
BASIC
for NOSjVE

Usage

(52)
CONT~OL

DATA

60486313

BASIC
for NOSjVE

Usage

This product is intended for use only
as described in this document. Control
Data cannot be responsible for the
proper functioning of undescribed
features and parameters.

Publication Number 60486313

Iillenart1:~ml MamnnnalTIs

The following table lists all manuals that are referenced in this
manual or that contain background information:

Manual Title

BASIC Manuals:

BASIC for NOS/VE Usage
BASIC Summary

NOS/VE Manuals:

NOS/VE System Usage
NOS/VE Commands and Functions
NOS/VE Source Code Management Usage
NOS/VE Object Code Management Usage

Additional References:

Debug for NOS/VE Usage
Debug for NOS/VE Quick Reference
NOS/VE Diagnostic Messages
FORTRAN Version 1 for NOS/VE Language

Definition Usage
CYBIL for NOS/VE System Interface Usage
NOS/VE Accounting Analysis System Usage

Publication
Number

60486313
60486319

60464014
60464018
60464313
60464413

60488213
L60488218
60464613
60485913

60464115
60463923

Online
Title

BASIC

SCL

DEBUG
MESSAGES

~Copyright 1985, 1986, 1987, 1988 by Control Data Corporation.
All rights reserved.
Printed in the United States of America.

2 BASIC for NOS/VE Usage Revision E

System Version/ Product
Revision PSR level Version Date

A 1.1.3/644 1.0 October 1985
B 1.1.4/649 1.1 January 1986
C 1.2.1/664 1.2 July 1986
D 1.2.2/678 1.2 April 1987
E 1.3.1/700 1.3 April 1988

This revision:

This manual is reV1S10n E printed in April 1988. It documents BASIC
for NOS/VE at release level 1.3.1 and at PSR level 700.

One new feature is documented in this revision:

• Unit-measured application accounting using the BCPDAUA
subroutine. For a description, see the section titled
Unit-measured Application Accounting in chapter 9, Subroutines.

Changed features documented in this revision are the following:

• You can specify permanent file paths in BASIC programs. For
a description, see the section titled OPEN Statement in
chapter 13, Files, or the section titled Program Execution
in chapter 14, Compilation and Execution.

• Loader errors are automatically sent to the standard file
$ERRORS. For a description, see the section titled Program
Execution in chapter 14, Compilation and Execution.

• The STOP statement no longer automatically invokes the Debug
utility. You must now invoke the Debug utility before executing
a BASIC program. For a description, see the section titled STOP
Statement in chapter 6, Runtime Error Processing.

In addition, the revision includes several new glossary entries and
miscellaneous technical and editing corrections.

Revision E BASIC for NOS/VE Usage 3/4

Comrlt(2nm10

About This Manual ••

Introduction to NOS/VE BASIC •••••••••••••••••••••••••••••••••

Features •••
The NOS/VE BASIC Compiler ••••••••••••••••••••••••••••••••
The NOS/VE Environment •••••••••••••••••••••••••••••••••••

Program Structure ••

Routines ..•••..••.•..................••••.•.•••.•••••••••
Blocks and Lines •••
Statements and Identifiers •••••••••••••••••••••••••••••••
Reserved Words •••
BASIC Character Set ••••••••••••••••••••••••••••••••••••••
Termination Statements •••••••••••••••••••••••••••••••••••
Summary and Sample •••••••••••••••••••••••••••••••••••••••

Language Fundamentals ••

Constants
Data Type
Variables
Double-Precision Vestiges ••••••••••••••••••••••••••••••••

Expressions and Assignment •••••••••••••••••••••••••••••••••••

Expressions ••
Arithmetic Expressions •••••••••••••••••••••••••••••••••••
String Expressions •••••••••••••••••••••••••••••••••••••••
Relational Expressions •••••••••••••••••••••••••••••••••••
Logical Expressions ••••••••••••••••••••••••••••••••••••••
Assignment Statements ••••••••••••••••••••••••••••••••••••

Decision and Branching •••••••••••••••••••••••••••••••••••••••

GOTO Statement •••
GOSUB Statement ••
Line IF Constructions ••••••••••••••••••••••••••••••••••••
Block IF Constructions •••••••••••••••••••••••••••••••••••
Looping Structures •••••••••••••••••••••••••••••••••••••••
System Interface •••

9

1-1

1-1
1-2
1-3

2-1

2-1
2-4
2-8
2-9
2-11
2-13
2-14

3-1

3-1
3-8
3-14
3-19

4-1

4-2
4-4
4-7
4-8
4-10
4-13

5-1

5-2
5-5
5-9
5-14
5-20
5-31

Revision]) Contents j

Contents

Runtime Error Processing •••••••••••••••••••••••••••••••••••••

Error Processing Overview ••••••••••••••••••••••••••••••••
E RL Function •••
ERR Function •••
Runtime Diagnostic Format ••••••••••••••••••••••••••••••••
ON ERROR Statement •••••••••••••••••••••••••••••••••••••••
RESUME Statement •••
ERROR Statement ••
STOP Statement •••

6-1

6-2
6-9
6-11
6-12
6-14
6-15
6-17
6-18

User-Defined Functions ••••••••••••••••••••••••••••••••••••••• 7-1

Function Overview ••
Expression Functions •••••••••••••••••••••••••••••••••••••
Block Function Structure •••••••••••••••••••••••••••••••••
External vs. Internal Functions ••••••••••••••••••••••••••
COMMON Statement •••
Function Name Declaration ••••••••••••••••••••••••••••••••
Block Function Calls •••••••••••••••••••••••••••••••••••••
Block Function Parameters ••••••••••••••••••••••••••••••••

Mathematical Library Functions •••••••••••••••••••••••••••••••

Exponential Functions ••••••••••••••••••••••••••••••••••••
Trigonometric Functions ••••••••••••••••••••••••••••••••••
Number Characteristic Functions ••••••••••••••••••••••••••
Miscellaneous Functions ••••••••••••••••••••••••••••••••••
RANDOMIZE Statement ••••••••••••••••••••••••••••••••••••••

Subroutines ••••••••••••••••••••••••••• 0 •••••••••••••••••••••••

Subroutine Overview •••••••••••••••••••••••••••••••••• ~ •••
Subroutine Structure •••••••••••••••••••••••••••••••••••••
External vs. Internal Subroutines ••••••••••••••••••••••••
COMMON Statement •••
Subroutine Name Declaration ••••••••••••••••••••••••••••••
Subroutine Calls •••
Subroutine Parameters ••••••••••••••••••••••••••••••••••••
CALLX Statement ••
Unit-measured Application Accounting •••••••••••••••••••••

Input and Output •••

Interactive Input ••
Interior Data Sets •••••••••••••••••••••••••••••••••••••••
WIDTH Statement ••
PRINT Statement ••
PRINT USING Statement ••••••••••••••••••••••••••••••••••••
WRITE Statement ••
BEEP Statement •••

7-1
7-3
7-7
7-14
7-17
7-18
7-19
7-21

8-1

8-2
8-8
8-16
8-25
8-29

9-1

9-2
9-4
9-8
9-10
9-11
9-12
9-14
9-16
9-18

10-1

10-2
10-10
10-14
10-15
10-25
10-40
10-42

6 BASIC for NOS/VE Usage Revision E

Arrays •••

Array Overview •••
Array Element References •••••••••••••••••••••••••••••••
Dimension Bound Specification ••••••••••••••••••••••••••
Array Input/Output •••••••••••••••••••••••••••••••••••••
ERASE Statement ••

String Processing ••

String Expression Review •••••••••••••••••••••••••••••••
Colon-Substring Notation •••••••••••••••••••••••••••••••
MID$ Statement •••
Substring Manipulation Functions •••••••••••••••••••••••
Conversion Functions •••••••••••••••••••••••••••••••••••
Miscellaneous String Functions •••••••••••••••••••••••••

Files ••

Overview of the NOS/VE File System •••••••••••••••••••••
Overview of BASIC File Usage •••••••••••••••••••••••••••
Channel Numbers ••
OPEN Statement •••
CLOSE Statement ••
LOC Function •••
EOF Function •••
Sequential I/O •••
Random I/O •••

Contents

11-1

11-2
11-4
11-6
11-13
11-16

12-1

12-1
12-2
12-5
12-8
12-17
12-23

13-1

13-1
13-7
13-9
13-10.1
13-11
13-12
13-13
13-14
13-30

Compilation and Execution •••••••••••••••••••••••••••••••••• 14-1

Compilation Overview ••••••••••••••••••••••••••••••••••• 14-2
BASIC Compiler Command ••••••••••••••••••••••••••••••••• 14-3
Sample Compiler Calls •••••••••••••••••••••••••••••••••• 14-6
Program Execution •••••••••••••••••••••••••••••••••••••• 14-7

Glossary ••• A-I

ASCII Character Set •• B-1

Compile-time Diagnostics ••••••••••••••••••••••••••••••••••• C-l

Library Functions Index •••••••••••••••••••••••••••••••••••• D-l

Introduction to Debug •••••••••••••••••••••••••••••••••••••• E-l

Index •• Index-l

Revision E BASIC for NOS/VE Usage 7/8

o

o

o

o

o

Audience y

Organization •• 9

Conventions ••• 10

Ordering Manuals •• 11

Submitting Cormnents ••• 11

In Case of Trouble •• 12

'"'' -'

This manual describes the the CONTROL DATA® Network Operating
System/Virtual Environment (NOS/VE) BASIC language. NOS/VE BASIC
was designed to permit easy migration from popular microcomputers to
CDC ® CYBER 180 computer systems. NOS/VE BASIC conforms to the ANSI
standard for minimal BASIC, ANS X3.60-1978, approved January 17,
1978. NOS/VE BASIC does not conform to the new ANSI standard for
full BASIC, ANS X3.113-1987, approved January 28, 1987.

Audience
This manual describes the features of NOS/VE BASIC. It assumes that
you understand NOS/VE and SCL concepts as presented in the NOS/VE
System Usage manual. We expect the audience to form a varied group
in terms of programming experience and areas of application. For
this reason, the manual is written to accommodate both experienced
programmers and casual users.

Organization

This manual is organized by topic into the following chapters:

Chapter 1 presents a brief introduction to NOS/VE BASIC.

Chapters 2 through 7 and 9 through 13 describe the BASIC language
specifications. Chapter 2 describes the rules for organizing BASIC
statements into executable programs. Chapter 3 describes the
fundamental elements used in writing BASIC statements. Chapters 4
through 7 and 9 through 13 describe all of the BASIC statements.

Chapter 8 describes the CDC-supplied functions that allow you to
take advantage of certain operating system capabilities.

Chapter 14 describes the system commands used to compile and execute
a NOS/VE BASIC program. Descriptions of all parameters and options
are included.

Following chapter 14 is a set of appendixes that provide the
following supplementary information:

Glossary of terms used in this manual.

Description of the ASCII character set.

Listing of compile-time diagnostics.

Index of library functions.

An introduction to the Debug utility.

Revision E About This Manual 9

Conventions

Convention5

Certain notational conventions are used throughout this manual with
consistent meaning. These conventions are as follows:

UPPERCASE

lowercase

blue.

numbers

•

spaces

In statement syntax~ an item appearing in all
uppercase letters indicates a keyword or character
that must be written as shown. Although lowercase
letters are interpreted the same as uppercase
letters when used in BASIC keywords and symbols~
uppercase is used in this manual for consistency.

In statement syntax~ an item that contains
lowercase letters indicates a name~ number~ or
symbol that you must supply. However~ to enhance
readability~ these items are shown in uppercase
when occurring in text.

Denotes user examples.

All numbers in this manual are base 10 unless
otherwise noted.

In statement syntax~ a horizontal ellipsis
indicates that a series of similar objects are to
be supplied.

In program examples~ a vertical ellipsis (2 or 3
periods) indicates that other BASIC statements or
parts of the program have not been shown because
they are not relevant to the example.

Vertical bars in the margin indicate changes or
additions to the text from the previous revision.

A dot next to the page number indicates that a
significant amount of text (or the entire page) has
changed from the previous revision.

Whenever a space appears in a BASIC statement~ any
number of spaces can be used. In this manual~
extra spaces are used in format descriptions to
improve readability.

10 BASIC for NOS/VE Usage Revision C

Ordering Manuals

Ordering Manuals

Control Data manuals are available from your local Control Data
sales office. Sites within the u.S. can also order manuals directly
from Control Data Literature and Distribution Services at the
following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering a manual, please specify the complete manual title and
publication number. For example, if you are ordering this manual,
specify BASIC for NOS/VE Usage, 60486313.

Submitting Comments

The last page of this manual is a comment sheet. Please use it to
give us your opinion of the manual's usability, to suggest specific
improvements, and to report technical or typographical errors. If
the comment sheet has already been used, you can mail your comments
to us at the following address:

Control Data Corporation
Technology and Publications Division
P.O. Box 3492
Sunnyvale, CA 94088-3492

Be sure to include the following information with your comments:

The manual title and publication number (for this manual, BASIC
for NOS/VE Usage, 60486313).

The revision letter from the Manual History page indicating the
current revision of the manual.

Your name, your company's name and address, your work phone
number, and whether you want a reply.

If you have access to SOLVER, the CDC online facility for reporting
problems, you can use it to submit comments about this manual. When
SOLVER prompts you for the product identifier for your report,
please specify BC8 for the BASIC documentation.

Revision E About This Manual 11.

In Case of Trouble

nn Case of T ll"ouble

Control Data's CYBER Software Support maintains a hotline to assist
you if you have trouble using our products. If you need help beyond
that provided in the documentation or find that the product does not
perform as described, call us at one of the following numbers and a
support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address
questions about the physical packaging and/or distribution of
printed manuals to Literature and Distribution Services at the
following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are. a Control Data employee,
call CONTROLNET@ 243-2100 or (612) 292-2100.

12 BASIC for NOS/VE Usage Revision E

o

o

o

o

o

n ntlltrroall tul ~11:n orm ttciD N «))§fWIE IBt~§ n C]1.

This chapter presents a brief introduction to NOS/VE BASIC.

Features •• 1-1

The NOS/VE BASIC Compiler ••••••••••••••••••••••••••••••••••••• 1-2

The NOS/VE Environment •• 1-3

Hml1fIrocdluncitnonn 11:0 N O§jVIE IEA§H C 1

BASIC is an all-purpose programming language that is well-suited for
scientific, business, and educational applications.

Features
NOS/VE BASIC is designed to permit easy migration, both of programs
and of people, from popular microcomputers to CDC CYBER 180 computer
systems and to provide a language that is easy to use, especially
for casual users.

In addition, NOS/VE BASIC provides an interface to NOS/VE FORTRAN.
This adds power and flexibility to the language by increasing the
number of applications that can be readily accessed.

NOS/VE BASIC offers a wide range of capabilities. These
capabilities include integer and real arithmetic, block control
structures, character string processing, and numerous input/output
capabili ties.

Revision B Introduction to NOS/VE BASIC 1-1

The NOS/VE BASIC Compiler

The NOS/VIE BASIC Compiler
The NOS/VE BASIC compiler reads a file containing the NOS/VE BASIC
source program, translates that program into an object program
consisting of machine instructions, and (optionally) writes the
object program to a file. The object program can then be loaded
into memory and executed by system commands.

A NOS/VE BASIC source program consists of text lines formatted
according to the rules of NOS/VE BASIC syntax. If the compiler
detects a syntax error in the source program, it issues a
descriptive message describing the nature of the error. The
compile-time diagnostics are always written to the list file. The
compiler detects errors at different levels of severity. If the
errors are severe enough (fatal), the resulting object program
cannot be executed; you must correct the errors and recompile.
Generally, the diagnostic messages provide enough information to
enable you to easily determine the cause of the errors.

In addition to the object program, the NOS/VE BASIC compiler
produces an output listing file. This file is optional and is
selected by parameters on the BASIC command. The output listing
file contains a complete listing of the source program and,
optionally, an object listing and a reference map. The reference
map provides detailed information about symbolic names and other
items used in the NOS/VE BASIC program and is an extremely useful
debugging tool.

The NOS/VE BASIC compiler provides a number of other options in
addition to those described above. The available compiler options,
the formats of the input and output files, and the commands for
compiling and executing a NOS/VE BASIC program, are described in
chapter 14 of this manual.

1-2 BASIC for NOS/VE Usage Revision B

The NOS/VE Environment

The N OS/VE lEnviu-onment
The NOS/VE operating system provides several software facilities you
can use to make the process of creating and maintaining NOS/VE BASIC
programs easier and more efficient. These facilities include:

Source Code Utility (SCU)

Allows you to create and maintain source programs. SCU is
especially useful for creating and updating large
collections of source programs called source libraries.

Object Code Management utilities (OCM)

Enables you to create and maintain libraries of compiled
object programs (called object libraries). Object libraries
are especially useful for programs that are to be shared by
other programs. OCM also provides a facility for measuring
and analyzing program performance characteristics.

Debug utility

Enables you to debug a program during execution. You can
stop the program at selected points or on the occurrence of
an error and request formatted displays of variables and
arrays. The Debug utility is described in appendix E of
this manual.

NOS/VE BASIC provides an interface to FORTRAN and COBOL using
subprogram calls. These subprogram calls can also be used to access
other subroutines that conform to the FORTRAN calling sequence. The
calls are described in chapter 9 of this manual.

You can also execute NOS/VE System Command Language (SCL) commands
from within a NOS/VE BASIC program. The system interface statements
are described in chapter 5 of this manual.

Revision E Introduction to NOS/VE BASIC 1-3

o

o

o

o

o

This chapter describes the fundamental units that are used to form
BASIC programs.

Routines •• 2-1

Blocks and Lines •• 2-4

Statements and Identifiers •••••••••••••••••••••••••••••••••••• 2-8

Reserved Words 2-9

BASIC Character Set ••• 2-11

Termination Statements •• 2-13

Summary and Sample •• 2-14

===
A prog~am consists of a main program, and zero or more subprograms.

The main program is the only procedure within a program that can be
executed by itself. Every program must have a main program.

A subprogram is a procedure that accomplishes a set of tasks for the
main program. A subprogram can be compiled by itself, but cannot be
executed by itself. A program need not have any subprograms.

This chapter is an overview of the structure of a NOS/VE BASIC
program. It describes the components from which a program is built.

A NOS/VE BASIC program contains routines, blocks, lines, statements,
and identifiers. These key terms are defined in this chapter and
appear throughout the manual.

Routines

A NOS/VE BASIC program is a collection of one or more external
routines, one of which is a main program.

In this manual, the generic term routine applies to main programs,
block functions (specified by FUNCTION statements), and subroutines
(specified by SUB statements).

Routines are classified as either external or internal.

An external routine is either a main program or a subprogram. A
subprogram is either an external block function or an external
subroutine. Note that the term subprogram refers to an external
routine that is not a main program.

An internal routine is either an internal block function or an
internal subroutine.

Revision B Program Structure 2-1

Program Structure

The following tree diagram illustrates the relationships among the
terms just described:

______ RoUtineS _____

External Internal

/ \ / '" Main Program Subprogram Internal Internal
~ \ Block Function Subroutine

External External
Block Function Subroutine

A subprogram begins with a subprogram specification statement
(EXTERNAL FUNCTION or EXTERNAL SUB), and ends with the corresponding
closing statement (END FUNCTION or END SUB). The compiler needs
these statements to determine which external routines are
subprograms.

A main program is not explicitly specified. After determining which
external routines are subprograms, the compiler determines the main
program by default. A main program that is followed by a subprogram
must end with an END PROGRAM statement.

2-2 BASIC for NOS/VE Usage Revision B

Routines

An internal routine begins with a specification statement (FUNCTION
or SUB), and ends with the corresponding closing statement (END
FUNCTION or END SUB). A routine is declared to be internal by
default when the keyword EXTERNAL does not appear in its
specification statement.

If an external routine is followed by a subprogram, the closing
statement (END PROGRAM, END FUNCTION, or END SUB) of the external
routine must be immediately followed by the subprogram specification
statement.

If any lines intervene, even blank lines or comments, the compiler
interprets them as a main program. This might cause the compiler to
interpret your program as if it contains several main programs. If
this happens, a warning is issued. Usually, other errors result
from this interpretation.

An external routine:

• Can be compiled as a separate program unit.

• Cannot be contained within another external routine, but can
contain embedded internal routines.

• Shares data with other external routines through the COMMON
statement or the passing of parameters.

An internal routine:

• Cannot be compiled as a separate program unit.

• Must be contained within a host external routine, but cannot
contain embedded routines.

• Has access to all the data of its host external routine.

A declarative statement provides information about how data is to be
processed.

The BASIC declarative statements are: COMMON, DECLARE FUNCTION,
DECLARE SUB, DEF, DEFDBL, DEFINT, DEFSNG, DEFSTR, EXTERNAL FUNCTION,
EXTERNAL SUB, and OPTION BASE.

The declarative statements in an external routine do not apply to
other external routines. They do apply to all embedded internal
routines.

The declarative statements within an internal routine also apply to
the host external routine.

Revision B Program Structure 2-3

Blocks and Lines

Blochs and Lines
A routine can be thought of as a collection of blocks.

A block is a group of logically or physically related statements or
lines. For example, internal routines and looping structures are
blocks.

Small blocks are placed inside of larger blocks to build more
complex structures. A block IF construction is an example of a
block that contains other blocks.

From a global perspective, external routines are blocks. At the
local level, even single unstructured BASIC statements qualify as
blocks.

A NOS/VE BASIC line can contain at most 255 characters and spaces.
It consists of:

• An optional label, provided by the programmer.

• An optional series of one or more BASIC statements that are
separated by colons.

• An optional tail comment.

Line Format:

label statement! : statement2 : ••• : statementN ' comment

A blank line within a routine is permitted since all three line
components are optional. However, do not use blank lines between
external routines. Such lines cause the compiler to interpret what
follows as a main program.

2-4 BASIC for NOS/VE Usage Revision B

Blocks and Lines

You can begin each program line with a positive integer of at most
six digits. This integer is called a label. A label can be used to
reference a line during program execution. Leading zeros in a label
are insignificant.

Each label in an external routine must be greater than the preceding
label within that routine.

A label is required for any line that is the destination of a branch
via a GOSUB, GOTO, ON-GOSUB, ON-GOTO, or RESUME statement.

A label is also used in conjunction with the RESTORE statement,
which sets the pointer for an interior data set.

Every statement in a labeled line is associated with the label of
the host line.

A statement in an unlabeled host line is associated with the label
of the nearest labeled line that precedes the host line. If the
host line precedes all the labeled lines of an external routine, the
statement is associated with the default value O.

Examples

Revision B

The following statements associate the host line with
the nearest labeled line.

Statement A
Statement D
Statement F

2 Statement H

Statement B
Statement E
Statement G
Statement I

Statement C

Statement J

Statements A, B, and C are associated with the default
value O.

Statements D, E, F, and G are associated with the label 1.

Statements H, I, and J are associated with the label 2.

Program Structure 2-5

Blocks and Lines

The time during which a program is being executed is called
runtime. Diagnostic messages that result from runtime errors
specify error location in terms of associated labels or the default
value O.

Note that 0 is not a valid label. If a BASIC statement references a
label, that label must be positive. The default value 0 is
associated with a statement only in the example described previously.

BASIC labels are not the same as BASIC line numbers.

The programmer supplies BASIC labels as addresses for lines that are
referenced from within a program during program execution.

The compiler assigns each program line a BASIC line number
(sometimes called a compiler sequence number) to denote the physical
position of the line within a program. The program cannot use a
line number to reference a line during program execution.

The time during which a program is compiling is called
compile-time. Diagnostics that result from compile-time errors
specify error location in terms of BASIC line numbers. Line numbers
are also used in conjunction with the Debug utility.

This distinction between labels and line numbers is carefully
adhered to throughout this manual.

2-6 BASIC for NOS/VE Usage Revision E

Blocks and Lines

After the optional label, a line contains an optional series of one
or more BASIC statements. Statements are separated by a colons or
an end of a line.

Note that a single line can contain more than one BASIC statement,
however, BASIC does not allow line continuation. A continuation
line is a source line that contains a continuation of the statement
that appears in the previous source line.

The end of a line delimits the last statement in the line. If a
colon is the last nonblank character in a line, the compiler acts as
if the last statement is an empty statement.

Consecutive colons in a line are also permitted (think of them as
delimiters for an empty statement).

You can explain the purpose of a line by ending it with a tail
comment. This comment is ignored by the compiler.

The apostrophe, whenever it appears outside a quoted string, marks
the end of the significant portion of a line.

Examples •

Revision B

In the following examples the apostrophe separates
the last BASIC statement of a line from a tail
comment, and tells the compiler to ignore what
follows.

, This entire line is a tail comment.

100 READ MIN,MAX ' set lower/upper bounds

500 LET COUNT% a STEP% 1 ' Initialize Counters

IF A$ "YES" THEN GOSUB 1000 ' Handle Information

Program Structure 2-7

Statements and Identifiers

Statementn and Identifiers

A statement is an optional series of tokens.

A token is a set of characters that the compiler recognizes as
identifying a single entity or word. Constants, identifiers, and
special characters are tokens. Frequently, spaces are used to
designate the beginning and the end of a token.

Any number of spaces can be used between tokens. Spaces inside a
string constant are not treated as token separators because a string
constant is itself a token. The compiler uses punctuation and
context to properly interpret such spaces.

An identifier is a token that names a program component, or
specifies some action or attribute within a program. BASIC
identifiers are used to name variables, functions, and subroutines.

A keyword is an identifier that has a preassigned meaning when it is
used in a specific context. Keywords appear in BASIC statements,
and as names for library functions and supplied string variables.

A NOS/VE BASIC identifier is either a plain name, or a name whose
last character is a symbol that specifies data type. An identifier
can be no more than 31 characters long, including any type
specification symbol.

A plain name consists of a letter followed by a series of letters,
digits, and periods. A period is the only special character allowed
in a plain name.

An identifier cannot contain a space because a space would
effectively split the identifier into two tokens. However, periods
can be used to make a name more readable.

Examples • The following are examples of plain names •

x BUBBLESORT

TEMPI ROW. TOTAL

Y.1985.NET.PROFIT GAMMA. FUNCTION

Identifiers with type specification symbols are
discussed in chapter 3 of this manual. For now, note
that such names consist of a plain name of at most 30
characters, followed by one of the four type
specification symbols: %, ! , # , $.

2-8 BASIC for NOS/VE Usage Revision B

Reserved Words

Reserved WOl'ds
A reserved word is a keyword that is reserved exclusively for
program or system use. You are not permitted to use such an
identifier for your own purpose. Not all keywords are reserved. The
following list contains the reserved words for NOS/VE BASIC:

AND DATE $ EQV IF NOT RESTORE THEN
APPEND DECLARE ERASE IMP ON RESUME TlME$
AS DEF ERROR INPUT OPEN RETURN TO
BASE DEFDBL EXIT LBOUND OPTION RSET UBOUND
BEEP DEFINT EXTERNAL LEN OR RUN USING
CALL DEFSNG FIELD LET OUTPUT SCL WEND
CALLX DEFSTR FOR LINE PRINT SPC WHILE
CHAINt DIM FUNCTION LPRINT PROGRAM STEP WIDTH
CLEAR ELSE GET LSET PUT STOP WRITE
CLOSE ELSEIF GO MID$ RANDOMIZE SUB XOR
COMMON END GOSUB MOD READ SWAP
DATA ENDIF GOTO NEXT REM TAB

tHas been reserved for possible future use.

Revision B Program Structure 2-9

Reserved VVords

The names of most library routines are not reserved. If you use
these identifiers to name objects within your program, the following
rules apply:

In each external routine:

• If the first use of an identifier is consistent with the
format for referencing a library routine, then the
identifier is always interpreted as a library routine name.

• If the first use of an identifier is inconsistent with the
format for referencing a library routine, then the
identifier is always interpreted as the name of an object
within your program.

• Each use of an identifier must be consistent with the first
use or a compile-time error results.

Examples The first use of the identifier ASC (in the line labeled
10) is consistent with a reference to the ASC library
function. Hence, this identifier is interpreted as a
library function reference. The second use (in the line
labeled 20) is inconsistent with this interpretation. A
compile-time error results.

10 L = ASC(S$)
20 FUNCTION ASC(S$)

ASC = LEN(S$) + 5
END FUNCTION

This program fragment would be legal if the first line
were made the last line. In this case, the identifier
ASC would refer to the user-defined ASC function.

2-10 BASIC for NOS/VE Usage Revision B

BASIC Character Set

BASiC Cha~a.cter Set
Only a subset of the standard ASCII character set is actually used
to form NOS/VE BASIC statements. The table that follows lists the
NOS/VE BASIC characters along with their primary functions or areas
of usage.

Characters

Uppercase Letters
A through Z

Lowercase Letters
a through z

Digits 0 through 9

,. (apostrophe)

" space

%

$

II

(underscore)

&

+ * \

/

< >

Revision B

Primary Functions or Areas of Usage

Identifiers, String Constants.

Identifiers, String Constants.

Identifiers, Labels, Numbers.

Commentary.

Delimiter, Substring/Dimension Format.

Delimi ters.

Delimiters, Output Format.

Data Type, Output Format Overflow.

Data Type, Output Format.

Data Type, Output Format, Channels.

Output Format.

Number Base, Output Format.

Identifiers, Numbers, Output Format.

Arithmetic Operators, Output Format.

Arithmetic Operator.

Assignment, Relational Operator.

Relational Operators.

Program Structure 2-11

BASIC Character Set

With one exception, you can use whatever letter case you want. For
example, the following statements have all the same meaning to the
compiler.

LET A 5

Let A 5

let a 5

The BASIC compiler produces a listing of your program exactly as
typed. However, it internally translates all lowercase letters
outside of quoted strings and DATA statements to uppercase. Thus,
identifiers used in diagnostics are displayed in uppercase no matter
how they appear in your program listing.

Letter case is significant only when writing quoted or unquoted
string constants. Here, the compiler does not make the
lowercase-to-uppercase conversion. The constant is stored exactly
as typed.

Examples The two string constants below are not equivalent.

"BASIC Statements"

"Basic Statements"

They also have different meanings (BASIC, the acronym
for Beginner's All-purpose Symbolic Instruction Code,
versus Basic, as in Fundamental).

2-12 BASIC for NOS/VE Usage Revision B

Termination Statements

Termination Statements
If a main program is followed by a subprogram, the main program must
end with an END PROGRAM statement. This statement has the format:

END PROGRAM

The END PROGRAM statement must be the last statement in the last
line of the main program. Execution of this statement terminates
the program.

The specification statement of any subsequent subprogram must
immediately follow the END PROGRAM statement. No lines can
intervene, not even blank lines or comments.

The END PROGRAM statement is optional if the main program is the
last or only external routine in a program. If the last statement
of the main program does not transfer control, the program is
terminated.

The END and REM statements are also fundamental to a program.

The END statement terminates program execution. When this statement
is executed, any open files are closed, and control is returned to
system command level. Any number of END statements can appear in an
external routine.

Examples

Revision D

Depending on the value of A, the following program
fragment can terminate at the statement labeled 40 or
the statement labeled 60.

10 IF A = 2 THEN 50
20 LET A A + 2
30 PRINT A
40 END
50 PRINT A
60 END

The REM statement, in addition to a tail comment,
provides a way to include comments (remarks) within a
program. If the keyword REM begins a BASIC statement,
the compiler ignores the rest of the line and continues
with the next one.

Program Structure 2-13

Summary and Sample

Summary and Sample

A NOS/VE BASIC program is a collection of one or more external
routines, one of which is a main program.

Structurally, each external routine is a collection of blocks, some
of which might be internal routines. Each block is a group of
related lines. Each line is a series of BASIC statements. Each
statement is a sequence of tokens.

If an external routine is followed by a subprogram, the closing
statement (END FUNCTION, END PROGRAM, or END SUB) of the external
routine must be immediately followed by the subprogram specification
statement. If any lines intervene, even blank lines or comments,
the compiler interprets them as a main program.

The following illustrates general program structure and the use of
the END PROGRAM statement:

REM HAIN PROGRAH ------------~ The main program frequently

r appears first in a program.
The END PROGRAH statement
separates the main program

___________________ ~ from a subsequent subprogram.
END PROGRAH .
EXTERNAL SUB NAME.1 --------....,t- The subsequent subprogram

immediately follows the
END PROGRAM statement.

END SUB ,. NAHE.1 -------....1
EXTERNAL FUNCTION NAME.2 ~NO blank lines appear

between consecutive
subprograms.

END FUNCTION" NAME.2

2-14 BASIC for NOS/VE Usage Revision B

Summary and Sample

The following illustrates the block structure of an external routine:

EXTERNAL SUB OUTSIDE

SUB INSIDE.1

~OR ~ A loop is
• a block.
NEXT
IF ~ A block IF
• has block
• components.
ENDIF

END SUB' INSIDE.1
FUNCTION INSIDE.2

An
internal
subroutine
with
adjacent
blocks
nested
inside.

I 1:ternal
END FUNCTION' INSIDE.2

! block
-----' function.

END SUB ' OUTSIDE

An
external
subroutine
with two
embedded
internal
routines.

Revision B Program Structure 2-15

Summary and Sample

The following program illustrates the END and REM statements:

REM This program computes factorials of integers
REM between 1 and 20, inclusive. The number whose
REM factorial is computed is denoted by N.

10 PRINT "ENTER A POSITIVE INTEGER NO LARGER THAN 20."
INPUT N
REM ----------- CHECK FOR ACCEPTABLE INPUT -----------
IF N <> INT(N) THEN PRINT "ENTER AN INTEGER" : GO TO 10
IF N < 1 OR 20 < N THEN PRINT "OUT OF RANGE" : GO TO 10
REM ----- N FACTORIAL IS STORED UNDER THE NAME F -----
LET F = 1 ' INITIALIZATION
FOR I = 1 TO N

LET F = F*I
NEXT I
PRINT N; " FACTORIAL IS "; F
END

2-16 BASIC for NOS/VE Usage Revision B

o

o

o

o

o

This chapter describes the elements used to write BASIC statements.

Constants ••• 3-1

Integer Constants ••• 3-2
Real Constants •• 3-4
Quoted String Constants ••••••••••••••••••••••••••••••••••• 3-6
Unquoted String Constants ••••••••••••••••••••••••••••••••• 3-7

Data Type ••• 3-8

Data Type Specification Symbols ••••••••••••••••••••••••••• 3-9
Type Declaration Statements ••••••••••••••••••••••••••••••• 3-10
Data Type Compatibility ••••••••••••••••••••••••••••••••••• 3-13

Variables ... 3-14

Typed Variables ••• 3-15
Supplied String Variables ••••••••••••••••••••••••••••••••• 3-16
TIKE$ ••• 3-16
DATE$ ••• 3-17
Subscripted Variables ••••••••••••••••••••••••••••••••••••• 3-18

Double-Precision Vestiges ••••••••••••••••••••••••••••••••••••• 3-19

Constants and variables are the elements of a programming language.
They are the data objects that a program processes.

This chapter describes NOS/VE BASIC constants and variables. It
also discusses how data types are associated with identifiers.

COlZ1siants

A constant is a value that must remain fixed during program
execution.

In NOS/VE BASIC, there are two kinds of numeric constants, integer
and real, and two kinds of string (or character) constants, quoted
and unquoted. BASIC does not allow named constants.

Revision B Language Fundamentals 3-1

Constants

Integer Constants

An integer constant is a signed whole number written without a
decimal point. Leading zero digits are ignored. The plus sign for
positive integers is optional. You cannot use commas to group the
digits of a numeric constant •.

Examples • The following are examples of integer constants •

+275210

44

07

-8396

3-2 BASIC for NOS/VE Usage Revision B

The magnitude of an integer constant must be less than 2 A 63
(approximately 9.2*10 A 18) or a compile-time error results.

Constants

(The circumflex (A) used above denotes the exponentiation operator.)

In addition to the usual decimal form for integers, you can express
integers in hexadecimal (base 16) and octal (base 8) form.

A hexadecimal integer constant is expressed by typing an ampersand,
followed by an H, followed by one or more hexadecimal digits
(0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F).

Similarly, an octal integer constant is expressed by typing an
ampersand, optionally followied by 0, followed by one or more octal
digits (0,1,2,3,4,5,6,7).

Notice that no spaces are used in either format.

Examples • The following are examples of hexadecimal and octal
integer constants.

&H21D (equivalent to 541 in base 10)

&H2C (equivalent to 44 in base 10)

&054 (equivalent to 44 in base 10)

&273 (equivalent to 187 in base 1O)

Revision B Language Fundamentals 3-3

Constants

Real Constants

A NOS/VE BASIC real constant is one of the following:

• A number written in decimal (fixed point) format, optionally
followed by either an exclamation point (!) or a number sign
(II) •

• An integer followed by either an exclamation point or a
number sign.

• A number written in exponential (floating point) format.

The magnitude of a real constant must be less than 2A 4095
(approximately 5.2*10 A 1232) or a compile-time error results.

Examples • The following are examples of valid NOS/VE BASIC
real constants.

-9.86! -0.0003 44. 44!

-9.8611 -.0003 +44.0 44/1

3-4 BASIC for NOS/VE Usage Revision B

Constants

The real constant (r * 10As) can be written in exponential format
using one of two forms:

rEs
rDs

r

e or E

d or D

s

Integer or real number.

Exponent.

Exponent.

Integer.

The D notation is provided for compatibility with popular
microcomputer versions of BASIC. BASIC treats the E and D notations
identically; double-precision data types are not supported. For
information about double-precision data and BASIC. see the section
titled Double-Precision Vestiges later in this chapter.

Note that no spaces are used in exponential format.

Examples The following are examples of real constants written in

56.0E+4 (equivalent to 560000.0)

7.3218E-2 (equivalent to 0.073218)

-3.79651D3 (equivalent to -3796.51)

8D5 (equivalent to 800000.0)

Revision E Language Fundamentals 3-5

Constants

Quoted String Constants

A quoted string constant is a sequence of characters or spaces that
is enclosed by quotation marks. These outside marks delimit the
string constant but are not part of it. A quotation mark embedded
within a quoted string constant is denoted by two successive
quotation marks.

The length of a quoted string constant is limited only by the number
of characters that can fit on a line.

Examples • This quoted string constant uses several special
characters.

"EMPLOYEE II PART-TIME % SALARY ($/unit)"

• This quoted string uses embedded quotation marks.

PRINT "STAN ""THE HAN"" HUSIAL"

The output from this PRINT statement appears below.

STAN "THE MAN" MUSIAL

3-6 BASIC for NOS/VE Usage Revision B

Constants

Unquoted String Constants

An unquoted string constant is a sequence of characters or spaces
that:

• Contains no apostrophes, colons, or commas.

• Does not begin with a quotation mark.

• Does not begin or end with a space.

Unquoted string constants are used only in data statements and INPUT
replies. An unquoted string constant in a DATA statement is limited
by the length of the BASIC source line (255 characters). Response
to an interactive input request is limited to 128 characters.

Examples The following example is an unquoted string.

GROSS WEEKLY EARNINGS (in $)

Revision D Language Fundamentals 3-7

Data Type

Data Type

Some identifiers carry with them an associated data type. The data
type of an identifier establishes the kind of values that are stored
under that name. Variable names and function names always have an
associated data type. Subroutine names never have an associated
data type.

The three NOS/VE BASIC data types are: integer, real, and string.
A numeric identifier is either type integer or real. A string
identifier is type string.

Data type is established either by using a data type specification
symbol as the last character of an identifier, or by a type
declaration statement.

3-8 BASIC for NOS/VE Usage Revision B

Data Type

Data Type Specification Symbols

The last character of an identifier can be used to specify data type.

An integer name is an identifier whose last character is a percent
sign (%). An integer name is a type integer identifier.

A real name is an identifier whose last character is either an
exclamation point (!) or a number sign (#). A real name is a type
real identifier.

A string name is an identifier whose last character is a dollar sign
($). A string name is a type string identifier.

In general, an identifier is either a plain name, an integer name, a
real name, or a string name. Remember that an identifier can have
at most 31 characters, including the type specification character.

Examples

Revision B

The following are examples of integer names, real names,
and string names.

Integer Names Real Names String Names

N% Xl S$

ROW. TOTAL% y/I STATUS$

NO.OF.CARS% CURRENT.GPA! DEPT.NAME$

EXAM. 1 • SCORE% TYPE.747.MPGII MESSAGE. 10$

Language Fundamentals 3-9

Data Type

Type Declaration Statements

Purpose

Format

A type declaration statement specifies the data type (if
appropriate) of any plain name whose first letter
appears in a letter list. A type declaration statement
affects plain names only. It has no affect on integer
names, real names, or string names.

DEFxxx letlist

xxx

letlist

Replaced by either INT, SNG, DBL, or STR, as
app rop riate.

List of letters and letter ranges that are
separated by commas. A letter range is
written LI-L2, where Ll and L2 are letters,
and L2 does not alphabetically precede Ll.
The letter range LI-L2 is equivalent to
listing all the letters between Ll and L2,
inclusive. Any plain name that begins with
a letter appearing in the letter list has
the specified data type.

3-10 BASIC for NOS/VE Usage Revision B

Remarks

Revision B

Data Type

• The four NOS/VE BASIC type declaration statements
are as follows:

DEFINT, which declares type integer.

DEFSNG, which declares type real.

DEFDBL, which is equivalent to DEFSNG.

DEFSTR, which declares type string.

• By default, the data type (if any) of a plain name
is real. This can be confirmed formally with a
DEFDBL or DEFSNG statement, or overridden with a
DEFINT or DEFSTR statement.

• Type declaration statements in an external function
also apply to the function name and formal
parameters. In an external subroutine, such
statements apply to the formal parameters. (A
subroutine name has no associated data type.)

Language Fundamentals 3-11

Data Type

Examples • In an external routine, a letter can be specified in
only one type declaration statement.

DEFINT A,B,I-N,Y,Z

DEFSNG D-H,V,W

DEFDBL C-C,X

DEFSTR O-U

• In general, a type declaration statement must
precede every plain name that the statement
affects. Thus, the following statements are out of
order:

LET A = 4 DEFINT A

The variable A is type real by default, and is
assigned the value 4.0. The subsequent attempt to
alter the type results in a compile-time error.

• There is only one exception to the general rule. A
type declaration statement that affects an external
function name can follow the function specification
statement. Thus, the order of the following
statements is correct:

REM MAIN PROGRAM
DEFSTR G 'Type declaration for main program
DECLARE EXTERNAL FUNCTION GREAT
PRINT GREAT
END PROGRAM
EXTERNAL FUNCTION GREAT
DEFSTR G 'Type declaraction for this function
LET GREAT = "STRING"
END FUNCTION

3-12 BASIC for NOS/VE Usage Revision B

Data Type

Data Type Compatibility

With one exception, type integer and type real data are compatible.

This means that:

• Integer and real data can be combined through arithmetic
operations.

• An attempt to assign an integer value to a variable or
function of type real is permitted. The value is converted
to type real before being stored.

o An attempt to assign a real value to a variable or function
of type integer is permitted. The value is rounded to the
nearest integer before being stored.

Integer and real data are not compatible with type string data.

The one exception is the passing of data to user-defined routines
through parameters. Here, an integer value cannot be passed to a
real formal parameter. A real value cannot be passed to an integer
formal parameter.

Revision B Language Fundamentals 3-13

Variables

Variables
A variable is a named memory location. Different values can be
stored inside the memory location at different times during program
execution. A reference to the variable name accesses the value that
is currently stored.

A variable name can be any valid identifier. The name carries with
it an associated data type (integer, real, or string). The data
type establishes the kind of values that are stored in the variable,
and determines which operations can be performed on these values.

This section describes NOS/VE BASIC variables.

3-14 BASIC for NOS/VE Usage Revision B

Variables

Typed Variables

An integer variable can only store integer values; a real variable
can only store real values; and a string variable can only store
string values.

Each variable is assigned an initial value before the ~xpression
involving that variable is evaluated. All numeric variables are
assigned the value zero and all string variables are assigned the
null string.

A NOS/VE BASIC integer variable can store any integer value n in the
range (- 2A63 (= n (= 2A63 - l)t which is approximately the range
(- 9.2*lOA18 (= n (= 9.2*lOA18). An attempt to sto~e an integer
value outside this range results in a runtime error.

An integer variable is named with either an integer name t or a plain
name typed in a DEFINT statement.

A NOS/VE BASIC real variable can store any real value whose
magnitude is less than 2A4095 t which is approximately 5.2*lOA1232.
An attempt to store a real value whose magnitude is too large
results in a runtime error.

A real variable is named with either a real name t or a plain name.
The default data type is real. A DEFSNG or DEFDBL statement can be
used to confirm the default.

A NOS/VE BASIC string variable can store a string value with at most
65 t535 characters.

A string variable is named with either a string name t or a plain
name typed by a DEFSTR statement.

A substring is a string variable consisting of zero or more
consecutive character positions within a given string variable. A
NOS/VE BASIC substring is expressed using colon-substring notation
or a MID$ reference.

Revision D Language Fundamentals 3-15

Variables

Supplied String Variables

NOS/VE BASIC supplies two string variables at runtime: TIME$ and
DATE$.

TIME$

Purpose

Format

Remarks

Examples

TIME$ is an 8-character string variable whose default
value is the current time as kept by NOS/VE.

"hh:nrrn:ss"

hh Hours in the range 00 through 23.
mm Minutes in the range 00 through 59.
ss Seconds in the range 00 through 59.

• The value of TIME$ can be set within a program. If
user-defined, its current value is the last assigned
value plus the time elapsed since the assignment.
TIME$ cannot be set in an INPUT or READ statement.

• If you specify only a single digit for a TIME$
component, a leading zero is provided. If you omit
a component, then the default value 00 is provided.

• A runtime error results if an impossible time value,
such as "24:00:00", is assigned.

• The following examples show different values for
TIME$.

TIME$ "12:15:30"

TIME$ "4:7" (set to "04:07:00")

TIME$ "11" (set to "11 :00:00")

TIME $ "23:59:59" (last second of the day)

TIME$ "0:0:0" (midnight)

TIME $ "::" (midnight)

TIME$ If:" (midnight)

TIME $ "10::32" (set to "10:00:32")

3-16 BASIC for NOS/VE Usage Revision B

DATE$

Purpose

Format

Remarks

Examples

Revision B

Variables

DATE$ is a 10-character string variable whose default
value is the current date as kept by NOS/VE.

"mm-dd-yyyy"

mm Month in the range 00 through 12.
dd Day in the range 00 through 31.
yyyy Year in the range 00 through 9999.

• The value of DATE$ can be set within a program. If
user-defined, slashes can replace hyphens. However,
the value of DATE$ is always printed using hyphens.
DATE$ cannot be set in an INPUT or READ statement

• The value of DATE$ advances when the value of TIME$
passes "00:00:00".

• If you specify only a single digit for the month or
day component, a leading zero is provided.

• If you specify only two digits for the year
component, then digits in the range:

00 through 77 are interpreted as 2000 through
2077 •

78 through 99 are interpreted as 1978 through
1999.

• A runtime error results if an impossible date value,
such as "09-31-1985", is assigned.

• The following examples show different values for
DATE$.

DATE$ "09-01-1965"

DATE $ "7-4-1776" (set to "07-04-1776")

DATE $ "4/17/62" (set to "04-17-2062")

DATE$ "4/17/80" (set to "04-17-1980")

Language Fundamentals 3-17

Variables

Subscripted Variables

A variable that is not a substring can be either scalar or
subscripted.

A scalar variable associates a name with a single memory location.
In contrast, a subscripted variable shares its name with other
members of a larger structure. This structure is called an array.

An array is a group of variables with the same data type that are
referenced by a single name. This name is called the array name.

A specific variable in the array is accessed using the array name
and a sequence of numbers called subscripts. The subscripts
identify the variable by its position within the array. This
variable is called a subscripted variable, or an array element.

A subscripted variable acts just like a scalar variable, but uses a
more complex reference format. The naming and data type rules
discussed in this chapter apply to both scalar and subscripted
variables (array elements). Limits on the values of subscripted
variables are the same as those on scalar variables of like data
type.

An external routine can contain an array with the same name as a
scalar variable because they have different reference formats.

Remember that the term variable applies to both scalar and
subscripted variables, and that a substring is neither scalar nor
subscripted.

For more information about arrays, see chapter 11 of this manual.

3-18 BASIC for NOS/VE Usage Revision B

Double-Precision Vestiges

Double-Precision Vestiges
NOS/VE BASIC has no double-precision data type because real data in
NOS/VE BASIC is approximately as precise as double-precision data in
many microcomputer versions of BASIC.

However, some traces of the format of double-precision do occur in
NOS/VE BASIC. Features with such traces are provided so that
existing microcomputer BASIC programs can be used on NOS/VE with
minimal changes.

The traces of the format of double-precision are found in:

• Constants that are followed by either an exclamation point
(!) or a number sign (#).

• The exponential format that uses the letter D rather than
the letter E to separate the mantissa from the exponent.

• Identifiers whose last character is either an exclamation
point (I) or a number sign (#).

• Related library functions whose names contain an SNG, S,
DBL, or D designation.

These formats differentiate between single- and double-precision in
many microcomputer versions of BASIC, but are equivalent in NOS/VE
BASIC.

Revision B Language Fundamentals 3-19

o

o

o

o

o

This chapter describes the ways in which expressions are written and
evaluated. This chapter also describes assignment statements.
Assignment statements are executable statements that use expressions
to define or redefine the values of variables.

Expressions ••• 4-2

Arithmetic Expressions •• 4-4

String Expressions •• 4-7

Relational Expressions •• 4-8

Logical Expressions ••• 4-10

Assignment Statements ••• 4-13

LET Statement ••• 4-14
SWAP Statement •••••••••••• Q ••••••••••••••••••••••••••••••• 4-16
CLEAR Statement ••• 4-17

=
Expressions are built by applying operators to constants, variables,
and function references.

The four kinds of BASIC expressions are: arithmetic, string,
relational, and logical. Each kind has its own set of operators and
evaluation rules.

This chapter discusses how to construct and evaluate expressions.
It also describes how assignment statements are used to store their
values.

Revision B Expressions and Assignment 4-1

Expressions

IExpressions

An expression is one or more constants, variables, or function
references that are linked by operators. Subexpressions occurring
within an expression can be enclosed by parentheses.

A system of precedence determines the order in which the operations
in an expression are performed.

A subexpression enclosed by parentheses is treated as a single
operand. Its value must be computed before an operator can be
applied to it. This means that parentheses always have the highest
precedence. If parentheses are nested, the innermost expression is
evaluated first.

Each kind of expression has its own set of permissible operations.
The operations in each set are assigned precedences. For a given
set, operations with a precedence of 1 are performed first,
operations with a precedence of 2 are performed second, and so forth.

Evaluation of operators with equal precedence is performed
left-to-right, although the evaluation of operands of equal
precedence is not guaranteed. This may present a problem when the
operands are functions that have side effects. Where such
programming is done, the expression should be carefully
parenthesized.

Expressions are classified as either numeric or string. Arithmetic,
logical, and relational expressions are called numeric because they
produce numeric values. String expressions produce string values.

4-2 BASIC for NOS/VE Usage Revision B

Expressions

When a BASIC numeric expression is evaluated, intermediate results
are assigned to temporary storage. These assignments are subject to
the same constraints and liable to the same errors as ordinary
assignments. Possible errors are: numeric overflow, numeric
underflow, and divide fault.

Each of these errors is fatal and induces the runtime error
processing explained in chapter 6. An error can sometimes be
avoided by parenthesizing an expression.

Examples • This expression induces a numeric overflow when
evaluated.

• This expression is the algebraic equivalent and does
not induce a numeric overflow.

A runtime error results if the value of an expression or
subexpression falls outside the range allowed for variables of the
corresponding data type.

Note that an expression can be a single constant, variable, or
function reference.

Revision B Expressions and Assignment 4-3

Arithmetic Expressions

Arithmetic Expresaions

An arithmetic expression is one or more numeric constants, numeric
variables, or numeric function references that are linked by
arithmetic operators. Subexpressions occurring within an arithmetic
expression can be enclosed by parentheses.

A unary operator (+ or -) can be the first token in an arithmetic
expression. Two arithmetic operators cannot appear consecutively
unless the second is a unary operator. Arbitrarily long sequences
of consecutive unary operators are permitted.

The precedence for NOS/VE BASIC arithmetic operations appears
below. Remember that parentheses always have the highest precedence.

Precedence °Eerator °Eeration

Exponentiation

2 +, - Identity or negation (unary)

3 * , / Multiplication or real division

4 \ Integer division

5 MOD Modulo arithmetic

6 +, - Addition or subtraction

For integer division, denoted by the reverse slant (\) operator,
the operands, are rounded to the nearest integer. The division is
then performed and the quotient is truncated to an integer.

4-4 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Arithmetic Expressions

The operands are rounded, yielding (14/5). Division
produces 2.8. Truncation results in the value 2.

13.8\5.3

• Modulo arithmetic is denoted by the MOD operator.
The operands are rounded to the nearest integers,
and division is performed. The result is the
integer remainder of this division.

-13.8 MOD 5.3

The operands are rounded, yielding (-14/5).
Division yields -2 with a remainder of -4. The
result is -4.

Expressions and Assignment 4-5

Arithmetic Expressions

The circumflex (A) operator, the up-arrow on some keyboards, denotes
exponentiation. A runtime error results if zero or a negative
number is raised to a negative power.

The slant (/) operator denotes division. A runtime error results if
division by zero is attempted.

For exponentiation and division, the operands are converted to type
real, and real results are produced.

For all other arithmetic operations:

Examples

If the operands are of like type, no operand conversions are
performed. The result has the same type as the operands.

If the operands are of different types, the integer operand
is converted to type real. A real result is produced.

• Exponentiations are performed left-to-right. The
value 2.0 is raised to the third power. The result,
8.0, is squared. The result, 64.0, is negated. The
value of the expression is -64.0. In contrast, the
expression (_2.0)A3 A 2 has the value 64.0.

• The order in which operations are performed is shown
underneath the following sample expression:

18 - 200 / 20 * 10 - 8 MOD 7 + 37

Order ---> 4 2 5 3 6

The result is the value -46.

• The expression X - Y/XA2 + yA2 is equivalent to (X -
(Y/(XA2») + (yA2). If X = 2 and Y = 4, the value
of this expression is 17. Compare the following
expressions to to X- Y/XA2 + yA2:

Using X = 2 and Y 4, these expressions have the
values -.1, 15.5, and 1.8, respectively.

4-6 BASIC for NOS/VE Usage Revision B

String Expressions

A string expression is one or more quoted string constants, string
variables, or string function references that are separated by plus
signs. Subexpressions occurring within a string expression can be
enclosed by parentheses.

In this context, the plus sign is called the concatenation
operator. Concatenation, the only string operation, joins two
string operands. The length of the string produced is the sum of
the lengths of the operands.

The string expression (A$ + B$) is read "A is concatenated with B".

Examples

Revision B

• If A$ = "START" and B$ = "UP", the expression:

B$ + A$ has the value "UPSTART".

A$ + B$ has the value "STARTUP".

• Consider the following assignment statements:

LET C$ "WORK: 555-1212"

LET C$ C$(l:4) +" PHONE" + C$(5:15)

These statements insert the string " PHONE" in an
appropriate place in C$. Thus, C$ is assigned the
new value "WORK PHONE: 555-1212".

For more information about strings, see chapter 12.

Expressions and Assignment 4-7

Relational Expressions

ReIationan Expressions
Purpose

Format

Remarks

A relational expression compares the values of
expressions with compatible data types.

expl re10p exp2

exp1, exp2 Expressions that are both arithmetic or both
string.

re10p Relational operator.

• The operand expressions are evaluated and then
compared. A value of 0 results if the comparison is
false. A value of -1 results if the comparison is
true.

°Eerator ComEarison

Equal To

<> or >< Not Equal To

< Less Than

<= or =< Less Than Or Equal To

> Greater Than

>= or => Greater Than Or Equal To

• Relational operators all have the same precedence.
Remember that parentheses take precedence over all
other operations.

• A character-by-character comparison is made when the
operands of a relational expression are string
expressions. Decisions are based on the sequence of
ASCII character codes defined in the ANSI standard
ASCII character set (see appendix B). This sequence
is designed so that letter comparisons are made
based on alphabetical order.

4-8 BASIC for NOS/VE Usage Revision B

Relational Expressions

Examples

NOTE

• The following expression is false because S follows
D in the alphabet. The value 0 results.

"FALETTI, STEVE" <= "FALETTI, DAN"

• This next expression is true because (512.0 >
64.0). The value -1 results.

Since a relational expression produces a numeric value (either 0 or
-1), a compound expression such as (1 < 7 < 4) is allowed. However,
such an expression does not have the'usual mathematical
interpretation.

The expression (1 < 7 < 4) results in the value -1, for true, even
though the inequality is mathematically false. Evaluating the
expression left-to-right, the comparison (1 < 7) yields the value
-1. The comparison becomes (-1 < 4). This is true, so the value -1
results.

Testing compound mathematical inequalities requires use of the
logical AND operator. Logical expressions are discussed next.

The values of the ASCII character codes for uppercase letters are
less than the values of the codes for all the lowercase letters.
When sorting string data, it is often important first to convert all
the data to the same case. (See the LCASE and UCASE functions)

Revision B Expressions and Assignment 4-9

Logical Expressions

Logical E"'pressions
Purpose

Format

Remarks

A logical expression is typically used to make compound
relational comparisons.

expl logop exp2

expl, exp2 Numeric expressions. Although arithmetic
expressions are permitted, these operand
expressions are usually relational or
logical.

logop Logical operator.

• After the operand expressions are evaluated, the
logical operations are performed according to
priority. If a 0 value results, the expression is
considered false. If a nonzero value results, the
expression is considered true.

Precedence Operator Operation

NOT Logical Negation

2 AND Logical Conjunction

3 OR Logical Inclusive
Disjunction

4 XOR Logical Exclusive
Disjunction

5 EQV Logical Equivalence

6 IMP Logical Implication

• A logical operator is applied bit-by-bit to its
64-bit numeric operands. Each bit of the result is
set to either 0 or 1, based on the definition of the
operator. In general, bit k of the result depends
on the kth bit of each operand.

• If all bits are set to zero, the result is
considered false. In this case, the value 0
results. If at least one bit is set to 1, the
result is considered true. In this case, the
decimal equivalent of the binary representation
results.

4-10 BASIC for NOS/VE Usage Revision B

Remarks
(cant)

Revision B

•

Logical Expressions

If both operands have values that are either 0 or
-1, the logical operation produces a value of either
o or -1.

• The unary NOT operator can be the first token in a
logical expression. Two logical operators cannot
appear consecutively unless the second is the unary
NOT operator. Arbitrarily long sequences of
consecutive unary NOT operators are permitted.

• The precedence for NOS/VE BASIC logical operations
appears in the following table.

• The corresponding bits of the operands of a logical
operation must be in one of four states. The
following truth table shows the results of applying
each logical operation to each state. This defines
each of the logical operations. The letters p and q
denote corresponding bits.

NOT P P AND q P OR q P XOR q P EQV q p IMP q

o

Expressions and Assignment 4-11

Logical Expressions

Examples • This statement causes a branch to line 100 provided
A falls between 1 and 5, inclusive.

IF 1 <= A AND A <= 5 THEN GOTO 100

• This statement assigns the value "EXEMPT" to C$ if
A$ has the value "UNEMPLOYED", or B$ has the value
"CHILD", or both A$ and B$ have these respective
values.

IF A$ = "UNEMPLOYED" OR B$
"EXEMPT"

"CHILD" THEN LET C$

• This expression is always true regardless of the
values of P and Q.

NOT(P AND Q) EQV (NOT P OR NOT Q)

• The number 26 is 11010 binary; 9 is 1001 binary.
Application of the AND operator results in a word
with all bits, except the fourth bit from the right,
set to 0 (result: 000 ••• 0001000). The logical
expression is considered true. Y% is assigned the
value 8, which is 1000 binary.

LET Y% = 26 AND 9

• The number 26 is 11010 binary; 9 is 1001 binary.
Application of the XOR operator results in a word
with all bits, except the first, second, and fifth
bits from the right, set to 0 (result:
000 ••• 00010011). The logical expression is
considered true. Z% is assigned the value 19, which
is 10011 binary.

LET Z% = 26 XOR 9

4-12 BASIC for NOS/VE Usage Revision B

Assignment Statements

Assignment Statements
An assignment statement assigns a value to a variable.

In BASIC, the equal sign is used to denote both the assignment
operator and a relational operator. This can cause confusion. When
reading an equal sign that denotes assignment, use the words "is
assigned the value of", "receives the value of", or "becomes". This
distinguishes the assignment usage from the comparison usage.

This section discusses the NOS/VE BASIC assignment statements: LET
and SWAP. It also describes the CLEAR statement, which clears the
variables in an external routine.

Revision B Expressions and Assignment 4-13

Assignment Statements

LET Statement

Purpose

Format

Remarks

Assigns the value of an expression to a variable.

LET var exp

LET Optional keyword. This statement is the only
one that can be written without a keyword.

var Name of the variable being assigned a value.

exp Expression whose value is compatible with the
data type of VAR.

• The value of EXP is assigned to the variable VAR,
destroying any previous value. If VAR is a numeric
variable, the value of EXP is converted to the
appropriate data type. Thus, if VAR is integer, the
value of EXP is rounded to the nearest integer and
then stored. If VAR is real, the value of EXP is
converted to a real number and then stored.

• Each identifier for a variable or a function is
given a default initial value.

• The default initial value for:

A type integer identifier is 0 (integer zero).

A type real identifier is 0.0 (real zero).

A type string identifier is "" (the null string).

4-14 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Assignment Statements

• The rounded value -4 is assigned to the variable A%.

LET A% = -3.5

• The value of X is incremented by one. This example
illustrates the importance of distinguishing an
assignment from a comparison. If the above were
used in the context of a relational expression, it
would always be false.

X = X + 1

• The string variable S$ is assigned the result of the
concatenation of A$ with a substring of B$.

LET S$ = A$ + B$(2:6)

• If Z has the value zero, then this statement assigns
the value (0.0 + 3.0) to the variable Z, where Z is
real by default.

LET Z = Z + 3

Expressions and Assignment 4-15

Assignment Statements

svv~ Statennent
Purpose

Format

Remarks

Examples

Exchanges the values of two variables.

SWAP varl , var2

varl, var2 Variables having compatible data types.

This single statement is equivalent to the three
statements:

LET TEMP VARl
LET VARl VAR2
LET VAR2 TEMP

TEMP is a variable that has the same data type as VAR1.

The fourth line of this program fragment exchanges the
values of A$ and B$.

LET A$ = "TO DO"
2 LET B$ = "TIME"
3 PRINT "SO MUCH ";A$; " AND SO LITTLE
4 SWAP A$,B$
5 PRINT "SO MUCH ";A$;" AND SO LITTLE

The output produced appears below.

SO MUCH TO DO AND SO LITTLE TIME!
SO MUCH TIME AND SO LITTLE TO DO!

";B$;"!"

";B$;"!"

4-16 BASIC for NOS/VE Usage Revision B

Assignment Statements

CLEAR Statement

Purpose

Format

Remarks

Examples

Revision B

The CLEAR statement discards the data of the external
routine in which it appears. This includes all the data
of any embedded internal routines.

CLEAR

• When a CLEAR statement in an external routine is
executed:

All numeric scalar variables within that
external routine are set to zero. All string
scalar variables are set to the null string.

Both the lower and upper bounds of each
dimension of each array within that external
routine are set to zero or one, depending on the
option base. The value of the single remaining
element is set to either zero or the null
string, as dictated by data type.

• A CLEAR statement in an external routine:

•

Also clears the variables and arrays that the
external routine shares with other external
routines through the COMMON statement.

Does not clear variables and arrays that are
passed to that external routine as actual
parameters.

The ERASE statement, used with arrays, is related to
the CLEAR statement. For more information, see
chapter 11.

When the CLEAR statement in this program fragment is
executed, Band C% are assigned the value zero, and
D$ is assigned the value of the null string.

LET B = 2.0
LET C% 44
LET D$ = "BATTERIES"
CLEAR

Expressions and Assignment 4-17

o

o

o

o

o

;r-"\ (.

,,-~ .. ,

Decision and branching provides the means of altering the normal
sequential flow of execution.

GOTO Statement •• 5-2

Unconditional GOTO Statement •••••••••••••••••••••••••••••• 5-3
ON-GOTO Statement ••• 5-4

GOSUB Statements •• 5-5

Branch and Return Process ••••••••••••••••••••••••••••••••• 5-6
Uncondi tional GOSUB Statement " ••••••••••••••••••••••••••••• 5-7
ON-GOSUB Statement •• 5-8

Line IF Constructions ••• 5-9

Ll"ne IF Const ruc tions ••••••••••••••••••••••••••••••••••••• 5-10

Block IF Constructions •• 5-14

Block IF Constructions •••••••••••••••••••••••••••••••••••• 5-15

Looping Structures 5-20

FOR-NEXT Loops •• 5-21
WHILE-WEND Loops •• 5-28

System Interface •• 5-31

RUN Statement
SCL Sta temen t

5-31
5-32

Statements are executed one at a time in the order they appear
unless a control statement overrides this sequential execution.

A control statement establishes conditions for altering sequential
execution and passes control to a specified statement when these
conditions are met.

Possible results include a transfer of control under all
circumstances or the execution of an additional block of statements
before sequential execution is resumed.

Control statements that pertain to error processing are discussed in
the Runtime Error Processing chapter. Control statements involving
interaction between routines are discussed in the User-Defined
Functions chapter and the Subroutines chapter.

This chapter discusses NOS/VE BASIC control statements that are used
within a single routine to control the order of execution under
normal (error-free) circumstances.

Revision B Decision and Branching 5-1

GOTO Statements

GOTO Statements
This section discusses the two NOS/VE BASIC GOTO statements. The
unconditional GOTO statement causes a branch under all
circumstances. The ON-GOTO statement causes a branch to one of
several possible locations based on the value of an index expression.

A GOTO statement cannot be used to branch into or out of a routine
(whether external or internal). The keyword GOTO and the two-word
sequence GO TO are interchangeable in NOS/VE BASIC.

5-2 BASIC for NOS/VE Usage Revision B

GOTO Statements

Unconditional GOTO Statement

Purpose

Format

Examples

Revision B

Transfers control to the line with the specified label.

GOTO label

label Label of the line to which execution control
passes.

This statement causes an unconditional branch to the
line labeled 100.

GO TO 100

Decision and Branching 5-3

GOTO Statements

ON·GOTO Statement
Purpose

Format

Remarks

Examples

Transfers control to a line whose label is among a group
of specified labels.

ON test GOTO label1 , label2 , ••• , labeln

test Numeric expression the value of which determines
the position in the list of the labels used.
The label then specifies the line to which
execution control passes.

labeln List of labels giving the destinations of the
branch.

The value of TEST is rounded to the nearest integer K,
and control passes to the line labeled LABELK. In other
words, an unconditional GOTO LAB ELK is executed. If K
is less than one or greater than N, a runtime error
resul ts.

The following statement ON S% GOTO 200, 600, 500
transfers control to the line labeled:

200 if S% has the value 1.

600 if S% has the value 2.

500 if S% has the value 3.

If S% has any value greater than or less than the range
of values 1 through 3, a runtime error results.

5-4 BASIC for NOS/VB Usage Revision B

GOSUB Statements

GOSUIB Statements
NOS/VE BASIC provides two GOSUB statements. The unconditional GOSUB
statement causes a branch under all circumstances. The ON-GOSUB
statement causes a branch to one of several possible locations based
on the value of an index expression.

These two statements operate like the unconditional GOTO and ON-GOTO
statements, respectively, with one additional feature. They provide
a way of returning to the statement following the one that caused
the branch. This is accomplished by the RETURN statement.

A GOSUB statement cannot be used to branch into or out of a routine
(whether external or internal). The keyword GOSUB and the two-word
sequence GO SUB are interchangeable in NOS/VE BASIC.

This section discusses the unconditional GOSUB, ON-GOSUB, and RETURN
statements. It includes a brief description of the data structure
called a stack, which controls the branch and return process.

Revision B Decision and Branching 5-5

GOSUB Statements

Branch and Return Process

A GOSUB statement and a RETURN statement work together to effect a
branch and return. To understand this process, it might help to
know a few things about the data structure known as a stack.

A stack is a list that allows insertions and deletions at the top
only. Items in a stack are processed on a "Last In First Out" basis.

Inserting an item on top of a stack is referred to as pushing
because you can visualize this action pushing the other stack items
down one position. Deleting an item from the top of a stack is
referred to as popping because you can visualize this action causing
the other stack items to pop up one position.

A stack of plates in a cafeteria is an excellent model for the
workings of this data structure.

When an unconditional GOSUB or an ON-GOSUB statement is executed,
the address of the statement that follows it is pushed onto a
stack. When a RETURN statement is reached, the address that was
pushed onto the stack previously is now popped off the stack and
control passes to the statement with this address.

The RETURN statement has the format:

RETURN

The RETURN statement can appear any number of times in an external
routine.

Each routine has its own stack. When control is returned to a
calling routine from a called routine, the items in the stack of the
called routine are discarded. Hence, each time a routine is called,
it begins with an empty stack. A runtime error results if a RETURN
statement is executed when the stack is empty.

5-6 BASIC for NOS/VE Usage Revision B

GOSUB Statements

Unconditional GOSUB Statement

Purpose

Format

Remarks

Examples

Revision B

Transfers control to the line with the specified label.
In addition, this statement provides a way of returning
to the statement following the GOSUB statement.

GOSUB label

label Label of the line to which execution control
passes.

The RETURN statement is used to return control to the
statement following the unconditional GOSUB statement.

In this program fragment, the GOSUB statement transfers
control to the line labeled 500. When the RETURN
statement is reached, control passes to the PRINT
statement in the line labeled 100, and execution
continues.

GOSUB 500
100 PRINT "BACK FROM DESTINATION BLOCK"

500 REM Destination Block Begins Here

RETURN

Decision and Branching 5-7

ON-GOSUB Statements

ON-GOSUB Statement
Purpose

Format

Remarks

Examples

Transfers control to a line whose label is among a group
of specified labels. In addition, this statement
provides a way of returning to the statement following
the ON-GOSUB statement.

ON test GOSUB labell , label2 ,... ,labeln

test Numeric expression whose value determines the
position in the list of the labels used. The
label then specifies the line to which execution
control passes.

labeln List of labels giving the destinations of the
branch.

• The value of TEST is rounded to the nearest integer
K. Control passes to the line labeled LABELK. In
other words, an unconditional GOSUB LAB ELK is
executed. If K is less than one or greater than N,
a runtime error results.

• The RETURN statement is used to return control to
the statement immediately following the ON-GOSUB
statement.

The statement ON SGN(A) + 2 GOSUB 800, 400, 500
transfers control to the line labeled:

800 if (SGN(A) + 2) is 1.

400 if (SGN(A) + 2) is 2.

500 if (SGN(A) + 2) is 3.

The function reference SGN(A) returns the value -1, 0,
or 1 depending on whether A is negative, zero, or
positive, respectively.

If the expression (SGN(A) + 2), when rounded to the
nearest integer, has any value other than 1, 2, or 3, a
runtime error results.

5-8 BASIC for NOS/VE Usage Revision B

Line IF Constructions

!Line HIF Constructions
A line IF construction is a multi-statement decision and branching
structure that is confined to a single line.

A line IF construction has three components:

Revision B

An IF condition, which determines where control is
transferred.

A THEN clause, which is executed when the IF condition
is true.

An optional ELSE clause, which is executed when the IF
condition is false. If no ELSE clause has been
provided, control passes to the next line.

Decision and Branching 5-9

Line IF Constructions

Line IF Constructions

Purpose

Format

Remarks

Creates a multi-statement decision and branching
structure that is confined to a single line.

IF
IF

condition THEN
GOTO

clause 1
label

ELSE
ELSE

clause2
label

condition Expression whose value directs the flow of
execution. This expression is usually
relational or logical, but it can be
arithmetic.

clause 1

clause2

label

Series of BASIC statements that are
separated by colons.

Optional series of BASIC statements that are
separated by colons. If omitted, the
keyword ELSE is also omitted.

Series of BASIC statements that are
separated by colons.

• Remember that the entire line IF construction is
confined to a single line.

• An IF condition is a numeric expression (usually
relational or logical) whose value directs the flow
of execution.

• If the value of the IF condition is:

Zero (representing false in a logical context),
the THEN clause is ignored, and control passes
to the first statement of the ELSE clause. If
no ELSE clause has been provided, control passes
to the next line.

Nonzero (representing true in a logical
context), control passes to the first statement
of the THEN clause.

5-10 BASIC for NOS/VE Usage Revision B

Remarks
(cont)

Revision B

•

Line IF Constructions

If the end of a clause is reached (a branching
statement might prevent this), control passes to the
line following the IF construction.

• Consider the following line IF construction:

IF condition THEN GOTO label ELSE clause2

The following two special constructions are
equivalent to the one above:

IF condition THEN label ELSE clause2
IF condition GOTO label ELSE clause2

The first special form allows you to omit the
keyword GOTO when the THEN clause contains a single
unconditional GOTO statement.

The second special form allows you to omit the
keyword THEN when the THEN clause contains a single
unconditional GOTO statement.

• Consider the following line IF construction:

IF condition THEN clausel ELSE GOTO label

The following special construction is equivalent to
the one above:

IF condition THEN clause 1 ELSE label

This special form allows you to omit the keyword
GOTO when the ELSE clause contains a single
unconditional GOTO statement.

The special forms described apply only in
conjunction with the unconditional GOTO statement in
line IF constructions. They cannot be generalized.

Decision and Branching 5-11

Line IF Constructions

Examples • If B$ has the value "YES", then C is incremented by
one. Otherwise, D is incremented by one. Execution
continues with the next line.

IF B$ = "YES" THEN C = C+ 1 ELSE D D+1 PRINT C, D

• These two statements are equivalent. They
illustrate the use of a logical expression in the IF
condition.

IF (Y<1 XOR S<Y) THEN PRINT "YES" ELSE PRINT "NO"

IF (1 <=Y AND Y<=S)THEN PRINT "NO" ELSE PRINT "YES"

• If A% has the value 0, then "FALSE" is printed.
Otherwise, "TRUE" is printed. Execution continues
with the next line.

IF A% THEN PRINT "TRUE" ELSE PRINT "FALSE"
LET A% = A% + 1

• The PRINT and LET statements are executed only if X
is positive. Execution continues with the next line.

IF X > 0 THEN PRINT "X IS pas ITIVE" : LET S$ = "ON"
LET X = X + 1

5-12 BASIC for NOS/VE Usage Revision B

Examples
(cant)

Revision B

•

Line IF Constructions

If A% has the value 1, control passes to the line
labeled 100. A RETURN statement corresponding to
the GOSUB statement transfers control back to the
PRINT statement in this line IF construction.

IF A% = 1 THEN GOSUB 100 : PRINT "BACK"

• The following three statements are equivalent:

IF S$ "YES" THEN GOTO 100

IF S$ "YES" GOTO 100

Each of these statements causes a branch to the line
labeled 100 if S$ has the value "YES". Otherwise,
execution continues with the next line.

IF S$ = "YES" THEN 100

• If C% has the value 0, control passes to the line
labeled 200. Otherwise, control passes to the line
labeled 400.

IF C% = a THEN 200 ELSE 400

Decision and Branching 5-13

Block IF Constructions

Bloc)·(IF Constructions
A block IF construction is a multi-statement decision and branching
structure that is not confined to a single line.

A block IF construction has five components:

An IF condition, which initially directs the flow of
execution.

An initial THEN block, which is executed when the IF
condition is true.

An optional series of one or more ELSEIF constructions,
the first of which is executed when the IF condition is
false.

An ELSEIF construction consists of an ELSEIF condition
followed by a THEN block.

An optional ELSE block, which is executed when the IF
condition and all the ELSEIF conditions are false.

An ENDIF statement, which denotes the physical end of
the block IF construction.

5-14 BASIC for NOS/VE Usage Revision B

Block IF Constructions

Block IF Constructions

Purpose

Format

Revision B

Creates a multi-line decision and branching structure.

IF incond THEN -----,
inblock --------------~

ELSEIF cond1 THEN ~
blockj -

ELSE
elblock --------------~

ENDIF

incond

inblock

condJ

blockJ

elblock

Expression whose value initially directs the
flow of execution.

THEN block.

Expression of the Jth ELSE IF construction
where (1 <= J <=N).

THEN block of the Jth ELSEIF construction,
where, (1 <= J <= N).

Optional ELSE block. If omitted, the
preceding ELSE is also omitted.

Decision and Branching 5-15

Block IF Constructions

Remarks • An IF condition is an expression whose value
initially directs the flow of execution. This
expression is usually relational or logical, but it
can be arithmetic. If the value of the IF condition
is:

Zero (denoting false in a logical context), the
initial THEN block is ignored, and control
passes to the first ELSEIF construction. If no
ELSEIF constructions are provided, control
passes to the first statement of the ELSE
block. If no ELSE block is provided, control
passes to the statement following the ENDIF
statement.

Nonzero (denoting true in a logical context),
control passes to the first statement of the
initial THEN block.

• If the end of a THEN block or an ELSE block is
reached (a branching statement might prevent this),
control passes to the statement following the ENDIF
statement.

5-16 BASIC for NOS/VE Usage Revision B

Remarks
(cant)

Revision B

•

Block IF Constructions

An ELSEIF construction is an ELSEIF condition
followed by a THEN block. An ELSEIF condition is an
expression whose value further directs the flow of
execution. This expression is usually relational or
logical, but it can be arithmetic. If the value of
an ELSEIF condition is:

Zero, the corresponding THEN block is ignored,
and control passes to the next ELSEIF
construction. If no ELSEIF construction
follows, control passes to the first statement
of the ELSE block. If no ELSE block is
provided, control passes to the statement
following the ENDIF statement.

Nonzero, control passes to the first statement
of the corresponding THEN block.

• The format presented for block IF constructions is
standard, but not required. In particular, line
feeds can be replaced by colons. Thus, the
following line is a legal format for a block IF
construc tion.

IF condition THEN : block1 : ELSE : block2 : ENDIF

This single line format is impractical, since a line
IF construction would be equally effective with less
typing. However, formats other than the standard
one can be devised using this as a base.

• The ELSEIF construction is optional.

Decision and Branching 5-17

Block IF Constructions

Examples • This block IF construction computes total purchase
cost. The cost per item is one of two values,
depending on the amount purchased. If the value of
QUANTITY% is less than 100, the lines labeled 10 and
20 are executed, and control passes to the line
labeled 50. If the value of QUANTITY% is 100 or
larger, the lines labeled 30 and 40 are executed,
and control passes to the line labeled 50.

IF QUANTITY% < 100 THEN
10 PRINT "NORMAL COST PER ITEM IS: $" ; COST 1
20 LET TOTAL. COST = QUANTITY% * COST1

ELSE
30 PRINT "SPECIAL COST PER ITEM IS: $";COST2
40 LET TOTAL. COST = QUANTITY% * COST2

ENDIF
50 PRINT

• This block IF construction has no ELSE block. If
the value of S$ is "YES", a receipt request is
handled. A RETURN statement corresponding to the
GOSUB statement transfers control to the line
labeled 90. If the the value of S$ is not "YES", no
receipt is issued, since control passes directly to
the line labeled 100.

IF S$ = "YES" THEN
LET SWITCH$ = "ON"
PRINT "YOU HAVE REQUESTED A RECEIPT."
PRINT "IT WILL BE ISSUED IN A MOMENT."
GOSUB 500 ' Branch to print receipt.

90 PRINT "YOUR RECEIPT HAS BEEN ISSUED."
ENDIF

100 PRINT

5-18 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision B

•

Block IF Constructions

This block IF construction prints the letter grade
that goes with a lOa-point exam score t using a
straight percentage grading scale.

5 PRINT "YOUR LETTER GRADE IS: II. t
10 IF SCORE)= 90 THEN
15 PRINT "A"
20 ELSEIF SCORE)= 80 THEN
25 PRINT "B"
30 ELSE IF SCORE)= 70 THEN
35 PRINT "c"
40 ELSEIF SCORE)= 60 THEN
45 PRINT "D"
50 ELSE
55 PRINT "F"
60 END IF
65 PRINT "THANK YOU"

If SCORE is greater than or equal to 90 t the grade
is A.

If SCORE is greater than or equal to 80 and less
than 90 t the grade is B.

If SCORE is greater than or equal to 70 and less
than 80 t the grade is C.

If SCORE is greater than or equal to 60 and less
than 70 t the grade is D.

If SCORE is less than 60 t the grade is F.

NOTE

If a block IF construction has many ELSEIF
conditions t place the cases that are most likely to
be true near the top. This speeds up execution.

Truncation errors occur during real arithmetic
because the computer can use only a limited number
of digits to express a decimal number. Usually such
errors affect only the least significant digits t and
are negligible from a practical standpoint. They
cant however t affect tests for equality involving
real numbers. You might find the use of
inequalities more appropriate than equalities for
real number comparisons.

Decision and Branching 5-19

Looping Structures

Looping Structures
A looping (or iterative) structure provides for repeated execution
of a group of statements. The statements themselves remain the
same, but the data involved is allowed to change.

NOS/VE BASIC provides two looping structures: the FOR-NEXT loop,
and the WHILE-WEND loop.

In general, the FOR-NEXT loop is appropriate when the desired number
of repetitions is known upon loop entry. The WHILE-WEND loop is
generally used when the desired number of repetitions is
undetermined on loop entry.

This section discusses these two looping structures.

5-20 BASIC for NOS/VE Usage Revision B

Looping Structures

FOR-NEXT Loops
The FOR-NEXT loop is a multi-line structure that causes a group of
statements to be executed a specified number of times. This
structure is appropriate when the desired number of repetitions is
known before the loop is entered.

The FOR-NEXT loop has three components: the FOR statement, the loop
body, and the NEXT statement.

FOR statement
loop body

NEXT statement

FOR Statement

Purpose Marks the beginning of the loop and controls the number
of times the loop is executed.

Format FOR counter

counter

initial

limit

size

Revision B

initial TO limit STEP size

Numeric scalar variable whose value controls
the looping process. This variable is
called the control variable or the counter.

Numeric expression whose value is the
initial value of the counter.

Numeric expression whose value is the limit
value for the counter.

Optional numeric expression whose value
determines the increment value for the
counter. If omitted, the keyword STEP is
also omitted and the default value 1 is
assumed.

Decision and Branching 5-21

Looping Structures

Remarks • Execution of the FOR statement on entry to the loop:

Establishes the limit and increment values for
the loop counter.

Assigns an initial value to the loop counter.

Performs the first loop exit test on the loop
counter to determine whether or not the loop
body is to be executed.

• The loop body is an optional block that contains the
statements to be executed.

• The NEXT statement marks the physical end of the
loop. Its execution increments the value of the
loop counter and passes control back to the loop
exit test in the FOR statement. This test
determines whether or not the loop body is
reexecuted.

FOR counter initial TO limit STEP size

When control first reaches the FOR statement, the
values of INITIAL, LIMIT, and SIZE are computed.
The control variable COUNTER is then assigned the
value of INITIAL.

The following statements set the limit value at 15
before assigning the initial value 1 to the control
variable N.

LET N
FOR N

15
1 TO N

5-22 BASIC for NOS/VE Usage Revision B

Remarks
(cont)

Revision B

•

Looping Structures

The loop exit test, which determines whether the
loop body is executed, uses the following criteria.

The loop body is executed as long as the test
expression is nonnegative.

(LIMIT - COUNTER) * SGN(SIZE)

The SGN function reference returns the value -1, 0,
or 1, depending on whether the value of its argument
is negative, zero, or positive, respectively.

When the test expression is negative, control passes
to the statement following the NEXT statement.

• The expressions for LIMIT and SIZE are evaluated
only'when the FOR statement is executed upon entry
to the loop. Changes made within the loop body to
variables in these expressions do not affect the
number of times the loop is executed. However,
changes made within the loop body to COUNTER do
affect the number of times the loop is executed.

You might want to know in advance the number of
times a loop will be executed. Assuming the loop
body does not modify the value of COUNTER, and does
not cause an early loop exit.

MAX ((LIMIT + SIZE - INITIAL) SIZE, 0)

This expression computes the number of times a
FOR-NEXT loop will be executed. The MAX function
reference returns the maximum of the values of its
two arguments.

• A branch into the middle of a loop body without
execution of the FOR statement is permitted but not
recommended. When control is passed to the FOR
statement, the loop exit test uses whatever values
are currently stored in the specified variables. If
the variables did not previously exist, default zero
values are provided. Many problems, such as an
endless loop, can result from such an ill-advised
branch.

Decision and Branching 5-23

Looping Structures

NEXT Statement

Purpose

Format

Remarks

Marks the physical end of the loop. Its execution
increments the value of the loop counter and passes
control back to the loop exit test in the FOR statement.

NEXT counter

counter Optional appearance of the name of the
control variable specified in the FOR
statement. If COUNTER is omitted, the NEXT
statement corresponds to the nearest
preceding FOR statement that does not have a
corresponding NEXT statement.

• When the NEXT statement is reached, the value of
COUNTER is incremented by the value of SIZE (which
can be negative). Control passes back to the loop
exit test.

• Looping continues until the loop exit test stops it,
or until control is transferred out of the loop by
some other means. If control passes to the FOR
statement directly from within the loop body,
bypassing the NEXT statement, the loop is
reini tiali zed.

5-24 BASIC for NOS/VE Usage Revision B

Looping Structures

FOR-NEXT Examples

Examples

Revision B

• The two program fragments below each compute the sum
of the first N terms of the series:

1 + 0/3) + 0/5) + ••• + O/J) + •••

'FRAGMENT 111
DEFINT J, N
INPUT N
LET SUM = 0.0
FOR J = 1 TO N

SUM = SUM + 1 / (2 * J - 1)
NEXT J

'FRAGMENT 112
DEFINT J,N
INPUT N
LET SUM = 0.0
FOR J 1 TO 2 * N - 1 STEP 2

SUM SUM + 1 / J
NEXT

In fragment #1, a default increment size of 1 is
assumed. In fragment #2, the control variable J is
omitted from the NEXT statement.

Note that the loop exit test for a FOR-NEXT loop
occurs at the top of the loop. Thus, it is possible
that the loop body is never executed.

• On entry to a loop that begins with this FOR
statement, the loop exit test immediately passes
control to the statement following the corresponding
NEXT statement. The loop body is never executed.

FOR K% = 1 TO 10 STEP -3

Decision and Branching 5-25

Looping Structures

Examples • The FOR-NEXT loop is first illustrated below and
then is expressed again using a line IF construction.

FOR X = 1.0 TO 10.0 STEP 0.5

NEXT X
90 REM

LET X = 1.0
50 IF 10.0 - X < 0 THEN GOTO 90

LET X X + 0.5
GOTO 50

90 REM

• FOR-NEXT loops can be nested inside of other
FOR-NEXT loops. Note that the loop body of the
inside loop must be completely contained within the
loop body of the outside loop.

FOR I = N TO 1 STEP -1
FOR J = 1 TO I

PRINT "*";
NEXT J
PRINT

NEXT I

This program fragment prints an inverted right
triangle of asterisks when N is a positive integer.
The output when N has the value 4 appears below.

**
*

5-26 BASIC for NOS/VE Usage Revision B

Looping Structures

Special Formatted NEXT

Purpose

Format

Remarks

Examples

Revision B

Permits a special format for the NEXT statement to
facilitate the case of nested loops.

NEXT conlist

conlist Optional ordered list of control variables
that are separated by commas. The control
variables listed must appear in the order of
the nesting, with the control variable for
the innermost loop listed first, and that of
the outermost loop listed last.

This format is a shortcut for a series of consecutive
NEXT statements. The order of the statements
corresponds to the order of the list.

The following program fragments are equivalent.

'FRAGMENT ill 'FRAGMENT 112
FOR I = 3 TO 7 STEP 2 FOR 1=3 TO 7 STEP 2

FOR J 2 TO 4 FOR J = 2 TO 4
PRINT I * J; PRINT I * J;

NEXT J, I NEXT J
NEXT I

Each fragment generates the output below:

6 9 12 10 15 20 14 21 28

Decision and Branching 5-27

Looping Structures

WHILE-WEND Loops
The WHILE-WEND loop is a multi-line structure that causes a group of
statements to be repeatedly executed. This structure is appropriate
when the desired number of repetitions is undetermined on loop entry.

The WHILE-WEND loop has three components: the WHILE statement, the
loop body, and the WEND statement.

WHILE statement
loop body

WEND

WHILE Statement

Purpose

Format

Remarks

Marks the beginning of the loop, and performs a loop
exit test to determine whether or not the loop body is
executed.

WHILE condition

condition Numeric expression whose value determines
whether the loop body is executed. This
expression is usually relational or logical,
but it can be arithmetic.

• If the value of CONDITION is:

Nonzero (representing true in a logical
context), the loop body is executed.

Zero (representing false in a logical context),
control passes to the statement following the
WEND statement.

• The loop exit test determines whether or not the
loop body is reexecuted.

• The loop exit test for a WHILE-WEND loop occurs at
the top of the loop. Thus, it is possible that the
loop body is never executed.

5-28 BASIC for NOS/VE Usage Revision B

Looping Structures

WEND Statement

Purpose

Format

Remarks

Revision B

Marks the physical end of the loop. Its execution
passes control back to the WHILE statement.

WEND

For information on the loop body see the FOR Statement
section.

Decision and Branching 5-29

Looping Structures

WHILE-WEND Example

Examples This program fragment computes the number of terms
needed for the product to become less than the value of
LOWER. BOUND. If LOWER.BOUND is given the value 0.13,
the value 3 is printed.

LET N% = 1 : LET PRODUCT = 1
INPUT LOWER. BOUND ' Set lower bound for the product.
'Eliminate unacceptable lower bounds.
IF LOWER. BOUND <= 0 THEN PRINT "INFINITE" END
WHILE PRODUCT)= LOWER. BOUND

WEND

LET PRODUCT PRODUCT * (0.5)AN%
LET N% = N% + 1

90 PRINT "NUMBER OF TERMS: "; N%

5-30 BASIC for NOS/VE Usage Revision B

System Interface

System llntelI'face

You can execute NOS/VE commands from within a BASIC program with the
RUN and SCL statements.

This section discusses these two system interface statements.

RUN Statement

Purpose

Format

Remarks

Revision E

Executes a NOS/VE command, then terminates the BASIC
program.

RUN command

command String expression whose value is the NOS/VE
command to be executed.

• When the RUN statement is executed, all BASIC files
are closed, and the value of COMMAND is passed to
NOS/VE for processing as a separate task. After the
command is processed, the BASIC program is
terminated, and control is transferred to the
environment from which the NOS/VE BASIC program was
invoked. Any error status resulting from execution
of the command becomes the status of the NOS/VE
BASIC program.

• The RUN command initiates a new task while the
original task, the BASIC program, still exists.

• The number of concurrent tasks you can run is
limited. The default maximum is twenty concurrent
tasks; be careful not to exceed this limit. Your
site administrator can change the default number of
tasks by changing the TASK LIMIT validation
attribute associated with your user name.

• When you specify the NOS/VE command in the COMMAND
parameter, you should omit the STATUS parameter from
the NOS/VE command. If you include the STATUS
parameter and an error occurs while the NOS/VE
command executes, the BASIC program terminates
normally; you see no indication of the error
condition. By omitting the STATUS parameter, any
abnormal status condition resulting from execution
of the command becomes the status of the BASIC
program.

Decision and Branching 5-31e

System Interface

Examples This statement deletes the file SCRATCH from the working
catalog and terminates the BASIC program. For more
information about the DELETE FILE (DELF) command, see
the NOS/VE System Usage manual.

RUN "DELF SCRATCH"

5-32 BASIC for NOS/VE Usage Revision E

System Interface

SCL Statement

Purpose

Format

Remarks

Revision E

Transfers control to NOS/VE so that a specified NOS/VE
command can be executed.

SCL command

command String expression whose value is the NOS/VE
command to be executed.

• When the SCL statement is executed, all BASIC files
are left open, and the value of COMMAND is passed to
NOS/VE for processing. After the command is
processed, control returns to the program, and
execution continues with the next statement. If an
error occurs during processing of the command, a
BASIC runtime error results.

• The number of concurrent tasks you can run is
limited. The default maximum is twenty concurrent
tasks; be careful not to exceed this limit. Your
site administrator can change the default number of
tasks by changing the TASK LIMIT validation
attribute associated with your user name.

• You should not use the SCL statement to attach a
file you later open with an OPEN statement. The
OPEN attaches the file internally; if the file is
already attached, the OPEN might fail due to a share
mode conflict. For information about attaching
files, see the NOS/VE System Usage manual.

• The SCL command initiates a new task while the
original task, the BASIC program, still exists. Up
to eleven separate tasks can run concurrently; be
careful not to exceed this limit.

• When you specify the NOS/VE command in the COMMAND
parameter, you should omit the STATUS parameter from
the NOS/VE command. If you include the STATUS
parameter and an error occurs while the NOS/VE
command executes, the BASIC program continues
running normally; you see no indication of the error
condition. By omitting the STATUS parameter, any
abnormal status condition resulting from execution
of the command becomes the status of the NOS/VE
BASIC program, resulting in a BASIC runtime error.

Decision and Branching 5-33.

System Interface

Examples The SCL statement deletes the file SCRATCH from the
working catalog and returns control to the BASIC
program. Execution continues with the line labeled
100. For more information about the DELETE FILE (DELF)
command, see the NOS/VE System Usage manua17

SCL "DELF SCRATCH"
100

.5-34 BASIC for NOS/VE Usage Revision E

o

o

o

o

o

This chapter describes the statements and library functions used to
process runtime errors.

Error Processing Overview ••••••••••••••••••••••••••••••••••••• 6-2

Introduction to Error Handling •••••••••••••••••••••••••••• 6-2
Default Error Handling •••••••••••••••••••••••••••••••••••• 6-3
User Error Handling ••••••••••••••••••••••••••••••••••••••• 6-5
User Error Handling Process Model ••••••••••••••••••••••••• 6-7
Error Processing Model •••••••••••••••••••••••••••••••••••• 6-8
Sample Error Processing ••••••••••••••••••••••••••••••••••• 6-8

ERL Function 6-9

ERR Function 6-11

Runtime Diagnostic Forma t .•••••••••••••••••••••••.•••••.•••.•• 6-12

ON ERROR Statement 6-14

RESUME Statement •• 6-15

,r----\ ERROR Statement ••• 6-17
''------''

STOP Statement •• 6-18

c

Runtime refers to the time during which a program is being executed.

Runtime errors need not cause program termination. Instead, you can
choose to handle and clear these errors from within your program.

Runtime error diagnostics (error messages) for uncleared errors are
written to the NOS/VE standard file $ERRORS. The default connection
for the standard error file is the listing file OUTPUT. For
interactive mode, this means that diagnostics appear at the terminal.

A complete listing of the NOS/VE BASIC runtime error diagnostics
appears in the Diagnostic Messages for NOS/VE manual.

This chapter discusses the NOS/VE BASIC statements and library
functions used to process runtime errors.

Revision E Runtime Error Processing 6-1

Error Processing Overview

Error Proce§sing Overview
When execution control first reaches a routine, default error
handling is in effect. You can override the default and take
control of error handling with the ON ERROR statement. Errors can ~

then be cleared with the RESUME statement.

This section provides an overview and model to help you visualize
the dynamics of error processing.

Introduction to Error Handling

If a runtime error occurs, a diagnostic describing the error is
saved. The occurrence of these events is denoted by the phrase "an
error/diagnostic results". How an error is processed depends on
whether default or user error handling is in effect.

When an error occurs, it is located in one of two environments:

• In an internal routine.

• In the portion of an external routine that is outside of all
embedded internal routines.

With this in mind, a program can be thought of as a collection of
environments. Within each environment, you can choose whether
default or user error handling is in effect. However, an error can
be cleared only through user handling. If an error is cleared, its
corresponding diagnostic is deleted without being printed. Hence, a
diagnostic that is printed always corresponds to an uncleared error.

6-2 BASIC for NOS/VE Usage Revision B

Error Processing Overview

Default Error Handling

An error in the portion of the main program that is outside of all
embedded internal routines is located at the highest possible
level. This environment is referred to as the top level
environment. Any other environment is referred to as a low level
environment.

If default error handling is in effect when a runtime
error/diagnostic occurs in the top level environment:

• The diagnostics that have not been deleted are written to
the NOS/VE standard file $ERRORS.

• The program is terminated.

If default error handling is in effect when a runtime
error/diagnostic results in a low level environment:

• Control returns to the place where the routine was called
(the call site).

• Another error/diagnostic results at the call site because of
the return from a called routine with an uncleared error.

For simplicity, the return and resulting error/diagnostic are
collectively referred to as an error return. Note that diagnostics
are saved in chronological order.

Revision B Runtime Error Processing 6-3

Error Processing Overview

Error handling now continues in the calling routine. The next
action depends on whether default or user handling is in effect in
the new environment.

If default error handling remains in effect in each new environment,
control is transferred upward from call site to call site.

This series of error returns continues until user handling is in
effect in some environment, or until the top level environment is
reached with default handling still in effect.

All the errors in such a series, including the original error, are
associated with the final error in the series. If this final error
is cleared through user handling, all the associated errors are also
cleared and the corresponding diagnostics are deleted.

Runtime Error/Diagnostic Results

~ "-DEFAULT HANDLING USER HANDLING

/ "-If top level If low level
environment: environment:
Saved
diagnostics
printed.
Program
terminated.

Error return
resul ts.

/ "'-DEFAULT USER
HANDLING HANDLING

6-4 BASIC for NOS/VE Usage Revision B

Error Processing Overview

User Error Handling

The ON ERROR statement is used to activate user error handling
within an environment.

This means that:

• An ON ERROR statement in an internal routine applies only to
that internal routine.

• An ON ERROR statement in the portion of an external routine
that is outside of all embedded internal routines does not
apply to those embedded routines.

The ON ERROR statement specifies where control is to be transferred
if a runtime error occurs in its environment. Ideally, the
statements next executed either eliminate or bypass any problems
resulting from the error that has occurred. Note that these
statements can simply ignore the error, although this could cause
further problems.

Suppose that user error handling is in effect when a runtime
error/diagnostic results.

If a previous error in the current environment has not yet been
cleared:

• Another error/diagnostic results because concurrent errors
in an environment cannot be handled.

• The diagnostics that have not been deleted are written to
the NOS/VE standard file $ERRORS.

o The program is terminated.

Otherwise, control passes to the line specified in the governing ON
ERROR statement, and one of three outcomes eventually occurs.

Revision B Runtime Error Processing 6-5

Error Processing Overview

The following are the possible outcomes:

• A RESUME statement is reached. If a RESUME statement is
executed:

The error in the current environment, and all of its
associated errors are cleared.

The corresponding diagnostics are deleted.

Control is transferred to one of three places,
depending on the specific form of the RESUME
statement.

• The program terminates with an uncleared error. If the
program terminates before an error is cleared, the
diagnostics that have not been deleted are written to the
NOS/VE standard file $ERRORS.

• An error return occurs. If control returns from an
environment (by an EXIT FUNCTION, END FUNCTION, EXIT SUB, or
END SUB statement) without clearing an error, an error
return occurs. Error handling now continues in the calling
routine. The next action depends on whether default or user
error handling is in effect in the new environment.

6-6 BASIC for NOS/VE Usage Revision B

Error Processing Overview

User Error Handling Process Model

~Runtime Error/Diagnostic ReSUlts~

DEFAULT HANDLING /USER HANDLING~

ON ERROR executed. If concurrent

/
If 10\01 level
environment

~exited:

~ If RESUME
Error return Error and

executed:
those

results.

/ ""-DEFAULT USER
HANDLING HANDLING

associated cleared.
Corresponding
diagnostics deleted.
Control transferred
as indicated.

errors in current
environment:
Error/Diagnostic
results.
Saved diagnostics
printed.
Program terminated.

If main program ends:
Saved diagnostics
printed.

Revision B Runtime Error Processing 6-7

Error Processing Overview

Error Processing Model

~Runtime Error/Diagnostic

DEFAULT HANDLING

ReSults~

/USER HANDLING ~
/ \

If top level If low level
environment: environment:
Saved If w environment:

environment Error/Diagnostic diagnostics
printed.
Program
terminated.

lO
!.lONevEeRRl OR execute\d. !~r~~:c~~r~:~rent

exited· resul ts.

/

• Saved diagnostics
printed.

If RESUME executed: Program terminated.
Error return Error and those
resul ts. associated cleared.

/ " Corresponding If main program ends:
DEFAULT USER diagnostics deleted. Saved diagnostics
HANDLING HANDLING Control transferred printed.

as indicated.

Sample Error Processing

REM Main Program

10 ON ERROR GOTO 40
20 CALL A

SUB A

30 ***** 'Error #1
'Error Return

END SUB 'A

40 'Error Handling

SO RESUME NEXT

Error/Diagnostic #1 results at the line labeled 30.
Under default handling, an error return (error #2)

occurs as control passes to the line labeled 20.

Under user handling in the new environment, which
was activated by the ON ERROR statement
(labeled 10), control is transferred to the line
labeled 40.

When the RESUME statement (labeled SO) is executed,
error #2 and the associated error #1 are cleared.
The corresponding diagnostics are deleted.

Control passes to the statement following the one
that caused the final error in the series. That
is, control passes to the line following the line
labeled 20.

6-8 BASIC for NOS/VE Usage Revision B

ERL Function

IEIIIL IF unction

Purpose Returns the label associated with the statement whose
execution caused the error in the current environment.

Format ERL

Remarks

Revision B

ERL has no parameters. The value returned is always an
integer. If no error exists in the current environment,
the default value 0 is returned.

If a program has no labels, every statement is
associated with the default value O. The ERL function
always returns the value 0, whether an error exists or
not.

Runtime Error Processing 6-9

ERL Function

Examples • Suppose A receives the value 0.0 through the INPUT
statement. The resulting division by zero in the
line labeled 30 causes an error. The value 30 (the
label associated with the IF-THEN statement) is
returned by the ERL function reference and printed.

ON ERROR GOTO 70
INPUT A

30 IF B / A > 0 THEN 500

70 PRINT ERL

• In this example, the error is division by zero. The
line causing the error has no label associated with
it and the ERL function returns the value O.

ON ERROR GOTO 70
A = 0 : B = 5
IF B / A > 0 THEN 500

70 PRINT ERL

• In the example, the error is also division by zero.
The ERL function returns the value 20 which is the
statement label of the line nearest the preceeding
label to the line causing the error.

ON ERROR GOTO 70
A = 0

20 B = 5
IF B / A > 0 THEN 500

70 PRINT ERL

6-10 BASIC for NOS/VE Usage Revision B

ERR Function

JERIIl Function
Purpose

Format

Remarks

Examples

Revision C

The ERR function returns the number that identifies the
uncleared error (if any) in the current environment.

ERR

ERR has no parameters. The value returned is always an
integer. The value 0 is returned if no error exists in
the current environment.

• If an error in the current environment:

Is a NOSjVE BASIC runtime error, the ERR
function returns the value of the 4-digit status
condition code for the error.

Was induced with the ERROR statement. The ERR
function returns the value of the error number
specified in the ERROR statement.

• After an error in the current environment is cleared
with the RESUME statement, the ERR function returns
the value O.

• Suppose A receives the value 0.0 through the INPUT
statement. The resulting division by zero in the
line labeled 30 causes an error. The ERR function
reference returns the value 5003, the status
condition code for a divide fault. This value is
printed.

ON ERROR GOTO 70
INPUT A

30 IF B / A > 0 THEN 500

70 PRINT ERR

• The error was induced in this example using the
ERROR statement at label 20. The next ERR function
reference at label 70 returns the value 1 which is
the error number specified in the ERROR statement.

ON ERROR GOTO 70
10 LET A = 10
20 IF A = 10 THEN ERROR

70 PRINT ERR

Runtime Error Processing 6-11

Runtime Diagnostic Format

Runtime Diagnostic IF ormat

Purpose

I Format

Remarks

A NOS/VE BASIC runtime diagnostic has the format:

--zzz-- ERR
description

111111, ERL NNN in module ***: error

zzz

IfllIl

NNN

error description

Replaced by FATAL or CATASTROPHIC,
depending on the severity of the
error. A catastrophic error cannot
be cleared with user error handling.

Replaced by the status condition
code identifying the error. This
code is a 4-digit integer of the
form xxxx.

Replaced by the NOS/VE BASIC line
label associated with the statement
that caused the error.

Replaced by the name of the external
routine containing the error. The
name $MAIN is specified for the main
program.

Provides a brief description of the
error that occured.

For a complete listing of the NOS/VE BASIC runtime error
diagnostics, see the NOS/VE Diagnostic Messages manual.

6-12 BASIC for NOS/VE Usage Revision E

Examples

Revision C

•

Runtime Diagnostic Format

This short program causes the runtime diagnostic
below to be issued.

10 LET A = -2
20 LET B = AA(O.5)

END PROGRAM

--FATAL-- ERR = 5251, ERL = 20 in module $HAIN:
Negative number raised to nonintegral power.

• In this short program, label 20 is omitted and the
associated label 10 appears in the diagnostic
below. If a program has only a few labels, the
associated label (or default value 0) provided in a
runtime diagnostic does less to pinpoint the
location of the error.

10 LET A = -2
LET B = AA(0.5)
END PROGRAH

--FATAL-- ERR = 5251, ERL = 10 in module $HAIN:
Negative number raised to nonintegral power.

Runtime Error Processing 6-13

ON ERROR Statement

ON IERROR Statement

Purpose

Format

Remarks

Examples

Specifies where control is to be transferred if a
runtime error occurs in the current environment.

ON ERROR GOTO 0
ON ERROR GOTO label

o Defaul t error handling is activated.

label Label of the line to which control is
transferred if an error occurs in the current
env ironment.

• If 0 is specified, default error handling is
activated, overriding any user error handling that
is in effect because of a previously executed ON
ERROR statement.

• If a label is specified, user error handling is
activated, and an error causes control to pass to
the line with the specified label.

User error handling is activated by the ON ERROR
statement. If DIVISOR receives the value 0 through the
INPUT statement, the resulting division by zero on the
next statement causes an error. Control passes to the
line labeled 300 for user error handling.

ON ERROR GOTO 300
INPUT DIVISOR
LET RECIPROCAL = 1 / DIVISOR

Ideally, the statements executed after a branch with the
ON ERROR statement either eliminate or bypass any
problems resulting from the error that has occurred.
Note that these statements can simply ignore the error,
although this could cause further problems.

The ERL and ERR library functions are provided as aids
to error handling. These functions help determine the
location and cause of an error.

6-14 BASIC for NOS/VE Usage Revision B

RESUME Statement

RIESUME Statement
Purpose

Format

Remarks

Revision B

Clears the error and then transfers control to the
specified statement.

RESUME
RESUME
RESUME

o
NEXT

RESUME label

o Control returns to the statement that caused the
error in the current environment. This
statement is reexecuted.

NEXT

label

Control passes to the statement following the
one that caused the error in the current
env ironment.

Label of the line to which control is
transferred.

• The RESUME statement:

Clears the runtime error in the current
environment, and all of its associated errors.

Deletes the corresponding diagnostics without
printing them.

Transfers control as indicated by the specific
form used.

• A runtime error results if a RESUME statement is
executed when no error exists in the current
environment.

Runtime Error Processing 6-15

RESUME Statement

Examples Suppose the function reference G(X) in the line labeled
150 causes an error. Control passes to the line labeled
300 and user error handling begins. The RESUME
statement clears the error, deletes the corresponding
diagnostic, and transfers control as specified by ***.
If 0 is specified, control returns to the line labeled
150. An infinite loop could result if the error
handling does not eliminate the problem. If NEXT is
specified, control passes to the line labeled 160. If a
label is specified, control transfers to that label.

ON ERROR GOTO 300
150 IF G(X) > 7.0 THEN END' Causes an error.
160 REM Branch to here if RESUME NEXT is executed.

300 REM Begin user error handling.

RESUME ***

6-16 BASIC for NOS/VE Usage Revision B

ERROR Statement

ERRon Statement

Purpose

Format

Remarks

Examples

Revision D

Simulates the occurrence of a specified error.

ERROR errnum

errnum Numeric expression whose value, when rounded to
the nearest integer, specifies the number of the
error to be simulated.

If the specified error number is a 4-digit status
condition code for a NOS/VE BASIC runtime error, the
corresponding error is induced. Otherwise, an
error/diagnostic results because an unrecognized error
has occurred. In either case, a subsequent ERR function
reference returns the specified error number.

• This simulates the occurrence of an error that is
unknown to NOS/VE BASIC. A subsequent ERR function
reference returns the value 1.

ERROR 1

• This simulates the occurrence of the error resulting
from division by zero. A subsequent ERR function
reference returns the value 5003.

ERROR 5003

• In this program, error 0001 is induced in the line
labeled 100. Error/Diagnostic 0001 results. User
error handling calls subroutine HANDLE. Error 0002
is induced in the line labeled 220.
Error/Diagnostic 0002 results. User handling in the
new environment clears error 0002, deletes
diagnostic 0002, and passes control to the EXIT SUB
statement. Control then passes to the END statement
and the program terminates. Since error 0001 was
never cleared, diagnostic 0001 is written to the
NOS/VE standard file $ERRORS.

100 ON ERROR GOTO 150 : ERROR 0001
150 CALL HANDLE

END
SUB HANDLE

220 ON ERROR GOTO 240
EXIT SUB

240 RESUME NEXT
END SUB 'HANDLE

ERROR 0002

Runtime Error Processing 6-17

STOP Statement

STOP Statement

Purpose

Format

Example

Stops program execution and returns control to the
environment or utility from which you executed the BASIC
program.

STOP

The STOP statement can occur any number of times in a
program.

The following example shows how to use the STOP
statement.

PRINT" Enter C to continue, S to stop."
INPUT A$
IF (A$ = "S") or (A$ = "s") THEN STOP

• 6-18 BASIC for NOS/VE Usage Revision E

o

o

,0

o

o

C' tUmerr-lD>effirmeall IF unnncfriionn§ 7

o

,.--\
(.

This chapter describes the two types of user-defined functions:
expression functions and block functions.

Function Overview ••• 7-1

Expression Functions •• 7-3

Block Function Structure •••••••••••••••••••••••••••••••••••••• 7-7

Block Function Specification •••••••••••••••••••••••••••••• 7-8
Block Function Body ••••••••••••••••••••••••••••••••••••••• 7-10
END FUNCTION Statement •••••••••••••••••••••••••••••••••••• 7-11
EXIT FUNCTION Statement ••••••••••••••••••••••••••••••••••• 7-12
Sample Block Functi~n ••••••••••••••••••••••••••••••••••••• 7-13

External vs. Internal Functions ••••••••••••••••••••••••••••••• 7-14

COMMON Statement •• 7-17

Function Name Declaration ••••••••••••••••••••••••••••••••••••• 7-18

Block Function Calls •• 7-19

Block Function Parameters ••••••••••••••••••••••••••••••••••••• 7-21

A user-defined function is a procedure that returns a single value.

This chapter describes the two kinds of NOS/VE BASIC user-defined
functions: expression functions and block functions. Expression
functions are simple single-statement functions. Block functions
are more powerful multi-statement structures.

IF unction Overview
A function is a procedure that returns a value to the place in an
expression where the procedure was called. The returned value is
usually computed from the values of actual parameters, which are
supplied when the function is called.

Every user-defined function has two components:

• The function specification.

o The function body.

The function specification stipulates that a function is being
defined and provides a function name. A list of formal parameters
might also be included.

The function body computes the returned value.

7

A formal parameter is a variable or array that acts as a placeholder
for an actual parameter. A formal parameter is used within the
function body to show how the corresponding actual parameter is
involved in producing the returned value.

Any formal parameters used in the function body are also listed in
the function specification component. The formal and actual
parameter lists must be in one-to-one correspondence. The number of
parameters is limited only by the NOS/VE maximum line length.

Revision B User-Defined Functions 7-1

User-Defined Functions

NOTE

The result of a lack of correspondence between formal and actual
parameter lists depends on the specific case. Possible results
include a compile-time error, a runtime diagnostic that seems
inappropriate because it comes from the loader, or incorrect
computations without notification.

A function is called by referencing its name and providing a list of
actual parameters (if any). Each actual parameter is passed to its
corresponding formal parameter in the function body, where it can be
used in computing the returned value.

The specific manner in which an actual parameter is passed to a
formal parameter is referred to as parameter passing.

For block functions, parameter passing style is important because it
determines whether a change to a formal parameter affects the
corresponding actual parameter.

The returned value is substituted for the function reference that
made the call. This value has the same data type as that of the
function name.

7-2 BASIC for NOS/VE Usage Revision B

Expression Functions

JExpression 1F unctions
Purpose

Format

Revision B

Specifies the function name, optional parameter list and
func tion body.

DEF funname fplist exp

funname

fplist

exp

Identifier naming the function. The data
type of the function name establishes the
data type of the returned value.

Optional formal parameter list whose format
is discussed below.

Expression whose value is returned by the
function. This expression can contain both
formal parameters and other variables. Its
value must be compatible with the data type
established by the function name.

A formal parameter list for an expression function has
the format:

(fp1 , fp2 , ••• , fpN)

fpJ Variable denoting the Jth formal parameter,
where (1 <= J <= N). The data type of this
formal parameter must be compatible with the
data type of the corresponding actual
parameter. However, an integer value can be
passed to a real formal parameter. A real
value can be passed to an integer formal
parameter.

User-Defined Functions 7-3

Expression Functions

Format
(cont)

An expression function is called by referencing its name
and providing an actual parameter list (if
appropriate). The returned value is substituted for the
function reference and has the data type of the function
name.

An expression function reference has the format:

funname aplist

funname Name of the function.

aplist Optional actual parameter list used only if
a formal parameter list appears in the
function specification statement.

An expression functions actual parameter list has the
format:

(api, ap2 , ••• , apN)

apJ Expression denoting the Jth actual
parameter, where (1 <= J <= N). The value
of this expression must be compatible with
the data type of the corresponding formal
parameter.

7-4 BASIC for NOS/VE Usage Revision B

Remarks •

Revision B

Expression Functions

The DEF statement defining an expression function
must be executed before the function can be called.

An expression function:

Cannot be defined recursively.

Can be used to define other expression
functions, provided each function is defined
before it is first referenced.

Cannot be passed a whole array as an actual
parameter.

Is known only to the external routine that
contains it.

User-Defined Functions 7-5

Expression Functions

Examples • The expression function TRAP.AREA computes the area
of a trapezoid from the height H and the lengths of
the bases Bl and B2. The function reference in the
PRINT statement returns the value 36.0.

DEF TRAP.AREA(H,Bl,B2) = 0.5*H*(Bl + B2)
PRINT TRAP.AREA(4.O,lO.O,8.0)

• The expression function CHAPTER$ constructs a
chapter heading from the chapter number N% and the
chapter title S$. The library function STR$ is used
in the string construction. The function reference
in the PRINT statement returns the value "
8. INVESTMENT STRATEGY".

DEF CHAPTER$(N%,S$) = STR$(N%) + ". " + S$
PRINT CHAPTER$(8,"INVESTMENT STRATEGY")

• The expression function FNA has no parameters. The
function output is computed using the current value
of X.

DEF FNA

• This program fragment prints the value 5.35.

DEF FNA(X) = 10.0*X A 3 + 4.0
LET A(l) = 0.3
PRINT FNA(A(l»

NOTE

It is harmless to have a formal parameter in an
expression function with the same name as another
variable in your program. Changing one will not
change the other. Also, different expression
functions within the same external routine can use
the same formal parameter names.

7-6 BASIC for NOS/VE Usage Revision B

Block Function Structure

!Blocl, !Function Structure
A block function is a multi-statement user-defined function whose
function body is a block. A routine can supply data to a block
function through parameters. In addition, data can be shared
between a routine and a block function through variables that are
accessible to both routines.

Unlike an expression function, a block function can be defined
recursively and can take a whole array as an actual parameter.

This section describes block function structure.

Revision B User-Defined Functions 7-7

Block Function Structure

Block Function Specification

Purpose

Format

Remarks

Specifies that a function is being defined, provides a
function name, and lists the formal parameters (if any).

EXTERNAL FUNCTION funname fplist

EXTERNAL

funname

fplist

Optional keyword used only to specify an
external function. If omitted, the
function specified is internal.

Identifier naming the function. The data
type of the function name establishes the
data type of the returned value.

Optional formal parameter list whose format
is discussed below.

A formal parameter list for a block function has the
format:

(fpl , fp2 , ••• , fpN)

fpJ Variable or formal array (defined below)
denoting the Jth formal parameter, where (1 <=
J <= N). The data type of this formal
parameter must be the same as that of the
corresponding actual parameter. An integer
value cannot be passed to a real formal
parameter. A real value cannot be passed to an
integer formal parameter.

A formal array is an array name followed by parentheses
that contain zero or more commas. The number of
dimensions is one more than the number of commas
supplied. The formal array dimension bounds are
established by the actual array being passed to it.

7-8 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Block Function Structure

An external block function named LIST$ is
specified. Its only formal parameter is a
two-dimensional string array. LIST$ returns a
result of type string.

EXTERNAL FUNCTION LIST$(S$(,))

• An internal block function named SAMPLE is
specified. There are two parameters: integer
variable and one-dimensional real array. SAMPLE
returns a result of type real.

FUNCTION SAMPLE(N%,B())

• An internal block function with no parameters
specified.

FUNCTION NO.PARAMETERS

User-Defined Functions 7-9

Block Function Structure

Block Function Body
Purpose

Format

Remarks

Contains the statements that perform the tasks for the
calling routine and compute the returned value. The
body of a block function follows the function
specification statement. Within the function body, the
value to be returned is assigned to the function name.

LET funname

funname

xxx

xxx

Name of the function.

Expression whose value must be compatible
with the data type established by the
function name.

If no such assignment is made, the default initial value
(zero or the null string, as appropriate) is returned,
and a warning is issued. As in all assignment
statements, the keyword LET is optional.

7-10 BASIC for NOS/VE Usage Revision B

Block Function Structure

END FUNCTION Statement

Purpose

Format

Remarks

Revision B

Designates the physical end of the function, and follows
the function body. Every block function must end with
an END FUNCTION statement.

END FUNCTION

The END FUNCTION can appear only once in a block
function.

• The END FUNCTION statement for an external function
must be the last statement of the routine's last
line.

• The END FUNCTION statement transfers control to the
function reference which made the function call.
The returned value is then substituted for the
function reference.

• A runtime error results if a block function is
exited while it contains an uncleared error.

• For more information about clearing runtime errors,
see chapter 6.

User-Defined Functions 7-11

Block Function Structure

EXIT FUNCTION Statement

Purpose

Format

Remarks

Transfers control to the function reference which made
the function call. The returned value is then
substituted for the function reference.

EXIT FUNCTION

The EXIT FUNCTION can appear any number of times within
a function body.

o A runtime error results if a block function is
exited while it contains an uncleared error.

o For more information about clearing runtime errors,
see chapter 6.

7-12 BASIC for NOS/VE Usage Revision B

Examples

Revision C

Block Function Structure

The following shows an example using the EXIT FUNCTION
statement.

EXTERNAL FUNCTION SAMPLE$(N)
, This function converts positive integer arguments
,. to single-letter codes using modulo arithmetic.

The Function Body ----------------

DEFINT N,X
,. Return the null string if input is nonpositive.

IF N <= 0 THEN LET SAMPLE$ = 1111 : EXIT FUNCTION
, Convert input to range 0 through 25.

LET X = (N + 25) MOD 26
, Convert to ASCII range code for uppercase letters.

LET Y = X + 65
,. Return string containing single-letter.

SAMPLE$ = CHR$(Y)
End of Function Body

END FUNCTION

User-Defined Functions 7-13

External vs. Internal Functions

Block functions are classified as either external or internal. An
external function:

• Is an external routine that performs tasks for a calling
routine and returns a single value.

• Is declared to be external by including the keyword EXTERNAL
in the function specification statement.

• Can be compiled as a separate program unit.

• Cannot be contained within another external routine, but can
contain embedded internal routines.

• Shares data with other external routines through the COMMON
statement (the next topic) or the passing of parameters.

Declarative statements in an external function apply to all embedded
internal routines.

7-14 BASIC for NOS/VE Usage Revision B

External vs. Internal Functions

An internal function:

• Is an internal routine that performs tasks for a calling
routine and returns a single value.

• Is declared internal, by default, when the keyword EXTERNAL
is omitted from its subroutine specification statement.

• Cannot be compiled as a separate program unit.

• Must be contained within a host external routine, and cannot
contain embedded routines.

• Has access to all the data of its host external routine.

Declarative statements within an internal function apply to the
entire host external routine.

The external and internal classifications apply only to routines.

Revision B User-Defined Functions 7-15

External vs. Internal Functions

Examples • An external function named SAMPLE% is specified. It
has three formal parameters: integer variable, real
variable, and two-dimensional string array. SAMPLE %
returns a result of type integer.

EXTERNAL FUNCTION SAMPLE%(N%,X,T$(,))

• An internal function named TEST is specified. It
has two formal parameters: one-dimensional integer
array and integer variable. TEST returns a result
of type real.

FUNCTION TEST(S%(),Y)

7-16 BASIC for NOS/VE Usage Revision B

COMMON Statement

COMMON Statement
Purpose

Format

Remarks

Examples

Revision B

Allows scalar variables and arrays to be shared among
external routines.

COMMON obj list

obj list Nonempty list of scalar variables and formal
arrays that are separated by commas. The
listed objects are made accessible to all
external routines.

• A COMMON statement must precede the first reference
to any variable or array that it specifies as a
common obj ec t.

• A variable that is made accessible to other external
routines is not necessarily shared. A variable is
shared among a group of external routines only when
it appears in a COMMON statement in each of the
routines.

• Common arrays that are dimensioned differently in
separate external routines will acquire the size
specified by the declarations of the first module
seen by the loader to which it is visible and the
shape declared by the last module seen by the loader
to which it is visible. This is an artifact of the
way common areas are handled by the loader. Warning
errors are likely, but not certain, in the loapmap
for such a program.

• The scalar variables D and C, and the
two-dimensional array B are made accessible to all
external routines. .

COMMON D,C,B(,)

• Order is not important in a COMMON statement. Thus,
the following two statements are equivalent.

COMMON X,Y

COMMON Y,X

User-Defined Functions 7-17

Function N arne Declaration

!Function Nilme 1I)ecIa1l"ation

Purpose

Format

Remarks

Examples

Declares names to be those of block functions.

DECLARE EXTERNAL FUNCTION fnlist

EXTERNAL Optional keyword EXTERNAL used to declare
names as those of external functions. If
omitted, specified names are declared to be
those of internal functions.

fnlist List of function names that are separated by
commas. Names that appear in this list are
declared to be those of block functions.

• This statement cannot be used to declare names for
expression functions.

• It might be necessary to reference an internal
function before it is defined. The function
declaration statement makes such a reference
possible.

• This statement designates the name STATS as that of
an external function.

DECLARE EXTERNAL FUNCTION STATS

• This statement designates the names REQUEST and
RECEIPT as those of internal functions.

DECLARE FUNCTION REQUEST,RECEIPT

7-18 BASIC for NOS/VE Usage Revision B

Block Function Calls

Bloc!, Function Calls
Purpose

Format

Remarks

Revision B

A block function is called by referencing its name, and
providing an actual parameter list (if appropriate).
The value returned is substituted for the function
reference, and has the data type of the function name.

funname aplist

funname Name of the function.

aplist Optional actual parameter list used only if
a formal parameter list appears in the
function specification statement.

A block function's actual parameter list has the format:

(apl , ap2 , ••• , apN)

apJ Expression or actual array (defined below)
denoting the Jth actual parameter, where (1 <= J
<= N). The data type of this actual parameter
must be the same as that of the corresponding
formal parameter. An integer value cannot be
passed to a real formal parameter. A real value
cannot be passed to an integer formal parameter.

• An actual array is an array name followed by
parentheses that contains zero or more commas. The
number of dimensions is one more than the number of
commas supplied. The formal array dimension bounds
are established by the actual array being passed to
it.

• If execution control reaches the FUNCTION statement
of an internal function without using a function
call:

The statements in the internal function are not
executed.

Control passes to the statement following the
function's END FUNCTION statement. If this END
FUNCTION statement is the last statement of the
main program, the program is terminated.

User-Defined Functions 7-19

Block Function Calls

Examples • This reference calls the function SURVEY using the
one-dimensional real array FORM as the actual
parameter.

SURVEY(FORM()

• For the internal block function below, the function
reference:

SPLIT.DEF(1.0,2) Returns the value 1.5.

SPLIT. DEFO. 0,2) Returns the value 33.5.

FUNCTION SPLIT.DEF(X,N%)
RESTORE 90 : READ A,B
IF X <= N% THEN

LET SPLIT.DEF = A*X + B
ELSE

LET SPLIT.DEF = A*X~2 + B

ENDIF
90 DATA 4.0,-2.5

END FUNCTION

7-20 BASIC for NOS/VE Usage Revision B

Block Function Parameters

Bnocl, lFunction Parameters
Scalar variables or whole arrays can be used as actual parameters.
When a change is made to the corresponding formal parameter, the
actual parameter is also changed.

Hence, if a block function modifies:

• a formal array

• a formal scalar variable that was passed the value of an
actual scalar variable

then the corresponding actual parameter is also modified. For
arrays, this includes modifications made with the DIM and ERASE
statements.

Actual parameters can also be constants, single array elements,
substrings, or nontrivial expressions. When a change is made to the
corresponding formal parameter, the actual parameter is not changed.

Revision B User-Defined Functions 7-21

Block Function Parameters

The presence of parentheses does not protect an actual parameter
from modification in the calling routine. The function references
F(X) and F«X)) are equivalent.

However, use of a nontrivial expression, such as the one used in the
function reference F(X+O.O), does protect the actual parameter from
modification in the calling routine.

NOTE

Remember that for block functions, integer values cannot be passed
to real formal parameters. Real values cannot be passed to integer
formal parameters. For expression functions, the mixing of type
integer and type real data is permitted.

If you are using external routines check the load map for errors.

7-22 BASIC for NOS/VE Usage Revision B

Block Function Parameters

The following similar program fragments shows when actual parameters
are modified.

, FRAGMENT 111
DEFINT A,X
FUNCTION ADD(X)

LET X = X + 1
LET ADD = X

END FUNCTION 'ADD
LET A = 3
PRINT A, ADD(A), A

'FRAGMENT 112
DEFINT A,X
FUNCTION ADD(X)

LET X = X + 1
LET ADD = X

END FUNCTION 'ADD
LET A(l) = 3
PRINT A(l), ADD(A(l», A(l)

In fragment Ill, the scalar A is passed to the scalar X. When X is
incremented in the function, so is A. The values 3, 4, and 4 are
printed.

In fragment 112, the array element A(l) is passed to the scalar X.
When X is incremented in the function, A(l) is not altered. The
values 3, 4, and 3 are printed.

Revision B User-Defined Functions 7-23

o

o

o

o

o

~I
"-- ./

The chapter descril?es the NOS/VE BASIC supplied functions that
perform various mathematical operations.

Exponential Functions •••

COSH Function •••
EXP Func tion ••
LOG Function ••
LOGIO Function ••
SINH Function ~
TANH Func tlon •••

Trigonometric Functions •••••••••••••••••••••••••••••••••••••••

ACOS Function •••
ASIN Function •••
ATN Function
COS Function
DEG Function
RAD Function
SIN Function
TAN Function

8-2

8-2
8-3
8-4
8-5
8-6
8-7

8-8

8-8
8-9
8-10
8-11
8-12
8-13
8-14
8-15

Number Characteristic Functions ••••••••••••••••••••••••••••••• 8-16

ABS Func t ion ••
CDBL Func tion
CEIL Function
CINT Function
CSNG Function
FIX Function ••
FP Function •••
INT Func tion
SGN Function ••

Miscellaneous Functions •••••••••••••••••••••••••••••••••••••••

MAX Function
MIN Function
RND Function
SQR Func tion

8-16
8-17
8-18
8-19
8-20
8-21
8-22
8-23
8-24

8-25

8-25
8-26
8-27
8-28

RANDOMIZE Statement ••• 8-29

RANDOMI~E Statement ••••••••••••••••••••••••••••••••••••••• 8-30

NOS/VE BASIC provides many library (or built-in) functions.

This chapter describes the mathematical library functions. They
have been divided into groups of related functions. The functions
within each category are described in alphabetical order. The
RANDOMIZE statement is also discussed because it relates to the use
of the RND function.

The string library functions are described in the String Processing
chapter. Each of the other library functions is discussed in a
topic that relates to the specific use of that function.

An alphabetical list of all the NOS/VE BASIC library functions
appears in the Library Functions Index appendix. It includes a
categorical cross-reference to help you visualize each function in
context.

Revision B Mathematical Library Functions 8-1

Exponential Functions

JE,."ponentiill IFu.nctiono

The Exponential Functions include exponential, logarithmic, and
hyperbolic functions.

COSH Function
Purpose

Format

Remarks

Examples

Returns the hyperbolic cosine of the value of an
argument.

COSH(number)

number Numeric expression whose value x can be either
integer or real. The magnitude of x must be
less than 4095 * LOG(2).

The value returned is «EXP(x) + EXP(-x»/2.0). The
result is always real.

• The following are examples of the COSH function •

COSH(O) Returns the value 1.0.

COSH(LOG(2.0) Returns the value 1.25.

8-2 BASIC for NOS/VE Usage Revision B

Exponential Functions

EXP Function

Purpose

Format

Remarks

Examples

Revision B

Returns the power of the irrational number (e) specified
by the value of an argument. This function is the
inverse of the LOG function.

EXP(number)

number Numeric expression whose value x can be either
integer or real. The magnitude of x must be
less than 4095 * LOG(2) or a runtime error
results.

The value returned is (e-x). The result is always real.

• The following are examples of the EXP function.

EXP(O) Returns the value 1.0.

EXP(LOG(4.8)) Returns the value 4.8.

Mathematical Library Functions 8-3

Exponential Functions

LOG Function
Purpose

Format

Remarks

Examples

Returns the base (e) logarithm of the value of an
argument. This function is the inverse of the EXP
function.

LOG(number)

number Numeric expression whose value x can be either
integer or real, and must be positive.

The value returned is that number y, such that
(eAy = x). The result is always real.

• The following are examples of the LOG function •

LOG(1) Returns the value 0.0.

LOG(EXP (3.2)) Returns the value 3.2.

8-4 BASIC for NOS/VE Usage Revision B

Exponential Functions

LOGIO Function

Purpose

Format

Remarks

Examples

Revision B

Returns the base ten logarithm of the value of an
argument.

WGIO(number)

number Numeric expression whose value x can be either
integer or real, and must be positive.

The value returned is that number y, such that
(lO~y = x). The result is always real.

• The following are examples of the LOGIO function.

LOGIO (1000) Returns the value 3.0.

LOGIO(1. OE5) Returns the value 5.0.

LOGIO (0.01) Returns the value -2. O.

Mathematical Library Functions 8-5

Exponential Functions

SINH Function
Purpose

Format

Remarks

Examples

Returns the hyperbolic sine of the value of an argument.

SINH(number)

number Numeric expression whose value x can be either
integer or real. The magnitude of x must be
less than 4095 * LOG(2).

The value returned is ((EXP(x) - EXP(-x))/2.0). The
result is always real.

• The following are examples of the SINH function •

SINH(O) Returns the value 0.0.

SINH(LOG(4.0)) Returns the value 1.875.

8-6 BASIC for NOS/VE Usage Revision B

Exponential Functions

TANH Function

Purpose

Format

Remarks

Examples

Revision B

Returns the hyperbolic tangent of the value of an
argument.

TANH(number)

number Numeric expression whose value x can be either
integer or real. There are no restrictions on x.

The val ue returned is
(EXP(x) - EXP(-x))/(EXP(x) + EXP(-x)). The result is
always real.

• The following are examples of the TANH function.

TANH(O) Returns the value 0.0.

TANH(LOG(2.0)) Returns the value 0.6.

Mathematical Library Functions 8-7

Trigonometric Functions

Trigonometric Functiono
The Trigonometric Functions include trigonometric, inverse
trigonometric, and angle conversion functions.

ACOS Function

Purpose

Format

Remarks

Examples

Returns the inverse cosine of the value of an argument.
This function complements the COS function.

ACOS (number)

number Numeric expression whose value x can be either
integer or real. The magnitude of x must be
less than or equal to one.

The function returns the radian measure of the angle y,
with (0 <= y <= PI), whose cosine is x. The result is
always real.

• The following are examples of the ACOS function.

ACOS (l) Returns the value 0.0.

ACOS(COS(1.5)) Returns the value 1.5.

8-8 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

ASIN Function

Purpose

Format

Remarks

Examples

Revision B

Returns the inverse sine of the value of an argument.
This function complements the SIN function.

ASIN(number)

number Numeric expression whose value x can be either
integer or real. The magnitude of x must be
less than or equal to one.

The function returns the radian measure of the angle y,
with (-PI/2 <= y <= PI/2), whose sine is x. The result
is always real.

• The following are examples of the ASIN function.

ASIN(O) Returns the value 0.0.

ASIN(SIN(0.5)) Returns the value 0.5.

Mathematical Library Functions 8-9

Trigonometric Functions

ATN Function
Purpose

Format

Remarks

Examples

Returns the inverse tangent of the value of an argument.

ATN(number)

number Numeric expression whose value x can be either
integer or real. There are no restrictions on x.

Returns the radian measure of the angle y, with (-PI/2 <
y < PI/2), whose tangent is x. The result is always
real.

• The following are examples of the ATN function •

ATN(O) Returns the value 0.0.

ATN(TAN(l.O)) Returns the value 1.0.

8-10 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

COS Function

Purpose

Format

Remarks

Examples

Revision E

Returns the cosine of the value of. an argument. This
function complements the ACaS function.

CaS(radians)

radians Numeric expression whose value x is an angle
measured in radians, and can be either
integer or real. The magnitude of x must be
less than 2 A 47.

The value returned is always real.

• The following are examples of the COS function.

casCO) Returns the value 1.0.

cas(ACaS(0.4)) Returns the value 0.4.

cas(RAD(l80)) Returns the value -1.0.

Mathematical Library Functions 8-11

Trigonometric Functions

DEG Function

Purpose

Format

Remarks

Examples

Converts the value of an argument from radians to
degrees. This function is the inverse of the RAD
function.

DEG(radians)

radians NUmeric expression whose value x is an angle
measured in radians, and can be either
integer or real.

The value returned is the degree measure of x. The
result is always real.

• The following are examples of the DEG function •

DEG(ACOS(-1.0)) Returns the value 180.0.

DEG(RAD (1 35)) Returns the value 135.0.

8-12 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

HAD Function

Purpose

Format

Remarks

Examples

Revision B

Converts the value of an argument from degrees to
radians. This function is the inverse of the DEG
function.

RAD(degrees)

degrees NUmeric expression whose value x is an angle
measured in degrees, and can be either
integer or real.

The value returned is the radian measure of x. The
result is always real.

• The following are examples of the RAD function.

SIN(RAD(90.0)) Returns the value 1.0.

RAD (DEG(3.6)) Returns the value 3.6.

Mathematical Library Functions 8-13

Trigonometric Functions

SIN Function

Purpose

Format

Remarks

Examples

Returns the sine of the value of an argument. This
function complements the ASIN function.

SIN(radians)

radians Numeric expression whose value x is an angle
measured in radians, and can be either
integer or real. The magnitude of x must be
less than 2 ""4 7.

The value returned is always real.

• The following are examples of the SIN function.

SIN(O) Returns the value 0.0.

SIN(ASIN(0.9)) Returns the value 0.9.

SIN (RAD (- 90)) Returns the value -1.0.

8-14 BASIC for NOS/VE Usage Revision B

Trigonometric Functions

TAN Function

Purpose

Format

Remarks

Examples

Revision B

Returns the tangent of the value of an argument. This
function complements the ATN function.

TAN (radians)

radians Numeric expression whose value x is an angle
measured is radians and can be either
integer or real. The magnitude of x must be
less than 2 A4 7.

The value returned is always real.

• The following are examples of the TAN function.

TAN(O) Returns the value 0.0.

TAN(ATN(0.3)) Returns the value 0.3.

TAN(RAD (45)) Returns the value 1.0.

Mathematical Library Functions 8-15

Number Characteristic Functions

Number Characteristic Functions
The Number Characteristic Functions include functions that change
numeric data type, and manipulate the whole, fractional, and sign
components of numbers.

ABS Function

Purpose

Format

Remarks

Examples

Returns the absolute value of the value of an argument.

ABS(number)

number NUmeric expression whose value x can be
either real or integer.

The value x is returned if x is nonnegative. The value
(-x) is returned if x is negative. In other words, the
value of the argument is made positive. The data type
of the result is the same as that of the argument.

• The following are examples of the ABS function.

ABS(4.5) Returns the real value 4.5.

ABS(3) Returns the integer value 3.

ABS(-2) Returns the integer value 2.

ABS(-3.0 Returns the real value 3.0.

8-16 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

CDBL Function

Purpose

Format

Remarks

Examples

Revision B

Returns a real representation of the value of an
argument. This function is equivalent to the CSNG
function.

CDBL(number)

number Numeric expression whose value x can be
either real or integer.

This function converts x to type real.

• The following are examples of the CDBL function.

CDBL(-5) Returns the value -5.0.

CDBL(4.7) Returns the value 4.7.

Mathematical Library Functions 8-17

Number Characteristic Functions

CEIL Function
Purpose

Format

Remarks

Examples

Returns the smallest integer that is at least as large
as the value of an argument.

CEIL(number)

number Numeric expression whose value x can be either
real or in teger.

The ceiling value returned is the smallest integer whose
location on the real number line is either at, or to the
right of x. The result is always integer.

• The following are examples of the CEIL function •

CEIL(S.9) Returns the value 6.

CEIL(2. 0) Returns the value 2.

CEIL(-1) Returns the value -1.

CEIL(-3.2) Returns the value -3.

8-18 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

CINT Function

Purpose

Format

Remarks

Examples

Revision B

Returns the value of an argument rounded to the nearest
integer.

CINT(number)

number Numeric expression whose value x can be
either real or integer.

The value returned is always integer.

• The following are examples of the CINT function.

CINT(5.7) Returns the value 6.

CINT(l.5) Returns the value 2.

CINT(-2.5) Returns the value -3.

CINT(-8.4) Returns the value -8.

Mathematical Library Functions 8-19

Number Characteristic Functions

CSNG Function
Purpose

Format

Remarks

Examples

Returns a real representation of the value of an
argument. This function is equivalent to the CDBL
function.

CSNG(number)

number Numeric expression whose value x can be
either real or integer.

This function converts x to type real.

• The following are examples of the CSNG function •

CSNG(-4) Returns the value -4.0.

CSNG (3. 6 Returns the value 3.6.

8-20 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

FIX Function

Purpose

Format

Remarks

Examples

Revision B

Returns the value of an argument truncated to an integer.

FIX(number)

number Numeric expression whose value x can be
either real or integer.

This function deletes all the digits of x that are to
the right of the decimal point. The result is always
integer.

• The following are examples of the FIX function.

FIX(B.9) Returns the value B.

FIX(-l. 2) Returns the value -1.

FIX(-3.6) Returns the value -3.

FIX(-5) Returns the value -5.

Mathematical Library Functions 8-21

Number Characteristic Functions

FP Function

Purpose

Format

Remarks

Examples

Returns the fractional part of the value of an argument.

FP(number)

number Numeric expression whose value x can be
either real or integer.

This function returns the digits of x that are to the
right of the decimal point. The result is always real.
If x is an integer, has no digits to the right of a
decimal point, or has a magnitude that is greater than
10A18, then a zero value is returned. A zero value is
always returned with no sign. Otherwise, the returned
value has the same sign as x does.

• The following are examples of the FP function.

FP(7.9) Returns the value 0.9.

FP (5 •), FP (-4) Return the value 0.0.

FP(-6.2) Returns the value -0.2.

8-22 BASIC for NOS/VE Usage Revision B

Number Characteristic Functions

INT Function

Purpose

Format

Remarks

Examples

Revision B

Returns the greatest integer that is no larger than the
value of an argument.

INT(number)

number Numeric expression whose value x can be either
integer or real.

The floor value returned is the largest integer whose
location on the real number line is either at, or to the
left of x. The result is always integer.

• The following are examples of the INT function.

INT(S.6) Returns the value S.

INT(-3) Returns the value -3.

INT(-S.8) Returns the value -6.

INT(-8.1) Returns the value -9.

Mathematical Library Functions 8-23

Number Characteristic Functions

SGN Function

Purpose

Format

Remarks

Examples

Returns an integer that represents the sign of the value
of an argument.

SGN(number)

number Numeric expression whose value x can be either
real or integer.

The value 1 is returned if x is positive. The value 0
is returned if x is zero. The value -1 is returned if x
is negative. The result is always integer.

• The following are examples of the SGN function.

SGN(4) Returns the value 1.

SGN(O.O) Returns the value O.

SGN(-S.6) Returns the value -1.

8-24 BASIC for NOS/VE Usage Revision B

Miscellaneous Functions

Miscellaneous Functions
The Miscellaneous Functions include functions not addressed in the
pr ev io us ca teg or ies •

MAX Function

Purpose

Format

Remarks

Examples

Revision B

Returns the largest of the values of two arguments.

MAX(numl , num2)

numl, num2 Numeric expressions whose values can be
either integer or real.

If either numl or num2 is real, the value returned is
real. If both numl and num2 are integer, the value
returned is integer.

• The following are examples of the MAX function.

MAX(5.0,3.2) Returns the real value 5.0.

MAX(-4,-5.2) Returns the real value -4.0.

MAX(-8,-2) Returns the integer value -2.

Mathematical Library Functions 8-25

Miscellaneous Functions

MIN Function
Purpose

Format

Remarks

Examples

Returns the smallest of the values of two arguments.

MIN(num!, num2)

num!, num2 Numeric expressions whose values can be
either integer or real.

If either num! or num2 is real, the value returned is
real. If both num! and num2 are integer, the value
returned is integer.

• The following are examples of the MIN function •

MIN (5. 0, 3. 2) Returns the real value 3.2.

MIN(-4,-5.2) Returns the real value -5.2.

MIN(-8,-2) Returns the integer value -8.

8-26 BASIC for NOS/VE Usage Revision B

Miscellaneous Functions

RND Function

Purpose

Format

Remarks

Revision B

Returns a random number between zero and one, exclusive.

RND
RND(seed)

seed Numeric expression whose value x is a seed for
the random number generator. This value can be
either integer or real.

If called without an argument, or if x is positive, the
next value of the pseudo-random sequence is returned.
If x is zero, the most recently returned value is
repeated. If x is negative, the random number generator
is reseeded. A given negative value always produces the
same pseudo-random sequence.

Mathematical Library Functions 8-27

Miscellaneous Functions

SQH Function

Purpose

Format

Remarks

Examples

Returns the principal square root of the value of an
argument.

SQR(number)

number Numeric expression whose value x can be either
integer or real, and must be nonnegative.

The value returned is (xA O.5). The result is always
real.

• The following are examples of the SQR function.

SQR(9) Returns the value 3. o.

SQR(16.0) Returns the value 4.0.

SQR(l. 44) Returns the value 1.2.

8-28 BASIC for NOS/VE Usage Revision B

RANDOMIZE Statement

RANDOMIZE Statement
The NOS/VE BASIC random number generator produces a sequence of
numbers that appears to be randomly generated.

After the initial random number is generated, each subsequent number
is derived from the previous. For this reason, these numbers are
more accurately referred to as pseudo-random numbers. Billions of
such numbers are generated before the sequence repeats.

By default, the same pseudo-random sequence is generated each time a
program is run. To create a different sequence, you must specify a
seed. This numeric value generates a different initial random
number, thereby producing a new sequence. However, a given seed
always produces the same pseudo-random sequence.

The random number generator can be reseeded using either the
RANDOMIZE statement or the RND function.

Revision B Mathematical Library Functions 8-29

RANDOMIZE Statement

RANDOMIZE Statement

Purpose

Format

Remarks

Reseeds the random number generator. This statement has
the format:

RANDOMIZE seed

seed Optional numeric expression whose value x is the
seed for the random number generator, and can be
either integer or real.

• If SEED is omitted in interactive mode, the system
asks you to input a seed value. The following
prompt is displayed:

Random number seed?

If SEED is omitted in batch mode, the system reads a
line of data from the file $INPUT.

• A given sequence can be repeated by reseeding with a
constant numeric expression.

• An easy way to produce a seed that changes with each
program run is to use the last two digits of the
system supplied variable TIME$. This variable
accesses the NOS/VE internal clock. The following
RANDOMIZE extracts these two digits, converts them
to a numeric value, and reseeds the random number
generator with this value.

RANDOMIZE VAL (RIGHT$(TIME$,2)

• The random number generator can also be reseeded by
calling the RND library function with a negative
argument.

8-30 BASIC for NOS/VE Usage Revision E

o

o

C)

o

o

Subroutine Overview ••• 9-2

Subroutine Structure •• 9-4

Subroutine Specification •••••••••••••••••••••••••••••• ~ ••• 9-4
Subroutine Body ••• 9-6
END SUB Statement ••• 9-6
EXIT SUB Statement •• 9-7

External vs. Internal Subroutines ••••••••••••••••••••••••••••• 9-8

COMMON Statement •• 9-10

Subroutine Name Declaration ••••••••••••••••••••••••••••••••••• 9-11

Subroutine Calls •• 9-12

Subroutine Parameters ••• 9-14

CALLX Statement ••• 9-16

Unit-measured Application Accounting •••••••••••••••••••••••••• 9-18

§ un lb IrO un 11:iinn <29

A subroutine is a procedure that handles specific tasks for another
routine. The results of these tasks might be needed repeatedly by a
single program or commonly needed by many programs.

Code accessed through a GOSUB statement is not considered a
subroutine in NOS/VE BASIC. (It is in some earlier versions of
BASIC.) The GOSUB/RETURN construct does provide a branch and return,
but it does not define a structured program unit nor provide for the
passing of information through parameters.

This chapter discusses NOS/VE BASIC subroutines. It describes how
FORTRAN or COBOL subprograms can be accessed from within a NOS/VE
BASIC program. It also describes how to enable application usage
billing based on application units.

Revision E Subroutines 9-1

Subroutine Overview

Subroutine Overview
A NOS/VE BASIC subroutine is a routine that performs specific tasks
for a calling routine. To perform these tasks, a subroutine usually
requires the values of actual parameters, which are supplied by the
calling routine when the subroutine is called.

A subroutine can return data to the calling routine through the
values of actual parameters. In addition, data can be shared
between a routine and a subroutine through variables that are
accessible to both routines.

Every subroutine has three components:

• The subroutine specification.

• The subroutine body.

• The END SUB statement.

The subroutine specification stipulates that a subroutine is being
defined and provides a subroutine name. A list of formal parameters
might also be included.

The subroutine body performs the tasks for the calling routine. Any
values that are to be returned to the calling routine as actual
parameters are computed in the subroutine body.

The END SUB statement designates the physical end of the subroutine.

A formal parameter is a variable or array that acts as a placeholder
for an actual parameter.

The role of a formal parameter within the subroutine body depends on
the purpose of its corresponding actual parameter. When an actual
parameter is used to:

• Supply data to the subroutine from the calling routine, the
corresponding formal parameter is used to show how this data
is involved in performing the subroutine tasks.

• Return data to the calling routine from the subroutine, the
corresponding formal parameter is used to store the value to
be returned.

It is possible for a single formal parameter to play both of these
roles.

9-2 BASIC for NOS/VE Usage Revision B

Subroutine Overview

Any formal parameters used in the subroutine body are also listed in
the subroutine specification component. The formal and actual
parameter lists must be in one-to-one correspondence. The number of
parameters is limited only by the NOS/VE maximum line length.

NOTE

The result of a lack of correspondence between formal and actual
parameter lists depends on the specific case. Possible results
include a compile-time error, a runtime diagnostic that seems
inappropriate because it comes from the loader, or incorrect
computations without notification. For error checking be sure to
check the loap map.

A subroutine is called by referencing its name in a CALL statement
and providing a list of actual parameters (if any). When the call
is made, each actual parameter is associated with its corresponding
formal parameter in the subroutine body. Values passed to the
subroutine from the calling routine can then be used in performing
the subroutine tasks.

The specific manner in which an actual parameter is passed to a
formal parameter is referred to as parameter passing.

Parameter passing is important because it determines whether a
change to a formal parameter affects the corresponding actual
parameter.

When the subroutine is exited (with an END SUB or EXIT SUB
statement), any values to be returned are passed from formal
parameters in the subroutine to the corresponding actual parameters
in the calling routine.

Revision B Subroutines 9-3

Subroutine Structure

Subroutine StrrnctuU'e

This section describes subroutine structure.

Subroutine Specification

Purpose

Format

Specifies that a subroutine is being defined, provides a
subroutine name, and lists the formal parameters (if
any). A subroutine begins with a subroutine
specification statement.

EXTERNAL SUB subname fplist

EXTERNAL

subname

fplist

Optional keyword, used only to specify an
external subroutine. If omitted, the
subroutine specified is internal.

Plain name identifying the subroutine. A
subroutine name has no data type associated
with it (even if its first letter is
referenced in a type declaration statement).

Optional formal parameter list whose format
is discussed below.

A formal parameter list for a subroutine has the format:

(fp1 , fp2

fpJ

, ... , fpN)

Variable or formal array (defined below)
denoting the Jth formal parameter, where (1
(= J (= N). The data type of this formal
parameter must be the same as the
corresponding actual parameter. An integer
value cannot be passed to a real formal
parameter. A real value cannot be passed to
an integer formal parameter.

A formal array is an array name followed by parentheses
that contain zero or more commas. The number of
dimensions is one more than the number of commas
supplied. Dimension bounds of the formal array are the
same as those of the actual array that are passed to the
formal array.

9-4 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Subroutine Structure

An external subroutine named QUESTIONS is
specified. Its only parameter is a two-dimensional
string formal array.

EXTERNAL SUB QUESTIONS(T$(,»

• An internal subroutine named REARRANGE is
specified. It has two formal paramters. X is a
real variable and R%() is a one-dimensional integer
array.

SUB REARRANGE(X,R%(»

• An internal subroutine with no parameters is
specified.

SUB NO.PARAMETERS

Subroutines 9-5

Subroutine Structure

Subroutine Body

The body of a subroutine follows the subroutine specification
statement. A subroutine body is a block containing the statements
that perform the tasks for the calling routine. Any values that are
to be returned to the calling routine as actual parameters are
computed in the subroutine body and assigned to the appropriate
formal parameters.

END SUB Statement

Purpose

Format

Remarks

Designates the physical end of the subroutine and
follows the subroutine body. Every subroutine must end
with an END SUB statement.

END SUB

The END SUB can appear only once in a subroutine.

• The END SUB statement for an external and an
internal subroutine must be the last statement of
the routine's last line.

• The END SUB statement transfers control to the
statement following the CALL statement that made the
subroutine call. This makes available to the
calling routine any returned values.

• A runtime error results if a subroutine is exited
while it contains an uncleared error.

• For more information about clearing runtime errors,
see chapter 6.

9-6 BASIC for NOS/VE Usage Revision B

Subroutine Structure

EXIT SUB Statement

Purpose

Format

Remarks

Examples

Revision B

Transfers control to the statement following the CALL
statement that made the subroutine call. This makes
available to the calling routine any returned values.

EXIT SUB

The EXIT SUB can appear any number of times within a
subroutine body.

• A runtime error results if a subroutine is exited
while it contains an uncleared error.

• For more information about clearing runtime errors,
see chapter 6.

The following subroutine shows an example using the EXIT
SUB statement.

EXTERNAL SUB TRIANGLE(SIDEl,SIDE2,SIDE3,PERIMETER,AREA)
, This subroutine computes the area (using Heron's
, formula) and perimeter of a triangle from the lengths
, of the sides.

, --------------- The Subroutine Body

IF (SIDEl < 0) OR (SIDE2 < 0) OR (SIDE3 < 0) THEN
LET PERIMETER 0: LET AREA = 0 : EXIT SUB

ENDIF
LET PERIMETER = SIDEl + SIDE2 + SIDE3
LET S = 0.5*PERIMETER
LET TEMP S*(S - SIDEl)*(S - SIDE2)*(S - SIDE3)
LET AREA = SQR(TEMP)

End of Subroutine Body ------------
END SUB

Subroutines 9-7

External vs. Internal Subroutines

lE"de1rnill V9. Hnterrnal Subroutinen

Subroutines are classified as either external or internal. An
external subroutine:

• Is an external routine that performs tasks for a calling
routine.

• Is declared to be external by including the keyword EXTERNAL
in the subroutine specification statement.

• Can be compiled as a separate program unit.

• Cannot be contained within another external routine t but can
contain embedded internal routines.

• Shares data with other external routines through the COMMON
statement or the passing of parameters.

Declarative statements in an external subroutine apply to all
embedded internal routines.

An internal subroutine:

• Is an internal routine that performs tasks for a calling
routine.

• Is declared internal t by default t when the keyword EXTERNAL
is omitted from the subroutine specification statement.

• Cannot be compiled as a separate program unit.

• Must be contained within a host external routine t and cannot
contain embedded routines.

• Has access to all the data of its host external routine.

Declarative statements within an internal subroutine apply to the
entire host external routine.

9-8 BASIC for NOS/VE Usage Revision E

Examples

Revision B

•

External vs. Internal Subroutines

An external subroutine named MATH is specified. It
has two parameters. X is a real variable and Y(,)
is a two-dimensional real formal array.

EXTERNAL SUB MATH(X,Y(,»

• An internal subroutine named PROCESS is specified.
It has three parameters: N%, an integer variable,
A, a real variable, and R$(), a one-dimensional
string formal array.

SUB PROCESS(N%,A,R$(»

Subroutines 9-9

COMMON Statement

COMMON Statement
Purpose

Format

Remarks

Examples

Shares scalar variables and arrays with external
routines through the COMMON statement.

COMMON obj list

obj list Nonempty list of scalar variables and formal
arrays that are separated by commas. The
listed objects are made accessible to all
external routines.

• A COMMON statement must precede the first reference
to any variable or array that it specifies as a
common obj ec t.

• A variable that is made accessible to other external
routines is not necessarily shared. A variable is
shared among a group of external routines only when
it appears in a COMMON statement in each of the
routines.

• The scalar variables D and C, and the
two-dimensional array B are made accessible to all
external routines.

COMMON D, C, Be,)

• Order is not important in a COMMON statement. Thus,
the following statements are equivalent.

COMMON X, Y

COMMON Y,X

9-10 BASIC for NOS/VE Usage Revision B

COMMON Statement

Subroutine Name Declal"ation
Purpose

Format

Remarks

Examples

Revision B

Declares names to be those of subroutines.

DECLARE EXTERNAL SUB snlist

EXTERNAL Optional keyword EXTERNAL used to declare
names as those of external subroutines. If
omitted, specified names are declared to be
those of internal subroutines.

snlist List of subroutine names that are separated
by commas. Names that appear in this list
are declared to be those of subroutines.

A subroutine declaration statement that declares an
external subroutine must precede the first call to that
subroutine.

• This statement designates the name ADDRESS. LIST as
that of an external subroutine.

DECLARE EXTERNAL SUB ADDRESS. LIST

• This statement designates the names CHECK and
SCHEDULE as those of internal subroutines.

DECLARE SUB CHECK,SCHEDULE

Subroutines 9-11

Subroutine Calls

Subroutine CalIg

Purpose

Format

Remarks

Call a NOS/VE subroutine.

CALL subname aplist

subname Name of the subroutine.

aplist Optional actual parameter list used only if
a formal parameter list appears in the
subroutine specification statement.

An actual parameter list for a subroutine has the
format:

(ap1 , ap2) ... , apN)

apJ Expression or actual array (defined below)
denoting the Jth actual parameter, where (1 <= J
<= N). The data type of this actual parameter
must be the same as that of the corresponding
formal parameter. An integer value cannot be
passed to a real formal parameter. A real value
cannot be passed to an integer formal parameter.

• An actual array is an array name followed by
parentheses that contain zero or more commas. The
number of dimensions is one more than the number of
commas supplied. The formal array dimension bounds
are established by the actual array being passed to
it.

• If execution control reaches the SUB statement of an
internal subroutine without using a CALL statement:

The statements in the internal subroutine are
not executed.

Control passes to the statement following the
subroutine's END SUB statement. If this END SUB
statement is the last statement of the main
program, the program is terminated.

9-12 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Subroutine Calls

This statement calls the subroutine PAYROLL using
the two-dimensional string array NAMES$ as the
actual parameter.

CALL PAYROLL(NAMES$(,))

• The following CALL statement CALL TRIANGLE
(3.0,4.0,s.O,P,A) calls the subroutine below to
compute the perimeter and area of a triangle with
sides of lengths 3.0, 4.0, and 5.0. The actual
parameters P and A receive the returned values 12.0
and 6.0, respectively.

EXTERNAL SUB TRIANGLE(SIDEl,SIDE2,SIDE3,PERIMETER,AREA)
, This subroutine computes the area (using Heron's

formula) and perimeter of a triangle from the lengths
of the sides.
IF (SIDEI < 0) OR (SIDE2 < 0) OR (SIDE3 < 0) THEN

LET PERIMETER = 0 : LET AREA = 0 : EXIT SUB
ENDIF
LET PERIMETER = SIDEI + SIDE2 + SIDE3
LET S = 0.5*PERIMETER
LET TEMP S*(S - SIDEl)*(S - SIDE2)*(S - SIDE3)
LET AREA = SQR(TEMP)

END SUB

Subroutines 9-13

Subroutine Parameters

§ubl'ou11:illle Pill'ilmetel'O

Actual parameters that are scalar variables or whole arrays can be
passed. A dynamically dimensioned array can be passed as a
parameter to an external routine compiled with statically
dimensioned arrays. A statically dimensioned array can be passed as
a parameter to an external routine compiled with dynamically
dimensioned arrays. When a change is made to the corresponding
formal parameter, the actual parameter is also changed. A runtime
diagnostic results if an external routine attempts to redimension a
statically dimensioned array parameter.

Actual parameters that are constants, single array elements,
substrings, or nontrivial expressions will not be modified even if
the corresponding formal parameter is modified.

(A nontrivial expression is one that involves at least one operation
or function reference.)

Hence, if a subroutine modifies:

• a formal array

• a formal scalar variable that was passed the value of an
actual scalar variable

then the corresponding actual parameter is also modified. For
arrays, this includes modifications made with the DIM and ERASE
statements. A subroutine compiled with statically dimensioned
arrays cannot redimension an array parameter.

If a subroutine modifies a formal scalar variable that is passed:

• a constant

• a single array element

• a substring

• a nontrivial expression

then the corresponding actual parameter is not modified.

The presence of parentheses does not protect an actual parameter
from modification in the calling routine. The subroutine calls CALL
SUBROUTINE(X) and CALL SUBROUTlNE«X» are equivalent.

9-14 BASIC for NOS/VE Usage Revision C

Subroutine Parameters

However, use of a nontriv'ial expression, such as the one used in the
subroutine call CALL SUBROUTINE(X+O.O), does protect an actual
parameter from modification in the calling routine.

NOTE

Remember that for subroutines, integer values cannot be passed to
real formal parameters. Real values cannot be passed to integer
formal parameters.

The following similar program fragments contrast when actual
parameters are modified.

'FRAGMENT 111
DEFINT A,X
SUB ADD5(X)

LET X X+5
END SUB
LET A = 3
CALL ADD5(A)

PRINT A
PRINT A

'FRAGMENT 112
DEFINT A,X
SUB ADD5(X)

LET X = X+5
END SUB
LET A(l) = 3
CALL ADD5(A(l))

PRINT A(l)
PRINT A(I)

In fragment Ill, the scalar A is passed to the scalar X. When X is
incremented in the subroutine, so is A. The values 3 and 8 are
printed.

In fragment 112, the array element A(I) is passed to the scalar X.
When X is incremented in the subroutine, A(I) is not altered. The
values 3 and 3 are printed.

Revision C Subroutines 9-15

CALLX Statement

CALL" Statement
Purpose

Format

Remarks

Provides an interface to subroutines written in
languages that conform to the FORTRAN calling sequence.

CALLX fsubname aalist

fsubname

aalist

Name of the FORTRAN (or other) subroutine
being called. The name must be a plain name
and cannot contain periods.

Optional list of actual arguments.

The actual argument list in a CALLX statement has the
format:

(aa1 , aa2 , ••• , aaN)

aaJ Expression or actual array (defined below)
denoting the Jth actual argument, where
(1 (= J (= N). The data type of this actual
argument must be the same as that of the
corresponding formal argument in the FORTRAN
subroutine. Actual string arrays cannot be
passed through the CALLX statement.

An actual array is an array name followed by a pair of
parentheses that contains zero or more commas. The
number of dimensions of the actual array is one more
than the number of commas supplied. There is no
mechanism by which a FORTRAN (or other) subroutine can
alter the dimension bounds of an actual array argument.

9-16 BASIC for NOS/VE Usage Revision E

Examples

Revision E

CALLX Statement

The BASIC program (left half of example below) assigns
values to a one-dimensional arraYt prints the array
using the internal subroutine, and then calls a FORTRAN
subroutine. The array is passed to the FORTRAN
subroutine as an actual parameter.

The FORTRAN subroutine (right half of example below)
replaces the Jth array element by the sum of the values
of all elements whose subscripts are less than or equal
to J t where (1 (= J (= M).

The BASIC program then reprints the array.

REM BASIC PROGRAM
DEFINT A,I,L,U : DIM A(-S:S)
LET LB = LBOUND(A) : UB = UBOUND(A)
FOR I = LB TO UB

LET A(I) = I
NEXT I
CALL ARRAY.PRINT("BEFORE:")
CALLX RUNSUM(A(),UB - LB + 1)
CALL ARRAY.PRINT("AFTER:")
END
SUB ARRAY.PRINT(S$)

PRINT S$: PRINT
FOR I = LB TO UB

PRINT A(I);
NEXT I
PRINT : PRINT

END SUB
END PROGRAM

C

10

FORTRAN SUBROUTINE
SUBROUTINE RUNSUM(A,M)
INTEGER A(M)
00 10 J = 2,M
A(J) = A(J) + A(J - 1)
CONTINUE
RETURN
END

Suppose that the binary object programs for the BASIC
program and the FORTRAN subroutine are in the $LOCAL
files LGO and FLGO t respectively. If the working
catalog is $LOCAL t the BASIC program can be executed
with the following SCL command.

EXECUTE_TASK (LGOtFLGO)

The output from this program appears below.

BEFORE:

-5 -4 -3 -2 -1 0 2 3 4 5

AFTER:

-5 -9 -12 -14 -15 -15 -14 -12 -9 -5 0

Subroutines 9-17

Unit-measured Application Accounting

Unit-measured Application Accol1nting
The BCPDAUA subroutine enables application usage billing based on
application units.

You, the programmer, define the units to measure. For example, you
might want to measure the number of calls to a particular function.
In that case, the function call is an application unit.

To count application units, you first set up an array of integers.
Each element of the array represents a unit to be counted. You then
call the BCPDAUA subroutine to tell NOS/VE the location of the array
of counters.

As the program executes, you update the array. For example, if the
first counter represents a call to a particular function, every time
that function is called, you increment the first counter.

When your task terminates, NOS/VE accesses the array and emits the
values to the job account log as an application unit statistic.

BCPDAUA Subroutine

Purpose

Format

Begins the process of counting application units by
telling NOS/VE the location of the array of integers.

CALLX BCPDAUA (array, size, status)

array A single-dimension array of 1 to 63 integers.
All elements in the array must be zero or
positive. Each element represents an event to
be counted while the program is executing, such
as a call to a particular function.

size An integer from 1 to 63 specifying the size of
the array.

status String variable to receive the status resulting
from this CALLX BCPDAUA statement. The string
variable must be 256 characters in length; you
must set all 256 characters to blank before
calling BCPDAUA.

If a status of "NO ERROR." is returned, there were no
errors. Otherwise, the status contains the complete
error message •

• 9-18 BASIC for NOS/VE Usage Revision E

Remarks

Examples

Revision E

•

Unit-measured Application Accounting

The BCPDAUA call must be in the program unit for
which application units are recorded.

• When you call the BCPDAUA subroutine, BCPDAUA in
turn calls the CYBIL procedure
CLP$DEFINE APPLIC UNIT ARRAY. Application usage
billing is-based on the CYBIL statistic
AVC$APPLICATION UNITS (AV11). For details on
application accounting and the
CLP$DEFINE APPLIC UNIT ARRAY procedure, see the
CYBIL System Interface-and the NOS/VE Accounting
Analysis System manuals.

• You can use the Debug utility to execute a program
containing a CALLX BCPDAUA statement.

• The message text of any error is returned as the
status. The ON ERROR statement does not detect
errors generated by the BCPDAUA subroutine.

The following example shows how to call the BCPDAUA
subroutine. The NOS/VE Accounting Analysis System
manual describes how to display the resulting statistics.

option base 1
dim application.array%(3)
let stat$ = space$(256)
calIx bcpdaua (application.array%(),3,stat$)
if mid$(stat$,1,9) <> "NO ERROR." then

print stat$
endif
application.array%(2) 2

Subroutines 9-19.

o

o

o

o

o

Interactive Input ••• 10-2

INPUT Statement ••• 10-3
LINE INPUT Statement •••••••••••••••••••••••••••••••••••• 10-7

Interior Data Sets

DATA Statement
READ Statement
RESTORE Statement •••••••••••••••••••••••••••••••••••••••

10-10

10-11
10-12..1
10-13

WIDTH Statement ••• 10-14

PRINT Statement ••• 10-15

PRINT Statement Format •••••••••••••••••••••••••••••••••• 10-16
Print Zones and Comma Format •••••••••••••••••••••••••••• 10-18
Semicolon Format •• 10-20
SPC Format Function ••••••••••••••••••••••••••••••••••••• 10-22
TAB Format Function ••••••••••••••••••••••••••••••••••••• 10-23

PRINT USING Statement ••••••••••••••••••••••••••••••••••••••• 10-25

(~ PRINT USING Statement Format •••••••••••••••••••••••••••• 10-25
\~_) String Format Characters •••••••••••••••••••••••••••••••• 10-28

Standard Numeric Format Characters •••••••••••••••••••••• 10-30
Special Numeric Format Characters ••••••••••••••••••••••• 10-34
Format Characters as Literals ••••••••••••••••••••••••••• 10-38
Scanning Format Strings ••••••••••••••••••••••••••••••••• 10-39

WRITE Statement ••• 10-40

BEEP Statement •• 10-42

]1.0

Data that is supplied to a program for processing is called input.
Data that is printed or stored as a result of program execution is
called output.

The input and output processes are collectively referred to as
Input/Output, abbreviated I/O.

This chapter discusses how a NOS/VE BASIC program receives input
from the terminal, accesses input from an interior data set, and
sends output to the terminal.

The discussion is based on the assumption that the default
connections for the standard files $INPUT and $OUTPUT are the NOS/VE
local files INPUT and OUTPUT. For interactive mode, this means that
input is received from the terminal, and output appears at the
terminal.

Specific details concerning I/O operations for arrays and files
appear in the Arrays and Files chapters.

Revision B Input and Output 10-1

Interactive Input

nnteJl:"active nnput

Data that is supplied to a program from the terminal during run time
is called interactive input.

This section discusses the two BASIC statements which provide for
interactive input.

10-2 BASIC for NOS/VE Usage Revision B

Interactive Input

INPUT Statement

Purpose

Format

Revision B

Inputs data into an executing program from the terminal.

INPUT prompt varlist

prompt

varlist

Optional semicolon, which serves no purpose
in NOS/VE BASIC. This option is provided
for compatibility with popular microcomputer
versions of BASIC.

Optional message that can be used to prompt
the user for input.

List of variables that are separated by
commas. This input variable list contains
the variables that receive values from the
terminal.

If the PROMPT parameter is omitted, the system supplies
the string "? " when an INPUT statement is executed.
This default prompt indicates that data is expected.
You can specify a more elaborate prompt with the PROMPT
parameter. There are two formats:

prompt
prompt ,

prompt Quoted string constant containing the
message you want printed.

Appends the system prompt "? " to the
message you have provided.

Specifies that the system prompt should not
be appended to the message.

Input and Output 10-3

Interactive Input

Remarks • Only the first 31 characters of a user prompt
(message combined with optional system prompt) is
displayed.

• You can enter constants when the input prompt
appears at the terminal. Commas are used to
separate values. All the data for a given INPUT
statement is entered after the prompt.

• The number of characters that you can enter on an
input line interactively after the prompt cannot
exceed 128 characters. Commas used to separate data
items and spaces within quoted strings are counted
as part of the 128 characters. An attempt to enter
more than 128 characters results in the message:

Error in INPUT reply. Please respecify.

• When you press RETURN, the values in the prompt line
are assigned to their corresponding variables in the
input variable list. There must be a one-to-one
correspondence between values in the input reply and
variables in the input variable list.

• A numeric variable can only be assigned a numeric
value. Mixing of integer and real data types is
handled exactly as it is handled in an assignment
statement. Thus, an integer input for a real
variable is converted to type real. A real input
for an integer variable is rounded to the nearest
integer.

• If a data value in a reply to an INPUT statement
begins with a quote, the value is assumed to be a
quoted string constant.

• When a string begins with a quote (") it must also
contain a closing quote. The actual string is
between the quotes. If there is no quote at the
beginning, a quote within a string is treated as
part of the string.

• Modified unquoted string constants (defined below)
can be entered as interactive input.

10-4 BASIC for NOS/VE Usage Revision D

Remarks
(cont)

Examples

Revision D

•

Interactive Input

A modified unquoted string constant is an unquoted
string constant that can contain an apostrophe or a
colon. Since the compiler never sees an input
reply, the restriction that these two characters be
used only as delimiters (when outside of a quoted
string) can be relaxed.

• A comma in the data supplied in response to an input
prompt is interpreted as a separator. For example,
if the response to the statement INPUT a$,b$ is only
a comma (,), the response is interpreted as two null
strings (a$ and b$) separated by a comma.

• You can enter a carriage return as an acceptable
null statement response to an INPUT statement
requiring only one data item. If more than one data
item is expected, as with INPUT a$,b$, then a
carriage return results in the error:

Error in INPUT reply. Please respecify.

• If erroneous data is entered (including too few or
too many values), NOS/VE BASIC attempts to recover.
The prompt:

•

Error in INPUT reply. Please respecify.

is issued, and the system waits for the entire input
reply to be reentered.

In each example below, the second line shows what is
displayed at the terminal when the INPUT statement
in the first line is executed. Trailing spaces of
the prompt will be included.

INPUT A(1),F$(2:5),Z

INPUT "HOH MANY TRIALS"; NUMBER.OF.TRIALS
HOW MANY TRIALS?

INPUT "ENTER NAME AND ID NUMBER: ", N$,ID%
ENTER NAME AND ID NUMBER:

INPUT; "ENTER THO POSITIVE INTEGERS: , J%,K%
ENTER THO POSITIVE INTEGERS:

Input and Output 10-5

Interactive Input

Examples
(cont)

• The following example shows the value on the right.

INPUT A,B,C
? 100, ,200
INPUT A$,B$
? HELLO,
INPUT A$,B$
? A"BC,ABC"

B = 0

B$ null string.
A$ A"BC
B$ ABC"

Consider the following interactive sessions.

• The string "GRADE POINT AVERAGE" is assigned to T$.
The value 3.41 is assigned to X.

INPUT T$,X
? "GRADE POINT AVERAGE", 3.41

• The string "MAMA'S FAMOUS PIZZA: VARIETY II" is
assigned to Q$. The value 4 is assigned to N%.

INPUT Q$,N%
? MAMA'S FAMOUS PIZZA: VARIETY #,4

• The string "10. CHAPTER" is assigned to W$.

INPUT W$
? 10. CHAPTER

• Since the commas to separate data items in a string
are included in one input buffer, the number of a's
and b's in the example cannot exceed 127.

INPUT A$,B$
? aaaaaaaaaa • • • • • • • • • • • • • • • • • • aaaa
aaaa ••••• aaaa,bbbbbbbbb ••••••••• b

10-6 BASIC for NOS/VE Usage Revision D

Interactive Input

LINE INPUT Statement

Purpose

Format

Revision B

Assigns an entire line of data to a single string
variable during interactive input.

LINE INPUT ; prompt strvar

Optional semicolon permitted for compatibility
with popular microcomputer versions of BASIC.

prompt Optional message that can be used to prompt the
user for input.

strvar String variable that receives the input line.

If the PROMPT parameter is omitted, the system supplies
the string "? "when a LINE INPUT statement is
executed. This default prompt indicates that data is
expected. You can specify a more elaborate prompt with
the PROMPT parameter. There are two formats:

prompt
prompt ,

prompt Quoted string constant containing the
message you want printed in the prompt.

Appends the system prompt "? " to the
message you have provided.

Specifies that the system prompt should not
be appended to the message.

Input and Output 10-7

Interactive Input

Remarks • Only the first 31 characters of a user prompt
(message combined with optional system prompt) is
displayed.

• You can enter text when the input prompt appears at
the terminal. All the input for a given LINE INPUT
statement must be entered on the prompt line. When
you press RETURN, the entire input reply is assigned
to the variable specified in the LINE INPUT
statement.

• An input reply to a LI~E INPUT statement has no
delimiters. Everything from the end of the prompt
to the carriage return is assigned to the variable
specified in the LINE INPUT statement.

• Leading and trailing spaces can be included by using
the space bar. A quotation mark is treated exactly
like any other character, even if it is the first
character.

10-8 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Interactive Input

In each example below, the second line shows what is
displayed at the terminal when the LINE INPUT
statement in the first line is executed. Note
trailing spaces of the prompt will be included.

LINE INPUT T$ (1)

LINE INPUT "WOULD YOU LIKE A RECEIPT"; R$
WOULD YOU LIKE A RECEIPT?

LINE INPUT "ENTER MESSAGE HERE: M$
ENTER MESSAGE HERE:

LINE INPUT; "ANSWER: ,S$
ANSWER:

• Assume that the space bar is pressed one time after
the last L of STARGELL is typed, and then a carriage
return is issued. The following interactive
assignment is equivalent to the statement below.

LINE INPUT "PLAYER'S NAME: ", P$
PLAYER'S NAME: "POPS" STARGELL
LET P$ = 1II"'POPS"" STARGELL "

Note the existence of one trailing space.

Input and Output 10-9

Interior Data Sets

Interior Data Set!i

Interactive input requires your active involvement during the
execution of a program. Instead, you might prefer to have data
supplied to a program from a data collection that is stored within
the program itself. Each data statement is composed of one or more
data items that is limited by the BASIC source line length of 255
characters.

This section describes how input can be supplied to a BASIC program
from an interior data set.

10-10 BASIC for NOS/VE Usage Revision D

Interior Data Sets

DATA Statement

Purpose

Format

Remarks

Revision D

Stores an interior data set within an external routine
through one or more DATA statements.

DATA datalist

datalist List of constants that are separated by
commas. Unquoted string constants can be
included.

• The DATA statements in an external routine form a
single interior data set. However t these statements
need not be grouped on consecutive lines.

• Each value in an interior data set must have a
representation that is compatible with the data type
of the variable that receives the value.

• If a value in a DATA statement begins with a
quotation mark t the value is assumed to be a quoted
string constant since an unquoted string constant
cannot begin with a quotation mark.

• A value in the interior data set is accessed through
the READ statement.

• A DATA statement can provide null values to a READ
statement. (A null value assigns a 0 value to an
integer or real variable or the null string to a
string variable.)

A DATA statement provides a null value when it
specifies no data or a separator (t) without data.
For example t the following DATA statements each
supply one null value:

DATA
DATA t 10
DATA10 tt 20
DATA 10 t 20 t

Input and Output 10-11

Interior Data Sets

Examples • The following are examples of the DATA statemell~ •

DATA -3.2,8,STOP,1.23ES,-32,"START:FINISH"

DATA "I DON'T KNOW",I DO NOT KNOW,"X,Y, OR Z"

DATA JULIUS "DR. J" ERVING, "''''MAGIC'''' JOHNSON"

• The following example demonstrates the use of null
values from DATA statements. The first DATA
statement provides a null value for variable A and
the second DATA statement provides null values for
B, C, and D.

DATA
DATA, ,
READ A, B, C, D

10-12 BASIC for NOS/VE Usage Revision D

Interior Data Sets

READ Statement

Purpose

Format

Remarks

Examples

Revision D

Assigns a value to a variable from the interior data set
of an external routine through the READ statement.

READ varlist

varlist List of variables that are separated by
commas. This input variable list contains
the variables to be assigned values from the
interior data set.

• The values to be assigned to variables in the
variable list appear in DATA statements. Values are
assigned in sequential order, starting with the
first value in the first DATA statement. A pointer
keeps track of the next available value.

• Each time a value is read, the pointer advances one
item in the interior data set. When all the values
in a given DATA statement have been exhausted, the
pointer moves to the next DATA statement in the
external routine.

• A runtime error results if the number of values
remaining in the interior data set is too few to
satisfy an input variable list.

• A numeric variable can only be assigned a numeric
value. Mixing of integer and real data types is
handled exactly as it is handled in an assignment
statement. Thus, an integer input for a real
variable is converted to type real. A real input
for an integer variable is rounded to the nearest
integer.

Assume that the pointer is set to the beginning of the
DATA statement when the READ statement is executed. The
variables A%, B, C$, and D$ are assigned the values 4,
4.0, "4", and "4", respectively.

READ A%,B,C$,D$
DATA 4,4,4,"4"

The pointer of an interior data set can be reset by the
RESTORE statement.

Input and Output 10-12.1/10-12.2.

Interior Data Sets

RESTORE Statement

Purpose

Format

Remarks

Examples

Revision B

Moves the pointer for the interior data set of an
external routine to a new DATA statement.

RESTORE label

label Optional line label identifying the DATA
statement to which the pointer is moved.

If a label is specified, the pointer moves to the
beginning of the first DATA statement associated with
the label. If the label is omitted, the pointer moves
to the beginning of the first DATA statement in the
external routine.

The following program shows examples of the RESTORE
statement.

DEFINT X - Z
READ XA, XB, XC, XD
RESTORE
READ YA, YB, YC, YD, YE, YF
RESTORE 10
READ ZA, ZB
PRINT XA; XB; XC; XD; YA; YB; YC; YD; YE; YF; ZA; ZB
-------------- The Interior Data Set -------------

DATA 1, 2
10 DATA 3, 4, 5

DA TA 6, 7, 8, 9
END

The output from the above program appears below.

234 234 563 4

Input and Output 10-13

WIDTH Statement

WIDTH Statement
Purpose

Format

Remarks

Examples

Sets the page width for output that is sent to the
terminal.

WIDTH pgwid th

pgwidth NUmeric expression whose value, when rounded
to the nearest integer, specifies the page
width to be used for output to the terminal.

• The page width is the maximum number of characters
that can be printed before a carriage return is
generated.

If the page width:

Exceeds the NOS/VE maximum page width, the
maximum is used.

Is less than 14 (the length of a print
zone), a runtime error results.

If the length of a value to be printed:

Exceeds the space available on the current
line, but is less than the page width, the
value is printed at the beginning of the
next line.

Exceeds the page width, as much of it as can
fit on the current line is printed, and the
value is continued on as many subsequent
lines as needed.

• The page width specified is used until the program
ends, or until the page width is changed by another
WIDTH statement.

This statement sets the page width for output to the
terminal at 65 characters.

WIDTH 65

10-14 BASIC for NOS/VE Usage Revision B

PRINT Statement

PRINT Statement
This section discusses the NOS/VE BASIC statements and format
functions used for sending output to the terminal using the PRINT
statement.

Revision B Input and Output 10-15

PRINT Statement

PRINT Statement Format

Purpose

Format

Remarks

Print output at the terminal.

PRINT printlist

printlist Optional list of expressions and format
function references that are separated by
commas or semicolons. One or more spaces
between items is equivalent to a semicolon
specification. The last item can be
followed by a comma or semicolon.

• A carriage return is issued:

If the print list is omitted.

On completion of any PRINT statement whose print
list does not end with a comma, a semicolon, or
a format function reference.

• The expressions in the print list are evaluated, and
their values are printed in sequence. The spacing
of the output is controlled by the punctuation that
follows each print list item and by the format
functions included in the print list.

• A numeric value printed by the PRINT statement:

Is preceded by a space if the value is
nonnegative. No space precedes the minus sign
of a negative value.

Is followed by a space (unless the value ends in
the last print position of a line, in which case
the trailing space is omitted).

10-16 BASIC for NOS/VE Usage Revision B

Remarks
(cant)

Examples

Revision E

PRINT Statement

• The value of a real expression printed by the PRINT
statement is displayed:

Without trailing zeros.

With no zero digit to the left of the decimal
point if its magnitude is less than one.

Without a decimal point (integer format) if its
fractional part is zero.

In decimal (fixed point) format if it can be
represented as accurately in decimal format,
using seven or fewer digits, as it can in
exponential format. Otherwise, the exponential
(floating point) format, using one digit to the
left of the decimal point, is displayed.

• If the length of a value to be printed:

Exceeds the space available on the current line,
but is less than the page width, the value is
printed at the beginning of the next line.

Exceeds the page width, as much of it as can fit
on the current line is printed, and the value is
continued on as many subsequent lines as needed.

The following table shows several PRINT statements and
the resulting output:

PRINT Statement Output

PRINT 10.5 A 3 1157.625
PRINT -7.5 A 4 -3.1640625E+3
PRINT 10 A 30 1.E+30
PRINT 1.E30 1.E+30
PRINT +l23.E20 1.23E+22
PRINT -.3E22 -3.E+21
PRINT .777E+18 7.77E+17
PRINT +.04E+26 4.E+24
PRINT +10.5210E+3 10521
PRINT -7.6E1 -76

Input and Output 10-17

PRINT Statement

Print Zones and Comma Format

The leftmost print position of a NOS/VE BASIC print line is
designated position one. The print line is divided into
14-character print zones.

A comma in the print list of a PRINT statement moves the print
cursor to the beginning of the next zone. If there are no more
print zones in the current line, the cursor moves to the beginning
of the next line. This is the beginning of the next print zone.

A comma at the end of the print list of a PRINT statement works
exactly like a comma elsewhere in the print list. Printing
continues at the current cursor position when a subsequent PRINT,
PRINT USING, or WRITE statement is executed.

Examples The following is an example of a PRINT statement.

PRINT 4.25, -48, "GOOD ANSWER"

The value 4.25 is printed in zone one, print positions
2-5 (a leading space is provided). The value -48 is
printed in zone two, print positions 15-17 (no leading
space). The value "GOOD ANSWER" is printed in zone
three, print positions 29-39. A carriage return is
issued because the print list does not end with a comma,
semicolon, or format function. The output is as follows:

Zones: 2 3

Output: 4.25 -48 GOOD ANSWER

10-18 BASIC for NOS/VE Usage Revision B

Examples

Revision B

PRINT Statement

In the following sample program, each line is labeled
for reference. The result of the execution of each line
is explained beneath the program.

10 WIDTH 56
20 PRINT 1,2,3,4,
30 PRINT "LONGER THAN ONE ZONE",5
40 PRINT 6,
50 PRINT
60 PRINT 7 : END

10: Terminal page width set at 56 characters (four print
zones) •

20: Values 1, 2, 3, 4 printed in positions 2, 16, 30,
44, respectively. Ending comma causes cursor to
move to first print zone on the next line.

30: Value "LONGER THAN ONE ZONE" printed in positions
1-20. Value 5 printed in position 30. Carriage
return issued (no ending punctuation). Cursor moves
to start of print line three.

40: Value 6 printed in position 2. Cursor moves to
position 15.

50: Carriage return issued. Cursor moves to start of
print line four.

60: Value 7 printed in position 2. Carriage return
issued. Cursor moves to start of print line five.
Program ends.

The output is as follows:

Zones:

Output:

2 3

2 3
LONGER THAN ONE ZONE 5
6
7

4

4

Input and Output 10-19

PRINT Statement

Semicolon Format

A semicolon in the print list of a PRINT statement holds the print
cursor at its current position. The next value printed immediately
follows the last one printed.

This format causes printed string values to run together if no
spacing is provided. However, one trailing space is provided after
numeric values. In addition, one leading space is provided for
positive values, but not for negative values.

If a printed value ends in the final print position of a line, a
carriage return is not issued until a subsequent value is printed.

A semicolon at the end of the print list of a PRINT statement works
exactly like a semicolon elsewhere in the print list. Printing
continues at the current cursor position when a subsequent PRINT,
PRINT USING, or WRITE statement is executed.

Examples The following PRINT statement holds the print cursor at
its current position, except one trailing space is
provided after numeric values

PRINT "HOME"; "WORK"; -1; "OR"; 2; "OR"; 3; "HOURS"

This statement produces the output below. Note that no
space separates consecutive strings, and no space
separates a string from a subsequent negative value.

HOMEWORK-lOR 2 OR 3 HOURS

10-20 BASIC for NOS/VE Usage Revision B

PRINT Statement

One or more spaces (with no other punctuation) between items in the
print list of a PRINT statement function exactly as if a semicolon
were provided. However, spaces at the end of a print list have no
meaning.

Examples

Revision B

The lines labeled 10 and 20 (combined) print the value
"GO TOGETHER", holding the cursor on the first print
line.

The line labeled 30 causes a carriage return. The
cursor moves to the start of print line two.

The line labeled 40 prints the value "PLEASE", and
issues another carriage return. The cursor is
positioned at the start of print line three when the
program terminates.

10 PRINT "GO ";"TO";
20 PRINT "GET"; "HER";
30 PRINT
40 PRINT "PLEASE" : END

The output is as follows:

GO TOGETHER
PLEASE

Input and Output 10-21

PRINT Statement

SPC Format Function

Purpose

Format

Remarks

Examples

Inserts spaces into a line of output.

SPC(spaces)

spaces Numeric expression whose value, when rounded to
the nearest integer, specifies the number of
spaces to be printed.

• If the number of spaces specified:

Exceeds the available space in the current line,
the cursor moves to the beginning of the next
line. No spaces on this new line are provided.

Is zero, the cursor does not move.

Is negative, a runtime error results.

• If a print list ends with an SPC function reference,
no carriage return is issued unless the reference
itself causes one.

• A semicolon or comma following a SPC function works
exactly like a semicolon or comma in a print list.

This statement prints the value "NAME ADDRESSII. The
three spaces are provided by the SPC function reference.

PRINT "NAME"; SPC(3); "ADDRESS"

10-22 BASIC for NOS/VE Usage Revision B

PRINT Statement

TAB Format Function

Purpose

Format

Remarks

Revision B

Move the print cursor to a specified print position.

TAB (col umn)

column Numeric expression whose value, when rounded to
the nearest integer, specifies the print
position to which the print cursor is to be
moved.

• If the specified print position p:

Exceeds the page width w, the integer n = (p MOD
w) is computed. The print cursor moves to print
position n of the next line.

Is less than the current position of the print
cursor, the cursor moves to print position p of
the next line. The cursor never moves backwards
as a result of a TAB function reference.

Is less than I, a value of 1 is used. A warning
is issued, but no runtime error results.

• If a print list ends with a TAB function reference,
no carriage return is issued unless the reference
itself causes one.

• A semicolon or comma following a TAB function works
exactly like a ; or , in a print list.

Input and Output 10-23

PRINT Statement

Examples • This statement prints the value "DIVISION" in print
positions 1-8, the value "DEPARTMENT" in print
positions 20-29, and the value "UNIT" in print
positions 40-43. The intervening positions are
filled with blanks.

PRINT "DIVISION"; TAB(20); "DEPARTMENT" ;TAB(40); "UNIT"

• If N receives the value 10 through the INPUT
statement, this program fragment prints the
following output:

DEFINT I,N
INPUT N
FOR I = 1 TO N

PRINT TAB(1 + 4*(1 - 1));"&";
NEXT I

These ampersands appear in columns 1, 5, 9, 13, 17,
21, 25, 29, 33, and 37. The print cursor remains at
print position 38.

& & & & & & & & & &

10-24 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

PRINT USING Statement
This section discusses the format options for sending program output
to the terminal using the PRINT USING statement.

PRINT USING Statement Format

Purpose

Format

Revision B

Allows you to specify in detail how output should be
displayed.

PRINT USING formstr ; printlist

formstr

printlist

Required string expression whose value (the
format string) specifies the format of the
output.

Required delimiter separating the format
string from the print list.

Nonempty list of expressions that are
separated by commas or semicolons. One or
more spaces between items is equivalent to a
semicolon specification. The last item can
be optionally followed by a comma or
semicolon.

Input and Output 10-25

PRINT USING Statement

Remarks • The print list must contain at least one item. The
expressions in this list are evaluated, and their
values are printed in sequence, using the format
specified in the format string.

• If the length of a value to be printed:

Exceeds the space available on the current line,
but is less than the page width, the value is
printed at the beginning of the next line.

Exceeds the page width, as much of it as can fit
on the current line is printed, and the value is
continued on as many subsequent lines as needed.

• Commas and semicolons are interchangeable when used
to separate items in the print list of a PRINT USING
statement. In this context, they act only as
delimiters, unlike their use in the PRINT
statement. However, these marks have distinct
interpretations when placed at the end of the print
list.

• A PRINT USING statement never supplies spaces unless
they are specifically designated in the format
string. For example, the trailing space that a
PRINT statement automatically provides after the
printing of a numeric value is not provided by the
PRINT USING statement.

• A carriage return is issued on completion of any
PRINT USING statement whose print list does not end
with either a comma or a semicolon.

• A comma or semicolon at the end of the print list of
a PRINT USING statement controls the movement of the
print cursor in exactly the same way as with the
PRINT statement. Thus:

An ending comma causes the cursor to move to the
beginning of the next print zone.

An ending semicolon holds the cursor in its
current position.

Printing continues at the current cursor position
when a subsequent PRINT, PRINT USING, or WRITE
statement is executed.

10-26 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

The format string is analyzed as a sequence of format components
possibly separated by literal components. A format string must have
at least one format component or a runtime error results.

A format component is a string of format characters that specify how
the next print list item is to be displayed.

A literal component is a string which is not used to specify
format. When a literal component is reached, its value is printed,
exactly as it appears.

A pointer keeps track of the current format component within a
format string. 'After a value is printed using the current format
component, the pointer moves forward to the next format component.
This causes any intermediate literal component to be printed.

If the end of a format string is reached, but not all print list
items have been printed, the pointer wraps around to the beginning
of the format string, and printing continues.

If a format component is ill-formed, or is inappropriate for the
data type of a corresponding print list item, a runtime error
results.

There are two sets of format characters, one for string values and
one for numeric values.

Revision B Input and Output 10-27

PRINT USING Statement

String Format Characters

This section discusses three format characters (1 & \) used in the
format string of a PRINT USING statement to specify how a string is
to be printed.

Each format character controls the length of the field (the section
of the print line) reserved for the output of a string.

Remember that punctuation between items in a print list only
delimits consecutive items. However, the punctuation at the end of
the print list controls the subsequent movement of the print cursor.

An exclamation point (1) specifies that only the first character of
a string is to be printed. If the string is the null string, a
space is printed.

Examples In the following program fragment note that the
wrap-around feature is used. A carriage return is
issued on completion of the output because the print
list does not end with a comma or a semicolon.

DEFSTR A,B
LET Al = "RESEARCH" : LET A2 = "DEVELOPMENT"
LET Bl = "PUBLICATIONS" : LET B2 = "GRAPHICS"
PRINT USING "! AND ! : "; Al,A2;Bl,B2

The output produced by this program fragment appears
below:

R AND D : P AND G :

An ampersand (&) specifies that a string is to be
printed in a field equal in length to that of the string.

10-28 BASIC for NOS/VE Usage Revision B

Examples

PRINT USING Statement

In the following program fragment note that the
wrap-around feature is used. The print cursor remains
at its current position on completion of the output
because the print list ends with a semicolon.

DEFSTR C,D,X
LET C1 "ALL": C2 = "NONE"
LET D1 = "COMPILE" : LET D2 = "EXECUTE"
LET Xl = "OR" : LET X2 "AND"
PRINT USING "OPTIONS: &! / "; C1,X1,C2;D1,X2,D2;

The output produced by this program fragment appears
below:

OPTIONS: A OR N / OPTIONS: C AND E /

A pair of reverse slants (\) with m spaces between them specifies
that a string is to be printed in a field of length (m + 2), where m
is a nonnegative integer.

The size of m is limited only by the requirement that the entire
PRINT USING statement be contained in one line.

If the string value is too long to fit in the field, the first (m +
2) characters of the string are printed. Otherwise, the string is
left-justified, and trailing spaces fill the field.

Examples

Revision B

In the following example the string value is too long to
fit in the specified field.

DEFSTR C,F,L
LET LN = "LASTNAME" : LET FN = "FIRSTNAME"
LET CN = "CITY"
PRINT USING "CODE NAME: \
PRINT USING "RESIDENCE: \

\!"; LN,FN
\@II; eN

The output produced by this program fragment appears
below. The value of LN is truncated to fit the
specified 6-position field. The value of CN is
left-justified in a 6-position field.

CODE NAME:
RESIDENCE:

LASTNAF
CITY @

Input and Output 10-29

PRINT USING Statement

Standard Numeric Format Characters

This section discusses four standard format characters (# +-)
used in the format string of a PRINT USING statement to specify how
a number is to be printed.

Remember that punctuation between items in a print list serves only
to delimit consecutive items. However, the punctuation at the end
of the print list controls the subsequent movement of the print
cursor.

A number sign (#) in a format string reserves one position in a
field. This position can be filled with a digit, comma, or
arithmetic sign.

A period (.) in a format string reserves one position in a field for
a decimal point and specifies where the decimal point is to appear.

If the field specified for printing an integer reserves:

• More positions than are needed, the integer is
right-justified, and leading spaces are used to fill the
field.

• Fewer positions than are needed, the field is lengthened to
accommodate the value. In addition, a percent sign (%) is
displayed as the first character in the field to flag the
format overflow.

If the field specified for printing a number in decimal format
reserves:

• Fewer positions to the right of the decimal point than are
needed, the number is rounded to fit within the field.

• Fewer positions to the left of the decimal point than are
needed, the field is lengthened to accommodate the value.
In addition, a percent sign (%) is displayed as the first
character in the field to flag the format overflow.

• More positions to the right of the decimal point than are
needed, trailing zeros are used to fill the field.

• More positions to the left of the decimal point than are
needed, leading spaces are used to fill the field. However,
at least one digit is displayed to the left of the decimal
point unless the period is the leftmost character in the
format component.

10-30 BASIC for NOS/VE Usage Revision B

Examples

Revision B

PRINT USING Statement

The format overflow in the third line occurs because
only two positions are reserved to the left of the
decimal point for a value that has three such digits.

PRINT USING "ANSWER till:
PRINT US ING "ANSWER tltl:
PRINT USING "ANSWER till:

till. tltl"; 3,84.568
tltl.tltl"; 7,.951
till. tltl"; 10,372.2

The output produced by this program fragment appears
below.

ANSWER 3:
ANSWER 7:
ANSWER 10:

84.57
0.95

%372.20

Input and Output 10-31

PRINT USING Statement

A plus symbol (+) or minus symbol (-) in a numeric format component
reserves one position in a field. This symbol specifies how the
sign of a nonzero value is to be displayed. No sign is displayed
for the value zero.

A numeric format component whose:

• Leftmost character is the plus symbol specifies that the
sign of a number, plus or minus, is to be displayed to the
left of the number.

• Rightmost character is the plus symbol specifies that the
sign of a number, plus or minus, is to be displayed to the
right of the number.

• Rightmost character is the minus symbol specifies that the
minus sign of a negative number is to be displayed to the
right of the number. The plus sign of a positive number is
not displayed under this format.

If no plus or minus symbol appears in a numeric format component,
the sign of a negative number is printed to the left of the number.
The sign of a positive number is not displayed under this default
format.

Note that the default format does not automatically
in a field for the minus sign of a negative number.
required to print the minus sign can cause overflow
absolute value of that number fits in the specified

10-32 BASIC for NOS/VE Usage

reserve a space
Thus, the space

even if the
field.

Revision B

PRINT USING Statement

NOTE

The plus symbol causes an arithmetic sign to be displayed regardless
of what that sign is. In contrast, the minus symbol causes only
minus signs to be displayed. However, both formats reserve one
position in a field for the sign. The default format causes only
minus signs to be displayed, but does not reserve a sign position in
a field.

. Examples

Revision B

In the third line, format overflow occurs under the
default format because only one position is reserved for
a negative value that needs two positions, one for the
digit and one for the sign.

PRINT USING "11+
PRINT USING "11+
PRINT US ING "11- I

+11 I +11
11-

11- I Iltl"
11- 1111"
II I II"

5,-9,-5,9
-5,9,5,-9

5,-9,5,-9

The output produced by this program fragment appears
below.

;~ I ~~ I 5~ I -:
5 9- 5 I %-9

Input and Output 10-33

PRINT USING Statement

Special Numeric Format Characters

This section discusses four special format characters (A , * $)
that are used in the format string of a PRINT USING statement to
print numbers in special ways.

Remember that punctuation between items in a print list serves only
to delimit consecutive items. However, the punctuation at the end
of the print list controls the subsequent movement of the print
cursor.

Recall the exponential format:

A circumflex (A) placed after the digit position characters in a
numeric format component reserves one position in a field for the
exponent used in exponential format. A minimum of three
circumflexes is required so that the form E+n or E-n, where n is a
single digit, can be displayed.

If the part of the field specified for printing the exponent
reserves:

• Fewer positions than are needed, the field is lengthened to
accommodate the value. In addition, a percent sign (%) is
displayed as the first character in the field to flag the
format overflow.

• MOre positions than are needed, the exponent is
right-justified, and leading zeros are used to fill this
section of the field.

10-34 BASIC for NOS/VE Usage Revision B

Examples

Examples

PRINT USING Statement

Consider the format in which commas are used to group
those digits of a number that lie to the left of the
decimal point.

PRINT USING "1I.r"''''''; 36000
PRINT USING "11.111111"''''''''''+''; 0.00235
PRINT USING "+1111.111111"''''''''''''; -0.00235
PRINT USING ".111111"''''''''''''; 0.00235

The output produced by this' program fragment appears
below.

3.6E+4
2.350E-03+
-23.500E-04
.235E-02

The following is an example of Digit Grouping Format:

2,576,421.93

A comma in a numeric format component reserves a position in a
field, and specifies that a number is to be printed using the digit
grouping format.

A comma can appear anywhere in the component except as the first or
last character. If a comma is the first or last character in a
numeric format component, it is treated as part of a literal
component instead of as a format character.

A comma used in conjunction with an exponential format reserves an
extra field position, but does not affect the display.

Revision B Input and Output 10-35

PRINT USING Statement

Examples The print cursor moves to the next print zone on
completion of the output because the print list ends with
a comma.

PRINT US ING "11,111111,111111.11"; 1234567.89,

The output produced by this statement appears below.

1,234,567.9

A pair of asterisks (*) at the beginning of a numeric format
component reserves two positions in a numeric field, and specifies
that any leading spaces in the field are to be filled with asterisks.

The asterisk format can be used in conjunction with the exponential
format.

Examples In the following example note the format overflow for the
second printed value. The print cursor remains at its
current position on completion of the output because the
print list ends with a semicolon.

PRINT USING "**1111. "; 1.74,-1532.1,123.57;

The output produced by this statement appears below.

*''<*1.7 %-1532.1 *123.6

A pair of dollar signs ($) at the beginning a numeric format
component reserves two positions in a numeric field, and specifies
that a dollar sign is to precede the leftmost digit of a printed
value.

10-36 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

The dollar format cannot be used in conjunction with the exponential
format. Also, only the trailing minus symbol or default sign format
can be used with the dollar format.

A pair of asterisks followed by a dollar sign at the beginning of a
numeric format component combines the asterisk and dollar formats.
This hybrid format reserves three positions in a numeric field. It
specifies that a dollar sign is to precede the leftmost digit of a
printed value and leading spaces are to be filled with asterisks.

Examples

Revision B

The format overflow in the third line occurs because only
four positions are reserved to the left of the decimal
point for a value that has five such digits.

PRINT USING "$$111111.1111- "; 7642.259
PRINT USING "$$ 111111.1111- "; -432.81
PRINT USING "$$111111, .1111"; 54321.0
PRINT USING "**$111111.1111"; 1.25

The output produced by this program fragment appears
below.

$7642.26
$432.81-

%$54,321.00
****$1.25

Input and Output 10-37

PRINT USING Statement

Format Characters as Literals

An underscore () in a format string causes the character that
follows to be treated as part of a literal component. This literal
character is printed exactly as it appears. The underscore is not
printed.

This notation enables you to override the special significance of a
format character. A preceding underscore suppresses the format
function of this character.

To print an underscore, include two consecutive underscores. The
first one removes the significance of the second one, allowing the
second one to be printed.

Any character can follow an underscore. However, this format
character is useful only when it is followed by one of the
characters listed below.

Examples

\ & II + * $

In the PRINT USING statement, the underscore format
character is used so that the second ampersand and the
first number sign are treated as literal characters
rather than as format characters.

DEFINT I,N : DEFSTR A,B,F
DATA 3,HILLIAM,MARY, 5,LEHIS, CLARK, 8, FRANKLIN, ELEANOR, 2
READ N
FOR I = 1 TO N

READ A,B,F
PRINT USING "& & & ON DETAIL -.Jill"; A,B,F

NEXT I

The output from this program fragment appears below.

WILLIAM & MARY ON DETAIL #5
LEHIS & CLARK ON DETAIL #8
FRANKLIN & ELEANOR ON DETAIL #2

10-38 BASIC for NOS/VE Usage Revision B

PRINT USING Statement

Scanning Format Strings

Remember that the format string of a PRINT USING statement is
analyzed as a sequence of format components possibly separated by
literal components.

Format components are found by scanning the format string from left
to right. The beginning of a format component is identified by a
format character. The format component that begins with this
character is defined as the longest character sequence that can be
interpreted as a format component, taking into account the
characters encountered along the way.

This means that the appearance of some characters might prohibit
other characters from consideration later on as members of the same
format component. For example, once a circumflex (A) is
encountered, the subsequent appearance of a number sign (#) cannot
be considered part of the same format component. Instead, the
number sign is interpreted as a member of a different format
component.

Examples

Revision B

The second period cannot be part of the first numeric
format component because only one period is allowed in
such a component. Since the second period is followed
by a number sign, this period must belong to a second
numeric format component.

PRINT USING "#,111111.#, .11"; 5432.1, o. 6

Although a comma is a numeric format character, the
second comma cannot be part of either numeric format
component because a comma cannot begin or end such a
component. Hence, the second comma is interpreted as a
literal character and is printed as is.

Therefore, the format string consists of three
components. The first seven characters define a numeric
format component, the subsequent comma defines a literal
component, and the last two characters define a second
numeric format component.

The output produced by this statement appears below.

5,432.1,.6

Input and Output 10-39

WRITE Statement

WRITlE Statement
Purpose

Format

Remarks

Writes values at the terminal in a form that resembles a
list of BASIC constants, complete with separating commas.

WRITE writelist

writelist Optional list of expressions that are
separated by either commas or semicolons.

• Commas and semicolons are interchangeable when used
to separate items in the write list.

• If the write list is omitted, a carriage return is
issued. Otherwise, the expressions in the write
list are evaluated, and their values are printed in
sequence in the form described below.

• When the WRITE statement writes data:

Commas are written between values making the
output look like a delimited list.

Quotation marks are provided to delimit string
constants.

Each quotation mark embedded in a string is
written as a pair of successive quotation marks.

No spaces are provided between printed values.
For example, the trailing space that a PRINT
statement automatically provides after the
printing of a numeric value is not provided by
the WRITE statement.

A carriage return is always issued after the
output is produced.

• If the length of a value to be printed:

Exceeds the space available on the current line,
but is less than the page width, then the value
is printed at the beginning of the next line.

Exceeds the page width, as much of it as will
fit on the current line is printed, and the
value is continued on as many subsequent lines
as are needed.

10-40 BASIC for NOS/VE Usage Revision B

Examples

Revision B

WRITE Statement

The following program fragment shows an example using
the WRITE statement.

READ A%,B%,C$,D$
DATA 472,-561,MR. "T" ,"KIDS"
WRITE A%,B%,C$,D$

The output from this program fragment appears below.

472,-561,"MR. ""T""" ,"KIDS"

The result is a delimited list of BASIC constants.

Input and Output 10-41

BEEP Statement

BIEIEP §tiltemeGt

Purpose

Format

Remarks

Sends BEL, the ASCII bell character, to the terminal.

BEEP

The BEEP is equivalent to the following statement.

PRINT CHR$ (7) ;

Some terminals ignore the BEL character.

10-42 BASIC for NOS/VE Usage Revision B

o

o

o

o

o

]].11

Array Overview •• 11-2

Array Element References •••••••••••••••••••••••••••••••••••••• 11-4

Dimension Bound Specification ••••••••••••••••••••••••••••••••• 11-6

OPTION BASE Statement ••••••••••••••••••••••••••••••••••••• 11-7
Default Specification ••••••••••••••••••••••••••••••••••••• 11-8
DIM Statement ••••••••••••••••••••••••• " •••••••••••••••••••• 11-9
Array Library FUnctions ••••••••••••••••••••••••••••••••••• 11-11

Array Input/Output •• 11-13

ERASE Stat~ment ••• 11-16

lil

An array is a data structure which allows logically related values
with the same data type to be stored under a single name.

This chapter discusses NOS/VE BASIC arrays. It includes
descriptions of related library functions and examples of array
input and output.

Revision B Arrays 11-1

Array Overview

ArrrruY Overrvnew

An array is a collection of memory locations that are identified by
a single name. This name is called the array name.

The memory locations in the array act as storage boxes for a group
of related values with the same data type. Each memory location can
store a single value from the group of related values.

A particular memory location in an array is referenced using the
array name and a sequence of numbers called subscripts. The
subscripts identify the memory location by its position within the
array. This named memory location is called an array element or a
subscripted variable.

An array element is similar to a scalar variable, but uses a more
complex reference format. An external routine can contain an array
with the same name as a scalar variable because they have different
reference formats.

The data type associated with an array name establishes the data
type of every element of the array. Limits on the values of array
elements are the same as those on scalar variables of like data
types.

Each array has one or more dimensions.

The dimensioning of arrays in a program can be either static or
dynamic, determined at compile time by the BASIC command. Under
static dimensioning, the size and shape of an array are fixed at
compile time. This can provide more efficient programs for
applications that do not require the flexibility of dynamic
dimensioning. Arrays dynamically dimensioned at compile time can
have their dimensions changed during program execution.

11-2 BASIC for NOS/VE Usage Revision C

Array Overview

A dimension is a set of consecutive integers used to index the
memory locations within an array. A dimension is defined by
specifying its lower and upper bounds. Each integer in a dimension
is called a subscript and can be negative.

The size of a dimension is computed from the lower and upper bounds
by the formula:

Size = Upper Bound - Lower Bound + 1.

The size and bounds of a static array dimension are fixed at
compile-time.

The size and bounds of a dynamic array dimension can change during
program execution.

The number of dimensions of an array determines the number of
subscripts that are necessary to identify an array element.

If n dimensions are used, the array is called an n-dimensional
array. In particular:

• A one-dimensional array is also called a list or vector.

• A two-dimensional array is also called a table or matrix.

The number of dimensions of an array is fixed at compile-time and is
limited only by the NOSjVE BASIC maximum line length.

The value of an array element is accessed by specifying the array
name followed by a list of subscripts, one from each dimension. The
dimension corresponding to the nth listed subscript is called the
nth dimension.

Arrays 11-3

Array Element References

Array Element lIlefi'erencen

Purpose

Format

Remarks

References an element of an N-dimensional array.

arrname(sub1 , sub2 , ••• , subN)

arrname

subJ

Name of the array containing the element.

Numeric expression whose value specifies the
Jth subscript, where (1 <= J <= N).

The value of SUBJ is rounded to the nearest integer k.
This specifies that the element being referenced has a
subscript of k in the Jth dimension. If k is less than
the lower bound or greater than the upper bound for the
dimension, a runtime error results.

11-4 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Array Element References

In the following list, the value of each element of
a one-dimensional array named DAY appears beneath
the reference that accesses the value. Array DAY
has only one dimension. This dimension has a lower
bound of -1 and an upper bound of 3. This means the
array has a size of 5.

DAY(-l)
15.4

DAY(O)
-3.1

DAY (1)
2.6

DAY(2)
18.9

DAY (3)
-34.2

The array element DAY(2) has the value 18.9. The
subscripted variable DAY(O) has the value -3.1.

You might refer to the value 2.6 as the value of the
third array element, and yet this element has a
subscript of 1. This illustrates a conceptual
difficulty that arises when a dimension does not
have a lower bound of one.

• Consider a two-dimensional array named GAME% whose
values appear in the following matrix.

column
2 3 4

Row 1 0 -2 4 6
2 -1 3 -5 7
3 6 -4 2 0
4 -7 5 -3 1

Assume that the first dimension identifies a row and
the second dimension identifies a column. Both
dimensions have a lower bound of one and an upper
bound of four.

Array Element

GAME%(2,3)
GAME% (3, 2)
GAME%(l,l)
GAME % (3,4)

Value

-5
-4
o
o

Arrays 11-5

Dimension Bound Specification

Dimen9ion Bound Specification
This section discusses the ways in which dimension bounds for arrays
are established and changed. It also describes the library
functions which pertain to arrays.

11-6 BASIC for NOS/VE Usage Revision B

Dimension Bound Specification

OPTION BASE Statement
Purpose

Format

Remarks

Revision B

Sets the default lower bound (or base) for all arrays in
an external routine to either 0 or 1. These two choices
are provided because they are the ones that are most
frequently used in applications.

OPTION BASE choice

choice Option base, specifying the default lower bound
for all arrays in an external routine. Possible
values: 0 or 1.

• The OPTION BASE statement in an external routine:

Defines the default lower bound for every
implicitly dimensioned array in the routine.

Defines the default lower bound to be used for
every dimension statement in the routine.

Must precede all the dimension statements in the
routine.

• An external routine can have at most one OPTION BASE
statement. If omitted, the option base is set to O.

Arrays 11-7

Dimension Bound Specification

Default Specification

Default array bound specification is provided so that arrays of
limited size can be dimensioned implicitly.

By default:

• The lower bound of each dimension of an array is the option
base (0 or 1).

• The upper bound of the first and second dimensions is 10.
The upper bound of all other dimensions is the option base.

Hence, if b is the option base, an n-dimensional array is dimensioned

(b:10 , b:lO , b:b , ••• , b:b)

by default. Each n-dimensional array has (11-b)AMIN(n,2) elements.

Arrays that are shared through the COMMON statement have default
dimension bounds as described previously. For example, if the array
is only dimensioned in the calling routine, then the dimensions are
the same for the array in the called routine. However, if the array
is dimensioned differently in the calling and the called routine,
then its actual size can differ.

Examples If this statement is the first statement of a program,
it declares by default that A is a one-dimensional real
array whose 11 elements are subscripted 0 through 10.
The array element A(S) takes the value 8.0. The
remaining elements take the value 0.0.

LET A(S) = 8.0

11-8 BASIC for NOS/VE Usage Revision B

Dimension Bound Specification

DIM Statement

Purpose

Format

Remarks

Revision C

Explicitly establishes or changes the dimensions of each
array listed. This is done by specifying lower and
upper bounds for each dimension of each array.

DIM adlist

adlist List of array declarations that are separated by
commas.

• Note that the number of dimensions of an array is
specified at compile-time by the first array
reference and cannot be changed at runtime.

• At runtime in a statically dimensioned routine, a
DIM statement in the runtime execution path is
passed over with no effect.

• An array declaration for an N-dimensional array has
the format:

arrname(lower! :upper1 , lower2:upper2 , ••• ,
lowerN:upperN)

arrname

lowerJ

upperJ

Identifier, naming the array. The data
type associated with this identifier
establishes the data type of all
elements in the array.

Optional numeric expression whose value,
when rounded to the nearest integer,
specifies the lower bound of the Jth
dimension, where (1 <= J <= N). If
omitted, the subsequent colon is also
omitted.

Numeric expression whose value, when
rounded to the nearest integer,
specifies the upper bound of the Jth
dimension, where (1 <= J <= N).

Arrays 11-9

Dimension Bound Specification

Remarks
(cont) • The DIM statement sets the dimension bounds for

listed arrays. If an array was previously
dimensioned, the DIM statement in a dynamically
dimensioned routine redimensions the array using new
dimension bounds. If the size of a dimension is
decreased, or the subscript range of a dimension is
shifted, only those array elements whose subscripts
are preserved in the new indexing set remain
accessible. New elements that were not previously
defined are set to zero or the null string, as
dictated by data type.

• In a statically dimensioned routine, the DIM
statement is a compile-time declaration rather than
an executable statement; a static array can be
declared only once in an external routine.

• If the lower bound for a dimension is not specified:

The lower bound is the option base (0 or 1) in
effect for the external routine containing the
DIM statement.

The single expression appearing for that
dimension in the array declaration specifies the
upper bound.

• The magnitude of a dimension bound (lower or upper)
cannot exceed (2 A 31 - 1).

• If a dynamically dimensioned formal array is
redimensioned by a called routine, the dimension
bounds of the corresponding actual array are
simultaneously changed in the calling routine. If a
dynamically dimensioned called routine attempts to
redimension a statically dimensioned formal array, a
runtime error results.

• Any array not explicitly dimensioned in a DIM
statement is implicitly dimensioned using the
default array bounds. That is, the lower bound of
each dimension is the option base. The upper bound
is either 10 or the option base, depending on the
number of the dimension.

• The maximum number of elements for an array depends
on the maximum contiguous storage allowed for your
installation and account. See your site
administrator for specific information.

11-10 BASIC for NOS/VE Usage Revision C

Dimension Bound Specification

Array Library Functions

Purpose

Format

Remarks

Revision B

Returns the lower and upper bounds, respectively, of a
specified dimension of an array.

LBOUND(arrname , dimnum)
UBOUND(arrname , dimnum)

arrname

dimnum

Name of the array being analyzed.

Optional numeric expression, specifying the
dimension whose lower or upper bound,
respectively, is to be returned. If
omitted, the preceding comma is also
omitted, and the value 1 is assumed.

The value of DIMNUM is rounded to the nearest integer.
If this integer is less than one or greater than the
number of dimensions of ARRNAME, a runtime error results.

Arrays ll-ll

Dimension Bound Specification

Examples • These statements declare a one-dimensional integer
array named MONTH%. The single dimension has a size
of 12, with a default lower bound of 1, and an upper
bound of 12.

OPTION BASE 1
DIM MONTH%(12)

(The following examples assume dynamically dimensioned
arrays.)

• These statements declare a two-dimensional real
array named MARK. The first dimension has a size of
8, with a default lower bound of 0, and an upper
bound of 7. The second dimension has a size of 6,
with a lower bound of 4 and an upper bound of 9.
The LBOUND function reference in the third line
returns the lower bound of the second dimension of
MARK. Hence, N% receives the value 4.

OPTION BASE 0
DIM MARK (7 , 4:9)
LET N% = LBOUND(MARK,2)

• The line labeled 10 declares a one-dimensional
string array named A$. The single dimension has a
size of 7, with a lower bound of 0, the default
option base, and an upper bound of 6. The line
labeled 80 shrinks the size to S, and shifts the
subscript range. This yields new lower and upper
bounds of 4 and 8, respectively.

10 DIM A$(6)

80 DIM A$(4:8)
90 LET M% = UBOUND(A$)

As a result, the values of A$(O), A$(I), A$(2), and
A$(3) are lost; the values of A$(4), A$(S), and
A$(6) are preserved. The new elements A$(7) and
A$(8) are set to the null string. The UBOUND
function reference in the line labeled 90 returns
the upper bound of the first dimension of A$.
Hence, M% receives the value 8.

11-12 BASIC for NOS/VE Usage Revision C

Array Input/Output

Au-ray input/Output
The values of array elements can be assigned and printed using
FOR-NEXT loops.

Examples

Revision B

• This program fragment stores the NxN multiplication
table in the array A. The size of the table is
specified using the INPUT statement (line labeled
10). The DIM statement (line labeled 20)
establishes the required dimension bounds.

OPTION BASE
DEFINT A,I,J,N

10 INPUT N
20 DIM A(N,N)

FOR I = 1 TO N
FOR J = 1 TO N

LET A(I,J) I*J
NEXT J

NEXT I

Arrays 11-13

Array Input/Output

Examples
(cont)

• This program fragment stores a sequence of integral
powers of 2 in array B. These values are then
printed as a list of numbers that are separated by
commas. The lower and upper bounds on the exponent
are specified with the INPUT statement (line labeled
30) •

DEFINT I,M,N
30 INPUT M,N

DIM B(M:N)
FOR I = M TO N

LET B(l) 2AI
PRINT B(l);",";

NEXT I

If M and N are assigned the values -2 and 6,
respectively, the following output is generated •

• 25 , .5 , 1 , 2 , 4 , 8 , 16 , 32 , 64 ,

• This program fragment illustrates the use of zone
printing for a two-dimensional string array.
Effective table display using zone printing requires
a limited number of columns (5 or less for a
79-character line). If zone printing is used with
two-dimensional numeric arrays, columns will not be
neatly aligned unless all elements have the same
number of digits.

OPTION BASE 1
DEFINT I,J ,M, N
READ M,N
DIM S$(M,N) , Small N required for zone printing.
FOR I = 1 TO M

FOR J = 1 TO N
READ S$ (I,J)
PRINT S$(I,J), ' Zone printing for columns.

NEXT J
PRINT' Carriage return when row completed.

NEXT I

11-14 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision C

Array Input/Output

This program fragment uses the PRINT USING statement to
produce a table of quarterly profits. The first
dimension of QTR.PROFIT represents the year. The second
dimension represents the quarter of the year. The
figures for each year are printed on a separate line
using zone printing. The print field for each quarterly
figure allows for profits or losses of up to
$99,999.99. Commas are used to group digits, and the
sign trails each figure. A blank line separates the
output for consecutive years.

FOR I = 1 TO M
FOR J = 1 TO 4 ' One column for each quarter of year.

PRINT USING "$$II,lIlItI.lllI+ "; QTR.PROFIT(I,J);
NEXT J
PRINT' Carriage return when year (row) completed.
PRINT' Blank line between years (rows).

NEXT I

Arrays 11-15

ERASE Statement

IEllA§1E §tl:iltl:ement

Purpose

Format

Remarks

Frees storage occupied by dynamically dimensioned arrays.

ERASE anlist

anlist List of array names that are separated by
commas. This list specifies the arrays that are
to be erased.

• When an ERASE statement is executed, both the lower
and upper bounds of each dimension of a listed array
are set to the option base (0 or 1). The value of
the single remaining element is set to either zero
or the null string, as dictated by data type.

• If a listed array is:

Shared with other external routines through the
COMMON statement, the array is erased in every
external routine.

A formal array, the corresponding actual array
is also erased in the calling routine.

• The second item above points out a major difference
between the ERASE and CLEAR statements. For more
information about the CLEAR statement, see chapter 4.

• A compile-time-error results if an ERASE statement
is used in a routine compiled with statically
dimensioned arrays.

11-16 BASIC for NOS/VE Usage Revision C

o

o

o

o

o

(~ §1l:r.riinn~ IFrr<IPceQQiinng
1, ,._.,

11.2

String Expression Review •••••••••••••••••••••••••••••••••••••• 12-1

Colon-Substring Notation •••••••••••••••••••••••••••••••••••••• 12-2

MID$ Statement •• 12-5

Substring Manipulation Functions •••••••••••••••••••••••••••••• 12-8

LEN Function •• 12-8
INSTR Function •• 12-9
LEFT$ Function •• 12-12
MID$ Function ••• 12-13
RIGHT$ Function ••• 12-15
Notational Comparisons •••••••••••••••••••••••••••••••••••• 12-16

Conversion Functions •• 12-17

Ase Function •• 12-17
VAL Function •• 12-18
CHR$ Function
HEX$ Func tion
OCT$ Function
STR$ Func tion

12-19
12-20
12-21
12-22

C:~ Miscellaneous' String Functions •••••••••••••••••••••••••••••••• 12-23

LCASE$ Function
UCASE$ Function
SPACES Function
STRING$ Function
PARA.MS$ Func tlon ••

12-23
12-24
12-25
12-26
12-27

112

This chapter describes the NOS/VE BASIC statements, operations, and
library functions used in string processing. The string library
functions have been categorized according to usage.

Many of the items discussed in this chapter refer to character
positions within a string. The leftmost character position is
labeled position one.

§trring 1E}'~preS8ion lIleview

A string expression is one or more quoted string constants, string
variables, and string function references that are separated by plus
signs. Subexpressions occurring within a string expression can be
enclosed by parentheses.

In this context, the plus sign is called the concatenation
operator. Concatenation, the only string operation, joins two
string operands. The length of the string produced is the sum of
the lengths of the operands.

Examples

Revision B

The following string expression (A$ + B$) is read "A is
concatenated with B".

If A$ = "LOOK" and B$ = "OUT", then:

(A$ + B$) Has the value "LOOKOUT".

(B$ + A$) Has the value "OUTLOOK".

String Processing 12-1

Colon-Substring Notation

CoIon-Sub5tring Notation
Purpose

Format

Allows you to address a substring by its location within
a host string variable. A colon-substring reference can
be used both to assign values to substrings and to
access values for other processing.

svar(pos1 pos2)

svar String identifier denoting the host variable
that contains the substring being
referenced. SVAR cannot be a substring
expressed by colon substring notation or a
MID$ reference.

pos1, pos2 Numeric expressions whose values specify the
positions within the host string of the
first and last characters, respectively, of
the substring being referenced.

12-2 BASIC for NOS/VE Usage Revision B

Remarks

Revision B

•

Colon-Substring Notation

To help explain the evaluation rules, suppose S$ is
a string variable of length n. The reference
S$(POSl:POS2) denotes the substring of S$ made up of
the characters in positions POSl through POS2, where
POSl and POS2 are defined as follows:

If the values of either POSl or POS2 are:

Less than one, they are increased to one.

Greater than n, they are decreased to n.

Nonintegers, they are rounded to the nearest
integers.

Hence,

POSl
and
POS2

CINT(MIN(MAX(1,POS1)

CINT(MAX(MIN(POS2,n)

n)),

1)).

In addition, if POSl is greater than POS2 , then the
substring referenced is a null substring that
precedes the j th character of S$ and follows the
(j-l)st character (if the latter exists).

• A substring referenced by colon-substring notation
is dynamic. This means that the substring and its
host can change length as a result of an assignment.

During an assignment, a substring of length n can be
filled with:

More than n characters. The substring expands
accordingly, increasing its length and the
length of its host.

Less than n characters. The substring contracts
accordingly, decreasing its length and the
length of its host.

Exactly n characters. No length adjustment is
needed, and none occurs.

String Processing 12-3

Colon-Substring Notation

Examples • Prints the value "TEST".

PRINT S$(3:6)

If S$ = "A/TEST CASE", then:

• Passes control to the line labeled 10 because the
second character of S$ is a slant.

IF S$(2:2) = "/" THEN 10

• Inserts the value "STRANGE*" between the second and
third characters of S$, giving S$ the value
"A/ STRANGE*TEST CASE".

LET S$(3:1) = "STRANGE*"

• Replaces the substring value "CASE" with the value
"EXAMPLE", giving S$ the value "A/TEST EXAMPLE".

LET S$(8:11) = "EXAMPLE"

12-4 BASIC for NOS/VE Usage Revision B

MID$ Statement

I'-4ID$ Statement
Purpose

Format

Remarks

Revision B

Replaces characters in a substring of a host string
variable with some characters from another string.

MID$(svar , pos , length) = string

svar String identifier denoting the host variable
that contains the substring being referenced.
SVAR cannot be a substring expressed by colon
substring notation or a MID$ reference.

pos Numeric expression whose value specifies the
first position in the host string to receive a
replacement character.

length Optional numeric expression whose value
specifies the substring length.

string String expression whose value contains the
characters used in the replacement.

• The values of POS and LENGTH are rounded to the
nearest integers. Denote these integers by j and k,
respec tively.

• The k-character substring of SVAR beginning with
position j is replaced by the first k characters of
the value of STRING. That is, positions j through
(j + k - 1) of SVAR are replaced by the first k
characters of the value of STRING.

• If j is less than one or k is less than zero, a
runtime error results.

• If j is greater than the length of the host string,
or k is equal to zero, then the value of the host
string is not altered.

String Processing 12-5

MID$ Statement

Examples • Replaces the substring value "B/ CD" with the value
"X*YZ" giving S$ the value "AX*YZ EF".

If S$ = "AB/ CD EF" and T$ = "X*YZ" then:
MID$(S$,2,4) = T$

• Replaces the substring value "D " with the value
"X*" giving S$ the value "AB/CX*EF".

If S$ = "AB/ CD EF" and T$ = "X*YZ" then:
MID$(S$,5,2) = T$

The substring referenced in a MID$ statement is
static. This means that the substring and its host
never change length as a result of the execution of
a MID$ statement.

As a result, there are some cases that do not fit
the general description just provided. These
involve instances where the relative lengths of the
strings involved do not mesh.

Suppose the length of the receiving substring
exceeds the length of the string of replacement
characters. The string of replacement characters
replaces the left portion of the substring, leaving
the rest of the substring unaltered.

• The MID$ reference attempts to replace the substring
value "CD" with the value "*". The asterisk
replaces the letter C, leaving the letter D as is.
S$ now has the value "AB*D".

LET S$ = "ABCD"
LET MID$(S$, 3, 2) "*"

12-6 BASIC for NOS/VE Usage Revision B

Examples
(cont)

Revision B

•

MID$ Statement

The first three characters of the substring value
"REM" are replaced by the value "OUR". As a result,
T$ has the value "POURED".

LET T$ = "PREMED"
LET MID$(T$,2,4) "OUR"

If the specified substring extends beyond the end of
the host string, a runtime error does not result.
Instead, the MID$ statement performs the requested
replacement until the end of the host string,
ignoring references to nonexistent positions.

• Replaces the substring value "CD" with the first two
charac ters of the value" /YZ" • S$ now has the value
"AB/Y" •

•

If S$ = "ABCD" , then:
LET MID$(S$,3,6) = "/YZ"

Treats the substring length as if it were two
instead of six. The first character of the
substring value "CD" is replaced by the value
As a result, S$ has the value "AB D".

If S$ = "ABCD" , then:
LET MID$(S$,3,6)

" "

• Both colon-substring notation and the MID$ statement
can be used to make the same assignment.

Suppose the variables S$ and T$ have lengths m and
n, respectively. Let j and k be integers, with (1
<= j <= m). Let x denote the minimum of (k, m - j +
1, n).

The following two statements are equivalent.

LET MID$(S$,j ,k) = T$

LET S$(j:j + x-I) = T$(l:x)

A MID$ reference appearing in an expression denotes
a string library function call. This function is
described later in this chapter.

String Processing 12-7

Substring Manipulation Functions

SubDtring Manipulation]FunctionD
The substring manipulation functions provide a way to reference
substrings that have specified characteristics.

LEN Function

Purpose

Format

Remarks

Examples

Returns the length of the value of a string argument.

LEN(string)

string String expression. The length of the value of
this expression is returned.

The value returned is a nonnegative integer.

• The following are examples of the LEN function •

LEN(ICASElll") Returns the value 6.

LEN(1111) Returns the value O.

LEN("HOME RUN") Returns the value 8.

LEN(""'1") Returns the value 1.

12-8 BASIC for NOS/VE Usage Revision B

Substring Manipulation Functions

INSTR Function

Purpose

Format

Revision B

Returns the position within a host string at which the
first occurrence of a specified substring is found.

INSTR(pos , string , substring)

pos

string

substring

Optional numeric expression whose value
specifies the position within the host
string at which the search begins.

String expression whose value is the host
string being searched.

String expression whose value is the
substring to be located.

String Processing 12-9

Substring Manipulation Functions

Remarks • The value returned is always an integer.

• If POS is omitted, the search for the value of
SUBSTRING begins by default at the first position of
the value of STRING. Otherwise; the value of POS is
rounded to the nearest integer j, and the search
begins with position j.

• Only an occurrence of the substring that begins at
or after position j is located. The function
returns the position of the first character of this
occurrence. Occurrences that follow the one
located, or begin before position j, are not found.

• If j is less than one or greater than the maximum
string length, a runtime error results.

• If the host string is the null string, j exceeds the
length of the host string, or the substring is not
found, then a value of zero is returned.

• If the substring to be located is the null string,
then the value j is returned. That is, the null
string is found at the first position searched.

NOTE

Repeated occurrences of a specified substring can be
located by modifying the value of the search position
argument after each success and continuing the search.

12-10 BAS Ie for NOS/VE Usage Revision B

Examples

Revision B

•

Substring Manipulation Functions

Since the first argument is omitted, the search
begins with the first position of "BANANA". The
first occurrence of "ANA" begins at position two, so
the function returns the value 2. The second
occurrence of "ANA" is not located.

INSTR("BANANA" ," ANA")

• Returns the value 0 because the substring "ZIPCODE"
is not contained within the value of S$.

If S$ = "NAME/ ADDRESS/CITY/STATE/ZIP", then:
INSTR (S $, "ZIPCODE")

Returns the value 10, which is the position of the
first "E" that occurs at or after position five.

If S$ = "NAME/ ADDRESS/CITY/STATE/ZIP", then:
INSTR(5,S$,IE")

Addresses the substring "NAME/" using
colon-substring notation. The INSTR function
reference locates the position of the first slant.
This example is equivalent to the colon-substring
reference S$(1:5).

If S$ = "NAME/ADDRESS/CITY/STATE/ZIP", then:
S$(1: INSTR(S$,"/"))

String Processing 12-11

Substring Manipulation Functions

LEFT$ Function

Purpose

Format

Remarks

Examples

Returns a left portion of the value of a host string.

LEFT$(string , length)

string String expression whose value is the host string.

length Numeric expression whose value specifies the
length of the leading substring to be returned.

• The value of LENGTH is rounded to the nearest
integer j. The value returned is a string
containing the first j characters of the host string.

• IF j is negative, a runtime error resu1 ts • If j is
zero, the null string is returned. If j exceeds the
length of the host string, then the entire host
string is returned.

• References the first four characters of the value of
S$. The value "NEWS" is returned.

If S$ = "NEWS I WEATIlER-SPORTS. " , then:
LEFT$ (S $,4)

• Addresses the left portion of the value of S$,
ending with the first occurrence of a hyphen. The
value "NEWSIWEATIlER-" is returned.

If S$ = "NEHSIWEATHER-SPORTS.", then:
LEFT$(S$, INSTR(S$, "-"))

• References the left half of the value of S$. The
value "NEWSIWEATIl" is returned.

If S$ = "NEWS I WEATHER-SPORTS.", then:
LEFT$(S$, LEN(S$)\2)

12-12 BASIC for NOS/VE Usage Revision B

Substring Manipulation Functions

MID$ Function

Purpose

Format

Remarks

Revision B

Returns a specified portion of a host string.

MID$(string , pos , length)

string String expression whose value is the host string.

pos Numeric expression whose value specifies the
position within the host string of the first
character of the string to be returned.

length Optional numeric expression whose value is the
length of the string to be returned.

• The values of POS and LENGTH are rounded to the
nearest integers. Denote these integers by j and k,
respectively. The k-character substring that begins
in position j of the host string is returned.

• If j is less than one or k is less than zero, a
runtime error results. If j is greater than the
length of the host string, or k is equal to zero,
then the null string is returned.

• If the length argument is omitted, or if the
substring referenced extends beyond the end of the
host string, then the substring running from
position j through the end of the host string is
returned.

• If a MID$ reference appears to the left of the equal
sign of an assignment statement, then it represents
the MID$ statement.

String Processing 12-13

Substring Manipulation Functions

Examples • References the 8-character substring of S$ beginning
in position five. The function returns the value
"US AT WO".

If S$ = "GENIUS AT WORK", then:
MID$(S$,5,8)

• References the 6-character substring of S$ that
begins in position one. The function returns the
value "GENIUS".

If S$ = "GENIUS AT WORK", then:
MID$(S$,1,6)

• Attaches the right portion of S$ beginning with
position five to the string "HE SAW". The value
"HE SAW US AT WORK" is assigned to the variable V$.

If S$ = "GENIUS AT WORK", then:
LET V$ = "HE SAW" + MID$(S$,5)

12-14 BASIC for NOS/VE Usage Revision B

Substring Manipulation Functions

RIGHT$ Function

Purpose

Format

Remarks

Examples

Revision B

Returns a substring that is a specified right portion of
a host string.

RIGHT$(string , length)

string String expression whose value is the host string.

length Numeric expression whose value specifies the
length of the trailing substring to be returned.

• The value of LENGTH is rounded to the nearest
integer k. The value returned is the string
containing the last k characters of the host string.

• IF k is negative, a runtime error results. If k is
zero, the null string is returned. If k exceeds the
length of the host string, then the entire host
string is returned.

• References the last seven characters of S$. The
value "SPORTS." is returned.

If S$ = "NEWS-HEATHER! SPORTS." , then:
RIGHT$ (S $,7)

• References the right portion of S$ with the same
number of characters as the position number of the
first occurrence of a hyphen (position five). The
value returned is "ORTS." not "-WEATHER!SPORTS.".

If S$ = "NEWS-HEATHER! SPORTS.", then:
RIGHT$ (S$, INSTR(S$, "_"))

• References the right half of S$. The value
"ER!SPORTS." is returned.

If S$ = II NEW S-WEATHER ! SPORTS.", then:
RIGHT$(S$, LEN(S$)/2)

String Processing 12-15

Notational Comparisons

Notational Comparisons

Suppose the variable S$ has length n. Let j denote an integer, with
(1 <= j <= n). Let k denote the length of a substring of S$, with
(j + k - 1 <= n).

The LEFT$, MID$, and RIGHT$ functions can be expressed in
colon-substring notation by the following formulas:

LEFT$(S$,j)

MID$(S$,j ,k)

RIGHT$(S$, k)

S$(1:j)

S$(j:j + k - 1)

S$(n - k + l:n)

In addition, the LEFT$ and RIGHT$ functions can be expressed in
terms of the MID$ function by the following formulas:

LEFT$(S$,j) = MID$(S$,I,j)

RIGHT$(S$,k) = MID$(S$,n - k + 1)

12-16 BASIC for NOS/VE Usage Revision B

Conversion Functions

COliuveironon lFu.n.nctioDa

The conversion functions change the representation of data. The
first two functions listed accept string arguments and return
related numeric values. The rest accept numeric arguments and
return related string values.

ASC Function

Purpose

Format

Remarks

Examples

Revision B

Returns the numeric ASCII code of the first character of
the value of a string argument. This function
complements the CRR$ function.

ASC(string)

string String expression. The first character of the
value of this expression is converted to its
corresponding ASCII code.

The value returned is an integer in the range a through
255. If the value of STRING is the null string, a
runtime error results.

Returns the value 83, which is the ASCII code for the
uppercase S.

ASC("SAMPLE")

String Processing 12-17

Conversion Functions

VAL Function

Purpose

Format

Remarks

Examples

Returns the value of the leading numeric characters in
the value of a string argument. This function
complements the STR$ function.

VAL (string)

string String expression whose value contains the
leading numeric substring to be converted to a
numeric constant.

The value returned is a numeric representation of the
leading numeric characters of the value x of STRING.
Any leading spaces are ignored. If x does not contain a
leading substring that can be interpreted as a numeric
constant, or if x is the null string, then the integer 0
is returned.

• The following are examples of the VAL function.

VAL(" 32RTZ") Returns the value 32.

VAL("-47.5, 4.2") Returns the value -47.5.

12-18 BASIC for NOS/VE Usage Revision B

Conversion Functions

CHR$ Function

Purpose

Format

Remarks

Examples

Revision B

Returns the literal character whose ASCII code is the
value of a numeric argument. This function complements
the ASC function.

CHR$(code)

code Numeric expression whose value specifies the
ASCII code to be converted to a literal
character.

The value of CODE is rounded to the nearest integer j.
The value returned is a string containing the single
character with ASCII code j. If j is not in the range 0
through 255, a runtime error results.

This statement prints an asterisk, which has an ASCII
code of 42.

PRINT CHR.$(42.2)

String Processing 12-19

Conversion Functions

HEX$ Function
Purpose

Format

Remarks

Examples

Returns a character string containing a hexadecimal
representation of the value of a numeric argument.

HEX$(number)

number Numeric expression whose value is to be
represented in printable hexadecimal form.

The value of NUMBER is rounded to the nearest integer
j. The value returned is a string representation of the
hexadecimal value of j.

• The following are examples of the HEX function.

HEX$(63) Returns the character string "3F".

HEX$(-l) Returns the character string
"FFFFFFFFFFFFFFFF".

12-20 BASIC for NOS/VE Usage Revision B

Conversion Functions

OCT$ Function

Purpose

Format

Remarks

Examples

Revision B

Returns a character string containing an octal
representation of the value of a numeric argument.

OCT$(number)

number NUmeric expression whose value is to be
represented in printable octal form.

The value of NUMBER is rounded to the nearest integer
j. The value returned is a string representation of the
octal value of j.

• The following are examples of the OCT$ function.

OCT$(47) Returns the character string "57".

OCT$(-1) Returns the character string
"1777777777777777777777" •

String Processing 12-21

Conversion Functions

STR$ Function
Purpose

Format

Remarks

Examples

Returns a string representation of the value of a
numeric argument. This function complements the VAL
function.

STR$ (number)

number NUmeric expression whose value is to be
converted to a string constant.

The string returned has the same representation as would
result from specifying NUMBER in a PRINT statement.

• This statement assigns the string constant "-44.7"
to the variable A$.

LET A$ = STR$(-44.7)

• This print statement returns the value * 47.3 *.

PRINT "*"; 47.3; "*"

12-22 BASIC for NOS/VE Usage Revision B

Miscellaneous String Functions

Mi9ceHClneoun §tll'ing lFUIIU:.tn9t]S

This section describes the remaining string library functions.

LCASE$ Function

Purpose

Format

Remarks

Examples

Revision B

Converts the uppercase letters in the value of a string
argument to their lowercase counterparts. This function
complements the UCASE$ function.

LCASE$(string)

string String expression. The letters in the value of
this expression undergo letter case conversion.

The function returns the value of STRING with each
uppercase letter replaced by its lowercase counterpart.
The length of the returned value equals the length of
the value of STRING.

This reference returns the value "act i of the new play".

LCASE$ (" Act I of the New Play")

String Processing 12-23

Miscellaneous String Functions

UCASE$ Function

Purpose

Format

Remarks

Examples

Converts the lowercase letters of a string argument to
their uppercase counterparts. This function complements
the LCASE$ function.

UCASE$(string)

string String expression. The letters in the value of
this expression undergo letter case conversion.

The function returns the value of STRING with each
lowercase letter replaced by its uppercase counterpart.
The length of the returned value equals the length of
the value of STRING.

This reference returns the value "THE BASIC LANGUAGE".

UCASE$("The BASIC Language")

12-24 BASIC for NOS/VE Usage Revision B

Miscellaneous String Functions

SPACE$ Function

Purpose

Format

Remarks

Examples

Revision B

Returns a string of spaces.

SPACE$(length)

length NUmeric expression whose value specifies the
length of the string of spaces to be produced.

The value of LENGTH is rounded to the nearest integer
j. The value returned is a string consisting of j
spaces. If j is negative or greater than 65,535 (the
maximum string length), a runtime error results.

This statement assigns the value "NAME ADDRESS" to
S$. The function reference provides the three spaces.

LET S$ = "NAME" + SPACE$(3) + "ADDRESS"

String Processing 12-25

Miscellaneous String Functions

STRING$ Function

Purpose

Format

Remarks

Examples

Returns a uniform string of characters.

STRING$(length , code)

STRING$(length , string)

length Numeric expression whose value is the length of
the uniform string to be produced.

code Numeric expression whose value specifies the
ASCII code of the character to be used in the
uniform string.

string String expression the first character of whose
value is used in the uniform string.

• In the first format, the values of LENGTH and CODE
are rounded to the nearest integers. Denote these
integers by j and k, respectively. The value
returned is a uniform string containing j
repetitions of the character with ASCII code k.

• In the second format, the value of LENGTH is rounded
to the nearest integer j. The value returned is a
uniform string containing j repetitions of the first
character of the STRING.

• If the integer j, denoting the string length, is
negative or greater than the maximum string length,
a runtime error results.

• If the integer k, denoting the ASCII code, is not in
the range 0 through 255, a runtime error results.

• A runtime error results if string is the null string.

• Returns the string value"! ! ! ! !" since the
exclamation point has an ASCII code of 33.

STRING$(5,33)

• Returns the string "11111111".

STRING$ (4, "111 ")

12-26 BASIC for NOS/VE Usage Revision B

Miscellaneous String Functions

PARAMS$ Function

Purpose

Format

Remarks

Examples

Revision B

returns the parameter string that was specified in the
SCL command used to execute the program. If no
parameter string was specified, the null string is
returned.

PAR AM S $

PARAMS$ has no arguments.

For more information about how a parameter string is
specified when executing a NOS/VE program, see the SCL
Obj ect Code Management manual. To read about how a
NOS/VE BASIC program is compiled and executed, see
chapter 14.

• This command executes the program whose binary
object code is stored in the file BIN in the working
catalog. A PARAMS$ function reference within the
program returns the value "BREAK TIME". Note that
apostrophes delimit NOS/VE SCL strings, whereas
quotation marks delimit NOS/VE BASIC strings.

EXECUTE TASK FILE=BIN PARAMETER='BREAK TIME'

• This command executes the program whose binary
obj ect code is stored in the default binary file
$LOCAL.LGO. A PARAMS$ function reference within the
program returns the value "CODENAME". Note that no
string delimiters are used with this format.

LGO CODE NAME

String Processing 12-27

o

o

o

o

o

CI

11.3

Overview of the NOS/VE File System •••••••••••••••••••••••••• 13-1

Specifying Files •• 13-2
Using Temporary Files ••••••••••••••••••••••••••••••••••• 13-2
Using Permanent Files ••••••••••••••••••••••••••••••••••• 13-3
Using the Working Catalog ••••••••••••••••••••••••••••••• 13-4

Overview of BASIC File Usage •••••••••••••••••••••••••••••••• 13-7

Channel Numbers ••• 13-9

OPEN Statement •• 13-10.1

CLOSE Statement ••• 13-11

LOC Function 13-12

EOF Function .. 13-13

Sequential I/O •• 13-14

INPUT Statement ••• 13-15
LINE INPUT Statement •••••••••••••••••••••••••••••••••••• 13-18
WIDTH Statement ••• 13-20
PRINT Statement ••• 13-23
LPRINT Statement •• 13-24
PRINT USING Statement ••••••••••••••••••••••••••••••••••• 13-25
LPRINT USING Statement •••••••••••••••••••••••••••••••••• 13-27
WRITE Statement ••• 13-28

Random I/O •• 13-30

FIELD Statement ••• 13-30
GET Statement ••• 13-32
Numeric Interpretation of Strings ••••••••••••••••••••••• 13-33
String Interpretation of Numerics ••••••••••••••••••••••• 13-35
LSET and RSET Statements •••••••••••••••••••••••••••••••• 13-36
PUT Statement ••• 13-38

IFillies 11.3

This chapter explains file usage in NOS/VE BASIC and describes the
statements and library functions related to input and output.

A file is a sequence of records. A record is a sequence of values
or a sequence of characters.

By accessing files t a BASIC program can:

• Retrieve data that has been previously stored in an exterior
data set.

• Send data to an exterior data storage area.

The Input and Output chapter describes how a BASIC program can
receive data from the terminal t access data from an interior data
set t and send program output to the terminal.

This section gives a quick overview of the NOS/VE file system. The
section contains the following topics:

Specifying Files
Using Temporary Files
Using Permanent Files
Using the Working Catalog

For a detailed discussion of the NOS/VE file system t see the NOS/VE
System Usage manual.

NOS/VE organizes files hierarchically into catalogs. A catalog is a
collection of file entries and catalog entries. Each NOS/VE file
belongs to a catalog. Three catalogs are important to remember:
the temporary catalog, $LOCAL; the master catalog; and the working
catalog. The temporary catalog contains temporary files t and the
master catalog contains permanent files and subcatalogs. The
working catalog is the catalog you are currently using when logged
in to NOS/VE.

Revision E Files 13-1.

Overview of the NOS/VE File System

Specifying Files

To specify a NOS/VE file. you specify a file reference or a portion
of a file reference. The full file reference consists of several
parts:

:family.user_name.catalog.file_name.cycle.file_position

When you specify a file. you do not need to provide the entire file
reference as long as you specify enough of the file reference to
uniquely identify the file. For examples of specifying files. see
the following sections.

Although the terms file. file name. file path. and file reference
are often used interchangeably. they have different meanings. For
descriptions of these terms and the other parts of a file reference.
see appendix A. Glossary.

Using Temporary Files

The temporary catalog $LOCAL contains temporary files only. These
files are preserved only thr~ughout your NOS/VE session; they are
discarded when you log out of NOS/VE.

You specify a temporary file by using $LOCAL in place of a user name
and catalog name in a file reference as follows:

$LOCAL.file_name

The following file paths specify several temporary files:

$local.a

$local.lgo

$local.output

$local.$output

$LOCAL is the default working catalog; that is. $LOCAL is the
working catalog when you log in to NOS/VE. You can change the
working catalog by using the SET WORKING CATALOG command. which is
discussed later in the section titled usIng the Working Catalog.

NOS/VE creates the following standard files in your $LOCAL catalog
for each job:

$ECHO
$ERRORS
$INPUT
$LIST
$OUTPUT
$RESPONSE

The standard files provide a default file for use by job files and
other files •

• 13-2 BASIC for NOS/VE Usage Revision E

Overview of the NOS/VE File System

Using Permanent Files

The master catalog associated with a user name contains permanent
files and subcatalogs. NOS/VE preserves permanent files across job
executions and system deadstarts.

You specify a permanent file in your master catalog by using your
user name or the keyword $USER in a file reference as follows:

.user_name.catalog.file_name

$USER.catalog.file_name

The following file paths specify several permanent files:

.joe_user.prolog

$user.epilog

.joe_user. time_cards .progl

$user.time_cards.lgo

You specify a permanent file belonging to another user by using the
corresponding user name in the file reference. The following file
paths specify permanent files belonging to different user names:

.joe_user.prolog

• smith.epilog

.bproject.time_cards.progl

The following file paths specify a permanent file named PROGl. The
file belongs to the user name JOE USER in the Val family:

:vOl.joe_user.progl

.j oe_user. progl

$user.progl

You can only use $USER to specify the preceding file if you are
logged in to the user name JOE_USER.

Revision E Files 13-3.

Overview of the NOS/VE File System

Using the Working Catalog

The working catalog is the catalog NOS/VE assumes if you do not
specify a catalog on a file reference. When you log in, $LOCAL is,
by default, the working catalog.

To change the working catalog, use the SET WORKING CATALOG (SETWC)
command. The following commands show seve7al examples of setting
the working catalog:

set_working_catalog catalog=$user

set_working_catalog catalog=$local

set_working_catalog catalog=$user.time_cards

Use the working catalog to reduce typing and to increase simplicity
in referencing your NOS/VE files. For example, you might have a
catalog, $USER.TIME_CARDS containing the following files:

DATA 1
DATA-Z
PROGT
PROGZ

To compile PROG1 when your working catalog is $LOCAL, you could use
the following command:

basic input=$user.time_cards.prog1

However, by setting the working catalog to $USER.TIME_CARDS, the
compilation command is much simpler:

set working catalog catalog=$user.time_cards
basTc input~prog1

Within a BASIC program, the working catalog affects the f~les opened
with the OPEN statement. You can use the BASIC SCL statement to set
the working catalog within a BASIC program, as shown in the
following examples:

SCL "SET_WORKING_CATALOG $USER"

SCL "SET_WORKING_CATALOG $LOCAL"

SCL "SET_WORKING_CATALOG $USER.TIME_CARDS"

• 13-4 BASIC for NOS/VE Usage Revision E

Overview of the NOS/VE File System

The following table shows several BASIC OPEN statements and the
corresponding file references of the files opened if the working
catalog is set to $USER and you are logged in to the user name
JO~USER in the VOl family:

BASIC OPEN Statement

OPEN "A" FOR INPUT AS III
OPEN "SHITR.A" FOR INPUT AS III
OPEN" .SHITR.A" FOR INPUT AS III
OPEN ":V02.SHITH.A" FOR INPUT AS III
OPEN "A.3" FOR INPUT AS III
OPEN "$LOCAL.A" FOR INPUT AS III

Corresponding Opened File

:vOl.joe_user.a
:vOl.joe user.smith.a
:vOl.smith.a
:v02.smith.a
:vOl.joe user.a.3
$local.a-

The following table shows several BASIC OPEN statements and the
corresponding file references of the files opened if the working
catalog is set to $LOCAL and you are logged in to the user name
JOE_USER in the VOl family:

BASIC OPEN Statement Corresponding Opened File

OPEN "A" FOR INPUT AS III $local.a
OPEN " .SHITR.A" FOR INPUT AS III :vO 1. smith.a
OPEN "$USER.A" FOR INPUT AS III :vOl.joe_user.a
OPEN ".JOE USER.A" FOR INPUT AS III :vOl.joe_user.a
OPEN "$LOCAL.A" FOR INPUT AS III $local.a
OPEN "SHITR" FOR INPUT AS III $local.smith
OPEN ":V02.SMITH.A" FOR INPUT AS III :v02.smith.a
OPEN "$USER.A.3" FOR INPUT AS III :vOl.joe_user.a.3

The following table shows several BASIC OPEN statements and the
corresponding file references of the files opened if the working
catalog is set to $USER.TIME CARDS and you are logged in to the user
name JO~USER in the VOl family:

BASIC OPEN Statement

OPEN "A" FOR INPUT AS III
OPEN ". SMITR. A" FOR INPUT AS III
OPEN "$USER.A" FOR INPUT AS III
OPEN" .JOE USER.A" FOR INPUT AS III
OPEN "$ LOCAL. A" FOR INPUT AS III
OPEN "SMITR .A" FOR INPUT AS III
OPEN ":V02.SHITR.A" FOR INPUT AS III
OPEN "A.3" FOR INPUT AS III

Revision E

Corresponding Opened File

:vOl.joe user.time cards.a
:vOl.smith.a -
:vOl.joe user.a
:vOl.joe-user.a
$local.a-
:vOl.joe user.time cards.smith.a
:v02.smith.a -
:vOl.joe_user.time_cards.a.3

Files 13-5.

Overview of the NOS/VE File System

For a description of the BASIC SCL statement, see chapter 5,
Decision and Branching.

To determine your current working catalog, use the $CATALOG function
with the DISPLAY_VALUE (DISV) command:

display_value value=$catalog

The following dialog shows several DISPLAY VALUE commands and the
corresponding NOS/VE responses:

/set working catalog catalog=$local
/display val~e value=$catalog
:$LOCAL -

/set working catalog catlog=$user
/display val~e value=$catalog
: V01.JOE-USER

/set working catalog catlog=$user.basic
/display val~e value=$catalog
:V01.JOE~USER.BASIC

• 13-6 BASIC for NOS/VE Usage Revision E

Overview of BASIC File Usage

OVC!IrviC!w of lBASHC IFile Uuage
A NOS/VE BASIC program can read data from and write data to NOS/VE
files. The file can be connected to a terminal or located on a mass
storage device.

The NOS/VE standard files $INPUT and $OUTPUT are available to a
BASIC program during execution.

$INPUT specifies the file from which programs read input when no
other file is specified. The default connection for the standard
input file is the NOS/VE temporary file INPUT. For interactive
mode, input is received from the terminal.

$OUTPUT specifies the file to which program output is written when
no other file is specified. The default ~onnection for the standard
output file is the NOS/VE listing file OUTPUT. For interactive
mode, program output appears at the terminal.

A BASIC program can read and write both coded and binary data.

Coded data is stored as a sequence of ASCII codes, one for each
character in the data value. Binary data is stored using the
computer's internal binary representation.

Binary data can be processed more efficiently than coded data
because no translation is required. However, only coded data can be
printed in readable form.

In general, binary data is written to a file only if the data is to
be read later by a BASIC program, and a printed copy of the file is
not needed.

BASIC provides both sequential and random access methods for reading
and writing files.

Sequential access is used for I/O involving files that contain coded
data. A sequential file can be accessed with an I/O mode of INPUT,
OUTPUT, or APPEND. Since a terminal is a sequential file, I/O
through a terminal is a special case of general I/O using files.

Random access is used for I/O involving files that contain binary
data. A random file must be accessed with an I/O mode of RANDOM.

It is often useful to think of a data file as a named collection of
related records, where a record is a set of related data items
called fields.

Revision E Files 13-7

Overview of BASIC File Usage

For example, a payroll file is a collection of employee records. n

given employee record might contain fields corresponding to the
name, sex, social security number, grade level, and salary.

A record in a sequential file is a single line of data. An
individual value in the line can be thought of as a field.

A record in a random file is a sequence of bytes. A field is a
specified sub-sequence of a record.

When a sequential file is accessed:

• With an I/O mode of INPUT, records are read sequentially
from the beginning of the file.

• With an I/O mode of OUTPUT, records are written sequentially
from the beginning of the file. Any data stored prior to
the current file access is lost.

• With an I/O mode of APPEND, records are written sequentially
following the last preexisting record. Any data stored
prior to the current file access is preserved.

A sequential file rewind is possible only by closing and reopening
the file.

When a random file is accessed:

• Records can be read and written in any order.

• An explicit format for individual fields within a record is
specified.

Random I/O:

• Requires more specifications in a program than does
sequential I/O.

• Requires more knowledge of the nature of the program data
than does sequential I/O.

• Is usually inappropriate for data intended for interchange
with processors other than NOS/VE BASIC.

• Cannot be used with terminal files.

I 13-8 BASIC for NOS/VE Usage Revision E

Channel Numbers

Cbanrmel NumheJrG

Purpose

Format

Remarks

Revision E

Associates a NOS/VE file with a BASIC program.

{I channel

{I Sometimes optional number sign.

channel Numeric expression whose value, when rounded
to the nearest integer, specifies a channel
number denoting a file.

• Usually, a program can access a file only by
explicitly opening a channel. A channel number is
associated with a file using the OPEN statement.
This number is used to denote both the channel and
the file that is accessed through the channel.
Thus, a file is usually accessed by a channel number
reference rather than by its name.

• In general, a channel number must be between 0 and
99. However, some of the BASIC statements described
in this chapter do not allow a channel number of O.
Appropriate details are included with the discussion
of each statement.

• When a channel number of 0 is allowed, it denotes
either the standard file $INPUT or the standard file
$OUTPUT, depending on the context.

• The number sign in a channel number reference is:

Mandatory if the reference appears in an INPUT,
LINE INPUT, PRINT, PRINT USING, or WRITE
statement.

Optional if the reference appears in a CLOSE,
FIELD, GET, OPEN, PUT, or WIDTH statement.

Files 13-9 I

Channel Numbers

Remarks
(cont)

• A number sign cannot precede a channel number that
is used as an argument to a library function.

• Each channel has a record pointer that points to the
last record in the corresponding file that was
completely processed through the channel using a
read or write.

• A file can be accessed through more than one channel
concurrently. Each channel uses a separate NOS/VE
instance of open and so, maintains its own file
position. Each file operation updates the file
position for its channel; it does not update the
file positions of other channels. Thus, two or more
channels can be reading a file with no effect on
each other. However, if one of the concurrent opens
writes to the file, the system updates file
positions for all opens. This may lead to
unexpected results and should be avoided.

• A file currently accessible through at least one
open channel is called open. Closing all channels
for a file is referred to as closing the file.

• A runtime error results if:

A channel number is outside of the range allowed.

A channel number specified in a library function
call or in a BASIC statement other than an OPEN
statement does not denote an open channel.

• Note that only the file PRINT (created in the
working catalog) and the standard files $lNPUT and
$OUTPUT can be accessed from a BASIC program without
using a channel number reference.

• Statements involving the file PRINT are provided for
compatibility with popular microcomputer versions of
BASIC.

I 13-10 BASIC for NOS/VE Usage Revision E

OPEN Statement

OPEN Statement

Purpose

Format

Revision E

Opens a channel through which a BASIC program can access
either an existing NOS/VE file, or a new file that is
created.

(A) OPEN filname FOR keymode AS chanref LEN length

(B) OPEN strmode , chanref , filname , length

filname

chanref

keymode

strmode

length

String expression whose value is a NOS/VE
file reference specifying the file for which
a channel is being opened. This file name
can be a path identifying any NOS/VE file.
For example, you can specify a temporary
file, a permanent file, or a file in the
working catalog. If the file does not exist
and the I/O mode is OUTPUT, APPEND, or
RANDOM, a new file is created.

Channel number reference. The specified
channel number must be between 1 and 99,
inclusive. Use of the number sign (#) is
optional. A runtime error results if the
channel number is already in use.

Optional keyword defining the I/O mode to be
used whenever the file is accessed through
the specified channel. Possible values:
INPUT, OUTPUT, or APPEND. If this parameter
is omitted, the keyword FOR is also omitted,
and an I/O mode of RANDOM is specified by
default.

String expression. The first character of
the value of this expression defines the I/O
mode to be used whenever the file is
accessed through the specified channel.
Possible values: I, 0, or R, denoting
INPUT, OUTPUT, and RANDOM, respectively. No
APPEND mode is possible using format (B).

Optional numeric expression whose value,
when rounded to the nearest integer,
establishes the record length (in bytes) for
FILNAME •

Files 13-10.1

OPEN Statement

Remarks • The OPEN statement:

Assigns a channel number to denote the file.

Defines the I/O mode to be used whenever the
file is accessed through the channel.

Allocates a buffer associated with the channel.

Establishes the record length (in bytes) for the
file. The length of the buffer associated with
the channel is initially equal to the record
length.

• A runtime error results if:

The NOS/VE file organization, the NOS/VE file
access mode, and the BASIC I/O mode are not
compatible.

A file is opened with an I/O mode of INPUT, but
is not attached.

The specified length is less than one byte, or
exceeds the maximum record length allowed for
NOS/VE files (2 A 42) -1 bytes.

FILNAME is a preexisting file and the specified
length exceeds the file's already established
maximum record length attribute.

13-10.2 BASIC for NOS/VE Usage Revision E

Remarks

Revision E

•

OPEN Statement

If the LENGTH parameter is omitted:

The keyword LEN and the equal sign are also
omitted from format (A).

The comma preceding LENGTH is also omitted from
format (B).

And FILNAME is a preexisting file, the file's
already established record length is used.

And FILNAME is being created, a maximum record
length of 128 bytes is established.

• An existing file that is accessed with an I/O mode
of:

INPUT, OUTPUT, or APPEND, must have a NOS/VE
file organization of SEQUENTIAL.

RANDOM, must have a NOS/VE file organization of
BYTE ADDRESSABLE.

• A file that is created with an I/O mode of:

INPUT, OUTPUT, or APPEND, is assigned a NOS/VE
file organization of SEQUENTIAL.

RANDOM, is assigned a NOS/VE file organization
of BYTE ADDRESSABLE.

• Note that the,two formats for the OPEN statement are
not equivalent since format (B) does not provide for
an I/O mode of APPEND.

Files 13-10.3

OPEN Statement

Examples Each example below is displayed using both formats, if
possible.

• The following examples open the file named EAM in
the working catalog for sequential input as channel
#4, using the file's established record length or
the default length of 128:

OPEN "EAM" FOR INPUT AS #4
OPEN "I", #4, "EAM"

• The following examples open the file named PAY in
the working catalog for random I/O as channel #7,
with a record length of 64 bytes:

OPEN "PAY" AS 7 LEN=64
OPEN "R", 7, "PAY", 64

• The following example opens the file named MY in the
working catalog for sequential append as channel #2,
using the files established record length or the
default length of 128. This example cannot be
expressed using format (B):

OPEN "MY" FOR APPEND AS #2

• The following examples open the file named PAY DATA
in the working catalog for sequential input as
channel #5, using the file's established maximum
record length or the default length of 128. The
file is in the catalog $USER:

OPEN "$USER.PAY DATA" FOR INPUT AS #5
OPEN "I", #5, "$USER.PAY_DATA"

• The following example opens cycle #76 of the file
named DATA in the working catalog for sequential
input as channel #180. The file is in the master
catalog of the user name NORRIS:

OPEN ".NORRIS.DATA.76" FOR INPUT AS #180

• 13-10.4 BASIC for NOS/VE Usage Revision E

CLOSE Statement

CLOSIE §tatemem1

Purpose

Format

Remarks

Examples

Revision B

Closes channels that were opened by the OPEN statement.

CLOSE chanli st

chanlist Optional list of channel number references
that are separated by commas. Specified
channel numbers must be between 1 and 99,
inclusive. Use of number sign (#) is
optional.

The channels with the specified channel numbers are
closed. For a channel with an I/O mode of INPUT or
RANDOM, the data in the associated buffer is purged.
For a channel with an I/O mode of OUTPUT or APPEND, the
data in the associated buffer is written to the
corresponding file. If CHANLIST is omitted, this
statement closes all channels that have been opened in
the executing program by OPEN statements.

• This statement closes the channels having channel
numbers 2, 44, and 5.

CLOSE 2,1144,5

• This statement closes all channels that have been
opened by OPEN statements.

CLOSE

Files 13-11

LOC Function

lLOC Function
Purpose

Format

Remarks

Examples

Returns the number of the record to which the record
pointer for the specified channel currently points.

LOC(channel)

channel Numeric expression whose value, when rounded
to the nearest integer, specifies a channel
number. This channel number must be between
1 and 99, inclusive. A number sign (#)
cannot precede a channel number that appears
as an argument to a library function.

If the specified channel has an I/O mode of:

INPUT, the function returns the number of records
(lines) that have been read through the channel
since the channel was established. The integer 1
(not 0) is returned if no record has been read since
the channel was established.

OUTPUT or APPEND, the function returns the number of
records (lines) that have been written through the
channel since the channel was established. The
integer 1 (not 0) is returned if no record has been
written since the channel was established.

RANDOM, the function returns the number of the
record (byte sequence) that has most recently been
accessed through the channel using a GET or PUT
statement. The integer 0 is returned if no record
has been accessed since the channel was established.

The IF-THEN statement causes a branch to the line
labeled 150 if more than 25 records are read through
channel tllO.

OPEN "ROSTER" FOR INPUT AS tl10
IF LOC(10) > 25 THEN GOTO 150

Remember that the LOC function only returns the number
of a completely processed record. A comma or semicolon
at the end of a print list causes only part of a record
to be written to a sequential file. In such a case, the
LOC function is not incremented until writing is
completed.

13-12 BASIC for NOS/VE Usage Revision B

EOF Function

JEOIF !Function
Purpose

Format

Remarks

Examples

Revision B

Determines ,.;rhether or not a specified channel record
pointer has reached end-of-file status.

EOF(channel)

channel NUmeric expression whose value, when rounded
to the nearest integer, specifies a channel
number denoting the open file whose status
is to be checked. This channel number must
be between 0 and 99, inclusive. A number
sign (#) cannot precede a channel number
that appears as an argument to a library
function.

• The value returned is the integer -1, for true, if
end-of-file status has been reached. Otherwise, the
integer 0, for false, is returned. If a channel
number of 0 is specified, the status check applies
to the standard file $INPUT.

• A channel with an I/O mode of OUTPUT or APPEND
(including a terminal) has always reached
end-of-file status. A channel with an I/O mode of
RANDOM never reaches end of file status.

In this program fragment, the line labeled 10 avoids the
runtime error that would result from an attempt to read
more data than is currently stored in the file MIND.

OPEN "MIND" FOR INPUT AS #3
10 IF EOF(3) THEN END
LINE INPUT 113, S$

COTO 10

Files 13-13

Sequential 110

Sequential I/O
This section discusses the BASIC statements that are used for
Input/Output using sequential files.

Most of these statements are described for the special case of
terminal I/O in the Input and Output chapter. This section
concentrates on aspects that pertain specifically to files.
then directed, as needed, to the appropriate description in

You are
the

Input and Output chapter for further details.

13-14 BASIC for NOS/VE Usage Revision B

Sequential I/O

INPUT Statement

Purpose

Format

Remarks

Revision B

Reads data from a sequential file.

INPUT chanref , varlist

chan ref Channel number reference specifying the open
sequential file from which data is read.
The specified channel number must be between
o and 99, inclusive. Use of the number sign
(#) is mandatory. A runtime error results
if this channel does not permit access with
an I/O mode of INPUT. If a channel number
of 0 is specified, input is read from the
standard file $INPUT.

varlist List of variables that are separated by
commas. This input variable list contains
the variables that receive values from the
specified file.

• The INPUT statement reads the next record from the
specified file. Commas are used to separate the
values in a record of a sequential file. These
values are assigned to the corresponding variables
in the input variable list. There must be a
one-to-one correspondence between values in the
record and variables in the input variable list.

• A numeric variable can be assigned only a numeric
value. Mixing of integer and real data types is
handled exactly as it is handled in an assignment
statement. Thus, an integer input for a real
variable is converted to type real. A real input
for an integer variable is rounded to the nearest
integer.

• If a value in a record begins with a quote, the
value is assumed to be a quoted string constant.
Modified unquoted string constants (defined below)
can also appear in a record.

• A modified unquoted string constant is an unquoted
string constant that can contain an apostrophe or a
colon. Since the compiler never sees a record, the
restriction that these two characters be used only
as delimiters (when outside of a quoted string) can
be relaxed.

Files 13-15

Sequential 110

Examples This program fragment reads values from the file named
DATAFILE until the end of the file is reached. Note
that each record must contain an ordered pair of values,
one string and one real.

OPEN "DATAFILE" FOR INPUT AS 114
WHILE NOT EOF(4)

INPUT 114, ITEH. NAME $,DOLLAR. VALUE

WEND

13-16 BASIC for NOS/VE Usage Revision B

Sequential I/O

Combining the format for input from the terminal with the format
just described produces the following general format for the INPUT
statement:

INPUT ; chanref ,prompt varlist

If CHANREF and the subsequent comma are omitted, input is read from
the standard file $INPUT.

If the file specified by CHANREF is connected to a terminal, the
INPUT statement works as described in the Input and Output chapter.

If the file specified in the INPUT statement is not connected to a
terminal:

• And no record is available when requested, a runtime error
results.

• The PROMPT parameter is ignored during execution.

Revision B Files 13-17

Sequential I/O

LINE INPUT Statement

Purpose

Format

Remarks

Examples

Reads an entire line from a sequential file into a
string variable.

LINE INPUT chanref , strvar

chanref

strvar

Channel number reference specifying the open
sequential file from which data is read.
The specified channel number must be between
o and 99, inclusive. Use of the number sign
(#) is mandatory. A runtime error results
if this channel does not permit access with
an I/O mode of INPUT. If a channel number
of 0 is specified, input is read from the
standard file $INPUT.

String variable that receives the input line.

The LINE INPUT statement reads all the characters in the
current line, including leading and trailing spaces,
until the next carriage return is reached. A quotation
mark is treated exactly like any other character, even
if it is the first character.

This program fragment reads lines through channel #2
until the channel record pointer reaches the end of the
file MESSAGES.

OPEN "MESSAGES" FOR INPUT AS 112
WHILE NOT EOF(2)

LINE INPUT #2, NOTE$

WEND

13-18 BASIC for NOS/VE Usage Revision B

Sequential I/O

Combining the format for line input from the terminal with the
format just described produces the following general format for the
LINE INPUT statement:

LINE INPUT ; chanref , prompt strvar

If CHANREF and the subsequent comma are omitted, line input is read
from the standard file $INPUT.

If the file specified by CHANREF is connected to a terminal, the
LINE INPUT statement works as described in the Input and Output
chapter. For more information about the PROMPT parameter and line
input from the terminal, see chapter 10.

If the file specified in the LINE INPUT statement is not connected
to a terminal:

• And no line is available when requested, a runtime error
results.

• The PROMPT parameter is ignored during execution.

Revision B Files 13-19

Sequential I/O

WIDTH Statement

Purpose

Format

Sets the page width for output that is written to a
sequential file.

(A)
(B)

WIDTH chanref , pgwidth
WIDTH spcfile , pgwidth

pgwidth

chanref

spcfile

Numeric expression whose value, when rounded
to the nearest integer, specifies the page
width to be used whenever output is sent
through the specified channel, or to the
specified special file.

Channel number reference specifying an open
sequential file. The specified channel
number must be between 1 and 99, inclusive.
Use of the number sign (#) is optional. A
runtime error results if this channel does
not permit access with an I/O mode of OUTPUT
or APPEND.

String expression whose value denotes one of
two special files that are not normally
accessed through channel number references.
Possible values: "PRINT" or "OUTPUT".
These values can use both lowercase and
uppercase letters and can be followed by
trailing spaces.

13-20 BASIC for NOS/VE Usage Revision B

Remarks

Revision B

•

Sequential 110

The page width is the maximum number of characters
that can be written before a carriage return is
generated.

• Format (A) defines the page width for output through
the specified channel.

• Format (B) defines the page wid th for the standard
file $OUTPUT if the value "OUTPUT" is specified and
for the file PRINT in the working catalog if the
value "PRINT" is specified. If necessary, the file
PRINT is created.

• If CHANREF and the subsequent comma are omitted, the
page width of the standard file $OUTPUT is set.

• If the page width:

Is different than the record length for the file
being accessed, the buffer size is adjusted to
accommodate the page width. This adjustment
does not redefine the file's record length.

Exceeds the NOS/VE maximum page width, the
maximum is used.

Is less than 14 (the length of a print zone), a
runtime error results.

• If the length of a value to be written:

Exceeds the space available on the current line,
but is less than the page width, then the value
is printed at the beginning of the next line.

Exceeds the page width, as much of it as will
fit on the current line is printed, and the
value is continued on as many subsequent lines
as are needed.

Files l3-21

Sequential 110

Examples • Each of these statements sets the page width to 72
characters. This page width is to be used whenever
output is sent through channel 8.

WIDTH 118, 72
WIDTH 8, 4 *18

• This statement sets the page width for the file
PRINT in the working catalog to 65 characters. If
necessary, file PRINT is created.

WIDTH "PRINT", 65

13-22 BASIC for NOS/VE Usage Revision B

Sequential I/O

PRINT Statement

Purpose

Format

Remarks

Examples

Revision E

Writes data to a sequential file.

PRINT chanref, printlist

chanref Channel number reference specifying the open
sequential file to which data is written.
The specified channel number must be between
o and 99, inclusive. Use of the number sign
(II) is mandatory. A comma after the channel
number reference is required. A runtime
error results if this channel does not
permit access with an I/O mode of OUTPUT or
APPEND. If a channel number of 0 is
specified, output is written to the standard
file $OUTPUT.

printlist Optional list of expressions and format
function references (the print list).

• The expressions in the print list are evaluated, and
their values are written in sequence to the
specified file. The format of the output is
specified by the punctuation and format functions
appearing in the print list.

• Output is not transmitted until an end of line is
generated. This happens either when the specified
channel is closed, or when control reaches the end
of a printlist that does not end with a comma,
semicolon, or format function.

• If CHANREF and the subsequent comma are omitted,
output is sent to the standard file $OUTPUT.

• A comma after the channel number reference is
required even if the print list is omitted.

• If the file specified by CHANREF is connected to a
terminal, the PRINT statement works as described in
the Input and Output chapter. For more information
about the PRINTLIST parameter and the form of output
produced using the PRINT statement, see chapter 10.

This program fragment writes 40 records to the file
named TOP40. Each record consists of an integer and a
string that are separated by a comma.

DIM RANK(1:40),TITLE$(1:40) : DEFINT I,R
OPEN "T0P40" FOR OUTPUT AS 115
PRINT 115, "List of rank and title"
PRINT 115,
FOR I = 1 TO 40

PRINT #5, RANK(I);", ";TITLE$(I)
NEXT I

Files 13-23

Sequential 110

LPRINT Statement

Purpose

Format

Remarks

Examples

Writes data to the file PRINT in the working catalog.
If necessary a file with this name is created.

LPRINT printlist

printlist Optional list of expressions and format
function references (the print list).

• The expressions in the print list are evaluated, and
their values are written in sequence to the file
PRINT. The format of the output is specified by the
punctuation and format functions appearing in the
print list.

• Output is not transmitted until an end of line is
generated. This happens either when the specified
channel is closed, or when control reaches the end
of a printlist that does not end with a comma,
semicolon, or format function.

• The LPRINT statement works like the PRINT statement
as described in the Input and Output chapter. For
more information about the PRINTLIST parameter and
the form of output produced using the PRINT
statement, see chapter 10.

If TITLE$ has the value "WONDERS, INC.", the sentence
below is written to the file PRINT in the working
catalog. If necessary, file PRINT is created.

LPRINT "THE BOOK <" ;TITLE$; ") IS NOT AVAILABLE."

THE BOOK <WONDERS, INC.) IS NOT AVAILABLE.

L3-24 BASIC for NOS/VE Usage Revision B

Sequential lIO

PRINT USING Statement

Purpose

Revision B

Writes data to a sequential file using a specified
display fonnat.

PRINT chanref ,USING formstr ; printlist

chanref

formstr

printlist

Channel number reference specifying the open
sequential file to which data is written.
The specified channel number must be between
o and 99, inclusive. Use of the number sign
(#) is mandatory. A runtime error results
if this channel does not permit access with
an I/O mode of OUTPUT or APPEND. If a
channel number of 0 is specified, output is
written to the standard file $OUTPUT.

Required string expression whose value
specifies the format of the output. Also
referred to as the format string.

Nonempty list of expressions. Also referred
to as the print list.

Files 13-25

Sequential I/O

Remarks

Examples

• The expressions in the print list are evaluated.
Their values are written in sequence to the
specified file, using the format defined in the
format string.

• Output is not transmitted until an end of line is
generated. This happens either when the specified
channel is closed, or when control reaches the end
of a printlist that does not end with a comma or
semicolon.

• If CHANREF and the subsequent comma are omitted,
output is sent to the standard file $OUTPUT.

• If the file specified by CHANREF is connected to a
terminal, the PRINT USING statement works as
described in the Input and Output chapter. For more
information about the FORMSTR and PRINTLIST
parameters, and the form of output produced using
the PRINT USING statement, see chapter 10.

If D has the value 1289.431 , this program fragment
writes the output to the file PAYMENT.

OPEN "PAYMENT" FOR OUTPUT AS 113
PRINT 113, USING "$$111111.1111"; D

The output from the program fragment appears below:

$1289.43

13-26 BASIC for NOS/VE Usage Revision B

Sequential I/O

LPRINT USING Statement

Purpose

Format

Remarks

Examples

Revision B

Writes data to the file PRINT in the working catalog,
using a specified format string. If necessary a file
with this name is created.

LPRINT USING formstr ; printlist

formstr

printlist

Required string expression whose value
specifies the format of the output. Also
referred to as the form list.

Nonempty list of expressions. Also referred
to as the print list.

• The expressions in the print list are evaluated, and
their values are written in sequence to the file
PRINT, using the format defined in the format string.

• Output is not transmitted until an end of line is
generated. This happens either when the specified
channel is closed, or when control reaches the end
of a printlist that does not end with a comma or
semicolon.

• The LPRINT USING statement works like the PRINT
USING statement as described in the Input and Output
chapter. For more information about the FORMSTR and
PRINTLIST parameters, and the form of the output
produced using the PRINT USING statement, see
chapter 10.

If POPULATION% has the value 2576123, this statement
writes the output to the file PRINT in the working
catalog. If necessary, this file is created.

LPRINT US ING "1111111111,111111"; POPULATION%

The output appears below:

2,576,123

Files 13-27

Sequential I/O

WRITE Statement

Purpose

Format

Remarks

Writes data to a sequential file in a form that
resembles a list of BASIC constants, complete with
separating commas.

WRITE chanref , writelist

chanref Channel number reference specifying the open
sequential file to which data is written.
The specified channel number must be between
o and 99, inclusive. Use of the number sign
(#) is mandatory. A runtime error results
if this channel does not permit access with
an I/O mode of OUTPUT or APPEND. If a
channel number of 0 is specified, output is
written to the standard file $OUTPUT.

writelist Optional list of expressions. Also referred
to as the write list.

• The expressions in the write list are evaluated, and
their values are written in sequence to the
specified file. The form of the output fits the
requirements of data that is to be read through the
INPUT statement.

• If CHANREF and the subsequent comma are omitted,
output is sent to the standard file $OUTPUT.

• If the file specified by CHANREF is connected to a
terminal, the WRITE statement works as described in
the Input and Output chapter. The WRITELIST
parameter and the form of the output produced using
the WRITE statement are discussed in depth in the
Input and Output chapter.

13-28 BASIC for NOS/VE Usage Revision B

Examples

Revision B

Sequential I/O

If N receives the value 4 in the INPUT statement, this
program fragment writes the output to the file
EVALUATION.

DEFINT N,P,X
OPEN "EVALUATION" FOR OUTPUT AS 118
DEF POLY(X) = 3*(X+5)*(X-4)
INPUT N
WRITE #8, POLY(N-l),POLY(N),POLY(N+l)

The output appears below:

-24,0,30

Files 13-29

Random 110

Random I/O
This section discusses the BASIC statements and library functions
that are used for Input/Output using random files.

FIELD Statement

Purpose

Format

Defines the fields of a buffer, and establishes string
variables that coincide with these fields. The string
variables are used as vehicles for moving data between
the buffer and a BASIC program, and between the buffer
and a NOS/VE random file.

FIELD chanref , fieldlist

chanref Channel number reference specifying the
channel whose buffer is to be divided into
fields. The specified channel number must
be between 1 and 99, inclusive. Use of the
number sign (II) i.s optional. A runtime
error results if this channel does not
permit access with an I/O mode of RANDOM.

fieldlist Field list defines field sizes and
corresponding string identifiers for the
buffer associated with the specified channel.

A field list has the form:

size1 AS svar1 ,size2 AS svar2, ••• , sizeN AS
svarN

sizeJ

svarJ

Numeric expression whose value, when rounded to
the nearest integer, establishes the length (in
bytes) of the Jth field of the buffer, where (1
<= J <= N).

String identifier corresponding to the Jth
field, where (1 <= J <= N). SVARJ cannot be a
substring expressed by colon substring notation
or a MID$ reference. The length of SVARJ is the
rounded value of SIZEJ.

13-30 BASIC for NOS/VE Usage Revision B

Remarks

Examples

Revision B

•

Random 110

Bytes are allocated in the order specified in the
field list. A runtime error results if the number
of bytes allocated exceeds the length of the
buffer. However, the entire buffer need not be used.

• If a field's string identfier later receives a value
through the LET, SWAP, INPUT, LINE INPUT, or READ
statements, or through its use as an actual
parameter, then the variable stops designating a
field. A preexisting string variable that is
redefined through the FIELD statement loses its
former value.

• Note that the FIELD statement sets up the mechanism
for data to be moved, but does not actually cause
any movement. If more than one FIELD statement is
executed for a single channel, all field
specifications remain in effect concurrently.

• NOS/VE BASIC integers and real numbers require eight
bytes of storage. The use of an 8-byte field
preserves the numeric sense of a field.

• NOS/VE BASIC strings are stored, one ASCII character
per byte, in as many contiguous bytes as are
required to hold their current values.

• For random files, record length and buffer length
are always equal. This is not the case with
sequential files since the WIDTH statement adjusts
buffer length without changing record length.

These statements open a channel to the random file
EMPLOYEE and define the fields of the associated 50-byte
buffer. NAME$ coincides with the first 34 bytes of the
buffer, YEARS$ with the next 8 bytes, and SALARY$ with
the las t 8 bytes.

OPEN "EMPLOYEE" AS fI2 LEN=50
FIELD #2, 34 AS NAME $, 8 AS YEARS $, 8 AS SALARY$

Files 13-31

Random I/O

GET Statement

Purpose

Format

Remarks

Examples

Reads a record from a random file into the buffer
associated with a specified channel.

GET chanref , numrec

chanref

ntunrec

Channel number reference specifying the
random file from which a record is to be
read. The specified channel number must be
between 1 and 99, inclusive. Use of the
number sign (#) is optional. A runtime
error results if this channel does not
permit access with an I/O mode of RANDOM.

Optional numeric expression whose value,
when rounded to the nearest integer,
specifies the ntunber of the record to be
read.

If NUMREC is omitted, the preceding comma is also
omitted. The record following the one pointed to by the
channel record pointer is read into the buffer. Hence,
the accessed record has a record number of (1 + LOC(x»,
where x is the specified channel number.

The first two statements open a channel to the random
file EMPLOYEE and define fields in the associated
50-byte buffer. The GET statement reads the first
record (50 bytes) of binary data from EMPLOYEE into the
buffer.

OPEN "EMPLOYEE" AS #2 LEN=50
FIELD #2, 34 AS NAME$, 8 AS YEARS $, 8 AS SALARY$
GET #2

13-32 BASIC for NOS/VE Usage Revision B

Random I/O

Numeric Interpretation of Strings

Purpose

Format

Remarks

Revision B

Reads a numeric value into a buffer from a random file
that can only be referenced as a string since it is now
the value of a string variable (defined in a FIELD
statement). For a BASIC program to access this value as
a number rather than a string, the interpretation of the
value of the string variable must be changed.

CVI(strvar)
CVS(strvar)
CVD(strvar)

strvar String variable whose value is the string to be
interpreted as numeric. A runtime error results
if this value does not have a length of 8

•

bytes. No other argument checking is performed.

The CVI, CVS, and CVD functions interpret the value
of a string variable as numeric. These functions
complement the MKI$, MKS$, and MKD$ functions,
respectively.

• The CVI function interprets a string as an integer.
The CVS and CVD functions interpret a string as a
real mnnber.

• Note that these functions change the interpretation
of a value without changing its representation. The
bytes in which the value is stored are not changed.

Files 13-33

Random I/O

Examples The following shows an example using the CVI function.

DEFINT I, N : DATA 50 : READ N
OPEN "SECRET" AS 117 LEN~28

30 FIELD U7, 20 AS COUNTY$, 8 AS POPULATION$
FOR I ,. 1 TO N

SO GET 117
60 LET POP% ,. CVI(POPULATION$)

PRINT USING "U It/I II , IIIIn PEOPLE LIVE IN & COUNTY_o"; POP%,COUNTY$
NEXT I
END

Line labeled 30:

Line labeled 50:

Line labeled 60:

FIELD statement defines two fields
for the 28-byte buffer associated
with channel #7. COUNTY$ coincides
with the first 20 bytes of the
buffer; POPULATIONS coincides with
the last 8 bytes.

The GET statement reads the next
record from the file SECRET into the
buffer.

The CVI function interprets the
value of POPULATIONS as an integer.

13-34 BASIC for NOS/VE Usage Revision B

Random 110

String Interpretation of Numerics

Purpose

Format

Remarks

Revision B

Converts numeric values to string values.

MKI$(number)
MKS$(number)
MKD$(number)

number Numeric expression whose value is the number
to be interpreted as a string.

• The MKI$, MKS$ and MKD$ functions interpret a
numeric value as a string variable. These functions
complement the CVI, CVS, and CVD functions,
respectively.

• For the program to treat this value as a string
rather than a number, the interpretation of the
value must be changes without changing its·
representation.

• The value returned is an internal representation of
the value of NUMBER in an 8-byte string.

• The MKI$ function interprets the value of an integer
as a string. The MKS$ and MKD$ functions interpret
the value of a real number as a string.

• Note that these functions change the interpretation
of a value without changing its representation. The
bytes in which the value is stored are not changed.

Files 13-35

Random I/O

LSET and RSET Statements

Purpose

Format

Remarks

Assigns the value of a string expression to a string
variable without changing the length of the string
variable. These statements can be used to move data
from a program into a buffer in preparation for random
output. They can also be used for assignment outside
the context of files.

LSET svar
RSET svar

string
string

svar String identifier naming the variable being
assigned a value. SVAR cannot be a substring
expressed by colon substring notation or a MID$
reference.

string String expression whose value contains the
characters used in the assignment.

• If the length of the value of STRING is:

Greater than the length of SVAR, the value of
STRING is truncated on the right before the
assignment is made.

Less than the length of SVAR, the LSET function
left-justifies the value of STRING, providing
enough trailing spaces to preserve the length of
the SVAR.

Less than the length of SVAR, the RSET function
right-justifies the value of STRING, providing
enough leading spaces to preserve the length of
the SVAR.

• If SVAR is a string variable used for the first time
and not a field name, it has a value of the null
string with a length of zero. No assignment will
occur.

13-36 BASIC for NOS/VE Usage Revision B

Examples

Revision B

•

Random I/O

No assignment takes place if this is the first use
of NAME$ and it is not a field name.

LSET NAME$ = "MARY"

Now NAME$ has a length equal to 4.

LET NAME$ = "JOSE"

LSET NAME$ = "JOE "

would be the same as

LET NAME$ = "JOE "

• If the variable STRVAR corresponds to a field ofa
buffer used for random I/O, the value assigned is
moved into the buffer. A numeric value to be moved
into the buffer must be interpreted as a string
using the MKI$, MKS$, or MKD$ function. The field
to receive such a numeric value must be 8 bytes in
length.

OPEN "WAGES" AS 119 LEN=28
FIELD 119, 20 AS MONTH$, 8 AS GROSS$
RSET MONTH$ = "APRIL"
LSET GROSS$ = MKI$(2587)

The first two statements create a channel to the
random file WAGES and establish fields in the
associated 28-byte buffer. The RSET statement
right-j ustifies the value "APRIL" in the field
corresponding to MONTH$. The LSET statement inserts
a string interpretation of the integer value 2587 in
the field corresponding to GROSS$.

Files 13-37

Random 110

PUT Statement

Purpose

Remarks

Examples

Writes the data in a buffer to the associated random
file.

PUT chanref , numrec

chanref

numrec

Channel number reference specifying the
random file to which a record is to be
written. The specified channel number must
be between 1 and 99, inclusive. Use of the
number sign (II) is optional. A runtime
error results if this channel does not
permit access with an I/O mode of RANDOM.

Optional numeric expression whose value,
when rounded to the nearest integer,
specifies the number of the record to be
written. A runtime error results if the
specified number is less than one, or if the
relative location in the random file implied
by the product of the record number and the
record length exceeds the maximum file size
for NOS/VE.

If NUMREC is omitted, the preceding comma is also
omitted. The data is written to the record following
the one pointed to by the channel record pointer.
Hence, the record written has a record number of (1 +
LOC(x)), where x is the specified channel number.

The first two statements open a channel to the random
file WAGES and define fields for the associated 28-byte
buffer. The RSET and LSET statements move data into the
buffer. The PUT statement writes the data in the buffer
to the fifth record of file WAGES. Any data previously
stored in record number 5 is destroyed.

OPEN "WAGES" AS #9 LEN=28
FIELD 119, 20 AS MONTH$, 8 AS GROSS$
RSET MONTH$ = "APRIL"
LSET GROSS$ = MKI$(2587)
PUT 119, 5

13-38 BASIC for NOS/VE Usage Revision B

o

o

o

o

o

c

C~I

Compilation Overview •• 14-2

BASIC Compiler Command •• 14-3

Listing Options
STATUS Variable

... ...
Sample Compiler Calls •••

Program Execution •••

EXECUTE TAS K •••
RESEQUENCE Utility •••••••••••••••••••••••••••••••••••••••

14-5
14-5

14-6

14-7

14-8
14-10

A NOS/VE BASIC program is processed in two stages: program
compilation and program execution. This chapter describes the
two-stage process.

Some knowledge of the NOS/VE System Command Language (SCL) is
required to understand the material in this chapter. See the NOS/VE
System Usage manual for a discussion of relevant terms and commands.

Revision E Compilation and Execution 14-1

BASIC Compiler Command

Compilation Overview
A NOS/VE BASIC program must be compiled before it can be executed.

Compiling a BASIC program means translating it from BASIC into
machine language. This translation is performed by a processor
known as a compiler.

The original BASIC program is referred to as the source program.

The compiled version of the program is referred to as the binary
obj ec t program, or jus t the obj ec t program.

The time during which a program is being compiled is referred to as
compile-time.

The BASIC compiler is called by entering the SCL BASIC command in
response to the usual NOS/VE prompt (/).

When called, the compiler:

• Creates a binary obj ect program.

• Produces a listing of the source program.

• Accumulates diagnostics for any errors found during
compile-time.

NOS/VE BASIC compile-time errors are discussed in the Compile-Time
Diagnostics appendix. For more information, see appendix C.

Once an error-free binary object program is created, you are ready
for the program execution stage. The system executes the binary
object program, not the source program.

Note that:

• A BASIC program need only be compiled once.

• An error-free binary object program can be executed any
number of times.

• A single BASIC external routine in a program can be compiled
by itself, but only the main program can initiate execution.

14-2 BASIC for NOS/VE Usage Revision B

BASIC Compiler Command

BASIC Compiler Command

Purpose

Format

Calls the NOS/VE BASIC compiler with the SCL BASIC
command, which can be entered at any NOS/VE prompt.

BASIC
INPUT=file
BINARY=file
LIST=file
LIST OPTIONS=list of keywords
ARRAY_DIMENSIONS=keyword
STATUS=status variable

Any file whose reference does not specify a catalog is
assumed to be in the working catalog. Remember that
$LOCAL is the default working catalog.

Parameters INPUT or I

Revision E

Specifies the file containing the source program to be
compiled. The default input file is $INPUT.

When the BASIC command is invoked using the default
INPUT parameter, input is expected from the standard
file $INPUT. To terminate input and compile what is
entered, enter the END_OF_INFORMATION value after a
prompt.

The END OF INFORMATION value is a connection attribute.
The def~ult value is *EOI. To display the connection
attribute value, enter the following SCL command:

display_term_conn_default, end_of_information

For more information, see the NOS/VE System Usage manual. I

BINARY or B

Specifies the file to receive the binary object
program. The default binary object file is $LOCAL.LGO.

LIST or L

Specifies the file to receive the compiler output
listing. The default list file is $LIST.

Compilation and Execution 14-3

BASIC Compiler Command

Parameters LIST OPTIONS or LO
(cont)

Specifies the information that is to appear in the
compiler output listing. The list options are:

S Source program listing.
o Object program listing.
R Cross-reference listing.
N None.

The default list option is S.

ARRAY DIMENSIONS or AD

Establishes either static or dynamic dimensioning for
all arrays in the compiled program. Options are:

STATIC (S)

DYNAMIC (D)

Fixes array dimensioning at compile-time.

Allows redimensioning of any array at
runtime.

The default array dimensioning is STATIC.

STATUS

Specifies an SCL status variable to receive the
compiler-generated error status code. The default is no
status variable.

e14-4 BASIC for NOS/VE Usage Revision D

BASIC Compiler Command

Listing Options

The LIST OPTIONS parameter is specified as a list of letters
separated by COmmas in parentheses. If only one letter is
specified, the parentheses can be omitted. Letters can appear more
than once and in any order.

The letters S, 0, and R represent switches that control the contents
of the list file. The switch S is initially set. This means that
the source listing is provided by default. The other switches are
initially clear. This means that the object code and
cross-reference listings are not provided unless explicitly
requested.

The compiler scans the LIST OPTIONS list from left to right.

When it finds:

• A letter other than N, the corresponding switch is set.

• The letter N, all switches are cleared.

The state of the switches when the end of the list is reached
determines the contents of the list file.

Note that compile-time diagnostics are always written to the list
file, even if LO=N is specified.

STATUS Variable

The STATUS parameter is the means by which the compiler makes the
outcome of the compilation available to the surrounding SCL
environment. The status is either normal, or one of three status
condition codes is returned:

• 1, indicating warning errors.

• 2, indicating fatal errors.

• 3, indicating catastrophic errors.

If the source program contains errors of more than one severity, the
status of the most severe error is returned.

Remember that in SCL, a series of two or more periods at the end of
a line indicates that a command is to be continued on the next line.

Revision C Compilation and Execution 14-5

Sample Compiler Calls

Sample Compiler Calls

Examples • This command specifies all default parameters.

BASIC

• This command specifies the following parameters:

BASIC I=BASPROG B=BIN L=COMPLIST LO=(N,O)

I=BASPROG Reads the source program from the file
BASPROG in the working catalog.

B=BIN Writes the binary object program to the
file BIN in the working catalog.

L=COMPLIST Writes the compiler output listing to
the file COMPLIST in the working catalog.

LO=(N,O) Provides the binary object program
listing but suppresses the source
listing.

No status variable is specified.

• This command specifies the following parameters:

BASIC INPUT=$USER.YEAR LIST=RESULTS
LIST OPTIONS=R STATUS=STATE

INPUT=$USER.YEAR

LIST=RESULTS

LIST OPTIONS=R

STATUS=STATE

Reads the source program from
the file YEAR in the $USER
catalog.

Writes the compiler output
listing to the file RESULTS in
the working catalog.

Provides the source and the
cross-reference listings.

Specifies the status variable
STATE.

By default, the binary object file is $LOCAL.LGO.

14-6 BASIC for NOS/VE Usage Revision B

Program Execution

JPxroglI'am IEu.ecution

The time during which a program is executing is referred to as
runtime. The execution stage of program processing really involves
both loading and running the program.

Loading is performed by a processor known as a loader. Among other
actions, the loader:

• Establishes links between external routines in a program.

• Establishes links between the program and system routines.

• Fetches library routines called by the program.

• Brings the binary object code into main memory for execution.

• Sends a summary diagnostic message to the standard file
$ERRORS, which is connected to OUTPUT. The errors and
loadmap are also sent to a file if you specify the
LOAD MAP parameter on either the EXECUTE TASK or
SET_PROGRAM_ATTRIBUTES commands. -

Revision E Compilation and Execution 14-7

Program Execution

EXECUTE_TASK

Purpose

Format

Remarks

Executes a BASIC program by entering this SCL command.

EXECUTE TASK FILE=file reference DEBUG_MODE=boolean

FILE (F)

DEBUG MODE (DM)

Specifies the binary object file for
the program (established by the
BINARY OBJECT parameter in the the
BASIC compiler command).

Invokes the Debug utility which lets
you debug your BASIC program. Values
you can specify are:

ON Invokes the Debug utility. You
then execute your BASIC program
from within the Debug utility.

OFF Does not invoke the Debug
utility. If you specify OFF,
you cannot debug the BASIC
program during this execution.

If DEBUG MODE is omitted, OFF is
assumed.-

• If the binary object file is in the $LOCAL catalog,
you can execute your program by simply typing the
file name in response to the system prompt. For
example, if the binary object file is named
$LOCAL.LGO, you can execute the file by typing LGO
("Load and Go"). If the binary object file is named
$LOCAL.MY BINARY, you can execute the file by typing
MY BINARY: When the binary object file is in the
$LOCAL catalog, typing the file name executes that
file even if the working catalog is not $LOCAL.

• If the binary object file is in a catalog other than
$LOCAL, you must use the EXECUTE TASK command to
execute your program. For example, if the binary
object file is in the file $USER.LGO and the working
catalog is $LOCAL, execute your program by typing
EXECUTE TASK $USER.LGO. If the binary object file
is in the file $USER.LGO and the working catalog is
$USER, execute your program by typing EXECUTE TASK
L~. -

• The Debug utility is described in appendix E,
Introduction to Debug.

• For detailed information about the EXECUTE TASK
command, see the NOS/VE Object Code Manageient Usage
manual •

• 14-8 BASIC for NOS/VE Usage Revision E

Examples •

Program Execution

These two commands are equivalent. Each one
executes the binary object program that is stored in
the file BIN in the $USER catalog.

EXECUTE TASK FILE=$USER.BIN
EXET F~$USER.BIN

• This specification executes the binary object
program stored in the file COMPILED PROGRAM in the
$LOCAL catalog. -

COMPILED_PROGRAM

• The following command invokes the Debug utility with
the BASIC program $USER.BIN:

EXECUT~TASK FILE=$USER.BIN DEBUG_MODE=ON

When you enter the preceding command, the Debug
utility is invoked. You then use Debug commands to
execute the BASIC program $USER.BIN.

In the following terminal session, the EDIT_FILE (EDIF) and
INSERT LINES (INSL) commands are used to create a one-line program.
The program is placed in the file named SAMPLE in the $LOCAL
catalog. This program is then compiled and executed. The program
output appears on the terminal.

/ edif f=sample
Begin editing deck SAMPLE
ef/insl
Enter Text
?PRINT "THIS IS A SHORT PROGRAM."
?**
ef/quit
Ibasic i=sample l=list
Ilgo
THIS IS A SHORT PROGRAM.
I

If any runtime errors occur under default handling, diagnostics are
written to the standard error file $ERRORS. The default connection
for the standard error file is the NOS/VE listing file OUTPUT. For
interactive mode, this means that diagnostics appear at the terminal.

Runtime errors can be handled from within a program. For more
information, see chapter 6.

To execute separately compiled external routines, they must be
combined to form an object library.

Revision E Compilation and Execution 14-9

Program Execution

RESEQUENCE Utility

Purpose Resequences a BASIC source program and automatically
updates all line references.

Format RESEQUENCE or RES
INPUT=file reference
OUTPUT=file reference
'NEW"B'ASE-integer
NEW INCREMENT=integer
ERROR-file reference
STATUS=status variable

Parameters INPUT or I

File containing the BASIC source text to be resequenced.

An error message is issued for any of the following:

File is not found

File is empty

File is not available for read access

File attributes do not allow sequential access

The INPUT parameter is required.

~or.2.

File to which RESEQUENCE writes its results.

An error message is issued if the OUTPUT file is not
available for write access or if the file attributes do
not allow it to be written as a sequential file.

If OUTPUT is omitted t RESEQUENCE will rewrite its
results to the same file from which it is read.

The record length of the output file must be less than
the length specified on the MAXIMUM RECORD LENGTH
attribute for that file. This condItion m;st be true
regardless of the type specified on the RECORD_TYPE
attribute for the file.

14-10 BASIC for NOS/VE Usage Revision E

Program Execution

Parameters NEW BASE or NB
(cont)

Revision B

Integer value that specifies the first label of the
resequenced BASIC source text. Integer value must
be within the range 1 to 999,999, inclusive.

An error message is issued if the integer value is
outside the allowed range.

If NEW BASE is omitted, the value 100 is used.

NEW INCREMENT or NI

Integer value that specifies the increments to be
used between successive labels in the resequenced
source text. Integer value must be within the
range 1 to 100,000.

An error message is issued if the integer value is
outside the allowed range.

If NEW INCREMENT is omitted, the value 10 is used.

ERROR or E

File to which RESEQUENCE writes diagnostic messages
if it encounters problems. If no problems are
encountered, this file is not opened.

If ERROR is omitted, the standard file $ERRORS is
used.

STATUS

SCL status variable in which the termination status
of RESEQUENCE is returned. If specified, the SCL
command interpreter proceeds to the next command
even if an abnormal condition is encountered.

If STATUS is omitted, any error that is detected by
RESEQUENCE is reported to the user's environment
and the SCL command interpreter skips succeeding
commands in the current block.

Compilation and Execution 14-11

Program Execution

Remarks • A program compiled from resequenced source text
can behave differently than previous compiled
versions. Differences depend on how the ERL
function is used.

The ERL function returns the value of the label
associated with the line having the most recent
runtime error. The value of ERL may change
after the program is resequenced. RESEQUENCE
checks for the appearance of ERL in relational
expressions. If ERL is compared to a simple
integer constant that has the same value as a
label in the routine, the constant is presumed
to be a label reference and is changed.

• There are three types of problems that can be
detected by RESEQUENCE. The first problem
could be with the parameters or execution
environment. The second type of problem is
with the label definitions in the input file.
The third problem is writing the newly labeled
text to the output file.

• If the first problem is found, a diagnostic
message is written to the error file and
RESEQUENCE is terminated. Examples of such
problems are parameter specification errors,
specification of an empty input file, or
specification of an output file that is not
available with· sufficient access to receive the
resequenced text.

• After RESEQUENCE is satisfied with the
parameters, it can still detect other errors.
The types of problems that are detected during
this phase will not terminate the program. In
order to deliver as much information as
possible, RESEQUENCE accumulates diagnostic
messages in the error file and continues
examining as much of the input text as possible.

• BASIC external routines are read from the input
file one at a time. All the labels of an
external routine are examined. For each label
that is out of range or out of order, a
diagnostic message is added to the errors
file. If a problem is found with the label
definitions in a routine, the references of
that routine are not examined.

14-12 BASIC for NOS/VE Usage Revision B

Remarks
(cont)

Revision B

•

Program Execution

If no problems are found with the label
definitions in a routine, RESEQUENCE checks
all label references in the routine. For
each reference to an undefined label, a
diagnostic message is added to the errors
file.

• If errors are found either with label
definitions or label references, the
results of RESEQUENCES's effort are not
written to the output file. After
RESEQUENCE has examined all BASIC external
routines in the input file, it terminates
with a status indicating the severity of
the worst problem it encountered.

Compilation and Execution 14-13

Program Execution

Examples • The BASIC source file RES TEST contains the
following:

42 REM This is a RESEQUENCE example.
55 DEFINT i - n
56 INPUT "Specify index: " , i
60 ON i GOTO 73, 71, 72
65 END
71 PRINT "I ="; i GOTO 65
72 PRINT "I ="; i GOTO 65
73 PRINT "I ="; i GOTO 65

The following RESEQUENCE command is executed:

/resequence, res_test, res result

The RES RESULT file contains the following:

100
110
120
130
140
150
160
170

REM This is a RESEQUENCE example.
DEFINT i - n
INPUT "Specify index: ", i
ON i GO TO 170, 150, 160
END
PRINT "I ="; i
PRINT "I ="; i
PRINT "I ="; i

GOTO 140
GOTO 140
GOTO 140

• If the following RESEQUENCE command is executed:

/resequence, res_test, res_result, 1000, 100

The RES RESULT file contains the following:

1000 REM This is a RESEQUENCE example.
1100 DEFINT i - n
1200 INPUT "Specify index: " , i
1300 ON i GOTO 1700, 1500, 1600
1400 END
1500 PRINT "I ="; i GOTO 1400
1600 PRINT "I ="- i GOTO 1400 ,
1700 PRINT "I =". i GOTO 1400 ,

14-14 BASIC for NOS/VE Usage Revision B

o

o

o

o

o

r A llJIII>enncrlii}'.{ e§
,---'

o Glossary •• A-I

ASCII Character Set ••• B-1

Compile-time Diagnostics •••••••••••••••••••••••••••••••••••••• C-l

Library Functions Index ••••••••••••••••••••••••••••••••••••••• D-l

Introduction to Debug ••• E-l

(~
\

..... - ,~

The terms in this glossary appear in alphabetical order.

An array whose elements are passed to a NOS/VE BASIC routine
when the routine is called. An actual array is denoted by an
array name followed by parentheses that contain zero or more
commas.

Actual Parameter

A variable or array whose value is passed to a procedure when
the procedure is called.

Array

A collection of memory locations that are referenced by a single
name and store logically related values of the same data type.

Array Element

A variable denoting one memory location in an array. An array
element is referenced using the array name and a sequence of
numbers called subscripts. The subscripts identify the memory
location by its position within the array.

ASCII

An acronym for American Standard Code for Information
Interchange. Under this coding system, each character in a
prescribed set is given a 7-bit code. NOS/VE stores each 7-bit
ASCII code right-justified in an 8-bit byte, with the first bit
set to zero.

Revision E Glossary A-I

Glossary

B
BASIC

An elementary programming language whose name is an acronym for
Beginner's All-purpose Symbolic Instruction Code.

Batch Mode

An execution mode where a job is submitted and processed as a
unit with no intervention from the user. Contrast with
interactive mode.

Beginning-of-information (BOI)

The point at which data begins in a file.

Binary Data

Data that is stored using the computer's internal binary
representation. Binary data cannot be printed in readable
form. Contrast with Coded Data.

Binary Object Program

Bit

An executable machine language program that is produced from a
source program by a compiler.

A binary digit, either a or 1. A bit is the smallest unit of
storage in a computer. See also Byte.

Block

A group of logically or physically related statements or lines.

Block Function

I BM

Byte

A multi-statement user-defined function whose function body is a
block. A block function is a NOS/VE BASIC routine. Contrast
with Expression Function.

See Beginning-of-information.

A group of consecutive bits constituting a storage unit in the
computer. A NOS/VE byte is 8 bits long and can hold the ASCII
code for a single character.

A-2 BASIC for NOS/VE Usage Revision E

Glossary

c
Call-By-Address

A parameter passing style where the address of an actual
parameter is passed to the corresponding formal parameter.
Contrast with Call-By-Value.

Call-By-Reference

See Call-By-Address.

Call-By-Value

A parameter passing style where the value of an actual parameter
is stored in a temporary memory location. The address of this
temporary memory location, rather than the address of the actual
parameter, is passed to the corresponding formal parameter.
Contrast with Call-By-Address.

Catalog

1. A directory of files and catalogs maintained by the system
for a user. The catalog $LOCAL contains all temporary file
entries.

2. The part of a path that identifies a particular catalog in a
catalog hierarchy. The format is as follows:

name. name. .name

Each name is a catalog.

See also Catalog Name and File Path.

Catalog Name

The name of a catalog. The catalog name is used in a file
path. By convention, the name of the user's master catalog is
the same as the user's user name.

Channel

A path for transmitting data between a BASIC program and a
NOS/VE file.

Character

A letter, digit, space, or other symbol that is represented by a
code in one or more of the standard character sets. NOS/VE
supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977).

Coded Data

Data that is stored as a sequence of ASCII codes. Coded data
can be printed in readable form. Contrast with Binary Data.

Revision E Glossary A-3

Glossary

Comment

A sequence of characters that is ignored by the compiler, and is
used for program documentation.

Compile

To translate a program written in a high-level language into
machine language program that can be loaded and executed.

Compiler

A processor that translates code from a high-level programming
language into machine language. That is, a processor that
translates a source program into a binary object program.

Compiler Sequence Number

See Line Number.

Compile-time

The time during which a program is being compiled.

Constant

A value that must remained fixed during program execution.

Cycle

A numbered version of a permanent file. All cycles of a file
share the same file entry in a catalog. The file cycle is
specified in a file reference by its cycle number or by a
special indicator, such as $NEXT.

See also Cycle Number and Cycle Reference.

Cycle Number

An unsigned integer from 1 through 9999 that identifies a
specific version of a permanent file.

See also Cycle and Cycle Reference.

Cycle Reference

The cycle of a permanent file to be accessed. A cycle reference
can be either an unsigned integer from 1 through 9999 or one of
the following designators:

$HIGH
$LOW
$NEXT

See also Cycle and Cycle Number.

A-4 BASIC for NOS/VE Usage Revision E

Glossary

Debug

The NOS/VE command utility for tracing and correcting program
errors.

Default

The process by which a value, parameter, attribute, or option is
assigned by the program or the system when the item is not
specified by the user.

Diagnostic

An error message.

Dynamic Dimensioning

An array mode established at compile time that allows changing
array dimensions during program execution.

End-of-information (EOI)

The point at which data in a file ends.

EOI

See End-of-information.

Exception

A runtime error.

Execution-time

See Runtime.

Expression

One or more constants, variables, or function references that
are linked by operators. Subexpressions occurring within an
expression can be enclosed within parentheses.

Expression Function

A single-qtatement user-defined function whose function body
consists of a single expression. An expression is not a NOS/VE
BASIC routine. Contrast with Block Function.

External Routine

A NOS/VE BASIC main program or subprogram. An external routine
can be compiled by itself.

Revision E Glossary A-5

Glossa~

F
Family

A logical grouping of NOS/VE users that determines the location
of their permanent files. A family can be subdivided into
accounts and projects.

Family Path

Identifies a file via a family name and a user path using one of
the following formats:

:family.user_path

$FAMILY.user-path

Field

File

1. A named subdivision of a record in a random file.

2. A section of the print line that is designated for specially
formatted output.

A named collection of data, often organized into logically
related groups called records. A file is identified by
specifying a path and, optionally, a cycle reference (for
permanent files) as follows:

path. cycle

File Access Method

The method by which records can be read from or written to a
file. See also Random Access and Sequential Access.

File Access Mode

A NOS/VE file attribute that determines the I/O operations that
can be performed on a file. Possible file access modes include
read, write, and execute.

File Attribute

A characteristic of a file. Each file has a set of attributes
that define the file structure and processing limitations.

File Name

The name of a NOS/VE file. The name is used in a file reference
to identify the file.

See also File Reference and Name.

• A-6 BASIC for NOS/VE Usage Revision E

Glossary

File Organization

The NOS/VE file attribute that determines which file access
method can be used with a file. For example, SEQUENTIAL file
organization permits sequential access, while BYTE ADDRESSABLE
file organization permits random access.

File Path

Identifies a file. A path can include the family name, user
name, subcatalog name or names, and file name.

File Position

The location in a file at which the next read or write operation
begins. A file that can be positioned is identified by
specifying a path, an optional cycle reference (for permanent
files), and an optional file position as follows:

path. cycle. file_position

The file position designators are:

$ASIS
$BOI
$EOI

File Reference

Leave the file in its current position.
Position the file at the beginning-of-information.
Position the file at the end-of-information.

An SCL element that identifies a file and, optionally, the file
position to establish prior to using the file. The format of a
file reference is:

:family.user_name.catalog.file_name.cycle.file_position

See also Catalog, Cycle, Family, File, File Position, and User
Name.

Formal Array

An array in a NOS/VE BASIC routine that acts as a placeholder
for an actual array. A formal array is denoted by an array name
followed by parentheses that contain zero or more commas.

Formal Parameter

A variable or array in a procedure that acts as a placeholder
for an actual parameter.

Function

A procedure that returns a value to the place in an expression
where the procedure was called. See also Block Function and
Expression Function.

Revision E Glossary A-7.

Glossary

I
Identifier

A name that labels a program component or specifies some action
or attribute within a program. A NOS/VE BASIC identifier can
have at most 31 characters, and consists of a letter followed by
a series of letters, digits, and periods, optionally followed by
a type specification symbol.

Interactive Mode

A mode of execution where the user enters commands or data at
the terminal during program execution.

Internal Routine

K

A NOS/VE BASIC block function or subroutine that is embedded
within a main program or subprogram. An internal routine cannot
be compiled by itself.

Keyword

L

An identifier that has a preassigned meaning when it is used in
a specific context.

Label

A positive integer of at most six digits that is supplied by the
programmer. A label can be used to reference a line during
program execution. Contrast with Line Number.

Library Function

A system-supplied function.

Line Number

A number assigned to a program line by the compiler to denote
the physical position of the line within a program. A line
number cannot be used to reference a line during program
execution. Contrast with Label.

I A-8 BASIC for NOS/VE Usage Revision E

Glossary

Local File

A temporary NOS/VE file. The $LOCAL catalog contains temporary
files. Temporary files are preserved only throughout your
NOS/VE session; they are discarded when you log out of NOS/VE.

See also File, File Path, and Local Path.

Local Path

Identifies a local file as follows:

$LOCAL.file_name

M

Main Program

The only NOS/VE BASIC routine in a program that can be executed
by itself. A main program is an external routine that is not a
subprogram.

Master Catalog

N

The catalog NOS/VE maintains for each new user name. The master
catalog contains entries for all permanent files and catalogs a
user creates. By convention, the name of the master catalog is
the same as the user name.

Name, NOS/VE

A combination of from 1 through 31 characters chosen from the
following set:

Alphabetic characters (A through Z and a through z).
Digits (0 through 9).
Special characters (II @ $ [] A' { } I -).

The first character of a NOS/VE name cannot be a digit.

Null String

A string constant or string variable that has a length of zero.

o
Object Program

See Binary Object Program.

Revision E Glossary A-9.

Glossary

p

Parameter Passing

The manner in which an actual parameter is passed to the
corresponding formal parameter when a procedure is called. See
also Call-By-Addresss and Call-By-Value.

Permanent Catalog

A catalog of permanent files.

Permanent File

A file preserved by NOS/VE across job executions and system
deadstarts. A permanent file has an entry in a permanent
catalog.

See also File and Permanent Catalog.

Plain Name

R

A NOS/VE BASIC identifier that does not contain a type
specification symbol (%, !, #, or $) as its last character.

Random Access

A file access method in which records can be read or written in
any order. Contrast with Sequential Access.

Random File

A file that can be accessed randomly.

Record

The smallest subdivision of a file that can be processed by a
single I/O request.

A-IO BASIC for NOS/VE Usage Revision E

Glossary

Relative Path

Identifies a file via defaults established with the current
working catalog or an absolute path. A relative path is used in
a family path, user path, and local path. NOS/VE supplies any
omitted values necessary to create an absolute path. For
example, the following file reference identifies a NOS/VE file
named PROGI INPUT:

:vOI.joe_user.basic.progl_input

If you are logged in to the user name JOE USER and the working
catalog is set to $USER, you can identify-the file named
PROGI_INPUT with the following relative path:

basic.progl_input

Reserved Word

A keyword that is reserved exclusively for program or system use
and cannot be used by the programmer for his own purpose.

Routine

A NOS/VE BASIC main program, block function, or subroutine.

Runtime

The time during which a program is being executed.

§

Sequential Access

A file access method in which records must be read or written in
the order of their physical location within a file. Contrast
with Random Access.

Sequential File

A file that can be accessed sequentially.

Source Program

A program written in a high-level language such as BASIC or
FORTRAN.

Revision E Glossary A-II

Glossary

Standard File

A file that provides a default file for use by job files and
other files. The standard files are identified by the following
names:

$ECHO
$ERRORS
$INPUT
$LIST
$OUTPUT
$RESPONSE

When running a BASIC program in batch mode, messages generated
by PRINT statements are written to the standard file $OUTPUT,
which is connected to the real file OUTPUT; this OUTPUT file
automatically prints when the job completes.

Static Dimensioning

An array mode that fixes array dimensions at compile time to
provide greater program efficiency.

Status Condition Code

The 4-digit code that uniquely identifies a NOS/VE runtime
diagnostic. The first two digits of a NOS/VE BASIC status
condition code are 54.

Subprogram

A NOS/VE BASIC routine that can be compiled by itself, but
cannot be executed by itself. A subprogram is either an
external block function or an external subroutine. That is, a
subprogram is an external routine that is not a main program.

Subroutine

A procedure that performs specific tasks for a calling procedure.

Subscripted Variable

See Array Element.

Substring

A string variable consisting of zero or more consecutive
character positions within a given string variable. A NOS/VE
BASIC substring is expressed using either colon-substring
notation or a MID$ reference.

System Command Language (SCL)

The block-structured interpretive language that provides the
interface to the features and capabilities of NOS/VE. All
commands and statements are interpreted by SCL before being
processed by the system.

A-12 BASIC for NOS/VE Usage Revision E

Glossary

T
Temporary File

A file in the NOS/VE $LOCAL catalog that disappears when the
user logs off.

User Name

A name that identifies a NOS/VE user and the location of the
user's permanent files in the user's family.

User Path

Identifies a file or catalog via a user name and, optionally, a
relative path using one of the following formats:

$USER.relative_path

See also Relative Path and User Name.

Variable

w

A named memory location that is allowed to store different
values at different times during program execution.

Working Catalog

The catalog used if no other catalog is specified on a file
reference. The $LOCAL catalog is the default working catalog.
You can change the working catalog by using the
SET_WORKING_CATALOG command.

Revision E Glossary A-13.

IB

This appendix lists the ASCII character set (table B-1) used by the
NOS/VE system.

NOS/VE supports the American National Standards Institute (ANSI)
standard ASCII character set (ANSI X3.4-1977). NOS/VE stores the
7-bit ASCII code for each character right-justified in an 8-bit
byte, with the first bit set to zero.

Table B-1. ASCII Character Set

Decimal
Code

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

Revision B

ASCII Code

Hexad ec imal
Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
lD
IE

Octal
Code

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
025
027
030
031
032
033
034
035
036

Graphic or
Mnemonic

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS

Name or meaning

Null
Start of Heading
Start of Text
End of Text
End of Transmission
Enquiry
Ac kno wi edg e
Bell
Backspace
Horizontal Tabulation
Line Feed
Vertical Tabulation
Form Feed
Carriage Return
Shift Out
Shift In
Data Link Escape
Device Control 1
Device Control 2
Device Control 3
Device Control 4
Negative Acknowledge
Synchronous Idle
End of Tran. Block
Cancel
End of Medium
Substitute
Escape
File Separator
Group Separator
Record Separator

(Continued)

ASCII Character Set B-1

ASCII Character Set

Table B-1. ASCII Character Set (Continued)

ASCII Code

Decimal Hexadecimal Octal Graphic or
Code Code Code Mnemonic Name or meaning

031 IF 037 US Unit Separator
032 20 040 SP Space
033 21 041 Exclamation Point
034 22 042 Quotation Marks
035 23 043 /I Number Sign
036 24 044 $ Dollar Sign
037 25 045 % Percent Sign
038 26 046 & Ampersand
039 27 047 Apostrophe
040 28 050 (Opening Parenthesis
041 29 051) Closing Parenthesis
042 2A 052 * Asterisk
043 2B 053 + Plus
044 2C 054 Comma
045 2D 055 Hyphen
046 2E 056 Period
047 2F 057 / Slant
048 30 060 0 Zero
049 31 061 1 One
050 32 062 2 Two
051 33 063 3 Three
052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven
056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon
060 3C 074 < Less Than
061 3D 075 Equal To
062 3E 076 > Greater Than
063 3F 077 Question Mark
064 40 100 @ Commercial At
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 C Uppercase C
068 44 104 D Uppercase D
069 45 105 E Uppercase E

(Con tin ued)

B-2 BASIC for NOS/VE Usage Revision B

ASCII Character Set

Table B-1. ASCII Character Set (Continued)

ASCII Code

Decimal Hexadecimal Octal Graphic or
Code Code Code Mnemonic Name or meaning

070 46 106 F Uppercase F
071 47 107 G Uppercase G
072 48 110 H Uppercase H
073 49 111 I Uppercase I
074 4A 112 J Uppercase J
075 4B 113 K Uppercase K
076 4C 114 L Uppercase L
077 4D 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0
080 50 120 P Uppercase P
081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 S Uppercase S
084 54 124 T Uppercase T
085 55 125 U Uppercase U
086 56 126 V Uppercase V
087 57 127 W Uppercase W
088 58 130 X Uppercase X
089 59 131 y Uppercase y
090 SA 132 Z Uppercase Z
091 5B 133 [Opening Bracket
092 5C 134 \ Reverse Slant
093 5D 135] Closing Bracket
094 5E 136 Circumflex
095 SF 137 Underline
096 60 140 ~ Grave Accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c
100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f
103 67 147 g Lowercase g
104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k
108 6C 154 1 Lowercase 1
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n

(Continued)

Revision B ASCII Character Set B-3

ASCII Character Set

Table B-1. ASCII Character Set (Continued)

ASCII Code

Decimal Hexadecimal Octal Graphic or
Code Code Code Mnemonic Name or meaning

111 6F 157 0 Lowercase 0

112 70 160 p Lowercase p
113 71 161 q Lowercase q
114 72 162 r Lowercase r
115 73 163 s Lowercase s
116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w
120 78 170 x Lowercase x
121 79 171 y Lowercase y
122 7A 172 z Lowercase z
123 7B 173 Opening Brace
124 7C 174 Vertical Line
125 7D 175 Closing Brace
126 7E 176 Tilde
127 7F 177 DEL Delete

B-4 BASIC for NOS/VE Usage Revision B

Compile-time is the time during which a program is being compiled.
A compile-time error is a violation of the rules governing the
structure and arrangement (the syntax) of BASIC statements. A
diagnostic (error message) is issued by the compiler when such an
error occurs. This diagnostic contains information to help you find
the cause of the error.

This appendix discusses the format of NOS/VE BASIC compile-time
diagnostics. It also lists and describes the BASIC compile-time
diagnostics. The diagnostics are listed in numerical order.

When a program is compiled, the compiler generates a line number
(compiler sequence number) for each program line. The first line is
denoted line number 1, the second line is denoted line number 2, and
so forth.

Line numbers are used in compile-time diagnostics to specify error
location. Line numbers have nothing to do with BASIC labels, which
you provide to reference lines from within your program.

NOS/VE BASIC runtime error diagnostics are listed in the Diagnostic
Messages for NOS/VE Usage manual, publication number 60464613. The
Diagnostic Messages manual is also available online. To read the
online manual, log in to NOS/VE and type the following EXPLAIN
command:

explain manual=messages

The online manual named MESSAGES is then displayed.

You can also read the online manual when you receive
message. When a diagnostic is displayed, type HELP.
Messages online manual is then displayed; the screen
describes the diagnostic message you received.

a diagnostic
The Diagnostic

displayed

Revision E Compile-time Diagnostics C-18

Compile-time Diagnostics

(BC 10) Unable to open LIST file {file}.

Severity Level: Fatal

Description: The list file specified by the LIST parameter of
the BASIC command is not available for write access.

User Action: Check that the correct file was specified. This
can be done with this command:
ATTACH FILE,file,ACCESS MODES=WRITE. Attach the list file
requesting write access-(modify, shorten, and append). For more
on access modes, see the NOS/VE System Usage manual.

(BC 20) Unable to open INPUT file {file}.

Severity Level: Fatal

Description: The source text file specified by the INPUT
parameter of the BASIC command is not available for read access.

User Action: Check that the correct file was specified.
Attach the source text file requesting read access.

(BC 21) INPUT file specified for BASIC is empty.

Severity Level: Fatal

Description: The source file specified by the INPUT (I)
parameter of the BASIC command contains no data.

User Action: Check that the correct file was specified and
that the file position $EOI is not specified.

(BC 22) This source line exceeds {integer} characters; it has been
truncated.

Severity Level: Fatal

Description: The number of characters in a source line exceeds
the NOS/VE BASIC maximum line length of 255. As a result, the
line has been truncated.

User Action:
lines.

Split the source line into two or more valid

C-2 BASIC for NOS/VE Usage Revision E

Compile-time Diagnostics

(BC 23) Unprintable character, ASCII code {integer} (decimal),
encountered.

Severity Level: Fatal

Description: Characters with ASCII decimal codes in the range
0-31 function as control characters and are unprintable. The
message gives the decimal code of the unprintable character code.

User Action: Retype the source line.

(BC 26) System failure reading INPUT: {file}.

Severity Level: Catastrophic

Description: You have uncovered a problem with the NOS/VE
BASIC compiler.

User Action: Follow the procedure established at your site for
reporting software problems.

(BC 30) Unable to open the BINARY file {file}.

Severity Level: Fatal

Description: The binary object file {file} specified by the
BINARY OBJECT parameter of the BASIC command is not available
for modify access.

User Action: Check that the correct file was specified. This
can be done with this command:
ATTACH FILE,file,ACCESS MODES=WRITE. Attach the binary object
file {file} requested by write access. For more information on
access modes, see the NOS/VE System Usage manual.

(BC 31) BINARY OBJECT file {file} FILE CONTENTS must be OBJECT or
UNKNOWN.

Severity Level: Fatal

Description: The FILE_CONTENTS attribute of the file specified
by the BINARY_OBJECT parameter is not OBJECT or UNKNOWN.

User Action: Check that the correct file was specified. To
change the FILE CONTENTS value, use a SET_FILE_ATTRIBUTES
command specifying FILE_CONTENTS=DATA or FILE_CONTENTS=UNKNOWN.

Further Information: To display information about a file, use
the DISPLAY FILE ATTRIBUTES command described in the NOS/VE
System Usag; and-NOS/VE Commands and Functions manuals.

Revision E Compile-time Diagnostics C-3

Compile-time Diagnostics

(BC 32) BINARY file {file}'s FIL~ORGANIZATION must be SEQUENTIAL or
BYTE_ADDRESSABLE.

Severity Level: Fatal

Description: The FILE ORGANIZATION attribute of the file
specified by the BINARY OBJECT parameter is not SEQUENTIAL or
BYTE_ADDRESSABLE.

User Action: Check that the correct file was specified. To
change the FILE ORGANIZATION value, use a SET FILE ATTRIBUTES
command specifyIng FILE ORGANIZATION=SEQUENTIAL or
FILE_ORGANIZATION=BYTE_ADDRESSABLE.

Further Information: To display information about a file, use
the DISPLAY FILE ATTRIBUTES command described in the NOS/VE
System Usage and-NOS/VE Commands and Functions manuals.

(BC 33) BINARY file {file}'s FILE STRUCTURE must be DATA or UNKNOWN.

Severity Level: Fatal

Description: The FILE STRUCTURE attribute of the file
specified by the BINARY:OBJECT parameter is not DATA or UNKNOWN.

User Action: Check that the correct file was specified. To
change the FILE STRUCTURE value, use a SET FILE ATTRIBUTES
command speCifying FILE_STRUCTURE=DATA or FILE_STRUCTURE=UNKNOWN.

Further Information: To display information about a file, use
the DISPLAY FILE ATTRIBUTES command described in the NOS/VE

·System usag; and-NOS/VE Commands and Functions manuals.

(BC 34) The BINARY file {file} must have MODIFY access.

Severity Level: Fatal

Description: The job does not have modify access to the file
specified by the BINARY_OBJECT parameter.

User Action: Check that the correct file was specified. To
change the access mode, attach the file specifying modify access.

Further Information: To display information about a file, use
the DISPLAY FILE ATTRIBUTES command described in the NOS/VE
System Usage and-NOS/VE Commands and Functions manuals.

C-4 BASIC for NOS/VE Usage Revision E

Compile-time Diagnostics

(BC 50) Magnitude of integer constant is too large.

Severity Level: Warning

Description: The magnitude of an integer constant exceeds the
maximum integer size of
(2 A 63 - 1), which is approximately (9.2 * 10A 18).

User Ac tion: Replace the invalid integer constant with a valid
one.

(BC 51) Magnitude of real constant is too large.

Severity Level: Fatal

Description: The magnitude of a real constant exceeds the
maximum real number size of (2 A 4095), which is approximately
(5.2 * 10 A 1232).

User Ac tion: Replace the invalid real constant with a valid
one.

(BC 53) Malformed numeric constant.

Severity Level: Fatal

Description: A numeric constant is improperly formed. Most
likely, a digit or decimal point in a numeric constant is not
followed by a digit or separator.

User Action: Make the required correction.

(BC 60) Magnitude of hexadecimal constant is too large.

Severity Level: Fatal

Description: The magnitude of a hexadecimal integer constant
exceeds the maximum integer size of (2 A 63 - 1). In BASIC
hexadecimal form, this magnitude is written as
&H7FFFFFFFFFFFFFFF.

User Action:
valid one.

Revision C

Replace the invalid hexadecimal 'constant with a

Compile-time Diagnostics C-5

Compile-time Diagnostics

(BC 61) Empty hexadecimal constant.

Severity Level: Fatal

Description: An inappropriate character or blank follows the
symbols &H in a hexadecimal integer constant.

User Action: Delete any inappropriate characters and spaces
between the symbols &H and the first hexadecimal digit.

(BC 62) Magnitude of octal constant is too large.

Severity Level: Fatal

Description: The magnitude of an octal integer constant
exceeds the maximum integer si ze of (2 "'63 - 1). In BAS IC octal
form, this magnitude is written as &0777777777777777777777.

User Ac tion: Replace the invalid octal constant with a valid
one.

(BC 63) Empty octal constant or misuse of ampersand.

Severity Level: Fatal

Description: An inappropriate character or space follows the
symbols &0 in an octal integer constant, or follows the symbol &
in a hexadecimal or octal integer constant.

User Action: If the ampersand is a typographical error,
correct it. Delete any inappropriate characters and spaces.

(BC 70) Compiler failure during integer constant conversion.

Severity Level: Catastrophic

Description: You have uncovered a problem with the NOS/VE
BASIC compiler.

User Ac tion: Follow the procedure established at your site for
reporting software problems.

(BC 71) Compiler failure during conversion of real constant.

Severity Level: Catastrophic

Description: You have uncovered a problem with the NOS/VE
BAS IC compiler.

User Action: Follow the procedure established at your site for
reporting software problems.

C-6 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 75) Numeric overflow in evaluation of constant expression.

Severity Level: Fatal

Description: The evaluation of a numeric expression used for
an array bound in a DIM statement yields an overflow.

User Action:
overflow.

Correct the array bound dimension that caused the

(BC 76) Numeric underflow in evaluation of constant expression.

Severity Level: Fatal

Description: The evaluation of a numeric expression used for
an array bound in a DIM statement yields an underflow.

User Action:
underflow.

Correct the array bound dimension that caused the

(BC 77) Numeric indefinite in evaluation of constant expression.

Severity Level: Fatal

Description: The evaluation of a numeric expression used for
an array bound in a DIM statement yields an indefinite value.

User Action: Correct the array bound dimension that caused the
indefinite value.

(BC 78) Divide faul t in evaluation of constant expression.

Severity Level: Fatal

Description: The evaluation of a numeric expression used for
an array bound in a DIM statement yields a divide fault.

User Action: Correct the array bound dimension that caused the
divide fault.

(BC 100) The second letter alphabetically precedes the first.

Severity Level: Fatal

Description: The letter in the second component of a type
declaration statement alphabetically precedes the letter in the
first component.

User Action:
typographical

Revision C

See if the letter in the second component is a
error. Make the required correction.

Compile-time Diagnostics C-7

Compile-time Diagnostics

(BC 101) Only a single letter is legal in this position in a type
declaration statement.

Severity Level: Fatal

Description: In the letter list of a type declaration
statement, only a single letter can appear as an individual item
or as a component of a letter range. A list of identifiers is
not permitted.

User Action: Check for extraneous characters on either side of
a letter or letter range component.

(BC 102) The default type of identifiers beginning with the letter
{character} already has been established at line {integer}, column
{integer}.

Severity Level: Fatal

Description: Once a letter has been used (or its use has been
implied by a range of letters) in a DEFINT, DEFSNG, DEFDBL or
DEFSTR statement, it may not be so used or implied again.

User Action: Replace {character} by an unreserved identifier.

(BC 110) Misuse of reserved word {identifier}.

Severity Level: Fatal

Description: A type declaration statement that lists the
letter {identifier} is redundant or contradicts a previous
declaration.

User Action: Make sure you have specified the correct letter.
Delete a redundant specification. Delete an inconsistent
specification from one of the two type declaration statements,
and modify any identifiers that are affected by the change.

(BC 120) EXTERNAL must be followed by FUNCTION or SUB.

Severity Level: Fatal

Description: The keyword FUNCTION or SUB must follow the
keyword EXTERNAL in the specification of an external routine.

User Action: Supply the appropriate keyword FUNCTION or SUB.
Check for extraneous characters between the keyword EXTERNAL and
the keyword FUNCTION or SUB.

C-8 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 121) SUB or FUNCTION required.

Severity Level: Fatal

Description: The keyword FUNCTION or SUB that must follow the
keyword DECLARE or the optional keyword EXTERNAL in a DECLARE
statement is missing or misplaced.

User Action: Supply the appropriate keyword FUNCTION or SUB.
Check for extraneous characters between the keyword DECLARE and
the keyword EXTERNAL. Check for extraneous characters between
the keyword DECLARE and the keyword FUNCTION or SUB.

(BC 125) Subroutine name is missing or is not a plain name.

Severity Level: Fatal

Description: The subroutine name in a CALL or CALLX statement
is missing, is not a valid identifier, or is invalid because it
contains a type specification symbol.

User Action: Supply a valid plain name for the subroutine
name, and make sure it matches the name used in the
corresponding SUB statement. Remember that an identifier must
begin with a letter.

(BC 127) Routine name must be an identifier.

Severity Level: Fatal

Description: A name specified for a routine in a FUNCTION or
SUB statement is not a valid identifier. The invalid name
probably does not begin with a letter or may contain disallowed
characters.

User Action: Make the required correction.

Revision E Compile-time Diagnostics C-9

Compile-time Diagnostics

(BC 128) Expression function name must be an identifier.

Severity Level: Fatal

Description: A name used for an expression function in a DEF
statement is not a valid identifier. The invalid name probably
does not begin with a letter or may contain disallowed
charac ters.

User Action: Make the required correction.

(BC 129) Subroutine name cannot contain a type specification.

Severity Level: Fatal

Description: A subroutine name in a SUB statement must be a
plain name, that is, it cannot contain a type specification
symbol.

User Action: Delete the type specification symbol from the
subroutine name. Modify the CALL statements that are affected
by the change.

(BC 140) An OPTION BASE must be 0 or 1.

Severity Level: Fatal

Description: Only the integer 0 or 1 can be specified for an
OPTION BASE.

User Action: Specify the appropriate OPTION BASE 0 or 1. Use
a DIM statement to specify a dimension lower bound other than 0
or 1.

(BC 141) OPTION BASE already has been set at line {integer}, column
{integer} •

Severity Level: Fatal

Description: At most one OPTION BASE statement can appear in
each external routine. An OPTION BASE for arrays in this
external routine has already been established at line {integer},
column {integer}.

User Action: Specify the appropriate OPTION BASE 0 or 1.
Delete a redundant specification.

C-I0 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 142) OPTION BASE must be followed by an integer.

Severity Level: Fatal

Description: The OPTION BASE value is missing or is not an
integer.

User Action: Supply the appropriate OPTION BASE: a or 1.
Check for extraneous characters on either side of 0 or 1.

(BC 143) OPTION must be followed by BASE.

Severity Level: Fatal

Description: The keyword BASE must follow the keyword OPTION.

User Action: Supply the required keyword BASE. Check for
extraneous characters on either side of the keyword BASE.

(BC 147) OPTION BASE statement must precede the DIM statement at
line {integer}, column {integer}.

Severity Level: Fatal

Description: An OPTION BASE statement must precede the first
DIM statement that uses the default lower bound specification.
The DIM statement at line {integer}, column {integer} is such a
statement.

User Action: Move the OPTION BASE statement so that it
precedes the DIM statement at line {integer}, column {integer}.

(BC 151) OPTION BASE statement must precede the array reference at
line {integer}, column {integer}.

Severity Level: Fatal

Description: In an external routine for which arrays are
statically dimensioned, the OPTION BASE statement must precede
the first reference to an array that is not declared in a DIM
statement.

User action: Move the OPTION BASE statement so that it
precedes the array reference at line {integer}, column {integer}.

Revision C Compile-time Diagnostics C-ll

Compile-time Diagnostics

(BC 160) Identifier required in COMMON list.

Severity Level: Fatal

Description: A COMMON list is missing or contains a name that
is not a valid identifier. A valid identifier begins with a
letter.

User Action: Supply the COMMON list or make the required
correction to the identifier.

(BC 161) This declaration of the COMMON array {array name} is
redundant; see also line {integer}, column {integer}.

Severity Level: Warning

Description: This declaration of the array {array name} as a
COMMON array is redundant. The array {array name} first appears
in a COMMON statement at line {integer}, column {integer}.

User Action: Make sure you have declared the correct COMMON
item. Delete a redundant declaration. Replace {array name} with
the correct formal array or scalar variable.

(BC 162) This declaration of the COMMON scalar {variable name} is
redundant; see also line {integer}, column {integer}.

Severity Level: Warning

Description: This declaration of the scalar variable {variable
name} as a COMMON scalar is not needed. The scalar variable
name {variable name} first appears in a COMMON statement at line
{integer, column {integer}}.

User Action: Make sure you have declared the correct COMMON
item. Delete a redundant declaration. Replace {variable name}
with the correct scalar variable or formal array.

(BC 164) COMMON declaration of {variable name} must precede its
first use at line {integer}, column {integer}.

Severity Level: Fatal

Description: A COMMON statement declaring the array or scalar
variable {variable name} as a COMMON item must precede all
references to {variable name}. The first reference to {variable
name} appears at line {integer}, column {integer}.

User Action: Move the COMMON statement so that it precedes the
first reference to {variable name}.

C-12 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 168) This declaration of the COMMON array {array name} is
inconsistent with the one at line {integer}, column {integer}.

Severity Level: Fatal

Description: The number of dimensions of array {array name}
specified in a COMMON statement is inconsistent with the
previous specification at line {integer}, column {integer}.

User Action: Make sure you have specified the correct array
name. Delete the array declaration that specifies the incorrect
number of dimensions. Make sure that the COMMON declaration for
{array name} precedes the first reference to {array name}.

(BC 175) ERASE statement is not allowed in a statically dimensioned
routine.

Severity Level: Fatal

Description: An ERASE statement is used in a BASIC routine for
which arrays are statically dimensioned.

User action: Delete the ERASE statement from the statically
dimensioned routine.

(BC 180) An array name must be an identifier.

Severity Level: Fatal

Description: A name used for an array in a DIM or ERASE
statement is not a valid identifier.

User Action: The invalid name probably does not begin with a
letter. Make the required correction.

(BC 183) Array name {array name} in DIM statement must be followed
by an open parenthesis.

Severity Level: Fatal

Description: A left parenthesis character [(] must follow an
array name {array name} in a DIM statement.

User Action: Supply the required open parenthesis. Check for
extraneous characters between the array name {array name} and
the open parenthesis.

Revision C Compile-time Diagnostics C-13

Compile-time Diagnostics

(BC 185) Expected a close parenthesis after the dimension bounds of
{array name}

Severity Level: Fatal

Description: The right parenthesis character [)] must
immediately follow the dimension bounds of the array {array
name} in a DIM statement.

User Action: Supply the missing close parenthesis. Check for
extraneous characters between the dimension bound specification
and the close parenthesis.

(BC 190) Static array {text} has already been dimensioned at line
{integer}, column {integer}.

Severity Level: Fatal

Description: In an external routine in which arrays are
statically dimensioned, an array can only be declared once by a
DIM statement.

User Action: Locate the array {text} dimensioning at line
{integer}, column {integer}, determine the correct declaration
and delete the extranious ones.

(BC 191) DIM of static array {text} must precede the reference at
line {integer}, column {integer}.

Severity Level: Fatal

Description: In an external routine for which arrays are
statically dimensioned, a DIM statement declares an array that
has dimensions already inferred because of a reference in a
previous statement.

User Action: Locate the reference at line {integer}, column
{integer} and the DIM statement, determine the correct
dimensioning and delete the incorrect one.

(BC 192) Array parameter {text} cannot be dimensioned in a
statically dimensioned routine.

Severity Level: Fatal

Description: In a routine with arrays dimensioned statically,
a DIM statement contains an array parameter of that routine.

User Action: Locate the DIM statement and delete array
parameter {text}.

C-14 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 195) DIM bound expression cannot be evaluated.

Severity Level: Fatal

Description: In a routine with arrays statically dimensioned,
a DIM statement contains a numeric expression used for a
dimension bound that is composed of operands other than numeric
constants or operators other than "+", "_", "/", II ", and "*".

User Action: Locate the DIM bound expression and look for
invalid operands or operators.

(BC 196) Array subscript upper bound is less than the lower bound.

Severity Level: Fatal

Description: In a routine in which arrays are statically
dimensioned, a DIM statement has a dimension's upper bound value
that is less than the dimension's lower bound.

User Action: Locate the DIM statement and verify the upper and
lower bound values.

(BC 197) Magnitude of array bound cannot exceed 2 31-1.

Severity Level: Fatal

Description: In a DIM statement in a routine in which arrays
are dimensioned statically, the magnitude of a dimension bound
is greater than 2 31-1.

User Action: Locate the DIM statement and correct the
dimension bound.

(BC 200) This declaration of {identifier} is redundant; see also
line {integer}, column {integer}.

Severity Level: Warning

Description: This declaration of the routine name {identifier}
is not needed. The name {identifier} was first used at line
{integer}, column {integer}.

User Action: If·{ identifier} has been used to name more than
one internal routine within this external routine (fatal error),
rename one of the internal routines. Modify all routine calls
that are affected by the change. If the specification statement
for routine {identifier} appears before a DECLARE statement and
contains the name {identifier}, a warning error results.

Revision C Compile-time Diagnostics C-15

Compile-time Diagnostics

(BC 205) This declaration of {identifier} is redundant; see also
line {integer}, column {integer}.

Severity Level: Fatal

Description: This declaration of the routine name {identifier}
is redundant. The name {identifier} was used at line {integer},
column {integer}.

User Action: If {identifier} has been used to name more than
one internal routine within this external routine (fatal error),
rename one of the internal routines. Modify all routine calls
that are affected by the change. If the specification statement
for routine {identifier} appears before a DECLARE statement and
contains the name {identifier}, a fatal error results.

(BC 215) The expression function {function name} was previously
defined on line {integer}, column {integer}.

Severity Level: Fatal

Description: The expression function name {function name} has
already been used to name an expression function at line
{integer}, column {integer}.

User Action: Delete a redundant definition. Rename one of the
functions -and modify all corresponding function references.

(BC 217) Illegal reference to expression function {function name} in
it own definition.

Severity Level: Fatal

Description: Expression function {function name} cannot be
referenced in its own defining expression. An expression
function cannot be defined recursively.

User Action: If recursion is intended, rewrite the function as
a block function. Otherwise, use another identifier in place of
{function name} in the defining expression.

(BC 220) Equal sign expected before defining expression in DEF
statement.

Severity Level: Fatal

Description: The equal sign that separates the expression
function name am the optional formal parameter list am the
defining expression is missing or misplaced.

User Action: Supply the required equal sign. Check for
extraneous characters between the parameter list or function
name and the equal sign.

C-16 BASIC for NOS/VE lliage Revision C

Compile-time Diagnostics

(BC 223) Expression function parameter must be an identifier.

Severity Level: Fatal

Description: The name used for a formal parameter of an
expression function is not a valid identifier. The invalid
name probably does not begin with a letter.

User Action: Make the required correction.

(BC 226) Name of expression function appears in its own parameter
list.

Severity Level: Fatal

Description: A single identifier has been used in a DEF
statement to name both the expression function and a formal
parameter.

User Action: Make sure the correct function name has been
provided. Rename the formal parameter.

(BC 228) Close parenthesis required after formal parameter list of
expression function.

Severity Level: Fatal

Description: A right parenthesis character [)] must follow the
formal parameter list of an expression function.

User Action: Supply the required close parenthesis. Check for
extraneous characters between the last formal parameter and the
close parenthesis.

(BC 230) Formal parameter {variable name} is not referenced in the
definition of {function name}.

Severity Level: Warning

Description: Formal parameter {variable name} appears in the
parameter list for expression function {function name}, but does
not appear in the defining function.

User Action: See if the formal p.~rameter {variable name} has
been misspelled in or inadvertently omitted from the defining
expression. Delete {variable name} from the parameter list if
it is not needed in the defining expression.

Revision C Compile-time Diagnostics C-17

Compile-time Diagnostics

(BC 232) No defintion of {function name} appears in the body of the
function.

Severity Level: Warning

Description: A returning value has not been assigned within
the body of function {function name}. Hence, either zero or the
null string will be returned, depending on the data type of
{function name}.

User Action: Within the function body, assign a returning
value to the function name {function name} using the format:

let function name = xxx

where xxx is an expression whose value is compatible with the
data type established by {function name}.

(BC 240) Formal parameter must be an identifier.

Severity Level: Fatal

Description: A name specified for a formal parameter in a SUB
or FUNCTION statement is not a valid identifier.

User Action: The invalid name probably does not begin with a
letter. Make the required correction.

(BC 242) Formal parameter list is inconsistent with the actual
parameter list at line {integer}, column {integer}.

Severity Level: Fatal

Description: A formal parameter list in a routine is
inconsistent with a previously specified actual parameter list
at line {integer}, column {integer} •

User Action: Make sure there is a one-to-one correspondence
between the formal and actual parameter lists. For routines, a
real value cannot be passed to an integer formal parameter. An
integer value cannot be passed to a real formal parameter. Make
sure that corresponding formal and actual parameters have the
same data type.

C-18 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 245) The subscript or parameter list of {identifier} is
inconsistent with that at line {integer}, column {integer}.

Severity Lev el : Fatal

Description: The subscript list of array {identifier} or the
parameter list of routine {identifier} is inconsistent with the
previous one at line {integer}, column {integer}.

User Action: Check the number of subscripts in the references
to array {identifier}. Change the incorrect reference. Make
sure there is a one-to-one correspondence between the formal and
actual parameter lists of routine {identifier}. Make sure
corresponding parameters have the same data type. Remember that
a real value cannot be passed to an integer formal parameter.
An integer value cannot be passed to a real formal parameter.

(BC 250) This use of the internal function name {function name} is
illegal except within {function name}.

Severity Level: Fatal

Description: A value can be assigned to the name of a function
only from within that function.

User Action: If this error occurs within a function, perhaps
the current function name was intended.

(BC 251) This use of external function name {function name} is
illegal except with {function name}.

Severity Level: Fatal

Description: A value can be assigned to the name of function
from only within that function.

User Action: If this error occurs within a function, perhaps
the current function name was intended.

(BC 260) Reference to an undefined internal {FUNCTION or SUB}
appears at line {integer}, column {integer}.

Severity Level: Fatal

Description: The internal {FUNCTION or SUB} is first
referenced at line {integer}, column {integer}, but this routine
has not been defined. The {FUNCTION or SUB} is replaced by
FUNCTION or SUB.

User Action: Make sure the name {FUNCTION or SUB} is the
correct routine name. See if the routine has been omitted from
the program.

Revision C Compile-time Diagnostics C-19

Compile-time Diagnostics

(BC 270) This use of {name} conflicts with the previous use at line
{integer}, column {integer}.

Severity Level: Fatal

Description: This use of the identifier {name} is
inconsistent with the prior use at line {integer}, column
{integer}.

User Action: See if the present use of {name} is correct. Use
distinct identifiers for distinct uses.

(BC 300) Internal routines may not contain other routines.

Severity Level: Fatal

Description: An internal routine cannot contain another
routine.

User Action: Look for two routines that overlap. Rethink the
structure of your program.

(BC 310) This is the {integer*} main program in this input file.

Severity Level: Warning

Description: The compiler has discovered more than one main
program in the source file.

User Action: If an external routine is followed by a
subprogram, the closing statement (END FUNCTION, END PROGRAM, or
END SUB) of the external routine must be immediately followed by
the subprogram specification statement. If any lines intervene,
even comments, the compiler interprets them as a main program.
Delete any such intervening lines.

(BC 320) END {identifier} is illegal at this point.

Severity Level: Fatal

Description: An END {identifier} statement appears in an
inappropriate location. The {identifier} is replaced by the
keyword FUNCTION, PROGRAM, or SUB.

User Action: An END {identifier} statement marks the physical
end of a routine. Replace {identifier} with the appropriate
keyword FUNCTION, PROGRAM, or SUB to identify the correct kind
of routine (function, main program, or subroutine).

C-20 BASIC for NOS/VE Usage Revision C

Compile-time Diagnoatics

(BC 325) Nothing can follow an END PROGRAM statement on a line.

Severity Level: Fatal

Description: When an END PROGRAM statement is required. it
must be the last statement in the main program's last line. No
non-blank characters in the line that contains the END PROGRAM
statement can follow the keyword PROGRAM.

User Action: Check for extraneous characters following the
keyword PROGRAM. Make the required correction.

(BC 330) Nothing can follow the END {FUNCTION or SUB} statement on a
line.

Severity Level: Fatal

Description: The END {FUNCTION or SUB} statement for an
external routine must be the last statement in the routine's
last line. NO non-blank characters in the same line as this
statement can follow the keyword {FUNCTION or SUB} The {FUNCTION
or SUB} is replaced by the keyword FUNCTION or SUB.

User Action: Check for extraneous characters following the
keyword {FUNCTION or SUB}. Make the required correction.

(BC 340) End of source file reached without finding an END {FUNCTION
or SUB} for {name}.

Severity Level: Fatal

Description: An external or internal function must end with an
END FUNCTION statement. An external or internal subroutine must
end with an END SUB statement.

User Action: Supply the appropriate END FUNCTION or END SUB
statement. Check for extraneous characters or missing spaces in
the vicinity of these phrases.

(BC 400) Compiler bug encountered in declaration of {name}.

Severity Level: Catastrophic

Description: You have uncovered a problem with the NOS/VE
BASIC canpiler.

User Action: Follow the procedure established at your site for
reporting software problems.

Revision C Compile-time Diagnostics C-21

Compile-time Diagnostics

(BC 410) Compiler failure--DATA statement has an empty body.

Severity Level: Catastrophic

Description: You have uncovered a problem with the NOS/VE
BASIC compiler.

User Action: Follow the procedure established at your site for
reporting software problems.

(BC 500) Label must be an integer.

Severity Level: Fatal

Description: A label reference in a GOSUB, GOTO, ON-GOSUB, or
ON-GOTO statement is missing or is not a positive integer. Note
that a label must be a positive integer of at most six decimal
digits.

User Action: Supply a valid label reference. Oleck for
extraneous characters or missing spaces on either side of the
label reference.

(BC 501) Zero is not a legal label.

Severity Level: Fatal

Description: A label must be a positive integer that does not
exceed 999,999. Zero is not a valid NOS/VE BASIC label.

User Action: Replace a with a valid label. Remember that each
label in an external routine must be greater than all preceding
labels in that external routine.

(BC 502) Label cannot exceed 999,999.

Severity Level: Fatal

Description: A label used to address a line must be a positive
integer of at most six decimal digits.

User Action: Supply a valid label and modify all label
references that are affected by the change.

C-22 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 503) Label not strictly greater than its predecessor.

Severity Level: Fatal

Description: Each label in an external routine must be greater
than all preceding labels in that external routine.

User Action: Relabel the line, and others as needed, so that
the labels in the external routine form an increasing sequence.

(BC 506) Illegal reference to label zero.

Severity Level: Fatal

Description: A reference to 0 instead of a valid label
reference appears in a GOSUB, GOTO, line IF, ON-GOSUB, ON-GOTO,
or RESTORE statement. NOte that a label must be a positive
integer of at most six digits.

User Action: Replace the reference to 0 with an appropriate
label reference.

(BC 508) Lab el refe rence requi red.

Severity Level: Fatal

Description: A label reference in a GOSUB, GOTO, ON~OSUB, or
ON-GOTO statement is missing, or is not a positive integer.
Note that a label must be a positive integer of at most six
digits.

User Action: Supply a valid label reference. Check for
extraneous characters or missing spaces on either side of the
label reference.

(BC 512) Label {integer} is undefined.

Severity Level: Fatal

Description: The label {integer} is being referenced, but has
not been defined.

User Action: Make sure you referenced the correct label.
Provide the appropriate line with the label {integer}.

Revision C Compile-time Diagnostics C-23

Compile-time Diagnostics

(BC 515) This reference to label {integer} enters or exits an
internal routine illegally.

Severity Level: Fatal

Description: A GOSUB, GOTO, ON ERROR, ON-GOSUB, ON-GOTO, or
RESUME statement uses label {integer} to branch illegally into
or out of an internal routine.

User Action: Make sure that {integer} is the correct
destination of the branch. Reconsider the structure of the
internal routine and the structure and placement of the
destination code. Perhaps, after reorganization, a function or
subroutine call can replace the statement that caused the
illegal branch.

(BC 518) Label or zero required in ON ERROR GOTO statement.

Severity Level: Fatal

Description: A label reference or the value 0 must follow the
keywords ON ERROR GOTO.

User Action: Supply the required label or value O. Check for
extraneous characters or missing spaces on either side of the
label reference or value O.

(BC 520) Expected GOTO or THEN to match the IF at line {integer},
column {integer}.

Severity Level: Fatal

Description: The keyword GOTO or THEN that must follow the
test expression in an IF statement is missing or misplaced.

User Action: Supply the appropriate keyword GOTO or THEN and
the subsequent statement or statements. Check for extraneous
characters between the test expression and the keyword GOTO or
THEN.

(BC 521) GOTO or GO TO required.

Severity Level: Fatal

Description: The keyword GOTO or the equivalent two-word
phrase GO TO must follow the keywords ON ERROR.

User Action: Supply the required keyword GOTO or the two-word
phrase GO TO. Check for extraneous characters or missing spaces
on either side of the keyword GOTO, GO, or TO.

C-24 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 522) GOSUB or GOTO required.

Severity Level: Fatal

Description: The keyword GOSUB or GOTO must follow the numeric
expression in an ON-GOSUB or ON-GOTO statement.

User Action: Supply the appropriate keyword GOSUB or GOTO.
Check for extraneous characters or missing spaces on either side
of the keyword GOSUB or GOTO.

(BC 523) Expected SUB or TO following GO.

Severity Level: Fatal

Description: The keyword GO must be followed by the keyword
SUB or TO.

User Action: Supply the appropriate keyword SUB or TO. Check
for extraneous characters on either side of the keyword SUB or
TO. Note that the two-word phrases GO SUB and GO TO can be
written as the single words GOSUB and GOTO.

BC 530) EXIT must be followed either by FUNCTION or by SUB.

Severity Level: Fatal

Description: The keyword FUNCTION or SUB must follow the
keyword EXIT.

User Action: Supply the appropriate keyword FUNCTION or SUB.
Check for extraneous characters on either side of the keyword
FUNCTION or SUB.

(BC 531) EXIT is illegal in a main program.

Severity Level: Fatal

Description: The appearance of the keyword EXIT in a main
program is illogical when it appears outside of an internal
routine. In addition, EXIT must always be followed by the
keyword FUNCTION or SUB, and must appear within an internal
routine or a subprogram.

User Action: Use an END statement if you intended to terminate
the program. If EXIT FUNCTION or EXIT SUB is what you intended,
supply the appropriate keyword FUNCTION or SUB, and move this
statement to its correct position within an internal routine.

Revision C Compile-time Diagnostics C-25

Compile-time Diagnostics

(BC 534) EXIT {FUNCTION or SUB} is illegal when the immediately
containing routine is {name}.

Severity Level: Fatal

Description: An EXIT {FUNCTION or SUB} statement makes no
sense within the context of {name}.

User Action: Change {FUNCTION or SUB} so that it corresponds
to the context of {name}. That is, replace {FUNCTION or SUB}
keyword FUNCTION if {name} is the phrase AN EXTERNAL SUBROtITINE
or AN INTERNAL SUBROUTINE. Replace {FUNCTION or SUB} with the
keyword SUB if {name} is the phrase AN EXTERNAL FUNCTION or AN
INTERNAL FUNCTION.

(BC 540) This IF and the block that begins at column {integer} are
not properly nested.

Severity Level: Fatal

Description: The ELSE or THEN clause of a line IF statement
must completely contain the block structure that begins at
column {integer}.

User Action: See if the ELSE or THEN clause contains a block
structure, such as a FOR-NEXT loop or IF construction, that
carries over to a second line. Remember that a line IF
construction must be completely contained in one line. If
necessary, replace the line IF with a block IF construction.

(BC 541) This ELSE and the block which begins at column {integer}
are not properly nested.

Severity Level: Fatal

Description: The ELSE clause of a line IF statement must
completely contain the block structure that begins at column
{integer} •

User Action: Make the required correction. If the block
structure will not fit in the remaining space in the line, use a
block IF construction.

C-26 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 542) This line IF and the block which ends at column {integer}
are not properly nested.

Severity Level: Fatal

Description: The components of a line IF statement and the
block structure that begins at column {integer} are not properly
nested.

User Action: If you are using a line IF construction, see if a
block structure, such as a FOR-NEXT loop, in the THEN clause
carries over' to a second line and is followed by an ELSE
clause. Remember that a line IF construction must be completely
contained in one line. If necessary, replace the line IF with a
block IF construction.

(BC 546) Line IF requires an end-of-statement in this position.

Severity Level: Fatal

Description: A colon or end-of-line is required in this
position in a line IF construction.

User Action: If the construction ends with a complete
statement, a colon to separate two statements in the THEN clause
has probably been omitted. Supply the required colon.
Otherwise, check for extraneous characters after the last
complete statement in the THEN clause.

(BC 550) Expected an ENDIF to close the ELSE at line {integer},
column {integer}.

Severity Level: Fatal

Description: If BLOCK or ELSE is left unclosed, the ENDIF is
required •

User Action: Supply the required ENDIF statement. Check for
extraneous characters on either side of the keyword ENDIF.

Revision C Compile-time Diagnostics C-27

Compile-time Diagnostics

(BC 552) Expected an ELSE IF , ELSE, or ENDIF, to follow the {IF or
ELSE} at line {integer}.

Severity Level: Fatal

Description: A block IF construction cannot end with a THEN
block. If any ELSEIF components appear, the {IF or ELSE} is
replaced by the keyword ELSE IF , and the last ELSEIF component is
located. Otherwise, the {IF or ELSE} is replaced by the keyword
IF, and the opening IF component is located.

User Action: Supply the missing ENDIF statement to complete
the block IF construction. Determine whether any ELSEIF
components and the ELSE block have been inadvertently omitted.

(BC 556) Expression following an {IF or ELSEIF} must be numeric.

Severity Level: Fatal

Description: The test condition for an {IF or ELSE IF}
component of a block IF construction must be a numeric
expression.

User Action: Make the required correction.

(BC 560) Expression following WHILE must be numeric.

Severity Level: Fatal

Description: The expression in a WHILE statement must be
numeric.

User Action: Make the required correction.

(BC 563) WHILE statement at line {integer}, column {integer} has no
corresponding WEND.

Severity Level: Fatal

Description: The loop, which begins with the WHILE statement
at line {integer}, column {integer}, has not been closed with a
WEND statement.

User Action: Supply the missing WEND statement.

C-28 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(Be 570) NEXT required for FOR at line {integer}, column {integer}.

Severity level: Fatal

Description: A loop that begins with the FOR statement at line
{integer}, column {integer} has not been closed by a
corresponding NEXT statement.

User Action: Supply the required NEXT statement. Check for
extraneous characters on either side of the keyword NEXT.

(Be 571) Error in control variable; should have been {name}.

Severity Level: Fatal

Description: If a control variable is specified on a NEXT
statement, it must correspond to a previous FOR statement at the
same nesting level.

User Ac tion: Supply the required control variable name.

(Be 573) TO required.

Severity level: Fatal

Description: The keyword TO that must follow the initial value
of the control variable in a FOR statement is missing or
misplaced.

User Action: Supply the required keyword TO. Check for
extraneous characters or missing spaces on either side of the
keyword TO.

Example:

FOR I=1 TO N STEP 5

(Be 578) Control variable must be an identifier.

Severity level: Fatal

Description: A name used for a control variable in a FOR
statement is not a valid identifier.

User Action: The invalid name probably does not begin with a
letter. Make the required correction.

Revision C Compile-time Diagnostics C-29

Compile-time Diagnostics

(BC 579) Control variable must be numeric.

Severity Level: Fatal

Description: The control variable in a FOR-NEXT loop must be a
numeric identifier.

User Action: Supply the required numeric variable. Check for
the appearance of the $ type specification symbol instead of the
intended symbol. If the invalid name is a plain name, replace
it with a plain name that has not been typed with a DEFSTR
statement. Be sure to change all references to the control
variable.

(BC 1000) I/O mode must be APPEND, INPUT, or OUTPUT.

Severity Level: Fatal

Description: An I/O mode of APPEND, INPUT, or OUTPUT must be
specified after the keyword FOR in this form of the OPEN
statement. Omit the I/O mode and the keyword FOR to specify the
default I/O mode of RANDOM.

User Action: Supply the appropriate keyword APPEND, INPUT, or
OUTPUT. Check for extraneous characters between the keyword FOR
and the I/O mode.

Example:

OPEN "FILENAME" FOR OUTPUT AS III
OPEN "RANDOM FILE" AS 118

(BC 1005) Expected "AS channel number".

Severity Level: Fatal

Description: The compiler expects the keyword AS to appear in
this position in an OPEN statement.

User Action: In format (A) of the OPEN statement, the I/O mode
must be followed by the keyword AS and a channel reference.
Supply the keyword and a channel reference. Check for
extraneous characters on either side of the keyword FOR. In
format (B) of the OPEN statement, a comma must follow the I/O
mode. Supply the required comma.

Examples:

OPEN "FILENAME" FOR OUTPUT AS 115

OPEN "OUTPUT', 115 ,"FILENAME"

C-30 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 1010) Expected = after LEN in record length specification.

Severity Level: Fatal

Description: The equal sign that must follow the keyword LEN
when specifying file record length in an OPEN statement is
missing or misplaced.

User Action: Supply the required equal sign. Check for
extraneous characters between the keyword LEN and the equal sign.

Example:

OPEN "FILENAME" FOR OUTPUT AS 118 LEN=64

(BC 1015) Expected a comma between channel number and file name.

Severity Level: Fatal

Description: A comma must follow the channel reference in this
form of the OPEN statement.

User Action: Supply the required comma. Check for extraneous
characters between the channel reference and the comma.

Example:

OPEN "OUTPUT" ,112,"FILENAME"

(BC 1050) A comma is required after the channel number in an INPUT
statement.

Severity Level: Fatal

Description: A comma is required after the channel reference
in an INPUT statement.

User Action: Supply the required comma. Check for extraneous
characters between the channel reference and the comma.

(BC 1055) A comma or semicolon is required after the prompt in an
INPUT statement.

Severity Level: Fatal

Description: The comma or semicolon after the prompt string in
an INPUT statement is missing or misplaced.

User Action: Supply the appropriate comma or semicolon. Check
for extraneous characters between the prompt string and the
comma or semicolon.

Revision C Compile-time Diagnostics C-31

Compile-time Diagnostics

(BC 1070) LINE can only be followed by INPUT.

Severity Level: Fatal

Description: The keyword INPUT that must follow the keyword
LINE is missing or misplaced.

User Action: Supply the required keyword INPUT. Check for
extraneous characters or missing spaces on either side of the
keyword INPUT.

(BC 1075) Channel expression must be followed by a comma in a LINE
INPUT statement.

Severity Level: Fatal

Description: The comma that must follow the channel reference
in a LINE INPUT statement is missing or misplaced.

User Action: Supply the required comma. Check for extraneous
characters between the channel reference and the comma.

(BC 1080) A comma or semicolon is required after the PROMPT in an
LINE INPUT statement.

Severity Level: Fatal

Description: The comma or semicolon after the prompt string in
a LINE INPUT statement is missing or misplaced.

User Action: Supply the appropriate comma or semicolon. Check
for extraneous characters between the prompt string and the
comma or semicolon.

(BC 1085) The input item in a LINE INPUT statement must be a string
variable.

Severity Level: Fatal

Description: The input item in a LINE INPUT statement must be
a string variable.

User Action: Replace your input item with a valid string
variable. Check for a missing type specification symbol $ or a
mistake in a DEFSTR statement.

C-32 BASIC for NOS/VE U3age Revision C

Compile-time Diagnostics

(BC 1100) Comma required after channel number in PRINT statement.

Severity Level: Fatal

Description: The comma that must follow the channel reference
in a PRINT statement is missing or misplaced.

User Action: Supply the required comma. Check for extraneous
characters between the channel reference and the comma.

(BC 1110) Format string must be followed by a semicolon.

Severity Level: Fatal

Description: A semicolon must follow the format string in a
PRINT USING statement.

User Action: Supply the required semicolon. Check for
extraneous characters between the format string and the
semicolon.

(BC 1120) Open parenthesis required after SPC or TAB.

Severity Level: Fatal

Description: The left parenthesis character [(] that must
follow the SPC or TAB library function name is missing or
misplaced.

User Action: Supply the required open parenthesis. Check for
extraneous characters between the function name and the open
parenthesis.

(BC 1121) Close parenthesis required after argument of SPC or TAB.

Severity Level: Fatal

Description: The right parenthesis character [)] for an SPC or
TAB library function reference is missing or misplaced.

User Action: Supply the required close parenthesis. Check for
extraneous characters between the argument and the close
parenthesis.

Revision C Compile-time Diagnostics C-33

Compile-time Diagnostics

(BC 1130) Comma required after channel number in WRITE statement.

Severity Level: Fatal

Description: A comma must follow the channel reference in a
WRITE statement.

User Action: Supply the required comma, even if you omit the
write list. Check for extraneous characters between the channel
reference and the comma.

Examples:

WRITE /17 ,A

WRITE 115,

(BC 1150) Premature end-of-statement in WIDTH statement--no width
has been specified.

Severity Level: Fatal

Description: The channel reference or special file reference
in a WIDTH statement must be followed by a comma and a page
width specification.

Use r Ac tion : Supply the required comma'and page width.

Examples:

WIDTH 113,65

WIDTH "PRINT", 72

(BC 1155) Comma required after file name in WIDTH statement.

Severity Level: Fatal

Description: In this form of the WIDTH statement, a comma must
follow the special file reference "PRINT" or "OUTPUT".

User Action: Supply the required comma. Check for extraneous
characters between the file name and the comma.

C-34 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(Be 1160) Comma or end-of-statement required after numeric
expression in WIDTH statement.

Severity Level: Fatal

Description: A comma or end-of-statement is required after the
numeric expression in a WIDTH statement.

User Action: If the numeric expression denotes a channel
reference, supply the required comma. Check for extraneous
characters between the channel reference and the comma. If the
numeric expression denotes a page width for the NOS/VE standard
file $OUTPUT, supply the required end-of-statement. Check for
extraneous characters between the channel reference and the
end-of-statement.

(Be 1200) A comma is required at this position in a FIELD statement.

Severity Level: Fatal

Description: A comma must follow the channel reference in a
FIELD statement.

User Action: Supply the required comma. Check for extraneous
characters between the channel reference and the comma.

(BC 1205) The reserved word AS is required at this position in a
FIELD statement.

Severity Level: Fatal

Description: The keyword AS that must follow a field length
specification in a FIELD statement is missing or misplaced.

User Action: Supply the required keyword AS. Check for
extraneous characters or missing spaces on either side of the
keyword AS.

Example:

FIELD #3, 30 AS S$, 20 AS T$

(BC 1210) A field name is required at this position in a FIELD
statement.

Severity Level: Fatal

Description: A string identifier is required in this position
in a FIELD statement to name a field.

User Action: Supply the required string identifier. See if
the identifier has been inadvertently specified as type string.

Revision C Compile-time Diagnostics C-35

Compile-time Diagnostics

(BC 1215) Field name {name} is not of type string.

Severity Level: Fatal

Description: A string identifier is required in this position
in aFIELD statement to name a field.

User Action: Supply the required string identifier. See if
the identifier has been inadvertently specified as type string.

(BC 1220) A substring cannot be used as a field name.

Severity Level: Fatal

Description: A substring expressed with colon substring
notation or a MID$ reference cannot be used to name a field in a
FIELD statement.

User Action: Assign the substring to a string identifier and
use the string identifier to name the field.

(BC 1250) Lefthand side of {LSET or RSET} statement must be a string
identifier.

Severity Level: Fatal

Description: The lefthand side of an LSET or RSET statement
must be a string identifier. Note that a substring expressed
with colon-substring notation or a MID$ reference is not
permitted •

User Action: Supply the required string identifier. See if a
dollar sign type specification symbol is missing.

(BC 1255) A substring cannot appear on the lefthand side of an {LSET
or RSET} statement.

Severity Level: Fatal

Description: A substring expressed with colon substring
notation or a MID$ reference cannot appear to the left of the
equal sign in an {LSET or RSET} statement. The {LSET or RSET}
is replaced by the keyword LSET or RSET.

User Action: Assign the substring to a string identifier and
use the string identifier on the lefthand side of the {LSET or
RSET} statement.

C-36 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 1260) An equal sign is required at this position in an {LSET or
RSET} statement.

Severity Level: Fatal

Description: The equal sign that must follow the string
identifier in the lefthand side of an {LSET or RSET} statement
is missing or misplaced. The {LSET or RSET} is replaced by the
ke yword LSET or RSET.

User Action: Supply the required equal sign. Check for
extraneous characters between the keyword LSET or RSET and the
equal sign.

(BC 2005) Identifier is too long ({integer} characters); replaced
with {identifier}.

Severity Level: Fatal

Description: An identifier that contains {integer} characters
is too long. The invalid identifier has been replaced by the
31-character identifier {identifier} so that the compiler can
continue to check for errors. The {identifier} is replaced by
the 31-character name consisting of the first 30 characters of
the invalid identifier followed by the last character of the
invalid identifier.

User Action: Replace the invalid identifier with a valid
identifier of at most 31 characters. Note that some other
errors might have occurred as a result of the substitution of
{name} for the invalid identifier.

(BC 2010) Expected an identifier.

Severity Level: Fatal

Description: A variable name that is required in this position
is missing or is not a valid identifier.

User Action: Supply the required variable name. Check for
extraneous characters before the variable name.

Revision C Compile-time Diagnostics C-37

Compile-time Diagnostics

(BC 2020) String expression required.

Severity Level: Fatal

Description: A string expression is required in this position
because of the context 'of the statement.

User Action: Analyze the context of the statement. Supply the
required string expression or change the context. Make sure all
identifiers have the appropriate data type. In particular, look
for an incorrect or missing type specification symbol or DEFSTR
statement.

(BC 2021) Numeric expression requi red.

Severity Level: Fatal

Description: A numeric expression is required in this position
because of the context of the statement.

User Action: Analyze the context of the statement. Supply the
required numeric expression or change the context. Make sure
all identifiers have the appropriate data type. In particular,
look for an incorrect or missing type specification symbol.

(BC 2025) Unclosed quoted string.

Severity Level: Fatal

Description: The closing quotation mark for a quoted string
constant is missing.

User Action: Supply the required closing quotation mark.

(BC 2050) Catastrophic error in EMIT_STACKED_OPERATOR.

Severity Level: Catastrophic

Description: You have uncovered a problem with the NOS/VE
BASIC compiler.

User Action: Follow the procedure established at your site for
reporting software problems.

C-38 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 2060) This operator cannot be applied to a string operand.

Severity level: Fatal

Description: A string operand is incompatible with the
operator that is acting on it.

User Action: Make the data type of the operand compatible with
the operator that is acting on it. Remember that logical and
relational expressions have numeric values.

(BC 2070) Numeric and string operands cannot be mixed.

Severity level: Fatal

Description: The data types of operands in an expression are
incompatible.

User Action: Make sure all identifiers used in the expression
have the appropriate data type. In particular, look for an
incorrect or missing type specification symbol.

(Be 2075) Statement ends prematurely; an operand is expected.

Severity level: Fatal

Description: An incomplete statement has been encountered.
The compiler is expecting an operand or expression to complete
the statement.

User Action: See if the ending portion of the statement has
been inadvertently omitted. Most likely, an expression ends
with an operator. Supply the subsequent operand.

(BC 2077) Premature end of statement.

Severity Level: Fatal

Description: The second variable in a SWAP statement is
missing •

User Action: Supply the required variable.

Revision C Compile-time Diagnostics C-39

Compile-time Diagnostics

(BC 2080) Operand cannot begin with the character {character}.

Severity Level: Fatal

Description: The character {character} is illegal as the first
character of an operand.

User Action: See if an operand that should appear before the
character {character} has been inadvertently omitted. Check to
see if {character} is not an extraneous character.

(BC 2085) Character with ASCII decimal code {integer} cannot appear
in an operand.

Severity Level: Fatal

Description: The character with ASCII decimal code {integer}
cannot be used within an operand.

User Action: The illegal character is probably a typographical
error. Make the required correction.

(BC 2100) Close parenthesis expected to match the open parenthesis
at line {integer}, column {integer).

Severity Level: Fatal

Description: The right parenthesis character [)) that
corresponds to the left parenthesis character [() at line
{integer}, column {integer} is missing or misplaced.

User Action: Supply the required close parenthesis. Check for
extraneous characters before the close parenthesis.

(BC 2120) Expected close parenthesis to end the subscript which
begins at line {integer}, column {integer}.

Severity Level: Fatal

Description: The close parenthesis for the subscript list that
begins at line {integer}, column {integer} is missing or
misplaced.

User Action: Supply the required close parenthesis. Check for
extraneous characters between the last subscript and the close
parenthesis.

C-40 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 2125) Close parenthesis or comma required in skeleton subscript.

Severity Level: Fatal

Description: A formal array in a COMMON, FUNCTION, or SUB
statement contains a character other than a comma, or is missing
a close parenthesis.

User Action: Make sure the correct number of commas have been
provided. Check for extraneous characters within the formal
array. Supply the required close parenthesis.

(BC 2127) Too many commas in skeleton subscript.

Severity Level: Fatal

Description: The number of dimensions of an array is limited
only by the ability to fit an array element reference on a
single line. The number of dimensions of a formal array, which
is one more than the number of commas listed, makes such a
reference impossible.

User Action:
arrays.

Redesign the algorithm using a group of smaller

(BC 2150) First parameter of LBOUND or UBOUND function reference
must be an array name.

Severity Level: Fatal

Description: The first parameter of an LBOUND or UBOUND
function reference must be an array name.

User Action:
with a letter.

The invalid parameter probably does not begin
Make the required correction.

(BC 2155) Expected open parenthesis after LBOUND or UBOUND.

Severity Level: Fatal

Description: A left parenthesis character [(] must follow the
library function name LBOUND or UBOUND.

User Action: Supply the required open parenthesis. Check for
extraneous characters between the function name and the open
parenthesis.

Revision C Compile-time Diagnostics C-41

Compile-time Diagnostics

(BC 2160) Error in array name in ERASE statement.

Severity Level: Fatal

Description: A name used for an array in a D]M or ERASE
statement is not a valid identifier.

User Action: The invalid name probably does not begin with a
letter. Make the required correction.

(BC 2180) Use of {identifier} is illegal at this point.

Severity Level: Fatal

Description: The appearance of the item {identifier} in this
position is illegal.

User Action: This is a very general error message. Make sure
that {identifier} is not garbled. Make sure that the statement
that contains {identifier} has the appropriate keywords spelled
correctly. Check that this statement is properly located with
respect to the statements around it and the context. This
message often occurs as a result of some previous error that
cause the compiler to get out of step.

(BC 2185) Equal sign expected.

Severity Level: Fatal

Description: An equal sign must follow the control variable in
a FOR statement.

User Action: Supply the required equal sign. Check for
extraneous characters between the control variable and the equal
sign. Remember that a control variable cannot be an array
element.

(BC 2190) Comma required between SWAP variables.

Severity Level: Fatal

Description: A comma must follow the first variable in a SWAP
statement.

User Action: Supply the required comma. Check for extraneous
characters between the first variable and the comma.

C-42 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 2195) String and numeric variables cannot be swapped.

Severity Level: Fatal

Description: The variables in a SWAP statement have
incompatible data types. They must both be numeric or both be
string.

User Action: Most likely, a type specification symbol has been
incorrectly specified or is missing. Make the required
correction.

(BC 2200) String array cannot be passed with the CALLX statement.

Severity Level: Fatal

Description: A string array cannot be ·passed to a FORTRAN (or
other language subroutine) with a CALL X statement.

User Action: See if the array has been inadvertently specified
as type string. A subroutine written in a language other than
BASIC that has a string array as a formal parameter cannot be
accessed from NOS/VE BASIC. Convert the subroutine to a BASIC
subroutine.

(BC 2210) An array or string was used as a substring bound.

Severity Level: Fatal

Description: The beginning or ending position of a substring
expressed with colon-substring notation cannot be a formal array
or string expression.

User Action: See if a subscript has been omitted from an array
element. Check for an incorrect type specification symbol at
the end of an identifier.

(BC 2220) MID$ reference is missing an open parenthesis.

Severity Level: Fatal

Description: A left parenthesis character [(] must follow the
keyword MID$.

User Action: Supply the required open parenthesis. Check for
extraneous characters between the keyword MID$ and the open
parenthesis.

Revision C Compile-time Diagnostics C-43

Compile-time Diagnostics

(BC 2221) Expected close parenthesis to end the MID$ reference at
line {integer}, column {integer}.

Severity Level: Fatal

Description: A right parenthesis character [)] must follow the
last parameter in a MID$ statement or library function reference.

User Action: Supply the required close parenthesis. Check for
extraneous characters between the last parameter and the close
parenthesis.

(BC 2225) Comma expected between first and second parameter of MID$
reference at line {integer}, column {integer}.

Severity Level: Fatal

Description: A comma must follow the first parameter in a MID$
function reference or a MID$ statement.

User Action: Supply the required comma. Check for extraneous
characters between the first parameter and the comma.

(BC 2226) Expected comma after string in MID$ reference.

Severity Level: Fatal

Description: A comma must follow the first parameter in a MID$
function reference or a MID$ statement.

User Action: Supply the required comma. Check for extraneous
characters between the first parameter and the comma.

(BC 2230) Substring or MID$ reference not allowed as first argument
of MID$ reference in this context.

Severity Level: Fatal

Description: The first parameter in a MID$ statement must be a
string identifier. A MID$ reference or a substring are not
permitted.

User Action: Assign the value of the MID$ reference or
substring to a string identifier, and use the string identifier
as the first parameter.

C-44 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(Be 2235) Expected a colon in the substring bounds specification
that begins at line {integer}, column {integer}.

Severity Level: Fatal

Description: A colon must separate the bounds of the substring
that is being assigned a value. The colon in the substring
bound specification that begins at line {integer}, column
{integer} missing or misplaced.

User Action: Supply the required colon. Check for extraneous
characters between the first bound specification and the colon.

(Be 2240) Error in specification of substring bounds.

Severity Level: Fatal

Description: The bound specification for a substring in a
PRINT list contains an error.

User Action: Most likely, the colon that must separate the
substring bounds is missing or misplaced. Supply the required
colon. Check for extraneous characters between the first bound
specification and the colon.

(Be 2250) Expected open parenthesis after LEN.

Severity Level: Fatal

Description: A left parenthesis character [(] must follow the
word LEN for a LEN library function reference.

User Action: Supply the required open parenthesis. Check for
extraneous characters between the keyword LEN and the open
parenthesis.

(BC 4025) INPUT file (file reference) is not available.

Severity Level: Fatal

Description: The input file specified for the RESEQUENCE
utility is not found.

User Action: Check that the correct file was specified.

Revision C Compile-time Diagnostics C-45

Compile-time Diagnostics

(BC 4030) INPUT file (file reference) is not available for READ
access.

Severity Level: Fatal

Description: The input file specified for the RESEQUENCE
utility is not available for READ access.

User Action Check that the correct file was specified. Use
the SET FILE ATTRIBUTES command to change the input file
ACCESS MODE to READ. To display information about a file use
the DIsPIAY FILE ATTRIBUTES command.

(BC 4035) INPUT file (file reference) specified for RESEQUENCE is
empty.

Severity Level: Fatal

Description: The input file specified for the RESEQUENCE
utility is empty.

User Action: Check that the correct file was specified.

(BC 4040) INPUT file (file reference) specified for RESEQUENCE
cannot be read as a sequential file.

Severity Level: Fatal

Description: The input file specified for the RESEQUENCE
utility is defined with attributes that prevent it from being
read as a sequential file.

User Action: Check that the correct file was specified. Use
the SET FILE ATTRIBUTES command to change the FILE ORGANIZATION
to SEQUENTIAL. To display information about a fil~ use the
DISPIAY FILE ATTRIBUTES command.

(BC 4055) Empty OUTPUT file (file reference) specified for
RESEQUENCE must have APPEND access.

Severity Level: Fatal

Description: The output file specified for the RESEQUENCE
utility is empty and is not available for append access.

User Action: Check that the correct file was specified. Use
the SET FILE ATTRIBUTES command to change the output file
ACCESS_MODE to APPEND. To display information about a file use
the DISPIAY FILE ATTRIBUTES command.

C-46 BASIC for NOS/VE Usage Revision C

Compile-time Diagnostics

(BC 4065) OUTPUT file (file reference) specified for RESEQUENCE
cannot be written as a sequential file.

Severity Level: Fatal

Description: The output file specified for the RESEQUENCE
utility is defined with attributes that prevent it from being
written as a sequential file.

User Action: Check that the correct file was specified. Use
the SET FILE ATTRIBUTES command to change the output
FILE ORGANIZATION to SEQUENTIAL. To display information about a
file-use the DISPLAY_FILE_ATTRIBUTES command.

(BC 4070) Resequenced line (integer) exceeds the maximum record
length allowed on file (file reference).

Severity Level: Fatal

Description: The output file specified for the RESEQUENCE
utility is a preexisting non-empty file with a record type of
fixed length and a line of the resequenced text exceeds the
length defined for the files records.

User Action: Check that the correct file was specified. Use
the SET FILE ATTRIBUTES command to change the output file
RECORD TYPE to VARIABLE. The default record type is VARIABLE.
To display information about a file use the
DISPLAY_FIL~ATTRIBUTES command.

Revision E Compile-time Diagnostics C-47

Compile-time Diagnostics

(BC 4120) A new label generated from RESEQUENCE parameters exceeds
999,999, the maximum label value.

Severity Level: Fatal

Description: The result of applying the new base and new
increment to the input file lead to a new label with a numeric
value greater than 999,999 (that is, if «NLL - 1) * NI) + NB is
greater than 999,999, where NLL is the number of labeled lines,
NI is the new increment, and NB is the new base).

User Action: Supply a valid new label and modify all label
references that are affected by the change.

(BC 4125) The old label defined at line (integer) exceeds 999,999,
the maximum label value.

Severity Level: Fatal

Description: The input file contains a reference of a label
that exceeds the value of the maximum legal label value.

User Action: Supply a valid label and modify all label
references that are affected by the change.

(BC 4130) The label referenced at line (integer), column (integer)
is not defined.

Severity Level: Fatal

Description: The input file contains a reference of a label
that is not defined in the containing routine.

User Action: Make sure you referenced the correct label.
Provide the appropriate line with the label (integer).

(BC 4135) The label definition at line (integer) of the RESEQUENCE
input file is not greater than the preceding label definition.

Severity Level: Fatal

Description: The input file contains a label definition the
value of which is not greater than that of the preceding label
defined in the same routine.

User Action: Relabel the line, and others as needed, so that
the labels in the external routine form an increasing sequence.

C-48 BASIC for NOS/VE Usage Revision E

Compile-time Diagnostics

(Be 4150) No labels found in INPUT file (file reference).

Severity Level: Warning

Description: No label s are found in the input file specified
for the RESEQUENCE utility.

User Action: Check that the correct input file was specified.
If it was, this is a BASIC program that has no need for
resequencing.

(BC 4160) Line (integer) exceeds the maximum length for a BASIC
source program.

Severity Level: Warning

Description: The number of characters in the resequencing
input file exceeds the NOS/VE BASIC maximum line length of 255
(integer) •

User Action:
lines.

Revision C

Split the source line into two or more valid

Compile-time Diagnostics C-49

This appendix provides an alphabetical list of all the NOS/VE BASIC
library functions. The entry for each library function includes:

The function name.

A brief description of the function.

A cross-reference to the major category and subgroup of
major category to which the function belongs. These are
provided to help you visualize each function in context.

A page number for the function.

Revision B Library Function Index D-l

Library Functions Index

Name

ABS

ACOS

ASC

ASIN

ATN

COBL

CEIL

CHR$

CINT

COS

COSH

CSNG

CVD

CVI

CVS

DEG

EOF

ERL

ERR

EXP

FIX

FP

HEX$

INSTR

INT

LBOUND

LCASE$

Description

Absolute Value

Arcosine

Character to ASCII Code

Arcsine

Arctangent

Numeric to Type Real

Integer Ceiling

ASCII Code to Character

Round to Integer

Cosine

Hyperbolic cosine

Numeric to Type Real

Interpret as Real

Intepret as Integer

Interpret as Real

Radians to Degrees

End-of-File

Label of Error Line

Status Condition Code

Exponential

Truncate to Integer

Fractional Part

Decimal to Hexadecimal

Search for Substring

Integer Floor

Dimension Lower Bound

Convert to Lowercase

D-2 BASIC for NOS/VE Usage

Category/Subgroup

Mathematical/Number Characteristic

Mathematical/Trigonometric

String/Conversion

Mathematical/Trigonometric

Mathematical/Trigonometric

Mathematical/Number Characteristic

Mathematical/Number Characteristic

String/Conversion

Mathematical/Number Characteristic

Mathematical/Trigonometric

Mathematical/Exponential

Mathematical/Number Characteristic

Files/Numeric Interp. of Strings

Files/Numeric Interp. of Strings

Files/Numeric Interp. of Strings

Mathematical/Trigonometric

File/(none)

Error Processing/(none)

Error Processing/(none)

Mathematical/Exponential

Mathematical/Number Characteristic

Mathematical/Number Characteristic

String/Conversion

String/Substring Manipulation

Mathematical/Number Characteristic

Array/ (none)

String/Miscellaneous

8-16

8-8

12-17

8-9

8-10

8-17

8-18

12-19

8-19

8-11

8-2

8-20

13-33

13-33

13-33

8-12

13-13

6-9

6-11

8-3

8-21

8-22

12-20

12-9

8-23

11-8

12-23

Revision B

Name

LEFT$

LEN

LOC

LOG

MAX

MID$

MIN

MKD$

MKI$

MKS$

OCT$

PARAMS$

RAD

RIGHT $

RND

SGN

SIN

SINH

SPACES

SQR

STR$

STRING$

TAN

TANH

UBOUND

UCASE$

VAL

Description

Left Substring

String Length

Current Record Number

Natural Logarithm

Maximum

Middle Substring

Minimum

Interpret as String

Interpret as String

Interpret as String

Decimal to Octal

Parameter String

Degrees to Radians

Right Substring

Random Number

Sign

Sine

Hyperbolic Sine

String of Spaces

Square Root

String Value of Numeric

String/Uniform

Tangent

Hyperbolic Tangent

Dimension Upper Bound

Convert to Uppercase

Numeric Value of String

Revision B

Library Functions Index

Category/Subgroup

String/Substring Manipulation

String/Substring Manipulation

File/ (none)

Mathematical/Exponential

Mathematical/Miscellaneous

String/Conversion

Mathematical/Miscellaneous

Files/Numeric Interp. of Strings

files/Numeric Interp. of Strings

Files/Numeric Interp. of Strings

String/Conversion

String/Miscellaneous

Mathematical/Trig~~ometric

String/Substring Manipulation

Mathematical/Miscellaneous

Mathematical/Number Characteristic

Mathematical/Trigonometric

Mathematical/Exponential

String/Miscellaneous

Mathematical/Miscellaneous

String/Conversion

String/Miscellaneous

Mathematical/Trigonometric

Mathematical/Exponential

Array/ (none)

String/Miscellaneous

String/Conversion

12-12

12-8

13-12

8-4

8-25

12-13

8-26

13-35

13-35

13-35

12-21

12-27

8-13

12-15

8-27

8-24

8-14

8-6

12-25

8-28

12-22

12-26

8-15

8-7

11-8

12-24

12-18

Library Function Index D-3

1E

Debug is an SCL command utility that lets you debug a program during
execution. Using Debug, you can stop execution at selected points,
display the values of selected variables, and resume execution.

Debug is easy to use. It requires no modification of your source
code and no knowledge of assembly language. You can reference
variables by their symbolic names rather than their addresses in
memory. Furthermore, you don't need to interpret memory dumps,
insert PRINT statements into your program, or use a load map.

Debug can be used in line mode or screen mode. Also, you can use
Debug to perform machine-level debugging as well as symbolic
debugging. This discussion focuses on using screen mode Debug for
symbolic debugging. For information about line mode Debug,
machine-level debugging, and other Debug features, see the Debug
Usage manual.

Screen mode Debug gives you all of the Debug features with the ease
of use of a full screen interface. You can execute Debug commands
by pressing function keys rather than typing commands. Online HELP
enables you to learn screen mode Debug as you use it.

Using screen mode Debug, you can:

View your source code as it executes (an arrow points to the
next line to be executed).

Change the values of program variables while execution is
suspended.

Change the location where execution of your program resumes.

View the program units of your program.

Getting Started

Using Debug in screen mode requires that your terminal support full
screen operation. If your terminal is not set up for full screen
operation, see the NOS/VE System Usage manual for terminal
definitions that support the full screen interface.

To use the symbolic capabilities of Debug, you muSt execute your
compiled BASIC program with Debug mode turned on. Furthermore, to
enter Debug in screen mode, you must enter the command:

CHANGE_INTERACTIO~STYLE STYLE=SCREEN

Revision E Introduction to Debug E-l

Getting Started

For example, the following commands compile a BASIC program
contained in permanent file $USER.EXAMPLE BAS, specify screen mode,
and execute the BASIC program with Debug ;ode turned on:

/basic input=$user.example bas binary=lgo
/change interaction style ;tyle=screen
lexecut;_task file=lgo debug_mode=on

The source module of EXAMPLE BAS is displayed in the following
screen format on a Viking 721 terminal (on other terminals, the
screen format may vary slightly).

Debugging $HAIN
--) MONTHTABLE$(16)
DEFINT C,M

LET DIVIDEND - -100
LET DIVISOR - 0

LET MONTHCOLUMN - 1
LET MONTHLIST$ - "JANFEBMARAPRMAYJUN"

LET COUNTER - 0

~---------------------------OUTPUT--------------------------------~

CD

CD

®

CD

G)

-- Welcome to Full Screen De~ugging --

Home line

Response line

Source window

Output window

Row of function
key assignments

Press HELP for assistance

r-o;;;l
f8~

The line on which you enter Debug commands
and SCL commands.

The line on which short responses and
advisory messages from Debug are displayed.

The area in which the program you are
debugging is displayed.

The area in which the output generated by
your program (or output delivered by Debug)
is displayed.

The Debug functions assigned to function
keys. Also, you can enter Debug commands on
the home line.

E-2 BASIC for NOS/VE Usage Revision E

How to Get Help

How to Get Help

There are two ways to get help information while using screen mode
Debug:

1. The HELP key.

Pressing the HELP key displays the Help window. The Help window
overlays a portion of your screen and prompts you to enter the
function for which you need help. If you press a function key,
a short description of the function you select is displayed in
the Help window. To exit HELP, press RETURN. Upon exiting
HELP, your screen is restored to its original contents.

2. The HELP command.

You can request help by entering the HELP command on the home
line. This command is used to read an online manual while you
are debugging your program. To leave the online manual, press
QUIT. When you leave the online manual, the screen is restored
to its contents before you entered HELP. For example, if you
need information about BASIC substrings, press the HOME key and
type the following HELP command on the home line:

help s=substring m=basic

This command takes you to the BASIC online manual for an
explanation of BASIC substrings. To return to screen mode
Debug, press QUIT.

If you need information about the Debug utility, press the HOME
key and type the HELP command without specifying any parameters:

help

Typing this command displays the beginning of the Debug online
manual. To return to screen mode Debug, press QUIT.

See the NOS/VE System Usage manual for more information about
HELP.

Revision E Introduction to Debug E-3

Example

Example

This example demonstrates some commonly used Debug functions. It is
represented as a series of steps. To get the most benefit from this
example, you should create the sample program, EXAMPLE BAS,
illustrated in figure E-I, then perform each step. -

EXAMPLE BAS is divided into the following test cases:

TESTI

TEST2

TEST3

A loop that increments a counter and then calls a
subprogram to square and display the count. TESTI
demonstrates the use of the CHAVAL, GOTO, HSPEED,
SEEVAL, STEPI, and STEPN functions.

A loop that builds a 6-row table of 3-character
strings. Input to the table is an 18-character list for
the months JAN through JUN. TEST2 moves three
characters at a time from the character list to the
table and displays each entry. TEST2 shows how to step
through loops, use line mode Debug commands in screen
mode Debug, and how to scroll through Debug and program
output data.

A division test that results in a divide fault. TEST3
demonstrates how Debug handles execution errors.

In each test case, the application of some Debug functions is
demonstrated. After you work this example, you can begin to debug
your BASIC programs using screen mode Debug •

• E-4 BASIC for NOS/VE Usage Revision D

DIM MONTHTABLE$(16)
DEFINT C,M

LET DIVIDEND a -100
LET DIVISOR = 0

LET MONTHCOLUMN = 1
LET MONTHLIST$ = "JANFEBMARAPRMAYJUN"

LET COUNTER = 0

Example

REM TEST1: Add to counter and call subroutine to square and display
REM count.

LET COUNTER = 1
FOR COUNTER = 1 TO 10

CALL SQUAREPROCEDURE (COUNTER)
NEXT COUNTER

REM TEST2: Create single column table for each month.

FOR MONTHROW = 0 TO 5
MONTHTABLE$(MONTHROW) = MONTHLIST$(MONTHCOLUMN MONTHCOLUMN + 2)
PRINT "THE MONTH IS: "MONTHTABLE$(MONTHROW)
LET MONTHCOLUMN = MONTH COLUMN + 3

NEXT MONTHROW

REM TEST3: Create divide fault.

LET QUOTIENT = DIVIDEND / DIVISOR
PRINT "ANSWER IS: "ANSWER

END

REM Subroutine SQUAREPROCEDURE

SUB SQUAREPROCEDURE (COUNTER) .
LET RESULT = 0
LET RESULT = COUNTER * COUNTER
PRINT COUNTER " TIMES" COUNTER " =" RESULT

END SUB

Figure E-1. Debug Example: Source File EXAMPLE BAS

Revision D Introduction to Debug E-5

Example

Preparing to Debug

After you create EXAMPLE BAS, you must compile your program and
prepare your Debug session for the screen mode environment. You can
then execute EXAMPLE BAS under Debug control. Do this as follows:

1. Assuming EXAMPLE BAS is contained in permanent file
$USER.EXAMPLE BAS, prepare the screen mode environment and
compile EXAMPLE_BAS by entering the following commands:

/change interaction style style=screen
/basic fnput=$user. example_bas binary=lgo

2. Execute EXAMPLE BAS under control of Debug by entering the
following command:

/execute_task file=lgo debug_mode=on

The source module of EXAMPLE BAS is displayed in the Source window.
The Debug functions are displayed at the bottom of the screen.

Display Screen Mode Commands

The functions below are used to display helpful information about
the Debugging environment:

HELP -- Displays the Help window. Press a function key and a
short explanation of the function's use appears in the
Help window.

ZMIN -- Used to display the source listing in the Source window.

Now perform the following steps to become familiar with the Debug
functions:

1. Press the HELP key. The Help window is displayed.

2. Press each function key corresponding to a function displayed at
the bottom of the screen. As you press each function key, a
short explanation of the purpose of each function is displayed
in the Help window.

3. Press RETURN. Exit HELP.

4. Press the ZMIN function key. The following message is displayed
in the upper right hand corner of the screen:

Enter compiler input file for $HAIN

5. Enter the source file name:

example _bas

• E-6 BASIC for NOS/VE Usage Revision D

Example

The source listing of EXAMPLE BAS is displayed in the Source
window. Also, some new functions are displayed at the bottom of the
screen.

6. Press the HELP key. The Help window is displayed again.

7. Press each function key corresponding to the new function
displayed at the bottom of the screen. As you press each
function key, a short explanation of the purpose of each new
function is displayed in the Help window.

8. Press RETURN. Exit HELP.

Setting Breaks

It is often helpful to suspend program execution when debugging a
program. The device for suspending execution of a program is called
a break. In this sample session, the following functions are used
to illustrate setting breaks:

FWD

FIRST

Scrolls forward to the next screen of text.

Displays the first screen of the source listing.
Because FIRST is a lower priority function, it may not
be assigned to a function key on terminals with only
16 function keys. Instead, FIRST is entered on the
home line.

LOCATE -- Prompts you to type in text, then-searches the source
listing for matching text. If a match is found, the
cursor is moved to the line containing the matching
text.

SETBRK -- Sets an execution break on the line containing the
cursor. The line is highlighted to show that it
contains a break. Execution is suspended before the
line containing the break is executed. Execution
resumes with the statement on the line containing the
break.

This section also uses the following item:

HOME

Revision D

Moves the cursor to the home line. Line mode Debug
commands can be entered on the home line for execution
in screen mode Debug.

Introduction to Debug E-7

Example

Perform the following steps to place three execution breaks in
EXAMPLE BAS:

1. Press the LOCATE function key. At the top right hand corner of
the screen, you are prompted for the text to be located.

2. Enter the following text exactly as it appears in EXAMPLE BAS:

FOR MONTHROW

The cursor is moved to the line:

FOR MONTH ROW = 0 TO 5

3. Press the SETBRK function key. A break is set and the line
containing the cursor is highlighted to show that it contains an
execution break.

4. Use the down-arrow key to move the cursor to the line containing:

LET MONTHCOLUMN = MONTH COLUMN + 3

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE BAS source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

5. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

6. Use the down-arrow key to move the cursor to the line:

LET QUOTIENT = DIVIDEND / DIVISOR

If you do not see this line on your screen, press the FWD key.
The next screen of the EXAMPLE BAS source listing is displayed.
Use the down-arrow key to position the cursor on the correct
line.

7. Press the SETBRK function key. The line is highlighted to show
that it contains an execution break.

B. Press the FIRST function key. The first screen of the
EXAMPLE BAS source listing is displayed in the Source window.

If FIRST is not assigned to a function key, FIRST must be
entered on the home line. To do this, press the HOME key. The
cursor moves to the home line. Enter the following on the home
line:

first

The first screen of the EXAMPLE BAS source listing is displayed
in the Source window •

• E-B BASIC for NOS/VE Usage Revision D

Example

Debugging TESTl

Using Debug, you can execute a program one line or several lines at
a time. Also, you can examine a variable's contents, change its
contents, and execute code containing the variable several times.
These capabilities are demonstrated in this sample session using the
following functions:

CHAVAL -- Prompts you to enter a variable name and the value you
want it to contain, then changes the variable's
contents to the new value.

GOTO Moves the execution pointer to the line that contains
the cursor. Execution resumes with the statement on
this line.

HSPEED -- Executes a program until a break is encountered or the
program ends.

SEEVAL -- Prompts you to enter a variable name, then displays
the value of the variable in the Output window.

STEPI Executes a program one line at a time.

STEPN Executes N lines of a program, where N is an integer.

Perform the following steps to demonstrate the use of the CHAVAL,
GOTO, HSPEED, SEEVAL, STEPl, STEPN:

1. Press the STEPN function key. In the upper right corner of the
screen you are prompted for the number of lines to execute;
enter:

17

STEPN executes 17 lines of EXAMPLE_BAS, moving the execution
arrow to the statement:

FOR COUNTER = 1 TO 10

2. Press the STEPI function key. The FOR statement is executed;
the execution arrow points to the statement:

CALL SQUAREPROCEDURE (COUNTER)

3. Press the STEPI function key seven times. An iteration of TESTI
is executed one line at a time. The output generated by the
iteration is displayed in the Output window.

Revision D Introduction to Debug E-9

Example

4. Press the SEEVAL function key. A prompt to enter a variable
name is printed in the upper right hand corner of the screen.
Enter the name:

counter

The value of COUNTER is displayed in the Output window:

counter = 2

Thus, you can use SEEVAL to observe the contents of a variable.

5. Press the CHAVAL function key. A prompt for a variable name and
its new value is displayed in the upper right hand corner of the
screen; enter:

counter=8

The value of COUNTER is changed to 8.

6. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The following message is displayed in the Output window:

counter = 8

Thus, the change of COUNTER's value is verified.

7. Press the STEPN function key. When you are prompted for the
number of lines to execute; enter:

7

STEPN executes 7 lines of TESTl. The output generated by this
loop iteration is displayed in the Output window.

8. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

counter

The value of COUNTER is displayed in the Output window:

counter = 9

Therefore, the value given to COUNTER in step 5 is used by the
FOR statement •

• E-lO BASIC for NOS/VE Usage Revision D

Example

9. Use the up-arrow key to move the cursor to the line:

FOR COUNTER = 1 TO 10

10. Press the GOTO function key. The execution arrow moves to the
line containing the cursor; execution resumes with this
statement.

11. Press the HSPEED function key. Execution resumes from the FOR
statement; COUNTER is initialized to 1. Execution of
EXAMPLE BAS continues until an execution break is encountered.

Debugging TEST2

After program execution is resumed in step 11 of TEST1, it stops at
the break set on the PERFORM statement in TEST2. The following
functions are used in TEST2 to illustrate more Debug capabilities:

BKW

DELBRK

HSPEED

Scrolls backward to the previous screen of text.

Deletes execution breaks.

Executes a program until a break is encountered or the
program ends.

This section also uses the following items:

HOME Press the HOME key to move the cursor to the home
line. Line mode Debug commands can be entered on the
home line for execution in screen mode Debug.

DISPLAY PROGRAM VALUE A line mode Debug command that displays
the values of program variables.

Perform the following steps to learn how to execute loops one
iteration at a time, execute line mode Debug commands, and scroll
output data when using Debug:

1. Press the HSPEED function key. Execution stops at the break set
on the last line of the FOR loop in TEST2; output generated by
the loop is displayed in the Output window.

2. Press the HSPEED function key again. One iteration of the FOR
loop is executed; execution stops at the break set at the
statement, LET MONTHCOLUMN = MONTHCOLUMN + 3. Each time HSPEED
is used, an iteration of the loop is performed. By using
strategically placed execution breaks, as in this example, a
loop can be executed one iteration at a time.

3. Press the HSPEED function key. One more loop iteration is
performed.

Revision D Introduction to Debug E-11

Example

4. Press the HOME key. The cursor moves to the home line.

5. Enter the line mode Debug command:

display_program_value name=$all

The values of all variables in EXAMPLE BAS are displayed in the
Output window. Thus, line mode Debug commands can be used in
screen mode Debug by entering them on the home line. For more
information about using line mode Debug commands see the Debug
Usage Manual.

6. Press the DELBRK key. The execution break is deleted. The
highlight is removed from the line when the break is removed.

7. Press the down-arrow key until the cursor is inside of the
Output window.

8. Press the BKW key. The data in the Output window scrolls
backward. When the cursor is contained within the Output
window, you can use the BKW and FWD keys to scroll backward and
forward through the data in the window.

9. Press the HSPEED function key. The execution of EXAMPLE BAS
resumes, stopping when the line containing the third break is
reached. The execution arrow points to the beginning of TEST3.

Debugging TEST3

After resuming execution of EXAMPLE BAS in step 9 of section TEST2,
execution stops at the begining of TEST3. In TEST3, Debug is
presented with an execution error. The following functions are used
in this sample session to demonstrate how Debug can be used when an
exectuion error is encountered:

CHAVAL -- Prompts you to enter a variable name and the value you
want it to contain, then changes the variable's
contents to the new value.

GOTO Moves the execution pointer to the line that contains
the cursor. Execution resumes with the statement on
this line.

SEEVAL -- Prompts you to enter a variable name, then displays
the value of the variable in the Output window.

STEPl Executes a program one line at a time.

QUIT Used to exit Debug •

• E-l2 BASIC for NOS/VE Usage Revision D

Example

Perform the following steps to finish the example:

1. Press the STEPI function key. The DIVISION statement is
executed, execution of EXAMPLE BAS halts, and the following
message flashes in the upper right hand corner of the screen:

divide fault

2. Press the SEEVAL function key. When you are prompted for a
variable name, enter:

divisor

The following message is displayed in the Output window:

divisor = O.

A division by zero caused the execution error.

3. Press the CHAVAL function key. When you are prompted, enter:

divisor=l.O

The value of DIVISOR is changed to 1.

4. Press the SEEVAL function key. When you are prompted, enter:

divisor

The following text is displayed in the Output window:

divisor = 1.0000E+OOOO

The change to DIVISOR is verified.

5. Press the GOTO function key. The execution arrow points at the
DIVISION statement and program execution resumes with this
statement.

6. Press the STEPI function key. The DIVISION statement is
executed. Therefore, the GOTO and CHAVAL functions can be used
in concert to recover from execution errors. However, to
correct execution errors permanently, you must exit Debug, edit
the program, and recompile it.

7. Press the STEPI function key again. The result of the DIVISION
statement is displayed in the Output window.

8. Press the STEPI function key two times. EXAMPLE BAS ends and
the following message is displayed in the Output-window:

DEBUG: The status at termination was: NORMAL.

9. Press the QUIT function key. Exit Debug.

Revision D Introduction to Debug E-13

Example

Now that you have concluded this example, you should be able to
begin using screen mode Debug to debug your BASIC programs. For
more information about screen mode Debug and line mode Debug
commands, see the Debug Usage manual.

eE-14 BASIC for NOS/VE Usage Revision D

o

o

·0

o

o

c

A

About This Manual 9
ABS Function 8-16
Accessing Subprograms From a BASIC Program 8-29
ACOS Function 8-8
Actual Array A-I
Actual Parameter A-I
Actual Parameters 9-12
Application Usage Billing 9-18
Arithmetic Expressions

Operator Precedence 4-4
Operators 4-4

Arithmetic Operators 4-4
Array

Array Element A-I
Array Element References 11-4
Array Input/Output 11-13
Array Name 3-9
Array Overview 11-2
Definition A-I
Dimension Bound Specification 11-6
Dynamic Dimensioning 9-14; 11-2; A-5
ERASE Statement 11-16
Static Dimensioning 9-14; 11-2; A-12
Subscripts 1-1

Array Elements (See Array)
Array Library Functions

LBOUND Function 11-11
UBOUND Function 11-11

Array Name (See Array)
ASC Function 12-17
ASCII A-I
ASCII Character Set B-1
ASIN Function 8-9
Assignment Statements

CLEAR Statement 4-17
LET Statement 4-14
SWAP Statement 4-16
Variable Assignment 4-14

ATN Function 8-10
Audience 9

Revision E BASIC for NOS/VE Usage Index-Ie

Index

B
BASIC A-2
BASIC Character Set 2-11
BASIC Compiler

Command 14-3
Listing Options 14-5
STATUS Variable 14-5

Batch Mode A-2
BCPDAUA Subroutine 9-18
BEEP Statement 10-42
Beginning-of-information (BOI) A-2
Binary Data A-2
Binary Object Program 14-2; A-2
Bit A-2
Block A-2
Block Functions

Block Function Body 7-10
Block Function Calls 7-19
Block Function Parameters 7-21
Block Function Specification 7-8
Definition A-2
END FUNCTION Statement 7-11
EXIT FUNCTION Statement 7-12
EXTERNAL FUNCTION Statement 7-8
FUNCTION Statement 7-9
Overview 2-1; 7-8
Structure 7-8

Block IF Constructions
ELSE Block 5-15
ELSEIF Condition 5-15
ENDlF Statement 5-15
Overview 2-4; 5-14
THEN Block 5-15

Blocks and Lines
Block IF Constructions 2-5
Blocks 2-4
Compiler Sequence Number 2-6
Labels 2-5
Line Numbers 2-5
Lines 2-4
Overview 2-4
Tail Comment 2-4

Blocks (See Blocks and Lines)
BOl A-2
Buffers 13-28
Byte A-2

• lndex-2 BASIC for NOS/VE Usage Revision E

c
Call-By-Address A-3
Call-By-Reference (See Call-By-Address)
Call-By-Value A-3
CALL Statement 9-12
CALLX Statement 9-16
Catalog A-3
Catalog Name A-3
CDBL Function 8-17
CEIL Function 8-18
Channel 13-9; A-3
Channel Numbers (See
Character A-3

Channel)

CRR$ Function
CINT Function
CLEAR Statement
CLOSE Statement
Coded Data A-3

12-19
8-19

4-17
13-11

Colon-substring Notation 12-2
Comment 2-13; A-4
COMMON Statement 2-3; 7-17; 9-10
Compilation

BASIC Compiler Command 14-3
Compilation Overview 14-2
Program Execution 14-7
Sample Compiler Calls 14-6

Compile 2-6; 14-2; A-4
Compile-time 2-6; 14-2; A-4
Compile-time Diagnostics C-l
Compiler

Definition A-4
Diagnostics 2-6; C-l

Compiler Sequence Number 2-6; A-4
Concatenation Operator 12-1
Concurrent Tasks 5-31
Constant

Definition 3-1; A-4
Integer Constants 3-2
Quoted String Constants 3-6
Real Constants 3-4
Un quoted String Constants 3-7

Contents 5
Control Statements 5-1
Conventions 10
Conversion Functions 12-17
COS Function 8-11
COSH Function 8-2
CSNG Function 8-20
CVD Function 13-33
CVI Function 13-33
CVS Function 13-33
Cycle A-4
Cycle Number A-4
Cycle Reference A-4

Index

Revision E BASIC for NOS/VE Usage Index-3.

Index

D
DATA Statement 10-11
Data Type

Data Type Compatibility 3-13
Data Type Specification Symbols 3-9
Overview 3-8
Type Declaration Statements 3-10

Data Type Specification Symbols
Definition 3-9
Integer Type 3-9
Real Type 3-9
String Name 3-9

DATE$ 3-17
Debug A-5; E-1
Debugging TEST1 E-9
Debugging TEST2 E-11
Debugging TEST3 E-12
Decision and Branching

Block IF Constructions 5-14
Control Statements 5-1
GOSUB Statement 5-5
GOTO Statement 5-2
Line IF Constructions 5-9
Looping Structures 5-20
Overview 5-1
System Interface 5-31

Declarative Statements
COMMON Statement 2-3
DECLARE FUNCTION Statement 2-3
DECLARE SUB Statement 2-3; 9-11
DEF Statement 2-3
DEFDBL Statement 2-3
DEFINT Statement 2-3
DEFSNG Statement 2-3
DEFSTR Statement 2-3
EXTERNAL FUNCTION Statement 2-3
EXTERNAL SUB Statement 2-3
OPTION BASE Statement 2-3

DECLARE EXTERNAL FUNCTION Statement 7-18
DECLARE EXTERNAL SUB Statement 9-11
DECLARE FUNCTION Statement 2-3; 7-18
DECLARE SUB Statement 2-3
DEF Statement 2-3
Default A-5
DEFDBL Statement 2-3; 3-11
DEFINT Statement 2-3; 3-11
DEFSNG Statement 2-3; 3-11
DEFSTR Statement 2-3; 3-11
DEG Function 8-12
Diagnostic 2-6; ~-5; C-1
DIM Statement 11-9

eIndex-4 BASIC for NOS/VE Usage Revision E

Dimension Bound Specification
Array Library Functions 11-11
Default Specification 11-8
DIM Statement 11-9
OPTION BASE Statement 11-7
Overview 11-6

Display Screen Mode Commands E-6
Double-Precision Vestiges 3-19
Dynamic Dimensioning A-5
Dynamically Dimensioned Array 9-14; 11-2; A-5

E

END FUNCTION Statement 2-2, 3; 7-11
End-of-information (EOI) A-5
END PROGRAM Statement 2-2, 3, 13
END Statement 2-13
END SUB Statement 2-2, 3; 9-6
EOF Function 13-12
EOI A-5
ERASE Statement 11-16
ERL Function 6-9
ERR Function 6-11
Error Processing

Default Error Handling 6-3
Error Processing Model 6-8
Overview 6-2
Sample Error Processing 6-8
User Error Handling 6-5
User Error Handling Process Model 6-7

ERROR Statement 6-17
$ERRORS File 14-7
Examples E-4
Exception A-5
Execution-time 14-6; A-5
EXIT FUNCTION Statement 7-12
EXIT SUB Statement 9-6
EXP Function 8-3
Exponential Functions 8-2
Expression

Arithmetic 4-4
Assignment 4-13
Definition A-5
Evaluation of Operands 4-2
Evaluation of Operators 4-2
Evaluation Rules 4-2
Expressions 4-2
Logical 4-10
Overview 4-2
Relational 4-8
String 4-7
Subexpression 4-2

Expression Function 7-3; A-5

Index

Revision E BASIC for NOS/VE Usage Index-5.

Index

Expressions and Assignment
Arithmetic Expressions 4-4
Assignment Statements 4-13
Expressions 4-2
Logical Expressions 4-10
Overview 4-1
Relational Expressions 4-8
String Epressions 4-7

External Function 7-8
EXTERNAL FUNCTION Statement 2-2 t 3; 7-8
External Routine

Block Function 2-1
Declarative Statement 2-3
Main Program 2-2
Overview 2-1 t 2; A-5
Subprogram 2-1
Subroutine 2-1; 9-8

EXTERNAL Statement 9-8
EXTERNAL SUB Statement 2-2 t 3; 9-4 t 9

F
Family A-6
Family Path A-6
Features 1-1
Field A-6
FIELD Statement 13-30
File

BASIC File Overview 13-7
Channel Numbers 13-9
CLOSE Statement 13-11
Definition 13-1; A-6
EOF Function 13-13
LOC Function 13-12
NOS/VE System Overview 13-1
OPEN Statement 13-10.1
Permanent 13-3
Random Files 13-7
Random I/O 13-30
Record 13-1
Sequential Files 13-7
Sequential I/O 13-14
Specifying 13-2
Temporary 13-2

File Access Method A-6
File Access Mode A-6
File Attribute A-6
File Name A-6
File Organization A-7
File Path A-7
File Position A-7
File Reference A-7
FIX Function 8-21

• Index-6 BASIC for NOS/VE Usage Revision E

FOR-NEXT Loops
FOR Statement 5-21
Nested 5-22
NEXT Statement 5-24

FOR Statement 5-13
Formal Array A-7
Formal Parameter A-7
FORTRAN Interface 9-16
FP Function 8-22
Function A-7
Function (See User-Defined Functions)
FUNCTION Statement 2-1, 2; 7-11, 12

G

GET Statement
Getting Started
Glossary A-I
GOSUB Statement

13-32
E-l

Branch and Return Process 5-6
ON-GO SUB Statement 5-8
RETURN Statement 5-6
Unconditional GOSUB Statement 5-7

GOTO Statement

H

ON-GOTO Statement 5-4
Unconditional GOTO Statement 5-3

HEX$ Function 12-20
How to Get Help E-3

I

Identifier A-8
Identifiers (see Statements and Identifiers)
IF Constructions (Block) (See Block IF Constructions)
IF Constructions (Line) (See Line IF Constructions)
In Case of Trouble 12
Input

BEEP 10-42
Interactive Input
Interior Data Sets
PRINT 10-15
PRINT USING 10-25

10-2
10-10

Random File Input 13-7, 30
Sequential File Input 13-7, 8, 14
WIDTH 10-14
WRITE 10-40

INPUT Statement 10-3; 13-14
INSTR Function 12-9
INT Function 8-23

Index

Revision E BASIC for NOS/VE Usage Index-7.

Index

Interactive Input
INPUT Statement 10-3
LINE INPUT Statement 10-7

Interactive Mode A-8
Interior Data Sets

DATA Statement 10-11
READ Statement 10-12
RESTORE Statement 10-13

Internal Functions 7-14
Internal Routine

Block Function 2-1
Declarative Statement 2-3
Definition 2-1, 2; A-8
Subroutine 2-1

Internal Subroutines 9-8
Introduction to Debug E-1
Introduction to NOS/VE BASIC 1-1

K

Keyword 2-5; A-8

L

Label 2-5; A-8
Language Fundamentals

Constants 3-1
Data Type 3-8
Double-Precision Vestiges 3-19
Variables 3-14

LBOUND Function 11-11
LCASE$ Function 12-23
LEFT$ Function 12-12
LEN Function 12-8
LET Statement 4-14
Library Function A-8
Library Functions Index D-1
Line IF Constructions

ELSE clause 5-9
IF Condition 5-9
THEN Clause 5-9

LINE INPUT Statement 10-7; 13-18
Li ne Number 2-6; A-8
Lines (See Blocks and Lines)
LOC Function 13-11
Local File A-9
Local Path A-9
LOG Function 8-4
Logical Expressions 4-10
Logical Operators 4-10
LOG10 Function 8-5
Looping Structures

FOR-NEXT Loops
WHILE-END Loops

5-21
5-28

.Index-8 BASIC for NOS/VE Usage Revision E

Lower Bound 11-3
LPRINT Statement 13-24
LPRINT USING Statement 13-27
LSET Statement 13-36

M
Main Program 2-2; A-9
Manual History 3
Master Catalog A-9
Mathematical Library Functions

Exponential Functions 8-2
Miscellaneous Functions 8-25
Number Characteristic Functions 8-16
RANDOMIZE Statement 8-29
Trigonometric Functions 8-8

MAX Function 8-25
MID$ Function 12-13
MID$ Reference 3-15
MID$ Statement 12-5
MIN Function 8-26
Miscellaneous Functions 8-25
MKD$ Function 13-35
MKI$ Function 13-35
MKS$ Function 13-35

N
Name, NOS/VE A-9
NEXT Statement 5-24
NOS/VE BASIC Compiler 1-2
NOS/VE Environment 1-3
NOS/VE File System Overview 13-1
Null String A-9
Number Characteristic Functions 8-16

o
Object Program 14-2; A-9
OCT$ Function 12-21
ON ERROR Statement 6-14
ON-GOSUB Statement 5-8
ON-GOTO Statement 5-4
OPEN Statement 13-10.1
OPTION BASE Statement 2-3; 11-7
Ordering Manuals 11
Organization 9
Output

Random File Output 13-8
Sequential File Output 13-7, 8, 13

Index

Revision E BASIC for NOS/VE Usage Index-9.

Index

p

Page Width t setting 10-14
Parameter Passing A-I0
PARAMS$ Function 12-27
Permanent Catalog A-I0
Permanent File A-I0
Plain Name 2-8; A-I0
Preparing to Debug E-6
PRINT Statement

PRINT Statement Format 10-16; 13-23
Print Zones and Comma Format 10-18
Semicolon Format 10-20
Sequential Input/Output 13-13
SPC Format Function 10-22
TAB Format Function 10-23

PRINT USING Statement
Format Characters as Literals 10-38
PRINT USING Statement Format 10-25; 13-25
Scanning Format Strings 10-39
Sequential Input/Output 13-14
Special Numeric Format Characters 10-34
Standard Numeric Format Characters 10-30
String Format Characters 10-28

Program Structure
BASIC Character Set 2-11
Blocks 2-4
Fundamental Statements 2-13
Identifiers 2-l t 8
Lines 2-4
Overview 2-1
Reserved Words 2-9
Routines 2-1
Statements 2-8
Termination Statements 2-13

PUT Statement 13-38

Q

Quoted String Constants 12-1

R

RAD Function 8-13
Random Access 13-8 t 30; A-I0
Random File 13-7 t 30; A-I0
Random Input/Output

Defini.tiotl 13-8 t 30; A-I0
FIELD Statement 13-30
GET Statement 13-32
LSET Statement 13-36
Numeric Interpretation of Strings 13-33

.Index-l0 BASIC for NOS/VE Usage Revision E

Random Input/Output (Continued)
PUT Statement 13-38
RSET Statement 13-36
String Interpretation of Numerics 13-35

RANDOHIZE Statement 8-29
READ Statement 10-12
Record 13-1; A-10
Related Hanuals 2
Relational Expressions 4-8
Relational Operators 4-8
Relative Path A-II
REH Statement 2-13
Remark 2-13
RESEQUENCE Utility 14-10
Reserved Word 2-9; A-II
RESTORE Statement 10-13
RESUHE Statement 6-15
RETURN Statement 5-6
RIGHT$ Function 12-15
RND Function 8-27
Routine

Block Functions 2-1
Declarative Statement 2-3
Definition 2-1; A-II
External Routines 2-3
Internal Routines 2-3
Hain Program 2-2
Subprograms 2-1
Subroutines 2-1

Routines 2-1
RSET Statement 13-36
RUN Statement 5-31
Runtime

Definition 2-6; A-II
Runtime Diagnostic 6-12
Runtime Diagnostic Format 6-12

Runtime Error Processing
ERL Function 6-9
ERR Function 6-11

s

Error Processing Overview 6-2
ERROR Statement 6-17
ON ERROR Statement 6-14
RESUHE Statement 6-15
Runtime Diagnostic Format 6-12
STOP Statement 6-18

SCL Statement 5-33
Sequential Access 13-7; A-II
Sequential File 13-1, 7, 10.3, 14; A-II
Sequential Input/Output

Definition 13-7, 8, 14; A-II
INPUT Statement 13-15
LINE INPUT Statement 13-18

Index

Revision E BASIC for NOS/VE Usage Index-lIe

Index

Sequential Input/Output (Continued)
LPRINT Statement 13-24
LPRINT USING Statement 13-27
PRINT Statement 13-23
PRINT USING Statement 13-25
WIDTH Statement 13-20
WRITE Statement 13-28

Setting Breaks E-7
SGN Function 8-24
SIN Function 8-14
SINH Function 8-6
Source Program 14-2; A-II
SPACES Function 12-25
SPC Function 10-22
Specification Statements

FUNCTION Statement 2-3
SUB Statement 2-3

SQR Function 8-28
Standard File A-12
Statements and Identifiers

Definition 2-8; A-8
Keyword 2-8
Plain Names 2-8
Tokens 2-8

Static Dimensioning A-12
Statically Dimensioned Array 9-14; 11-2; A-12
Status Condition Code 14-4; A-12
STATUS Variable 14-4
STOP Statement 6-18
STR$ Function 12-22
String Expressions 4-7
STRING$ Function 12-26
String Function References 12-1
String Operators 4-7
String Processing

Colon-substring Notation 12-2
Conversion Functions 12-17
MID$ Statement 12-5
Miscellaneous String Functions 12-23
Overview 12-1
String Expression Review 12-1
Substring 12-2
Substring Manipulation Functions 12-8

String Variables 12-1
SUB Statement 2-2, 3; 9-4
Subexpressions 12-1
Submitting Comments 11
Subprogram

Declarative Statements 2-3
Definition 2-1; A-12

Subroutine
BCPDAUA 9-18
CALLX Statement
COMMON Statement
Definition A-12
END SUB Statement

9-16
9-10

9-6

• Index-12 BASIC for NOS/VE Usage Revision E

Subroutine (Continued)
EXIT SUB Statement 9-7
External Subroutines 9-8
FORTRAN Interface 9-16
Internal Subroutines 9-8
Name Declaration 9-11
Overview 2-1, 2; 9-2
Structure 9-4
Subroutine Body 9-2
Subroutine Calls 9-12
Subroutine Name Declaration 9-11
Subroutine Parameters 9-14
Subroutine Specification 9-4

Subscripted Variable
Array Elements 3-18
Array Name 3-18
Definition A-12
Scalar 3-18
Subscripts 3-18

Subscripts (See Arrays)
Substring 12-2; A-12
Substring Manipulation Functions 12-8
Summary and Sample 2-14
Supplied String Variables

DATE$ 3-17
TIME$ 3-16

SWAP Statement 4-16
System Command Language A-12
System Interface

T

RUN Statement 5-31
SCL Statement 5-33

TAB Function 10-23
Tail Comment 2-4
TAN Function 8-15
TANH Function 8-7
Temporary File A-13
Termination Statements

END PROGRAM Statement 2-2, 3, 13
END Statement 2-13
REM Statement 2-13

TIME$ 3-16
Tokens 2-8
Trigonometric Functions 8-8
Type Declaration Statements

DEFDBL Statement 3-11
DEFINT Statement 3-11
DEFSNG Statement 3-11
DEFSTR Statement 3-11

Index

Revision E BASIC for NOS/VE Usage Index-13.

Index

Typed Variables

u

Colon-substring Notation 3-15
Integer 3-15
MID$ Reference 3-15
Real 3-15
String 3-15
Substring 3-15

UBOUND Function 11-11
UCASE$ Function 12-24
Unconditional GOSUB Statement 5-7
Unconditional GOTO Statement 5-3
Unit-Measured Application Accounting 9-18
Upper Bound 11-3
User-Defined Functions

Block Function Calls 7-19
Block Function Parameters 7-21
Block Function Structure 7-7
COMMON Statement 7-17
DECLARE EXTERNAL FUNCTION Statement 7-18
DECLARE FUNCTION Statement 7-18
Definition 7-1; A-7
Expression Functions 7-3
External Functions 7-14
Function Name Declaration 7-18
Function Overview 7-1
Internal Functions 7-14

User Name A-13
User Path A-13

v
VAL Function 12-18
Variable

w

Definition 3-14; A-13
Subscripted Variables 3-18
Supplied String Variables 3-16
Typed Variables 3-15

WEND Statement 5-29
WHILE-END Loops

WEND Statement 5-29
WHILE Statement 5-28

WHILE Statement 5-28
WIDTH Statement 10-14; 13-20
Working Catalog 13-4; A-13
WRITE Statement 10-40; 13-28

.Index-14 BASIC for NOS/VE Usage Revision E

BASIC for NOS/VE Usage 60486313 E

e would lilte your cOIDent. on this lIIanual. While writing it, we lIIade 80_ assulllption8 about who
ould use it and how it would be used. Your cOllllllents will help us illlprove this lIIanual. Please
alte a few lainute. to reply.

ho Are You? How Do You Use This Manual? Do You Also Have1

As an Overview BASIC for NOS/VE SUllllllary Manager
- Systems Analyst or PrograDDer
- Applications PrograDDer

- To Learn the Product/Systelll
- For Comprehensive Reference

- Operator
- Other _________ _

= For Quick Look-up

hat prograllDing languages do you use?

hich are helpful to you? Quick Index (inside back cover)
- Related Manuals figure Other: ____________ _

Character Set (App. B)

ow Do You Like This Manual? Check those that apply.

Yes Somewhat No
Is the manual easy to read (print size, page layout, and so on)?
Is it easy to understand?
Is the order of topics logical?
Are there enough eX8IIIples?
Are the examples helpful? Too silllple Too cOlllplex)
Is the technical informationaccurate?
Can you easily f1nd what you want?
Do the illustrations help you?
Does the manual tell you what you need to know about the topic?

ollllllents? If applicable, note page nUlllber and paragraph.

Continue on other side

'ould you like a reply? Yes No

lallle _________________ _ COlllpany _________________ _

,ddress ______________________ _ Date ___________ _

Phone No. _________ _

'lease send progralll listing and output 1£ applicable to your cOlDent.

FOLD

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 8241 MINNEAPOLIS. MN.

POSTAGE WILL BE PAID BY ADDRESSEE

<S 2) CONTf\.OL DATA
Technology and Publications Division

Mail Stop: SVL104
P.O. Box 3492
Sunnyvale, California 94088-3492

Comments <continued from other side)

111111 NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

Quick Index

The index beginning on the following page lists the BASIC statements
and functions described in this manual and the page on which each is
described.

Revision E BASIC for NOS/VE Usage Quick Index-l I

Quick Index

ABS •••••••••••••••••••••
ACOS ••••••••••••••••••••
ASC •••••••••••••••••••••
ASIN ••••••••••••••••••••
ATN ••••••••••••••••••••
BCPDAUA •••••••••••••••••
BEEP ••••••••••••••••••••
CALL ••••••••••••••••••••
CALLX •••••••••••••••••••
CDBL ••••••••••••••••••••
CEIL ••••••••••••••••••••
CHR$ ••••••••••••••••••••
CINT ••••••••••••••••••••
CLEAR •••••••••••••••••••
CLOSE •••••••••••••••••••
COMMON (Functions) ••••••
COMMON (Subroutines) ••••
COS •••••••••••••••••••••
COSH ••••••••••••••••••••
CSNG ••••••••••••••••••••
CVD •••••••••••••••••••••
CVI •••••••••••••••••••••
CVS •••••••••••••••••••••
DATA ••••••••••••••••••••
DATE$ •••••••••••••••••••
DECLARE EXTERNAL

FUNCTION ••••••••••••
DECLARE EXTERNAL SUB ••••
DECLARE FUNCTION ••••••••
DECLARE SUB •••••••••••••
DEF •••••••••••••••••••••
DEFDBL
DEFINT
DEFSNG ••••••••••••••••••
DEFSTR

8-16
8-8

12-17
8-9
8-10
9-18

10-42
9-12
9-16
8-17
8-18

12-19
8-19
4-17

13-11
7-17
9-10
8-11
8-2
8-20

13-33
13-33
13-33
10-11

3-17

7-18
9-11
7-18
9-11
7-3
3-11
3-11
3-11
3-11

DEG •••••••••••••••••••••
DIM •••••••••••••••••••••
ELSE ••••••••••••••••••••
ELSE IF ••••••••••••••••••
END •••••••••••••••••••••
END FUNCTION ••••••••••••
END PROGRAM •••••••••••••
END SUB •••••••••••••••••
ENDIF •••••••••••••••••••
EOF •••••••••••••••••••••
ERASE •••••••••••••••••••
ERL •••••••••••••••••••••
ERR •••••••••••••••••••••
ERROR •••••••••••••••••••
EXIT FUNCTION •••••••••••
EXIT SUB ••••••••••••••••
EXP •••••••••••••••••••••
EXTERNAL FUNCTION •••••••
EXTERNAL SUB ••••••••••••
FIELD •••••••••••••••••••
FIX •••••••••••••••••••••
FOR •••••••••••••••••••••
FP ••••••••••••••••••••••
FUNCTION ••••••••••••••••
GET •••••••••••••••••••••
GOSUB •••••••••••••••••••
GOTO ••••••••••••••••••••
HEX$ ••••••••••••••••••••
IF ••••••••••••••••••••••
INPUT (Sequential file)
INPUT (Terminal) ••••••••
INSTR •••••••••••••••••••
INT •••••••••••••••••••••
LBOUND ••••••••••••••••••
LCASE$ ••••••••••••••••••

8-12
11-9

5-9
5-14
2-13
7-11
2-13
9-6
5-14

13-13
11-16
6-9
6-11
6-17
7-12
9-7
8.;,..3
7-8
9-4

13-30
8-21
5-21
8-22
7-8

13-32
5-5
5-2

12-20
5-9

13-15
10-3
12-9

8-23
11-11
12-23

Quick Index-2 BASIC for NOS/VE Usage Revision E

LEFT$ ••••••••••••••••••
LEN ••••••••••••••••••••
LET (Variable

assignment) ••••••••
LET (Function

assignment) ••••••••
LINE INPUT (Terminal)
LINE INPUT

(Sequential file)
LaC ••••••••••••••••••••
LOG ••••••••••••••••••••
LOGI0 ••••••••••••••••••
LPRINT •••••••••••••••••
LPRINT USING •••••••••••
LSET •••••••••••••••••••
MAX ••••••••••••••••••••
MID$ (Function) ••••••••
MID$ (Statement) •••••••
MIN ••••••••••••••••••••
MKD$ •••••••••••••••••••
MKI$ •••••••••••••••••••
HKS$ •••••••••••••••••••
NEXT •••••••••••••••••••
OCT$ •••••••••••••••••••
ON ERROR GOTO ••••••••••
ON-GOSUB •••••••••••••••
ON-COTO ••••••••••••••••
OPEN •••••••••••••••••••
OPTION BASE ••••••••••••
PARAMS$ ••••••••••••••••
PRINT

I (Sequential file) ••
PRINT (Terminal) •••••••
PRINT USING

(Sequential file) ••
PRINT USING (Terminal) •
PUT ••••••••••••••••••••
RAD ••••••••••••••••••••

Revision E

12-12
12-8

4-14

7-10
10-7

13-18
13-12
8-4
8-5

13-24
13-27
13-36
8-25

12-13
12-5
8-26

13-35
13-35
13-35
5-24

12-21
6-14
5-8
5-4

13-10.1
11-7
12-27

13-23
10-15

13-25
10-25
13-38
8-13

Quick Index

RANDOMIZE ••••••••••••••.
READ •••••••••••••••••••
REM ••••••••••••••••••••
RESEQUENCE •••••••••••••
RESTORE ••••••••••••••••
RESUME •••••••••••••••••
RETURN •••••••••••••••••
RIGHT$ •••••••••••••••••
RND ••••••••••••••••••••
RND() ••••••••••••••••••
RSET •••••••••••••••••••
RUN
SCL
SGN
SIN
SINH •••••••••••••••••••
SPACE$ •••••••••••••••••
SPC ••••••••••••••••••••
SQR ••••••••••••••••••••
STOP •••••••••••••••••••
STR$ •••••••••••••••••••
STRING$ ••••••••••••••••
SUB ••••••••••••••••••••
SHAP •••••••••••••••••••
TAB ••••••••••••••••••••
TAN ••••••••••••••••••••
TANH •••••••••••••••••••
TIME$ ••••••••••••••••••
UBOUND •••••••••••••••••
UCASE$ •••••••••••••••••
VAL ••••••••••••••••••••
WEND •••••••••••••••••••
\-lHILE ••••••••••••••••••
WIDTH (Sequential file)
WIDTH (Terminal) •••••••
WRITE (Sequential file)
WRITE (Terminal) •••••••

8-29
10-12.1
2-13

14-10
10-13

6-15
5-6

12-15
8-27
8-27

13-36
5-31
5-33
8-24
8-14
8-6

12-25
10-22
8-28
6-18

12-22
12-26
9-4
4-16

10-23
8-15
8-7
3-16

11-11
12-24
12-18

5-29
5-28

13-20
10-14
13-28
10-40

BASIC for NOS/VE Usage Quick Index-3

, ~ ~ CONTR.OL DATA

