
Debug for NOS/VE

Usage

<52>
CONT~Ol

DATA

60488213

Debug for NOSjVE

Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60488213

MannunaB IHIn§1l:01l"Y

Revision

A
B

This revision:

System Version/
PSR Level

1.2.2/678
1.2.3/688

Product
Version

1.5
1.6

Date

April, 1987
September, 1987

This is Revision B. It documents the new screen mode features: WIDE
and NARROW. Also, minor editorial and technical corrections have
been made.

~Copyright 1987 by Control Data Corporation. All rights reserved.
Printed in the United States of America.

2 Debug for NOS/VE Usage Revision B

Co ml1l:<2D1nt§

About This Manual ••• 5

Audience •• 5
Organization •• 5
Conventions ••• 6
Submitting Comments ••••••••••••••••••••••••••••••••••••••• 6
In Case of Trouble •• 7

Introduction •• 1-1

Interactive Debugging ••••••••••••••••••••••••••••••••••••• 1-3
Batch Job Debugging ••••••••••••••••••••••••••••••••••••••• 1-6

Getting Started 2-1

Set Up Your Terminal for Screen Mode Debug •••••••••••••••• 2-2
Preparing for a Debug Session ••••••••••••••••••••••••••••• 2-6

Executing Under Debug Control 3-1

Beginning a Debug Session ••••••••••••••••••••••••••••••••• 3-1
Entering Debug Commands ••••••••••••••••••••••••••••••••••• 3-6
Suspending Program Execution •••••••••••••••••••••••••••••• 3-7
Beginning or Resuming Program Execution ••••••••••••••••••• 3-10
Displaying and Changing Program Values •••••••••••••••••••• 3-13
Getting Help •• 3-14
Ending the Debug Session •••••••••••••••••••••••••••••••••• 3-16
Debug Input and Output Files •••••••••••••••••••••••••••••• 3-17
Automatic Command Execution on Program Failure •••••••••••• 3-21
Recording an Interactive Debug Session •••••••••••••••••••• 3-26

Screen Mode Debugging ••• 4-1

Screen Layout ••• 4-2
Debugging Using Functions ••••••••••••••••••••••••••••••••• 4-4
Entering Commands on the Home Line •••••••••••••••••••••••• 4-5
The Visible Windows in Screen Mode Debugging •••••••••••••• 4-6
Function Descriptions ••••••••••••••••••••••••••••••••••••• 4-14

Line Mode Debugging ••• 5-1

Line Mode Command and Function Summary •••••••••••••••••••• 5-1
Debug Line Mode Commands •••••••••••••••••••••••••••••••••• 5-3
Debug Line Mode Functions ••••••••••••••••••••••••••••••••• 5-91

Revision B Contents 3

Contents

Comprehensi ve Debugging ••••••••••••••••••••••••••••••••••••••• 6-1

Addressing •• 6-1
Interrupt Processing While Debugging •••••••••••••••••••••• 6-6
Debugging Optimized Code •••••••••••••••••••••••••••••••••• 6-7
Optimizing Debug Performance •••••••••••••••••••••••••••••• 6-7
Debugging a Terminated Program •••••••••••••••••••••••••••• 6-8
Debugging a CYBIL Runtime Error ••••••••••••••••••••••••••• 6-8
Debugging Condition Handlers •••••••••••••••••••••••••••••• 6-9
Debug Rings ••• 6-10
Multi-task Debugging •••••••••••••••••••••••••••••••••••••• 6-11

Source Language Debug Examples •••••••••••••••••••••••••••••••• 7-1

Debugging a BASIC Program ••••••••••••••••••••••••••••••••• 7-1
Debugging a C Program ••••••••••••••••••••••••••••••••••••• 7-14
Debugging a COBOL Program ••••••••••••••••••••••••••••••••• 7-26
Debugging a CYBIL Program ••••••••••••••••••••••••••••••••• 7-40
Debugging a FORTRAN Version 1 or FORTRAN
Version 2 Program ••• 7-55
Debugging a Pascal Program •••••••••••••••••••••••••••••••• 7-68

Glossary •• A-I

Related Manuals B-1

ASCII Character Set ••• C-l

Index ••• Index-l

4 Debug for NOS/VE Usage Revision B

About This Manual

Aud ienc e ••• 5

Organization ••• 5

Conventions •• ~ ••••••••••• 6

Submitting Comments •• 6

In Case of Trouble ••• 7

This manual describes the Debug utility for the Control Data®
Network Operating System/Virtual Environment (NOS/VE).

Audience

This manual assumes that you understand NOS/VE and SCL concepts as
presented in the SCL Language Definition manual and the SCL
Interface manual, and the programming concepts of the language that
you are debugging. You must also be familiar with the use and
manipulation of NOS/VE files. All screen examples use the CDC®
Viking 721 terminal; knowledge of this terminal is helpful but not
essential.

OJrganization

Chapters 1, 2, and 3 of this manual are organized by topic based on
the concepts of the Debug utility. Chapters 5 and 6 describe the
line mode commands and the screen mode commands. The commands are
described in quick reference format for easy access. The last
chapter contains an interactive screen mode Debug demonstration for
each of the following languages: BASIC, C, COBOL, CYBIL, FORTRAN
Versions 1 and 2, and Pascal.

Revision B About This Manual 5

Conventions

Conventions

blue

UPPERCASE

lowercase

numbers

hex

examples

Quick
Reference
format

Command parameter names are shown in blue print.

Also, within examples of inte~active sessions, user
input is shown in blue print. System output is shown in
black print.

In Debug command syntax, uppercase indicates a statement
keyword or character that must be written as shown. For
purposes of examples, however, lowercase is used.

In Debug command syntax, lowercase indicates a name,
number, symbol, or entity that you must supply.

All numbers are assumed to be base 10 unless otherwise
noted.

The abbreviation hex indicates a hexadecimal number.

All screen examples use the CDC ® Viking 721 terminal
unless otherwise noted.

The Debug commands and functions are described in Quick
Reference format. The purpose, format, and special
remarks of each command or function are described.
Also, in most cases, an example is demonstrated.

Submitting Comments

The last page of this manual is a comment sheet. Please use it to
give us your opinion of the manual's usability, to suggest specific
improvements, and to report technical or typographical errors. If
the comment sheet has already been used, you can mail your comments
to:

Control Data Corporation
Technology and Publications Division
P.O. Box 3492
Sunnyvale, California 94088-3492

Please indicate whether you would like a written reply.

If you have access to SOLVER, the Control Data facility for
reporting software problems, you can use it to submit comments about
this manual. When SOLVER prompts you for a product identifier,
specify DB8.

6 Debug for NOS/VE Usage Revision B

In Case of Trouble

In Case of Trouble
Control Data's Central Software Support maintains a hotline to
assist you if you have trouble using our products. If you need help
beyond that provided in the documentation or find that the product
does not perform as described, call us at one of the following
numbers and a support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of
printed manuals to Literature and Distribution Services at the
following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee,
call (612) 292-2100.

Revision A About This Manual

Introduction 1

This chapter introduces the Debug utility for NOS/VE.

Interactive Debugging ••• 1-3
Screen Mode ••• 1-3
Line Mode ••• 1-5

Batch Job Debugging.. 1-6

II un 1l:rro «II un <c tl:ii ({]) nu

Debug for NOS/VE is a utility that helps you symbolically debug a
BASIC, C, COBOL, CYBIL, FORTRAN Version 1, FORTRAN Version 2, or
Pascal program during execution. Using Debug, you can stop
execution at selected points, display the values of selected
variables and arrays, and resume execution. The format of the
displayed values are consistent with the formatted values used in
your program. No knowledge of machine addresses is required.
However, you can also display locations by specifying machine
addresses.

J1

A primary advantage of Debug is that it is easy to use. You don't
need to modify your source program or know assembly language to use
Debug. Furthermore, using Debug eliminates the need for such
conventional debugging techniques as interpreting memory dumps,
inserting PRINT or DISPLAY statements within a program, and using a
load map.

Other Debug features let you:

• Suspend execution of your program when a selected event occurs.

• Change the values of program variables while execution is
suspended.

• Display a subprogram traceback list, beginning with the current
procedure and proceeding back through the sequence of called
procedures until the main program is reached.

• Display the environment in which you are currently debugging.

• Step through a program by lines or procedures.

• Create a file of Debug commands that are executed only if an
execution error occurs in your program. If an execution error
does not occur, the program runs as though Debug were not being
used.

Revision B Introduction 1-1

Introduction

Because Debug is a command utility, SCL features are available while
using Debug. You can:

• Enter SCL commands.

• Temporarily read commands from a file other than the Debug input
file using the SCL command INCLUDE_FILE.

• Enter mUltiple commands, separated by semicolons, on one line.

• Continue a single command on one or more continuation lines.

• Evaluate and display SCL expressions using the SCL command
DISPLAY VALUE.

• Echo Debug commands to one or more files, and write Debug output
to several files using the SCL command CREATE_FILE_CONNECTION.

• Include Debug commands in SCL procedures.

• Enter commands for processing by another active command
processor, such as an editor, to examine your load map.

Using Debug requires the following steps:

1. Compile your program for use with Debug so that symbolic
capabilities can be used.

2. Turn on Debug mode.

3. Begin execution of your program, which initiates the Debug
session.

4. Enter Debug commands to debug your program.

5. End the Debug session.

6. Make corrections to your source program, recompile, and, if
necessary, conduct additional Debug sessions.

Debug is intended mainly to be used interactively, but can also be
used in batch mode.

1-2 Debug for NOS/VE Usage Revision B

Interactive Debugging

Interactive Debugging

An interactive Debug session is the sequence of interactions that
takes place at a terminal between you and Debug after you begin
execution of a program in Debug mode. Each time you enter a
command, Debug processes that command, displays any output or
informative messages produced by the command, and waits for you to
enter another command.

An interactive Debug session can be conducted in either screen mode
or line mode.

Screen Mode

Using screen mode debugging, you can display your Debug session on
the screen and debug your program ~sing your terminal's function
keys. This feature is available on most terminals.

A primary advantage of debugging in screen mode is its ease of use.
You do not need to wait to receive a hardcopy listing before
debugging your program; the source code is visible as the program
executes. Functions and online Help should free you from needing to
read Debug documentation before becoming productive. When combined
with the Programming Environment or the Professional Programming
Environment, you have a set of powerful programming tools with which
to work.

In screen mode, you can:

• View the source code as the program executes (an arrow points to
the line about to be executed).

• See the output generated by your program and the messages from
Debug displayed to the screen.

• See special information about your task, such as historical or
tracing information.

• View module components of the task.

Communication with Debug in screen mode is accomplished with
functions. Most functions are assigned to function keys displayed
at the bottom of your screen. You can also enter the functions at
the home line. The functions provide capabilities similar to line
mode Debug commands; their names suggest their purpose. In addition
to the functions, you can also enter most line mode Debug commands
and SCL commands on the home line.

Revision B Introduction 1-3

Interactive Debugging

The following screen (displayed on a Viking 721 terminal) typifies
an interactive Debug session in screen mode:

Debugging FOR~
--) program fort

real average, total
total-O.
call aver(total)
average-total/5.
print"', 'average - ' ,average
end
subroutine aver(x)
real scores(5)
data scores /50., 56., 98., 12., 78./
do 10 i-l,5

10 x-scores(i)+x
end

~-----------------------------OOTPUT---------------------------------i
-- Welcome to Full S~feen Debugging --

Press HELP lor Assistance

fl
rn;;-,

fb~f7
~
fl!~

Screen mode debugging is subj ec t to the following restrictions:

• The GOTO function can cause unpredictable results. For example,
if GOTO is used to transfer into a loop construct, the control
variable controlling the loop may not have been initialized;
this could yield unexpec ted output.

I. If your program has user supplied line numbers that do not
correspond to the index of the line in the source file, you
cannot use screen mode debugging.

• Screen mode Debug cannot reliably determine if the source code
being displayed corresponds to the object code being debugged.
This occurs if you have made modifications to your source code
but did not recompile it. If the source code and the object
code are not in agreement, you can continue debugging; however,
the source code being displayed shows the latest modifications,
but the object code being debugged represents output from a
previously compiled source.

• If your program invokes another process that writes to the
terminal, such as SCU (Source Code Utility), you cannot use
screen mode debugging.

1-4 Debug for NOS/VE Usage Revision B

Interactive Debugging

Line Mode

Using line mode debugging, you debug your program by entering
commands in response to the Debug prompt

DB/

After you enter a command, Debug processes that command and issues
another DB/ prompt. This process continues until you end the Debug
session.

When debugging in line mode, you can use any of the Debug and SCL
commands.

Following is a simple example of a Debug session in line mode:

/execute_task file=lgo debug_mode=on

DEBUG 1.5
DB/set break line=5

Break name DBB$1 assigned to this
break

DB/run

DEBUG: break DBB$I, execution
at M=F ORT at L=5

DB/display_program_value name=total

total 294.

DB/run
Average = 58.8

DEBUG: program terminated by
calling exit at

H=FIM$BOUND CORE BO=1332 (16)
DEBUG: The status at termination

wa s : NORMAL.

DB/quit
DEBUG: QUIT terminated task

/

Revision A

Execute the program
and begin the Debug
session.

Set a break at line
5 of the program.

Begin execution of
the program.

The program runs
until the break is
encountered.

Display the value
of variable-TOTAL.

Debug displays the
value of TOTAL.

Resume execution.

The program
terminates.

End the Debug
se ssion.

Introduc tion 1-5

Batch Job Debugging

Batch Job Debugging

You can also use Debug at the batch level. When debugging in batch
mode, Debug reads its commands from a specified file. This file is
specified on the DEBUG INPUT parameter of the SET PROGRAM ATTRIBUTES,
CREATE PROGRAM DESCRIPTION, or EXECUTE TASK command at ex;cution
time. -(The DEBUG_INPUT parameter is d~scribed in chapter 3.)

Once Debug is accessed, it makes no distinction between interactive
line mode and batch mode operations. All Debug and SCL commands and
features are available in both; all commands and features are read
and processed in the same way.

1-6 Debug for NOS/VE Usage Revision A

Getting Started

This chapter describes the preparations required for your terminal
and your source program before beginning a Debug session.

2

Set Up Your Terminal for Screen Mode Debug •••••••••••••••••••• 2-2
Full Screen Terminal Characteristics •••••••••••••••••••••• 2-2
Full Screen Terminal Definition ••••••••••••••••••••••••••• 2-3
Using Function Keys ••••••••••••••••••••••••••••••••••••••• 2-3
User Breaks in Screen Mode Debug •••••••••••••••••••••••••• 2-4

NOS/VE Dual State With CDC NET or NOS/VE Standalone •••• 2-5
NOS/VE Dual State With 2550s •••••••••••••••••••••••••• 2-5

Preparing for a Debug Session ••••••••••••••••••••••••••••••••• 2-6
Symbolic Debugging •• 2-6
Machine-level Debugging ••••••••••••••••••••••••••••••••••• 2-6
Optimizing Level for Use With Debug ••••••••••••••••••••••• 2-7
Summary ?f Compilation Command Parameters ••••••••••••••••• 2-7
Examples •• 2-8

Geltt1:iinng §1l:allr1l:eall

Debug can be used in screen mode or line mode. To use Debug in
screen mode, you must define your terminal for full screen
interface. Debug can always be used in line mode. If the terminal
is not defined as a full-screen terminal, Debug always uses line
mode. Otherwise, if the terminal is defined as a full-screen
terminal and Debug is being used in screen mode, you can switch to
line mode by pressing the DEAS function. (The DEAS function is
described in chapter 4).

Once your terminal is defined correctly, you can prepare your
program for a Debug session.

Revision A Getting Started 2-1

Set Up Your Terminal for Screen Mode Debug

Set Up Your Terminal for Screen Mode Debug
Because screen mode Debug uses a full-screen interface, it can be
used only from an interactive terminal that has full-screen
capabilities and is defined for full-screen use.

If you have used a full-screen application from your terminal (such
as editing in screen mode using the NOS/VE Full-Screen Editor), your
terminal is a full-screen terminal and you can prepare your terminal
for Debug the same way you prepare it for other screen mode
applications.

However, if you have not used a screen mode application from your
terminal before, you need to learn how to define your terminal as a
full-screen terminal. You may be able to find out from someone else
at your site. If not, continue reading. The following paragraphs
list the characteristics of a full-screen terminal and describe how
you define your terminal as a full-screen terminal.

F oil-Screen Terminal Characteristics

A terminal can be defined as a full-screen terminal if it has the
following minimum characteristics:

• Uses asynchronous communications.

• Operates in character mode, not block mode.

• Has keys that move the cursor on the screen and transmit
characters indicating that the cursor has moved.

• Supports direct cursor addressing.

• Provides a clear-screen operation.

The following terminal characteristics are also desirable:

• Provides a clear-to-end-of-line function.

• Has up to 32 definable function keys, each of which transmits a
unique, identifying character sequence. Preferably, the
sequence should end with the carriage-return character.

• Allows host definition of tab stops.

• Supports protected screen fields and tabbing between unprotected
fields. The tab key must transmit a character sequence to the
host indicating that the key was pressed.

• Has graphic characters for drawing lines.

2-2 Debug for NOS/VE Usage Revision A

Set Up Your Terminal for Screen Mode Debug

Full-Screen Terminal Definition

A terminal is defined as a full-screen terminal when you provide
NOS/VE with a full-screen terminal definition to use during the
interactive session. You do this by specifying a TERMINAL MODEL
parameter value on the SCL command SET TERMINAL ATTRIBUTE or
CHANGE TERMINAL ATTRIBUTE. You can put the SET-TERMINAL ATTRIBUTE
or CHANGE TERMINAL ATTRIBUTE command. in your prolog file
($USER.PROLOG) so it is executed each time you log in to NOS/VE.

The TERMINAL MODEL parameter value references a compiled terminal
defi~ition. -Your site probably has a set of compiled terminal
definitions av~ilable on file $SYSTEM.TDU.TERMINAL DEFINITIONS. To
see the definitions available on the file, enter the following SCL
command:

/display_object library $system.tdu.terminal_definitions

The command lists the names of the terminal definition modules. By
convention, the names begin \dth the prefix CSM$ followed by the
TERMINAL MODEL value. For example, one of the modules may be a
terminal-definition for the Zenith Z29 terminal names CSM$Z29. To
use the CSM$Z29 module, you enter the following command:

/set_terminal_attribute terminal model=z29

If you cannot find a compiled terminal definition available at your
site that is effective for your full-screen terminal, you require
creation of a new terminal definition. The process of creating a
new terminal definition is described in the Terminal Definition for
NOS/VE manual.

Using Function Keys

One of the important features of the full-screen interface is the
use of function keys. However, the actual function keys available
to you depend on the terminal you use.

You may need to consult the manual for your terminal or the person
who wrote the terminal definition to find the function keys on your
keyboard. For some terminals, function keys are entered by a
combination of keys entered at the same time or in sequence. For
example, on the Z29 terminal, unshifted function keys are the top
row of keys on the keyboard and shifted function keys are the SHIFT
key and a numeric pad key entered at the same time. After entering
a Z29 function key, you must press the RETURN key.

As listed under Full-Screen Terminal Characteristics, to use Debug
in screen mode, function keys are not required. When the terminal
definition does not define function keys, all Debug actions must be
specified by commands entered on the home line.

Revision A Getting Started 2-3

Set Up Your Terminal for Screen Mode Debug

In many cases) a terminal has some function keys) but not the full
set. In those cases, some Debug functions are available via
function key, while others must be entered by commands on the home
line. The function keys defined by the terminal definition are
displayed at the bottom of the screen.

For example, tbe following shows the function key display at the
bottom of the Debug screen using the Z29 terminal definition:

IFirst I ~
51 BWD 82~83

Function keys can be entered shifted or unshifted. On the display
at the bottom of a Debug screen, the top label is for the shifted
key and the bottom label is for the unshifted key.

The function key label is always an alias for the corresponding home
line command. Thus, when a description refers to a function key
label, the referenced function can be performed either by pressing
the function key or entering the command on the home line of the
screen.

User Breaks in Screen Mode Debug

To activate pause breaks and terminate breaks in a full screen
application such as Debug, you must enter one or two commands before
entering the application.

Pause break and terminate break are interactive conditions caused
when the user enters a certain key sequence. A terminate break
condition terminates the currently executing command.

A pause break condition discards typed-ahead input and suspends the
executing command. While the command is suspended, you can interact
with the system to get information such as the job's status, consult
online manuals and so forth. To resume the suspended command, enter
RESUME COMMAND; to terminate the suspended command, enter TERMINATE
COMMAND.

It may be convenient to include the commands required to activate
pause break and terminate break in your user prolog so they are
automatically executed when you login. The required commands depend
on how you access NOS/VE.

2-4 Debug for NOS/VE Usage Revision B

Set Up Your Terminal for Screen Mode Debug

NOSjVE Dual State With CDCNET or NOSjVE Standalone

If you use NOS/VE dual state with CDCNET or NOS/VE standalone, you
must enter two commands. The first command defines the attention
character value; the second command defines the attention character
as the terminate break key and the terminal's break key as the pause
break key. The following example assumes that the network control
character is the default (%) and the attention character is to be
defined as CTRL-T (ASCII DC4), character code 20:

/%change terminal attribute attention character
/%change-connecti~n attribute attention character action=2
•• /brea~key_action~l

For more information on the CHANGE TERMINAL ATTRIBUTE and
CHANGE CONNECTION ATTRIBUTE commands, see the SCL System Interface
manual: -

NOSjVE Dual State With 25508

If you use NOS/VE dual state with 2550s, you enter only one
command. The command changes the attention character to a non-null
value. For example:

/set_terminal_attribute attention_character=$char(l)

For more information on the SET_TERMINAL_ATTRIBUTE command, see the
SCL System Interface manual.

NOTE

If a subsequent CHANGE TERMINAL ATTRIBUTES command is entered that
does not specify the ATTENTION CHARACTER parameter, the attention
character is reset to null. -

Revision B Getting Started 2-5.

Preparing for a Debug Session

Preparing for a Debug Session
As previously noted, using Debug requires no changes to your source
program. However, you must specify two additional command
parameters when you compile your program, if you intend to use the
symbolic capabilities of Debug. These are the Debug parameter and
the Optimization parameter. The Debug parameter controls the
generation of symbol and line number tables for symbolic debugging
and the Optimization parameter modifies the object code to be used
with Debug.

Symbolic Debugging

Before you can begin a Debug session using symbolic debugging
features, you must compile your program with the Debug parameter
option. Symbolic debugging allows you to reference program
locations symbolically. Code locations can be referenced by their
line number generated by the compiler. Data locations can be
referenced using the data identifiers declared in the source program.

Symbolic debugging is available for user programs written in BASIC,
C, COBOL, CYBIL, FORTRAN Version 1, FORTRAN Version 2 and Pascal.

To symbolically debug a COBOL, CYBIL, FORTRAN Version 1, FORTRAN
Version 2, or Pascal program, the DEBUG AIDS=DT or DEBUG AIDS=ALL
parameter is required on the compile co~mand. To symbolIcally debug
a C program, the -g option is required on the compile command. If
your program is written in BASIC, the symbol tables are
automatically generated at compilation; no special compilation is
necessary. However, if your BASIC program calls an external
subroutine written in COBOL, CYBIL, FORTRAN Version 1, FORTRAN
Version 2, or Pascal, the subroutine must be compiled with the Debug
parameter option.

Machine-level Debugging
~

You can also debug your program at the machine-level. Machine-level
debugging requires that you reference program locations by their
machine address (their NOSjVE process virtual address [PVA]). For
example, to display variable X, you would have to specify the
machine address of X. At this level, module address tables
indicating where program modules are located are also available.

Machine-level debugging does not require the Debug tables and so,
does not require the Debug parameter options. Machine-level
debugging is more difficult than using symbolic names; however, you
can use it to debug an existing object program that would be to
costly to recompile.

2-6 Debug for NOS/VE Usage Revision B

Preparing for a Debug Session

Optimizing Level for Use With Debug

The Optimization parameter controls the level of optimization
performed by the compiler. Optimized code executes faster than
unoptimized code, but requires more compilation time. When the
optimization level is set to Debug, the minimum optimization is
selected and the object code generated is modified for more
efficient use with Debug.

To compile a COBOL, CYBIL, FORTRAN Version 1, FORTRAN Version 2, or
Pascal program for use with Debug, the OPTIMIZATION LEVEL=DEBUG
parameter is required on the compile command. To c~mpile a C
program for use with Debug, the -R option is required on the compile
command. If your program is written in BASIC, no special
optimization level is necessary.

You can still use Debug if the Optimization parameter is set to a
higher level, but some lines may be removed from the program during
optimization and some variables may not be available. (For more
information on Optimizing Debug, see chapter 6.)

Summary of Compilation Command Parameters

Table 2-1 summarizes the parameters required for symbolic debugging
and Debug optimization.

Table 2-1. Compilation Parameters Required for Debug

Compiler Parameters

BASIC No compilation parameters required.

CC -g -R

COBOL DEBUG AIDS=DT (or DEBUG AIDS=ALL)
OPTIMIZATION LEVEL=DEBUG

CYBIL DEBUG AIDS=DT (or DEBUG AIDS=ALL)
OPTIMIZATION LEVEL=DEBUG

FORTRAN DEBUG AIDS=DT (or DEBUG AIDS=ALL)
OPTIMIZATION LEVEL=DEBUG

Pascal DEBUG AIDS=DT (or DEBUG AIDS=ALL)
OPTIMIZATION LEVEL=DEBUG

VECTOR DEBUG AIDS=DT (or DEBUG AIDS=ALL)
FORTRAN OPTIMIZATION LEVEL=DEBUG

Revision B Getting Started 2-7

Preparing for a Debug Session

Examples

In the following example, the FORTRAN program contained in permanent
file $USER.FTN SOURCE is compiled for symbolic debugging. The
DEBUG AIDS parameter, set to ALL, generates the tables required for
symboric debugging; the OPTIMIZATION LEVEL parameter, set to DEBUG,
requests Debug optimization. -

Ifortran input=$user.ftn source list=list binary object=lgo
•• /debug_aids=all optimization_level=debug

The following example compiles a C program contained in permanent
file $USER.SOURCE C for symbolic debugging. The -g option on the CC
command generates-the tables required for symbolic debugging; the -R
option sets the optimization level for Debug use.

I$system.cve.setup
Iset working catalog $user
Icc =-g -R so~rce c

2-8 Debug for NOS/VE Usage Revision B

Executing Under Debug Control 3

This chapter describes the Debug features available when executing
your program under Debug control.

Beginning a Debug Session ••••••••••••••••••••••••••••••••••••
Beginning a Debug Session in Screen Mode •••••••••••••••••
Beginning a Debug Session in Line Mode •••••••••••••••••••
Switching to Screen Mode From Line Mode ••••••••••••••••••
Switching to Line Mode From Screen Mode ••••••••••••••••••

Entering Debu~ Commands ••••••••••••••••••••••••••••••••••••••

Suspending Program Execution •••••••••••••••••••••••••••••••••
Setting Breaks •••
Suspend Execution Automatically on Program Error •••••••••
Suspend Execution at Intervals of Lines or Procedures

(Setting Step Mode) ••••••••••••••••••••••••••••••••••••

Beginning or Resuming Program Execution ••••••••••••••••••••••
The HSPEED Function (Screen Mode) ••••••••••••••••••••••••
The MSPEED Function (Screen Mode) ••••••••••••••••••••••••
The GOTO Function (Screen Mode) ••••••••••••••••••••••••••
The RUN Command (Line Mode) ••••••••••••••••••••••••••••••
Changing the P Register (Line Mode) ••••••••••••••••••••••

Displaying and Changing Program Values •••••••••••••••••••••••

Getting HELP •••
The HELP Function (Screen Mode) ••••••••••••••••••••••••••
The HELP Command (Screen Mode and Line Mode) •••••••••••••
The DISPLAY COMMAND INFORMATION Command (Screen
Mode and Line Mode)-••••••••••••••••••••••••••••••••••••••
The DISPLAY FUNCTION INFORMATION Command (Screen Mode
and Line Mode) ••••• -: •••••••••••••••••••••••••••••••••••••

Ending the Debug Session •••••••••••••••••••••••••••••••••••••
Ending the Debug Session in Screen Mode ••••••••••••••••••
Ending the Debug Session in Line Mode ••••••••••••••••••••

Debug Input and Output Files •••••••••••••••••••••••••••••••••
Changing the Debug Input File ••••••••••••••••••••••••••••
Changing the Debug Output File •••••••••••••••••••••••••••

Automatic Command Execution on Program Failure •••••••••••••••

3-1
3-2
3-4
3-5
3-5

3-6

3-7
3-7
3-8

3-9

3-10
3-10
3-10
3-11
3-11
3-11

3-13

3-14
3-14
3-14

3-15

3-15

3-16
3-16
3-16

3-17
3-17
3-20

3-21

Recording an Interactive Debug Session ••••••••••••••••••••••• 3-26

3

In order to execute a program under Debug control, you must first
request a mode of execution called debug mode. Through Debug, you
can suspend program execution at selected break points or on program
failure, display or change the values of variables and arrays within
the program, resume execution, and perform a variety of other tasks.

Beginning a Debug Session

After you compile your program for use with Debug, you are ready to
begin a Debug session.

To begin a Debug session, you must first turn on Debug mode, then
execute your program while in Debug mode. To turn on Debug mode,
you specify the parameter DEBUG MODE=ON on the SET PROGRAM
ATTRIBUTES, CREATE YROGRAM _DESCRIPTION, or EXECUTE-TASK commands.

The SET PROGRAM ATTRIBUTES command (described in the SCL Object Code
Management manual) turns Debug on at the job level. This means that
all subsequent programs (that do not turn Debug mode off at the
program level) are executed under control of Debug, unless you
specify DEBUG_MODE=OFF on a SET_PROGRAM_ATTRIBUTES command.

The CREATE PROGRAM DESCRIPTION command (described in the SCL Object
Code Management ma~ual) is a subcommand of the Object Library
Generator and can turn Debug on at the program level. This means
that only the specified program (or the implied program if the
program or file name is not specified) will be executed under
control of Debug.

The EXECUTE TASK command (described in the SCL Object Code
Management manual) turns Debug on at the program level. This means
that only the specified program will be executed under control of
Debug.

You can begin a Debug session in screen mode or line mode.

Revision B Executing Under Debug Control 3-1.

Beginning a Debug Session

Beginning a Debug Session in Screen Mode

Using Debug in screen mode requires that your terminal support full
screen operation. See chapter 2 for information about terminal
definitions that can support full screen interface.

To begin a Debug session in screen mode, perform the following steps:

1. Set the current style for your terminal to SCREEN. This is done
with the SCL CHANGE INTERACTION STYLE command (described in the
SCL System Interface manual). For example:

/change_interaction_style style=screen

This command enables the Debug session to begin in screen mode
when you execute your program while in Debug mode. Once set,
the terminal style remains in effect until you change it.

2. Turn on Debug mode. To do this, set the parameter DEBUG MODE to
ON specified on the SET PROGRAM ATTRIBUTES, CREATE PROGRAM
DESCRIPTION, or EXECUTE=TASK co~ands. For example:

3. Specify a name call or EXECUTE TASK command. This begins the
Debug session in screen mode. -For example:

NOTE

/execute_task file=lgo

For programs written in C, COBOL, CYBIL, FORTRAN Version 1, or
FORTRAN Version 2, the source listing of the file containing the
program is displayed on the screen. This is called the Zoom-in
display (described in chapter 4) and it is the display in which
you debug your program.

For programs written in BASIC or Pascal, the module names
associated with the program are displayed on the screen. This
is called the Zoom-out display (described in chapter 4). In
order to show the Zoom-in display, that is, display the source
listing of the program, you must select the module you want to
debug and then press the ZMIN function (described in chapter 4).

Screen Mode Debug can also be accessed through the Programming
Environment or the Professional Programming Environment. These
utilities are described in the ENVIRONMENT and PPE online manuals,
respectively.

3-2 Debug for NOS/VE Usage Revision B

Beginning a Debug Session

In the following example, the permanent file $USER.PAS TEST contains
a Pascal program. Assuming $USER.PAS TEST has alreadY-been compiled
for use with Debug, the commands below set the terminal style to
screen and begin the Debug session in screen mode:

/change interaction style style=screen
/execut~_task file=Igo debug_mode=on

The following screen is displayed:

Displaying Routines
> MODULE PAS_TEST

~-----------------------------OUTPUT--------------------------------~

-- Welcome to Full Screen Debugging --

Press HELP for Assistance

To display the source listing of program PAS_TEST, press the ZMIN
function.

Revision B Executing Under Debug Control 3-3

Beginning a Debug Session

Beginning a Debug Session in Line Mode

A Debug session in line mode begins when you enter a name call or
EXECUTE TASK command to begin execution of a program while in debug
mode. Normally, this begins execution of your program. However, in
debug mode, the following Debug prompt is displayed:

DB/

and you debug your program by entering commands in response to this
prompt.

To begin a Debug session in line mode, perform the following steps:

1. Turn on Debug mode. To do this, set the parameter DEBUG MODE to
ON specified on the SET PROGRAM ATTRIBUTES, CREATE PROGRAM
DESCRIPTION, or EXECUTE=TASK commands. For example:

2. Specify a name call or EXECUTE TASK command. This begins the
Debug session in line mode. Debug immediately gets control and
waits for you to enter a command. For example:

/execute task file=lgo
DEBUG 1.5
DB/

In the following example, the permanent file $USER.COB TEST contains
a COBOL program. Assuming $USER.COB TEST has already been compiled
for use with Debug, the command belo; begins a Debug session in line
mode:

NOTE

/execute task file=lgo debug_mode=on
DEBUG 1.S
DB/

A Debug session in line mode is also initiated when a STOP statement
is encountered in a BASIC program. This is true even if the
paramenter DEBUG MODE=OFF is specified. The program resumes
execution when a-Debug RUN command is entered.

3-4 Debug for NOS/VE Usage Revision B

Beginning a Debug Session

Switching to Screen Mode From Line Mode

If you are debugging your program in line mode, you can switch to
screen mode anytime during the debugging session by entering the
Debug ACTIVATE SCREEN command (described in chapter 5). Any
existing break; are deleted and STEP_MODE is turned off when
ACTIVATE SCREEN is entered.

For example, to switch to screen mode from line mode, enter the
Debug ACTIVATE_SCREEN command:

DB/activate_screen

NOTE

If you are debugging a BASIC or Pascal program, you must be sure the
FILE PROCESSOR attribute of the file containing the source specifies
the name of the compiler that compiled the program. This is done
with the SCL CHANGE FILE ATTRIBUTE command (described in the SCL
System Interface manual):

For example, assume that permanent file $USER.PAS TEST contains the
source for a Pascal program. The following command defines the
FILE_PROCESSOR attribute to be PASCAL:

DB/change file attributes file=$user.pas test
DB •• /file=proc;ssor=pascal -

To determine what the FILE PROCESSOR attribute of a file is, you can
enter the SCL DISPLAY FILE-ATTRIBUTE command (described in the SCL
System Interface manual). -The CHANGE FILE ATTRIBUTE and
DISPLAY FILE ATTRIBUTE commands can b; ent;red before the Debug
session-begins or anytime during a Debug session while execution is
suspended.

Switching to Line Mode From Screen Mode

If you are debugging your program in screen mode, you can switch to
line mode anytime during the Debug session by pressing the DEAS
function (described in chapter 4). Any existing breaks remain set,
step-mode is turned off, and all options return to their default
settings.

Revision B Executing Under Debug Control 3-5

Entering Debug Commands

Entering Debug Commands

During a Debug session in screen mode, you execute Debug screen mode
commands by using function keys instead of typing the command.
Debug screen mode commands, Debug line mode commands, and SCL
commands can also be entered on the home line. During a Debug
session in line mode, you enter Debug line mode commands in response
to prompts.

When a function or command is processed, any output and informative
messages produced by the function or command are displayed. Using
the Debug functions and commands, you can suspend program execution,
display or change the values of variables and arrays within the
program, resume execution, end the Debug session, and perform a
variety of other tasks.

You can also create a file of Debug line mode commands that are
executed automatically if an error occurs while your program is
executing in line mode. (This feature is described later in this
chapter under Automatic Command Execution.)

3-6 Debug for NOS/VE Usage Revision A

Suspending Program Execution

Suspending Program Execution

At the beginning of a Debug session you will typically want to
suspend execution at various points in the program, so that you can
display and alter program values, or perform other tasks. You can
suspend execution in the following ways:

1. Set Breaks

Execution is suspended when a specific line, statement, or other
event is reached during execution. This requires you to set one
or more breaks in your program. When the executing program
encounters a break, execution is suspended.

2. Automatically on Program Error

Execution is suspended automatically when an error occurs during
execution (such as division by zero, arithmetic overflow, or a
CYBIL range-error). This requires no action on your part. If
you simply turn on debug mode and begin execution of your
program, execution will stop if a runtime error occurs.

3. Set Step Mode

Execution is suspended immediately before execution of each
source line or procedure in the program. This is known as
executing in step mode. With step mode you can step through
your program at intervals of lines or procedures.

Setting Breaks

The primary means for suspending program execution during a Debug
session is to set breaks at selected points in your program. With a
break, you can suspend execution of your program when an event
occurs in a specified address range at which point you receive
control and Debug commands can be entered. Many events can be
specified and address ranges can be specified in many forms.

In screen mode debugging, you set a break and delete a break with
the SETBRK and DELBRK functions (described in chapter 4). The line
which contains the break is highlighted to inform you that a break
is set on the line. In line mode debugging, you set a break, delete
a break, and display a break with the SET BREAK, DELETE BREAK, and
DISPLAY_BREAK commands (described in chapter 5). -

Once set, a break stays set until it is explicitly deleted.

PERFORMANCE HINT

Because execution takes longer when there are breaks set, you should
delete a break as soon as it is no longer needed.

Revision A Executing Under Debug Control 3-7

Suspending Program Execution

When a break is encountered during program execution, the following
events occur:

1. Execution of the program suspends.

2. Control passes to Debug.

3. Execution stops on the line containing the break. The break
occurs before the statement is executed and you can then enter
Debug fUnctions or commands.

In line mode debugging, commands can be associated with a break such
that when the break is reached during execution, the commands are
automatically executed. This can be useful when you want to
temporarily compensate for a program bug, automatically display
certain critical values each time the break occurs, and test certain
conditions (perhaps the number of times the break has occurred).

Suspend Execution Automatically on Program Error

You can also suspend execution during a Debug session simply by
beginning execution of the program and allowing it to execute until
an error occurs. Debug then gets control, displays a message
describing the error, and gives control to you. This is true even
if the program has condition handlers established for these
exceptions. Debug gets control first. The program's handler is
activated when execution is resumed with the RUN command.

Suspending execution automatically during a Debug session when an
error occurs is a result of the default error termination breaks
provided by Debug. Examples of error termination breaks are the
Divide Fault break and the Exponent Overflow break. You do not need
to explicitly set these breaks because they are default breaks that
are automatically set for every Debug session.

A suggested procedure for debugging a program is to execute the
program in Debug mode without setting any breaks, and to allow the
program to terminate. If the program terminates with errors, you
can run additional Debug sessions using knowledge gained from the
first session to help you decide where to set breaks.

3-8 Debug for NOS/VE Usage Revision A

Suspending Program Execution

Suspend Execution at Intervals of Lines or Procedures
(Setting Step Mode)

A third method of suspending execution during a Debug session is to
set step mode. Step mode is a mode of execution in which execution
is suspended immediately before the execution of each program
statement. Execution remains suspended until you enter the command
to resume execution. Using step mode, you can step through lines or
procedures of your executing program, displaying or changing program
values at each step.

In screen mode debugging, you can step through your program using
the STEPI or STEPN functions (described in chapter 4). In line mode
debugging, you initiate step mode with the Debug command
SET STEP MODE set to ON (described in chapter 5).

Revision A Executing Under Debug Control 3-9

Beginning or Resuming Program Execution

Beginning or Resuming Program JE",ecution

After beginning a Debug session, there are several ways you can
begin execution of your program, or resume execution while in step
mode or after the occurrence of a break:

• The HSPEED Function

• The MSPEED Function

• The GOTO Function

• The RUN Command

• Changing the P Register

In addition, if the program has a condition handler for the
condition that handler is executed. If there is no such handler,
the program resumes execution at the point of interruption.
(Condition handlers are described in chapter 6.)

The HSPEED Function (Screen Mode)

Pressing the HSPEED function (also described in chapter 4) begins or
resumes execution of your program. Execution continues uninter
rupted until your program terminates, a break is encountered, or an
unselected event (such as a divide fault, a terminate break, or a
pause break) occurs (an arrow points to the source line in your
program where execution has stopped).

The MSPEED Function (Screen Mode)

Pressing the MSPEED function (also described in chapter 4) executes
your program until the next subroutine or procedure is called. (For
COBOL programs, MSPEED executes the program until the next section
is called.) MSPEED can be interrupted by a break, program
termination, or an unselected event (such as a divide fault, a
terminate break, or a pause break) occurs (an arrow points to the
source line in your program where execution has stopped.

3-10 Debug for NOS/VE Usage Revision A

Beginning or Resuming Program Execution

The GOTO Function (Screen Mode)

The GOTO function (also described in chapter 4) changes the location
where execution of your program begins next when the HSPEED, MSPEED,
LSPEED, STEP1, or STEPN function is pressed. The GOTO function is
intended to be used when a bug has been isolated and can be fixed in
the Debug session. You can test the change without recompiling your
program by resuming execution of a portion of code with the new data
values. The GOTO function can also be used to skip a section of
faulty code.

The RUN Command (Line Mode)

You enter a RUN command to begin or resume execution of your program
at the point where it was suspended. Execution continues until
either another break occurs or the program runs to completion. If
you enter a RUN command after your program has run to completion,
the Debug session automatically ends and control returns to the
activity you were doing before you began the Debug session. (The
RUN command is described in chapter 5.)

Changing the P Register (Line Mode)

You can resume execution at another point in your program by
changing the P register before entering the RUN command.

Normally, execution begins at the instruction whose address is
contained in the P register of the program in which execution is
suspended. If the P register points to the instruction that caused
the event, the same event will occur immediately after entering the
RUN command. In this case, you must change the value in the P
register with the CHANGE REGISTER command or change the value of one
of the operands with the-CHANGE PROGRAM VALUE command before
entering the RUN command. (The-CHANGE REGISTER and CHANGE PROGRAM
VALUE commands are described in chapte~ 5.) -

The value of the P register or the value of the operands must be
changed when the following events occur:

• Arithmetic overflow. This is caused when the result of an
integer operation exceeds the largest value that can be
represented in integer format.

• Arithmetic significance is lost. This is caused when an
operation on extremely large integer values caused truncation of
the low-order digits of the integer result.

Revision A Executing Under Debug Control 3-11

Beginning or Resuming Program Execution

• Divide fault. This is generally caused when the program
attempts to divide by zero. (If you are debugging a COBOL
program, you can change the value of the variable with the
CHANGE PROGRAM VALUE command and resume execution of the program
without changing the P register.)

• Exponent overflow. This is caused when the result of a
mathematical calculation is a floating-point number that exceeds
the largest number that can be represented in floating-point
format.

• Exponent underflow. This is caused when the result of a
mathematical calculation is a floating-point number that exceeds
the smallest number that can be represented in floating-point
format.

• Floating-point indefinite. This is caused when a floating-point
calculation cannot be resolved, such as a division where the
dividend and divisor are both zero.

• Floating-point significance is lost. This is caused when an
operation on extremely large floating-point values caused
truncation of the low-order digits of the floating-point result.

• Invalid business data processing data (described in the Virtual
State Hardware Usage manual).

If you do change the P register, be sure its new value is within the
procedure that was executing when Debug gained control.
Unpredictable results can occur if the P register is changed to a
value outside the current procedure.

3-12 Debug for NOS/VE Usage Revision A

Displaying and Changing Program Values

Displaying and Changing Program Values

After execution of your program is suspended, you can examine and
change the contents of variables and arrays. If the value of the
variable you displayed is incorrect, you can replace that value with
a new value. Then, when you resume execution, the new value is used
in subsequent computations.

In screen mode debugging, the functions SEEVAL and CHAVAL are used
to display and change values of variables or arrays. (These
functions are described in detail in chapter 4.)

In line mode debugging, the commands DISPLAY PROGRAM VALUE and
CHANGE PROGRAM VALUE are used to display and-change ;alues of
variables or a~rays. (These commands are described in detail in
chapter 5.)

Revision A Executing Under Debug Control 3-13

Getting HELP

Getting HELP
During a Debug session, there are several ways to get help
information:

• The HELP Function

• The HELP Command

• The DISPLAY COMMAND INFORMATION Command

• The DISPLAY_FUNCTION_INFORMATION Command

The HELP Function (Screen Mode)

Pressing the HELP function displays the Help window. The Help
window overlays a portion of your screen and prompts you to press
the function key for which you need help. When you press a function
key, a short description of the function you select is displayed in
the Help window. If you press RETURN in response to the prompt, the
Help window is removed and your screen is restored to its original
contents. (The HELP function is also described in chapter 4.)

The HELP Command (Screen Mode and Line Mode)

The SCL HELP command displays the text of an online manual. You can
get detailed help for a particular subject from any online manual
during a Debug session. The HELP command can be entered in line
mode Debug or on the home line in screen mode Debug.

For example, if you need information about the Debug SET BREAK
command described in the DEBUG online manual, type the HELP command
shown below on the home line or in response to the DBI prompt:

help subject=set_break manual=debug

This command takes you to the DEBUG online manual for an explanation
of the SET_BREAK command. To return to Debug, press QUIT. If you
are debugging in line mode, the OBI prompt returns and debugging
continues; if you are debugging in screen mode, the screen is
restored to its original contents •

• 3-14 Debug for Nos/vE Usage Revision B

Getting HELP

The DISPLAY_COMMAND_INFORMATION Command
(Screen Mode and Line Mode)

The SCL DISPLAY COMMAND INFORMATION (DISCI) command displays format
information abo~t an SCL or Debug command. The
DISPLAY COMMAND INFORMATION command can be entered in line mode
Debug or on the-home line in screen mode Debug. This command is
useful when you want a quick reminder of the format of a command.

For example, to display the format and required parameters of the
Debug DISPLAY CALLS command, type the DISPLAY COMMAND INFORMATION
command shown-below on the home line or in response to the DBI
prompt:

display command information display calls
count, C - integer 1~.2147483647 or key all

start, s
display option,
display=options, do

output, 0

status

10000
integer 1 •• 2147483647

list of key user calls, uc,
system calls~ sc, all calls, ac,
variable values, vv=user calls

file = $optional -
var of status = $optional

The DISPLAY_FUNCTION_INFORMATION Command
(Screen Mode and Line Mode)

The SCL DISPLAY FUNCTION INFORMATION (DISFI) command displays format
information abo~t an SCL-or Debug function. The DISPLAY FUNCTION
INFORMATION command can be entered in line mode Debug or-on the h~me
line in screen mode Debug. This command is useful when you want a
quick reminder of the format of a function.

For example, to display the format and required parameters of the
Debug $REGISTER function, type the DISPLAY FUNCTION INFORMATION
command shown below on the home line or in-response-to the DBI
prompt:

NOTE

display function information $register
parameter 1 key p, a, x = $required
parameter 2 : integer 0 •• 15 = $optional

You can use DISPLAY COMMAND INFORMATION and DISPLAY FUNCTION
INFORMATION to display Debug command and function parameters-only
while you are in a Debug session. Outside the Debug session, only
SCL command and function parameters can be displayed with the
DISPLAY COMMAND INFORMATION and the DISPLAY FUNCTION INFORMATION
commands.

Revision B Executing Under Debug Control 3-15.

Ending the Debug Session

Ending the Debug Session

When the Debug session ends, control returns to the activity you
were doing before you began the Debug session. For example, if you
were using the Programming Environment utility, you return to the
Programming Environment when you terminate the Debug session.

Ending the Debug Session in Screen Mode

You can end a Debug session in screen mode at any time by pressing
the QUIT function. When you press QUIT, you return to the activity
you were doing before you began the Debug session. You can also
enter QUIT on the home line. (The QUIT function is also described
in chapter 4.)

Ending the Debug Session in Line Mode

You can end a Debug session in line mode at any time by typing the
command

QUIT

in response to the DB/ prompt. When you enter a QUIT command, the
following message is displayed:

-- DEBUG: QUIT terminated task

and you return to the activity you were doing before the Debug
session began.

You can also end the Debug session by entering the RUN command after
your program runs to completion. In this case, no message is
displayed; you return immediately to the previous activity. (The
QUIT and RUN commands are described in chapter 5.)

NOTE

Changes made during a Debug session are lost when the session is
ended. All variables assume their original values, breaks are
removed, and the program is the same as when you compiled it. You
can run additional sessions if you want to continue debugging your
program.

3-16 Debug for NOS/VE Usage Revision A

Debug Input and Output Files

Debug Input and Output Files
The Debug input file is the file from which Debug reads its
commands. The Debug output file is the file to which Debug writes
its output (messages and displays). You can, by manipulating these
files expand the capabilities of Debug. This feature is available
only when debugging in line mode.

The Debug input and output files are initially specified by the
DEBUG INPUT and DEBUG OUTPUT parameters. You can change the Debug
input-and output files by specifying the DEBUG INPUT or DEBUG OUTPUT
parameter on the SET PROGRAM ATTRIBUTES, CREATE PROGRAM DESCRIPTION,
or EXECUTE TASK co~nd. - --

Changing the Debug Input File

The DEBUG INPUT parameter specifies the input file from which Debug
reads its commands. The default input file is $LOCAL.COMMAND. For
interactive jobs, COMMAND is your terminal. For batch jobs, COMMAND
is the normal command stream.

Since the file COMMAND is positioned at its beginning when first
accessed by Debug, which is the LOGIN command for the job, this will
be read as the first Debug command. Instead, to use Debug in batch
mode, use the COLLECT TEXT command to enter the Debug commands onto
another file and then-specify that file.on the DEBUG_INPUT parameter.

To change the Debug input file, assume that the permanent file
$USER.INPUT_FILE contains the following Debug commands:

set_break break=b1 line=5 module=fort
run
display-yrogram_variable name=total
run

Revision A Executing Under Debug Control 3-17

Debug Input and Output Files

The following EXECUTE TASK command is entered to execute the FORTRAN
program illustrated i; figure 3-1. Debug mode is turned on and the
Debug input file is specified as $USER.INPUT FILE. When the Debug
session begins, the commands in file $USER.INPUT FILE are
immed iately executed. -

/execute task file=lgo debug_mode=on debug_input=$user .input_fi1e
DEBUG 1.5
-- DEBUG: break B1, execution at M=FORT L=5

total=294.
Average = 58.8

DB/

DEBUG: program terminated by calling exit at
M=Fl11$BOUND CORE BO=1332(l6)
DEBUG: The status at termination was: NORMAL.

When the commands in file $USER.INPUT_FILE have executed, the Debug
prompt returns.

SOURCE LIST OF FORT

1 program fort
2 real average, to tal
3 total=O.
4 call aver(total)
5 average=total/5.
6 print*,'average ',average
7 end

SOURCE LIST OF AVER

1 subroutine aver(x)
2 real scores(5)
3 data scores/50.,56.,98.,12.,78./
4 do 10 i=l,S
5 10 x=score s(i)+x
6 end

Figure 3-1. Debug Exampl e: Source Listing
of Program FORT

3-18 Debug for NOS/VE Usage Revision A

Debug Input and Output Files

You can also change the Debug input file temporarily by entering an
SCL INCLUDE FILE command during the Debug session. As soon as the
INCLUDE FILE command is entered, commands are read from the file
specified on the INCLUDE_FILE command until an end-of-file or a RUN
command is encountered.

If an end-of-file is encountered, Debug gains control; the Debug
input file is switched to $COMMAND. If a RUN command is
encountered, program execution is resumed; any remaining commands in
the INCLUDE FILE are not processed. When Debug again gains control,
commands are read from the current Debug input file.

For example, assume that the permanent file $USER.INPUT_FILE2
contains the following Debug commands:

set break break=b1 line=5 module=fort
display-yrogram_variable name=total

The following EXECUTE TASK command is entered to turn on Debug mode
and to execute the FORTRAN program illustrated in figure 3-1. After
the Debug session begins, an INCLUDE FILE command is entered and the
commands in permanent file $USER.INPUT FILE2 are immediately
executed. When the commands in file $USER.INPUT_FILE2 are executed,
the Debug prompt returns.

/execute task file=lgo debug_mode=on
DEBUG 1.5
DB/include file $user.input_file2
total=O. -
DB/

The Debug command CHANGE DEFAULTS can also change the Debug input
file. The DEBUT INPUT parameter of the CHANGE DEFAULTS command can
specify a new Debug input file to be used the next time D~bug
suspends program execution.

If a Debug session is initiated in an SCL procedure, Debug reads its
input from the file COMMAND, instead of from the procedure file. To
read the commands from the procedure, specify DEBUG_INPUT=$COMMAND.

Revision A Executing Under Debug Control 3-19

Debug Input and Output Files

Changing the Debug Output File

The DEBUG OUTPUT parameter specifies the output file to which Debug
writes it~ output (messages and displays). The default output file
is $OUTPUT. $OUTPUT is the terminal for interactive jobs and the
listing file for batch jobs. Initially, $OUTPUT is connected to the
actual file OUTPUT. You can connect $OUTPUT to other files by using
the SCL command CREATE FILE CONNECTION (see Recording an Interactive
Debug Session described later in this chapter).

For example, the following EXECUTE TASK command executes the FORTRAN
program illustrated in figure 3-1.- Debug mode is turned on and the
Debug output file is specified as permanent file $USER.OUTPUT FILE.
During the Debug session, all Debug output is written to file
$USER.OUTPUT_FILE.

/execute task file=lgo debug mode=on ••
•• /debug=output=$user.output:file
DB/set break break=b1 line=s module=fort
DB/run-
DB/display_program_value name=total
DB/quit
/

The contents of permanent file $USER.OUTPUT_FILE are:

DEBUG 1.5 ,
DEBUG: break B1, execution at M=FORT L=s

total=294.
DEBUG: QUIT terminated task.

The Debug command CHANGE DEFAULTS can also change the Debug output
file. The DEBUT OUTPUT parameter of the CHANGE DEFAULTS command can
specify a· new Debug output file to be used as soon as the command is
executed.

The OUTPUT parameter of the Debug display commands can be used to
divert display output to another file; the diversion applies only to
the command that contains the OUTPUT parameter.

You can also use the SCL DISPLAY VALUE command (described in the SCL
Language Definition Usage manual) to display values of SCL variables
to your terminal.

3-20 Debug for NOS/VE Usage Revision A

Automatic Command Execution on Program Failure

Automatic Command Execution on PJrogram Failure

Debug provides a feature through which you can create a special
file, called an abort file, that contains Debug commands. If your
program terminates because of an execution error, the commands in
the abort file are automatically executed. The abort file is
specified by the ABORT FILE parameter on the SCL SET PROGRAM
ATTRIBUTES, CREATE_PROGRAM_DESCRIPTION, or EXECUTE_TASK co~nd.

The abort file feature is especially useful for maintaining programs
that are in the working stage. It lets you specify a set of
commands that is executed automatically when an error occurs. This
can eliminate the need to reproduce the error in order to debug the
program.

Because Debug is a commend utility, you can include SCL commands as
well as Debug commands in the abort file. This allows you to write
sophisticated error handling procedures. (The SCL Language
capabilities are described in the SCL Language Definition manual.)

By default, the abort file is $NULL, meaning that no abort file
commands are executed. When executing, Debug mode must be off and
the abort file must be a file other than $NULL for the commands in
the abort file to be executed when a program fails; if
ABORT_FILE=$NULL, the commands in the abort file are not executed.

To use the abort file feature, perform the following steps:

1. Create a file containing the sequence of Debug commands to be
executed if the program fails.

2. Specify the file on the ABORT FILE parameter on the
SET PROGRAM ATTRIBUTES, CREATE_P RO GRAM_DE SCRIPT ION , or
EXECUTE TASK command.

If you want the output from your abort file to be written to an
output file, specify the DEBUG OUTPUT parameter also. (See
Debug Input and Output in this-chapter.)

3. Specify the parameter DEBUG MODE=OFF when executing your
program. (The abort file is not used during a Debug session.)

Revision A Executing Under Debug Control 3-21

Automatic Command Execution on Program Failure

To demonstrate abort file use, suppose permanent file $USER.SAMPLE
contains the COBOL source program listed in figure 3-2 and the
permanent file $USER.ABORT_FILE contains the following Debug command:

display_calls display_options=(user_calls variable_values)

This command traces through the program's calls, and displays all of
the variables known at each called location.

The following commands compile and execute the COBOL program listed
in figure 3-2 using an abort file:

/cobol input=$user.sample list=list binary object=lgo ••
•• !debug_aids=all optimization_level=debug-
/set program attributes abort file=$user.abort file
•• /debug outPut=$user.abort file errors -
/execute=task file=lgo debug_mode=off

The SET_PROGRAM~TTRIBUTES command turns off debug mode, specifies
the ABORT FILE, and specifies the DEBUG OUTPUT. The EXECUTE TASK
command begins execution. When the err~r occurs, the commands in
permanent file $USER.ABORT_FILE are executed.

The following message is displayed:

-- FATAL-- divide fault at P=OB 49 98.

A DIVIDE FAULT error occurs in program SAMPLE (figure 3-2).

The Debug session terminates after the commands in $USER.ABORT_FILE
are executed.

3-22 Debug for NOS/VE Usage Revision A

Automatic Command Execution on Program Failure

SOURCE LIST OF SAMPLE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Identification Division.
Program-Id. Sample.
Environment Division.
Data Division.
Working-Storage Section.
01 Numeric-Data.

02 Item-A
02 Item-B.

03 Sub-Item-1
03 Sub-Item-2

02 Item-C.
03 Sub-Item-1
03 5ub-ltem-2A

01 Character-Data-1.
02 Char!
02 Char2
02 Char3.

03 Char4

01 Numeric-Data-2.
02 Sub1
02 Sub2

77 Counter1
77 Counter2

Procedure Division.
Test1.

Pic S999 Value -100.

Pic 99 Value 10.
Pic 99 Value 25.

Pic 99 Value O.
Pic 59999 Value O.

Pic X(10) Value "ABCDEFGHIJ".
Pic X(l6) Value "KLMNOPQRSTUVWXYZ" •

Pic X(4) Occurs 4 times.

Pic 99 Occurs 10 times.
Pic 99 Value 99.

Pic 99 Value O.
Pic 99 Value O.

Divide Item-A By Sub-Item-1 Of Item-C
Giving Sub-Item-2A.

Test2.
Move 1 To Counter1.
Move 1 To Counter2.

Perform 4 Times
Move Char2 (Counter1
Add 4 To Counter1
Add 1 To Counter2

End-Perform.

4) To Char4 (Counter2)

(Continued)
Figure 3-2. Debug Example: Source Listing of SAMPLE

Revision A Executing Under Debug Control 3-23

Automatic Command Execution on Program Failure

(Continued)

42 Test3.
43 Move 1 To Counterl.
44 Move 1 To Counter2.
45 Perform 10 Times
46 Move Counterl To Subl (Counter2)
47 Move Counterl To Sub2
48 Call "Samp1e2" Using Counter 1
49 Add 2 To Counterl
50 Add 1 To Counter2
51 End-Perform.
52 Stop Run.
53 End Program Sample.

SOURCE LIST OF SAMPLE2

1 Identification Division.
2 Program-Id. Sample2.
3 Environment Division.
4 Data Division.
5 Working-Storage Section.
6 77 Suml Pic 999 Value O.
7
8 Linkage Section.
9 77 Countl Pic 99.
10
11 Procedure Division Using Countl.
12 Start-Sample2.
13 Add Countl To Suml.
14 Display "SUMI IS" Suml.
15 Exit Program.

Figure 3-2. Debug Example: Source Listing of SAMPLE

3-24 Debug for NOS/VE Usage Revision A

Automatic Command Execution on Program Failure

Figure 3-3 lists the contents of the permanent file
$USER.ABORT FILE ERRORS (this is the file that contains Debug
output). The DIVIDE FAULT error occurs at line 30 of program SAMPLE
(figure 3-2). The traceback shows all the variables and their
current values when the execution error is discovered. The DIVIDE
FAULT on line 30 is caused because variable SUB-ITEM-l of ITEM-C
contains a value· of zero.

DEBUG 1.5
DEBUG: program terminated by calling
abort at M=SAMPLE L=30 BO=26
DEBUG: -- FATAL -- divide fault
at P=OB 49 98.
Traceback from procedure SAMPLE module SAMPLE at line 30 byte
offset 26
DISPLAY OF ALL VARIABLES IN SAMPLE

NAME DATA TYPE SIZE BYTES VALUE

NUMERIC-DATA ALPHNUM 13
ITEM-A DISPLAY 3 -100
ITEM-B ALPHNUM 4
SUB-ITEM-l DISPLAY 2 +10
SUB-ITEM-2 DISPLAY 2 +25
ITEM-C ALPHNUM 6
SUB-ITEM-l DISPLAY 2 +0
SUB-ITEM-2A DISPLAY 4 +0

CHARACTER-DATA-l ALPHNUM 42
CHARI ALPHNUM 10 ABCDEFGHIJ
CHAR 2 ALPHNUM 16 KLMNOPQRSTUVWXYZ
CHAR3 ALPHNUM 16
CHAR 4 (1) ALPHNUM 4 ???? (4

OCCURRENCES)

NUMERIC-DATA-2 A LPHNUM 22
SUBI (1) DISPLAY 2 INVALID BDP

DATA (10 -
OCCURRENCES)

SUB2 DISPLAY 2 +99

COUNTERI DISPLAY 2 +0

COUNTER2 DISPLAY 2 +0

Figure 3-3. Contents of Permanent File $USER.ABORT_FILE_ERRORS

Revision B Executing Under Debug Control 3-25

Recording an Interactive Debug Session

Recording an Interactive Debug Session
In an interactive Debug session, generally you enter input to Debug
and receive output from Debug at your terminal. Because input and
output are communicated through the terminal, all information about
the Debug session is lost when you terminate a Debug session.

You can, however, record the entire session by using the
CREATE FILE CONNECTION command to connect files with your terminal
before-you start Debug. This feature is available only when
debugging in line mode. The terminal is associated with certain
standard system files by default. (A file connection is a
connection between one of the system standard files and an actual
file. The effect of a file connection is that any data access
request against a ~tandard file is passed on to the connected file.
See the SCL System Interface Usage manual for detailed descriptions
on system standard files and the CREATE_FILE_CONNECTION command.)

For example, by connecting the standard files $OUTPUT, $ECHO,
$RESPONSE, and $ERRORS, you can record the entire Debug session on
the same file.

/create file connection $output output file
/create-file-connection $response output_file
/create-file-connection $echo output_file

3-26 Debug for NOS/VE Usage Revision B

Screen Mode Debugging

This chapter describes the features and functions used in screen
mode debugging.

4

Screen Layout ••••••••••••••••••••••••••••••••••• ~........... 4-2

Debugging Using Functions ••••••••••••••••••••••••••••••••••• 4-4

Entering Commands on the Home Line •••••••••••••••••••••••••• 4-5

The Visible Windows in Screen Mode Debugging •••••••••••••••• 4-6
The Source Window....................................... 4-6

The Zoom-in Display................................. 4-6
The Zoom-out Display................................ 4-8
The Trace Display................................... 4-10

The Output Window....................................... 4-10
The Help Window... 4-10
The Keys Window... 4-12
The Options Window...................................... 4-13

Function Descriptions ••••••••••••••••••••••••••••••••••••••• 4-14
Summary of Screen Mode Functions •••••••••••••••••••••••• 4-14
Getting Help (HELP) ••••••••••••••••••••••••••••••••••••• 4-16
Changing the Window Displays •••••••••••••••••••••••••••• 4-16

Display the Source Code (ZMIN) 4-16
Display Source Modules (ZMOUT) •••••••••••••••••••••• 4-17
Display Allor Specified Source Calls (TRACE) ••••••• 4-18
Display the Screen Mode Debug Function Names (KEYS).. 4-18

Interrupting Program Execution •••••••••••••••••••••••••• 4-19
Stop Execution at Specified Line (SETBRK) ••••••••••• 4-19
Delete Break in Program Execution (DELBRK) •••••••••• 4-21

Beginning or Resuming Program Execution ••••••••••••••••• 4-22
Execute to Program Termination, Break, or Event

(HSPEED) ••• 4-22
Execute to Next Procedure Call (MSPEED) ••••••••••••••••• 4-25

Execute to Next Paragraph (COBOL only) (LSPEED) ••••• 4-25
Execute One Line at a Time (STEPl) •••••••••••••••••• 4-26
Execute Several Lines at a Time (STEPN) ••••••••••••• 4-26
Change Location of Program Execution (GOTO) ••••••••• 4-27

Displaying and Changing Program Values •••••••••••••••••• 4-30
Display Values of Program Variables (SEEVAL) •••••••• 4-30
Change Values of Program Variables (CRAVAL) ••••••••• 4-32

Locating Information in a Window........................ 4-34
Restore Source Window to Previous View (BACK) ••••••• 4-34
Display the First Screen of Information in the

Window (FIRST) •••••••••••••••••••••••••••••••••••• 4-34
Display the Last Screen of Information in the

Window (LAST) ••••••••••••••••••••••••••• ~......... 4-34
Perform Window-Dependent Action (NEXT) •••••••••••••• 4-35
Move to the Home Line (HOME) •••••••••••••••••••••••• 4-35
Move Cursor Position Line to Bottom of Window (DOWN). 4-35
Move Cursor Position Line to Top of Window (UP) ••••• 4-35
Move One Page Back From Cursor Position (BKW) ••••••• 4-36
Move One Page Forward From Cursor Position (FWD) •••• 4-36
Prompt for Text String Then Search Forward (LOCATE).. 4-36

Tailoring a Screen Debug Session •••••••••••••••••••••••• 4-38
Refresh the Screen (REFRSH) ••••••••••••••••••••••••• 4-38
Dividing the Screen Windows (SPLIT) ••••••••••••••••• 4-38
Align Source Column With Leftmost Window Column

(LEFT) •• 4-38
Align Leftmost Window Column With Source Column

(RIGHT) ••• 4-39
Compress Characters (NARROW) •••••••••••••••••••••••• 4-39
Enlarge Compressed Characters (WIDE) •••••••••••••••• 4-39
Viewing Screen Options (OPTS) ••••••••••••••••••••••• 4-40

Ending the Screen Mode Debug Session •••••••••••••••••••• 4-41
Terminate the Debug Session (QUIT) •••••••••••••••••• 4-41
End Screen Mode Debug and Switch to Line Mode Debug

(DEAS) •• 4-41

Screen mode Debug gives you all the Debug features with the ease of
a full screen interface. Screen mode Debug is easy to use. You can
see your source program displayed on the screen as you debug it and
you can execute Debug commands by using function keys instead of
typing the command. Screen mode Debug also provides various window
displays to further enhance your debugging capabilities. You can
learn screen mode Debug as you use it by using the HELP feature.

Using Debug in screen mode requires that your terminal support ful]
screen operation. See chapter 2 for information about terminal
definitions that can support full screen interface.

Throughout this chapter. examples and explanations apply to the
Viking 721 terminal.

Revision A Screen Mode Debugging 4-1

Screen Layout

Screen Layout

The screen layout and function key assignments for screen mode Debug
may differ slightly depending on the type of terminal you are
using. However, in general, the format of a Debug screen is:

Debugging SAMPLE
--5 Identification Divis ion.

Program-Ide Sample.
Environment Division.
Data Division.
Working-Storage Section.
01 numeric-data.

02 item-a
02 su b-i tem-l
02 sub-item-2

Procedure Division.

pic S999
pic 99

value -100.
value O.

~---------------------------------OUTPUT----------------------------------t
-- Welcome to Full Screen Debugging --

Press HELP for Assistance

f2 f3
~
fll~

4-2 Debug for NOS/VE Usage Revision A

Screen Layout

The screen divisions are described as follows:

CD Home line

(]) Response line

® Source wi ndow

® Output window

~ Functions

The line on which you enter Debug commands and
SCL commands. For some terminal types, the
home line is at the bottom of the screen.

The line on which short responses and advisory
messages from Debug are displayed. If the home
line is at the bottom, the response line is the
line above it.

The area in which the source listing of the
program you are debugging is displayed.

The area in which output generated by your
program (or output delivered by Debug) is
displayed.

Screen mode functions currently assigned to
function keys. These functions can also be
entered on the home line.

The relative size of the divisions of the screen depends on the size
of your terminal screen. You can change the relative divisions of
the screen; refer to the OPTS and the SPLIT functions discussed
later in this chapter.

Revision A Screen Mode Debugging 4-3

Debugging Using Functions

Debugging Using Functions

Function keys are the primary method for interacting with screen
mode Debug. The function keys are displayed at the bottom of the
screen and each function key is labeled with the name of the
function currently assigned to it.

The top label on each function key names the function performed by
the shifted function key; the bottom label names the function
performed by the unshifted function key. The action of the function
is performed on the line where the cursor is positioned before the
function key is pressed. Function names are meant to suggest their
purpose. However, by pressing the HELP function (described in
chapter 3 and also later in this chapter), you can get a more
detailed explanation of the purpose of each function.

For example, the following shows the function key display at the
bottom of the Debug screen using the Viking 721 terminal definition:

Screen mode Debug requires that your terminal have at least 16
function keys to which functions can be assigned. Debug offers more
than 16 functions, therefore, some functions are not assigned to
function keys. However, the function label is always an alias for
the corresponding home line command. Thus, any function can be
entered on the home li~e by its six character short name.

If function keys are available, the following functions have highest
priority and are always assigned to function keys:

HELP
QUIT
FWD
BKW

(request help)
(quit)
(move forward)
(move backward)

Other functions which are considered important for debugging are
given priority and assigned to the remaining function keys.

The set of functions available and displayed on the screen may
change during a debugging session depending upon the language of the
program being debugged, the optimization level at which it was
compiled, whether or not the program has completed execution, and
the displays and windows currently selected. You can select to see
zero, one, or two rows of function keys at the bottom of your
screen. (Refer to the OPTS function described later in this
chapter.) The default number of rows is one.

4-4 Debug for NOS/VE Usage Revision A

Entering Commands on the Home Line

Entering Commands on the Home Line

Most of the basic Debug functions can be done using function keys.
However, there will be times when the function keys provided do not
meet your debugging needs. It is then that you will have to enter a
command on the home line. Debug functions, Debug commands, and SCL
commands can be entered on the home line.

Usually, the home line is the top line of the screen; on some
terminals it is the bottom line. Pressing the HOME key (specified
as either a function key or as a special key on your keyboard) moves
the cursor to the left edge of the home line where you type in a
function or command. The function or command is processed when you
press the RETURN key.

When you enter a function on the home line, the action of the
function is performed on the line at which the cursor was positioned
when you pressed the HOME key. The following functions cannot be
entered on the home line:

NEXT
HELP

If a Debug command is entered on the home line, the command is
processed as if the function key had been pressed. The following
Debug commands cannot be entered on the home line:

ACTIVATE SCREEN or ACTS
CHANGE DEFAULTS or CHAD
DELETE-BREAK or DELB
RUN
SET BREAK or SETB
SET-STEP MODE or SETSM

If an SCL command is entered on the home line, the command is
forwarded to the appropriate processor.

Revision A Screen Mode Debugging 4-5

The Visible Windows in Screen Mode Debugging

The Visible Wind.ows in Screen Mode Debugging

Most of the visible screen is occupied by displays that you have
selected for the Source and Output windows. By default, both the
Source and Output windows are shown, but you can elect to change the
relative size of these two windows. (Refer to the OPTS and the
SPLIT functions described later in this chapter.) Several other
windows can be selected to temporarily overlay the Source and Output
windows to display special information; they are the Help window,
Keys window, and Options window.

The Source Window

The Source window shows you information about your program as it
executes. By default, the Source window occupies the top
three-fourths portion of the screen (except for the home line and
the response line). You can select the Zoom-in, Zoom-out, or Trace
display for viewing in the Source window.

The Zoom-in Display

The Zoom-in display lets you view the source code of the module in
the program being debugged. This is the display in which you debug
your program modules and it is titled with the name of the module
currently displayed. Modules can be programs, subprograms,
procedures, modules, or functions depending on the computer language
of the module being debugged. An arrow indicates where execution is
to resume and lines containing breaks are highlighted.

You can select the Zoom-in display by pressing the ZMIN function
(described later in this chapter). The Zoom-in display is also
automatically selected when execution of your program stops and the
source code of the module is available.

If the source code for a specified module cannot be found (the file
no longer exists or the module was compiled without line number
tables), you cannot view the source code. In this case, the
Zoom-out display is shown with an arrow pointing to the module.

4-6 Debug for NOS/VE Usage Revision A

The Visible Windows in Screen Mode Debugging

The following is an example of a Zoom-in display of the source of a
FORTRAN module:

Debugging FORT
--> program fort

real average, total
total-O.
call aver(total)
average-total/5.
print*,'average .. ' ,average
end
subroutine aver(x)
real scores(5)
data scores /50., 56., 98., 12., 78./
do 10 i-l,5

10 x-scores(i)+x
end

.--------------------------------OUTPUT----------------------------------~

-- Welcome to Full Screen Debugging

Press HELP for Assistance

fl f21 MSpeed I f3
(Ke;;l
fH~

Revision A Screen Mode Debugging 4-7

The Visible Windows in Screen Mode Debugging

The Zoom-out Display

The Zoom-out display shows an overview of the task being executed,
that is, all modules in the program are displayed. For example,
Program and Subprogram statements are displayed for FORTRAN
programs; Program, Section, and Paragraph names are displayed for
COBOL programs; Program, Procedure, and Function names are displayed
for Pascal programs; Module, Program, Function, and Procedure names
are displayed for CYBIL programs; and functions and local blocks
that contain variables are displayed for C programs. An arrow
points to the component where execution has stopped.

You can select the Zoom-out display by pressing the ZMOUT function.
The Zoom-out display is automatically displayed when execution of
your task stops and the source needed is not available. You are
prompted to enter the location of the source when it is not found.

In the following example, a Zoom-out display shows a list of modules
for a FORTRAN program. Note that the functions that are available
depend on the display shown and the computer language in which the
modules are written.

Q!!!.e.laying Routines
--> PROGRAM FORT

SUBROUTINE AVER

~--------------------------------------- OUTPUT--i
-- Welcome to Full Screen Debugging --

Press HELP for Assistance

fl
fKe;;-j

fllL-J

4-8 Debug for NOS/VE Usage Revision A

The Visible Windows in Screen Mode Debugging

The following example is of a Zoom-out display showing a list of
modules of a COBOL program.

Displatic'!S..!.'?.u tines
--) PROGRAM-ID SAMPLE

TESTl
TEST2
TEST3

PROGRAM-ID SQUARING-PROCEDURE
ST ART-SQUARING-PROCEDURE

~------------------------------- OUTPUT----------------------------------~
-- Welcome to Full Screen Debugging --

Press HELP for Assistance

fl
~ fBL-J

The modules, SAMPLE and SQUARING-PROCEDURE, are Program names and
the modules, TESTl, TEST2, TEST3, and START-SQUARING-PROCEDURE, are
Paragraph names.

Revision A Screen Mode Debugging 4-~

The Visible Windows in Screen Mode Debugging

The Trace Display

The Trace display shows the routines in the active call chain. The
traceback begins with the routine that was executing when Debug
gained control, and proceeds through the sequence of called routines
until the main program is reached. For each routine in the
traceback, TRACE displays the routine name and module name from
which the routine was called.

You can select the Trace display by pressing the TRACE function.
Once the Trace display is selected, you can press the ZMIN function
to see the source line for the call indicated by the cursor.

The Output Window

The Output window displays the output generated by your program and
the output delivered by Debug. By default, the Output window
occupies the bottom one-fourth portion of the screen (except for the
function keys). You can alter the size using the OPTS and SPLIT
functions (described later in this chapter).

The Help Window

The Help window temporarily overlays a portion of the visible screen
and displays help information for each function. You can select the
Help window by pressing the HELP function (described in chapter 3
and later in this chapter). When the Help window is displayed, you
are prompted for the function for which you need help. When you
press a function key, a short description of the function you select
is displayed in the Help window. By pressing the other function
keys, information about their use is displayed.

4-10 Debug for NOS/VE Usage Revision A

The Visible Windows in Screen Mode Debugging

In the following example, the SEEVAL function is described in the
Help window:

Debugging FORT
--> program fort

real average. total
total-a.
call aver(total)

HELP
See value will display the current value of a variable

in the output window.

Press NEXT to return to debugging

~----------------------------- OUTPUT------------------------------------i
-- Welcome to Full Screen Debugging

Press HELP for Assistance

fl f5
ro;;;l

ib~f7
I Keys I

til Goro

Revision A Screen Mode Debugging 4-11

The Visible Windows in Screen Mode Debugging

The Keys Window

The Keys window temporarily overlays a portion of the visible screen
listing the available functions. You can select the Keys window by
pressing the KEYS function (described later in this chapter). The
Keys window is useful when your terminal screen does not display the
function keys at the bottom of the screen or if your terminal does
not have enough function keys for all the available functions.

In the following example, the Keys window is displayed:

De~ugging FORT
--) program fort

Screen functions and Debug commands may be entered on the home line.
Available functions are:

Back Bkw ChaVal Deas DelBrk
Down First Fwd Goto HSpeed
Help Home Keys Last Locate
MSpeed Narrow Opts Quit Refrsh
See Val SetBrk Split Stepl StepN
Trace Up ZmOut

~-------------------------------OUTPUT-----------------------------------i

-- Welcome to Full Screen Debugging --

Press HELP for Assistance

fl
~
fH~

4-12 Debug for NOS/VE Usage Revision B

The Visible Windows in Screen Mode Debugging

The Options Window

The Options window temporarily overlays a portion of the visible
screen. The Options window displays a list of options you can
select to tailor your debugging session. You can select the Options
window by pressing the OPTS function (described later in this
chapter).

In the example below, the Options Window is displayed:

Debugging FORT
--) program fort

real average, total
totalmO.
call aver(total)
averagemtotal/5.
print*, 'average .. " a
end
subroutine aver(x)
real scores(5)
data scores /50.,56.,
do 10 i-l,5

10 x-scores(i)+x
end

DEBUG OPTIONS WINDOW

FEATURE (menu item) VALUE AVAILABLE OPTIONS

MENU ROWS (Fl) 1 0, I, 2
MODE (F2) USER USER, SYSTEM

SOURCE SIZE (F3) 18 1 23
OUTPUT SIZE (F4) 6 1 •• 23

Press matching menu item to toggle value.
Press NEXT to return to debugging.

~-----------------------------OUTPUT--------------------------------~

-- Welcome to Full Screen Debuggi ng --

Press HELP for Assistance

fl
fl;l
ftl~

Revision A Screen Mode Debugging 4-13

Function Descriptions

Function Descriptions

The functions in this section are grouped by type of function for
clarity.

Summary of Screen Mode Functions

Function

BACK

BKW

CHAVAL

DEAS

DELBRK

Restores the Source window to the previous view.

Moves one page back from the cursor position.

Changes the values of program variables.

Switches from screen mode Debug to line mode
Debug.

Deletes a break.

DOWN Moves the current line to the bottom of the
window.

FIRST

FWD

GOTO

HELP

HOME

HSPEED

KEYS

LAST

LEFT

LOCATE

Displays the first screen of information in
the window.

Moves one page forward from the cursor position.

Changes the location of program execution.

Displays help information.

Moves to the home line.

Executes to program termination, break, or event.

Displays the screen mode Debug functions.

Displays the last screen of information in
the window.

AJigns the current column to the left column of
the window.

Searches for a text string.

4-34

4-36

4-40

4-21

4-35

4-34

4-36

4-27

4-16

4-35

4-22

4-18

4-34

4-38

4-37

4-14 Debug for NOS/VE Usage Revision A

Function

LSPEED

MSPEED

NARROW

NEXT

OPTS

QUIT

REFRSH

RIGHT

Function Descriptions

Description

Executes to the next paragraph (COBOL only).

Executes to the next procedure call or section.

Displays maximum number of characters per line.

Performs a window-dependent action.

Changes the screen options.

Terminates the Debug session.

Rewrites the screen.

Aligns the left column of the window to the
current column.

4-25

4-25

4-39

4-35

4-39

4-40

4-38

4-39

SEEVAL Displays values of program variables. 4-30

SETBRK Stops execution at a specified line. 4-19

SPLIT Divides the screen windows. 4-38

STEPl Executes one line at a time. 4-26

STEPN Executes several lines at a time. 4-26

TRACE Displays all or specified calls. 4-18

UP Moves current line to the top of the window. 4-35

WIDE Displays minimum number of characters per line. 4-39

ZMIN Displays the source code of your program. 4-16

ZMOUT Display the modules of your source program. 4-17

Revision B Screen Mode Debugging 4-15

Getting Help (HELP)

Getting Help (HELP)

Purpose:

Function:

Remarks:

Displays the Help window. The Help window displays the
function descriptions.

HELP

• The Help window overlays a portion of your screen
and you are prompted to enter the function for
which you need help. A short description of the
function is displayed in the Help window.

• HELP is a top priority function and is always
assigned to a function key, if function keys are
available. If, however, you enter the HELP
function on the home line, the SCL online manual is
displayed to the screen rather than the Help
window. To return to debugging, press quit.

Changing the Window Displays

To help you debug your program, various window displays can be
selected to show particular information about the debugging
session. The ZMIN, ZMOUT, TRACE, and KEYS functions let you
temporarily change the viewing displays in the Source and Output
windows.

Display the Source Code (ZMIN)

Purpose:

Function:

Remarks:

Selects the Zoom-in display. The Zoom-in display shows
the source code of the module in the program being
debugged.

ZMIN

• The Zoom-in display is the display in which you
debug your program modules.

• An arrow indicates where execution is currently
stopped. Lines containing breaks are highlighted.

• The window is titled with the name of the module
currently displayed.

4-16 Debug for NOS/VE Usage Revision B

Changing the Window Displays

• You access the Zoom-in display by placing the
cursor on a module name while in the Zoom-out
display or Trace display and press·ZMIN~ The
Zoom-in display is automatically selected when
execution of your program stops, unless execution
stops on a procedure or function and the Zoom-out
or Trace display is selected.

• If the source for a specified module cannot be
found (that is, the file no longer exists or the
module was compiled without line tables), you
cannot view the source. In this case, an
informative message is displayed.

Display Source Modules (ZMOUT)

Purpose:

Function:

Remarks:

Revision A

Selects the Zoom-out display. The Zoom-out display
lists the modules in the program you are debugging.

ZMOUT

• If the source of a module is not needed or not
available for the task, only the module name is
shown.

• Breaks can be set or deleted on modules if the
source for the module has been initialized (that
is, the Zoom-in display has been previously
selected at least once for the module). Breaks
that are set are highlighted (see the SETBRK and
DELBRK functions described later in this chapter).

• When the Zoom-out display is selected for the
Source window, it is automatically displayed when
execution of the task stops or when the source
needed is not available. You are prompted to enter
the location of the source when it is not found.

• You can move to the Zoom-out display from the
Zoom-in display by pressing ZMOUT. You can view
and debug the source code for a module by moving
the cursor to the desired module and press ZMIN.

Screen Mode Debugging 4-17

Changing the Window Displays

Display All or Specified Source Calls (TRACE)

Purpose:

Function:

Remarks:

Selects the Trace display. The Trace display shows the
routines in the active call chain.

TRACE

• The traceback begins with the routine that was
executing when Debug gained control, and proceeds
through the sequence of called routines until the
main program is reached. For each routine in the
traceback, TRACE displays the routine name and the
module name (if different) from which the routine
was called.

• For calls from procedures in languages that support
nested procedures, both the module and procedure
name are shown in the Trace display. Otherwise,
only the module name is shown. If there are no
active calls, a message is issued and the current
contents of the display are not changed.

• Once the Trace display is selected, you can press
the ZMIN function to see the source line for the
call indicated by the cursor. If the location of
the source is not known (it was not passed to Debug
by the compiler), you are prompted to give the file
name where the source can be found.

• The speed functions (HSPEED, MSPEED, or LSPEED) or
the Step functions (STEPl or STEPN) are available
to resume execution of your program. When
execution stops for any reason, the Trace display
is replaced by the Zoom-in or Zoom-out display as
appropriate, except when MSpeed is selected from
the Trace display; the Trace display remains in
view (see Zoom-in or Zoom-out displays described in
this chapter).

Display the Screen Mode Debug Function Names (KEYS)

Purpose:

Function:

Remarks:

Displays a window containing a list of available screen
mode Debug functions.

KEYS

• The Keys window overlays a portion of the visible
screen listing the available functions mnemonically.

• The Keys window is useful when your function keys
are not displayed on the screen or if your terminal
does not have enough function keys for all the
available functions.

• To restore the previously selected window and
continue debugging, press the RETURN key.

4-18 Debug for NOS/VE Usage Revision A

Interrupting Program Execution

Interrupting Program Execution

The primary method of suspending program execution during a Debug
session is to set breaks at selected points in your program. When
execution reaches a statement where a break is set, execution
temporarily stops before the statement is executed. You can set
breaks before execution begins or whenever execution has stopped.
The SETBRK and DELBRK functions set and delete breaks on lines in
the source code of your program. Lines with breaks are highlighted
to inform you that the break is set.

Stop Execution at Specified Line (SETBRK)

Purpose:

Function:

Remarks:

Sets a break in a program. The break is set on the
line that contains the cursor.

SETBRK

• Execution is interrupted before the line containing
the break is executed.

• You can set a break in a program by placing the
cursor on the program line where you want the break
and then press SETBRK. The line is highlighted,
indicating that a break is set.

• Breaks can be set on executable statements only
(except for BASIC programs where a break can be set
on every line).

• The maximum number of breaks you can set is 32.

For Better Performance

When a break is no longer needed, you should delete it (see DELBRK
described in this chapter). Deleting unnecessary breaks improves
the performance of Debug; programs execute slower when breaks remain
set.

Revision A Screen Mode Debugging 4-19

Interrupting Program Execution

Example: In the display below, the cursor is placed on the line:

result := counter * counter

Debugging SQUARING PROCEDURE in EXAMPLE PAS
--> result : integer;

BEGIN
result : - counter'" counter;
writeln(' ',counter:2,' times ',counter:2,' - ',result:4);

END;
PROCEDURE test1;

VAR
counter : integer

BEGIN test1
FOR counter :- 1 TO 10 DO

squaringyrocedure (counter);
END; test

OUTPUT--------------------------------~

-- Welcome to Full Screen Debugging

Press HELP for Assistance
times 1 -

fl
I Keys I

fli Goto

4-20 Debug for NOS/VE Usage Revision A

Interrupting Program Execution

When the SETBRK function is pressed) the line
containing the cursor is highlighted to show that a
break has been set on the line:

Debugging SqUARING _PROCEDURE in EXAMPLE PAS
--) result : integer;

BEGIN
result:';' counter ~cC?\ll1te!'i
writeln(' ',counter:2,' times ',counter:2,' a ',result:4);

END·
PROCEDURE t~stl;

VAR
counter : integer

BEGIN testl
FOR counter :- 1 TO 10 DO

squaringyrocedure (counter);
END; test

~--------------------------------OUTPUT---------------------------------i

-- Welcome to Full Screen Debugging

Press HELP for Assistance
times 1 -

fl f21 HSpeed I f3
~
fH~

Delete Break in Program Execution (DELBRK)

Purpose:

Function:

Remarks:

Deletes a break in a program. The break is deleted
from the line that contains the cursor.

DELBRK

You can delete a break by placing the cursor on the
line with a break and then press DELBRK. The highlight
is removed from the line.

For Better Performance

Deleting unnecessary breaks improves the performance of Debug;
programs execute slower when breaks remain set.

Revision A Screen Mode Debugging 4-21

Beginning or Resuming Program Execution

Beginning or Resuming Program Execution

The HSPEED, MSPEED, LSPEED, STEPl, and STEPN functions begin
execution of your program or resume execution after encountering a
break. Execution continues until either another break occurs, an
execution error occurs, or the program runs to completion. Also,
you can change the location of where execution will resume next with
the GOTO function. These functions are available regardless of the
displays visible in the SO':lrce and Output windows.

Execute to Program Termination, Break, or Event (HSPEED)

Purpose:

Function:

Remarks:

Resumes execution of your program.

HSPEED

• Execution continues uninterrupted until your
program terminates, a break is encountered, or an
unselected event (such as a divide fault, a
terminate break, or a pause break) occurs.

• An arrow points to the source line in your program
where execution has stopped and is to resume next
time.

• The message "Program Terminated" is issued when
your program terminates.

4-22 Debug for NOS/VE Usage Revision A

Example:

Beginning or Resuming Program Execution

Suppose the screen below is displayed. The highlighted
line indicates that a break is set on that line. The
arrow points to the line where execution has currently
stopped and is to resume next.

Debugging FORT
--) program fort

real average, total
total-D.
call aver(total}
average-total/5.
print., 'average ~ , ,average
end
subroutine aver(x}
real scores(5}
data scores /50., 56., 98., 12., 78./

~------------------------------- OUTPUT --------------------------------~
-- Welcome to Full Screen Debugging --

Press HELP for Assistance

f 1
~
fH~

Revision A Screen Mode Debugging 4-23

Beginning or Resuming Program Execution

When the HSPEED function is pressed, execution begins
with the line containing the arrow. The message, hspeed,
i~ displayed in the top right-hand corner of the screen.
When execution reaches the line containing the break,
execution stops (the arrow now points to this line).

Debugging FORT
program fort
real average, total
total-D.
call aver(total}
average-total/s.
print*, 'average a ' ,average
end
subroutine aver(x}
real scores(S}
data scores 150., 56., 98., 12., 78.1
do.).D.i~l,S,

..;~))(: .. se()!;'es{1)+x~
end

~-------------------------------OUTPUT ----------------------------------~
-- Welcome to Full Screen Debugging

Press HELP for Assis tance

fl
I Keys I

fH Goto

4-24 Debug for NOS/VE Usage Revision B

Example:

Beginning or Resuming Program Execution

Suppose the screen below is displayed. The highlighted
line indicates that a break is set on that line. The
arrow points to the line where execution has currently
stopped and is to resume next.

Debugging FORT
--) program fort

real average, total
total-a.
call aver(total)
average-total/So
print*, 'average" ' ,average
end
subroutine aver(x)
real scores(s)
data scores /50., 56., 98., 12., 78./

end
OUTPUT -----------------1

-- Welcome to Full Screen Debugging --

Press HELP for Assistance

fl
J"Ke;;-]
fl!~

Revision A Screen Mode Debugging 4-23

Beginning or Resuming Program Execution

When the HSPEED function is pressed, execution begins
with the line containing the arrow. The message, hspeed,
i$ displayed in the top right-hand corner of the screen.
When execution reaches the line containing the break,
execution stops (the arrow now points to this line).

Debugging FORT
program fort
real average, total
total-O.
call aver(total)
average-total/5.
print"', 'average" ' ,average
end
subroutine aver(x)
real scores(S)
data scores /50., 56., 98., 12., 78./
do.lO .. i.",1~5 ..
x",sc\)tes(l)+x;
end

~------------------------------- OUTPUT ----------------------------------~
-- Welcome to Full Screen Debugging

Press HELP for Assistance

fl f21Hspeed If 3
~
fH~

4-24 Debug for NOS/VE Usage Revision B

Beginning or Resuming Program Execution

Execute to Next Procedure Call (MSPEED)

Purpose:

Function:

Remarks:

Executes your program until the next subroutine,
procedure, or section is called.

MSPEED

• An arrow points to the source line in your program
where execution has stopped.

• MSPEED can be interrupted by a break, program
termination, or an unselected event (such as a
divide fault, a terminate break, or a pause break).

• MSPEED is available only for modules compiled with
optimization level set to Debug. (See Chapter 2
for more information about optimization levels.)

• MSPEED is not supported by the C language.

Execute to Next Paragraph (COBOL only) (LSPEED)

Purpose:

Function:

Remarks:

Revision A

Executes your program until the next paragraph is
called.

LSPEED

• An arrow points to the source line in your program
where execution has stopped.

• LSPEED can be interrupted by a break, program
termination, or an unselected event (such as a
divide fault, a terminate break, or a pause break).

• LSPEED is available only for modules compiled with
optimization level set to Debug. (See Chapter 2
for more information about optimization levels.)

• LSPEED is supported by the COBOL language only.

Screen Mode Debugging 4-25

Beginning or Resuming Program Execution

Execute One Line at a Time (STEPl)

Purpose:

Function:

Remarks:

Executes the current line of the program. The line
indicator is then increased by 1 and points to the next
line in the program.

STEPl

• STEPl is available only for modules compiled with
optimization level set to Debug. (See Chapter 2
for more information about optimization levels.)

• If executing the line produces any output, the
output appears in the Output window.

• STEPl is not supported by the C language.

Execute Several Lines at a Time (STEPN)

Purpose:

Function:

Remarks:

Beginning with the current line, STEPN executes N
number of lines.

STEPN

• You are prompted for the value of N when STEPN is
pressed.

• STEPN is available only for modules compiled with
optimization level set to Debug. (See Chapter 2
for more information about optimization levels.)

• If executing the lines produces any output, the
output appears in the Output window.

• STEPN is not supported by the C language.

4-26 Debug for NOS/VE Usage Revision A

Beginning or Resuming Program Execution

Change Location of Program Execution (GOTO)

Purpose:

Function:

Remarks:

Revision A

GOTO changes the location where execution of your
program begins next when another of the Speed functions
(HSPEED, MSPEED, or LSPEED) or the Step functions
(STEPl or STEPN) is pressed.

GO TO

• Before pressing GOTO, you position the cursor on
the line where you want execution to resume, then
press GOTO. This line must be in the same
procedure where execution is currently stopped.

• GOTO is available in the Zoom-in display only.

• GOTO is a very powerful function. Use it with
care. Unexpected results can occur since code that
is skipped may have a significant effect on the
execution of the entire program. If, for example,
you use GOTO to transfer into a loop construct, the
control variable for the loop may not be
initialized and unexpected output could result.
GO TO is intended to be used when a bug has been
isolated and can be fixed with CHAVAL. You can
test the change without recompiling your program by
resuming execution of a portion of code with the
new data values. GO TO can also be used to skip a
section of faulty code.

Screen Mode Debugging 4-27

Beginning or Resuming Program Execution

Example: In the example below, execution has stopped on line:

divide dividend by divisor giving quotient.

because the value of DIVISOR is zero resulting in a
DIVIDE FAULT error. The message, divide fault, is
displayed in the top right hand corner of the screen.

Debugging EXAMPLE COB
Pa ragrap h3.

--> divide dividend by divisor giving quotient.
display "ANSWER IS: "ANSWER.
stop run.

end program example-cob.

OUTPUT
-- Welcome to Full Screen Debugging --

Press HELP for Assistance

£1

4-28 Debug for NOS/VE Usage

divide fault

~
ftl~

Revision A

Beginning or Resuming Program Execution

Using the CHAVAL function, you can change the value of
DIVISOR temporarily and then resume execution using the
new value for DIVISOR. Once the value of DIVISOR is
changed, using the up-arrow key, the cursor is moved to
the line

Paragraph3.

and then GOTO is pressed. The arrow now points to this
line and program execution will resume with this
statement using the new value given to DIVISOR. In
this example, the GOTO and CHAVAL functions are used in
concert to recover from execution errors. However, to
correct execution errors permanently, you must exit
Debug, edit the program, and recompile it.

Debugging EXAMPLE COB
+-) Paragraph3.

divide dividend by divisor giving quotient.
display "ANSWER IS: "ANSWER.
stop run.

end program example-cob.

~------------------------------OUTPUT--------------------------------~
-- Welcome to Full Screen Debugging

Press HELP for Assistance

fl
~
fH~

Revision A Screen Mode Debugging 4-29

Displaying and Changing Program Values

Displaying and Changing Program Values

With Debug, you can examine and change the contents of variables.
Using the SEEVAL and CHAVAL functions, you can view and change the
values of program variables and arrays while execution of your
program is suspended. The values are displayed as they are written
in your source program. Replacement values for variables are
entered in the same format as they are defined in your program.

Display Values of Program Variables (SEEVAL)

Purpose:

Function:

Remarks:

Displays the current values of program variables.

SEEVAL

• When you press SEEVAL, you are prompted to enter
the variable name or names whose values you wish to
see displayed.

• You can display a list of variables by separating
the variable names with commas or spaces.

• Variables are assumed to exist in the module (and
procedure if appropriate) in which the cursor is
located.

• When prompted for a variable name, you can enter
$ALL to see all of the variables in the current
module or procedure.

• See the description of the DISPLAY PROGRAM VALUE
line mode command in chapter 5 for-a list of
variable types that can be displayed with the
SEEVAL function.

4-30 Debug for NOSjVE Usage Revision A

Displaying and Changing Program Values

Example: In the example below, the SEEVAL function is used to
view the value of variable X. When the prompt

x

Enter name(s) to see

is displayed in the top right hand corner, the variable
X is entered on the home line. The value of variable X
is displayed in the Output window.

Debugging FORT
program fort
real average, total
total-D.
call aver(total)
average-total/S.
print*, 'average a ' ,average
end
subroutine aver(x)
real scores(S)
data scores /50., 56., 98., 12., 78./
do 10 i a 1,S

--) lt2 scores(i)+x
end

Enter name(s) to see

~-------------------------------- OUTPUT --------------------------------~
-- Welcome to Full Screen Debugging --

Press HELP for Assistance
x - 204.

fl
~
fH~

Revision A Screen Mode Debugging 4-31

Displaying and Changing Program Values

Change Values of Program Variables (CHAVAL)

Purpose:

Function:

Remarks:

Changes the value of program variables.

CHAVAL

• When you press CHAVAL, you are prompted to enter
the variable name and its new value
(variable=value).

• The variable must be known in the module or
procedure in which the cursor is located.

• See the description of the CHANGE PROGRAM VALUE
line mode command in chapter 5 for a list of
variable types that can be changed with the CHAVAL
function.

4-32 Debug for NOS/VE Usage Revision A

Example:

Displaying and Changing Program Values

In the example below, the CHAVAL function is used to
change the contents of array element SCORES(i). When
the prompt

Enter name = value

is displayed in the top right hand corner, the
following is entered on the home line:

scores(i)=88.

The value of array element SCORES(i) is changed to 88
and will be used in subsequent computations. To see
the new value of SCORES(i), you can use the SEEVAL
function.

scores (i)-88.

Debugging FORT
program fort
real average, total
totalaO.
call aver(total)
average-total/5.
print*, 'average a ' ,average
end
subroutine aver(x)
real scores(5)
data scores /50., 56., 98., 12., 78./
do 10 i-1,5

--) xDscores (i)+x
end

fl

OUTPUT
-- Welcome to Full Screen Debugging --

Press HELP for Assistance

Enter name-value

~
fll~

Revision A Screen Mode Debugging 4-33

Locating Information in a Window

Locating Information in a Window

The BACK, FIRST, LAST, NEXT, HOME, DOWN, UP, BKW, FWD, and LOCATE
functions are used to locate information on the screen by navigating
through the windows.

Restore Source Window to Previous View (BACK)

Purpose:

Function:

Remarks:

Restores the Source window to what was previously
displayed. For example, if you press ZMOUT from the
Zoom-in display, pressing BACK returns to the Zoom-in
display.

BACK

If BACK is pressed after a function that requires
additional input (such as SEEVAL), BACK cancels the
function.

Display the First Screen of Information in the Window (FIRST)

Purpose:

Function:

Remarks:

Displays the first screen of information in the current
window.

FIRST

• The current window is the window which contains the
cursor before FIRST is pressed.

• If you are in the Source window, FIRST takes you to
the first line of the current source file.

Display the Last Screen of Information in the Window (LAST)

Purpose:

Function:

Remarks:

Displays the last screen of information in the current
window.

LAST

The current window is the window which contains the
cursor before LAST is pressed.

4-34 Debug for NOS/VE Usage Revision A

Locating Information in a Window

Perform Window-Dependent Action (NEXT)

Purpose:

Function:

Remarks:

NEXT is the carriage-return key for a terminal.

NEXT (or RETURN key)

• The action performed by NEXT is context-dependent.
NEXT removes the Help or Keys windows if they are
displayed, and restores the previously visible
window. For other windows, NEXT advances the
cursor to the line containing the arrow.

• NEXT cannot be entered on the home line.

Move to the Home Line (HOME)

Purpose:

Function:

Remarks:

Moves the cursor to the left edge of the home line.

HOME

• Screen mode functions, Debug commands, and SCL
commands can be entered on the home line.

• Usually, the home line is the top line of the
screen; on some terminals it is the bottom line.

• The HOME key is either a function key or a special
key on your keyboard.

Move Cursor Position Line to Bottom of Window (DOWN)

Purpose:

Function:

Remarks:

Moves the current line to the bottom of its window.

DOWN

The current line is the line where the cursor is
positioned before DOWN is pressed.

Move Cursor Position Line to Top of Window (UP)

Purpose:

Function:

Remarks:

Revision A

Moves the current line to the top of its window.

UP

The current line is the line where the cursor is
position before UP is pressed.

Screen Mode Debugging 4-35

Locating Information in a Window

Move One Page Back From Cursor Position (BKW)

Purpose:

Function:

Remarks:

Scrolls the current window backward to the previous
screen of text.

BKW

The current window is the window which contains the
cursor before BKW is pressed.

Move One Page Forward From Cursor Position (FWD)

Purpose:

Function:

Remarks:

Scrolls the current window forward to the next screen
of text.

FWD

The current window is the window which contains the
cursor before FWD is pressed.

Prompt for Text String Then Search Forward (LOCATE)

Purpose:

Function:

Remarks:

Prompts you for a text string and searches for it.

LOCATE

• A forward search for the string is made in the
current window. If found, the window is updated to
show the string. The current window is the window
which contains the cursor before LOCATE is pressed.

• If RETURN is pressed in response to the LOCATE
prompt and no text string is entered~ the next
occurrence of the previously located string is
found.

4-36 Debug for NOS/VE Usage Revision A

Example:

FOR COUNTER

Locating Information in a Window

In the following example, the LOCATE function is used
to locate a specific line. When LOCATE is pressed, the
prompt

Enter text to locate

is displayed in the top right hand corner of the
screen. On the home line, the text

FOR COUNTER

is entered. This is the text to be searched in the
source program. When the text is found, the cursor is
moved to the line containing the text.

Enter text to locate
Debugging $HAIN
--> MONTHTABLE$(16)
LET DIVIDEND - -100
LET DIVISOR D 0

LET MONTHCOLUMN - 1
LET MONTHLIST$.. "JANFEBHARAPRHAYJUN"

FOR COUNTER .. 1 TO 10
- CALL SQUAREPROCEDURE (COUNTER)

~------------------------------OUTPUT--------------------------------i

-- Welcome to Full Screen Debugging

Press HELP for Assistance

f1
~
fll~

Revision B Screen Mode Debugging 4-37

Tailoring a Screen Debug Session

Tailoring a Screen Debug Session

The REFRSH, SPLIT, LEFT, RIGHT, and OPTS functions modify the
characteristics of your terminal screen so that it displays a
debugging session suited to your needs.

Refresh the Screen (REFRSH)

Purpose:

Function:

Clears the entire screen then rewrites it. If you
suspect the screen does not look right, rewrite it by
entering REFRSH.

REFRSH

Dividing the Screen Windows (SPLIT)

Purpose:

Function:

Remarks:

Adjusts the relative sizes of the upper and lower
windows.

SPLIT

• The division between the windows is determined by
the current line. The current line is the line
where the cursor is positioned before SPLIT is
pressed.

• You cannot eliminate either the Source window or
the Output window. Each must contain at least one
line.

Align Source Column With Leftmost Window Column (LEFT)

Purpose:

Function:

Remarks:

Aligns the column containing the cursor position to the
leftmost column of the window.

LEFT

The LEFT function appears only when the terminal screen
is not wide enough to show an entire source line.

4-38 Debug for NOS/VE Usage Revision A

Tailoring a Screen Debug Session

Align Leftmost Window Column With Source Column (RIGHT)

Purpose:

Function:

Remarks:

Aligns the leftmost column of the window to the column
containing the cursor position.

RIGHT

The RIGHT function appears only when the terminal
screen is not wide enough to show an entire source line.

Compress Characters (NARROW)

Purpose:

Function:

Remarks:

Displays the maximum number of characters per line that
your terminal can support.

NARROW

• The NARROW function is available only for terminals
that support compressed characters.

• The NARROW function toggles with the WIDE function.

Enlarge Compressed Characters (WIDE)

Purpose:

Function:

Remarks:

Revision B

Displays the minimum number of characters per line that
your terminal can support.

WIDE

• The minimum number of characters that can be
displayed on any terminal is 80.

• The WIDE function is available only for terminals
that support compressed characters.

• The WIDE function toggles with the NARROW function.

Screen Mode Debugging 4-39.

Tailoring a Screen Debug Session

Viewing Screen Options (OPTS)

Purpose:

Function:

Remarks:

Displays the Options window. The Options window
displays a list of options you can modify to tailor the
debugging session.

OPTS

• The following options can be modified:

The number of function key rows displayed at
the bottom of your screen. The default is to
display one row of function keys.

The type of modules you can debug (USER or
SYSTEM). When in USER mode, information about
the SYSTEM modules is suppressed. The default
is USER mode.

The size of the Source window. This is the
number of lines used by the Source window not
including the home line, response line, or
function key rows. The default is 3/4 of the
available area on the screen.

The size of the Output window. This is the
number of lines used by the Output window not
including the home line, response line, or
function key rows. The default is 1/4 of the
available area on the screen.

• To change an option, you select a new value for the
option by pressing the function key associated with
the function.

• The NEXT function removes the Options window and
restores the previously selected window(s).

I 4-40 Debug for NOS/VE Usage Revision B

Ending the Screen Mode Debug Session

Ending the Screen Mode Debug Session

The QUIT and DEAS functions end the screen mode Debug session. All
the changes made during the Debug session are lost when the session
is ended. All variables assume their original values, breaks are
removed, and the program is the same as when you compiled it. You
can run additional sessions if you want to continue debugging your
program.

Terminate the Debug Session (QUIT)

Purpose:

Function:

Ends the Debug Session and returns you to the utility
you were using before you began the Debug session.

QUIT

End Screen Mode Debug and Switch to Line Mode Debug (DEAS)

Purpose:

Function:

Remarks:

Revision B

Ends the Debug session in screen mode and switches you
to line mode debugging.

DEAS

Breaks remain set, but step-mode is deactivated. All
other options return to their default settings.

Screen Mode Debugging 4-41 I

Line Mode Debugging 5

This chapter describes the commands and functions used in line mode
debugging.

Line Mode Command and Function Summary •••••••••••••••••••••••

Debug Line Mode Commands •••••••••••••••••••••••••••••••••••••
ACTIVATE SCREEN (ACTS) •••••••••••••••••••••••••••••••••••
CHANGE DEFAULT (CHAD) ••••••••••••••••••••••••••••••••••••
CHANGE-MEMORY (CHAM) •••••••••••••••••••••••••••••••••••••
CHANGE-PROGRAM VALUE (CHAPV) •••••••••••••••••••••••••••••
CHANGE-REGISTER (CHAR) •••••••••••••••••••••••••••••••••••
DELETE-BREAK (DELB) ••••••••••••••••••••••••••••••••••••••
DISPLAY BREAK (DISB) •••••••••••••••••••••••••••••••••••••
DISPLAY-CALL (DISC) ••••••••••••••••••••••••••••••••••••••
DISPLAY-DEBUGGING ENVIRONMENT (DISDE) ••••••••••••••••••••
DISPLAY-MEMORY (DISM) ••••••••••••••••••••••••••••••••••••
DISPLAY-PROGRAM VALUE (DISPV) ••••••••••••••••••••••••••••
DISPLAY-REGISTER (DISR) ••••••••••••••••••••••••••••••••••
DISPLAY-STACK FRAME (DISSF) ••••••••••••••••••••••••••••••
QUIT (QUI) •• :-••
RUN ••
SET BREAK (SETB) •••
SET:STEP_MODE (SETSM) •••••••••••••••••••• ~ •••••••••••••••

Debug Line Mode Functions ••••••••••••••••••••••••••••••••••••
$CURRENT LINE ($CL) ••••••••••••••••••••••••••••••••••••••
$CURRENT-MODULE ($SCM) •••••••••••••••••••••••••••••••••••
$CURRENT-PROCEDURE ($CP) •••••••••••••••••••••••••••••••••
$CURRENT-PVA ($CPVA) •••••••••••••••••••••••••••••••••••••
$MEMORY ($MEM) •••
$PROGRAM VALUE ($PV) •••••••••••••••••••••••••••••••••••••
$REGISTER ($REG) •••

5-1

5-3
5-4
5-6
5-11
5-15
5-24
5-28
5-30
5-33
5-36
5-39
5-46
5-58
5-61
5-65
5-66
5-67
5-85

5-91
5-92
5-93
5-94
5-95
5-96
5-97
5-100

5

This chapter describes the Debug commands and functions that are
available when using line mode debugging.

Line Mode Command and Function Summary

Command or Function

ACTIVATE SCREEN or
ACTS

CHANGE DEFAULTS or
CHAD

CHANGE MEMORY or
CHAM

CHANGE PROGRAM VALUE or - -CHAPV

CHANGE REGISTER or
CHAR

DELETE BREAK or
DELB

DISPLAY BREAK or
DISB

DISPLAY CALLS or
DISC

DISPLAY DEBUGGING ENVIRONMENT
or DISDE -

DISPLAY MEMORY or
DISM

DISPLAY PROGRAM VALUE or
DISPV

Continued

Revision A

Description Page Page

Switches to screen mode
debugging. 5-4

Changes default Debug input/
output files and module and
procedure names. 5-6

Changes the contents of memory. 5-11

Changes the value a program
variable.

Changes the contents of a
register.

5-15

5-24

Deletes break definitions. 5-28

Displays break definitions. 5-30

Displays information about the
dynamic call chain. 5-33

Displays the environment of your
session. 5-36

Displays the content of memory. 5-39

Displays the value of a program
variable. 5-46

Line Mode Debugging 5-1

Line Mode Command and Function Summary

Continued

Command or Function

DISPLAY REGISTER or
DISR

DISPLAY STACK FRAME or - -DISF

QUIT

RUN

SET BREAK or
SETB

SET STEP MODE or
SETSM -

$CURRENT LINE or
$CL -

$CURRENT MODULE or
$CM -

$CURRENT PROCEDURE or
$CP -

$CURRENT PYA or
$CPVA -

$MEMORY or
$MEM

$PROGRAM VALUE or
$PV -

$REGISTER or
$REG

5-2 Debug for NOS/VE Usage

Description Page

Displays the contents of a
register. 5-58

Displays the contents of one
or more stack frames. 5-61

Ends the Debug session. 5-65

Begins or resumes program
execution. 5-66

Defines a named break. 5-67

TUrns step mode on or off. 5-85

Returns value of current line. 5-92

Returns name of current module. 5-93

Returns name of current
procedure. 5-94

Returns value of PYA. 5-95

Returns contents of memory. 5-96

Returns displayable value of a
program variable. 5-97

Returns contents of a register. 5-100

Revision A

Debug Line Mode Commands

Debug Line Mode Commands
The Debug commands follow the syntax and conventions for SCL
commands, as described in the SCL Language Definition Usage manual.

If the command parameters are specified positionally and a parameter
is omitted, its position must be indicated by a coma.

To allow for future development of Debug, any command sequences you
intend to save should contain named parameters so that the command
interpretations are independent of parameter position.

The source language in which your program is written determines the
use of some of the command parameters. Source language dependencies
are identified in the applicable parameter description.

NOTE

FORTRAN source language dependencies apply to both FORTRAN Version
and FORTRAN Version 2 programs, unless otherwise specified.

Revision B Line Mode Debugging 5-3.

ACTIVATE_SCREEN (ACTS)

ACTIVATE_SCREEN (ACTS)

Purpose:

Format:

Switches to screen mode Debug from line mode Debug.

ACTIVATE SCREEN or
ACTS -

SOURCE FILES = list of files
STATUS-= status variable

(optional)
(optional)

Parameters: SOURCE FILES or SF

Specifies the files containing the source statements of
the program to be debugged. Options are:

Omitted

Initiates screen mode Debug with the Zoom-in
display for programs written in C, COBOL, CYBIL,
and FORTRAN. Initiates screen mode Debug with the
Zoom-out display for programs written in BASIC and
Pascal. To switch to the Zoom-in display, you must
press the ZMIN function. (See the description of
the Zoom-in and Zoom-out displays in chapter 4).

List of files

Specifies the file or files containing your source
programs to be debugged in screen mode. This
parameter is provided mainly for languages which do
not initiate screen mode Debug with the Zoom-in
display. This allows you to start screen mode with
the Zoom-in display rather than the Zoom-out
display. The FILE PROCESSOR attribute must be set
for any files specified.

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the debug output file if $RESPONSE is
connected to that-file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

5-4 Debug for NOS/VE Usage Revision B

Remarks:

Examples:

Revision B

•

ACTIVATE_SCREEN (ACTS)

To use the SOURCE FILES parameter of the
ACTIVATE SCREEN command, the FILE PROCESSOR
attribute of each file must contain the name of the
compiler that compiled the file. This is done with
the CHANGE FILE ATTRIBUTE (descibed in the SCL
System Interface manual) command before you begin
the Debug session.

• You can enter ACTIVATE SCREEN anytime during an
interactive line mode Debug session.

• If the ACTIVATE SCREEN command is included in a
Debug input file, the Debug session switches to
screen mode.

• When ACTIVATE SCREEN is entered, any existing
breaks are deleted and STEP MODE is turned off.
The Debug input and output files are changed to
specific files used by Debug for screen mode.

• During a screen mode Debug session, screen mode
functions, certain line mode commands, and SCL
commands are available. The DEAS function can be
used to return to line mode.

In the following example, the Debug session is switched
from line mode to screen mode. If the source program
to be debugged is written in C, COBOL, CYBIL, FORTRAN
Version 1, or FORTRAN Version 2, the screen mode
session immediately begins with the Zoom-in display.
If the source program to be debugged is written in
BASIC or Pascal, the screen mode session begins with
the Zoom-out display. To move to the Zoom-in display,
you must press the ZMIN function key.

DB/activate screen

Line Mode Debugging 5-5

CHANGE_DEFAULT (CHAD)

CHANGE_DEFAULT (CHAD)

Purpose:

Format:

Changes the default module, default procedure, default
Debug input file, and default Debug output file.

CHANGE DEFAULT or
CHANGE-DEFAULTS or
CHAD -

MODULE = name or $CURRENT
PROCEDURE = name or $CURRENT
DEBUG INPUT = file
DEBUG-OUTPUT = file
STATUS = status variable

(optional)
(optional)
(optional)
(optional)
(optional)

Parameters: MODULE or M

Specifies the name that is used by default when the
MODULE parameter is not specified in Debug commands
that refer to a module. Options are:

Omitted

The current default module remains unchanged.

Name

The named module is used as the default module.

$CURRENT

The default module is reset to the module executing
when Debug gains control.

5-6 Debug for NOS/VE Usage Revision A

Source

BASIC

C

COBOL

CYBIL

FORTRAN

Pascal

Revision A

CHANGE_DEFAULT (CHAD)

Parameter Dependency

MODULE is the main program referred to as
$MAIN. $MAIN can reference internal
subroutines and internal functions which
are procedures within the module $MAIN.

MODULE can also name an external subroutine
or external function. An external
subroutine and an external function can
reference internal subroutines and internal
functions which are procedures within that
module.

MODULE names a C compilation unit (a C
source file).

The initial module is EM, a startup
module. The EM module has no Debug tables
so the default, $CURRENT, is not useful
until program execution reaches a module
with Debug tables.

Global variables are in the module
c_globals.

MODULE names the program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or only one parameter should be
specified.

MODULE names a module which may contain a
program, procedure, or function.

MODULE names a program, subroutine,
function, or block data subprogram. Since
MODULE and PROCEDURE parameters name the
same program unit, both parameters should
be assigned the same name or only one
parameter should be specified.

MODULE is the program name.

Line Mode Debugging 5-7

CHANGE_DEFAULT (CHAD)

PROCEDURE or P

Specifies the name that is used by default when the
PROCEDURE parameter is not specified in Debug commands
that refer to a procedure. Options are:

Omitted

The current default procedure remains unchanged.

Name

The named procedure is used as the default
procedure.

$CURRENT

The default procedure is reset to the procedure
executing when Debug gained control.

Source

BASIC

C

COBOL

CYBIL

FORTRAN

Pascal

Parameter Dependency

PROCEDURE names internal subroutines and
internal functions within a module.

PROCEDURE names a function or a block
within a function.

PROCEDURE names a program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or only one parameter should be
specified.

PROCEDURE names a program, procedure, or
function in the module specified by the
MODULE parameter.

PROCEDURE names a program, subroutine,
function, or block data subprogram. Since
MODULE and PROCEDURE parameters name the
same program unit, both parameters should
be assigned the same name or only one
parameter should be specified.

PROCEDURE names a program, procedure or
function name.

5-8 Debug for NOS/VE Usage Revision A

Revision A

CHANGE_DEFAULT (CHAD)

DEBUG INPUT or DI

Specifies the default file from which Debug commands
are read when Debug next gains control. Options are:

Omitted

The current DEBUG INPUT file remains unchanged.
Unless otherwise specified, the initial DEBUG INPUT
file is COMMAND.

File

The named file is used as the DEBUG INPUT file.

DEBUG OUTPUT or DO

Specifies the detault tile on which Debug ~utput is to
be written. The change takes effect immediately. Both
break report messages and command output are written to
this file. Options are:

Omitted

The current DEBUG OUTPUT file remains unchanged.
Unless otherwise specified, the initial
DEBUG_OUTPUT file is $OUTPUT.

File

The named file is used as the DEBUG OUTPUT file.

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(or to the debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The specified variable receives the return status.

Line Mode Debugging 5-9

CHANGE_DEFAULT (CHAD)

Remarks:

Examples:

• The effect of the CHANGE DEFAULT command remains
until altered by another-CRANGE_DEFAULT command.

• If a DEBUG INPUT or DEBUG OUTPUT file is specified,
the file is positioned at-the
beginning-of-information the first time it is used.
The file is not repositioned the next time it is
used. Commands are read from the file
sequentially. If an end-of-information is reached
on the input file during an interactive session,
the input file is switched to COMMAND. If an
end-of-information is reached on the input file
during a batch session, program execution resumes.

Assuming that the working catalog has been set to
$USER, the following command specifies that Debug is to
read its commands from file $USER.DBIN when program
execution is suspended next. It also specifies that
Debug is to write its output to file $USER.DBOUT,
beginning immediately.

DB/change default debug input=dbin
DB •• /debug output=dbout-

The following command specifies that output from the
Debug session is to be written to file $LIST:

DB/change_default debug_output=$list

The following command specifies the default module to
be MAIN:

DB/chad m=main

The C GLOBALS module is specified as the default module:

DB/change_default module=c_globals

5-10 Debug for NOS/VE Usage Revision B

CHANGE_MEMORY (CHAM)

CHANGE_MEMORY (CHAM)

Purpose:

Format:

Changes the contents of memory starting at a specific
address. You can change the value of any memory
location for which you have write permission.

CHANGE MEMORY or
CHAM

ADDRESS rsssoooooooo or ?svar or
function

VALUE = integer or string
TYPE = keyword
REPEAT COUNT = positive integer or ALL
STATUS- status variable

(required)
(required)
(optional)
(optional)
(optional)

Parameters: ADDRESS or A

Revision A

Specifies the address of the first byte of memory to
change. Options are:

rsssoooooooo

where r is the ring number, sss is the segment
number, and 00000000 is the offset from the
beginning of the segment. The specified value
cannot contain any blanks.

?svar

Specifies the address indicated by the value of the
SCL variable.

function

Specifies the address indicated by a Debug or SCL
function.

Line Mode Debugging 5-11

CHANGE_MEMORY (CHAM)

VALUE or V

Specifies the new memory value. Options are:

String

A string value can be interpreted as a hexadecimal
or ASCII string, depending on the TYPE parameter.

A hexadecimal string consists of the hexadecimal
digits 0 through 9, A through F, and blanks.
Blanks are ignored, but they can be used to improve
readability. Each hexadecimal digit corresponds to
4 bits of memory. The first two digits replace the
first byte of memory at the specified address, the
second two digits replace the second byte, and so
on. If there is an odd number of hexadecimal
digits, only the first half of the last byte is
changed.

An ASCII string consists of a string of ASCII
characters. Each ASCII character corresponds to
one byte of memory. The first character replaces
the first byte of memory at the specified address,
the second character replaces the second byte, and
so on.

Integer

An integer value completely replaces the contents
of eight bytes. A diagnostic message is issued if
the integer exceeds eight bytes.

TYPE or T

Specifies the type of data defined by the VALUE
parameter. Options are:

Omitted

Type is HEX for string values and INTEGER for
numeric values.

ASCII or A

Data is ASCII string values.

HEX or H

Data is hexadecimal string values.

INTEGER or I

Data is integer values.

5-12 Debug for NOS/VE Usage Revision A

Revision A

CHANGE_MEMORY (CHAM)

REPEAT_COUNT or RC

Specifies the number of times the VALUE parameter is
placed in memory. Options are:

Omitted

A value of 1 is used.

Positive integer

Defines the number of times the VALUE parameter is
repeated in memory. The address is incremented by
the value size each time the value is repeated.
The memory change is limited to the end of the data
segment containing the specified address.
Specifying an integer that is too large changes all
the memory that can be changed. The memory change
is limited to the end of the data segment
containing the specified address.

ALL

Changes all the memory that can be changed. The
memory change is limited to the end of the data
segment containing the specified address.

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that-file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

Line Mode Debugging 5-13

CHANGE_MEMORY (CHAM)

Examples: The following example replaces four bytes of memory
beginning at location B04700000A18(16) with the
hexadecimal string 'lOlOaaab':

DB/change memory address=b04700000A18
DB •• /value='lOlOaaab'

or abbreviated,

DB/cham a=b04700000A18 v='lOlOaab'

The following command displays the new value of address
location B04700000A18:

DB/dism a=b04700000a18
STARTING ADDRESS: B 047 00000A18
00000000 1010 AAAB 0000 50DO ??????P?

The following example replaces six bytes of memory
beginning at location OB04700000598(16) with the ASCII
s~ring 'STRING':

DB/change memory address=b04700000598
DB •• /value='string' type=ascii

The following command displays the new value of address
location B04700000598:

DB/dism a=b04700000598
STARTING ADDRESS: B 047 00000598
00000000 7374 7269 6E67 IBOO string??

The following example replaces eight bytes of memory
beginning at location B02300000223(16) with the integer
value 44:

DB/change_memory address=b02300000223 value=44

The following example changes the value of 5 1/2 bytes
of memory starting at the address specified by the SCL
variable TCOUNT to '4a000000103' (after TCOUNT has been
created with the SCL CREATE_VARIABLE command):

DB/disv tcount
tcount=B02300000223(16)
DB/change_memory address=?tcount value='4aOOOOOOl03'

5-14 Debug for NOS/VE Usage Revision A

CHANGE_PRO GRAM_VALUE (CHAPV)

Purpose:

Format:

Changes the value of named program variables.

CHANGE PROGRAM VALUE or
CHAPV

NAME = variable
VALUE = variable or Constant
MODULE.= name
PROCEDURE = name
RECURSION LEVEL = positive integer
RECURSION-DIRECTION = keyword
STATUS = status variable

(required)
(required)
(optional)
(optional)
(optional)
(optional)
(optional)

Parameters: NAME or N

Revision B

Simple variable names, subscripted names (subscripts
can be constants or variables, but not expressions),
field references and pointer de references can be
specified. SCL string, integer, and boolean variables
can be used as aliases for program variable names. To
do this, assign the SCL string variable to a string
containing the identifier. Then use the SCL Variable
preceded by a question mark (?) aR the value for the
name. Options are:

Omitted

The NAME parameter is required for all languages
except COBOL. If NAME is omitted while debugging a
COBOL program, you are prompted for the name.

Variable

Specifies the name of a program variable or data
structure to be changed. TI1e value of the named
identifier is changed. The MODULE and PROCEDURE
parameters can be specified to qualify the name.

Line Mode Debugging 5-15

BASIC

COBOL

FORTRAN

Pascal

VALUE or V

Parameter Dependency

A variable can be an array element, but
cannot be a whole array.

Reference substrings by MID$(string var name,
first_char-yosition, length) and string:var_
name(first_char-yosition:last_char-yosition)
formats where first_char-yosition,
last_char~osition are positive integer
values.

Reference modification is supported.

If the data-name contains blanks, hyphens, a
digit as the first character, or other
non-SCL syntax, you may not be able to use
the NAME parameter to specify the data-name;
omit NAME and you will be prompted for the
data-name.

Data names with qualified subscripts are not
supported. However, a qualified subscript
can be displayed first then the displayed
value may be substituted for the subscript
reference.

To display qualified data_names, omit the
NAME parameter.

When the NAME parameter is not specified, an
ENTER NAME prompt is issued to the current
DEBUG-INPUT file. ENTER NAME recognizes the
COBOL-qualifiers OF and IN and permits
blanks around tokens, such a '(', ')', and
, .

Extensible common blocks can be specified.

The values of named constants created by the
PARAMETER statement cannot be changed.

A set can be specified.

Specifies the new value of the variable or constant for
the NAME parameter variable. Replacement values must be
entered in the same format as defined in your program,
not as they are represented in memory. Options are:

Variable or Constant

The VALUE parameter variable must be the same type
as the NAME parameter variable or an SCL constant of
an appropriate type.

5-16 Debug for NOS/VE Usage Revision B

Source

BASIC

C

COBOL

CYBIL

FORTRAN

Revision B

Parameter Dependency

You cannot change a variable to another
variable.

If name is a pointer, VALUE must be
integer, NIL, or a variable of the same
type.

If the value is a string that is shorter
than the NAME variable, then the value is
blank-filled on the right to equal the NAME
variable length. If the value is longer
than the NAME variable, then the value is
truncated on the right to equal the NAME
variable length. No additional editing is
done.

If NAME is a pointer, VALUE can be an
integer constant, a variable of the same
type, or NIL.

If NAME is a cell, VALUE can be an integer
constant or a variable of the same type.

If NAME is an ordinal, VALUE can be an
ordinal name or a variable of the same type.

If NAME is an array, record, or sequence,
VALUE must be a variable of the same type,
byte-aligned and unpacked.

If NAME is a set, VALUE can be an allowable
set element or a variable of the same
type. The set element must be enclosed in
brackets. For example:

CHAPV set_name [value]

The value of any variable can be changed to
a constant of the same type, to a variable
reference of the same type, or to a
symbolic constant (created by the PARAMETER
statement) of the same type. Constants
cannot be changed.

Boolean constants must be entered as
hexadecimal integers.

Line Mode Debugging 5-17

Source

Pascal

MODULE or M

If the value of a string that is shorter
than the NAME variable, then the value is
extended to the right with blanks to the
same length as the NAME variable. If the
value is longer than the NAME variable,
then the value is truncated on the right to
equal the NAME variable length.

Unsubscripted arrays can only be changed to
a variable reference of the same type and
size.

Parameter Dependency

If NAME is a set, VALUE can be an allowable
set element or a variable of the same
type. The set element must be enclosed in
brackets. For example:

CHAPV set name [value]

This parameter qualifies the NAME parameter. It
specifies the name of the module containing the named
program variable or data structure specified by the
NAME parameter. Options are:

Omitted

The module that is executing when Debug gains
control is used unless the Debug CHANGE DEFAULTS
command has specified another MODULE value. The
default module can be changed to the module
specified by the CHANGE DEFAULTS MODULE parameter.

Name

Specifies the name of the module that contains the
name of the program variable or data structure
specified by the NAME parameter.

5-18 Debug for NOS/VE Usage Revision B

Source

BASIC

C

COBOL

CYBIL

FORTRAN

Pascal

Revision A

Parameter Dependency

MODULE is the main program referred to as
$MAIN. $MAIN can reference internal
subroutines and internal functions which
are procedures within the module $MAIN.

MODULE can also name an external subroutine
or external function. An external
subroutine and an external function can
reference internal subroutines and internal
functions which are procedures within that
module.

MODULE names a C compilation unit (a C
source file).

The initial module is EM, a startup
module. The EM module has no Debug tables
so the default, $CURRENT, is not useful
until program execution reaches a module
with Debug tables.

Global variables are in the module
c_g10ba1s.

MODULE names a program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or only one parameter should be
specified.

MODULE names a module which may contain a
program, procedure, or function.

MODULE must be specified if you want to
change a variable value after a runtime
error occurs. This is described in more
detail in chapter 6, Debugging a CYBIL
Runtime Error.)

MODULE names a program, subroutine,
function, or block data subprogram. Since
the MODULE and PROCEDURE parameters name
the same program unit, both parameters
should be assigned the same name or only
one parameter should be specified. The
MODULE name is the name of the program unit
containing the definition of the variable
specified by the NAME parameter.

The MODULE name is the program name.

Line Mode Debugging 5-19

PROCEDURE or P

This parameter qualifies the NAME parameter. It
specifies the name of the procedure containing the
named program variable or data structure specified by
the NAME parameter. If a procedure is inactive (not in
an active call chain), its variables cannot be
displayed by DISPV because the procedure has no stack
frame and therefore no existent automatic variables.
Options are:

Omitted

The procedure that is executing when Debug gains
control is used unless the Debug CHANGE_DEFAULTS
command has specified another PROCEDURE value. The
default procedure can be changed to the procedure
specified by the CHANGE_DEFAULTS PROCEDURE
parameter.

Name

Specifies the name of the procedure that contains
the name of the program variable or data structure
specified by the NAME parameter.

Source Parameter Dependency

BASIC

C

COBOL

CYBIL

PROCEDURE names internal subroutines and
internal functions within a module.

PROCEDURE names a function or a block
within a function.

PROCEDURE names a program specified on the
Program-id statement. Because MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or ~nly one parameter should be
specified.

PROCEDURE names a program, procedure, or
function in the module specified by the
MODULE parameter.

PROCEDURE must be specified if you want to
change a variable value after a runtime
error occurs. (This is described in detail
in chapter 6, Debugging a CYBIL Runtime
Error.)

5-20 Debug for NOS/VE Usage Revision A

Revision A

FORTRAN

Pascal

CHANGE_PRO GRAM_ VALUE (CHAPV)

Parameter Dependency

PROCEDURE names a program, subroutine,
function, or block data subprogram. Because
the PROCEDURE and MODULE parameters name
the same program unit, both parameters
should be assigned the same name or only
one parameter should be specified.

PROCEDURE names a program, procedure, or
function name.

RECURSION LEVEL or RL

Specifies the recursion level of the procedure
specified by the PROCEDURE parameter. The value of the
data item specified by the NAME parameter and known to
this recursive level of the procedure is displayed.
Recursion does not affect static or global variables.
Options are:

Omitted

A value of 1 is used.

Positive integer

The specified value must be a positive integer
greater than O. If the RECURSION DIRECTION
parameter specifies BACKWARD, 1 is the most recent
invocation of the procedure, 2 is its predecessor,
and so on (backward count from the most recent
call). If the RECURSION_DIRECTION parameter
specifies FORWARD, 1 is the first invocation of the
procedure, 2 is the procedure called by the first
invocation, and so on (forward count from the first
call).

Source

BASIC

COBOL

FORTRAN

CYBIL

Pascal

Parameter Dependency

RECURSION LEVEL specifies the recursive
call instance.

Not supported. Omit the RECURSION LEVEL
parameter.

RECURSION LEVEL specifies the particular
call of a-recursive procedure to be used.

RECURSION LEVEL specifies which invocation
of a named recursive procedure is to be
used.

Line Mode Debugging 5-21

CHANGE_PROGRAM_ VALUE (CHAPV)

RECURSION DIRECTION or RD

Specifies whether the RECURSION LEVEL is counted
forward from the first call or backward from the
most recent call. Options are:

BASIC
C
CYBIL
Pascal

COBOL
FORTRAN

STATUS

Omitted

The value of BACKWARD is used.

FORWARD

A RECURSION LEVEL of 1 specifies the first call
to the procedure, 2 specifies the second call,
and so on.

BACKWARD

A RECURSION LEVEL of 1 specifies the most
recent call-to the procedure, 2 specifies its
predecessor, and so on.

Parameter Dependency

RECURSION DIRECTION specifies the order in
which calls to a recursive procedure are
searched.

Not supported. Omit the RECURSION
DIRECTION parameter.

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that-file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

5-22 Debug for NOS/VE Usage Revision A

Remarks:

Examples:

Revision A

Replacement values are entered in the same format as
defined in your program, not as they are represented in
memory.

The following three examples refer to the FORTRAN
definition below:

COMMON /BLK/ DVAL, RVAL, IVAL, ZVAL
DATA DVAL, RVAL, IVAL, ZVAL /20.0D+0, 3. 45E+Ol , 30,

+(+20.0,20.3)/

The following command displays the initial value of
variable DVAL:

DB/display-yrogra~value name=dval
dval = 20.

The following command changes the value of variable
DVAL to 30.0:

DB/change-yrogram_value name=dval value=+30.0d+0

The following command displays the new value of DVAL:

DB/dispv dval
dval = 30.

The following command changes the value of variable
INDEX:

DB/chapv name=index value=63 module=testl

The following command changes the value of logical
variable VAR:

DB/change-yrogram_value var value=true

The following commands display the new values of INDEX
and VAR:

DB/dispv index
index = 63
DB/dispv var
var = TRUE

Line Mode Debugging 5-23

CHANGE_REGISTER (CHAR)

CHANGE_REGISTER (CHAR)

Purpose:

Format:

Changes the value of the P, A, or X registers that are
associated with the program executing when Debug gains
control.

CHANGE REGISTER or
CHANGE-REGISTERS or
CHAR -

KIND = keyword
NUMBER = integer or range of integers

or ALL
VALUE = integer or String
TYPE = keyword
STATUS = status variable

(optional)
(optional)

(required)
(optional)
(optional)

Parameters: KIND or K

Specifies the register to change. The KIND parameter
changes the value of the registers for the function
currently being executed. Options are:

Omitted

Same as KIND=P.

P

Changes the P register. Changing the P register
changes the point in the program at which Debug
resumes execution.

A

Changes the A registers.

X

Changes the X registers.

5-24 Debug for NOS/VE Usage Revision A

Revision A

CHANGE_REGISTER (CHAR)

NUMBER or N

Indicates which A or X registers specified by the KIND
parameter will change. This parameter is ignored if
KIND = P because there is only one P register.

The A and X registers can be saved and changed when
Debug gains control. However, some registers are not
always saved; a message is issued for each register
that cannot be changed because it waS not saved.
Options are:

Omitted

Changes the zero register.

Integer or range of integers

Changes a set of registers. Integer can be 0
through 15.

ALL

Changes all A (if KIND = A) or all X (if KIND X)
or both sets of (if KIND = ALL) registers.

VALUE or V

Specifies the new value of the register. Options are:

Omitted

Same as integer or string allowed for KIND=P.

Integer

If KIND = P or A, integer must be in the range 0
through OFFFFFFFFFFF(16).

If KIND = X, integer must be in the range
-7FFFFFFFFFFFFFFF(16) through 7FFFFFFFFFFFFFFF(16).

The upper 4 bits are ignored when changing the P
register because the ring number in P cannot be
changed.

The upper bits of the register are set to zero if
an integer is negative or to 1 if an integer is
positive when the value does not fill the register.

Line Mode Debugging 5-25

CHANGE_REGISTER (CHAR)

String

If KIND = P or A, string can be a hexadecimal
string containing a maximum of 12 hexadecimal
digits (spaces are ignored); each hexadecimal digit
corresponds to 4 bits.

If KIND = X, string can be a hexadecimal string
containing a maximum of 16 hexadecimal digits
(spaces are ignored); each hexadecimal digit
corresponds to 4 bits or an ASCII string containing
a maximum of eight ASCII characters; each character
corresponds to one byte.

If a string value does not fill the register (it is
less than 16 hexadecimal digits or 8 ASCII
characters), the string value is left-justified
with remaining bytes unchanged.

TYPE or T

Specifies the type of data specified by the VALUE
parameter. Options are:

Omitted

HEX is used for string values and INTEGER is used
for numeric values.

ASCII or A

Data is an ASCII string. Each ASCII character
corresponds to 1 byte. Spaces are significant.

HEX or H

Data is a hexadecimal string. Each hexadecimal
digit corresponds to 1/2 byte (4 bits). Spaces
have no effect on the result.

INTEGER or I

Data is an integer value.

5-26 Debug for NOS/VE Usage Revision A

Examples:

Revision A

CHANGE_REGISTER (CHAR)

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that-file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The specified variable receives the return status.

The following example changes the current value of the
P register to OA02200004500(16). Because the register
is the P register, its ring number (upper 4 bits) is
ignored.

DB/change_register kind=p value=Oa02200004500(16)

The following command displays the new value of the P
register:

DB/display register kind=p
P=B 022 000'04500

The following command changes the leftmost 5 bytes of
the X7 register to 'abcde'. The rightmost bytes are
left unchanged.

DB/char kind=x number=7 value='abcde' type=ascii

The following command displays the new value of the X
register:

DB/disr k=x n=7
X7=61626364 65000EBA

Line Mode Debugging 5-27

DELETE_BREAK (DELB)

DELETE_BREAK (DELB)
Purpose:

Format:

Deletes one or more previously defined breaks.

DELETE BREAK or
DELETE-BREAKS or
DELB

BREAK = list of name or ALL
STATUS = status variable

(required)
(optional)

Parameters: BREAK or BREAKS or B

Specifies the break definitions to be deleted. Options
are:

List of names

Deletes the break associated with each name. If
the keyword ALL appears in the list of names, all
breaks are deleted. An informative message is
issued if a specified break name does not exist,
however, all subsequent breaks in the list are
processed.

ALL

Deletes all breaks.

STATUS

Specifies a variable to receive the return status of
the command. If the DELETE BREAK command contains an
error before the STATUS parameter, the remainder of the
command is not read and the return status is not stored
in the specified variable. Options are:

PERFORMANCE HINT

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that-file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The specified variable receives the return status.

Because execution takes longer when there are breaks set, you should
delete a break as soon as it is no longer needed.

5-28 Debug for NOS/VE Usage Revision A

Examples:

Revision A

DELETE_BREAK (DELB)

The following command deletes break definitions Bl,
B2, and B3:

DB/delete_breaks breaks=(bl,b2,b3)

or abbreviated,

DB/delb b=(bl,b2,b3)

The following command deletes all break definitions:

DB/delete_breaks all

The following command deletes break definition B4:

DB/delete_break b4

Line Mode Debugging 5-29

DISPLAY_BREAK (DISB)

DISPLAY_BREAK (DISB)

Purpose:

Format:

Displays specified break definitions. The break name,
events, address, and any commands associated with the
break are displayed.

DISPLAY BREAK or
DISPLAY-BREAKS or
DISB -

BREAK = list of name or ALL
OUTPUT file
STATUS = status variable

(optional)
(optional)
(optional)

Parameters: BREAK or BREAKS or B

Specifies the break definitions to be displayed.
Options are:

Omitted

Displays all breaks.

List of names

Displays the break associated with each name. If
the keyword ALL appears in the list of names, all
breaks are displayed. An informative message is
issued if a specified break name does not exist,
however, all subsequent breaks in the list are
processed.

ALL

Displays all breaks.

OUTPUT or 0

Specifies the file on which the break definitions are
to be written. Options are:

Omitted

Writes to the current default Debug output file.

File

Writes to the named file. You can position the
file by appending a position indicator to the file
name (.$BOI, .$ASIS, .$EOl).

5-30 Debug for NOS/VE Usage Revision A

Examples:

Revision A

DISPLAY_BREAK (DISB)

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error. does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

The following command displays break definitions B1,
B2, and B5:

DB/display_breaks breaks=(b1,b2,b5)

Break B1
event(s) = execution
location: M=main L=26

Break B2
event(s) = execution
location: M=m L=13 BO=16

Break B5
event(s) = execution
location: M=s L=16

Line Mode Debugging 5-31

DISPLAY_BREAK (DISB)

The following command displays all break definitions:

DB/display_breaks

Break Bl
event(s) = execution
location: M=main L=26

Break B2
event(s) = execution
location: M=m L=13 BO=16

Break B3
event(s) = execution
location: M=m L=16

Break B4
event(s) = execution
location: M=mu1t L=7

The following command writes the break definitions of
all existing breaks to permanent file
$USER.DEBUG_OUTPUT:

DB/display_breaks output=$user.debug_output

or abbreviated,

DB/disb o=$user.debug_output

5-32 Debug for NOS/VE Usage Revision A

DISPLAY_CALL (DISC)

DISPLAY_CALL (DISC)

Purpose:

Format:

Traces back the call chain; information about the
active call chain is displayed. Information includes
which procedure called the current procedure, which
procedure called its caller, which procedure called its
caller's caller, and so on.

DISPLAY CALL or
DISPLAY-CALLS or
DISC

COUNT = positive integer or ALL
START = positive integer
DISPLAY OPTION = list of keyword
OUTPUT file
STATUS = status variable

(optional)
(optional)
(optional)
(optional)
(optional)

Parameters: COUNT or C

Revision A

Specifies the number of calls to be displayed. Options
are:

Omitted

Displays all calls.

Positive integer

Displays the specified number of calls; all calls
are displayed if the integer is greater than the
number of existing calls.

ALL

Displays all calls.

START or S

Specifies which calIon the chain to display first.
Thus, it is possible to skip the most recent calls.
Options are:

Omitted

Displays the most recent call.

Positive integer

Displays the specified call; 1 represents the most
recent call, 2 represents the predecessor of the
most recent call, and so forth.

An informative message is issued if the specified
number of calls is greater than the actual number
of calls.

Line Mode Debugging 5-33

DISPLAY_CALL (DISC)

Source Parameter Dependency

C The first two calls are always to startup
modules. The initial call to your program
is the third call in the call chain.

DISPLAY OPTION or DISPLAY OPTIONS or DO - -
Specifies the type of information to be displayed.
Options are one or more of the following:

C

Omitted

Displays calls that are in the user program only.

USER_CALLS (UC)

Displays calls that are in the user program only.

SYSTEM_CALLS (SC)

Displays calls that are not part of the user's
program only.

Displays both user calls and system calls.

VARIABLE_VALUES (VV)

Displays all variables known to the procedure.

Parameter Dependency

The parameter option VARIABLE VALUES does
not display global variab1es.-

OUTPUT or 0

Specifies the file on which the call information is to
be written. Options are:

Omitted

Writes to the current Debug output file.

File

Writes to the named file. You can position the
file by appending a position indicator to the file
name ($.BOI, .$ASIS, .$EOI).

5-34 Debug for NOS/VE Usage Revision A

Remarks:

Examples:

Revision A

DISPLAY_CALL (DISC)

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

Usually the procedure name, module name, and line
number of each call are shown. If you inhibit Debug
tables when compiling your program, only the procedure
or module name and byte offset from the beginning of
the procedure or module are shown. Machine addresses
are shown for internal NOS/VE calls only.

The following command displays the first calIon the
call chain:

DB/display calls
Called from procedure TEST module TEST at line 1
byte offset 22

The following command displays the first two calls on
the call chain:

DB/display_calls count=2 display_options=all_calls

Traceback from address B 22 4500
Called from module FLM$BOUND_CORE byte offset
10CC(l6)

The following command displays all of the user calls on
the call chain, as well as all program variable values
known to each procedure:

DB/display calls display options=(user calls
DB •• /variable values) - -
-- Called from procedure TEST module TEST at line 1

byte offset 22
-- DISPLAY OF ALL CONSTANTS AND VARIABLES IN TEST

I = 10
J = 0
VAR = TRUE

Line Mode Debugging 5-35

DISPLAY_DEBUGGING_ENVIRONMENT (DISDE)

DISPLAY_DEBUGGING_ENVIRONMENT (DISDIE)

Purpose:

Format:

Displays the environment you have set up for the Debug
session.

DISPLAY DEBUGGING ENVIRONMENT or
DISDE

DISPLAY OPTION = list of keyword
OUTPUT - file
STATUS = status variable

(optional)
(optional)
(optional)

Parameters: DISPLAY OPTION or DISPLAY OPTIONS or DO

Specifies the type of information to be displayed.
Options are one or more of the following:

Omitted

Same as DISPLAY OPTION ALL

DEFAULTS or D

Displays the current default values for module,
procedure, Debug input file, and Debug output file.

Unless the CHANGE DEFAULTS command has been
specified, the default module and procedure are
$ CURRENT , that is, the module and procedure where
execution has stopped in your task.

BREAKS or B

Displays the number of breaks you
number of breaks currently in use
maximum number of allowed breaks.
maximum number of breaks that you
the remaining 32 are reserved for

STEP MODE or SM

have set, the
by Debug, and the

However, the
can set is 32;
Debug use.

Displays the current STEP MODE attributes.

USER ADDRESS or UA

Displays the location in your program where
execution has stopped.

5-36 Debug for NOS/VE Usage Revision B

Revision A

DISPLAY_DEBUGGING_ENVIRONMENT (DISDE)

ALL

Displays the defaults. breaks. STEP_MODE
attributes. and user addresses.

Source Parameter Dependency

c The STEP_MODE option is not available while
debugging C programs.

OUTPUT or 0

Specifies the file where the debugging environment
display is to be written. Options are:

Omitted

Wr~tes to the current default Debug output file.

File

Writes to the named file. You can position the
file by appending a position indicator to the file
name (.$BOI •• $ASIS •• $EOI).

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

Line Mode Debugging 5-37

DISPLAY_DEBUGGING_ENVIRONMENT (DIS DE)

Remarks:

Examples:

The DISPLAY DEBUGGING ENVIRONMENT command displays the
following information:

• Current defaults for module, procedure, Debug input
file, and Debug output file.

• Total number of breaks you have set and Debug has
set.

• Information about STEP MODE

• The location in your program where execution has
stopped.

The following command writes the display to the current
default Debug output file:

DB/display_debugging_environment do=all

Default module is $CURRENT(XYZ).
Default procedure is $CURRENT(Pl).
Default debug input file is :$LOCAL.COMMAND.l.
Default debug-output file is : $LOCAL.$OUTPUT.1.
The number of-breaks set by the user is 5.
The number of breaks in use by DEBUG is O.
The number of available breaks is 64.
Step mode is OFF.
Execution is currently stopped at B 02 00004500.

5-38 Debug for NOS/VE Usage Revision B

DISPLAY_MEMORY (DISM)

DISPLAY_MEMORY (DISM)

Purpose:

Format:

Revision A

Displays information located at any address to which
you have read access.

DISPLAY MEMORY or
DISM

address (required)
address can be one or more of the following:

SECTION = name or keyword
MODULE = name
ADDRESS = rsssoooooooo or ?svar

BYTE OFFSET = 0 or integer
BYTE-COUNT = positive integer
REPEAT COUNT = positive integer or ALL
OUTPUT - file
STATUS = status variable

or function
(optional)
(optional)
(optional)
(optional)
(optional)

Line Mode Debugging 5-39

DISPLAY_MEMORY (DISM)

Parameters: address

Specifies the memory location to be displayed. The
memory location is specified by one or more of the
following address parameters:

SECTION = name or keyword
MODULE = name
ADDRESS = rsssoooooooo or ?svar or function

SECTION or SEC

Identifies the memory section that contains the
data to be displayed. When you use SECTION to
specify an address t you must qualify it with the
MODULE parameter. You can use the BYTE OFFSET
parameter to modify the starting address of memory
to be displayed. Options are:

Omitted

Displays the memory address specified by the
ADDRESS parameter.

Name

Displays the named memory section or common
block. Must be a CYBIL program working storage
section name or a common block name.

$BLANK

Displays the memory section that contains
unnamed common.

$BINDING

Displays the memory section that contains the
links to external procedures and the data of
the module.

$LITERAL

Displays the memory section that contains the
literal data of the module (for example t long
constants).

$STATIC

Displays the memory section that contains the
static variables not explicitly allocated to a
named section of the module. Static variables
are those not on the run-time stack.

5-40 Debug for NOS/VE Usage Revision B

Revision A

DISPLAY_MEMORY (DISM)

MODULE or M

This parameter qualifies the SECTION parameter. It
specifies the module that contains the data to be
displayed. Options are:

Omitted

Displays the memory address specified by the
ADDRESS parameter.

Name

Displays the data in the named module.

Parameter Dependency

BASIC MODULE is the main program referred to
as $MAIN. $MAIN can reference internal
subroutines and internal functions which

C

COBOL

CYBIL

FORTRAN

Pascal

are procedures within the module $MAIN.

MODULE can also name an external
subroutine or external function. An
external subroutine and an external
function can reference internal
subroutines and internal functions which
are procedures within that module.

MODULE names a C compilation unit (a C
source fi Ie).

The initial module is EM, a startup
module. The EM module has no Debug
tables so the default, $CURRENT, is not
useful until program execution reaches a
module with Debug tables.

Global variables are in the module
c_g10bals.

MODULE names the program specified on
the Progran-id statement.

MODULE names a module which may contain
a program, procedure, or function.

MODULE names a program, subroutine,
function, or block data subprogram.

The MODULE name is the program name.

Line Mode Debugging 5-41

DISPLAY_MEMORY (DISM)

ADDRESS or A

Specifies the address of the first byte of memory
to be displayed. Options are:

Omitted

Indicates that the address is specified by the
SECTION and MODULE ~arameters.

rsssoooooooo

where r is the ring number, sss is the segment
number, and 00000000 is the offset from the
beginning of the segment. The specified value
cannot contain any blanks. You can use the
BYTE OFFSET parameter to modify the starting
addr;ss of memory to be displayed.

?svar

Specifies the address indicated by the value of
the SCL variable.

function

Specifies the address indicated by a Debug or
SCL function.

BYTE OFFSET or BO

Specifies the offset to the base address established by
one of the address parameters. The address generated
by adding BYTE OFFSET to the base address must be
within the memory block implied by the base address.
The block size is the length of the section when the
SECTION parameter is specified, and the length of the
segment containing the machine address when the ADDRESS
parameter is specified. Options are:

Omitted

Zero is used.

o or integer

Adds the integer to the base address to form a new
address. Unless a radix is explicitly specified,
the integer is interpreted as hexadecimal.

5-42 Debug for NOS/VE Usage Revision B

Revision A

DISPLAY_MEMORY (DISM)

BYTE COUNT or BC

Specifies the number of bytes in the item to be
displayed. Options are:

<Anitted

Displays eight bytes.

Positive integer

Displays the specified number of bytes.

REPEAT COUNT or RC

Specifies the number of memory area (items) of length
BYTE COUNT to be displayed. Options are:

<Anitted

Displays one item.

Positive integer

Displays the specified number of items. The maximum
amount of memory that can be displayed is limited
to the block size implied by address (section
length for SECTION and segment length for
ADDRESS). If you specify a value that would cause
the display to exceed this limit, all memory from
the specified address to the end of the memory
block is displayed.

ALL

Displays all items from the specified address to
the end of the memory block.

OUTPUT or 0

Specifies the file on which the displayed information
is to be written. Options are:

Omitted

Writes to $OUTPUT.

File

Writes to the named file. You can position the
file by appending a position indicator to the file
name (.$BOI, .$ASIS, .$E01).

Line Mode Debugging 5-43

DISPLAY_MEMORY (DISM)

Remarks :

STATUS

Specifies a variable to receive the return status of
the command. Options are:

•

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

DISPLAY MEMORY allows you to debug your program
even when compiler-generated symbol tables are not
available, and to display memory areas that do not
correspond to program identifiers. Each display
line shows the memory contents in hexadecimal and
ASCII formats; the relative byte offset from the
initial address is also shown.

• The compiler-generated attributes list shows the
section name and offset for all variables. You can
reference static variables by specifying section
name and byte offset. You can reference variables
on the stack by specifying the machine address of
the stack frame and byte offset of the variable.
You can obtain the address of the stack frame of
the procedure executing when Debug got control by
displaying register Al (refer to the
DISPLAY REGISTER command description in this
chapter). You can obtain the address of other
stack frames by displaying the save area of the
desired stack frame using the DISPLAY STACK FRAME
command and obtaining the value of register-AI from
that stack frame. You can also use the
DISPLAY_PROGRAM_VALUE command to display program
variables when symbol tables are available.

5-44 Debug for NOS/VE Usage Revision A

Examples:

Revision A

DISPLAY_MEMORY (DISM)

The following example displays the first two bytes of
the literal memory section for module MODI:

DB/display memory section=$literal module=mod1
DB •• /byte co un t=2
STARTING ADDRESS: B 049 00000000
00000000 304A 00 OJ

The following example displays the first 32 bytes of
the memory section DATAl for module MOD2 as separate
items:

DB/display_memory sec=data1 module=mod2 rc=4

STARTING ADDRESS: B 04A 00000000
00000000 4001 8000 0000 0000 @???????
00000008 4002 8000 0000 0000 @???????
00000010 4002 COOO 0000 0000 @???????
00000018 4003 8000 0000 0000 @~?????

The following example displays the first 200 bytes of
memory starting from the specified address:

DB/ dism a=b02400000224 bo=8 rc=25

Line Mode Debugging 5-45

DISPLAY_PRO GRAM_ VALUE (DISPV)

DISPLAY _PROGRAM_VALUE (DISPV)

Purpose:

Format:

Displays the values of named program variables and
constants as they are written in the source program.
The subordinated record and field values of complex
data structures are indented to show the organization
of the data structure.

DISPLAY PROGRAM VALUE or
DISPV

NAME = list of name or $ALL
MODULE = name
PROCEDURE = name
RECURSION LEVEL = positive integer
RECURSION-DIRECTION = keyword
TYPE = keyword
VARIANT SELECTION = name, integer,

boolean, string, or $FIRST
NAME OPTION = keyword
SCOPE = keyword
SECTION = name
OUTPUT file
STATUS = status variable

(required)
(optional)
(optional)
(optional)
(optional)
(optional)

(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Parameters: NAME or N

Simple variable names, subscripted names (subscripts
can be constants or variables, but not expressions),
field references and pointer dereferences can be
specified. SCL string, integer, and boolean variables
can be used as aliases for program variable names. To
do this, assign the SCL string variable to a string
containing the identifier. Then use the SCL variable
preceded by a question mark (?) as the value for the
name. Options are:

Variable

Specifies a list of names of program variables or
data structures to be displayed. The value of the
named identifier is displayed. The MODULE and
PROCEDURE parameters can be specified to qualify
the name.

$ALL

Displays all the values of the variables in the
procedure defined by the PROCEDURE parameter.

5-46 Debug for NOS/VE Usage Revision B

Revision B

BASIC

COBOL

FORTRAN
Version

FORTRAN
Version 2

MODULE or M

DISPLAY_PRO GRAM_ VALUE (DISPV)

Parameter Dependency

Reference substrings by MID$(string var
name, first_char-position, length) and -
string_var_name(first_char-posit,ion: last_
char-position) formats where first_char_
position, last_char-position, and length
are positive integer values.

Reference modification is supported.

Data names with qualified subscripts are
not ;upported. However, a qualified sub
script can be displayed first then the
displayed value may be substituted for the
subscript reference.

To display qualified data names, omit the
NAME parameter. When the-NAME is not
specified, an ENTER NAME prompt is issued
to the current DEBurr_INPUT file.
ENTER NAME recognizes the COBOL qualifiers
OF and IN and permits blanks around tokens,
such a '(', ')', and ','.

Extensible common blocks can be specified.

Assumed-size arrays cannot be specified by
name only; you must also specify the array
element.

Assumed-size arrays cannot be specified by
name only; you must also specify an array
element or array section. In some cases,
arrays of length one are treated as
assumed-size arrays and are subject to the
same naming conventions.

This parameter qualifies the NAME parameter. It
specifies the name of the module containing the named
program variable or data structure specified by the
NAME parameter. Options are:

Omitted

If the MODULE parameter is not specified, the
module that is executing when Debug gains control
is used unless the Debug CHANGE DEFAULTS command
has specified another MODULE value. The default
module can be changed to the module specified by
the CHANGE_DEFAULTS MODULE parameter.

Name

Specifies the name of the module that contains the
name of the program variable or data structure
specified by the NAME parameter.

Line Mode Debugging 5-47

DISPLAY _PRO GRAM_ VALUE (DISPV)

Source

BASIC

C

COBOL

CYBIL

FORTRAN

Pascal

Parameter Dependency

MODULE is the main program referred to as
$MAIN. $MAIN can reference internal
subroutines and internal functions which
are procedures within the module $MAIN.

MODULE can also name an external subroutine
or external function. An external
subroutine and an external function can
reference internal subroutines and internal
functions which are procedures within that
module.

MODULE names a C compilation unit (a C
source file).

The initial module is EM, a startup
module. The EM module has no Debug tables
so the default, $CURRENT, is not useful
until program execution reaches a module
with Debug tables.

Global variables are in the module
c_globals.

MODULE names the program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or only one parameter should be
sped fied.

MODULE names a module which may contain a
program, procedure, or function.

MODULE names a program, subroutine,
function, or block data subprogram. Since
the MODULE and PROCEDURE parameters name
the same program unit, both parameters
should be assigned the same name or only
one parameter should be specified.

The MODULE name is the program name.

5-48 Debug for NOS/VE Usage Revision B

(

I

~

(

Revision A

DISPLAY _PRO GRAM_ VALUE (DISPV)

PROCEDURE or P

This parameter qualifies the NAME parameter. It
specifies the name of the procedure containing the
named program variable or data structure specified by
the NAME parameter. If a procedure is inactive (not
in an active call chain), its variables cannot be
displayed by DISPV because the procedure has no stack
frame and therefore no existent automatic variables.
Options are:

Omitted

The procedure that is executing when Debug gains
control is used unless the Debug CHANGE_DEFAULTS
command has specified another PROCEDURE value.
The default procedure can be changed to the
procedure specified by the CHANGE_DEFAULTS
PROCEDURE parameter.

Name

Specifies the name of the procedure that contains
the name of the program variable or data structure
specified by the NAME parameter.

Source Parameter Dependency

BASIC

C

COBOL

CYBIL

FORTRAN

Pascal

PROCEDURE names internal subroutines and
internal functions within a module.

PROCEDURE names a function or a block
within a function.

PROCEDURE names a program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same
program, both parameters should be
assigned the same name or only one
parameter should be specified.

PROCEDURE names a program, procedure, or
function in the module specified by the
MODULE parameter.

PROCEDURE names a program, subroutine,
function, or block data subprogram. Since
MODULE and PROCEDURE parameters name the
same program unit, both parameters should
be assigned the same name or only one
parameter should be specified.

PROCEDURE names a program, procedure or
function name.

Line Mode Debugging 5-49

DISPLAY _PROGRAM_ VALUE (DISPV)

RECURSION LEVEL or RL

Specifies the recursion level of the procedure
specified by the PROCEDURE parameter. The value of the
data item specified by the NAME parameter and known to
this recursive level of the procedure is displayed.
Recursion does not affect static or global variables.
Options are:

Omitted

The defaul t value is 1.

Positive integer

The specified value must be a positive integer
greater than O. If the DISPV RECURSION DIRECTION
parameter specifies BACKWARD, 1 is the most recent
invocation of the procedure, 2 is its predecessor,
and so on (backward count from the most recent
call). If the RECURSION DIRECTION parameter
specifies FORWARD, 1 is the first invocation of the
procedure, 2 is the procedure called by the first
invocation, and so on (forward count from the first
call) •

Source Parameter Dependency (

COBOL
FORTRAN

RECURSION LEVEL is not supported. Omit
this parameter.

RECURSION DIRECTION or RD

Specifies whether the RECURSION_LEVEL is counted
forward from the first call or backward from the most
recent call. Recursion does not affect static or
global variables. Options are:

Omitted

The default value is BACKWARD.

FORWARD

A RECURSION LEVEL of 1 specifies the first call to
the procedure, 2 specifies the second call, and so
on.

5-50 Debug for NOS/VE Usage Revision A

,/
\

(

Revision A

DISPLAY _PROGRAM_ VALUE (DISPV)

BACKWARD

A RECURSION LEVEL of 1 specifies the most recent
call to the-procedure, 2 specifies its predecessor,
and so on.

Source

COBOL
FORTRAN

TYPE or T

RECURSION DIRECTION is not supported. Omit
this parameter.

Specifies how the data is to be represented for the
value of the NAME parameter variable.

Omitted

The variable name and its value are displayed as
the data is defined in the source program.
Integers are displayed as decimal integers, strings
are displayed as ASCII characters, booleans are
displayed as TRUE or FALSE, pointers to procedures
are displayed as the procedure name, other pointers
are displayed as HEX addresses, records are
displayed as a collection of elementary items each
in its natural format, and so on.

HEX or H

Displays the value of the NAME parameter variable
in hexadecimal format.

INTEGER or I

Interprets the value of the NAME parameter variable
as an integer number and displays it as a decimal
integer. The data must be from 1 through 8 bytes
long. Each element in an array is displayed as a
separate integer. Character, complex, and double
precision variables cannot be displayed in integer
format.

REAL or R

Interprets the value of the NAME parameter variable
as a floating-point number. The data must be 8
bytes long. Each element in an array is displayed
as a floating-point number. Character, complex and
double precision variables cannot be displayed in
real format.

Line Mode Debugging 5-51

DISPLAY_PRO GRAM_ VALUE (DISPV)

Source

BASIC
COBOL

FORTRAN

Parameter Dependency

TYPE = INTEGER and TYPE = REAL are not
supported. Omit these options.

NAMELIST data cannot be displayed with
TYPE = HEX.

VARIANT SELECTION or VS

Specifies the value of the tag field for the variant
part of a tagless record. The tag type specified by
the CASE statement must be of the type specified by the
VARIANT SELECTION value. This parameter is used to
display an entire tagless record. It is used mostly to
display an array of tagless records. Options are:

Integer

Specifies the value of the tag field (selector
value) as an integer. If the integer is outside
the range defined in the CASE statement» an error
message is issued.

Boolean

Specifies the value of the tag field (selector
value) as a BOOLEAN. The value is compared to the
tag type specified in the CASE statement. If the
type is not BOOLEAN» an informative message is
issued. If the type is BOOLEAN» the variant part
of the record is interpreted based on the value
specified by the VARIANT_SELECTION parameter.

Name

Specifies the value of the tag field (selector
value) as a name. If the name is not found in the
symbol table or if it is found» but it is not a
valid ordinal for the tag type» an informative
message is issued. If the name is a valid ordinal
for the selector value of the record variant» the
value of that ordinal from the symbol table is used
to display the variant.

I 5-52 Debug for NOS/VE Usage Revision B

Revision B

DISPLAY _PROGRAM_ VALUE (DISPV)

String

Specifies the value of the tag field (selector
value) as a one-character string. If the type is
not character, an informative message is issued.
If the type is character, the variant is
interpreted based on the value of the
VARIANT SELECTION parameter.

$FIRST

Specifies that the first valid tag field value
found in the symbol table is used as the value of
the tag field. $FIRST can be specified if you want
to see the variant field, but are not sure how it
was defined.

Line Mode Debugging 5-52.1/5-52.2

Revision A

DISPLAY_PRO GRAM_ VALUE (DISPV)

Parameter Dependency

BASIC VARIANT SELECTION is not supported. Omit
this parameter. C

COBOL
FORTRAN

NAME OPTION or NO

Qualifies the identifier(s) given for the NAME
parameter. Options are one or more of the following:

Omitted

There is no default for the NAME OPTION parameter
when a single identifier is specified for the NAME
parameter. If $ALL is specified for the NAME
parameter, the default for the NAME OPTION
parameter is VARIABLES. -

CONSTANTS or C

The idenfifier in the source program must be a
constant.

VARIABLES or V

The idenfifier in the source program must be a
variable name.

PARAMETERS or P

The identifier in the source program must be a
variable that was passed as a parameter to the
default procedure or the procedure specified by the
PROCEDURE parameter.

ALL

The identifier in the source program can be either
a constant or a variable.

BASIC
C
COBOL

Parameter Dependency

NAME OPTION = CONSTANTS is not supported.
Omit-this option.

Invalid Parameter Combinations

NAME OPTION=PARAMETERS cannot be used with the SECTION
parameter. If the DISPV parameters are specified
positionally and this parameter is omitted, its
position must be indicated by a comma.

Line Mode Debugging 5-53

DISPLAY_PRO GRAM_ VALUE (DISPV)

SCOPE or SCO

Determines the type of search for identifiers specified
by the NAME parameter. Options are:

GLOBAL or G

The value of the NAME parameter must reference
identifier(s) known outside the defining module.
The Entry Point Table is searched to locate the
identlfier(s). -

Invalid Parameter Combinations

GLOBAL cannot be used with the MODULE, PROCEDURE,
RECURSION LEVEL, and RECURSION DIRECTION parameters or
with NAME-OPTION = PARAMETERS 'Or with NAME = $ALL.

MODULE or M

The value of the NAME parameter must reference
identifier(s) defined at the outermost level of a
module.

Source

BASIC
C
COBOL
FORTRAN
Pascal

CYBIL

Parameter Dependency

SCOPE = MODULE is not supported. Omit this
option.

SCOPE = MODULE is the identifiers defined
at the module level outside all procedures.

LOCAL or L

The identifier(s) referenced by the NAME parameter
must be defined in the procedure specified by the
PROCEDURE parameter or by default.

Source

BASIC

C
FORTRAN

COBOL

CYBIL
Pascal

Parameter Dependency

SCOPE = LOCAL is the formal parameters and
the BASIC internal variables in an internal
subroutine.

SCOPE = LOCAL is not supported. Omit this
option.

SCOPE = LOCAL is the data names defined in
a program.

SCOPE = LOCAL is the identifiers defined in
the procedure, not at an outer level.

I 5-54 Debug for NOS/VE Usage Revision B

Revision B

SECTION or SEC

Displays a group of identifiers by specifying the
section where they are stored. This parameter is valid
only when the value of the NAME parameter is $ALL.
Options are:

Omitted

Displays all the values of all the variables in the
procedure defined by the PROCEDURE parameter.

Name

Displays the named memory section or common block.

$BLANK

Displays the memory that contains unnamed common.

$LITERAL

Displays the memory section that contains the
literal data of the module (for example,_long
constants) •

$STATIC

Displays the memory section that contains the
static variables not explicitly allocated to a
named section of the module. Static variables are
those not on the run-time stack.

Source

COBOL

Parameter Dependency

SECTION is not supported. Omit this
parameter.

Invalid Parameter Combinations

The SECTION parameter cannot be used with the
RECURSION LEVEL and RECURSION DIRECTION parameters or
with NAME=OPTION = PARAMETERS-or SCOPE = GLOBAL.

OUTPUT or 0

Specifies the file where the display information is to
be written.

Omitted

Writes to the current Debug output file.

File

Writes to the named file. You can position the
file by appending a position indicator to the file
name (.$BOI, .$ASIS, .$EOI).

Line Mode Debugging 5-550

DISPLAY_PRO GRAM_ VALUE (DISPV)

Examples:

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The specified variable receives the return status.

The following command displays the value of variable
VAR:

DB/display_program value var
var = TRUE

The following command displays the value of array TABLE
in procedure GGG of module FFF_DD:

DB/dispv name=table module=FFF DD p=GGG
table = 'w' '0' 'R' 'L' 'D'

The following command displays the value of variable
RECORDS to output file FILEl; the return status is
written to variable STATVAR.

DB/dispv recordS output=filel status=statvar

The following command displays the values of all
variables in the current procedure and module:

DB/dispv $a11
-- DISPLAY OF ALL VARIABLES IN MOD2
a 4.
b = 5.
c = 6.
table = 'w' '0' 'R' 'L' 'D'
x = 1.
y 2.
z = 3.

5-56 Debug for NOS/VE Usage Revision A

Revision A

DISPLAY_PRO GRAM_ VALUE (DISPV)

The following command displays all global variable
values of a C program:

DB/dispv n=$all m=c_globals

The following command displays the values of all
variables in common block section DATAl:

DB/dispv $all name option=variable section=data1
-- DISPLAY OF ALL VARIABLES IN MODI
a = 4.
b 5.
c = 6.
x = 1.
Y 2.
z = 3.

The following examples refer to the FORTRAN definitions
below:

COMMON /BLK/ DVAL, RVAL, IVAL, ZVAL
DATA DVAL, RVAL, IVAL, ZVAL/20.OD+O, 3.45E+OI, 30,

+(+20.0,20.3) /

To display the value of DVAL:

DB/display program value name=dval
dval = 20.- -

To display the value of RVAL in integer format:

DB/dispv name=rval type=integer
rval = 4613526600892284928

To display the value of IVAL:

DB/display program value ivaI
ivaI = 30 - -

To display the value of ZVAL:

DB/dispv name=zval
zval = 20.

Line Mode Debugging 5-57

DISPLAY_REGISTER (DISR)

DISPLAY_REGISTER (DISR)

Purpose:

Format:

Displays the contents of the P, A, or X registers that
are associated with the procedure or function executing
when Debug gained control.

DISPLAY REGISTER or
DISPLAY-REGISTERS or
DISR -

KIND = list of keyword
NUMBER = integer or list of integers or

ALL
TYPE = keyword
OUTPUT = file
STATUS = status variable

(optional)

(optional)
(optional)
(optional)
(optional)

Parameters: KIND or K

Specifies the register to be displayed. Options are:

Omitted

Same as KIND ALL.

P

Displays the P register.

A

Displays the A registers.

X

Displays the X registers.

ALL

Displays all registers.

NUMBER or N

Indicates which A or X registers specified by the KIND
parameter are displayed. This parameter is ignored if
KIND=P because there is only one P register. Options
are:

Omitted

Displays the zero register.

Integer or range of integers

Displays a set of registers. Integer can be 0
through 15.

5-58 Debug for NOS/VE Usage Revision A

Revision A

DISPLAY_REGISTER (DISR)

ALL

Displays all A (if KIND = A) or X (if KIND = X) or
both sets of (if KIND = ALL) registers.

TYPE or T

Specifies the format in which the register is to be
displayed. Options are:

Omitted

Same as TYPE = HEX.

ASCII or A (X registers only)

The register is displayed as an ASCII string.

HEX or H

HEX is used for string values and INTEGER is used
for numeric values. The A and P registers are
formatted as a PYA: R sss 00000000. The X
registers are formatted as two hexadecimal half
words: HHHHHHHH HHHHHHHH.

INTEGER or I eX registers only)

The register is displayed as a decimal integer.

REAL or R (X registers only)

The register is displayed as a real number.

OUTPUT or 0

Specifies the file where the display information is to
be written.

Omitted

Writes to the current Debug output file.

File

Writes to the named file. You can position the
file by appending a position indicator to the file
name (. $BOI, • $ASIS, • $EOI).

Line Mode Debugging 5-59

DISPLAY_REGISTER (DISR)

Examples:

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

The following command displays the contents of the P
register in hexadecimal format:

DB/display register p
P=B 031 00000040

The following command displays the contents of the A8
register in hexadecimal format:

DB/display register kind=a number=8 type=hex
A8=B 047 00000BI0

The following command displays the contents of the X4 t

X5 t X6 t X7 t X8 t X9 t and XI0 registers in hexadecimal
format:

DB/disr kind=x number=4 •• 10

X4=00000000 10000000
X5=00000000 00000008
X6=00000000 OOOOOOOD
X7=00000000 0000001D
X8=00000000 00000000
X9=00000000 00000008
XA=OOOOOOOO 00000300

5-60 Debug for NOS/VE Usage Revision A

DISPLAY _STACK_FRAME (DISSF)
Purpose:

Format:

Displays the contents of one or more stack frames.
Values are displayed in hexadecimal.

DISPLAY STACK FRAME or
DISPLAY-STACK-FRAMES or
DISSF - -

COUNT = integer or ALL
START = positive integer
DISPLAY OPTION = list of keyword
OUTPUT - file
STATUS = status variable

(optional)
(optional)
(optional)
(optional)
(optional)

Parameters: COUNT or C

Revision A

Specifies the number of stack frames to be displayed.
Options are:

Omitted

Displays one stack frame.

Positive integer

Displays the specified number of stack frames; if
the integer is greater than the number of existing
stack frames, all stack frames are displayed.

ALL

Displays all stack frames.

START or S

Specifies the stack frame on the stack to be displayed
first. Thus, it is possible to skip the most recent
stack frames. Options are:

Omitted

Displays the most recent stack frame.

Positive integer

Displays the specified stack frame; 1 represents
the most recent stack frame, 2 represents the
predecessor of the most recent stack frame, and so
forth.

An informative message is issued if the specified
number of stack frames is greater than the actual
number of stack frames.

Line Mode Debugging 5-61

DISPLAY _STACK_FRAME (DISSF)

Source Parameter Dependency

c Each function has its own stack frame, but
all blocks in a function share the same
stack frame.

DISPLAY OPTION or DISPLAY OPTIONS or DO - -
Specifies the area of the stack frames to be displayed.
Options are one of the following:

Omitted

Same as DISPLAY OPl'lON = ALL.

AUTO or A

Displays the area that contains the automatic
(dynamically allocated) variables of the procedure.

SAVE or S

Displays the area that contains a copy of the
registers of the procedure as they existed at the
time of a call or trap.

ALL

Displays both the automatic and save areas.

OUTPUT or 0

Specifies the file on which the stack frame
information is to be written. Options are:

Omitted

Writes to the current Debug output file.

File

Writes to the named file. You can position the
file by appending a position indicator to the
file name (.$BOI, .$ASlS, .$EOl).

5-62 Debug for NOS/VE Usage Revision A

Examples:

Revision A

DISPLAY_STACK_FRAME (DISSF)

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging •

Status variable

The named variable receives the return status.

The command below displays the save area of the most
recent stack frame:

DB/display_stack_frame display_option=save

SAVE AREA
P=B 035 00000026 VMID=O
UM=FFF7 UCR=0040 MCR=OOOO

AO=B 032 00000460 A1=B 032 00000408
A2=B 032 000003CO A3=B 030 00000000
A4=B 032 00000390 A5=B 02F 00000020
A6=B 02E 00000000 A7=B 02F 00000000
A8=B OOF 00000018 A9=B 032 00000630
AA=B 032 00000A30 AB=F FFF 80000000
AC=F FFF 80000000 AD=B 032 00001058
AE=F FFF 80000000 AF=B OOB 000557F8

XO=OOOOB OlD 00020060 X1=00000000 00000000
X2=OOOOFFFF 80000000 X3=000007FF FFFFFFFF

X4=OOOOOOOO 10000000 X5=00000000 00000008
X6=00000000 OOOOOOOD X7=00000000 OOOOOOlD
X8=00000000 00000000 X9=00000000 00000008
XA=OOOOOOOO 00000300 XB=OOOOOOOO 00000000
XC=OOOOOOOO 00000001 xn=oOOOOOOO 00000022
XE=OOOOOOOO 00010040 XF=OOOOOOOO 0000004E

Line Mode Debugging 5-63

DISPLAY_STACK_FRAME (DISSF)

The following command displays the automatic and save
areas of three stack frames beginning with the second
most recent one:

DB/display_stac~frames count=3 start=2

The following command displays the automatic and save
areas of the most recent stack frame:

DB/dissf count=l

STACK FRAME 001
00000000 00000000
00000008 00000000
00000010 30300000
00000018 80000000
00000020 B032B031
00000028 OOOOBOlD
00000030 0000B032
00000038 0040B032
00000040 FF77B032
00000048 FFFCB01B
00000050 0000B032

SAVE AREA

P=B 035 00000026
UM=FFF7 UCR=0040

AO=B 032 00000460
A2=B 032 000003CO
A4=B 032 00000390
A6=B 02E 00000000
A8=B OOF 00000018
AA=B 032 00000A30
AC=F FFF 80000000
AE=F FFF 80000000

XO=0000B01D 00020060
X2=OOOOFFFF 80000000

X4=OOOOOOOO 10000000
X6=00000000 00000000
X8=00000000 00000000
XA=OOOOOOOO 00000300
XC=OOOOOOOO 00000001
XE=OOOOOOOO 00010040

5-64 Debug for NOS/VE Usage

SE G1ENT =032
00000000
00000000
OOCOFFFF 00
00000000
00000000 2
0009B346
00000430 2
00000400 @ 2
000003CO w 2
00020F78
00000390 2

VMID=O
MCR=OOOO

A1=B 032 00000408
A3=B 030 00000000
A5=B 02F 00000020
A7=B 02F 00000000
A9=B 032 00000630
AB=F FFF 80000000
AD=B 032 00001058
AF=B OOB 000557F8

F
0

x

X1=00000000 00000000
X3=000007FF FFFFFFFF

X5=00000000 00000008
X7=00000000 0000001D
X9=00000000 00000008
XB=OOOOOOOO 00000000
XD=OOOOOOOO 00000022
XF=OOOOOOOO 0000004E

Revision A

QUIT (QUI)

Purpose:

Format:

Parameter:

Revision A

QUIT (QUI)

Ends the Debug session and returns control to the
activity that was in use before the Debug session
began. The session is terminated immediately; the
program is not executed to completion.

QUIT or
QUI

STATUS

STATUS

status variable (optional)

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that-file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

Status variable

The named variable receives the return status.

Line Mode Debugging 5-65

RUN

RUN
Purpose: Begins or resumes program execution once Debug has

gained control. Execution continues until Debug again
gains control. If the program has run to completion,
entering the RUN command ends the program and returns
control to the activity in use before the Debug session
began.

Format: RUN

Parameter:

Examples:

STATUS status variable (optional)

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging •

Status variable

The named variable receives the return status.

The following example initiates execution of a
program. Execution continues until a break is
encountered.

DB/run
--DEBUG: break DBB$2, execution at M=DT L=6

5-66 Debug for NOS/VE Usage Revision A

SET_BREAK (SETB)

SET_BREAK (SETB)

Purpose:

Format:

Defines a break. You can specify one or more events
and the location at which Debug is to take control.
When the specified event occurs, program execution is
suspended and a message informs you which break
occurred. At this point, you can enter another Debug
command or an SCL command that can be processed by the
operating system.

SET BREAK or
SET-BREAKS or
SETB

BREAK = name
EVENT = list of keywords
address

address can be one or
LINE = integer

(optional)
(optional)
(required)

more of the following:

STATEMENT = positive integer
STATEMENT LABEL = integer or name
NAME = na'iie
SECTION = name or keyword
MODULE = name
PROCEDURE = name
ENTRY POINT = name
ADDRESS = rsssoooooooo

BYTE OFFSET = 0 or integer
BYTE=COUNT = positive integer
COMMAND = string
STATUS = status variable

or ?svar or function
(optional)
(optional)
(optional)
(optional)

Parameters: BREAK or B

Specifies the name of the break. This name is used to
reference the break definition in the DISPLAY BREAK and
DELETE BREAK commands. This name is displayed in the
break report message when the break occurs. A break
cannot be named ALL. The break name must not contain
the $ character. Options are:

Omitted

Debug assigns a unique name, and identifies the
assignment to the user. The assignment is written
to the default debug output file.

Name

The break is assigned the specified name.

For Better Performance

Because execution takes longer when there are breaks set, you should
delete a break as soon as it is no longer needed (see the
DELETE_BREAK command described in this chapter).

Revision B Line Mode Debugging 5-67

SET_BREAK (SETB)

EVENT or EVENTS or E

Specifies the events that must occur for the break to
occur. If you specify more than one event, the break
occurs if any of the events occur. Options are one or
more of the following:

Omitted

Same as EXECUTION.

ARITHMETIC OVERFLOW or AO

Breaks when an arithmetic overflow occurs on an
instruction in the specified address range. The P
register points to the instruction that caused the
overflow.

ARITHMETIC SIGNIFICANCE or AS

Breaks when arithmetic significance is lost on an
instruction in the specified address range. The P
register points to the instruction that caused the
loss of significance.

BRANCH or B

Breaks before either a branch to or a return from
any location in the specified address range.

CALL or C

Breaks before a subprogram call occurs to any
address in the specified address range.

DIVIDE FAULT or DF

Breaks when division by zero occurs in an
instruction in the specified address range. The P
register points to the instruction that caused the
division by zero.

EXECUTION or E

Breaks before the instruction in the specified
address range is executed.

To set an execution break, the break location must
be an executable statement. For example, an
assignment is executable, but a data declaration is
not.

5-68 Debug for NOS/VE Usage Revision B

Revision A

SET_BREAK (SETB)

EXPONENT OVERFLOW or EO

Breaks when an exponent overflow occurs in an
instruction in the specified address range. The P
register points to the instruction following the
one that caused the overflow.

EXPONENT UNDERFLOW or EU

Breaks when an exponent underflow occurs in an
instruction in the specified address range. The P
register points to the instruction following the
one that caused the underflow.

FLOATING POINT INDEFINITE or FPI - -
Breaks when the result of a floating-point
operation is indefinite in an instruction in the
specified address range. The P register points to
the instruction following the one that caused the
results to be indefinite.

FLOATING POINT SIGNIFICANCE or FPS - -
Breaks when significance is lost during a
floating-point operation in an instruction in the
specified address range. The P register points to
the instruction following the one that caused the
loss of significance. This event does not occur
unless your program sets the floating-point
loss-of-significance bit in the user mask register.

INVALID BDP DATA or IBD

Breaks when a business data processing (BDP)
instruction fault occurs in an instruction in the
specified address range. The P register points to
the instruction that caused the fault. The BDP
instructions are described in the Virtual State
Hardware reference manual.

READ or R

Breaks before a read occurs from the specified
address range. The break occurs only if the first
byte of the item to be read is within the address
range.

Line Mode Debugging 5-69

SET_BREAK (SETB)

Breaks before the instruction in the specified
address range is executed.

WRITE or W

Breaks before a write occurs into the specified
address range. The break occurs only if the first
byte of the item to be written is within the
address range.

BASIC

Parameter Dependency

The ARITHMETIC SIGNIFICANCE,
FLOATING POINT-INDEFINITE, and
INVALID BDP DATA options are not
support;d. -Omit these options.

READ or WRITE break cannot be set on a
variable of zero length.

CYBIL Breaks cannot be set on ELSE or IFEND
statements.

FORTRAN A READ or WRITE break cannot be set on an
assumed-size array.

Pascal A READ or WRITE break cannot be set on a
variable of zero length.

address

Specifies the location at which the break occurs. For
the break to occur, the specified event must occur
within the range defined by the address parameters.
All address parameters are interpreted as a single
address. You can use the BYTE COUNT and BYTE OFFSET
parameters to specify an address range. Options are:

Omitted

Indicates an address range of one byte.

One or more of the following parameters:

LINE = integer
STATEMENT = positive integer
STATEMENT LABEL = integer or name
NAME = name
SECTION = name or keyword
MODULE = name
PROCEDURE = name
ENTRY POINT = name
ADDRESS = rsssoooooooo or ?svar or function

5-70 Debug for NOS/VE Usage Revision B

Revision A

SET_BREAK (SETB)

LINE or L

Line at which Debug gains control. The line number
must exist in the current default module (that was
explicitly set with the CHANGE DEFAULTS command or
was executing when Debug gained control) unless the
MODULE parameter is also specified. Options are:

Omitted

Indicates that the break address is specified
by another parameter.

Integer

Indicates the line number on which the break
occurs in the specified address range.

You can use BYTE OFFSET and BYTE COUNT to
modify this parameter.

Not all lines of a program can be referenced.
Only executable statements that begin on a
separate line can be referenced. A line that
contains the continuation of a statement cannot
be referenced. All lines in an IF block can be
re fe renced.

If the source code was compiled at a high
optimization level, you will not be able to
reference some lines because they have been
moved or deleted.

Source

BASIC

Parameter Dependency

LINE specifies the line number that
precedes the line on the source
listing; it is not a BASIC statement
label.

Line Mode Debugging 5-71

SET_BREAK (SETB)

STATEMENT or S

Used with the LINE parameter to specify a statement
following the first statement in a multi-statement
line. Options are:

Omitted

The first statement in the line is used.

Positive integer

Specifies which statement in the line at which
the break is set.

Source Parameter Dependencl

C
COBOL
FORTRAN

These languages do not support multiple
statements per line, therefore, this
parameter shoUld be omitted; a value
specified is ignored.

STATEMENT LABEL or SL

Specifies a statement label on which a break can be
set. Options are:

Omitted

Indicates that the break address is specified
by another parameter.

Integer

Indicates the statement label where the break
is set. Unless the MODULE or PROCEDURE
parameter is also specified, the statement
label must exist in the current default module.

The statement label is assumed to represent the
first byte of code contained in the source line
represented by the statement label. The
calculated byte address and length can be
modified by the BYTE_OFFSET and BYTE COUNT
parameters.

Name

Indicates the statement label where the break
is set.

5-72 Debug for NOS/VE Usage Revision A

Revision A

SET_BREAK (SETB)

Parameter Dependency

BASIC A statement label is an integer and is
part of the source program; it is not a
line number added during compilation.
BASIC does not reference statements as
names, therefore, the name option is
not valid.

C STATEMENT, LABEL is not supported. Omit
this option.

COBOL A statement label is a Cobol-paragraph
statement or Cobol-section statement.
STATEMENT_LABEL can be qualified by the
MODULE or SECTION parameters.

CYBIL

FORTRAN
Pascal

A statement label is the name which is
enclosed in slashes in the source
listing such as, lname/.

A statement label is an integer. These
languages do not reference statements
as names, therefore, the name option is
not valid.

Inv_a1id Parameter Combinations

The STATEMENT_LABEL parameter cannot be used with
the STATEMENT parameter.

NAME or N

Specifies a variable on which a READ or WRITE break
can be set. Options are:

Omitted

Indicates that the break address is specified
by another parameter.

Variable

Indicates the variable where the READ or WRITE
break is set. Simple unsubscripted variable
names, subscripted names (subscripts can be
constants or variables, but not expressions),
field references, and pointer dereferences can
be specified. When specifying NAME = variable,
you must also specify EVENT = READ or
EVENT = WRITE. The MODULE and PROCEDURE
parameters can be specified to qualify the name.

Line Mode Debugging 5-73

SET_BREAK (SETB)

SECTION or SEC

Identifies a memory section.

You can use the BYTE OFFSET and BYTE COUNT
parameters to modify-this parameter.-

The section must exist for the current default
module (that was explicitly set with the
CHANGE DEFAULTS command or was executing when Debug
gained-control) unless the MODULE parameter is also
specified.

The SECTION parameter cannot be specified for
modules that are components of a bound module
unless the section is a common block (see
Addressing Bound Modules in chapter 6). Options
are:

Omitted

Indicates that the break address is specified
by another address parameter.

Name

Displays the named memory section or common
block. Must be a CYBIL program working storage
section, a common block, or a FORTRAN
extensible common block.

$BINDING

Identifies the memory section that contains the
links to external procedures and the data of
the module.

5-74 Debug for NOS/VE Usage Revision B

Revision A

SET_BREAK (SETB)

$BLANK

Identifies the memory section that contains
unnamed common.

$LITERAL

Identifies the memory section that contains the
literal data (for example, long constants) of
the module.

$STATIC

Identifies the memory section that contains the
static (not on the run-time stack) variables
not explicitly allocated to a named section of
the module.

CYB$DEFAULT_HEAP

Identifies the memory section containing the
default heap.

Source Parameter Dependency

BASIC
COBOL

C

COBOL

CYBIL

FORTRAN

Pascal

The $BLANK and CYB$DEFAULT HEAP
parameter options are not ;upported.
Omit these options.

The SECTION parameter is not
supported. Omit this parameter.

The $BLANK and CYB$DEFAULT_HEAP
parameter options are not supported.
Omit these options.

If the STATEMENT LABEL parameter is
specified, the SECTION parameter can be
used to qualify the statement label.

The $BLANK parameter option is not
supported. Omit this option.

SECTION = name can also specify the
name of the working storage section.

The CYB$DEFAULT HEAP parameter option
is not supported. Omit this option.
SECTION = name can also specify an
extensible common block. To identify
an extensible common block, you can
also specify the EVENT = READ or EVENT
= WRITE parameter.

The $BLANK and CYB$DEFAULT HEAP
parameter options are not supported.
Omit these options.

Line Mode Debugging 5-75

SET_BREAK (SETB)

MODULE or M

Specifies an address (the first byte of the first
code section of the module) or qualification of
another address parameter. Options are:

Omitted

The current default module (that was explicitly
set with the CHANGE DEFAULTS command or was
executing when Debug gained control) is used.

The named module is used.

If used to specify an address, the BYTE OFFSET
and BYTE_COUNT parameters can be used to modify
this parameter.

If MODULE is used with the LINE, SECTION, or
PROCEDURE address parameters, the MODULE
parameter identifies the module containing the
line, section, or procedure.

Source Parameter Dependency

BASIC

C

5-76 Debug for NOS/VE Usage

MODULE is the main program referred to
as $MAIN. $MAIN can reference internal
subroutines and internal functions
which are procedures within the module
$MAIN.

MODULE can also name an external
subroutine or external function. An
external subroutine and an external
function can reference internal
subroutines and internal functions
which are procedures within that module.

MODULE names a C compilation unit (a C
source file).

The initial module is EM, a startup
module. The EM module has no Debug
tables so the default, $CURRENT, is not
useful until program execution reaches
a module with Debug tables.

Global variables are in the module
c_g10ba1s.

Revision A

Revision A

COBOL

CYBIL

FORTRAN

Pascal

SET_BREAK (SETB)

MODULE names the program specified on
the Program-id statement. Since MODULE
and PROCEDURE parameters name the same
program, both parameters should be
assigned the same name or only one
parameter should be specified.

MODULE names a module which contains a
program, procedure, or function.

If the module contains more than one
section code, MODULE refers to the
first one.

MODULE names a program, subroutine,
function, or block data subprogram.
Since MODULE and PROCEDURE parameters
name the same program unit, both
parameters should be assigned the same
name or only one parameter should be
specified.

MODULE is the program name.

PROCEDURE or P

Specifies an address (the first byte of the first
code section of the procedure) or qualification of
another address parameter. A procedure is a
program unit subordinate to a module. Options are:

Omitted

The current default procedure (that was
explicitly set with the CHANGE DEFAULTS command
or was executing when Debug gained control) is
used. Otherwise, the break address is
specified by the another address parameter.

Name

The named procedure is used as the break
address.

If used to specify an address, the BYTE OFFSET
and BYTE COUNT parameters can be used to modify
this para-meter.

Line Mode Debugging 5-77

SET_BREAK (SETB)

Source

BASIC

C

COBOL

CYBIL

FORTRAN

Pascal

Parameter Dependency

PROCEDURE names internal subroutines
and internal functions within a module.

PROCEDURE names a function or a block
within a function.

PROCEDURE names a program specified on
the Program-id statement. Since MODULE
and PROCEDURE parameters name the same
program, both parameters should be
assigned the same name or only one
parameter should be specified.

PROCEDURE names a program, procedure,
or function in the module specified by
the MODULE parameter.

PROCEDURE names a program, subroutine,
function, or block data subprogram.
Since MODULE and PROCEDURE parameters
name the same program unit, both
parameters should be assigned the same
name or only one parameter should be
specified.

PROCEDURE names a program, procedure or
function name.

Invalid Parameter Combinations

You cannot specify the LINE or SECTION address
parameters with the PROCEDURE parameter.

5-78 Debug for NOS/VE Usage Revision A

Revision A

SET_BREAK (SETB)

ENTRY POINT or EP

Specifies an entry point expressed as a name known
to the loader. ENTRY POINT must be a program or
subprogram name. See-the Object Code Management
manual for information on restrictions.

Omitted

Indicates that the break address is specified
by another parameter.

Name

The specified name is used as the entry point
name.

You can use the BYTE OFFSET and BYTE COUNT - -
parameters to modify the ENTRY POINT parameter.

Source Parameter Dependency-

BASIC

COBOL

ENTRY POINT is an external procedure or
external function.

ENTRY POINT must be an SCL name.
Progr~m-name is converted from the
Program-id paragraph if the
Identification Division by changing
lowercase letters to uppercase letters,
replacing hyphens C-) with the
underscore (), and adding the number
sign C#) as ~ prefix if the first
character is a digit.

Invalid Parameter Combinations

You cannot use other address parameters with the
ENTRY POINT parameter.

Line Mode Debugging 5-79

SET_BREAK (SETB)

ADDRESS or A

Specifies the address of the first byte of memory
at which the break is to occur. Options are:

Omitted

Indicates that the break address is specified
by another parameter.

rsssoooooooo

where r is the ring number, sss is the segment
number, and 00000000 is the offset from the
beginning of the segment. You can use the
BYTE OFFSET parameter to modify the starting
address of memory to be displayed. You can use
the BYTE_OFFSET parameter to modify the
ADDRESS.

?svar

Specifies the address indicated by the value
of the SCL variable.

function

Specifies the address indicated by a Debug or
SCL function.

Invalid Parameter Combinations

The LINE STATEMENT and MODULE parameters cannot be
used with this parameter.

5-80 Debug for NOS/VE Usage Revision A

Revision B

SET_BREAK (SETB)

BYTE OFFSET or BO

Specifies the offset to the base address established by
one of the address parameters. The address generated
by adding BYTE OFFSET to the base address must be
within the mem;ry block implied by the base address.
The block size is the length of the section when the
SECTION parameter is specified, and the length of the
segment containing the machine address when the ADDRESS
parameter is specified. Options are:

Omitted

Zero is used.

o or positive integer

Adds the specified integer to the base address to
form a new address. Unless a radix is explicitly
specified, the integer is interpreted as
hexadecimal.

Invalid Parameter Combinations

The BYTE OFFSET parameter cannot be applied to an
address defined by the NAME parameter.

BYTE COUNT or BC

Specifies the number of bytes in the address range.
Options are:

Omitted

The address range is one byte.

positive integer

The address range is the specified number of bytes.

Invalid Parameter Combinations

The BYTE COUNT parameter cannot be used to change the
number of bytes in the address range specified by the
NAME Parameter.

Line Mode Debugging 5-81

SET_BREAK (SETB)

COMMAND or COMMANDS or C

Specifies the string of commands to be executed by
Debug, SCL, or any other active command processor when
the break is honored. Options are:

Omitted

Indicates that no commands are associated with the
break.

string

Specifies a string of commands to be used.

If a command in the string includes a quoted
string, that string must be enclosed in two single
apostrophes. After the commands in the string have
been executed, commands are read from the current
Debug input file unless the string contains a RUN
command.

No break report message is issued before the
commands in the string are executed. If you want a
message to be displayed, include an SCL
DISPLAY VALUE command in the string. If an error
is detected in one of the commands in the string,
the break report message is issued, the error is
reported, and commands are read from the Debug
input file. The remaining commands in the string
are not executed.

STATUS

Specifies a variable to receive the return status of
the command. Options are:

Omitted

The next command is processed if an error does not
occur. The return status is output to $RESPONSE
(and to the Debug output file if $RESPONSE is
connected to that file) if an error does occur.
$RESPONSE is normally connected during interactive
debugging.

status variable

The named variable receives the return status.

5-82 Debug for NOS/VE Usage Revision A

Remarks :

Revision A

•

SET_BREAK (SETB)

Because execution takes longer when there are
breaks set, you should delete a break as soon as it
is no longer needed.

• EXECUTION and READ NEXT INSTRUCTION breaks cannot
be set for all lines that can be referenced in a
program, only those that are executable, except for
BASIC programs where a break can be set on all
lines.

• The maximum number of breaks Debug can handle is 64
per task. Of these, 32 may be of the types
detected by Debug hardware (such as, read, write,
call, branch, execution, read-next-instruction).
Also, for every break you set, Debug may need to
use one or more additional breaks internally. As a
result, the actual maximum breaks you can set is
not a fixed number. An error message is issued
when a break cannot be set for the specified event.

• You cannot set overlapping breaks, that is, breaks
for the same event that have overlapping address
ranges specified. An error message is issued if
this occurs.

• Debug gains control when the following events
occur, even if you do not set a break for them:

ARITHMETIC OVERFLOW
ARITHMETIC-SIGNIFICANCE
DIVIDE FAULT
EXPONENT OVERFLOW
EXPONENT-UNDERFLOW
FLOATING POINT INDEFINITE
FLOATING-POINT-SIGNIFICANCE
INVALID BDP DATA

Line Mode Debugging 5-83

SET_BREAK (SETB)

Examples: The command below causes a break to occur when
execution reaches line 10 of module FROG1:

DB/set_break break=b1 1ine=10 modu1e=prog1

The following command causes a break to occur when a
branch or return to line 40 (of the module executing
when Debug gained control) occurs. (Debug assigns a
unique name.):

DB/set break event=branch 1ine=40
-- Bre;k name DBB$5 assigned to this break

The following command causes a break to occur prior to
execution of line 10 (of the module executing when
Debug gained control). (Debug assigns a unique name.):

DB/setb 1=10
-- Break name DBB$6 assigned to this break

The following command causes a break to occur
immediately before a WRITE event occurs on variable VAR
in module TEST. (Debug assigns a unique name).

DB/setb name=var module=test event=write
-- Break name DBB$l assigned to this break

The following command causes a break to occur prior to
execution of line 6 (of module executing when Debug
gained control). When the break is reached, the
command, DISDE, is executed displaying the current
debugging environment.

DB/setb 1=6 c='disde'

The following command causes a break to occur prior to
the execution of the SQR function of a C source code
module SOURCE C:

DB/setb m=source c p=sqr

The following command causes a break to occur prior to
the execution of the LCLBCK0200 block of a C source
code module SOURCE C:

DB/setb m=source_c p=1c1bck0200

5-84 Debug for NOS/VE Usage Revision A

SET_STEP _MODE (SETSM)

SET_STEP_MODE (SETSM)

Purpose:

Format:

Executes a specified subset of a task and receive
control. You can select the unit of stepping as well
as the span in number of units. SET STEP MODE is not
available for C programs. --

SET STEP MODE or
SETSM -

MODE = keyword
UNIT = keyword
MODULE = list of name or keyword
PROCEDURE = list of name or keyword
SPAN = integer
CCWfAND = string
STATUS = status variable

(required)
(optional)
(optional)
(optional)
(optional)
(optional)
(optional)

Parameters: MODE

Revision A

Specifies whether to activate or deactivate step mode.
Options are:

ON

Step mode is activated. When step mode is on, a
RUN command causes one step to be executed. A step
is defined by the UNIT and SPAN parameters.

If you specify MODE = ON and step mode is already
on, all previous values will be replaced with the
new values.

OFF

Step mode is deactivated. When step mode is off,
any remaining parameters are ignored.

UNIT or U

Specifies the length of the step. Options are:

Omitted

Same as UNIT LINE.

LINE or L

A step is reported before the code is executed for
each line, except for the procedure lines.

Line Mode Debugging 5-85

SET_STEP _MODE (SETSM)

PROCEDURE or P

A step is reported each time a new procedure begins
and after any prolog code for the procedure has
executed.

COBOL SECTION or CS

A step is reported each time a section header in a
COBOL program is reached.

COBOL PARAGRAPH or CP

A step is reported each time a paragraph in a COBOL
program is reached.

MODULE or M

Used with the UNIT parameter, specifies the modules
reported on. Options are:

Omitted

A step is reported that is in the current default
module.

$ALL

A step is reported that is in any module.

$CURRENT

A step is reported only if the step occurs in the
module where the program is executing when step
mode is activated.

list of names

A step is reported if the step occurs in any of the
named mod ules •

5-86 Debug for NOS/VE Usage Revision A

Revision A

Source

BASIC

COBOL

CYBIL

FORTRAN

Pascal

SET_STEP _MODE (SETSM)

Parameter Dependency

MODULE is the main program referred to as
$MAIN. $MAIN can reference internal
subroutines and internal functions which
are procedures within the module $MAIN.

MODULE can also name an external subroutine
or external function. An external
subroutine and an external function can
reference internal subroutines and internal
functions which are procedures within that
module.

MODULE names a program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or only one parameter should be
specified.

MODULE names a module which may contain a
program, procedure, or function.

MODULE names a program, subroutine,
function, or block data subprogram. Since
MODULE and PROCEDURE parameters name the
same program unit, both parameters should
be assigned the same name or only one
parameter should be specified.

MODULE is the program name.

Invalid Parameter Combinations

You cannot specify both the MODULE and PROCEDURE
parameters in the same SET STEP MODE command.

Line Mode Debugging 5-87

PROCEDURE or P

Used with the UNIT parameter; specifies the procedure
reported. Options are:

Omitted

A step is reported that is in the current default
procedure.

A step is reported that is in any procedure.

$CURRENT

A step is reported only if the step occurs in the
procedure where the program is executing when step
mode is activated.

list of names

A step is reported if the step occurs in any of the
named procedures.

Source

BASIC

COBOL

CYBIL

FORTRAN

Pascal

Parameter Dependenc~

PROCEDURE names internal subroutines and
internal functions within a module.

PROCEDURE names a program specified on the
Program-id statement. Since MODULE and
PROCEDURE parameters name the same program,
both parameters should be assigned the same
name or only one parameter should be
specified.

PROCEDURE names a program, procedure, or
function in the module specified by the
MODULE parameter.

PROCEDURE names a program, subroutine,
function, or block data subprogram. Since
MODULE and PROCEDURE parameters name the
same program unit, both parameters should
be assigned the same name or only one
parameter should be specified.

PROCEDURE names a program, procedure or
function name.

Invalid Parameter Combinations

You cannot specify both the MODULE and PROCEDURE
parameters in the same SET STEP MODE command.

5-88 Debug for NOS/VE Usage Revision A

Revision A

SPAN or S

Specifies how many steps must occur before execution
stops and the step is reported.

Omitted

Debug will report every step that occurs.

integer

Specifies the number of steps that occurs before
execution stops.

COMMAND or COMMANDS or C

Specifies the string of commands to be executed by
Debug, SCL, or any other active command processor when
a step occurs. Options are:

Omitted

Indicates that no commands are associated with the
step.

string

Specifies a string of commands to be used.

If a command in the string includes a quoted
string, that string must be enclosed in two single
apostrophes. After the commands in the string have
been executed, commands are read from the current
Debug input file unless the string contains a RUN
command.

STATUS

Specifies a variable to reveive the return status of
the command. Options are:

Omitted

Debug processes the next command if an error does
not occur. The return status is output to
$RESPONSE (and to the Debug output file if
$RESPONSE is connected to that file) if an error
does occur. $RESPONSE is normally connected during
interactive debugging.

status variable

The specified variable receives the return status.

Line Mode Debugging 5-89

Remarks :

Examples:

• SET STEP MODE is not available for programs written
in C. -

• If step mode is activated, a RUN command causes
your program to execute for the specified unit.
You are then prompted for further command input.

• A string of commands can be associated with the
step and is processed each time the step completes.

• Stepping with a unit of line or procedure is only
available if the source program was compiled with
OPTIMIZATION LEVEL = DEBUG.

• Activating step mode is an effective debugging aid,
but uses a lot of execution time.

• If you specify MODE=ON and step mode is already on,
all previous values are replaced with the new
values.

The following commands activate step mode with a unit
of line in the current module, execute the entire
program and display each line that is executed, then
deactivate step mode:

DB/setsm on c='disde ua; run'
DB/run
-- Execution is currently stopped at B 046 00000048

which, in symbolic terms is M=TEST L=6
-- DEBUG: divide faul t at M=TEST 1=6 BO=12
DB/setsm off
DB/quit

When using RUN on the command stream, SETSM runs
continuously until the program terminates, reaches
another break, or reaches an execution error.

5-90 Debug for NOS/VE Usage Revision A

Debug Line Mode Functions

Debug Line Mode Functions
The Debug line mode functions are intended for use with NOS/VE
System Command Language during a Debug session. These functions are
only available while Debug has control. They are not known while
the user program is executing or after the Debug session has been
terminated.

The Debug functions follow the syntax and conventions for SCL
functions, as described in the SCL Language Definition Usage manual.

The source language in which your program is written determines the
use of some of the function parameters. Source language
dependencies are identified in the applicable parameter description.

Revision A Line Mode Debugging 5-91

$CURRENT_LINE ($CL)

$CURRENT _LINE ($CL)

Purpose: Returns the value of the current line number from the
program at the point where Debug has control.

Format: $CURRENT_LINE or $CL

Parameters: None.

Example: Using SCL control statements, the DISPLAY CALLS command
is executed only if the current value of the line
number returned by the $CURRENT LINE function is
greater than 100: -

DB/if $current line > 100 then
if/display calls
if/ifend -

5-92 Debug for NOS/VE Usage Revision A

$CURRENT_MODULE ($CM)

$CURRENT_MODULE ($CM)

Purpose: Returns the name of the module where execution is
stopped. A null string is returned if no module name
is found.

Format: $CURRENT_MODULE or SCM

Parameters: None.

Remarks :

Example:

Revision A

• In a BASIC program, a module is the main program
referred to as $MAIN. A module can also be an
external subroutine or an external function.

• In a C program, a module is a C compilation unit (a
C source file).

• In a COBOL program, a module is the name given as
the Program-id.

• In a CYBIL program, a module is a program module.

• In a FORTRAN program, a module is a program,
subroutine, function, or block data subprogram.

• In a Pascal program, a module is the program name.

Using SCL control statements, break! is set on line 234
if execution is stopped within the module 'MAIN':

DB/if $current module = "MAIN' then
if/setb break!-line=234
if/ifend

Line Mode Debugging 5-93

$CURRENT_PROCEDURE ($CP)

$CURRENT_PROCEDURE ($CP)

Purpose: Returns the name of the procedure where execution is
stopped. A null string is returned if no procedure
name is found.

Format: $CURRENT_PROCEDURE or $CP

Parameters: None.

Remarks :

Example:

• In a BASIC program, a procedure is an internal
subroutine or an internal function within a module.

• In a C program, a procedure is a function or a
block within a function.

• In a COBOL program, a procedure is a program
specified on the Program-id statement.

• In a CYBIL program, a procedure is a program, a
procedure, or a function.

• In a FORTRAN program, a procedure is a program,
subroutine, function, or block data subprogram.

• In a Pascal program, a procedure is a program, an
internal function, or procedure.

Using the SET STEP MODE command, only the procedure
named 'SUB12'-is r;ported on. Execution occurs one
line at a time.

DB/setsm on unit=procedure c='if ••
DB •• /$current procedure="SUB12" then; setsm on ••
DB •• /unit=lin;; else; run; ifend'

5-94 Debug for NOS/VE Usage Revision A

$CURRENT_PVA ($CPVA)

$CURRENT_PVA($CPVA)
Purpose: Returns an integer value for the process virtual

address [PVA] where Debug execution has stopped.

Format: $CURRENT _PVA or $CPVA

Parameters: None.

Example: Using SCL control statements, the DISPLAY CALLS command
is executed only if the current program virtual address
is greater than the hexadecimal value Ob03500000026:

Revision A

DB/if $current pva > Ob03500000026(16) then
if/display calls
if/ifend -

Because the IF statement is an SCL control statement,
not a Debug statement, the hexadecimal constant must
begin with a 0 and end with the radix specifier (16).

Line Mode Debugging 5-95

$MEMORY ($MEM)

$MEMORY ($MEM)

Purpose: Returns the contents of memory which can be used as
input to the DISPLAY MEMORY or CHANGE MEMORY commands.
You can display memory which is the object of a pointer
in memory if the pointer is contained in a register.

Format: $MEMORY or $MEM(pva, number, kind)

Parameters: pva

Example:

Specifies the process virtual address.

number

Specifies the number of bytes to return. If kind is an
integer, the number of bytes returned must be in the
range 1 through 8. If the value returned is a string,
number must be in the range 1 through 256. If number
is omitted, 6 bytes are returned.

kind

Specifies the type of value returned. If kind is
specified as integer, the value is returned as a hexa
decimal integer with radix specified. If kind is
specified as string, the value is returned as a string.
If kind is omitted, the value of integer is returned.

If register A7 contains a pointer to memory, the
following DISPLAY MEMORY command displays the object of
that pointer: -

DB/display_memoryaddress=$memory($register(a,7))

The $REGISTER function returns the pva in register A7,
the $MEMORY function returns the pva to which A7
points, and the DISPLAY MEMORY command displays the
desired piece of memory:

5-96 Debug for NOS/VE Usage Revision A

$PROGRAM_ VALUE ($PV)

$PROGRAM_VALUE ($PV)

Purpose: Returns the displayable value of a program variable,
array element or substring. Input values for MODULE,
PROCEDURE, RECURSION LEVEL, and RECURSION DIRECTION can
be entered to provid; a more complete ideitification of
the named variable.

Format: $PROGRAM VALUE or $PV(name,module,procedure,
recursioi_level,recursion_direction)

Parameters: name

Revision A

This parameter is required; it specifies the name of
the program variable, array element, string, substring,
field reference, or pointer dereference in the source
program whose value is to be displayed. The name can
be any variable defined and used in your program. SCL
string variables can be used to name long program
names. To do this, assign the SCL variable to a string
containing the identifier. Then use the SCL variable
preceded by a question mark (?) as the value for the
name.

Source Parameter Dependency

FORTRAN The name cannot be a namelist entry.

module

Specifies the name of the module that contains the name
parameter variable. Omission causes the default module
(the module executing when Debug gained control or the
module specified by the CHANGE_DEFAULTS command) to be
used.

Source

BASIC

Parameter Dependency

The module parameter names the main program
referred to as $MAIN. $MAIN can reference
internal subroutines and internal functions
which are procedures within the module
$MAIN.

The module parameter can also name an
external subroutine or external function.
An external subroutine and an external
function can reference internal subroutines
and internal functions \lhich are procedures
within that module.

Line Mode Debugging 5-97

$PROGRAM_ VALUE ($PV)

C

COBOL

CYBIL

FORTRAN

Pascal

procedure

The module parameter names a C compilation
unit (a C source file).

The initial module is EM, a startup
module. The EM module has no Debug tables
so the default, $CURRENT, is not useful
until program execution reaches a module
with Debug tables.

Global variables are in the module
c_g10ba1s.

The module parameter names a program
specified on the Program-id statement.
Since the module and procedure parameters
name the same program, both parameters
should be assigned the same name or only
one parameter should be specified.

The module parameter names a module which
may contain a program, procedure, or
function.

The module parameter names a program,
subroutine, function, or block data
subprogram. Since the module and procedure
parameters name the same program unit, both
parameters should be assigned the same name
or only one parameter should be specified.

The module parameter names the program name.

Specifies the name of the procedure that contains the
name parameter variable. Omission causes the default
procedure (the procedure executing when Debug gained
control or the procedure specified by the
CHANGE_DEFAULTS command) is used.

Source

BASIC

C

COBOL

Parameter Dependency

The procedure parameter names internal
subroutines and internal functions within a
module.

The procedure parameter names a function or
a block within a function.

The procedure parameter names a program
specified on the Program-id statement.
Since the module and procedure parameters
name the same program, both parameters
should be assigned the same name or only
one parameter should be specified.

5-98 Debug for NOS/VE Usage Revision A

Example:

Revision B

CYBIL

FORTRAN

Pascal

$PROGRAM_ VALUE ($PV)

The procedure parameter names a
program, a procedure, or a function
in the module specified by the
module parameter.

The procedure parameter names a
program, subroutine, function, or
block data subprogram. Since the
module and procedure parameters
name the same program unit, both
parameters should be assigned the
same name or only one parameter
should be specified.

The procedure parameter names a
program, procedure, or function
name.

recursion level

Specifies the recursion level of the procedure
specified by the procedure parameter. The value of the
data item specified by the name parameter and known to
this recursive level of the procedure is displayed.
Recursion does not affect static or global variables.
Omission specifies a recursion_level of 1.

COBOL
FORTRAN

Parameter Dependency

Recursion_level is not supported. Omit this
parameter.

recursion direction

Specifies whether the recursion level is counted
forward from the first call or backward from the most
recent call. Recursion does not affect static or
global variables. Omission specifies a recursion level
of backward.

COBOL
FORTRAN

Parameter Dependency

Recursion_direction is not supported. Omit
this parameter.

A break occurs at line 23 of the program currently
executing. If the value of the variable INDEX at that
point is less than 45, the program resumes execution:

DB/setb bl 1=23 c='if $program value(index}
DB •• /< 45 then; run; ifend' -

Line Mode Debugging 5-99

$REGISTER ($REG)

$REGISTER ($REG)

Purpose: Returns the contents of a specified register in
hexadecimal integer format, including radix. $REGISTER
is useful when specified for the ADDRESS parameter
value on the DISPLAY_MEMORY and CHANGE_MEMORY commands.

Format: $REGISTER or $REG(kind, number)

Parameters: kind

Example:

Specifies the type of register the value is returned
from. P specifies a P register, A specifies an A
register, and X specifies an X register.

number

Specifies the register number the value is returned
from.

If the kind is specified as P, the number must not be
specified because there is only one P register.

For example, if register A4 contains a pointer to
memory, the following DISPLAY MEMORY command displays
the object of that pointer and the CHANGE MEMORY
command changes the value of the object of that pointer
to '010105aaab'.

DB/display memory address=$memory($register(a,4»
DB/change memory address=$memory($register(a,5»
DB •• / val u"E;="o 1 0 1 05 aaab'

To verify that the value has changed, the following
command is entered:

DB/display_memory address=$memory($register(a,4»

The $REGISTER function returns the PVA in register A4,
the $MEMORY function returns the PVA to which A4
points, and the DISPLAY MEMORY command displays the
desired piece of memory:

5-100 Debug for NOS/VE Usage Revision A

Comprehensive Debugging

This chapter describes some additional features and concepts of
Debug.

6

Addressing •• 6-1
Reported Addresses •• 6-1
Referenced Addresses •••••••••••••••••••••• •.••••••••••••••• 6-3
Addressing Bound Modules •••••••••••••••••••••••••••••••••• 6-4

Module/Procedure Offset Addressing •••••••••••••••••••• 6-5
Module/Section Offset Addressing •••••••••••••••••••••• 6-5
Module Block Referencing •••••••••••••••••••••••••••••• 6-5

Interrupt Processing While Debugging •••••••••••••••••••••••••• 6-6
Pause Break Interrupt ••••••••••••••••••••••••••••••••••••• 6-6
Terminate Break Interrupt................................. 6-6
Nearly Exhausted Resource •••••••••••••••••••••• ~.......... 6-6

Debugging Optimized Code •••••••••••••••••••••••••••••••••••••• 6-7

Optimizing Debug Performance •••••••••••••••••••••••••••••••••• 6-7

Debugging a Terminated Program •••••••••••••••••••••••••••••••• 6-8

Debugging a CYBIL Runtime Error ••••••••••••••••••••••••••••••• 6-8

Debugging Condition Handlers •••••••••••••••••••••••••••••••••• 6-9

Debug Rings ••••••••••••••••••••••••••••••.••••••••••••••••••••
Deferred Breaks •••
Mul tip! e Breaks •••
Multi-ring Environment ••••••••••••••••••••••••••••••••••••

Multi-task Debugging ••

6-10
6-10
6-11
6-11

6-11

/
I

(

\,

(
\,

The features and concepts described in this chapter will allow you
to use the Debug utility to its fullest. The use of addressing,
interrupt processing, optimizing Debug performance, and condition
handlers are a few of the concepts described.

Addressing

Debug makes use of source program addresses in two ways:

1. Addresses are reported when Debug gains control and in Debug
command output, such as when DISPLAY CALL or DISPLAY BREAK is
executed. -

2. Addresses are referenced in Debug commands, such as SET BREAK
and DISPLAY MEMORY.

Reported Addresses

The level of reported address is determined by the information
available to Debug via tables. Module address tables indicating
where modules are located are available for all languages by
default. For C, COBOL, CYBIL, FORTRAN, FORTRAN Version 2, and
Pascal programs, the following additional information must be
requested when the program is compiled (see chapter 2 for
campil ation requirements):

• Line address tables indicating where code for each source line
is located.

• Symbol tables indicating where each program variable is located.

Addresses in break report messages (issued when Debug gains control)
are formatted as follows, depending upon the level of information
available.

• When line and module tables are available (symbolic addressing):

If the address corresponds to the beginning of a line, then

M=module name L=line number - -
If the address corresponds to the beginning of the specified
statement of the line, then

M=module name L=line number S=statement number

Otherwise, if the address is somewhere within the line, then

M=module name L=line number BO=byte_offset_from_start_of_
line -

Revision A Comprehensive Debugging 6-1

Addressing

• When only the module table is available (module addressing):

If the module is not bound (refer to the discussion of bound
modules later in this chapter), then

M=module name P=procedure_name BO=byte_offset_from_start_
procedur;

Otherwise, if the module is bound, then

• When the line table is not available and the address is not
within any module covered by the module table (machine
addressing) :

A=address

Within the address formats:

• Module name and procedure name correspond to the source program
module-and procedure names.

• Line number corresponds to a line number on the source listing.

• Byte offset is a decimal number corresponding to the number of
bytes beyond the beginning of a line or a hexadecimal number
corresponding to the number of bytes beyond the start of a
procedure or bound module.

• Address is a set of three hexadecimal numbers representing the
ring number, segment number, and segment offset of a machine
address.

Addresses reported in command output also provide the highest
address level possible, but they are not always formatted the same
as in break report messages. Addresses shown in DISPLAY BREAK
output are very similar, but addresses shown in DISPLAY CALL output
contain both the procedure name and line number. Typical
DISPLAY_CALL output might look like the following:

Traceback from procedure PROC2 module MOD2 at line 34
Called from procedure PROCI module MOD2 at line 55 byte
offset 4
Called from procedure BEGIN PROCESS module MODI byte offset
IA3 (16)

6-2 Debug for NOS/VE Usage Revision A

Addressing

Addresses shown in DISPLAY REGISTER output for the P and A registers
are formatted only as hexadecimal addresses in the form

r sss 00000000

where r is the ring number, sss is the segment number, and 00000000

is the offset from the start of the segment. Pointer addresses
displayed by DISPLAY PROGRAM VALUE are also formatted as hexadecimal
machine addresses; d;referen~ed pointers to procedures are displayed
as the procedure name if possible.

Referenced Addresses

Several Debug commands reference program code and data addresses.
For example, SET BREAK designates an address or address range for
break events, DISPLAY MEMORY specifies the address of memory to be
displayed, and DISPLAY PROGRAM VALUE names a program variable whose
value is to be disp1ay;d.

Just as for reporting addresses, the capabilities available when
referencing program addresses depend on the information available:

• Symbolic addressing (source level addressing) is available if
line and symbol tables exist (they exist when line number and
symbol tables are generated at compile time (see chapter 2 for
compilation requirements».

• Module/procedure offset addressing is available if module tables
exist (they always do for user programs).

• Machine-level addressing is always available.

Addresses can be referenced in many more forms than the form in
which they are reported. For example, entry point names, section
names, common block names, statement labels, and program variables
can be referenced, but addresses are never reported in these terms.
Machine addresses can be referenced only as a single integer (a
12-digit hexadecimal value); they are reported, however, either as a
12-digit hexadecimal integer or as three separate integers
corresponding to ring number, segment number, and byte offset.

Not all address forms, however, are used by all commands. For
example, the DISPLAY PROGRAM VALUE command allows a program variable
to be referenced by ~ame, in~luding all of the subscripting and
qualification syntax. But, the DISPLAY PROGRAM VALUE command does
not allow machine-level addressing. However, the DISPLAY_MEMORY
command allows machine and module addressing and limited
symbolic-level addressing. The SET_BREAK command allows all forms.

Revision A Comprehensive Debugging 6-3

Addressing

The different forms of addresses are specified by different
parameters or parameter combinations. LINE, MODULE, PROCEDURE,
NAME, ENTRY POINT, SECTION, STATEMENT, STATEMENT LABEL, and ADDRESS
are typical-address parameter names. Many of these address
parameters can be used in combination to specify an address. For
example, LINE and MODULE together specify a particular line of a
particular module. NAME, MODULE, and PROCEDURE together specify a
particular name of a particular procedure in a particular module.
Similarly, SECTION, LINE, STATEMENT, and STATEMENT LABEL can be used
in conjunction with MODULE. ENTRY POINT and ADDRESS, however,
cannot be used in conjunction with-MODULE or with each other because
each one specifies an address independent of any module. An error
message is displayed if 'an invalid combination of address parameters
is used.

The BYTE OFFSET parameter can be used to modify the address
parameters. For example, the MODULE parameter without he
BYTE OFFSET parameter specifies the first byte of the module; the
MODULE parameter modified with BYTE OFFSET=4, however, specifies the
fifth byte of the module. -

Another parameter, BYTE COUNT, can be used to establish or modify
the block size (address-range) associated with a referenced
address. The BYTE COUNT parameter indicates how many memory bytes
are to be included-in the block. For example,

section=trap, byte_count=3

identifies a three-byte block that begins at section TRAP.
BYTE COUNT and BYTE OFFSET can be used to modify any referenced
address except a program variable (NAME parameter).

Addressing Bound Modules

Using the SCL utility CREATE OBJECT LIBRARY, you can combine
individual object modules into a single bound load module that loads
and executes faster than the original separate modules. (For more
information, see the CREATE OBJECT LIBRARY command in the SCL Object
Code Management manual.) Binding ;odules together has no effect on
address reporting or address referencing at the symbolic level; you
can symbolically debug bound modules in the same way as its
component object modules. If the component modules have Debug
tables, the bound module keeps those Debug tables so program
locations and variables can be referenced symbolically. However,
binding removes entry points from the entry point table; Debug will
not be able to locate a removed entry point by use of the
ENTRY POINT parameter specified on the SET BREAK command after
modules have been bound. If two or more ~du1es with the same name
are ever loaded together or bound together, only the first one
loaded can be referenced in Debug commands.

6-4 Debug for NOS/VE Usage Revision A

Addressing

Module/Procedure Offset Addressing

Binding modules also has an effect on module/procedure offset
addressing. After binding, the original module and procedure names
are not available if the tables that support symbolic addressing are
not available; addresses are reported and must be referenced in
terms of the new bound module name and byte offsets from the
beginning of the module. Code from all original component modules
is combined into one code section, static data from all original
modules is combined into one static data memory section, and so
forth, such that the original component portions of each section
cannot be distinguished by Debug. You can deduce where each
component portion is by inspecting the bind map produced by the
CREATE OBJECT LIBRARY (described in the Object Code Management
manual:) -

Module/Section Offset Addressing

Module/Section offset addressing is not available for the original
component modules of a bound module since binding merges all like
sections together and Debug cannot determine where any particular
component's section is located. Common blocks are an exception.
Debug can determine where each module's common blocks are located
after binding since a common block starts at the same location for
each module that uses it.

Module Block Referencing

Binding also has an effect on the ability to reference a module as a
block. After binding, the new bound module can be referenced as a
whole block but the original component modules can be referenced,
even if supporting debug tables are available.

Revision A Comprehensive Debugging 6-5

Interrupt Processing While Debugging

~nterrupt Processing While Debugging

Three external events can interrupt an executing user program or the
Debug utility. These events are pause break, terminate break, and
nearly exhausted resource. The effects of these interrupts are
described below.

Pause Break Interrupt

When your source program is executing:

Default system action occurs. You are allowed to enter other
commands.

When Debug is executing:

Defaul t system action occurs. If you have established a handler
for this condition, that handler gains control. Debug does not
gain control unless the handler returns with normal status.

Terminate Break Interrupt

When your source program is executing:

Default system action occurs. You are allowed to enter other
commands.

When Debug is executing:

If a Debug command is where the program was executing, that
command is terminated and you are prompted for a new command. If
Debug is already waiting for a command, the terminate break is
ignored.

Nearly Exhausted Resource

When your source program is executing:

Debug does not get control. If you have established a handler
for this condition, that handler gains control; otherwise, the
default system action occurs.

When Debug is executing:

Debug does not get control. If you have established a handler
for this condition, that handler gains control; otherwise, the (
default system action occurs. Debug does not gain control
unless the handler returns with normal status.

(

6-6 Debug for NOS/VE Usage Revision A

Debugging Optimized Code

Debugging Optimized Code

Most compilers can generate more than one level of object code.
When specifying a special level of optimization for Debug on the
compile command (see chapter 2 for compilation requirements), the
most debuggable object code possible is generated. This level of
object code contains a separate packet of machine instructions for
each executable source statement and carries no altered variable
values across statement boundaries in registers without also
updating their values in memory. It also recognizes the start of
execution of each new line that starts a statement or procedure and
ensures that Debug can always find actual parameter lists.

If some higher level of optimization is selected, you can still use
Debug, but with restricted capabilities. For example, you cannot
display progtam values that are permanently allocated to machine
registers. When values are temporarily carried in registers between
statements, or when code for several source statements is mixed
together, displayed values may not be the most recent values.
Because some lines may be removed during optimization at higher
levels, break report locations may not be as precise and variables
may not be available. In addition, the SET STEP MODE command cannot
step lines or procedures.

Optimizing Debug Performance

Debug will necessarily have some performance impact on the program
being debugged. The benefits gained in terms of programmer time
saved during debugging, however, far outweigh any additional
execution costs. The execution time degradation is only suffered
while the program is being debugged and is normally not perceptible.

The degree of degradation depends mainly on both the number and
types of breaks set. Special debug hardware is used to detect
certain break events such as EXECUTION at a specific address, READ
from a specific address range, and WRITE into a specific address
range. Performance is impacted during debugging because the
hardware must check to see if each instruction it executes requires
a Debug hardware break to be set internally. You are encouraged to
delete breaks after they are no longer needed to improve debugging
performance. The SET STEP MODE command is a most effective
debugging aid, however, because of the use of internal breaks while
debugging, the degradation of execution time can be very costly.

There is no significant additional load or execution cost associated
with the line address and symbol tables which are a part of binary
object modules. The loader does not process or manipulate the
tables in any way and they are never paged into memory unless they
are used within Debug.

Revision B Comprehensive Debugging 6-7

Debugging a Terminated Program

Debugging a Terminated Program
In a Debug session, very little debugging can be done once your
program has terminated. Currently, no facility is provided to
reexecute all or part of your terminated program. You must quit the
Debug session and reexecute your program with DEBUG MODE=ON if you
want to continue debugging. The only debugging facilities available
to you after your program terminates are the Debug DISPLAY commands.

If your program terminated by returning from its starting procedure
(the Debug report message will say so), only static variables can be
displayed. No active procedure or automatic variables exist, so
DISPLAY CALLS provides no information. If your program terminates
by a caTI to PMP$EXIT or ~P$ABORT, at least one active procedure
exists (the one that called PMP$EXIT or l't1P$ABORT). In this case,
DISPLAY CALLS can provide some useful information and automatic
variables of the active procedures can be displayed.

Debugging a CYBIL Runtime Error

To display or change program variables after rece1v1ng a CYBIL
runtime error, you must specify the MODULE and PROCEDURE parameters
on the Debug command. This is required because the runtime error
has caused the program to branch to the runtime error processing
procedure (the pocket code).

The pocket code performs runtime error processing; it issues the
runtime error message giving the line number at which the error was
detected. However, when a program branches to its pocket code, it
branches outside the user's procedure and module so the default
module and procedure ($CURRENT) are no longer the user's procedure
and module. Therefore, to display or change program variables, you
must specify the module and procedure containing the variables.

To illustrate this, the following program is compiled with the
parameter RUNTIME_CHECKS=ALL:

mod ul e mode ;
program p

pr ;
procend ;
procedure pr ;

var v3 : 1 • • 10
v3 := 6 ;
v3 : = v3 * 2 :

procend
modend ;

When the program is executed, the following runtime error occurs:

--ERROR-- CYBIL run time error, range error, detected at line 8
of MOD.

6-8 Debug for NOS/VE Usage Revision A

Debugging Condition Handlers

When this error occurs while the program is executing in Debug mode,
the program variables can be displayed only if the module and
procedure are specified, as follows:

DB/ display_program_value, $all, m=mode, p=pr

DISPLAY OF ALL VARIABLES IN PR

V3 = 6

Debugging Condition Handlers

Condition handlers are special procedures whose purpose is to
process exception conditions when they arise. They are
automatically activated by NOS/VE when the conditions for which they
have been established occur. Condition handlers can be established
at the program level (PMP$ESTABLISH CONDITION HANDLER) and at the
SCL level (WHEN/WHENEND block). Co~dition ha~dlers can be
established for one or more of the following classes of conditions:

• System conditions (exponent overflow, divide fault, etc.).

• Block exit condition.

• Interactive conditions (pause break, terminate break).

• Job resource conditions (time nearly expired).

• Segment access conditions.

• Process interval timer condition.

• User-defined conditions.

When executing with DEB UG_MODE =ON , Debug first gains control when
any condition occurs, except for some conditions such as, job
resource conditions and detected uncorrected error (one of the
system conditions) occurs. The ~ondition ha~dler of the program, if
one exists, is not executed until a Debug RUN command is executed.

The condition handler of the program can be debugged using Debug,
but the program does not execute until you have a chance to respond
to the condit~on. For conditions for which breaks can be set, a RUN
commnd can be associated with the break so that the command is
automatically executed when the break occurs. (Refer to the COMMAND
parameter of the SET BREAK command in chapter 5.) This mechanism
makes it possible to-effectively circumvent the preemptive control
of Debug. It appears as though Debug did not get control since the
RUN command automatically executes the instant the condition arises.

Revision A Comprehensive Debugging 6-9

Debug Rings

Debug Rings
Debug normally runs in the same ring as the program being debugged.
A ring is the level of hardware protection given to a program. A
program is protected from unauthorized access by tasks executing in
higher rings. (See the SCL Object Code Management manual for more
information about rings.)

You can, however, control the ring in which Debug executes by using
the SET DEBUG RING command. The SET DEBUG RING command specifies
the ring in which Debug executes. The Debug ring cannot be set to a
ring more privileged than the lowest ring for which you are
validated>

You are responsible for ensuring that the program being executed
also runs at the same ring as set by the SET DEBUG RING command.
(The ring attributes of the program to be executed-can be changed
using the SeL CHANGE FILE_ATTRIBUTES command.)

If your program runs entirely in one ring, you need not be concerned
with the Debug ring except to understand deferred breaks and
mul tiple breaks.

Deferred Breaks

Breaks which are set below the Debug ring, that is, the break occurs
in a lower numbered ring than the Debug ring, are deferred, or
delayed, until execution again reaches the Debug ring. The break is
deferred so that you do not get control in a ring more privileged
than your own. If you had control at a lower ring, you could view
or change data that you normally do not have access to, thereby
compromising system security.

Deferred breaks can occur even when your program runs in a single
ring. Many of the operating system services used by the program
execute in more privileged rings. For example, if you set a READ or
WRITE break on a status variable used in some NO~/VE request and
that variable is accessed in a lower ring, the break is delayed
until NOS/VE returns control to your program.

When a break is deferred, a special break report message is
displayed. The break is reported as having happened at the line
that made the call, and a second line indicating the actual address
of the event is displayed. The second line is formatted as follows:

Trap deferred from address

where address is where the event actually occurred.

6-10 Debug for NOS/VE Usage Revision A

(

(

(

Debug Rings

Multiple Breaks

Because breaks below the Debug ring are deferred until control
returns to the Debug ring, several breaks can be stacked up before
Debug gains control. When this happens, multiple breaks must be
processed.

If there are several unprocessed breaks outstanding when Debug gains
control, each one is reported in the usual way but only the first
one is processed. No commands are processed for the most recent
breaks, not even commands associated with the break definition,
since execution of the commands could destroy the environment that
existed when the first break occurred.

Multiple breal~ can also occur when execution is not below the Debug
ring. For example, two terminal breaks or an execution break and a
terminal break could occur before Debug gets control. If this
happens, only the first break is processed.

Multi-ring Environment

The ability of Debug to function in a multi-ring environment is
limited. If a break event occurs in a lower ring than the Debug
ring, Debug gains control, but your options are limited. You can
only resume execution of the interrupted procedure or terminate the
Debug session. Any program condition handlers established for that
event are not processed.

Multi-task Debugging

The use of Debug in a multi-task environment is very restricted. If
an initial task executes with DEBUG MODE=ON and then spins off a
second task, the second task executes with DEBUG MODE=ON (if its
program description says to). This causes two separate instances of
Debug to be active. You may have difficulty distinguishing between
them, as well as determining to which task a terminal is connected.
One way to determine which instance of Debug has control is to
inspect the output from the DISPLAY CALL calling chain or from the
user address displayed by DISPLAY DEBUGGING ENVIRONMENT.

Revision B Comprehensive Debugging 6-11

(

(

Source Language Debug Examples 7

This chapter demonstrates examples of Debug sessions in screen mode.

Debugging a BASIC Program ••••••••••••••••••••••••••••••••••••• 7-1

Debugging a C Program ••• 7-14

Debugging a COBOL Program 7-26

Debugging a CYBIL Program 7-40

Debugging a FORTRAN Version 1 or
FORTRAN Version 2 Program ••••••••••••••••••••••••••••••••• 7-55

Debugging a Pascal Program •••••••••••••••••••••••••••••••••••• 7-68

(

7

As previously mentioned, Debug can be used in line mode or screen
mode. You can also use Debug to perform machine-level debugging as
well as symbolic debugging. This chapter demonstrates examples
using screen mode Debug for symbolic debugging.

An example is demonstrated in screen mode Debug for each of the
following source languages:

BASIC
C
COBOL
CYBIL
FORTRAN Versions 1 and 2
PascaL

Debugging a BASIC Program

This example is presented as a sequence of steps. To get the most
benefit, you should create the sample program illustrated in figure
7-1, then perform each step as you read it. The sample program,
EXAMPLE BAS, provides three test cases to debug. Each test case in
EXAMPLE-BAS is used to demonstrate the application of some Debug
function keys. After you work this example, you will be able to
debug your BASIC programs using Screen Mode Debug.

EXAMPLE BAS is divided into the following test cases:

TESTI

A loop that increments a counter and then calls a subprogram to
square and display the count. TESTI demonstrates the use of the
CHAVAL, GOTO, HSPEED, SEEVAL, STEPI and STEPN functions.

TEST2

A loop that builds a 6-row table of 3-character strings. Input
to the table is an l8-character list for the months JAN through
JUN. TEST2 moves three characters at a time from the character
list to the table and displays each entry. TEST2 shows how to
step through loops, use line mode Debug commands in screen mode
Debug, and how to scroll through Debug and program output data.

TEST3

A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

Revision B Source Language Debug Examples 7-1

Debugging a BASIC Program

DIM MONTHTABLE$(16)
DEFINT C,M

LET DIVIDEND = -100
LET DIVISOR = 0

LET MONTHCOLUMN = 1
LET MONTHLIST$ = "JANFEBMARAPRMAYJUN"

LET COUNTER = 0

REM TESTl: Add to counter and call subroutine to square and
REM display count.

LET COUNTER = 1
FOR COUNTER = 1 TO 10

CALL SQUAREPROCEDURE (COUNTER)
NEXT COUNTER

REM TEST2: Create single column table for each month.

FOR MONTHROW = 0 TO 5
MONTHTABLE$ (MONTHROW)=MONTHLIST$ (MONTHCOLUMN:MONTHCOLUM N+2)
PRINT "THE MONTH IS: "MONTHTABLE$(MONTHROW)
LET MONTHCOLUMN = MONTHCOLUMN + 3

NEXT MONTHROW

REM TEST3: Create divide fault.

LET QUOTIENT = DIVIDEND / DIVISOR
PRINT "ANSWER IS: "ANSWER

END

REM Subroutine SQUAREPROCEDURE

SUB SQUAREPROCEDURE (COUNTER)
LET RESULT = 0
LET RESULT = COUNTER * COUNTER
PRINT COUNTER " TIMES" COUNTER " =" RESULT

END SUB

Figure 7-1 Debug Example: Source file EXAMPLE BAS

7-2 Debug for NOS/VE Usage Revision A

Debugging a BASIC Program

Preparing to Debug

After you create EXAMPLE_BAS, you must compile your program and
prepare your Debug session for the screen mode environment. You can
then execute EXAMPLE BAS under Debug control. Do this as follows:

1. Assuming EXAMPLE BAS is contained in permanent file
$USER.EXAMPLE BAS, prepare the screen mode environment and
compile EXAMPLE_BAS by entering the following commands:

/change interaction style style=screen
/basic Tnput=$user.example_bas binary=lgo

2. Execute EXAMPLE BAS under control of Debug by entering the
following command:

/execute task file=lgo debug_mode=on

The source module of EXAMPLE BAS is displayed in the Source
window. The Debug functions-are displayed at the bottom of the
screen.

Display Screen Mode Commands

The functions below are used to display helpful information about
the Debugging enviornment:

HELP

Displays the Help window. Press a function key and a short
explanation of the function's use appears in the Help window.

ZMIN

Used to display the source listing in the Source window.

Revision A Source Language Debug Examples 7-3

Debugging a BASIC Program

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to a function displayed at
the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMIN function key. The following message is displayed
in the upper right hand corner of the screen:

Enter compiler input file for $MAIN

5. Enter the source file name:

The source listing of EXAMPLE BAS is displayed in the Source
window. Also, some new functions are displayed at the bottom of
the screen.

6. Press the HELP key. The Help window is displayed again.

7. Press each function key corresponding to the new function
displayed at the bottom of the screen. As you press each
function key, a short explanation of the purpose of each new
function is displayed in the Help window.

8. Press RETURN. Exit HELP.

7-4 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a BASIC Program

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The device for suspending execution of a program is called
a break. In this sample session, the following functions are used
to illustrate setting breaks:

FWD

Scrolls forward to the next screen of text.

FIRST

Displays the first screen of the source listing. Because FIRST
is a lower priority function, it may not be assigned to a
function key on terminals with only 16 function keys. Instead,
FIRST is entered on the home line.

LOCATE

Prompts you to type in text, then searches the source listing
for matching text. If a match is found, the cursor is moved to
the line containing the matching text.

SETBRK

Sets an execution break on the line containing the cursor. The
line is highlighted to show that it contains a break. Execution
is suspended before the line containing the break is executed.
Execution resumes with the statement on the line containing the
break.

This section also uses the following item:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

Perform the following steps to place three execution breaks in
EXAMPLE BAS:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE BAS:

FOR MONTHROW

The cursor is moved to the line:

FOR MONTHROW = 0 TO 5

Revision A Source Language Debug Examples 7-5

Debugging a BASIC Program

3. Press the SETBRK function key. A break is set and the line
containing the cursor is highlighted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the line containing:

LET MONTHCOLUMN = MONTHCOLUMN + 3

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE BAS source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

5. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

6. Use the down-arrow key to move the cursor to the line:

LET QUOTIENT = DIVIDEND / DIVISOR

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE BAS source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

7. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

8. Press the FIRST function key. The first screen of the
EXAMPLE_BAS source listing is displayed in the Source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following on the home
line:

first

The first screen of the EXAMPLE BAS source listing is displayed
in the Source window.

7-6 Debug for NOS/VE Usage Revision A

Debugging a BASIC Program

Debugging TEST!

Using Debug, you can execute a program one line or several lines at
a time. Also, you can examine a variable's contents, change its
contents, and execute code containing the variable several times.
These capabilities are demonstrated in this sample session using the
following functions:

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEP1

Executes a program one line at a time.

STEPN

Executes N lines of a program, where N is an integer.

Perform the following steps to demonstrate the use of the CRAVAL,
GOTO, HSPEED, SEEVAL, STEP1, STEPN:

1. Press the STEPN function key. In the upper right corner of the
screen you are prompted for the number of lines to execute;
enter:

17

STEPN executes 17 lines of EXAMPLE_BAS, moving the execution
arrow to the statement:

FOR COUNTER = 1 TO 10

2. Press the STEP1 function key. The FOR statement is executed;
the execution arrow points to the statement:

CALL SQUARE PROCEDURE (COUNTER)

Revision A Source Language Debug Examples 7-7

Debugging a BASIC Program

3. Press the STEPl function key seven times. An iteration of TESTl
is executed one line at a time. The output generated by the
iteration is displayed in the Output window.

4. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

counter

The value of COUNTER is displayed in the Output window:

counter = 2

Thus, you can use SEEVAL to observe the contents of a variable.

5. Press the CRAVAL- function key. A prompt for a variable name and
its new value is displayed in the upper right hand corner of the
screen; enter:

counter=8

The value of COUNTER is changed to 8.

6. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The following message is displayed in the Output window:

counter = 8

Thus, the change of COUNTER's value is verified.

7-8 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a BASIC Program

7. Press the STEPN function key. When you are prompted for the
number of lines to execute; enter:

7

STEPN executes 7 lines of TEST1. The output generated by this
loop iteration is displayed in the Output window.

8. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The value of COUNTER is displayed in the Output window:

counter = 9

Therefore, the value given to COUNTER in step 5 is used by the
FOR statement.

9. Use the up-arrow key to move the cursor to the line:

FOR COUNTER = 1 TO 10

10. Press the GOTO function key. The execution arrow moves to the
line containing the cursor; execution resumes with this
statement.

11. Press the HSPEED function key. Execution resumes from the FOR
statement; COUNTER is initialized to 1. Execution of
EXAMPLE BAS continues until an execution break is encountered.

Revision A Source Language Debug Examples 7-9

Debugging a BASIC Program

Debugging TEST2

After program execution is resumed in step 11 of TESTl, it stops at
the break set on the PERFORM statement in TEST2. The following
functions are used in TEST2 to illustrate more Debug capabilities:

BKW

Scrolls backward to the previous screen of text.

DELBRK

Deletes execution breaks.

HSPEED

Executes a program until a break is encountered or the program
ends.

This section also uses the following items:

HOME

Press the HOME key to move the cursor to the home line.
mode Debug commands can be entered on the home line for
execution in screen mode Debug.

DISPLAY PROGRAM VALUE - -

line

A line mode Debug command that displays the values of program
variables.

Perform the following steps to learn how to execute loops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the FOR loop in TEST2; output generated by
the loop is displayed in the Output window.

2. Press the HSPEED function key again. One iteration of the FOR
loop is executed; execution stops at the break set at the
statement, LET MONTHCOLUMN = MONTHCOLUMN + 3. Each time HSPEED
is used, an iteration of the loop is performed. By using
strategically placed execution breaks, as in this example, a
loop can be executed one iteration at a time.

7-10 Debug for NOS/VE Usage Revision A

I

"

(

(

(

(

Debugging a BASIC Program

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the HOME key. The cursor moves to the home line.

5. Enter the line mode Debug command:

display-progra~value name=$all

The values of all variables in EXAMPLE BAS are displayed in the
Output window. Thus, line mode Debug commands can be used in
screen mode Debug by entering them on the home line. For more
information about using line mode Debug commands see the Debug
Usage Manual.

6. Press the DELBRK key. The execution break is deleted. The
highlight is removed from the line when the break is removed.

7. Press the down-arrow key until the cursor is inside of the
Output window.

8. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window •

9. Press the HSPEED function key. The execution of EXAMPLE BAS
resumes, stopping when the line containing the third break is
reached. The execution arrow points to the beginning of TEST3.

Revision A Source Language Debug Examples 7-11

Debugging a BASIC Program

Debugging TEST3

After resuming execution of EXAMPLE BAS in step 9 of section TEST2,
execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used
in this sample session to demonstrate how Debug can be used when an
exectuion error is encountered:

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the statement on this line.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPI

Executes a program one line at a time.

QUIT

Used to exit Debug.

Perform the following steps to finish the example:

1. Press the STEPI function key. The DIVISION statement is
executed, execution of EXAMPLE BAS halts, and the following
message flashes in the upper right hand corner of the screen:

divide fault

2. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor = O.

A division by zero caused the execution error.

7-12 Debug for NOS/VE Usage Revision A

Debugging a BASIC Program

3. Press the CRAVAL function key. When you are prompted, enter:

divisor=l.O

The value of DIVISOR is changed to 1.

4. Press the SEEVAL function key. When you are prompted, enter:

divisor

The following text is displayed in the Output window:

divisor = 1.OOOOE+OOOO

The change to DIVISOR is verified.

5. Press the GOTO function key. The execution arrow points at the
DIVISION statement and program execution resumes with this
statement.

6. Press the STEPI function key. The DIVISION statement is
executed. Therefore, the GO TO and CRAVAL functions can be used
in concert to recover from execution errors. However, to
correct execution errors permanently, you must exit Debug, edit
the program, and recompile it.

7. Press the STEPI function key again. The result of the DIVISION
statement is displayed in the Output window.

8. Press the STEPI function key two times. EXAMPLE BAS ends and
the following message is displayed in the Output window:

DEBUG: The status at termination was: NORMAL.

9. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your BASIC pr~grams.

Revision A Source Language Debug Examples 7-13

Debugging a C Program

Debugging a C Program

This example is presented as a sequence of steps. To get the most
benefit, you should create the sample program illustrated in figure
7-2, then perform each step as you read it. The sample program,
EXAMPLE C, provides three test cases to debug. Each test case in
EXAMPLE-C is used to demonstrate the application of some Debug
function keys. After you work this example, you will be able to
debug your C programs using Screen Mode Debug.

EXAMPLE C is divided into the following test cases:

TESTI

A loop that increments a counter and then calls a function to
square and display the count. TESTI demonstrates the use of the
HSPEED, SEEVAL, CHAVAL, GOTO, and DELBRK functions.

TEST2

A loop that builds a 6-row table of 3-character strings. Input
to the table is an l8-character list for the months JAN through
JUN. TEST2 moves three characters at a time from the character
list to the table, appends an end-of-line character, and
displays each entry. TEST2 shows how to step through loops, use
line mode Debug commands in screen mode Debug, and how to scroll
through Debug and program output data.

TEST3

A division test that results in a divide fault. TESTJ
demonstrates how Debug handles execution errors.

7-14 Debug for NOS/VE Usage Revision A

(

Debugging a C Program

#include <stdio_h>

/* Divide fault data */

int dividend 100;
int divisor 0;
int quotient 0;

/* Month data */

char *month list 1
char month [6] [4];

"JANFEBMARAPRMAYJUN";

main ()
{

int month_column;
int month_row;
int counter;

/* TEST1: Add to counter and call procedure to square */
/* and display. */

for (counter=l; counter<=10; counter++)
squaring-procedure (counter);

/* TEST2: Create a single column table for each month. */

month column 0;
for (ionth_row=O; month_row<6; month_row++)
{

month[month row][O] month list l[month column];
month [month-row] [1] month-list-1[month-column+1];
month [month-row] [2] month=list=1[month=column+2];
month [month-row] [3] '\0';
printf (" 'The month is %s\n", month[month row]);
month_column month_column + 3; -

/* TEST3: Create a divide fault.

quotient = dividend/divisor;
printf (" The answer is %d\n" , quotient);

return (0);

squaring-procedure (counter)
int counter;

int result;
result = counter * counter;
printf (" %d times %d = %d\n", counter, counter, result);
return (0);

Figure 7-2 Debug Example: Source File EXAMPLE C

*/

Revision A Source Language Debug Examples 7-15

Debugging a C Program

Preparing to Debug

After you create EXAMPLE_C. you must prepare it for use with screen
mode Debug. This requires preparing the screen mode environment and
compiling EXAMPLE C for use with Debug. You can then execute it
under Debug control. Do this as follows:

1. Prepare and compile EXAMPLE C using the cc command with the -g
and -R compiler options by entering the following commands:

/set_working_catalog $user
/$system.cve.setup
/change interaction style style=screen
Icc -0 Igo -g -R example c

2. Execute EXAMPLE C under control of Debug by entering the
following command:

/execute_task file=lgo debug_mode=on

The source listing of EXAMPLE_C is displayed in the Source
window. Debug functions are displayed at the the bottom of the
screen.

Displaying Screen Mode Commands

The functions below are used to display helpful information about
the Debugging enviornment:

HELP

Displays the Help window. Press a function key and a short
explanation of the function's use appears in the Help window.

ZMIN

Used to display the source listing in the Source.window.

ZMOUT

Used to display the C program modules and functions in the
Source window.

7-16 Debug for NOS/VE Usage Revision A

Debugging a C Program

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to the functions displayed
at the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMOUT function key. The modules and functions of
EXAMPLE C are displayed.

5. Press the ZMIN function key. The source listing of EXAMPLE C is
displayed again. The ZMIN and ZMOUT function keys are used to
display the source listing or the modules and functions of the
program.

Revision A Source Language Debug Examples 7-17

Debugging a C Program

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The device for suspending execution of a program is called
a break. In this sample session, the following functions are used
to illustrate setting breaks:

FIRST

Displays the first screen of the source listing. Because FIRST
is a lower priority function, it may not be assigned to a
function key on therminals with only 16 function keys. Instead,
FIRST is entered on the home line.

FWD

Scrolls forward to the next screen of text.

LOCATE

Prompts you to type in text, then searches the source listing
for matching text. If a match is found, the cursor is moved to
the line containing the matching text.

SETBRK

Sets an execution break on the line containing the cursor. The
line is highlighted to show that it contains a break. Execution
is suspended before the line containing the break is executed.
Execution resumes with the statement on the line containing the
break.

This section also uses the following item:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

Perform the following steps to place four execution breaks in
EXAMPLE C:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE C:

squaring-procedure

The cursor is moved to the line:

squaring-procedure (counter);

7-18 Debug for NOS/VE Usage Revision A

Debugging a C Program

3. Press the SETBRK function key. A break is set and the line
containing the cursor is highli&hted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the statement:

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE C source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

5. Press the SETBRK function key. This line is highlighted to show
that it contains an execution break.

6. Use the down-arrow key to move the cursor to the statement:

month column = month_column+3;

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE_C source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

7. Press the SETBRK function key. An execution break is placed on
this line.

8. Use the down-arrow key again to move the cursor to the line:

quotient = dividend/divisor;

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE C source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

9. Press the SETBRK function key. The fourth execution break is
set on this line.

10. Press the FIRST function key. The first screen of the EXAMPLE C
source listing is displayed in the Source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following on the home
line:

first

The first screen of the EXAMPLE C source listing is displayed in
the Source window.

Revision A Source Language Debug Examples 7-19

Debugging a C Program

Debugging TESTl

Using Debug, you can examine a variable's contents, change its
contents, and execute code containing the variable several times.
These capabilities are demonstrated in this sample session using the
following functions:

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

DELBRK

Deletes execution breaks.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the first statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

Perform the following steps to demonstrate the use of the HSPEED,
SEEVAL, CRAVAL, GO TO , and DELBRK functions:

1. Press the HSPEED function key. Execution of EXAMPLE C begins
and the message HIGH SPEED is displayed in the upper-right hand
corner of the screen. Execution of EXAMPLE C stops at the
execution break that you set on the line:

squaring-procedure {counter};

2. Press the HSPEED function key. Execution of EXAMPLE C resumes
from the SQUARING_PROCEDURE function call. Execution continues
until the break on the function call is encountered again. The
output generated by the SQUARING PROCEDURE function call is
displayed in Output window. -

3. Press the SEEVAL function key. A prompt for the variable name
is displayed at the top right hand corner of the screen. Enter
the name:

counter

7-20 Debug for NOS/VE Usage Revision A

Debugging a C Program

The value of COUNTER is displayed in the Output window:

counter=2

4. Press the CRAVAL function key. A prompt for the variable name
and its new value is displayed at the top of the screen; enter:

counter=8

The value of the FOR loop control variable, COUNTER, is changed
to 8.

5. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The following message is displayed in the Output window:

counter=8

Thus, the change of COUNTER's value is verified.

6. Press the HSPEED function key. EXAMPLE C executes until the
break on the SQUARING PROCEDURE function call is encountered.
The output generated by this iteration of the FOR loop is
displayed in the Output window.

7. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The value of COUNTER is displayed in the Output window:

counter=9

Thus, the FOR statement used the value given COUNTER in step 4.

8. Press the DELBRK function. This removes the break set on the
SQUARING PROCEDURE function call. The highlight is removed from
the line-when the break is removed.

9. Use the up-arrow key to move the cursor to the line:

for (counter=O; counter<=10; counter++)

10. Press the GOTO function key. The execution pointer moves to the
line containing the cursor; execution resumes here when the
HSPEED function key is pressed.

12. Press the HSPEED function key. Execution resumes at the FOR
statement, and COUNTER is initialized to 0 within the
statement. Therefore, the change made to COUNTER in step 4 is
erased. Execution of EXAMPLE C continues until the next break
is encountered.

Revision A Source Language Debug Examples 7-21

Debugging a C Program

Debugging TEST2

After program execution is resumed in step 12 of TESTl t it stops at
the break set on the FOR statement in TEST2. The following
functions are used in TEST2 to illustrate more Debug capabilities:

BKW

Scrolls backward to the previous screen of text.

DELBRK

Deletes execution breaks.

FWD

Scrolls forward to the next screen of text.

HSPEED

Executes a program until a break is encountered or the program
ends.

This section also uses the following items:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

DISPLAY PROGRAM VALUE - -
A line mode Debug command that displays the values of program
variables.

Perform the following steps to learn how to execute loops one
iteration at a timet execute line mode Debug commands t and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last statement of the FOR block; output generated by the
block is displayed in the Output window.

2. Press the HSPEED function key again. One iteration of the FOR
loop is executed; execution stops at the break set in the FOR
block. Each time HSPEED is used t an iteration of the loop is
performed. By using strategically placed execution breaks t as
in this examp1e t a loop can be executed one iteration at a time.

7-22 Debug for NOS/VE Usage Revision A

Debugging a C Program

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the HOME key. The cursor moves to the home line.

5. Enter the line mode Debug command:

display-yrogram_value name=$all

The values of all variables declared in the main function are
displayed in the Output window. Thus, line mode Debug commands
can be used in screen mode Debug by entering them on the home
line. For more information about using line mode Debug commands
see the Debug Usage Manual.

6. Press the DELBRK key. The execution break is deleted.

7. Press the down-arrow key until the cursor is inside of the
Output window.

8. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window •

9. Press the HSPEED function key. Execution of EXAMPLE C resumes.

Revision A Source Language Debug Examples 7-23

Debugging a C Program

Debugging TEST3
After resuming execution of EXAMPLE C in step 9 of section TEST2,
execution stops at the break set on-the statement:

quotient = dividend/divisor;

Execution is suspended before this statement is performed.

In TEST3, Debug is presented with an execution error. The following
functions are used in this sample session to demonstrate how Debug
can be used when an exectuion error is encountered:

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the first statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

TRACE

Displays the chain of modules and functions that were called to
reach the current line.

QUIT

Used to leave Debug.

Perform the following steps to finish this example:

1. Press the HSPEED function key. Execution resumes and then
immediately halts. The following message flashes in the upper
right hand corner of the screen:

divide fault

7-24 Debug for NOS/VE Usage Revision A

Debugging a C Program

2. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor=O

A division by zero caused the execution error.

3. Press the CRAVAL function key. When you are prompted, enter:

divisor=1

The value of DIVISOR is changed to 1.

4. Press the SEEVAL function key. When you are prompted, enter:

divisor

The following text is displayed in the Output window:

divisor=1

The change to DIVISOR is verified.

5. Press the GOTO function key. The execution arrow points to the
DIVISION statement, so program execution resumes with this
statement.

6. Press the HSPEED function key. The DIVISION statement is
executed, the result of the DIVISION statement is displayed in
the Output window, and EXAMPLE C ends. The following message is
displayed in the Output window:

DEBUG: The status at termination was: NORMAL.

Therefore, the GOTO and CRAVAL functions can be 'used in concert
to recover from execution errors. However, to correct execution
errors permanently, you must exit Debug, edit the program, and
recompile it.

7. Press the TRACE function key. The modules and functions that
were called upon program termination are displayed.

8. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your C programs.

Revision A Source Language Debug Examples 7-25

Debugging a COBOL Program

Debugging a COBOL PJrogram

This example is presented as a sequence of steps. To get the most
benefit, you should create the sample program illustrated in figure
7-3, then perform each step as you read it. The sample program,
EXAMPLE_COB, provides three test cases to debug. Each test case in
EXAMPLE COB is used to demonstrate the application of some Debug
function keys. After you work this example, you will be able to
debug your COBOL programs using Screen Mode Debug.

EXAMPLE COB is divided into the following test cases:

TESTI

A loop that increments a counter and then calls a subprogram to
square and display the count. TESTI demonstrates the use of the
CRAVAL, GOTO, HSPEED, SEEVAL, STEPI and STEPN functions.

TEST2

A loop that builds a 6-row table of 3-character strings. Input
to the table is an 18-character list for the months JAN through
JUN. TEST2 moves three characters at a time from the character
list to the table and displays each entry. TEST2 shows how to
step through loops, use line mode Debug commands in screen mode
Debug, and how to scroll through Debug and program output data.

TEST3

A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

7-26 Debug for NOS/VE Usage Revision A

Debugging a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLE-COB.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IN-FILE ASSIGN I.
SELECT OUT-FILE ASSIGN O.

DATA DIVISION.

FILE SECTION.
FD IN-FILE LABEL RECORDS OMITTED.
01 IN-REC PIC X(256).
FD OUT-FILE LABEL RECORDS OMITTED.
01 OUT-REC PIC X(80).

WORKING-STORAGE SECTION.
01 DIVIDE-FAULT-DATA.

02 DIVIDEND PIC S999
02 DIVISOR PIC 99
02 QUOTIENT PIC S9999

01 MONTH-DATA.

VALUE 100.
VALUE O.
VALUE O.

02 MONTH-LIST-1 PIC X(l8) VALUE "JANFEBMARAPRMAYJUN".
02 MONTH-TABLE.

03 MONTH PIC X(3) OCCURS 6 TIMES.

77 MONTH-COLUMN PIC 99 VALUE O.
77 MONTH-ROW PIC 99 VALUE O.
77 COUNTER PIC 99 VALUE O.
77 RESULT PIC 99 VALUE O.

PROCEDURE DIVISION.

* TEST1: Add to counter and call procedure to square and *
* display count. *

TEST1.
MOVE 1 TO COUNTER.

PERFORM 10 TIMES
CALL "SQUARING-PROCEDURE" USING COUNTER
ADD 1 TO COUNTER

END-PERFORM.

Figure 7-3. Debug Example: Source File EXAMPLE COB
t(;ont1nued)

Revision A Source Language Debug Examples 7-27

Debugging a COBOL Program

(Continued)

* TEST2: Create single column table for each month.

TEST2.
MOVE 1 TO MONTH-COLUMN.
MOVE 1 TO MONTH-ROW.

PERFORM 6 TIMES
MOVE MONTH-LIST-l(MONTH-COLUMN:3) TO MONTH(MONTH-ROW)
DISPLAY "THE MONTH IS " MONTH(MONTH-ROW)
ADD 3 TO MONTH-COLUMN
ADD 1 TO MONTH-ROW
END-PERFORM.

* TEST3: Create divide fault.

TEST3.
DIVIDE DIVIDEND BY DIVISOR GIVING QUOTIENT.
DISPLAY "ANSWER IS: "QUOTIENT.
STOP RUN.

END PROGRAM EXAMPLE-COB.

* Subprogram SQUARING-PROCEDURE

IDENTIFICATION DIVISION.
PROGRAM-ID. SQUARING-PROCEDURE.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 RESULT PIC 999

LINKAGE SECTION.
77 COUNTER

PROCEDURE DIVISION USING COUNTER.
START-SQUARING-PROCEDURE.

PIC 99.

VALUE O.

MULTIPLY COUNTER BY COUNTER GIVING RESULT.
DISPLAY COUNTER" TIMES" COUNTER" = " RESULT.
EXIT PROGRAM.

Figure 7-3. Debug Sample: Source File EXAMPLE COB

*

*

*

7-28 Debug for NOS/VE Usage Revision B

Debugging a COBOL Program

Preparing to Debug

After you create EXAMPLE_COB, you must prepare it for use with
screen mode Debug. This requires preparing the screen mode
environment and compiling EXAMPLE COB for use with Debug. You can
then execute it under Debug control. Do this as follows:

1. Assuming EXAMPLE COB is contained in permanent file
$USER.EXAMPLE_COB, prepare and compile EXAMPLE_COB using the
COBOL command with the OPTIMIZATION LEVEL=DEBUG and
DEBUG AIDS=DT compiler parameters by entering the following
commands:

Ichange interaction style style=screen
Icobol Input=$user.example cob binary object=lgo
•• /optimization_level=debug debug_aid;=all

2. Execute EXAMPLE COB under control of Debug by entering the
following comma;d:

lexecute_task file=lgo debug_mode=on

The source listing of EXAMPLE COB is displayed in the Source
window. The Debug functions are displayed at the bottom of the
screen.

Revision A Source Language Debug Examples 7-29

Debugging a COBOL Program

Display Screen Mode Commands

The function below are used to display helpful information about the
Debugging enviornment:

HELP

Displays the Help window. Press a function key and a short
explanation of the function's use appears in the Help window.

ZMIN

Used to display the source listing in the Source window.

ZMOUT

Used to display the COBOL program modules in the Source window.

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to a function displayed at
the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMOUT function key. The modules of EXAMPLE COB are
displayed.

5. Press the ZMIN function key. The source listing of EXAMPLE COB
is displayed again. The ZMIN and ZMOUT function keys are used
to display the source listing or the modules of the program,
respectively.

7-30 Debug for NOS/VE Usage Revision A

Debugging a COBOL Program

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The device for suspending execution of a program is called
a break. In this sample session, the following functions are used
to illustrate setting breaks:

FIRST

Displays the first screen of the source listing. Because FIRST
is a lower priority function, it may not be assigned to a
function key on terminals with only 16 function keys. Instead,
FIRST is entered on the home line.

FWD

Scrolls forward to the next screen of text.

LOCATE

Prompts you to type in text, then searches the source listing
for matching text. If a match is found, the cursor is moved to
the line containing the matching text.

SETBRK

Sets an execution break on the line containing the cursor. The
line is highlighted to show that it contains a break. Execution
is suspended before the line containing the break is executed.
Execution resumes with the statement on the line containing the
break.

This section also uses the following item:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

Perform the following steps to place two execution breaks in
EXAMPLE COB:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE COB:

PERFORM 6

The cursor is moved to the line:

PERFORM 6 TIMES

Revision A Source Language Debug Examples 7-31

Debugging a COBOL Program

3. Press the SETBRK function key. A break is set and the line
containing the cursor is highlighted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the line containing:

ADD TO MONTH-ROW

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE COB source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

5. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

6. Press the FIRST function key. The first screen of the
EXAMPLE_COB source listing is displayed in the Source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following on the home
line:

first

The first screen of the EXAMPLE COB source listing is displayed
in the Source window.

7-32 Debug for NOS/VE Usage Revision A

Debugging a COBOL Program

Debugging TEST!

Using Debug, you can execute a program one line or several lines at
a time. Also, you can examine a variable's contents, change its
contents, and execute code containing the variable several times.
These capabilities are demonstrated in this sample session using the
following functions:

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPI

Executes a program one line at a time.

STEPN

Executes N lines of a program, where N is an integer.

Perform the following steps to demonstrate the use of the CRAVAL,
GOTO, HSPEED, SEEVAL, STEPl, STEPN:

1. Press the STEPI function key. The first line of EXAMPLE_COB is
executed, moving the execution arrow to the statement:

MOVE 1 TO COUNTER.

2. Press the STEPI function key again. The MOVE statement is
executed; the execution arrow points to the statement:

PERFORM 10 TIMES

Revision A Source Language Debug Examples 7-33

Debugging a COBOL Program

3. Press the STEPl function key six times. An iteration of TESTl
is executed one line at a time. The output generated by the
iteration is displayed in the Output window.

4. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

counter

The value of COUNTER is displayed in the Output window:

counter=+2

Thus, you can use SEEVAL to observe the contents of a variable.

5. Press the CHAVAL function key. A prompt for a variable name and
its new value is displayed in the upper right hand corner of the
screen; enter:

counter"'S

The value of COUNTER is changed to 8.

6. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The following message is displayed in the Output window:

Thus, the change of COUNTER's value is verified.

7. Press the STEPN function key. In the upper right hand corner of
the screen, you are prompted for the number of lines to execute;
enter:

5

7-34 Debug for NOS/VE Usage Revision A

Debugging a COBOL Program

STEPN executes 5 statements of TEST1. The output generated by
this loop iteration is displayed in the Output window.

8. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The value of COUNTER is displayed in the Output window:

counter=+9

Therefore, the value given to COUNTER in step 5 is used by the
PERFORM statement.

9. Use the up-arrow key to move the cursor to the line:

MOVE 1 TO COUNTER.

10. Press the GOTO function key. The execution arrow moves to the
line containing the cursor; execution resumes with this
statement.

11. Press the HSPEED function key. Execution resumes from the MOVE
statement; COUNTER is initialized to O. Execution of
EXAMPLE COB continues until an execution break is encountered.

Revision A Source Language Debug Examples 7-35

Debugging a COBOL Program

Debugging TEST2

After program execution is resumed in step 11 of TESTl, it stops at
the break set on the PERFORM statement in TEST2. The following
functions are used in TEST2 to illustrate more Debug capabilities:

BKW

Scrolls backward to the previous screen of text.

DELBRK

Deletes execution breaks.

HSPEED

Executes a program until a break is encountered or the program
ends.

LSPEED

Executes a program one paragraph at a time.

This section also uses the following items:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

DISPLAY PROGRAM VALUE

A line mode Debug command that displays the values of program
variables.

Perform the following steps to learn how to execute loops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the PERFORM loop in TEST2j output generated
by the loop is displayed in the Output window.

2. Press the HSPEED function key again. One iteration of the
PERFORM loop is executedj execution stops at the break set at
the statement, ADD 1 TO MONTH ROW. Each time HSPEED is used, an
iteration of the loop is performed. By using strategically
placed execution breaks, as in this example, a loop can be
executed one iteration at a time.

7-36 Debug for NOSjVE Usage Revision A

Debugging a COBOL Program

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the HOME key. The cursor moves to the home line.

5. Enter the line mode Debug command:

display-program_value name=$all

The values of all variables in EXAMPLE COB are displayed in the
Output window. Thus, line mode Debug commands can be used in
screen mode Debug by entering them on the home line. For more
information about using line mode Debug commands see the Debug
Usage Manual.

6. Press the DELBRK key. The execution break is deleted. The
highlight is removed from the line when the break is removed.

7. Press the down-arrow key until the cursor is inside of the
Output window.

8. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window •

9. Press the LSPEED function key. The execution of EXAMPLE COB
resumes, stopping when TEST2 is exited. The execution arrow
points to the beginning of TEST3.

Revision A Source Language Debug Examples 7-37

Debugging a COBOL Program

Debugging TEST3

After resuming execution of EXAMPLE COB in step 9 of section TEST2,
execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used
in this sample session to demonstrate how Debug can be used when an
exectuion error is encountered:

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GO TO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the statement on this line.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPl

Executes a program one line at a time.

TRACE

Displays the chain of program units that were called to reach
the current line.

QUIT

Used to exit Debug.

Perform the following steps to finish the example:

1. Press the STEPl function key. The first statement of TEST3 is
executed and the execution arrow points to the next line to be
executed:

DIVIDE DIVIDEND BY DIVISOR GIVING QUOTIENT.

Since this statement has not been executed, you can use CRAVAL
to change the value of any variable in the statement before
continuing execution. In this example, such a change will not
be made.

2. Press the STEPl function key again. The DIVIDE statement is
executed, execution of EXAMPLE COB halts, and the following
message flashes in the top right hand corner of the screen:

divide fault

7-38 Debug for NOS/VE Usage Revision A

Debugging a COBOL Program

3. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor=+O

A division by zero caused the execution error.

4. Press the CRAVAL function key. When you are prompted, enter:

DIVISOR=l

The value of DIVISOR is changed to 1.

5. Press the SEEVAL function key. When you are prompted, enter:

DIVISOR

The following text is displayed in the Output window:

divisor=+!

The change to DIVISOR is verified.

6. Press the GOTO function key. The execution arrow points at the
DIVISION statement and program execution resumes with this
statement.

7. Press the STEPI function key. The DIVISION statement is
executed. Therefore, the GOTO and CRAVAL functions can be used
in concert to recover from execution errors. However, to
correct execution errors permanently, you must exit Debug, edit
the program, and recompile it.

8. Press the STEPI function key again. The result of the DIVISION
statement is displayed in the Output window.

9. Press the STEPI function key. EXAMPLE COB ends and the
following message is displayed in the Output window:

DEBUG: The status at termination was: NORMAL.

10. Press the TRACE function key. The call chain of program units
that led to the last executed statement in TEST3 is displayed.

11. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your COBOL programs.

Revision A Source Language Debug Examples 7-39

Debugging a CYBIL Program

Debugging a CYBIL Program

This example is presented as a sequence of steps. To get the most
benefit, you should create the sample program illustrated in figure
7-4, then perform each step as you read it. The sample program,
EXAMPLE CYB, provides three test cases to debug. Each test case in
EXAMPLE-CYB is used to demonstrate the application of some Debug
function keys. After you work this example, you will be able to
debug your CYBIL programs using Screen Mode Debug.

EXAMPLE CYB is divided into the following test cases:

TESTl

A loop that increments a counter and then calls a procedure to
square and display the count. TESTl demonstrates the use of the
CRAVAL, GOTO, HSPEED, SEEVAL, STEPl and STEPN functions.

TEST2

A loop that builds a 6-row table of 3-character strings. Input
to the table is an l8-character list for the months JAN through
JUN. TEST2 moves three characters at a time from the character
list to the table, and displays each entry. TEST2 shows how to
step through loops, use line mode Debug commands in screen mode
Debug, and how to scroll through Debug and program output data.

TEST3

A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

7-40 Debug for NOS/VE Usage Revision A

Debugging a CYBIL Program

MODULE example_cyb;

Copy I/O procedures.

TYPE

column = array [1 •• 3] of string(3),
twodim_array array [1 •• 6] of column;

CONST

VAR

Declare program variables.

divisor real := 0.0,
dividend real := 100.0,
quotient real,
cntr integer,
result integer,
month twodim_array,
month list string (18) := 'JANFEBMARAPRMAYJUN',
month-row integer := 0,
I integer := 10,
i integer,

Declare variables for I/O. }

lfn amt$local file name,
0 amt$file~dentTfier,
s ost$status,
f amt$file_byte_address,
newline string (90),
m1 string (7) := ' times ,

m2 string (3) := ,
m3 string (16) := ' The month is:
m4 string (19) := ' The quotient is: '. ,

PROGRAM main;

These calls specify file attributes and open files. }

lfn := '$OUTPUT';
amp$open (lfn, amc$record, NIL, 0, s);

(Continued)
Figure 7-4 Debug Example: Source File EXAMPLE CYB

Revision A Source Language Debug Examples 7-41

Debugging a CYBIL Program

(Continued)

TEST1: Add to counter and call procedure SQUARE to square
and display count.

FOR cntr := 1 TO 10 DO
square (cntr,result);
stringrep(newline,l,' ',cntr:3,m1,cntr:3,m2,result:4);
amp$put next(o,Anewline,maximum record length,f,s);

FOREND: - - -

TEST2: Create single column table for each month. }

WHILE month row < 6 DO

FOR i := 1 TO 3 DO
month[month_row][i] := month_list(month_row*3+1,3);

FOREND;

stringrep(newline,l,' ',m3,month[month row][i]:8);
amp$put next(o,Anewline,maximum record-Iength,f,s);
month_row := month_row + 1; - -

WHILEND;

TEST3: Create divide fault. }

quotient := dividend / divisor;
stringrep(newline,l,' ',m4:19,quotient:6:1);
amp$put_next(o,Anewline,maximum_record_length,f,s);

PROCEND main;

Procedure for squaring numbers.

PROCEDURE [XDCL] square
a : integer;

VAR b integer;

b := a * a;

PROCEND square;

MODEND example_cyb;

Figure 7-4. Debug Example: Source File EXAMPLE CYB

7-42 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a CYBIL Program

Preparing to Debug

After you create EXAMPLE_CYB, you must prepare it for use with
screen mode Debug. This requires preparing the screen mode
environment and compiling EXAMPLE CYB for use with Debug. You can
then execute it under screen mode-Debug control. Do this as follows:

1. EXAMPLE CYB calls several file interface procedures that must be
expanded through commands provided in the Source Code Utility
(SCU) before the source code can be compiled. To do this, enter
the following commands:

/create source library
/scu create deck deck=example cyb modification=ml
•• /source=$user.example cyb -
/scu expand deck deck=e~ample cyb
•• /alternate base=$system.cybTI.osf$program interface
•• /compile=$user.compile -

2. Prepare for screen mode debugging and compile EXAMPLE CYB now
contained in permanent file $USER.COMPILE for use witn Debug by
entering the following commands:

/change interaction style style=screen
/cybil input=$user.~ompile binary=lgo ••
•• /optimization_level=debug debug_aids=all

3. Execute under control of Debug by entering the following command:

/execute_task file=lgo debug_mode=on

The source module of EXAMPLE CYB is displayed in the Source
window. Debug functions are-displayed at the the bottom of the
screen.

Revision A Source Language Debug Examples 7-43

Debugging a CYBIL Program

Displaying Screen Mode Commands

The functions below are used to display helpful information about
the Debugging enviornment:

HELP

Displays the Help window. Press a function key and a short
explanation of the function's use appears in the Help window.

ZMIN

Used to display the source listing in the Source window.

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to the functions displayed
at the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMIN function key. The following message is displayed
in the upper right hand corner of the screen:

Enter compiler input file for EXAMPLE CYB

5. Enter the source file name:

$user.compile

The source listing of EXAMPLE CYB is displayed in the Source
window. Also, some new functions are displayed at the bottom of
the screen.

6. Press the HELP key. The Help window is displayed again.

7. Press each function key corresponding to the new functions
displayed at the bottom of the screen. As you press each
function key, a short explanation of the purpose of each new
function is displayed in the Help window.

8. Press RETURN. Exit HELP.

7-44 Debug for NOS/VE Usage Revision A

Debugging a CYBIL Program

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The device for suspending execution of a program is called
a break. In this sample session, the following functions are used
to illustrate setting breaks.

FIRST

Displays the first screen of the source listing. Because FIRST
is a lower priority function, it may not be assigned to a
function key on thermina1s with only 16 function keys. Instead,
FIRST is entered on the home line.

FWD

Scrolls forward to the next screen of text.

LOCATE

Prompts you to type in text, then searches the source listing
for matching text. If a match is found, the cursor is moved to
the line containing the matching text.

SETBRK

Sets an execution break on the line containing the cursor. The
line is highlighted to show that it contains a break. Execution
is suspended before the line containing the break is executed.
Execution resumes with the statement on the line containing the
break.

This section also uses the following item:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

Revision A Source Language Debug Examples 7-45

Debugging a CYBIL Program

Perform the following steps to place three execution breaks in
EXAMPLE CYB:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE CYB:

WHILE

The cursor is moved to the line:

WHILE month row < 6 DO

3. Press the SETBRK function key. A break is set and the line
containing the cursor is highlighted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the line:

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE CYB source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

5. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

6. Use the down-arrow key to move the cursor to the line:

quotient := dividend / divisor;

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE CYB source listing is displayed.
Use the down-arrow key to position the cursor on that line.

7. Press the SETBRK function key. The line is highfighted to show
that it contains an execution break.

8. Press the FIRST function key. The first screen of the
EXAMPLE_CYB source listing is displayed in the Source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following on the home
line:

first

The first screen of the EXAMPLE CYB source listing is displayed
in the Source window.

7-46 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a CYBIL Program

Debugging TESTI

Using Debug, you can execute a program one line or several lines at
a time. Also, you can examine a variable's contents, change its
contents, and execute code containing the variable several times.
These capabilities are demonstrated in this sample session using the
following functions:

CHAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the first statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEE VAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPl

Executes a program one line at a time.

STEPN

Executes N lines of a program, where N is an integer.

Revision A Source Language Debug Examples 7-47

Debugging a CYBIL Program

Perform the following steps to demonstrate the use of the CHAVAL,
GOTO, HSPEED, SEE VAL , STEPl, STEPN:

1. Press the STEPI function key. The statement:

lfn := '$OUTPUT';

is executed; the execution arrow now points to the statement:

amp$open(lfn,amc$record,NIL,o,s);

2. Press the STEPI function key again. The AMP$OPEN procedure is
executed; moving the execution arrow to the first executable
line in TEST 1 :

FOR cntr := 1 TO 10 DO

3. Press the STEPI function key seven times. An iteration of FOR
loop is executed one statement at a time. The output generated
by the iteration is displayed in the Output window.

4. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

cntr

The value of CNTR is displayed in the Output window:

cntr = 2

Thus, you can use SEEVAL to observe the contents of a variable.

5. Press the CHAVAL function key. A prompt for a variable name and
its new value is displayed in the upper right hand corner of the
screen;. enter:

cntr=8

The value of CNTR is changed to 8.

6. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

cntr

The following message is displayed in the Output window:

cntr = 8

Thus, the change of CNTR's value is verified.

7-48 Debug for NOS/VE Usage Revision A

(

(

(

(

Debugging a CYBIL Program

7. Press the STEPN function key. In the upper right hand corner of
the screen, you are prompted for the number of lines to execute;
enter:

6

STEPN executes 6 lines. The output generated by this loop
iteration is displayed in the Output window.

8. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

cntr

The value of COUNTER is displayed in the Output window:

cntr = 3

Only the value of CNTR passed to the SQUARE call was changed.
The value of a FOR loop control variable cannot be changed once
the loop has been entered. Therefore, the value of CNTR used by
this FOR loop remains unchanged.

9. Use the up-arrow key to move the cursor to the line:

FOR cntr := 1 TO 10 DO

10. Press the GOTO function key. The execution arrow moves to the
line containing the cursor; execution resumes at this line.

11. Press the HSPEED function key. Execution resumes from the FOR
statement. Since the FOR loop is executed anew, CNTR is
initialized to 1. Execution of EXAMPLE eYB continues until an
execution break is encountered.

Revision A Source Language Debug Examples 7-49

Debugging a CYBIL Program

Debugging TEST2

After program execution is resumed in step 12 of TEST1, execution
stops at the break set on the first statement in TEST2. The
following functions are used in TEST2 to illustrate more Debug
capabilities:

BKW

Scrolls backward to the previous screen of text.

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

DELBRK

Deletes execution breaks.

FWD

Scrolls forward to the next screen of text.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

This section also uses the following items:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

DISPLAY PROGRAM VALUE - -
A line mode Debug command that displays the values of program
variables.

7-50 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a CYBIL Program

Perform the following steps to learn how to execute loops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the WHILE loop; output generated by the loop
is displayed in the Output window.

2. Press the HSPEED function key again. One iteration of the WHILE
loop is executed; execution stops at the break set in the WHILE
loop again. Each time HSPEED is used, an iteration of the loop
is performed. By using strategically placed execution breaks,
as in this example, a loop can be executed one iteration at a
time.

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the SEEVAL function key. When you are prompted, enter:

month row

The following message is displayed in the Output window:

month row = 2

5. Press the CRAVAL function key. When you are prompted, enter:

month row=4

6. Press the SEEVAL function key. When you are prompted, enter:

month row

The following message is displayed in the Output window:

month row = 4

Thus, the change to MONTH ROW is verified.

7. Press the HSPEED function key. One iteration of the WHILE loop
is executed.

Revision A Source Language Debug Examples 7-51

Debugging a CYBIL Program

8. Press the SEEVAL function key. When you are prompted, enter:

month row

the following message is then displayed in the Output window:

month row 5

The value given to MONTH ROW in step 5 is used by the WHILE loop.

9. Press the HOME key. The cursor moves to the home line.

10. Enter the line mode Debug command:

display-program_value name=$all

The values of all variables declared in EXAMPLE CYB are
displayed in the Output window. Thus, line mode Debug commands
can be used in screen mode Debug by entering them on the home
line. For more information about using line mode Debug commands
see the Debug Usage Manual.

11. Press the DELBRK key. The execution break is deleted. The
highlight is removed from the line when the break is removed.

12. Press the down-arrow key until the cursor is inside of the
Output window.

13. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window •

14. Press the HSPEED function key. The execution of EXAMPLE CYB
resumes, stopping at the next break. The execution arrow points
to the first statement in TEST3.

7-52 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a CYBIL Program

Debugging TEST3

After resuming execution of EXAMPLE_CYB in step 14 of section TEST2,
execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used
in this sample session to demonstrate how Debug can be used when an
execution error is encountered:

CHAVAL

Prompts you to enter a variable name and the value you want it
to contain, theri changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the first statement on this line.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPI

Executes a program one line at a time.

QUIT

Used to leave Debug.

Perform the following steps to finish the example:

1. Press the STEPI function key. Execution halts, and the
following message flashes in the top right hand corner of the
screen:

2. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor = O.

A division by zero caused the execution error.

Revision A Source Language Debug Examples 7-53

Debugging a CYBIL Program

3. Press the CRAVAL function key. When you are prompted, enter:

divisor=l.O

The value of DIVISOR is changed to 1.

4. Press the SEEVAL function key. When you are prompted, enter:

divisor

The following text is displayed in the Output window:

divisor=l.OOOOOOOOOOOOOOE+OOOO

The change to DIVISOR is verified.

5. Press the GOTO function key. The execution arrow points to the
DIVISION statement, so program execution resumes with this
statement.

6. Press the STEPI function key. The DIVISION statement is
executed. Therefore, the GOTO and CRAVAL functions can be used
in concert to recover from execution errors. However, to
correct execution errors permanently, you must exit Debug, edit
the program, and recompile it.

7. Press the STEPI function key two more times. The result of the
DIVISION statement is displayed in the Output window.

9. Press the STEPI function key. EXAMPLE CYB ends and the
following message is displayed in the Output window:

DEBUG: The status at termination was: NORMAL.

12. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your CYBIL programs.

7-54 Debug for NOS/VE Usage Revision A

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Debugging a lFORTRAN Veraion 1 or
lFORTRAN Version 2 Program
This example is presented as a sequence of steps. To get the most
benefit, you should create the sample program illustrated in figure
7-5, then perform each step as you read it. The sample program,
FORTEX, provides three test cases to debug and can be compiled for
FORTRAN Version I or FORTRAN Version 2. Each test case in FORTEX is
used to demonstrate the application of some Debug function keys.
After you work this example, you will be able to debug your FORTRAN
programs using Screen Mode Debug.

EXAFORT is divided into the following test cases:

TESTl

A loop that increments a counter and then calls a subprogram to
square and display the count. TESTI demonstrates the use of the
CHAVAL, GOTO, HSPEED, SEEVAL, STEPI and STEPN functions.

TEST2

A loop that builds a 6-row table of 3-character strings. Input
to the table is an IS-character list for the months JAN through
JUN. TEST2 moves three characters at a time from the character
list to the table and displays each entry. TEST2 shows how to
step through loops, use line mode Debug commands in screen mode
Debug, and how to scroll through Debug and program output data.

TEST3

A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

Revision B Source Language Debug Examples 7-55

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

PROGRAM EXAFORT

CHARACTER TABLE(6)*3, LIST*18
REAL DIVDEND, DIVISOR, QUOTENT, COUNTER, RESULT
INTEGER COLUMN, ROW
DATA DIVDEND, DIVISOR, COLUMN/100.,0.,1/
DATA LIST/'JANFEBMARAPRMAYJUN'/

**
* TEST1: Add to counter and call procedure to square and *
* display count. *
**

DO 10 COUNTER = 1,10
CALL SQUARE (COUNTER)

10 CONTINUE

**
* TEST2: Create single column table for each month. *
**

20

DO 20 ROW = 1, 6
TABLE(ROW) = LIST(COLUMN :
PRINT*, 'THE MONTH IS:
COLUMN = COLUMN + 3

CONTINUE

COLUMN + 2)
TABLE (ROW)

**
* TEST3: Create divide fault. *
**

QUOTENT = DIVDEND / DIVISOR
PRINT*, 'ANSWER IS: " QUOTENT

END

**
* Subroutine SQUARE *
**

SUBROUTINE SQUARE (COUNTER)
RESULT = O.
RESULT = COUNTER * COUNTER
PRINT*, COUNTER, ' TIMES' COUNTER, '

END

Figure 7-5. Debug Example: Source File EXAFORT

7-56 Debug for NOS/VE Usage

RESULT

Revision B

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Preparing to Debug

After you create EXAFORT, you must prepare it for use with screen
mode Debug. This requires preparing the screen mode environment and
compiling EXAFORT for use with Debug. You can then execute it under
screen mode Debug control. Do this as follows:

1. Assuming EXAFORT is contained in permanent file $USER.EXAFORT,
prepare and compile EXAFORT using the FORTRAN or VECTOR_FORTRAN
command with the OPTIMIZATION LEVEL=DEBUG and DEBUG AIDS=ALL
compiler parameters by enteri;g the following comma;ds:

/change interaction style style=screen
/fortra; input=$use~.exafort binary object=lgo
.... optimization_level=debug debug_afds=all

or, if compiling a FORTRAN Version 2 program:

/change interaction style style=screen
/vector-fortran input=$user.exafort binary object=lgo
•• /opti;ization~evel=debug debug_aids=all-

2. Execute EXAFORT under control of Debug by entering the following
command:

/execute_task file=lgo debug_mode=on

The source listing of EXAFORT is displayed in the Source
window. The Debug functions are displayed at the bottom of the
screen.

Revision B Source Language Debug Examples 7-57

I Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Display Screen Mode Commands

The function below is used to display helpful information about the
Debugging enviornment:

HELP

Displays the Help window. Press a function key and a short
explanation of the function's use appears in the Help window.

ZMIN

Used to display the source listing in the Source window.

ZMOUT

Used to display the FORTRAN program modules in the Source window.

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to a function displayed at
the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMOUT function key. The modules of EXAFORT are
displayed.

s. Press the ZMIN function key. The source listing of EXAFORT is
displayed again. The ZMIN and ZMOUT function keys are used to
display the source listing or the modules of the program,
respectively.

7-58 Debug for NOS/VE Usage Revision B

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program I

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The Debug device for suspending execution of a program is
called a break. In this sample session, the following functions are
used to illustrate setting breaks:

FIRST

Displays the first screen of the source listing. Because FIRST
is a lower priority function, it may not be assigned to a
function key on therminals with only 16 function keys. Instead,
FIRST is entered on the home line.

FWD

Scrolls forward to the next screen of text.

LOCATE

Prompts you to type in text, then searches the source listing
for matching text. If a match is found, the cursor is moved to
the line containing the matching text.

SETBRK

Sets an execution break on the line containing the cursor. The
line is highlighted to show that it contains a break. Execution
is suspended before the line containing the break is executed.
Execution resumes with the statement on the line containing the
break.

This section also uses the following item:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

Revision B Source Language Debug Examples 7-59

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Perform the following steps to place three execution breaks in
EXAFORT:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAFORT:

00 20

The cursor is moved to the line:

DO 20 ROW = 1,6

3. Press the SETBRK function key. A break is set and the line
containing t~e cursor is highlighted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the line containing:

COLUMN = COLUMN + 3

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAFORT source listing is displayed. Use
the down-arrow key to position the cursor on the correct line.

5. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

6. Use the down-arrow key·to move the cursor to the line:

QUOTENT = DIVDEND / DIVISOR

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAFORT source listing is displayed. Use
the down-arrow key to position the cursor on the correct line.

7. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

8. Press the FIRST function key. The first screen of the EXAFORT
source listing is displayed in the Source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following on the home
line:

first

The first screen of the EXAFORT source listing is displayed in
the Source window.

7-60 Debug for NOS/VE Usage Revision B

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Debugging TESTl

Using Debug, you can execute a program one line or several lines at
a time. Also, you can examine a variable's contents, change its
contents, and execute code containing the variable several'times.
These capabilities are demonstrated in this sample session using the
following functions:

CHAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEP1

Executes a program one line at a time.

STEPN

Executes N lines of a program, where N is an integer.

Revision B Source Language Debug Examples 7-61

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Perform the following steps to demonstrate the use of the CRAVAL,
GOTO, RSPEED, SEEVAL, STEP1, STEPN:

1. Press the STEP1 function key. The first statement of
EXAMPLE FORT is executed, moving the execution arrow to the
statement:

DO 10 COUNTER = 1,10

2. Press the STEPl function key again. The DO statement is
executed; the execution arrow points to the statement:

CALL SQUARE (COUNTER)

3. Press the STEPl function key six times. An iteration of TEST1
is executed one line at a time. The output generated by the
iteration is displayed in the Output window.

4. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

counter

The value of COUNTER is displayed in the Output window:

counter = 2.

Thus, you can use SEEVAL to observe the contents of a variable.

5. Press the CRAVAL function key. A prompt for a variable name and
its new value is displayed in the upper right hand corner of the
screen; enter:

counter=8

The value of COUNTER is changed to 8.

6. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The following message is displayed in the Output window:

counter = 8.

Thus, the change of COUNTER's value is verified.

7-62 Debug for NOS/VE Usage Revision B

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program I

7. Press the STEPN function key. In the upper right hand corner of
the screen, you are prompted for the number of lines to execute;
enter:

6

STEPN executes 6 statements of TEST1. The output generated by
this loop iteration is displayed in the Output window.

8. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The value of COUNTER is displayed in the Output window:

counter = 9.

Therefore, the value given to COUNTER in step 5 is used by the
DO statement.

9. Use the up-arrow key to move the cursor to the line:

DO 10 COUNTER = 1,10

10. Press the GOT a function key. The execution arrow moves to the
line containing the cursor; execution resumes with this
statement.

11. Press the HSPEED function key. Execution resumes from the DO
statement; COUNTER is initialized to 1. Execution of EXAFORT
continues until an execution break is encountered.

Revision B Source Language Debug Examples 7-63

I Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Debugging TEST2
After program execution is resumed in step 11 of TESTl, it stops at
the break set on the DO statement in TEST2. The following functions
are used in TEST2 to illustrate more Debug capabilities:

BKW

Scrolls backward to the previous screen of text.

DELBRK

Deletes execution breaks.

HSPEED

Executes a program until a break is encountered or the program
ends.

This section also uses the following items:

HOME

Press the HOME key to move the cursor to the home line. line
mode Debug commands can be entered on the home line for
execution in screen mode Debug.

DISPLAY PROGRAM VALUE - -
A line mode Debug command that displays the values of program
variables.

7-64 Debug for NOS/VE Usage Revision B

(

(

)

\
)

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program I
Perform the following steps to learn how to execute loops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the DO loop in TEST2; output generated by
the loop is displayed in the Output window.

2. Press the HSPEED function key again.
loop is executed; execution stops at
COLUMN = COLUMN + 3 statement. Each
iteration of the loop is performed.
placed execution breaks, as in this
executed one iteration at a time.

One iteration of the DO
the break set at the
time HSPEED is used, an
By using strategically

example, a loop can be

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the HOME key. The cursor moves to the home line.

s. Enter the line mode Debug command:

display-program_value name=$all

The values of all variables in EXAFORT are displayed in the
Output window. Thus, line mode Debug commands can be used in
screen mode Debug by entering them on the home line. For more
information about using line mode Debug commands see the Debug
Usage Manual.

6. Press the DELBRK key. The execution break is deleted. The
highlight is removed from the line when the break is removed.

7. Press the down-arrow key until the cursor is inside of the
Output window.

8. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window.

9. Press the HSPEED function key. The execution of EXAFORT
resumes, stopping when the line containing the third break is
reached. The execution arrow points to the first statement of
TEST3.

Revision B Source Language Debug Examples 7-65

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

Debugging TEST3

After resuming execution of EXAFORT in step 9 of section TEST2,
execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used
in this sample session to demonstrate how Debug can be used when an
exectuion error is encountered:

CHAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the statement on this line.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPI

Executes a program one line at a time.

QUIT

Used to exit Debug.

Perform the following steps to finish the example:

1. Press the STEPI function key again. The DIVISION statement is
executed, execution of EXAFORT halts, and the following message
flashes in the top right hand corner of the screen:

2. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor = O.

A division by zero caused the execution error.

7-66 Debug for NOS/VE Usage Revision B

(

(
\.

)

Debugging a FORTRAN Version 1 or FORTRAN Version 2 Program

3. Press the CRAVAL function key. When you are prompted, enter:

divisor=l

The value of DIVISOR is changed to 1.

4. Press the SEEVAL function key. When you are prompted, enter:

divisor

The following text is displayed in the Output window:

divisor = 1.

The change to DIVISOR is verified.

5. Press the GOTO function key. The execution arrow points at the
DIVISION statement and program execution resumes with this
statement.

6. Press the STEPI function key. The DIVISION statement is
executed. Therefore, the GOTO and CHAVAL functions can be used
in concert to recover from execution errors. However, to
correct execution errors permanently, you must exit Debug, edit
the program, and recompile it.

7. Press the STEPI function key again. The result of the DIVISION
statement is displayed in the Output window.

8. Press the STEPI function key. EXAFORT ends and the following
message is displayed in the Output window:

DEBUG: The status at termination was: NORMAL.

9. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your FORTRAN or FORTRAN
Version 2 programs.

Revision B Source Language Debug Examples . 7-67

Debugging a Pascal Program

Debugging a Pascal Program
This example is presented as a sequence of steps. To get the most
benefit, you should create the sample program illustrated in figure
7-6, then perform each step as you read it. The sample program,
EXAMPLE PAS, provides three test cases to debug. Each test case in
EXAMPLE-PAS is used to demonstrate the application of some Debug
functio~ keys. After you work this example, you will be able to
debug your Pascal programs using Screen Mode Debug.

EXAMPLE PAS is divided into the following test cases:

TESTI

A procedure that increments a counter and then calls a procedure
to square and display the count. TESTI demonstrates the use of
the CRAVAL, GOTO, HSPEED, SEEVAL, STEPI, and STEPN functions.

TEST2

A loop that builds a 6-row table of 3-character strings. Input
to the table is an 18-character list for the months JAN through
JUN. TEST2 moves three characters at a time from the character
list to the table, and displays each entry. TEST2 shows how to
step through loops, use line mode Debug commands in screen mode
Debug, and how to scroll through Debug and program output data.

TEST3

A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

7-68 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a Pascal Program

PROGRAM EXAMPLE_PAS (output);

The main program EXAMPLE PAS makes a call to each of the }
three test cases.} -

VAR
real; divisor, dividend, quotient

month
month list

ARRAY[1 •• 6, 1 •• 3] OF char;
string(18);

VALUE
divisor
dividend
month list

0.0;
100.0;
'JANFEBMARAPRMAYJUN';

PROCEDURE squaring-procedure(counter

VAR
result : integer;

BEGIN
result := counter * counter;

integer) ;

writeln(' ',counter:2,' times',counter:2,' =',result:2);
END;

TEST1: Add to counter and call procedure to square and}
display count. }

PROCEDURE test1;

VAR
counter : integer;

BEGIN {test1}
FOR counter := 1 TO 10 DO

squaring-procedure (counter);
END; {test1}

Figure 7-6. Debug Example: Source File EXAMPLE PAS
(Continued)

Revision A Source Language Debug Examples 7-69

Debugging a Pascal Program

(Continued)

{TEST2: Create single column table for each month. }

PROCEDURE test2;

VAR
i, month row integer;

VALUE
month row = 0;

BEGIN {test2}
WHILE month row < 6 DO

BEGIN -
write(' The month is');
FOR i := 1 TO 3 DO

BEGIN
month[month row] [i]:=month list[month row*3+1];
write(monthTmonth row] [i]);

END; -
writeln(' ');
month row := month row + 1;

END; -
END; {test2}

PROCEDURE test3;

TEST3: Create divide fault. }

BEGIN {test3}
quotient := dividend / divisor;
writeln(' The quotient is:',quotient:4:2);

END; {test3}

Main program code follows. }

BEGIN {Main}
testl;
test2;
test3;

END.

Figure 7-6. Debug Example: Source File EXAMPLE PAS

7-70 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a Pascal Program

Preparing to Debug

After you create EXAMPLE_PAS, you must prepare it for use with
screen mode Debug. This requires preparing the screen mode
environment and compiling EXAMPLE PAS for use with Debug. You can
then execute it under screen mode-Debug control. Do this as follows:

1. Assuming EXAMPLE PAS is contained in permanent file
$USER.EXAMPLE_PAS, prepare and compile EXAMPLE_PAS using the
Pascal command with the OPTIMIZATION LEVEL=DEBUG and
DEBUG AIDS=DT compiler parameters by-entering the following
commands:

/change interaction style style = screen
/pascal-input = $user.EXAMPLE PAS binary 19o
•• /optimization_level = debug-debug_aids all

2. Execute EXAMPLE PAS under control of Debug by entering the
following comma;d:

/execute_task file = 19o debug_mode = on

The source module of EXAMPLE PAS is displayed in the Source
window. Debug functions are-displayed at the the bottom of the
screen.

Displaying Screen Mode Commands

The functions below are used to display helpful information about
the Debugging enviornment:

HELP

Displays the Help window. Press a function key and a short
explanation of the function's use appears in the Help window.

ZMIN

Used to display the source listing in the Source window.

Revision A Source Language Debug Examples 7-71

Debugging a Pascal Program

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to the functions displayed
at the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMIN function key. The following message is displayed
in the upper right hand corner of the screen:

Enter compiler input file for EXAMPLE PAS

5. Enter the source file name:

EXAMPLE PAS

The EXAMPLE PAS source listing is displayed in the Source
window. Also, some new functions are displayed at the bottom of
the screen.

6. Press the HELP key. The Help window is displayed again.

7. Press each function key corresponding to the new functions
displayed at the bottom of the screen. As you press each
function key, a short explanation of the purpose of each new
function is displayed in the Help window.

8. Press RETURN. Exit HELP.

7-72 Debug for NOS/VE Usage Revision A

(

(

)

Debugging a Pascal Program

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The device for suspending execution of a program is called
a break. In this sample session, the following functions are used
to illustrate setting breaks.

FWD

Scrolls forward to the next screen of text.

FIRST

Displays the first screen of the source listing. Because first
is a lower priority function, it may not be assigned to a
function key on terminals with only 16 keys. Instead, FIRST is
entered on the home line.

LOCATE

Prompts you to type in text, then searches the source listing
for matching text. If a match is found, the cursor is moved to
the line containing the matching text.

SETBRK

Sets an execution break on the line containing the cursor. The
line is highlighted to show that it contains a break. Execution
is suspended before the line containing the break is executed.
Execution resumes with the first statement on the line
containing the break.

This section also uses the following item:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

Revision A Source Language Debug Examples 7-73

Debugging a Pascal Program

Perform the following steps to place two execution breaks in
EXAMPLE PAS:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE PAS:

The cursor is moved to the line:

3. Press the SETBRK function key. A break is set and the line
containing the cursor is highlighted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the procedure call:

test2;

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE_PAS source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

5. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

6. Press the FIRST function key. The first screen of the
EXAMPLE_PAS source listing is displayed in the source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following screen mode
Debug function on the home line:

first

The first screen of the EXAMPLE PAS source listing is displayed
in the Source window.

7-74 Debug for NOS/VE Usage Revision A

(

(

(

)

Debugging a Pascal Program

Debugging TEST!

Using Debug, you can execute a program one line or several lines at
a time. Also, you can examine a variable's contents, change its
contents, and execute code containing the variable several times.
These capabilities are demonstrated in this sample session using the
following functions:

CHAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the first statement on this line.

HSPEED

Executes a program until a break is encountered or the program
ends.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEPl

Executes a program one line at a time.

STEPN

Executes N lines of a program, where N is an integer.

Revision A Source Language Debug Examples 7-75

Debugging a Pascal Program

Perform the following steps to demonstrate the use of the CRAVAL,
GOTO, HSPEED, SEEVAL, STEPI, STEPN:

1. Press the STEPI function key. The PROGRAM statement is
executed; the execution arrow now points to the statement:

BEGIN {Main}

2. Press the STEPI function key again. The BEGIN statement is
executed, moving the execution arrow to the procedure call:

testl;

3. Press the STEPI function key. The TESTI procedure call is
executed; the arrow points to the first executable statement in
TESTI.

4. Press the STEPI function key seven times. An iteration of TESTI
is executed one line at a time. The output generated by the
iteration is displayed in the Output window.

5. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

counter

The value of COUNTER is displayed in the Output window:

counter = 2

Thus, you can use SEEVAL to observe the contents of a variable.

6. Press the CRAVAL function key. A prompt for a variable name and
its new value is displayed in the upper right hand corner of the
screen; enter:

counter = 8

The value of COUNTER is changed to 8.

7. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The following message is displayed in the Output window:

counter = 8

Thus, the change of COUNTER's value is verified.

7-76 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a Pascal Program

8. Press the STEPN function key. In the upper right hand corner of
the screen, you are prompted for the number of lines to execute;
enter:

5

STEPN executes 5 lines of TESTI. The output generated by this
loop iteration is displayed in the Output window.

9. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The value of COUNTER is displayed in the Output window:

counter = 3

Only the value of COUNTER passed to the SQUARING PROCEDURE call
was changed. The value of a FOR loop control variable cannot be
changed once the loop has been entered. Therefore, the value of
COUNTER used by this FOR loop remains unchanged.

10. Use the up-arrow key to move the cursor to the line:

BEGIN {testl}

11. Press the GOTO function key. The execution arrow moves to the
line containing the cursor; execution resumes at this line.

12. Press the HSPEED function key. Execution resumes from the BEGIN
statement. Since the FOR loop is executed anew, COUNTER is
initialized to 1. Execution of EXAMPLE PAS continues until an
execution break is encountered.

Revision A Source Language Debug Examples 7-77

Debugging a Pascal Program

Debugging TEST2

After program execution is resumed in step 12 of TEST1, execution
stops at the break set on the TEST2 procedure call. The following
functions are used in TEST2 to illustrate more Debug capabilities:

BKW

Scrolls backward to the previous screen of text.

CRAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

DELBRK

Deletes execution breaks.

FWD

Scrolls forward to the next screen of text.

HSPEED

Executes a program until a break is encountered or the program
ends.

MSPEED

Executes a program one procedure at a time.

SEE VAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

This section also uses the following items:

HOME

Moves the cursor to the home line. Line mode Debug commands can
be entered on the home line for execution in screen mode Debug.

DISPLAY PROGRAM VALUE - -
A line mode Debug command that displays the values of program
variables.

7-78 Debug for NOSjVE Usage Revision A

(

(

(

Debugging a Pascal Program

Perform the following steps to learn how to execute loops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the WHILE loop in TEST2; output generated by
the loop is displayed in the Output window.

2. Press the HSPEED function key again. One iteration of the WHILE
loop is executed; execution stops at the break set in the WHILE
loop again. Each time HSPEED is used, an iteration of the loop
is performed. By using strategically placed execution breaks,
as in this example, a loop can be executed one iteration at a
time.

3. Press the HSPEED function key. One more loop iteration is
performed.

4. Press the SEEVAL function key. When you are prompted, enter:

The following message is displayed in the Output window:

month row = 2

5. Press the CRAVAL function key. When you are prompted, enter:

month row = 4

6. Press the SEEVAL function key. When you are prompted, enter:

month row

The following message is displayed in the Output window:

month row = 4

Thus, the change to MONTH ROW is verified.

7. Press the HSPEED function key. One iteration of the WHILE loop
is executed.

Revision A Source Language Debug Examples 7-79

Debugging a Pascal Program

8. Press the SEEVAL function key. When you are prompted, enter:

month row

the following message is then displayed in the Output window:

month row 5

The value given to MONTH ROW in step 5 is used by the WHILE loop.

9. Press the HOME key. The cursor moves to the home line.

10. Enter the line mode Debug command:

display-program_value name = $all

The values of all variables declared in EXAMPLE PAS are
displayed in the Output window. Thus, line mode Debug commands
can be used in screen mode Debug by entering them on the home
line. For more information about using line mode Debug commands
see the Debug Usage Manual.

11. Press the DELBRK key. The execution break is deleted. The
highlight is removed from the line when the break is removed.

12. Press the down-arrow key until the cursor is inside of the
Output window.

13. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window •

14. Press the MSPEED function key. The execution of EXAMPLE PAS
resumes, stopping when TEST2 is exited. The execution arrow
points to the beginning of TEST3.

7-80 Debug for NOS/VE Usage Revision A

(

(

(

Debugging a Pascal Program

Debugging TEST3

After resuming execution of EXAMPLE PAS in step 14 of section TEST2,
execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used
in this sample session to demonstrate how Debug can be used when an
execution error is encountered:

CHAVAL

Prompts you to enter a variable name and the value you want it
to contain, then changes the variable's contents to the new
value.

GOTO

Moves the execution pointer to the line that contains the
cursor. Execution resumes with the first statement on this line.

SEEVAL

Prompts you to enter a variable name, then displays the value of
the variable in the Output window.

STEP1

Executes a program one line at a time.

QUIT

Used to leave Debug.

Perform the following steps to finish the example:

1. Press the STEP1 function key two times. The first two
statements of TEST3 are executed and the execution arrow points
to the next line to be executed:

quotient = dividend / divisor;

2. Press the STEP1 function key again. Execution halts, and the
following message flashes in the top right hand corner of the
screen:

divide fault

Revision A Source Language Debug Examples 7-81

Debugging a Pascal Program

3. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor = 0

A division by zero caused the execution error.

4. Press the CHAVAL function key. When you are prompted, enter:

divisor = 5.0

The value of divisor is changed to 5.

5. Press the SEEVAL function key. When you are prompted, enter:

divisor

The following text is displayed in the Output window:

divisor = 5.00000E+OOOO

The change to DIVISOR is verified.

6. Press the GOTO function key. The execution arrow points to the
DIVISION statement, so program execution resumes with this
statement.

7. Press the STEPI function key two times. The DIVISION statement
is executed. Therefore, the GOTO and CHAVAL functions can be
used in concert to recover from execution errors. However, to
correct execution errors permanently, you must exit Debug, edit
the program, and recompile it.

8. Press the STEPI function key again. The result of the DIVISION
statement is displayed in the Output window.

9. Press the STEPI function key two more times. EXAMPLE PAS ends
and the following message is displayed in the Output window:

Debug: The status at termination was: Normal.

10. Press the QUIT function key. Exit Debug.

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your Pascal programs.

7-82 Debug for NOS/VE Usage Revision A

(

(

Appendixes

A Glossary ••• A-I

B

C

Related Manuals

ASCII Character Set ••

B-1

C-1

(

(
\.

(

A

Ac tive Call Chain

List of calls that led to the current procedure.

B

ISA::ilC

An elementary programming language whose name is an acronym for
Beginner's All-Purpose Symbolic Instruction Code.

Batch Debugging

Debugging when the user has no direct control of debugging
during program execution. Contrast with Interactive Debugging.

Batch Mode

An execution mode in which a job is submitted and processed as a
unit with no intervention from the user. Compare with
Interac tive Mode.

Beginning-of-Information (BOI)

The file boundary that marks the beginning of the file.

Binary Obj ect Program

An executable machine language program that is produced from a
source.

Binding

The process of combining modules to form a new load module.

BOI

See Beginning-of-Information

Bound Module

A load module formed by binding other modules.

Revision A Glossary A-I

Break

c
C

The primary mechanism for Debug to gain control from an
executing program. A break specifies an event and an address
range such that when the event occurs within the address range,
Debug takes control.

A high-level language for programming a computer.

COBOL

COmmon Business Oriented Language. A business language for
programming a computer.

Compile

To translate a program written in a high-level language into a
machine language program that can be loaded and executed.

Condition Handler

A procedure called when an exception condition occurs.
Condition handler processing occurs after Debug processing if
Debug mode is on. The procedure is called only if it has been
established as the condition handler for the condition type and
the condition occurs within its scope.

Current Line

The line on which the cursor is positioned. If the cursor is on
the subcommand line, the current line is the line on which the
cursor was positioned when you press HOME.

Cursor

The pointer used by your terminal to indicate where you are
positioned in the file.

CYBIL

CYBer Implementation Language. The implementation language of
NOS/VE.

A-2 Debug for NOS/VE Usage Revision B

(

(

(

Glossary

D

Uebug

The NOS/VE command utility for tracing and correcting program
errors.

Debug Mode

A program attribute that can be set in a program description or
with the SCL command SET PROGRAM ATTRIBUTE. - -

Debug Session

The sequence of interactions that take place between the user
and the Debug utility.

Debug Utility

A utility that provides source-code-level symbolic debugging for
programs.

Default

E

The assumed value for a parameter when the parameter is not
specified by the user.

End-of-Information (EOI)

The point at which the data in a file ends.

Entry Point

EOI

A location within a program unit or module that can be branched
to from other program units or modules. Each entry point has a
unique name.

See End-of-Information.

Revision B Glossary A-3

Glossary

Exception Handler

A situation that, when detected by a procedure caller, indicates
an abnormal completion of the called procedure.

Execution Ring

The level of hardware privilege assigned to a procedure while it
is executing.

Execution Time

F
File

The time at which a compiled source program is executed. Also
known as Run Time.

A collection of information referenced by name. A file is an
autonomous collection of information that exists separately from
the programs that read or write the file.

File Attribute

One of a set of characteristics of a file. The file attribute
set defines the file structure and processing limitations.

File Connection

A condition establIshed between one file called the subject file
and one or more other files, each of which is called a target
file. The file connection causes data access requests made on
the subject file to be redirected to one or more target files.

FORTRAN

FORmula TRANslating System. An algebraic and logical language
for programming a computer.

A-4 Debug for NOS/VE Usage Revision B

(

(

(

Glossary

Function

A procedure that returns a value to the place in an expression
where the procedure was called.

Function Key

A key on the terminal that, when pressed, performs a specified
operation. The operation can be either defined by the software
or built into the terminal.

Function Key Prompts

I

Labels displayed on your screen which describe the function of a
programmable function key prompt.

Identifier

A name that denotes a quantity. An identifier can be a name
that denotes a constant, type, variable, value, procedure, or
function.

Interactive Debugging

Debugging when the user has direct control of the debugging
process. Contrast with Batch Debugging.

Interactive Mode

A mode of execution where the user enters commands or data at
the terminal during program execution. Contrast with Batch Mode.

Keyword

L

A parameter value that has special meaning in the context of a
particular parameter.

Line Mode Debugging

Debugging by entering commands in response to prompts. Contrast
with Screen Mode Debugging.

Revision B Glossary A-5

Glossary

M
Machine Addressing

Use of actual machine addresses. Contrast with Symbolic
Addressing.

Machine-Level Debugging

Debugging using machine-level terms such as machine addresses.
A knowledge of machine architecture is required. Contrast with
Symbolic Debugging.

Module

N

A unit of code. An object module is the unit of object code
corresponding to a compilation unit. A load module is a unit of
object code stored in an object library. When using Debug,
module refers to a program, program unit, subroutine, procedure,
module, block data, or function.

Name Call

A method of loading and executing a program in which you enter
the name of the file containing the object program.

NOS/VE

o

Acronym for Network Operating System/Virtual Environment, an
operating system for the host computer.

Ubject Code

The code that the compiler produces from your source code. Also
called relocatable binary code.

Optimization

The manipulation of object code to reduce execution time.

A-6 Debug for NOS/VE Usage Revision B

(

Glossary

lP

Parameter

An item of information that is passed to or from a procedure or
function.

Pascal

A high-level language for programming a computer.

Procedure

When using Debug, procedure refers to a program, function, block
within a function, subroutine, procedure, block data, or
statement function.

Process Virtual Address (PVA)

Q

The virtual address known locally by a program (or process). It
is converted to a system virtual address (SVA) that is known
globally by the system. It consists of a ring number, a segment
number, and a byte number. The segment number is used to form
the active segment identifier in the system virtual address.

Qual ifier

A word used to uniquely reference a user-defined word or a
special register. A qualifier can be a data-name, file-name,
section-name, library-name, or report-name.

Revision A Glossary A-7

Glossary

Recurs10n

Ring

The process of invoking a function from within that function.
Recursion is closely related to mathematical induction.

Level of hardware protection given a file or segment. A file is
protected from unauthorized access by tasks executing in higher
rings. See also Execution Ring.

Ring Attribute

A file attribute whose value consists of three ring numbers,
referred to as rl, r2, and r3. The ring numbers define the four
ring brackets for the file as follows:

Run Time

Read bracket is 1 through r2
Write bracket is 1 through rl
Execute bracket is rl through r2
Call bracket is r2+1 through r3.

The time at which a compiled source program is executed. Also (
known as Execution Time.

s
SCL Variable

The means of storing a value to be tested or displayed by an SCL
statement.

Screen Mode Debugging

Debugging using a full-screen interface. Contrast with Line
Mode Debugging.

Source Listing

A compiler-produced listing of the user's original source
program.

Source Program

A program written in a high-level language such as BASIC, COBOL, (
C, FORTRAN, or Pascal.

(

A-8 Debug for NOS/VE Usage Revision B

Glossary

Standard File

A file that provides a default file for use by job files and
other files. The standard files are identified by the following
names:

$COMMAND
$COMMAND OF CALLER
$ECHO -
$ERRORS
$INPUT
$LIST
$OUTPUT
$RESPONSE

Status Variable

The variable in which the completion status of the command or
procedure is returned.

Symbolic Addressing

Use of address in source program terms such as program names and
line numbers. Contrast with Machine Addressing.

Symbolic Debugging

Debugging using source program terms such as line numbers and
program names. Contrast with Machine-Level Debugging.

Syntax

T
Task

Rules defining whether a statement is well formed.

A task is a process within the job that executes independently
of other tasks using its own address space. A task has the
ability to access all local files attached to the job.

Terminal Definition File

The source file used in defining a terminal for use with a
full-screen application.

Traceback

A list of procedure names within a program, beginning with the
currently executing procedure, proceeding backward through the
sequence of called procedures, and ending with the main program.

Revision B Glossary A-9

Glossary

u
Utility

v

A NOS/VE processor consisting of routines that perform a
specific operation.

Value

An expression or application value specified in a parameter
list. Each value must match the defined kind of value for the
parameter. Keywords, constants, and variable references are all
values.

Variable

A named memory location that is allowed to store different
values at different times during program execution.

Variable Name

A name that identifies a variable.

A-IO Debug for NOS/VE Usage Revision B

(

(

Table B-1 lists all manuals that are referenced in this manual or
that contain background information. A complete list of NOS/VE
manuals is given in the SCL Language Definition manual. If your site
has installed the online manuals, you can find an abstract for each
NOS/VE manual in the online System Information manual. To access
this manual, enter:

explain

Ordering Printed Manuals

You can order Control Data manuals through Control Data sales
offices or through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Accessing Online Manuals

To access an online manual, log in to NOS/VE and specify the online
manual title (listed in table B-1) on the EXPLAIN command. For
example, to read the Debug online manual, enter:

explain manual=debug

Revision A Related Manuals B-1

Related Manuals

Table B-1. Related Manuals

Manual Title

BASIC for NOS/VE
Usage

C/VE Reference Manual

CPBOL for NOS/VE
Usage

CYBIL Language Definition
Usage

FORTRAN Version 1 for NOS/VE
Language Definition
Usage

FORTRAN Version 1 for NOS/VE
Quick Reference

FORTRAN Version 2 for NOS/VE
Language Definition
Usage

FORTRAN Version 2 for NOS/VE
Quick Reference

Pascal for NOS/VE
Usage

SCL for NOS/VE
Object Code Management
Usage

SCL for NOS/VE
Source Code Management
Usage

Terminal Definition for NOS/VE
Usage

Virtual State Hardware
Reference Manual

B-2 Debug for NOS/VE Usage

Publication Online
Number Title

60486313 BASIC

60469830 C

60486013 COBOL

60464113

60485913

L60485918 FORTRAN

60487113

(
L60487118 VFORTRAN

60485613 PASCAL

60464413

60464313

60464016

60469680

(

(

Revision B

A§CITrr Cllnsnraa:1terr §ell:

This appendix lists the ASCII character set (table C-l).

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents
each 7-bit ASCII code in an 8-bit byte. The 7 bits are
right-justified in each byte. For ASCII characters, the leftmost
bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the
leftmost bit in an 8-bit byte for 256 characters. The use and
interpretation of the additional 128 characters is user-defined.

Revision B ASCII Character Set C-l

ASCII Character Set

Table C-1. ASCII Charac ter Set

ASCII Code Graphic or
Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

000 00 000 NULL Null
001 01 001 SOH Start of heading
002 02 002 STX Start of text
003 03 003 ETX End of text

004 04 004 EaT End of transmission
005 05 005 ENQ Enquiry
006 06 006 ACK Acknowledge
007 07 007 BEL Bell

008 08 010 BS Backspace
009 09 011 HT Horizontal tabulation
010 OA 012 LF Line feed
011 OB 013 VT Vertical tabulation

012 OC 014 FF Form feed
013 00 015 CR Carr lag e return
014 OE 016 SO Shift out
015 OF 017 SI Shi ft in

016 10 020 OLE Data link escape
017 11 021 DC 1 Device control 1
018 12 022 DC2 Device control 2
019 13 023 DC3 Device control 3

020 14 024 DC4 Device control 4
021 15 025 NAK Negative acknowledge
022 16 026 SYN Synchronous idle
023 17 027 ETB End of transmission

block

024 18 030 CAN Cancel
025 19 031 EM End of medium
026 1A 032 SUB Substitute
027 IB 033 ESC Escape

028 1C 034 FS File separator
029 10 035 GS Group separator
030 IE 036 RS Record separa tor
031 IF 037 US Unit separator

032 20 040 SP Space (033 21 041 Exclamation point
034 22 042 " Quotat ion marks
035 23 043 1/ Number sign

(Continued)

C-2 Debug for NOS/VE Usage Revision A

ASCII Character Set

Table C-1. ASCII Character Set (Continued)

ASCII Code Graphic or
Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 Apostrophe

040 28 050 (Opening parenthesis
041 29 051) Closing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus

044 2C 054 Comma
045 2D 055 Hyphen
046 2E 056 Period
047 2F 057 / Slant

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 3D 075 Equal to
062 3E 076 > Greater than
063 3F 077 Question mark

064 40 100 @ Commerc ial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 C Uppercase C

068 44 104 D Uppercase D
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

(Con tin ued)

Revision A ASCII Character Set C-3

ASCII Character Set

Table C-1. ASCII Character Set (Continued)

ASCII Code Graphic or
Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K

076 4C 114 L Uppercase L
077 4D 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0

080 50 120 P Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 S Uppercase S

084 54 124 T Uppercase T
085 55 125 U Uppercase U
086 56 126 V Uppercase V
087 57 127 W Uppercase W

088 58 130 X Uppercase X
089 59 131 y Uppercase Y
090 SA 132 Z Uppercase Z
091 5B 133 [Opening bracket

092 5C 134 \ Reverse slant
093 5D 135] Closing bracket
094 5E 136 Circumflex
095 SF 137 Underline

096 60 140 Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g

(Continued)

(

C-4 Debug for NOS/VE Usage Revision A

ASCII Character Set

Table C-1. ASCII Character Set (Continued)

ASCII Code Graphic or
Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k

108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
III 6F 157 0 Lowercase 0

112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s

116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w

120 78 170 x Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 Opening brace

124 7C 174 I Vertical line
125 7D 175 } Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete

Revision A ASCII Character Set C-5

(

(

(

A

Abort File 3-21
ABORT FILE Parameter 3-21
About this manual 5
Accessing online manuals B-1
ACTIVATE SCREEN Command 3-5; 5-4
Active call chain A-I
ACTS Command 3-5; 5-4
Address

Bound modules 6-4
Changing contents 5-11
Displaying contents 5-39
Machine 1-1; 2-6; A-6
Module/procedure offset 6-5
Module/section offset 6-5
Ranges 3-7
Referenced 6-1, 3
Reported 6-1
Symbolic A-9
Tables 6-1

A1 igning the window 4-38
Arithmetic

Overflow break 3-11
Significance is lost break 3-11

ASCII character set C-l
ATTENTION CHARACTER parameter 2-5
Audience,-manual 5

B

BACK function 4-34
BASIC

Debug example 7-1
Description A-I

Batch job debugging 1-6; A-I
Batch level debugging 1-6
Batch mode debugging 1-6; A-I
Beginning

A Debug session 3-1
Execution 3-10; 4-22; 5-66

Beginning-of-information A-I
Binary Obj ect Program A-I
Bind ing

Description A-I
Modules 6-4

BKW function 4-36
BOI A-I

Revision A Debug for NOS/VE Usage Index-l

Index

Bound Modules
Addressing 6-4
Description A-I

Breaks

c
C

Address ranges 3-7
Arithmetic overflow 3-11
Arithmetic significance is lost 3-11
Defaults 3-11
Deferred 6-10
Definition 3-7; A-2
Deleting 3-7; 4-21
Displaying 3-7
Divide faul t 3-12
Exponent overflow 3-12
Exponent underflow 3-12
Floating-point indefinite 3-12
Floating-point significance is lost
Invalid business data processing data
Mul tiple 6-11
Pause 2-4; 6-6
Setting 3-7; 4-19; 5-67
Terminate 2-4; 6-6

Debug example 7-14
Description A-2

Call chain, tracing 5-33
Carriage return key 4-35
CHAD command 3-19, 20; 5-6
CHAFA command 3-5
CHAIS command 3-2
CHAM command 5-11
CHANGE_DEFAULTS command 3-19, 20; 5-6
CHANGE FILE ATTRIBUTE command 3-5
CHANGE-INTERACTION STYLE command 3-2
CHANGEYEMORY command 5-11
CHANGE PROGRAM VALUE command 3-13; 5-15
CHANGE-REGISTER command 5-24
CHANGE-TERMINAL ATTRIBUTES command 2-3 - -

Index-2 Debug for NOS/VE Usage

3-12
3-12

Revision A

(

(

(

)

)

Changing
Defaults 5-6
Displays 4-16
Execution location 3-10, 11; 4-27
Memory contents 5-11
Register values 5-24
Screen options 4-39
The Debug input file 3-17
The Debug output file 3-17, 20
The P register 3-10, 11
To line mode 3-5
To screen mode
Variable values
Window displays

CHAPV command 3-13;
CHAR command 5-24
Character set C-l
CHATA command 2-3

3-5; 5-4
1-1; 3-13; 4-30, 32; 5-15
4-16
5-15

CHAVAL function 3-13; 4-32
$CL function 5-92
Clearing a screen 4-38
$CM function 5-93
COBOL

Debug example 7-26
Description A-2

Command file 3-17, 21
Commands

In line mode 3-6; 5-1
In screen mode 3-6; 4-5

Communication network
CDCNET 2-5
NAM/CCP 2-5

Compiling
A BASIC program 2-6
A C program 2-6
A COBOL program 2-6
A CYBIL program 2-6
A FORTRAN Version 1 program 2-6
A FORTRAN Version 2 program 2-6
A Pascal program 2-6
A subprogram 2-6
DEBUG AIDS parameter 2-6
Definition A-2
For symbolic debugging 2-6
-g option 2-6
OPTIMIZATION LEVEL parameter 2-7
-R option 2-=7

Index

Revision B Debug for NOS/VE Usage Index-3

Index

Component modules 6-4
Comprehensive debugging 6-1
Compress characters 4-39
Condition handlers 3-8; 6-9; A-2
Contents, table of 3
Conventions, manual 6
$CP function 5-94
$CPVA function 5-95
CREATE FILE CONNECTION command 3-20, 26
CREATE-OBJECT LIBRARY command 6-4
CREATE-PROGRAM DESCRIPTION command 3-1, 2, 4
CREFC ~ommand -3-20, 26
CREOL command 6-4
CREPD command 3-1, 2, 4
$CURRENT_MODULE function 5-93
Current line

Description A-2
Number 5-92

$CURRENT LINE function 5-92
$CURRENT-PROCEDURE function 5-94
$CURRENT=PVA function 5-95
Cursor

Description A-2
Moving 4-35

CYBIL
Debug example 7-40
Description A-2
Runtime error 6-8

Index-4 Debug for NOSjVE Usage

(

(

(

Revision B

D
DB/ prompt 1-5; 3-4
DEAS function 2-1; 3-5; 4-41
Debug

Beginning a session 3-1
Command file 3-17, 21
Commands 3-6; 5-4; 5-1
Control 3-1
Ending a session 3-16; 4-41; 5-65
Examples 7-1
Features 1-1
Functions, line mode 5-91
Functions, screen mode 4-1, 4, 14
Input file 3-17
Introduction 1-1
Line mode 1-5; 5-1
Mode 3-1, 2, 4; A-3
Optimization 6-7
Output 3-17, 20
Output file 3-17, 20
Performance 6-7
Procedure A-7
Prompt 1-5, 3-4
Rings 6-10
Screen mode 1-3; 4-1
Session 1-2; 3-4; A-3
Tables 2-6
Utility 1-1; A-3

DEBUG_AIDS parameter 2-6
Debugging

A BASIC program 7-1
A C program 7-14
A COBOL program 7-26
A CYBIL program 7-40
A CYBIL runtime error 6-8
A FORTRAN Version 1 program 7-55
A FORTRAN Version 2 program 7-55
A Pascal program 7-68
A terminated program 6-8
Batch job 1-6
Batch level 1-6
Batch mode 1-6
Comprehensive 6-1
Condition handlers 6-8
Environment 1-1; 5-36
Getting started 2-1
Interactive 1-3; A-5
Interrupt processing 6-6
Line mode 1-5; 3-4; 5-1
Machine-level 2-6; A-6
Multi-task 6-11
Optimized code 6-7
Screen mode 1-3; 3-2; 4-1
Symbolic 1-1; 2-6
Using function keys 2-3; 4-4

Index

Revision B Debug for NOS/VE Usage Index-5

Index

DEBUG_INPUT parameter 1-6; 3-17
DEBUG MODE parameter 3-1
DEBUG-OUTPUT parameter 3-17, 20
Default

Breaks 3-11
Changing 5-6
Description A-3

Deferred breaks 6-10
DELB command 3-7; 5-28
DELBRK function 3-7; 4-21
DELETE_BREAK command 3-7; 5-28
Deleting breaks 3-7; 4-21; 5-28
DISB command 3-7; 5-30
DISC command 5-33
DISCI command 3-14, 15
DISDE command 5-36
DISFA command 3-5
DISFI command 3-14, 15
DISM command 5-39
DISPLAY BREAK command 3-7; 5-30
DISPLAY-CALL command 5-33
DISPLAY-COMMAND INFORMATION command 3-14, 15
DISPLAY-DEBUGGING ENVIRONMENT command 5-36
DISPLAY-FILE ATTRIBUTE command 3-5
DISPLAY-FUNCTION INFORMATION command 3-14, 15
Displaying -

Breaks 3-7; 5-30
Debugging environment 5-36
Memory contents 5-39
Registers 5-58, 100
Source code 4-16
Stack frame 5-61
Variable values 3-13; 4-30; 5-46, 97

DISPLAY MEMORY command 5-39
DISPLAY-PROGRAM VALUE command 3-13; 5-46
Displays -

Changing 4-16
Trace 4-10, 18
Zoom-in 3-2; 4-6, 16
Zoom-out 3-2; 4-8, 17

DISPLAY REGISTER command 5-58
DISPLAY-STACK FRAME command 5-61
DISPLAY-VALUE-Command 1-2; 3-20
DISPV command 3-13; 5-46
DISR command 5-58
DISSF command 5-61
DISV command 1-2; 3-20
Divide fault break 3-12
Dividing windows 4-38
DOWN function 4-35

Index-6 Debug for NOS/VE Usage

(

(

(
Revision B

lE

Echo Debug commands 1-2
End-of-information A-3
Ending a Debug session 3-16; 4-41; 5-65
Enlarge compressed characters 4-39
Entry point A-3
Environment

Debugging
Multi-ring
Multi-task

1-1; 5-36
6-11
6-11

EOI
Programming

A-3
3-2

Error
Runtime 3-8, 21
Execution 3-8, 21

Examples
Debugging a BASIC program 7-1
Debugging a C program 7-14
Debugging a COBOL program 7~26

Debugging a CYBIL program 7-40
Debugging a FORTRAN Version 1 program 7-55
Debugging a FORTRAN Version 2 program 7-55
Debugging a Pascal program 7-68

Exception handler A-4
EXECUTE TASK command 3-1, 2, 4
Execution

Beginning 3-10; 4-22; 5-66
Changing location of 3-10; 4-27
Error 3-8, 21
Interruption 4-19; 5-67; 6-6
Resuming 3-10; 4-22; 5-66
Ring A-4
Suspending 3-7; 4-19; 5-67
Time A-4
Under Debug control 3-1

EXET command 3-1, 2, 4
EXPLAIN command 3-14
Exponent

Overflow break
Underflow break

3-12
3-12

Index

Revision B Debug for NOS/VE Usage Index-7

Index

IF
File

Abort 3-21
Attribute 3-5; A-4
Connections 1-2; 3-26; A-4
Debug input 3-17
Debug output 3-17, 20
Definition A-4
$LOCAL.COMMAND 3-17
Of Debug commands 1-1; 3-17, 21
$OUTPUT 3-20
Standard A-9
$SYSTEM.TDU.TERMINAL DEFINITIONS 2-3

FILE PROCESSOR attribute- 3-5
FIRST function 4-34
Floating-point indefinite break 3-12
Floating-point significance is lost break 3-12
FORTRAN Version 1

Debug example 7-55
Description A-4

FORTRAN Version 2
Debug example 7-55
Description A-4

Full-screen
Characteristics 2-2
Definition 2-3
Interface 2-2
Layout 4-2

Function
Descriptions 1-3; 2-3; 4-4, 14, IS; A-5
Keys 1-3; 2-3; 3-6; 4-2, 4; A-5
Line mode 5-91

Function key prompts 4-2, 4; A-5
Functions 1-3; 2-3; 4-1S; A-5
FWD function 4-36

G
-g option 2-6
GOTO function 1-4; 3-10; 4-27

Index-S Debug for NOS/VE Usage

(

(

(

Revision B

H

Handlers, condition 3-8; 6-9
HELP

Command 3-14
Function 3-14; 4-10, 16
Information 3-14; 4-10, 16
Online 1-3; 3-14; 4-10, 16
Window 3-14; 4-10, 16

History, manual 2
Home

Key 4-35
Line 1-3; 2-3; 3-6; 4-5, 35

HSPEED function 3-10; 4-22

Identifier A-5
In case of trouble 7
INCLUDE FILE command 1-2; 3-19
Input file 3-17
Interactive

Debug session 1-3
Debugging A-5
Mode A-5
Terminal 2-1

Interrupt
Processing 6-6
Pause break 6-6
Terminate break 6-6
Nearly exhausted resource 6-6

Index

Invalid business data processing data break 3-12

K
KEYS

Function 4-12, 18
Window 4-12, 18

Keyword A-5

Revision B Debug for NOS/VE Usage Index-9

Index

L

LAST function 4-34
LEFT function 4-38
Line Mode Debug

Capabilities 1-5
Command s 5-1
Definition A-5
Ending a session 3-16; 5-65
Example 1-5
Prompt 1-5; 3-4
Session 3-4
Starting a session 3-4
Switching to 3-5; 4-40
Terminal set up 2-1

Load module 6-4
$LOCAL.COMMAND 3-17
LOCATE function 4-36
Locating text 4-36
LSPEED function 4-25

M
Mac hine-level

Addresses 1-1; 2-6
Debugging 2-6; A-6
Process Virtual Address [PVA] 2-6

Manual
Aud ience 5
Conventions 5
History 2
Online 3-14; B-1
Ordering B-1
Organization 5
Related B-1

$MEM function 5-96
Memory

Changing 5-11
Contents 5-96
Displaying 5-39

$MEMORY function 5-96
Modules

Addressing 6-4
Binding 6-4
Block referencing 6-5
Bound 6-4
Component 6-4
Description A-6
Display 4-17
Procedure offset addressing 6-5
Section offset addressing 6-5

Moving
Cursor 4-35
Pages 4-36
Screens 4-36

Index-l0 Debug for NOSjVE Usage

(

(

Revision A

MSPEED function 3-10; 4-25
Multiple breaks 6-11
Multi-ring environment 6-11
Multi-task debugging 6-11

N
Name call 3-4; A-6
NARROW function 4-39
NEXT key 4-35
NOS/VE

Description A-6
Dual State With 2550's 2-5
Dual State With CDCNET 2-5
Standalone 2-5

$NULL 3-21

o
Ubj ect coae

Description A-6
Optimization 2-7; 6-7; A-6

Online
HELP 1-3; 3-14
Manual 3-14; B-1

OPTIMIZATION LEVEL parameter 2-7
Optimizing -

A BASIC program 2-7
A C program 2-7
A COBOL program 2-7
A CYBIL program 2-7
A FORTRAN Version 1 program 2-7
A FORTRAN Version 2 program 2-7
A Pascal program 2-7
Description A-6
Level for use with Debug 2-7; 6-7
Object code 2-7; 6-7
OPTIMIZATION LEVEL parameter 2-7
Performance -6-7
-R option 2-7

Options window 4-13, 40
OPTS function 4-13, 40
Ordering printed manuals B-1
Organization, manual 5
Output

file 3-17, 20
window 4-10

Index

Revision B Debug for NOS/VE Usage Index-II

Index

II'

P Register 3-11
Pages, moving 4-36
Parameter A-7
Pascal

Debug example 7-68
Description A-7

Pause break 2-4; 6-6
Performance, Debug 6-7
PPE (See Professional Programming Environment)
Procedure

Debug A-7
SCL 1-1

Process Virtual Address [PVA]
Description 2-6; A-7
Value 5-95

Professional Programming Environment 3-2
Program

Compilation 2-6
Error 3-7, 8, 21
Execution 3-10; 5-66
Terminated 6-8

$PROGRAM VALUE function 5-97
Programming Environment 3-2
Prompt, Debug 1-5, 3-4
$PV function 5-97
PVA

Q

Description 2-6; A-7
Value 5-95

Qualifier
QUI command
QUIT

A-7
3-16; 5-65

Command 3-16; 5-65
Function 3-16; 4-41

-R option 2-7
Recursion A-8
Referenced addresses 6-1, 3
Refreshing the screen 4-38
REFRSH function 4-38
$REG function 5-100
Register

Changing 5-24
Displaying 5-58, 100
P 3-11

Index-12 Debug for NOS/VE Usage

(

(

(

(

(

Revision B

)

$REGISTER function 5-100
Related manuals B-1
Reported addresses 6-1
RESC command 2-4
Restoring a Source window 4-34
RESUME COMMAND 2-4
Resuming execution 3-10; 4-22; 5-66
RETURN key 4-35
RIGHT function 4-39
Ring

Attribute A-8
Debug 6-10
Deferred breaks 6-10
Description A-8
Multiple breaks 6-11
Multi-ring environment 6-11

RUN command 3-10, 11; 5-66
Runtime error 3-7, 8, 21; A-8

s
SCL

CHANGE FILE ATTRIBUTE command 3-5
CHANGE-INTERACTION STYLE command 3-2
CHANGE TERMINAL ATTRIBUTES command 2-3
CREATE-FILE CONNECTION command 3-20, 26
CREATE-OBJECT LIBRARY command 6-4
CREATE-PROGRAM DESCRIPTION command 3-1, 2, 4
DISPLAY COMMAND PARAMETER command 3-14, 15
DISPLAY-VALUE c~mmand 3-20
EXECUTE-TASK command 3-1, 2, 4
EXPLAI~command 3-14
Features 1-2
INCLUDE FILE command 3-19
SET DEBUG RING command 6-10
SET-PROGRAM ATTRIBUTES command
SET-TERMINAL ATTRIBUTES command
Variable A-8

Screen
Clearing 4-38
Moving 4-36
Options 4-40
Refreshing 4-38
Splitting 4-38
Tailoring 4-38

3-1, 2, 4
2-3

Screen layout, screen mode Debug 4-2
Screen mode Debug

Capabilities 1-3
Communication 1-3; 4-4
Description A-8
Displays 4-6

Index

Revision B Debug for NOS/VE Usage Index-13

Index

Screen mode Debug (Contd)
Ending a session 3-16; 4-41
Entering commands 4-5
Example 1-4
Functions 4-1, 4, 14
Locating text 4-36
Restrictions 1-4
Screen layout 4-2
Session 3-2
Starting a session 3-2
Switching to 3-5
Tailoring a screen 4-38
Terminal set up 2-1
Windows 4-6

SEEVAL function 3-13; 4-30
Session, Debug 1-2; 3-1
SETB command 3-7; 5-67
SET BREAK command 3-7; 5-67
SETBRK function 3-7; 4-19
SET DEBUG RING command 6-10
SETDR command 6-10
SETPA command 3-1, 2, 4
SET PROGRAM ATTRIBUTES command 3-1, 2, 4
SETSM comma~d 3-9; 5-85
SET STEP MODE command 3-9; 5-85
SETTA command 2-3
SET TERMINAL ATTRIBUTES command 2-3
Setting Breaks 3-7; 4-19; 5-67
Source

Listing A-8
Program A-8
Window 4-6

SPLIT function 4-38
Splitting screens 4-38
Stack frame, displaying 5-61
Standard file A-9
Status variable A-9
Step mode

Setting 3-7, 9; 4-26; 5-85
Stepping through lines 3-7, 9; 4-26; 5-85
Stepping through procedures 3-7, 9; 4-25; 5-85

STEP1 function 3-9; 4-26
STEPN function 3-9; 4-26
STOP Statement 3-4
Submitting comments 6
Subprogram traceback list 1-1; 5-33
Suspending execution 3-7; 4-19
Switching

To line mode Debug 3-5; 4-40
To screen mode Debug 3-5; 5-4

Symbolic
Addressing A-9
Capabilities 1-1
Debugging 1-1; 2-6; A-9

Syntax A-9

Index-14 Debug for NOS/VE Usage

(

(

(
Revision B

T
Table of contents 3
Tables,

Address 6-1
Debug 2-6

Tailoring a Debug screen 4-38
Task A-9
Terminal

Definition file A-9
Definitions 2-3
Full-screen characteristics 2-2
Full-screen definition 2-3
Full-screen interface 2-2
Screerillayout 4-2
Set up for line mode 2-1
Set up for screen mode 2-2
Style 3-2

TERMINAL MODEL parameter 2-3
Terminate break 2-4; 6-6
TERMINATE COMMAND 2-4
Terminated program 6-8
Termination breaks

Arithmetic overflow 3-11
Arithmetic significance is lost 3-11
Defaul ts 3-11
Divide faul t 3-8, 12
Exponent overflow 3-8, 12
Exponent underflow 3-12
Floating-point indefinite 3-12
Floating-point significance is lost
Invalid business data processing data
Pause 2-4; 6-6
Terminate 2-4; 6-6

TRACE
Display 4-10, 18
Function 4-10, 18

Traceback list 1-1; S-33; A-9

3-12
3-12

Index

Revision A Debug for NOS/VE Usage Index-IS

Index

u
UP function 4-35
User breaks

Activating 2-4
ATTENTION CHARACTER parameter 2-5
CDCNET command 2-5
NAM/CCP command 2-5
Pause break 2-4
RESUME COMMAND 2-4
Termin;te break 2-4
TERMINATE-COMMAND 2-4
User break 1 2-4
User-break-2 2-4

Utility -A-tO -

v
Value A-I0
Variable A-I0
Variable name A-I0
Variable values

Changing 3-13; 4-30, 32; 5-15
Displaying 3-13; 4-40; 5-46, 97

Viking 721 1-4

w
WIDE function 4-39
Window

z

Aligning 4-34
Description 4-6
Displays 4-6
Dividing 4-38
Help 4-10
Keys 4-12
Locating information 4-34
Options 4-13
Output 4-10
Source 4-6

Zoom-in display 3-2; 4-6, 16
Zoom-out display 3-2; 4-8, 17
ZMIN function 3-2; 4-6, 16
ZMOUT function 4-8, 17

Index-16 Debug for NOS/VE Usage

(

(

Revision B

)

)

Debug for NOS/VE Usage 60488213 8

We would like your comments on this manual. While writing it, we made some assumptions about who
would use it and how it would be used. Your comments will help us improve this manual. Please
take a few minutes to reply.

Who Are You?

Manager = Systems Analyst or Programmer
Applications Programmer

- Operator
- Other _________ _

How Do You Use This Manual?

As an Overview
To learn the Product/System
For Comprehensive Reference
For Quick Look-Up

What programming languages do you use? ____ _

How Do You Like This Manual? Check those that apply.

Yes Somewhat No

Command and Function
Summaries

Related Manuals
Appendix

Online Quick Reference
Other ______ _

Is the manual easy to read (print size, page layout, and so on)?
Is It easy to unde rs tand?
Is the order of topics logica I?
Are there enough examples?
Are the examples helpful? Too simple Too complex)
Is the technical information7ccurate?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

C;';;;e~ts? If applicable. note page numbe r and paragraph.

Yes No Continue on other side

Name __________________________ Company ________________________ _

Address __________________ _ Date

_________________________________ Phone No. __________ _

Please send program listing and output if applicable to your comment.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN

POSTAGE Will BE PAID BY ADDRESSEE

<S 2> CONTI\.OL DATA
Technology and Publications Division

Mail Stop: SV L 104
P.O. Box 3492
Sunnyvale. California 94088-3492

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

~-l~-·-···· .. _-- -._._. __ .. -- -- -- --..... -.-. -- ----------.. -.- ._ ... -_ .. --_ •.. _- .•.•... ----_. --- _. _. _ .. __ . - -- --- -- ..•. --- ... -;~;~ •.. _.(

:omments (continued from other side)

Quick Index

Alphabetical List of Debug
Screen Mode Functions

BACK ••••••••••••••••••
BKW •••••••••••••••••••
CHAVAL ••••••••••••••••
DEAS ••••••••••••••••••
DELBRK ••••••••••••••••
DOWN •••• -••••••••••••••
FIRST •••••••••••••••••
FWD •••••••••••••••••••
GOTO ••••••••••••••••••
HELP ••••••••••••••••••
HOME ••••••••••••••••••
HSPEED ••••••••••••••••
KEYS ••••••••••••••••••
LAST ••••••••••••••••••
LEFT ••••••••••••••••••
LOCATE ••••••••••••••••
LSPEED ••••••••••••••••
MSPEED
NARROW ••••••••••••••••
NEXT ••••••••••••••••••
OPTS ••••••••••••••••••
QUIT ••••••••••••••••••
REFRSH ••••••••••••••••
RIGHT •••••••••••••••••
SEEVAL ••••••••••••••••
SETBRK ••••••••••••••••
SPLIT •••••••••••••••••
STEPI •••••••••••••••••
STEPN
TRACE •••••••••••••••••
UP .•••••••••••••••••••
WIDE •••••••••••••• ~ •••
ZMIN ••••••••••••••••••
ZMOUT •••••••••••••••••

4-34
4-36

3::32
4-40
4-21
4-35
4-34
4-36
4-27
4-16
4-35
4-22
4-18
4-34
4-38
4-37
4-25
4-25
4-39
4-35
4-39
4-40
4-38
4-39
4-30
4-19
4-38
4-26
4-26
4-18
4-35
4-39
4-16
4-17

Alphabetical List of Debug
Line Mode Commands

ACTIVATE SCREEN •••••••• 5-4
CHANGE DEFAULTS •••••••• 5-6
CHANGE-MEMORy •••••••••• 5-11
CHANGE-PROGRAM VALUE... 5-15
CHANGE-REGISTER........ 5-24
DELETE-BREAK ••••••••••• 5-28
DISPLAY BREAK •••••••••• 5-30
DISPLAy-CALLS.......... 5-33
DISPLAY-DEBUGGING

ENVIRONMENT ••• :-..... 5-36
DISPLAY MEMORy ••••••••• 5-39
DISPLAY-PROGRAM VALUE.. 5-46
DISPLAy-REGISTER ••••••• 5-58
DISPLAY-STACK FRAME.... 5-61
QUIT ••• :-••••• :-. • • • • • • •• 5-65
RUN ••••••••••••••••••• 5-66
SET BREAK •• ~ ••••••••••• 5-67
SET-STEP MODE •••••••••• 5-85

Alphabetical List of Debug
Line Mode Functions

$CURRENT LINE ••••••••••
$CURRENT-MODULE ••••••••
$CURRENT-PROCEDURE •••••
$CURRENT-PVA •••••••••••
$MEMORY.:-••••••••••••••
$PROGRAM VALUE •••••••••
$REGISTER ••••••••••••••

5-92
5-93
5-94
5-95
5-96
5-97
5-100

~ ~ CONTI\.OL DATA

