
NOS/VE
Build Utility

Usage

(52)
CONTR...OL

DATA

60487413

NOS/VE

Build Utility

Usage

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60487413

Manual History

System Version/
Revision PSR Level Product Version Date

A 1.4.2/727 1.0 June 1989

Revision A of the Build Utility usage manual documents the Build Utility for NOSNE
at release level 1.4.2 in June 1989.

c19s9 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 The Build Utility 60487413 A

Contents

About This Manual 5

Audience 5
Conventions 6
Submit~ing Comments 7
In Case You Need Assistance 7

Introduction 1-1

Terminology'. 1-2
Without the Build Utility 1-3
How the Build Utility Works 1-4
For PPE Users 1-5

Using the Build Utility 2-1

Starting the Build Utility 2-2
Creating the Input File 2-3
Defining a Build Target 2-4
Defining a Processor 2-6
Defining a Parameter List 2-7
Defining the Source Libraries 2-8
Setting a Build Catalog 2-9
Getting Online Help 2-10

The Build Utility and PPE 3-1

Declaring an Input File 3-2
PPE Screens . 3-3
Getting Online Help 3-8

60487413 A

Advanced Usage 4-1

Defining a Preprocessor 4-2
Using the PROCESSOR

Attribute. 4-3
Defining Multiple Processors 4-4
Defining Multiple Build Targets . . . 4-5
Defining a Layered System 4-6
Creating Complex

Transformations 4-7

Commands and Functions 5-1

Command and Subcommands 5-1
Functions . 5-11
Build Utility Processors 5-31
PPE Subcommands 5-37

Build Utility Examples 6-1

A File System Example 6-2
A Library Example 6-5
Multiple Build Target Example ... 6-8

Glossary A-1

The NOS/VE User Manual Set B-1

Diagnostic Messages C-1

Build Utility Concepts D-1

Index Index-I

Contents 3

About This Manual

This manual documents the NOSNE Build Utility. It describes how to set up an input
file and use the Build Utility. It also documents the Build Utility subcommands and
functions.

This manual is structured as follows:

o Chapters 1 through 4 describe how to create an input file and use the Build
Utility.

o Chapter 5 is a reference section t'1at describes the Build Utility subcommands and
functions.

o Chapter 6 is an example section that provides three examples of Build Utility
usage.

• Appendix A is a glossary of the Build Utility terms.

o Appendix B describes the NOSNE manual set.

o Appendix C describes the Build Utility diagnostic messages.

o Appendix D describes some of the Build Utility concepts.

Audience

This manual is written primarily for developers and documentors of NOSNE
applications. Many of these developers will use the Build Utility from the Professional
Programming Environment (PPE).

This manual assumes you are familiar with the following:

• NOSNE System Command Language (SCL)

• Source Code Utility (SCU)

• EDIT_FILE Utility (EDIF)

• File system concepts

60487413 A About This Manual 5

Conventions

All references to commands, subcommands, and functions in this manual use the full
command name. Most commands have abbreviated forms, which you may find more
convenient to use. All forms of every command are included in the individual command
descriptions, which are located in chapter 5, Commands and Functions.

In addition, the following conventions apply throughout this manual.

Boldface

Italics

UPPERCASE

lowercase

Numbers

In a format, boldface type represents names and required
parameters.

In a format, i.talic type represents optional parameters.

In a format, uppercase letters represent reserved words defined
by the system for specific purposes. You must type these words
exactly as shown.

In a format, lowercase letters represent values you choose.

In examples of interactive terminal sessions, shaded text
represents user input.

All numbers are decimal.

The Build Utility makes no distinction between uppercase and lowercase letters. Names
of commands, subcommands, functions, files and decks may be in uppercase or
lowercase letters. For example, MY _FILE, my _file, and My _File are the same.

6 The Build Utility 60487413 A

Submitting Comments

The last page of this manual is a comment sheet. Please tell us about any errors you
found in this manual and any problems you had using it.

If the comment sheet in this manual has been used, please send your comments to us
at this address:

Control Data Corporation
Technical Publications
P.O. Box 3492
Sunnyvale, California 94088-3492

Please include this information with your comments:

• The manual title and publication number (for this manual, specify, NOSNE Build
Utility Usage, 60487413) and the revision letter from the page footer.

• Your system's PSR level (if you know it).

o Your name, your company's name and address, your work phone number, and
whether you want a reply.

Also, if you have access to SOLVER, the Control Data online facility for reporting
problems, you can use it to submit comments about this manual. When it prompts you
for a product identifier for your report, please specify BUS.

In Case You Need Assistance
Control Data's CYBER Software Support maintains a hotline to assist you· if you have
trouble using our products. If you need help beyond that provided in the documentation
or find that the product does not perform as described, call us at one of the following
numbers and a support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address questions about the
physical packaging and/or distribution of printed manuals to Literature and Distribution
Services at the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee, call
CONTROLNET® 243-2100 or (612) 292-2100.

60487413 A About This Manual 7

Introduction 1

Terminology ... 1-2

Without the Build Utility .. 1-3

How the Build Utility Works ... 1-4
Data Definition . 1-4 ·
Data Analysis .. 1-4

For PPE Users .. 1-5

60487413 A

Introduction 1

The Build Utility is a NOS/VE command utility designed to simplify the updating of a
file system or library. When the source text of a file system changes, the Build Utility
updates only the sections of object code affected by the change. The Build Utility uses
a user-defined description of the files or decks that comprise the system to determine
whether the system is out of date.

If you are familiar with the UNIX(TM)l operating system, the Build Utility is similar to
the UNIX make command.

The Build Utility is designed primarily for developers who design large software
systems on NOS/VE. However, it can be used for any size system. The Build Utility
does not set any limits on the size or complexity of a system beyond the limits set by
NOS/VE or your site.

The Build Utility is easiest to run from within the Professional Programming
Environment (PPE) because PPE automatically maintains the descriptions of your
library system. However, the Build Utility can be used at the NOS/VE command level
as well.

This chapter serves as an introduction to the Build Utility. It defines the Build Utility
terminology and briefly describes how the Build Utility works.

1. UNIX is a trademark of AT&T Bell Laboratories.

60487413 A Introduction 1·1

Introduction

Terminology

You will need to understand the following terms before learning the Build Utility. The
definitions of these terms apply throughout this manual.

Build

The process by which the Build Utility constructs build targets. This process
involves the executing of a transformation on the files that comprise a build target.

Build Target

A file that is the result of a transformation.

Data Dependency

The relationship between the outputs and inputs of a transformation. The contents
of the output are dependent on the contents of the input. For example, the file
produced by binding an object library is dependent on the object library.

Dependency Graph

A visual representation of data dependency between files.

File System

A collection of related files. In this manual, these files are used to construct a build
target.

Input File

· This file contains the information needed by the Build Utility. It is a required
parameter of the BUILD _SOFTWARE command.

Source Library

An SCU file that consists of a collection of decks. Each deck has a header, which
describes the deck.

Transformation

A sequence of one or more NOSNE commands that manipulate data. For example,
a call to the COBOL compiler is a transformation that changes COBOL source text
to object code. ·

NOTE

If you require additional information, please refer to the appendix section of this
manual. Appendix A contains a glossary of Build Utility and related terms. Appendix
D provides a more detailed discussion of some of the above terms.

1-2 The Build Utility 60487413 A

Introduction

Without the Build Utility

Updating a file system or library can be a time-consuming process without the benefit
of a tool like the Build Utility.

Without the Build Utility, updating a file system is often a tedious and time-consuming
process. For example, suppose you write a COBOL program. You maintain a copy of
the source code and the compiled object code. If you make a change to the source code
without recompiling, then the object code is not current. In this case, you can either:

• Compile only the modules affected by the change.

• Compile the entire program.

For a small program, either of the above options is acceptable. Because the program is
small, it is easy to identify which modules are affected by a change. Also, small
programs compile quickly. So, you can recompile the entire program without wasting
much time. In either case, the advantages of the Build Utility are not apparent.

For a large program, however, the process is not as simple. Identifying all the modules
that need to be recompiled requires that you follow all file or deck references. This can
be an enormous task. The other option is to perform a full build. A large program can
take several hours to compile. Much of this time is wasted if only a small section of
code is changed. The Build Utility was developed to minimize the time required to
update a file system or library.

60487413 A Introduction 1-3

Introduction

How the Build Utility Works

The Build Utility performs three steps: reads the Build Utility input file, analyzes the
build target, and performs the assigned transformation. These three steps can be
divided into two phases: data definition and data analysis.

Data Definition

First, the Build Utility reads the input file. This file contains all the user-defined
information about the system. The input file is described in detail in chapter 2, Using
the Build Utility. This is called the data definition phase. During this phase, the Build
Utility identifies the build targets and the decks or files that form the targets. Also
during this phase, the transformations for each target are defined.

Data Analysis

Next, the Build Utility enters the data analysis phase. Each deck, file, or object
module has a date/time stamp associated with it. This stamp indicates the last time
the file or deck was changed. If the date/time stamp does not exist, the Build Utility
assigns one. The Build Utility then compares the date/time stamp of the build target
with the date/time stamp of the decks or files on which the target depends. If a deck
or file has a more current date/time stamp, then the corresponding build target is
considered out of date. The Build Utility performs the transformation and the build
target becomes current. The Build Utility continues to identify the changed source and
rebuild until there are no more build targets.

The diagram below summarizes the steps taken by the Build Utility.

1.

t

Read the
Input File

Data Definition

1-4 The Build Utility

2.

t

Analyze the
Build Target

Data Analysis - ~~ 3.

Perform the
Transformation

60487413 A

Introduction

For PPE Users

PPE users are a special case when using the Build Utility because PPE automatically
maintains all the necessary information about a library system.

The Build Utility is designed primarily for developers using PPE to write NOSNE
applications. Using the Build Utility from PPE can be very simple. PPE sets up a
default dependency condition. Therefore, you do not need to provide an input file when
running the Build Utility from PPE. However, you are permitted to reference an input
file if your system requires a more specialized definition than the PPE default. If you
are familiar with the BUILD _DECKS and BUILD _CHANGED _DECKS commands in
PPE and do not anticipate changing the default values of the build process, then you
may want to skip to chapter 3, The Build Utility and PPE.

Is the Build Utility just a command interface for the PPE build commands?

No, the Build Utility is not just a command interface for the PPE build commands.
The Build Utility can be used to update files outside of PPE. The PPE commands
BUILD _DECKS and BUILD _CHANGED _DECKS can only be used on a library
system within PPE.

In addition, the Build Utility increases the flexibility of the PPE build commands.
Prior to the Build Utility, there were no parameters associated with either
BUILD _DECKS or BUILD _CHANGED _DECKS. PPE used a default dependency for
every system, and it was not possible to change it. Both commands now have a full set
of parameters that allow you to redefine PPE's default conditions.

60487413 A Introduction 1-5

Using the Build Utility 2

Starting the Build Utility .. 2-2

Creating the Input File .. :. 2-3

Defining a Build Target .. 2-4

Defining a Processor . 2-6
Using the Predefined Processors . 2-6

Defining a Parameter List . 2-7

Defining the Source Libraries .. : . 2-8

Setting a Build Catalog .. 2-9

Getting Online Help .. 2-10

60487413 A

Using the Build Utility 2

This chapter describes how to start the Build Utility, how to set up an input file, and
the components of an input file. This chapter is designed for those users who are
creating their own input file because they are using the Build Utility from NOSNE.
This chapter also provides a reference for PPE users who want to create their own
input file t<>. override the PPE defaults.

60487413 A Using the Build Utility 2-1

Using the Build Utility

Starting the Build Utility

There are three ways to start the Build Utility:

• From NOSNE, enter the BUILD _SOFTWARE command.

• From PPE, press the function key labeled BUILD or the function key labeled BUID.

• From PPE, enter the BUILD _DECKS or BUILD _CHANGED _DECKS command at
the home line.

If you are using the Build Utility from NOSNE, start the utility by entering the
BUILD _SOFTWARE command at the NOSNE command prompt. You must also pass
the input file as a required parameter of the BUILD _SOFTWARE command. The
following example shows a call to the Build Utility where the INPUT parameter is the
name of the input file, called INFILE.

or abbreviated,

For a complete description of all the parameters for the BUILD _SOFTWARE command,
see chapter 5, Commands and Functions.

When using PPE there are two ways to initiate the Build Utility. You can press the
function key labeled BUILD or the function key labeled BUID. The BUILD function
causes the Build Utility to build the decks that have changed. The BUID function
causes the Build Utility to build the decks that you have marked.

You can also enter the commands directly from the home line in PPE. Entering
BUILD_DECKS is equivalent to using the BUID function key. Entering the command
BUILD_CHANGED_DECKS is equivalent to using the BUILD function key.

When you start the Build Utility from PPE, you do not need to provide any
parameters. PPE automatically maintains a default description of your system.
However, it is possible to change these default settings provided by PPE. For
information on declaring your own input file in PPE, see chapter 3, The Build Utility
and PPE.

2-2 The Build Utility 60487413 A

Using the Build Utility

Creating the Input File

The input file is required for the BUILD _SOFTWARE command. You can create an
input file by using the EDIT _FILE utility. The input file cannot be a deck in a source
library.

Before issuing the BUILD _SOFTWARE command from NOS/VE, you must create an
input file. You can optionally specify an input file within PPE. The input file must be
a file and cannot be a deck in a library. However, it can be text extracted from a deck
to a file. You must specify the full path for the input file, or it must reside on the
current working catalog.

An input file is simply an ASCII text file that contains the subcommands and functions
as well as NOS/VE commands. It defines the following information:

• The data dependency in the system.

• The build target(s).

• The processors used in the transformation of the build target(s).

• The parameter list for tl>:e defined processors (optional).

• The source libraries to use during the build.

• The working catalog to use during the build (optional).

The following diagram shows a simple input file for a source library.

60487413 A

Input File

DEFINE_SOURCE_LIBRARIES ..

INTERNAL SOURCE_LIBRARIES = slib

SET _BUILD_CA TALOG ..

BUILD_CA TALOG =$user.bu

DEFINE_PROCESSOR ..
PROCESSOR= Fortran

DE FINE_PARAMETER_LIST ..
PROCESSOR= Fortran ..
PARAMETER_LIST = 'i =compile b = object_file'

DEFINE_BUILD_ TARGET ..
BUILD_TARGET=lib2 ..
BUILD_TARGET_KIND = object_library ..
COMPOSITION= 'INCLUDE_DECK DECK= (main ..

sub1 sub2)' ..
TRANSFORMATION= default

Using the Build Utility 2-3

Using the Build Utility

Defining a Build Target

To define a build target, use the Build Utility subcommand
DEFINE _BUILD_ TARGET. At least one build target must be defined in every input
file. .

A build target is the result of a transformation. For example, an object library can be
the build target when you transform a source library. At least one build target must
be defined in every Build Utility input file.

To define a build target, use the Build Utility subcommand
DEFINE _BUILD _TARGET. The following example defines a build target as an object
library named LIBl. LIBl is dependent on three decks: main, subl, and sub2. The
default transformation is specified.

DEFINE_BUILD_ TARGET..
BUILD_TARGET= lib1 ..
BUILD_ TARGET _KIND= object_library ..
COMPOSITION= 'INCLUDE_DECK DECK= (main ..

sub1 sub2)' ..
TRANSFORMATION = default

The BUILD_ TARGET parameter specifies the name of the build target being defined.

The BUILD _TARGET _KIND parameter tells the Build Utility the type of build target
being defined. OBJECT _LIBRARY is a predefined type of build target. If you want to
define a build target of a type other than OBJECT _LIBRARY, you may use an
appropriate name, or the keyword NONE.

The COMPOSITION parameter Is required when the BUILD _TARGET _KIND
parameter is assigned OBJECT_LIBRARY. This parameter specifies the selection
criteria for the decks that compose the build target.

The final parameter in this example is the TRANSFORMATION parameter. This tells
the Build Utility what transformation is required to create the build target. This
example specifies the keyword DEFAULT because the Build Utility knows how to
handle the transformation of an· object library.

2-4 The Build Utility 60487413 A

Using the Build Utility

If you want to define a build target based on a file system rather than a library, use
the DEPENDENCES parameter to list the files that compose the build target. The
following example defines a build target, named MY _PROG. MY _PROG is dependent
on three files: main, subl, and sub2.

Input File

DEFINE_BUILD_TARGET ..
BUILD_ TARGET =my_prog ..
BUILD_TARGET_KIND =none ..
DEPENDENCES= (main sub1 sub2) ..
TRANSFORMATION= tfile

TEMP= $DEPENDENCES
FORTRAN I =temp B = object_file
BUILD_OBJECT _LIBRARY ..

BASE_OBJECT_LIBRARY = olib ..
OBJECT _FILES= object_file

Transformation File (tfile)

Because MY _PROG is dependent on files rather than decks in a source library,
BUILD_ TARGET _KIND cannot be specified as OBJECT _LIBRARY. Instead, it is
specified as NONE. There is no default transformation for a build target of kind
NONE. Therefore, a transformation file is specified. This file contains the
transformation required to build the build target.

For a complete description of all parameters for the DEFINE_BUILD_TARGET
command, see chapter 5, Commands and Functions.

60487413 A Using the Build Utility 2-5

Using the Build Utility

Defining a Processor

To define a processor, use the Build Utility subcommand DEFINE_PROCESSOR. At
least one processor must be defined in the input file, unless a transformation file is
specified.

A processor is a command that the Build Utility uses during a transformation. At least
one processor must be defined in the input file unless a transformation file is specified.
The input file may have several processor definitions. To define a processor, use the
Build Utility subcommand DEFINE_PROCESSOR. The following is an example of a
processor definition for the FORTRAN compiler.

DEFINE_PROCESSOR ..
PROCESSOR = fortran ..
PREPROCESSOR = none ..
DEFAULT_PARAMETER_LIST = default

The PROCESSOR parameter specifies the name of the processor being defined.

The PREPROCESSOR parameter specifies the name of a preprocessor to use prior to
executing the processor.

The DEFAULT _PARAMETER _LIST parameter specifies the name of the parameter list
to use for the processor.

For a complete description of all parameters for the DEFINE _PROCESSOR command,
see chapter 5, Commands and Functions.

Using the Predefined Processors

Since most users will be using source and object libraries, the Build Utility has two
predefined processors: EXPAND _SOURCE and BUILD _OBJECT _LIBRARY. These
processors are used to expand decks into a file and to build an object library from
object modules. The Build Utility uses default parameter values for these processors
which can be changed using the DEFINE _PARAMETER _LIST command in a Build
Utility input file. From PPE, the values can be changed using the
EDIT_PARAMETER_LIST command or function key. Neither of these processors needs
to be included in your input file unless you want to change the default parameter
values.

For a complete description of all the parameters for the predefined processors, see
chapter 5, Commands and Functions.

NOTE

The BUILD _OBJECT _LIBRARY processor repeatedly tries to create cycle one of the
object library until it is successful. If cycle one of your object library already exists,
the build will never terminate. To solve this, either delete your cycle one or copy it to
a higher cycle and then delete it.

2-6 The Build Utility 60487413 A

Using the Build Utility

Defining a Parameter List

Most processors require one or more parameters. Use the
DEFINE _PARAMETER _LIST command to assign a particular list of parameters to a
processor.

One of the optional components of the Build Utility input file is the
DEFINE _PARAMETER _LIST command. This command allows you to assign
parameters to a particular processor. These parameters are passed to the processor at
execution time. You can define several parameter lists for a single processor. Each
parameter list is assigned a name which is referenced in the DEFINE _PROCESSOR
command. The following example defines a parameter list for the FORTRAN compiler.

DEFINE_PARAMETER_LIST ..
PARAMETER_LIST _NAME= default ..
PARAMETER_LIST = 'i =compile ..

b =object_ file' ..
PROCESSOR = fortran

The PARAMETER _LIST _NAME parameter specifies the name of the parameter list
being defined. The above example uses the name DEFAULT. This name should match
the name that you specify in the DEFAULT _PARAMETER _LIST parameter on the
DEFINE _PROCESSOR command.

PARAMETER _LIST specifies a string containing the parameters to pass to the
specified processor.

The PROCESSOR parameter specifies the name of the processor to associate with the
parameter list.

For a complete description of all parameters for the DEFINE _PARAMETER _LIST
command, see chapter 5, Commands and Functions.

60487413 A Using the Build Utility 2-7

Using the Build Utility

Defining the Source Libraries

To define the source libraries to use during the build, use the
DEFINE _SOURCE _LIBRARIES command.

The DEFINE _SOURCE _LIBRARIES command allows you to specify the internal and
external source libraries to use during the execution of the Build Utility. This
command is a required component of the input file, if the build target kind is specified
as an object library. The following example defines a source library, called SLIB.

DEFINE_SOURCE_LIBRARIES ..
INTERNAL_SOURCE_LIBRARIES = slib ..
DEFAULT _PROCESSOR = fortran

The INTERNAL_SOURCE_LIBRARIES parameter specifies the names of the source
libraries to use during the build.

The DEFAULT_PROCESSOR parameter specifies the name of the processor to use
during the build when the processor attribute of a deck header is undefined. The above
example uses FORTRAN as the default processor.

For a complete description of all parameters for the DEFINE _SOURCE _LIBRARIES
command, see chapter 5, Commands and Functions.

2-8 The Build Utility 60487413 A

Using the Build Utility

Setting a Build Catalog

To specify a catalog to use for the build, use the SET _BUILD _CATALOG command.

The SET _BUILD _CATALOG command specifies the catalog to use during the build.
This is an optional component of the Build Utility input file. If you do not specify the
catalog to use, the current working catalog is used. The following example sets the
build catalog to $USER.BU.

SET_BUILD_CATALOG ..
BUILD_CATALOG = $user.bu

60487413 A Using the Build Utility 2-9

Using the Build Utility

Getting Online Help

It is possible to get online help for the Build Utility subcommands and functions by
starting the Build Utility in terminal input mode.

The Build Utility normally operates in file input mode. All of the inputs to the Build
Utility are provided in the input file. However, if you need an online description of the
Build Utility subcommands or functions, start the Build Utility in terminal input mode.
This method allows you to get command descriptions for all of the Build Utility
subcommands. Most Build Utility ·functions are only available during the
transformation of a build target. Therefore, this method provides descriptions for only a
few functions. The following example shows how to obtain online help for the Build
Utility:

/nU.tlP.i$.P.ftW.a.t:¢:=t:tt~toPUt:
BU /~l$i.HasCJ~;Q·~~t~~t:J:ttf PN~~tH~tC:tJ:tef::t0.Efa:$QUf:C.~JTtora:tJ~$

Names: define_source_11braries, defsl

Parameters:

internal_source_libraries, isl: list of file= $reQuired
external_source_libraries, esl: list of file= $optional
analyze_external_source, aes: boolean = false
default_processor, dp: name = $optional
status: (VAR, BY_NAME) status = $optional
BU/QU.lt:
--ERROR-- No work can be done by the utility because the INPUT file
did not contain a subcommand that defined a build target.
I

The above error occurs every time you quit the Build Utility without defining a build
target. You will not want to run the Build Utility in terminal input mode except to get
online help because you will have to interactively create an input file every time you
run the utility.

2-10 The Build Utility 60487413 A

The Build Utility and PPE 3

Declaring an Input File .. 3-2

PPE Screens . 3-3
Build Processors Screen .. 3-4
Processor Definition Screen . 3-5
Parameter List Library Screen .. ·. 3-6
Tailor Options Screen . 3-7

Getting Online Help . 3-8

60487413 A

The Build Utility and PPE 3

Several aspects of the Build Utility are specific to PPE. PPE automatically maintains
information about the processors, parameter lists, source libraries, and the build catalog
for a given library system. PPE also sets up a default build target definition. This
chapter describes these PPE defaults. It also provides a description of the PPE screens
that affect the way the Build Utility runs.

60487413 A The Build Utility and PPE 3-1

The Build Utility and PPE

Declaring an Input File

If you are not satisfied with the PPE default build target, you can create your own
input file. This file defines all the build targets for your system.

You can redefine the data dependency of your system by creating an input file. This is
a powerful capability. It allows you to define multiple build targets, incorporate
complex data dependencies, and create your own transformations. However, if you
declare an input file you must provide a full description of all build targets for your
system. PPE defines source libraries, processors, parameter lists, and the build working
catalog regardless of whether you specify an input file, but defines a build target only
when an input file is not specified.

If you want to create your own input file, specify the file name on the Tailor Options
screen. You can use the EDIT _FILE utility to create the input file. If you use the
EDIT _DECK command, you must remember to extract the deck to a file before
starting the Build Utility. The Build Utility does not recognize a deck as an input file.

3-2 The Build Utility · 60487413 A

The Build Utility and PPE

PPE Screens

There are four PPE screens that you can use to affect the way the Build Utility runs:
Build Processors, Processor Definition, Parameter List Library, and Tailor Options.

This section provides a brief description of the four PPE screens that affect the way
the Build Utility runs. These four screens are: Build Processors, Processor Definition,
Parameter List Library, and Tailor Options. However, this section does not provide
specific information on using or manipulating each screen. This information is provided
in the Professional Programming· Environment Usage manual.

60487413 A The Build Utility and PPE 3-3

The Build Utility·· and PPE

Build Processors Screen

The Build Processors screen contains a list of all the available processor and
preprocessors. The default processor for the current PPE level is highlighted. It is
possible to add and delete processors from this list.

The following example shows the Build Processors screen containing the seven
predefined processors and three predefined preprocessors.

BUILD PROCESSORS

Processor Processor 1 thru 10 of 10

BUILD_OBJECT_LIBRARY
COBOL
CV2 · (C Version 2)
CYBIL
DMCPC (IM/DM Preprocessor for COBOL)
DMFPC (IM/DM Preprocessor for FORTRAN)
EXPAND_SOURCE

PCC (ORACLE)
VECTOR_FORTRAN (FORTRAN Version 2)

3-4 The Build Utility 60487413 A

The Build Utility and PPE

Processor Definition Screen

The Processor Definition screen allows you to create a new processor for use by the
Build Utility. You can also edit the definitions of existing processors.

The following example shows the Processor Definition screen.

Creating PROCESSOR DEFINITION for

Product identifier: _ Description: -------------

Deck editing information:

Tu~:-+-1-+-2-+-3-+-4-+-S-+-6-+-7
Tab character: Word characters:

Preprocessor:------------

Online manual name or file path:

f9Df10f110f12Df13Df10f1sDf1D

60487413 A The Build Utility and PPE 3.5

The Build Utility and PPE

Parameter List Library Screen

The Parameter List Library screen lists all the defined parameter lists for a specified
processor. From this screen you can create, modify, and delete parameter lists. When
creating or modifying a parameter list in PPE, you are presented with the full
NOSNE parameter list for the specified processor.

The following example shows the default Parameter List Library for the FORTRAN
processor.

PARAMETER LIST LIBRARY

Processor: FORTRAN (FORTRAN Version 1)

Parameter list

DEFAULT
PRODUCTION

3-6 The Build Utility

Parameter I ist 1 thru 3 of 3

60487413 A

The Build Utility and PPE

Tailor Options Screen

The Tailor Options screen allows you to change several parameters that affect the way
the Build Utility runs. This screen allows you to specify the following:

• The name of the object library file.

• The mode in which builds are performed (interactive or batch).

• The build working catalog.

• A Build Utility input file.

The following example shows the Tailor Options screen with the default values.

TAILOR OPTIONS

Option

Build options:
Failed build actions:
Object library file:
Perform builds:
Successful build action:
Build Utility input file:
Build working catalog:

Run options:
Run command:
Run working catalog:

Editing options:
PPE editor key assignments:

Editor prolog file:

60487413 A

Option 1 thru 1 O of 15

Current value

X DISPLAY BUILD ERRORS NONE
$tailor option (build working catalog) .objec ..
~ INTERACTIVELY _BATCH
_EXECUTE RUN_SOF1WARE COMMAND ~NONE

$environment catalog

?execute simple task f =$tailor option (olf) ..
$environment catalog

X BEFORE USER PROLOG _AFTER USER PROLOG
-NONE

The Build Utility and PPE 3.7

Using the Build Utility

Getting Online Help

It is possible to get an online description of the Build Utility subcommands and
functions by starting the Build Utility in terminal input mode.

The Build Utility normally operates in file input mode. All of the input to the Build
Utility is provided by PPE and the input file. However, if you need an online
description of the Build Utility subcommands or functions, start the utility in terminal
input mode. This method provides descriptions of all the Build Utility subcommands.
However, most Build Utility functions are only available during the execution of a
transformation. Therefore, this method provides descriptions for only a few Build
Utility functions. To do this, use the Tailor Options screen to define the input file as
INPUT. Once the input file is set to input, start the Build Utility by using one of the
build commands or function keys. The following example shows how to get online help
for the Build Utility subcommands and functions:

Names: def1ne_source_l1braries, defsl

Parameters:

internal~source_libraries, isl: list of file= $required
external_source_libraries, esl: list of file= $optional
analyze_external_source, aes: boolean = false
default_processor, dp: name = $optional
status: (VAR, BY_NAME) status = $optional
INCF/:QQll
--ERROR-- No work can be done by the utility because the INPUT file
did not contain a subcorrmand that defined a build target.
I

The above message occurs every time you quit the Build Utility without defining a
build target. You will not want to run the Build Utility in terminal input mode except
to get online help because you will have to interactively create an input file every time
you run the utility. An optional method for getting online help in PPE is to enter the
BUILD _SOFTWARE command with the INPUT parameter specified as input from the
home line.

NOTE

This section does not refer to the INTERACTIVE and BATCH fields on the Tailor
Options screen. These fields determine whether to run the Build Utility interactively,
but do not affect the mode of input. However, to get online help you must run the
Build Utility interactively.

3-8 The Build Utility 60487413 A

Advanced Usage 4

Defming a Preprocessor ... 4-2

Using the PROCESSOR Attribute 4-3

Defining Multiple Processors ... 4-4

Defining Multiple Build Targets .. 4-5

Defining a Layered System ... ' ... ·. 4-6

Creating Complex Transformations . 4-7

60487413 A

Advanced Usage

This chapter describes some of the more advanced features and applications of the
Build Utility. These features include preprocessors, using the PROCESSOR attribute,
multiple processors, multiple build targets, layering, and complex transformations.

4

60487413 A Advanced Usage 4-1

Advanced Usage

Defining a Preprocessor

One of the optional parameters of the DEFINE _PROCESSOR command allows you to
define a preprocessor.

A preprocessor is the name of a command which prepares source text for input to a
specified processor. The preprocessor parameter is needed when the source text must be
prepared in some way before being passed to the main processor. An example of a
preprocessor is the IM/DM command DMCPC. In this case, the precompiler scans the
source module for DM commands that are embedded in the COBOL code. This DM code
must be converted to COBOL code before it is sent to the COBOL compiler.

The following is an example of a processor definition which includes a preprocessor.

4-2 The Build Utility

DEFINE_PROCESSOR ..
PROCESSOR = cobol ..
PREPROCESSOR = DMCPC ..
DEFAULT_PARAMETER_LIST =default

60487413 A

Advanced Usage

Using the PROCESSOR Attribute

The Build Utility allows you to use the PROCESSOR attribute of a deck header to
specify both a processor and a parameter list to use for the build.

Every deck header has a PROCESSOR attribute. This attribute accepts a string value.
This string usually specifies the name of the processor to use for building that deck.
However, the Build Utility allows you to use this attribute to specify both the name of
a processor and the name of a parameter list.

To do this, the Build Utility checks the PROCESSOR attribute to see if it satisfies the
following format.

processor,p : name=$optiona1
parameter_list_name, pln : name=$optiona1

If the Build Utility determines that the value satisfies this format, it uses the
processor and the parameter list that are specified. If either one or both are not
specified, the Build Utility uses the default processor or the default parameter list or
both to build the deck. The following are examples of values that satisfy the above
format:

fortran default
p=cobol pln=list2
pln=plist1

The Build Utility executes the following INCLUDE _COMMAND on the values that
satisfy the Build Utility format.

include_conmand 'processor '//$parameter_1ist_value (p,pln)

In this example, processor refers to the name of the processor specified. If the value of
the PROCESSOR attribute does not satisfy the above format, the Build Utility assumes
that the value contains the complete command for transforming that deck and executes
an INCLUDE _COMMAND on the value. For example, the following value does not
satisfy the Build Utility format.

fortran i=compile b=object_file

Therefore, the Build Utility executes the INCLUDE _COMMAND on the entire value.

NOTE

When using PPE, you get a warning message if the value you specify in the
PROCESSOR attribute does not appear on the Build Processors screen. However, the
Build Utility still processes the value as described above.

60487413 A Advanced Usage 4-3

Advanced Usage

Defining Multiple Processors

The Build Utility allows you to define multiple processors in a single input file.

The Build Utility uses the PROCESSOR attribute on the individual deck header to
determine which processor to use for the transformation. Therefore, you can combine
object text from different processors into one object library by specifying different
processor names on the deck header. For example, code from a FORTRAN, COBOL,
and CYBIL compiler can be combined into one object library using the Build Utility.

In a file system, using multiple processors for a given build target is more difficult.
The Build Utility cannot determine which processor to use for a given file simply by
looking at the file. To handle multiple processors in a file system, you can define a
separate build target for each processor. Then define another build target that is
composed of the individual object modules.

4-4 The Build Utility 60487413 A

Advanced Usage

Defining Multiple Build Targets

The Build Utility allows you to define multiple build targets.

You are allowed to have multiple occurrences of the DEFINE_BUILD_TARGET
command in a Build Utility input file. For example, your software system could consist
. of two libraries: an unbound library and a bound version. The following diagram shows
a system with more than one build target. This example shows two build targets: an
object library and a bound library.

Bound
Library

Object
Library

Source
Library

library2

t
library1

t
deck1
deck2 ...

DEFINE_BUILD_TARGET ..
BUILD_ TARGET= library2 ..
BUILD_TARGET_KIND =none ..
DEPENDENCES= library1 ..
TRANSFORMATION= tfile

DEFINE_BUILD_ TARGET ..
BUILD_TARGET= library1..
BUILD_TARGET_KIND = object_library ..
COMPOSITION= 'incd d = (deck1 deck2)' ..
TRANSFORMATION =default

Input File

The order in which the build targets are defined in the input file is important. By
default, the Build Utility analyzes only the first build target in the input file.
However, the process of analyzing a build target involves first analyzing all the decks
or files on which it is dependent. Therefore, by defining library2 first, the Build Utility
analyzes libraryl. However, if you reverse the definitions, only libraryl is analyzed.

You can also use the BUILD_TARGET parameter on one of the build commands
(BUILD_SOFTWARE, BUILD_CHANGED_DECKS, or BUILD_DECKS) to specify
which build targets to build. Specifying ALL causes the Build Utility to build all
targets, regardless of order.

60487413 A Advanced Usage 4-5

Advanced Usage

Defining a Layered System

The Build Utility allows you to declare and maintain a layered system of build targets.

In a development environment, object libraries are often maintained at several levels.
For example, one object library exists at the programmer level, another at the
coordinator level, and a final version exists at integration. This concept is called
layering. The Build Utility handles layering by allowing you to declare a list of object
libraries associated with each build target. This is done using the LAYERS parameter
of the Build Utility subcommand .DEFINE_BUILD_TARGET.

When the Build Utility encounters a layered system, it searches each level to find the
first occurrence of a given module. The search begins with the current build target and
then continues with each object library in the order it is declared in the LAYERS
parameter. When the Build Utility finds the first occurrence of a module, it uses it as
the basis for analysis. If the module is younger than the next occurrence, the Build
Utility performs the transformation. If it is not younger, no transformation is
performed.

4-6 The Build Utility 60487413 A

Advanced· Usage

Creating Complex Transformations

The Build Utility allows you to create complex transformations. These transformations
are specified in the transformation file.

The TRANSFORMATION parameter of the Build Utility subcommand
DEFINE _BUILD _TARGET accepts a file name. This file, called the transformation
file, can contain NOSNE commands and the Build Utility commands and functions.
Since you can write NOSNE procedures that perform almost any task, you can create
almost any transformation. The Build Utility places no limit on the size or complexity
of the transformation file. You are limited only by your ability to define a particular
transformation.

60487413 A Advanced Usage 4-7

Commands and Functions 5

Command and Subcommands . 5-1
BUILD _SOFTWARE . 5-2
DEFINE_BUILD_TARGET .. 5-4
DEFINE_PARAMETER_LIST ... 5-6
DEFINE_PROCESSOR .. 5-7
DEFINE _SOURCE _LIBRARIES . 5-8
SET_BUILD_CATALOG ... 5-9

Functions . 5-11
$ALTERNATE_SOURCE_LIBRARIES .. 5-12
$BASE_SOURCE_LIBRARY ... 5-13
$BUILD_CATALOG .. 5-14
$BUILD_TARGET .. 5-15
$BUILD_TARGET_KIND ... 5-16
$BUILD_TARGET_LAYERS .. 5-17
$CHANGED _DECKS . 5-18
$COMPOSITION . 5-19
$COMPOSITION _MAP ; . 5-20
$DEPENDENCES . 5-21
$DISPLAY _OPTIONS . 5-22
$ERRORS_FILE · 5-23
$EXTERNAL_SOURCE_LIBRARIES ... 5-24
$INTERNAL_SOURCE_LIBRARIES ; 5-25
$LAYERS . 5-26
$OUTPUT _FILE . 5-27
$PARAMETER_LIST_VALUE .. 5-28
$PROCESSOR_ATTRIBUTE .. 5-29
$UNKNOWN _LIBRARY _ENTRIES- . 5-30

Build Utility Processors ... 5-31
BUILD_OBJECT_LIBRARY .. 5-32
EXPAND _SOURCE . 5-34

PPE Subcommands ... ·. 5-37
BUILD_CHANGED_DECKS ... 5-38
BUILD_DECKS .. 5-40

60487413 A

Commands and Functions 5

Command and Subcommands

This section contains descriptions of the Build Utility command and subcommands. The
commands are presented in alphabetical order. Each description provides the following
information:

• Purpose of the command.

• Format of the command.

• Descriptions of the command parameters.

Optionally, the command descriptions may contain remarks and examples of command
usage.

The command format provides the full command name, any abbreviations of the
command, and the parameters for the command.

The STATUS parameter on the Build Utility commands is the same STATUS parameter
available on all NOS/VE commands. If the STATUS parameter is specified, it must be
specified by name, not by position'.

Using Build Utility Subcommands

The Build Utility subcommands are used in the Build Utility input file. The only
command that can be entered directly from NOS/VE is the Build Utility command
BUILD _SOFTWARE.

60487413 A Commands and Functions 5-1

Command and Subcommands

BUILD _SOFTWARE
Build Utility Command

Purpose Initiates the Build Utility.

Format BUILD _SOFTWARE or
BUIS

INPUT=file
BUILD _TAR.GETS=list of file or keyword
DECKS= list of name or keyword
EXECUTE _TRANSFORMATIONS= boolean
DISPLAY _OPTIONS= list of keyword
OUTPUT=file
ERRORS =file
STATUS =status variable

Parameters INPUT or I

Specifies a file that describes your file system or library to the Build
Utility. This file may contain NOSNE commands and Build Utility
subcommands.

This is a required parameter.

BUILD _TARGETS or BUILD _TARGET or BT

Specifies which build targets from the input file should be analyzed.

You can reference the build targets by name or use one of the following
keywords:

FIRST

Specifies the first build target in the input file.

ALL

Specifies all build targets in the input file.

The default is FIRST.

DECKS or D

Specifies the decks to build.

You can specify a deck name, a list of deck names, or the keyword ALL.

ALL

Specifies all decks.

There are only three occasions when you will want to specify this
parameter.

• When you want a full build.

• When you know that a deck was changed in such a way that the object
code will not be affected. For example, changing a comment in a
program does not affect the execution of the object code.

• When you know exactly which decks need to be built.

By default, the ·Build Utility determines which decks are out of date by
comparing the date/time stamp on the source deck with the date/time
stamp on the build target.

5-2 The Build Utility 60487413 A

Remarks

Example

60487413 A

Command and Subcommands

EXECUTE _TRANSFORMATIONS or ET

Specifies whether to execute the transformations for an out-of-date build
target.

This parameter accepts a boolean value. If you specify FALSE, the
transformations are not made. Only the analysis phase of the build is
executed. This allows you to determine which decks would be built without

· actually performing a build.

By specifying the DISPLAY _OPTIONS parameter, you can cause the Build
Utility to display the out-of-date build targets and the reasons they were
found to be out of date.

The default value is TRUE.

DISPLAY _OPTIONS or DO

Specifies the information to display about the build. The Build Utility
writes this information to the file specified by the OUTPUT parameter.

Specify one of the following keywords:

ANALYSIS_TRACE or AT

Writes the steps taken by the Build Utility during the build.

ANALYSIS_RESULTS or AR

Writes the results of the analysis phase of the build.

NONE

Indicates that no information is written.

The default value is NONE.

OUTPUT or 0

Specifies the name of the file to which the information generated by the
DISPLAY_OPTIONS parameter is written.

The default value is $OUTPUT.

ERRORS or E

Specifies the name of the file to which error messages are written.

The default value is $ERRORS.

This is the only Build Utility command that can be entered directly from
the command prompt.

The following example uses the BUILD _SOFTWARE command to start the
Build Utility. !FILE is the name of the Build Utility input file.

or abbreviated,

Commands and Functions 5-3

Command and Subcommands

DEFINE _BUILD _TARGET
Build Utility Subcommand

Purpose Defines a build target by specifying the files it depends on and the
transformation to be performed when the target is found to be out of date.

Format DEFINE_BUILD_TARGET or
DEFBT

BUILD_ TARGET= file
BUILD _TAR.GET _KIND=name or keyword
DEPENDENCES= list of file
COMPOSITION= keyword or file or string
COMPOSITION _MAP=file
LAYERS= list of file
TRANSFORMATION=keyword or file or string
STATUS=status variable

Parameters BUILD_ TARGET or BT

Specifies the build target name. A file name or library must be specified.

This is a required parameter.

BUILD _TARGET _KIND or BTK

Specifies the type of the build target. Specify an appropriate name or one
of the following keywords:

OBJECT _LIBRARY or OL

Indicates that the build target type is an object library.

NONE

No type is assigned to the build target.

The default is NONE.

DEPENDENCES or D

Specify a list of files that the build target depends upon. Files that are
specified in this parameter can also be build targets.

If omitted, the Build Utility assumes that the build target is dependent
upon decks rather than files and uses the COMPOSITION parameter to
determine the decks.

COMPOSITION or C

Specifies the expandable decks that compose the build target. Specify a
string or a file containing SCU selection criteria commands, or the
following keyword:

MAPPED_DECKS_ONLY or MDO

Indicates that the build target is only dependent on the decks specified
by the COMPOSITION _MAP parameter.

If omitted, the Build Utility assumes that the build target is dependent on
files rather than decks and uses the DEPENDENCES parameter to
determine the files.

5-4 The Build Utility 60487413 A

Remarks

Example

60487413 A

Command and Subcommands

COMPOSITION _MAP or CM

Specifies a file containing a list of source decks mapped to object library
entries. Each mapping has the following format:

deck:name = $reQu1red object_11brary_entry:name = $optional

By default, the name in the object library matches the name of the deck.

LAYERS or L

Specifies a list of files that comprise the layers of a system. These layers
are searched in ordei:, starting with the build target itself, to find the first
occurrence of a module. The Build Utility uses this module as the basis for
its analysis.

By default, no layers are defined.

TRANSFORMATION or T

Specifies the transformation to perform when the build target is out of
date. Specify a string or file which contains one or more NOS/VE
commands, or the following keyword:

This is a required parameter.

DEFAULT or D

Specifies that transformation is determined by the
BUILD _TARGET _KIND parameter. In order to use DEFAULT for the
TRANSFORMATION parameter, the BUILD_TARGET_KIND must not
be NONE.

• This command can only be used in a Build Utility input file.

• A build target can be any file, including an object library.

• A build target can be dependent on other build targets.

• You must specify either the DEPENDENCES parameter or the
COMPOSITION parameter on this command.

The following example defines a build target named TARGET! as an object
library.

define_build_target ..
build_target = target1 ..
build_target_kind = object_11brary ..
composition= '1ncd d = (deck1 deck2 deck3)' ..
transformation = default

or abbreviated,

defbt ..
bt = target 1 ..
btk = ol ..
c = 'incd d = (deck1 deck2 deck3)' ..
t = default

Commands and Functions 5-5

Command and Subcommands

DEFINE _PARAMETER _LIST
Build Utility Subcommand

Purpose Defines the parameters to pass to the specified processor during a
transformation.

Format DEFINE _PARAMETER _LIST or
DE FPL

PARAMETER _LIST _NAME=name
PARAMETER _LIST= string
PROCESSOR= name
STATUS=status variable

Parameters PARAMETER _LIST _NAME or PLN

Remarks

Example

Specifies a name to associate with the parameter list. The name must be
unique to the specified processor.

The default is DEFAULT.

PARAMETER _LIST or PL

Specifies a string containing the parameters to pass to a given processor.

This is a required parameter.

PROCESSOR or P

Specifies a processor to associate with the parameter list. The processor
specified by this parameter must be defined with a DEFINE _PROCESSOR
command prior to being referenced by this parameter.

This is a required parameter.

This command can only be used in a Build Utility input file.

The following example defines a parameter list to pass to the COBOL
processor:

def1ne_parameter_list ..
parameter_11st_name=p11st1 ..
parameter_11st='i=comp11e bo=object_file' ..
processor=cobol

or abbreviated,

defpl ..
pln=p11st 1 ..
pl='i=comp11e bo=object_f11e' ..
p=cobol

5-6 The Build Utility 60487413 A

Command and Subcommands

DEFINE _PROCESSOR
Build Utility Subcommand

Purpose Defines a processor to use during the execution of a transformation.

Format DEFINE _PROCESSOR or
DEFP

PROCESSOR= name
PREPROCESSOR=name or keyword
DEFAULT _PARAMETER _LIST=name
STATUS= status variable

Parameters PROCESSOR or P

Remarks

Example

60487413 A

Specifies the name of the processor to define.

This is a required parameter.

PREPROCESSOR or PP

Specifies a preprocessor to use prior to executing the processor. A
preprocessor prepares the source text for the main processor. An example
of a preprocessor is DMFPC, which converts all the embedded DM
commands in source code to FORTRAN code.

The default is NONE.

DEFAULT _PARAMETER _LIST or DPL

Specifies the name of the parameter list to use by default for the
processor. The Build Utility uses this parameter list when the processor
attribute of a deck header does not specify a parameter list. The parameter
list must be defined using the DEFINE _PARAMETER _LIST command.

The default is DEFAULT.

• This command can only be used in a Build Utility input file.

• This command must be specified before specifying the
DEFINE _PARAMETER _LIST command.

The following example defines a COBOL processor and uses the default
parameter list PLISTl:

def1ne_processor ..
processor=cobol ..
default_parameter_list=plist1

or abbreviated,

defp ..
p=cobol ..
dpl =pl i st 1

Commands and Functions 5-7

Command and Subcommands

DEFINE _SOURCE _LIBRARIES
Build Utility Subcommand

Purpose Specifies the internal and external source libraries to use during the build.

Format DEFINE _SOURCE _LIBRARIES or
DEFSL

INTERNAL_SOURCE_LIBRARIES=list of file
EXTERNAL_SOURCE_LIBRARIES=list of file
ANALYZE _EXTERNAL _SOURCE= boolean
DEFAULT _PROCESSOR=name
STATUS=status variable

Parameters INTERNAL _SOURCE _LIBRARIES or ISL

Remarks

Example

Specifies one or more source libraries to use during the build. The Build
Utility searches these libraries in the order they are specified.

This is a required parameter.

EXTERNAL_SOURCE_LIBRARIES or ESL

Specifies one or more source libraries containing decks that are external to
the system being built, but are referenced by internal decks. The Build
Utility searches these libraries in the order they are specified.

By default, no external source libraries are searched.

ANALYZE_EXTERNAL_SOURCEorAES

Specifies whether to include the external decks in the dependency analysis.

The default is FALSE.

DEFAULT _PROCESSOR or DP

Specifies the processor to use during a build when the processor attribute
in a deck header is undefined. The processor must be defined using the
DEFINE _PROCESSOR command prior to being referenced by this
parameter.

By default, the processor is defined by each deck's PROCESSOR attribute.

o This command can only be used in a Build Utility input file.

• This command is a required component of the input file when any of
the build targets are defined as object libraries.

The following example defines· a source library called SOURCE _LIB and
specifies COBOL as the default processor:

define_source_libraries ..
internal_source_libraries=source_lib ..
default_processor=cobol

or abbreviated,

defsl ..
isl =source_ 1 i b ..
dp=cobol

5-8 The Build Utility 60487413 A

SET _BUILD _CATALOG
Build Utility Subcommand

Purpose Specifies the catalog to use during the build.

Format SET _BUILD _CATALOG or
SETBC

BUILD _CATALOG=catalog name
STATUS= status variable

Parameters BUILD _CATALOG or BC

Command and Subcommands

Specifies the full path name of the catalog to use during the build.

The default is the default working catalog.

Remarks This command can only be used in a Build Utility input file.

60487413 A Commands and Functions 5-9

Command and Subcommands

This page intentionally left blank.

5-10 The Build Utility 60487413 A

Functions

Functions
This section contains descriptions of the Build Utility functions. These descriptions are
presented alphabetically. Each description provides the following information:

• Purpose of the function.

• Format of the function.

• Descriptions of the function parameters (if any).

These descriptions may contain remarks and examples of the function's usage.

Using Build Utility Functions

Functions are used in the Build Utility input file or a transformation file. The values
that some return depend on the build target whose transformation is executing. The
following example shows how to use a function in the Build Utility input file:

DEFINE_PARAMETER_LIST ..
PROCESSOR= build_object_library ..

PARAMETER_LIST = m~~~JJiJ!l~~~~~iil.l~l~ili00i:·

Build Utility functions are only available during the execution of the Build Utility.
However, some commands start new tasks (FORTRAN, for example). Build Utility
functions are not available while these new tasks are executing, nor can they be passed
as parameters to the new task. For example, you cannot include the following
statement in an input file.

Instead, you need to call the function first, then call the FORTRAN compiler.

temp=$dependences
fortran 1=temp b=object_file

60487413 A Commands and Functions 5-11

Functions

$ALTERNATE _SOURCE _LIBRARIES
Build Utility Function

Purpose

Format

Remarks

Example

Result

Returns a list of the internal and external source libraries excluding the
first internal source library given.

$ALTERNATE _SOURCE _LIBRARIES or
$ASL

If no alternate source libraries are specified, an empty list is returned.

define_source_libraries ..
1nternal_source_libraries=(lib1, 11b2)

display_value $alternate_source_libraries

:V01.kevin.1ib2

5-12 The Build Utility 60487413 A

$BASE _SOURCE _LIBRARY
Build Utility Function

Purpose

Format

Example

Returns the name of the first internal source library defined in the
DEFINE _SOURCE _LIBRARIES command.

$BASE _SOURCE _LIBRARY or
$BSL

define_source_11braries ..
internal_source_libraries=(11b1, 11b2)

display_value $base_source_11brary

Result : VO 1 . kev i n . 1 i b 1

Functions

60487413 A Commands and Functions 5-13

Functions

$BUILD _CATALOG
Build Utility Function

Purpose

Format

Returns the name of the catalog used during the build.

$BUILD _CATALOG or
$BC

Remarks If the input file does not specify the SET _BUILD _CATALOG command,
this function returns the name of the default working catalog.

Example

Result

set_working_catalog ..
working_catalog=$user.exmps

display_value $build_catalog

:V01.kevin.exmps

5-14 The Build Utility 60487413 A

Functions

$BUILD _TARGET
Build Utility Function

Purpose

Format

Example

Result

60487413 A

Returns the name of the build target whose transformation is currently
executing.

$BUILD_TARGET or
$BT

def1ne_build_target ..
build_target=targetl ..
build_target_kind=nbne ..

display_value $build_target

:V01.kevin.target1

Commands and Functions 5-15

Functions

$BUILD_ TARGET _KIND
Build Utility Function

Purpose

Format

Example

Result

Returns the type of build target whose transformation is currently
executing. The value returned is the name specified in the definition of the
build target.

$BUILD_TARGET_KIND or
$BTK

define_build_target ..
build_target=lib1.~

build_target_kind=object_library

display_value $build_target_kind

object_ library

5-16 The Build Utility 60487413 A

$BUILD _TARGET ~LAYERS
Build Utility Function

Functions

Purpose Returns the file reference for every layer of the specified build target.

Format $BUILD_TARGET_LAYERS or
$BTL

(BUILD _TARGET=name)

Parameters BUILD _TARGET

Specifies the build ta~get to use.

If the specified file is not a build target, the function returns the file that
was given. If no file is specified, the function returns the name of the
build target whose transformation is currently executing.

60487413 A Commands and Functions 5-17

Functions

$CHANGED _DECKS
Build Utility Function

Purpose

Format

Remarks

Example

Returns the names of the expandable decks that compose the build target
whose transformation is currently executing.

$CHANGED _DECKS or
$CD

The value returned depends on the value of the DECKS parameter of the
BUILD _SOFTWARE command. If ALL was specified, the function returns
a list of all decks that compose the current build target. If no value for
the DECKS parameter was specified, the function returns a list of decks
from the current build target that are out of date. If a deck name or list
of decks was specified in the DECKS parameter, the function returns a list
of these decks and any other decks that compose the build target.

build_software i=infile d=(deck1 deck2 deck3)

display_value $changed_decks

Result deck 1
deck2
deck3

5-18 The Build Utility 60487413 A

$COMPOSITION
Build Utility Function

Purpose

Format

Remarks

Example

Returns a list of all decks that compose the build target whose
transformation is currently executing.

$COMPOSITION or
$C

If the COMPOSITION parameter on the DEFINE _BUILD _TARGET
command was not specified, no value is returned.

define_build_target ..
bu1ld_target=target1 ..
build_target_k1nd=ol ..
composition='incd d=(deck1 deck2)' ..

display_value $composition

Result deck 1
deck2

Functions

60487413 A Commands and Functions 5-19

Functions

$COMPOSITION _MAP
Build Utility Function

Purpose Returns a list of the decks and their corresponding object library entries
that comprise the build target whose transformation is currently executing.

Format $COMPOSITION _MAP or
$CM

Remarks If the COMPOSITION _MAP parameter on the DEFINE _BUILD _TARGET
command was not specified, an empty list is returned.

Example This example uses the following composition map file:

deck1 ent1
deck2 ent2
deck3 ent3

display_value $compos1t1on_map

Result deck 1
ent1
deck2
ent2
deck3
ent3

5-20 The Build Utility 60487413 A

$DEPENDENCES
Build Utility Function

Functions

Purpose Returns the list of files that the build target whose transformation is
currently executing depends upon.

Format $DEPENDENCES or
$D

(KIND= keyword)

Parameters KIND

Example

Result

60487413 A

Specifies the files to 'return.

Specify one of the following keywords:

YOUNGER_THAN_TARGETorYTT

Returns only files that are younger than the target (the changed files).

ALL

Returns all files referenced in the DEPENDENCES parameter.

The default is YOUNGER_THAN _TARGET.

In the following example, the build catalog is :VOl.kevin.

define_build_target ..
build_target=targetl ..
build_target_kind=none ..
dependences=(filel file2)

display_value $dependences(a11)

:V01.kevin.file1
:V01.kevin.file2

Commands and Functions 5-21

Functions

$DISPLAY _OPTIONS
Build Utility Function

Purpose

Format

Remarks

Returns the display options specified for the build.

$DISPLAY_OPTIONS or
$DO

If no display options were specified, an empty list is returned.

5-22 The Build Utility 60487413 A

Functions

$ERRORS _FILE
Build Utility Function

Purpose

Format

Example

Returns the name of the file containing the error messages from the build.

$ERRORS _FILE or
$EF

The following example assumes that no errors file was specified on the
BUILD _SOFTWARE command. Therefore, the default is used.

display_value $errors_file

Result : $1oca 1 . $error. 1

60487413 A Commands and Functions 5-23

Functions

$EXTERNAL _SOURCE _LIBRARIES
Build Utility Function

Purpose

Format

Returns a list of external source libraries specified for the build.

$EXTERNAL _SOURCE _LIBRARIES or
$ESL

Remarks If no external source libraries are specified, an empty list is returned.

Example

Result

In the following example, the build catalog is : VOl.kevin.

define_source_libraries ..
internal_source_libraries=slib ..
external_source_libraries=(l1b3 lib4) ..

display_value $external_source_libraries

:V01.kevin.1ib3
:V01.kevi n. 1 ib4

5-24 The Build Utility 60487413 A

$INTERNAL _SOURCE _LIBRARIES
Build Utility Function

Purpose

Format

Example·

Returns a list of internal source libraries specified for the build.

$INTERNAL_SOURCE _LIBRARIES or
$ISL

In the following example, the build catalog is :VOl.kevin.

define_source_libraries ..
internal_source~libraries=slib ..
external_source_libraries=(lib3 lib4) ..

display_value $internal_source_libraries

Result : VO 1 . kev i n . s 1 i b

Functions

60487413 A Commands and Functions 5-25

Functions

$LAYERS
Build Utility Function

Purpose Returns a list of files that comprise the layers of the build target whose
transformation is currently executing.

Format

Remarks

Example

Result

$LAYERS or
$L

If no layers are specified, an empty list is returned.

In the following example, the build catalog is :VOl.kevin.

define_build_target ..
build_target=target1 ..
build_target_kind=object_library ..
1ayers=(file1 f11e2)

display_value $layers

:V01.kevin.file1
:V01.kevin.file2

5-26 The Build Utility 60487413 A

$OUTPUT _FILE
Build Utility Function

Purpose

Format

Remarks

Returns the name of the output file specified for the build.

$OUTPUT _FILE or
$OF

If no output file is specified, $OUTPUT is returned.

Functions

Example The following example assumes that no output file was specified on the
BUILD _SOFTWARE· command. Therefore, the default is used.

display_value $output_file

Result : $1 oca l . $ouput . 1

60487 413 A Commands and Functions 5-27

Functions

$PARAMETER _LIST_ VALUE
Build Utility Function

Purpose Returns a string containing the list of parameters to pass to the processor.

Format $PARAMETER _LIST_ VALUE or
$PLV

(PROCESSOR =name or keyword
PARAMETER _LIST _NAME= name or keyword)

Parameters PROCESSOR

Example

Result

Specifies the name or' the processor to use. To use the default processor
established for this build, specify the keyword DEFAULT _PROCESSOR.

The default is DEFAULT _PROCESSOR.

PARAMETER _LIST _NAME

Specifies the name of the parameter list. To use the default parameter list
for the specified ·processor, specify the keyword
DEFAULT _PARAMETER _LIST.

The default is DEFAULT _PROCESSOR.

display_vatue $parameter_11st_vatue(expand_source default)

d=$changed_decks b=$base_source_11brary ab=$alternate_source_11braries 1=
$output_file e=$errors_f11e

5-28 The Build Utility 60487413 A

$PROCESSOR _ATTRIBUTE
Build Utility Function

Functions

Purpose Returns the name of the preprocessor or the default parameter list for the
specified processor.

Format $PROCESSOR_ATTRIBUTE or
$PA

(PROCESSOR= name
ATTRIBUTE= keyword)

Parameters PROCESSOR

Specifies the name of the processor.

This is a required parameter.

ATTRIBUTE

Specifies the processor attribute.

Enter one of the following keywords:

PREPROCESSOR or PP

Returns the name of the preprocessor associated with the specified
processor. If the processor does not have a preprocessor assigned to it,
NONE is returned.

DEFAULT_PARAMETER_LIST or DPL

Returns the name of the default parameter list for the specified
processor. If no default parameter list is specified, UNDEFINED is
returned.

This is a required parameter.

Example display_value $processor_attribute(expand_source default_parameter_list)

Result def au 1 t

60487 413 A Commands and Functions 5-29

Functions

$UNKNOWN _LIBRARY _ENTRIES
Build Utility Function

Purpose

Format

Remarks

Returns a list of all object library modules for which no source deck is
present in the composition of the build target.

$UNKNOWN _LIBRARY _ENTRIES or
$ULE

If no unknown library modules are found, an empty list is returned.

5-30 The Build Utility 60487413 A

Build Utility Processors

Build Utility Processors
This section contains descriptions of two Build Utility processors. These processors are
pre-defined by the Build Utility.

Each description provides the following information:

• Purpose of the command.

• Format of the command.

• Descriptions of the command parameters.

Optionally, the command descriptions may contain remarks and examples of command
usage.

The format provides the full processor name, any abbreviations of the processor, and
the parameters for the processor.

The STATUS parameter on Build Utility commands is the same STATUS parameter
available on all NOSNE commands. If the STATUS parameter is specified, it must be
specified by name, not by position.

60487413 A Commands and Functions 5-31

Build Utility Processors

BUILD _OBJECT _LIBRARY
Build Utility Processor

Purpose Builds an object library.

Format BUILD _OBJECT _LIBRARY or
BUIOL

BASE _OBJECT _LIBRARY= file
RESULT _OBJECT _LIBRARY=file
OBJECT _Ji'ILES=file
DELETE_MODULES=list of name
INCLUDE _Ji'ILE=file
DELETE _OBJECT _FILES= boolean
OUTPUT= file
STATUS= s'tatus variable

Parameters BASE _OBJECT _LIBRARY or BOL

Specifies the name of the object library to use for the build.

The default parameter list assigns $BUILD _TARGET to this parameter.
For information on using the default parameter list, see the remarks at
the end of this processor description.

RESULT _OBJECT _LIBRARY or ROL

Specifies the name of the object library that results from the build.

By default, the name of result object library is the same as the name of
the base object library except the cycle number of 1 higher.

OBJECT _FILES or OF

Specifies the names of the object files to use for the build.

The default is OBJECT_FILE.

DELETE _MODULES or DM

Specifies the names of the modules in the object library to delete during
this procedure.

The default parameter list assigns $UNKNOWN _LIBRARY _ENTRIES to
this parameter. For information on using the default parameter list, see
the remarks at the end of this processor description.

INCLUDE _FILE or IF

Specifies a file of SCL commands to execute during this procedure.

DELETE_OBJECT_FILESorDOF

Specifies whether to delete the object files during this procedure.

The default is TRUE.

OUTPUT or 0

Specifies a file to which messages are written during the execution of this
procedure.

The default parameter list assigns $0UTPUT_FILE to this parameter. For
information on using the default parameter list, see the remarks at the
end of this processor description.

5-32 The Build Utility 60487413 A

Remarks

Build Utility Processors

• The Build Utility defines the following default parameter list for this
processor:

define_parameter_list ..
processor= build_object_library ..
parameter_list_name =default ..
parameter_l1st = 'bol=$bu1ld_target o=$output_file'// ..

dm=$unknown_11brary_entr1es'

To use this default parameter list, include the following statement in
your transformation file:

include_conmand 'bu1ld_object_l1brary '// ..
$parameter_list_value(build_object_l1brary default)

• This processor repeatedly tries to create cycle one of the result object
library. This is done to insure the integrity of the object library in a
multi-programming environment. If cycle one already exists, the build
will never terminate.

60487413 A Commands and Functions 5-33

Build Utility Processors

EXPAND _SOURCE
Build Utility Processor

Purpose Expands selected decks to a file.

Format EXPAND _SOURCE or
EXPS

DECKS= list of name or keyword
COMPILE =file
DEBUG _AIDS= keyword
OUTPUT _SOURCE _MAP=file
SELECTION _CRITERIA= file
WIDTH =integer
LINE _IDENTIFIER= keyword
BASE=file
ALTERNATE _BASES= list of file
LIST=file
ERRORS= file
EXPANSION _DEPTH =integer
DISPLAY _OPTIONS =keyword
ORDER =keyword
STATUS= status variable

Parameters DECKS or DECK or D

Specifies the decks to expand. Specify a deck name, a list of deck names,
or one of the following keywords:

ALL

Specifies all decks.

NONE

If NONE is specified, SCU uses the file specified in the
SELECTION _CRITERIA parameter to determine which decks to
expand.

The default parameter list assigns $CHANGED_DECKS to this parameter.
For information on using the default parameter list, see the remarks at
the end of this processor description.

COMPILE or C

Specifies the name of a file to which the decks are expanded.

The default is COMPILE.

DEBUG _AIDS or DA

Specifies whether to write screen debug information to the file specified in
the OUTPUT_SOURCE_MAP parameter.

Specify one of the following keywords:

DT

Debug information is written.

NONE

No debug information is written.

The default is NONE.

5-34 The Build Utility 60487413 A

60487413 A

Build Utility Processors

OUTPUT _SOURCE _MAP or OSM

Specifies a file to which the debug information is written.

The default is OUTPUT_SOURCE_MAP.

SELECTION _CRITERIA or SC

Specifies a file containing SCU selection commands.

By default, the DECKS parameter specifies the decks to expand.

WIDTH or W

Specifies the length of the expanded lines excluding the line identifiers.

By default, SCU uses the default line width from the deck header of each
deck.

LINE _IDENTIFIER or LI

Specifies the placement of the SCU line identifiers.

Specify one of the following keywords:

RIGHT or R

Line identifiers are placed to the right of the text.

LEFT or L

Line identifiers are placed to the left of the text.

NONE

No line identifiers are placed.

By default, SCU uses the default line identifier placement specified in the
deck header of each deck.

BASE or B

Specifies the file to use as the base source library.

This is a required parameter.

The default parameter list assigns $BASE _SOURCE _LIBRARY to this
parameter. For information on using the default parameter list, see the
remarks at the end of this processor description.

ALTERNATE _BASES or ALTERNATE _BASE or AB

Specifies one or more files to use as alternate source libraries.

By default, no alternative source libraries are used.

LIST or L

Specifies a file to which messages are written during this procedure. ·

The default parameter list assigns $0UTPUT_FILE to this parameter. For
information on using the default parameter list, see the remarks at the
end of this processor description.

ERRORS or E

Specifies a file to which error messages are written during this procedure.

The default parameter list assigns $ERRORS _FILE to this parameter. For
information on using the default parameter list, see the remarks at the
end of this processor description.

Commands and Functions 5-35

Build Utility Processors

Remarks

EXPANSION _J)EPTH or ED

Specifies the number of levels of *COPY and *COPYC directives to process.
Specify an integer in the range 0 .. 262143.

By default, all *COPY and *COPYC directives are processed.

DISPLAY _OPTIONS or DO

Specifies whether the listing includes the library origin for each deck when
more than one library is used. Specify one of the following keywords:

BRIEF or B

Does not list the library origins for each deck.

FULL or F

Lists the library origins.

The default is BRIEF.

ORDER or 0

Specifies the order in which decks are expanded. Specify one of the
following keywords:

COMMAND or C

Expands decks in the order specified on the DECK parameter.

LIBR.AllY or L

Expands decks in alphabetical order.

The default is LIBRARY.

The Build Utility defines the following default parameter list for this
processor:

define_parameter_11st ..
processor= expand_source ..
parameter_11st_name =default ..
parameter_list = 'd=$changed_decks b=$base_source_11brary ..

ab=$alternate_source_librar1es 1=$output_file ..
e=errors_file'

To use this default parameter list, include the following statement in your
transformation file:

include_command 'expand_source '// ..
$parameter_11st_value(expand_source default)

5-36 The Build Utility 60487413 A

PPE Subcommands

PPE Subcommands
This section contains descriptions of two PPE subcommands. These commands are
provided because they are used to start the Build Utility from PPE.

Each description provides the following information:

• Purpose of the command.

• Format of the command.

• Descriptions of the command parameters.

Optionally, the command descriptions may contain remarks and examples of command
usage.

The command format provides the full command name, any abbreviations of the
command, and the parameters for the command.

The STATUS parameter on the Build Utility commands is the same STATUS parameter
available on all NOSNE commands. If the STATUS parameter is specified, it must be
specified by name, not by position.

60487413 A Commands and Functions 5-37

PPE Subcommands

BUILD _CHANGED _DECKS
PPE Subcommand

Purpose Builds all expandable decks that have changed since the last build.

Format BUILD_CHANGED_DECKS or
BUICD or
BUILD

BUILD _TARGET=list of file or keyword
EXECUTE _TRANSFORMATIONS= boolean
OUTPUT=file
ERRORS= file
DISPLAY _OPTIONS =keyword
PERFORM _BUILD= keyword
STATUS= status variable

Parameters BUILD _TARGET or BT

Specifies the build targets to analyze. You can reference the build targets
by name, or specify the following keyword:

ALL

Specifies all build targets in the system.

By default, the Build Utility analyzes only the first build target defined in
the PPE-generated input.

EXECUTE _TRANSFORMATIONS or ET

Specifies whether to execute the transformations for an out-of-date build
target.

This parameter accepts a boolean value. If you specify FALSE, the
transformations are not made. Only the analysis phase of the build is
executed. This allows you to determine which decks would be built without
actually performing a build.

By specifying the DISPLAY_OPTIONS parameter, you can cause the Build
Utility to display the out-of-date build targets and the reasons they were
found to be out of date.

The default value is TRUE.

OUTPUT or 0

Specifies the name of the file to contain the information generated by the
DISPLAY _OPTIONS parameter.

The default value is $OUTPUT.

ERRORS or E

Specifies , the name of the file to contain the error messages.

The default value is $ERRORS.

5-38 The Build Utility 60487413 A

PPE Subcommands

DISPLAY _OPTIONS or DO

Specifies the information to display about the build. The Build Utility
writes this information to the file specified by the OUTPUT parameter.
Specify one of the following keywords:

ANALYSIS_TRACE or AT

Writes the steps taken by the Build Utility during the build.

ANALYSIS_RESULTS or AR

Writes the results of the build. These results include the build targets
and decks that were out of date.

NONE

Indicates that no information is written.

The default is NONE.

PERFORM _BUILD or BP

Specifies whether to execute the PPE-generated input to the Build Utility
in batch or interactive mode. Specify one of the following keywords:

INTERACTNELY or I

Runs the Build Utility interactively.

BATCH·or B

Runs the Build Utility in batch mode.

The default is INTERACTIVELY.

Remarks This command can only be entered from the home line in PPE.

60487413 A Commands and Functions 5-39

PPE Subcommands

BUILD _DECKS
PPE Subcommand

Purpose Builds each expandable deck selected by the user.

Format BUILD _DECKS or
BUID

BUILD _TARGET=list of file or keyword
DECKS =name or keyword or list of name
OUTPUT=file
ERRORS= file
DISPLAY _OPTIONS =keyword
PERFORM _BUILD= keyword
STATUS =status variable

Parameters BUILD _TARGET or BT

Specifies the build targets to analyze. You can reference the build targets
by name, or specify the following keyword:

ALL

Specifies all build targets in the system.

By default, the Build Utility analyzes only the first build target defined in
the PPE-generated input.

DECKS or D

Specifies the decks to build. You can specify a deck name, a list of names,
or the keyword ALL.

ALL

Specifies all decks. This is the same as a full build.

There are only three occasions when you will want to specify this
parameter.

• When you want a full build.

o When you know that decks were changed in such a way that the object
code will not be affected. For· example, changing a comment in a source
deck.

• When you know exactly which decks need to be built.

By default, the Build Utility determines which decks are out of date by
comparing the date/time stamp on the source deck with the date/time
stamp on the build target.

OUTPUT or 0

Specifies the name of the file to contain the information generated by the
DISPLAY _OPTIONS parameter.

The default value is $OUTPUT.

ERRORS or E

Specifies the name of the file to contain the error messages.

The default value is $ERRORS.

5-40 The Build Utility 60487413 A

PPE Subcommands

DISPLAY _OPTIONS or DO

Specifies the information to display about the build. The Build Utility
writes this information to the file specified by the OUTPUT parameter.
Specify one of the following keywords:

ANALYSIS_TRACE or AT

Writes the steps taken by the Build Utility during the build.

ANALYSIS_RESULTS or AR

Writes the results of the build. These results include the build targets
and decks that were out of date.

NONE

Indicates that no information is written.

The default is NONE.

PERFORM _BUILD or BP

Specifies whether to execute the PPE-generated input to the Build Utility
in batch or interactive mode. Specify one of the following keywords:

INTERACTIVELY or I

Runs the Build Utility interactively.

BATCH or B

Runs the Build Utility in batch mode.

The default is INTERACTIVELY.

Remarks This command can only be entered from the home line in PPE.

60487413 A Commands and Functions 5-41

Build Utility Examples 6

A File System Example . 6-2

A Library Example . 6-5

Multiple Build Target Example ... 6-8

60487413 A

Build Utility Examples 6

This chapter provides examples of using the Build Utility. These are interactive
examples because you are expected to enter them from your terminal as you read
through them. The first example uses the Build Utility to build and update a simple
file system. The second example uses the Build Utility to build and update a simple
library system. The last example uses the Build Utility on a system with two build
targets. All files in these examples must be created as permanent files, not created in
$LOCAL.

60487413 A Build Utility Examples 6-1

A File System Example

A File System Example

In the following example, you create a file system and run the Build Utility to update
the system.

What it is supposed to do

This example shows how to create a small FORTRAN program that consists of three
program modules: the main program and two subroutines. Each program module is
stored in a separate file. Use the Build Utility to create an executable object library
from these source files. Then, make a change to one of the source files and run the
Build Utility to update the object library. All files in this example must be created as
permanent files.

Source files Changed source

Main Sub1 Sub2 Sub2

COMPILER COMPILER

+ +
OLIB OLIB

Object library Object library

6-2 The Build Utility 60487413 A

A File System Example

1. Create the following three files. Each file is a module of a FORTRAN program.
Remember, to follow FORTRAN format, you must start each line in column 7.

File name:

Contents:

File name:

Contents:

File name:

Contents:

main

PROGRAM MAIN
PRINT *,'Enter a number:'
READ (*,*) X
CALL SUB1 (X,Y)
CALL SUB2 (Y,Z)
PRINT *,Z
END

subl

SUBROUTINE SUB1 (X,Y)
Y=X+l.O
RETURN
END

sub2

SUBROUTINE SUB2 (Y,Z)
Z=Y*10.0
RETURN
END

2. Create the following Build Utility input file. This file defines one build target that
dependent on the three program modules.

File name:

Contents:

1nput1

define_build_target
build_target=olib
build_target_kind=none
dependences=(main subl sub2)
transformation=tf11e

3. Create the following transformation file. This file specifies the transformation that
the Build Utility uses to create the build target.

File name:

Contents:

60487413 A

tf i le

changed=$dependences
fortran i=changed b=object_file
build_object_library ..

base_object_library=olib
object_files=object_file

Build Utility Examples 6-3

A File System Example

4. Run the Build Utility by entering the following command:

or abbreviated,

NOTE

If you get error messages while the Build Utility is running, verify that you
entered the above information correctly. If you still cannot find the mistake, look
for the message in appendix D, Diagnostic Messages.

5. Verify that the object library (OLIB) was created by entering the following
command:

6. You can look at the CHANGED file to see the files the Build Utility compiled to
create the object file.

7. Edit file SUB2 to change the statement Z=Y*lO.O to Z=Y*30.0.

8. Run the Build Utility by repeating step 4.

9. Look at the CHANGED file and notice that only SUB2 was recompiled. (You can
use the COPY _FILE command to look at SUB2.)

6-4 The Build Utility 60487413 A

A Library Example

A Library Example

In the following example, you create a source library and use the Build Utility to
update the library.

What it is supposed to do

This example creates a source library, containing three decks. Each deck is a module
of a FORTRAN program. You use the Build Utility to build an object library from
your source library. Then, change one of the decks in the source library and use the
Build Utility to update the object library.

Deck3
--~.....__- -~~~~-

Deck 2 ROUTINE SUB2 (Y .Z) ---Deck 1 ROUTINE SUB 1 ex. Y)

PROGRAM MAIN
PRINT* ,'Enter a number:'
READ(*,*) X
CALL SUBl(X,Y)
CALL SUB2(Y,Z)

60487413 A

Deck 31.___ __ -...
SUBROUTINE SUB2 (Y .Z)
Z=Y* 10.0
RETURN
END

Object library

Object library

Build Utility Examples 6-5

A Library Example

1. Start the Source Code Utility by entering the following command:

2. Create a source library named SLIB by entering the following command:

3. Use the EDIT _DECK command to create the following SCU decks. Each deck is a
module of a FORTRAN program. Remember to start each line in column 7. (If you
worked through the previous example, you can use the CREATE _DECK command
to convert the source from that example to decks.) The following example uses the
EDIT _DECK command.

Deck name: main

Contents: PROGRAM MAIN
PRINT *,'Enter a number:'
READ (*,•) X
CALL SUB1 (X,Y)
CALL SUB2 (Y,2)
PRINT •,z
END

Deck name: sub1

Contents: SUBROUTINE SUB1 (x-, Y)
Y=X+1.0
RETURN
END

Deck name: sub2

Contents: SUBROUTINE SUB2 (Y ,Z)
Z=Y•10.0
RETURN
END

4. Quit the Source Code Utility by entering the following:

sc/®.tt

6-6 The Build Utility 60487413 A

5. Create the following Build Utility input file:

File name:

Contents:

input2

def1ne_processor ..
processor=fortran

def1ne_parameter_11st ..
processor=fortran ..
parameter_11st='1=comp11e b=object_f11e'

def1ne_source_11braries ..
internal_source_11braries=s11b ..
default_processor=fortran

define_build_target ..
build_target=olib ..
build_target_kind=object_11brary ..
compos1tion='1nclude_deck deck=(ma1n sub1 sub2)' ..
transformation=default

6. Start the Build Utility by entering the following command:

or abbreviated,

NOTE

A Library Example

If you get error messages while the Build Utility is running, verify that you
entered the above information correctly. If you still cannot find the mistake, look
for the message in appendix D, Diagnostic Messages.

7. Verify that the object library (OLIB) was created by entering the following
command:

8. Start SCU and edit deck SUB2 to change the statement Z=Y*lO.O to Z=Y*30.0.
(You must enter USE _LIBRARY SLIB first.)

9. Quit SCU.

10. Run the Build Utility by repeating step 6.

11. You can use the COPY _FILE command to look at the COMPILE file and see that
only SUB2 was recompiled.

60487413 A Build Utility Examples 6-7

Multiple Build Target Example

Multiple Build Target Example

In the following example, you create a library system and· use the Build Utility to
perform more complex transformations.

What it is supposed to do

This system has two build targets.- First, the source library is compiled into an object
library. Then, the object library is converted to a bound module.

____ o_eck3.__~~---.
Deck 2 ROUTINE SUB2 (Y ,Z) _ _..____.

Deck 1 ROUTINE SUB1 (X,Y)

PROGRAM MAIN
PRINT* ,'Enter a number:'
READ(*,'*)X
CALL SUB1{X,Y)
CALL SUB2(Y ,Z)

MAIN SUB 1 SUB2

I •

Source Library

Object Library

MOD1 Bound Object Library

6-8 The Build Utility 60487413 A

Multiple Build Target Example

1. Use the source library you created in the previous library example. If you do not
have this library, follow steps 1 through 5 from the Library Example section of this
chapter.

2. Create the following Build Utility input file:

File name:

Contents:

input3

define_processor
processor=fortran

define_parameter_list
processor=fortran ..
parameter_list='i=compile b=object_file'

define_source_libraries ..
internal_source_libraries=slib
default_processor=fortran

define_build_target ..
build_target=blib ..
build_target_kind=none
dependences=olib ..
transformation=transfile

define_build_target ..
build_target=olib ..
build_target_kind=object_library
composition='include_deck d=(main sub1 sub2)' ..
transformation=default

3. Create the following transformation file:

File name:

Contents:

transfile

create_object_library
create_module name=mod1 component=olib
generate_library blib
QUit

4. Run the Build Utility by entering the following command:

or abbreviated,

60487413 A Build Utility Examples 6-9

Multiple Build Target Example

5. Notice from the display options that the first build target was analyzed and found
to be out of date, or, in this case, non-existent. Therefore, the transformation was
performed and the build target was created. This process was repeated for the
second build target.

6. Edit deck SUB2 to change the statement Z=Y*lO.O to Z=Y*30.0.

7. Use the COPY _FILE command to look at the COMPILE file and see that only
SUB2 was recompiled.

6-10 The Build Utility 60487413 A

Appendixes

Glossary .. A-1

The NOS/VE User Manual Set ... B-1

Diagnostic Messages . C-1

Build Utility Concepts .. D-1

60487413 A

Build Dependency Graph

Glossary A

This appendix lists terms and their definitions as used in this manual.

B

Build

The process by which the Build Utility constructs build targets. This process involves
executing a transformation on the files that compose· the build target.

Build Processor

The software that the Build Utility uses during a transformation.

Build Target

A file that is the result of a transformation of the files or decks that it depends on.

c

Compilation

The process of transforming source text into executable object code.

Composition

A list of source decks that together compose the build target.

D

Data Dependency

The relationship between the input and output of a transformation. The contents of the
output are dependent on the contents of the input. For example, the file produced by
binding an object library is dependent on the object library.

Deck

An SCU object consisting of text with a descriptive header. A deck is a subset of an
SCU library.

Default Parameter List

The currently selected parameter list for the build processor.

Dependency Graph

A visual representation of data dependency between files.

60487413 A Glossary A-1

Expansion Object Module

E

Expansion

The process by which SCU converts the text in a deck to a file that can be used as
input to a build processor.

F

File

A collection of information referenced by a unique name. It is the smallest unit of
information that can be directly referenced by a NOS/VE command.

File System

A group of related files. In this manual, these files are used to construct a build
target.

H

Home Line

The line on the terminal screen to which the cursor moves when the HOME key is
pressed. The user can enter commands from the home line.

I

Input File

A file that contains the information needed by the Build Utility. It is a required
parameter for the BUILD _SOFTWARE command.

L

Layers

Storage method that uses several levels of libraries. The Build Utility searches the
layers in the order given to find the most current version of source text.

0

Object Library

A file containing one or more executable modules and a directory to each module and
its entry points.

Object Module

A compiler-generated unit containing object code and instructions for loading the object
code. Object modules are stored in object libraries.

A-2 The Build Utility 60487413 A

Parameter List Transformation

p

Parameter List

A string of specifications passed to a task when its execution begins. The Build Utility
passes a parameter list to each build processor.

Preprocessor

A processor that prepares the source text for the main processor. The Build Utility
recognizes two preprocessors: DMCPC and DMFPC. These are the IM/DM preprocessors
for COBOL and FORTRAN, respectively.

Processor

A NOSNE command which is used during a transformation. For example, a compiler
is a processor that transforms source text to object code.

s

Source Library

A collection of decks on a file with a descriptive header, generated and maintained by
scu.

Source Text

A collection of related text as it is provided to the system by the user. This text can
be stored in files or library decks.

T

Transformation

The actions that are required to create a build target.

60487413 A Glossary A-3

The NOS/VE User Manual Set

This manual is part of a set of user manuals that describe NOS/VE and NOS/VE
applications. The descriptions of these manuals follow:

Introduction to NOS/VE

B

Introduces NOS/VE and SCL to users who have no previous experience with them.
It describes, in tutorial style, the basic concepts of NOS/VE: creating and using files
and catalogs of files, executing and debugging programs, submitting jobs, and
getting help online.

The manual describes the conventions followed by all NOS/VE commands and
parameters, and lists many of the major commands, products, and utilities available
on NOS/VE. '

NOS/VE System Usage

Describes the command interface to NOS/VE using the SCL language. It describes
the complete SCL language specification, including language elements, expressions,
variables, command stream structuring, and procedure creation. It also describes
system access, interactive processing, access to online documentation, file and
catalog management, job management, tape management, and terminal attributes.

NOS/VE File Editor

Describes the EDIT _FILE utility used to edit NOS/VE files and decks. The manual
has basic and advanced chapters describing common uses of the utility, including
creating files, copying lines, moving text, editing more than one file at a time, and
creating editor procedures. It also contains descriptions of subcommands, functions,
and terminals.

NOS/VE Source Code Management

Describes the SOURCE_CODE_UTILITY, a development tool used to organize and
maintain libraries of ASCII source code. Topics include deck editing and extraction,
conditional text expansion, modification state constraints, and using the EDIT _FILE
utility.

NOS/VE Object Code Management

Describes the CREATE _OBJECT _LIBRARY utility used to store and manipulate
units of object code within NOS/VE. Program execution is described in detail. Topics
include loading a program, program attributes, object files and modules, message
module capabilities, code sharing, segment types and binding, ring attributes, and
performance options for loading and executing.

NOS/VE Advanced File Management

Describes three file management tools: Sort/Merge, File Management Utility (FMU),
and keyed-file utilities. Sort/Merge sorts and merges records; FMU reformats record
data; and the keyed-file utilities copy, display, and create keyed files (such as
indexed-sequential files).

NOSNE Terminal Definition

Describes the DEFINE_TERMINAL command and the statements that define
terminals for use with full-screen applications (for example, the EDIT _FILE utility).

60487413 A The NOS/VE User Manual Set B-1

The NOSNE User Manual Set

NOS/VE Commands and Functions

Lists the formats of the commands, functions, and statements described in the
NOSNE user manual set. A format description includes brief explanations of the
parameters and an example using the command, function, or statement.

Professional Programming Environment

Describes the Professional Programming Environment (PPE), a full-screen
development tool for coordinating multi-person programming objects.

The manual introduces PPE concepts, describes how get started using PPE, and
provides procedures for performing PPE tasks. It also contains individual
descriptions of each PPE screen and PPE command, presented alphabetically.

Ordering Printed Manuals

You can order printed Control Data manuals from your local Control Data sales office.
Sites in the U.S. can also order manuals from the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering manuals, please indicate whether you require the entire manual or just
the latest revision packet.

B-2 The Build Utility 60487413 A

Diagnostic Messages

This section lists the Build Utility diagnostic messages. It includes a description of
each message and a suggested user action.

c

--CATASTROPHIC BU 1-- The Build Utility cannot continue because there is not
enough space in the segment reserved for analysis results to hold all of the
output from the analysis of build target {tile}.

Condition Identifier: BUE$ANALYSIS _AREA _FULL

Description: Your build system has exceeded the memory segment assigned to the
analysis results.

User Action: Decrease the size of your build system.

--ERROR BU 4-- Build target {tile} was declared to be an object library.
However, the file you specified is not in the correct format to be an object
library.

Condition Identifier: BUE$BAD _OBJECT _LIBRARY

Description: You have specified that a build target is an object library. However, the
file you specified is not in the correct format to be an object library.

User Action: Delete the current file specified as an object library. The Build Utility
will create a new file which is in the correct format.

--ERROR BU 10-- The definition of build target {tile} must specify the
COMPOSITION _MAP parameter when MAPPED _DECKS _ONLY is given as the
value of the COMPOSITION parameter.

Condition Identifier: BUE$COMPOSITION _MAP _REQUIRED

Description: You must specify a composition map when the COMPOSITION parameter
of the DEFINE_BUILD_TARGET command is set to MAPPED_DECKS_ONLY.

User Action: Specify a composition map.

60487413 A Diagnostic Messages C-1

Diagnostic Messages

--ERROR BU 11-- The deck {text} specified with the DECKS parameter of
BUILD _SOFTWARE appears in the composition of build target {file} but no
deck by that name exists.

Condition Identifier: BUE$DECK _NONEXISTENT

Description: You have specified that a particular deck should be built. Although this
deck appears in the composition of the build target, it does not exist in the source
library.

User Action: Verify that the name of the deck requested matches the name of the
deck in the source library.

--CATASTROPHIC BU 12-- The Build Utility cannot continue because there is
not enough space in the segment reserved for definitions to hold all of the
definitions created by subcommands in the INPUT file.

Condition Identifier: BUE$DEFINITIONS_AREA_FULL

Description: Your build exceeded the limits of the memory segment assigned to hold
the definitions of your system.

User Action: Decrease the size of your definition section in the input file.

--ERROR BU 14-- The name {text} must not be defined as a parameter list for
processor {text} more than once.

Condition Identifier: BUE$DUPLICATE _PLIST _DEFINITION

Description: You cannot have more than one DEFINE _PARAMETER _LIST for a
specified processor with the same PAR.A._METER _LIST _N .AME.

User Action: Remove duplicate occurrences of all parameter list names. If a parameter
list has different attributes, assign it a different name.

--ERROR BU 15-- The name {text} must not be defined as a processor more than
once.

Condition Identifier: BUE$DUPLICATE _PROC _DEFINITION

Description: The same processor name cannot be defined more than once in your input
file.

User Action: Remove duplicate occurrences of all processor definitions.

C-2 The Build Utility 60487413 A

Diagnostic Messages

--ERROR BU 1~-- There must not be more than one
DEFINE _SOURCE _LIBRARIES command in the utility INPUT file.

Condition Identifier: BUE$DUPLICATE _SOURCE _DEFINITION

Description: You cannot have more than one occurrence of the
DEFINE _SOURCE _LIBRARIES command in your input file.

User Action: Remove duplicate occurrences of the DEFINE _SOURCE _LIBRARIES
command from your input file.

--ERROR BU 17-- The file {file} must not be defined as a build target more than
once.

Condition Identifier: BUE$DUPLICATE _TARGET _DEFINITION

Description: You cannot define any given file as a build target more than once in an
input file.

User Action: Remove duplicate occurrences of the DEFINE _BUILD_ TARGET
command that contain the same file name.

--ERROR BU 21-- The definition of build target {file} specifies that it is of kind
{text} and also specifies the LAYERS parameter - that parameter may only be
specified for build targets of kind OBJECT _LIBRARY.

Condition Identifier: BUE$LAYERS_USED _FOR_NON _OBJLIB

Description: The LAYERS parameter can be specified for a build target that is defined
with a BUILD_TARGET_KIND of OBJECT_LIBRARY.

User Action: You must either remove the LAYERS parameter from the
DEFINE_BUILD_TARGET command or change the BUILD_TARGET_KIND to
OBJECT _LIBRARY.

--ERROR BU 22-- The definition of build target {file} specifies that it is of kind
{text} and that the default transformation should be used - the utility provides
a default transformation only for build targets of kind OBJECT _LIBRARY.

Condition Identifier: BUE$NO_DEFAULT_TRANSFORMATION

Description: The Build Utility provides a default transformation only for build targets
of kind OBJECT_LIBRARY. If you specify the BUILD_TARGET_KIND as NONE, you
must provide your own transformations.

User Action: If the build target is not an object library, change the
TRANSFORMATION parameter to specify a file that contains the SCL commands to
use in the transformation.

60487413 A Diagnostic Messages C-3

Diagnostic Messages

--ERROR BU 23-- No work can be done by the utility because the INPUT file
did not contain a subcommand that defined a build target.

Condition Identifier: BUE$NO_TARGETS_DEFINED

Description: An input file must contain at least one build target definition. If you do
not specify a build target, the Build Utility has nothing to process. This message is
always generated when you quit a session of the Build Utility without defining a build
target.

User Action: Define a build target in your input file using the
DEFINE _BUILD _TARGET command.

--ERROR BU 27-- The name of the preprocessor for processor {text} must not be
the same as the name of the processor itself.

Condition Identifier: BUE$PROC _AND _PREPROC _SAME

Description: The name specified by the PREPROCESSOR parameter is the same as
the name specified by the PROCESSOR parameter.

User Action: Change or eliminate the name of the preprocessor.

--CATASTROPHIC BU 29-- The Build Utility cannot continue because there is
not enough space in the target stack for the build targets that have not yet
been analyzed.

Condition Identifier: BUE$TARGET _STACK _FULL

Description: The memory space available for the build has been exceeded.

User Action: Decrease the number of build targets in your system.

--ERROR BU 31-- The processor {text} must be defined before a parameter list
for it may be defined.

Condition Identifier: BUE$UNDEFINED _PROCESSOR

Description: You must define a processor before you can define a parameter list to be
used by that processor.

User Action: Put the DEFINE _PROCESSOR command before all associated
DEFINE _PARAMETER _LIST commands in the input file.

C-4 The Build Utility 60487413 A

Diagnostic Messages

--ERROR BU 32-- The BUILD_ TARGET parameter specified file {file}, but that
file was not defined as a build target by utility subcommands in the INPUT file.

Condition Identifier: BUE$UNDEFINED _TARGET _SPECIFIED

Description: You cannot request the Build Utility to build a target that is not defined
with a DEFINE _BUILD _TARGET command in the input file.

User Action:Add a DEFINE _BUILD_ TARGET command to the input file for the build
target.

--ERROR BU 33-- The definition of build target {file} must not specify the
DEPENDENCES parameter when the BUILD_TARGET_KIND parameter is
OBJECT _LIBRARY and the TRANSFORMATION parameter is DEFAULT.

Condition Identifier: BUE$DEPENDENCES _NOT _ALLOWED

Description: The DEPENDENCES parameter is used for build targets of kind NONE.
If the BUILD_TARGET_KIND is OBJECT_LIBRARY, use the COMPOSITION
parameter. Also, the TRANSFORMATION parameter cannot be DEFAULT if the
DEPENDENCES parameter is used because there is no default transformation for files.

User Action: Remove the DEPENDENCES parameter from your build target
definition, or change the target kind to NONE and specify a transformation file.

--ERROR BU 34-- The definition of build target {tile} must specify the
COMPOSITION parameter when the BUILD_TARGET_KIND parameter is
OBJECT _LIBRARY and the TRANSFORMATION parameter is DEFAULT.

Condition Identifier: BUE$DEFAULT_TRANS_NEEDS_COMP

Description: The COMPOSITION parameter of the DEFINE _BUILD _TARGET
command is a required parameter when the build target is of kind object library and
the default transformation is requested.

User Action: Use the COMPOSITION parameter to specify the selection criteria for
the decks that compose the object library.

--ERROR BU 35-- The processor for deck {text} cannot be determined because
the processor attribute of the deck is empty and no default processor is defined.

Condition Identifier: BUE$CANT _DETERMINE _PROCESSOR

Description: No processor is specified in the deck header of the source deck and no
default processor is defined in the DEFINE_SOURCE_LIBRARIES command.
Therefore, the Build Utility cannot determine which processor to use.

User Action: Assign a default processor using the DEFAULT _SOURCE _LIBRARIES
command.

60487413 A Diagnostic Messages C-5

Diagnostic Messages

--ERROR BU 36-- The processor attribute for deck {text} specifies the processor
{text}, but that processor cannot be used because it has not been defined to the
utility via the DEFINE _PROCESSOR subcommand.

Condition Identifier: BUE$CANT _USE _PROCESSOR

Description: The processor attribute of the deck header specifies a processor that has
not been defined using the DEFINE _PROCESSOR command or defined on the PPE
build processor screen.

User Action: Define the processor or change the processor attribute of the deck
header.

--ERROR BU 38-- The parameter list {text} for processor {text} is needed to build
· deck {text}, but it is not defined.

Condition Identifier: BUE$UNDEFINED ;....PARAMETER _LIST

Description: Every processor must have at least one parameter list defined. One of
your processors does not.

User Action: Define at least one parameter list for each processor using the
DEFINE _PARAMETER _LIST command.

--ERROR BU 39-- Analysis halted at build target {file} because its transformation
terminated abnormally.

Condition Identifier: BUE$TRANSFORMATION _FAILED

Description: The build failed. The transformation for one of the build targets
ter!!l..inated abnormally causing the build analysis to halt.

User Action: Verify the transformation procedure for the suspect build target.

--WARNING BU 40-- The processor attribute for deck {text} specifies that the
{text} parameter list for processor {text} should be used, but since that list is not
defined, the default list {text} is being used.

Condition Identifier: BUE$USING _DEFAULT _PLIST

Description: The processor attribute of the deck header specifies a parameter list to be
used. Since this parameter list is not defined, the Build Utility used the default
parameter list for that processor instead.

User Action: Not applicable.

C-6 The Build Utility 60487413 A

Build Utility Concepts

This appendix defines files, decks, libraries and file systems and identifies the
differences between them. It also discusses the concepts of data dependency and
transformations.

Files Versus Decks

D

The standard definition of a file is a collection of information which is referenced by a
unique name. However, this broad definition can apply to a deck as well. Because both
decks and files are units of information processed by the Build Utility, it is important
to understand the distinction between them.

File

A file is a collection of information which is referenced by a unique name. It is the
smallest unit of information that can be directly referenced by a NOSNE command.

Deck

Although a deck is a collect of text which is referenced by a unique name, it is not
a file. A deck is a subset of one type of file, a library. Therefore, a deck cannot be
directly referenced without referencing the library that contains that deck.

Using a File System

The Build Utility is able to handle file systems and libraries. A file system is a group
of related files. The content of the files can be any collection of ASCII text. For an
example of a file system, consider a documentor writing a manual. Writing each
chapter in a separate file is convenient because you can update sections without having
to access the entire system. These separate files are eventually combined into a single
file, the book or build target.

Using a Source Library

A source library is a special type of file. A library can be referenced directly from the
NOSNE command line. A source library is divided into decks. These decks cannot be
referenced directly without referencing the library first. There are two ways to create a
library in NOSNE. You can use the SOURCE_CODE_UTILITY subcommand
CREATE_LIBRARY. You can also use PPE to create a source library.

60487413 A Build Utility Concepts D-1

Build Utility Concepts

Data Dependency

For the Build Utility, data dependency refers to the dependence of build targets on the
files that compose them. For example, dependency exists between source modules and
object code. If you create an object library from several source modules, the contents of
the object code is dependent on the source code. A dependency graph is a useful tool
for visually describing data dependency. The following diagram is a dependency graph
for a simple library system.

Object Library

Object Modules

Source Modules

From the graph, you can see that library LIBl is dependent on modules OBJl, OBJ2,
and OBJ3. These modules are, in turn, dependent on MODl, MOD2, and MOD3,
respectively.

Transformations

A transformation is one or more NOSNE commands that manipulate data. In the
example above, it is a transformation that creates object modules from source modules.
Although this transformation is a compiler, there are many transformations that are
not compilers. For example, expanding a deck is a transformation. The Build Utility
allows you to create your own transformation by specifying a transformation file.

D-2 The Build Utility 60487413 A

About this manual

Index

A
About this manual

Audience 5
Conventions 6
In case you need assistance 7
Submitting comments 7

Advanced usage 4-1
$ALTERNATE_SOURCE_

LIBRARIES 5-12

B
$BASE _SOURCE _LIBRARIES 5-13
$BUILD _CATALOG 5-14
Build catalog 2-9
BUILD_CHANGED_DECKS 1-5; 2-2;

5-38
BUILD_DECKS 1-5; 5-40
Build (definition) 1-2; A-1
BUILD _OBJECT _LIBRARY 2-6; 5-31
Build processor (definition) A-1
Build Processors screen 3-4
BUILD _SOFTWARE

BUILD_TARGET 5-2
DECKS 5-2
DISPLAY _OPTIONS 5-3
ERRORS 5-3
EXECUTE _TRANSFORMATIONS 5-3
INPUT 2-2; 5-2
OUTPUT 5-3

$BUILD _TARGET 5-15
Build target

Defining a file system 2-5
Defining a library 2-4
Definition 1-2; A-1
Multiple 4-5
Ordering in the input file 4-5

$BUILD_TARGET_KIND 5-16
$BUILD _TARGET _LAYERS 5-17

c
$CHANGED _DECKS 5-18
Commands 5-1
Compilation (definition) A-1
$COMPOSITION 5-19
Composition (definition) A-1
$COMPOSITION _MAP 5-20

D
Data analysis 1-4
Data definition 1-4
Data dependency (definition) 1-2; A-1;

D-2
Deck (definition) A-1; D-1

60487413 A

Functions

Default parameter list (definition) A-1
DEFINE _BUILD _TARGET

BUILD_TARGET 2-4; 5-4
BUILD_TARGET_KIND 2-4; 5-4
COMPOSITION 2-4; 5-4
COMPOSITION _MAP 5-5
DEPENDENCES 2-5; 5-4
LAYERS 4-6; 5-5
TRANSFORMATION 2-4; 5-5

DEFINE _PARAMETER _LIST
PARAMETER _LIST 2-7; 5-6
PARAMETER_LIST_NAME 2-7; 5-6
PROCESSOR 2-7; 5-6

DEFINE _PROCESSOR
DEFAULT _PARAMETER _LIST 2-6;

5-7
PREPROCESSOR 2-6; 4-2; 5-7
PROCESSOR 2-6; 5-7

DEFINE _SOURCE _LIBRARIES
ANALYZE_EXTERNAL_

SOURCE 5-8
DEFAULT _PROCESSOR 2-8; 5-8
EXTERNAL_SOURCE_

LIBRARIES 5-8
INTERNAL _SOURCE_

LIBRARIES 2-8; 5-8
$DEPENDENCES 5-21
Dependency graph (definition) 1-2; A-1;

D-2
Diagnostic messages C-1
DISPLAY _COMMAND_

INFORMATION 2-10; 3-8
$DISPLAY _OPTIONS 5-22
DMCPC 4-2

E
Error messages C-1
$ERRORS _FILE 5-23
Examples

File system 6-2
Library 6-5
Multiple build target 6-8

EXPAND _SOURCE 2-6; 5-34
Expansion (definition) A-1
$EXTERNAL _SOURCE_

LIBRARIES 5-24

F
File (definition) A-2; D-1
File system (definition) 1-2; A-2; D-1
Functions 5-11

The Build Utility Index-1

Glossary

G
Glossary A-1

H
Help

From NOSNE 2-10
From PPE 3-8

Home line (definition) A-2

I
Input file

Contents 2-3
Creating 2-3
Declaring in PPE 3-2
Definition 1-2; A-2

$INTERNAL _SOURCE_
LIBRARIES 5-25

Introduction 1-1

L
Layering 4-6
$LAYERS 5-26
Layers

Definition A-2
Usage 4-6

Library (definition) D-1

M
Manual history 2
:Multiple build targets 4-5
Multiple processors 4-4

0
Object library (definition) A-2
Object module (definition) A-2
Online Help

From NOSNE 2-10
From PPE 3-8

$OUTPUT _FILE 5-27

p

Parameter list
Defining 2-7
Definition A-3
Specifying on a deck header 4-3

Parameter List Library screen 3-6
$PARAMETER_LIST _VALUE 5-28
PPE 3-1

Index-2 The Build Utility

Working catalog

PPE screens
Build Processors screen 3-4
Parameter List Library screen 3-6
Processor Definition screen 3-5
Tailor Options screen 3-7

PPE subcommands
BUILD _CHANGED _DECKS 5-38
BUILD _DECKS 5-40
Discussion 5-37

PPE users 1-5
Predefined processors

BUILD_OBJECT_LIBRARY 2-6; 5-31
EXPAND _SOURCE 2-6; 5-34

Preprocessor
Definition A-3
DMCPC 4-2

Processor
Defining 2-6
Definition A-3
Multiple 4-4

$PROCESSOR_ATTRIBUTE 5-29
PROCESSOR attribute

On the deck head 4-3
Usage 4-3

Processor Definition screen 3-5

s
Screen input mode 2-1 O; 3-8
SET _BUILD _CATALOG

BUILD _CATALOG 2-9; 5-9
Source libraries, defining 2-8
Source library (definition) 1-2; A-3
Source text (definition) A-3
Starting the Build Utility 2-2
Subcommands 5-i

T
Tailor Options screen 3-7
Terminal input mode 2-10; 3-8
Terminology 1-2
Transformation

Complex 4-7
Definition 1-2; A-3; D-2

u
$UNKNOWN _LIBRARY _ENTRIES 5-30
Using the Build Utility 2-1

w
Without the Build Utility 1-3
Working catalog 2-9

60487413 A

Comments (continued from other side)

>lease fold on dotted line;
1eal edges with tape only.

mLD

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technical Publications
SVL104
P.O. Box 3492
Sunnyvale, CA 9.4088-3492

11.1 ... 1 •• 1 ~ •• 1.1 •• 1 ... 11 .. 1 •• 11.1 1.1 .. 11.1

NO POSTAGE
NECESSARY
IF MAILED

FOLD

FOLD

IN THE
UNITED STATES

The Build Utility 60487413 A

We would like your comments on this manual to help us improve it. Please take a few minutes to fill out
this form.

Who are you?

D Manager
D Syi::tems analyst or programmer
D Applications programmer
D Operator
D Other~~~~~~~~~~~~~~~

How do you use this manual?

0 As an overview
D To learn the product or system
0 For comprehensive reference
D For quick look-up
0 Other ________________ ~

What programming languages do you use? --------------------------

How do you like this manual? Answer the questions that apply.

Yes Somewhat No
D D D Does it tell you what you need to know about the topic?
D D 0 Is the technical information accurate?
D D 0 Is it easy to understand?
D 0 0 Is the order of topics logical?
0 0 0 Can you easily find what you want?
0 0 0 Are there enough examples?
D 0 0 Are the examples helpful? (0 Too simple? 0 Too complex?)
0 0 0 Do the illustrations help you?
0 0 0 Is the manual easy to read (print size, page layout, and so on)?
0 D 0 Do you use this manual frequently?

Comments? If applicable, note page and paragraph. Use other side ifneeded.

Check here if you want a reply: D

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

@: ~ CONT"OL DATA

