') NAME

10 PRINT *, NAME

I ::It<~~;~~~-<:=:::::::=:== i~::~~~i:: ~~i! ~~e::~~~nCOLT writes data. I
I

Charles (----------------- Data. I
Diana

(-------------------- Represents more data.

I
** (---------------------- Terminates COLT operation. I
fortran i=filea (--------- File FILEA is input for the FORTRAN compiler.
crefc $input infile (----- To make READ* work (uses $INPUT), create a file connection

I
between standard file $INPUT and file INFILE. See the File I
Connection discussion earlier in this cha~terf6r more
information.

I
19o (-------------------- Executes FORTRAN binary on file LGO.

I

delfc $input infile (----- Deletes the file connection. This is important because other
commands could use INFILE for input until you delete the
connection.

procend list_name (------- Terminates the procedure.

+--+
I Note: If the procedure resides by itself on a file, you can execute it by specifying the I
I file name. I
+--+
Figure 4-3. Sample NOS/VE Procedure Uses COLLECT TEXT

• 4-32 Migration From NOS to NOS/VE Revision F

COLLECT_TEXT (COLT) Format

Below is a commonly used form of the COLLECT FILE command:

COLLECT FILE O=file

Parameters:

o (OUTPUT) Identifies the file to which the collected text is written. You can designate
a local or permanent file.

DISPLAY_VALUE (DISV)

DISPLAY VALUE displays a value or list of values. DISPLAY VALUE is comparable to the DISPLAY and
NOTE commands on NOS. This is a good command to use in debugging interactive jobs. It can also
display information obtained from SCL functions.

Examples:

/display_value value=$catalog

Displays the working catalog.

/display_value value=$date

Display the current date.

/display_value value=' job step 2 failed; processing continues.'

Writes the message to file OUTPUT.

/display_value value=(' sum=',5+2) output=outfile

Writes SUM = 7 to file OUTFILE.

Used in batch mode, this command causes a new page to be printed. To avoid the paging, you can
use either the PUT LINE command or the SET FILE ATTRIBUTES command to set the PAGE FORMAT
attribute of the output file to NON BURSTABLE. -For example, the following command-avoids paging
the OUTFILE used in the last DISPLAY_VALUE example:

/set_file_attributes file=outfile page_format=non_burstable

DISPLAY_VALUE (DISV) Format

Below is a commonly used form of the DISPLAY VALUE command:

DISPLAY VALUE V=value-list O=file

Parameters:

V (VALUE) Specifies the value or list of values to be displayed. Enclose a list in
parentheses. Enclose literals in apostrophes. When more than one value is specified,
each is displayed on a separate line.

o (OUTPUT) Specifies the file to which the information is displayed. The default is
standard file $OUTPUT. (See the File Connection commands discussion earlier in this
chapter for more information.)

Revision F Common NOS/VE Commands . A-33 •

If this command creates the output file, it sets the PAGE_FORMAT file attribute to BURSTABLE.
See the PAGE FORMAT attribute discussion in chapter 10, File Interface Introduction, for more
information.-

PUT_LINES (PUTL)

I
PUT LINES writes a line or lines to a file. PUT LINES is comparable to the NOTE command on NOS.
This is a good command to use in documenting batch jobs when you need to write messages about
processing performed. Since the first character of each string is interpreted as carriage
control, you can control print spacing, page ejects, etc.

Example:

I /put_Iines lines=' JOB STEP 2 FAILED; PROCESSING CONTINUES.'

Writes the message to file OUTPUT.

PUT_LINES (PUTL) Format

I Below is a commonly used form of the PUT LINES command:

PUT LINES L=lines O=file

I

I

Parameters:

L (LINES) specifies the line or lines as strings to be written to a file. Enclose strings
in apostrophes. Enclose a list of strings in parentheses. The first character of each
line is used for carriage control for that line.

o (OUTPUT) Specifies the file to which the information is written. The default is
standard file $OUTPUT. (See the File Connection commands discussion earlier in this
chapter for more information.)

NOS/VE STATUS Parameter

All NOS/VE commands have an optional STATUS parameter. When you specify this parameter, a
previously declared variable of kind STATUS (all SCL variables must be declared as being of a
kind) is specified to contain status information.

By checking the value of the status variable, you can alter processing, depending on status
conditions. The status variable contains status information in the following fields:

NORMAL

CONDITION

TEXT

A boolean value of FALSE or TRUE, depending on the command processing
incorrectly or correctly, respectively.

A unique code indicating the processor detecting the error and the specific
error detected.

A string (up to 256 characters).

The status variable provides a powerful mechanism in handling errors. However, describing its
use is not within the scope of this manual; it is an optional parameter.

See the SCL Language Definition Usage manual for details on using this feature.

4-34 Migration From NOS to NOS/VE Revision F

CONTEXT Differences
Both NOS and NOS/VE support the CYBER Online Text System (CONTEXT). CONTEXT is conceptually
identical on both systems. It enables you to read, create, and modify online manuals. However,
individual commands and directives differ. For a complete description of NOS/VE CONTEXT, refer
to the CONTEXT Usage manual. The following is a summary of the differences between the .NOS and
NOS/VE versions of CONTEXT. The complete description of these differences is in the CONTEXT
Usage manual.

Reading an Online Manual

The NOS and NOS/VE commands to read an online manual are as follows:

NOS: EXPLAIN or REVIEW,M=bound-file
L=listing-file-name <--Use with REVIEW command only
*CHILD=YES
subject?

NOS/VE: EXPLAIN
SUBJECT='subject'
MANUAL=bound-file
LIST=excerpt-file
STATUS=status-variable

On both systems, all parameters are optional. If you omit the bound-file value, you are taken to
a default manual that contains general information about using the NOS or NOS/VE system.

Both systems allow you to go directly to a particular subject within a manual by specifying the
subject on the EXPLAIN command. If you omit the subject, you are taken to the first screen (main
menu) of the manual.

The LIST parametee 011 the NOS/VE EXPLAIN command specifies a file to receive the screen
information sent when you use Copy and SetLog. NOS provides this capability through the REVIEW
command and the L parameter.

The *CHILD=YES parameter on the NOS EXPLAIN command is used for manuals that contain embedded
procedures.

The HELP command also provides you access to an online manual, usually the SCL Quick Reference
manual.

The commands for navigating through an online manual are similar on both systems:

+ or RETURN

Up

Top or First

Find

Back

Index

Help

Quit

Revision F

Displays the next screen.

Displays the preceding screen.

Displays the menu from which you made your last selection.

Displays the first.screen (main menu) of the manual.

Searches for screen describing a topic.

Displays screen from which you used Find.

Displays a portion of the manual's index.

The first time you use Help, displays informatIon on how to use the keys that
perform online manual reading operations. If you immediately use Help again,
displays the current HELP screen.

Exits the online manual and returns to system command mode.

Common NOS/VE Commands 4-35.

NOS/VE CONTEXT provides some commands and capabilities that are not provided by NOS CONTEXT, and
vice versa. These are as follows:

Under NOS/VE, you can read online manuals in the full-screen mode. This mode makes it easier for
you to navigate through the manuals, because you can do the navigation by pressing keys instead
of by entering commands. NOS does not have this feature.

Under NOS/VE, you can enter SCL commands (including another EXPLAIN command) while reading an
online manual. This is not permitted under NOS.

On NOS/VE, you can make a menu selection to branch to another online manual. Using Revert
returns you to the original manual. NOS does not provide this capability, although it can be
simulated through embedded procedures.

NOS provides the REVIEW and PRINT commands, which enable a reader to copy selected screens,
together with comments on those screens, to a file. On NOS/VE, using Copy and SetLog provides a
similar capability by copying a portion of an online manual to a file.

In NOS/VE CONTEXT, using Refrsh redisplays the current screen. NOS CONTEXT does not provide this
capability.

Creating an Online Manual

The commands and directives used in the creation of an online manual differ on NOS and NOS/VE.

Directives

The directives used to structure an online manual have different names on NOS/VE. The NOS/VE
directive names follow standard SCL naming conventions. Each directive name has a long form and
an abbreviation. In addition, NOS/VE provides several new directives. The following table lists
the NOS CONTEXT directives and the equivalent NOS/VE directives. NOS/VE abbreviations are shown
in parentheses.

NOS Directives --,-------
\S

\U

\p

\N

\M

\1

\C

\H

NOS/VE Directives

\CREATE_SCREEN (\CRES)

\DEF1NE_UP (\DEFU)

\DEFINE_PRIOR (\DEFP)

\DEF1NE_NEXT (\DEFN)

\DEF1NE_MENU (\DEFM)

\DEF1NE_1NDE~TOPIC (\DEFIT)

\ " " . . .
\DEF1NE LOCAL HELP SCREEN
(\DEFLHS) - -

4-36 Migration From NOS to NOS/VE

Defines and names a screen.

Designates "upward" screen.

Designates "prior" screen.

Designates "next" screen.

Defines menu selections.

Defines index topic.

Comment •

Defines screens reached via
HELP command.

Revision F

The following directives are provided by NOS/VE but not by NOS.

Directive

\DEFINE_MANUA~LINK (\DEFML)

\DEFINE~UAL_NAME (\DEFMN)

\DEFINE_DIRECTIVE_CHAR (\DEFDC)

\DEFINE_ALTERNATE_COMMAND (\DEFAC)

\DEFINE_SCL_PROCEDURE (\DEFSP)

\DEFINE SCL PROCEDURE_END (\DEFSPE)

\EXECUTE_SCL_PROCEDURE (\EXESP)

\DELETE_SCL_PROCEDURE (\DELSP)

Establishes a link to another online manual.

Defines the name of an online manual.

Changes the directive character from \ to a specified
character.

Changes the name of a command.

Signals the beginning of an embedded procedure.

Signals the end of an embedded procedure.

Begins execution of an embedded procedure.

Deletes an embedded procedure.

Differences in the .rules for writing directives are as follows:

On NOS/VE, a screen name consists of 1 through 31 characters. On NOS, the screen name must
not exceed 10 characters.

On NOS/VE, the priority level that you assign to an index topic is 0 through 15, and can
occur 16 times. Thus, an index topic can occur a total of 256 times. On NOS, the priority
levels are 0 through 9, and can occur 10 times.

On NOS/VE, an index topic can be up to 256 characters long. On NOS, index topics are. limited
to 50 characters.

Binding an Online Manual

The NOS and NOS/VE commands for creating an online manual are as follows:

NOS: BINDER,I=source-file,O=bound-file,L=list-file,OUTPUT=error-file.

NOS/VE: CREATE MANUAL
INPUT=source-file
OUTPUT=bound-file
ERROR LIST=error-file
LIST=cross-reference-file
LIST OP=R or NONE
STATUS=status-variable

CREATE MANUAL can be abbreviated CREM. CREATE MANUAL does not provide a formatted listing of the
online manual like the one produced by the L p;rameter on the BINDER command.

The LIST and LIST_OP parameters on the CREATE MANUAL command provide a cross-reference listing of
the manual. This is similar to the listing p~oduced by the OMREF utility under NOS. The formats
of the NOS and NOS/VE cross-reference listings differ slightly.

Revision F Common NOS/VE Commands 4-37

I

Debugging on NOS and NOS/VE

Debug is a NOS/VE interactive debugging facility that is similar to NOS CYBER Interactive Debug
(CID). This discussion compares the most commonly used features of the two debugging facilities.

Basic Concepts

Both Debug and CID provide powerful interactive debugging capabilities. Debug and CID are
conceptually similar; they both allow you to control and monitor the execution of a program.
Specifically, you can use the debugging facilities to:

Suspend program execution at specified locations or on the occurrence of specified conditions.

Display the values of program variables while execution is suspended.

Change the values of program variables while execution is suspended.

Automatically execute sequences of commands on the occurrence of specified conditions.

Resume execution after execution has been suspended.

Both facilities allow you to reference program locations symbolically; that is, by variable name
or line number.

Debug provides symbolic support for FORTRAN, C, COBOL, BASIC, Pascal, and CYBIL. Unlike CID,
Debug does not provide language-dependent commands for each language. The set of Debug commands
is the same for all supported languages.

Full Screen Debugging

Debug can operate in full screen mode. It uses cursor movement and certain keys to operate on
data displayed on the terminal screen.

Each key used to perform a full screen debugging operation is associated with a command. The
commands include the following:

Debug commands, such as SET_BREAK

Screen commands, such as Fwd

Help

Quit

Pressing one of these keys performs the action assigned to that key.

The screen for full screen mode debugging is divided as follows:

1. Home line

2. Response line

3. Source window

4. Output window

5. Menu rows

The line on which you enter Debug commands and SCL commands

The line where Debug displays short responses and advisory messages

The area for displaying the program you are debugging

The area for showing the output created by your program as well as the
output you requested from Debug

The area displaying the assignments to the keys performing full screen
debugging operations •

• 4-38 Migration From NOS to NOS/VE Revision F

Command Format

Although Debug and CID perform similar operations, the commands differ between the two
facilities. The most noticeable difference is in the command formats. Debug commands conform to
SCL command syntax. Consistent with this syntax, each Debug command has one of the following
forms:

For example, SET BREAK

verb modifier_object

In addition, each command contains parameters that select options associated with the command.
Like SCL commands, all Debug commands and parameters also have an abbreviated form.

Following are examples of Debug commands. Each command is shown twice; the first time in its
full form and the second time using abbreviations. The command:

set break
setb b=aa

break=aa
1=26

line=26

sets a break named AA at line 26 of the program unit.

The command:

display-yrogram_value name=svar module=sub4

displays the value of the variable SVAR in program unit SUB4.

For more information about SCL command syntax, refer to chapter 2, Conventions for Commands,
Names, and Parameters.

Home Program

When debugging a program with multiple modules, you can specify the module to which address
references in commands apply. (In FORTRAN, a module is a program unit; in COBOL, a module is
identified by the program-name specified in the PROGRAM-ID paragraph of the IDENTIFICATION
division.)

In CID, you use the notation P.module-name to specify a module. In Debug, you specify the module
name in a command parameter. For example, the following CID and Debug commands are equivalent;
both display the value of the variable A in module MYSUB.

CID: DISPLAY,P.MYSUB_A.

Debug: display-yrogram_value name=a module=mysub

For any Debug command that references an address (line number or variable name), the MODULE
parameter specifies the module that contains the address.

If you omit the MODULE parameter from a Debug command, the command assumes the default module.
The default module in Debug is the same as the home program in CID; the initial default module is
the module in which execution is currently suspended. You can change the default module by
entering a CHANGE_DEFAULT command (equivalent to the SET,HOME command of CID).

For example:

change_default module=mysub (abbreviated chad m=mysub)

changes the default module to MYSUB. Thereafter, all commands that do not contain a MODULE
parameter reference locations in module MYSUB.

Revision F Common NOSjVE Commands 4-39.

The new default module remains as specified in the CHANGE_DEFAULT command until you either enter
another CHANGE DEFAULT command or end the debug session. The command to change the default
module back to-the current module is:

change_default module=$current

The following example illustrates two ways of referencing a location in a different module.

program z
a=1.0
call sub
end (------------ If execution is suspended here,

subroutine sub
a=2.0 <---------- and you want to display the value of A as defined here,
return
end

then, enter either of the following:

or
display-yrogra~value name=a module=sub (-- Specifies module SUB

change default module=sub (----------------- Changes default module to SUB
display-yrogram_value name=a

Steps for Using Debug and CID

To use DEBUG or CID, proceed as follows:

1. Compile for use with Debug. (For FORTRAN, use the following commands. For other languages,
refer to the appropriate language manual or to the Debug Usage manual.)

NOS: FTNS, I=program, DB=ID

NOS/VE: fortran input=program optimization_level=debug debug_aids=dt

2. Turn on debug mode.

NOS: DEBUG, ON.

NOS/VE: set-yrogram_attributes debug_mode=on

3. Begin the debug session.

NOS: LGO.

NOS/VE: 19o

4. Set traps and breakpoints.

NOS: SET,BREAKPOINT,L.n. (--- Set breakpoint at line n.
SET ,BREAKPOINT, S.n. (--- Set breakpoint at statement n.
SET,TRAP,LINE,*. (------ Set trap at each line.

NOS/VE: SET BREAK L=n (--------- Set break at line n.
SET-BREAK SL=n (-------- Set break at statement label n.
SET STEP nODE MODE=ON (-- Set step mode for each executable line.

• 4-40 Migration From NOS to NOS/VE Revision F

5. Begin program execution.

NOS: GO.

NOS/VE: run

6. Display or change program values. (PRINT is a FORTRAN CID command. For other languages,
refer to the CID reference manual.)

NOS: DISPLAY,variable. <-------------------------- Display the value of the variable.
PRINT,list. (FORTRAN only)
ENTER, value ,variable. <---------------------- Assign new value to the variable.

NOS/VE: DISPLAY PROGRAM VALUE
CHANGE PROGRAM VALUE - -

7. End the debug session.

NOS: QUIT.

NOS/VE: quit

Preparing for a Debug Session

NAME=variable <------- Display value of program variable.
N=variable V=value <-- Assign new value to program

variable.

Both Debug and CID require a special compilation to produce the symbol and line number tables
required for symbolic debugging. In NOS/VE compiler languages, generation of these tables is
controlled by the DEBUG AIDS parameter on the compiler call command, which is similar to the DB
parameter on NOS compiler calls. Additionally, you should also specify OPTIMIZATION LEVEL=DEBUG
on the compiler call command.

For example:

NOS: FTN5,I=MYPROG,DB=ID.

NOS/VE: fortran input=myprog debug_aids=dt optimization_level=debug

These commands compile the source program on file MYPROG and produce tables for symbolic
debugging. IF DEBUG AIDS=DT is not specified on the FORTRAN command, symbolic debugging is not
possible.

After compiling your program with debugging tables generated, the next step is to turn on debug
mode. On NOS/VE you can turn on debug mode by specifying the following command:

set-yrogram_attributes debug_mode=on (abbreviated setpa dm=on)

This command is equivalent to the DEBUG,ON control statement under NOS; all subsequent program
executions will take place under Debug control until you either end the terminal session or turn
off debug mode. The command to turn off debug mode is:

set-yrogram_attributes debug_mode=off (abbreviated setpa dm=off)

Recall that on NOS, specifying DEBUG,ON before compilation obviates the need to specify DB=ID on
the compiler call. On NOS/VE, SET_PROGRAM_ATTRIBUTES has no effect on compilation.

Revision F Common NOS/VE Commands 4-41

I

I

I

I

Beginning and Ending a Debug Session

Beginning a debug session is the same under NOS and NOS/VE; simply type the name of the binary
object file while debug mode is on. The system responds with a prompt indicating that you can
now enter Debug commands. For example:

NOS: LGO.

CYBER Interactive Debug
?

NOS/VE: 19o

debug
DB/

On NOS/VE, the Debug prompt for user input is DB/.

I When Debug issues the DB/ prompt, you can enter any Debug or SCL command. Typically, at the
beginning of the session, you will enter commands that will cause program execution to suspend at
some point during the session. Suspending execution is discussed in the next topic.

The Debug command to begin (or resume) program execution is:

run

The RUN command is equivalent to the CID GO or EXECUTE command, except that it does not allow you
to specify an address where execution is to begin. (RUN always begins execution at the point of
suspension.)

In both CID and Debug, the command to end a debug session and return to system command mode is:

QUIT

Suspending Program Execution

Under both NOS and NOS/VE, the first step in a debug session is generally to provide for gaining
control during the session. Both CID and Debug provide commands for specifying conditions or
locations at which execution will suspend so that you can enter other commands.

Under both systems, you can begin execution and allow the program to execute until an error
occurs. If an execution error occurs, execution automatically suspends and you can enter Debug
commands. As explained in a later topic, both systems also allow you to specify a sequence of
commands that .is automatically executed when an execution error occurs.

Debug provides the equivalent of traps and breakpoints. In Debug, the mechanism for suspending
execution is called a break. You can set a break at a statement label or line number (similar to
a CID breakpoint) or you can set a break for a specified event (similar to a CID trap), such as a
call to a subprogram.

The Debug command to establish a break is SET BREAK (abbreviated SETB). Parameters on the
SET BREAK command specify the type and location of the break. In addition, each break is
assigned a name. You can assign the name yourself through an optional parameter or you can allow
Debug to assign a default name. The name has the same function as the trap or breakpoint number
in CID; that is, you can use it to reference the break in subsequent commands.

Following are typical SET BREAK commands (abbreviations are shown in parentheses):

I set break line=10 (setb 1=10)

Sets a break at line 10 of the current module. This is equivalent to setting aCID
breakpoint at line 10 of the program.

4-42 Migration From NOS to NOS/VE Revision F

set_break event=call procedure=mysub (setb e=c p=mysub)

Sets a CALL break in the current module. A CALL break is similar to an RJ trap; it
suspends execution when a call to the specified procedure (subprogram) is encountered.

set_break break=b3 statement_label=5 module=sub (setb b=b3 sl=5 m=sub)

Sets a break at the statement labeled 5 in module SUB. The parameter BREAK=B3 assigns
the name B3 to the break.

I

I

Another useful method of suspending execution is to turn on step mode. Step mode is used to I
suspend execution at the beginning of a specified unit of code, thus allowing you to step through
the execution of a program.

For example, the following command is similar to the CID LINE trap; it causes execution to
suspend at the beginning of each executable line of code.

SET STEP MODE MODE=ON UNIT=LINE MODULE=name I
where name is the name of the module in which step mode is set. The MODULE parameter can be
omitted, in which case the current (default) module is assumed.

SET STEP MODE can be abbreviated SET SM. - -
You can also set step mode to suspend execution at the beginning of each procedure or program
unit of a program. The command is:

set_step_mode mode=on unit=procedure

Use the following command to turn off step mode:

SET STEP MODE MODE=OFF MODULE=name - -
For COBOL programs, you can also use step mode to perform the same function as the PROCEDURE trap
of CID. The Debug commands:

set_step_mode mode=on unit=cobol-yaragraph (abbreviated setsm mode=on u=cp)

set_step_mode mode=on unit=cobol section (abbreviated setsm mode=on u=cs)

Set step mode so that execution suspends at the beginning of each paragraph in the PROCEDURE
division or each section, respectively.

Displaying Program Values

The Debug command for displaying the values of data items within a program while execution is
suspended is DISPLAY PROGRAM VALUE (abbreviated DISPV). This command is similar to the CID
DISPLAY command; it specifies a variable, array, or array element to be displayed. Parameters on
the DISPLAY PROGRAM VALUE command specify the data item to be printed and the program containing
the data item.

Following are some examples:

display-yrogram_value name=x

Displays the value of the variable X in the default module.

display-yrogram_value name=beta module=mysub

Displays the value of the variable BETA in module MYSUB.

Revision F Common NOS/VE Commands 4-43

I

I

I

I

I display-yrogram_value name=arr(5)

Displays the value of element 5 of array ARR in the default module.

If you specify an array name on a DISPLAY_PROGRAM_VALUE command, the entire array is displayed.

The following form of DISPLAY PROGRAM VALUE is similar to the LIST,VALUES command of CID; it
displays all values in the specified module (or in the current module if the MODULE= parameter is
omitted) •

DISPLAY_PROGRAM_VALUE NAME =$ ALL MODULE =module-name

DISPLAY PROGRAM VALUE is the only Debug command for displaying values. There are no language
I dependent commands such as the PRINT (FORTRAN, BASIC) and MAT PRINT (BASIC) commands of CID.

Changing Program Values

The Debug CHANGE PROGRAM VALUE command (abbreviated CHAPV) is similar to the CID ENTER command;
it assigns a neW-value to a program variable, array, or array element. Parameters on the
CHANGE PROGRAM_VALUE command specify the item to be changed and the value to be assigned to the
item. Some examples are as follows:

I change-yrogram_value name=x value=3.14 (abbreviated chapv n=x v=3.14)

Assigns the value 3.14 to the variable X in the current program unit.

I change-yrogram_value name=alpha(1) value=.00247 module=proga

Assigns the value .00247 to the first element of array ALPHA in program unit PROGA.

I CHANGE_PROGRAM_VALUE is the only Debug command for changing values of variables. Debug does not
provide language dependent commands such as the assignment statements of CID.

Other Debug Features

The following is a comparison of some additional features of Debug and CID.

Automatic Execution of Commands

The SET BREAK command of Debug allows you to specify a sequence of commands to be executed
automatIcally when the break occurs, in a manner similar to the trap and breakpoint bodies of
CID. The optional COMMAND parameter (abbreviated C) on the SET BREAK command specifies the
commands to be executed. You can specify a string of one or more Debug commands.

For example, the following SET BREAK command specifies a single DISPLAY PROGRAM VALUE command to

I

be executed when the break is reached during execution. Note that the DISPLAY PROGRAM VALUE
command is enclosed in apostrophes.

set break break=brk line=4 command='display-yrogram_value name=x'

I

The following SET BREAK command specifies four DISPLAY_PROGRAM_VALUE commands to be executed when
the break is reached. Note that the command string is continued on a second line and that
commands are separated by a semicolon. For more information about command continuation, refer to
chapter 2, Conventions for Commands, Names, and Parameters.

set_break break=b004 line=10 command='display-yrogram_value name=a; ••
display-yrogram_value name=bj display-yrogram_value name=c; display-yrogram_value name=d'

4-44 Migration From NOS to NOS/VE Revision F

Debug provides a method of automatically executing a sequence of commands on the occurrence of an
execution error. This capability is similar to a CID ABORT trap with a body. To use automatic
command execution, do the following:

1. Create a file of Debug commands. You can create this file using a text editor such as the
NOS/VE Full Screen Editor. (The file can also contain SCL commands.)

2. Enter the command:

SET PROGRAM ATTRIBUTES DEBUG_MODE=OFF ABORT_FILE=file

where file is the file of Debug and SCL commands.

3. Begin program execution.

The program will execute until an error occurs. The commands in the ABORT FILE file will then be
automatically executed. Note that DEBUG MODE must be set to OFF in order to use the ABORT FILE
feature.

Debug has capabilities similar to CID groups. You can execute SCL command procedures or use the
INCLUDE FILE command in a debug session. Thus, you can create sequences of debug and SCL
command~, execute the commands at will during a debug session, and save the commands for use in a
later session.

This capability is extremely powerful, because you can use the full capabilities of the SCL
command language in Debug command sequences. For example, you can use the SCL block structuring
statements to provide for repeated or conditional execution of command sequences.

I

Command procedures, block structuring statements, and the INCLUDE FILE command are described in
the SCL Language Definition Usage manual. Refer to chapter 6, Using Procedures, for an I
introduction to SCL procedures.

The following command sequence uses an IF/IFEND block to specify conditional execution of
commands:

if $current_line = 15 then
display-yrogram_value name=a
display-yrogra~value name=b

else
display-yrogram_value name=x
display-yrogram_value name=y

ifend

The IF statement tests the $CURRENT_LINE function. If the current line is 15, the values of
variables A and B are displayed. Otherwise, the values of variables X and Yare displayed.

If these commands were placed in a file named AAA, they could be executed during a debug session
by the following command:

include file file=aaa

The following example combines the command string capability of the SET BREAK command with the
INCLUDE FILE feature.

set_break line=10 command='display-yrogram_value name=x; display_debugging_environment; ••
include_file file=aaa; run'

When program execution reaches line 10, execution suspends and the following occurs:

The value of the variable X is displayed.

The debugging environment is displayed.

Revision F Common NOS/VE Commands 4-45

I

I

The commands in file AAA are executed.

Program execution resumes.

Specifying command strings on a SET BREAK command is especially useful for debugging DO loops.

Displaying Debug Status Information

Debug provides commands for displaying information about the status of a debug session. The
DISPLAY BREAK command is similar to the LIST,TRAP and LIST,BREAKPOINT commands of CID for
displaying information about traps and breakpoints currently active in the debug session.

Examples of the DISPLAY BREAK command are as follows:

I display_break break=(bI,b2,b3) (abbreviated disb b=(bl,b2,b3»

Displays the names, types, and locations of breaks BI, B2, and B3. (BI, B2, and B3 are
the names assigned in the SET_BREAK command.)

I display_break break=all (abbreviated disb b=all)

Displays the names, types, and locations of all breaks currently active in the debug
session.

The DISPLAY_DEBUGGING_ENVIRONMENT command displays a paragraph of information about the current
debug session, similar to that displayed by the CID LIST,STATUS command. Optional parameters on
the DISPLAY_DEBUGGING_ENVIRONMENT command select types of information to be displayed. Entering

I display_de bugging_environment (abbreviated disde)

with no parameters, produces a default display. The most useful information given by this
display is the location (line number and program unit) where execution is currently suspended.

Debug provides several functions, similar in purpose to the CID debug variables, that return
information about the debug session. The more commonly used Debug functions are:

$ CURRENT_LINE

$CURRENT_MODULE

$CURRENT_PROCEDURE

Returns the line where execution is suspended.

Returns the name of the program unit where execution is suspended.

Returns the name of the procedure where execution is suspended (for
programs other than FORTRAN or COBOL.)

You can display the values returned by these functions by entering a DISPLAY VALUE command in the
debug session. For example:

I display_value value=$current_line

I
Displays the line where execution is currently suspended.

The Debug functions can also be used in expressions in command. sequences. For example:

if $current line = 6 then
display~rogram_value name=x
display program value name=y
display:Yrogra~value name=z

ifend

If the current line is 6, then the values of variables X, Y, and Z are displayed.

4-46 Migration From NOS to NOS/VE Revision F

Displaying a Subprogram Traceback List

The Debug DISPLAY CALL command is equivalent to the TRACEBACK command of CID. The DISPLAY CALL
command (abbreviated DISC) lists the sequence of called subprograms beginning with the current
subprogram and proceeding back to the main program.

Optional parameters on the DISPLAY_CALL command specify the subprogram where the traceback is to
begin and whether the traceback is to include system as well as user subprograms.

The following examples show two forms of the DISPLAY CALL command:

display_call display_options=all_calls (disc do=ac) I
Displays a traceback list beginning with the current subprogram. The list includes both
system and user subprograms.

display_call display_options=user_calls (disc do=uc)

Displays a traceback list beginning with the current subprogram. The list includes only
user subprograms.

Removing Breaks

The Debug DELETE BREAK command (abbreviated DELB) removes breaks from the current debug session.
This command serves the same purpose as the CID CLEAR,BREAK and CLEAR,TRAP commands. You can
remove selected breaks or all breaks.

For example:

I

delete break break=(bI, b4, b6) I
Deletes breaks BI, B4, and B6 from the current debug session. (BI, B4, and B6 are the
names assigned by the SET BREAK command).

delete break all I
Deletes all breaks from the debug session.

CID and Debug Commands and Features

The following list summarizes the CID and Debug commands and features.

CID Command or Feature

ABORT trap

assignment statement

Bodies

Breakpoint at statement
label or line number.

CLEAR ,BREAKPOINT

CLEAR ,GROUP

CLEAR ,TRAP

Revision F

Equivalent Debug Command or Feature

Debug automatically gets control when an execution error occurs.

No language-dependent commands. Use CHANGE PROGRAM VALUE. - -
Specify a command string with the COMMAND parameter on the
SET BREAK command.

Break at statement label or line number.

DELETE BREAK

Not needed.

DELETE BREAK

Common NOS/VE Commands 4-47

I

I

CID Command or Feature

COLLECT mode

DISPLAY

ENTER

EXECUTE

GO

Groups

HELP

INTERPRET mode

LET

LINE trap

LIST ,BREAKPOINT

LIST ,GROUP

LIST ,MAP

LIST,STATUS

LIST,TRAP

LIST ,VALUES

MAT PRINT

MESSAGE

MOVE

OVERLAY trap

PRINT

PROCEDURE trap

QUIT

RJ trap

SAVE

Sequence commands (SKIPIF,
LABEL, JUMP, READ)

SET ,AUXILIARY

SET ,BREAKPOINT

SET ,HOME

Equivalent Debug Command or Feature

Not needed. Command sequences can be created by a text editor
or COLLECT TEXT.

DISPLAY PROGRAM VALUE - -
CHANGE PROGRAM VALUE - -
RUN

RUN

Use INCLUDE FILE or command procedures to execute predefined
sequences of commands.

No equivalent. Read online manual while in debug session:
EXPLAIN MANUAL=DEBUG.

No equivalent.

No language-dependent commands. Use CHANGE PROGRAM VALUE.

Use SET STEP MODE to suspend execution at each executable line.

DISPLAY BREAK

Not needed.

No equivalent.

DISPLAY DEBUGGING ENVIRONMENT - -
DISPLAY BREAK

No language-dependent commands. Use DISPLAY PROGRAM VALUE. - -
Use DISPLAY VALUE 'string'.

No equivalent.

No equivalent; overlays not supported on NOS/VE.

No language-dependent commands. Use DISPLAY PROGRAM VALUE.

Use SET STEP MODE MODE=ON UNIT=PROCEDURE or, for COBOL:
SET STEP MODE MODE=ON UNIT=COBOL PARAGRAPH - - -
QUIT

SET BREAK BREAK=name EVENT=CALL

No equivalent.

Use SCL block structuring statements.

No equivalent.

Use SET BREAK to set breaks at specified line numbers or
statement labels.

Use CHANGE DEFAULT to change default program.

4-48 Migration From NOS to NOS/VE Revision F

CID Command or Feature Equivalent Debug Command or Feature

SET,INTERPRET No equivalent.

SET ,OUTPUT No equivalent.

SET,TRAP Use SET BREAK to set breaks at specified events.

STEP SET STEP MODE

SUSPEND No equivalent.

TRACEBACK DISPLAY CALLS

variables Use Debug functions to get information about debug session.

VETO mode No equivalent

Where To Go for More Debug Information

Two manuals describe the NOS/VE Debug facility:

Debug Usage manual (printed)

Contains detailed descriptions and formats of all Debug commands and functions

Debug Quick Reference (online, type EXPLAIN MANUAL=DEBUG)

Contains brief descriptions and formats of all Debug commands and functions

In addition, the printed manual for each language supported by Debug contains a short example of
a Debug session and a reference to the Debug Usage manual. The online manual for each such
language links from its main menu to the online Debug Quick Reference manual. These languages
are:

FORTRAN
BASIC
C
COBOL
CYBIL
Pascal

Sort/Merge Differences

NOS/VE provides a Sort/Merge utility that is compatible with NOS Sort/Merge Version 5. In most
cases, NOS programs that use Sort/Merge 5 can be executed on NOS/VE with little or no
modification.

Summary of Major Differences

The following paragraphs describe the major differences between NOS Sort/Merge 5 and NOS/VE
Sort/Merge.

Byte Size

A NOS byte contains 6 bits. A NOS/VE byte contains 8 bits.

Revision F Common NOS/VE Commands 4-49

Character Data

NOS character data is internally represented in 6-bit display code. NOS/VE character data is
I internally represented in 8-bit ASCII code. The ASCII character set is shown in appendix C.

Character Sets

NOS supports the 63- and 64-character sets. NOS/VE supports only the 256-character ASCII
character set.

Collating Sequences

NOS/VE supports the following predefined 'collating sequences (the associated NOS/VE names are
shown in parentheses):

ASCII6 (OSV$ASCII6 FOLDED)
COBOL6 (OSV$COBOL6-FOLDED)
DISPLAY (OSV$DISPLAY64 FOLDED)
EBCDIC6 (OSV$EBCDIC6 FOLDED)
EBCDIC (OSV$EBCDIC) -
ASCII (default; no associated NOS/VE name)

Although the above names are the same as the NOS names, the actual collating sequences may differ.

NOS/VE does not support the INTBCD collating sequence.

I The NOS/VE collating sequences are given in appendix C.

User-defined collating sequences under NOS have 64 positions. User-defined collating sequences
under NOS/VE have 256 positions. When converting a NOS Sort or Merge program to NOS/VE, you can
use the SM5SEQR procedure (or SEQR command parameter) to fill the extra positions.

Diagnostic Messages

The error numbers and message text of NOS/VE Sort/Merge error messages differ from those of NOS
I Sort/Merge 5. The NOS/VE Sort/Merge error messages are listed in the Diagnostic Messages for

NOS/VE manual. (They are not listed in the manuals that describe Sort/Merge.)

, Sort/Merge 5 writes messages to the dayfile and to the file specified by the E parameter (or SM5E
procedure call). NOS/VE Sort/Merge writes messages to the files specified by the LIST parameter
(or SM5LIST call) and by the E parameter (or SM5E call).

Equal Keys

When Sort/Merge encounters two records with equal key values, it calls the owncode 5 procedure if
you have specified one. The procedure has the choice of retaining, deleting, or altering either
or both records. It cannot alter key fields. A fatal error occurs if you use this procedure
with summing or with the OMIT DUPLICATES option.

Estimated Number of Records

Under NOS/VE, you can specify a value for the ENR parameter or the SM5ENR call, but the value is
not used. ENR and SM5ENR are provided only for compatibility with Sort/Merge 5.

Exception File Processing

I
Exception file processing is anew feature provided by NOS/VE. The ERF parameter or SM5ERF
procedure call allows you to specify a file to which invalid records are written during a sort or
merge operations.

4-50 Migration From NOS to NOS/VE Revision F

FASTIO Processing

Using the FASTIO parameter in the SM5FAST procedure causes Sort/Merge 5 to read and write
directly rather than through the access method. NOS/VE provides the SM5FAST procedure for
compatibility with NOS. NOS/VE does not support the FASTIO parameter. If you use the SM5FAST
procedure in NOS/VE, a warning message is issued.

File Attributes

Unlike NOS, under NOS/VE, not all of the default file attributes are valid for a sort or merge
operation.

Under NOS/VE, the default value for the MINIMUM RECORD LENGTH attribute could cause a fatal error
if no key field was specified for the sort or merge.

Sort and merge require a value for the maximum record length, even for record manager record
types that do not require this specification. The MAXIMUM RECORD LENGTH parameter of the
SET_FILE_ATTRIBUTES command must specify the maximum record length value for files which do not
have F type records if the default of 256 is not large enough.

File Positioning

Sort/Merge 5 rewinds files before use, depending on the type of file or unless a FILE statement
parameter specifies otherwise. NOS/VE Sort/Merge does not rewind files. The open position of a
NOS/VE file is determined by the value of its OPEN POSITION attribute. This attribute is
established by a SET_FILE ATTRIBUTES command.

Interactive Prompting

NOS/VE Sort/Merge does not provide the capability of entering Sort or Merge command parameters in
response to interactive prompts.

Listing File

When accessed through procedure calls, Sort/Merge 5 writes listable output to file OUTPUT.
NOS/VE Sort/Merge allows you to specify an output listing file through the SM5LIST procedure
call. The default listing file is $LIST.

MERGE Command

The formats of the NOS/VE MERGE command and parameters follow different conventions from those of
NOS MERGE. The MERGE command and parameters are described later in this chapter.

Owncode Procedures

NOS/VE Sort/Merge does not provide an OWNF parameter to specify a file containing owncode
routines. Under NOS/VE, any owncode procedures specified in a SORT or MERGE command must be
accessible from an object library in the current object library list.

On NOS/VE, letters in owncode names must be uppercase.

Procedure Calls

Both NOS/VE Sort/Merge and NOS Sort/Merge 5 support FORTRAN procedure calls as well as a system
command interface. In addition, NOS/VE Sort/Merge is callable through the CYBIL language. The
FORTRAN procedure call differences are described later in this chapter. The CYBIL procedure
calls are described in the CYBIL Keyed File and Sort/Merge Interfaces Usage manual. I

Revision F Common NOS/VE Commands 4-51

Sign Overpunch

Sort/Merge 5 defines 20 sign overpunches. NOS/VE Sort/Merge defines 34 sign overpunches.

Sort 4 Support

NOS Sort 5 supports the Sort 4 FORTRAN interface; NOS/VE Sort does not support the Sort 4 FORTRAN
interface.

SORT Command

The formats of the NOS/VE SORT command and parameters follow different conventions from those of
the SORTS command and parameters. The SORT command and parameters are described later in this
chapter.

STATUS Parameter

In Sort/Merge 5, a status code is returned in the specified CCL variable. In NOS/VE Sort/Merge,
this is the standard SCL status parameter, in which status information is returned. The SCL
STATUS parameter is described in chapter 4, Common NOS/VE Commands. NOS/VE does not support the

I ST alias for STATUS.

Zero Comparison

In Sort/Merge 5, negative zero is ordered before positive zero. In NOS/VE Sort/Merge, positive
and negative zero are ordered equally.

FORTRAN-Sort/Merge Procedure Call Differences

Both NOS Sort/Merge 5 and NOS/VE Sort/Merge can be called through system commands and from
FORTRAN programs through procedure calls. In addition, NOS/VE Sort/Merge can be called from
CYBIL, a new high-level language provided by NOS/VE. This topic describes FORTRAN procedure call
differences. The next major topic describes system command (control statement) differences.

I Refer to the CYBIL Keyed File and Sort/Merge Interfaces Usage manual for descriptions of the
CYBIL procedure calls.

The Sort/Merge 5 and NOS/VE Sort/Merge procedure calls are compatibile; they have the same names
and parameters. However, in some cases parameter values differ, and NOS/VE provides several new
calls.

The differences between the NOS and NOS/VE Sort/Merge procedure calls follow. Only calls for
which differences exist are described. Refer to the FORTRAN Language Definition Usage manual for
detailed descriptions of all of the Sort/Merge procedure calls.

SM5E

If this call is omitted, the NOS default error file is the output listing; the NOS/VE default is
file $ERRORS.

SM5EL

Under NOS, error levels are specified as T or 1, W or 2, R or 3, and C or 4. NOS/VE allows T or
I, W, F, and C, but not 1, 2, 3, or 4. The default is I. Specifying NONE requests that no error
messages be listed.

4-52 Migration From NOS to NOS/VE Revision F

SM5ENR

NOS/VE provides this call for compatibility with NOS, but it has no effect.

SM5FAST

NOS/VE provides this call for compatibility with NOS. If you call SMSFAST, NOS/VE does nothing
except issue a warning message.

SM5KEY

On NOS/VE, SMSKEY supports the following collating sequence names: ASCII6, COBOL6, DISPLAY,
EBCDIC6, ASCII, and EBCDIC. Even though the first four names are the same as those supported on
NOS, the actual collating sequences might differ. Note that SM5KEY does not support the INTBCD
collating sequence.

On NOS/VE, a collating sequence specified in a call to SMSKEY must be predefined or defined by a
call to SMSDUCT, SMSLCT, or SMSSEQx.

SM5NODA

NOS/VE provides this call for campatibility with NOS. If you call SMSNODA, there is no effect.

SM50WNn

For Sort/Merge S, owncode routines are specified by the address of the owncode routine name that
was declared in an EXTERNAL statement. For NOS/VE Sort, an owncode procedure is specified by the
entry point name. Letters in the name must be uppercase and the entry point must be loadable by
PMP$LOAD.

SM5ST

The NOS/VE SM5ST procedure specifies a status variable in which the completion status of the
command or procedure is returned.

SM5SUM

The NOS/VE Sort/Merge summing capability combines all records having equal key fields into a
single record. The record is chosen to be the longest record of all the records being summed.
Sort/Merge deletes the rest of the records during summing. If several of the records being
combined have the maximum length, then, which record is retained and which records are deleted is
undefined. The NOS/VE SM5SUM procedure specifies a sum field in the retained record. The sum
field is the sum of the values of the corresponding fields from the combined records. You may
not call SMSSUM with SMSOWNS, SMSOMIT, or SMSRETA in the same sort or merge.

New FORTRAN Sort/Merge Procedure Calls

NOS/VE provides the following new FORTRAN Sort/Merge procedure calls:

SMSCC

SMSDUCT

SM5ERF

SMSFMA

Revision F

Controls the format of some of the parameter names.

Specifies the name of a user-defined collating table to be used by SMSKEY.

Specifies a file to which all invalid records encountered during the sort or merge
operation are written.

Allows you to pass memory areas to be used as if they were FROM files.

Common NOS/VE Commands 4-53.

SM5LCT Loads a collation table for use in a SM5KEY call.

SM5LIST Specifies the name of a file to receive the Sort/Merge output listing.

SM5LO Selects the type of information to be written to the output listing.

SM50MIT Controls omitting all but one of the records which have equal key values. You
cannot call SM50MIT with SM50WN5 in the same sort or merge. The SM50MIT, SM5RETA,
and SM5SUM calls are mutually exclusive.

SM5TMA Allows you to pass memory areas to be used as if they were a TO file.

SM5VER Requests checking of order of input records for a merge operation.

SM5ZLR Controls the use of zero length records.

SORT and MERGE Command Difference

Both NOS Sort/Merge 5 and NOS/VE Sort/Merge can be called by a system control statement
(command). The NOS/VE SORT and MERGE commands are equivalent to the NOS SORTS and MERGE control
statements. However, the formats of the commands and their associated parameters differ between
the two systems.

The formats of the NOS SORTS and MERGE commands are as follows:

SORT5.keyword1=valuel ••• keywordn=valuen

MERGE.keyword1=valuel ••• keywordn=valuen

The NOS/VE SORT and MERGE commands conform to SCL conventions. The formats of these commands are
as follows:

SORT keyword1=valuel ••• keywordn=valuen

MERGE keywordl=value1 ••• keywordn=valuen

On both NOS and NOS/VE, commas or blanks are used to separate parameters.

Both the NOS and NOS/VE Sort/Merge commands can be continued over multiple lines. The maximum
length of the NOS SORT 5 and MERGE commands is 240 characters; NOS/VE SORT and MERGE commands can
be any length. Command continuation rules are described in chapter 2, Conventions for Commands,
Names, and Parameters.

Both NOS and NOS/VE provide the option of specifying Sort/Merge parameters in a directive file.

Parameters on the NOS/VE SORT and MERGE commands conform to SCL conventions; each parameter has a
full form and, in most cases, an abbreviation. For ease of use, the equivalent NOS parameter
name is usually supported as well.

Following is an example of equivalent NOS and NOS/VE commands to call Sort/Merge.

NOS: SORTS.FROM=SRTIN TO=SRTOUT KEY=1 •• 10

NOS/VE: sort from=srtin to=srtout key=1 •• 10

These commands read input records from local file SRTIN, write output records to file SRTOUT, and
define the first 10 bytes as the key field •

• 4-54 Migration From NOS to NOS/VE Revision F

Both NOS and NOS/VE allow parameters to be specified positionally (however, the position is not
always the same). For example:

NOS: SORTS. SRTIN SRTOUT 1 •• 10

NOS/VE: SORT SRTIN SRTOUT 1 •• 10

The following is a list of NOS and NOS/VE Sort/Merge parameters. The NOS/VE parameter
abbreviations are shown in parentheses.

NOS Parameter

FROM

TO

KEY

DIR

L

LO

E

EL

DIALOG (DIA)

ENR

OWNF

OWNFL (OFL)

OWNMRL (OMRL)

OWNn

RETAIN (RET)

SEQx

Revision F

NOS/VE Parameter

FROM (F)

TO (T)

KEY (K)

DIRECTIVES FILE
(DIRECTIVES, DIR, DF)

LIST (L)

LIST OPTIONS (LO)

ERROR (E)

ERROR LEVEL (EL)

No equivalent

ESTIMATED NUMBER
RECORDS (ENR)

No equivalent

OWNCODE FIXED LENGTH
(OWNFL,-OFL)

OWNCODE MAXIMUM RECORD
LENGTH (OWNMRL,-OMRL)

OWNCODE PROCEDURE n
(OWNn, OPn) -

RETAIN ORIGINAL ORDER
(RETAIN, RET, ROO)

COLLATING SEQUENCE x
(CSx) - -

Description

Specifies file containing input records to be
sorted or merged.

Specifies output file to receive sorted or merged
records.

Defines the record key field to be used in the
sort or merge operation. Also selects a
collating sequence. NOS default sequence is
ASCII6; NOS/VE default is ASCII.

Specifies a file containing Sort/Merge directives.

Specifies a file to receive the output listing.
NOS default is OUTPUT; NOS/VE default is $LIST.

Specifies output listing options.

Specifies a file to receive error messages. NOS
default is output listing file; NOS/VE default is
$ERRORS.

Specifies the level of errors to be written to
error file.

NOS/VE does not support interactive prompting.

Estimated number of input records; not used on
NOS/VE.

Specifies file containing owncode routines. On
NOS/VE, owncode routines must be in an object
library.

Specifies length of fixed length records input
from owncode routine.

Specifies maximum length of owncode records.

Specifies owncode procedure.

Directs Sort/Merge to output records with equal
keys in same order as input. This parameter,
OMIT_DUPLICATES, and SUM are mutually exclusive.

Defines a collating sequence.

Common NOS/VE Commands 4-55

NOS Parameter NOS/VE Parameter Description

STATUS (ST) STATUS Specifies variable to receive error status code.
Format of information returned differs between
NOS and NOS/VE.

SUM SUM (5) Specifies record field to be summed. This
parameter, OMIT DUPLICATES, and RETAIN
ORIGINAL ORDER are mutually exclusive.- You
cannot use OWNCODE PROCEDURE 5 with SUM.

VERIFY (VER) VERIFY MERGE INPUT
ORDER (VERIFY, VER:
VMIO)

Requests verification of order of input records
to be merged.

FASTIO No equivalent Direct input and output not supported on NOS/VE.

The following new parameters are supported by the NOS/VE SORT and MERGE commands.

CI70_COMPATIBLE (CC)

When you set this parameter to ON, YES, or TRUE, owncode routine names are processed as
upper case letters. When you set the parameter to OFF, NO, or FALSE, the names are
processed in the form you entered them. The default is OFF.

EXCEPTION_RECORDS_FILE (ERF)

Specifies a file to which all invalid records encountered during a sort or merge
operation are written.

Loads a collating table.

OMIT_DUPLICATES (OD)

Controls omitting all but one of the records with equal key values. The record that
remains is chosen to be the longest record of all the records with equal key values. If
several of the records with equal key values have the maximum length, then, which record
remains and which records are deleted is undefined. This parameter,
RETAIN ORIGINAL ORDER, and SUM are mutually exclusive. You cannot use
OWNCODE PROCEDURE 5 with OMIT DUPLICATES.

RESULT_ARRAY (RESA, RA)

Specifies an array in which Sort/Merge returns processing statistics.

Controls the use of zero length records •

• 4-56 Migration From NOS to NOS/VE Revision F

Where To Go for More Information About Sort/Merge

The Sort/Merge procedure calls, and usage information about calling Sort/Merge from languages, is
presented in the language usage manuals. Calling Sort/Merge with system commands is discussed in
the SCL Advanced File Management Usage manual. Manuals with Sort/Merge information are also
available in online form on NOS/VE. The online manuals can be accessed through EXPLAIN.

Manual Title Online Description

COBOL Usage Manual EXPLAIN M=COBOL S='SORT'

SCL Advanced File Management Usage Manual EXPLAIN M=AFM S='SORT'

FORTRAN Quick Reference Manual EXPLAIN M=FORTRAN S='SORT'

Revision F Common NOS/VE Commands 4-57.

Job Structure

SCL Language Elements •••
Constant.s •••••.•••.••••••••••••••••••••••••••••••.••.•••••••••••••••••••••••.•••••••••
Variables•.....••...•..••••••.•.••••...•.•••••.....•••••.•.•.•...•.••.•..••••.•...•
Expressions •..•...••...•••..•••••..••.••••••.•••.•.•.•••••••••••••••.•••••••••••••••••
Assignment Statements .•.•••••.•••...••...••••••••••.••••••••.•.••••••.••••••••••••••••
Functions ...•••••••.•••..•.••.•••.........•.•.••.•.....•••••••••.•..••.•..••..•..••...
Comparison of NOS and NOS/VE Elements •••

Controlling Job Flow ••
Block Strue.ture •••.•••••..••.••••••••••••.•••.••
Repeated Execut ion of Commands ••

FOR Statement •••
WHILE Statl~ment •••
REPEAT St atement ••
LOOP Statement

Condi.tional Execution of Commands •••
Error Condition Processing ••

STATUS Parameter ••
Determining the Condition Value of a STATUS Variable ••••••••••••••••••••••••••••••
Establishing a Condition Handler ••

Summary of NOS and NOS/VE Execution Control Commands ••••••••••••••••••••••••••••••••••

5-1
5-1
5-2
5-3
5-3
5-4
5-5

5-6
5-6
5-6
5-6
5-7
5-8
5-8
5-9
5-9
5-9

5

5-11
5-11
5-12

Job Structure

This chapter describes how you can use various SCL statements and commands to structure jobs
u'nder NOS/VE. In previous chapters, you were introduced to some SCL commands for performing
various useful operations under NOS/VE. Many of your jobs under NOS/VE will probably consist of
simple sequences of these commands. In addition to these commands, SCL provides statements that
enable you to organize a job into blocks of commands such that each block performs a single
logical function. You can specify blocks to be executed repeatedly until certain conditions are
satisfied, or you can specify blocks that are executed only when certain errors occur.

5

There are some important differences in the structures of NOS and NOS/VE jobs. SCL has a more
natural, language-like structure that is more familiar to FORTRAN and COBOL programmers. Under
NOS, you have limited use of such elements as variables and operators, which you can combine into
expressions and various types of statements. Under NOS/VE, you have much more flexibility in the
use of these elements, which you can use to construct jobs that resemble structured programs.

The SCL block structuring statements include statements such as IF/IFEND, BLOCK/BLOCKEND, and
WHILE/WHILEND.

A job block begins at the beginning of a job and ends at the end of the job. Within a job block
you can define other blocks. The following example shows a job consisting of two blocks within a
job block:

LOGIN

block

IF SVAR.NORMAL THEN ------------------------ ~
FORTRAN INPUT=TEST LIST=FLIST

ELSE block

IFE~ISPLAY VALUE VA~~~:~~~~~~_~~_:~~~ ______ j
LOGOUT

SCL Language Elements

job block

An SCL job is composed of elements that can be combined into expressions and statements. The
elements are: constants, variables, expressions, assignment statements, and functions.

Constants

A constant represents a value that does not change during a job. NOS provides numeric and literal
constants. NOS/VE provides three types of constants: integer, string, and boolean. The following
table compares NOS and NOS/VE constants:

NOS

Numeric (maximum length = 10 digits).

Literal (character string enclosed
in dollar signs; maximum length = 10
characters or 40 characters, depending
on how the string is to be used).

Revision F

NOS/VE

Integer (maximum size = 281474976710655).

String (maximum length = 256 characters).

Boolean (has the logical value TRUE or FALSE).

Job Structure 5-1

I

I

Variables

A variable is a symbol that contains a value that can be changed during a job. NOS provides three
registers, designated as Rl, R2, and R3, that function as variables. You can assign values to
these registers and subsequently change, display, or test those values. NOS also provides special
symbols, such as the error flags EF and EFG, into which you can store certain values.

Und er NOS/VE, you can define any number of variables and assign your own Hame to them. You can
define a variable either implicitly (by referencing the variable in a statement) or explicitly
(through the CREAT~VARIABLE command).

Every SCL variable has a property called the kind. The variable kinds are string, integer,
boolean, and status. The kind of a variable is established when the variable is defined.

For example, the following assignment statement defines a variable named VAR and stores the sum
of two existing variables into it:

VAR = FIRST VAL + SECOND VAL

In this case, the kind of the variable is determined by the kind of the value stored into it.

You can also define variables by using the following command:

CREATE VARIABLE VARIABLE=name KIND=kind

where name is a name you assign to the variable, and kind is STRING, INTEGER, BOOLEAN, or STATUS.

SCL also provides commands that allow you to display or test the values of variables.

The following examples compare the use of NOS registers and NOS/VE variables:

NOS: SET, RI = RI + R2.
IF , R 1 • LT. 10, LAB.

DISPLAY, RI.
SET,RI = O.

ENDIF, LAB.

NOS/VE: A = A + B
IF A < 10 THEN

DISV A
A = 0

IFEND

In both of these examples, a calculation is performed and the resu1 t is tested. If the condition
is satisfied, two commands are executed; otherwise, the commands are skipped. Under NOS/VE, I assignment statements rather then SET statements are used to assign values to variables.

5-2 Migration From NOS to NOS/VE Revision F

Expressions

An expression is composed of variables or constants separated by operators. Both systems allow
you to write arithmetic, relational, and logical expressions.

SCL provides the same arithmetic operators as NOS: +, -, *, /, and **. SCL also provides a I
concatenation operator that joins two character values. The NOS/VE concatenation operator is
indicated by the symbol //. Some examples of SCL expressions are:

J + 1

AVAR* BVAR**EXP

FIRST_STRING//SECOND_STRING//'END'

The last example joins two string variables and a string constant into a single string.

Under both NOS and NOS/VE, you can form relational and logical expressions. The relational and
logical operators under NOS/VE are:

logical: OR, XOR, AND, NOT

relational:
<
>

<=
>=
<>

equal to
less than
greater than
less than or equal to
greater than or equal to
not equal to

Logical and relational expressions are generally used in SCL block structured statements to
control the flow of execution of a job. For example:

IF I < J THEN
commands

IFEND

If the value of I is less than the value of J, the commands between IF and IFEND are executed.
Otherwise, those commands are skipped. (The IF statement and other structured statements are
discussed later in this chapter.)

Assignment Statements

Under NOS, you use the SET command to assign values to symbolic names. Under NOS/VE, you use
assignment statements to assign values to variables. The general form of an assignment statement
is:

variable=expression

Some examples are:

NOS: SET, Rl=Rl + R2.

NOS/VE: XVAL = A + BB

NEW_STRING = CHARS//'abc'

Revision F

Sets Rl to the sum of Rl and R2

Sets XVAL to the SLUn of A and BB.

Concatenates the value of CHARS and the string abc and
places the result in NEW_STRING.

Job Structure 5-3

I

I

I

I

I

I

Functions

Both NOS and NOS/VE provide functions that return values to your job. NOS provides the functions
FILE, NUM, and DT. In addition, NOS provides a set of symbolic names in which the system places
information about the status of the job. You can display the contents of these names or use them
in expressions.

The SCL functions provide similar information under NOS/VE. You reference an SCL function by
specifying the function name and arguments, if any, in a statement or command. The system then
substitutes the value of the function for the function name. For example, the following commands
display the current date:

NOS: DISPLAY ,DATE.

NOS/VE: display_value value=$date

The NOS example displays the contents of the DATE symbol, and the NOS/VE example displays the
value of the $DATE function.

The following table shows the correspondence between some of the NOS functions and symbolic names
and the SCL functions.

NOS NOS/VE

FILE (tests a file attribute) $FILE (returns a file attribute)

NUM (determines whether a string is numeric) Use the $VALUE KIND function within a
procedure to determine the kind of a value.

DT (determines device type for a file) Use the $FILE function to retrieve the value
of the DEVICE CLASS attribute.

EF, EFG error flags Use STATUS parameter on SCL commands.

DATE $DATE

TIME $TIME

MONTH Use $SUBSTR($DATE(MONTH)l, 3).

HID $PROCESSOR (identifies hardware in use).

FAMILY $JOB(FAMILY_NAME)

Other functions provided by SCL include the following:

$ACCESS_MODE

$ CATALOG

$ CHAR

$CLOCK

$FNAME

$ INTEGER

$STRLEN

$STRREP

Returns the access permissions of a file.

Returns the current working catalog.

Converts an integer value to a character value.

Returns the value of the microsecond clock.

Converts a string to a file name.

Converts a string or boolean value to integer.

Returns the length of a character string.

Converts any kind of value to a string.

5-4 Migration From NOS to NOS/VE Revision F

SCL also provides functions, such as the $VALUE KIND function, that are valid only in procedures.
These functions are discussed in chapter 6, Using Procedures. Refer to the SCL Language
Definition Usage manual for complete descriptions of all the SCL functions. I
The following example compares the NOS and NOS/vE functions for referencing file attributes:

NOS: IF, FILE(MYFILE, .NOT. BOI), LAB.
NOS statements

ENDIF, LAB.

The FILE function returns a true value if the specified file has the specified attribute.
Otherwise, the function returns a false value. In this example, if file MYFILE is not positioned
at BOI, then the NOS statements between the IF and the ENDIF are executed.

NoS/vE: IF $FlLE(MYFILE, OP) <> '$BOI' THEN
commands

IFEND

The $FILE function returns the value of the specified attribute. In this example, the $FILE
function tests the OP (OPEN POSITION) attribute of file MYFILE. If the function value is not
$BOI, then the statements between IF and IFEND are executed.

Comparison of NOS and NOSjVE Elements

The following table compares the NOS and NOS/vE elements:

NOS

Numeric and literal constants

Registers Rl, R2, and R3

Arithmetic operators + - * I **

Logical operators .OR •• AND. .XOR •• NOT.

Relational operators .EQ •• NE •• LT •• GT •• LE •• GE.

SET command

FILE function

DT function

NUM function

DATE symbolic name

TIME symbolic name

MONTH symbolic name

EF, EFG symbolic names

Nos/VE

Integer, string, and boolean constants

User-defined variables

Arithmetic operators + - * I **

Concatenation operator II

Logical operators OR XOR AND NOT

Relational operators = <> < > <= >=

Assignment statement

$FILE function

DEVICE_CLASS parameter of $FILE function

$VALU~KIND function in procedures

$DATE function

$TIME function.

Use $SUBSTR($DATE(MONTH)l, 3)

Use STATUS parameter on SCL commands

I

I

FAMILY symbolic name Use $JOB(FAMILY_NAME) I

Revision F Job Structure 5-5

Controlling Job Flow
Under NOS/VE, a job consists of all processing that occurs from the time you log in to the time
you log out. The SeL statements you enter control this processing. SeL provides statements for
controlling the flow of a job by specifying repeated execution of commands, conditional execution
of commands, and error condition processing. These statements are especially useful in seL
procedures, discussed in chapter 6.

Block Structure

The block structuring capability of seL differs significantly from the structure of NOS jobs.
I Under NOS, you use the IF statement to perform a relational test and to alter the flow of

execution based on the result of the test. You use the WHILE statement to specify repeated
execution of a sequence of statements.

I

NOS/VE extends the capability of the WHILE statement so that you can specify post-conditional
repetition of blocks of statements.

Both NOS and NOS/VE enable you to specify unlimited repetition and preconditional repetition of
blocks of statements, as well as conditional execution of blocks of statements without the need
for branching.

Both systems enable you to test for error conditions during job processing and to specify
processing to be performed if errors occur.

Repeated Execution of Commands

Under both NOS and NOS/VE, you can specify loops, or repeated execution of sequences of commands.
Under NOS, you use the WHILE statement to specify loops. Under NOS/VE, you can specify loops
through the following structured statements:

FOR/FOREND

Specifies controlled repetition of commands.

WHILE/WHILEND .

Specifies preconditional repetition of commands. (Similar to the NOS WHILE statement.)

REPEAT/UNTIL

Spec ifies post-conditional repe tit ion of commands.

LOOP /LOO PEND

Specifies unlimited repetition of commands. (Similar to the NOS WHILE statement.)

FOR Statement

The FOR statement specifies controlled repetition of commands. That is, the commands are repeated
a specified number of times. The FOR statement has the form

FOR variable
commands

FOREND

initial TO final DO

5-6 Migration From NOS to NOS/VE Revision F

At the beginning of this block, the variable is set to the specified initial value. On each pass
through the block of commands, the variable is incremented by one until it attains or exceeds the
final value. Control then passes to the command following the FOREND statement.

For example, the following NOS statements copy a file ten times:

SET, R2=1.
WHILE, R2 • LE. 10, LOO Pl.

REWIND, MASTE R.
COPY,MASTER,COPYI0.
SET, R2=R2+ 1.

ENDW, LOOP 1.

NOS/VE does the same copying by using a FOR statement:

for i=1 to 10 do
copy_file input=master output=copyl0.$eoi

forend

The variable I is a user-defined variable used to control the number of times the loop is
repeated. On each pass through the loop, I is incremented by 1 until it attains a value of 10.
The loop is executed one more time (10 times total), and processing continues with the command
following FOREND.

WHILE Statement

SCL provides a WHILE statement that is similar to the NOS WHILE statement. A WHILE statement has
the following general form:

WHILE expression DO
commands

WHILEND

At the beginning of each pass through the block, the expression is tested. While the expression
is true, the commands are repeated. Repetition continues until the expression attains a false
value. Then control passes to the command following WHILEND.

FollowiQg are NOS and NOS/VE examples of a loop that is repeated five times:

NOS: SET,Rl=O.
SET,R2=5.
WHILE,Rl .LT. R2, FINISH.

SET,Rl=Rl+1.
DISPlAY,Rl.

ENDW, FINISH.

NOS/VE: 1=0
J=5
WHILE I < J DO

1=1+1
DISPLAY VALUE I

WHILEND

In the NOS example, register Rl is used for incrementing and testing within the loop. In the
NOS/VE example, the variable I is used for incrementiQg and testing.

Revision F Job Structure 5-7

I

I

REPEAT Statement

The REPEAT statement specifies post-conditional execution of a block of commands. That is, the
specified condition is tested at the end of the block. The simplest form of the REPEAT statement
is:

REPEAT
commands

UNTIL expression

For example:

repeat
accept_line variable=line input=input
display val ue value=line

until line=~DONE'

In this exampl e, a I ine of input is read from the terminal (fil e INPUT) and displ ayed. Then the
input line is tested. If its value is 'DONE', processing continues with the command following the
UNTIL statement. If not, the block is repeated.

LOOP Statement

A third way of looping under NOS/VE is through the LOOP statement:

LOOP
commands

LOOPEND

These are comparable to the following NOS statements:

WHILE, TRUE, LOOP.
NOS statements
IF, condition. SKIP(LOOPEXIT).

ENDW,LOOP.
ENDIF, LOOPEXIT.

These statements specify repeated execution of a sequence of statements with no terminating
conditions specified. In order to exit from this loop, you must specify an EXIT statement within
the loop. For example:

loop
accept_line variable=str
display value value=str
exit when str='DONE'

loopend

input=input
outpu t=output 2

This loop reads a line from the terminal and displays the line. If the line has the value 'DONE',
control passes to the statement following LOOPEND. Otherwise, the loop is repeated.

5-8 Migration From NOS to NOS/VE Revision F

Conditional Execution of Commands

Both NOS and NOS/VE provide statements that enable you to conditionally execute sequences of
commands. On NOS, you used the IF and ENDIF statements (or .IF and .ENDIF). On NOS/VE, you use I
IF and IFEND commands to construct blocks having the following form:

IF (expression) THEN
commands

IFEND

If the expression is true, the commands between the IF and IFEND statements are executed. If the I
expression is false, those commands are skipped and processing continues with the commands
following IFEND.

The following NOS and NOS/VE examples test to determine whether a file is assigned to a job. If
so, a FORTRAN program is compiled and the output listing is written to the assigned file. If not,
the compilation is skipped.

NOS: IF,FILE(MYFILE,AS) ,AFFIRM.
FTNS,I=SOURCE,L=MYFILE.

END IF, AFF IRM.

NOS/VE: if $file(myfile,assigned) then
fortran input=source list=myfile

ifend

In the NOS/VE example, the $FILE function tests the ASSIGNED attribute of file MYFILE.

Error Condition Processing

Under both NOS and NOS/VE, you can specify action to be taken when error conditions occur duriLlg
job processing.

Under NOS, you use the EXIT, NOEXIT, and ONEXIT statements to alter the flow of execution on the
occurrence of errors. You also test the EF and EFG symbols and perform a desired sequence of
operations based on the outcome of the test.

Under NOS/VE, there are two ways of handling error conditions. The first way is to test the
status parameter provided by SCL commands. The second way is to establish a condition handler.

STATUS Parameter

SCL commands allow you to spec ify an opt ional STATUS paramete r hav ing the form:

STATUS=variable

where variable is a variable of kind status. This variable has three fields, which contain the
following information after the command is processed:

The NORMAL field contains the logical value FALSE if errors occurred while the command was
executing, and the logical value TRUE if no errors occurred.

The CONDITION field contains a number, known as the condition code, that identifies the
error. The condition code has two parts:

the ASCII representation of a two-character string identifying the processor in control
when the error occurred (for example, FC for FORTRAN, CB for COBOL)

a number that identifies the error for that product

The TEXT field contains message parameters used to substitute into the error message
associated with the condition.

Revision F Job Structure 5-9

After you execute a command, you can test the NORMAL field of the status variable to determine
whether an error occurred. Then, on the basis of this test, you can execute statements to perform
error processing, exit the block, or perform other desired operations. You can also examine the
CONDITION field to identify the particular error.

You reference a particular field of a status variable by specifying

status variable.field.

For example, assuming SVAR is a variable of kind status, then the command

/display_value value=svar.normal

displays the NORMAL field of SVAR.

If no errors occurred (NORMAL has the value TRUE), the other status variable fields are
undefined, and an attempt to reference them results in an error.

I There are 'three, important things you must know before specifying a STATUS parameter on an SCL
command.

I

First, specifying a STATUS parameter on a command automatically suspends normal error
processing for that command. Thus, whenever you specify a status parameter, you should be
sure to test the status variable. Otherwise, there is no indication that an error occurred.

Second, before you specify a STATUS parameter on a command, you must first create a variable
of kind STATUS through a CREATE VARIABLE command. You then specify that variable for the
STATUS parameter. For example: -

/create variable name=aaa
/copy_file input=infile

kind=status
output=outfile status=aaa

In this sequence, a status variable is created and then specified in the STATUS parameter of
a COpy FILE command.

Third, SCL checks the parameters of each command before SCL executes the command. If the
command has an incorrect parameter, the STATUS parameter is not set because SCL never
executes the command. For example, entering:

/copy_file input=3_is_not a file name status=aaa

does not cause the status variable AAA to be set.

The following NOS and NOS/VE examples compile and execute a FORTRAN program. In both examples, a
test is made for an error condition following the LGO command. If an error is detected, the error
number is displayed. Execution then continues with the command following the ENDIF or IFEND
statement.

NOS: FTN5, I=MYPROG.
SET,EF=O. <-------------------------------- Initialize error flag.
NOEXIT. <---------------------------------- Suspend normal error processing.
LGO.
ONEXIT. <---------------------------------- Restore normal error processing.
IFE, EF .NE. 0, LABl.

DISPLAY, EF.
ENDIF, LAB 1 •

5-10 Migration From NOS to NOS/VE Revision F

NOS/VE: create variable name=svar kind=status <-- Define a status variable.
fortran input=myprog
19o status=svar <------------------------- Specify the status parameter. This

causes the status resulting from
executing LGO to be returned in the
status variable SVAR.

if not svar.normal then (------------------ Test the NORMAL field of the status
variable.

display_value value=svar.condition <-- Display the CONDITION field of the
status variable.

ifend

Determining the Condition Value of a STATUS Variable

A condition name is associated with a condition code. Typically you use the condition name to
test for a specific condition as in the following example:

create variable name=pf_status kind=status
attach file file=$user.file that doesnt exist status=pf_status
if not-pf status.normal then - -

if $condition_name(pf_status.condition) = ••
'PFE$UNKNOWN PERMANENT FILE'

then - -
display_value 'File not in $USER catalog.'

ifend
ifend

The status variable PF STATUS is set to abnormal status by the ATTACH FILE command, which makes
the NORMAL field of this variable FALSE. The function $CONDITION NAME returns the condition name
from the CONDITION field of the status variable. The condition n~me is then checked for the
specific condition of an unknown permanent file.

Establishing a Condition Handler

The second method of processing error conditions under NOS/VE is to establish a condition
handler. A condition handler is a block of commands that is executed when a specified kind of
condition occurs. The simplest form of a condition handler is:

WHEN condition DO
commands

WHENEND

If the condition occurs during execution of a command that follows the WHEN/WHENEND block, the
commands between WHEN and WHENEND are executed. Control then passes to the command following the
command that produced the error.

If the condition does not occur during execution of any commands that follow the WHEN/WHENEND
block, the commands between WHEN and WHENEND are not executed.

The following example establishes a condition handler for an LGO command:

FORTRAN I=MYPROG
WHEN PROGRAM FAULT DO

DISPLAY VALUE 'An execution error occurred in MYPROG.'
WHENEND
LGO
CANCEL PROGRAM FAULT

Revision F Job Structure 5-11.

I

I

If an error, such as a divide fault, occurs while LGO is executing, the DISPLAY VALUE command is
executed. Note that because the FORTRAN command precedes the condition handler,-an error during
compilation will not cause the condition handler to be executed. The CANCEL statement cancels the
condition handler so that it will not be used by subsequent commands.

Remember that specifying a STATUS parameter on a command suspends normal error processing for
that command. You can use condition handlers to detect errors in commands that have STATUS
parameters.

The ANY FAULT condition transfers control on the occurrence of any error condition. A useful
condition handler to include in a job is as follows:

when any fault do
put line' Command: '//osv$command name// ••

-, had abnormal status: ' / /$strrep(osv$status)
whenend

This condition handler displays the command in error and the contents of the variable OSV$STATUS
when an error occurs during command processing. OSV$STATUS is a system variable that contains
error information.

Summary of NOS and NOSjVE Execution Control Commands

The following table summarizes the corresponding NOS and NOS/VE execution control commands:

NOS

WHILE

IF, IFE, .IF, .IFE

EF, EF G symbols

EXIT, ONEXIT, NOEXIT

ELSE

SKIP

NOS/VE

WHILE/WHILEND (preconditional repetition of commands).

REPEAT (post-conditional repetition of commands).

FOR/FOREND (controlled repetition of commands).

LOOP/LOOPEND (unlimited repetition of commands).

IF

STATUS parameter on commands.

Use STATUS parameter. Also, use condition handlers to test for
specific error conditions.

ELSE

Use EXIT command.

5-12 Migration From NOS to NOS/VE Revision F

Using Procedures 6

Procedure Structure 6-1

Creating Procedures in NOS /VE ••• 6-3

Passing Parameters to Procedures •• 6-3
Defining the Parameter Kind ••• 6-4
Defining Parameters to be Variables or Arrays ••• 6-4
Defining Parameters to be Lists or Ranges of Values ••••••••••••••••••••••••••••••••••• 6-5
Defining Default Values for Parameters •• 6-5
Parameter Substitution •• 6-6
Substituting Parameters in Data Files ••• 6-8

Parameter Prompting ••.••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••••••• 6-8

Calling Procedures •• 6-9

Displaying the Commands in a Procedure ••

Summary of NOS and NOS/VE Procedure Differences •••

Using the NOS/VE Full Screen Editor
Differences Between NOS/VE FSE and NOS FSE ••
Introduction to FSE •••
Beginning and Ending an Editing Session •••
Entering FSE Comm.ands •••
Creating a File With FSE ••
Editing a File•......••.•.•••...•...••.......•.....•.......•..........•........

Calling FSE •.•..•...••••.•.•••.••••...••.••••...•••••••••.••••.•••.•••.•••..••.•••
Inserting Characters•..
Deleting Characters •••
Inserting a Line •...•....•.•....•...............•..........................•......
Delet ing a Line••........................•.......•......•......•........
Copying a Block of Text •••
Moving a Block of Text .•.•....•..••........••...••.••••.•..•.••...••...•...•...•..

6-10

6-11

6-12
6-12
6-16
6-16
6-18
6-19
6-20
6-20
6-21
6-22
6-22
6-23
6-23
6-24

Usinng 1Pll'ocediunn-es

A procedure is a list of statements that resides on a file. The statements are executed when you D
call the procedure. Both NOS and NOS/VE enable you to write and call procedures.

Under both systems, you can include any valid system command in a procedure. However, under
NOS/VE, the block structure of SCL provides greater flexibility in writing procedures. D

This chapter presents an introduction to NOS/VE procedures. Refer to the SCL Language Definition
Usage manual for detailed information about SCL procedures.

Procedure Structure

Under NOS/VE, procedures begin with a PROC statement and end with a PROCEND statement. The
statements between PROC and PROCEND constitute the body of the procedure. These statements have
the following form:

PROC procedure-name (
parameter 1
parameter 2

parameter n

statements

PROCEND procedure_name

where procedure-name is a name you assign to the procedure (procedure-name must be a valid SCL
name) and parameter 1 to parameter n are parameters (if any).

Under NOS, no statement is required to end the procedure. When the last statement is completed,
control simply returns to the system. However, all SCL procedures must be ended by a PROCEND
statement. You can omit the name from the PROCEND statement, in which case the PROCEND statement
is associated with the nearest preceding PROC statement in the same block.

The following example compares procedures under NOS and NOS/VE. Both procedures display the
current date.

NOS: .PROC,DISD.
DISPLAY,DATE.

NOS/VE: PROC DISPLAY DATE
DISPLAY VALUE $DATE(MONTH)

PROCEND -

In the NOS/VE example, the DISPLAY VALUE command displays the value of the $DATE function.

Revision F Using Procedures 6-1

I

NoS/VE provides commands that are similar to the NOS procedure directives. Most of these
commands are valid outside as well as inside a procedure. The correspondence between the NOS
procedure directives and SCL commands is as follows:

NOS Nos/vE

• DATA COLLECT TEXT

• ELSE , ELSE ELSE, ELSEIF

• ENDIF, ENDIF IFEND

.EOF no equivalent

• EaR no equivalent

.EX no equivalent

• HELP I . ENDHELP no equivalent

• IF, • IFE, IF, IFE IF expression THEN (requires an IFEND statement) The other structured
statements can also be used (LOOP, FOR, WHILE, REPEAT).

• PROC PROC (requires a PROCEND statement) •

REVERT EXIT PROC

The following examples compare the use of some NOS directives with the use of their Nos/VE
equivalents. Each procecure receives a single integer argument and determines whether its value
is zero, positive, or negative.

NOS: .PROC,TEST*I,A=(*SlO(0123456789$-$» •
• IF, A=O ,TESTI.

NOTE./TRE VALUE IS O •
• ELSE(TESTl)
• IF, A • LT. 0, TEST 1.

NOTE. /THE VALUE IS NEGATIVE •
• ELSE(TESTl)

NOTE./THE VALUE IS POSITIVE •
• ENDIF(TESTl)
REVERT.

NOS/VE: proc test (a:integer)
if $value(a) = 0 then

display value value='Value is zero.'
elseif $valu;(a) < 0 then

display_value value='Value is negative.'
else

display value value='Value is positive.'
ifend -
procend test

The $VALUE function is used to cause parameter substitution in the body of the procedure. This
fUnction returns the value of the function argument, in this case, the parameter A. Passing
parameters to procedures is discussed later in this chapter.

e6-2 Migration From NOS to Nos/VE Revision F

The following NOS and NOS/VE examples compare the NOS .DATA directive with the NOS/VE
COLLECT TEXT command. Both commands enable you to read data contained in a procedure.

NOS: • PROC ,MYPROC.
FTNS,I=SOURCE,L=FLIST •
• DATA,SOURCE
PROGRAM TEST

END

NOS/VE: proc myproc
collect text output=source

program test

end

**
fortran input=source list=flist
19o
procend myproc

These procedures compile and execute the program contained in file SOURCE. The file is created
in the procedure.

Creating Procedures in NOS/VE

You can create an SCL procedure under NOS/VE using the NOS/VE Full Screen Editor.

Passing Parameters to Procedures
Both NOS and NOS/VE allow you to write procedures that accept parameters. On both systems, you
define the parameters on the procedure header statement. However, the method for defining
parameters differs significantly between the two systems. NOS/VE provides greater flexibility in
the types of parameters you can define.

Both NOS and NOS/VE prompt for any incorrectly entered parameters and for any required parameters
that are missing.

On both systems, the parameter definitions include the following information:

Parameter name

Kinds of values allowed

Default value

Whether or not the parameter is required

Under NOS/VE, parameter definitions on the PROC statement are enclosed in parentheses. Names can
have from 1 through 31 characters. Multiple parameters are separated by semicolons. For
example, the statement

PROC TEST_PROC (PI; P2)

defines two parameters, PI and P2, for procedure TEST_PROC.

The minimum amount of information you must specify in each parameter definition is the parameter
name. If you specify no other information, the parameter is assumed to be a file name. Thus, in
the preceding example, a caller of procedure TEST PROC must specify file names for PI and P2.

Revision F Using Procedures 6-3.

As previously mentioned, if you specify no other information in a parameter definition other than
the parameter name, the parameter is assumed to be a single file name. You can define other
kinds of parameters by including a value specification in the parameter definition. A value
specification consists of several clauses. You can use a value specification to:

Define the kind of the parameter (for example, FILE, INTEGER, STRING, BOOLEAN)

Define the parameter to be a variable or an array

Define the parameter to be a list of values or a range of values

Defining the Parameter Kind

A parameter kind specification appears in a parameter definition as follows:

PRoe name (parameter_name:kind)

Valid kinds are: FILE, NAME, STRING, INTEGER, BOOLEAN, STATUS, and ANY. Some examples are as
follows:

PRoe TEST (MY_NAME:STRING 10='ME')

PRoe MYPROe (INPUT:FILE; OUTPUT:FILE)

Defines MYNAME to be a STRING parameter 10
characters long, with the default value ME.

Defines two parameters, named INPUT and OUTPUT, as
file names.

Defining Parameters to be Variables or Arrays

In addition to passing constant values, such as integers and file names, to procedures, you can
pass variables and arrays. The variables and arrays can contain any of the valid value kinds
(FILE, INTEGER, STRING, and so forth). For example, using the techniques discussed above,you
can write a procedure that is called by the following statement:

I /myproc file_name=myfiIe nums=15

given the following parameter definitions:

PRoe MYPROe (FILE_NAME:FILE; NUMS:INTEGER)

The PROe statement defines two parameters: a FILE parameter and an integer parameter. The
parameters must be specified on the call statement as constant values.

You can define a parameter to be a variable or an array by including the VARIABLE or ARRAY clause
in the parameter definition, as follows:

PRoe name (parameter_name:VAR OF kind)
or

PRoe name (parameter_name:ARRAY OF kind)

For example, the preceding procedure definition can be changed to accept variables as follows:

PRoe MYPROe (INPUT_FILE:FILE; NUMS:VAR OF INTEGER)

6-4 Migration From NOS to NOS/VE Revision F

An example of a valid call statement for this procedure is:

/j=15
/myproc input_file=$user.myfile nums=j

where MYFILE is a file in the $USER catalog, and J is a variable of kind INTEGER.

Defining Parameters to be Lists or Ranges of Values

You can define parameters to accept lists of values or ranges of values. A value list consists
of one or more values enclosed in parentheses and separated by commas. For example, the
following is a list of integer values:

(2,4,6)

A range of values is specified by a lower bound and an upper bound separated by two periods. The
following example specifies the range of values between 8 and 10, inclusive; that is, the values
8, 9, and 10:

8 •• 10

To define a parameter to be a list of values, specify the LIST clause in the parameter definition:

PROC name (parameter_name:LIST OF kind)

For example, the statement

PROC MYPROC (PLIST:LIST OF FILE)

defines parameter PLIST to be a list of file names.

The following statement defines parameter NUMS to be a list of variables of kind INTEGER:

PROC PTEST (NUMS:LIST OF VAR OF INTEGER)

To define a parameter to be a range of values, include the RANGE clause in the parameter
definition:

PROC name (parameter_name:RANGE OF kind)

For example, the following statement defines parameter R to be a range of integer values:

PROC MPROC (R:RANGE OF INTEGER)

An example of a call statement for this procedure is:

/mproc r=5 •• 10

Defining Default Values for Parameters

Under both systems, you can define default values for parameters. If a default value is defined,
the parameter assumes that value if the procedure user omits the parameter from the call
statement. The general form of a default specification under NOS/VE is:

PROC name (parameter_name:kind=default)

If parameter-name is omitted from the procedure call statement, the parameter assumes the value
specified by default. For example, the following statement defines a FILE parameter named INPUT:

PROC GGG (INPUT:FILE=SOURCE_FILE)

Revision F Using Procedures 6-5

I

I

I

I

If the FILE parameter is omitted from the statement that calls GGG, the default name SOURCE FILE
is used.

The following examples compare parameter definitions in NOS and NOS/VE procedures:

NOS: .PROC,APROC, PI"FILE TO COMPILE"=(*F,*N=AFILE).
FTNS,I=PI,L=FLIST.
LGO.

NOS/VE: PROC APROC (PI:FILE=AFILE)
FORTRAN I=$VALUE(PI) L=FLIST
LGO

PROCEND

In both examples, the name AFILE is defined as the default value for parameter Pl. If no
parameter is specified on the procedure call, the default value is substituted in the procedure
body. For example, commands calling the NOS/VE procedure have the following results:

/aproc pl=bfile File name BFILE is substituted in the FORTRAN command.

/aproc Default file name AFILE is substituted in the FORTRAN command.

Parameter Substitution

Under NOS, parameter substitution in a procedure is accomplished simply by specifying the
parameter name wherever you want the parameter to be substituted. For example:

I PROC t MYPROC Pl=(*F)
ATTACH,Pl.

When MYPROC is called, the value specified for PI in the call statement is substituted for PI in
the ATTACH command.

Under NOS/VEt you use the $VALUE function to obtain parameter values. The $VALUE function
returns the value of the function argument. Within the procedure body, wherever you want
parameter substitution to occur, you place a $VALUE function that names the parameter. For
example:

PRoe ATT (INPUT:FILE)
ATTACH FILE F=$VALUE(INPUT)

When this procedure is called, the value specified for the INPUT parameter is used in the
ATTACH FILE command.

The following example shows parameter substitution for an integer parameter:

PROC TEST_PROC (Pl:INTEGER)
A = 10 + $VALUE(Pl)
DISPLAY VALUE A
PROCEND-

6-6 Migration From NOS to NOS/VE Revision F

When this procedure is called, the $VALUE function returns the value specified for the Pl
parameter. If this procedure is called by the statement

/test-proc pl=2

then the value 12 is displayed.

Another useful function is the $SPECIFIED function t which tells you whether or not a parameter
was specified on the procedure call. This function has the form

$SPECIFIED(parameter)

The $SPECIFIED function returns one of the following values:

TRUE The parameter was specified on the procedure call.

FALSE The parameter was not specified on the procedure call.

The following example illustrates the $SPECIFIED function:

PROC MYPROC (INPUT:FILE)
IF $SPECIFIED(INPUT) THEN

commands
ELSE

commands
IFEND

PROCEND

Procedure MYPROC has a single parameter named INPUT. The IF statement tests the value of the
$SPECIFIED function. If the INPUT parameter is specified on the procedure call ($SPECIFIED
returns a true value)t the first set of commands is processed. If the INPUT parameter is not
specified ($SPECIFIED returns a false value)t the second set of commands is processed.

Other useful functions include the $VALUE_KIND function t which returns the kind of a parameter t
and the $RANGE parameter t which indicates whether or not a parameter is specified as a range.

An important item to remember in writing procedures is that parameter types must match.
ConsequentlYt substituting parameters inside your procedure might require the $VALUE function and
a conversion function. For example t suppose you want to use the PUT LINE command to display a
parameter of type FILE. The PUT LINE parameter LINE is of type STRING t so the conversion
function $STRREP is used to conv;rt the parameter from type FILE to type STRING. This is
illustrated in the following procedure:

proc show (
file name
) - file $required

put line line=' Value for file name parameter is
-//$strrep($value(file_name»

procend show

Revision F Using Procedures 6-7

I

Substituting Parameters in Data Files

NOS CCL permits you to substitute procedure parameters in files created by the .DATA directive,
as in:

.PROC,SHOW*I,Pl=(*N=13) •
• DATA,DATAFIL.
VALUE IS PI

which creates the file DATAFIL with the contents:

VALUE IS 13

You can use the COLLECT TEXT command and its SUBSTITUTION MARK parameter to do this on NOS/VE.
This parameter indicates a character which delimits substitution text. The delimited text is
evaluated as a string expression, which then replaces the original text.

The following SCL procedure duplicates the previous CCL proc.

proc show
pI integer 13

collect text output=datafil
substitution mark='?' ••
until='**' -

value is ?$strrep($value(pl»?
**

procend show

Note that the string expression uses the $VALUE function (to obtain the value of the parameter
PI, which is an integer) and then the $STRREP function (to convert the integer to a string). The
COLLECT TEXT command creates the file DATAFIL with the contents:

value is 13

Parameter Prompting

Under NOS, to write a procedure that issues input prompts, you append the two characters *1 to
the procedure name in the header statement. NOS/VE parameter prompting is similar to CCL line
mode prompting.

NOS/VE automatically prompts for a procedure's parameters when you enter the following command
before calling the procedure:

CHANGE INTERACTION STYLE STYLE=style_value

style-value can be either LINE (for hard copy terminals) or SCREEN (for video terminals). You
should place this command in your user prolog, as described in the SCL System Interface User
manual. There is no screen mode parameter prompting.

As with CCL, you use the? (question mark) to elicit help. Entering?? (two question marks)
results in help on parameter prompting •

• 6-8 Migration From NOS to NOS/VE Revision F

Calling Procedures

Under NOS/VE, the commands to call procedures have the same syntax as other SCL commands. This
helps procedure users remember the procedure call commands. NOS/VE provides two ways of calling
a procedure. The first way is to create a local file containing a single procedure. You call
the procedure by entering the file name. This is similar to the NOS method of calling a
procedure by entering its temporary file name, which must be the same as the procedure name. For
example, the following sequence creates a temporary file named PROCFILE that contains a procedure
named MYPROC:

/collect_text output=procfile
ct? procedure myproc

ct? procend myproc
ct? **

To execute this procedure, you would enter the file name PROCFILE.

If a procedure is to be executed by specifying its file name, the procedure must be the only
procedure on the file.

Both NOS and NOS/VE enable you to store mUltiple procedures on a single file, and to place the
file in an object library. You can then execute any of the procedures simply by entering the
procedure name.

On NOS, you use the LIBEDIT utility with the U parameter to add a new procedure to an existing
object library:

LIBEDIT,P=old-library,B=new-procedure,U,N=new-library.

You then use the LIBRARY command to make the library, called a user library, available to the
job:

LIBRARY, new-library/A

On NOS/VE, you use the CREATE OBJECT LIBRARY utility to add new procedure(s) to the library and
to create the object library.- You ~st then add the procedure names to a list of all commands
called the command list.

To create a NOS/VE library that contains procedures, use the following commands:

CREATE OBJECT LIBRARY
ADD MODULES LIBRARY=file name
GENERATE LIBRARY LIBRARY=library_name
QUIT -

where file name is a file containing one or more procedures, and library name is the name of the
library being created. The ADD MODULES directive is like the NOS LIBEDIT utility B parameter;
the GENERATE_LIBRARY directive is like the LIBEDIT Nand U parameters.

After you create a library containing procedures, you must add the library to the SCL command
list.

The SCL command list is a list of commands that the system searches each time you enter an SCL
command. In order for the system to find a procedure when you enter the procedure name, the
library name must be in the command list. The command to add procedures to the command list is:

SET COMMAND LIST ADD=library

where library is the name of the library that contains the procedures.

Revision" F Using Procedures 6-9

I

In the following NOS/VE example, assume a local file named PROCFILE contains two procedures named
PROC1 and PROC2. The file is placed in an object library, and the object library is added to the
command list.

CREATE OBJECT LIBRARY <--------- Begin the CREATE_OBJECT_LIBRARY session.

ADD MODULES L=PROCFILE (-------- Add procedures from PROCFILE to the library.

GENERATE LIBRARY L=PROCLIB <---- Generate a library named PROCLIB.

QUIT (-------------------------- End the CREATE_OBJECT_LIBRARY session.

SET COMMAND LIST ADD=PROCLIB <-- Add the library to the command list.

You can now call procedures PROCl and PROC2 simply by entering their names.

Displaying the Commands in a Procedure

Commands processed within a procedure are not written to the job log. However, you can display a
list of the commands executed in a procedure by creating a connection to the standard file $ECHO.

I File $ECHO receives a copy of all commands you enter. It is the closest thing NOS/VE has to the
NOS dayfile. File $ECHO is initially connected to file $NULL, which causes the file contents to
disappear. By connecting file $ECHO to a local file, you cause the terminal echo to be written
to the local file.

The command to connect file $ECHO to a local file is:

By placing this command at the beginning of a procedure, you can cause the commands in the
procedure to be written to a local file as they are processed.

The following procedure writes commands to a temporary file as they are processed:

proc myproc
create file connection standard file=$echo file=echout <-- Connects $ECHO to ECHOUT.
fortran input=$user.test list=flist
19o
delete file connection standard_file=$echo file=echout <-- Deletes the connection to ECHOUT.
procend myproc

After the procedure has executed, you can display the contents of file ECHOUT by entering the
command:

/copy_file input=echout

This command displays the following:

CI fortran input=test list=flist
CI 19o
CI delete file connection standard_file=$echo file=echout

Another useful command for procedures is the DISPLAY COMMAND INFORMATION (DISCI) command. This
command displays the parameters for any system command and any procedure in your command list.
The DISPLAY COMMAND INFORMATION command has the form: - -

DISPLAY COMMAND INFORMATION COMMAND=name

where name is an SCL command or a procedure name.

6-10 Migration From NOS to NOS/VE Revision F

The following example shows a procedure definition and a DISPLAY COMMAND
INFORMATION command:

proc myproc (input:file=$inputj n:integer=lO)

display_command_information command=myproc

input:
n

file=$input -} 0 t t f DISPLAY COMMAND INFORMATION command. integer=lO _ u pu rom _ _

Summary of NOS and NOS/VE Procedure Differences
Procedure directives:

NOS

• DATA

• ELSE

.EOF

.EOR

.EX

.HELP/.ENDHELP

• I FE., • IF, IF, I FE

• ELSE, ELSE

• PROC

.ENDIF, ENDIF

REVERT

Parameter definition:

COLLECT TEXT (Use SM parameter for substitution.)

ELSE, ELSEIF

no equivalent

no equivalent

no equivalent

no equivalent

IF expression THEN (requires an IFEND statement). The other
structured statements can also be used (LOOP, FOR, WHILE, REPEAT) •

ELSE

PROC (requires PROCEND at end of procedure) •

IFEND

EXIT PROC

NOS: .PROC,name,pl,p2, ••• Parameters can be numeric or literal strings.

NOS/VE: PROC name (pl:definition, •••). Parameters can be constants or variables, and can be
lists or ranges of values.

Default value definition:

NOS: .PROC,name,pl=*N=default

NOS/VE: PROC name (pl:kind=default)

Parameter prompting:

NOS: .PROC,name*I,pl,p2, •••

NOS/VE: Use CHANGE INTERACTION STYLE.

Revision F Using Procedures 6-11

I
I

I

I

I

Adding procedures to a library:

I NOS: LIBEDIT utility with U parameter.

NOS/VE: CREATE_OBJECT_LIBRARY utility.

Making a library available to a job:

NOS: LIBRARY command adds the library to the global library set.

NOS/VE: SET_COMMAND_LIST command adds the library to the command list.

Calling a procedure on a local file:

I NOS: BEGIN,file-name,procedure-name or name call of the file-name only.

NOS/VE: Specify file-name only.

Calling a procedure on a library:

NOS: Specify procedure-name.

NOS/VE: Specify procedure-name.

Using the NOS/VE Full Screen Editor
You can use the NOS/VE Full Screen Editor (NOS/VE FSE) to create and modify text files.

If you are familiar with the NOS Full Screen Editor (NOS FSE), you should have no difficulty

I
using NOS/VE FSE; the two versions are conceptually similar. However, some command language
differences exist; they are discussed below under Differences Between NOS/VE FSE and NOS FSE.

If you are not familiar with NOS FSE, the topics below, starting with Introduction to FSE and
ending with Editing a File, provide a general introduction. For more detailed information, see
the File Editor Tutorial/Usage manual.

Differences Between NOS/VE FSE and NOS FSE

Introduction to FSE

Beginning and Ending an Editing Session

Entering FSE Commands

Creating a File with FSE

Editing a File

Differences Between NOS/VE FSE and NOS FSE

The following paragraphs identify some of the significant differences between NOS!VE FSE and NOS
FSE. One difference is in the way NOS/VE FSE is invoked. Under NOS, you invoked FSE like this:

SCREEN,termtype
FSE,filename

6-12 Migration From NOS to NOS/VE Revision F

Under NOS/VE, you invoke FSE like this:

EDIT FILE FILE=file
ef/ -

This places FSE in line mode. The ef/ is the FSE line mode prompt.

You can set up a startup procedure to be executed each time the EDIT FILE command is entered.
This startup procedure is called a prolog and consists of a series of FSE commands that you place
in file $USER.SCU_EDITOR_PROLOG. One command that you typically place in $USER.SCU_EDITOR_PROLOG
is the ACTIVATE_SCREEN command, which is described next.

To switch from line mode to full screen mode, enter the ACTIVATE SCREEN command. For example:

ef/activate_screen model=cdc 721

The MODEL parameter is required and specifies what model of terminal you are using. The models
you can specify include:

CDC 721 (for CDC 721 terminals)

CDC 722 (for CDC 722 terminals)

CDC_722-30 (for CDC 722-30 terminals)

ZEN Z19 (for Zenith Z19 terminals)

ZEN Z29 (for Zenith Z29 terminals)

DEC VT100 (for DEC VT100 terminals)

DEC VT220 (for DEC VT220 terminals)

If you want to switch back to line mode from full screen mode, position the cursor to the home
line and enter:

deactivate screen

You can also switch from full screen mode to line mode by entering the terminate-break sequence
for your terminal. (Your site administrator knows what this sequence is.)

You need to switch to line mode if you specify the wrong terminal model on the ACTIVATE SCREEN
command. After you enter this kind of ACTIVATE SCREEN command, you will probably see a wild
assortment of characters on the screen. To recover from this situation, enter the terminate
break sequence to return you to line mode. Respond to the ef/ prompt by re-entering the
ACTIVATE_SCREEN command, and this time, specify the correct terminal type!

While in FSE, you can enter SCL commands as well as FSE commands. Two SCL commands that are
particularly useful are the DISPLAY COMMAND LIST command and the DISPLAY COMMAND INFORMATION
command. These commands provide you with information about other commands, such-as the FSE
commands.

The SCL DISPLAY COMMAND LIST command lists all of the commands that you can enter while in FSE.
The resulting display includes all of the NOS/VE FSE commands.

The SCL DISPLAY COMMAND INFORMATION displays the parameters of the command you s.pecify. For
example:

display_command_information command=break text

would display the parameters of the FSE BREAK TEXT command.

The major difference between NOS/VE FSE and NOS FSE is in the names of the commands. NOS/VE FSE
uses the SCL syntax rules and naming conventions.

Revision F Using Procedures 6-13.

The following paragraphs provide a summary of the command differences. For a complete
description of the NOS/VE file editor commands, see the File Editor Tutorial/Usage manual

NOS FSE Command

ALTER

BACK

COpy

DELETE

DELETE BLANK
DELETE MARK
DELETE WORD

FSE
FSE SPLIT

GET ALIGNMENT
GET STATUS

HELP

INSERT (I)
INSERT BLANK
INSERT WORD

LOCATE (L)

MOVE (M)

PRINT (P)

QUIT
QUIT UNDO

REPLACE (R)

SET ANNOUNCE
SET CHAR
SET FILENAME
SET KEY
SET LINE
SET MARK
SET MARK WORD
SET PROMPT
SET SCREEN
SET TAB

NOS/VE EDIT FILE Command

indent text offset=-integer
delete-characters
insert-characters

none

copy_text
read file
write file

delete characters
delete-lines
delete-text
delete-empty lines
unmark- -
delete word

edit file
set screen options split=2; position cursor

- row=$title_row(2); edit_file

display_column_numbers
display_editor_status

help

insert lines
insert-empty lines
insert-word -

locate text

move text

position_cursor

quit
quit no

put_row text='string' row=$message
set tab options character='character'
write file file=file
set function key
deactivate screen
mark lines-
mark-characters
set_screen_options menu_row=integer
activate screen
set tab options tab columns=(list of integers)
clear tab options tab columns=(list of integers)

SET variable variable=$current lin;

Abbreviati~n(s)/Key

INDT/Indent
DELC, DC/DeICh
INSC, IC/InsCh

COPT, C/Copy
REAF/
WRIF/

DELC, DC/DeICh
DELL, DL/DelLn
DELT, D/DeIBk
DELEL/
/Unmrk
DELW, DW/DeIWd

EDIF/

DISCN/
DISES/

H/Help

INSL, I/InsLn
INSEL/
INSW, IW/InsWd

LOCT, L/Locate

MOVT, M/Move

POSC, p/

Q/Quit
E/Exit

REPT, R/

PUTR/
SETTO/
WRIF/
SETFK/
DEAS/
MARL, M/Mark
MARC, MC/MrkCh
SET SO/
ACTS/
SETTO/
CLETO/

(The variable in the NOS SET command can be X, Y, or Z. The variable in the NOS/VE
EDIT FILE command can be any SCL variable.)

• 6-14 Migration From NOS to NOS/VE Revision F

NOS FSE Command

SET VIEW COLUMN
SET VIEW EDIT
SET VIEW OFFSET
SET VIEW WARN

NOS/VE EDIT FILE Command

set_screen_options column=integer
set search margins
align screen offset=integer
set iine width

SET WORD CHAR set word characters
SET WORD FILL set-paragraph margins
SET WORD variable varlable=$cur;ent column

(The variable in the NOS SET WORn command can be Xt Yt or Z.
EDIT FILE command can be any SCL variable.)

SVWjPA

TEACH

UNDO

UNMARK

VIEW (V)

• CENTER

• DELETE

• END

.FILL

• INSERT
.INSERT/'string'

• JOIN

.POS

.POS integer

.SPLIT

-procname

/command

--comment

&C

&F

&L

&T

&W

&n

&?

&&

Revision F

locate wide lines

none

undo'

unmark

center lines

delete characters

position cursor line=current
column=$strlen($line_text)+1

format-yaragraph

insert characters
insert characters new_text='string'

position cursor
position=cursor column=integer

break text

procname

command (does not exit EDIT_FILE)

"comment

$current_column

$current _obj ect

$current ~line

$terminal_model

$current_word

use $value(parameter-name) in the SeL procedure

$screen_input('text')

&

Abbreviation(s)/Kel

SET SO/
SETSM/
ALIS t A/
SETLW/

SETWC/
SETPM/

The variable in the NOS/VE

LOCWL/

/Undo

/Unmrk

ALIS t A/

CENL/Center

DELC t DC/DelCh

POSC t P/

FORP/Format

INSC t IC/lnsCh
INSC t IC/

JOIT t J/Join

POSC t p/
POSC t p/

BRETt B/Break

Using Procedures 6-15e

Introduction to FSE

I You use FSE to create and modify text files, such as programs, program data, source files, and so
forth.

FSE operates either in line mode or in screen mode. In screen mode, FSE displays as much text as
will fit on a terminal screen. You can edit text anywhere on the screen by moving the cursor to
the position where you want to perform the editing operation.

In line mode, you edit single lines of text. Line mode is used mainly with hardcopy terminals.
Screen mode is the most powerful mode of editing, and is the subject of the rest of this
discussion.

To perform an editing operation on text displayed on the screen, you must move the cursor to the
position you want to edit. You control the cursor using the group of four terminal keys labeled I with arrows. (The position of these cursor movement keys on the keyboard depends on your
terminal type.)

The direction of the arrow indicates the direction the cursor moves when the key is pressed.

I Some of the terminals FSE supports are:

CDC 721

CDC 722

Zenith Z19

Digital VT100

I Digital VT220

Certain characteristics of FSE might vary among terminal types. For example, the number and
I position of the keys forming editing operations might differ. In addition, some terminals have

keys that allow you to perform certain editing functions independently of FSE. However, the
concepts and commands of FSE are identical among terminal types.

Beginning and Ending an Editing Session

To call FSE, enter the following comm~nd:

I
EDIT FILE file (abbreviated EDIF)

where file specifies the file you want to edit. FSE responds with the following prompt:

eft

I

By default, FSE begins in line mode. To activate screen mode, enter an
command in response to the ef/ prompt, as follows:

ef/ACTIVATE_SCREEN MODEL=termtype

6-16 Migration From NOS to NOS/VE

ACTIVATE SCREEN (ACTS)

Revision F

where termtype specifies the type of terminal you are using. The following lists some of the
possible values of termtype:

CDC 721 for CDC 721 terminals

CDC 722 for CDC 722 terminals

ZEN Z29 for Zenith Z29 terminals

DEC VT100 for DEC VT100 terminals

DEC VT220 for DEC VT220 terminals

For example, the following commands call FSE and set screen mode:

/edit file file=myfile (------------ Call FSE to edit file MYFILE
ef/activate_screen model=cdc 722 (-- Set screen mode for CDC 722 terminal.

After you activate screen mode, FSE displays a screen containing your file (or as much of it as
will fit on one screen).

The next screen shows a typical FSE display after you call FSE and enter an ACTIVATE SCREEN
command.

The following is an example of an FSE screen on a CDC 722 terminal:

+--+
I I

I
(home line) I
(Error message line)

I
File: MYFILE Lines 19 Thru 37 Size 14675 I
The top line of the screen is the Home line. You enter FSE commands on the Home Line.

I The second line is used by FSE to display error messages. I

I
The third line tells you whch file you are editing, which of its lines are on the I
screen, and the size of the file.

I
The middle part of the screen contains the text of your file. I
The bottom part of the screen displays keys you can use to perform editing operations.

I First Last Copy Move Exit DelCh DelLn I
Fl Bkw F2 Fwd F3 Back F4 Help F5 Undo F6 Quit F7 InsCh F8 InsLn

I
Unmrk MrkBx LocNxt I

F9 Mark 10 MrkCh 11 Locate

I I
+-----------_._-------------------------------------_._---- --------------------------------------+

Revision F Using Procedures 6-17.

On most terminals, the first line of the FSE display is a blank line called the Home line. On
other terminals, the Home line is the last line of the display. In either case, the Home line is
where you enter FSE commands, which are described later in this discussion.

FSE displays error messages on the second line. For example, the message:

--ERROR CL 790-- COpy is not a command.

indicates that the word COpy is not an FSE command.

FSE uses the third line for displaying informative messages about the file you are editing. For
example, the message:

File: MYFILE Lines 19 Thru 37 Size 14675

tells that:

You are editing file MYFILE.

The screen is displaying lines 19 through 37 from MYFILE.

MYFILE is 14,675 lines long.

The middle part of the screen contains the text of your file. If the file contains more lines
than will fit on a screen, the screen contains the first part of the file. You can move to other
parts of the file as explained later in this topic. If you specified a nonexistent file on the
EDIT_FILE command, this part of the screen is blank.

The bottom part of the screen shows the FSE commands associated with some keys on your terminal.
You can execute any of those commands by pressing the key, as described later in this topic.

To end an editing session, proceed as follows:

1. Press Home. This moves the cursor to the Home line.

2. Press Quit. For some terminals, you also need to press RETURN.

Using Quit terminates FSE, leaving all editing changes intact, and returns control to the
operating system.

Entering FSE Commands

You perform many editing operations by entering FSE commands. You enter FSE commands in one of
two ways. The first way is to proceed as follows:

1. Move the cursor to the home line.

2. Enter the desired FSE command.

3. Press RETURN.

The home line is a special line on the terminal screen. The home line is reserved for entering
FSE commands. To move the cursor to the home line, press Home.

When you enter a command on the home line and press RETURN, FSE processes the command and returns
the cursor to its original position before you pressed Home •

• 6-18 Migration From NOS to NOS/VE Revision F

The second, and easier, way of entering FSE commands is to use some keys provided by your
terminal. The display at the bottom of the FSE screen shows these keys and their associated
commands. For example:

First
Fl Bkw

Unmrk
F9 Mark

Last
F2 Fwd

MrkBx
10 MrkCh

Copy
F3 Back

LocNxt
11 Locate

Move
F4 Help FS Undo

Exit
F6 Quit

DelCh DelLn
F7 InsCh F8 InsLn

This example shows the display at the bottom of the FSE screen on a CDC 722 terminal. On this
terminal, the keys shown are function keys, labeled Fl through 11.

In the display of the editing operations keys, the characters to the right of each key label
identify the command that is executed when you press the key. For some terminals you need to
also press RETURN to execute the command.

Usually each key has two editing operations associated with it. To perform the bottom operation,
press the key. The top operation is usually performed by the shifted key. If a top operation is
associated with another key, that key's label is to the left of the operation.

The keys are programmable, so you can change them to suit your own particular needs. They can be
programmed to execute any FSE command. If you elect not to· program the keys, FSE provides
default commands.

Typically, FSE users program the keys to execute the commands they use most often. You might
want to use the default functions for awhile, until you become more familiar with FSE. The
method for programming the keys is described in the File Editor Tutorial/Usage manual.

The rest of this discussion introduces you to the capabilities of FSE by describing how to do a
few simple but useful editing operations. For clarity, the description shows how to do these
operations by using the function keys on the CDC 722 terminal. Of course, you can perform these
same editing operations and many others by entering FSE commands on the Home line, and you can
use FSE on a variety of terminals. To learn the full range of capabilities of FSE, refer to the
File Editor Tutorial/Usage manual.

Creating a File With FSE

To create a new file, enter an EDIT FILE command that specifies the name of a nonexistent file.
Then enter the ACTIVATE SCREEN command. A screen appears informing you that the file is empty.
The text portion of the-screen is blank. The cursor is positioned at the top of the screen.

You can now begin entering text into the file. All text you type while the cursor is in the text
portion of the screen is entered into the file.

When you reach the end of a line, press RETURN. This positions the cursor at the beginning of
the next line, and you can continue typing.

If you reach the end of the screen before you have finished entering information into the file,
FSE automatically moves ahead one screen. The last line you typed will appear at the top of the
screen, and you can continue typing.

When you have finished entering text into your file, you can leave FSE by using Quit.

If you make a mistake while entering text, you can correct the mistake simply by positioning the
cursor where the mistake occurred and typing over the incorrect text.

Revision F Using Procedures 6-19.

For example, suppose you have typed the following statement:

Ingeter IA(lOO)

You can correct the misspelling of 'Integer' by positioning the cursor under the g as follows:

Ingeter IA(lOO)
(-- Cursor position

and typing 'teg'.

For many errors, it might not be sufficient to simply type over the error. You may need to
delete or insert characters, words, lines, or entire blocks of text. FSE allows you to perform
all of these operations, as described in the next topic, Editing a File.

Editing a File

FSE can perform extensive editing operations on text files. The following topics describe some

I of the most commonly used operations as used on the CDC 722 terminal. Refer to the File Editor
Tutorial/Usage manual for complete descriptions of all the editing capabilities of FSE.

Calling FSE
Paging Through a File
Inserting Characters
Deleting Characters

Inserting a Line
Deleting a Line
Copying a Block of Text
Moving a Block of Text

Calling FSE

To edit an existing text file, enter an EDIT FILE command specifying the name of the file. Then
enter the ACTIVATE SCREEN command. FSE displays a screen containing as much of your file as will
fit on the screen,-beginning with the first line of the file. For example, the following

I commands call FSE to edit a file named MYFILE and activate screen mode for a CDC 722:

/edit file myfile
ef/activate_screen model=cdc 722

6-20 Migration From NOS to NOS/VE Revision F

The FSE display for this example is shown below:

+--+
File: MYFILE Lines 1 Thru 7 Size 7

Program MYPROG
Integer IA(100)
DO 10 1=1,100

IA(I) = I
10 Continue

Print *, ' End of Program MYPROG'
End

First
F1 Bkw

Last
F2 Fwd

Unmrk MrkBx
F9 Mark 10 MrkCh

Copy
F3 Back

LocNxt
11 Locate

Move
F4 Help FS Undo

Exit
F6 Quit

I

DelCh DelLn
F7 InsCh F8 InsLn

+--+

The top line displays the name of the file being edited. The middle part of the screen displays
the contents of the file, and the bottom of the screen displays the keys used for editing
operations.

To page ahead one screen in the file, use Fwd. The last line on the previous screen becomes the
first line on the new screen.

To page backward one screen in the file, use Bkw. The first line on the previous screen becomes
the last line on the new screen.

To move to the end of the file, use Last.

To move to the beginning of the file, use First.

Inserting Characters

To insert one or more characters anywhere in your text file, proceed as follows:

1. Position the cursor to the character after which you want to insert the new characters.

2. Press InsCh once for each character you want to insert.

For each press of InsCh, FSE inserts a blank character immediately to the right of the cursor
position. You can then position the cursor anywhere within the field of blanks and type the
desired characters.

Revision F Using Procedures 6-21.

In the following example, the character t is inserted into the word Ineger.

1. Hove the cursor to the position immediately preceding
the position of the insert.

I 2. Press InsCh.

3. Type the desired character.

Program MYPROG
Ineger A(100)

Program MYPROG
In eger A(100)

Program MYPROG
Integer A(100)

(-- cursor position

The following example shows how to insert a string of characters. The string 'B(IOO), ' is
inserted between Integer and A(IOO).

1. Move the cursor to the position after which the string
is to be inserted.

Press InsCh 8 times (corresponding to the 7 characters
in 'B(100),' plus one blank).

3. Type the new string.

Deleting Characters

Program MYPROG
Integer A(100)

Program MYPROG

(-- cursor position

Integer A(100)

Program MYPROG
Integer B(100), A(100)

The following example shows how to delete a string of characters. The string 'IB(100), ' is
deleted from the line 'Integer IB(100), IA(100)'.

1.

1
2.

3.

Move the cursor to the first character of the string
to be deleted.

Press DelCh 8 times (corresponding to the 7 characters
in 'IB(100)', plus one blank).

FSE deletes 8 characters.

Inserting a Line

Program MYPROG
Integer IB(100), IA(lOO)

(-- cursor position

Program MYPROG
Integer IB(100), IA(lOO)

Program MYPROG
Integer IA(100)

The following example shows how to insert a line of text. The line 'Real A(100)' is inserted
between the lines 'Program MYPROG' and 'Integer IA(100)'.

1. Move the cursor to the line above which the new line
is to be inserted.

6-22 Migration From NOS to NOS/VE

Program MYPROG
Integer IA(100)

(-- cursor position

Revision F

2. Press InsLn. FSE inserts a blank line above the
current line.

3. Type the new line.

Deleting a Line

Program MYPROG

Integer IA(100)

Program MYPROG
Real A(100)
Integer IA(100)

The following example shows how to delete a line of text. The line Real A(100) is deleted.

1. Move the cursor to the line to be deleted.

2. Press DelLn. FSE del~tes the line at the current
cursor position.

Copying a Block of Text

Program MYPROG
Real A(100)

Integer IA(100)

Program MYPROG
Integer IA(100)

<-- cursor position

I

I

To copy one or more text lines from one area of the file to another, you use Mark and Copy. I
1. Move the cursor to the first line of text to be copied.

2. Press Mark. This marks the line at the current cursor position. I
3. Move the cursor to the last line of text to be copied.

4. Press Mark. This marks all lines following the first marked line down to and including the I
line at the current cursor position.

5. Move the cursor to the line before which you want the text to be copied.

6. Press Copy. This copies the marked lines to the current cursor position.

In the following example, two COMMON statements in a main program are copied to a subroutine.

1. Move the cursor to the first line of text to be copied. Then press Mark.

Program Main
Common A(100), B(100)

Common C(IDO), D(100)

End

Subroutine Sub
Dimension J(10)

End

Revision F

<-- Cursor position

Using Procedures 6-23

I

I

I 2. Move the cursor to the last line of text to be copied. Then press Mark.

Program Main
Common A(lOO), B(lOO) } (__ marked lines
Common C(lOO), D(lOO)

End

Subroutine Sub
Dimension J(10)

End

(-- cursor position

3. Move the cursor to the line before which you want the text to be moved.

Program Main
Common A(lOO), B(IOO) } (__ marked lines
Common C(lOO), D(lOO)

End

Subroutine Sub
Dimension J(lO)

End

I 4. Press Copy.

Program Main
Common A(lOO), B(IOO)
Common C(lOO), D(lOO)

End

Subroutine Sub

(-- cursor position

Common A(lOO), B(lOO) } (-- copied lines
Common e(lOO), D(lOO)
Dimension J(10)

(-- cursor position

End

Moving a Block of Text

I To move one or more text lines from one area of a file to another, you use Mark and Move.

1. Move the cursor to the first line of text to be moved.

I 2. Press Mark. This marks the line at the current cursor position.

3. Move the cursor to the last line of text to be moved.

I 4. Press Mark. This marks all lines following the first marked line down to and including the
line at the current cursor position.

6-24 Migration From NOS to NOS/VE Revision F

5. Move the cursor to the line before which you want the text to be moved.

6. Press Move. The marked lines are moved to the current cursor position.

In the following example, two COMMON statements in a main program are moved to a subroutine.

1. Move the cursor to the first line of text to be moved. Then press Mark.

Program Main
Common A(l 00), B (l00)

Common C(100), 0(100)

End

Subroutine Sub
Dimension J(10)

End

(-- cursor position

2. Move the cursor to the last line of text to be moved. Then press Mark.

Program Main
Common A(100), B(100) } (__ marked lines
Common C(100), 0(100)

End

Subroutine Sub
Dimension J(10)

End

(-- cursor position

3. Move the cursor to the line before which you want the text to be moved.

Program Main
Common A(100), B(100) } (__ marked lines
Common C(100), 0(100)

End

Subroutine Sub
Dimension J(10)

End

Revision F

(-- cursor position

Using Procedures 6-25

I

I

I 4. Press Move.

Program Main

End

Subroutine Sub
Common A(lOO), B(lOO) } < __ moved text
Common C(lOO), D(lOO)
Dimension J(10)

<-- cursor position

End

6-26 Migration From NOS to NOS/VE Revision F

Compiling, Loading, and Executing Programs 7

Compiling FORTRAN Programs •• 7-1

Compiling COBOL Programs ••

Compiling Pascal Programs ••• ~ •••••••••••••••••••••••
Comparison of NOS and NOS/VE PASCAL Commands ••

Loading and Executing Programs ••
The Loading Process: NOS and NOS/VE Differences •••••••••••••••••••••••••••••••••••••••
Name Call Loading •••
Using EXECUTE_TASK Instead of Load Sequences ••
Passing Parameters to a Program •••

Passing Parameters to a FORTRAN Program •••
Passing Parameters to a COBOL Program •••

Loading Programs from Multiple Files ••
Loading Programs from Libraries •••
Generating a Load Map •••
Presetting Memory •••••••••••••••••••••• ' •••
Debugging Options •••
Summary of NOS and NOS/VE Loader Differences ••

Invoking the APL System •••
Comparison of NOS APL and NOS/VE APL Commands •••
NOS/VE APL Command Parameters •••

INPUT (I) •••
LIST OPTIONS (LO) •••••••••••••••••• tt ••

OUTPUT (0)
PASSWORD (PW) •••
STATUS ••
TERMINAL TYPE (IT) •••••• 0, •••

WAIT (W)-•••.•••••••••••
WORKS PACE (WS) ••

7-3

7-6
7-6

7-7
7-7
7-8
7-8
7-10
7-10
7-11
7-11
7-11
7-13
7-14
7-15
7-16

7-17
7-17
7-19
7-19
7-19
7-20
7-20
7-20
7-20
7-21
7-21

CompiAing, Loadinng, annd IExecunltinng lPrrograms

This chapter discusses the commands and techniques for compiling, loading, and executing FORTRAN
and COBOL programs under NOS/VE and compares them with the methods used under NOS.

Compiling FORTRAN Programs

The command to compile a FORTRAN program under NOS/VE is:

FORTRAN parameter-list

7

The FORTRAN command follows the same syntax rules as other SCL commands. Parameters have the form

parameter=value

Parameters are separated by a comma or a space.

Examples of comparable NOS and NOS/VE compiler commands are:

NOS: ftnS,i=sfile,b=bfile,l=lfile.

NOS/VE: fortran input=sfile binary_object=bfile list=lfile

ftn i=sfile b=bfile l=lfile

All three commands read source input from file SFILE, write object code to file BFILE, and write
an output listing to file LFILE.

The third of the preceding examples shows the short form of the NOS/VE FORTRAN command. The
FORTRAN command can be abbreviated to FTN. In addition, most of the parameters have a long form
and an abbreviation. For example, the following commands are equivalent:

/fortran input=srcfile binary_object=binfile list=listfile

/ftn i=srcfile b=binfile l=listfile

The FORTRAN command parameters differ from those of FTNS. Some of the parameters are equivalent
but have different names, some new parameters have been added, and some old parameters have been
dropped.

The following tables present a quick comparison of the NOS and NOS/VE FORTRAN parameters. The
tables show the parameter names and a short description of each parameter. The abbreviations of
the NOS/VE parameters are shown in parentheses. The first table shows the most common NOS and
NOS/VE parameters, the second table shows the rest of the corresponding NOS and NOS/VE
parameters, the third table shows new NOS/VE FORTRAN parameters, and the last table shows NOS
FTNS parameters that are not supported under NOS/VE. For complete descriptions of all of the
FORTRAN parameters, refer to chapter 14, Migrating FORTRAN Programs.

Following are the most commonly used parameters. Note that the NOS/VE abbreviations are
identical to the NOS parameter names.

NOS ~OS/VE DescriEtion

B BINARY OBJECT (B) File to receive object code.

I INPUT (I) File containing input source code.

L LIST (L) File to receive output listing.

LO LIST OPTIONS (LO) Output listing options.

Revision F Compiling, Loading, and Executing Programs 7-1

I

I

I

I

Following are the rest of the corresponding NOS and NOS/VE FORTRAN parameters. The parameters
are equivalent, but in some cases the names have changed.

NOS

ANSI

CS

DB

DO

DS

E

EL

ET

MD

OPT

SEQ

TM

NOS/VE

STANDARDS_DIAGNOSTICS (SD)

DEFAULT COLLATION (DC)

DEBUG AIDS (DA)

ONE TRIP DO - -
COMPILATION DIRECTIVES (CD)

ERROR (E)

ERROR LEVEL (EL)

TERMINATION_ERROR_LEVEL (TEL)

MACHINE_DEPENDENT (MD)

OPTIMIZATION LEVEL
(OPTIMIZATION, OPT, OL)

SEQUENCED_LINES (SL)

TARGET MAINFRAME (TM)

Description

Diagnose non-ANSI usages.

Specifies default collating sequence. NOS default
is FIXED, NOS/VE default is USER.

Generates symbol tables for interactive debugging.
NOS default is all tables generated, NOS/VE default
is no tables generated.

Minimum trip count for DO loops.

Suppresses C$ compiler directives.

File to receive error messages.

Severity level of messages written to ERROR file.

Severity level for which abnormal status returned.

Requests diagnosis of machine dependencies.

Compiler optimization level. NOS default is 0,
NOS/VE default is LOW.

Selects sequenced source format.

Not supported in this release, but occupies a
position in the FORTRAN command.

The following parameters have been added to the NOS/VE FORTRAN command:

Parameter Description

EXPRESSION EVALUATION (EE) Selects the order of evaluation of expressions.

Saves variables and arrays in subprograms. FORCED_SAVE (FS)

RUNTIME CHECKS (RC) Specifies runtime range checking of subscript substring
expressions. Default is no checking.

STATUS Specifies an SCL status variable to receive an error status
code.

The following NOS FTNS parameters are not supported under NOS/VE FORTRAN:

AL Not needed with virtual memory.·

ARG Not needed because all languages have common calling sequences.

BL Controlled by PAGE_FORMAT file attribute set by SET_FILE_ATTRIBUTE command.

EC Not needed with virtual memory.

G Not needed because COMPASS not available.

GO Not available.

7-2 Migration From NOS to NOS/VE Revision F

LCM Not needed with virtual memory.

ML Not needed because COMPASS not available.

PD Not available.

PL Not available.

PN Not available.

PS Controlled by PAGE_LENGTH file attribute set by SET_FILE_ATTRIBUTE command.

PW Controlled by PAGE WIDTH file attribute set by SET FILE ATTRIBUTE command.

QC Not available.

REW Not needed. All files rewound by default. Other file positioning available via
NOS/VE file referencing.

ROUND Not available.

S Not needed.

STATIC Not available.

x Not needed.

Compiling COBOL Programs

Under NOS/VE, you compile COBOL programs by using the COBOL command. This command has the
following form:

COBOL parameter_list

The COBOL command follows the same syntax rules as other seL commands. Parameters have the form

parameter=value

Parameters are separated by a comma or a space.

Examples of comparable NOS and NOS/VE compiler commands are:

NOS: COBOLS,I=SFILE,B=BFILE,L=LFILE.

NOS/VE: cobol input=sfile binary=bfile list=lfile

Both commands read source input from file SFILE, write object code to file BFILE, and write an
output listing to file LFILE.

Most of the COBOL command parameters have a long form and an abbreviation.
following commands are equivalent:

/cobol input=srcfile binary=binfile list=listfile

/cobol i=srcfile b=binfile l=listfile

For example, the

The COBOL command parameters differ from those of COBOLS. Some of the parameters are equivalent
but have different names, some new parameters have been added, and some old parameters have been
dropped.

Revision F Compiling, Loading, and Executing Programs 7-3

I
I

I

I

I

I

The following tables present a quick comparison of the NOS and NOS/VE COBOL parameters. The
tables show the parameter names and a short description of each parameter. The abbreviations of
the NOS/VE parameters are shown in parentheses. The first table shows the most commonly used
parameters, the second table shows the rest of the corresponding NOS and NOS/VE parameters, the
third table shows new NOS/VE COBOL parameters, and the last table shows NOS COBOLS parameters
that are not supported under NOS/VE. For complete descriptions of all of the COBOL parameters,
refer to chapter 15, Migrating COBOL Programs.

Following are the most commonly used COBOL command parameters. Note that the NOS/VE
abbreviations are identical to the NOS parameter names.

NOS li~S/VE ~~~.£E!ption

B BINARY (B) File to receive obj ect code.

I INPUT (I) File containing input source code.

L LIST (L) File to receive output listing.

LO LIST OPTIONS (LO) Output listing options.

Following are the rest of the corresponding NOS and NOS/VE parameters. The parameters are
equivalent, but in some cases the names have changed.

NOS

ANSI

APO

B

DB

E

EL

FIPS

I

L

LBZ

LO

OPT

SB

SY

x

NOS/VE..

STANDARDS_DIAGNOSTICS (SD)

LITERAL CHARACTER (LC)

BINARY (B)

DEBUG AIDS (DA)

ERROR (E)

ERROR LEVEL (EL)

FED INFO PROCESSING STANDARD (FIPS)
and-STANDARDS DIAGNOSTICS (SD)

INPUT (I)

LIST (L)

LIST OPTIONS (LO)

OPTIMIZATION LEVEL

SUBPROGRAM (SP)

DEBUG AIDS (DA)

EXTERNAL INPUT (EI)

7-4 Migration From NOS to NOS/VE

Descriptiol!..

Diagnose non-ANSI usages.

Specify character (' or ") to denote literals.

File to receive object code.

Debugging options.

File to receive error messages.

Severity level of messages to be written to
ERROR file.

Diagnose non-FIPS usages.

Source input file.

Output listing file.

Leading blanks in numeric fields interpreted as
zeros.

Output listing options.

Controls compiler optimization level.

Compile source input as subprogram.

Check syntax but do not produce object code.

Specifies SCU library file to be used for COPY
statements.

Revision F

The following new parameters have been added to NOS/VE COBOL:

Parameter --------
AUDIT (A)

BASE LANGUAGE (BL)

INPUT SOURCE MAP (ISM)

RUNTIME CHECKS (RC)

STATUS

Description

Selects Federal Compiler Testing Center audit testing.

Allows NOS/VE to compile programs containing syntax based on
different base languages.

Specifies the name of the file that contains the source map
describing the contents of the source input file.

Selects runtime checking of reference modifiers, subscripts, and
index references.

Specifies an SCL status variable to receive error status code.

The following CaBaLS parameters are not supported under NOS/VE COBOL:

BL Use the PAGE FORMAT file attribute set by the SET FILE ATTRIBUTE command.

CCI

D

ET Use TERMINATION ERROR LEVEL attribute set by SET PROGRAM ATTRIBUTE command.

F~

MSB Not needed.

PD

PS Use the PAGE LENGTH file attribute set by the SET FILE ATTRIBUTE command.

PSQ

PW Use the PAGE WIDTH file attribute set by the SET FILE ATTRIBUTE command.

SORT4

SORTS

T~

TDF

U

UCI

Revision F Compiling, Loading, and Executing Programs 7-S

I

I

I

Compiling Pascal Programs

Both NOS and NOS/VE provide a PASCAL command to call the Pascal compiler. Both commands read a
Pascal source program and produce an object program that can be loaded and executed. However,
the formats of the commands, and the compile time options that can be selected, differ between
the two systems.

Comparison of NOS and NOSjVE PASCAL Commands

The command to compile a NOS/VE Pascal program has the following general format:

pascal input=srce binary=bin list=lfile

where parameter-list selects various compiler options. The PASCAL command conforms to SCL
command syntax, which differs from NOS syntax.

Parameters on the PASCAL command have the following form:

parameter_name=value

Following are examples of equivalent NOS and NOS/VE PASCAL commands:

NOS: PASCAL,I=SRCE,B=BIN,L=LFILE.

I NOS/VE: pascal input=srce binary=bin list=lfile

I

Both commands compile a source program on local file SRCE, write object code to file BIN, and
write the output listing to file LFILE. Note that the NOS/VE PASCAL command uses spaces as
parameter separators (although commas can also be used), and does not require a period terminator.

Parameter names on the PASCAL command have abbreviations that can be substituted for the full
name. Using parameter abbreviations, the above command can be written as:

/pascal i=srce b=bin l=lfile

Following are parameters that are provided by both the NOS and NOS/VE PASCAL commands. The
NOS/VE parameter abbreviations are shown in parentheses. Note that the NOS/VE abbreviation is
the same as the NOS parameter name.

NOS NOS/VE

I INPUT (I)

B BINARY (B)

L LIST (L)

Remarks

Source input file. Default is INPUT on NOS, $INPUT on NOS/VE, with
similar effect.

Binary object file. Default is LGO on NOS and NOS/VE.

Output listing file. Default is OUTPUT on NOS, and $LIST on NOS/VE with
similar effect.

The following NOS PASCAL parameters are not provided by NOS/VE PASCAL:

GO

PD

PS (Page size is controlled by the PAGE WIDTH file attribute.)

PL

7-6 Migration From NOS to NOS/VE Revision F

The following new parameters are provided by NOS/VE PASCAL:

DEBUG AIDS

ERROR

ERROR LEVEL

LIST OPTIONS

OPTIMIZATION LEVEL

RUNTIME CHECKS

STANDARDS DIAGNOSTICS

TERMINATION ERROR LEVEL

STATUS

Requests compiler-generated debugging tables.

Specifies a file to receive error messages.

Specifies severity level of errors to be listed.

Selects output listing options.

Selects optimization level.

Selects runtime error checking options.

Selects compiler diagnosis of nonstandard usages.

Specifies severity level for which compiler is to return abnormal
status.

Specifies a status variable to receive status code upon completion
of compilation.

Loading and Executing Programs

Under both NOS and NOS/VE, a compiled object program must be processed by the system loader
before it can be executed.

The Loading Process: NOS and NOSjVE Differences

Internally, the loading process differs significantly between NOS and NOS/VE. Externally,
however, the processes are similar. Under both systems, the loader performs the following
sequence of events:

Allocates an area of memory for the program.

Loads the program into the allocated area.

Loads all routines required by the loaded program. (The loader searches the available
libraries for the required routines.)

Supplies all calling programs with the addresses of the called routines. (This process is
known as satisfying external references.)

Begins execution of the loaded program.

Many of the loader options provided by NOS/VE are similar to those provided by NOS. Under both
systems you can:

Load routines from a single file.

Load routines from multiple files.

Load routines from libraries.

Request a load map.

Under NOS/VE, the overlay, OVCAP (overlay capsule), and segment loading features are not
provided. Because of the virtual memory design of the NOS/VE operating system, those features
are no longer necessary.

Revision F Compiling, Loading, and Executing Programs 7-7 I

Virtual memory enables you to execute very large programs in a limited amount of physical memory,
as though the amount of physical memory was unlimited. Virtual memory operates automatically; it
requires no changes to programs, and no special instructions or intervention from the program-

I mer. However, program size and program design have a significant effect on the performance of a
program in virtual memory.

Name Call Loading

The commands to perform a name call load are the same under NOS and NOS/VE. Under both systems
you simply specify the object file name. The loader loads all modules from the specified file
into memory and begins execution.

Under both systems, language compilers write object code to file LGO if no object file name is I specified for the BINARY OBJECT or BINARY parameter on the compiler call command. Thus, the
familiar execution command LGO is the same on both systems.

I

I

Both systems allow you to specify parameters on the name call command, which are passed to the
execution program. Some of the parameters are similar, while others differ greatly. Parameters
are discussed later in this chapter.

The following examples illustrate name call loads on NOS and NOS/VE:

NOS: FTN, I=MYSOURCE.
LGO.

NOS/VE: fortran input=mysource
19o

In the preceding examples, object code is written to file LGO. The LGO command loads and
executes the program.

NOS: COBOLS,I=COBPRG,B=BIN.
BIN.

NOS/VE: cobol input=cobprg binary=bin
bin

In the preceding examples, object code is written to file BIN. The BIN command loads and
executes the program.

Using EXECUTE_ TASK Instead of Load Sequences

Under both systems, the name call command provides a set of default load-time options. However,
the method for requesting additional options, or overriding the default options, differs between
the two systems.

Under NOS, you used load sequences to request load operations. A load sequence consisted of a
sequence of loader control statements terminated by a loader termination statement (EXECUTE,
NOGO, or a name call). The loader statements specified various loader options.

Under NOS/VE, you initiate a load operation through the EXECUTE TASK (EXET) command. This
command has the general form:

EXECUTE_TASK parameter-list (abbreviated EXET)

The parameter list requests the desired loader options. This command has the same general
purpose as a NOS load sequence: It calls the loader, requests loader options, and begins
execution of the loaded program.

7-8 Migration From NOS to NOS/VE Revision F

The following example shows a typical load operation under NOS and NOS/VE:

NOS: LOAD (BINI, BIN2)
LOSET (MAP=ON)
EXECUTE.

NOS/VE: execute task files=(binI,bin2) load_map_options=(s,b)

These examples load all modules from object files BINI and BIN2, produce a load map, and begin
execution of the loaded program.

Under NOS/VE, you can also request certain loader and execution-time options with the
SET PROGRAM ATTRIBUTES command. The difference between specifying options in an EXECUTE TASK
command and-specifying them in a SET PROGRAM ATTRIBUTES command is this: the former command
establishes the options only for the-current-execution; the latter establishes them for the
duration of the job (unless you turn the options off before the end of the job).

For example, you can turn on the load map option for the duration of the job with the command

/set-yrogram_attributes load_map_options=(s,b)

After you enter this command, all subsequent load operations will produce a load map (unless you
first turn the load map option off).

The following list shows corresponding NOS and NOS/VE loader options. NOS options are selected
by loader control statements placed in a load sequence. NOS/VE options are selected by
parameters on the EXECUTE TASK command.

Name Call Load:

NOS: Specify object file name (default is LGO).

NOS/VE: Specify object file name (default is LGO).

Loading from Multiple Files:

NOS: LOAD statement.

NOS/VE: FILE= parameter on EXET command.

Loading from Libraries:

NOS: LIBLOAD statement.

NOS/VE: MODULES= parameter on EXET command or SETCL command.

Begin Execution:

NOS: EXECUTE or name call command.

NOS/VE: EXECUTE TASK initiates execution after load is complete.

Revision F Compiling,Loading, and Executing Programs 7-9

I

I

LDSET Options:

NOS NOS/VE

MAP option. LOAD MAP and LOAD_MAP_OPTIONS parameters on the EXET command.

LIB option. LIBRARY= parameter on the EXECUTE_TASK command.

PRESET, PRESETA options PRESET_VALUE= parameter on EXECUTE_TASK command.

LIB LOAD option LIBRARY= parameter on EXECUTE_TASK command.

ERR option TERMINATION ERROR LEVEL= parameter on EXECUTE TASK command.

Passing Parameters to a Program

NOS/VE enables you to pass parameters to a program through the name call or EXECUTE TASK command.

Passing Parameters to a FORTRAN Program

NOS/VE FORTRAN allows you to pass the following types of parameters to a program:

Predefined parameters

File substitution parameters

User-defined parameters

The predefined parameters are the $PRINT LIMIT and STATUS parameters. The $PRINT LIMIT parameter
is similar to the NOS *PL parameter. It-specifies the maximum number of lines that can be
written to files $ERRORS and $OUTPUT during execution.

The STATUS parameter specifies a variable of kind status that receives an error status code at
the completion of execution. The format of the information contained in the status variable has
the same format as for all other SCL commands. The SCL STATUS parameter is described in chapter
5, Job Structure.

The execution-time file substitution parameters under NOS/VE have the same format as under NOS.
The formats of these parameters are described in the FORTRAN usage manual.

The user-defined parameters allowed under NOS/VE FORTRAN differ significantly from those allowed
under NOS. Under NOS/VE, user-defined parameters on the name call or EXECUTE_TASK command have
the same format as for SCL procedures. SCL parameter formats are briefly described in chapter 6,
Using Procedures.

The NOS GETPARM call for retrieving the values of parameters specified on the execution call
command is replaced by the NOS/VE parameter and variable interface calls. Brief descriptions of
these calls are presented in chapter 14, Migrating FORTRAN programs.

The NOS Post Mortem Dump parameters are not supported under NOS/VE. (A similar capability is
provided by the SCL ABORT_FILE capability, which allows you to specify a file of debugging
commands that is executed automatically when a runtime error occurs.)

7-10 Migration From NOS to NOS/VE Revision F

Passing Parameters to a COBOL Program

Under NOS, you can specify the following parameters on an execution command: *CORE, *MSGS, *TIME,
and file equivalencing parameters.

Under NOS/VE, the *CORE, *MSGS, and *TIME parameters are not supported. (The *TIME parameter
placed the program's execution time in the job dayfile. Under NOS/VE, the execution time is
automatically placed in the job log.) File equivalencing is supported under NOS/VE and has the
same format as under NOS.

NOS/VE also provides an additional parameter called the STATUS parameter. The STATUS parameter
specifies an SCL status variable in which an error status code is returned after execution
completes. The format of the information returned in the status variable is the same as for
other SCL commands. STATUS variables are discussed in chapter 5, Job Structure.

Loading Programs From Multiple Files

Both NOS and NOS/VE allow you to load modules from several different files. Under NOS, you use
the LOAD statement to specify files from which modules are to be loaded. Under NOS/VE, the FILES
parameter on the EXECUTE TASK command specifies a list of files from which modules are to be
loaded. The FILES parameter has the form:

EXECUTE_TASK FILES=(filel, ••• , filen) I
All modules from the specified files are loaded into a single program in memory. Execution
begins with the main program in the first file in the list.

NOS/VE does not provide an operation equivalent to the SLOAD operation on NOS, which loads
selected modules from a specified file. However, you can load selected modules from a library
file, as described later in this chapter.

Some NOS and NOS/VE examples are as follows:

NOS: LOAD(BINFIL1, BINFIL2, LGO)
EXECUTE.

NOS/VE: execute task fi1es=(lgo, binfill, binfi12)

These commands load and execute the modules on files LGO, BINFIL1, and BINFIL2.

Loading Programs From Libraries

Both NOS and NOS/VE make use of libraries containing object programs. Under NOS, they are called
user libraries; under NOS/VE, they are called object libraries. This discllssion explains how the
NOS/VE loader uses object libraries. Library creation is discussed later in this chapter.

Under both systems, at the end of a load operation, the loader searches the available libraries
for modules needed to satisfy external references in the loaded program. On finding a required
module, the loader loads it into memory and satisfies the external reference. Under NOS, the
loader searches three sets of libraries, in the order listed:

Global library set (established by LIBRARY statement)

Local library set (established by LDSET statement. Also included product libraries, such as
FTNLIB or COB5LIB)

System default library (SYSLIB)

Revision F Compiling, Loading, and Executing Programs 7-11

I

Under NOS/VE, immediately before the library search, the loader constructs a list of libraries
called the program library list. The loader then searches this list to satisfy external
references. The program library list consists of the following lists:

1. Local library list. Available only to the current load operation. (Similar to the local
library set under NOS.)

2. Object libraries specified by the compiler. These include such libraries as the FORTRAN and
COBOL runtime libraries.

3. Job library list. Available to all load operations in the current job. (Similar to the
global library set under NOS.)

4. Job debug library list. Includes libraries used by the Debug utility. (Used only when debug
mode is on or when Debug gets control through an ABORT_FILE).

5. NOS/VE task services library. This is a system default library that contains routines
required by most application programs.

6. CYBIL Library. Contains routines used by all programs.

The program library list, searched by the loader to satisfy external references, is made up of
the preceding lists. You can use parameters on the EXECUTE TASK and SET PROGRAM ATTRIBUTES
commands to add libraries to these lists.

The LIBRARY parameter on the EXECUTE TASK command adds libraries to the local library list:

EXECUTE_TASK FILES=(filel, ••• ,filen) LIBRARY=(libraryl, ••• ,libraryn)

The local library list is available only to the EXECUTE TASK command in which it is specified.
The local library list is searched before any other libraries. Libraries in the local library
list are searched in order of their occurrence in the list.

The ADD LIBRARY parameter on the SET PROGRAM ATTRIBUTES command adds libraries to the job library
list:

SET_PROGRAM_ATTRIBUTES ADD_LIBRARY=(libraryl, ••• ,libraryn)

The job library list is available to all subsequent load operations in the job. When you specify
a SET_PROGRAM_ATTRIBUTES command, the libraries are added to the beginning of the list.

You can delete libraries from the job library list by specifying the DELETE LIBRARY parameter of
the SET_PROGRAM_ATTRIBUTES command:

SET_PROGRAM_ATTRIBUTES DELETE_LIBRARY=(libraryl, ••• ,libraryn)

The following examples assume that debug mode is off (no debug library list) and that the job
library list is initially empty.

Commands

19o

exet file=lgo library=(alib, blib)

setpa add library=clib
exet file~lgo library=(alib, blib)

7-12 Migration From NOS to NOS/VE

Order of Libr~ Sea~ch

Compiler-supplied libraries
Task services library

ALIB } BLIB <-- Local libraries

Compiler-supplied libraries
Task services library

ALIB } . BLIB <-- Local 11braries

Compiler-supplied libraries
CLIB <-- Job library
Task services library

Revision F

Both NOS and NOS/VE enable you to load selected modules from object libraries. Under NOS, you
use the LIBLOAD statement to specify the library and the modules to be loaded. The modules are
loaded regardless of whether or not they are needed to satisfy external references.

Under NOS/VE, the ~10DULES parameter of the EXECUTE TASK command performs the equivalent
operation. The MODULES parameter has the following form:

EXECUTE_TASK FILES=(filel, ••• ,filen) MODULES=(modulel, ••• ,modulen)

This command first loads all modules from the files specified by the FILES parameter. It then
loads the modules specified by the MODULES parameter from the program library list (the list of
libraries that the loader searches during a load operation) regardless of whether or not they are
needed to satisfy external references.

The following NOS and NOS/VE examples illustrate loading from libraries:

NOS: LIBLOAD (MYLIB, SUBl, SUB2).
LGO.

NOS/VE: execute task files=lgo modules=(subl, sub2)

In both of these examples, a program is loaded from file LGO. In the NOS example, modules SUBl
and SUB2 are loaded from library MYLIB. In the NOS/VE example, SUBI and SUB2 are loaded from the
program library list.

Generating a Load Map

I

I

I

Both NOS and NOS/VE provide an optional load map. The load map shows how the loader allocated
memory during the load operation. Both systems provide similar types of information on their
load maps (module length, module addresses, entry point addresses, entry point cross reference
list). However, the methods of interpreting the information on the map differ between the two
systems, because the way memory is allocated under NOS/VE differs from that of NOS. For a
complete description of the content of a NOS/VE load map, refer to the seL Object Code ~
Maintenance Usage manual. U
Under NOS/VE, you can request a load map either through the SET_PROGRAM_ATTRIBUTES command or
through the EXECUTE TASK command. The system default is to not produce a load map. If you
request a load map,-it is written to the default file $LOCAL.LOADMAP unless you specify a n
different file.

The first way of requesting a load map is to specify the LOAD MAP and LOAD MAP OPTIONS parameters
on the EXECUTE TASK command:

EXECUTE TASK FILES=files LOAD_MAP=file LOAD_MAP_OPTIONS=(option_list)

The LOAD MAP parameter specifies the file to receive the load map. If you omit this parameter,
the load-map is written to file $LOCAL.LOADMAP. The LOAD MAP OPTIONS parameter specifies the
particular load map options. The options you can select are:

S Segment map

CR Entry points cross reference map

B Block map

ALL Selects S, B, EP, and CR options

EP Entry points map

NONE Suppresses load map generation

Revision F Compiling, Loading, and Executing Programs 7-13

I

For example, the following command loads and executes a program and produces a load map:

I /execute_task file=lgo load_map=mapfile load~ap_options=(b,ep,cr)

This command produces a block, entry points, and entry points cross reference map. The map is
written to file MAPFILE.

The EXECUTE_TASK command parameters described above select load map options for a single load
operation. You can use the SET PROGRAM ATTRIBUTES (SETPA) command to set load map options for
the duration of the job. The parameters for controlling load map options have the same form as
for the EXECUTE TASK command:

The LOAD MAP parameter specifies the file to receive the load map, and the LOAD MAP OPTIONS
I specifies the contents of the map. Options can be any combination of the symbols EP (entry

points map), B (block map), CR (entry points cross reference map), or S (segment map). You can
suppress load map generation by specifying LOAD_MAP_OPTIONS=NONE.

The SET PROGRAM ATTRIBUTE command changes the job default load map options. The new default

I remainS-in effect until you either change it with another SET PROGRAM ATTRIBUTES command or
override it for a particular load operation with an EXET command. -

I

I

The following example illustrates the use of SET_PROGRAM-ATTRIBUTES to set load map options:

/set-yrogram_attributes load~ap=mfile load~ap_options=(b,ep,cr)
/execute task file=(aa,bb)
/execute=task file=lgo

The SET_PROGRAM_ATTRIBUTES command requests a block, entry points, and entry points cross
reference map, and specifies that file MFILE is to receive the map. The requested maps are
produced by the two 'subsequent EXECUTE_TASK operations.

The following example shows how an EXECUTE TASK command can override a SET PROGRAM ATTRIBUTES
command for a particular execution: -

/set-yrogram_attributes load_map_options=b
/execute task file=lgo
/execute=task file=(cc,dd) load_map_options=none

The SET PROGRAM ATTRIBUTES command requests a block map. The first EXECUTE TASK command produces
this map. Since no LOAD MAP parameter is specified, the map is written to file $LOCAL.LOADMAP.
The LOAD MAP OPTIONS=NONE parameter on the second EXECUTE TASK command turns the load map options
off for that-execution.

Presetting Memory

Under both NOS and NOS/VE, you can specify a memory preset value at load time. Under NOS/VE, the
initial default preset value is zero. You can change this default for a job through the
SET_PROGRAM_ATTRIBUTES command. You can change the preset value for a particular execution by
specifying the PRESET VALUE parameter on an EXECUTE TASK command. The PRESET VALUE parameter has
the form

EXECUTE TASK FILE=files PRESET VALUE=value

7-14 Migration From NOS to NOS/VE Revision F

The specified value is one of the following:

ZERO Presets memory to zero.

FLOATING POINT INDEFINITE Presets memory to floating point indefinite.

INFINITY Presets memory to floating point infinity.

ALTERNATE ONES Presets memory to an alternating bit pattern with the high-order
bit set to one.

For ease of debugging, you should preset memory to FLOATING_POINT_INDEFINITE or INFINITY. This
ensures that your program will terminate when uninitialized variables are used in computations.
A preset value of zero, which is a legitimate value, would allow the program to continue
executing.

For example, the following command presets memory to infinity and begins execution of the program
on file LGO:

lexecute_task file=lgo preset_value=infinity

Debugging Options

The EXECUTE TASK command provides several debugging options intended for use with the Debug
utility.

The Debug utility enables you to debug your program during execution. It is similar to the CYBER
Interactive Debug facility (CID). Through Debug, you can suspend execution of your program at
selected points or when specified conditions occur. While execution is suspended, you can
display or change the values of variables and arrays in the program. You can then resume
execution of the program. Debug provides the following advantages over conventional debugging
techniques:

You can examine program values at the precise time of an error or at other desired times.

It requires no changes to your source program.

You need to know only a few commands.

Refer to the Debug Usage manual for more information on Debug.

The EXECUTE TASK command provides the following parameters for controlling the use of the Debug
facility for an execution:

DEBUG MODE

DEBUG INPUT

DEBUG OUTPUT

ABORT FILE

Revision F

Turns debug mode on or off for the execution. When debug mode is on, the
execution takes place under Debug control. Options are DEBUG MODE=ON and
DEBUG MODE=OFF.

Specifies the file from which Debug reads commands. Default is $INPUT
(commands read from the terminal).

Specifies the file to which Debug writes output. Default is $OUTPUT (output
displayed at terminal).

Specifies a file of Debug commands that Debug will execute if an execution
error occurs. (DEBUG~ODE must be set to OFF.)

Compiling, Loading, and Executing Programs 7-15

I

I

I

Summary of NOS and NOSjVE Loader Differences

Specify loader options:

NOS: Load Sequences.

NOS/VE: Use EXECUTE TASK (EXET) command to specify loader and execution-time options.

Specify a name call load:

NOS: Specify object file name (default is LGO).

NOS/VE: Specify object file name (default is LGO).

Load modules from multiple files:

NOS: LOAD statement.

I NOS/VE: FILE parameter on EXECUTE TASK command.

Load modules from libraries:

NOS: LIBLOAD statement.

I NOS/VE: MODULES parameter on EXECUTE TASK command.

I

I

Begin execution:

NOS: EXECUTE or name call statement.

NOS/VE: EXECUTE TASK or name call command.

Request load map:

NOS: LDSET(MAP= •••).

MAP statement.

NOS/VE: LOAD MAP and LOAD MAP OPTIONS parameters on EXECUTE TASK or SET PROGRAM ATTRIBUTES
(SETPA) command. - -

Specify libraries to be searched:

NOS: LDSET(LIB= •••) or LIBRARY statement.

NOS/VE: LIBRARY parameter on EXECUTE TASK command or ADD LIBRARY parameter on
SET PROGRAM ATTRIBUTES command.

Preset memory:

NOS: LDSET(PRESET= •••) and LDSET(PRESETA= •••) statements.

I NOS/VE: PRESET VALUE parameter on EXECUTE TASK or SET PROGRAM ATTRIBUTES command.

7-16 Migration From NOS to NOS/VE Revision F

Load selected programs from a library:

NOS: LIBLOAD statement.

NOS/VE: MODULES parameter on EXECUTE TASK command. I
Specify error termination conditions:

NOS: LDSET(ERR= •••) statement.

NOS/VE: TERMINATION ERROR LEVEL parameter on EXECUTE TASK or SET PROGRAM ATTRIBUTES command. I

Interactive debugging options:

NOS: DEBUG,ON statement.

DEBUG,OFF statement.

Post Mortem Dump.

NOS/VE: DEBUG_MODE=ON parameter on EXECUTE_TASK or SET_PROGRAM_ATTRIBUTES command.

DEBUG_MODE=OFF parameter on EXECUTE_TASK or SET_PROGRAM_ATTRIBUTES command.

ABORT FILE parameter on EXECUTE TASK or SET PROGRAM ATTRIBUTES command specifies a
file of Debug commands to be automatically ~xecuted-if an execution error occurs.

Satisfy External References:

NOS: SATISFY statement.

name call statement.

EXECUTE statement.

NOS/VE: name call command.

EXECUTE TASK command.

Invoking the APL System

I

I

Under NOS/VE, you enter the APL system by using the APL command, described by the following I
topics:

Comparison of NOS APL and NOS/VE APL Commands
NOS/VE APL Command Parameters

Comparison of NOS APL and NOS/VE APL Commands

The command to invoke APL under NOS/VE is:

APL option option option •••

The APL command follows the same syntax rules as other SCL commands. Parameters have the form

keyword=value

Parameters are separated by a comma or a space.

Revision F Compiling, Loading, and Executing Programs 7-17

I The following table presents a quick comparison of the NOS and NOS/VE APL command parameters.
The table shows the NOS parameter name, the NOS/VE parameter name, the NOS/VE parameter
abbreviation in parentheses, and a short description of each parameter.

In some cases, the possible values that can be specified for a parameter differ between NOS and

I NOS/VE. For a summary of all of the NOS/VE APL parameters and their possible values, see the APL
Language Definition Usage manual.

NOS NOS/VF:.

I INPUT (I)

L OUTPUT (0)

LO LIST OPTIONS (LO)

LO=E LO=S

LO=P LO=P

LO=B

NH parameter LO=B

I
NH (see LO parameter)

STATUS

I TT TERMINAL TYPE (TT)

TT=ASCAPL TT=APL

I TT=COR TT=COR

TT=TYPE

TT=BIT

TT=TTY33

TT=ASCII TT=ASCII

I TT=BATCH TT=BATCH

TT=B501

I TT=TTY383

TT=713 TT=UCA

I WORKSPACE (WS) WS

7-18 Migration From NOS to NOS/VE

File containing APL statements.

File to receive output.

Output listing options.

Echo (copy) input to output.

Prohibit prompt. (Under NOS/VE, prohibits 6
space prompt and line number prompt in function
d~ftnttion mode.)

Under NOS, placed a blank in first column of
output lines; LO=B has different meaning under
NOS/VE.

Suppresses APL system banner from being sent to
output file. Under NOS, the NH parameter
provided this function; under NOS/VE, LO=B
provides this function.

Specifies an SCL status variable to receive an error
status code.

Specifies the type of terminal you are using.

APL terminal using full APL set.

Correspondence Code Selectric terminal.

Typewriter-paired APL terminal; NOS/VE network
provides translation for these.

Bit-paired APL terminal; NOS/VE network provides
translation for these.

Teletype 33 terminal.

Full ASCII terminal.

64 ASCII character set printer.

Batch 501 printer.

Some kind of teletype 38 terminal.

Full ASCII terminals without APL character set.

Specifies the workspace to be automatically loaded.

Revision F

NOS NOS/VE Descri.ption

PW PASSWORD (PW) Specifies the password for the file specified by WS.

UN (not needed)

MX (not needed)

MN (not needed)

WAIT (W) Causes APL to wait for the file specified by WS to I
become available if that file is busy.

NOS/VE APL Command Parameters

The parameters of the NOS/VE APL command are briefly summarized on the following screens. The
information about each parameter includes the full parameter name, the abbreviation in
parentheses, default values, and other allowed values. The parameters are:

INPUT

LIST OPTIONS

OUTPUT

PASSWORD

STATUS

TERMINAL TYPE

WAIT

WORKSPACE

INPUT (I)

default

I=file

LIST_OPTIONS (LO)

$INPUT (For interactive use, $INPUT is the terminal.)

(For batch use, I=file must specify the file containing the APL
statements to be interpreted.)

I

I

I

I

You can omit this parameter entirely or specify it with any combination of the values B, S, and P I
below.

default

LO=B

LO=S

LO=P

Revision F

No options set
LO=SP

(For interactive use)
(For batch use)

Suppresses sending of APL banner to the output file.

Copies all input to the outP1lt file.

Suppresses sending of prompts to the output file; prompts suppressed are
the standard 6 spaces and the line number prompt in function definition
mode.

Compiling, Loading, and Executing Programs 7-19

OUTPUT (0)

I

default

O=file

PASSWORD (PW)

default

PW=password

I STATUS

default

I STATUS=status-var

TERMINAL_TYPE(TT)

default

TT=APL

TT=COR

I
TT=UCA

I

TT=ASCII

I
TT=BATCH

I

$OUTPUT (For interactive use, $OUTPUT is the terminal; for batch use,
$OUTPUT is the file normally printed at the end of the job.)

Specifies the file to which your output will be sent.

No password.

Specifies the password required to access the file specified in the WS
parameter.

Displays error status in the output file.

Specifies an SCL status variable to receive the status of the APL job
step when the job step completes.

TT=APL

Specifies that your terminal is an APL terminal using the full APL
character set.

Specifies that your terminal is an APL terminal using the APL character
set but lacking several APL characters. (See the APL Language
Definition Usage manual for the list of characters.) Specify this
option if you are using an IBM 2741 Correspondence Code Selectric
terminal with an APL type ball.

Specifies that your terminal is an ASCII-compatible terminal without the
APL character set. This option causes lowercase letters to be
translated to upper case ASCII letters on input. This option uses the $
escape sequences for input and output of characters not in the ASCII
character set. (See the APL Language Definition Usage manual for escape
sequences.)

Specifies that your terminal is an ASCII-compatible terminal without the
APL character set. This option uses the $ escape sequences for input
and output of characters not in the ASCII character set. (See the APL
Language Definition Usage manual for the $ escape sequences.)

Specifies that input and output use only the Control Data 64 ASCII
character set graphics. Use this option to print output on CDC batch
printers that cannot display all 95 ASCII characters. This option uses
the $ escape sequences for input and output of characters not in the
ASCII character set. (See the APL Language Definition Usage manual for
the $ escape sequences.)

7-20 Migration From NOS to NOS/VE Revision F

WAIT (W)

default

W=TRUE

W=FALSE

WORKSPACE (WS)

default

WS=file

Revision F

Same as W=FALSE.

Causes the APL system to wait for the file specified by WS to become
available if that file is busy.

Causes the APL system to terminate with an abnormal status if the file
specified by WS is busy.

:$SYSTEM.APL.CLEARWS (the clear workspace)

Specifies the file to be loaded automatically when the APL system begins
execution.

Compiling, Loading, and Executing Programs 7-21

I

I

Using Object Libraries

Us i ng CREATE OBJECT LIBRARY •••
Creating -Obj ect-Libraries ...•.........•....••...•...............•............•....•...
Modifying Object Libraries ••
Displaying Information About Object Libraries •••

8

8-1
8-3
8-3
8-5

Summary of Using Object Libraries ••• 8-6

Using Object Libraries 8

Both NOS and NOS/VE enable you to create specially-formatted files containing object modules.
Under NOS, these files are called user libraries; under NOS/VE, they are called object libraries.
(From now on, only the term object libraries will be used.)

However, under both systems, libraries have the same purpose: They provide an efficient method of
maintaining files of object programs, and the loader can quickly locate object modules in
libraries while satisfying external references. (Satisfying external references is discussed
later in this chapter.)

Under NOS, you use the LIBGEN utility to create user libraries. Under NOS/VE, you use a utility
called CREATE OBJECT LIBRARY to create object libraries. These utilities are similar in that they
accept as input a file containing compiled object modules (such as the binary output file
produced by FORTRAN or COBOL), and produce as output an object library containing the object
modules.

Under both systems, you can maintain an object library by adding, deleting, and replacing modules
in the library. However, under NOS, you cannot perform these update operations directly to the
library. It is necessary to use LIBEDIT to perform the additions, deletions, and replacements to
the original object file that you used to create the library. You then input the updated object
file to LIBGEN to create a new object library.

Under NOS/VE, you can use CREATE OBJECT LIBRARY to add, delete, and replace modules in the object
library itself (although CREATE OBJECT LIBRARY actually creates a new object library with
changes, rather than updating a~ existing library).

NOS/VE object libraries can contain other types of modules besides object modules. You can place
SCL procedures on libraries, so that you can execute the procedure by referencing the Frocedure
name. You can also place a special type of a module called a program description on an object
library. (A program description module provides an alternative to the EXECUTE TASK command for
executing a program. Refer to the SCL Object Code Management Usage manual for-more information I
about program description modules.)

The following examples illustrate the creation of an object library under NOS and NOS/VE. Modules
from the object file LGO are placed in the library.

NOS: LIBGEN,F=LGO,P=LIBFIL,N=MYLIB

NOS/VE: create object library
add_modules ITbrary=lgo
generate_library library=mylib
quit

Under NOS/VE, you create object libraries during a CREATE OBJECT LIBRARY session. During the
session, you enter commands that specify the modules to b; placed in the library. Although, under
NOS/VE, more work is required for simple operations such as the one shown above, commands are
provided that enable you to perform many additional operations on object libraries.

Using CREATE_OBJECT _LIBRARY
Under NOS/VE, you create object libraries by using the CREATE OBJECT LIBRARY utility.
CREATE OBJECT LIBRARY is similar to the NOS LIBGEN/LIBEDIT utilities~ The libraries can contain
modules from binary object files, procedures, or existing libraries. Thus, you can use
CREATE OBJECT LIBRARY to create updated versions of existing libraries.

Revision F Using Object Libraries 8-1

I

The library creation and modification operations are performed during a CREATE_aBJECT_LIBRARY
session. A CREATE_aBJECT_LIBRARY session consists of the following steps:

1. Begin the session.

2. Enter commands to add, delete, or replace modules in the library.

3. Generate the library.

4. End the session.

The command to begin a CREATE_aBJECT_LIBRARY session is:

CREATE_aBJECT_LIBRARY (Abbreviated CREaL)

The system responds with the prompt:

COLI

This prompt signifies that CREATE OBJECT LIBRARY is waiting for you to input a command. After you
enter a command and press RETURN,-CREATE-OBJECT LIBRARY issues another COLI prompt and waits for
you to enter another command. The session continues in this way until you enter QUIT. This ends
the session and returns control to the operating system.

While you' are in a CREATE OBJECT LIBRARY session you enter commands that provide
CREATE OBJECT LIBRARY with the names of files that contain modules to be added to the library,
modules to be-deleted, modules to be replaced, and replacement modules.

The commands you enter to add, replace, or delete modules do not actually alter the contents of a
library. Instead, CREATE_aBJECT_LIBRARY maintains an internal list called the module list. The
commands you enter add, delete, and replace modules on this list. To actually create a new
library (or a modified version of an existing one), you must enter the GENERATE LIBRARY (GENL)
command: -

GENERATE_LIBRARY FILE=file_name (Abbreviated GENL F=file_name)

This command, entered during a CREATE_aBJECT_LIBRARY session, creates an object library that
contains the modules in the module list, and writes the library to the specified file. Typically,
the GENERATE LIBRARY command is the last command you enter before ending a CREATE OBJECT_LIBRARY
session.

After you have generated the library, you can end the session by typing the command

I quit

The following terminal dialog shows a simple CREATE OBJECT LIBRARY session in which a library
containing the modules from a single object file is-created:

/create_object_library <-------------- Begin the CREATE_aBJECT_LIBRARY session.

COL/add_modules library=lgo <--------- Add the modules on file LGO to the library list.

COL/generate_library library=mylib <-- Generate the new library on file MYLIB.

COL/quit <---------------------------- End the session.

8-2 Migration From NOS to NOS/VE Revision F

Creating Object Libraries,

Creating a new object library involves the following sequence of steps:

1. Begin the CREATE_OBJECT_LIBRARY session by entering a CREATE_OBJECT_LIBRARY command.

2. Specify the modules to be included in the library by entering an ADD MODULES command.

3. Generate the library by entering a GENERATE LIBRARY command.

4. End the session by typing QUIT.

To specify modules to be included in a new or existing library while in a CREATE OBJECT LIBRARY
session, you use the ADD_MODULES (ADDM) command. This command has the form: - -

ADD MODULES LIBRARY=file list (Abbreviated ADDM L=file_list)

where file list specifies one or more files that contain object modules to be added to the
library. -

The files you specify can be object files produced by a compiler, or they can be other libraries.
CREATE OBJECT LIBRARY adds all the modules from the specified files to the object library.

The ADD MODULES command adds all the modules from the specified files to the object library. You
can add selected modules from one or more files by including the MODULE parameter on the
ADD_MODULES command:

ADD MODULES LIBRARY=file list MODULE=mod list - -
This command directs CREATE OBJECT LIBRARY to add to the library only the modules listed in
mod list. CREATE OBJECT LIBRARY searches for the listed modules on the files specified by the
LIBRARY parameter. -

For example, the following command, entered during a CREATE OBJECT LIBRARY session, adds three
modules to the internal module list:

COL/add_modules library=bin_file module=(binl, bin2, bin3)

The modules BINI, BIN2, and BIN3 on file BIN FILE are added to the module list.

Remember that after you add the modules to the module list, you must enter a GENERATE LIBRARY
command to actually create the object library.

Modifying Object Libraries

CREATE_OBJECT_LIBRARY enables you to add, replace, and delete modules from existing object
libraries. The following list summarizes the commands you use to perform these modifications:

ADD MODULES Adds one or more modules to an object library.

REPLACE MODULES Replaces one or more modules in an object library.

DELETE MODULES Deletes one or modules from an object library.

The ADD MODULES command can be used to add modules to an existing library or to a new library.

These commands can be entered only during a CREATE OBJECT LIBRARY session (that is, after you
have entered a CREATE_OBJECT_LIBRARY command). -

Revision F Using Object Libraries 8-3 I

Remember that the CREATE_OBJECT_LIBRARY commands do not directly alter the contents of an object
library. Instead, the commands alter the contents of the module list. Therefore, when you begin a
library session to modify an existing library, the first step is to add all the modules in that
library to the module list. You can do this with the command:

ADD_MODULES LIBRARY=library_name

The library_name is the library you want to modify. You can then use the ADD MODULES,
REPLACE-110DULES, and DELETE MODULES parameters to alter the library list. -

Then, after you make all the desired changes to the module list, you use the GENERATE LIBRARY
command to rewrite the existing library.

The REPLACE MODULES (REPM) command replaces modules in the module list. This command has the form

REPLACE MODULES FILES=file list MODULES=mod list (Abbreviated REPM F=file_list M=mod_list)

The file_list specifies one or more files containing replacement modules, and the mod list
specifies one or more modules to be replaced. You can omit the MODULES parameter, in which case
all of the modules in the module list are eligible for replacement.

When CREATE OBJECT LIBRARY processes a REPLACE MODULES command, it begins by searching the module
list for a ;odule having the same name as the first module in the first file in the file list (or
in the mod list, if you specified the MODULES parameter). If a match is found, the replacement
module replaces the existing module.

If no match is found after seaching the entire module list, the replacement module is disregarded
(it is not added to the module list) and processing continues with the next module in the file
(or in the mod_list, if you specified the MODULES parameter).

Processing continues in this manner until the file-list (or the mod-list, if specified) is
exhausted.

The following REPLACE MODULES command, entered during a CREATE OBJECT LIBRARY session, specifies
three modules to be replaced:

COL/replace_modules file=bin_file module=(moda, modb, modc)

CREATE_OBJECT_LIBRARY first searches the module list for a module named MODA. If MODA is found,
it is replaced by MODA from file BIN FILE. If MODA is not found, no replacement occurs. In either
case, CREATE OBJECT LIBRARY then searches the module list for modules MODB and MODC, and replaces
them if they-are found.

The DELETE MODULES (DELM) command deletes modules from the module list. This command has the form

DELETE MODULES MODULES=mod list (Abbreviated DELM M=mod_list)

where mod_list specifies one or more modules to be deleted from the module list.
CREATE OBJECT LIBRARY searches the module list for the specified modules and deletes the ones it
finds.- -

For example, the command

COL/delete_modules modules=(modI, mod4, mod6)

deletes modules modI, mod4, and mod6 from the module list.

I 8-4 Migration From NOS to NOS/VE Revision F

After you have specified all the modules to be added to, deleted from, or replaced in the module
list, you create a library that contains the modules currently in the module list by entering the
GENERATE_LIBRARY (GENL) command:

GENERATE_LIBRARY LIBRARY=library_name (Abbreviated GENL L=library_name)

The library you specify can be either an existing library or a new one. If you specify an
existing library, it is replaced. For example:

create object library
add modules library=lgo
gen;rate_Iibrary library=proglib
quit

These commands begin a CREATE OBJECT LIBRARY session, add modules from file LGO to the (initially
empty) module list, and gener~te a library named PROGLIB that contains the modules in the module
list. If PROGLIB already exists (as a local file), it is replaced.

Displaying Information About Object Libraries

You can display a list of the modules in a library or object file by entering a
DISPLAY OBJECT LIBRARY (DISOL) command. This command is similar to the NOS ITEMIZE command, which
displays infor;ation about the records in binary files under NOS. The simplest form of the
DISPLAY OBJECT LIBRARY command is: - -

DISPLAY_OBJECT_LIBRARY LIBRARY=file name (Abbreviated DISOL L=file_name)

where file-name is the object file name or library file name. The DISOL command lists all the
modules in the specified library or object tile, as well as the date and time each module was
placed in the file. You can request more information through additional parameters, as described
in the Object Code Management manual.

The DISOL command is an SCL command, rather than a CREATE OBJECT LIBRARY command. That means that
you can enter it either within or outside of a CREATE OBJECT LIBRARY session. You can use DISOL
to display information about the modules in the library you ~re currently updating or about any
other binary file under NOS/VE.

For this example, assume the following:

Object file BIN_FILE_1 contains modules A, B, and C.

Object file BIN FILE 2 contains modules D, E, and F.

The command

display_object_library library=bin_file_1

displays a list similar to the following:

A
B
C

OBJECT MODULE
OBJECT MODULE
OBJECT MODULE

08:15:29
08:15:27
15:33:04

1983-06-04
1983-06-04
1983-06-03

Now, suppose the following CREATE_OBJECT_LIBRARY session is executed:

/create object library
COL/add-module; files=(bin file 1,bin file 2,) modules=(a,b,e,f)
COL/gen;rate library file=iylib- - -
COL/quit -
/display_object_library library=mylib

Revision F Using Object Libraries 8-5

I

I

This session creates an object library that contains four modules. The DISPLAY_OBJECT_LIBRARY
command displays the following list:

A
B
E
F

LOAD MODULE
LOAD MODULE
LOAD MODULE
LOAD MODULE

08:53:04
08:53:30
08:54:10
08:54:26

Summary of Using Object Libraries

1983-06-04
1983-06-04
1983-06-04
1983-06-04

The following is a summary of the NOS commands and corresponding NOS/VE commands for creating and
modifying object libraries.

Create a library:

NOS: LIBGEN.

NOS/VE: CREATE_OBJECT_LIBRARY to begin the session.

ADD MODULES to add modules to the library.

GENERATE LIBRARY to create the library.

QUIT to end the session.

Modify a library:

NOS: LIBEDIT modifies the sequential binary object file.

LIBGEN creates a new library.

NOS/VE: CREATE_OBJECT_LIBRARY begins the session.

ADD MODULES adds modules to the module list.

DELETE MODULES deletes modules from the module list.

REPLACE_MODULES replaces modules in the module list.

GENERATE LIBRARY creates a new library.

QUIT terminates the session.

Display Information about a library:

NOS: ITEMIZE

NOS/VE: DISPLAY OBJECT LIBRARY

I 8-6 Migration From NOS to NOS/VE Revision F

Submitting Batch Jobs

Batch Job Format

Creating a Batch Job •••••••••••.••••••••••••••••••••.•••••••••••.•••••••••••••••••••••••••

9-1

9-1

9

Command to Submit a Batch Job ••• 9-3

Displaying Job Status Information

Summary of Submitting Batch Jobs

... 9-3

9-4

Submitting Batch Jobs 9

You can submit batch jobs under both NOS and NOS/VE. Under both systems, a batch job is a file of
commands and data that the system processes as a unit. The formats of batch jobs, and the
commands for submitting batch jobs, differ under NOS and NOS/VE.

Batch Job Format
Under NOS and NOS/VE, a batch job is simply a coded file that contains the commands to be
executed and any data required by the commands. Under NOS/VE, the first line of a batch job must
be a LOGIN command. This command provides the system with the information necessary to validate
the job. The LOGIN command has the form:

LOGIN USER=user_name PASSWORD=password FAMILY_NAME=family_name

Typically, you use the same validation information you used to log in at the terminal.

The commands to be executed in the batch job follow the LOGIN command. A LOGOUT command at the
end of the job is optional; when the last command is executed, the job simply terminates.

The following NOS and NOS/VE examples compile and execute a FORTRAN program. The source program
is contained in a file named FTNSRCE.

NOS: MYJOB.
USER, MYNAME, MYPASS.
CHARGE, 12345,6789.
ATTACH,FTNSRCE.
FTN5,I=FTNSRCE,L=FLIST.
LGO.
SAVE,FLIST.

NOS/VE: login user=myname password=mypass family_name=myfam
attach file file=$user.ftnsrce
create-file file=$user.flist
fortran input=ftnsrce list=flist
19o
logout

Creating a Batch Job
You can create a file containing a batch job using a text editor such as the Full Screen Editor.
Alternatively, you can use the COLLECT TEXT command. This command provides a quick way of
creating a text file. The COLLECT_TEXT-command has the form:

COLLECT TEXT OUTPUT=file name (Abbreviated COLT O=file_name)

where file name is the file to contain the text. When you enter a COLLECT TEXT command, the
system responds with the prompt

ct?

and waits for you to enter a line of text. After you enter a line of text and press RETURN, the
system issues another ct? prompt. The system continues to issue ct? prompts in response to your
entries until you enter the string ** in columns 1 and 2. This signals the end of the sequence of
text lines and terminates the COLLECT TEXT command. The text lines you entered are then written
to the file you specified in the COLLECT TEXT command.

Revision F Submitting Batch Jobs 9-1

I

I

I

I

For example, the following COLLECT_TEXT command creates a file containing a batch job:

/collect text output=batch comp <--------------------- Begin text mode.
ct? login user=urpass password=urpass family name=urfam
ct? cobol input=$user.cobsrce binary=cobbin list=$list
ct? cobbin
** <-- End text mode.

File BATCH COMP contains a LOGIN command, a COBOL command, and a name call command.

Under both systems you can create batch jobs that contain input data for commands in the job.
Under NOS, input data follows the command record and is separated from the command record by an
end-of-record indicator.

NOS/VE files do not have boundaries corresponding to the NOS record boundaries. However, you can
create a batch job that contains input data by including a COLLECT TEXT command in the job. The
COLLECT TEXT command creates a local file that contains the data. You then input that file to the
command-that requires the data.

The following NOS batch job compiles and executes a FORTRAN program. The FORTRAN source and the
execution-time input data are both read from file INPUT.

MYJOB.
USER,MYNAME,MYPASS.
CHARGE, 1234S.
FTNS.
LGO.
--EOR--

FORTRAN source program
--EaR--

Input data for FORTRAN program
--EOI--

The following NOS/VE batch example compiles and executes a FORTRAN program. The source program
and the execution-time input data are both contained in the batch job. COLLECT TEXT commands are
used to create a local file named SRCE, which contains the FORTRAN source,and-a local file named
INDAT, which contains the input data.

login user=myname password=mypass family=myfam
collect text output=srce <------------------- Create file SRCE containing source program.

FORTRAN source program

**
fortran input=srce <------------------------- FORTRAN compiler reads file.
collect text output=indat <------------------ Create file INDAT containing input data.

Input data for FORTRAN program

** I 19o

9-2 Migration From NOS to NOS/VE Revision F

Command to Submit ,a Batch Job

The NOS/VE command to submit a batch job is SUBMIT JOB (SUBJ). This command is similar to the NOS
SUBMIT and ROUTE commands. The SUBMIT JOB command has the form:

SUBMIT_JOB FILE=file_name JOB_NAME=job_name (Abbreviated SUBJ F=file_name IN=job_name)

The file name is the file containing the batch job, and job name is an arbitrary name that you
assign to the job. You can use the job name to reference th~ job, in much the same way you use
the system-assigned job sequence name (jsn) under NOS. (NOS/VE also assigns a unique name that it
uses to identify the job. You can reference the job by either name.)

Following are equivalent NOS and NOS/VE examples of submitting batch jobs:

NOS: SUBMIT, JOBFIL.

NOS/VE: submit_job file=jobfil job_name=myjob

Both commands submit a batch job contained in file JOBFIL. The NOS/VE example assigns the name
MYJOB to the job (overriding any JOB NAME parameter on the LOGIN command). In the NOS example,
the job name is specified on the job-statement.

Displaying Job Status Information

After you have submitted a batch job under NOS/VE, you can check the progress of the job with the
DISPLAY JOB STATUS (DISJS) command. This command provides status information similar to that
provided by-the NOS ENQUIRE command. The DISPLAY JOB STATUS command has the form

DISPLAY JOB STATUS JOB_NAME=job_name (Abbreviated DISJS IN=job_name)

where name is the name you assigned to the job in the SUBMIT JOB command. This command displays a
short paragraph of information about the specified job. Included in this information is the line:

JOB_STATE: string

where string indicates the current state of the job. The displayed string tells you whether the
job has been initiated and, if so, whether it is executing or waiting for a system resource, such
as memory space or a permanent file, to become available.

If the system responds to a DISPLAY_JOB_STATUS command with the message

NAME NOT FOUND: job_name

the job has probably completed.

The following example shows typical output for a DISPLAY JOB STATUS command:

Command:

/display_job status job_name=myjob

Output:

System Supplied Name
User Supplied Name
Originating User
Originating-Family
Job Class -
Job-Mode
Job-State
Operator Action Posted
Display_Message-

Revision F

aaq$
my job
myname
myfam
batch
batch
execute
no
attf file=progfile (-- This command was executing.

Submitting Batch Jobs 9-3

I

I

The Display_Message entry shows the command that was executing when the DISPLAY JOB STATUS
command was entered.

The NOS/VE job log is similar to the NOS dayfile: It contains a chronological history of the
operations that occurred during the job. The job log for a batch job is always printed at the end
of the job. You can preserve a copy of the job log for later examination by including a
DISPLAY_LOG command in the job. This command has the form:

DISPLAY_LOG OUTPUT=permanent_file (Abbreviated DISL O=permanent_file)

where permanent file has the form $USER.filename. This command writes the job log to the
specified permanent file. After the batch job has completed, you can examine the job log by
displaying the permanent file at your terminal.

By including a WHEN/WHENEND block in a batch job, you can specify commands to be executed if an
error occurs during job processing. The function of the WHEN/WHENEND block is similar to that of
the NOS EXIT statement. The format of the WHEN/WHENEND block is:

WHEN ANY FAULT DO
commands

WHENEND

If any system or user program terminates with an error during job processing, the commands
between WHEN and WHENEND are executed. If no error occurs, the commands are ignored. (Refer to

I the SCL Language Definition Usage manual for more information on error condition processing.)

The following batch job contains a WHEN statement that is executed if an error occurs during
execution of a command or program:

login user=myname password=mypass family=myfam
when program fault do

put_line line=' '//'error is: '//$strrep(osv$status)
whenend
attach file file=$user.newdata
create-file file=$user.flist
fortran input=$user.source list=flist
19o

If an error occurs during execution of any of the commands in the job, the contents of the system
status variable OSV$STATUS are printed. The job then terminates. If no errors occur, the job runs
to completion and the status variable is not printed.

Summary of Submitting Batch Jobs
The following summary shows corresponding NOS and NOS/VE commands for sUbmitting batch jobs.

Batch job format:

NOS: Job statement
USER statement
CHARGE statement

Control statements

end-of-information

9-4 Migration From NOS to NosivE Revision F

NOS/VE: LOGIN

commands

Input data in a batch job:

NOS: Job statement
USER statement
CHARGE statement

Control statements

end-of- record

Data

end-of-information

NOS/VE: LOGIN command
COLLECT_TEXT OUTPUT=name

Data

**

Commands (read data from file created by COLLECT_TEXT).

Submit a batch job:

NOS: SUBMIT ,file.
ROUTE,file,DC=IN.

NOS/VE: SUBMIT JOB FILE=file JOB NAME=name

Revision F

I

I

Submitting Batch Jobs 9-5

Display status information about a batch job:

NOS: ENQUIRE,jsn

NOS/VE: DISPLAY JOB STATUS JOB NAME=name

Transfer control on error:

NOS: EXIT command causes transfer of control if error occurs.

NOS/VE: WHEN/WHENEND block specifies commands to be executed if error occurs.

I 9-6 Migration From NOS to NOS/VE Revision F

Migrating Files

-

Chapter 10. File Interface Introduction

Chapter 11. General Facilities for Migrating Files

Chapter 12. FORTRAN and COBOL File Migration Aids

File Interface Introduction

+w

Sequential File Organization ••

Byte Addressable File Organization ••

Indexed Sequential File Organization ••

Direct Access File Organization •••

NOS/VE Record Types •••
CDC-Variable Record Type ••
ANSI-Fixed Length Record Type •••
Undefined Record Type •••

File Attr~utes •••
ACCESS MODE (.AM.) ••
CHARACTER CONVERSION (CC)
COLLATE TABLE NAME (CTN) ••
DATA PADDING (DP) -... .
EMBEDDED KEY (EK) •••
FILE CONTENTS (FC)
FILE-LIMIT (FL) •••
FILE-ORGANIZATION (FO)
FILE-PROCESSOR (FP)
FILE-STRUCTURE (FS) •••
HASHING PROCEDURE NAME (HPN)
INDEX PADD ING (IP) ••
INITIAL HOME BLOCK COUNT (IHBC)
INTERNAL CODE (IC) - ••
KEY LENGTH (KL) •••
KEY:POSITION (KP)
KEY TYPE (KT) •••
LOCK EXPIRATION TIME (LET) ••
MAXIMUM BLOCK LE"NGTH (MAXBL) ••
MAXIMUM-RECORD LENGTH (MAXRL)
MESSAGE-CONTROL (MC) '
OPEN POsITION (OP) ••
PADDING CHARACTER (PC)
PAGE FORMAT (PF)
PAGE-LENGTH (PL)

••••••••••••••• 0 ••

PAGE-WIDTH (PW) ••••••••••••••••••••••••• ' ••
RECORD_TYPE (RT)

File Attribute Defaults Used by FORTRAN Programs ••
Execution-Time Input/Output ••••••••••••••••••••••••••••••••••.•••••••••••••••••••••••••

File and Record Definitions •••
File Structure ••
Overriding FORTRAN Default Values •••
SET FILE ATTRIBUTES Example for FORTRAN •••
Sequenti~ll Input/Output •••
FORTRAN Direct Access Input/Output ••
Compile-Time Input/Output ••••••••••••••••••••••••.•••••••••••••••••••••••••••••••••

File Attribute Defaults Used by COBOL Programs ••
File Attributes and Associated COBOL Source Code ••••••••••••••••••••••••••••••••••••••
Special Cases •••

BLOCK CONTAINS Clause •••
CODE-SET Clause •• ~ ••••••••••• •••••••••••••
LINAGE Clause ' .. .
RECORD Clause .. .

10
fa, ..

10-1

10-2

10-3

10-4

10-6
10-6
10-6
10-6

10-7
10-8
10-8
10-9
10-9
10-9
10-10
10-10
10-10
10-11
10-11
10-12
10-12
10-12
10-12
10-12
10-13
10-13
10-13
10-13
10-14
10-14
10-14
10-15
10-15
10-15
10-15
10~15

10-16
10-16
10-16
10-17
10-18
10-18
10~19

10-19
.10-19

10-20
10-20
10-21
10-22
10-22
10-22
10-22

File Interface Introduction 10

This discussion describes the file organizations available on NOS/VE and briefly compares them to
similar organizations on NOS. The discussion tells how files are described to the system and the
kinds of files typically used by FORTRAN and COBOL programs. The file organizations listed below
are available on NOS/VEj the actual key (AK) file organization is not available on NOS/VE.

Sequential
Byte addressable
Indexed sequential
Direct Access

Other information about files is also discussed in this chapter as follows:

NOS/VE Record types
File attributes
File attributes used by FORTRAN programs
File attributes used by COBOL programs

Sequential File Organization

Records in a sequential file are stored and retrieved in the order the records are presented to
the system. The records are logically contiguous.

The records can be accessed sequentially.

The logical structure of a sequential file is as follows:

+------------------+ <--------- BOI

I
Record 1 I

Record 2

+------------------+
(EOR and EOP allowed)

+------------------+ I Record n I
+------------------+ <-------- EOI

Sequential files have the following characteristics:

They can be assigned to the following devices: mass storage, terminal, magnetic tape, and
null.

All three record types (CDC-variable, ANSI-fixed, and undefined) are available.

Both types of blocking (system-specified and user-specified) can be used.

They can be positioned forward (toward EOI) or backward (toward BOI) by a specified number of
records or partitions.

Partial records can be read or written. Partitioning is available with CDC-variable record
type.

Revision F File Interface Introduction 10-1

I NOS and NOS/VE sequential files are compared in table 10-1.

Table 10-1. Comparison of NOS and NOS/VE Sequential Files

NOS NOS/VE

==

Records stored in order presented

Records logically contiguous

Records accessed sequentially

Files can be assigned to mass storage t terminal,
or magnetic tape

4 block types available (It Ct Kt E)

8 record types available (D, F t Rt St Tt Ut Wt Z)

Byte Addressable File Organization

Records stored in order presented

Records logically contiguous

Records accessed sequentially

Files can be assigned to mass storage t
terminal t magnetic tape t or null

2 block types available (system-specified
and user-specified)

3 record types available (CDC-variable,
ANSI-fixed t and undefined)

Records in a byte addressable file are stored and retrieved according to the byte address at the
start of the record. Bytes in the file are numbered sequentially from zero; that is, Ot 1, 2,
and so forth.

Records can be accessed randomly and sequentially.

The logical structure of a byte addressable file is as follows when the length of the record is
rl bytes and n represents the number of records:

+------------------+ (--------- BOI

byte rl---------) I
Record 1 I ------------------
Record 2

byte 0 ---------)

+------------------+

+------------------+
byte n*rl-------) I Record n I

+------------------+ <--------- EOI

A byte addressable file can be assigned to the following devices: mass storage, terminal, and
null.

All three record types (CDC-variable, ANSI-fixed t and undefined) can be used with byte
addressable files.

Both block types (system-specified and user-specified) can be used with byte addressable files.

The file cannot be positioned forward or backward by records or partitions.

10-2 Migration From NOS to NOS/VE Revision F

Partial records can be read to or written from a byte addressable file. Partitioning is
available with CDC-variabl~ record type.

The NOS/VE byte addressable file organization is similiar to the NOS word addressable file
organization. The major characteristics of the two file organizations are compared in table 10-2.

Table 10-2. Comparison of Word Addressable and Byte Addressable Files

Word Addressable Byte Addressable

==

Record access by word address Record access by byte address

Random and sequential access Random and sequential access

Words numbered from 1 to n Bytes numbered from 0 to n

10 characters per word 1 character per byte

Records can be stored on mass storage Records can be assigned to mass storage, terminal, or
null

Record types W, F, and U allowed Record type CDC-variable, ANSI-fixed, and undefined
allowed

No logical boundaries between records Partitioning allowed with CDC-variable record type

Indexed Sequential File Organization

Records in an indexed sequential file are stored in ascending order according to primary key
value. The primary key is a group of contiguous bytes that uniquely identify the record.

Records in an indexed sequential file can be accessed randomly by primary key value or
sequentially by the logical position of the record. The logical structure of an indexed
sequential file is shown in the following diagram.

+----------------+
+----------------------1 Index Record 1 1

+----------------+

I I
+----------------+

+---1 Index Record n 1 I +----------------+

+---------------+
1

Primary
(level 0)
Index Block

Data Data
+-----Block 1-----+

+---)I--~~:~-~~:~~~-~--
1 +-----Block n-----+
+----) Data Record x

Data Record 2 Data Record x+1

Data Record 3
Empty Space

Empty Space
+-----------------+ +-----------------+

Revision F File Interface Introduction 10-3

On NOS/VE, indexed sequential files can be nested; that is, an indexed sequential file can be
defined within a NOS/VE file 'cycle. Currently, the only way to create a nested file is through a
CYBIL program.

The NOS and NOS/VE indexed sequential files are similar. The major characteristics of the file
organization is compared in table 10-3.

Table 10-3. Comparison of NOS and NOS/VE Indexed Sequential Files

NOS NOS/VE

==

Records stored in order according to primary key
values

Records accessed sequentially by position or
randomly by key

8 record types available (D, F, R, S, T, U, W, z)

15 levels of indexing allowed

Alternate keys supported by FORTRAN and COBOL

Cannot be nested

Direct Access File Organization

Records stored in order according to primary
key value

Records accessed sequentially by position or
randomly by key

3 record types available (CDC-variable,
ANSI-fixed, undefined)

15 levels of indexing allowed

Alternate keys supported by FORTRAN and COBOL

Can be nested

The direct access file organization is like the indexed sequential file organization in its use
of a primary key. Like an indexed sequential file, a direct access file can have alternate keys.

As with indexed sequential files, you must specify the primary key value when writing or deleting
a direct access file record. Similarly, you must specify either a primary key value or an
alternate key value to read a direct access file record.

Direct access files differ from indexed sequential files in their ordering of records in the
file. When you read records sequentially from an indexed sequential file, records are returned
in order sorted by their primary key value. Direct access records can be read sequentially, but
their primary key values are in random order.

Direct access files are divided into blocks called home blocks. When a record is written to a
direct access file, its primary key value is hashed by an internal hashing procedure to generate
the number of the home block in which the record is written. The hashing procedure distributes
the records uniformly among the home blocks.

On NOS/VE, direct access files can be nested; that is, a direct access file can be defined within
a NOS/VE file cycle. Currently, the only way to create a nested file is through a CYBIL program.

110-4 Migration From NOS to NOS/VE Revision F

The following diagram shows how records are written to a direct access file. A record having
primary key XYZ is written to block 3 of a direct access file.

+-----------+

+---------------------->1 ;~~~!~~re 1-------> 3
I +-----------+

+----+------------+
IXYZ I Data Recordl---------------------------------+
+----+------------+ I

+-----Block 1-----+ +-----Block 2-----+ +-----Block 3-----+

I
+----> Data Record Data Record

Data Record
----+------------
XYZ I Data record

Data Record Data Record

----+------------
Data Record Data Record

Empty Space
Empty Space Empty Space

+-----------------+ +-----------------+ +-----------------+

Table 10-4 compares direct access file characteristics under NOS and NOS/VE.

Table 10-4. Comparison of NOS and NOS/VE Direct Access File Characteristics.

NOS NOS/VE
==

Records stored in blocks according to hashed
value of primary key.

Records accessed sequentially by position or
randomly by key.

8 record types available (D, F, R, S, T, U,
w, Z).

Supported by FORTRAN and COBOL.

Alternate keys supported.

Cannot be nested.

Revision F

Records stored in blocks according to hashed
value of primary key.

Records accessed sequentially by position or
randomly by key.

3 record types available (CDC-variable,
ANSI-fixed, undefined).

Supported by COBOL, but not by FORTRAN.

Alternate keys supported.

Can be nested.

File Interface Introduction 10-5 n

NOS/VE Record Types

Three types of records are available on NOS/VE. The NOS/VE record types and NOS equivalents are
as follows:

CDC-variable length; similar to word count (W) on NOS

ANSI-fixed length; similar to fixed length (F) on NOS

Undefined; similar to undefined (U) on NOS

NOS record types decimal character count (D), record mark (R), system (S), trailer count (T), and
zero byte (Z) are not available on NOS/VE.

CDC-Variable Record Type

The variable record type is the default record type. Variable records can be any length except
for files of indexed sequential or direct access organization where a minimum record length
applies as defined for the file.

The- variable record type supports fixed or variable record lengths, partial record I/O, and file
partitioning.

Each variable type record has a record header. The header contains the record length and the
length of the preceding record. The system writes the header when the record is written to the
file. The system uses the header information for positioning the file. The record header is not
transferred to the working storage area with the rest of the record when a record is read.

The end-of-partition (EOP) delimiter for the variable record type is a record header that has
record length of zero and end-of-partition flag set.

ANSI-Fixed Length Record Type

Fixed length records all have the same length. The fixed length is the number of bytes specified
by the value of the MAXIMUM RECORD LENGTH attribute. If the number of bytes to be written as a
record is less than the maximum record length, the system pads the record.

The fixed length record type supports partial record I/O and provides efficient storage for
records of a constant length.

Also, when used with user-specified blocking, the fixed length record type supports data
interchange between different systems because it is an American National Standard Institute
standard record type.

The fixed length record type does not support file partitioning.

Undefined Record Type

A file with undefined record type is viewed by the. system as an unstructured byte string. The
system transfers the number of bytes specified to or from the working storage area. The system
does not impose any structure on the file other than file blocking.

The undefined record type supports tape files with unblocked variable length records, data
interchange between different systems, and partial record I/O.

The undefined record type does not support file partitioning.

10-6 Migration From NOS to NOS/VE Revision 0

File Attributes
A file attribute is a characteristic of the file. File attributes describe the structure of the
file and define processing limitations for the file.

File attributes can be separated into three categories: preserved, temporary, and returned.

Preserved attributes determine file structure. The values of these attributes are defined when
the file is created and kept for the life of the file. The values of some preserved attributes
can be changed with the CHANGE_FILE_ATTRIBUTES (CHAFA) command.

Temporary attributes determine how the job processes the file. You set temporary file attributes I;
with an ATTACH FILE command. The values of temporary attributes are discarded when the file is
detached. An implicitly attached file is detached at the end of a command.

Returned attributes are set by the file interface. The values of returned attributes can be
fetched for information on the current state of the file.

The following lists the most common file attributes. One asterisk (*) indicates attributes that
apply only to indexed sequential files. Two asterisks (**) 'indicate attributes that apply only
to direct access files. Three asterisks (***) indicate attributes that apply to both indexed
sequential and direct access (but not to any other file organization).

See the SCL System Interface Usage manual for a complete list of file attributes.

ACCESS MODE
CHARACTER CONVERSION
COLLATE TABLE NAME***
DATA PADDING*
EMBEDDED KEY***
FILE CONTENTS
FILE-LIMIT
FILE-ORGANIZATION
FILE-PROCESSOR
FILE-STRUCTURE
HASHING PROCEDURE NAME**
INDEX PADDING*
INITIAL HOME BLOCK COUNT**
INTERNAL CODE -
KEY LENGm***
KEY-POSITION***
KEY-TYPE***
LOCK EXPIRATION TIME
MAXIMUM BLOCK LENGTH
MAXIMUM-RECORD LENGTH
MESSAGE-CONTROL***
OPEN POsITION
PADDING CHARACTER
PAGE FORMAT
PAGE-LENGTH
PAGE-WIDTH
RECORD TYPE

Revision F File Interface Introduction 10-7

I

ACCESS_MODE (AM)

The ACCESS MODE attribute specifies the set of access permissions for the file. (Temporary

I attribute)- The usual way to specify ACCESS_MODE is with an ATTACH_FILE command. You can also
specify ACCESS MODE in the CREATE FILE PERMIT command and the CREATE CATALOG PERMIT command (both
described in chapter 4, Common NOS/VE commands). ACCESS MODE can be-a subset of the following

I

values:

READ File can be read.

WRITE Data can be written to file (implies APPEND, MODIFY, SHORTEN).

APPEND Data can be added at the end of the file.

MODIFY Data in file can be altered.

SHORTEN Data can be deleted from file.

EXECUTE File can be executed.

NONE File cannot be accessed until file access is restored by an ATTACH FILE command.

Omission for a new temporary file causes the READ and WRITE permission to be used. Omission for
an old file causes READ and/or WRITE to be used, depending (usually) on the kind of processing
required for the job.

Omission for a permanent file scheduled for job access using the ATTACH FILE command causes the
ACCESS MODE specified on that command to be used as qualified (usua11y)-by the kind of processing
required for the job.

CHARACTER_CONVERSION (CC)

The CHARACTER CONVERSION attribute specifies whether conversion between the internal character
code of a file and ASCII should be performed. (Preserved attribute)

The CHARACTER CONVERSION attribute can have the following values:

TRUE Conversion is performed

FALSE Conversion is not performed

Conversion of a tape file is performed by the file interface on a block by block basis as the

I
file is accessed. File access routines do not perform conversion of disk files and do not use
the CHARACTER CONVERSION attribute. The attribute is available to utilities that do conversion
on disk fi1es:-

10-8 Migration From NOS to NOS/VE Revision F

COLLATE_ TABLE_NAME (CTN)

The COLLATE TABLE NAME attribute specifies the name of the collation table used for indexed
sequential ~nd di;ect access files. A collation is required only if the KEY_TYPE attribute
specifies COLLATED. The collation table establishes respective weights for characters, and
thereby effects the ordering of records in the file. The table exists as a program in a library
or as an entry point already in memory. Once a file is open, COLLATE TABLE NAME cannot be set.
(Preserved attribute) - -

You can specify one of the following predefined collation tables:

OSV$DISPLAY63 FOLDED
OSV$DISPLAY64-FOLDED
OSV$COBOL6 FOLDED
OSV$ASCII6-FOLDED
OSV$EBCDIC6 FOLDED
OSV$EBCDIC -
OSV$DISPLAY63 STRICT
OSV$DISPLAY64-STRICT
OSV$COBOL6 STRICT
OSV$ASCII6-STRICT
OSV$EBCDIC6_STRICT

The collation tables are listed in appendix C. For information about using the tables, see the I
section Predefined Collation Tables in chapter 11.

If the predefined tables are not appropriate for your use, you can create your own collate
tables. For information about creating collate tables, see the FORTRAN Language Definition Usage I
manual.

The DATA PADDING attribute specifies the percentage of space the file interface is to leave when
writing records to data blocks at file creation time. This attribute applies only to indexed
sequential files. (Preserved attribute)

DATA PADDING can be set to an integer from 0 to 99.

Omission for a new indexed sequential file causes 0 (no padding) to be used.

EMBEDDED_KEY (EK)

The EMBEDDED_KEY attribute is used by the file interface to locate the primary key. This
attribute applies to indexed sequential and direct access files. (Preserved attribute)

EMBEDDED_KEY can be set as follows:

YES Primary key is located in the record.

NO Primary key is stored separately from the record.

Omission for a new indexed sequential or direct access file causes YES to be used.

Revision F File Interface Introduction 10-9

FILE_CONTENTS (FC)

The FILE CONTENTS attribute specifies the type of data contained in the file. (Preserved
attribut-;)

I The valid options for FILE CONTENTS include:

UNKNOWN File contents are unknown.

OBJECT File is an object module.

LIST File contains character data "for printing; the first character of each record is
interpreted as a print format control character.

LEGIBLE File contains character data.

Omission for a new file causes UNKNOWN to be used. Omission for an old file causes the preserved
value to be used.

FILE_LIMIT (FL)

The FILE LIMIT attribute specifies the maximum length of the file in bytes. (Preserved attribute)

I
FILE LIMIT can be set to an integer between 1 and the system maximum of 150,000,000.

Omission for a new file causes the system maximum of 150,000,000 to be used. Omission for an old
file causes the preserved value to be used.

An error occurs if the length of the file exceeds the FILE LIMIT.

FILE_ORGANIZATION (FO)

The FILE ORGANIZATION attribute specifies the organization of the file. (Preserved attribute)

FILE_ORGANIZATION can be set to the following values:

SEQUENTIAL (SQ)

BYTE ADDRESSABLE (BA)

INDEXED_SEQUENTIAL (IS)

DIRECT ACCESS (DA)

Records' are stored and retrieved in the order they are presented
to the system.

Records are stored and retrieved according to the byte address at
the start of record.

Records are stored according to primary key value. Records are
retrieved according to primary key value or record position.

Records are stored randomly according to the hashed value of a
primary key. Records are retrieved according to primary key value
or record position.

Omission for a new file causes SEQUENTIAL to be used. Omission for an old file causes the
preserved value to be used.

10-10 Migration From NOS to NOS/VE Revision F

FILE_PROCESSOR (FP)

The FILE PROCESSOR attribute specifies the name of the processor for the file. This attribute
qualifie; the FILE CONTENTS attribute and is used by NOS/VE to verify correct usage of the file.
(Preserved attribute)

FILE PROCESSOR can be set to the following values:

ADA ADA compiler

APL APL compiler

ASSEMBLER NOS/VE assembler

BASIC BASIC compiler

C C compiler

COBOL COBOL compiler

. CYBIL CYBIL compiler

DEBUGGER Debug utility

FORTRAN FORTRAN compiler

PASCAL Pascal compiler

PL1 PL1 compiler

PPU ASSEMBLER NOS PP assembler

PROLOG PROLOG compiler

SCL System Command Language interpreter

SCU Source Code Utility text

UNKNOWN Processor is unknown

VX File processor associated with VX/VE

Omission for a new file causes UNKNOWN to be used. Omission for an old file causes the preserved
value to be used.

FILE_STRUCTURE (FS)

The FILE_STRUCTURE attribute specifies the structure of the file. This attribute qualifies the
FILE CONTENTS and FILE PROCESSOR attributes and is used by NOS/VE to verify correct usage of the
file:- -

The valid options for FILE STRUCTURE include:

UNKNOWN Structure of the file is unknown

DATA Data file

LIBRARY Library file

Omission for a new file causes UNKNOWN to be used. Omission for an old file causes the preserved
value to be used.

Revision F File Interface Introduction 10-110

I

I

The HASHING PROCEDURE NAME attribute specifies the name of a hashing procedure to be used for a
direct acce~s file. The default procedure is the one provided by the operating system
(AMP$SYSTEM_HASHING_PROCEDURE).

The INDEX_PADDING attribute specifies the percentage of empty space the file interface must leave
in each index block when an indexed sequential file is created. This attribute applies only to
indexed sequential files. (Preserved attribute)

INDEX PADDING can be set to a value from 0 through 99.

Omission for a new indexed sequential file causes 0 (no padding) to be used.

The INITIAL HOME BLOCK COUNT attribute specifies the number of home blocks created when the file
is created.- It ;ust b; a value in the range 1 through (2**42)-1. This attribute must be
specified when creating a direct access file.

INTERNAL_CODE (IC)

The INTERNAL CODE attribute specifies the internal code used to represent data in the file.
(Preserved attribute)

INTERNAL CODE can be set to the following values:

A6

A8

ASCII

D63

D64

NOS 6/12-bit display code, which results from using ASCII mode on NOS (ASCII
128-character set)

NOS 12-bit ASCII code (ASCII 128-character set)

NOS/VE 7-bit ASCII code (ASCII 128-character set)

NOS 6-bit ASCII display (CDC 63-character set)

NOS 6-bit display code (CDC 64-character set)

Omission for a new file causes ASCII to be used. Omission for an old file causes the preserved
value to be used.

KEY_LENGTH (KL)

The KEY_LENGTH attribute specifies the 'length of the primary key being defined for the new
indexed sequential or direct access file. You must set KEY LENGTH before a new file can be

I opened. (Preserved attribute)

I

KEY LENGTH can be set from 1 to 255. For files with embedded keys, the value of KEY LENGTH
cannot be greater than the value of MINIMUM_RECORD_LENGTH.

There is no default; you must set KEY LENGTH when creating an indexed sequential file.

10-12 Migration From NOS to NOS/VE Revision F

KEY_POSITION (KP)

The KEY POSITION attribute specifies the byte offset into each record where the primary key
begins. KEY POSITION is ignored for indexed sequential or direct access files with nonembedded
keys. This attribute applies only to indexed sequential and direct access files. (Preserved
attribute)

KEY POSITION can be set to a value from zero to MAXIMUM RECORD LENGlH; however, KEY POSITION +
KEY=LENGTH must be less than or equal to the value of MINIMUM RECORD LENGTH. (The value of
KEY POSITION + 1 defines the first character of the key. For-exampl;, if KEY_POSITION equals
three, the key begins with the fourth character of the record.) The absolute maximum value for
KEY_POSITION is 65,535.

Omission for a new indexed sequential and direct access ·file causes zero to be used.

KEY_TYPE (KT)

The KEY TYPE attribute specifies the type of the primary key being defined for a new indexed
sequentIal file. The KEY_TYPE attribute value for direct-access files is always UNCOLLATED. I
(Preserved attribute)

KEY TYPE can be set to one of the following three values:

UNCOLLATED (UC)

INTEGER (I)

COLLATED (C)

The key is a string of alphanumeric characters. Uncollated keys are
compared using the ASCII collating sequence.

The key is an integer from 1 to 8 bytes long. Integer keys are compared
as signed integers.

The key is a string of alphanumeric characters. Collated keys are
compared using a user-supplied collation table. If you specify this type
of key, you must supply a collation table. Severa! predefined tables are
available. See information about predefined collation tables in chapter
11, General Facilities for Migrating Files. I

Omission for a new indexed sequential or direct access file causes UNCOLLATED to be used.
Omission for an old indexed sequential or direct access file causes the preserved value to be
used.

LOCK_EXPIRATION_TIME (LET)

The LOCK_EXPIRATION_TIME attribute specifies the number of milliseconds between the time a lock
is granted and the time that it could expire. It must be an integer in the range 0 through
604,800,000 (one week). The default is 60,000 milliseconds. (Preserved attribute) I

The MAXIMUM BLOCK LENGTH attribute specifies the maximum length (from 0 to 65,497) in bytes of a
block in a file. -This attribute is ignored when system-specified blocking is requested.
(Preserved attribute)

For keyed files, block length is set at creation time and does not change thereafter. If
MAXIMUM BLOCK LENGTH is specified at creation time, the actual block length is the nearest higher
number Tn the-list 2,048, 4,096, 8,192, 16,384, 32,768, 65,536.

MAXIMUM_BLOCK_LENGTH for a tape file is 4,128 bytes.

Revision F File Interface Introduction 10-13

I Records are packed into blocks according to ANSI 1978 standards. For disk files, transfers
between central memory and the device are in multiples of one or more blocks. For a tape file,
MAXIMUM_BLOCK_LENGTH determines the size of the physical record written to a tape volume.

I Omission for a new file causes 4,128 bytes to be used.
preserved value to be used.

Omission for an old file causes the

MAXIMUM_RECORD_LENGTH (MAXRL)

The MAXIMUM RECORD LENGTH attribute specifies the maximum length in bytes of a record in the
file. (Preserved attribute)

The MAXIMUM RECORD LENGTH attribute is used only for sequential and byte addressable files
containing fixed length records (ANSI-fixed), and for all indexed sequential files.

MAXIMUM_RECORD_LENGTH can be set to a value between 1 and 2**42 -1 bytes.

Omission for a new sequential or byte addressable file causes 256 to be used. Omission for an
old sequential or byte addressable file causes the preserved value to be used. Omission for a
new indexed sequential or direct access file causes an error to occur because
MAXIMUM RECORD LENGTH must be set before an indexed sequential or direct access file can be
created~ Omis;ion for an old indexed sequential or direct access file causes the preserved value
to be used.

MESSAGE_CONTROL (MC)

The MESSAGE CONTROL attribute controls the listing of trivial error messages, statistics, and
informative-messages on the $ERRORS file (fatal error messages are always logged). This

I attribute applies only to indexed sequential or direct access files. (Temporary attribute) You
set the MESSAGE_CONTROL attribute with the ATTACH_FILE command.

MESSAGE CONTROL can be a set of the following values:

TRIVIAL ERRORS (T)

MESSAGES (M)

STATISTICS (S)

NONE (N)

Trivial error messages are logged.

Informative messages are logged.

Statistical messages are logged.

Only fatal error messages are logged.

Omission for a new indexed sequential or direct access file causes NONE to be used.

OPEN_POSITION (OP)

The OPEN POSITION attribute specifies the positioning to occur when the file is opened.
I (Tempora~y attribute) You set the OPEN POSITION attribute with the ATTACH FILE command.

$BOI

$ASIS

$EOI

File is opened at beginning-of-information.

File is opened with no positioning.

File is opened at end-of-information.

I
If the OPEN POSITION for a file is specified using both the file reference and the ATTACH FILE
command, the value specified in the ATTACH FILE command is used.

Omission for a file causes the value specified by a file reference to be used. Omission from
both the ATTACH FILE command and the file reference causes $EOI to be used for the OUTPUT file
and $BOI to be used for all other files.

10-14 Migration From NOS to NOS/VE Revision F

PADDING_CHARACTER (PC)

The PADDING CHARACTER attribute specifies the padding character used to pad short ANSI-fixed
records to the MAXIMUM_RECORD_LENGTH defined for the file. (Preserved attribute)

Omission for a new file causes the space character to be used. Omission for an old file causes
the preserved value to be used.

PAGE_FORMAT (PF)

The PAGE FORMAT attribute specifies the frequency and separation of titling in a legible file.
The attribute is used only by the file access routines if the file is associated with a I
terminal. It is used by other services to prepare files for printing. (Preserved attribute)

PAGE FORMAT can be set to the following values:

CONTINUOUS Title appears once at the beginning of the file.

BURSTABLE Title and page number appear at the top of each page of the file.

NON BURSTABLE Title and page number separated from other data by a triple space rather
than by forcing top of form as in the burstable selection.

Omission for a new terminal file causes CONTINUOUS to be used. Omission for a new nonterminal
file causes BURSTABLE to be used. Omission for an old file causes the preserved value to be used.

PAGE_LENGTH (PL)

The PAGE LENGTH attribute specifies the number of lines to be written on a printed page. The
attribut; is used only by the file access routines if the file is associated with a terminal. I
Also, the attribute is used by other services to prepare files for printing. (Preserved
attribute)

Omission for a new file causes 60 lines per printed page to be used. Omission for an old file
causes the preserved value to be used.

PAGE_WIDTH (PW)

The PAGE WIDTH attribute specifies the number of characters to be written on a printed line. The
attribute is used only by the file access routines if the file is associated with a terminal. I
Also, the attribute is used by other services to prepare files for printing. (Preserved
attribute)

Omission for a new file causes the value of the PAGE WIDTH terminal attribute to be used for a I
terminal file and 132 characters per printed line to-be used for a nonterminal file.

RECORD_TYPE (RT)

The RECORD TYPE attribute specifies the type of record in the file. (Preserved attribute)

RECORD TYPE can be set to the following values:

VARIABLE (V)

FIXED (F)

UNDEFINED (U)

Revision F

CDC-variable

ANSI-fixed

Undefined

File Interface Introduction 10-15

I
Normally a file is of the kin~ that is accessed at the record level. Such a file is called a
record access file. If you omit the RECORD TYPE attribute for a new record access file, the
VARIABLE value is used. Omission of the RECORD TYPE attribute for the other kinds of new disk
files causes UNDEFINED to be used. Omission for an old file causes the preserved value to be
used.

For more information about these record types, see the discussion about NOS/VE record types near
the beginning of this chapter.

File Attribute Defaults Used by FORTRAN Programs

The following paragraphs describe the structure of the files read and written by FORTRAN. All
files read and written by FORTRAN input/output statements, as well as the files read and written
by the FORTRAN compiler, are processed through internal file interface routines.

Execution-Time Input/Output

All input and output between a file referenced in a program and the external storage device is
under control of the internal file interface routines. These routines encompass sequential,

I indexed sequential, direct access, and byte addressable file organizations.

Each NOS/VE file is described by an internally maintained table of file attributes. File
processing is governed by values the FORTRAN compiler places in this table. Some of the values
of the file attributes are permanent for the life of the file; others can be changed by a

I SET FILE ATTRIBUTES command, a CHANGE FILE ATTRIBUTES command, or by parameters in the PROGRAM
and-OPEN-statements.

More details about the files FORTRAN uses is given in the following topics:

File and record definitions

File structure

Defaults for file attributes

Overriding FORTRAN defaults

Sequential I/O

FORTRAN direct access I/O

File and Record Definitions

A file is a collection of records. It is the largest collection of information that can be
referenced by a file name. A file begins at beginning-of-information and ends at
end-of-information. A record is a contiguous group of bytes within a file and is read ,or written
as a single unit. A record is read or written by:

One execution of an unformatted READ or WRITE statement.

A formatted, list directed, or namelist READ or WRITE statement. (A single execution of
these statements can transmit more than one record.)

One call to READMS or WRITMS.

One execution of a BUFFER IN or BUFFER OUT.

10-16 Migration From NOS to NOS/VE Revision F

The record types are:

V CDC-variable length records

F ANSI-fixed length records

U Undefined length records

FORTRAN uses the V and F record types.

File Structure

FORTRAN sets certain file attributes, depending on the nature of the input/output operation and
its associated file structure. Most file attributes are preserved for the life of a file. After
a file is created (that is, after the file is opened for the first time), the preserved file
attributes that define the structure of the file cannot be changed. The file attributes for the
various types of FORTRAN input/output are shown in tables that follow. The attributes that can
be overridden by a SET FILE ATTRIBUTES (SETFA) command or CHANGE FILE ATTRIBUTES (CHAFA) command I
prior to file creation-are indicated by two crosses. The attributes that can be overridden prior
to any open of the file are indicated by one cross. Files connected to $INPUT or $OUTPUT retain
the attributes of $INPUT or $OUTPUT regardless of SETFA or CHAFA specifications.

Tables 10-4 and 10-5 provide more information about the defaults for file attributes for files
involved in formatted sequential I/O, mass storage I/O, unformatted sequential I/O, FORTRAN
direct access I/O, and buffer I/O.

Table 10-4. Defaults for File Attributes for Formatted and Unformatted Sequential I/O

File Attribute Formatted Sequential I/O Unformatted Sequential I/O

===

MAXIMUM RECORD LENGTH

OPEN POSITION

ACCESS MODE

FILE ORGANIZATION

RECORD TYPE

PADDING CHARACTER

PAGE WIDTH

tcan be overridden by

RECL= in OPEN statement

$ASISt

R/W/A/Mt

SQ

vtt
not applicable

132 characters (nonconnected file)tt

Value of the PAGE WIDTH terminal attribute
(connected file)

SET FILE ATTRIBUTES command - - prior to any open

RECL= in OPEN statement

$ASISt

R/W/A/Mt

SQ

vtt
not applicable

not applicable

not applicable

ttCan be overridden by SET FILE ATTRIBUTES command prior to file creation - -
$ASIS Current file position
R/W/A/M READ/WRITE/APPEND/MODIFY
SQ, BA Sequential, Byte addressable
V, F, U Variable-length, Fixed-length, Undefined

Revision F File Interface Introduction 10-17

I

I Table 10-5. Defaults for Fil~ Attributes .for Buffer, Mass Storage, and FORTRAN Direct Access I/O

File Attribute Buffer I/O Mass Storage I/O Direct Access I/O

===

MAXIMUM RECORD LENGTH not applicable not applicable RECL= in OPEN statement - -
I OPEN POSITION $ASISt not applicable not applicable

ACCESS MODE R/W/A/Mt R/W/A/Mt R/W/A/Mt

FILE ORGANIZATION SQ BA BA

RECORD TYPE vtt U F

PADDING CHARACTER not applicable not applicable blanktt

PAGE WIDTH not applicable not applicable not applicable

I tCan be overridden by SET FILE ATTRIBUTES command prior to any open
ttCan be overridden by SET FILE ATTRIBUTES command prior to file creation - -
$ASIS Current file position
R/W/A/M READ/WRITE/APPEND/MODIFY
SQ, BA Sequential, byte addressable
V, F, U Variable-length, fixed-length, undefined

Overriding FORTRAN Default Values

I The SET FILE ATTRIBUTES command provides a means of overriding file attributes compiled into a
program~ and-consequently, a means to change processing normally supplied for FORTRAN
input/output. In particular, this command enables you to read or create a file with attributes
that are different from those supplied by default.

I The file attributes specified on a SET FILE ATTRIBUTES command are established when a file is
created (that is, the first time it is-open;d).

I SET_FILE_ATTRIBUTES Example for FORTRAN

The following program opens and writes a file named AFILE:

PROGRAM ABC
OPEN (FILE='AFILE', UNIT=I)
WRITE (1,100) A, B, C

10-18 Migration From NOS to NOS/VE Revision F

(

The following SET FILE ATTRIBUTES command, specified before the program is executed, overrides
the default maximum record length of 150 characters:

/set_file_attributes file=afile maximum_record_length=100

A MAXIMUM RECORD LENGTH specification in a SET_FlLE_ATTRIBUTES command prior to program execution
takes precedence-over a record length specification in an OPEN or PROGRAM statement. For FORTRAN
direct access files, if MAXIMUM RECORD LENGTH is specified in a SET FILE ATTRIBUTES command prior
to execution, and if an OPEN st~tement-specifies a different record-length, a fatal error is
issued.

For more information about the SET FILE ATTRIBUTES command see the discussion of the command in
chapter 4, Common Commands. For more information about the individual file attributes (specified
in the SET_FILE_ATTRIBUTES command), see the discussion of file attributes earlier in this
chapter.

Sequential Input/Output

The sequential READ and WRITE statements, namelist I/O statements, list directed I/O statements,
and buffer I/O statements process sequential files with V type records. The record type can be
overridden by a SET_FILE_ATTRIBUTES command before execution. I
The BACKSPACE, REWIND, and ENDFILE operations are valid only for sequential files with V type
records. BACKSPACE skips backward (toward beginning-of-information) one record. (The file is
positioned before the record just read or written.) REWIND positions a file at
beginning-of-information. ENDFILE writes an end-of-partition boundary.

When an end-of-partition is encountered during a read, the ERR= specifier and EOF function return
end-of-file status. If the end-of-partition does not coincide with end-of-information, you can
continue reading the same file until the end-of-information is encountered.

For F and U type records, the EOF and UNIT functions return end-of-file status only at
end-of-information.

FORTRAN Direct Access Input/Output

Direct access input/output statements process byte addressable files with F type records. F is
the only record type permitted for direct access input/output.

The file positioning statements (BACKSPACE, REWIND, and ENDFILE) cannot be used with FORTRAN I
direct access files.

Compile-Time Input/Output

The FORTRAN compiler reads a source input file and produces up to three output files: a binary
object file, an output listing file, and an error listing file. The compiler expects the input
source file to have a certain structure, and it produces output files that have specific
structures. Table 10-6 describes the attributes of the compiler input and output files.

Revision F File Interface Introduction 10-19

Table 10-6. Compile-Time Fi~e Structure

--

File Attribute
Source
Input File

Compiler Output
. Listing File

Binary
Error File Obj ect File

==

FILE ORGANIZATION SQ SQ SQ SQ

FILE STRUCTURE DATAt DATAt DATAt DATA

FILE CONTENTS LEGIBLEt LEGIBLEt (Interactive) LISTt OBJECT
LIST (Batch)

RECORD TYPE vt vt vt V

I tCan be overridden by SET_FILE_ATTRIBUTES command prior to file creation

SQ Sequential
V Variable-length

File Attribute Defaults Used by COBOL Programs
All COBOL file input/output requests are implemented by file interface routines. Before opening
a file, the compiler generates information about the file and passes the information to the
operating system.

All the file attributes needed to process the file are set automatically based on source code.
This section outlines how the source code and setting of file attributes are related.

File Attributes and Associated COBOL Source Code

Source code statements set certain file attributes. Table 10-7 lists the COBOL statements and
associated attributes. For detailed information about setting file attributes from COBOL source
code, see the COBOL for NOS/VE Usage manual.

10-20 Migration From NOS to NOS/VE Revision F

Table 10-7. File Attribute and Associated COBOL Source Code

File Attribute COBOL Source Code That Sets the Attribute

===

ACCESS MODE

BLOCK TYPE

CHARACTER CONVERSION

EMBEDDED KEY

FILE CONTENTS

FILE_ORGANIZATION

FILE PROCESSOR

FILE STRUCTURE

INTERNAL CODE

KEY LENGTH

KEY POSITION

KEY TYPE

MAXIMUM BLOCK LENGTH

MAXIMUM RECORD LENGTH

MINIMUM RECORD LENGTH

OPEN POSITION

PAGE LENGTH

PAGE WIDTH

RECORD TYPE

Special Cases

OPEN phrase (can depend on ATTACH_FILE command)

File on tape, LABEL RECORDS STANDARD, and BLOCK CONTAINS

ALPHABET and CODE-SET

RECORD KEY

WRITE ADVANCING REPORTS

ORGANIZATION clause

Always set to COBOL

See FILE CONTENTS

ALPHABET and CODE-SET

PICTURE clause for key and USAGE

Location of key

Class and USAGE

BLOCK CONTAINS and LABEL RECORDS and Record Descriptions

RECORD CONTAINS or Record Descriptions

RECORD CONTAINS or Record Descriptions

OPEN phrase

LINAGE or Report Writer clauses

Record Description Entries (Report Writer, Linage, or PRINTF=YES
files only)

RECORD clause or Record Descriptions

In most cases, setting file attributes from source code is straightforward. However, 'you should
be careful of the defaults that result from the following four clauses:

BLOCK CONTAINS clause

CODE-SET clause

LINAGE clause

RECORD clause

Revision F File Interface Introduction 10-21 I

BLOCK CONTAINS Clause

If you specify the BLOCK CONTAINS clause for a sequential file that is a standard system file
(the implementor-name begins with a $), the clause is ignored and BLOCK TYPE (BT) is set to
SYSTEM SPECIFIED.

If you specify the BLOCK CONTAINS clause for a sequential file that is not a standard system
file, BLOCK TYPE (BT) is set to USER SPECIFIED.

CODE-SET Clause

If you specify CODE-SET for a sequential file, INTERNAL CODE (IC) is set to the alphabet-name
specified in the ALPHABET and CODE-SET clause, and CHARACTER CONVERSION (CC) is set to TRUE.

UNAGE Clause

If you specify the LINAGE clause, FILE_CONTENTS, FILE_STRUCTURE, PAGE_FORMAT, and PAGE LENGTH are
set as follows:

FILE CONTENTS (FC) is set to LIST.

FILE_STRUCTURE (FS) is set to DATA.

PAGE FORMAT (PF) is set to CONTINUOUS if LINES AT TOP or LINES AT BOTTOM is specified;
otherwise PAGE FORMAT (PF) is set to BURSTABLE.

PAGE LENGTH is set to integer-lor the value of data-name-l.

RECORD Clause

If you specify the RECORD clause for a byte addressable file, RECORD TYPE is set to U type
records.

If you specify the RECORD clause for a relative file, RECORD TYPE is set to U type records;
however, the records are processed as fixed length records.

If you specify the RECORD clause for a sequential file that is a standard system file
(implementor-name begins with $), RECORD_TYPE is set to V type records.

If you specify the RECORD clause for a sequential file that is not a standard system file or for
an indexed sequential or direct access file, RECORD TYPE is set to V or F type records as follows:

RECORD TYPE is set to V type records, if any of the following conditions are true:

The RECORD CONTAINS ••• DEPENDING ON phrase is specified in the FD.

PRINT FILE = TRUE is specified in the USE clause.

TRUNCATE_SPACES is specified in the USE clause.

RECORD TYPE is set to F type records if none of the above conditions are true.

I 10-22 Migration From NOS to NOS/VE Revision F

General Facilities. for Migrating Files

Overview

GET FILE (GETF) and REPLACE_FILE (REPF) •••

seu Conversion Commands •••••••••••••••••••••••••••••••.••••••••••• ~ •••••••••••••••••••••••

The Permanent File Transfer Facility (PTF) ••
Transferring Files From NOS to NOS/VE By Using MFLINK on NOS ••••••••••••••••••••••••••
Transferring Files From NOS/VE to NOS By Using MFLINK on NOS ••••••••••••••••••••••••••

File Management Utility (FMU) •••
FMU Overview ••.•••••••••••••••

l~ha t Can FMU Do? ••
What Files Can FMU Handle? ••
How Does FMU Work? ••
How Does FMU Handle NOS Files? ••
How Can I Use This Discussion of FMU? •••

FMU Command Copy ••
Using the FMU Command Copy to Create an Indexed Sequential File •••••••••••••••••••
FMU Command Copy Format •••

FMU Directive File •...•...•..•.•.....•..•.•....•....•....••..••..••.........•........•
SET_INPUT_ATTRIBUTES Directive ••
SET OUTPUT ATTRIBUTES Directive •••
CREATE OUTPUT RECORD Directive ••

Sample Binary File Description With CREATE_OUTPUT_RECORD ••••••••••••••••••••••••••
Assignment Statements and Field Descriptors •••••••••••••••••••••••••••••••••••••••
Assignment Statement for a Double Precision Item ••••••••••••••••••••••••••••••••••
CREATE_OUT PUT_RECORD (CREOR) Format •••
FMU Data Types for FORTRAN and COBOL ••
Character Data Conversion •••

Migrating COBOL Records ••.••••
FMU Command Format With Directive File ••
Example Migrating a Simple NOS Indexed Sequential File to NOS/VE ••••••••••••••••••••••

Describing the Sample Files •••
Commands in the Job Stream ••
Procedure ISCONVT and Execution Output ••

Example Migrating a Simple NOS/VE IS File to NOS ••••••••••••••••••••••••••••••••••••••
Example of Migrating a Binary Data File With FMU From NOS to NOS/VE •••••••••••••••••••

Sample FMU Job Migration Binfile ••
NOS/VE FORTRAN Program That Reads the Migrated File •••••••••••••••••••••••••••••••

Predefined Collation Tables •••
Considerations ••

Quick Comparison ••
Concepts for Variants of·Common Sequences •••

Strict Variant ••
Folded Variant ••••••••••••••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••

Specifying File Collating Sequence ••
Examples of Specifying a Collation Table ••

NOS Indexed Sequential File to Migrate ••
Creating a 7-Bit ASCII Sequenced File With FMU ••••••••••••••••••••••••••••••••••••
Creating a COBOL6-Folded File With FMU ••
Creating a COBOL6 Folded File With FORTRAN ••

11

11-1

11-2

11-3

11-3
11-3
11-4

11-5
11-5
11-5
11-6
11-6
11-7
11-8
11-8
11-9
11-10
11-10
11-10
11-11
11-11
11-12
11-13
11-13
11-14
11-14
11-16

11-18
11-20
11-21
11-21
11-22
11-23
11-24
11-26
11-27
11-28

11-29
11-29
11-30
11-30
11-30
11-30
11-31
11-32
11-32
11-32
11-33
11-34

General Facilities for Migrating Files 11

Migrating files from NOS to NOS/VE requires converting files from a NOS format to a NOS/VE format
and transferring from NOS to NOS/VE, or vice versa. Both program files and data files require
migration.

First this discussion provides an overview of the NOS/VE file migration facilities. Then the
discussion presents the following facilities:

GET_FILE (GETF) and REPLACE_FILE (REPF) commands

Transfers data files from NOS to NOS/VE, or vice versa.

seu conversion commands

Migrates Update and Modify source library files.

The permanent file transfer facility

Transfers character data files from NOS to NOS/VE and vice versa.

File Management Utility

Migrates and converts files.

Predefined Collation Tables

Specifies user-selected collating sequence for indexed sequential files.

Overview

Migrating text files is handled easily with the GET FILE (GETF) and REPLACE FILE (REPF) commands
and with the permanent file transfer facility (PTF)7 Use GET_FILE, REPLACE-FILE, and the
permanent file transfer facility with text files only. Using these migration methods on other
kinds of files can produce undesired results.

GET_FILE converts and transfers files from NOS to NOS/VE; REPLACE FILE does the reverse
operation. The text files can be either data or program source code. However, on NOS, the files
must be sequential with block type C and record type Z (for zero-byte). Files created with a
text editor, COBOL DISPLAY statement, or FORTRAN PRINT or formatted WRITE statements are of this
type. The following diagram shows using the GET_FILE command.

+---------------+
NOS Text

File

+---------------+

-------)
+---------------+

GET FILE -------)

+---------------+

+---------------+
NOS/VE Text

File

+---------------+

I

I

The permanent file transfer facility (PTF) allows you to initiate a job on a local system to I
access a file on a remote system. In particular, PTF enables NOS/VE systems to transfer
character data files to NOS systems and vice versa.

Revision F General Facilities for Migrating Files 11-1

To transfer files the following criteria must be met:

The local system and the remote system must be connected via CDCNET.

Both systems must support PTF.

You must provide appropriate user validation information and commands on both systems.

Transferring program source code is the only way to migrate programs from NOS to NOS/VE. No
object code generated to run on NOS will run on NOS/VE. To migrate programs, follow the

I

migration methods for converting the program source code (see chapter 13, Approaching COBOL and
FORTRAN Program Migration). Either develop the source code on NOS and transfer your file to
NOS/VE using the GET FILE command or the permanent file transfer facility, or develop your source
code on NOS/VE by using the SCL file editor. Transfer the Update or Modify source library files
by using the NOS/VE Source Code Utility (SCU) conversion commands.

Binary data files or character data files in formats other than the sequential CZ format can be
transferred to NOS/VE in several ways.

First, you could write a program to convert the file to character data in CZ format. Specifying
the following FILE command and including it in the command stream prior to program execution
deSignates a CZ file:

FILE,lfn,BT=C,RT=Z,FL=length <-- lfn is local file name.

D Then transfer the sequential CZ file to NOS/VE with the GET FILE command and recreate your file
in NOS/VE format with a program that reads the character data and writes another file in the
appropriate format. However, this way requires lots of coding and a number of steps.

Secondly, you can use the File Management Utility (FMU) to convert and transfer your files from
NOS to NOS/VE. You use FMU from the NOS/VE state, issue interstate commands to attach and
describe your NOS file, and issue NOS/VE commands to convert and transfer your file to NOS/VE.

Alternately, for files read by FORTRAN, you could migrate the files by using the FORTRAN File
Migration Aid (FMA) in the input/output type is supported. FORTRAN FMA migrates a file as it is
read by a NOS/VE FORTRAN program. FMA supports several kinds of FORTRAN input/output. See

I chapter 12 for the description of FORTRAN FMA.

GET_FILE (GETF) and REPLACE_FILE (REPF)

The NOS/VE command GET FILE transfers a copy of a NOS permanent file (direct or indirect access)
to NOS/VE and converts-it to NOS/VE format. The file can be a text or binary file; however, the

B GET FILE discussion shows transerring only text files. On NOS, the text files must have Z-type
(ze~o-byte) records. (Files created by text editors have Z-type records.)

The NOS/VE command REPLACE FILE transfers a file from NOS/VE to a NOS direct or indirect access

I
permanent file. If the file exists, REPLACE FILE rewrites the file. If the file does not exist,
REPLACE FILE performs a DEFINE operation. REPLACE FILE can handle either a text or binary file;
however~ the REPLACE_FILE discussion shows transfe~ring only text files.

See chapter 4, Common NOS/VE Commands, for more information about using these commands.

11-2 Migration From NOS to NOS/VE Revision F

SCU Conversion Commands
NOS/VE provides commands to directly convert Update and Modify source libraries to Source Code
Utility (SCU) library format. The commands are CONVE~T_UPDATE_TO_SCU (CONUTS) and
CONVERT_MODIFY_TO_SCU (CONMTS).

To convert an Update or Modify library to SCU format, you would first transfer the file from NOS
to NOS/VE using the GET FILE command. The GET FILE command must specify the DATA CONVERSION (DC)
parameter value DC=B60 Twhich specifies a binary transfer that places each 60-bit-NOS word in the
right most bits of each 64-bit NOS/VE word). You then enter the appropriate conversion command
to convert the library. For example, the following commands convert the Update library file
OLDPL to an SCU library on file BASE. (OLDPL is the default Update library name.)

/get_file to=oldpl data conversion=b60
/convert_update_to_scu result=base

For details on the limitations of the conversion process, see the SCL Source Code Management
Usage manual.

The Permanent File Transfer Facility (PTF)
The permanent file transfer facility consists of two partner applications: the permanent file
client application and the permanent file server application. They are on the local system and
the remote system, respectively. The remote system application is called the server application
because you direct it through the client application.

When NOS is the local system, PTF uses the MFLINK control statement to transfer permanent files.
MFLINK must send instructions, called permanent file server directives, to the remote system to
tell it what to do for the file transfer. The directives are statements/commands in the language
of the remote operating system. For example, permanent file server directives for a remote
NOS/VE system are SCL commands.

The following is a commonly used format of MFLINK:

MFLINK,lfn,ST=lid

The lfn parameter is the name of the NOS temporary file to be used in the file transfer.

The lid parameter is the logical identifier of the remote system. Obtain this identifier
from your site administrator.

This format tells NOS that the permanent file server directives for the remote system are
on the lines immediately following the MFLINK control statement.

The Remote Host Facility Usage manual gives the complete MFLINK format and shows how to use
MFLINK to perform a variety of remote file accesses.

Transferring Files From NOS to NOSjVE By Using MFLINK on NOS

To transfer a NOS file on one mainframe to a NOS/VE file on another mainframe, you first log into
the NOS system, the local system. Next, enter the MFLINK control statement on NOS. Finally,
enter the permanent file server directives for NOS/VE, the remote system. These directives must
include a NOS/VE login and the SCL RECEIVE FILE command. The RECEIVE FILE command causes a file
in the remote NOS/VE system to accept a file sent from another syste~ In particular, you use
the RECEIVE_FILE command to send a file from your local NOS system on one mainframe to the remote
NOS/VE system on another mainframe.

Revision F General Facilities for Migrating Files 11-3.

The SCL System Interface Usage manual fully describes RECEIVE FILE. A commonly used format for
RECEIVE FILE follows:

RECEIVE FILE or
RECF

FILE=file

The FILE or F parameter specifies the name of the file on the remote system that is to
receive the file from your local system. This file must bea permanent file residing on
the remote system.

The following example transfers temporary file AFILE in the local NOS system to permanent file
$USER.TEXT_COPY in a remote NOS/VE system. In the example, $USER.TEXT_COPY has to be created.

MFLINK,AFILE,ST=FM2

AFILE names the NOS temporary file to be transferred. The remote NOS/VE system has
logical identifier FM2.

*LOGIN USER=USER2 PW=PASSWD2 FN=FM2

Log in for the remote NOS/VE system with user name USER2, password PASSWD2, and family
name FM2.

The * is the NOS prompt for the permanent file server directives.

*CREATE FILE FILE=$USER.TEXT_COPY

Explicitly creates the permanent NOS/VE file $USER.TEXT_COPY to receive AFILE.

*RECEIVE FILE FILE=$USER.TEXT_COPY

Causes $USER.TEXT_COPY in the remote NOS/VE system to receive AFILE from the local NOS
syste~.

* (Carriage return)

Indicates end of the permanent file server directives.

Transferring Files From NOS/VE to NOS By Using MFLINK on NOS

To transfer a NOS/VE file on one mainframe to a NOS file on another mainframe, you first log into
the NOS system, the local system. Next, enter the MFLINK control statement on NOS. Finally,
enter the permanent file server directives for NOS/VE, the remote system. These directives must
include a NOS/VE login and the SCL SEND FILE command. The SEND FILE command sends a file from a
NOS/VE system to another system. You use the SEND FILE command-to send a file from your remote
NOS/VE system on one mainframe to the local NOS sy;tem on another mainframe.

The SCL System Interface Usage manual fully describes SEND FILE. A commonly used format for
SEND FILE follows:

SEND FILE or
SENF

FILE=file

The FILE or F parameter specifies the name of the file on the remote system that is to be
sent to your local system. This file must be a permanent file residing on the remote
system.

811-4 Migration From NOS to NOS/VE Revision F

The following example transfers permanent file $USER.PE~NOS on the remote NOS/VE system to
temporary file LOCOPY on the 'NOS local system.

MFLINK.LOCOPY.ST=SUN

LOCOPY names the NOS temporary file to receive the file from the remote system. The
remote NOS/VE system has logical identifier SUN.

*LOGIN USER=USERA PW=BLUE FN=SKY

Log in for the remote NOS/VE system with user name USERA. password BLUE. and family name
SKY.

The * is the NOS prompt for the permanent file server directives.

*COPF I=.USERB.STARS O=$USER.PERM_NOS

Creates permanent file $USER.PERM_NOS from USERB's permanent file STARS.

*SEND FILE FILE=$USER.PERM_NOS

Sends $USER.PERM NOS from the remote NOS/VE system to temporary file LOCOPY in the local
NOS system. -

* (Carriage return)

Indicates end of the permanent file server directives.

File Management Utility (FMU)

The File Management Utility (FMU) of NOS/VE provides comprehensive capabilities for converting
and transferring files from NOS to NOS/VE. and vice versa. FMU can also convert NOS/VE files
from one NOS/VE format to another.

FMU Overview

The following questions about FMU and answers provide a quick introduction to the utility. its
functions and capabilities.

What Can FMI!J Do?

FMU can perform the following operations for you:

Copy files.

Convert files from one file organization to another.

Migrate files between the NOS and NOS/VE sides of a dual state system.

Migrate NOS tape files to NOS/VE. either through an interstate connection or from a NOS/VE
tape drive.

Select records from the input file to have specified data conversions performed.

Reformat records by performing the following operations: reorder data fields. convert from
one data type to another. insert literals. suppress zeros or blanks, pack or expand data, and
truncate data.

Place a sequence number in each record.

Format a file for printing.

Revision F General Facilities for Migrating Files 11-5

I

What Files Can FMU Handle?

FMU can migrate sequential, indexed sequential, and direct access files.

If you need to migrate files of other organizations, consider the following suggestions:

Remember that you can process in dual state on your CYBER. That is, you can use either NOS
or NOS/VE. You probably do not have to migrate all applications immediately because both
systems are available. Migrate the easiest ones first.

NOS files with actual key file organization (FO=AK in the FILE command) can be converted with
the NOS utility FORM to a NOS indexed sequential file. The file can be migrated as an
indexed sequential file. See the FORM reference manual for information about the utility.

NOS word addressable file.

If the file has fixed length records (record type F) and each record begins on a word
boundary, the file can be migrated as a sequential file with FMU. You would specify
FO~SQ (FILE_ORGANIZATION = SEQUENTIAL) for the description of the file.

If the word addressable file does not meet the requirements above, it could be converted
with FORM to a NOS sequential file and migrated as a sequential file.

NOS/VE byte addressable files are not specifically handled by FMUj however, they can be
processed as sequential files. (See the SCL Advanced File Management Usage manual for
details.)

You can also use FMU to migrate NOS tape files on NOS/VE tape drives to NOS/VE. Migrating tape
files on NOS/VE tape drives is nearly identical to migrating other files, with the following
exceptions:

Before calling FMU, you must create a tape request. You do this with the CREATE_170~QUEST
command.

You specify the attributes of the file to be migrated on the CREATE_170_REQUEST command
instead of a FILE statement.

I
-Also before calling FMU, you must specify certain file attributes for the output NOS/VE file.

The FMU techniques described in the rest of this chapter apply to both disk and tape files.
Refer to Migrating Tape Files in chapter 12 for information specific to tape files.

How Does FMU Work?

FMU works by your providing file descriptions of the file to be converted (called the input file)
and file descriptions of the converted file (called the output file). FMU uses your descriptions
in converting and writing the new file. The process is shown in the following diagram:

+---------------+
Input
File

+---------------+

+-------------+
Input File
Description

+----------+--+
~

+-------------+
Output File
Description

+-+-----------+
.~

+---------------+ +---------------+
-------) FMU

+---------------+

-------) Output
File

+---------------+

11-6 Migration From NOS to NOS/VE Revision F

In some simple situations (NOS/VE file to NOS/VE file conversion), the only file descriptions
required are file attributes.' This is the situation of the FMU command copy. FMU obtains
information about the input file from the file information table associated with the file. Then
FMU either uses default values or assumes information from the input file in writing the output
file. You can also specify information for the output file in a SET_FILE_ATTRIBUTES (SETFA)
command.

Sometimes FMU does not provide the correct values for the record type and block type of the
output file. To ensure the correct values, include the following command before calling FMU:

SET_FILE_ATTRIBUTES FILE=output file ••
RECORD_TYPE=keyword
BLOCK_TYPE=keyword

For information about which values to assign to RECORD_TYPE and BLOC~TYPE, see the CYBIL File
Interface Usage manual or the appropriate programming language usage manual.

How Does FMU Handle NOS Files?

For migrating files between NOS and NOS/VE, FMU requires directives describing the files to
reside in a directive file. These conversions also require that the NOS/VE file attributes be
described with a SET FILE ATTRIBUTES command and that the NOS file attributes be described with a I
NOS FILE command or,-for NOS tape files on a NOS/VE drive, a CREATE_170_REQUEST command. This
situation is shown in the following diagram.

+----------+
NOS FILE
Commandt

+-----+----+
I

+-----------+
Directive

File

+-----+-----+

+--------------+
NOS/VE SETFA

Command

+------+-------+
I

+--------+

1
+----------+

+---------------+
NOS

Input
File

+---------------+

------>

~ ~
+------------+

FMU
(Interstate
Migration)

+----------------+

------>

+---------------+
NOS/VE
Output
File

+---------------+
tFor NOS tape files on a NOS/VE tape drive, use a CREATE_170_REQUEST

command instead of a FILE command.

See the discussion of Interstate Connection Commands in chapter 4 for more information.

Revision F General Facilities for Migrating Files 11-7

I

I

How Can I Use This DiscussioJ;l of FMU?

The discussion of FMU demonstrates using FMU and indicates its usefulness to you. The remainder
of the discussion is divided into the following topics:

FMU command copy

FMU command copy format

FMU directive file

FMU command format with directive file

Example migrating an indexed sequential file containing character data from NOS to NOS/VE

Example migrating an indexed sequential file containing character data from NOS/VE to NOS

Example migrating a file containing binary data from NOS to NOS/VE

I To construct anything except simple FMU tasks, you should seek additional information in the SCL
Advanced File Management Usage manual.

FMU Command Copy

The FMU command copy capability performs simple file copying from one NOS/VE format to another.
(The command copy does not apply to NOS files.) The input and output files are specified in
parameters in the FMU command. For example, assume that you wish to copy an indexed sequential
file called ISFILE to a sequential file called SQFILE. The command appears as follows (file LIST
is designated as the list file):

I /fmu input=isfile output=sqfile l=list

On a command copy, the file organization assumed for the output file is sequential. Record
length and type, access mode, and most other attribute values are determined by corresponding
values in the input file. If you want to specify other attribute values, you need to specify a
SET_FILE_ATTRIBUTES (SETFA) command to describe the output file to FMU.

FMU knows the characteristics of the input file because a file information table is always
associated with an established file.

The FMU command copy is useful if you wish to list an indexed sequential file at your terminal.
Currently, the COPY FILE command cannot handle an indexed sequential file, but it can handle the
sequential file to which the indexed sequential file is copied. Therefore, you can indirectly
list your indexed sequential file ISFILE by copying SQFILE:

I /copy_file input=sqfile <--- Lists the contents of file SQFILE.

The next example shows using the FMU command copy to create an indexed sequential file from a
sequential file.

11-8 Migration From NOS to NOS/VE Revision F

Using the FMU Command Copy, to Create an Indexed Sequential File

Sequential file ANIMALS contains information about animals and their associated habitats. The
file with the field to be designated as the key field in the indexed sequential file appears as
follows:

1 11 21 31 36 41 46 50 <-- Position
I-blanks--I--------I-key-----I---I----I----I---I

MAMMAL LION 1 LAND
BIRD DUCK 3 AIR LAND WATER
MAMMAL SEAL 2 LAND WATER
FISH SHARK 1 WATER
MAMMAL WHALE 1 WATER
BIRD PENGUIN 2 LAND WATER

The following file attributes are needed to describe the file as an indexed sequential file to
FMU:

BT=SS

FO=IS

KL=10

KP=20

KT=UNCOLLATED

MAXRL=50

MINRL=35

RT=U

BLOCK_TYPE is SS (for system specified) as opposed to US (user specified).

FILE ORGANIZATION is indexed sequential (IS).

KEY LENGTH is 10 characters.

KEY POSITION is at position 20 (KP + 1 defines the location of the first
cha;acter of the key.)

KEY TYPE is uncollated, which means the 7-bit ASCII sequence applies when
key-values are compared.

MAXIMUM RECORD LENGTH is 50 characters. - -
MINIMUM RECORD LENGTH is 35 characters. - -
RECORD TYPE is U (for undefined) as opposed to F (fixed). Record type could
have been V (for variable).

These attributes are specified in a SET FILE ATTRIBUTES (SETFA) command for file NEWIS (the
indexed sequential file being created from s;quential file ANIMALS). In this example, both files
are local files. The command stream is:

/set file attributes file=newis
/block-type=system specified ••
/file ;rganization~indexed sequential
/key-yosition=20 •• -
/key length=10 ••
/keY-type=uncollated
/maximum record length=50
/minimum-record-Iength=35
/record_type=undefined

/fmu input=animals <----------- Creates file NEWIS
/output=newis

•• /l-list

For more information about file attributes, see the File Attributes discussion in chapter 10.

Revision F General Facilities for Migrating Files 11-9

I

I

I

FMU Command Copy Format

FMU I=infile O=outfile L=listfile ED=value STATUS=variable

FMU can be spelled out as FILE_MANAGEMENT_UTILITY.

Parameters: All parameters are optional, but for this discussion, assume that you specify
parameters I and O.

I

o

L

(INPUT) File reference for the file being copied.

(OUTPUT) File reference for the file being written.

(LIST) File reference for the list file. Default is $LIST, which is connected to
$NULL for interactive use. That means that the listing disappears unless you
either designate a list file or connect standard file $LIST to a real file. (See
the discussion about File Connection Commands in chapter 4, Common NOS/VE Commands).

ED (ERROR DISPOSITION) Specifies whether the FMU run is to be aborted if the output
file i; aborted (closed before the end of the run because of an error). The values
are:

STATUS

ED=A
ED=NA

ABORT (Default)
NO ABORT

Status variable; see the discussion of the STATUS parameter that appears in chapter
4, Common NOS/VE Commands.

FMU Directive File

The directive file provides FMU with information about the input and output files. When you
migrate a file from NOS to NOS/VE the NOS file is the input file and the NOS/VE file is the
output file; therefore, you must specify directives to describe files being migrated. The
following directives are usually specified in migration situations:

SET_INPUT_ATTRIBUTES (SETIA)

SET_OUTPUT_ATTRIBUTES (SETOA)

CREATE OUTPUT RECORD (CREOR)

More directives are available; however, only these are used in the examples in this gUide.

SET_INPUT_ATTRIBUTES Directive

The SET INPUT ATTRIBUTES (SETIA) directive describes the input file. For NOS to NOS/VE file
conversion, you need to specify the following parameters:

F (FILE) Local file name of the file containing input records.

MF (MACHINE_FORMAT) Specified as follows:

MF=C170 NOS file

MF=C180 NOS/VE file (default)

The parameters SFP (STARTING FILE POSITION) and MFU (MAXIMUM FILE UNITS) can also be specified to
I designate records in the input file. See the SCL Advanced File Management Usage manual for more

information.

11-10 Migration From NOS to NOS/VE Revision F

SET_OUTPUT _A TTRIBUT~S Directive

The SET_OUTPUT_ATTRIBUTES(SETOA) directive describes the output file. For NOS to NOS/VE file
conversion, you would typically use the following parameters:

F (FILE) Local file name of the file containing input records

MF (MACHINE_FORMAT) Specified as follows:

MF=C170 NOS file

MF=C180 NOS/VE file (default)

ED (ERROR_DISPOSITION) Possible specifications are:

ERF

ED=A ABORT (default).

ED=NA NO_ABORT. This specification keeps the task executing if an error
occurs.

(EXCEPTION RECORD FILE) Specifies a file to receive records causing errors during
migration.- Default is $NULL (no exception file produced). Note that if ERROR
DISPOSITION=ABORT is also specified, at most one record (the record that caused the
abort) is written to this file.

CED (CONVERSION ERROR DISPOSITION) Specifies whether or not recovery is to be attempted
for conversion errors caused by unrecognizable data in the source field. Options are:

CED=A

CED=R

ABORT. Default. No recovery is attempted.

RECOVER. FMU attempts to recover by assuming one of the following
values for the source field:

Zero for' a numeric field.

Spaces for a character (A) field.

False value for a logical field.

I

The parameters DS (DUPLICATE SPECIFICATION), PD (PARTITION DISPOSITION), and MFU (MAXIMUM FILE I
UNITS) can also be specified-to designate records in the output file. See the SCL Advanced File
Management Usage manual for descriptions of these parameters.

CREATE_OUTPUT_RECORD Directive

The CREATE_OUT PUT_RECORD (CREOR) directive specifies exactly how you want your output record to
be formatted and the logical steps necessary to perform the reformatting. This directive is
required for FMU to perform conversions of binary files. The directive can specify complex
record reformatting; this guide, however, shows only simple, direct data conversions.

The discussion of the CREATE OUTPUT RECORD directive is divided into topics to indicate how to I
use the CREATE_OUTPUT_RECORD-directive in migration situations. The topics are:

Assignment Statements and Field Descriptors

Assignment Statement for a Double Precision Item

CREATE_OUTPUT_RECORD (CREOR) Format

FMU Data Types for FORTRAN and COBOL

Defaults for the FMU Data Types

Converting character data

Revision F General Facilities for Migrating Files 11-11

I For an example of using CREATE OUTPUT RECORD when executing FMU, see the example of converting a
binary file shown later in this chapt;r.

I Sample Binary File Description With CREATE_ OUTPUT_RECORD

The descriptions of records in the CREATE_OUTPUT_RECORD directive allow you to specify the
conversions required to migrate your file. To see how this works, assume you have a binary file

I
I

on NOS in which the records have the fields shown in table 11-1.

Table 11-1. Sample NOS Binary Record

Number
of Items

FORTRAN
Data Item

COBOL
Data Item FMU Data Type

==

3 REAL

3 INTEGER

1 CHARACTER*10

1 Logical

COMPUTATIONAL-2 (NOS)

COMPUTATIONAL-1 (NOS)

PIC X(10) or PIC A(10)

Not applicable

F for floating point

I for integer

A for alphabetic (represents string)

L for logical

In characters, the record appears as follows (to FMU, the record has 10-byte binary fields):

--RECORD 1---+--RECORD 2---
32.654 I 165.41 I -0.0013 I 54 I 9 I 125 I ABCDEFGHIJ I TRUE I .••
---+-------------
F F F I I I A[,10] L FMU record description

The CREATE OUTPUT RECORD directive to convert this NOS file to the equivalent NOS/VE format as
file NVEFILE is:

create output record file=nvefile
F;-F; F; I; I; I; A[,10]; L

create_output_record_end

This conversion is straight forward. The first data item in the NOS record is converted to the
equivalent NOS/VE data item and stored in the NOS/VE record. The second item is converted and
stored, and so forth. The directive processing is repeated for each record.

The data type specifications F, I, A, and L are FMUassignment statements indicating a conversion
of one data item from one format to another. These are the simplest form of FMU assignment
statements and are called single descriptor assignment statements.

11-12 Migration From NOS to NOS/VE Revision F

Assignment Statements and Fie~d Descriptors

To FMU, each assignment statement represents a field description in the input and output
records. In the sample CREaR directive for file NVEFILE (shown in a preceding paragraph), the
field descriptions are single field descriptors. The full assignment statements equivalent to
the single field descriptors are as follows:

F
I
A[,10]
L

F[,8]
I[,8]
A[,10]
L[,8]
"-v-"

F[,10]
I [,10]
A[,10]
L [,10] --I

Describes the data field in the input file, the
NOS file in this example.

Describes the data field in the output file, the NOS/VE file
for this example.

A further breakdown of the field descriptors is as follows:

F[,8] = F[,10]
I I

Length in bytes of the field in the input record (6-bit bytes for NOS).

Default byte position of the field in the input record.

FMU data type of the field in the input record (the NOS file).

Length in bytes of the field in the output record (8-bit bytes for NOS/VE).

Default beginning byte position of the field in the output record.

FMU data type of the field in the output record (the NOS/VE file).

For the default byte position, FMU uses the position following the previously described item.
With default specifications, FMU works sequentially through both the input and output files. In
descriptor F[S,8], S specifies position.

Assignment Statement for a Double Precision Item

The complete assignment statement is required for converting double precision items because FMU
assumes single precision conversion if just the F descriptor is specified. The assignment
statements required for converting double precision items are:

From NOS to NOS/VE

From NOS/VE to NOS

F[,16] = F[,20]

F[,20] = F[,16]

I
Describes the field for the input record.

Describes the data field in the output record.

Notice that by switching the field descriptor from one side of the equals sign (=) to the other,
you change the direction of the conversion: from NOS to NOS/VE or from NOS/VE to NOS. (The left
descriptor is always for the output file; the right descriptor is always for the input file.)

Revision F General Facilities for Migrating Files 11-13 I

I

I

CREATE_OUTPUT_RECORD (CREOR) Format

CREOR F=newlfn RPV=op;
statement-list;

CREOREND

Parameters:

F

RPV

statement-list

(FILE) specifies the local file name of the output file (the new file being
created).

(RECORD PRESET VALUE) Specifies that the input record fields not referenced
in the CREATE OUTPUT RECORD statement-list can be set in the output record
as follows: - -

NP NO_PRESET (default value)

CB CHARACTER BLANK

CZ CHARACTER ZERO

BZ BINARY ZERO

IR INPUT RECORD; that is the data in the output record is to be the
same ;s the corresponding data in the input record, unless
altered by assignment statements.

Can consist of assignment statements as shown in the example below:

F; F; F; I; I; I; A[,10]; L

A semicolon must separate statements that appear on the same line.

The assignment statements are.discussed on preceding pages. See subsequent
pages for tables that list FMU data type notation used in migrating COBOL
or FORTRAN generated files.

I
CREOREND (CREATE_OUTPUT_RECORD_END) Terminates the CREATE_OUT PUT_RECORD directive.

For more information about the formats required for FMU, see the SCL Advanced File Management
Usage manual.

FMU Data Types for FORTRAN and COBOL

The FMU descriptors that are used in the CREATE OUTPUT RECORD directive can describe data items
produced by FORTRAN and COBOL applications. Table 11-2 specifies the FMU descriptor for
corresponding FORTRAN or COBOL data items.

11-14 Migration From NOS to NOS/VE Revision F

Table 11-2. FMU Data Types f~r FORTRAN and COBOL

NOS NOS/VE
FMU
Data Type FORTRAN 5 COBOL 5 FORTRAN COBOL

==

A Character

B Any

F.I0/8 Real

F.20/16 Double precision

G Character

H N/A

I Integer

J N/A

L Logical

N Character

P N/A

Q N/A

U N/A

y Character

Z Character

PIC X

Any

COMP-2

N/A

N/A

Any PIC S99 •••

COMP-l or COMP-4

Any PIC S(9)
SIGN IS LEADING

N/A

Any PIC ••• ZZZ9

N/A

N/A

PIC 99 •••

Any PIC S(n)
SIGN IS TRAILING
SEPARATE

Any PIC S999 •••
SIGN IS LEADING
SEPARATE'

Character

Any

Real

Double precision

Character

N/A

Integer

N/A

Logical

Character

N/A

N/A

N/A

Character

Character

PIC X

Any

COMP-l

COMP-2

N/A

Any PIC S99 •••

COMP PIC S9 •••

Any PIC S(9)
SIGN IS LEADING

N/A

Any PIC ••• ZZZ9

COMP-3 PIC S9.

COMP-3 PIC 9 •••

PIC 99 •••
UNSIGNED UNPACKED
DECIMAL

Any PIC S(n)
SIGN IS TRAILING
SEPARATE

Any PIC S999 •••
SIGN IS LEADING
SEPARATE

Note: F.I0/8 and F.20/16 indicate the ratio of bytes in converting NOS floating point to
NOS/VE. Use F (alone) to convert single precision. (The assignment statement for
double precision is shown earlier in this chapter.)

Each FMU data type has an associated default length. Table 11-3 gives the default length in
bytes for FMU data types. In a migration situation, when just the data type designator (for
example, I or A) is specified, FMU performs conversion according to the default values.

Revision F General Facilities for Migrating Files 11-15 I

Table 11-3. Default Lengths for FMU Data Types

Data
Type Description

NOS/VE
Default

NOS
Default

==

A Alphanumeric character string 1 1

Z Integer character string with leading zeros and leading sign 19 19

y Integer character string with leading zeros and trailing sign 19 19

N (NORMAL) integer character string with leading blanks 19 19

G (GENERAL) floating point character string 22 22

H Trailing sign combined Hollerith; also called trailing 18 18
over punch

J Leading sign combined Hollerith; also called leading 18 18
overpunch

p Signed packed decimal 19 not applicable

Q Unsigned packed decimal 19 not applicable

U Unsigned unpacked decimal 18 not applicable

L Logical 8 10

I Signed integer 8 10

F Floating-point, for both single and double precision 8 10
(single precision is the default length)

B Unsigned binary 1 bit 1 bit

Length is given in bytes unless otherwise noted. (NOS/VE uses 8-bit bytes. NOS uses 6-bit
bytes.)

Character Data Conversion

FMU supports conversion between the NOS/VE ASCII character set and the following NOS character
sets:

63-character display code

64-character display code

6/12 ASCII

8/12 ASCII

111-16 Migration From NOS to NOS/VE Revision F

The following restrictions a~ply to files that use the 6/12 or 8/12 ASCII set:

A SET PRINT ATTRIBUTES (SETPA) FMU directive cannot be specified for an output file whose
character set is 6/12 or 8/12 ASCII.

The $INPUT STRING POSITION ($ISP) function cannot be used to test an input file whose
character ;et is 6/12 or 8/12 ASCII.

The SET_PRINT_ATTRIBUTES directive and $INPUT_STRING_POSITION function are described in the SCL
Advanced File Management Usage manual.

For a NOS/VE file, the character set used by the file is specified by the INTERNAL CODE (IC)
parameter on the SET FILE ATTRIBUTES (SETFA) command. The default and only valid option for the
INTERNAL_CODE parameter is ASCII. I
For a NOS file, the character set used by the file is specified by the IC parameter on the FILE
command. The IC parameter can have the following values:

D63 63-character set

D64 64-character set

A612 6/12 bit ASCII

A812 8/12 bit ASCII

The default, either D63 or D64, is site-dependent.

The CHARACTER CONVERSION parameter (on the SET FILE ATTRIBUTES command) and the CC parameter (on I·
the FILE control statement) are not needed for-char;cter conversion.

The length of a character data field (FMU type A) is specified as a number of 8-bit bytes
(NOS/VE) or 6-bit bytes (NOS). FMU performs a left-to-right byte move until the destination
field is full.

If the source field is longer than the destination field, the data item is truncated on the
right. If the source field is shorter than the destination field, the destination field is
padded on the right with blanks. In addition, the following applies to 6/12 and 8/12 ASCII
conversion.

For 8/12 ASCII fields, the actual number of characters in the field is one half the length of the
field. Thus, for example, the descriptor

A[,20]

describes a 20-byte field that contains 10 characters.

Odd-length 8/12 ASCII fields cause an execution error.

For 6/12 ASCII fields, the number of characters in a field of length N is variable, ranging from
N for an all-uppercase field to N/2 for an all-lowercase field.

If either of the following conditions occur when converting a 6/12 ASCII field, FMU issues an
execution diagnostic:

The last character of the source field is 12 bits long and starts in the last 6 bits of the
field.

The destination field is not long enough to hold the entire string assigned to it, and the
string would be truncated in the middle of a 12-bit character.

Revision F General Facilities for Migrating Files 11-17

I Both of these errors can be suppressed by specifying ERROR DISPOSITION=NO ABORT on the
SET OUTPUT ATTRIBUTES direc'tive. They then become nonfatal conversion errors, and in both cases,
spaces are-assigned to the field that was too short to contain the character assigned to it.

If a file to be migrated consists entirely of character data, you do not need to specify a
CREATE_OUTPUT_RECORD (CREaR) directive to describe the input and output record formats. If you

I
omit the CREATE OUTPUT RECORD directive, FMU automatically performs a character conversion on all
data in the file. Thi; method of character conversion results in faster FMU execution than if a
CREATE_OUTPUT RECORD directive were specified.

Migrating COBOL Records

COBOL inserts slack bytes in data records to align binary data on word boundaries and to cause
repeating groups to align on common byte offsets. (That is, each occurrence of a repeating group
must begin at the same byte offset within a word.) You must take these slack bytes into account
when specifying the data field starting byte positions in the FMU field descriptors.

The best way to determine the starting byte position of data fields in COBOL records is to
examine the data map generated as part of the COBOL compiler output listing (LO=M option on the
CaBaLS command.) For each data item, this map shows the relative address of the word containing
the data item and the byte offset within the word at which the data item begins. You can use
this information to construct the FMU field descriptors necessary to convert the data records.

The following is an example of migrating a COBOL record that contains slack bytes. The record
description in the COBOL source program is as follows:

01 OUT-REC.
02 ITEM-l PIC X(14).
02 ITEM-2 OCCURS 3 TIMES.

03 ITEM-2A PIC XX.
I 03 ITEM-2B PIC 999V99 CaMP-I.

03 ITEM-2C PIC X(8).

COBOL will insert slack bytes to align the COMP-l item on a word boundary, and to align each
occurrence of the repeated group ITEM-2 on a common byte offset within a word.

The data map from the COBOL output listing is as follows:

01 OUT-REC 000024/00 SZ=104
02 ITEM-l 000024/00 14
02 ITEM-2 000025/04 30
03 ITEM-2A 000025/04 2
03 ITEM-2B 000026/00 10
03 ITEM-2C 000027/00 8

The third column of the data map contains entries of the form nn/mm, where nn is the relative
word address (octal) of the data item, and mm is the byte (octal) within the word where the item
begins. The fourth column gives the length (decimal bytes) of each data item.

For example, ITEM-l begins in byte 0 of word 24 of the program and is 14 bytes long; ITEM-2 (a
repeated group) begins in byte 4 of word 25 and is a total of 30 bytes long. The common byte
offset for each occurrence of group ITEM-2 is 4 bytes.

11-18 Migration From NOS to NOS/VE Revision F

The following diagram shows the format of the data record in memory. The shaded areas indicate
slack bytes inserted by COBOL.

Word 24 Word 25 Word 26 Word 27 Word 30 Word 31

~ ~ ~ ~ ~ ~
+------------+----+--I------------+---------~I--+----+--------~

+------------+----+-- ------------+--------- ~--+----+---------+

I I I I ITI l:~:::M:::es (second occurrence)

+--ITEM-2C (8 bytes)

+--ITEM-2B (10 bytes)

+--4 slack bytes
I
+--ITEM 2A (2 bytes)

+--ITEM-l (14 bytes)

The four slack bytes following ITEM-2A align ITEM-2B (a COMP-l item) on a word boundary. The six
slack bytes following ITEM-2C cause the second occurrence of ITEM-2 to align on the common byte
offset of 4.

Given that one NOS word contains 10 bytes, the Word/Offset values from the data map can be
converted to starting byte positions relative to the beginning of the record. The starting byte
positions of the data items in the example are as follows:

Word/Offset Starting Byte Position
Item (from data maE) Len~th Within Record

lTEM-l 24/00 14 1
ITEM-2A 25/04 2 15
ITEM-2B 26/00 10 21
ITEM-2C 27/00 8 31

Since the common byte offset of repeated group ITEM-2 is 4, the next occurrence of the group
begins in byte 4 of word 30 (octal). The starting byte positions of the second occurrence of
ITEM-2 are as follows:

ITEM-2A 45
ITEM-2B 51
ITEM-2C 61

The starting byte positions of the third occurrence of ITEM-2 are as follows:

ITEM-2A 75
ITEM-2B 81
ITEM-2C 91

Revision F General Facilities for Migrating Files 11-19 I

The FMU field descriptors ne~ded to migrate the record can now be written. A descriptors are
used to migrate the PIC XX ••• fields, and I descriptors are used to migrate the COMP-l fields.

I
The complete CREATE_OUTPUT_RECORD directive for this example is as follows:

CREATE OUTPUT RECORD FILE=filename - -
A[,14]=A[I,14] "Migrate ITEM-I"

A[,2]=A[15,2]; 1[,8]=1[21,10]; A[,8]=A[31,8] "Migrate ITEM-2"

A[,2]=A[45,2]; 1[,8]=1[51,10]; A[,8]=A[61,8] "Migrate ITEM-2"

A[,2]=A[75,2]; 1[,8]=1[81,10]; A[,8]=A[91,8] "Migrate ITEM-2"

I CREATE OUTPUT RECORD END - - -

FMU Command Format With Directive File

I
With this format, the input and output files are specified in the directive file. The DIRECTIVES
parameter of the FMU command identifies the directive file. All parameters are optional, but for
this discussion assume that you specify the DIRECTIVES parameter.

Format:

FMU DIR=directive-file L=listfile ED=value STATUS=variable

FMU can be spelled out as FILE MANAGEMENT UTILITY.

Parameters:

DIR (DIRECTIVES) File reference to identify the file containing input directives.
There is no default value.

L (LIST) File reference for the list file •. Default is $LIST, which is connected to
$NULL for interactive use. That means that the listing disappears unless you
either designate a list file or connect standard file $LIST to a real file. (For
more information, see the File Connections discussion in chapter 4, Common NOS/VE
Commands.)

ED (ERROR DISPOSITION) Specifies whether the FMU run is to be aborted if the output
file i; aborted (closed before the end of the run because of an error). The values
are:

STATUS

ED=A
ED=NA

ABORT (Default)
NO ABORT

Status variable; see the discussion of the STATUS parameter that appears in chapter
4, Common NOS/VE Commands.

11-20 Migration From NOS to NOS/VE Revision F

Example Migrating a SimpJe NOS Indexed Sequential File to NOS/VE

This example converts a NOS indexed sequential (IS) file containing only character data to a
NOS/VE indexed sequential file. The file being converted is the animals and habitats file used
in preceding example and shown again below.

1 11 21 31 36 41 46 50 <-- Position
I-blanks--I---------I-key-----I----I----I----I---I

MAMMAL LION 1 LAND
BIRD DUCK 3 AIR LAND WATER
MAMMAL SEAL 2 LAND WATER
FISH SHARK 1 WATER
MAMMAL WHALE 1 WATER
BIRD PENGUIN 2 LAND WATER

Describing the Sample Files

FMU requires descriptions of both the input file (ISFILE) and output file (ISNVE).

Describing the Input File

The description for the input file must identify the file and provide some specific information
about the kind of the file. Detailed record descriptions are not required because these can be
determined by the file interface once the file is recognized. Input file descriptions require
the NOS FILE command and the FMU SET_INPUT_ATTRIBUTES directive. I
The NOS FILE command provides information as follows:

ISFILE

FO=IS

ORG=NEW

Local file name.

File organization is indexed sequential.

The file is an extended indexed sequential file. NEW is the default
value for NOS 2; however, specifying ORG=NEW is safe and could avoid a
problem.

The SETIA (SET_INPUT_ATTRIBUTES) directive specifies information as follows:

ISFILE Identifies the file

MACHINE FORMAT=CI70 Designates a NOS file I

Revision F General Facilities for Migrating Files 11-21

Describing the Output File

The description for the output file must identify the file and provide specific information about
the record and primary key. Output file descriptions require the SET FILE ATTRIBUTES command and
the SET OUTPUT ATTRIBUTES directive. Because the file contains only ;hara;ter data, the
CREATE_OUTPUT~ECORD directive is not required.

The NOS/VE SET_FILE_ATTRIBUTES command provides information as follows:

file=isnve

block type=system_specified

dataJadding=80

indexJadding=10

embedded_key=yes

Local file name for the file(in the example.

Block type is system specified, as opposed to user
specified (US).

80 percent data padding.

10 percent index padding.

Embedded key.

file_organization=indexed_sequential File organization is ·indexed sequential.

key_Iength=10

key_type=uncollated

record_type=undefined

Key length is 10 characters.

Key type is uncollated, meaning that the 7-bit ASCII
sequence applies to comparisons of key values.

Maximum record length is 50 characters.

Minimum record length is 35 characters.

Record type is undefined, as opposed to fixed (F).
This could have been V (for variable).

The SET OUTPUT ATTRIBUTES directive specifies information as follows:

file=isnve Identifies the file.

machine format=Cl80 This is not specified but is the default value.

error_disposition=no_abort Specifies no abort if an error occurs on the output file.

Commands in the Job Stream

The task is set up as a procedure called ISCONVT. The commands PROC and PROCEND begin and end
the procedure, respectively.

The FMU command is included twice: first to perform the NOS to NOS/VE conversion; second, to
perform a command copy to convert the NOS/VE indexed sequential file to a sequential file for
copying to the terminal. The COPY FILE command following the second FMU command produces the
file listing in the example. Other commands requiring further explanation are:

CREFC

CREIC

COLT

(CREATE FILE CONNECTION) Connects standard file $ECHO to file OUTPUT so that the
executing coimands are copied to the terminal as they execute.

(CREATE_INTERSTATE_CONNECTION) Allows executing NOS commands. See the Interstate
Connection discussion in chapter 4, Common NOS/VE Commands, for a description of
this facility.

(COLLECT_TEXT) Creates the directive file DIRFILE.

• 11-22 Migration From NOS to NOS/VE Revision F

Procedure ISCONVT and Execution Output

All the commands for converting ISFILE to ISNVE are contained in procedure ISCONVT. For the
procedure to execute, file ISFILE must exist as a permanent direct access file on NOS. If the
procedure is developed on NOS and stored as file ISCONVT, it can be transferred to NOS/VE with
the GETF command (get file to=isconvt) and executed by specifying the file name: ISCONVT. The
commands in the procedure ISCONVT are shown in figure 11-1.

+---+
Command

proc isconvt <----------------------------------
setmm full <-------------------------------------
crefc $echo output <-----------------------------
creic <--
exeic 'ATTACH,ISFILE.' <------------------------
exeic 'FILE,ISFILE,FO=IS,ORG=NEW.' <-------------
cref $user.isnve <------------------------------
colt dirfile <-----------------------------------
setia isfile mf=cl70 <---------------------------
setoa isnve ed=na <-----------------------------
** <---
setfa isnve bt=ss dp=80 ip=10 ed=yes fo=is <--

kl=10 kp=20 kt=uc maxrl=50 minrl=35 ••
rt=u

fmu dir=dirfile l=fmuout <-----------------------
quit <---
fmu i=isnve o=see is file <----------------------
copf see is file -<-=-----------------------------
delfc $e~ho~output <-----------------------------
procend isconvt <-------------------------------

Comment

Identifies the procedure.
SET MESSAGE MODE to full.
Displays procedure commands.
Connects with NOS.
Attaches NOS file ISFILE.
Describes NOS file.
Creates permanent file.
Creates directive file.
Directive for input file.
Directive for output file.
Terminates collect text.
Describes NOS/VE file, see preceding
paragraphs for the explanation.

Calls FMU.
Terminates NOS connection.
FMU command copy.
Copies file to terminal.
Deletes connection to $ECHO.
Terminates procedure.

+---+
Figure 11-1. Procedure ISCONVT

The output from the procedure execution is shown in figure 11-2.

+--+
CI creic
CI exeic 'ATTACH,ISFILE.'
CI exeic 'FILE,ISFILE,FO=IS,ORG=NEW.'
CI cref $user.isnve
CI colt dirfile
CI setfa isnve bt=ss dp=80 ip=10 ek=yes fo=is kl=10 ip=20 kt=uc maxrl=50 minrl=35 rt=u
CI fmu dir=dirfile l=fmuout
CI quit
CI fmu i=isnve o=see is file
CI copf see is file - -

BIRD- DUCK
MAMMAL LION
BIRD PENGUIN
MAMMAL SEAL

3 AIR LAND WATER
LAND
LAND WATER
LAND WATER

I
FISH SHARK
MAMMAL WHALE

CI delfc $echo,output

1
2
2
1
1

WATER
WATER

I

I

I

I

+--+
Figure 11-2. Execution Output of Procedure ISCONVT

Revision F General Facilities for Migrating Files 11-23.

Example Migrating a Simp~e NOS/VE IS File to NOS

This example converts a NOS/VE indexed sequential (IS) file containing character data to a NOS
indexed sequential file. The file being converted is the same one converted in the previous
example. It is being migrated back to NOS to show the reverse process.

Most of the commands are similar to those in the previous example. Reading about them should be
sufficient to understand the commands in this example.

To transfer the file to NOS, the file must be described in detail. The FILE command describes
records in the NOS file NEWIS, which is being created. The file is shown below to indicate data
positions on NOS (start counting characters within each line from 0).

o 10 20 30 35 40 45 49 <---Position
I-blanks--I---------I-key-----I----I----I----I---I

MAMMAL LION 1 LAND
BIRD DUCK 3 AIR LAND WATER
MAMMAL SEAL 2 LAND WATER
FISH SHARK 1 WATER
MAMMAL WHALE 1 WATER
BIRD PENGUIN 2 LAND WATER

I I I I <--- Trailer items

I <------------------------ Trailer count

~ ______________________________ ~ <-------------------- Header

The parameters of the FILE command required to describe the file under NOS are as follows:

NEWIS

FO=IS

ORG=NEW

RT=T

HL=35

TL=5

CP=30

CL=l

MRL=50

DP=80

IP=20

MBL=600

ON=NEW

Local file name of the sample file.

File organization is indexed sequential.

Specifies an extended indexed sequential file. This is the default value.
Specifying NEW is safe and can sometimes avoid problems.

Record type T (for trailer).

Header length is 35 characters (T-type records only).

Trailer length is 5 characters (T-type records only).

Trailer count beginning character position (T-type records only). Begin counting
at O.

Trailer count field length is 1 character (T-type records only).

Maximum record length is 50 characters.

Data padding is 80 percent

Index padding is 20 percent.

Maximum block length is 600 characters.

OLD/NEW file is NEW. Required for a file being created.

111-24 Migration From NOS to NOS/VE Revision F

KT=S

KL=10

RKW=2

RKP=O

EMK=YES

EFC=3

Key type is ,symbolic (for character keys).

Key length is 10 characters.

Relative key word is 2 (start counting at 0).

Relative key position is 0 (key begins in bit 0 of word 2).

Embedded key (must be specified on NOS because the default value is NO).

Error file control designates that error messages and statistics are written on
the error file.

For more information about the FILE command, see the CYBER Record Manager Advanced Access Methods
reference manual.

The conversion job is shown as a procedure name ISBACK in figure 11-3.

+--+
Command Comment

proc isback <-- Identifies the procedure.
setmm full <--- SET MESSAGE MODE to full.
creic $echo output <--------------------------------------- Displays pr~cedure command.
creic <-- Connects with NOS.
exeic 'DEFINE,NEWIS.' <------------------------------------ Defines output file on NOS.
exeic 'FILE,NEWIS,FO=IS,ORG=NEW,RT=T,HL=35,TL=5,CP=30.' <-- FILE command describes NOS file.
exeic 'FILE,NEWIS,CL=I,MRL=50,DP=80,IP=20,MBL=600,ON=NEW.'
exeic 'FILE,NEWIS,KT=S,KL=10,RKW=2,RKP=0,EMK=YES,EFC=3.'
colt dirfile <--- Creates directive file.
setia isnve <--- Describes input NOS/VE file.
setoa newis mf=cl70 ed=na <-------------------------------- Describes output NOS file.
** <--- Terminates collect text.
attf $user.isnve <--- Attaches input file ISNVE.
fmu dir=dirfile l=fmuout <--------------------------------- Executes FMU.
exeic 'FLSTAT,NEWIS,FLSOUT.' <----------------------------- Executes CRM FLSTAT utility.
exeic 'REPLACE,FLSOUT.' <---------------------------------- Stores FLSTAT output file.
getf flsout <-- Transfers the file.
copf flsout <-- Prints the file.
delfc $echo output <-------------------------------------- Deletes connection to $ECHO.
quit <--- Terminates NOS connection.
procend isback <--- Terminates procedure.

+--+
Figure 11-3. Procedure ISBACK

The output of this job consists of the command listing generated by the connection to $ECHO and
the listing of the file FLSOUT generated by the NOS FLSTAT utility. FLSTAT prints statistics and
information about the file NEWIS and is used in this task as a quick check on the FMU run.
Notice that the output file for FLSOUT must be made permanent (REPLACE command) before it can be
transferred to NOS/VE.

Revision F General Facilities for Migrating Files 11-25

Example of Migrating a Binary Data File
With FMU From NOS to NOSjVE

This example converts a sequential NOS binary file to a NOS/VE binary file. The sample NOS
binary file to migrate contains records as shown in table 11-4.

Table 11-4. Sample Binary File

Number
of Items

FORTRAN
Data Item

COBOL
Data Item FMU Data Type

==

5
3
1

REAL
INTEGER
LOGICAL

COMPUTATIONAL-2 (NOS)
COMPUTATIONAL-1 (NOS)
Not applicable

F for floating point
I for integer
L for logical

The file is created by a NOS FORTRAN 5 program, which actually creates two files: a binary file
BINFILE and a file containing character data CHRDATA. File CHRDATA is listed to show the data
the binary file contains.

The file creation job is a NOS CYBER Control Language (CCL) procedure •

• PROC,CREATE.
DEFINE,BINDATA.
DEFINE,CHRDATA.
FTN5,I=SOURCE,L=FTNOUT,REW.
LGO.
REWIND, CHRDATA.
COPY,CHRDATA •
• DATA, SOURCE

PROGRAM WREXAMP
REAL RNUMS (5)
INTEGER INUMS(3)
LOGICAL TRUTH
DATA RNUMS /1.0,3.0,5.0,7.0,8.0/
DATA lNUMS /6,4,2/
DATA TRUTH /.FALSE./
OPEN (2, FILE='BINDATA', FORM='UNFORMATTED')
OPEN (4, FILE='CHRDATA', FORM='FORMATTED')
DO 10 1=1,10
WRITE (2) RNUMS,TRUTH,INUMS

10 WRITE (4, FMT='(5F7.2,L4,I7,I6,I5)') RNUMS,TRUTH,INUMS
CLOSE (2)
CLOSE (4)
END

111-26 Migration From NOS to NOS/VE Revision F

A listing of file CHRDATA shows the data the binary file BINFILE contains. CHRDATA appears as
follows:

1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 -8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2
1.000 3.000 5.000 7.000 8.000 F 6 4 2

Sample FMU Job Migration Binfile

The FMU job to migrate file BINDATA is shown as an SCL procedure named BINCVT shown in figure
11-4. To execute this procedure on NOS/VE, create a file containing only the procedure; then
specify the file name to execute the commands in the file. This example, like all the examples
in this manual, assumes that the working catalog on NOS/VE is $LOCAL (by default).

+--~---------------------------------------+

proc bincvt <----------------------------- Begins the SCL procedure.
setmm full <------------------------------ Sets message mode to full.
crefc $echo echout <---------------------- Creates a file connection to write commands to

file ECHOUT as they are processed.
creic <----------------------------------- Invokes the interstate connection.
exeic 'ATTACH,BINDATA.' <----------------- NOS ATTACH command.
exeic 'FILE,BINDATA,MRL=90,BT=I,RT=W.' <-- NOS FILE command describing the file being

migrated.
exeic 'FILE,BINDATA,CC=NO.' <------------- FILE command continued. CC=NO is required for

cref $user.bindata_nve <------------------
setfa $user.bindata_nve bt=ss rt=v <------

colt dirfile <----------------------------
setia bindata mf=cl70 <-------------------

a binary conversion.
Creates an empty file in your master catalog on
NOS/VE and attaches the file as a local file.
Sets the BLOCK TYPE and RECORD TYPE attributes
for the new file. -
Begins creating file DIRFILE to contain
directives for FMU.
FMU directive for the input file, which is NOS
file BINDATA.

setoa bindata nve mf=c180 ed=na <--------- FMU directive for the output file, which is
BINDATA NVE on NOS/VE.

creor bindata nve rpv=no-yreset
F; F; F; F; F; L; I; I; I

creorend

<--------- FMU directive describing the data conversions.
(CREOR is described earlier in this chapter.)

** <--------------------------------------
fmu dir=dirfile l=fmuout <----------------

Ends text for the directive file.
Calls FMU with directives on file DIRFILE and
the listing to be written to file FMUOUT.

disfa bindata nve do=all <---------------- Requests displaying all file attributes for
file BINDATA NVE.

delfc $echo echout <---------------------- Deletes the file connection between $ECHO and
ECHOUT.

delic <----------------------------------- Deletes the interstate connection invoked by
the CREIC command.

procend bincvt <-------------------------- Terminates the SCL procedure.

+--+
Figure 11-4. Procedure BINCVT

Revision F General Facilities for Migrating Files 11-27

A listing of the FMU list file appears in figure 11-5. The list file was written to FMUOUT and
obtained by the command:

/copy_file input=fmuout

+--+
LIST FILE OF FMU
SOURCE LIST OF DIRFILE NOS/VE FMU V1.0 83081

o
o
o
o

202

1 setia bindata mf=c170
2 setoa bindata nve mf=c180 ed=na
3
4
5

creor bindata nve rpv=no-preset
F; F; F; F; F; L; I; I; I
creorend

**** NO DIAGNOSTICS

+--+
Figure 11-5. FMU List File for Sample Binary File Conversion

NOS/VE FORTRAN Program That Reads the Migrated File

The NOS/VE FORTRAN job to read the migrated file is shown as an SCL procedure. The sample job is
shown in figure 11-6.

+--+
proc rdexamp <----------------- Begins the SCL procedure.
colt fsource <------------------ Specifies the following program text is to be placed on

file FSOURCE.
program rdexamp <-------- Begins the FORTRAN program.

c this program reads the binary
c file we migrated from nos.

real ray(5)
integer iray(3)
logical right
open (3, file='bindata nve', form='unformatted')
rewind 3 -
open (7, file='$output')
do 100 i=1,10
read (3) ray,right,iray

100 write (7, fmt='(5f8.3,15,3iS)') ray,right,iray
close (3) (fortran program continued.)
close (7)
end

** <---------------------------- Terminates collecting text that creates the source
program on file FSOURCE.

attf $user.bindata_nve <-------- Attaches the NOS/VE file. This command is required to
make the file available to the program if you logged out or
detached the file since it was created.

fortran i=fsource l=ftnout <---- Executes NOS/VE FORTRAN.
Igo <-------------------------- Executes the FORTRAN binary file.
procend rdexamp <--------------- Terminates the procedure.

+--+
Figure 11-6. Sample NOS/VE FORTRAN Program RDEXAMP

The listing of the binary file appears the same as the previous listing of file CHRDATA •

• 11-28 Migration From NOS to NOS/VE Revision F

Predefined Collation Tables
NOS/VE has predefined collation tables that you can use in migrating indexed sequential files.

When an indexed sequential file with character keys is created, a collating sequence applies to
the file to order the records. You may be concerned with the collating sequence of a file in a
migration situation because your application may be dependent on the sequence. This situation
can apply either if a special collating sequence is specified for the NOS file or if the NOS
default collating sequence applies because the NOS and NOS/VE default sequences are different.

Considerations

First you should be aware that the NOS and NOS/VE default collating sequences are different. On
NOS, the default collating sequence is the CDC character set collating sequence (also, commonly
called COBOL6). On NOS/VE, the default collating sequence is ASCII (which is 7-bit ASCII defined
by the ANSI X3.4-1977 standard).

When thinking about specifying another collating sequence, consider if the following situations
apply to your applications:

Primary key is alphabetic only (no numbers or other characters). You get the same results no
matter which collating sequence you use.

Primary key can contain digits and letters. You need to evaluate your applications with
consideration of the order in which the collating sequence collates these characters. Digits
have a lower weight (would collate first) in the ASCII sequence. Letters have a lower weight
(would collate first) in the display, COBOL6, and EBCDIC sequences.

Primary key can contain any character. Each collating sequence assigns different weights to
characters. You need to specify the same collating sequence for your migrated file have the
same order as the NOS file. In addition, you need to determine how NOS/VE handles characters
not available on NOS. (NOS/VE handles this problem with two variants of common collating
sequences.)

A primary key value on NOS was insensitive to uppercase and lowercase. By default on NOS/VE,
uppercase and lowercase letters are distinguished. (NOS/VE also handles this potential
problem with two varients of common collating sequences.)

Your applications specify a high key value or low key value to position a file or control
processing. You need to consider whether the high or low value in the old sequence has the
same effect with the ASCII sequence.

Your application must process as fast as possible. Processing is fastest using the NOS/VE
default (7-bit ASCII) sequence.

For listings of the collating sequences, see appendix C. I

Revision F General Facilities for Migrating Files 11-29

I

I

Quick Comparison

The following table compares relative positioning of digits, letters, and some special characters
in common collating sequences. When reading the table, assume that each entry in a list is a
record key. The different lists show the different ordering records depending on the collating
sequences.

CDCt or
COBOL6 ASCII Dis)2la! EBCDIC

-BLANK -BLANK A-ALPHA -BLANK
@-AT II-POUND I-DIGIT "'-HAT
II-POUND I-DIGIT -BLANK ?-QUEST
?-QUEST ?-QUEST II-POUND II-POUND
"'-HAT @-AT ?-QUEST @-AT
A-ALPHA A-ALPHA @-AT A-ALPHA
I-DIGIT "'-HAT "'-HAT I-DIGIT

tCDC character set collating sequence is the default. sequence for indexed sequential files on
NOS.

Concepts for Variants of Common Sequences

There are a number of possible ways to arrange the collation tables to produce different desired
effects in the migrated application. Therefore, NOS/VE provides two variants of several common
sequences used on NOS. The variants are strict or folded.

Strict Variant

The strict variant of common collating sequences should be chosen if your application fits the
following situation:

You expect your application to handle only the set of 63 or 64 characters that it knew on
NOS. If the application encounters any characters outside this set on NOS/VE, you want the
characters to be equivalent to a blank (a space) in any comparison operation.

Folded Variant

The folded variants of common collating sequences should be chosen if your application fits the
following situation:

Your application is interactive and operates satisfactorily under NOS. The application
accepts both uppercase and lowercase letters from the terminal, but because of character set
limitations under NOS, these appear in your files as uppercase letters. Now that the
limitations of the NOS 63- or 64-character set no longer apply on NOS/VE, you wish your
program to continue to operate almost as it did on NOS while enjoying the NOS/VE extended
character set. In particular, you want comparison operations that involve old and new data
to be case insensitive to uppercase and lowercase alphabetic data; the extra characters are
not co-equated (they remain distinct from each other) but collate equal to their counterparts
on the NOS set.

11-30 Migration From NOS to NOS/VE Revision F

Specifying File Collating ~equence

A collating sequence must be specified in the file information table of the affected file. Two
file information fields are involved in designating collating sequence: KEY_TYPE (KT) and
COLLATE_TABLE_NAME (CTN). These fields work together as follows for the allowed key types:

KT=I (or KT=INTEGER) Specifies integer keys. No collating sequence or collation table
applies.

KT=UC (or KT=UNCOLLATED) The default 7-bit ASCII sequence applies and, therefore, no
collation table is designated for the file. You do not specify a value for the
COLLATE TABLE NAME attribute.

KT=C (or KT=COLLATED) Specifies that a collation table applies. You specify the
collation table with the COLLATE_TABLE_NAME attribute.

Standard collating sequences are available for creating files on NOS/VE. All you need to do is
specify the particular collation table name as the value of the COLLATE_TABLE_NAME (CTN)
attribute. The collation table names follow (the strict and folded NOS/VE variants are listed in
association with the corresponding NOS sequence):

DISPLAY63

DISPLAY64

COBOL6

ASCII6

EBCDIC6

NOS 6-bit display code sequence when the 63 character set is specified. The
tables for NOS/VE are:

OSV$DISPLAY63 FOLDED
OSV$DISPLAY63:STRICT

NOS 6-bit display code sequence when the 64 character set is specified. The
tables for NOS/VE are:

OSV$DISPLAY64 FOLDED
OSV$DISPLAY6~STRICT

The default collating sequence for indexed sequential files on NOS. Also called
the CDC character set collating sequence. The tables for NOS/VE are:

OSV$COBOL6 FOLDED
OSV$COBOL6:STRICT

Also called 6/12 ASCII. The tables for NOS/VE are:

OSV$ASCII6 FOLDED
OSV$ASCII6=STRICT

The 6-bit subset of the EBCDIC character set supported on NOS by COBOL 5 and
Sort 5. The tables for NOS/VE are:

OSV$EBCDIC6 FOLDED
OSV$EBCDIC6:STRICT

NOS/VE provides a predefined collation table to support the full EBCDIC character set. The
NOS/VE table name is:

OSV$EBCDIC

For listings of the collation tables, see appendix C. I
Additionally, you can designate any sequence you want. The process is to designate a collation
weight for each character in the ASCII character set. See the FORTRAN Language Definition Usage I
manual for more information about specifying user-defined collation tables. This manual
discusses using only the tables listed previously.

Revision F General Facilities for Migrating Files 11-31

Examples of Specifying a C.ollation Table

Specifying a file collating sequence occurs at file creation time. You can specify the sequence
in a SET FILE ATTRIBUTES (SETFA) command. This command would be used for a file being created
through the File Management Utility (FMU). A FORTRAN program would usually specify a collating
sequence through the FORTRAN file interface.

The examples are as follows:

NOS Indexed Sequential File to Migrate

Creating a 7-Bit ASCII (Default) File with FMU

Creating a COBOL6 Folded File with FMU

Creating a COBOL6 Folded File with FORTRAN

NOS Indexed Sequential File to Migrate

The following file RABOW (short for rainbow) is an indexed sequential file on NOS (listed as
ordered by key). The key consists of 10 characters, where any character in the 6-bit display
code set is allowed.

1---------10------19
I--key--I I
-BLANK RED

@-AT ORANGE
#-POUND YELLOW
?-QUEST GREEN
.... -HAT BLUE
A-ALPHA INDIGO
I-DIGIT VIOLET

<--- Character position

The following FILE command describes the file on NOS:

FILE,RABOW,FO=IS,ORG=NEW,MRL=20,MNR=20,RT=F,KT=S.
FILE ,RABOW,KL=10 ,EMK=YES,EFC=3,MBL=600,RKP=0,RKW=0.

Creating a 7-Bit ASCII Sequenced File With FMU

The example shows migrating file RABOW (shown in the preceding paragraphs) to NOS/VE as file
ASCII FILE. The example includes all the commands necessary to use FMU to transfer and convert
the file after you are processing on NOS/VE. Then the converted file is listed. The description
only briefly discusses the commands. For further explanation of using FMU, see the Example of
Migrating a Simple NOS Indexed Sequential File to NOS/VE, which appears earlier in this chapter.

11-32 Migration From NOS to NOS/VE Revision F

creic <-----~--------~---------------------- Connects with NOS.
exeic 'ATTACHtRABOW.'
exeic 'FILEtRABOWtFO=IStORG=NEW.'
colt dirfile
setia rabow mr=c170 <----------------------- FMU directive for input file.
setoa ascii_file ed=na <-------------------- FMU directive for output file.

**
setfa f=ascii file bt=ss fo=is maxrl=20 ••

rt=f ek=yes-kl=10 kp=O kt=uc <----------Uncollated keys indicate the 7-bit ASCII
sequence applies.

fmu dir=dirfile l=fmuout <------------------ Executes FMU.
quit <-------------------------------------- Terminates NOS connection.

-BLANK RED <---------------------- NOS/VE file ASCII FILE ordered by the ASCII
#-POUND YELLOW sequence.
I-DIGIT VIOLET
?-QUEST GREEN
@-AT ORANGE
A-ALPHA INDIGO
"'-HAT BLUE

Creating a COBOL6 Folded File With FMU

The example shows migrating file RABOW to NOS/VE as file NEWBOW. This example shows specifying
the COBOL6 folded collation table to be used to set the collation sequence for the file. The
attributes for setting collating sequence in the SET FILE ATTRIBUTES command are:

key type=col1ated
c011ate_table_name=osv$cobol6_fo1ded

The example includes all the commands necessary to use FMU to transfer and convert the file after
you are processing on NOS/VE. Then the converted file is listed. The description only briefly
discusses the commands. For further explanation of using FMU t see the Example Migrating a Simple
NOS Indexed Sequential File to NOS/VEt which appears earlier in this chapter.

creic <-----------------------------------Connects with NOS.
exeic 'ATTACHtRABOW.'
exeic 'FILEtRABOW,FO=IStORG=NEW.'
colt dirfile
setia rabow mf=c170
setoa newbow ed=na

<-------------------- FMU directive for input file.
<--------------------- FMU directive for output file.

** setfa f=newbow bt=ss fo=is maxrl=20
rt=f ek=yes kl=10 kp=O kt=c.. <------- Specifies collated keys.
ctn=osv$cobo16 folded <---------------- Specifies COBOL6 folded table.

fmu dir=dirfi1e T=fmuout <--------------- Executes FMU.
quit <----------------------------------- Terminates NOS connection.

-BLANK RED <-------------------------- NOS/VE FILE NEWBOW ordered by the COBOL6

@-AT
#-POUND
?-QUEST
"'-HAT
A-ALPHA
I-DIGIT

Revision F

ORANGE
YELLOW
GREEN
BLUE
INDIGO
VIOLET

sequence.

General Facilities for Migrating Files 11-33 ~

Creating a COBOL6 Folded FiI~ With FORTRAN

The FORTRAN example includes the FILEIS subroutine call that sets fields in the file information
table for file NEWBOW (same file as shown for the previous example). The critical fields for
specifying collating sequence are:

'KT', 's' Note: KT=C does not work for the FORTRAN file interface. KT=S
(for symbolic) designates collated keys. This is for
consistency with FORTRAN 5 on NOS.

'CTN', 'OSV$COBOL6_FOLDED' Designates collation table name.

The complete CALL FILEIS statement appears as follows:

I CALL FILEIS (ISFIT, 'LFN', 'NEWBOW', 'BT', "'SS',
X 'RT', 'F', 'MRL', 20, 'WSA', REC,
X 'KT', 'S', 'KL', 10, 'RKP', 0, 'EMK', 'YES',
X 'KA', REC (1:10), 'KP', 0, 'DFC', 3,
X 'CTN', 'OSV$COBOL6_FOLDED')

11-34 Migration From NOS to NOS/VE Revision F

FORTRAN and COBOL File Migration Aids

FORTRAN File Migration Aid ••
FORTRAN FMA Overview ••

Migration •••
Extended Acces s •••
Using Regular NOS/VE Files ••
Using Migration Programs or Subprograms •••

File and FORTRAN Requirements for FMA •••
Review of FORTRAN I/O •••

Steps in Executing FORTRAN FMA ••
Summary of the Steps Required in Using FMA ••

File Command for CYBER 170 Files ••
Required File Command Information •••
Typical File C01llIIlands •••
Determining Record Length •••

FORTRAN FMA Command Descriptions ••
Overview of FORTRAN FMA Commands ••
OPEN FILE MIGRATION AID (OPEFMA)
OPEN170 STATE (OPElS) ••
CLOSE ENVIRONMENT (CLOE) ..
EXECtii'E COt1f1AND (EXEC) ••
EXECUTE-MIGRATION TASK (EXEMT) ..

FMA Examples •••••••• :-•••
Migrating an Unformatted Sequential File ••
Migrating Two Files (Sequential List Directed and Unformatted Direct Access)

FMA Execution Considerations ••
Positioning Sequential Migration Files ••
Positioning FORTRAN Direct Access Migration Files •••••••••••••••••••••••••••••••••
Ensuring Data Migration •••
Multiple File Files •••
Migrating Boolean Items •••
Characteristics of Migrated NOS/VE Files ••

COBOL File Migration Aid ••
COBOL FMA Overview ••
Data Format Conversion ..
Handling Symbolic Keys ••
Executing the 170 File Command ••
Steps in Executing COBOL FMA ••
Summary of Steps in Executing COBOL FMA •••
COBOL FMA Command Descriptions ••

Overview of COBOL FMA Commands ••
OPEN FILE MIGRATION AID (OPEFMA)
OPEN-170 STATE (OPElS)
EXECUTE COMMAND (EXEC) ••
COLLECT-FILE DESCRIPTION (COLFD)
MIGRATE-FILE -(MIGF) •••
CLOSE ENVIRONMENT (CLOE)

Input File Description Overview •••
Record Procedure Command Descriptions •••

Overview of Record Procedures •••
Conversion References •••
IF Constructs •••

COBOL FM.A Examples •••••••••••..•••
Simple COBOL FMA Example ••
Example of Using a Record Procedure •••••••••••••••••••••••••••••••••••••• ~ ••••••••
Reverse Migration Example •••

FMA Performance Considerations •••••••••••••••••••••••••••••••••••••••.•••••••••••.••••••

12

12-1
12-2
12-2
12-3
12-3
12-3
12-3
12-4
12-5
12-7
12-8
12-8
12-9
12-9
12-11
12-11
12-11
12-12
12-12
12-12
12-13
12-19
12-19
12-21
12-25
12-25
12-26
12-26
12-27
12-27
12-28

12-29
12-29
12-30
12-32
12-33
12-33
12-35
12-35
12-35
12-36
12-36
12-36
12-37
12-38
12-40
12-41
12-41
12-41
12-43
12-43
12-45
12-45
12-47
12-51
12-52

Migrating Tape Files ••
Introduction to Tape File Migration •••
CREATE 170 REQUEST ••

CRi'ATE-170 REQUEST Format •••
Restrictions on the NOS Tape Files ••
CREATE 170 REQUEST Examples •••

ClIANGE 170-REQUEST ••
CHANGE-170 REQUEST Format •••
CHANGE-170-REQUEST Example ••

DISPLAY TAPE LABEL ATTRIBUTES •••
DISPLAY TAPE LABEL ATTRIBUTES Format ••
DISPLAY-TAPE-LABEL-ATTRIBUTES Examples ••

DETACH FILE-•••• :-••••• :-••••••••••••••••••••••••.••
DETACH FILE Format ••
DETACH-FILE Example •••

Character Data Files With Tape Migration Commands •••••••••••••••••••••••••••••••••••••
Binary Data Files With Tape Migration Commands ••
Multifile Sets With Tape Migration Commands •••

12-53
12-53
12-54
12-54
12-57
12-60
12-63
12-64
12-66
12-70
12-71
12-72
12-78
12-78
12-78
12-78
12-79
12-81

FORTRAN and ~OBOL File Migration Aids 12

The FORTRAN and COBOL File Migration Aids enable you to access and migrate your FORTRAN and COBOL
data files from NOS to NOS/VE.

FORTRAN File Migration Aid

The FORTRAN File Migration Aid (FORTRAN FMA) enables a FORTRAN program executing on NOS/VE to
access NOS files for two purposes:

Migrate files, which allows the program to automatically migrate the NOS input files to
NOS/VE as the files are read.

Extended access, which allows the program to read and write NOS files.

The description of using FORTRAN FMA is divided into the following sections:

Overview of FMA

Diagrams processing with FMA and discusses general use of FMA.

File and FORTRAN Requirements

Details requirements that your files and your program must meet to use FORTRAN FMA.

Steps in Executing FORTRAN FMA

Lists the required steps and summarizes them.

FILE Command for CYBER 170 Files

Provides detailed information on describing the CYBER 170 files to FMA. (Except for NOS
tape files on a NOS/VE tape drive, every CYBER 170 file used with FMA must be described
in a FILE command. NOS tape files on a NOS/VE tape drive require a CREATE_170_REQUEST
command.)

FORTRAN FHA Command Descriptions

Describes command syntax.

Examples

Shows jobs that create CYBER 170 files and migrates them with FMA.

Execution Considerations

Provides miscellaneous details about FMA execution and file processing.

Revision E FORTRAN File Migration Aid 12-1

FORTRAN FMA Overview

FORTRAN FMA can execute with regular FORTRAN application programs compiled in the normal way. At
execution time, you call FMA and execute ~he program through FMA. FMA provides for reading or
migrating a CYBER 170 file. The following diagram shows the processing flow for migrating a file.

+---------+

I
CYBER 170

Input
File

+----+----+
~ +----------+ +-----------+ +----------+ +---------------+

1
:g~~~ 1-----> 1 ~~!~~=r 1-----> 1 ~~~:~!m 1------> 1 !~hE~~1~~!ng 1
Source Program

+----------+ +-----------+ +----------+ +-------+-------+
~ +-----------+

NOS/VE
Migrated
File

+-----------+

The following diagram shows the processing flow for reading from and writing to a' CYBER 170 file:

+----------+
NOS/VE
FORTRAN ----->
Source

+----------+

+-----------+
I FORTRAN
\ Compiler ----->

+-----------+

+---------+
I
CYBER 170\

File
+----+----+

t +----------+ +-----------------+
I Object I I FMA Executing I
\ Program \------>. FORTRAN program I
+----------+ I

+-----------------+

FMA provides two distinct types of file access: migration and extended access. You specify either
type of access for your files when you execute your program through FMA.

Migration

The following diagram illustrates migration:

+---------------+ +----------------+ +-----------------+
CYBER 170 Program NOS/VE Migrated
Input Data -------> Executing -------> File
File with FMA for (Target File)
(Source File) File Migration

+---------------+ +----------------+ +-----------------+

12-2 Migration From NOS to NOS/VE Revision C

Each FORTRAN READ of the source file results in FMA writing a record to the target file. FORTRAN
statements do not reference the target file, only the source file. You associate your source and
target files in the command that executes your program with FMA.

Migration processing is intended to migrate complete files. When migration begins (when your
program opens the file), both the source and target files are positioned at
beginning-of-information (BOI). Any data in the target file is lost.

Extended Access

Extended access allows your FORTRAN program to read or write a NOS file. No migration of the
file occurs. Your program can only read the CYBER 170 file.

Using Regular NOSjVE Files

When using FMA, your program can use any number of NOS/VE files for normal input/output
processing. FMA assumes that all files your program references are NOS/VE files unless you
explicitly specify that the file is a CYBER 170 file in a command to FMA (namely,
EXECUTE_MIGRATION_TASK).

Using Migration Programs or Subprograms

Although FORTRAN FMA is intended to be used with regular applications programs, there are
situations in which you would want to write a FORTRAN program or subprogram to migrate files.
This can occur when the applications program does not read a file sequentially or completely or
opens and closes the file several times. Because FHA migrates only data that is read, and
positions migration files at BOlon each open and close, the regular program cannot migrate the
whole file.

When you use a migration subprogram, you can have the subprogram read the entire file (migrating
it) before execution of the regular application begins. The read statements in the subprogram
must be equivalent with respect to data type and position to the read statements in the
applications program. In this situation, input/output statements reference files as follows:

Migration subprogram: READ oldfile
Regular processing: READ/WRITE migrated-file

File and FORTRAN Requirements for FMA

The FORTRAN program and file being accessed or migrated must meet the following requirements to
be used with FMA:

1. The FORTRAN statements used in accessing and migrating a NOS file must provide for one of the
following types of input processing:

Formatted READ (sequential or direct access)

Unformatted READ (sequential or direct access)

List directed READ

NAMELIST READ

A brief review of FORTRAN input/output (I/O) follows this list of file and FORTRAN
requirements.

CYBER 170 files used with the following FORTRAN I/O processing cannot be handled by FMA: by
buffer I/O, mass storage I/O, and by CYBER Record Manager (CRM) subroutine calls. If your
files are of these types, reconsider your migration plan. See Migrating FORTRAN Programs
discussion in chapter 14 for suggestions for migrating files of each type.

Revision F FORTRAN and COBOL File Migration Aids 12-3

I

I

2. The FORTRAN program must execute on NOS/VE. In other words, the FORTRAN program must be
migrated. (For the statements supported by FMA, there are few FORTRAN program migration

I considerations. However, for information about migrating FORTRAN programs, see chapters 13
and 14.)

3. In both the CYBER 170 and NOS/VE versions of the program, the READ·statements used in reading
or migrating the CYBER 170 files must be equivalent with respect to data type and position.

4. To migrate the entire file, the general rule with some exceptions is: Only data that the
program reads is migrated. The detailed rules for complete file migration are:

For formatted, list directed, and NAMELIST sequential files -- each record must be read
although all data in each record does not need to be read. For formatted sequential
files, data records skipped by means of a slash (/) in the format specification are
migrated although not read.

For unformatted sequential files -- all data in each record and all records must be read.

For formatted direct files -- all records must be read. Reading a partial record causes
the whole record to be migrated.

For unformatted direct files -- all data in each record and all records must be read.

These requirements do not apply to a program using CYBER 170 file with the FMA extended
access feature.

5. Character data in the file must be in 63- or 64-character display code format.

6. Data of type BOOLEAN can be read and migrated as a bit pattern.

In general, when boolean data is present, FORTRAN source code changes are probably necessary
when migrating the program to NOS/VE. You need to determine your migration strategy. For
information about migrating boolean data. see the discussion of boolean data in chapter 14,
Migrating FORTRAN Programs. For information about how FMA handles boolean items, see the

I discussion of Migrating Boolean Items later in this chapter.

These items complete the FORTRAN and file requirements for using FMA.

FMA issues informative messages for conditions it encounters in migrating files. See the FMA
CONSIDERATIONS section of this chapter for information on how FMA handles exceptions and file
positioning.

Review of FORTRAN I/O

This review shows code that implements input/output (I/O) supported by FORTRAN FMA. These
descriptions should help you identify the kind of I/O used in your program. For more
information, see the FORTRAN Language Definition Usage manual.

Sequential or Direct

In a sequential access file, records are written and read in sequential order. To specify that a
file is a sequential access file, the FORTRAN program includes the ACCESS='SEQUENTIAL' specifier
on the OPEN statement for the file. If the ACCESS specifier is omitted, the file is assumed to
be a sequential access file.

A FORTRAN direct access file provides random access of records (records can be read or written in
any order). To specify that a file is a FORTRAN direct access file, the FORTRAN program
specifies ACCESS='DIRECT' on the OPEN statement for the file.

12-4 Migration From NOS to NOS/VE Revision F

Formatted I/O

FORTRAN formatted I/O is characterized by a format specification used to describe the data being
read or written. The following example describes reading 10 real numbers (F descriptor) from
unit 5:

READ (5,100) (ARRAY(I),I=1,10)
100 FORMAT (5F7.2)

A formatted I/O applies to both sequential and direct access files.

Unformatted I/O

FORTRAN unformatted I/O does not use a format specification. The following example reads 10 real
numbers from unit 5:

REAL ARRAY (1 0)

READ (5,ERR=99) ARRAY

List Directed I/O

FORTRAN list directed I/O involves the conversion of records according to compiler-defined
formatting rules (without an explicit format specification). The following example reads 10
floating point numbers from unit 5:

REAL ARRAY (1 0)

READ (5,*) ARRAY

NAMELIST I/O

NAMELIST I/O permits formatted input of groups of variables and arrays by identifying a group
name instead of a format specification. For NAMELIST I/O, a NAMELIST statement must associate a
group name used in the READ statement with individual variables or arrays. For example of a
NAMELIST READ of unit 5, items QUANT and COST are read in the NAMELIST group VAL:

NAMELIST /VAL/QUANT,COST

READ (5, VAL)

Steps in Executing FORTRAN FMA

Each of the following steps is required to use FMA.

1. Migrate the NOS FORTRAN 5 program to NOS/VE. (For detailed information about this process,
see chapters 13 and 14.)

2. Compile the FORTRAN program on NOS/VE and write the object code to the binary file (LGO is
the default file name).

3. For a NOS tape file on a NOS/VE tape drive, enter a CREATE_170_REQUEST command.

Revision F FORTRAN and COBOL File Migration Aids 12-5 I

4. To ensure correct values for the record type and block type of each output NOS/VE migrated
file, use a SET_FILE_ATTRIBUTES command:

SET FILE ATTRIBUTES FILE=output file
-BLOCK TYPE=keyword ••

RECORD_TYPE=keyword

For more information about which values to use for BLOCK TYPE and RECORD TYPE, see the
CYBIL File Interface Usage manual or the FORTRAN Language Definition Usage manual.

5. Call the FMA utility. This call opens the migration environment and enables you to execute
the commands available to migrate files. The command is:

6. Set up a connection to the CYBER 170 to enable the execution of NOS commands. The command
is:

7. Attach and describe the CYBER 170 files by specifying NOS commands in the EXECUTE COMMAND
(EXEC) command as follows:

EXECUTE COMMAND COMMAND='NOS command string.' STATUS=status

The NOS command is a string (uppercase or lowercase letters) in the NOS/VE command.
Terminate the NOS command with a period. Enclose the NOS command in apostrophes. The
STATUS parameter is optional in the command. (NOTE: Never execute a NOS RETURN,* or CLEAR
command while FMA is active; doing so returns files used by FMA causing FMA to fail.
Executing an EXIT control statement also causes FMA to fail.)

7.1. For a CYBER 170 disk file, make the file local by executing NOS commands such as GET or
ATTACH. For example, attaching file AFILE:

FA/execute_command command='ATTACH,AFILE/PW=XYZ.'

For a tape file to be migrated through the interstate connection, execute a NOS REQUEST
command. For example:

FA/execute_command command='REQUEST, ••• '

7.2 Describe your file with a FILE control statement, or, for a CYBER 170 tape file on a NOS/VE
tape drive, with a CREATE 170 REQUEST command. For example, disk file AFILE is used with
formatted, sequential FORTRAN-input/output:

FA/execute_command command='FILE,AFILE,FO=SQ,RT=Z,BT=C,MRL=170.'

7.3 Repeat steps 7.1 and 7.2 for as many CYBER 170 files as your application uses.

8. Close the connection to the CYBER 170. You must close this connection before you can
execute the program. The command is:

CLOSE_ENVIRONMENT (CLOE or QUIT)

.12-6 Migration From NOS to NOS/VE Revision F

9. Specify executing the ~igration task. The command (simplified) is:

10.

EXECUTE MIGRATION TASK 00

MIGRATION FILES=«nosfile-1,nvefile» <---- To migrate
EXTENDED ACCESS FILES=«nosfile-2,C170» •• <-- To read/write only
FILE=LGO-.. <~------------------------------- Executes program
PARAMETER='string' <--------------~----------- Passes parameters

The PARAMETER parameter specifies parameters to be passed to the program (the parameters
that normally appear with LGO).

Specify the EXECUTE_MIGRATION_TASK command for as many migration programs as you wish to
execute.

Terminate use of FORTRAN FMA. The command is:

CLOSE ENVIRONMENT (CLOE or QUIT)

Summary of the Steps Required in Using FMA

1. Migrate the NOS FORTRAN 5 program to NOS/VE.

2. Compile the FORTRAN program on NOS/VE.

3. For a CYBER 170 tape file on a NOS/VE disk drive, execute a CREATE_170_REQUEST command.

4. Enter a SET FILE ATTRIBUTES command to ensure the correct values for the NOS/VE migrated
file for block type and record type.

5. Enter command: OPEN_FILE_MIGRATION_AID (OPEFMA)

6. Enter command: OPEN_170_STATE (OPE1S)

7. For CYBER 170 disk files, make the files local and describe them in a FILE command. For
example:

8.

9.

10.

FA/execute command
FA/execute:command

command='ATTACH,AFILE/PW=XYZ.'
command='FILE,AFILE,FO=SQ,RT=Z,BT=C,MRL=170.'

For CYBER 170 tape files to be migrated through the interstate connection, execute a
REQUEST command and describe the files in a FILE command.

Repeat the commands for as many CYBER 170 files as your program reads.

CLOSE_ENVIRONMENT (CLOE or QUIT)

Execute the migration task. The command is:

EXECUTE MIGRATION TASK ••
MIGRATION FILES=«nosfile-1,nvefile» <----- To migrate
EXTENDED ACCESS FILES=«nosfile-2,C170» <-- To read/write only
FILE=LGO-.. <~-------------------------------- Executes program
PARAMETER='string' <--------------------------- Passes parameters

CLOSE ENVIRONMENT (CLOE or QUIT)

Revision F FORTRAN and COBOL File Migration Aids 12-7

I

I

I

File Command for CYBER. 170 Files

The CYBER 170 files must be described in a FILE command. A FILE command provides information for
a file information table (FIT) used by CYBER Record Manager to process the file.

If the job stream for your FORTRAN program includes FILE commands (also called FILE control
statements), you can use information from those FILE commands in your FMA job. If, however, your
FORTRAN program uses default file information, you need to determine the appropriate file
information according to the type of input/output processing for the file.

Information for FILE commands is described in this chapter in topics as follows:

Required FILE command information

Typical FILE commands

Determining record length

Background information on CYBER 170 file is available in appendix E, FORTRAN Default FIT Fields.
This appendix lists default values provided for files by FORTRAN on NOS.

Required File Command Information

The following fields must be specified on the FILE command unless the default value is
appropriate (default values supplied by NOS CYBER Record Manager apply). (For NOS tape files on
a NOS/VE tape drive, file attributes are specified on the CREATE_170_REQUEST command.)

FILE,lfn,FO=org,RT=type,BT=type,MRL=length,EO=A.

lfn File name (on the CYBER 170).

FO File organization. The organizations are SQ for sequential (default) or WA for word
addressable.

RT Record type. The default value is W (control word).

BT Block type. The default value is I (internal blocking).

MRL Maximum record length in characters. Only direct access files require the exact
record length; for others, some length equal to or longer than the longest record
works. FL can be specified instead of MRL.

EO Error options. EO=A for accept bad data is recommended for tape files so that the
data is accepted even though parity errors occur. The FORTRAN default is similar;
however, the CYBER Record Manager default used by FMA is T (terminate). The CRM
default works for disk files.

The following file information must apply to the CYBER 170 file, but usually the default values
are appropriate:

IC Internal code. 63-character display code (IC=D63) or 64-character display code
(IC=D64).

These fields are not documented in the CYBER Record Manager Basic Access Methods reference manual
but have been added to the file information table for file migration. You should not be
concerned about the values for these fields unless file processing at your site changes the
default values.

112-8 Migration From NOS to NOS/VE Revision F

Typical File Commands

If your NOS FORTRAN program did not specify a file command for the files you are migrating, the
file commands required to describe the files to FMA are shown below.

FORTRAN I/O

Sequential I/O:
Formatted
NAMELIST
List Directed

Sequential I/O:
Unformatted

Direct Access I/O:
Formatted and
Unformatted

FILE command

FILE,lfn,FO=SQ,RT=Z,BT=C,EO=A,MRL=length.

FILE,lfn,FO=SQ,RT=W,BT=I,EO=A,MRL=length.
or using CRM defaults: FILE,lfn,EO=A,MRL=length.

FILE,lfn,FO=WA,RT=U,BT=C,EO=A,MRL=length.

lfn - CYBER 170 file name.

length - Maximum record length (CYBER 170 length in characters). Exact length for direct
access files. Exact length or greater for sequential files.

You need to determine the appropriate record length for the files you are migrating. The
information on determining record length follows.

Determining Record Length

To determine record length, you need to determine the space the data in an input/output list
requires. Aosume your program describes and reads data as follows:

CHARACTER*9 C(4)
REAL RAY(S)
INTEGER lRAY(3)
LOGICAL RIGHT
OPEN (2, ACCESS='DIRECT', FORM='UNFORMATTED',RECL=??)
READ (2) C, RAY, I RAY , RIGHT

Data read when the READ statement executes makes up a record (the data items make up the list).

When using FMA to read or migrate a file, you must determine record length in CYBER 170 figures
to specify in the FILE command. Additionally, if you are using direct access files, you need to
specify record length in the RECL parameter (FORTRAN OPEN statement) in lengths for NOS/VE
characters or words.

The record length for NOS must include the space required for word alignment. Calculating record
length on NOS is easiest if you calculate the number of words.

On NOS/VE, word alignment is not a consideration. Calculating record length is easiest if you
calculate the number of characters.

CYBER 170 words contain ten 6-bit bytes (10 characters). NOS/VE words contain eight 8-bit bytes
(8 characters).

Revision F FORTRAN and COBOL File Migration Aids 12-9

I

For example, record length is figured for a NOS/VE FORTRAN program that uses data items as
follows:

CHARACTER*9 C(4)
REAL RAY(5)
INTEGER IRAY(3)
LOGICAL RIGHT
OPEN (2,ACCESS='DIRECT',FORM='UNFORMATTED',RECL=14)
READ (2,REC=1) C, RAY, lRAY, RIGHT

CYBER 170
Words

4t
5
3
1

tc word length (9*4 36 + 9 45. Divide by 10, drop remainder

The record length is:

CYBER 170: 13 words (13 times 10 characters/word = 130 characters)

NOS/VE
Characters

36
40
24

8

4 words)

NOS/VE: 108 characters (108+7=115. Divide by 8, drop remainder= 14 words)

For the NOS FILE command, the record length is specified in characters:

I /execute_command command='FILE,filename,FO=WA,RT=U,BT=C,EO=A,MRL=130.'

Record Length Rules for CYBER 170

1. Count one word for each noncharacter item except for double precision and complex items,
which count as two words.

2. Calculate the length in words of each continuous group of characters by adding 9 to the
combined length of the items in characters, dividing the result by 10, truncating the
fractional part.

3. For the record length in words, add the sums resulting from steps 1 and 2.

4. For record length in characters, mUltiply the sum from step 3 by 10.

When using FMA, you need record length in characters for MRL (or FL) specified in the FILE
command.

Record Length Rules for NOS/VE

1. Count each noncharacter item as 8 characters except for complex and double precision items,
which count as 16 characters.

2 Calculate the total number of characters in all the character items.

3. For the record length in characters, add the lengths calculated in rules 1 and 2.

4. For the record length in words, use the sum calculated in rule 3, add 7, divide the result by
8, and truncate the fractional part. (The record length in words is required only for the
FORTRAN OPEN statement for unformatted direct I/O.)

12-10 Migration From NOS to NOS/VE Revision F

FORTRAN FMA Comman" Descriptions

This section provides and overview and detailed descriptions of FORTRAN FMA commands.

The syntax of FORTRAN FMA commands follows the System Command Language (SCL) conventions. (For
an introduction to SCL command conventions, see chapter 2.)

The command formats use an SCL convention for showing syntax. Each appears on a separate line
below the command. If the parameters were listed in this way in use, an ellipsis must appear at
the end of each continued line.

The commands are:

OPEN FILE MIGRATION AID
OPEN-170 STATE -
CLOSE ENVIRONMENT
EXECutE COMMAND
EXECUTE-MIGRATION TASK - -

FORTRAN FMA is a NOS/VE command utility. The OPEN FILE MIGRATION AID command activates the
utility. When using the utility, you can issue any Nos7vE command.

Overview of FORTRAN FMA Commands

FORTRAN FMA commands must be entered in a particular order because the commands provide a
processing path through a migration environment. Each command either opens a specialized
processing environment, executes an operation in the environment, or closes an environment. The
following diagram indicates execution order; commands can be executed only within the containing
bracket.

+-)OPEN FILE MIGRATION AID - - -
+--)OPEN 170 STATE

I -E~CUTE COMMAND

+--)CLOSE ENVIRONMENT

EXECUTE MIGRATION TASK

+-)CLOSE ENVIRONMENT

Opens FORTRAN FMA environment.

Opens access to CYBER 170.

Executes CYBER 170 commands.

Closes access to CYBER 170.

Executes FORTRAN program and indicates the
CYBER 170 file to be read or migrated.

Closes FORTRAN FMA environment.

The OPEN FILE MIGRATION AID (OPEFMA) command opens the file migration environment. This command
must be executed to use any other FORTRAN FMA command.

Format:

Parameter:

OPEN FILE MIGRATION AID - - -STATUS=variable

Status variable; optional parameter. See the discussion of the status variable in I
chapter 4.

After this command is executed, the system prompts for input as follows: FA/

Revision F FORTRAN and COBOL File Migration Aids 12-11

I Example: /open file migration aid
FA/ - - . -

I
or

/opefma
FA/

The OPEN 170 STATE command opens access to the CYBER 170 and enables the user to execute NOS
commands:- -

Format:

Parameter:

Example:
or

OPEN 170 STATE
STATUS=variable

Status variable; optional parameter. See the discussion of the status variable in
chapter 4.

FA/open_170_state

FA/opeis

CLOSE_ENVIRONMENT (CLOE)

The CLOSE ENVIRONMENT (CLOE or QUIT) command closes the current environment so that subsequent
commands are executed in the containing environment.

Format:

Parameter:

CLOSE ENVIRONMENT
STATUS=variable

Status variable; optional parameter. See the discussion of the status variable in
chapter 4. I Example: /open file migration aid
FA/open_170_state -

FA/close_environment <----- Closes the CYBER 170 connection but remains in the
FORTRAN FMA utility.

EXECUTE_COMMAND (EXEC)

The EXECUTE COMMAND command provides for executing a NOS command.

You can specify one or more NOS commands in EXECUTE COMMAND. Any diagnostics issued by the NOS
commands are written to the NOS/VE job log. Thus, if an error occurs, you can determine which
NOS command caused the error by examining the job log. Use the DISPLAY_LOG command to display
the job log.

CYBER loader sequences are processed as a single command; therefore, the entire sequence must be
entered as a list of NOS commands in one EXECUTE COMMAND.

Format: EXECUTE COMMAND
COMMAND='nos-command.'
STATUS=variable

12-12 Migration From NOS to NOS/VE Revision F

EXECUTE_COMMAND (EXEC) P~rameters

Parameters:

COMMAND

STATUS

A NOS command entered as a string, terminated with a period, and enclosed in
apostrophes. Maximum string length is 80 characters. For example, attaching file
AFILE:

FA/execute_command command='ATTACH,AFILE/PW=CAT.'

Optionally, NOS commands can appear as a list of strings. NOS receives each
string as a separate line. For example:

FA/execute_command command=('LDSET=OLIB.'
'LGO.')

If this command is used in an SCL procedure, SCL can perform parameter
substitution. The command is passed to NOS after substitutions occur.

Because FMA uses some NOS local files as working files, you must not issue NOS
commands that might affect these files. For example, do not execute a NOS CLEAR
or RETURN,* command or an EXIT control statement.

Status variable; optional parameter.
in chapter 4.

See the discussion of the status variable

EXEC UTE_ COMMAND (EXEC) Examples

Specifying commands with the parameter name:

FA/execute command command='ATTACH,DATAFIL/UN=OTHNAME.'
FA/exec c=~FILE,DATAFIL,FO=SQ,RT=Z,BT=C,EO=A,FL=2000.'

Specifying commands by position:

FA/execute command command='ATTACH,FILE1/UN=OTHNAME.'
FA/exec 'ATTACH,FILE2.'

EXECUTE_MIGRA TION_ TASK (EXEMT)

The EXECUTE_MIGRATION_TASK (EXEMT) command specifies the files to be read/written, or to be
migrated, and executes the FORTRAN object program.

I

I

I

I

I

This command is much like the NOS/VE EXECUTE TASK command: most of the EXECUTE_TASK parameters I
are available on EXECUTE MIGRATION TASK; the-EXECUTE MIGRATION TASK includes two additional
parameters, which are th; MIGRATION FILES and EXTENDED-ACCESS_FILES parameters.

Revision F FORTRAN and COBOL File Migration Aids 12-13

I

Format: EXECUTE MIGRATION TASK
MIGRATION FILES=«c170-file-name,c180-file-name,C170 TO C180»
EXTENDED ACCESS FILES=«file-name,keyword» - -
FILE=list-of-files
PARAMETER='string'
LIBRARY=list-of-files
MODULE=list-of-modules
STARTING PROCEDURE=program-name
LOAD MAP';"file
LOAD-MAP OPTION=list-of-keywords
PRESET VALUE=keyword
TERMINATION ERROR LEVEL=keyword
STACK_SIZE=lnteger
DEBUG INPUT=file
DEBUG-OUTPUT=file
ABORT FILE=file
DEBUG-MODE=boolean
STATUS=status variable

EXECUTE_MIGRATION_ TASK (EXEMT) Parameters

I Two parameters are unique to EXECUTE MIGRATION TASK and provide capabilities as follows:

I

I

MIGRATION FILES

EXTENDED ACCESS FILES

Specifies the names of one or more files to be migrated as they are
read by your program. This parameter also specifies the direction
of migration, which must be CYBER 170 to CYBER 180. Each item of
the list is of the form: - - - -

or
«c170-file-name,c180-file-name,C170_TO_C180»

«c170-file-name,c180-file-name»

where c170-file-name is the name of a CYBER 170 file and
c180-file-name is the name of a CYBER lBO file. C170 TO C180 is a
keyword specifying the direction of migration; no other keywords are
available and C170 TO ClBO is the default.

For CYBER 170 tape files on a NOS/VE tape drive, c170-file refers to
a temporary NOS/VE file associated with a NOS tape file by a
previous CREATE 170 REQUEST command. c170-file and clBO-file must
not be the same-na~; if they are, FMA issues an error message and
terminates.

Specifies a file that is to be read or written by your program, but
is not to be migrated. The value can be a list; each item can be in
one of these forms:

c170-file-name
(c170-file-name,C170)
(c180-file-reference,C180)

where c170-file-name and clBO-file-name specify the CYBER 170 and
CYBER 180 files to be read or written. C170 and ClBO are keywords
that indicate if the file you specified is a CYBER 170 or 180 file.

For CYBER 170 tape files on a NOS/VE tape drive, c170-file refers to
a temporary NOS/VE file associated with a NOS tape file by a
previous CREATE_170_REQUEST command. c170-file and clBO-file must
not be the same name; if they are, FMA issues an error message and
terminates.

12-14 Migration From NOS to NOS/VE Revision F

The following table indicates the possible combinations that can be specified for the
EXTENDED ACCESS FILES (EAF) parameter; for each combination, the table shows whether a 170 or 180 I
file is used. -

File name
specified

File name
not specified

C170 keyword C180 keyword No keyword
specified specified specified

+----------------+----------------+--------------+

l EAF file is I EAF file is I EAF file is I
a 170 file a 180 file a 170 file

+----------------+----------------+--------------+

I error I error I error I
+----------------+----------------+--------------+

If EXTENDED_ACCESS_FILES is not specified for a file, the file is a 180 file.

The other parameters are common to the EXECUTE TASK command and work the same way in both
commands. They are:

FILES (F)

PARAMETER (p)

Specifies either the object files or object library files whose modules are
unconditionally loaded. A module is object code acceptable to the loader:
in this situation, a compiled FORTRAN program or subprogram. This parameter
is optional.

If FILE is omitted, the STARTING PROCEDURE parameter specifies the object
module at which execution begins.

If both FILE and STARTING PROCEDURE parameters are omitted, the loader
attempts to execute an object program on file $LOCAL.LGO.

Optional parameter that provides a method of passing values to the executing
program. The parameter is just a string to be added to the execution
command. Enclose the complete parameter string in apostrophes ' •• '.

I

If a list of parameters is specified, the parameters must conform to the
format for parameter lists described in the FORTRAN Language Definition I
Usage manual.

Three classes of parameters can appear in this parameter:

a. File Name Substitution Parameters

b. System Command Language Parameters

c. $PRINT_LIMIT

The $PRINT LIMIT and either seL parameters or file name substitution
parameters-(but not both) can appear on a given execution command.

In the PARAMETERS parameter, you can substitute new file names for existing file names at
execution time just as you can specify file names on a name call execution of your FORTRAN
program. (The same rules apply in both situations for file name substitution.) File names
specified as parameters are substituted for file names associated with unit names declared on the
PROGRAM statement in the FORTRAN program.

If you refer to the same file in the PARAMETERS parameter and in other parameters of the
EXECUTE_MIGRATION_TASK command, specify the same file name in all parameters.

The target file in the MIGRATION FILES command is not affected by file name substitution. The
target file is known to the system only by the file reference specified in the MIGRATION FILES
parameter.

Revision F FORTRAN and COBOL File Migration Aids 12-15

Unit names declared in the PROGRAM statement are associated with a default file name unless you
substitute a different name. For units INPUT and OUTPUT, the default files are $INPUT and
$OUTPUT, respectively. For other units, the default files have the same name as the unit. For
example:

PROGRAM TEST (INPUT, OUTPUT, TAPEl, TAPE2)

Each unit declaration in the PROGRAM statement defines a valid parameter that can appear in the
PARAMETER parameter. These parameters are specified on the execution command in the form:

PARAMETER='unitname=newname'

I For example: parameter='tapel=filea'

The file name specified by newname (FILEA) is substituted for the file name associated with the
specified unit name.

In the PARAMETERS parameter, you can specify parameters that provide a method of passing
information between an executing program and the System Command Language (SCL). The parameter
names and values are accessed within the program through the SCL subprogram calls.

Any SCL parameters appearing in the PARAMETERS parameter must have been defined by a C$ PARAM
directive in the source program. This directive establishes a detailed definition of the
parameters. A parameter specified on an execution command must conform to its definition as
declared in the C$ PARAM directive.

SCL parameters have the general form:

PARAMETERS='parameter name=(list-of-values)'

SCL parameters cannot be used with file substitution parameters.

I Refer to the SCL Language Definition Usage manual for a detailed description of SCL parameters.
Refer also to the FORTRAN for NOS/VE Language Definition Usage Manual for descriptions of the SCL
subprogram calls and examples of SCL parameters.

I

The $PRINT LIMIT parameter specifies the maximum number of print lines that the executing program
can write to files $OUTPUT and $ERRORS. The $PRINT_LIMIT parameter appears in the execution
command as follows:

PARAMETER='$PRINT LIMIT=lim' or
P='$PL=lim' -

The parameter $PRINT LIMIT and its value are entered as a string; lim is the desired print limit
(decimal number of lines).

For example, the following command begins execution of the a program on LGO and sets the runtime
print limit to 10000 lines.

FA/execute migration task extended_access_files=nosfile
file=lgo •• -
parameter='$print_limit=10000'

LIBRARY (L)

MODULE (M)

Specifies the libraries to be added to the program library list
for this execution. These libraries remain in effect only for the
current EXECUTE MIGRATION TASK command. These libraries remain in
effect only for-the curre;t EXECUTE MIGRATION TASK command and are
searched before any libraries in the job library list.

Specifies a list of modules to be unconditionally loaded from
object libraries in the program library list~ The modules are
loaded in the order they are specified in the list.

12-16 Migration From NOS to NOS/VE Revision F

STARTING PROCEDURE (SP)

LOAD MAP

LOAD MAP OPTION (LMO)

PRESET VALUE (PV)

TERMINATION ERROR LEVEL
(TEL) -

STACK SIZE (SS)

DEBUG INPUT (DI)

DEBUG OUTPUT (DO)

ABORT FILE (AF)

Revision F

Specifies the name of the entry point where execution begins.
This is usually the program name. Optional parameter.

If this parameter is omitted, the first module residing in the
file specified by the FILE parameter is used. ($LOCAL.LGO is the
default file.)

This parameter works in the same way as the STARTING PROCEDURE
parameter of the EXECUTE TASK COMMAND. See the SCL Object Code
Management Usage manual for more information.

Specifies the file to which the load map is to be written; this
also specifies the positioning of the load map file.

Specifies what information is to be included in the load map. The
values you can specify for LMO are:

ALL -- all of the following information is to be included

NONE -- no load map is to be written

SEGMENT segment map

ENTRY_POINT -- entry point map

CROSS-REFERENCE entry point cross-reference map

Specifies the value to be stored in all unused data words. The
values you can specify for PV are:

ZERO -- all zeros

FLOATING POINT INDEFINITE -- floating-point indefinite value

INFINITY -- floating-point infinite value

Specifies the level of error that, if encountered during loading,
will terminate program execution. The values you can specify for
TERMINATION ERROR LEVEL are: I

WARNING -- terminates when a warning, error, or fatal error
occurs

ERROR terminates when an error or fatal error occurs

FATAL terminates when a fatal error occurs

Specifies the upper limit in bytes of the run-time stack used for
procedure call linkages and local variables. The value you
specify is rounded up to the nearest real page size boundary.

Specifies the file from which Debug is to read its subcommands.
These sub commands are executed only when DEBUG MODE=ON.

I

Specifies the file to which Debug is to write its output. Output •
is written only when DEBUG~ODE=ON.

Specifies the file containing the debug commands to be executed if
the program aborts. These commands are executed only if the
program is not executed in debug mode.

FORTRAN and COBOL File Migration Aids 12-17

DEBUG MODE (DM) Indicates if the program is to be executed in debug mode. The
values you can specify for DEBUG_MODE are:

ON -- program is executed under debug control

OFF -- program is executed without debug control

STATUS Status variable; optional parameter.

EXECUTE_MIGRATION_ TASK (EXEMT) Examples

FORTRAN program on source file BIGJOB (object file LGO) reads CYBER 170 file BINDATA and migrates
it to NOS/VE file NEWFILE:

/fortran input=bigjob
/set file attributes file=$user.newfile record_type=variable block_type=system_specified
/open file migration aid
FA/open 170 state -
FA/execute command command='ATTACH,BINDATA.'
FA/execute-command command='FILE,BINDATA,FO=SQ,RT=W,BT=I,MRL=90.'
FA/close environment
FA/execute migration task, ••

migratTon_files=«bindata,$user.newfile,c170_to_c180» ••
file=lgo

FA/close_environment

FORTRAN program reads CYBER 170 files FLIGHT and AIRPORT which are specified in the
EXTENDED_ACCESS-YILES parameter. The object program resides on file BINARY. The command is:

FA/execute_migration_task extended_access_files=«flight,c170),(airport,c170» file=binary

FORTRAN program (as above) reads and migrates the files specified in the MIGRATION FILES
parameter:

FA/execute migration task migration_files=«flight,$user.flight),(airport,$user.airport»
file=binary -

The following command begins execution of a program in object file LGO (specified by parameter
position), sets the runtime print limit to 10000 lines, and accesses CYBER 170 file NOSFILE as an
extended access input file (no migration):

FA/execute migration task extended access file=nosfile 19o ••
parameter='$pri~_limit=lOOOO'

File Name Substitution Example. Program SIMULAT on object file LGO declares units TAPE1 and
TAPE2. File names A and F are substituted for the NOS files associated with units TAPE1 and
TAPE2. NOS/VE file names are not affected by the substitution; they retain the names designated
in the MIGRATION_FILES parameter ($USER.AIRPORT and $USER.FLIGHT).

PROGRAM SIMULAT (TAPE1,TAPE2)

/open file migration aid
FA/open 170 state -
FA/exec~te command command='GET,A.' <---------------- Specifies file name known on CYBER 170.
FA/execute-command command='GET,F.'
FA/execute-command command='FILE,A,FO=WA,RT=U,BT=C,EO=A,MRL=llO.'
FA/execute-command command='FILE,F,FO=SQ,RT=Z,BT=C,EO=A,FL=20.'
FA/close e~vironment
FA/execute migration task mf=«a,$user.airport),(f,$user.flight»

file=lgo, pa;ameter='tape1=a,tape2=f'
FA/cloe

• 12-18 Migration From NOS to NOS/VE Revision F

FMA Examples

FORTRAN FHA migration examples are:

Migrating an unformatted sequential file

Migrating two files (sequential list directed file and unformatted direct file)

Migrating an Unformatted Sequential File

This example illustrates migrating a CYBER 170 binary file BINDATA. The example consists of a
FORTRAN 5 program that creates the file and the NOS/VE migration task that migrates the file.

File BINDATA contains items declared and written as follows:

REAL RNUMS(5)
LOGICAL TRUTH
INTEGER INUMS(3)

WRITE (2) RNUMStTRUTH,INUMS

CYBER 170 Length

5 words
1 word
3 words

9 words (90 characters)

+-Sample Record--------------------------+---------+---------------------+

1.00 3.00 5.00 7.00 8.00 F 6 4 2

+--------------5 Real Items--------------+-Logical-+---3 Integer Items---+

The following NOS procedure creates the permanent unformatted sequential file BINDATA •

• PROC t RUNKENX.
DEFINE,BINDATA. <------------------------------- Defines NOS direct access file.
FTN5 t I=SOURCE tL=FTN50UT tREW.
LGO •
• DATA t SOURCE

PROGRAM WREXAMP
REAL RNUMS (5)
LOGICAL TRUTH
INTEGER INUMS(3)
DATA RNUMS /1.0,3.0,5.0,7.0 t8.0/
DATA TRUTH /.FALSE./
DATA INUMS /6,4 t 2/
OPEN (2, FILE='BINDATA', FORM='UNFORMATTED')
DO 10 1=1,10

10 WRITE (2) RNUMStTRUTH,INUMS
CLOSE (2)
END

Revision F FORTRAN and COBOL File Migration Aids 12-19 I

The task to migrate file BINDATA to NOS/VE file NEWFILE includes commands and the FORTRAN
program. The task is shown in figure 12-1.

+--+
create file connection $echo output <---------------- Displays executed commands.
collect text source <-------------------------------- Creates FORTRAN source file.

program mig1
C This program reads the binary file
C created on NOS. Run with FMA, the
C program migrates the file.

real ray(5)
integer iray(3)
log ical right
open (3, file='bindata', form='unformatted')
open (7, file='$output')
rewind 3
do 100 i=1,10
read (3) ray,right,iray <---------------------- Causes file migration.

100 write (7, fmt='(5f8.3,15,3i5)') ray,right,iray
close (3)
close (7)
end

** <--- Terminates source file text.
fortran i=source e=ftnout l=ftnout <----------------- Compiles the FORTRAN program.
" Start FMA "
setfa $user.newfile bt=ss rt=v
open file migration aid <---------------------------- Calls FORTRAN FMA.
open-170 state -
execute~ommand 'ATTACH,BINDATA.' <------------------ Attaches NOS file BINDATA.
exec 'FILE,BINDATA,FO=SQ,RT=W,BT=I,MRL=90.' <-------- Describes the file for FMA.
close environment
execUte migration task.. <------------------------- Specifies execution with FMA

mf=«bindata,$user.newfile,c170 to c1BO)) •• <----- Associates files
file=lgo <--------------------=--=----------------- Executes file LGO.

cloe <--- Closes FMA
delete_file_connection $echo output

+--+
Figure 12-1. Migration Task for Unformatted, Binary File.

Migration occurs as the program reads BINDATA •. To show the NOS file being read, the program
writes the values read from BINDATA to file OUTPUT. (To write to OUTPUT, the program uses the
automatic connection between $OUTPUT and OUTPUT. For information about standard files, see
chapter 4.)

Commands in the task include several processing steps. CREATE FILE CONNECTION specifies a file
connection between standard file $ECHO and file OUTPUT so that co~ands are displayed at the
terminal as the task executes. COLLECT TEXT writes the FORTRAN source code to file SOURCE. Other
commands specify FORTRAN compilation and using FORTRAN FMA.

You can run the task by putting the commands and program as listed in a NOS/VE file. Specify
execution of the file by entering the INCLUDE FILE command. For example, to execute a file named
FMAJOB1, specify:

/include_file file=fmajob1

• 12-20 Migration From NOS to NOS/VE Revision F

Migrating Two Files (Sequential, List Directed and Unformatted Direct Access)

This example assumes that an application on NOS computes statistics about test flights. The
application requires two files:

FORTRAN direct access file containing the location of airports around the word.

Sequential file containing departure and arrival airports for test flights.

The program obtains the departure and arrival airports from file FLIGHT and accesses location
information about the airports from file AIRPORT. The program is then assumed to use the data for
statistical analysis (not shown).

This comprehensive example is broken down into the following parts:

Description of the FORTRAN direct access file (AIRPORT)

FORTRAN direct access file creation job

Description of the list directed file (FLIGHT)

Two-file migration task using a subprogram

Description of the FORTRAN Direct Access File

A record in file AIRPORT contains the following information: airport code, terminal name, city,
state, latitude, and longitude. For example:

SFO SAN FRANCISCO INTL AIRPORT
037.75 N 122.45 W

SAN FRANCISCO CALIFORNIA, U.S.A.

In AIRPORT, however, latitude and longitude are contained in two arrays:

LL where LL(l) is latitude and LL(2) is longitude
D where D(l) is latitude direction and D(2) is longitude direction.

The data in file AIRPORT is declared and written as follows:

CHARACTER CODE*3,
CHARACTER TERMNL*29
CHARACTER CITY*19
CHARACTER STATE*25

REAL LL(2)
CHARACTER*l D(2)

Total

10 WRITE(2,REC=I)CODE,TERMNL,CITY,STATE,LL,D

CYBER 170 Length

3 characters
29 characters
19 characters
25 characters
76 characters --)

2 characters -)

The FILE command required to describe this file for execution with FMA is:

FILE,AIRPORT,FO=WA,RT=U,BT=C,MRL=110.

8 words
2 words
1 word

11 words

The maximum record length (MRL) must be specified in characters. A record in AIRPORT requires 11
words. (A word equals 10 characters.)

Revision F FORTRAN and COBOL File Migration Aids 12-21 I

FORTRAN Direct Access File Creation Job

The job to create the direct access file includes the program source file, the input data file,
and the commands. Assuming the program is in file SOURCE and the data is in indirect access file
TAPEl, the folluwing cowmands

FORTRAN I=SOURCE.
GET, TAPE1.
LGO.

Program Listing (on File SOURCE)

... \...- --------,,"c J:I .. vo .. aw.

PROGRAM CREWAF (TAPE1,TAPE2)
C CREATES A WORD ADDRESSABLE FILE FOR DIRECT ACCESS I/O.
C ONLY EVEN NUMBER RECORDS ARE WRITTEN TO SHOW RANDOM ACCESS.
C

CHARACTER CODE *3 , TERMNL*29
CHARACTER CITY*19, STATE*25
REAL LL(2)
CHARACTER*l D(2)
-OPEN(2,STATUS='NEW',FILE='AIRPORT',ACCESS='DlRECT',RECL=11)
DO 10 1=2,14,2
READ (l,40)CODE,TERMNL,CITY,STATE,LL(l),D(l),LL(2),D(2)

40 FORMAT (A3,lX,A29,lX,A19,lX,A25/3X,2(lX,F6.2,lX,A1»
10 WRITE(2,REC=I)CODE,TERMNL,CITY,STATE,LL,D

CLOSE (2)
PRINT *, , CREWAF COMPLETE'
END

Listing of Data File TAPEl (Input for AIRPORT)

FRA FRANKFURT-MAIN INTL AIRPORT
050.10 N 008.68 E

LHR HEATHROW AIRPORT-LONDON
051.47 N 000.45 W

FRANKFURT AM MAIN

LONDON

WEST GERMANY

ENGLAND

MEL MELBOURNE AIRPORT
037.75 S 144.97 E

MELBOURNE VICTORIA, AUSTRALIA

.ORY PARIS ORLY AIRPORT
048.87 N 002.03 E

FCO FIUMICINO AERO PORTO-ROME
041.83 N 012.33 E ,

SFO SAN FRANCISCO INTL AIRPORT
037.75 N 122.45 W

HND TOKYO INTL AIRPORT/HANEDA
035.67 N 139.75 E

112-22 Migration From NOS to NOS/VE

PARIS FRANCE

ROME ITALY

SAN FRANCISCO CALIFORNIA, U.S.A.

TOKYO JAPAN

Revision F

Description of the List Directed Fi~e

The records in list directed file FLIGHT consist of airport pairs representing the departure and
arrival airport for a test flight. Each airport is represented by the airport code and the record
number for the particular airport in file AIRPORT. The data in FLIGHT is as follows:

Arrival-Departure

MEL 06 HND 14
lIND 14 SFO 12
SFO 06 LHR 04
LHR 04 FRA 02
ORY 08 FCO 10

CYBER 170 Length

13 characters --) 2 words

The FILE command required to describe this file for execution with FMA is:

FILE ,FLIGHT ,FO=SQ,RT=Z ,BT=C,FL=20.

The field length (FL or MRL) is specified in characters.

Two-File Migration Task Using a Subprogram

The task to migrate CYBER 170 files AIRPORT and FLIGHT to NOS/VE permanent files $USER.AIRPORT
and $USER.FLIGHT is shown in figure 12-2. The task includes commands and the FORTRAN program.
Migration occurs as the program reads the files. The program reads file FLIGHT, retains the
record number of the airport record to use to migrate file AIRPORT.

+---+
create file connection standard file=$echo file=output
collect text output=source until='**colt end**'

program simulat (tapel,tape2)
C Performs statistical analysis on flights.
C Requires location of airports to calculate flight length.
C Array LL contains latitude and longitude in degrees •.
C Array D contains the direction for latitude and longitude.
C
C
C

call convert
C

call main
C

end

subroutine convert
C Migrates files: FLIGHT (SQ records of text flights)
C AIRPORT (WA records on air terminals)
C Reads and migrates file FLIGHT.
C Uses airport record numbers in file FLIGHT to read
C file AIRPORT by storing them in IRAY.
C Reads and migrates records in file AIRPORT.
C Items DEPART,ARRIVE,and CODE are airport codes.
C
C Items for file FLIGHT

character*3 depart,arrive
dimension iray(99)

+---(Continued on next page)--+

Figure 12-2. Migration Task for a Sequential and a Direct File

Revision F FORTRAN and COBOL File Migration Aids 12-23

I

I

I

+--(Continued from previous, page)---+

C Items in file AIRPORT
character code*3, termnl*29
character city*19, state*25
real 11(2)
character*1 d(2)

C
C read flight

c

print *, , Begin migrating FLIGHT'
open (2,file='flight')
do 10 1=1,99

10 iray(I) = 0
20 read (2,'(a3,lx,i2,lx,a3,lx,i2)',end=30) depart,irecl,arrive,irec2

iray(irecl)=irecl
iray(irec2)=Irec2
go to 20

30 print *, , migrated file flight'
close (2)

C Read file AIRPORT

C

print *, , Begin migrating AIRPORT'
open(l,status='old',file='airport',access='direct',rec1=13)
kount = 0
do 40 n=I,99
if (iray(n) .eq. n) then

kount = kount + 1
read (l,rec=n) code,termnl,city,state,ll,d

endif
40 continue

close (1)
print *, 'migrated' kount, , records in airport'
print *, 'leaving subroutine convert'
end
subroutine main
print *, , Control passed to Subroutine Main.'

end
colt end
fortran input=source errors=ftnout list=ftnout
" Start FMA "
create file file=$user.flight
set fiTe attributes file=$user.flight block_type=system_specified record_type=variable
create file file=$user.airport
set_fiTe_attributes file=$user.airport block_type=system_specified record_type=variable
open file migration aid
open-170 state -
execute command command='GET,FLIGHT.'
execute command command='FILE,FLIGHT,FO=SQ,RT=Z,BT=C,FL=20.'
execute-command command='GET,AIRPORT.'
execute-command command='FILE,AIRPORT,FO=WA,RT=U,BT=C,MRL=110.'
close environment
execute migration task •• .

migration files=«flight,$user.flight),(airport,$user.airport»
files=lgo-

close environment
delete_file_connection standard_file=$echo file=output

+---+

Figure 12-2. Migration Task for a Sequential and a Direct File

• 12-24 Migration From NOS to NOS/VE Revision F

Commands in the task include several processing steps. CREATE FILE CONNECTION specifies a file
connection between standard rile $ECHO and file OUTPUT so that commands are displayed to the
terminal as the task executes. COLLECT TEXT writes the FORTRAN source code to file SOURCE. Other
commands specify FORTRAN compilation and using FORTRAN FMA.

You can run the task by putting the commands and program as listed in a NOS/VE file. Specify
execution of the file by entering the INCLUDE FILE command. For example, to execute a file named
FMAJOB2, specify:

/include_file file=fmajob2

FMA Execution Considerations

This discussion details.results of execution, points out considerations, and describes
diagnostics. The subjects are:

Positioning sequential migration files

Positioning FORTRAN direct access migration files

Ensuring data migration

Multiple file files

Migrating boolean items

Characteristics of migrated NOS/VE files

Positioning Sequential Migration Files

To help ensure error free, complete file migration, FMA performs positioning operations on
sequential files involved in migration processing. (Migration processing occurs on files
specified in the MIGRATE_FILES parameter of the EXECUTE_MIGRATION_TASK command.)

Positioning operations that occur when the source file is opened for migration are:

Rewinding the source file.

Truncating the target file to zero length. This results in any data in the target file being
lost.

If the program closes and reopens the source file after migration, FMA interprets the close as
ending migration and the reopen as starting migration. On the reopen, FMA would perform the two
operations listed above. To complete file migration in this situation, the program would have to
reread the entire source file.

After the program completes migrating a file and closes it (either explicitly or by ending
execution), FMA closes and rewinds both the source and target files. Your files complete
migration positioned at beginning-of-information (BOI).

To protect data in the target file once migration processing begins, FMA does not REWIND (or
BACKSPACE) the target file when the program specifies these operations for the source file. FMA
holds the target file at the current position, remembers the number of records repositioned, and
resumes writing to the target file only after the program has reread all the records repositioned.

Revision F FORTRAN and COBOL File Migration Aids 12-25

I

Assume file SOURCE is a CYBER. 170 file being migrated to NOS/VE file TARGET. The FORTRAN program
has read n records:

<-------- Current position

NOS: +-SOURCE-+File----+--------+--------+ ----------------

BOI IRecord llRecord 21 IRecord nlRecord m
+--------+--------+--------+--------+ ----------------

NOS/VE: +-TARGET-+File----+--------+--------+ ----------------

BOI IRecord llRecord 21 IRecord nl
+--------+--------+--------+--------+ ----------------

FORTRAN statements and effect on file position:

REWIND (SOURCE) <-- Positions SOURCE at BOI. Leaves TARGET at end.
READ source ••• <-- Required n times before SOURCE and TARGET are positioned at

corresponding points.

The program must reread n records before FMA resumes migrating records (writing records to
TARGET). With the next read, FMA migrates record m.

Positioning FORTRAN Direct Access Migration Files

To help ensure error free, complete file migration, FMA performs positioning operations on
FORTRAN direct access files involved in migration processing. (Migration processing occurs on
files specified in the MIGRATE_FILES parameter of the EXECUTE_MIGRATION_TASK command.)

When the FORTRAN program opens the source file, FMA begins migration processing by:

Positioning the source file at beginning-of-information.

Truncating the target file to zero length. This results in any data in the target file being
lost.

If the program closes and reopens the source file after migration, FMA interprets the close as
ending migration and the reopen as starting migration. On the reopen, FMA would perform the two
operations listed above. To complete file migration in this situation, the program would have to
reread the entire source file.

Ensuring Data Migration

For FMA to migrate data, the FORTRAN program must read the data. The following rules apply:

For unformatted files (either sequential or direct access), only data that the program reads
is migrated. If the program reads a partial record, FMA migrates only the part of the record
that is read.

For formatted files (either sequential or direct access) and for list directed and NAMELIST
sequential files, FMA migrates a complete record if a part of the record is read.

To completely migrate sequential files, the program must read each record in the file.

I 12-26 Migration From NOS to NOS/VE Revision F

FMA issues diagnostics to warn of incomplete file migration:

When the program fails to read all records sequential files.

When the program reads partial records in unformatted sequential files.

FMA does not indicate incomplete migration of direct access files.

If you attempt to migrate a file twice (as you might if the first attempt results in an
incomplete migration), FMA deletes the original file and creates a new one.

For an incomplete migration where the program fails to read all of the records, you can retain
the migrated file (by making it permanent and changing its name) and then run the program again
to migrate the rest of the records. You can then use Sort/Merge to merge the first file with the
second file.

Multiple File Files

A common practice in using multiple file files is not supported by FORTRAN FMA. Multiple file
files that have records reSUlting from different input/output processing cannot be completely
migrated by FMA. You may have to study your application program to ensure that this is not a
problem.

Ensure that you need only one FILE command to describe the multiple-file file.

Ensure that your program that migrates the file does not open, close, and reopen the source file.
The second open causes the target file to be truncated to zero length so that all data in it is
lost.

Migrating Boolean Items

Data of type boolean is migrated as a bit pattern. In migrating boolean data, FMA issues a
nonfatal diagnostic in the following situations:

Unformatted reads containing boolean variables in I/O lists

Formatted reads with boolean edit descriptors

List-directed and NAMELIST reads with boolean constants in input

When FMA issues a nonfatal error for use of boolean variables, FMA continues processing the
remainder of the I/O list (unless the program provides an ERR= exit or an IOSTAT= variable).

For unformatted reads, FMA stores the 60-bit CYBER 170 word bit pattern in the receiving 64-bit
CYBER 180 word, right justified and zero filled.

It is sometimes possible to convert boolean files by changing the type BOOLEAN specification for
each word to the correct type specification for the conversion, such as REAL, INTEGER, and so
forth. For example, if your boolean data really has integer values, change the data specification
statements and read statements to read the data as integers.

Hollerith data should be specified as type CHARACTER.

You might find it necessary to do some processing before conversion to set up the file for I
conversion. Alternatively, you might find it necessary to do processing after conversion to
perform the final conversion for the application.

Revision F FORTRAN and COBOL File Migration Aids 12-27

Characteristics of Migrated NO~/VE Files

When a file is migrated by FMA, the default file attributes establish the characteristics of the
file. The attributes of the target file are defined by NOS/VE and FORTRAN depending on the type

I of input/output creating the file.

After a file is created (that is, after the file is opened for the first time), you can change
the preserved file attributes that define the structure of the file. The attributes that can be
overridden by a SET_FILE_ATTRIBUTE (SETFA) command or CHANGE_FILE_ATTRIBUTE (CHAFA) command prior
to file creation are indicated by an asterisk. The attributes that can be overridden prior to any
open of the file are indicated by two asterisks. Connecting files to $INPUT and $OUTPUT affects
file characteristics. Do not connect any file being migrated to either $INPUT or $OUTPUT.

Tables 12-1 and 12-2 give the default attributes of migrated files. For more information about
NOS/VE files, see chapter 10, File Interface Introduction.

Table 12-1. Defaults for File Attributes on NOS/VE for Sequential I/O

File
Attribute

Formatted,List Directed
NAMELIST, Sequential I/O

Unformatted
Sequential I/O

===

MAXIMUM RECORD LENGTH
OPEN POSITION -
ACCESS MODE
FILE ORGANIZATION
RECoRD TYPE
PAGE WIDTH

RECL= in OPEN or FILE command
$BOlt
R/W/ A/Mt
SQ
vtt
132

RECL= in OPEN or FILE command
$BOlt
R/W/A/MT
SQ
vtt
not applicable

I tCan be overridden by SET FILE ATTRIBUTES command prior to any open.
ttCan be overridden by SET-FILE-ATTRIBUTES command prior to file creation.

$BOI
R/W/A/M
SQ, BA
V, F, U

Beginning of information.
READ/WRITE/APPEND/MODIFY.
Sequential,byte addressable.
Variable-length, fixed-length, undefined.

12-28 Migration From NOS to NOS/VE Revision F

Table 12-2. Defaults for File Attributes on NOS/VE for Direct I/O

File Attribute Direct Access I/O

==

MAXIMUM RECORD LENGTH
OPEN POSITION
ACCESS MODE

RECL= in OPEN or FILE command
not applicable
R/W/A/Mt

FILE ORGANIZATION
RECORD TYPE
PADDING CHARACTER
PAGE WIDTH

BA
Ftt
blank
not applicable

tcan be overridden by SET FILE ATTRIBUTES command prior to any open.
ttCan be overridden by SET=FILE=ATTRIBUTES command prior to file creation.

R/W/A/M
SQ, BA
V, F, U

READ/WRITE/APPEND/MODIFY.
Sequential, byte addressable.
Variable-length, fixed-length, undefined.

COBOL File Migration Aid

The COBOL File Migration Aid (COBOL FMA) provides a COBOL-oriented method for migrating COBOL 5
files from NOS to NOS/VE. The description of COBOL FMA is divided into the following topics:

Overview

Data Format Conversion

Handling Symbolic Keys

Executing the 170 FILE Command

Steps in Executing COBOL FMA

Summary of Steps in Executing COBOL FMA

COBOL FMA Command Descriptions

COBOL FMA Examples

COBOL FMA Overview

COBOL FMA provides a COBOL-oriented method for migrating COBOL files between NOS and NOS/VE. To
migrate a COBOL file in either direction, you must describe the structure of that file to COBOL
FMA in COBOL 5 terms. COBOL FMA provides you with a command that simplifies this process; the
command extracts the file description from an existing COBOL 5 source program.

In some cases, you must provide additional information to resolve ambiguities in the record
description of the file. For example, if your COBOL 5 program uses mUltiple 01 descriptors or
redefines items in a record, you must specify how the record is to be processed. COBOL FMA
allows you to write a COBOL-like procedure to resolve these ambiguities.

Revision F FORTRAN and COBOL File Migration Aids 12-29

I

I

As COBOL FMA migrates your COBOL file, it produces a listing that indicates how specific
computational data items in the record description must be changed to be used in a NOS/VE COBOL
program that accesses the migrated file.

The capability of migrating a NOS/VE COBOL file to NOS (reverse migration) is useful in cases
where output from a migrated program is used as input to a program that has not been migrated.

The following diagram illustrates some of the key components in COBOL file migration and the
relationships between them:

+-----------+••......•...•..••..••...
COBOL 5 I : : +-------------+ +------------------+
Source +---): COLLECT_FILE_DESCRIPTION :---) \ File I +---1 Record Procedure 1
Program I : command : Description I If Required
on NOS/VE : •••••••••••••••••••••••••• : +--+----------+ +------------------+

+-----------+ ! +----------+
+-------------------+ ~ +----------------+
I

COBOL 5 Data File I •••••••••••••••• I Migrated Data I
on NOS +------------------------): :--------) File on NOS/VE

+-------------------+ MIGRATE FILE +----------------+
+------------: Command- : <----+

+-------------------+ I
1 ~~r~a~:dN~;ta \ <-----------+
+-------------------+

.

+---------+ +---------+
I Output I I Error I

Listing Listing
+---------+ +---------+

The COBOL FMA commands that you use to migrate a file are:

OPEN FILE MIGRATION AID

Enters the FMA utility so that you can enter FMA commands.

COLLECT FILE DESCRIPTION - -
Extracts the file description from a COBOL 5 source program.

MIGRATE FILE

I +----------------i-
+ ___ 1 ~~~~V~ii~BOL I

+----------------+

Causes FMA to read the file description, any record procedure, and the COBOL 5 file to be
migrated, and to output the migrated file along with a listing.

(COBOL FMA also provides the OPEN 170 STATE command and the EXECUTE COMMAND command that allow
you to execute a NOS command from-within the FMA utility.) All of these commands are described
in more detail later.

Data Format Conversion

When you migrate a COBOL data file from NOS to NOS/VE or from NOS/VE to NOS, FMA converts COBOL

I data formats to the formats of the target system. The COBOL 5 reference manual and the COBOL
Usage manual describe the data formats for each COBOL dataname type.

A file that is to be migrated from NOS/VE to NOS must have been created by a valid COBOL 5
I program compiled under NOS/VE with BASE LANGUAGE=COBOLS specified on the COBOL command.

Typically, this is a program that was p~eviously migrated from NOS to NOS/VE. Thus, the data
types used in the program must be valid COBOL 5 data types.

12-30 Migration From NOS to NOS/VE Revision F

FHA resolves differences in computational data type formats as follows:

COBOL 5 NOS/VE COBOL

COMP <--------------------------------) DISPLAY
Display code numeric ASCII numeric

COMP-1 <------------------------------) COMP
BINARY

Numeric class
Uses full 60-bit word
Stored as 48-bit binary integer
Right-aligned
FORTRAN integer type

Numeric class
Decimal numeric value
Stored as binary integer
Size depends on PIC clause
FORTRAN integer type (if size=18 and synchronized)

COMP-2 <------------------------------) COMP-1
Single-precision floating-point
Uses full 60-bit word
No PICTURE clause
Value is signed normalized

floating-point number
Up to 14 significant digits
FORTRAN real type

(COBOL 5 does not provide a data
type equivalent to the NOS/VE
COMP-2 data type.)

Single-precision floating-point
Uses full 64-bit word
No PICTURE clause
Value is signed normalized floating-point number

Up to 14 significant digits
FORTRAN real type

COMP-2
Double-precision floating-point number
Up to 28 significant digits

COMP-4 -------------------------------) COMP
Numeric cluss BINARY (described above)
Size depends on PIC clause
Binary integer
Maximum of 48 bits
Signed or unsigned

COMP-3
PACKED DECIMAL
Numeric class
String of 4-bit representations of numeric digits
packed two per byte with optional sign represented
as rightmost 4 bits in rightmost byte. In some
cases, this is the best conversion for a COMP-4
item.

COBOL FMA converts COBOL 5 COMP-1 items to COBOL-for-NOS/VE COMP items. However, to use the
migrated data file successfully, you must specify BASE LANGUAGE=COBOL5 on the NOS/VE COBOL
command when you compile your COBOL-for-NOS/VE program7 You can compile with the BASE_LANGUAGE
parameter not set to COBOL5 if you first make the following changes to the file description in
your COBOL source program:

Change the data item to SYNCHRONIZED.

Ensure that the data item has enough digits to fill a complete NOS/VE 64-bit word.

For example:

PIC 9(18) COMP SYNCHRONIZED
PIC 9(14)V9(4) COMP SYNCHRONIZED

Revision F FORTRAN and COBOL File Migration Aids 12-31

I

If an item does not have data in a format compatible with its definition, a warning message is
issued and a default value compatible with the converted item definition is used in the resulting
record. The following table shows the defaults used.

INPUT FILE DATA TYPE CORRECTED OUTPUT VALUE

display all blanks; all zeros if numeric

computational all zeros

computational-1 binary zero

computational-2 single-precision floating-point zero

computational-4 binary zero

Handling Symbolic Keys

If the COBOL 5 data file that you are migrating contains symbolic keys, you must decide whether
you want to retain the ordering of records in the file.

You can migrate a COBOL 5 data file containing symbolic keys without doing anything special.
However, symbolic keys will be treated as uncollated keys; therefore, the ordering of records
will not be retained. The records will be reordered according to the ASCII collating sequence.

IMPORTANT

To handle symbolic keys as described above, you must not specify BASE LANGUAGE=COBOLS on the
COBOL command when you compile your NOS/VE COBOL program.

To retain the record ordering, you must specify that the key type of the symbolic keys is
collated. You can also specify the name of the collating sequence to be used to determine record
ordering. You do this using the SET_FILE_ATTRIBUTES command on NOS/VE; for example:

/set file attributes file=$user.myfile ••
/key type=collated
/collate_table_name=collating_table_name

You can enter this SET_FILE_ATTRIBUTES command either before or after entering COBOL FMA.

You can omit the COLLATE TABLE NAME parameter; if you do, the COBOL6 FOLDED collating sequence is
used.

IMPORTANT

If you use the SET FILE ATTRIBUTES command as described above, you must specify
BASE LANGUAGE=COBOLS on-the COBOL command when you compile your NOS/VE COBOL program.

The SET FILE ATTRIBUTES command affects only symbolic keys; it has no effect on integer keys.

NOTE

When migrating a file with alternate keys from NOS/VE to NOS, the sum of the lengths of the
primary key and alternate key must not exceed 230 characters.

12-32 Migration From NOS to NOS/VE Revision F

Executing the 170 File Co~mand

The OPEN 170 STATE and EXECUTE COMMAND commands enable you to execute a NOS command from within
COBOL FMA. (These commands are described later.)

You might need to use these commands to specify the block type (BT) of the COBOL 5 data file.
The default block type depends on the device; for S or L tapes, the default depends on the BLOCK
CONTAINS clause in the input file description (K or E blocks). If the device is not an S or L
tape, the default is C.

You can override this default by executing a 170 FILE command; for example:

/open 170 state
/ ex;cut; command command='FILE,MYFILE,BT=x.'
/close_envTronment

You might also need to use these commands to specify the record mark character if the file you
are migrating contains R-type records. You need to do this only if your COBOL 5 program contains
a USE clause that specifies a record mark character other than the Cyber Record Manager default.

Simply execute a 170 FILE command, specifying the RMK parameter to be the same character as
specified in the COBOL 5 USE clause.

If you change the file organization when migrating a file from NOS/VE to NOS, be sure that you
specify all of the NOS file attributes on the FILE command. If you do not do this, defaults are
used for the unspecified attributes, which may lead to unexpected results caused by overlapping
FIT fields.

Steps in Executing COBOL FMA

To migrate a file using COBOL FMA, follow these steps:

1. Move your COBOL source program from NOS to NOS/VE. To do this, log in to NOS/VE and use the
GET FILE command. For example:

/get_file to=cobprog data conversion=d64

2. For NOS-to-NOS/VE migration, create a NOS/VE file to receive the migrated version of your
COBOL data file. To do this, use the CREATE FILE command. For example:

/create_file file=master

To ensure correct values for the record type and block type of each output NOS/VE migrated
file, use a SET_FILE_ATTRIBUTES command:

SET_FILE_ATTRIBUTES FILE=output file
BLOC~TYPE=keyword ••
RECORD_TYPE=keyword

For more information about which values to use for BLOCK TYPE and RECORD_TYPE, see the CYBIL
File Interface Usage manual or the COBOL Usage manual.

3. If the input file description for the file you are migrating contains mUltiple 01 file
descriptions or uses a REDEFINES clause, you must provide a record procedure to process file
description ambiguities. (A record procedure is not required if your COBOL 5 program
contains mUltiple 01 descriptions for some other file or within the working storage.
section.) Create a record procedure using COLLECT TEXT or the Full-Screen editor; record
procedure commands are described later.

4. Start COBOL FMA utility using the OPEN FILE MIGRATION AID command.

Revision F FORTRAN and COBOL File Migration Aids 12-33

I

I

I

I

I

I

I
I

5.

6.

7.

Optionally, extract the file description from your COBOL 5 source program using the
COLLECT_FILE_DESCRIPTION command; for example:

FA/collect_file_description input=cobprog ••
output=description
assigned_name=master

This gets the file description from the COBOL 5 program on file COBPROG and places it on file
DESCRIPTION.

Next, for NOS-to-NOS/VE migration, ensure that your COBOL 5 data file is a NOS local file.
You can issue NOS commands by opening 170 state and then using the EXECUTE COMMAND command.
For example:

FA/open 170 state
FA/execute command command='ATTACH,MASTER,OM12345.'
FA/close_environment

In this example, if a file by the name of MASTER is not local to the 170 job, FMA attempts to
ATTACH the file; if the ATTACH fails, the MIGRATE FILE command will terminate abnormally.
You might also need to execute the FILE command Jhile the 170 state is open if the file
attributes of your COBOL5 program do not accurately describe the file.

After issuing any necessary NOS commands, close the 170 state environment using the
CLOSE ENVIRONMENT command as shown above.

For NOS/VE-to-NOS migration, be sure that a permanent file having the same name as the
migrated file does not already exist. It it does, FMA will not purge the file; it will issue
an error message and abort. If a local file having the same name exists, FMA will write that
file. If a local or permanent file having the same name does not exist, FMA will create a
new direct access permanent file.

You can purge an existing permanent file by specifying an EXECUTE COMMAND command that
executes a PURGE command. For example:

FA/open 170 state
FA/execute command command='PURGE,MASTER.'
FA/close_environment

8. Now,migrate the file using the MIGRATE FILE command. For example:

9.

FA/migrate_file input=master ••
input file description=description
record procedure=process
output~$user.master

This command migrates a file from NOS to NOS/VE. The migrated file is placed on file
$USER.MASTER. The INPUT and OUTPUT parameters are optional; if omitted, MIGRATE FILE uses
the ASSIGNED_NAME specified in the file description.

Finally, leave COBOL FMA by issuing the CLOSE ENVIRONMENT command.

12-34 Migration From NOS to NOS/VE Revision F

Summary of Steps in Exe~uting COBOL FMA

1. Use GET_FILE to move your COBOL source program from NOS to NOS/VE.

2. For NOS-to-NOS/VE migration, create a NOS/VE file (CREATE FILE) to receive the migrated
version of your data file. Enter a SET FILE ATTRIBUTES command to ensure the correct values
for the NOS/VE migrated file for block type and record type.

3. Use COLLECT TEXT or Full-Screen editor to write any needed record procedure.

4. Initiate the COBOL FMA utility with OPEN_FILE_MIGRATION_AID.

5. Optionally, use COLLECT FILE DESCRIPTION to extract the file description from your COBOL 5
source program.

6. If needed, issue any NOS commands by opening the 170 state (OPEN 170 STATE), executing NOS
commands (EXECUTE_COMMAND), and then closing 170 state (CLOSE_ENVIRONMENT).

7. Use the MIGRATE FILE command to migrate the file.

8. Use the CLOSE ENVIRONMENT command to leave COBOL FMA.

COBOL FMA Command Descriptions

Following are descriptions of each of the COBOL FMA commands. Note that the command formats show
each parameter on a separate line without the ellipsis required for continuation in executable
code. The syntax of COBOL FMA commands follows the System Command Language (SCL) conventions.
The commands are:

OPEN FILE MIGRATION AID
OPEN-170 STATE -
EXECUTE COMMAND
COLLECT FILE DESCRIPTION
MIGRATE-FILE-
CLOSE ENVIRONMENT
Input File Description Overview
Record Procedure Command Descriptions

Overview of COBOL FMA Commands

COBOL FMA commands must be entered in a particular order because the commands provide a
processing path through a migration environment. Each command either opens a specialized
processing environment, executes an operation in the environment, or closes an environment. The
following diagram indicates the execution order; commands can be executed only within the
containing bracket.

+--)OPEN FILE MIGRATION AID - -
+---)OPEN 170 STATE
I -EXECUTE_COMMAND
+---)CLOSE ENVIRONMENT

COLLECT FILE DESCRIPTION

MIGRATE FILE

+--)CLOSE_ENVIRONMENT

Revision F FORTRAN and COBOL File Migration Aids 12-35

The OPEN FILE MIGRATION AID (OPEFHA) command invokes FMA and opens the file migration
environment. -You must execute this command to use any other COBOL FHA command.

Format:

I
Example:

or

OPEN FILE MIGRATION AID
-PARTNER_JOB_CARD=string

STATUS=variable

PARTNER JOB CARD

STATUS

The job card for the CYBER 170 partner job; optional. The
partner job executes as a batch job. The value of this
parameter must correspond to NOS job card syntax.

Any job card parameters you specify here remain in effect for
the duration of the FMA utility task. If the partner job
exceeds the limits you specify with this parameter, FHA
terminates abnormally.

If you do not specify this parameter, a default job card is
used. If the NOS/VE job is a batch job, no parameters are
specified on the default partner job card. If the NOS/VE job is
interactive, the default partner job card specifies an infinite
time limit; no other job card parameters are specified.

Status variable; optional.

/open file migration aid
FA/ - - -

/opefma
FA/

The OPEN 170 STATE command opens access to the CYBER 170 and allows you to execute NOS commands.

Format:

Parameter:

I Example:
or

OPEN 170 STATE
-STATUS=variable

Status variable; optional.

FA/open_170_state

FA/ope1s

EXECUTE_COMMAND (EXEC)

The EXECUTE COMMAND command executes a NOS command from within FHA. (To use this command, you
must first open a connection to the CYBER 170 by issuing the OPEN_170_STATE command.)

Any diagnostics issued by the NOS commands are written to the NOS/VE job log. Thus, if a fatal
error occurs, you can determine which NOS command caused the error by examining the job log.
(Use the DISPLAY_LOG command to display the job log.)

Load sequences are processed as single commands; therefore, the entire load sequence must be
entered on a single EXECUTE COMMAND command.

12-36 Migration From NOS to NOS/VE Revision F

Because FMA uses NOS local files internally, you should use caution when manipulating NOS local
files through EXECUTE COMMAND. In particular, never return all local files (RETURN,* or CLEAR)
and do not use an EXIT control card.

Format:

Examples:

EXECUTE COMMAND
COMMANo='nos-command.'
STATUS=variable

COMMAND

STATUS

A NOS command entered as a string, terminated with a period, and
enclosed in apostrophes. Maximum string length is 80
characters. For example, attaching file AFILE:

FA/execute_command command='ATTACH,AFILE.'

Optionally, NOS commands can appear as a list of strings. NOS
received each string as a separate line. For example:

FA/execute_command command=('LDSET=OLIB.'
'LGO.')

If this command is used in an SCL procedure, SCL can perform
parameter substitution. The command is passed to NOS after
substitutions occur.

Status variable; optional.

Specifying commands with the parameter name:

FA/execute command command='ATTACH,DATAFIL.'
FA/exec c~'FILE,DATAFIL,FO=SQ,RT=Z,BT=C,EO=A,FL=2000.'

Specifying commands by position:

FA/execute command 'ATTACH,DATAFIL.'
FA/exec 'FILE,DATAFIL,FO=SQ,RT=Z,BT=C,EO=A,FL=2000.'

COLLECT_FILE_DESCRIPTION (COLFD)

The COLLECT FILE DESCRIPTION command extracts a file description from a COBOL 5 source program
and places the description on the file you specify.

Format:

Revision F

COLLECT FILE DESCRIPTION INPUT=source-file
OUTPUT=description-file
FD NAME=fd-entry

INPUT

OUTPUT

FD NAME

ASSIGNED NAME=assigned-name
RECORD NAME=list-of-01-names
LIST=llsting-file
ERROR=error-file
STATUS=variable

Specifies the NOS/VE file containing your COBOL 5 source
program. The file must contain only one program; that program
must be complete and correct. (Any COpy and REPLACE statements
in the program are not honored by COLLECT_FILE_DESCRIPTION.)

Specifies the file to receive the selected input file
description.

Specifies the name of the FD entry to be collected from the
source program; optional. This parameter must not be specified
if the ASSIGNED NAME parameter is specified.

FORTRAN and COBOL File Migration Aids 12-37

I

I

I

I

I

I

ASSIGNED NAME

RECORD NAME

LIST

ERROR

STATUS

Specifies the assigned name in the SELECT clause of the
FILE-CONTROL paragraph for the file for which the collection is
to be performed; optional. This parameter must not be specified
if the FD_NAME parameter is specified.

Specifies a list of 01 names that are not members of any FD
entry; optional. The named 01 entries and their subordinate
items are placed on the output file in the order specified by
this parameter. To specify RECORD NAME, you must also specify
the FD_NAME or ASSIGNED_NAME parameter.

Specifies the file to receive a source listing of the COBOL 5
program; optional. The default is $LIST.

Specifies the file to receive error diagnostics; optional. The
default is $ERRORS.

Status variable; optional.

FD NAME and ASSIGNED NAME parameters are required in batch mode, but optional in interactive
mOde; if both are omitted in interactive mode:

COLLECT FILE DESCRIPTION displays a list of FD names, assigned names, and 01 names that are
not members of any FD.

You can then select any members of the displayed list to be on the output file; however, you
must select one file and you can optionally select one or more 01 names.

I If your data file has a nonembedded key, COLLECT_FILE_DESCRIPTION creates a 77 level item for the
dataname specified on the record key clause. The dataname retains the data definition specified
in the original source program. The 77 item is placed in the working-storage section of the
resulting file description.

Example: FA/collect_file_description input=cobprog ••
output=description
assigned_name=master

or
FA/colfd i=cobprog ••

o=description
an=master

MIGRATE_FILE (MIG F)

The MIGRATE FILE command migrates a COBOL data file from the NOS to NOS/VE or from NOS/VE to
NOS. This command migrates the file as follows:

I
A.

B.

C.

MIGRATE FILE checks the input file description created by COLLECT FILE DESCRIPTION for
errors; any computational data type changes are written to the list file.

If a record pro·cedure is defined for the file, that procedure is checked for errors.

Each record of the data file is migrated by repeating the following:

1. The next record is read from the CYBER 170 file.

2. Unambiguous input file descriptions are used to convert the parts of the record they
describe. Ambiguous input file descriptions are processed as follows:

a. If the input file description contains mUltiple 01's, the record procedure is
executed immediately; see step 2.c.

12-38 Migration From NOS to NOS/VE Revision F

b. All fields are converted except those that have overlapping definitions (via
REDEFINES) •

c. The record procedure is executed. For each conversion reference executed, step
2.b above is performed.

3. The converted record is written to the target file.

Format: MIGRATE FILE INPUT=input file
- OUTPUT=(output-file,index-file)

Revision F

INPUT

OUTPUT

MIGRATION NAME=name
INPUT FILE DESCRIPTION=(description-file,keyword)
RECORD_PROCEDURE=procedure-file
LIST=list-file
ERROR=error-file
STATUS=variable

Optional. Specifies the name of the file to be migrated. For
NOS-to-NOS/VE migration, the file must be a NOS local file. For
NOS/VE-to-NOS migration, this parameter can specify a file
path. The default is the name in the ASSIGN clause of the input
file description.

Optional. The first value ,is the name of the file to receive
the migrated version of the input file. For NOS-to-NOS/VE
migration, file-name can be a file path. For NOS/VE-to-NOS
migration, file-name is a NOS file name; FMA creates the file as
a direct access permanent file. If a permanent file having the
specified name already exists, a fatal error occurs. (FMA does
not attempt to purge the file.) If a local file having the
specified name exists, FMA writes to that file.

The default is name in the ASSIGN clause of the input file
description.

For indexed sequential files with alternate keys only, the
second value is the name of a NOS file to receive the index.
FMA creates a direct access permanent file having the specified
name. The default is taken from the ASSIGN clause of the input
file description.

MIGRATION NAME Reserved for future use.

INPUT FILE
DESCRIPTION

RECORD PROCEDURE

LIST

Specifies the name of the file containing the input file
description for the COBOL 5 data file to be migrated. For
migration in either direction, this file must contain a complete
and correct COBOL 5 source program that has only one SELECT
clause. The file named here can be the file named in the OUTPUT
parameter of a previous COLLECT_FILE_DESCRIPTION command. I
The second value is an optional keyword that specifies the
direction of the migration:

C170 COBOL NOS to NOS/VE (default)

C1BO COBOL CC NOS/VE to NOS - -
Specifies the name of the file containing a record procedure. A
record procedure is required if the input file description
contains multiple 01's or a REDEFINES clause.

Specifies the file to receive a source listing; optional. The
listing contains an input file description listing and a listing
of the record procedure if a record procedure is used. The
default is $LIST.

FORTRAN and COBOL File Migration Aids 12-39

Example:

or

ERROR

STATUS

Specifies the file to receive error diagnostics; optional. The
default is $ERRORS.

Status variable; optional.

The following example migrates a file from NOS to NOS/VE:

FA/collect_file_description input=cobprog ••
output=description
assigned_name=master

FA/migrate_file input=cobdata ••
output=$user.my great file ••
input_file_description=description

FA/colfd i=cobprog ••
o=description
an=master

FA/migf i=cobdata ••
o=$user.my_great_file
ifd=description

The following example migrates a file from NOS/VE to NOS:

FA/collect_file_description input=myprog ••
output=mydesc ••
assigned_name=master

FA/migrate_file input=cobfile ••
output=nosfile ••
input_file_description=(mydesc, clBO_cobol_cc)

CLOSE_ENVIRONMENT (CLOE)

The CLOSE ENVIRONMENT (CLOE or QUIT) command closes the current environment; subsequent commands
are executed in the containing environment.

Format:

Parameter:

Example:

CLOSE ENVIRONMENT
- STATUS=variable

Status variable; optional.

/open file migration aid
FA/open_l 70_state -

FA/close_environment

FA/close environment
/ -
The first CLOSE ENVIRONMENT closes the CYBER 170 connection, but leaves the FMA
utility active;-the second CLOSE_ENVIRONMENT terminates FMA and returns to NOS/VE.

12-40 Migration From NOS to NOS/VE Revision F

Input File Description Overview

An input file description is the portion of your COBOL 5 program that describes the COBOL 5 data
file to be migrated. Recall that a COBOL program consists of the following divisions:

Identification Division
Environment Division
Data Division <-----------+
Procedure Division I

I +---- The input file description is part of the Data Division.

One section within the Data Division is the File Section. The File Section contains input file
descriptions (which are denoted by FD). Within a file description are data description entries
(denoted by 01), and within a data description entry, there can be record description entries.

For example:

DATA DIVISION.
FILE SECTION.
FD file-name <---+

file-description-entry clauses I
01 data-description-entry.

02 or subordinate data-description-entries. <----+ record I
I description
I entries I
+-------------+

input
file
description

The MIGRATE FILE command uses this input file description as input. The COLLECT_FILE-PESCRIPTION
command extracts the input file description from your COBOL 5 source program.

Record Procedure Command Descriptions

A record procedure is a series of statements that specify how particular records of your COBOL 5
data file are to be migrated. A record procedure is required only when multiple 01 descriptors
or REDEFINES clauses exist in the record description. I

Overview of Record Procedures
Conversion References
IF Constructs

Overview of Record Procedures

A record procedure is a series of statements that specify how particular records of your COBOL 5
data file are to be migrated. A record procedure is required only when the input file
description contains mUltiple 01's or a REDEFINES clause.

Revision F FORTRAN and COBOL File Migration Aids 12-41

For example, a record procedure is required to migrate the data file of the following COBOL 5
program because the record description in the program contains more than one 01 descriptor:

FILE SECTION.
FD SALES FILE.

01 SALES-RECORD.

01 PROFITS-RECORD.

A record procedure is required to migrate the data file of the following COBOL 5 program because
the record description in the program contains a REDEFINES clause:

01 EMPLOYEE-RECORD.

02 EXEMPT-DATA.

02 NON-EXEMPT-DATA REDEFINES EXEMPT-DATA.

That is, because the NON-EXEMPT-DATA structure redefines the EXEMPT-DATA structure, you must
specify to FMA which structure is to be used to migrate each particular record. This is the
purpose of a record procedure.

A record procedure is written in a language similar to COBOL; however, a record procedure
contains only two types of statements:

Conversion references, which cause the content of datanames in an input record to be migrated
to the output record

IF constructs, which select a block of statements to execute based on conditions you specify

The following is an example of a record procedure:

IF GRADE IS GREATER THAN 9
THEN EXEMPT-DATA
ELSE NON-EXEMPT-DATA

ENDIF

These four lines comprise an IF construct that executes one of two conversion references
depending on the value of GRADE. Conversion references and IF constructs are described later.

The elements you use to write a record procedure are:

Datanames (names in the record description); datanames can be qualified in the normal COBOL
style; nonunique datanames must be qualified. Level 66 items cannot be referenced in a
record procedure.

Literals; nonnumeric literals are delimited by apostrophes or quotes and numeric literals are
specified using standard COBOL conventions.

Intrinsic operands; these are the keywords $NUMERIC, NUMERIC, $INTEGER, INTEGER, and
$RECORD-LENGTH.

Separators are any number of spaces.

I 12-42 Migration From NOS to NOS/VE Revision F

Conversion References

You use a conversion reference to migrate the content of a dataname in the input record to its
corresponding location in the output record.

You represent a conversion reference by specifying the dataname of the item to be migrated. For
example:

EMPLOYEE-RECORD

causes item EMPLOYEE-RECORD to be migrated.

The dataname can be qualified using COBOL conventions, and must be qualified if the dataname is
not unique.

The dataname you specify can be an elementary item or a group item.

Specifying a group item is the same as specifying each of the elementary items in that group.
Specifying a group item migrates all elementary items in that group; this uses the MOVE
CORRESPONDING concept rather than the group move concept.

All members of an 01 must be assigned implicitly by being a member of a group or explicitly by
name.

For a REDEFINES clause, one of the alternative items must be explicitly assigned. You can use an
IF construct to choose one of the alternative items based on conditions you specify.

All assignments executed for a given record must belong to a single 01; if this is not the case,
no diagnostic is issued.

Elementary items named FILLER are moved. For items containing or subordinate to OCCURS, all
occurrences are moved.

If the data of an item is not compatible with its definition, a warning is issued and the item is
set to a default value. When this occurs for a group, migration continues with the next item in
the group. If the error is for an element of an OCCURS clause and·the OCCURS clause does not
contain a group, elements to the right of the erroneous element of the OCCURS clause are
migrated; default values are supplied for each erroneous element.

IF Constructs

You use an IF construct to test for a. specified condition and execute one of several blocks of
statements based on the result. An IF construct appears as follows:

IF expression THEN
statement-list

ELSEIF expression THEN} (Optional and more than one can be specified.)
statement-list

ELSE expression THEN}
statement-list (Optional; if specified, must be last.)

ENDIF

Notice that this is similar to the IF verb in COBOL 5; however, for a record procedure, the ENDIF
is not optional. (ELSEIF can also be written as IFELSE, ELSE-IF, and IF-ELSE; ENDIF can also be
written as IFEND, END-IF, and IF-END.)

The boolean expression in the IF construct can contain:

Datanames
Literals
Intrinsic operands

Revision F FORTRAN and COBOL File Migration Aids 12-43 I

These entities are compared using operators. The following screens list the operators that can
be used.

MID
OR
NOT

EQUALS
[IS] EQUAL [TO]
[IS]

EXCEEDS
[IS] GREATER [THAN]
[IS] > [THAN]

[IS] LESS [THAN]
[IS] < [THAN]

NOT EQUAL
[IS] NOT EQUAL [TO]
[IS] NOT = [TO]
[IS] <> [TO]

[IS] NOT GREATER [THAN]
[IS] NOT> [THAN]
[IS] <= [TO]

[IS] NOT LESS [THAN]
[IS] NOT < [THAN]
[IS] >= [TO]

Parentheses can be used to control order of evaluation.

You can use intrinsic operands in the boolean expression of an IF construct to test certain
attributes of a dataname or literal. The intrinsic operands are:

$NUMERIC or NUMERIC (Used to determine if an item is numeric or not)

$INTEGER or INTEGER (Used to determine if an item is integer or not)

$RECORD-LENGTH (Contains the record length of the original record as it exists on the
170)

I The intrinsic operands are described in the following paragraphs.

You use the $NUMERIC or NUMERIC intrinsic operand to determine whether the value of a dataname is
numeric.

For example, in the statement:

IF EMPLOYEE-NUMBER IS NUMERIC

the result of the boolean expression is TRUE if the value of the dataname conforms to the COBOL
concept of CLASS NUMERIC; otherwise, the result is false.

I As in the example, you can do comparisons with this intrinsic operand by using the IS operator
only.

You use the $INTEGER or INTEGER intrinsic operand to determine whether the value of a dataname is
an integer.

For example, in the statement:

IF EMPLOYEE-NUMBER IS INTEGER

the result of the boolean expression is TRUE if the leftmost 12 bits of the dataname value are
all zero or all one; otherwise, the result is false.

I The operand being compared to this intrinsic operand must be contained in a 60-bit word.
do the comparison by using the IS operator only, as in the example.

You can

You use the $RECORD-LENGTH intrinsic operand to return the length in characters of the original
record as it exists on the 170.

12-44 Migration From NOS to NOS/VE Revision F

You can compare the value of a dataname or a literal to the value returned by $RECORD-LENGTH.

When migrating a file with a variable record length (NOS record types D, T, W, and R) you must be
certain that the item referenced by an IF is not beyond the end of the current record. You can
do this by checking the $RECORD LENGTH function, the DEPENDING field, or some other indicator
known to be within the record before executing the IF.

If an IF references an item that is beyond the end of the current record, a fatal error
diagnostic is issued and migration immediately stops.

Input files with Z type records are handled as fixed length records; therefore, you need not be
concerned about referencing beyond the end of a Z type record.

COBOL FMA Examples

The following examples illustrate the use of COBOL FMA. The first example migrates a file that
contains no ambiguities in the file description. The second example migrates a file that does
have ambiguities in the file description; the ambiguities are resolved using a record procedure.
The third example migrates a file from NOS/VE to NOS.

Simple COBOL FMA Example

This example demonstrates how to migrate a COBOL 5 data file from NOS to NOS/VE. In this
example,assume that the file description for the data file to be migrated contains no
ambiguities. That is, the file description in the source program contains no more than one 01
descriptor and does not use the REDEFINES clause. Because no ambiguities exist in the file
description, a record procedure is not needed.

The data file to be migrated is a NOS permanent file; the file name for the data file is MASTER.
MASTER is also the name assigned in the ASSIGN clause in the file description paragraph. of the
COBOL 5 source program.

The COBOL 5 source program containing the file description for this data file is also a NOS
permanent file; the file name for the source program file is SOURCE.

First, log in to NOS. Then attach the COBOL 5 data file to be migrated and the file containing
the COBOL 5 source program. Then log in to NOS/VE and enter the following commands:

/get file to=source
/create file file=master
/set file attributes file=master
•• /bloc~type=system specified
•• /record type=variable
/open file-migration aid
FA/collect:file_description input=source ••

assigned name=master
output=description

FA/migrate_file input_file description=description
-list=changes

FA/close_environment

The command:

/get-File to=source

in this example copies file SOURCE from NOS to NOS/VE. In this example, file SOURCE contains the
COBOL 5 source program.

Revision F FORTRAN and COBOL File Migration Aids 12-45

I

I

I

The command:

/create~ile file=master

in this example creates an empty file on NOS/VE by the name MASTER. This file will later contain
the migrated version of the COBOL 5 data file.

The comnand:

/set file attributes file=master ••
Iblock-type=system specified

•• /record_type=variable

ensures that the file holding the migrated version of the COBOL 5 data file has the correct block
type and record type.

The command:

in this example initiates the COBOL FMA utility. This command opens a migration environment;
that is, issuing this command provides you with access to a number of other commands that you
will use to migrate the file.

The command:

FA/collect_file description input=source ••
assigned name=master
output=description

in this example extracts the file description with the ASSIGNED NAME of MASTER from the COBOL 5
source program. This gets the file description from the COBOL 5 program on file SOURCE and
places it on file DESCRIPTION.

The command:

FA/migrate_file input file description=description
list=changes

in this example causes the COBOL 5 data file MASTER to be migrated from NOS to NOS/VE. The
migrated file is placed on NOS/VE file MASTER. This command also produces file CHANGES, which
contains a listing; this listing summarizes any changes that you must make to the file
description in the COBOL source program in order to use it on NOS/VE.

Notice that this command does not specify the file name of the NOS file being migrated. The
default is used instead; the default is the name assigned by the ASSIGN clause in the file
description.

12-46 Migration From NOS to NOS/VE Revision F

CLOSE_ENVIRONMENT

The comnand:

FA/close_environment

in this example closes the COBOL FMA environment.

Example of Using a Record Procedure

This example demonstrates how to migrate a COBOL 5 data file from NOS to NOS/VE. In this
example, the file description for the data file to be migrated contains an ambiguity: the file
description redefines items. Therefore, a record procedure is required.

The data file to be migrated is a NOS permanent file; the file name for the data file is
OM1234S. However, the name assigned in the ASSIGN clause in the file description paragraph of
the COBOL 5 source program is MASTER. Also, the record description does not reflect the true CRM
record type on the file to be migrated.

The COBOL 5 source program containing the file description for this data file is also a NOS
permanent file; the file name for the source program file is SOURCE.

The following is the file description in the COBOL 5 source program. Notice the ASSIGN clause.
Also notice the REDEFINES clause.

IDENTIFICATION DIVISION •.
PROGRAM-ID. FMA-FILE-DESCRIPTION.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PAYROLL-MASTER-170 ASSIGN TO MASTER. <-----------------------
DATA DIVISION.
FILE SECTION.

FD PAYROLL-MASTER-170; LABEL RECORD IS OMITTED.
01 EMPLOYEE-RECORD.

02 EMPLOYEE-IDENTIFICATION.
03 SOC-SEC-NUMBER PIC X(9).
03 EMPLOYEE-NUMBER PIC X(S).

02 EMPLOYEE-NAME.
03 FIRST-NAME PIC X(20).
03 MIDDLE-INITIALS PIC XX.
03 FAMILY-NAME PIC X(30).

02 GRADE PIC 99.
02 DIVISION-NUMBER PIC 9(4).
02 EXEMPT-DATA.

03 BONUS-PLAN PIC 99.
03 MONTHLY-SALARY PIC 9(S)V99 CaMP-I.
03 ACCUM-PAYMENTS PIC 9(6)V99 CaMP-I.

02 NON-EXEMPT-DATA REDEFINES EXEMPT-DATA. <--------------------------
03 HRLY-RATE PIC 99V99.

Revision F

03 UNION-ID PIC xxx.
03 STD-HRS-PER-PERIOD PIC 99V9 COMP-4.
03 ACCUM-PAYMENTS PIC 9(S)V99 COMP-l.

FORTRAN and COBOL File Migration Aids 12-47

I

Log in to NOS/VE and enter the following commands:

/get file to=source data conversion=D64
/create file file=master
/set file attributes file=master ••
•• /block-type=system specified
•• /record type=variable
/collect text output=process
ct? employee-record
ct? if grade is greater than 9
ct? then exempt-data
ct? else non-exempt-data
ct? endif
ct? **
/open file migration aid
FA/open 170 state
FA/ execute command command='FILE,MASTER,BT=I,RT=W.'
FA/close environment
FA/collect_file_description input=source ••

assigned name=master
output=description

FA/migrate_file input=om12345 ••
input file description=description
record procedure=process

FA/close_environment -

The comnand:

/get_file to=source data conversion=d64

in this example copies file SOURCE from NOS to NOS/VE. In this example, file SOURCE contains the
COBOL 5 source program.

The comnand:

/create_file file=master

in this example creates an empty file on NOS/VE by the name MASTER. This file will later contain
the migrated version of the COBOL 5 data file.

The comnand:

/set file attributes file=master ••
/block-type=system specified

•• /record_type=variable

ensures that the file holding the migrated version of the COBOL 5 data file has the correct block
type and record type •

• 12-48 Migration From NOS to NOS/VE Revision F

COLLECT_TEXT

The conmand:

/collect_text output=process

in this example creates a file named PROCESS and places text on that file. After entering the
COLLECT_TEXT command, you are prompted for each line of text. Enter one line at a time, pressing
the carriage return after each line. When you are finished entering text, enter two asterisks in
response to the COLLECT_TEXT prompt and press the carriage return. (The asterisks are not placed
on the file.)

The data entered into file PROCESS in this example is a record procedure. The following screens
explain the commands in the record procedure.

The record procedure is required because the file description redefines items; as you can see,
NON-EXEMPT-DATA redefines EXEMPT-DATA:

01 EMPLOYEE-RECORD

02 GRADE PIC 9(4).

02 EXEMPT-DATA.

02 NON-EXEMPT-DATA REDEFINES EXEMPT-DATA. <--------------------------

The first statement in the record procedure is:

employee-record

This is a conversion reference that migrates EMPLOYEE-RECORD.

The IF construct in the record procedure chooses either EXEMPT-DATA or NON-EXEMPT-DATA, depending
on the value of GRADE.

if grade is greater than 9
then exempt-data
else non-exempt-data

endif

If GRADE is greater than 9, then EXEMPT-DATA is used; otherwise, NON-EXEMPT-DATA is used.

The command:

in this example initiates the COBOL FMA utility. This command opens a migration environment;
that is, issuing this command provides you with access to a number of other commands that you
will use to migrate the file.

Revision F FORTRAN and COBOL File Migration Aids 12-49

I

I

I

I

The command:

in this example creates a connection to the NOS operating system enabling you to execute NOS
commands.

The reason that a NOS command must be executed in this example is because the record description
does not reflect the true CRM record type on the file to be migrated.

EXECUTE_COMMAND

The command:

I FA/execute_command command='FILE,MASTER,RT=W.'

in this example executes the NOS command:

I
FILE,MASTER,RT=W.

This NOS command changes the record description of the file to reflect the true CYBER Record
Manager record type on file MASTER.

CLOSE_ENVIRONMENT

The comnand:

I FA/close_environment

I

I

in this example closes the 170 state environment. That is, the connection that enables you to
execute NOS comnands is broken.

After executing this command, you can no longer execute the EXECUTE COMMAND command unless you
reopen 170 state. You remain in the COBOL FMA environment.

The coumand:

FA/collect~ile description input=source ••
assigned name=master
output=description

in this example extracts the file description with the ASSIGNED NAME of MASTER from the COBOL 5
source program. This gets the file description from the COBOL 5 program on file SOURCE and
places it on file DESCRIPTION.

The comnand:

FA/migrate file input=om12345 ••
input file description=description
record_procedure=process

in this example causes the COBOL 5 data file MASTER to be migrated from NOS to NOS/VE. The
migrated file is placed on NOS/VE file MASTER. This command also specifies the name of the file
containing the record procedure to be used in the migration process. This is file PROCESS, which
was created previously using the COLLECT TEXT command.

12-50 Migration From NOS to NOS/VE Revision F

Notice that this command does not specify the file name of the NOS file being migrated. Instead,
the default is used for the INPUT parameter; the default is the file name assigned by the ASSIGN
clause in the file description and is the same as the file name.

CLOSE_ENVIRONMENT

The command:

FA/close_environment

in this example closes the COBOL FMA environment.

After executing this command, you can no longer execute COBOL FMA commands unless you reopen
FMA. You are returned to the NOS/VE command environment.

Reverse Migration Example

The following example illustrates the migration of a NOS/VE file to NOS. The example assumes the
following:

The file is described in a COBOL 5-compatible source program (which can be compiled with

I

BASE LANGUAGE=COBOL5 on the COBOL command). The program is on a NOS/VE permanent file named I
$USER.COBO~SOURCE.

The file description contains no ambiguities; that is, it has a single 01 descriptor and no
REDEFINES clause. Therefore, no record procedure is needed.

The FD entry for the file is:

SELECT MYFILE ASSIGN TO "VEFILE".

The following commands migrate the NOS/VE file to NOS:

/0 pen_file_migrat ion_aid

FA/collect file description ••
input=$user7cob source ••
as signed_name=vefile

output=myfile_descr

FA/migrate file ••
input file description={myfile descr,

clBO cobol cc) •• -
input=$user.vefile
output=nosfile ••

FA/close_environment

"CALL FMA"

"File containing COBOL 5 source"
"File name in ASSIGN clause. (Identifies

the description to be copied)" ••
"File to receive file description."

"Read file description from MYFILE DESCR,"
" and migrate NOS/VE-to-NOS" -
"File to be migrated" ••
"Migrated file on NOS"

"End EMA"

Following are detailed descriptions of the preceding commands.

This command opens the migration environment. After you enter this command, you can
enter FMA commands to migrate the file.

Revision F FORTRAN and COBOL File Migration Aids 12-51

I

I

FA/collect file description ••
input=$user~cob_soutce ••
assigned name=vefile
output=myfile_descr

This command extracts the description of the NOS/VE file from the COBOL source program.
The source program is on file COB SOURCE. FMA selects the file description of the file
having the assigned name VEFILE (specified in the SELECT clause of the FILE-CONTROL
paragraph) and copies that description to file MYFILE DESCR.

FA/migrate file ••
input file description=(myfile descr, c1BO_cobol_cc)
input~$user.vefile -
output=nosfile

This command migrates the file. FMA reads the file description from file MYFILE_DESCR,
and migrates the NOS/VE file VEFILE to the NOS file NOSFILE.

I FA/close_environment

I

This command ends the FMA task.

FMA Performance Considerations

The performance of FHA is influenced by the options and statements you specify in an FHA task
(although the effect on performance is generally minor).

The following are guidelines for obtaining maximum performance from FMA.

Migrating a FORTRAN file is generally slower than doing an extended access read on the file.
This is because for file migration, a record must be written for each record read.

Several EXECUTE MIGRATION TASK command parameters are identical to parameters for the SCL
EXECUTE TASK command. Performance considerations are the same for both sets of parameters.

Using record procedures when migrating a COBOL file decreases FMA performance. Therefore,
you should use record procedures only where necessary; that is, when file descriptions
contain multiple 01 specifications or REDEFINES clauses.

Variable length records require more execution time to migrate than fixed length records.

Specifying multiple NOS commands on a single EXECUTE COMMAND command is significantly faster
than specifying a separate EXECUTE_COMMAND for each NOS command.

The selection of job statement parameters for the PARTNER JOB CARD parameter on the
OPEN FILE MIGRATION AID conmand can affect performance. Refer to Volume 3 of the NOS
reference-manual for descriptions of the Job card parameters.

You should use conversion references in record procedures to reference the highest level
(lowest level numbers) at which the file description is ambiguous. To do otherwise decreases
performance.

In record procedures, you should use the $INTEGER function only to test fields that contain
binary data and are whole word fields beginning on a word boundary.

12-52 Migration From NOS to NOS/VE Revision F

Migrating Tape Files.

You can use FHA or FMU to migrate certain NOS tape files to NOS/VE.

Introduction to Tape File Migration

On dual state systems there are two ways to migrate tape files. The first way is to migrate the
file through an interstate connection. You can use FMU, FORTRAN FMA, and COBOL FMA in this way.
Migrating a tape file through an interstate connection is identical to migrating a disk file,
except that you must request the tape (by specifying a REQUEST statement) before migrating the
tape file. You can execute a REQUEST statement from the NOS/VE side of a dual state system
through the EXECUTE INTERSTATE COMMAND (EXEIC) command. For example:

/create interstate connection
/execute_interstate_command command='REQUEST,TAPE3,PE,US,VSN=VOLOOI.'

The CREATE INTERSTATE CONNECTION command opens the interstate connection. The EXECUTE INTERSTATE
COMMAND command specifies a REQUEST statement to be executed on the NOS side of the dual state
system. File TAPE3 can then be migrated by using FMA or FMU as described earlier in this manual.

The second way of migrating a NOS tape file is to read the file from a NOS/VE tape drive. You
can read the tape file directly from NOS/VE, without going through an interstate connection.
NOS/VE can handle the NOS tape file on a NOS/VE tape drive by using the following four commands:

CREATE_170_REQUEST

CHANGE_170_REQUEST

DISPLAY TAPE LABEL ATTRIBUTES

DETACH FILE

The CREATE 170 REQUEST command creates a temporary NOS/VE file and associates it with a NOS tape
file on a NOS/VE tape drive. The temporary file describes the NOS tape file in terms that NOS/VE
can understand. The command does not cause NOS tape file access or operator communication for
tape mounting. You reference the temporary NOS/VE file in a later SCL command to actually
request and read the NOS tape file.

The CHANGE 170 REQUEST command allows you to change a NOS tape file description in a temporary
NOS/VE file formed in a preceding CREATE_170_REQUEST command.

You use the DISPLAY TAPE LABEL ATTRIBUTES command for informational purposes.
DISPLAY TAPE LABEL ATTRIBUTES works only for ANSI labeled tapes. It can display information
about a-NOS tape file from the associated temporary NOS/VE file.

You use the DETACH FILE command to delete/detach the temporary file associated with the NOS tape
file. This command also releases the physical drive.

You can find quick reference format information about any of these commands by using the
DISPLAY_COMMAND INFORMATION command. For example, to learn about the CREATE_170_REQUEST command,
enter:

/display_command information command=create_170_request

In addition, the SCL System Interface Usage manual for NOS/VE release 1.2.1, PSR level 670 or
later, describes the DISPLAY TAPE LABEL ATTRIBUTES and DETACH FILE commands in detail.

The following material includes:

A detailed description of the CREATE_170_REQUEST and CHANGE_170_REQUEST commands with examples

A brief description of the DISPLAY TAPE LABEL ATTRIBUTES and DETACH FILE commands, with
examples of their use with NOS tape files

Revision F FORTRAN and COBOL File Migration Aids 12-53.

In addition t there is an example of using the tape migration commands in each of the following
migration situations:

Migrating a character data tape file

Migrating a tape file with binary data

Migrating several tape files on the same multifile set

The CREATE 170 REQUEST command creates a NOS/VE temporary file to be associated with a NOS tape
file. Future references to the NOS tape file are through the NOS/VE temporary file.

The CREATE_170_REQUEST command has the following format:

CREATE 170 REQUEST or
CRE1R - -

FILE=file
EXTERNAL VSN=list of string
RECORDED-VSN=list of string
FILE SET-POSITION=keyword
FILE-IDENTIFIER=string
FILE-SEQUENCE NUMBER=integer
GENERATION NUMBER=integer
INTERNAL CODE=keyword
CHARACTER CONVERSION=boolean
BLOCK TYPE=keyword
RECORD TYPE=keyword
MAXIMUM BLOCK LENGTH=integer
MAXIMUM-RECORD LENGTH=integer
LABEL TYPE=keyword
TAPE FORMAT=keyword
STATUS=status variable

The FILE (F) parameter is required. It specifies the name of a NOS/VE temporary file to be
associated with a NOS tape file.

The EXTERNAL VSN (EVSN or VSN) parameter is optional. It gives the external identification of
the tape volume(s) containing the NOS tape file. Each parameter value is a string 1 to 6
characters long.

If you specify more than one external volume serial number (VSN)t the volumes are requested in
the order specified in the parameter list. If you omit the EXTERNAL VSN parameter t the system
uses the RECORDED_VSN parameter in its stead. -

You must specify either the EXTERNAL VSN parameter or the RECORDED VSN parameter. Otherwise, a
fatal error results.

The RECORDED VSN (RVSN) parameter is optional. It is for ANSI labeled tapes only. If you enter
the RECORDED-VSN parameter for an unlabeled tape t the parameter is ignored t unless there is no
matching EXTERNAL VSN parameter. In this case t the RECORDED VSN parameter takes on the functions
of the EXTERNAL_VSN parameter.

The RECORDED VSN parameter gives the VSN recorded internally on the ANSI VOL1 label on the tape
volume(s) holding the NOS tape file. Each parameter value is a string 1 to 6 characters long.
File processing uses the RECORDED VSN parameter to locate and verify the correct volume.

• 12-54 Migration From NOS to NOS/VE Revision F

If you specify more than one recorded VSN, the volumes are located and verified in the order
specified in the parameter list. If you omit the RECORDED_VSN parameter for an ANSI labeled
tape, the system uses the EXTERNAL VSN parameter to verify the VSN recorded internally on the
ANSI VOLl tape label.

If you specify both the EXTERNAL VSN and RECORDED VSN parameters, they are matched; the first
external VSN with the first recorded VSN, the second external VSN with the second recorded VSN,
and so on. For each such pair, NOS/VE uses the external VSN parameter to direct the system
operator to mount the tape with that external VSN. For an ANSI labeled tape, NOS/VE uses the
recorded VSN value to verify the VSN recorded internally on the ANSI VOLl label on that tape.

If there is an EXTERNAL VSN parameter with no matching RECORDED VSN parameter, NOS/VE uses the
EXTERNAL VSN parameter to direct the system operator. For an ANSI labeled tape, NOS/VE also uses
the EXTERNA~VSN parameter to verify the VSN recorded internally on the ANSI VOLl tape label.

If there is a RECORDED_VSN parameter with no matching EXTERNAL VSN parameter, NOS/VE uses the
RECORDED VSN parameter to direct the system operator. For an ANSI labeled tape, NOS/VE also uses
the RECORDED_VSN parameter to verify the VSN recorded internally on the ANSI VOLl tape label.

The FILE SET POSITION (FSP) parameter is optional. It specifies the position of the NOS tape
file to be read.

The FILE SET POSITION parameter is not needed for unlabeled tapes because NOS/VE assumes that you
wish to read-the first file on an unlabeled tape. That is, the value of the FILE SET POSITION
parameter for a NOS tape file on an unlabeled tape is BEGINNING_OF_SET, regardless of-what you
enter.

Only labeled tapes can use all the values of the FILE SET POSITION parameter. If you omit the
parameter for a labeled tape, the NEXT FILE position is assumed.

The parameter can have any of the following values:

This value specifies that the first tape file on the file set is to be read.

CURRENT_FILE (CF)

This value specifies that the current tape file is to be read. That is, the last tape
file accessed will be accessed again. If the tape is positioned at the beginning of the
first volume, the first tape file will be read.

FILE IDENTIFIER POSITION (FIP)

This value specifies that the tape file identified by the FILE IDENTIFIER and
GENERATION_NUMBER parameters is to be read.

This value specifies that the tape file identified by the FILE_SEQUENCE_NUMBER parameter
is to be read.

NEXT FILE (NF)

This value specifies that the tape file following the last accessed tape file will be
read. If the tape is positioned at the beginning of the first volume, the first tape
file will be read.

The FILE IDENTIFIER (FI) parameter is optional. It is for labeled tapes, and it is ignored if
you specify it for an unlabeled tape. Its value is a string of 1 to 17 characters that specifies
a file identifier. Each tape file on a multifile set has a unique file identifier. If you
specify the FILE IDENTIFIER POSITION value for the FILE SET POSITION parameter, the
FILE IDENTIFIER parameter is required; otherwise, its value-is ignored.

Revision F FORTRAN and COBOL File Migration Aids 12-558

The FILE SEQUENCE NUMBER (FSN) parameter is optional. It is for labeled tapes, and it is ignored
if you specify it-for an unlabeled tape. Its value is an unsigned integer in the range 1 through
9999 that specifies the numeric position of a tape file on a multifile set. If you specify the
FILE SEQUENCE POSITION value for the FILE SET POSITION parameter, the FILE SEQUENCE NUMBER
para;eter is required; otherwise, its val~e is ignored. --

The GENERATION NUMBER (GN) parameter is optional. It is for labeled tapes, and it is ignored if
you specify it-for an unlabeled tape. Its value, an unsigned integer in the range 1 through
9999, identifies a specific revision of the tape file named by the FILE IDENTIFIER parameter. If
the FILE SET POSITION parameter has the FILE IDENTIFIER POSITION value,-and the GENERATION NUMBER
parameter is-omitted, then the GENERATION_NUMBER parameter value is set to one.

The INTERNAL CODE (IC) parameter is optional. It specifies the character set of the data on the
tape volume.- If you omit the parameter, its value is set to D64. The INTERNAL CODE parameter
can have the following values:

AS6 6/12-bit ASCII

AS8 8/l2-bit ASCII

D63 63-character display code

D64 64-character display code

The CHARACTER CONVERSION (CC) parameter is optional. Its boolean value specifies whether or not
file data is to be converted to or from the character set specified by the INTERNAL CODE
parameter. If you omit the CHARACTER_CONVERSION parameter, FALSE is assumed to be its value.

Of the tape file migration methods, only FMA and FMU automatically do character conversion in
addition to any conversion specified by the CHARACTER_CONVERSION parameter value.

To obtain a properly migrated tape file, you usually want to set the CHARACTER CONVERSION
parameter to:

FALSE if you use FMA or FMU to migrate. Otherwise you convert your tape file data twice.

TRUE if you use any other tape file migration method. Otherwise, you do not convert your
tape file data at all.

The BLOCK TYPE (BT) parameter is optional. It specifies the block type of the NOS input tape
file. If-you omit this parameter, its value is set to INTERNAL. Its value can be either of the
following:

INTERNAL (I) Internal blocking

CHARACTER COUNT (CC) Character count blocking

The RECORD TYPE (RT) parameter is optional. Its value specifies the record type of the NOS tape
file. If you omit this parameter, its value is set to CONTROL WORD. Its value can be any of the
following:

CONTROL WORD (CW or W) Control word

FIXED LENGTH (FL or F) Fixed length

SYSTEM RECORD (SR or S) System record

ZERO BYTE (ZB or Z) Zero-byte

• 12-56 Migration From NOS to NOS/VE Revision F

The MAXIMUM BLOCK LENGTH (MAXBL or MBL) parameter is optional. Its value is an unsigned integer
that specifies the maximum length in 6-bit bytes of a block in the NOS tape file. The system
maximum for this parameter is 2,147,483,615. If you omit this parameter, its value is set to
5120.

The MAXIMUM RECORD LENGTH (MAXRL or MRL) parameter is optional. Its value is an unsigned integer
that specifies the-maximum length in 6-bit bytes of a record in the NOS tape file. The system
maximum for this parameter is 4,398,046,511,103. If you omit this parameter, its value is set to
5120.

The LABEL TYPE (LT) parameter is optional. Its value specifies whether the tape is labeled. If
you omit this parameter, its value is set to STANDARD. This parameter can have the following
values:

LABELLED (L) Same as STANDARD.

STANDARD (S) Tape has standard labels.

UNLABELLED (U) Tape is not labeled.

The TAPE FORMAT (TF) parameter is optional. It specifies the tape format of the NOS tape file.
If you omit this parameter, is value is set to NOS INTERNAL. The possible values for this
parameter are:

NOS INTERNAL (NI or I) Internal, NOS default tape format

STRANGER (S) Stranger

LONG STRANGER (LS or L) Long block stranger

The STATUS variable is optional. It is the standard SCL status variable. Refer to chapter 2 for
more information.

Restrictions on the NOS Tape Files

There are restrictions and considerations in using the CREATE_170_REQUEST command. They are
divided as follows:

Tape Characteristics

Labeled and Unlabeled Tape Differences

Tape File Configurations

FMA and FMU Considerations

POSitioning the NOS Tape File

Output File Characteristics

Tape Characteristics

The CREATE 170 REQUEST command supports standard labeled and unlabeled binary mode tapes. The
tapes are nine-track and can have one of the following densities:

800 characters per inch (cpi)

1600 cpi

6250 cpi

Revision F FORTRAN and COBOL File Migration Aids 12-57.

You do not need to specify the density of the tape containing the NOS tape file. The system can
determine this information.

There are four possible combinations of block type and record type:

Block Type Record Type

character-count fixed-length

character-count system-record

character-count zero-byte

internal control-word

Labeled and Unlabeled Tape Differences

If you attempt to process a labeled tape as an unlabeled tape, results are unpredictable.

The following restrictions apply to unlabeled tapes:

Mixed tape formats are not supported.

Multifile sets are not supported.

If the tape has records with the control word record type (RECORD TYPE=CONTROL WORD) and the
tape format is long block stranger or stranger, then all the files on the tape-must have
records with the same record type.

Tape File Configurations

The CREATE 170 REQUEST command can create a NOS/VE temporary file referencing any of the
following kinds of NOS tape files:

A single file on a single volume

A single file spanning several volumes

A single file within a multifile set on a single volume

A single file within a multifile set spanning several volumes

FMA and FMU Considerations

You must enter a CREATE 170_REQUEST command before using FMA or FMU to migrate the NOS tape file.

If you are using FMA, you specify the name of the NOS/VE temporary file in the MIGRATION FILES or
EXTENDED ACCESS FILES parameter of the EXECUTE MIGRATION TASK command. When the FORTRA~program
executing under-FMA opens the temporary file, the NOS tape file is requested.

If you are using FMU, you specify the name of the temporary file on the SET INPUT ATTRIBUTES
directive. You also specify MACHINE FoRMAT=C170 in the SET INPUT ATTRIBUTES directive. When you
initiate FMU, the tape request is issued and the NOS tape file is-read.

FMA and FMU automatically do character conversion in addition to any conversion specified by the
CHARACTER CONVERSION parameter value. If you use FMA or FMU to migrate, you usually want to set
the CHARACTER CONVERSION parameter to FALSE. Otherwise you convert your tape file data twice •

• 12-58 Migration From NOS to NOS/VE Revision F

For standard labeled tapes,'FMA and FMU can do the following:

Read a specific file in a file set. (You specify the file sequence number or the file
identifier in the CREATE_170_REQUEST command.)

Read all sections of a file in single-file/single-volume, single-file/multivolume,
multifile/single-volume, and multifile/multivolume configurations.

Positioning the NOS Tape File

If a NOS tape file is to be positioned to a partition boundary, all data on the file must have
the same tape format. The tape formats are listed in the CREATE_170_REQUEST format description
earlier in this chapter.

You can position to a partition boundary by using the STARTING FILE POSITION parameter on the
SET INPUT ATTRIBUTES FMU directive or by using the FORTRAN EO~function when using FMA. Refer to
the-description of FMU in the SCL Advanced File Management Usage manual for a description of the
STARTING FILE POSITION parameter. The EOF function is described in the FORTRAN Language
Definition Usage manual.

After the NOS file on the labeled tape is located, you can position to a partition boundary.
Unlabeled tapes cannot be positioned by file sequence number. Unlabeled tapes can be positioned
only by partitions, using the STARTING_FILE POSITION parameter with FMU or the FORTRAN EOF
function with FMA.

Output File Characteristics

Not previously set file attributes of the NOS/VE file receiving the migrated NOS tape file get
their values from the temporary NOS/VE file associated with the NOS tape file. The values of two
of these file attributes can cause fatal errors when the new NOS/VE file is referenced. To
ensure that these file attributes have correct values, enter the following command before the
command that migrates the NOS tape file:

SET FILE ATTRIBUTES FILE=file
-BLOCK TYPE=keyword ••

RECORD_TYPE=keyword

Here FILE or F specifies the NOS/VE file receiving the migrated NOS tape file.

The BLOCK TYPE or BT parameter can have one of the following values:

SYSTEM SPECIFIED or SS

USER SPECIFIED or US

The file is logically divided into a number of fixed-size blocks
whose length is determined by NOS/VE.

The file is logically divided into a number of blocks whose length
can vary between a user-defined minimum and maximum length.

The RECORD TYPE or RT parameter can have one of the following values:

V ARIABLE or V CDC variable

FIXED or F ANSI fixed length

UNDEFINED or U Undefined

For more information about which values to use for block type and record type, see the CYBIL File
Interface Usage manual or the appropriate programming language usage manual.

Revision F FORTRAN and COBOL File Migration Aids 12-59.

CREATE_170_REQUEST Examples

There are five examples of the CREATE_170_REQUEST (CREIR):

CREIR for single tape file on single volume

CREIR for single FORTRAN tape file on several volumes

CREIR for FORTRAN tape file on multifile set on several volumes

CREIR for generation 1 tape file on multifile set on one volume,

CREIR for generation 3 tape file on multifile set on one volume

CREIR, One File, One Volume

The following command associates the NOS/VE temporary file ONE_FILE with a single NOS tape file
on a single volume with external VSN of 3193:

/create 170 request file=one file
/external vsn='3193' ••
/file set-position=next file ••
/internal-code=d64 •• -
/character conversion=false ••
/block typ~=internal ••
/record type=control word ••
/maximum block length=5120 ••
/maximum-record length=5120
/label type=standard ••
/tape_format=nos_internal

NOS/VE directs the system operator to mount the volume with external VSN 3193. Because the tape
is an ANSI labeled tape, the system verifies that the VSN recorded internally on the ANSI VOLl
label is 3193.

The example tells that the NOS tape file:

Is the tape file following the last accessed tape file (FILE SET POSITION=NEXT FILE). If the
tape is positioned at the beginning of the first volume, the-first tape file is read.

Has character data in the 64-character display code character set, the default
(INTERNAL_CODE=D64)

Has the default character conversion (CHARACTER_CONVERSION=FALSE)

Has the default blocking type, internal blocking (BLOC~TYPE=INTERNAL)

Has the default record type, control word (RECORD_TYPE=CONTROL_WORD)

Has the default maximum block length of 5120 (MAXIMUM_BLOCK_LENGTH=5120)

Has the default maximum record length of 5120 (MAXIMUM_RECORD_LENGTH=5120)

Is labeled, the default (LABEL_TYPE=STANDARD)

Has the default tape format, internal (TAPE_FORMAT=NOS_INTERNAL)

By omitting the parameters whose values were defaults, you can shorten the command to:

/create 170 request file=one file
/external_vsn='3193'

• 12-60 Migration From NOS to NOS/VE Revision F

CREIR, One FORTRAN File, Se~eral Volumes

This example associates the temporary file SOME VOLUMES with a typical FORTRAN formatted
sequential, namelist, or list directed file (BLOCK TYPE=CHARACTER COUNT, RECORD TYPE=ZERO_BYTE).
The file is a single NOS tape file spanning two volumes: -

/create 170 request file=some volumes
/externaT vsn=('3193' '1019') ••
/recorded-vsn=('iv01' 'iv02') ••
/file set-position=current file
/internal-code=d63 •• ' -
/character conversion=true ••
/block type=character count ••
/record type=zero byte ••
/maximum block length=4000
/maximum:record_length=200

NOS/VE directs the system operator to mount the volumes with external VSNs 3193 and 1019.
Because the tapes are ANSI labeled tapes, the system verifies that the VSNs recorded internally
on the ANSI VOLI labels are ivOl and iv02.

The example tells that the NOS tape file:

Is the current tape file (FILE SET POSITION=CURRENT FILE); that is, the last tape file
accessed. If the tape is positioned at the beginning of the first volume, the first tape
file is read.

Has character data in the 63-character display code character set (INTERNAL_CODE=D63)

Is to be converted from the D63 character set (CHARACTER_CONVERSION=TRUE)

Has character count blocking (BLOC~TYPE=CHARACTER_COUNT)

Has the zero-byte record type (RECORD_TYPE=ZERO_BYTE)

Has maximum block length of 4000 (MAXIMUM_BLOCK_LENGTH=4000)

Has maximum record length of 200 (MAXIMUM_RECORD_LENGTH=200)

Is labeled, the default

Has the default tape format, internal

CREIR, FORTRAN File on Multifile Set, Several Volumes

This next command associates temporary file FILE 5 with a typical FORTRAN unformatted sequential
file (BLOCK TYPE=INTERNAL, RECORD TYPE=CONTROL WORD). The file is the fifth tape file in a
multifile set that spans two volumes: -

/create 170 request file=file 5 ••
/external vsn=('3907' '1007') ••
/recorded-vsn=('7110' '5811') ••
/file set-position=file sequence position
/file=sequence_number=5- -

NOS/VE directs the system operator to mount the volumes with external VSNs 3907 and 1007.
Because the tapes are ANSI labeled tapes, the system verifies that the VSNs recorded internally
on the ANSI VOL1 labels are 7110 and 5811.

Revision F FORTRAN and COBOL File Migration Aids 12-61.

The example tells that the NOS tape file:

Is to be found by its position on the tape (FILE_SET_POSTION=FILE_SEQUENCE_POSITION)

Is the fifth file on the multifile set (FILE_SEQUENCE_NUMBER=5)

Has character data in the 64-character display code character set, the default

Has the default character conversion, blocking, record type, maximum block length, maximum
record length, and tape format

Is labeled, the default

CREIR, Generation 1 File on Multifile Set, One Volume

The following command associates temporary file AB CD GOLDFISH with a NOS tape file with
identifier LITTLE CARP:

/ create 170 request file=ab cd ·goldfish ••
/ external vsn='h20' •• -
/recorded-vsn='water' ••
/file set-position=file identifier .position
/file=identifier='little_carp' -

NOS/VE directs the system operator to mount the volume with external VSN H20. Because the tape
is an ANSI labeled tape, the system verifies that the VSN recorded internally on the ANSI VOLl
label is WATER.

The example tells that the NOS tape file:

Is to be found from its file identifier and generation number (FILE_SET_POSITION=
FILE_IDENTIFIER_POSITION)

Is identified within the multifile set as LITTLE_CARP (FILE_IDENTIFIER=LITTLE_CARP)

Is the first generation of LITTLE_CARP, because the default value of GENERATION NUMBER is

Has character data in the 64-character display code character set, the default

Has the default character conversion, blocking, record type, maximum block length, maximum
record length, and tape format

Is labeled, the default

CREIR, Generation 3 File on Multifile Set, One Volume

The following command associates temporary file LM NO GOLDFISH with a NOS tape file that is the
third cycle of a file identified as BIG GUPPY:

/create 170 request file=l~no_goldfish ••
/external vsn='agua' ••
/file set-position=file identifier position
/file-identifier='big guppy' -
/generation_number=3 -

NOS/VE directs the system operator to mount the volume with external VSN AGUA. Because the tape
is an ANSI labeled tape, the system verifies that the VSN recorded internally on the ANSI VOLl
label is AGUA •

• 12-62 Migration From NOS to NOS/VE Revision F

The example tells that the ~OS tape file:

Is to be found from its file identifier and generation number (FILE_SET_POSTION=
FILE_IDENTIFIE~POSITION)

Is identified within the multifile set as BIG GUPPY (FIL~IDENTIFIER=BIG_GUPPY)

Is the third generation of BIG_GUPPY (GENERATION_NUMBER=3)

Has character data in the 64-character display code character set, the default

Has the default character conversion, blocking, record type, maximum block length, maximum
record length, and tape format

Is labeled, the default

The CHANGE 170 REQUEST command changes the description of a NOS tape file. The command operates
on the Nos7vE temporary file associated with the NOS tape file.

This command is handy when you wish to use the same temporary NOS/VE file to reference several
tape files from the same multifile set on tape. You simply use the CHANGE_170_REQUEST command to
change the tape file description.

In general, when you omit a parameter from the CHANGE 170 REQUEST command, the value of that
parameter is not changed. Thus, usually, you need to-include only those parameters whose
settings change for the new NOS tape file.

The two exceptions to this rule are the FILE_SET POSITION and the GENERATION NUMBER parameters.
When you omit these parameters, their values become the default values of the parameters. For
the FILE SET POSITION parameter, the default is BEGINNING OF SET for an unlabeled tape and
NEXT_FILE for a labeled tape. The default value for the GENERATION NUMBER parameter is 1.

As with the CREATE 170 REQUEST command, not previously set file attributes of the NOS/VE file
receiving the migr;ted-NOS tape file get their values from the temporary NOS/VE file associated
with the NOS tape file. The values of two of these file attributes can cause fatal errors when
the new NOS/VE file is referenced. To ensure that these file attributes have correct values,
enter the following command before the command that migrates the NOS tape file:

SET FILE ATTRIBUTES FILE=file
-BLOCK TYPE=keyword ••

RECORD_TYPE=keyword

Here FILE or F specifies the NOS/VE file receiving the migrated NOS tape file.

For more information about which values to use for BLOCK TYPE and RECORD TYPE, see the CYBIL File
Interface Usage manual or the appropriate programming language usage manual.

Revision F FORTRAN and COBOL File Migration Aids 12-63.

The CHANGE_170_REQUEST command has the following format:

CHANGE_170_REQUEST or
CHAIR

FILE=file
FILE_SET_POSIT ION=keyword
FILE IDENTIFIER=string
FILE-SEQUENCE NUMBER=integer
GENERATION NUMBER=integer
INTERNAL CODE=keyword
CHARACTER CONVERSION=boolean
BLOCK TYPE=keyword
RECORD TYPE=keyword
MAXIMUM BLOCK LENGTH=integer
MAXIMUM-RECORD LENGTH=integer
TAPE FORMAT=keyword
STATUS=status variable

The FILE (F) parameter is required. It specifies the name of a NOS/VE temporary file associated
with a NOS tape file by a previous CREATE_170_REQUEST command.

The FILE SET POSITION (FSP) parameter is optional. It specifies the position of the NOS tape
file to be read.

The FILE SET POSITION parameter is not needed for unlabeled tapes because NOS/VE assumes that you
wish to read-the first file on an unlabeled tape. That is, the value of the FILE SET POSITION
parameter for a NOS tape file on an unlabeled tape is BEGINNING_OF_SET, regardless of-what you
enter.

Only labeled tapes can use all the values of the FILE SET POSITION parameter. If you omit the
parameter for a labeled tape, the NEXT FILE position is assumed.

The parameter can have any of the following values:

This value specifies that the first tape file on the file set is to be read.

CURRENT_FILE (CF)

This value specifies that the current tape file is to be read. That is, the last tape
file accessed will be accessed again. If the tape is positioned at the beginning of the
first volume, the first tape file will be read.

FILE IDENTIFIER POSITION (FIP)

This value specifies that the tape file identified by the FILE IDENTIFIER and
GENERATION_NUMBER parameters is to be read.

FILE_SEQUENCE_POSITION (FSP)

This value specifies that the tape file identified by the FILE_SEQUENCE_NUMBER parameter
is to be read.

NEXT FILE (NF)

This value specifies that the tape file following the last accessed tape file will be
read. If the tape is positioned at the beginning of the first volume, the first tape
file will be read •

• 12-64 Migration From NOS to NOS/VE Revision F

The FILE IDENTIFIER (FI) pa.rameter is optional. It is for labeled tapes, and it is ignored if
you specTfy it for an unlabeled tape. Its value is a string of 1 to 17 characters that specifies
a file identifier. Each tape file on a multifile set has a unique file identifier. If the
FILE SET POSITION parameter does not have the FILE_IDENTIFIER_POSITION value, the FILE IDENTIFIER
parameter is ignored.

If you specify the FILE_IDENTIFIER POSITION value for the FILE SET POSITION parameter, the
FILE IDENTIFIER parameter must have a value. If you omit the FILE-IDENTIFIER parameter, a fatal
diagnostic is issued.

The FILE_SEQUENCE_NUMBER (FSN) parameter is optional. It is for labeled tapes, and it is ignored
if you specify it for an unlabeled tape. Its value is an unsigned integer in the range 1 through
9999 that specifies the numeric position of a tape file on a multifile set. If the
FILE SET POSITION parameter is not set to FI LE_SEQUENCE_POS ITION, the FILE_SEQUENCE_NUMBER
parameter value is ignored.

If you specify the FILE SEQUENCE POSITION value for the FILE SET POSITION parameter, the
FILE SEQUENCE NUMBER parameter must have a value. If you omit the FILE_SEQUENCE_NUMBER
parameter, a fatal diagnostic is issued.

The GENERATION NUMBER (GN) parameter is optional. It is for labeled tapes, and it is ignored if
you specify it-for an unlabeled tape. Its value, an unsigned integer in the range 1 through
9999, identifies a specific revision of the tape file named by the FILE IDENTIFIER parameter. If
the FILE SET POSITION parameter has the FILE IDENTIFIER POSITION value,-and the GENERATION NUMBER
parameter is-omitted, then the GENERATION_NUMBER parameter value is set to one.

If the FILE SET POSITION parameter does not have the FILE_IDENTIFIER_POSITION value, the
GENERATION NUMBER parameter is ignored.

The INTERNAL CODE (IC) parameter is optional. It specifies the character set of the data on the
tape volume. If you omit the parameter, its value is left at its previous setting. The
INTERNAL_CODE parameter can have the following values:

AS6 6/12-bit ASCII

AS8 8/12-bit ASCII

D63 63-character display code

D64 64-character display code

The CHARACTER CONVERSION (CC) parameter is optional. Its boolean value specifies whether or not
file data is to be converted to or from the character set specified by the INTERNAL CODE
parameter. If you omit the CHARACTER CONVERSION parameter, its value is left at its previous
setting.

Of the tape file migration methods, only FMA and FMU automatically do character conversion in
addition to any conversion specified by the CHARACTER_CONVERSION parameter value.

To obtain a properly migrated tape file, you usually want to set the CHARACTER CONVERSION
parameter to:

FALSE if you use FHA or FMU to migrate. Otherwise you convert your tape file data twice.

TRUE if you use any other tape file migration method. Otherwise, you do not convert your
tape file data at all.

Revision F FORTRAN and COBOL File Migration Aids 12-65.

The BLOCK TYPE (BT) parameter is optional. It specifies the block type of the NOS input tape
file. If-you omit this parameter, its value is left at its previous setting. Its value can be
either of the following:

INTERNAL (I) Internal blocking

CHARACTER COUNT (CC) Character count blocking

The RECORD TYPE (RT) parameter is optional. Its value specifies the record type of the NOS tape
file. If you omit this parameter, its value is left at its previous setting. Its value can be
any of the following:

CONTROL WORD (CW or W) Control word

FIXED LENGTH (FL or F) Fixed length

SYSTEM RECORD (SR or S) System record

ZERO BYTE (ZB or Z) Zero-byte

The MAXIMUM BLOCK LENGTH (MAXBL or MBL) parameter is optional. Its value is an unsigned integer
that specifies the maximum length in 6-bit bytes of a block in the NOS tape file. The system
maximum for this parameter is 2,147,483,615. If you omit this parameter, its value is left at
its previous setting.

The MAXIMUM RECORD LENGTH (MAXRL or MRL) parameter is optional. Its value is an unsigned integer
that specifies the-maximum length in 6-bit bytes of a record in the NOS tape file. The system
maximum for this parameter is 4,398,046,511,103. If you omit this parameter, its value is left
at its previous setting.

The TAPE FORMAT (TF) parameter is optional. It specifies the tape format of the NOS tape file.
If you omit this parameter, is value is left at its previous setting. The possible values for
this parameter are:

NOS INTERNAL (NI or I) Internal, NOS default tape format

STRANGER (S) Stranger

LONG STRANGER (LS or L) Long block stranger

The STATUS variable is optional. It is the standard SCL status variable. Refer to chapter 2 for
more information.

CHANGE_170_REQUEST Example

The example supposes that you are reading five NOS tape files from the same multifile set on a
labeled tape with volume serial number CMPN. The files share the following characteristics:

Referenced by NOS/VE temporary file (FILE=MULTI_FILES)

Character data in the 64-character display code character set, the default (INTERNAL_CODE=D64)

Default character data conversion (CHARACTER_CONVERSION=FALSE)

Internal tape format, the default (TAPE_FORMAT=NOS_INTERNAL)

• 12-66 Migration From NOS to NOS/VE Revision F

CHAIR Example, First File

The first NOS tape file to be read has the default values for the BLOCK TYPE, RECORD TYPE,
MAXIMUM BLOCK LENGTH, and MAXIMUM RECORD LENGTH parameters. It is the first tape file on the
multifile set7 The following command associates MULTI FILES with this first NOS tape file:

/create 170 request file=multi files ••
/externaT vsn='cmpn' ••
/file set-position=beginning of set
/internal-code=d64 •• - -
/character conversion=false ••
/block type=internal ••
/record type=control word ••
/maximum block length=5120 ••
/maximum-record length=5120
/label type=standard ••
/tape_format=nos_internal

By omitting the parameters whose values were defaults, you can shorten the command to:

/create 170 request file=multi files ••
/externaT vsn='cmpn' ••
/file_set=position=beginning_of_set

NOS/VE directs the system operator to mount the volume with external VSN CMPN. Because the tape
is an ANSI labeled tape, the system verifies that the VSN recorded internally on the ANSI VaLl
label is CMPN.

CHAIR Example, Second File

The second NOS tape file to be read is the second (and next) file in the multifile set
(FILE SET POSITION=NEXT FILE). It also has the default values for the BLOCK TYPE, RECORD_TYPE,
MAXIMUM_BLaCK_LENGTH, and MAXIMUM_RECORD_LENGTH parameters. -

The command to change MULTI_FILES to reference this second NOS tape file is:

/change 170 request file=multi files
/file set position=next file-••
/internal-code=d64 •• -
/character conversion=false ••
/block type=internal ••
/record type=control word ••
/maximum block length=5120 ••
/maximum-record length=5120
/tape_format=nos_internal

If you omit the parameters whose values have not changed, you can shorten the command to:

/change 170 request file=multi files
/file_set_position=next_file-

Note that the BLOCK TYPE parameter value stays at INTERNAL, even though it is omitted. The
BLOCK TYPE parameter is one of the parameters that keeps its old value if you omit the parameter
in a CHANGE_170_REQUEST command.

Revision F FORTRAN and COBOL File Migration Aids 12-67.

You do not have to include the FILE SET POSITION parameter, although its value has changed. The
FILE SET POSITION parameter· is one of tne two parameters that takes on its default value if you
omit-the-parameter in a CHANGE 170 REQUEST command. So, if you omit the FILE SET POSITION
parameter in this example, the-parameter value becomes the default NEXT FILE for a labeled tape,
and the command becomes:

/change_170_request file=multi files

CHAIR Example, Third File

The third NOS tape file to be. read is the sixth file in the multifile set. This means that it is
found by its .position in the multifile set (FILE SET POSITION=FILE SEQUENCE POSITION), and that
you set the FILE_SEQUENCE_NUMBER parameter to 6.- Also, the file has: -

Character count blocking (BLOCK_TYPE=CHARACTER_COUNT)

Zero-byte record type (RECORD_TYPE=ZERO_BYTE)

The values of the file's MAXIMUM BLOCK LENGTH and MAXIMUM RECORD LENGTH parameters are the
defaults.

The command to change MULTI_FILES to reference this third NOS tape file to be read is:

/change 170 request file=multi files ••
Ifile set position=file sequence position
Ifile-sequence number=6-.. -
/internal code~d64 ••
/character conversion=false
/block type=character count
/record type=zero byte ••
/maximum block length=5120 ••
/maximum-record length=5120
/tape_format=nos_internal

If you omit the parameters whose values have not changed, you can shorten the command to:

/change 170 request file=multi files ••
/file set position=file sequence position
/file-sequence number=6-.. -
/block type=character count
/record_type=zero~byte

CHAIR Example, Fourth File

The fourth NOS tape file to be read has the file identifier R2D2. This means that it is found in
the multifile set from its file identifier (FILE SET POSITION=FILE IDENTIFIER POSITION), and that
you set the FIL~IDENTIFIER parameter to R2D2. Also: the file has: -

Character count blocking (BLOCK_TYPE=CHARACTE~COUNT)

Zero-byte record type (RECORD_TYPE=ZERO_BYTE)

Maximum block length of 2000 (MAXIMUM_BLOCK_LENGTH=2000)

Maximum record length of 200 (MAXIMUM_RECORD_LENGTH=200)

• 12-68 Migration From NOS to NOS/VE Revision F

The command to change MULT~_FILES to reference this fourth NOS tape file to be read is:

/chauge 170 request file=multi files ••
/file set position=file identifier position
/ file -identifier='r2d2'-.. -
/internal code=d64 ••
/character conversion=false
/block typ;=character count
/ record type=zero byte ••
/maximum block length=2000
/maximum-record length=200
/tape_format=nos_internal

If you omit the parameters whose values have not changed, you can shorten the command to:

/change 170 request file=multi files ••
/file set position=file identifier position
/file-identifier='r2d2'-.. -
/maximum block length=2000
/maximum=record_length=200

Note that the values for the BLOCK TYPE and RECORD TYPE parameters stay at CHARACTER COUNT and
ZERO_BYTE, respectively, when you omit the parameters.

CHAIR Example, Fifth File

The fifth NOS tape file to be read is the eighth generation of the file with identifier C3PO.
This means that:

It is found in the multifile set from its file identifier (FILE_SET_POSITION=
FILE_IDENTIFIER_POSITION).

You set the FILE_IDENTIFIER parameter to C3PO. (FILE_IDENTIFIER=C3PO).

You set the GENERATION NUMBER parameter to 8. (GENERATION_NUMBER=8).

Also, the file has:

Character count blocking (BLOCK_TYPE=CHARACTE~COUNT)

Zero-byte record type (RECORD_TYPE=ZERO_BYTE)

The NOS default maximum block length and maximum record length

The command to change MULTI_FILES to reference this fifth NOS tape file to be read is:

/change 170 request file=multi files ••
/file set position=file identifier position
/file-identifier='c3po'-.. -
/generation number=8 ••
/internal code=d64 ••
/character conversion=false
/block type=character count
/ record type=zero byte ••
/maximwn block length=5120 ••
/maximum-record length=5120
/tape_format=nos_internal

Revision F FORTRAN and COBOL File Migration Aids 12-69.

If you omit the parameters whose values have not changed, you can shorten the command to:

/change 170 request file=multi files ••
/file set position=file identifier position
/file-identifier='c3po'-.. -
/generation number=8 ••
/maximum block length=5120
/maximum:record_length=5120

Note that you must keep the FILE SET POSITION parameter, even though its value has not changed.
If you omit the parameter, its value-defaults to NEXT FILE. Also, you must include the
MAXIMUM BLOCK LENGTH and MAXIMUM RECORD LENGTH parameters to return their values to the NOS
defaults. If-you omit the parameters, their values remain at 2000 and 200, respectively.

The DISPLAY TAPE LABEL ATTRIBUTES command references a temporary NOS/VE file associated with an
ANSI labeled tape file. From that NOS/VE temporary file, the DISPLAY TAPE LABEL ATTRIBUTES
command displays the current tape label attribute information about the ANSI tape file.

If the ANSI tape file is a NOS tape file, the following is true:

The DISPLAY TAPE LABEL ATTRIBUTES command displays most of the description of the NOS tape
file currently associated with the NOS/VE temporary file. This description has been created
by the CREATE_170_REQUEST and CHANGE_170_REQUEST commands.

The value displayed for BLOCK TYPE is always USER SPECIFIED (US). It is not whatever you set
it to: INTERNAL or CHARACTER COUNT.

The value displayed for CHARACTER SET is always ASCII. It is not whatever you set
INTERNAL CODE to: AS6, AS8, D63,-or D64.

The value displayed for the MAXIMUM RECORD LENGTH parameter is a length in 8-bit bytes. You
previously set this value as a length in 6-bit bytes in a CREATE 170 REQUEST or
CHANGE_170_REQUEST command. For example, your setting the MAXIMUM RECORD LENGTH parameter to
80 in the CREATE 170 REQUEST command says that the maximum record length is 80 6-bit bytes or
480 bits. The DISPLAY TAPE LABEL ATTRIBUTES command gives the MAXIMUM RECORD_LENGTH value of
480 bits in 8-bit bytes, namely 60.

The value displayed for the MAXIMUM BLOCK LENGTH parameter behaves much like the value
displayed for the MAXIMUM RECORD LENGTH parameter. In addition, if you set the TAPE FORMAT
parameter value to NOS INTERNAL,-8 is added to the value displayed for the -
MAXIMUM BLOCK LENGTH parameter •. For example, your setting the TAPE FORMAT parameter to
NOS INTERNAL and the MAXIMUM BLOCK LENGTH parameter to 400 in the CREATE 170 REQUEST command
says that the maximum block length-is 400 6-bit bytes or 2400 bits. The- -
DISPLAY TAPE LABEL ATTRIBUTES command displays the sum, 308, of 8 plus the
MAXIMUM=BLOCK_LENGTH value of 2400 bits in 8-bit bytes, namely 300.

RECORD TYPE is always UNDEFINED (U). It is not whatever you set it to: CONTROL_WORD,
FIXED~ENGTH, SYSTEM_RECORD, or ZERO BYTE.

An error occurs if a CREATE 170 REQUEST command has not associated the temporary NOS/VE file
with a NOS tape file. --

The rest of the discussion in this manual about the DISPLAY TAPE LABEL ATTRIBUTES command deals
with how it displays information about a NOS tape file asso~iated with-a NOS/VE temporary file by
a CREATE 170 REQUEST command. See the SCL System Interface Usage manual for the complete
description of the DISPLAY TAPE LABEL ATTRIBUTES command •

• 12-70 Migration From NOS to NOS/VE Revision F

The DISPLAY TAPE_LABEL_ATTRIBUTES command has the following format:

DISPLAY TAPE LABEL ATTRIBUTES or
DISTLA - -

FILE=file
DISPLAY OPTIONS=list of keyword
OUTPUT=file
STATUS=status variable

The FILE (F) parameter is required. It specifies the name of the NOS/VE temporary file
associated with the NOS tape file for which tape label attribute information is to be displayed.

The DISPLAY OPTIONS (DO) parameter is optional. It specifies the tape label attribute
information-to be displayed. If you omit this parameter, the value ALL is assumed. The
following discussion of the DISPLAY OPTIONS values is in terms of the tape label attributes of a
NOS tape file:

BLOCK TYPE (BT)

BUFFER_OFFSET (BO)

CHARACTER CONVERSION (CC)

CHARACTER SET (CS)

CREATION DATE (CD)

EXPIRATION_DATE (ED) .

FILE ACCESSIBILITY CODE (FAC)

FILE_IDENTIFIER (FI)

FILE_SEQUENCE_NUMBER (FSN)

FILE_SET_IDENTIFIER (FSI)

FILE SET POSITION (FSP)

GENERATION NUMBER (GN)

GENERATION VERSION NUMBER (GVN)

MAXIMUM BLOCK LENGTH (MAXBL)

MAXIMUM RECORD LENGTH (MAXRL)

PADDING CHARACTER (PC)

RECORD_TYPE (RT)

REWRITE LABELS (RL)

Revision F

Displays USER SPECIFIED (US)

Displays a zero

Displays the CHARACTER CONVERSION value you set as YES or
NO

Displays ASCII

Displays the date that NOS created the NOS tape file

Displays the expiration date that NOS set for the NOS tape
file

Displays the FILE ACCESSIBILITY CODE value that NOS chose
for the NOS tape file. NOS/VE Ignores this tape label
attribute.

Displays the FILE_IDENTIFIER value you set

Displays the FILE_SEQUENCE_NUMBER value you set

Displays the FILE SET IDENTIFIER value that NOS wrote for
the tape volume.

Displays the FILE SET POSITION value you set

Displays the GENERATION NUMBER value you set

Displays the GENERATION VERSION NUMBER value that NOS
chose for the NOS tape file. NOS/VE ignores this tape
label attribute.

Displays the MAXIMUM BLOCK LENGTH value you previously set
in 6-bit bytes as a length-in 8-bit bytes

Displays the MAXIMUM RECORD LENGTH value you previously
set in 6-bit bytes as a length in 8-bit bytes

Displays a space

Displays UNDEFINED (U)

Displays NO

FORTRAN and COBOL File Migration Aids 12-71 ~

ALL

SOURCE

CURRENT FILE

NEXT FILE

Displays all of the above values

Displays the origin of the value of each ~e label
attribute specified in the DISPLAY OPTIONS parameter

Displays the value from the currently accessed tape file
of each tape label attribute specified in the
DISPLAY OPTIONS parameter. Omission causes NEXT FILE to
be used-:-

Displays the value from the next tape file to be accessed
of each tape label attribute specifiedin the
DISPLAY OPTIONS parameter.

The OUTPUT (0) parameter is optional. It specifies a file to which the display information is
written. If this parameter is omitted, $OUTPUT is assumed.

The STATUS variable is optional. It is the standard SCL status variable. Refer to chapter 2 for
more information.

DISPLAY _ TAPE_LABEL_A TTRIBUTES Examples

The following DISPLAY TAPE LABEL ATTRIBUTES examples are taken from previous examples shown for
the CREATE 170 REQUEST and-CHANGE 170 REQUEST commands. All the examples assume that the NOS
tape file was created on 86-10-31-with an expiration date of 87-04-01.

DISTLA, File at Beginnins..oCSet

The NOS tape file is the first tape file on the multifile set. The following command associates
MULTI_FILES with this NOS tape file:

/create 170 request file=multi files
/external vsn='cmpn' ••
/recorded-vsn='3907' ••
/file set-position=beginning of set
/internal-code=d64 •• - -
/character conversion=false ••
/block type=internal ••
/record type=control word ••
/maximwn block length=5120 ••
/maximum -record length=5120 ••
/label type=standard ••
/tape_format=nos_internal

To display information about this NOS tape file to be accessed at the beginning of the multifile
set, enter:

/display tape label attributes file=multi files
/dispray_options~(all, next_file)

• 12-72 Migration From NOS to NOS/VE Revision F

The following is displayed: .

Block Type
Buffer Offset
Character Conversion
Character Set
Creation Date
Expiration_Date
File Accessibility Code
File-Identifier -
File-Sequence Number
File-Set Identifier
File-Set-Position
Generation Number
Generation-Version Number
Maximum Block Length
Maximum-Recoicf Length
padding-Character
Record Type
Rewrite Labels

user specified
o -
no
ascii
unknown
unknown

1

beginning of set
1 - -
o
3848
3840

undefined
no

The values of the following tape label attributes are unknown and are displayed as such, because
the NOS tape file has not yet been accessed:

CREATION DATE
EXPIRATION DATE
FILE ACCESSIBILITY CODE - -FILE SET IDENTIFIER
GENERATION_VERSION_NUMBER

Note that the MAXIMUM RECORD LENGTH parameter value is displayed as 3840 8-bit bytes, which are
equivalent to the 51io 6-bit-bytes specified in the CREATE 170 REQUEST command. The
MAXIMUM BLOCK LENGTH parameter value is displayed as 3848,-the-sum of 8 and the maximum block
length In 8-bIt bytes.

After the NOS tape file has been accessed, executing

/display tape label attributes file=multi files
•• /dispTay_options~(all, current_file)

results in the following display:

Block Type
Buffer Offset
Character Conversion
Character-Set
Creation Date
Expiration Date
File Accessibility Code
File-Identifier -
File-Sequence Number
File-Set Identifier
File-Set-Position
Generation Number
Generation-Version Number
Maximum Block Length
Maximum-Record Length
Padding-Character
Record Type
Rewrite Labels

Revision F

user specified
o -
no
ascii
86-10-31
87-04-01

1
.... 3907
beginning_of_set
1
o
3848
3840

undefined
no

FORTRAN and COBOL File Migration Aids 12-73.

The actual values of three tape label attributes are now known and are not the defaults:

Creation Date
Expiration Date
File Set Identifier

86-10-31
87-04-01
'3907'

This example shows the usual FILE SET IDENTIFIER parameter value, namely the RECORDED VSN
parameter value.

DISTLA, File is NexCFile

This example assumes that the NOS tape file in the previous example has been accessed and that
you now wish to access the next tape file. The command to cha~ge MULTI FILES to reference this
second NOS tape file is:

/change 170 request file=multi files
/file set position=next file- ••
/inte;nal-code=d64 •• -
/character conversion=false ••
/block type=internal ••
/record type=control word ••
/maximum block length=5120 ••
/maximum-record length=5120
/tape_format=nos_internal

To display information about the next NOS tape file in the multifile set, enter:

/display tape label attributes file=multi files
/dispTay_options~all

You do not need to mention the NEXT FILE value for the DISPLAY OPTIONS parameter, because
NEXT FILE is the default.

The following is displayed before the second NOS tape file is accessed:

Block Type
Buffer Offset
Character Conversion
Character-Set
Creation Date
Expiration Date
File Accessibility Code
File-Identifier -
File-Sequence Number
File-Set Identifier
File-Set-Position
Generation Number
Generation-Version Number
Maximum Block Length
Maximum-Record Length
Padding-Character
Record Type
Rewrite Labels

.12-74 Migration From NOS to NOS/VE

user_specified
o
no
ascii
unknown
unknown

2

next file
1
o
3848
3840

undefined
no

Revision F

DISTLA, Fifth File in Multifile S~t

The NOS tape file in this example is the fifth file in a multifile set. The command to associate
the Nos/vE temporary file FILE_5 with this NOS tape file is:

/create 170 request file=file 5 ••
Irecorded vsn='7110' ••
Ifile set-position=file sequence position
Ifile-sequence number=5-.. -
Icharacter conversion=false
Iblock type=character count
Irecord type=zero byte ••
Imaximum block length=5120 ••
Imaximum-record length=5120
Itape_format=stranger

To display information about this NOS tape file that is fifth in the multifile set, enter:

/display tape label attributes file=file 5
IdispTay_oPtions~all

The following is displayed before the NOS tape file is accessed:

Block Type
Buffer Offset
Character Conversion
Character~Set
Creation Date
Expiration Date
File Accessibility Code
File-Identifier -
File-Sequence Number
File-Set Identifier
File-Set-Position
Generation Number
Generation-Version Number
Maximum Block Length
Maximum-Recoicf Length
Padding-Character
Record Type
Rewrite Labels

user_specified
o
no
ascii
unknown
unknown

5

file_sequence_position
1
o
3840
3840

undefined
no

Note that the value of the MAXIMUM BLOCK LENGTH parameter is 3840, because the TAPE FORMAT
parameter has the value, STRANGER,-not NOS INTERNAL.

DISTLA, File Identifier R2D2

The NOS tape file in this example has the file identifier R2D2 and happens to be the 29th file in
a multifile set. Also, the file has:

Character count blocking (BLOCK_TYPE=CHARACTER_COUNT)

Zero-byte record type (RECORD_TYPE=ZERO_BYTE)

Maximum block length of 2000 (MAXIMUM~LOCK_LENGTH=2000)

Maximum record length of 200 (MAXIMUM_RECORD_LENGTH=200)

Revision F FORTRAN and COBOL File Migration Aids 12-75.

The command to associate the temporary NOS/VE file ANDROID with the NOS tape file is:

/create 170 request file=android
/external vsn='3193' ••
/recorded-vsn='3907' ••
/file set-position=file identifier position
/file-identifier='r2d2'-••
/internal code=d64 ••
/characte; conversion=false
/block type=character count
/record type=zero byte ••
/maximum block length=2000
/maximum-record length=200
/tape_format=nos_internal

To display information about this NOS tape file identified as R2D2, enter:

/display tape label attributes file=android ••
/display_oPtions~all

The following is displayed before the NOS tape file identified as R2D2 is accessed:

Block Type
Buffer Offset
Character Conversion
Character-Set
Creation Date
Expiration Date
File Accessibility Code
File-Identifier -
File Sequence Number
File-Set Identifier
File-Set-Position
Generation Number
Generation-Version Number
Maximum Block Length
Maximum-Record Length
Padding-Character
Record Type
Rewrite Labels

user specified
o -
no
ascii
unknown
unknown

'r2d2'
1

file_identifier_position
1
o
1508
150

undefined
no

Note that the FILE SEQUENCE NUMBER parameter is displayed with its default value of 1. This is
because the NOS tape file has not yet been accessed, and the fact that the file is the 29th in
the multifile set is not yet known. .

Also note how the MAXIMUM BLOCK LENGTH and MAXIMUM RECORD LENGTH parameter values of 2000 and
200, respectively, in the-CREATE 170 REQUEST command are displayed as 1508 and 150, respectively,
by the DISPLAY_TAPE_LABEL ATTRIBUTES-command.

• 12-76 Migration From NOS to NOS/VE Revision F

DISTLA, Eighth Generation File.

The NOS tape file in this example is the eighth generation of the file with identifier C3PO. The
command to change ANDROID to reference this NOS tape file is:

/change 170 request file=android ••
/file set position=file identifier position
/file-identifier='c3po'- -
/generation number=8 ••
/internal code=d64 ••
/character conversion=false
/block type=character count
/ record type=zero byte ••
/maximum blocklength=5120 ••
/maximum-record length=5120
/tape_format=nos_internal

To display information about this NOS tape file identified as generation 8 of C3PO, again enter:

/display tape label attributes file=android ••
/dispTay_options~all

The following is displayed before the NOS tape file identified as C3PO is accessed:

Block Type
Buffer Offset
Character Conversion
Character-Set
Creation Date
Expiration Date
File Accessibility Code
File-Identifier -
File-Sequence Number
File-Set Identifier
File-Set-Position
Generation Number
Generation-Version Number
Maximum Block Length
Maximum-Record Length
Padding-Character
Record Type
Rewrite Labels

Revision F

user specified
o -
no
ascii
unknown
unknown

'c3po'
1

file_identifier_position
8
o
3848
3840

undefined
no

FORTRAN and COBOL File Migration Aids 12-77e

The DETACH FILE command deletes/detaches one or more temporary files from the $LOCAL catalog. If
the temporary file references a tape file, the physical drive is released. If the temporary file
is associated with a NOS tape file, the access to that NOS tape file is ended.

DETACH_FILE Format

The, DETACH FILE command has the following format:

DETACH FILE or
DETF -

FILE=list of file
STATUS=status variable

The FILE (FILES or F) parameter is required. It specifies the file or files to be detached.

The STATUS variable is optional. It is the standard SCL status variable. Refer to chapter 2 for
more information.

DETACH_FILE Example

Suppose that the following command associates the NOS/VE temporary file with a NOS tape file:

/create 170 request file=one file
•• /external_vsn='3193'

To stop the access to the NOS tape file, enter:

/detach~ile file=one file

Character Data Files With Tape Migration Commands

You can use FMA to migrate NOS character data files. Suppose that you wish to migrate a NOS
character data tape file, with tape file identifier NO SCHAR , to the NOS/VE permanent file
$USER.NOSVE_CHARACTER. NOSCHAR has the following characteristics:

The tape file is on tape volume having external VSN 5811.

The character data in the file is in the 64-character display code character set.

The character data is not to be converted because FMA does the conversion.

Character count block type

Zero-byte record type

Maximum block length of 1800 bytes

Maximum record length of 120 bytes

Internal tape format, the NOS default tape format

LGO holds the binary code of a NOS/VE FORTRAN program that uses the tape file as input.

• 12-78 Migration From NOS to NOS/VE Revision F

To perform the migration, first enter the command to associate the NOS/VE temporary file ABC with
the NOS tape file to be mig~ated:

/create 170 request file=abc
/ external vsn=' 5811' ••
/file set-position=file identifier position
/file-identifier='noschar'.. -
/internal code=d64 ••
/character conversion=false
/block type=character count
/record type=zero byte ••
/maximuID block length=1800
/maximum-record length=120
/label type=standard ••
/tape_format=nos_internal

To perform the actual migration using FMA, enter:

/create_file file=$user.nosve_character

/set file attributes file=$user.nosve character
/block-type=system specified

•• /record_type=variable

/open_file_migration_aid

FA/execute migration task
migration files=«abc $user.nosve_character cI70_to_cI80))
file=lgo -

FA/close_environment

Binary Data Files With Tape Migration Commands

If the tape file to be migrated has binary data on it, the data conversions are more complex, and
you might need to use FMU to migrate.

For example, suppose the fifth file on the tape is to be migrated to the NOS/VE permanent file
$USER.NOSVE_BINARY. The tape file has the following characteristics:

The tape file is on tape volume with external VSN U1234.

The tape file is the 5th file on the tape volume.

The character data in the file is in the 64-character display code character set.

The character data is not to be converted because FMU does the conversion.

Internal blocking type

Control word record type

Maximum block length of 5120 bytes

Maximum record length of 220 bytes

Internal tape format, the NOS default tape format

Each record contains 10 integers, followed by 10 real numbers, followed by a 20-character
string.

Revision F FORTRAN and COBOL File Migration Aids 12-79.

To perform the migration using FMU, first enter the CREATE 170 REQUEST command to associate the
temporary NOS/VE file TAPE 1 'with the NOS tape file to be mTgrated:

/create 170 request file=tape1 ••
/external vsn='U1234' ••
/file set-position=file sequence position
/file-sequence number=S-.. -
/internal code~d64 ••
/character conversion=false
/block type=internal ••
/record type=control word ••
/maximui block length=Sl20
/maximum-record length=220
/label type=standard ••
/tape_format=nos_internal

You can shorten the CREATE_170_REQUEST command by using defaults:

/create 170 request file=tapel ••
/externaT vsn='U1234' ••
/file set-position=file sequence position
/file-sequence number=S-.. -
/maxi~um_record_length=220

Next you enter the commands to:

Create the NOS/VE file $USER.NOSVE_BINARY to migrate the NOS tape file to

Set the block type and record type for $USER.NOSVE_BINARY

Create the directives file for FMU

Execute FMU, specifying LIST=OUTPUT to see the FMU output displayed on your terminal

/create_file file=$user.nosve_binary

/set file attributes file=$user.nosve_binary
/block-type=system specified

•• /record_type=variable

/collect text output=dir file
ct? set input attributes -file=tapel machine format=cl70
ct? set-output attributes file=nosve binary
ct? create_output_record file=nosve~inary
ct? for integers=1 to 10 do
ct? i[,8] = i[,10]
ct? forend
ct? for reals=1 to 10 do
ct? f[,8] f[,10]
ct? forend
ct? a[,20]
ct? create output record end
ct? ** - -
/file management utility directives=dir file
•• /llst=output -

.12-80 Migration From NOS to NOS/VE Revision F

Multifile Sets With Tape Migration Commands

·You can use the tape migration commands to migrate NOS tape files in succession from the same
multifile set. You can associate the same temporary NOS/VE file with each of the tape files
being migrated. The contents of the temporary file depend on which tape file the temporary file
is referencing at the time.

The following example shows how you enter tape migration commands so that the temporary NOS/VE
file correctly describes the tape file being migrated at the time. The example is of migrating
the first and fourth tape files from the same multifile set on a labeled tape.

FMA is to migrate the first tape file of a multifile set to the NOS/VE permanent file
$USER.NOSVE_BIN. The tape file has the following characteristics:

The tape file is on tape volume with external VSN 3801.

The tape file is the first file on the multifile set.

The character data in the file is in the 64-character display code character set.

The character data is not to be converted because FMA does the conversion.

Internal blocking type

Control word record type

Maximum block length of 3000 bytes

Maximum record length of 200 bytes

Internal tape format, the NOS default tape format

LGO holds the binary code of a NOS/VE FORTRAN program that uses the tape file as input.

The following CREATE 170 REQUEST command associates the temporary NOS/VE file SIMUL with the tape
file to be migrated:- -

/create 170 request file=simul ••
/external vsn='3801' ••
/file set-position=file sequence position
/file-seq~ence number=l-.. -
/character conversion=false ••
/maximum block length=3000
/maximum:record_length=200

To perform the actual migration using FMA, enter:

/create_file file=$user.nosve_bin

set file attributes file=$user.nosve bin
7block type=system specified -

•• /record_type=variable

/open_file_migration_aid

FA/execute migration task
migration files=(simul $user.nosve_bin c170_to_c180»
file=lgo -

FA/close_environment

Revision F FORTRAN and COBOL File Migration Aids 12-81.

Next, FMU is to migrate the fourth file of a multifile set to the NOS/VE byte addressable
permanent file $USER.NOSVE_AIRPORT. The tape file has the following characteristics:

The tape file is on tape volume with external VSN 3801.

The tape file is the fourth file on the multifile set.

The character data in the file is in the 64-character display code character set.

The character data is not to be converted because FMU does the conversion.

Character count blocking type

Zero-byte record type

Maximum block length of 3000 bytes

Maximum record length of 120 bytes

Internal tape format, the NOS default tape format

The following CHANGE 170 REQUEST command changes the temporary NOS/VE file SIMUL to describe the
next tape file to be-migrated:

/change 170 request file=simul
/file set position=file sequence position
/file-sequence number=4-.. -
/block type=character count
/ record type=zero byte ••
/maximuID_record_length=120

The CHANGE 170 REQUEST command has to repeat the FILE SET POSITION parameter so that it does not
default to-NEXT FILE. The command contains the following-parameters because their values have
changed:

BLOCK TYPE

RECORD TYPE

MAXIMUM RECORD LENGTH

• 12-82 Migration From NOS to NOS/VE Revision F

To perform the actual migr~tion using FMU enter:

/create_file file=$user.nosve_airport

/set file attributes file=$user.nosve airport
/block-type=system specified -
/record_type=variable

/attach file file=$user.nosve airport
•• /access_mode=(read write)

/collect text output=dir file
ct? set input attributes -file=simul machine format=c170
ct? set-output attributes file=nosve_airport-
ct? -** -

/file_management_utility directives=dir file list=output

Note that you use the ATTACH FILE command to set the ACCESS MODE file attribute for the
$USER.NOSVE_AIRPORT file. -

Revision F FORTRAN and COBOL File Migration Aids 12-83e

(
I
"

(

Migrating Progra'ms

Chapter 13. Approaching COBOL and FORTRAN Program Migration

Chapter 14. Migrating FORTRAN Programs

Chapter 15. Migrating COBOL Programs

Chapter 16. Migrating APL Workspaces

Chapter 17. Migrating Pascal Programs

Approaching COBOL and FORTRAN Program Migration

Similarities Between NOS and NOS/VE Compilers •••

Major Hardware Differences ••

Using Dual State ••••••.••••••••.•.••••••.•••••.•.••••••.•••••••••.•••.•••••..••••.••••••.•

Migration Methods for COBOL and FORTRAN Programs ••
ANSI Standard Method ••
NOS/VE COBOL Compiler Method ••
NOS/VE FORTRAN Diagnosis Method •••
The Drawing Board Method ••
No Migration Method •••

13

13-1

13-1

13-1

13-2
13-2
13-3
13-3
13-3
13-3

Approaching COeOlL and FORTRAN Program Migration 13

e . :¥

When approaching migrating applications, you need to consider the similarities between the
compilers on NOS and NOS/VE, the hardware differences in the new mainframes, and the use of dual
state. This discussion presents these issues and methods of migrating programs.

Similarities Between NOS and NOS/VE Compilers

FORTRAN for NOS/VE and FORTRAN 5 for NOS are both based on the American National Standard
X3.9-1978 for the FORTRAN language. This is commonly known as FORTRAN 77 or as the ANSI77
standard.

COBOL for NOS/VE and COBOL 5 for NOS are both based on the American National Standard X3.23-1974
for COBOL. These standards provide for judging compatibility for executing program on different
types of mainframes. The standards dictate basic syntax. COBOL and FORTRAN programs that use ANSI
standard code on NOS should work the same on NOS/VE. However, some COBOL programs could be
affected by some ANSI features not implemented in NOS/VE COBOL. '

Because both NOS and NOS/VE support standard COBOL and FORTRAN, migration considerations mainly
involve language syntax or characteristics that depend on the hardware and Control Data
extensions. NOS/VE COBOL and FORTRAN incorporate many extensions of the NOS languages so that
source code compatibility could be maintained. However, these extensions could function
differently on NOS/VE.

Major Hardware Differences

The main hardware differences are different word length and different byte length. NOS has 6-bit
bytes and 60-bit words. NOS/VE has 8-bit bytes and 64-bit words. The native character set for NOS
is display code. The native character set for NOS/VE is 7-bit ASCII (all 256 characters).

NOS uses mostly static (with some dynamic activity) memory with fixed maximum field length.
NOS/VE uses virtual memory. Virtual memory allows you to write programs as if there were no end
to computer memory. There are limits, of course, but they are beyond most programmers' needs.
Virtual memory works with both data storage areas as well as executable code.

For a summary of differences and similarities between the NOS and NOS/VE systems, see appendix C.

Using Dual State

Your new mainframe can operate with both the NOS and NOS/VE operating systems. This dual-state
environment provides for migration ease and flexibility. You can pass files from one operating
system to the other. This makes the task of testing and converting programs go much more smoothly
than with two separate mainframes.

Also, you do not have to hurry to migrate your applications. Dual state is available and will be
available for some time. Applications that are easy to convert can be migrated quickly. New
applications can be developed on NOS/VE. However, applications that depend on NOS can continue to
run on NOS.

Revision B Approaching COBOL and FORTRAN Program Migration 13-1

Migration Methods for COBOL and FORTRAN Programs

There are several ways to approach migrating a COBOL or FORTRAN program, depending on the
migration problems in the program. Consider using one of the following methods to migrate a
program.

ANSI Standard Method

NOS/VE Compiler Method for COBOL

NOS/VE FORTRAN Diagnosis

The Drawing Board

No Migration

The following paragraphs specify the steps involved in migrating a program using each of these
methods.

ANSI Standard Method

1. While running on the NOS system, compile your program with the FTNS compiler or COBOLS
compiler ANSI parameter set to flag trivial errors in the source code. The compiler calls
appear as follows:

FTNS,I=MYSOURS,ANSI=T,B=O.

COBOLS,I=MYSOURS,ANSI=T,EL=T,B=O.

2. Correct all errors until the program compiles successfully. The program now meets the ANSI
standard.

3. For COBOL programs, check for the use of ANSI standard features not implemented in NOS/VE
COBOL and recode as required. These features are listed in appendix D, Unsupported ANSI COBOL
Features.

4. Check all calls to subroutines and functions (external references), and make sure that they
are either supplied as a part of your source program or are acceptable externals on NOS/VE.

S. If steps 2, 3, and 4 become too work-intensive, you may want to choose the drawing board
method (described later).

6. Transfer the source program to the NOS/VE state and compile it to obtain a listing from the
NOS/VE COBOL or FORTRAN compiler. Check this listing carefully for more errors. There should
be none.

7. Execute the program and check for execution-time logic errors.

13-2 Migration From NOS to NOS/VE Revision B

NOS/VE COBOL Compiler Method

1. Transfer the source program to the NOS/VE state and compile it with BASE LANGUAGE=COBOL5 in
the NOS/VE COBOL compiler call. The COBOL5 value causes the compiler to-convert many COBOL 5
statements to NOS/VE COBOL.

This COBOL5 value, however, cannot handle all conversion. Some automatically converted
statements can have different processing results on NOS/VE. Also, the compiler accepts some
COBOL 5 statements that can have different processing results on NOS/VE. See chapter 15,
Migrating COBOL Programs, for the differences between COBOL 5 and NOS/VE COBOL.

2. Check and correct all external references not supported by NOS/VE. You might have to rewrite
code to make appropriate corrections.

3. Execute the program and check for execution-time and logic errors, especially output
resulting for the CDC extensions mentioned above.

NOS/VE FORTRAN Diagnosis Method

1. Transfer the source program to the NOS/VE state, and compile it with the NOS/VE FORTRAN
compiler. This method is best for programs that have many non-ANSI FORTRAN statements such as
ENCODE, DECODE, BUFFER IN, and BUFFER OUT. The compiler accepts these statements; however,
the results can be different from the results on NOS.

2. Check and correct all external references not supported by NOS/VE. You might have to rewrite
code to make appropriate corrections.

3. Execute the program and check for execution-time and logic errors, especially output
reSUlting for the CDC extensions mentioned above.

The Drawing Board Method

1. After a visual examination of the program or after unsuccessful attempts at using the
preceding migration methods (ANSI Standard Method, NOS/VE Compiler Method, or NOS/VE FORTRAN
Diagnosis Method), you might conclude that code type migration is too costly and
time-consuming. The Drawing Board method might be best for programs that have been migrated
several times in the past.

2. Reduce the application to its basic algorithm. Start writing NOS/VE COBOL or FORTRAN source
code from scratch. Rewriting the program, although costly, results in a better program for
NOS/VE. You can make more efficient use of the CDC extensions for NOS/VE.

No Migration Method

1. You might decide not to migrate the program but to continue to run it on NOS. This decision
is appropriate for programs that are very dependent on NOS and when none of the other
migration methods can be easily accomplished. Perhaps the program depends on the NOS word and
character length or uses COMPASS subroutines or system macro calls.

2. You can do a slow migration using the Drawing Board method over a period of years while
continuing to process in dual state at your site.

Revision F Approaching COBOL and FORTRAN Program Migration 13-3.

Migrating FORTR~N Programs

General FORTRAN Guidelines ..
CYBER Record Manager ••

CRM/File Interface Feature Differences ••
Alternate Keys ••
File Organization •••
Record Type •••
File Information Table ••
Rese rving Space for WSA •••
Optimization ••••••••••••••••••••••••••••.•••••••••.•••••••••••••••••••••••••••••••
Embedded Keys •••
CALL GETNR Statement ••
CALL SEEKF Statement ••

Converting Sample Program FTNIS (Creates an Indexed Sequential File) ••••••••••••••••••
Original Data in File ANIMALS •••
Converting Program FTNIS ••
Changes to Sample FORTRAN/CRM Program FTN-IS •••••••••••••••••••••••••••••••••••••••

Converting Sample Program READIS (Reads an Indexed Sequential File) •••••••••••••••••••
NOS/VE FORTRAN Program READIS •••

Hints--SCL Versus the FORTRAN File Interface ••

FORTRAN Feature Differences •••
FORTRAN-Callable Subprogram Differences •••

POB t Mortem Dump ••
Su brou tine LABEL ••
8-Bit Subroutines •••
Permanent File Subroutines
Su brout i ne GETP ARM ••
Subroutines CHEKPTX and RECOVR ••
DATE t TIMEt and CLOCK Functions •••
LOCF Function •••
SECOND Function •••
SYSTEMC or SYSTEM Calls •••

Using the NOS/VE Parameter Interface Subprograms ••••••••••••••••••••••••••••••••••••••
Value Sets •••••••••••••••••••••••••••••••••.••...•••••••••••••••••••••••••••••••••
Interface Subprogram Example ••

Input/Output Differences ••
Buffer I/O ••
ENCODE/DECODE •••
OPENMS /READMS /WRITMS ••
o and Z Editing •••
Maximum Length of Formatted Records ••••••••••••••• , •••••••••••••••••••••••••••••••
Editing •.•.•••••••..••••••••••••••••••••••••••.••••••••.•••••.•••••••••.••••••••••
Files INPUT and OUTPUT ••

Loader Differences •••.••••••••••••.•.••••••••••••••..••••••••••••••••••.•••.•••.•••..•
Overlays and OVCAPs •••
Static Memory Management ••
Segment Loading •••
Extensible Common Blocks

FORTRAN Command •••
B INAR.Y OBJECT or B ••
COMPILATION DIRECTIVES or CD ••
DEB UG AIDS -o-r DA ••
DEFAuL"T COLLATION or DC •••
ERROR or E ••
ERROR_LEVEL or EL •••
EXPRESS ION_EVALUATION or EE •••
FORCED SAVE or FS •••
INPUT or I ••
LIST or L •••

14

14-1

14-2
14-2
14-2
14-2
14-2
14-3
14-4
14-4
14-4
14-5
14-5
14-5
14-5
14-6
14-8
14-10
14-12
14-13

14-15
14-15
14-15
14-15
14-15
14-15
14-15
14-16
14-16
14-16
14-16
14-16
14-16
14-17
14-17
14-21
14-21
14-21
14-22
14-22
14-22
14-22
14-22
14-23
14-23
14-23
14-23
14-23
14-23
14-24
14-24
14-24
14-24
14-25
14-25
14-25
14-26
14-26
14-26

LIST OPTIONS or LO ••
MACHINE_DEPENDENT or 'MD •••
ONE TRIP 00 or OTD ••
OPTIMIZATION LEVEL or OL or OPTIMIZATION or OPT •••••••••••••••••••••••••••••••••••
RUNTIME_CHECKS or RC ••
SEQUENCED LINES or SL •••
STANDARDS=DIAGNOSTICS or SD •••
STATUS ••
TARGET MAINFRAME or TM ••
TERMINirTION ERROR LEVEL or TEL ••

Other FORTRAN Feature-Differences •••
7-bit ASCII Code Set ••
Boolean Data Type •••
Default Collating Sequence ••
Division Operation ••
Double Precision Functions Referenced as Single Precision •••••••••••••••••••••••••
Floating-Point Arithmetic •••
Hollerith Constants •••
Hollerith Descriptors •••
LEVEL Statement •••
Procedure Communication •••
PROGR.AM Statement •••
SAVE Statement ••

14-26
14-27
14-27
14-27
14-27
14-28
14-28
14-28
14-28
14-29
14-29
14-29
14-30
14-31
14-31
14-31
14-31
14-31
14-31
14-31
14-31
14-32
14-32

Migrating FORTR~N Programs 14

¥ 'ke 1M' i·tiP ':

This chapter describes the differences between FORTRAN 5 and NOS/VE FORTRAN, and is intended as
an aid in converting programs from FORTRAN 5 to NOS/VE FORTRAN.

NOS/VE F9RTRAN is designed to be compatible with FORTRAN 5. However, several language extensions
have been added, and several areas of incompatibility have resulted from the new operating system
and hardware. Other incompatibilities are the result of FORTRAN 5 features that are not
currently supported under NOS/VE FORTRAN but for which future support is anticipated.

In some cases, language incompatibilities may require program modification; in other cases,
statements using incompatible features can remain in the program but will not be processed.

The differences are divided into topics as follows:

General FORTRAN Guidelines

This topic describes common programming practices that are not compatible between the two
versions of FORTRAN. These practices depend on the specific characteristics of the
hardware systems used by FORTRAN, such as word length and number of characters per word.

CYBER Record Manager

This topic describes differences in subprogram calls and I/O implementation.

FORTRAN Feature Differences

This topic describes specific features for which incompatibilities exist.

General FORTRAN Guidelines
The following programming practices have different results in NOS/VE FORTRAN and FORTRAN 5.
FORTRAN 5 programs that use these practices will probably require modification before they can be
successfully processed under NOS/VE FORTRAN.

Coding that depends on the internal representation of data (floating-point layout, number of
characters per word, and so forth) should be checked. Because of differences in word size
and internal representations, these uses nearly always require modification.

Data manipulations based on the binary representation of the data should be checked. FORTRAN
5 programs that manipulate characters as octal display-coded values or as 6-bit binary digits
must be modified before being compiled and executed under NOS/VE FORTRAN.

File structure and naming conventions differ significantly under NOS/VE, and default file I
positioning has changed. You should check all usages that depend on any of these properties.

Code that identifies or classifies information based on the location of a specific value
within a specific set of memory word bits must be modified.

On both NOS and NOS/VE, over- and under-indexed arrays are a problem. FORTRAN allows them to I
be created, and they yield unpredictable results when processed. NOS/VE addresses this
problem with the RUNTIME CHECKS parameter in the FORTRAN command. When you specify
RUNTlME_CHECKS=R, NOS/VE-puts out a run-time error message whenever an array is over- or
under-indexed. Moreover, NOS/VE FORTRAN provides a feature called extensible common blocks :
that allows arrays in common to be overindexed without the risk of conflicting with other
common blocks or data areas.

Revision F Migrating FORTRAN Programs 14-1

Intermixed COMPASS subprograms are not supported under NOS/VE FORTRAN. COMPASS subprograms
must be replaced by equivalent FORTRAN routines or SCL commands before compilation and
execution under NOS/VE FORTRAN. SCL commands provide a powerful system interface that can
replace many COMPASS subprograms. Almost all SCL commands are available for use with
FORTRAN. SCL commands can be executed at almost any time within a FORTRAN program.
Variables set outside a FORTRAN program can be tested for use by the program. Files can be
attached and file attributes set at almost any time.

CYBER Record Manager

The capabilities provided by CYBER Record Manager (CRM) on NOS are provided by the file interface
routines under NOS/VE. As with CRM, all FORTRAN I/O is performed through the file interface, and
a set of FORTRAN subprogram calls provides direct communication with the file interface.

The CRM/file interface differences are discussed in topics as follows:

CRM/file interface feature differences.

Sample FORTRAN program conversions; includes converting a FORTRAN program that creates an
indexed sequential file and a program that reads an indexed sequential file.

Hints (SCL versus the FORTRAN file interface)

For an introductory discussion about NOS/VE files, see chapter 10.

CRM/File Interface Feature Differences

I
The file interface to NOS/VE FORTRAN supports only sequential, indexed sequential, direct access,
and the new byte addressable file organizations. Only files with indexed sequential or direct
access organization can be accessed by direct FORTRAN calls. NOS/VE FORTRAN also supports
alternate keys. The actual key file organization is not supported. The Basic Access Methods
word addressable organization has been replaced by the new addressable organization.

All uses of the CRM Advanced Access Methods subprogram calls should be checked. Under FORTRAN 5,
CRM offered several features within which choices could be made. However, the file interface

I calls under NOS/VE offer only a subset of these features. The following discussion of the direct
calls to CYBER Record Manager Advanced Access Methods Version 2 (NOS and NOS/BE) is for users
converting FORTRAN 5 programs to NOS/VE FORTRAN programs.

Alternate Keys

The FORTRAN file interface supports alternate keys. You can create alternate keys through the
CREATE ALTERNATE INDEXES command, which is equivalent to the NOS MIPGEN utility. NOS/VE FORTRAN
also provides an-RMKDEF call for FORTRAN 5 compatibility.

File Organization

Indexed sequential (FO=IS) and direct access (FO=DA) file organizations are the only file
organizations available in the file interface to FORTRAN.

Record Type

The record types available are F (ANSI-fixed length), U (undefined length, the default type), and
V (CDC-variable length). Advanced Access Methods Version 2 record types D, R, S, T, and Z are
not available in the file interface to FORTRAN.

14-2 Migration From NOS to NOS/VE Revision F

File Information Table

User programs do not need to reserve 35 words for the file information table. All that is needed
is one word for a pointer. If the program does reserve 35 words, only the first word is used.

Values can be stored or fetched from the file information table in standard ways, that is, CALL
FILEIS, CALL FILEDA, CALL STOREF, CALL IFETCH, or the function IFETCH. Values in the file
information table can only be modified through the file processing calls because the file
information table is an internal table that cannot be accessed directly by a program.

Any attempt to read from the table without using IFETCH will return an undefined value. If the
field being read has been stored in an unconventional manner, then the value will not be returned.

Keywords must be enclosed in apostrophes; for example, 'WSA'. Boolean forms like 3LWSA (FTN4) or
L"WSAn (FTN5) are not accepted.

The following CYBER Record Manager file information fields do not have equivalents in the file
interface to FORTRAN:

BAL BBH BFF CL BS BT
BZF B8F CDT DCA CM CNF
CP CPA Cl EXD DFLG DKI
EFC EO EOFWA HRL FPB FWB
HB HL LA LAC IBL IRS
KNE KR LNG LOPS LBL LCR
LGX LL MFN MNB LP LT
LVL LX OVF PC MUL NDX
NOFCP ORG POS PTL PEF PKA
PM PNO SBF SDS RC RDR
RMK SB TRC ULP SES SOL
SPR TL XBS XN VF VNO
WA WPN BFS

Field FL, although not applicable to file interface to FORTRAN, is recognized as a synonym of
field MRL.

Other keywords in the NOS CRM Advanced Access Methods interface and their meanings for the file
interface to NOS/VE FORTRAN are:

I

I

DX Data exit. There is no mechanism for data exit in NOS/VE system requests, but the
FORTRAN file interface saves the subroutine address, and calls the subroutine when the
appropriate file position (BOI or EOI) is returned from an access operation. I

FNF Fatal error flag. To allow you to read the information with a fetch request, the
FORTRAN interface maintains this information in the file information table.

EFC Error file control for NOS. Not available on NOS/VE; however, use parameter DFC for
message control.

EMK Embedded keys. On NOS the default value is NO (nonembedded keys); on NOS/VE the
default value is YES (embedded keys).

KA Key address. The storage area for KA should be declared in unnamed COMMON.

KP

KL

Revision F

Key position. This keyword, although it has no meaning in NOS/VE Advanced Access I
Management (AAM), is accepted by the FORTRAN file interface as a keyword in the CALL
FILEIS or CALL FILEDA statement or as a parameter in the CALL STARTM, CALL STOREF, or
CALL GET statement. KP is added to KA to determine the position of the key. If you
include a value for KP on a CALL PUT statement, set it to O.

Key length. Specify the number of characters from 1 to 255. For files with embedded
keys, KL cannot be greater than the minimum record length (MRL). For integer keys
used with FORTRAN, KL is 1 to 8, and you should usually specify 8 for the key length I
to define an 8-byte (I-word) key.

Migrating FORTRAN Programs 14-3

I

I

I

KT Key type. Conversion is usually necessary except for integer (KT=I). Three types are
allowed for NOS/VE'FORTRAN:

U Uncollated-character keys can be from 1 to 255 characters long and are
compared using the 7-bit ASCII sequence.

I

S

Integer keys are 8 bytes long in NOS/VE FORTRAN and are compared as signed
integers. The value can be -2**63 through 2**63 -1.

Collated-character keys can be from 1 to 255 characters long and are compared
using a collation table. If you specify this key type, you must supply an
explicit collation table. Several predefined collation tables are
available. For more information, see the discussion on Predefined Collation
Tables in chapter 11.

MBL Maximum block length. We recommend that you do not set this value but use the value
calculated by the file interface.

OC Open/close flag. Although NOS/VE system requests tell whether the file is opened or
closed, the file information table also contains this information, so that you can
read it by an IFETCH operation.

ON Old/new flag. The file information table maintains a value of ON, which can be set to
OLD (default) or NEW by a FILEIS or FlLEDA call •. When a CALL OPENM statement is
issued, the FORTRAN interface first finds out from the system whether the file already
exists. If the answer to this question conflicts with the setting of ON, a fatal
error occurs.

RKW Relative key word. Should be omitted on NOS/VE because·RKP provides sufficient
information. If RKW is specified in a CALL FILEIS or CALL FILEDA statement, the
interface multiplies the value by 10 and adds it to RKP. This might be a problem
because NOS/VE has a word size of 8 bytes and not 10 bytes (NOS and NOS/BE). You
should visually inspect the program to ensure that the correct value is specified.

RKP Relative key position. For NOS/VE FORTRAN, RKP specifies the byte offset into each
record where the primary key begins. (The value of RKP + 1 defines the location of
the first character of the key. For example if RKP=3, the key begins in the 4th
character of the record. Note: one character equals one byte.)

Reserving Space for WSA

A problem may occur if your FORTRAN 5 program uses either an INTEGER or a REAL array for WSA
because NOS and NOS/BE have a word size of 10 bytes (NOS/VE has a word size of 8 bytes). For
example, in NOS/VE FORTRAN, coding a statement like RECORD (8) reserves only 64 characters of
space (as opposed to 80 characters in FORTRAN 5), and the first time a record is read into the
area, the record overwrites the next item in memory. For this reason, your NOS/VE FORTRAN
program should always declare WSA as character data type.

I Also, for NOS/VE, the area for WSA should be declared as extensible COMMON.

Optimization

FORTRAN optimization (OL=HIGH) can cause unpredictable results when WSA and/or KA are not in
common. If OL=HIGH is to be used, WSA and KA should be declared as COMMON.

Embedded Keys

The default for EMK in Advanced Access Methods Version 2 is NO (nonembedded keys). The default
for the file interface to FORTRAN is YES (embedded keys).

14-4 Migration From NOS to NOS/VE Revision F

CALL GETNR Statement

For purposes of compatibility, the CALL GETNR statement is allowed in NOS/VE FORTRAN. CALL GETNR
is treated as a CALL GETN.

CALL SEEKF Statement

The SEEKF function does not exist in the file interface to FORTRAN. If a CALL SEEKF is
encountered, the FORTRAN interface copies parameters to the file information table, sets the
FILE POSITION field to end-of-information (EOI), and returns control to the program.

Converting Sample Program FTNIS (Creates an Indexed Sequential File)

The sample program shows creating an indexed sequential file about animals and their habitats.
The discussion of the example assumes that you are familiar with the FORTRAN 5/CRM interface.
The creation example includes the following:

Original Data in File ANIMALS

Converting Program 5 FTNIS

Changes to Sample FORTRAN/CRM Program FTNIS

Original Data in File ANIMALS

A sequential file about animals and their habitats provides data for the file creation program.
The record item that is defined as the primary key is the animal name. The file is shown in
figure 14-1. Notice that the character positions are marked.

+--------------------------------~--------------------------------------+

1 11 21 31 36 41 46 50 <--- Position
I-blanks--I---------I-key-----I----I----I----I---I

MAMMAL LION 1 LAND
BIRD DUCK 3 AIR LAND WATER
MAMMAL SEAL 2 LAND WATER
FISH SHARK 1 WATER
MAMMAL WHALE 1 WATER
BIRD PENGUIN 2 LAND WATER

[-----------header----------------] [--trailer----]

+---+
Figure 14-1. ANIMALS File

On NOS, this file contains trailer (T-type) records. The number in character position 31
specifies the number of trailer items in the record. Each trailer item is 5 characters long.
The trailer items begin in character position 36.

The file interface must know the record length when writing a record. On NOS, the FORTRAN 5
program describes the T-type record by specifying values for fields in the file information
table. CRM automatically determines record length for each record written.

On NOS/VE, the records in the animal file should be considered as type U (for undefined). There
are no fields in the file information table for describing trailer type records. Therefore, the
file creation program provides the file interface with the record length of each record. To do
so, the program reads the field that contains the trailer count, calculates the record length,
and specifies record length just before writing a record with a CALL PUT statement.

Revision F Migrating FORTRAN Programs 14-5

Converting Program FTNIS

The original FORTRAN 5 program that creates an indexed sequential file is shown in figure 14-2.
The program converted for execution on NOS/VE is shown in figure 14-3. In the NOS/VE FORTRAN
source code, changed portions appear in lowercase letters. A complete explanation of the changes
follows the program and output.

+--+

C

PROGRAM FTNIS
IMPLICIT INTEGER (A-Z)
DIMENSION ISFIT (35)
CHARACTER REC*50 (---------------------- Working storage area

C BUILD FILE INFORMATION TABLE
C

C

CALL FILEIS (ISFIT, 'LFN', 'ISFILE', 'ORG', 'NEW',
X 'RT', 'T', 'HL', 35, 'TL', 5, 'CP', 30, 'CL', 1,
X 'MRL', 50, 'WSA', REC,
X 'DP', 80, 'IP', 20, 'MBL', 600,
X 'KT', 'S', 'KL', 10, 'RKW', 2, 'RKP', 0, 'EMK', 'YES',
X 'KA', REC (21:30), 'KP', 0,
X 'EFC', 3)

CALL OPENM (ISFIT, 'NEW')
CALL FITDMP (ISFIT)

C COpy SEQUENTIAL FILE TO INDEXED SEQUENTIAL
OPEN (1, FILE = 'ANIMALS')
REWIND 1
PRINT 901

100 READ (1, '(A)', END=200) REC
CALL PUT (ISFIT)
PRINT 902, IFETCH (ISFIT, 'FP'), IFETCH (ISFIT, 'RL'), REC
GO TO 100

200 CALL FITDMP (ISFIT)
CALL CLOSEM (ISFIT)
PRINT *, ' READ -IS- FILE'
CALL OPENM (ISFIT, 'INPUT')

300 CALL GETN (ISFIT)
IF (IFETCH (ISFIT(l), 'FP') .EQ. 0"100") GO TO 400
RL = IFETCH (ISFIT, 'RL')
PRINT 902, IFETCH (ISFIT(I), 'FP'), RL, REC (I:RL)
GO TO 300

400 CONTINUE
CALL CLOSEM (ISFIT)

901 FORMAT ('1 WRITE -IS- FILE')
902 FORMAT (' FP = ',04, ' RL =' 13,' REC =' A)

END

+--+
Figure 14-2. NOS FORTRAN 5 Program FTNIS

114-6 Migration From NOS to NOS/VE Revision F

+--+

C

PROGRAM FTNIS
IMPLICIT INTEGER (A-Z)
integer isfit
CHARACTERREC*50
common rec

C BUILD FILE INFORMATION TABLE
C

C

CALL FILEIS (ISFIT, 'LFN', 'ISFILE',
X 'rt', 'u',
X 'MRL', 50, 'WSA', REC,
X 'DP', 80, 'IP', 20,
X 'kt', 'u', 'KL', 10, 'rkp', 20, 'EMK', 'YES',
X 'KA', REC (21:30), 'KP', 0,
X 'dfc', 3)

CALL OPENM (ISFIT, 'NEW')

C COpy SEQUENTIAL FILE TO INDEXED SEQUENTIAL
OPEN (1, FILE = 'ANIMALS')
REWIND 1
PRINT 901

100 READ (1, '(A)', END=200) REC
read (rec (31:31), '(i1)') tc
reclen = 35 + tc*5
call storef (isfit, 'RL', reclen)
CALL PUT (ISFIT)
if (ifetch (isfit, 'es') .ne. 0) go to 400
PRINT 902, IFETCH (ISFIT, 'FP'), IFETCH (ISFIT, 'RL'), REC
GO TO 100

200 CALL CLOSEM (ISFIT)
PRINT *, ' READ -IS- FILE'
CALL OPENM (ISFIT, 'INPUT')
if (ifetch (isfit, 'es') .ne. 0) go to 400

300 CALL GETN (ISFIT)
IF (IFETCH (ISFIT, 'FP') .eq. 64) GO TO 400
RL ~ IFETCH (ISFIT, 'RL')
PRINT 902, IFETCH (ISFIT, 'FP'), RL, REC (l:RL)
GO TO 300

400 CONTINUE
CALL CLOSEM (ISFIT)

901 FORMAT ('1 WRITE -IS- FILE')
902 FORMAT (' FP = " 14, ' RL =' 13,' REC =' A)

END

+--+
Figure 14-3. Converted NOS/VE FORTRAN Program FTNIS

The commands to execute PROGRAM FTNIS on NOS/VE are as follows:

/get file to=animals
/get:file to=finis

/create_file file=$user.isfile

/fortran input=ftnis l=list

/lgo

Revision F

Transfers the ANIMALS file and the FORTRAN source file
FTNIS to the NOS/VE state., Assumes the files are in
6/12-bit display code format under your user name on NOS.

Creates an empty permanent file ISFILE in your user catalog
and attaches the file for local use with the name ISFILE.

Identifies the source file; designates that the listing be
written to file LIST and (by default) the object code be
written to file LGO.

Executes the program. I

Migrating FORTRAN Programs 14-7

The execution output is shown in figure 14-4.

+---+
I I
I WRITE -IS- FILE I

I FP 1 RL 40 REC MAMMAL LION 1 LAND I
FP 1 RL 50 REC BIRD DUCK 3 AIR LAND WATER

I FP 1 RL 45 REC MAMMAL SEAL 2 LAND WATER I
I FP 1 RL 40 REC FISH SHARK 1 WATER

FP 1 RL = 40 REC MAMMAL WHALE 1 WATER .
I FP 1 RL = 45 REC BIRD PENGUIN 2 LAND WATER I

I File ISFILE 0 DELETE KEYs done since last open. I
-- File ISFILE 0 GET KEYs done since last open.
-- File ISFILE 0 GET-NEXT KEYs done since last open. I
-- File ISFILE 6 PUT-KEYs-(and PUTREPs-)put) since last open. I
-- File ISFILE 0 PUTREPs done since last open.
-- File ISFILE 0 REPLACE_KEYs (and PUTREPs-)replace) since last open. I

READ -IS- FILE
FP =16 RL = 50 REC BIRD DUCK 3
FP =16 RL = 40 REC MAMMAL LION 1
FP =16 RL = 45 REC BIRD PENGUIN 2
FP =16 RL = 45 REC MAMMAL SEAL 2
FP =16 RL = 40 REC FISH SHARK 1
FP =16 RL = 40 REC MAMMAL WHALE 1

AIR LAND WATER
LAND
LAND WATER
LAND WATER
WATER
WATER

-- File ISFILE AMP$GET NEXT KEY has reached a file boundary EOI.
-- File ISFILE 0 DELETE KEYs done since last open.

File ISFILE 0 GET KEYs done since last open.
File ISFILE 6 GET-NEXT KEYs done since last open.
File ISFILE 0 PUT-KEYs-(and PUTREPs-)put) since last open.
File ISFILE 0 PUT REPs done since last open.

I
I

I
I

I
I

I
I
I
I

File ISFILE 0 REPLACE_KEYs (and PUTREPs-)replace) since last open. I
I +---+

Figure 14-4. Output From NOS/VE Program FTNIS

Changes to Sample FORTRAN/CRM Program FTNIS

Only essential changes were made to the program. For migration ease, the NOS/VE file interface
recognizes some FORTRAN 5 parameters that are not applicable to NOS/VE and issues a trivial error
but continues processing. The following list details the changes made to the program.

1. Redefined ISFIT. For FORTRAN 5, ISFIT is a 35-word integer array; for NOS/VE FORTRAN ISFIT,
ISFIT is an integer item (a variable). In the program, the statement DIMENSION ISFIT (35) is
changed to INTEGER ISFIT. The subscript notation is deleted in IFETCH (ISFIT •••) function
references.

2. Declared the record area (also called the working storage area) for the file as unnamed
COMMON. Added the statement:

COMMON REC

3. Changed the file information table set up in the CALL FILEIS statement. Table 14-1 lists all
the fields and indicates changes.

14-8 Migration From NOS to NOS/VE Revision B

Table 14-1. File Information Table Summary

NOS FTN 5 NOS/VE FTN Comments

===

fitname fitname

LFN LFN

CP n/a

CL n/a

DP OP

EFC OFC

EMK EMK

HL n/a

IP IP

KL KL

KA KA

KP KP

KT KT

MRL MRL

ORG n/a

RKW n/a

RKP RKP

RT RT

TL n/a

WSA WSA

Revision F

Identifies the file information table; same.

Local file name; same.

Trailer count; discussed later as the trailer group.

Count field length; discussed later as the trailer group.

Data padding; same.

EFC (error file control) has no NOS/VE equivalent; however, you should
use OFC in a NOS/VE FORTRAN call to specify message control.

Embedded key; same.

Header length; discussed later as the trailer group.

Index padding; same.

Key length; same

Key location; same.

Beginning character position of the key. Not applicable for NOS/VE
FORTRAN; deleted in table; RKP provides the information. For file
migration ease, this parameter can be specified. Set KP to 0 if you
specify it on a CALL PUT statement.

Key type; changed from S (symbolic) to U (uncollated-character keys),
which are compared using the 7-bit ASCII sequence.

Maximum record length; same.

NOS organization of new or old; omit this parameter in the NOS/VE
FORTRAN program because it is not applicable.

Relative key word; omit RKW in the NOS/VE FORTRAN program because RKP
provides sufficient information.

Relative key position. For NOS/VE FORTRAN, RKP specifies the byte
offset into each record where the primary key begins. (The value of
RKP + 1 defines the location of the first character of the key. For
example if RKP=3, the key begins in the 4th character of the record.
Note: one character equals one byte.)

Record type; required conversion from T (trailer) to U (undefined).
For indexed sequential files, types U and V are internally equivalent
to the file interface.

Trailer length; discussed later as the trailer group.

Working storage area; same specification; however, in NOS/VE FORTRAN
the area should be declared as unnamed common.

Migrating FORTRAN Programs 14-9 I

4. Added statements to determine record length and store the information in the file information
table. This procedure is necessary because the file information table no longer includes
information about the trailer portion of the record. On NOS the following fields provided
trailer group information:

HL Header length
TL Trailer length
CP Trailer count
CL Count field length

These fields are not applicable on NOS/VE. A NOS T-type record must be converted to either of
the following NOS/VE record types: undefined (U) or variable (V).

To determine record length, the program reads the item in the record area giving the trailer
count, calculates record length by adding the header portion of the record (35 characters) to
the product of trailer length (5 characters) times trailer count, and stores the record
length (STOREF routine). The code· added is:

READ (REC (31:31), '(II)') TC
RECLEN = 35 + TC*5
CALL STOREF (ISFIT, 'RL', RECLEN)

5. Added statement to check for an error on the CALL PUT and again after the CALL OPENM.

IF (IFETCH (ISFIT, 'ES') .NE. 0) GO TO 400

6. Deleted call to FITDMP. FITDMP is not available on NOS/VE.

7. Changed the file position value 100 octal to 64 decimal and the corresponding edit descriptor
on the FORMAT statement from 0 to I.

Converting Sample Program READIS (Reads an Indexed Sequential File)

The following program reads the indexed sequential animals file (ISFlLE) created by program
FTNIS. First, the program reads the file sequentially. Then the program requests that the user
enter animal names for random reads of the file. The program terminates When the user types END.
For a description of the data file, see the description of the Original Data in File ANIMALS
earlier in this chapter.

The original FORTRAN 5 program for use on NOS is shown in figure 14-5. It reads the animals file
called ISFILE. Note that once the file is created, the CALL FlLEIS statement does not have to
provide all the information specified for a creation run--just information to identify the file,
the working storage area, and the key.

14-10 Migration From NOS to NOS/VE Revision B

+--------------------------7-----------------------------------+

C

PROGRAM RFADIS
IMPLICIT INTEGER (A-Z)
DIMENSION ISFIT (35)
CHARACTER REC*50
CHARACTER ISKEY*10

C PROVIDE FILE INFORMATION
C

C

CALL FlLEIS (ISFIT, 'LFN', , ISFlLE' , 'ORG', 'NEW',
X 'WSA', REC, 'KA', ISKEY, 'KP', 0)

CALL OPENM (ISFIT, 'INPUT' ,'R')

C SEQUENTIAL READS
C

PRINT *, ' SEQUENTIAL READ -IS- FILE'
100 CALL GETN (ISFIT)

IF (IFETCH (ISFIT(l), 'FP') .EQ. 0"100") GO TO 200
RL = IFETCH (ISFIT, 'RL')
PRINT 901, IFETCH (ISFIT{l), 'FP'), RL, REC (l:RL)
GO TO 100

200 CONTINUE
C
C RANDOM RFADS
C

PRINT*, ' RANDOM READ -15- FILE'
300 PRINT * , '

PRINT*, ' ENTER ANIMAL -I.E. ' 'WHALE"- OR ' 'END" ,
READ*, IS KEY
IF (ISKEY .EQ. 'END') GO TO 400
CALL GET (ISFIT)
IF (IFETCH (ISFIT(l), 'FP') .EQ. 0"100") GO TO 400
RL = IFETCH (ISFIT, 'RL')
PRINT 901, IFETCH (ISFIT{l), 'FP'), RL, REC (l:RL)
GO TO 300

400 CALL CLOSEM (ISFIT)
901 FORMAT (' FP = ',04, ' RL = " 13, ' REC = " A)

END

+--+
Figure 14-5. NOS FORTRAN 5 Program READIS

Revision B Migrating FORTRAN Programs 14-11

NOS/VE FORTRAN Program R~DIS

The program converted for NOS/VE is shown in figure 14-6. The changed code appears in lowercase
letters. Brief notations appear to the side.

A major change required specifying that the ASCII6 collating sequence (OSV$ASCII6 FOLDED listed
I in appendix C) be used instead of 7-bit ASCII. With ASCII in effect, the typed entry "lion" is

treated differently from "LION". To make the program insensitive to uppercase and lowercase
letters, and, therefore, act like a NOS FORTRAN program, the ASCII6 sequence is used.

+---+
I

C

PROGRAM READIS
IMPLICIT INTEGER (A-Z)
integer is fit (----------------------- Changed from 35 word array.
CHARACTER REC*50
CHARACTER ISKEY*10
equivalence (rec (21:30), iskey) (---- Equivalence for documentation.
common rec Declare area in common.

C PROVIDE FILE INFORMATION (---------------- Field DFC added below for error
C listings.

C

CALL FILEIS (ISFIT, 'LFN', 'ISFILE',
X 'WSA', REC, 'KA', ISKEY, 'KP', 0, 'dfc', 3, 'MRL', 50)

CALL OPENM (ISFIT, 'INPUT','R')

C SEQUENTIAL READS
C

PRINT *, ' SEQUENTIAL READ -IS- FILE'
100 CALL GETN (ISFIT)

IF (IFETCH (isfit, 'FP') .EQ. 64) GO TO 200
RL = IFETCH (ISFIT, 'RL')
PRINT 901, IFETCH (isfit, 'FP'), Rt, REC (l:RL)
GO TO 100

200 CONTINUE
C
C RANDOM READS
C Change collate table from ASCII to ASC116 so that
C corresponding upper and lowercase letters are equal.
C

call colseq ('ASCII6')
PRINT*, ' RANDOM READ -1S- FILE'

300 PRINT*, '
PRINT*, ' ENTER ANIMAL -I.E. "WHALE"- OR "END" ,
READ*, ISKEY
IF (ISKEY .EQ. 'END') GO TO 400
CALL GET (ISFIT)
IF (IFETCH (isfit, 'FP') .EQ. 64) GO TO 400
RL = IFETCH (isfit, 'RL')
PRINT 901, IFETCH (isfit, 'FP'), RL, REC (l:Rt)
GO TO 300

400 CALL CLOSEM (ISFIT)
901 FORMAT (' FP = " l4, , RL = " 13, , REC = " A)

EW> ..

+-----~---~----------~--~---------- -------_._------.... ------------+
Figure 14-6. Converted NOS/VE FORTRAN Program READ1S

14-12 Migration From NOS to NOS/VE Revision F

The commands to compile and execute READIS on NOS/VE are as follows:

/get_file to=readis Transfers the file READIS to NOS/VE. Assumes that the I
file is in 6/12-display code format under your user name

/attach_file file=$user.isfile

on NOS.

Assumes the indexed sequential file ISFILE is in your
user catalog. If it is in someone else's catalog,
specify:

ATTF .username.ISFILE

I

/fortran i=readis dc=user l=list Identifies the source file; designates writing the I
listing to file LIST and (by default) writing the object
code to file LGO. DC=USER required for COLSEQ call.

/lgo Executes the program. I

Hints-SCL Versus the FORTRAN File Interface

The following hints are for readers who use NOS/VE commands, such as the SET_FILE_ATTRIBUTES I
command, to establish file characteristics (attributes). Some system terminology about file
attributes can be confusing to the person who also uses the FORTRAN file interface routines.

First, from a FORTRAN file interface user's point-of-view, all the fields in the file information
table look like parameters that establish file attributes. However, in NOS/VE file interface
terminology, some fields are called file attributes and other fields are called parameters. For
a functional difference:

A file attribute can be set or changed with the SET_FILE_ATTRIBUTES command. A parameter
cannot be specified in the SET FILE ATTRIBUTES command; parameters can be set only on calls
from the FORTRAN program (for example, the CALL PUT routine).

However, both file attributes and parameters can be set with the CALL FILEIS routine.

Secondly, the abbreviations for some file information fields used in the file interface calls

I

(CALL FILEIS, CALL STOREF, and so forth) are different from those used in the SET FILE ATTRIBUTES I
(SETFA) command. If you use the SET FILE ATTRIBUTES command, you should be aware-of these
differences. (Anyone doing file conversion with the File Management Utility uses the SET_FILE_
ATTRIBUTES command and should continue reading.)

The FORTRAN file interface provides SCL-style names and SCL-style abbreviations for file
attributes in addition to the FORTRAN 5 like abbreviations.

For example, in the CALL FILEIS statement, maximum record length can be specified in any of the
following three ways:

MRL

$MAXIMUM~ECORD_LENGTH

$MAXRL

FORTRAN abbreviation

SCL name for the FORTRAN file interface

SCL abbreviation for the FORTRAN file interface

In a SET FILE ATTRIBUTES command, maximum record length can be specified only as
MAXIMUM_RECORD_LENGTH (or MAXRL).

Table 14-2 lists file attributes together with the three forms they can be specified in the
FORTRAN file interface.

Revision F Migrating FORTRAN Programs 14-13

I

Table 14-2. Summary of File ~ttributes

Attribute or
Parameter Name SCL-Style Name

SCL-Style
Abbreviation

FORTRAN
Abbreviation

==

ACCESS MODE $ACCESS MODE $AM PD
AUTOMATIC UNLOCK $AUTOMATIC UNLOCK $AU AU
AVERAGE RECORD LENGTH $AVERAGE RECORD LENGTH $ARL ARL
COLLATE-TABLE NAME $COLLATE-TABLE NAME $CTN CTN
COLLATE-TABLE- $COLLATE:TABLE- $CT DCT
DATA ExIT ROUTINE DX
DATA-PADDING $DATA PADDING $DP DP
EMBEDDED KEyt $EMBEDDED KEY $EK EMK
ERROR COUNT $ERROR COUNT $EC ECT
ERROR-EXIT NAME $ERROR-EXIT NAME $EEN EXN
ERROR-EXIT-PROCEDURE $ERROR-EXIT-PROCEDURE $EEP EX
ERROR-LIMIT $ERROR-LIMrT $EL ERL
ERROR-STATUS $ERROR-STATUS $ES ES
ESTIMATED RECORD COUNT $ESTlMATED_RECORD_COUNT $ERC ERC
FATAL/NONFATAL - FNF
FILE IDENTIFIER $FlLE IDENTIFIER $FI
FILE-ORGANIZATION $FILE-ORGANIZATION $FO FO
FILE POSITION $FlLE-POSITION $FP FP
FORCED WRITE $FORCED WRITE $FW FWI
GET AND LOCK $GET·AND LOCK $ GAL GAL
HASHING-PROCEDURE NAME $HASHING-PROCEDURE NAME $HPN HPN
INDEX LEVELS $ INDEX_LEVELS - $IL NL
LEVELS OF INDEXING NL
INDEX PADDING $INDEX PADDING $IP IP
INITIAL HOME BLOCK COUNT $INITIAL HOME BLOCK COUNT IHBC HMB
KEY ADDRESS - $KEY ADDRESS - - $KA KA

I KEY: LENGTH $KEY-LENGTH $KL KL
KEY TYPE $KEY-TYPE $KT KT
KEY-POSITION $KEY-POSITION $KP KP
KEY-RELATION $KEY-RELATION $KR KR
LAST OPERATION $LAST OPERATION $LO LOP
LOCAL FILE NAME $LOCAL FILE NAME $LFN LFN
LOCK EXPIRATION TIME $LOCK EXPIRATION TIME $LET $LET
LOCK-INTERLOCK $LOCK-INTERLOCK - $LI LI
MAJOR KEY LENGTH $MAJOR KEY LENGTH $MKL MKL
MAXIMUM BLOCK LENGTH $MAXIMUM BLOCK LENGTH $MAXBL MBL
MAXIMUM-RECORD LENGTH $MAXIM~RECORD LENGTH $MAXRL MRL
MESSAGE-CONTROL $MESSAGE-CONTROL $MC DFC
MINIMUM-RECORD LENGTH $MINlMUM:RECORD_LENGTH $MINRL MNR
OLD/NEW- ON
OPEN/CLOSE OC
OPEN POSITION $OPEN_POSITION SOP OF
RECORD LENGTH RL
RECORDLIMIT $RECORD LIMIT $RL FLM
RECORD-TYPE $RECORD -TYPE $RT RT
RECORDS PER BLOCK $RECORDS_PER_BLOCK $RPB RB
RESIDUAL SKIp COUNT . RA
SKIP COUNT - $SKIP COUNT $SC SKP
WORKING STORAGE AREA $WORKING STORAGE AREA $WSA WSA
WORKING-STORAGE-LENGTH $WORKING:STORAGE=LENGTH $WSL WSL

--
tUse the values TRUE or FALSE for an embedded key in the SETFA command; but use the

values YES or NOS for an embedded key in the CALL FILEIS statement.

14-14 Migration From NOS to NOS/VE RevisionF

FORTRAN Feature Di~erences
The following topics describe the specific differences and areas of incompatibility between
NOS/VE FORTRAN and FORTRAN 5.

FORTRAN-callable subprogram differences

Input/Output -- Includes: Buffer I/O, 0 and Z editing, ENCODE/DECODE, files INPUT and OUTPUT,
and the maximum length formatted records.

Loading -- Includes: Overlays, OVCAPs, segment loading, and static loading.

FORTRAN command -- Includes: Command parameters for NOS/VE FORTRAN.

Other -- Boolean data type, double precision functions, procedure communication,
floating-point arithmetic, default collating sequence, FTN5 command, and the PROGRAM, SAVE,
and LABEL statements.

FORTRAN-Callable Subprogram Differences

The discussion of FORTRAN-callable subroutine differences includes the following routines: Post
Mortem Dump, LABEL, GETPARM, CHECKPTX, RECOVR, DATE, TIME, CLOCK, LOCF, SECOND, 8-Bit, and
permanent file routines.

This discussion also shows using the NOS/VE parameter interface subprograms, which replace the
GEPPARM subroutine.

Post Mortem Dump

The initial release of NOS/VE FORTRAN does not support the Post Mortem Dump debugging facility.
The calls to PMDARRY, PMDDUMP, PMDLOAD, and PMDSTOP are prOVided but are ignored during
compilation and execution.

Subroutine LABEL

FORTRAN 5 subroutine LABEL is not supported by NOS/VE FORTRAN. A LABEL subroutine is provided
but it performs no operation.

8-Bit Subroutines

The 8-bit subroutines are not supported under NOS/VE FORTRAN.

Permanent File Subroutines

The NOS permanent file subroutines are not supported under NOS/VE FORTRAN. These are replaced by
the SCL interface.

Subroutine GETPARM

FORTRAN 5 subroutine GETPARM is replaced by the SCL interface capability under NOS/VE FORTRAN. A
GETPARM subroutine is provided but it performs no operation. For information and example about
the NOS/VE replacement feature, see the Using the NOS/VE Parameter Interface Subprograms, which
is later in this chapter. I

Revision F Migrating FORTRAN Programs 14-15

Subroutines CHEKPTX and RECOVR

FORTRAN 5 subroutines CHEKPTX and RECOVR are not supported by NOS/VE FORTRAN. CHEKPTX and RECOVR
subroutines are provided but perform no operation.

DATE, TIME, and CLOCK Functions

I The values returned by the NOS/VE FORTRAN DATE, TIME, and CLOCK functions have formats different
from those used by FORTRAN 5. See the FORTRAN Language Definition Usage manual for the formats.
The length declared for TIME or CLOCK by the CHARACTER statement must be changed to 8. (The
length of DATE is still 10.)

LOCF Function

The FORTRAN 5 LOCF function is not currently supported under:. NOS/VE FORTRAN.

SECOND Function

I Under NOS/VE FORTRAN, the SECOND function is supplied as a utility subprogram rather than as an
intrinsic function. Thus, any FORTRAN 5 programs that declare the SECOND function in an
INTRINSIC statement should be changed to declare the function in an EXTERNAL statement.

I
SYSTEMC or SYSTEM Calls

FORTRAN 5 error numbers are automatically mapped into the corresponding NOS/VE FORTRAN error
numbers for use with the SYSTEM or SYSTEMC calls.

I

I

I

Using the NOS/VE Parameter Interface Subprograms

The NOS/VE FORTRAN parameter interface subprograms replace the FORTRAN 5 GETPARM subroutine.
These subprograms provide an improved capability for NOS/VE FORTRAN in passing parameters to
executing programs. This discussion describes the function of the subprograms and shows using
them.

A series of interface subprograms provide for parameter verification and evaluation. The
subprograms together with the values they return are:

GETBVAL

GETCVAL

GETIVAL

GETSCNT

GETSVAL

GETVCNT

GETVREF

SCLKIND

TSTPARM

TSTRANG

Value of an SCL boolean parameter

Value of a STRING, NAME, or FILE parameter

Value of an SCL integer parameter

Integer indicating the number of value sets specified for the parameter

Values of an SCL status parameter

The number of values in the specified value set of the specified parameter

Variable reference specified for a parameter

String indicating the SCL kind (type) of a parameter

Logical value • TRUE. if the specified parameter appears on the execution command.
Otherwise, • FALSE.

Logical value • TRUE. if the named value was specified on the execution command as
a range. Otherwise • FALSE. (Values in the form m •• z indicate a range of values
from m to z.) For a discussion of the ellipsis used to show value range for a
parameter, see chapter 2.

14-16 Migration From NOS to NOS/VE Revision F

Value Sets

Parameters are frequently lists and value sets. The interface subprograms in the example check
and evaluate integer parameters. To understand the example, you need to understand how to specify
parameters as a list of values, as a range of values, and as value sets as discussed in chapter
2. The remainder of this discussion explains more complex situations involving value sets.

A value set in a parameter is a list of values. For example:

LGO (1 2 3)

I
+----------) The list is a simple value set. A value set is enclosed in parentheses.

The following command specifies a more complex value set. The ellipsis indicates ranges. Each set
of range indicators is considered as one item.

+----------) A value set of 3 items.
I
~

LGO (1 2 3 •• 5 (4 5 6 •• 9»
~

I
+--------------) A value set of 4 items because (4 5 6 •• 9) is considered as 1.

Interface Subprogram Example

The interface subprogram example checks and evaluates integer parameters to demonstrate the use
of specific subroutines. The example consists of the NOS/VE FORTRAN program included in the seL
procedure that compiles and executes the program. The program is executed five times, with
different parameters passed each time. The procedure listing, figure 14-7, is followed by the
output listing produced by the program, figure 14-8. The program and program output are
self-documenting. The LGO command being processed is duplicated in the program output.

Revision B Migrating FORTRAN Programs 14-17

+--+ . I
proc ptesti
Collect text ftninp

program ptesti
implicit integer (a-z)
integer GETSCNT, GETVCNT
logical TSTPARM, TSTRANG

C$ PARAM ("'int: list 1 •• 10 1 •• 3 range of integer"')
c
c First make sure the parameter was there at all.
c

c

if (TSTPARM("'int'» then
print *, "'''Int'' parameter was coded on the execution statement
print *,

c Then get the number of value sets that were specified.
c

numset = GETSCNT("'int"')
print *, "'There are ... , numset, ... value sets for int

c
c Process each value set.
c

do 100,set-1,numset

c Get the number of values specified in this value set.

c

numval = GETVCNT("'int"', set)
print *,
print *, "'There are ... , numval, ... values in set U"',set

c Process each value in the value set.
c

do 100, val=l,numval
c
c Get this value of this set (low value if it is a range).
c

call GETIVAL("'int"',set,val,"'low"',ival,radix)
c
c Give special treatment to base 10 values versus all others.
c

if (radix .eq. 10) then
print *, "'Low value of value U ... , val, ... is ... , ivaI

else
print *, "'Low value of value U ... , val, ... is ... , ivaI,

+ ... (base 10), originally entered in base "',radix
end if

I
+--(Continued on next page)--+

Figure 14-7. Procedure PTEST!, Evaluates Integer Parameters

I 14-18 Migration From NOS to NOS/VE Revision F

+--(Continued from previous ~age)--+

c
c If it is a range value, get the high value for the range.
c

if (TSTRANG('int',set,val»then
call GETIVAL('int',set,val,'high',ival,radix)

c
c Give special treatment to base 10 values versus all others.
c

if (radix .eq.
print *,

else
print * ,

+ ' (base
end if

end if
100 continue

else

10) then
and the high value is ',ivaI

and the high value is ',ivaI,
10), originally entered in base

print *, '''Int'' parameter was not coded.'
end if

',radix

end <--- End of program
** <-- Terminates COLLECT TEXT
fortran input=ftninp binary object=lgo
create_variable variable=str kind=string
create file connection standard file=$echo file=output
19o - - -
19o 1
19o (1 2 3)
19o 1 (16)
19o (54(8) •• 62(16»
19o (1 2 3 •• 5 (4 5 6 •• 9»
delete file connection standard file=$echo file=output
detach-file-file=ftninp -
procend ptesti <-- Terminates procedure

+--+

Figure 14-7. Procedure PTESTI, Evaluates Integer Parameters

+--+

CI 19o
"Int" parameter was not coded.
CI 19o 1
"Int" parameter was coded on the execution statement.

There are 1 value sets for int.

There are 1 values inset HI
Low value of value #1 is 1

CI 19o (1 2 3) <--- LGO command
"Int" parameter was coded on the execution statement.

+--(Continued on next page)--+

Figure 14-8. Execution Output of Procedure PTESTI

Revision F Migrating FORTRAN Programs 14-19

I

I

+--(Continued from previous page)--+

II

There are 3 value sets for int.

There are 1 values in set #1
Low value of value III is 1

There are 1 values in set 112
Low value of value III is 2

There are 1 values in set 113
Low value of value III is 3

CI 19o 1(16) <--- LGO command
"Int" parameter was coded on the execution statement.

There are 1 value sets for int.

There are 1 values in set III
Low value of value III is 1 (base 10), originally entered in base 16

CI 19o (54(8) •• 62(16» <---~-------------------------------- LGO command
"Int" parameter was coded on the execution statement.

There are 1 value sets for int.

There are 1 values in set III
Low value of value #1 is 44 (base 10), originally entered in base 8

and the high value is 98 (base 10), originally entered in base 16

CI 19o (1 2 3 •• 5 (4 5 6 •• 9» <------------------------------- LGO command
"Int" parameter was coded on the execution statement.

There are 4 value sets for int.

There are 1 values in set III
Low value of value #1 is 1

There are 1 values in set 112
Low value of value III is 2

There are 1 values in set 113
Low value of value #1 is 3

and the high value is 5

There are 3 values in set #4
Low value of value #1 is 4
Low value of value #2 is 5
Low value of value #3 is 6

and the high value is 9 <--------------------------------- End program output
CI Delete_fi1e_connection standard_fi1e=$echo fi1e=output <-- seL command DELFC

+--+
Figure 14-8. Execution Output of Procedure PTESTI

14-20 Migration From NOS to NOS/VE Revision F

Input/Output Differences

Input/output differences for NOS FORTRAN 5 and NOS/VE FORTRAN are described in topics as follows:

Buffer I/O

ENCODE/DECODE

OPENMS/READMS/WRITMS

o and Z Editing

Maximum Length of Formatted Records

Editing

Files INPUT and OUTPUT

Buffer I/O

Some uses of buffer input/output, such as the unused bits value returned by LENGTH/LENGTHX and
the size of the storage area to receive incoming data, are dependent on the number of characters
per word. The parity indicator (p parameter) is ignored by NOS/VE FORTRAN, but must be present. I
The BUFFER statements are included in NOS/VE FORTRAN for compatibility only. Because buffers are
not used in NOS/VE FORTRAN in the same way as in FORTRAN 5, BUFFER statements are generally not
advantageous; unformatted READ and WRITE statements should be used instead.

The following example represents FORTRAN code on NOS that typically needs conversion. However,
if the purpose is to transfer 1000 words of data on either NOS or NOS/VE, it should work on both.

DIMENSION ARRAY (1000)

BUFFER OUT (8, 1) (ARRAY(l), ARRAY(1000»
I=UNIT(8) I I

The size of this record is 1000 words. In NOS, this is 10000 6-bit
bytes; in NOS/VE, 8000 8-bit bytes.

Used for parity on NOS; NOS/VE ignores it but requires its presence.

The unit must be cleared for subsequent I/O.

ENCODE/DECODE

Most uses of ENCODE/DECODE involve packing and unpacking of characters within a word and are
dependent on the number of characters per word. All usages should be checked. Conversion of
ENCODE/DECODE to FORTRAN standard internal READ and WRITE is recommended.

Example of statements requiring conversion:

20 FORMAT (13,
ENCODE (10,

F3.0, 14)
20, IVAR) INT1,REAL1,INT2

I !OOlean variable holds only 8 characters on NOS/VE (10 on NOS).

Revision F

Format 20 specifies a 10-character transfer.

10 characters are to be transferred to IVAR.
In NOS/VE, IVAR can hold only 8 characters.

Migrating FORTRAN Programs 14-21

I

OPENMSjREADMS/WRITMS

Most uses of OPENMS/READMS/WRITMS depend on a 10 character word length and on the record key
being one word in length. Conversion to standard FORTRAN direct access I/O is recommended. The
following example indicates conversion changes required:

CALL READMS{U, FWA, NWORDS, RECKEY)

I
If record key RECKEY is one word, its length changes from 10 on
NOS to 8 on NOS/VE.

Record size in 60-bit words on NOS and 64-bit words on NOS/VE.

o and Z Editing

Under FORTRAN 5, reading a blank field with the Ow or Zw descriptor gives a minus zero. Under
NOS/VE FORTRAN, no minus zero exists. (A positive zero is stored.) When it is necessary to see
the value of a word on NOS/VE, use Z16 instead of 020 used on NOS.

All list items that contain boolean values should be declared type BOOLEAN.

Maximum Length of Formatted Records

The maximum length of formatted records is reduced from 131,071 octal under FORTRAN 5 to 65,535
octal under NOS/VE FORTRAN.

Editing

Hollerith data should be changed to character data where possible. Only eight characters fit
into a Hollerith variable or constant on NOS/VE (not ten as on NOS).

All list items that contain boolean values should be declared type BOOLEAN.

Files INPUT and OUTPUT

The system files INPUT and OUTPUT have been changed to NOS/VE standard files $INPUT and $OUTPUT.

FORTRAN programs that specify INPUT or OUTPUT on the PROGRAM statement will work. Programs that
specify INPUT or OUTPUT on an OPEN statement might not work; change the specification on the OPEN
statement to $INPUT or $OUTPUT.

Since $OUTPUT cannot be written to in a batch environment, you must connect $OUTPUT to a physical
file containing data. You can use the PROGRAM statement or the SCL CREATE FILE CONNECTION
command.

In a batch job, $INPUT is an empty file unless you connect $INPUT to a real file. FORTRAN
recognizes EOP boundaries on files connected to $INPUT.

For information about standard files, see the file connection discussion in chapter 4, Common
NOS/VE Commands.

NOS/VE FORTRAN provides a type of input/output called segment access files. Segment access files
provide a fast and efficient way of sharing large blocks of data among FORTRAN programs. Segment
access files are associated with common blocks, and are accessed through assignment statements
rather than through input/output statements.

14-22 Migration From NOS to NOS/VE Revision F

Loader Differences

In general, the NOS CYBER Loader interfaces for use with FORTRAN S programs are used to manage
field length to allow large programs to fit into central memory. With virtual memory on NOS/VE,
this kind of memory management is not necessary. Therefore, you should remove or modify Loader
interface code to migrate FORTRAN programs to NOS/VE.

A quick check for most code dependent on the CYBER Loader can be performed by using the ANSI
parameter of the FTNS command. For information about using this parameter to help migrate
programs, see chapter 13. I
The following pages briefly point out CYBER loader-dependent code.

Overlays and OVCAPs

Overlays and OVCAPs are not meaningful in the NOS/VE environment and are not supported. You need
to change the source code from a multi-main program structure to a one-main-program and related
subroutines structure. Communication can occur via COMMON blocks; however, you need to eliminate
duplicate common block and subroutine names.

All OVERLAY and OVCAP directives should be removed from programs being converted. PROGRAM
statements in primary and secondary overlays should be changed to SUBROUTINE statements. The
calls to OVERLAY, LOVCAP, XOVCAP, and UOVCAP are provided by NOS/VE FORTRAN but perform no
operation.

Static Memory Management

The static memory management routines are not supported by NOS/VE.

Segment Loading

Segment loading is not supported under NOS/VE. To avoid conflicts in common block storage within
segmented programs, you must change the names of nonglobal common blocks having the same name in
parallel parts of the tree structure to be unique.

Extensible Common Blocks

NOS/VE FORTRAN provides a feature called extensible common blocks. By using extensible common
blocks, you can safely overindex arrays in common; the common block is automatically extended to
avoid conflicts with other common blocks or data areas. Use of extensible common blocks is
optional and is activated by the C$ EXTEND loader directive.

FORTRAN Command

The FORTRAN command for NOS/VE FORTRAN differs from the FTNS statement for FORTRANS. Parameter
names have changed, new parameters are available, and certain FTNS parameters are no longer
supported.

I

The FORTRAN command follows the rules for all System Command Language (SCL) commands. If the I
FORTRAN command requires several physical lines, two or more periods at the end of a physical
line indicate continuation to the following line. You can place the FORTRAN command in a line
with other commands. Separate commands on a single line by semicolons. For example:

FORTRAN INPUT=$USER.INFIL BINARY OBJECT=$USER.BIN
LIST=LISTFIL OPTIMIZATION LEVEL=HIGH

This command specifies permanent files INFIL and BIN as the source and binary files,
respectively. The second line specifies HIGH optimization and that temporary file LISTFIL is to
receive the output listing.

Revision F Migrating FORTRAN Programs 14-23

You can enter commands in interactive mode (through a terminal) or in batch mode. You can
specify parameters on the command in any order. Separate parameters by a comma, or by one or
more spaces.

The parameters of the NOS/VE FORTRAN command are briefly summarized in alphabetical order. The
information about each command includes: the full parameter name, any parameter abbreviations,
default values, and other allowed values. (Further information about the FORTRAN command appears
in the FORTRAN Language Definition Usage manual.)

BINARY_OBJECT or B

The BINARY OBJECT parameter specifies the local file to receive the binary object code produced
by the compiler. Options are:

default B=$LOCAL.LGO

B=file Write object code to the specified file.

B=$NULL Do not write object code to a file.

I COMPILATION_DIRECTIVES or CD

The COMPILATION DIRECTIVES parameter controls the recognition of C$ directives within the source
program. Options are:

default CD=ON

CD=ON Recognize C$ directives.

CD=OFF Treat C$ directives as comments.

I DEBUG_AIDS or DA

I

The DEBUG AIDS parameter selects debugging options. Options are:

default

DA=PC

DA=DT

DA=NONE

DA=ALL

DA=NONE

Produce information used by the loader to detect mismatches between actual and
dummy arguments.

Produce line number tables, symbol tables, and source map loader tables.

Do not produce line number tables, symbol tables, source map loader tables, and
information for load-time argument checking.

Selects the PC and DT options.

I DEFAULT_COLLATION or DC

The DEFAULT COLLATION parameter specifies the weight table to be used for evaluation of the
I character r;lational expressions by the CHAR and ICHAR functions. The options are:

default DC=FlXED

DC=F (or DC=FlXED) Use fixed (7-bit ASCII) collating sequence.

DC=U (or DC=USER) Use user-specified collating sequence.

14-24 Migration From NOS to NOS/VE Revision F

ERROR or E

The ERROR parameter specifies the name of the file to receive compiler-generated error
information. In the event of an error of ERROR LEVEL-specified severity or higher, a diagnostic
is written to the file specified by the ERROR parameter. If a listing file (LIST parameter) is
also specified, the diagnostic is written to both files. Options are:

default

E=file

Write error messages to standard file $ERRORS (which is automatically connected
to file OUTPUT).

Write error messages to the specified file.

ERROR_LEVEL or EL

The ERROR_LEVEL parameter determines the severity level of errors to be printed on the output
listing. Selection of a particular option specifies that level and all higher (more severe)
levels. Options are (in order of increasing severity):

default

EL=T or
EL=I

EL=W

EL=F

EL=C

EL=W

List trivial (informational), warning, fatal, and catastrophic errors.

List warning, fatal, and catastrophic errors.

List fatal and catastrophic errors.

List catastrophic errors only.

EXPRESSION_EVALUATION or EE

The EXPRESSION_EVALUATION parameter controls the way the compiler evaluates expressions to
perform optimizations. You can select multiple options among the last five. Options are:

default

EEmNONE

EE=C

EE=ME

EE=MP

EE=OSM

EE=R

Revision F

EE=NONE

Perform normal optimizations (no options selected).

Evaluate expressions according to precedence rules.

Do not perform optimizations which eliminate instructions that might cause
execution errors.

Do not perform optimizations that change floating-point operations to a
mathematically, but not computationally, equivalent form.

Guarantees valid character assignment in character assignment statements of the
form:

v=exp

where the character positions being defined in v are referenced in exp.

Call intrinsic functions by reference rather than by value.

Migrating FORTRAN Programs 14-25.

I FORCED_SAVE or FS

The FORCED SAVE parameter specifies whether or not the values of variables and arrays in the
subprograms are to be retained after execution or a RETURN or END statement. Options are:

default FS=OFF

FS=ON Save variable and array values after RETURN or END.

FS=OFF Do not save variable and array values after RETURN or END.

I INPUT or I

The INPUT parameter specifies the name of the file that contains the input source code. Options
are:

default I=$INPUT, which automatically defaults to file INPUT.

I=file Input source code is on the specified file.

I USTorL

The LIST parameter specifies the file to receive the compiler output listing. Options are:

default

L=file

L=$LIST, which is automatically connected to standard file $NULL for
interactive jobs and to file OUTPUT for batch jobs.

Write compiler output listing to the specified file.

I UST_OPTIONS or LO

The LIST_OPTIONS parameter specifies the information that is to appear on the compiler output
listing. The information is written to the file specified by the LIST parameter. You can

I specify multiple options among the last six. For example:

LO=(A S R).

Options are:

default

LO=NONE

LO=A

LO=M

LO=O

LO=R

LO=S

LO=SA

1.O=S.

Do not produce an output listing.

List attributes of symbolic names.

Produce symbol attribute list (same as A option), DO loop map, and common block
map.

Produce object code listing.

Produce cross reference listing.

List program source statements.

Same as S, but include lines turned off by C$ LIST

·14-26 Migration From NOS to NOS/VE Revision F

MACHINE_DEPENDENT or MD . I
The MACHINE DEPENDENT parameter specifies whether the use of machine dependent capabilities
within the program are to be diagnosed and if so, how severely. These capabilities include
coding that depends on the number of characters in a word, such as use of the boolean data type, I
ENCODE and DECODE statements, and certain uses of BUFFER IN and BUFFER OUT. Options are:

default

MD=NONE

MD=T or
MD=I

MD=W

MD=F

MD=NONE

Do not diagnose machine-dependent usages.

Diagnose machine-dependent usages as trivial (informational) errors.

Diagnose machine-dependent usages as warning errors.

Diagnose machine-dependent usages as fatal errors.

The ONE TRIP DO parameter determines the manner in which DO loops are to be interpreted by the
compiler. Options are:

default OTD=OFF

OTD=ON Minimum trip count for DO loops is one.

OTD=OFF Minimum trip count for DO loops is zero.

OPTIMIZATION_LEVEL or OL or OPTIMIZATION or OPT

The OPTIMIZATION LEVEL parameter selects the level of optimization performed by the compiler.
Options are:

default OL=LOW

OL=DEBUG Generate object code modified for debugging.

OL=LOW Perform minimum optimization.

OL=HIGH Perform maximum optimization.

RUNTIME_CHECKS or RC

The RUNTIME CHECKS parameter selects run-time range checking of subscripts and substrings.
Options are:

default RC=NONE

RC=NONE Do not perform run-time range checking.

RC=R Perform range checking for character substring expressions.

Perform range checking for subscript expressions.

RC=ALL Select both Rand S options.

Revision F Migrating FORTRAN Programs 14-27

I

I

I

I

I SEQUENCED_UNES or SL

The SEQUENCED_LINES parameter specifies the sequencing format of the input source program. (Note
that the FORTRAN sequenced format is not the same as the line-numbered format produced by
NOS/VE. Line numbered source programs must not be written in sequenced format.) Options are:

default SL=OFF

SL=ON Source program is in sequenced format.

SL=OFF Source program is in nonsequenced format.

I STANDARDS_DIAGNOSTICS or SO

I

The STANDARDS_DIAGNOSTICS parameter specifies whether the use of non-ANSI source statements are
to be diagnosed and if so, how severely. Options are:

default SD=NONE

SD=NONE Do not diagnose non-ANSI usages.

SD=T or Treat non-ANSI usages as trivial (informational) errors.
SD=I

SD=W Treat non-ANSI usages as warning errors.

SD=F Treat non-ANSI, usages as fatal errors.

STATUS

The STATUS parameter defines an SCL status variable to be set by the compiler to contain
information about errors that occur during compilation. The severity level of errors for which
information is to be returned is determined by the TERMINATION ERROR LEVEL parameter. For more
information about a status variable, see the discussion of the-STATUS parameter in chapter 4,
Common NOS/VE Commands.

default Do not return error status.

STATUS=var Write error status code to the specified SCL variable.

TARGET_MAINFRAME or TM

The TARGET_MAINFRAME parameter is not supported at this release level. If you specify a value
for the TARGET MAINFRAME parameter, the value is ignored. You must indicate the position of the
TARGET MAIN~E parameter with a comma if you specify the TERMINATION_ERROR_LEVEL or STATUS
parameter by position.

14-28 Migration From NOS to NOS/VE Revision F

TERMINATION_ERROR_LEVEL. or TEL

The TERMINATION ERROR LEVEL (TEL) parameter specifies the minimum error severity level for which
the compiler is-to return abnormal status. Information about errors having the specified or
higher severity is returned. Options are:

default TEL=F

TEL=T or
TEL=I

Return abnormal status for trivial (informational), warning, fatal, and
catastrophic errors.

TEL=W Return abnormal status for warning, fatal, and catastrophic errors.

TEL=F Return abnormal status for fatal and catastrophic errors.

TEL=C Return abnormal status for catastrophic errors only.

Other FORTRAN Feature Differences

Other feature differences between NOS FORTRAN 5 and NOS/VE FORTRAN are discussed in topics as
follows:

7-Bit ASCII Code Set

Boolean Data Type

Default Collating Sequence

Double Precision Functions Referenced as Single Precision

Floating-Point Arithmetic

LEVEL Statement

Procedure Communication

PROGRAM Statement

SAVE Statement

7-Bit ASCII Code Set

For NOS the native code set is 6-bit display code; for NOS/VE, the native code set is 7-bit
ASCII. This means that FORTRAN assumes that character data in files are in 6-bit display code on
NOS and in 7-bit ASCII code on NOS/VE. Data manipulations can have different results because of
the differences in" the code sets. A summary of the maj or differences in the code sets is shown
in table 14-3.

_Revision F Migrating FORTRAN Programs 14-29

Table 14-3. Summary of 7-Bit ASCII and 6-Bit Display Code Differences

Code Characteristic

Uppercase letters

Lowercase letters

Number of characters

Sequence of alphabetic
vs numeric characters

Lowest value character

6-Bit Display Code

Yes

Does not recognize case

64 or 63 (site dependent)

Numeric first

(value 0 for 64-graphic set)
A (value 01 for 63-graphic set)

7-Bit ASCII

Yes

Yes

256

Alphabetic first

Space (value 32)

The difference in native code sets makes applications on NOS/VE sensitive to uppercase and
lowercase letters when they were not on NOS. For example, an application coded to terminate when
"END" is entered terminates under NOS with "end". NOS/VE requires a match of uppercase and
lowercase unless you code to allow other matches.

You can make an application insensitive to the case of letters by specifying a program collating
sequence of ASCII6, which selects the OSV$ASCII6 FOLDED collating sequence (listed in appendix

D C). With ASCII6 specified, equivalent uppercase-and lowercase letters have the same value.

To specify ASCII6, the program must include the CALL COLSEQ statement, and the FORTRAN command
D must specify DEFAULT_COLLATION=USER. These are shown below:

I

CALL COLSEQ ('ASCII6')
/fortran input=sourc-yrog default collation=user

All files containing character data on NOS/VE are assumed to use the 7-bit ASCII code set. Their
collating sequence is assumed to be equivalent to the 7-bit ASCII sequence (that is, the weights
of the characters are the same as the ASCII code set sequence for the characters). If the files
used by the applications that you are migrating are dependent on other collating sequences, you
need to ensure that the files are created on NOS/VE with the appropriate collating sequence
specified. (This applies only to indexed sequential files.)

Boolean Data Type

The boolean data types and operations (SHIFT, MASK, and so forth) are provided specifically for
machine-dependent uses. Most uses will require program modification. For example, the following
FORTRAN 5 example depends on a word length of 60 bits:

BOOL1 SHIFT(BOOL2,42).OR.(BOOL3.AND.O"777777")

I

I I !UildS a mask using octal constants in an IS-bit field.

+---------+--Boolean function for NOS/VE; not a logical operator.
(Boolean function returns a value for a word; a logical
operator returns a value for a bit.)

Boolean shift function and corresponding bit count (42 bits).

Declare boolean variables as type BOOLEAN. Change octal uses to hexadecimal.

14-30 Migration From NOS to .NOS/VE Revision.F

On NOS, ones complement arithmetic was used. On NOS/VE, twos complement arithmetic is used.
This means that masks or bool~an values formed with negation will be different on NOS/VE.

Default Collating Sequence

The default collating sequence established when the DEFAULT_COLLATION parameter is omitted from
the FORTRAN command has been changed from USER to FIXED. For further discussion, see the
preceding discussion in this chapter of the 7-Bit ASCII Code Set.

Division Operation

Dividing by zero in NOS/VE causes a divide fault that terminates the program with an immediate
fatal runtime error. In NOS, such a division causes a bad quotient that generates a run-time
error when used as an operand in an expression.

Double Precision Functions Referenced as Single Precision

Referencing double precision functions as single precision under FORTRAN 5 depends on register
conventions that are not compatible with NOS/VE FORTRAN. All such uses should be removed.
(These uses are not legal under FORTRAN 5, but some work.)

Floating-Point Arithmetic

Differences in NOS and NOS/VE unrounded floating-point arithmetic can lead to different results
if the source algorithm is numerically unstable. There are statistical methods available for a
stable algorithm. Rounded floating-point arithmetic is not available on NOS/VE. Also, avoid
.EQ. and .NE. comparisons to floating-point zero.

In NOS, a number that becomes too small due to exponent underflow is rounded to zero, and
processing continues. In NOS/VE you can set an exponent underflow option with an SCL command.
The default setting of the option is on, which means that a too small number results in
processing being terminated with an immediate fatal runtime error. If you set the exponent
underflow option off, NOS/VE treats exponent underflow the same way as NOS does.

Hollerith Constants

Under NOS/VE FORTRAN, Hollerith constants are replaced by Boolean string constants, which are
limited to 8 characters. Constants of the form, nHs, L"s" , R"s", or "s", that exceed 8
characters are called extended Hollerith constants. You can use them only to pass actual
arguments to external procedures.

Hollerith Descriptors

Replace Hollerith descriptors with character descriptors.

LEVEL Statement

The multilevel memory structure is not meaningful in the NOS/VE environment'and is not
supported. The LEVEL statement is accepted by the FORTRAN compiler but performs no operation.

Procedure Communication

Any method of procedure communication, other than through common or an argument list, should be
changed to use either common or an argument list.

Revision F Migrating FORTRAN Programs 14-31 e

PROGRAM Statement

The file buffer length specifier on the NOS/VE FORTRAN PROGRAM statement is included for
compatibility with FORTRAN 5, but is disregarded by the compiler. Because of the way in which
buffers are used in the NOS/VE environment, assigning buffer lengths is not meaningful.

SAVE Statement

Under NOS/VE FORTRAN, local variables and arrays in subprograms do not retain their values after
an exit from the subprogram, unless the subprogram contains a SAVE statement or the FORCED SAVE
option is specified on the FORTRAN command.

114-32 Migration From NOS to NOS/VE Revision F

Migrating CO~OL. Programs

Differences in Statements, Clauses, and Sections ••
ACCEPT Statement ••
ALTERNATE RECORD KEY Clause •••
BLOCK CONTAINS Clause •••
BLOCK COUNT Clause ••
CALL Statement ••
COpy Statement ••
ENTER Statement •••
INSPECT Statement •••
READ Statement ••
RECORD CONTAINS Clause ••
RECORDING MODE Clause •••
REDEFINES Clause ••
REPLACE Statement •••
RERUN Clause ••• ' •••••••••••••••••••••••••••••••••
RESERVE AR.EAS Clause ••
REWRITE Statement •••
Secondary-Storage Section •••
SET CODE-SET Clause •••
SET PROGRAM COLLATING SEQUENCE Clause •••
SORT S ta tement ••
SYNClIR.ONIZED Clause •••
USE Clause ••
USE FOR DEBUGGING Declarative Statement •••
USE FOR HASHING Declarative Statement •••
VALUE Clause ••••••••••••••••••••••••••• .- ••

Differences Relating to Character and Integer Data ••
Arithmetic Expressions or Arithmetic Operations •••••••••••••••••••••••••••••••••••••••
Boolean Items •••
Character Set •••
Code Sets •••
Collating Sequence ••
Computational Data Types ••

COMP (COBOL 5) to DISPLAY (NOS/VE COBOL) ••
COMP-l (COBOL 5) to COMP (NOS/VE COBOL) •••
COMP-2 (COBOL 5) to COMP-l (NOS/VE COBOL) •••
COMP-2 (NOS /VE COBOL) •••
COMP-4 (COBOL 5) to COMP or COMP-3 (NOS/VE COBOL) •••••••••••••••••••••••••••••••••
Nume ric Da ta Items ••

Signs •••
SIZE ERROR ••

Differences Relating to Files •••
Actual-Key File Organization ••
Direct File Organization ••
Fi Ie -Names ••
File Status •••••••••••••••••••••••••••••••••••• ~ ••••••••••••••••••••••••••••••••••••••
Indexed Sequential File Organization ••
Record Types ••
Relative File Organization ••
Word-Address File Organization ••

Compiler Call •• ~ ••••••••••••••••••••••••••••••••••
NOS /VE COBOL Comm.and •• ' ••••

COBOL Command Format ..
COBOL Command Parameters •••.•••••••••••••••

INPUT or I ••
BINAR.Y, BINARY_OBJECT, B, or BO •••
LIST or L •••

15

15-1
15-1
15-2
15-2
15-2
15-2
15-2
15-3
15-3
15-3
15-3
15-3
15-3
15-3
15-3
15-4
15-4
15-4
15-4
15-4
15-4
15-4
15-5
15-5
15-5
15-5

15-5
15-5
15-6
15-6
15-6
15-6
15-6
15-7
15-7
15-8
15-8
15-8
15-8
15-9
15-9

15-9
15-9
15-9
15-10
15-10
15-10
15-10
15-10
15-11

15-11
15-12
15-12
15-12
15-12
15-13
15-13

AUDIT, A, or AtJ1? ••
BASE LANGUAGE or BL •.••
DEBUG AIDS or DA ••
ERROR-or E ••
ERROR LEVEL or EL •••
EXTERNAL INPUT, EI, or EX INPUT ••
FED_INFOYROCESSING_STANDARD or FIPS ••
INPUT SOURCE MAP or ISM •••
LEADING BLANK ZERO or LBZ •••
LIST OPTIONS or LO ••
LITERAL CHARACTER or LC •••
OPTIMIZATION LEVEL, OL, OPTIMIZATION, or OPT ••••••••••••••••••••••••••••••••••••••
RUNTIME CHECKS or RC ••
STANDARDS DIAGNOSTICS or SD •••
STATUS •• 7 ~
SUBPROGRAM or SP ••

Differences for Facilities, Interfaces, and Routines ••••••••••••••••••••••••••••••••••••••
Communication Facility (MCS) ••
CYBER Database Control System Interface •••
FORTRAN Interface •••
Paragraph Trace Facility ••
Segmentation Facility •••
Termination Dump Facility •••
Utility Routines ••

Other Differences
Alphabet-Name ...
Labels ••
Print Records ••••••••• ' .. .
Progr am-Name ••
Reference Modification ••
SWITCH -7 and SWITCH -8 •••

15-13
15-13
15-14
15-14
15-14
15-15
15-15
15-16
15-16
15-16
15-17
15-17
15-17
15-18
15-18
15-18

15-19
15-19
15-19
15-19
15-19
15-20
15-20
15-20

15-21
15-21
15-21
15-21
15-21
15-21
15-21

Migrating COBOL ,1Programs 15
i# $ II 'fri· e'em

Differences exist between NOS/VE COBOL and NOS COBOL 5.3. This chapter documents all major
differences between these two versions of COBOL. Some minor differences could occur because of
differences in the operating systems and in the character size (6 bits on NOS versus 8 bits on
NOS/VE) used internally.

If only the syntax is different, the co~piler automatically converts the old form of a statement
to the new form in most cases. Specifying BASE LANGUAGE=COBOL5 in the NOS/VE COBOL command I
converts some COBOL 5 syntax to NOS/VE COBOL syntax. Other differences require that you manually
change the COBOL 5 source program before NOS/VE COBOL compilation and execution.

The differences between NOS/VE COBOL and COBOL 5 are divided into six major groups, which are
subdivided into more specific topics. The major groups are:

Differences in statements, clauses, and sections

Differences relating to character and integer data

Differences relating to files

Differences in the .COBOL compiler call

Differences for facilities, interfaces, and routines

Other differences

Differences in Statements, Clauses, and Sections

The differences between NOS/VE COBOL and COBOL 5.3 for the following statements, clauses, and
sections are discussed:

ACCEPT statement
ALTERNATE RECORD KEY clause
BLOCK CONTAINS clause
BLOCK COUNT clause
CALL statement
COpy statement
ENTER statement
INSPECT statement
READ statement
RECORD CONTAINS clause
RECORDING MODE clause
REDEFINES clause
REPLACE statement

ACCEPT Statement

RERUN statement
RESERVE AREAS clause
REWRITE statement
SECONDARY-STORAGE section
SET CODE-SET clause
SET PROGRAM COLLATING ••• SEQUENCE clause
SORT statement
SYNCHRONIZED clause
USE clause
USE FOR DEBUGGING declarative statement
USE FOR HASHING declarative statement
VALUE clause

The default sizes of the various files on which data can be written have changed. However, the
new default sizes should not cause any compatibility problems.

Revision F Migrating COBOL Programs 15-1

I

I

ALTERNATE RECORD KEY Clause

The OMIT WHEN and USE WHEN phrases are not supported in NOS/VE COBOL. These are nonstandard
phrases that are infrequently used, and few, if any, programs should be affected. Use the
CREATE_ALTERNATE_INDEX utility, as described in the SCL Advanced File Management Usage manual, to
create alternate record keys.

BLOCK CONTAINS Clause

All programs must be converted to blocking appropriate for the files used on NOS/VE.

BLOCK COUNT Clause

The BLOCK COUNT clause has been deleted. In NOS/VE COBOL, the home block count must be set by
the INITIAL_HOME_BLOCK_COUNT parameter on the SET_FILE_ATTRIBUTES command.

CALL Statement

NOS/VE COBOL allows a program-name up to 30 characters in length to be a program entry point.
COBOL 5 allows only the first seven characters of a program name to become the program entry
point.

If the COBOL 5 program relied on truncation to seven characters, the program no longer executes
properly. If the program-name equivalence in the Fast Dynamic Loader (FDL) file were used in
COBOL 5 and the coding took advantage of this, the program no longer works. Any programs that
use proper names (that is, the name in the CALL statement is the same as the PROGRAM-ID of the
called program) function correctly.

Any COBOL 5 program that calls a subprogram whose program-name specified in the PROGRAM-ID
paragraph is greater than seven characters must have the name changed in the CALL statement to
include the complete name of the called program.

Dynamic loading of programs is controlled by program management directives when programs are
loaded or libraries are created. This requires manual conversion from the FDL file to these
directives and an analysis of how to structure the program environment.

COpy Statement

A NOS/VE COBOL source library is a Source Code Utility (SCU) source program file rather than an
Update random program library. All embedded directives are now processed. The listing format is
different for the structure of lines that are copied and in which replacement takes place.

Library conversion of the Update library source file is performed by SCU. See the SCU conversion
commands in chapter 11 for more information.

The COpy statement differs slightly in processing in NOS/VE COBOL; it is not recognized in
comment lines or comment entries. The COPY statement must observe the following rules:

A COPY statement must end with a period.

Only one COpy statement is allowed in each COBOL sentence.

A deck being copied by a COpy statement cannot contain a COpy statement.

15-2 Migration From NOS to NOS/VE Revision F

ENTER Statement

Language-name has been removed from the ENTER statement because all calls to other languages use
a standard calling sequence. To convert ENTER statements in COBOL 5 programs, delete
language-name. For compatibility, the words FTN5, FORTRAN-X, or COMPASS are ignored.

Procedure-name in the parameter list has been eliminated.

INSPECT Statement

The BEFORE/AFTER option of the INSPECT ••• TALLYING ••• REPLACING statement (COBOL 5 Format 3) has
been deleted for NOS/VE COBOL. Conversion can be accomplished by using separate INSPECT
statements if AFTER was being used.

READ Statement

In COBOL 5, if an unsuccessful START statement was followed by a READ NEXT statement, the
contents of the record area were undefined. In NOS/VE COBOL, an error status is returned.

RECORD CONTAINS Clause

Because of the differences in the numeric data types as indicated under Computational Data Types,
the size of the record described for NOS/VE COBOL could be different from the size of the record
described for COBOL 5. Manual conversion is necessary for each occurrence of this clause to
ensure that the proper length is specified. (For further information on numeric data types, see
the discussion Numeric Data Items.)

RECORDING MODE Clause

Except for syntax checking, the RECORDING MODE clause is ignored in a NOS/VE COBOL program. For
any COBOL 5 program that used this clause to set the parity on 7-track tapes, manual conversion
is necessary to convert to a NOS/VE COBOL program. Parity must be set by a SET FILE ATTRIBUTE
command.

REDEFINES Clause

Any redefinition of records by the REDEFINES clause or automatically by the compiler could cause
different results when executed under NOS/VE COBOL. Every USAGE IS COMP-n and SYNCHRONIZED
clause must be checked to ensure that the result of execution of that clause is appropriate under
NOS/VE COBOL and must be manually converted when necessary.

The runtime error INVALID BDP DATA can occur as a result of incorrect redefinition of numeric
data. The error is issued by the operating system.

REPLACE Statement

The replaced text shows optionally on the listing. Since it did not show at all in COBOL 5, this
change should not cause any impact.

RERUN Clause

Except for syntax checking, the RERUN clause is ignored in NOS/VE COBOL at this time. No
checkpoint/restart facility exists in the NOS/VE operating system.

Revision F Migrating COBOL Programs 15-3

I

RESERVE AREAS Clause

Except for syntax checking, the RESERVE AREAS clause is ignored in NOS/VE COBOL; therefore,
conversion is not necessary. A NOS/VE COBOL program cannot specify buffer size because the
operatirig system automatically assigns the appropriate buffer size.

REWRITE Statement

In NOS/VE COBOL, the REWRITE statement is not allowed at this time for sequential files. No
conversion is possible.

Secondary-Storage Section

A facility to specify secondary storage is not needed with the NOS/VE operating system. Virtual
memory removes the need for large external storage for arrays. Conversion of a COBOL 5 program
using secondary storage is necessary. Remove the Secondary-Storage Section header and include
under the Working-Storage Section header all items that were in the Secondary-Storage Section.

I The Secondary-Storage Section header is ignored if the Working-Storage Section header exists;
otherwise, the Working-Storage Section header is created. The data is considered to be part of
the Working-Storage Section, and a trivial diagnostic is issued.

SET CODE-SET Clause

The CODE-SET option of the SET statement is not supported in NOS/VE COBOL. The only CODE-SET
supported with this statement by COBOL 5 is UNI. This is not supported as a CODE-SET in NOS/VE
COBOL. No conversion is possible.

SET PROGRAM COLLATING SEQUENCE Clause

In COBOL 5, the SET PROGRAM COLLATING SEQUENCE clause caused the first OPEN (OPEN OUTPUT) on an
indexed sequential file to use the program collating sequence as the indexed sequential file
collating sequence. In NOS/VE COBOL, the clause has no effect on the indexed sequential file,

I unless BASE LANGUAGE=COBOL5 is specified on the COBOL command.

SORT Statement

Under COBOL 5, the default was to sort duplicates (that is, records whose sort keys have the same
value) in the sequence of arrival within each set of duplicates. For the same result in a NOS/VE
COBOL program, specify the WITH DUPLICATES IN ORDER phrase in the SORT statement. This phrase
was available under COBOL 5, and if specified, no conversion is necessary. Manual conversion is
necessary if the phrase was not specified and the application requires sorting in this particular
order. Also, if C.SORTP was called in COBOL 5, the keys would not be in order. Using the WITH
DUPLICATES IN ORDER phrase results in additional overhead in the sort operation.

SYNCHRONIZED Clause

The SYNCHRONIZED clause can cause different results in NOS/VE COBOL. Manual conversion is
required for the SYNCHRONIZED clause. You must determine the appropriate conversion after
analyzing the reason for using this clause in the COBOL 5 program and considering the creation of
FILLER items.

Using the SYNCHRONIZED clause in COBOL 5 often improves the efficiency of the code generated.
Using this clause in NOS/VE COBOL normally does not affect the efficiency of the code generated.
Problems with the SYNCHRONIZED clause occur primarily with group operations, record areas, and
the REDEFINES clause.

15-4 Migration From NOS to NOS/VE Revision F

USE Clause

The USE clause differs in NOS/VE COBOL and COBOLS. In NOS/VE COBOL, it is not used to set file
attributes. You can set file attributes with the NOS/VE SET_FILE~TTRIBUTES command.

USE FOR DEBUGGING Declarative Statement

Debugging declaratives are not supported in NOS/VE COBOL. The WITH DEBUGGING MODE clause applies
only to the compilation of debugging lines. Debugging declaratives are compiled as if the WITH
DEBUGGING MODE clause had not been specified.

USE FOR HASHING Declarative Statement

The USE FOR HASHING declarative statement is not provided by NOS/VE COBOL. Removing this
statement should not affect the rest of the program. You can write your own hashing procedure
using the CYBIL language. For more information, see the SCL Advanced File Management Usage
manual.

VALUE Clause

In COBOL 5 if no VALUE clause is specified for an item, an initial value of spaces is supplied.
In NOS/VE COBOL if no VALUE clause is specified for an item, its contents are undefined. To
convert your program so that the desired items are initialized when executing with NOS/VE, you
can either add a VALUE clause, or use the INITIALIZE or MOVE statement.

Differences Relating to Character and Integer Data

The differences relating to character and integer data are discussed in the following topics:

Arithmetic Expressions or Arithmetic Operations

Boolean Items

Character Set

Code Sets

Collating Sequence

Computational Data Types

Numeric Items

Signs

SIZE ERROR

Arithmetic Expressions or Arithmetic Operations

Some arithmetic operations in NOS/VE COBOL, especially those involving division or
exponentiation, can result in answers that differ from those answers given in COBOL 5. Most
floating point operations give different answers. The quantities of these differences should be
very slight (plus or minus 1 in the low order position). '

Few, if any, programs should be affected by the differences in arithmetic operations.

Revision F Migrating COBOL Programs 15-S

B

, Boolean Items

Boolean data items and operators have been deleted. Complete recoding is necessary.

Character Set

Uppercase and lowercase characters are allowed in NOS/VE COBOL. This could cause confusion
because in COBOL 5 all lowercase characters are mapped into uppercase characters; however, no
compatibility problem should occur.

The characters for minus zero are different. In COBOL 5, < and ! were plus and minus zero,
respectively. In NOS/VE COBOL, these characters are accepted, but { and } are the preferred
characters for plus and minus zero, respectively. COBOL 5 also accepts a number of other
characters, which should not cause any problems.

Code Sets

For NOS/VE COBOL, the system code set is the 7-bit ASCII code set. For COBOL 5, the system code
set was an installation option and could be either the CDC 63 or 64-character 6-bit display code
set.

For application programs using the CDC code set, you should specify the CDC code set as the
program code set by using the ALPHABET clause in the SPECIAL-NAMES paragraph. See the NOS/VE

I COBOL Usage manual for an explanation of the ALPHABET clause in the SPECIAL-NAMES paragraph to
determine the proper code set.

The UNIVAC fieldata automatic code translation is no longer supplied; however, the collating
sequence is still available. If you specify an alphabet-name associated with UNIon a CODE-SET
clause, an error message is generated.

An alphabet-name associated with EBCDIC was ignored in COBOL 5, but is processed in NOS/VE COBOL.

Collating Sequence

The default collating sequence is ASCII, where the default might have been CDC-64 in COBOL 5.
The COBOL 5 default depends on the installation parameter, IP.CSET. To convert the program,
specify the CDC collating sequence in the SPECIAL-NAMES paragraph and either in a SET statement
or in the OBJECT-COMPUTER paragraph referencing the proper alphabet-name.

The fact that there are now 256 characters instead of 64 could cause some problems with collating
sequences. However, any program that uses only the 64 character subset should process correctly.

Computational Data Types

NOS/VE COBOL computational data types differ from those in COBOL 5. You must manually convert
redefinitions of and references to group items containing the USAGE clause that specifies
COMP-n. Calls to other languages (such as FORTRAN) that contain COMP-n parameters give
indeterminate results in a NOS/VE COBOL program; you must manually convert these calls to specify
the correct parameters.

I Using BASE LANGUAGE=COBOL5 in the NOS/VE COBOL command automatically converts computational data
types as shown in the subsequent list.

15-6 Migration From NOS to NOS/VE Revision F

COBOL 5 computational data types must be converted as follows:

COBOL 5 NOS/VE COBOL

COMP DISPLAY
COMP-l COMP
COMP-2 COMP-l

COMP-2 (new)
COMP-4 COMP or COMP-3

COMP (COBOL 5) to DISPLAY (NOS/VE COBOL)

The COBOL 5 computational data type COMP must be converted to the NOS/VE computational data type
DISPLAY.

The internal representation of the COBOL 5 computational data type COMP is display code numeric.

The internal representation of the NOS/VE COBOL computational data type DISPLAY is display code
numeric.

COMP-! (COBOL 5) to COMP (NOS/VE COBOL)

The COBOL 5 computational data type COMP-l must be converted to the NOS/VE data type COMP.

The internal representation of the COBOL 5 computational data type COMP-l and the NOS/VE COBOL
computational data type COMP are as follows:

COMP-l (COBOL 5)

Numeric class

Occupies full computer word of 60 bits

Stored as a 48-bit binary integer,
right-aligned

FORTRAN integer

Revision F

COMP or BINARY (NOS/VE COBOL)

Numeric class

Decimal numeric value

Stored as a binary integer

Size depends on PIC clause

FORTRAN integer type (if size equals 18 and
synchronized)

Migrating COBOL Programs 15-7

I

COMP-2 (COBOL 5) to COMP-l (NOS/VE COBOL)

The COBOL 5 computational data type COMP-2 must be converted to the NOS/VE COBOL computational
data type COMP-l.

The internal representation of the COBOL 5 computational data type COMP-2 and the NOS/VE
computational data type COMP-l are as follows:

COMP-2 (COBOL 5)

Single precision floating point number

Occupies one word of 60 bits

No PICTURE clause

Value is a signed normalized floating
point number

Up to 14 significant digits

FORTRAN real type

COMP-2 (NOS/VE COBOL)

COMP-l (NOS/VE COBOL)

Single precision floating point number

Occupies one word of 64 bits

No PICTURE clause

Value is a signed normalized floating
point number

Up to 14 significant digits

FORTRAN real type

The NOS/VE COBOL computational data type COMP-2 has no COBOL 5 equivalent.

The internal representation of the NOS/VE COBOL computational data type COMP-2 is as follows:

Double precision flQating point number

Up to 28 significant digits

COMP-4 (COBOL 5) to COMP or COMP-3 (NOS/VE COBOL)

The COBOL 5 computational data type COMP-4 must be converted to the NOS/VE COBOL computational
data types COMP or COMP-3.

I The internal representations of the COBOL 5 computational data type COMP-4 and the NOS/VE
computational data type COMP-3 are as follows (for an explanation of NOS/VE COBOL computational
data type COMP, see the preceding discussion on COBOL 5 COMP-l):

COMP-4
(COBOL 5)

Numeric class

Size depends on PIC clause

Binary Integer

Maximum of 48 bits

Signed or unsigned

Numeric Data Items

COMP-3 (or PACKED-DECIMAL)
(NOS/VE COBOL)

Numeric class

String of 4-bit representations of numeric digits packed two per
byte with optional sign as rightmost 4 bits in rightmost byte

In NOS/VE COBOL, use of a numeric item with nonnumeric contents causes the job to be aborted by
the hardware. This results in the operating system message INVALID BDP DATA.

15-8 Migration From NOS to NOS/VE Revision F

Signs

The NOS/VE COBOL sign representation for numeric items can differ from the COBOL 5 sign
representation. If an item has an overpunch sign (no SEPARATE clause in its Data Description
entry), a sign could be generated for positive values. In COBOL 5, this normally would not
happen.

SIZE ERROR

With COBOL 5, a MODE control statement could be used to cause execution of the SIZE ERROR
statements when floating point overflow occurred. In NOS/VE there are two ways to cause
execution of the ON SIZE ERROR statements when floating point overflow occurs:

The preferred method is to set the appropriate parameters on the SET PROGRAM ATTRIBUTES,
CREATE_PROGRAM_DESCRIPTION, CHANG~PROGRAM_DESCRIPTION, or EXECUTE_TASK commands.
Information about these commands is in the SCL Object Code Management Usage manual.

The less efficient method is to use RUNTIME CHECKS=R in the COBOL command.

Differences Relating to Files

The differences between NOS/VE COBOL and COBOL 5.3. relating to files are described in the
following topics:

Actual-key file organization

Direct file organization (FO=DA)

File-names

File status

Indexed sequential file organization

Record types

Relative file organization

Word-address file organization

Actual-Key File Organization

NOS/VE COBOL does not support the actual-key file organization. An actual-key file must be
converted to an indexed sequential file.

To convert the file, change the organization to INDEXED, set the key to zero before opening the
file, and add 1 to the key after each WRITE to the file.

Since the record numbers can differ in the indexed sequential file from those in the actual-key
file, check the logic of the program to ensure that no problems arise.

Direct File Organization

NOS/VE supports the direct access file organization; however, in NOS/VE COBOL, the BLOCK COUNT
clause is not used to establish the initial number of home blocks. Instead, use the
INITIAL_HOME_BLOC~COUNT parameter on the SET FILE ATTRIBUTES command.

Revision F Migrating COBOL Programs 15-9

The USE FOR HASHING declarative is not provided by NOS/VE COBOL. You can write your own hashing

I procedure in the CYBIL language, and you can specify a user-defined hashing procedure with the
HASHING PROCEDURE_NAME attribute. For more information, see the SCL Advanced File Management
Usage manual.

File-Names

The rules for formation of local file-names in NOS/VE COBOL differ from those in COBOL 5. NOS/VE
COBOL allows several special characters in the formation of names. The standard system files in
NOS/VE COBOL require leading $ characters; this forces the file-names to be enclosed in quotation
marks (which is non-ANSI) in NOS/VE COBOL programs. NOS/VE COBOL provides the special names
SYSTEM-INPUT-FILE and SYSTEM-oUTPUT-FILE for audit or ANSI use. .

Because almost all programs assign files to INPUT or OUTPUT, the name changes could have a large
impact. If you use only defaults for $INPUT or $OUTPUT in commands (that is, you do not use
CONNECT_FILE), INPUT and OUTPUT reference the same files as $INPUT and $OUTPUT.

Note that INPUT is a null file in batch mode. You cannot put any data in it, so change the

I program to use a different file and use the COLLECT TEXT command to place data in that file.
information about COLLECT_TEXT, see chapter 4, Common NOS/VE Commands.

File Status

For

The codes available in the file status data item have been expanded to correspond to the ANSI
proposed standard. The only impact is that codes that resulted in a 90 or 99 status and aborted
the job no longer abort the job and now have another status code.

Indexed Sequential File Organization

NOS/VE COBOL supports the indexed sequential file organization and alternate keys.

The collating sequence of an indexed sequential file is NATIVE rather than that of the program in

I
which the file was created. This change is due to an ANSI interpretation. If
BASE LANGUAGE=COBOL5 is in the COBOL command, the program collating sequence is used. If you
omit-the AUDIT parameter in the COBOL command, you can override the default NATIVE collating
sequence by specifying the collating sequence on a SET FILE ATTRIBUTES command prior to opening
the file.

Record Types

The record types specified for some files in NOS/VE COBOL can differ from those in COBOL 5. Most
files must be converted for use with NOS/VE COBOL; therefore, a manual conversion of the program
is necessary to specify the files being used with the NOS/VE operating system. Any files with

I unusual record types that were used with COBOL 5 programs require manual conversion for use with
NOS/VE COBOL programs. If record type Z was used in COBOL 5, TRUNCATE SPACES must be specified
in the USE literal with NOS/VE COBOL. This is especially true if RT=Z-was specified in a NOS
FILE command.

Relative File Organization

NOS/VE COBOL supports the relative file organization; however, the record structure is
different. In NOS/VE COBOL, there is a one-byte trailer rather than a one-word header for each
record. There is no longer a file header. If a relative file was being processed by some other
language, that process must be changed.

15-10 Migration From NOS to NOS/VE Revision F

Word-Address File Organiz~tion

The word-address file organization (COBOL 5) has been changed to byte-address (also called byte
addressable) file organization (NOS/VE COBOL). All references to WORD-ADDRESS must be changed to
BYTE-ADDRESS.

Usually, if the records are written sequentially and the keys are saved, no conversion is
necessary.

If conversion is necessary, consider the following items when converting the logic of the program:

In a word-address file, the first address (key) is 1; in a byte addressable file, the first
address (key) is O.

For a file used with a COBOL 5 program, a word contains 10 characters; for a file used with a
NOS/VE COBOL program, a byte contains one character. The formula, COMPUTE B = (W - 1) * 10,
can be used to convert a word-address file to a byte addressable file. In this formula, B is
the byte-address and W is the word-address.

Compiler Call

Some parameters available on the CaBaLS command are not available on the NOS/VE COBOL command.
These deleted parameters include the following:

Parameter

ANSI=NOEDIT

ANSI=77LEFT

BL

CC1

D

FDL

MSB

PD

PS

PSQ

PW

TAF

TDF

U

UC1

Revision F

Meaning

Prevented the editing of numeric display items.

Caused left synchronization of level 77 items.

Caused the printing of a burstab1e listing.

Converted CaMP to CaMP-I; not needed because CaMP is now binary.

Identified a data base subschema.

Specified the file for Fast Dynamic Loader processing.

Indicated the main subprogram; any subprogram can now be the main subprogram.

Specified the print density for printable output; now a file attribute
(PRINT_DENSITY).

Specified the number of lines per screen; now a file attribute (PAGE_SIZE).

Specified the source of sequence numbers to be used for diagnostics; now a
file attribute (LINE_NUMBER).

Specified the number of characters per output line; now a file attribute
(PAGE_WIDTH).

Executed the program through the Transaction Facility.

Specified the file for a termination dump.

Specified the file for generation of input to the UPDATE utility.

Converted COMP-1 items to integer format.

Migrating COBOL Programs 15-11 I

NOS/VE COBOL Comman~

The COBOL command calls the COBOL compiler and selects various compiler options. The COBOL
command follows the rules for all System Command Language (SCL) commands.

I If several physical lines are required for the COBOL command, two or more periods at the end of a
physical line indicate continuation to the following line. You can place the COBOL command in a
line with other commands. Separate commands on a single line by semicolons. You can enter
commands in interactive mode (through a terminal) or in batch mode.

I

I

I

You can specify parameters on the command in any order. Separate parameters by a comma, or one
or more spaces. You can specify the INPUT, BINARY OBJECT, and LIST parameters by position
without the parameter name if you specify them respectively as the first, second, and third
parameters.

COBOL Command Format

The format of the command and the optional parameters are shown below. The three
positional-dependent parameters are listed first. The remaining parameters are listed
alphabetically.

COBOL
INPUT=file
BINARY OBJECT=file
LIST=file
AUDIT=boolean
BASE_LANGUAGE=keyword
DEBUG AIDS=list of keyword
ERROR-=file
ERROR_LEVEL=keyword
EXTERNAL INPUT FILE=file
FED INFO-PROCESSING STANDARD=list of keyword
INPUT SOURCE MAP=file - -LEADING BLANK ZERO=boolean
LIST OPTIONS=list of keyword
LITERAL_CHARACTER=string
OPTIMIZATION LEVEL=keyword
RUNTIME CHECKS=list of keyword
STANDARDS-PIAGNOSTICS=list of keyword
STATUS=status variable
SUBPROGRAM=boolean

COBOL Command Parameters

The parameters of the COBOL command are described in the following paragraphs. The three
positional-dependent parameters are listed first. The remaining parameters are listed
alphabetically.

I INPUT or I

The INPUT parameter specifies the source input file for the COBOL compiler. Options are:

Omitted Uses the system file $INPUT to hold source input.

I=file Uses the specified file to hold source input.

15-12 Migration From NOS to NOS/VE Revision F

BINARY, BINARY_OBJECT, B,. or BO

The BINARY parameter specifies the file reference to which binary output from compilation is
written. Options are:

Omitted

B=$NULL

B=file

UST or L

Binary object code is written to the file LGO. (Same as BINARY=LGO.) Default
positioning is BOI.

Binary object code output is not written.

Binary object code is written to the specified file.

The LIST parameter specifies the file to which the COBOL compiler writes the source listing and
other readable output. Options are:

Omitted

L=file

L=$NULL

Writes source listing, diagnostics, and information selected by the LIST OPTIONS
parameter to file $LIST.

Writes source listing, diagnostics, and information selected by the LIST OPTIONS
parameter to the specified file.

Does not write source listing, diagnostics, and information selected by the
LIST_OPTIONS parameter to a file.

AUDIT, A, or AUD

The AUDIT parameter indicates whether the program is being run for Federal Software Testing
Center (FSTC) audit testing. Selection of this option also selects the ERROR LEVEL=I and
STANDARDS DIAGNOSTICS=(I,ANSI) parameters. When you select the AUDIT option, numeric items
referenced in a DISPLAY statement produce unedited results. See the DISPLAY statement for
details. Options are:

Omitted Does not select AUDIT option.

A=TRUE Performs FSTC audit testing.

When AUDIT=TRUE, non-ANSI reserved words are not recognized as reserved words and, therefore, can
be user-defined words. CDC extension keywords are diagnosed as illegal.

If a group item containing a variable-occurrence data item is used as a receiving item, only that
part of the table area specified by the value of the DEPENDING ON data item is affected.

BASE_LANGUAGE or BL

The BASE LANGUAGE (BL) parameter allows the user to compile programs with syntax based on
different base languages. This is a single value parameter. Options are:

Omitted Same as BL=ANS85

BL=ANS74 Compiles programs whose syntax is based on the 1974 ANSI COBOL standard.

BL=ANS85 Compiles programs whose syntax is based on the 1985 ANSI COBOL standard.

BL=COBOL5 Compiles programs written for compilation by COBOL 5.

Revision F Migrating COBOL Programs 15-13.

DEBUG_AIDS or DA

The DEBUG AIDS (DA) parameter specifies debugging options. You can select mUltiple options,
which are-separated by either a space or a comma. Options are:

Omitted

DA=NONE

DA=ALL

DA=DS

DA=DT

DA=OC

DA=SY

DA=TR

Same as DA=NONE.

Does not select any of the debugging options applicable to this parameter.

All of the available options are selected except SY and NONE.

Compiles debugging lines in the source program (lines with a D in character
position 7).

Generate line number, symbol tables, and source map loader tables as part of the
obj ect code.

Continues producing object code from the source code and issues compilation-time
diagnostics regardless of errors in the source code and regardless of the
severity of any errors. Any line of code given an F diagnostic usually results
in an abort at execution time with an appropriate diagnostic. If not specified,
no object code is produced if any F or C errors are detected (see ERRO~LEVEL).

Performs only syntax checking; does not generate any executable code. You
cannot select this option if you selected the OC option. Selecting the SY
option significantly decreases compilation time. If you do not select the OC
option and errors above the W level are detected, SY is automatically selected.

Produces flow tracing of all paragraphs executed.

I ERROR or E

I

The ERROR parameter specifies the file to which error listing information is written. If the
same file is specified by both the ERROR parameter and the LIST parameter, a diagnostic is
written twice. Options are:

Omitted

E=file

Writes error information specified by the ERROR LEVEL parameter to the $ERRORS
file.

Writes error information specified by the ERROR LEVEL parameter to the specified
file.

I ERROR_LEVEL or EL

The ERROR LEVEL parameter indicates the severity of the errors to be printed in the file
specified-by the ERROR parameter. The error levels in increasing order of severity are N, T, W,
F, and C. Specifying a particular level selects, that level and all of the more severe levels.
You can specify a single value for this parameter. Options are:

Omitted

EL=NONE

EL=I

Lists errors of severity levels W, F, and C.

Does not list any errors.

Lists trivial errors, plus all errors of levels W, F, and C.

Level I errors indicate suspicious usage, although the syntax is correct. EL=I
is required to obtain a listing of the messages created by FIPS parameter.

See the STANDARDS DIAGNOSTICS parameter discussion to choose a severity level
for trivial errors.

15-14 Migration From NOS to NOS/VE Revision F

EL=T

EL=W

EL=F

EL=C

Same as EL=I.

Lists warning errors, plus all errors of levels F and C.

Level W errors indicate that the syntax of the statement is incorrect and the
compiler has made an assumption and continued compilation.

Lists fatal errors, plus all level C errors.

Level F errors prevent compilation of the statement. Unresolvable semantic
errors and propagated errors caused by earlier level F errors are among the
causes of level F errors. If you specify DEBUG AIDS=OC, code is generated that
usually causes an execution-time abort; otherwise, no code is generated.

Lists catastrophic errors only.

Level C errors are fatal to compilation of the current program. Compilation
resumes at the Identification Division header of any program immediately
following without an intervening file boundary. Level C errors are caused by
errors in the compiler, by input-output errors on compiler scratch files, or by
other system errors.

EXTERNAL_INPUT, EI, or EX_INPUT

The EXTERNAL INPUT parameter specifies the Source Code Utility (SCU) library file to be used for
COpy statements. Options are:

Omitted Does not use SCU library file. (Same as EXTERNAL_INPUT=$NULL.)

EI=file Specifies SCU library file.

The FED INFO PROCESSING STANDARD parameter specifies diagnosing input source statements that do
not conform to the standards in some part of the 1985 FEDERAL INFORMATION PROCESSING STANDARDS
(FIPS) COBOL subset. You can specify which part of the 1985 FIPS COBOL subset; either the entire
COBOL subset or some of its optional modules. The FIPS parameter also permits diagnosing syntax
identified in the obsolete category of American National Standard Programming Language COBOL,
X3.23-1985. The FIPS parameter has meaning only when BASE LANGUAGE=ANS85. If
BASE_LANGUAGE=ANS74 or BASE_LANGUAGE=COBOL5, this parameter is ignored.

The n that terminates several of the keywords specifies a level and can be only the integers 1 or
2. Specifying two different levels of the same keyword (such as CL1 and CL2) is an error.
Specifying OMLn with CLn, DLn, RWLn, or SLn is an error.

When you specify this parameter, also specify the STANDARDS DIAGNOSTICS parameter to set the
severity level of any diagnostics issued. The allowed keywords follow:

Omitted

FIPS=NONE

FIPS=CLn

FIPS=DLn

FIPS=OBSOLETE
or FIPS=O

Revision F

Same as FIPS=NONE.

Does not select any option.

Issues diagnostics for syntax that does not conform to level n of FIPS COBOL
for the COMMUNICATIONS optional module.

Issues diagnostics for syntax that does not conform to level n of FIPS COBOL
for the DEBUG optional module.

Issues diagnostics for syntax identified in the obsolete category of the
1985 ANSI COBOL standard.

Migrating COBOL Programs 15-15.

FIPS=OMLn

FIPS=RWLn

FIPS=SLn

FIPS=SM

FIPS=SI

FIPS=SH

Issues diagnostics for syntax that does not conform to level n of FIPS COBOL
for all 'optional modules.

Issues diagnostics for syntax that does not conform to level n of FIPS COBOL
for the REPORT WRITER optional module.

Issues diagnostics for syntax that does not conform to level n of FIPS COBOL
for the SEGMENTATION optional module.

Issues diagnostics for syntax that does not conform to the MINIMUM subset
for FIPS COBOL.

Issues diagnostics for syntax that does not conform to the INTERMEDIATE
subset for FIPS COBOL.

Issues diagnostics for syntax that does not conform to the HIGH subset for
FIPS COBOL.

The INPUT SOURCE MAP parameter specifies the name of the file that contains the source map
describing the contents of the source input file. Options are:

Omitted

ISM=file

The input source map file is constructed during compilation based on the
contents of the source input file.

File that contains the source map of the source input file. An example of a
source map file is the OUTPUT SOURCE MAP file created by the EXPAND DECK
commands of the Source Code Utility (SCU).

The LEADING_BLANK_ZERO parameter specifies that leading blanks in numeric fields are treated as
zeros in arithmetic statements and comparisons. If you select LBZ, performance degrades
severely. You should use this parameter only for checkout purposes until all data is converted
to proper numeric format. Options are as follows:

Omitted

LBZ=TRUE

Specifies that numeric fields containing blanks are in error.

Treats all leading blanks in numeric fields as zeros in arithmetic statements
and comparisons.

The LIST OPTIONS parameter specifies the options of extra information that are to appear in the
file specified by the LIST parameter. You can specify multiple options. Options are:

Omitted

LO=NONE

LO=M

LO=O

LO=R

Lists source program. (Same as LIST_OPTIONS=S.

Does not select any of the available options.

Produces map of data-names and procedure-names, their physical storage, and a
list of their attributes.

Lists generated object code with instruction mnemonics.

Produces cross-reference listing of all data-names and procedure-names. The
listing shows the locations of definition and use within the program. Only
items referenced in the program are listed.

.15-16 Migration From NOS to NOS/VE Revision F

LO=RA

LO=S

LO=SA

Produces cross-reference listing of all data-names and procedure-names, whether
referenced within the program or not.

Lists source program.

Lists all program source statements; the listing includes those lines turned off
by a source embedded NOLIST directive.

UTERAL_CHARACTER or LC

The LITERAL CHARACTER parameter changes the character that delimits nonnumeric literals in
program source code. This parameter is normally used to specify the single quotation mark or
apostrophe. The value LC=NONE is not allowed. Options are:

Omitted Uses quotation mark to delimit nonnumeric literals.

LC= Uses apostrophe or single quote to delimit nonnumeric literals.

LC="'''''' Uses quotation mark to delimit nonnumeric literals.

OPTIMIZATION_LEVEL, OL, OPTIMIZATION, or OPT

The OPTIMIZATION LEVEL parameter selects the level of optimization performed by the compiler.
Options are:

Omitted

OL=LOW

OL=DEBUG

Same as OL=LOW.

Selects minimum level of optimization.

Selects minimum optimization with code modified for use by Debug. (Results in
slower execution than OL=LOW.)

RUNTIME_CHECKS or RC

The RUNTIME CHECKS parameter selects execution-time checking of reference modifiers, subscripts,
or index references. Options are as follows:

Omitted

RC=NONE

RC=R

Same as RC=NONE

Does not select any options.

Checks reference modifiers to see if they fit within the subject data item. If
an error is detected, the program aborts and an appropriate diagnostic is

I

I

I

issued. Turns on system arithmetic overflow condition checking. If an I
arithmetic result is too large for the field which is to contain it, an
appropriate system diagnostic is issued.

RC=S

RC=ALL

Revision F

Checks all subscripts or index references for validity at execution time. If an
error is detected, the program aborts and an appropriate diagnostic is issued.

Selects the Rand S options.

Migrating COBOL Programs 15-17

I

I

STANDARDS_DIAGNOSTICS or SD

The STANDARDS DIAGNOSTICS parameter specifies diagnosing input source statements that do not
conform to American National Standard Programming Language COBOL, X3.23-1985. Options are:

Omitted Same as SD=NONE.

SD=NONE Does not select any option.

SD={severity,ANSI) Specifies that source statements not conforming to the 1985 American
National Standard Programming COBOL are to be diagnosed. When you
specify this option, also specify the ERROR LEVEL parameter and value.

The severity is one of the following:

I Non-standard usages result in informational diagnostics.

W Non-standard usages result in warning diagnostics.

F Non-standard usages result in fatal diagnostics.

STATUS

The STATUS parameter specifies the name of the SCL status variable that is set by the compiler
and contains information about error conditions occurring during compilation. The severity level
of errors for which information is returned is determined by the ERROR LEVEL parameter. Options
are:

Omitted

STATUS=name

No command status variable is set.

Sets status variable name. The status variable consists of three fields.
After compilation, these fields contain information as follows:

Normal field -- Contains value of FALSE if compile-time error
conditions occurred, and value of TRUE if no error conditions
occurred. If the value is TRUE, then the remaining fields are
undefined.

Condition field -- Indicates the specific error condition that occurred.

Text field -- A string that contains substitution values for the error
message template normally displayed for the particular error.

I SUBPROGRAM or SP

The SUBPROGRAM parameter indicates that the source program is to be compiled as a subprogram
instead of as a main program. Options are:

Omitted Compiles source program as a main program (same as SP=FALSE).

SP-TRUE Compiles source program as a subprogram.

SP=FALSE Compiles source program as a main program.

15-18 Migration From NOS to NOS/VE Revision F

Differences for Faciliti~s, Interfaces, and Routines

The differences between NOS/VE COBOL and COBOL 5.3 for facilities, interfaces, and routines are
discussed as follows:

Communications facility (MCS)

CYBER Database Control System (CDCS) interface

FORTRAN interface

Paragraph trace facility

Segmentation facility

Termination dump facility

Utility routines

Communication Facility (MCS)

The Communication facility is not available in NOS/VE COBOL. Programs specifying MCS can be
compiled, but any attempt to execute MCS statements causes a program abort.

CYBER Database Control System Interface

No interface to the CYBER Database Control System (CDCS) is available with the NOS/VE operating
system.

FORTRAN Interface

You must change integer parameters that are passed to FORTRAN subprograms in a NOS/VE COBOL
program. The parameters passed should be described as follows to cause a full word alignment on
a word boundary:

PICTURE IS S9(180) USAGE IS COMP
SYNCHRONIZED LEFT

You also should .delete language-name (FORTRAN-X or FTN5) from the ENTER statement in a NOS/VE
COBOL program.

You can use either a CALL statement or an ENTER statement to call a FORTRAN program. Use of a
CALL statement is recommended.

Input-output is fairly compatible. The severe restrictions necessary in COBOL 5 are no longer
necessary; however, problems could still arise if other than PRINT statements are used in FORTRAN.

Paragraph Trace Facility

Records created by use of NOS/VE COBOL are 48 characters in length and are V type records;
records created by use of COBOL 5 are 50 characters in length and are Z type records.

The calls required to activate the Paragraph Trace facility change from C.xxxTR to CBP$TRACE_ON I
or CBP$TRACE STOP. Using BASE LANGUAGE=COBOL5 in the NOS/VE COBOL compiler call causes the
appropriate conversion to be performed on the names of the calls.

The name of the trace file has changed from COBTRFL to CBF$TRACE_FILE. No conversion is done.

Revision F Migrating COBOL Programs 15-19

Segmentation Facility

NOS/VE COBOL does not support segmentation because there are no overlays on NOS/VE.

The concept of initial state overlays is not valid in NOS/VE COBOL. In a NOS/VE COBOL program,
any sections numbered 50 or greater could function differently than with COBOL 5. The
differences occur in altered GO TO statements (through the ALTER statement) and in PERFORM
exits. If all PERFORM statements exit normally and the ALTER statement is not used, no
conversion of the program is necessary; otherwise, manual conversion is necessary.

You can use the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph of the Environment Division
to change the range designations, but the clause has no effect on the program.

Termination Dump Facility

This facility does not exist in NOS/VE COBOL.

Utility Routines

The names of utility routines provided for system interface have been either eliminated or
changed. If only the name is changed, the old name is converted to the new name automatically
during compilation.

I Using BASE LANGUAGE=COBOL5 in the COBOL command causes each. utility name in a COBOL 5 program
that exists to be converted to the new name and correct form for NOS/VE COBOL; however, this does
not guarantee that the routine will execute properly.

I

The changes are as follows:

C.CMMMV

C.DMRST

C.DTCMP

C.DSPDN

C.FILE

C.GETEP

C.IOENA

C.IOST

C.LOK

C.SEEK

C.SORTP

C.UNLOK

Has been deleted. (CMM is not available.)

Has been deleted.

CBP$DATE COMPILED is the new name. The format is now installation dependent. Any
processing that relied on the old format must be changed.

CBP$DISPLAY HEX DATA is the new name. The contents of items are displayed in
hexadecimal-as well as in 7-bit ASCII format. Only one parameter is allowed.
Because this routine is normally used only for debugging, few programs should be
affected.

Has been deleted. You can substitute with a call to CLP$SCAN COMMAND LINE
specifying a NOS/VE command for setting file attributes. - -

CBP$GET EXECUTION PARAMETERS is the new name. The parameters are different in
NOS/VE COBOL. To-convert, change the call and the parameters.

CBP$IO ERROR NO ABORT is the new name. The new routine functions the same as the
C.IOENA routIne:

CBP$IO STATUS is the new name. The status codes for BAM and AAM on NOS and NOS/BE
differ-for file interface routines on NOS/VE; therefore, each use of codes
returned through this routine requires manual conversion.

Has been deleted.

Has been deleted. No similar function exists.

Has been deleted. The sort under NOS/VE now provides the function.

Has been deleted.

15-20 Migration From NOS to NOS/VE Revision F

Other Differences

The last group of differences between NOS/VE COBOL and COBOL 5.3 are discussed as follows:

Alphabet-name

Labels

Print records

Program-name

Reference modification

Switch-7 and switch-8

Alphabet-Name

ASCII-64 and CDC-64 are alphabet names that have been deleted from NOS/VE COBOL. They are
automatically converted to 7-bit ASCII and CDC, respectively. The use of different I
alphabet-names in collating sequences and code-sets has changed. See the discussions on these
two areas for specific differences.

Labels

Every file has a system label (where the attributes are stored), but no user label. The compiler
allows label declarations in File Description entries, but labels are not processed at execution
time.

The lack of labels should not cause any problems because almost no processing is performed in
COBOL 5. Labels are currently ignored on mass storage.

Print Records

Print files (such as PRINTF=YES, LINAGE, and so forth) no longer have the first character of the
record area as a carriage control character. This should not impact any programs since this
character could only be accessed by using SAME RECORD AREA and using a nonprint file record.

Program-Name

The program-name in the PROGRAM-ID paragraph or the CALL statement can be a maximum of 30
characters in length. In NOS/VE COBOL, all characters up to the maximum of 30 are used; in COBOL
5, only the first seven characters are used.

Reference Modification

The phrase END for unspecified length has been removed to conform to the proposed ANSI standard.
This format omits the length altogether. To convert programs, remove the word END. END is still
accepted by the compiler, however.

SWITCH-7 and SWITCH-8

In COBOL 5, SWITCH-7 and SWITCH-8 are internal switches; in NOS/VE COBOL, these switches are
external switches. To convert the program, change the switch numbers to any numbers in the range
9 through 136.

Revision F Migrating COBOL Programs 15-21

I Using BASE_LANGUAGE=COBOL5 in the compiler call causes SWITCH-7 and SWITCH-8 to be processed as
SWITCH-135 and SWITCH-136, respectively. Since these switches are unavailable in COBOL 5, no
conflict arises unless the switches are defined elsewhere in the NOS/VE COBOL program. The
difference is in the execution speed and in the initial setting.

15-22 Migration From NOS to NOS/VE Revision F

Migrating APL W~rkspaces

Converting APL2 Workspaces and Files ••

File-Related Differences ..
Workspace Constraints

Discontinued Features ...
Special Functions •••••••••••••••••••••• ~ ••••••••••••••••••••••••••••••• •••••••••••••••••••

New Features ••

Other Changes •••••••••••••••••••••••••••••••••.•••

16

16-1

16-2

16-2

16-2

16-3

16-3

16-4

Migrating APL W~rkspaces 16
. !

To migrate an APL2 workspace from NOS to NOS/VE, you must first convert the APL2 workspace into a
form that can be used with APL for NOS/VE.

You must then use APL for NOS/VE to modify your APL2 functions if your functions use features
that differ between APL2 and APL for NOS/VE. The following topics discuss the feature
differences between the two implementations of APL:

File-Related Differences
Workspace Constraints
Discontinued Features

Special Functions
New Features
Other Changes

Converting APL2 Workspaces and Files

The APL for NOS/VE product includes a supplied workspace that simplifies the conversion of APL2
works paces and APL2 structured files from APL2 to APL for NOS/VE format. The name of this
supplied workspace is:

:$SYSTEM.APL.CONVERT_APL2

This workspace converts the APL2 workspace or structured file to a form needed by APL for
NOS/VE. Note that any feature differences between the two APL implementations are not handled by
this workspace; these feature differences require changes by you.

The workspace or structured file to be converted can reside either on NOS or on NOS/VE.

You can transfer an APL2 workspace or structured file from NOS to NOS/VE using the GET FILE
command described elsewhere in this manual.

Before you transfer a structured file, you must remove all end-of-record marks from the file.
You do this using the AFIFIX utility on NOS. The following illustrates how to transfer a
structured file. While on NOS, enter:

GET,AFIFIX/UN=APLO. <------------------------ Gets the AFIFIX utility on NOS. I
AFIFIX,NOEOR,FILEA,FILEB. <------------------ Removes end-of-record marks from structured

files FILEA and FILEB; notice that the NOEOR
parameter must be specified.

Now log on to NOS/VE and enter:

/get file to=fi1ea data conversion=b60
/get:fi1e to=fi1eb data-conversion=b60

<----- These commands transfer FILEA and FILEB from
NOS to NOS/VEj the DATA CONVERSION=B60
parameter must be specified to ensure proper
conversion.

The following illustrates how to transfer a workspace. Logon to NOS/VE and enter:

/get_fi1e to=ws1 data conversion=b60 <------- Transfers workspace WS1 from NOS to NOS/VE.
The DATA CONVERSION=B60 parameter must be
specified to ensure proper conversion.

To use :$SYSTEM.APL.CONVERT APL2 to convert an APL2 workspace or structured file, first log in to
NOS/VE and invoke the APL for NOS/VE system. Then load supplied workspace
:$SYSTEM.APL.CONVERT_APL2; for example:

)LOAD :$SYSTEM.APL.CONVERT_APL2

Revision F Migrating APL Workspaces 16-1

I

This workspace is a self-starting workspace; therefore, when the workspace is loaded, it begins
execution immediately. This is a dialogue-driven workspace that prompts you for each item of
information needed to convert an APL2 workspace or structured file. Online help information is
also available after you load this workspace.

File-Related Differences

The major difference between APL2 and APL for NOS/VE is that APL for NOS/VE uses the more
powerful NOS/VE file system. This means that any file references in your APL functions must be
changed to conform to the NOS/VE syntax. Specifically:

File names can be up to 31 characters long.

Multiple level catalogs, which require a file path, are allowed.

Indirect files do not exist.

The concept of public, private, and semiprivate are replaced by an expanded file permit
capability (SCL CREATE_FILE_PERMIT command).

The concept of file cycles exists under NOS/VE.

A NOS/VE file must be opened explicitly.

Additional access and sharing modes for files are present under NOS/VE.

Workspace Constraints

APL for NOS/VE removes some of the constraints on the size of various constructs that were
present in APL2. This is possible because of the virtual memory capability of NOS/VE. The
following is a summary:

A saved workspace can be up to 2000 million bytes (250 million words); an active workspace
can be larger than a saved workspace (up to 4000 million bytes in some cases). These
constraints might differ at your installation.

Workspaces can'be shared by several users at one time. Any variables or functions that are
changed by a particular user are placed in an individual segment for that user; each user
does NOT have an individual copy of any unchanged variables and functions. The individual
segment containing changed variables and functions can grow to 2000 million bytes; the
unchanged part can be up to 2000 million bytes, too.

Arguments to the execute function can be character vectors of up to 2000 million elements.

Each line in a user-defined function, including the function header, can be character vectors
of up to 2000 million characters.

The APL system itself is shared among all APL users and does not require a portion of a
user's memory allocation.

Discontinued Features

The system functions $QDFI and $QDTM are no longer supported. Using these functions causes a
message to be sent to your job log. The message provides you with the workspace name and
function name where each unique reference occurs to help you locate all uses of these functions.

The FERASE function, which was related to direct vs. indirect access files on NOS, is no longer
needed or supported.

16-2 Migration From NOS to NOS/VE Revision F

Quad-PL can no longer be used to control paging for a CRT terminal. Paging is now performed by
NOS/VE network commands.

The TERMINAL TYPE parameter of the APL command has changed; see the TERMINAL TYPE discussion in I
chapter 7 for more information.

The power function (LN*RN) no longer uses rational approximation when the left argument is
negative and the right argument is not integral. A DOMAIN ERROR results.

The facilities provided by AFIFIX, AWSFIX, and AOVFIX are no longer needed or supported.

Special Functions
APL for NOS/VE includes a number of functions called special functions. Special functions
provide facilities that, in other APL systems, were provided by numerous system functions and the
I function.

Like user-defined functions, special functions have names and can be copied and erased. Unlike
user-defined functions, special functions are part of the APL system and are written in the I
implementation language for the APL system. The special functions are distributed in the
supplied works paces distributed with the APL for NOS/VE product. You cannot write your own
special functions. If a change is made to a special function, that change is automatically
propagated without your intervention to every workspace where it is used.

Special functions are provided primarily to give you access to files, the operating system, and
so forth, and to provide you with faster execution. One special function that is particularly
useful is the EXECUTE_SCL function, which enables you to execute SCL commands from within the APL
system.

See the APL Language Definition Usage Manual for more information about special functions.

New Features

The following is a summary of the new features provided in APL for NOS/VE:

Shared variables are provided.

An empty numeric vector constant can be written as $ZL.

The last line entered in immediate execution mode can be modified and re-entered.

When a user-controlled system parameter is localized, the parameter's initial value in the
function is the same as its value before the function was entered. An IMPLICIT ERROR can no
longer occur. Erasing a user-controlled system parameter causes the value of the parameter
in the clear workspace (:$SYSTEM.APL.CLEARWS) to be used.

Function definition mode and system commands are enhanced.

$QDTRAP now allows you to specify which events are to be trapped and allows you to disable
user interrupts.

The printing width for $QP output is no longer controlled 'by $QDPW; the NOS/VE network checks
the page width.

Input received by $QP is always of rank 1. (In APL2, single characters were returned as
scalars.)

I

$QDPW sets the page width for your terminal when you enter'APL. The page width is not I
changed when you load another workspace.

Revision F Migrating APL Workspaces 16-3

APL workspaces and structured files now have file attributes that can be displayed and
recognized outside of theAPL system using NOS/VE utilities. These attributes are not lost
when the file is copied.

Error messages beginning with 20: have been changed to provide you with all information
available from NOS/VE.

I - Two new system commands are added. They are)QUIT, which is the same as)SYSTEM, and)RESET,
which clears the state indicator list.

Other Changes

Other APL changes are:

Many nontrivial math functions return slightly different results because of slight
differences in the CYBER 180 floating-point hardware.

The output of monadic format differs slightly. Differences are due in part to the larger
magnitude of numbers allowed by the CYBER 180. Also, the rules for when numbers are
displayed in exponential form have been simplified.

In dyadic format using exponential forms where APL decides the column width, more columns are
reserved for the exponent.

The definition of equality between two numeric values is now symmetrical in all cases. (In
APL2, A=B could return 1 while B=A returned 0.) This change also affects less than, greater
than, and so forth.

The first element of the Account Information vector is always 0; the account name can be
obtained using special function ACCOUNT_NAME, which is in workspace :$SYSTEM.APL.WSFNS.

The)COPY system command requires a slash to separate the names to be copied from the other
parameters.

Special function FSTATUS returns 10 elements per file instead of 9.

Errors 11:, 21:, 22:, and 24: are now returned as error 20:.

CFREAD and CFWRITE use the full 256 character set.

A new error message has been added. 25: AXIS ERROR indicates that the value given as a
function index is not correct.

The FNAMES function no longer returns a user number when a file from another catalog is
accessed; FNAMES returns only the local file name.

The FPACK function no longer accesses the file itself. The file to be packed must first be
obtained using FTIE, FCREATE, and so forth.

Catalogs APLI and APLO are combined into :$SYSTEM.APL.

The $QDLIB function result differs from the result returned in APL2.

16-4 Migration From NOS to NOS/VE Revision F

Migrating Pascal Programs

Predefined Routines •••

Segmented File Operations •••

Type ALFA ••••••••••••••••••••••••••••••••••••. , ••

EXTERNAL Directive ••

Compiler Directives •••

Value Initialization ..
Strings •••••••••••••••••••••••••••• I·e •••

Collating Sequence ••.•••••••••••••••••••••••• ; ••

PASCAL Comm.and ••
INPUT or I ••
BIN.AR.Y or B ••• , •••••••••••••••••••••••••••••••
LIST or L •••
DEBUG AIDS or DA ••
ERROR-or E ••
ERROR_LEVEL or EL •••
LIST OPTIONS or LO ••
OPTIMIZATION LEVEL or OL ••
RUNTIME CHECKS or RC ••
STA~~.AR.DS DIAGNOSTICS or SD •••
TERMINATION ERROR LEVEL o'r TEL ••
STATUS •••• 7 •••.. 7 ...•••••..•...•..••••.....•....•..••......•••..•••••..•••.•.••...••.•

17

17-1

17-1

17-1

17-1

17-2

17-2

17-2

17-2

17-3
17-3
17-3
17-3
17-4
17-4
17-4
17-4
17-5
17-5
17-6
17-6
17-6

I

Migrating Pascal ~rograms 17
ij u, " ! ; g • i

NOS/VE Pascal is similar to NOS Pascal Version 1. A NOS Pascal program that conforms to Standard
Pascal should compile and execute correctly under NOS/VE Pascal.

However, certain extensions to Standard Pascal that are supported by NOS Pascal are not supported
by NOS/VE Pascal. The following paragraphs discuss these extensions and other areas of
difference between NOS Pascal and NOS/VE Pascal. For more information about the differences
between NOS/VE Pascal and NOS Pascal Version 1, see the Pascal Usage manual.

Predefined Routines

The following predefined routines are provided by NOS Pascal but not by NOS/VE Pascal:

EXPO (a)

UNDEFINED(a)

In addition, the following form of the TRUNC routine is not provided by NOS/VE Pascal:

TRUNC(a,n)

The form TRUNC(a) is provided by NOS/VE Pascal.

Segmented File Operations
The following predefined routines and functions for operating on segmented files are supported by
NOS Pascal but not by NOS/VE Pascal:

EOS(f)

GETSET(f,n)

PUTSEG(f,n)

In addition, the following form of the REWRITE routine is provided by NOS Pascal but not by
NOS/VE Pascal:

REWRITE(f,n)

The form REWRITE(f) is supported by NOS/VE Pascal.

Type ALFA

Type ALFA is a machine-dependent type that allows a string type that is one CYBER 170 word in
length. This type is not meaningful on a CYBER 180, and is therefore not supported by NOS/VE
Pascal.

EXTERNAL Directive

In NOS/VE Pascal, the FORTRAN directive is not supported, and the EXTERN directive is replaced by
the EXTERNAL directive.

Revision F Migrating Pascal Programs 17-1

I

Compiler Directives

NOS/VE Pascal does not support compiler directives.

Value Initialization
NOS and NOS/VE do value initialization differently. NOS supports a replication factor to
facilitate initialization of structured variables. NOS/VE provides the same capability by using
structured constants, which have a different syntax for replication. See the Pascal Usage manual
for more information.

Strings

NOS/VE Pascal provides more powerful string processing.capabilities than NOS Pascal. NOS/VE
Pascal allows both fixed-string and variable-string types. Either type can be up to 65535
characters long. The length of a variable-string type is determined dynamically. The following
operations can be performed on strings:

Assignment

Relational

Concatenation

NOS/VE Pascal provides the following predefined functions for operating on strings:

INDEX Returns the starting position of a substring within a string.

LENGTH Returns the length of a specified string.

MAXLENGTH Returns the maximum/length of a variable-string.

SUBSTR Returns a substring of a specified string.

In NOS/VE Pascal, strings can be passed as actual arguments, and they can be read from or written
to a text file.

Collating Sequence
To do comparisons, Pascal on NOS/VE uses a collating sequence different from that used by Pascal
on NOS. The NOS/VE Pascal uses the ASCII collating sequence (listed in appendix C of the Pascal
Usage manual). This means that the results of comparisons can differ between NOS and NOS/VE.

Comparisons that yield the same results in NOS and NOS/VE include:

Alphabetic character data compared to alphabetic character data

Comparisons of numeric strings

Tests of equality

Tests of inequality «»

17-2 Migration From NOS to NOS/VE Revision F

Comparisons that yield different results in NOS and NOS/VE include:

Comparisons of alphanumeric data

Special character data compared to special character data

Comparisons using ordinal type operands (because ORD(character_expression) provides a
different value in NOS/VE than in NOS)

PASCAL Command
The NOS/VE PASCAL command has the following format:

PASCAL
INPUT=file
BINARY=fiIe
LIST=file
DEBUG AIDS=list of keyword
ERROR';'file
ERROR_LEVEL=keyword
LIST OPTIONS=list of keyword
OPTIMIZATION LEVEL=list of keyword
RUNTIME CHECKS=list of keyword
STANDARDS DIAGNOSTICS=list of keyword
TERMINATION ERROR LEVEL=keyword
STATUS=status variable

INPUT or I

This parameter specifies the file containing the source code to be compiled.

Omitted Same as I=$INPUT.

I=file Source code is read from the specified file.

BINARY or B

This parameter specifies the file to receive the compiled object code.

Omitted Same as B=$LOCAL.LGO.

B=file Binary object code is written to the specified file.

LIST or L

This parameter specifies the file to receive the compiler output listing. Output listing options
are selected by the LIST_OPTIONS parameter.

Omitted Same as LIST=$LIST (no listing is produced).

LIST=file Output listing is written to the specified file.

Revision F Migrating Pascal Programs 17-3

I

I

I

I

I

I

DEBUG_AIDS or DA

This parameter selects debugging options.

Omitted

DA=DT

DA=NONE

DA=ALL

ERROR or E

Same as DA=NONE.

Generates line number, symbol tables, and source map loader tables for
use by the Debug facility.

Inhibits generation of line number and symbol tables.

Same as DA=DT.

This parameter specifies a file to receive compile-time error messages.

Omitted Same as ERROR=$ERRORS.

ERROR=file Error messages are written to the specified file.

I ERROR_LEVEL or EL

This parameter specifies the severity level of errors to be listed.

Omitted

ERROR LEVEL=W

ERROR_LEVEL=F

ERROR LEVEL=C

I UST_OPTIONS or LO

Same as ERROR LEVEL=W.

Warning (informative) errors and errors of levels F and C are listed.

Fatal errors and errors of level C are listed.

Only catastrophic errors are listed.

. This parameter selects compiler output listing options.

Omitted

LIST_OPTIONS=A

LIST_OPTIONS=0

LIST OPTIONS=R

LIST_OPTIONS=S

LIST OPTIONS=NONE

Same as LIST OPTIONS=S •.

Lists attributes of all entities defined in the source program.

Lists object code.

Lists cross-reference map of symbolic names used in the source program.

Lists source code.

No listing options are selected.

Multiple options can be selected by separating the options by a space or comma and enclosing them
in parentheses. For example:

LIST_OPTIONS=(O,R,S,A)

17-4 Migration From NOS to NOS/VE Revision F

OPTIMIZATION_LEVEL or OL

This parameter selects the level of optimization performed by the compiler.

Omitted Same as OL=LOW.

OL=DEBUG Object code is formatted for use by the Debug facility.

OL=LOW Minimum optimization is performed.

RUNTIME_CHECKS or RC

This parameter selects runtime error checking options.

Omitted

RUNTIME CHECKS=F

RUNTIME CHECKS=N

RUNTIME CHECKS=R

RUNTIME CHECKS=S

RUNTIME CHECKS=ALL

RUNTIME CHECKS=NONE

Same as RUNTIME CHECKS=NONE.

Selects checking of errors involving file variables and buffer
variables.

Selects checking for invalid use of pointer variables and NEW and
DISPOSE procedures.

Selects range checking for subranges, set assignments, and case
variables.

Selects array subscript bound checking.

Selects all of the above runtime checks.

Selects no runtime checks.

Multiple options can be specified by separating the options by a space or comma and enclosing
them in parentheses. For example:

RUNTIME_CHECKS=(R,S)

Revision F Migrating Pascal Programs 17-5

I

I

I

I STANDARDS_DIAGNOSTICS or SD

This parameter selects checking for use of nonstandard extensions in the source program.

Omitted Same as SD=NONE.

I SD=W Same as SD=(W, ISO).

SD=F Same as SD=(F,ISO).

SD=(W,ISO) Non-ISO usages are diagnosed as warning errors.

SD=(F,ISO) Non-ISO usages are diagnosed as fatal errors.

SD=(W,ANSI) Non-ANSI usages are diagnosed as warning errors.

SD=(F,ANSI) Non-ANSI usages are diagnosed as fatal errors.

SD=NONE Nonstandard usages are not diagnosed.

I TERMINATION_ERROR_LEVEL or TEL

I

I

This parameter specifies the diagnostic severity level for which the compiler returns abnormal
status.

Omitted Same as TEL=F.

TEL=W Abnormal status is returned for all warning and higher level errors.

TEL=F Abnormal status is returned for all fatal and catastrophic errors.

TEL=C Abnormal status is returned for catastrophic errors only.

STATUS

This parameter specifies the name of an SCL status variable to receive error status code returned
by the compiler.

Omitted Status code is returned to the caller of the Pascal command.

STATUS=variable Status code is returned in the specified SCL status variable.

17-6 Migration From NOS to NOS/VE Revision F

Appendixes

Glossary for NOS/VE Use ••• A-I

Related Manuals •••..•••••..••••••.••••••••••••••••.••••••••••••.•.•••••••••••••••••••••••• B-1

Character Sets and Collating Sequences C-l

Unsupported ANSI COBOL Features ••• D-l

FORTRAN Default FIT Field Values •• E-l

NOS and NOS/VE Similarities/Differences Summary ••• F-l

Glossary for NO.S/VE Use A

The definitions in this glossary apply to NOS/VE only, unless the individual definition states
otherwise.

A

. Abort

The immediate abnormal termination of command or a task.

Access Mode

The manner in which records can be inserted into or retrieved from a file. Access mode can
be sequential, random, or dynamic, depending on the ACCESS MODE clause. Access mode, open
mode, and file organization affect subsequent operations.

Alphabetic Character

One of the following letters:

A through Z

a through z

See also Character and Alphanumeric Character.

Alphanumeric Character

An alphabetic character or a digit. See also Character, Alphabetic Character, and Digit.

ANSI Standard Language

The language defined by the American National Standards Institute. For COBOL, it is defined
in American National Standard X3.23-I974. For FORTRAN, it is defined in American National
Standard X3.9-I978.

ASCII

American National Standard Code for Information Interchange. A 7-bit code representing a
prescribed set of characters. The 7-bit ASCII code character is stored right-justified in an
8-bit byte.

Assignment Statement

In computer languages, a statement that assigns a value to a variable. In FMU, a statement
that reads a value from an input record, converts the value, and copies the value to an
output record.

Attach

The process of retrieving a permanent file for use by a job. The process involves specifying
the proper file identification and, if necessary, password.

Revision F Glossary for NOS/VE Use A-I

I

I

B

Batch Mode

A mode of execution where a job is submitted and processed as a unit with no intervention
from the user. Contrast with Interactive Mode.

Beginning-of-Information (BOI)

The file boundary that marks the beginning of the file.

Bit

I A binary digit. A bit has the value 0 or 1. See also Byte.

BOI

See Beginning-of-Information.

Boolean

I A kind of value that is evaluated as TRUE or FALSE.

I

Boolean String Constant

In NOS/VE FORTRAN, a constant that represents a string of one through eight characters. It
is equivalent to a Hollerith constant in NOS FORTRAN 5.

Buffer Statement

Byte

One of the input/output statements BUFFER IN or BUFFER OUT.

A group of contiguous bits. For NOS/VE, one byte is equal to 8 bits. An ASCII character
code uses the right-most 7 bits of _one byte.

Byte Addressable File Organization

A file organization in which records are accessed by their byte address.

A file described by the ORGANIZATION IS BYTE-ADDRESS clause. A byte addressable file is
characterized by records identified by a key that indicates the relative byte within a mass
storage file at which the record begins.

Byte Offset

c

A number corresponding to the number of bytes beyond the beginning of a line, procedure,
module, or section.

Catalog

A directory of files and catalogs maintained by the system for a user. The catalog $LOCAL
contains only file entries.

I The part of a path that identifies a particular cat'a1og in a catalog hierarchy. The format
is as follows:

name.name ••• name

I where each name is a catalog. See also Catalog Name and Path.

A-2 Migration From NOS to NOS/VE Revision F

Catalog Name

The name of a catalog in a catalog hierarchy (path). By convention, the name of the user's
master catalog is the same as the user's user name.

Character

A letter, digit, space, or symbol that is represented by a code in one or more of the
standard character sets.

It is also referred to as a byte when used as a unit of measure to specify block length,
record length, and so forth.

A character can be a graphic character or a control character. A graphic character is
printable; a control character is nonprintable and is used to control an input or output
operation.

Collated Key

A key consisting of 1 through 255 8-bit characters. These keys are sorted according to the
sequence indicated by the user-specified collation table in effect. Contrast with Uncollated
Key.

Collating Sequence

The sequence in which characters are ordered for purposes of sorting, merging, and comparing.

Collation Table

A data structure that orders a set of characters. The character order is used when sorting
keys in an indexed sequential file.

Command

A statement that initiates a specific operation on NOS/VE. A command name is recognized by
the SCL interpreter if it appears as an entry in the command list.

Command List

One or more entries that define the commands that are currently available. A command list is
an object library, catalog, or special entry $SYSTEM.

Comment

A line or' sequence of characters that is not interpreted or compiled and is for documentary
purposes only.

Compilation Time

The time at which a source program is translated by the compiler to an object program that
can be loaded and executed. Contrast with Execution Time.

Compiler

A processor that accepts source code as input and generates object code as output.

Condition Code

Alphanumeric characters that uniquely identify a NOS/VE diagnostic. The condition code is
returned as part of the status record when an abnormal status occurs.

Control Statement

A statement used to structure and control the flow of a job.

Revision F Glossary for NOS/VE Use A-3

I

I

Current Position

The line in the current deck from which the editor determines the location for an operation.
The current position line can be referenced with the keyword CURRENT.

Cycle

A numbered version of a file that can be registered with the same file name and in the same
catalog as the other versions of the file. Each permanent file can have from 1 through 999
cycles.

I See also Cycle Number and Cycle Reference.

I

Cycle Number

An unsigned integer from 1 through 999 that identifies a specific version of a permanent file.

Cycle Reference

D

The cycle of a permanent file to be accessed. A cycle reference can be either an unsigned
integer or one of the following designators:

$HIGH
$LOW
$NEXT

I DataAB::::cal or physical grouping of records in which user records are stored in an indexed
sequential file.

Deck

A sequence of lines in a source library that can be manipulated as a unit by the Source Code
Utility (SCU).

Default

The system-defined value assumed in the absence of a user-specified value.

Delimiter

An indicator that separates and organizes data.

Digit

One of the following characters:

o 1 234 5 6 7 8 9

I
Direct-Access File Organization

A keyed-file organization in which each record is accessed directly through its hashed
primary-key value. Records can be accessed sequentially, but the records are not returned in
sorted order. Contrast with Indexed-Sequential File Organization.

Direct Access Input/Output

A method of input/output in which records can be read or written in any order.

A-4 Migration From NOS to NOS/VE Revision F

Directive

A directive consists'of a directive name followed by a parameter list and is specified in a
directive file.

Directive File

A file that contains only directives.

Display Code

A 64-character subset of the ASCII code, which consists of alphabetic letters, symbols, and
numerals. This character set is not used by NOS/VE.

Dual State

State in which two operating systems execute simultaneously on the same mainframe.
Currently, NOS/VE and either NOS version 2 or NOS/BE Version 1.5 are such partners.

Dynamic Access

E

An access mode that allows a nonsequential file on mass storage to be accessed randomly or
sequentially, depending on the format of the access statement.

EBCDIC

The abbreviation for extended binary-coded decimal interchange code, an 8-bit code
representing a coded character set.

Ellipsis

1. Two or more consecutive periods at the end of a physical line to indicate command line
continuation. The ellipsis can be optionally preceded and/or followed by a space.

2. Two consecutive periods separating two values to indicate a range of values in a
parameter list. See also Value Element.

Embedded Key

A key that is contained within a record, as opposed to a key that is defined outside of a
record (such as in the Working-Storage or Common-Storage sections of a COBOL program).

End-of-Information (EOI)

The point at which data in the file ends.

End-of-Partition (EOP)

A special delimiter in a file with variable record type.

EOI

See End-of-Information.

Epilog

The SCL statement list that is executed at the end of a job.

Execution Time

The time at which a compiled source program is executed. Also known as Run Time.

Revision F Glossary for NOS/VE Use A-5

I

I

I

F

F-Type Record

Fixed-length records, as defined by the ANSI Standard.

Family

A logical grouping of NOS/VE users that determines the location of their permanent files. A
family can be subdivided into accounts and projects.

Family Name

A name that identifies a NOS/VE family. See Family.

Field Descriptor

File

An FMU element that describes a data field in an input or output record in terms of data
type, starting position, and field length.

1. A collection of information referenced by a name.

2. An SeL element specifying a temporary or permanent file, including its path and,
optionally, a cycle reference (for permanent files). A file is identified by specifying
a path and, optionally, a cycle reference (for permanent files) as follows:

path. cycle reference

File Attribute

I A characteristic of a file. Each file has a set of attributes that completely defines the
file structure and processing limitations.

File Information Table

The internal table through which a FORTRAN program communicates with the FORTRAN file
interface routines.

File Management Utility (FMU)

A file management utility that can manipulate data from an input file and create output files
formatted according to specifications.

File Name

I The name of a NOS/VE file. It is used in a file reference to identify the file. See also
Name.

File Organization

Defines the way records are stored in a file. The available file organizations are
sequential, byte addressable, direct access, and indexed sequential.

File Position

The location in the file at which the next read or write operation will begin. The file
position designators are:

$ASIS
$BOI
$EOI

Leave the file in its current position.
Position the file at the beginning-of-information.
Position the file at the end-of-information.

A-6 Migration From NOS to NOS/VE Revision F

File Reference

An SCL element that identifies a file and, optionally, the file position to be established
prior to use. The format of a file reference is as follows:

file.file position

where the file positions are:

$BOI

$ASIS

$EOI

See also File and File Position.

Floating-Point Number

FSE

A method of internal binary representation for numbers written with a decimal point;
corresponds to a FORTRAN REAL or COBOL COMPVTATIONAL-l number. Also can be stored as double
precision, corresponding to FORTRAN DOUBLE PRECISION or COBOL COMPUTATIONAL-2. Also can be
stored as complex, corresponding to FORTRAN COMPLEX.

See File Management Utility.

See Full Screen Editor.

Full Screen Editor

A NOS/VE"editor that enables you to edit files screen-by-screen.

H
Hollerith Constant

I

In FORTRAN 5, a constant that represents a string of one through eight characters. Hollerith
constants are equivalent to boolean string constants in NOS/VE FORTRAN.

Index Block

A block in an indexed sequential file that contains ordered keys and pointers to index blocks
or other data blocks. Contrast with Data Block.

Index Record

An internal record in an index block that guides the system in locating data records by
primary key value. An index record consists of a primary key value and a pointer to a
block. The primary key value in the index record matches the primary key value of the first
record in either a lower-level index block or a data block.

Indexed-Sequential File Organization

A keyed-file organization in which each record is accessed by finding its primary-key value
in the file index. When records are read sequentially from an indexed sequential file, they
are returned sorted by primary-key value. Contrast with Direct-Access File Organization.

Revision F Glossary for NOS/VE Use A-7.

Integer

Numeric data (positive or negative) that does not have any digits to the right of the assumed
decimal point. An integer is stored internally as a binary value rather than a character
value.

Integer Constant

lOne or more digits and, for hexadecimal integer constants, the following characters

I

ABC D E F abc d e f

A hexadecimal integer constant must begin with a digit. A preceding sign and subsequent
radix are optional.

Integer Key

A signed binary key used with an indexed sequential file. Integer keys are sorted by
arithmetic value.

Interactive Mode

J

Job

A mode of execution where a user enters commands at a terminal and each command elicits a
response from the computer. Contrast with Batch Mode.

A set of tasks executed for a user name. NOS/VE accepts interactive and batch jobs.

Job Log

K

Key

A chronological listing of all operations associated with a terminal session or batch job
from login to logout.

A string of characters or a number that the user defines to uniquely identify a record.

I Keyword

I

L

Line

A parameter value that has special meaning in the context of a particular parameter. For
example, a parameter called COUNT might normally expect an integer but could be given the
keyword value ALL.

A sequence of characters SCU recognizes as a record of text.

Load Time

The time at which an object program is loaded into memory and prepared for execution.

A-a Migration From NOS to NOS/VE Revision F

Loader

The system software that loads a compiled object program into memory and prepares it for
execution.

Local File

A file that is accessed via the local catalog named $LOCAL. See also File, Path, and Local
Path.

Local File Name

The name used by an executing job to reference a file while the file is assigned to the job's
$LOCAL catalog. Only one file can be associated with a given name in one job; however, in
one job a file can have more than one instance of open by that name.

Local Path

Identifies a local file as follows:

$LOCAL.file name

Login

The process used to gain access to the system.

Logout

The process used to end a terminal session.

M
Mass Storage

Disk storage that allows random file access and permanent file storage.

Mass Storage Input/Output

The type of input/output used for random access to files; it involves the subroutines OPENMS,
READMS, WRITMS, CLOSMS, and STINDX.

Master Catalog

The catalog the system creates for each new user name. The master catalog contains entries
for all permanent files and catalogs a user creates. By convention, the name of the master
catalog is the same as the user name.

Megabyte (MB)

A group of bytes. One megabyte represents 1,048,576 bytes.

Module

A unit of text accepted as input by the loader or object library generator.

Revision F Glossary for NOS/VE Use A-9

I

I

N

Name

In SCL, a combination of from 1 through 31 characters chosen from the following set:

Alphabetic characters (A through Z and a through z)

Digits (0 through 9)

Special characters (II, @, $, [,], \, ... { , I, }, -, or _)

The first character of a name cannot be a digit.

Name Call

A method of obtaining and executing a program in which you enter the name of the file
containing the object program.

Native Character Set

The character set associated with the operating system, which is the ASCII character set as
defined by the standard ANSI X3.4-1977.

Nonembedded Key

A primary key that is not physically contained in the record. Internally, a nonembedded key
is stored before its record in a data block.

I
NOS/VE

Acronym for Network Operating System/Virtual Environment, an operating system for the host
computer. NOS/VE has all of the capabilities of NOS and NOS/BE. In addition, NOS/VE uses
virtual memory.

I

o
Object Code

Executable code produced by a compiler.

Object File

A file containing one or more object modules.

Open

A set of preparatory operations performed on a file before input and output can occur.

Optimization

p

The manipulation of object code to reduce execution time. The level of optimization
performed by the compiler can be selected through the OPTIMIZATION LEVEL parameter on the
FORTRAN command.

Packed Decimal

A numeric data format where each digit is represented by four bits, with two digits per
standard 8-bit byte. In COBOL, this data is described as PACKED DECIMAL or COMPUTATIONAL-3.

A-10 Migration From NOS to NOS/VE Revision F

Padding

Space deliberately left unused. Fixed length records are padded if the data provided for the
record is shorter than the record length. Within keyed files, blocks are padded during file I
creation to allow easy addition or expansion during later file updates.

Page

An allocatable unit of real memory.

Parameter

A value list optionally preceded by and equivalenced to a parameter name. For example:

parameter name = value list or value list

Parameter List

A series of parameters separated by spaces or commas.

Parameter Name

A name that uniquely identifies a parameter.

Parameter Value

See Value.

Partition

Path

A unit of data on a sequential or byte addressable file delimited by end-of-partition
separators or the beginning- or end-of-information.

Identifies a file. It may include the family name, user name, subcatalog name or names, and
file name.

Permanent Catalog

A catalog of permanent files.

Permanent File

A mass storage file preserved by NOS/VE across job executions and system deadstarts. A I
permanent file has an entry in a permanent catalog. See also File.

Position-Dependent Parameter

A parameter that must. appear in a specified location, relative to other parameters. Contrast
with Position-Independent Parameter.

Position-Independent Parameter

Parameter that consists of a parameter name followed by a value list. Contrast with
Position-Dependent Parameter.

Primary Key

The required key in a keyed file. The primary-key value must be defined for a file when the
file is first created, and each record in the file must have a unique value for the key.

Revision F Glossary for NOS/VE Use A-II

I

I
Procedure

A sequence of SCL commands executed when the procedure name is entered. It can be stored as
a module on an object library.

Program Attribute

A characteristic of a program as defined in the program description or by a job default value.

I Prolog

The SCL statement list that is executed at the beginning of each job.

R

I
Radix

Specifies the base of a number. NOS/VE recognizes number bases from base 2 through base 16.
A radix enclosed in parentheses must follow a nondecima1 number.

See Integer Constant.

I

Random Access

The process of reading or writing a record in a file without having to read or write the
preceding records; applies only to mass storage files. Contrast with Sequential Access.

Random File Organization

I A file with byte addressable, direct access, indexed sequential, or relative (COBOL)
organization in which individual records can be accessed by the value of their keys. In
FORTRAN, a random file has byte addressable organization and is processed by mass storage
subroutines. Contrast with Sequential File Organization.

Range

A value represented as two values separated by an ellipsis. The element is associated with
the values from the first value through the second value. The first value must be less than
or equal to the second value. For example:

va1ue •• va1ue

Real State

I The NOS or NOS/BE operating system in a dual state environment. Contrast with Virtual State.

I
Record

A unit of data that can be read or written by a single I/O request. Also a set of related
data processed as a unit when reading or writing a file.

Record Length

The length of a record measured in words for unformatted input/output and in characters for
formatted input/output.

Relative File

A file described by the ORGANIZATION IS RELATIVE clause. A relative file is characterized by
fixed-length records with key values equivalent to the ordinal positions of records in the
file.

A-12 Migration From NOS to NOS/VE Revision F

Rewind

An operation that positions a file at the beginning-of-information.

Run Time

·See Execution Time.

s
SCL

See System Command Language.

SCL Procedure

A sequence of SCL commands executed when the procedure name is entered. It can be stored as
a file or as a module on an object library.

SCL Statement

The basic unit of input that is interpreted by SCL. The following are the seL statement
types:

Command
Assignment statement
Control statement

SCL Variable

The means of storing a value to be tested or displayed by an SCL statement.

Sequential Access

The processing of records in order (physical or logical). Contrast with Random Access.

Sequential File Organization

A file with records stored and retrieved in the order in which they were written. No logical
order exists other than the relative physical record position.

Source Code

Statements written for input to a compiler.

Source Listing

A compiler-produced listing of the user's original source program.

Source Program

A set of statements written in a programming language such as FORTRAN and COBOL.

Standard File

A file that provides a default file for use by job files and other files. The standard files
are identified by the following names:

$ COMMAND
$ECHO
$INPUT
$OUTPUT

. Revision F

$COMMAND OF CALLER
$ERRORS - -
$LIST
$RESPONSE

Glossary for NOS/VE Use A-13

I

Statement

I See SCL Statement.

Status Variable

A variable record of kind status that holds the completion status of a command.

String

A value that represents a sequence of characters.

String Constant

I A sequence of characters delimited by apostrophes ('). An apostrophe can be included in the
string by specifying two consecutive apostrophes.

Subcatalog

I A catalog registered in the master catalog or another subcatalog. See also Catalog.

System Command Language (SCL)

T

The block-structured interpretive language that provides the interface to the features and
capabilities of NOS/VE. All commands and statements are interpreted by SCL before being
processed by the system.

Task

The instance of execution of a program.

u
U-Type Record

I A recor.d for which the record structure is undefined.

Uncollated Key

A key consisting of from 1 through 255 8-bit characters. These keys are sorted by the
magnitude of their binary ASCII code values. Contrast with Collated Key.

User Name

A name that identifies a NOS/VE user and the location of a user's permanent files in the
user's family.

User Path

Identifies a file or catalog via a user name and optionally a relative path as follows:

.user name. relative path or $USER.relative path

v
V-Type Record

Variable-sized record; system default record type. Each V-type record has a record header.
The header contains the record length and the length of the preceding record.

A-14 Migration From NOS to NOS/VE Revision F

Value

An expression or application value specified in a parameter list. Each value must match the
defined kind of value for the parameter. Keywords, constants, and variable references are
all values.

Value Element

A single value or a range of values represented by two values separated by an. ellipsis. For
example:

value or value •• value

See also Value, Value List, and Value Set.

Value List

A series of value sets separated by spaces or commas and enclosed in parentheses. If only
one value set is given in the list, the parentheses can be omitted. For example:

(value set,value set,value set) or value set

See also Value, Value Element, and Value Set.

Value Set

A series of value elements separated by spaces or commas and enclosed in parentheses. If
only one value element is given in the set, the parentheses can be omitted. For example:

(value element,value element,value element) or value element

See also Value, Value Element, and Value List.

Variable

A language element that represents a data value that can be changed during execution.

Variable Name

A name that identifies a variable.

Virtual Memory

The memory access mode using virtual addresses. Each task uses the same virtual address
rangej the system associates the virtual address range referenced by a task to the physical
memory assigned to the task.

Virtual State

The. NOS/VE operating system in a dual state environment. Contrast with Real State.

w
Word

A unit of measure for real memory. One word is 8 bytes or 64 bits of memory.

Working Catalog

The catalog used if no other catalog is specified on a file reference.

Revision F Glossary for NOS/VE Use A-IS

I

I

RELATED MANUALS B

Table B-1 lists all manuals that are referenced in this manual or that contain background
information. A complete list of NOS/VE manuals is given in the SCL Language Definition Usage
manual. If your site has installed the online manuals, you can find an abstract for each NOS/VE
manual in the online System Information manual. To access this manual, enter:

/explain

Ordering Printed Manuals
Control Data manuals are available from your local Control Data office. Sites within the United
States can also order manuals directly from Literature and Distribution Services at the following
address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering a manual, please specify the complete title, publication number, and revision
level. Please see the Literature and Distribution Services (LDS) catalog for further information
on ordering manuals. You can obtain the LDS catalog from LDS.

Accessing Online Manuals

To access an online manual, log in to NOS/VE and specify the online manual title (listed in table
B-1) on the EXPLAIN command. For example, to read the FORTRAN online manual, enter:

/explain manual=fortran

Revision F Related Manuals B-1.

Table B-1. Related Manuals

Manual Title
Publication
Number

Online
Title

==

This Manual:

Migration From NOS to ·NOS/VE
Tutorial/Usage

Other Migration Manuals:

Migration From NOS to NOS/VE Standalone
Tutorial/Usage

Migration From NOS/BE to NOS/VE
Tutorial/Usage

Migration From NOS/BE to NOS/VE Standalone
Tutorial/Usage

Migration From IBM to NOS/VE
Tutorial/Usage

Migration From VAX/VMS to NOS/VE
Tutorial/Usage

SCL Manuals:

SCL for NOS/VE Language Definition
Usage

SCL for NOS/VE System Interface
Usage

SCL for NOS/VE
Quick Reference

SCL for NOS/VE Source Code Management
Usage

SCL for NOS/VE Object Code Management
Usage

SCL for NOS/VE Advanced File Management .-.
Usage

60489503 MIGRATE NOS

60489504

60489505 MIGRATE NOSBE

60489506

60489507 MIGRATE IBM

60489508 MIGRATE VAX

60464013

60464014

60464018 SCL

60464313

60464413

60486413 AFM

--(Continued on Next Page)

• B-2 Migration From NOS to NOS/VE Revision F

Table B-1. Related Manuals

(Continued From Previous Page)--

Manual Title
Publication
Number

Online
Title

==

NOS/VE Product Descriptions:

CYBIL for NOS/VE Language Definition
Usage

Pascal for NOS/VE
Usage

APL for NOS/VE Language Definition
Usage

FORTRAN for NOS/VE Language Definition
Usage

FORTRAN for NOS/VE
Quick Reference

COBOL for NOS/VE
Usage

Additional NOS/VE Manuals:

Remote Host Facility
Usage

NOS/VE File Editor
Tutorial/Usage

CYBIL for NOS/VE File Interface
Usage

CYBIL for NOS/VE .
Keyed-file and Sort/Merge Interfaces
Usage

Diagnostic Messages for NOS/VE
Usage

NOS/VE System Information

Debug for NOS/VE
Usage

Debug for NOS/VE
Quick Reference

CONTEXT for NOS/VE
Usage

60464113

60485613 PASCAL

60485813

60485913

L60485918 FORTRAN

60486013 COBOL

60460620

60464015

60464114

60464117

60464613 MESSAGES

L60488103 default

60488213

L60488218 DEBUG

60488403 CONTEXT

--(Continued on Next Page)

Revision F Related Manuals B-3.

Table B-1. Related Manuals

(Continued From Previous Page)--

Manual Title
Publication
Number

Online
Title

==

Additional Related Manuals:

NOS Version 2
Reference Set
Volume 3

CYBER Interactive Debug
Reference Manual

CYBER Record Manager Basic Access Methods
Reference Manual

FORM Version 1
Reference Manual

COBOL Version 5
Reference Manual

CYBER Record Manager Advanced Access Methods
Reference Manual

eB-4 Migration From NOS to NOS/VE

60459680

60481400

60495700

60496200

60497100

60499300

Revision F

Character Sets ~nd Collating Sequences

Table C-l lists the ASCII (7-bit ASCII code) character set and collating sequence (the default
sequence for NOS/VE).

The listings of predefined collation tables appear as follows:

Table C-2 OSV$ASCII6_FOLDED

Table C-3 OSV$ASCII6_STRICT

Table C-4 OSV$COBOL6_FOLDED

Table C-S OSV$COBOL6_STRICT

Table C-6 OSV$DISPLAY63_FOLDED

Table C-7 OSV$DISPLAY63_STRICT

Table C-8 OSV$DISPLAY64_FOLDED

Table C-9 OSV$DISPLAY64_STRICT

Table C-IO OSV$EBCDIC

Table C-ll OSV$EBCDIC6_FOLDED

Table C-12 OSV$EBCDIC6_STRICT

c

Revision F Character Sets and Collating Sequences C-l.

I Table C-l. Full ASCII Character Set and Collating Sequence

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32

NULL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
lIT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
SP

"
/I
$
%
&

(
)

*
+

.
/
o
1
2

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell
Backspace
Horizontal tabulation
Line feed
Vertical tabulation
Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block
Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Exclamation point
Quotation marks
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk
Plus
Comma
Hyphen
Period
Slant
Zero
One
Two

---(Continued on next page)

C-2 Migration From NOS to NOS/VE Revision F

Table C-l. Full ASCII Chara,cter Set and Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Se1

56 38 8 Eigh'L
57 39 9 Nine
58 3A Colon
59 3B Semicolon
60 3C < Less than
61 3D Equal to
62 3E > Greater than
63 3F ? Question mark
64 40 @ Commercial at
65 41 A Uppercase A
66 42 B Uppercase B
67 43 C Uppercase C
68 44 D Uppercase D
69 45 E Uppercase E
70 46 F Uppercase F
71 47 G Uppercase G
72 48 H Uppercase H
73 49 I Uppercase I
74 4A J Uppercase J
75 4B K Uppercase K
76 4C L Uppercase L
77 4D M Uppercase M
78 4E N Uppercase N
79 4F 0 Uppercase 0
80 50 P Uppercase P
81 51 Q Uppercase Q
82 52 R Uppercase R
83 53 S Uppercase S
84 54 T Uppercase T
85 55 U Uppercase U
86 56 V Uppercase V
87 57 W Uppercase W
88 58 X Uppercase X
89 59 y Uppercase y

90 5A Z Uppercase Z
91 5B [Opening bracket
92 5C \ Reverse slant
93 5D] Closing bracket
94 5E Circumflex
95 5F Underline
96 60 ~ Grave accent
97 61 a Lowercase a
98 62 b Lowercase b
99 63 c Lowercase c
100 64 d Lowercase d

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-3

I Table C-1. Full ASCII Character Set and Collating Sequence

{Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

101 65 e Lowercase e
102 66 f Lowercase f
103 67 g Lowercase g
104 68 h Lowercase h
105 69 i Lowercase i
106 6A j Lowercase j
107 6B k Lowercase k
108 6C 1 Lowercase 1
109 6D m Lowercase m
110 6E n Lowercase n
111 6F 0 Lowercase 0

112 70 P Lowercase p
113 71 q Lowercase q
114 72 r Lowercase r
115 73 s Lowercase s
116 74 t Lowercase t
117 75 u Lowercase u
118 76 v Lowercase v
119 77 w Lowercase w
120 78 x Lowercase x
121 79 y Lowercase y
122 7A z Lowercase z
123 7B { Opening brace
124 7C I Vertical line
125 7D } Closing brace
126 7E Tilde
127 7F DEL Delete

C-4 Migration From NOS to NOS/VE Revision F

Table C-2. OSV$ASCII6_FOLDE~ Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 20 SP Space
01 21 Exclamation point
02 22 " Quotation marks
03 23 II Number sign
04 24 $ Dollar sign
05 25 % Percent sign
06 26 & Ampersand
07 27 Apostrophe
08 28 (Opening parenthesis
09 29) Closing parenthesis
10 2A * Asterisk
11 2B + Plus
12 2C Comma
13 2D Hyphen
14 2E Period
15 2F / Slant
16 30 0 Zero
17 31 1 One
18 32 2 Two
19 33 3 Three
20 34 4 Four
21 35 5 Five
22 36 6 Six
23 37 7 Seven
24 38 8 Eight
25 39 9 Nine
26 3A Colon
27 3B Semicolon
28 3C < Less than
29 3D Equals
30 3E > Greater than
31 3F ? Question mark
32 40,60 @,'" Commercial at, grave accent
33 41,61 A,a Uppercase A, lowercase a
34 42,62 B,b Uppercase B, lowercase b
35 43,63 C,c Uppercase C, lowercase c
36 44,64 D,d Uppercase D, lowercase d
37 45,65 E,e Uppercase E, lowercase e
38 46,66 F,f Uppercase F, lowercase f
39 47,67 G,g Uppercase G, lowercase g
40 48,68 H,h Uppercase H, lowercase h
41 49,69 I,i Uppercase I, lowercase i
42 4A,6A J ,j Uppercase J, lowercase j
43 4B,6B K,k Uppercase K, lowercase k
44 4C,6C L,l Uppercase L, lowercase 1
45 4D,6D M,m Uppercase M, lowercase m

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-5

u

I Table C-2. OSV$ASCII6_FOLDED Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 4E,6E N,n Uppercase N, lowercase n
47 4F,6F 0,0 Uppercase 0, lowercase 0
48 50,70 P,p Uppercase P, lowercase p
49 51,71 Q,q Uppercase Q, lowercase q
50 52,72 R,r Uppercase R, lowercase r
51 53,73 S,s Uppercase S, lowercase s
52 54,74 T,t Uppercase T, lowercase t
53 55,75 U,u Uppercase U, lowercase u
54 56,76 V,v Uppercase V, lowercase v
55 57,77 W,w Uppercase W, lowercase w
56 58,78 X,x Uppercase X, lowercase x
57 59,79 Y,y Uppercase Y, lowercase y
58 5A,7A Z,Z Uppercase Z, lowercase z
59 5B,7B [, { Opening bracket, opening brace
60 5C,7C \, I Reverse slant, vertical line
61 5D,7D] , } Closing bracket, closing brace
62 SE,7E Circumflex, tilde
63 SF Underline

C-6 Migration From NOS to NOS/VE Revision F

Table C-3. OSV$ASCII6_STRICT Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===a===.

00 20 SP Space
01 21 Exclamation point
02 22 " Quotation marks
03 23 II Number sign
04 24 $ Dollar sign
05 25 % Percent sign
06 26 & Ampersand
07 27 Apostrophe
08 28 (Opening parenthesis
09 29) Closing parenthesis
to 2A * Asterisk
11 2B + Plus
12 2C Comma
13 2D Hyphen
14 2E Period
15 2F / Slant
16 30 0 Zero
17 31 1 One
18 32 2 Two
19 33 3 Three
20 34 4 Four
21 35 5 Five
22 36 6 Six
23 37 7 Seven
24 38 8 Eight
25 39 9 Nine
26 3A Colon
27 3B Semicolon
28 3C < Less than
29 3D Equals
30 3E > Greater than
31 3F ? Question mark
32 40 @ Commercial at
33 41 A Uppercase A
34 42 B Uppercase B
35 43 C Uppercase C
36 44 D Uppercase D
37 45 E Uppercase E
38 46 F Uppercase F
39 47 G Uppercase G
40 48 H Uppercase H
41 49 I Uppercase I
42 4A J Uppercase J
43 4B K Uppercase K
44 4C L Uppercase L
45 4D M Uppercase M

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-7

I

I Table C-3. OSV$ASCII6_STRIC! Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 4E N Uppercase N
47 4F 0 Uppercase 0
48 50 P Uppercase P
49 51 Q Uppercase Q
50 52 R Uppercase R
51 53 S Uppercase S
52 54 T Uppercase T
53 55 U Uppercase U
54 56 V Uppercase V
55 57 W Uppercase W
56 58 X Uppercase X
57 59 y Uppercase y

58 5A Z Uppercase Z
59 5B [Opening bracket
60 5C \ Reverse slant
61 5D] Closing bracket
62 5E Circumflex
63 5F Underline

C-8 Migration From NOS to NOS/VE Revision F

Table C-4. OSV$COBOL6_FOLDE~ Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 20 SP Space
01 40,60 @, Commercial at, grave accent
02 25 % Percent sign
03 5B,7B [, { Opening bracket, opening brace
04 5F Underline
05 23 7f Number sign
06 26 & Ampersand
07 27 Apostrophe
08 3F ? Question mark
09 3E > Greater than
10 5C,7C ~'l Reverse slant, vertical line
11 5E,7E Circumflex, tilde
12 2E Period
13 29 Closing parenthesis
14 3B Semicolon
15 2B + Plus
16 24 $ Dollar sign
17 2A * Asterisk
18 2D Hyphen
19 2F / Slant
20 2C , Comma
21 28 (Opening parenthesis
22 3D Equals
23 22 " Quotation marks
24 3C < Less than
25 41,61 A,a Uppercase A, lowercase a
26 42,62 B,b Uppercase B, lowercase b
27 43,63 C,c Uppercase C, lowercase c
28 44,64 D,d Uppercase D, lowercase d
29 45,65 E,e Uppercase E, lowercase e
30 46,66 F,f Uppercase F, lowercase f
31 47,67 G,g Uppercase G, lowercase g
32 48,68 H,h Uppercase H, lowercase h
33 49,69 I,i Uppercase I, lowercase i
34 21 ! Exclamation point
35 4A,6A J ,j Uppercase J, lowercase j
36 4B,6B K,k Uppercase K, lowercase k
37 4C,6C L,l Uppercase L, lowercase I
38 4D,6D M,m Uppercase M, lowercase m
39 4E,6E N,n Uppercase N, lowercase n
40 4F,6F 0,0 Uppercase 0, lowercase 0
41 50,70 P,p Uppercase P, lowercase p
42 51,71 Q,q Uppercase Q, lowercase q
43 52,72 R,r Uppercase R, lowercase r
44 5D,7D],} Closing bracket, closing brace
45 53,73 S,s Uppercase S, lowercase s

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-9

I

I Table C-4. OSV$COBOL6_FOLDE~ Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 54,74 T,t Uppercase T, lowercase t
47 55,75 U,u Uppercase U, lowercase u
48 56,76 V,v Uppercase V, lowercase v
49 57,77 W,w Uppercase W, lowercase w
50 58,78 X,x Uppercase X, lowercase x
51 59,79 Y,y Uppercase Y, lowercase y
52 5A,7A Z,z Uppercase Z, lowercase z
53 3A Colon
54 30 0 Zero
55 31 1 One
56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five
60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

C-I0 Migration From NOS to NOS/VE Revision F

Table C-5. OSV$COBOL6_STRICT Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 20 SP Space
01 40 @ Commercial at
02 25 % Percent sign
03 5B [Opening bracket
04 SF Underline
05 23 7! Number sign
06 26 & Ampersand
07 27 Apostrophe
08 3F ? Question mark
09 3E > Greater than
10 5C \ Reverse slant
11 5E Circumflex
12 2E Period
13 29) Closing parenthesis
14 3B Semicolon
15 2B + Plus
16 24 $ Dollar sign
17 2A * Asterisk
18 2D Hyphen
19 2F / Slant
20 2C , Comma
21 28 (Opening parenthesis
22 3D Equals
23 22 " Quotation marks
24 3C < Less than
25 41 A Uppercase A
26 42 B Uppercase B
27 43 C Uppercase C
28 44 D Uppercase D
29 45 E Uppercase E
30 46 F Uppercase F
31 47 G Uppercase G
32 48 H Uppercase H
33 49 I Uppercase I
34 21 Exclamation point
35 4A J Uppercase J
36 4B K Uppercase K
37 4C L Uppercase L
38 4D M Uppercase M
39 4E N Uppercase N
40 4F 0 Uppercase 0
41 50 p Uppercase P
42 51 Q Uppercase Q
43 52 R Uppercase R
44 5D] Closing bracket
45 53 S Uppercase S

---(Continued on next page)

Revision F Character Sets and Collating. Sequences C-11

I

I Table C-5. OSV$COBOL6_STRICT Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 54 T Uppercase T
47 55 U Uppercase U
48 56 V Uppercase V
49 57 W Uppercase W
50 58 X Uppercase X
51 59 y Uppercase Y

52 SA Z Uppercase Z
53 3A Colon
54 30 0 Zero
55 31 1 One
56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five
60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

C-12 Migration From NOS to NOS/VE Revision F

Table C-6. OSV$DISPLAY63_F~LDED Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF, 25, and 7F through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 41,61 A,a Uppercase A, lowercase a
01 42,62 B,b Uppercase B, lowercase b
02 43,63 C,c Uppercase C, lowercase c
03 44,64 D,d Uppercase D, lowercase d
04 45,65 E,e Uppercase E, lowercase e
05 46,66 F,f Uppercase F, lowercase f
06 47,67 G,g Uppercase G, lowercase g
07 48,68 H,h Uppercase H, lowercase h
08 49,69 I,i Uppercase I, lowercase i
09 4A,6A J ,j Uppercase J, lowercase j
10 4B,6B K,k Uppercase K, lowercase k
11 4C,6C L,l Uppercase L, lowercase 1
12 4D,6D M,m Uppercase M, lowercase m
13 4E,6E N,n Uppercase N, lowercase n
14 4F,6F 0,0 Uppercase 0, lowercase 0
15 50,70 P,p Uppercase P, lowercase p
16 51,71 Q,q Uppercase Q, lowercase q
17 52,72 R,r Uppercase R, lowercase r
18 53,73 S,s Uppercase S, lowercase s
19 54,74 T,t Uppercase T, lowercase t
20 55,75 U,u Uppercase U, lowercase u
21 56,76 V,v Uppercase V, lowercase v
22 57,77 W,w Uppercase W, lowercase w
23 58,78 X,x Uppercase X, lowercase x
24 59,79 Y,y Uppercase Y, lowercase y
25 5A,7A Z,z Uppercase Z, lowercase z
26 30 0 Zero
27 31 1 One
28 32 2 Two
29 33 3 Three
30 34 4 Four
31 35 5 Five
32 36 6 Six
33 37 7 Seven
34 38 8 Eight
35 39 9 Nine
36 2B + Plus
37 2D Hyphen
38 2A * Asterisk
39 2F / Slant
40 28 (Opening parenthesis
41 29) Closing parenthesis
42 24 $ Dollar sign
43 3D Equals
44 20 SP Space
45 2C Comma

------~--(Continued on next page)

Revision F Character Sets and Collating Sequences C-13

I

I' Table C-6. OSV$OISPLAY63_FOLOEO Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 2E . Period
47 23 /I Number sign
48 5B,7B [, { Opening bracket, opening brace
49 50,70] , } Closing bracket, closing brace
50 3A Colon
51 22 " Quotation marks
52 SF Underline
53 21 T Exclamation point
54 26 & Ampersand
55 27 Apostrophe
56 3F ? Question mark
57 3C < Less than
58 3E > Greater than
59 40,60 @,'" Commercial at, grave accent
60 5C,7C \, I Reverse slant, vertical line
61 5E,7E Circumflex, tilde
62 3B Semicolon

C-14 Migration From NOS to NOS/VE Revision F

Table C-7. OSV$DISPLAY63_S~RICT Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF, 25, and 60 through FF
hexadecimal) are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 41 A Uppercase A
01 42 B Uppercase B
02 43 C Uppercase C
03 44 D Uppercase D
04 45 E Uppercase E
05 46 F Uppercase F
06 47 G Uppercase G
07 48 H Uppercase H
08 49 I Uppercase I
09 4A J Uppercase J
10 4B K Uppercase K
11 4C L Uppercase L
12 4D M Uppercase M
13 4E N Uppercase N
14 4F 0 Uppercase 0
15 50 P Uppercase P
16 51 Q Uppercase Q
17 52 R Uppercase R
18 53 S Uppercase S
19 54 T Uppercase T
20 55 U Uppercase U
21 56 V Uppercase V
22 57 W Uppercase W
23 58 X Uppercase X
24 59 Y Uppercase Y
25 SA Z Uppercase Z
26 30 0 Zero
27 31 1 One
28 32 2 Two
29 33 3 Three
30 34 4 Four
31 35 5 Five
32 36 6 Six
33 37 7 Seven
34 38 8 Eight
35 39 9 Nine
36 2B + Plus
37 2D Hyphen
38 2A * Asterisk
39 2F / Slant
40 28 (Opening parenthesis
41 29) Closing parenthesis
42 24 $ Dollar sign
43 3D Equals
44 20 SP Space
45 2C Comma

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-15

I

I Table C-7. OSV$DISPLAY63_STRICT Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 2E Period
47 23 /I Number sign
48 5B [Opening bracket
49 5D] Closing bracket
50 3A Colon
51 22 " Quotation marks
52 5F Underline
53 21 T Exclamation point
54 26 & Ampersand
55 27 Apostrophe
56 3F ? Question mark
57 3C < Less than
58 3E > Greater than
59 40 @ Commercial at
60 5C \ Reverse slant
61 5E Circumflex
62 3B Semicolon

C-16 Migration From NOS to NOS/VE Revision F

Table C-8. OSV$DISPLAY64_FO~DED Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 3A Colon
01 41,61 A,a Uppercase A, lowercase a
02 42,62 B,b Uppercase B, lowercase b
03 43,63 C,c Uppercase C, lowercase c
04 44,64 D,d Uppercase D, lowercase d
05 45,65 E,e Uppercase E, lowercase e
06 46,66 F,f Uppercase F, lowercase f
07 47,67 G,g Uppercase G, lowercase g
08 48,68 H,h Uppercase H, lowercase h
09 49,69 I,i Uppercase I, lowercase i
10 4A,6A J,j Uppercase J, lowercase j
11 4B,6B K,k Uppercase K, lowercase k
12 4C,6C L,l Uppercase L, lowercase 1
13 4D,6D M,m Uppercase M, lowercase m
14 4E,6E N,n Uppercase N, lowercase n
15 4F,6F 0,0 Uppercase 0, lowercase 0
16 50,70 P,p Uppercase P, lowercase p
17 51,71 Q,q Uppercase Q, lowercase q
18 52,72 R,r Uppercase R, lowercase r
19 53,73 S,s Uppercase S, lowercase s
20 54,74 T,t Uppercase T, lowercase t
21 55,75 U,u Uppercase U, lowercase u
22 56,76 V,v Uppercase V, lowercase v
23 57,77 W,w Uppercase W, lowercase w
24 58,78 X,x Uppercase X, lowercase x
25 59,79 Y,y Uppercase Y, lowercase y
26 5A,7A Z,z Uppercase Z, lowercase z
27 30 0 Zero
28 31 1 One
29 32 2 Two
30 33 3 Three
31 34 4 Four
32 35 5 Five
33 36 6 Six
34 37 7 Seven
35 38 8 Eight
36 39 9 Nine
37 2B + Plus
38 2D Hyphen
39 2A * Asterisk
40 2F / Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Dollar sign
44 3D Equals
45 20 SP Space

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-17

I Table C-8. OSV$DISPLAY64_FO~DED Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 2C Comma
47 2E . Period
48 23 /I Number sign
49 5B,7B [, { Opening bracket, opening brace
50 5D,7D] , } Closing bracket, closing brace
51 25 % Percent sign
52 22 " Quotation marks
53 5F Underline
54 21 T Exclamation point
55 26 & Ampersand
56 27 Apostrophe
57 3F ? Question mark
58 3C < Less than
59 3E > Greater than
60 40,60 @, Commercial at, grave accent
61 5C,7C \,1 Reverse slant, vertical line
62 5E,7E Circumflex, tilde
63 3B Semicolon

C-18 Migration From NOS to NOS/VE Revision F

Table C-9. OSV$DISPLAY64_STRICT Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through 1F and 60 through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 3A Colon
01 41 A Uppercase A
02 42 B Uppercase B
03 43 C Uppercase C
04 44 D Uppercase D
05 45 E Uppercase E
06 46 F Uppercase F
07 47 G Uppercase G
08 48 H Uppercase H
09 49 I Uppercase I
10 4A J Uppercase J
11 4B K Uppercase K
12 4C L Uppercase L
13 4D M Uppercase M
14 4E N Uppercase N
15 4F 0 Uppercase 0
16 50 P Uppercase P
17 51 Q Uppercase Q
18 52 R Uppercase R
19 53 S Uppercase S
20 54 T Uppercase T
21 55 U Uppercase U
22 56 V Uppercase V
23 57 W Uppercase W
24 58 X Uppercase X
25 59 Y Uppercase Y
26 SA Z Uppercase Z
27 30 0 Zero
28 31 1 One
29 32 2 Two
30 33 3 Three
31 34 4 Four
32 35 5 Five
33 36 6 Six
34 37 7 Seven
35 38 8 Eight
36 39 9 Nine
37 2B + Plus
38 2D Hyphen
39 2A * Asterisk
40 2F / Slant
41 28 (Opening parenthesis
42 29) Closing parenthesis
43 24 $ Dollar sign
44 3D Equals
45 20 SP Space

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-19

I

I Table C-9. OSV$DISPLAY64_ST~ICT Collating Sequence

(Continued from previous page)--------------------------~------------------------------------

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 2C Comma
47 2E Period
48 23 II Number sign
49 5B [Opening bracket
SO SD] Closing bracket
51 25 % Percent sign
52 22 " Quotation marks
53 SF Underline
54 21 T Exclamation point
55 26 & Ampersand
56 27 Apostrophe
57 3F ? Question mark
58 3C < Less than
59 3E > Greater than
60 40 @ Commercial at
61 5C \ Reverse slant
62 SE Circumflex
63 3B Semicolon

C-20 Migration From NOS to NOS/VE Revision F

Table C-10. OSV$EBCDIC Collating Sequence

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

000 00
001 01
002 02
003 03
004 9C
005 09
006 86
007 7F
008 97
009 8D
010 8E
011 OB
012 OC
013 OD
014 OE
015 OF
016 10
017 11
018 12
019 13
020 9D
021 85
022 08
023 87
024 18
025 19
026 92
027 8F
028 1C
029 1D
030 IE
031 IF
032 80
033 81
034 82
035 83
036 84
037 OA
038 17
039 1B
040 88
041 89
042 8A
043 8B
044 8C
045 05
046 06
047 07
048 90
049 91
050 16
051 93
052 94

NUL
SOH
STX
ETX

HT

DEL

VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3

BS

CAN
EM

FS
GS
RS
US

LF
ETB
ESC

ENQ
ACK
BEL

SYN

Null
Start of heading
Start of text
End of text
Unassigned
Horizontal tabulation
Unassigned
Delete
Unassigned
Unassigned
Unassigned
Vertical tabulation
Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Unassigned
Unassigned
Backspace
Unassigned
Cancel
End of medium
Unassigned
Unassigned
File separator
Group separator
Record separator
Unit separator
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Line feed
End of transmission block
Escape
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Enquiry
Acknowledge
Bell
Unassigned
Unassigned
Synchronous idle
Unassigned
Unassigned

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-21

I

I Table C-10. OSV$EBCDIC Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

053 95
054 96
055 04
056 98
057 99
058 9A
059 9B
060 14
061 15
062 9E
063 1A
064 20
065 AO
066 Al
067 A2
068 A3
069 A4
070 AS
071 A6
072 A7
073 A8
074 5B
075 2E
076 3C
077 28
078 2B
079 21
080 26
081 A9
082 AA
083 AB
084 AC
085 AD
086 AE
087 AF
088 BO
089 Bl
090 5D
091 24
092 2A
093 29
094 3B
095 5E
096 2D
097 2F
098 B2
099 B3
100 B4
101 B5
102 B6
103 B7
104 B8
105 B9

EOT

DC4
NAK

SUB
SP

<
(
+

&

]
$

*

/

Unassigned
Unassigned
End of transmission
Unassigned
Unassigned
Unassigned
Unassigned
Device control 4
Negative acknowledge
Unassigned
Substitute
Space
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Opening bracket
Period
Less than
Opening parenthesis
Plus
Exclamation point
Ampersand
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Closing bracket
Dollar sign
Asterisk
Closing parenthesis
Semicolon
Circumflex
Hyphen
Slant
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned

---(Continued on next page)

C-22 Migration From NOS to NOS/VE Revision F

Table C-10. OSV$EBCDIC Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

106 7C
107 2C
108 25
109 SF
110 3E
111 3F
112 BA
113 BB
114 BC
115 BD
116 BE
117 BF
118 CO
119 C1
120 C2
121 60
122 3A
123 23
124 40
125 27
126 3D
127 22
128 C3
129 61
130 62
131 63
132 64
133 65
134 66
135 67
136 68
137 69
138 C4
139 C5
140 C6
141 C7
142 C8
143 C9
144 CA
145 6A
146 6B
147 6C
148 6D
149 6E
150 6F
151 70
152 71
153 72
154 CB
155 CC
156 CD
157 CE
158 CF

,
%

)"
?

/I
@

"
a
b
c
d
e
f
g
h
i

j
k
1
m
n
o
p
q
r

Vertical line
Comma
Percent sign
Underline
Greater than
Question mark
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Grave accent
Colon
Number sign
Commercial at
Apostrophe
Equals
Quotation marks
Unassigned
Lowercase a
Lowercase b
Lowercase c
Lowercase d
Lowercase e
Lowercase f
Lowercase g
Lowercase h
Lowercase i
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Lowercase j
Lowercase k
Lowercase 1
Lowercase m
Lowercase n
Lowercase 0

Lowercase p
Lowercase q
Lowercase r
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned

---(Continued on next page)

Revision F Character Sets and Collating Sequences C-23

I

I Table C-10. OSV$EBCDIC Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

159 DO Unassigned
160 D1 Unassigned
161 7E Unassigned
162 73 s Lowercase s
163 74 t Lowercase t
164 75 u Lowercase u
165 76 v Lowercase v
166 77 w Lowercase w
167 78 x Lowercase x
168 79 y Lowercase y
169 7A z Lowercase z
170 D2 Unassigned
171 D3 Unassigned
172 D4 Unassigned
173 D5 Unassigned
174 D6 Unassigned
175 D7 Unassigned
176 D8 Unassigned
177 D9 Unassigned
178 DA Unassigned
179 DB Unassigned
180 DC Unassigned
181 DD Unassigned
182 DE Unassigned
183 DF Unassigned
184 EO Unassigned
185 E1 Unassigned
186 E2 Unassigned
187 E3 Unassigned
188 E4 Unassigned
189 E5 Unassigned
190 E6 Unassigned
191 E7 Unassigned
192 7B { Opening brace
193 41 A Uppercase A
194 42 B Uppercase B
195 43 C Uppercase C
196 44 D Uppercase D
197 45 E Uppercase E
198 46 F Uppercase F
199 47 G Uppercase G
200 48 H Uppercase H
201 49 I Uppercase I
202 E8 Unassigned
203 E9 Unassigned
204 EA Unassigned
205 EB Unassigned
206 EC Unassigned
207 ED Unassigned
208 7D } Closing brace
209 4A J Uppercase J
210 4B K Uppercase K
211 4C L Uppercase L

---(Continued on next page)

C-24 Migration From NOS to NOS/VE Revision F

Table C-I0. OSV$EBCDIC Coll~ting Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

212 4D
213 4E
214 4F
215 50
216 51
217 52
218 EE
219 EF
220 FO
221 Fl
222 F2
223 F3
224 5C
225 9F
226 53
227 54
228 55
229 56
230 57
231 58
232 59
233 SA
234 F4
235 F5
236 F6
237 F7
238 F8
239 F9
240 30
241 31
242 32
243 33
244 34
245 35
246 36
247 37
248 38
249 39
250 FA
251 FB
252 FC
253 FD
254 FE
255 FF

Revision F

M
N
o
P
Q
R

\

S
T
U
V
W
X
Y
Z

o
1
2
3
4
5
6
7
8
9

Uppercase M
Uppercase N
Uppercase 0
Uppercase P
Uppercase Q
Uppercase R
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Reverse slant
Unassigned
Uppercase S
Uppercase T
Uppercase U
Uppercase V
Uppercase W
Uppercase X
Uppercase Y
Uppercase Z
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned
Unassigned

Character Sets and Collating Sequences C-25

I

I Table C-l1. OSV$EBCDIC6_FO~DED Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 7F through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
"Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 20 SP Space
01 2E Period
02 3C < Less than
03 28 (Opening parenthesis
04 2B + Plus
05 21 Exclamation point
06 26 & Ampersand
07 24 $ Dollar sign
08 2A * Asterisk
09 29 Closing parenthesis
10 3B ; Semicolon
11 5E,7E Circumflex, tilde
12 2D Hyphen
13 2F / Slant
14 2C , Comma
15 25 % Percent sign
16 5F Underline
17 3E)" Greater than
18 3F ? Question mark
19 3A Colon
20 23 II Number sign
21 40,60 @,'" Commercial at, grave accent
22 27 Apostrophe
23 3D Equals
24 22 " Quotation marks
25 5B,7B [,{ Opening bracket, opening brace
26 41,61 A,a Uppercase A, lowercase a
27 42,62 B,b Uppercase B, lowercase b
28 43,63 G,c UppercaseC, lowercase c
29 44,64 D,d ·Uppercase D, lowercase d
30 45,65 E,e Uppercase E, lowercase e
31 46,66 F,f Uppercase F, lowercase f
32 47,67 G,g Uppercase G, lowercase g
33 48,68 H,h Uppercase H, lowercase h
34 49,69 I,i Uppercase I, lowercase i
35 5D,7D] ,} Closing bracket, closing brace
'36 4A,6A J ,j Uppercase J, lowercase j
37 4B,6B K,k Uppercase K, lowercase k
38 AC,6C L,l Uppercase L, lowercase I
39 4D,6D M,m Uppercase M, lowercase m
40 4E,6E N,n Uppercase N, lowercase n
41 4F,6F 0,0 Uppercase 0, lowercase 0
42 50,70 P,p Uppercase P, lowercase p
43 51,71 Q,q UppercaseQ, lowercase q
44 52,72 R,r Uppercase R, lowercase r
45 5C,7C \ ,I Reverse slant, vertical line

---(Continued on next page)

C-26 Migration From NOS to NOS/VE Revision F

Table C-11. OSV$EBCDIC6_FOL~ED Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

. Graphic or
Mnemonic Name or Meaning

===

46 53,73 S,s Uppercase S, lowercase s
47 54,74 T,t Uppercase T, lowercase t
48 55,75 U,u Uppercase U, lowercase u
49 56,76 V,v Uppercase V, lowercase v
50 57,77 W,w Uppercase W, lowercase w
51 58,78 X,x Uppercase X, lowercase x
52 59,79 Y,y Uppercase Y, lowercase y
53 5A,7A Z,z Uppercase Z, lowercase z
54 30 0 Zero
55 31 1 One
56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five
60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

Revision F Character Sets and Collating Sequences C-27

I

I Table C-12. OSV$EBCDIC6_STRICT Collating Sequence

Any ASCII codes not listed in this table (ASCII codes 0 through IF and 60 through FF hexadecimal)
are ordered as equal to the space (ASCII code 20 hexadecimal).

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

00 20 SP Space
01 2E Period
02 3C < Less than
03 28 (Opening parenthesis
04 2B + Plus
05 21 Exclamation point
06 26 & Ampersand
07 24 $ Dollar sign
08 2A * Asterisk
09 29 Closing parenthesis
10 3B ; Semicolon
11 5E " Circumflex
12 2D Hyphen
13 2F / Slant
14 2C , Comma
15 25 % Percent sign
16 SF Underline
17 3E ") Greater than
18 3F ? Question mark
19 3A Colon
20 23 II Number sign
21 40 @ Commercial at
22 27 Apostrophe
23 3D Equals
24 22 " Quotation marks
25 5B [Opening bracket
26 41 A Uppercase A
27 42 B Uppercase B
28 43 C Uppercase C
29 44 D Uppercase D
30 45 E Uppercase E
31 46 F Uppercase F
32 47 G Uppercase G
33 48 H Uppercase H
34 49 I Uppercase I
35 5D] Closing bracket
36 4A J Uppercase J
37 4B K Uppercase K
38 4C L Uppercase L
39 4D M Uppercase M
40 4E N Uppercase N
41 4F 0 Uppercase 0

42 50 P Uppercase P
43 51 Q Uppercase Q
44 52 R Uppercase R
45 5C \ Reverse slant

---(Continued on next page)

C-28 Migration From NOS to NOS/VE Revision F

Table C-12. OSV$EBCDIC6_STR~CT Collating Sequence

(Continued from previous page)---

Collating
Sequence
Position

ASCII Code
(Hexadecimal)

Graphic or
Mnemonic Name or Meaning

===

46 53 S Uppercase S
47 54 T Uppercase T
48 55 U Uppercase U
49 56 V Uppercase V
50 57 W Uppercase W
51 58 X Uppercase X
52 59 y Uppercase Y
53 SA Z Uppercase Z
54 30 0 Zero
55 31 1 One
56 32 2 Two
57 33 3 Three
58 34 4 Four
59 35 5 Five
60 36 6 Six
61 37 7 Seven
62 38 8 Eight
63 39 9 Nine

Revision F Character Sets and Collating Sequences C-29

Unsupported AN~I COBOL Features D

The following ANSI features are implemented in COBOL 5 but not in NOS/VE COBOL.

Communication Facility (MCS)

The Communication Facility is not available on NOS/VE.

FILE STATUS
The returned status codes are expanded to conform to the proposed new ANSI standard. Old ones are
still the same; existing programs should not be affected. The only impact is that codes that
resulted in a 90 or 99 status and aborted the job no longer abort the job and now have have
another status code.

Labels
The operating system does not support any user label records on any file. However, the compiler
does accept label declarations in the FD entry for a file.

RERUN Clause

There is no checkpoint-restart facility.

REWRITE Statement
The REWRITE statement for sequential files is not supported.

Segmentation

Because there are no overlays on NOS/VE, segmentation is not supported.

The concept of initial state overlays is not valid in NOS/VE COBOL. In a NOS/VE COBOL program,
any sections that are numbered 50 or greater could function differently than with COBOL 5. The
differences occur in altered GO TO statements (through the ALTER statement) and in PERFORM exits.
If all PERFORM statements exit normally and the ALTER statement is not used, no conversion of the
program is necessary; otherwise, manual conversion is necessary.

You can use the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph of the Environment Division
to change the range designations, but the clause has no effect on the program.

Revision F Unsupported ANSI COBOL Features D-l

I

I

I

FORTRAN Default FIT Field Values E

FORTRAN default file information table (FIT) field values are provided for your reference. You
may need this information when coding FILE commands for CYBER 170 files used with FORTRAN FMA.
The values listed in the tables describe files used with NOS FORTRAN 5 when your application does
not describe the files in a FILE command.

When using FMA, however, the same set of default values do not apply. FMA uses CYBER Record
Manager default values, not FORTRAN default values. Therefore, you may need to specify field
values when executing with FMA that you got by default when executing on NOS. The CYBER 170
default FIT fields are described in the following tables:

E-1 For Formatted, NAMELIST, and List Directed Sequential I/O

E-2 For Unformatted Sequential I/O

E-3 For Direct Access Formatted and Unformatted I/O

Revision B FORTRAN Default FIT Field Values E-1

I

Table E-1. NOS FORTRAN Default FIT Fields for Formatted, Namelist, and List Directed
Sequential I/O .

FIT Field Meaning Mnemonic Value

===

CIO buffer size (words)

Buffer below highest address

Block type

Close flag (positioning of file after close)

Length in characters of record after trailer count field (T type
records only)

Conversion mode

Beginning character position of trailer count field, numbered from zero
(T type records only)

Length field (D type records) or trailer count field (T type records)
is binary

Type of information to be listed in dayfile

Type of information to be listed in error file

Error options

Trivial error limit

Fatal Flush

Length in characters of an F or Z type record
(same as MRL)

File organization

Character length of fixed header for T type records

Length of user's label area (number of characters)

Logical file name

Length in characters of record length field (D type records)

Beginning character position of record length, numbered from zero
(D type records)

Label type

Maximum block length in characters

Minimum block length in characters

BFSt

BBH

BT

CF

CL

CM

CP

C1

DFC

EFC

EO

ERL

FF

FL

FO

HL

LBL

LFN

LL

LP

LT

MBL

MNB

--(Continued

E-2 Migration From NOS to NOS/VE

t

0

C

N

0

YES

0

NO

3

0

AD

0

0

150tt

SQ

0

0

ttt

0

0

ANY

0

0

on next page)

Revision F

Table E-1. NOS FORTRAN Default FIT Fields for Formatted, Namelist, and List Directed
Sequential I/O .

(Continued from previous page}--

FIT Field Meaning Mnemonic Value

======~~~===

Minimum record length in characters

Maximum record length in characters

Multiple of characters per K, E type block

Open flag (positioning of file after open)

Padding character for K, E type blocks

Processing direction

Number of records per K type block

Record mark character (R records)

Record type

Length field (D type records) or trailer count field (T type records)
has sign overpunch

Suppress buffering

Suppress read ahead

Character length of trailer portion of T type records

User label processing

End of volume flag (positioning of file at volume CLOSEM time)

MNR 0

MRLtt n/a

M~ 2

OF N

PC 76B

PD 10

RB 1

RMK 62B

RT Z

SB NO

SBF NO

SPR NO

TL 0

ULP NO

VF U

tFor use with FMA, buffer is determined by CYBER Record Manager using the record length.

ttFor use with FMA, you must specify an FL that equals or exceeds the record length. When
executing on CYBER 170, you can change the default on the PROGRAM or OPEN statement. For
formatted, NAMELIST, and list directed READ/WRITE statements, a FILE command can decrease but
not increase the maximum record length declared on the PROGRAM statement (static mode).

tttFor FMA, set by a FILE command and by the EXECUTE MIGRATION TASK command, PROGRAM or OPEN
statements. For regular use on CYBER 170, set by PROGRAM or-OPEN statements, or by an
execution control statement or a FILE command.

Revision F FORTRAN Default FIT Field Values E-3 I

Table E-2. NOS FORTRAN Oef~ult FIT Fields Unformatted Sequential I/O

FIT Field Meaning Mnemonic Value

==

CIO buffer size (words) BFSt t

Buffer below highest address BBH 0

Block type BT I

Close flag (positioning of file after close) CF N

Length in characters of record after trailer count field (T type CL 0
records only)

Conversion mode CM NO

Beginning character position of trailer count field, numbered from zero CP 0
(T type records only)

Length field (0 type records) or trailer count field (T type records) is Cl NO
binary

Type of information to be listed in dayfile OFC 3

Type of information to be listed in error file EFC 0

Error options EO AD

Trivial error limit ERL 0

Fatal Flush FF 0

Length in characters of an F or Z type record (same as MRL) FL n/a

File organization FO SQ

Character length of fixed header for T type records HL 0

Length of user's label area (number of characters) LBL 0

Logical file name LFN tt

Length in characters of record length field (0 type records) LL 0

Beginning character position of record length, numbered from zero LP 0
(0 type records)

Label type LT ANY

Maximum block length in characters MBL 0

--(Continued on next page)

I E-4 Migration From NOS to NOS/VE Revision F

Table E-2. NOS FORTRAN Default FIT Fields Unformatted Sequential I/O

(Continued from previous page)--

FIT Field Meaning Mnemonic Value

==

Minimum block length in characters

Minimum record length in characters

Maximum record length in characters

Multiple of characters per K, E type block

Open flag (positioning of file after open)

Padding character for K, E type blocks

Processing direction .

Number of records per K type block

Record mark character (R records)

Record type

Length field (D type records) or trailer count field (T type records)
has sign overpunch

Suppress buffering

Suppress read ahead

Character length of trailer portion of T type records

User label processing

End of volume flag (positioning of file at volume CLOSEM time)

~B 0

M~ 0

MRLttt (2**23)-1

M~ 2

OF N

PC 76B

PD 10

RB 1

RMK n/a

RT W

SB NO

SBF NO

SPR NO

TL 0

ULP NO

VF U

tFor use with FMA, buffer is determined by CYBER Record Manager using the record length.

ttFor FMA, set by a FILE command and by the EXECUTE_MIGRATION_TASK command, PROGRAM or OPEN
statements. For regular use on CYBER 170, set by PROGRAM or OPEN statements, or by an
execution control statement or a FILE command.

tttFor use with FMA, you must specify an MRL that equals or exceeds the record length. When
running on CYBER 170, you can change the default on the PROGRAM or OPEN statement.

Revision F FORTRAN Default FIT Field Values E-5 I

Table E-3. NOS FORTRAN Default FIT Fields for pirect Access Formatted and Unformatted I/O

FIT Field Meaning Mnemonic Value

==

CIO buffer size (words) BFSt t

Buffer below highest address BBH 0

Block type BT C

Close flag (positioning of file after close) CF N

Length in characters of record after trailer count field (T type CL n/a
records only)

Conversion mode CM n/a

Beginning character position of trailer count field, numbered from zero CP n/a
(T type records only)

Length field (D type records) or trailer count field (T type records) is Cl n/a
binary

Type of information to be listed in dayfile DFC 3

Type of information to be listed in error file EFC 0

Error options EO AD

Trivial error limit ERL 0

Fatal Flush FF 0

Length in characters of an F or Z type record (same as MRL) FL n/a

File organization FO WA

Character length of fixed header for T type records HL n/a

Length of user's label area (number of characters) LBL n/a

Logical file name LFN tt

Length in characters of record length field (D type records) LL n/a

Beginning character position of record length, numbered from zero LP n/a
(D type records)

Label type LT n/a

Maximum block length in characters MBL n/a

Minimum block length in characters MNB n/a

--~---------------(Continued on next page)

I E-6 Migration From NOS to NOS/VE Revision F

Table E-3. NOS FORTRAN Default FIT Fields for Direct Access Formatted and Unformatted I/O

(Continued from previous page)--

FIT Field Meaning Mnemonic Value

==

Minimum record length in characters

Maximum record length in characters

Multiple of characters per K, E type block

Open flag (positioning of file after open)

Padding character for K, E type blocks

Processing direction

Number of records per K type block

Record mark character (R records)

Record type

Length field (D type records) or trailer count field (T type records)
has sign overpunch

Suppress buffering

Suppress read ahead

Character length of trailer portion of T type records

User label processing

End of volume flag (positioning of file at volume CLOSEM time)

~R n/a

~L n/a

~L n/a

OF N

PC n/a

PD 10

RB n/a

RMK n/a

RT U

SB NO

SBF n/a

SPR n/a

TL n/a

ULP NO

VF U

tFor use with FMA, buffer is determined by CYBER Record Manager using the record length.

ttFor FMA, set by a FILE command and by the EXECUTE MIGRATION TASK command, PROGRAM or OPEN
statements. For regular use on CYBER 170, set by PROGRAM or OPEN statements, or by an
execution control statement or a FILE command.

Revision F FORTRAN Default FIT Field Values E-7 I

NOS iIlD1ud NOSjV~ Similall'itiiesjDifferences Summary lFH

,.

This discussion provides a summary of similarities and differences between processing on the old
CDC CYBER series computer systems and the new CYBER computer systems that support dual-state
processing. The old systems support either NOS or NOS/BE only. The new systems support NOS/VE
(called the virtual state) and NOS (called the real state). The similarities and differences of
the systems are presented in tables as follows:

Table F-l CPU

Table F-2 Memory

Table F-3 Peripheral Processor

Table F-4 Operating System

TABLE F-l. CPU Similarities/Differences Summary

All Other CYBER 170 Models Dual-State CYBER 170 Models

==

60-bit word

Word addressing (10 bytes per word; 6 bits
per byte)

8 X registers (60 bits)

8 B registers (18 bits)

8 A registers

l's complement arithmetic

CYBER 170 real state instruction set

Register-to-register operations

Revision F

64-bit word

Byte/word addressing (8 bytes per word; 8 bits
per byte)

16 X registers (64 bits)

No B registers

16 A registers (48 bits) for store/ load
instructions.

2's complement arithmetic with NOS/VE; l's
complement arithmetic with NOS

CYBER 170 real state and virtual state
instructions are enabled using instruction set
mode bits Virtual Machine Identifier (VMID) in
virtual state exchange package.

Register-to-register operations

NOS and NOS/VE Similarities/Differences Summary F-l

I Table F-2. Memory Similarities/Differences Summary

All Other CYBER 170 Models Dual-State CYBER 170 Models

==

Maximum 131K word user address space

RA/FL relocation

17-bit word address within RA/FL defined
address space

262K word maximum system executable memory

Memory moves and swapping to manage memory

4096 times 2**31-byte user virtual address space

Hardware-segmented memory (maximum 4096 segments
per user address space)

Two-part virtual address

- Segment number (12 bits)

- Signed byte offset into segment (32 bits) space

64 M byte (potentially 2**31 byte) executable
real memory

Hardware paging and swapping to manage memory

I Table F-3. Peripheral Processor Similarities/Differences Summary

All Other CYBER 170 Models Dual-State CYBER 170 Models

==

Up to 2x10 12-bit peripheral processor units
(PPU's)

Up to 2x12 12-bit channels

Executes 12-bit PPU code

Memory size is 4K x 12 bits

12-bit wide data channels

60-bit access to central memory

18-bit central memory address for PPU read/
write operations

Real central memory addressing

SOO-ns major cycle time

16-word deadstart panel

Up to 4xS 16-bit peripheral processors (PP's)

Up to 6x4 12/16-bit channels

Executes 12-bit, 16-bit, or mixture, PP code
(upward compatible with other CYBER 170 models)

Memory size is 4K x 16 bits

12-bit and/or 16-bit wide data channels

64-(4x16 bits) and 60-(Sx12 bits) bit access to
central memory

28-bit central memory address for PP read/write
operations

Real central memory addressing

2S0-ns major cycle time

16-word deadstart panel and S12-word read-only
memory usable at deadstart

--

F-2 Migration From NOS to NOS/VE Revision F

Table F-4. Operating System Similarities/Differences Summary

All Other CYBER 170 Models Dual-State CYBER 170 Models

==

No shared memory among user address spaces
(defined by its RA/FL)

Code and data mixed within user's address
space

Exchange operation to go to CPU Monitor

CPU supports CYBER 170 real state instruction
set

System runs at system control points in
PPU's; CPU Monitor routes RA+l requests

Subsystems (that is, IAF, MAG, and so forth)
are protected by RA/FL mechanisms from each
other or the user and can be called only via
CPU Monitor.

Revision F

Segments can be shared among user address spaces
(code and data sharing possible)

Segments can be accessed for read, write,
execute, or a combination of operations; code
can be shared on a global basis

Exchange operation to go to CP Monitor

CP supports coexisting CYBER 170 real state and
virtual state instruction sets. VMID field,
within the virtual state exchange package, is
used to switch between real and virtual state
instruction sets. The environment for NOS is
established within the virtual state job space
and then state switching can be accomplished by
an exchange or trap operation and CALL or RETURN
instructions. Real state external interrupts
are supported and handled within the real state
environment.

Most NOS/VE system code runs within user address
space and obeys the same loading and linking
conventions.

- Levels of system code are protected by a
hardware-supported hierarchical ring mechanism
from less capable code modules (15 ring levels
are provided).

- System code can be directly called by a CALL
instruction similar to a return jump without
software assistance.

Subsystems are protected by hardware-supported
(key/lock) mechanisms from each other and are
directly callable by user code without software
assistance.

NOS and NOS/VE Similarities/Differences Summary F-3

n

Index

, 2-5

.. 2-4,6

"
" 2-5

A
A FMU descriptor 11-15,17
AAM (see Advanced Access Methods)
Abbreviating

Parameters 2-3
SCL commands 2-1

Abnormal status 4-17
Abort 11-10; 12-17; A-I
ACCEPT statement 15-1
$ACCESS_MODE 5-4
Access mode

ACCESS_MODE (AM) parameter
ATTACH_FILE command 4-13
COBOL use 10-18
CREATE _ FILE _PERMIT

command 4-16
Description 4-16,19; 10-8
FORTRAN use 10-17

Access permission 4-16,19
Definition A-I

Accessing online manuals B-1
Account number 4-18
Actual-key file organization 11-4; 15-9
Address space F -3
Advanced Access Methods (see also

CYBER Record Manager) 14-2
AK (see Actual-key file organization)
Alphabet name 15-21
Alphabetic

Character A-I
Literal 2-5

Alphanumeric
Character A-I
FMU data type 11-15
Literal 2-5

Alternate keys 14-2; 15-2,10
AM (see Access mode, ACCESS_MODE

parameter)
AND logical operator 5-3
ANSI

Standard compilers 13-2
Standard language A-I
Standard migration method 13-2
Tape label 12-53

Revision F

Usage 14-27; 15-17
ANSI-fixed length record type 10-6,15
ANSI parameter (see also ANSI,

Usage) 15-12
APL 7-17; 16-1
Apostrophe 2-5
Approaching program migration 13-1
Arithmetic

Differences 14-30; 15-5
Overflow 15-9,17
Underflow 14-30

ASCII
Character set 11-17; 12-56; 13-1; C-1
Collating sequence

COBOL default sequence 15-6
Listing C-2
Use 11-31; 17-2

Definition A-I
INTERNAL_CODE file

attribute 10-9,12
Native code set 13-1; 14-29
NOS ASCII mode 4-9,10
NOSNE 7-bit ASCII 4-9,10
NOS 12-bit ASCII 4-9,10
NOS 6/12-bit display code 4-9,10;

12-56
ASCII code set 15-6
ASCII6 collating sequence 11-31
ASCII6 folded collating sequence

Description 11-31
FORTRAN use 14-12,29
Listing C-5

ASCII6 strict collating sequence 11-31;
C-7

$ASIS 3-1,5; 10-14
ASIS (see $ASIS)
ASSIGN command 4-20
Assignment statement 5-3; 11-11; A-I
Associating files (see File connection)
AS6 12-56
AS8 12-56
Attach A-I
ATTACH_FILE (ATTF) command 4-13;

10-8,12.1
ATTF (see ATTACH_FILE command)
Attributes (see File attributes)
AUDIT (A) COBOL parameter 7-5;

15-11,13
A6 4-10; 10-9,12
AS 4-10; 10-9,12

B
B

BINARY_OBJECT parameter 14-24
BINARY parameter 15-13
FMU data type 11-15

Migration From NOS to NOSNE Index-!

BA file (see Byte addressable file
organization)

BAM (see Basic Access Methods)
BASE_LANGUAGE (BL) parameter 7-5;

12-29,41; 13-3; 15-4,11,13
Basic Access Methods (see also CYBER

Record Manager) 14-2
Batch jobs

Creating 9-1
Format of 9-1
Submitting 4-19; 9-3

Batch mode A-2
Beginning-of-information

Definition A-2
Positioning a file 3-5; 10-14

Binary data 12-56
Binary file

BINARY_OBJECT parameter 14-24
BINARY parameter 15-13
Compile-time file structure 10-19
Execution 7-7
Migration information 11-12,26; 12-56

BINARY_OBJECT parameter 7-1; 14-24;
15-13

BINARY parameter 7-4,6; 15-13; 17-3
BINDER statement 4-37
Bit .A-2
BL (see BASE_LANGUAGE

parameter)
BLOCK CONTAINS clause 10-22; 15-2
BLOCK COUNT clause 15-2
Block structure 5-6 .
BLOCK_ TYPE (BT) file attribute 10-21'

11-7; 12-5,33,56 '
BLOCK_ TYPE (BT) parameter 12-56
Blocking type 12-56
$BOI 3-5; 10-14; A-2
BOI (see $BOI)
Boolean

Data type 14-30; 15-6
Definition A-2 .
Operators 15-6
String constant A-2

BT (see BLOCK_TYPE file attribute or
BLOCK_ TYPE parameter)

Buffer input/output
Buffer statement A-2
FORTRAN use 10-16; 13-3; 14-21

Buffer size 15-6
BYE command 1-1
Byte 13-1; A-2
Byte addressable file organization

COBOL use 15-11
Definition A-2
Description 10-2,12,15
FORTRAN use 14-2

Byte offset A-2

Index-2 Migration From NOS to NOSNE

C
C.CMMMV utility 15-20
C.DMRST utility 15-20
C.DSPDN utility 15-20
C.DTCMP utility 15-20
C.FILE utility 15-20
C.GETEP utility 15-20
C.IOENA utility 15-20
C.IOST utility 15-20
C.LOK utility 15-20
C.SEEK utility 15-20
C.SORTP utility 15-20
C. UNLOK utility 15-20
CALL statement 15-2
$CATALOG 5-4
Catalog

CHANGE_CATALOG_ENTRY
(CHACE) command 4-20

Definition A-2
DISPLAY_CATALOG command 4-15
DISPLAY_CATALOG_ENTRY

command 4-22
Name A-3
Permanent file mechanism 3-1

CATLIST command 4-2
CC FILE parameter (see also

CHARACTER_CONVERSION file
attribute) 11-4

CC1 COBOL5 parameter 15-12
CD (see COMPILATION-DIRECTIVES

parameter)
CDC character set and collating

sequence 11-29
CDC code set 15-6
CDC-variable record type 10-6,15
CDCNET (see Control Data Distributed

Communication Network)
CDCS (see CYBER Database Control

System)
CHACE (see CHANGE_CATALOG_

ENTRY command)
CHAFA (see CHANGE_FILE_

ATTRIBUTES command)
CHAIS (see CHANGE_INTERACTION_

STYLE command)
CHANGE_CATALOG_ENTRY(CHACE)

command 4-2,20
Change file access permission 4-21
CHANGE_FILE_ATTRIBUTES (CHAFA)

command 4-24
CHANGE_INTERACTION _STYLE

(CHAIS) command 6-8
Change working catalog 3-3
CHANGE_170_REQUEST (CHAIR)

command
Description 4-6; 12-63
Examples 12-66
Format 12-64
Parameters 12-64

$CHAR 5-4

Revision F

Character
Data editing 14-22
Definition A-3
FMU data types 11-15
SCL names 2-5

CHARACTER_ CONVERSION (CC) file
attribute

COBOL use 10-21
Description 10-8; 11-17
FMA use 11-17

CHARACTER_CONVERSION (CC)
parameter 11-17; 12-65

Character set
COBOL default 15-6
Considerations 11-29; 12-65
FORTRAN default 14-29
Listings C-l

Character set conversion
By FMA 12-65
By FMU 11-17; 12-65
GET_FILE command 4-9
REPLACE_FILE command 4-10
Specifying collating sequence 11-31

CHAIR (see CHANGE_170_REQUEST
command)

CHECKPTX subroutine 14-16
CID (see CYBER Interactive Debug)
CL FILE parameter 14-10
Client application 11-2
$CLOCK 5-4
CLOCK function 14-16
CLOE (see CLOSE_ENVIRONMENT

command)
CLOSE_ENVIRONMENT (CLOE)

command
COBOL 12-40
FMA 12-12,40
FORTRAN 12-12

COBOL
Command 7-3; 15-12
Compiler call (see COBOL,

Command)
Compiler migration method 13-3
Differences 15-1
File attribute defaults 10-20
File Migration Aid 12-29
FMU data types 11-15
Migration methods 13-2
Parameters 7-3

COBOL 5 13-2; 15-1
COBOL5 compiler call 7-3; 13-3; 15-12
COBOL6 collating sequence

NOSNE correspondence 11-31
Sequence comparison 11-31

COBOL6 folded collating
sequence 11-31; C-9

COBOL6 strict collating sequence 11-31;
C-l1

Revision F

Code set
COBOL use 15-6
CODE-SET clause 10-22; 15-4
FORTRAN use 14-29
Listings C-l

COLFD (see COLLECT_FILE_
DESCRIPTION command)

COLLATE_ TABLE_NAME (CTN) file
attribute 10-9; 11-29

Collated key 10-13; 11-29; 14-4; A-3
Collating sequence

COBOL "default 15-6
Comparison 11-30
Concepts for variants 11-30
Definition A-3
FORTRAN default 14-31
Pascal 17-2
Predefined collation tables 10-9;

11-29; C-l
Specifying file collating

sequence 11-29; 15-11
7-bit ASCII collating sequence 11-30;

C-2
Collation table

COLLATE_ TABLE_NAME file
attribute 10-9; 11-29

Definition A-3
Predefined collation tables 11-29; C-l

COLLECT_FILE_DESCRIPTION
(COLFD) command 12-37

COLLECT_ TEXT (COLT)
command 4-31; 6-9; 11-22

COLSEQ statement 14-29
COLT (see COLLECT_TEXT command)
Comma 2-2
Command

Conventions for SCL 2-1
Correspondence for NOS and

NOSNE 4-1
Definition A-3
FMU command copy 11-8
List A-3

Commands (see either NOS commands or
NOSNE commands)

Comment 2-5; A-3
Common

Block A-3
File attributes 10-6
FORTRAN file interface 14-4
NOS and NOSNE commands 4-1

Communication Facility 15-19; D-l
COMP (see COMPUTATIONAL data

types)
COMPASS 13-3; 15-3
COMPILATION _DIRECTIVES (CD)

parameter 7-2; 14-24
Compilation time A-3
Compile-time input/output 10-19

Migration From NOS to NOSNE Index-3

Compiler
COBOL 15-12
Comparison 13-1
Definition A-3
Diagnosis method 13-3
FORTRAN 14-23
Listing file 10-19
Pascal 17-2

Compiling COBOL Programs 7-3
Compiling FORTRAN Programs 7-1
COMPUTATIONAL data types

COBOL 12-31; 15-7
FMU 11-15

Condition code 5-9; A-3
Condition handler 5-11
Conditional execution 5-9
Connecting files 4-25,27
Constants 5-1
CONTEXT, differences between NOS and

NOSNE 4-35
Continuation 2-6
Control Data Distributed Communication

Network 11-2
Control statement (see also

Command) A-3
Controlling job flow 5-6
Conventions

SCL commands 2-1
SCL files 3-1
SCL names 2-6
SCL parameters 2-1

Conversion references 12-43
Conversion (see Data conversion,

Migrating programs, and Migrating
files)

Converting APL2 files 16-1
Converting APL2 workspaces 16-1
COPF (see COPY_FILE command)
Copy

COPY command 4-2,15
COpy statement 15-2
FMU command copy 11-8

COPY_FILE (COPF) command 4-2,15
COPYEI command 4-2,15
Corresponding NOS and NOSNE

commands 4-1
CP 10-10
CPU similarities/differences F-l
CREATE_CATALOG_PERMIT (CRECP)

command 4-2
CREATE_FILE_CONNECTION (CREFC)

command 4-2,28
CREATE_FILE (CREF)

command 4-2,11; 11-4
CREATE_FILE_PERMIT (CREFP)

command 4-2,16
CREATE_INTERSTATE_CONNECTION

(CREIC) command 4-26; 11-22
CREATE_MANUAL (CREM)

command 4-37

Index-4 Migration From NOS to NOSNE

CREATE_OBJECT_LIBRARY (CREOL)
utility 8-1

CREATE_OUTPUT_RECORD (CREOR)
directive 11-11

CREATE_OUTPUT_RECORD_END
(CREOREND) directive 11-14

CREATE_ VARIABLE (CREV)
command 5-2

CREATE_170_REQUEST (CREIR)
command

Description 4-4; 12-54
Examples 12-60
Format 12-54
Parameters 12-54

CREF (see CREATE_FILE command)
CREFC (see CREATE_FILE_

CONNECTION command)
CREFP (see CREATE_FILE_PERMIT

command)
CREIS (see CREATE_INTERSTATE_

CONNECTION command)
CREM (see CREATE_MANUAL

command)
CREOL (see CREATE_OBJECT_

LIBRARY utility)
CREOR (see CREATE_OUTPUT_

RECORD directive)
CREOREND (see CREATE_OUTPUT_

RECORD_END directive)
CREV (see CREATE_VARIABLE

command)
CRE1R (see CREATE_170_REQUEST

command)
CRM (see CYBER Record Manager)
CTN (see COLLATE_ TABLE_NAME file

attribute)
Current position A-4
CYBER Database Control System 15-19
CYBER Interactive Debug 4-38
CYBER Record Manager 14-2
Cycle

Definition A-4
Number A-4
Referehce A-4
Usage 3-7; 4-21; 12-54

CZ (see also Z-type record) 11-2

D
D COBOL5 parameter 15-20
DA file organization (see Direct access,

File organization)
DA parameter (see DEBUG_AIDS

parameter)
Damage condition 4-21
Data block A-4

Revision F

Data conversion
Binary file 11-12,26
Character data 4-9,10; 12-56
CREATE_OUTPUT_RECORD

directive 11-11
Double precision 11-11,15
Floating point 11-12,15
GET_FILE command 4-9
REPLACE_FILE command 4-10

DATA_CONVERSION (DC)
parameter 4-10

Data differences (COBOL) 15-6
.DATA directive 6-2
Data exit 14-3
DATA_PADDING (DP) file

attribute 10-9
Data type

Boolean 14-30; 15-6
FMU 11-15

$DATE 5-4
DATE function 5-4; 14-16
DAYFILE 4-2,27
DC parameter (see DATA_ CONVERSION

parameter or DEFAULT_COLLATION
parameter)

DEBUG_AIDS (DA) parameter 7-2,4,7;
14-24; 15-14; 17-4

Debugging 4-20,38; 7-15
Deck A-4
DECODE statement 13-3; 14-21
Default A-4
DEFAULT_COLLATION (DC)

parameter 7-2; 14-24
DEFINE command in interstate

usage 1-1
DELCP (see DELETE_CATALOG_

PERMIT command)
DELETE_CATALOG_PERMIT (DELCP)

command 4-2
DELETE_FILE_CONNECTION (DELFC)

command 4-30
DELETE_FILE (DELF) command 4-2,12
DELETE_FILE_PERMIT (DELFP)

command 4-2,19
DELETE_ INTERSTATE _ CONNECTION

(DELIC) command 4-26
DELF (see DELETE_FILE command)
DELFC (see DELETE_FILE_

CONNECTION command)
DELFP (see DELETE_FILE_PERMIT

command)
DELIC (see DELETE_INTERSTATE_

CONNECTION command)
Delimiter 2-2; A-4
Describing files

CREATE_OUTPUT_RECORD
directive 11-11

FILE command 11-2,6,7,10
FMU file migration

examples 11-21,24,26; 12-59
FORTRAN file interface 14-3,13

Revision F

SET_FILE_ATTRIBUTES
command 4-22; 11-7

Descriptor 11-13; 14-22
DETACH_FILE (DETF) command

Description 4-14; 12-78
Examples 4-14; 12-78
Format 4-14; 12-78
Parameters 4-14; 12-78

DETF (see DETACH_FILE command)
DFC 14-14
Diagnostic messages 9-4; 12-25,37,78
Digit A-4
Direct access

Definition A-4
File organization 10-4; 11-4; 15-5,9;

A-4
Input/output A-4
Input/output (FORTRAN) 10-12,16;

14-2,21
NOSNE permanent files 3-1
READ statement 10-16
WRITE statement 10-16

Direct file (see also Direct access, File
organization) 15-5,10

Directive
CONTEXT command 4-36
Definition A-5
File 11-10,20; A-5

DISC (see DISPLAY_CATALOG
command)

DISCE (see DISPLAY_CATALOG_
ENTRY command)

DISCI (see DISPLAY_COMMAND_
INFORMATION command)

Discontinued features 16-2
DISFA (see DISPLAY_FILE_
ATTRIBUTES command)

DISFC (see DISPLAY_FILE_
CONNECTION command)

DISJS (see DISPLAY_JOB_STATUS
command)

DISL (see DISPLAY_LOG command)
DISPLAY_ CATALOG (DISC)
command 4-2,15

DISPLAY_CATALOG_ENTRY (DISCE)
command 4-2,22

DISPLAY (COBOL data type) 15-7
Display code

Data conversion 4-10
Definition A-5
FORTRAN use 14-29
INTERNAL_CODE file attribute 10-9
6-bit display code 4-10; 13-1
6/12-bit display code 4-10
63-character format 12-56
64-character format 12-56
8/12-bit display code 4-10

Display collating sequences
Comparison 11-30
OSVDISPLAY63_FOLDED C-13
OSVDISPLAY63_STRICT C-15

Migration From NOS to NOSNE Index-5

OSVDISPLAY64_FOLDED C-17
OSVDISPLAY64_STRICT C-19

DISPLAY_COMMAND_INFORMATION
(DISCI) command 4-4; 6-10; 12-53

DISPLAY_FILE_ATTRIBUTES (DISFA)
command 4-24

DISPLAY_FILE_CONNECTION (DISFC)
command 4-31

DISPLAY_JOB_STATUS (DISJS)
command 9-3

DISPLAY_LOG (DISL)
command 4-2,27,28

DISPLAY (NOS) command 4-3,33
DISPLAY_OPTIONS (DO)

parameter 4-22; 12-53
DISPLAY_TAPE_LABEL_ATTRIBUTES

(DISTLA) command
Description 4-5; 12-70
Examples 12-72
Format 12-71
Parameters 12-71

DISPLAY_ VALUE (DISV) command 3-3;
4-33

Display working catalog 3-3
DISPLAY63 collating sequence 11-31
DISPLAY64 collating sequence 11-31
DISTLA command (see DISPLAY_TAPE_

LABEL_ATTRIBUTES command)
DISV (see DISPLAY_VALUE command)
Division operation 14-31
DO (see DISPLAY_OPTIONS

parameter)
Double precision 11-15
Double precision functions 14-31
DP (see DATA_PADDING file

attribute)
Drawing board method 13-3
DT function 5-4
Dual state

Definition A-5
Hardware comparison F-l
Use 13-1

DX FILE parameter 14-3
Dynamic access A-5
D63 4-10; 10-12; 12-71
D64 4-10; 10-12; 12-71

E
EAF (see EXTENDED_ACCESS_FILES

parameter)
EBCDIC character set and collating

sequence
Correspondence with NOS 11-31
Defini tion A-5
INTERNAL_CODE attribute 10-9

EBCDIC sequence listings
OSV$EBCDIC6_FOLDED C-26
OVS$EBCDIC C-21
OVS$EBCDIC6_STRICT C-28

Index-6 Migration From NOS to NOSNE

EBCDIC6 character set 11-17,31
EBCDIC6 sequence listings

OSV$EBCDIC6_FOLDED C-26
OVS$EBCDIC6_STRICT C-28

$ECHO 4-27; 6-10
Echo (see $ECHO)
ED (see ERROR_DISPOSITION

parameter)
EDIF (see EDIT_FILE command)
EDIT_FILE (EDIF) command 6-13,16
Editing 6-12
EE (see EXPRESSION_EVALUATION

parameter)
EF flag 5-4
EFC 14-3
EFC FILE parameter 10-3
EFG flag 5-4
EI (see EXTERNAL_INPUT

parameter)
EK (see EMBEDDED_KEY file

attribute)
EL (see ERROR_LEVEL parameter or

Error limit)
Ellipsis 2-6; A-5
.ELSE directive 6-2
Embedded key

Definition A-5
NOS specification 14-4,14

EMBEDDED_KEY (EK) file
attribute 10-9,21; 14-14

EMK FILE parameter 14-3,14
ENCODE statement 13-3; 14-21
End-of-information

Definition A-5
Positioning a file 3-5; 10-14

End-of-partition 12-71; A-5
ENDIF command 5-9
ENDW command 5-7
ENTER statement 15-3
.EOF directive 6-2
EOF function in FORTRAN 12-71
$EOI 3-1,5; 10-14; A-5
EOI (see $EOI)
EOP A-5
.EOR directive 6-2
Epilog A-5
ERL 14-14
Error checking 4-34; 14-10
ERROR_DISPOSITION (ED)

parameter 11-10
ERROR (E) parameter 7-2,4,7; 14-25;

15-14; 17-4
Error exit name

ERROR_EXIT_NAME (EEN) file
attribute 14-14

EXN 14-14
Error file 4-27; 10-19
Error flag 14-3,9
ERROR_LEVEL (EL) parameter 7-2,4,7;

14-25; 15-14; 17-4

Revision F

Error limit
ERL 14-14
ERROR_LIMIT (EL) file

attribute 14-14
Error processing 4-22,34; 5-9
$ERRORS 4-27
EVSN (see EXTERNAL_ VSN CREIR

parameter)
.EX directive 6-2
EXEC (see EXECUTE_COMMAND

command)
EXECUTE_COMMAND (EXEC)

command
COBOL 12-36
FORTRAN 12-12

EXECUTE_INTERSTATE_ COMMAND
(EXEIC) command 4-8,26

EXECUTE_MIGRATION _ TASK
(EXEMT) command 12-13

EXECUTE_ TASK (EXET)
command 4-3; 7-8

Executing
FMA 12-5
FMU 11-5,20
Procedures 6-8
Programs 7-7

Execution time
Definition A-5
File defaults 10-16

EXEIC (see EXECUTE_INTERSTATE_
COMMAND command)

EXEMT command (see EXECUTE_
MIGRATION_TASK command)

EXET (see EXECUTE_TASK
command)

EXIT_PROC command 6-2
EXIT statement 5-12
EXN 14-14
EXPLAIN command 4-3,35
EXPRESSION _EVALUATION (EE)

parameter 7-2; 14-25
Expressions 5-3
EXTENDED_ACCESS_FILES (EAF)

FMA parameter 12-14
Extended file access 12-3,14
Extensible common blocks 14-4,23
EXTERNAL_INPUT (El) parameter 7-4;

15-15
EXTERNAL_VSN (EVSN) CREIR

parameter 12-60

F
F FMU data type 11-15
F-type record (see also ANSI-fixed length

record type)
COBOL use 10-20
Definition A-6
Description 10-6
FORTRAN use 10-17

Revision F

F-type record (see also ANSI-fixed length
record type)

Family
Definition A-6
Name A-6
Usage 3-1

Fast Dynamic Loader (FDL) 15-2
Fatal error flag 14-3
FC (see FILE_CONTENTS file

attribute)
FDL

COBOL5 parameter 15-12
Fast Dynamic Loader 15-2

FED_INFO_PROCESSING_STANDARD
(FIPS) COBOL parameter 7-4; 15-15

Federal Software Testing Center
(FSTC) 15-15

FI (see FILE_IDENTIFIER parameter)
Field descriptor 11-13; A-6
File

Access 3-1,5; 4-16,22
Accessibility 12-53
Cycle 3-5
Definition 10-16; A-6
Expiration 4-22; 12-53
Identifier 12-53
Modification 4-22
Password 4-22
Set 12-53

File attributes (see also SET_FILE_
ATTRIBUTES command)

Commands 4-22
Defaults for COBOL 10-20
Defaults for FORTRAN 10-18; 12-25
Definition A-6
Descriptions 10-7

File attributes (see also SET_FILE_
ATTRIBUTES command)

FILE command (NOS)
CC parameter 11-17
File migration usage 11-1,2,4,7; 12-8
Mechanism 3-1
NOSNE comparison 4-3,22
Record length of FORTRAN files 12-8

File connection
Affects file structure 10-15
Description 4-25,27

FILE_ CONTENTS (FC) file
attribute 10-10,20

File conversion (see Migrating files or
Data conversion)

FILE function 5-4
FILE_IDENTIFIER (Fl)

parameter 12-55
File information table 10-7; 14-3; A-6;
E-l

File interface
FORTRAN migration

considerations 14-2
Introduction 10-1

FILE_LIMIT (FL) file attribute 10-10

Migration From NOS to NOSIVE Index-7

File Management Utility (see also
FMU) 11-5; A-7

File migration 11-1; 12-53
File Migration Aid

COBOL 12-29
FORTRAN 12-1
Performance considerations 12-52

File name 2-5; A-6
File-names 14-9
File organization

Definition A-6
Descriptions 10-1

FILE_ORGANIZATION (FO) file
attribute

COBOL use 10-20; 15-10
Description 10-10
FORTRAN use 10-10,20; 14-2

File permission 4-16
File position

Definition A-6
FMA 12-25
FORTRAN files 12-25
FORTRAN statements 10-17
Usage 3-5; 12-53

FILE_PROCESSOR (FP) file
attribute 10-11,21

File reference
Definition A-7
Usage 2-4; 3-1,5

File-related references 16-2
FILE_SEQUENCE_NUMBER (FSN)

parameter 12-56
FILE_SET_IDENTIFIER (FSI) tape label

attribute 12-55
FILE_SET_POSITION (FSP)

parameter 12-55
File sharing 4-16
File status 15-11; D-l
File structure 10-17
FILE_STRUCTURE (FS) file

attribute 10-11,20,21
FIPS (see FED_INFO_PROCESSING_

STANDARD COBOL parameter)
FIT (see File information table)
FITDMP 14-10
Fixed length record type (see ANSI-fixed

length record type)
FL attribute (see FILE_LIMIT file

attribute)
FL (NOS FIT) 14-3
Floating point

Arithmetic 14-31
FMU field descriptor 11-13
Number A-7

Flow control 5-6
FMA (see File Migration Aid)
FMU

Command 4-3; 11-8,10
Data types 11-15
Description 11-5; A-7
Directives 11-10

Index-8 Migration From NOS to NOSNE

Usage 11-1; 12-58
$FNAME 5-4
FNF FILE parameter 14-3
FO (see also FILE_ORGANIZATION file

attribute) 14-2
Folded collating sequence 11-31
FOR statement 5-6
FORCED_SAVE (FS) parameter 7-2;

14-26
FORCED_ WRITE (FW) 14-14
FOREND statement 5-6
Formatted

Input/output (FORTRAN) 10-16
Records 12-56; 14-22
WRITE statement 10-16

FORTRAN
Command parameters 14-23
Compile-time input/output 10-19
Compiler comparison 7 -1; 9-1
Execution-time input/output 10-16
File attribute defaults 10-16
File information table default

values E-2
File Migration Aid 12-1
FMU data types 11-15
FORTRAN command 4-3; 7-1; 14-23
Input/output 12-4
Interface to COBOL 15-19
Migrating FORTRAN programs 14-1
NOSNE FORTRAN diagnosis

method 13-3
Record types 10-4

FP (see FILE_PROCESSOR file
attribute)

FS (see FILE_STRUCTURE file
attribute or FORCED_SAVE
parameter)

FSE (see Full Screen Editor)
FSI (see FILE_SET_IDENTIFIER tape

label attribute)
FSN parameter (see FILE_SEQUENCE_

NUMBER parameter)
FSP (see FILE_SET_POSITION

parameter)
FSTC (see Federal Software Testing

Center)
FTN5 command 4-3; 13-3
Full Screen Editor 6-12,16,18; A-7
Full screen mode 4-38; A-7
Functions 5-4
FWI 14-14

G
G FMU data type 11-15
GENERATION_NUMBER (GN)

parameter 12-56
GET command 4-4
GET_FILE (GETF) command 4-3,6,9
GETBVAL subprogram 14-16

Revision F

GETCVAL subprogram 14-16
GETF (see GET_FILE command)
GETIVAL subprogram 14-16
GETNR statement 14-5
GETPARM subroutine 14-15
GETSCNT subprogram 14-16
GETSVAL subprogram 14-16
GETVREF subprogram 14-16
GN (see GENERATION_NUMBER

parameter)

H
H FMU data type 11-15
Hardware 13-1; F-l
HASHING_PROCEDURE_NAME (HPN)

file attribute 10-12; 15-10
Header length 14-10
HELLO 1-1
HELP command 4-4
.HELP directive 6-2
HID function 5-4
$HIGH 3-7
HL FILE parameter 14-10
Hollerith

Constant 14-31; A-7
Data 14-22
Descriptors 14-31

HPN (see HASHING_PROCEDURE_
NAME file attribute)

I
I FMU data type 11-15
IAF 1-1
IC (see INTERNAL_CODE file attribute

or INTERNAL_CODE parameter)
IF constructs 12-43
.IF directive 6-2
IF statement 5-9
IFEND statement 5-9
IFETCH routine 14-10
IHBC (see INITIAL_HOME_BLOCK file

attribute)
IL 14-14
Implicit attach 4-14
Implicit create 4-12
Index

Block A-7
Record A-7

INDEX_LEVEL (IL) file attribute 14-14
INDEX_PADDING (IP) file

attribute 10-12
Indexed files (see Indexed sequential file

organization)
Indexed sequential file creation

example 11-9,21,24,32; 14-5

Revision F

Indexed sequential file organization
COBOL use 15-10
Definition A-7
Description 10-3,12,16
FORTRAN use 14-2
PredeUned collation tables 11-29

Indirect access files 3-1
INITIAL_HOME_BLOCK_COUNT

(IHBC) file attribute 10-12
$INPUT .

COBOL programs 15-11
CREATE_FILE_CONNECTION

command 4-28
Example of use 4-27
FORTRAN programs 10-16; 14-22

Input file description 12-41
INPUT file (see also $INPUT)

Differences 14-22; 15-10
For NOSNE 4-27,28

INPUT (I) parameter
APL command 7-18,19
COBOL command 7-4; 15-12
FORTRAN command 7-1; 14-26
Pascal command 7-6; 17-3

Input/output differences 14-21
INPUT_SOURCE_MAP (ISM) COBOL

parameter 7-5; 15-16
INSPECT statement 15-3
$INTEGER 5-4
Integer

Constant A-8
Data differences 14-1; 15-6
Definition A-8
FMU data type 11-15
Key 10-13; 14-4; A-8

Interactive mode A-8
Interface subprograms 14-16
INTERNAL_ CODE (IC) file

attribute 10-12,21
INTERNAL_CODE (I C)

parameter 12-56
Interstate connection

Description 4-25 .
Examples 11-22,23,25,27

INVALID BDP DATA 15-3,9
IP (see INDEX_PADDING file

attribute)
IS (see Indexed sequential file

organization)
ISM (see INPUT_SOURCE_MAP

COBOL parameter)

.. J
J FMU data type 11-15
$JOB 5-4
Job

Batch 9-1
Definition A-8
Description 5-1

Migration From NOS to NOSNE Index-9

K

Log 4-25; A-S
Structure 6-1

KA FILE parameter 14-3
Key address 14-3
Key definition A-S
Key length

COBOL use 10-21
. Description 10-12

FORTRAN interface 14-3
KEY_LENGTH (KL) file attribute 10-12
Key position

COBOL use 10-21
Description 10-13
FORTRAN interface 14-3

KEY_POSITION (KP) file
attribute 10-13

KEY_ TYPE (KT) file attribute
COBOL use 10-21
Description 10-13
FORTRAN interface 14-4,9,14
Use with collation table 11-31

Keyword A-S
KL (see also KEY_LENGTH file

attribute) 14-3
KP (see also KEY_POSITION file

attribute) 14-3,9
KT (see also KEY_TYPE file

attribute) 14-4,9,14

L
L FMU data type 11-15
LABEL_TYPE (LT) CREIR
parameter 12-57

Labels .
COBOL 15-21; D-l
LABEL (FORTRAN) subroutine 14-15

LBZ (see LEADING_BLANK_ZERO
parameter)

LC (see LITERAL_CHARACTER
parameter)

LDSET statement 7-14,16
LEADING_BLANK_ZERO (LBZ)
parameter 7-4; 15-16

LET (see LOCK_EXPIRATION_TIME
file attribute)

Letters (see also Character) 1-1
LEVEL statement 14-31
LGO 4-4; 7-S
LIBEDIT utility 6-9
LIB LOAD statement 7-16
Library (see also Object library)

COBOL source library 15-2
Search order 7-10
Using SCU 11-3

Lid 11-3
LINAGE clause 10-22

Index-10 Migration From NOS to NOSNE

Line (see also Value, List) 2-5; A-S
$LIST 4-25,27
List directed inputJoutput 10-17
List file 4-27; 10-IS
LIST (L) parameter

COBOL command 7-4; 15-13
FORTRAN command 7-1; 14-26
Pascal command 17-3

LIST_ OPTIONS (LO) parameter
APL 7-1S,19
COBOL 7-4; 15-16
FORTRAN 7-1; 14-26
Pascal 7-7; 17-4

LITERAL_CHARACTER (LC)
parameter 7-4; 15-17

LO (see LIST_OPTIONS parameter)
Load map 7-11,13,16
Load sequence 7-7
LOAD statement 7-9
Load time A-S
Loader 7-7; 11-3; 14-23; A-9
Loading from libraries 7-9
$LOCAL 3-2
Local file A-9
Local file name 3-2; A-9
Local path A-9
LOCF function 14-16
LOCK_EXPIRATION _ TIME (LET) file

attribute 10-13
Logical 11-12,15
Logical expressions 5-3
Login

Definition A-9
LOGIN command 1-1

Logout
Definition A-9
LOGOUT command 1-1

LOOP statement 5-S
LOOPEND statement 5-S
Loops 5-S
$LOW 3-7
Lowercase character 1-1; 15-6
LT (see LABEL_TYPE CREIR

parameter)

M
MACHINE_DEPENDENT (MD)

parameter 7-2; 14-27
Mainframe differences 13-1; F-l
MASK function 14-31
Mass storage

Definition A-9
Input/output

Definition A-9
Routines 10-16

Master catalog 3-1; A-9
MAXBL (see MAXIMUM_BLOCK_

LENGTH file attribute or parameter)

Revision F

Maximum block length, FORTRAN file
interface 14-4,14

MAXIMUM_BLOCK_LENGTH
(MAXBL) file attribute 10-13,21; 14-14

MAXIMUM_BLOCK_LENGTH
(MAXBL) parameter 12-57

Maximum record length
FORTRAN file interface 14-14
FORTRAN formatted records 14-22

MAXIMUM_RECORD_LENGTH
(MAXRL) file attribute

COBOL use 10-21
Description 10-14
FORTRAN use 10-14; 14-14

MAXIMUM_RECORD_LENGTH
(MAXRL) parameter 12-57

MAXRL (see MAXIMUM_RECORD_
LENGTH file attribute or parameter)

MBL FILE parameter 14-4,13,14
MC (see MESSAGE_CONTROL file

attribute)
MCS 15-19; D-l
MD (see MACHINE_DEPENDENT

parameter)
Megabyte (MB) A-9
Memory similarities/differences F-2
MERGE command 4-5,51
MESSAGE_CONTROL (MC) file

attribute 10-12,14; 14-14
MFLINK control statement 11-3
MIGF (see MIGRATE_FILE command or

MIGRATION_FILES EXEMT
parameter)

MIGRATE_FILE (MIGF)
command 12-38

Migrating APL workspaces 16-1
Migrating boolean items 12-27
Migrating COBOL programs

ACCEPT statement 15-1
ACTUAL-KEY file organization 15-9
ALPHABET-NAME 15-21
Alternate keys 15-9; D-l
Arithmetic expressions or arithmetic

operations 15-6
BLOCK CONTAINS clause 15-2
BLOCK COUNT clause 15-2
Boolean items 15-6
CALL statement 15-2
CANCEL statement 15-2; D-l
Character set 15-6
CLOSE REELIUNIT statement 15-2;

D-l
Code sets 15-6
Collating sequence 15-7
Communications facility (MCS) 15-19;

D-l
Compiler call 15-12
Computational data types 15-7
COpy statement 15-2
CYBER Database Control System

interface 15-19

Revision F

DIRECT file organization 15-9
ENTER statement 15-3
File-names 15-10
File status 15-10; D-l
FORTRAN interface 15-19
Indexed sequential file

organization 10-4; 15-10
INSPECT statement 15-3
Labels 15-21; D-l
Migration methods 13-2
MULTIPLE FILE TAPE clause 15-3;

D-l
Numeric data items 15-10
Paragraph trace facility 15-19
Print records 15-21
Program-name 15-21
READ statement 15-3
RECORD CONTAINS clause 15-3
Record types 15-10
RECORDING MODE clause 15-3
REDEFINES clause 15-3
Reference modification 15-21
Relative file organization 15-10
REPLACE statement 15-3
RERUN clause 15-3; D-l
RESERVE AREAS clause 15-4
REWRITE statement 15-4
SECONDARY-STORAGE

SECTION 15-4; D-2
Segmentation facility 15-20; D-2
SET CODE-SET clause 15-4
SET PROGRAM COLLATING

SEQUENCE clause 15-4
Signs 15-9
SIZE ERROR statements 15-9
SORT statement 15-4
SWITCH-7 and SWITCH-8 15-21
SYNCHRONIZED clause 15-4
Termination dump facility 15-20
USE clause 15-5
USE FOR DEBUGGING declarative

statement 15-5
USE FOR HASHING declarative

state'ment 15-5
Utility routines 15-20
VALUE clause 15-5
Word-address file organization 15-11

Migrating files
Actual key 11-5
Binary data 11-12,26; 12-79
Character data 11-2,16; 12-78
COBOL files 12-29
Description 11-1
Direct access 11-5
Double precision 11-15
Floating point 11-15
FORTRAN files 12-2
Indexed sequential 11-9,21,24; 14-2
Library files 11-2
Reverse migration of COBOL

files 12-29

Migration From NOS to NOSNE Index-ll

Tape files 12-53
Migrating FORTRAN programs

Boolean data type 14-30
Buffer VO 14-21
CRMlFILE interface feature

differences 14-2
DATE, TIME, and CLOCK

functions 14-16
Default collating sequence 14-31
Double precision functions referenced

as single precision 14-31
Editing 14-22
ENCODE/DECODE statement 14-21

. Extensible common blocks 14-23
Files INPUT and OUTPUT 14-22·
Floating-point arithmetic 14-31
FORTRAN command 14-23
LEVEL statement 14-31
LOCF function 14-16
Maximum length of formatted

records 14-22
Migration methods 13-2
o and Z editing 14-22
OPENMSIREADMSIWRITMS 14-22
Overlays and ovcaps 14-23
Permanent file subroutines 14-15
Post mortem dump 14-15
Procedure communication 14-31
PROGRAM statement 14-32
SAVE statement 14-32
SECOND function 14-16
Segment loading 14-23
Static memory management 14-23
Subroutine GETPARM 14-15
Subroutine LABEL 14-15
Subroutines CHEKPTX and

RECOVR 14-16
7-bit ASCII code set 14-29
8-bit subroutines 14-15

Migrating Pascal programs
ALFA type 17-1
Compiler directives 17-2
Conformant arrays 17-1
EXTERNAL directive 17-1
Pascal command 17-3
Predefined routines 17-1
Segmented files 17-1

Migrating programs
APL 16-1
COBOL 15-1
FORTRAN 14-1
General approaches 13-1
Methods 13-2
Pascal 17-1

MIGRATION_FILES (MIGF) EXEMT
parameter 12-14

MINIMUM_RECORD_LENGTH
(MINRL) file attribute 10-21; 12-13,14;
14-14

Minus zero 15-6
MNR 14-14

Index-12 Migration From NOS to NOSNE

Modify (NOS utility) 11-2
Module A-9
MONTH function 5-4
MRL (see also MAXIMUM_RECORD_

LENGTH file attribute) 14-14
MSB parameter 15-12
Multifile set 12-81
Multiple file files 12-27
Multivolume file 12-81

N
N FMU data type 11-15
Name

Parameter 2-2
SCL 2-6; A-I0

Name call A-I0
N arne call loading 7-8
Namelist input/output 10-17; 12-14
Native

Character set 13-1; A-I0
Code set 14-28; 15-6
Sequence 15-11

New features 16-3
NL 14-14
No migration method 13-3
NOEXIT statement 5-12
Nonembedded key 14-4; A-I0
NOS commands

Correspondence with NOSIVE 4-1
FILE command 4-3; 11-2,3,9; 14-13

NOS, comparison with NOSIVE
Compilers 13-1
Files 10-2
Hardware 13-1; F-l

NOS control statements (see NOS
commands)

NOSIVE A-I0
NOSIVE commands

Conditional execution 5-9
Correspondence with NOS

commands 4-1
Looping 5-8
Repeated execution 5-6

NOSIVE common commands (see also
SCL)

Comparison with NOS 4-1; 13-1; F-l
Facilities for migrating files 11-3
File interface 10-1; 14-13; 15-10

NOT logical operator 5-3
NOTE command 4-5
$NULL 4-27,28
Numeric data 15-8

o
o descriptor 14-22
Object

Code 7-6; A-I0
File 7-6; A-I0

Revision F

Object library
Creating 8-3
Description of 8-1
Displaying information about 8-5
Modifying 8-3
Placing procedures in 6-9
Search order 7-10

OC FILE parameter 10-4
Old/new flag 14-10
ON FILE parameter 14-4
ONE_TRIP_DO (OTD) parameter 7-2;

14-27
ONEXIT statement 5-12
Online manuals

Creating 4-36
Differences between NOS and

NOSNE 4-35
Reading 4-35

OP (see OPEN _POSITION file
attribute)

OPEFMA (see OPEN_FILE_
MIGRATION_AID command)

Open A-10
Open/close flag 14-4
OPEN _FILE_MIGRATION _AID

(OPEFMA) command
COBOL 12-36
FORTRAN 12-11

Open position, file reference 3-5
OPEN _POSITION (OP) file

attribute 10-14,21
OPEN_170_STATE (OPE1S) command

COBOL 12-36
FORTRAN 12-12

Opening a file 3-5; 12-28
Operating system comparison F-3
OPE1S (see OPEN_170_STATE

command)
Optimization

Definition A-10
OPTIMIZATION _LEVEL (OL)

parameter 7-2,4,7; 14-27
Usage 14-4

OPTIMIZATION _LEVEL (OL)
parameter 17-5

OR logical parameter 5-3
Ordering printed manuals B-1
ORG FILE parameter 14-3,9
OSV$ASCII6_FOLDED collating

sequence 14-29; C-5
OSV$ASCII6_STRICT collating

sequence C-7
OSV$COBOL6_FOLDED collating

sequence 11-31; C-9
OSV$COBOL6_STRICT collating

sequence C-11
OSV$DISPLAY63_FOLDED collating

sequence C-13
OSV$DISPLAY63_STRICT collating

sequence C-15

Revision F

OSV$DISPLAY64_FOLDED collating
sequence C-17

OSV$DISPLAY64_STRICT collating
sequence C-19

OSV$EBCDIC collating sequence C-21
OSV$EBCDIC6_FOLDED collating

sequence C-26
OSV$EBCDIC6_STRICT collating

sequence C-28
OTD (see ONE_ TRIP_DO parameter)
Other changes 16-4
$OUTPUT

COBOL programs 15-11
CREATE_FILE_CONNECTION

command 4-28
Example of use 4-28; 12-37
FORTRAN programs 10-15; 14-21

OUTPUT file (see also $OUTPUT)
Differences 14-22; 15-10
For NOS/VE 4-27

OUTPUT (0) parameter 7-18,19,20;
12-37

OVCAPS directive 14-23
Overlays 14-23

p

P FMU data type 11-15
Packed decimal A-10
PADDING_CHARACTER (PC) file

attribute 10-12,15; 12-37
Padding, definition A-II
Page A-II
PAGE_FORMAT (PF) file

attribute 10-15
PAGE_LENGTH (PL) file

attribute 10-15,21
PAGE_ WIDTH (PW) file

attribute 10-15,21
Paging F-2
Paragraph Trace Facility 15-19
Parameter

Abbreviation 2-1
COBOL compiler 15-12
Conventions in SCL 2-1
Definition A-II
FORTRAN compiler 7-1;·14-23
Interface subprograms 14-16
List A-II
Name 2-2; A-II
Passing at execution time 7-8
Separator 2-2
Value types 2-4

Partition A-II
Pascal

Command format 17-3
Differences between NOS and

NOSNE 17-1
PASSWORD (PW) paralneter 4-21;

7-19,20

Migration From NOS to NOSNE Index-13

Path A-II
PC (see PADDING_CHARACTER file

attribute)
PD

COBOL5 parameter 15-12
NOS FIT field 14-14

Performance, improving FMA 12-3
Peripheral processor comparison F-3
Permanent

Catalog A-II
File 3-1; A-II

Permanent file client application 11-2
Permanent file server application 11-2
Permanent file server directives 11-2
Permanent file subroutines 14-15
Permanent file transfer facility 11-2
Permission (see File permission)
PF (see PAGE_FORMAT file attribute)
PICTURE (PIC) clause 11-15
PL (see PAGE_LENGTH file attribute)
Plus zero 15-6
PMDARRY 14-15
PMDDUMP 14-15
PMDLOAD 14-15
PMDSTOP 14-15
Position-dependent parameter A-II
Position-independent parameter A-II
Positioning a file 3-5; 12-59
Post Mortem Dump 14-15
PP (see Peripheral processor

comparison)
PPU (see Peripheral processor

comparison)
Predefined collation tables 11-29; C-l
Presetting memory 7-12,14
Primary key (see also Key

definition) A-II
Print records 15-21
PRINT statement 10-17
.PROC directive 6-2
PROC statement 6-1
Procedure

Calling 6-9
Communication 14-31
Creating 6-3
Definition A-12
Description 6-1
Directives 6-1
File migration

examples 11-23,25,26,27,28
Name 6-1
NOS and NOSNE Differences 6-11
Parameter prompting 6-8
Parameter substitution 6-6
Parameters 6-3
Structure 6-1

PROCEND statement 6-1
Program

Attribute A-12
Entry point 11-2
Execution 7-7

Index-14 Migration From NOS to NOSNE

Program migration
COBOL 15-1
FORTRAN 14-1
General approach 13-1
PROGRAM statement 14-31

Program name 15-2,21
Prolog A-12
PS parameter 15-12
PSQ parameter 15-12
PTF (see Permanent file transfer

facility)
PURGE command 4-6
PUT_LINE (PUTL) command 4-5,34
PUTL (see PUT_LINE command)
PW COBOL5 parameter (see also

PAGE_ WIDTH file attribute) 15-12
PW parameter (see PASSWORD

parameter)

Q
QUIT (QUI) command 4-26
Quotation marks 2-5

R
Radix A-12
Random

Access A-12
File organization A-12

Range 2-4; A-12
RC (see RUNTIME_CHECKS

parameter)
READ statement 15-3
READMS 10-16; 14-22
Real 11-15
Real state A-12; F-l
RECEIVE_FILE (RECF) command 11-2
RECF (see RECEIVE_FILE command)
Record

Blocking 12-59
Definition 10-15; A-12
Length 12-8; 14-22; A-12
RECORD clause 10-22
Size 15-3

Record access file 10-15
Record Manager (see CYBER Record

Manager)
Record procedures 12-41
Record type description 10-6,7; 14-2;

15-11
RECORD _ TYPE (RT) file attribute

COBOL use 10-21; 15-11
Description 10-7,15
FMA use 12-8,33
FMU use 11-7; 12-54
FORTRAN use 10-15,18

RECORD_ TYPE (RT) parameter 12-54
RECORDED_VSN (RVSN) CREIR

parameter 12-54

Revision F

RECORDING MODE clause 15-3
RECOVR subroutine 14-16
REDEFINES clause 15-3
Reference modification 15-21
Referencing files 3-1; 4-14
Related manuals B-1
Relational expressions 5-3
Relative file

Definition A-12
Organization 15-11

Relative key position 14-3,9
Relative key word 14-3,9
REPEAT statement 5-8
REPF (see REPLACE_FILE command)
REPLACE command 1-1; 4-6; 15-3
REPLACE_FILE (REPF) command 4-10
RERUN clause 15-3; D-1
RESERVE AREAS clause 15-4
$RESPONSE 4-27
Restart facility D-1
RETURN command 4-7
Reverse migration of COBOL files 12-29
REVERT command 6-2
Rewind

Definition A-13
REWIND statement 10-17

REWRITE statement 15-4; D-1
Ring F-3
RKP 14-4,9
RKW 14-4,9
RT (see RECORD_TYPE file attribute or

RECORD_ TYPE parameter)
Rules for SCL names 2-6
Run time A-13
RUNTIME_CHECKS (RC)

parameter 7-2,5,7; 14-27; 15-17; 17-5
RVSN (see RECORDED_ VSN CRE1R

parameter)

S
SATISFY statement 7-19,20
SAVE

Command 1-1
Statement 14-32

SCL
Elements 5-1
File conventions 3-1
File interface 10-1; 14-13
Functions 5-4
Job structure 5-1
Procedure 5-1; A-13
Statement A-13
Variable 5-2; A-13

SCL command
Common commands 4-1
Conventions 2-1
Names 2-6

SCLKIND subprogram 14-16
SCU conversion command 11-3

Revision F

SCU (see Source Code Utility)
SD (see STANDARDS_DIAGNOSTICS

parameter)
SECOND function 14-16
SECONDARY-STORAGE SECTION 15-4
SEEKF statement 14-5
Segment access files 14-22
Segmentation 14-23; 15-20; D-1
SEND_FILE (SENF) command 11-4
SENF (see SEND_FILE command)
Separators 2-2
SEQUENCED_LINES (SL)

parameter 7-2; 14-28
Sequential

Access A-13
File organization 10-1; A-13
Input/output 10-19; 12-54
WRITE statement 10-15,19

Server application 11-4
Session 1-1
SET CODE-SET clause 15-4
SET command, NOSNE equivalent 5-3
SET_FILE_ATTRIBUTES (SETFA)

command
Correspondence with NOS FILE

command 4-3
Format and description 4-23
FORTRAN interface 14-13
Override file defaults 10-15
Usage 11-7; 12-6,33

SET_INPUT_ATTRIBUTES (SETIA)
directive 11-10

SET_LINK_ATTRIBUTES (SETLA)
command 3~ 1; 4-8

SET_OUTPUT_ATTRIBUTES (SETOA)
directive 11-11

SET_PROGRAM_ATTRIBUTES (SETPA)
command) 7-9,12

SET_ WORKING_CATALOG (SETWC)
command 3-3

SETFA (see SET_FILE_ATTRIBUTES
command)

SETIA (see SET_INPUT-ATTRIBUTES
directive)

SETLA (see SET_LINK_ATTRIBUTES
command)

SETOA (see SET_OUTPUT_
ATTRIBUTES directive)

SETPA (see SET_PROGRAM_
ATTRIBUTES command)

SETWC (see SET_WORKING_CATALOG
command)

SHARE_MODE (SM) parameter 4-19
Sharing files 4-19
SHIFT function 14-30
Signs 15-9
SIZE ERROR statements 15-9
SL (see SEQUENCED_LINES

parameter)
Slack bytes in COBOL records 11-18
SLOAD statement 7-9

Migration From NOS to NOSNE Index-I5

SM (see SHARE_MODE parameter)
SORT

Command 4-5,52
Statement 4-54; 15-4

SortJMerge, differences between NOS and
NOSNE 4-49

SORT5 command 4-7
Source

Code A-13
Input file 10-18; 15-16
Library 11-2; 15-2
Listing A-13
Map 14-24; 15-12,16; 17-3
Program A-13

Source Code Utility (SCU) 11-3
Space 2-2
Special functions 16-3
SPECIAL-NAMES paragraph 15-7
STANDARD_DIAGNOSTICS (SD)

parameter 17-6
Standard file

COBOL use 15-10
Definition A-13
Description 4-27
STANDARD_FILE (SF)

parameter 4-30,31
STANDARDS_DIAGNOSTICS (SD)

parameter 7-2,4,7; 14-28; 15-18
Statement A-14
Static memory management 14-23
STATUS parameter 4-34,52; 5-9; 7-19,20;

14-28; 15-18; 17-6
Status variable 4-34; 5-9; A-14
Strict collating sequence 11-31
String

Constant A-14
Definition A-14
Literal 2-4

$STRLEN 5-4
$STRREP 5-4; 6-7
Subcatalog 3-4; A-14
SUBJ (see SUBMIT_JOB command)
SUBMIT command 4-8
SUBMIT_JOB (SUBJ) command 4-8; 9-3
SUBPROGRAM (SP) parameter 7-4;

15-18
$SUBSTR 5-4
Summary of corresponding NOS and

NOSNE commands 4-1
Summary of file references 3-7
Summary of NOS and NOSNE

differences F -1
Summary of NOS and NOSNE loader

differences 7-16
Summary of NOS and NOSNE procedure

differences 6-11
Summary of using object libraries 8-6
Swapping F-2
SWITCH-7 15-21
SWITCH-8 15-21
SYNCHRONIZED clause 15-4

Index-I6 Migration From NOS to NOSNE

SYSTEM call 14-16
System Command Language (see also

SCL) 2-1; A-14
System comparison F-1
System labels 15-21
SYSTEMC call 14-16

T
T-type record 14-10
TAF parameter 15-12
Tape file migration 12-53
Tape labels 12-53; 14-15
Tape migration commands

CHANGE_170_REQUEST 12-63
CREATE_170_REQUEST 12-54
DETACH~FILE 4-14; 12-78'
DISPLAY_ TAPE_ LABEL_

ATTRIBUTES 12-70
TARGET_MAINFRAME (TM) FORTRAN

parameter 7-2; 14-28
Task

Definition A-14
Execution 7-8

TDF parameter 15-12
TEL (see TERMINATION_ERROR_

LEVEL parameter)
Temporary file 12-80
TERMINAL_ TYPE (TT) APL

parameter 7-19,20
Termination Dump Facility 15-20
TERMINATION_ERROR_LEVEL (TEL)

parameter 7-2,7; 14-29; 17-6
Text files 4-8; 11-2
TIME function 5-4; 14-16
TL FILE parameter 14-10
Trailer length 14-10
Trailer record 14-10
Transferring files (see Migrating files)
TSTPARM subprogram 14-16
TSTRANG subprogram 14-16
TT parameter 7-18,20

u
U COBOL5 parameter 15-12
U FMU data type 11-15
U-type record (see also Undefined record

type)
Definition A-14
Description 10-6
FORTRAN use 10-17

UC1 parameter 15-12
Uncollated key 10-4,13; 11-31; A-14
Undefined record type 10-6,17
Unformatted input/output 10-15; 12-54
Unformatted WRITE statement 10-15
UNI 15-6
UNIVAC 15-6
UNIVAC FIELDATA 15-6

Revision F

Update (NOS utility) 11-3
Uppercase character 1-1; 15-7
USE clause 15-5
USE FOR DEBUGGING declarative

statement 15-5
USE FOR HASHING declarative

statement 15-5
$USER 3-2
User (see also $USER)

Name 3-2; 11-3; A-14
Path A-14

Utility routines 15-20

v
V -type record (see also CDC-variable

record type)
COBOL use 10-20
Definition A-14
Description 10-6
FORTRAN use 10-17

Validation 11-3
Value

Definition A-15
Element A-15
Initialization 17-2
List 2-3; A-15
Set 14-6; A-15
VALUE clause 15-5

Variable
Definition A-15
Name 2-6; A-15
Type records (see CDC-variable record

type)
Variables 5-2
VEIAF 1-1
Virtual memory 13-1; A-l5; F-2
Virtual state A-15; F-l
Volume serial number 12-54

W
WA file (see Word addressable file

organization)
.WAIT parameter 7-19,21
WHEN statement 5-11; 9-4
WHILE statement 5-7
Word

Comparison 13-1; F-l
Definition A-15

WORD-ADDRESS file organization (see
Word addressable file organization)

Word addressable file organization 10-3;
11-6; 15-11

Working catalog 3-3; A-15
WORKING-STORAGE SECTION 15-4
Workspace constraints 16-2
WORKSPACE (WS) APL

parameter 7-19,21

Revision F

WRITE statement (see Formatted,
WRITE statement or Unformatted
WRITE statement)

WRITMS 10-16; 14-22
WS parameter 7-19,21
WSA 14-4

x
XOR logical operator 5-3

y

Y FMU data type 11-15

z
Z FMU data type 11-15
Z FORTRAN editing descriptors 14-22
Z-type record

COBOL use 15-11
FILE command 11-4
GET_FILE command 4-9
REPLACE_FILE command 4-10

Zero 15-6

6-bit byte 12-56
6-bit display code 4-10; 14-29
6/12-bit display code 4-10; 10-12; 12-56
60-bit word 13-1
64-bit word 13-1

7-bit ASCII
Character set and collating

sequence C-2
Code set 14-29; 15-6
File collating sequence 11-31
GET_FILE command 4-10
INTERNAL_CODE attribute 10-12
Native character set 13-1
REPLACE_FILE command 4-10

7-track tape 15-3

8-bit byte 12-56
8-bit subroutines 15-15
8/12 ASCII 4-10; 11-17; 12-56

9-track 12-56

12-bit ASCII 4-10

Migration From NOS to NOSIVE Index-17

Migration From NOS to NOS/VE, Tutorial/Usage 60489503 F

We would like your comments on this manual. While writing it, we made some assumptions about who
would use it and how it would be used. Your comments will help us improve this manual. Please
take a few minutes to reply.

Who Are You?

Manager
-- Systems Analyst or Programmer
:: Applications Programmer

Operator
Other ____________________ _

What programming languages do you
use?

How Do You Use This Manual?

As an Overview
To Learn the Product/System
For Comprehensive Reference
For Quick Look-up

Do You Also Have?

SCL Advanced File Management
Usage

__ FORTRAN Language Definition
Usage

COBOL Usage

Which are helpful to you? Quick Index (inside cover)
-- Related Manuals appendix

Other:

Character Set appendix

How Do You Like This Manual? Check those that apply.

Yes Somewhat No
Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?
Is the order of topics logical?
Are there enough examples?
Are the examples helpful? Too simple Too complex)
Is the technical information-accurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

Comments? If applicable, note page number and paragraph.

Continue on other side

Would you like a reply? Yes No

From:

Name ______________________________________ __ Company __ _

Address __ __ Date ____________________________ __

Phone No. ______________________ __

Please send program listing and output if applicable to your comment.

lAt't: TAPE

fOLD FOLD
---~

BUSINESS REPLY· MAIL
FIRST CLASS PERMIT NO. 8241 MINNEAPOLIS, MN.

POSTAGE WILL BE PAID BY ADDRESSEE

<S 2) CONTI\.OL DATA
Technology and Publications Division

Mail Stop: SVL 104
P.O. Box 3492
Sunnyvale, California 94088-3492

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

---, fOLD FOLD

C
:2
C
:;;
!:

'-

Quick Index

Corresponding NOS-NOS/VE Commands

NOS Command NOS/VE Command and Comments Page

APL APL

ASSIGN REQT

ATTACH ATTF

(REQUEST_TERMINAL lfn)

(ATTACH FILE)
Implicit Attach

7-17

t

4-13
4-14

CATLIST DISC (DISPLAY CATALOG) 4-15
4-22 CATLIST,FN= DISCE (DISPLAY=CATALOG~NTRY)

CHANGE

COBOL5

COpy or
COPYEI

DAYFILE

DEI-'INE

DISPLAY

FILE

FORM

FTN5

CREFP
DELFP
CHACE

COBOL

COPF

(CREATE FILE PERMIT)
(DELETE-FILE-PERMIT)
(CHANGE:CATALOG_ENTRY)

Calls COBOL Compiler

4-16
4-19
4-20

7-3

4-15

DISL (DISPLAY LOG) 4-28
CREFC (CREATE_FILE_CONNECTION) 4-28

Example: CREFC $ECHO lfn

CREF

DISV

SETFA
CHAFA
ATTF

(CREATE FILE)
Implicit" Create

(SET FILE ATTRIBUTES)
(CHANGE FILE ATTRIBUTES
(ATTACH:FILE)

4-11
4-12

4-33

4-22
4-22
4-13

FMU File Management Utility 11-5

FORTRAN or FTN 7-1

Notes: t Not described in this manual.
lfn Represents the temporary file name.

NOS Command NOS/VE Command and Comments Page

GET

LGO

LIBGEN

MERGE

NOTE

PERMIT

PURGE

REPLACE

RETURN

SAVE

SORT5

SUBMIT

ATTF Also COPY_FILE (COPF)

Example: COPF I=$USER.permfile O=lfn

LGO

MERGE

PUTL

CREFP
DELFP
CRECP
DELCP

DELF

COPF

Binary file
EXET (EXECUTE_TASK)

(CREATE FILE PERMIT)
(DELETE-FILE-PERMIT)
(CREATE-CATALOG PERMIT)
(DELET~CATALOG=PERMIT)

(DELETE_FILE)

Example: COPF I=lfn O=$USER.permfile

DETF (DETACH_FILE)

COPF

4-13

7-8
7-8

8-1

t

4-34

4-16
4-19
4-16
4-20

4-12

4-15

4-14

Example: COPF I=lfn O=$USER.permfile 4-15

SORT t

SUBJ 9-3

permfile Represents the file name of a permanent file in your master catalog.

Revision F Migration From NOS to NOS/VE •

Other Useful NOS/VE Commands

Miscellaneous Commands Grouped as Applicable

COLLECT_TEXT (COLT)

CREATE INTERSTATE CONNECTION (CREIC)
EXECUTE INTERSTATE COMMAND (EXEIC)
DELETE_INTERSTATE_CONNECTION (DELIC)

CREATE FILE CONNECTION (CREFC)
DELETE-FILE-CONNECTION (DELFC)
DISPLAY_FILE_CONNECTION (DISFC)

SET FILE ATTRIBUTES (SETFA)
CHANGE FILE ATTRIBUTES (CHAFA)
DISPLAY_FILE_ATTRIBUTES (DISFA)

RECEIVE FILE (RECF)
SEND_FiLE (SENF)

OPEN FILE MIGRATION AID (OPEFMA)
OPEN-170 STATE (OPElS)
EXECUTE COMMAND (EXEC)
EXECUTE-MIGRATION TASK (EXEMT)
COLLECT-FILE DESCRIPTION (COLFD)
MIGRATE:FILE-(MIGF)

CREATE 170 REQUEST
CHANGE-170-REQUEST
DISPLAY TAPE LABEL ATTRIBUTES
DETACH FILE - -

• Migration From NOS to NOS/VE

Page

4-31

4-26
4-26
4-26

4-28
4-30
4-31

4-22
4-24
4-25

11-3
11-4

12-11
12-12
12-12
12-13
12-37
12-38

12-54
12-63
12-70
12-78

Revision F

<S ~ CONT"OL DATA

