
NOS/VE
Screen Formatting
Usage

60488813

NOS NE

Screen Formatting

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60488813

ManMal I-liimtrnry

System PSR Product
Revision Version Level Version Date

A 1.2.1 670 1.0 December 1986

B 1.2.2 678 1.1 April 1987

c 1.3.1 700 4.0 April 1988

D 1.4.1 716 4.0 December 1988

This manual reflects the release of Screen Formatting under NOSNE
Version 1.4.1, PSR Level 716.

This revision documents the following new features for managing
forms:

• The MANAGE_FORMS utility can be used both from within SCL
procedures and interactively to display forms. See chapter 2.

• Pascal procedures are available to manage forms. See chapter 5.

Some of the information in this manual is reorganized and rewritten.
Change bars mark only new information and technical changes.

This edition obsoletes all previous editions.

©1986, 1987, 1988 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 NOSNE Screen Formatting Revision D

Contents

About This Manual 5

Audience 5
The NOSNE User

Manual Set 6
Conventions 8
Submitting Comments 9
CYBER Software Support

Hotline 9

Introduction to Screen
Formatting 1-1

What Is Screen
Formatting? 1-1

Example of Creating and
Managing a Form 1-6

Coordinating Tasks
Using a Design
Specification 1-11

Screen Formatting
Capabilities 1-12

Using SCL Procedures to
Manage Forms 2-1

Creating an SCL
Procedure to Use
Forms 2-3

Storing the Procedure in
an Object Library 2-28

Helping the User Start
the Application 2-28

Options for Managing
Forms 2-30

MANAGE_FORMS
Command and
Subcommands for
Interacting with Forms .. 2-36

MANAGE_FORMS
Functions 2-63

Revision D

Using COBOL to Manage
Forms 3-1

Writing a Program to
Use Forms 3-2

Expanding and
Compiling a Program ... 3-30

Helping the User Start
the Application 3-32

COBOL Subroutine Calls
for Interacting with
Forms 3-35

Using FORTRAN to
Manage Forms 4-1

Writing a Program to
Use Forms 4-2

Expanding and
Compiling a Program ... 4-24

Helping the User Start
the Application 4-26

FORTRAN Subroutine
Calls for Interacting
with Forms 4-29

Using Pascal to Manage
Forms 5-1

Writing a Program to
Use Forms 5-2

Expanding and
Compiling a Program ... 5-27

Helping the User Start
the Application 5-29

Pascal Procedure Calls
for Interacting with
Forms 5-32

Contents 3

Using CYBIL to Manage
Forms 6-1

Writing a Program to
Use Forms 6-2

Expanding and
Compiling a Program ... 6-25

Helping the User Start
the Application 6-27

CYBIL Procedure Calls
for Interacting with
Forms 6-30

Using CYBIL to Create

'I)

Forms 7-1

More About Forms 7-2
How to Create a Form .. 7-19
The Design Specification . 7-20
Instructions for

Designing Forms 7-22
Rectangle Form

Program 7-34
Creating Form Definition

Records for Existing
Forms 7-42

Attributes for a Form ... 7-43
CYBIL Screen

Formatting Procedures. .. 7-85

Glossary A-1

Related Manuals B-1

Ordering Printed
Manuals B-1

4 NOSNE Screen Formatting

Accessing Online
Manuals. B-1

Screen Formatting and
Terminal Definitions C-1

COBOL Parameter
Definitions. D-1

Pascal Status Constants E-1

CYBIL Constants and
Types F-1

Constants F-1
Types F-3

FORTRAN Call
Definitions. G-1

Accessing Online
Examples H-1

Accessing Examples by
Name or by Manual H-2

Searching for Examples
by Command or
Procedure Name H-3

Viewing, Copying,
Printing, and Executing
Examples H-4

Using Function Keys
and Prompts H-5

Index Index-I

Revision D

About This Manual

This manual describes the CONTROL DATA® Screen Formatting
application for use under the CDC® Network Operating
System/Virtual Environment (NOSNE).

A uiJ.TI.em.ce

The first chapter of this manual describes Screen Formatting in a
manner that does not require knowledge of programming.

The remainder of this manual is directed to application programmers
who want to create forms with CYBIL programs and manage them by
writing SCL procedures or COBOL, FORTRAN, Pascal, or CYBIL
programs that use Screen Formatting. You need knowledge of these
programming languages, as well as some knowledge of NOSNE and
the System Command Language (SCL) as presented in the
Introduction to NOSNE manual.

The NOS/VE Screen Design Facility manual describes a screen
interface you can use for creating forms using Screen Formatting that
requires no programming knowledge.

Revision D About This Manual 5

The NO§/VlE lJ§e:rr Ma.nu.al Set

This manual is part of a set of user manuals that describe the
command interface to NOSNE. The descriptions of these manuals
follow:

Introduction to NOS/VE

Introduces NOSNE and SCL to users who have no previous
experience with them. It describes, in tutorial style, the basic
concepts of NOSNE: creating and using files and catalogs of files,
executing and debugging programs, submitting jobs, and getting
help online.

The manual describes the conventions followed by all NOSNE
commands and parameters, and lists many of the major commands,
products, and utilities available on NOSNE.

NOS/VE System Usage

Describes the command interface to NOSNE using the SCL
language. It describes the complete SCL language specification,
including language elements, expressions, variables, command
stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online
documentation, file and catalog management, job management, tape
management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT_FILE utility used to edit NOSNE files and
decks. The manual has basic and advanced chapters describing
common uses of the utility, including creating files, copying lines,
moving text, editing more than one file at a time, and creating
editor procedures. It also contains descriptions of subcommands,
functions, and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used
to organize and maintain libraries of ASCII source code. Topics
include deck editing and extraction, conditional text expansion,
modification state constraints, and using the EDIT_FILE utility.

NOS/VE Object Code Management

Describes the CREATE_OBJECT_LIBRARY utility used to store
and manipulate units of object code within NOSNE. Program
execution is described in detail. Topics include loading a program,

6 NOSNE Screen Formatting Revision D

program attributes, object files and modules, message module
capabilities, code sharing, segment types and binding, ring
attributes, and performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File
Management Utility (FMU), and keyed-file utilities. Sort/Merge
sorts and merges records; FMU reformats record data; and the
keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOS/VE Terminal Definition

Describes the DEFINE_ TERMINAL command and the statements
that define terminals for use with full-screen applications (for
example, the EDIT_FILE utility).

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements
described in the NOSNE user manual set. A format description
includes brief explanations of the parameters and an example
using the command, function, or statement.

Revision D About This Manual 7

Conventions

The following conventions are used in this manual:

Boldface

Italics

UPPERCASE

lowercase

Blue

Vertical bar

Numbers

In a format, boldface type represents names and
required parameters.

In a format, italic type represents optional
parameters.

In a format, uppercase letters represent reserved
words defined by the system for specific purposes.
You must use these words exactly as shown.

In a format, lowercase letters represent values you
choose.

In examples of interactive terminal sessions, blue
represents user input. In program examples, blue
identifies comments.

A vertical bar in the margin indicates a technical
change.

All numbers are decimal unless otherwise noted.

8 NOSNE Screen Formatting Revision D

Submitting CommeIL1lts

There is a comment sheet at the back of this manual. You can use it
to give us your opinion of the manual's usability, to suggest specific
improvements, and to report errors. Mail your comments to:

Control Data
Technical Publications ARH219
4201 North Lexington Avenue
St. Paul, Minnesota 55126-6198

Please indicate whether you would like a response.

If you have access to SOLVER, the Control Data online facility for
reporting problems, you can use it to submit comments about the
manual. When entering your comments, use NVO (zero) as the product
identifier. Include the name and publication number of the manual.

If you have questions about the packaging and/or distribution of a
printed manual, write to:

Control Data
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103-2495

or call (612) 292-2101. If you are a Control Data employee, call (612)
292-2100.

CYB:iER §of-hvare §upporrt lHotline

Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help not
provided in the documentation, or find the product does not perform
as described, call us at one of the following numbers. A support
analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

Revision D About This Manual 9

Introduction to Screen Formatting 1

What Is Screen Formatting? 1-1

Example of Creating and Managing a Form 1-6
Graphic or Text Objects 1-6
Variable Text Objects .. 1-7
Events ... 1-10

Coordinating Tasks Using a Design Specification 1-11

Screen Formatting Capabilities 1-12

linrtrroduction to Screen JFo:rmaiiing

This chapter explains the NOSNE Screen Formatting application and
gives an example of how to use it.

vYhat Ks Screen JF'ormatlting?

Screen Formatting consists of a set of subroutines and procedures on
system object library $SYSTEM.FDF$LIBRARY. Using Screen
Formatting subroutines and procedures, you can design a form that
the user of an application program sees on the screen and uses to
interact with the program. For example, for a program that computes
the area of circles and rectangles, you might use Screen Formatting to
design the following form:

r

Revision D

Select Object for Computing Area

Circle
Rectangle

Type c or r:

Introduction to Screen Formatting 1-1

What Is Screen Formatting?

Besides designing the forms, you use Screen Formatting to manage
the forms in the application program; for example, you use Screen
Formatting to display and remove the forms from the application
user's screen.

Designing the forms and managing the forms in the program are
separate tasks, usually performed by two people. A designer familiar
with the needs of the application user creates the forms and puts
them on an object library; an application programmer manages the
forms in the application. When a user executes the application, Screen
Formatting combines the work done by the designer and the
programmer:

Designer creates form Programmer codes program

m
~~

1-2 NOSNE Screen Formatting

H Screen Formatting LJ Object Library

User sees form and
Interacts with program

Revision D

What Is Screen Formatting?

Screen Formatting provides different sets of procedures and
subroutines for designing and managing forms. The form designer uses
a set of CYBIL procedures, and the application programmer chooses
between a set of COBOL subroutines, FORTRAN subroutines, Pascal
procedures, CYBIL procedures, or SCL procedures, depending on the
language of the application program:

Designer

Procoduros

Revision D

Programmer

SCL
Procodureo

Introduction to Screen Formatting 1-3

What Is Screen Formatting?

Application programmers access the procedures or subroutines that
manage forms by including calls to the procedures or subroutines in
the application program.

Designers, on the other hand, have a choice of how to access the
CYBIL procedures that create forms. They can either call the
procedures in a CYBIL program or use a screen interface provided by
the Screen Design Facility:

&elect ~Kt

Ci'de
Reelangl•

.~:;.~.; ... ~
Screen Design Faclllty

CYBIL Program

Designer

~
~

CYBIL
Procedures

Screen
Formatting

With the Screen Design Facility, the designer uses function keys to
draw the form on the screen, save its image, and define its
characteristics. A designer who is not a CYBIL programmer will
probably choose this method of designing forms.

Designers who want to either provide special forms for help
information or redefine forms while the application is running must
use a CYBIL program to create the form. With CYBIL, the form is
described in code, using attributes.

1. For more information, see the NOSNE Screen Design Facility manual.

1-4 NOSNE Screen Formatting Revision D

What Is Screen Formatting?

Screen Formatting also includes subroutines and procedures that
relieve the program of some of the tasks it normally performs. For
example, for a form that contains a table with more values than can
be displayed at one time, Screen Formatting includes procedures and
subroutines that page or scroll through the values.

Screen Formatting is an intermediary between a form and the
program. This means that when an application user enters a value on
a form, the value is sent not to the program, but to Screen
Formatting. Screen Formatting determines when to pass the value on
to the program by the information it recieves from the program.

Revision D Introduction to Screen Formattinrr 1-5

Example of Creating and Managing a Form

JExamp!e of Creating and Managing a lForm

Using a specific form as an example, this section shows how the form
designer and application programmer divide the tasks that create and
manage forms.

Graphic or Text Objects

A form contains several discrete areas, each of which Screen
Formatting calls either a graphic or a text object

\Graphic Object --;Text Object

"'Compute Area of Rectangle! ~

I ... ------------.1 Type height: ----

Area is: .

Type Width:

• The designer:

Determines what graphic or text objects appear on the form.

Defines display attributes for the objects. The designer chooses
from many different attributes, such as blinking, inverse video,
color, or underline.

Names the form so the programmer can identify it in the
program.

• The programmer displays the form and removes it from the screen
using the name assigned by the designer.

1-6 NOSNE Screen Formatting Revision D

Example of Creating and Managing a Form

Variable Text Objects

For some forms, the designer's and programmer's tasks may be
complete as just described. However, the example form has two objects
that allow the application user to enter variables and two objects that
allow the program to return variables:

Compute Area of Rectangle

Area is:

Type width:

Variable text objects require the designer and programmer to perform
additional tasks.

o The designer:

Defines the text objects to accept variables from the user or
the program.

Names each text object and display attribute so the
programmer can identify them in the program. For this form,
the designer:

Revision D

Assigned the name SIDE to the variable text object for the
height of the rectangle. The object has a display attribute of
under line. (This is the first occurrence of the variable
SIDE.)

Assigned the name SIDE to the variable text object for the
width of the rectangle. The object has a display attribute of
under line. (This is the second occurrence of the variable
SIDE.)

Assigned the name AREA to the variable text object for the
computed area. The object has a display attribute of normal
(this attribute is the same as the form's attribute).

Assigned the name ERROR to the display attribute of
inverse video.

Introduction to Screen Formatting 1-7

Example of Creating und Managing a Form

Assigned the name MESSAGE to the variable text object for
messages the program displays when user entries are
incorrect. The object has a display attribute of normal (this
attribute is the same as the form's attribute). Because there
is no constant text identifying where the message appears,
the object is not identified on the form unless the program
moves text to it.

Defines the types of values the user can enter and the program
can return. (On this form, the user can enter integers and the
program returns an integer.)

Defines the action the user takes to send the values to Screen
Formatting. (For this form, the designer might define the
action as pressing the return key.) An action like this returns
control to Screen Formatting and is called an event.

Names the event so the programmer can identify it in the
program. (For this form, the event defined as pressing the
return key is called COMPUTE.)

Defines the event as a task that Screen Formatting either
performs itself or passes to the program. (For this form, the
user enters values for the program to compute, so the designer
defines pressing the return key as passing the event from
Screen Formatting to the program.)

• The programmer:

Controls the position of the cursor, allowing the user to enter
data in a specific order.

Causes the program to wait for the events the user executes.

Provides the code to process events. For the event named
COMPUTE on this form, the programmer:

Enters calls to Screen Formatting to get the values the user
entered for variable text objects from the form to the
program. On the call, the programmer specifies the name of
the variable text object. (For this form, the name is SIDE.)
The programmer then causes the program to go to the part
that computes the area.

Replaces data on the form using the names of variables
defined as objects on the form.

1-8 NOSNE Screen Formatting Revision D

Revision D

Example of Creating and Managing a Form

Includes a call to Screen Formatting to redisplay the screen
showing the computed area of the rectangle in the variable
text object named AREA.

Includes calls to Screen Formatting to identify invalid
entries to the user. With these calls, the programmer:

Positions the cursor at the error.

Changes display attribute of the object in error by using
the display attribute that was named ERROR by the
designer.

Displays an error message explaining how to correct the
error.

For example, if the user entered 4.2 as the height of the
rectangle, the following is displayed:

Compute Area of Rectangle

Area is:
Type height: 4-

Type width: 3 -----
Type integer value for height

Introduction to Screen Formatting 1-9

Example of Creating and Managing a Form

Events

At the bottom of the example form is a menu that contains an event
the user can execute by pressing a function key.

The menu is optional and requires the designer and programmer to
perform additional tasks.

• The designer:

Names the event so the programmer can identify it in the
program and defines it to appear as part of a menu of events.
(For this form, the name of the event is QUIT and the label
appearing on the menu is Quit.)

Defines the event as a task that Screen Formatting either
performs itself or passes to the program. (For this form, the
designer defines the event named QUIT to pass control to the
program.)

• The programmer provides code to process the event, identifying it
in the program with the name assigned by the designer. (For this
form, the programmer defines that the event named QUIT stops
the application.)

1-10 NOSNE Screen Formatting Revision D

Coordinating Tasks Using a Design Specification

As you saw in the example, the interaction between the form and the
program is complex. To control the process, the designer prepares a
list called the design specification that tells the programmer what
appears on the form and the definitions used for the form and its
events. In this specification the designer:

• Names the forms.

• Establishes the order in which forms appear and disappear on the
screen.

o Defines and names the variable text objects.

• Defines the types of values the user or program can enter as
variables.

o Defines and names the display attributes for objects.

o Defines and names the events that return the user to the program.

o Defines the events that Screen Formatting processes itself.

With this information available, the programmer:

o Displays and removes forms.

o Gets and replaces values on forms.

o Gets and processes events executed by the application user.

o Changes how variable text objects are displayed.

e Changes the position of the cursor on the screen.

Details about these tasks and the formats of the calls the programmer
uses are in chapter 2 (for SCL procedure writers), chapter 3 (for
COBOL programmers), chapter 4 (for FORTRAN programmers),
chapter 5 (for Pascal programmers), and chapter 6 (for CYBIL
programmers).

The designer's tasks and the formats of CYBIL procedure calls used to
create forms are described in chapter 7. (If you want to design forms
using the Screen Design Facility, see the NOS/VE Screen Design
Facility manual instead.)

Revision D Introduction to Screen Formatting 1-11

Screen Formatting Capabilities

Screen Formatting Capabilities

Screen Formattirig is capable of performing many tasks for you. By
using Screen Formatting you can:

• Increase the communication between the application and the
application user. The forms you create can:

Use labels to identify user input.

Use the terminal's Tabbing capability to move the user quickly
from one entry to the next.

Access help and error information easily.

Quickly execute complete actions by pressing function keys.

Identify important areas on the screen using display attributes.

Group items on the screen for easy recognition by the user.

• Increase the productivity of the application programmer. Screen
Formatting:

Provides data conversion both to and from the program.

Has special formats for things like currency and
upper/lowercase characters.

Validates data according to what is defined on the form.

Provides default help and error forms that can be tailored.

Automatically pages or scrolls data that cannot be displayed on
the screen at one time.

1-12 NOSNE Screen Formatting Revision D

Screen Formatting Capabilities

• Release the programmer from writing terminal-dependent code. The
forms created can be used at more than one terminal. Screen
Formatting:

Manages the display of objects on forms. The programmer does
not need to keep track of where variables or constant text
appear on the user's screen. The programmer uses the name of
the object in the program.

Displays the menu of events defined for the form.

Returns defined events to the program.

• Manage data effectively. Screen Formatting can:

Display multiple forms at the same time, allowing the user to
move from one form to the other by moving the cursor.

Move values from the program to the form.

Get values from the form to the program.

Revision D Introduction to Screen Formatting 1-13

Using SCL Procedures to Manage Forms 2

Creating an SCL Procedure to Use Forms 2-3
Calling Screen Formatting 2-3

Starting and Stopping the MANAGE_FORMS Utility 2-3
Displaying and Removing Forms and Variable Data 2-4
Processing Events and Data 2-6

Processing Normal Events 2-6
Processing Abnormal Events 2-7

An Example Prototype ... 2-8
Getting Ready to Start the Prototype 2-8

Ensuring the Proper Terminal Environment 2-9
Making Forms Available 2-9
Using the Design Specification 2-9
Capturing Prototype Entries 2-11

Starting the Prototype 2-11
Opening the Select, Rectangle, and Circle Forms 2-12
Displaying the Select Form 2-12
Interacting with the Select Form 2-13
Displaying the Rectangle Form 2-13
Interacting with the Rectangle Form 2-14
Redisplaying the Select Form 2-15
Interacting with the Select Form Again 2-16
Displaying the Circle Form 2-16
Interacting with the Circle Form 2-17
Stopping the Prototype 2-18

Writing the Procedure .. 2-19
Using the Design Specification 2-21
Example SCL Procedure 2-22

Storing the Procedure in an Object Library 2-28

Helping the User Start the Application 2-28
Setting Up the User's Terminal Environment 2-29
Selecting a Natural Language 2-30
Starting the Application 2-30

Options for Managing Forms 2-30
Creating Variables for the Form 2-31

Creating One Variable that is a Record 2-31
Creating Individual Variables 2-32
Creating Variables Manually 2-33

Using Screen Formatting to Generate TYPE Declarations . 2-34
Transferring Variables To and From a Form 2-34

Automatic Transfer of Variables 2-34
Manual Transfer of Variables 2-35

MANAGE_FORMS Command and Subcommands for Interacting
with Forms ... 2-36

ADD_FORM ... 2-37
CHANGE_ TABLE_SIZE 2-38
CLOSE_FORM ... 2-40
COMBINE_FORM .. 2-41
DELETE_FORM ...•... 2-43
GET_FORM_ VARIABLE 2-44
MANAGE FORM .. 2-46
OPEN _FORM .. 2-48
POP _FORMS ... 2-49
POSITION_FORM .. 2-50
PUSH_FORMS ... 2-52
QUIT•.. 2-53
READ_FORMS ... 2-54
REPLACE_FORM_ VARIABLE 2-55
RESET_FORM ... 2-57
SET_CURSOR_POSITION 2-58
SET_ OBJECT_ATTRIBUTE 2-60
SHOW_FORMS ... 2-62

MANAGE_FORMS Functions 2-63
$EVENT_NAME ... 2-64
$EVENT_NORMAL .. 2-65
$EVENT_POSITION ... 2-66

Chapter 1 presented an example of creating and managing forms. It
demonstrated that both the designer and the programmer have specific
tasks to accomplish. When creating and managing forms using an SCL
procedure, the following tasks must be accomplished:

1. The form designer and programmer plan the forms and procedure.

2. The form designer creates the forms specifying SCL as the form
processor (or programming language) and prepares a design
specification.

3. The form designer puts the forms in an object library.

4. The programmer runs a prototype of the application to view the
forms and check the logic of the application.

5. The programmer codes the procedure, including calls to Screen
Formatting SCL procedures based on the design specification.
These calls manage the forms created by the designer.

6. The programmer stores the procedure in an object library, writes a
user procedure to start the application, and helps the user set up
the correct terminal environment for using the forms.

When the last task is complete, the procedure and forms are ready for
the application user.

Chapter 2 describes the tasks performed by the programmer and
shows them being executed in a SCL procedure. At the end of the
chapter you will find format and parameter descriptions for each call
to SCL procedures used by Screen Formatting. To use these
procedures effectively, you should be familiar with writing SCL
procedures (see the NOSNE System Usage manual).

Revision D Using SCL Procedures to Manage Forms 2-1

Using SCL Procedures to Manage Forms

Although you can manage forms using other languages (as described
in other chapters in this manual), you may want to use SCL
procedures for the following reasons:

• Generally, it takes less code to complete the same task.

• You can display forms shortly after they are created.

• You can let Screen Formatting manage the variables on the forms.

However, because users are interacting with NOSNE at the command
level, the application will use more resources and may execute slower
than it would if it was coded using one of the other languages.

The designer's tasks and the formats of the CYBIL procedure calls
that create forms are described in chapter 7. (For information about
designing forms using the Screen Design Facility, see the NOSNE
Screen Design Facility manual instead.)

2-2 NOSNE Screen Formatting Revision D

Creating an SCL Procedure to Use Forms

When creating a procedure to use forms, you must:

• Plan the procedure with the help of the design specifications
created by the form designer. This step is described in chapter 1.

• Call Screen Formatting interactively to simulate how the procedure
will run as an application. This is known as the application
prototype.

• Write the actual procedure using the same calls to Screen
Formatting made in simulating the application.

The next section describes how to call Screen Formatting in both the
prototype and procedure. Sections that follow show you how to create
a prototype of an application that uses three forms and how to write
a procedure that becomes, when executed, the application the user
sees.

Calling Screen Formatting

When using forms in a prototype or in a procedure, you perform four
basic tasks:

• Starting the MANAGE_FORMS utility. Within this utility you
make calls to Screen Formatting using subcommands.

• Displaying and removing forms and variable data on the
application user's screen.

• Processing events executed by the user.

• Stopping the MANAGE_FORMS utility.

Starting and Stopping the MANAGE_FORMS Utility

Start the MANAGE_FORMS utility by entering the NOSNE
command MANAGE_FORMS. Starting the utility gives you access to
the MANAGE_FORMS subcommands. These subcommands allow you
to display and remove forms and variable data.

Stop the MANAGE_FORMS utility by entering the QUIT
subcommand. NOSNE releases the resources allocated to Screen
Formatting and returns any forms you have not closed.

Revision D Using SCL Procedures to Manage Forms 2-3

Calling Screen Formatting

(For the format of the commands that start and stop the utility, see
MANAGE_FORMS and QUIT later in this chapter).

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
perform the following steps in the given sequence:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing Screen Formatting subcommands that use
the form. Screen Formatting automatically creates any variables
used on the form that you had not created before opening it.

Using the MANAGE_FORMS utility, you can open any form
created by either the Screen Design Facility (SDF) or a CYBIL
program that uses Screen Formatting. The forms can be created
for use with any of the following programming languages: COBOL,
CYBIL, FORTRAN and Pascal, or can be created for use with SCL
procedures. If the forms will be used only in applications runing
SCL procedures, we recommend that the form designer create
forms specifically specifying SCL as the form processor. At this
time, SDF does not allow the designer to specify SCL procedure as
a programming language (form processor). Instead, have the
designer select CYBIL when creating a form.

You need open a form only once, no matter how many times you
use or update it. For this reason, begin a procedure by opening all
the forms you will use. When a form requires a large amount of
storage for variables, however, you may want to open that one
only when the application user needs it.

(For the format of the subcommand that opens forms, see OPEN_
FORM later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them. Screen Formatting maintains a list of all forms
you add. The last form you ·schedule for display is the top form on
the screen. Because forms are opaque, the top form covers other
ones appearing in the same area. The cursor position indicates
which form is ready for processing.

2-4 NOS/VE Screen Formatting Revision D

Calling Screen Formatting

When the terminal user completes data entry, the cursor position
indicates what form Screen Formatting should process. Variables
on this form (and any forms combined with this one) are validated
and updated. Variables on other forms are not updated or
validated.

(For the formats of the subcommands that schedule forms for
display, see ADD_FORM and COMBINE_FORMS later in this
chapter.)

3. Read the form.

When you read a form, Screen Formatting displays all the forms
you've added.

When a form has an event or input variable defined, reading
forms also accepts data from the user and displays values returned
by SCL.

(For the format of the subcommand that reads forms, see READ_
FORM later in this chapter. When none of the forms scheduled for
display have an event or input variable defined, you can use a
similar subcommand described in SHOW _FORM later in this
chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read a form, the
deleted form is removed from the screen. However, the form
remains available for later use (you must reschedule it for
display).

(For the format of the subcommand that deletes a form, see
DELETE_FORM later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses, and the form is no longer available to the user.

(For the format of the subcommand that closes a form, see
CLOSE_FORM later in this chapter.)

Revision D Using SCL Procedures to Manage Forms 2-5

Calling Screen Formatting

Processing Even ts and Data

When creating a form, the designer defines two types of events a user
can execute to return control to your procedure: normal and abnormal.

• For normal events, you perform requested actions such as getting
variables, doing computations, and updating the form.

• For abnormal events, you do such things as delete the form and go
on, or stop using Screen Formatting.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the formats of the functions that get the event name and
cursor position, see $EVENT _NAME and $EVENT _POSITION at
the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program set>rage.

(For the format of the subcommand that gets data, see GET_
FORM_ VARIABLE later in this chapter.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For the format of the subcommand that replace variables, see
REPLACE_FORM_ VARIABLE later in this chapter.)

You can also reset the variables on a form to their original state.
(For format of the subcommand that resets variables to their original
state, see RESET _FORM later in this chapter.)

2-6 NOSNE Screen Formatting Revision D

Calling Screen Formatting

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the formats of the functions that get the event name and
cursor position, see $EVENT _NAME and $EVENT _POSITION at
the end of this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the procedure.

The user's screen is updated upon reading the forms again or
ending the procedure.

Revision D Using SCL Procedures to Manage Forms 2-7

An Example Prototype

An Example Prototype

With the prototype you can simulate how the user interacts with
forms and what the application must do in response to user actions.
Because of the ease in which you can display forms on the screen,
you can quickly check the order of the forms the user will see in the
application. You can also determine if the forms have the correct
presentation on the screen and whether the variables work as
described in the design specifications.

In the prototype that follows, the options available to the user on a
particular form are mentioned. You will then be asked to act as both
the user and the application. As the user, you will enter data and
execute events on the form. As the application, you will enter
MANAGE_FORMS subcommands and calculate the areas as requested
by the user.

The prototype application computes the area of either a rectangle or a
circle. To do this, it uses three forms. The first form lets the user
choose which area to compute. The other two forms allow the user to
enter the required input (either the sides of the rectangle or the
radius of the circle) and then display the computed area.

Getting Ready to Start the Prototype

Before starting the prototype, you must:

• Ensure that your terminal environment is set up properly.

• Make the forms you will use accessible to your job.

• Identify the names of all forms and all variables used in the forms
and what events can be executed from each form.

• Determine the order of the forms.

• Decide whether you want to capture the entries you make in the
prototype.

Using the design specification, you can identify the form and variable
names, identify events, as well as determine the order the forms
appear. The following sections describe how to accomplish these tasks.

2-8 NOSNE Screen Formatting Revision D

An Example Prototype

Ensuring the Proper Terminal Environment

To use any screen application your terminal must be identified to
NOSNE; also, characteristics such as the attention character and hold
messages should be set. Most application programmers have already
established these things in their user prolog. If you have not done
this, see Setting Up the User's Terminal Environment later in this
chapter.

Making Forms Available

To access the forms, they must be in an object library that is in your
command list. Use the CREATE_COMMAND_LIST_ENTRY
command to add the object library to your command list. For example,
to use the forms in object library $SYSTEM.MANUALS.EXAMPLES_
FILES.COMMON_OBJECT_LIBRARY, enter:

/create_com~and_list_entry ..
. . /entry=$system.manuals.examples_files.common_library

The forms used in the prototype that follows are in this library. Once
you have entered the preceding command you can access the forms as
described in the following sections.

Using the Design Specification

The design specification for the application gives you the names of all
forms and variables as well as the order the forms appear. The
example prototype uses the following information from the design
specification:

• The names for the three forms in the application are:

SCL_SELECT_FORM
SCL_RECTANGLE_FORM
SCL_CIRCLE_FORM

• The application starts by displaying the Select Form (SCL_
SELECT_ FORM).

• The user can call both the Rectangle Form (SCL_RECTANGLE_
FORM) and Circle Form (SCL_CIRCLE_FORM) from the Select
Form.

Revision D Using SCL Procedures to Manage Forms 2-9

An Example Prototype

• 'rhe following variable text objects are defined on the forms to
accept input from the user or to display the computed area:

Variable Object Description

Select Form:

OBJECT Area for user input of r or c.

Rectangle Form:

SIDE_ TABLE

SIDE

AREA

Circle Form:

RADIUS

AREA

Table that holds values for the
rectangle's sides.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

• The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

2-10 NOSNE Screen Formatting Revision D

An Example Prototype

Capturing Prototype Entries

If you capture the entries you make while running the prototype, you
can use them as a starting point in coding the final application. The
entries are very helpful if your application is an SCL procedure. If
your application consists of programs written in FORTRAN or
COBOL, the file containing the entries may not be that helpful.

One way to capture entries is to create a file connection to file
$ECH 0 before starting the prototype. Every entry typed at your
terminal is then put in the file you name. After stopping the
prototype you can delete the connection that you created and then
view the entries. In the following example, file ENTRIES contains
your prototype session.

/create_file_connection standard_file=$echo file=$user.entries
/manage_ forms
mf /
mf /quit
/delete_file_connection standard_file=$echo file=$user.entries
/copy_file $user.entries
CI manage_forms
CI
CI quit
CI delete_file_connection standard_file=$echo file=$user.entries

You can then edit this file, adding the other parts of the program as
is necessary.

Starting the Prototype

At the system prompt, enter the MANAGE_FORMS command as
follows:

/manage_forms variable_evaluation=automatic
mf /

You specify the automatic evaluation of variables by including
VARIABLE_EVALUATION =AUTOMATIC as a parameter. Screen
Formatting will then get and replace all of the variables on the forms
displayed at the terminal. When you write the actual procedure for
the application, you may choose to get and replace variables yourself.
This aspect of Screen Formatting is discussed in Options for Managing
Forms later in this chapter. Using the option of automatically
evaluating variables allows you to enter fewer subcommands while
using the prototype.

Revision D Using SCL Procedures to Manage Forms 2-11

An Example Prototype

The MANAGE_FORMS utility operates in line mode in the same
manner as other NOSNE utilities. It returns the prompt mfl any time
you can enter MANAGE_FORMS subcommands (as well as any
NOSNE commands).

Opening the Select, Rectangle, and Circle Forms

To locate the forms and prepare them for use, enter an OPEN_FORM
subcommand for each form:

mf /open_form form_name=scl_select_form
mf /open_form form_name=scl_rectangle_form
mf /open_form form_name=scl_circle_form

Screen Formatting searches for the forms in the object libraries you
have in your command list.

When opening the forms, Screen Formatting creates a variable that is
a record for each form. The variables defined on a form become fields
in the record. Screen Formatting automatically updates this record
whenever there are changes made to the values of variables.

Displaying the Select Form

The user sees the Select Form first. Display the Select Form by
entering the following subcommands which add the form name to the
list of forms ready for display and then read the list:

mf /add_form form_name=scl_select_form
mf /read_forms

Displaying forms is a two-step process in order to allow you to add
more than one form name to the list before reading the list. This
process gives you the capability of displaying more than one form on
the screen at the same time.

The following form is displayed:

2-12 NOSNE Screen Formatting Revision D

r

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

An Example Prototype

f6 .. f7 .. fBC!.!a f9 .. 10 .. 11mml 12 .. 13 ..

Figure 2-1. Select Form

Interacting with the Select Form

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle. Either the Circle Form or the
Rectangle Form will appear next.

Enter r and press the return key to go to the Rectangle form. Screen
Formatting recognizes pressing the return key as executing the
COMPUTE event. It automatically updates the OBJECT variable to
contain the letter r and returns the MANAGE_FORMS utility prompt:

mf /

Displaying the Rectangle Form

Display the Rectangle Form by entering the following subcommands
which delete the Select Form from the list of forms scheduled for
display, add the Rectangle Form to that list, and read the list:

mf /delete_form form_name=scl_select_form
mf /add_form form_name=scl_rectangle_form
mf /read_forms

Revision D Using SCL Procedures to Manage Forms 2-13

An Example Prototype

Compute Area of Rectangle

Type height:----

Area is:

Type width:

Figure 2-2. Rectangle Form

Interacting with the Rectangle Form

On Rectangle Form, a user enters the lengths of the sides of the
rectangle as integers and presses the return key to compute the area.

Enter side lengths of 4 and 5. Then press the return key to execute
the COMPUTE event. Screen Formatting sets the first SIDE to 4, the
second SIDE to 5, and returns the MANAGE_FORMS utility prompt:

mf /

To compute the area of the rectangle and then redisplay the Rectangle
Form, enter:

mf/scl_rectangle_form.area= ..
mf .. /scl_rectangle_form.side_table(1).side~ ..
mf .. /scl_rectangle_fcrm.side_table(2).side
mf /read_forms

The value of each side is contained in the SIDE fields of the SCL_
RECTANGLE_FORM created by Screen Formatting when you opened
the form. For more information about how to determine what these
fields are see Creating Variables for .the Form, later in this chapter.

2-14 NOSNE Screen Formatting Revision D

An Example Prototype

Screen Formatting updates the AREA variable with the area you
computed and then displays the form scheduled for display. Because
we did not change the list of forms scheduled for display, the
Rectangle Form reappears (showing a value of 20 for the area).

Compute Area of Rectangle

Type height: _4 ___ _

Area is: 20

Type width: _s ___ _

Figure 2-3. Rectangle Form, Showing the Computed Area

A user can also stop the application by executing the QUIT event or
can return to the Select Form by executing the BACK event.

Press Back to execute the BACK event to return to the Select Form.
Screen Formatting returns the MANAGE_FORMS utility prompt:

mf /

Redisplaying the Select Form

Redisplay the Select Form by entering the following subcommands
which delete the Rectangle Form from the list of forms scheduled for
display, add the Select Form to that list, and read the list:

mf /delete_form form_name=scl_rectangle_form
mf /reset_form form_name=scl_select_form
mf /add_form form_name=scl_select_form
mf /read_forms

Revision D Using SCL Procedures to Manage Forms 2-15

An Example Prototype

Screen Formatting deletes the Rectangle Form, resets the Select Form
to remove the r from the OBJECT variable, adds the Select Form to
the list of forms scheduled for display, and displays the initial Select
Form.

r

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

f6 .. f7iml fBtm,m f9 .. 10 .. 11[!111112 .. 13 ..

Figure 2-4. Select Form

Interacting with the Select Form Again

Enter c and press the return key to go to the Circle Form. Screen
Formatting recognizes pressing the return key as executing the
COMPUTE event. It automatically updates the OBJECT variable to
contain the letter c and returns the MANAGE_FORMS utility prompt:

mf /

Displaying the Circle Form

Display the Circle Form by entering the following subcommands which
delete the Select Form from the list of forms scheduled for display,
add the Circle Form to that list, and read the list:

mf /delete_form form_name=scl_select_form
mf /add_form form_name=scl_circle_form
mf /read_forms

2-16 NOSNE Screen Formatting Revision D

An Example Prototype

Compute Area of Circle

Type radius: ___ _

Area is:

Figure 2-5. Circle Form

Interacting with the Circle Form

On Circle Form, a user enters the length of the radius of the circle as
a real value and presses the return key to compute the area.

Enter a radius of 6.8 and press the return key to execute the
COMPUTE event. Screen Formatting sets RADIUS to 6.8 and returns
the MANAGE_FORMS utility prompt:

mf /

To compute the area of the circle and then redisplay the Circle Form,
enter:

mf/scl_circle_form.area= ..
mf .. /3.14*scl_circle_form.radius*scl_circle_form.radius
mf /read_forms

Screen Formatting updates the AREA variable with the area you
computed and then displays the form scheduled for display. The_ Circle
Form reapears showing a value of 145.194 for the area.

Revision D Using SCL Procedures to Manage Forms 2-17

An Example Prototype

Compute Area of Circle

Type radius: .._6..._.8'"----

Area is: 145. 194

Figure 2-6. Circle Form, Showing the Computed Area

A user can also stop the application by executing the QUIT event or
can return to the Select Form by executing the BACK event.

Press Quit to execute the QUIT event to stop the application. Screen
Formatting returns the MANAGE_FORMS utility prompt:

mf /

You stop the application by stopping the prototype.

Stoppihg the Prototype

To stop the prototype, enter:

mf I quit

Screen Formatting closes all of the forms and NOSNE releases all
resources assigned to Screen Formatting.

2-18 NOSNE Screen Formatting Revision D

Writing the Procedure

Writing the Procedure

Once you have run the prototype and understand how the forms in
the application interrelate, you can easily produce the core statements
of the procedure. Use the MANAGE_FORMS subcommands entered
when you ran the prototype. This ensures that the forms are displayed
as they were in the prototype.

In addition to the MANAGE_FORMS subcommands, you need to add
the following statements to the procedure:

• The PROCEDURE and PROCEND statements.

These statements must be present for the procedure to execute.

(For the formats of PROCEDURE and PROCEND, see the NOS/VE
System Usage manual.)

• The MANAGE_FORMS command.

You may want to use different options on the parameters for the
command than those used in the prototype. In the prototype,
Screen Formatting automatically transfered all variables to and
from forms. In the procedure, you can choose to manually transfer
variables by using the default of MANUAL for the VARIABLE_
EVALUATION parameter on the MANAGE_FORMS command.
This allows you to selectively transfer variables to and from forms.

For more information about the options you have, see Options for
Managing Forms later in this chapter.

(For the format of the MANAGE_FORMS command, see its
command description later in this chapter.)

o VAR and VAREND statements (to create variables).

Usually, you create all of the variables used in a procedure at it's
beginning. However, with Screen Formatting you have the option
of not creating the variables used on the form. When you open a
form, Screen Formatting automatically creates the variable needed
on that form. You can see all the variables Screen Formatting
creates by entering the DISPLAY_ VARIABLE_LIST command. It's
up to you to create any other variables used in the procedure,
such as a status variable.

(For additional information about creating variables, see Creating
Variables for the Form, later in this chapter.)

Revision D Using SCL Procedures to Manage Forms 2-19

Writing the Procedure

• LOOP, LOO PEND and CYCLE statements (to allow unlimited
repetition of processing each form).

Group the procedure actions according to which form the user is
on. Each form can have a number of events that can be executed.
Code the procedure's action in response to these events so that
each time the user executes the events from the form the same
code is processed.

(For the formats of these statements, see the NOS/VE System
Usage manual.)

• Error processing statements.

Screen Formatting automatically validates all user input on a form
according to how they were defined on the form. If the status for a
particular variable is not normal, your procedure should display an
appropriate message on the form.

• GET_FORM_ VARIABLE and REPLACE_FORM_ VARIABLE
subcommands.

If you choose to transfer variable values to and from the form, you
need to add the GET_FORM_ VARIABLE and REPLACE_FORM_
VARIABLE subcommands to the procedure. When returning the
value of a variable to an SCL variable, include the GET_FORM_
VARIABLE subcommand. When replacing the value of a variable
on a form with a specified value, include the REPLACE_FORM_
VARIABLE subcommand.

(For the format of the GET_FORM_ VARIABLE and REPLACE_
FORM_ VARIABLE subcommands, see their subcommand
descriptions later in this chapter.)

2-20 NOSNE Screen Formatting Revision D

Writing the Procedure

Using the Design Specification

While using the prototype of the application, you referred to the
design specification to determine the names for the variables on each
form and how the forms interrelated. Writing the procedure, you need
the part of the design specification that includes the variable objects
used for error processing.

The design specification for the example procedure (shown in the next
section) lists the variable object used for error processing as
MESSAGE. Therefore, you would use the following variables in the
procedure:

Variable

SCL_SELECT_FORM.MESSAGE

SCL_RECTANGLE_
FORM.MESSAGE

SCL_ CIRCLE_FORM.MESSAGE

Revision D

Description

Area for displaying error
messages on the Select Form.

Area for displaying error
messages on the Rectangle
Form.

Area for displaying error
messages on the Circle Form.

Using SCL Procedures to Manage Forms 2-21

Writing the Procedure

Example SCL Procedure

The following SCL_COMPUTE_AREA procedure uses the forms and
design specification described earlier in this chapter. How to execute
the procedure is discussed in the sections that follow. You can get a
copy of the procedure and execute it using the Examples online
manual.

PROCEDURE scl_compute_area, sclca (
status)

manage_ forms
"$FORMAT=OFF
VAR

event: name
variable_status: status

VAREND
"$FORMAT=ON"

"Open all forms.

open_form form_name=scl_select_form
open_form form_name=scl_rectangle_form
open_form form_name=scl_circle_form

" Add select form to list scheduled for display.

add_form form_name=scl_select_form

process_selection:
LOOP

" Update screen and accept user terminal entry
" for object; display all added forms.

read_ forms

" Get screen events to determine next actions.

event=$event_name

2-22 NOSNE Screen Formatting Revision D

Writing the Procedure

" Stop program on QUIT or BACK event.

IF (event = 'QUIT') OR (event
EXIT process_selection

!FEND

'BACK') THEN

get_form_variable form_name=scl_select_form ..
variable_name=object value=scl_select_form.object

IF scl_select_form.object = 'R' THEN·

Compute area of rectangle.

delete_form form_name=scl_select_form
reset_form form_name=scl_rectangle_form
add_form scl_rectangle_form

process_rectangle:
LOOP

" Update screen ~ith rectangle form.

read_ forms
event=$event_name
IF (event = 'QUIT') OR (event = 'BACK') THEN

delete_form form_name=scl_rectangle_form
EXIT process_rectangle

!FEND

" Remove any previous error indications.

Revision D

set_object_attribute form_name=scl_rectangle_form
object_name=side attribute=initial

set_object_attribute form_name=scl_rectangle_form
object_name=side attribute=initial occurrence=2

scl_rectangle_form.message=''
replace_form_variable form_name=scl_rectangle_form

variable_name=message ..
value=scl_rectangle_form.message

Using SCL Procedures to Manage Forms 2-23

Writing the Procedure

" Get values terminal user entered for sides of rectangle.

get_form_variable form_name=scl_rectangle_form ..
variable_name=side occurrence=1 ..
value=scl_rectangle_form.side_table(1).side
status=variable_status

IF NOT variable_status.normal THEN
scl_rectangle_form.message= ..

'Type integer value for height'
replace_form_variable form_name=scl_rectangle_form

variable_name=message ..
value=scl_rectangle_form.message

set_cursor_position form_name=scl_rectangle_form
object_name=side

set_object_attribute form_name=scl_rectangle_form
object_name=side attribute=error

CYCLE process_rectangle
!FEND

get_form_variable form_name=scl_rectangle_form ..
variable_name=side occurrence=2 ..
value=scl_rectangle_form.side_table(2).side
status=variable_status

IF NOT variable_status.normal THEN
scl_rectangle_form.message= ..

'Type integer value for width'
replace_form_variable form_name=scl_rectangle_form

variable_name=message ..
value=scl_rectangle_form.message

set_cursor_position form_name=scl_rectangle_form
object_name=side occurrence=2

set_object_attribute form_name=scl_rectangle_form ..
object_name=side attribute=error occurrence=2

CYCLE process_rectangle
I FEND

2-24 NOSNE Screen Formatting Revision D

Writing the Procedure

" Compute area of rectangle.

scl_rectangle_form.area= ..
scl_rectangle_form.side_table(1).side * ..
scl_rectangle_form.side_table(2).side

replace_form_variable form_name=scl_rectangle_form
variable_name=area value=scl_rectangle_form.area
status=variable_status

IF NOT variable_status.normal THEN
scl_rectangle_form.message= ..

'Format cannot display area'
replace_form_variable form_name=scl_rectangle_form

variable_name=message ..
value=scl_rectangle_form.message

I FEND

LOOPEND process_rectangle

ELSEIF scl_select_form.object 'C' THEN

" Compute area for circle.

delete_form form_name=scl_select_form
reset_form form_name=scl_circle_form
add_form scl_circle_form

process_circle:
LOOP

Update screen ~ith circle form.

read_ forms
event=$event_name

" On QUIT or BACK event end processing for circle form.

Revision D

IF (event = 'QUIT' OR event = 'BACK') THEN
delete_form form_name=scl_circle_form
EXIT process_circle

!FEND

Using SCL Procedures to Manage Forms 2-25

Writing the Procedure

" Remove any previous error indications.

set_object_attribute form_name=scl_circle_form
object_name=radius attribute=initial

scl_circle_form.message=''
replace_form_variable form_name=scl_circle_form

variable_name=message ..
value=scl_circle_form.message

" Get terminal user entry for circle radius.

get_form_variable form_name=scl_circle_form
occurrence=1 variable_name=radius ..
value=scl_circle_form.radius status=variable_status

IF NOT variable_status.normal THEN
scl_circle_form.message= ..

'Type real value for radius'
replace_form_variable form_name=scl_circle_form

variable_name=message ..
value=scl_circle_form.message

set_cursor_position form_name=scl_circle_form
object_name=radius

set_object_attribute form_name=scl_circle_form
object_name=radius attribute=error

CYCLE process_circle
I FEND

2-26 NOSNE Screen Formatting Revision D

Writing the Procedure

" Compute area of circle.

scl_circle_form.area=scl_circle_form.radius * ..
scl_circle_form.radius * 3.14

replace_form_variable form_name=scl_circle_form ..
variable_name=area value=scl_circle_form.area
status=variable_status

IF NOT variable_status.normal THEN
scl_circle_form.message='Format cannot display area.'
replace_form_variable form_name=scl_circle_form

variable_name=message ..
value=scl_circle_form.message

I FEND

LOOPEND process_circle

ELSE

"Terminal user must enter r or c.

scl_select_form.message='Type r or c.'
replace_form_variable form_name=scl_select_form

variable_name=message value=scl_select_form.message
CYCLE process_selection

I FEND

IF event = 'QUIT' THEN
EXIT process_selection

I FEND

Display select form in original state.

reset_form form_name=scl_select_form
add_form form_name=scl_select_form

LOOPEND process_selection
QUIT

PROCEND scl_compute_area

Revision D Using SCL Procedures to Manage Forms 2-27

Storing the Procedure in an Object Library

§torifillg the Procedure in. an Object Lib1"ary

The best way to maintain a created procedure is to put it in an object
library. (The object library also contains forms and other procedures
you create.) By doing this you can keep track of your procedures and
give users easy access to the application.

The following example shows how to place file $USER.SCL_
COMPUTE_AREA on object library $USER.EXAMPLE_SOURCE_
LIBRARY.

/create_object_library
COL/add_module library=$user.enample_object_library
COL/combine_module library=$user.scl_compute_area
COL/generate_library library=$user.example_object_library.$next
COL/quit

JH[elipi.ng the User 8ta1"t the AppHcainon.

The complete application consists of your procedure and the forms
created by the designer. To integrate the forms with your program,
you ·must:

• Ensure that the user's terminal environment is set up to use the
forms properly (in most instances, by creating a user prolog).

• Ensure that users select the correct natural language.

• Ensure that users know how to start the application.

2-28 NOSNE Screen Formatting Revision D

Setting Up the User's Terminal Environment

Setting Up the User's Terminal Environment

To ensure that the user's terminal environment is set up to use the
forms properly, set the following terminal characteristics before
executing the procedure:

Characteristic Description

Terminal model ' Identifies the terminal to NOSNE.

Attention Provides a character users can enter to interrupt
character the application. Whenever users have a form on

the screen, they must use the attention character
to interrupt processing. The suspend (user break 1)
and terminate (user break 2) sequences available
at the mfl prompt do not work when forms are
displayed.

Hold messages Tells the network to hold all network messages
until the user stops the application. Otherwise, a
computer operator message may overwrite a form
while a user is entering data, confusing the user.

In their user prologs, users should set up their terminal for the entire
terminal session. The example below does the following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

o Chooses the exclamation point as a way to interrupt the program.

o Holds all messages from a NAMVE/CDCNET network.

G Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!'
status_action=hold

change_term_conn_defaults attention_character_action=l
change_connection_attributes terminal_file_name=input aca=l
change_connection_attributes terminal_file_name=output aca=l
change_connection_attributes terminal_file_name=cormiand aca=l

Revision D Using SCL Procedures to Manage Forms 2-29

Selecting a Natural Language

For a further explanation of how to interrupt a screen application
during an interactive session and what commands to use for networks
other than NAMVE/CDCNET, see the NOSNE System Usage manual.

Selecting a Natural Language

To ensure that users receive messages in the correct natural
language, have them add the CHANGE_NATURAL_LANGUAGE
command to their prologs. Because the default language is US_
ENGLISH and all messages returned by Screen Formatting are in this
language, have users include this command only when you have
changed messages to another language.

Changing messages to other languages is described in the NOSNE
Object Code Management manual. The CHANGE_NATURAL_
LANGUAGE command is described in the NOSNE System Usage
manual.

Starting the Application

To start the application, enter:

/create_corr.mand_list_entry e=example_object_library
/scl_compute_area

When finished with the application, remove the object library from the
command lists:

/delete_command_list_entry e=example_object_library

Options for Managing Forms

The following Screen Formatting options are available to you:

• Creating variables for the form.

• Transferring variables to and from a form.

2-30 NOSNE Screen Formatting Revision D

Creating Variables for the Form

Creating Variables for the Form

There are three options available for creating variables. You can:

• Automatically create (with Screen Formatting) one variable for
each form you open. The variable is a record containing a field for
each variable defined on the form.

o Automatically create (with Screen Formatting) an individual SCL
variable for each variable that is defined on each form you open.

• Manually create the variables for each form before you open the
form.

Creating One Variable that is a Record

The advantage to creating one variable for each form is that each
variable has a unique name (the form name). Therefore, the fields
within the variable cannot be confused with fields within another
variable (created from another form). For example, the MESSAGE
variable on the Rectangle Form (described in the procedure example)
is not the same as the MESSAGE variable on the Circle Form (also
described in the procedure example).

The disadvantage is that the references to the variables on a form can
get long and complex.

To have Screen Formatting automatically create one variable of type
RECORD for each form you open, specify VARIABLE_
CREATION=FORM_ VARIABLE as a parameter on the MANAGE_
FORMS command (this is the default). The variable that Screen
Formatting creates has the same name as the form.

You can access individual fields within the record by specifying the
form name, a period, and the field name. For example, the variable
created for the Rectangle Form is SCL_RECTANGLE_FORM. It has
three fields corresponding to the three variables defined on the form
(SIDE, AREA, and MESSAGE).

You can display the data structure of the variable to determine the
field name. For example, after you have opened the Rectangle Form,
you can display the data structure of the SCL_RECTANGLE_FORM
variable by entering the following SCL command:

Revision D Using SCL Procedures to Manage Forms 2-31

Creating Variables for the Form

mf /display_value value=scl_rectangle_form
mf .. /display_options=data_structure
display option: DATA_STRUCTURE

"RECORD"
SIDE_TABLE: "ARRAY"

1. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"

2. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"
"ARRAY END"

AREA: "INTEGER" 0
MESSAGE: "STRING"

"RECORD END"

Because the fields for both the MESSAGE and AREA variables have
no internal structures, you can refer to them as SCL_RECTANGLE_
FORM.MESSAGE and SCL_RECTANGLE_FORM.AREA. However,
the SIDE variable field is contained in an array named SIDE_ TABLE
(corresponding to the table created on the form). Within the array is a
record for each side of the rectangle. To refer to the side of a
rectangle you must include the internal structure of the SIDE_ TABLE
array. For example, to refer to the first side of the rectangle use:

SCL_RECTANGLE_FORM.SIDE_ TABLE(l).SIDE

For more information about the structure of variables that are
records, see the NOSNE System Usage manual.

Creating Individual Variables

The advantage to creating an individual SCL variable for each
variable on a form is that the reference to the variable is generally
short and corresponds closely to what is defined on the form. For
example, the sides of the rectangle defined on the Rectangle Form
(described in the procedure example) become elements in the array
named SIDE: SIDE(l) and SIDE(2).

2-32 NOSNE Screen Formatting Revision D

Creating Variables for the Form

The disadvantage to creating individual variables is that variables
from different forms can have the same reference. For example, the
MESSAGE variable on the Rectangle Form and the MESSAGE
variable on the Circle Form (also described in the procedure example)
both become MESSAGE.

To have Screen Formatting automatically create individual variables
for each opened form, specify VARIABLE_CREATION=SINGLE as a
parameter on the MANAGE_FORMS command.

After you have opened a form, you can display the data structure of
any individual variable by using the SCL command DISPLAY_
VALUE. For example, to display the data structure of the SIDE
variable on the Rectangle Form, enter:

mf/display_value value=side display_options=data_structure
display option: DATA_STRUCTURE

"ARRAY"
1: "INTEGER" 0
2: "INTEGER" 0

"ARRAY END"

For more information about the data structure of variables, see the
NOSNE System Usage manual.

Creating Variables Manually

The advantage to creating variables manually is that you can specify
different scopes for them. Variables created by Screen Formatting
have only a local scope. That is, they are available only within the
procedure they were first created.

You create variables using either:

• A TYPE declaration to create variables with a scope of
ENVIRONMENT.

o A VAR declaration to create variables with any scope.

Within a CYBIL program, Screen Formatting can generate a form
definition record that defines a TYPE for each form. Otherwise, you
must create your own TYPE or VAR declarations for variables. See
the NOS/VE System Usage manual for details on creating variables.

Revision D Using SCL Procedures to Manage Forms 2-33

Transferring Variables To and From a Form

Using Screen Formatting to Generate TYPE Declarations

The CYBIL Screen Formatting procedure FDP$WRITE_RECORD_
DEFINITION generates form definition records for any form you can
open. An example of a CYBIL program that generates form definition
records is in the online Examples manual under Screen Formatting
Examples. For forms used in SCL procedures, a form definition record
consists of a TYPE declaration. Each declaration creates one variable
that is a record containing all of the variables defined on the form.

To generate TYPE declarations for forms used in SCL procedures,
execute the example in the online manual and specify SCL when
prompted for the form processor. The TYPE declaration in file created
by the example can be copied into the SCL procedure using the forms.
Place the declarations before the opening of the forms. Screen
Formatting always checks to see if a variable exists and creates only
those that do not exist.

For additional information about form definition records, see Creating
Form Defintion Records for Existing Forms in chapter 7.

Transferring Variables To and From a Form

There are two options available for transferring variables. You can
either:

• Manually transfer variables.

• Have Screen Formatting automatically transfer variables whenever
you enter the READ_FORMS or SHOW_FORMS subcommand.

Each of these options has advantages and disadvantages. Manually
transferring the values of variables generally uses less system
resources because you update only those variables necessary to the
action you are performing. Automatically transferring values to
variables updates every variable on the form each time you read it. If
this is what you would do manually, anyway, then it requires a lot
less code to perform it automatically.

Automatic Transfer of Variables

To automatically transfer variables to and from forms, specify
VARIABLE_EVALUATION=AUTOMATIC as a parameter on the
MANAGE_FORMS command.

2-34 NOSNE Screen Formatting Revision D

Transferring Variables To and From a Form

Manual Transfer of Variables

To manually transfer variables to and from forms, specify
VARIABLE_EVALUATION=MANUAL as a parameter on the
MANAGE_FORMS command. This is the default.

Manually transferring the values of variables involves using the
GET_FORM_ VARIABLE and REPLACE_FORM_ VARIABLE
subcommands. On these subcommands you identify the variable by
specifying the form name, the variable name as defined by the
designer, and the number of the occurrence (if the variable is part of
a table). For example, when getting the value of the rectangle's height
from the Rectangle Form (described in The Application Prototype), use
the following GET_FORM_ VARIABLE subcommand:

mf /get_form_variable form_name=scl_rectangle_form
mf .. /variable_name=side ..
mf .. /value=scl_rectangle_form.side_table(1).side occurrence=1

Revision D Using SCL Procedures to Manage Forms 2-35

MANAGE_FORMS Command and Subcommands for Interacting with Forms

MA~TAGJE _FORM§ Command armd
§u.bcommands fo:rr Krmte1--accting wdth Forms

The MANAGE_FORMS command and subcommands that follow call
Screen Formatting to manage forms. For each subcommand, there is a
purpose description, format, list of parameters and their types, and
pertinent remarks.

When using the MANAGE_FORMS utility in procedures, you should
ensure that the subcommands execute properly. To do this check the
value returned in the STATUS and VARIABLE_STATUS (if present)
parameters. A list of possible error messages that can be returned can
be found in the NOSNE Diagnostic Messages manual. The product
identifier for the messages is FD.

2-36 NOSNE Screen Formatting Revision D

ADD_FORM

ADD_FORM
MANF Subcommand

Purpose

Format

ADD_FORM schedules a form for display on the
application user's screen.

ADD_FORM or
ADDF

FORM_NAME=data_name
STATUS =status variable

Parameters FORM_NAME or FN

Remarks

The name established when the form was opened. This
parameter is required.

• When you enter either the READ_FORMS or SHOW_
FORMS subcommand, Screen Formatting displays the
added form on the terminal screen. The added form is
placed on top of other forms occupying the same area
on the screen.

o When displayed, each form that is added operates
independently from other forms that have been added.
When a user executes a normal event, Screen
Formatting validates and updates only those variables
on the form associated with the event.

To have forms share events, use the COMBINE_
FORM subcommand.

o Before you add a form, you must open it.

o You cannot add a pushed form.

Revision D Using SCL Procedures to Manage Forms 2-37

CHANGE_ TABLE_SIZE

CHANGE_TABLE_SIZE
MANF Subcommand

Purpose

Format

CHANGE_ TABLE_SIZE changes the size of the table
during application execution.

CHANGE_TABLE_SIZE or
CHATS

FORM_NAME = data_name
TABLE_NAME=data_name
TABLE_ SIZE= integer
STATUS =status variable

Parameters FORM _NAME or FN

Remarks

The name established when the form was opened. This
parameter is required.

TABLE_NAME or TN

The name of the table to change in size. This parameter
is required.

TABLE_SIZE or TS

The size of the table. While this subcommand is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

• The table must be present in an open form.

e The size limitation remains in effect until the next
time you enter the CHANGE_ TABLE_SIZE
subcommand.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (fde$invalid_ table_size).

2-38 NOSNE Screen Formatting Revision D

Examples

CHANGE_ TABLE_SIZE

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

Revision D Using SCL Procedures to Manage Forms 2-39

CLOSE_FORM

CLOSE_FORM
MANF Subcommand

Purpose

Format

CLOSE_FORM releases resources used to process a form
and deletes the form from the list scheduled for display.

CLOSE_FORM or
CLOF

FORM_NAME=data_name
STATUS== status variable

Parameters FORM_NAME or FN

Remarks

The name established when the form was opened. This
parameter is required.

• When the you enter either the READ_FORMS or
SHOW_FORMS subcommand, Screen Formatting
removes the closed form from the terminal screen as a
result of entering this subcommand.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

2-40 NOSNE Screen Formatting Revision D

COMBINE_FORM

COMBINE _FORM
MANF Subcommand

Purpose COMBINE_FORM combines a form with a previously
added form and schedules the combined form for display
on the terminal screen.

Format COMBINE_FORM or
COMBINE_FORMS or
COMF

ADDED _FORM _NAME= data_name
COMBINE_FORM_NAME=data_name
STATUS= status variable

Parameters ADDED_FORM_NAIVIE or AFN

Remarks

Revision D

The name of the previously added form. This parameter is
required.

COMBINE FORM NAME or CFN

The name of the form you are combining with the
previously added form. This parameter is required.

• You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When you enter either the READ_FORMS or SHOW_
FORMS subcommand, Screen Formatting displays the
combined form. The combined form is placed on top of
other forms occupying the same area on the screen.

• When you start the MANAGE_FORMS utility
specifying VARIABLE _EVALUATION= AUTOMATIC
and the application user executes an event to return to
the utility normally, Screen Formatting updates all
SCL variables associated with both the added and
combined forms.

Using SCL Procedures to Manage Forms 2-41

COMBINE_FORM

• When you start the MANAGE_FORMS utility
specifying VARIABLE_EVALUATION =MANUAL and
you enter the REPLACE_FORM_ VARIABLE
subcommand, Screen Formatting updates the variable
on both the added and combined forms.

• To combine several forms with a previously added
form, execute this subcommand more than once.

2-42 NOSNE Screen Formatting Revision D

DELETE_FORM

DELETE _FORM
MANF Subcommand

Purpose

Format

DELETE_FORM deletes the form from the list of forms
scheduled for display.

DELETE_FORM or
DELF

FORM_NAME = data_name
STATUS =status variable

Parameters FORM_ NAME or FN

Remarks

Revision D

The name established when the form was opened. This
parameter is required.

• When you enter either the READ_FORMS or SHOW_
FORMS subcommand, Screen Formatting removes the
deleted form from the terminal screen and replots any
forms uncovered by the deleted form.

• When you add a form (ADD_FORM) again that you
previously deleted, the data in the form is retained.

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using SCL Procedures to 1\fanuge Forms 2-43

GET_FORM_ VARIABLE

GET_FORM_ VARIABLE
MANF Subcommand

Purpose GET_FORM_ VARIABLE gets the value the user entered
on the form for a variable and transfers it to SCL.

Format GET_FORM_ VARIABLE or
GETFV

FORM_NAME = data_name
VARIABLE_NAME=data_name
VALUE= any variable
OCCURRENCE =integer
STATUS= status variable

Parameters FORM_NAME or FN

Remarks

The name of the form where the variable resides. This
parameter is required.

VARIABLE_NAIVIE or VN

The name of the variable on the form to get and transfer
to SCL. This name was defined when the form was
created. This parameter is required.

VALUE or V

Parameter Attributes: BY_NAME

The. variable that is to hold the value Screen Formatting
gets from the form. This variable is either created
automatically when the form is opened or created
manually. This parameter is required.

See the VARIABLE_ CREATION parameter on the
MANAGE_FORM command for more information.

OCCURRENCE or 0

The occurrence of the variable name. The values allowed
are 1 through 1000. Use 1 for the first or only
occurrence. The default is 1.

• Before you get a variable, you must open its form. If
you get the variable after opening the form and before
reading or replacing the variable on the form, the
utility returns the initial value specified by the form
designer.

2-44 NOSNE Screen Formatting Revision D

Revision D

GET_FORM_ VARIABLE

o If the form designer specifies data validation rules and
error processing to display an error message or form,
you do not need to look at the STATUS parameter.

If the form designer specifies data validation rules and
no error processing, you must look at the STATUS
parameter.

If the form designer specifies no data validation rules,
you must look at the STATUS parameter to determine
if the subcommand executed properly.

Using SCL Procedures to Manage Forms 2-45

MANAGE_FORM

MANAGE_FORM
Command

Purpose MANAGE_FORM begins the MANAGE_FORMS utility.
This utility allows you to display and manage forms. A
form is a related group of objects shown on a user's
terminal screen. Using the MANAGE_FORMS utility, you
can display any form created through Screen Formatting.

Format MANAGE_FORM or
MANAGE_FORMS or
MANF

V AR.IABLE _CREATION= keyword
VAR.IABLE_EVALUATION =keyword
STATUS= status variable

Parameters VARIABLE_CREATION or VC

The keyword indicating how the utility is to create
variables when a form is opened. Use one of the following
keywords:

FORM_ VARIABLE

Create one variable for each form that is opened. The
variable is an SCL record that contains a field for
each variable text object on the form. The name of the
form becomes the name of the variable. FORM_
VARIABLE is the default.

SINGLE

Create one variable for each variable defined on the
form. The type of the variable depends on the
definition of the variable on the form.

NONE

Create no variables. You are responsible for defining
all variables used on the forms you open.

2-46 NOSNE Screen Formatting Revision D

Remarks

Revision D

MAN/1..GE_FORM

VARIABLE_EVALUATION or VE

The keyword indicating how the utility is to evaluate
variables. Use one of the following keywords:

AUTOMATIC

Automatic evaluation of variables. Screen Formatting
updates all variables from added or combined forms
when you execute either READ_FORMS or SHOW_
FORMS. You do not need to enter the GET_FORM_
VARIABLE and REPLACE_FORM_ VARIABLE
subcommands.

MANUAL

Manual evaluation of variables. Screen Formatting
does not update variables automatically. You must
update them using GET_FORM_ VARIABLE and
REPLACE_FORM_ VARIABLE subcommands.

o The forms used with the MANAGE_FORMS utility
can be created through the Screen Design Facility
(SDF) or with a CYBIL program that makes calls to
Screen Formatting procedures.

• When executing the utility interactively, the mf/
prompt is displayed.

Using SCL Procedures to Manage Forms 2-47

OPEN_FORM

OPEN_FORM
MANF Subcommand

Purpose

Format

OPEN_FORM locates a form and prepares it for use by
the utility.

OPEN _FORM or
OPEF

FORM_NAME=data_narne
STATUS= status variable

Parameters FORM_ NAME or FN

Remarks

The name of the form you want to open. This parameter
is required.

• When you open forms, Screen Formatting creates SCL
variables for form variables. The scope of the variables
is LOCAL. Before creating a variable, Screen
Formatting checks to see if the variable already exists.
If it does, Screen Formatting does not try to create it
again.

• Screen Formatting locates a form by searching the
command library list to find the form name on the
object libraries. (You specify the order in which Screen
Formatting searches the list using the NOSNE
command CREATE_COMMAND_LIST_ENTRY).

• Executing OPEN _FORM does not display the form on
the screen. (See ADD_FORM, READ_FORMS, or
SHOW_FORMS.)

2-48 NOSNE Screen Formatting Revision D

POP_FORMS

POP_FORMS
MANF Subcommand

Purpose

Format

Remarks

Revision D

POP _FORMS deletes forms scheduled (added or combined)
since the last PUSH_FORMS call.

POP _FORMS or
POPF

STATUS =status variable

Events associated with the last list of pushed forms
become active.

Using SCL Procedures to Manage Forms 2-49

POSITION_FORM

POSITION _FORM
MANF Subcommand

Purpose

Format

POSITION _FORM schedules moving a form to a new
location. Using this subcommand, you can define a form
at one location and display it at another location, or you
can move a form from where it is currently displayed to a
new location.

POSITION _FORM or
POSF

FORM_NAME = data_name
X_POSITION =integer
¥_POSITION= integer
STATUS= status variable

Parameters FORM_NAME or FN

Remarks

The form name established when the form was opened.
This parameter is required.

X_POSITION or XP

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character counting from left to
right. The default is 1.

Y_POSITION or YP

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character counting from top to
bottom. The default is 1.

• When you enter either the READ_FORMS or SHOW_
FORMS subcommand, Screen Formatting displays the
form on the screen at the position specified in the
POSITION_FORM subcommand.

• If you enter this subcommand while the form is
displayed, the form is deleted from its current location
and added at the new location. The added form is
displayed on top of any other form occupying the same
area on the screen.

2-50 NOSNE Screen Formatting Revision D

POSITION_FORM

• If you enter this subcommand before the form is
displayed, the form is displayed at the specified
location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

Revision D Using SCL Procedures to Manage Forms 2-51

PUSH_FORMS

PUSH_FORMS
MANF Subcommand

Purpose

Format

Remarks

PUSH_FORMS causes Screen Formatting to record added
and combined forms so you can return to them later.

PUSH_FORMS or
PUSF

STATUS= status variable

• Events associated with these forms are not passed to
you.

• You cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subcommand deactivates the events associated
with forms scheduled for display (added or combined)
since the last PUSH_FORMS subcommand.

2-52 NOSNE Screen Formatting Revision D

QUIT

QUIT
MANF Subcommand

Purpose

Format

Remarks

Revision D

QUIT ends the MANAGE_FORMS utility session.

QUIT or
QUI

STATUS= status variable

All open forms are closed and the resources used by
Screen Formatting are returned to NOS/VE.

Using SCL Procedures to Manage Forms 2-53

READ_FORMS

READ_FORMS
MANF Subcommand

Purpose

Format

Remarks

READ_FORMS updates the terminal screen and accepts
input from the application user.

READ_FORMS or
REAF

STATUS= status variable

• Executing READ_FORMS:

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last READ_FORMS or SHOW_
FORMS subcommand, it displays them for the first
time.

Removes from the screen the forms you deleted
since the last READ_FORMS or SHOW_FORMS
subcommand.

Updates on the screen the variables replaced since
the last READ_FORMS or SHOW_FORMS call
subcommand.

- Updates on the screen the objects for which display
attributes were set or reset since the last READ_
FORMS or SHOW_FORMS subcommand.

• Events not retrieved with the $EVENT_NAME
function are deleted before any input is accepted from
the user.

• The READ_FORMS subcommand does not execute
unless the forms scheduled for display contain at least
one active event.

• After issuing this request, you do not regain control
until the user issues a normal event and Screen
Formatting validates all the data, or the user issues
an abnormal event.

2-54 NOSNE Screen Formatting Revision D

REPLACE_FORM_ VARIABLE

REPLACE_FORM_ VARIABLE
MANF Subcommand

Purpose

Format

REPLACE_FORM_ VARIABLE transfers an SCL variable
to Screen Formatting.

REPLACE_FORM_ VARIABLE or
REPFV

FORM_NAME = data_name
VARIABLE_NAME=data_name
VALUE=any
OCCURRENCE= integer
STATUS =status variable

Parameters D"10RM_NAME or FN

Revision D

The name of the form where the variable resides. This
parameter is required.

VARIABLE_HAME or VN

The name of the variable to replace. This name was
defined when the form was created. This parameter is
required.

VALUE or V

The variable that holds the value Screen Formatting will
replace on the form. This variable is either created
automatically when the form is opened or created
manually. This parameter is required.

See the VARIABLE_CREATION parameter on the
MAN AGE_FORM command for more information.

OCCURRENCE or 0

The occurrence of the variable name. The values allowed
are 1 through 1000. Use 1 for the first or only
occurrence.

Usinrr SCL Procedures to Mana!!e Forms 2-55

REPLACE_FORM_ VARIABLE

Remarks • When you execute either the READ_FORMS or
SHOW_FORMS subcommand, Screen Formatting
replaces the variable on the terminal screen.

• Before you replace a variable, you must open the form
on which it is replaced.

• You cannot replace a variable for a pushed form.

• If the variable is not valid, it is not replaced.

2-56 NOSNE Screen Formattinir Revision D

RESET_FORM

RESET_FORM
MANF Subcommand

Purpose

Format

RESET_FORM resets the form to the state specified by
the form definition.

RESET_FORM or
RESF

FORM_NAME = data_name
STATUS =status variable

Parameters FORM_NAME or FN

Remarks

Revision D

The name of the form to reset. This parameter is
required.

• When you execute either the READ_FORMS or
SHOW_FORMS subcommand, Screen Formatting
displays the form on the terminal screen with the
reset specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

Using SCL Procedures to Manage Forms 2-57

SET_CURSOR_POSITION

SET_ CURSOR _POSITION
MANF Subcommand

Purpose SET_CURSOR_POSITION sets the cursor to a selected
position for later display.

Format SET_CURSOR_POSITION or
SE TCP

FORM_NAME = data_name
OBJECT_NAME=data_name
OCCURRENCE= integer
CHAR.ACTER_POSITION =integer
STATUS =status variable

Parameters FORM_NAME or FN

The name established when the form was opened. This
parameter is required.

OBJECT_NAIViE or ON

The name of the object on which you want to set the
cursor. This name was defined when the form was
created. This parameter is required.

OCCURRENCE or 0

The integer specifying the occurrence of the object name.
Use 1 for the first occurrence. The default is 1.

CHARACTER_POSITION or GP

The character position to which you want to set the
cursor. Use 1 for the first character position. The default
is 1.

2-58 NOSNE Screen Formatting Revision D

Remarks

SET_ CURSOR_POSITION

• One use of this subcommand is to alter the default
sequence of the application user's entry of variables. In
the default sequence, Screen Formatting places the
cursor on the first input variable of the highest
priority form. The highest priority form is the form
last added, combined, or positioned.

At terminals with protected fields, the user then tabs
from one variable text object to the next. The cursor
starts at the top line of the form. It moves from left
to right on each line. When no variable text object
appears on a line, the cursor moves down to the next
line. At terminals without protected fields, the user
must move the cursor using the arrow keys or use the
tab and return keys,

• When you execute either the READ_FORMS or
SHOW_FORMS subcommand, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

o The cursor position is in effect only for the next
screen update from reading or showing forms.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

Revision D Using SCL Procedures to Manage Forms 2-59

SET_OBJECT_ATTRIBUTE

SET_OBJECT_ATTRIBUTE
MANF Subcommand

Purpose

Format

SET_OBJECT_ATTRIBUTE changes a display attribute
for an object.

SET_OBJECT_ATTRIBUTE or
SET_ OBJECT _ATTRIBUTES or
SETO A

FORM_NAME = data_name
OBJECT_NAME=data_name
ATTRIBUTE= keyword or data_ name
OCCURRENCE= integer
STATUS =status variable

Parameters FORM_NAME or FN

The name of the form containing the object. This
parameter is required.

OBJECT_NAME or ON

The name of the object whose display attribute is being
reset. This parameter is required.

ATTRIBUTE or A

The name given the display attribute being set when the
attribute was defined on the form. The attribute used here
is defined for the form and not for a specific object. When
using Screen Design Facility, screen attributes are defined
through the ATTRIB function. When using a CYBIL
program, the ADD_DISPLAY_DEFINITION attribute
record defines form attributes.

Specifying the keyword INITIAL, resets the object to the
attribute defined in the form definition. The default is
INITIAL.

OCCURRENCE or 0

The occurrence of the object. For the first or only
occurrence, use 1. The default is 1.

2-60 NOSNE Screen Formatting Revision D

Remarks

SET_ OBJECT_ATTRIBUTE

• You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you execute either the READ_FORMS or
SHOW_FORMS subcommand, Screen Formatting
displays the object using the set attributes.

o If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

Revision D Using SCL Procedures to Manage Forms 2-61

SHOW_FORMS

SHOW_FORMS
MANF Subcommand

Purpose

Format

Remarks

SHOW_FORMS updates the terminal screen.

SHOW_FORMS or
SHOF

STATUS= status variable

• When none of the forms scheduled for display has an
event or input variable defined, use this subcommand
instead of READ_FORMS.

• When you do not want any input from the terminal
user, use this subcommand.

• Executing SHOW_FORMS:

- Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last READ_FORMS or
SHOW_FORMS subcommand, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last READ_FORMS or SHOW_FORMS
subcommand.

- Displays variables replaced since the last READ_
FORMS or SHOW_FORMS subcommand.

- Displays objects with attributes set or reset since
the last READ_FORMS or SHOW_FORMS
subcommand.

2-62 NOSNE Screen Formatting Revision D

MANAGE_FORMS Functions

You can use the following functions when managing forms with the
MANAGE_FORMS utility.

Revision D Using SCL Procedures to Manage Forms 2-63

$EVENT_NAME

$EVENT _NAME
MANF Function

Purpose $EVENT_NAME returns the name of the event the
application user executed to complete his or her
interaction with a form.

Format $EVENT_NAME

Parameters None.

Remarks An event is usually executed when the user presses the
return key or a function key.

2-64 NOSNE Screen Formatting Revision D

MANAGE_FORMS Functions

MANAGE _FOJRrvJI§ Functions

You can use the following functions when managing forms with the
MANAGE_FORMS utility.

Revision D Using SCL Procedures to Manage Forms 2-63

$EVENT_NAME

$EVENT _NAME
MANF Function

Purpose $EVENT_NAME returns the name of the event the
application user executed to complete his or her
interaction with a form.

Format $EVENT_NAME

Parameters None.

Remarks An event is usually executed when the user presses the
return key or a function key.

2-64 NOSNE Screen Formatting Revision D

$EVENT _NORMAL
MANF Function

$EVENT NORMAL

Purpose $EVENT_NORMAL returns a boolean value specifying
whether the event the user executed is defined as normal.
The type of each event is defined when the form is
created. The value of $EVENT_NORMAL is TRUE when
the event is a normal event; it is FALSE when the event
is not a normal event.

Format $EVENT_NORMAL

Parameters None.

Remarks • When an event is normal, variables are validated and

Revision D

updated.

• When an event is abnormal, variables are not
validated or updated.

Using SCL Procedures to Manage Forms 2-65

$EVENT_POSITION

$EVENT _POSITION
MANF Function

Purpose $EVENT_POSITION returns information about the
position of the event executed by the application user to
complete interaction with a form. The information
returned is determined by the keyword you specify in the
parameter.

Format $EVENT_ POSITION
(OPTION: keyword)

Parameters OPTION

The keyword that specifies the type of information to be
returned about an event position. Use one of the following
keywords:

CHARACTER_POSITION (CP)

Returns the character position within the object where
the event occurred. The value returned is an integer;
the first character position is 1. The CHARACTER_
POSITION value is valid only if $EVENT_POSITION
(OBJECT_EVENT) returns a TRUE value.

FORM_NAME (FN)

Returns the name of the form where the event
occurred.

FORM_X_POSITION (FXP)

Returns the x position of the event on the form. The x
position is an integer; 1 indicates the upper left corner
of the form. The x position increases by 1 for each
character, counting from left to right.

FORM_ Y_POSITION (FYP)

Returns the y position of the event on the form. The y
position is an integer; 1 indicates the upper left corner
of the form. The y position increases by 1 for each
character, counting from top to bottom.

2-66 NOSNE Screen Formatting Revision D

Revision D

$EVENT POSITION

OBJECT_EVENT (OE)

Returns a boolean value specifying whether the event
occurred in an object on the form. The value returned
is TRUE when the event occurred in an object and
FALSE when it did not.

OBJECT_NAME (ON)

Returns the name of the object where the event
occurred. The OBJECT_NAME value is valid only if
$EVENT_POSITION (OBJECT_EVENT) returns a
TRUE value.

OCCURRENCE (0)

Returns an integer indicating in which occurrence of
the object the event occurred. The OCCURRENCE
value is valid only if $EVENT_POSITION (OBJECT_
EVENT) returns a TRUE value.

OBJECT_ TYPE (OT)

Returns a keyword that indicates the type of object in
which the event occurred. One of the following
keywords is returned:

BOX
CONSTANT_ TEXT
CONSTANT_TEXT_BOX
LINE
VARIABLE_ TEXT
VARIABLE_ TEXT_BOX

OBJECT_X_POSITION (OXP)

Returns the x position of the object on the form. The x
position is an integer; 1 indicates the upper left corner
of the form. The x position increases by 1 for each
character, counting from left to right. The OBJECT_
X_POSITION value is valid only if $EVENT_
POSITION (OBJECT_EVENT) returns a TRUE value.

Using SCL Procedures to Manage Forms 2-67

$EVENT_POSITION

OBJECT_ Y_POSITION (OYP)

Returns the y position of the object on the form. The y
position is an integer; 1 indicates the upper left corner
of the form. The y position increases by 1 for each
character, counting from top to bottom. The OBJECT_
Y_POSITION value is valid only if $EVENT_
POSITION (OBJECT_EVENT) returns a TRUE value.

SCREEN _X_POSITION (SXP)

Returns the x position of the event on the screen. The
x position is an integer; 1 indicates the upper left
corner of the screen. The x position increases by 1 for
each character, counting from left to right.

SCREEN_ Y_POSITION (SYP)

Returns the y position of the event on the screen. The
y position is an integer; 1 indicates the upper left
corner of the screen. The y position increases by 1 for
each character, counting from top to bottom.

2-68 NOSNE Screen Formatting Revision D

Using COBOL to Manage Forms 3

Writing a Program to Use Forms 3-2
Copying Parameter Definitions 3-3
Copying Data Definitions 3-4
Calling Screen Formatting 3-5

Displaying and Removing Forms and Variable Data 3-5
Processing Events and Data 3-7

Processing Normal Events 3-7
Processing Abnormal Events 3-8

Running a Prototype of the Application 3-8
Example Program for Managing Forms with COBOL 3-10

Forms Managed in the Program ; 3-10
Design Specification .. 3-13
Form Definition Decks 3-15
Example COBOL Program 3-16

Expanding and Compiling a Program 3-30
'

Helping the User Start the Application 3-32
Creating a User Procedure 3-32
Creating a User Pro log 3-33
Selecting a Natural Language 3-34
Starting the Application 3-34

COBOL Subroutine Calls for Interacting with Forms 3-35
Adding a Form ... 3-36
Changing Table Size .. 3-38
Closing a Form ... 3-40
Combining Forms ... 3-41
Deleting a Form .. 3-43
Getting an Integer Variable 3-45
Getting the Next Event 3-48
Getting a Real Variable 3-52
Getting a Record ... 3-55
Getting a String Variable 3-58
Opening a Form .. 3-61
Popping a Form .. 3-63
Positioning a Form ... 3-64
Pushing a Form .. 3-66
Reading a Form .. 3-67
Replacing an Integer Variable 3-69
Replacing a Real Variable 3-72
Replacing a Record ... 3-75
Replacing a String Variable 3-77
Resetting a Form ... 3-79

Resetting an Object Attribute 3-80
Setting the Cursor Position 3-82
Setting Line Mode .. 3-84
Setting an Object Attribute 3-85
Showing Forms , 3-87

Using COBOL io Manage Forms 3

Chapter 1 presented an example of creating and managing forms. It
demonstrated that both the designer and the programmer have specific
tasks to accomplish. When creating forms, and then managing the
forms using a COBOL program, the following tasks need to be
accomplished:

1. The form designer and programmer plan the forms and program.

2. The form designer creates the forms specifying COBOL as the
form processor (or programming language) and prepares a design
specification.

3. The form designer puts the forms in an object library and makes
the form record definition available. Each record definition contains
the data definitions of all variables defined on a particular form
and is written in COBOL.

4. The programmer codes the program, including calls to Screen
Formatting COBOL subroutines based on the design specification.
These calls manage the forms created by the designer.

5. The programmer expands and compiles the program.

6. The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When the last task is complete, the program and forms are ready for
the application user.

This chapter describes the tasks performed by the programmer and
shows them being executed in a COBOL program. At the end of the
chapter you will find format and parameter descriptions for each call
to COBOL subroutines used by Screen Formatting.

The designer's tasks and, also, the formats of the CYBIL procedure
calls that create forms are described in chapter 7. (For information
about designing forms using the Screen Design Facility, see the
NOSNE Screen Design Facility manual instead.)

Revision D Using COBOL to Manage Forms 3-1

Writing a Program to Use Forms

When writing a program to use forms, you must:

• Copy the parameter definitions provided by Screen Formatting.

• Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting subroutines to manage the forms and the
variable text objects on the forms.

To better understand how the forms and variables interrelate, you can
also run a prototype of the application. This is usually done before
you write the program. In the prototype, you interactively make calls
to Screen Formatting to display each form. You then interact with the
form.

Following are descriptions of the tasks you must accomplish in your
COBOL program. After the descriptions is an explanation of how to
run a prototype and an example COBOL program showing how the
tasks are executed.

3-2 NOS/VE Screen Formatting Revision D

Copying Parameter Definitions

Copying Parameter Definitions

To obtain the values for the COBOL status parameter, copy the
FDE$COBOL_STATUS deck into your program. The following example
shows some of the contents of this deck:

01 FOE-COBOL-STATUS USAGE COMP PIC S9(18) SYNC LEFT.
88 FOE-REQUEST-SUCCESSFUL VALUE 0.
88 FOE-TERMINAL-DISCONNECTED VALUE 1.
88 FOE-NO-INPUT-REQUEST VALUE 2.
88 FOE-CURSOR-NOT-IN-VARIABLE VALUE 3.

To obtain the values for the COBOL variable status parameter, copy
the FDE$COBOL_ VARIABLE_STATUS deck into your program. The
following example shows some of the contents of this deck:

01 FOE-COBOL-VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT.
88 FOE-NO-ERROR VALUE 0.
88 FOE-INVALID-STRING VALUE 1.
88 FOE-INVALID-REAL VALUE 2.

Appendix D has a complete list of the contents of both decks.

When checking the status of subroutines, you must check the
FDE-COBOL-STATUS parameter and also check, when present, the
FDE-COBOL-VARIABLE-STATUS parameter. If the value of .
FDE-COBOL-STATUS is zero, you can process output from the
subroutine. However, if there is also a
FDE-COBOL-VARIABLE-STATUS parameter, check its value before
using variable output from the subroutine. The variable status is
independent of the status for the subroutine.

Revision D Usinrr COBOL to Manarre Forms 3-3

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting 1 generated the following source file for a form
named COBOL-SELECT-FORM. (The form definition record name is
the same as the form name.)

*DECK COBOL_SELECT_FORM expand = false
01 COBOL-SELECT-FORM.

03 SELECT-MESSAGE PIC X(40).
03 OBJECT PIC X(1).

The designer saves this file as a deck on a NOSNE SOURCE_
CODE_ UTILITY (SCU) library. 2 The DECK directive in the file
creates the correct name for the deck when it is processed.

In the beginning of your program, you must copy the form definition
deck for each form created by the designer:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on either the SCU *COPY
directive or the COBOL COPY statement.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on
SCU, see the NOSNE Source Code Management manual.)

3-4 NOSNE Screen Formatting Revision D

Calling Screen Formatting

Calling Screen Formatting

When writing a program that uses forms, you perform two basic tasks
with Screen Formatting subroutines:

o Displaying and removing forms and variable data on the
application user's screen.

o Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

You need open a form only once, no matter how many times you
use or update it. For this reason, begin a procedure by opening all
the forms you will use. When a form requires a large amount of
storage for variables, however, you may want to open that one
only when the application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them. Screen Formatting maintains a list of all forms
you add. The last form you add to the list becomes the top form
on the screen. Because forms are opaque, the top form covers other
forms appearing in the same area.

When the terminal user completes data entry, the cursor position
indicates what form Screen Formatting should process. Variables
on this form (and any forms combined with this one) are validated
and updated. Variables on other forms are not updated or
validated.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

Revision D Using COBOL to Manage Forms 3-5

Displaying nnd Removing Forms nnd Variable Data

3. Read the form.

When you read a form, Screen Formatting displays all the forms
you've added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses. The form is no longer available to the user or your
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

3-6 NOSNE Screen Formatting Revision D

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

o For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

o For abnormal events, the program takes its own action. You
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

Revision D Using COBOL to Manage Forms 3-7

Running a Prototype of the Application

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the program.

The user's screen is updated when you either read the forms again
or end the program.

Running a Prototype of the Application

Once the forms have been created for your application, you can
interactively run a prototype using the MANAGE_FORMS utility.
This allows you to test the order in which the forms appear, and to
interact with the forms as the application user will do.

An example of an application prototype is given in chapter 2 under
the section named The Application Prototype. This prototype uses
forms that were created specifically for use in an SCL procedure. To
learn about using a prototype, you can run the one described in the
Prototype section.

Once you are familiar with the utility, you can also run a prototype
using forms created for a COBOL program. However, because the
prototype uses a NOSNE utility, the variables created for the forms
must conform to the SCL naming conventions. Often the variables
created for COBOL use the hyphen. This character is not allowed in
SCL. Therefore, when Screen Formatting creates the variables for the
prototype, it automatically converts the hyphen to an underscore.

3-8 NOSNE Screen Formatting Revision D

Running a Prototype of the Application

To use the prototype with the COBOL forms on the library specified
in the prototype example rather than opening the SCL forms listed,
open the forms named:

COBOL_SELECT_FORM
COBOL_RECTANGLE_FORM
COBOL_CIRCLE_FORM

One variable of type RECORD is created for each form as described
for the SCL forms shown in the prototype example. The variable has
the same name as the form. You can display the data structure of
each variable using the DISPLAY_ VALUE command. For example, to
display the data structure for the COBOL_RECTANGLE_FORM
variable, enter the following command:

mf/display_value value=cobol_rectangle_form
mf .. /display_options=data_structure
display option: DATA_STRUCTURE

"RECORD"
SIDE_TABLE: "ARRAY"

1. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"

2. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"
"ARRAY END"

RECTANGLE_AREA: "INTEGER" 0
RECTANGLE_MESSAGE: "STRING"
"RECORD END"

For more information about the structure of variables that are
records, see the NOSNE System Usage manual.

Revision D Using COBOL to Manage Forms 3-9

Example Program for Managing Forms with COBOL

Example Program for Managing Forms with COBOL

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the forms managed in the program.

• The design specification supplied by the form designer.

• The form definition decks.

• The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 3-1).

r

\..

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Figure 3-1. Select Form

3-10 NOSNE Screen Formatting Revision D

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 3-2)
appears.

Compute Area of Rectangle

Type height: ___ _

Area is:

Type width:

f6fal nlml f8rmm?I f91fm 1oml 11cmm 12 .. 13 ...

Figure 3-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

Revision D Using COBOL to Manage Forms 3-11

Forms Managed in the Program

When a user enters c on Select Form, Circle Form (figure 3-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

Figure 3-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

3-12 NOSNE Screen Formatting Revision D

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification:

• The names for the three forms used by the program are:

COBOL_SELECT_FORM
COBOL_RECTANGLE_FORM
COBOL_ CIRCLE_ FORM

• The user can call bot~ the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

OBJECT

SELECT_MESSAGE

Rectangle Form:

TABLE

SIDE

RECTANGLE_AREA

RECTANGLE_ MESSAGE

Circle Form:

RADIUS

CIRCLE_AREA

CIRCLE_MESSAGE

Revision D

Description

Area for user input of r or c.

Area for displaying error messages.

Table that holds values for the
rectangle's sides.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Using COBOL to Manage Forms 3-13

Design Specification

• The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

3-14 NOSNE Screen Formatting Revision D

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The COBOL_SELECT_FORM deck:

01 COBOL-SELECT-FORM.
03 SELECT-MESSAGE PIC X(40).
03 OBJECT PIC X(1).

The COBOL_RECTANGLE_FORM deck:

01 COBOL-RECTANGLE-FORM.
03 SIDE-TABLE OCCURS 2.

05 SIDE PIC S9(18)
COMP SYNC LEFT.

03 RECTANGLE-AREA PIC S9(18) COMP SYNC LEFT.
03 RECTANGLE-MESSAGE PIC X(40).

The COBOL_CIRCLE_FORM deck:

01 COBOL-CIRCLE-FORM.
03 CIRCLE-AREA COMP-1.
03 RADIUS COMP-1.
03 CIRCLE-MESSAGE PIC X(40).

Revision D Using COBOL to Manage Forms 3-15

Example COBOL Program

Example COBOL Program

This COBOL program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named COBOL_COMPUTE_OBJECT_AREA. To run the example
program, see the Screen Formatting examples in the Examples online
manual.

IDENTIFICATION DIVISION.
PROGRAM-ID. COMPUTEAREA.
DATA DIVISION.
WORKING-STORAGE SECTION.

* Copy definitions for Screen Formatting conditions.

*COPY FDE$COBOL_STATUS
*COPY FDE$COBOL_VARIABLE_STATUS

* Copy record for select form.

*COPY cobol_select_form

* Copy record for circle form.

*COPY cobol_circle_form

Copy record for rectangle form.

*COPY cobol_rectangle_form

01 CHARACTER-POSITION
USAGE COMP PIC S9(18) SYNC LEFT.

01 CIRCLE-FORM-IDENTIFIER
USAGE COMP PIC S9(18) SYNC LEFT.

01 DISPLAY-NAME VALUE IS "ERROR" PIC X(31).
01 EVENT-NAME PIC X(31).
01 EVENT-NORMAL PIC X.
01 EVENT-OBJECT-NAME PIC X(31).
01 EVENT-OCCURRENCE USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 EVENT-TYPE USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-IDENTIFIER USAGE COMP PIC S9(18) SYNC LEFT.
01 FORM-NAME PICTURE X(31).
01 FORM-X-POSITION USAGE COMP PIC 59(18) SYNC LEFT.
01 FORM-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 LAST-EVENT PIC X.

3-16 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Program

01 OCCURRENCE USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-TYPE USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 OBJECT-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 PI COMP-1 VALUE 3.14.
01 RECTANGLE-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 SCREEN-X-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 SCREEN-Y-POSITION USAGE COMP PIC S9(18) SYNC LEFT.
01 SELECT-FORM-IDENTIFIER

USAGE COMP PIC S9(18) SYNC LEFT.
01 VARIABLE-NAME PIC X(31).
01 VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT.

PROCEDURE DIVISION.
BEGIN.

*Open all forms used by the program
* and assign form identifiers.

MOVE "COBOL_SELECT_FORM" TO FORM-NAME.
CALL 11 FDP$XOPEN_FORM 11 USING FORM-NAME

SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Open failed on form select."
STOP RUN

END-IF.

MOVE 11 COBOL_CIRCLE_FORM 11 TO FORM-NAME.
CALL "FDP$XOPEN_FORM" USING FORM-NAME

CIRCLE-FORM-IDENTIFIER FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Open failed on form circle."
STOP RUN

END-IF.

MOVE "COBOL_RECTANGLE_FORM" TO FORM-NAME.
CALL 11 FDP$XOPEN_FORM 11 USING FORM-NAME

RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Open failed on form rectangle."
STOP RUN

END-IF.

Using COBOL to Manage Forms 3-17

Example COBOL Program

* Add select form to list scheduled for display.

CALL "FDP$XADD_FORM" USING SELECT-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form select."
STOP RUN

END-IF.

* Update screen and accept user terminal entry
* for object; display all added forms.

GET-OBJECT-INPUT.
CALL "FDP$XREAD_FORMS" USING FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Read failed on form select."
STOP RUN

END-IF.

* Get screen event that determine next actions.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form select."
STOP RUN

END-IF.

*Stop program on QUIT or BACK event.

IF EVENT-NAME NOT EQUAL TO "COMPUTE"
PERFORM STOP-PROGRAM

END-IF.

3-18 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Program

* Transfer object variable from form to program.

MOVE "OBJECT" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XGET_STRING_VARIABLE" USING

SELECT-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
OBJECT FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get string failed on form select."
STOP RUN

END-IF.

* If terminal user entered invalid data, display
~ error message and ask for another entry.

IF NOT FOE-NO-ERROR THEN
MOVE "Type r or c" TO SELECT-MESSAGE
MOVE "SELECT-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

SELECT-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SELECT-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-OBJECT-INPUT
END-IF.

IF OBJECT EQUALS "R" THEN
* Remove select form and compute area of rectangle.

CALL "FDP$XDELETE_FORM" USING
SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form select."
STOP RUN

END-IF
PERFORM COMPUTE-RECTANGLE-AREA THRU CRA-END

ELSE
IF OBJECT EQUALS "C" THEN

Using COBOL to Manage Forms 3-19

Example COBOL Program

* Remove select form and compute area of circle.

CALL "FDP$XDELETE_FORM" USING
SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form select."
STOP RUN

END-IF
PERFORM COMPUTE-CIRCLE-AREA THRU CCA-END

ELSE

~Terminal user entered invalid value for object.
* Display error message and ask for another entry.

MOVE "Typer or c." TO SELECT-MESSAGE
MOVE "SELECT-MESSAGE" TO VARIABLE-NAME
CALL 11 FDP$XREPLACE_STRING_VARIABLE 11 USING

SELECT-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SELECT-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DI SP.LAY
"Replace string failed on form select."

STOP RUN
END-IF

GO TO GET-OBJECT-INPUT
END-IF

END-IF.

* Process event from rectangle form or circle form.

IF EVENT-NAME EQUALS "QUIT"
PERFORM STOP-PROGRAM

END-IF.

~ A BACK event occurred; display select form in
~ original state.

CALL "FDP$XRESET_FORM" USING SELECT-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form select."
STOP RUN

END-IF.

3-20 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Program

CALL "FDP$XADD_FORM" USING SELECT-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form select."
STOP RUN

END-IF.

GO TO GET-OBJECT-INPUT.

COMPUTE-CIRCLE-AREA.

* Display circle form in original state.

CALL "FDP$XRESET_FORM" USING CIRCLE-FORM-IDENTIFIER
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form circle."
STOP RUN

ENO-IF.

CALL "FDP$XAOO_FORM" USING CIRCLE-FORM-IDENTIFIER
FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Add failed on form circle."
STOP RUN

END-IF.

* Update screen and get radius from
* terminal user entry.

GET-CIRCLE-INPUT.
CALL "FDP$XREAO_FORMS" USING FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Read failed on form circle."
STOP RUN

ENO-IF.

Using COBOL to Manage Forms 3-21

Example COBOL Program

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-X-POSITION
OBJECT-Y-POSITION
LAST-EVENT FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form circle."
STOP RUN

END-IF.

IF EVENT-NAME NOT EQUAL TO "COMPUTE"
CALL "FDP$XDELETE_FORM" USING

CIRCLE-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form circle."
STOP RUN

END-IF
GO TO CCA-END

END-IF.

* Transfer terminal user entry for radius to program.

MOVE "RADIUS" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XGET_REAL_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
RADIUS FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get real failed on form circle."
STOP RUN

ENO-IF.

IF NOT FOE-NO-ERROR THEN
MOVE "Type valid value for radius." TO

CIRCLE-MESSAGE
MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-CIRCLE-INPUT
END-IF.

3-22 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Program

*Compute area of circle and display it.

COMPUTE CIRCLE-AREA = PI * RADIUS ** 2.

MOVE "CIRCLE-AREA" TO VARIABLE-NAME.
CALL 11 FDP$XREPLACE_REAL_VARIABLE 11 USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME OCCURRENCE
CIRCLE-AREA FOE-COBOL-VARIABLE-STATUS
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY

"Replace real failed on form rectangle."
STOP RUN

END-IF.

IF NOT FOE-NO-ERROR THEN

* Area value could not be displayed using
* output format defined for form.
* Revise the form or the program to accorr.modate
* the size of the number.

MOVE "Format cannot display area." TO
CIRCLE-MESSAGE

MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-CIRCLE-INPUT
END-IF.

Using COBOL to Manage Forms 3-23

Example COBOL Program

~ Blank error message in case previously displayed.

MOVE SPACES TO CIRCLE-MESSAGE.
MOVE "CIRCLE-MESSAGE" TO VARIABLE-NAME.
CALL 11 FDP$XREPLACE_STRING_VARIABLE 11 USING

CIRCLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CIRCLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Replace string failed on form circle."
STOP RUN

END-IF.

* Process next user entry.

GO TO GET-CIRCLE-INPUT.
CCA-END. EXIT.

COMPUTE-RECTANGLE-AREA.

* Display rectangle form in original state.

CALL 11 FDP$XRESET_FORM 11 USING
RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Reset failed on form rectangle."
STOP RUN

END-IF.

CALL 11 FDP$XADD_FORM" USING
RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Add failed on form rectangle."
STOP RUN

END-IF.

3-24 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Program

* Update screen and get terminal user entry for
~ rectangle height and ~idth.

GET-RECTANGLE-INPUT.
CALL "FDP$XREAD_FORMS" USING FOE-COBOL-STATUS.
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Read failed on form rectangle."
STOP RUN

END-IF.

CALL "FDP$XGET_NEXT_EVENT" USING EVENT-NAME
EVENT-NORMAL SCREEN-X-POSITION SCREEN-Y-POSITION
FORM-IDENTIFIER FORM-X-POSITION FORM-Y-POSITION
EVENT-TYPE EVENT-OBJECT-NAME EVENT-OCCURRENCE
EVENT-POSITION OBJECT-TYPE OBJECT-~-POSITION
OBJECT-Y-POSITION
LAST-EVENT FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get event failed on form rectangle."
STOP RUN

END-IF.

* If abnormal event (BACK or QUIT) occurs,
*return to caller.

IF EVENT-NAME NOT EQUAL TO "COMPUTE"
CALL "FDP$XDELETE_FORM" USING

RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS
IF NOT FOE-REQUEST-SUCCESSFUL

DISPLAY "Delete failed on form rectangle."
STOP RUN

END-IF
GO TO CRA-END

END-IF.

Using COBOL to Manage Forms 3-25

Example COBOL Program

* Remove any previous error indications.

MOVE SPACES TO RECTANGLE-MESSAGE.
MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME.
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY

"Replace string failed on form rectangle."
STOP RUN

END-IF.

MOVE 1 TO OCCURRENCE.
MOVE "SIDE" TO VARIABLE-NAME.
CALL "FDP$XRESET_OBJECT_ATTRIBUTE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE FOE-COBOL-STATUS

MOVE 2 TO OCCURRENCE.
CALL "FDP$XRESET_OBJECT_ATTRIBUTE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE FOE-COBOL-STATUS

~ Transfer height value from form to program.

MOVE "SIDE" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XGET_INTEGER_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SIDE (1) FOE-COBOL-VARIABLE-STATUS
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get integer failed on form rectangle."
STOP RUN

ENO-IF.

3-26 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Prorrram

* If data invalid, move cursor to height value
* and display error message.

IF NOT FOE-NO-ERROR THEN
MOVE 1 TO CHARACTER-POSITION
CALL "FDP$XSET_CURSOR_POSITION" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CHARACTER-POSITION FOE-COBOL-STATUS

CALL "FDP$XSET_OBJECT_ATTRIBUTE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME

OCCURRENCE DISPLAY-NAME FOE-COBOL-STATUS
MOVE "Type valid value for height." TO

RECTANGLE-MESSAGE
MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT
END-IF.

* Transfer ~idth value from form to program.

MOVE 2 TO OCCURRENCE.
CALL "FDP$XGET_INTEGER_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE SIDE (2) FOE-COBOL-VARIABLE-STATUS
FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Get integer failed on form rectangle."
STOP RUN

END-IF.

*If data invalid, move cursor to ~idth value and display
c error message.

IF NOT FOE-NO-ERROR THEN
MOVE 1 TO CHARACTER-POSITION
CALL "FDP$XSET_CURSOR_POSITION" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE CHARACTER-POSITION FOE-COBOL-STATUS

CALL "FDP$XSET_OBJECT_ATTRIBUTE" USING
RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE DISPLAY-NAME FOE-COBOL-STATUS

Using COBOL to Manage Forms 3-27

Example COBOL Program

MOVE "Type valid value for width."
TO RECTANGLE-MESSAGE

MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME
MOVE 1 TO OCCURRENCE
CALL "FDP$XREPLACE_STRING_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT
END-IF.

~Compute area of rectangle and display it.

MULTIPLY SIDE (1) BY SIDE (2) GIVING
RECTANGLE-AREA.

MOVE "RECTANGLE-AREA" TO VARIABLE-NAME.
MOVE 1 TO OCCURRENCE.
CALL "FDP$XREPLACE_INTEGER_VARIABLE" USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-AREA
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY

"Replace integer failed on form rectangle."
STOP RUN

END-IF.

IF NOT FOE-NO-ERROR THEN

c Area value could not be displayed using
~ output format defined for form.
~ Revise the form or the program to acco;r.modate
c the size of the number.

MOVE "Format cannot display area."
TO RECTANGLE-MESSAGE

MOVE "RECTANGLE-MESSAGE" TO VARIABLE-NAME
MOVE 1 TO OCCURRENCE
CALL 11 FDP$XREPLACE_STRING_VARIABLE 11 USING

RECTANGLE-FORM-IDENTIFIER VARIABLE-NAME
OCCURRENCE RECTANGLE-MESSAGE
FOE-COBOL-VARIABLE-STATUS FOE-COBOL-STATUS

GO TO GET-RECTANGLE-INPUT
END-IF.

3-28 NOSNE Screen Formatting Revision D

Revision D

Example COBOL Program

* Process next user entry.

GO TO GET-RECTANGLE-INPUT.
CRA-END. EXIT.

STOP-PROGRAM.

*Close all forms and delete from list scheduled
* for display.

CALL "FDP$XCLOSE_FORM" USING
SELECT-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form select."

END-IF.

CALL "FDP$XCLOSE_FORM" USING
CIRCLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form circle."

END-IF.

CALL "FDP$XCLOSE_FORM" USING
RECTANGLE-FORM-IDENTIFIER FOE-COBOL-STATUS.

IF NOT FOE-REQUEST-SUCCESSFUL
DISPLAY "Close failed on form rectangle."

END-IF.

STOP RUN.

Using COBOL to Manage Forms 3-29

Expanding and Compiling a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code. 3

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

The procedure calls SCU to expand the SCU directives contained in
the program. For this expansion, you must include the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE library as an
alternate base. The program is then compiled and put on an object
library.

PROCEDURE cobol_compile_deck, cobcd (
deck, d: name = $reouired
status)
source_code_utility

use_library base=example_source_library result=$nu11
expand_deck deck=deck ..
compile=$1oca1.compile ..
alternate_base=$system.cybi1.osf$program_interface

QUit

cobol input=$1oca1.compile ..
1ist=$1oca1. listing runtime_checks=all
binary_object=$1oca1. lgo

debug_aids=all

3. For information on SCU, see the NOSNE Source Code Management manual.

3-30 NOSNE Screen Formatting Revision D

Expanding and Compiling a Program

create_object_library
add_module library=example_object_library
combine_module 1ibrary=$1oca1. lgo
generate_library 1ibrary=example_object_library.$next

quit

PROCEND cobol_compile_deck

To use the procedure, put it on library EXAMPLE_OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/cobo 1_compi1 e_decl(decl(=cobol _cornpute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOSNE System Usage manual.

Revision D Using COBOL to Manage Forms 3-31

Helping the User Start the Application

IBielping the User Start lthe AppHca.ttion

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library
containing the forms and program.

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

~!! • Ensure that users select the correct natural language.

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOSNE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that
uses the starting procedure COMPUTEAREA on library EXAMPLE_
OBJECT_LIBRARY. The other libraries accessed by the program are
$SYSTEM.FDF$LIBRARY and $SYSTEM.TDD.TERMINAL_
DEFINITIONS. Users must have these libraries available in order for
the program to call the Screen Formatting subroutines.

PROCEDURE cobol_compute_area, cobca (
status)

execute_ task
1ibrary=(example_object_library,$system.fdf$1ibrary, ..
$system.tdu.terminal_definitions)
starting_procedure=computearea

PROCEND cobol_compute_area

3-32 NOSNE Screen Formatting Revision D

Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic

Terminal model

Attention
character

Hold messages

Description

Identifies the terminal to NOSNE.

Provides a character users can enter to interrupt
the application.

Tells the network to hold all network messages
until the user stops the application. Otherwise, a
computer operator message may overwrite a form
while a user is entering data, confusing the user.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

o Identifies a Digital Equipment Corporation VT220 terminal to the
system.

e Chooses the exclamation point as a way to interrupt the program.

• Holds all messages from a NAMVE/CDCNET network.

o Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!' ..
status_action=hold

change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=l
change_connection_attributes terminal_file_name=c01T1Tiand aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOSNE System Usage manual.

Revision D Using COBOL to Manage Forms 3-33

Selecting a Natural Language

Selecting a Natural Language

To ensure that users receive messages in the correct natural
language, have them add the CHANGE_NATURAL_LANGUAGE
command to their prologs. Because the default language is US_
ENGLISH and all messages returned by Screen Formatting are in this
language, have users include this command only when you have
changed messages to another language.

Changing messages to other languages is described in the NOSNE
Object Code Management manual. The CHANGE_NATURAL_
LANGUAGE command is described in the NOSNE System Usage
manual.

Starting the Application

To start the application, the users enter:

/create_co:r.nand_list_entry e=example_object_library
/cobol_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_corr~and_list_entry e=example_object_library

3-34 NOSNE Screen Formatting Revision D

COBOL Subroutine Calls for Interacting with Forms

COBOJL 8u1hrotir~ine Cans liorr Krnr~erac·~irmg ivi~Ibi.
Forms

The subroutines that follow are used by Screen Formatting to manage
forms. These subroutines are external routines that reside on the
library called $SYSTEM.FDF$LIBRARY. To execute your program,
users must have this library in their program library lists.

For each subroutine, there is a purpose description, input format, list
of parameters and their types, condition identifiers, and pertinent
remarks.

When checking the status of subroutines, you must check the
FDE-COBOL-STATUS parameter and also check, when present, the
FDE-COBOL-VARIABLE-STATUS parameter. If the value of
FDE-COBOL-STATUS is zero, you can process output from the
subroutine. However, if there is also a
FDE-COBOL-VARIABLE-STATUS parameter, check its value before
using variable output from the subroutine. The variable status is
independent of the status for the subroutine.

Revision D Using COBOL to Manage Forms 3-35

Adding a Form

Adding a Form

Purpose FDP$XADD_FORM schedules a form for display on the
application user's screen.

Format CALL "FDP$XADD_FORM" USING form-identifier
fde-co bol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-ntatus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-already-added
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-a vailable
fde-system-error

3-36 NOSNE Screen Formatting Revision D

Remarks

Revision D

Adding a Form

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

• When displayed, each form that is added operates
independently from other forms that have been added.
When a user executes a normal event, Screen
Formatting validates and updates only those variables
on the form associated with the event. To have forms
share events, see Combining Forms later in this
section.

• Before you add a form, you must open it.

• You cannot add a pushed form.

Using COBOL to Manage Forms 3-37

Changing Table Size

Changing Table Size

Purpose FDP$XCHANGE_ TABLE_SIZE changes the size of the
table during program execution.

Format CALL "FDP$XCHANGE_TABLE_SIZE" USING
form-identifier table-name table-size fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

table-nnme {input}

The name of the table to change in size. Include the
following data description entry:

01 table_name PIC X(31).

table-oize {input}

The size of the table. While this subroutine is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following data description entry:

01 table-size
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

3-38 NOSNE Screen Formatting Revision D

Changing Table Size

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Examples

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-table-name
f de-in valid-tab le-size
fde-no-space-a vailable
fde-unknown-table-name

• The table must be present in an open form.

• The size limitation remains in effect until the next
time you call the FDP$XCHANGE_ TABLE_SIZE
subroutine.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (fde-invalid-table-size).

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

Revision D Using COBOL to Manage Forms 3-39

Closing a Form

Closing a Form

Purpose FDP$XCLOSE_FORM releases resources used to process
a form and deletes the form from the list scheduled for
display.

Format CALL "FDP$XCLOSE_FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-invalid-form-identifier
fde-form-pushed
fde-no-space-available

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting removes the closed form from the terminal
screen as a result of calling this procedure.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

3-40 NOSNE Screen Formatting Revision D

Combining Forms

Combining Forms

Purpose FDP$XCOMBINE_FORM combines a form with a
previously added form and schedules the combined form
for display on the terminal screen.

Format CALL "FDP$XCOMBINE_FORM" USING
added-form-identifier combine-form-identifier
fde-cobol-status

Parameters added-form-identifier {input}

The identifier for this instance of the previously added
form. Include the following data description entry:

01 added-form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

combine-form-identifier {input}

The identifier for the form you are combining with the
previously added form. Include the following data
description entry:

01 combine-form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Revision D

fde-bad-da ta-value
fde-form-already-added
fde-form-already-combined
fde-form-pushed
fde-form-too-large-for-screen
fde-invalid-form-identifier
fde-no-space-available
fde-system-error

Using COBOL to Munage Forms 3-41

Combining Forms

Remarks • You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the combined form. The combined
form is placed on top of other forms occupying the
same area on the screen.

• When the application user executes an event to return
normally to the program, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this subroutine more than once.

3-42 NOSNE Screen Formatting Revision D

Deleting a Form

Deleting a Form

Purpose FDP$XDELETE_FORM deletes a form from the list of
forms scheduled for display.

Format CALL "FDP$XDELETE _FORM" USING
form-identifier fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Revision D

fde-bad-data-val ue
fde-form-not-scheduled
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-a vailable

o When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting removes the deleted form from the
terminal screen and replots any forms uncovered by
the deleted form with the next screen update.

• When you add a form (FDP$XADD_FORM) again that
you previously deleted, the data in the form is
retained.

Using COBOL to Manage Forms 3-43

Deleting a Form

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

3-44 NOSNE Screen Formatting Revision D

Getting an Integer Variable

Getting an Integer Variable

Purpose FDP$XGET_INTEGER_ VARIABLE gets the value the
user entered on a form for an integer variable and
transfers it to the program.

Format CALL "FDP$XGET_INTEGER_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fd e-cobol-status

Parameters form-identifier {input}

Revision D

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the integer variable to get and transfer to
the program. The name was defined when the form was
created.

occurrence ~npuij

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry:

01 variable
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 3-45

Getting an Integer Variable

fde-cobol-variable-status {output}

The condition name that describes the status of the
integer variable. The following values are possible:

FDE-INVALID-INTEGER

The user entered data that is not in the range defined
for variable.

FDE-LOSS-OF-SIGNIFICANCE

The user entered an integer that is too large.

FDE-NO-ERROR

No error occurred.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-ntatus {output}

The variable that indicates the subroutine results. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-error
f de-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

3-46 NOSNE Screen Formatting Revision D

Remarks

Getting an Integer Variable

• Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified
by the form designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Revision D Using COBOL to Manage Forms 3-47

Getting the Next Event

Getting the Next Event

Purpose FDP$XGET_NEXT_EVENT gets the event resulting from
the most recent FDP$XREAD_FORMS subroutine.

Format CALL "FDP$XGET_NEXT_EVENT" USING
event-name event-normal screen-x-position
screen-y-position form-identifier form-x-position
form-y-position event-type object-name
object-occurrence character-position object-type
object-x-position object-y-position last-event
fde-cobol-status

Parameters event-name {output}

A data name to receive the application user's event.
Include the following data description entry:

01 event-name PIC X(31).

event-normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned; if the event is not
normal, F is returned. Include the following data
description entry:

01 event-normal PIC X(l).

ncreen-x-position {output}

A data name to receive the x position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the x position increases by 1 for each
character on the screen counting from left to right.
Include the following data description entry:

01 screen-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

screen-y-position {output}

A data name to receive the y position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the y position increases by 1 for each
character on the screen counting from top to bottom.
Include the following data description entry:

01 screen-y-position
USAGE COMP PIC 89(18) SYNC LEFT.

3-48 NOSNE Screen Formatting Revision D

Revision D

Getting the Next Event

form-identifier {output}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

form-r:-position {output}

A data name to receive the x position of the event on the
form. The character in the upper left corner of the form
is 1; the x position increases by 1 for each character you
count from left to right. Include the following data
description entry:

01 form-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

forrn-y-position {output}

A data name to receive the y position of the event on the
form. The character in the upper left corner of the form
is 1; the y position increases by 1 for each character you
count from top to bottom. Include the following data
description entry:

01 form-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

event-type {output}

The event type. The following values are possible:

Value Event Type

0

1

The event occurred on an area of a form
containing no object.

The event occurred on a form object.

Include the following data description entry:

01 event-type
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {output}

When event-type is 1, the variable returns a value giving
the name of the object on which the event occurred.
Include the following data description entry:

01 object-name PIC X(31).

Using COBOL to Manage Forms 3-49

Getting the Next Event

object-occurrence {output}

When event-type is 1, the variable returns a value giving
the occurrence of the object name. Include the following
data description entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

character-position {output}

When event-type is 1, the variable returns a value giving
the character position within the object where the event
occurred. The first character position is 1. Include the
following data description entry:

01 character-position
USAGE COMP PIC S9(18) SYNC LEFT.

object-type {output}

When event-type is 1, the variable indicates the type of
object on which the event occurred. The following values
are possible:

Value

0
1
2
3
5
6

Object Type

Box
Constant text
Constant text box
Line
Variable text
Variable text box

Include the following data description entry:

01 object-type
USAGE COMP PIC S9(18) SYNC LEFT.

object-x-position {output}

When event-type is 1, the value returned is the x origin
position of the object. The character in the upper left
corner of the form is 1; the x position increases by 1 for
each character you count from left to right. Include the
following data description entry:

01 object-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

3-50 NOSNE Screen Formntting Revision D

Getting the N e:i~t Event

object-y-position {output}

When event-type is 1, the value returned is the y origin
position of the object. The character in the upper left
corner of the form is 1; the y position increases by 1 for
each character you count from top to bottom. Include the
following data description entry:

01 object-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

last-event {output}

Indicates whether this is the last event. The following
values are possible:

Value Meaning

T This is the last event.

F This is not the last event.

Include the following data description entry:

01 last-event PIC X(l).

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Revision D

fde-bad-data-val ue

The FDP$XREAD_FORMS subroutine deletes existing
events. If the event is normal, Screen Formatting updates
the variables in the added and combined forms containing
the event. Later, you can request the transfer of these
variables to program storage. If the event is abnormal,
Screen Formatting does not update or validate variables.

Using COBOL to Manage Forms 3-51

Getting a Real Variable

Getting a Real Variable

Purpose FDP$XGET_REAL_ VARIABLE gets a value the user
entered on a form for a real variable and transfers it to
the program.

Format CALL "FDP$XGET_REAL_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The ·identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

nnme {input}

The name of the variable to get. The name was defined
when the form was created.

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

vaiiable {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following data description entry:

01 variable COMP-1.

3-52 NOSNE Screen Formatting Revision D

Revision D

Getting a Real V nriable

fde-cobol-vminble-ntatun {output}

The condition that gives you the status of the variable.
The following values are possible:

FOE-INDEFINITE

The user entered an indefinite number.

FDE-INVALID-BDP-DATA

The user entered data that does not correspond to the
defined data type.

FOE-INVALID-REAL

The user entered data that is not within the range of
real numbers defined for the variable.

FOE-LOSS-OF-SIGNIFICANCE

The user entered a number too large to be converted
to the defined real program type.

FDE-NO-ERROR

No error occurred on the variable.

FOE-OVERFLOW

The user entered an exponent that is too large.

FOE-UNDERFLOW

The user entered an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-ntatus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Using COBOL to Manage Forms 3-53

Getting a Real Variable

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-a vailable
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name

• Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

3.54 NOSNE Screen Formatting Revision D

Getting a Record

Getting a Record

Purpose FDP$XGET_RECORD transfers the values of the form
record to the program record.

Format CALL "FDP$XGET_RECORD" USING form-identifier
record fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

Revision D

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

record {output}

The name of the record that .contains working storage
information for the form. When the form is created,
Screen Fm::matting generates the variable definition
entries in this record. It is the program work area for the
variables used on the form.

fde-cobol-vurinble-atatun {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INDEFINITE

The user entered an indefinite number.

FDE-INFINITE

The user entered an infinite number.

FDE-INVALID-BDP-DATA

The user entered data that does not correspond to the
defined data type.

FDE-INVALID-INTEGER

The user entered data that is not within the range of
integer numbers defined for the variable.

FDE-INVALID-REAL

The user entered data that is not within the range of
real numbers defined for the variable.

Using COBOL to Manage Forms 3-55

Getting a Record

FDE-INVALID-STRING

The user entered data that does not match the strings
defined as valid for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The user entered a number too large to be converted
to the defined real or integer data type.

FDE-NO-DIGITS

The user, who should have entered a real or integer
number, did not enter digits.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OVERFLOW

The user entered an exponent that is too large.

FDE-UNDERFLOW

The user entered an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

ide-bad-data-value
fde-form-has-no-variables
f de-invalid-form-identifier
f de-no-space-available
f de-system-error
fde-work-invalid

3-56 NOSNE Screen Formatting Revision D

Remarks

Getting a Record

• Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

o If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Revision D Using COBOL to Manage Forms 3-57

Getting a String Variable

Getting a String Variable

Purpose FDP$XGET_STRING_ VARIABLE gets a value the user
entered on a form for a string variable and transfers it to
the program.

Format CALL "FDP$XGET_STRING_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

nnme {input}

The name of the variable to get. The name was defined
when the form was created.

occurrence {input}

·The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following data description entry (where n is the length of
the variable):

01 variable PIC X(n).

fde-cobol-varinble-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-STRING

The user entered a variable that does not match the
strings defined for the variable.

3-58 NOSNE Screen Formatting Revision D

Getting a StrinG V uriuble

FDE-NO-ERROR

No error occurred on the variable.

FDE-VARIABLE-TRUNCATED

The storage length of the parameter variable is not
long enough.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-ntntun {output}

The variable that indicates the results of subroutine. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Revision D

fde-bad-data-value
f de-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-a vailable
f de-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-name

Uning COBOL to :Manage Forms 3-59

G<ltting n String V nrinble

Remarks • Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

3-60 NOS/VE Screen Formatting Revision D

Opening a Form

Opening a Form

Purpose FDP$XOPEN _FORM locates a form and and prepares it
for use by the program.

Format CALL "FDP$XOPEN _FORM" USING form-name
form-identifier fde-cobol-status

Parameters form-name {input}

The name of the form you ·want to open. Include the
following data description entry:

01 form-name PIC X(31).

form-identifier {input-output}

The form identifier established for the form. Other Screen
Formatting subroutines use this identifier when
referencing the form. Include the following data
description entry:

01 form-identifier
USAGE COMP PIC 89(18) SYNC LEFT.

fde-cobol-ntntus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Revision D

fde-bad-data-value
f de-form-already-open
fde-form-not-ended
fde-form-requires-conversion
fde-invalid-form-identifier
fde-invalid-form-name
fde-no-space-available
fde-system-error
fde-terminal-not-identified
fde-unknown-form-name

Using COBOL to Manage Forms 3-61

Opening a Form

Remarks • Screen Formatting locates a form as follows:

- If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object code libraries.
(You specify the order in which Screen Formatting
searches the list using the NOS/VE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$XOPEN _FORM does not display the
form on the screen.

• The form identifier that FDP$XOPEN _FORM returns
identifies the instance of open for a form. Forms
dynamically created have only one instance of open.
Forms stored on object libraries can have more than
one instance of open. For each instance of open,
Screen Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

3-62 NOSNE Screen Formatting Revision D

Popping a Form

Popping a Form

Purpose FDP$XPOP _FORMS deletes forms scheduled (added or
combined) since the last FDP$XPUSH_FORMS call.

Format CALL "FDP$XPOP _FORMS" USING fde-cobol-status

Parameters fde-cobol-ntatus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Revision D

fde-bad-data-value
fde-no-forms-to-pop

Events associated with the last list of pushed forms
become active.

Using COBOL to Manage Forms 3-63

Positioning a Form

Positioning a Form

Purpose FDP$XPOSITION _FORM schedules moving a form to a
new location. Using this subroutine, you can define a
form at one location and display it at another location, or
you can move a form from where it is currently displayed
to a new location.

Format CALL "FDP$XPOSITION_FORM" USING
form-identifier screen-x-position screen-y-position
fde-cobol-status

Parameters form-identifier {input}

The form identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

screen-x-position {input}

The x position on the screen for determining the upper
left corner of the form. The character position in the
upper left corner of the screen is 1, and the x position
increases by 1 for each character on the screen counting
from left to right. Include the following data description
entry:

01 screen-x-position
USAGE COMP PIC S9(18) SYNC LEFT.

screen-y-position {input}

The y position on the screen for determining the upper
left corner of the form. The character position in the
upper left corner of the screen is 1, and the y position
increases by 1 for each character on the screen counting
from top to bottom. Include the following data description
entry:

01 screen-y-position
USAGE COMP PIC S9(18) SYNC LEFT.

3-64 NOSNE Screen Formatting Revision D

Positioning a Form

fde-cobol-ntatus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-pushed
f de-form-too-large-for-screen
f de-invalid-form-identifier
fde-no-space-a vailable
fde-system-error

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the form on the screen at the
position specified in the call to FDP$XPOSITION _
FORM.

o If you call this subroutine while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form lays on top of
any other form occupying the sa~e area on the screen.

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

o Before you position a form, you must open it.

o You cannot position a pushed form.

Revision D Using COBOL to Manage Forms 3-65

Pushing a Form

Pushing a Form

Purpose FDP$XPUSH_FORMS causes Screen Formatting to
record added and combined forms so you can return to
them later.

Format CALL "FDP$XPUSH_FORMS" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
f de-no-forms-to-push

• Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine deactivates the events associated with
forms scheduled for display (added or combined) since
the last push call.

3-66 NOSNE Screen Formatting Revision D

Rending ::i. Form

Reading a Form

Purpose FDP$XREAD_FORMS updates the terminal screen and
accepts input from the application user.

Format CALL "FDP$XREAD_FORMS" USING
fde-co bol-status

Parameters fde-cobol-ot:ltus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call aI].d are defined
as COBOL condition names in appendix D.

Remarks

Revision D

fde-bad-data-value
fde-no-events-active
fde-no-forms-to-read
fde-system-error
f de-terminal-disconnected

o A call to FDP$XREAD_FORMS:

- Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD _FORMS or
FDP$XSHOW_FORMS call.

- Updates on the screen the variables replaced since
the last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

- Updates on the screen the objects for which display
attributes were set or reset since the last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

Using COBOL to Manage Forms 3-67

Reading a Form

• Events not retrieved with the FDP$XGET_NEXT_
EVENT subroutine are deleted before any input is
accepted from the user.

• The FDP$XREAD_FORMS subroutine does not execute
unless the forms scheduled for display contain at least
one active event.

3-68 NOSNE Screen Formatting Revision D

Replacing an Integer Variable

Replacing an Integer Variable

Purpose FDP$XREPLACE_INTEGER_ VARIABLE transfers a
program integer variable to Screen Formatting.

Format CALL "FDP$XREPLACE_INTEGER_ VARIABLE"
USING form-indentifier name occurrence variable
fde-co bol-variable-status f de-co bol-status

Parameters form-identifier {input}

Revision D

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the integer variable to replace. The name
was defined when the form was created.

01 name PIC X(31).

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry:

01 variable
USAGE COMP PIC S9(18) SYNC LEFT.

Using COBOL to Manage Forms 3-69

Replacing an Integer Variable

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-INTEGER

The program supplied a value that is not within the
range of integer numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The program supplied a value that is too large for the
form variable.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-statu5 {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-a vailable
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

3-70 NOSNE Screen Formatting Revision D

Remarks

Replacing an Integer Variable

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
replaces the integer variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

o You cannot replace an integer variable for a pushed
form.

o If the integer variable is not valid, it is not replaced.

Revision D Using COBOL to Manage Forms 3-71

Replacing a Real Variable

Replacing a Real Variable

Purpose FDP$XREPLACE_REAL_ VARIABLE transfers a program
real variable to Screen Formatting.

Format CALL "FDP$XREPLACE_REAL_ VARIABLE" USING
form-identifier name occurrence variable
fde-cobol-variable-status fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the real variable to replace. The name was
defined when the form was created.

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following data description entry:

01 variable COMP-1.

3-72 NOSNE Screen Formatting Revision D

Replacing a Real Variable

fde-cobol-variable-stntus {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-REAL

The value the program supplied is not within the
range of real numbers defined for the variable.

FDE-LOSS-OF-SIGNIFICANCE

The value the program supplied is too large for the
form variable.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Revision D

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-available
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-variable-name
fde-wrong-variable-type

Using COBOL to Manage Forms 3-73

Replacing a Real Variable

Remarks • When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
replaces the real variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

3-74 NOSNE Screen Formatting Revision D

Replacing a Record

Replacing a Record

Purpose FDP$XREPLACE_RECORD transfers values of program
variables to Screen Formatting for later display on a
form.

Format CALL "FDP$XREPLACE_RECORD" USING
form-identifier record fde-cobol-variable-status
fde-cobol-status

Parameters form-identifier {input}

Revision D

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

record {input}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the variable definition
entries in this record. It is the program work area for the
variables used on the form.

fde-cobol-vminble-nto.tus {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INDEFINITE

The program supplied an indefinite number.

FDE-INFINITE

The program supplied an infinite number.

FDE-LOSS-OF-SIGNIFICANCE

The program supplied a number too large to be
converted to the form variable size.

FDE-NO-ERROR

No error occurred on the variable.

FDE-OUTPUT-FORMAT-BAD

The output format defined for the variable cannot
output the variable.

Using COBOL to Manage Forms 3-75

Replacing a Record

FOE-OVERFLOW

The program supplied an exponent that is too large.

FOE-UNDERFLOW

The program supplied an exponent that is too small.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-status {output}

The variable that indicates the results of subroutine. This
variable is defined with the SCU *COPY FDE$COBOL_
STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-has-no-variables
fde-form-pushed
fde-invalid-form-identifier
fde-no-space-available
fde-work-invalid

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting replaces the variables on the terminal
screen with the values stored in Screen Formatting.

• Before you replace a record, you must open the form
on which the variables are replaced.

• You cannot replace a record for a pushed form.

3-76 NOSNE Screen Formatting Revision D

Replacing u String Variable

Replacing a String Variable

Purpose FDP$XREPLACE_STRING_ VARIABLE transfers a string
variable to Screen Formatting.

Format CALL "FDP$XREPLACE_STRING_ VARIABLE"
USING form-identifier name occurrence variable
fde-co bol-variable-status fde-co bol-status

Parameters form-identifier {input}

Revision D

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

name {input}

The name of the string variable to replace. The name was
defined when the form was created.

occurrence {input}

The occurrence of the variable name. Include the following
data description entry:

01 occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

variable {input}

The variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following data description entry (n is the length of the
variable):

01 variable PIC X(n).

fde-cobol-variable-status {output}

The condition that gives you the status of the variable.
The following values are possible:

FDE-INVALID-STRING

The program supplied a variable that does not match
the strings defined for the variable.

Using COBOL to Manage Forms 3-77

Replacing a String Variable

FDE-NO-ERROR

No error occurred on the variable.

This variable is defined with the SCU *COPY
FDE$COBOL_ VARIABLE_STATUS directive you put in
the program.

fde-cobol-ntatus {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-pushed
fde-invalid-form-identifier
fde-invalid-variable-name
fde-no-space-a vailable
fde-system-error
fde-unknown-occurrence
fde-unknown-variable-name
fde-wrong-variable-type

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting replaces the string variable on the
terminal screen.

• Before you replace a string variable, you must open
tpe form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in
uppercase, Screen Formatting converts it to uppercase
before storing the data in the form.

3-78 NOSNE Screen Formatting Revision D

Resetting a Form

Resetting a Form

Purpose FDP$XRESET_FORM resets the form to the state
specified by the form definition.

Format CALL "FDP$XRESET _FORM" USING form-identifier
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-pushed
f de-invalid-form-identifier
fde-no-space-a vailable
f de-system-error

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the form on the terminal screen
with the reset specifications.

o All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

o You cannot reset a pushed form.

Revision D Using COBOL to Manage Forms 3-79

Resetting nn Object Attribute

Resetting an Object Attribute

Purpose FDP$XRESET_OBJECT_ATTRIBUTE resets the display
attributes for an object to those specified in the form
definition.

Format CALL "FDP$XRESET_OBJECT ATTRIBUTE" USING
form-identifier object-name object-occurrence
fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object whose attributes are reset. Include
the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following data description
entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

fde-bad-data-value
fde-form-not-scheduled
f de-form-pushed
fde-invalid-form-identifier
fde-invalid-object-name
fde-invalid-occurrence
fde-no-space-a vailable
fde-unknown-object-name

3-80 NOSNE Screen Formatting Revision D

Remarks

Revision D

Resetting an Object Attribute

• You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS subroutine, Screen
Formatting displays the object using the reset
attributes.

• If the object you specify is not displayed on the screen,
Screen Formatting shifts the data so the object is
displayed (updates the screen automatically.)

Using COBOL to Manage Forms 3-81

Setting the Cursor Position

Setting the Cursor Position

Purpose FDP$XSET_CURSOR_POSITION sets the cursor to a
selected position for later display.

Format CALL "FDP$XSET_CURSOR_POSITION" USING
form-identifier object-name object-occurrence
character-position fde-cobol-status

Parameters form-identifier {input}

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object on which you want to set the
cursor. Include the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The integer specifying the occurrence of the object name.
For the first occurrence, use 1. Include the following data
description entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

character-position {input}

The character position to which you want to set the
cursor. For the first character position, use 1. Include the
following data description entry:

01 character-position
USAGE COMP PIC S9(18) SYNC LEFT.

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

3-82 NOSNE Screen Formatting Revision D

Setting the Cursor Position

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
f de-in valid-character-position
fde-invalid~form-identifier

f de-invalid-object-name
f de-no-object-available-defined
fde-no-space-available
f de-system-error
fde-unknown-object-name
fde-unknown-occurrence

o Use this subroutine to alter the default sequence of
the application user's entry of variables. In the default
sequence, Screen Formatting places the cursor on the
first input variable of the highest priority form. The
highest priority form is the form last added, combined,
or positioned.

At terminals with protected fields, the user tabs from
one variable text object to the next. The cursor starts
at the top line of the form; it moves from left to right
on each line. When no variable text object appears on
a line, the cursor moves down to the next line. At
terminals without protected fields, the user must move
the cursor using the arrow keys or the tab and return
keys.

o When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

o If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

o The cursor position is in effect only for the next
screen update from reading or showing forms.

o Before you set the cursor position on a form, you must
open the form and either add or combine it.

o You cannot set the cursor position in a pushed form.

Revision D Using COBOL to Manacre Forms 3-83

Setting Line Mode

Setting Line Mode

Purpose FDP$XSET_LINE_MODE begins line-by-line interaction
with an application user.

Format CALL "FDP$XSET_LINE_MODE" USING
fde-cobol-status

Parameters fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value

• Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen) but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

3-84 NOSNE Screen Formatting Revision D

Setting an Object Attribute

Setting an Object Attribute

Purpose FDP$XSET_ OBJECT_ATTRIBUTE changes a display
attribute for an object.

Format CALL "FDP$XSET_OBJECT_ATTRIBUTE" USING
form-identifier object-name object-occurrence
attribute-name fde-cobol-status

Parameters form-identifier {input}

Revision D

The identifier established when the form was opened.
Include the following data description entry:

01 form-identifier
USAGE COMP PIC S9(18) SYNC LEFT.

object-name {input}

The name of the object whose display attribute is being
set. Include the following data description entry:

01 object-name PIC X(31).

object-occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following data description
entry:

01 object-occurrence
USAGE COMP PIC S9(18) SYNC LEFT.

attribute-name {input}

The name given to the display attribute when it was
defined on the form. The attribute used here is defined
for the form and not for a specific object. When using
Screen Design Facility, screen attributes are defined
through the ATTRIB function. When using a CYBIL
program, the ADD_DISPLAY_DEFINITION attribute
record defines form attributes.

Include the following data description entry:

01 attribute-name PIC X(31).

fde-cobol-status {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Using COBOL to Manage Forms 3-85

Setting nn Object Attribute

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

fde-bad-data-value
fde-form-not-scheduled
fde-form-pushed
fde-invalid-attribute-position
fde-invalid-form-identifier
fde-invalid-object-name
fde-invalid-occurrence
fde-no-space-available
fde-unknown-display-name
fde-unknown-object name
fde-unknown-occurrence

• You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS subroutine, Screen Formatting
displays the object using the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

3-86 NOSNE Screen Formatting Revision D

Showing Forms

Showing Forms

Purpose FDP$XSHOW_FORMS updates the terminal screen.

Format CALL "FDP$XSHOW_FORMS" USING
f de-co bol-status

Parameters fde-cobol-ntatun {output}

The variable that indicates the results of the subroutine.
This variable is defined with the SCU *COPY
FDE$COBOL_STATUS directive you put in the program.

Conditions The following conditions apply to this call and are defined
as COBOL condition names in appendix D.

Remarks

Revision D

fde-bad-data-value
fde-form-too-large-for-screen
fde-form-to-show
fde-no-space-available
fde-system-error
fde-terminal-disconnected

o When none of the forms scheduled for display has an
event or input variable defined, use this subroutine
instead of FDP$XREAD _FORMS.

o When you do not want any input from the terminal
user, use this subroutine.

o A call to FDP$XSHOW_FORMS:

- Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

Using COBOL to Manage Forms 3-87

Showing Forms

- Displays variables replaced since last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

- Displays objects with attributes set or reset since
last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

3-88 NOSNE Screen Formatting Revision D

Using FORTRAN to Manage Forms 4

Writing a Program to Use Forms 4-2
Copying Data Definitions 4-3
Calling Screen Formatting 4-4

Displaying and Removing Forms and Variable Data 4-4
Processing Events and Data 4-6

Processing Normal Events 4-6
Processing Abnormal Events 4-7

Running a Prototype of the Application 4-7
Example Program for Managing Forms with FORTRAN 4-9

Forms Managed in the Program 4-9
Design Specification ; 4-12
Form Definition Decks 4-14
Example FORTRAN Program 4-15

Expanding and Compiling a Program 4-24

Helping the User Start the Application 4-26
Creating a User Procedure 4-26
Creating a User Pro log 4-27
Selecting a Natural Language 4-28
Starting the Application 4-28

FORTRAN Subroutine Calls for Interacting with Forms 4-29
Adding a Form ... 4-30
Changing Table Size .. 4-32
Closing a Form ... 4-34
Combining Forms ... 4-35
Deleting a Form .. 4-37
Getting an Integer Variable 4-39
Getting the Next Event 4-42
Getting a Real Variable 4-46
Getting a Record ... 4-49
Getting a String Variable 4-51
Opening a Form .. 4-54
Popping a Form .. 4-56
Positioning a Form ... 4-57
Pushing a Form .. 4-59
Reading Forms ... 4-60
Replacing an Integer Variable 4-61
Replacing a Real Variable 4-63
Replacing a Record ... 4-65
Replacing a String Variable 4-67
Resetting a Form ... 4-70
Resetting an Object Attribute 4-71

Setting the Cursor Position 4-73
Setting Line Mode , 4-76
Setting an Object Attribute 4-77
Showing Forms ... 4-79

Chapter 1 presented an example of creating and managing forms. It
demonstrated that both the designer and the programmer have specific
tasks to accomplish. When creating forms, and then managing the
forms using a FORTRAN program, the following tasks need to be
accomplished:

1. The form designer and programmer plan the forms and program.

2. The form designer creates the forms specifying FORTRAN as the
form processor (or programming language) and prepares a design
specification.

3. The form designer puts the forms in an object library and makes
the form record definition available. Each record definition contains
the data definitions of all variables defined on a particular form
and is written in FORTRAN.

4. The programmer codes the program, including calls to Screen
Formatting FORTRAN subroutines based on the design
specification. These calls manage the forms created by the
designer.

5. The programmer expands and compiles the program.

6. The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When the last task is complete, the program and forms are ready for
the application user.

This chapter describes the tasks performed by the programmer and
shows them being executed in a FORTRAN program. At the end of
the chapter you will find format and parameter descriptions for each
call to FORTRAN subroutines used by Screen Formatting.

The designer's tasks and, also, the formats of the CYBIL procedure
calls that create forms are described in chapter 7. (For information
about designing forms using the Screen Design Facility, see the
NOS/VE Screen Design Facility manual instead.)

Revision D Using FORTRAN to Manage Forms 4-1

Writing n Progrnm to Use Forms

Vif rd.tnrrn.g a Progrtam ·~o 1U 0e JForms

When writing a program to use forms, you must:

• Copy the aliases used in FORTRAN for Screen Formatting
subroutine. See appendix G, FORTRAN Call Definitions.

• Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting subroutines to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a FORTRAN program in
which these tasks are executed.

4-2 NOSNE Screen Formatting Revision D

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting 1 generated the following source file for a form
named SELECT. (The form definition record name is the same as the
form name.)

•DEC~ SELECT expand = false
CHARACTER SELECT*41
CHARACTER XSELEC(41)
EQUIVALENCE (SELECT,XSELEC(1))
CHARACTER MESSAG*40
EQUIVALENCE (XSELEC(1),MESSAG)
CHARACTER OBJECT*1
EQUIVALENCE (XSELEC(41),0BJECT)

The designer saves this file as a deck on a NOSNE SOURCE_
CODE_ UTILITY (SCU) library. 2 The DECK directive in the file
creates the correct name for the deck when it is processed.

Your program uses the names specified during form creation (select,
messag, object). Names preceeded by the letter X are only used to
assign names to FORTRAN storage locations.

In the beginning of your program, you must copy the form definition
deck for each form created by the designer:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on the SCU *COPY
directive.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source tex:t using SCU. (For information on
SCU, see the NOSNE Source Code Management manual.)

Revision D Using FORTRAN to Mnnnrre Forms 4-3

Culling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
tasks with Screen Formatting subroutines:

• Displaying and removing forms and variable data on the
application user's screen.

• Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

You need open a form only once, no matter how many times you
use or update it. For this reason, begin a procedure by opening all
the forms you will use. When a form requires a large amount of
storage for variables, however, you may want to open that one
only when the application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them (the next step). The last form you schedule for
display is the top form on the screen. Because forms are opaque,
the top form covers other forms appearing in the same area. The
cursor position indicates which form is ready for processing.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

4-4 NOSNE Screen Formatting Revision D

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read a form, Screen ·Formatting displays all the forms
you've added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses. The form is no longer available to the user or your
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

Revision D Using FORTRAN to Manage Forms 4-5

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

• For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

• For abnormal events, the program takes its own action. You
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

4-6 NOSNE Screen Formatting Revision D

Running a Prototype of the Application

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

o Resetting a form and redisplaying it.

o Moving the user to a new form for additional processing.

o Returning the user to a previous form.

o Stopping the program.

The user's screen is updated when you either read the forms again
or end the program.

Running a Prototype of the Application

Once the forms have been created for your application, you can
interactively run a prototype using the MANAGE_FORMS utility.
This allows you to test the order in which the forms appear, and to
interact with the forms as the application user will do.

An example of an application prototype is given in chapter 2 under
the section named The Application Prototype. This prototype uses
forms that were created specifically for use in an SCL procedure. To
learn about using a prototype, you can run the prototype as described
in the section.

Once you are familiar with the utility, you can also run a prototype
using forms created for a FORTRAN program. Because the naming
conventions for FORTRAN do not conflict with SCL naming
conventions, the variables defined for the form can be used in the
prototype without any conversion taking place.

Revision D Using FORTRAN to Mnnarre Forms 4-7

Running a Prototype of the Application

To use the prototype with the FORTRAN forms that are on the
library specified in the prototype example rather than opening the
SCL forms listed, open the forms named:

SELECT
REC TAN
CIRCLE

One variable of type RECORD is created for each form as described
for the SCL forms shown in the prototype example. The variable has
the same name as the form. You can display the data structure of
each variable using the DISPLAY_ VALUE command. For example, to
display the data structure for the RECTAN variable, enter the
following command:

mf/display_value value=rectan ..
mf .. /display_options=data_structure
display option: DATA_STRUCTURE

"RECORD"
TABLE: "ARRAY"

1. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"

2. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"
"ARRAY END"

AREA: "INTEGER" 0
MESSAG: "STRING"

"RECORD END"

For more information about the structure of variables that are
records, see the NOSNE System Usage manual.

4-8 NOSNE Screen Formatting Revision D

Example Program for Managing Forms with FORTtt.AN

Example Program for Managing Forms with
FORTRAN

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the. forms managed in the program.

• The design specification supplied by the form designer.

o The form definition decks.

o The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 4-1).

r

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

f6liflll nl~~lfiN fB~ f9~ 10• 11m!ID 12lm113 ..

Figure 4-1. Select Form

Revision D Using FORTRAN to Manage Forms 4-9

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 4-2)
appears.

Compute Area of Rectangle

Type height:----

Area 1s:

Type Width:

fG 1111 f71111 f s[!!!I! f911!11 1011!11 11 [!DD 12111!! 131!!!

Figure 4-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

4-10 NOSNE Screen Formatting Revision D

Forms Managed in the Prorrram

When a user enters c on Select Form, Circle Form (figure 4-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

fsllll f11fi1 falmf.D f9iifl 1oiim1 11cmm 12 .. 1afml

Figure 4-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

Revision D Using FORTRAN to Manage Forms 4-11

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification:

• The names for the three forms used by the program are:

SELECT (for Select Form)
RECTAN (for Rectangle Form)
CIRCLE (for Circle Form)

• The user can call both the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

MESSAG

OBJECT

Rectangle Form:

SIDE

AREA

MESSAG

Circle Form:

RADIUS

AREA

MESSAG

4-12 NOS/VE Screen Formatting

Description

Area for displaying error messages.

Area for user input of r or c.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Revision D

Design Specification

e The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Revision D

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

Using FORTRAN to Manage Forms 4-13

Form Definition Declrn

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The SELECT deck:

CHARACTER SELECT*41
CHARACTER XSELEC(41)
EQUIVALENCE (SELECT,XSELEC(1))
CHARACTER MESSAG*40
EQUIVALENCE (XSELEC(1),MESSAG)
CHARACTER OBJECT*1
EQUIVALENCE (XSELEC(41),0BJECT)

The RECTAN deck:

CHARACTER RECTAN*64
CHARACTER XRECTA(64)
EQUIVALENCE (RECTAN,XRECTA(1))
INTEGER SIDE (2)
EQUIVALENCE (XRECTA(1),SIDE(1))
INTEGER AREA
EQUIVALENCE (XRECTA(17),AREA)
CHARACTER MESSAG*40
EQUIVALENCE (XRECTA(25),MESSAG)

The CIRCLE deck:

CHARACTER CIRCLE*56
CHARACTER XCIRCL(56)
EQUIVALENCE (CIRCLE,XCIRCL(1))
REAL AREA
EQUIVALENCE (XCIRCL(1),AREA)
REAL RADIUS
EQUIVALENCE (XCIRCL(9),RADIUS)
CHARACTER MESSAG*40
EQUIVALENCE (XCIRCL(17),MESSAG)

4-14 NOSNE Screen Formatting Revision D

Example FORTRAN Program

Example FORTRAN Program

This FORTRAN program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named FORTRAN_COMPUTE_OBJECT_AREA. To run the example
program, see the Screen Formatting examples in the Examples online
manual.

PROGRAM COMPUT (OUTPUT, TAPE2=0UTPUT)

* Copy definitions for Screen Formatting subroutines.

*COPY ·FDP$FORTRAN_ALIASES

* Copy variables for select form.

*COPY select

INTEGER !FORM, ISFORM, ICFORM, IRFORM, ISTAT,IVSTAT
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,IOY
CHARACTER*31 FNAME, ENAME, ONAME, VNAME, DNAME
CHARACTER*1 NORMAL, LAST

*Open all forms used by the program
* and assign form identifiers.

FNAME='SELECT'
CALL FDOPEN (FNAME, ISFORM, !STAT)
CALL CHECKS ('Open failed on form select', !STAT)

FNAME='CIRCLE'
CALL FDOPEN (FNAME, ICFORM, !STAT)
CALL CHECKS ('Open failed on form circle', !STAT)

FNAME='RECTAN'
CALL FDOPEN (FNAME, IRFORM, !STAT)
CALL CHECKS ('Open failed on form rectangle', !STAT)

*Add select form to list scheduled for display.

CALL FDADD (ISFORM, !STAT)
CALL CHECKS ('Add failed on form select', !STAT)

Revision D Using FORTRAN to Manage Forms 4-15

Example FORTRAN Program

~ Update screen and accept user terminal entry
~ for object; display all added forms.

20 CALL FDREAD (!STAT)
CALL CHECKS ('Read failed on form select', !STAT)

* Get screen event(s) that determine next actions.

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME,IOCCUR,ICP,IOT,IOX,IOY,LAST,ISTAT)

CALL CHECKS ('Get event failed on form select', !STAT)

IF (ENAME .NE. 'COMPUTE') THEN

~Stop program on QUIT or BACK event.

GO TO 30
END IF

* Transfer object variable from form to program.

VNAME = 'OBJECT'
CALL FDGETS (ISFORM, VNAME, 1, OBJECT, IVSTAT, !STAT)
CALL CHECKS

('Get string variable failed on form select', !STAT)

* If terminal user entered invalid data, display
* error message and ask for another entry.

IF(IVSTAT .NE. 0) THEN
CALL DISMES ('Typer or c.', ISFORM)
GO TO 20

END IF

IF (OBJECT .EQ. 'R') THEN

* Remove select form and compute area of rectangle.

CALL FDDEL (ISFORM, !STAT)
CALL CHECKS ('Delete failed on form select', !STAT)
CALL COMPR (ENAME, IRFORM)
GO TO 25

END IF

4-16 NOSNE Screen Formatting Revision D

Example FORTRAN Program

IF (OBJECT .EQ. 'C') THEN

~ Remove select form and compute area of circle.

CALL FDDEL (ISFORM, !STAT)
CALL CHECKS ('Delete failed on form select'' !STAT)
CALL COMPC (ENAME, ICFORM)
GO TO 25

END IF

~ If terminal user entered invalid value for object,
~ display error message and ask for another entry.

CALL DISMES ('Typer or c.', ISFORM)
GO TO 20

* Process event from rectangle form or circle form.

25 IF(ENAME .EQ. 'QUIT') THEN
GO TO 30

END IF

* A BACK event occurred on rectangle form or circle form;
~ display select form in original state.

Revision D

CALL FDRESF (ISFORM, !STAT)
CALL CHECKS ('Reset failed on form select'' !STAT)

CALL FDADD (ISFORM, !STAT)
CALL CHECKS ('Add failed on form select'' !STAT)
GO TO 20

Using FORTRAN to Manage Forms 4-17

Ehample FORTRAN Program

c Close all forms.

30 CALL FDCLOS (ISFORM, !STAT)
CALL CHECKS ('Close failed on form select', ISTAT)

CALL FDCLOS (ICFORM, !STAT)
CALL CHECKS ('Close failed on form circle', ISTAT)

CALL FDCLOS (IR FORM, !STAT)
CALL CHECKS ('Close failed on form rectangle', ISTAT)

STOP

END

SUBROUTINE CHECKS (MESSAG, ISTAT)

c Check Screen Formatting subroutine call status.

INTEGER ISTAT
CHARACTER*(*) MESSAG

5 FORMAT (1X, A, ', status , ,14)

IF(ISTAT .NE. 0) THEN
WRITE (2,5) MESSAG, ISTAT
STOP

ENO IF

RETURN
ENO

SUBROUTINE DISMES (MESSAG, IFORM)

~ Display message for variable status errors.

INTEGER !FORM, IVSTAT, !STAT
CHARACTER*31 VNAME
CHARACTER*(*) MESSAG

4-18 NOSNE Screen Formatting Revision D

Example FORTRAN Program

*COPY FDP$FORTRAN_ALIASES

VNAME='MESSAG'
CALL FDREPS (!FORM, VNAME, 1, MESSAG, IVSTAT, !STAT)
CALL CHECKS ('Replace string failed on message', !STAT)
RETURN
END

SUBROUTINE COMPC (ENAME, ICFORM)

* Subroutine to compute area for circle.

*COPY FDP$FORTRAN_ALIASES

* Copy variables for circle form.

*COPY circle

INTEGER !FORM, ISTAT,IVSTAT, ICFORM
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,IOY
CHARACTER*31 ENAME, ONAME, VNAME
CHARACTER*l NORMAL, LAST

* Display circle form in original state.

CALL FDRESF (ICFORM, !STAT)
CALL CHECKS ('Reset failed on form circle'' !STAT)

CALL FDADD (ICFORM, !STAT)
CALL CHECKS ('Add failed on form circle', !STAT)

* Update screen and get radius from terminal user entry.

5 CALL FDREAD (!STAT)

Revision D

CALL CHECKS ('Read failed on form circle,, !STAT)

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME,IOCCUR,ICP,IOT,IOX,IOY,LAST,ISTAT)

CALL CHECKS ('Get event failed on form circle', !STAT)

IF (ENAME .NE. 'COMPUTE') THEN
CALL FDDEL (ICFORM, !STAT)
CALL CHECKS ('Delete failed on form circle', !STAT)
RETURN

END IF

Using FORTRAN to Manage Forms 4-19

Example FORTRAN Program

~ Transfer terminal user entry for radius to program.

VNAME = 'RADIUS'
CALL FDGETR (ICFORM, VNAME, 1, RADIUS, IVSTAT, !STAT)
CALL CHECKS

-('Get real variable failed on form circle', !STAT)
IF(IVSTAT .NE. 0) THEN

CALL DISMES ('Type valid value for radius.', ICFORM)
GO TO 5

END IF

*Compute area of circle and display it.

AREA=3.15*(RADIUS**2)

VNAME = 'AREA'
CALL FDREPR (ICFORM, VNAME, 1, AREA, IVSTAT, !STAT)
CALL CHECKS

-('Replace real variable failed on form circle', !STAT)
IF(IVSTAT .NE. 0) THEN

~ The area value could not be displayed using
* output format defined for form.
~ Revise the form or the program to accorr~odate
~ size of number.

CALL DISMES ('Type valid value for radius.', ICFORM)
GO TO 5

END IF

* Blank error message in case previously displayed.

CALL DISMES (' ', ICFORM)

~ Process next user entry.

GO TO 5
END

SUBROUTINE COMPR (ENAME, IRFORM)

* Subroutine to compute area of rectangle.

*COPY FDP$FORTRAN_ALIASES

4-20 NOSNE Screen Formatting Revision D

Example FORTRAN Program

c Copy variables for rectangle form.

*COPY rectan

INTEGER !FORM, ISTAT,IVSTAT,IRFORM
INTEGER ISX,ISY,IFX,IFY,IET,IOCCUR,ICP,IOT,IOX,IOY
CHARACTER*31 ENAME, ONAME, VNAME, DNAME

CHARACTER*1 NORMAL, LAST

DNAME='ERROR'

~ Display rectangle form in original state.

CALL FDRESF (IRFORM, !STAT)
CALL CHECKS ('Reset failed on form rectangle', !STAT)

CALL FDADD (IRFORM, !STAT)
CALL CHECKS ('Add failed on form rectangle', !STAT)

* Update screen and get terminal user entry
* for rectangle height and ~idth.

5 CALL FDREAD (!STAT)
CALL CHECKS ('Read failed on form rectangle', !STAT)

CALL FDGETE (ENAME,NORMAL,ISX,ISY,IFORM,IFX,IFY,IET,
- ONAME,IOCCUR,ICP,IOT,IOX,IOY,LAST,ISTAT)

CALL CHECKS ('Get event failed on form rectangle', !STAT)

c If abnormal event (BACK or QUIT) occurs, return to caller.

Revision D

IF (ENAME .NE. 'COMPUTE') THEN
CALL FDDEL (IRFORM, !STAT)
CALL CHECKS ('Delete failed on form rectangle', !STAT)
RETURN

END IF

Using FORTRAN to Manage Forms 4-21

Example FORTRAN Program

$ Remove any previous error indications.

VNAME = 'SIDE'
CALL FDRESO (IRFORM, VNAME, 1, !STAT)
CALL CHECKS

-('Reset object failed on form rectangle', ISTAT)
CALL FDRESO (IRFORM, VNAME, 2, ISTAT)
CALL CHECKS

-('Reset object failed on form rectangle', !STAT)
CALL DISMES (' ' IRFORM)

$ Transfer height value from form to program.

VNAME = 'SIDE'
CALL FDGETI (IRFORM, VNAME, 1,SIDE (1), IVSTAT, !STAT)
CALL CHECKS

-('Get integer variable failed on form rectangle', ISTAT)

$ If data invalid, move cursor to height value
$ and display error message.

IF(IVSTAT .NE. 0) THEN
CALL FDSETC (IRFORM, VNAME, 1, 1, !STAT)
CALL CHECKS

-('Set cursor failed on form rectangle', ISTAT)
CALL FDSETO (IRFORM, VNAME, 1, DNAME, !STAT)
CALL CHECKS

-('Set object failed on form rectangle', ISTAT)
CALL DISMES ('Type valid value for height.'' IRFORM)
GO TO 5

END IF

~ Transfer width value from form to program.

CALL FDGETI (IRFORM, VNAME, 2, SIDE(2), IVSTAT, ISTAT)
CALL CHECKS

-('Get integer variable failed on form rectangle', ISTAT)

4-22 NOSNE Screen Formatting Revision D

Example FORTRAN Program

* If data invalid, move cursor to ~idth value and display
* error message.

IF(IVSTAT .NE. 0) THEN
CALL FDSETC (IRFORM, VNAME, 2, 1, !STAT)
CALL CHECKS

-('Set cursor failed on form rectangle', !STAT)
CALL FDSETO (IRFORM, VNAME, 2, DNAME, !STAT)

CALL CHECKS
-('Set object failed on form rectangle', !STAT)

CALL DISMES ('Type valid value for width.', IRFORM)
GO TO 5

END IF

~Compute area of rectangle and display it.

AREA=SIDE(1)*SIDE(2)

VNAME = 'AREA'
CALL FDREPI (IRFORM, VNAME, 1, AREA, IVSTAT, !STAT)
CALL CHECKS

-('Replace integer variable failed on form rectangle',
-!STAT)

IF(IVSTAT .NE. 0) THEN

* Area value could not be displayed using
* output format defined for form.
* Revise the form or the program to accorr.modate
* size of number.

CALL DISMES ('Format cannot display area.'. IRFORM)
GO TO 5

END IF

* Process next user entry.

Revision D

GO TO 5
END

Using FORTRAN to Manage Forms 4-23

Expanding and Compiling a Program

JExparmdirrng 2lID.d CompHirmg a Prrogrram

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code. 3

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

The procedure calls SCU to expand the SCU directives contained in
the program. For this expansion, you must include the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE library as an
alternate base. The program is then compiled and put on an object
library.

PROCEDURE fortran_compile_deck, fared (
deck, d: name = $required
status)

source_code_utility
use_library base=example_source_library result=$nu11
expand_deck deck=deck ..
compile=$1oca1.compile ..
alternate_base=$system.cybi1.osf$program_interface

quit

fortran input=$1oca1.compile ..
list=$1oca1. listing runtime_checks=all
binary_object=$loca1. lgo

debug_aids=dt

3. For information on SCU, see the NOS/VE Source Code Management manual.

4-24 NOSNE Screen Formatting Revision D

Expanding and Compiling a Program

create_object_library
add_module library=example_object_library
combine_module 1ibrary=$1oca1. Jgo
generate_library 1ibrary=example_object_library.$next

quit

PROCEND fortran_compile_deck

To use the procedure, put it on library EXAMPLE_OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/fortran_compile_deck deck=fortran_ccmpute_object_area

The compiled program is now also on library EXAMPLE_ OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOS/VE System Usage manual.

Revision D Using FORTRAN to Manage Forms 4-25

Helping the User Start the Application

JH[elping the User §tart the App!Ilcatnon

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library
containing the forms and program.

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

~ii • Ensure that users select the correct natural language.

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOSNE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that
uses the starting procedure COMPUT on library EXAMPLE_
OBJECT_LIBRARY. The other libraries accessed by the program are
$SYSTEM.FDF$LIBRARY and $SYSTEM.TDD.TERMINAL_
DEFINITIONS. Users must have these libraries available in order for
the program to call the Screen Formatting subroutines.

PROCEDURE fortran_compute_area, forca (
status)

execute_ task
library=(example_object_library,$system.fdf$library, ..
$system.tdu.termina1_definitions)
starting_procedure=comput

PROCEND fortran_compute_area

4-26 NOSNE Screen Formatting Revision D

Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic

Terminal model

Attention
character

Hold messages

Description

Identifies the terminal to NOSNE.

Provides a character users can enter to interrupt
the application.

Tells the network to hold all network messages
until the user stops the application. Otherwise, a
computer operator message may overwrite a form
while a user is entering data, confusing the user.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

o Chooses the exclamation point as a way to interrupt the program.

• Holds all messages from a NAMVE/CDCNET network.

o Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!'
status_action=hold

change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=l
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=corrmand aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOSNE System Usage manual.

Revision D Using FORTRAN to Manage Forms 4-27

Selecting a Natural Language

Selecting a Natural Language

To ensure that users receive messages in the correct natural
language, have them add the CHANGE_NATURAL_LANGUAGE
command to their prologs. Because the default language is US_
ENGLISH and all messages returned by Screen Formatting are in this
language, have users include this command only when you have
changed messages to another language.

Changing messages to other languages is described in the NOSNE
Object Code Management manual. The CHANGE_NATURAL_
LANGUAGE command is described in the NOSNE System Usage
manual.

Starting the Application

To start the application, the users enter:

/create_corr.mand_list_entry e=example_object_library
/fortran_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_command_list_entry e=example_object_library

4-28 NOSNE Screen Formatting Revision D

FORTRAN Subroutine Calls for Interacting with Forms

FORTJRAN §ubrrouinmi.e Ca1l~s forr Krmte:ractnnig
ivhtlh Fo:rmg

The following sections describe the FORTRAN subroutine calls to
Screen Formatting modules. For each subroutine, there is a purpose
description, input format, list of parameters and their types, and
pertinent remarks.

The FORTRAN program calls Screen Formatting subroutines that
allow a user to interact with forms. These subroutines are external
routines that reside on the library called $SYSTEM.FDF$LIBRARY.
This library must be in the user's program library list in order to
execute the program.

A subroutine name is an alias that is defined by the deck
FDP$FORTRAN_ALIASES. The SCU directive *COPY
FDP$FORTRAN _ALIASES must be included for each application
subroutine that calls a Screen Formatting subroutine. See appendix F
for a list of aliases.

When checking the status of subroutines, you must check the ISTAT
parameter and also, when present, check the IVSTAT parameter. If
the value of ISTAT is zero, you can process output from the
subroutine. However, if there is also a IVSTAT parameter, check its
value before using variable output from the subroutine. The variable
status is independent of the status for the subroutine.

Revision D Using FORTRAN to Manage Forms 4-29

Adding a Form

Adding a Form

Purpose FDADD schedules a form for display on the application
user's screen.

Format CALL FDADD (iform, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

36 System error occurred.

39 Form is pushed.
70 Form is already added.

131 Form is too large for screen.
145 Data value is bad.

Include the following type statement:

INTEGER istat

4-30 NOSNE Screen Formatting Revision D

Remarks

Adding a Form

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting displays the added form
on the terminal screen. The added form is placed on
top of other forms occupying the same area on the
screen.

• When displayed, each form that is added operates
independently from other forms that have been added.
When a user executes a normal event, Screen
Formatting validates and updates only those variables
on the form associated with the event. To have forms
share events, see Combining Forms later in this
section.

• Before you add a form, you must open it.

• You cannot add a pushed form.

Revision D Using FORTRAN to Manage Forms 4-31

Changing Table Size

Changing Table Size

Purpose FDCHAT changes the size of the table during program
execution.

Format CALL FDCHAT (iform, tname, isize, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

tname {input}

The name of the table to change in size. Include the
following type statement:

CHARACTER*31 tname

isize {input}

The size of the table. While this subroutine is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following type statement:

INTEGER isize

4-32 NOSNE Screen Formatting Revision D

Remarks

Examples

Changing Table Size

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

37 Table name is invalid.

39 Form is pushed.
40 Table name is unknown.

145 Data value is bad.
151 Table size is invalid.

Include the following type statement:

INTEGER istat

o The table must be present in an open form.

o The size limitation remains in effect until the next
time you call the FDCHAT subroutine.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (table size is invalid).

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

o If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

Revision D Using FORTRAN to Manage Forms 4-33

Closing a Form

Closing a Form

Purpose FDCLOS releases resources used to process a form and
deletes the form from the list scheduled for display.

Format CALL FDCLOS (iform, istat)

Parameters iforrn {input}

Remarks

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

fotat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form identifer is invalid.

39 Form is pushed.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting removes the
closed form from the terminal screen as a result of
calling this procedure.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

4-34 NOSNE Screen Formatting Revision D

Combining Forms

Combining Forms

Purpose FDCOM combines a form with a previously added form
and schedules the combined form for display on the
terminal screen.

Format CALL FDCOM (iaform, icform, istat)

Parameters inform {input}

Revision D

The identifier for this instance of the previously added
form. Include the following type statement:

INTEGER iaform

icform {input}

The identifier for the form you are combining with the
previously added form. Include the following type
statement:

INTEGER icform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

39 Form is pushed.

70 Form is already added.
131 Form is too large for screen.
145 Data value is bad.
150 Form is already combined.
152 Form is not added.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 4-35

Combining Forms

Remarks • You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the programs calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
combined form. The combined form is placed on top of
other forms occupying the same area on the screen.

• When the application user executes an event to return
normally to the program, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this subroutine more than once.

4-36 NOSNE Screen Formatting Revision D

Deleting a Form

Deleting a Form

Purpose FDDEL deletes the form from the list of forms scheduled
for display.

Format CALL FDDEL (iform, istat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form identifer is invalid.

39 Form is pushed.

54 Form is not scheduled for display.

145 Data value is bad.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 4-37

Deleting a Form

Remarks • When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting removes the
deleted form from the terminal screen and replots any
forms uncovered by the deleted form.

• When you add a form (FDADD) again that you
previously deleted, the data in the form is retained.

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

4-38 NOS/VE Screen Formatting Revision D

Getting an Integer Variable

Getting an Integer Variable

Purpose

Format

FDGETI gets the value the user entered on a form for an
integer variable and transfers it to the program.

CALL FDGETI (iform, vname, ioccur, ivar, ivstat,
is tat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get and transfer to the
program. The name was defined when the form was
created.

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

ivar {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following type statement:

INTEGER ivar

Using FORTRAN to Manage Forms 4-39

Getting an Integer Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values can be returned:

Value Meaning

0 No error occurred on the variable.

3 The user entered data that is not a valid
integer.

5 The user entered data that does not match the
defined program data type.

7 User entered an integer that is too large.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the subroutine results. The
following values can be returned:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

4-40 NOS/VE Screen Formatting Revision D

Remarks

Getting an Integer Variable

o Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified
by the form designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Revision D Using FORTRAN to Manage Forms 4-41

Getting the Next Event

Getting the Next Event

Purpose FDGETE gets the event resulting from the most recent
FDREAD subroutine.

Format CALL FDGETE (ename, normal, isx, isy, iform, ifx,
ify, iet, oname, ioccur, icp, iot, iox, ioy, last, istat)

Parameters ennme {output}

A data name to receive the application user's event.
Include the following type statement:

CHARACTER*31 ename

normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned. If the event is not
normal, F is returned. Include the following type
statement:

CHARACTER*! normal

isx {output}

A data name to receive the x position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the x position increases by 1 for each
character you count from left to right. Include the
following type statement:

INTEGER isx

isy {output}

A data name to receive the y position of the event on the
screen. The character position in the upper left corner of
the screen is 1; the y position increases by 1 for each
character you count from top to bottom. Include the
following type statement:

INTEGER isy

iform {output}

The variable that returns the instance of the form for the
event. Include the following type statement:

INTEGER iform

4-42 NOSNE Screen Formntting Revision D

Revision D

Getting the Next Event

if:r {output}

A data name to receive the x position of the event on the
form. The character in the upper left corner of the form
is 1; the x position increases by 1 for each character you
count from left to right. Include the following type
statement:

INTEGER ifx

ify {output}

A data name to receive the y position of the event on the
form. The character in the upper left corner of the form
is 1; the y position increases by 1 for each character you
count from top to bottom. Include the following type
statement:

INTEGER ify

iet {output}

The event type. The following values are possible:

Value Meaning

0 The event occurred on an area of a form
containing no object.

1 The event occurred on a form object.

Include the following type statement:

INTEGER iet

oname {output}

When event type is 1, the variable returns a value giving
the name of the object where the event occurred. Include
the following type statement:

CHARACTER*31 oname

ioccur {output}

When event type is 1, the variable returns a value giving
the occurrence of the object name. Include the following
type statement:

INTEGER ioccur

Using FORTRAN to Manaire Forms 4-43

Getting the Next Event

icp {output}

When event type is 1, the variable returns a value giving
the character position within the object where the event
occurred. The first character position is 1. Include the
following type statement:

INTEGER icp

iot {output}

When event type is 1, the variable indicates the type of
object on which the event occurred. The following values
are possible:

Value Object Type

0 Box
1 Constant text
2 Constant box
3 Line
5 Variable text
6 Variable box

Include the following type statement:

INTEGER iot

imr {output}

When event type is 1, the value returned is the x origin
position of the object. The character in the upper left
corner of the form is 1; the x position increases by 1 for
each character you count from left to right. Include the
following type statement:

INTEGER iox

ioy {output}

When event type is 1, the value returned is the y origin
position of the object. The character in the upper left
corner of the form is 1; the y position increases by 1 for
each character you count from top to bottom. Include the
following type statement:

INTEGER ioy

4-44 NOSNE Screen Formatting Revision D

Remarks

Revision D

Getting the Next Event

lnnt {output}

Indicates whether this is the last event The following
values are possible:

Value Meaning

T This is the last event.

F This is not the last event.

Include the following type statement:

CHARACTER*! last

intat {output}

The variable that indicates the results of the subroutine.
The following values can be returned:

Value Meaning

0 Routine completed successfully.

145 Data value is bad.

Include the following type statement:

INTEGER istat

The FDREAD subroutine deletes existing events. If the
event is normal, Screen Formatting updates the variables
in the added and combined forms containing the event.
Later, you can request the transfer of these variables to
program storage. If the event is abnormal, Screen
Formatting does not update or validate variables.

Uoinrr FORTRAN to Manage Forms 4-45

Getting a Real Variable

Getting a Real Variable

Purpose FDGETR gets a value the user entered on a form for a
real variable and transfers it to the program.

Format CALL FDGETR (iform, vname, ioccur, var, ivstat,
is tat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get. The name was defined
when the form was created.

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

var {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following type statement:

REAL var

4-46 NOSNE Screen Formatting Revision D

Revision D

Getting a Real Variable

ivsfa.t {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

2 The user entered data that is within the range
of real numbers defined for the variable.

5 The user entered data that does not correspond
to the defined data type.

7 The user entered a number too large to be
converted to the defined real program type.

9 The user entered an exponent that is too large.

10 User entered an exponent that is too small

11 User entered an indefinite number.

Include the following type statement:

INTEGER ivstat

fotnt {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifier is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 4-47

Getting a Real Variable

Remarks • Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

4-48 NOSNE Screen Formatting Revision D

Getting a Record

Getting a Record

Purpose FDGET transfers the values of the form record to the
program record.

Format CALL FDGET (iform, record, ivstat, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

record {output}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the type statements in this
record. It is the program work area for the variables used
on the form.

ivstat {output}

the condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The user entered data that does not match the
strings defined for the variable.

2 The user entered data that is not within the
range of real numbers defined for the variable.

3 The user entered data that is not within the
range of integer numbers defined for the
variable.

5 The user entered data that does not correspond
to the defined data type.

7 User entered a number that is too large to be
converted to the defined real or integer data
type.

9 The user entered an exponent that is too large.

Revision D Using FORTRAN to Manage Forms 4-49

Getting a Record

Remarks

Value Meaning

10 The user entered an exponent that is too small.

11 The user entered an indefinite number.

12 The user entered an infinite number.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
9 Form identifer is invalid.

14 Work area is invalid.
36 System error exists.
52 Form has no variable.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

4-50 NOSNE Screen Formatting Revision D

Getting a String Variuble

Getting a String Variable

Purpose FDGETS gets a value the user entered on a form for a
string variable and transfers it to the program.

Format CALL FDGETS (iform, vname, ioccur, cvar, ivstat,
is tat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the variable to get. The name was defined
when the form was created.

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

cvar {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following type statement (n is the number of characters in
the variable):

CHARACTER*n

Using FORTRAN to Manage Forms 4-51

Getting a String Variable

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The user entered data that does not match the
strings defined for variable.

15 The storage length of the parameter variable is
not long enough.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

4-52 NOSNE Screen Formatting Revision D

Remarks

Getting a String V uriable

• Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Revision D Using FORTRAN to Manage Forms 4-53

Opening a Form

Opening a Form

Purpose FDOPEN locates a form and prepares it for use by the
program.

Format CALL FDO PEN (fname, iform, istat)

Parameters fname {input}

The name of the form you want to open. Include the
following type statement:

CHARACTER*31 fname

iform {input-output}

The form identifier established for the form. Other Screen
Formatting subroutines use this identifier when
referencing the form. Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
5 Form name is unknown.
7 No space is available.
9 Form indentifier is invalid.

26 Form name is invalid.
36 System error exists.

100 Terminal is not defined.
136 Form is not ended.

139 Form is already open.
141 Form requires conversion.
145 Data value is bad.

Include the following type statement:

INTEGER istat

4.54 NOSNE Screen Formatting Revision D

Remarks

Revision D

Opening a Form

• Screen Formatting locates a form as follows:

- If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

- If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

- If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object code libraries.
(You specify the order in which Screen Formatting
searches the list using the NOSNE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$XOPEN _FORM does not display the
form on the screen.

• The form identifier that FDOPEN returns identifies
the instance of open for a form. Forms dynamically
created have only one instance of open. Forms stored
on object code libraries can have more than one
instance of open. For each instance of open, Screen
Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

Using FORTRAN to Manage Forms 4-55

Popping n Form

Popping a Form

Purpose FDPOP deletes forms scheduled (added or combined) since
the last FDPUSH subroutine.

Format CALL FDPOP (istat)

Parameters istat {output}

Remarks

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

42 No forms are available to pop.

145 Data value is bad.

Include the following type statement:

INTEGER istat

Events associated with the last list of pushed forms
become active.

4-56 NOSNE Screen Formatting Revision D

Positioning a Form

Positioning a Form

Purpose FDPOS schedules moving a form to a new location. Using
this subroutine, you can define a form at one location and
display it at another location, or you can move a form
from where it is currently displayed to a new location.

Format CALL FDPOS (iform, isx, isy, istat)

Parameters iform {input}

The form identifier established when the form was opened.
Include the following type statement:

INTEGER iform

isx {input}

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character you count from left to
right. Include the following type statement:

INTEGER isx

isy {input}

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character you count from top to
bottom. Include the following type statement:

INTEGER isy

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

36 System error exists.

39 Form is pushed.
54 Form is not scheduled

131 Form is too large for screen.
145 Data value is bad.

Revision D Using FORTRAN to Mnnnge Forms 4-57

Positioning a Form

Remarks

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
form on the screen at the position specified in the call
to FDPOS.

• If you call this subroutine while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form lays on top of
any other form occupying the same area on the screen.

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

4-58 NOSNE Screen Formatting Revision D

Pushing n Form

Pushing a Form

Purpose FDPUSH causes Screen Formatting to record added and
combined forms so you can return to them later.

Format CALL FDPUSH (istat)

Parameters istat {output}

Remarks

Revision D

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

46 No forms are available to push.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine deactivates the events associated with
forms scheduled for display (added or combined) since
the last push call.

Uoing FORTRAN to Manage Forms 4-59

Reading Forms

Reading Forms

Purpose FDREAD updates the terminal screen and accepts input
from the application user.

Format CALL FDREAD (istat)

Parameters istat {output}

Remarks

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
1 Terminal is disconnected.

36 System error exists.
104 No forms to read.
142 No events are active.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• A call to FDREAD:

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDREAD or FDSHOW call, it
displays them for the first time.

Removes from the screen the forms you deleted
since the last FDREAD or FDXSHOW call.

- Updates on the screen the variables replaced since
the last FDREAD or FDSHOW call.

Updates on the screen the objects for which display
attributes were set or reset since the last FDREAD
or FDSH OW call.

• Events not retrieved with the FDGETE subroutine are
deleted before any input is accepted from the user.

• The FDREAD subroutine does not execute unless the
forms scheduled for display contain at least one active
event.

4-60 NOSNE Screen Formatting Revision D

Replacing an Integer Variable

Replacing an Integer Variable

Purpose FDREPI transfers a program integer variable to Screen
Formatting.

Format CALL FD RE PI (iform, vname,ioccur,ivar,ivstat,istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the integer variable to replace. The name
was defined when the form was created.

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

ivnr {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
the following type statement:

INTEGER ivar

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

3 The program supplied a variable that is not
within the range of integer numbers defined for
the variable.

Revision D Using FORTRAN to Manage Forms 4-61

Replncing nn Integer Vnrinble

Remarks

Value Meaning

7 The program supplied a value that is too large
for the form variable.

14 The output format defined for the variable
cannot cannot output the variable.

Include the following type statement:

INTEGER ivstat

istnt {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
39 Form is pushed.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting replaces the integer
variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

• You cannot replace an integer variable for a pushed
form.

• If the integer variable is not valid, it is not replaced.

4-62 NOSNE Screen Formntting Revision D

Replacing a Real V nriable

Replacing a Real Variable

Purpose FDREPR transfers a program real variable to Screen
Formatting.

Format CALL FDREPR (iform, vname, ioccur, var, ivstat,
is tat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the real variable to replace. The name was
defined when the form was created.

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

var {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include the following type statement:

REAL var

ivstat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

2 The value the program supplied is not within the
range of real numbers defined for the variable.

Revision D Using FORTRAN to Manage Forms 4-63

Replacing a Real Variable

Remarks

Value Meaning

7 The value the program supplied is too large for
the for variable.

14 The output format defined for the variable
cannot output the variable.

Include the following type statement:

INTEGER ivstat

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form identifer is invalid.

11 Variable name is unknown.

36 System error exists.
38 Variable name is invalid.
39 Form is pushed.

91 Occurrence is unknown.
145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting replaces the real
variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

4-64 NOSNE Screen Formatting Revision D

Replacing a Record

Replacing a Record

Purpose FDREP transfers values of program variables to Screen
Formatting for later display on a form.

Format CALL FDREP (iform, record, ivstat, istat)

Parameters iform {input}

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

record {input}

The name of the record that contains working storage
information for the form. When the form is created,
Screen Formatting generates the type statements in this
record. It is the program work area for the variables used
on the form.

ivstat {output}

The condition that gives you the status of the variable.

Value Meaning

0 No error occurred on the variable.

1 The program supplied an inv;alid string variable.

2 The program supplied an invalid real variable.

3 The program supplied an invalid integer
variable.

7 The program supplied a number too large to be
converted to the form variable size.

9 The program supplied an exponent that is too
large.

10 The program supplied an exponent that is too
small.

11 The program supplied an indefinite number.

Revision D Using FORTRAN to Manage Forms 4-65

Replacing a Record

Remarks

Value Meaning

12 The program supplied an infinite number.

14 The output format defined for the variable
cannot output the variable.

Include the following type statement:

INTEGER ivstat

istnt {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

14 Work area is invalid.
39 Form is pushed.
52 Form has no variable.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting replaces the
variables on the terminal screen with the values
stored in Screen Formatting.

• Before you replace a record, you must open the form
on which the variables are replaced.

• You cannot replace a record for a pushed form.

4-66 NOSNE Screen Formatting Revision D

Replacing a String Variable

Replacing a String Variable

Purpose FDREPS transfers a program string variable to Screen
Formatting.

Format CALL FDREPS (iform, vname, ioccur, cvar, ivstat,
is tat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

vname {input}

The name of the string variable to replace. The name was
defined when the form was created.

ioccur {input}

The occurrence of the variable name. Include the following
type statement:

INTEGER ioccur

cvar {input}

The string variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include the
following type statement (n is the number of characters in
the variable):

CHARACTER*n cvar

Using FORTRAN to Manage Forms 4-67

Rcplncing n String V nrinble

ivntat {output}

The condition that gives you the status of the variable.
The following values are possible:

Value Meaning

0 No error occurred on the variable.

1 The program supplied a variable that does not
match the strings defined for the variable.

Include the following type statement:

INTEGER ivstat

iatnt {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifier is invalid.

11 Variable name is unknown.
36 System error exists.
38 Variable name is invalid.

39 Form is pushed.
91 Occurrence is unknown.

145 Data value is bad.
147 Variable type is wrong.

Include the following type statement:

INTEGER istat

4-68 NOSNE Screen Formatting Revision D

Remarks

Replacing a String Variable

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting replaces the
string variable on the terminal screen.

• Before you replace a string variable, you must open
the form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in upper
case, Screen Formatting converts it to upper case
before storing the data in the forpl.

Revision D Using FORTRAN to Manage Forms 4-69

Resetting a Form

Resetting a Form

Purpose FDRESF resets the form to the state specified by the
form definition.

Format CALL FDRESF (iform, istat)

Parameters iform {input}

Remarks

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.

7 No space is available.

9 Form indentifier is invalid.

36 System error exists.

39 Form is pushed.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
form on the terminal screen with the reset
specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

4-70 NOSNE Screen Formatting Revision D

Resetting an Object Attribute

Resetting an Object Attribute

Purpose FDRESO resets the display attributes for an object to
those specified in the form definition.

Format CALL FDRESO (iform, oname, ioccur, istat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

oname {input}

The name of the object whose attributes are reset. Include
the following type statement:

CHARACTER*31 oname

ioccur {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following type statement:

INTEGER ioccur

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully
7 No space is available.
9 Form indentifer is invalid.

20 Occurrence is invalid.

25 Object name is invalid.
33 Object name is unknown.
39 Form is pushed.
54 Form is not scheduled.

145 Data value is bad.

Include the following type statement:

INTEGER istat

Using FORTRAN to Manage Forms 4-71

Resetting an Object Attribute

Remarks • You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

• When the program calls either the FDREAD or
FDSHOW subroutine, Screen Formatting displays the
object using the reset attributes.

4-72 NOSNE Screen Formatting Revision D

Setting the Cursor Position

Setting the Cursor Position

Purpose FDSETC sets the cursor to a selected position for later
display.

Format CALL FDSETC (iform, oname, ioccur, icp, istat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

oname {input}

The name of the object on which you want to set the
cursor. Include the following type statement:

CHARACTER*31 oname

ioccur {input}

The integer specifying the occurrence of the object name.
For the first occurrence, use 1. Include the.following type
statement:

INTEGER ioccur

icp {input}

The character position to which you want to set the
cursor. For the first character position, use 1. Include the
following type statement:

INTEGER icp

Usinrr FORTRAN to Manarre Forms 4-73

Setting the Cursor Position

Remarks

fotat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

21 Character position is invalid.

25 Object name is invalid.
33 Object name is unknown.
36 System error exists.

39 Form is pushed.
54 Form is not scheduled.
86 Attribute name is unknown.

91 Occurrence is unknown.
134 No object variable is defined.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• Use this subroutine to alter the default sequence of
the application user's entry of variables. In the default
sequence, Screen Formatting places the cursor on the
first input variable of the highest priority form. The
highest priority form is the form last added, combined,
or positioned.

At terminals with protected fields, the user tabs from
one variable text object to the next. The cursor starts
at the top line of the form. It moves from left to right
on each line. When no variable text object appears on
a line, the cursor moves down to the next line. At
terminals without protected fields, the user must move
the cursor using the arrow keys or the tab and return
keys.

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting updates the terminal
screen with the cursor at the specified position.

4-74 NOSNE Screen Formatting Revision D

Setting the Cursor Position

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

• The cursor position is in effect only for the next
screen update from reading or showing forms.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

Revision D Using FORTRAN to Manage Forms 4-75

I

Setting Line Mode

Setting Line Mode

Purpose FDSETL begins line-by-line interaction with an
application user.

Format CALL FDSETL (istat)

Parameters fotat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Remarks

Value Meaning

0 Routine completed successfully.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen), but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

4-76 NOS/VE Screen Formatting Revision D

Setting an Object Attribute

Setting an Object Attribute

Purpose FDSETO changes a display attribute for an object.

Format CALL FDSETO (iform, oname, ioccur, aname, istat)

Parameters iform {input}

Revision D

The identifier established when the form was opened.
Include the following type statement:

INTEGER iform

oname {input}

The name of the object whose display attribute is being
set. Include the following type statement:

CHARACTER*31 oname

ioccur {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following type statement:

INTEGER ioccur

aname {input}

The name given to the display attribute when it was
defined on the form. The attribute used here is defiined
for the form and not for a specific object. When using
Screen Design Facility, screen attributes are defined
through the ATTRIB function. When using a CYBIL
program, the ADD_DISPLAY_DEFINITION attribute
record defines form attributes.

Include the following type statement:

CHARACTER*31 aname

Using FORTRAN to Manage Forms 4-77

Setting nn Object Attribute

Remarks

istat {output}

The variable that indicates the results of the subroutine.
The following values are possible:

Value Meaning

0 Routine completed successfully.
7 No space is available.
9 Form indentifer is invalid.

20 Occurrence is invalid.

25 Object name is invalid.
29 Attribute name is invalid.
33 Object name is invalid.
39 Form is pushed.

54 Form is not scheduled.
86 Attribute name is unknown.
91 Occurrence is unknown.

145 Data value is bad.

Include the following type statement:

INTEGER istat

• You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDREAD or FDSHOW
subroutine, Screen Formatting displays the object using
the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

4-78 NOSNE Screen Formatting Revision D

Showing Forms

Showing Forms

Purpose FDSHOW updates the terminal screen.

Format CALL FDSHOW (istat)

Parameters istat {output}

Remarks

Revision D

A status variable that indicates the results of the
subroutine. The following values are possible:

Value Meaning

0 Routine completed successfully.
1 Terminal is disconnected.
7 No space is available.

36 System error exists.

53 No forms are scheduled for display.
131 Form is too large for screen.
145 Data value is bad.

Include the following type statement:

INTEGER istat

• When none of the forms scheduled for display has an
event or input variable defined, use this subroutine
instead of FDREAD.

• When you do not want any input from the terminal
user, use this subroutine.

• A call to FDSHOW:

Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last FDREAD or
FDSHOW call, it displays them for the first time.

Removes from the screen the forms you deleted
since the last FDREAD or FDSHOW call.

Displays variables replaced since last FDREAD or
FDSHOW call.

Displays objects with attributes set or reset since
last FDREAD or FDSHOW call.

Using FORTRAN to Manage Forms 4-79

Using Pascal to Manage Forms 5

Writing a Program to Use Forms 5-2
Copying Procedure Definitions 5-2

Pascal Procedures ... 5-2
STATUS Parameter ... 5-3
VARIABLE_STATUS Parameter 5-3

Including Data Definitions 5-4
Data Types for Forms 5-4
Data Definitions for Parameters 5-5
Special String Convention 5-5

Calling Screen Formatting 5-6
Displaying and Removing Forms and Variable Data 5-6
Processing Events and Data 5-8

Processing Normal Events 5-8
Processing Abnormal Events 5.:9

Running a Prototype of the Application 5-9
Example Program for Managing Forms with Pascal 5-11

Forms Managed in the Program 5-11
Design Specification .. 5-14
Form Definition Decks 5-16
Example Pascal Program 5-17

Expanding and Compiling a Program 5-27

Helping the User Start the Application 5-29
Creating a User Procedure 5-29
Creating a User Pro log 5-30
Selecting a Natural Language 5-31
Starting the Application 5-31

Pascal Procedure Calls for Interacting with Forms 5-32
Adding a Form ... 5-33
Changing Table Size .. 5-34
Closing a Form ... 5-36
Combining Forms ... 5-37
Deleting a Form .. 5-39
Getting an Integer Variable 5-40
Getting the Next Event .. 5-42
Getting a Real Variable 5-46
Getting a String Variable 5-49
Opening a Form ' 5-51
Popping a Form .. 5-53
Positioning a Form .. : 5-54
Pushing a Form .. 5-56
Reading a Form .. 5-57

Replacing an Integer Variable 5-59
Replacing a Real Variable 5-61
Replacing a String Variable 5-63
Resetting a Form ... 5-65
Resetting an Object Attribute 5-66
Setting the Cursor Position 5-68
Setting Line Mode .. 5-70
Setting an Object Attribute 5-71
Showing Forms ... 5-73

Using Pascal ·~o Manage Fo1"'ms

Chapter 1 presented an example of creating and managing forms. It
demonstrated that both the designer and the programmer have specific
tasks to accomplish. When creating and managing forms using a
Pascal program, the following tasks must be completed:

1. The form designer and programmer plan the forms and program.

2. The form designer creates the forms specifying Pascal as the form
processor (or programming language) and prepares a design
specification.

3. The form designer puts the forms in an object library and makes
the form record definition available. Each record definition contains
the VAR definitions of all variables defined on a particular form
and is written in Pascal.

4. The programmer codes the program, including calls to Screen
Formatting Pascal procedures based on the design specification.
These calls manage the forms created by the designer.

5. The programmer expands and compiles the program.

6. The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When these tasks are complete, the program and forms are ready for
the application user.

Chapter 5 describes the tasks performed by the programmer and
shows them executed in a Pascal program. At the end of the chapter,
you will find format and parameter descriptions for each call to Pascal
procedures used by Screen Formatting.

The designer's tasks and, also, the formats of the CYBIL procedure
calls that create forms are described in chapter 7. (For information
about designing forms using the Screen Design Facility, see the
NOS/VE Screen Design Facility manual.)

Revision D Using Pascal to Manage Forms 5-1

Writing a Program to Use Forms

Vviriting a Program to Use Fo:rcms

When writing a program to use forms, you must:

• Copy the procedure definitions for the Pascal procedures used by
Screen Formatting.

• Include the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting procedures to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a Pascal program in which
they're executed.

Copying Procedure Definitions

The procedure definitions describe the procedures and their
parameters. Screen Formatting uses special definitions for:

• Each Pascal procedure.

• The STATUS parameter used on every procedure.

• The VARIABLE_STATUS parameter used on procedures that get
and replace variables.

To use these definitions, copy the decks containing them into your
program using the Source Code Utility *COPYC directives.

Pascal Procedures

To obtain the definitions for each procedure, copy FDP$PASCAL_
PROCEDURES deck into your program. The following example shows
the first procedure in the deck.

PROCEDURE fdp$xadd_form
(VAR form_identifier: integer;
VAR status: integer);
CYBIL_EXTERNAL;

5-2 NOSNE Screen Formatting Revision D

STATUS Parameter

Although the procedures in FDP$PASCAL_PROCEDURES do not
define strings using VAR, you should define string variables for
parameters using VAR. How you define the variables for each
procedure parameter is described in the call to the procedure later in
this chapter.

STATUS Parameter

To obtain the values for the Pascal procedure status parameter, copy
the FDE$PASCAL_PROCEDURE_STATUS deck into your program.
The following example shows some of the contents of this deck:

CONST
fde$ca11_successfu1 = O;
fde$terminal_disconnected = 1;
fde$no_input_requested = 2;
fde$cursor_not_in_variable = 3;
fde$more_errors_exist = 4;

Appendix E has a complete list of the contents of the deck.

VARIABLE STATUS Parameter

To obtain the values for the VARIABLE_STATUS parameter, copy the
FDT$VARIABLE_STATUS deck into your program. Following is the
contents of this deck:

TYPE
fdt$variable_status

(fdc$no_error,
fdc$invalid_string,
fdc$invalid_rea1,
fdc$invalid_integer,
fdc$unknown_user_value,
fdc$invalid_bpd_data,
fdc$no_digits,
fdc$1oss_of _significance,
fdc$variable_not_fi11ed,
fdc$overf 1ow,

Revision D

fdc$underf 1ow,
fdc$i ndef i nite,
fdc$infinite,
fdc$variable_not_entered,
fdc$output_format_bad,
fdc$variable_truncated);

Using Pascal to Manage Forms 5-3

Including Data Definitions

Use the ORD function in your program to check the variable status.

Including Data Definitions

In your program, you must include definitions of the data types of
variables that are transferred to and from forms and definitions and
those that are transferred for variables used by the parameters of the
procedures called by Screen Formatting. There is also a special
convention to follow when defining Pascal string variables used in
Screen Formatting calls.

Data Types for Forms

The data type for each form resides on a form definition record
created by the form designer. You transfer data in your program to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting generated the following source file for a form
named PASCAL_SELECT_FORM. (The form definition record name is
the same as the form name.)

*DECK PASCAL_SELECT_FORM expand false
TYPE

pascal_select_form = record
object: string (1);

message: string (40);

end;

For this example, Screen Formatting was accessed through a CYBIL
program. To use the Screen Design Facility, specify CYBIL as the
language processor when creating the form. Then create the form
definition record using a CYBIL program from the Examples online
manual. See Creating Form Definition Records for Existing Forms in
chapter 7.

The designer saves each form definition record as a deck on a
NOS/VE source library using SOURCE_CODE_UTILITY (SCU). 1 The
DECK directive in the file creates the correct name for the deck when
it is processed.

1. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on
SCU, see the NOSNE Source Code Management manual.)

5-4 NOSNE Screen Formatting Revision D

Data Definitions for Parameters

At the beginning of your program, you must copy the form definition
deck for each form created by the designer:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on the SCU *COPY
directive.

You then define storage to hold the variables for each form using the
type defined in the form definition record. For example, if you copied
the deck shown previously to define a TYPE of PASCAL_SELECT_
FORM, then you would include the following VAR statement to define
storage for the form:

VAR selection: pascal_select_form

Data Definitions for Parameters

You must also define storage for the variables used in the procedures.
To accomplish this, code a variable declaration (VAR) for each
variable used as a parameter on a Screen Formatting call. All
parameters must be defined using VAR. The descriptions of the
procedure calls later in this chapter show the syntax for the VAR
statements you need to add.

Special String Convention

Because the Pascal procedures actually call CYBIL procedures, you
need to be aware of a difference between Pascal and CYBIL in the
definition of strings. A Pascal string has two lengths, the maximum
length and the current length. Pascal assignment statements set the
current length. CYBIL procedures use only the maximum length of a
string. When CYBIL assigns a value to a string, the length of the
string does not change as it does with Pascal. Therefore, to ensure
that string data transfers properly, your Pascal assignment statements
must set the current length equal to the maximum length.

The following example sets the length of the variable STRING_
VARIABLE equal to its maximum length:

string_variable:= '';
FOR n:=2 TO MAXLENGTH(string_variable) DO

string_variable:=string_variable[1 .. n-1] + '';

Revision D Using Pascal to Manage Forms 5-5

Calling Screen Formatting

Calling Screen Formatting

When writing a program that uses forms, you perform two basic tasks
with Screen Formatting procedures:

• Displaying and removing forms and variable data on the
application user's screen.

• Processing events executed· by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the given sequence:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

You need open a form only once, no matter how many times you
use or update it. For this reason, begin an application program by
opening all the forms you will use. However, when a form requires
a large amount of storage for variables, you may want to open the
form only when the application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them. Screen Formatting maintains a list of all forms
you add. The last form you add to the list becomes the top form
on the screen. Because forms are opaque, the top form covers other
forms appearing in the same area.

When the terminal user completes data entry, the cursor position
indicates what form Screen Formatting should process. Variables
on this form (and any forms combined with this one) are validated
and updated. Variables on other forms are not updated or
validated.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

5-6 NOSNE Screen Formatting Revision D

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read a form, Screen Formatting displays all the forms
you've added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read a form, the
deleted form is removed from the screen. However, the form
remains available for use later in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses, and the form is no longer available to the user or
your program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

Revision D Using Pascal t-0 Manage Forms 5-7

I

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

• For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

• For abnormal events, the program does such things as delete the
form and go on, or stop using Screen Formatting.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting an Integer Variable, Getting a Real
Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing an Integer Variable,
Replacing a Real Variable, and Replacing a String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

5-8 NOSNE Screen Formatting Revision D

Running a Prototype of the Application

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the program.

The user's screen is updated upon reading the forms again or
ending the program.

Running a Prototype of the Application

Once the forms have been created for your application, you can
interactively run a prototype using the MANAGE_FORMS utility.
This allows you to test the order in which the forms appear, and to
interact with the forms as the application user will do.

An example of an application prototype is given in chapter 2 under
the section named The Application Prototype. This prototype uses
forms that were created specifically for use in an SCL procedure. To
learn about using a prototype, you can run the prototype as described
in the section.

Once you are familiar with the utility, you can also run a prototype
using forms created for a Pascal program. Because the naming
conventions for Pascal do not conflict with SCL naming conventions,
the variables defined for the form can be used in the prototype
without any conversion taking place.

Revision D Using Pascal to Manage Forms 5-9

Running a Prototype of the Application

To use the prototype with the Pascal form~ that are on the library
specified in the prototype example, rather than opening the SCL forms
listed, open the forms named:

PASCAL_SELECT_FORM
PASCAL_RECTANGLE_FORM
PASCAL_CIRCLE_FORM

One variable of type RECORD is created for each form as described
for the SCL forms shown in the prototype example. The variable has
the same name as the form. You can display the data structure of
each variable using the DISPLAY_ VALUE command. For example, to
display the data structure for the PASCAL_RECTANGLE_FORM
variable, enter the following command:

mf/display_value value=pascal_rectangle_form
mf .. /display_options=data_structure
display option: DATA_STRUCTURE

"RECORD"
SIDE_TABLE: "ARRAY"

1. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"

2. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"
"ARRAY END"

AREA: "INTEGER" 0
MESSAGE: "STRING"

"RECORD END"

For more information about the structure of variables that are
records, see the NOSNE System Usage manual.

5-10 NOSNE Screen Formatting Revision D

Example Program for Managing Forms with Pascal

Example Program for Managing Forms with Pascal

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the forms managed in the program.

• The design specification supplied by the form designer.

• The form definition decks.

• The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_ OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 5-1).

r

\.

Revfoion D

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Figure 5-1. Select Form

Usintr Pascal to Manage Forms 5-11

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 5-2)
appears.

Compute Area of Rectangle

Type height:----

Area is:

Type width:

f611!11 nll!ll fBr!!.!D f91!1!110BI 11mml 12 .. 1311!!

Figure 5-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

5-12 NOSNE Screen Formatting Revision D

Forms Managed in the Program

When a user enters c on Select Form, Circle Form (figure 5-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

Figure 5-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

Revision D Using Pascal to Manage Forms 5-13

Ill

Design Specification

Design Specification

In writing the example program, the programmer uses the information
listed in the following design specification:

• The names for the three forms used by the program are:

PASCAL_SELECT_FORM
PASCAL_RECTANGLE_FORM
PASCAL_CIRCLE_FORM

• The user can call both the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

MESSAGE

OBJECT

Rectangle Form:

SIDE_ TABLE

SIDE

AREA

MESSAGE

Circle Form:

RADIUS

AREA

MESSAGE

5-14 NOSNE Screen Formatting

Description

Area for displaying error messages.

Area for user input of r or c.

Table that holds values for the
rectangle's sides.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Revision D

Design Specification

• The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Revision D

Description

A normal program event that processes data entered
on the form by the user. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

Using Pascal to Manage Forms 5-15

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
by using Screen Design Facility), a form definition record is created
along with each form. For the example program, the programmer
copies the following form definition decks placed on an SCU library by
the designer. The library in this example is named EXAMPLE_
SOURCE_LIBRARY.

The PASCAL_SELECT_FORM deck:

TYPE
pascal_select_form = record

object: string (1);
message: string (40);

end;

The PASCAL_RECTANGLE_FORM deck:

TYPE
pascal_rectangle_form = record

side_table: array [1 .. 2] of record
side: integer

end;
area: integer;
message: string (40);

end;

The PASCAL_CIRCLE_FORM deck:

TYPE
pascal_circle_form record

area: rea 1;
radius: real;
message: string (40);

end;

5-16 NOSNE Screen Formatting Revision D

Example Pascal Program

Example Pascal Program

This Pascal program calls the forms and executes the events described
in the previous sections. The program is in the SCU deck named
PASCAL_COMPUTE_OBJECT_AREA. To run the example program,
see the Screen Formatting examples in the Examples online manual.

PROGRAM pascal_compute_object_area (output);

*copyc fdp$pascal_procedures
*copyc fde$pascal_procedure_status
*copyc fdt$variable_status
*copyc pascal_select_form

VAR

Variables for select form.}

select_form_identifier: integer;
selection: pascal_select_form;

character_position: integer;
circle_form_identifier: integer;
event_name: string(31);
event_normal: string(1);
form_identifier: integer;
event_type: integer;
form_name: string (31);
form_x_position: integer;
form_y_position: integer;
integer_variable: integer;
last_event: string (1);
object_name: string(31);
object_occurrence: integer;
object_type: integer;
object_x_position: integer;
object_y_position: integer;
occurrence: integer;
rectangle_form_identifier: integer;
screen_x_position: integer;
screen_y_position: integer;
status: integer;
status_message: string (60);
variable_name: string(31);
variable_status: integer;

Revision D Using Pascal to Manage Forms 5-17

Example Pascal Program

LABEL 20, 30;

PROCEDURE check_status
(message: PACKED ARRAY [lower .. upper: integer] OF CHAR;
status: integer);

VAR
n: integer;
p_string: -string;

BEGIN
IF status<> fde$call_successful THEN

BEGIN
NEW (p_string, upper);
p_string- :=message [1];
FOR n := lower + 1 TO upper DO

p_string- := p_string- [1 n-1] +message [n];
writeln (p_string-, ', status=', status);
GOTO 30

END;
END;

PROCEDURE display_variable_status
(form_message: PACKED ARRAY [lower .. upper: integer]
of CHAR;
VAR form_identifier: integer);

VAR
n: integer;
message: string(40);

BEGIN
message := form_message [1];
FOR n := lower + 1 TO upper DO

message :=message [1 n-1] + form_message [n];
FOR n := upper TO 39 DO

message :=message [1 n] +, ';

5-18 NOSNE Screen Formatting Revision D

Example Pascal Program

occurrence := 1;
variable_name := 'MESSAGE
fdp$xreplace_string_variable (form_identifier,

var1able_name,occurrence, message,
variable_status, status);

, . .

check_status ('Replace string failed on message.',
status)

END;

PROCEDURE compute~circle_area;

{ Variables for circle form.}

•copy pascal_circle_form

VAR
circle: pascal_circle_form;

LABEL 5, 10;
BEGIN

fdp$xreset_form (circle_form_identifier, status);
check_status (' Reset failed on form circle', status);
fdp$xadd_form(circle_form_identifier, status);
check_status (' Add failed on form circle', status);

5: REPEAT

Revision D

fdp$xread_forms (status);
check_status (' Read failed on form circle', status);

fdp$xget_next_event (event_name, event_normal,
screen_x_position,screen_y_position,
form_identif1er, form_x_position, form_y_position,
event_type, object_name, object_occurrence,
character_position, object_type, object_x_pos1tion,
object_y_position, last_event, status);

check_status ('Get next event failed on form circle',
status);

Using Pascal to Manage Forms 5-19

Example Pascal Program

IF event_name <> 'COMPUTE' THEN
BEGIN

FDP$XDELETE_FORM (circle_form_identifier, status);
check_status (' Delete failed on form circle', status);
GOTO 10

END;

variable_name := 'RADIUS
occurrence := 1;
fdp$xget_real_variable (circle_form_identifier,

variable_name, occurrence, circle.radius,
variable_status, status);

, .
'

check_status (' Get failed on form circle', status);
IF variable_status <> ORD(fd~$no_error) THEN

BEGIN
display_variable_status

('Type valid value for radius.',
circle_form_identifier);

GOTO 5
END;

circle.area := 3.14 *(circle.radius* circle.radius);
variable_name := 'AREA ';
fdp$xreplace_real_variable (circle_form_identifier,

variable_name, occurrence, circle.area,
variable_status, status);

check_status ('Replace real failed on form circle', status);
IF variable_status <> ORD(fdc$no_error) THEN

BEGIN
display_variable_status ('Format cannot display area.',

circle_form_identifier);
GOTO 5

END;
display_variable_status (' ' circle_form_identifier);

UNTIL FALSE;

10: END;

5-20 NOSNE Screen Formatting Revision D

Example Pascal Program

PROCEDURE compute_rectangle_area;

{ Variables for rectangle form.}

*copy pascal_rectangle_form

VAR
display_name: string (31);
rectangle: pascal_rectangle_form;

LABEL 5, 10;
BEGIN

display_name := 'ERROR , .
'

fdp$xreset_form (rectangle_form_identifier, status);
check_status ('Reset failed on form rectangle', status);
fdp$xadd_form(rectangle_form_identifier, status);
check_status ('Add failed on form rectangle', status);

5: REPEAT

Revision D

fdp$xread_forms (status);
check_status ('Read failed on form rectangle', status);

fdp$xget_next_event (event_name, event_normal,
screen_x_position, screen_y_position,
form_identifier, form_x_position, form_y_position,
event_type, object_name, object_occurrence,
character_position, object_type, object_x_position,
object_y_position, last_event, status);

check_status ('Get next event failed on form rectangle',
status);

IF event_name <> 'COMPUTE' THEN
BEGIN

FDP$XDELETE_FORM (rectangle_form_identifier, status);
check_status (' Delete failed on form rectangle',

status);
GOTO 10

END;

Using Pascal to Manage Forms 5-21

Example Pascal Program

Remove any previous error indications.}

variable_name := 'SIDE
occurrence := 1;

, .
'

fdp$xreset_object_attribute (rectangle_form_identifier,
variable_name, occurrence, status);

occurrence := 2;
fdp$xreset_object_attribute (rectangle_form_identifier,

variable_name, occurrence, status);
display_variable_status (' ', rectangle_form_identifier);

{ Get values terminal user entered for rectangle sides.}

variable_name := 'SIDE ';
fdp$xget_integer_variable (rectangle_form_identifier,

variable_name, occurrence,
rectangle.side_table[1].side,
variable_status, status);

check_status ('Get failed on form rectangle', status);
IF variable_status <> ORD(fdc$no_error) THEN

BEGIN
character_position := 1;
fdp$xset_cursor_position (rectangle_form_identifier,

variable_name, occurrence, character_position,
status);

fdp$xset_object_attribute (rectangle_form_identifier,
variable_name, occurrence, display_name, status);

display_variable_status
('Type valid value for height.',
rectangle_form_identifier);

GOTO 5
END;

5-22 NOSNE Screen Formatting Revision D

Example Pascal Program

occurrence := 2;
fdp$xget_integer_variable (rectangle_form_identifier,

variable_name, occurrence,
rectangle.side_table[2].side,
variable_status, status);

check_status ('Get failed on form rectangle', status);
IF variable_status <> ORD(fdc$no_error) THEN

BEGIN
character_position := 1;
fdp$xset_cursor_position (rectangle_form_identifier,

variable_name, occurrence, character_position,
status);

fdp$xset_object_attr1bute (rectangle_form_identifier,
variable_name, occurrence, display_name, status);

display_variable_status ('Type valid value for width.',
rectangle_form_identifier);

GOTO 5
END;

rectangle.area := rectangle.side_table[1].side *
rectangle.side_table [2].side;

variable_name := 'AREA , .
'

occurrence := 1;
fdp$xreplace_integer_variable (rectangle_form_identifier,

variable_name, occurrence, rectangle.area,
variable_status, status);

check_status ('Replace failed on form rectangle', status);
IF variable_status <> ORD(fdc$no_error) THEN

BEGIN
display_variable_status ('Format cannot display area.',

rectangle_form_identifier);
GOTO 5

END;

UNTIL FALSE;

10: END;

Revision D Using Pascal to Manage Forms 5-23

Example Pascal Program

BEGIN

{ Initialize variable values and string lengths.}

event_normal := ' ';

last_event := ' ';

event_name
object_name

:=

selection.object ·=

{Open all forms.}

, , .
'

, .
' , .
'

form_name := 'PASCAL_SELECT_FORM ';
fdp$xopen_form(form_name, select_form_identifier, status);
check_status ('Open failed on form select', status);

form_name := 'PASCAL_CIRCLE_FORM ';
fdp$xopen_form(form_name, circle_form_identifier, status);
check_status ('Open failed on form circle', status);

form_name := 'PASCAL_RECTANGLE_FORM ';
fdp$xopen_form(form_name, rectangle_form_identifier, status);
check_status ('Open failed on form rectangle', status);

fdp$xadd_form(select_form_identifier, status);
check_status (' Add failed on form select', status);

Process terminal user input for select form.}

20: REPEAT
fdp$xread_forms (status);

.check_status (' Read failed on form select', status);

fdp$xget_next_event (event_name, event_normal,
screen_x_position, screen_y_position, form_identifier,
form_x_position, form_y_position,
event_type, object_name, object_occurrence,
character_position, object_type, object_x_position,
object_y_position, last_event, status);

check_status (' Get next event failed on form select',
status);

5-24 NOSNE Screen Formatting Revision D

Exumple Puscul Program

IF event_name <> 'COMPUTE' THEN
GOTO 30;

variable_name := 'OBJECT
occurrence := 1;
fdp$xget_string_variable (select_form_identifier,

variable_name, occurrence, selection.object,
variable_status, status);

, .
'

check_status ('Get failed on form select', status);
IF variable_status <> ORD(fdc$no_error) THEN

BEGIN
display_variable_status

('Type valid value for selection.',
select_form_identifier);

GOTO 20
END;

IF selection.object = 'R' THEN

Compute area of rectangle. }

BEGIN
FDP$XDELETE_FORM (select_form_identifier, status);
check_status (' Delete failed on form select', status);
compute_rectangle_area;

END

ELSE
IF selection.object 'C' THEN

Compute area of circle.

BEGIN
FDP$XDELETE_FORM (select_form_identifier, status);
check_status ('Delete failed on form select', status);
compute_circle_area

END
ELSE

Revision D Usinl! Puscal to Mannl!e Forms 5-25

Example Pascal Program

{ Invalid selection. }

BEGIN
display_variable_status ('Type r or c.',

select_form_identifier);
GOTO 20;

END;

IF event_name
GOTO 30;

'QUIT' THEN

FDP$XRESET_FORM (select_form_identifier, status);
check_status (' Reset failed on form select', status);

FDP$XADD_FORM (select_form_ioentifier, status);
check_status (' Add failed on form select', status);

UNTIL FALSE;

{Close all forms.

30: FDP$XCLOSE_FORM (select_form_identifier, status);
check_status ('Close failed on form select', status);

FDP$XCLOSE_FORM (circle_form_identifier, status);
check_status ('Close failed on form circle', status);

FDP$XCLOSE_FORM (rectangle_form_identifier, status);
check_status ('Close failed on form rectangle', status)

END.

5-26 NOSNE Screen Formatting Revision D

Expanding and Compiling a Program

E1rpanclirrn.g and Compilirmg a Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code. 2

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

The procedure calls SCU to expand the SCU directives contained in
the program. For this expansion, you must include the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE library as an
alternate base. The program is then compiled and put on an object
library.

PROCEDURE pascal_compile_deck, pascd (
deck, d: name = $required
status)

source_code_utility
use_library base=example_source_library result=$null
expand_deck deck=deck ..
compile=$1oca1 .compile ..
alternate_base=$system.cybil.osf$program_interface

QUit

2. For information on SCU, see the NOSNE Source Code Management manual.

Revision D U sinrr Pascal to Manarre Forms 5-27

Expanding and Compiling a Program

pascal input=$local.compile
list=$local. list runtime_checks=all

binary=$local. lgo
debug_a i ds=a 11

create_object_library
add_module library=example_object_library
combine_module library=$local. lgo
generate_library library=example_object_library.$next

quit

PROCEND pascal_compile_deck

To use the procedure, put it on library EXAMPLE_ OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/pascal_compile_decl< deck=pascal_compute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing and using procedures, see the
NOSNE System Usage manual.

5-28 NOSNE Screen Formatting Revision D

Helping the User Start the Application

Helping the User §tarrt the Application

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library
containing the forms and program.

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

• Ensure that users select the correct natural language.

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOSNE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that
uses the starting procedure PASCAL_ COMPUTE_ OBJECT_AREA on
library EXAMPLE_ OBJECT_LIBRARY. The other libraries accessed
by the program are $SYSTEM.FDF$LIBRARY and
$SYSTEM.TDU.TERMINAL_DEFINITIONS. Users must have these
libraries available in order for the program to call the Screen
Formatting procedures.

PROCEDURE pascal_compute_area, pasca {
status)

execute_task ..
library={example_object_library,$system.fdf$library, ..
$system.tdu.terminal_definitions) ..
starting_procedure=pascal_compute_object_area

PROCEND pascal_compute_area

Revision D Using Pascal to Manage Forms 5-29

Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, the user must set the following terminal characteristics
before he or she executes the procedure:

Characteristic Description

Terminal model Identifies the terminal to NOSNE.

Attention
character

Provides a character users can enter to interrupt
the application.

Hold messages Tells the network to hold all network messages
until the user stops the application. Otherwise, a
computer operator message may overwrite a form
while a user is entering data, confusing the user.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

• Chooses the exclamation point as a way to interrupt the program.

• Holds all messages from a N AMVE/CDCNET network.

• Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!' ..
status_action=hold

change_term_conn_defaults attention_character_action=1
change_connection_attributes terminal_file_name=input aca=l
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=comnand aca=1

For a further explanation of how to interrupt a screen application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOSNE System Usage manual.

5-30 NOSNE Screen Formatting Revision D

Selecting a Natural Language

Selecting a Natural Language

To ensure that users receive messages in the correct natural
language, have them add the CHANGE_NATURAL_LANGUAGE
command to their prologs. Because the default language is US_
ENGLISH and all messages returned by Screen Formatting are in this
language, have users include this command only when you have
changed messages to another language.

Changing messages to other languages is described in the NOS/VE
Object Code Management manual. The CHANGE_NATURAL_
LANGUAGE command is described in the NOSNE System Usage
manual.

Starting the Application

To start the application, the users enter:

/create_corr.mand_list_entry e=example_object_library
/pascal_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_co:r.mand_list_entry e=example_object_library

Revision D Using Pascal to Manage Forms 5-31

Pascal Procedure Calls for Interacting with Forms

Pascall Procerll.Mre Calls for liRilte1--acitirmg ·with
Frnrms

The following sections describe the Pascal procedure calls to Screen
Formatting modules. For each procedure, there is a purpose
description, input format, list of parameters and their types, condition
identifiers, and pertinent remarks.

An application program calls Screen Formatting procedures to interact
with an application user through the use of forms. Each of these
procedures is defined as a deck on the SCU library
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. This library must be
in the alternate base when compiling the application program.

These procedures are external routines that reside on the library
called $SYSTEM.FDF$LIBRARY. This library must be in the user's
program library list in order to execute the program.

For detailed information on Pascal procedure calls, see the Pascal for
NOS/VE manual.

When checking the status of procedures, you must check the STATUS
parameter and also check, when present, the VARIABLE_STATUS
parameter. If the value of STATUS is zero, you can process output
from the procedure. However, if there is also a VARIABLE_STATUS
parameter, check its value before using variable output form the
procedure. The variable status is independent of the status for the
procedure.

5-32 NOSNE Screen Formatting Revision D

Adding a Form

Adding a Form

Purpose FDP$XADD_FORM schedules a form for display on the
application user's screen.

Format FDP$XADD _FORM (form_identifier, status)

Parameters form_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

status {output}

The variable that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_already _added
fde$form_pushed
fde$form_ too_ large_for _screen
fde$invalid_form_identifier
fde$no_space_available
fde$system_ error

Remarks • When you call either the FDP$XREAD_FORMS or

Revision D

FDP$XSHOW_FORMS procedure, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

• When displayed, each form that is added operates
independently from other forms that have been added.
When a user executes a normal event, Screen
Formatting validates and updates only those variables
on the form associated with the event. To have forms
share events, see Combining Forms later in this
section.

• Before you add a form, you must open it.

• You cannot add a pushed form.

Using Pascal to Manage Forms 5-33

Changing Table Size

Changing Table Size

Purpose FDP$XCHANGE_ TABLE_SIZE changes the size of the
table during program execution.

Format FDP$XCHANGE_ TABLE_SIZE (form_identifier,
table_name, table_size, status)

Parameters forrn_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

table_narne {input}

The name of the table to change in size. Include the
following variable declaration:

VAR table_name : string(31);

table_size {input}

The size of the table. While this procedure is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

Include the following variable declaration:

VAR table_size : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_ pushed
fde$invalid_form_identifier
fde$invalid_ table_name
fde$in valid_ table_ size
fde$no_ space_available

5.34 NOSNE Screen Formatting Revision D

Remarks

Examples

Changing Table Size

fde$unknown_ table_ name

• The table must be present in an open form.

• The size limitation remains in effect until the next
time you call the FDP$XCHANGE_ TABLE_SIZE
procedure.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (FDE$INVALID_ TABLE_
SIZE).

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

Revision D Using Pascal to Manage Forms 5-35

Closing a Form

Closing a Form

Purpose FDP$XCLOSE_FORM releases resources used to process
a form and deletes the form from the list scheduled for
display.

Format FDP$XCLOSE_FORM (forrn_identifier, status)

Parameters forrn_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
f de$invalid_form_ identifier
fde$form_pushed
fde$no _space_ available

Remarks • When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting removes the closed form from the terminal
screen as a result of calling this procedure.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

5-36 NOSNE Screen Formatting Revision D

Combining Forms

Combining Forms

Purpose FDP$XCOMBINE_FORM combines a form with a
previously added form and schedules the combined form
for display on the terminal screen.

Format FDP$XCOMBINE_FORM (added_form_identifier,
combine_form_identifier, status)

Parameters added_form_identifier {input}

The identifier for this instance of the previously added
form. Include the following variable declaration:

VAR form_identifier : integer;

combine_form_identifier {input}

The identifier for the form you are combining with the
previously added form. Include the following variable
declaration:

VAR form_identifier : integer;

status {output}'

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_already _added
fde$form_ already _combined
fde$form_ pushed
fde$form_too_large_for _screen
f de$in valid_ form_ identifier
fde$no_space_available
fde$system_ error

Revision D Using Pascal to Manage Forms 5-37

Combining Forms

Remarks • You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the programs calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting displays the combined form. The combined
form is placed on top of other forms occupying the
same area on the screen.

• When the application user executes an event to return
to the program normaUy, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this procedure more than once.

5-38 NOSNE Screen Formatting Revision D

Deleting ·a Form

Deleting a Form

Purpose FDP$XDELETE_FORM deletes the form from the list of
forms scheduled for display.

Format FDP$XDELETE_FORM (form_identifier, status)

Parameters form_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_ pushed
fde$in valid_form_ identifier
fde$no_space_available

Remarks • When the program calls either the FDP$XREAD_

Revision D

FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting removes the deleted form from the
terminal screen and replots any forms uncovered by
the deleted form.

• When you add a form (FDP$XADD_FORM) again that
you previously deleted, the data in the form is
retained.

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted,

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using Pascal to Manage Forms 5-39

Getting an Integer Variable

Getting an Integer Variable

Purpose FDP$XGET_INTEGER_ VARIABLE gets the value the
user entered on the form for an integer variable and
transfers it to the program.

Format FDP$XGET_INTEGER_ VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

Parameters form_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

name {input}

The name of the integer variable to get and transfer to
the program. This name was defined when the form was
created.

occurrence {input}

The occurrence of the variable name. The values allowed
are 1 .. 1000. Use 1 for the first or only occurrence.
Include the following variable declaration:

VAR occurrence : integer;

variable {output}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, use a
variable of type integer.

variable_status {output}

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined program data type.

FDC$INVALID_INTEGER

The user entered data that is not in the range defined
for the variable.

5-40 NOSNE Screen Formatting Revision D

Getting an Integer Variable

FDC$LOSS_ OF _SIGNIFICANCE

The user entered an integer that is too large.

FDC$NO_ERROR

No error occurred on the variable.

Include the following variable declaration:

VAR variable_status : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_error

Remarks

Revision D

f de$invalid_form_ identifier
fde$invalid_ variable_name
fde$no _space_ available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$wrong_ variable_ type

• Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified
by the form designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
v,ariable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Using Pascal to Manage Forms 5-41

Getting the Next Event

Getting the Next Event

Purpose FDP$XGET_NEXT_EVENT gets the next event resulting
from the most recent FDP$XREAD_FORMS procedure.

Format FDP$XGET_NEXT_EVENT (event_name, event_
normal, screen_x_position, screen_y _position, form_
identifier, form_x_position, form_y _position, event_
type, object_name, object_occurrence, character_
position, object_type, object_x_position, object_y _
position, last_event, status)

Parameters event_name {output}

A data name to receive the application user's event.
Include the following variable declaration:

VAR event_name : string(31);

event_normal {output}

A data name to receive the event normal indication. If
the event is normal, T is returned; if the event is
abnormal, F is returned. Include the following variable
declaration:

VAR event_normal : string(l);

screen_x_position {output}

A data name to receive the screen x position of the event.
The character position in the upper left corner of a screen
is 1; the x position increases by 1 for each character,
counting from left to right. Include the following variable
declaration:

VAR screen_x_position : integer;

screen _y _position {output}

A data name to receive the screen y position of the event.
The character position in the upper left corner of a screen
is 1; the y position increases by 1 for each character
counting from top to bottom. Include the following
variable declaration:

VAR screen_y _position integer;

5-42 NOSNE Screen Formatting Revision D

Revision D

Getting the Next Event

form_identifier {output}

The identifier of the form on which the event occurred.
Include the following variable declaration:

VAR form_identifier : integer;

form_1r_position {output}

A data name to receive the form x position of the event.
The character position in the upper left corner of a form
is 1; the x position increases by 1 for each character,
counting from left to right. Include the following variable
declaration:

VAR form_x_position : integer;

form _y _position {output}

A data name to receive the form y position of the event.
The character position in the upper left corner of a form
is 1; the y position increases by 1 for each character
counting from top to bottom. Include the following
variable declaration:

VAR form_y_position : integer;

event_ type {output}

A data name to receive the integer representing the type
of the event. The following values can be returned:

Value

0

1

Meaning

The event occurred in a form, but not in an
object.

The event occurred in an object.

Include the following variable declaration:

VAR event_ type : integer;

object_name {output}

A data name to receive the object name where the event
occurred. If the object doesn't have a name, the name is
all spaces. This parameter is used only when the event
occurs in an object. Include the following variable
declaration:

Using Pascal to Manage Forms 5-43

Getting the Next Event

VAR object_name : string(31);

object_occurrence {output}

A data name to receive the occurrence of the object. The
first or only occurrence is returned as 1. This parameter
is used only when the event occurs in an object. Include
the following variable declaration:

VAR object_occurrence : integer;

character _position {output}

A data name to receive the character position within the
object name where the event occurred. The first character
position is 1. This parameter is used only when the event
occurs in an object. Include the following variable
declaration:

VAR character _position : integer;

object_ type {output}

A data name to receive the type of object. This parameter
is used only when the event occurs in an object. The
following values can be returned:

Value

0

1

2

3

5

6

Meaning

The event occurred on a box object.

The event occurred on a constant text object.

The event occurred on a constant text box
object.

The event occurred on a line object.

The event occurred on a variable text object.

The event occurred on a variable text box
object.

Include the following variable declaration:

VAR object_ type : integer;

5-44 NOSNE Screen Formatting Revision D

Getting the Next Event

object_x_position {output}

A data name to receive the x position of the object with
respect to the form. This parameter is used only when the
event occurs in an object. The character position in the
upper left corner of a form is 1; the x position increases
by 1 for each character, counting from left to right.
Include the following variable declaration:

VAR object_x_position : integer;

object_y _position {output}

A data name to receive the y position of the object with
respect to the form. This parameter is used only when the
event occurs in an object. The character position in the
upper left corner of a form is 1; the y position increases
by 1 for each character, counting from top to bottom.
Include the following variable declaration:

VAR object_y _position : integer;

last_event {output}

Indicates whether this is the last event. If this is the last
event, the value is T; if this is not the last event, the
value is F. Include the following variable declaration:

VAR last_event : string(l);

status {output}

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value

Remarks The FDP$XREAD_FORMS procedure deletes existing
events. If the event is normal, Screen Formatting updates
the variables in the added and combined forms containing
the event. Later, you can request the transfer of these
variables to program storage. If the event is abnormal,
Screen Formatting does not update or validate variables.

Revision D Using Pascal to Manage Forms 5-45

Getting a Real Variable

Getting a Real Variable

Purpose FDP$XGET_REAL_ VARIABLE gets a value the user
entered on a form for a real variable and transfers it to
the program.

Format FDP$XGET _REAL_ VARIABLE (forrn_identifier,
name, occurrence, variable, variable_ status, status)

Parameters forrn_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

name {input}

The name of the variable to get. This name was defined
when the form was created.

occurrence {input}

The occurrence of the variable name. Use 1 for the first
or only occurrence. Include the following variable
declaration:

VAR occurrence integer;

variable {output}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include a variable of type real.

variable_ status {output}

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INDEFINITE

The user entered an indefinite number.

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined data type.

5-46 NOSNE Screen Formatting Revision D

Getting a Real Variable

FDC$INVALID_REAL

The user entered data that is not within the range of
real numbers defined for the variable.

FDC$LOSS_ OF_ SIGNIFICANCE

The user entered a number too large to be converted
to the defined real or integer program type.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0VERFLOW

The user entered an exponent that is too large.

FDC$UNDERFLOW

The user entered an exponent that is too small.

Include the following variable declaration:

VAR variable_status : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$invalid_form_identifier
fde$invalid_ variable_name
fde$no_space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_name

Revision D Usin!! Pascal to Mnnn!!e Forms Ei-47

Getting a Real Variable

Remarks • Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

5-48 NOSNE Screen Formatting Revision D

Getting a String Variable

Getting a String Variable

Purpose FDP$XGET_STRING_ VARIABLE gets a value the user
entered on a form for a string variable and transfers it to
the program.

Format FDP$XGET_STRING _VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

Parameters form_identifier {input}

Revision D

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

name {input}

The name of the variable to get. The name was defined
when the form was created.

occurrence {input}

The occurrence of the variable name. Use 1 for the first
or only occurrence. Include the following variable
declaration:

VAR occurrence : integer;

variable {output}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include a
variable of the following type (* is the number of
characters in the variable):

string (*)

variable_status {output}

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INVALID _STRING

The user entered data that does not match the strings
defined for the variable.

Using Pascal to Manage Forms 5-49

Getting a String Variable

FDC$NO_ERROR

No error occurred on the variable.

FDC$VARIABLE_ TRUNCATED

The storage length of the VARIABLE parameter is not
long enough.

Include the following variable declaration:

VAR variable_status : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : int~ger;

Conditions f de$bad_ data_ value
fde$invalid_form_identifier
fde$invalid_ variable_name
fde$no_ space_available
fde$system_error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$wrong_ variable_ name

Remarks • Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

5-50 NOSNE Screen Formatting Revision D

Opening a Form

Opening a Form

Purpose FDP$XOPEN _FORM locates a form and prepares it for
use by the program.

Format FDP$XOPEN _FORM (form_name, form_identifier,
status)

Parameters form_name: {input}

The name of the form you want to open. Include the
following variable declaration:

VAR form_name : string(31);

form_identifier {input-output}

The form identifier established for the form. Other Screen
Formatting procedures use this identifier when referencing
the form. Include the following variable declaration:

VAR form_identifier : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_already _open
fde$form_not_ ended
fde$form_requires_ conversion
fde$invalid_form_identifier
fde$invalid_form_name
fde$no_space_available
fde$system_ error
fde$terminal_not_identified
fde$unknown_form_name

Revision D Using Pascal to Manage Forms 5-51

Opening a Form

Remarks • Screen Formatting locates a form as follows:

If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object libraries. (You
specify the order in which Screen Formatting
searches the list using the NOSNE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$XOPEN _FORM does not display the
form on the screen. (See Reading a Form or Showing
a Form.)

• The form identifier that FDP$XOPEN _FORM returns
identifies the instance of open for a form. Forms
dynamically created have only one instance of open.
Forms stored on object libraries can have more than
one instance of open. For each instance of open,
Screen Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

5-52 NOSNE Screen Formatting Revision D

Popping a Form

Popping a Form

Purpose FDP$XPOP _FORMS deletes forms scheduled (added or
combined) since the last FDP$XPUSH_FORMS call.

Format FDP$XPOP _FORMS (status)

Parameters status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$no_forms_to_pop

Remarks Events associated with the last list of pushed forms
become active.

Revision D Usin!! Pascal to Mannrrn Forms !i-53

Positioning a Form

Positioning a Form

Purpose FDP$XPOSITION _FORM schedules moving a form to a
new location. Using this procedure, you can define a form
at one location and display it at another location, or you
can move a form from where it is currently displayed to a
new location.

Format FDP$XPOSITION _FORM (form_identifier, screen_x_
position, screen_y _position, status)

Parameters form_identifier {input}

The form identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

screen_:rr_position {input}

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character counting from left to
right. Include the following variable declaration:

VAR screen_x_position : integer;

screen _y _position {input}

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character counting from top to
bottom. Include the following variable declaration:

VAR screen_y _position : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_ pushed
fde$form_ too_ large_for _screen
f de$in valid_form_ identifier
fde$no_space_available
fde$system_ error

5-54 NOSNE Screen Formatting Revision D

Remarks

RP.vision n

Positioning a Form

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting displays the form on the screen at the
position specified in the call to FDP$XPOSITION _
FORM.

• If you call this procedure while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form is displayed on
top of any other form occupying the same area on the
screen.

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

TkinJY Pm:f'nl t.n Mnnnm:> l<'nrmc::: F\.1'1'

Pushing a Form

Pushing a Form

Purpose FDP$XPUSH_FORMS causes Screen Formatting to record
added and combined forms so you can return to them
later.

Format FDP$XPUSH_FORMS (status)

Parameters status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$no_forms_ to_push

Remarks • Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine deactivates the events associated with
forms scheduled for display (added or combined) since
th last push call.

5-56 NOSNE Screen Formatting Revision D

Reading a Form

Reading a Form

Purpose FDP$XREAD _FORMS updates the terminal screen and
accepts input from the application user.

Format FDP$XREAD_FORMS (status)

Parameters status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$no_events_active
fde$no_forms_ to_read
fde$system_ error
fde$terminal_ disconnected

Remarks • A call to FDP$XREAD_FORMS:

Revision D

Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

- Updates on the screen the variables replaced since
the last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

- Updates on the screen the objects for which display
attributes were set or reset since the last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

Usin!! Pnscnl to Mnnnrre Forms 5-57

Reading a Form

• Events not retrieved with the FDP$XGET_NEXT_
EVENT procedure are deleted before any input is
accepted from the user.

• The FDP$XREAD_FORMS procedure does not execute
unless the forms scheduled for display contain at least
one active event.

• After issuing this request, your program does not
regain control until the user issues a normal event
and Screen Formatting validates all the data, or the
user issues an abnormal event.

5-58 NOSNE Screen Formatting Revision D

Replacing an Integer Variable

Replacing an Integer Variable

Purpose FDP$XREPLACE_INTEGER_ VARIABLE transfers a
program variable to Screen Formatting.

Format FDP$XREPLACE_INTEGER_ VARIABLE (form_
identifier, name, occurrence, variable, variable_
status, status)

Parameters form_identifier {input}

ReviHion n

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

name {input}

The name of the variable to replace. This name was
defined when the form was created.

occurrence {input}

The occurrence of the variable name. Use 1 for the first
or only occurrence. Include the following variable
declaration:

VAR occurrence : integer;

variable {input}

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
a variable of type integer.

variable_status {output}

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$LOSS_ OF_ SIGNIFICANCE

The program supplied a value that is too large for the
form field.

FDC$NO_ERROR

No error occurred on the variable.

Replacing an Integer V nriable

FDC$0UTPUT_FORMAT_BAD

The output format defined for the variable cannot
output the variable.

Include the following variable declaration:

VAR variable_status : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_ pushed
fde$invalid_form_identifier
fde$invalid_ variable_ name
fde$no_space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_ name
fde$wrong_ variable_ type

Remarks • When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS procedure, Screen Formatting
replaces the integer variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

• You cannot replace an integer variable for a pushed
form.

• If the integer variable is not valid, it is not replaced.

5-60 NOSNE Screen Formatting Revision D

Replacing a Real Variable

Replacing a Real Variable

Purpose FDP$XREPLACE_REAL_ VARIABLE transfers a real
program variable to Screen Formatting.

Format FDP$XREPLACE_REAL_ VARIABLE (form_
identifier, name, occurrence, variable, variable_
status, status)

Parameters form _identifier {input}

Revision D

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

name {input}

The name of the variable to replace. This name was
defined when the form was created.

occurrence {input}

The occurrence of the variable name. Use 1 for the first
or only occurrence. Include the following variable
declaration:

VAR occurrence : integer;

variable {input}

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include a variable of type real.

variable_status {output}

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$LOSS_ OF_ SIGNIFICANCE

The value the program supplied is too large for the
form variable.

FDC$NO_ERROR

No error occurred on the variable.

Using Pascal to Manage Forms 5-61

Replacing a Real Variable

I
I
I Conditions

I I Remarks

I
I

I
I

FDC$0UTPUT_FORMAT_BAD

The output format defined for the variable cannot
output the variable.

Include the following variable declaration:

VAR variable_status : integer;

ntntus {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

fde$bad_data_ value
fde$form_ pushed
fde$invalid_form_ic'ientifier
fde$no_space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_ name
fde$variable_name
fde$wrong_ variable_ type

• When you call either the FDP$XREAD _FORMS or
FDP$XSHOW_FORMS procedure, Screen Formatting
replaces the real variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

5-62 NOSNE Screen Formatting Revision D

Replacing a String Variable

Replacing a String Variable

Purpose FDP$XREPLACE_STRING_ VARIABLE transfers a
program string variable to Screen Formatting.

Format FDP$XREPLACE_STRING _VARIABLE (form_
identifier, name, occurrence, variable, variable_
status, status)

Parameters form_identifier {input}

Revision D

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

name {input}

The name of the variable to replace. This name was
defined when the form was created.

occurrence {input}

The occurrence of the variable name. Use 1 for the first
or only occurrence. Include the following variable
declaration:

VAR occurrence integer;

variable {input}

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, use a
variable of the following type (* is the number of
characters in the variable):

string (*)

variable_ status {output}

An ordinal that gives you the status of the variable. The
following value is possible:

FDC$NO_ERROR

No error occurred on the variable.

Include the following variable declaration:

VAR variable_status : integer;

Using Pascal to Manage Forms 5-63

Replacing a String Variable

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_ pushed
fde$in valid_ form_ identifier
fde$invalid_ variable_name
fde$no_ space_ available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_ name
fde$wrong_ variable_ type

Remarks • When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting replaces the string variable on the
terminal screen.

• Before you replace a string variable, you must open
the form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in upper
case, Screen Formatting converts it to upper case
before storing the data in the form.

5-64 NOSNE Screen Formatting Revision D

Resetting a Form

Resetting a Form

Purpose FDP$XRESET_FORM resets the form to the state
specified by the form definition.

Format FDP$XRESET_FORM (form_identifier, status)

Parameters form_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_pushed

Remarks

f de$in valid_form_ identifier
fde$no_space_available
fde$system_ error

• When the program calls either the FDP$XREAD_
FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting displays the form on the terminal screen
with the reset specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

Revision D Using Pascal to Manage Forms 5-65

Resetting an Object Attribute

Resetting an Object Attribute

Purpose FDP$XRESET_ OBJECT_ATTRIBUTE resets the display
attributes for an object to those specified in the form
definition.

Format FDP$XRESET_OBJECT_ATTRIBUTE (form_
identifier, object_name, occurrence, status)

Parameters form_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

object_name {input}

The name of the object whose attributes are being reset.
This name was defined when the form was created.
Include the following variable declaration:

VAR object_name : string(31);

occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. 'Include the following variable
declaration:

VAR occurrence : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_not_scheduled
fde$form_pushed
fde$invalid_form_identifier
fde$invalid_ object_name
fde$in valid_ occurrence
fde$no_ space_available
fde$unknown_object_name

5-66 NOSNE Screen Formatting Revision D

Remarks

Revision D

Resetting an Object Attribute

• You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

• When the program calls either the FDP$XREAD _
FORMS or FDP$XSHOW_FORMS procedure, Screen
Formatting displays the object using the reset
attributes.

Using Pascal to Manage Forms 5-67

Setting the Cursor Position

Setting the Cursor Position

Purpose FDP$XSET_CURSOR_POSITION sets the cursor to a
selected position for later display.

Format FDP$XSET_CURSOR_POSITION (form_identifier,
object_name, occurrence, character _position, status)

Parameters form_identifier {input}

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

object_name {input}

The name of the object on which you want to set the
cursor. This name wa~ defined when the form was
created. Include the following variable declaration:

VAR object_name : string(31);

occurrence {input}

The integer specifying the occurrence of the object name.
Use 1 for the first occurrence. Include the following
variable declaration:

VAR occurrence : integer;

character _position {input}

The character position to which you want to set the
cursor. Use 1 for the first character position. Include the
following variable declaration:

VAR character _position : integer;

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

5-68 NOSNE Screen Formatting Revision D

Setting the Cursor Position

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_pushed
fde$invalid_character _position
fde$invalid_form_identifier
fde$invalid_object_name
fde$no_object_available_defined
fde$no_ space_ available
fde$system_error
fde$unknown_object_name
fde$unknown_occurrence

Remarks • One use of this procedure is to alter the default
sequence of the application user's entry of variables. In
the default sequence, Screen Formatting places the
cursor on the first input variable of the highest
priority form. The first character of the highest
priority form is the form last added, combined, or
positioned.

At terminals with protected fields, the user then tabs
from one variable text object to the next. The cursor
starts at the top line of the form. It moves from left
to right on each line. When no variable text object
appears on a line, the cursor moves down to the next
line. At terminals without protected fields, the user
must move the cursor using the arrow keys or the tab
and return keys.

• When you call either the FDP$XREAD_FORMS or
FDP$XSHOW_FORMS procedure, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

• The cursor position is in effect only for the next
screen update from reading or showing forms.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

Revision D Using Pascal to Manage Forms 5-69

Setting Line Mode

Setting Line Mode

Purpose FDP$XSET_LINE_MODE begins line-by-line interaction
with an application user.

Format FDP$XSET_LINE_MODE (status)

Parameters status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value

Remarks • Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen) but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

5-70 NOSNE Screen Formatting Revision D

Setting an Object Attribute

Setting an Object Attribute

Purpose FDP$XSET_ OBJECT_ATTRIBUTE changes a display
attribute for an object.

Format FDP$XSET_OBJECT_ATTRIBUTE (form_identifier,
object_name, occurrence, attribute, status)

Parameters form_identifier {input}

Revision D

The identifier established when the form was opened.
Include the following variable declaration:

VAR form_identifier : integer;

object_name {input}

The name of the object whose display attribute is being
reset. Include the following variable declaration:

VAR object_name : string(31);

occurrence {input}

The occurrence of the object. For the first or only
occurrence, use 1. Include the following variable
declaration:

VAR occurrence : integer;

attribute {input}

The name given to the display attribute when it was
defined on the form. The attribute used here is defined
for the form and not for a specific object. When using
Screen Design Facility, screen attributes are defined
through the ATTRIB function. When using a CYBIL
program, the ADD_DISPLAY_DEFINITION attribute
record defines form attributes.

Include the following variable declaration:

VAR attribute : string(31);

status {output}

The record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Using Pascal to Manage Forms 5-71

Setting nn Object Attribute

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_pushed
fde$invalid_ attribute_ position
fde$invalid_form_identifier
fde$invalid_object_name
fde$invalid_ occurrence
fde$no_space_available
fde$unknown_display _name
fde$unknown_object_name
fde$unknown_ occurrence

Remarks • You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDP$XREAD _FORMS or
FDP$XSHOW_FORMS procedure, Screen Formatting
displays the object using the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

5-72 NOSNE Screen Formatting Revision D

Showing Forms

Showing Forms

Purpose FDP$XSHOW_FORMS updates the terminal screen.

Format FDP$XSHOW _FORMS (status)

Parameters status {output}

A record that indicates the results of the procedure.
Include the following variable declaration:

VAR status : integer;

Conditions fde$bad_data_ value
fde$form_ too_large_for _screen
fde$form_ to_show
f de$no _space_ available
fde$system_ error
fde$terminaL disconnected

Remarks • When none of the forms scheduled for display has an

Revision D

event or input variable defined, use this procedure
instead of FDP$XREAD_FORMS.

• When you do not want any input from the terminal
user, use this procedure.

• A call to FDP$XSHOW_FORMS:

- Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last FDP$XREAD_
FORMS or FDP$XSHOW_FORMS call, it displays
them for the first time.

- Removes from the screen the forms you deleted
since the last FDP$XREAD_FORMS or
FDP$XSHOW_FORMS call.

- Displays variables replaced since the last
FDP$XREAD_FORMS or FDP$XSHOW_FORMS
call.

- Displays objects with attributes set or reset since
the last FDP$XREAD_FORMS or FDP$XSHOW_
FORMS call.

Using Pascal to Manage Forms 5-73

Using CYBIL to Manage Forms 6

Writing a Program to Use Forms 6-2
Copying Procedure Definitions 6-2
Copying Data Definitions 6-3
Calling Screen Formatting 6-4

Displaying and Removing Forms and Variable Data 6-4
Processing Events and Data 6-6

Processing Normal Events 6-6
Processing Abnormal Events 6-7

Running a Prototype of the Application 6-7
Example Program for Managing Forms with CYBIL 6-9

Forms Managed in the Program 6-9
Design Specification .. 6-12
Form Definition Decks 6-14
Example CYBIL Program 6-15

Expanding and Compiling a Program 6-25

Helping the User Start the Application 6-27
Creating a User Procedure 6-27
Creating a User Pro log .. 6-28
Selecting a Natural Language 6-29
Starting the Application 6-29

CYBIL Procedure Calls for Interacting with Forms 6-30
Adding a Form ... 6-31
Changing Table Size .. 6-32
Closing a Form ... 6-34
Combining Forms ... 6-35
Deleting a Form .. 6-37
Getting an Integer Variable 6-38
Getting the Next Event 6-40
Getting a Real Variable 6-43
Getting a Record ... 6-45
Getting a String Variable 6-47
Opening a Form .. 6-49
Popping a Form .. 6-51
Positioning a Form ... 6-52
Pushing a Form .. 6-54
Reading a Form .. 6-55
Replacing an Integer Variable 6-57
Replacing a Real Variable 6-59
Replacing a Record ; " . 6-61
Replacing a String Variable 6-63
Resetting a Form ... 6-65

Resetting an Object Attribute 6-66
Setting the Cursor Position 6-67
Setting Line Mode .. 6-69
Setting an Object Attribute 6-70
Showing Forms ... 6-72

Using CYJB][JL io lWanage Forrm11s

Chapter 1 presented an example of creating and managing forms. It
demonstrated that both the designer and the programmer have specific
tasks to accomplish. When creating forms, and then managing the
forms using a CYBIL program, the following tasks need to be
accomplished:

1. The form designer and programmer plan the forms and program.

2. The form designer creates the forms specifying CYBIL as the form
processor (or programming language) and prepares a design
specification.

3. The form designer puts the forms in an object library and makes
the form record definition available. Each record definition contains
the data definitions of all variables defined on a particular form
and is written in CYBIL.

4. The programmer codes the program, including calls to Screen
Formatting CYBIL subroutines based on the design specification.
These calls manage the forms created by the designer.

5. The programmer expands and compiles the program.

6. The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When the last task is complete, the program and forms are ready for
the application user.

This chapter describes the tasks performed by the programmer and
shows them being executed in a CYBIL program. At the end of the
chapter you will find format and parameter descriptions for each call
to CYBIL subroutines used by Screen Formatting.

The designer's tasks and, also, the formats of the CYBIL procedure
calls that create forms are described in chapter 7. (For information
about designing forms using the Screen Design Facility, see the
NOSNE Screen Design Facility manual instead.)

Revision D Using CYBIL to Manage Forms 6-1

Writing a Program to Use Forms

Writing a JPrrogram to Use Forms

When writing a program to use forms, you must:

• Copy the procedure definitions for the CYBIL procedures used by
Screen Formatting.

• Copy the data definitions generated by Screen Formatting when
the designer creates the form. The data definitions hold values
transferred to and from the form for the variable text objects.

• Call Screen Formatting procedures to manage the forms and the
variable text objects on the forms.

Following the descriptions of these tasks is a CYBIL program in
which these tasks are executed.

Copying Procedure Definitions

The procedure definitions define the procedures and their parameters.
For every procedure used in the program, you must copy the
procedure definition using the SCU *COPYC directive.

6-2 NOSNE Screen Formatting Revision D

Copying Data Definitions

Copying Data Definitions

The data definitions for each form reside on a form definition record
created by the form designer. In your program, you transfer data to
and from variable text objects through this record.

When the designer creates a form, Screen Formatting generates a
common deck that defines the form definition record. For example,
Screen Formatting 1 generated the following source file for a form
named CYBIL-SELECT-FORM. (The form definition record name is
the same as the form name.)

*DECK CYBIL_SELECT_FORM expand false
TYPE

cybil_select_form =record
align_field: ALIGNED [0 MOD 8] string (0),
message: string (40),
object: string (1),

recend;

The designer saves this file as a deck on a NOSNE source library
using the SOURCE_CODE_UTILITY (SCU). 2 The DECK directive in
the file creates the correct name for the deck when it is processed.

In the beginning of your program, you must copy the form definition
deck for each form created by the designer:

• Get the name of the deck from the design specification (the
designer assigns the name while creating the form).

• Copy the deck by specifying its name on the SCU *COPY
directive.

1. For this example, Screen Formatting was accessed through the Screen Design
Facility.

2. Because each form has its own definition and the STATUS parameters use common
decks, we recommend that you manage the source text using SCU. (For information on
SCU, see the NOS/VE Source Code Management manual.)

Revision D Using CYBIL to Manage Forms 6-3

Calling Screen Formatting

Calling Screen Formatting

When you write a program that uses forms, you perform two basic
tasks with Screen Formatting procedures:

• Displaying and removing forms and variable data on the
application user's screen.

• Processing events executed by the user.

Displaying and Removing Forms and Variable Data

To control the display of forms and variable data on the user's screen,
you perform the following steps in the sequence given:

1. Open the form.

When you open a form, Screen Formatting locates it and allocates
resources for processing the Screen Formatting calls that use the
form.

You need open a form only once, no matter how many times you
use or update it. For this reason, begin a procedure by opening all
the forms you will use. When a form requires a large amount of
storage for variables, however, you may want to open that one
only when the application user needs it.

(For the format of the call that opens forms, see Opening a Form
later in this chapter).

2. Add the form.

When you add a form, Screen Formatting schedules it for display
on the application user's screen.

To display more than one form at a time, add all the forms before
you display them. Screen Formatting maintains a list of all forms
you add. The last form you add to the list becomes the top form
on the screen. Because forms are opaque, the top form covers other
forms appearing in the same area.

When the terminal user completes data entry, the cursor position
indicates what form Screen Formatting should process. Variables
on this form (and any forms combined with this one) are validated
and updated. Variables on other forms are not updated or
validated.

(For the formats of the calls that schedule forms for display, see
Adding a Form and Combining Forms later in this chapter.)

6-4 NOSNE Screen Formatting Revision D

Displaying and Removing Forms and Variable Data

3. Read the form.

When you read a form, Screen Formatting displays all the forms
you've added.

When a form has an event or input variable defined, reading
forms also accepts data from the application user and displays
values returned by the program.

(For the format of the call that reads forms, see Reading Forms
later in this chapter. When none of the forms scheduled for display
has an event or input variable defined, you can use a similar call
described in Showing Forms later in this chapter.)

4. Delete the form.

When you delete a form, Screen Formatting deletes it from the list
of forms scheduled for display. The next time you read forms, the
deleted form is removed from the screen. However, the form
remains available for later use in the program (you must
reschedule it for display).

(For the format of the call that deletes a form, see Deleting a
Form later in this chapter.)

5. Close the form.

When you close a form, Screen Formatting releases the resources
the form uses. The form is no longer available to the user or your
program.

(For the format of the call that closes a form, see Closing a Form
later in this chapter.)

Revision D Using CYBIL to Manage Forms 6-5

Processing Events and Data

Processing Events and Data

When creating a form, the designer defines two types of events a user
can execute to return control to the program: normal and abnormal.

• For normal events, the program performs requested actions such as
getting variables, doing computations, and updating the form.

• For abnormal events, the program takes its own action. You
generally then delete the form and go on, or stop the program.

Processing Normal Events

To process a normal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Screen Formatting validates the data the user enters (the form
designer defined the validation rules) and transfers values of
screen variables to its storage. The form designer may also have
created error forms to be displayed when the user enters an
incorrect value or presses a key not defined as an event.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event at the end of this chapter.)

2. Get the data from Screen Formatting storage and transfer it to
program storage.

(For formats of the calls that get data, see the following sections
later in this chapter: Getting a Record, Getting an Integer Variable,
Getting a Real Variable, and Getting a String Variable.)

3. Replace the data in Screen Formatting storage with the data in
program storage.

(For formats of the calls that replace variables, see the following
sections later in this chapter: Replacing a Record, Replacing an
Integer Variable, Replacing a Real Variable, and Replacing a
String Variable.)

You can also reset the variables on a form to their original state.
(For formats of the calls that reset variables to their original state,
see Resetting a Form and Resetting an Object Attribute later in this
chapter.)

6-6 NOSNE Screen Formatting Revision D

Running a Prototype of the Application

Processing Abnormal Events

To process an abnormal event:

1. Get the name of the event and the position of the cursor from
Screen Formatting.

Unlike a normal event, Screen Formatting neither validates user
entries nor transfers values of screen variables to Screen
Formatting storage.

(For the format of the call that gets the event name and cursor
position, see Getting the Next Event later in this chapter.)

2. Write your own procedure to perform the task the design
specification assigns to the event. Typical actions for an abnormal
event include:

• Resetting a form and redisplaying it.

• Moving the user to a new form for additional processing.

• Returning the user to a previous form.

• Stopping the program.

The user's screen is updated when you either read the forms again
or end the program.

Running a Prototype of the Application

Once the forms have been created for your application, you can
interactively run a prototype using the MANAGE_FORMS utility.
This allows you to test the order in which the forms appear, and to
interact with the forms as the application user will do.

An example of an application prototype is given in chapter 2 under
the section named The Application Prototype. This prototype uses
forms that were created specifically for use in an SCL procedure. To
learn about using a prototype, you can run the prototype as described
in the section.

Once you are familiar with the utility, you can also run a prototype
using forms created for a CYBIL program. Because the naming
conventions for CYBIL do not conflict with SCL naming conventions,
the variables defined for the form can be used in the prototype
without any conversion taking place.

Revision D Using CYBIL to Manage Forms 6-7

Running a Prototype of the Application

To use the prototype with the CYBIL forms that are on the library
specified in the prototype example, rather than opening the SCL forms
listed, open the forms named:

CYBIL_SELECT_FORM
CYBIL_ RECTANGLE_ FORM
CYBIL_CIRCLE_FORM

One variable of type RECORD is created for each form as described
for the SCL forms shown in the prototype example. The variable has
the same name as the form. You can display the data structure of
each variable using the DISPLAY_ VALUE command. For example, to
display the data structure for the CYBIL_RECTANGLE_FORM
variable, enter the following command:

mf/display_value value=cybil_rectangle_form
mf .. /display_options=data_structure
display option: DATA_STRUCTURE

"RECORD"
SIDE_TABLE: "ARRAY"

1. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"

2. "RECORD"
SIDE: "INTEGER" 0

"RECORD END"
11 ARRAY END"

AREA: 11 INTEGER 11 0
MESSAGE: "STRING"

"RECORD END"

For more information about the structure of variables that are
records, see the NOSNE System Usage manual.

6-8 NOS/VE Screen Formatting Revision D

Example Program for Managing Forms with CYBIL

Example Program for Managing Forms with CYBIL

The program in this example computes the area of circles and
rectangles. The example includes:

• Pictures of the forms managed in the program.

• The design specification supplied by the form designer.

• The form definition decks.

• The example program.

Forms Managed in the Program

The example program manages three forms residing on an object
library named EXAMPLE_OBJECT_LIBRARY that must be in the
user's command list.

When a user starts the application, Select Form appears (figure 6-1).

r

Revision D

Select Object for Computing Area

Circle
Rectangle

Type c or r: _

Figure 6-1. Select Form

Using CYBIL to Manage Forms 6-9

Forms Managed in the Program

On Select Form, a user enters either c to compute the area of a circle
or r to compute the area of a rectangle.

When a user enters r on Select Form, Rectangle Form (figure 6-2)
appears.

Compute Area of Rectangle

Type height:----

Area is:

Type Width:

Figure 6-2. Rectangle Form

On Rectangle Form, the user enters the lengths of the sides of the
rectangle as integers and presses the return key to have the program
compute the area.

6-10 NOSNE Screen Formatting Revision D

Forms Managed in the Program

When a user enters c on Select Form, Circle Form (figure 6-3)
appears.

Compute Area of Circle

Type radius: ___ _

Area is:

f6 .. f7 .. fBnm?! f9 .. 10 .. 11m!m 12 .. 13 ..

Figure 6-3. Circle Form

On Circle Form, the user enters the radius of the circle as a real
value and presses the return key to have the program compute the
area.

Revision D Using CYBIL to Manage Forms 6-11

Design Specification

Design Specification

In writing the example program, the programmer uses the information
the form designer listed in the following design specification:

• The names for the three forms used by the program are:

CYBIL_SELECT_FORM
CYBIL_ RECTANGLE_ FORM
CYBIL_CIRCLE_FORM

• The user can call both the Rectangle Form and Circle Form from
the Select Form.

• The following variable text objects are defined on the forms:

Variable Object

Select Form:

MESSAGE

OBJECT

Rectangle Form:

SIDE_ TABLE

SIDE

AREA

MESSAGE

Circle Form:

RADIUS

AREA

MESSAGE

6-12 NOSNE Screen Formatting

Description

Area for displaying error messages.

Area for user input of r or c.

Table that holds values for the
rectangle's sides.

Areas (two) for user input of values
for the rectangle's sides.

Area for returning value of
computed area.

Area for displaying error messages.

Area for user input of value for the
circle's radius.

Area for returning value of
computed area.

Area for displaying error messages.

Revision D

Design Specification

• The following events are defined on the forms:

Event

COMPUTE

BACK

QUIT

Revision D

Description

A normal program event that processes data the
user entered on the form. For Select Form, the
COMPUTE event checks whether the user entered r
or c and then displays the appropriate form. For the
other forms, COMPUTE calculates the area and
redisplays the form.

An abnormal program event that takes the user
back to a previous environment. For Select Form,
the BACK event stops the program. For the other
forms, BACK returns the user to Select Form.

An abnormal program event that stops the program.

Using CYBIL to Manage Forms 6-13

Form Definition Decks

Form Definition Decks

When the designer creates the three forms (by writing a program or
using Screen Design Facility), a form definition record is created with
each form. For the example program, the programmer copies the
following form definition decks placed by the designer on an SCU
library. The library in this example is named EXAMPLE_SOURCE_
LIBRARY.

The CYBIL_SELECT_FORM deck:

TYPE
cybil_select_form =record

align_field: ALIGNED [0 MOD 8] string (0),
message: string (40),
object: string (1),

recend;

The CYBIL_RECTANGLE_FORM deck:

TYPE
cybil_rectangle_form =record

align_field: ALIGNED [0 MOD 8] string (0),
s1de_table: array [1 .. 2] of record

side: ALIGNED [0 MOD 8] integer,
recend,
area: ALIGNED [0 MOD 8] integer,
message: string (40),

recend;

The CYBIL_CIRCLE_FORM deck:

TYPE
cybil_circle_form =record

align_field: ALIGNED [0 MOD 8] string (0),
area: ALIGNED [0 MOD 8] real,
radius: ALIGNED [O MOD 8] real,
message: string (40),

recend;

6-14 NOSNE Screen Formatting Revision D

Example CYBIL Program

Example CYBIL Program

This CYBIL program calls the forms and executes the events
described in the previous sections. The program is in the SCU deck
named CYBIL_COMPUTE_OBJECT_AREA. To run the example
program, see the Screen Formatting examples in the Examples online
manual.

?? RIGHT := 110 ??
MODULE compute_object_area;

{ Copy definitions for Screen Formatting procedures.

*copyc fdp$add_form
*copyc fdp$close_form
*copyc fdp$delete_form
*copyc fdp$get_real_variable
*copyc fdp$get_integer_variable
*copyc f dp$get_next_event
*copyc fdp$get_string_variable
*copyc fdp$open_form
*copyc f dp$read_forms
*copyc fdp$replace_string_variable
*copyc fdp$replace_integer_variable
*copyc fdp$replace_real_variable
*copyc fdp$reset_form
*copyc fdp$reset_object_attribute
*copyc fdp$set_cursor_position
*copyc fdp$set_object_attribute

*copyc pmp$abort
*copyc pmp$exit

VAR
circle_form_identifier: fdt$form_identifier,
display_name: [READ] ost$name ·= 'ERROR',

event_name: ost$name,
event_normal: boolean,
event_position: fdt$event_position,
form_name: ost$name,
last_event: boolean,
rectangle_form_identifier: fdt$form_identifier,
select_form_identifier: fdt$form_identifier,
status: ost$status,
variable_name: ost$name,
variable_status: fdt$variable_status;

Revision D Using CYBIL to Manage Forms 6-15

Example CYBIL Program

PROCEDURE [INLINE] check_status;

IF NOT status.normal THEN
pmp$abort (status);

!FEND;

PROCEND check_status;

PROCEDURE display_var1able_status
(message: string (*);

VAR form_identifier: fdt$form_identifier);

variable_name := 'MESSAGE';
fdp$replace_string_var1able (form_identifier, variable_name,

1, message, variable_status, status);
check_status;

PROCEND display_variable_status;

PROCEDURE compute_circle_area;

Copy variables for circle form.

*copyc cybil_circle_form

VAR
circle_data: cybil_circle_form;

Display circle form in original state.

fdp$reset_form (circle_form_identifier, status);
check_status;
fdp$add_form (circle_form_identifier, status);
check_status;

{ Update screen and get radius from terminal user entry.

/get_ input/
REPEAT

fdp$read_forms (status);
check_status;

6-16 NOSNE Screen Formatting Revision D

Example CYBIL Program

fdp$Qet_next_event (event_name, event_normal,
event_position, last_event, status);

check_status;

{On BACK or QUIT event, return to caller.

IF event_name <> 'COMPUTE' THEN
fdp$delete_form (circle_form_identifier, status);
check_status;
RETURN;

!FEND;

{ Remove any previous error message.

display_variable_status (' ', circle_form_identifier);

{ Transfer terminal user entry for radius to program.

variable_name :='RADIUS';
fdp$Qet_real_variable (circle_form_identifier,

variable_name, 1, circle_data.radius,
variable_status, status);

check_status;
IF variable_status <> fdc$no_error THEN

fdp$set_cursor_position (circle_form_identifier,
variable_name, 1, 1, status);

display_variable_status ('Type valid value for radius.',
circle_form_identifier);

CYCLE /get_input/;
!FEND;

{ Compute area of circle and display it.

Revision D

circle_data.area := 3.14 * (circle_data.radius *
circle_data.radius);

variable_name :='AREA';
fdp$replace_real_variable (circle_form_identifier,

variable_name, 1, circle_data.area, variable_status,
status);

check_status;
IF variable_status <> fdc$no_error THEN

Using CYBIL to Manage Forms 6-17

Example CYBIL Program

{ Area value could not be displayed using
{ output format defined for form.
{ Revise the form or the program to accorr..~odate
{ the size of the number.

variable_name :='RADIUS';
fdp$set_cursor_position (circle_form_identifier,

variable_name, 1, 1, status);
display_variable_status ('Format cannot display area.',

circle_form_identifier);
CYCLE /get_input/;

I FEND;

UNTIL FALSE;

PROCEND compute_circle_area;

PROCEDURE compute_rectangle_area;

{ Copy variables for rectangle form.

*copyc cybil_rectangle_form

VAR
rectangle_data: cybil_rectangle_form;

{ Display rectangle form in original state.

fdp$reset_form (rectangle_form_identifier, status);
check_status;

fdp$add_form (rectangle_form_identifier, status);
check_status;

{ Update screen and get terminal user entry
{ for rectangle height and ~idth.

/get_ input/
REPEAT

fdp$read_forms (status);
check_status;

6-18 NOSNE Screen Formatting Revision D

Example CYBIL Program

fdp$get_next_event (event_name, event_normal,
event_position, last_event, status);

check_status;

{ If abnormal event (BACK or QUIT) occurs, return to caller.

IF event_name <> 'COMPUTE' THEN
fdp$delete_form (rectangle_form_identifier, status);
check_status;
RETURN;

I FEND;

{ Rerr.ove any previous error indications.

display_variable_status (' ' rectangle_form_identifier);
variable_name := 'SIDE';
fdp$reset_object_attribute (rectangle_form_identifier,

variable_name, 1, status);
fdp$reset_object_attribute (rectangle_form_identifier,

variable_name, 2, status);

Transfer height value frc~ form to program.

variable_name := 'SIDE';
fdp$get_integer_variable (rectangle_form_identifier,

variable_name, 1, rectangle_data.side_table [1].side,
variable_status, status);

check_status;

{ If data invalid, rr.ove cursor to height value
{ and display error message.

Revision D

IF variable_status <> fdc$no_error THEN
fdp$set_cursor_position (rectangle_form_identifier,

variable_name, 1, 1, status);
fdp$set_object_attribute (rectangle_form_identifier,

variable_name, 1, display_name, status);
display_variable_status ('Type valid value for height.',

rectangle_form_identifier);
CYCLE /get_input/;

I FEND;

Using CYBIL to Manage Forms 6-19

Example CYBIL Program

Transfer ~idth value from form to program.

fdp$get_integer_variable (rectangle_form_identifier,
variable_name, 2, rectangle_data.side_table [2].side,
variable_status, status);

check_status;

{ If data invalid, move cursor to nidth value
and display error message.

IF variable_status <> fdc$no_error THEN
fdp$set_cursor_position (rectangle_form_identifier,

variable_name, 2, 1, status);
fdp$set_object_attribute (rectangle_form_identifier,

variable_name, 2, display_name, status);
display_variable_status ('Type valid value for width.',

re~tangle_form_identifier);

CYCLE /get_input/;
!FEND;

{Compute area of rectangle and display it.

rectangle_data.area := rectangle_data.side_table [1].side *
rectangle_data.side_table [2].side;

variable_name := 'AREA';
fdp$replace_integer_variable (rectangle_form_identifier,

variable_name, 1, rectangle_data.area,
variable_status, status);

check_status;
IF variable_status <> fdc$no_error THEN

6-20 NOSNE Screen Formatting Revision D

{ Area value could not be displayed using
{ output format defined for form.

Example CYBIL Program

{ Revise the form or the program to accorr..T.odate
{ the size of the number.

display_variable_status ('Format cannot display area.',
rectangle_form_identifier);

CYCLE /get_input/;
!FEND;

UNTIL FALSE;

PROCEND compute_rectangle_area;

PROCEDURE stop_program;

{Close all forms.

fdp$close_form (select_form_identifier, status);
check_status;

fdp$close_form (circle_form_identifier, status);
check_status;

fdp$close_form (rectangle_form_identifier, status);
check_status;

status.normal := TRUE;
pmp$exit (status);

PROCEND stop_program;

PROGRAM compute_object_area;

•copyc cybil_select_form

VAR
select_data: cybil_select_form;

Revision D Using CYBIL to Manage Forms 6-21

Example CYBIL Program

{Open all forms used by the program
{ and assign form identifiers.

form_name := 'CYBIL_SELECT_FORM';
fdp$open_form (form_name, select_form_identifier, status);
check_status;

form_name := 'CYBIL_CIRCLE_FORM';
fdp$open_form (form_name, c1rcle_form_1dent1fier, status);
check_status;

form_name := 'CYBIL_RECTANGLE_FORM';
fdp$open_form (form_name, rectangle_form_identifier, status);
check_status;

Add select form to list scheduled for display.

fdp$add_form (select_form_identifier, status);
check_status;

Update screen and accept user terminal entry
for object; display all added forms.

/get_ input/
REPEAT

fdp$read_forms (status);
check_status;

{ Get screen event(s) that determine next actions.

fdp$get_next_event (event_name, event_normal,
event_position, last_event, status);

check_status;

{Stop program on QUIT or BACK event.

IF event_name <> 'COMPUTE' THEN
stop_program;

IFEND;

6-22 NOSNE Screen Formatting Revision D

Example CYBIL Program

Transfer object variable from form to program.

variable_na~. := 'OBJECT';
fdp$get_str1ng_variable (select_form_identifier,

variable_name, 1, select_data.object,
variable_status, status);

check_status;
IF variable_status <> fdc$no_error THEN

display_variable_status ('Type c or r.',
select_form_identifier);

!FEND;

IF select_data.object = 'R' THEN

{ Remove select form and compute area of rectangle.

fdp$delete_form (select_form_identifier, status);
check_status;
compute_rectangle_area;

ELSEIF select_data.object = 'C' THEN

{ Remove select form and compute area of circle.

fdp$delete_form (select_form_identifier, status);
check_status;
compute_circle_area

ELSE

{ If terminal user entered invalid data, display
error message and ask for another entry.

Revision D

display_variable_status ('Type c or r.',
select_form_identifier);

CYCLE /get_input/;
!FEND;

Using CYBIL to Manage Forms 6-23

Example CYBIL Program

{ Process event from rectangle form or circle form.

IF event_name = 'QUIT' THEN
stop_program;

I FEND;

{ A BACK event occurred on rectangle form or circle form;
{ display select form in original state.

fdp$reset_form (select_form_identifier, status);
check_status;

fdp$add_form (select_form_identifier, status);
check_status;

UNTIL FALSE;

PROCEND compute_object_area;
MODEND compute_object_area;

6-24 NOSNE Screen Formatting Revision D

Expanding nnd Compiling n Program

Programs using Screen Formatting use common decks and form
definition records that reside outside the main program. To manage
the source text for this type of program, put the program in one or
more SCU decks. This allows you to update individual parts of a
program and to use forms in more than one program without
duplicating code. 3

To expand and compile a program maintained in SCU decks:

1. Expand the deck containing the main program.

2. Compile the expanded program.

3. Put the compiled program on an object library.

A procedure for compiling and expanding a program is shown in the
following example. (The example is based on the example program and
form definition records described earlier. The example shows how to
place decks on library EXAMPLE_SOURCE_LIBRARY.)

The procedure calls SCU to expand the SCU directives contained in
the program. For this expansion, you must include the
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE library as an
alternate base. The program is then compiled and put on an object
library.

PROCEDURE cybil_compile_deck, cybcd (
deck, d: name = $required
status)

source_code_utility
use_library base=example_source_library result=$null
expand_deck deck=deck ..
compile=$1ocal.compile ..
alternate_base=$system.cybi1 .osf$program_interface

quit

cybil input=$1ocal.compile ..
1ist=$1ocal. listing runtime_checks=all
binary=$1ocal. lgo

debug_aids=all

3. For information on SCU, see the NOSNE Source Code Management manual.

Revision D Using CYBIL to Mnnnge Formr; 6-25

Expanding and Compiling n Program

create_object_library
add_module library=example_object_library
combine_module library=$local. lgo
generate_library 1ibrary=example_object_library.$next

QUit

PROCEND cybil_compile_deck

To use the procedure, put it on library EXAMPLE_OBJECT_
LIBRARY and then add the library to your command list (using the
CREATE_COMMAND_LIST_ENTRY command). You can execute the
procedure by entering:

/cybil_compile_deck deck=cybil_compute_object_area

The compiled program is now also on library EXAMPLE_OBJECT_
LIBRARY.

For more information on writing arid using procedures, see the
NOSNE System Usage manual.

6-26 NOSNE Screen Formatting Revision D

Helping the User Start the Application

JEielping the User §tarrt the Application

The complete application consists of your program and the forms
created by the designer. To integrate the forms with your program,
you must:

• Create a procedure that gives users access to the object library
containing the forms and program.

• Ensure that the user's terminal environment is set up properly to
use the forms (in most instances, by creating a user prolog).

• Ensure that users select the correct natural language.

• Ensure that users know how to start the application.

Creating a User Procedure

To give the user access to the object library containing the forms:

1. Write a NOSNE procedure from which the user starts the
application.

2. Place the procedure on the library that contains the compiled
program.

For example, the following procedure executes the application that
uses the starting procedure COMPUTE_OBJECT_AREA on library
EXAMPLE_OBJECT_LIBRARY. The other libraries accessed by the
program are $SYSTEM.FDF$LIBRARY and
$SYSTEM.TDU.TERMINAL_DEFINITIONS. Users must have these
libraries available in order for the program to call the Screen
Formatting procedures.

PROCEDURE cybil_compute_area, cybca (
stat us)

execute_ task
library=(example_object_library,$system.fdf$1ibrary, ..
$system.tdu.terminal_definitions) ..
starting_procedure=compute_object_area

PROCEND cybil_compute_area

Revision D Using CYBIL to Manage Forms 6-27

Creating a User Prolog

Creating a User Prolog

To ensure that the users' terminal environment is set up properly to
use the forms, make sure they set the following terminal
characteristics before they execute the procedure:

Characteristic

Terminal model

Attention
character

Hold messages

Description

Identifies the terminal to NOSNE.

Provides a character users can enter to interrupt
the application.

Tells the network to hold all network messages
until the user stops the application. Otherwise, a
computer operator message may overwrite a form
while a user is entering data, confusing the user.

In most instances, users should set up their terminal for the entire
terminal session in their user prologs. The example below does the
following:

• Identifies a Digital Equipment Corporation VT220 terminal to the
system.

• Chooses the exclamation point as a way to interrupt the program.

• Holds all messages from a NAMVE/CDCNET network.

• Sets up the way the terminal uses the exclamation point to
interrupt the program.

The users add the following commands to their user prologs:

change_terminal_attributes terminal_model=dec_vt220
attention_character='!' ..
status_action=hold

change_term_conn_defaults attention_character_act1on=1
change_connection_attributes terminal_file_name=input aca=1
change_connection_attributes terminal_file_name=output aca=1
change_connection_attributes terminal_file_name=conmand aca=1

For a further explanation of how to interrupt a scre~n application
during an interactive session, and what commands to use for networks
other than NAMVE/CDCNET, see the NOSNE System Usage manual.

6-28 NOSNE Screen Formatting Revision D

Selecting a Natural Language

Selecting a Natural Language

To ensure that users receive messages in the correct natural
language, have them add the CHANGE_NATURAL_LANGUAGE
command to their prologs. Because the default language is US_
ENGLISH and all messages returned by Screen Formatting are in this
language, have users include this command only when you have
changed messages to another language.

Changing messages to other languages is described in the NOSNE
Object Code Management manual. The CHANGE_NATURAL_
LANGUAGE command is described in the NOSNE System Usage
manual.

Starting the Application

To start the application, the users enter:

/create_command_list_entry e=example_object_library
/cybil_compute_area

When finished with the application, the users remove the object
library from their command lists:

/delete_corr..~and_list_entry e=example_object_library

Revision D Using CYBIL to Manage Forms 6-29

CYBIL Procedure Culls for Interacting with Forms

CYBJIIL Procedure Callis forr Jirmteractirmg vvith
Forms

The following sections describe the CYBIL procedure calls to Screen
Formatting modules. For each procedure, there is a purpose
description, input format, list of parameters and their types, condition
identifiers, and pertinent remarks.

An application program calls Screen Formatting procedures to interact
with an application user through the use of forms. Each of these
procedures is defined as a deck on the SCU library
$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE. This library must be
in the alternate base when compiling the application program.

These procedures are external routines that reside on the library
called $SYSTEM.FDF$LIBRARY. This library must be in the user's
program library list in order to execute the program.

For detailed information on CYBIL procedure calls, see the CYBIL
Language Definition manual.

6-30 NOSNE Screen Formatting Revision D

Adding a Form

Adding a Form

Purpose FDP$ADD_FORM schedules a form for display on the
application user's screen.

Format FDP$ADD_FORM (form_identifier, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_already _added
fde$form_ pushed
fde$form_ too_large_for _screen
f de$invalid_form_identifier
fde$no_space_available
fde$system_ error

Remarks • When you call either the FDP$READ_FORMS or

Revision D

FDP$SHOW_FORMS procedure, Screen Formatting
displays the added form on the terminal screen. The
added form is placed on top of other forms occupying
the same area on the screen.

• When displayed, each form that is added operates
independently from other forms that have been added.
When a user executes a normal event, Screen
Formatting validates and updates only those variables
on the form associated with the event. To have forms
share events, see Combining Forms later in this
section.

• Before you add a form, you must open it.

• You cannot add a pushed form.

Using CYBIL to Manage Forms 6-31

Changing Table Size

Changing Ta-hie Size

Purpose FDP$CHANGE_ TABLE_SIZE changes the size of the
table during program execution.

Format FDP$CHANGE_ TABLE_SIZE (form_identifier, table_
name, table_size, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

table_name: ost$name;

The name of the table to change in size.

table_size: fdt$table_size;

The size of the table. While this procedure is in effect,
Screen Formatting limits the number of stored occurrences
allowed for a table to the value you specify on this
parameter. How many occurrences are displayed at one
time depends on the number of visible occurrences defined
in the form.

If you specify zero for the table size, no occurrences
appear on the form.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_ pushed
f de$invalid_form_ identifier
fde$invalid_ table_name
fde$invalid_ table_size
fde$no_ space_a vailable
fde$unknown_ table_name

Remarks • The table must be present in an open form.

• The size limitation remains in effect until the next
time you call the FDP$CHANGE_ TABLE_SIZE
procedure.

• The maximum size for a table is identified by the
form as the maximum number of stored occurrences. If
you specify a table size larger than the maximum, you
receive an error message (fde$invalid_table_size).

6-32 NOSNE Screen Formatting Revision D

Examples

Changing Table Size

The following examples describe how changing the size of
a table affects the application user. On the form, the
table's specifications are a maximum of 20 stored
occurrences, of which 6 occurrences can be visible at one
time.

• If you specify a table size of 10, Screen Formatting
displays 6 occurrences and allows the application user
to page to the 10th occurrence.

• If you specify a table size of 4, Screen Formatting
displays 4 occurrences and does not allow the
application user to page.

Revision D Using CYBIL to Manage Forms 6-33

Closing a Form

Closing a Form

Purpose FDP$CLOSE_FORM releases resources used to process a
form and deletes the form from the list scheduled for
display.

Format FDP$CLOSE_FORM (form_identifier, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$invalid_form_identifier
fde$form_pushed
fde$no_space_available

Remarks • When the program calls either the FDP$READ _
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting removes the closed form from the terminal
screen as a result of calling this procedure.

• Before you can close a form, you must open it.

• You cannot close a pushed form.

6-34 NOSNE Screen Formatting Revision D

Combining Forms

Combining Forms

Purpose FDP$COMBINE_FORM combines a form with a
previously added form and schedules the combined form
for display on the terminal screen.

Format FDP$COMBINE_FORM (added_forrn_identifier,
cornbine_forrn_identifier, status)

Parameters added _forrn_identifier: fdt$form_identifier;

The identifier for this instance of the previously added
form.

cornbine_forrn_identifier: fdt$form_identifier;

The identifier for the form you are combining with the
previously added form.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions f de$bad_ data_ value
fde$form_already _added
fde$form_ already_ combined
fde$form_ pushed
fde$form_ too_large_for _screen
fde$invalid_form_identifier
f de$no _space_ available
fde$system_ error

Revision D Using CYBIL to Manage Forms 6-35

Combining Forms

Remarks • You cannot combine a pushed form.

• The combined form inherits the event definitions of
the previously added form.

• Before you combine a form with a previously added
form, you must open both forms.

• When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the combined form. The combined
form is placed on top of other forms occupying the
same area on the screen.

• When the application user executes an event to return
normally to the program, Screen Formatting updates
all program variables associated with both the added
and combined forms.

• To combine several forms with a previously added
form, call this procedure more than once.

6-36 NOSNE Screen Formatting Revision D

Deleting a Form

Deleting a Form

Purpose FDP$DELETE_FORM deletes the form from the list of
forms scheduled for display.

Format FDP$DELETE_FORM (form_identifier, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_ not_ scheduled
fde$form_ pushed
fde$invalid_form_identifier
fde$no_space_available

Remarks o When the program calls either the FDP$READ_

Revision D

FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting removes the deleted form from the
terminal screen and replots any forms uncovered by
the deleted form.

o When you add a form (FDP$ADD_FORM) again that
you previously deleted, the data in the form is
retained.

• Before you delete a form, you must open it.

• You cannot delete a pushed form.

• If the form was added and has any combined forms
associated with it, the combined forms are also
deleted.

• When you delete a combined form, only that form is
deleted. Areas covered by the combined form are
replotted after the combined form is deleted.

Using CYBIL to Manage Forms 6-37

Getting an Integer Variable

Getting an Integer Variable

Purpose FDP$GET_INTEGER_ VARIABLE gets the value the user
entered on the form for an integer variable and transfers
it to the program.

Format FDP$GET_INTEGER_ VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

name: ost$name;

The name of the integer variable to get and transfer to
the program. This name was defined when the form was
created.

occurrence: fdt$occurrence;

The occurrence of the variable name. The values allowed
are 1 .. 1000. Use 1 for the first or only occurrence.

variable: VAR of integer;

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, use a
variable of type integer.

variable_status: VAR of fdt$variable_status;

The condition name that describes the status of the
integer variable.

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined program data type.

FDC$INVALID _INTEGER

The user entered data that is not in the range defined
for the variable.

FDC$LOSS_OF_SIGNIFICANCE

The user entered an integer that is too large.

FDC$NO_ERROR

No error occurred on the variable.

6-38 NOSNE Screen Formatting Revision D

Getting an Integer Variable

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_ data_ error
fde$invalid_form_ identifier
fde$invalid_ variable_ name

Remarks

f de$no _space_ available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$wrong_ variable_ type

• Before you get an integer variable, you must open its
form. If you get the variable after opening the form
and before reading or replacing the variable on the
form, the program returns the initial value specified
by the form designer.

'e If the form designer specifies data validation rules and
error processing to display an error message or form,
the program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

Revision D Using CYBIL to Manage Forms 6-39

Getting the Next Event

Getting the Next Event

Purpose FDP$GET_NEXT_EVENT gets the next event resulting
from the most recent FDP$READ_FORMS procedure.

Format FDP$GET_NEXT_EVENT (event_name, event_
normal, event_position, last_event, status)

Parameters evcnt_nnme: VAR of ost$name;

A data name to receive the application user's event.

event_normal: VAR of boolean;

A data name to receive the event normal indication. If
the event is normal, TRUE is returned; if the event is
abnormal, FALSE is returned.

event_position: VAR of fdt$event_position;

A data name to receive the position of the event. The
character position in the upper left corner of a screen or
a form is 1; the x position increases by 1 for each
character, counting from left to right; the y position
increases by 1 for each character counting from top to
bottom.

The following fields are returned:

Field

form_
identifier

screen_x_
position

screen_y_
position

form_x_
position

form_y_
position

Meaning

The identifier of the form on which the
event occurred.

Returns the x position of the event on the
terminal screen.

Returns the y position of the event on the
terminal screen.

Returns the x position of the event on the
form.

Returns the y position of the event on the
form.

6-40 NOSNE Screen Formatting Revision D

Revision D

Getting the Next Event

For the event_position key, one of the following values is
returned:

FDC$FORM_EVENT

The event occurred in a form, but not in an object.

FDC$0BJECT_EVENT

The event occurred in an object. It has the following
fields:

Field

object_
name

object_
occurrence

object_x_
position

object_y_
position

object_
definition_
key

Meaning

The object name. If the object doesn't have a
name, the field is OSC$NULL_NAME.

The occurrence of the object. The first or
only occurrence is returned as 1.

The x position of the object. The origin is
the upper left corner of the form.

The y position of the object. The origin is
the upper left corner of the form.

A variant record that contains one of the
following values:

FDC$BOX
FDC$LINE
FDC$CONSTANT_TEXT
FDC$CONSTANT_TEXT_BOX
FDC$VARIABLE_ TEXT
FDC$VARIABLE_ TEXT_BOX

For variable text and variable text boxes, it
also returns the character position of the
variable as it appears in the program (which
is not necessarily how it appears on the
form). The first position is 1.

Using CYBIL to Manage Forms 6-41

Getting the Next Event

lust_event: VAR of boolean;

Indicates whether this is the last event. If this is the last
event, the value is TRUE; if this is not the last event,
the value is FALSE.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value

Remarks The FDP$READ_FORMS procedure deletes existing
events. If the event is normal, Screen Formatting updates
the variables in the added and combined forms containing
the event. Later, you can request the transfer of these
variables to program storage. If the event is abnormal,
Screen Formatting does not update or validate variables.

6-42 NOSNE Screen Formatting Revision D

Getting a Real Variable

Getting a Real Variable

Purpose FDP$GET_REAL_ VARIABLE gets a value the user
entered on a form for a real variable and transfers it to
the program.

Format FDP$GET_REAL_ VARIABLE (form_identifier, name,
occurrence, variable, variable_status, status)

Parameters form _identifier: fdt$form_identifier;

Revision D

The identifier established when the form was opened.

name: ost$name;

The name of the variable to get. This name was defined
when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: VAR of real;

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include a variable of type real.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INDEFINITE

The user entered an indefinite number.

FDC$INVALID_BDP _DATA

The user entered data that does not correspond to the
defined data type.

FDC$1NVALID _REAL

The user entered data that is not within the range of
real numbers defined for the variable.

FDC$LOSS_ OF_ SIGNIFICANCE

The user entered a number too large to be converted
to the defined real or integer program type.

Using CYBIL to Manage Forrns 6-43

Getting a Real Variable

FDC$NO_ERROR

No error occurred on the variable.

FDC$0VERFLOW

The user entered an exponent that is too large.

FDC$UNDERFLOW

The user entered an exponent that is too small.

ntatus: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$invalid_form_ identifier
fde$invalid_ variable_ name
fde$no_space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_ name

Remarks • Before you get a real variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

6-44 NOSNE Screen Formatting Revision D

Getting a Record

Getting a Record

Purpose FDP$GET_RECORD transfers the values of the form
record to the program record.

Format FDP$GET_RECORD (form_identifier, p_ work_area,
work_area_length, variable_status, status)

Parameters forrn_identifier: fdt$form_identifier;

Revision D

The identifier established when the form was opened.

p_ work_area: { output } "cell;

Pointer to the work area for the form record. When the
form is created, Screen Formatting generates the variable
definition entries in this record.

work_area_length: fdt$work_area_length;

The number of cells in the work area to be used in
tr an sf erring the record.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$INDEFINITE

The user entered an indefinite number.

FDC$1NFINITE

The user entered an infinite number.

FDC$1NVALID_BDP _DATA

The user entered data that does not correspond to the
defined data type.

FDC$INVALID_INTEGER

The user entered data that is not within the range of
integer numbers defined for the variable.

FDC$1NVALID_REAL

The user entered data that is not within the range of
real numbers defined for the variable.

Using CYBIL to Manage Forms 6-45

Getting n Record

FDC$INVALID_STRING

The user entered data that does not match the strings
defined for the variable.

FDC$LOSS_ OF_ SIGNIFICANCE

The user entered a number too large to be converted
to the defined real or integer data type.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0VERFLOW

The user entered an exponent that is too large.

FDC$UNDERFLOW

The user entered an exponent that is too small.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions ide$bad_data_ value
fde$form_ has_ no_ variables
f de$in valid_form_ identifier
f de$no _space _available
fde$system_ error
fde$work_invalid

Remarks • Before you get a record for a form, you must open the
form. If you get the record after opening the form and
before reading or replacing the record, the program
returns the initial value specified by the form
designer.

e If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

6-46 NOSNE Screen Formatting Revision D

/

Getting a String Variable

Getting a String Variable

Purpose FDP$GET_STRING_ VARIABLE gets a value the user
entered on a form for a string variable and transfers it to
the program.

Format FDP$GET_STRING_ VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

Parameters form_identifier: fdt$form_identifier;

Revision D

The identifier established when the form was opened.

name: ost$name;

The name of the variable to get. The name was defined
when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: VAR of fdt$text;

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, include a
variable of the following type (* is the number of
characters in the variable):

string (*)

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$1NVALID_STRING

The user entered data that does not match the strings
defined for the variable.

FDC$NO_ERROR

No error occurred on the variable.

FDC$VARIABLE_ TRUNCATED

The storage length of the VARIABLE parameter is not
long enough.

Using CYBIL to Manage Forms 6-47

Getting n String Vnrinble

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value

Remarks

f de$in valid_form_ identifier
fde$invalid_ variable_ name
fde$no_space_available
fde$system_ error
fde$unknown_ occurrence
fde$unknown_ variable_ name
fde$wrong_ variable_name

• Before you get a string variable, you must open the
form on which the user enters the value. If you get
the variable after opening the form and before reading
or replacing the variable on the form, the program
returns the initial value specified by the form
designer.

• If the form designer specifies data validation rules and
error processing to display an error message or form,
your program does not need to look at the variable
status parameter.

If the form designer specifies data validation rules and
no error processing, the program must look at the
variable status parameter.

If the form designer specifies no data validation rules,
the program must look at the variable status
parameter.

6-48 NOSNE Screen Formatting Revision D

Opening a Form

Opening a Form

Purpose FDP$0PEN_FORM locates a form and prepares it for use
by the program.

Format FDP$0PEN _FORM (form_name, form_identifier,
status)

Parameters form_name: ost$name;

The name of the form you want to open.

form _identifier: VAR { input-output } of fdt$form_
identifier;

The form identifier established for the form. Other Screen
Formatting procedures use this identifier when referencing
the form.

ntatus: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_already _open
fde$form_not_ended
fde$form_ requires_conversion
fde$invalid_ form_ identifier
fde$invalid_form_ name
fde$no_ space_available
fde$system_error
fde$terminal_ not_ identified
fde$unknown_form_ name

Revision D Using CYBIL to Manage Forms 6-49

Opening a Form

Remarks • Screen Formatting locates a form as follows:

If the form name is blank, Screen Formatting
assumes that the form identifier specifies the
required dynamically created form.

If the form name is not blank, Screen Formatting
searches the list of ended dynamically created
forms.

- If the form name is not blank and is not in the
list of ended dynamically created forms, Screen
Formatting searches the command library list to
find the form name on the object libraries. (You
specify the order in which Screen Formatting
searches the list using the NOS/VE command
CREATE_COMMAND_LIST_ENTRY).

• Executing FDP$0PEN _FORM does not display the
form on the screen. (See Reading a Form or Showing
a Form.)

• The form identifier that FDP$0PEN_FORM returns
identifies the instance. of open for a form. Forms
dynamically created have only one instance of open.
Forms stored on object libraries can have more than
one instance of open. For each instance of open,
Screen Formatting maintains the working environment
(current value of variables and their display attributes)
of the form.

6-50 NOSNE Screen Formatting Revision D

Popping a Form

Popping a Form

Purpose FDP$POP _FORMS deletes forms scheduled (added or
combined) since the last FDP$PUSH_FORMS call.

Format FDP$POP _FORMS (status)

Parameters ntatus: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$no_forms_ to_pop

Remarks Events associated with the last list of pushed forms
become active.

Revfoion D Using CYBIL to Manage Forms 6-51

Positioning n Form

Positioning a Form

Purpose FDP$POSITION_FORM schedules moving a form to a
new location. Using this procedure, you can define a form
at one location and display it at another location, or you
can move a form from where it is currently displayed to a
new location.

Format FDP$POSITION _FORM (form_identifier, screen_x_
position, screen _y _position, status)

Parameters form_identifier: fdt$form_identifier;

The form identifier established when the form was opened.

screen _x_po~:;ition: fdt$x_position;

The x position on the screen. The character position in
the upper left corner of the screen is 1, and the x position
increases by 1 for each character counting from left to
right.

screen _y _position: fdt$y _position;

The y position on the screen. The character position in
the upper left corner of the screen is 1, and the y position
increases by 1 for each character counting from top to
bottom.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_pushed
fde$form_ too_large_for _screen
fde$invalid_form_ identifier
fde$no_space_available
fde$system_ error

6-52 NOSNE Screen Formatting Revision D

Remarks

Revision D

Positioning a Form

• When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the form on the screen at the
position specified in the call to FDP$POSITION_
FORM.

• If you call this procedure while the form is displayed,
the form is deleted from its current location and added
at the new location. The added form is displayed on
top of any other form occupying the same area on the
screen.

• If you call this procedure before the form is displayed,
the form is displayed at the specified location.

• Before you position a form, you must open it.

• You cannot position a pushed form.

Using CYBIL to Manage Forms 6-53

Pushing a Form

Pushing a Form

Purpose FDP$PUSH_FORMS causes Screen Formatting to record
added and combined forms so you can return to them
later.

Format FDP$PUSH _FORMS (status)

Parameters status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$no_forms_ to_push

Remarks • Events associated with these forms are not passed to
the program.

• A program cannot change or close a pushed form.

• Pushed forms are displayed on the screen. If you want
newly added forms to appear on a blank screen, first
add a blank form that covers the screen.

Updates to the screen continue to show the pushed
forms.

• This subroutine deactivates the events associated with
forms scheduled for display (added or combined) since
the last push call.

6-54 NOSNE Screen Formatting Revision D

Reading a Form

Reading a Form

Purpose FDP$READ_FORMS updates the terminal screen and
accepts input from the application user.

Format FDP$READ _FORMS (status)

Parameters status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_ data_ value
fde$no_events_active
fde$no_forms_ to_read
fde$system_ error
fde$terminaL disconnected

Remarks • A call to FDP$READ_FORMS:

Revision D

- Displays all the forms you scheduled for display
and have not deleted. If you added or combined
forms since the last FDP$READ_FORMS or
FDP$SHOW_FORMS call, it displays them for the
first time.

- Removes from the screen the forms you deleted
since the last FDP$READ_FORMS or
FDP$SHOW_FORMS call.

- Updates on the screen the variables replaced since
the last FDP$READ_FORMS or FDP$SHOW_
FORMS call.

- Updates on the screen the objects for which display
attributes were set or reset since the last
FDP$READ_FORMS or FDP$SHOW_FORMS call.

• Events not retrieved with the FDP$GET_NEXT_
EVENT procedure are deleted before any input is
accepted from the user.

Using CYBIL to Manage Forms 6-55

Rending a Form

• The FDP$READ_FORMS procedure does not execute
unless the forms scheduled for display contain at least
one active event.

• After issuing this request, your program does not
regain control until the user issues a normal event
and Screen Formatting validates all the data, or the
user issues an abnormal event.

6-56 NOSNE Screen Formatting Revision D

Replacing an Integer Variable

Replacing an Integer Variable

Purpose FDP$REPLACE_INTEGER_ VARIABLE transfers a
program variable to Screen Formatting.

Format FDP$REPLACE_INTEGER_ VARIABLE (form_
identifier, nam~, occurrence, variable, variable_
status, status)

Parameters form_ identifier: fdt$form_ identifier;

Revision D

The identifier established when the form was opened.

name: ost$name;

The name of the variable to replace. This name was
defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: integer;

The integer variable that Screen Formatting generates
automatically in the form definition record. If you do not
want to use the automatically generated variable, include
a variable of type integer.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$LOSS_ OF _SIGNIFICANCE

The program supplied a value that is too large for the
form field.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0UTPUT_FORMAT_BAD

The output format defined for the variable cannot
output the variable.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Using CYBIL to Manage Forms 6-57

Replacing an Integer Variable

Conditions fde$bad_data_ value
fde$form_pushed

Remarks

f de$invalid_form_ identifier
fde$invalid_ variable_name
fde$no_space_available
fde$system_error
fde$unknown_ occurrence
fde$unknown_ variable_ name
fde$wrong_ variable_ type

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
replaces the integer variable on the terminal screen.

• Before you replace an integer variable, you must open
the form on which it is replaced.

• You cannot replace an integer variable for a pushed
form.

• If the integer variable is not valid, it is not replaced.

6-58 NOSNE Screen Formatting Revision D

Replacing a Real Variable

Replacing a Real Variable

Purpose FDP$REPLACE_REAL_ VARIABLE transfers a real
program variable to Screen Formatting.

Format FDP$REPLACE_REAL_ VARIABLE (form_identifier,
name, occurrence, variable, variable_status, status)

Parameters form_identifier: fdt$form_identifier;

Revision D

The identifier established when the form was opened.

name: ost$name;

The name of the variable to replace. This name was
defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: real;

The value of the real variable that Screen Formatting
generates automatically in the form definition record. If
you do not want to use the automatically generated
variable, include a variable of type real.

variable_status: VAR of variable_status;

An ordinal that gives you the status of the variable. The
following values are possible:

FDC$LOSS_ OF_ SIGNIFICANCE

The value the program supplied is too large for the
form variable.

FDC$NO_ERROR

No error occurred on the variable.

FDC$0UTPUT_FORMAT_BAD

The output format defined for the variable cannot
output the variable.

status: VAR of status;

The record that indicates the results of the procedure.

Using CYBIL to Manage Forms 6-59

Replacing n Real V nrinble

Conditions fde$bad_data_ value
fde$form_pushed
fde$in valid_ form_ identifier
fde$no_ space_available
fde$system_ error
fde$unknown_occurrence
fde$unknown_ variable_name
fde$variable_name
fde$wrong_ variable_ type

Remarks • When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
replaces the real variable on the terminal screen.

• Before you replace a real variable, you must open the
form on which it is replaced.

• You cannot replace a real variable for a pushed form.

• If the real variable is not valid, it is not replaced.

6-60 NOSNE Screen Formatting Revision D

Replacing a Record

Replacing a Record

Purpose FDP$REPLACE_RECORD transfers values of program
variables to Screen Formatting for later display on a
form.

Format FDP$REPLACE_RECORD (form_identifier, p_ work_
area, work_ area_ length, variable_ status, status)

Parameters form _identifier: fdt$form_ identifier;

Revision D

The identifier established when the form was opened.

p_ work_area: "cell;

The pointer to the program work area for variables. When
the form is created, Screen Formatting generates a type
definition for you to assign to this variable.

work_area_length: fdt$work_area_length;

The number of cells in the work area.

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variables. The
following values are possible:

FDC$1NDEFINITE

The program supplied an indefinite number.

FDC$1NFINITE

The program supplied an infinite number.

FDC$LOSS_ OF _SIGNIFICANCE

The program supplied a number that is too large to be
converted to the form variable size.

FDC$NO_ERROR

No error occurred on the variables.

FDC$0UTPUT_FORMAT_BAD

The output format defined for a variable cannot output
the variable.

FDC$0VERFLOW

The program supplied an exponent that is too large.

Using CYBIL to Manage Forms 6-61

Replacing n Record

FDC$UNDERFLOW

The program supplied an exponent that is too small.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_has_no_ variables
fde$form_pushed
f de$invalid_form_ identifier
fde$no_space_available
fde$work_invalid

Remarks • When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting replaces the variables on the terminal
screen with the values stored in Screen Formatting.

• Before you replace a record, you must open the form
on which the variables are replaced.

• You cannot replace a record for a pushed form.

6-62 NOSNE Screen Formatting Revision D

Replacing a String Variable

Replacing a String Variable

Purpose FDP$REPLACE_STRING_ VARIABLE transfers a
program string variable to Screen Formatting.

Format FDP$REPLACE_STRING_ VARIABLE (form_
identifier, name, occurrence, variable, variable_
status, status)

Parameters form_identifier: fdt$form_identifier;

Revision D

The identifier established when the form was opened.

name: ost$name;

The name of the variable to replace. This name was
defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the variable name. Use 1 for the first
or only occurrence.

variable: fdt$text;

The variable that Screen Formatting generates
automatically in the form definition record. The form
definition record defines the variable. If you do not want
to use the automatically generated variable, use a
variable of the following type (* is the number of
characters in the variable):

string (*)

variable_status: VAR of fdt$variable_status;

An ordinal that gives you the status of the variable. The
following value is possible:

FDC$NO_ERROR

No error occurred on the variable.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Using CYBIL to Manage Forms 6-63

Replacing a String Variable

Conditions fde$bad_data_ value
fde$form_pushed
fde$invalid_form_identifier
fde$invalid_ variable_ name
fde$no_space_available
fde$system_error
fde$unknown_occurrence
fde$unknown_ variable_ name
fde$wrong_ variable_ type

Remarks • When the program calls either the FDP$READ _
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting replaces the string variable on the
terminal screen.

• Before you replace a string variable, you must open
the form on which it is replaced.

• You cannot replace a string variable for a pushed
form.

• If the string variable is not valid, it is not replaced.

• If the form specifies that the data must be in upper
case, Screen Formatting converts it to upper case
before storing the data in the form.

6-64 NOSNE Screen Formatting Revision D

Resetting a Form

Resetting a Form

Purpose FDP$RESET_FORM resets the form to the state specified
by the form definition.

Format FDP$RESET_FORM (form_identifier, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_ pushed
fde$invalid_ form_ identifier
fde$no_space_available
fde$system_error

Remarks • When the program calls either the FDP$READ _

Revision D

FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the form on the terminal screen
with the reset specifications.

• All variables belonging to the form have their initial
values and display attributes. The form is in its
defined position.

• Before you reset a form, you must open it.

• You cannot reset a pushed form.

Using CYBIL to Manage Forms 6-65

Resetting an Object Attribute

Resetting an Object Attribute

Purpose FDP$RESET_ OBJECT_ATTRIBUTE resets the display
attributes for an object to those specified in the form
definition.

Format FDP$RESET _OBJECT _ATTRIBUTE (form_identifier,
object_name, occurrence, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

object_name: ost$name;

The name of the object whose attributes are being reset.
This name was defined when the form was created.

occurrence: fdt$occurrence;

The occurrence of the object. For the first or only
occurrence, use 1.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_not_scheduled
fde$form_ pushed
fde$invalid_form_identifier
fde$invalid_ object_name
fde$invalid_ occurrence
fde$no_space_available
fde$unknown_ object_ name

Remarks • You can reset the attributes of objects that are
variable text, constant text, lines, or boxes.

• Before you reset the attribute of an object, you must
open and either add or combine the form the object is
on.

• When the program calls either the FDP$READ_
FORMS or FDP$SHOW_FORMS procedure, Screen
Formatting displays the object using the reset
attributes.

6-66 NOS/VE Screen Formatting Revision D

Setting the Cursor Position

Setting the Cursor Position

Purpose FDP$SET_ CURSOR_POSITION sets the cursor to a
selected position for later display.

Format FDP$SET_CURSOR_POSITION (form_identifier,
object_name, occurrence, character _position, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

object_name: ost$name;

The name of the object on which you want to set the
cursor. This name was defined when the form was
created.

occurrence: fdt$occurrence;

The integer specifying the occurrence of the object name.
Use 1 for the first occurrence.

character _position: fdt$character _position;

The character position to which you want to set the
cursor. Use 1 for the first character position.

status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_ pushed
fde$invalid_character _position
fde$invalid_form_ identifier
fde$invalid_object_name
fde$no_object_available_defined
fde$no_ space_ available
fde$system_ error
fde$unknown_object_name
fde$unknown_occurrence

Revision D Using CYBIL to Manage Forms 6-67

Setting the Cursor Position

Remarks • One use of this procedure is to alter the default
sequence of the application user's entry of variables. In
the default sequence, Screen Formatting places the
cursor on the first input variable of the highest
priority form. The highest priority form is the form
last added, combined, or positioned.

At terminals with protected fields, the user tabs from
one variable text object to the next. The cursor starts
at the top line of the form; it moves from left to right
on each line. When no variable text object appears on
a line, the cursor moves down to the next line. At
terminals without protected fields, the user must move
the cursor using the arrow keys or the tab and return
keys.

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
updates the terminal screen with the cursor at the
specified position.

• If the position you specify is not visible on the screen,
Screen Formatting shifts the data to make the cursor
visible.

• The cursor position is in effect only for the next
screen update from reading or showing forms.

• Before you set the cursor position on a form, you must
open the form and either add or combine it.

• You cannot set the cursor position in a pushed form.

6-68 NOSNE Screen Formatting Revision D

/

Setting Line Mode

Setting Line Mode

Purpose FDP$SET_LINE_MODE begins line-by-line interaction
with an application user.

Format FDP$SET_LINE_MODE (status)

Parameters status: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value

Remarks

Revision D

• Use this call for extended dialogues in line mode. For
short dialogues, Screen Formatting automatically
switches to the proper mode (line or screen) but
resources used for screen mode interaction remain.

• This call releases all screen mode resources:

Open forms are closed.

The mode is set to line.

Using CYBIL to Manage Forms 6-69

Setting an Object Attribute

Setting an Object Attribute

Purpose FDP$SET_ OBJECT_ATTRIBUTE changes a display
attribute for an object.

Format FDP$SET _OBJECT _ATTRIBUTE (form_identifier,
object_name, occurrence, attribute, status)

Parameters form_identifier: fdt$form_identifier;

The identifier established when the form was opened.

object_name: ost$name;

The name of the object whose display attribute is being
reset.

occurrence: fdt$occurrence;

The occurrence of the object. For the first or only
occurrence, use 1.

attribute: ost$name;

The name given to the display attribute when it was
defined on the form. The attribute used here is defined
for the form and not for a specific object. When using
Screen Design Facility, screen attributes are defined
through the ATTRIB function. When using a CYBIL
program, the ADD_DISPLAY_DEFINITION attribute
record defines form attributes.

ntatus: VAR of ost$status;

The record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_not_ scheduled
fde$form_ pushed
fde$invalid_attribute_position
fde$invalid_form_ identifier
fde$invalid_ object_name
fde$invalid_ occurrence
fde$no_space_available
fde$unknown_display _name
fde$unknown_ object_name
fde$unknown_ occurrence

6-70 NOSNE Screen Formatting Revision D

Remarks

Setting an Object Attribute

• You can set the attributes of objects that are variable
text, constant text, lines, or boxes.

• Changed attributes replace existing attributes.

• When you call either the FDP$READ_FORMS or
FDP$SHOW_FORMS procedure, Screen Formatting
displays the object using the set attributes.

• If the object you specify is not visible on the screen,
Screen Formatting shifts the data to make the object
visible.

• Before you set the attribute of an object, you must
open the form the object is on and either add or
combine it.

• You cannot set attributes of objects on a pushed form.

Revision D Using CYBIL to Manage Forms 6-71

Showing Forms

Showing Forms

Purpose FDP$SHOW_FORMS updates the terminal screen.

Format FDP$SHOW _FORMS (status)

Parameters 8tatus: VAR of ost$status;

A record that indicates the results of the procedure.

Conditions fde$bad_data_ value
fde$form_ too_large_for _screen
fde$form_ to_ show
fde$no_space_available
fde$system_ error
fde$terminal _disconnected

Remarks • When none of the forms scheduled for display has an
event or input variable defined, use this procedure
instead of FDP$READ_FORMS.

• When you do not want any input from the terminal
user, use this subroutine.

• A call to FDP$SHOW_FORMS:

- Displays all the forms you have scheduled for
display and have not deleted. If you added or
combined forms since the last FDP$READ_FORMS
or FDP$SHOW_FORMS call, it displays them for
the first time.

- Removes from the screen the forms you deleted
since the last FDP$READ_FORMS or
FDP$SHOW_FORMS call.

- Displays variables replaced since the last
FDP$READ_FORMS or FDP$SHOW_FORMS call.

- Displays objects with attributes set or reset since
the last FDP$READ_FORMS or FDP$SHOW_
FORMS call.

6-72 NOSNE Screen Formatting Revision D

Using CYBIL to Create Forms 7

More About Forms ... 7-2
Constant Text Objects ... 7-3
Variable Text Objects .. 7-3

Data Flow Attributes .. 7-4
Data Type Attributes .. 7-4
Output Formatting Attributes 7-5
Data Validation Attributes 7-6

Tables .. 7-8
Graphic Objects ... 7-9
Events .. 7-9

Defining Screen Formatting Tasks for Events 7-10
Standard Events ... 7-15

Display Attributes .. 7-15
Error and Help Information 7-16

Creating Unique Forms for Error and Help Information 7-17
Using the Default Form for Error and Help Information 7-17

How to Create a Form .. 7-19

The Design Specification .. 7-20

Instructions for Designing Forms 7-22
Designing a Form Dynamically 7-22
Designing a Form Interactively 7-25

Rectangle Form Program .. 7-34

Creating Form Definition Records for Existing Forms 7-42

Attributes for a Form ... 7-43
Basic Form Attributes .. 7-44

Creating and Changing Forms 7-44
Getting Basic Form Attributes 7-56

Variable Attributes ... 7-60
Creating and Changing Variables 7-60
Getting Variable Attributes 7-69

Table Attributes .. 7-73
Creating and Changing Tables 7-73
Getting Table Attributes 7-75

Form Definition Record Attributes 7-76
Changing Record Attributes 7-76
Getting Record Attributes 7-77

Object Attributes ... 7-78
Creating and Changing Objects 7-78
Getting Object Attributes 7-81

CYBIL Screen Formatting Procedures 7-85
Changing a Form ... 7-86
Changing the Form Definition Record 7-87
Changing an Object ... 7-88
Changing a Stored Object · 7-89
Changing a Table .. 7-90
Changing a Variable .. 7-91
Converting to Program Variable 7-92
Converting to Screen Variable 7-94
Copying an Area ... 7-96
Copying a Form .. 7-98
Creating Constant Text 7-99
Creating a Design Form . 7-100
Creating Design Text . 7-102
Creating a Form . 7-103
Creating an Event Form . 7-104
Creating a Mark . 7-106
Creating an Object ... 7-108
Creating a Stored Object 7-113
Creating a Table . 7-115
Creating a Variable . 7-116
Deleting an Area . 7 -118
Deleting a Mark . 7-119
Deleting an Object . 7-120
Deleting a Stored Object . 7-121
Deleting a Table . 7-122
Deleting a Variable . 7 -123
Editing a Form . 7-124
Ending a Form ... 7-125
Getting Form Attributes 7-126
Getting Form Names 7-127
Getting Form Objects . 7-128
Getting Object Attributes . 7-130
Getting Record Attributes . 7-131
Getting a Stored Object . 7-132
Getting Table Attributes . 7-133
Getting Variable Attributes 7-134
Moving an Area . 7-135
Writing a Form Definition . 7-137
Writing a Form Definition Record 7-138

7

Chapter 1 presented an example of creating and managing forms. It
demonstrated that both the designer and the programmer have specific
tasks to accomplish. When creating and managing the forms using a
COBOL, FORTRAN, Pascal, or CYBIL program, the following tasks
need to be accomplished:

1. The form designer and programmer plan the forms and program.

2. The form designer creates the forms specifying the language that
will be used to display the forms as the form processor (or
programming language) and prepares a design specification.

3. The form designer puts the forms in an object library and makes
the form definition record available to the programmer. Each
record defines the variables on a particular form and is written in
language specified when the form was created.

4. The programmer codes the program, including calls to Screen
Formatting based on the design specification. These calls manage
the forms created by the designer.

5. The programmer expands and compiles the program.

6. The programmer writes a user procedure to start the application
and helps the user set up the correct terminal environment for
using the forms.

When the last task is complete, the program and forms are ready for
the application user.

This chapter expands on the introduction of forms given in chapter 1
and explains how to create and change forms using CYBIL procedures
with Screen Formatting. At the end of the chapter, the formats and
parameters are described for each CYBIL procedure you can use.

Revision D Using CYBIL to Create Forms 7-1

More About Forms

RQ:ore Ahmmt Forms

As presented in chapter 1, a form is an organized collection of
objects (visual clues, entry fields, prompts or other text) which are
treated as a unit on the screen.

Forms have the following general properties:

• A form occupies a rectangular area on the screen, either the entire
screen or a part of it.

• Two or more forms can be displayed simultaneously.

• All forms are opaque. When one form covers another form, the
covered form is not visible.

• Forms have a priority for display on the terminal. The current
form covers those previously displayed.

• The lifetime of a form cannot exceed the lifetime of the program
displaying the form.

A form can contain the following:

• Constant text objects (protected text, such as titles or labels)

• Variable text objects (unprotected text, such as user or program
data entry)

• Tables (occurrences of variables)

• Graphic objects (lines or boxes)

• Events (actions the user executes, such as pressing function keys)

• Display attributes (inverse video, color)

• Error and help information (messages or forms)

The following sections describe in detail what a form can contain.

7-2 NOSNE Screen Formatting Revision D

Constant Text Objects

Constant Text Objects

A constant text object is text you do not intend the user or program
to change, such as a title or a label. Constant text objects have the
following properties:

• Display attributes can be associated with them.

• They are not transferred between programs and forms.

• They can occupy part or all of one or more lines on the form.

• They can be formatted differently from line to line.

• If the user temporarily changes them, the text is reset to its
initial value as soon as possible.

• They can have names and occurrences, however names and
occurrences are not required. When you define occurrences, the
object does not need to belong to a table.

Variable Text Objects

Variable text objects are areas wh~re data is entered by the user or
the program. They have the following properties:

• A program refers to them by a variable name.

• When a variable name occurs more than once on a form, the
variable text objects must be part of a table.

• They can occupy part or all of one or more lines on the form.

• You can specify the following attributes for variables:

Data flow

Data type

Output formatting

Data validation

These attributes are described in the following sections.

Revision D Using CYBIL to Create Forms 7-3

Variable Text Objects

Data Flow Attributes

For variable text objects, you can specify how you want the data to
flow to and from the user and the program.

The modes are:

• User Input Only

When the user enters data, Screen Formatting attempts to prevent
the data from being echoed to the screen. If the terminal does not
support this mode, the data is replaced with blanks as soon as
possible.

• Output Only

Screen Formatting attempts to prevent new data from being
entered. If the terminal does not protect text, the form is restored
to its correct value after it~ has been changed.

• Terminal Input and Output

When the user enters data, it appears on the screen. A program
can change this data.

e Program Input and Output

The data does not appear on the screen. A program uses a
variable to record information about the user's interaction. This is
called hidden text.

Data Type Attributes

For more convenient program processing, you can convert the type of
data entered by the user as follows:

• Character

The program receives data as entered by the user (no conversion).

• Uppercase Character

The user's input is converted to uppercase and passed to the
program. When the program passes data to the screen, it is also
converted to uppercase.

• Integer

The user's input is converted to integers and passed to the
program.

7-4 NOS/VE Screen Formatting Revision D

Variable Text Objects

• Real

The user's input is converted to real numbers and passed to the
program.

Output Formatting Attributes

You specify the following output formatting attributes:

• You can specify that the output has a currency format.

• You can assign an initial display attribute to variable text objects.
(A program can temporarily change the attribute and later reset
the attribute to its initial value.)

• When text is on more than one line, you define the text box by
specifying its location, height, and width.

You also specify how the text is mapped into the text box as
follows:

Wrap Characters

Text that does not fit on a line is placed on the next line.
Data that exceeds the text box area is not displayed (the user
can scroll to the undisplayed text).

- Wrap Words

When possible, text is displayed in its box so that words are
not broken between lines (a space indicates the end of a word).
Data that exceeds the text box area is not displayed (the user
can scroll to the undisplayed text).

Revision D Using CYBIL to Create Forms 7-5

Variable Text Objects

Data Validation Attributes

~.==: .. :}.:: User-entered data is automatically validated against a set of
application-defined rules. The rules typically specify the format and
values for the data. You specify the application rules when creating
the form.

To provide a smooth interface for users when they encounter
difficulties in using a form, you can do the following:

• Create help messages and forms.

The message or form can be associated with the entire form or a
specific variable text object on the form.

• Create error messages and forms.

A message or form you create is automatically displayed when an
error is detected.

• Change the highlighting display attribute for errors.

Errors are automatically highlighted in inverse video. You can
change the highlighting to another display attribute.

e Allow users to move to another part of the program without
correcting an invalid value.

You define abnormal events that return to the program without
storing the values entered by the user.

• Allow users to enter just enough characters to make a text string
unique so the system recognizes which valid character string it
represents.

When defining the values for a variable, you specify the strings
that are acceptable entries and whether or not the system will
recognize unique substrings.

7-6 NOSNE Screen Formatting Revision D

Variable Text Objects

To provide additional help to the application programmer in validating
data, you can define data according to a specific format and content.

You can define the format to allow numbers in the following:

• FORTRAN integer formats.

The integer format includes only numeric characters (O through 9)
or signed numeric characters.

• FORTRAN real formats.

FORTRAN programmers know these as: Fw.d, Ew.d, Ew.dEe,
Gw.d, and Gw.dEe edit descriptors.

You can define the content to allow the following:

• Any characters.

• Only alphabetic characters (A through Z; a through z).

• One or more integer ranges.

• One or more real ranges.

• Unique substrings that contain enough characters to identify valid
strings the system can recognize.

• Only valid real or integer numbers.

When the conversion of user input to program variables results in
loss of significance or overflow, the converted data is invalid.

U sinir CYBIL to Create Forms 7-7

Tables

Tables

A table consists of one or more occurrences of one or more variable
text objects. These objects can appear anywhere on the form. Each
field on the form belonging to the object represents an occurrence in
the table.

Use a table to group variable text objects in the following ways:

• Objects whose attributes are identical except for their position on
the form.

For an example definition of a table with two occurrences
representing the sides of a rectangle, refer to the program segment
labeled

{ Create table of rectangle sides

in the Rectangle Form Program later in this chapter. For a
representation of the Rectangle Form defined by this program,
refer to Figure 4-2.

• Objects that are logically related, such as quantity, part number,
description, and cost on an order form.

For example, the following picture shows a table on a form in an
inventory program:

COMPUTER PARTS INVENTORY:

Part Number Description

The picture shows four separate lines for part numbers and
descriptions. The table represented by the lines consists of two
variables. One variable contains the part number and the other
variable contains the description. Each line represents an
occurrence in the table.

The number of occurrences in a table can affect performance. We
recommend that you have no more than 200 occurrences in any table.

7-8 NOSNE Screen Formatting Revision D

Graphic Objects

Graphic Objects

Graphic objects include boxes and line drawings (note that some
terminals support only vertical and horizontal lines). A box can be
drawn around a form or within it.

Graphic objects have the following general properties:

• They can include display attributes, such as line thickness.

• A program can change the display attribute.

• Object names can be assigned to them.

• They cannot intersect one another.

• They are protected (their text cannot be accidently changed).

Events

An event is an action the user executes to return control to Screen
Formatting, such as pressing a function key or the return key. Events
are defined by specifying both the event trigger that identifies the set
of keystrokes the user makes and the event action that tells Screen
Formatting to either perform a task itself or pass it through to the
program. The following are examples of events:

• When the return key is pressed, control is passed to the program
in order to display the next form.

• When the keys that perform the move forward event are pressed, a
table is paged forward. (The standard events defined by Control
Data are described later in this section.) The event is not passed
through to the program.

You can allow the following combinations:

• The user enters data and then executes an event.

• The user places the cursor on an object and then executes an
event.

• The user executes an event with no prior action.

When there are two or more forms on the screen, the interpretation of
events depends on whether the forms were added or combined before
they were displayed. If the forms were added, Screen Formatting

Rovic;iinn n Usin!! CYBIL to Create Forms 7-9

Events

processes only events associated with the form the user places the
cursor on. Even though the events displayed relate to all the forms
appearing on the screen, when the events are processed the only data
affected is that appearing on the form containing the cursor.

If a form is combined with another form, the events associated with
the first form are for the combined form also. Data appearing on
either form is affected when an event is processed.

In the design specifications, identify whether forms should be added or
combined before they are displayed. For a description of the
FDP$ADD_FORM and FDP$COMBINE_FORM procedures, refer to
chapter 6, Using CYBIL to Manage Forms.

The following sections describe the tasks you can specify and the
standard events you can use.

Defining Screen Formatting Tasks for Events

For each event, you must specify one of the following tasks:

• Make a normal return to the program.

• Make an abnormal return to the program.

• Page or scroll on the form.

• Display help forms.

• Erase error and help forms.

• Move cursor to the next or previous input variable.

The tasks are described individually in the next sections.

7-10 NOSNE Screen Formatting Revision D

Events

Normal Return to Program

When you want the application to process data the user enters on the
form, define an event to make a normal return to the program. For
more information on normal versus abnormal events, refer to
Processing Events and Data in chapter 6, Using CYBIL to Manage
Forms.

Before returning control to the program, Screen Formatting uses the
data definitions to validate all the values entered by the user. For
each invalid value, it does the following:

1. Highlights the invalid value.

For each defined variable, select the display attribute for
highlighting errors. The default display attribute for errors is
inverse video.

2. Sets the cursor to the first character of the invalid value.

3. Displays a message that explains how to correct the error.

Define the error message either on its own form or in the
program. If an error message is not defined, this step is skipped.

4. Waits for the user to reenter the value.

Each time the user executes a normal event, the validation process is
repeated until no invalid values are left or until the user executes an
abnormal event. The program does not regain control until one of
these two occurs. Each time Screen Formatting checks for valid
values, it removes previous error highlights and error messages.

Revision D Using CYBIL to Create Forms 7-11

Events

Abnormal Return to Program

When you want the application to perform a task other than
processing user-entered data, define an event to make an abnormal
return to the program.

Examples of program tasks that require definition of an abnormal
return are:

• Quitting the program.

• Displaying a different form without checking for valid data on the
first form.

For an example definition of an abnormal event, refer to the program
segment labeled

{ Define abnormal events

in the Rectangle Form Program later in this- chapter.

With several abnormal returns defined (such as Quit, Help, and Back),
the user has more flexibility in telling the program what to do next.

When the user makes an abnormal return to the program, Screen
Formatting does not update or validate variables for the application.

Paging and Scrolling

When you have more data for a variable or table than you can
display at one time, define an event to page or scroll through the
data.

Paging involves displaying the next or previous group of data. To
page when there is more than one table or variable that uses paging
defined on a form, the user must position the cursor on the table or
variable to be paged.

Scrolling moves the character containing the cursor to either the top
or the bottom of the table or variable. The rest of the data is then
realigned.

For each form, you can define only one event to page forward, one
event to page backward, one event to scroll forward, and one event to
scroll backward. Screen Formatting performs paging and scrolling
tasks; the application program does not need to execute any
statements, nor does it regain control.

7-12 NOSNE Screen Formatting Revision D

Events

Displaying Help

When you define help information for a form, you must also define an
event that displays the help. Use the standard request help event
defined by Control Data. The event action is FDC$DISPLAY_HELP,
described later in this chapter under Basic Form Attributes. Screen ![!

Formatting performs this task; the application program does not need
to execute any statements, nor does it regain control.

The help message displayed depends on the position of the cursor:

• When the user positions the cursor on a variable text object and
executes the request help event, the help message for the variable
is displayed.

• When the user positions the cursor anywhere else on the form and
executes the request help event, the help 'message for the entire
form is displayed.

Only one help or error message can appear on the screen at a time.

Executing a normal or abnormal event erases help messages. You can
also define an event to erase the help message without returning to
the program.

If you did· not define help information when you created the form, a
message explaining that the key has no definition is displayed when a
user executes the request help event.

Erasing Error Message and Help Forms

Because an error form or help form may cover other forms on the
screen, the user may want to erase them. To erase help forms, define
an event that does this. Specify the trigger and event action for
erasing help forms as FDC$ERASE_HELP. This event also erases
error message forms. By positioning the cursor inside the error or
help form and pressing the keys assigned, the user can remove the
form from the screen before returning to the program.

Screen Formatting also supplies the standard back to previous context
event to erase error message or help forms. The user positions the
cursor in the error form and executes the back to previous context
event.

A normal or abnormal event also erases error and help forms.

Revision D Using CYBIL to Create Forms 7-13

Events

Moving the Cursor to the Next or Previous Input Variable

You can define events to move the cursor to the next input variable
on a form and to the previous input variable on a form. These types
of events will be helpful in the following circumstances:

• When the application user's terminal does not have protected
fields. For most terminals, the application user moves from one
input variable to the next or to the previous variable by pressing
tab keys. At a terminal that does not have protected fields, the
user must position the cursor to the next input variable or to the
previous one using the arrow keys or the tab and return keys.
Pressing an event to position the cursor is usually faster at this
type of terminal.

• When the application displays more than one form at the same
time. Executing an event that positions the cursor at the next
input variable keeps the cursor in the same form. When a user
presses a tab key, the cursor goes to the next input variable on
the screen. This variable may not be on the same form when more
than one form appears at the same time.

7-14 NOSNE Screen Formatting Revision D

Display Attributes

Standard Events

To be consistent with other NOSNE screen applications, use the
following Control Data-defined standard events in your own
applications:

Standard Event Description

Move backward Display the previous set of data

Move to first Display the first set of data

Move forward Display the next set of data

Move to last Display the last set of data

Back to previous context Switch to a previously shown display

Request help Display help

Undo last event Remove changes made to the last event

Redo last event Restore an undone user event

Quit save Terminate the application and save any
changed data

Alternate exit Terminate the application and do not save
any changed data

Display Attributes

When creating a form, you can associate display attributes with the
entire form or with its individual objects. For example, you can
specify terminal attributes (such as color, inverse video, and bold
lines) or program attributes (such as error, warning, and title).

Foreground and background colors can also be specified for the form.
If you don't specify any attributes for an object on a form, the
foreground and background colors of the form are used.

For information about creating terminal attributes, refer to the
NOSNE Terminal Definition manual and to appendix C of this
manual.

Revision D Using CYBIL to Create Forms 7-15

Error and Help Information

Protected and Unprotected Text

One of the form attributes is text-protection (FDC$PROTECT), which
prevents the user from changing the text. The following areas on a
form are always protected:

• An area that contains no defined objects.

• Constant text objects.

• Graphic objects.

You define whether or not variable text objects are protected.

Error and Help Information

For each form, you can define the following:

• Error information for each variable text object on the form. The
information is displayed when the user enters an invalid value.

• Help information for both the entire form and for each variable
text object on the form. The help information is displayed when
the user executes the request help event (see Events earlier in this
chapter).

Error and help information forms are displayed on top of the form
currently being used.

You have a choice of two methods for creating an error or help form:

• You can use a form already created by Screen Formatting for this
purpose (the default message form) and simply define in your
program the message you want to appear.

• You can create your own unique form just as you do any other
form.

The default form does not change and always appears in the same
place. Because it is small, Screen Formatting automatically provides
the paging and scrolling events.

The following sections describe the two methods for creating error and
help forms.

7-16 NOSNE Screen Formatting Revision D

Error and Help Information

Creating Unique Forms for Error and Help Information

As with other forms, the object library on which the error or help
forms reside must be in the user's command list. Display the error or
help form by including its name in attributes for the user form, as
follows:

• For an error form, specify its name on a field in
FDC$VARIABLE_ERROR.

The error form is displayed on the screen after the user enters
data that is not valid for a given variable text object.

• For a help form, specify its name on a field in either
FDC$FORM_HELP or FDC$VARIABLE_HELP.

The help form is displayed when the user executes the request help
event defined for the form.

Using the Default Form for Error and Help Information

Specify the text for the error or help message in the program that
creates the user form, and include as a form attribute a pointer to the
message:·

• For an error message, specify the pointer on a field in
FDC$VARIABLE_ERROR.

An error message is displayed on the screen after a user enters
data that is not valid for a given variable text object.

• For a help message, specify the pointer on a field in either
FDC$FORM_HELP or FDC$VARIABLE_HELP.

A help message is displayed when the user executes a request help
event that has been defined for the form.

Revision D Using CYBIL to Create Forms 7-17

Error and Help Information

The resulting form has the following characteristics:

• It occupies 78 columns and 3 lines.

• It has a box outline.

• The upper left corner of the form is at column 2, row 1 of the
screen.

e> One variable text object is defined in the form for displaying a
message. The variable starts at column 3 of the form (column 4 of
the screen). The length of the variable can be up to 255
characters. However, only 76 characters are visible on one line at
one time.

• The standard events of move forward, move backward, back to
previous context, move to last, and move to first are defined for the
form. The user executes the back to previous context event to
delete the form. The move forward and move backward events
allow the user to scroll through the message when it is longer
than one line. The move to last and move to first events display
the first and last characters of the message.

The online Examples manual has an example named CHANGE_
SELECT_FORM that adds help to an existing form using the default
form.

You can change the default form by creating your own message form
with the name FDM$MESSAGE_FORM (given by FDC$MESSAGE_
FORM_NAME). This is the name of the default message form that
resides on $SYSTEM.FDF$LIBRARY. Place your form in an object
library that is accessible to the application user (most likely the same
library containing the forms for the application). To access the new
message form, users add the object library to their command list.
Then, whenever an error message form is needed, the new form is
automatically used.

7-18 NOSNE Screen Formatting Revision D

How to Create a Form

How to Create a JFo:rm

There are two ways to create a form: by means of Screen Design
Facility 1 or with Screen Formatting procedures. The latter method
requires writing a CYBIL program that uses the procedures
documented in this chapter.

With either method, you create a form by defining its attributes.
These attributes are placed in a form definition record and stored in
an object library. From this record, the program interacts with the
form. The following items define a form:

• The size and location of the form on the screen.

• The display attributes that affect the entire form (such as
background color).

• Events.

• The program processor that accesses the form (COBOL, FORTRAN,
Pascal, SCL, or CYBIL). This processor determines the rules for
valid names of variables and tables, and how the record definition
is generated.

• Objects on the form such as text, lines, or boxes.

• Display attributes for objects.

• A name for each variable object (so that each can be used by a
program without regard to its position on the form).

• Variable attributes.

• Initial cursor position. By default the cursor is positioned at the
top-most variable object on the form.

1. For more information, refer to the NOSNE Screen Design Facility manual.

RP.vh:lion D Using CYBIL to Create Forms 7-19


~~~ 

The Design Specification 

When creating a form with Screen Formatting procedures in a CYBIL 
program, you can also: 

• Copy a form definition. 

• Get or change the definitions for a form, table, variable, or object . 

• Delete a table, variable, or object . 

• Create error and help messages . 

The Design Specification 

Once you have created the forms for an application, you should 
document for the application programmer what you have defined on 
each form and how the forms interact with each other. The document 
you create is the design specification for the application. During the 
planning stage of the forms you no doubt maintained this information 
in an informal manner. When you have finished creating the forms, 
give the design specifications and the name of the object library 
containing the forms to the application programmer writing the 
managing forms program. 

The list that follows contains the necessary information for the CYBIL 
Rectangle Form created later in this chapter. This information 
becomes part of the design specification for the example application 
described in chapter 6, Using CYBIL to Manage Forms. The complete 
design specification is shown with example program for managing 
forms in that chapter. 

• The name of the form is: 

CYBIL_RECTANGLE_FORM 

• The user calls the Rectangle Form from the Select Form. 

7-20 NOSNE Screen Formatting Revision D 



The Design Specification 

• The following variable text objects are defined on the form: 

SIDE_ TABLE 

SIDE 

AREA 

MESSAGE 

Table that holds values for the rectangle's 
sides. 

Areas (two) for user input of values for the 
rectangle's sides. 

Area for returning value of computed area. 

Area for displaying error messages. 

• The following events are defined on the form: 

Event 

COMPUTE 

BACK 

QUIT 

Description 

A normal program event that processes data the 
user entered on the form. For the Rectangle Form, 
COMPUTE calculates the area and redisplays the 
form. 

An abnormal program event that takes the user 
back to a previous environment. For the Rectangle 
Form, BACK returns the user to Select Form. 

An abnormal program event that stops the program. 

For instructions on creating a form with Screen Formatting 
procedures, continue with the next section, Instructions for Designing 
Forms. 

Revision D Using CYBIL to Create Forms 7-21 



Instructions for Designing Forms 

Jirrn.structiorras for Desngrnill1l.g Forms 

There are two ways of using Screen Formatting to create and change 
forms: dynamically or interactively. 2 These methods are described in 
the following sections. 

Designing a Form Dynamically 

With this method, the program you write creates the form on its own 
without asking for the user's preferences. This is the simpler of the 
two methods. If you need to involve the user in the creation of the 
form, refer to Designing a Form Interactively later in this chapter. 

Creating a Form 

The following are the steps for dynamically creating a form. 

1. Create the form by executing the FDP$CREATE_FORM procedure. 

2. Create objects (such as line or box graphics and constant or 
variable text) by executing the FDP$CREATE_ OBJECT procedure. 
An object can have a name attribute, which allows you to 
associate a variable definition with the object. You also can change 
the attributes of an object by referring to the object name. 

The top left corner of the form is the origin of the form coordinate 
system. The x position starts at 1 and increases by 1 for each 
character counting from left to right. The y position starts at 1 
and increases by 1 for each line counting from top to bottom. 

A variable can be created before or after the creation of the object. 
Each variable and visible variable table occurrence must have an 
associated object created before the FDP$END_FORM procedure is 
issued. An initial value for variable text is specified by using the 
FDP$CREATE_ OBJECT procedure. The value is output by using 
the output format defined for the variable. 

3. Create variables by executing the FDP$CREATE_ VARIABLE 
procedure. Data is passed to and from the program using 
variables. 

2. Forms can be created with CYBIL, but not with COBOL, FORTRAN, Pascal, or SCL. 

7-22 NOSNE Screen Formatting Revision D 



Designing a Form Dynamically 

4. Create groups of variables that occur more than once by executing 
the FDP$CREATE_ TABLE procedure. You can store more 
variables than can be shown on the screen at one time. The table 
can be created before all the variables have been created. All the 
variables in the table must be created before a FDP$END_FORM 
procedure is executed. Execute a FDP$CREATE_ OBJECT 
procedure for each table occurrence visible on the form. If you 
want to specify an initial value of an occurrence that does not 
appear initially on the form, you can accept the default value of 
the first occurrence in the table or execute the FDP$CREATE_ 
STORED_ OBJECT procedure. 

5. Change the record definition (containing attributes) that is used to 
transfer variables between the program and Screen Formatting by 
executing the FDP$CHANGE_FORM_RECORD procedure. 

The attributes affected can be: 

- The SCU deck name. If you don't specify a name, the form 
name is used. 

- The record definition name. In COBOL, the record definition is 
a COBOL 01-level data name; in CYBIL, Pascal, or SCL, it is 
a record type name; in FORTRAN, it is an EQUIVALENCE 
statement. 

6. End the form definition by executing the FDP$END_FORM 
procedure. 

7. Write the form definition to a file by executing the FDP$WRITE_ 
FORM_DEFINITION procedure. You can now save the form on an 
object library. 

The file attributes must have values to be processed by the 
CREATE_OBJECT_LIBRARY utility. The file content attribute 
must be set to SCREEN (AMC$SCREEN) and the file structure 
attribute must be set to FORM (AMC$FORM). Use the CREATE_ 
OBJECT_LIBRARY utility subcommands ADD_MODULE, 
COMBINE_MODULE, REPLACE_MODULE, and DELETE_ 
MODULE to update the library. 

8. Write the record definition to permanent storage by executing the 
FDP$WRITE_RECORD_DEFINITION procedure. 

9. You can now interact with the form by issuing Screen Formatting 
requests. The first request must be to open the form. Then you 
can call any procedures to that manipulate the form. 

Revision D Using CYBIL to Create Forms 7-23 



Designing a Form Dynamically 

10. When you have finished interacting with the form, close it by 
executing the FDP$CLOSE_FORM procedure. 

Changing a Form 

The general steps for changing an existing form definition are as 
follows: 

1. If the form exists on an object library, open the form with the 
FDP$0PEN_FORM procedure, copy the form with the 
FDP$COPY_FORM procedure, and call the FDP$EDIT_FORM 
procedure. If the form was created with the FDP$CREATE_FORM 
procedure, call the FDP$EDIT_FORM procedure. 

2. Get the desired attributes of the form by using the FDP$GET_ 
FORM_ATTRIBUTES procedure. This request can also tell you the 
number of objects in the form image. 

3. Allocate an array for the object definitions and execute the 
FDP$GET_FORM_ OBJECTS procedure to obtain the objects. You 
can also get names of tables and variables for a form by using the 
FDP$GET_FORM_NAMES procedure. You can change the 
attributes associated with tables and variables. 

4. Change the form attributes by using the FDP$CHANGE_FORM 
procedure. You can add, replace, or delete attributes associated 
with the form. 

5. Get the variable attributes by executing the FDP$GET_ 
VARIABLE_ATTRIBUTES procedure. Change the variable 
attributes by executing the FDP$CHANGE_ VARIABLE procedure. 
You can add, replace, or delete attributes associated with the 
variable. The variable name can be changed. 

6. Get the table attributes with the FDP$GET_ TABLE_ATTRIBUTES 
procedure. Change the table attributes with the FDP$CHANGE_ 
TABLE procedure. You can add, replace, or delete attributes 
associated with the table. The table name can be changed. 

7. Get the object attributes on the form image with the FDP$GET_ 
OBJECT_ATTRIBUTES procedure. Change the attributes of an 
object on the form image with the FDP$CHANGE_ OBJECT 
procedure. You can add, replace, or delete attributes associated 
with the object. The position of the object can be changed. 

7-24 NOSNE Screen Formatting Revision D 



Designing n Form Interactively 

8. Delete an object at a particular form position with the 
FDP$DELETE_ OBJECT procedure. This does not update any 
related tables or variables. 

Delete a table by using the FDP$DELETE_ TABLE procedure. 
Variables and objects associated with the table are not deleted. 

Delete a variable by using the FDP$DELETE_ VARIABLE 
procedure. This does not update any related table or objects. 

9. Get the definitions for th~ form record by using the FDP$GET_ 
RECORD_ATTRIBUTES procedure. Change the definitions for the 
form record by using the FDP$CHANGE_RECORD_ATTRIBUTES 
procedure. 

10. Use the FDP$END_FORM procedure to check the form for 
consistency and to end the form definition. To make further 
changes to the form definition, you must issue a FDP$EDIT_ 
FORM procedure. 

11. Save the changed form by using the FDP$WRITE_FORM_ 
DEFINITION procedure. 

Save the changed record definition with the 
FDP$WRITE RECORD_DEFINITION procedure. 

12. Close the copied form with the FDP$CLOSE_FORM procedure. 

Close the original form with the FDP$CLOSE_FORM procedure. 

Designing a Form Interactively 

You can write a program that interacts with the user to create, 
display, or change a form. The program might offer the choice of 
background color for the form, or might even allow the user to select 
the language of its text (French, German, etc.). From the 
programmer's point of view, this method is much more complicated 
than the dynamic method discussed earlier, but has the advantage of 
allowing the user to modify the form as desired. 

Revision D Using CYBIL to Crente Forms 7-25 



Designing a Form Interactively 

Creating a Form 

To have a form created interactively, use two forms: 

• The design form interactively helps the user create a form. 

• The target form is the one the user wants to create. 

Each form has different properties. The design form has events such 
as SAVE, MARK, and DEFINE that help the user and your program 
design a form. SAVE collects all the information for a target form and 
stores it on an object library for future use. MARK displays text with 
distinctive display attributes so that the user can recognize what text 
will be affected by a command such as copy, move, or define. DEFINE 
allows the user to specify attributes for the marked text. 

The target form, of course, has the events needed by the application 
user. 

The text on the two forms can also have different display attributes. 
This allows you to protect text on the target form while allowing the 
user to type the desired text (and change it) on the design form. The 
position of the text can be the same on both forms. Use this method 
of protecting text on the target form and not on the design form for 
constant text objects. 

You use the opposite method of protecting text on the design form. 
Also for not protecting the same text on the target form for variable 
text objects that have special attributes, such as inverse video. You 
must protect text on the design form that requires special attributes. 
The protection prevents any changes to the special attributes for the 
object. However, you must allow the user of the target form to enter 
data into the same object in that form. 

Some terminals cannot protect screen text. If not, Screen Formatting 
restores any modified text that is supposed to be protected after the 
user transmits the data. When your form design application must 
handle these terminals, an additional problem appears. The user can 
modify any text on the design form. However, some of the text can be 
logically protected by Screen Formatting. When the user transmits the 
data, some of the changed text is restored to protected value. 

One way to alleviate the problem of users changing protected text is 
to provide a display attribute which allows the user to recognize 
protected areas. The form attribute FDC$DESIGN _DISPLAY_ 
ATTRIBUTE does this. When an object on a design form does not 
have an attribute, it takes on this attribute by default. 

7-26 NOSNE Screen Formatting Revision D 



Designing a Form Interactively 

The general steps for designing a form interactively are: 

• Create a design form. Define events that allow the user to specify 
attributes for text. Have the events cause your program to display 
other forms on which the user specifies the attributes. 

• Create a target form. A profile of the user's application can help 
specify many of the values for the target form and reduce the 
amount of user input. 

• Have the user create objects on the design form and on the target 
form, as needed. Users type in text on the design form as it 
should appear on the target form. 

o Give the user a menu of events that perform special events on the 
objects being created. For example, the DEFINE event should 
create objects on both the design and target forms with individual 
display attributes. In the case of creating a variable on the target 
form to be used for input, create a constant text object on the 
design form and a variable text object on the target form. 

o When the user wants to save the target form, create constant text 
objects for the target form from the unprotected text on the design 
form. 

The following steps describe this process in more detail. 

1. Create a design form by using the FDP$CREATE_DESIGN _FORM 
procedure. Specify form attributes just as on the FDP$CREATE_ 
FORM procedure. 

The FDP$CREATE_DESIGN _FORM procedure, however, does not 
need a FDP$END_FORM procedure to signal the completion of its 
definition. Before displaying the design form on the terminal 
screen you need to issue FDP$0PEN _FORM and FDP$ADD_ 
FORM procedures. 

The FDP$CREATE_DESIGN _FORM procedure creates a table and 
a variable that allow you to access all characters on the design 
form. The name of the variable is specified by using the form 
attribute FDC$DESIGN_ VARIABLE_NAME. If you do not specify 
this form attribute, the variable name is given by FDC$SYSTEM_ 
DESIGN_ VARIABLE_NAME. 

You can use the FDP$GET_STRING_ VARIABLE and 
FDP$REPLACE_STRING_ VARIABLE procedures to access 
characters on the design form. The length of the variable is the 
same as the width of the design form. The table has as many 
occurrences as the height of the design form. 

Revision D Using CYBIL to Create Forms 7-27 



Designing a Form Interactively 

2. Create a target form by using the FDP$CREATE_FORM 
procedure. 

3. Open the design form by using the FDP$0PEN _FORM procedure. 

4. Schedule the design form for display by using the FDP$ADD_ 
FORM procedure. The next FDP$READ_FORMS procedure 
displays the design form. 

5. Place initial text on the design form. The initial text might come 
from information the user specified earlier in the application 
profile. Any text the user can modify by typing over is placed on 
the design form with the FDP$REPLACE_STRING_ VARIABLE 
procedure. Text which must be protected is placed on the design 
form with the FDP$CREATE_OBJECT procedure. 

You cannot create any variable text objects on the design form. 
Any text created by the FDP$CREATE_OBJECT procedure is also 
stored in the design form and can be retrieved by using the 
FDP$GET_STRING_ VARIABLE procedure. 

6. Update the screen and read the design form by using the 
FDP$READ_FORMS procedure. 

7. Get the events the user executed by using the FDP$GET_NEXT_ 
EVENT procedure. 

a. If the user executes a SAVE form event: 

1) Collect the unprotected text on the design form by using 
the FDP$CREATE_CONSTANT_TEXT procedure. This 
creates constant objects with no attributes for the target 
form. Any protected text on the design form is ignored. 

2) Use the FDP$END _FORM procedure to check the form for 
consistency and to end the form definition. This procedure 
returns the errors in a sequence. Screen Formatting 
organizes the data for the form for efficient processing of 
form interaction requests. To make further changes to the 
form definition, you must issue a FDP$EDIT_FORM 
procedure. 

3) Write the form to permanent storage by using the 
FDP$WRITE_FORM_DEFINITION procedure. Update the 
object library containing the user's forms. 

7-28 NOSNE Screen Formatting Revision D 



Designing a Form Interactively 

b. If the user executes a MARK text event: 

1) Save the position of the event. This is the beginning of the 
text. 

2) Issue a FDP$CREATE_MARK procedure to show the user 
the beginning of the marked text. 

3) Read the design form by using the FDP$READ_FORMS 
procedure. The screen is updated and the user can see the 
mark. 

4) Get the next event the user executes by using the 
FDP$GET_NEXT_EVENT procedure. In this case, assume 
the user executes another mark event. 

5) Save the position of the event. This is the end of the text. 

6) Use a FDP$CREATE_MARK procedure to show the user 
the full area of text selected. 

7) Update the form and get the users next input event by 
using the FDP$READ_FORMS procedure. 

c. If the user executes a DEFINE variable event, do the following: 

1) Conduct a dialogue with the user to obtain additional 
information about the variable. For instance, the user may 
want to specify the variable name, the program data type, 
and the terminal input and output actions. The marked text 
on the design form gives the position, length and initial 
value of the variable. Create the variable for the target 
form by using the FDP$CREATE_ VARIABLE procedure. 

2) Protect the text representing the variable on the design 
form by creating a constant text object with the 
FDP$CREATE_OBJECT procedure. Also create a variable 
text object on the target form with the FDP$CREATE_ 
OBJECT procedure. 

Revision D Using CYBIL to Create Forms 7-29 



Designing n Form Interactively 

d. If the user executes a DELETE mark event, clear any program 
pointers to marked text, issue the FDP$DELETE_MARK 
procedure, and read the design form by using the FDP$READ_ 
FORMS procedure. 

e. If the user executes a move event, do the following. Assume 
that the user had previously marked the area to be moved and 
moved the cursor to the desired destination when executing the 
move event. 

1) Move the objects on the design form by using the 
FDP$MOVE_AREA procedure. On the design form, both 
constant text objects (protected text) and unprotected text 
will then be moved. Move the objects on the target form by 
using the FDP$MOVE_AREA procedure. 

~!~ 2) Update the screen with the FDP$READ_FORMS procedure. 

f. If the user executes a copy event, do the following. Assume 
that the user had previously marked the area to be copied and 
then moved the cursor to the desired destination when 
executing the copy event. 

1) Copy the objects on the design form by using the 
FDP$COPY_AREA procedure. On the design form, both 
constant text objects and unprotected text will then be 
copied. Copy the objects on the target form by using the 
FDP$COPY_AREA procedure. 

2) Update the screen with the FDP$READ_FORMS procedure. 

7-30 NOSNE Screen Formatting Revision D 



Designing a Form Interactively 

Changing a Form 

The steps for changing a form are as follows: 

1. Open the form by using the FDP$0PEN_FORM procedure. 

2. Copy the form by using the FDP$COPY_FORM procedure. The 
output of the FDP$COPY_FORM procedure is the target form. 

3. Indicate that you wish to change the target form by using the 
FDP$EDIT_FORM procedure. 

4. Create the design form by using the FDP$CREATE_DESIGN_ 
FORM procedure. 

5. Create the initial data on the design form. The FDP$CREATE_ 
DESIGN_ TEXT procedure creates constant text objects (protected 
text), line drawings (protected), and unprotected text on the design 
form from the target form. Constant text objects with attributes on 
the target form will be represented as constant text objects on the 
design form. Variables on the target form will be represented as 
constant text objects using their initial value on the design form. 
If the variable has no display attributes, the display attributes 
specified by the form attribute FDC$DESIGN _DISPLAY_ 
ATTRIBUTE will be used. The FDC$DESIGN _DISPLAY_ 
ATTRIBUTE helps the form designer to recognize variables. 

Constant text objects without any attributes will be represented as 
unprotected text on the design form. Objects in the target form 
representing unprotected text on the design form are deleted from 
the target form. When the user saves the form, the constant text 
objects for the target form will be created using the unprotected 
text from the design form. 

6. Schedule the design form for display by using the FDP$ADD_ 
FORM procedure. 

7. Read the design form by using the FDP$READ_FORMS procedure. 
The user may freely modify unprotected text (such as form titles, 
variable labels, and directions). The user executes events to change 
protected text. 

Revision D Using CYBIL to Create Forms 7-31 



Designing a Form Interactively 

8. Get the events the user executed by using the FDP$GET_NEXT_ 
EVENT procedure. Many of the events described in the section on 
creating a form also occur when changing a form. The following 
steps highlight events that occur when changing a form. 

a. If the user executes a DELETE event: 

1) Delete the object from the design form by using the 
FDP$DELETE_OBJECT procedure. Any text on the design 
form associated with the object is set to spaces. Delete the 
object from the target form as well. 

If the object was a variable text object, it should also be 
deleted from the target form with the FDP$DELETE_ 
VARIABLE procedure. In addition, if it was defined in a 
table it should be deleted from the table with the 
FDP$CHANGE_ TABLE procedure. 

2) Update the screen and get the user's next input by using 
the FDP$READ_FORMS procedure. 

b. If the user executes a change event: 

1) Get the current attributes of the object by using the 
appropriate FDP$GET_ OBJECT_ATTRIBUTES, FDP$GET_ 
VARIABLE_ATTRIBUTES, and FDP$GET_ TABLE_ 
ATTRIBUTES procedures. 

2) Conduct a dialogue with the user to learn the desired 
change. Show the user the current attributes. Allow the 
user to change only the attributes that the user desires. 

3) Change the object on the design form by using the 
FDP$CHANGE_ OBJECT procedure. Any text on the design 
form is also changed. An FDP$GET_STRING_ VARIBLE 
procedure would see the changed text. Change the object on 
the target form by using the appropriate FDP$CHANGE_ 
OBJECT, FDP$CHANGE_TABLE, and FDP$CHANGE_ 
VARIABLE procedures. 

7-32 NOSNE Screen Formatting Revision D 



Designing a Form Interactively 

Displaying a Form 

If the user wants to view a form to evaluate changes, your design 
form program will have to display previously saved forms. Define one 
consistent event for the user to execute in order to end the viewing of 
any form handled by your program. This means you have to change 
the events originally defined for the form. To do this, program the 
following steps. 

1. Open the desired form by using the FDP$0PEN_FORM procedure. 

2. Copy the form to storage that can be modified by using the 
FDP$COPY_FORM procedure. 

3. Begin editing of the copied form by using the FDP$EDIT_FORM 
procedure. 

4. Change the events associated with the copied form by using the 
FDP$CHANGE_FORM procedure. You delete all previous events 
by using the form attribute FDC$DELETE_ALL_EVENTS. Define 
one event that the user executes to terminate viewing of the form. 

5. End the form changes for the copied form by using the 
FDP$END_FORM procedure. 

6. Open the copied form by using the FDP$0PEN _FORM procedure. 

7. Schedule the copied form for display by using the FDP$ADD_ 
FORM procedure. 

8. Display the form by using the FDP$READ_FORMS procedure. 

9. Learn when the user wants to finish viewing the form by using 
the FDP$GET_NEXT_EVENT procedure. When the user executes 
the display termination event, close the opened form and the 
copied form by using the FDP$CLOSE_FORM procedure. 
Otherwise, continue displaying the form. 

Revision D Using CYBIL to Create Forms 7-33 



Rectangle Form Program 

Rec~angle Form1 Program 

The following example shows a program that creates the form and 
form definition record for Rectangle Form (used in the CYBIL 
program in chapter 6, Using CYBIL to Manage Forms). The program 
(including compiling information) is also in the Examples online 
manual. Look for it under the name CYBIL_CREATE_RECTANGLE_ 
FORM in the Screen Formatting examples. 

?? RIGHT := 110 ?? 
MODULE create_rectangle_form; 
*copyc amp$get_segment_pointer 
*copyc fsp$close_file 
*copyc fsp$open_file 
*copyc amp$set_segment_eoi 
*copyc fdp$close_form 
*copyc fdp$create_form 
*copyc f dp$create_object 
*copyc fdp$create_table 
*copyc fdp$create_variable 
*copyc fdp$end_form 
*copyc fdp$write_form_definition 
*copyc fdp$write_record_definition 
*copyc pmp$abort 

PROGRAM create_rectangle_form 
(VAR status: ost$status); 

VAR 
area_variable_name: [READ] ost$name :='AREA', 
display_name: [READ] ost$name := 'ERROR', 

display_attribute: [READ] fdt$display_attribute_set ·= 
$fdt$display_attribute_set [fdc$inverse_video], 

file_cycle_attributes: [STATIC] array [1 .. 1] of 
fst$file_cycle_attribute := 

[[fsc$file_contents_and_processor, 
fsc$screen_form, osc$null_name]J, 

form_attributes: array [1 .. 6) of fdt$form_attribute, 
form_fid: amt$file_identifier, 
form_identifier: fdt$form_identifier, 
form_file: [STATIC] string (18) := '$LOCAL.FORM_BINARY', 

form_name: [READ] ost$name := 'CYBIL_RECTANGLE_FORM'' 
local_status: ost$status, 
number_errors: fdt$number_errors, 
message_variable_name: [READ] ost$name ·= 'MESSAGE', 

7-34 NOSNE Screen Formatting Revision D 



{ 

Rectangle Form Program 

object_attributes: array [1 .. 21 of fdt$object_attribute, 
object_definition: fdt$object_definition, 
p_errors: ·sEQ ( * ), 
record_file: [STATIC] string (18) := '$LOCAL.FORM_RECORD', i 

record_fid: amt$file_identifier, 
segment_pointer: amt$segment_pointer, 
side_table_name: [READ] ost$name := 'SIDE_ TABLE', 
side_variable_name: [READ] ost$name := 'SIDE', 
table_attributes: array [1 2] of fdt$table_attribute, 
text: string (80), 
variable_attributes: array [1 

fdt$var1able_attribute; 

Define normal events. 

2] of 

form_attributes [1].key := fdc$add_event; 
form_attributes [1].event_action := 

fdc$return_program_normal; 
form_attributes [1].event_name := 'COMPUTE'; 
form_attributes [1].event_label := 'Comput'; 
form_attributes [1].event_trigger ·= fdc$next; 

Define abnormal events. 

form_attributes [2].key := fdc$add_event; 
form_attributes [2].event_action := 

fdc$return_program_abnormal; 
form_attributes [2].event_name := 'QUIT'; 
form_attributes [2].event_label :='Quit'; 
form_attributes [2].event_trigger := fdc$stop; 

form_attributes [3].key := fdc$add_event; 
form_attributes [3].event_action := 

fdc$return_program_abnormal; 
form_attributes [3].event_name :='BACK'; 
form_attributes [3].event_label := 'Back'; 
form_attributes [3].event_trigger := fdc$back; 

{ Define form name. 

form_attributes [4].key := fdc$form_name; 
form_attributes [4].form_name := form_name; 

Revision D Using CYBIL to Create Forms 7-35 



Rectangle Form Program 

I Define event form. 

I 

form_attr1butes [SJ.key := fdc$event_form; 
form_attr 1 but es [.SJ. event_form_def i nit 1on. key · = 

fdc$system_default_event_form; 

Define program display attribute. 

form_attributes [6J.key := fdc$add_display_definit1on; 
form_attributes [6J.d1splay_attribute := display_attribute; 
form_attr1butes [6J.display_name := display_name; 

fdp$create_form (form_ident1fier, form_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

Create variable for side. 

variable_attributes [1].key := fdc$program_data_type; 
variable_attributes [1].program_data_type ·= 

fdc$program_integer_type; 

variable_attributes [2J.key := fdc$unused_variable_entry; 
fdp$create_variable (form_ident1fier, side_variable_name, 

variable_attr1butes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

Create variable for area. 

variable_attributes [2].key := fdc$io_mode; 
variable_attributes [2].io_mode := fdc$terminal_output; 
fdp$create_variable (form_identifier, area_variable_name, 

variable_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

7-36 NOSNE Screen Formatting Revision D 



Rectangle Form Program 

{ Create variable for message. 

variable_attributes [1].key := fdc$unused_variable_entry; 
fdp$create_variable (form_identifier, message_variable_name, 

variable_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

{ Create table containing rectangle sides. 

table_attributes [1].key := fdc$stored_occurrence; 
table_attributes [1].stored_occurrence := 2; 

table_attributes [2].key := fdc$add_table_variable; 
table_attributes [2].variable_name := side_variable_name; 
fdp$create_table (form_tdentifier, side_table_name, 

table_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

{ Create constant text objects. 

object_attributes [1].key := fdc$unused_object_entry; 
object_attributes [2].key := fdc$unused_object_entry; 
text := 'Compute Area of Rectangle:'; 
object_definition.key := fdc$constant_text; 
object_definition.p_constant_text :=•text (1, 26); 
object_definition.constant_text_width := 26; 
fdp$create_object (form_identifier, 20, 5, object_definition, 

object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

Revision D Using CYBIL to Create Forms 7-37 



Rectangle Form Program 

text := 'Type height:'; 
object_definition.p_constant_text := Atext (1, 12); 
object_definition.constant_text_width := 12; 
fdp$create_object (form_identifier, 52, 9, object_definition, 

object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

1ext := 'Type width:'; 
object_definition.p_constant_text := Atext (1, 11); 
object_definition.constant_text_width := 11; 
fdp$create_object (form_identifier, 20, 11, 

object_definition, object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

text := 'Area is:'; 
object_definition.p_constant_text := Atext (1, 8); 

object_definition.constant_text_width := 8; 
fdp$create_object (form_identifier, 20, 9, object_definition, 

object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
I FEND; 

{ Create box. 

object_defin1tion.key := fdc$box; 
object_definition.box_width := 36; 
object_definition.box_height := 4; 
object_attributes [1].key := fdc$unused_object_entry; 
object_attributes [2].key := fdc$unused_object_entry; 
fdp$create_object (form_identifier, 15, 7, object_definition, 

object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
I FEND; 

7-38 NOSNE Screen Formatting Revision D 

/ 



Rectangle Form Program 

{Create variable text for height (side [1]). 

object_definition.key := fdc$variable_text; 
object_definition.variable_text_width := 10; 
text (1, 10) :=' '; 

object_definition.p_variable_text := -text (1, 10); 
object_attributes [1].key := fdc$object_name; 
object_attributes [1].object_name := side_variable_name; 
object_attributes [1].occurrence := 1; 
object_attributes [2].key := fdc$object_display; 
object_attributes [2].display_attribute := 

$fdt$display_attribute_set [fdc$underline]; 
fdp$create_object (form_identifier, 65, 9, object_definition, 

object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

{Create variable text for width (side [2]). 

object_attributes [1].occurrence := 2; 
fdp$create_object (form_identifier, 32, 11, 

object_definition, object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

{ Create variable text for area. 

object_attributes [1].object_name := area_variable_name; 
object_attributes [1].occurrence := 1; 
object_attributes [2].key := fdc$unused_object_entry; 
fdp$create_object (form_identifier, 29, 9, object_definition, 

object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

Revision D Usin!! CYBIL to Create Forms 7-39 



Rectangle Form Program 

{ Create variable text for message. 

object_attributes [1].object_name := message_variable_name; 
text ( 1 , 40) : = ' ' ; 
object_definition.variable_text_width := 40; 
object_definition.p_variable_text :=-text (1, 40); 
fdp$create_object (form_identifier, 20, 15, 

object_definition, object_attributes, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

fdp$end_form (form_identifier, NIL, number_errors, p_errors, 
status); 

IF NOT status.normal THEN 
pmp$abort (status); 

I FEND; 
IF number_errors <> 0 THEN 

pmp$abort (status); 
I FEND; 

Write binary form definition for object code library. 

fsp$open_file (form_file, amc$segment, NIL, NIL, 
-file_cycle_attributes, NIL, NIL, form_fid, status); 

IF NOT status.normal THEN 
pmp$abort (status); 

!FEND; 

amp$get_segment_pointer (form_fid, amc$sequence_pointer, 
segment_pointer, status); 

IF NOT status.normal THEN 
pmp$abort (status); 

I FEND; 

7-40 NOSNE Screen Formatting Revision D 



Rectangle Form Program 

RESET segment_pointer.sequence_pointer; 
fdp$write_form_definition (form_identifier, 

segment_pointer.sequence_pointer, status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

amp$set_segment_eoi (form_fid, segment_pointer, status); 
fsp$close_file (form_fid, local_status); 
IF NOT status.normal THEN 

pmp$abort (status); 
!FEND; 

Write CYBIL record definition for source code library. 

fsp$open_file (record_file, amc$record, NIL, NIL, NIL, NIL, 
NIL, record_fid, status); 

IF NOT status.normal THEN 
pmp$abort (status); 

!FEND; 

fdp$write_record_definition (form_identifier, record_fid, 
fdc$cybil_processor, status); 

IF NOT status.normal THEN 
pmp$abort (status); 

!FEND; 

fsp$close_file (record_fid, status); 
fdp$close_form (form_identifier, status); 

PROCEND create_rectangle_form; 

MODEND create_rectangle_form; 

Revision D Using CYBIL to Create Forms 7-41 



Creating Form Definition Records for Existing Forms 

Creating Form :Definitiorm Records for 
Exns~ing Forms 

Form definition records define the variables created on forms. The 
definitions are written in the language of the program managing the 
forms. The application programmer must include these definitions in 
the program. Usually, these definitions are maintained on a Source 
Code Utility (SCU) library and are copied into the program when it is 
expanded. When creating forms using a CYBIL program, you include 
a call to the FDP$WRITE_RECORD_DEFINITION procedure. You 
can also use this procedure to create form definition records for 
existing forms. For an existing form, open the form and then call 
FDP$WRITE_RECORD_DEFINITION to create the form definition. 

If the form was created using the Screen Design Facility (SDF), you 
can still create a form definition record using the FDP$WRITE_ 
RECORD_DEFINITION procedure in a CYBIL program. At this time 
SDF cannot create record definitions for use with Pascal application 
programs. The only method available, besides manually creating them, 
is to use a CYBIL program. 

In the online Examples manual, there is a CYBIL program that will 
create form definition records for COBOL, FORTRAN, Pascal, SCL or 
CYBIL. The procedure that executes the program has parameters for 
the name of the file to contain the record, the name of the form (the 
form must be accessible through your command list), and the name of 
the language you want the definition written in. To use the program, 
find the example named CREATE_RECORD in the Screen Formatting 
examples. The example creates one record each time you execute it. 

7-42 NOSNE Screen Formatting Revision D 



Attributes for a Form 

Att:ribuies for a Forrm 

When defining a form using Screen Formatting, you must define its 
attributes. These attributes can be categorized as: 

• Basic form attributes 

Attributes that describe the appearance of the form and its events. 

• Variable attributes 

Attributes that describe variables on a form; for example, the data 
types of the variables. 

• Table attributes 

Attributes that describe tables containing variables, for example, 
the number of occurrences of the variables in the table. 

• Object attributes 

Attributes for objects that appear on the form; for example, the 
name and position of objects. Objects can be either text or 
graphics. 

o Record attributes 

Attributes for form definition records, including the name. 

You can add new attributes, replace attributes, and delete attributes, 
as well as accept default attributes. You can also retrieve the current 
attributes. 

These attributes are contained in an array of records, each attribute 
stored as a value in a separate record. You must initialize this value 
to the desired attribute in order to create, change, or get a specific 
attribute. 

Revision D Using CYBIL to Create Forms 7-43 



I 

Basic Form Attributes 

Basic Form Attributes 

These attributes define the appearance of the form, its events, and 
several other form characteristics. They are in two groups, those for 
creating or changing the form and those for returning the current 
values of the form. 

Creating and Changing Forms 

The following attributes are for creating and changing forms. As 
stated earlier, each attribute is specified as a value in a record in an 
initialized array. Each record is of type FDT$FORM_ATTRIBUTE, 
which is listed in appendix F. 

Once established, this array is named on the FORM_ATTRIBUTES 
parameter in the call to any of the following CYBIL procedures, which 
are described later in this chapter: 

FDP$CHANGE_FORM 
FDP$CREATE_FORM 
FDP$CREATE_DESIGN _FORM 
FDP$CREATE_EVENT_FORM 

The following are the attribute records, their descriptions, and the 
values permitted for each. The attribute record names are in italics. 

add_event 

Specifies that an event is added to the list of events for a form. 
This record contains the following fields: event_name, event_label, 
event_ trigger, and event_action. 

event_ name 

The name of the event that the application programs use (type 
OST$NAME). It must be unique and follow the form processor 
language conventions. Examples are copy, delete, and add. The 
event name is also the variable name on an event form 
associated with this form. 

event_ label 

The event-label displayed at the bottom of the screen (type 
OST$NAME). Only the first 6 characters of the label are used. 
For the standard events defined by Control Data, use the 
following labels. 

7-44 NOSNE Screen Formatting Revision D 



Standard Event 

Move backward 
Move to first 
Move forward 
Move to last 
Back to previous context 
Request help 
Undo last event 
Redo last event 
Quit save 
Alternate exit 

event_ trigger 

Label 

Bkw 
First 
Fwd 
Last 
Back 
Help 
Undo 
Redo 
Quit 
Exit 

Basic Form Attributes 

An ordinal specifying the terminal event (type FDT$EVENT_ 
TRIGGER). Terminal events correspond to keys that can be 
specified in the terminal definition. Screen Formatting assigns 
a key when a key does not exist in the terminal definition. If a 
terminal definition key does not have a label, the key is 
assumed not to exist. But even if a key cannot be assigned, the 
user is still permitted to interact with the form. The following 
rules are used to assign keys: 

• First, the event triggers are assigned to their corresponding 
keys using the priority given after these rules. 

• If an event trigger cannot be assigned, the following steps 
are executed: 

Revision D 

1. Assigns standard event triggers (FDC$NEXT, 
FDC$SHIFT_NEXT, .. FDC$SHIFT_DATA) to unused 
terminal function keys (FDC$FUNCTION _ l, 
FDC$SHIFT_FUNCTION _ l, .. FDC$SHIFT_ 
FUNCTION_ 16). 

Using CYBIL to Create Forms 7-45 



Basic Form Attributes 

2. Assigns application event triggers to unused terminal 
function keys in ascending order of function number. 
This means that FDC$FUNCTION_l, FDC$SHIFT_ 
FUNCTION_! is assigned before FDC$FUNCTION _2, 
FDC$SHIFT_FUNCTION_2. (Triggers are assigned to 
the same key, whether shifted or unshifted, if possible.) 

3. Assigns non-shifted event triggers to non-shifted unused 
terminal function keys. Screen Formatting tries to 
assign shifted event triggers to shifted unused terminal 
function keys. 

4. Assigns keys while opening the form. By using the 
FDP$GET_FORM_ATTRIBUTES request with the key 
FDC$GET_NEXT_EVENT, you can learn the keys 
(event trigger) that Screen Formatting assigned. 

The priority in which terminal definition keys are assigned is 
as follows: 

FDC$NEXT 
FDC$SHIFT_NEXT 
FDC$HELP 
FDC$SHIFT_HELP 
FDC$STQP. 
FDC$SHIFT_STOP 
FDC$BACK 
FDC$SHIFT_BACK 
FDC$UP 
FDC$SHIFT_ UP 
FDC$DOWN 
FDC$SHIFT_DOWN 
FDC$FORWARD 
FDC$SHIFT_FORWARD 
FDC$BACKWARD 
FDC$SHIFT_BACKWARD 
FDC$UNDO 
FDC$REDO 
FDC$EDIT 
FDC$SHIFT_EDIT 
FDC$DATA 
FDC$SHIFT_DATA 
FDC$FUNCTION _ l 
FDC$SHIFT_FUNCTION _ l 
FDC$FUNCTION _2 
FDC$SHIFT_FUNCTION _ 2 
FDC$FUNCTION_3 

7-46 NOSNE Screen Formatting Revision D 



FDC$SHIFT_FUNCTION _3 
FDC$FUNCTION_4 
FDC$SHIFT_FUNCTION _4 
FDC$FUNCTION _5 
FDC$SHIFT_FUNCTION _5 
FDC$FUNCTION_6 
FDC$SHIFT_FUNCTION _ 6 
FDC$FUNCTION_ 7 
FDC$SHIFT_FUNCTION_ 7 
FDC$FUNCTION _8 
FDC$SHIFT_FUNCTION _8 
FDC$FUNCTION_9 
FDC$SHIFT_FUNCTION _ 9 
FDC$FUNCTION_l0 
FDC$SHIFT_FUNCTION _ 10 
FDC$FUNCTION_ll 
FDC$SHIFT_FUNCTION _ ll 
FDC$FUNCTION_l2 
FDC$SHIFT_FUNCTION _ 12 
FDC$FUNCTION_l3 
FDC$SHIFT_FUNCTION _ 13 
FDC$FUNCTION _ 14 
FDC$SHIFT_FUNCTION _ 14 
FDC$FUNCTION _ 15 
FDC$FUNCTION _ 16 
FDC$SHIFT_FUNCTION _ 16 
FDC$PICK 
FDC$INSERT_LINE 
FDC$DELETE_LINE 
FDC$HOME_CURSOR 
FDC$CLEAR_SCREEN 
FDC$TIME_OUT 
FDC$VARIABLE_ TRIGGER 

Basic Form Attributes 

Screen Formatting supports standard events. A standard event 
is one that has a label defined by Control Data and performs 
an event defined by Control Data. 

The system assigns the standard events as follows: 

1. The application must use the standard event if it exists for 
the event being defined. 

2. If a terminal has a dedicated key that performs the 
standard event, the standard event is assigned to that key. 

Revision D Using CYBIL to Create Forms 7-47 



Basic Form Attributes 

3. If a terminal does not have a dedicated key that performs 
the standard event, the standard event is assigned either to 
a key such as a programmable function key or to a 
sequence of keys defined by the terminal definition. 

The following table lists the trigger for each standard event. 

Standard Event 

Move backward 
Move to first 

Move forward 
Move to last 
Back to previous context 
Request help 
Undo last event 
Redo last event 
Quit save 
Alternate exit 

Screen Formatting 
Trigger 

FDC$BACKWARD 
FDC$SHIFT_BACKWARD/ 
FDC$FIRST 
FDC$FORWARD 
FDC$SHIFT_FORWARD/ FDC$LAST 
FDC$BACK 
FDC$HELP 
FDC$UNDO 
FDC$REDO 
FDC$STOP/ FDC$QUIT 
FDC$SHIFT_STOP/ FDC$EXIT 

If you specify one of the alternate forms (FDC$FIRST, 
FDC$LAST, FDC$QUIT, FDC$EXIT) for the trigger, the 
primary form is stored (FDC$SHIFT_BACKWARD, 
FDC$SHIFT_FORWARD, FDC$STOP, FDC$SHIFT_STOP). 
That means any request that returns a trigger returns the 
primary form. 

event_ action 

Specifies a variant record of type FDT$EVENT_ACTION 
containing one of the following values. In the descriptions that 
follow, "current" refers to the table or variable on which the 
cursor is positioned. With the exception of FDC$RETURN _ 
PROGRAM_NORMAL and FDC$RETURN_PROGRAM_ 
ABNORMAL 3, the event is not returned to the program. 

FDC$RETURN_PROGRAM_NORMAL 

Returns to the program, indicating that the event is 
normal. 

3. For a definition of normal versus abnormal events, refer to Processing Events and 
Data in chapter 4. 

7-48 NOS/VE Screen Formatting Revision D 



Basic Form Attributes 

FDC$RETURN_PROGRAM_ABNORMAL 
Returns to the program, indicating that the event is 
abnormal. 

FDC$PAGE_TABLE_FORWARD 
The current table pages forward to its next group of 
occurrences. 4 

FDC$PAGE_TABLE_BACKWARD 
The current table pages backward to its previous group of 
occurrences. 

FDC$SCROLL_TABLE_FORWARD 
The current table scrolls forward. 

FDC$SCROLL_TABLE_BACKWARD 
The current table scrolls backward. 

FDC$DISPLAY_HELP 
The help information is displayed for either the form or the 
current variable. 

FDC$ERASE_HELP 
The help information displayed on the screen is erased. 

FDC$EXECUTE_COMMAND 
Unused. 

FDC$IGNORE_EVENT 
This event is ignored. It is not returned to the application 
program. 

FDC$TAB_ TO_NEXT_FORM_FIELD 
The cursor moves to the next input variable on the form. If 
the cursor is on the form's last variable, it moves to the 
first input variable. This differs from tabbing to the next 
unprotected field, which works over the entire screen rather 
than within a form. 

4. Occurrences are explained earlier in this chapter under Tables. 

Revision D Using CYBIL to Create Forms 7-49 



Basic Form Attributes 

FDC$TAB_ TO_PREVIOUS_FORM_FIELD 

The cursor moves to the previous variable. If the cursor is 
on the form's first variable, it moves to the last input 
variable. This differs from tabbing to the previous 
unprotected field, which works over the entire screen rather 
than within a form. 

FDC$SCROLL_ VARIABLE_FORWARD 

The current variable scrolls forward. 

FDC$SCROLL_ VARIABLE_BACKWARD 

The current variable scrolls backward. 

FDC$PAGE_ VARIABLE_FORWARD 

The current variable pages forward to its next group of 
characters. 

FDC$PAGE_ VARIABLE_BACKWARD 

The current variable pages backward to its previous group 
of characters. 

FDC$PAGE_ VARIABLE_FIRST 

Pages to the first portion of the variable. 

FDC$PAGE_ VARIABLE_LAST 

Pages to the last portion of the variable. 

FDC$PAGE_ TABLE_FIRST 

Pages to the first group of occurrences within a table. 

FDC$PAGE_TABLE_LAST 

Pages to the last group of occurrences within a table. 

add_form_comment 

Currently unused. 

add_ display_ definition 

Specifies the set of attributes called the display definition, which 
allows a program to change the display characteristics of a form 
object. This record contains two fields: 

7-50 NOSNE Screen Formatting Revision D 



Basic Form Attributes 

display _attribute 

A set of display attributes (type FDT$DISPLAY_ATTRIBUTE_ 
SET). Possible values are: 

FDC$INVERSE_ VIDEO 
FDC$LOW_INTENSITY 
FDC$HIGH_INTENSITY 
FDC$BLINK 
FDC$UNDERLINE 
FDC$PROTECT 
FDC$HIDDEN 
FDC$BLACK_FOREGROUND 
FDC$BLUE_FOREGROUND 
FDC$GREEN_FOREGROUND 
FDC$MAGENTA_FOREGROUND 
FDC$RED_FOREGROUND 
FDC$CYAN_FOREGROUND 
FDC$YELLOW_FOREGROUND 
FDC$WHITE_FOREGROUND 
FDC$BLACK_BACKGROUND 
FDC$BLUE_BACKGROUND 
FDC$GREEN_BACKGROUND 
FDC$MAGENTA_BACKGROUND 
FDC$RED_BACKGROUND 
FDC$CYAN_BACKGROUND 
FDC$YELLOW_BACKGROUND 
FDC$WHITE_BACKGROUND 
FDC$FINE_LINE 
FDC$MEDIUM_LINE 
FDC$BOLD_LINE 
FDC$ITALIC_DISPLAY_ATTRIBUTE 
FDC$TITLE_ DISPLAY_ATTRIBUTE 
FDC$INPUT_DISPLAY_ATTRIBUTE 
FDC$ERROR_DISPLAY_ATTRIBUTE 
FDC$MESSAGE_DISPLAY_ATTRIBUTE 

display _name 

The application program name that sets the attribute for an 
object (type OST$NAME). 

delete_ all_ displays 

Deletes all currently defined displays. 

delete_all_events 

Deletes all events. 

Revision D Using CYBIL to Create Forms 7-51 



I 

Basic Form Attributes 

delete_event, 

delete_ display_ definition 

Deletes the specified event from a list of events, or deletes the 
specified display definition (type OST$NAME). 

delete_form_ comments 

Currently unused. 

design_ display_ attribute 

Specifies the set of display attributes (type FDT$DISPLAY_ 
ATTRIBUTE_SET) to be used with an object on the design form 
when the object has no attributes assigned. This allows the form 
designer to recognize the object. The default is FDC$UNDERLINE. 
For the list of display attributes, refer to add_display _definition 
earlier in this chapter. 

design_ variable_ name 

Specifies the variable name used to access text on a design form 
(type OST$NAME). 

event_form 

Specifies the event form definition as a variant record (type 
FDT$EVENT_FORM_DEFINITION). The form being defined can 
have an associated event form that shows which terminal events 
cause program events. This event form can contain program event 
labels and terminal event labels. 

A maximum of 16 terminal function keys can be shown on the 
event form. Two program event labels can appear for each 
terminal function key. The upper label is a shifted function key 
(MARK, for instance, is shifted Fl in the following example). 

Here is an example of an event form: 

MARK MOVE 
F1 UNMARK F2 COPY 

REDO 
FB UNDO 

Fl, F2, ... FS are terminal function key labels that come from the 
terminal definition. MARK, UNMARK, MOVE, COPY, ... REDO, 
UNDO are event labels that come from the form definition. 

The KEY field (type FDT$EVENT_FORM_KEY) contains one of 
the following: 

FDC$NO_EVENT_FORM 

No event form is generated. 

7-52 NOSNE Screen Formatting Revision D 



Basic Form Attributes 

FDC$SYSTEM_DEFAULT_EVENT_FORM 

Screen Formatting generates an event form showing application 
functions. 

FDC$USER_EVENT_FORM 

The specified event form is used (type OST$NAME). 

form_area 

Contains a variant record specifying which area of the terminal 
screen is occupied by the specified form (type FDT$FORM_AREA). 
Its KEY field (type FDT$FORM_AREA_KEY) contains one of the 
following (by default, the entire screen is occupied): 

FDC$DEFINED_AREA 

Indicates the location and size of the rectangle which the form 
occupies. It contains four fields: 

x_position 

The x position is determined relative to the top left corner 
of the screen. The first x position (type FDC$X_POSITION) 
is one. x increases by one, left to right, for each character. 
Allowable values are from 1 to 256. 

y_position 

The y position is determined relative to the top left corner 
of the screen. The first y position (type FDC$Y_POSITION) 
is one. y increases by one for each line of the screen from 
top to bottom. Allowable values are from 1 to 256. 

width 

The form width (type FDT$WIDTH) is represented as a 
number greater than or equal to one. 

height 

The form height (type FDT$HEIGHT) is represented as a 
number greater than or equal to one. 

FDC$SCREEN _AREA 

Uses the entire screen. The size of the screen (the number of 
columns and rows displayed) is determined by the number of 
lines the form contains and its widest line. 

Revision D Using CYBIL to Create Forms 7-53 



Basic Form Attributes 

form_ display_ attribute 

Specifies a set of display attributes for the form (type 
FDT$DISPLAY_ATTRIBUTE_SET). If you don't specify any 
attributes for an object on the form, the background and 
foreground attributes associated with this record are used. The 
default attributes are FDC$BLACK_BACKGROUND and 
FDC$WHITE_FOREGROUND. 

FDC$INVERSE_ VIDEO 
FDC$BLACK_BACKGROUND 
FDC$BLUE_BACKGROUND 
FDC$GREEN_BACKGROUND 
FDC$MAGENTA_BACKGROUND 
FDC$RED_BACKGROUND 
FDC$CYAN_BACKGROUND 
FDC$YELLOW_BACKGROUND 
FDC$WHITE_BACKGROUND 
FDC$BLACK_FOREGROUND 
FDC$BLUE_FOREGROUND 
FDC$GREEN_FOREGROUND 
FDC$MAGENTA_FOREGROUND 
FDC$RED_FOREGROUND 
FDC$CYAN_FOREGROUND 
FDC$YELLOW_FOREGROUND 
FDC$WHITE_FOREGROUND 
FDC$FINE_BORDER 
FDC$MEDIUM_BORDER 
FDC$BOLD_BORDER 

form_ help 

Specifies a variant record (type FDT$HELP _DEFINITION) for the 
help information available with the form. This information is 
provided when the user executes a help event on a form area that 
contains no object. Its KEY field (type FDT$HELP _KEY) contains 
one of the following: 

FDC$HELP _FORM 

The name of an application-defined help form (type 
OST$NAME). 

FDC$HELP _MESSAGE 

A pointer to a help message (type "FDT$HELP _MESSAGE). 

FDC$NO_HELP _RESPONSE 

Nothing happens when the user executes the help event. 

7-54 NOSNE Screen Formatting Revision D 



form_ language 

Currently unused. 

form_ name 

Basic Form Attributes 

Contains the form name used in the object library (type 
OST$NAME). You must specify this attribute if you want to save 
the form on an object library. 

form_processor 

Specifies the computer language of the program that uses the form 
(type FDT$FORM_PROCESSOR). You should specify the language 
before any variable, table, object, or event is created. The default 
processor is FDC$CYBIL_PROCESSOR. The values are the 
following: 

FDC$ANSI_FORTRAN _PROCESSOR. 
FDC$CDC_FORTRAN_PROCESSOR 
FDC$COBOL_PROCESSOR 
FDC$CYBIL_PROCESSOR 
FDC$PASCAL_PROCESSOR 
FDC$SCL_PROCESSOR 

message_form 

Specifies the name of the form designed for error messages (type 
OST$NAME). This form must be in an object library in the user's 
command list. 

unused_ form_ entry 

Indicates a null filler in the FDT$FORM_ATTRIBUTES array. 

validate_ variable_ values 

Specifies validation for initial values of variables on the form. 
Because this adds a significant amount of processing to the 
FDP$END_FORM procedure, you may want to include this only 
when you are debugging the form. Use TRUE to validate 
variables; otherwise, use FALSE. The default is FALSE. 

Revision D Using CYBIL to Create Forms 7.55 



Basic Form Attributes 

~ll Getting Basic Form Attributes 

The following attribute records return certain values of the form, such 
as its name or processor. These records are specified in an initialized 
array. Each record is of type FDT$GET_FORM_ATTRIBUTE, which 
is listed in Appendix F. 

Once established, this array is named on the GET_FORM_ 
ATTRIBUTES parameter in the call to the FDP$GET_FORM_ 
ATTRIBUTES procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

get_event_form 

Returns the event form definition. This record specifies a variant 
record (type FDT$EVENT_FORM_DEFINITION). Its KEY field 
(type FDT$EVENT_FORM_KEY) contains one of the following 
definitions: 

FDC$NO_EVENT_FORM 

An event form is not generated with the application functions. 

FDC$SYSTEM_DEFAULT_EVENT_FORM 

An event form is generated with the application functions. 

FDC$USER_EVENT_FORM 

The event form indicated by this record (type OST$NAME) is 
used. 

get_ event_form_ identifier 

Returns the form identifier of the event form (type FDT$FORM_ 
IDENTIFIER). This identifier can be used in requests to change 
the value or display attributes of an event label. 

get_form_area 

Returns the area occupied by the form (type FDT$FORM_AREA). 
This record specifies a variant record (type FDT$FORM_AREA). 
Its KEY field (type FDT$FORM_AREA_KEY) contains one of the 
following: 

7-56 NOSNE Screen Formatting Revision D 



Busic Form Attributes 

FDC$DEFINED_AREA 

Specifies the location and size of the rectangle which the form 
occupies. This record returns the following fields: 

x_position 

The x position is determined relative to the top left corner 
of the screen. The first x position (type FDC$X_POSITION) 
is one. 

y_position 

The y position is determined relative to the top left corner 
of the screen. The first y position (type FDC$Y_POSITION) 
is one. 

width 

The form width (type FDT$WIDTH) is represented as a 
number greater than or equal to one. 

height 

The form height (type FDT$HEIGHT) is represented as a 
number greater than or equal to one. 

FDC$SCREEN _AREA 

The entire terminal screen is used. 

get_form_display _attribute 

Returns the set of display attributes used by the form (type 
FDT$_DISPLAY_ATTRIBUTE_SET). For a list of the display 
attributes, refer to form_display_attribute earlier in this chapter. 

get_form_ help 

Contains a variant record which returns the help processing 
available for the form (type FDT$GET_HELP _DEFINITION). Its 
KEY field (type FDT$GET_HELP _KEY) contains one of: 

FDC$GET_HELP_FORM 

Returns the name of an application-defined help form (type 
OST$NAME). 

FDC$GET_HELP _MESSAGE 

Returns the length of the help message in characters (type 
FDT$HELP _MESSAGE_LENGTH). Use get_form_help_ 
message to return the help message. 

Revision D Using CYBIL to Create Forms 7-57 



Basic Form Attributes 

FDC$GET_NO_HELP _RESPONSE 

Specifies that Screen Formatting does nothing when the user 
executes the help event. 

get_ form_ help_ message 

Contains a pointer (type "FDT$HELP _MESSAGE) for Screen 
Formatting to return the help message displayed when the user 
executes the help event on an area of the form that does not 
contain an object. 

get_form_name 

Returns the form name that is used in the object library (type 
OST$NAME). The default is OSC$NULL_NAME. 

get_form_processor 

Returns the computer language of the program that uses the form 
(type FDT$FORM_PROCESSOR). The values are the following: 

FDC$ANSLFORTRAN _PROCESSOR 
FDC$CDC_FORTRAN_PROCESSOR 
FDC$COBOL_PROCESSOR 
FDC$CYBIL_PROCESSOR 
FDC$PASCAL_PROCESSOR 
FDC$SCL_PROCESSOR 

get_ next_ event 

Returns the next event in the list of events for a form. The first 
occurrence of this record returns the first event, the second returns 
the second, and so forth. The following events may be returned: 

event_ action 

Refer to the description of the event_action record under the 
add_event attribute earlier in this chapter (type FDT$EVENT_ 
ACTION). 

event_ name 

Returns the event name (type OST$NAME). 

event_ command_ length 

Currently unused. 

7-58 NOS/VE Screen Formatting Revision D 



Basic Form Attributes 

event_ trigger 

Refer to the description of the event_ trigger record under the 
add_event attribute earlier in this chapter (type FDT$EVENT_ 
TRIGGER). 

get_ next_ display 

Returns the next display definition, which allows a program to 
change the attributes of a form object. The first occurrence of this 
record returns the first display attribute, the second returns the 
second, and so forth. For a description of the fields and of the 
values returned, refer to add_display _definition earlier in this 
chapter. 

get_number _events 

Returns the number of records needed to get the events for the 
form (type FDT$NUMBER_EVENTS). 

get_ number _displays 

Returns the number of display attributes specified for a form (type 
FDT$NUMBER_OBJECT_DISPLAYS). For the set of display 
attributes, refer to the get_next_display record earlier in this 
section. 

get_ number _objects 

Returns the number of objects on the form (type FDT$NUMBER_ 
OBJECTS). 

get_ number_ tables 

Returns the number of tables on the form (type FDT$NUMBER_ 
TABLES). 

get_ number _variables 

Returns the number of form variable definitions created for a 
particular form (type FDT$NUMBER_ VARIABLES). Occurrences 
created by a table definition are not included. 

get_ unused_ form_ entry 

Indicates a null filler in the FDT$GET_FORM_ATTRIBUTES 
array. 

Revision D Using CYBIL to Create Forms 7-59 



Variable Attributes 

Variable Attributes 

The attributes in this section define form variables. 5 They are divided 
into two groups, those for creating and changing variables and those 
for returning the values of other variable attributes. 

Creating and Changing Variables 

Each attribute for creating or changing variables is specified as a 
value in a record in an initialized array. Each record is of type 
FDT$VARIABLE_ATTRIBUTE, which is listed in Appendix F. 

Once established, this array is named on the VARIABLE_ 
ATTRIBUTES parameter in the call to the FDP$CHANGE_ 
VARIABLE or FDP$CREATE_ VARIABLE procedure, described later in 
this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

add_ valid_ integer_ range, 

delete_ valid_ integer_ range 

Adds or deletes a range of integer values that are valid for the 
variable. The range must not overlap any existing integer ranges. 
To specify more than one range, you may use this record more 
than once. The range specified for delete_ valid_integer _range 
must correspond to the range that was specified by add_ valid_ 
integer _range. This record has two fields: 

maximum_ integer 

The maximum integer value for the variable (type integer). 

minimum_ integer 

The minimum integer value for the variable (type integer). 

add_ valid_ real_ range, 

delete_ valid_ real_ range 

Adds or deletes a range of real values that are valid for the 
variable. The range must not overlap any existing real ranges. To 
specify more than one range, you may use this record more than 

5. For more information on variables, refer to More About Forms, earlier in this 
chapter. 

7-60 NOSNE Screen Formatting Revision D 



Variable Attributes 

once. The range specified for delete_ valid_real_range must 
correspond to the range that was specified by add_ valid_reaL 
range. This record has two fields: 

maximum_ real 

The maximum real value for the variable (type real). 

minimum_ real 

The minimum real value for the variable (type real). 

add_ valid_ string, 

d_elete_ valid_ string 

Adds or deletes a string that is valid for the variable. To specify 
more than one string, you may use this record more than once. 
This record specifies a pointer (type "FDT$VALID_STRING) to a 
string of characters which the user may enter at the terminal. 
Comparison takes place according to the rules laid down by the 
string_compare_rules attribute, described later in this section. 

input_ format 

Specifies the data-entry format for the terminal. This is a variant 
record (type FDT$INPUT_FORMAT). Its KEY field (type 
FDT$INPUT_FORMAT_KEY) contains one of the following: 

FDC$CHARACTER_INPUT_FORMAT 

Allows any ASCII characters. This is the default value. 

FDC$ALPHABETIC_INPUT_FORMAT 

Allows alphabetic characters only (upper and lower case A 
through Z). 

FDC$DIGITS_INPUT_FORMAT 

Allows numeric characters only (0 through 9). 

FDC$REAL_INPUT_FORMAT 

Allows real numbers in the format of FORTRAN F, E, or G. 

FDC$SIGNED_INPUT_FORMAT 

Allows numeric characters with or without leading signs. 

Revision D Using CYBIL to Create Forms 7-61 



Variable Attributes 

FDC$CURRENCY_INPUT_FORMAT 

Allows numeric characters in a currency format, such as 
dollars-and-cents (type FDT$INPUT_ CURRENCY_ FORMAT). 
This record contains three fields, each as a one-character 
string: a currency symbol, a thousands separator, and a 
decimal point. The defaults are a dollar sign ($), a comma (,), 
and a period (.) respectively. 

io_mode 

Specifies the input and output transferring of variables (type 
FDT$IO_MODE). The following values are available: 

FDC$PROGRAM_INPUT_OUTPUT 

Programs save data from one application user interaction to 
another. The user does not see the entered variable. 

FDC$TERMIN AL_INPUT 

The user inputs data, which is blanked out as soon as possible. 

FDC$TERMINAL_INPUT_ OUTPUT 

The user inputs data, which remains visible. The program 
outputs data to this variable. This is the default value. 

FDC$TERMINAL_ OUTPUT 

The program outputs data to the terminal (the user cannot 
enter data). Any modification of the variable is corrected as 
soon as possible. 

new_variable_name 

Specifies another name for a variable (type OST$NAME). The form 
processor language rules must be obeyed. 

error_ display 

Specifies the attribute used for displaying an error when a 
variable does not pass validation. This record may contain one or 
more values from the following subset of the FDT$DISPLAY_ 
ATTRIBUTE_SET. The default value is FDC$INVERSE_ VIDEO. 

FDC$INVERSE_ VIDEO 
FDC$LOW _INTENSITY 
FDC$HIGH_INTENSITY 
FDC$BLINK 
FDC$UNDERLINE 
FDC$BLACK_FOREGROUND 
FDC$BLUE_FOREGROUND 

7-62 NOSNE Screen Formatting Revision D 



FDC$GREEN_FOREGROUND 
FDC$MAGENTA_FOREGROUND 
FDC$RED_FOREGROUND 
FDC$CYAN_FOREGROUND 
FDC$YELLOW_FOREGROUND 
FDC$WHITE_FOREGROUND 
FDC$BLACK_BACKGROUND 
FDC$BLUE_BACKGROUND 
FDC$GREEN_BACKGROUND 
FDC$MAGENTA_BACKGROUND 
FDC$RED_BACKGROUND 
FDC$CYAN_BACKGROUND 
FDC$YELLOW_BACKGROUND 
FDC$WHITE_BACKGROUND 
FDC$ITALIC_DISPLAY_ATTRIBUTE 
FDC$TITLE_DISPLAY_ATTRIBUTE 
FDC$INPUT_DISPLAY_ATTRIBUTE 
FDC$ERROR_DISPLAY_ATTRIBUTE 
FDC$MESSAGE_DISPLAY_ATTRIBUTE 

output_ format 

Variable Attributes 

Contains a variant record (type FDT$0UTPUT_FORMAT) 
specifying the output format and the length of the formatted 
output for a variable text object. 

Its KEY field (type FDT$0UTPUT_FORMAT_KEY) contains one 
of the following output formats: 

FDC$CHARACTER_OUTPUT_FORMAT 

The ASCII characters are output as is. This record specifies the 
character field width, which corresponds to the FORTRAN A 
descriptor. 

FDC$CURRENCY_OUTPUT_FORMAT 

Allows numeric characters in a currency format, such as 
dollars-and-cents (type FDT$0UTPUT_CURRENCY_FORMAT). 
This record contains six fields. The first three are one-character 
strings each: a currency symbol, a thousands separator, and a 
decimal point. The last three fields are the following: 

Revision D 

field_ width 

Specifies the length of the entry including punctuation (type 
FDT$TEXT_LENGTH). 

Using CYBIL to Create Forms 7-63 



Variable Attributes 

sign_ treatment 

Determines whether a sign is used (type FDT$SIGN _ 
TREATMENT and MLT$SIGN_TREATMENT). The 
following values are available: 

MLC$MINUS_IF _NEGATIVE 

If the number is negative, it is prefixed with a minus 
sign; if it is positive, no sign is used. 

MLC$ALWAYS_SIGNED 

If the number is negative, it is prefixed with a minus 
sign, if positive, a plus sign. 

suppress_ leading_ zeros 

Type boolean. If TRUE, zero currency values are displayed 
as blanks. 

FDC$E_E_OUTPUT_FORMAT, FDC$G_E_OUTPUT_ 
FORMAT 

These are the FORTRAN Ew.dEe and Gw.dEe formats (type 
FDT$EXPONENT_OUTPUT_FORMAT). This record contains 
the following fields: 

field_ width 

The FORTRAN w descriptor (type FDT$REAL_FIELD_ 
WIDTH). 

digits_ in_ exponent 

The FORTRAN e descriptor (type FDT$DIGITS_IN _ 
EXPONENT). 

digits_ right_ decimal 

The FORTRAN d descriptor (type FDT$DIGITS_RIGHT_ 
DECIMAL). 

sign_ treatment 

A value of MLC$MINUS_IF _NEGATIVE or 
MLC$ALWAYS_SIGNED (type FDT$SIGN _TREATMENT). 
These are described under FDC$CURRENCY_OUTPUT_ 
FORMAT, above. 

suppress_ zero 

A boolean value. If TRUE, a zero is displayed as spaces. 

7-64 NOSNE Screen Formatting Revision D 



Variable Attributes 

FDC$F _ OUTPUT_FORMAT, FDC$E_ OUTPUT_FORMAT, 
FDC$G_OUTPUT_FORMAT 

This record specifies the FORTRAN Fw.d, Ew.d, and Gw.d 
formats (type FDT$FLOAT_OUTPUT_FORMAT). It contains 
the following fields: 

digits_ right_ of_ decimal 

The FORTRAN d descriptor (type FDT$DIGITS_RIGHT_ 
DECIMAL). 

field_ width 

The FORTRAN w descriptor (type FDT$REAL_FIELD_ 
WIDTH). 

sign_ treatment 

A value of MLC$MINUS_IF_NEGATIVE or 
MLC$ALWAYS_SIGNED (type FDT$SIGN _TREATMENT). 

suppress_zero 

A boolean. If TRUE, a zero is displayed as spaces. 

FDC$INTEGER_ OUTPUT_FORMAT 

This record (type FDT$INTEGER_ OUTPUT_FORMAT) 
corresponds to the FORTRAN I format. It contains the 
following fields: 

Revision D 

field_ width 

The FORTRAN w descriptor (type FDT$INTEGER_FIELD_ 
WIDTH). 

minimum_ output_ digits 

The FORTRAN m descriptor (type FDT$MINIMUM_ 
OUTPUT_ DIGITS). 

sign_ treatment 

A value of MLC$MINUS_IF _NEGATIVE or 
MLC$ALWAYS_SIGNED (type FDT$SIGN _TREATMENT). 

Using CYBIL to Create Forms 7-65 



Variable Attributes 

program_ data_ type 

Specifies the program data type for the variable (type 
FDT$PROGRAM_DATA_ TYPE) using one of the following values: 

FDC$PROGRAM_CHARACTER_TYPE 

The characters entered by the user are passed to the program. 

FDC$PROGRAM_INTEGER_ TYPE 

The characters entered by the user are converted to an integer. 

FDC$PROGRAM_REAL_ TYPE 

The characters entered by the user are converted to a real 
type. 

FDC$PROGRAM_ UPPER_CASE_ TYPE 

The characters entered by the user are converted to uppercase 
before being transferred to the program. The characters 
transferred by the program to the form are also converted to 
uppercase. 

string_ compare_ rules 

Specifies how the terminal input is compared to valid strings 
specified for the variable. For information on establishing valid 
strings for a variable, refer to the add_ valid_string attribute 
ear lier in this section. Contains two fields: 

compare_in_ upper _case 

A boolean. If TRUE, the user's input is converted to upper case 
before the comparison is made with the valid strings. 
Otherwise, the user's input is not changed before the 
comparison is made. 

compare_ to_ unique_substring 

A boolean. If TRUE, the user may enter a unique substring for 
the value. The comparison starts at column 1. The complete 
strings are defined by the add_ valid_string record. The 
application program gets the entire string as specified by add_ 
valid_ string. 

7-66 NOSNE Screen Formatting Revision D 



Variable Attributes 

terminal_ user_ entry 

Specifies whether or not the user must make an entry (type 
FDT$TERMINAL_ USER_ENTRY). The following values are 
available: 

FDC$ENTRY_OPTIONAL 

An entry is not required. 

FDC$MUST_ENTER 

An entry is required. If the user makes the entry, deletes the 
form, and then redisplays the form, the entry will not have to 
be made again. To require the reentry of the value, use the 
FDP$RESET_FORM procedure in addition to FDC$MUST_ 
ENTER. 

FDC$MAY_ENTER_UNKNOWN 

Currently unused. 

FDC$MUST_FILL 

Currently unused. 

unused_ variable_ entry 

Indicates a null filler in the FDT$VARIABLE_ATTRIBUTES 
array. 

variable_error 

Contains a variant record (type FDT$ERROR_DEFINITION) 
specifying the error processing for the variable. Its KEY field (type 
FDT$ERROR_KEY) contains one of the following: 

FDC$ERROR_FORM 

The name of an application-defined form to be displayed (type 
OST$NAME). 

FDC$ERROR_MESSAGE 

A pointer to the message to be displayed (type "FDT$ERROR_ 
MESSAGE). 

FDC$NO_ERROR_RESPONSE 

Screen Formatting does not display an error form or message 
when the user enters invalid data. The application program 
must process the VARIABLE_STATUS parameter when getting 
variables. 

Revision D Using CYBIL to Create Forms 7-67 



Variable Attributes 

variable_ help 

Contains a variant record (type FDT$HELP _DEFINITION) 
specifying the help information provided when the user executes a 
help event with the cursor placed on the variable. Its KEY field 
(type FDT$HELP _KEY) contains one of the following: 

FDC$HELP _FORM 

The name of an application-defined form containing the help 
(type OST$NAME). 

FDC$HELP _MESSAGE 

A pointer to a help message (type "FDT$HELP _MESSAGE). 

FDC$NO_HELP_RESPONSE 

Screen Formatting does nothing when the user executes the 
help event. 

variable_ length 

Contains an input field that specifies the character length of the 
data area for a character variable (type FDT$VARIABLE_ 
LENGTH). If the length is not specified, the size of the screen text 
object for the variable is used. The user can execute scrolling 
commands to see all the data in the program variable. This 
attribute does not apply to real and integer data types. 

7-68 NOSNE Screen Formatting Revision D 



Variable Attributes 

Getting Variable Attributes 

The following attribute records return additional attributes of a form. 
These records are specified in an initialized array. Each record is of 
type FDT$GET_ VARIABLE_ATTRIBUTE, which is listed in Appendix 
F. 

Once established, this array is named on the GET_ VARIABLE_ 
ATTRIBUTES parameter in the call to the FDP$GET_ VARIABLE_ 
ATTRIBUTES procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

get_error _display 

Returns the display attribute(s) used when the variable does not 
pass validation (type FDT$DISPLAY_ATTRIBUTE_SET). For a list 
of the attributes, refer to the error _display attribute earlier in 
this chapter under Creating and Changing Variables. 

get_ input_format 

Contains a variable record (type FDT$INPUT_FORMAT). that 
returns the type of data the user can enter. For a list of the 
types, refer to the input_format attribute earlier in this chapter 
under Creating and Changing Variables. 

get_io_mode 

Returns the input and output transfers done for the variable (type 
FDT$IO_MODE). For a description of the values, refer the io_ 
mode attribute earlier in this chapter under Creating and 
Changing Variables. 

get_ next_ valid_ real_ range 

Returns the next range of real values that are valid for the 
variable. To return more than one range, you can use this record 
more than once. The first record returns the first range, the 
second record returns the second range, and so on. 

This record contains two fields: 

minimum_ real 

The minimum real valid value for the variable (type real). 

maximum_ real 

The maximum real valid value for the variable (type real). 

Revision D Using CYBIL to Create Forms 7-69 



Variable Attributes 

get_ next_ valid_string 

Returns to the pointer the next string of characters valid for the 
variable (type "FDT$VALID_STRING). These are the characters 
the user can enter. To return more than one string, you can use 
this record more than once. The first record returns the first 
string, the second record returns the second string, and so on. 

get_ number_ valid_ integers 

Returns the number of valid integer ranges (type FDT$NUMBER_ 
VALID_INTEGERS). You then allocate an array of attributes to 
get the valid integer ranges and use the get_ valid_ integer _range 
attribute to return them. 

get_ number_ valid_ reals 

Returns the number of valid real ranges (type FDT$NUMBER_ 
VALID_REALS). You then allocate an array of attributes to get 
the valid real ranges and use the get_next_ valid_real_range 
attribute to return them. 

get_ number _valid_strings 

Returns the number of valid strings (type FDT$NUMBER_ 
VALID_STRINGS). You then allocate an array of attributes to get 
the lengths of the valid strings and use the get_next_ valid_string 
attribute to return them. 

get_output_format 

Returns the output format (type FDT$0UTPUT_FORMAT). For a 
description of this record, refer to the output_format attribute 
earlier in this chapter under Creating and Changing Variables. 

get_program_ data_ type 

Returns the data type the program uses for manipulation (type 
FDT$PROGRAM_DATA_ TYPE). For a description of this record, 
refer to the description of the program_ data_ type attribute earlier 
in this chapter under Creating and Changing Variables. 

get_string_compare_rules 

Returns the values that specify how the terminal input is 
compared to valid strings specified for the variable. Contains the 
fields compare_ in_ upper _case and compare_ to_ unique_substring. 
For a description of these fields, refer to the string_compare_rules 
attribute earlier in this chapter under Creating and Changing 
Variables. 

7-70 NOSNE Screen Formatting Revision D 



Variable Attributes 

get_ unused_ variable_entry 

Indicates a null filler in the FDT$GET_ VARIABLE_ATTRIBUTES 
array. 

get_ valid_ integer_ range 

Returns the next range of integer values that are valid for the 
variable. To return more than one range, you may use this record 
more than once. The first record returns the first range, the 
second record returns the second range, and so forth. 

This record contains two fields: 

minimum_ integer 

The minimum integer value valid for the variable (type 
integer). 

maximum_ integer 

The maximum integer value valid for the variable (type 
integer). 

get_ valid_ string_ length 

Returns the length of a string for valid string validation (type 
FDT$VALID_STRING_LENGTH). To return more than one string 
length, you can use this record more than once. The first record 
returns the first valid string length, the second record returns the 
second length, and so forth. 

get_var _error _message 

Contains an input field that returns the message displayed in the 
message form when the data entered by the user does not pass 
validation (type "FDT$ERROR_MESSAGE). The error message is 
returned to the string specified by this pointer. 

get_var _help_ message 

Contains an input field that returns the message displayed in the 
message form when the user executes the help event on this 
variable (type "FDT$HELP_MESSAGE). The help message is 
returned to the string specified by this pointer. 

get_ variable_ error 

Contains a variant record that returns information about error 
processing for the variable (type FDT$GET_ERROR_ 
DEFINITION). Its KEY field (type FDT$GET_ERROR_KEY) 
contains one of the following: 

Revision D Using CYBIL to Create Forms 7-71 



Variable Attributes 

FDC$GET_ERROR_FORM 

The name of the error form (type OST$NAME). 

FDC$GET_ERROR_MESSAGE 

The length of the error message in characters (type 
FDT$ERROR_MESSAGE_LENGTH). You then allocate a 
string of this length and use the FDP$GET_ VARIABLE_ 
ATTRIBUTES procedure with the get_ var _error _message 
record to obtain the message. 

FDC$GET_NO_ERROR_RESPONSE 

Screen Formatting does not display an error form or message 
when the user enters invalid data. 

get_ variable_ help 

Contains a variant record that returns information about help 
processing for the variable (type FDT$GET_HELP _DEFINITION). 
This processing applies when the user executes the help event with 
the cursor placed on the variable. Its KEY field (type FDT$GET_ 
HELP _KEY) contains one of the following: 

FDC$GET_HELP_FORM 

The name of the help form (type OST$NAME). 

FDC$GET_HELP _MESSAGE 

The length of the help message in characters (type 
FDT$HELP_MESSAGE_LENGTH). You then allocate a string 
of this length and use the FDP$GET_ VARIABLE_ 
ATTRIBUTES procedure with the get_ var _help_ message 
attribute to obtain the message. 

FDC$GET_NO_HELP _RESPONSE 

Screen Formatting does not display a help form or message. 

get_ variable_ length 

Returns the character length of the program data area for the 
variable (type FDT$VARIABLE_LENGTH). 

7-72 NOSNE Screen Formatting Revision D 



Table Attributes 

Table Attributes 

The attributes in this section describe the tables containing variables. 
These attributes are divided into two groups, those for creating and 
changing tables and those for returning the values of other table 
attributes. 

Creating and Changing Tables 

Each attribute for creating or changing tables is specified as a value 
in a record in an initialized array. Each record is of type 
FDT$TABLE_ATTRIBUTE, which is listed in Appendix F. 

Once· established, this array is named on the TABLE_ATTRIBUTES 
parameter in the call to the FDP$CHANGE_ TABLE or 
FDP$CREATE_ TABLE procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. !ti 

add_ table_ variable, 

delete_ table_ variable 

Associates a variable with a table or deletes one from a table 
(type OST$NAME). 

For add_ table_ variable, the following rules apply: 

• · The variable name can already have been created when this 
attribute is specified. 

• The variable name must exist when the form definition ends, 
hut must not currently exist in the list of variable names 
associated with the table. 

• The name must obey the rules for names given by the form 
processor. 

• A variable cannot be associated with more than one table. 

For delete_ table_ variable, any variable definition created by the 
FDP$CREATE_ VARIABLE procedure is not deleted. 

Revision D Using CYBIL to Create Forms 7-73 



Table Attributes 

new_table_ name 

Specifies a new name for the table (type OST$NAME). The name 
must follow the rules for names given by the form processor 
language. The new name must be unique. 

stored_ occurrence 

Specifies the maximum number of stored occurrences allowed in 
the table (type FDT$0CCURRENCE). The value must be greater 
than or equal to the value for the visible_occurrence attribute, 
described below. The default value is 1. (You can create stored 
objects using FDP$CREATE_STORED_OBJECT.) 

unused_ table_ entry 

Indicates a null filler in the FDT$TABLE_ATTRIBUTES array. 

visible_ occurrence 

Specifies the number of occurrences in the table that are visible to 
the user (type FDT$0CCURRENCE). You must create a visible 
object that is variable text for each occurrence on the form 
(FDP$CREATE_ OBJECT). 

This attribute is optional. The default is the current value of the 
stored_occurrence attribute (described above). 

7-74 NOSNE Screen Formatting Revision D 



Table Attributes 

Getting Table Attributes 

The following records return the values of other table attributes. 
These records are specified in an initialized array. Each record is of 
type FDT$GET_TABLE_ATTRIBUTE, which is listed in Appendix F. 

Once established, this array is named on the GET_ TABLE_ 
ATTRIBUTES parameter in the call to the FDP$GET_ TABLE_ 
ATTRIBUTES procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

get_ next_ table_ variable 

Returns the next variable associated with the table (type 
OST$NAME). To return more than one variable, you can use this 
record more than once. The first record in the array returns the 
first variable, the second returns the second variable, etc. 

get_ number_ table_ variables 

Returns the number of variables in the table (type 
FDT$NUMBER_ TABLE_ VARIABLES). You can use this record to 
allocate an array and then use the get_next_ table_ variable 
attribute to return the variables. 

get_ stored_ occurrence 

Returns the number of stored occurrences in the table (type 
FDT$0CCURRENCE). 

get_ unused_ table_ entry 

Indicates a null filler in the FDT$GET_ TABLE_ATTRIBUTES 
array. 

get_ visible_ occurrence 

Returns the number of occurrences in the table that are visible to 
the user (type FDT$0CCURRENCE). 

Revision D Using CYBIL to Create Forms 7-75 



Form Definition Record Attributes 

Form Definition Record Attributes 

The attributes in this section are in two groups, those for creating 
and changing form definition records and those for getting other form 
definition record attributes. 

Changing Record Attributes 

Each attribute for creating or changing form definition records is 
specified as a value in a record in an initialized array. Each record is 
of type FDT$RECORD _ATTRIBUTE, which is listed in Appendix F. 

Once established, this array is named on the RECORD _ATTRIBUTES 
parameter in the call to the FDP$CHANGE_FORM_RECORD 
procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
~[[ permitted values for each. The attribute record names are in italics. 

record_ deck_ name 

Specifies the Source Code Utility deck name for the form definition 
record (type OST$NAME). If you don't specify this name, the form 
name is used. 

record_ name 

Specifies the name of the record (type OST$NAME). This is the 
form definition record name. In COBOL, the name is a COBOL 
01-level data name; in Pascal, SCL, and CYBIL, it is a record type 
name; in FORTRAN, it is name defined in a CHARACTER 
statement that specifies the storage for the form. 

If you don't specify this name, the deck name is used. 

unused_ table_entry 

Indicates a null filler in the FDT$RECORD_ATTRIBUTES array. 

7-76 NOSNE Screen Formatting Revision D 



Form Definition Record Attributes 

Getting Record Attributes 

The following records return the values of other record attributes. 
These records are specified in an initialized array. Each record is of 
type FDT$GET_RECORD_ATTRIBUTE, which is listed in Appendix 
F. 

Once established, this array is named on the GET_RECORD_ 
ATTRIBUTES parameter in the call to the FDP$GET_RECORD_ 
ATTRIBUTES procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

get_ record_ dech_ name 

Returns the name of the deck for the Source Code Utility (type 
OST$NAME). 

get_ record_ length 

Returns the length of the record in cells (type FDT$RECORD_ 
LENGTH). 

get_ record_ name 

Returns the record name (type OST$NAME). 

get_ unused_ record_ entry 

Indicates a null filler in the FDT$GET_RECORD_ATTRIBUTES 
array. 

Revision D Using CYBIL to Create Forms 7-77 



Object Attributes 

0 bject Attributes 

This section describes the attributes for form objects. 6 Objects can be 
either text or graphics. These attributes are in two groups, those for 
creating and changing objects and those for returning the values of 
other object attributes. 

Creating and Changing Objects 

Each attribute for creating or changing an object is specified as a 
value in a record in an initialized array. Each record is of type 
FDT$0BJECT_ATTRIBUTE, which is listed in Appendix F. 

Once established, this array is named on the OBJECT_ATTRIBUTES 
parameter in the call to the FDP$CHANGE_OBJECT or 
FDP$CREATE_OBJECT procedure, described later in this chapter. 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

object_ display 

Specifies a set of display attributes for the object (type 
FDT$DISPLAY_ATTRIBUTE_SET). When the object is displayed, 
this attribute is used. For a list of these attributes, refer to the 
add_display _definition attribute under Basic Form Attributes 
earlier in this chapter. 

object_ height 

Specifies the height of the object (type FDT$HEIGHT). 

object_line_x_ increment 

Specifies the new x increment by changing the x increment from 
the line origin to the line destination (type FDT$X_INCREMENT). 

object_ line_y _increment 

Specifies the new y increment by changing the y increment from 
the line origin to the line destination (type FDT$Y_INCREMENT). 

6. For more information on objects, refer to chapter 1. 

7-78 NOSNE Screen Formatting Revision D 



Object Attributes 

object_ name 

Specifies a name for the object. The object name must follow the 
conventions of the form processor. Use the object name to associate 
an object on the form with a variable definition. This record 
contains two fields: 

object_ name 

The name of the object (type OST$NAME). 

occurrence 

The occurrence of the name (type FDT$0CCURRENCE). 

object_position 

Specifies a new position for the object, with the following two 
fields: 

x_position 

The new x position (type FDT$X_POSITION). 

y_position 

The new y position (type FDT$Y_POSITION). 

object_ text 

Changes the text associated with an object or a constant text box 
object. Specifies a pointer to the new text (type "FDT$TEXT). 

Revision D Using CYBIL to Create Forms 7-79 



Object Attributes 

object_ text_processing 

Changes the text processing for a text box object (type 
FDT$TEXT_BOX_PROCESSING). Contains the following values: 

FDC$CENTER_CHARACTERS 

Currently unused. 

FDC$WRAP_CHARACTERS 

Wraps data that extends past the left boundary of the box onto 
the next line, character-by-character. 

FDC$WRAP _WORDS 

Wraps data at the left boundary of the box onto the next line, 
word-by-word. A space indicates the end of a word. 

object_ width 

Specifies the width of the object (type FDT$WIDTH). 

unused_ object_ entry 

Indicates a null filler in the FDT$0BJECT_ATTRIBUTES array. 

7-80 NOSNE Screen Formatting Revision D 



Object Attributes 

Getting Object Attributes 

The following records return the values of other object attributes. 
These records are specified in an initialized array. Each record is of 
type FDT$GET_OBJECT_ATTRIBUTE, which is listed in Appendix F. 

Once established, this array is named on the OBJECT_ATTRIBUTES 
parameter in the call to the FDP$GET_OBJECT_ATTRIBUTES 
procedure, described later in this chapter. m 

The following are the attribute records, their descriptions, and the 
permitted values for each. The attribute record names are in italics. 

get_ object_ definition 

Returns the object definition. This is a variant record (type 
aDT$GET_OBJECT_DEFINITION). Its KEY field (type 
FDT$0BJECT_DEFINITION _KEY) can contain one of the 
following values. (For each of these values, additional fields 
describe each object.) 

FDC$BOX 

Describes the box with two fields: 

box_ width 

The character width (1 .. FDC$MAXIMUM_X_POSITION) 
of the box (type FDT$WIDTH). 

box_ height 

The character height (1 .. FDC$MAXIMUM_ Y_POSITION) 
of the box (type FDT$HEIGHT). 

FDC$LINE 

Describes the line with two fields: 

Revision D 

x_increment 

The number of characters needed to increment the x line 
origin position given in the request to determine the end 
point of the line (type FDT$X_INCREMENT). 

y _increment 

The number of characters needed to increment the y line 
origin position given in the request to determine the end 
point of the line (type FDT$Y_INCREMENT). 

Using CYBIL to Create Forms 7-81 



Object Attributes 

FDC$CONSTANT_TEXT 

Displays constant text on the form. Contains two fields: 

constant_ text_ width 

The width of the constant text in characters on the screen 
(type FDT$WIDTH). 

constant_ text_ length 

The length of the text in characters (type FDT$TEXT_ 
LENGTH). Use the get_object_text attribute to obtain the 
text. The text length indicates how much space is needed to 
hold the text. 

FDC$CONSTANT_TEXT_BOX 

Describes a constant text box on the form. The text can occupy 
several lines. Contains four fields: 

constant_ box_ height 

The height of the text area in characters (type 
FDT$HEIGHT). 

constant_ box_ processing 

Type FDT$TEXT_BOX_PROCESSING. Refer to object_ 
text_processing under Creating and Changing Objects. 

constant_ box_ width 

The width of the text area in characters (type 
FDT$WIDTH). 

constant_ box_ text_ length 

The number of characters of text created for the text box 
(type FDT$TEXT_LENGTH). Allocate the amount of space 
needed for the text using the text length, then use the get_ 
object_ text attribute. 

FDC$TABLE 

Currently unused. 

7-82 NOSNE Screen Formatting Revision D 



Object Attributes 

FDC$VARIABLE_ TEXT_BOX 

Describes a variable text box on the form. The text can occupy 
more than one line. Contains four fields: 

variable_ box_height 

The height of the text area in characters (type 
FDT$HEIGHT). 

variable_ box_processing 

Type FDT$TEXT_BOX_PROCESSING. Refer to object_ 
text_processing under Creating and Changing Objects. 

variable_ box_ text_ length 

The number of characters of text created for the text box 
(type FDT$TEXT_LENGTH). Allocate the amount of space 
needed for the text using the text length, then use the get_ 
object_ text attribute. 

variable_ box_ width 

The width of the text area in characters (type 
FDT$WIDTH). 

FDC$VARIABLE_ TEXT 

Describes a variable text object on the form. Contains two 
fields: 

variable_ text_ length 

The number of characters of text created for the variable 
text (type FDT$TEXT_LENGTH). Allocate the amount of 
space needed for the text using the text length, then use 
the get_ object_ text attribute. 

variable_ text_ width 

The visible form width of the text area in characters (type 
FDT$WIDTH). 

get_ object_ display 

Returns the display attribute for the object (type FDT$DISPLAY_ 
ATTRIBUTE_SET). For a list of these attributes, refer to the 
add_display _definition attribute under Basic Form Attributes 
earlier in this chapter. 

Revision D Using CYBIL to Create Forms 7-83 



I 

Object Attributes 

get_ object_ name 

Returns the name for the object. For a description of this 
attribute, refer to object_name under Creating and Changing 
Objects. 

get_ object_ text 

Returns the object text to the specified pointer (type "FDT$TEXT). 

get_ object_ text_ length 

Returns the character length of the text (type FDT$TEXT_ 
LENGTH). 

get_ unused_ object_ entry 

Indicates a null filler in the FDT$GET_ OBJECT_ATTRIBUTES 
array. 

7-84 NOSNE Screen Formatting Revision D 



CYBIL Screen Formatting Procedures 

CYBJIL 8crt·een"1 l~orrmaltth1g 1Proceclt"TI.L.,.es 

Use the following CYBIL procedure calls when creating forms within 
a CYBIL program. 

Revision D Using CYBIL to Create Forms 7-85 



Changing a Form 

Changing a Form 

Purpose FDP$CHANGE_FORM procedure changes the attributes 
that apply to the entire form. 

Format FDP$CHANGE_FORM (form_identifier, form_ 
attributes, status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

form _attributes: VAR { input-output } of fdt$form_ 
attributes; 

An array containing form attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_ opened_form 
fde$display _name_exists 
fde$event_name_exists 
fde$invalid_display _name 
fde$invalid_ event_name 
fde$invalid_form_area_key 
fde$invalid_ form_ identifier 
fde$invalid_form_ language 
fde$invalid_form_name 
fde$no_comments_ to_delete 
fde$no_space_available 
fde$system_ error 
fde$unknown_display _name 
fde$unknown_ event_name 

7-86 NOS/VE Screen Formatting Revision D 



Changing the Form Definition Record 

Changing the Form Definition Record 

Purpose FDP$CHANGE_FORM_RECORD procedure changes the 
form definition record used to transfer data from the 
program to Screen Formatting, and from Screen 
Formatting to the program. 

Format FDP$CHANGE_FORM_RECORD (form_identifier, 
record_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

record_attributes: VAR { input-output } of fdt$record_ 
attributes; 

An array containing record attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ deck_name 
fde$invalid_ record_ name 
fde$invalid_ table_name 

Revision D Using CYBIL to Create Forms 7-87 



Changing an Object 

Changing an Object 

Purpose FDP$CHANGE_OBJECT procedure changes the object 
attributes. 

Format FDP$CHANGE_OBJECT (form_identifier, x_position, 
y _position, object_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

:rr_position: fdt$x_position; 

The x position of the object relative to the form. 

y _position: fdt$y _position; 

The y position of the object relative to the form. 

object_attributes: VAR { input-output } of fdt$object_ 
attributes; 

An array of object attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_ opened_form 
f de$invalid_form_ identifier 
f de$invalid_ object_ change 
fde$invalid_ object_name 
fde$no_object_at_position 
fde$no_ space_ available 
f de$no _string_ specified 
fde$object_ occurrence_ exists 
fde$system_ error 
fde$unknown_object_ name 

7-88 NOSNE Screen Formatting Revision D 



Changing a Stored Object 

Changing a Stored Object 

Purpose FDP$CHANGE_STORED_OBJECT procedure changes the 
initial value for .the occurrence of a table variable that 
does not initially appear on a form. 

Format FDP$CHANGE_STORED_OBJECT (forrn_identifier, 
name, occurrence, text, display _attribute_set, status) 

Parameters forrn_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

te:::rt: fdt$text; 

The text indicating the initial value. 

din play_ attribute_ set: fdt$display _attribute_ set; 

The set of attributes that describe how to display the 
object. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_ data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_object_name 
fde$invalid_ occurrence 
fde$no_ space_ available 
fde$no _string_ specified 
fde$system_ error 
fde$unknown_ object_name 

Remarks The user can see stored occurrences by executing paging 
or scrolling events. 

Revision D Using CYBIL to Create Forms 7-89 



Changing a Table 

Changing a Table 

Purpose FDP$CHANGE_ TABLE procedure changes the attributes 
of a table. 

Format FDP$CHANGE_ TABLE (form_identifier, table_name, 
table_ attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

table_name: ost$name; 

The name of the table. 

table_nttributes: VAR { input-output } of fdt$table_ 
attributes; 

An array containing table attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ change_form 
f de$invalid_ form_ identifier 
fde$invalid_ occurrence 
fde$invalid_ table_name 
fde$invalid_ variable_name 
fde$no_ space_a vailable 
fde$system_ error 
fde$table_name_ exists 
fde$unknown_ table _name 
fde$unknown_ variable_ name 

7-90 NOSNE Screen Formatting Revision D 



Changing a Variable 

Changing a Variable 

Purpose FDP$CHANGE_ VARIABLE procedure changes the 
variable attributes. 

Format FDP$CHANGE_ VARIABLE (form_identifier, 
variable_name, variable_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

variable_ name: ost$name; 

The variable name. 

vmiuble_attributen: VAR { input-output } of 
fdt$variable_attributes; · 

An array containing variable attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$variable_ name_ exists 
fde$valid_ string_ exists 
fde$unknown_ variable_name 
fde$unknown_ valid_ string 
fde$unknown_real_range 
fde$unknown_integer _range 
fde$system_ error 
fde$range_overlap 
fde$no _string_ specified 
fde$no _space_ available 
fde$no_comments_ to_delete 
fde$invalid_ variable_name 
fde$in valid_ real_ range 
fde$invalid_integer _range 
fde$invalid_form_ name 
fde$invalid_form_identifier 
fde$cannot_ update_opened_form 
fde$bad_data_ value 

Revision D Using CYBIL to Create Forms 7-91 



Converting to Program Variable 

Converting to Program Variable 

Purpose FDP$CONVERT_TO_PROGRAM_ VARIABLE procedure 
converts data entered by an application user to program 
data. 

Format FDP$CONVERT _TO _PROGRAM_ VARIABLE 
(program_data_type, p_program_ variable, program_ 
variable_length, input_format, p_screen_ variable, 
screen_ variable_length, variable_status, status) 

Parameters program_ data_ type: fdt$program_data_ type; 

The variable definition of the data type the program uses 
to manipulate the variable. 

p_program_ variable: "cell; 

A pointer to the first cell to receive the converted data 
for the program variable. 

program_ variable_length: fdt$program_ variable_ 
length; 

Length of the program variable in cells. 

input_format: fdt$input_format; 

The variable definition for the application user's input 
format. 

p_screen_ variable: "fdt$text; 

A pointer to the string that contains the characters 
entered by the application user to be converted. 

screen_ variable_length: fdt$text_length; 

Length of the string containing the user's characters. 

variable_status: VAR of fdt$variable status; 

An ordinal value that gives you the status of the variable. 

FDC$1NVALID_BDP _DATA 

The screen variable contains characters that can not 
be converted to the program data type. 

FDC$LOSS_ OF_ SIGNIFICANCE 

The screen variable is too large to fit in the program 
variable. 

7-92 NOSNE Screen Formatting Revision D 



Converting to Program Variable 

FDC$NO_ERROR 

No error occurred on the conversion. 

FDC$0VERFLOW 

The screen variable when converted to the program 
variable is infinite or indefinite. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision D Using CYBIL to Create Forms 7-93 



Converting to Screen V nrinble 

Converting to Screen Variable 

Purpose FDP$CONVERT_ TO_SCREEN _VARIABLE procedure 
converts program data to characters for screen display. 

Format FDP$CONVERT _TO_ SCREEN_ VARIABLE 
(program_ data_ type, p _program_ variable, program_ 
variable_length, output_format, p_screen_ variable, 
screen_ variable_ length, variable_ status, status) 

Parameters program_data_type: fdt$program_data_type; 

The variable definition of the data type the program uses 
to manipulate the variable. 

p _program_ variable: "cell; 

A pointer to the first cell of the program variable to be 
converted to the screen variable. 

program_ variable_ length: fdt$program_ variable_ 
length; 

Length of the program variable in cells. 

output_format: fdt$output_format; 

The variable definition for the screen output format. 

p_ocreen_ variable: "fdt$text; 

A pointer to the string to receive the characters converted 
from the program variable. 

ncreen _variable _length: fdt$text_length; 

Length of the string displayed at the user's screen. 

variable_status: VAR of fdt$variable status; 

An ordinal value that gives you the status of the variable. 

FDC$BAD_PARAMETERS 

The output format is not correct. 

FDC$INDEFINITE 

The program variable contains an indefinite number. 

FDC$INVALID_BDP _DATA 

The program variable contains characters used for 
terminal control. 

7-94 NOSNE Screen Formatting Revision D 



Converting to Screen Variable 

FDC$LOSS_ OF_ SIGNIFICANCE 

The program variable is too large to display in the 
area specified for screen display. 

FDC$NO_ERROR 

No error occurred on the conversion. 

stntun: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 

Revision D Using CYBIL to Create Forms 7-95 



Copying an Area 

Copying an Area 

Purpose FDP$COPY_AREA procedure copies all objects and 
unprotected text from one area to another on a form. 

Format FDP$COPY_AREA (form_identifier, form_x_position, 
form_y _position, width, height, to_x_postion, to_y _ 
position, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

form_x_position: fdt$x_position; 

The form x position of the area that encloses the data to 
be copied. The origin of the area is the upper left corner, 
relative to the form. 

form_y _position: fdt$y _position; 

The form y position of the area that encloses the data to 
be copied. The origin of the area is the upper left corner, 
relative to the form. 

height: fdt$height; 

The height of the area to be copied. 

'vidth: fdt$width; 

The width of the area to be copied. 

to_:rr_position: fdt$x_position; 

The x position of the destination area upper left corner, 
relative to the form. 

to_y _ponition: fdt$y_position; 

The y position of the destination area upper left corner, 
relative to the form. 

statm:;: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

7-96 NOSNE Screen Formatting Revision D 



Copying an Area 

Conditions fde$area_cuts_object 
fde$bad_data_ value 
fde$copy _outside_form 
fde$invalid_form_identifier 
fde$no_ space_available 
fde$object_over lays 
fde$system_ error 

Remarks • A design form has objects (protected text, line 

Revision D 

drawings) and unprotected text. 

• A target form contains only objects. The area to be 
copied must not slice any objects. The destination area 
must not contain any objects. Object names and 
occurrence attributes are not copied. 

Using CYBIL to Create Forms 7-97 



Copying n Form 

Copying a Form 

Purpose FDP$COPY_FORM procedure copies a form and assigns a 
new form identifier to the copied form. 

Format FDP$COPY_FORM (from_form_identifier, to_form_ 
identifier, status) 

Parameters from_ form _id en tifi.er: fdt$form_identifier; 

The form identifier established when the form was opened. 

to_form_identifier: VAR of fdt$form_identifier; 

The new form identifier that Screen Formatting assigns to 
the copied form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
f de$in valid_ form_ identifier 
f de$no _space_ available 
fde$system_ error 

Remarks To modify a copied form, you must issue an FDP$EDIT_ 
FORM procedure. 

7-98 NOSNE Screen Formatting Revision D 



Creating Constant Text 

Creating Constant Text 

Purpose FDP$CREATE_CONSTANT_ TEXT procedure creates 
constant text objects for a target form using the 
unprotected text on the design form. These objects have 
the background and foreground attributes of the target 
form. 

Format FDP$CREATE _CONSTANT_ TEXT (design _form_ 
identifier, target_form_identifier, status) 

Parameters design_ form _identifier: fdt$form_identifier; 

The form identifier of a design form that Screen 
Formatting uses to create constant text objects. 

target_form_identifier: fdt$form_identifier; 

The form identifier of a target form where Screen 
Formatting stores the constant text objects. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$in valid_ form_ identifier 
fde$no_space_available 
fde$system_ error 

Revision D Using CYBIL to Create Forms 7-99 



Creating n Design Form 

Creating a Design Form 

Purpose FDP$CREATE_DESIGN_FORM procedure creates a form 
for designing other forms interactively. 

Format FDP$CREATE_DESIGN _FORM (form_identifier, 
form_attributes, status) 

Parameters form_identifier: VAR of fdt$form_identifier; 

The form identifier established when the form was opened. 

form_attributes: VAR { input-output } of fdt$form_ 
attributes; 

An array containing attributes that apply to the entire 
form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$display _name_exists 
fde$event_name_exists 
fde$invalid_display _name 
fde$invalid_ event_name 
fde$invalid_form_area_key 
fde$invalid_form_identifier 
fde$invalid_form_ language 
f de$invalid_form_name 
fde$no_comments_ to_delete 
fde$no_ space_available 
fde$system_ error 
f de$terminal_ disconnected 
fde$unknown_ display_ name 
fde$unknown_ event_name 

Remarks • It is not necessary to execute an FDP$END_FORM 
procedure to indicate the end of the definition. You 
open the design form with the FDP$0PEN _FORM 
procedure and can then execute other procedures, such 
as FDP$ADD_FORM and FDP$READ_FORM. 

7-100 NOSNE Screen Formatting Revision D 



Revision D 

Creating a Design Form 

• A table and a variable are created for the design form 
so the FDP$GET_STRING_ VARIABLE and 
FDP$REPLACE_STRING_ VARIABLE procedures can 
access text on the form. The variable character field 
width is the form width. Refer to Defining Attributes 
for a Form in this chapter to read about the attribute 
FDC$DESIGN_ VARIABLE_NAME. 

• The table has as many occurrences as the height of 
the form. On the design form, you can create constant 
objects and line drawing objects, but no variable 
objects. 

Using CYBIL to Create Forms 7-101 



Creating Design Text 

Creating Design Text 

Purpose FDP$CREATE_DESIGN _TEXT procedure creates objects 
and unprotected text on the design form from objects 
defined on the target form. 

Format FDP$CREATE_DESIGN_TEXT (target_form_ 
identifier, design_form_identifier, status) 

Parameters target_ form_ identifier: fdt$form_ identifier; 

The target form identifier to use as the source of the text 
for the design form. 

design _form_identifier: fdt$form_identifier; 

The form identifier of the design form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_change_form 
fde$invalid_ design_form 
fde$invalid_form_identifier 
fde$no_space_available 
fde$system_ error 

Remarks The constant text objects on the target form (except for 
ones with the same color attributes as the target form) 
are created as objects on the design form. Constant text 
objects on the target form with the same color attributes 
as the target form and without names become free text on 
the design form. 

7 -102 NOSNE Screen Formatting Revision D 



Creating a Form 

Creating a Form 

Purpose FDP$CREATE_FORM procedure creates a form. 

Format FDP$CREATE_FORM (form_identifier, form_ 
attributes, status) 

Parameters form_identifier: VAR of fdt$form_identifier; 

The form identifier established when the form was opened. 

form_attributeB: VAR { input-output } of fdt$form_ 
attributes; 

An array containing attributes that apply to the entire 
form. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$display _name_exists 
fde$event_name_exists 
fde$invalid_display _name 
fde$invalid_ event_name 
fde$invalid_form_area_key 
fde$invalid_form_ identifier 
fde$invalid_form_ language 
fde$invalid_form_name 
fde$no_comments_ to_delete 
fde$no_space_available 
fde$system_ error 
fde$unknown_display _name 
fde$unknown_event_name 

Remarks After creating a form, you must issue an FDP$END_ 
FORM procedure to end it. 

Revision D Using CYBIL to Create Forms 7-103 



Creating nn Event Form 

Creating an Event Form 

Purpose FDP$CREATE_EVENT_FORM procedure creates a form 
to display events. 

Format FDP$CREATE_EVENT_FORM (event_menus, form_ 
attributes, form_identifier, status) 

Parameters event_menus: array [1 .. *]; 

An array of fdt$event_menu records. This record contains 
three fields: 

event_ label 

The initial variable value on the form for the variable 
event_ name. 

event_ name 

The event name the application program uses to 
recognize the event. Also the variable name an 
application program can use to change the display 
attribute or event label value. 

event_ trigger 

The event trigger on the terminal that causes the 
event. 

form_attributes: VAR { input-output } of fdt$form_ 
attibutes; 

An array containing attributes that apply to the entire 
form. Screen Formatting calculates the form size based on 
the number of application event triggers given in the 
event_ menus. Screen Formatting calculates the form 
location based on the form size and home cursor position 
of the terminal. 

If the home cursor position is on the first line of the 
terminal screen, the event form occupies the last line of 
the terminal. If the home cursor position is on the last 
line of the terminal, then the event form occupies the 
next to the last line of the terminal. 

7-104 NOSNE Screen Formatting Revision D 



Creating an Event Form 

form_identifier: VAR of fdt$form_identifier; 

The form identifier established when the form was opened. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$invalid_display _name 
fde$invalid_ event_name 
fde$invalid_form_ language 
fde$invalid_form_name 
fde$no_ space_a vailable 
fde$system_ error 
fde$unknown_ event_name 

Remarks • This procedure ends the event form definition. 

• The form identifier the procedure returns was 
established when the form was opened. 

• Save the form by executing the FDP$WRITE_FORM_ 
DEFINITION procedure. 

Revision D Using CYBIL to Create Forms 7-105 



Creating n Mark 

Creating a Mark 

Purpose FDP$CREATE_MARK procedure creates a display 
attribute for a specific text area. 

Format FDP$CREATE_MARK (form_identifier, start_x_ 
position, start_y _position, end_x_position, end_y _ 
position, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

start_x_position: fdt$x_position; 

The form x position that starts the mark on the form. 
The leftmost character is 1. X positions go from left to 
right. 

start_y _position: fdt$x_position; 

The form y position that starts the mark on the form. 
The top character is 1. Y positions go from top to bottom. 

end_x_position: fdt$x_position; 

The end x position to end the mark. 

end _y _position: fdt$x_position; 

The end y position to end the mark. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$area_cuts_object 
fde$bad_data_ value 
fde$create_ mark_invalid 
fde$form_not_ scheduled 
fde$form_ pushed 
fde$mark_outside_form 
fde$no_space_available 
fde$system_ error 

7-106 NOS/VE Screen Formatting Revision D 



Remarks 

Creating a Mark 

• The marked area of the form must not slice any 
objects. 

• This attribute marks text on which the terminal user 
wants to perform an operation. 

• This procedure applies only to a design form. 

Revision D Using CYBIL to Create Forms 7-107 



Creating an Object 

Creating an Object 

Purpose FDP$CREATE_OBJECT procedure creates an object on 
the form. 

Format FDP$CREATE _OBJECT (form_identifier, x_position, 
y _position, object_ definition, object_attributes, 
status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

Jr_position: fdt$x_position; 

The x coordinate for the origin of the object relative to 
the form. 

y _position: fdt$x_position; 

The y coordinate for the origin of the object relative to 
the form. 

object_ definition: fdt$object_definition; 

This is a variant record that specifies the object type. Its 
KEY fields contain the following: 

FDC$BOX 

Draws a box on the form image. The FDP$CREATE_ 
OBJECT procedure gives the origin of the box with 
respect to the origin of the form. The origin of the 
form is the upper left corner. The origin of the box is 
the upper left corner. The FDC$BOX field contains 
two other fields: 

box_ width 

The width, in characters, of the box (type 
FDT$WIDTH). The box_width must be greater 
than, or equal to, one. 

box_ height 

The height, in characters, of the box (type 
FDT$HEIGHT). The box_height must be greater 
than, or equal to, one. 

7-108 NOSNE Screen Formatting Revision D 



Revision D 

Creating an Object 

FDC$CONSTANT_TEXT 

Displays constant text on the form image. The origin 
of the text object is given by the FDP$CREATE_ 
OBJECT procedure. The text can occupy all or part of 
a row on the form. The FDC$CONSTANT_ TEXT field 
contains two other fields: 

constant_ text_ width 

The width of the constant text, in characters, on 
the screen (type FDT$WIDTH). This must be a 
number greater than or equal to one. 

p_constant_ text 

This is the text to display on the form image (type 
"FDT$TEXT). 

FDC$LINE 

Draws a line on the form image. The FDC$LINE field 
contains two other fields: 

x_increment 

The number of characters to increment the x 
position given in the procedure to determine the 
end point of the line (type FDT$X_INCREMENT). 
Some terminals only support vertical and horizontal 
lines. The x increment can be greater than or 
equal to zero. 

y _increment 

The number of characters to increment the y 
position given in the procedure to determine the 
end point of the line (type FDT$Y_INCREMENT). 
The x increment can greater than or equal to zero. 

FDC$CONSTANT_TEXT_BOX 

Defines an area on the form to display constant text. 
The text can occupy several lines. You can specify how 
text that crosses the right boundary of the text box is 
processed. The FDC$CONSTANT_ TEXT_BOX field 
contains the following fields: 

Using CYBIL to Create Forms 7-109 



Creating an Object 

constant_ text_ box_ height 

The height of the text area, in characters (type 
FDT$HEIGHT). This must be greater than, or 
equal to, one. 

constant_ text_ box_ processing 

Uses FDC$WRAP _WORD to wrap data at the right 
boundary of the box to the next line, if any, on a 
word basis (type FDT$TEXT_BOX_PROCESSING). 
The text for word wrap processing can include a 
formatting character. FDC$NEW_LINE_ 
CHARACTER causes Screen Formatting to start a 
new line in a text box. Uses FDC$WRAP _ 
CHARACTER to wrap data that goes past the 
right boundary of the box to the next line on a 
character basis. 

constant_ text_ box_ width 

The width of the text area, in characters (type 
FDT$WIDTH). This must be greater than, or equal 
to, one. 

p_constant_ box_ text 

The text to display on the form image (type 
"FDT$TEXT). 

FDC$VARIABLE_ TEXT 

Defines an object for variable text. You associate the 
object to the variable by using an object name 
specified through the object attributes. The 
FDC$VARIABLE_ TEXT field contains the following 
fields: 

p_ variable_ text 

The pointer to the text (type "FDT$TEXT). This is 
the initial value of the variable. 

variable_ text_ width 

The width of the variable text in characters on the 
screen (type FDT$WIDTH). This must b~ a number 
greater than or equal to one. 

7-110 NOSNE Screen Formatting Revision D 



Revision D 

Creating 11n Object 

FDC$VARIABLE_ TEXT_BOX 

Defines an area on the form to display variable text. 
The text can occupy several lines. You associate the 
object to the variable by using an object name 
specified through the object attributes. You can specify 
how text that crosses the right boundary of the text 
box is processed. The FDC$VARIABLE_ TEXT_BOX 
field contains the following fields: 

p_ variable_ box_ text 

The pointer to the text (type "FDT$TEXT). This is 
the initial value of the variable. 

variable_ text_ box_ height 

The height of the text area, in rows (type 
FDT$HEIGHT). This must be a number greater 
than or equal to one. 

variable_ text_ box_ processing 

Uses FDC$WRAP _WORD to wrap data at the right 
boundary of the box to the next line, if any, on a 
word basis (type FDT$TEXT_BOX_PROCESSING). 
The text for word wrap processing can include a 
formatting character. The FDC$NEW _LINE_ 
CHARACTER causes Screen Formatting to start a 
new line in a text box. Uses FDC$WRAP _ 
CHARACTER to wrap data that goes past the 
right boundary of the box to the next line on a 
character basis. 

variable_ text_ box_ width 

The width of the text area, in characters (type 
FDT$WIDTH). This must be greater than or equal 
to one. 

object_attributes: VAR { input-output } of fdt$object_ 
attributes; 

An array of object attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Using CYBIL to Create Forms 7-111 



Creating an Object 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$invalid_object_change 
fde$invalid_object_name 
fde$no _space_ available 
fde$no_ string_ specified 
fde$object_ occurrence_ exists 
fde$system_error 

Remarks • When the program data is too large to display on the 
form, it can be put into a text box. The user can then 
execute scroll events to see or modify the text. 

• A text box permits text processing. Characters or 
words can wrap from line to line in the text box. You 
can give name and display attributes to the object. 

• Programs can manipulate the object using the name. 
The name associates a variable text object with its 
variable definition. The initial value comes from the 
value specified for the object and is displayed using 
the output format defined for the variable and display 
attributes specified for the object. 

• Objects can be line or box graphics, constant or 
variable text. They can occupy a single line or a 
rectangular area (box) on the form. 

7-112 NOSNE Screen Formatting Revision D 



Creating a Stored Object 

Creating a Stored Object 

Purpose FDP$CREATE_STORED_OBJECT procedure creates an 
initial value for a table variable occurrence that does not 
initially appear on the form. 

Format FDP$CREATE_STORED_OBJECT (form_identifier, 
name, occurrence, text, display _attribute_set, status) 

Parameters form _identifier: fdt$form_ identifier; 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

te~t: fdt$text; 

The text specifying the initial value. 

display _attribute_set: fdt$display _attribute_set; 

Specifies the set of display attributes for the object. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_ form_ identifier 
fde$invalid_object_name 
fde$invalid_ occurrence 
fde$no_space_available 
fde$no _string_ specified 
fde$obj ect_ exists 
fde$object_occurrence_exists 
fde$system_ error 

Revision D Using CYBIL to Create Forms 7-113 



Creating a Stored Object 

Remarks • The visible occurrences of a table initially appear on 
the form. The user can execute paging or scrolling 
events to look at the stored occurrences. 

• If this procedure is not issued, the initial value for a 
stored object is the first occurrence of the object. A 
table can have one or more variables, and a variable 
in a table can have one or more occurrences. 

7-114 NOSNE Screen Formatting Revision D 



Creating a Table 

Creating a Table 

Purpose FDP$CREATE_ TABLE procedure creates a table 
containing variables. 

Format FDP$CREATE_ TABLE (form_identifier, table_name, 
table_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

table _name: ost$name; 

The table name. 

table_attributes: VAR { input-output } of fdt$table_ 
attributes; 

The attributes of the table. 

ntatun: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$invalid_ table_name 
fde$no_ space_ available 
fde$table_name_exists 

Remarks • The variables in a table can occur more than once and 

Revinion D 

appear anywhere on the form. 

• A table name cannot duplicate an existing table or 
variable name. 

• You must create objects for table variable occurrences 
and variables for the table. When executing a 
FDP$END_FORM procedure, all variables and objects 
for the table must be defined. 

Uaing CYBIL to Create Forms 7-115 



Creating a Variable 

Creating a Variable 

Purpose FDP$CREATE_ VARIABLE procedure creates a variable. 

Format FDP$CREATE_ VARIABLE (form_identifier, 
variable _name, variable_ attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

variable_narne: ost$name; 

The name of the variable. 

variable_attributes: VAR { input-output } of 
fdt$variable_attributes; 

An array containing variable attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_form_name 
fde$invalid_integer _range 
fde$invalid_real_range 
fde$invalid_ variable_ name 
fde$no_comments_ to_delete 
fde$no_space_available 
fde$no_ string_ specified 
fde$range_ over lap 
fde$system_ error 
fde$unknown_integer _range 
fde$unknown_real_range 
fde$unknown_ valid_ string 
fde$valid_string_exists 
fde$variable_name_ exists 

7-116 NOS/VE Screen Formatting Revision D 



Remarks 

Creating a Variable 

• Every variable that appears to the user must have an 
object associated with it. The object can be created 
before or after the creation of the variable. Some 
variables are not shown on the form. 

• Issue· an FDP$CREATE_ OBJECT procedure to specify 
the initial value and display attributes for a variable 
appearing on the form. 

Revision D Using CYBIL to Create Forms 7-117 



Deleting an Area 

Deleting an Area 

Purpose FDP$DELETE_AREA procedure deletes all objects and 
unprotected text in a specified area on the form. Any 
associated table and variable definitions are not deleted. 

Format FDP$DELETE_AREA (form_identifier, x_position, 
y _position, width, height, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

x_position: fdt$x_position; 

The x position of the origin (upper left corner) of the area 
enclosing the data to be deleted. 

y _position: fdt$y _position; 

The y position of the origin (upper left corner) of the area 
enclosing the data to be deleted. 

width: fdt$width; 

The width of the area. 

height: fdt$height; 

The height of the area. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$area_cuts_object 
fde$bad_data_ value 
fde$delete_ outside _form 
fde$invalid_form_ identifier 
fde$no_space_available 
fde$system_ error 

7-118 NOSNE Screen Formatting Revision D 



Deleting a Mark 

Deleting a Mark 

Purpose FDP$DELETE_MARK procedure deletes the previous 
mark set by the FDP$CREATE_MARK procedure. 

Format FDP$DELETE _MARK (form_identifier, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$delete_mark_invalid 
fde$form_ not_ scheduled 
fde$form_pushed 
fde$invalid_form_ identifier 
fde$no_ space_ available 
fde$system_ error 

Remarks This procedure can only be used on a form created with 
the FDP$CREATE_DESIGN _FORM procedure. 

Revision D Using CYBIL to Create Forms 7-119 



Deleting nn Object 

Deleting an Object 

Purpose FDP$DELETE_OBJECT procedure deletes an object at a 
specified location on the form. Any variable or table 
definitions associated with the object are not deleted. 

Format FDP$DELETE_ OBJECT (form_identifier, x_position, 
y _position, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

x _position: fdt$x_position; 

The x position of the object to delete. 

y _position: fdt$y _position; 

The y _position of the object to delete. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_ opened_ form 
fde$invalid_form_identifier 
f de$no_ object_ at_ position 

7-120 NOSNE Screen Formatting Revision D 



Deleting n Stored Object 

Deleting a Stored Object 

Purpose FDP$DELETE_STORED_OBJECT procedure deletes an 
initial value for a table variable occurrence that does not 
initially appear on a form. 

Format FDP$DELETE_STORED_OBJECT (form_identifier, 
name, occurrence, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_ opened_form 
f de$invalid_form_ identifier 
fde$invalid_object_name 
fde$no_ space_available 
fde$system_error 
fde$unknown_ object_name 

Revision D Using CYBIL to Create Forms 7-121 



Deleting n Table 

Deleting a Table 

Purpose FDP$DELETE_ TABLE procedure deletes a table. Any 
variables or object definitions associated with the table 
are not deleted. 

Format FDP$DELETE_ TABLE (form_identifier, table_name, 
status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

table _name: ost$name; 

The table to be deleted. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
f de$invalid_form_ identifier 
fde$invalid_ table_ name 
fde$unknown_ table_name 

7-122 NOSNE Screen Formatting Revision D 



Deleting a Variable 

Deleting a Variable 

Purpose FDP$DELETE_ VARIABLE procedure deletes a variable. 
Any table or object definitions associated with the 
variable are not deleted. 

Format FDP$DELETE_ VARIABLE (form_identifier, 
variable_name, status) 

Parameters form_itlentifier: integer; 

The form identifier established when the form was opened. 

vnrin.ble_nnme: name; 

The variable to be deleted. 

ntntun: VAR of status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ variable_name 
fde$unknown_ variable_name 

Revision D Using CYBIL to Create Forms 7-123 



Editing n Form 

Editing a Form 

Purpose FDP$EDIT_FORM procedure permits you to make further 
changes to a copied form or a previously ended form 
definition. 

Format FDP$EDIT _FORM (form_identifier, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

ntntus: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 

7-124 NOSNE Screen Formatting Revision D 



Ending a Form 

Ending a Form 

Purpose FDP$END_FORM procedure ends the definition of a 
form. 

Format FDP$END _FORM (form_identifier, p _sequence, 
number _errors, p_errors, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

p_sequence: "SEQ(*); 

The sequence to return any errors. 

number_ errorn: VAR of fdt$number _errors; 

The number of errors contained in the form definition. 

p_errors: VAR of "SEQ (*); 

The sequence that contains the errors. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$no_space_available 
fde$system_ error 

Remarks This procedure must be executed before you can use a 
form to interact with a terminal user. 

Revision D Using CYBIL to Create Forms 7-125 



Getting Form Attributes 

Getting Form Attributes 

Purpose FDP$GET_FORM_ATTRIBUTES procedure gets the 
current form attributes. The form must he open or 
dynamically created. 

Format FDP$GET_FORM_ATTRIBUTES (form_identifier, 
get_form_attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

get_form_attributes: VAR { input-output } of fdt$get_ 
form_ attributes; 

An array containing form attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_event_name 
f de$invalid_form_ identifier 
fde$string_ too_small 
fde$system_error 
fde$unknown_event_name 

7-126 NOSNE Screen Formntting Revision D 



Getting Form Names 

Getting Form Names 

Purpose FDP$GET_FORM_NAMES procedure gets the current 
names of tables, variables, and objects defined for a form. 

Format FDP$GET_FORM_NAMES (form_identifier, name_ 
selections, form_names, number _names, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name_ nelections: fdt$name_ selections; 

A set containing selections for names. You can select 
FDC$SELECT_ VARIABLE, FDC$SELECT_ TABLE, and 
FDC$SELECT_OBJECT. ' 

form_names: VAR of fdt$form_names; 

An array containing the form names. The form names are 
contained in a record with name and name_type fields. 

Field 

name 

name_ 
type 

Meaning 

The item name (variable, table, object). 

The name type (FDC$SELECT_ VARIABLE, 
FDC$SELECT_TABLE, FDC$SELECT_ 
OBJECT). 

number _names: VAR of fdt$number _names; 

The number of names returned. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$too_many _form_names 

Remarks • Issue the FDP$GET_FORM_ATTRIBUTES procedure 

Revision D 

using the attribute key of FDC$GET_NUMBER_ 
OBJECTS, FDC$GET_NUMBER_ TABLES, and 
FDC$GET_NUMBER_ VARIABLES. 

• This procedure enables you to learn the array size 
needed to receive the form names. 

Using CYBIL to Create Forms 7-127 



Getting Form Objects 

Getting Form Objects 

Purpose FDP$GET_FORM_ OBJECTS procedure gets objects 
defined for a form. 

Format FDP$GET_FORM_OBJECTS (form_identifier, form_ 
objects, number_ objects, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

form_ objects: VAR of fdt$form_objects; 

An array containing the form objects that Screen 
Formatting returns. Each record in the array has a name 
and an object field. 

Field 

name 

object 

Meaning 

The object name. If the object did not have 
a name defined, the name equals 
OSC$NULL_NAME. 

The object type. 

FDC$BOX 

The object is a box. 

FDC$CONSTANT_TEXT 

The object is constant text. 

FDC$CONSTANT_TEXT_BOX 

The object is a constant text box. 

FDC$LINE 

The object is a line. 

FDC$VARIABLE_ TEXT 

The object is variable text. 

FDC$VARIABLE_ TEXT_BOX 

The object is a variable text box. 

7-128 NOSNE Screen Formatting Revision D 



Field 

occurrence 

x_position 

y_position 

Getting Form Objects 

Meaning 

The occurrence of the object name. If the 
name is OSC$NULL_NAME, the 
occurrence equals 1. 

The form x position of the object. 

The form y position of the object. 

number_ objects: VAR of fdt$number _objects; 

The number of objects returned from Screen Formatting. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$too_many _form_objects 

Remarks Issue the FDP$GET_FORM_ATTRIBUTES procedure by 
using the attribute key of FDC$GET_NUMBER_ 
OBJECTS. This procedure enables you to learn the array 
size needed to receive the form objects. 

Revision D Using CYBIL to Create Forms 7-129 



Getting Object Attributes 

Getting Object Attributes 

Purpose FDP$GET_ OBJECT_ATTRIBUTES procedure gets 
specified attributes about an object on the form. This 
procedure can be used on an open or dynamically created 
form. 

Format FDP$GET_OBJECT_ATTRIBUTES (form_identifier, 
x_position, y _position, get_object_attributes, status) 

Parameters forrn_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

x _position: fdt$x_ position; 

The x position on the form. 

y _position: fdt$y _position; 

The y position on the form. 

object_attributes: VAR { input-output } of fdt$get_ 
object_ attributes; 

An array containing object attributes. Before you specify 
this parameter, you must first establish the array. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$cannot_ update_ opened_ form 
fde$invalid_form_identifier 
fde$no_object_at_position 
fde$system_ error 

7-130 NOSNE Screen Formatting . Revision D 



Getting Record Attributes 

Getting Record Attributes 

Purpose FDP$GET_RECORD_ATTRIBUTES procedure gets form 
definition record attributes. You can execute this 
procedure on an open or dynamically created form. 

Format FDP$GET _RECORD _ATTRIBUTES (form_identifier, 
get_record _attributes, status) 

Parameters form_identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

get_record_attributes: VAR { input-output } of fdt$get_ 
record_ attributes; 

An array containing form definition record attributes. 
Before you specify this parameter, you must first establish 
the array. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$cannot_ update_opened_form 
fde$invalid_form_ identifier 
fde$invalid_ table_name 
fde$invalid_ variable_name 
fde$system_ error 
fde$unknown_occurrence 
fde$unknown_ table_name 

Revision D Using CYBIL to Create Forms 7-131 



Getting a Stored Object 

Getting a Stored Object 

Purpose FDP$GET_STORED_OBJECT procedure gets the initial 
value for a table variable occurrence that does not appear 
initially on a form. 

Format FDP$GET_STORED_OBJECT (form_identifier, name, 
occurrence, text, text_length, status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

name: ost$name; 

The object name. 

occurrence: fdt$occurrence; 

The occurrence of the object. 

text: VAR of fdt$text; 

The text specifying the initial value. 

text_length: VAR of fdt$text_length; 

The stored object length. This length can exceed the 
parameter text length. Allocate more space for the text 
and re-issue the procedure if the text_length is greater 
than the allocated space for the text. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$invalid_ address 
fde$invalid_form_identifier 
fde$invalid_object_name 
fde$invalid_ occurrence 
fde$no_space_available 
fde$no _string_ specified 
fde$system_error 
fde$system_ error 
fde$unknown_object_name 

7-132 NOSNE Screen Formatting Revision D 



Getting Table Attributes 

Getting Table Attributes 

Purpose FDP$GET_ TABLE_ATTRIBUTES gets procedure-specified 
table attributes. You can execute this procedure on an 
open or dynamically created form. 

Format FDP$GET_TABLE_ATTRIBUTES (form_identifier, 
get_table_attributes, status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

table_name: ost$name; 

The table name. 

get_table_attributes: VAR { input-output } of fdt$get_ 
table_attributes; ' 

Table attributes. 

ntatus: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ vaule 
f de$invalid_form_ identifier 
fde$no_object_at_position 
fde$system_error 

Revision D Using CYBIL to Create Forms 7-133 



Getting V nrinble Attributes 

Getting Variable Attributes 

Purpose FDP$GET_ VARIABLE_ATTRIBUTES procedure gets 
selected information about a variable. You can execute 
this procedure on an open or dynamically created form. 

Format FDP$GET_ VARIABLE_ATTRIBUTES (form_ 
identifier, variable name, get_ variable_attributes, 
status) 

Parameters form_ identifier: f dt$form_ identifier; 

The form identifier established when the form was opened. 

variable_ name: ost$name; 

The variable name. 

get_ variable_attributes: VAR { input-output } of 
fdt$get_ variable_attributes; 

Gets an array containing attributes. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ vaule 
fde$cannot_ update_opened_form 
fde$invalid_form_identifier 
fde$invalid_ variable_ name 
fde$string_ too_small 
fde$system_error 
fde$unknown_ variable_name 

7-134 NOSNE Screen Formatting Revision D 



Moving an Area 

Moving an Area 

Purpose FDP$MOVE_AREA procedure moves all objects and 
unprotected text from one area of a form to another. The 
destination area cannot slice any objects outside the origin 
area. 

Format FDP$MOVE_AREA (form_identifier, from_x_ 
position, from_y _position, width, height, to_x_ 
position, to _y _position, status) 

Parameters form_identifier: fdt$form_identifier; 

Revision D 

The form identifier established when the form was opened. 

from_:r_position: fdt$x_position; 

The x position of the origin (upper left_hand corner) of 
the area enclosing the data to be moved. 

from_y _position: fdt$y _position; 

The y position of the origin (upper left_hand corner) of 
the area enclosing the data to be moved. 

width: fdt$width; 

The width of the area. 

height: fdt$height; 

The height of the area. 

to _:r_position: fdt$x_position; 

The x position of the area (upper left_hand corner) where 
the data is to be copied. 

to _y _position:· fdt$y _position; 

The y position of the area (upper left_hand corner) where 
the data is to be copied. 

statur,: VAR of ost$status 

The status variable in which the completion status is 
returned. 

Using CYBIL to Create Forms 7-135 



Moving nn Area 

Conditions fde$bad_data_ value 
fde$invalid_form_ identifier 
fde$move_outside_form 
fde$no_space_a vailable 
f de$object_ over lays 
fde$system_error 

7-136 NOSNE Screen Formatting Revision D 



Writing a Form Definition 

Writing a Form Definition 

Purpose FDP$WRITE_FORM_DEFINITION procedure writes a 
form to a segment access file. 

Format FDP$WRITE_FORM_DEFINITION (form_identifier, 
p_form_module, status) 

Parameters form _identifier: fdt$form_identifier; 

The form identifier established when the form was opened. 

p_form_module: VAR {input-output} of "SEQ (*); 

A pointer to a sequence that holds the form module. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

Conditions fde$bad_data_ value 
fde$invalid_form_identifier 
fde$no_ space_ available 

Remarks A segment access file can be used with the CREATE_ 
OBJECT_LIBRARY command to save a form. The form 
does not have to be ended and can contain errors. The 
form must have a non-blank name. 

Revision D Using CYBIL to Create Forms 7-137 



I 

Writing a Form Definition Record 

Writing a Form Definition Record 

Purpose FDP$WRITE_RECORD_DEFINITION procedure writes 
the Source Code Utility (SCU) deck defining the record to 
transfer data between the program and Screen 
Formatting. 

Format FDP$WRITE_RECORD_DEFINITION (form_ 
identifier, file_identifier, form_processor, status) 

Parameters form _identifier: fdt$form_identifier; 

Conditions 

Remarks 

The form identifier established when the form was opened. 

file _identifier: amt$fi.le_identifier; 

The file identifier returned by the FSP$0PEN _FILE 
request that opened the file. This is the file to which the 
deck is written. 

form_processor: fdt$form_processor; 

The processor that uses the record definition. 

status: VAR of ost$status; 

The status variable in which the completion status is 
returned. 

fde$bad_data_ value 
fde$form_ definition_ errors 
fde$form_has_no_ variables 
fde$form_ not_ ended 
fde$invalid_form_ identifier 
fde$invalid_form_ processor 

• The form cannot have any errors and must have ended 
with the FDP$END_FORM procedure. 

• The resulting file contains an SCU DECK directive 
that, when processed, gives the deck the same name 
as the form. You can change this name by using the 
FDP$CHANGE_FORM_RECORD procedure. Include a 
deck name in the record attributes. 

7-138 NOSNE Screen Formatting Revision D 



Glossary A 





A 

Alphabetic Character 

One of the following letters: 

A through Z 
a through z 

See· also Character. 

Attribute 

A property of a form, variable, table of variables, object, or constant 
that is needed to process a form. 

B 

Batch Mode 

A mode of execution in which a job is submitted and processed as a 
unit with no intervention from a user. Contrast with Interactive Mode. 

c 
Catalog 

A directory of files maintained by the operating system for a user. In 
addition to files, a catalog can contain other catalogs. The catalog 
$LOCAL contains only file entries. 

Catalog Name 

The name of a catalog in a catalog hierarchy. By convention, the 
name of the user's master catalog is the same as the user's user 
name. 

Character 

An alphabetic character, digit, space, or symbol. See also Alphabetic 
Character, Digit, and Symbol. 

Revision D Glossary A-1 



Glossary 

D 

Design Form 

One of two types of forms necessary for enabling a terminal user to 
interact with an application program in order to create, display, or 
change a form. 

Digit 

One of the following characters: 

0 1 2 3 4 5 6 7 8 9 

See also Character. 

E 

Event 

A property of a form that is defined by the application programmer. 
An example would be a function key. 

F 

Family 

A logical grouping of NOSNE users that determines the location of 
their permanent files. 

Family Name 

A name that identifies a NOSNE family. 

File 

A collection of records referenced by a file name. A file is an 
autonomous collection of information that exists separately from the 
programs that read or write the file. 

File Name 

The name of a NOSNE file. See also Name. 

Full Screen 

A program that utilizes the entire terminal screen to display the data 
and/or the user's options. The user can move the cursor around on the 
screen to modify data or to indicate which operation to execute. 

A-2 NOSNE Screen Formatting Revision D 



Full Screen Definition 

Instructions to NOSNE describing the full screen features and 
function keys for a terminal. To run full screen programs on a 
terminal, NOSNE needs a full screen definition for the type of 
terminal used. 

Function 

Glossary 

An instruction to a full screen program. If function keys are available 
on the keyboard, the user can press a function key to execute a 
function. 

Function Key 

A key on a keyboard that is used to execute a function. Function keys 
are often labelled with an F and a digit. For example, Fl, F2, or F3. 

Function Key Assignments 

The association of functions with the function keys on the user's 
keyboard. In most full screen programs, the function key assignments 
are displayed at the bottom of the screen. 

I 

Identifier 

A character of group of characters that identify items of data. 

Integer 

Numeric data (positive or negative) that represents a whole number. 
An integer is stored internally as a binary value rather than as a 
character value. 

Interactive Mode 

A mode of execution during which a user enters commands, 
subcommands, or functions at a terminal and the computer responds 
immediately to each command, subcommand, or function. 

L 

Local File 

A file that is accessed via the $LOCAL catalog as follows: 

$LOCAL.filename 

NOSNE discards all $LOCAL files when the user logs out. Contrast 
with Permanent File. 

Revision D Glossary A-3 



Glossary 

Login 

The process used at a terminal to gain access to an operating system 
such as NOSNE. Logging in starts a terminal session. 

Logout 

The process used at a terminal to end a terminal session. 

Main Menu 

The menu that is available at the beginning of a program or online 
manual. 

Master Catalog 

The catalog the operating system creates for each user name. The 
user's master catalog contains entries for all permanent files and 
catalogs a user creates. By convention, the name of the master catalog 
is the same as the user name. 

N 

Name 

A combination of 1 through 31 characters chosen from the following: 

Alphabetic characters (A through Z and a through z) 
Digits (O through 9) 
Special characters (#, @, $, or _) 

The first character of a name cannot be a digit. 

NOS/VE 

Network Operating SystemNirtual Environment. 

0 

Object 

An object can be constant or variable text, box drawing, line drawing, 
or a table that contains one or more occurrences of one or more 
variable text objects. 

Occurrence 

The number of times an object appears on a form. 

A-4 NOSNE Screen Formatting Revision D 



Glossary 

Online Manual 

A manual that the user reads on the terminal screen. The EXPLAIN 
command opens an online manual. 

Permanent Catalog 

A catalog of permanent files, such as the master catalog or a catalog 
within the master catalog. 

Permanent File 

A file that is accessed via the user's master catalog. Permanent files 
are not discarded when the user logs out of NOSNE. Contrast with 
Local File. 

Program 

A set of instructions or actions that can interface with Screen 
Formatting. 

Protected and Unprotected Text 

Protected text is text that cannot be changed by the terminal user. 
Unprotected text can be changed by the terminal user. 

SCL 

See System Command Language 

Special Character 

See Symbol. 

Symbol 

Any character that is not an alphabetic character or a digit. Examples 
are: #, $, %, &, and *. See also Character. 

System Command Language 

The language that provides the interface to the features and 
capabilities of NOSNE. 

Revision D Glossary A-5 



Glossary 

T 

Target Form 

The desired form that is created from the design form. 

Temporary File 

See Local File. 

Terminal Session 

The processing sequence that begins when a user logs in to an 
operating system and ends when the user logs out. 

u 
User Name 

A name that identifies a NOSNE user. 

A-6 NOSNE Screen Formatting Revision D 



Related Manuals 

This appendix lists the manuals which relate to NOSNE. Also 
included is information for ordering printed manuals and the way to 
access online manuals. 

B 

Ordering Printed Manuals ....................................... B-1 

Accessing Online Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 

Table B-1. Related Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 
NOSNE Site Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-2 
NOSNE User Manuals ....................................... B-3 
CYBIL Manuals .............................................. B-5 
FORTRAN Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-6 
COBOL Manuals ............................................. B-6 
Other Compiler Manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-7 
VX/VE Manuals .............................................. B-8 
Data Management Manuals .................................. B-10 
Information Management Manuals ............................ B-10 
CDCNET Manuals ........................................... B-11 
Migration Manuals .......................................... B-13 
Miscellaneous Manuals ....................................... B-13 
Hardware Manuals .......................................... B-15 





All NOS/VE manuals and related hardware manuals are listed in 
table B-1. If your site has installed the online manuals, you can find 
an abstract for each NOS/VE manual in the online System 
Information manual. To access this manual, enter: 

/help rnanual=nos_ve 

To order a printed Control Data manual, send an order form to: 

Control Data 
Literature and Distribution Services 
308 North Dale Street 
St. Paul, Minnesota 55103-2495 

To obtain an order form or to get more information about ordering 
Control Data manuals, write to the above address or call (612) 
292-2101. If you are a Control Data employee, call. (612) 292-2100. 

To access the online version of a printed manual, log in to NOS/VE 
and enter the online title on the HELP command (table B-1 supplies 
the online titles). For example, to see the NOS/VE Commands and 
Functions manual, enter: 

/help rnanual=scl 

or, because SCL is the default for the MANUAL parameter, simply 
enter 

/help 

An online Examples manual contains examples that reside in printed 
manuals. From· within the online Examples manual, you can copy, 
print, and execute the examples it contains. To access this manual, 
enter: 

/help rnanual=exarnples 

When EXAMPLES is listed in the Online Manuals column in table 
B-1, that manual is represented in the online Examples manual. 

Revision D Related Manuals B-1 



Related Manuals 

Table B-1. Related Manuals 

Manual Title 

NOS/VE Site Manuals: 

CYBER 930 Computer System 
Guide to Operations 
Usage 

CYBER Initialization Package (CIP) 
Reference Manual 

DesktopNE Host Utilities 
Usage 

MAINTAIN_MAIL (Version 1) 2 

Usage 

NOSNE Accounting Analysis System 
Usage 

NOSNE Accounting and Validation 
Utilities for Dual State 
Usage 

NOSNE File Server 
for STORNET and ESM-II 
Usage 

NOSNE 
LCN Configuration and Network 
Management 
Usage 

Publication Online 
Number Manuals1 

60469560 

60457180 

60463918 

MAIM 

60463923 

60458910 

60000190 

60463917 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

2. To access this manual, you must be the administrator for· MaiWE 
Version 1. 

(Continued) 

B-2 NOS/VE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Publication Online 
Manual Title Number Manuals1 

Site Manuals (Continued): 

NOSNE Network Management 60463916 
Usage 

NOSNE Operations 60463914 
Usage 

NOSNE 60463915 
System Performance and Maintenance 
Volume 1: Performance 
Usage 

NOSNE 60463925 
System Performance and Maintenance 
Volume 2: Maintenance 
Usage 

NOSNE 60464513 
User Validation 
Usage 

NOS/VE User Manuals: 

EDIT_ CATALOG EDIT_ 
Usage CATALOG 

EDIT_CATALOG for NOSNE 60487719 
Summary 

Introduction to NOSNE 60464012 EXAMPLES 
Tutorial 

NOSNE 60486412 AFM_T 
Advanced File Management 
.Tutorial 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision D Related Manuals B-3 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

NOS/VE User Manuals (Continued): 

NOSNE 
Advanced File Management 
Usage 

NOSNE 
Advanced File Management 
Summary 

NOSNE 
Commands and Functions 
Quick Reference 

NOSNE File Editor 
Tutorial/Usage 

NOSNE 
Object Code Management 
Usage 

NOSNE Screen Formatting 
Usage 

NOSNE 
Source Code Management 
Usage 

NOSNE System Usage 

NOSNE 
Terminal Definition 
Usage 

Screen Design Facility for NOSNE 
Usage 

Publication Online 
Number Manuals1 

60486413 

60486419 

60464018 

60464015 

60464413 

60488813 

60464313 

60464014 

60464016 

60488613 

AFM 

SCL 

EXAMPLES 

OCM and 
EXAMPLES 

EXAMPLES 

SCM and 
EXAMPLES 

EXAMPLES 

SDF 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-4 NOSNE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

NOS/VE User Manuals (Continued): 

Screen Design Facility/Data 
Management 
Usage 

CYBIL Manuals: 

CYBIL for NOS/VE 
File Management 
Usage 

CYBIL for NOS/VE 
Keyed-File and Sort/Merge Interfaces 
Usage 

CYBIL for NOS/VE 
Language Definition 
Usage 

CYBIL for NOS/VE 
Sequential and Byte-Addressable Files 
Usage 

CYBIL for NOS/VE 
System Interface 
Usage 

Publication Online 
Number Manuals1 

60488618 

60464114 

60464117 

60464113 

60464116 

60464115 

EXAMPLES 

EXAMPLES 

CYBIL and 
EXAMPLES 

EXAMPLES 

EXAMPLES 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision D Related Manuals B-5 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

FORTRAN Manuals: 

FORTRAN Version 1 for NOSNE 
Language Definition 
Usage 

FORTRAN Version 1 for NOSNE 
Quick Reference 

FORTRAN Version 2 for NOSNE 
Language Definition 
Usage 

FORTRAN Version 2 for NOSNE 
Quick Reference 

FORTRAN for NOSNE 
Tutorial 

FORTRAN for NOSNE 
Topics for FORTRAN Programmers 
Usage 

FORTRAN for NOSNE 
Summary 

COBOL Manuals: 

COBOL for NOSNE 
Summary 

Publication Online 
Number Manuals1 

60485913 EXAMPLES 

FORTRAN 

60487113 EXAMPLES 

VFORTRAN 

60485912 FORTRAN_T 

60485916 

60485919 

60486019 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-6 NOS/VE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

COBOL Manuals (Continued): 

COBOL for NOSNE 
Tutorial 

COBOL for NOSNE 
Usage 

Other Compiler Manuals: 

ADA for NOSNE 
Usage 

ADA for NOSNE 
Reference Manual 

APL for NOSNE 
File Utilities 
Usage 

APL for NOSNE 
Language Definition 
Usage 

BASIC for NOSNE 
Summary Card 

BASIC for NOSNE 
Usage 

LISP for NOSNE 
Usage Supplement 

Pascal for NOSNE 
Summary Card 

Publication Online 
Number Manuals1 

60486012 

60486013 

60498113 

60498118 

60485814 

60485813 

60486319 

60486313 

60486213 

60485619 

COBOL_T 

COBOL and 
EXAMPLES 

ADA 

EXAMPLES 

BASIC 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision D Related Manuals B-7 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Other Compiler Manuals 
(Continued): 

Pascal for NOSNE 
Usage 

Prolog for NOSNE 
Quick Reference 

Prolog for NOSNE 
Usage 

VX/VE Manuals: 

CNE for NOSNE 
Quick Reference 

CNE for NOSNE 
Usage 

DWBNX 
Introduction and User Reference 
Tutorial/Usage 

DWBNX 
Macro Packages Guide 
Usage 

DWBNX 
Preprocessors Guide 
Usage 

DWBNX 
Text Formatters Guide 
Usage 

Publication 
Number 

60485618 

60486718 

60486713 

60469830 

60469890 

60469910 

60469920 

60469900 

Online 
Manuals1 

PASCAL and 
EXAMPLES 

PRO LOG 

c 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-8 NOSNE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

VX/VE Manuals (Continued): 

VX/VE 
Administrator Guide and Reference 
Tutorial/Usage 

VX/VE 
An Introduction for UNIX Users 
Tutorial/Usage 

VX/VE 
Programmer Guide 
Tutorial 

VX/VE 
Programmer Reference 
Usage 

VX/VE 
Support Tools Guide 
Tutorial 

VX/VE 
User Guide 
Tutorial 

VX/VE 
User Reference 
Usage 

Publication Online 
Number Manuals1 

60469770 

60469980 

60469790 

60469820 

60469800 

60469780 

60469810 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision D Related Manuals B-9 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Data Management Manuals: 

DM Command Procedures 
Reference Manual 

DM Concepts and Facilities 
Manual 

DM Error Message Summary 
for DM on CDC NOSNE 

DM Fundamental Query and 
Manipulation Manual 

DM Report Writer 
Reference Manual 

DM System Administrator's 
Reference Manual 
for DM on CDC NOSNE 

DM Utilities 
Reference Manual 
for DM on CDC NOSNE 

Information Management Manuals: 

IM/Control for NOSNE 
Quick Reference 

IM/Control for NOSNE 
Usage 

IM/Fast for NOSNE 
Administration Usage 

Publication 
Number 

60487905 

60487900 

60487906 

60487903 

60487904 

60487902 

60487901 

L60488918 

60488913 

60487513 

Online 
Manuals1 

CONTROL 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-10 NOSNE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Publication Online 
Manual Title Number Manuals1 

Information Management Manuals 
(Continued): 

IM/Fast for NOSNE 60487514 
Programming Usage 

IM/Quick for NOSNE 60485712 
Tutorial 

IM/Quick for NOSNE 60485714 
Summary 

IM/Quick for NOSNE QUICK 
Online Help 

CDCNET Manuals: 

CDCNET Access Guide CDCNET_ 
ACCESS 

CDCNET Batch Device CDCNET_ 
User Guide BATCH 

CDCNET Command 60000020 
Quick Reference 

CDCNET Conceptual Overview 60461540 

CDCNET Configuration and Site 60461550 
Administration Guide 

CDCNET DI Dump Analyzer ANA CD 

CDCNET Diagnostic Messages 60461600 CDCNET_ 
MSGS 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision D Related MnnualG B-11 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

CDCNET Manuals (Continued): 

CDCNET Network Analysis 

CDCNET Network Configuration 
Utility 

CDCNET Network Configuration 
Utility 
Summary Card 

CDCNET Network Operations 

CDCNET Network Performance 
Analyzer 

CDCNET Product Descriptions 

CDCNET Systems Programmer's 
Reference Manual Volume 1 
Base System Software 

CDCNET Systems Programmer's 
Reference Manual Volume 2 
Network Management Entities and 
Layer Interfaces 

CDCNET Systems Programmer's 
Reference Manual Volume 3 
Network Protocols 

CDCNET Terminal Interface 
Usage 

CDCNET TCP/IP 
Usage 

Publication 
Number 

60461590 

60000269 

60461520 

60461510 

60460590 

60462410 

60462420 

60462430 

60463850 

60000214 

Online 
Manuals1 

NETCU 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-12 NOSNE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Migration Manuals: 

Migration from IBM to NOSNE 
Tutorial/Usage 

Migration from NOS to NOSNE 
Tutorial/Usage 

Migration from NOS to 
NOSNE Standalone 
Tutorial/Usage 

Migration from NOS/BE to NOSNE 
Tutorial/Usage 

Migration from NOS/BE to 
NOSNE Standalone 
Tutorial/Usage 

Publication Online 
Number Manuals1 

60489507 

60489503 

60489504 

60489505 

60489506 

Migration from VAX/VMS to NOSNE 60489508 
Tutorial/Usage 

Miscellaneous Manuals: 

Applications Directory 

Control Data CONNECT 
User's Guide 

Control Data CONNECT Plus for the 
IBM Personal Computer (Version 1.0) 
User's Guide 

60455370 

60462560 

60000388 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples1 manual. 

(Continued) 

Revision D Related Manuals B-13 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Miscellaneous Manuals (Continued): 

Debug for NOS/VE 
Quick Reference 

Debug for NOS/VE 
Usage 

Desktop/VE for Macintosh 
Tutorial 

Desktop/VE for Macintosh 
Usage 

NOS/VE Diagnostic Messages 
Usage 

Mail/VE (Version 1) 
Summary Card 

Mail/VE (Version 1) 
Usage 

Mail/VE Version 2 
Administration 

Mail/VE Version 2 
Usage 

Math Library for NOS/VE 
Usage 

NOS/VE Examples 
Usage 

Publication Online 
Number Manuals1 

60488213 

60464502 

60464503 

60464613 

60464519 

60464515 

60464514 

60486513 

DEBUG 

MESSAGES 

MAIL_ VE 

MAILVE_ 
ADMINISTRA
TION 

MAILVE_V2 

EXAMPLES 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

B-14 NOSNE Screen Formatting Revision D 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Miscellaneous Manuals (Continued): 

NOS/VE Online Manuals Systems 

NOS/VE System Information 

Programming Environment 
for NOS/VE 
Usage 

Programming Environment 
for NOS/VE 
Summary 

Professional Programming 
Environment 
for NOS/VE 
Quick Reference 

Professional Programming 
Environment 
for NOS/VE 
Usage 

Remote Host Facility 
Usage 

Hardware Manuals: 

CYBER 170 Computer Systems 
Models 825, 835, and 855 
General Description 
Hardware Reference 

Publication Online 
Number Manuals1 

60488403 

60486819 

60486613 

60460620 

60459960 

TOPICS_ 
CONTEXT 

NOS_ VE 

ENVIRON
MENT 

PPE 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

(Continued) 

Revision D Related Manuals B-15 



Related Manuals 

Table B-1. Related Manuals (Continued) 

Manual Title 

Hardware Manuals (Continued): 

CYBER 170 Computer Systems, 
Models 815, 825, 835, 845, and 855 
CYBER 180 Models 810, 830, 835, 
840, 845, 850, 855, and 860 
Codes Booklet 

CYBER 170 Computer Systems, 
Models 815, 825, 835, 845, and 855 
CYBER 180 Models 810, 830, 835, 
840, 845, 850, 855, and 860 
Maintenance Register 
Codes Booklet 

HPA/VE Reference 

Virtual State Volume II 
Hardware Reference 

Publication 
Number 

60458100 

60458110 

60461930 

60458890 

7021-31/32 Advanced Tape Subsystem 60449600 
Reference 

7221-1 Intelligent Small 60461090 
Magnetic Tape Subsystem 
Reference 

Online 
Manuals1 

1. This column lists the title of the online version of the manual and 
indicates whether the examples in the printed manual are in the 
online Examples manual. 

B-16 NOSNE Screen Formatting Revision D 



Screen Formatting and Terminal 
Definitions c 





§crtaen Fo:i'"llia"t"~in1g aIG.tl Te1·::r:cirr:tiail 
DefiTiigo:no 

Here is a list of Screen Formatting and terminal definition attributes. 
Screen Formatting attributes are mapped to terminal definition 
attributes. Changing a terminal definition attribute can change how a 
Screen Formatting attribute is displayed on the screen. 

Screen Formatting Attribute 

fdc$inverse_ video 
fdc$low _intensity 
fdc$high_ intensity 
fdc$blink 
fdc$under line 
fdc$protect 
fdc$black_foreground 
fdc$blue_foreground 
fdc$green_foreground 
fdc$magenta_foreground 
fdc$red_foreground 
fdc$cyan_foreground 
fdc$yellow _foreground 
fdc$white_foreground 
fdc$black_ background 
fdc$blue_ background 
fdc$green_ background 
fdc$magenta_ background 
fdc$red_ background 
fdc$cyan_ background 
fdc$yellow _background 
fdc$white_ background 
fdc$fine_ line 
fdc$medium_ line 
fdc$bold_ line 
fdc$fine_ border 
fdc$medium_ border 
fdc$bold_ border 
fdc$italic_display _attribute 
fdc$title_display _attribute 
fdc$input_display _attribute 
fdc$error _display _attribute 
fdc$message_display _attribute 

Revision D 

Terminal Definition Attribute 

inverse_begin 
low _intensity_ begin 
high_ intensity_ begin 
blink_ begin 
under line_ begin 
protect_ begin 
black_ foreground 
blue_foreground 
green_foreground 
magenta_ foreground 
red_ foreground 
cyan_foreground 
yellow _foreground 
white_foreground 
black_ background 
blue_ background 
green_ background 
magenta_ background 
red_ background 
cyan_ background 
yellow_ background 
white_ background 
Id_ fine_ begin 
Id_ medium_ begin 
ld_ bold_ begin 
ld_fine_ begin 
Id_ medium_ begin 
Id_ bold_ begin 
italic_begin 
title_ begin 
input_ text_ begin 
error_ begin 
message_ begin 

Screen Formatting nnd Terminal Definitions C-1 



Screen Formatting and Terminal Definitions 

Screen Formatting uses for defaults: 

fdc$black_ background, fdc$white_foreground for forms 

fdc$medium_line for lines and boxes 

fdc$inverse_ video for event label text in event forms 

fdc$underline for design attributes of objects that do not have any 
other display attributes 

Here is a list of Screen Formatting event triggers and the appropriate 
terminal definition keys. The Screen Formatting event trigger maps 
the Screen Formatting definitions to the terminal definitions. 

Screen Formatting 
Event Trigger 

fdc$next 
f dc$shift_ next 
fdc$help 
fdc$shift_help 
fdc$stop 
fdc$shift_ stop 
fdc$back 
fdc$undo 
fdc$redo 
fdc$quit 
fdc$exit 
f dc$shift_ back 
fdc$up 
f dc$shift_ up 
fdc$down 
fdc$shift_ down 
fdc$foreward 
fdc$shift_foreward 
fdc$backward 
fdc$shift_ backward 
fdc$edit 
fdc$shift_ edit 
fdc$data 
fdc$shift_ data 
fdc$function_ l 
fdc$shift_function_ l 

C-2 NOSNE Screen Formatting 

Terminal Definition Keys 

next 
next_s 
help 
help_s 
stop 
stop_s 
back 
undo 
redo 
stop_s 
stop 
back_s 
up 
up_s 
down 
down_s 
fwd 
fwd_s 
bkw 
bkw_s 
edit 
edit_s 
data 
data_s 
fl 
fl_s 

Revision D 



Screen Formatting Event 
Trigger 

fdc$function_2 
fdc$shift_function_ 2 
fdc$function_ 3 
fdc$shift_function_ 3 
fdc$function_ 4 
fdc$shift_function_ 4 
fdc$function_ 5 
fdc$shift_function_ 5 
f dc$function_ 6 
fdc$shift_ function_ 6 
f dc$function_ 7 
fdc$shift_function_ 7 
fdc$function_ 8 
fdc$shift_function_ 8 
fdc$function_ 9 
fdc$shift_function_ 9 
fdc$function_ l 0 
fdc$shift_function_ l 0 
fdc$function_ l l 
fdc$shift_function_ l l 
fdc$function_ 12 
fdc$shift_function_ 12 
fdc$function_ l 3 
fdc$shift_function_ l 3 
fdc$function_ l 4 
f dc$shift_function_ l 4 
fdc$function_ 15 
fdc$shift_function_ 15 
f dc$function_ l 6 
fdc$shift_function_ l 6 

Revinion D 

Screen Formatting and Terminal Definitions 

Terminal Definition Keys 

f2 
f2_s 
f3 
f3_s 
f 4 
f4_s 
f5 
f5_s 
f 6 
f6_s 
f7 
f7_s 
f8 
f8_s 
f9 
f9_s 
flO 
flO_s 
fll 
fll_s 
f12 
f12_s 
f13 
f13_s 
f14 
f14_s 
f15 
f15_s 
f16 
f16_s 

Screen Formatting and Terminal Definitions C-3 





COBOL Parameter Definitions D 

FDE$COBOL_STATUS Deck .................................. D-1 
FDE$COBOL_ VARIABLE_STATUS Deck ..................... D-6 





This appendix contains the COBOL parameter definitions. Your 
COBOL program should copy the FDE$COBOL_STATUS deck into the 
program to obtain the conditions for the COBOL status parameter (see 
chapter 3, Using COBOL to Manage Forms). Your program should ~i~ 
also copy the FDE$COBOL_ VARIABLE_STATUS deck into the 
program to obtain the conditions for the COBOL variable status 
parameter. Errors are then generated (if they occur) when the 
program is run. 

See chapter 3 for details on how to obtain the decks that contain the 
COBOL parameter definitions. The library, 

$SYSTEM.CYBIL.OSF$PROGRAM_INTERFACE 

contains the information you need to execute the COBOL program. 

J81DEOCOBOL_8TATU8 neck 

The contents of this deck follow. 

01 FOE-COBOL-STATUS USAGE COMP PIC S9(18) SYNC LEFT. 
88 FOE-REQUEST-SUCCESSFUL VALUE 0. 
88 FOE-TERMINAL-DISCONNECTED VALUE 1. 
88 FOE-NO-INPUT-REQUEST VALUE 2. 
88 FOE-CURSOR-NOT-IN-VARIABLE VALUE 3. 

88 FOE-MORE-ERRORS-EXIST VALUE 4. 
88 FOE-UNKNOWN-FORM-NAME VALUE 5. 
88 FOE-FORM-COMPILATION-ERRORS VALUE 6. 
88 FOE-NO-SPACE-AVAILABLE VALUE 7. 

88 FOE-UNSUPPORTED-TERMINAL VALUE 8. 
88 FOE-INVALID-FORM-IDENTIFIER VALUE 9. 
88 FOE-INVALID-USER-ENTRY VALUE 10. 
88 FOE-UNKNOWN-VARIABLE-NAME VALUE 11. 

88 FOE-TOO-MANY-INTEGERS VALUE 12. 
88 FOE-OBJECT-NAME-EXISTS VALUE 13. 
88 FOE-WORK-INVALID VALUE 14. 
88 FDE-INVALID-X-FORM-POSITION VALUE 15. 

Revision D COBOL Parameter Definitions D-1 



COBOL Parameter Definitions 

88 FDE-INVALID-Y-FORM-POSITION VALUE 16. 
88 FOE-INVALID-WIDTH VALUE 17. 
88 FOE-INVALID-HEIGHT VALUE 18. 
88 FOE-INVALID-MESSAGE-FORM-NAME VALUE 19. 

88 FOE-INVALID-OCCURRENCE VALUE 20. 
88 FOE-INVALID-CHARACTER-POSITION VALUE 21. 
88 FOE-INVALID-MODE VALUE 22. 
88 FOE-INVALID-STATE VALUE 23. 

88 FOE-INVALID-VARIABLE-VALUE VALUE 24. 
88 FOE-INVALID-OBJECT-NAME VALUE 25. 
88 FOE-INVALID-FORM-NAME VALUE 26. 
88 FOE-FORM-CLOSED VALUE 27. 

88 FOE-TOO-MANY-ATTRIBUTES VALUE 28. 
88 FOE-INVALID-ATTRIBUTE-NAME VALUE 29. 
88 FOE-TOO-MANY-SCREEN-OCCURRENCE VALUE 30. 
88 FOE-NO-FORM-DEFINITION VALUE 31. 

88 FOE-TOO-MANY-STORED-OCCURRENCE VALUE 32. 
88 FOE-UNKNOWN-OBJECT-NAME VALUE 33. 
88 FOE-NO-DEFINE-OBJECT-NAME VALUE 34. 
88 FOE-INVALID-NAME VALUE 35. 

88 FOE-SYSTEM-ERROR VALUE 36. 
88 FOE-INVALID-TABLE-NAME VALUE 37. 
88 FOE-INVALID-VARIABLE-NAME VALUE 38. 
88 FOE-FORM-PUSHED VALUE 39. 

88 FOE-UNKNOWN-TABLE-NAME VALUE 40. 
88 FOE-NO-VARIABLE-DEFINED VALUE 41. 
88 FOE-NO-FORMS-TO-POP VALUE 42. 
88 FOE-ONLY-CHARACTER-DATA VALUE 43. 

88 FDE-ONLY-NONCHARACTER-DATA VALUE 44. 
88 FOE-FORM-DEFINITION-ERRORS VALUE 45. 
88 FOE-NO-FORMS-TO-PUSH VALUE 46. 
88 FOE-INVALID-PROGRAM-VALUES VALUE 47. 

D-2 NOSNE Screen Formatting Revision D 



COBOL Parameter Definitions 

88 FOE-INPUT-HAS-UNKNOWN-VALUE VALUE 48. 
88 FOE-INVALID-INPUT-VALUES VALUE 49. 
88 FOE-NOT-AN-INPUT-VARIABLE VALUE 50. 
88 FOE-CURSOR-NOT-IN-FORM VALUE 51. 

88 FOE-FORM-HAS-NO-VARIABLES VALUE 52. 
88 FOE-NO-FORMS-TO-SHOW VALUE 53. 
88 FOE-FORM-NOT-SCHEDULED VALUE 54. 
88 FOE-INVALID-EVENT-NAME VALUE 55. 

88 FDE-INVALID-X-POSITION VALUE 56. 
88 FDE-INVALID-Y-POSITION VALUE 57. 
88 FOE-UNKNOWN-EVENT-NAME VALUE 58. 
88 FOE-INVALID-DECK-NAME VALUE 59. 

88 FOE-INVALID-RECORD-NAME VALUE 60. 
88 FOE-OBJECT-EXISTS VALUE 61. 
88 FOE-TABLE-NAME-EXISTS VALUE 62. 
88 FOE-OBJECT-OVERLAYS VALUE 63. 

88 FOE-TOO-MANY-REALS VALUE 64. 
88 FOE-TOO-MANY-STRINGS VALUE 65. 
88 FOE-NO-OBJECT-AT-POSITION VALUE 66. 
88 FOE-ARRAY-TOO-SMALL VALUE 67. 

88 FOE-STRING-TOO-SMALL VALUE 68. 
88 FOE-VARIABLE-NAME-EXISTS VALUE 69. 
88 FOE-FORM-ALREADY-ADDED VALUE 70. 
88 FOE-INVALID-EVENT-ACTIVE VALUE 72. 

88 FOE-CANNOT-UPDATE-OPENED-FORM VALUE 73. 
88 FOE-HELP-FORM-EXISTS VALUE 74. 
88 FOE-ERROR-FORM-EXISTS VALUE 75. 
88 FOE-ERROR-MESSAGE-EXISTS VALUE 76. 

88 FOE-HELP-MESSAGE-EXISTS VALUE 77. 
88 FOE-INVALID-DISPLAY-NAME VALUE 78. 
88 FOE-INVALID-REAL-RANGE VALUE 79. 
88 FOE-INVALID-INTEGER-RANGE VALUE 80. 

Revision D COBOL Parameter Definitions D-3 



COBOL Parameter Definitions 

88 FOE-UNKNOWN-INTEGER-RANGE VALUE 81. 
88 FOE-UNKNOWN-REAL-RANGE VALUE 82. 
88 FOE-UNKNOWN-VALID-STRING VALUE 83. 
88 FOE-DISPLAY-NAME-EXISTS VALUE 84. 

88 FOE-EVENT-NAME-EXISTS VALUE 85. 
88 FOE-UNKNOWN-DISPLAY-NAME VALUE 86. 
88 FOE-TOO-MANY-FORM-NAMES VALUE 87. 
88 FOE-TOO-MANY-FORM-OBJECTS VALUE 88. 

88 FOE-NO-TEXT-AT-POSITION VALUE 89. 
88 FOE-NO-TEXT-FOR-OBJECT VALUE 90. 
88 FOE-UNKNOWN-OCCURRENCE VALUE 91. 
88 FOE-NO-STRING VALUE 92. 

88 FOE-RANGE-OVERLAP VALUE 93. 
88 FOE-NO-COMMENTS-TO-DELETE VALUE 94. 
88 FOE-OBJECT-OCCURRENCE-EXISTS VALUE 95. 
88 FOE-NO-STRING-SPECIFIED VALUE 96. 

88 FOE-VALID-STRING-EXISTS VALUE 97. 
88 FOE-INVALID-OBJECT-CHANGE VALUE 98. 
88 FOE-INVALID-ADDRESS VALUE 99. 
88 FOE-TERMINAL-NOT-IDENTIFIED VALUE 100. 

88 FOE-INVALID-FORM-LANGUAGE VALUE 101. 
88 FOE-INVALID-FORM-AREA-KEY VALUE 102. 
88 FOE-FORM-NAME-REQUIRED VALUE 103. 
88 FOE-NO-FORMS-TO-READ VALUE 104. 

88 FOE-INVALID-HELP-FORM-NAME VALUE 105. 
88 FOE-INVALID-ERROR-FORM-NAME VALUE 106. 
88 FOE-CREATE-MARK-INVALID VALUE 107. 
88 FOE-DELETE-MARK-INVALID VALUE 108. 

88 FOE-NO-MARK-DEFINED VALUE 109. 
88 FOE-AREA-CUTS-OBJECT VALUE 110. 
88 FOE-COPY-OUTSIDE-FORM VALUE 111. 
88 FOE-MOVE-OUTSIDE-FORM VALUE 112. 

D-4 NOSNE Screen Formatting Revision D 



COBOL Parameter Definitions 

88 FOE-INVALID-FORM-ATTRIBUTE VALUE 113. 
88 FOE-INVALID-RECORD-ATTRIBUTE VALUE 114. 
88 FOE-INVALID-OBJECT-KEY VALUE 115. 
88 FOE-INVALID-OBJECT-ATTRIBUTE VALUE 116. 

88 FOE-INVALID-TABLE-ATTRIBUTE VALUE 117. 
88 FOE-PROGRAM-DATA-TYPE VALUE 118. 
88 FOE-INVALID-OUTPUT-FORMAT-KEY VALUE 119. 
88 FOE-INVALID-ERROR-KEY VALUE 120. 

88 FOE-INVALID-VARIABLE-ATTRIBUTE VALUE 121. 
88 FOE-INVALID-HELP-KEY VALUE 123. 
88 FOE-FEATURE-NOT-IMPLEMENTED VALUE 124. 
88 FOE-CANNOT-CHANGE-FORM VALUE 125. 

88 FOE-INVALID-RECORD-TYPE VALUE 126. 
88 FOE-OBJECT-NOT-IN-FORM VALUE 127. 
88 FOE-INVALID-FORM-PROCESSOR VALUE 128. 
88 FDE-INVALID-X-INCREMENT VALUE 129. 

88 FDE-INVALID-Y-INCREMENT VALUE 130. 
88 FOE-FORM-TOO-LARGE-FOR-SCREEN VALUE 131. 
88 FOE-INVALID-TEXT-PROCESSING VALUE 132. 
88 FOE-INVALID-DESIGN-FORM VALUE 133. 

88 FOE-NO-OBJECT-VAR-DEFINED VALUE 134. 
88 FOE-EVENT-NOT-ASSIGNED VALUE 135. 
88 FOE-FORM-NOT-ENDED VALUE 136. 
88 FOE-INVALID-EVENT-FORM-NAME VALUE 137. 

88 FOE-INVALID-EVENT-FORM-KEY VALUE 138. 
88 FOE-FORM-ALREADY-OPEN VALUE 139. 
88 FOE-INVALID-EVENT-LABEL VALUE 140. 
88 FOE-FORM-NEEDS-CONVERSION VALUE 141. 

88 FOE-NO-EVENTS-ACTIVE VALUE 142. 
88 FOE-DELETE-OUTSIDE-FORM VALUE 143. 
88 FOE-MARK-OUTSIDE-FORM VALUE 144. 
88 FOE-BAD-DATA-VALUE VALUE 145. 

Revision D COBOL Parameter Definitions D-5 



COBOL Parameter Definitions 

88 FDE-RECORD-DEFN-NOT-WRITTEN VALUE 146. 
88 FOE-WRONG-VARIABLE-TYPE VALUE 147. 
88 FOE-INVALID-VARIABLE-LENGTH VALUE 148. 
88 FOE-EVENT-TRIGGER-EXISTS VALUE 149. 

88 FOE-FORM-ALREADY-COMBINED VALUE 150 
88 FOE-INVALID-TABLE-SIZE VALUE 151. 
88 FOE-FORM-NOT-ADDED-VALUE 152. 
88 FOE-INVALID-INPUT-FORMAT-KEY VALUE 153. 

FDE$COBOL_ VARIABLE_STATUS Deck 

The contents of this deck follow. 

01 FOE-COBOL-VARIABLE-STATUS USAGE COMP PIC S9(18) SYNC LEFT. 
88 FOE-NO-ERROR VALUE 0. 
88 FOE-INVALID-STRING VALUE 1. 
88 FOE-INVALID-REAL VALUE 2. 

88 FOE-INVALID-INTEGER VALUE 3. 
88 FOE-UNKNOWN-USER-VALUE VALUE 4. 
88 FOE-INVALID-BOP-DATA VALUE 5. 
88 FOE-NO-DIGITS VALUE 6. 

88 FOE-LOSS-OF-SIGNIFICANCE VALUE 7. 
88 FOE-VARIABLE-NO-FILLED VALUE 8. 
88 FOE-OVERFLOW VALUE 9. 
88 FOE-UNDERFLOW VALUE 10. 

88 FOE-INDEFINITE VALUE 11. 
88 FOE-INFINITE VALUE 12. 
88 FOE-VARIABLE-NOT-ENTERED VALUE 13. 
88 FOE-OUTPUT-FORMAT-BAD VALUE 14. 
88 FOE-VARIABLE-TRUNCATED VALUE 15. 

D-6 NOSNE Screen Formatting Revision D 



Pascal Status Constants E 





---------
This section lists the values for the Pascal procedure STATUS 
parameter. You can copy the values into your program by using an 
SCU *COPY directive. The deck FDE$PASCAL_PROCEDURE_ 
STATUS contains the values. 

CONST 
fde$ca11_successfu1 = O; 
fde$terminal_disconnected = 1; 
fde$no_input_request = 2; 
fde$cursor_not_in_variable = 3; 
fde$more_errors_exist 4; 

fde$unknown_form_name 5; 
fde$form_compilation_errors 6; 
fde$no_space_available = 7; 
fde$unsupported_termina1 = 8; 
fde$invalid_form_identifier = 9; 

fde$invalid_user_entry = 10; 
fde$unknown_variable_name = 11; 
fde$too_many_integers = 12; 
fde$object_name_exists = 13; 
fde$work_area_invalid = 14; 

fde$invalid_x_form_position 15; 
fde$invalid_y_form_position 16; 
fde$invalid_width = 17; 
fde$invalid_height = 18; 
fde$invalid_message_form_name 19; 

fde$invalid_occurrence = 20; 
fde$invalid_character_position 21; 
fde$invalid_mode = 22; 
fde$invalid_state = 23; 
fde$invalid_variable_value = 24; 

fde$invalid_object_name = 25; 
fde$invalid_form_name = 26; 
fde$form_closed = 27; 
fde$too_many_attributes = 28; 
fde$invalid_attribute_name = 29; 

Revision D Pascal Status Constants E-1 



Pascal Status Constants 

fde$too_many_screen_occurrence 30; 
fde$no_form_def1nition = 31; 
fde$too_many_stored_occurrence 32; 
fde$unknown_object_name = 33; 
fde$no_define_object_name = 34; 

fde$invalid_name = 35; 
fde$system_error = 36; 
fde$invalid_table_name = 37; 
fde$invalid_variable_name = 38; 
fde$form_pushed = 39; 

fde$unknown_table_name = 40; 
fde$no_table_variable_defined 41; 
fde$no_forms_to_pop = 42; 
fde$only_character_data = 43; 
fde$only_noncharacter_data 44; 

fde$form_definition_errors 45; 
fde$no_forms_to_push = 46; 
fde$invalid_program_values 47; 
fde$1nput_has_unknown_value = 48; 
fde$1nvalid_1nput_values = 49; 

fde$not_an_input_variable = 50; 
fde$cursor_not_1n_form = 51; 
fde$form_has_no_variables = 52; 
fde$no_forms_to_show = 53; 
fde$form_not_scheduled 54; 

fde$invalid_event_name 55; 
fde$invalid_x_posit1on 56; 
fde$invalid_y_position 57; 
fde$unknown_event_name 58; 
fde$invalid_deck_name = 59; 

fde$1nvalid_record_name = 60; 
fde$object_exists = 61; 
fde$table_name_exists = 62; 
fde$object_overlays = 63; 
fde$too_many_reals = 64; 

E-2 NOSNE Screen Formatting Revision D 



fde$too_many_strings = 65; 
fde$no_object_at_position = 66; 
fde$array_too_sma11 = 67; 
fde$string_too_sma11 = 68; 
fde$variable_name_exists 69; 

fde$form_already_added = 70; 
fde$invalid_event_active = 72; 
fde$cannot_update_opened_form 73; 
fde$help_form_exists = 74; 
fde$error_form_exists = 75; 

fde$error_message_exists = 76; 
fde$help_message_exists = 77; 
fde$invalid_display_name = 78; 
fde$invalid_real_range = 79; 
fde$invalid_integer_range 80; 

fde$unknown_integer_range 81; 
fde$unknown_real_range = 82; 
fde$unknown_valid_string = 83; 
fde$display_name_exists = 84; 
fde$event_name_exists = 85; 

fde$unknown_display_name = 86; 
fde$too_many_form_names = 87; 
fde$too_many_form_objects = 88; 
fde$no_text_at_position = 89; 
fde$no_text_for_object 90; 

fde$unknown_occurrence 91; 
fde$no_string = 92; 
fde$range_overlap = 93; 
fde$no_c01T1Tients_to_delete = 94; 
fde$object_occurrence_exists = 95; 

fde$no_string_specified = 96; 
fde$valid_string_exists = 97; 
fde$invalid_object_change 98; 
fde$invalid_address = 99; 
fde$terminal_not_identified = 100; 

Revision D 

Pascal Status Constants 

Pascal Status Constants E-3 



Pascal Status Constants 

fde$invalid_form_language = 101; 
fde$invalid_form_area_key = 102; 
fde$form_name_required = 103; 
fde$no_forms_to_read = 104; 
fde$invalid_help_form_name = 105; 

fde$invalid_error_form_name = 106; 
fde$create_mark_invalid = 107; 
fde$delete_mark_1nva11d = 108; 
fde$no_mark_defined = 109; 
fde$area_cuts_object = 110; 

fde$copy_outside_form = 111; 
fde$move_outs1de_form = 112; 
fde$invalid_form_attribute = 113; 
fde$1nvalid_record_attribute 114; 
fde$invalid_object_key = 115; 

fde$invalid_object_attr1bute = 116; 
fde$invalid_table_attribute = 117; 
fde$program_data_type = 118; 
fde$inva11d_output_format_key = 119; 
fde$inva11d_error_key = 120; 

fde$invalid_variable_attribute = 121; 
fde$invalid_help_key = 123; 
fde$feature_not_implemented = 124; 
fde$cannot_change_form = 125; 
fde$invalid_record_type 126; 

fde$object_not_in_form 127; 
fde$invalid_form_processor = 128; 
fde$invalid_x_increment = 129; 
fde$invalid_y_increment = 130; 
fde$form_too_large_for_screen 131; 

fde$invalid_text_processing = 132; 
fde$1nvalid_design_form = 133; 
fde$no_object_variable_defined = 134; 
fde$event_not_assigned = 135; 
fde$form_not_ended = 136; 

E-4 NOSNE Screen Formatting Revision D 



fde$invalid_event_form_name = 137; 
fde$invalid_event_form_key = 138; 
fde$form_already_open = 139; 
fde$fnvalid_event_labe1 = 140; 
fde$form_requires_conversion 141; 

fde$no_events_active = 142; 
fde$delete_outside_form = 143; 
fde$mark_outside_form = 144; 
fde$bad_data_value = 145; 
fde$record_defn_not_written = 146; 

fde$wrong_variable_type = 147; 
fde$invalid_variable_length = 148; 
fde$event_trigger_exists = 149; 
fde$form_already_combined = 150; 
fde$invalid_table_sfze = 151; 

fde$form_not_added = 152; 
fde$invalid_input_format_key = 153; 
fde$system_error_message = 154; 
fde$system_help_message = 155; 
fde$system_bad_key_message = 156; 

Revision D 

Pascal Status Constants 

Pascal Status Constants E-5 





CYBIL Constants and Types F 

Constants ....................................................... F-1 

Types ........................................................... F-3 





This section lists the constants and types that are in each external 
reference routine. These constants and types are made available to 
your program through the inclusion of procedure definitions in the 
program. Procedure definitions are included using SCU *COPYC 
directives. For examples of how this is done, refer to the CYBIL 
chapters in this manual and the section on file interface procedures in 
the CYBIL for NOSNE Usage manual. 

fdc$max_character_position = fdc$max1mum_record_lenQth; 
fdc$maximum_comment_length = fdc$max1mum_text_length; 
fdc$maximum_comments = 10000; 
fdc$maximum_errors = 10000; 

fdc$maximum_error_length = fdc$maximum_text_length; 
fdc$maximum_events = 1000; 
fdc$max1mum_help_length = fdc$maximum_text_length; 
fdc$maximum_form_1dentifier = 1000; 

fdc$maximum_objects = 10000; 
fdc$maximum_object_d1splays = 100; 
fdc$maximum_occurrence = 1000; 
fdc$maximum_record_length = osc$max_segment_length; 

fdc$maximum_table_variables = 10000; 
fdc$maximum_tables = 10000; 
fdc$maximum_text_length = cyc$max_string_size; 
fdc$maximum_valid_ranges 10000; 

fdc$max1mum_val1d_str1ng fdc$max1mum_text_length; 
fdc$maximum_valid_strings = 10000; 
fdc$maximum_variable_length = fdc$max1mum_record_length; 
fdc$maximum_variables = fdc$maximum_objects; 

fdc$maximum_x_position = 256; 
fdc$maximum_y_position = 256; 
fdc$message_form_name = 'FDM$MESSAGE_FORM 
fdc$new_line_character =$char (31); {Unit separator} 

Revision D CYBIL Constants and Types F-1 



Constants 

fdc$system_coordinate_system = fdc$character_system; 
fdc$system_currency_sign = '$'; 
fdc$system_decimal_point = '.'; 
fdc$system_design_table_name = 'DTBL'; 

fdc$system_design_variable_name = 'DVAR'; 
fdc$system_display_name = 'HIGHLIGHT'; 
fdc$system_error_message = 'Please correct.'; 
fdc$system_exponent_character = 'E'; 

fdc$system_form_processor = fdc$cybil_processor; 
fdc$system_help_message = 'Please enter.'; 
fdc$system_input_format = fdc$character_input_format; 
fdc$system_io_mode = fdc$terminal_input_output; 

fdc$system_output_format = fdc$character_output_format; 
fdc$system_occurrence = 1; 
fdc$system_program_data_type = fdc$program_character_type; 
fdc$system_record_type = fdc$program_data_type_record; 

, , . 
' ' fdc$system_thousands_separator = 

fdc$system_unknown_entry = '?'; 

fdc$system_user_entry = fdc$must_enter; 

mlc$min_exponent_style 0, 
mlc$max_exponent_style 6; 

F-2 NOSNE Screen Formatting Revision D 



Types 

Types 

fdt$change_form_key = (fdc$add_display_definition, 
fdc$add_event, fdc$add_form_conment, fdc$delete_all_displays, 
fdc$delete_a11_events, fdc$delete_display_defintion, 
fdc$delete_event, fdc$delete_form_conments, 
fdc$design_display_attribute, fdc$design_variable_name, 
fdc$event_form, fdc$form_area, fdc$form_display_attribute, 
fdc$form_help, fdc$form_language, fdc$form_name, 
fdc$form_processor, fdc$message_form, fdc$unused_form_entry, 
fdc$validate_variable_values); 

fdt$change_object_key = (fdc$object_name, fdc$object_display, 
fdc$object_position, fdc$unused_object_entry, 
fdc$object_width, fdc$object_height, fdc$object_text, 
fdc$object_line_x_increment, fdc$object_line_y_increment, 
fdc$object_text_processing); 

fdt$change_record_key = (fdc$record_deck_name, fdc$record_name, 
fdc$record_type, fdc$table_access, fdc$unused_record_entry); 

fdt$change_table_key = (fdc$add_table_variable, 
fdc$delete_table_variable, fdc$new_table_name, 
fdc$stored_occurrence, fdc$unused_table_entry, 
fdc$visible_occurrence); 

fdt$change_variable_key = (fdc$error_display, 
fdc$output_format, fdc$input_format, fdc$io_mode, 
fdc$terminal_user_entry, fdc$variable_length, 
fdc$add_valid_real_range, fdc$delete_valid_real_range, 
fdc$add_valid_integer_range, fdc$delete_valid_integer_range, 
fdc$add_valid_string, fdc$delete_valid_string, 
fdc$variable_help, fdc$variable_error, fdc$add_var_comment, 
fdc$delete_var_conments, fdc$unused_variable_entry, 
fdc$new_variable_name, fdc$process_as_event, 
fdc$unknown_entry_character, fdc$string_compare_rules, 
fdc$program_data_type); 

Revision D CYBIL Constants and Types F-3 



Types 

fdt$character_position 1 .. fdc$max_character_posit1on; 

fdt$comment =string * <= fdc$max1mum_comment_length); 

fdt$comment_length = 0 .. fdc$max1mum_comment_length; 

fdt$digits_in_exponent = mlt$exponent_style; 

fdt$d1Qits_r1ght_dec1mal = 1 .. 19; 

fdt$display_attribute = (fdc$inverse_video, fdc$1ow_1ntensity, 
fdc$h1gh_intens1ty, fdc$blink, fdc$underline, fdc$protect, 
fdc$hidden, fdc$black_foreground, fdc$black_background, 
fdc$blue_foreground, fdc$blue_background, 
fdc$green_foreground, fdc$green_background, 
fdc$magenta_foreground, fdc$magenta_background, 
fdc$red_foreground, fdc$red_background, fdc$cyan_foreground, 
fdc$cyan_background, fdc$yellow_foreground, 
fdc$yellow_background, fdc$white_foreground, 
fdc$white_background, fdc$fine_line, fdc$medium_line, 
fdc$bold_line, fdc$fine_border, fdc$medium_border, 
fdc$bold_border, fdc$italic_display_attribute, 
fdc$t1tle_d1splay_attr1bute, fdc$input_d1splay_attr1bute, 
fdc$error_display_attribute, fdc$message_display_attribute, 
fdc$display_left_to_right, fdc$display_right_to_left, 
fdc$push_input_character, fdc$user_attr1bute_1, 
fdc$user_attribute_2, fdc$user_attr1bute_3, 
fdc$user_attr1bute_4, fdc$user_attribute_s, 
fdc$user_attr1bute_6, fdc$user_attr1bute_7, 
fdc$user_attribute_8, fdc$user_attr1bute_9, 
fdc$user_attribute_10); 

fdt$display_attribute_set = set of fdt$display_attribute; 

F-4 NOSNE Screen Formatting Revision D 



fdt$error_definition = record 
case key: fdt$error_key of 

fdc$error_form = 
error_form: ost$name, 
fdc$error_message = 
p_error_message: ·fdt$error_message, 
fdc$no_error_response = 

fdc$system_default_error 

ca send 
recend; 

fdt$error_input_conversion =record 
occurence: fdt$occurrence, 
variable_name: ost$name, 

recend; 

fdt$error_invalid_value = record 
occurence: fdt$occurrence, 
variable_name: ost$name, 

recend; 

fdt$error_key = (fdc$error_form, fdc$error_message, 
fdc$no_error_response, fdc$system_default_error); 

fdt$error_message =string * <= fdc$maximum_error_length); 

fdt$error_message_length = O .. fdc$maximum_error_length; 

fdt$error_no_table_object =record 
occurrence: fdt$occurrence, 
table_name: ost$name, 
variable_name: ost$name, 

recend; 

fdt$error_no_table_variable 
table_name: ost$name, 
variable_name: ost$name, 

recend; 

record 

Types 

Revision D CYBIL Constants and Types F-5 



I 

Types 

fdt$error_no_variable_object =record 
occurrence: fdt$occurrence, 
variable_name: ost$name, 

recend; 

fdt$error_output_conversion record 
occurence: fdt$occurrence, 
variable_name: ost$name, 

recend; 

fdt$event_action = (fdc$return_program_norma1, 
fdc$return_program_abnorma1, fdc$page_table_forward, 
fdc$page_table_backward, fdc$scro11_table_forward, 
fdc$scro11_table_backward, fdc$display_help, fdc$erase_help, 
fdc$execute_c0111Tiand, fdc$ignore_event, 
fdc$tab_to_next_form_field, fdc$tab_to_previous_form_field, 
fdc$scro11_variable_forward, fdc$scro11_variable_backward), 
fdc$page_variable_forward,fdc$page_variable_backward, 
fdc$page_variable_first,fdc$page_variable_last, 
fdc$page_table_first,fdc$page_table_last); 

fdt$event_c0111Tiand =string ( * ); 

fdt$event_form_definition = record 
case key: fdt$event_form_key of 

f dc$no_event_form = 

fdc$system_default_event_form 

fdc$user_event_form = 
event_form_name: ost$name, 

ca send 
recend; 

F-6 NOSNE Screen Formatting Revision D 



fdt$event_form_key = (fdc$no_event_form, 
fdc$system_default_event_form, fdc$user_event_form); 

fdt$event_position = record 
form_identifier: fdt$form_identifier, 
form_x_position: fdt$x_position, 
form_y_position: fdt$y_position, 
screen_x_position: fdt$x_position, 
screen_y_position: fdt$y_position, 
case key: fdt$event_position_key of 

f dc$form_event = 

fdc$object_event 
object_name: ost$name, 
object_occurrence: fdt$occurrence, 
object_x_position: fdt$x_position, 
object_y_position: fdt$y_position, 

Types 

case object_definition_key: fdt$object_definition_key of 
fdc$box,fdc$constant_text, fdc$constant_text_box, 
fdc$line,fdc$table 

fdc$variable_text, fdc$variable_text_box 
character_position: fdt$character_position, 

ca send 
ca send 

recend; 

Revision D CYBIL Constants and Types F-7 



Types 

fdt$event_position_key (fdc$form_event, fdc$object_event, 
fdc$screen_event); 

fdt$event_trigger = (fdc$next, fdc$help, fdc$stop, fdc$back, 
fdc$up, fdc$down, fdc$forward, fdc$backward, fdc$undo, 
fdc$redo, fdc$quit, fdc$exit, fdc$first, fdc$1ast, fdc$edit, 
fdc$data, fdc$function_1, fdc$function_2, fdc$function_3, 
fdc$function_4, fdc$function_5, fdc$function_6, 
fdc$function_7, fdc$function_8, fdc$function_9, 
fdc$function_10, fdc$function_11, fdc$function_12, 
fdc$function_13, fdc$function_14, fdc$function_15, 
fdc$function_16, fdc$shift_next, fdc$shift_help, 
fdc$shift_stop, fdc$shift_back, fdc$shift_up, fdc$shift_down, 
fdc$shift_forward, fdc$shift_backward, fdc$shift_edit, 
fdc$shift_data, fdc$shift_function_1, fdc$shift_function_2, 
fdc$shift_function_3, fdc$shift_function_4, 
fdc$shift_function_5, fdc$shift_function_6, 
fdc$shift_function_7, fdc$shift_function_8, 
fdc$shift_function_9, fdc$shift_function_10, 
fdc$shift_function_11, fdc$shift_function_12, 
fdc$shift_function_13, fdc$shift_function_14, 
fdc$shift_function_15, fdc$shift_function_16, fdc$pick, 
fdc$insert_line, fdc$delete_line, fdc$home_cursor, 
fdc$clear_screen, fdc$time_out, fdc$variable_trigger); 

fdt$exponent_output_format = record 
field_width: fdt$real_field_width {w FORTRAN descriptor}, 
digits_in_exponent: fdt$digits_in_exponent {e FORTRAN 

descriptor}, 
digits_right_decimal: fdt$digits_right_decimal {d FORTRAN 

descriptor}, 
sign_treatment: fdt$sign_treatment, 
suppress_zero: boolean {TRUE to display zero as blanks}, 

recend; 

fdt$f loat_output_format = record 
digits_right_decimal: fdt$digits_right_decimal 

{d FORTRAN descriptor}, 
field_width: fdt$real_field_width {w FORTRAN descriptor}, 
sign_treatment: fdt$sign_treatment, 
suppress_zero: boolean {TRUE to display zero as blanks}, 

recend; 

F-8 NOSNE Screen Formatting Revision D 



fdt$form_area = record 
case key: fdt$form_area_key of 

fdc$def ined_area = 
x_position: fdt$x_position, 
y_position: fdt$y_position, 
width: fdt$width, 
height: fdt$height, 
f dc$screen_area 

ca send 
recend; 

fdt$form_area_key = (fdc$defined_area, fdc$screen_area); 

fdt$form_attribute = record 
put_value_status: fdt$put_value_status {output}, 
case key: fdt$change_form_key {input} of {input} 

f dc$add_event = 
event_name: ost$name, 
event_label: ost$name, 
event_trigger: fdt$event_trigger, 
case event_action: fdt$event_action of 

fdc$execute_conmand = 
p_event_cornnand: Afdt$event_cornnand, 

casend, 
fdc$add_form_conment = 
p_form_cornnent: Afdt$cornnent, 
fdc$add_display_definition = 
display_attribute: fdt$display_attribute_set, 
display_name: ost$name, 
fdc$delete_all_displays 

fdc$delete_a11_events = 

fdc$delete_event, fdc$delete_display_definition 
name: ost$name, 
fdc$delete_form_conments = 

fdc$design_display_attribute 
design_display_attribute: fdt$display_attribute_set, 
fdc$design_variable_name = 
design_variable_name: ost$name, 

Types 

Revision D CYBIL Constants and Types F-9 



Types 

fdc$event_form = 
event_form_definition: fdt$event_form_definition, 
f dc$form_area = 
form_area: fdt$form_area, 
fdc$form_display_attribute 
form_display_attribute: fdt$display_attribute_set, 
fdc$form_help = 
form_help: fdt$help_definition, 
fdc$form_language = 
form_language: ost$natural_language, 
f dc$f orm_name = 
form_name: ost$name, 
f dc$form_processor = 
form_processor: fdt$form_processor, 
fdc$message_form = 
message_form: ost$name, 
fdc$unused_form_entry 

fdc$validate_variable_values 
validate_variable_values: boolean, 

ca send 
recend; 

fdt$form_attributes =array [1 .. • l of fdt$form_attribute; 

fdt$form_definition_error_key = (fdc$no_table_object, 
fdc$no_table_variable, fdc$no_variable_object, 
fdc$unequal_tbl_obj_width, fdc$no_variable_definition, 
fdc$error_input_conversion, fdc$error_output_conversion, 
fdc$error_invalid_value); 

fdt$form_identifier = 

fdt$form_module = SEQ 

fdt$form_name = record 
name: ost$name, 

.. fdc$maximum_form_identifier; 

* ) ; 

name_selection: fdt$name_selection, 
recend; 

fdt$form_names array [1 .. * l of fdt$form_name; 

F-10 NOSNE Screen Formatting Revision D 



f dt$form_object = record 
name: ost$name, 
object: fdt$object_definition_key, 
occurrence: fdt$occurrence, 
x_position: fdt$x_position, 
y_position: fdt$y_position, 

recend; 

fdt$form_objects array [1 .. • l of fdt$form_object; 

fdt$form_processor = (fdc$ansi_fortran_processor, 
fdc$cdc_fortran_processor, fdc$cobol_processor, 
fdc$cybil_processor, fdc$scl_processor); 

fdt$get_error_definition =record 
case key: fdt$get_error_key of 

fdc$get_error_form = 
error_form: ost$name, 
fdc$get_error_message, fdc$get_system_default_error 
error_message_length: fdt$error_message_length, 
fdc$get_no_error_response 

ca send 
recend; 

Types 

fdt$get_error_key = (fdc$get_error_form, fdc$get_error_message, 
fdc$get_no_error_response, fdc$get_system_default_error); 

fdt$get_form_attribute = record 
get_value_status: fdt$get_value_status {output}, 
case key: {input} fdt$get_form_key of 

Revision D 

f dc$get_event_command = 
event_command_name: {input} ost$name, 
p_event_command: {output} -fdt$event_command, 
fdc$get_event_form = 
event_form_definition: {output} fdt$event_form_definition, 
fdc$get_event_form_identifier = 
event_form_identifier: {output} fdt$form_identifier, 
fdc$get_form_area = 
form_area: {output} fdt$form_area, 
fdc$get_form_comment_length = 
form_conment_length: {output} fdt$corrment_length, 

CYBIL Constants and Types F-11 



Types 

fdc$get_form_display_attribute = 

form_d1splay_attribute: {output} fdt$display_attr1bute_set, 
fdc$Qet_form_help = 
form_help: {output} fdt$get_help_definition, 
fdc$Qet_form_help_message = 
p_form_help_message: {input} ·fdt$help_message, 
fdc$get_form_language = 

form_language: {output} ost$natural_language, 
fdc$Qet_form_name = 

form_name: {output} ost$name, 
fdc$get_form_processor = 

form_processor: {output} fdt$form_processor, 
fdc$get_message_form = 
message_form: {output} ost$name, 
f dc$get_next_event = 
event_action: {output} fdt$event_action, 
event_label: {output} ost$name, 
event_name: {output} ost$name, 
event_conmand_length: {output} integer, 
event_tr1gger: {output} fdt$event_trigger, 
fdc$get_next_form_conment = 
p_form_conment: {input} ·fdt$conment, 
fdc$get_next_display = 
d1splay_attr1bute: {output} fdt$d1splay_attr1bute_set, 
display_name: {output} ost$name, 
fdc$Qet_number_events = 

number_events: {output} fdt$number_events, 
fdc$Qet_number_form_conments = 

number_form_conments: {output} fdt$number_conments, 
fdc$get_number_displays = 
number_form_displays: {output} fdt$number_object_d1splays, 
fdc$get_number_objects = 

number_objects: {output} fdt$number_objects, 
fdc$Qet_number_tables = 
number_tables: {output} fdt$number_tables, 
fdc$get_number_variables = 

number_variables: {output} fdt$number_var1ables, 
fdc$get_unused_form_entry 

ca send 
recend; 

F-12 NOSNE Screen Formatting Revision D 



Types 

fdt$get_form_key = (fdc$get_event_conmand, fdc$get_event_form, 
fdc$get_event_form_identifier, fdc$get_form_area, 
fdc$get_form_conment_length, fdc$get_form_display_attribute, 
fdc$get_form_help, fdc$get_form_help_message, 
fdc$get_form_language, fdc$get_form_name, 

fdc$get_form_processor, 
fdc$get_message_form, fdc$get_next_display, 

fdc$get_next_event, 
fdc$get_next_form_conment, fdc$get_number_displays, 
fdc$get_number_events, fdc$get_number_form_conments, 
fdc$get_number_objects, fdc$get_number_tables, 
fdc$get_number_variables, fdc$get_unused_form_entry); 

fdt$get_form_attributes = array [1 .. * l of 
fdt$get_form_attribute; 

fdt$get_help_definition = record 
case key: fdt$get_help_key of 

fdc$get_help_form = 
help_form: ost$name, 
fdc$get_help_message, fdc$get_system_default_help 
help_message_length: fdt$help_message_length, 
fdc$get_no_help_response 

ca send 
recend; 

Revision D CYBIL Constants and Types F-13 



Types 

fdt$get_object_attribute = record 
get_value_status: fdt$get_value_status {output}, 
case key: {input} fdt$get_object_key of 

fdc$get_object_definition = 
get_object_definition: {output} fdt$get_object_definition, 
fdc$get_object_display = 
display_attribute: {output} fdt$display_attribute_set, 
f dc$get_object_name = 
object_name: {output} ost$name, 
occurrence: {output} fdt$occurrence, 
fdc$get_object_text = 
p_text: {input} ·fdt$text, 
fdc$get_object_text_length 
text_length: {output} fdt$text_length, 
fdc$get_unused_object_entry 

ca send 
recend; 

fdt$get_object_attributes =array [1 .. • ] of 
fdt$get_object_attribute; 

fdt$get_object_definition = record 
case key: {input} fdt$object_definition_key of 

f dc$box = 
box_width: {output} fdt$width, 
box_height: {output} fdt$height, 
fdc$line = 
x_increment: {output} fdt$x_increment, 
y_increment: {output} fdt$y_increment, 
fdc$constant_text = 
constant_text_width: {output} fdt$width, 
constant_text_length: {output} fdt$text_length, 
fdc$constant_text_box = 
constant_box_height: {output} fdt$height, 
constant_box_processing: {output} fdt$text_box_processing, 
constant_box_width: {output} fdt$width, 
constant_box_text_length: {output} fdt$text_length, 
fdc$table = 
table_height: {output} fdt$height, 
table_width: {output} fdt$width, 

F-14 NOSNE Screen Formatting Revision D 



Types 

fdc$variable_text_box = 
variable_box_height: {output} fdt$height, 
variable_box_processing: {output} fdt$text_box_processing, 
variable_box_text_length: {output} fdt$text_length, 
variable_box_width: {output} fdt$width, 
fdc$variable_text = 
variable_text_length: {output} fdt$text_length, 
variable_text_width: {output} fdt$width, 

ca send 
recend; 

fdt$get_object_key = (fdc$get_object_definition, 
fdc$get_object_display, fdc$get_object_name, 
fdc$get_object_text, fdc$get_object_text_length, 
fdc$get_unused_object_entry); 

fdt$get_record_attribute = record 
get_value_status {output} : fdt$get_value_status, 
case key {input} fdt$get_record_key of 

f dc$get_record_deck_name = 
record_deck_name: {output} ost$name, 
fdc$get_record_length = 
record_length {output} : fdt$record_length, 
f dc$get_record_name = 
record_name {output} : ost$name, 
fdc$get_record_type = 
record_type {output} fdt$record_type, 
fdc$get_table_access = 
table_name {input} : ost$name, 
access_all_occurrences {output} 
fdc$get_unused_record_entry 

boolean, 

ca send 
recend; 

fdt$get_record_attributes =array [1 .. • l of 
fdt$get_record_attribute; 

Revision D CYBIL Constants nnd Types F-15 



Types 

fdt$get_record_key = (fdc$get_number_record_variable, 
fdc$Qet_record_deck_name, fdc$get_record_definition, 
fdc$Qet_record_length, fdc$get_record_name, 
fdc$Qet_record_type, fdc$get_record_variable_names, 
fdc$get_table_access, fdc$get_unused_record_entry); 

fdt$get_table_attribute = record 
get_value_status: {output} fdt$get_value_status, 
case key: {input} fdt$get_table_key of 

fdc$get_next_table_variable = 
variable_name: {output} ost$name, 
fdc$get_number_table_variables = 
number_table_variables: {output} 
fdt$number_table_variables, 
f dc$get_stored_occurrence = 
stored_occurrence: {output} fdt$occurrence, 
fdc$get_unused_table_entry 

fdc$get_visible_occurrence 
visible_occurrence: {output} fdt$occurrence, 

ca send 
recend; 

fdt$get_table_attributes =array [1 .. * l of 
fdt$get_table_attribute; 

fdt$get_table_key = (fdc$get_next_table_variable, 
fdc$get_number_table_variables, fdc$get_stored_occurrence, 
fdc$get_unused_table_entry, fdc$get_visible_occurrence); 

fdt$get_value_status = (fdc$system_computed_value, 
fdc$system_default_value, fdc$undefined_value, 
fdc$unprocessed_get_value, fdc$user_defined_value); 

fdt$get_variable_attribute = record 
get_value_status: {output} fdt$get_value_status, 
case key: {input} fdt$get_variable_key of 

fdc$get_error_display = 

display_attribute: {output} fdt$display_attribute_set, 
fdc$get_input_format = 
input_format: {output} fdt$input_format, 
fdc$get_io_mode = 

io_mode: {output} fdt$io_mode, 

F-16 NOSNE Screen Formatting Revision D 



Revision D 

fdc$get_next_valid_real_range 
minimum_real: {output} real, 
maximum_real: {output} real, 
fdc$get_next_valid_string = 
p_valid_string: {input} ·fdt$valid_string, 
fdc$get_next_var_conment = 
p_var_conment: {input} ·fdt$conment, 
fdc$get_number_valid_integers = 

Types 

number_valid_integers: {output} fdt$number_valid_integers, 
fdc$get_number_valid_reals = 

number_valid_reals: {output} fdt$number_valid_reals, 
fdc$get_number_valid_strings = 
number_valid_strings: {output} fdt$number_valid_strings, 
fdc$get_number_var_conments = 

number_var_conments: {output} fdt$number_conments, 
fdc$get_output_format = 

output_format: {output} fdt$output_for.mat, 
f dc$get_process_as_event = 
process_as_event: {output} boolean, 
fdc$get_program_data_type = 
program_data_type: {output} fdt$program_data_type, 
fdc$get_string_compare_rules = 
compare_in_upper_case: {output} boolean, 
compare_to_uniQue_substring: {output} boolean, 
fdc$get_terminal_user_entry = 
terminal_user_entry: {output} fdt$terminal_user_entry, 
fdc$get_unknown_entry_character = 
unknown_entry_character: {output} string (1), 
fdc$get_unused_variable_entry 

fdc$get_valid_integer_range = 
minimum_integer: {output} integer, 
maximum_integer: {output} integer, 
fdc$get_valid_string_length = 
valid_string_length: {output} fdt$valid_string_length, 
fdc$get_var_conment_length = 
var_comment_length: {output} fdt$conment_length, 
fdc$get_var_error_message = 

p_error_message: {input} ·fdt$error_message, 
fdc$get_var_help_message = 

p_help_message: {input} ·fdt$help_message, 

CYBIL Constants and Types F-17 



Types 

fdc$get_variable_error = 
variable_error: {output} fdt$get_error_definition, 
fdc$get_variable_help = 
variable_help: {output} fdt$get_help_definition, 
fdc$get_variable_length = 
variable_length: {output} fdt$variable_length, 

ca send 
recend; 

fdt$get_variable_attributes =array [1 .. * l of 
fdt$get_variable_attribute; 

fdt$get_variable_key = (fdc$get_error_display, 
fdc$get_input_format, fdc$get_io_mode, 
fdc$get_next_valid_real_range, fdc$get_next_valid_string, 
fdc$get_next_var_conment, fdc$get_number_valid_integers, 
fdc$get_number_valid_reals, fdc$get_number_valid_strings, 
fdc$get_number_var_conments, fdc$get_output_format, 
fdc$get_process_as_event, fdc$get_program_data_type, 
fdc$get_string_compare_rules, fdc$get_terminal_user_entry, 
fdc$get_unknown_entry_character, 
fdc$get_unused_variable_entry, fdc$get_valid_integer_range, 
fdc$get_valid_string_length, fdc$get_var_conment_length, 
fdc$get_var_error_message, fdc$get_var_help_message, 
fdc$ge{_variable_help, fdc$get_variable_error, 
fdc$get_variable_length); 

fdt$height = 1 .. fdc$maximum_y_position; 

fdt$help_definition = record 
case key: fdt$help_key of 

fdc$help_form = 
help_form: ost$name, 
fdc$help_message = 
p_help_message: -fdt$help_message, 
fdc$no_help_response, fdc$system_default_help 

ca send 
recend; 

F-18 NOSNE Screen Formatting Revision D 



fdt$help_key = (fdc$help_form, fdc$help_message, 
fdc$no_help_response, fdc$system_default_help); 

fdt$help_message = string * <= fdc$maximum_help_length); 

fdt$help_message_length = O .. fdc$maximum_help_length; 

fdt$input_currency_format record 
currency_sybmol: string (1), 
thousands_separator: string (1), 
decimal_point: string (1), 

recend; 

fdt$input_format = record 

Types 

case key: fdt$input_format_key of 
fdc$character_input_format, fdc$alphabetic_1nput_format, 
fdc$digits_input_format, fdc$real_input_format, 
fdc$signed_input_format, fdc$ydm_format, fdc$mdy_format, 
fdc$dmy_format, fdc$iso_date_format, 
fdc$month_dd_yyyy_format = 

fdc$currency_input_format = 
input_currency_format: fdt$input_currency_format, 

ca send 
recend; 

fdt$input_format_key = (fdc$alphabetic_input_format, 
fdc$character_input_format, fdc$currency_input_format, 
fdc$digits_input_format, fdc$dmy_format, fdc$mdy_format, 
fdc$month_dd_yyyy_format,fdc$iso_date_format, 
fdc$real_input_format, fdc$signed_input_format, 
fdc$ydm_format); 

fdt$integer_field_width .. 19; 

fdt$integer_output_format record 
field_width: fdt$integer_field_width {w FORTRAN descriptor}, 
minimum_output_digits: fdt$minimum_output_digits {m FORTRAN 

descriptor}, 
sign_treatment: fdt$sign_treatment, 

recend; 

Revision D CYBIL Constants and Types F-19 



Types 

fdt$io_mode = (fdc$program_1nput_output {no 10 to terminal}, 
fdc$terminal_input, fdc$terminal_input_output, 
fdc$term1nal_output}; 

fdt$min1mum_output_dig1ts = 0 .. 19; 

fdt$name_selection = (fdc$select_object, fdc$select_table, 
fdc$select_var1able}; 

fdt$number_conments = 0 .. fdc$maximum_conments; 

fdt$number_errors integer; 

fdt$number_events O .. fdc$maximum_events; 

fdt$number_names = integer; 

fdt$number_object_displays = 0 .. fdc$maximum_object_displays; 

fdt$number_objects = O .. fdc$maximum_objects; 

fdt$number_table_var1ables = O .. fdc$max1mum_table_variables; 

fdt$number_tables = 0 .. fdc$maximum_tables; 

fdt$number_va11d_integers = O .. fdc$max1mum_valid_ranges; 

fdt$number_val1d_reals = o fdc$max1mum_valid_ranges; 

fdt$number_va11d_str1ngs O .. fdc$maximum_valid_strings; 

fdt$number_var1ables = O .. fdc$maximum_variables; 

F-20 NOS/VE Screen Formatting Revision D 



fdt$object_attribute = record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_object_key of 

fdc$object_display = 
display_attribute: {input} fdt$display_attribute_set, 
fdc$object_height = 
height: {input} fdt$height, 
fdc$object_line_x_increment 
x_increment: {input} fdt$x_increment, 
fdc$object_line_y_increment = 
y_increment: {input} fdt$y_increment, 
f dc$object_name = 

object_name: {input} ost$name, 
occurrence: {input} fdt$occurrence~ 
fdc$object_position 
x_position: {input} fdt$x_position, 
y_position: {input} fdt$y_position, 
fdc$object_text = 
p_text: {input} ·fdt$text, 
fdc$object_text_processing 
text_box_processing: {input} fdt$text_box_processing, 
fdc$object_width = 

width: {input} fdt$width, 
fdc$unused_object_entry 

ca send 
recend; 

Types 

fdt$object_attributes array [1 .. * l of fdt$object_attribute; 

fdt$object_definition record 
case key: {input} fdt$object_definition_key of {input} 

f dc$box = 

Revision D 

box_width: fdt$width, 
box_height: fdt$height, 
fdc$constant_text = 
constant_text_width: fdt$w1dth, 
p_constant_text: ·fdt$text, 

CYBIL Constants and Types F-21 



Types 

fdc$constant_text_box = 

constant_box_height: fdt$he1ght, 
constant_box_processing: fdt$text_box_processing, 
constant_box_w1dth: fdt$width, 
p_constant_box_text: -fdt$text, 
fdc$1ine = 

x_increment: fdt$x_increment, 
y_increment: fdt$y_increment, 
fdc$table = 
table_width: fdt$width, 
table_height: fdt$height, 
fdc$variable_text = 
p_variable_text: -fdt$text, 
variable_text_width: fdt$width, 
fdc$variable_text_box = 
p_variable_box_text: -fdt$text, 
variable_box_height: fdt$height, 
var1able_box_processing: fdt$text_box_processing, 
variable_box_width: fdt$width, 

ca send 
recend; 

fdt$object_definition_key = (fdc$box, fdc$constant_text, 
fdc$constant_text_box, fdc$1ine, fdc$table, 
fdc$variable_text, fdc$variable_text_box); 

fdt$object_event_position = record 
form_identifier: fdt$form_identifier, 
object_name: ost$name, 
occurrence: fdt$occurrence, 
case key: fdt$object_definition_key of 

fdc$box, fdc$1ine, fdc$constant_text, 
fdc$constant_text_box = 
{The x, y positions are relative to the form} 
form_x_pos1tion: fdt$x_posit1on, 
form_y_pos1tion: fdt$y_position, 
fdc$variable_text, fdc$variable_text_box 
character_position: fdt$character_position, 

ca send 
recend; 

F-22 NOS/VE Screen Formatting Revision D 



fdt$occurrence = 1 .. fdc$maximum_occurrence; 

fdt$output_currency_format = record 
currency_sybmol: string (1), 
thousands_separator: string (1), 
decimal_point: string (1), 
field_width: fdt$text_length, 
sign_treatment: fdt$sign_treatment, 
suppress_leading_zeros: boolean {TRUE to suppress}, 

recend; 

fdt$output_format = record 
case key: fdt$output_format_key of 

fdc$character_output_format = 

fdc$currency_output_format = 
output_currency_format: fdt$output_currency_format, 

f dc$dmy_output_format 
{Uses an 8 character field, dd/nm/yy} 

fdc$e_e_output_format, fdc$g_e_output_format 
exponent_output_format: fdt$exponent_output_format, 
fdc$f_output_format, fdc$e_output_format, 
fdc$g_output_format = 
float_output_format: fdt$float_output_format, 
fdc$integer_output_format = 
integer_output_format: fdt$integer_output_format, 
fdc$iso_output_format = 
{Uses a 10 character field, yyyy-nm-dd} 

fdc$mdy_output_format = 
{Uses an 8 character field, nm/dd/yy} 

fdc$month_dd_yyyy_out_format = 
{Uses a 18 character field, monthxxxx dd, yyyy} 

fdc$undef ined_output_format 

fdc$ydm_output_format = 
{Uses an 8 character field, yy/dd/nm} 

casend 
recend; 

Types 

Revision D CYBIL Constants nnd Types F-23 



Types 

fdt$output_format_key = (fdc$character_output_format, 
fdc$currency_output_format, fdc$dmy_output_format, 
fdc$e_e_output_format, fdc$e_output_format, 
fdc$f _output_format, fdc$g_e_output_format, 
fdc$g_output_format, fdc$iso_output_format, 
fdc$mdy_output_format, fdc$month_dd_yyyy_out_format, 
fdc$integer_output_format, fdc$undefined_output_format, 
fdc$ydm_output_format); 

fdt$put_value_status = (fdc$put_value_accepted, 
fdc$unprocessed_put_value); 

fdt$program_data_type = (fdc$program_character_type, 
fdc$program_integer_type, fdc$program_real_type, 
fdc$program_upper_case_type); 

fdt$real_field_width 1 . . 19; 

fdt$record_attribute record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_record_key of 

f dc$record_deck_name = 

record_deck_name: {input} ost$name, 
f dc$record_name = 

record_name: {input} ost$name, 
fdc$record_type = 

record_type: {input} fdt$record_type, 
fdc$table_access = 

table_name: {input} ost$name, 
access_all_occurrences: {input} boolean, 
fdc$unused_record_entry 

ca send 
recend; 

fdt$record_attributes = array [1 .. * l of fdt$record_attribute; 

fdt$record_length = 0 .. fdc$maximum_record_length; 

fdt$record_position 1 .. fdc$maximum_record_length; 

F-24 NOSNE Screen Formatting Revision D 



fdt$record_type = (fdc$character_record, 
fdc$program_data_type_record); 

fdt$sign_treatment = mlt$sign_treatment; 

fdt$table_attribute = record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_table_key of 

fdc$add_table_variable, fdc$delete_table_variable 
variable_name: {input} ost$name, 
fdc$new_table_name = 
new_table_name: {input} ost$name, 
f pc$stored_occurrence = 
stored_occurrence: {input} fdt$occurrence, 
fdc$unused_table_entry 

fdc$visible_occurrence 
visible_occurrence: {input} fdt$occurrence, 

ca send 
recend; 

fdt$table_size = O .. fdc$maximum_occurrence; 

Types 

fdt$table_attributes =array [1 .. • 1 of fdt$table_attribute; 

fdt$terminal_user_entry =set of (fdc$entry_optional, 
fdc$must_enter,fdc$may_enter_unknown, fdc$must_fill); 

fdt$text =string ( • <= fdc$maximum_text_length); 

fdt$text_box_processing = (fdc$center_characters, 
fdc$wrap_characters, fdc$wrap_words); 

fdt$text_length = 0 .. fdc$maximum_text_length; 

fdt$valid_string = string • <= fdc$maximum_valid_strinQ); 

fdt$valid_string_length = O .. fdc$maximum_valid_string; 

Revision D CYBIL Constants and Types F-25 



Types 

fdt$variable_attribute = record 
put_value_status: {output} fdt$put_value_status, 
case key: {input} fdt$change_variable_key {input} of 

fdc$add_valid_integer_range, 
fdc$delete_valid_integer_range 
maximum_integer: integer, 
minimum_integer: integer, 
fdc$add_valid_real_range, fdc$delete_valid_real_range 
maximum_real: real, 
minimum_real: real, 
fdc$add_valid_string, fdc$delete_valid_string 
p_valid_string: ·fdt$valid_string, 
fdc$add_var_conment = 
p_var_conment: ·fdt$conment, 
fdc$delete_var_conments 

fdc$input_format = 
input_format: fdt$inout_format. 
fdc$io_mode = 
io_mode: fdt$io_mode. 
fdc$new_variable_name 
new_variable_name: ost$name, 
fdc$error_display = 
display_attribute: fdt$display_attribute_set, 
fdc$output_format = 

output_format: fdt$output_format, 
f dc$program_data_type = 
program_data_type: fdt$program_data_type, 
f dc$process_as_event = 

process_as_event: boolean {If true, the value of the 
variable is treated as an event rather than a data item to 
be transferred to and from a program}, 
fdc$string_compare_rules = 

compare_in_upper_case: boolean, 
compare_to_unique_substring: boolean, 
fdc$terminal_user_entry = 
terminal_user_entry: fdt$terminal_user_entry, 
fdc$unknown_entry_character = 

unknown_entry_character: string (1), 
fdc$unused_variable_entry 

fdc$variable_error = 

variable_error: fdt$error_definition, 

F-26 NOSNE Screen Formatting Revision D 



fdc$variable_help = 
variable_help: fdt$help_definition, 
fdc$variable_length = 
variable_length: fdt$variable_length, 

ca send 
recend; 

fdt$variable_attributes =array [1 .. * l of 
fdt$variable_attribute; 

fdt$variable_length 1 .. fdc$maximum_variable_length; 

fdt$variable_status (fdc$no_error, fdc$invalid_string, 

Types 

fdc$invalid_real, fdc$invalid_integer, 
fdc$unknown_user_value, fdc$invalid_bdp_data, fdc$no_digits, 
fdc$1oss_of_significance, fdc$variable_not_filled, 
fdc$overf low, fdc$underflow, fdc$indefinite, fdc$infinite, 
fdc$variable_not_entered, fdc$output_format_bad, 
fdc$variable_truncated); 

fdt$width = 1 .. fdc$maximum_x_position; 

fdt$work_area_length = 1 .. fdc$maximum_record_length; 

fdt$x_increment = 0 .. fdc$maximum_x_position - 1; 

fdt$x_position = 1 .. fdc$maximum_x_position; 

fdt$y_increment = 0 .. fdc$maximum_y_position - 1; 

fdt$y_position = 1 .. fdc$maximum_y_position; 

ost$name =string (osc$max_name_size); 

ost$status = record 
case normal: boolean of 

FALSE = 

condition: ost$status_condition_code, 
text: ost$string 
TRUE 

ca send 
recend; 

Revision D CYBIL Constants and Types F-27 



I 

Types 

mlt$exponent_style = mlc$min_expenent_style 
mlc$max_exponent_style; 

mlt$s1gn_treatment = (mlc$minus_if _negative, 
mlc$always_signed); 

F-28 NOSNE Screen Formatting Revision D 



FORTRAN Call Definitions G 





FORT:RA~T Can DefiR1ntirnms 

The following FORTRAN call definitions give the aliases for the 
Screen Formatting subroutines used in the FORTRAN calls. These 
definitions must be present whenever you call Screen Formatting. 
Include the following SCU directive in every program or subroutine 
that has Screen Formatting calls: 

*COPY FDP$FORTRAN_ALIASES 

The contents of FDF$FORTRAN _ALIASES follows. 

C$ EXTERNAL (ALIAS='FDP$XADD_FORM' ,LANG=FTN), FDADD 

C$ EXTERNAL (ALIAS='FDP$XCHANGE_TABLE_SIZE' ,LANG=FTN), FDCHAT 

C$ EXTERNAL (ALIAS=' FDP$XCOMBINE_FORM' , LANG=FTN), FDCOM 

C$ EXTERNAL (ALIAS='FDP$XCLOSE_FORM' ,LANG=FTN), FDCLOS 

C$ EXTERNAL (ALIAS=' FDP$XDELETE_FORM', LANG=FTN), FDDEL 

C$ EXTERNAL (ALIAS='FDP$XGET_INTEGER VARIABLE,LANG=FTN), FDGETI 

C$ EXTERNAL (ALIAS='FDP$XGET_NEXT_EVENT' ,LAMG=FTN), FSGETE 

C$ EXTERNAL (ALIAS='FDP$XGET_REAL_VARIABLE' ,LANG=FTN), FDGETR 

C$ EXTERNAL (ALIAS='FDP$XGET_RECORD' ,LANG=FTN), FDGET 

C$ EXTERNAL (ALIAS='FDP$XGET_STRING_VARIABLE' ,LANG=FTN), FDGETS 

C$ EXTERNAL (ALIAS='FDP$XOPEN_FORM' ,LANG=FTN), FDOPEN 

C$ EXTERNAL (ALIAS='FDP$XPOP_FORMS' ,LANG=FTN), FDPOP 

C$ EXTERNAL (ALIAS='FDP$XPOSITION_FORM' ,LANG=FTN), FDPOS 

C$ EXTERNAL (ALIAS='FDP$XPUSH_FORMS' ,LANG=FTN), FDPUSH 

C$ EXTERNAL (ALIAS='FDP$XREAD_FORMS' ,LANG=FTN), FDREAD 

C$ EXTERNAL (ALIAS='FDP$XREPLACE_INTEGER_VARIABLE' ,LANG=FTN), FDREPI 

C$ EXTERNAL (ALIAS=' FDP$XREPLACE_REAL_VARIABLE', LANG=FTN). FDREPR 

C$ EXTERNAL (ALIAS='FDP$XREPLACE_RECORD'LANG=FTN), FDREP 

C$ EXTERNAL (ALI AS=' FDP$XREPLACE_STR I NG_ VAR I ABLE' , LANG=FTN) , FDREPS 

C$ EXTERNAL (ALIAS=' FDP$XRESET _FORM', LANG=FTN), FDRESF 

C$ EXTERNAL (ALI AS= I FDP$XRESET _OBJECT _A TTR !BUTE I • LANG=FTN) • FDRESO 

C$ EXTERNAL (ALI AS=' FDP$XSET _CURSOR_POS IT I ON' , LANG=FTN) , FDSETC 

C$ EXTERNAL (ALIAS='FDP$XSET_LINE_MODE' ,LANG=FTN), FDSETL 

C$ EXTERNAL (ALI AS=' FDP$XSET _OBJECT _ATTRIBUTE' , LANG=FTN) , FDSETO 

C$ EXTERNAL (ALIAS=' FDP$XSHOW_FORMS', LANG=FTN), FDSHOW 

G 

Revision D FORTRAN Call Definitions G-1 





Accessing Online Examples H 

Accessing Examples by Name or by Manual H-2 

Searching for Examples by Command or Procedure Name ........ H-3 

Viewing, Copying, Printing, and Executing Examples ............. H-4 

Using Function Keys and Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H-5 





A(Ccem§>Jiml.g Online IExamplies 

An online manual named Examples contains examples which show you 
how to use various NOSNE concepts, SCL commands, and CYBIL 
procedures. You can use the online Examples manual to perform the 
following operations. 

o Access examples by name, manual, command name, or procedure 
name. 

• View the example. 

• Print the example. 

o Copy the example into your $USER catalog for subsequent 
reference or execution. 

• Execute the example. 

To access the online manual, enter: 

/help manual=examples 

In response, the system displays a menu of the topics for which 
examples are provided. This menu includes topics from the following 
manuals: 

Ada for NOSNE 
COBOL for NOSNE 
CYBIL File Management 
CYBIL Keyed-File and Sort/Merge Interfaces 
CYBIL Language Definition 
CYBIL Sequential and Byte-Addressable Files 
CYBIL System Interface 
FORTRAN for NOSNE 
Introduction to NOSNE 
NOSNE File Editor 
NOSNE Screen Formatting 
NOSNE System Usage 
NOSNE Object Code Management 
NOSNE Source Code Management 
Pascal for NOSNE 

Revision D Accessing Online Examples H-1 



Accessing Examples by Name or by Manual 

Accessing Examples by l"Jame OF by Manll.Jial 

In each of the printed manuals containing examples, the example's 
name is supplied in the introduction to the example. Because the 
online Examples manual is indexed by example name, you can access 
the example directly by specifying its name. 

For example, suppose you are reading the CREATE_PERMIT_PF_l 
example in the CYBIL File Management manual and you want to 
have a copy of the example in one of your catalogs. You can quickly 
access the example by using either of the following methods. 

• Specify the name of the example on the SUBJECT parameter of 
the HELP command when you access the manual. For example: 

/help subject =create_permi t_pf_ 1 manual =e>mmp l es 

• If you have already accessed the Examples manual, enter the 
example's name followed by a question mark: 

create_permit_pf_1? 

You are then positioned to the introductory screen of the CREATE_ 
PERMIT_PF_l example. This screen prompts you to view, copy, or 
print the example. 

To access examples associated with a specific manual, select an option 
from the main menu. The system displays a list of example names 
associated with that manual. You can then choose a specific example 
from the list. 

H-2 NOSNE Screen Formatting Revision D 



Searching for Examples by Command or Procedure Name 

§.za:rrclhtil.ng J?ort E~ramples by Commnilll.aL.'ltl ort 
JPrrocetlure ~Jame 

The online Examples manual also enables you to search for examples 
by SCL command or CYBIL procedure names. You can either view 
the list of index topics by pressing the key associated with the lM~! 
operation, or you can access a topic directly by entering the command 
or procedure name itself. 

For example, if you want to look at one or more ways in which the 
CREATE_FILE command is used, enter the following request on the 
home line: 

create_file? 

If you want to see one or more ways that the FSP$0PEN _FILE 
procedure call is used in examples, enter: 

fsp$open_file? 

In response, the system displays an example that illustrates the use of 
the procedure or command you specified. 

You can also specify the command or procedure name on the 
SUBJECT parameter of the HELP command when you access the 
manual. For example: 

/help subject=fspSooen_file manual=examples 

To view a further example that illustrates the use of the command or 
procedure you specified, enter another question mark (?). You can 
enter as many question marks as there are examples indexed for that 
command or procedure. 

When the number of examples for that command or procedure is 
exhausted, an informative message is displayed. 

Revision D Accessing Online Examples H-3 



Viewing, Copying, Printing, and Executing Examples 

Viev:Tnfillg, Copying, Prirmtirmg, and JE1recMtnng 
Examples 

After you access a particular example, the following menu of options 
appears: 

Enter your menu choice: 
a. view the example 
b. copy the example 
c. print the example 

d. execute the example 

Use the menu of options as follows: 

• To view the example, choose menu selection A, followed by a 
return. The example is displayed at your terminal. Since the 
example appears in full-screen mode, you can easily move from 
screen to screen by following the function key prompts. 

o To copy the example to a file, choose menu selection B, followed 
by a return. You are then prompted for the name of the file to 
which you want the example c;opied. Once you enter a file name, 
N OSNE displays a message verifying the name of the file to 
which the example was copied. 

• To print the example, choose menu selection C. A message soon 
appears which indicates that the file has been sent to the printer. 

• To execute the example, choose item D. The example is copied to a 
temporary file and executed. 

H-4 NOSNE Screen Formatting Revision D 



Using Function Keys and Prompts 

Using Function Keys and Prompts 

Once you access the online Examples manual, you can read it by 
pressing function keys and entering text in response to function key 
prompts, or entering menu choices on the home line. 

Function key prompts for using this manual are displayed at the 
bottom of your screen, provided you are in full-screen mode. These 
function keys vary according to the type of terminal you are using. 

If you need assistance on what a particular function key does, press 
the help key for your terminal, and then press the function key in 
question. Pressing the help key again displays a menu of online help 
options (such as how to use the menus, or how to page forward and 
backward). 

The following function key prompts help you search for examples: 

Function Key 
Prompt 

Tndex 

Description 

Enables you to locate screens where an example, 
command, or procedure you specify appears. 

Enables you to access the manual's index. After 
pressing the key associated with this operation, 
you can do one of the following: 

• Specify the topic where you want to begin 
reading the index. 

• Press RETURN to display the beginning of the 
index. 

Many terminals have function keys or dedicated keys that return you 
to the main menu (the first screen in the manual). On a VT220 
terminal, hold down the shift key and press the F17 key. 
Alternatively, you can enter the FIRST or TOP directive on the home 
line of any terminal at which you can read online manuals. 

The Q91t function key prompt is associated with the key(s) you press 
to leave the Examples manual. On a VT220 terminal, press the FU 
key. Alternatively, you can enter the QUIT directive on the home line 
of any terminal at which you can read online manuals. 

Revision D Accessing Online Examples H-5 





Index 





][ndex 

A 
Abnormal task 7-12 
ADD_FORM 2-37 
ADDF 2-37 
Adding a form 

COBOL 3-36 
CYBIL 6-31 
FORTRAN 4-30 
Pascal 5-33 
SCL 2-37 

Aliases, FORTRAN G-1 
Alphabetic character A-1 
Application prototype 

COBOL 3-8 
CYBIL 6-7 
FORTRAN 4-7 
Pascal 5-9 
SCL 2-8 

Attributes 
Data 7-4 
Data validation 7-6 
Form 7-2, 43 
Form definition record 7-76 
Glossary definition A-1 
Object 7-78 
Output formatting 7-5 
Resetting 

COBOL 3-80 
CYBIL 6-66 
FORTRAN 4-71 
Pascal 5-66 
SCL 2-60 

Setting 
COBOL 3-85 
CYBIL 6-70 
FORTRAN 4-77 
Pascal 5-71 
SCL 2-60 

Table 7-73 
Terminal definition C-1 
Variable 7-3, 60 

Revision D 

B 
Batch mode A-1 
Box 7-5, 9 

c 
Calling Screen Formatting 

COBOL 3-5 
CYBIL 6-4 
FORTRAN 4-4 
Pascal 5-6 
SCL 2-3 

Catalog A-1 
Catalog name A-1 
CHANGE_TABLE_SIZE 2-38 
Changing 

Form 7-24, 31, 86, 124 
Form· definition record 7-87 
Form definition record 

attributes 7-76 
General form attributes 7-44 
Object attributes 7-78, 88 
Stored object 7-89 
Table attributes 7-73, 90 
Table size 

COBOL 3-38 
CYBIL 6-32 
FORTRAN 4-32 
Pascal 5-34 
SCL 2-38 

Variable attributes 7-60, 91 
Character 

Data type attribute 7-4 
Glossary definition A-1 
Validation 7-6 
Wrap 7-5 

CHATS 2-38 
Circle form example 

COBOL 3-12 
CYBIL 6-11 
FORTRAN 4-11 
Pascal 5-13 
SCL 2-16 

CLOF 2-40 
CLOSE_FORM 2-40 

NOSNE Screen Formatting lndex-1 



Closing n form 

Closing a form 
COBOL 3-40 
CYBIL 6-34 
FORTRAN 4-34 
Pascal 5-36 
SCL 2-40 

COBOL 
Displaying forms 3-1 
Parameter definitions D-1 
Program 3-16 
Status checking 3-35 
Subroutines 3-35 

COMBINE_FORM 2-41 
Combining forms 

COBOL 3-41 
CYBIL 6-35 
Events 7-10 
FORTRAN 4-35 
Pascal 5-37 
SCL 2-41 

COMF 2-41 
Compiling a program 

COBOL 3-30 
CYBIL 6-25 
FORTRAN 4-24 
Pascal 5-27 

Constant text objects 
Creating 7-99 
Definition 7-3 

Constants 
CYBIL F-1 
Pascal E-1 

Content validation 7-6 
Conventions 10 
Converting 

Program data 7-94 
User data 7-92 

Copying 
Data definitions 

COBOL 3-4 
CYBIL 6-3 
FORTRAN 4-3 
Pascal 5-4 

Form 7-98 
Form definition decks 

COBOL 3-15 
CYBIL 6-14 
FORTRAN 4-13 
Pascal 5-16 

Objects 7-96 

Index-2 NOSNE Screen Formatting 

Parameter definitions 
COBOL 3-3 

Procedure definitions 
CYBIL 6-2 
Pascal 5-2 

Text 7-96 
Creating 

CYBIL 

Constant text objects 7-99 
Design 

Form 7-100 
Text 7-102 

Error forms 7-16 
Event form 7-104 
Form definition record 7-42 
Forms 

Discussion 7-19 
Example 1-2, 6 
Procedure 7-103 
Using CYBIL 7-19 
Using SDF - See SDF 

manual 
General form attributes 7-44 
lfelp forms 7-16 
Mark display attribute 7-106 
Object 7-108 
Object attributes 7-78 
Program example 7-34 
Stored object 7-113 
Table 7-115 
Table attributes 7-73 
Variable attributes 7-60 
Variables 

CYBIL 7-116 
SCL 2-31 

Currency format 7-62, 63 
Cursor position 

COBOL 3-82 
CYBIL 6-67 
FORTRAN 4-73 
Moving 7-14 
Pascal 5-68 
SCL 2-59 

CYBIL 
Constants and types F-1 
Creating forms 7-1, 85 
Displaying forms 6-1, 30 
Program for creating 

forms 7-31 
Program for displaying 

forms 6-15 

Revision D 



Data 

Usage 1-3 

D 
Data 

Converting 7-92, 94 
Flow 7-3 
Type 7-4 
Validation attributes 7-6 

Data definitions 
Copying 

COBOL 3-4 
CYBIL 6-3 
FORTRAN 4-3 
Pascal 5-4 

Deactivate events 
COBOL 3-66 
CYBIL 6-54 
FORTRAN 4-59 
Pascal 5-56 
SCL 2-52 

Defining 
Constant text objects 7-3 
Display attributes 7-15 
Events 7-9 
Form 7-2 
General form attributes 7-44 
Object text 7-3 
Tasks for events 7-10 
Variable attributes 7-3 
Variable text objects 7-3 

DELETE_FORM 2-43 
Deleting 

Form 
COBOL 3-43 
CYBIL 6-37 
FORTRAN 4-37 
Pascal 5-39 
SCL 2-43 

Mark display attribute 7-119 
Objects 7-118, 120 
Scheduled forms 

COBOL 3-63 
CYBIL 6-51 
FORTRAN 4-56 
Pascal 5-53 
SCL 2-49 

Stored Object 7-121 
Table 7-122 

Revision D 

Text 7-118 
Variable 7-123 

DELF 2-43 
Design form A-2 
Design specification 

Creating 7-20 
Definition 1-11 
Usage 1-11 
Using 

COBOL 3-13 
CYBIL 6-12 
FORTRAN 4-12 
Pascal 5-14 
SCL 2-9, 21 

Designing forms 
Dynamically 7-22 
Interactively 7-25 
Introduction 1-2 

Digit A-2 
Display attributes 

Changing 7-51 
Defining 7 -15 
Definition 7-2 
Specifying 7 -54 

Displaying forms 
COBOL 3-5, 67 
CYBIL 6-4, 55 
Description 7-33 
FORTRAN 4-4, 60 
Pascal 5-6, 57 
SCL 2-4, 54 

E 
Editing a form 7-124 

Event_ name 

Ending a form definition 7-125 
Error messages 

Default form 7-17 
Erasing 7-13 
Form attribute 7-55 
Information 7-16 
Validating data 7-6 

Event form 
Creating 7-104 
Definitions 7-52 
Information 7-9 

Event_label 7-44 
$EVENT_NAME 2-64 
Event_name 7-44 

NOSNE Screen Formattinrr Index-3 



$EVENT_NORMAL 

$EVENT_NORMAL 2-65 
$EVENT_POSITION 2-66 
Event_ trigger 7-45 
Events 

Abnormal 
COBOL 3-8 
CYBIL 6-7 
FORTRAN 4-7 
Pascal 5-9 
SCL 2-7 

Deactivate 
COBOL 3-66 
CYBIL 6-54 
FORTRAN 4-59 
Pascal 5-56 
SCL 2-52 

Defining 7-9 
Definition 1-10; A-2 
Form 7-9 
Getting the next 

COBOL 3-48 
CYBIL 6-40 
FORTRAN 4-42 
Pascal 5-42 
SCL 2-64 

Label 7-44 
Name 1-10; 7-44 
Normal 

COBOL 3-7 
CYBIL 6-6 
FORTRAN 4-6 
Pascal 5-8 
SCL 2-6 

Processing 1-10 
Requirements 1-10 
Specifying form 

definitions 7-52 
Standard 7-15, 45 
Trigger 7-45; C-2 

Example 
Circle form 

COBOL 3-12 
CYBIL 6-11 
FORTRAN 4-11 
Pascal 5-13 
SCL 2-16 

Program 
COBOL 3-16 
CYBIL 6-15 
FORTRAN 4-15 

lndex-4 NOSNE Screen Formatting 

Pascal 5-17 
SCL 2-22 

Rectangle form 
COBOL 3-11 
CYBIL 6-10 
FORTRAN 4-10 
Pascal 5-12 
SCL 2-13 

Select form 
COBOL 3-10 
CYBIL 6..:9 
FORTRAN 4-9 
Pascal 5-11 
SCL 2-12 

Expanding a program 
COBOL 3-30 
CYBIL 6-25 
FORTRAN 4-24 
Pascal 5-27 
SCL 2-28 

F 
Family A-2 
Family name A-2 
File A-2 
File name A-2 
Form 

Adding 
COBOL 3-36 
CYBIL 6-31 
FORTRAN 4-30 
Pascal 5-33 
SCL 2-37 

Attributes 7-43, 126 
Changing 7-24, 86, 124 
Closing 

COBOL 3-40 
CYBIL 6-34 
FORTRAN 4-34 
Pascal 5-36 
SCL 2-40 

Combining 
COBOL 3-41 
CYBIL 6-35 
FORTRAN 4-35 
Pascal 5-37 
SCL 2-41 

Contents 7-2 

Form 

Revision D 



Form definition decks 

Copying 7-98 
Creating 1-6; 7-1, 19, 22, 103 
Creating design 7-100 
Deactivate events 

COBOL 3-66 
CYBIL 6-54 
FORTRAN 4-59 
Pascal 5-56 
SCL 2-52 

Definition of 7-2 
Definition record 7-87 
Deleting 

COBOL 3-43, 63 
CYBIL 6-37, 51 
FORTRAN 4-37, 56 
Pascal 5-39, 53 
SCL 2-43, 49 

Design 
Dynamically 7-22 
Interactively 7-25 
Introduction 1-2 

Display attributes 7-54, 57 
Displaying 

COBOL 3-67 
CYBIL 6-55 
Description 7-33 
FORTRAN 4-60 
Pascal 5-57 
SCL 2-54 

Ending a definition 7-125 
Event 7-104 
Example of creating 1-6; 7-34 
Graphic object 1-6 
Help 7-13 
Interaction with a 

program 7-9 
Managing 

Example 1-6 
Introduction 1-2 

Multiple 7-9 
Names 7-127 
Objects 7-3, 128 
Opening 

COBOL 3-61 
CYBIL 6-49 
FORTRAN 4-54 
Pascal 5-51 
SCL 2-48 

Rlwinion D 

Form definition record 

Popping 
COBOL 3-63 
CYBIL 6-51 
FORTRAN 4-56 
Pascal 5-53 
SCL 2-49 

Positioning 
COBOL 3-64 
CYBIL 6-52 
FORTRAN 4-57 
Pascal 5-54 
SCL 2-50 

Processor 7-55 
Reading 

COBOL 3-67 
CYBIL 6-55 
FORTRAN 4-60 
Pascal 5-57 
SCL 2-54 

Record 
COBOL 3-55, 75 
CYBIL 6-45, 61 
FORTRAN 4-49, 65 

Resetting 
COBOL 3-79 
CYBIL 6-65 
FORTRAN 4-70 
Pascal 5-65 
SCL 2-57 

Showing 
COBOL 3-87 
CYBIL 6-72 
FORTRAN 4-79 
Pascal 5-73 
SCL 2-62 

Target 7-27, 31 
Text object 1-6 
Usage 1-1 
Variables 2-34 
Writing a definition 7-137 

Form definition decks 
COBOL 3-15 
CYBIL 6-14 
FORTRAN 4-14 
Pascal 5-16 

Form definition record 
COBOL 3-4 
Create from existing 

form 7-42 
CYBIL 6-3 

NOSNE Screen Formatting Index-5 



Format validation 

FORTRAN 4-3 
Pascal 5-4 

Format validation 7-6 
FORTRAN 

Call definitions G-1 
Displaying forms 4-1 
Program 4-15 
Status checking 4-29 
Subroutines 4-29 
Validation formats 7-6 

Full screen A-2 
Full screen definition A-3 
Function A-3 
Function key assignments A-3 
Function keys 

G 

Glossary definition A-3 
See also Events 

GET_FORM_ VARIABLE 2-44 
GETFV 2-44 
Getting 

Form 
Attributes 7-56, 126 
Names 7-127 
Objects 7-128 

Form definition record 
attributes 7-77 

Help form attributes 7-57 
Object attributes 7-81, 130 
Record attributes 7-131 
Stored object 7-132 
Table attributes 7-75, 133 
Variable 

COBOL 3-45, 52, 58 
CYBIL 6-38, 43, 47 
FORTRAN 4-39, 46, 51 
Pascal 5-40, 46, 49 
SCL 2-34, 44 

Variable attributes 7-69, 134 
Getting a real variable 

COBOL 3-52 
CYBIL 6-43 
FORTRAN 4-46 
Pascal 5-46 
SCL 2-34, 44 

Index-6 NOSNE Screen Formatting 

Getting a record 
COBOL 3-55 
CYBIL 6-45 
FORTRAN 4-49 

Getting a string variable 
COBOL 3-58 
CYBIL 6-47 
FORTRAN 4-51 
Pascal 5-49 
SCL 2-34, 44 

Getting an integer variable 
COBOL 3-45 
CYBIL 6-38 
FORTRAN 4-39 
Pascal 5-40 
SCL 2-34, 44 

Getting the next event 
COBOL 3-48 
CYBIL 6-40 
FORTRAN 4-42 
Pascal 5-42 
SCL 2-64 

Graphic object 
Definition 1-6 
Properties 7-9 

H 
Help 

Creating 7-16 
Default form 7 -17 
Defining the event 7-10 
Displaying 7-13 
Erasing 7-13 
Form attribute 7-54, 57 
Information 7-16 

Hidden text 7-4 
Highlighting 

Display attribute 7-51 
Setting attribute 

COBOL 3-85 
CYBIL 6-70 
FORTRAN 4-77 
Pascal 5-71 
SCL 2-60 

Validation 7-6 
Hotline 11 

Hotline 

Revision D 



Identifier 

I 
Identifier A-3 
Input 

COBOL 3-67 
CYBIL 6-55 
Format 7-61 
FORTRAN 4-60 
Pascal 5-57 
SCL 2-54 

Instructions for 
Creating forms 7-22 
Using forms 

COBOL 3-1 
CYBIL 6-1 
FORTRAN 4-1 
Pascal 5-1 
SCL 2-1 

Integer A-3 
Getting 

COBOL 3-45 
CYBIL 6-38 
FORTRAN 4-39 
Pascal 5-40 
SCL 2-34, 44 

Replacing 
COBOL 3-69 
CYBIL 6-57 
FORTRAN 4-61 
Pascal 5-59 
SCL 2-34, 55 

Interactive mode A-3 
Introduction 1-1 

L 
Language of form 7-55 
Line drawing 7-2, 9 
Line mode 

COBOL 3-84 
CYBIL 6-69 
FORTRAN 4-76 
Pascal 5-70 

Local file A-3 
Login A-4 
Logout A-4 

Revision D 

M 
Main menu A-4 
MANAGE_FORMS 

Command 2-46 
Functions 2-63 
Options 2-30 

Object attributes 

Variable creation 2-31 
Managing forms 

COBOL 3-1 
CYBIL 6-1 
Example 1-6 
FORTRAN 4-1 
Overview 1-2 
Pascal 5-1 
SCL 2-1 

MANF 2-46 
Mark display attribute 

Create 7-106 
Delete 7-119 

Master catalog A-4 
Menu 

See Events 
Message 

Creating 7-10 
Form attribute 7-55, 58 

Moving 
Objects 7-135 
Text 7-135 

Multiple forms 7-9 

N 
Name A-4 
Natural language 

COBOL 3-34 
CYBIL 6-29 
FORTRAN 4-28 
Pascal 5-31 
SCL 2-30 

Normal task 7-11 
NOSNE A-4 

0 
Object attributes 

Changing 7-88 
Description 7-78 
Getting 7-130 

NOSNE Screen Formatting lndex-7 



Objects 

Objects 
Copying 7-96 
Creating 7-99, 108 
Defining 7-3 
Deleting 7-118, 120 
Form 7-3 
Glossary definition A-4 
Moving 7-135 
Resetting attribute 

COBOL 3-80 
CYBIL 6-66 
FORTRAN 4-71 
Pascal 5-66 
SCL 2-60 

Setting attribute 
COBOL 3-85 
CYBIL 6-70 
FORTRAN 4-77 
Pascal 5-71 
SCL 2-60 

Occurrence A-4 
Online examples 

Accessing H-1 
Online manuals 

Accessing B-1 
Glossary definition A-5 

OPEF 2-48 
OPEN_FORM 2-48 
Opening a form 

COBOL 3-61 
CYBIL 6-49 
FORTRAN 4-54 
Pascal 5-51 
SCL 2-48 

Operations 
See Events 

Ordering printed manuals B-1 
Output format 7-5, 63 
Overview 1-1 

p 

Paging and scrolling 7-12 
Parameter definitions 

Copying COBOL 3-3 
List of COBOL D-1 

Index-8 NOSNE Screen Formatting 

Processing events 

Pascal 
Displaying forms 5-1, 32 
Program 5-17 
Status checking 5-32 
Status constants E-1 
String convention 5-5 

Permanent 'catalog A-5 
Permanent file A-5 
POP _FORM 2-49 
POPF 2-49 
Popping a form 

COBOL 3-63 
CYBIL 6-51 
FORTRAN 4-56 
Pascal 5-53 
SCL 2-49 

POSITION _FORM 2-50 
Position of cursor 

COBOL 3-82 
CYBIL 6-67 
FORTRAN 4-73 
Moving 7-14 
Pascal 5-68 
SCL 2-59 

Position of event 2-66 
Positioning a form 

COBOL 3-64 
CYBIL 6-52 
FORTRAN 4-57 
Pascal 5-54 
SCL 2-50 

Procedure definitions 
Copying CYBIL 6-2 
Copying Pascal 5-2 

Procedures 
Accessing 1-4 
Creating forms 7-85 
Displaying forms 

CYBIL 6-30 
Pascal 5-32 
SCL 2-36 

SCL 2-19 
Storing them 2-28 

Processing events 
Abnormal 

COBOL 3-8 
CYBIL 6-7 
FORTRAN 4-7 
Pascal 5-9 
SCL 2-7 

Revision D 



Processor of form 

Normal 
COBOL 3-7 
CYBIL 6-6 
FORTRAN 4-6 
Pascal 5-8 
SCL 2-6 

Processor of form 7-55 
Program A-5 

Converting data 7-92, 94 
Data type 7-66 
Interaction with a form 7-9 
Output 7-4 
Record 

COBOL 3-55, 75 
CYBIL 6-45, 61 
FORTRAN 4-49, 65 

Tasks 7-11 
Protected text 7-16; A-5 
Prototype 

COBOL 3-8 
CYBIL 6-7 
FORTRAN 4-7 
Pascal 5-9 
SCL 2-8 

PUSF 2-52 
PUSH_FORM 2-52 
Pushing forms 

Q 

COBOL 3-66 
CYBIL 6-54 
FORTRAN 4-59 
Pascal 5-56 
SCL 2-52 

QUI 2-53 
QUIT 2-53 

R 
READ_FORM 2-54 
Reading a form 

COBOL 3-67 
CYBIL 6-55 
FORTRAN 4-60 
Pascal 5-57 
SCL 2-54 

REAF 2-54 

Revision D 

Replacing a string variable 

Real variable 
Getting 

COBOL 3-52 
CYBIL 6-43 
FORTRAN 4-46 
Pascal 5-46 
SCL 2-34, 44 

Replacing 
COBOL 3-72 
CYBIL 6-59 
FORTRAN 4-63 
Pascal 5-61 
SCL 2-34, 55 

Record attributes 
Getting 7-131 

Record definition 
Writing 7-138 

Record form 
COBOL 3-55, 75 
CYBIL 6-45, 61 
FORTRAN 4-49, 65 

Rectangle form 
Example 

COBOL 3-11 
CYBIL 6-10 
FORTRAN 4-10 
Pascal 5-12 
SCL 2-13 

Program 7-34 
Related manuals B-1 
REPFV 2-55 
REPLACE_FORM_ 

VARIABLE 2-55 
Replacing a real variable 

COBOL 3-72 
CYBIL 6-59 
FORTRAN 4-63 
Pascal 5-61 
SCL 2-34, 55 

Replacing a record 
COBOL 3-75 
CYBIL 6-61 
FORTRAN 4-65 
SCL 2-34, 55 

Replacing a string variable 
COBOL 3-77 
CYBIL 6-63 
FORTRAN 4-67 
Pascal 5-63 
SCL 2-34, 55 

NOS/VE Screen Formatting Index-9 



Replacing an integer variable 

Replacing an integer variable 
COBOL 3-69 
CYBIL 6-57 
FORTRAN 4-61 
Pascal 5-59 
SCL 2-34, 55 

RESET_FORM 2-57 
Resetting a form 

COBOL 3-79 
CYBIL 6-65 
FORTRAN 4-70 
Pascal 5-65 
SCL 2-57 

Resetting an object attribute 
COBOL 3-80 
CYBIL 6-66 
FORTRAN 4-71 
Pascal 5-66 
SCL 2-60 

RESF 2-57 

s 
SCL A-5 

Displaying forms 2-1, 36 
Procedure 2-22 

Screen Design Facility 
Definition 1-4 
Usage 1-4 

Screen Formatting 
Capabilities 1-12 
Definition 1-1 
Process 1-2 

Screen updating 
COBOL 3-67, 87 
CYBIL 6-55, 72 
FORTRAN 4-60, 79 
Pascal 5-57, 73 
SCL 2-54, 62 

Scrolling and paging 7-12 
Select form example 

COBOL 3-10 
CYBIL 6-9 
FORTRAN 4-9 
Pascal 5-11 
SCL 2-12 

SET_CURSOR_POSITION 2-59 
SET_OBJECT_ 

ATTRIBUTE 2-60 

Index-10 NOS/VE Screen Formatting 

Starting the application 

SETCP 2-59 
SETOA 2-60 
Setting an object attribute 

COBOL 3-85 
CYBIL 6-70 
FORTRAN 4-77 
Pascal 5-71 
SCL 2-60 

Setting line mode 
COBOL 3-84 
CYBIL 6-69 
FORTRAN 4-76 
Pascal 5-70 

Setting the cursor position 
COBOL 3-82 
CYBIL 6-67 
FORTRAN 4-73 
Pascal 5-68 
SCL 2-59 

SHOF 2-62 
SHOW_FORM 2-62 
Showing a form 

COBOL 3-87 
CYBIL 6-72 
FORTRAN 4-79 
Pascal 5-73 
SCL 2-62 

Size of table 
COBOL 3-38 
CYBIL 6-32 
FORTRAN 4-32 
Pascal 5-34 
SCL 2-38 

Software support hotline 11 
Special character A-5 
Standard events 7-15 
Standard function keys 7-45 
Starting 

MANAGE_FORMS 2-3 
Prototype 2-8 

Starting the application 
Commands to enter 

COBOL 3-34 
CYBIL 6-29 
FORTRAN 4-26 
Pascal 5-31 
SCL 2-30 

Revision D 



Status checking 

Creating a user procedure 
COBOL 3-32 
CYBIL 6-27 
FORTRAN 4-26 
Pascal 5-29 
SCL 2-28 

Creating a user prolog 
COBOL 3-32 
CYBIL 6-28 
FORTRAN 4-26 
Pascal 5-30 
SCL 2-29 

Status checking 
COBOL 3-35 
FORTRAN 4-29 
Pascal 5-32 

Stopping MANAGE_ 
FORMS 2-3 

Stored object 
Changing initial value 7-89 
Creating 7-113 
Deleting 7-121 
Getting 7-132 

String convention 5-5 
String variable 

COBOL 3-58, 77 
CYBIL 6-4 7, 63 
FORTRAN 4-51, 67 
Pascal 5-49, 63 
SCL 2-34, 44, 55 

Submitting comments 11 
Subroutines 

Acessing 1-4 
COBOL 3-35 
FORTRAN 4-29 

Symbol A-5 
System Command 

Language A-5 

T 
Table 

Attributes 7~73 
Changing attributes 7-90 
Creating 7-115 
Deleting 7-122 
Getting attributes 7-133 
In a form 7-8 
Object properties 7-8 

Revision D 

Transferring variables 

Paging 7-12 
Scrolling 7-12 
Size 

COBOL 3-38 
CYBIL 6-32 
FORTRAN 4-32 
Pascal 5-34 
SCL 2-38 

Target form 7-27; A-6 
Tasks for events 7-10 
Temporary file A-6 
Terminal 

Definition keys C-2 
Function keys 7-52 
Input 7-4 
Output 7-4 
Session A-6 
Update screen 

COBOL 3-67, 87 
CYBIL 6-55, 72 
FORTRAN 4-60, 79 
Pascal 5-57, 73 
SCL 2-54, 62 

User and program 
interaction 7-9 

Text 
Constant 7-3 
Copying 7-96 
Creating design 7-102 
Deleting 7-118 
Hidden 7-4 
Moving 7-135 
Properties 7-3 
Protected A-5 
Variable 7-3 

Text object 
Constant 7-3 
Definition 1-6; 7-3 
Table 7-8 
Variable 1-7; 7-3 

Transferring variables 
COBOL 3-45, 52, 58, 69, 72, 

77 
CYBIL 6-38, 43, 47, 57, 59, 

63 
FORTRAN 4-37, 46, 51, 61, 

63, 67 
Pascal 5-40, 46, 49, 59, 61, 

63 
SCL 2-34 

NOSNE Screen Formatting lndex-11 



Types, CYBIL 

Types, CYBIL F-1 

u 
Unprotected text 7-16; A-5 
User data 7-2, 92 
User input 

COBOL 3-67 
CYBIL 6-55 
FORTRAN 4-60 
Pascal 5-57 
SCL 2-54 

User name A-6 
User prolog 

v 

Creating 
COBOL 3-33 
CYBIL 6-28 
FORTRAN 4-27 
·Pascal 5-30 
SCL 2-29 

Validation 
Defining attributes 7-6 
Initial values 7-55 

Variable 
Creating 

CYBIL 7-116 
SCL 2-31 

Deleting 7-123 
Getting 

COBOL 3-45, 52, 58 
CYBIL 6-38, 43, 47 
FORTRAN 4-39, 46, 51 

lndex-12 NOSNE Screen Formatting 

Pascal 5-40, 46, 49 
SCL 2-34, 44 

Replacing 

Writing 

COBOL 3-69, 72, 77 
CYBIL 6-57, 59, 63 
FORTRAN 4-61, 63, 67 
Pascal 5-59, 61, 63 
SCL 2-34, 55 

Validation of initial 
values 7-55 

Variable attributes 
Changing 7-91 
Creating 7-60 
Defining 7-3 
Getting 7-134 

Variable text objects 
Definition 1-7 
Requirements 1-7 
Table 7-8 
Usage 7-3 

\V 
Wrap characters 7-5 
Wrap words 7-5 
Writing 

Form definition 7-137 
Program to use forms 

COBOL 3-2 
CYBIL 6-2 
FORTRAN 4-2 
Pascal 5-2 
SCL 2-3 

Record definition 7-138 

Revision D 



Comments (continued from other side) 

fold on dotted line; 
lges with tape only. 

BUSINESS REPLY MAIL 
First-Class Mail Permit No. 8241 Minneapolis, MN 

POSTAGE WILL BE PAID BY ADDRESSEE 

CONTROL DATA 
Technical Publications 
ARH219 
4201 N. Lexington Avenue 
Arden Hills, MN 55126-9983 

1.1.1 •• 1.1 •••• 11 •• 1.1.11 •• 1.1 •• 1.1 •• 1 •• 1 ... 11 ... 1.11 

NO POSTAGE 
NECESSARY 
IF MAILED 

FOLD 

IN THE 
UNITED STATES 



NOS/VE Screen Formatting 60488813 D 

We would like your comments on this manual to help us improve it. Please take a few 
minutes to fill out this form. 

Who are you? How do you use this manual? 

D Manager D As an overview 
D Systems analyst or programmer 
D Applications programmer 

D To learn the product or system 
D For comprehensive reference 

D Operator D For quick look-up 
D Other ____________ _ D Other ____________ ~ 

What programming languages do you use? ------------------

How do you like this manual? Answer the questions that apply. 

Yes Somewhat No 
D D D Does it tell you what you need to know about the topic? 

D D D Is the technical information accurate? 

D D D Is it easy to understand? 

D D D Is the order of topics logical? 

D D D Can you easily find what you want? 

D D D Are there enough examples? 

D D D Are the examples helpful? (0 Too simple? D Too complex?) 

D D D Do the illustrations help you? 

D D D Is the manual easy to read (print size, page layout, and so on)? 

D D D Do you use this manual frequently? 

Comments? If applicable, note page and paragraph. Use other side ifneeded. 

Check here if you want a reply: D 

Name Company 

Phone 

Please send program listing and output if applicable to your comment. 





(€: ~ CONT1'0L DATA 


