
Professional Programming
Environment for NOS/VE

Usage

(52)
CONT~OL

DATA

60486613

Professional Programming

Environment for NOSjVE

Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60486613

Manual History

Revision

A
B

System Version/
PSR Level

1. 2. 2/678
1.3.1/700

Product
Version

1.0
1.1

Date

June
April

1987
1988

This is revision B. It documents the Professional Programming
Environment product with NOS/VE release 1.3.1 in April 1988.

This revision documents PPE support of the CYBIL and FORTRAN
Version 2 (VECTOR_FORTRAN) compilers.

This revision documents support of the user's editor prolog. Users
can now specify an editor prolog on the Tailor Options screen to
define PPE editor function keys.

~1inor technical and editorial changes were also made.

~Copyright 1987, 1988 by Control Data Corporation.
All rights reserved.
Printed in the United States of America •

• 2 Professional Programming Environment Revision B

Contents

About This Manual •• 5

Audience ••• 5
Organization ••• 5
Conventions •• 6
Submitting Comments •••••••••••••••••••••••••••••••••••••• 6
In Case of Trouble ••••••••••••••••••••••••••••••••••••••• 7

Introduction ... 1-1

PPE Capabilities ••• 1-1
PPE Limi ta tions •• 1-2
Background Concepts •••••••••••••••••••••••••••••••••••••• 1-2

Getting Started •• 2-1

Defining Your Terminal ••••••••••••••••••••••••••••••••••• 2-1
Starting PPE ••• 2-5
Entering PPE for the First Time •••••••••••••••••••••••••• 2-6
Leaving PPE •• 2-15

_ PPE Operations ... 3-1

Moving from Screen to Screen •••••••••••••••••••••••••••••
Importing a Source Library •••••••••••••••••••••••••••••••
Creating a Modification ••••••••••••••••••••••••••••••••••
Creating a Deck ••
Extracting a Deck ••
Edi ting a Deck •••
Building the Product •••••••••••••••••••••••••••••••••••••
Correcting Errors ••
Executing the Product ••••••••••••••••••••••••••••••••••••
Transmitting Code ••
File Cycle Management Within the Environment Catalog •••••

PPE Quick Reference ••

PPE Screens ••
PPE Commands •••

3-1
3-4
3-5
3-8
3-13
3-27
3-21
3-23
3-27
3-32
3-33

4-1

4-1
4-30.1

Revision B Contents 3

Contents

Glossary ••• A-I

Related Manuals B-1

ASCII Character Set •• C-I

PPE Catalog Structure •• D-1

PPE Function Key Summary ••••••••••••••••.•••••.•••.••.•••..•• E-l

Using PPE •• F-l

Index Index-l

4 Professional Pro~rammin~ Environment Revision B

About This Manual

This manual describes the Professional Programming Environment
(PPE), a software development tool available under the CONTROL DATA®
Network Operating System/Virtual Environment (NOS/VE) executing on a
CDC® CYBER 180 computer.

While using PPE, the user can execute several other NOS/VE
development tools, including the Full-Screen Editor (FSE), the
Source Code Utility (SCU), the Full-Screen Debug utility, and the
object library generator. These tools are fully described in other
manuals listed in appendix B; the means of accessing these tools
within a PPE session is described in this manual.

Audience

This manual is written for use by all PPE users. The primary user
is expected to be a programmer working as part of a multi-person
programming project that is developing a product for use under the
NOS/VE operating system. The product under development must be
written in one of the languages supported by PPE. PPE supports the
NOS/VE CYBIL, COBOL, FORTRAN Version 1, and FORTRAN Version 2
compilers.

You will find PPE easiest to use if you are familiar with the
Full-Screen Editor (FSE), the Full-Screen Debug interface, the
Source Code Utility (SCU), and the Programming Environment.
However, the object-oriented user interface and context-sensitive
online help make PPE easy to learn even if you have little NOS/VE
experience.

Organization

This manual is organized into four chapters. The first two chapters
introduce you to PPE concepts and help you complete your first PPE
session. The third chapter gives step-by-step procedures for
performing the primary PPE operations. The fourth chapter provides
two quick-reference listings, the first for PPE screens and the
second for PPE commands.

Appendixes provide a glossary, a list of related manuals, the ASCII
character set table, a description of the PPE catalog structure, a
summary of the PPE function key labels, and suggestions for using
PPE to create and maintain software.

Revision B About This Manual 5

About This Manual

Conventions

blue

UPPERCASE

lowercase

Initial
Caps

numbers

Quick
Reference
format

Within examples of interactive sessions, user input is
shown in blue print. System output is shown in black
print.

In PPE command syntax, uppercase indicates a statement
keyword or character that must be written as shown.
For purposes of examples, however, lowercase is used.

In PPE command syntax, lowercase indicates a name,
number, symbol, or entity that you must supply.

All screen names are initial capped.

All numbers are assumed to be base 10 unless otherwise
noted.

The PPE commands and screens are described in Quick
Reference format. The purpose, format, and special
remarks of each command or function are described.
Also, in most cases, an example is demonstrated.

Submitting Comments
The last page of this manual is a comment sheet. Please tell us
about any errors you find in this manual and any problems you have
using it.

If the comment sheet in this manual has been used, please send your
comments to us at this address:

Control Data Corporation
Technology and Publications Division
P.O. Box 3492
Sunnyvale, California 94088-3492

6 Professional Programming Environment Revision B

About This Manual

Please include the following information with your comments:

The manual title and publication number (PPE Usage, 60486613)
and the revision letter from the page footer.

Your system's PSR level (if you know it).

Your name, your company's name and address, your work phone
number, and whether you want a reply.

Also, if you have access to SOLVER, the CDC online facility for
reporting problems, you can use it to submit comments about this
manual. When it prompts you for a product identifier for your
report, please specify SW8.

In Case of Trouble
Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help beyond
that provided in the documentation or find that the product does not
perform as described, call us at one of the following numbers and a
support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of
printed manuals to Literature and Distribution Services at the
following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee,
call (612) 292-2100.

Revision B About This Manual 7

Introduction

The Professional Programming Environment (PPE) is a software
development tool available under the NOS/VE operating system
executing on a CYBER 180 computer.

PPE uses a full-screen, object-oriented interface. The user can
select objects on the screen by positioning the cursor on the
object. Actions are selected by pressing function keys or by
entering SCL commands on the home line of the screen. (Full-screen
terminal definition is described in chapter 2.)

PPE Capabilities
This section lists the primary PPE capabilities. The concepts
underlying these capabilities are described later in this chapter.

As a programming environment, PPE integrates the programming tasks,
including:

• Editing source text.

• Compiling source text.

• Debugging source text.

• Executing object code.

In addition, PPE can coordinate the activities of a multi-person
programming project. To do so, it provides these capabilities:

• Full-screen interface to Source Code Utility (SCU) deck and
modification creation.

1

• Extraction and transmittal of SCU decks and modifications within
a source library hierarchy. It enforces interlocks to ensure
that only one copy of a deck can be changed.

• Expansion and compilation of the product source, including
copying decks from higher levels of the hierarchy when a deck is
not present at the lowest level.

• Tracing of compilation errors to the decks containing the source.

• Maintenance of an object library at each level of the
hierarchy. Each object library contains the compiled code for
the source decks at that level.

Revision B Introduction 1-1

PPE Limitations

• Partial builds of the product, expanding and compiling only
those source decks that have changed.

• Execution of the product version at the current level of the
hierarchy, using object modules at higher levels as needed.

PPE Limitations

PPE use has the following limitations:

• All code for the product being developed must be written in one
language.

• The programming languages supported are NOS/VE FORTRAN Version 1
and NOS/VE COBOL.

• PPE does not support SCU features or groups, nor does it provide
a method of changing modification or deck header information.
To assign features and decks to groups (or change other header
information), you can enter SCU subcommands on the home line or
use SCU directly. For more information, see the NOS/VE Source
Code Management Usage manual.

• PPE does not provide a method of using SCU selection criteria
files.

Background Concepts
This section discusses concepts that you should understand before
using PPE. Read this section if you are not already familiar with
these topics:

• NOS/VE Source Code Utility (SCU)

• PPE catalog hierarchy

• Build process

NOSjVE Source Code Utility (SCU)

The Source Code Utility (SCU) is the NOS/VE utility PPE uses to
maintain source text· on source libraries. PPE provides a
full-screen interface for creating and selecting decks and
modifications. For more information, see the NOS/VE Source Code
Management manual.

The following paragraphs give a brief description of SCU decks and
modifications.

1-2 Professional Programming Environment Revision B

Background Concepts

SCU Decks

SCU manipulates source text as units called decks. Each SCU source
library contains a collection of decks. Each deck contains a
sequence of source lines. A deck can be referenced by name. Source
text is edited one deck at a time.

To compile selected decks, PPE calls SCU to produce the input file
for the build processor (the compiler). SCU expands the selected
decks. The expansion process includes processing any SCU directives
embedded in the deck and then writing the deck text to a file for
compilation.

Two SCU directives frequently embedded in decks are the copy
directives, *COPY and *COPYC. When a copy directive is processed,
the text from the deck named on the directive is copied into the
deck text at the point where the copy directive is embedded. The
*COPY directive copies unconditionally; the *COPYC directive copies
only if the deck has not been copied into the deck before.

Each deck has an expand attribute. If the attribute is set to TRUE,
the deck can be selected for expansion; if the attribute is set to
FALSE, the deck can be expanded only when it is copied into another
deck.

SCU Modifications

SCU maintains a history of changes made to the source text in a
source library. It does so by assigning each change to the
modification in effect when the change is made. This includes line
additions, replacements, and deletions.

PPE Catalog Hierarchy

To help coordinate multi-person programming projects, PPE supports
an environment which maintains several versions of the product.
Each version contains product code at a certain state of
development, such as untested, unit-tested, and system-tested.
These product versions form a hierarchy; code progresses up the
hierarchy as it passes stages of evaluation.

Revision A Introduction 1-3

Background Concepts

PPE implements this hierarchy of levels as a hierarchy of NOS/VE
file catalogs. Each catalog contains all files applicable to its
product version, including a source library, an object library, and
various listing and data files. (The files are listed in appendix
D.)

When a person joins a project that uses PPE, he links his PPE
catalog to the PPE catalog hierarchy of the project. In this way
his catalog becomes a catalog at the lowest level of the project
hierarchy.

I System-Tested I Code

I Unit-Tested I Code

r 1
George's Martha's Fred's
Untested Untested Untested

Code Code Code

Extracting Decks

PPE users can create new decks in their PPE source libraries or
extract existing decks from higher levels of the hierarchy. PPE
extracts a deck by these steps:

1. It searches for the deck, starting at the next higher level and
going up the hierarchy until it finds the deck.

2. It then makes a copy of the deck and adds it to the source
library at the lowest level of the hierarchy. It does not
extract the deck to any intermediate levels of the hierarchy.

An interlock is set on the deck when it is extracted. This prevents
other users from extracting the deck until after it has been
transmitted. When an interlock is set, the user's identification
and the date and time of the interlock are stored in two deck header
fields: the sub interlock field in the higher-level source library
copy and the original interlock field in the lower-level source
library copy. -

1-4 Professional Programming Environment Revision A

Background Concepts

The following illustration shows the interlocks before and after
Fred extracts deck A:

Before Fred Extracts Deck A

System-Tested Code

Deck A
Original Interlock:
Sub Interlock:

I
Unit-Tested Code

Fred's Untested Code

Transmitting Decks

After Fred Extracts Deck A

System-Tested Code

Deck A
Original Interlock:
Sub Interlock: Fred

I
Unit-Tested Code

Fred's Untested Code

Deck A:
Original Interlock: Fred
Sub Interlock:

To transmit a deck means to move the deck from the lowest level
where it currently resides to the next higher level. You can only
transmit decks from the your level of the environment catalog
hierarchy to the source library at the next higher level.

When PPE transmits a deck, it copies the deck from the lowest level
and combines the copy with the source library at the next higher
level. If a copy of the deck already exists at the higher level, it
is replaced by the lowest-level copy if deck interlocks match. If
the deck at the next level does not have a matching interlock value,
the transmit fails. After a successful transmittal, the deck is
deleted from the lowest-level source library.

When a transmitted deck has the same name as a deck already existing
in the higher-level source library, it must be a copy of the deck
extracted from the higher-level source library. The deck interlock
is enforced; this means that the original interlock value in the
lower-level deck must match the sub interlock value in the
higher-level deck; otherwise, the lower-level deck copy is not
allowed to replace the higher-level copy and the transmittal fails.
If the interlock values match, the transmittal succeeds; the
interlock is cleared and the lower-level deck copy is deleted.

Revision A Introduction 1-5

Background Concepts

The following illustrates transmitting decks. When Fred finishes
his changes to deck A. he transmits it to the Unit-Tested level:

Before Fred Transmits Deck A

System-Tested Code

Deck A
Original Interlock:
Sub Interlock: Fred

I
Unit-Tested Code

Fred's Untested Code

Deck A:
Original Interlock: Fred
Sub Interlock:

After Fred Transmits Deck A

System-Tested Code

Deck A
Original Interlock:
Sub Interlock: Fred

I
Unit-Tested Code

Deck A:
Original Interlock: Fred
Sub Interlock:

Fred's Untested Code

The diagram above shows the PPE hierarchy as you would see it if you
executed PPE for the catalog containing Fred's Untested Code. The
view has three levels with Fred's Untested Code at the bottom. The
hierarchy view presented by PPE always has the catalog for which PPE
is executed as the bottom level of the hierarchy.

If you executed PPE specifying the catalog containing the
Unit-Tested Code from the diagram above. you would see only two
hierarchy levels: the System-Tested Code and the Unit-Tested Code
levels. PPE provides no information about hierarchy levels below
the level for which it is executed.

1-6 Professional Programming Environment Revision A

Background Concepts

If you executed PPE for the Unit-Tested Code level, the hierarchy
would appear as shown below.

To transmit deck A from the Unit-Tested Code level to the
System-Tested Code level, you must execute PPE from the Unit-Tested
Code level. You can only transmit a deck from your level, and it
can only be transmitted to the next higher level.

Before You Transmit Deck A

System-Tested Code

Deck A
Original Interlock:
Sub Interlock: Fred

I
Unit-Tested Code

Deck A:
Original Interlock: Fred
Sub Interlock:

After You Transmit Deck A

System-Tested Code

Deck A
Original Interlock:
Sub Interlock:

I
Unit-Tested Code

The transmittal checks that the interlock fields match. Because
they do, the transmittal takes place; the Unit-Tested Deck A copy
replaces the System-Tested Deck A copy, the Deck A interlock is
cleared, and the Deck A copy is deleted from the Unit-Tested Code
level.

Build Process

The build process transforms source code into executable object
code. The build process has two steps: source text expansion and
compilation. These steps are described in this section.

At completion of the build process, you are shown a build report.
If the build failed, the report describes the errors. If the build
succeeded, the report lists the output files available for
examination.

Although you can initiate the PPE build process by pressing a single
function key, you can, before doing so, provide additional input for
each step of the process. The following paragraphs describe the
build steps in more detail and discuss the additional input you can
provide.

Revision A Introduction 1-7

BackgrO'und CO'ncepts

Source Text Expansion

scu expands the sO'urce text in the decks to' prO'duce the input file
fO'r the build prO'cessO'r.

As described earlier under seu Decks, part O'f the expansiO'n prO'cess
invO'lves CO'Pying O'ther decks intO' the decks being expanded. SCU
searches fO'r each deck to' be cO'pied in the fO'IIO'wing IO'catiO'ns in
the arder shO'wn:

1. In the PPE sO'urce library at the current level.

2. In the PPE sO'urce library at each higher level upwards.

3. In the sO'urce libraries listed in the alternate base library
list in the O'rder the library files are listed.

A single alternate base library list is used for all builds at a
level. You can change the cO'ntents of the list at any time.

Compilation

The second step in the build process is the prO'cessing O'f the
expanded text by the build prO'cessor. Currently, this is always
cO'mpilation by a compiler. The cO'mpiler generates an O'bject module
fO'r each compilatiO'n unit. The O'bject mO'dules are stored in the
O'bject library for the current PPE level.

YO'U can select the parameter values used by the build prO'cessor.
PPE maintains a library of parameter lists. For example, FORTRAN
parameter lists are available fO'r high and IO'W optimizatiO'n and
debug mode. You can select the parameter list used and, if desired,
change parameter values.

FO'r more informatiO'n about compiler parameter values, you can use
the HELP command to' take you to the parameter discussion in the
compiler O'nline manual.

Product Execution

After the prO'duct has been successfully built, it is available fO'r
execution testing. You execute the prO'duct by pressing the functiO'n
key O'r entering the cO'mmand RUN. (Or, yO'U can tailO'r PPE so it
autO'matically executes the prO'duct at the end of each successful
build.)

PPE allows yO'U to specify the parameter list passed to' the prO'duct
when it is executed. If the prO'duct requires access to' one O'r more
attached data files, you can attach thO'se files by entering the SCL
command ATTACH FILE on the home line.

1-8 PrO'fessiO'nal PrO'gramming EnvirO'nment RevisiO'n A

Background Concepts

You can designate one of two purposes for a run: normal or
interactive debug. An interactive debug run executes the product
under control of the Full-Screen Debug utility.

Execution begins at the default starting procedure (the last
transfer symbol loaded) unless you specify another starting
procedure.

You can also specify the program library list and command list
entries. The command list entries are command libraries to be added
to the command list. The command list determines the SCL commands
available during the PPE session. The program library list is a
list of additional object libraries from which object modules can be
loaded as needed. Modules are loaded to satisfy external
references. To find a module containing an entry point that matches
an external reference, the loader searches the following locations
in the order presented:

1. In the PPE object library at the current level.

2. In the PPE object library at each higher level upwards in the
hierarchy.

3. In the object libraries specified in the program library list on
the Library Lists screen. The libraries are searched in the
order listed.

4. In the object libraries listed in the job library list. The
libraries are searched in the order listed.

The program loading process is described in more detail in the SCL
Object Code Management manual.

Revision A Introduction 1-9

Getting Started 2

This chapter describes how you can begin to use PPE. To do so, you
must:

1. Define your terminal as a full-screen terminal.

2. Enter the SeL command to start PPE.

3. On initial entry to PPE, set up your own PPE level.

These topics are described in detail in the following sections.

Defining Your T el'minal

Because PPE uses a full-screen interface, it can only be used from
an interactive terminal that has full-screen capabilities and is
defined for full-screen use.

If you have used a full-screen application from your terminal (such
as editing in screen mode using the NOS/VE Full-Screen Editor), your
terminal is a full-screen terminal and you can prepare your terminal
for PPE the same way you prepare it for other screen mode
applications.

However, if you have not used a screen mode application from your
terminal before, you need to learn how to define your terminal as a
full-screen terminal. You may be able to find out from someone else
at your site. If not, continue reading. The following paragraphs
list the characteristics of a full-screen terminal and describe how
you define your terminal as a full-screen terminal.

Full-Screen Terminal Characteristics

A terminal can be defined as a full-screen terminal if it has the
following minimum characteristics:

• Uses asynchronous communications.

• Has keys that move the cursor on the screen and transmit
characters indicating that the cursor has moved.

• Supports direct cursor addressing.

• Provides a clear-screen operation.

Revision B Getting Started 2-1

Defining Your Terminal

The following terminal characteristics are also desirable:

• Provides a clear-to-end-of-line function.

• Has up to 32 definable function keys, each of which transmits a
unique, identifying character sequence. Preferably, the
sequence should end with the carriage-return character.

• Allows host definition of tab stops.

• Supports protected screen fields and tabbing between unprotected
fields. The tab key must transmit a character sequence to the
host indicating that the key was pressed.

• Has graphic characters for drawing lines.

Full-Screen Terminal Definition

A terminal is defined as a full-screen terminal when you provide
NOS/VE with a full-screen terminal definition to use during the
interactive session. You do this by specifying a TERMINAL MODEL
parameter value on the SCL command CHANGE TERMINAL ATTRIBUTE. You
can put the CHANGE TERMINAL ATTRIBUTE command in your prolog file
($USER.PROLOG) so it is executed each time you log in to NOS/VE.

The TERMINAL MODEL parameter value selects a predefined description
of your terminal. Your site probably has a set of terminal
definitions available on file $SYSTEM.TDU.TERMINAL_DEFINITIONS. To
see the definitions available at your site, enter the following SCL
command:

display_object_library $system.tdu.terminal_definitions

The command lists the names of the terminal definition modules. By
convention, the names begin with the prefix CSM$ followed by the
TERMINAL MODEL value. For example, one of the modules may be a
terminal-definition for the Zenith Z29 terminal named CSM$Z29. To
use the CSM$Z29 module, you enter the folloWing command:

change_terminal_attribute terminal_model=z29

Many terminals provide a VT100 (or ANSI X3.64) mode. If your
terminal does, you may not find its name in the list of terminal
models supported, but using VT100 should work. If you cannot find a
compiled terminal definition available at your site that is
effective for your full-screen terminal, you or someone at your site
must create a new terminal definition. The process of creating a
new terminal definition is described in the Terminal Definition for
NOS/VE manual.

2-2 Professional Programming Environment Revision R

Defining Your Terminal I

Using Function Keys

One of the important features of the full-screen interface is the
use of function keys. However, the actual function keys available
to you depend on the terminal you use.

You may need to consult the manual for your terminal or the person
who wrote the terminal definition to find the function keys on your
keyboard. For some terminals, function keys are entered by a
combination of keys entered at the same time or in sequence. For
example, on the Z29 terminal, unshifted function keys are the top
row of keys on the keyboard and shifted function keys are the SHIFT
key and a numeric pad key entered at the same time. After entering
a Z29 function key, you must press the RETURN key.

As listed under Full-Screen Terminal Characteristics, function keys
are not required to use PPE. When the terminal definition does not
define function keys, all PPE actions must be specified by commands
entered on the home line.

In many cases, a terminal has some function keys, but not a full set
of 32. In such cases, some PPE functions are available via function
key, while others must be entered by commands on the home line.
The function keys defined by the terminal definition are displayed
at the bottom of the screen.

Function keys can be entered shifted or unshifted. On the display
at the bottom of a PPE screen, the top label is for the shifted key
and the bottom label is for the unshifted key.

The function key label is always valid as the corresponding home
line command, unless the label is changed by the user. Thus, when
a description refers to a function key label, the referenced
function can be performed by pressing the function key, entering the
command on the home line of the screen, or by entering the function
key label on the home line of the screen.

User Breaks in a Fnll-Screen Application

A user break alows you to interrupt an interactive program. To
activate user break 1 and user break 2 in a full-screen application
such as PPE, you must enter one or two commands before entering the
appl ication.

User break 1 (also known as pause break) and user break 2 (also
known as t~rminate break) are int~ractive conditi~ns caused when the
user enters a certain key sequence. A terminate break condition
terminates the currently executing command.

Revision B Getting Started 2-3

Defining Your Terminal

A pause_break condition discards typed-ahead input and suspends the
executing command. While the command is suspended, you can interact
with the system to get information such as the job's status, consult
online manuals, and so forth. To resume the suspended command,
enter RESUME COMMAND; to terminate the suspended command, enter
TERMINATE COMMAND.

CDCNET Commands

If the communications network you are using is CDCNET, you must
enter two commands. The first command defines the attention
character value; the second command defines the attention character
as the terminate break key and the terminal's break key as the
pause break key.- The following example assumes that the network
contr~l character is the default (%) and the attention character is
to be defined as CTRL-T (ASCII DC4, character code 20):

%change terminal attribute attention character=20
%change-connecti~n attribute attenti~n character action=l
break character action=2

or abbreviated,

%chata ac=20
%chaca aca=l bka=2

NAM/CCP Command

If the communications network you are using is NAM/CCP, you enter
only one command. The command changes the attention character to a
non-null value. For example:

change_terminal_attribute attention_character=$char(20)

or abbreviated,

chata ac=$char(20)

2-4 Professional Pro~rammin~ Environment Revision B

Starting PPE

Starting PPE

After preparing your terminal for full-screen use, you can start PPE
by entering the SCL command ENTER_PPE, defined as follows:

Format:

Parameters:

Examples:

Revision A

ENTER PPE or ENTP
ENVIRONMENT_CATALOG=catalog-yath
STATUS=status variable

ENVIRONMENT CATALOG or EC
Path to the subcatalog for which PPE is
executed. It becomes the lowest level of the
your PPE hierarchy in the session.

PPE creates the subcatalog if it does not exist.
If the subcatalog belongs to another user, the
owner must grant you the following catalog permit:

Access Modes=(all, cycle, control)
Application_Information='Il'

If you omit ENVIRONMENT CATALOG, the default
subcatalog used is $USER.PROFESSIONAL_ENVIRONMENT.

STATUS
Optional status variable in which the command
returns its completion status.

The following command starts a PPE session in which
the PPE level used is the default subcatalog, the
user's $USER.PROFESSIONAL_ENVIRONMENT subcatalog.

entp

The following command begins a PPE session using the
subcatalog named $USER.XYZ.PPE_WORK:

entp ec=$user.xyz.ppe_work

Getting Started 2-5

Entering PPE for the First Time

Entering PPE fol' the Fil'st Time
The first screen you see each time you enter PPE is the PPE Banner
screen. The Banner screen appears similar to the following display:

Professional Programming Env; ronment (PPE)

Version 1.1 Level 87300

COPYRIGHT CONTROL DATA 1987

Press Next t:o proceed with the PPE session.
Press Help to learn about the PPE.
Press Quit (STOP) to exit the PPE.

F1DF2DF3DF4DF5DF6~F7 DF8D
The Banner screen prompts you to make one of three choices:

NOTE

Commands cannot be entered on the home line of the Banner screen.
Only commands executable by function keys are available.

1. Press Next to proceed with the PPE session.

This choice displays the Environment Description screen allowing
you to begin use of PPE. To select this choice, press the
carriage-return key. (The carriage-return key transmits the
carriage-return character; on various terminals, it is labeled
RETURN, NEXT, CR, or a similar label.)

2-6 Professional Pro!!rammin!! Environment Revi!;ion B

Entering PPE for the First Time

NOTE

When you select the first choice (Use Next to proceed with the
PPE session), PPE creates the PPE catalog structure in the
catalog specified on the ENTER PPE command if the catalog has
not been used as a PPE catalog-before. The existing files and
catalogs in the specified subcatalog are not affected. For more
information on the PPE catalog structure, see appendix D.

2. Press Help to learn about the PPE.

3.

If you select this choice, you are shown the online manual
introduction to PPE. To get help, press the Help key.
Depending on your terminal definition, this could be the key
labeled HELP on your terminal or a function key labeled Help at
the bottom of the Banner screen.

Press Quit (STOP) to exit the PPE.

This choice ends the PPE session without creating the PPE
subcatalog. To leave PPE, press the Stop or Quit key.
Depending on your terminal definition, this could be the key
labeled STOP on your terminal or a function key labeled Quit at
the bottom of the Banner screen.

The Banner screen is always the first screen displayed when you
enter PPE. However, the screen displayed when you proceed can
differ. The screen displayed when you press the carriage-return key
is the last screen displayed during your previous PPE session. This
allows you to continue your work where you left your previous
session.

Revision A Getting Started 2-7

Entering PPE for the First Time

Environment Description Screen

During your initial PPE session, the PPE screen you see after
pressing the carriage-return key from the Banner screen is the
Environment Description screen. At first, the Environment
Description screen appears similar to the following (the function
key labels at the bottom of your screen may differ):

ENVIRONI'IENT DESCRIPTION

SCU objects: DECKS MODIFICATIONS

Hierarchy level name: "W=.;OR"'K;:.:I"'N.=.G __________ _

Thh level is linked to environllent catalog:

Sui ld processor: .:.F::::OR:!-'Tc:;R"'A::.N ____________________ _

Hierarchy Level nBlles

You can begin by naming
descriptive sequence of
naming rules. To name

your PPE level. The name can be any
1 through 31 characters that follows NOS/VE
your level, type the level name after

Hierarchy level name:

You can type over any existing level name to to change your level
name. However, be sure to strike over all characters of the old
name. If the new name does not replace all characters of the old
name, erase the remaining characters of the old name with blanks.
Press the carriage-return key and your new name appears in the
Hierarchy level names list at the bottom of the screen.

2-8 Professional Pro2rammin2 Environment Revision A

Entering PPE for the First Time

Linking to a Hierarchy

The Environment Description screen defines how your PPE level
relates to other PPE levels in a hierarchy. Initially, your level
is not linked to any hierarchy. You are not required to link to a
hierarchy. However, if you intend to extract decks from and
transmit decks to higher levels of a hierarchy, you must link your
level to the hierarchy.

To link your
your level is
catalog path.

PPE level to a hierarchy, specify the level to which
to be linked. Specify the hierarchy level by its
Type the catalog path on the line below the heading:

This level is linked to environment catalog:

Press the carriage-return key and the level names in the hierarchy
will appear in the Hierarchy level names list. Your level name will
be at the bottom of the list.

For example, to name an environment catalog level
FREDS UNTESTED CODE, type the following level name in the Hierarchy
level-name: field:

freds untested code

The Environment Description screen then appears similar to the
following:

ENVIRONMENT DESCRIPTION

SCU obj ects: DECKS MODIF ICATIONS

Hierarchy LeveL name: FREDS_UNTESTED_CODE ____________ _

This Level is Linked to envi ronment cataLog:

Build processor: .:..F~OR.:..T"'R"'A:::N _________ _

Hierarchy level names

Revision B Getting Started 2-9.

Entering PPE for the First Time

The environment catalog level is named FREDS UNTESTED CODE. The
level name is added to the Hierarchy level names list~ Since
FREDS UNTESTED CODE is not linked to any other catalogs, it belongs
to no-environm~nt catalog hierarchy and no other level names are
listed in the Hierarchy level names list.

You can work on code using an environment catalog not connected to a
hierarchy, but you cannot extract from or transmit to other PPE
catalogs. To do so, your environment catalog must be linked to
another environment catalog.

A typical environment catalog hierarchy might consist of an
integration level, a project level, and an analyst level. An
integration level and project level hierarchy might appear similar
to the following:

Integration
Level

Project
Level

SYSTEM
-

TESTED
CODE-

I
UNIT

TESTED
CODE-

.2-10 Professional Programming Environment Revision B

Entering PPE for the First Time

If you want to link your level to another environment catalog, you
must specify the file path of the catalog on the This level is
linked to: field of your Environment Description screen. For
example, to link the environment catalog level FREDS UNTESTED CODE
to the UNIT TESTED CODE environment catalog level, specify th; file
path of the-UNIT TESTED CODE environment catalog. After you specify
the path, the En;ironme~t Description screen appears similar to the
following:

ENVIRONMENT DESCRIPTION

SCU obj ects: DECKS MODIFICATIONS

Hierarchy level na_e: FREDS_UNTESTED_CODE ___________ _

This level is linked to ,,"vi ronllent catalog:

: SYSTEM_NAME.USER_NAIIE.UNIT_TESTED. CODE, _______________ _

Build procusor: .:.,;FO=::R:..:T.!!R:::AN:!.-________ _

Hierarchy level nues

SYSTEM TESTED CODE
UNIT TESTED CODE

7

Revision B Getting Started 2-10.1.

Entering PPE for the First Time

The Hierarchy level names list contains the level names in Fred's
environment catalog hierarchy. FREDS UNTESTED CODE is the bottom
level of the hierarchy. If you could ;ee the hierarchy, it would
appear similar to the following:

Integration
level

Project
level

Analyst
level

SYSTEM
-

TESTED
CODE-

I
UNIT

TESTED
CODE-

I
FREDS

UNTESTED
-

CODE

Fred can now transmit decks to and extract decks from the
environment catalogs in the environment catalog hierarchy.

.2-10.2 Professional Programming Environment Revision B

Entering PPE for the First Time

Build Processor

Notice the Build processor: field on the Environment Description
screen. This field specifies the processor used for all builds at
your level of the hierarchy. Initially, the Build processor: field
is set to FORTRAN, indicating that the NOS/VE FORTRAN Version 1
compiler is the build processor used.

You can change the value in the Build processor: field by typing
over the existing value. The specified build processor is used for
all subsequent builds and so it must be an appropriate processor for
the source code at your level. For example, it would not be
appropriate to specify COBOL as the build processor when the source
code to be compiled is FORTRAN source code.

Display Build Processors

To see a list of all build processors currently supported by PPE,
request the DISPLAY BUILD PROCESSORS function by either of the
following:

• Press the function key labeled BProcs, or

• Move the cursor to the home line, type the command
DISPLAY_BUILD_PROCESSORS (or DISBP or BPROCS), and press the
carriage-return key.

Revision B Getting Started 2-10.3 I

Entering PPE for the First Time

The Build Processors screen appears similar to the following display:

BUILD PROCESSORS

Processor

COBOL
C.!BIL

'VEC'rOR _FORTRAN (FORTRAffVer$l ori2)

D r-l D II PLists II
F3 F4~F5 F6~F7 EdiPl F8~

The build processor in use is highlighted on the Build Processors
screen. To change the build processor, do one of the following:

• Position the cursor on the build processor name and then press
the function key labeled ChaBP, or

• Position the cursor on the build processor name, press the HOME
key, type the command CHANGE BUILD PROCESSOR (or CHABP), and
press the carriage-return key, or

• Move the cursor to the home line, type the command
CHANGE_BUILD_PROCESSOR (or CHABP) followed by the build
processor name, and press the carriage-return key.

The other functions available from the Build Processors screen are
described in the screen description in chapter 4. To return to the
Environment Description screen, either:

• Press the BACK function key, or

• Move the cursor to the home line, type the command
BACK TO PREVIOUS CONTEXT (or BACTPC or BACK), and press the
carriage-return key, or

• Use the Screen Stack screen.

2-10.4 Professional Programming Environment Revision B

Entering PPE for the First Time

Tailor Options Screen

During your first PPE session, you might also look at the Tailor
Options screen. It provides a number of options for tailoring your
PPE level.

To display the Tailor Options screen. do either of the following:

• Press the function key labeled Tailor, or

• Move the cursor to the home line. type the command
DISPLAY TAILOR OPTIONS (or DISTO or TAILOR). and press the
carriage-return key.

The Tailor Options Screen appears similar to the following:

TAILOR OPTIONS

Author: "'U"'SE:,:R:.::OO"'7'--____________ _

Interlock value: :::.US"'E:::;R:.::O"'07'--________ _

Build defaults:
Build processor: .:.FOR=T.!!R~AN:!..... ________ _

Run automatically after build: _YES lLNO

Run defaults:
Starting procedure: __ -..====-==;:-__ _
Purpose: lLNORMAL _INTERACTIVE DEBUG

Delete Protection:]LON _OFF

EdHing defaults:
User prolog:
PPE edHor key assignments: BEFORE USER]LAFTER USER _NONE

D D E]procs D PLists II II
F2 F3 F4 F5 F6 QuH F7~F8~

Initially, the values in the Author: and Interlock value: fields
are the same; both are the NOS/VE user name of the job containing
the PPE session. The Author: value on the Tailor Options screen is
the default value PPE enters in the Author deck header field of
created decks. The Interlock value: is the value PPE enters in the
interlock fields when a deck is extracted.

If you like, you can change the Author and/or Interlock values to a
value more descriptive, such as your name. To do so. type over the
existing values and then press the carriage-return key.

Revision B Getting Started 2-11

Entering PFE for the First Time

The Build defaults are values used as defaults when the product is
built. The Build processor value on the Tailor Options screen is
the same as it is on the Environment Description screen. As
described for the Environment Description screeen, you can change
the Build processor value by typing over it and pressing the
carriage-return key. Be sure to overstrike and blank out all
characters of the old value, because any characters of the old value
that remain on the screen become part of the new value. The value
must be a keyword specifying one of the build processors supported
by PPE.

The default value for the Run automatically after build field is NO,
meaning that the product is not executed at the end of a successful
build. If you like, you can change the value to YES, causing the
product to execute after every successful build. To change the
value, type a non-blank character in the field next to YES and press
the carriage-return key.

The Run defaults are default values used when the product is
executed. When the Starting procedure field is blank, execution
begins at the last transfer symbol loaded, usually the main
program. If you like, you can change the value to the name of a
specific entry point where execution is to begin. To do so, type
the name in the Starting procedure field and press the
carriage-return key. (For a more detailed description of starting
procedures, see the NOS/VE Object Code Management Usage manual).

The Purpose field sets the default run purpose for each execution of
the product. Two run purposes are available:

• Normal execution (NORMAL)

• Execute under control of the Debug utility (INTERACTIVE DEBUG)

To change the default run purpose, type a non-blank character in the
field you select and press the carriage-return key.

The Delete protection default allows you to enable or disable delete
protection. Delete protection warns you when objects are about to
be physically deleted. Options are:

ON PPE issues a warning before physically deleting an object.
You can then veto or confirm the deletion of the object.
This is the default selected by PPE.

OFF PPE physically deletes objects without allowing you to veto
the action.

To select either option, type a non-blank character in the field to
the left of the option.

2-12 Professional Programming Environment Revision B

Entering PPE for the First Time

When you use a DELETE command (for example, DELETE DECK), the
deleted object is logically deleted. This means that the name of
the object is removed from the screen, but the object is still
physically resident in PPE. Logically deleted objects can be
recovered with the UNDO LAST DELETE command.

A logically deleted object becomes physically deleted if:

• Delete protection is ON and you confirm the deletion. The
Delete protection warning is displayed when you attempt to leave
the current screen, execute a command on the home line, or
execute a command that might reference a logically deleted
object.

• You exit PPE. When you exit PPE, all logically deleted objects
become physically deleted. The delete protection warning is not
displayed even if you selected Delete protection from the Tailor
Options screen.

• Delete protection is OFF and you leave the current screen,
execute a command on the home line, or execute a command that
might reference a logically deleted object. No deletion warning
is displayed and you cannot veto the deletion.

A physically deleted object cannot be recovered by invoking the
UNDO LAST DELETE command. PPE can physically delete only objects
that are logically deleted.

The Editing defaults: fields enable you to specify an editor prolog
to be used when executing the PPE editor. The editing defaults let
you define editor function keys using a combination of your function
key definitions and PPE commands or using your function key
definitions only. Therefore, when entering the PPE editor, you can
use the PPE supplied editor prolog, an editor prolog of your choice,
or a combination of both to define the editor function keys.

If you want to define the PPE editor function keys using your editor
prolog, enter the file path of your editor prolog in the User
prolog: field. For example, to use C721 EDITOR PROLOG to define
PPE editor function keys, type the following fil; path in the User
prolog: field:

If you do not specify an editor prolog in this field, PPE uses the
editor prolog, SCU EDITOR PROLOG, to define the editor function
keys. If the file: SCU EDITOR PROLOG, does not exist, PPE defines
the editor function keys using-the standard function key definitions.

Revision B Getting Started 2-13

Entering PPE for the First Time

The PPE editor key assignments: fields allow you to specify whether
you want PPE editor key assignments made before or after your editor
function key assignments are made, or whether you do not want any
PPE editor key assignments made. The choices are:

BEFORE USER

AFTER USER

NONE

Causes PPE to assign PPE commands to the editor
function keys before executing your editor
prolog. First PPE assigns PPE commands to the
editor function keys, then the editor prolog
assigns commands to the editor function keys.

Causes PPE to assign PPE commands to the editor
function keys after executing your editor
prolog. First the editor prolog assigns commands
to the the function keys, then PPE assigns PPE
commands the keys.

Causes PPE to not assign any PPE commands to the
editor function keys.

When you choose BEFORE USER or AFTER USER, both PPE defined and user
defined function keys are specified for the PPE editor. Any
function key defined by both your user prolog and by PPE commands
assumes the definition assigned to the key last. Therefore, to use
your editor prolog with the PPE editor prolog to maximum effect, do
the following:

• Determine which function keys are assigned PPE commands.

• Define your editor prolog only for function keys not assigned a
PPE command.

• Specify the file path of your editor prolog on the User prolog:
field (the editor prolog can be any file containing EDIT FILE
function key definitions).

• Choose BEFORE USER or AFTER USER on the PPE editor key
assignments: field.

From the Tailor Options screen, you may also want to go to the
Library Lists, Parameter List, and Parameter List Library screens.
To go to these screens, you can use the function keys labeled
LLists, EdiPL, and PLists or the commands DISPLAY LIBRARY LISTS,
EDIT PARAMETER LIST, and DISPLAY PARAMETER LIST LIBRARY. -These
screens are de~cribed in chapter-4 •

• 2-14 Professional Programming Environment Revision B

Leaving PPE

Leaving PPE

You can end your PPE session at any time. When you exit PPE from
any screen other than the Deck Creation or Modification Creation
screens, all of the files created and options selected are saved for
your next PPE session. If you exit PPE from the Deck Creation or
Modification Creation screens, any new information entered on the
screen is lost.

To leave PPE, do one of the following:

• Press the STOP key if your terminal has one, or

• Press the function key labeled Quit, or

• Move the cursor to the home line, type the command QUIT SAVE (or
QUIT or QUIS or QUI), and press the carriage-return key:

The next time you enter PPE, the first screen you are shown after
the Banner screen is the last screen at which you performed an
action in the previous session unless you exited from the Screen
Stack screen.

File Cycle Management Within the Environment Catalog

When you exit PPE, a new high cycle of the source library within
your environment catalog is created. The low cycles allow you to
recover from catastrophic events. However, you can easily use up a
large amount of file space. To avoid using excess file space, you
should frequently delete the low cycles of your source library. You
can use EDIT CATALOG from the home line of your environment catalog
to do this.

The next chapter is an extended example of the primary PPE
functions. The chapter following it is a reference chapter that
describes all PPE screens and commands in detail.

Revision B Getting Started 2-15 I

PPE Operations

This chapter contains procedures for performing the primary PPE
operations. These include:

Moving from screen to screen

Importing a source library

Creating a modification

Creating a deck

Extracting a deck

Editing a deck

Building the product

Correcting errors

Transmitting code

This chapter does not describe all PPE commands or all PPE screens.
The next chapter contains comprehensive descriptions of all PPE
commands and screens.

See Appendix G, Usage Hints, for suggestions about using PPE with
exiting SCU libraries and on new projects. Appendix G also shows
you how to customize the PPE function key assignments.

NOTE

Changes made to the source library are not available to other tasks
or PPE sessions at lower levels in the hierarchy until you exit the
PPE session in which the changes occurred, or until the changed
decks are transmitted to the next higher level in the hierarchy.

Moving from Screen to Screen

3

Moving from screen to screen within PPE does not actually accomplish
any work, but it is an operation that is required for doing work.
You can go to a screen by entering the specific command to display
that screen or you can use the Screen Stack. (To find out which
command displays a specific screen, look up the screen's description
in this manual.)

Revision A PPE Operations 3-1

Moving from Screen to Screen

As you move down the PPE screen hierarchy, each screen you display,
except the Banner screen and the Screen Stack screen, is put on the
stack. Each time you move back up the hierarchy, the current
screen is removed from the stack. You can use the Screen Stack to
go directly to a screen if the screen is currently on the stack.

Thus, the PPE screens can appear on the stack only in hierarchical
order. The hierarchy of PPE screens is as follows:

1. Environment Description

2. Deck List or Modification List

3. Build Errors, Build Files, Run Files, or the Deck Creation or
Modification Creation screen from Deck List or Modification
List, respectively.

The diagram below shows the PPE screen hierarchy. The screens not
connected to any other screens can be reached from many screens.
See the PPE Screens section of chapter 4 to determine which screen
transitions are possible.

LIBRARY
LIST

BANNER

PARAMETER
LIST LIBRARY

3-2 Professional Pro~rammin~ Environment

PARAMETER I
LIST '--------' e
Revision B

Moving from Screen to Screen

You can retrace your path down the PPE screen hierarchy by using
BACK TO PREVIOUS CONTEXT repeatedly. To do so, do either of the
fOllClwing: -

Press the BACK function key, or

Move the cursor to the home line, type BACK TO PREVIOUS CONTEXT
(or, BACTPC or BACK) and press the carriage~return key.-

You can jump directly to a screen in the stack using the Screen
Stack screen. To go to the Screen Stack screen, press the function
key labeled STACK or move the cursor to the home line, type the
command DISPLAY SCREEN STACK (or DISSS or STACK), and press the
carriage-return-key. The Screen Stack screen then appears, similar
to the following:

SCREEN STACK

ENVIRONMENT DESCRIPTION
DECK LIST
DECK CREATION

F1IBaCTC IFzDF3DF4DFsDF6QF7DFsD

To go to a screen on the stack:

1. Position the cursor on the screen name (such as ENVIRONMENT
DESCRIPTION).

~ 2. Press the function key labeled BacTC.

PPE removes all entries below the selected screen from the stack
and then displays the requested screen.

Revision A PPE Operations 3-3

Creating a Modification

To create a modification:

1. Go to the Modification List screen. If the Modification List
screen is on the screen stack, you can return there by using the
Screen Stack screen or by using BACK one or more times. If not, ~
you must go to the Environment Description screen or the Deck ~

List screen and perform one of the following:

• Position the cursor on the SCU object MODIFICATIONS and
press the function key labeled SCUObj, or

• Position the cursor on the SCU object MODIFICATIONS and
press the carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST MODIFICATION (or DISSOL M or SCUOBJ
M), and-press the carriage-return key.

The Modification List screen appears, similar to the following:

MODIFICATlON LIST Moditication 0 thru 0 of 0

SCU objects: DECKS MODIFICATlONS

Curr-ent mod: Display cei l in9: fRED

Mod Nearest residence

3-6 Professional Programming Environment Revision A

Creating a Modification

2. Go to the Modification Creation screen. To do so, do either of
the following:

• Press the function key labeled Create, or

• Move the cursor to the home line, type CREATE MODIFICATION
(or CREM or CREATE), and press the carriage-r;turn key.

The Modification Creation screen appears, similar to the
following:

MODIFICATION CREATION

Name: ____ _

Author: Fred Johnson

Description:

F2DF3DF4DF5DF6GJF7DF8~

3. Enter the information defining the modification.

Type the modification name (1 through 9 characters) in the Name
field.

By default, the Author field contains the Author value from the
Tailor Options screen. To change it, type over its current
value.

The modification description is optional. It usually describes
the purpose of the modification. To enter it, type the
information on the lines following the label:

Description:

Revision A PPE Operations 3-7

Creating a Modification

4. Cancel or create the modification.

Canceling the modification discards the information entered on
the Modification Creation screen and returns you to the previous
screen displayed.

To cancel a modification:

• Press the function key labeled Back, or

• Move the cursor to the home line, type
BACK TO PREVIOUS CONTEXT (or BACTPC or BACK) and press the
carriage-return key.

Creating the modification causes PPE to give the information on
the Modification Creation screen to SCU which, in turn, creates
the modification in the source library. PPE then returns yoa to
the Modification List screen.

If a modification with the same name already exists at any level
in the PPE hierarchy, PPE does not create the the modification.
Instead, it displays an explanatory message and leaves you at
the Modification Creation screen. You can then change the
modification name and request creation again or, you can leave
the screen.

To create a modification:

• Press the function key labeled Create, or

• Move the cursor to the home line, type CREATE MODIFICATION
(or CREM or CREATE) and press the carriage-return key.

Creating a Deck

As described in chapter I, an SCU deck contains a sequence of source
lines. Often, the source text in a deck is for a compilation unit,
such as a FORTRAN or COBOL subprogram. PPE provides a full-screen
interface for deck creation.

':I._A. 'D __ # a " __ ... ' '0 ____ ... _"' __ "C'_r_ ____ ...

Creating a Deck

To create a deck:

1. Go to the Deck List screen. If the Deck List screen is on the
screen stack, you can return there by using the Screen Stack
screen or pressing BACK one or more times. If not, you must go
to the Environment Description screen or the Modification List
screen and perform one of the following:

• Position the cursor on the SCU object DECKS and press the
function key labeled SCUObj, or

• Position the cursor on the SCU object DECKS and press the
carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST DECK (or DISSOL D or SCUOBJ D), and
press the carriage=return key.

The Deck List screen appears, similar to the following:

DECK LIST Deck 0 thru 0 of 0

SCU objects: DECKS MODIFICATIONS

Current mod: MYrMOD Display cei Ung: --=-:FR.::E:=D _____ _

Deck Nearest res;dence

Revision A PPE Operations 3-9

Creating a Deck

2. Go to the Deck Creation screen by doing anyone of following:

• Press the function key labeled Create. or

• Move the cursor to the home line. type CREATE DECK (or CRED
or CREATE). and press the carriage-return key~

The Deck Creation screen appears. similar to the following:

DECK CREATION

Creation modification: .:.:1'I"'Y"'1'I.:.:O""D ____ ="'"
Na .. e: Author: Fred Johnson

Deck is expandable: LTRUE _FALSE

Initial source:
LNONE _DECK TEMPLATE

File:, ____________________________ _

Attributes: _CONTAINS DECK DIRECTIVES _HAS MULTIPLE PARTITIONS

Description

3. Enter the deck header information.

Type the deck name (1 through 31 characters) in the Name field.

The default author is the Author value from the Tailor Options
screen. To change the author value. type over the value in the
Author field.

The creation modification is the modification to which the
original set of lines in the deck are assigned. It is the
current modification as shown Deck List screen. To change the
modification value, type over the value in the Creation
Modification field. If the modification does not exist at any
level of the environment catalog hierarchy. PPE asks whether you
want the modification created with SCU default values.
Otherwise, if the modification does not exist at the lowest
level of the hierarchy. PPE issues a message and returns the
modification field to its previous state.

3-10 Professional Programming Environment Revision A

Creating a Deck

If you let PPE create the modification with SCU defaults, the
author parameter of the modification is not set. Only values
provided by the SCU are used to create the modification;
information on the Deck Creation screen is not used.

The expand attribute determines whether the deck can be expanded
directly or whether it must be copied by another deck. The
default expand attribute is TRUE. To change the value, type a
non-blank character by the FALSE field following the label:

Deck is expandable:

The Initial source: information describes the text stored in
the deck when it is created. By default, no text is stored in
the deck. You can specify that the initial source is the deck
template or the text in a file.

The procedure for editing the deck template is described later
under Editing the Deck Template.

If the initial text is in a separate file, type the file path in
the File field. When the initial text is in a file, you can
also specify one or both of the attributes CONTAINS DECK
DIRECTIVES and HAS MULTIPLE PARTITIONS.

When you select the attribute CONTAINS DECK DIRECTIVES, SCU
processes any *DECK directives embedded in the source text.
Each *DECK directive marks the beginning of the text for another
deck. The *DECK directive specifies the name of the deck. All
other deck header information is identical for all decks created
from the file.

When you select the attribute HAS MULTIPLE PARTITIONS, SCU
continues copying text from the file even when it encounters
end-of-partition delimiters. It converts each end-of-partition
delimiter to a *WEOP embedded directive, which is converted back
to an end-of-partition delimiter when the deck is expanded.

The final field on the screen is the deck description. A
description is optional. It usually describes the content of
the deck.

4. Cancel or create the new deck.

Canceling the deck discards the information entered on the Deck
Creation screen and returns you to the previous screen displayed.

To cancel a deck:

• Press the function key labeled Back, or

• Move the cursor to the home line, type
BACK TO PREVIOUS CONTEXT (or BACTPC or BACK) and press the
carriage-return key.

Revision A PPE Operations 3-11

Creating a Deck

Creating the deck causes PPE to give the information on the Deck
Creation screen to SCU which, in turn, creates the deck (or
decks) in the source library. PPE then returns you to the
previous screen displayed.

To create a deck, do either of the following:

• Press the function key labeled Create, or

• Move the cursor to the home line, type CREATE DECK (or CRED
or CREATE), and press the carriage-return key.

If a deck with the same name already exists at any level in the
environment catalog hierarchy, PPE does not create the deck.
Instead, it displays an explanatory message and leaves you at
the Deck Creation screen. You can then change the deck name and
create the deck, or you can leave the screen.

NOTE

PPE does not check to ensure that a deck is unique in the
environment catalog hierarchy if you specify a file as the
initial source of the deck and the file contains deck directives.

Editing the Deck Template

Each build processor (compiler) has a PPE deck template associated
with it. The deck template is a generic framework for decks written
in the compiler language; the template can be copied to a deck being
created. You can edit the deck template to fit your requirements.

To edit the deck template, perform these steps:

1. Go to the Build Processors screen by doing either of the
following:

• Press the function key labeled BProcs, or,

• Move the cursor to the home line, type
DISPLAY BUILD PROCESSORS (or DISBP or BPROCS), and press the
carriage-return key.

3-12 Professional Programming Environment Revision B

2.

Extracting a Deck

Do either of the following:

• Position the cursor on the build processor whose template
you want to see and press the function key labeled EdiDT, or

• Move the cursor to the home line, type EDIT DECK TEMPLATE
(or EDIDT) and the name of the build processor, and press
the carriage-return key.

The deck template is displayed for editing in a Full-Screen
Editor session. The commands available are described under
Editing a Deck.

Extracting a Deck

The third method of getting decks into your PPE source catalog
(besides importing source libraries and creating decks) is
extracting decks from higher levels in the PPE hierarchy. You
extract a deck when you need to make changes to source code that
already exists in a higher level.

As described in chapter I, extracting a deck makes a copy of the
deck and adds it to your PPE source library. It sets an interlock
on the deck so nobody else can extract the deck until after you
transmit it.

To extract a deck:

1. Go to the Deck List screen. If the Deck List screen is on the
screen stack, you can return there by using BACK one or more
times or by using the Screen Stack screen. If not, you must go
to the Environment Description screen or the Modification List
screen and perform one of the following:

• Position the cursor on the SCU object DECKS and press the
function key labeled SCUObj, or

• Position the cursor on the SCU object DECKS and press the
carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST DECK (or DISSOL D or SCUOBJ D), and
press the carriage=return key.

Revision B PPE Operations 3-13

Extracting a Deck

2. Raise the display ceiling until the deck
extracted is in the list on the screen.
raising the display ceiling is described
Display Ceiling.)

(or decks) to be
(The procedure for
later under Raising the

Often, higher levels have long deck lists, causing the deck list
to be longer than can be displayed on a single screen.
Therefore, you may need to move forward and backward through the
list to find the decks to be extracted. (The procedures for
repositioning a list are described later under Repositioning a
List.)

3. Mark the deck (or decks) to be extracted. (The procedures for
marking objects in a list are described later under Marking
Objects in a List.)

If no decks are marked, the deck under the cursor is extracted.

4. To extract the deck (or decks), either:

• Press the function key labeled ExtS, or

• Move the cursor to the home line, type EXTRACT SOURCE (or
EXTS) and press the carriage-return key. -

PPE extracts as many of the marked decks as it can. If it cannot
extract one or more of the decks, PPE displays an informative
message listing the decks that were not extracted. A deck cannot be
extracted if it is already interlocked or if it exists at your level
of the hierarchy. (It may be interlocked because you have already
extracted it. You can see that this is so if the level listed in
the Nearest residence column beside the deck name is the name of
your PPE level.)

Raising the Display Ceiling

On many screens, you can raise the display ceiling. The display
ceiling is the highest level in the hierarchy whose contents are
included in the list on the screen. Raising the display ceiling
adds the contents of higher levels to the list.

To raise the ceiling one level, either:

• Press the function key labeled Raise, or

• Move the cursor to the home line, type RAISE DISPLAY CEILING (or
RAIDC or RAISE), and press the carriage-return key.

3-14 Professional Programming Environment Revision B

Extracting a Deck

To raise the ceiling more than one level, type the number of levels
after the RAISE DISPLAY CEILING command. To raise the ceiling to
the top of the hierarchy, type TOP after the RAISE DISPLAY CEILING
command.

The level name of the display ceiling appears in the Display Ceiling
field.

Repositioning a List

Many PPE screens display lists of objects. The lists are often too
long to fit on the screen. The list header indicates how many
entries are in the list and which entries are currently displayed.
You can reposition a list display to find the objects you require; a
list can be repositioned as follows:

• Forward or backward one page. (A page is the number of entries
that can fit on the screen.)

• Forward or backward so that the object under the cursor is
positioned at the top or bottom of the page, respectively.

• Forward to the end of the list or backward to the beginning of
the list.

The following paragraphs describe how you perform these
repositioning operations.

To move a list one page forward:

• Press the function key labeled Fwd, or

• Move the cursor to the home line, type PAGE FORWARD (or PAGF or
FWD), and press the carriage-return key.

To move a list one page backward:

• Press the function key labeled Bkw, or

• Move the cursor to the home line, type PAGE BACKWARD (or PAGB or
BKW), and press the carriage-return key.

To move a list so the object under the cursor is at the top of the
page:

• Press the function key labeled Up, or

• Move the cursor to the home line, type MOVE TO TOP (or MOVTT or
UP), and press the carriage-return key.

Revision A PPE Operations 3-15

Extracting a Deck

To move a list so the object under the cursor is at the bottom of
the page:

• Press the function key labeled Down, or

• Move the cursor to the home line, type MOVE TO BOTTOM (or MOVTB
or DOWN), and press the carriage-return key: -

To display the beginning of a list and move the cursor to the first
object:

• Press the function key labeled First, or

• Move the cursor to the home line, type MOVE TO FIRST (or MOVTF
or FIRST), and press the carriage-return key. -

To display the end of a list and move the cursor to the last object:

• Press the function key labeled Last, or

• Move the cursor to the home line, type MOVE TO LAST (or MOVTL or
LAST), and press the carriage-return key. - -

Marking Objects in a List

Many PPE screens display lists from which one or more objects can be
selected. Multiple objects are selected by marking them in the
list. PPE highlights the marked objects (assuming the terminal
definition provides a highlighting capability).

To mark one object:

1. Position the cursor on the object to be marked in the list.

2. Either:

• Press the function key labeled Mark, or

• Put the cursor on the object, then move the cursor to the
home line, type BEGIN MARK (or BEGM or MARK), and press the
carriage-return key. -

3-16 Professional Programming Environment Revision A

Extracting a Deck

To mark a range of objects in the list:

1. Mark the first object in the range using the procedure for
marking one object.

2. Mark the last object in the range by first positioning the
cursor on the last object and then either:

• Press the function key labeled EndMrk, or

• Move the cursor to the home line, type END MARK (or ENDti or
ENDMRK), and press the carriage-return key.

You can mark more than one individual object or object range in the
list.

If necessary, you can remove marks previously set.

To remove all marks, move the cursor to the home line, type
REMOVE_MARK ALL (or REMM A), and press the carriage-return key.

To remove only one mark or range of marks:

• Position the cursor on the mark before pressing the UnMark
function key, or

• Move the cursor to the home line, type REMOVE MARK RANGE (or
REMM R) or REMOVE MARK INDIVIDUAL (or REm1 I)~ and press the
carriage-return key.

Editing a Deck

The actual work of changing source code is accomplished by editing
decks. When you request deck editing, PPE puts you into a
full-screen editing session with the text of the deck to be edited
displayed.

You can edit a deck from the Deck List screen or the Deck Creation
screen. The changes made during the editing operation are assigned
to the modification in the Current Modification field of the Deck
List screen or the Creation Modification field of the Deck Creation
screen. Check that the correct modification is specified before
doing the edit operation.

Revision B PPE Operations 3-17

Editing a Deck

To edit a deck being created:

l. Go to the Deck Creation screen and enter the deck information
(as described under Deck Creation).

2. Request editing:

• Press the function key labeled Edit, or

• Move the cursor to the home line, type EDIT DECK (or EDID or
EDIT), and press the carriage-return key. -

To edit an existing deck:

l. Go to the Deck List screen. If the Deck List screen is on the
screen stack, you can return there by using BACK one or more
times. If not, you must go to the Environment Description
screen or the Modification List screen and perform one of the
following:

• Position the cursor on the SCU object DECKS and press the
function key labeled SCUObj, or

• Position the cursor on the SCU object DECKS and press the
carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST DECK (or DISSOL D or SCUOBJ D), and
press the c~rriage-:-return key.

2. Position the cursor on the deck to be edited.

When you request editing of a deck at a higher level in the
hierarchy, PPE also extracts the deck. To display higher
levels, raise the display ceiling as described under Raising the
Display Ceiling. Paging forward and backward through a deck
list is described under Repositioning a List.

3-l8 Professional Programming Environment Revision A

Editing a Deck

3. Request editing:

• Press the function key labeled Edit, or

• Move the cursor to the home line, type EDIT DECK (or EDID or
EDIT), and press the carriage-return key. -

PPE starts a full-screen editing session to edit the text in the
deck. To leave the editor and return to PPE with your changes
saved, do one of the following:

• Press the STOP key or,

• Press the function key labeled Quit or,

• Move the cursor to the home line, type QUIT, and press the
carriage-return key.

All standard full-screen editor commands are available in an
editing session under PPE. (The editor commands are described
in the Full-Screen Editor for NOS/VE manual.) PPE also provides
some specialized capabilities including:

• Topic lookup in the compiler online manual and,

• Source text formatting.

These additional Full-Screen Editor capabilities are described next.

Online Mannal Lookup

If, while editing, you need to see the online manual information
about a keyword in your source text, do the following:

1. Position the cursor on the keyword.

2. Request lookup, by either of the following:

• Press the function key labeled LookUp, or

• Move the cursor to the home line, type LOOKUP KEYWORD (or
LOOK or LOOKUP), and press the carriage-retu~ key.

Revision A PPE Operations 3-19

Editing a Deck

LOOKUP KEYWORD passes the keyword as a topic string to the EXPLAIN
utility which searches for the topic in the index of the compiler
online manual. If the topic is in the index, the corresponding
screen of the online manual is displayed. You can read the topic
and search the manual for other information as desired. (For more
information on reading an online manual, press the HELP key while
inside the manual.)

To return to PPE from the online manual, press the QUIT key.

Formatting Source Text

When you edit your source, you can use the PPE provided command
FORMAT SOURCE TEXT to format the source text.

FORMAT SOURCE TEXT looks for a command with a name of the form
FORMAT:Yrocessor_name_SOURCE where processor_name is the name of the
processor for the source program or deck being edited (for example,
FORMAT COBOL SOURCE). If FORMAT SOURCE TEXT finds a command with a
name of this-form, it executes the command. Two parameters are
passed to the command: the name of the source file to be formatted,
and the name of the file to contain the formatted source.

If a command of the form FORMAT-processor_name_SOURCE is not found
and PPE provides a source code formatter for the processor, then the
PPE provided formatter is used to format the source code.
Currently, PPE only provides a source code formatter for FORTRAN
Version 1.

If a command of the form FORMAT-processor_name_SOURCE is not found
and PPE does not provide a source code formatter for the processor,
PPE issues a message informing you that a formatter does not exist
for the processor.

PPE provides a formatter for FORTRAN Version 1 source code. The
formatter standardizes the appearance of your source code, including
indenting block structures and positioning labels. However, the
source text must already be in the correct zones (labels in columns
1 through 5, statements beginning in column 7).

To format the source text of the deck being edited, do either of the
following:

• Press the function key labeled Format, or

• Move the cursor to the home line, type FORMAT SOURCE TEXT
(FORST), and press the carriage-return key. - -

3-20 Professional Programming Environment Revision B

Building the Product

Building the Product

As described in chapter I, to build the product means to expand the
text source decks and compile the expanded text. The build process
produces an updated object library containing the executable code
for the product.

PPE provides two types of build operations: one to build changed
decks, and the other to build selected decks.

Building Selected Decks

To build selected expandable decks:

1. Go to the Deck List screen. If the Deck List screen is on the
screen stack, you can return there by using the Screen Stack
screen or pressing BACK one or more times. If not, you must go
to the Environment Description screen or the Modification List
screen and perform one of the following:

• Position the cursor on the SCU object DECKS and press the
function key labeled SCUObj, or

• Position the cursor on the SCU object DECKS and press the
carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST DECK (or DISSOL D or SCUOBJ D), and
press the carriage=return key.

Revision A PPE Operations 3-21

Building the Product

The Deck List screen appears, similar to the following:

DECK LIST Deck 0 thru 0 of 0

SCU obj ects: DECKS I'IODIFICATIONS

Current mod: .!:!I'IY.:..:::"~O~D ____ _ Display cei ling: -=.;FR"'E:.:De-_____ _

Deck Nearest residence

2. Select the decks by marking individual decks or ranges of decks
as described under Marking Objects in a List. If no decks are
marked, only the deck under the cursor is selected.

3. Request the build by doing either of the following:

• Press the function key labeled BuiD, or

• Move the cursor to the home line, type BUILD DECKS (or
BUID) , and press the carriage-return key. -

The resulting object modules are combined with the existing object
library at this level of the hierarchy. Existing modules with the
same name are replaced and new modules are added to the hierarchy.

A deck can be expanded only if its expand attribute is YES (as
specified when the deck was created). If non-expandable decks are
selected for the build, PPE ignores the non-expandable selections
unless all decks selected are non-expandable. In that case, it
issues an informative message because no build is performed.

3-22 Professional Programming Environment Revision A

Building the Product

A failed build is one in which the compiler detects one or more
errors. If the build fails, PPE executes a DISPLAY BUILD ERRORS
command, which displays the Build Errors screen. Otherwise, if the
build succeeds, PPE displays the Run Files screen. Also, if the
build succeeds and the Run Automatically option is selected on the
Tailor Options screen, the product is executed after the build.

Building Changed Decks

The build process for building changed decks is the same as
described previously for building selected decks. The only
differences are that no deck selection is performed and only changed
decks are built.

PPE considers a deck to be changed if it or any deck it references
resides at the lowest level of your environment catalog hierarchy
and has changed since the last build. A deck is considered changed
if it has been explicitly selected on an EDIT DECK command from the
Deck List screen. A deck edited by using SELECT DECK or EDIT DECK
while editing another deck or while outside the PPE is not detected
as having been changed by PPE.

To build all changed expandable decks, do either of the following:

• Press the function key labeled Build, or

• Move the cursor to the home line, type BUILD CHANGED DECKS (or
BUICD or BUILD), and press the carriage-retu~n key.

Correcting Errors

If a build detects one or more compilation errors, PPE displays the
Build Errors screen at termination of the build operation. You can
also display the Build Errors screen by using the
DISPLAY BUILD ERRORS command.

Revision A PPE Operations 3-23

Correcting Errors

To go to the Build Errors screen, perform these steps:

1. Go to the Deck List screen. If the Deck List screen is on the
screen stack, you can return there by using BACK one or more
times. If not, you must go to the Environment Description
screen or the Modification List screen and perform one of the
following:

• Position the cursor on the SCU object DECKS and press the
function key labeled SCUObj, or

• Position the cursor on the SCU object DECKS and press the
carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST DECK (or DISSOL D or SCUOBJ D), and
press the carriage=return key.

2. Request the Build Errors screen, by doing either of the
following:

• Press the function key labeled Errors, or

• Move the cursor to the home line, type DISPLAY BUILD ERRORS
(or DISBE or ERRORS), and press the carriage-return key.

The Build Errors screen appears similar to the following:

BUILD ERRORS

Detected on 06/23/86 at 14:41

Current modUieation: MY 1'100

Deck

ADD FORM
DISPLAY FORTRAN PARMS
PETSFORM_DISPLAY_TASK_SET

Error count

1
3

19

3-24 Professional Programming Environment

Deck 1 thru 3 of 3

Revision A

Correcting Errors

The Build Errors screen shows the following information:

• The time and date of the build.

• The name of the modification to which any editing changes are
assigned.

• A list of the decks in which compilation errors were detected
and the number of errors in each deck.

To correct the errors in a deck, you must edit the deck text. To
edit a deck, perform the following steps:

1. Position the cursor on the deck to be edited.

2. Request editing by doing either of the following:

• Press the function key labeled Edit, or

• Move the cursor to the home line, type EDIT DECK (or EDID or
EDIT), and press the carriage-return key. -

When a deck is selected for editing, PPE checks that the deck has
been extracted to the level. If it has not, PPE extracts the deck
if possible. PPE then begins an editor session. The text
displayed is the source text of the deck with the compiler
diagnostics inserted at the points in the text where the errors were
detected.

The first diagnostic is highlighted. As you correct errors in the
source text, use the PPE the provided functions to delete the
corresponding diagnostics and highlight the next diagnotics. The
functions provided by PPE for deleting and highlighting diagnostics
are DELETE IDENTICAL ERRORS, LOCATE NEXT ERROR, and
SKIP LINE ERRORS. See chapter 4, PPE Quick Reference, for
information about these functions.

The following specialized PPE operations are available when editing
source text with interwoven diagnostics:

• Display the online manual explanation of a diagnostic.

• Locate a diagnostic:

• Locate the next diagnostic.

• Locate the next source line containing diagnostics associated
with it.

• Remove all diagnostics identical to the highlighted diagnostic.

• Display the number of diagnostic messages remaining in the deck.

Revision B PPE Operations 3-25

Correcting Errors

Use only the functions DELETE IDENTICAL ERRORS, LOCATE NEXT ERROR,
and SKIP LINE ERRORS to chang; diagnostic lines. If you ch;nge a
diagnostic line by any other means, PPE may not recognize the the
changed diagnostic line, and may not remove the line from your
source.

Displaying a Diagnostic Explanation

The compiler online manual contains information that can help you
correct compiler diagnostics.

To display this information:

1. Position the cursor on the diagnostic message to be explained.
(If the cursor is not on a diagnostic message, the highlighted
diagnostic message is explained.)

2. Request the information by doing either of the following:

• Press the function key labeled Assist, or

• Move the cursor to the home line, type EXPLAIN ERROR MESSAGE
(or EXPEM or ASSIST),and press the carriage-return k;y.

Locating Diagnostic Messages

When PPE locates a diagnostic message, the diagnostic message is
highlighted, positioning the cursor as close as possible to the
error in the source that caused the diagnostic message.

To locate and highlight the next diagnostic message and delete the
currently highlighted diagnostic message, do either of the following:

• Press the function key labeled NxtErr, or

• Move the cursor to the home line, type LOCATE NEXT ERROR, (or
LOCNE, or NXTERR), and press the carriage-ret~rn k;y.

3-26 Professional Programming Environment Revision B

Correcting Errors

To remove all diagnostic messages associated with the same source
line as the currently highlighted diagnostic message, position the
cursor at the location of the next error, and highlight the
associated diagnostic message:

• Press the function key labeled Skip, or

• Move the cursor to the home line, type SKIP LINE ERRORS (or
SKILE, or SKIP), and press the carriage-return k~y.

To delete all diagnostic messages identical to the highlighted
diagnostic message:

• Press the function key labeled DellE, or

• Move the cursor to the home line, type DELETE IDENTICAL ERRORS
(or DELlE), and press the carriage-return key~

Displaying the Diagnostic Message Count

At any time during the editing session, you can display the number
of diagnostic messages remaining in the deck.

To display the diagnostic message count for the deck:

• Move the cursor to the home line, type
DISPLAY REMAINING ERROR COUNT (or DISREC), and press the
carriage-return key.

Executing the Product

After all compilation errors have been corrected and the product has
been built successfully, the next step is to execute the product.

The product can be run with varying parameter lists. If execution
errors are found, it can be executed under control of the Debug
utility to find the cause of the errors. You would then edit the
source decks and rebuild the product before testing product
execution again.

If you have selected the Run Automatically option on the Tailor
Options screen, the product is run after each successful build.
Otherwise, you must initiate each run using the following procedure.

Revision A PPE Operations 3-27

Executing the Product

To run the product:

1. Go to the Run Files screen. (The Run Files screen is
automatically displayed after a successful build or after
executing the RFiles function from the Deck List screen.)

The Run Files screen appears similar to the following:

RUN FILES

Run purpose: 1LNORIIAL

Run parameter.:

Run file

SLOADIIAP
STERMINAL_OUTPUT

Run file 1 thru 2 of 2

_INTERACTIVE DEBUG

2. Select a Run purpose (NORMAL, INTERACTIVE DEBUG). Type a
non-blank character before the selected purpose.

3. Type the desired parameter list in the field under the label:

4.

Run parameters:

When execution begins, PPE passes the parameter list to the
starting procedure of the product.

You may want to check that the correct
specified on the Library Lists screen.
LISTS command takes you to the Library
returns you to the Run Files screen.)

program library list is
(The DISPLAY LIBRARY

Lists screen;-using Back

3-28 Professional Programming Environment Revision A

5.

Executing the Product

You may also want to check and possibly change the current set
of program attributes. For example, the default load map
options are none, in which case, no load information is written
to the $LOADMAP file.

To display the current program attribute set:

a. Move the cursor to the home line, type
DISPLAY PROGRAM_ATTRIBUTES (or DISPA), and press the
carriag;-return key.

b. After looking at the attribute display, press the
carriage-return key to return to PPE.

To display the program attribute parameters:

a. Move the cursor to the home line, type
DISPLAY COMMAND INFORMATION SET PROGRAM ATTRIBUTES (or DISCI
SETPA),-and press the carriage-return k;y.

b. After looking at the parameter display, press the
carriage-return key to return to PPE.

To change the program attribute set:

• Move the cursor to the home line, type
SET PROGRAM ATTRIBUTES (or SETPA) followed by the desired
attribute parameters, and press the carriage-return key.

For example, to change the load map options to all, type:

• set-yrogram_attributes, load_map_options=all

6. Request the run, by doing either of the following:

• Press the function key labeled Run, or

• Move the cursor to the home line, type RUN, and press the
carriage-return key.

Revision A PPE Operations 3-29

Executing the Product

PPE loads the product from the object library, satisfying
external references in the following order:

• In the PPE object library at the current level.

• In the PPE object libraries at higher levels of the hierarchy ~
• In the object libraries specified in the program library

list entries on the Library Lists screen in the order listed.

• In the object libraries listed in the job library list in
the order listed.

If the LOAD MAp OPTIONS program attribute is not NONE, PPE writes a
load map to-file $LOADMAP, which can be viewed later.

After loading, product execution begins at the starting procedure
specified on the Tailor Options screen. The product reads from its
input files and writes to its output files, the same as it would
outside of PPE. The only change is that anything written to $OUTPUT
is also written to a file called $TERMINAL_OUTPUT for later viewing.

If the Run purpose is INTERACTIVE DEBUG, PPE executes the product
under control of the Full-Screen Debug utility, using its
full-screen interface.

When you execute the Run function, PPE searches every object library
in your hierarchy. The loader produces a warning level error
message if it encounters an empty object library. Since PPE sets
the initial termination error level for a job to WARNING, an empty
library might cause your run to terminate prematurely.

You can change the termination error level with the SCL
SET PROGRAM ATTRIBUTES command. The recommended settings are
WARNING and-ERROR. The following lists the merits of each choice:

ERROR

WARNING

An empty object library does not terminate a run.
However, PPE does not inform you when any warning
level error messages are produced, and the run might
terminate unexpectedly. Also, you are not informed
if an empty object library is encountered, even if
none should be empty.

Any WARNING level error message terminates a run.
Therefore, an empty object library causes a run to
terminate.

Regardless of the termination error level setting for your job, all
errors are written to the $LOADMAP file.

3-30 Professional Programming Environment Revision A

Executing the Product

At run completion, all PPE files generated by the run are listed
under the heading Run file. To view the contents of any of these
files, perform these steps:

1. Position the cursor on the file.

2. Display the file text by doing either of the following:

• Press the function key labeled Edit, or

• Move the cursor to the home line, type EDIT RUN FILE (or
EDIRF or EDIT), and press the carriage-return k;y.

You can print any of the list files on the Run Files screen. To do
so, perform the following steps:

1. Position the cursor on the file.

2. Request printing, by doing either of the following:

• Press the function key labeled Print, or

• Move the cursor to the home line, type PRINT RUN FILE (or
PRIRF or PRINT), and press the carriage-return key.

When PPE executes the PRINT RUN FILE command, it first attempts to
execute an seL command of the f~llowing form:

PRINT lfn

where lfn is the file path of the file to be printed. If no PRINT
command exits, PPE executes the standard NOS/VE PRINT FILE command
with default settings.

Revision A PPE Operations 3-31

Transmitting Code

Transmitting Code

After you have completed the testing of code at the lowest level of
the environment catalog hierarchy, you are ready to transmit it to
the next higher level of the hierarchy.

Transmittal always moves the transmitted decks up one level in the
hierarchy. It removes the transmitted decks from the source library
at the lowest level of the environment catalog hierarchy and puts
them in the source library at the next higher level. The code is
then accessible to others whose PPE levels are linked to the higher
level to which the code has been transmitted.

If all decks to which a modification applies are transmitted, the
modification can no longer be used at the lower level. To continue
using the modification, you must extract at least one of the decks
to which the modification applies.

To transmit one or more decks:

1. Go to the Deck List screen. If the Deck List screen is on the
screen stack, you can return there by using BACK one or more
times. If not, you must go to the Environment Description
screen or the Modification List screen and perform one of the
following:

• Position the cursor on the SCU object DECKS and press the
function key labeled SCUObj, or

• Position the cursor on the SCU object DECKS and press the
carriage-return key, or

• Move the cursor to the home line, type
DISPLAY SCU OBJECT LIST DECK (or DISSOL D or SCUOBJ D), and
press the carriage=return key.

2. Mark the decks to be transmitted (as described earlier under
Marking Objects in a List).

If you mark no decks, PPE transmits the deck under the cursor.

3. Transmit the deck (or decks) by doing either of the following:

• Press the function key labeled TraS, or

• Move the cursor to the home line, type TRANSMIT SOURCE (or
TRAS), and press the carriage-return key. -

3-32 Professional Programming Environment Revision A

Transmitting Code

To transmit a deck, PPE copies the deck and attempts to combine it
with the source library at the next higher level of the hierarchy.
If the deck is not already in the higher source library, PPE adds it
to the library. If the deck is already in the higher source
library, PPE checks whether the interlocks match.

If the interlocks in the deck headers do not match, the deck
transmittal fails. If the interlocks match, the lower deck replaces
the higher deck having the same name. After the deck has been
transmitted to the higher library, PPE deletes it from the lower
library.

File Cycle Management Within the Environment Catalog

When you transmit source, a new high cycle of the source library
within your environment catalog is created. The low cycles allow
you to recover from catastrophic events. However, you can easily
use up a large amount of file space. To avoid using excess file
space, you should frequently delete the low cycles of your source
library. You can use EDIT CATALOG from the home line of your
environment catalog to do this.

When you transmit source, the object modules in the lowest level of
your environment catalog hierarchy that are built by that source
should be deleted from the highest cycle of $OBJECT LIBRARY on the
Build Files screen. The CREATE OBJECT LIBRARY utility can be used
from the home line of the Build-Files ;creen to do this.

Also, after you transmit, notify the owner of the next higher level
in your hierarchy to do a build using the transmitted decks. This
keeps the $OBJECT LIBRARY at the higher level of the hierarchy up to
date, incorporating your transmitted source code into the object
code at that level.

Changes made to the source library are not available to other tasks
or PPE sessions at lower levels in the hierarchy until you exit the
PPE session in which the changes occurred, or until the changed
decks are transmitted to the next higher level in the hierarchy.

Revision B PPE Operations 3-33

PPE Quick Reference

This chapter contains concise descriptions of PPE screens and PPE
commands presented in alphabetical order for quick reference.

PPE Screens

This section describes all PPE screens in alphabetical order by
screen name. Each description lists the means of accessing the
screen, the commands available from the screen, and the general
appearance of the screen.

4

Revision A PPE Quick Reference 4-1

PPE Screens

Banner

Purpose:

To access:

Commands
available:

Display:

Displays the name, version, and level of PPE with the
copyright notice and instructions for use. Also, this
screen provides access to the online manual
introduction to PPE.

Begin a PPE session, or
Use DISPLAY BANNER (Banner or DISB) from any screen
except the Screen Stack screen.

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
QUIT SAVE
REQUEST_HELP

Professional Programming Environment (PPE)

Version 1.1 LeveL 87300

COPYRIGHT CONTROL DATA 1987
Press Next to proceed with the PPE session.

Press HeLp to Learn about the PPE.
Press Quit (STOP) to exit the PPE.

F1DF2DF3DF4DF5DF6b]F7DFSD

4-2 Professional Programming Environment Revision B

PPE Screens

Build Errors

Purpose:

To access:

COlllDlands
available:

Revision A

Displays a list of decks which contain build errors and
enables access to the decks for correction of their
errors.

Execute a build that fails, or
Use DISPLAY BUILD ERRORS (Errors or DISBE) from the
Deck List screen.-

BACK TO PREVIOUS CONTEXT
BEGIN MARK
CLEAR-SCREEN
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY-LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY-SCREEN STACK
DISPLAY-TAILOR-OPTIONS
EDIT DECK
EDIT-PARAMETER LIST
END MARK
EXTRACT SOURCE
HOME CURSOR
MOVE-TO BOTTOM
MOVE TO FIRST
MOVE-TO-LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
QUITSAVE
REMOVE MARK
REQUEST_HELP

PPE Quick Reference 4-3

PPE Screens

Display:

BUILD ERRORS

Detected on 06123/86 at 14:41

Current modif;cat;on: MY MOD

Deck

ADD FORM
DISPLAY FORTRAN PARI'IS
PETSFORitDISPLAY _TASK_SET

Current modification:

Error Count

1
3

19

Deck 1 thru 3 of 3

This field displays the name of the modification to which any
editing changes made from this screen are assigned. You can
change the field value by typing over the current value.

If the specified modification does not exist at the lowest level
of the PPE environment catalog hierarchy, you cannot edit any
decks. You must choose a modification that exists at the lowest
level of the hierarchy to edit a deck.

Deck / Error Count:
Lists the names of the decks in which errors were detected
during the last build and the number of errors in each. You
select the deck to be edited by positioning the cursor on the
deck name.

Build Files

Purpose:

To access:

Lists output files from the last build and allows
viewing of their contents.

Use DISPLAY BUILD FILES (BFiles or DISBF) from the Deck
List screen-:-

4-4 Professional Programming Environment Rf>vi "jon A

Commands
available:

Display:

BUILD FILES

Bui Ld Fi Le

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN -
DELETE BUILD FILE
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY-LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAYSCREEN STACK -
DISPLAY-TAILOR-OPTIONS
EDIT BUILD FILE
EDIT-PARAMETER LIST
EXPORT BUILD FILE
HOME CURSOR
IMPORT BUILD FILE
MOVE TO' BOTTOM
MOVE-TO-FIRST
MOVE-TO-LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
PRINT BUILD FILE
QUIT SAVE
REQUEST HELP
UNDO LAST DELETE

SINPUT SOURCE MAP
SOBJECT LIBRARY
SPROCESSOR INPUT
SPROCESSOR -OUTPUT
SEXPAND ERRORS
ERROR LTsTING
SOURCE_LISTING

Revision A

PPE Screens

BuiLd Fi Le 1 thru 7 of 7

PPE Quick Reference 4-5

PPE Screens

Build File:
Lists the names of the build files produced by' the last
successful build. (The build files produced are those selected
by the parameter list used by the build.) You can also import
build files to this list.

You can delete, export, print, or view a build file in the list
by positioning the cursor on the file name and executing the
appropriate command.

File cycles are not supported. When you delete a file, all
cycles of the file are deleted.

Build Processors

Purpose:

To access:

Commands
available:

Displays the list of build processors supported by PPE
and enables editing of the deck template and parameter
list for each processor.

Use DISPLAY BUILD PROCESSORS (BProcs or DISBP) from any
screen except the-Banner and Screen Stack screens.

BACK TO PREVIOUS CONTEXT
CHANGE BUILD PROCESSOR
CLEAR SCREEN
DISPLAY BANNER
DISPLAY-LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY SCREEN STACK
DISPLAY-TAILOR-OPTIONS - -EDIT DECK TEMPLATE
EDIT-PARAMETER LIST
HOME-CURSOR
QUIT-SAVE
REQUEST_HELP

4-6 ProfpRf;;on;:tl Prncrr::lmmincr Rnuirnnmpnt"

PPE Screens

Display:

BUILD PROCESSORS

Processor

D II D II PLists II
F3 F4~F5 F6~F7 EdiPL F8~

Processor
Lists the names of the build processors supported by PPE. The
currently selected build processor for the PPE level is
highlighted. It is the build processor that executes all
subsequent builds.

Each build processor has a deck template that can be used when
creating decks. You can select the deck template to be edited
by positioning the cursor on the build processor name.

NOTE

You can change the highlighted build processor using the
CHANGE BUILD PROCESSOR command (or ChaBP key). However, it is not
appropriate to change the build processor when the level already
contains source code written for the previous build processor.

Revision B PPE Quick Reference 4-7

PPE Screens

Deck Creation

Purpose: Enables creation of a new deck.

To access: Use CREATE DECK (Create or CRED) from the Deck List
screen.

Commands
available:

Display:

DECK CREATION

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
CREATE DECK
DISPLAY BANNER
DISPLAY-SCREEN STACK
EDIT DECK
HOME-CURSOR
QUIT=SAVE
REQUEST_HELP

Creation mooification: MY_MOD
Name: ___________ _ Author: Fred Johnson

Deck is expandable: ~TRUE _FALSE

Initial source: ~NONE _DECK TEfilPLATE

File: _________________________________ _

Attributes: _CONTAINS DECK DIRECTIVES _HAS fIIULTIPLE PARTITIONS

Description: ____________________________ _

4-8 Professional Programming Environment Revision A

PPE Screens

Creation modification:
Field containing the name of the creation modification for the
deck. Any source text inserted in the deck when it is created
is assigned to the creation modification. The default value is
the currently selected modification. You can change the value
by typing over it.

If the specified modification does not exist at the lowest level
of the PPE environment catalog hierarchy, the deck is not
created. PPE issues an informative message and prompts you to
acknowledge receipt of the message.

If the specified modification does not exist at any level of the
PPE environment catalog hierarchy, PPE asks whether you want the
modification created with SCU default values (which do not use
the Author value from the Tailor Options screen). If you say
yes to the prompt, PPE creates the modification; otherwise, PPE
does not create the modification.

Name:
Field in which you type the name of the
follow the rules for SCL names and must
any existing deck in the PPE hierarchy.
name is invalid when you use CREATE DECK
the deck.

Author:

new deck. The name must
not match the name of

PPE notifies you if the
or EDIT DECK to create

Field containing the value stored in the Author field of the
deck header. The default value is the Author value from the
Tailor Options screen. You can change the value by typing over
U.

Deck is expandable:
Selects the expand attribute for the deck: TRUE for a deck that
can be expanded directly, FALSE for a deck that is expanded only
when it is copied by another deck. You select a value by typing
a non-blank character by TRUE or FALSE. The default is TRUE.

Initial source:
The information under this heading describes the source text
inserted in the deck when it is created. It can be NONE or the
text of the deck template for the build processor or the text
copied from a file.

To select the deck template, type non-blank character in the
field before DECK TEMPLATE.

To specify a file of text, enter its file path in the space
after File:. If you specify a file, you can also specify that
it CONTAINS DECK DIRECTIVES or HAS MULTIPLE PARTITIONS.

Revision A PPE Quick Reference 4-9

PPE Screens

If you select CONTAINS DECK DIRECTIVES, SCU processes any .. ~_
directives embedded in the source text and thus, may create
multiple decks. (The deck names are specified on the *DECK
directives.)

If you select HAS MULTIPLE PARITIONS, SCU converts each
end-of-partition delimiter to an embedded *WEOP directive and
continues copying text until it reaches the end of the file.
(Otherwise, it would stop copying text at the first
end-of-partition delimiter.)

Description:
Field in which you can type an optional description of the deck
contents to be stored in the deck header. The default for this
field is BLANK.

Deck List

Purpose:

To access:

Commands
available:

Lists the decks available at this level so you can
select decks for various commands.

Use DISPLAY SCU OBJECT LIST DECK (SCUObj D or DISSOL D)
from the Environment Description or Modification List
screen.

BACK TO PREVIOUS CONTEXT
BEGIN MARK
BUILD-CHANGED DECKS
BUILD-DECKS
CLEAR-SCREEN
CREATE DECK
DELETE-DECK
DISPLAY BANNER
DISPLAY-BUILD ERRORS
DISPLAY-BUILD-FILES
DISPLAY-BUILD-PROCESSORS
DISPLAY-LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY-RUN FILES
DISPLAY-SCREEN STACK
DISPLAY-SCU OBJECT LIST
DISPLAY-TAILOR OPTIONS
EDIT DECK
EDIT-PARAMETER LIST
END MARK
EXTRACT SOURCE
HOME CURSOR
LOCATE DECK
LOWER DISPLAY CEILING
MOVE TO BOTTOM

4-10 Professional Programming Environment Revision A

Commands
available:
(continued)

Display:

MOVE TO FIRST
MOVE-TO-LAST
MOVE-TO-TOP
PAGE BACKWARD
PAGE-FORWARD
QUIT-SAVE
RAISE DISPLAY CEILING
REMOVE MARK
REQUEST HELP
TRANSMIT" SOURCE
UNDO LAST DELETE

PPE Screens

DECK LIST Deck 1 thru 5 of 10

SCU obj ects: DECKS MODIFICATIONS

Current mod: MY_MOD D;splay ce; l ;ng: SYSTEM3ESTED

Deck Nearest residence

ADD FORM
ADJUST FORM TO FIT SCREEN
ADJUST-MAIN- -
ADJUST-PARM LISTS
ASSIGN:COMMON _MENU_ITEMS

SCU objects:

UNTESTED
UNTESTED
UNIT TESTED
SYSTEM TESTED
UNIT_TESTED

Line listing the kinds of SCU objects that can be displayed.

To go to the Modification List screen, position the cursor on
MODIFICATIONS and press the carriage-return key. (If the
Modification List screen is on the screen stack, PPE executes
BACK TO PREVIOUS CONTEXT commands until the Modification List
scre;n is displayed.)

Display ceiling:
Field displaying the level name of the current display ceiling.
The display ceiling is the highest level of the PPE hierarchy
whose decks are listed on the screen. You can change the
display ceiling using the Raise and Lower functions.

Revision A PPE Quick Reference 4-11

PPE Screens

Current mod:
This field displays the name of the modification to which any
editing changes made from this screen are assigned. You can
change the field value by typing over the current value.

If you change the Current mod: field value, you must choose a
modification that exists at the lowest level of the hierarchy.
PPE informs you if the specified modification does not exist at
the lowest level of the environment catalog hierarchy, and you
must choose another modification.

Deck I Nearest Residence:
List of decks in the PPE source libraries at or below the
current display ceiling level. The Nearest Residence is the
lowest PPE level that has a copy of the deck. You can select a
deck from the list by positioning the cursor on the deck name or
you can select decks by marking one or more ranges of decks.

Environment Description

Purpose:

To access:

Commands
available:

Displays information about your PPE level within the
PPE hierarchy.

Press the carriage-return key at the Banner screen.
Otherwise, use the Screen Stack or the BACK function
key.

CHANGE DISPLAY CEILING
CLEAR SCREEN
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY_SCREEN_STACK
DISPLAY SCU OBJECT LIST
DISPLAY-TAILOR OPTIONS
EDIT PARAMETER-LIST
HOME CURSOR
IMPORT SOURCE LIBRARY
MOVE TO BOTTOM
MOVE TO FIRST
MOVE-TO-LAST
MOVE TO TOP
PAGE-BACKWARD
PAGE-FORWARD
QUIT-SAVE
REQUEST_HELP

4-12 Professional Programming Environment Revision A

Display:

ENVIRONMENT DESCRIPTION

SCU objects: DECKS MODIFICATIONS

Hierarchy level nalle: "'UN::.;T'-=E"'ST.:.:E"'D ________ _

This level is linked to environllent catalog:

.PROJX.PROFESSIONAL-ENVIRONMENT

Build processor: .!,.FOR:::!.!T.!!RA:::N!.... _______ _

Hierarchy level nalles

SYSTEM TESTED
UNIT TESTED

SCU obj ects :

PPE Screens

Line listing the kinds of SCU objects that can be displayed. To
go to the Deck List screen, position the cursor on DECKS and
press the carriage-return key. To go to the Modification List
screen, position the cursor on MODIFICATIONS and press the
carriage-return key.

Hierarchy level name:
Field in which you assign a name to your PPE level. The name
must follow SCL naming rules and be unique in the PPE hierarchy.

This level is linked to environment catalog:
Field in which you may type the catalog path of a PPE catalog to
which your PPE level is to be linked. Your PPE level becomes
the lowest level in a hierarchy consisting of your PPE level,
the specified PPE catalog, the catalog to which the specified
catalog is linked (if any), and so forth up an arbitrary number
of levels.

Build processor:
Field displaying the .name of the build processor used by your
PPE level. This field defaults to FORTRAN. You can change the
name in this field by typing over it.

Hierarchy level names:
List of the level names in the PPE hierarchy with your PPE level
name at the bottom. The current display ceiling is highlighted.

Revision B PPE Quick Reference 4-13

PPE Screens

Library Lists

Purpose:

To access:

Commands
available:

Displays and enables editing of these lists: the
alternate source library list, the program library
list, and the command list.

Use DISPLAY LIBRARY LISTS (LLists or DISLL) from the
Build Errors, Build-Files, Build Processors, Deck List,
Environment Description, ~1odification List, Run Files,
and Tailor Options screens.

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
DELETE LIST ENTRY
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY-PAR~ETER LIST LIBRARY
DISPLAY-SCREEN STACK
DISPLAY-TAILOR-OPTIONS
EDIT PARAMETER-LIST
HOME-CURSOR
INSERT LIST ENTRY
MOVE TO BOTTOM
MOVE-TO-FIRST
MOVE-TO-LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
QUIT_SAVE
REQUEST_HELP
UNDO LAST DELETE

4-14 Professional Programming Environment Revision B

PPE Screens

Display:

LIBRARY LISTS

Al ternate Source Libraries Entry 0 thru 0 of a

Program Library List entries Entry a thru a of 0

Command List Entries Entry a thru a of a

ITailorl D IBProcsl
F2 F3 F4 F5

Alternate Source Libraries:
List of seu source library files in the order the files are
searched by a build. When a build expands a deck, it processes
each copy directive in the deck by copying the specified deck
into that location. The decks to be copied are searched for in
this order:

1. The source libraries in the PPE hierarchy, from lowest level
to highest level.

2. The source libraries in the Alternate Source Libraries
list. These libraries are searched in the order presented
in the list.

Program Library List entries:
List of object library files in the order that the files are
searched by the loading process. When the product is loaded,
its external references are satisfied by loading the modules
containing the referenced entry points. The entry point search
proceeds in this order:

1. The object libraries in the PPE hierarchy, from lowest level
to highest level.

2. The program library list entries listed on this screen.

3. The job library list entries.

Revision A PPE Quick Reference 4-15

PPE Screens

Command List Entries:
List of catalogs and object library files to be added as entries
in the SCL command list. By adding the entries to the SCL
command list, the entry points in the object libraries and the
files in the catalogs can be executed as SCL commands during the
PPE session. The entries are removed from the command list when
the PPE session ends. For more information on the command list,
see the SCL Language Definition manual.

Modification Creation

Purpose: Enables creation of a new modification.

To access: Use CREATE_MODIFICATION (Create or CREM) from the
Modification List screen.

Commands
available:

Display:

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
CREATE MODIFICATION
DISPLAY BANNER
DISPLAY SCREEN STACK
HOME CURSOR
QUIT=SAVE
REQUEST_HELP

MODIFICATION CREATION

Name: ___ _

Author: Fred Johnson

Description:

4-16 Professional Programming Environment Revision A

PPE Screens

Name:
Field in which you type the name of the new modification. The
name must follow SCL naming rules and be unique within the PPE
hierarchy. If you select a modification name that already exits
in your hierarchy when you use CREATE MODIFICATION to create the
modification, PPE so informs you. You must then select a new
name to create the modification.

Author:
Field containing the value stored in the Author field of the
modification header. The default value is the Author value from
the Tailor Options screen. You can change the value by typing
over it.

Description:
Field in which you can type an optional description of the
purpose of the modification. The description is stored in the
modification header.

Modification List

Purpose:

To access:

Commands
available:

Revision A

Lists the available modifications.

Use DISPLAY SCU OBJECT LIST MODIFICATION (SCUObj M or
DISSOL M) from the Environment Description or Deck List
screen.

Use BACK TO PREVIOUS CONTEXT from the Modification
Creation screen.

BACK TO PREVIOUS CONTEXT
BEGIN MARK
CHANGE CURRENT MODIFICATION
CLEAR SCREEN
CREATE MODIFICATION
DELETE-MODIFICATION
DISPLAy BANNER
DISPLAY-BUILD FILES
DISPLAY-BUILD-PROCESSORS
DISPLAY-LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARy
DISPLAY-RUN FILES
DISPLAY-SCREEN STACK
DISPLAY-SCU OBJECT LIST
DISPLAY-TAILOR OPTJ:ONS
EDIT PARAMETER-LIST
END MARK

PPE Quick Reference 4-17

PPE Screens

Commands
available:
(Continued)

Display:

HOME CURSOR
LOCATE MODIFICATION
LOWER DISPLAY CEILING
MOVE TO BOTTOM
MOVE-TO-FIRST
MOVE-TO-LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
QUIT SAVE
RAISE DISPLAY CEILING
REMOVE MARK
REQUEST HELP
UNDO LAST DELETE

MODIFICATION LIST Modification 0 thru 0 of 0

SCU obj ects: DECKS MODIFICATIONS

Current lIod: Display ceiling: FRED

Mod Nearest residence

4-18 Professional Programming Environment Revision A

PPE Screens

SCU objects:
Line listing the kinds of SCU objects that can be displayed. To
go to the Deck List screen, position the cursor on DECKS and
press the carriage-return key.

Display ceiling:
Field displaying the level name of the display ceiling. The
display ceiling is the highest level of the PPE hierarchy whose
modifications are listed on the screen. You can change the
display ceiling by typing over the value in this field.

Current mod:
Field displaying the name of the currently selected
modification. You can change the field value by typing over the
current value.

If the specified modification does not exist at the lowest level
of the PPE environment catalog hierarchy, PPE issues a message
informing you of this. You must specify a modification that
resides at the lowest level of the hierarchy.

Mod / Nearest Residence:
List of modifications in the source libraries in the PPE
hierarchy up through the display ceiling level. The Nearest
Residence is the lowest PPE level in which the modification is
defined. You can select a modification from the list by
positioning the cursor on the modification name or you can can
select more than one modification by marking ranges of names in
the list.

Revision B PPE Quick Reference 4-19

PPE Screens

Parameter List

Purpose:

To access:

Commands
available:

Display:

Enables viewing and editing of a parameter list for the
current build processor.

Use CREATE PARAMETER LIST (Create or CREPL) from the
Parameter List Library screen.

Use EDIT PARAMETER LIST (Edit or EDIPL) from the
Parameter List Library, Tailor Options, Build
Processor, or Environment Description screens.

BACK TO PREVIOUS CONTEXT
CHANGE TO DEFAULT
CLEAR SCREEN
DISPLAY BANNER
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY-SCREEN STACK -
EDIT PARAMETER-LIST
HOME-CURSOR -
MOVE-TO BOTTOM
MOVE-TO-FIRST
MOVE-TO-LAST
MOVE-TO-rOp
PAGE-BACKwARD
PAGE-FORWARD
QUITSAVE
REQUEST_HELP

PARAMETER LIST ParaMeter 1 thru 17 of 20
DEBUG List for FORTRAN (FORTRAN Version 1)

Parameter

INPUT
BINARY OBJECT

- LIST
COIIPILATION DIRECTIVES

-DESUG AIDS
DEFAULT COLLATION

- ERROR

ERROR LEVEL
EXPRESSION_EVALUATION

FORCED SAVE
INPUT_SOURCE_MP

LIST OPTIONS
MACHINE DEPENDENT

oNE TRIP DO
OPTIMIZATION LEVEL

OPTIMIZATION OPTIONS
RUNTIME_CHECKS

Current Value

SPROCESSOR INPUT
SPROCESSOR OUTPUT
SNULL

I X W F C
-CANONICAL _MINTAIN EXCEPTIONS
-MAINTAIN PRECISION -REFERENCE X NONE
-OVERLAPPING _STRING MOVE -
-ON X OFF
iinput_source_map

A 1'1 0 R S _SA LNONE
-I -W -F XNONE
-ON X OFF -
XDEBUG LOW _HIGH
-INSTRUCTION SCHEDULING X NONE
irR LS _NONE

4-20 Professional Programming Environment Revision B

PPE Screens

Parameter / Current Value:
Lists the parameter names and current parameter values. The
file name is shown for file parameters; the available options
are listed for option parameters. To select an option. type a
non-blank character in the blank before the option.

To read about a parameter and its options, position the cursor
on the parameter and use the REQUEST_HELP command.

File paths can be specified relative to the build files catalog
of the PPE level or as the complete path. For example. the file
path for a file in your master catalog would begin with $USER or
the family name (such as :NVE).

Because PPE must control the input and output files generated
during a build, it defines the following special files for its
use:

$INPUT SOURCE MAP
PPE requires that each deck expansion write to this file the
information required for mapping build errors to deck text
and to provide for Full-Screen Debugging. Only specify
$INPUT_SOURCE_MAP for the INPUT SOURCE MAP parameter.

$PROCESSOR INPUT
PPE wrItes the source text expanded from decks to this file
and then requires that the file be the input file to the
build processor.

$PROCESSOR_OUTPUT
PPE requires that the build processor write its object
modules to this file so that it can then combine the modules
with the $OBJECT_LIBRARY file at this level.

Revision A PPE Quick Reference 4-21

PPE Screens

The files created by the run are created relative to the run
subcatalog. You can copy files to the run subcatalog and copy
files from the run subcatalog using IMPORT RUN FILE and
EXPORT_RUN_FILE, respectively. - -

PPE does not support cycles. When you delete a file, all cycles
are deleted.

Screen Stack

Purpose:

To access:

Commands
available:

Display:

Enables direct access to any PPE screen in the stack.

Use DISPLAY SCREEN STACK (Stack or DISSS) from any
screen except the Banner screen.

BACK TO CONTEXT
BACK-TO-PREVIOUS CONTEXT
CLEAR SCREEN
MOVE TO FIRST
MOVQO:S0TTOM
MOVE TO LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
QUIT-SAVE
REQUEST_HELP

SCREEN STACK

ENVIRONIIENT DESCRIPTION
DECK LIST
RUN FILES

F11B8CTC IF2DF3DF4DFSDF6G;]F7DF8D

4-26 Professional Programming Environment Revision A

PPE Screens

The list of screen names shows the path you have taken through the
hierarchy of PPE screens. The first name is the screen at the top
of the hierarchy; the last name is that of the screen displayed
before the Screen Stack.

Tailor Options

Purpose: Enables viewing and selection of the default options
for PPE operations.

To access: Use DISPLAY TAILOR OPTIONS (Tailor or DISTO) from any
screen except the Banner screen and the Screen Stack
screen.

Commands
available:

Display:

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY-SCREEN STACK
EDIT PARAMETER-LIST
HOME CURSOR
QUIT SAVE
REQUEST_HELP

TAILOR OPTIONS

Author: .:.F::,;J6::,:2"'6c-_________ _

Inter lock val ue: .:..;FJ::.:6:.:2"'6'--_________ _

Build defaults:
Bui ld processor: .:.FO::.;R::.;T"'R::.:A::.N ________ _

Run automatically after bui ld: _YES)LNO
Run defaults:

Starting procedure: ,~ __ ~====-==,--__
Run purpose:)LNORI'IAL _INTERACTIVE DEBUG

Delete Protection:)LON _OFF

Editing defaults:
User prolog:
PPE edi tor ke~y-:a:":s-::-S1:;-:· g:":n"'m-:-:en"'t"'s"": -_--;;-B·EFORE USER)LAFTER USER NONE

D D E]procs D II PLists II
F2 F3 F4 F5 F6~F7 EdiPL F8~

Revision B PPE Quick Reference 4-27

PPE Screens

Author:
Field containing the default author value stored in deck and
modification headers. The initial value is your user name. You
can change the value by typing over it.

Interlock value:
Field containing the value stored as the interlock value when
you extract a deck. The initial value is your user name. You
can change the value by typing over it.

Build defaults:
These fields contain default values used when building the
product.

Build processor:
The name of the build processor. It can be COBOL, CYBIL,
FORTRAN, or VECTOR FORTRAN. You can change the build processor
by typing over the-existing name, striking out all of its
characters.

Run automatically after build:
Option that determines whether PPE executes the product
immediately after it builds it. The initial value is NO. To
select YES, type a non-blank character in the field before YES.

Run defaults:
These fields contain default values used when executing the
product.

Starting procedure:
Name of the entry point at which PPE is to begin product
execution. The default is the same as the default outside of
PPE, that is, the last transfer symbol loaded. All characters,
including leading, embedded, and trailing blanks, are
significant in this field.

Run purpose:
Indicates the default value determining how the product should
be executed. (It can be changed for each run.)

NORMAL

INTERACTIVE DEBUG

Execute without control by the Full Screen
Debug utility.

Execute under control of the Debug
utility. The product must have been built
with the debug options in its parameter
list. The debug options are:

OPTIMIZATION LEVEL=DEBUG
DEBUG AIDS=DT
INPUT=SOURCE_MAP=$INPUT_SOURCE_MAP

4-28 Professional Programming Environment Revision B

PPE Screens

Delete protection:
Allows you to select delete protection. Delete protection warns
you when objects are about to be physically deleted. Options
are:

ON PPE issues a warning before physically deleting an
object. You can then veto or confirm the deletion of the
object. PPE defaults to ON.

OFF PPE physically deletes objects without allowing you to
veto the action.

When you use a DELETE command (for example, DELETE DECK), the
deleted object is logically deleted. This means that the name
of the object is removed from the screen, but the object is
still physically resident in PPE. Logically deleted objects can
be recovered with the UNDO LAST DELETE command.

A logically deleted object becomes physically deleted if:

• Delete protection is ON and you confirm the deletion. The
Delete protection warning is displayed when you attempt to
leave the current screen, execute a command on the home
line, or execute a command that might reference a logically
deleted object.

• You exit PPE. When you exit PPE, all logically deleted
objects become physically deleted. The delete protection
warning is not displayed even if you selected Delete
protection from the Tailor Options screen.

• Delete protection is OFF and you leave the current screen,
execute a command on the home line, or execute a command
that might reference a logically deleted object. No
deletion warning is displayed and you cannot veto the
deletion.

A physically deleted object cannot be recovered by invoking the
UNDO LAST DELETE command. PPE can physically delete only
objects that are logically deleted.

Editing defaults:
Fields for specifing an editor prolog to define the editor
function keys when you enter the PPE editor. In addition to
specifying the editor prolog, you can tell PPE to assign PPE
commands to editor function keys before or after executing the
editor prolog or you can tell PPE not to assign commands to any
function keys.

Revision B PPE Quick Reference 4-29

PPE Screens

The Editing defaults: fields are the following:

User prolog:
To define PPE editor function keys using an editor prolog,
enter the file path of the editor prolog in the User
prolog: field. For example, to define PPE editor function
keys using the editor prolog, C721 EDITOR PROLOG, type the
following file path in the User Prolog: field:

$user.c721_editor-prolog

If you do not specify an editor prolog in this field, PPE
uses the editor prolog, SCU EDITOR PROLOG, to define the
editor function keys. If the file~ SCU EDITOR PROLOG, does
not exist, PPE defines the editor function keys using the
standard function key definitions.

PPE editor key assignments:
To tell PPE how to assign PPE commands to editor function
keys place a non-blank character in one of the following
fields:

BEFORE USER

AFTER USER

NONE

Causes PPE to assign PPE commands to the
editor function keys before executing your
editor prolog. First PPE assigns PPE
commands to the editor function keys, then
the editor prolog assigns commands to the
function keys.

Causes PPE to assign PPE commands to the
editor function keys after executing your
editor prolog. First the editor prolog
assigns commands to the the function keys,
then PPE assigns PPE commands to the keys.

Causes PPE to not assign any PPE commands to
the editor function keys.

When you choose BEFORE USER or AFTER USER, both PPE defined
and user defined function keys are specified for the PPE
editor. Any function key defined by both your user prolog
and by PPE commands assumes the definition assigned to the
key last. Therefore, to use your editor prolog with the PPE
editor prolog to maximum effect, do the following:

• Determine which function keys are assigned PPE commands.

• Define your editor prolog only for function keys not
assigned PPE commands •

• 4-30 Professional Programming Environment Revision B

PPE Commands

• Specify the file path of your editor prolog on the User
prolog: field (the editor prolog can be any file
containing EDIT_FILE function key definitions).

• Choose BEFORE USER or AFTER USER on the PPE editor key
assignments: field.

PPE Commands
This section contains individual descriptions of
presented in alphabetical order by command name.
gives the following information:

• The purpose of the command.

the PPE commands,
Each description

• The PPE screen from which the command is available.

• The function key label if your terminal has a function key for
the command.

• The format of the command.

The command format lists the command name and parameters as they
would be typed on the home line of a PPE screen. The format gives
the full and abbreviated names for the command and lists the command
parameters.
parameter.
except the

The last parameter of every command is its STATUS
Individual descriptions are given for each parameter

STATUS parameter.

The STATUS parameter on PPE commands is the same standard STATUS
parameter available on all NOS/VE SCL commands. Its use is
optional. If you specify the name of an SCL status variable on the
STATUS parameter of a command, the completion status of the command
is stored in the status variable and execution continues with the
next command received. To see the completion status stored in the
status variable, you must display the variable. An SCL statement
can also reference the contents of a status field. For more
information on SCL status variables, see the SCL Language Definition
manual.

Note that changes made to the source library are not available to
other tasks or PPE seesions at lower levels in the hierarchy until
you exit the PPE session in which the changes occurred, or until the
changed decks are transmitted to the next higher level in the
hierarchy.

Revision B PPE Quick Reference 4-30.1

PPE Screens

Display:

PARAMETER LIST LIBRARY Parameter list 1 thru 3 of 3

Processor: FORTRAN (FORTRAN Version 1)

Parameter List

DEFAULT
PRODUCTION

Parameter List:
List of parameter lists stored in the parameter list library for
the build processor. The global parameter list is highlighted.
The global parameter list is used in subsequent builds.

PPE provides the following parameter lists:

DEBUG Produces code for use with Debug.

DEFAULT Uses processor default values for most parameters.

PRODUCTION Produces code for production use.

Revision B PPE Quick Reference 4-23

PPE Screens

Run Files

Purpose:

To access:

Commands
available:

Enables execution of the product and viewing of the
resulting run files.

Execute a successful build, or
Use DISPLAY RUN FILES (RFiles or DISRF) from the Deck
List or Modification List screens.

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
DELETE RUN FILE
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY-LIBRARy LISTS
DISPLAY PARAMETER LIST LIBRARY
DISPLAY-SCREEN STACK
DISPLAY-TAILOR-OPTIONS
EDIT PARAMETER-LIST
EDIT-RUN FILE
EXPOR'r R1TN FILE
HOME CURSOR
IMPORT RUN FILE
MOVE TO BOTTOM
MOVE TO FIRST
MOVE-TO-LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
PRINT RUN FILE
QUIT SAVE-
REQUEST HELP
RUN -
UNDO LAST DELETE

4-24 Professional Programming Environment Revision A

Display:

RUN FILES

Run purpose: LNORMAL

Run parameters:

Run File

SLOADMAP
STERMINAL _OUTPUT

Run purpose:

PPE Screens

Run fi le 1 thru 2 of 2

_ INTERACTI VE DEBUG

Indicates how the product should be executed:

NORMAL

INTERACTIVE DEBUG

Run parameters:

Execute without control by the Debug
utility.

Execute under control of the Debug
utility. The product must have been built
with the debug options specified in its
parameter list. The debug options are:

OPTIMIZATION LEVEL=DEBUG
DEBUG AIDS=DT
INPUT==SOURCE_MAP=$INPUT_SOURCE_MAP

Lists the parameters PPE passes to the starting procedure of the
product.

Run File:
Lists the files produced by the last run. It may include a load
map file ($LOADMAP) and any output written to $OUTPUT
($TERMINAL_OUTPUT).

Revision A PPE Quick Reference 4-25

PPE Screens

The files created by the run are created relative to the run
subcatalog. You can copy files to the run subcatalog and copy
files from the run subcatalog using IMPORT RUN FILE and
EXPORT_RUN_FILE, respectively.

PPE does not support cycles. When you delete a file, all cycles
are deleted.

Screen Stack

Purpose:

To access:

Commands
available:

Display:

Enables direct access to any PPE screen in the stack.

Use DISPLAY SCREEN STACK (Stack or DISSS) from any
screen except the Banner screen.

BACK TO CONTEXT
BACK-TO-PREVIOUS CONTEXT
CLEAR SCREEN
MOVE TO FIRST
MOVg-'fOllOTTOM
MOVE TO LAST
MOVE-TO-TOP
PAGE-BACKWARD
PAGE-FORWARD
QUIT SAVE
REQUEST_HELP

SCREEN STACK

ENVIRONMENT DESCRIPTION
DECK LIST
RUN FILES

FllBaCTC IF2DF3DF4DF5DF6G;]F7DFSD

4-26 Professional Programming Environment Revision A

PPE Screens

The list of screen names shows the path you have taken through the
hierarchy of PPE screens. The first name is the screen at the top
of the hierarchy; the last name is that of the screen displayed
before the Screen Stack.

Tailor Options

Purpose: Enables viewing and selection of the default options
for PPE operations.

To access: Use DISPLAY TAILOR OPTIONS (Tailor or DISTO) from any
screen except the Banner screen and the Screen Stack
screen.

Commands
available:

Display:

BACK TO PREVIOUS CONTEXT
CLEAR SCREEN
DISPLAY BANNER
DISPLAY-BUILD PROCESSORS
DISPLAY-LIBRARY LISTS
DISPLAY-PARAMETER LIST LIBRARY
DISPLAY-SCREEN STACK
EDIT PARAMETER-LIST
HOME CURSOR
QUIT SAVE
REQUEST_HELP

TAILOR OPTIONS

Author: :..;FJ:,:6:::2;;::6 __________ _

Interlock value: -'-FJ.;...6"'2"'6 __________ _

Build defaults:
Bui ld processor: !.F:::OR:..;T"'R::::A::..N ________ _

Run automatically after bui ld: _YES !,...NO
RUn defaults:

Starting procedure: , .. __ ==="""""==:--__
Run purpose: ?LNORMAL _INTERACTIVE DEBUG

Delete Protection: !...ON _OFF

Edit i ng defaul ts:
User prolog: __ ,---_-,-_-:.
PPE editor key assignments: BEFORE USER ?LAflER USER _NONE

D 0 E]procs 0 II PLists II
F2 F3 F4 F5 F6 ~F7 EdiPL F8~

Revision B PPE Quick Reference 4-27

PPE Screens

Author:
Field containing the default author value stored in deck and
modification headers. The initial value is your user name.
can change the value by typing over it.

Interlock value:

You

Field containing the value stored as the interlock value when
you extract a deck. The initial value is your user name. You
can change the value by typing over it.

Build defaults:
These fields contain default values used when building the
product.

Build processor:
The name of the build processor. It can be COBOL, CYBIL,
FORTRAN, or VECTOR FORTRAN. You can change the build processor
by typing over the-existing name, striking out all of its
characters.

Run automatically after build:
Option that determines whether PPE executes the product
immediately after it builds it. The initial value is NO. To
select YES, type a non-blank character in the field before YES.

Run defaults:
These fields contain default values used when executing the
product.

Starting procedure:
Name of the entry point at which PPE is to begin product
execution. The default is the same as the default outside of
PPE, that is, the last transfer symbol loaded. All characters,
including leading, embedded, and trailing blanks, are
significant in this field.

Run purpose:
Indicates the default value determining how the product should
be executed. (It can be changed for each run.)

NORMAL

INTERACTIVE DEBUG

Execute without control by the Full Screen
Debug utility.

Execute under control of the Debug
utility. The product must have been built
with the debug options in its parameter
list. The debug options are:

OPTIMIZATION LEVEL=DEBUG
DEBUG AIDS=DT
INPUT=SOURCE_MAP=$INPUT_SOURCE_MAP

4-28 Professional Programming Environment Revision B

PPE Screens

Delete protection:
Allows you to select delete protection. Delete protection warns
you when objects are about to be physically deleted. Options
are:

ON PPE issues a warning before physically deleting an
object. You can then veto or confirm the deletion of the
object. PPE defaults to ON.

OFF PPE physically deletes objects without allowing you to
veto the action.

When you use a DELETE command (for example, DELETE DECK), the
deleted object is logically deleted. This means that the name
of the object is removed from the screen, but the object is
still physically resident in PPE. Logically deleted objects can
be recovered with the UNDO LAST DELETE command.

A logically deleted object becomes physically deleted if:

• Delete protection is ON and you confirm the deletion. The
Delete protection warning is displayed when you attempt to
leave the current screen, execute a command on the home
line, or execute a command that might reference a logically
deleted object.

• You exit PPE. When you exit PPE, all logically deleted
objects become physically deleted. The delete protection
warning is not displayed even if you selected Delete
protection from the Tailor Options screen.

• Delete protection is OFF and you leave the current screen,
execute a command on the home line, or execute a command
that might reference a logically deleted object. No
deletion warning is displayed and you cannot veto the
deletion.

A physically deleted object cannot be recovered by invoking the
UNDO LAST DELETE command. PPE can physically delete only
objects that are logically deleted.

Editing defaults:
Fields for specifing an editor prolog to define the editor
function keys when you enter the PPE editor. In addition to
specifying the editor prolog, you can tell PPE to assign PPE
commands to editor function keys before or after executing the
editor prolog or you can tell PPE not to assign commands to any
function keys.

Revision B PPE Quick Reference 4-29

PPE Screens

The Editing defaults: fields are the following:

User prolog:
To define PPE editor function keys using an editor prolog,
enter the file path of the editor prolog in the User
prolog: field. For example, to define PPE editor function
keys using the editor prolog, Cl2l EDITOR PROLOG, type the
following file path in the User Prolog: field:

$user.c721_editor-yrolog

If you do not specify an editor prolog in this field, PPE
uses the editor prolog, SCU EDITOR PROLOG, to define the
editor function keys. If the file~ seu EDITOR PROLOG, does
not exist, PPE defines the editor function keys using the
standard function key definitions.

PPE editor key assignments:
To tell PPE how to assign PPE commands to editor function
keys place a non-blank character in one of the following
fields:

BEFORE USER

AFTER USER

NONE

Causes PPE to assign PPE commands to the
editor function keys before executing your
editor prolog. First PPE assigns PPE
commands to the editor function keys, then
the editor prolog assigns commands to the
function keys.

Causes PPE to assign PPE commands to the
editor function keys after executing your
editor prolog. First the editor prolog
assigns commands to the the function keys,
then PPE assigns PPE commands to the keys.

Causes PPE to not assign any PPE commands to
the editor function keys.

When you choose BEFORE USER or AFTER USER, both PPE defined
and user defined function keys are specified for the PPE
editor. Any function key defined by both your user prolog
and by PPE commands assumes the definition assigned to the
key last. Therefore, to use your editor prolog with the PPE
editor prolog to maximum effect, do the following:

• Determine which function keys are assigned PPE commands.

• Define your editor prolog only for function keys not
assigned PPE commands •

• 4-30 Professional Programming Environment Revision B

PPE Commands

• Specify the file path of your editor prolog on the User
prolog: field (the editor prolog can be any file
containing EDIT_FILE function key definitions).

• Choose BEFORE USER or AFTER USER on the PPE editor key
assignments: field.

PPE Commands
This section contains individual descriptions of
presented in alphabetical order by command name.
gives the following information:

• The purpose of the command.

the PPE commands,
Each description

• The PPE screen from which the command is available.

• The function key label if your terminal has a function key for
the command.

• The format of the command.

The command format lists the command name and parameters as they
would be typed on the home line of a PPE screen. The format gives
the full and abbreviated names for the command and lists the command
parameters.
parameter.
except the

The last parameter of every command is its STATUS
Individual descriptions are given for each parameter

STATUS parameter.

The STATUS parameter on PPE commands is the same standard STATUS
parameter available on all NOS/VE SCL commands. Its use is
optional. If you specify the name of an SCL status variable on the
STATUS parameter of a command, the completion status of the command
is stored in the status variable and execution continues with the
next command received. To see the completion status stored in the
status variable, you must display the variable. An SCL statement
can also reference the contents of a status field. For more
information on SCL status variables, see the SCL Language Definition
manual.

Note that changes made to the source library are not available to
other tasks or PPE seesions at lower levels in the hierarchy until
you exit the PPE session in which the changes occurred, or until the
changed decks are transmitted to the next higher level in the
hierarchy.

Revision B PPE Quick Reference 4-30.1

Purpose:

Available
from:

Function
key:

Format:

Remarks:

PPE Commands

Pops the screen stack to display the PPE screen under
the cursor.

Screen Stack screen.

BacTC

BACK TO CONTEXT or BACTC
STATUS=status variable

• All screens after the selected screen are removed
from the stack. For example, if you select the
second entry in the stack, the third and all
subsequent entries are removed from the stack.

BACK_ TO_PREVIOUS_CONTEXT

Purpose:

Available
from:

Function
key:

Format:

Revision A

Returns to the preceding screen on the screen stack.

Any screen except the Environment Description screen.

Back

BACK TO PREVIOUS CONTEXT or BACT PC or BACK
STATUS=statu; variable

PPE Quick Reference 4-31

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Marks the first object in a range of selected objects.
The last object in the range is marked using END MARK.
The marked range of objects is then referenced by
subsequent commands (such as DELETE DECK or
EXTRACT_SOURCE) •

The Build Errors, Deck List, and Modification List
screens.

Mark

BEGIN MARK or BEGM or MARK
STATUS=status variable

BUILD_CHANGED_DECKS

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Builds all expandable decks that have changed since the
last build.

Deck List screen or a Full-Screen Editor session
that originates from within the Deck List or Deck
Creation screens.

Build

BUILD CHANGED DECKS or BUICD or BUILD
STATUS=status variable

• PPE considers a deck to have changed if it or any
deck it references resides at the lowest level of
your environment catalog hierarchy, and has been
edited since the last build.

• When executed during an editing session, this
command leaves the Full-Screen Editor, returns to
the Deck List screen, and executes the build from
there.

• For more information about builds, see the Remarks
in the BUILD DECKS command description.

4-32 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

PPE Commands

Builds each selected deck (if the deck is expandable).

Deck List screen.

BuiD

BUILD DECKS or BUID
STATUS=status variable

• PPE sets the working catalog to the build
subcatalog during the build.

• The input and output files for the build processor
are specified by its parameter list. The parameter
list used for the build is the global parameter
list highlighted on the Parameter List Library
screen.

• The default input file for for the build processor
is $PROCESSOR INPUT. PPE directs SCU to write the
expanded source to the input file.

• The default output file for the build processor is
$PROCESSOR OUTPUT. PPE combines the object modules
written to-the output file with the object library
at this level.

• The default source map file is $INPUT SOURCE MAP.
The information that the deck expansi;n writ;s to
the source map file allows for insertion of the
build diagnostics into the source text at the
points the errors were detected. This information
is also used for displaying the source under
control of the full-screen debugger.

• If the build fails due to processor errors, PPE
displays the Build Errors screen.

• If the build fails due to SCU errors, PPE displays
the Build Files screen. The file $EXPAND ERRORS
can be examined for the errors that caused the
failure.

• If the build succeeds, PPE displays the Run Files
screen; it also runs the product if you have
selected the Run automatically after build option
on the Tailor Options screen.

PPE Quick Reference 4-33

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Remarks:

Selects the build processor used in all subsequent
builds.

Build Processors screen.

ChaBP

CHANGE BUILD PROCESSOR or CHABP
PROCESSOR=name
STATUS=status variable

PROCESSOR or P
Name of the selected build processor. The valid names
are COBOL, CYBIL, FORTRAN, or VECTOR FORTRAN.

If this parameter is omitted, the build processor under
the cursor is selected.

•

•

The currently selected build processor is
highlighted on the screen.

The selected build processor is used for all
subsequent builds and so it must be an appropriate
processor for the source code at the level for
which PPE is executed. For example, it would not
be appropriate to specify COBOL as the build
processor when the source code to be compiled is
FORTRAN source code.

4-34 Professional Programming Environment Revision B

PPE Commands

CHANGE_CURRENT_MODIFICATION

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Remarks:

Selects the modification used by subsequent edit
sessions.

Modification List screen.

ChaCM

CHANGE CURRENT MODIFICATION or CHACM
MODIFICATION NAME=name
STATUS=status variable

MODIFICATION NAME or MN

•

Name of the selected modification. The
modification names are listed on the screen. If
you omit this parameter, the modification under the
cursor is selected.

The modification must exist at the bottom level of
the hierarchy. In other words, it must be a new
modification or a modification that applies to a
deck existing at this level. If necessary, extract
a deck to which the modification applies using
EXTRACT SOURCE.

CHANGE_DISPLAY_CEILING

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Remarks:

Revision A

Selects the highest PPE level whose content is included
in displayed lists.

Environment Description screen.

ChaDC

CHANGE DISPLAY CEILING or CHADe
LEVEL NAME-=-name
STATUS=status variable

LEVEL NAME or LN

•

Name of the selected PPE level. The level names
are listed on the screen. If you omit this
parameter, the level under the cursor is selected.
If the cursor is not positioned on a level name,
PPE prompts for the level name.

The display ceiling is highlighted in the list of
Hierarchy Level Names.

PPE Quick Reference 4-35

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Selects the parameter list under the cursor as the
global parameter list. The global parameter list is
the parameter list used by all subsequent builds.

Parameter List Library screen.

Global

CHANGE GLOBAL PARAMETER LIST or CHAGPL or GLOBAL
STATUS=status variable

• The currently selected parameter list is
highlighted on the screen.

Changes the parameter under the cursor to its default
value.

Parameter List screen.

Reset

CHANGE TO DEFAULT or CHATD or RESET
STATUS=status variable

• For the processor's INPUT, OUTPUT,
INPUT SOURCE MAP, and ERROR parameters the PPE
default values are chosen. See the Parameter List
screen for more information. For all other
parameters, the processor's default values are
chosen.

Clears and replots the PPE screen.

Any screen.

Refrsh

CLEAR SCREEN or CLES or CLEAR or REFRSH
S~ATUS=status variable

4-36 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks

Revision A

PPE Commands

From the Deck List screen, displays the Deck Creation
screen; from the Deck Creation screen, executes the
deck creation operation.

Deck Creation or Deck List screen.

Create

CREATE DECK or CRED or CREATE
STATUS=status variable

• After the information for a new deck is entered on
the Deck Creation screen, you use CREATE DECK to
actually create the new deck. PPE notifies you if
a deck with the same name already exists in the
hierarchy; if so, it does not create the deck and
leaves the Deck Creation screen displayed.

If the specified modification does not exist at any
level of the PPE environment catalog hierarchy, PPE
asks whether you want the modification created with
SCU default values (SCU does not use the Author
value from the Tailor Options screen). If you say
yes to the prompt, PPE creates the modification;
otherwise, PPE does not create the modification,
leaves the Deck Creation screen displayed, and does
not create the deck.

If the specified modification does not exist at the
lowest level of the environment catalog hierarchy.
PPE issues a message and restores the Deck Creation
screen without creating a new deck.

• If the deck creation succeeds, PPE executes a
BACK TO PREVIOUS CONTEXT command to return to the
Dec~List screen7

PPE Quick Reference 4-37

PPE Commands

CREATE_MODIFICATION

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

From the Modification List screen, displays the
Modification Creation screen; from the Modification
Creation screen, requests creation of the modification.

Modification Creation or Modification List screen.

Create

CREATE MODIFICATION or CREM or CREATE
STATUSastatus_variable

• After the information for a new modification is
entered on the Modification Creation screen, you
use CREATE MODIFICATION to actually create the new
modification.

• From the Modification List screen, this functon
takes you to the Modification Creation screen.

PPE notifies you if a modification with the same
name already exists in the hierarchy; if so, it
does not create the modification and leaves the
Modification Creation screen displayed.

• If the modification creation succeeds, PPE executes
a BACK TO PREVIOUS CONTEXT command to return to the
Modification List ;creen.

Starts a parameter list creation operation by prompting
for the parameter list name and then displaying the
Parameter List screen.

Parameter List Library screen.

Create

CREATE PARAMETER LIST or CREPL or CREATE
STATUS=status variable

• The initial values in the new parameter list are
those of the global parameter list.

• The new parameter list is saved when you exit the
Parameter List screen.

4-38 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

PPE Commands

Logically deletes the selected file from the build file
list.

Build Files screen.

Delete

DELETE BUILD FILE or DELBF or DELETE
STATUS=status variable

• You can undo the deletion of a build file using
UNDO LAST DELETE. This is effective until you
physically delete the file.

A logically deleted file becomes physically deleted
if:

Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a
logically deleted object.

You exit PPE. When you exit PPE, all logically
deleted objects become physically deleted. The
delete protection warning is not displayed even
if you selected Delete protection from the
Tailor Options screen.

Delete protection is OFF and you leave the
current screen, execute a command on the home
line, or execute a command that might reference
a logically deleted object. No deletion
warning is displayed and you cannot veto the
deletion.

PPE Quick Reference 4-39

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Logically deletes the selected decks from the deck list.

Deck List screen.

Delete

DELETE DECK or DELD or DELETE
STATUS=status variable

• The selected decks are the decks that have been
marked or, if none are marked, the deck under the
cursor.

• Interlocked decks cannot be deleted. You can clear
interlocks by using the CHANGE DECK SCU subcommand
on the home line. However, us; caution when
clearing interlocks; certify that the deck is no
longer needed in the hierarchy. A deck with
interlocks cleared cannot be transmitted, nor can
you transmit to a deck with cleared interlocks.

• The command deletes the deck copy at the current
PPE level only. If the deck exists at higher
levels, the level name listed as the Nearest
Residence of the deck changes.

• You can undo the deletion of a deck using
UNDO LAST DELETE. This is effective until you
physIcally delete the decks.

A logically deleted deck becomes physically deleted
if:

Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a
logically deleted object.

You exit PPE. When you exit PPE, all logically
deleted objects become physically deleted. The
delete protection warning is not displayed even
if you selected Delete protection from the
Tailor Options screen.

Delete protection is OFF and you leave the
current screen, execute a command on the home
line, or execute a command that might reference
a logically deleted object. No deletion
warning is displayed and you cannot veto the
deletion.

4-40 Professional Programming Environment Revision A

PPE Commands

DELETE_IDENTICAL_ERRORS

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

Deletes all error messages identical to the highlighted
error message. Locates the next error message,
highlights it, and places the cursor as close as
possible to the location where the error occurred.

Full Screen Editor session requested from the Build
Errors screen.

DellE

DELETE IDENTICAL ERRORS or DELlE
STATUS=statu8 variable

• PPE decrements the error count for the deck by the
number of messages deleted. It then finds the next
error message, highlights it, and positions the
cursor as near as possible to the point at which
the error was detected.

PPE Quick Reference 4-41

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Logically deletes the selected file from the library
list.

Library Lists screen.

Delete

DELETE LIST ENTRY or DELLE or DELETE
STATUS=status variable

• You can undo the deletion of a file using
UNDO LAST DELETE. This is effective until you
physically delete the files.

A logically deleted file becomes physically deleted
if:

Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a
logically deleted object.

You exit PPE. When you exit PPE, all logically
deleted objects become physically deleted. The
delete protection warning is not displayed even
if you selected Delete protection from the
Tailor Options screen.

Delete protection is OFF and you leave the
current screen, execute a command on the home
line, or execute a command that might reference
a logically deleted object. No deletion
warning is displayed and you cannot veto the
deletion.

4-42 Professional Programming Environment Revision A

PPE Commands

DELETE_MODIFICATION

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

Logically deletes the selected modifications from the
modification list.

Modification List screen.

Delete

DELETE MODIFICATION or DELM or DELETE
STATUS=status variable

• The selected modifications are those that are
marked or, if none are marked, the modification
under the cursor.

• The command deletes the modification at the CUlrent
PPE level only. If the modification exists at
higher levels, the level name listed as the Nearest
Residence of the modification changes.

• You can undo the deletion of a modification using
UNDO LAST DELETE. This is effective until you
physically delete the modification.

A logically deleted modification becomes physically
deleted if:

Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a
logically deleted object.

You exit PPE. When you exit PPE, all logically
deleted objects become physically deleted. The
delete protection warning is not displayed even
if you selected Delete protection from the
Tailor Options screen.

Delete protection is OFF and you leave the
current screen, execute a command on the home
line, or execute a command that might reference
a logically deleted object. No deletion
warning is displayed and you cannot veto the
deletion.

PPE Quick Reference 4-43

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Logically deletes the selected parameter lists from the
parameter list library.

Parameter List Library screen.

Delete

DELETE PARAMETER LIST or DELPL or DELETE
STATUS-statue_variable

• Select a parameter list by placing the cursor on a
parameter list name.

• You cannot delete the current global parameter
list. However, you can change the global parameter
list using CHANGE GLOBAL PARAMETER LIST and then
delete the former-global-parameter-list.

• You can undo the deletion of a parameter list using
UNDO LAST DELETE. This is effective until you
physically delete the parameter list.

A logically deleted parameter list becomes
physically deleted if:

Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a
logically deleted object.

You exit PPE. When you exit PPE. all logically
deleted objects become physically deleted. The
delete protection warning is not displayed even
if you selected Delete protection from the
Tailor Options screen.

Delete protection is OFF and you leave the
current screen, execute a command on the home
line, or execute a command that might reference
a logically deleted object. No deletion
warning is displayed and you cannot veto the
deletion.

4-44 Professional Pro2rammin2 Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

PPE Commands

Logically deletes the file under the cursor from the
Run Files list.

Run Files screen.

Delete

DELETE RUN FILE or DELRF or DELETE
STATUS=status variable

• You can undo the deletion of a run file using
UNDO LAST DELETE. This is effective until you
physically delete the file.

A logically deleted file becomes physically deleted
if:

Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a
logically deleted object.

You exit PPE. When you exit PPE, all logically
deleted objects become physically deleted. The
delete protection warning is not displayed
even if you selected Delete protection from the
Tailor Options screen.

Delete protection is OFF and you leave the
current screen, execute a command on the home
line, or execute a command that might reference
a logically deleted object. No deletion
warning is displayed and you cannot veto the
deletion.

DISPLAY_BANNER

Purpose:

Available
from:

Function
key:

Format:

Revision A

Displays the Banner screen.

Any screen except the Banner and Screen Stack screens.

Banner

DISPLAY BANNER or DISB or BANNER
STATUS=status variable

PPE Quick Reference 4-45

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Displays the Build Errors screen.

Deck List screen.

Errors

DISPLAY BUILD ERRORS or DISBE or ERRORS
STATUS=status variable

Displays the Build Files screen.

Deck List screen.

BFiles

DISPLAY BUILD FILES or BFILES or DISBF
STATUS=status_variable

Displays the Build Processors screen.

The Build Errors, Build Files, Deck List, Environment
Description, Library Lists, Modification List, Run
Files, and Tailor Option screens.

BProcs

DISPLAY BUILD PROCESSORS or BPROCS or DISBP
STATUS=status variable

Displays the Library Lists screen.

The Build Errors, Build Files, Deck List, Environment
Description, Modification List, Run Files, and Tailor
Option screens.

LLists

DISPLAY LIBRARY LISTS or LLISTS or DISLL
STATUS=status variable

4-46 Professional Programming Environment Revision B

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Purpose:

Available
from:

Function
key:

Format:

Revision B

PPE Commands

Displays the Parameter List Library screen.

The Build Errors, Build Files, Build Processors, Deck
List, Environment Description, Library Lists,
Modification List, Parameter List, Run Files, and
Tailor Options screens.

PLists

DISPLAY PARAMETER LIST LIBRARY or PLISTS or DISPLL
PROCESSOR=name
STATUS=status variable

PROCESSOR or P
Optional name specifying the build processor whose
parameter list library is to be displayed. The
build processor names are COBOL, CYBIL, FORTRAN, or
VECTOR FORTRAN.

If this parameter is omitted, the currently
selected build processor is used. The current
build processor is shown on the Environment
Description, Tailor Options, and the Build
Processors screens.

On the Build Processor screen, the build processor
selected is the processor under the cursor or the
highlighted processor if no processor is under the
cursor. For all other screens, the current build
processor is selected.

Displays the number of error messages remaining in the
deck being edited.

Full-Screen Editor session requested from the Build
Errors screen.

DisREC

DISPLAY REMAINING ERROR COUNT or DISREC
STATUS=status variable

PPE Quick Reference 4-47

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Displays the Run Files screen.

Deck List or Modification List screens.

RFiles

DISPLAY RUN FILES or RFILES or DISRF
STATUS=status variable

Displays the Screen Stack screen.

Any screen except the Banner and Screen Stack screens.

Stack

DISPLAY SCREEN STACK or DISSS or STACK
STATUS=status variable

Displays either the Deck List screen or the
Modification List screen.

Deck List, Environment Description, or Modification
List screens.

SCUObj

DISPLAY SCU OBJECT LIST or DISSOL or SCUOBJ
OBJECT KIND=keyword
STATUS~status variable

4-48 Professional Programming Environment Revision A

Parameter:

Remarks:

PPE Commands

OBJECT KIND or OK

•

Keyword specifying the kind of SCU object to be
displayed. Currently, the valid keywords are:

DECK or DECKS or D

MODIFICATION or MODIFICATIONS or M

If this parameter is omitted, the SCU object kind
(DECKS or MODIFICATIONS) under the cursor is used.
Otherwise, if the cursor is not positioned on DECKS
or MODIFICATIONS, PPE prompts for the object kind.

This operation can also be done by positioning the
cursor on DECKS or MODIFICATIONS and pressing the
carriage-return key.

• If the requested screen is already displayed, PPE
redisplays the screen with updated data.

• If the requested screen is not displayed, but is
already on the screen stack, PPE executes repeated
BACK operations until it reaches the requested
screen.

DISPLAY _TAILOR_OPTIONS

Purpose:

Available
from:

Function
key:

Format:

Revision B

Displays the Tailor Options screen.

The Build Errors, Build Files, Build Processors, Deck
List, Environment Description, Library Lists,
Modification List, and Run Files screens.

Tailor

DISPLAY TAILOR OPTIONS or DISTO or TAILOR
STATUS=status variable

PPE Quick Reference 4-49

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Starts a Full-Screen Editor session to display the
contents of the selected build file.

Build Files screen.

Edit

EDIT BUILD FILE or EDIBF or EDIT
STATUS~status variable

• The file to be edited must be a listable file; a
catalog or an object library cannot be edited.

Starts a Full-Screen Editor session to edit the
selected deck. When entered from the Deck Creation
screen, EDIT DECK also creates the deck. When entered
from the Build Errors or Deck List screens, it also
extracts the deck if the deck does not reside at the
lowest level.

Build Errors, Deck Creation, or Deck List screen.

Edit

EDIT DECK or EDID or EDIT
STATUS=status variable

• The changes made during the editing session are
assigned to the current modification.

• When this command is entered from the Deck Creation
or Deck List screen, PPE displays only the deck
source text for editing. However, when this
command is entered from the Build Errors screen,
the error diagnostics from the last build are
inserted in the text where they occurred.

I 4-50 Professional Programming Environment Revision B

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Revision B

PPE Commands

Starts a Full-Screen Editor session to edit the
selected deck template.

Build Processors screen.

EdiDT

EDIT DECK TEMPLATE or EDIDT
PROCESSOR=name
STATUS=status variable

PROCESSOR or P
Optional name of the build processor whose deck
template is to be edited. The build processor
names are COBOL, CYBIL, FORTRAN, or VECTOR_FORTRAN.

If this parameter is omitted, the processor under
the cursor is used. If the cursor is not
positioned on the name of a build processor, the
currently selected build processor is used. (This
selected build processor is highlighted on the
screen.)

PPE Quick Reference 4-50.1

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Revision B

PPE Commands

Enables editing of the selected parameter list.

Any screen except the Banner, Deck Creation,
Modification Creation, and Screen Stack screens.

EdiPL

EDIT PARAMETER LIST or EDIPL
PARAMETER LIST=name
PROCESSOR::-name
STATUS=status variable

PARAMETER LIST or PL
Optional name of the parameter list to be edited.
To see the names of the existing parameter lists,
display the Parameter List Library screen for the
selected build processor using
DISPLAY PARAMETER LIST LIBRARY.

If the specified parameter list does not exist, PPE
displays a message which you must acknowledge to
continue the PPE session.

If this parameter is omitted, the parameter list
displayed depends upon the screen currently
displayed, as follows:

Parameter List
screen

Parameter List
Library screen

All other
screens

- PPE prompts you for a parameter
list name.

- PPE displays the parameter list
under the cursor. If no
parameter list is under the
cursor, PPE displays the global
parameter list of the current
build processor.

- PPE displays the global
parameter list of the current
build processor.

PPE Quick Reference 4-51

PPE CoJlllllands

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

PROCESSOR or P

•

Optional name of the build processor for which
the parameter list is specified. To see the
names of the build processors available,
display the Build Processors screen using
DISPLAY BUILD PROCESSORS.

If this parameter is omitted, the build
processor selected depends upon the screen
currently displayed, as follows:

Build Processors - PPE selects the processor
screen under the cursor. If the

cursor in not on a
processor, the highlighted
processor is chosen.

Parameter List
Library screen

Parameter List
screen

All other
screens

- PPE selects the processor
named at the top of the
screen.

- PPE selects the processor
named at the top of the
screen.

- PPE selects the current
build processor.

When EDIT PARAMETER LIST is used on the
Parameter-List screen and specifies another
parameter list, the currently displayed
parameter list is saved before the next list is
displayed.

Starts a Full-Screen Editor session to display the
contents of the selected run file.

Run Files screen.

Edit

EDIT RUN FILE or EDIRF or EDIT
STATUS=status variable

• The file to be edited must be listable; a catalog
or an object library cannot be edited.

4-52 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Revision A

PPE Command s

Marks the last object in a range of selected objects.

The Build Errors, Deck List, and Modification List
screens.

EndMrk

END MARK or ENDMRK or ENDM
-STATUS=status variable

• A corresponding BEGIN MARK command must precede
each END MARK command7

Displays the online manual explanation of an error
message. The error message is either the one under the
cursor or, if the cursor is not positioned on a
message, the highlighted message.

Full-Screen Editor session requested from the Build
Errors screen.

Assist

EXPLAIN ERROR MESSAGE or EXPEM or ASSIST
STATUS=staLtus variable

Copies the selected file from the Build File list to
another file. PPE prompts you for the file to which it
copies the build file.

Build Files screen.

Export

EXPORT BUILD FILE or EXPBF or EXPORT
STATUS=status variable

PPE Quick Reference 4-53

PPE Command s

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Copies the selected Run File to another file. PPE
prompts you for the file to which it copies the run
file.

Run Files screen.

Export

EXPORT RUN FILE or EXPRF or EXPORT
STATUS~status variable

Copies the selected decks from their nearest residence
in the higher levels of the PPE hierarchy to your PPE
level and sets an interlock on each deck.

Build Errors or Deck List screen.

ExtS

EXTRACT SOURCE or EXTS
STATUS=status variable

• A deck cannot be extracted if it is already
interlocked or if it already exists at the lowest
level of the environment catalog hierarchy. A deck
is already extracted if its Nearest Residence is
the current PPE level.

4-54 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

PPE Commands

Executes the source text formatter for the build
processor to format the text in the deck being edited.

Full-Screen Editor session.

FORMAT SOURCE TEXT or FORST
STATUS=status variable

• FORMAT SOURCE TEXT looks for a command with a name
of the-form FORMAT processor name SOURCE where
processor name is the name of the-processor for the
source file being edited (for example,
FORMAT COBOL SOURCE). If FORMAT SOURCE TEXT finds
a command with a name of this form, it executes the
command. Two parameters are passed to the
command: the name of the source file to be
formatted, and the name of the file to contain the
formatted source.

If a command of the form
FORMAT_processor_name_SOURCE is not found and PPE
provides a source code formatter for the processor,
then the PPE provided formatter is used to format
the source code. Currently, PPE only provides a
source code formatter for FORTRAN Version 1.

If a command of the form
FORMAT processor name SOURCE is not found and PPE
does not provide-a source code formatter for the
processor, PPE issues a message informing you that
a formatter does not exist for the processor.

• Currently, the only source text formatter supplied
by PPE is for FORTRAN Version 1.

The text to be formatted must be in the correct
zones within each line (labels must be in columns
1 through 5, statements at column 7 and on). The
formatter standardizes the format, indenting block
structure and standardizes labels.

PPE Quick Reference 4-55

PPE Command s

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Positions the cursor at the beginning of the home line.

Any screen except the Banner screen.

Home

HOME CURSOR or HOMe or HOME
STATUS=status variable

Copies a file to a file in the PPE Build File
subcatalog. You specify the file to be copied in
response to a prompt. PPE also prompts you for the
name to be given the new PPE file.

Build Files screen.

Import

IMPORT BUILD FILE or IMPBF or IMPORT
STATUS=status variable

Copies a file to a file in the PPE Run File
subcatalog. You specify the file to be copied in
response to a prompt. PPE also promptes you for the
name to be given the new PPE file.

Run Files screen.

Import

IMPORT RUN FILE or IMPRF or IMPORT
STATUS=status variable

4-56 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Remarks:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

PPE Command s

Combines the specified SCU source library outside of
PPE with the PPE source library at this level.
Interlocks are not checked.

Environment Description screen.

Import

IMPORT SOURCE LIBRARY or IMPORT or IMPSL
SOURCE LIBRARY=file
STATUS~status variable

SOURCE LIBRARY or SL

•

File path for the source library file to be
imported. If you omit this parameter, PPE prompts
you for the file path.

Before you import a library, you should set the
processor field in the header of each deck in the
library to the name of the build processor for that
deck. Use the SCU CHANGE DECK command to change
the deck headers.

Inserts a list entry before the list entry under the
cursor. The subsequent list entries are moved down one
entry. You can add a new name to the list by typing it
at the prompt.

Library Lists screen.

Insert

INSERT LIST ENTRY or INSLE or INSERT
STATUS=status variable

• To insert an entry at the end of the list, place
the cursor on the line following the last entry in
the list prior to executing the command. Use
PAGE FORWARD (FWD) to reach the end of the list.

PPE Quick Reference 4-57

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Remarks:

Searches the deck list for the first name containing
the specified string of characters and positions the
cursor on that name.

Deck List screen.

Locate

LOCATE DECK or LOCD or LOCATE
MATCH STRING=string
STATUS=status variable

MATCH STRING or MS
Optional string of characters for which PPE is to
search. The string must be enclosed in apostrophe
(') characters. If the parameter is omitted, PPE
prompts for the string. When you enter the string,
do not enclose it in apostrophes. If you supply no
string in response to the prompt, PPE uses the
string from the last LOCATE DECK command.

• LOCATE DECK positions the cursor on the deck it
finds -;hich contains characters matching the
string. It does not move the cursor if it finds no
deck name containing the MATCH STRING value.

• The search starts from the current cursor position
in the deck list.

4-58 Professional Programming Environment Revision A

e

PPE Commands

LOCATE_MODIFICATION

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Remarks:

Revision A

Searches the modification list for the first name
containing the specified string of characters and
positions the cursor on the name.

Modification List screen.

Locate

LOCATE MODIFICATION or LOCM or LOCATE
MATCH STRING=string
STATUS=status variable

MATCH STRING or MS

•

Optional string of characters for which PPE is to
search. The string must be enclosed in apostrophe
(') characters.

If the parameter is omitted, PPE prompts for the
string. When you enter the string, do not enclose
it in apostrophes. If you supply no string in
response to the prompt, PPE uses the string from
the last LOCATE MODIFICATION command.

LOCATE MODIFICATION positions the cursor on the
modification it finds which contains characters
matching the MATCH_STRING value.

LOCATE MODIFICATION does not move the cursor if it
finds no modification name containing the
MATCH STRING value.

• The search starts from the current cursor position
in the deck list.

PPE Quick Reference 4-59

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Moves the cursor to the next error, highlighting the
corresponding error message. Deletes the currently
highlighted error message.

Full-Screen Editor session requested from the Build
Errors screen.

NxtErr

LOCATE NEXT ERROR or LOCNE or NXTERR
STATUS=status variable

• PPE decrements the error count for the deck. It
then finds the next error message, highlights it,
and positions the cursor as near as possible to the
point at which the error was detected.

LOOKUP_KEYWORD

Purpose:

Available
from:

Searches for the word under the cursor in the index of
the online manual for the language and, if found,
displays the associated online manual screen.

Full-Screen Editor session.

Function key: LookUp
key:

Format: LOOKUP KEYWORD or LOOK or LOOKUP

Remarks: •

STATUS=status variable

To return to PPE from the online manual, use the
Quit function key or type QUIT and press the
carriage-return key.

• The online manuals used for the build processors
COBOL, CYBIL, FORTRAN, and VECTOR FORTRAN are
COBOL, CYBIL, FORTRAN, and VFORTRAN respectively.

4-60 Professional Programming Environment Revision B

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Purpose:

Available
from:

Function
key:

Format:

Revision A

PPE Commands

Lowers the display ceiling the specified number of
levels.

Deck List or Modification List screens.

Lower

LOWER DISPLAY CEILING or LOWDC or LOWER
NUMBER OF-LEVELS=integer or key
STATUS-=status variable

NUMBER OF LEVELS or NL
Number of levels the display ceiling is to be
lowered. The value must be an integer greater than
o or the keyword BOTTOM, which lowers the display
ceiling to the lowest level in the hierarchy.

If the number specified is greater than the number
of levels that the ceiling can be lowered, BOTTOM
is used instead.

The default value of this parameter is 1.

Repositions the list so that the object under the
cursor is the last object displayed on the page.

Build Errors, Build Files, Deck List, Environment
Description, Library List, Modification List, Parameter
List, Parameter List Library, Run Files, and Screen
Stack screens.

Down

MOVE TO BOTTOM or MOVTB or DOWN
STATUS=status variable

PPE Quick Reference 4-61

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Repositions the list so the beginning of the list is
displayed and the cursor is positioned on the first
object in the list.

Build Errors, Build Files, Deck List, Environment
Description, Library List, Modification List, Parameter
List, Parameter List Library, Run Files, and Screen
Stack screens.

First

MOVE TO FIRST or MOVTF or FIRST
STATUS=status variable

Repositions the list so the end of the list is
displayed and the cursor is positioned on the last
obj ec t in the list.

Build Errors, Build Files, Deck List, Environment
Description, Library List, Modification List, Parameter
List, Parameter List Library, Run Files, and Screen
Stack screenS.

Last

MOVE TO LAST or MOVTL or LAST
STATUS=status variable

Repositions the list so that the object under the
cursor is the first object displayed.

Build Errors, Build Files, Deck List, Environment
Description, Library List, Modification List, Parameter
List, Parameter List Library, Run Files, and Screen
Stack screens.

Up

MOVE TO TOP or MOVTT or UP
STATUS=status variable

4-62 Professional Programming Environment Revision A

PPE Commands

PAGE_BACKWARD

Purpose:

Available
from:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Revision A

Repositions the list so that the first object displayed
becomes the last object displayed.

Build Errors, Build Files, Deck List, Environment
Description, Library List, Modification List, Parameter
List, Parameter List Library, Run Files, and Screen
Stack screens.

Bkw

PAGE BACKWARD or PAGB or BKW
STATUS=status variable

Repositions the list so that the last object displayed
becomes the first object displayed.

Build Errors, Build Files, Deck List, Environment
Description, Library List, Modification List, Parameter
List, Parameter List Library, Run Files, and Screen
Stack screens.

Fwd

PAGE FORWARD or PAGF or FWD
STATUS=status variable

PPE Quick Reference 4-63

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Prints the selected build file using the site-provided
PRINT command if available; otherwise, it uses the
standard NOS/VE PRINT_FILE command.

Build Files screen.

Print

PRINT BUILD FILE or PRIBF or PRINT
STATUS=status variable

• The file to be printed must be a list file; it
cannot be the object library.

• PPE passes only one parameter to the print
command: the file path.

• When PPE executes the PRINT BUILD FILE command, it
first executes an SCL command with the following
form:

PRINT lfn

where lfn is the file path of the file to be
printed. If no PRINT command exits, PPE executes
the standard NOS/VE PRINT FILE command with default
settings.

4-64 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

PPE Commands

Prints the selected run file using the site-provided
PRINT command if available; otherwise, it uses the
standard PRINT FILE command.

Run Files screen.

Print

PRINT RUN FILE or PRIRF or PRINT
STATUS=status variable

• The file to be printed must be a list file; it
cannot be the object library.

• PPE passes only one parameter to the print
command: the file path.

• When PPE executes the PRINT_RUN_FILE command, it
first executes an SeL command with the following
form:

PRINT lfn

where lfn is the file path of the file to be
printed. If no PRINT command exits, PPE executes
the standard NOS/VE PRINT FILE command with default
settings.

QUIT_SAVE

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

Ends the PPE session, saving all information required
for your next session to begin where this one ended.

Any screen.

Quit

QUIT SAVE or QUIS or QUIT or QUI
STATUS=status variable

When you exit PPE, a new high cycle of the source
library within your environment catalog is created.
The low cycles allow you to recover freom catastrophic
events. However, you can easily use up a large amount
of file space. To avoid using excess file space, you
should frequently delete the low cycles of your source
library. You can use EDIT CATALOG from the home line
of your environment catalog to do this.

PPE Quick Reference 4-65

PPE Commands

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Purpose:

Available
from:

Function
key:

Format:

Parameter:

Raises the display ceiling the specified number of
levels.

Deck List or Modification List screen.

Raise

RAISE DISPLAY CEILING or RAIDC or RAISE
NUMBER OF-LEVELS=integer or key
STATus~status variable

NUMBER OF LEVELS or NL
Nu;be~ of levels the display ceiling is to be
raised. The value can be an integer greater than 0
or the keyword TOP, which raises the display
ceiling to the highest level in the hierarchy.

If the number specified is greater than the number
of levels that the ceiling can be raised, TOP is
used instead.

The default value of this parameter is 1.

Removes the selected marks from the list.

Build Errors, Deck List, and Modification List screens.

UnMark

REMOVE MARK or REMM or UNMARK
MARK SCOPE=key
STATUS=status variable

MARK SCOPE or MS
Keyword specifying the marks that are removed.

ALL or A

INDIVIDUAL or I

RANGE or R

All marks in the list.

Individual mark under the cursor
(default).

Marked range under the cursor.

If you omit the MARK SCOPE parameter, the default
value is INDIVIDUAL.-

4-66 Professional Programming Environment Revision A

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Revision A

PPE Commands

Displays help information. When help is requested on
the Banner Screen, PPE displays the PPE online manual.
Otherwise, this command displays help information about
the object or keyword under the cursor or the current
message on the message line.

Any screen.

Help

REQUEST HELP or REQH or HELP
STATUS=status variable

• If a help message is available for the object,
REQUEST HELP displays a window containing brief
help information. The window also tells you how to
display further information in the PPE online
manual and how to return to PPE.

• If no window help is available for the object, the
PPE online manual index is searched for the
object. If the object is found in the index, the
corresponding online manual screen is displayed.

• To leave the online manual, use the Quit function
key or type QUIT and press the carriage-return
key. You are returned to PPE.

• After receiving help, PPE always returns you to the
screen where you requested help.

PPE Quick Reference 4-67

PPE Commands

RUN

Purpose:

Available
from:

Loads and executes the product.

Run Files screen.

Function Run
key:

Format: RUN
RU~RPOSE=keyword

STATUS=status_variable

Parameter: RU~RPOSE or RP

Remarks: •

Keyword indicating how the product should be
executed:

NORMAL or N

INTERACT IVE_
DEBUG or ID

Execute without control by the
Full-Screen Debug utility.

Execute under control of the
Full-Screen Debug utility. The
product must have been built using
the debug options in its parameter
list. The debug options are:

OPTIMIZATION-LEVEL=DEBUG
DEBUGJIDS=DT
INPUT-BOURCE-MAP=$INPUT-SOUR
ClLMAP

If you omit the RU~RPOSE parameter, the Run
Purpose selected on the Run Files screen is used.

PPE loads the object library existing at this
level. It then satisfies the external references
in the library by loading modules from other object
libraries. When searching for the entry point to
satisfy an external reference or starting
procedure, it searches in the following order:

1. In the PPE object library at the current level.

2. In the PPE object library at each higher level
upwards in the hierarchy.

3. In the object libraries specified in the
program library list on the Library lists
screen in the order listed.

4. In the object libraries listed in the job
library list in the order the library files are
listed.

4-68 Professional Programming Environment Revision B

Revision A

PPE Commands

Program execution begins with the starting
procedure as specified on the Tailor Options
screen. (The default starting procedure is the
last transfer symbol loaded, the same default in
effect outside of PPE.)

The program reads its input files and writes its
output files. It may also write the following run
files:

$ LOADMAP
A load map is written to this run file if
the LOAD MAP OPTIONS program attribute has
been changed-from its default value, NONE.
To change the program attribute, you must
enter the SCL command
SET PROGRAM ATTRIBUTES.

$TERMINAL OUTPUT
All output data sent to $OUTPUT is written
to this run file.

• When you execute the Run function, PPE searches
every object library in your hierarchy. The loader
produces a warning level error message if it
encounters an empty object library. Since PPE sets
the initial termination error level for a job to
WARNING, an empty library might cause your run to
terminate prematurely.

You can change the termination error level with the
SeL SET PROGRAM ATTRIBUTES command. The
recommended settings are WARNING and ERROR. The
following lists the merits of each choice:

ERROR

WARNING

An empty object library does not
terminate a run. However, PPE does not
inform you when any warning level error
messages are produced, and the run
might terminate unexpectedly. Also,
you are not informed if an empty object
library is encountered, even if none
should be empty.

Any WARNING level error message
terminates a run. Therefore, an empty
object library causes a run to
terminate.

Regardless of the termination error level setting
for your job, all errors are written to the
$LOADMAP file.

PPE Quick Reference 4-69

PPE CODD1lands

Purpose:

Available
From:

Function
key:

Format:

Purpose:

Available
from:

Function
key:

Format:

Remarks:

Deletes all error messages associated with the same
source line as the highlighted message. Highlights
the first remaining error message, moving the cursor as
close as possible to the location where it occurred.

Full-Screen Editor session requested from the Build
Errors screen.

Skip

SKIP LINE ERRORS or SKILE or SKIP
STATUS=status variable

Copies the selected decks to the source library at the
next higher PPE level, clears the deck interlocks, and
deletes the decks from the lower PPE level.

Deck List screen.

TraS

TRANSMIT SOURCE or TRAS
STATlJS=status variable

• PPE attempts to transmit all decks marked or, if
none are marked, it transmits the deck under the
cursor.

• TRANSMIT_SOURCE always transmits decks from the
lowest level in the environment catalog hierarchy
to the source library at the next higher level.

• Only decks residing in the lowest level of the
environment catalog hierarchy can be transmitted.

4-70 Professional Programming Environment Revision A

Revision A

PPE Commands

• When you transmit source, a new high cycle of the
source library within your environment catalog is
created. The low cycles allow you to recover from
catastrophic events. However, you can easily use
up a large amount of file space. To avoid using
excess file space, you should frequently delete the
low cycles of you source library. You can use
EDIT CATALOG from the home line of your environment
catalog to do this.

When you transmit source, the object modules in the
lowest level of your environment catalog hierarchy
that are built by that source should be deleted
from the highest cycle of $OBJECT LIBRARY on the
Build Files screen. The CREATE OBJECT LIBRARY
utility can be used from the home line-of the Build
Files screen to do this.

Also, after you transmit, notify the owner of the
next higher level in your hierarchy to do a build
using the transmitted decks. This keeps the
$OBJECT LIBRARY at the higher level of the
hierarchy up to date, incorporating your
transmitted source code into the object code at
that level.

Changes made to the source library are not
available to other tasks or PPE sessions at lower
levels in the hierarchy until you exit the PPE
session in which the changes occurred, or until the
changed decks are transmitted to the next higher
level in the hierarchy.

PPE Quick Reference 4-71

Purpose:

Available
from:

Function
key:

Format:

Remarks:

PPE Commands

Removes the effect of the last logical deletion
operation, restoring the deleted objects. However,
physically deleted objects cannot be restored.

Build Files, Deck List, Library Lists, Modification
List, Parameter List Library, or Run Files screen.

Undo

UNDO LAST DELETE or UNDLD or UNDO
STATUS=status variable

A logically deleted object becomes physically deleted
if:

• Delete protection is ON and you confirm the
deletion. The delete protection warning is
displayed when you attempt to leave the current
screen, execute a command on the home line, or
execute a command that might reference a logically
deleted object.

• You exit PPE. When you exit PPE, all logically
deleted objects become physically deleted. The
delete protection warning is not displayed even if
you selected Delete protection from the Tailor
Options screen.

• Delete protection is OFF and you leave the current
screen, execute a command on the home line, or
execute a command that might reference a logically
deleted object. No deletion warning is displayed
and you cannot veto the deletion.

• A physically deleted object cannot be recovered by
using UNDO LAST DELETE.

4-72 Professional Programming Environment Revision A

Glossary A

This appendix lists terms with their definitions as used in this
manual.

A
Author

B

Identification of the original creator of a deck or modification
as stored in its header.

Build

Process by which PPE constructs the executable object library
from decks on a source library. To do so, it calls SCU to
expand the decks, then calls the build processor to compile the
expanded text, and finally calls the object library generator to
combine the object modules with the existing object library.

Build Processor

c

The software that PPE calls to transform the expanded deck text
into object modules. The supported build processors are the
NOS/VE COBOL and FORTRAN Version 1 compilers.

Catalog

A system-maintained directory whose entries describe NOS/VE
files and subcatalogs. The NOS/VE file system is organized as a
hierarchy of catalogs. Each user has a master catalog, which is
the top of the user's catalog hierarchy.

Compilation

The process of transforming source text into object code.

Revision A Glossary A-I

Glossary

Context

Within PPE, the screen currently displayed, including the cursor
position and any currently displayed messages. It determines
the commands currently available and the context in which they
are executed.

Creation Modification

The modification specified when a deck is created. The initial
source text in the deck belongs to the creation modification. A
creation modification cannot be deleted until all decks for
which the modification is a creation modification are deleted.

Cursor

D

The pointer displayed by your terminal that you can position to
specify a screen location.

Deck

An SCU object consisting of a sequence of lines with a
descriptive header. Under PPE, the lines in a deck are a unit of
source text that can be expanded by SCU and then compiled by the
build processor.

Default

The assumed value for a parameter when the parameter is not
specified by the user.

Diagnostic Message

Text issued to describe an error that has been detected. PPE
weaves the diagnostic messages issued for a build by the build
processor into the source text so that the message is as near as
possible to the point at which the error was detected.

Display Ceiling

Highest level in the PPE hierarchy whose contents are included
in displayed lists.

A-2 Professional Programming Environment Revision A

Glossary

E
Entry Point

A location in a module at which execution of the module can
begin. During the loading process, an entry point is found to
match each external reference in the product.

Environment

The data and operations available to the programmer.

Execution

The carrying out of a program's instructions by the computer.

Expand Attribute

A deck header field that determines whether the deck can be
expanded directly or whether it can be expanded only when it is
copied by another deck.

Expansion

The process by which seu reformats the compressed text stored in
a deck so that it can be used as input text to a build
processor. As it expands the deck, it processes all seu
directives embedded in the deck text.

External Reference

A call to an entry point in another module. The loading process
satisfies external references by matching each external
reference to its entry point.

Extraction

The process by which an existing deck at a higher level is made
available for editing under PPE. PPE copies the deck from the
nearest higher level of the PPE hierarchy, sets an interlock on
the original deck and its copy, and combines the deck copy with
the source library at the bottom of the hierarchy.

Revision A Glossary A-3

Glossary

F
File Path

FSE

The means of identifying a NOS/VE file. It specifies
location of the file entry by the sequence of catalog
lead to the file entry in the hierarchy of catalogs.
name in the file path is the name of the file itself.
information, see the SCL Language Definition manual.

the
names that
The last

For more

Full-Screen Editor; the NOS/VE editor that allows you to edit
text either in line mode or screen mode.

Full-Screen Application

A program whose user interface sends and receives screens of
information, not just individual lines. Such a program can be
used only from a terminal having both the minimal capabilities
required by the program and a terminal definition defining those
capabilities.

Function Key

G

A key on the terminal keyboard that, when pressed, transmits a
unique, identifying character sequence. The terminal definition
for a full-screen terminal defines the function keys available.
As a full-screen application, PPE uses the terminal definition
so that when you press a function key PPE executes the command
associated with that key.

Global Parameter List

The currently selected parameter list for the build processor.

H
Hierarchy

A specified rank or order of items. PPE supports a hierarchy of
levels; a user can change data only at the lowest level in the
hierarchy, but has access to data at higher levels.

Home Line

The line on the terminal screen to which the cursor returns when
the HOME CURSOR operation is performed or when the terminal's
hardwired HOME key is pressed. The user can enter commands only
on the home line.

A-4 Professional Programming Environment Revision A

Glossary

I
Interlock

L

A field set in a deck header indicating that the deck has been
extracted. The original interlock field is set on header of the
the original deck in the source library from which the deck was
extracted; the subinterlock field is set in the header of the
deck copy.

Level

M

Rank within a hierarchy. A PPE level is a catalog containing
required PPE files and catalogs, including a source library, an
object library, and other data files.

Modification

e N

An SCU object consisting of a set of inserted, replaced, and
deleted lines with a descriptive header.

--
Name

o

SCL identifier consisting of a sequence of 1 through 31
characters. The characters can be letters, digits, and the
following special characters:

II @ $ [1

The first character cannot be a digit.

Obj ect Library

A file containing one or more executable modules and a directory
to each module and its entry points. PPE maintains an object
library at each level of the hierarchy.

Obj ect Module

A compiler-generated unit containing object code and
instructions for loading the object code. Under PPE, all object
modules are stored in object libraries.

Revision A Glossary A-5

Glossary

p

Parameter List

A string of specifications passed to a program when its
execution is begun. PPE passes a parameter list to the build
processor for each build. It also passes a parameter list to
the product for each run.

Parameter List Library

A collection of parameter lists stored for a build processor.
The PPE user can create, edit, and select parameter lists in the
library.

Program Library List

R
Run

s

A list of object libraries searched by the loader for entry
points when the entry points do not exist in the PPE object
libraries. After searching the program library list provided by
PPE, the loader then searches the job library list, the job
Debug library list (if the run purpose is INTERACTIVE DEBUG),
and, finally, the NOS/VE task services library. -

An instance of execution of the software product being developed
using PPE.

Screen

SCU

A formatted collection of information that can be displayed at
one time on a terminal screen. The currently displayed PPE
screen determines the context in which PPE operates and the
commands available to the user.

Source Code Utility; the NOS/VE command utility that PPE uses to
manage decks and modifications on source libraries.

SCU Object

Entity generated and maintained by SCU. Currently, the only SCU ~
objects that PPE supports are decks and modifications.

A-6 Professional Programming Environment Revision A

Glossary

Source Library

A collection of decks on a file with a descriptive header,
generated and maintained by SCU. PPE maintains a source library
at each level of a PPE hierarchy.

Source Text

The sequence of lines provided as input to a compiler or other
processor.

Stack

T

Data structure in which data items are retrieved in reverse
order from that in which the items were stored. An item stored
in the stack is said to be pushed on the stack; an item
retrieved from the stack is said to be popped off the stack.
PPE maintains a stack showing the path the user has taken down
the PPE screen hierarchy; each BACK command pops a screen from
the stack.

Terminal Definition

A module that defines the capabilities of an interactive
terminal. An interactive session must define the terminal it is
using before executing any full-screen application.

Text-Embedded Directive

An SCU directive inserted at the point in the deck text at which
the directive is to be processed when the deck is expanded. The
most commonly used directives are the copy directives that
expand the text of another deck and insert it into the deck
containing the copy directive.

Transfer symbol

An entry point within a module at which program execution can
begin.

Transmittal

The process by which decks in the lowest level of the
environment catalog hierarchy are moved to the source library at
the next higher level of the PPE hierarchy. Deck interlocks are
enforced and the decks are deleted from the lower level of the
hierarchy.

Revision A Glossary A-7

e

e

e

Related Manuals B

This appendix lists the manuals related to this manual and describes
how you can acquire them.

A complete list of NOS/VE manuals is provided as appendix B in the
SCL Language Definition manual.

The following list includes all manuals that are either referenced
in this manual or contain additional information that may be of use
to the reader of this manual. It lists the publication number of
printed manuals and the manual name for online manuals. (The manual
name is the name specified on the MANUAL parameter of the EXPLAIN
command; for example, EXPLAIN,M=DEBUG.)

Publication Online Manual
Manual Title Number Name

SCL Manuals:

Debug for NOS/VE 60488213
Usage

Debug for NOS/VE DEBUG
Quick Reference

Diagnostic Messages for NOS/VE 60464613 tmSSAGES
Quick Reference

Full Screen Editor for NOS/VE 60464015
Tutorial/Usage

NOS/VE System 60464014
Usage

NOS/VE Object Code Management 60464413
Usage

NOS/VE Source Code Management 60464313
Usage

Terminal Definition 60464016
Usage

(Con ti nued)

Revision B Related Manuals B-1

Related Manuals

(Continued)

Manual Title

Language Manuals:

COBOL for NOS/VE
Usage

FORTRAN for NOS/VE
Language Definition
Usage

FORTRAN for NOS/VE
Topics for FORTRAN Programmers
Usage

FORTRAN for NOS/VE
Quick Reference

Math Library
Usage

Accessing Online Manuals

Publication Online Manual
Nilmber Name

60486013 COBOL

60485913

60485916

FORTRAN

60486513

If your site has installed the NOS/VE online manual set, you can
find an abstract for each NOS/VE manual in the NOS VE online
manual. To access the NOS VE online manual, enter-the SCL command:

explain, manua1=nos ve

Ordering Printed Manuals
You can order printed Control Data manuals from your local Control
Data sales office. Sites in the U.S. can also order manuals
directly from the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering manuals, please indicate whether you require the
entire manual or just the latest revision packet.

B-2 Professional Programming Environment Revision A

e

e

ASCII Character Set

This appendix lists the ASCII character set (table C-1).

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE represents
each 7-bit ASCII code in an 8-bit byte. The 7 bits are
right-justified in each byte. For ASCII characters, the leftmost
bit is always zero.

In addition to the 128 ASCII characters, NOS/VE allows use of the
leftmost bit in an 8-bit byte for 256 characters. The use and
interpretaion of the additional 128 characters is user-defined.

C

Revision A ASCII Character Set C-1

ASCII Character Set

Table C-1. ASCII Character Set (Continued)

Decimal

000
001
002
003

004
005
006
007

008
009
010
011

012
013
014
015

016
017
018
019

020
021
022
023

024
025
026
027

028
029
030
031

032
033
034
035

ASCII Code
(Hexadecimal)

00
01
02
03

04
05
06
07

08
09
OA
OB

OC
OD
OE
OF

10
11
12
13

14
15
16
17

18
19
1A
1B

1C
lD
IE
IF

20
21
22
23

Octal

000
001
002
003

004
005
006
007

010
011
012
013

014
015
016
017

020
021
022
023

024
025
026
027

030
031
032
033

034
035
036
037

040
041
042
043

Graphic or
Mnemonic

NULL
SOH
STX
ETX

EOT
ENQ
ACK
BEL

BS
HT
LF
VT

FF
CR
SO
SI

DLE
DC1
DC2
DC3

DC4
NAK
SYN
ETB

CAN
EM
SUB
ESC

FS
GS
RS
US

SP

"

C-2 Professional Programming Environment

Name or Meaning

Null
Start of heading
Start of text
End of text

End of transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal tabulation
Line feed
Vertical tabulation

Form feed
Carriage return
Shift out
Shift in

Data link escape
Device control 1
Device control 2
Device control 3

Device control 4
Negative acknowledge
Synchronous idle
End of transmission

block

Cancel
End of medium
Substitute
Escape

File separator
Group separator
Record separator
Unit separator

Space
Exclamation point
Quotation marks
Number sign

(Continued)

Revision A

ASCII Character Set

e
Table C-1. ASCII Character Set (Continued)

ASCII Code Graphic or

e Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
039 27 047 Apostrophe

040 28 050 Opening parenthesis
041 29 051 Closing parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus

044 2C 054 Comma
045 2D 055 Hyphen
046 2E 056 Period
047 2F 057 / Slant

048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three

e 052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 3D 075 Equal to
062 3E 076 > Greater than
063 3F 077 Question mark

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 C Uppercase C

068 44 104 D Uppercase D

e 069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

(Continued)

e
Revision A ASCII Character Set C-3

ASCII Character Set

Table C-1. ASCII Character Set (Continued)

ASCII Code Graphic or
Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K

076 4C 114 L Uppercase L
077 4D 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0

080· 50 120 P Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 S Uppercase S

084 54 124 T Uppercase T
085 55 125 U Uppercase U
086 56 126 V Uppercase V
087 57 127 W Uppercase W

088 58 130 X Uppercase X
089 59 131 y Uppercase y

090 SA 132 Z Uppercase Z
091 5B 133 [Opening bracket

092 5C 134 \ Reverse slant
093 5D 135 1 Closing bracket
094 5E 136 Circumflex
095 SF 137 Underline

096 60 140 Grave accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g

(Continued)

e

C-4 Professional Programming Environment Revision A

ASCII Character Set

e
Table C-l. ASCII Character Set (Continued)

ASCII Code Graphic or

e Decimal (Hexadecimal) Octal Mnemonic Name or Meaning

104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k

108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
III 6F 157 0 Lowercase 0

112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s

116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w

e 120 78 170 x Lowercase x
121 79 171 Y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 Opening brace

124 7C 174 Vertical line
125 7D 175 Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete

Revision A ASCII Character Set C-5

PPE Catalog Structure D

Each level in a PPE hierarchy is a structure consisting of a
hierarchy of subcatalogs and files. PPE creates the subcatalog
structure within an environment catalog when it creates the
environment catalog. PPE creates files in the catalog only as they
are needed.

The PPE catalog structure is a hierarchy of catalogs with the
catalog specified on the ENTER PPE command at the top of the
structure. The default PPE catalog is
$USER.PROFESSIONAL_ENVIRONMENT.

Diagrammed, the PPE catalog structure appears as follows:

Environment_Catalog

J
+ + $DESCRIPTION NODES

SOURCE LIBRARY l

Revision B

LOAD

T
$OBJECT

!
BUILD FILES

$OBJECT LIBRARY
$INPUT SOURCE MAP

$ExPAND ERRORS
$PROCESSOR INPUT

$PROCESSOR_OUTPUT
Any imported build files

LIBRARY

l
RUN FILES

$ LOADMAP
$TERMINAL_OUTPUT

Any imported run
files

PPE Catalog Structure D-l

PPE Catalog Structure

PPE creates entries for two files and two subcatalogs in the PPE
catalog. The files are:

$DESCRIPTION

SOURCE LIBRARY

File in which PPE maintains the information that
describes the state of the PPE session when a
QUIT SAVE command is entered. PPE uses the
information when it is restarted.

SCU source library file for this PPE level.

The subcatalogs in the PPE catalog are:

.NODES.LOAD.$OBJECT LIBRARY.BUILD FILES

.NODES.LOAD.$OBJECT:=LIBRARy.RUN_FILES

The .NODES.LOAD.$OBJECT LIBRARY.BUILD FILES subcatalog contains any
imported build files and the following PPE-created files:

$PROCESSOR_INPUT

$PROCESSOR_OUTPUT

The deck expansion writes the source map to
this file; it must be specified as the
INPUT SOURCE MAP parameter value in the build
processor parameter list. The source map is
the information required for the mapping of
build diagnostics into the deck text where the
errors were detected and for the full-screen
debugger to find the source it displays during
debugging.

The deck expansion process writes any errors
found to this file.

The deck expansion writes the expanded source
text to this file; it must be specified as the
INPUT parameter value in the build processor
parameter list.

The build processor writes the object modules
it generates to this file and the object
library generator uses it as input when
combining the modules with the object library.

D-2 Professional Programming Environment Revision A

PPE Catalog Structure

The .NODES.LOAD.$OBJECT LIBRARY.RUN FILES subcatalog contains any
imported run files and the following PPE-created files:

$ LOADMAP Default load map file. If no other file is
specified by the LOAD MAP program attribute,
the load map generated by the run (if any) is
written to this file. (A load map is generated
only if the appropriate options are specified
by the LOAD~P_OPTIONS program attribute.)

$ TERMINAL_OUTPUT File on which output written to $OUTPUT is
captured. The file can be viewed after the run
using EDIT RUN FILE.

To allow another PPE level to link to your PPE catalog, you must
permit the following file access to the owner of the other level.

Access File

Read $DESCRIPTION

Read, modify, and cycle
(plus APPLICATION
INFORMATION='I1')-

SOURCE LIBRARY

Read and execute .LOAD.$OBJECT LIBRARY.BUILD FILES.
$OBJECT_LIBRARY -

Control permission is required if the user wants PPE to delete low
cycles of source_libraries during transmits.

Assume that your environment catalog is the default catalog,
$USER.PROFESSIONAL ENVIRONMENT, and that the user name to which you
want to give access is FRED. You can create various file and
catalog permits that allow FRED to link to your level. Two examples
follow:

1. You can give FRED access to your level with the catalog permit:

create catalog permit, ••
catalog=$u~er.professional environment, group=user, ••
user=fred, •• -
access modes=(read, modify, cycle, control, execute), ••
share ~ode=none

With this permission, FRED can access all files at your level.
You can restrict access to files at your level by setting more
restrictive file permits on these files. For example, if you
want to allow only read access to the file $DESCRIPTION create
the following file permit:

create file permit, ••

Revision A

file=$u~er.professional environment.$description, ••
group=user, user=fred, access~odes=read, share mode=none

PPE Catalog Structure D-3

PPE Catalog Structure

2. You can give FRED access to individual files at your level with
the following SCL commands:

set_working_catalog, $user.professional_environment

create file permit, file=$description, group=user,
user=fred, access_modes=read, share mode=none

create_file_permit, file=source_library, group=-user,
user=fred, ••
access modes=(read, modify, cycle, control), ••
share_IDode=none, application_information='Il'

create file permit, ••
f=nodes.load.$object library.build files.$object library, ••

group=user, user~fred, access ;odes=(read, e~ecute) ••
share mode=none -

Note that the last file permit can be made only after a build
has occurred at your level. Otherwise, only the file permits
for the files $DESCRIPTION and SOURCE LIBRARY can be created,
and user name FRED can access only these files when linked to
your level.

D-4 Professional Programming Environment Revision A

PPE Function Key Summary E

The following is an alphabetical listing of the function key labels
and the operation performed by the corresponding function key.

Function
Key
Label

Assist

Back

BacTC

Banner

BFiles

Bkw

Revision B

Screen on
Which the
Label Appears

FSE session requested
from the Build Errors

All screens except
Environment Description

Screen Stack

All except Screen Stack

Deck List
Modification List

Build Errors
Build Files
Deck List
Environment Description
Library Lists
Modification List
Parameter List
Parameter List Library
Run Files
Screen Stack

PPE Operation

Displays the online manual
explanation of an error
message.

Returns to the preceding
screen on the screen stack.

Pops the screen stack to
display the PPE screen under
the cursor.

Displays the Banner screen.

Displays the Build Files
screen.

Repositions the list so that
the first object displayed
becomes the last object
displayed.

(Continued)

PPE Catalog Structure E-l

PPE Function Key Summary

(Continued)

Function
Key
Label

Bprocs

BuiD

Build

ChaBP

ChaCM

ChaDC

Create

Screen on
Which the
Label Appears

Build Errors
Build Files
Deck List
Environment Description
Library Lists
Modification List
Run Files
Tailor Options

Deck List

Deck List
FSE session

Build Processors

Modification List

Environment Description

Deck Creation
Modification Creation

Deck List
Modification List
Parameter List Library

PPE Operation

Displays the Build
Processors screen.

Builds each selected deck
(if the deck is expandable).

Builds all expandable decks
that have changed since the
last build.

Selects the build processor
used by subsequent builds.

Selects the modification
used by subsequent edit
sessions.

Selects the highest PPE
level whose contents are
included in displayed lists.

Executes the creation
request.

Displays the Deck Creation,
Modification Creation, or
Parameter List screen,
respectively.

(Continued)

E-2 Professional Programming Environment Revision B

e
(Continued)

Function
Key

e Label

Delete

DisREC

Down

e
EdiDT

EdiPL

Edit

EndM

Errors

Revision B

Screen on
Which the
Label Appears

Build Files
Deck List
Library Lists
Modification List
Run Files
Parameter List Library

FSE session requested
from the Build Errors
screen

Build Errors
Build Files
Deck List
Environment Description
Library Lists
Modification List
Parameter List
Parameter List Library
Run Files
Screen Stack

Build Processors

All screens except the
Banner or Screen Stack
screens

Build Errors
Deck Creation
Deck List

Build Files
Run Files

Build Errors
Deck List
Modification List

Deck List

PPE Function Key Summary

PPE Operation

Deletes the selected objects
from the list.

Displays the number of error
messages remaining in the
deck being edited.

Repositions the list so that
the object under the cursor
is the last object displayed.

Starts an FSE session to
edit the selected deck
template.

Displays the Parameter List
screen to edit the selected
parameter list for the
selected build processor.

Starts an FSE session to edit
the selected deck.

Displays the information in
the selected file.

Marks the last object in a
range of selected decks.

Displays the Build Errors
screen.

(Continued)

PPE Catalog Structure E-3

PPE Function Key Summary

(Continued)

Function
Key
Label

Export

ExtS

First

ForST

Fwd

Global

Help

Screen on
Which the
Label Appears

Build Files
Run Files

Build Errors
Deck List

Build Errors
Build Files
Deck List
Environment Description
Library Lists
Modification List
Parameter List
Parameter List Library
Run Files
Screen Stack

FSE session

Build Errors
Build Files
Deck List
Environment Description
Library Lists
110dification List
Parameter List
Parameter List Library
Run Files
Screen Stack

Parameter List Library

All screens

PPE Operation

Copies the file selected from
the list to another file
outside of PPE.

Copies the selected decks
from their nearest residence
in the higher levels of the
PPE hierarchy to your PPE
level and sets an interlock
on each deck.

Repositions the list so that
the beginning of the list is
displayed and the cursor is
on the first object in the
list.

Executes the source text
formatter.

Repositions the list so that
the last object displayed
becomes the first object
displayed.

Selects the parameter list
under the cursor as the
parameter list used by
subsequent builds.

Displays information about
the keyword under the cursor.

(Continued)

E-4 Professional Programming Environment Revision B

(Continued)

Function
Key
Label

Home

Import

Insert

Last

LLists

Locate

Revision B

Screen on
Which the
Label Appears

All screens except
the Banner screen

Build Files
Run Files

Environment Description

Library Lists

Build Errors
Build Files
Deck List
Environment Description
Library Lists
Modification List
Parameter List
Parameter List Library
Run Files
Screen Stack

Build Errors
Build Files
Build Processors
Deck List
Environment Description
Modification List
Run Files
Tailor Options

Deck List
Modification List

PPE Function Key Summary

PPE Operation

Positions the cursor at the
beginning of the home line.

Copies a file from outside of
PPE to a file in the Build
Files or Run Files
subcatalog.

Combines the specified SCU
source library outside of
PPE with the PPE source
library at this level. No
interlocks are set.

Inserts a blank list entry
before the list entry under
the cursor.

Repositions the list so that
the end of the list is
displayed and the cursor is
on the last object in the
list.

Displays the Library Lists
screen.

Searches the list for the
first name containing the
string of characters and
positions the cursor on that
name.

(Continued)

PPE Catalog Structure E-S

PPE Function Key Summary

(Continued)

Function
Key
Label

Lookup

Lower

Mark

NxtErr

PLists

Print

Quit

Raise

Refrsh

Reset

Screen on
Which the
Label Appears

FSE session

Deck List
Environment Description
Modification List

Build Errors
Deck List
Modification List

FSE session

All screens except
Banner, Screen Stack,
and Parameter List

Build Files
Run Files

All screens

Deck List
Environment Description
Modification List

All screens

Parameter List

PPE Operation

Searches for the word under
the cursor in the index of
the online manual for the
language and, if found,
displays the associated
online manual screen.

Lowers the display ceiling
one level.

t1arks the first obj ect in a
range of selected decks.

Locates the next highlighted
error message; deletes the
current highlighted error
message.

Displays the Parameter List
Library screen.

Prints the selected file
using the site-provided
PRINT command; otherwise,
the standard SCL PRINT FILE
command is used.

Ends the PPE session. Your
next PPE session will begin
where this one ends.

Raises the display ceiling
one level.

Clears and replots the PPE
screen.

Sets the parameter under the
cursor to its default value.

(Continued)

I E-6 Professional Programming Environment Revision B

- (Continued)

Function
Key - Label

RFiles

Run

SCUObj

Skip

Stack

Tailor

TraS

UnMark

Revision B

Screen on
Which the
Label Appears

Deck List
Modification List

Run Files

Deck List
Environment Description
Modification List

FSE session

All screens except
Banner and Screen Stack

Build Errors
Build Files
Build Processors
Deck List
Environment Description
Library Lists
Modification List
Run Files

Deck List

Build Errors
Deck List
Modification List

PPE Function Key Summary

PPE Operation

Displays the Run Files
screen.

Loads and executes the
product.

Displays the Deck List or
Modification List screen.

Locates the next line with
an error. Deletes all error
messages associated with the
same source line as the
currently highlighted
message.

Displays the Screen Stack
screen.

Displays the Tailor Options
screen.

Transmits the selected
decks, copying them to the
next higher PPE level and
deleting them from the
lowest level in which it
resides.

Removes all marks from the
list.

(Continued)

PPE Catalog Structure E-7

PPE Function Key Summary

(Continued)

Function
Key
Label

Undo

Up

Screen on
Which the
Label Appears

Build Files
Deck List
Library Lists
Modification List
Run Files
Parameter List Library

Build Errors
Build Files
Deck List
Environment Description
Library Lists
Modification List
Parameter List
Parameter List Library
Run Files
Screen Stack

PPE Operation

Removes the effect of the
last logical deletion
operation, restoring the
logically deleted objects.

Repositions the list so that
the object under the cursor
is the first object
displayed.

E-8 Professional Programming Environment Revision B

Using PPE

This chapter describes some procedures that can help you use PPE.
These procedures include:

• Moving existing SCU based software to a PPE hierarchy

• Using PPE to begin a new project

• Using NOS/VE from within PPE

• Direct use of SCU

• Customizing PPE function key assignments

F

This chapter does not describe how to perform the PPE operations.
See chapter 3, PPE Operations, for descriptions of how to perform
the primary PPE operations. See chapter 4, PPE Quick Reference, for
comprehensive descriptions of all PPE screens and commands. See
appendix E, PPE Function Key Summary, for a description of all
default function key labels and their use.

Moving Existing SCU Based Software
to a PPE Hierarchy

The following steps show how to move existing SCU based software
into PPE environment catalog hierarchies.

1. Divide your software into categories. Make sure that each
category is a managable size. If a category is too large to
manage, subdivide it until all subdivisions are managable. Once
you have decided how to categorize the software, clear all deck
interlocks and combine the source text for each category into an
SCU library reserved for that category.

The most common method of division is by product. For example,
if your site offers an editor, a compiler, and a loader, combine
the source for each onto separate libraries as illustrated below.

Revision B

SOURCE
LIBRARY

edit file

SOURCE
LIBRARY

cybil

SOURCE
LIBRARY

loader

Usage Hints F-l.

Hoving Existing SCU Based Software to a PPE Hierarchy

2. Use PPE to create a unique environment catalog for each product
category. Each environment catalog is the topmost level of the
product category environment catalog hierarchy. Import the
source library for the product category into its environment
catalog using the IMPORT SOURCE LIBRARY command from the
Environment Description screen.- See Chapter 4, PPE Quick
Reference, for information about the Environment Description
screen.

3. After importing a source library, specify information
identifying the level and the owner of its environment catalog
on the Environment Description and Tailor Options screens. For
example. specify the following information for each environment
catalog created:

• A descriptive name for the level, like MASTER. TOP. or
INTEGRATION. These names indicate that the catalog is the
topmost level of its hierarchy.

• The build processor. Options are NOS/VE COBOL, CYBIL,
FORTRAN, and VECTOR FORTRAN.

• The owner of the level.

• An interlock value that uniquely identifies the owner.

• The build defaults.

• The run defaults.

Since each SCU library imported into an environment catalog from
existing software belongs at the topmost level of its PPE
environment catalog hierarchy, the This level is linked to:
field of the Environment Description screen should be left empty.

For example, create an environment catalog for the CYBIL
compiler called CYBIL INTEGRATION. Then import the CYBIL source
library into CYBIL INTEGRATION. The environment catalog
structure for the CYBIL INTEGRATION environment catalog
hierarchy appears similar to the following:

CYBll
INTEGRATION

SOURCE
LIBRARY

cybil

• F-2 Professional Programming Environment Revision B

Moving Existing SCU Based Software to a PPE Hierarchy

Initially, no other environment catalogs are linked to
CYBIL INTEGRATION.

4. Use the NOS/VE commands CREATE_FILE_PERMIT and
CREATE CATALOG PERMIT to create the permits for each environment
catalog that needs to extract source from the topmost catalog.
These permits allow the members of the project to link their
environment catalogs to the topmost catalog, thus forming a PPE
environment catalog hierarchy. See appendix D, Environment
Catalog Structure, for more information about environment
catalog hierarchies.

For example, if Fred and Martha belong to the CYBIL project,
create file permissions allowing them to link their environment
catalogs to the CYBIL INTEGRATION catalog by executing the
following commands: -

set_working_catalog $user.cybil_integration

create file permit file=$description group=user
user=(fred,martha) ••
access modes=read share mode=none

create file permit file=source library group=user
user=(fred,martha) •• -
access modes=(read, modify, cycle, control) ••
share_mode=none application_information='Il'

create file permit ••
file=nodes.load.$object library. build files.$object library
group=user user=(fred,m~rtha) access_modes=(read, execute) ••
share mode=none

Each analyst creates an environment catalog for each product
area maintained. Then each each analyst's catalog is linked to
the corresponding project level environment catalog or to the
highest level of the hierarchy. Catalog and file permits are
not required for the analyst's environment catalog since it is
the lowest level of the environment catalog hierarchy.

For example, if Martha is responsible for the front end of the
CYBIL compiler, she would create the environment catalog
FRONT_END. If Fred is responsible for the code generator for
CYBIL, he would create the environment catalog CODE GENERATOR.
Using the permissions established above, they would-link their
catalogs to the CYBIL INTEGRATION catalog, creating an
environment catalog hierarchy. Since Martha and Fred are at the
bottom of the hierarchy, they do not need to establish permits
to their environment catalogs.

Revision B Usage Hints F-3.

Moving Existing SCD Based Software to a PPE Hierarchy

The CYBIL INTEGRATION environment catalog hierarchy appears
similar to the following:

CYBIL
INTEGRATION

SOURCE
LIBRARY

cybil

1
I I

FRONT END CODE GENEATOR
Martha -Fred

SOURCE SOURCE
LIBRARY LIBRARY

empty empty

Fred and Martha can now extract decks from the CYBIL INTEGRATION
catalog, update the decks in their environment catalogs, and
transmit the changed source back to the CYBIL INTEGRATION
catalog.

Project leaders desiring control over which modifications to a
product are transmitted to the highest level can create an
intermediate environment catalog to which all project members must
transmit their code. This catalog can be linked to the project
level catalog or the top most catalog in the hierarchy. Then the
project leader can select which modifications to send to the highest
level of the hierarchy. File and catalog permits must be created
for the intermediate catalog to allow project members to link their
catalogs to it.

More than one project level environment catalog can be created.
When this is done, each level typically represents some logical
division of the work done on the product. For example, a project
responsible for a compiler might divide the work into the subareas
"front end" and "code generator". Thus modifications to these areas
are controlled separately •

• F-4 Professional Programming Environment Revision B

Using PPE to Begin a New Project

Using PPE to Begin a New Project

There are many ways to begin a new project using PPE. The method
you use is largely dependent on the number of analysts initially
involved at the start of the project and how quickly they will need
to share source and object code.

On a project starting with one or two analysts, you might elect to
create an environment catalog for each analyst. These analysts then
work independently of each other (avoiding duplication of deck
names, variable names, and so forth) until they need to share
resources. This approach requires analysts who work well together
and who do not need to share resources.

For example, if Fred and Martha are beginning a new project, each
would create an environment catalog from which to begin the
project. The catalogs might appear similar to the following:

Analyst
level FREDS

UNTESTED
CODE

MARTHAS
UNTESTED

CODE

When the project requires more coordination among analysts, one or
more project level environment catalogs can be created. Then each
analyst's catalog can be linked to a project level catalog, the
source from which is transmitted to the project level catalog. All
further work on the project occurs within the project environment
catalog hierarchy.

For example, two project level catalogs and an additional member may
be required to continue Fred and Martha's project. The environment
catalog hierarchy that results from linking these environment
catalogs might appear similar to the following:

Project
level

Analyst
level

Revision B

UNIT
TESTED
CODEl

FREDS
UNTESTED -CODE

I
MARTHAS
UNTESTED--CODE

UNIT
TESTED

CODEl

I
I

GEORGES
UNTESTED--CODE

Usage Hints F-5.

Using PPE to Begin a New Project

Development continues at this stage of the project until enough of
the product is created and tested to bring in system integrators.
Then create a top most integration level environment catalog and
link the project level catalogs to it. Transmit the project level
source to the new top level of the environment catalog hierarchy.
At this point, the structure of the new project is indistinguishable
from that of a project that began using PPE after the maintainence
phase. Developers can extract, edit, and transmit decks as required
to finish the project. If more project levels or more analysts are
required, additional environment catalogs can be created and linked
to the hierarchy.

The hierarchy that results from linking the project level catalogs
to a top level integration catalog is similar to the following:

Integration
Level

Project
Level

Analyst
Level

UNIT
TESTED

CODE1

FREDS
UNTESTED

-
CODE

SYSTEM -
TESTED

CODE-

MARTHAS
UNTESTED--CODE

• F-6 Professional Programming Environment

I
UNIT

TESTED
CODE1

I
I

GEORGES
UNTESTED-

-
CODE

Revision R

Using PPE to Begin a New Project

A project starting with many analysts who need to share resources in
the near future should elect to create environment catalogs from the
top down as described in the discussion on maintaining existing seu
based software. The source libraries in this case would all be
initially empty. They become filled as source is created and
transmitted up the hierarchy. As analysts join and leave the
project, new environment catalogs are linked to and separated from
the environment catalog hierarchy.

A project starting with a full environment catalog hierarchy might
start with a hierarchy that appears similar to the following:

Integration
Level

Project
Level

Analyst
Level

Revision B

UNIT
TESTED
CODEl

ANALYST1
-

UNTESTED -
CODE

SYSTEM -
TESTED

CODE-

ANALYST2
UNTESTED

CODE

I
UNIT

TESTED
CODEl

I
I

ANALYST3 - -
UNTESTED - -

CODE

Usage Hints F-7.

Using NOS/VE From Within PPE

Using NOSjVE From Within PPE
All NOS/VE commands available prior to starting a PPE session are
also available during the PPE session. To execute a NOS/VE command
from within a PPE session, move the cursor to the home line of the ~
screen, type the command, and press the carriage-return key. ~

Command utilities such as CREATE OBJECT LIBRARY can be executed from
within PPE. While you are uSing-a command utility, it controls the
terminal; on exit from the utility, PPE regains control of the
terminal.

A NOS/VE command executed from the home line performs in the style
communicated to NOS/VE through the CHANGE_INTERACT ION_STYLE
command. If you set the interaction style to SCREEN and execute
EDIF $user.xyz on the home line, the NOS/VE File Editor comes up in
full-screen mode. If you execute a command that is not a
full-screen command and the command causes NOS/VE to write data to
the terminal, the data is displayed. A prompt then appears
requesting you to press NEXT. Press the carriage-return key to
return to PPE.

Regardless of interaction style, if the status parameter of a NOS/VE
command executed from the home line is not specified and the command
terminates abnormally, PPE displays the abnormal status in a window
after it regains control of the terminal.

To facilitate the creation and maintenance of files contained in the
environment catalog, PPE manipulates the working catalog. The
working catalog is set to the environment catalog when you view most
of the screens in the PPE screen hierarchy. The exceptions are the
Build Files and Build Errors screens, which are set to the
BUILD FILES subcatalog and the Run Files screen which is set to the
RUN FILES subcatalog. Therefore, if the environment catalog is
$USER.XYZ, the Build Files screen is displayed, and you execute the
command DISPLAY OBJECT LIBRARY $OBJECT LIBRARY on the home line of
the screen, the-contents of the object-library
$USER.XYZ.NODES.LOAD.$OBJECT LIBRARY.BUILD FILES.$OBJECT LIBRARY are
displayed. See Appendix D, PPE Catalog Structure, for information
about the PPE catalog structure.

Direct Use of SCU
PPE uses the NOS/VE Source Code Utility to provide many of its
features. As a result of this usage, an SCU session is active the
entire time PPE runs. All commands issued by you or PPE interact
with the SCU source library contained in the environment catalog.

Although all SCU commands are available to you from the PPE home
line, the END LIBRARY and USE LIBRARY SCU commands should not be
executed because they may interfere with PPE. Direct use of these
commands can cause a source code library PPE is interacting with to
differ from that which the SCU session is interacting with.
Differing source libraries for PPE and SCU can cause errors to occur •

• F-8 Professional Pro~rammin~ Environment Revision B

Customizing Function Key Assignments

Much of the value of PPE lies in its ability to automatically
interact with the proper source code libraries. Avoid using
END LIBRARY and USE LIBRARY to guarantee that this value is
preserved.

Customizing Function Key Assignments
PPE uses automatic menu assignment to associate commands with
particular terminal key sequences. A terminal key sequence is
called a function key, and the function key labels at the bottom of
a PPE screen are called the menu items. The collection of menu
items is called the screen menu.

For any terminal, the primary goals of the menu assignment are to
associate as many PPE commands as possible with function keys and to
keep the function key assignments as consistent as possible from
screen to screen. Unfortunately, these goals can conflict,
resulting in one or more commands with function key assignments that
vary from screen to screen.

The PPE command to function key assignment variation is controlled
by customizing the PPE function key assignments. You can assign
commands to particular function keys and display menu items with
labels different from those provided by PPE. The information about
function key assignments is stored in a message module. All message
modules are stored in the object library $SYSTEM.OSF$COMMAND LIBRARY
and the name of a message module is given by piM$natural language,
where pi represents the product identifier and natural l;nguage is
the name of your natural language. You must supply the product
identifier and natural language to select a message module. For the
PPE function key assignment menu, the product identifier is SW and
the natural language is US_ENGLISH.

To obtain a file containing the English PPE message module, execute
the following commands:

create object library
add module m=swm$us english l=$system.osf$command library
generate library l=mm file f=message module -
edit_file mm_file - -

MM FILE is a file that contains CREATE OBJECT LIBRARY subcommands
specifying the PPE menu item labels and function key assignments.
You edit MM_FILE to change function key assignments and menu item
labels. After editing MM FILE, use it to generate an object module
which you add to the comm;nd list. The changed function key
assignments and menu labels become effective on entry to PPE.

Revision B Usage Hints F-9.

Customizing Function Key Assignments

For example, to force the EDIT DECK command on the Deck List screen
to appear on function key Fl with the label Modify, edit MM FILE as
follows:

1. Change the following lines in till FILE from:

CREATE APPLICATION MENU NAME=DECK LIST

CREATE MENU ITEM CLASS=~Actions~ SHORT LABEL=~ Edit ~

LONG LABEL=7Edit Deck~

•• to the following lines assigning the EDIT DECK command to
function key Fl and changing the short label-to Modify from Edit:

CREATE APPLICATION MENU NAME=DECK LIST

CREATE MENU ITEM CLASS=~Actions~ SHORT_LABEL=~Modify~
LONG LABEL='Edit Deck~ KEY=Fl

2. After modifying the menu item, exit the editor and execute the
commands:

include file mm file
generate_library-l=my_ppe menus
quit
set_command_list a=my_ppe_menus

Upon entering PPE, the change you made assigns the EDIT DECK
function to key Fl with the label Modify on the Deck Li~t screen •

• F-IO Professional Programming Environment Revision B

Customizing Function Key Assignments

Although the function key assignments and menu labels can be
changed, the order of the menu items must remain unchanged. The
order of the menu items in the file determines which commands are
affected by your label and key assignment changes. If you change
the order of the CREATE MENU ITEM commands, the association of
commands to function keys is-also changed.

The automatic menu assignment operates on menu items for which no
key assignment is forced. This means that forcing some but not all
key assignments might result in undesired variations of function key
assignments from screen to screen.

Revision B Usage Hints F-ll.

Index

c
carriage-return key 2-6
catalog 1-4; A-l; D-l

hierarchy 1-3; D-l
path 2-9
permit D-3
structure D-l

CDCNET 2-4
ceiling
CHABP
CHACM
CHADC
CHAGPL

3-14;
2-10.4;
4-35
4-35

4-36

4-11, 61, 66
4-34

CHANGE BUILD PROCESSOR 2-10.4; 4-34
CHANGE-CURRENT MODIFICATION 4-35
CHANGE-DISPLAY CEILING 4-35
change-function key assignments F-9
CHANGE GLOBAL PARAMETER LIST 4-36
CHANGE-TO DEFAULT 4-36
changed decks 3-23
CHATD 4-36
CLEAR 4-36
CLEAR SCREEN 4-36
CLES 4-36
command format 4-30
Command List Entry 4-16
commands

BACK 3-3, 8, 11; 4-31
BACK TO CONTEXT 4-31
BACK-TO-PREVIOUS CONTEXT
BACTG -3-3, 8, 11; 4-31
BACTPC 4-31
BANNER 4-45
BEGIN MARK 3-16; 4-32
BEGM 3-16; 4-32
BFILES 4-46
BKW 3-15; 4-63
BPROCS 2-10.3; 3-12; 4-46
BUICD 3-23; 4-32
BUID 3-22; 4-33
BUILD 3-23; 4-32

3-3, 8, 11; 4-31

BUILD CHANGED DECKS 3-23; 4-32
BUILD DECKS -3-22; 4-33
CHABP 2-10.4; 4-34
CHACM 4-35
CHADC 4-35
CHAGPL 4-36
CHANGE BUILD PROCESSOR 2-10.4; 4-34
CHANGE-CURRENT MODIFICATION 4-35
CHANGE-DISPLAY-CEILING 4-35
CHANGE-GLOBAL PARAMETER LIST 4-36
CHANGE-TO DEFAULT 4-36
CHATD 4-=36

elndex-2 Professional Programming Environment Revision B

commands (continued)
CLEAR 4-36
CLEAR SCREEN 4-36
CLES 4-36
CREATE 3-7, 10, 12; 4-37, 38
CREATE DECK 3-10, 12; 4-37
CREATE-MODIFICATION 3-7; 4-38
CREATE-PARAMETER LIST 4-38
CRED -3-10, 12;-4-37
CREM 3-7; 4-38
CREPL 4-38
DELBF 4-39
DELD 4-40
DELETE 4-39, 40, 42, 43, 44, 45
DELETE BUILD FILE 4-39

DELETE-IDENTICAL ERRORS 3-25, 26, 27; 4-41
DELETE-LIST ENTRY 4-42
DELETE-MODIFICATION 4-43
DELETE PARAMETER LIST 4-44
DELETE RUN FILE 4-45
DELlE 3-27; 4-41
DELLE 4-42
DELM 4-43
DELPL 4-44
DELRF 4-45
DISB 4-45
DISBE 3-23, 24; 4-46
DISBF 4-46
DISBP 2-10.3; 3-12; 4-46
DISLL 4-46
DISPLAY BANNER 4-45
DISPLAY-BUILD ERRORS 3-23, 24; 4-46
DISPLAY-BUILD-FILES 4-46
DISPLAY-BUILD-PROCESSORS 2-10.3; 3-12; 4-46
DISPLAY-LIBRARY LISTS 3-28; 4-46
DISPLAY-PARAMETER LIST LIBRARY 4-47 - --DISPLAY REMAINING ERROR COUNT 3-27; 4-47
DISPLAY-RUN FILES- 4-48
DISPLAY-SCREEN STACK 3-3; 4-48
DISPLAY-SCU OBJECT LIST 3-6, 9, 13, 18, 21, 24, 32; 4-48
DISPLAY-TAILOR OPTIONS 2-11; 4-49
DISPLL 4-47
DISREC 3-27; 4-47
DISRF 4-48
DISSOL 3-6, 9, 13, 18, 21, 24, 32; 4-48
DISSS 3-3; 4-48
DISTO 2-11; 4-49
DOWN 3-16; 4-61
EDIBF 4-49
EDID 3-18, 19, 25; 4-50
EDIDT 3-13; 4-50
EDIPL 4-51
EDIRF 3-31; 4-52

Index

Revision B Professional Programming Environment Index-3.

Index

commands (continued)
EDIT 3-18, 19, 20, 25; 4-49, 50
EDIT BUILD FILE 4-49
EDIT-DECK 3-18, 19, 25; 4-50
EDIT DECK TEMPLATE 3-13; 4-50
EDIT-PARAMETER LIST 4-51
EDIT-RUN FILE 3-31; 4-52
END J1ARK- 3-17; 4-53
ENDM 3-17; 4-53
ENDMRK 3-17; 4-53
ENTER PPE 2-5
ENTP 2-5
ERRORS 3-24; 4-46
EXPBF 4-53
EXPEM 3-26; 4-53
EXPLAIN ERROR MESSAGE 3-26; 4-53
EXPORT 4-53~ 54
EXPORT BUILD FILE 4-53
EXPORT-RUN FILE 4-54
EXPRF 4-54
EXTRACT SOURCE 4-54
EXTS 4-54
FIRST 3-16; 4-62
FORMAT SOURCE TEXT 3-20; 4-55
FORST 3-20;-4-55
FWD 3-15; 4-63
GLOBAL 4-36
HELP 4-67
HOMC 4-56
HOME 4-56
HOME CURSOR 4-56
IMPBF 4-56
IMPORT 3-4; 4-56, 57
IMPORT BUILD FILE 4-56
IMPORT-RUN FILE 4-56
IMPORT-SOURCE LIBRARY 3-4; 4-57
IMPRF 4-56-
IMPSL 3-4; 4-57
INSERT 4-57
INSERT LIST ENTRY 4-57
INSLE - 4-57
LAST 3-16; 4-62
LLISTS 4-46
LOCATE 4-58, 59
LOCATE DECK 4-58
LOCATE ~lODIFICATION 4-59
LOCATE NEXT ERROR 3-25, 26; 4-60
LOCD -4-58-
LOCM 4-59
LOCNE 3-25, 26; 4-60
LOOK 3-19; 4-60
LOOKUP 3-19; 4-60
LOOKUP KEYWORD 3-19; 4-60

• Index-4 Professional Programming Environment Revision B

Index

A

accessing online manuals B-2
AFTER USER 2-13
Alternate Source Libraries 4-15
ASSIST 3-26; 4-53
attributes 3-29

B
BACK 3-3, 8, 11; 4-31
BACK TO CONTEXT 4-31
BACK-TO-PREVIOUS CONTEXT 3-3, 8, 11; 4-31
BACTG -4-31
BACTPC 3-3, 8, 11; 4-31
BANNER 4-45
Banner screen
BEFORE USER

2-6; 4-2
2-13

BEGIN MARK 3-16; 4-32
BEGM 3-16; 4-32
BFILES 4-46
BKW 3-15; 4-63
BPROCS 2-10.3; 3-12
BUICD 3-23; 4-32
BUID 3-22; 4-33
build 1-7; 2-10.3; 3-21, 23; 4-32, 33; A-I
BUILD 3-23; 4-32
BUILD CHANGED DECKS 3-23; 4-32
BUILD DECKS -3-22; 4-33
build-defaults 2-12; A-I
Build Errors screen 4-3
build failure 3-23
Build Files screen 4-4
build processor 1-3, 8; 2-10.3, 12; A-I
Build Processor field 2-10.3
Build Processors SCreen 2-10.4; 4-6
building changed decks 3-23
building the product 1-7; 3-21, 23

Revision B Professional Programming Environment Index-I.

Index

c
carriage-return key 2-6
catalog 1-4; A-I; D-l

hierarchy 1-3; D-l
path 2-9
permit D-3
structure D-l

CDCNET 2-4
ceiling
CHABP
CHACM
CHADC
CHAGPL

3-14;
2-10.4;
4-35
4-35

4-36

4-11, 61, 66
4-34

CHANGE BUILD PROCESSOR 2-10.4; 4-34
CHANGE-CURRENT MODIFICATION 4-35
CHANGE-DISPLAY-CEILING 4-35
change-function key assignments F-9
CHANGE GLOBAL PARAMETER LIST 4-36
CHANGE-TO DEFAULT 4-36
changed d-;cks 3-23
CHATD 4-36
CLEAR 4-36
CLEAR SCREEN 4-36
CLES - 4-36
command format 4-30
Command List Entry 4-16
commands

BACK 3-3, 8, 11; 4-31
BACK TO CONTEXT 4-31
BACK-TO-PREVIOUS CONTEXT
BACTC -3-3, 8, 11; 4-31
BACTPC 4-31
BANNER 4-45
BEGIN MARK 3-16; 4-32
BEGM 3-16; 4-32
BFILES 4-46
BKW 3-15; 4-63
BPROCS 2-10.3; 3-12; 4-46
BUICD 3-23; 4-32
BUID 3-22; 4-33
BUILD 3-23; 4-32

3-3, 8, 11; 4-31

BUILD CHANGED DECKS 3-23; 4-32
BUILD-DECKS 3-22; 4-33
CHABP 2-10.4; 4-34
CHACM 4-35
CHADC 4-35
CHAGPL 4-36
CHANGE BUILD PROCESSOR 2-10.4; 4-34
CHANGE-CURRENT MODIFICATION 4-35
CHANGE-DISPLAY-CEILING 4-35
CHANGE-GLOBAL PARAMETER LIST 4-36
CHANGE-TO DEFAULT 4-36
CHATD - 4-=-36

eIndex-2 Professional Pro~rammin2 Environment Revision B

commands (continued)
LOWDC 4-61
LOWER 4-61
LOWER DISPLAY CEILING 4-61
MARK 3-16; 4-32
MOVE TO BOTTOM 3-16; 4-61
MOVE-TO-FIRST 3-16; 4-62
MOVE-TO-LAST 3-16; 4-62
MOVE-TO-TOP 3-15; 4-62
MOVTS -3-16; 4-61
!10VTF 3-16; 4-62
MOVTL 3-16; 4-62
MOVTT 3-15; 4-62
NXTERR 3-26; 4-60
PAGB 3-15; 4-63
PAGE BACKWARD 3-15; 4-63
PAGE FORWARD 3-15; 4-63
PAGF- 3-15; 4-63
PLISTS 4-47
PRIBF 4-64
PRINT 3-30; 4-64, 65
PRINT BUILD FILE 4-64
PRINT RUN FILE 3-31; 4-65
PRIRF- 3=31; 4-65
QUI 4-65
QUIS 4-65
QUIT 4-65
QUIT_SAVE 4-65
RAIDC 3-14; 4-66
RAISE 3-14; 4-66
RAISE DISPLAY CEILING 3-14; 4-66
REFRSH 4-36
REMU 3-17; 4-66
REMOVE MARK 3-17; 4-66
REQH -4-67
REQUEST HELP 4-67
RESET -4-36
RFILES 4-48
RUN . 4-68
SCUOBJ 3-6, 9, 13, 18, 21, 24, 32; 4-48
SKILE 3-27; 4-70
SKIP 3-27; 4-70
SKIP LINE ERRORS 3-25, 26, 27; 4-70
STACK 3-3; 4-48
TAILOR 2-11; 4-49
TOP 3-15; 4-62
TRANSMIT SOURCE 3-31; 4-70
TRAS 3=31; 4-70
UNDLD 4-72
UNDO 2-13; 4-39, 40, 42, 43, 44, 45, 72
UNDO LAST DELETE 2-13; 4-39, 40, 42, 43, 44, 45, 72
UNMARK 3-17; 4-66

compilation errors 1-8; 3-23

Index

Revision B Professional Programming Environment Index-5.

Index

compile 1-7, 8; 3-21, 22
compiler diagnostics 3-25
CONTAINS DECK DIRECTIVES 3-11
*COPY 1-3
*COPYC 1-3
correcting errors 3-23, 24; 4-60
CREATE 3-7, 10, 12; 4-37, 38
CREATE DECK 3-10, 12; 4-37
CREATE-MODIFICATION 3-7; 4-38
creating

decks 3-4, 8,
modifications
parameter lists
software in PPE

11, 13;
3-5, 8;

4-20,
F-1, 5

4-37
4-9, 37; A-2
38

CRED 3-10, 12; 4-37
CREM 3-7; 4-38
CREPL 4-38
current modification 4-4, 12, 19
customizing function keys F-9

D
deck 1-3; A-2

building 1-8, 9; 3-21, 23; 4-32, 33
creating 3-5; 4-37
deleting 4-40
editing 3-17
extracting 1-4; 3-13, 18
importing 3-4
transmitting 1-5; 3-32; 4-70

Deck Creation screen 3-10; 4-8
Deck List screen 3-9, 22; 4-10
deck template 3-12, 13
decks 1-3
DELBF 4-39
DELD 4-40
delete

deck 4-40
diagnostic messages 3-26, 27
logical 2-13; 4-29, 39, 40, 42, 43, 44, 45
modification 4-43
object 2-12, 13; 4-29, 39, 40, 42, 43, 44, 45
parameter list 4-44
permanent 2-13; 4-29, 39, 40, 42, 43, 44, 45
physical 2-13; 4-29, 39, 40, 42, 43, 44, 45
recoverable 2-13; 4-29, 39, 40, 42, 43, 44, 45
run file 4-45

DELETE 4-39, 40, 42, 43, 44, 45
DELETE BUILD FILE 4-39
DELETE-DECK 4-40
DELETE=IDENTICAL_ERRORS 3-25, 26, 27; 4-41
DELETE LIST ENTRY 4-42

eIndex-6 Professional Programming Environment Revision B

DELETE MODIFICATION 4-43
DELETE-PARAMETER LIST 4-44
delete protectio~ 2-12; 4-29, 39, 40, 42, 43, 44, 45
DELETE RUN FILE 4-45
DELlE - 3-27; 4-41
DELLE 4-42
DELM 4-43
DELPL 4-44
DELRF 4-45
$DESCRIPTION D-1, 3
diagnostic messages 3-25, 26; A-2
DISB 4-45
DISBE 3-23, 24; 4-46
DISBF 4-46
DISBP
DISLL

2-10.3; 3-12; 4-46
4-46

DISPLAY BANNER 4-45
DISPLAY-BUILD ERRORS
DISPLAY-BUILD-FILES

3-23, 24; 4-46
4-46

DISPLAY BUILD-PROCESSORS 2-10.3; 3-12; 4-46
display ceiling 4-11; A-2
DISPLAY LIBRARY LISTS 3-28; 4-46
DISPLAY-PARAMETER LIST LIBRARY 4-47
DISPLAY-REMAINING-ERROR COUNT 3-27; 4-47
DISPLAY-RUN FILES- 4-48
DISPLAY SCREEN STACK 3-3; 4-48
DISPLAY-SCU OBJECT LIST 3-6, 9, 13, 18, 21, 24, 32; 4-48
DISPLAY-TAILOR OPTIONS 2-11; 4-49
DISPLL 4-47-
DISREC 3-27; 4-47
DISRF 4-48
DISSOL 3-6, 9, 13, 18, 21,
DISSS 3-3; 4-48
DISTO 2-11; 4-49
DOWN 3-16; 4-61

E
EDIBF 4-49
EDID 3-18, 19, 25; 4-50
EDIDT 3-13; 4-50
EDIPL 4-51
EDIRF 3-31; 4-52
EDIT 3-18, 19, 25, 31; 4-50
EDIT BUILD FILE 4-49
EDIT DECK 3-18, 19, 25
EDIT-DECK TEMPLATE 3-13
EDIT-PARAMETER LIST 4-51
EDIT RUN FILE 3-31; 4-52
editing a deck 3-17, 18, 25
editing defaults 2-13; 4-29
editor prolog 2-13

24, 32; 4-48

Index

Revision B Professional Programming Environment Index-7.

Index

END MARK 3-17; 4-53
ENDM 3-17; 4-53
ENDMRK 3-17; 4-53
ENTER PPE 2-5
ENTP 2-5
environment 1-3; A-3
Environment Description screen
error level 3-30; 4-69
error level message 3-30
errors

build 3-23; 4-70
Build Errors screen 3-24
compilation 3-23
displaying 3-24; 4-70
execution 4-68
fixing 3-25, 26, 27; 4-60

ERRORS 3-24; 4-46
execute 3-27; 4-68
execution I-S; 3-27; 4-68; A-3
exiting PPE 2-15; 4-65

2-S; 4-12

expand decks 1-7; 3-11, 21, 22; A-3
$EXPAND ERRORS 4-33; D-l, 2
expandable 3-11; 4-9
EXPBF 4-53
EXPEM 3-26
explain 3-20
EXPLAIN ERROR MESSAGE 3-26 - -export

build file 4-6, 53
run file 4-54

EXPORT 4-53, 54
EXPORT BUILD FILE
EXPORT RUN FILE
EXPRF 4-54

4-53
4-54

extract 1-4; 3-14, 25; 4-54; A-3
EXTRACT SOURCE 4-54
extracting 1-4
extracting decks 1-4; 3-13, IS; 4-54
EXTS 4-54

F
failed build 3-23
file cycles 2-15; 3-33; 4-71
file path A-4
file permit D-3, 4
FIRST 3-16; 4-61
FORMAT SOURCE TEXT 3-20; 4-55
FORST - 3-20;-4-55
full-screen 1-1; 2-1; A-4
Full-Screen Debug 3-30

elndex-S Professional Pro~rammin~ Environment Revision B

Full-Screen Editor 3-17, 19; 4-50, 52
2-1, 2 full-screen terminal

function key 2-2, 3;
function key summary
FWD 3-15; 4-63

A-4
E-l

G
GLOBAL 4-36

H

HAS MULTIPLE PARTITIONS 3-11
help 2-7; 4-67
HELP 4-67
hierarchy A-4

catalog 1-3
level name 4-13
screen 3-1, 2

HOMC 4-56
HOME 4-56
HOME CURSOR 4-56

I

IMPBF 4-56
IMPORT 3-4; 4-56, 57
IMPORT BUILD FILE 4-56
IMPORT-RUN FILE 4-56
IMPORT-SOURCE LIBRARY 3-4; 4-57
importing -

decks 4-6, 57
files 3-11; 4-6, 56
source libraries 3-4; 4-57

IMPRF 4-56
IMPSL 3-4; 4-57
Initial source 3-11; 4-9
$INPUT SOURCE MAP 4-22, 33; D-1, 2
INSERT- 4-57-
INSERT LIST ENTRY 4-57
INSLE 4-57
INTERACTIVE DEBUG 1-9; 4-25, 28
interlock 1-4; 2-11; 3-5, 13, 32, 33; 4-40, 54; A-5

L

LAST 3-16;
leaving PPE
level 1-3,
level name

4-61
2-15; 4-65

4, 5; A-5
2-8; 4-13

Index

Revision B Professional Programming Environment Index-9.

Index

Library Lists screen
linking 2-9
linking to a hierarchy
list 3-15, 16; 4-61,
list entry 3-15, 16;
LLISTS 4-46
LOAD MAP OPTIONS 3-30
loader -1-9; 3-30

4-14

2-9; 4-13
62, 63
4-61, 62, 63

loading the product 3-30
$ LOADMAP 3-30; 4-69; D-1, 3
LOCATE 4-58, 59
LOCATE DECK 4-58
locate-diagnostic messages 3-26, 27
LOCATE MODIFICATION 4-59
LOCATE-NEXT ERROR 3-25, 26; 4-60
LOCD -4-58-
LOCM 4-59
LOCNE 3-26; 4-60
logically delete 2-13
LOOK 3-19; 4-60
looking up a topic 3-19, 25
LOOKUP 3-19; 4-60
LOOKUP KEYWORD 3-19; 4-60
LOWDC 4-61
LOWER 4-61
LOWER DISPLAY CEILING 4-61

M
maintaining software F-1
MARK 3-16; 4-32
marking 3-16; 4-32, 53, 66
marking a range 3-17; 4-32, 53
modification 1-3; A-5

creating 3-7; 4-16, 35
deleting 4-43

Modification Creation screen 3-7; 4-16
Modification List screen 3-6; 4-18
modification name 3-7; 4-35
MOVE TO BOTTOM 3-16; 4-61
MOVE-TO-FIRST 3-16; 4-62
MOVE-TO-LAST 3-16; 4-62
MOVE-TO-TOP 3-15; 4-62
moving a list 3-15, 16
MOVTB 3-16; 4-61
MOVTF 3-16; 4-62
MOVTL 3-16; 4-62
MOVTT 3-15; 4-62

elndex-10 Prnfp~~innRl Programming Environment Revision B

N
NAM/CCP 2-4
name A-5
naming your level
non-expandable decks
NONE 2-13

2-8
3-22

NORMAL
NXTERR

1-9; 4-25, 28
3-26

o
object 1-1

decks 1-3; 4-11, 13, 40, 48, 49
modifications 1-3; 4-11, 13, 43, 48, 49
parameter lists 3-26; 4-44, 47

object library 1-1, 9; 3-30; A-5
$OBJECT LIBRARY 4-71; D-l
object ;odule 3-22, 30; A-5
online manuals 3-19, 25, 26; 4-60
original-interlock 1-5
output 3-31; 4-6
$OUTPUT 3-30

e p
PAGB 3-15; 4-63
page 3-15, 16
PAGE BACKWARD 3-15; 4-63
PAGE FORWARD 3-15; 4-63
PAGF- 3-15; 4-63
parameter list A-6
Parameter List Library screen 4-22
Parameter List screen 4-20
path

catalog 2-9
file 3-4
screen 3-3

physically delete 2-12
PLISTS 4-47
PPE session 2-5
PPE usage 3-1; F-l
PRIBF 4-64
PRINT 3-31; 4-6, 64, 65
PRINT BUILD FILE 4-64
PRINT-RUN FILE 3-31; 4-65
printing 4-6, 64, 65
PRIRF 3-31; 4-65
processor 2-10.3

Index

Revision B Professional Programming Environment Index-lIe

Index

$PROCESSOR INPUT
$PROCESSOR=OUTPUT

4-22, 33; D-l, 2
4-22, 33; D-1, 2
3-27 product

program
program
Program

execution
attributes
library list
Library List

3-29
A-6

entry

Q
QUI 4-65
Qurs 4-65
QUIT 4-65
QUIT_SAVE 4-65

R
RAIDC 3-14; 4-66
raise 3-14; 4-66
RAISE 3-14; 4-66
RAISE DISPLAY CEILING 3-14;
raising the display ceiling
range 3-17
ranges 3-17
REFRSH 4-36
REMM 3-17; 4-66
REMOVE MARK 3-17; 4-66
removing marks 3-17
REQH 4-67
REQUEST HELP 4-67
RESET -4-36
RFILES 4-48
run 1-8, 9; 3-27; 4-68
RUN 4-68
run automatically 3-27
run defaults 2-12; 4-28, 68
Run Files screen 3-28; 4-24

4-15

4-66
3-14; 4-66

run purpose 2-12; 3-28, 30; 4-25, 28, 68

s
screen A-6
screen hierarchy 3-1, 2
screen path {3-3
Screen Stack screen 3-3; 4-26

• Index-12 Professional Pro~rammin~ Environment Revision B

screens
Banner 2-6; 4-2
Build Errors 4-3
Build Files 4-4
Build Processors 2-10.4; 4-6
Deck Creation 3-10; 4-8
Deck List 3-9, 22; 4-10
Environment Description 2-8; 4-12
Library Lists 4-14
Modification Creation 3-7; 4-16
Modification List 3-6; 4-18
Parameter List 4-20
Parameter List Library 4-22
Run Files 3-28; 4-24
Screen Stack 3-3; 4-26
Tailor Options 2-11; 4-27

SCU 1-2, 7; A-6
SCU objects

decks 1-3; 4-11, 13, 19, 48, 49; A-6
modifications 1-3; 4-11, 13, 19, 48, 49; A-6

SCUOBJ 3-6, 9, 13, 18, 21, 24, 32
SKILE 3-27; 4-70
SKIP 3-27; 4-70
SKIP LINE ERRORS 3-25, 26, 27; 4-70
source library 1-3, 8; A-7
SOURCE LIBRARY 1-3
source-lines 1-3; 3-8
source text 1-3; 3-8; A-7
source text expansion 3-21
STACK 3-3
starting PPE 2-5
starting procedure 1-9; 2-12; 3-30
STATUS parameter 4-30
sub-interlock 1-5

T
TAILOR 2-11
Tailor Options screen 2-11; 4-27
tailoring 2-11
terminal 2-1, 2
terminal definition 2-1, 2; A-7
$TERMINAL OUTPUT 3-30; 4-69; D-l, 3
termination error level 3-30
TOP 3-15; 4-61
topic lookup 3-19, 25
transmit 1-5; 3-32; 4-70
TRANSMIT SOURCE 3-32; 4-70
transmittal A-7
transmitting 1-5; 3-32
transmitting decks 1-5; 3-32
TRAS 3-32; 4-70

Index

Revision B Professional Programming Environment Index-I3-

Index

u
UNDLD 4-72
UNDO 2-13; 4-39, 40, 42, 43, 44, 45, 72
UNDO LAST DELETE 2-13; 4-39, 40, 42, 43, 44, 45, 72
UNMARK 3-17; 4-66
user defined prolog 2-13
User Prolog 4-30
using NOS/VE F-8
using PPE 3-1; F-1
Using SLU in PPE F-8

w
warning error level 3-30

• Index-14 Profe~sional Programming Environment Revision B

Professional Programming Environment for NOSIVE Usage 60486613 B

We would like your comments on this manual. While writing it, we made some assumptions abollt who
would use it and how it would be used. Your comments will help us improve this manual. Please
take a few minutes to reply.

Who Are You?

_ Manager
Systems Analyst or Programmer
Applications Programmer
Operator
Other _________ _

How Do You Use This Manual?

As an Overv iew
To learn the Product/System
For Comprehensive Reference
For Quick Look-up

Which Are Helpful to You?

Command and Function
Summaries

Related Manuals
Appendix

Online Quick Reference
Other ______ _

What programming languages do you use? _________________________ _

Which are helpful to you? Parameter Summary (inside cover) Related Manuals Page

Character Set Other ____________ .

How Do You Like This Manual? Check those that apply_

Yes Somewhat No

Is the manual easy to read (print size, page layout I and so on)?
Is it easy to understand?
Is the order of topics logical?
Are there enough examples?
Are the examples helpful? Too simple Too complex)
Is the technical informationaccurate'?
Can you easily find what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

Comments? If applicable, note page number and paragraph.

Check here if you want a reply Continue on other side

~
.-ame ___________________ Company _________________ _

Address __________________________ Date __________ _

___________________________ Phone No. ________ _

.lease send program listing and output if applicable to your comment.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN

POSTAGE WILL BE PAID BY ADDRESSEE

<S2>CONTI\OL DATA
Technology and Publications Division

Mail Stop: SVLl04
P.O. Box 3492
Sunnyvale, California 94088-3492

''''''
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

,
•

-............... __ ... -.... __ _.-. __ ._-_ --._-.-.----.--------._-----------------._ ... _--- .. _.---_. __ ._--_ _-_._---_.
fOLD fOlD
Comments (continued from other side)

,

•
•

